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Abstract. In the present article we introduce and study a class of topological reflection
spaces that we call Kac–Moody symmetric spaces. These are associated with split real
Kac–Moody groups and generalize Riemannian symmetric spaces of noncompact split type.

Based on work by the third-named author, we observe that in a non-spherical Kac–
Moody symmetric space there exist pairs of points that do not lie on a common geodesic;
however, any two points can be connected by a chain of geodesic segments. We moreover
classify maximal flats in Kac–Moody symmetric spaces and study their intersection patterns,
leading to a classification of global and local automorphisms. Some of our methods apply to
general topological reflection spaces beyond the Kac–Moody setting.

Unlike Riemannian symmetric spaces, non-spherical non-affine irreducible Kac–Moody
symmetric spaces also admit an invariant causal structure. For causal and anti-causal geo-
desic rays with respect to this structure we find a notion of asymptoticity, which allows us
to define a future and past boundary of such Kac–Moody symmetric space. We show that
these boundaries carry a natural polyhedral cell structure and are cellularly isomorphic to
geometric realizations of the two halves of the twin buildings of the underlying split real Kac–
Moody group. We also show that every automorphism of the symmetric space is uniquely
determined by the induced cellular automorphism of the future and past boundary.

The invariant causal structure on a non-spherical non-affine irreducible Kac–Moody sym-
metric space gives rise to an invariant pre-order on the underlying space, and thus to
a subsemigroup of the Kac–Moody group.

We conclude that while in some aspects Kac–Moody symmetric spaces closely resemble
Riemannian symmetric spaces, in other aspects they behave similarly to masures, their non-
Archimedean cousins.
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1. Introduction

Kac–Moody groups over a local field K as for instance studied in [54, 18, 23,
19, 22, 3] are infinite-dimensional generalizations of the groups of K-points of
(split) semisimple algebraic groups. From a geometric point of view, semisim-
ple groups over local fields arise as subgroups of the isometry groups of Rie-
mannian symmetric spaces (in the Archimedean case) and Euclidean buildings
(in the non-Archimedean case). It is thus natural to ask whether Kac–Moody
groups over local fields admit a similar geometric interpretation.

For Kac–Moody groups over non-Archimedean local fields such a geomet-
ric interpretation is described in [55], where Rousseau discusses the notion of
a masure affine ordonnée (sometimes translated as ordered affine hovel into
English in, e.g., [18]). Masures are certain generalizations of Euclidean build-
ings that admit an action by a Kac–Moody group over a non-Archimedean
local field K, generalizing the notion of a Bruhat–Tits building endowed with
the action of the K-points of a split semisimple group.

In the present article we investigate the Archimedean situation, focussing
on the split real case. We introduce a generalization of Riemannian sym-
metric spaces of noncompact split type, which we call Kac–Moody symmetric
spaces and on which split real Kac–Moody groups act in a way that generalizes
the action of semisimple split real Lie groups on their Riemannian symmetric
spaces. It turns out that in this setting one can observe both phenomena that
one is familiar with from the finite-dimensional theory and phenomena that are
specific to the infinite-dimensional situation; some of these infinite-dimensional
phenomena in fact have non-Archimedean analogs in the theory of masures.

A key structural problem that one has to face when generalizing the notion
of a Riemannian symmetric space is that the latter is originally defined in
terms of a smooth Riemannian metric on a manifold; we are unaware of any
reasonable notion of smoothness on the kind of homogeneous spaces on which
a (non-spherical and non-affine) real Kac–Moody group naturally acts, nor are
these spaces metrizable with respect to their natural topologies. Our starting
point is thus an alternative characterization of affine symmetric spaces, due to
Ottmar Loos [42, 43].

Fact 1.1 (Loos [42, 43]). Let X be an affine symmetric space, and given
x, y ∈ X denote by x · y the point reflection of y at x. Then µ : X × X → X ,
µ(x, y) := x · y is a C1-map satisfying the following axioms:

(RS1) For any x ∈ X we have x · x = x.
(RS2) For any pair of points x, y ∈ X we have x · (x · y) = y.
(RS3) For any triple of points x, y, z ∈ X we have x · (y · z) = (x · y) · (x · z).
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(RS4loc) Every x ∈ X has a neighborhood U such that x ·y = y implies y = x
for all y ∈ U .

Conversely, if X is a smooth manifold and µ : X × X → X is a C1-map
subject to (RS1)–(RS4loc) above, then X is an affine symmetric space, and
µ(x, y) is the point reflection of y at x. If X is a Riemannian symmetric
space, then the isometries of X are exactly the C1-maps α : X → X satisfying
α(x · y) = α(x) · α(y). If X is moreover of the noncompact type, then instead
of the local condition (RS4loc) it satisfies the global condition

(RS4) x · y = y implies y = x for all y ∈ X .

Since we are interested in generalizations of Riemannian symmetric spaces
of noncompact type, we define the following.

Definition 1.2. A pair (X , µ) is called a topological symmetric space pro-
vided X is a topological space and µ : X×X → X , µ(x, y) := x·y is a continuous
map subject to the axioms (RS1)–(RS4) above. The automorphism group
Aut(X , µ) of (X , µ) is defined by

Aut(X , µ) := {α : X → X | α homeomorphism, α(x · y) = α(x) · α(y)}.

Loos’ theorem strongly uses the differentiability of µ, and not much is known
about general topological symmetric spaces without any smoothness assump-
tion. For example, it is not even known to us whether a topological symmetric
space which is homeomorphic to a finite-dimensional manifold necessarily arises
from an affine symmetric space.

We pursue three goals in the present article:

(i) To develop a basic theory of topological symmetric spaces in the absence
of any smoothness assumption.

(ii) To associate a topological symmetric space to a large class of Kac–Moody
groups over an Archimedean local field (focusing on the split real case
for simplicity).

(iii) To develop the structure theory of such Kac–Moody symmetric spaces,
studying their geodesics, maximal flats, (local and global) automor-
phisms, causal structures and boundaries.

Our results concerning (i) might actually be of interest beyond Kac–Moody
theory.

The three concepts of flats, geodesics and one-parameter subgroups of the
isometry group are of fundamental nature in the study of Riemannian symmet-
ric spaces. The former two are usually defined using the curvature tensor, and
the existence of the latter is derived from an existence theorem for solutions
of ordinary differential equations. In our topological setting we need to define
flats and geodesics without reference to the curvature tensor, and to establish
the existence of one-parameter subgroups without analytic tools.

Given a topological symmetric space (X , µ), we call a subset γ ⊂ X a geo-
desic if there exists a bijection ϕ : R → γ such that ϕ(2x− y) = µ(ϕ(x), ϕ(y))
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for all x, y ∈ R. Compact connected subsets of geodesics will be called geo-
desic segments . We will now explain how geodesics in topological symmetric
spaces give rise to one-parameter subgroups of Aut(X , µ). To formulate our
result we first observe that by (RS3) every x ∈ X defines an automorphism
sx ∈ Aut(X , µ) by sx(y) := x · y called the point reflection at x. The subgroup
of Aut(X , µ) generated by these point reflections will be denoted by G(X , µ)
and called the main group of X .

Theorem 1.3 (Existence of one-parameter subgroups without differentiabil-
ity assumptions; cp. Proposition 2.24). Let (X , µ) be a topological symmetric
space. Given a geodesic γ ⊂ X , let

Tγ := {sp ◦ sq | p, q ∈ γ} ⊂ G(X , µ).

(i) Tγ ∼= (R,+) is a one-parameter subgroup of G(X , µ) (and in particular
of Aut(X , µ)).

(ii) Tγ acts sharply transitively on γ by Euclidean translations.
(iii) If t1, t2 ∈ Tγ and t1|γ = t2|γ, then t1 = t2.
(iv) If any two points in X can be connected by a finite chain of geodesic

segments, then the one-parameter subgroups Tγ generate a subgroup of
G(X , µ) of index ≤ 2.

As for the definition of a flat in a topological symmetric space, we offer two
notions, which we will later show to lead to the same concept in Kac–Moody
symmetric spaces. Firstly, we have the following purely synthetic definition.

Definition 1.4. A closed subset F ⊂ X of cardinality ≥ 2 is called a weak
flat if it satisfies the following properties:

(F1) F is a reflection subspace, i.e., if x, y ∈ F , then x · y ∈ F .
(F2) F is midpoint convex , i.e., if x, y ∈ F , then there exists z ∈ F with

z · x = y (and thus z · y = x).
(F3) F is weakly abelian, i.e., for all x, y, z ∈ F one has

x · (z · (y · z)) = y · (z · (x · z)).
Denote a Euclidean symmetric space with multiplication µ(x, y) := 2x− y

by En = (Rn, µ). A closed reflection subspace F of a topological symmetric
space X is called a Euclidean flat of rank n if it is isomorphic to En as a topo-
logical reflection space. With this notion a geodesic is just a Euclidean flat of
rank 1, and every Euclidean flat is a weak flat, see Figure 1.

We now turn to the main objects of our interest in the present article
and introduce Kac–Moody symmetric spaces, a class of topological symmetric
spaces associated with (split real) Kac–Moody groups. Given a generalized
Cartan matrix A (see Definition 3.4), we denote by G = G(A) the corre-
sponding simply connected centered split real Kac–Moody group of type A (see
Definition 3.6). Throughout this article we will assume that A is irreducible
and symmetrizable (see Definition 3.4), and we will consider G as a topological
group with the Kac–Peterson topology (see Definition 3.6). For some of our
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Figure 1. Euclidean space is weakly abelian.

results we will need additional assumptions on A (e.g., non-spherical, non-
affine, on a few occasions two-spherical), but for the basic definitions we do
not need any of these assumptions.

There exists a canonical continuous involution θ ofG which on each standard
rank one subgroup restricts to the contragredient automorphism g 7→ g−⊤.
Any conjugate of the involution θ in the semi-direct product G⋊ 〈θ〉 is called
a Cartan–Chevalley involution. The group G acts transitively by conjugation
on the set XG of Cartan–Chevalley involutions, and we equip XG with the
quotient topology with respect to this action.

Proposition 1.5 (cp. Corollary 4.17). The space XG is a topological symmetric
space with respect to

µ : XG ×XG → XG, µ(α, β) := α ◦ β ◦ α.

Definition 1.6. The symmetric space (XG, µ) is called the unreduced Kac–
Moody symmetric space of the split real Kac–Moody group G.

In the spherical case, i.e., if the Kac–Moody group G actually is a Lie group,
this is the (involution model of the) associated Riemannian symmetric space.

If the Cartan matrix A is non-invertible, then the center Z(G) of G has
positive dimension, given by the corank of A. In this case, the unreduced Kac–
Moody symmetric space XG fibers over a topological symmetric space XG with
fiber given by a Euclidean space of dimension equal to the corank of A, and
the adjoint quotient Ad(G) of G acts on XG. We refer to XG as the reduced
Kac–Moody symmetric space of G. In the case where A is non-invertible, it
is this reduced version that resembles most closely a Riemannian symmetric
space.
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The following result describes flats in Kac–Moody symmetric spaces.

Theorem 1.7 (Flats in Kac–Moody symmetric spaces; cp. Section 5.16).
Let XG be an unreduced Kac–Moody symmetric space, and let XG be its reduced
quotient.

(i) Every weak flat in XG or XG is Euclidean. In particular, all weak flats
are finite-dimensional and locally compact.

(ii) Every weak flat in XG or XG is contained in a maximal weak flat.
(iii) The projection XG → XG induces a bijection between maximal weak flats

in XG and maximal weak flats in XG.
(iv) G acts transitively on pairs (p, F ) where F is a maximal weak flat in XG

(or XG) and p ∈ F . In particular, all maximal weak flats in XG
(respectively XG) are Euclidean spaces of the same dimension r(XG)
(respectively r(XG)).

(v) r(XG) equals the number of rows of A, and r(XG) equals the rank of A.

The integers r(XG) and r(XG) are called the rank of XG and XG, respec-
tively. In the sequel we refer to a maximal weak flat simply as a maximal flat ,
and to a pair (p, F ) as in (iii) as a pointed maximal flat . Besides maximal flats,
we are also interested in minimal nontrivial flats, i.e., geodesics.

Theorem 1.8 (Geodesic connectedness of Kac–Moody symmetric spaces; cp.
Section 5.7). The Kac–Moody symmetric spaces XG and XG have the following
properties:

(i) XG and XG are geodesically connected, i.e., any two points in XG or
XG can be connected by a finite chain of geodesic segments.

(ii) If A is not spherical, then XG and XG are non-geodesic, i.e., there exist
points x, y ∈ XG (and also in XG) which do not lie on a common geodesic
(and hence are not contained in a common maximal flat).

Note that (ii) is in stark contrast to the case of Riemannian symmetric
spaces, which are always geodesic. It is, however, reminiscent of the cor-
responding property of masures: not every pair of points is contained in
a common apartment. In fact, this property is the key feature that separates
the class of masures from the class of buildings.

By construction, the group G acts by automorphisms on XG and thus on its
quotient XG. The latter action (but in general not the former) factors through
a faithful action of Ad(G). As in the spherical case, the full automorphism
group of XG is slightly larger than Ad(G).

Theorem 1.9 (Automorphisms of reduced Kac–Moody symmetric spaces;
cp. Proposition 6.4, Proposition 6.5 and Theorem 6.12). The group Ad(G) is
a finite index subgroup of the automorphism group Aut(XG). More precisely,
Aut(XG) is isomorphic to Aut(G) ∼= Aut(Ad(G)), and every automorphism
in Aut(Ad(G)) can be written as a product of an inner automorphism, a diag-
onal automorphism, a power of a fixed Cartan–Chevalley involution and an
automorphism of the Dynkin diagram ΓA. Moreover, Aut(XG) embeds into
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the automorphism group of the twin building associated with G, and if A is
non-spherical, then

Aut(XG) = Aut+(XG)⋊ 〈so〉,
where Aut+(XG) < Aut(XG) is the index two subgroup preserving the two
halves of the twin building (instead of interchanging the two halves).

Convention 1.10. For the rest of this introduction we assume that A is
non-spherical and non-affine (on top of our standing assumptions that A be
irreducible and symmetrizable).

Besides the global automorphisms in Aut(XG) one can also consider local
automorphisms of XG in the following sense: Fix a pointed maximal flat (p, F )
and let

Stab(p, F ) := {g ∈ Aut(XG) | g.F = F, g.p = p},
StabG(p, F ) := {g ∈ G | g.F = F, g.p = p},

Fix(p, F ) := {g ∈ Aut(XG) | ∀f ∈ F : g.f = f},
FixG(p, F ) := {g ∈ G | ∀f ∈ F : g.f = f}.

Then W (Aut(XG y XG)) := Stab(p, F )/Fix(p, F ) is independent of the
choice of (p, F ) and acts on F fixing p, and the same is true for the group
W (G y XG) := StabG(p, F )/FixG(p, F ). The groups W (Aut(XG y XG))
and W (G y XG) are called the geometric Weyl groups of Aut(XG) and G,
respectively. Note that the action of these groups on F preserve the subset
F sing(p) ⊂ F of points of F which are contained in more than one maximal flat
containing p. Moreover, if ϕ : Er → F is an arbitrary isomorphism of reflection
spaces with ϕ(0) = p, then ϕ intertwines the elements of the geometric Weyl
groups with linear automorphisms of Er. It thus follows that the geometric
Weyl groups are contained in the group

GL(p, F, F sing(p)) := {α : F → F | α(F sing(p)) = F sing(p) and

α̂ := ϕ−1 ◦ α ◦ ϕ ∈ GLn(R)}.
We refer to elements of GL(p, F, F sing(p)) as local transformations of (p, F );
one can show that the notion of a local transformation does not depend on the
choice of ϕ.

It turns out that the subset ϕ−1(F sing(p)) ⊂ Er is a hyperplane arrange-
ment, and hence every homothety of Er gives rise to a local transformation.
More generally, there exists a non-degenerate bilinear form on Er (unique up
to multiples) such that elements of GL(p, F, F sing(p)) act by similarities with
respect to this bilinear form (see Corollary 6.19). This yields a splitting

GL(p, F, F sing(p)) = R>0 ×Aut(p, F ),

where R>0 is the group of positive homotheties and Aut(p, F ) is the subgroup
of GL(p, F, F sing(p)) which preserves the canonical bilinear form. Elements
of Aut(p, F ) are called local automorphisms of (p, F ), and by the following
theorem the geometric Weyl groups acts by local automorphisms. Concerning
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the statement of the theorem we recall that one can associate to the general-
ized Cartan matrix A a Coxeter system (W,S) whose Coxeter diagram Γ(W,S)

has the same underlying graph as the Dynkin diagram ΓA of A, but whose
labelling carries less information (see Subsection A.18); hence the automor-
phism group Aut(ΓA) can be considered as a subgroup of the automorphism
group Aut(W,S) := Aut(Γ(W,S)) of the Coxeter diagram.

Theorem 1.11 (Local vs. global automorphisms; cp. Theorem 6.25). Let XG

be a reduced Kac–Moody symmetric space of irreducible non-spherical, non-
affine type and let (p, F ) be a maximal pointed flat in XG.

(i) The action of the geometric Weyl group W (Aut(XG) y XG) on (p, F )
is by local automorphisms.

(ii) The local automorphism group Aut(p, F ) is isomorphic to

(W ⋊Aut(W,S))× Z/2Z,

and hence the group GL(p, F, F sing(p)) is isomorphic to

R>0 × (W ⋊Aut(W,S))× Z/2Z.

(iii) Under the isomorphism from (ii) the subgroup

W (Aut(XG) y XG) < Aut(p, F )

corresponds to the finite index subgroup

(W ⋊Aut(ΓA))× Z/2Z < (W ⋊Aut(W,S))× Z/2Z.

(iv) Every local automorphism is the restriction of a global automorphism if
and only if Aut(W,S) = Aut(ΓA).

In fact, the groupW⋊Aut(W,S) appearing in (ii) is nothing but the (simpli-
cial) automorphism group of the simplicial Coxeter complex Σ(W,S) associated
with the Coxeter system (W,S). Concerning the Weyl group of G we observe
the following.

Corollary 1.12 (Algebraic Weyl group equals geometric Weyl group; cp.
Corollary 6.24). The geometric Weyl group W (G y XG) of G is isomorphic
to the algebraic Weyl group W .

With the notable exception of Theorem 1.8 (ii) the part of the theory of Kac–
Moody symmetric spaces described so far follows closely the classical theory
of Riemannian symmetric spaces. On the other hand, it turns out that (irre-
ducible, non-spherical, non-affine) Kac–Moody symmetric spaces also carry
additional structure, which is not shared by Riemannian symmetric spaces of
the noncompact type, but which is shared by a different class of affine sym-
metric spaces called causal symmetric spaces (see [27]).
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Proposition 1.13 (Existence of an invariant causal structure; cp. Section 7.2).
There exist families (C

+

x )x∈XG
and (C

−

x )x∈XG
of subsets of XG with the fol-

lowing properties:

(i) (C
+

x )x∈XG
and (C

−

x )x∈XG
are cone fields, i.e., for every x ∈ XG the

subsets C
+

x ⊂ XG and C
−

x ⊂ XG each intersect every flat containing x
in an open cone with tip x.

