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ZUSAMMENFASSUNG

ERM Proteins - Regulators of Mitosis?

Bissen, Philippe

Morphologische Veranderungen einer Zelle benotigen einen anpassbaren Zellko-
rtex. Hierfiir setzt das Zytoskelett sich aus selbst organisierenden Komponenten
zusammen, welche neben den Bewegungsformen durch Bléschen, Lamellipodien und
Lobopodien die Ausbildung von Mikrovilli, die Abrundung der Zelle in der Pro-
und Metaphase und die Zytokinese ermdglichen. Fiir die Deformationen der Plas-
mamembran muss diese in dem darunterliegenden Zellkortex verankert sein. Anillin
und ERM Proteine sind einige bekannte Verteter solcher verankernden Proteine.
Diese Studie untersucht mogliche Rollen der ERM Proteine in der Mitose. ERM
Proteine stellen eine Proteinfamilie gebildet von ezrin, radixin und moesin dar.
Die Resultate zeigen nach Depletion der ERM Proteine keine signifikant erhohte
Zahl an Zellen mit unphysiologisch vermehrtem DNA Gehalt, was in diesen Zellen
keine gravierenden Fehler in der Zellteilung vermuten lasst. Allerdings bringt eine
detailliertere Analyse der Mitoseschritte in den ERM-defizienten Zellen im Vergle-
ich zu ERM-haltigen Zellen einige Veranderungen zu Tage. Weniger Zellen begin-
nen die Zytokinese und parallel verbleiben mehr Zellen fiir eine langere Zeit in der
Metaphase. Schliellich provoziert die fehlende Verbindungsfunktion der ERM Pro-
teine kortikale Instabilitaten und Blaschenbildung unter dem Mikroskop. Ebenso
stellt man eine kiirzere Distanz zwischen den segregierenden Chromosomen und
dem Zellkortex fest.

Kombiniert zeigen diese Resultate, dass ERM Proteine die Progression der Zytoki-
nese positiv beeinflussen. Diese Wirkung basiert entweder auf kortikalen Interak-
tionen und/oder auf der Ebene der Spindelorganisation, welche die chromosomale

Segregation reguliert.

Tag der miindlichen Priifung: 08.02.2019



ERKLARUNG

Ich gebe hiermit die Erklarung ab, dass ich die Dissertation mit dem Titel:
ERM Proteins - Regulators of Mitosis?

in der/im (Klinik, Institut, Krankenanstalt):
Institut fir Medizinische Biochemie

unter der Anleitung von:

Prof. Dr. V. Gerke

[y

. selbstéindig angefertigt,

. nur unter Benutzung der im Literaturverzeichnis angegebenen Arbeiten angefertigt und
sonst kein anderes gedrucktes oder ungedrucktes Material verwendet,

3. keine unerlaubte fremde Hilfe in Anspruch genommen,

4. sie weder in der gegenwartigen noch in einer anderen Fassung einer in- oder

auslidndischen Fakultét als Dissertation, Semesterarbeit, Priifungsarbeit, oder zur

Erlangung eines akademischen Grades, vorgelegt habe.

Minster, den 21.April 2018 thppe Bissen % é)’/’/\ .

Ort, Datum Name/ Unterschrift




Contents

1 Introduction 1
1.1 ERM proteins . . . . . . . . .. 1
1.1.1  The structural composition of the members of the ERM family 1

1.1.2 Interaction partners. . . . . . . . . . . . ... ... .. .... 4

1.1.3  Function in cells & physiology . . . . . . . .. ... ... ... 7

1.2 Thecell cortex . . . . .. .. . 10
1.2.1  Cortex - a complex construct . . . . ... ... .. ... 10

1.2.2 Cortex in motion . . . . . . . .. ... 10

1.2.3  Deformation I: Locomotion. . . . . . .. .. .. .. ... ... 14

1.2.3.1 Lamellipodia/Filopodia . . . . . ... .. ... ... 14

1.232 Blebs . . ... 15

1.2.3.2.1  Initiation . . . . ... .. ..o 16

1.2.3.22 Growth . ... ... ... ... ....... 16

1.2.3.2.3 Retraction . . . . . . ... ... 17

1.2.3.3 Mixed Forms including Lobopodia . . . . . .. . .. 18

1.2.4  Deformation II: Epithelial Morphogenesis . . . . . . .. .. .. 19

1.2.5 Deformation III: Division. . . . . . . . ... ... ... .... 21

1.2.5.1  Mitotic Entry . . . . . . ... 21

1.2.5.1.1  Transition Checkpoints . . . . . . . ... .. 21

1.2.5.1.2  Cell Rounding . . . ... ... ... .... 21

1.2.5.1.3  Spindle Assembly and Orientation . . . . . 24

1.2.5.2 Cytokinesis . . . . . .. . ... L 24

1.3 ERMs in mitosis . . . . . . . ... 31

2 Scope of the Thesis 33
3 Materials and Methods 34
3.1 Materials . . . . . . .. 34
3.1.1 Bacterial Strains . . . .. .. ..o 34

3.1.2 Cell Lines . . . . . . . . . 34

3.1.3 DNA Constructs . . . . . .. ... 35



CONTENTS

3.2

CONTENTS
3.1.4 Small interfering RNAs (siRNAs) . . .. ... ... ... ... 35
3.1.5 Antibodies . . . . .. ... 35
3.1.6 Chemicals . . . . . .. .. ... 36
317 Kits ..o 37
3.1.8 Devices . . . ... 37
3.1.9 Software . . . . .. .. 39
Methods . . . . . . . . . 40
3.2.1 Molecular biological methods . . . . .. ... ... ... ... 40
3.2.1.1  Cultivation of Escherichia coli . . . . . ... ... .. 40
3.2.1.2  Transformation of chemically competent E.coli. . . . 40
3.2.1.3 Purification of plasmid DNA . . . . ... ... ... 40
3.2.1.4 Quantification of DNA . . . . . ... ... ... ... 41
3.2.2 Cell biological methods . . . . . . .. ... ... ... ..... 41
3.2.2.1 Eukaryotic cell culture . . . . . ... ... ... ... 41
3.2.2.2  Cryopreservation of eukaryotic cells . . . . . . . . .. 42
3.22.3 Cell counting . . . . . . ... ... 42
3.2.2.3.1  General cell counting . . . . ... ... ... 42
3.2.2.3.2  Shake off counting method . . . . . . . . .. 43
3.2.2.4  (Transient) Transfection of eukaryotic cells . . . . . . 44
3.2.24.1 Lipofectamine-2000 . . . . . . . . .. .. .. 44
3.224.2 GeneJammer . .. ... ... ... ... .. 44
3.2.3 Protein biochemical methods . . . . .. ... ... ... ... 45
3.2.3.1  Cell lysate preparation . . . . . . . .. .. ... ... 45
3.2.3.2  Protein concentration determination using the BCA

test . . . 46

3.2.3.3  Sodium-Dodecyl-Sulfate Polyacrylamide Gel-Electrophoresis
(SDS-PAGE) . . . .. ... ... 46
3.2.3.4 Western blotting . . . .. ... ... ... ... ... 48
3.2.3.5 Antibody treatment and detection . . . . ... ... 49
3.2.4  Cell synchronization methods . . . . ... ... .. ... ... 49
3.24.1 Nocodazole block . . . . . ... ... ... ... ... 49
3.25 Flow Cytometry . . . . . . . . .. ... 50
3.2.5.1 Ethanol fixation . . .. ... ... ... ... ... 50
3.2.5.2  Propidium iodide staining . . . . . . ... ... ... 50
3.2.5.3 Analysis of Mitosis . . . . ... ... ... ... ... 51
3.2.5.4  Statistical Methods . . . . . .. .. .. ... b}
3.26 Imaging . . . . . . . .. 56
3.2.6.1 Cell fixation and immunofluorescence staining . . . . 56
3.2.6.2 Live cell time lapse imaging . . . . .. ... ... .. o8

il



CONTENTS CONTENTS

4 Results

4.1 Localization of ERM proteins in HeLa cells . . . . . . .. ... .. ..
4.2 Role of ERMs in cell division: Mitotic entry . . . . . . . . .. .. ..
4.2.1  Cell adherence after induction of mitosis . . . . . . .. .. ..
4.2.2  DNA content of cells in mitosis after ERM downregulation . .
4.2.3 Progression of mitosis in cells with ERM downregulation . . .

4.3 Role of ERMs in cell division: Cytokinesis . . . . . . . .. .. .. ..
4.3.1 Localization of full-length ezrin during cell division . . . . . .
4.3.2 Effect of an ezrin PI(4,5)Ps-binding mutant . . . . . . . . ..
4.3.3 Effect of N-ERMAD overexpression . . . . . .. ... ... ..
4.3.4 Analysis of chromosome segregation in dividing cells . . . . . .
4.3.4.1 Kinetics of chromosome segregation . . . . . . . . ..

4.3.4.2  Morphological analysis of chromosome segregation

5 Discussion
5.1 Cell adherence after induction of mitosis could involve all 3 ERMs . .
5.2 Effect of ERM downregulation in chromosome segregation . . . . . .
5.3 Effect of ERMs on kinetic and morphological aspects of mitosis
5.3.1 ERMs accelerate the progression of cytokinesis . . . . . . . ..
5.3.2 Individual analysis of cells revealed morphological alterations
upon active ERM downregulation . . . . .. . ... ... ...

54 Conclusion . . . . . . ..
6 References
7 Curriculum Vitae
8 Acknowledgement

A Appendix
Al Listof Figures . . . . . . . . . . . .
A2 List of Tables . . . . . . . . . . . .. ...
A.3 Abbreviations . . . . . ...
A4 Amino Acide Code . . . . . . . . ...

iii

59
29
65
65
67
69
7
7
79
80
83
83
84

121

122



1 Introduction

1.1 ERM proteins

HE proteins of interest in this study are ezrin, radixin and moesin. All three
together form a family of membrane-associated proteins, the ERM family [1].
They are linker proteins between the plasma membrane and the actin cytoskeleton
2]. Another member that was later discovered is merlin (moesin-ezrin-radixin-like
protein) [3, 4].
ERM proteins (ERMs) and their interactions will be introduced in this first section.
The second section will deal with the actin cyoskeleton, in particular the cortical
actin cytoskeleton, before the third and last section will highlight the potential role
of ERMs in mitosis.

1.1.1 The structural composition of the members of the
ERM family

The amino acid structure of ERMs is very closely related and implies thereby a simi-
lar size. A conserved amino-terminal FERM (Four point 1, Ezrin, Radixin, Moesin)
domain indicates their membership in the band 4.1 superfamily [5-7]. ERM pro-
teins have respectively a size of 80kDa [8], 82kDa [9] and 77kDa [6]. Their calculated
molecular mass is ~ 69 kDa [5, 7], with the difference due to their highly charged
nature. At their carboxy-terminal end 34 amino acid residues are conserved [10].

This carboxy-terminus is linked to the amino-terminus by an a-helical domain [11].
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[ FERM domain ! Spectrin/F-actin binding
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Figure 1.1: Schematic structure of the ERM family.
The sequence identity of radixin, moesin and Band 4.1 compared to ezrin is shown. Ezrin and
radixin present a region rich in prolines (PP), while moesin does not. Image modified from [12].

The schematic structure, shown in Figure 1.1, delineates further characteristics
of the domains that are needed to understand the function of ERMs.
The FERM domain consists of 300 amino acid residues that form three lobes (F1,
F2 and F3) in the shape of a clover structure [12-14]. F1 (residues 4 — 82) is built
of a fB-sheet and an a-helix, F2 (residues 96 — 195) of 5 helices with interactions
between helices B and C and F3 (residues 204 — 297) of a [-sheet and a long helix
(residue numbers specific for moesin) [13]. Each of the cloverleaves is structuraly
similar to other proteins. F1 shows resemblance to ubiquitin [15], F2 to acyl-CoA
binding protein [16] and F3 to phosphotyrosine binding (PTB), pleckstrin homology
(PH) and Enabled/VASP homology 1 (EVH1) domains [17] [13]. Importantly, the
FERM domains of ERM proteins have binding sites for membrane lipids and pro-
teins [18].
Located between the C- and the N-terminal regions is a central o domain of ~ 200
residues [19]. In the C-terminal domain, each ERM contains a phosphorylatable

567 564

threonine residue. In ezrin, it is at Thr°®’, in radixin at Thr°** and in moesin at

Thr® [20, 21]. The C-ERMAD (C-terminal ERM Association Domain) contains
~ 100 residues [19] of which the last 6 residues of the conserved 34 are required for

F-actin interaction [10].

The closely related structures indicate the emergence of ERMs by gene duplica-
tion within the vertebrates. Thus, they might have similar and/or redundant roles
(see Table 1.1) [12].
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] Conservation of N- and C-terminal domains \

Protein N-terminal (in %) C-terminal (in %)
Ezrin 100 100
Radixin 86 60
Moesin 85 58

Table 1.1: Conservation of N- and C-terminal domains.
Image amended from [19].

Conformational Autoinhibition:

The finding that ezrin and moesin are capable of homo- and heterodimerizing [22]
led to the discovery that the N-terminal domain can bind with high affinity to the
C-terminal domain. This led to the nomenclature N-ERMAD (N-terminal ERM
Association Domain) and C-ERMAD comprising the 80-carboxy-terminal residues
required for the binding [13, 19]. This interaction between the N- and the C-terminal
domains masks the binding sites for other proteins and results therefore in the dor-
mant or autoinhibited form of ERM proteins (see Figure 1.4) [19, 23].

PEA
( ((} (>
“ A e /}

¢ -; }fy \ j‘/ /\ 1\(L"

Tail

Figure 1.2: FERM/tail complex in the overall crystal structure.
Image amended from [13].

The C-ERMAD consists of a f-strand and four major a-helices, capable of mask-
ing parts of the F2 and F3 domains (see Figure 1.2) [13]. To achieve the dormant
form, residues 488 —494 extend the second [-sheet of F3 in a way that an antiparallel
[-strand alongside strand 5 of F3 is formed. Moreover residues 495 — 501 connect
to residues 502 — 577 in a way that the C-terminal tail is folded and aligns next to
4 major helices (named A, B, C and D) also 2 short helices. These 2 short helices
interact with F2 and F3 of the N-ERMAD (residue numbers specific for moesin).
Finally 36 % of the tail surface takes part in the autoinhibition and covers 2700 A
of the FERM domain [13]. Interestingly the reaction between the amino- and the
carboxyterminus has a favorable enthalpy (AH) and an unfavorable entropy (AS),
so that only 1 molecule in ~ 20.000 would adopt the open conformation without

being activated. The macroscopic stability of C-ERMAD is given by the a-helices
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aC and aD. A nuclear magnetic resonance (NMR) study has proved that the FERM
domain is independantly bound by helices of C-ERMAD [24].

The intramolecular autoinhibited form of ERM proteins resides in the cytosol [25].
The molecule changes into the active open conformation after a sequence of two
activation steps. The first step is the recruitment and binding to membrane regions
with phosphatidylinositol-4,5-bisphosphate (PI1(4,5)P3)[26, 27]. This establishes a
recruitment of the open form of ERM proteins to the membrane [25]. Secondly the

567 ; 564 3 558 i

carboxy-terminal threonine residue (Thr°®" in ezrin, Thr°** in radixin and Thr**® in

moesin) is phosphorylated [28] after its placement near Rho kinase or protein kinase
Co [12].

Two evolutionarily conserved residues in the 4.1 protein and in the ERMs also
enable the direct association with microtubules [29]. Furthermore, the membrane-
associated ezrin could locally modulate cortical organization and contractility, be-

cause its diffusion at the membrane is quite slow [30].

1.1.2 Interaction partners

The manifold functions of ERM proteins (see 1.1.3 below) require numerous inter-
action partners (see Table 1.2).

For their activation several kinases are able in vertebrate cells to phosphorylate the
respective regulatory threonine (Thr®®7 in ezrin, Thr®®* in radixin and Thr®*® in
moesin), including Rho Kinase (ROCK), Protein Kinase C (PKC) «, PKC#, NF-
kappa-B-inducing kinase (NIK), mammalian STE20-like protein kinase 4 (Mst4) and
lymphocyte-oriented kinase (LOK) [21, 31-34].

In leucocytes it could be shown that ERMs function both upstream and downstream
of Rho GTPases (see Figure 1.3) [35]. Rho GDP dissociation inhibitor (Rho GDI)
inhibits the activation of G proteins belonging to the Rho family by building a com-
plex with the isoprenyl group of the GDP-bound form. ERM proteins can regulate
Rho proteins through direct binding or by binding Rho GDI via the FERM domain.
Thereby the inhibitory regulation is reduced and Rho family members are activated
(36, 37]. Moreover, ERMs are capable of binding stimulatory GDP/GTP exchange
proteins for Rho family members such as Dbl. Dbl can bind to FERM but not
to an ERM in a complex with Rho GDI. Rho GDI even displaces Dbl from ERMs
[38]. ERMs also work as protein kinase (A) anchoring proteins (AKAP). The type
IT A-kinase regulatory subunit, called R;;, comprises a binding region to ERMs be-
tween the FERM and the C-terminal domain. In this a-helix 14 amino acids build
an amphipathic helix, essential for R;; binding [39]. Furthermore, direct inhibition
of RhoA was shown to dramatically reduce the activity of ERMs. ERM proteins
are thereby regulated downstream Rho GTPases as well [26].
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Figure 1.3: ERM proteins function both upstream and downstream of Rho GTPases.
Image based on [35].

In vertebrates ERMs can also be phosphorylated at other residues. CDKS5 is ca-
pable of phosphorylating Thr?*
Thr?%7. Thereby ezrin also becomes activated [13, 40]. Tyrosines 145 and 353 in

ezrin can also be phosphorylated through multiple kinases, such as EGF receptor

in ezrin, which lies topologically directly opposite

[41]. The unconserved Tyr3®® that only exists in ezrin is phosphorylated in B cells to
couple JNK signaling with the BCR signalosome. This role of Tyr? is independant
of Thr?7 [42]. For Tyr!*® no role has been described until today.

In Drosophila the sterile 20-like kinase (SLK) seems to be responsible for the phos-
phorylation of the important Thr residue [43-46]. Studies tested mutations in the
threonine residue of ERMS. TxxxD (for moesin T559D) should mimic the phospho-
rylation and TxxxA (for moesin T559A) should abolish the phosphorylation. The
transfection with TxxxD was shown to be capable of rescuing an insertion mutation
in the moesin gene (P{lacW}i(1)G0323), which disrupts the function of moesin [47].
Two other studies obtained different results, but Fehon et al deduced from another
study [48] that C-terminal-tagged GFPs could interfere in the intramoleculare bind-
ing. That way studies that could not reproduce the rescue with TxxxD should not
rely on results obtained with C-terminal tagged GFPs [49].

ERM proteins can bind to juxta-membrane cytoplasmic domains of integral mem-
brane proteins with their FERM domain. These include CD43, CD44 and intercellu-
lar adhesion molecule (ICAM)-2 [50]. The binding of CD44 happens in a PI(4, 5)P»-
dependent manner [28]. Another binding of ERMs to membrane proteins can be
observed for the Nat, H"-exchanger (NHE)l. NHE1 has 12 transmembrane do-
mains and the FERM domain binds to the positively charged carboxy-terminal
cytoplasmic tail [51].
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] Proteins binding to FERM domains ‘
Membrane proteins
1.Intercellular adhesion molecule-1 (ICAM-1)
2.Intercellular adhesion molecule-2 (ICAM-2)
3.CD44
4.CD43
5.L-selectin
6.CD95 (APO-1/Fas)
7.Nat, H"-exchanger 1 (NHE1)
8.P-glycoprotein (ERM)
9.Multidrug resistance protein 2 (MRP2) (*radixin)
10.Na™ KT2C1~ cotransporter (NKCC2) (¥moesin)
Scaffold proteins
1.NHERF1 (EBP50)
2.NHERF?2
Rho-related proteins
1.Rho-GDP-dissociation inhibitor (Rho-GDI)
2.Dbl

Table 1.2: Proteins binding FERM domains
Image adapted from [25]

The ERM-binding phosphoprotein 50 (EBP50), which comprises 357 residues,
is widely distributed, in particular in liver, kidneys, small intestine and placenta.
The protein presents two ~ 90-residue repeats in the amino-terminal half of the
molecule, that show 74 % identity and are called PDZ domains (named after the
first three proteins that were found with such a domain: Post synaptic density
protein, Drosophila disc large tumor suppressor and Zonula occludens-1 protein).
The latter domains are involved in the formation of multiprotein complexes at the
plasma membrane [52]. The rabbit scaffold protein NHE-RF (NHE regulatory fac-
tor) shows 84 % identity to human EBP50 [53]. Dormant ERMs can be activated
to bind EBP50/NHERF through their N-ERMAD and F-actin through their C-
ERMAD, linking thereby the plasma membrane to the cytoskeleton [54]. NHERF
and ERMs colocalize in membrane ruffles, microvilli and filopodia in cells [55] and
NHERF2 (also called TKA-1, E3KARP or SIP-1) is present in podocytes maintain-
ing the intact epithelium [56]. NHERF and NHERF 2 have 52 % sequence identity
[57]. While the first PDZ domain of the NHERF family binds to proteins with
D-S/T-x-L at their C-terminus, including CFTR (Cystic Fibrosis Transmembrane
Regulator) and purinergic P2Y1 receptor, the second PDZ domain can also bind to
CFTR with lower affinity [58]. Interestingly scaffold proteins like NHERF family
members are conformationally regulated by intramolecular associations as it is the
case for ERMs [59, 60].
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Figure 1.4: ERM proteins are linkers between the plasma membrane and the actin
cytoskeleton.