(ii) (C
+

x )x∈XG
and (C

−

x )x∈XG
are invariant under Aut+(XG), that means,

α(C
+

x ) = C
+

α(x) and α(C
−

x ) = C
−

α(x) for all α ∈ Aut+(XG) and x ∈ XG.

In analogy with the theory of causal symmetric spaces we refer to the invari-
ant cone fields (C

+

x )x∈XG
and (C

−

x )x∈XG
as causal structures on XG. Roughly

speaking, the causal structures are a global version of the Tits cone, resp. its
negative in the underlying Kac–Moody Lie algebra. We refer to Subsection 7.2
for a precise definition.

From the choice of a positive causal structure (C
+

x )x∈XG
we infer a notion of

causal (or “time-like”1) curve in XG. Namely, we say that a continuous curve
γ : [S, T ] → X with 0 < S < T < ∞ is causal if for every t ∈ [S, T ) there
exists ε > 0 such that

γ((t, t+ ε)) ⊂ C
+

γ(t).

The notion of an anti-causal curve is defined analogously via the negative
causal structure (C

−

x )x∈XG
. Using causal geodesic rays in XG, we associate

two further structures with XG which have no counterpart in the theory of
Riemannian symmetric spaces, but which are reminiscent to classical objects
in the theory of causal symmetric spaces: the causal boundary of XG and the
causal pre-order on XG.

The causal boundary can be constructed as follows: Denote by ∂•XG the col-
lection of geodesic rays in XG, and by ∆±

• ⊂ ∂•XG the subset of all causal/anti-
causal geodesic rays. By invariance of the causal structure, the subsets ∆±

• are
invariant under Aut+(X ) and their union ∆• is invariant under Aut(X ). Points
in the causal boundary will be defined as equivalence classes of causal or anti-
causal rays by an equivalence relation which mimics asymptoticity of geodesic
rays in Riemannian symmetric spaces.

Recall that if X is a noncompact Riemannian symmetric space, then two
geometric rays in X are called asymptotic if they are at bounded Hausdorff
distance. For example, two geodesic rays r1, r2 in Euclidean space En are
asymptotic if and only if they are parallel and point in the same direction, i.e.,
they are of the form r1(t) = x+ tv and r2(t) = y + tv for some x, y ∈ Rn and
a unit vector v, and two geodesic rays in the hyperbolic plane are asymptotic if
they have the same endpoint in the boundary. In Subsection 7.33 we construct

1In the study of Lorentzian causal structures, causal curves are also called time-like
curves. Since the causal structures investigated here need not be Lorentzian, we will not use
this terminology.
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equivalence relations ‖ on ∆±
• with the following properties:

(A1) If r ∈ ∆±
• and x ∈ XG, then there exists a unique r′ ∈ ∆±

• emanating
from x with r ‖ r′.

(A2) ‖ is invariant under Aut+(X ), i.e., if r1 ‖ r2, then α(r1) ‖ α(r2) for all
α ∈ Aut+(X ).

(A3) If r1, r2 ∈ ∆± are contained in a common embedded hyperbolic plane
in XG, which arises as the orbit of a rank one subgroup of G, then r1 ‖ r2
if and only if they are asymptotic in the hyperbolic sense.

(A4) If r1, r2 ∈ ∆± are contained in a common maximal flat F , then r1 ‖ r2
if and only if they are asymptotic in the Euclidean sense.

In view of these properties we call r1, r2 ∈ ∆± asymptotic if r1 ‖ r2.

Definition 1.14. The set ∆+
‖
:= ∆+

• / ‖ of asymptoticity classes of causal rays
is called the future boundary of the Kac–Moody symmetric space XG, and the
set ∆−

‖
:= ∆−

• / ‖ is called its past boundary. The union ∆‖ := ∆+
‖ ⊔∆−

‖ is
called the causal boundary.

By (A2), the Aut+(XG)-action on causal/anti-causal curves induces an
action on the future/past boundary. In Subsection 7.22 we equip the bound-
aries ∆+

‖ with the structure of an ideal polyhedral complex . Here, a polyhedral
complex is a topological space obtained by gluing polyhedra along faces, and
an ideal polyhedral complex is obtained from a polyhedral complex by remov-
ing some faces of codimension ≥ 2 (see Subsection 7.16). We then show that
Aut+(XG) acts on these boundaries by polyhedral automorphisms. Unlike the
spherical case, the ideal polyhedral structure on the boundary will in general
not be simplicial.

In Subsection 7.20 we construct an ideal polyhedral complex |∆|a, whose
associated chamber system is given by the twin building ∆ of G. This complex
is combinatorially isomorphic to the Davis realization of ∆ in the sense that
the underlying cell posets are isomorphic, but in general the cells may have
a different geometry and may even be of smaller dimension.

Theorem 1.15 (Twin building vs. causal boundary; cp. Corollary 7.41).
The causal boundary ∆‖ is Aut(XG)-equivariantly geometrically isomorphic
to |∆|a, and the past and future boundary are Aut+(XG)-equivariantly geo-
metrically isomorphic to the halves of |∆|a.

Theorem 1.15 should be compared to the classical fact that the geometric
boundary of an irreducible Riemannian symmetric space of noncompact type,
i.e., the collection of all geodesic rays modulo asymptoticity, carries a natural
polyhedral (in fact, simplicial) structure which is isomorphic to the geometric
realization of the corresponding spherical building (see, e.g., [35]). This analogy
is meaningful since in the finite-dimensional case the Tits cone is given by the
whole Cartan subalgebra, and hence the canonical causal structure is the trivial
causal structure in which every curve is causal.

In the case of a hyperbolic Kac–Moody group, Theorem 1.15 can be seen as
a global version of the lightcone embedding of the twin building as described

Münster Journal of Mathematics Vol. 13 (2020), 1–114



Kac–Moody symmetric spaces 11

in [8]. The analog construction of a twin building at infinity for masures can be
found in [55, Sect. 3]; by [9, Thm. 1], this twin building at infinity of a masure
actually carries a natural topology that turns it into a weak topological twin
building in the sense of [23].

As in the finite-dimensional case, each asymptoticity class of causal rays in
a Kac–Moody symmetric space forms an orbit under the action of an appropri-
ate parabolic subgroup of G (see Proposition 7.37). Geometrically this means
that if r is a causal ray, which is regular in the sense that it is contained in
a unique maximal flat, then all the causal rays asymptotic to r can be obtained
by parallel-translating r in this flat and then sliding the resulting rays along
suitable horospheres.

To push the analogy with the Riemannian case even further, recall that
every automorphism of a Riemannian symmetric space is uniquely determined
by its action on the geometric boundary, i.e., the spherical building at infinity.
In the Kac–Moody setting a similar statement is true: The automorphism
is uniquely determined by its action on the causal boundary, i.e., the twin
building at infinity.

Theorem 1.16 (Causal boundary rigidity; cp. Corollary 7.41). Every auto-
morphism of XG is uniquely determined by the induced combinatorial automor-
phism of the causal boundary. Every automorphism in Aut+(XG) is uniquely
determined by the induced combinatorial automorphism of the future (or past)
boundary.

Having discussed the causal boundary of Kac–Moody symmetric spaces,
we now turn to the second structure on XG induced by the canonical causal
structure: We write x ≺ y and say that x strictly causally precedes y if there
exists a piecewise geodesic causal curve γ : [S, T ] → XG with γ(S) = x and
γ(T ) = y, and we define the causal pre-order � on XG by setting x � y if
x ≺ y or x = y. Invariance of the causal structure implies that the pre-order �
is invariant under Aut+(XG). It is not clear from the definition whether the
causal pre-order is anti-symmetric, i.e., a partial order.

Proposition 1.17 (Order dichotomy; cp. Proposition 7.46). Either the causal
pre-order on XG is the trivial pre-order, i.e., any point in XG causally proceeds
any other point, or the causal pre-order is a partial order.

Currently we do not know for any irreducible, non-spherical, non-affine Kac–
Moody symmetric space whether its causal pre-order is trivial or a partial
order, but we believe that it is not always trivial. The problem of establish-
ing such a result is related to a more classical problem in Kac–Moody theory,
namely whether Kostant’s classical convexity theorem [36, Thm. 4.1] can be
extended to general Kac–Moody groups. An infinitesimal version was estab-
lished by Kac and Peterson in [32], but there is no global version available so
far.

The focus of this article by design is on non-spherical and non-affine Kac–
Moody symmetric spaces. We refer to [24, 16] for literature focusing more
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on the affine case. If in our article one replaces the (derived) centered Kac–
Moody group by the full Kac–Moody group with larger torus corresponding
to the enlarged generalized Cartan matrix in the non-invertible situation, then
it is likely to be possible to carry over our results also to the affine case. An
additional advantage of that alternative approach should be that all involved
polyhedral cell structures were actually simplicial, at the cost that in the non-
affine situation with non-invertible generalized Cartan matrix the dimension
of the maximal flats were larger than necessary.

2. Concepts from synthetic geometry

2.1. Reflection spaces.

Definition 2.2. Let X be a set and let µ : X × X → X , (x, y) 7→ x · y be
a map.

(i) (X , µ) is called a reflection space if it satisfies the following axioms:
(RS1) for any x ∈ X one has x · x = x,
(RS2) for any pair of points x, y ∈ X one has x · (x · y) = y,
(RS3) for any triple of points x, y, z ∈ X one has x·(y ·z) = (x·y)·(x·z).

(ii) A reflection space is called symmetric or a symmetric space if it satisfies
the following additional axiom:
(RS4) x · y = y implies y = x for all x, y ∈ X .

The category of reflection spaces has the class of reflection spaces as objects;
a morphism between two objects (X1, µ1) and (X2, µ2) is a map ϕ : X1 → X2

such that ϕ(x · y) = ϕ(x) · ϕ(y) for all x, y ∈ X1. The category of symmetric
spaces is the full subcategory whose objects are symmetric spaces.

Remark 2.3. Our definition of a reflection space is taken from [44]. How-
ever, Loos defines a symmetric space as a smooth reflection space, in which
a local version of (RS4) holds. Our definition of a symmetric space is more
demanding, but does not require a topology on X . An alternative definition
of a discrete symmetric space can be found in [5]. In view of (1) in Lemma 2.5
below, the definition of a symmetric space given in [5] is equivalent to what we
call a reflection space in this article.

In the literature the concept of a reflection space is also known as an (invo-
lutory) quandle.

Example 2.4. (i) For any group G, the pair (G,µG) with µG(x, y) :=
xy−1x is a reflection space.

(ii) For n ∈ N, the n-dimensional Euclidean space En is the symmetric space
(Rn, µE) with µE(x, y) := 2x− y = x− y + x. Geometrically, µE(x, · ) is
the point reflection at x. Note that this example, of course, is just the
example of part (i) for the group (Rn,+).

(iii) Similar to (ii), spheres and hyperbolic spaces are reflection spaces, where
µ(x, · ) is defined as the spherical/hyperbolic point reflection at x.
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In view of the previous examples, given a reflection space (X , µ), the map

sx : X → X , y 7→ x · y
is called the point reflection at x; a product of two point reflections is called
a transvection. By Axiom (RS2), all point reflections are involutions, and
Axiom (RS3) states that point reflections (and hence transvections) are auto-
morphisms.

In the sequel denote by Aut(X , µ) the automorphism group of X and by

S(X , µ) := {sx | x ∈ X} ⊂ Aut(X , µ)

the subset of all point reflections. The subgroup

G(X , µ) := 〈S(X , µ)〉 < Aut(X , µ)

generated by the set S(X , µ) of point reflections is called the main group of
(X , µ), and the subgroup

Trans(X , µ) := 〈sx ◦ sy | x, y ∈ X〉 < G(X , µ)

generated by all transvections is called the transvection group. By defini-
tion, Trans(X , µ) has index at most 2 in G(X , µ). The reflection space (X , µ)
is called homogeneous if Aut(X , µ) acts transitively on X , and reflection-
homogeneous if G(X , µ) acts transitively on X .

The following formula describes the behavior of point reflections under
conjugation.

Lemma 2.5 (see [44, p. 64, line 15]). Let (X , µ) be a reflection space, x, y ∈ X
and α ∈ Aut(X , µ). Then

α ◦ sy ◦ α−1 = sα(y).

In particular,

(1) sx ◦ sy ◦ sx = ssx(y).

Proof. For z ∈ X one has

(α ◦ sy ◦ α−1)(z) = α(y · α−1z) = α(y) · z = sα(y)(z),

which proves the first statement. The second statement then follows from the
first and the fact that point reflections are involutive automorphisms. �

Remark 2.6. The lemma implies that both G(X , µ) and Trans(X , µ) are
normal in Aut(X , µ). In particular, if one denotes by

cα(g) := α ◦ g ◦ α−1

the conjugation by an element α ∈ Aut(X , µ), then the assignment α 7→ cα
induces group homomorphisms

c : Aut(X , µ) → Aut(G(X , µ)) and ĉ : Aut(X , µ) → Aut(Trans(X , µ)).

Note that if α ∈ ker(c), then for all x ∈ X one has

sα(x) = cα(sx) = sx.
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Thus if X is symmetric, or more generally sx 6= sy for all x 6= y in X , then

c : Aut(X , µ) → Aut(G(X , µ))

is injective.

2.7. Involution model and quadratic representation. The following
example provides an important construction of reflection spaces. In fact, by
Lemma 2.9 below, every symmetric space arises from this construction.

Example 2.8. Let G be a group, let S ⊂ G be a conjugation-invariant gen-
erating subset of involutions, and define a map

ψ : S × S → S, ψ(s, r) := s · r = srs.

Then (S, ψ) is a reflection space, called the reflection space associated with the
pair (G,S). Indeed, for all x, y ∈ S one has x · x = xxx = x and x · (x · y) =
xxyxx = y and, finally,

x · (y · z) = xyzyx = xyxxzxxyx = xyx · xzx = (x · y) · (x · z),
i.e., axioms (RS1)–(RS3) hold.

The groupG acts by automorphisms on (S, ψ) via conjugation and its center
Z(G) lies in the kernel of this action. Conversely, any g ∈ G that acts trivially
by conjugation on S necessarily has to be central in G because S generates G.

One concludes that the main group of (S, ψ), i.e., the group generated by
the point reflections of (S, ψ), is isomorphic to G/Z(G). Furthermore, (S, ψ)
is symmetric if and only if S does not contain any pair of distinct commuting
involutions; and it is reflection-homogeneous if and only if S consists of a single
conjugacy class in G.

A version of the following lemma has been established in [5] for primitive
reflection spaces. Essentially the same proof applies to symmetric spaces.

Lemma 2.9. Let (X , µ) be a symmetric space, let S := S(X , µ) be the set of
its point reflections, and let G := G(X , µ) be the main group generated by the
point reflections. Then the following assertions hold:

(i) S ⊂ G is a conjugation-invariant subset of G.
(ii) If (S, ψ) is the reflection space associated with the pair (G,S), then

s : (X , µ) → (S, ψ), x 7→ sx

is a G-equivariant isomorphism of reflection spaces.
(iii) G has trivial center and S does not contain any pair of distinct commut-

ing involutions.
(iv) X is reflection-homogeneous if and only if S consists of a single conjugacy

class.

Proof. By (1) on page 13, the set S is invariant under conjugation by elements
in S. Since S generates G, it is therefore invariant under conjugation by
elements in G. This shows (i) and makes it meaningful to consider the reflection
space (S, ψ) introduced in Example 2.8. Concerning (ii), the map s is surjective
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by definition, and it is also injective, for, if sx = sy, then by (RS1) one has
sx(y) = sy(y) = y, which by (RS4) implies x = y. By (1), the map s is an
S-equivariant and hence G-equivariant morphism, proving (ii).

In particular, since G is the main group of (X , µ), it is also the main group
of (S, ψ). This, however, implies that G has trivial center by the argument
given in Example 2.8. Also, since (S, ψ) ∼= (X , µ) is symmetric, no two invo-
lutions in S commute. This shows (iii). Assertion (iv) follows again from
(S, ψ) ∼= (X , µ). �

The reflection space (S, ψ) defined in (ii) is referred to as the involution
model of (X , µ). By the lemma, every symmetric space admits an involution
model.

Remark 2.10. Rather than realizing a reflection-homogeneous symmetric
space (X , µ) by a suitable generating conjugacy class of involutions of its main
group, one can also realize it as a suitable subset of its transvection group.

This embedding, which depends on a choice of basepoint o ∈ X , is referred
to as the quadratic representation of X in [44, Sect. II.1] (see also [5, Lem. 2.3]).
Given x ∈ X , one defines tx := sx ◦ so ∈ Trans(X , µ) and sets T (X , µ, o) :=
{tx | x ∈ X}. Then the map

t : X → T (X , µ, o), x 7→ tx

is a bijection; indeed, injectivity follows from tx ◦ so = sx. This bijection
induces on T (X , µ, o) the structure of a symmetric space. Now by (1) on page
13, for all x, y ∈ X one has

txt
−1
y tx = sx ◦ so ◦ (sy ◦ so)−1sx ◦ so = sx ◦ sy ◦ sx ◦ so = ssx(y) ◦ so = tsx(y),

whence the induced multiplication in this model is given by

(2) T (X , µ, o)× T (X , µ, o) → T (X , µ, o), (s, t) 7→ s · t = st−1s.

Note that T (X , µ, o) is a reflection subspace of the group Trans(X , µ), where
the latter is equipped with its canonical reflection space structure as given by
Example 2.4 (i).

As another consequence of (1) observe that for all x, y ∈ X one has

sx ◦ sy = sx ◦ so ◦ (so ◦ sy ◦ so) ◦ so = sx ◦ so ◦ sso(y) ◦ so = tx ◦ tso(y).
In particular, T (X , µ, o) actually generates the transvection group.

2.11. Topological reflection spaces. All the concepts introduced in the pre-
vious subsection make sense in a topological setting.

Definition 2.12. Let X be a topological space and let µ : X × X → X ,
(x, y) 7→ x · y be a continuous map.

(i) (X , µ) is called a topological reflection space if it satisfies axioms (RS1)–
(RS3), and it is called a topological symmetric space if it satisfies axioms
(RS1)–(RS4).
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(ii) The categories of topological reflection spaces and of topological sym-
metric spaces are defined by requiring morphisms to be continuous in
addition to preserving the product.

(iii) The automorphism group Aut(X , µ), the main group G(X , µ) and the
transvection group Trans(X , µ) are defined as in the abstract setting with
the additional requirement that automorphisms be homeomorphisms.

The following topological variants of Examples 2.4 and 2.8 provide examples
for topological reflection spaces.

Example 2.13. • For any topological group G, the pair (G,µG) with
µG(x, y) := xy−1x is a topological reflection space.

• The n-dimensional Euclidean space En = (Rn, µE) is a topological
symmetric space with its canonical vector space topology. Similarly,
spheres and hyperbolic spaces are topological reflection spaces with
their standard topologies.

• Given a topological group G and a conjugation-invariant generating
subset S of involutions, then S is a topological reflection space with
respect to the multiplication r · s = rsr.

Remark 2.14. We emphasize that Lemma 2.9 does not have a counterpart
in the setting of general topological reflection spaces. More precisely, if (X , µ)
is a topological symmetric space, then the abstract reflection space underlying
(X , µ) can of course be realized as a subset of its main group (or inside its
transvection group), but finding a group topology on either of these groups
which restricts to the given topology on (X , µ) is difficult without additional
hypotheses on the structure of the topological symmetric space.

2.15. Flats in topological reflection spaces. Throughout this section let
(X , µ) be a topological reflection space and let x, y, z ∈ X . Since point reflec-
tions are involutions, one has sx(y) = z if and only if sx(z) = y. In this
situation one calls x a midpoint of y and z.

In [41] Lawson and Lim develop a rich structure theory of reflection spaces
in which any pair of points has a unique midpoint; see [41, Sect. 2, Axiom (S4)].
We will see in Corollary 5.12 that every non-spherical Kac–Moody symmetric
space contains pairs of points that do not admit a midpoint, hence it is impor-
tant for us to develop the basic theory of reflection spaces without assuming
the existence of midpoints. Note also that, in general topological reflection
spaces, midpoints, if they exist, need not be unique, as is already clear from
the example of spheres.

Definition 2.16. Let (X , µ) be a topological reflection space and let U ⊂ X
be a subspace.

(i) U ⊆ X is a reflection subspace if for p, q ∈ U also sp(q) ∈ U .
(ii) U ⊆ X is midpoint convex if for all p, q ∈ U there is a midpoint of p and

q in U .
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Note that a reflection subspace of a topological reflection space (X , µ) is
itself a topological reflection space with respect to the restriction of µ and
the subspace topology. Also note that the closure of a reflection subspace U is
a reflection subspace2, whereas generally it is unclear to us whether the closure
of a midpoint convex subset is midpoint convex if X is not locally compact.3

Example 2.17. The n-dimensional Euclidean space En is midpoint convex.
Moreover, (Zn, µE) is a reflection subspace of En which is not midpoint convex,
whereas (Qn, µE) is a midpoint convex reflection subspace of En, albeit not
closed. The closed midpoint convex reflection subspaces of En are exactly the
affine subspaces, i.e., the translates of R-vector subspaces of the underlying Rn.

Definition 2.18. Let (X , µ) be a topological reflection space and let F ⊆ X
be a reflection subspace.

(i) x, y ∈ X weakly commute if for all z ∈ X one has

x · (z · (y · z)) = y · (z · (x · z)).
(ii) x, y ∈ X commute if for all a, b ∈ X one has

x · (a · (y · b)) = y · (a · (x · b)).
(iii) F is (weakly) abelian if all its points (weakly) commute.
(iv) F is called a (weak) flat if it is closed, midpoint convex, (weakly) abelian,

and contains at least two points.
(v) F is called a Euclidean flat of rank n if it is closed and isomorphic to En

as a topological reflection space.

Lemma 2.19. Let (X , µ) be a reflection space.

(i) Every Euclidean flat is a flat, and every flat is a weak flat.
(ii) Every g ∈ Aut(X , µ) preserves the collection of weak flats, and the sub-

collections of flats, Euclidean flats and Euclidean flats of a given rank n.
(iii) Every weak subflat of a Euclidean flat is Euclidean.

Proof. The first statement of (i) is contained in [44, Prop. III.2.5], and the sec-
ond statement of (i) is obvious, (ii) is immediate from the definitions, and (iii)
follows from Example 2.17. �

For an illustration that Euclidean flats are weakly abelian see Figure 1.

Remark 2.20. Theorem 5.17 below states that in Kac–Moody symmetric
spaces every weak flat is Euclidean, whence all three notions of flats coincide
in that situation.

2For, if x, y are contained in the closure U , then there exist nets (xα), (yα) in U converging

to x and y respectively, whence x · y = limxα · yα ∈ U by joint continuity of multiplication.
3In case X actually is locally compact, one can argue as follows: Let U be a midpoint

convex subset of X and let U be its closure in X . Then U contains nets (xα) converging to x

and (yα) converging to y. By local compactness, the net (zα) consisting of the midpoints zα
of xα and yα contains a subnet that in U converges to some point z. By continuity, the
reflection sz interchanges x and y, i.e., z ∈ U is a midpoint of x and y.
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The notion of an abelian reflection subspace is taken from [44, Section III.2.2,
p. 134 ff.]. Note that spheres and hyperbolic spaces are not weakly abelian, thus
among constant curvature smooth examples, being weakly abelian is equiva-
lent to flatness in the sense of zero curvature. In the smooth homogeneous
context, being abelian is equivalent to the vanishing of the curvature tensor by
[44, Prop. III.2.5].

Assume now that X is a topological reflection space and that F ⊂ X is
a Euclidean flat of rank n. By definition this means that there exists a homeo-
morphism ϕ : Rn → F which is an isomorphism of reflection spaces, where Rn

carries the Euclidean reflection structure. Any such map will be referred to as
a chart of F , and if p := ϕ(0), then we say that the chart is centered at p. If
n = 1, then a chart is also called a parametrization.

Now let F ⊂ X be a topological reflection space and let ϕ : Rn → F be
a chart of F . Then every automorphism α ∈ Aut(X ) that stabilizes the set F
induces a map α̂ := ϕ ◦ α ◦ ϕ−1 : Rn → Rn and we observe the following.

Proposition 2.21. If α ∈ Aut(X ) preserves F , then α̂ := ϕ ◦ α ◦ ϕ−1 is an
affine transformation, i.e., α̂ is linear-by-translation.

Proof. The map α̂ : Rn → Rn is a topological isomorphism of reflection spaces.
In particular, for all x, y ∈ Rn one has

α̂(2x− y) = α̂(µ(x, y)) = µ(α̂(x), α̂(y)) = 2α̂(x)− α̂(y).

The group of translations acts transitively on Rn, so up to composition of α̂
with an appropriate translation one may assume α̂(0) = 0. By setting y = 0
one then concludes that α̂ is homogeneous with respect to powers of 2 and
by setting x = 0 one concludes that α̂ is homogeneous with respect to −1.
Replacing x by 1

2x and y by −y then implies that α̂ is additive. Since Z[ 12 ] is
dense in R, this implies R-linearity of α̂. �

By abuse of language one says that α acts affine-linearly on F .

2.22. Geodesics and translation groups. In this section we prove Theo-
rem 1.3.

Definition 2.23. Let (X , µ) be a topological reflection space. A Euclidean
flat γ ⊂ X of rank 1 is called a geodesic, and the subset

Tγ := {sp ◦ sq | p, q ∈ γ} ⊂ Trans(X , µ)

is called the associated translation group.

It is not obvious a priori that Tγ is a group. However, one can show the
following.

Proposition 2.24. Let (X , µ) be a topological reflection space and let γ ⊂ X
be a geodesic.

(i) Tγ ∼= (R,+) is a one-parameter subgroup of Trans(X , µ).
(ii) Tγ acts sharply transitively on γ by Euclidean translations.
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(iii) If t1, t2 ∈ Tγ and t1|γ = t2|γ, then t1 = t2.

For the proof of Proposition 2.24 use the following notation: Fix a param-
etrization ϕ : R → γ of γ so that in particular ϕ(2x− y) = sϕ(x)(ϕ(y)). Given
x ∈ R, abbreviate sx := sϕ(x), and given x, y ∈ R, define a transvection

(3) tγ [x, y] := t[x, y] := sy ◦ s(x+y)/2.
By construction, t[x, y] is a transvection along γ which maps ϕ(x) to ϕ(y),
hence the notation. Note that the restriction of this transvection to γ corre-
sponds via ϕ to the translation by y − x in R. With this notation one has
Tγ = {tγ [x, y] | x, y ∈ R} and, thus, Proposition 2.24 is a consequence of the
following lemma.

Lemma 2.25. With the notation just introduced the following hold:

(i) For every x ∈ R the map tγ,x : (R,+) → Tγ, y 7→ t[x, x + y] is an
injective group homomorphism.

(ii) For all x, y ∈ R one has t[x, x + y] = t[0, y]. In particular, tγ,x is onto
for every x ∈ R.

Proof. (i) By Lemma 2.5 and the formula for Euclidean reflections in R one
has

(4) sx ◦ sy ◦ sx = s2x−y (x, y ∈ R).

This allows one to rewrite (3) as

(5) t[x, y] = sy ◦ s(x+y)/2 = s(x+y)/2 ◦ (s(x+y)/2 ◦ sy ◦ s(x+y)/2) = s(x+y)/2 ◦ sx,
which yields in particular t[x, x + y] = sx+y/2 ◦ sx and, thus,

(6) t[x, x+ y] ◦ t[x, x− y] = sx+y/2 ◦ (sx ◦ sx−y/2 ◦ sx) = sx+y/2 ◦ sx+y/2 = id.

It also follows from (4) and (5) that

t[x, x+ y/2]2 = (sx+y/4 ◦ sx ◦ sx+y/4) ◦ sx = sx+y/2 ◦ sx = t[x, x+ y],

whence by induction

(7) t[x, x+ y] = t[x, x+ 2−ny]2
n

.

Next one observes that

(sx+y/2 ◦ sx)(ϕ(x + y/2)) = sx+y/2(ϕ(x − y/2)) = ϕ(x+ 3y/2),

and inductively one obtains for all k ∈ N,

(sx+y/2 ◦ sx)k(ϕ(x + y/2)) = ϕ(x + (2k + 1)y/2)

Thus, if n = 2k + 1 is an odd positive integer, then

t[x, x + y]n = (sx+y/2 ◦ sx)2k+1

= (sx+y/2 ◦ sx)k ◦ sx+y/2 ◦ (sx ◦ sx+y/2)k ◦ sx
= sx+(2k+1)y/2 ◦ sx
= t[x, x + ny].
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By combining this with (6) and (7), it follows that the restriction of tγ,x to
the dense subset Z[ 12 ] of R is a homomorphism, whence continuity of µ implies
that tγ,x is a homomorphism. Since t[x, x+ y](x) = ϕ(x+ y), it is injective.

(ii) Let x, y ∈ R and set z := x/2 + y/4 so that

sz(ϕ(0)) = ϕ(x+ y/2), sz(ϕ(x)) = ϕ(y/2).

It follows from (i) that s0 ◦ sx and sz ◦ sx commute, and hence

s0 ◦ sx = (sz ◦ sx) ◦ (s0 ◦ sx) ◦ (sz ◦ sx)−1 = sz ◦ sx ◦ s0 ◦ sz = sy/2 ◦ sx+y/2.

One deduces that sy/2 ◦ s0 = sx+y/2 ◦ sx, and thus, by taking inverses,

t[0, y] = sy/2 ◦ s0 = sx+y/2 ◦ sx = t[x, x+ y]. �

Remark 2.26. Proposition 2.24 generalizes [40, Prop. XIII.5.5] as well as
[49, Thm. 3.6 (iv)] to arbitrary topological reflection spaces: any geodesic in
any topological reflection space defines a one-parameter subgroup of its auto-
morphism group. It is quite remarkable that this property relies purely on
group theory and elementary Euclidean geometry and does not require any
differentiable structure whatsoever.

After the dissemination of our results in late 2016 and early 2017 variants
of our Proposition 2.24 and the underlying lemma were published in [50, 51].

2.27. Geodesically connected reflection spaces.

Definition 2.28. Let (X , µ) be a topological reflection space and let γ ⊂ X
be a geodesic. A compact connected subset σ ⊂ γ with nonempty relative
interior is called a geodesic segment . A triple ~σ = (σ, s(~σ), t(~σ)), where σ is
a geodesic segment and s(~σ) and t(~σ) are the endpoints of σ is called an oriented
geodesic segment from s(~σ) to t(~σ). Given an oriented geodesic segment ~σ in γ,
the parallel transport along ~σ is defined as the unique transvection t[~σ] ∈ Tγ
mapping s(~σ) to t(~σ).

An oriented piecewise geodesic curve is a sequence ~σ = (~σ1, ~σ2, . . . , ~σn) of
oriented geodesic segments with t(σi) = s(σi+1). Then set s(~σ) := s(~σ1) and
t(~σ) := t(~σn) and say that ~σ is a curve from s(~σ) to t(~σ). Also define parallel
transport along ~σ as the transvection

t[~σ] := t[~σn] ◦ · · · ◦ t[~σ2] ◦ t[~σ1].

Moreover, (X , µ) is geodesically connected if for all p, q ∈ X there exists an
oriented piecewise geodesic curve from p to q.

Recall that in a finite-dimensional Riemannian symmetric space any pair of
points lies on a common geodesic. This is no longer the case for Kac–Moody
symmetric spaces by Corollary 5.12 below. Nevertheless, Kac–Moody symmet-
ric spaces still satisfy the weaker property of being geodesically connected by
Lemma 5.14; as it turns out this is enough to deduce various basic structural
features such as the following information concerning the transvection group.
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Proposition 2.29. Let (X , µ) be a geodesically connected topological reflection
space.

(i) Trans(X , µ) acts transitively on X . In particular, X is reflection-homoge-
neous.

(ii) Trans(X , µ) is generated by the one-parameter subgroups Tγ, where γ
runs through all geodesics in X .

Proof. (i) If p, q are distinct points in X and ~σ is an oriented piecewise geodesic
curve from p to q, then t[~σ] ∈ Trans(X , µ) maps p to q.

(ii) Let p and q be distinct points in X and let ~σ = (~σ1, ~σ2, . . . , ~σn) be
a piecewise oriented geodesic curve between p and q. It suffices to show that
sq ◦sp ∈ Trans(X , µ) can be written as a product of elements of the translation
groups corresponding to the geodesics involved in the above curve. To this end,
set pi = t(~σi) and p0 := p, qi := spi(pi−1). Then ti := sqi ◦ spi ∈ Tγi , where γi
is the geodesic containing ~σi and ti(pi−1) = qi. Thus (ii) follows from the
computation

sq ◦ sp = spn ◦ sp0
= (spn ◦ spn−1) ◦ (spn−1 ◦ spn−2) . . . (sp1 ◦ sp0)
= ((spn ◦ spn−1 ◦ spn) ◦ spn) ◦ · · · ◦ ((sp1 ◦ sp0 ◦ sp1) ◦ sp1)
= (sqn ◦ spn) ◦ · · · ◦ (sq1 ◦ sp1)
= tn ◦ · · · ◦ t1. �

Remark 2.30. Part (ii) of the proposition provides an obstruction for a group
to occur as the transvection group of some geodesically connected topological
reflection space: Any such group has to be generated by a family of subgroups
isomorphic to (R,+).

2.31. Local transformations of strongly transitive reflection spaces.
In a general topological reflection space, it is unclear to us whether every flat
is contained in a maximal flat. Indeed, while every midpoint convex abelian
reflection subspace certainly is contained in a maximal midpoint convex abelian
reflection subspace, there is no reason for this maximal space to be closed.
As it is unclear to us whether closures of midpoint convex subsets are again
midpoint convex, we are unable to guarantee even the existence of a single
maximal flat in this generality. However, if maximal flats exist, then they
often give a major insight into the structure of the topological reflection space
since every automorphism has to preserve maximal flats and their intersection
patterns.

Definition 2.32. Let X be a topological reflection space which admits maxi-
mal flats.

(i) A pair (p, F ), where F is a maximal flat in X and p ∈ F is a point, is
called a pointed maximal flat .

(ii) Let G be a group acting on X by automorphisms. We say that the action
is strongly transitive if G acts transitively on pointed maximal flats.

(iii) X is called strongly transitive if Aut(X ) acts strongly transitively on X .
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The following observation is often useful for checking strong transitivity.
It will be used, for instance, in Corollary 5.18 below in order to show that
Kac–Moody symmetric spaces are strongly transitive.

Proposition 2.33. Let Trans(X ) < G < Aut(X ). If G acts transitively on
maximal flats in X and if one, whence all, of these are Euclidean, then G acts
strongly transitively on X .

Proof. Any maximal flat F ⊂ X by definition is a reflection subspace and,
hence, each point reflection of F is induced by a point reflection of X . Since G
acts transitively on the set of maximal flats of X , the flat F is Euclidean, i.e.,
F ∼= En for some n. It follows that the stabilizers of F in Trans(X ) and,
thus, in G contain Trans(F ), and hence act transitively on F . This implies the
proposition. �

Remark 2.34. If in the situation of the preceding proposition the maximal
Euclidean flats of X have rank k, then what we call strong transitivity in the
present article coincides with the notion of k-flat homogeneity in the literature.

Let X be a topological reflection space which contains a maximal flat, which
moreover is Euclidean, and let G be a group with Trans(X ) < G < Aut(X ).
Moreover, assume that G acts transitively on maximal flats of X , and let
(p, F ) be a pointed maximal flat in X . By Proposition 2.33, G acts strongly
transitively on X and F is Euclidean. Denote by

StabG(p, F ) := {g ∈ G | g.F = F, g.p = p}
and

FixG(p, F ) := {g ∈ G | ∀f ∈ F : g.f = f}
the stabilizer and the fixator, respectively, of (p, F ) in G.

Definition 2.35. Let X be a topological reflection space which contains
a maximal flat F , which moreover is Euclidean, and let p ∈ F .

A point q ∈ F is called singular with respect to p if there exists a second
maximal flat distinct from F containing both p and q, and regular with respect
to p otherwise. Denote by F reg(p) ⊂ F the subset of regular points in F with
respect to p, and by F sing(p) ⊂ F the subset of singular points in F with
respect to p.

A map f : F → F is called linear at p if for some (hence any) chart
ϕ : Rn → F which is centered at p we have ϕ ◦ f ◦ ϕ−1 ∈ GLn(R). It is called
a local transformation of the pointed flat (p, F ) if it is linear at p and preserves
the decomposition F = F reg(p) ⊔ F sing(p). Denote by GL(p, F, F sing(p)) the
group of local transformations of (p, F ).

Proposition 2.36. Let X be a topological reflection space which contains
a maximal flat, which moreover is Euclidean, and assume that G acts tran-
sitively on maximal flats of X .

(i) The group W (G y X ) := StabG(p, F )/FixG(p, F ) is independent of the
choice of pointed flat (p, F ) up to conjugation.
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(ii) There is a homomorphism

ρF : W (G y X ) → GL(p, F, F sing(p)), ρF ([f ]) := f |F ,

which is independent of the choice of pointed flat (p, F ) up to conjugation.