After their activation through PI(4,5)Py binding and phosphorylation, ERMs either bind the
membrane directly (I) or indirectly (II) to the cell cortex. Examples for the juxtamembrane
proteins in both binding scenarios are *) CD44, ICAM-1, NHE-1, Syndecan-2 and **) NHE-3,
CFTR, PDGF-R, Podocalyxin. Image adapted from [12].

In addition to microvilli and membrane ruffles, ERM proteins are also enriched
in cell—cell junctions and cleavage furrows of dividing cells [61-63].
ERMs are also implicated in the hedgehog signaling [49, 64] and in membrane re-
ceptor signalling [65], either through direct interactions with membrane receptors

or through scaffold protein binding.

1.1.3 Function in cells & physiology

An organism that is often used to study the function of ERMs is Drosophila melanogaster
because it has a single ERM protein called dmoesin [66].

In other organisms each organ and tissue has its specific ERM expression profile
(see Table 1.3).

Studies could show that ezrin is prominantly expressed in the intestines and in the
stomach. Also the renal proximal tubules and corpuscules express ezrin [61, 67].
Knockouts of ERMs are only lethal for ezrin and these mice die before weaning. A
reduction of ezrin expression in the apical microvilli in the retinal pigment epithe-
lium and in the Miiller cells leads to substantial retardation in the development of
photoreceptors [68]. Ezrin conditional knockout mice showed phenotypes including
achlorhydria [69], a dysregulation of phosphate and calcium homeostasis [70] and

intrahepatic choleostasis [71].
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In physiology the secretion of gastric acid requires ezrin. On the apical canalicu-
lar membranes ezrin is predominantly expressed in parietal cells [72]. Histamine

66 Then ezrin

stimulation leads to PKA-mediated phosphorylation of ezrin at Ser
interacts with ACAP4, an Arf-GTPase-activating protein. The result is membrane
fusion between intracellular tubulovesicles containing gastric proton pumps and the
apical plasma membrane [73].

Moesin shows high expression levels in the lungs, spleen, kidneys and in endothelial
cells and lymphocytes [61, 67]. Chemokines are capable of inducing rapid dephos-
phorylation of ERMs and thereby trigger a rapid loss of microvilli and polarization
[74]. Moesin has a non-redundant role in the egress of both T and B cells from
lymphoid organs. It is the major protein to regulate cell migration and cell shape
changes in lymphocytes [75]. Neutrophils were also shown to need moesin for the
regulation of transmigration and chemotaxis. Constitutively active moesin masks
through its FERM domain the PH/DH domain of GEFs, so that Rho GTPases
(Rac, RhoA, and Cdc42) can’t be activated. To initiate directed cell polarization
and migration myosin phosphatase abolishes the moesin-mediated masking at the
would-be leading edges (see also Chapter 1.2.3) [76].

Radixin was originally found in the liver [9] and later to be the major ERM protein
in hepatocytes [77, 78]. It is also the major ERM protein in cochlear stereocilia [79].
A further role was shown through a link to GABA 4 receptors in the hippocampus

[80] and therefore in abilities like reversal learning and short-term memory [81].

’ ERM Proteins expressed in Cultured Cell lines ‘

Cell line ezrin radixin moesin
Epithelial cells

m intestinal epithelial cells) +—++ +++ -
HT-29 (human colon adenocarcinoma) +++ + ++
LLC-PK1 (porcine kidney epithelial cells) +++ +++ +++
MDCK (dog kidney epithelial cells) +4++ + Tt
HepG2 (human hepatocellular carcinomas) +++ +++ ++
A431 cells (human squamous carcinomas) +++ + ++
Fibroblasts

L cells (mouse fibroblasts) +++ 4+ 4t
NIH 3T3 (mouse fibroblasts) + 4+ T+
Neuronal cells

PC12 (rat pheochromocytomas) ++ + 4+
Lymphoid cells

CCRF-CEM cells (human lymphoid cells) +++ ++ +4++

Table 1.3: ERM protein expression
Image adapted from [25]

In vertebrate embryos the polarity is established by silencing Hippo signaling in

the nucleus [82]. In the course of these events a Par complex phosphorylates ezrin
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that subsequently inactivates Hippo, thereby supressing the pluripotency gene Oct4

by different molecular interactions [83, 84].
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1.2 The cell cortex

1.2.1 Cortex - a complex construct

N the early 20" century the underlying structures of the cell membrane were al-
ready the core of research studies, which led to the description of an hyaline
cortex of amoebae in 1926 [85], which was thereby the first cell cortex to be men-
tioned. Another name for the cell cortex that came up is membrane skeleton [86].
Research needed time until the 1970s to acquire some evidence that the underlying
filaments are built of actin [87, 88] and that the cortex constitutes a cross-linked
network of actin, myosin and associated proteins. Later, electron microscopy showed
an actin filament [filamentous actin (F-actin)] network adjacent to the plasma mem-
brane, which has mesh sizes ranging from 20 to 250 nm and a thickness of about
50 — 100 nm [89, 90], although the latter size calculation could be falsified by the

electron microscopy method, as this leads to distortions [91].

1.2.2 Cortex in motion

The actin filament network implicates many proteins that provide the cortex with
its abilities. Myosin motor proteins enable the filaments to move and actin bind-
ing proteins such as cofilin and gelsolin control the assembly and disassembly of
F-actin. Furthermore, cross-linkers between the cortex and the plasma membrane
such as the ERM proteins and cross-linkers between the actin filaments themselves
such as fascin help organize the structure of the cortex. The next lines describe the
roles and interactions of these protein families.

Today two major distinct pathways of actin nucleation are known, the formin
(m)Dial/Diaphl and the Arp2/3 (actin-related protein 2 and 3) complex depen-
dant one [92], which also regulate cortical actin. Formin-nucleated filaments rep-
resent 10 % of F-actin and are on average 10 times longer than those nucleated by
Arp2/3. Diaphl accelerates growth at the barbed ends [also called positive (+)
end], while the Arp2/3 complex prevents actin disassembly from the pointed end
[also called minus (-) end], so that there is a constant growth of filaments at their
barbed ends and at the pointed ends the filaments shrink [93]. The same author
was recently able to show that the association of actin filaments into greater actin
patterns from vortices to stars and asters is driven by the nucleation of the Arp2/3

complex and not by myosin II (see Figure 1.5) [94].
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Membrane

Nucleus

Figure 1.5: Sketch of the actin cortex.
The bilayer is stabilized by underlying actin patterns [94]. The association of F-actin into greater
actin patterns is driven by nucleation through the Arp2/3 complex.

There exist two distinct mechanisms for the formation of macromolecular struc-
tures (see Figure 1.6): Self-assembly is the physical association of molecules into an
equilibrium structure [95], whereas self-organization represents a physical molecular

interaction resulting in a steady-state structure with constant input of energy [96].

Self-assembly L Self-organization

. e e =

Figure 1.6: The mechanism of self-organization.
Image modified from [97].

The cortical actin cytoskeleton forms by self-organization (see Figure 1.6) [97-
99] with an established physical model [100]. The cortical F-actin is highly dynamic
with an assembling-disassembling half-time of about 77/, ~ 255 [101]. Myosin in-
fluences the turnover of actin by regulating the disassembly of actin filaments into
shorter filaments and globular actin monomers [101, 102] and a-actinin favoring its
assembly [103]. Other cell cortex proteins such as gelsolin and cofilin lead to a re-
duced tension, thus a thinner cortex [104]. In comparison the drosophila turnover

rate of myosin II is of about ~ 10s™! [105]. The cross-link turnover rate between
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actin and myosin determines the duration of stresses in the cortex [106] and when the
cross-links are released, the motor proteins can influence the filaments again to slide
past one another [107]. Furthermore, there have been two different subpopulations
of F-actin identified: one with formins bound to their barbed ends and one popula-
tion with free barbed ends, which shows a faster turnover, a greater abundance and
according to the hypothesis of the author, shorter filaments [107]. That way cofilin
could sever formin-capped filaments and consequently replenish the population with
free barbed ends [107].

Physical property investigation showed that the cortex has both elastic and viscous
characteristics: The lipid bilayer of the plasma membrane, for which the actin cor-
tex provides resilience against deformation [108] and the ’cortex stiffness’, which
represents the elastic response to deformation by indentation [109]. That way the
polymer network can be stretched and responds elastically while the detachment of
actin cross-linkers provides viscous characteristics. Moreover the cortex enables the
cell to oppose intracellular osmotic pressure [110].

Research was able to find several proteins that bind the membrane to the barbed
ends of actin filaments, among others gelsolin, villin [111, 112], ponticulin [113] and
the ERM family (see Chapter 1.1 above). The ability to cap the barbed ends led to

the name capping proteins.

Analyses of F-actin and myosin have revealed much more of their interaction.
F-actin builds the structural matrix upon which the myosin motors move, using
hydrolysis of ATP. These myosin II motors assemble into a multimeric complex to
generate sustained gliding of actin filaments past one another[114-116]. Therefore
contraction of actin networks by myosin II needs F-actin cross-linkers in cells, such
as filamin A or fascin [117-120]. Large forces by myosin II can only be exerted when
these cross-links exist [121]. Contractility defines the pulling by myosin filaments on
neighbouring actin bundles without significantly changing the sizes of the bundles
[122]. The traction of myosin II on actin anchored by filamin A causes internal
stress, resulting in a stiffening of the network by more than two orders of magnitude
[123] with a force per motor bundle estimated at ~ 1 piconewton.

Depending on the timescale of deformations the membrane and the underlying cor-
tex generate different physical behaviors; rapid deformation (seconds) leads to high
stress in the actomyosin network upon which the cortex will store energy and react
elastically. But long-term deformations ( > tens of seconds) allow the restructuring
of F-actin and the turnover of crosslinkers, because the energy in the cortex will dis-
sipate in a fluid-like manner, giving it a viscous property [124]. These viscoelastic
properties are influenced by: 1) Crosslinks rigidifying the cortex and increasing the

stiffness of the system [125-127]. 2) Myosin IT motor activity increasing stiffness in
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highly and fluidity in poorly crosslinked networks [128]. 3) Increasing turnover rates
of the cortical components also increasing fluidity [129].

The hexamer formed by myosin IT consists of two heavy chains (MHC), two essential
light chains and two regulatory light chains (MRLC) (reviewed in [130]). The N-
terminal globular domain of the heavy chain is called "head region’, which contains
actin and ATP binding sites and whose ATPase activity is coupled to the cyclic
detachment and attachment of myosin to F-actin. After the hydrolysis of ATP, one
phosphate (F;) is released, which provides myosin with the energy for the 'power-
stroke’, the conformational change that induces actin movement (see Figure 1.7).
The dissociation of ADP and the replacement by ATP detaches the motor protein
from actin (see Figure 1.7) [131]. Via the C-terminal domain myosin II can form

homodimers through a-helical coiled-coil domains [130].

- Rigor State ATP binding and Pre-powerstroke
Myosin e detachment from sl with up-lever state
Nucleotide-free F actin

F-Actin
TADP release

P, release Rebinding to Hydrolysis with
coupled to — F-actin — products trapped
. Powerstroke

W ATP » ADP ° P

1

Figure 1.7: Myosin 'Powerstroke’.

The red stained actin marks the starting spot for myosin interaction on the actin filament. While
the myosin head is stained in light green when it is weakly- or un-bound to actin, the head is
colored in dark green in its force-generating state. Image modified from [132]

To fulfill its contractile activity the tail-to-tail associated myosin II hexamers
can assemble into bipolar minifilaments [133, 134].
The activation of Myosin II occurs through phosphorylation of the MRLC at highly
conserved residues (Thr'® and Ser!® [135]) by multiple kinases such as ROCK (Rho-
associated coiled-coil containing kinase), citron kinase, MRCK (myotonic dystrophy
kinase-related Cdc42-binding kinase) or MLCK (myosin light chain kinase) [136].
A change in the heavy chains (MHC) head-to-tail interaction is induced by the
phosphorylation of the MRLC. The resulting extended conformation allows F-actin
binding, ATPase activity and minifilament assembly [137, 138]. There exist other
observed regulation mechanisms such as the phosphorylation of the heavy chains by
MHCK in Dictyostelium [139] or by casein kinase II and protein kinase C (PKC) in

mammalian cells [140-142].
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Three deformation types of the cell cortex will be discussed in the following

sections.

1.2.3 Deformation I: Locomotion

In 1970 fibroblasts were first filmed during migration to study their function [143].
Since then three different movement types depending on the cell type and the sub-

strate have been discovered. The next chapters will describe these types.

1.2.3.1 Lamellipodia/Filopodia

"Lamellipodia are broad, flat, sheet-like structures,whereas filopodia are thin, cylin-
drical, needle-like projections’ [144] with their abundant content being actin and
associated proteins. They are capable of extending in three dimensions around the
cell. Two phases can be distinguished: 1) the protrusion of the leading edge and
2) the retraction of the rear (reviewed in [144]). The retraction of the tail relies on
myosin II, being present in stress fibers (reviewed in [145, 146]), bundles built of
~ 10 — 30 actin microfilaments [147]. Mainly a-actinin holds these bundles together
[146, 148]; it shows a periodic pattern along the actin fibers, alternating with the
localization of myosin II [149] and tropomyosin [150]. The formation of stress fibers
is triggered by activation of the small GTPase RhoA [151]. The activation of its
downstream effector ROCK can maintain this activation [152]. As the inhibition of
ROCK significantly reduces stress fiber tension [153], a main role in contractility
of the rear can be assigned to the phosphorylation state of myosin II controlled by
the RhoA-ROCK pathway [154]. Not only myosin II has to be organized for the
regulation of contractility, but also actin plays its role (see Chapter 1.2 above). Even
if constitutive activation of ROCK also results in the formation of stress fibers, this
pathway cannot fully replace the features of the RhoA induction. Fully functional
stress fibers are built only when GTP-bound RhoA activates Dia by disrupting the
intramolecular interactions of the effector. ROCK-induced actin fibers are then re-

built after the triggering by the active Dia [155].
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Figure 1.8: Lamellipodial driven locomotion.
On the left a protruding cell is drawn from a lateral view and on the right from a top view. Image
amended from [154, 156].

Different stress fiber types with distinct properties exist (see Figure 1.8): ventral
stress fibers, dorsal stress fibers and transverse arcs. At the ventral surface ventral
stress fibers are located, actin filament bundles that are associated at both ends to
focal adhesions. Cell adhesion and contractions rely mainly on these stress fibers.
Dorsal stress fibers are actin bundles that are associated at one end to ventral focal
adhesions, then rise toward the dorsal part of the cell and finally end primarily with
a connection to a transverse arc. Transverse arcs are actomyosin bundles without a
direct association to focal adhesions [157-160]. The major family of the receptors
for cell-matrix adhesion are integrins [161]. The growth of ventral and dorsal stress
fibers generally depends on Dial while lateral arcs only depend on ARP2/3 for actin
polymerization (see Chapter 1.2.2) [162].

The protrusion of the cell is guided by the anterograde pushing forces from polymer-
izing actin filaments, opposed by the tension of the plasma membrane. Thus, the
filaments that are repelled into the cell body constitute a visible retrograde actin
flow. The focal adhesions couple the cytoskeleton to the substrate in a way that
these retrograde forces are converted into anterograde protrusion and resulting for-

ward locomotion, a mechanism regulated by actomyosin contraction [160].

To guarantee a directed movement, cells have to establish a polarity. All animal
cells use Rho family GTPases therefore [84]. Cell direction is then regulated by
the spatial activation pattern of the Rho GTPase Cdc42 and the orientation of
microtubules [163, 164].

1.2.3.2 Blebs

Blebbing is a phenomenon that is not only charateristic for the execution phase of
apoptosis [165], but is also seen in migrating cells (see below) and in cytokinesis (see
Chapter 1.2.5.2 below).

Examples where bleb-driven migration was shown are primordial germ cells (PGCs)
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in zebrafish [166] and PGCs in Drosophila melanogaster [167]. Even chemotaxis was
shown to use blebs in Dictyostelium [168, 169].

The inner hydrostatic pressure and the cytoplasmic flow lead to cellular protrusions.
These are seen as spherical expansions, initially devoid of F-actin and called blebs
(reviewed in [170]). In comparison to lamipedial locomotion, bleb-based migration is
far more frequent in three-dimensional (3D) environments [171] as blebbing motility
needs less or no specific adhesive interactions with the environment [172].

A local decline in membrane-to-cortex attachment [173, 174] or a breakage of the
cortex itself [175] both constitute mechanisms for blebs to be formed. Gaps in
the cytoskeleton exceeding the critical size of ~ 0,5 — 1,0 um lead with observed
intracellular pressures to such blebs [176]. Formula (1) shows the parameters that

influence bleb formation:

E = (n ;2+0) f A(R,a) — p V(Roa) (1)
Here p means the internal excess pressure, o the membrane tension, x the bending
elasticity of the membrane, R the radius of a spherical cap, a the hole radius and F
the total energy. A corresponds to the area of the membrane segment and V' to the
excess volume of the bulge.
Three different phases constitute the life cycle of blebs: initiation, growth and re-

traction.

1.2.3.2.1 Initiation

The initiation phase functions through the two above mentioned processes. Ei-
ther the membrane-to-cortex attachment decreases or the cortex ruptures itself.
Another possibility is that one mechanism enhances the other one. In this context a
small cortex rupture could encourage the membrane to delaminate from the cortex
by breaking intermediate links. Thus, a bleb expands close to the inititial region of
tearing [177, 178].
The underlying system where the bleb initiation occurs is still unknown. Neverthe-
less, several observations are discussed. It was hypothesized that a downregulation of
membrane-cytoskeleton crosslinkers such as ERM proteins (see Chapter 1.1 above)
could result in bleb formation [179]. It was also shown that bleb formation requires
the contractility of myosin [180, 181]. Either a local activation of myosin could
promote delamination of the membrane from the cortex or facilitate cortex tearing
[175], or myosin could provoke a local increase in intracellular pressure, simplifying

that way the separation of the membrane from the cortex [182].

1.2.3.2.2 Growth
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Initially a growing bleb is devoid of F-actin [173] and expands ~ 5 — 30 s [171].
The pressure leads to an increase of the surface followed by a flow of lipids through
the bleb neck [183].