Proof. By Proposition 2.33 the group G acts strongly transitively on X . Asser-
tion (i) and the second statement of assertion (ii) are immediate from strong
transitivity. The first statement of assertion (ii) follows from Proposition 2.21
and Lemma 2.19. �

Definition 2.37. (i) The group W (G y X ) is called the (geometric) Weyl
group of the action G y X .

(ii) The homomorphism ρF : W (G y X ) → GL(p, F, F sing(p)) is the local
action of G on X .

3. Split real Kac–Moody groups and their Iwasawa
decompositions

3.1. Groups with RGD systems. This subsection provides some necessary
background concerning groups with RGD systems (see [1, Ch. 8]); for the def-
initions of a prenilpotent pair of roots as well as the definitions of the “closed”
interval [α, β] and the “open” interval ]α, β[ of roots α, β used therein, see [1,
Sect. 8.5.2, 8.5.3].

Definition 3.2. Let (W,S) be a Coxeter system with root system Φ and let Φ+

be a subset of positive roots. An RGD system is a triple (G, {Uα}α∈Φ, T ),
where G is a group, T < G a subgroup and {Uα}α∈Φ is a family of subgroups
of G subject to the following axioms:

(RGD0) For each root α ∈ Φ one has Uα 6= {1}.
(RGD1) For each prenilpotent pair {α, β} ⊆ Φ of distinct roots one has

[Uα, Uβ ] ⊆ 〈Uγ | γ ∈ ]α, β[〉.
(RGD2) For each s ∈ S there exists a function µs : Uαs

\ {1} → G such that
for all u ∈ Uαs

\ {1} and α ∈ Φ one has µs(u) ∈ U−αs
uU−αs

and
µs(u)Uαµs(u)

−1 = Us(α). Moreover, µs(y)
−1µs(v) ∈ T .

(RGD3) For each s ∈ S one has U−αs
* U+ := 〈Uα | α ∈ Φ+〉.

(RGD4) G = T 〈Uα | α ∈ Φ〉.
(RGD5) The group T normalizes every Uα.

The groups Uα are called root subgroups , the group T is called maximal (split)
torus , as are its conjugates. Following [6], an RGD-system is centered if G is
generated by its root subgroups.

Every centered RGD system (G, {Uα}α∈Φ, T ) gives rise to a saturated twin
BN pair (B+, B−, N) in the sense of Tits as follows (cp. [1, Thm. 8.80]): If
µs : Uαs

\{1} → U−αs
Uαs

U−αs
is the map provided by (RGD2), the group U+

is as in (RGD3) and U− := 〈Uα | α ∈ −Φ+〉, then T normalizes both U+
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and U− and one obtains a twin BN -pair (B+, B−, N) by

N := T.〈µs(u) | u ∈ Uαs
\ {1}, s ∈ S〉,

B+ := T ⋉ U+,

B− := T ⋉ U−.

This twin BN -pair satisfies the saturation property B+ ∩ B− = T (cp. [1,
Cor. 8.78]) and T =

⋂
α∈ΦNG(Uα) (cp. [1, Cor. 8.79]); note that N = NG(T )

by [1, Thm. 6.87 (2) and Thm. 8.80].
The twin BN -pair (B+, B−, N) then gives rise to two buildings with respec-

tive chamber sets ∆± := G/B± and a twinning between them [1, Sect. 8.9],
which leads to a twin building.

The theory of twin buildings is an invaluable tool for studying groups with
an RGD-system. Refer to [1, Sect. 6.3 and Ch. 8] for general background infor-
mation on twin buildings endowed with a group action, and to [23] for a set-up
of twin buildings that has been specifically tailored to suit the properties of
topological Kac–Moody groups.

3.3. Complex and split real topological Kac–Moody groups.

Definition 3.4. A generalized Cartan matrix is an integral square matrix
A = (aij)1≤i,j≤n ∈ Mn(Z) satisfying aii = 2, aij ≤ 0 for i 6= j, and aij = 0 if
and only if aji = 0 (cp. [30, §1.1]).

The Dynkin diagram ΓA of A is the edge-labelled graph with vertex set
V = {1, . . . , n} and edge set E := {{i, j} ⊂ V | i 6= j, aijaji 6= 0}. If e ∈ E
joins the vertices i and j and aij > aji, then e is labelled by the number aijaji,
by an arrow from i to j and, if aijaji is not prime, by the values aij and aji.
The matrix A and the diagram ΓA are called irreducible if ΓA is connected,
two-spherical if ΓA has no labels aijaji > 3, spherical if A is the Cartan matrix
of a finite-dimensional Lie group, and non-spherical otherwise. The Coxeter
diagram is induced by the Dynkin diagram ΓA by removing all arrows and all
values aij and aji and replacing labels equal to one by three, labels equal to
two by four, labels equal to three by six, and labels greater than three by ∞
(see also Section A.18).

The generalized Cartan matrix A is called symmetrizable if there exist
a symmetric matrix B = (bij) ∈ Mn(R) and diagonal matrix

D = diag(ε1, . . . , εn) ∈ Mn(R)

with εj > 0 such that A = DB. The matrix D is not unique, but one can
choose D to be minimal in the sense of [38, Defn. 1.5.1]: Each εi is a positive
integer, and if diag(ε′1, . . . , ε

′
n) is another such matrix, then εi ≤ ε′i for all i.

The key results of this article concerning Kac–Moody symmetric spaces hold
in the presence of the following general hypotheses.

Convention 3.5. In this articleA ∈ Mn(Z) denotes an irreducible symmetriz-
able generalized Cartan matrix.
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A generalized Cartan matrix A is the key ingredient for defining a topo-
logical split Kac–Moody group over K ∈ {R,C}. Assume first that A is
two-spherical. Under this additional assumption there is a very efficient way
of defining these groups as colimits of diagrams of groups as described in [2]:
For each vertex i ∈ V of the Dynkin diagram ΓA define Gi(K) := SL2(K). For
every pair {i, j} ⊂ V (i 6= j) define G{i,j}(K) as the split Lie group over K
of rank two whose Dynkin diagram is the full labelled subgraph of ΓA on
vertices i, j. A fixed choice of a root basis provides natural inclusion maps
ιi : Gi(K) →֒ G{i,j}(K).

Consider the amalgam AA of topological groups formed by the Lie groups
Gi(K), i ∈ V , and G{i,j}(K), i 6= j, together with the canonical inclusions.
The colimit of this amalgam in the category of topological groups turns out to
be a Hausdorff topological group GK(A), which is moreover a kω space in the
sense of Definition 3.33 below (see [23, Thm. 7.22]). This colimit is abstractly
isomorphic to the quotient of the free group generated by the elements of
the groups Gi(K) modulo the relations given as products of conjugates of the
relations contained in G{i,j}(K); its topology equals the finest group topology
such that the natural embeddings of the Lie groups Gi(K) are continuous.

Definition 3.6. The group GR(A) (resp. GC(A)) is called the simply con-
nected centered split real (resp. complex) Kac–Moody group of type A. The
topology on GK(A) defined above is called the Kac–Peterson topology.

Given a subset I ⊂ V , the subgroup GI(K) := 〈Gi(K) | i ∈ I〉 is called
a standard rank |I| subgroup of GK(A). Denote by ϕI : GI(K) → GK(A) the
canonical inclusion; if |I| = 1, one simply writes ϕi and Gi instead of ϕ{i}

and G{i}, respectively.

The embedding R →֒ C induces embeddings

Gi(R) →֒ Gi(C) and G{i,j}(R) →֒ G{i,j}(C),

and hence an embedding GR(A) →֒ GC(A). Since our main focus lies on the
real case, we will subsequently write G := GR(A), Gi := Gi(R) etc.

The topological Kac–Moody groupsGR(A) andGC(A) and all of the notions
pertaining to these groups as defined in this subsection can also be defined with-
out the assumption that A be two-spherical, and the results in this article are
valid without the assumption of two-sphericity unless explicitly stated other-
wise. However, in this more general setting the amalgamation results from [2]
are not available, and thus the definitions become substantially more technical.
We refer the reader to [56, 52, 7] and [23, Ch. 7] for the general definitions.

3.7. The adjoint quotient and the semisimple adjoint quotient. The
group G = GR(A) can be considered as an infinite-dimensional generalization
of a finite-dimensional semisimple split real Lie group. In fact, if A is a spher-
ical irreducible (generalized) Cartan matrix, then the resulting Kac–Moody
group G is an algebraically simply connected simple split real Lie group. In
particular, the center of G is zero-dimensional. In this case A is automatically
symmetrizable and, in fact, invertible.
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A non-spherical irreducible symmetrizable generalized Cartan matrix A on
the other hand need not be invertible, as for instance is the case for any
generalized Cartan matrix of affine type. In this situation the group G admits
a positive-dimensional center Z(G), which leads to some complications in our
study of Kac–Moody symmetric spaces. One way to resolve this issue is to
consider instead of G its adjoint quotient

Ad(G) := G/Z(G).

This group, however, has the slight disadvantage that its maximal torus is not
isomorphic to a direct product of several copies of the multiplicative group
(R×, · ), i.e., it is not an algebraically simply connected split torus. We thus
introduce an intermediate object, that we call the semisimple adjoint quo-
tient G of G. By Proposition 3.12 below, G is the unique group which admits
surjections with central kernel

G → G → Ad(G)

such that the kernel of the former epimorphism is a product of copies of the
multiplicative group (R×, · ) and the kernel of the latter epimorphism is finite.

The construction of G relies on some key properties of the adjoint repre-
sentation of G and the exponential function of G. Both relate the complex
Kac–Moody group GC(A) to the (derived) complex Kac–Moody algebra g

associated with A, whose basic structure theory is discussed in Section A.13
in the appendix.

Symmetrizability of the generalized Cartan matrix as required in Conven-
tion 3.5 allows one to apply the Gabber–Kac Theorem A.16 which implies that
the Lie algebra g is the direct limit of its standard subalgebras of ranks one and
two. These are the Lie algebras of the standard rank one and two subgroups
of GC(A), and hence the latter groups act on them by the respective adjoint
actions. It turns out that the adjoint actions of these subgroups combine into
an adjoint representation

AdC : GC(A) → GL(g),

see [38, Prop. 6.2.11]. This restricts to a representation

Ad : G → GL(g),

whose image is isomorphic to Ad(G) = G/Z(G).
As discussed in Section A.13, the Lie algebra g contains a canonical sub-

algebra

h =

n∑

i=1

Cα̌i

(see formula (34)), which intersects each of the standard rank one Lie algebras
gi ∼= sl(2,C) of g in the standard diagonal Cartan subalgebra hi := Cα̌i (see
Theorem A.16). For each i ∈ {1, . . . , n} there exists a natural exponential
function

expi : hi →֒ gi ∼= sl(2,C) → SL(2,C) ∼= Gi(C),
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whose image is denoted by Hi. The groups Hi < GC(A) generate the direct
product

HC :=

n∏

i=1

Hi < GC(A)

and one obtains a natural exponential function

expC : h =

n⊕

i=1

hi →
∏

Hi = HC,

(X1, . . . , Xn) 7→
n∏

i=1

expi(Xi).

Under the standard identifications h ∼= Cn and HC
∼= (C×)n this map corre-

sponds to the usual exponential map. Recall from (35) on page 98 and (36) on
page 98 that the center c = z(g) is contained in h and has complex dimension

(8) dimC c = n− rk(A).

Definition 3.8. Set CC := expC(c) and C := CC∩G and define the semisimple
adjoint quotient of G by

G := G/C.

The standard maximal (split) torus of G = GR(A) is defined by

T := HC ∩G ∼= (R×)n.

Its image T in G is called the standard maximal (split) torus of G.

Let now a be the real form of h defined in Notation A.17 on page 99. It is
an immediate consequence of the definitions that expC restricts to an injective
map

exp : a → T,

whose image is denoted by A := exp(a) ∼= (R>0)
n. Moreover, the image of A

in G is denoted by A. The map exp : a → A is a bijection which maps c∩ a to
C ∩ A. Setting a := a/(c ∩ a) as in Notation A.17, this induces a bijection

exp : a → A.

The inverse maps are denoted by log : A → a, respectively log : A → a. Note
that, as vector spaces,

a ∼= Rn and a ∼= Rrk(A).

Remark 3.9. Before continuing, we point out an error in [23]. The statement
of [23, Lem. 7.5] is inaccurate, as becomes obvious from (8) above. The problem
is that its proof only applies to G (and its analogs over other fields) but not
to G (or its analogs over other fields).

As a consequence, also [23, Prop. 7.18] has only been established for center-
free Kac–Moody groups over local fields and central quotients of G (and its
analogs over other local fields) instead of central quotients of G (or its analogs
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over other local fields). That is, the results from [23] only enable us to control
the topology on HC/CC instead of the topology on HC.

However, a variation of the embedding argument as used in [23, Prop. 7.10]
in fact allows one to also control the topology on HC as follows.

Proposition 3.10. The exponential map expC : h → HC is a quotient map,
where h is equipped with its topological vector space topology and HC with the
Kac–Peterson topology.

Proof. It suffices to prove that the Kac–Peterson topology induces the standard
topology on HC

∼= (C×)n. Let B be an invertible generalized Cartan matrix
that contains A as a principal submatrix. Then GC(A) admits a natural
topological embedding into GC(B) as a closed subgroup with respect to the
Kac–Peterson topology and the subgroup HC of GC(A) embeds topologically
as a closed subgroup into the corresponding subgroupHB

C
of GC(B). SinceB is

invertible, the associated Kac–Moody algebra and group have zero-dimensional
center (see formula (8)) and so, in fact, [23, Prop. 7.18] applies to GC(B); that
is, HB

C
endowed with the Kac–Peterson topology is homeomorphic to (C×)rk(B)

endowed with its standard topology. Consequently, the closed subgroup HC is
homeomorphic to (C×)n endowed with its standard topology. �

The group A carries a natural group topology induced by the Kac–Peterson
topology on HC, which by Proposition 3.10 makes A homeomorphic to (R>0)

n

with its standard topology. Moreover, one obtains the following immediate
consequences.

Proposition 3.11. (i) The exponential maps exp : a → A and exp : a → A
are homeomorphisms if one endows a and a with their standard vector
space topologies and A and A with the Kac–Peterson topology, respec-
tively the induced quotient topology. In particular, the maps log : A → a

and log : A → a are continuous.
(ii) The groups T and T are isomorphic as topological groups to (R×)n and

(R×)rk(A), respectively, and their respective identity components equal A
and A. �

Since T ∼= (R×)n, its torsion subgroup M , i.e., its unique maximal finite
subgroup, is of order 2n. As topological groups one has T ∼= M ×A, where M
is equipped with the discrete topology. Similarly T ∼= M ×A, where M is the
image of M in G, which is the torsion subgroup of T of order 2rk(A).

Proposition 3.12. (i) The kernel C of the surjection G → G is isomorphic
to (R×)n−rk(A) as a topological group.

(ii) The kernel of the map G → Ad(G) is finite and, in fact, isomorphic to
(Z/2Z)k for some k < n. In particular, it is contained in M .

Proof. (i) This follows by construction (cp. [30, Prop. 1.6]). (ii) Since 1 and −1
are the only roots of unity contained in the real numbers R, this follows from
the proof of [23, Lem. 7.5] (note Remark 3.9). �
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3.13. The extended Weyl group. As discussed in Sections A.13 and A.18
in the appendix, the generalized Cartan matrix A gives rise to a quadruple
(g(A), h(A),Π, Π̌) (see (31)) and a Coxeter datum (W,S,Φ,Π) (see Defini-
tion A.19). One way to define W is as the subgroup of GL(h(A)) generated
by the set S = {řα1 , . . . , řαn

} of reflections given by

řαi
(h) = h− αi(h)α̌i (i = 1, . . . , n),

see (39) and also [33, Lem. 1.2]. From this definition it is immediate that W
acts on h(A), and as pointed out in Proposition A.20 this action preserves
the subspace a, and descends further to the quotient a of a. The two result-
ing representations are discussed further in Subsection A.18 where they are
denoted by ρKM : W → GL(a) and ρKM : W → GL(a) and referred to as the
Kac–Moody representation4, respectively the reduced Kac–Moody representa-
tion of W . The Kac–Moody representation is faithful and, moreover, if A is
non-affine, then the reduced Kac–Moody representation is faithful as well (see
Corollary A.24). All these representations are constructed purely in terms of
Lie algebra data; there is, however, also an alternative description of the Weyl
group in terms of the group G = GR(A), which we discuss in this subsection.
Our main sources here are [56, 33], where the corresponding results are estab-
lished for GC(A) instead of G; one can show that the proofs carry over to the
split real case.

Consider the normalizer NG(T ) of T in G; it acts by conjugation on T , pre-
serving the identity component A, and hence Ad(NG(T )) preserves a. Since T
is abelian, this action factors through T , and hence induces a homomorphism

ρ : NG(T )/T → GL(a), nT 7→ Ad(n)|a.
By [56, Lem. 5.4.3 (iii)], the representation ρ is faithful with image

ρ(NG(T )/T ) = ρKM (W ).

Since the Kac–Moody representation is faithful, this establishes an isomor-
phism NG(T )/T ∼= W . In fact, there is a proper subgroup of NG(T ) which still
surjects onto ρKM (W ) and can be defined as follows (see [33, Cor. 2.3 (b)(ii)]):
For every i ∈ {1, . . . , n} define s̃αi

∈ Gi < G = GR(A) by

s̃αi
:= ϕi

(
0 1
−1 0

)
.

and define the extended Weyl group by W̃ := 〈s̃α1 , . . . , s̃αn
〉. By [33, (2.6)],

the extended Weyl group normalizes T (and hence A), and by [33, Prop. 2.1]
the map ρ restricts to an isomorphism

W̃/(W̃ ∩ T ) ∼= W.

4The terminology varies in the literature; both the Kac–Moody representation and its
dual are sometimes called the geometric representation or the canonical linear representa-
tion, but we will not use these terms here.
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More explicitly, since (Ad(s̃αi
)|sαi

)|a = ρKM (řαi
), we have a canonical surjec-

tion

W̃ → W, s̃αi
7→ řαi

with kernel W̃ ∩ T . By [33, Cor. 2.3. (a)] the elements of W̃ ∩ T all have
order less than or equal to 2; in particular, W̃ ∩ T is contained in the torsion
subgroup M of T , which is of order 2n. On the other hand, the elements

s̃2αi
∈ W̃

are contained in T and generate a subgroup of W̃ ∩ T of order 2n. We deduce
that they generate M , and hence the torsion subgroup M = W̃ ∩ T of T can
be characterized as the kernel of the canonical surjection W̃ → W .

3.14. The twin BN pair and the twin building. Let A be an irreducible
symmetrizable generalized Cartan matrix, let G = GR(A) as in Definition 3.6,
and let G = G/C be the semisimple adjoint quotient from Definition 3.8.
Both G and G act strongly transitively on the same twin building and, hence,
admit twin BN pairs (see [1, Thm. 8.9]).

The group G in fact admits a centered RGD system (G, {Uα}α∈Φ, T ) in the
sense of Definition 3.2, called the canonical centered RGD system and defined
as follows (cp. [52, Prop. 8.4.1]): The underlying set of roots Φ equals the set
of real roots of the Kac–Moody algebra g(A); see Section A.18. The group T
is generated by the images of the diagonal subgroups T0 ⊂ SL2(R) under the
maps ϕi from Definition 3.6 and, given a simple root αi, one defines

Uαi
:= ϕi

({(
1 t
0 1

) ∣∣∣∣ t ∈ R

})
.

For an arbitrary real root α ∈ Φ one writes α = w.αi (see Section A.18) and
defines

Uα := w̃Uαi
w̃−1,

where w = řαj1
· · · řαjn

∈ W and w̃ := s̃αj1
· · · s̃αjn

∈ W̃ as in Section 3.13.

As in Section 3.1 denote by (B+, B−, N) the twin BN pair of G induced
by this RGD system and by ∆± := G/B± the sets of chambers or the corre-
sponding positive and negative halves of the associated twin building (cp. [1,
Sect. 8.9]).

The group G inherits an induced centered RGD system (G, {Uα}α∈Φ, T ),
where Uα

∼= Uα and T , respectively denote the images of Uα and T in G.
Denote by (B+, B−, N) the twin BN pair of G associated with the induced
centered RGD system. Then, by construction, B± = T ⋉ U±, where U± :=
〈Uα | α ∈ ±Φ+〉 as in Section 3.1.

Since C ⊂ T ⊂ B±, one hasG/B± = (G/C)/(B±/C) = G/B±. That is, the
halves of the twin buildings associated with G and G coincide. In other words,
the action of G on ∆± induces an action of G on ∆±. Note, furthermore, that
U±

∼= U±, since by [1, Lem. 8.31, Cor. 8.32] both act sharply transitively on
the set of chambers opposite the respective fundamental chambers in ∆∓.
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In general, given a group with a centered RGD system, the kernel of the
action of that group on either half of the associated twin building equals the
center of the group [1, Prop. 8.82]. In particular, by Proposition 3.12 the action
of G on ∆± has a finite kernel, whereas the action of G on ∆± has an infinite
kernel if A is not invertible.

We will use the following refinement of the Birkhoff decomposition. (Note
that it is different from what is known as the refined Birkhoff decomposition
in the literature). The spherical case is argued to hold in [25, Rem. 6.5] by
referring to [4, Thm. 5.15].

Lemma 3.15. G and G can be written as disjoint unions

G =
⊔

n∈NG(T )

U+nU−, G =
⊔

n∈N
G
(T )

U+nU−.

Proof. For G this is [33, Prop. 3.3 (a), p. 181] and also [38, Thm. 5.2.3(g)]. Note
that in the latter this is proved for a refined Tits system as defined in [31],
but by [52, 1.5.4] the Tits system for a group with an RGD system is indeed
refined. The same argument applies to the refined Tits system for G. �

Definition 3.16. Given a real root α ∈ Φ, define the rank one subgroup by

Gα := 〈Uα, U−α〉.

Note that the standard rank one subgroups of G introduced in Definition 3.6
are the rank one subgroups associated with the simple roots.

By [23, Prop. 7.15] (see also [31, Sect. 2E]) the subgroups B± are closed
in G with respect to the Kac–Peterson topology, and hence ∆± are Hausdorff
kω-spaces with respect to the quotient topology by [14, Ass. 11, p. 116f].

The following proposition summarizes further topological properties of the
various subgroups defined above.

Proposition 3.17. (i) T is closed in G and isomorphic to (R×)n as a topo-
logical group. Similarly, T is closed in G and isomorphic to (R×)rk(A)

as a topological group.
(ii) Multiplication induces isomorphisms of topological groups M × A → T

and M×A → T , where M and M are the torsion subgroups and A and A
are the connected components of T and T , respectively. Furthermore, the
center of G is contained in M .

(iii) Every rank one subgroup in G or G is isomorphic as a topological group
to (P)SL2(R) with its unique connected Lie group topology, and every root
subgroup is isomorphic as a topological group to (R,+) endowed with its
standard topology.

(iv) Multiplication induces homeomorphisms

M ×A× U± → B± and M ×A× U± → B±.
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If the generalized Cartan matrix A is two-spherical, then moreover the fol-
lowing hold:

(v) B+B− is open in G and multiplication defines a homeomorphism

U+ × T × U− → B+B−.

B+B− is open in G and multiplication induces a homeomorphism

U+ × T × U− → B+B−.

(vi) U+AU− is open in G and multiplication defines a homeomorphism

U+ ×A× U− → U+AU−.

U+AU− is open in G and multiplication induces a homeomorphism

U+ ×A× U− → U+AU−.

Proof. (i) T is closed in G by [23, Cor. 7.17(iii)], and so is T in G. The
remaining statements follow from Proposition 3.11.

(ii) This follows from the discussion after Proposition 3.11, together with
Proposition 3.12.

(iii) is immediate by [23, Cor. 7.16(iii)] and [23, Cor. 7.17(ii)].
(iv) follows from [23, Prop. 7.27(ii)] plus assertion (ii).
(v) follows from [23, Lem. 6.1, Prop. 6.6, Prop. 7.31].
(vi) follows from (i) and (v): Since T = A×M with M finite, A is open in T

and thus U+ ×A× U− ⊂ U+ × T × U− is open. Consequently, the restriction
of the open map U+ × T × U− → B+B− to the open subset U+ × A × U− is
also open, in particular its image is open. For G one argues similarly. �

Remark 3.18. It is an interesting question whether for general Cartan matri-
ces A the map U+ × T × U− → B+B− is open. Currently this is only known
under the additional hypothesis that A be two-spherical [23, Prop. 7.31], but
we expect that it is possible to remove this hypothesis; in fact, already Kac
and Peterson had this expectation in [31, Sect. 4G]. If this expectation can be
confirmed, then one can remove the assumption of two-sphericity in Propo-
sition 3.17 and consequently in a number of results below. Our suggested
approach towards proving the conjecture makes use of an unfolding argument
as described in [21, Def. 1.10] that is very likely to allow one to embed an arbi-
trary symmetrizable split real Kac–Moody group G as a closed subgroup into
a simply laced split real Kac–Moody group G′ in such a way that the RGD
systems are compatible with one another (see also [45, Thm. E]). The fact
that [23, Prop. 7.31] applies to the ambient simply-laced Kac–Moody group G′

should allow one to prove the analog statement for the original Kac–Moody
group G via (co)restrictions of the multiplication map.

Note here that (co)restrictions of open maps of course frequently fail to be
open. However, since one is dealing with a bijection in this situation, one can
as well establish the continuity of the inverse map, a property that behaves
very well under (co)restrictions.
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3.19. The Cartan–Chevalley involution and the twist map. Each of
the standard rank one subgroups (P)SL2(R)

∼= Gi < G admits a continuous
involution θi induced by g 7→ (g−1)T . By [7, Sect. 8.2] (also [33, Sect. 2]), for
suitable choices of the given isomorphisms (P)SL2(R)

∼= Gi these involutions θi
extend uniquely to an involution θ : G → G, called the Cartan–Chevalley
involution of G.

The fixed point set of θ is denoted by

K := Gθ = {k ∈ G | θ(k) = k}.
Since θ is continuous by [23, Lem. 7.20], the group K is a closed subgroup of G
and therefore a kω-topological group (cp. [14, p. 118]).

Proposition 3.20. The extended Weyl group W̃ introduced in Section 3.13 is
contained in NK(T ) < K.

Proof. For i ∈ {1, . . . , n},

s̃αi
:= ϕi

(
0 1
−1 0

)
∈ Gθii < K,

and these generate W̃ . Hence W̃ < K. Moreover, we have seen in Section 3.13

that W̃ normalizes T , and hence W̃ ⊂ NK(T ) as claimed. �

We will actually see that W̃ = NK(T ) in Corollary 3.28 below.

Lemma 3.21. The Cartan–Chevalley involution stabilizes T and maps U+

to U−. In particular, θ(B+) = B−.

Proof. This follows from the observation that on each of the rank one sub-
groups, θ preserves the diagonal subgroup and interchanges the groups

Uαi
= ϕi

({(
1 t
0 1

) ∣∣∣∣ t ∈ R

})
and U−αi

= ϕi

({(
1 0
t 1

) ∣∣∣∣ t ∈ R

})
,

as desired. �

Proposition 3.22. The Cartan–Chevalley involution preserves C and hence
induces a continuous involution θ of G, which stabilizes T and maps B+ to B−.

Proof. Let dθ : g → g be the involution of g which on the rank one subal-
gebras gi ∼= sl2(C) is given by X 7→ −X∗. This satisfies dθ(gα) = g−α (cp.
[30, p. 7]) for every root α, and in particular preserves ker(αi) ⊂ h for every
i ∈ {1, . . . , n}. It thus follows from the definition of c in (35) on page 98 that
the latter is dθ-invariant. Since expC intertwines dθ and θ (the latter consid-
ered as an automorphism of GC(A)), it follows that θ preserves C. The other
statements now follow from Lemma 3.21. �

Note that the image of K in G is equal to K := G
θ
, as both groups are

generated by the panel stabilizers

Gi
θ
T
θ
, 1 ≤ i ≤ n

(cp. [12, Thm. 1.2]).
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Let us recall and adjust to our setting some of the notions introduced in
[53, Sect. 2]; see also [25, Sect. 6] and [34, Sect. 5].

Definition 3.23. Let G = GR(A) be the simply connected split real Kac–
Moody group of type A, let θ be its Cartan–Chevalley involution, let G be
the semisimple adjoint quotient of G, and let θ be the involution of G induced
by θ.

(i) The maps

G×G → G, (g, x) 7→ g ∗ x := gxθ(g)−1

and

G×G → G, (g, x) 7→ g ∗ x := gxθ(g)−1

are called the twisted conjugation maps of G and G, respectively.
(ii) The twist maps of G and G are the respective continuous maps

τ : G → G, g 7→ g ∗ e = gθ(g)−1

and

τ : G → G, g 7→ g ∗ e = gθ(g)−1.

Note that twisted conjugation defines a left-action of G on itself since

g ∗ (h ∗ x) = g ∗ (hxθ(h)−1) = ghxθ(h)−1θ(g)−1 = (gh)xθ(gh)−1 = (gh) ∗ x,
while τ is an orbit map of this group action; a similar statement holds for G.
The following lemma summarizes various basic properties of the twist map.

Lemma 3.24. (i) For g ∈ τ(G) one has θ(g) = g−1 and τ(g) = g2.
(ii) For g, h ∈ G one has τ(gh) = g ∗ τ(h).
(iii) τ−1(e) = K.
(iv) For g, h ∈ G one has gK = hK ⇐⇒ τ(g) = τ(h) ⇐⇒ τ(h−1g) = e.
(v) For every S ⊆ G one has τ−1(τ(S)) = SK.
(vi) τ factors through G/K, yielding a surjective map

τ̂ : G/K → τ(G), gK 7→ τ(g).

Analogous statements hold for G instead of G.

Remark 3.25. In fact, Definition 3.23 makes sense for an arbitrary group G
with involution θ ∈ Aut(G), and Lemma 3.24 remains valid in this generality
for K := Gθ. In this broader context, one sees that the twist map from
Definition 3.23 can be considered as a non-Galois version of the famous Lang
map from [39, Sect. 2].

Furthermore, even in the case of real Kac–Moody groups there exist involu-
tions θ different from the Cartan–Chevalley involution that lead to symmetric
spaces G/Gθ worthwhile of further study; we refer to [34] and [20] for a discus-
sion of abstract involutions of Kac–Moody algebras and Kac–Moody groups
that might provide a starting point for studying these more general Kac–Moody
symmetric spaces.
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Proof of Lemma 3.24. (i) For g = hθ(h)−1 ∈ τ(G) one computes

θ(g) = θ(h)θ(θ(h)−1) = θ(h)h−1 = g−1

and

τ(g) = hθ(h)−1θ(hθ(h)−1)−1 = (hθ(h)−1)2 = g2.

(ii) One has τ(gh) = gh ∗ e = g ∗ (h ∗ e) = g ∗ τ(h).
(iii) For g ∈ G one has

τ(g) = e ⇐⇒ gθ(g)−1 = e ⇐⇒ g = θ(g) ⇐⇒ g ∈ K.

(iv) One computes

gK = hK ⇐⇒ ∃k ∈ K : g = hk

=⇒ τ(g) = τ(hk) = τ(h)

=⇒ gθ(g)−1 = hθ(h)−1

=⇒ h−1g = θ(h)−1θ(g) = θ(h−1g)

=⇒ h−1g ∈ K

=⇒ gK = hK.

Moreover, by (iii), one has h−1g ∈ K ⇐⇒ τ(h−1g) = e.
(v) Let B := τ(S). Then

x ∈ τ−1(B) ⇐⇒ τ(x) ∈ B

⇐⇒ ∃s ∈ S : τ(x) = τ(s)

⇐⇒ ∃s ∈ S : xK = sK

⇐⇒ x ∈ SK.

(vi) follows from (v). �

Concerning the statement of the following lemma we, recall that M is
the torsion subgroup of T , that A is the identity component of T , and that
T = MA ∼= M ×A.

Lemma 3.26. (i) τ(t) = t2 for all t ∈ T .
(ii) A = τ(T ) = τ(A).
(iii) B± ∩K = T ∩K = M and A ∩K = {e}.

Proof. The key observation is that T is the direct product of the diagonal
subgroups Ti ∼= R× in Gi, and on each of the Ti the involution θ acts by
inversion. In particular, τ(t) = tθ(t)−1 = t2 for all t ∈ Ti, whence (i) follows.
Since the set of squares in R× is given by R>0, and every element in R>0 has
a positive square root, (ii) follows from (i). Concerning (iii), observe first that if
g ∈ B±∩K, then θ(g) = g. Since θ(B±) = B∓, this implies g ∈ B+∩B− = T ,
so B± ∩K = T ∩K. Now let t ∈ T and write t = ma with a ∈ A ∼= (R×)n,
m ∈ M = (Z/2Z)n (see Definition 3.8). Then τ(t) = m2a2 = a2, and thus
τ(t) = e if and only if a = e, as A is torsion-free. Hence T ∩ K = M and
A ∩K = {e} by Lemma 3.24 (iii). �
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In the following proof, we use the abstract Iwasawa decomposition G =
KB± = KU±T = U±TK (cp. [12]). While we will in short order actually
refine this (see Theorem 3.31), the next lemma only needs this basic form.

Lemma 3.27. (i) NG(T ) ∩ τ(G) = A.
(ii) NG(T ) = A⋊NK(T ).

Proof. (i) By Lemma 3.26, one has A = τ(T ) ⊂ NG(T ) ∩ τ(G). It remains to
show the other inclusion. Let g ∈ NG(T )∩ τ(G). Since g ∈ τ(G) = τ(U+TK),
there exist u ∈ U+, t ∈ T and k ∈ K such that

g = τ(utk) = τ(ut) = ut2θ(u)−1 ∈ U+t
2U−.

Since also g ∈ NG(T ), the refined Birkhoff decomposition (see Lemma 3.15)
yields g = t2 ∈ τ(T ) = A as claimed.

(ii) First show that NG(T ) = NK(T )T . Indeed, the inclusion ⊇ is clear.
Let g ∈ NG(T ). By the Iwasawa decomposition, there exist u ∈ U+, t ∈ T and

k ∈ K such that g = kut. As T = T g, one concludes T k
−1

= T u and therefore

T u = T k
−1

= θ(T k
−1

) = θ(T u) = T θ(u) =⇒ τ(u) = uθ(u)−1 ∈ NG(T ).

But by (i) one has τ(u) ∈ A, and hence by the refined Birkhoff decomposition,
u = 1. Thus T k = T . Hence k ∈ NK(T ) and g = kt ∈ NK(T )T as claimed.

Furthermore, one has T = MA, and by Lemma 3.26 also M = K ∩ T ⊂
NK(T ). Hence NG(T ) = NK(T )T = NK(T )MA = NK(T )A. Since A ⊂ T is
normalized by NK(T ) and A ∩NK(T ) ⊂ A ∩K = {e} (see Lemma 3.26), one
arrives at NG(T ) = A⋊NK(T ). �

As an application of the previous lemma one can now concretely identify the
extended Weyl group W̃ , which was introduced in Subsection 3.13 by means
of a set of generators.

Corollary 3.28. The extended Weyl group satisfies W̃ = NK(T ), its image
in G is given by NK(T ).

Proof. By Proposition 3.20 one has W̃ < NK(T ). Towards the opposite inclu-
sion recall from Subsection 3.13 that the canonical surjection π : NG(T ) →
NG(T )/T is still surjective when restricted to W̃ and that W̃ ∩ T = M , the
torsion subgroup of T . Since W̃ < NK(T ), the first assertion implies that
π(NK(T )) = NG(T )/T = π(W̃ ); by the second assertion it suffices to show
that ker(π|NK(T )) = M . Now by Lemma 3.27 one has

NG(T )/T = (A⋊NK(T ))/(A×M) ∼= NK(T )/M,

where the isomorphism is induced by the inclusion NK(T ) →֒ NG(T ). Thus
ker(π|NK(T )) = M , which proves the first statement, and the second statement
follows from the first one. �

The following technical observation depends heavily on the language of twin
buildings. We refer to [1, Sect. 5.8 and 6.3] and [28] for the necessary back-
ground information. Note that the automorphism θ of G acts on the twin
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building ∆ by Proposition 6.4 below. A twin apartment of ∆ is called θ-stable
if it is invariant as a set under the action of θ.

Lemma 3.29 ([28, Lem. 4.2]). Suppose g ∈ G is symmetric, i.e., θ(g) = g−1.
Then the following assertions concerning the action of g on the twin building
of G are equivalent:

(i) g fixes a θ-stable twin apartment chamber-wise.
(ii) g fixes a twin apartment chamber-wise.
(iii) g fixes an apartment chamber-wise.
(iv) g stabilizes a chamber.
(v) g has a bounded (with respect to the gallery metric) orbit.
(vi) g stabilizes a spherical residue. �

3.30. The topological Iwasawa decomposition. The goal of this subsec-
tion is to prove the following decomposition results for G and G. For this, we
use the topological structure of these groups as well as the twin buildings ∆±

as discussed in Section 3.14.

Theorem 3.31 (Topological Iwasawa decomposition). Let G = GR(A) be
the simply connected split real Kac–Moody group of type A and let G be its
semisimple adjoint quotient.

(i) K ∩ B± = M and K ∩ B± = M . In particular, the center of G is
contained in K.

(ii) Multiplication induces continuous bijections m1 : U± × A × K → G,
m2 : K×A×U± → G and homeomorphisms m1 : U±×A×K → G and
m2 : K ×A× U± → G.