1.2.3.2.3 Retraction

The last step is defined by the reformation of an actomyosin cortex, followed by
the retraction of the stabilized bleb [171].
ERMs are capable of binding and regulating Eps8 (Epidermal growth factor receptor
pathway substrate 8) [184]. In developing blebs ERMs and Eps8 also colocalize at
the plasma membrane [185]. The receptor tyrosine kinase Eps8 is an actin barbed-
end capping protein capable of bundling actin [186, 187].
Ezrin does not show a restricted distribution pattern at the blebbing membrane [90],
while mDial [92] and Eps8 [188] accumulate in multiple foci in a speckle pattern at
the blebbing membrane.
These findings led to a hypothesis from Aoki et al suggesting Rnd3 (see Figure
1.9) (also known as RhoE) as a constitutively active GTP-binding Rho family pro-
tein. When ROCK phosphorylates Rnd3, the latter changes its localization from
the membrane to the cytoplasm, where it binds to 14-3-3 protein [189, 190]. Rnd3
antagonizes RhoA signaling by activating p190-Rho-GAP [191]. That way, in ex-
panding membrane blebs, Rnd3 and p190-Rho-GAP are present in a large number
at the plasma membrane and inhibit RhoA activation. As the surface of the bleb
increases, the concentration of Rnd3 per area decreases, enabling sporadic RhoA
activation. This activation could be amplified and stabilized by RhoA-ROCK phos-
phorylation of Rnd3. Subsequently Rnd3 sequestrates in the cytoplasm. Thus,
p190-Rho-GAP can’t be activated any longer. The activity of ROCK increases con-
stantly and results in the phosphorylation of ERM and the subsequent recruitment
of Eps8. ERMs and Esp8 then promote the reassembly of the actin cortex and in-
duce that way the rapid retraction of the protruded membrane. Active RhoA could
also activate mDial for the regrowth of F-actin [188, 192]. Finally myosins accumu-
late at these actin filaments and the actomyosin contraction results in the retraction
of the bleb [90]. Recently myosin II-interacting guanine nucleotide exchange factor
(MYOGEF) has been proposed to be transported by activated ezrin to the retract-
ing blebs and to stimulate the activation of RhoA. Thereby an amplifying cycle of
activation is introduced [193].
Actin in retracting blebs has ~ 10-fold higher turnover rate compared to the mature
cortex [107]. However these processes could involve unidentified molecules. Further

studies are needed to understand the whole process of blebbing.
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Figure 1.9: The retraction of a bleb as a topological mechanism.

While the bleb expands RhoA can’t be activated because of Rnd3 and p190B-Rho-GAP. Then
the increasing surface of the bleb decreases the concentration of Rnd3, leading to sporadic RhoA
activation. Thus, the retraction is induced by ROCK, further phosphorylating Rnd3 and ezrin.
The latter also attracts Eps8 and the cortex starts to be rebuilt. Image modified from [188].

1.2.3.3 Mixed Forms including Lobopodia

In the previous two chapters the motility mechanisms have been strictly separated.

In reality, many cells possess the ability to switch between both types of locomotion.
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Depending on the environment the best fitting option is chosen [172, 194]. Malignant
transformation in cancer cells even allows poorly characterized crossover locomotion
strategies [195].

In 3D environments with linear elastic features fibroblasts were shown not to use
lamellipodial migration or blebbing, but a mixture, called lobopodial migration.
Blunt ended protrusions are formed with small lateral blebs. Unlike lamellipodia,
lobopodia don’t use active GTPases such as Rac and Cdc42, but they still form
focalized adhesions and like blebs are sensitive to actomyosin contractility [156,
196].

1.2.4 Deformation II: Epithelial Morphogenesis

Epithelia are characterized by an apicobasal polarity. The establishment of this
polarity includes the formation of zonula adherens junctions on lateral membranes
just below the apical surface generating a belt-like band of F-actin, that connects
adjacent cells through cell adhesion proteins and complexes (reviewed in [197]), in-
cluding desmosomes and tight junctions in vertebrate cell-cell interfaces [198].

The formation of the apicobasal polarity is driven by the dynein-dependant trans-
port of the Par complex protein Par3 (in vertebrates) to adherens junctions [199].
At the apical membrane Par3 is locally activated, while it is inhibited at the basal
membrane (see Figure 1.10) [200, 201]. This division of the membrane allows key
processes at both sides to happen only locally such as increase of PI(4,5)Py at
the apical side and subsequent binding of annexin and Cdc42 [202, 203]. Once es-
tablished, this apicobasal polarity is stabilized by mutual antagonisms or negative

feedback regulations between the implicated complexes [200, 204, 205].

Microvilli:

Microvillus was erroneously defined as being ’a membrane-enclosed, finger-like cell
surface projection that is supported by a core bundle of actin filaments’, because
it implies a single type of structure [206]. In reality there are different types of
microvilli with distinct cytoskeletal and protein compositions [207, 208].

An actin bundle consists of both 8 and ~ actin isoforms, which are tightly packed to-
gether in 20 polarized actin filaments and form thereby the core of the brush border
microvillus. The growing end of the actin filaments is facing the plasma membrane
at the microvillus tip [209], whereas the pointed ends of the actin filaments grow
below the plasma membrane where they are rooted in the actin network, called ter-
minal web. Underlying protein associations in this terminal web still need further
research [206]. In the microvilli cores F-actin is bundled by three major proteins:
espin, villin and fimbrin [210-212].
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Several regulator proteins are under discussion as controling the length of microvilli
[206]. Eps8, an F-actin capping and bundling protein, also located at the tip of mi-
crvilli [186], was shown to control the length of microvilli in several studies. Another
candidate is Cordon Bleu (Cobl). Located at the base of microvilli, it possesses a
COBL domain at the amino-terminus and three WH2 (Wiskott-Aldrich syndrome
protein Homology 2) domains toward the carboxy-terminus [213]. The regulation
remains unknown, but Cordon Bleu’s WH2 domains are capable of nucleating and
severing F-actin [214].

Different myosin types are present in microvilli, where they attach the plasma mem-

brane to the actin core (reviewed in [206]). However they have also been described
in trafficking cargo inside microvilli [215, 216].

activation of Par3

basal
® LOK/SLK
@® Desmosomes and Tight junctions

Figure 1.10: Apicobasal polarity of epithelial cells and phosphocycling of ezrin.

The activation of the Par3 complex at the apical membrane and its inhibition at the basal mem-
brane establishes the cellular polarity. At its apical membrane the phosphocycling of ezrin is
essential for the generation of microvilli. (1) First ezrin is activated by PI(4, 5)P5 binding, (2) fol-
lowed by a phosphorylation of its T567 by LOK/SLK. This results in the open active conformation,
which crosslinks the plasma membrane either (3a) directly to the core actin bundle of a microvillus
or (3b) indirectly. Phosphatases are capable of reverting this conformation and thereby excluding
ezrin from stabilizing microvilli. Image based on [200, 201, 206].

ERM proteins (see Figure 1.10 and Chapter 1.1 above) are also located in the
microvilli and fulfill their anchoring function to link the plasma membrane to the
actin cytoskeleton [2]. In retinal pigment epithelium the knockout of ezrin leads to
substantial reduction of apical microvilli [68]. Later it was shown that not only the
presence of ezrin, but the cyclic phosphorylation and dephosphorylation of ezrin are

essential for microvilli formation. This mechanism is called phosphocycling. In the
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same study lymphocyte-oriented kinase (LOK) and the sterile 20-like kinase (SLK)
were identified as the kinases that activate ERMs in the microvilli [217]. Moreover

an interaction between ezrin and Eps8 was shown [184].

1.2.5 Deformation III: Division

In this study the main focus of attention lies on cortex proteins. Therefore, two
processes in cell division are of major interest and will be discussed in the next two

chapters: mitotic entry with cell rounding and cytokinesis.

1.2.5.1 Mitotic Entry

1.2.5.1.1 Transition Checkpoints

To commit itself to division a cell has established checkpoints that arrest it at
the end of G2 in the case of damaged DNA [218]. If no damage is detected, the
entry into mitosis is triggered by a network of mitotic kinases. Activation of cyclin-
dependant kinase 1 (CDK1, also known as Cdc2) and the simultaneous repression
of its opposing phosphatases allow the formation of a complex of CDK1 with cyclin
B, which is activated via the phosphorylation by a CDK-activating kinase (CAK)
at the G2/M transition [218, 219]. Initially the cyclin B1-CDKI1 is activated in the
cytoplasm, but next it accumulates rapidly in the nucleus and promotes a spatially
controlled positive feedback mechanism in the nucleus, allowing a switch-like start
for mitosis [220, 221]. The phosphorylation of cyclin B1-CDK1 substrates increases
from the onset of prophase into prometaphase, with its maximum shortly after

nuclear envelope breakdown, taking in total a time window of ~ 30 min [222].

1.2.5.1.2 Cell Rounding

While entering mitosis, substrate or matrix attached cells change their shape
from a flat to a spherical geometry. This rounding process starts in early prophase
[223] and involves several mechanisms: disassembly of focal adhesions, retraction of
the cell margin and formation of a rigid actomyosin cortex [224] (see Figure 1.11a
and b):
The entry into mitosis is accompanied by an increase in hydrostatic pressure and a
volume enlargement of up to 30 % [225-227]. To retract the cell margin and to allow
cellular rounding, the focal adhesions have to be dismantled by actin remodeling.
An important actor in the disassembly of focal adhesions is the small GTPase Rapl
[228]. During interphase, active Rapl stimulates the assembly of focal adhesions by
forming a complex with its effector RIAM (Rapl-Interacting Adhesion Molecule)
and the integrin activator talin [229, 230]. As a constitutively active form of Rapl

inhibits the disassembly and forces mammalian cells to undergo mitosis at a flatter
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morphology, a yet unknown inactivator of Rapl has to become activated at the onset
of mitosis [228, 231].

Failure in mitotic rounding leads to defects in spindle assembly, pole splitting, and
a delay in mitotic progression. These defects are often associated with dysregula-
tion of mitotic centrosome-nucleated microtubules. Thus, the balance between cell
dimension and microtubule reach has to be guaranteed for proper mitosis [231]. Fur-
ther the geometry during mitosis influences spindle positioning, the axis of division,

and thereby cell fate and tissue morphogenesis [232, 233].
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Figure 1.11: The rounding up mechanism.

(a & b) The entry of mitosis is accompanied by focal adhesion disassembly, and an increase in
both the rigidity of the actin cortex and in hydrostatic pressure. The lateral arc can better be
seen in Figure 1.8. (¢c) DEPDCI1B prevents the integrity of focal adhesions by binding PTPRF
and thereby inhibting the interaction between RhoA and its nucleotide exchange factor GEF-H1.
Image based on [224].

A mechanism leading to the disassembly of focal adhesions using the transmem-
brane tyrosine phosphatase PTPRF, DEPDC1B, RhoA and its nucleotide exchange
factor GEF-H1 has been described (see Figure 1.11¢). During interphase the in-
tegrity of focal adhesions is sustained by the binding of RhoA and GEF-H1 by
PTPRF and the subsequent local activation of RhoA. During late G2, DEPDC1B
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accumulates, binds to PTPRF and pushes RhoA aside. That way Rho is separated
from GEF-H1, is inactivated and cannot contribute any longer to the integrity of
focal adhesions [234]. DEPDCI1B, being a cell-cycle-regulated gene [235], allows the
cell to initiate mitotic reshaping, respectively delaying the progression into M phase
until the reshape is completed [234].

For cell rounding, the cell margin retracts along thin, actin-rich fibers that maintain
some attachment points to the substratum and originate at remnants of interphase
focal adhesions [236]. In parallel, actin structures like stress fibers disassemble and
the dense actomyosin-rich cortex is remodeled ([237],reviewed in [109] and see Chap-
ter 1.2 above). Astral microtubules attach to this moving actomyosin network and
promote the separation of centrosomal microtubule asters for spindle formation [238].
Under confinement the contribution of the actomyosin cortex to a stiffer cortex and
subsequent correct cell rounding and spindle assembly is essential. However in iso-
lated cells this role is dispensable [223, 231, 239].

RhoA plays a major role in the remodeling of the actomyosin cortex. At the be-
ginning of prophase the RhoGEF Ect2 becomes active and is transported from the
nucleus into the cytoplasm, where it activates RhoA. Thus the retraction of the
cell margin and the cortical enrichment of F-actin and myosin II are induced [223,
225, 237]. Two mechanisms allow Ect2 to act on RhoA. First, Ect2 is nuclear during
interphase and can therefore only act during prophase [223, 240]. Second, cyclin B1-
CDK1 and polo-like kinase 1 (PLK1) hyperphosphorylate Ect2 in mitosis to promote
its GEF activity [223, 240, 241]. Furthermore, the inactivation of p190RhoGAP, the
inhibitor of RhoA, increases the activity of RhoA [237].

Differently to actin, myosin II only progressively enriches at the cell cortex during
prometaphase, accompanying an increase in cortical tension with a peak reached
during metaphase [225]. This gradual adaptation probably helps the cell in rigidi-
fying the cortex for rounding against confinement. Another activated regulator of
spindle orientation and organizer of the mitotic actin network by Ect2 is Cdc42 [242,
243], even if the pathways are not fully explored.

Other crucial members of the mitotic cell cortex are ERM proteins ([43, 44, 244],
reviewed in [49] and see Chapter 1.1). The sterile 20-like kinase (SLK) activates
ERMs in mammalian cells at mitotic entry. At the cortex these active ERMs pro-
mote the polarized association of leucine-glycine-asparagine repeat protein (LGN)
and nuclear mitotic apparatus (NUMA) protein at the cortex facing the spindle
poles, both essential for spindle orientation (see Chapter 1.2.5.1.3 below) [244]. For
the polarity the cortical actin network defines an enrichment zone for dynein [245,
246]. Furthermore, the crosslinking ability of ERMs ensures the distribution of cor-
tical tension, avoiding local contraction or deformation.

Moreover, Eps8, an actin end-capping and bundling protein already discussed in
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bleb retraction (see Chapter 1.2.3.2.3 above), was shown to influence the time for
cell rounding. In G2, the Ubiquitin E3 ligase SCF¥**%3 is necessary to degrade EpsS8,
so that the cell can pass through the following pro- and prometaphase in a regulated
time period [247].

1.2.5.1.3 Spindle Assembly and Orientation

In polarized cells the cortical actin network helps define the spindle positioning
by determining zones of enrichment for dynein [245, 246]. For this positioning
junctional adhesion molecule-A (JAM-A) transiently activates Cdc42 and PI(3)K,
inducing a gradient of phosphatidylinositol 3,4,5-triphosphate (PIP3) at the cortex
[246]. ERM proteins not only stabilize the interaction of astral microtubules with the
cortex, but also promote the polarized association of LGN and NUMA protein [29,
244, 248]. Combined, the finding that ERM proteins change location according to
adhesion geometry and their ability to orientate the spindle, indicate that ERMs are
potential translators of adhesion regulation into intracellular processes for correct
spindle orientation [224, 244, 249]. Even in Drosophila embryos, in which mitosis
occurs without a cell cortex, mitotic spindle assembly and function require moesin.
Effective localization of moesin to the spindle zone needs the full length protein and is
only possible in the inactive, autoinhibited form. The localization is probably due to
PI(4,5)P, binding. That way a fine balance between the activated, phosphorylated
and the inactive, non-phosphorylated form is needed for proper mitosis [250]. This
is consistent with observations that neither a permanent active, nor a constantly
inactive isoform of moesin can substitute alone for wildtype moesin [251]. The
accumulation of the closed form of moesin at the site of future spindle formation

implies a yet unknown function [250].

1.2.5.2 Cytokinesis

The process of cytokinesis starts in early anaphase, right after chromosome segrega-
tion, when a cleavage furrow forms in the equatorial plane and ingresses inward, and
ends in telophase with the physical separation of two daughter cells [252]. Asymmet-
rical cell division can lead to polyploidy or aneuploidy. Thus, many diseases with
cytokinesis deregulation were described, including cancer, infertility and age-related

macular degeneration [253].

Division plane

After the onset of anaphase a cell has to define the division plane for further pro-
cesses. There spindle microtubules play an important role [254]. At anaphase onset
the mitotic spindle is structurally reorganized into an array of interdigitating, an-

tiparallel, nonkinetochore microtubules, called central spindle. It originates to a
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great extent in interpolar microtubules of the mitotic spindle, which get tightly

bundled at their plus ends, a region known as spindle midzone (see Figure 1.12).
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Figure 1.12: The spindle midzone - Part 1.

PRC1 bundles microtubule (MT) bundles (10-30 MTs each) in an antiparallel formation. MT
bundling requires the recruitment of CPC and the centralspindlin complex. Image amended from
[255].

Not only reorganization, but also de novo microtubule polymerization come into
consideration for central spindle formation (reviewed in [256]). To guide this cen-
tral spindle assembly many cytoskeletal and signaling proteins are required. Among
them are the chromosomal passenger complex (CPC), the microtubule-associated
protein (MAP), the protein regulator of cytokinesis 1 (PRC1) and at least three
kinesin-like motors (KIF4A, KIF20A and KIF23) [257-259]. CDK1 (see Chapter
1.2.5.1.1 above) phosphorylates PRC1 and thereby prevents the interaction between
the latter and KIF4 until the transition into anaphase. Then the interaction is pro-
moted by the enzymatic component of the CPC, Aurora B kinase [258-260]. The
microtubules of the central spindle are crosslinked by PRC1 [261, 262], whereas mi-
crotubule dynamics is suppressed by KIF4, which also inhibits the elongation of the
central spindle at a certain period after cytokinesis onset (see Figure 1.13) [260, 263].
A microtubule bundling complex for the central spindle is centralspindlin. Central-
spindlin is a heterotetramer built of dimers of KIF23 (also known as MKLP1) and
the Rho family GTPase-activating protein RacGAP1/MgcRacGAP. The complex
is conserved in many organisms and essential for central spindle formation [264—
266]. The inactivation of its KIF23 in metaphase requires a CDK1 phosphoryla-
tion, whereas in cytokinesis the CPC localizes KIF23 to the spindle midzone. The
constitutive phosphorylation of centralspindlin in mitotic entry causes it to bind to
14-3-3 and prevents targeting to the midzone. Thus, microtubule bundling activity
of centralspindlin is promoted by Auora B phosphorylation [267-270]. Finally, the
recruitment of the CPC to the spindle midzone is performed by KIF20A [also called
Mitotic Kinesin-Like Protein 2 (MKLP2)]. Thereby a local pool of active Aurora B
is generated, subsequently regulating KIF4A and KIF23 [271, 272].
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Figure 1.13: The spindle midzone - Part 2.
KIF4 is recruited by PRC1 and limits MT growth to a narrow overlap zone. Ect2 binds central-
spindlin and is loaded onto the equatorial membrane. Image amended from [255].

The cleavage plane positioning underlies a combination of two models. Accord-
ing to the ’astral relaxation” model, astral microtubules inhibit furrow formation.
Therefore constriction would be only allowed at the equator. The other ’equatorial
and central spindle stimulation’ model proposes particularly stable astral micro-
tubules as contacting the equatorial cortex and in combination with signaling from
the central spindle, thereby inducing furrow ingression at this localization [273-275].
Asymmetric divisions seem to include signals from microtubules for correct cleav-
age plane determination [276]. However in Drosophila asymmetric cell division is
enabled by an established apico-basal concentration difference of phosphorylated

moesin [277].

Cleavage furrow ingression

A ’contractile ring’, an annulus built of actomyosin filaments, assembles in many
animal cells at the cleavage furrow. The major driving force for furrow ingression is
supposed to be the contraction of this actomyosin network [278]. At the equatorial
cortex the formation of an active zone of RhoA is assumed to be the trigger for cleav-
age furrow formation and ingression [274, 279]. Then RhoA activates two distinct
signaling pathways for the assembly and the constriction of the contractile ring. On
the one hand, RhoA stimulates profilin-mediated actin polymerization by binding
to diaphanous members of formin-homology proteins. On the other hand, RhoA
activates Rho-associated kinase (ROCK). Then ROCK phosphorylates the myosin
regulatory light chain (MRLC), which initiates myosin contractility (reviewed in
[280, 281]). At the polar cortical regions, astral microtubules were shown to inhibit
Rho activation, suppressing the contractility in these regions [282, 283]. In contrast,
RhoA is activated at the equatorial region. The kinesin component KIF23 of the
centralspindlin complex allows the movement of centralspindlin to the plus end of
equatorial and central spindle microtubules [284], where the other component of the
complex, MgcRacGAP/RacGAP1, interacts with the RhoGEF ECT2 to guarantee
the transport of ECT2 [285, 286]. A guanine nucleotide exchange factor (GEF) ac-
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celerates the GDP exchange for GTP in GTPases, whereas a GTPase-activating pro-
tein (GAP) enhances the intrinsic GTPase activity. Finally the activated RhoGEF
ECT?2 is able to be transported to the equatorial cortex, associates with the plasma

membrane to phosphoinositide lipids and activates RhoA (see Figure 1.14).

Figure 1.14: The spindle midzone - Part 3.
RhoA-GDP is converted to RhoA-GTP by Ect2 and triggers the assembly of the contractile ring.
Image amended from [255].

The locally active RhoA triggers a signaling cascade that assembles the pro-
teins for actomyosin contraction [286-290]. Next to the topological there is a
precise time control. In this regard Polo-like kinase 1 (Plkl) can only promote
the interaction between ECT2 and RacGAP1 by phosphorylation of the latter in
anaphase/telophase, because ECT2 is inhibited in metaphase by Cdkl-mediated
phosphorylation [286, 291-294]. Cdk1 phosphorylates ECT2 on two different sites,
turning ECT2 unable to bind to the plasma membrane [290]. The declining Cdk1
activity in anaphase/telophase allows the dephosphorylation of ECT2 and Plk1 gen-
erates a binding site for ECT2 at the midzone by phosphorylating the N-terminus
of RacGAP1 [286, 292, 294].