(iii) The action of K on both halves of the twin building factors through K,
which acts transitively on both halves of the twin building. Moreover,
∆±

∼= K/M , where K/M carries the quotient topology.

Proof of Theorem 3.31, discrete version. First establish the results concern-
ing G. Assertion (i) follows from Lemma 3.26. Concerning (iii), recall from [12]
that G = KB±. In particular, K acts transitively on ∆±.

Now consider the map m1 from (ii). Since B± = MAU± and G = KB±, one
has G = KMAU± = KAU±, i.e., m1 is surjective. Injectivity of m1 follows
from B± ∩K = M , so that m1 is a bijection. Since inversion intertwines m1

and m2, it follows that also m2 is bijective, establishing the discrete part of
Theorem 3.31 for G.

Concerning G, since the action of K on ∆± factors through K, the latter
acts transitively on ∆±, i.e., G = K B±. The fact K ∩ B± = M < T implies
K ∩ B± = M < T . In particular, ∆±

∼= K/M as sets. This in turn implies
bijectivity of m1 by the same argument used to show bijectivity of m1 and,
thus, also of m2. The statement about the center of G follows from Proposi-
tion 3.17 (ii). �

Remark 3.32. Note that the automorphism θ ofG acts on the twin building ∆
by Proposition 6.4 below. An immediate consequence of the transitive action
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of K resp. K on the chambers of ∆± therefore is that every chamber c ∈ ∆±

is opposite its image θ(c) ∈ ∆∓. Thus they define a unique θ-stable twin
apartment.

Before turning to the topological version of the theorem, recall some basic
facts about kω-spaces; cp. [14].

Definition 3.33. A Hausdorff topological space X is called a kω-space, if it is
the direct limit of an increasing family of compact subspaces (Xn)n∈N, i.e., if
X =

⋃
nXn and a subset Y of X is open in X if and only if each intersection

Y ∩ Xn is open in Xn; the increasing family (Xn)n∈N is called a kω-sequence
for X and the pair (X, (Xn)) is called a kω-pair .

Lemma 3.34. Let (X, (Xn)) and (Y, (Yn)) be kω-pairs and let f : X → Y be
a continuous bijection such that

∀n ∈ N ∃m ∈ N : f(Xm) ⊃ Yn.

Then (f(Xn)) is a kω-sequence for Y and f is a homeomorphism.

Proof. Since Y is Hausdorff, the sets f(Xn) are compact. Hence by [14, Ass. 7,
p. 114] for every n ∈ N there exists m ∈ N such that f(Xn) ⊂ Ym. The
hypothesis therefore implies that the sequences (f(Xn)) and (Yn) define the
same limit topology on Y , i.e., (f(Xn)) is a kω-sequence for Y . Now for
each n the map f : Xn → f(Xn) is a homeomorphism, and hence f yields
a homeomorphism

f : X = lim
→

Xn → lim
→

f(Xn) = Y. �

Lemma 3.35. Let (X, (Xn)) be a kω-pair and let π : X̃ → X be a finite-sheeted

covering. Then (X̃, π−1(Xn)) is a kω-pair.

Proof. Since π is a finite-sheeted covering, it is proper and, hence, X̃n :=

π−1(Xn) is compact for every n ∈ N. Now let x̃ ∈ X̃ and x := π(x̃). Then

there exist open neighborhoods Ṽ of x̃ and V of x such that π restricts to

a homeomorphism Ṽ → V . Now let Ũ be a subset of X̃ containing x̃ and

U := π(Ũ) Then one has the following chain of equivalences:

Ũ is a neighborhood of x̃

⇐⇒ Ũ ∩ Ṽ is a neighborhood of x̃

⇐⇒ U ∩ V is a neighborhood of x

⇐⇒ U ∩ V ∩Xn is a neighborhood of x for all sufficiently large n ∈ N

⇐⇒ Ũ ∩ Ṽ ∩ X̃n is a neighborhood of x̃ for all sufficiently large n ∈ N

⇐⇒ Ũ ∩ X̃n is a neighborhood of x̃ for all sufficiently large n ∈ N.

This shows in particular that a subset of X̃ is open if and only if its intersection

with X̃n is open for all sufficiently large n ∈ N. We deduce that (X̃, (X̃n)) is
a kω-pair. �
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Let ∆± = G/B± denote one half of the twin building ∆. Recall from
Proposition 3.17 (iv) that B+ has the decomposition B+ = M AU+, where

M = K ∩ B+ is a finite group. Denote by ∆̃± the quotient G/AU±. Then
the canonical projections

(9) π± : ∆̃± → ∆±

are finite-sheeted covering maps with fiber M .

Proposition 3.36. The maps

ι± : K → ∆̃±, k 7→ kAU±

are homeomorphisms.

Proof. It follows from the abstract Iwasawa decomposition that ι± are contin-
uous bijections. Let

G
±

k :=
⋃

w∈W, l(w)≤k

B±wB±,

denote by ∆̃k,± and ∆k,± the respective image of G
±

k in ∆̃± and ∆±, and let
K

±

k := K ∩G±
k . Then by [23, Cor. 7.11] and the observation that direct limits

commute with quotients one has

(10) G = lim
→

G
±

k ,

and, thus,

K = lim
→

K
+

k .

The subsets K
±

k ⊂ K are compact: Indeed, by [12, Thm. 1.2] K
±

k equals the
finite union of products of the formMKα1 · · ·MKαk

, whereM = T∩K is finite
(see Lemma 3.26) and each Kαi

∼= SO2(R) is compact. Since multiplication is
continuous and K is Hausdorff, this implies that K

±

k are compact, and hence
(K, (K

±

k )) is a kω-pair.
By the discrete version of Theorem 3.31, the group K acts transitively

on ∆̃± and one has ι±(K
±

k ) = ∆̃k,±. In particular, the spaces ∆̃k,± are com-
pact. Therefore, (∆̃±, (∆̃k,±)) is a kω-pair and the proposition follows from
Lemma 3.34. �

Proof of Theorem 3.31. Assertion (i) has already been proved for the discrete
version of the theorem. Concerning (iii), the finite-sheeted coverings

π± : ∆̃± → ∆±

from (9) are continuous and open. By Proposition 3.36 this implies that the
orbit maps K 7→ ∆± are continuous and open, and hence ∆±

∼= K/M as
topological spaces as claimed.

In order to prove (ii), it is clear that the maps under consideration are con-
tinuous since they are induced by the group multiplication. It thus remains
to show that m2, and hence m1, are open. Given g ∈ G, define k(g) :=
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ι−1
± (gAU±), where ι± is as in Proposition 3.36, and let b(g) := k(g)−1g.

Since ι± is open and G is a topological group, one obtains a continuous map

i± : G → K ×AU±, g 7→ (k(g), b(g))

such that g = k(g)b(g). This map is inverse to the multiplication map

m : K ×AU± → G,

showing that m is a homeomorphism. It remains to see that the multiplication
map A×U± → AU± is open; this however follows from [23, Prop. 7.27]. This
finishes the proof of Theorem 3.31. �

3.37. The image of the twist map. The goal of this subsection is to under-
stand the images of the twist maps inside their ambient groups.

Proposition 3.38. K ∩ τ(G) = {e} and K ∩ τ(G) = {e}.

Proof. Suppose g ∈ K∩τ(G). Then g = θ(g) = g−1 by Lemma 3.24 (i), so g has
order 1 or 2. Hence its orbits are bounded, and so by Lemma 3.29 it stabilizes
a chamber c in the twin building of G. But then also θ(c) = θ(g.c) = g.θ(c),
so g fixes chamber-wise the (unique) θ-stable twin apartment containing the
two opposite chambers c and θ(c) and, thus, is contained in the corresponding
θ-split torus T ′ of G (where θ-split means that θ leaves T ′ invariant and acts
via inversion on T ′). Since K = Gθ acts transitively on each half of the twin
building, there exists k ∈ K with kT ′ = T . Thus k ∗ g = kg ∈ T ∩ τ(G) ∩K
and, by Lemma 3.27, in fact kg ∈ A . But then kg ∈ A ∩K = {e}, and hence
g = e, i.e., K ∩ τ(G) = {e}.

Similarly, one proves K ∩ τ(G) = {e}. �

Proposition 3.39. The group G (respectively G) is generated by its sub-
set τ(G) (respectively τ (G)).

Proof. The map τ preserves each of the fundamental rank one subgroups
Gi ∼= (P)SL2(R). A simple computation in (P)SL2(R) shows that τ(Gi) gen-
erates Gi (the matrix group SL2(R) is generated by the set of positive definite
symmetric matrices). Thus 〈τ(G)〉 ≤ G contains each of the fundamental rank
one subgroups, whence it coincides with G. The proof for G is the same. �

Proposition 3.40. The following assertions hold:

(i) τ(G) = τ(U+A) = U+ ∗A and τ(G) = τ (U+A) = U+ ∗A.
(ii) τ(G) ⊂ U+AU− ⊂ G and τ (G) ⊂ U+AU− ⊂ G; more precisely,

τ(G) = {u+au− ∈ U+AU− | u− = θ(u+)
−1},

τ(G) = {u+au− ∈ U+AU− | u− = θ(u+)
−1}.

(iii) Every g ∈ τ(G) (respectively g ∈ τ(G)) can be written as g= τ(u1 · · ·umt)
with t ∈ A (respectively t ∈ A) and ui ∈ Uβi

(respectively ui ∈ Uβi
) for

some βi ∈ Φ+.
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(iv) If the generalized Cartan matrix A is two-spherical, then every g ∈ τ(G)
(respectively g ∈ τ(G)) can be written as g = τ(u1 · · ·umt) with t ∈ A
(respectively t ∈ A) and ui ∈ Uβi

(respectively ui ∈ Uβi
) for some βi ∈ Π.

Proof. By the Iwasawa decomposition (see Theorem 3.31), every g ∈ G can
be written as g = uhk with u ∈ U+, h ∈ A and k ∈ K. Then x := τ(g) =
τ(uh) = u ∗ τ(h) by Lemma 3.24. Now τ(A) = A by Lemma 3.26, and hence
τ(G) = U+ ∗A. Assertion (i) follows.

If u+ ∈ U+ and h ∈ A, then τ(u+h) = u+ ∗ τ(h) = u+h
2θ(u+)

−1 by
Lemma 3.26. Moreover, h2 ∈ A and θ(u+)

−1 ∈ U− by Lemma 3.21. Thus (ii)
follows from (i) and the fact that every element of A has a square root in A.

Finally, since A normalizes U+, it follows from (i) that τ(G) = τ(U+A) =
τ(AU+). Then (iii) and (iv) follow from the fact that U+ is generated by the
(Uα)α∈Φ+ (see [1, Thm. 8.84]) and even by the (Uα)α∈Π in the two-spherical
case (see [13, Cor. 1.2] and note from its proof that two-sphericity suffices
for the generation result, only the validity of the given presentation requires
three-sphericity).

The proofs for G are similar. �

It follows from Proposition 3.40 and continuity of θ that the map

(11) h : U+ ×A → τ(G), (u+, h) 7→ u+hθ(u+)
−1.

is a continuous bijection. We do not currently know whether it is always
a homeomorphism. This problem is closely related to the problem whether the
continuous bijection m : U+ ×A×U− → U+AU− is always a homeomorphism
(as is the case if A is two-spherical by Proposition 3.17 (vi), but probably holds
in much greater generality as discussed in Remark 3.18).

Corollary 3.41. If the map m : U+×A×U− → U+AU− is a homeomorphism,
then the continuous bijection h : U+×A → τ(G) from (11) is a homeomorphism
whose inverse is given explicitly by

h−1 : τ(G) →֒ U+AU−
m−1

−−−→ U+ ×A× U− → U+ ×A,

where the first map is the inclusion and the last map is the canonical projection
that forgets the last component. In particular, this holds if A is two-spherical.

Proof. Since h is a continuous bijection, only its openness remains to show. It
is immediate from the definitions that h−1 ◦ h is the identity. Hence h−1 is
indeed the inverse of h and openness of h is equivalent to continuity of h−1,
which follows from continuity of m−1. �

The same argument also shows that there is a homeomorphism

τ (G) → U+ ×A,

given by the same formula.
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4. Models for Kac–Moody symmetric spaces

4.1. Topological symmetric spaces from involutions. Let G be an arbi-
trary topological group, let θ ∈ Aut(G) be a continuous involution and let
K = Gθ. In this generality one can introduce a twist map

τ : G → G,

g 7→ gθ(g)−1

as in Definition 3.23, which will satisfy the properties described in Lemma 3.24.
Since θ is continuous, K is a closed subgroup of G. Thus G/K is a Hausdorff
topological space with respect to the quotient topology. Using the involution θ
and the associated twist map τ , one defines a multiplication map

µ : G/K ×G/K → G/K,(12)

(gK, hK) 7→ τ(g)θ(h)K.

Note that µ is continuous since τ , θ and the group multiplication are.

Proposition 4.2. If

(13) K ∩ τ(G) = {e},
then the pair (G/K, µ) is a topological symmetric space and the natural action

G → Sym(G/K),

g 7→ (aK 7→ gaK)

is by automorphisms.

Proof. For a, b, c ∈ G one computes:

µ(aK, aK) = τ(a)θ(a)K = aK,(RS1)

µ(aK, µ(aK, bK)) = µ(aK, τ(a)θ(b)K) = τ(a)θ(τ(a)θ(b))K = bK,(RS2)

µ(aK, µ(bK, cK)) = µ(aK, τ(b)θ(c)K)(RS3)

= τ(a)θ(τ(b)θ(c))K

= τ(a)θ(b)b−1θ(θ(c))K

= τ(a)θ(b)b−1τ(a)θ(τ(a)θ(c))K

= τ(τ(a)θ(b))θ(τ(a)θ(c))K

= µ(τ(a)θ(b)K, τ(a)θ(c)K)

= µ(µ(aK, bK), µ(aK, cK)),

µ(aK, bK) = bK ⇐⇒ τ(a)θ(b)K = bK(RS4)

⇐⇒ b−1aθ(a)−1θ(b) = τ(b−1a) ∈ K

(13)⇐⇒ τ(b−1a) = e

⇐⇒ τ(a) = τ(b)

⇐⇒ aK = bK.
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Since µ is continuous, this establishes that (G/K, µ) is a topological symmetric
space. The second statement follows from the fact that for a, b, g ∈ G one has

µ(gaK, gbK) = τ(ga)θ(gb)K = gτ(a)θ(g)−1θ(g)θ(b)K = gµ(aK, bK). �

4.3. Reduced and unreduced Kac–Moody symmetric spaces. We are
now ready to associate symmetric spaces with a large class of Kac–Moody
groups. We choose to work in the following general setting.

Convention 4.4. The matrix A ∈ Mn(Z) denotes a generalized Cartan
matrix of size n × n and rank l ≤ n, subject to the restrictions given in
Convention 3.5. That is, A is assumed to be irreducible and symmetrizable.

The group G := GR(A) denotes the associated simply connected centered
split real Kac–Moody group, and G denotes its semisimple adjoint quotient; cp.
Definition 3.8. Furthermore, θ and θ denote the Cartan–Chevalley involutions
on G and G, respectively, and K and K denote their respective fixed point
groups.

Recall from Proposition 3.38 that K ∩ τ(G) = {e} and K ∩ τ (G) = {e}. It
thus follows from Proposition 4.2 that both G/K and G/K carry the structure
of a topological symmetric space given by

(gK, hK) 7→ µ(gK, hK) = τ(g)θ(h)K.

Definition 4.5. (i) (G/K, µ) is called the unreduced Kac–Moody symmet-
ric space associated with A.

(ii) (G/K, µ) is called the reduced Kac–Moody symmetric space associated
with A.

If A is invertible, then by Proposition 3.12 (i) both versions of the Kac–
Moody symmetric space coincide; in this case they are referred to as the Kac–
Moody symmetric space associated with A. In general, however, these two
spaces behave quite differently. Note that G/K = Ad(G)/Ad(K) since the
center ofG is contained inK by Theorem 3.31 (i), i.e., the three different groups
G, G and Ad(G) do not lead to a third version of a Kac–Moody symmetric
space.

A first observation is that the unreduced Kac–Moody symmetric space
(G/K, µ) fibers over the reduced Kac–Moody symmetric space with fiber En−l.

Proposition 4.6. (i) The canonical projection πA : G/K → G/K is a mor-
phism of topological reflection spaces.

(ii) The fiber π−1
A (eK) is isomorphic to En−l as a topological reflection space.
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Proof. (i) Denote the projection G → G by g 7→ [g] so that πA is given by
πA(gK) = [g]K. Then for all g, h ∈ G one has

πA(gK) · πA(hK) = [g]K · [h]K
(12)
= τ ([g])θ([h])K

= [τ(g)θ(h)]K

= πA(τ(g)θ(h)K)

= πA(gK · hK).

(ii) By definition, π−1
A (eK) = CK/K ∼= C/(C ∩K) ∼= (R>0)

n−rk(A), where
the second isomorphism follows from Proposition 3.12 and Lemma 3.26 (iii).
One can parametrize this fiber via

ϕo : c ∩ a → C/(C ∩K), X 7→ exp(X)(C ∩K).

By endowing the vector space c∩a with its Euclidean reflection space structure,
this map becomes an isomorphism of reflection spaces. Indeed, if X,Y ∈ c∩ a,
then

ϕo(X) · ϕo(Y ) = exp(X)(C ∩K) exp(Y )(C ∩K)

= τ(exp(X))θ(exp(Y ))(C ∩K)

= exp(X)2 exp(Y )−1(C ∩K)

= exp(2X − Y )(C ∩K)

= ϕo(X · Y ).

Thus the parametrization is an abstract isomorphism of reflection spaces and,
in fact, a topological isomorphism by Proposition 3.11. �

Lemma 4.7. The kernel of the action of G on G/K equals the centralizer
CK(G) of G in K and the kernel of the action of G on G/K equals the center
Z(G) of G.

Proof. Since CK(G) < K, it acts trivially on G/K: for all g ∈ CK(G) and
a ∈ G one has gaK = agK = aK. On the other hand, if g ∈ G acts trivially
on G/K, then for all h ∈ G one has ghK = hK. In particular, gK = K, i.e.,
g ∈ K and, thus, θ(g) = g. Lemma 3.24 implies

hgh−1 ∈ K =⇒ τ(h−1gh) = e

=⇒ h−1 ∗ τ(gh) = e

=⇒ g ∗ τ(h) = h ∗ e
=⇒ g ∗ τ(h) = τ(h)

=⇒ gτ(h)g−1 = τ(h).

Thus g centralizes τ(G). Since τ(G) generates G (see Proposition 3.39), the
element g therefore centralizes G, i.e., g ∈ CK(G). The same argument shows
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that g ∈ G acts trivially on G/K if and only if g ∈ CK(G) = Z(G) (cp.
Theorem 3.31 (i)). �

Definition 4.8. Define

Geff := G/CK(G).