In vivo RacGAP1 was shown to inactivate Rac GTPases [295, 296]. As a reduced
stiffness is required for contractility at the furrow position, the equatorial cortex is
inhibited in the formation of a branched actomyosin web by this Rac inactivation
via Arp2/3 activity reduction [274, 296]. Whether the role of RacGAP1 is conserved
in organisms has still to be elucidated [297].

For cytokinesis the contractile ring has to be properly scaffolded and connected to
both the central spindle and the cell membrane. T'wo proteins of the contractile ring
fulfill this function: anillin and citron kinase (CIT-K). Both interact directly with
RhoA, probably not as RhoA effectors, and they associate with actin and myosin
(CIT-K:[298, 299], anillin:[299] and reviewed in [300]). CIT-K was even described
to be a RhoA regulator, that is necessary for the correct localization of RhoA. Fur-
thermore, CIT-K can interact with anillin [299, 301], which binds to PI(4,5)P, and
links not only the plasma membrane with the contractile ring, but also recruits
septins to the cleavage site [302, 303]. These septins are conserved GTP-binding

proteins. Then septins can be assembled into hetero-oligomeric filaments (reviewed
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in [304]). Septins are responsible for myosin II localization. In mammalian cells,
septin2 provides a molecular platform for myosin II and the kinases ROCK and
CIT-K in cytokinesis [305]. Depletion of membrane linkers such as anillin leads to
numerous cortical blebs [295]. Additionally loss of anillin leads to lateral oscillations,

because the contractile ring becomes instable [306].

Membrane Formation:

During furrowing the total membrane surface increases massively. Therefore mem-
brane vesicles have to be transported and inserted at the cleavage site (reviewed in
[307]). To some extent this is realized by endocytic vesicles that bud at the plasma
membrane, are routed to early endosomes and then return through recycling endo-
somes back to the plasma membrane (reviewed in [308]). Moreover secretory vesicles
move toward the cleavage furrow, where they dock and fuse [309, 310]. F-actin and
vesicles are transported as a unit to the cleavage furrow [311]. A variety of cell types
require the recycling of trafficking regulators for completion of cytokinesis, specif-
ically the three small GTPases Rabll, Arf6 and Rab35 (reviewed in [312, 313]).
Furthermore, successful cytokinesis most likely requires a special lipid composition
at the furrowing plasma membrane, including very long chain fatty acids, allowing
shape deformation during furrow ingression [314]. Another mechanism for facili-
tating membrane curvature is the recruitment of members of the F-BAR protein
family to PI(4,5)P5 at the ingressing plasma membrane [315]. Additional processes

are reviewed in [297].

The Midbody:

In 1891 Flemming was the first to describe the midbody, the intracellular bridge,
between two dividing cells. In 1977, one of the first ultrastructural characteriza-
tions of the intracellular bridge revealed two parts: one central stem body, with a
diameter of ~ 1,5 pum and two narrowed secondary ingression sites on either side
of this stem body, with a diameter of ~ 0,2 pum [316]. The midbody derives from
the spindle midzone and furrow ingression is essential for midbody assembly [317].
During the constriction of the contractile ring the components of the central spindle
are regrouped in three different regions of the maturing midbody (see Figure 1.15)
(317, 318].
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Midbody ring
Ect2, anillin, RhoA,
ARF6, centralspindlin,
Cep55, ALIX

ESCRT-I

ESCRT-11I

Abscission site
Spastin, ESCRT-III, VPS4,
RhoA, anillin

Figure 1.15: The midbody.
Remnants of the former central spindle build the midbody. Image amended from [255].

1) At the centre of the microtubule overlap KIF4 and PRC1 stay associated

[317]. 2) Some proteins of the central spindle are released into the midbody ring,
among them centralspindlin and Ect2 [317, 318], where they colocalize with proteins
such as anillin, RhoA and ARF6. 3) At the midbody flanks, central spindle pro-
teins like CENP-E, MKLP2 and Aurora B colocalize with tightly packed, parallel
microtubules. The positioning of the central spindle components into these areas is
controlled by Plk1 [317].
The development of the midzone into the midbody is accompanied by the conversion
of the contractile ring into the midbody ring [319]. Several contractile ring elements
such as anillin, the septins, CIT-K and RhoA are retained in the midbody ring [301,
317, 319, 320]. Here anillin is essential for midbody ring assembly and anchoring
it to the plasma membrane [319, 321, 322]. This linking function is assured by its
amino-terminal binding to actin and its carboxy-terminal binding of septin-binding-
domains [300, 323], while the localization of anillin is dictated by RhoA [301].

The Abscission:

Complexes known to be important in membrane scission during viral budding and
budding of vesicles into late endosomes were also shown to possess a key role in
abscission and are called endosomal sorting complexes required for transport (ES-
CRTSs) (reviewed in [324-327]. Cepbb, a protein of the midbody ring, directs the
ESCRT recruitment [318, 328, 329]. On either side of the midbody ring ESCRT-I
and ESCRT-III are recruited sequentially to form partially overlapping, membrane-
juxtaposed rings [318]. High resolution live and fixed imaging reveal helical fila-

ments of a diameter of 17nm, situated between the stem body and the abscission
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site [330]. Ripples that were already observed in 1977 correspond to the locations
of these ESCRT-III filaments [316]. At the peak of ESCRT-III localization at the
abscission site, the midbody experiences an abrupt loss of midbody microtubules,
followed by the cell separation [330]. This microtubule depolymerizing is thought
to be realized by spastin, which is recruited by ESCRT-III [331-333].

The timepoint of abscission is defined by the inactivation of Plkl and Aurora B.
On the one hand, Plkl phosphorylates Cepb5, so that it cannot interact with cen-
tralspindlin and be located to the midbody [334-336]; however at mitotic exit Plk1
is degraded. On the other hand, Aurora B phosporylates a regulatory region of
ESCRT-III, called CHMP4C, and thereby avoids premature abscission [337, 338].
Furthermore, some actin capping and nucleating proteins seem to be implicated in
abscission. After metaphase, including cytokinesis, the capping activity of Eps8 is
required for cortical stability. A lack of Eps8 leads to membrane blebbing and cell
shape deformations [247]. Also mDial depletion leads to division failure [92].

30



1. Introduction 1.3. ERMS IN MITOSIS

1.3 ERMSs in mitosis

RMs were already mentioned in the chapters above with respect to their roles
during cell division. Here some parts will be reemphasized and expanded by
recent research data.
ERM proteins accumulate at the cleavage furrow [63], constitute organizers of the
mitotic cell cortex and the mitotic spindles [43, 44, 244], potentially link adhe-
sion formation to correct spindle orientation [224, 244, 249], and the closed form of
dmoesin resides at the future site of mitotic spindle formation in Drosophila [248].

After all a fine balance is needed for cell shape transformations [339, 340].
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Figure 1.16: Analysis of mitotic spindles.

L = mitotic spindle length, ¢1/¢2 = ratio between distances of the centrosomes to their respective
polar cortex, d = distance between the geometrical center of the cell and the center of the spindle.
Image from [43].

It could be shown that after inactivation of dmoesin in Drosophila, the spindle
length, symmetry and positioning were effected (see Figure 1.16). In metaphase the
regulation of spindle organization and the cell shape transformation in anaphase
require the interaction between ERMs and microtubules, whereas the connection
between F-actin and the metaphase cortex is independant of this interaction [29].
Recently, Vilmos et al revised their observations and were able to specify their find-
ings. In fact, the structure built by dmoesin co-localizes with the mitotic spindle,
but the structure exhibits a compact, dense texture with no apparent filaments and
differs thereby significantly from the spindle. Furthermore, the dmoesin containing
structure reaches its peak fluorescence intensity shortly after prophase, whereas the
spindle is formed by microtubules until metaphase. Finally, the presence of this
newly discovered dmoesin-containing structure after the inhibition of microtubule

formation lead the authors to the conclusion that dmoesin plays a yet unknown role
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in spindle formation.

Additionally, next to the primary Ect2 pathway a second signaling that induces
the relaxation of the polar cell cortex in anaphase has been found. This includes a
movement via the segregating chromosomes of the kinetochore-localized PP1 phos-
phatase and its regulatory subunit Sds22 to the polar regions, where they trigger
the dephosphorylation of ERMs and subsequently the softening of the cortex, so
that elongation of the cell in anaphase is facilitated [341].

While the proteins are dephosphorylated at the poles, ezrin is recruited to the cleav-
age furrow through its membrane-association domain. This transport is cholesterol
dependant but almost Rho independant [342] and associated with the local microvilli
(342, 343]. Furthermore, the ingression of the furrow is not dependant on ERMs.
However when other membrane cytoskeleton crosslinkers (anillin and supervillin) are
depleted, ERMs substantially assist the furrow ingression, even if they are unable to
recover the loss of the other proteins. Moreover the transient knockdown of ERMs

does not heavily influence the progression of furrow ingression [342].

32



2 Scope of the Thesis

REVIOUS data obtained by Dr.Rathangadhara Chakrapani Nammalwar in the
lab had revealed the already known enrichment of ezrin at the cleavage furrow

in live cell imaging and his work included the generation of an Hel.a ezrin knockout
cell line. The aim of this thesis was thereby to use this epithelial cell line lacking
the major ERM member for the analysis of the roles and redundancies of ERMs
in mitosis and specifically in cytokinesis. Dynamic methods should be included to
allow the investigation of roles of ERM proteins for the rounding-up and the correct

sharing of the chromosomal content between the nascent daughter cells.
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3 Materials and Methods

3.1 Materials

3.1.1 Bacterial Strains

Bacteria Genotype

Escherichia F'*, deoR, endA1, gyrA96, hsdR17, (ry =, my "), gInV44, thi-1,
coli DH5ar  recAl, relAl, supE44, p80A lacZ A M15, thi-1,
A(lacZYA-argF)U169

Table 3.1: Bacterial strains

3.1.2 Cell Lines

Cell line Description/Cultivation

HeLa From cervical adenocarcinoma derived epithelial cells.
Cultivation in a DMEM (Dulbecco’s Modified Eagle Medium)
solution with 10% FCS (Fetal Calf Serum), 1% L-Glutamine, 1%
Penicillin/Streptomycin at 37°C and 7% CO atmosphere.

HeLa ezrin™/~ HeLa cell line that Dr.Rathangadhara Chakrapani Nammalwar
knockout, generated with CRISPR/CAS9 technique.
clone B Cultivation in a DMEM (Dulbecco’s Modified Eagle Medium)
solution with 10 % FCS (Fetal Calf Serum), 1% L-Glutamine,
1% Penicillin/Streptomycin at 37 °C and 7% CO, atmosphere.

Table 3.2: Cell lines
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3.1.3 DNA Constructs

Table 3.5: Primary antibodies

35

Name Insert Vector Restriction | Reference
Enzymes
GFP-ezrin Human ezrin full pEGFP EcoRI/Sall A Heil [344]
length cDNA
GFP-N- Human ezrin cDNA pEGFP EcoRI/Sall A Heil
ERMAD coding for AA 1-296
GFP-ezrin Human ezrin cDNA pGEX-T2 | Xmal/Aatll, | C.Barret
PIP2-binding with K63N, K64N, Cfr9I/Kpnl, [345]
mutant K253N, K254N, Asp718/Cfral,
K262N and K263N Ncol /Cfr9l
mutations
Table 3.3: DNA constructs
3.1.4 Small interfering RNAs (siRNAs)
Description Company
siEzrin Smart Pool Dharmacon
ON-Target plus Smart pool human Moesin Dharmacon
ON-Target plus Smart pool human Radixin Dharmacon
Table 3.4: Small interfering RNAs
3.1.5 Antibodies
Antigen Species Dilution Company
Ezrin Rabbit WB: 1:5.000 Millipore
Ezrin Mouse IF: 1:100 BD Biosciences
Moesin Mouse IF: 1:100 BD Transduction Lab-
WB: 1:5.000 oratories
Radixin Rabbit WB: 1:1.000 Cell Signaling
a-Tubulin Mouse WB: 1:10.000 Sigma
Phospho- Rabbit IF: 1:100 Cell Signaling
Ezrin(Thr567)/ WB: 1:1.000
Radixin(Thr564)/
Moesin(Thr558)
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Description Dilution Company
IRDye 680 RD goat anti- | 1:10.000 LI-COR
mouse

IRDye 800 donkey anti- | 1:10.000 LI-COR
rabbit

Table 3.6: Secondary antibodies used in western blots

Description Dilution Company
Alexa-Fluor-488 1:1.000 Molecular Probes
donkey anti-mouse

TRITC-phalloidin 1:1.000 Sigma

Table 3.7: Secondary antibodies used for immunofluorescence staining

3.1.6 Chemicals

Chemical/Reagent Company
Ammonium persulfate (APS) Carl Roth
Ampicillin Carl Roth
[-Marcaptoethanol Applichem
Bromphenol blue amresco
BSA Fraction V Carl Roth
Complete Protease Inhibitor Cocktail Roche
DAPI Sigma
Dimethylsulfoxide (DMSO) AppliChem
distilled water DNase/RNAse free gibco
Dulbecco’s Modified Eagle Medium (DMEM)  Sigma
Ethanol AppliChem
FACS Clean BD
FACS Flow BD
FACS Rinse BD

Fetal Calf Serum (FCS)

Biochrom (SO115/0435A)

GeneJammer Transfection Reagent

Agilent

Glycerin/Glycerol AppliChem
Glycine AppliChem
Hoechst 33342 5mL (20mM) Thermo Scientific
Imidazole Carl Roth

L-Glutamine

LONZA (BE17-605E)

Lipofectamine 2000

Invitrogen

Methanol

AppliChem
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Chemical /Reagent Company
Mowiol 4-88 Calbiochem
Nocodazole powder Sigma-Aldrich
Non-fat dried milk AppliChem
OptiMEM Gibco
Paraformaldehyde (PFA) Sigma
PBS(-/-) Sigma
PBS(/+) Sigma
Penicillin/Streptomycin LONZA (DE17-602E)
Propidium Iodide eBioscience
Rotiphorese®Gel 30 Carl Roth
Sodium chloride AppliChem
Sodium dodecyl sulfate (SDS) pellets Carl Roth
Sodium hydroxyde Carl Roth
Tetramethylethylenediamine (TEMED) Carl Roth
Thymidine Sigma
Tris AppliChem
Triton-X-100 AppliChem
Trypsin/EDTA 10x Biochrom
Tween 20 AppliChem

Table 3.8: Chemicals

3.1.7 Kits

Kit Company

BCA Protein Assay Kit Pierce

PureLink®HiPure Plasmid Filter DNA Purification Maxi kit ~ Invitrogen

Table 3.9: Kits

3.1.8 Devices

Device Company
10cm dish greiner bio-one
145mm dish greiner bio-one
35mm dish nunclon surface nunc™
6-well dish Nunclon ™Delta Surface Thermo Scientific
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Device Company
96-well dish costar 3595 Corning Incorporated
Analysis balance LP 1200 S Sartorius
Analysis balance Quintix 224-S Sartorius
Bacteriological incubator Modell 500 memmert
Biosphere®Filter Tips SARSTEDT
Blockthermostat BT200 Kleinfeld Labortechnik
Cell Scraper 25cm 2-position-blade SARSTEDT
Centrifuge 5424R eppendorf

Centrifuge Allegra X-12

Beckman Coulter

Centrifuge Avanti J-25

Beckman Coulter

Counting Chamber, Neubauer Assistent®)
Epoch BioTek

EVOS digital inverted microscope PeqLab

FACS Calibur Becton Dickinson
Flow Cytometry Tubes Ref 55.1579 SARSTEDT

GV 0.22pm Filter unit Millex®)

HERA Cell 240i CO, cll incubator

Thermo Scientific

Injekt 2mL

Braun

innova 4230 Refrigerated Incubator Shaker

New Brunswick Scientific

LabTek 8 chambers

ibidi

Leica DM IL Microscope

Leica

LSM 780 Carl Zeiss Microscopy
LSM 800 Carl Zeiss Microscopy
Microlane 3 18G BD

Mini gel system? Biometra

Nanodrop ND-1000 UV /Vis Spectrophotometer PeqLab

Nitrocellulose Membrane 0.45um

Amersham™GE Healthcare

Life Sciences

Odyssey Infrared Imaging System

LI-COR Biosciences

pH meter 766 Calimatic Knick

Pipetboy accu Integra Biosciences
Pipets Gilson

Power Pack P25 Biometra

RCTbasic IKA LABORTECHNIK

Rocking Platform

Biometra

Sprout@®Mini Centrifuge 12V

Heathrow Scientific

Sterile work bench HERASafe HS12

Heraeus Instruments
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Device Company
TC20 Automated Cell counter BIO-RAD
Thermomixer 5436 eppendorf
Tubes for transfection (bmL) SARSTEDT
p-Slide 4 well ibidi
Vortex-Genie 2 Scientific Industries
Water bath GFL

Table 3.10: Devices

3.1.9 Software

Software Company
Cell Q Pro Becton Dickinson
Excel 365 Microsoft
Fiji (Fiji is just ImageJ) 1.51n  Freeware
Image Studio LI-COR
INKSCAPE 0.92 Freeware
Lightwave 3D 2015.3 NewTek
MikTex 2.9.6300 Freeware
R 3.4.1 Freeware
TexMaker 5.0.1 Freeware
ZEN black 2.3 SP1 ZEISS

Table 3.11: Software
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3.2 Methods

3.2.1 Molecular biological methods

3.2.1.1 Cultivation of Escherichia coli

E.coli DH5« was cultivated in sterile lysogeny broth (LB) liquid medium or on LB
agar plates (see Table 3.12), both at 37°C.

After transformation, the transformed E.coli clones were selected by adding the re-
spective antibiotic to the LB medium. In this thesis a stock solution of 25 mg/mL
of Kanamycin was added to the LB medium at the ratio of 1:500. Only the clones

that contained the plasmid with the necessary resistance to the antibiotic could grow.

LB liquid medium LB-Agar plates
1% (w/v) Tryptone 1% (w/v) Tryptone
0,5% (w/v) Yeast extract 0,5% (w/v) Yeast extract
1% NaCl 1% NaCl
1.5 % Bacto-Agar
(a) (b)

Table 3.12: LB mediums (a) LB liquid medium and (b) LB-Agar plates

3.2.1.2 Transformation of chemically competent E.coli

100 puLL frozen chemically competent E.coli DH5«a was thawed slowly on ice.

Then 1uL of the purified plasmid DNA was added and the mixture was again
incubated on ice for 30 min.

Next the mixture was transfered to a bacterial incubator at 37 °C for 1 min, followed
by a quick incubation on ice for 10 min. 500 L of LB medium was added and the
bacteria were incubated for 30 min at 37°C and 250 rpm in a shaker incubator.
Transformed clones were selected by spreading the vial’s content on LB agar plates

supplemented with the respective antibiotic.

3.2.1.3 Purification of plasmid DNA

To purify plasmids in large scale the PureLink ®HiPure Plasmid Filter DNA Pu-
rification Maxi kit (Invitrogen) was used.

One colony of the transformed E.coli was incubated in 400 mL LB medium with the
respective antibiotic overnight. The bacteria were then harvested by centrifugation
at 4.000 g for 10 min.

In the meantime, the PureLink®HiPure Maxi Column along with the Filtration
Cartridge was equilibrated with 30 mL of Equilibration Buffer (EQ1).
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The generated bacterial pellet was resuspended in 20 mL of Resuspension Buffer
(R3) with RNAse A by gentle shaking. Then the bacteria were lysed by adding
20mL of Lysis Buffer (L7) by gently inverting the bottle until the mixure was ho-
mogenous. For bmin the lysate was next incubated at room temperature. The
addition of 20 mL of Precipitation Buffer (N3) results in the precipitation of bacte-
rial proteins and other debris. Again the bottle was directly inverted 3 times gently
until the mixture was homogenous.

Then the equilibrated column was filled with the precipitated lysate obtained from
the previous steps, which was allowed to pass the filtration cartridge by gravity flow.
Next the column was washed with 50 mL of Wash Buffer (W8).

Finally the plasmid DNA was eluted with 15 mL of Elution Buffer (E4) into a sterile
50mL centrifugation tube. The addition of 10,5 mL ice cold isopropanol resulted
in the precipitation of the eluted DNA, which was harvested by centrifugation at
12.000 g for 30 min at 4°C. The supernatant was discarded. Then the pellet was
washed with 5mL of 70 % ice cold ethanol and centrifuged for 5min at 4°C. For
10 min the final pellet was air dried and resuspended in 200 — 500 uL of RNAse and
DNAse free water.

3.2.1.4 Quantification of DNA

The Nanodrop spectrophotometer makes it possible to check both the concentration
and the purity of a DNA suspension.

At 260 nm an absorption value of 1 coincides with a dsDNA concentration of 50 g /mL.
The optical densities ratio between 260 nm and 280 nm (ODsagg : ODagg) is a read-

out for the purity. A value of about 1,8 is considered to be “pure”.

3.2.2 Cell biological methods

3.2.2.1 Eukaryotic cell culture

The human cervical carcinoma cell line (HeLa) was cultivated in a DMEM (Dul-
becco’s Modified Eagle Medium) solution with 10 % FCS (Fetal Calf Serum), 1%
L-Glutamine and 1% Penicillin/Streptomycin at 37°C and 7% CO, atmosphere.

To passage the cells, the medium was aspirated and the cells were washed once
with 10 mL of PBS without Ca** and Mg*™* (PBS™/~). After having aspirated the
PBS~/~, 1mL of a Trypsin/EDTA solution was added and the cells were incubated
for 5 — 7man at 37°C.

Afterwards the cells detached by a gentle tapping of the dish. 9 mL of fresh medium

was added to stop the trypsinization. The resulting suspension was then centrifuged
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at 200 g for 4 min. The supernatant was discarded and the cell pellet resuspended in
10 mL of fresh medium. Finally either 1mL of the resuspension was poured on a dish
with 9mL of fresh medium for reseeding, or 500 pL of the resuspension was poured
on a dish with 9,5mL of fresh medium, depending on the cell confluency at the
beginning of the passaging steps. The reseeded cells were then used for continuous

culture.

3.2.2.2 Cryopreservation of eukaryotic cells

Cryopreservation makes it possible to keep sufficient stocks of cell lines. Therefore

they are preserved at —195°C in liquid nitrogen.

Once cells had reached confluency, the medium was aspirated and the cells were
washed once with 10mL of PBS™/~. After having aspirated the PBS™/~, 1mL of
a Trypsin/EDTA solution was added and the cells were incubated for 5 — 7min at
37°C.

Afterwards, the cells detached after a gentle tapping of the dish. 9mlL of fresh
medium was added. The resulting suspension was then centrifuged at 200¢g for
4min.

The supernatant was discarded and the cell pellet was resuspended in FCS contain-
ing 10 % (v/v) DMSO. DMSO is a cryopreservative, protecting cells from ice crystal
formation upon freezing. Labeled cryovials were each filled with 1 mL of the cell
suspension and stored for 1 day at —80°C in a cryocontainer that facilitates gradual
freezing.

Finally the cryovials were transferred into liquid nitrogen tanks for extended storage

periods.

When new cells were needed, a vial was taken out of the liquid nitrogen tank,
transferred rapidly to a water bath adjusted at 37 °C and, when the last frozen ma-
terial had thawed, the cell suspension was seeded into a 10 cm dish containing 9mL
of prewarmed medium. Finally the dish was transferred into a cell incubator for

continued long-term culture.

3.2.2.3 Cell counting

3.2.2.3.1 General cell counting

Some experiments need a fixed confluency for the cells. Therefore the cells have to
be counted before seeding.

The enumeration was performed using a hemocytometer (Neubauer cell chamber)

when relatively exact values were needed. 10 uL of the cell suspension to analyze
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was loaded into a Neubauer cell chamber. The cells were counted in 4 squares, each
containing 16 “sub-squares” and the average of the squres was used to determine

the concentration, according to the following formula:
Total cells/mL = Average cell count * Dilution factor % 10.000 cells/mL (2)

Alternatively to the hemocytometer, the TC20 Automated Cell counter was used.

3.2.2.3.2 Shake off counting method

The proper rounding up of the cells in prometaphase implies a functional cell cortex
stiffening. By transiently downregulating ERM proteins using Lipofectamine (see
Chapter 3.2.2.4.1 below), early defects in mitosis, in particular proper rounding-up,
can be studied.

Early defects would also lead to preselection of certain cellular phenotypes in the
FACS method later described (see Chapter 3.2.5 below).

The following protocol was used:

On the first day the HeLa wildtype cells were seeded at a confluency of about 40 %
in a 6-well dish.

The next day the cells were transfected with Lipofectamine in the morning. 7 wells
were used: n °1: untransfected, n °2: a mock transfection using only Lipofectamine,
n°3: Control siRNA, n°4: siEzrin, n°5: siRadixin, n°6: siMoesin and n°7: com-
bined siEzrin, siRadixin and siMoesin. In the evening the cells were washed three
times and the medium was changed to growing medium containing nocodazole (see
Chapter 3.2.4.1 below).

On day 3 the majority of the cells was blocked in prometaphase. The rounded up
cells were forced to enter into suspension by pipetting the growing medium of the
wells several times in and out. Next, this suspension was introduced into a Falcon
tube. For each well, one tube was used. The remaining cells in the wells were anal-
ysed under the EVOS digital inverted microscope. As not all the rounded up cells
came into suspension, the cells were gently rinsed with 2 mL new growing medium.
The resulting suspension was added to the corresponding Falcon tubes. If needed,
the rinsing was performed a second time. Then, the remaining non-rounded up cells
in the wells were trypsinized with 500 uL of a Trypsin/EDTA solution and the cells
were incubated for 5 — 7min at 37°C. Afterwards the cells detached after a gentle
tapping of the dish. 1,5mL of fresh medium was added to stop the trypsinization.
The content of each well was transfered into new 7 Falcon tubes.

Finally the cell concentration of the rounded up fraction and of the non-rounded
up fraction could be measured (see 3.2.2.3.1 above). Afterwards the quality of the

downregulation could be determined with Western blot (see 3.2.3 below).
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3.2.2.4 (Transient) Transfection of eukaryotic cells

2 types of transient transfection had been used: Lipofectamine-2000 and GeneJam-

mer.

3.2.2.4.1 Lipofectamine-2000

For some experiments proteins were transiently down regulated by usage of siRNA.
This transfection was performed using Lipofectamine-2000. The protocol for a 10 ecm
dish went as follows:

First the cells were seeded at a confluency of about 60 %.

After one day the transfection solution was mixed at room temperature and each
addition was followed by gentle mixing.

4,8 uL of Lipofectamine-2000 was added to 1,463 mL of prewarmed Opti-MEM®)
in one tube. In another tube 200 picomoles of siIRNA were introduced into 1,463 mL
of prewarmed Opti-MEM®). After 5min the contents of both tubes were combined.
20 min later the solution was put in the medium of a 10 ¢m dish. Finally at ¢t =4—6h
the cells were washed three times and put overnight in the incubator.

On day 3 the cells were ready for experiments.

When the cells had to undergo a nocodazole block, they were seeded at a confluency
of about 30 % on day 1. On day 3 the nocodazole block was started in the evening

and the cells were ready on day 4.

3.2.2.4.2 GeneJammer

The GeneJammer method was used for plasmid DNA transfection for live cell anal-
ysis in confocal microscopy. Here 4-well chambers with 800 x4 medium per chamber
were utilized. The protocol went as follows:

On the first day the cells were seeded at a confluency of about 50 %.

After one day the transfection solution was mixed at room temperature and each
addition was followed by gentle mixing.

4,8uL of GeneJammer was introduced into 112 uL of prewarmed Opti-MEM®)
medium, followed by the addition of 1,6 g of plasmid DNA after 5min. 20min
later 1/4 of the mixture was put into each well.

Finally the cells were incubated overnight.

On the next day the cells were washed three times with prewarmed medium before
being stained with Hoechst 33342 (see Chapter 3.2.6.2 below). Then the cells were

ready for microscopy.
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3.2.3 Protein biochemical methods

3.2.3.1 Cell lysate preparation

In order to analyze the cellular expression levels of the proteins in question, cell
lysates were prepared. Afterwards the lysates underwent SDS-PAGE and Western
Blotting.

Depending on the transfection type, the lysis time point was different. Experi-
ments using Lipofectamine transfection needed 48 h incubation, whereas GeneJam-
mer transfection only needed 16 h incubation. For lysis cells were washed once with
PBS~/~ before being resuspended in 120 pL of lysis buffer (Table 3.13).

Lysis Buffer Stock Solution

Reagent Volume
Imidazole (pH = T7,4) 20mM
NaCl 100 mM
Triton-X-100 1%

The final lysis buffer also contained Complete Protease Inhibitor Cocktail.

1mZL into 25 mL Stock Solution was used.

Table 3.13: Lysis buffer

The lysates were incubated at 4 °C' for 30min on an overhead rotator. Finally,
they were centrifuged for 20min at 4 °C and 15.000 rpm. The supernatant was then
moved to new tubes. After performing the bicinchoninic acid (BCA) test (see 3.2.3.2
below) and diluting the supernatants to adjust the same protein concentration in
45 uL, 15 pL of Loading Buffer (Table 3.14) were added and samples were boiled for
Smin at 95°C.
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Loading Buffer 4x (for 10mL)

Reagent Volume /Weight
B-Mercaptoethanol 800 p L
Bromphenol blue 40mg

Glycerin 4,0mL

SDS 0,89

Tris 0,5 M (pH 6,8) 5,0mL

H>O Add to 10mL

Table 3.14: Loading buffer
Now the samples were ready for SDS-PAGE (see 3.2.3.3 below).

3.2.3.2 Protein concentration determination using the BCA test

Loading the wells for SDS-PAGE (see 3.2.3.3 below) requires protein amount stan-
dardization to allow a more precise comparison between the wells.

Here the Pierce BCA Protein Assay Kit was used. The biuret reaction that uti-
lizes the reduction from Cu™ to Cu*! by proteins is combined to the colorimetric
detection of the chelation product of two bicinchoninic acid (BCA) molecules with
one Cu'! ion. The strong absorbance at 562 nm of this complex is almost linear
between 20 — 2.000 pg/mL.

The BCA working reagent was freshly mixed, by adding 50 parts of reagent A to
1 part of reagent B. 25 uL of standard solutions and the unknown samples were
pipeted into wells on a 96-well dish. Then 200 pL of the working reagent was mixed
with the different solutions and put for 20 min in the incubator at 37°C. After-
wards the dish was permitted to cool down before reading the absorbance with a
spectrophotometer.

The standard solutions make it possible to trace the absorbance in function of the

protein concentration and thereby deduce the concentration of the samples.

3.2.3.3 Sodium-Dodecyl-Sulfate Polyacrylamide Gel-Electrophoresis (SDS-
PAGE)

Since its invention in 1970 by Laemmli [346], the SDS-PAGE has become a widely
used method in labs to separate proteins according to their molecular mass inde-
pently of charges. Later it was improved by Schégger [347] to enlarge the range of
molecular masses that could be detected. An overview of more recent minor im-

provements can be found in Bass [348]
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Depending on the molecular weight of the proteins separated, the percentage of
acrylamide in the gel has to be chosen in advance for a good separation in the range
of interest. For ERM proteins, gels with 12% acrylamide had been used (Table
3.15).

The SDS inhibits non covalent bindings and that way linearizes the protein structure
as anionic detergent. Subsequently a uniform negative charge around the proteins
coats their inner charges. Thereby the resolution of the proteins in a polyacrylamide-

gel is independent of charges and depends solely on the respective molecular mass.

SDS-polyacrylamide Gel 12 %

Reagent Volume for Running Gel Volume for Stack
(for 10mL) (for 2mL)

H>O 3,3mL 1,4mL

30 % Acrylamide mix 4,0mL 0,33mL

1,5 M Tris 2,5mL (pH 8,8) 0,25mL (pH 6,8)

10 % SDS 0,1mL 0,02mL

10% APS 0,1mL 0,02mL

TEMED 0,004 mL 0,002mL

Table 3.15: SDS-polyacrylamide gel 12 %

The gel system itself consists of 2 combined media — an upper gel, called stack,

and a lower gel, called running gel. As the pore size in the stack is larger than in the
running gel, the proteins stack together at the migration zone between both gels.
Another difference is the pH. While the stacking gel has its pH at 6,8, making a
trailing ion boundary, the running gel has pH 8, 8, making a leading ion boundary.
The trailing border is built behind the migrating proteins and the leading border
in front of the migrating proteins. Between these two boundaries the proteins are
concentrated. This discontinuous system allows clear bands as final result.
The prepared lysates from 3.2.3.1 (see above) were introduced, after boiling, in wells
of the stacking gel, after pouring SDS-Page Running Buffer into the system (Table
3.16). A current of 200V was used to start the system. It was stopped after 45 min
or when the dye front had migrated fully through the gel.
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SDS-PAGE Running Buffer

Reagent Quantity
Glycine 192 mM
SDS 0,1% (w/v)
Tris-HCI (pH 8, 8) 25mM

Table 3.16: SDS-PAGE running buffer

3.2.3.4 Western blotting

In 1979 Western Blot was invented independently by Renart et al. [349] and Bur-
nette [350]. This blotting technique allows the transfer of resolved proteins from an
SDS-polyacrylamide gel to a Nitrocellulose or a PVDF membrane. Again Bass [348]
can be referred to for more recent improvements.

Under an electric current the proteins migrate here from an SDS-polyacrylamide gel
to a nitrocellulose membrane without changing their structure. Thereafter antibod-
ies are used to detect the proteins at the surface of the membrane.

For blotting, tank blot systems from Bio-Rad were used. To mount the systems,
4 Whatmann papers, 2 sponges and the nitrocellulose membrane were first soaked
in cold Blotting Buffer (Table 3.17). Then the gel and the membrane were placed
in between 2 sets of Whatmann papers. A falcon tube was gently rolled over the
system to remove trapped air bubbles. Next, the system was placed between two
sponges and then placed inside the blot carrier. The blot carrier was then put into
the blot tank. Before filling the tank with cold blotting buffer, some ice was added
in a recipient to keep the temperature low. Then the tank was placed in an ice bath.
Finally a conductivity of 300 mA was set, which started the transfer. After 1h the
current was stopped.

Now the membrane was ready for blocking and antibody detection.

Blot Solution (for 1L)

Reagent Volume /Weight
Glycine 15¢g

Methanol 200 mL

Tris 3,0285 ¢

H50 add to 1000 mL

Table 3.17: Blot solution

48



3. Materials and Methods 3.2. METHODS

3.2.3.5 Antibody treatment and detection

For further treatment the nitrocellulose membrane was taken out of the blot tank
and isolated from the papers and the gel. First the membrane had to be blocked in a
blocking buffer consisting of a PBS~/~ solution with 0, 1 % Tween-20 and 5 % bovine
serum albumin (BSA). This was placed for 1 h on a shaker. Afterwards the regions
where no proteins are located are blocked, reducing that way unspecific binding of
antibodies.

The blocking buffer was removed and the membrane was then exposed to a solu-
tion of blocking buffer, with specific primary antibody at the respective dilution, as
indicated by the manufacturer. The incubation time on a shaker was either 1h at
room temperature or overnight at 4 °C. After the incubation, PBS-Tween was used
to wash the blot three times for 5min on a shaker at room temperature.

As secondary antibodies, appropriate infrared labeled antibodies from Li-COR Bio-
sciences were used in a solution of PBS-Tween with 5% Non-fat dried milk powder
at a dilution of 1:10.000. Again the blot was incubated for 1 h at room temperature
on a shaker before being washed three times with PBS-Tween for 5min as in the
previous step.

Finally, the blot was ready for detection on the Li-COR Infrared detection system.

3.2.4 Cell synchronization methods

A cell population is formed of multiple cells, with groups at different points of the cell
cycle. When an experiment is not just studying the cell cycle of one single cell, as in
microscopy for example, the cell population has to be synchronized first. Therefore,
chemical reagents can be used that interfere with key steps in the cell cycle, so that
cells can’t go beyond a certain point anymore. The result is an accumulation of
cells at this stage of the cell cycle. Finally, the reagent has to be washed out and a

synchronized cell population is ready to be analysed.

3.2.4.1 Nocodazole block

An antimitotic agent that can be used for synchronization is nocodazole. Spindle
fibers are formed by microtubules. These microtubules are disrupted by nocodazole
as it binds to S-tubulin and inhibits the formation of one of two interchain disulfide
linkages. As result > 90 % of the cells become arrested at the G2/M checkpoint and
a synchronized cell population can be studied. After washing the nocodazole out,
the microtubules are again able to polymerize and the spindle fibers can attach to
kinetochores, so that the cell division can occur.

Here we used a concentration of 50 ng/mL in prewarmed growth medium. The cells
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were incubated overnight for 16 A with the antimitotic agent and in the morning
gentle tapping against the dish allowed the rounded-up cells (corresponding to the
cells in G2/M) to detach and go into suspension. Then the cells were ready for

examination.

3.2.5 Flow Cytometry

In contrast to the microscopic methods, the flow cytometer permits the analysis of
whole cell populations in one single step. Developed by Dittrich and Goéhde in 1968
[351] in Miinster, the flow cytometry, based on fluorescence, makes it possible to
analyze features such as cell size, granulation, DNA content or density, depending
on the type of measurement.

In our case, the cells have to be fixed first before being analysed. Ethanol or
paraformaldehyde (PFA) are two possibilities. As the cytometer takes its mea-
surement through lasers at different wave length, appropriate stainings have to be

applied next to the cells. The next four chapters explain the approach in detail.

3.2.5.1 Ethanol fixation

Cells that nocodazole was applied to and that were reseeded after washing out the
antimitotic agent were gently tapped out of the dish into suspension or were forced
into suspension with growth medium containing trypsin/EDTA.

They were centrifuged at 200 g for 2min at room temperature. Then the pellet was
washed once by resuspending the pellet in PBS™/~ and centrifuging it again at 200 g
for 2min at room temperature. The resulting pellet was resuspended in 100 pL of
PBS~/~ before adding 900 uL of ice-cold 70 % ethanol. Next the suspension was
mixed through gentle pipetting. Then the fixed cells were incubated for > 2h on

ice. Finally, the cells were ready for the staining procedure.

3.2.5.2 Propidium iodide staining

Propidium iodide is a fluorescent DNA intercalating agent that can be used for
staining the cell nucleus.

The ethanol fixed cells were first centrifuged at 200 g for 5min at room tempera-
ture. The supernatant was removed and the resulting pellet resuspended in 500 p L
of propidium iodide staining solution (Table 3.18). Before using the stained cells in
flow cytometry, they were incubated for 30 min at room temperature in the staining

solution.
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Propidium lIodide Staining Solution (10mL)

Reagent Volume
PBS—/~ 8,8mL
Propidium Todide from a stock solution of 2 g/L 100 uL
RNAse (DNAse free) from a stack of 10 g/L 200 L
Triton-X-100 from a stock solution of 10 % in PBS~/~ 100 L

Table 3.18: Propidium iodide staining solution

3.2.5.3 Analysis of Mitosis

The method of examining the cytokinesis of cells uses the cell cycle synchronization
by nocodazole, fixing the synchronized cells in ethanol at different time points, af-
ter washing out the antimitotic agent and staining the cells with propidium iodide
before subjecting them to flow cytometry. This technique was developed by Gas-
nereau [352] and already established in our lab by Dr.Rathangadhara Chakrapani
Nammalwar.

The method was used to study the effect on cytokinesis of downregulating transiently
either ezrin, radixin and moesin (ERM) in HeLa wildtype, or of downregulating tran-
siently radixin and moesin together in HeLa ezr~/~ KO cells. The protocol went as

follows (see Figure 3.1):

Nocodazole +
16h incubation

[ )

i

 —

|

|
Cells are seeded | i

=

~

Incubation for
different periods of
Flow

time *r ]
— Ethanol - Propidium Iodide ‘
fixation staining Cytometry

Figure 3.1: Preparation for flow cytometry

On the first day HeLa cells were seeded in a 10 em dish to a confluency of about
30%. Then after one day the growth medium was replaced by prewarmed growth

medium containing 50 ng/ml of nocodazole at 18:00. The cells were incubated
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overnight with this agent. On the third day the synchronized cells were selected
first at 9:00 by gently tapping the 10 ecm dish, so that the rounded-up cells went into
suspension. This entry into suspension was checked under the microscope. Next,
the suspension was centrifuged at 200 g for 4 min and the supernatant discarded.
The cell pellet was resuspended in 10mL of growth medium. This centrifugation
and resuspending was done three times to wash the nocodazole out. The cell pellet
was finally resuspended in 15 mL of growth medium. Then, 2 mL of the suspension
was introduced in each of 7 35 mm dishes. The remaining 1 mL was used for lysis
and Western blot analysis. The 7 dishes were incubated for different periods of time:
30man, 60 min, 75 min, 90 min, 105 min, 120 min and 180 min.