By Lemma 4.7 the group Geff then acts effectively (i.e., faithfully) on G/K.
Similarly, Ad(G) = G/Z(G) acts effectively on G/K.

Remark 4.9. By the topological Iwasawa decomposition Theorem 3.31 there
exists a homeomorphism

U+ ×A → G/K, (u, a) 7→ uaK.

This allows one to define the structure of a topological symmetric space on
U+ × A by transporting the multiplication map via this homeomorphism.
Unfortunately, at the moment we do not know of any good way of describ-
ing this induced multiplication map intrinsically, nor do we have an intrinsic
description for the induced G-action on U+ ×A.

The key problem is to derive a formula of how to decompose a product
(k1a1u1)(k2a2u2) with respect to K ×A× U+. In the finite-dimensional situ-
ation this is achieved in [36].

4.10. Reflections, transvections and reflection-homogeneity. Since θ
stabilizes both CK(G) and K, it induces an involutive automorphism of Geff

and an involutive permutation θ : G/K → G/K via θ(gK) := θ(g)K. Defining
the basepoint of G/K as o := eK, one in fact has so(gK) = τ(e)θ(g)K =
θ(gK), i.e., θ coincides with the point reflection so of the symmetric space
G/K at o. In particular, one obtains a subgroup

Geff ⋊ 〈θ〉 < Aut(G/K, µ).

Similarly, by Proposition 3.22 the Cartan–Chevalley involution θ induces
an involution θ : G → G which in turn yields an involutive automorphism
θ : G/K → G/K and a subgroup

Ad(G) ⋊ 〈θ〉 < Aut(G/K, µ),

where θ corresponds to the point reflection at o := eK.

Proposition 4.11. (i) The set of point reflections of G/K (respectively
G/K) equals the conjugacy class of so (respectively so) in Geff ⋊ 〈θ〉
(respectively Ad(G)⋊ 〈θ〉).

(ii) The set of transvections of G/K (resp. G/K) is given by τ(G)2CK(G)
(resp. τ (G)2Z(G)), where τ(G)2 = τ(G)τ(G) (and analogously for τ (G)).

(iii) The respective transvection groups of G/K and G/K are

Trans(G/K, µ) = Geff and Trans(G/K, µ) = Ad(G).
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The main groups of G/K and G/K are respectively given by

G(G/K, µ) = Geff ⋊ 〈θ〉 and G(G/K, µ) = Ad(G)⋊ 〈θ〉.

(iv) G/K and G/K are reflection-homogeneous.

Proof. For g, h ∈ G one has

sgK(hK) = µ(gK, hK)(14)

= τ(g)θ(h)K

= gθ(g)−1θ(h)K

= gθ(g−1h)K

= (gCK(G) ◦ so ◦ g−1CK(G))(hK)

= (gCK(G) ◦ θ ◦ g−1CK(G))(hK),

i.e., sgK is conjugate to so via gCK(G) ∈ Geff . Furthermore, observe that for
g ∈ G one has

(15) sgK ◦so = gCK(G)◦so ◦g−1CK(G)◦so = gθ(g)−1CK(G) = τ(g)CK(G).

Given g, h ∈ G, therefore

sgKshK = (sgKso)(shKso)
−1 = τ(g)τ(h)−1CK(G) = τ(g)τ(θ(h))CK (G),

whence the transvections are exactly the elements of

τ(G)2CK(G) ⊃ τ(G)CK (G).

The other claims concerning G now follow readily, using Proposition 3.39 and
Lemma 2.9. The claims concerning G are shown analogously. �

4.12. Models for Kac–Moody symmetric spaces. Recall from Section 2.1
that every reflection-homogeneous symmetric space can be realized as a subset
of its main group (the “involution model” from Lemma 2.9) and as a subset
of its transvection group (the “quadratic representation” from Remark 2.10)
with suitably defined multiplications.

In view of Example 2.8 and Proposition 4.11 the involution model of the
reflection-homogeneous symmetric space (G/K, µ) is given by the pair (X , µ̂)
where

X := {gθ ∈ Geff ⋊ 〈θ〉 | g ∈ Geff ⋊ 〈θ〉}
and

µ̂ : X × X → X , (α, β) 7→ αβα.

The map

π : G → X , g 7→ gθ = gCK(G) ◦ θ ◦ g−1CK(G)

by (14) factors through π̂ : G/K → X , which is an isomorphism of reflection
spaces.
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The quadratic representation of G/K depends on the choice of a basepoint
o ∈ G/K. For o = eK, by Proposition 4.11 the quadratic representation is
given by the map

t : G/K → Geff , gK 7→ sgK ◦ so.
By (15) one has sgK ◦ so = τ(g)CK(G). Thus the image T = T (G/K, µ, o) ⊂
Trans(G/K, µ) of the quadratic representation of G/K is given by the im-
age of τ(G) in Geff , and the product on T is given by m̃(s, t) := st−1s
by Remark 2.10. Note that τ induces an isomorphism of reflection spaces
(G/K, µ) → (T , m̃).

By definition, the canonical projection G → Geff restricts to a surjection
τ(G) → T . Since the kernel of the projection G → Geff is contained in K,
it intersects τ(G) trivially by Proposition 3.38. It follows that the projection
τ(G) → T is actually bijective, and so by transport of structure the multipli-
cation

µ̃ : τ(G) × τ(G) → τ(G), µ̃(x, y) = xy−1x

provides a symmetric space such that

(τ(G), µ̃) ∼= (T , m̃) ∼= (G/K, µ).

This symmetric space (τ(G), µ̃) is called the group model of G/K.

The left-multiplication action of G on G/K translates into G-actions on T
and τ(G) by automorphisms. Since t(ghK) = τ(gh)CK(G) = g ∗ τ(h)CK(G),
the induced G-action on τ(G) is given by twisted conjugation. It follows that
the isomorphisms G/K → τ(G) are explicitly given by

τ̂ : G/K → τ(G) : gK = geK 7→ g ∗ τ(e) = τ(g).

Combining the isomorphisms τ̂ : G/K → τ(G) and π̂ : G/K → X , one
also obtains an isomorphism ρ : τ(G) → X making the diagram in Figure 2
commute.

G

G/K τ(G)

X

τ

π

π̂

τ̂

ρ

Figure 2. Isomorphisms between the different models.

By denoting by [h] the image of h ∈ G under the projection G → Geff , this
isomorphism is explicitly given as follows.
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Lemma 4.13. Let ρ : τ(G) → X , h 7→ [h]θ. Then ρ makes the diagram in
Figure 2 commute. In particular, it is an isomorphism of reflection spaces.

Proof. It suffices to check that ρ ◦ τ = π. For this one computes

ρ ◦ τ(g) = ρ(gθ(g)−1) = [gθ(g)−1]θ = [g]θ[g]−1. �

Remark 4.14. For each of the three models of the unreduced symmetric space
there is a corresponding model of the reduced symmetric space. The coset
model G/K was already discussed above. The involution model ofG/K is given

by the conjugacy class X of so = θ in Ad(G)⋊ 〈θ〉. Since the latter group can
be embedded as a subgroup into the automorphism groups Aut(G) < Aut(∆)
of the group G and5 its twin building ∆, one can consider X both as a set
of involutions of the group G and of the twin building ∆. In either of these
pictures, the multiplication is given by

µ̂(α, β) = α ◦ β−1 ◦ α.

The group model of G/K is given by (τ (G), µ̃) with multiplication given by

µ̃(x, y) = xy−1x.

As in the unreduced model one has an isomorphism between these models
as depicted in Figure 3. Here the isomorphism ρ : τ(G) → X ⊂ Aut(G) is
given by

(16) ρ(g) = cg ◦ θ,

where cg denotes the inner automorphism defined by g.

G

G/K τ (G)

X

τ

π

π̂

τ̂

ρ

Figure 3. Isomorphisms between the reduced models.

5See Proposition 6.4 below for the fact that Aut(G) embeds into Aut(∆).
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4.15. Comparison of topologies. Sections 4.10 and 4.12 provided three
mutually isomorphic models of the reduced and unreduced Kac–Moody sym-
metric space – the coset models (G/K, µ) and (G/K, µ), the involution models
(X , µ̂) and (X , µ̂), and the group models (τ(G), µ̃) and (τ (G), µ̃).

Convention 4.16. In the sequel we will equip the reflections spaces above with
the quotient topologies with respect to the canonical projections G → G/K
and G → G/K, respectively the maps π and π, respectively the maps τ and τ ,
unless explicitly stated otherwise. We refer to these topologies as the external
topologies on the reflection spaces in question.

Proposition 1.5 from the introduction now is an immediate consequence of
Proposition 4.2, Lemma 4.13 and Remark 4.14.

Corollary 4.17. With the external topologies from Convention 4.16, the reflec-
tion spaces (G/K, µ), (X , µ̂) and (τ(G), µ̃) (respectively (G/K, µ), (X , µ̂) and
(τ (G), µ̃)) are mutually isomorphic topological reflection spaces. �

One may ask whether one can describe the canonical topologies of the coset
and involution model in more intrinsic terms, without reference to the quotient
maps above. We discuss this here for reduced symmetric spaces.

Definition 4.18. (i) The internal topology on τ(G) is defined as the sub-
space topology via the embedding τ(G) →֒ G.

(ii) The internal topology on X is defined as follows: Equip Ad(G) with the
quotient topology with respect to the canonical projection G → Ad(G)
or, equivalently, G → Ad(G). Then equip Ad(G) ⋊ 〈θ〉 with the unique
group topology in which the finite index subgroup Ad(G) is open and
carries the quotient topology just defined. Finally, equip X ⊂ Ad(G)⋊〈θ〉
with the subspace topology.

Proposition 4.19. Equip G/K with its external topology and τ (G) and X
with their internal topologies.

(i) The maps π̂ and τ̂ in Figure 3 are continuous and the map ρ in Figure 3
is a homeomorphism.

(ii) If the multiplication map m : U+ ×A× U− → U+AU− is a homeomor-
phism, then each of the maps π̂, τ̂ and ρ in Figure 3 is a homeomorphism.

(iii) If the multiplication map m : U+ × A × U− → U+AU− is a homeo-
morphism, then the spaces (X , µ̂) and (τ (G), µ̃) are topological reflection
spaces with respect to their internal topologies. Moreover, the internal
and external topologies on these spaces coincide, and they are isomor-
phic as topological reflection spaces to each other and to (G/K, µ).

Proof. By the commuting diagram in Figure 3 it suffices to investigate the
maps τ̂ and ρ.

(i) The map τ̂ is continuous since the twist map is continuous. Similarly,
continuity of ρ follows from formula (16) for ρ in Remark 4.14. It remains to
show that ρ is open. Proposition 3.38 and Theorem 3.31 (i) imply

τ (G) ∩ Z(G) ≤ τ (G) ∩K = {e}.
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One concludes that τ (G) embeds into Ad(G). After identifying τ (G) with
its image in Ad(G), according to (16) the map ρ−1 : X → τ(G) is given by

ψ 7→ ψ ◦ θ−1. Since Ad(G)⋊ 〈θ〉 is a topological group, ρ−1 is continuous, and
hence ρ is open, i.e., a homeomorphism.

From now on we assume that the map m : U+ × A × U− → U+AU− is
a homeomorphism.

(ii) The map τ̂ is continuous since the twist map is continuous. For the open-
ness of τ̂ note that by the topological Iwasawa decomposition (Theorem 3.31)
there is a homeomorphism h1 : U+×A → G/K given by (u+, a) 7→ u+aK. On
the other hand, by Corollary 3.41 there is a homeomorphism h : U+×A → τ (G)
given by h(u+, a) = u+aθ(u+)

−1. It thus suffices to show that the composition

h2 : U+ ×A
h1−→ G/K

τ̂−→ τ (G)
h−1

−−→ U+ ×A

is open. Now τ̂ ◦ h1(u+, a) = u+a
2θ(u+)

−1 and, hence, h2(u+, a) = (u+, a
2).

Now openness of h1, and hence of τ̂ , follows from the fact that the map A → A,
a 7→ a2 is open.

(iii) This is immediate from (ii) and Corollary 4.17. �

Note that the assumption in (ii) and (iii) is satisfied in the two-spherical case,
but probably holds more generally (see Remark 3.18). In order to establish
a version of the proposition for unreduced Kac–Moody symmetric spaces, one
would need to extend the topological Iwasawa decomposition to the unreduced
case.

5. Flats and geodesics in Kac–Moody symmetric spaces

Throughout this section G denotes a simply connected centered split real
Kac–Moody group of irreducible symmetrizable type, the group G denotes
its semisimple adjoint quotient, and Ad(G) its adjoint quotient. Moreover,
∆ = ∆− ⊔ ∆+ denotes the twin building associated to the RGD systems of
these groups.

The purpose of this section is to investigate the flats of the Kac–Moody
symmetric spaces G/K and G/K.

5.1. Standard flats. We start by constructing explicit examples of Euclidean
flats in Kac–Moody symmetric spaces. We will see in Theorem 5.17 below that
these are exactly the maximal flats. Recall from Proposition 3.11 (i) that we
have homeomorphisms exp : a → A and exp : a → A.

Proposition 5.2. Equip a (resp. a) with its Euclidean reflection space struc-
ture. Then for every g ∈ G (resp. g ∈ G) the map

ϕg : a → gAK, X 7→ g exp(X)K (resp., ϕg : a → gAK, X 7→ g exp(X)K)

is an isomorphism of topological reflection spaces. Moreover, the subset gAK ⊂
G/K (resp. gAK ⊂ G/K) is closed, and hence a Euclidean flat of dimension
dim a = n (resp. dim a = rk(A)).
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Proof. First observe that the subsets gAK ⊂ G/K (respectively gAK ⊂ G/K)
are closed. By Theorem 3.31, the multiplication U± × A × K → G induces
a homeomorphism. Therefore, AK and any of its translates gAK are closed
in G/K, and so are the preimages gAK in G/K. It remains to show that
the maps ϕg are isomorphisms of reflection spaces. Since both G and G act
by automorphisms, one may assume that g = e (respectively g = e). Thus
let X,Y ∈ a. Using that θ(t) = t−1 for all t ∈ A = τ(A) (see Lemmas 3.24
and 3.26) and that exp is a group homomorphism, one computes

µ(ϕe(X), ϕe(Y )) = τ(exp(X))θ(exp(Y ))K

= exp(X)θ(exp(X))−1θ(exp(Y ))K

= exp(X) exp(X) exp(−Y )K

= exp(2X − Y )K

= ϕe(X · Y ),

and the computation for the reduced case is identical. �

Definition 5.3. For every g ∈ G (respectively g ∈ G) the flat gAK ⊂ G/K
(respectively gAK ⊂ G/K) is called a standard flat .

The following proposition describes images of standard flats under the var-
ious isomorphisms of models. By abuse of language we will also refer to these
images as standard flats in the respective models.

Proposition 5.4. (i) The image of the standard flat gAK under the iso-
morphism π̂ : G/K → X is given by

XgT := {α ∈ X | α(gT ) ⊆ gT } = {α ∈ X | α(gT ) = gT}.
(ii) The image of the standard flat gAK under the isomorphism τ̂ : G/K →

τ(G) is given by

F [g] := g ∗A = g ∗ τ(A) ⊂ τ(G).

The analog statements hold for G replaced by G.

Proof. Observe that the two descriptions of XgT indeed coincide because X
consists of involutions. Moreover, the maps g 7→ gAK, g 7→ XgT and g 7→ F [g]
are all equivariant under the respective G-actions. It therefore suffices to show
that

(17) π̂(AK) = XT and τ̂(TK) = A.

Certainly, π̂(AK) ⊆ π(T ) ⊆ XT . Conversely, let hθ ∈ XT . This means that

T = hθ(T ) = (h ◦ θ ◦ h−1)(T )

= hθ(h−1Th)h−1

= τ(h)θ(T )τ(h)−1

= τ(h)Tτ(h)−1.
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Hence τ(h) ∈ NG(T ). By Corollary 3.27 and Lemma 3.26 one has

NG(T ) ∩ τ(G) = A = τ(A),

so there is t ∈ A such that τ(h) = τ(t) and, therefore, tK = hK by Lemma 3.24.
Thus hK = tK ∈ AK, showing that hθ = tθ = π̂(tK) ∈ π̂(AK), and hence

π̂(AK) = π(T ) = XT .

Finally, τ̂(TK) = τ(T ) = A. This establishes (17) and finishes the proof. �

Remark 5.5. Denote by Fstd(G/K) the set of standard flats in G/K. By
definition, G acts transitively on Fstd(G/K) via left-multiplication. Recall
from Lemma 3.27 that NG(T ) = A⋊NK(T ). Since A is the identity component
of T (see Definition 3.8), one has NK(T ) ≤ NK(A) since conjugation in G is
continuous. Conversely, by [7, Lem. 4.9] the torus T is the unique torus of G
containing A, so any element normalizing A necessarily has to normalize T ,
and one deduces that

(18) NK(A) = NK(T ).

Thus every g = NG(T ) can be written as g = ak with a ∈ A and k ∈ NK(A),
and thus gAK = akAK = a(kAk−1)kK = aAK = AK. In other words,
NG(T ) stabilizes AK.

The coset space G/NG(T ) can be identified with the set T (G) of maximal
tori of G via the map gNG(T ) 7→ gT . One thus obtains a G-equivariant
surjection

(19) T (G) → Fstd(G/K), gT 7→ gAK.

In other words, the standard flats are parametrized by the maximal tori. The
same argument applies to G instead of G.

Assertion (ii) of Proposition 5.4 implies that the parametrization map in (19)
is actually a bijection: Indeed, the standard flat associated with gT in the group
model is given by F [g] = g ∗A = gAθ(g)−1, and one has

F [g]θ(F [g]) = gAθ(A)g−1 = gAg−1.

One can therefore recover gAg−1 from the associated flat. Now by [7, Lem. 4.9]
the group gAg−1 is contained in a unique maximal torus of G, and this max-
imal torus is exactly gT . Thus F [g] determines gT , and the map (19) is thus
bijective.

The same argument applies to maximal tori in G, as C < T (cp. Defini-
tion 3.8) is central in G, whence it is contained in any G-conjugate of T and,
moreover, stabilized by any conjugate of θ.

Note that maximal tori in G are precisely the chamber-wise stabilizers of
the twin apartments of the twin building ∆, as are the maximal tori in G.
Altogether one observes the following.
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Corollary 5.6. The following objects are in G-equivariant bijection with the
elements of G/NG(T ) = G/NG(T ):

(i) twin apartments of ∆,
(ii) maximal tori of G,
(iii) maximal tori of G,
(iv) standard flats in G/K,
(v) standard flats in G/K.

In particular, G acts transitively on these objects, every standard flat in G/K
projects to a standard flat in G/K, and every standard flat in G/K lifts
uniquely to a standard flat in G/K. �

By Theorem 5.17 below, the standard flats in either of the two Kac–Moody
symmetric spaces are exactly the maximal flats. This in turn implies that the
maximal flats in G/K are in one-to-one correspondence to the maximal flats
in G/K.