During the incubation the cells could pursue their mitosis in absence of nocodazole.
At the mentioned time points this mitosis progress was stopped and cells were fixed
for further analysis. To do this, the respective 35 mm dish was taken out of the incu-
bator. For the 30 min dish, the cells were not settled, so that gentle shaking moved
the cells again into suspension. Then the suspension was transferred into a 15mL
centrifugation tube. For all the time points other than 30 min, the remaining cells
on the dish were washed with 500 uL of PBS™/~ and then trypsinized with 500 pL
of prewarmed trypsin for 2min. Next, the cells on the dish were resuspended in
1,5mL of warm growth medium and added to a 15m/L centrifugation tube. The
tube was centrifuged at 200 g for 2min at room temperature. The supernatant was
discarded. Then the cells were washed by resuspending the pellet in 5 m.L of PBS™/~
and the tube was centrifuged again with the same parameters. Afterwards the cell
pellet could be resuspended in 100 uL of PBS™/~. Lastly 900 uL of 70 % ice-cold
ethanol was added. The fixed cells were then placed on ice.

On the fourth day the cells were stained with propidium iodide (see 3.2.5.2 above)
and the cells were prepared for flow cytometry.

FACS Calibur was used as flow cytometer, whose argon laser excited at 488 nm us-
ing FL.2 as acquisition channel. In a scatter plot the fluorescence area (FL2-A) was
plotted against the intensity of fluorescence (FL2-H). In addition the forward scatter
(FSC-H) was plotted against the sideward scatter (SSC-H). Examples of plots are
shown in Figure 3.2a and 3.2b. The numbers of the counting are described in Table
3.19.
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Figure 3.2: Mitosis assay in flow cytometry

Region Events % Gated % Total

R1 9234 100,00 92,34
R2 4468 48,39 44,68
R3 4723 51,15 47,23
R4 45 0,49 0,45

R5 1643 17,79 16,43
R6 3106 33,64 31,06

Table 3.19: Counts in gates

Gates were applied to separate the different populations. The subpopulations
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were then quantified in their region as percentage of the total gated cell population.
Such typical gated scatter plots are shown in figure 3.2d and in figure 3.3 over time.
The latter figure shows at 30 min a homogenous cell population (M). The DNA
content (FL2-A) and the DNA peak fluorescence (FL2-H) are very similar in popu-
lation M. As 90 % of the cells are in prometaphase after 30 min these close values
were expected. The cells have a DNA content of 2n/4c¢ (1 chromosome pair/4 chro-
matids) and a similar peak DNA due to condensed chromosomes.

At 60 min two new cell populations appear. As cell division proceeds after having
reseeded the cells, the cells undergo prophase and metaphase. Then the chromo-
somes start to segregate and the DNA peak intensity (FL2-H) reduces, leading to
cell population C. As long as the cells are not separated into two daughter cells, the
DNA content (FL2-A) stays at the same value. This population C intensifies over
time until 90 min and M reduces constantly.

Another nascent population at 60 min is the G1 cell population. It is situated at
half the FL2-A value, corresponding to completed cell divisions. Its cells’ DNA con-
tent is of 2n/2c¢ (1 chromosome pair/2 chromatids). Also the DNA peak fluorescence
is at half the value of the M population. The G1 population grows over time.
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Figure 3.3: Cell population in flow cytometry.
3 cell populations can be observed: a mitotic (M), a cytokinetic (C) and a G1 cell population.

The gated percentages were plotted as a grouped bar graph for each time point,
allowing the analysis of the mitotic time scale in HeLa cells.
Disturbances of this time scale through downregulation of proteins can thereby be

analysed in these bar graphs.

Mitosis failure can result in multinucleated cells. To test for the presence of mult-
inucleation FACS Mitosis Assays can be used. One example is shown in 3.3 for
HeLa ezr—/~ KO. The measurements were performed as described above. Only the
FL2-A on the x axis was expanded to also identify cells with 3n (R7) or 4n (R8)

chromosomes (see Figure 3.4).
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Figure 3.4: Multinucleation

3.2.5.4 Statistical Methods

In many of the time-consuming experiments of this thesis, replicas of 3 were per-
formed and some shown as individual graphs.
In this work, statistical examination mainly refers to the FACS assays and employed

the method developed by Gasnereau [352]. Mean values were analysed with their
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standard deviation over time by using the ANOVA test, followed by the Tukey post-
hoc test fits. ANOVA requires several assumptions: independence of observations,
a normal distribution and homogeneity of variances (homoscedasticity). A given
assumption is the independence of observations. The kind of distribution can’t be
inspected, but there exist tests for the assumption of normality. However n > 3 is
needed. Changing to other statistical tests, like the Kruskal-Wallis, would influence
the level of significance and the power in a way that n > 3 would even be needed.
Furthermore, the ANOVA test is not very sensitive to moderate violations of the
normality assumption when a large sample number is considered [353-355]. In the
literature the Gasnereau method was used in three papers [356-358] for analysis of
mitosis, but none gave reasons why a normal distribution can be assumed, or per-
formed a statistical analysis at all. Finally, the ANOVA test is used in this thesis
in view of its alleged robustness, but further studies will have to prove the normal
distribution of cells undergoing mitosis.

Concerning systematic errors, they can’t be completely excluded in the progress
of an experiment, but as other lab members independantly got similar results, the

probability is very small.

3.2.6 Imaging

A lot of experimental methods such as flow cytometry or colorimetric reactions
analyse whole populations. A strong point of microscopy is the detailed analysis of
both, the localization of proteins and a quantification of them (either enrichment or
downregulation).

2 different microscopic methods had been used.

3.2.6.1 Cell fixation and immunofluorescence staining

Immunofluorescence of fixed cells is analyzing dead cells under the microscope. The
cellular structure is preserved by the fixation and makes it possible to store the re-
sulting microscopic slide for a longer period of time. Permeabilization then permits
the passage of the antibodies through the cell membrane and thereby the labeling
of their specific protein targets. After being incubated with the primary antibodies,
fluorescently labelled secondary antibodies are used.

Here the microscopes LSM 780 and the LSM 800 were utilized.

8 welled labtek chambers were chosen to grow the cells. The fixation started with
washing the cells twice gently with 250 uL of PBS containing Ca™ and Mg™™
(PBS*/*) at 37°C. Next, the cells were fixed with 150 L of 4 % paraformaldehyde
(PFA). After the addition of PFA the cells were incubated for 5 — 7min at 37°C.
Then the cells were washed twice with 250 4L of PBS*/* at 37°C. The permeabi-
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lization was done by adding 150 4L of 0,5 % Triton-X-100 in PBS*/* for 15min.
Resulting free aldehyde groups were modified by incubating the cells three times
for 10 min at room temperature with 150 uL of glycine buffer (Table 3.20). These

aldehyde groups could show some autofluorescence.

Glycine Buffer

Reagent Volume/Weight
NaCl (5M) 1,3mL
NayHPO, (0,2 M) 1,75mL
NaHyPO, (0,2 M) 0,875 mL
Glycine 0,3735 ¢

dH>0 46,075 mL

Table 3.20: Glycine buffer

Then the cells were washed twice with PBS*/* at room temperature. An incu-
bation of 1A in blocking buffer (Table 3.21) at room temperature followed. Finally
on day 1, the cells were incubated with 200 L of primary antibody overnight at
4°C. For this, the Labtek chambers were placed in a humid chamber, to which
gentle shaking was applied. On the second day, the cells were washed three times
with 200 pL of PBS*/* for 4 — 5 min at room temperature. The secondary antibod-
ies were introduced in the appropriate dilution in blocking buffer. 200 pL of this
solution was then poured into each chamber. After an incubation of 1A at room
temperature the cells were washed three times as in the previous step. Finally the
cells were mounted in a drop of mowiol and permitted to dry overnight at room

temperature. Microscopy could start on the following day.
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Blocking Buffer

Reagent Volume/Weight
NaCl (5 M) 1,3mlL
NasHPO, (0,2 M) 1,75mL
NaH,PO, (0,2 M) 0,875 mL

NaHs (0,3 M) 1,28 mL

Bovine Serum Albumine (BSA) (1 %) ImL
Triton-X-100 (10 %) 1mL

Tween (10 %) 0,25mL

FCS dSmL

dH>0 37,545 mL

Table 3.21: Blocking buffer

3.2.6.2 Live cell time lapse imaging

For live cell imaging the LSM 780 was used. The microscopic method of live cell
imaging was chosen to analyze the expression of GFP labelled ezrin and GFP la-
belled N-ERMAD in time and space during mitosis.

On the first day, the cells were seeded on 4 well u slides from ibidi with a starting
confluency of about 40 %. Then after one day the cells were transfected using Gene-
Jammer (see 3.2.2.4.2 above). Finally, on day 3, the cells were ready for microscopy.
First the LSM 780 was switched on with the incubator set at 37°C and 7% CO,.
Thereby a stable temperature could be guaranteed over the image capture time.
Next, the medium of the cells was changed to warm growth medium containing
Hoechst 33342 at 125ng/mL. Hoechst 33342 is a DNA intercalating fluorophore
that is capable of passing the cell membrane. The cells were incubated for 20 min
at 37°C. Finally the cells were washed three times gently with 500 L of prewarmed

growth medium and were then ready for microscopy.
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4 Results

4.1 Localization of ERM proteins in HeLa cells

N order to analyze the role of ERM proteins in cell divsion, the localization of
these proteins has first to be studied in the different cell division phases.

Figure 4.1 shows the distribution of activated ERM proteins (pERM), in representa-
tive selected HeLa wildtype cells, in all five phases of mitosis. In prophase the ERMs
are ubiquitously spread in the cytosol and at the membrane. After the breakdown
of the nuclear envelope in prometaphase the distribution of ERMs remains similar.
In metaphase ERMs accumulate at the cell membrane. This membranous concen-
tration persists until the end of cytokinesis. In anaphase and telophase a slightly

brighter signal can also be observed at the cleavage furrow.
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Phase DAPI Anti-pERM Overlap

Prophase

Prometaphase

Metaphase

Anaphase

Telophase

Figure 4.1: Distribution of phosphorylated ERM proteins in HeLa Wildtype cells
undergoing mitosis.

DAPI (dilution 1 : 1.000) was used to visualize chromosomes in blue and ERMs were detected in
green with anti-pERM (dilution 1 : 100). pERM are phosphorylated/activated ERMs. Scale bar
= 5 um. In each image, the upper left rectangle shows the frontal view, the lower left square a cut
view through cells and the lower right rectangle the side view.
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4. Results 4.1. LOCALIZATION OF ERM PROTEINS IN HELA CELLS

To look specifically at the contribution of ezrin, a knockout (KO) was performed

and the distribution of the remaining ERM proteins, radixin and moesin, was ana-

lyzed.
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Figure 4.2: Quantification of ezrin level in HeLa WT and in HeLa ezrin~/~ Knockout

via a Western Blot.
The ”M” lane shows the marker indicating different protein sizes.

Figure 4.2 shows a normalized quantity of HeLa ezrin KO cells in the middle
lane, with a-tubulin at ~ 55kDa and a normalized quantity of HeLa WT cells
in the right lane, with an equal amount of a-tubulin at ~ 55kDa. FEzrin is only
expressed at ~ 80kDa in the right lane, allowing us to deduce, that the KO Cell

line expresses no ezrin any more.
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4. Results 4.1. LOCALIZATION OF ERM PROTEINS IN HELA CELLS

Phase DAPI Anti-pERM Overlap
Prophase .
Prometaphase .
Metaphase .
Anaphase .

Figure 4.3: Distribution of phosphorylated RM proteins in HeLa Ezrin—/~ Knockout
cells undergoing mitosis.

DAPI (dilution 1 : 1.000) was used to visualize chromosomes in blue and RMs were detected in
green with anti-pERM (dilution 1 : 100). Scale bar = 5 um. Per image the upper left rectangle
shows the frontal view, the lower left square a cut view through cells and the lower right rectangle
the side view.

Figure 4.3 shows the distribution of activated RM proteins in representative
selected HeLa ezrin~/~ Knockout cells in four phases of mitosis. In prophase the RMs
are ubiquitously spread in the cytosol and at the membrane (middle left cell). After
the breakdown of the nuclear envelope in prometaphase, the distribution of RMs
remains similar. In metaphase RMs accumulate at the cell membrane (middle right
cell). This membranous concentration persists over anaphase. The unsynchronized
population showed no cell in telophase, so that the ezrin localization at this phase

was examined in the live cell microscopy section (see Chapter 4.3).
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4. Results 4.1. LOCALIZATION OF ERM PROTEINS IN HELA CELLS

These results suggest no localization difference between pERM and pRM in HelLa
cells.

Next, a cell model to study potential functional roles in mitosis was established.
In following experiments siRNA was used to transiently knockdown all three ERMs

in HeLa WT. The quality of these knockdowns was also checked in the beginning.
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Figure 4.4: Quantification of ERM levels via Western Blots in HeLa WT after siRNA
treatment.

(a) Ezrin level in HeLa WT after siRNA treatment and (b) radixin and moesin level in HeLa WT
after siRNA treatment.

Figure 4.4 shows on both western blots equal amounts of a-tubulin at ~ 55 kDa,
so equal amounts of cells were used for each lane. In Figure 4.4a the amount of
ezrin expression persists at a similar level in HeLa W'T after the transfection with
siControl, whereas the transfection with siEzrin leads to a reduction of the ezrin
level of ~ 80%. In Figure 4.4b the levels of radixin and moesin also stay stable
in HeLa W'T after the transfection with siControl, whereas the transfection with
siRadixin and siMoesin leads to a reduction of the RM levels of > 80 %.

This ERM expression shows the effectiveness of the performed knockdown. Knock-

down effectiveness was then also analyzed by immunofluorescence microscopy.
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4. Results 4.1. LOCALIZATION OF ERM PROTEINS IN HELA CELLS

DAPI Anti-ezrin & TRITC- Overlap
anti-moesin phalloidin

Figure 4.5: ERM levels in HeLa WT are not affected by control transfection.

Each line shows representative selected HeLa WT cells. The nuclei are visualized with DAPI
(dilution 1 : 1.000) in blue, ERMs are detected by using anti-ezrin (dilution 1 : 100) and anti-
moesin (dilution 1 : 100), subsequently labeled by Alexa-Fluor-488 (dilution 1 : 1.000) in green.
The moesin antibody is less specific and binds next to moesin also radixin. F-actin is stained with
TRITC-phalloidin (dilution 1 : 1.000) in red. Scale bar = 5 um.

Figure 4.5 shows that HeLLa W'T cells treated with siControl present a ubiquitous

distribution of ERMs, comparable to Figure 4.1. All selected representative cells are

in interphase and display an F-actin accumulation at the cell membrane.
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4. Results 4.2. ROLE OF ERMS IN CELL DIVISION: MITOTIC ENTRY

DAPI Anti-ezrin & TRITC- Overlap
anti-moesin phalloidin

Figure 4.6: ERM levels in HeLa WT are affected by downregulation with siERM.
Each line shows representative selected HeLa WT cells. The nuclei are visualized with DAPI
(dilution 1 : 1.000) in blue, ERMs are detected by using anti-ezrin (dilution 1 : 100) and anti-
moesin (dilution 1 : 100), subsequently labeled by Alexa-Fluor-488 (dilution 1 : 1.000) in green.
The moesin antibody is less specific and binds next to moesin also radixin. F-actin is stained with
TRITC-phalloidin (dilution 1 : 1.000) in red. Scale bar = 5 um.

The selected representative HeLa W'T cells transfected with siERM of Figure 4.6

show DAPI and TRITC-phalloidin signals at a level and localization similar to the
cells transfected with siControl in Figure 4.5. However the signals of anti-ezrin and
anti-moesin are reduced at the same excitation options for the microscope in the
siERM case.
Another prominent observation is that the downregulation does not influence all
cells at the same level, some more and some less. Nevertheless the microscopy im-
ages underline the effectiveness of the ERM knockdown documented above in the
Western blots.

4.2 Role of ERMs in cell division: Mitotic entry

4.2.1 Cell adherence after induction of mitosis

The first cortical deformation that occurs in mitosis is the rounding-up. Therefore,
interfering with cortical proteins such as ERMs could disturb this early phase in
mitosis and lead to a change of cellular adhesive properties. Generally a minority of
the cells undergoes mitosis at a given timepoint in an unsynchronized cell population.
To test the quality of rounding-up in a large quantity of cells, ERM knockdown cells
were blocked at the G2/M checkpoint by nocodazole. > 90 % of the cells are then
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rounded-up when studied.

Attached fraction compared to whole population
30-
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ut mock siC siEzr siMoe siRdyx siERM
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Figure 4.7: Effect of ERM depletion on cell attachment.

The mean attached fraction is displayed in comparison to the whole population. The untransfected
population (ut) is represented in grey, the mock transfected population in light orange, the siControl
transfected population (siC) in light blue, the siEzrin transfected population (siEzr) in green, the
siMoesin transfected population (siMoe) in yellow, the siRadixin transfected population (siRdx)
in dark blue and the combined SiEzrin, siRadixin and siMoesin transfected population (siERM)
in dark orange. The error bars represent the standard deviation (n=3, except for mock n=2).

Those cells that round-up lose their major attachment forces and can be easily
detached, so that cells can be divided into a non-rounded-up/attached fraction and
a rounded-up fraction. In Figure 4.7 a slight increase of the attached fraction from
~ 16,6 % up to ~ 27,0 % is observed following ERM knockdown. However the stan-
dard deviations are of magnitudes that exceed each time 1/4 of each bar. Compared
to the controls (ut, mock and siC), the measures for the populations siEzr, siMoe
and siERM the ANOVA test defines a p — value > 0,9. The measurements of the
siRdx population show a smaller standard deviation and a p — value > 0,5 com-
pared to the controls in the ANOVA test. Thus, all changes have to be considered

insignificant.
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4.2.2 DNA content of cells in mitosis after ERM downreg-

ulation

After analysis of adhesion defects, potential defects in DNA segregation were exam-
ined. First, cells with non-physiological DNA content, where the chromosomes are
not equally distributed to the nascent daughter cells, were assessed.

To study a synchronized cell population of HeLa cells, a nocodazole block was again
performed. Next the cells were released and pursued mitosis simultaneously. Subse-
quently the flow cytometer separates cells in (pro)metaphase, cells with segregating
chromosomes in ana- and telophase and cells after mitosis in G1. The dynamic of
cell division populations, mentioned below in Chapter 4.2.3, shows when a suffi-
cient amount of cells reaches the next detectable phase in cell division. Thus, it
can be deduced that at 105 min after the release from nocodazole block, not all of
the cells will have undergone mitosis completely. At this timepoint cell populations
with DNA contents of 2n/4c and 2n/2c are observable (see [352] and Chapter 4.2.3).

Hela WT _ut_105min

-%_ R1=R2+R7+R8+gate between R4 and R7 ’ Gates ‘
s ] RIRITRATRITRO Region Events Gated
= R1 2411 100,00
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“8] R4 4 0,17
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&9 R6 427 17,71
R7 42 1,74
0' - Ieéol o '4Tco' B 600 800 1000 R8 99 2,28
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Figure 4.8: Different cell populations of untransfected HeLa WT separated by their
DNA content, 105min after release from nocodazole block.

The column Gated is given in % and Events in total cell numbers. The gated percentage is
calculated relative to the total population. R1 = all the gated cells; R2 = cells in (pro)meta-,
ana- and telophase and in G1; R3 = cells in G1 with a DNA content of 2n/2¢; R4 = cells with
a DNA content between G1 and (pro)meta-, ana- and telophase; R5 = cells in (pro)metaphase
with a DNA content of 2n/4c¢; R6 = cells undergoing cytokinesis with a DNA content of 2n/4c;
R7 = cells with ~ 50 % more DNA content than R5/R6 and a multiple of 2n/4c¢ ; R8 = cells with
~ 100 % more DNA content than R5/R6 and a multiple of 2n/4c. n = 2500 cells.

The HeLa WT untransfected population (ut) (see Figure 4.8) contains at the
timepoint 105min 32,06 % (R5) of the cells in metaphase, 17,71 % (R6) in cy-
tokinesis and 45,58 % (R3) in G1. Only 4,36 % (R1-R2) of the gated cells have
non-physiological DNA amounts. 1,74 % (R7) have 50 % more DNA than those in
metaphase and 2,28 % (R8) have 100 % more.

Thus, only few cells with an increased DNA content can be detected in the untrans-
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fected case.
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Figure 4.9: Different cell populations of Control transfected HeLa WT separated by
their DNA content, 105min after release from nocodazole block.

The column Gated is given in % and Events in total cell numbers. The gated percentage is
calculated relative to the total population. R1 = all the gated cells; R2 = cells in (pro)meta-,
ana- and telophase and in G1; R3 = cells in G1 with a DNA content of 2n/2¢; R4 = cells with
a DNA content between G1 and (pro)meta-, ana- and telophase; R5 = cells in (pro)metaphase
with a DNA content of 2n/4c; R6 = cells undergoing cytokinesis with a DNA content of 2n/4c¢;
R7 = cells with ~ 50 % more DNA content than R5/R6 and a multiple of 2n/4c¢ ; R8 = cells with
~ 100 % more DNA content than R5/R6 and a multiple of 2n/4c. n = 2500 cells.

The HeLa WT siControl transfected population (siC) (see Figure 4.9) contains
at the timepoint 105 min 39,31 % (R5) of the cells in metaphase, 18,61 % (R6) in
cytokinesis and 28,89 % (R3) in G1. Now 11,14 % (R1-R2) of the gated cells have
non-physiological DNA amounts. 4,30 % (R7) have 50 % more DNA than those in
metaphase and 5,80 % (R8) have 100 % more.

Therefore, more than twice as many cells with an increased DNA amount are de-
tectable after siC transfection than in the untransfected case, even if the total

amount remains small.
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Figure 4.10: Different cell populations of siERM transfected HeLa WT separated by
their DNA content, 105min after release from nocodazole block.

The column Gated is given in % and Events in total cell numbers. The gated percentage is
calculated relative to the total population. R1 = all the gated cells; R2 = cells in (pro)meta-,
ana- and telophase and in G1; R3 = cells in G1 with a DNA content of 2n/2¢; R4 = cells with
a DNA content between G1 and (pro)meta-, ana- and telophase; R5 = cells in (pro)metaphase
with a DNA content of 2n/4c¢; R6 = cells undergoing cytokinesis with a DNA content of 2n/4c;
R7 = cells with ~ 50 % more DNA content than R5/R6 and a multiple of 2n/4c¢ ; R8 = cells with
~ 100 % more DNA content than R5/R6 and a multiple of 2n/4c. n = 2500 cells.

The HeLa WT siERM transfected population (siERM) (see Figure 4.10) contains
at the timepoint 105min 32,27 % (R5) of the cells in metaphase, 15,35% (R6) in
cytokinesis and 39,32 % (R3) in G1. Now 9,91 % (R1-R2) of the gated cells have
non-physiological DNA amounts. 4,72 % (R7) have 50 % more DNA than those in
metaphase and 4, 10 % (R8) have 100 % more.

Thus the cell number with an increased DNA amount in the siERM transfected
population is also twice as high as the number in the case of untransfected cells, but
is equal to the siControl case.

The comparisons are summarized in Table 4.1.

Phase HeLa WT ut HeLa WT siC HeLa WT siERM
Metaphase 32,06 39,31 32,27
Cytokinesis 17,71 18,61 15,35
Gl 45,58 28,89 39,32
non-physiological 4,36 11,14 9,91

Table 4.1: Cell cycle stages of different cell populations 105min after release from
nocodazole block.
Numbers are given in %. 2500 cells are gated.

4.2.3 Progression of mitosis in cells with ERM downregula-
tion

After analyzing the effect of ERM depletion on mitotic entry and chromosome seg-

regation, I next focused on possible effects on other mitotic events. Therefore, I syn-
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chronized HeLa cells after different siRNA transfections (ut, siC and siERM) with a
nocodazole block. Next I quantified the mitotic cell population in (pro)metaphase,
the cytokinetic cell population and the cell population in G1 by the use of flow

cytometry at different timepoints after release from nocodazole block.

HeLa WT cells:

Mitotic staging was first performed with HeLa W'T ut cells to define the different
populations. 7 timepoints after release from nocodazole block were chosen and the
relative amount of cells in different stages of the cell cycle was determined by the
FACS assay described in the Methods section (see Chapter 3.2.5.3). Results are
shown in Figure 4.11a.

While the mitotic cell population (M) decreases almost exponentially from 99,2 %
of all the cells in prometaphase at 30 min to 24,3 % at 180 min, the population of
cells after mitosis, called G1 phase, increases almost linearly from 0,3 % at 30 min
to 62,5% at 180min. The number of cells undergoing cytokinesis (C) increases
from 0,1% at 30min to a peak value of 31,4% at 90 min and then decreases to
10,0 % at 180 min.

After the transfection of HeLa WT cells with siControl (see Figure 4.11b), the M
population decreases still approximately exponentially from 96,3 % at 30 min to
26,7 % at 180min. The G1 population also still increases almost linearly from
1,8% at 30min to 65,2% at 180 min and the C population increases from 1,0 %
at 30 min to its peak value 28,1 %, this time at 75min. Nevertheless the value at
90 min is very close to this peak value. Next the cytokinetic population shrinks
again down to 7,0 % at 180 min.

Having established the controls and checked for the quality of the transient knock-
downs (see Figure 4.4), the transient knockdown of ERMs is now accessible for
evaluation (see Figure 4.11c¢). In the ERM knockdown cells the nearly exponential
decrease of the M population persists; this time from 88,8 % at 30 min to 29,7 % at
180 min. Also the close linearity of the G1 population over time remains. It rises
from 6,6 % at 30 min to 60,0 % at 180 min. Finally the C population has a reduced
increase, but still shows a peak. It increases from 2,2 % at 30 min until 26,6 % at
90 min and then decreases to 8,3 % at 180 min.

Clear differences in the mitotic indices of the different cell populations are not ev-
ident. Therefore Figure 4.12 and Table 4.2 summarize only the cytokinetic popu-
lations of all three conditions (ut, siC and siERM), as the cytokinesis with all its
dynamics should be the most vulnerable of the phases to ERM depletion.
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Figure 4.11: Mitosis progression of different HeLa WT populations.

(a) shows HeLa untransfected, (b) HeLa transfected with siC and (c) HeLa transfected with stERM.
For each timepoint the percentage (%) of cells in the three given phases is examined. Time
corresponds to time after release from nocodazole block. The mean values of the cells in metaphase
are shown in the red bars, those of the cells in cytokinesis in the blue bars and those of the cells
in G1 in green. The error bars correspond to the standard error. (n=3, except for ut at 30 min

n=2).
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Figure 4.12: Effect of ERM depletion on the relative amount of cells in cytokinesis.
The cytokinesis cell populations of Figure 4.11 are combined in this figure. Not the mean values,
but each value is included. Untransfected cell populations are represented by circles, siControl
transfected cell populations by triangles and siERM transfected cell populations by squares. The
resolution is ~ 0,1%. Time corresponds to time after release from nocodazole block.

Statistics: p-Values
Timepoint  All 3 groups* sSiERM-siC**  ut-siC**  ut-siERM**

30min 0,328 - - -
60 min 0,947 - - -
75 min 0,025 0,046 0,941 0,031
90 min 0,413 - - -
105 min 0,552 - - -
120 min 0,719 - - -
180 min 0,394 - - -

Table 4.2: Statistics of Figure 4.12.
Rounded to the third decimal place. *) p-Values gained with ANOVA; **) p-Values gained with

Tukey.

As Figure 4.12 shows no mean values, but all of the individual values obtained,
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their spreading is directly observable. In fact the values for the different cell popula-
tions are widely scattered, except for the first timepoint. The only visible difference
between ut, siC and siERM can be seen at 75min, when all the values of ut and
siC are above those of siERM.

The assumption of normal distribution makes it possible to test the values of the
three goups against each other for a significant difference. Table 4.2 indicates that
at 75min there is indeed a significant difference between ut and siC compared to
siERM (p < 0,05). The post-hoc Tukey test specifies that a slighter significant
difference can be calculated for siERM (siERM vs siC p < 0,05 and siERM vs ut
p < 0,05).

HeLa ezr/~ KO cells:
The second cell line used in this thesis, generated by using the CRISPR/Cas system,
possesses no ezrin and allows the analysis of possible mitotic defects of ezrin itself
and RM depletion in an ezrin null background. Radixin and moesin downregulation

in HeLa ezr—/~ KO cells is shown in Figure 4.13.
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Figure 4.13: Quantification of radixin and moesin levels via a western blot in HeLa
ezr—/~ KO in mitosis assays.
The "M” column shows the marker indicating different protein sizes.

The same 7 timepoints after release from nocodazole block were chosen, where
the relative amount of HeLa ezr—/~ KO cells in different stages of the cell cycle was
determined by the FACS assay. Figures 4.14a-c present the results.

All three conditions (ut, siC, siRM) of HeLa ezr~/~ KO cells show an approximately
exponential decrease for the mitotic population from 30 min to 180 min, this from re-
spectively 97,9 % to 25,2 % (ut), 96,8 % to 30,1 % (siC) and 92,7 % to 34,6 (siRM).

The G1 population shows in all three conditions a nearly linear increase from 30 min
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to 180 min. The respective values are 0,7 % to 64,6 % (ut), 1,9 % to 62,6 % (siC)
and 4,8 % to 56,8 % (siRM). Finally all three cytokinetic populations possess a peak
value at 75 min. In the untransfected condition the population increases from 0, 6 %
to 33,8 % and then decreases to 9,5%. The siC population increases from 0,8 %
to 33,1% and then decreases to 6,5 %. Furthermore the siRM population increases
from 1,4 % to 25,4 % and then decreases to 7,2 %.

Differences of the cytokinesis population are summarized in Figure 4.15 and Table
4.3.
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Figure 4.14: Mitosis progression of different HeLa ezr—/~ KO cell populations.

(a) shows HeLa untransfected, (b) HeLa transfected with siC and (c) HeLa transfected with siRM.
For each timepoint the percentage (%) of cells in the three given phases is examined. Time
corresponds to time after release from nocodazole block. The mean values of the cells in metaphase
are shown in the red bars, those of the cells in cytokinesis in the blue bars and those of the cells
in G1 in green. The error bars correspond to the standard error. (n=3).
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Figure 4.15: Effect of RM depletion in an ezrin null background on the relative amount
of cells in cytokinesis.

The cytokinesis cell populations of Figure 4.14 are combined in this figure. Not the mean values,
but each value is included. Untransfected cell populations are represented by circles, siControl
transfected cell populations by triangles and siRM transfected cell populations by squares. The
resolution is ~ 0,1%. Time corresponds to time after release from nocodazole block.

Statistics: p-Values

Timepoint  All 3 groups* siRM-siC**  ut-siC**  ut-siRM**
30min 0,103 - - -
60 min 0,022 0,046 0,874 0,026
75 min 0,127 - - -
90 min 0,439 - - -
105 min 0,342 - - -
120 man 0,135 - - -
180 min 0,156 - - -

Table 4.3: Statistics of Figure 4.15.

Rounded to the third decimal place. *) p-Values gained with ANOVA; **) p-Values gained with

Tukey.
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Compared to the HeLa WT mitosis examination, HeLa ezr~/~ KO cells show

much closer values for each condition at each timepoint in Figure 4.15. Not only at
75min, but at each timepoint apart from the first and the last, the untransfected
values are very close to the values of siC, but they differ from those of siRM.
A normal distribution was again assumed and the ANOVA test could be used. Even
if the p-values are much smaller than those for HeLa WT cells in Table 4.2, only at
60man p < 0,05. The Tukey post-hoc test shows at this timepoint, that siRM is
the origin of the difference (siRM vs siC p < 0,05 and siRM vs ut p < 0,05).

4.3 Role of ERMs in cell division: Cytokinesis

All the methods that have been described above measure the quality and quantity
of mitosis only indirectly. Live cell microscopy permits a direct inspection of cell di-
visions. However this view is restricted to quality, leaving the quantitative analysis
to the sections above.

Before microscopic analysis, transfected cells were stained with Hoechst 33342. By
this means the chromosomes became visible under the microscope and allowed anal-

ysis of mitosis.

4.3.1 Localization of full-length ezrin during cell division

To begin with, the localization of full-length ezrin in HeLa ezr=/~ KO cells after ex-
pressing the GFP-ezrin DNA construct was assessed. Figure 4.16 displays a selected

representative mitosis.
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Figure 4.16:

Mitosis of HeLa ezrin—/~ KO cells expressing GFP-ezrin.

Unsynchronized cells were analyzed. 8 representative timepoints are shown. Chromosomes are
stained with Hoechst 33342 (125ng/mL) in blue. The starting point is set as ¢ = 0min and the
total recorded time is 43,1 min. Scale bar = 5 um.

The HeLa ezr~/~ KO cell transfected with the GFP-ezrin DNA construct is at
t = 0.0 min at metaphase. The chromosomes are aligned at the center and the GFP
signal comes from the plasma membrane, where ezrin would also be located in HeLa
WT (see Figure 4.1). Then at t = 2,4min, anaphase starts with the segregation
of the chromosomes and lasts until ¢ ~ 7,9min, when the equatorial cortex begins
to form. An enrichment of GFP-ezrin at the cleavage furrow can be seen from
the beginning at ¢t = 8, 9man, through ¢t = 13,9min and ¢t = 16,9 min, when the
intracellular bridge can be imagined. Finally cytokinesis ends with the abscission at
t = 18,9 min. The cells flatten again (t = 27,1 min) and there is no local difference
in the membranous enrichment of GFP-ezrin anymore.
Thus, GFP-ezrin localizes in HeLa ezr=/~ KO cells like endogenous ERMs in fixed
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HeLa W'T cells in Figure 4.1 and cell division shows no alterations in cells expressing
GFP-ezrin. In HeLa ezr~/~ KO cells only an amplified enrichment of GFP-ezrin at

the cleavage furrow can be noticed.

4.3.2 Effect of an ezrin PI(4,5)P,-binding mutant

The GFP-ezrin-P1(4,5)Po-binding mutant constitutes an ezrin protein without the
capability of binding PI(4,5)Ps and thereby of binding to the plasma membrane.
Figure 4.17 shows a selected representative HeLa W'T cell in division after transfec-
tion with this DNA construct.

Figure 4.17:

Mitosis of HeLa WT after transfection with the GFP-ezrin-PI(4,5)Ps-mutant.
Unsynchronized cells were analyzed. 6 representative timepoints of cytokinesis are shown. Chromo-
somes are stained with Hoechst 33342 (125ng/mL) in blue. The starting point is set as t = 0 min
and the total recorded time is 19,8 min. Scale bar = 5 um.

During the whole mitosis the GFP-ezrin-PI(4,5)Py-mutant is expressed in the
cytosol and the green signal of the mutant is evenly distributed.
At t = 0 the chromosomes are aligned at the cellular equator, so the cell is in
metaphase. Then at ¢ = 4,0 min the chromosomes start segregation, marking that
way the beginning of anaphase. When the chromosomes are separated the cor-
tex/cleavage furrow has to cut the mother cell into two nascent daughter cells. The
cleavage furrow formation progresses through ¢t = 11,3 mun and t = 14, 3 min, when
the intracellular bridge can be imagined. In ana- and telophase, from ¢t = 7,3 min

to t = 14,3 min, small blebs appear. Then at t = 15,3 min the cytokinesis has
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finished and two daughter cells have been formed.
Thus, cell division shows no major alterations in cells expressing the PI(4,5)Po-

binding mutant.

4.3.3 Effect of N-ERMAD overexpression

The N-ERMAD domain alone is capable of binding to the plasma membrane, but in-
teractions with F-actin are impossible. Upon overexpression of this DNA construct,
dominant-negative effects could be expected because N-ERMAD could compete with
endogenous ERM proteins for plasma membrane binding. The experiments were per-
formed in HeLa ezr=/~ KO cells to compete with the remaining radixin and moesin

and the results can be seen in Figure 4.18.

Figure 4.18:

Mitosis of HeLa ezr—/~ KO cells after transfection with GFP-N-ERMAD.
Unsynchronized cells were analyzed. 9 representative timepoints are shown. Chromosomes are
stained with Hoechst 33342 (125ng/mL) in blue. The starting point is set as ¢ = 0min and the
total recorded time is 26,3 min. Scale bar = 5 um.
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As expected, the GFP signal of GFP-N-ERMAD is enriched at the plasma mem-
brane at all timepoints. Interestingly an increased number of protrusions and blebs
of the plasma membrane are seen in N-ERMAD expressing cells at all phases of the
cell cycle.

At t = 0,0min, the chromosomes are condensed, so prophase has started. t =
2,0min later the chromosomes are still aligned at the equator. Then, shortly before
t = 4,0min the chromosomal segregation starts. At t = 9,3 min the equatorial
cortex forms and the resulting cleavage furrow ingresses through ¢ = 11, 3 min and
t = 13,3 min until the abscission takes place. Like the GFP-ezrin construct, an
enrichment of the GFP N-ERMAD signal is apparent at the cleavage furrow. Fur-
thermore, the plasma membrane extensions are accompanied by blebs of small and
middle size, indicating cortex instability. After the abscission at ¢t = 16,3 min
and t = 18,3 min, the number of blebs reduces slowly, leaving only the plasma
membrane protrusions, and there is only the enrichment of GFP-N-ERMAD at the
plasma membrane visible, but no local difference anymore.

The majority of HeLa ezr~/~ KO transfected with GFP-N-ERMAD react like the
selected representative cell in Figure 4.18 above, but a small minority reacts like in
Figure 4.19 below:
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Figure 4.19:

Mitosis of HeLa ezr—/~ KO cells after transfection with GFP-N-ERMAD.
Unsynchronized cells were analyzed. 9 representative timepoints are shown. Chromosomes are
stained with Hoechst 33342 (125ng/mL) in blue. The starting point is set as ¢ = 0min and the
total recorded time is 38, 3 min. Scale bar = 5 um.

Figure 4.19 shows another example of a cell division of HeLa ezr=/~ KO cells
after transfection with GFP N-ERMAD. The plasma membrane protrusions are
larger and give a thicker signal from ¢ = Omin to t = 2,0min. From t = 3,0min
to t = 14,3 min a huge bleb can be seen at 12 o’clock from the left chromosomes.
In addition a second major bleb is observable from ¢ = 3,0min to t = 5,0min at 3
o’clock from the right chromosomes. 1/3 of HeLa ezr—/~ KO cells expressing GFP
N-ERMAD displays blebs of a similar, huge size, indicating an even greater cortical
instability than the cell in Figure 4.18.
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4.3.4 Analysis of chromosome segregation in dividing cells

Next I performed a more detailed analysis of the kinetics and morphological aspects

of chromosome segregation in HeLa ezr~/~ KO cells expressing GFP-ezrin or GFP

N-ERMAD.

4.3.4.1 Kinetics of chromosome segregation

Two different periods were defined: observations start in metaphase, just before the
cell enters anaphase and the chromosomes begin segregating. Therefore one period
(a) lasts from the start of segregation until the mitosis finishes. The second period
(b) lasts from just before the ingression of the cleavage furrow until the abscission.

The latter period corresponds to the time needed for cytokinesis.

Time for ... a)Segregation b)Ingression
& Ingression

HeLa ezr—/~ KO 16,11 9,71

transfected with GFP-ezrin (n=21) 60,3 % of (a)
SD = 3,76 SD = 2,69

HeLa ezr—/— KO 12,35 6,58

transfected with GFP-N-ERMAD (n=30) 53,3 % of (a)
SD =281 SD =215

Table 4.4: Kinetics of chromosome segregation in HeLa ezr—/~ KO cells expressing
different DN A constructs.

Mean values of the time needed for chromosomal segregation and ingression in different transefec-
tion cases are determined (in min). n = cell number and SD = standard deviation.

In table 4.4, HeLa ezr~/~ KO cells transfected with GFP-ezrin take a mean
period of 16, 11 min (with the extreme values 8 min and 20, 37 min) for the segrega-
tion and the ingression, while they take 9,71 min for cytokinesis (with the extreme
values 4min and 13min). In comparison HeLa ezr™/~ KO cells expressing GFP
N-ERMAD are analyzed for dominant-negative effects. These cells have almost the
same duration for both periods, segregation and ingression needing 12, 35 min (with
the extreme values 9min and 15,36 min) and cytokinesis requiring 6, 58 min (with
the extreme values 4 min and 11 min.

Furthermore, the part that period (b) takes of period (a) is higher for HeLa ezr—/~
KO cells transefected with GFP-ezrin than for HeLa ezr~/~ KO expressing GFP
N-ERMAD (60,3 % vs 53,3 %).

Thus, the extreme range of the time measurements results in insignificant changes

between the different conditions.
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4.3.4.2 Morphological analysis of chromosome segregation

Morphological aspects of chromosome segregation were analyzed by measuring dif-

ferent lengths in mitosis that are specified in Figure 4.20.

\

(a) (b) (c)

Figure 4.20: Measurement of specific distances

a) chromosomal distance to the cortex in anaphase; b) chromosomal distance to the cortex in
telophase; c¢) chromosomal distance to the equator in telophase. Chromosomes stained with
Hoechst 33342 (125ng/mL) in blue. In these specific images the membrane and the underlying
cortex are stained in green after the transfection with GFP-ezrin.

In anaphase the distance between the chromosomes and the cortex was measured,
while in telophase the distances from the chromosomes to both the cortex and the
equator were measured.

First the chromosomes from one side are compared to the ones of the other side of
the cell equator. Next the ratios obtained are averaged according to:
n left;

=1 right;
— (3
ot ()

with left < right and n = cell number.

or

n  right;
=1 left;
— (4
LA (g

with right < left and n = cell number.
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Figure 4.21: Relative chromosomal positioning to each other in HeLa ezr—/~ KO cells
expressing GFP-ezrin or GFP N-ERMAD.

The positioning of the segregating chromosomes is analyzed by the ratios between the left and
the right chromosomes according to formulas (3) and (4). (a) The top boxplot displays the
chromosomal distance to the cortex in anaphase, the middle boxplot represents the chromosomal
distance to the cortex in anaphase and the bottom boxplot shows the chromosomal distance to
the equator in telophase. Each boxplot has a median line in the middle, notches according to
median + / — 1,58 x inter — quantile range (IQR)/sqrt(n) and hinges coinciding with the 25 %,
respectively the 75 % quantile. Extreme values are displayed as circles with a black margin. Values
are normalized to the mean value of HeLa ezr—/~ KO cells transfected with GFP-ezrin for each
distance condition. (b) The table shows the absolute mean values for each condition and indicates
the number of cells observed. n = cell number.
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Figure 4.21 shows that the values differ over a large range in each condition.
First I assessed the chromosomal positioning relative to the chromosomes of the
other side of the cell equator in HeLa ezr~/~ KO cells expressing GFP-ezrin or GFP
N-ERMAD. Thereby the chromosome segregation is analyzed for its morphological
symmetry over time to the equator. In anaphase a reduction of this symmetry of
0,15 in the mean and median values can be noticed by replacing the GFP-ezrin
construct by GFP N-ERMAD.

However in telophase the median values of both conditions are similar and the mean
value only reduces by 0,06 % after expressing GFP N-ERMAD. The cortical insta-
bility induced by N-ERMAD, which has been discussed above (see Chapter 4.3.3),
can lead to bleb formation around chromosomes and subsequently to negative val-
ues, as I determined the bleb neck as limit of the plasma membrane.

The distances to the equator between the right and the left chromosomes result in
telophase in very similar ratios between both transfection cases. The mean and me-
dian values are almost equal for the GFP-ezrin transfection and the GFP N-ERMAD
transfection.

A second view could be given by considering the left and right segregating chromo-
somal parts as independant, doubling that way the distances measured (see Figure
4.22).
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Figure 4.22: Absolute chromosomal positioning in HeLa ezr—/~ KO cells expressing
GFP-ezrin or GFP N-ERMAD.

The positioning of the segregating chromosomes is analyzed by the absolute values measured
without comparing right to left. (a) The top boxplot displays the chromosomal distance to the
cortex in anaphase, the middle boxplot represents the chromosomal distance to the cortex in
anaphase and the bottom boxplot shows the chromosomal distance to the equator in telophase.
Each boxplot has a median line in the middle, notches according to median + / — 1,58 * inter —
quantilerange (IQR)/sqrt(n) and hinges coinciding with the 25 %, respectively the 75 % quantile.
Extreme values are displayed as circles with a black margin. Values are normalized to the mean
value of HeLa ezr~/~ KO cells transfected with GFP-ezrin for each distance condition. (b) The
table shows the normalized mean values for each condition and indicates the number of cells
observed. Values are again normalized to the mean value of HeLa ezr—/~ KO cells transfected
with GFP-ezrin. n = cell number.
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This second analysis in Figure 4.22 shows that the total cortical distances mea-
sured per condition have smaller mean values for HeLa ezr~/~ KO cells with the
GFP N-ERMAD DNA construct than HeLa ezr~/~ KO cells expressing GFP-ezrin
have. However the median values are marginally smaller for the GFP N-ERMAD
transfection. The elongation of the distance between the chromosomes and the
cortex in ana- and telophase by ~ 15% after the expression of GFP N-ERMAD,
compared to the GFP-ezrin construct, is not accompanied by an extension of the
measurements from the chromosomes to the equator.

Finally the depletion of functional ERMs by N-ERMAD expression does not dis-
turb the symmetry of the chromosomal segregation. However, a loss in functional
ERMs seems to reduce the distance symmetrically between the chromosomes and

the cellular cortex.
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5 Discussion

ELLULAR changes on a morphological level require an adaptable cortex. There-
fore the cytoskeleton is built of self-organizing components [97-99]. That way
lamellipodial [160], blebbing [173-175, 188] and lobopodial [156, 196] movements are
enabled next to microvilli formation [207, 208], rounding-up in pro- and metaphase
[228] and cytokinesis [255]. To allow all these deformations, the plasma membrane
has to be anchored to the cortex by well known proteins such as anillin and ERMs.
In our laboratory group the enrichment of ezrin at the cleavage furrow was noticed,
an observation corresponding to the early findings of Sato for radixin [63]. As the in-
teraction of anillin in binding the contractile ring to the plasma membrane is crucial
for cytokinesis [299], we hypothesized that the enrichment of ERMs at the cleavage
furrow indicates a yet unknown role of ERMs in influencing the furrow ingression.
Furthermore, the analysis of cytokinesis allows the inspection of further roles of the

ERMSs in mitosis before and after cytokinesis.

5.1 Cell adherence after induction of mitosis could
involve all 3 ERMs

At mitotic entry the sterile 20-like kinase (SLK) activates ERMs [244], so that the
crosslinking proteins can ensure the uniform distribution of the cortical tension in
the rounding-up [224].

Therefore the transient knockdown of ezrin, radixin and moesin could lead to a
decrease in cortical tension and subsequently a lack of rounding-up. We transfected
HeLa WT separately and combined with siRNA targeting ERMs to not only check
the overall role of these proteins in the process, but also to evaluate the supposed
redundant roles between the family members [12]. In fact the individual knockdowns
of ezrin, radixin and moesin show a slightly different reaction in the cells, with
siRdx inducing the fewest rounding-up. However as our results differ widely for the
untransfected cells and the mock and control transfected cells, no conclusion can be
drawn on the question raised.

Remaining questions that further studies have to answer are 1) if the knockdown

of ERMs impedes rounding-up at mitotic entry, 2) if siRNA itself influences the
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deformation and not the knockdown of proteins and 3) if ERMs and siRNA both

interfere with morphogenesis at this timepoint.

5.2 Effect of ERM downregulation in chromosome
segregation

In Drosophila melanogaster, the knockdown of its only ERM protein, dmoesin [66],
leads to ectopic poles [250]. One explanation is that ERMs promote the polarized
association of the LGN and the NUMA proteins, which are essential for spindle ori-
entation [244]. In addition, the controlled softening of the cortex in mid anaphase
is based on only locally polar dephosphorylation of ERMs [341].

Independantly of the already mentioned roles of ERMs in mitosis, the analysis of
the cells after cell division should reveal any other defects, possibly related to chro-
mosome mis-segregation in mitosis.

The Figures 4.8, 4.9 and 4.10 show the DNA content of HeLa WT cells 105 min
after nocodazole block release. Table 4.1 gives a summary. As the cell populations
in metaphase and cytokinesis have not finished mitosis, post-mitotic differences are
only detectable in the G1 cell population. While there are 45,58 % of the cells in
G1 in the untransfected condition, the control transfection leads to a reduction to
28,89 % and the siERM transfection to a small decrease to 39, 32 %. Physiologically
the cells have a ploidy of 2n/2c or 2n/4c. Here HeLa WT ut shows 4,36 % of the
cells with more chromosomal content. This is increased in HeLLa WT siC and Hel.a
WT siERM cells to ~ 10 %. So even if the number of multinucleated cells more than
doubles after the transient knockdown of ERMs, the transfection with siC does so
too. Therefore an increase in DNA content is the result of the transfection process
and not of the decrease in ERM expression.

Even if erroneous spindle building and ectopic poles have been observed in the ab-
sence of ERM proteins [250], these defects don’t seem to end up in aneuploidy or
other DNA content modification. These results are supported by early tests in the
1990s [359], where cells with more than two nuclei were also hardly seen after the

addition of antisense oligonucleotides complementary to ERM sequences.

5.3 Effect of ERMs on kinetic and morphological

aspects of mitosis

For the analysis of mitosis, and more accurately the cytokinesis, we chose two ef-

fective methods: 1) The flow cytometry method established by Gasnereau [352]
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gives a quantitative view on cytokinesis, while 2) live cell microscopy explores on a

qualitative level.

5.3.1 ERMs accelerate the progression of cytokinesis

The mitosis assays shown in Figure 4.12 reveal a clear visible reduction of cells in
the cytokinesis population for t = 75 min for the triple knockdown compared to the
controls. The ANOVA test reveals a p-Value of 0,025. All other timepoints have
p>0,3.

Also for HeLa ezr~/~ KO only one timepoint, ¢ = 60 min, is statistically significant
with a p-value of 0,022. However visible differences at ¢t = 60min, t = 75min,
t = 105min and ¢t = 120min are seen for individual values in Figure 4.15, albeit
not being statistically significant with the low number of experiments.

After the detection of the decrease in cytokinetic population, two possibilities have
to be examined; either the cytokinesis is speeded up, so that fewer cells are in this
process per timepoint and the G1 population increases rapidly, or there is a slow-
down marked by a high amount of cells in metaphase M that need longer to commit
themselves to anaphase and the following chromosomal segregation. Actually Fig-
ures 4.11a-c are again less conclusive than Figures 4.14a-c, but the latter show a
clear increase in the M population from the controls to the double knockdown in
HeLa ezr~/~ KO, combined with a correspondent decrease in G1. However Hiruma
et al. described no ’gross influence’ of ERMs on the progression of furrow ingression
[342]. This difference might be due to the methods used. While they used only
live cell imaging to gain an overview on the progression of cytokinesis, this thesis
uses flow cytometry in addition to live cell microscopy (Chapter 5.3.2). Thereby
not only ~ 100 cells are observed, but 10.000 cells are measured for each condition.
Even if no ’significant contribution to the progression of furrow ingression during
cytokinesis in HeLa cells’ [342] is described in literature, we could show hereby, that
ERMs do have an impact on the progression.

But why is there a difference between HeLLa W'T cells suffering a triple knockdown
and HeLa ezr~/~ KO cells experiencing a double knockdown? An explanation could
be the expression levels of ezrin, radixin and moesin. A transient knockdown per-
formed with siRNA (almost) never eradicates completely the target proteins. Thus,
in our experiments, HeLa WT siERM cells still possess ~ 20 % of the wildtype lev-
els of ezrin, radixin and moesin. In contrast, HeLa ezr—/~ KO cells show no ezrin
expression (0%) and radixin and moesin remain again ~ 20 % of the wildtype ex-
pression levels. Thus, HeLa ezr~/~ KO siRM cells express in total less ERMs than
HeLa WT siERM cells.

However it has to be noted that I only analyzed one clone of the CRISPR/Cas gen-
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erated HeLa ezr~/~ KO cell line. Thus, the possibility persists that the presented

results are due to a cellular alteration originating from the CRISPR/Cas method.

5.3.2 Individual analysis of cells revealed morphological al-

terations upon active ERM downregulation

Among the multitude of observations described in literature for cytokinesis after the
manipulation of cortex to membrane anchoring proteins, D’Avino et al. presented
unusual F-actin formations and an abnormal accumulation of anillin in cytokinesis,
associated with blebbing and multinucleation, after the downregulation of the sole
CIT-K homologue in drosophila [295]. Upon moesin depletion, F-actin and Myosin
IT are distributed irregularly and not restricted to the division equator in a way that
the cortical integrity and rigidity are impaired. Moreover, the indirect switch-off
by SLIK inactivation provokes transient cytoplasmatic blebs [43]. Furthermore, a
poor association of ERMs with the contractile ring was proven. The authors also
found that anillin and supervillin limit the access of ezrin to the cleavage furrow and
the localization of ERMs at the cleavage furrow is regulated separately from Rho
mediated pathways [342].

Thus, the blebs observed in Chapters 4.3.2 & 4.3.3 in HeLa ezr—/~ KO cells trans-
fected with N-ERMAD correspond to such reports. In comparison the reexpression
of ezrin in HeLa ezr~/~ KO cells displays no morphological alterations in mitosis in
live cell microscopy. N-ERMAD most likely acts in a dominant negative manner,
interfering with the remaining ERMs, radixin and moesin. Therefore, N-ERMAD,
unable to bind F-actin alone, should strongly mimick the eradication of ERMs.
Thus, the inactivation of SLIK, which operates above dmoesin, shows a similar
blebbing to HeLa ezr—/~ KO with N-ERMAD. Furthermore, the blebs of small sizes
concerning the PIP; DNA construct also show the importance of functioning ERMs.
The plasma membrane protrusions and extensions described earlier (Chapter 4.3.3)
go along with a misdistribution of F-actin and Myosin II after dmoesin depletion.
This is further supported by the discovery that active ERMs lead to MYOGEF
(myosin [I-interacting guanine nucleotide exchange factor) localization at the plasma

membrane [193].

Kinetic inspections of cell divisions under the microscope revealed in Drosophila
melanogaster that in the absence of dmoesin or SLIK anaphase onset is delayed
[43]. However, no ’gross’ contribution to the progression of furrow ingression during
cytokinesis upon siERM treatment in HeLa WT has recently been described [342].
In this thesis I tried to minimize the energy put into the cell by the laser of the

microscope, by choosing a rate of 1 image every 2 — 4 min. Therefore a high uncer-
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tainty remains on the quality of the starting point. Even if some uncertainties exist
with respect to the start of mitosis, this work got no significant effect by analyzing

individual cells.

I also analyzed whether the expression of GFP N-ERMAD in an ezrin null back-
ground affects the positioning of the chromosomes. In literature spindle length
alerations and subsequent altered chromosome positioning upon dmoesin depletion
are mentioned [43]. In Figure 4.21 the symmetry of the chromosomal segregation is
analyzed while Figure 4.22 shows the overall positioning of the chromosomes. Over-
all the distances are in each condition heterogeneously spread.

HeLa ezr~/~ KO cells transfected with GFP-ezrin present a certain asymmetry be-
tween their right and their left segregating chromosomes. Compared to this, HelLa
ezr~/~ KO transfected with GFP-N-ERMAD shows only marginal differences. Even
if the latter condition possesses a chromosomal distance to the cortex in anaphase
with a 13 % higher asymmetry, in telophase the median values are very similar and
the heterogenous distribution prevents any significance. Furthermore, HeLa ezr—/~
KO cells expressing GFP- ezrin and those expressing GFP N-ERMAD show no per-
fect symmetry. This could be physiological in the HeLa ezr =/~ KO cell line. Another
possibility could be an uneven distribution of the DNA construct in HeLa ezr~/~ KO
cells and subsequently a polarization favoring asymmetrical division as was shown
for moesin [277].

In terms of the chromosomal positioning, HeLa ezr—/~ KO cells transfected with
GFP-N-ERMAD present chromosomes closer to the cortex than HeLa ezr~/— KO
cells transfected with GFP-ezrin, but no respectively larger distances to the equa-
tor for the N-ERMAD condition. Additionally, the extreme values of cortex-to-
chromosomes distances solely appear after the transfection with GFP-N-ERMAD.

These results can be added to those of Carreno et al. [43]. In Drosophila in
metaphase they found asymmetrical and shorter spindle lengths in dmoesin de-
pleted cells and the spindles were off center in 90 % of the cells. Spindle length
differences can lead to differences in the distance chromosomes-to-cortex and the
distance chromosome-to-equator. As the starting point of metaphase is less clear, in
this thesis the anaphase and telophase are analyzed and can be seen as a subsequent
development of the metaphase knowledge. Thus the reducation of the chromosomal
distance to the cortex in HeLa ezr~/~ KO cells expressing GFP N-ERMAD could
be explained by the findings about spindles by Carreno et al. [43]. However the
observed chromosome segregations did not show an increased asymmetry compared
to HeLa ezr—/— KO cells transfected with GFP-ezrin. Now different explanations
are possible: 1) HeLa ezr~/~ KO cells expressing GFP-ezrin possess all three ERMs

while Drosophila only has dmoesin. So different roles concerning the cell lines could
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be imaginable. 2) Carreno et al. used 25 cells for this specific analysis, while this
thesis uses different numbers for each condition. Gaining the same amount of di-
visions per condition would enhance the validity of comparisons and would enable
the ANOVA statistical test. Furthermore, the heterogenous distribution of the val-
ues implies a high number of values for any statistical test. 3) Only one clone of
the CRISPR/Cas generated HeLa ezr—/~ KO cell line could be used in this thesis.
Therefore, any difference could be due to clonal selection.

Further investigations concluding the discovered dmoesin structure which preceeds

spindle formation [250] would be interesting for morphological insights in mitosis.

5.4 Conclusion

The current study analyzes the distribution and possible role of ERM proteins in cell
division. I could show that no cells with an increased DNA content result in ERM
depletion. This confirms the observations of the literature [359]. Furthermore I was
able to prove an accelerating role of ERMs in the progression of cytokinesis. This
finding contradicts recent studies in HeLa cells [342], where only live cell microscopy
was used, whereas this work is based on flow cytometry, a more suitable method.
However in 2008 a delayed anaphase onset in Drosophila melanogaster upon SLIK
or dmoesin depletion was described [43]. There they were satisfied with a one-time
only examination of up to 172 fixed cells under the microscope. Thus, my work
provides the first statistically significant proof of a delayed anaphase onset in HeLa
cells, by assessing the kinetics of mitosis with flow cytometry. Additionally this work
detected cortical instabilities in mitosis upon GFP N-ERMAD expression in HeLa
ezr~/~ KO cells such as blebs and morphological alterations were shown. Blebs have
already been described upon ERM downregulation [43, 341]. Local softening of the
cortex at the poles enables the cellular elongation in anaphase [341]. The dominant
negative situation with N-ERMAD overexpression could that way globally soften
the cortex. Furthermore, this thesis discovered a morphological shortening of the
distance between the chromosomes and the cortex upon GFP N-ERMAD expression.
Distances have not been discussed before. However the positioning of chromosomes
was assessed by analyzing spindles in mitosis [43]. Spindles were shown to be affected
upon dmoesin depletion. Furthermore, a structure of non-phosphorylated dmoesin
was shown to locally preceed spindle formation [250]. Thus, this thesis provides
additional arguments to further assess the positioning of non-phosphorylatable mu-
tants of ERMs in mammalian cells, and if a structure such as for dmoesin appears,
analyzing its kinetics in live cell microscopy.

That way two promising paths remain as a perspective:

1) If the progression in cytokinesis includes a mechanism implicating ERMs and this
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mechanism is based on cortical interactions, the role of Eps8 combined with ERMs
should be targeted. Eps8 localizes to the cleavage furrow [247] and an interaction
with ezrin for the reestablishment of the cortex in retracting blebs has been reported
[188]. Thus it is possible that the enlargment of the equatorial cortex also dilutes
the Rnd3 concentration and is thereby perceived by a cell as a bleb. This would also
explain the stronger effect of ERMs in furrow ingression after anillin and supervillin
depletion [342]. As first steps further studies should check for a colocalization of
Eps8 and ezrin, and then analyze possible interactions.

2) If the progression in cytokinesis includes a mechanism implicating ERMs and
this mechanism is based on spindle organization and positioning, this study verifies
morphological alterations upon ERM depletion. Therefore further studies should
deal with the dmoesin structure discovered by Vilmos et al. [250] by assessing the
positioning of non-phosphorylatable mutants of ERMs in mammalian cells. Further-
more, the proposed interaction between ERMs and MYOGEF by Jiao [193], could
be interesting, as MYOGEF was shown to concentrate at the spindle pole and the
central spindle during mitosis, where it contributes to the spatiotemporal regulation
of cytokinesis [360].
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