5.7. Midpoint convex subsets and geodesic connectedness. Our next
goal is to characterize midpoint convex subsets of Kac–Moody symmetric
spaces. The following definition borrowed from [7, Sect. 4.2.2] is key to this
characterization.

Definition 5.8. An element g ∈ G (or g ∈ G) is called diagonalizable if
it stabilizes a pair of opposite chambers in ∆ and, hence, stabilizes a twin
apartment chamber-wise.

The following example shows that, in the non-spherical case, elements of
τ (G) need not be diagonalizable. The reader is referred to [28] for a more
detailed discussion of this theme.

Example 5.9. Let n≥ 1 and consider the affine example G := SLn+1(R[t, t−1])

of type Ãn with the Cartan–Chevalley involution θ(x) := ((x−1)T )σ, where σ
is the ring automorphism of R[t, t−1] which fixes R and interchanges t and t−1.
Then let

u :=




1 1+t
0 1

. . .
1


 ∈ B+,

v := τ(u) = uθ(u)−1 =




1 1+t
0 1

. . .
1


 ·




1 0
1+t−1 1

. . .
1




=




1+(1+t)(1+t−1) 1+t

1+t−1 1

. . .
1


,

and the characteristic polynomial of v is

cλ(v) =
(
λ− (1 + (1 + t)(1 + t−1))(λ− 1)− (1 + t)(1 + t−1)

)
· (λ− 1)n−1

= (λ2 − (t+ 4 + t−1)λ+ 1) · (λ− 1)n−1.
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However, the polynomial cλ(v) does not split into linear factors over R[t, t−1],
whence v is not conjugate within G to an element of the torus T , which consists
of diagonal matrices with entries from R.

The following result demonstrates that the behavior described in the pre-
ceding example is not merely an affine but instead a general non-spherical
phenomenon.

Theorem 5.10 ([28, Thm. 5.7 and Prop. 6.3]). The set Q :=
⋂∞
i=1 τ

i(G)
(respectively Q :=

⋂∞
i=1 τ

i(G)) equals the set of diagonalizable elements in τ(G)
(respectively τ (G)). Moreover, if G is of non-spherical type, then Q 6= τ(G)
and Q 6= τ (G), i.e., both τ(G) and τ (G) contain elements which are not
diagonalizable.

The description of the set of diagonalizable elements in τ(G) (respectively
τ (G)) has the following implication.

Corollary 5.11. If F ⊆ τ(G) (or F ⊆ τ (G)) is midpoint convex and e ∈ F ,
then any x ∈ F is diagonalizable.

Proof. Let x ∈ F . Then, by midpoint convexity, there is x′ ∈ F such that
x = sx′(e) = µ̃(x′, e) = x′2 = τ(x′), where µ̃ is the multiplication map of the
group model from Section 4.12 and the last equality holds by Lemma 3.24 (i).
Iteration of this argument implies that for every n ∈ N there is zn ∈ F such
that z2

n

n = τn(zn) = x. Hence x ∈ ⋂∞
i=1 τ

i(G) (respectively x ∈ ⋂∞
i=1 τ

i(G))
and, thus, x is diagonalizable by the preceding theorem. �

Corollary 5.12. In every non-spherical Kac–Moody symmetric space (reduced
or unreduced) there exists a pair of points that do not admit a midpoint and
therefore do not lie on a common geodesic. �

For instance, the elements id = τ(id) and τ(u) from Example 5.9 do not
admit a midpoint.

Remark 5.13. The preceding corollary illustrates that Kac–Moody symmet-
ric spaces suffer from exactly the same deficits as the masures introduced in
[18, Sect. 3] and discussed in detail in [55].

Despite the lack of geodesics expressed by Corollary 5.12 one nevertheless
has the following proposition.

Proposition 5.14 (cp. [28, Prop. 6.4]). Kac–Moody symmetric spaces are
geodesically connected. In particular,

G =
⋃

n∈N

(KAK)n.

Proof. One needs to show that any pair x, y ∈ τ(G) can be connected by
a piecewise geodesic curve. The resulting geodesic connectedness of G/K then
implies that of G/K.
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By transitivity of the action of the group G on the symmetric space τ(G),
one may assume without loss of generality that x = e. By Proposition 3.40 (iii)
one can write y = τ(u1 · · ·ukt) with t ∈ A and ui ∈ Uβi

for some βi ∈ Φ+.
For α ∈ Φ+, u ∈ Uα and t ∈ A, the element

τ(ut) = utθ(t)−1θ(u)−1 = ut2θ(u)−1 ∈ A〈Uα, U−α〉
(cp. Lemma 3.26) stabilizes two opposite spherical residues (in fact, two oppo-
site panels), whence it is diagonalizable by Lemma 3.29. Applying this to uiti
with ti = 1 for 1 ≤ i < k and tk = t, one obtains standard flats F ′

i contain-
ing e and τ(uiti) and, thus, geodesic segments joining e and τ(uiti). Then
Fi := u1t1 · · ·ui−1ti−1 ∗ F ′

i is a standard flat containing τ(u1t1 · · ·ui−1ti−1)
and τ(u1t1 · · ·uiti). Setting x0 = e and xi := τ(u1t1 · · ·uiti) for 0 ≤ i ≤ k, one
has xi ∈ Fi ∩ Fi+1 and, moreover, xk = y. The claim follows. �

We have proved Theorem 1.8.

Remark 5.15. Note that in the proof of the preceding proposition one actually
has quite some freedom in choosing the individual geodesic segments. For
instance, by (RGD5) for any factorization t = t1 · · · tk within A there exist
u′
i ∈ Uβi

such that
u1 · · ·ukt = u′

1t1 · · ·u′
ktk.

Of course, the argument in the proof applies to any such factorization.

5.16. The classification of maximal flats. The methods for analyzing flats
developed so far allow one to characterize the maximal (weak) flats in Kac–
Moody symmetric spaces. The proof of the following theorem makes use of
the various different models of the Kac–Moody symmetric space, in particular
the group model. We recall from Convention 4.16 that we always equip the
group model with the external topology (which we can show to coincide with
the internal topology in the two-spherical case, but currently not in general).
This has the effect that the coset model and the group model are isomorphic as
topological reflection spaces, and in particular flats in one of them correspond
to flats in the other.

Theorem 5.17. Every weak flat in a Kac–Moody symmetric space (reduced
or unreduced) is contained in a standard flat. In particular,

(i) standard flats are exactly the maximal (weak) flats;
(ii) all weak flats are Euclidean, hence all weak flats are flats;
(iii) G, respectively G, acts transitively on maximal (weak) flats.

Proof. Let F ⊂ τ(G) be a weak flat. It suffices to show that F is contained in
a standard flat corresponding to some maximal (split) torus of G. Since G acts
transitively on τ(G), one may additionally assume without loss of generality
that e ∈ F . Note that this assumption will in fact enable us to prove that the
flat F is contained in a standard flat of a θ-split maximal torus, i.e., that θ
acts by inversion on that maximal torus.

From now on assume e ∈ F , let x, y ∈ F , and use the notation for the group
model from Section 4.12.
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Claim 1. [xy, yx] = e, or equivalently, xy2x = yx2y.

One computes

µ̃(x, µ̃(e, µ̃(y, e))) = µ̃(x, µ̃(e, y2)) = µ̃(x, y−2) = xy2x

and, similarly,
µ̃(y, µ̃(e, µ̃(x, e))) = yx2y.

Hence, as F is weakly abelian,

xy2x = µ̃(x, µ̃(e, µ̃(y, e))) = µ̃(y, µ̃(e, µ̃(x, e))) = yx2y

⇐⇒ (xy)(yx) = (yx)(xy)

⇐⇒ [xy, yx] = e.

Claim 2. xy is diagonalizable.

By midpoint convexity of F , there is a midpoint x′ ∈ F between e and x,
whence x′2 = sx′(e) = x. Moreover, se(y) = y−1 ∈ F , and so sx′(y−1) =
x′yx′ ∈ F . By Corollary 5.11 the element x′yx′ is diagonalizable. Hence, by
definition, there exists a twin apartment Σ of the twin building of G which
is fixed chamber-wise by x′yx′. Let c be a chamber of Σ and set (Σ′, c′) :=
x′.(Σ, c). Then

xy.(Σ′, c′) = xyx′.(Σ, c) = x′(x′yx′).(Σ, c) = x′(Σ, c) = (Σ′, c′),

and so xy stabilizes Σ′ and fixes c′. That is, xy fixes Σ′ pointwise and, by
definition, is diagonalizable.

Claim 3. In each half ∆± of the twin building there exist opposite spherical
residues R+ ⊂ ∆+ and R− = θ(R+) ∈ ∆− stabilized by both xy and yx.

Both xy and yx = θ(y)−1θ(x)−1 = θ(xy)−1 (by Lemma 3.24 (i) plus x, y ∈
F ⊂ τ(G)) are diagonalizable and, thus, both fix some twin apartment chamber-
wise. In particular, both admit fixed points in the CAT(0) realizations X± of
either half ∆± of the twin building (see [10] and also [7, Sect. 2.1].)

One can now find a common fixed point of xy and yx in X+ by a standard
commutation argument as follows: For p ∈ Fix(xy), one has

yx.p = yx.(xy.p)
Claim 1
= xy.(yx.p),

whence yx.p ∈ Fix(xy). Thus the convex set Fix(xy) is preserved by the
isometry yx. Let q be a point fixed by yx and let r+ be its (unique) projection
to Fix(xy) in the CAT(0) spaceX+. Since Fix(xy) is preserved by yx, it follows
that r+ is also fixed by yx. The point r+ ∈ X+ corresponds to a spherical
residue R+ of ∆+ stabilized by both yx and xy.

Consequently, the residue R− := θ(R+) opposite R+ is stabilized by both
θ(xy) = (yx)−1 and θ(yx) = (xy)−1 and, hence, also by yx ∈ 〈(yx)−1〉 < G
and xy ∈ 〈(xy)−1〉 < G.

Claim 4. xy fixes a chamber d ∈ R+ and yx fixes d̂ := projR+
θ(d) opposite d

in R+.
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Since xy is diagonalizable, it fixes a twin apartment chamber-wise and so
there is a chamber c ∈ ∆+ fixed by xy. Thus the chamber d := projR+

(c) is

also fixed by xy. The involution θ induces an involution θR+(c) := projR+
(θ(c))

on R+, which maps every chamber in R+ to a chamber opposite in R+. The

chamber d̂ := θ(d) is fixed by yx = θ(xy)−1:

yx.d̂ = projyx.R+
(yx.θ(d))

= projR+
(yx.θ(d))

= projR+
(θ((xy)−1.d))

= projR+
(θ(d))

= d̂,

where the second equality follows from Claim 3.

Claim 5. There exists a chamber d′ ∈ R+ fixed by both xy and yx.

By Claims 3 and 4 the elements xy and yx are contained in opposite Borel
subgroups of the reductive split real Lie group stabilizing the opposite spherical
residues R+ and θ(R+) (cp. [23, Cor. 7.16]).

This reductive Lie group is a subgroup of GLn+1(R). By [26, Prop. 16.1.5]
one can model the stabilizer of d as lower triangular matrices, the stabilizer

of d̂ as upper triangular matrices, and θ as transpose-inverse. Thus yx =
θ(xy)−1 = (xy)T . One concludes that both xy and yx are diagonal in this
coordinatization: Suppose

xy =




v1 v2 . . . vn
0 ∗ . . . ∗
...

...
. . .

...
0 0 . . . ∗


 and thus yx = (xy)T =




v1 0 . . . 0
v2 ∗ . . . 0
...

...
. . .

...
vn ∗ . . . ∗


 .

Computing the product xy · yx yields the top left entry v21 + · · ·+ v2n. On the
other hand, the top left entry of yx ·xy is v21 . By Claim 1 one has [xy, yx] = e.
Hence v22 + · · · + v2n = 0, and so v2 = . . . = vn = 0. Inductively one obtains
that xy and yx act by the same diagonal matrix on R+. Therefore, there is
a chamber d′ stabilized by both xy and yx.

Claim 6. xy = yx.

Since xy and yx stabilize a chamber d′, one has

θ(d′) = θ(xy.d′) = x−1y−1.θ(d′).

Thus θ(d′) = yx.θ(d′). It follows that xy and yx stabilize both d′ and θ(d′) and,
hence, fix a θ-stable twin apartment. Thus they are contained in a common
θ-split torus. As an immediate consequence, (xy)−1 = θ(xy) = θ(x)θ(y) =
x−1y−1. Hence xy = yx.

Claim 7. For each x, y ∈ F one has y−1, xy ∈ F . That is, F is a commutative
subgroup of G.
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Recall that e ∈ F by assumption. Let x′ ∈ F be a midpoint of x and e, i.e.,
x = sx′(e) = x′2. Then se(y) = y−1 ∈ F and

sx′(y−1) = x′yx′ = x′2y = xy ∈ F,

where the second equality follows from Claim 6. This finishes the proof of
Claim 7.

Concerning the statement of the following claim, we observe that the inter-
section of midpoint convex reflection subspaces of F is again a midpoint convex
reflection subspace. In particular, if x1, . . . , xt ∈ F , then there exists a unique
smallest midpoint convex reflection subspace of F containing x1, . . . , xt. We
denote this subspace by 〈x1, . . . , xt〉.

Claim 8. For every finite subset {x1, . . . , xt} ⊂ F the topological closure

〈x1, . . . , xt〉 of 〈x1, . . . , xt〉 is a diagonalizable subgroup of G, i.e., is contained
in a maximal torus of G. Moreover, there exists m ∈ N such that

〈x1, . . . , xt〉 ∼= (Rm>0, · ) ∼= (Rm,+).

Since the weak flat F is closed, one has 〈x1, . . . , xt〉 ⊆ F . Since F is a com-
mutative group, any reflection subspace is a subgroup, and so is its closure.
By Corollary 5.11 and the fact that maximal tori of G are closed (see [23,
Cor. 7.17]), each of the subgroups Hi := 〈xi〉 ≤ F is diagonalizable. Moreover,
Hi

∼= (R,+) by direct computation in any torus containing xi (see also Propo-
sition 2.24). The groups Hi commute with one another by Claim 7, whence
[7, Prop. 4.4] implies that 〈x1, . . . , xt〉 normalizes a maximal torus T of G.
Moreover, since W = NG(T )/T is discrete and 〈x1, . . . , xt〉 is connected, one
actually has 〈x1, . . . , xt〉 ≤ T . Connectedness then additionally implies that
〈x1, . . . , xt〉 ≤ A = τ(T ) ∼= (Rn,+), where n is the rank of G. (Note that in G
one obtains a torus isomorphic to (Rrk(A),+) instead.) The final statement
follows from the classification of closed connected subgroups of (Rn,+).

Claim 9. F is contained in a standard flat.

Let

m := max{dimR(〈x1, . . . , xt〉) | t ∈ N, x1, . . . , xt ∈ F} ≤ n,

where n is the rank of G, and furthermore let {x1, . . . , xt} ⊂ F such that
dimR(〈x1, . . . , xt〉) = m. Then F = 〈x1, . . . , xt〉: indeed, otherwise there exists

xt+1 ∈ F \ 〈x1, . . . , xt〉 and dimR(〈x1, . . . , xt, xt+1〉) = m+ 1,

a contradiction.
The proof for G is essentially the same. �

Corollary 5.18. (i) G acts strongly transitively on G/K.
(ii) G, G and Ad(G) act strongly transitively on G/K.
(iii) Maximal flats in G/K lift uniquely to maximal flats in G/K.
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Proof. In view of Theorem 5.17 this follows from Corollary 5.6 and Proposi-
tion 2.33. Note that Ad(G) indeed acts on G/K by Lemma 4.7. �

We have established Theorem 1.7.

6. Local and global automorphisms of Kac–Moody symmetric
spaces

We keep the notation of the previous section, i.e., G denotes a simply con-
nected centered split real Kac–Moody group of irreducible symmetrizable type,
the group G denotes its semisimple adjoint quotient, and Ad(G) its adjoint
quotient. Moreover, ∆ = ∆−⊔∆+ denotes the twin building associated to the
RGD systems of these groups.

6.1. Automorphisms of Kac–Moody groups. The abstract automor-
phisms of the groups G, G and Ad(G) have been classified in [7]. Since R
does not admit any nontrivial field automorphism, this classification can be
stated as follows.

Theorem 6.2 (Caprace [7, Thm. 4.2]). Let G ∈ {G,G,Ad(G)}. Then every
automorphism of G can be written as a product of an inner automorphism
of G, a diagram automorphism, a diagonal automorphism and a power of the
Cartan–Chevalley involution θ. �

This result has several immediate consequences. Firstly, every automor-
phism of G preserves the center and hence descends to an automorphism of
Ad(G). It also descends to an automorphism of G = G/C since C ≤ Z(G) is
the unique complement to the torsion subgroup of Z(G), cp. Proposition 3.12,
and hence C is a characteristic subgroup of Z(G) and thus of G. One thus
obtains homomorphisms

(20) Aut(G) → Aut(G) → Aut(Ad(G)).

Secondly, these homomorphism are injective because for each automorphism
there is a root subgroup not centralized by it; but the root subgroups can be
seen in any central quotient of G.

Thirdly, it follows from the concrete description of automorphisms in Theo-
rem 6.2 that every automorphism of Ad(G) or G can be extended to G. That
is, the homomorphisms in (20) are also surjective, and hence isomorphisms.

We compare these automorphisms to combinatorial automorphisms of the
twin building ∆. By an automorphism of ∆ we shall mean a self-map of
the chamber set ∆ = ∆+ ∪∆− which preserves adjacency and opposition of
chambers (but may swap the two halves of ∆). An automorphism will be
called type-preserving if it preserves distances and codistances (and hence the
underlying chamber system). Denote by Aut(∆) and AutS(∆) the groups of
all automorphisms, respectively all type-preserving automorphisms of ∆.

We can identify chambers of ∆ with Borel subgroups of G, i.e., conjugates
of B+ or B−. Every inner automorphism of G certainly maps B to a Borel
subgroup; the same holds for diagram and diagonal automorphisms. Also, the
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Cartan–Chevalley involution swaps B+ and B− and thus preserves the set
of Borel subgroups. We deduce with Theorem 6.2 that every automorphism
of G induces an automorphism of ∆, and hence we obtain a homomorphism
Aut(G) → Aut(∆). Moreover, all of the basic types of automorphisms of G
except the diagram automorphisms induced type-preserving automorphisms.
We denote the group generated by all such automorphisms by AutS(G) <
Aut(G).

Remark 6.3. Recall from Definition 3.4 that the Dynkin diagram ΓA arises
from the Coxeter diagram of (W,S) by adding certain labels. In particular,
the automorphism group Aut(ΓA) of the Dynkin diagram is a subgroup of the
automorphism group Aut(W,S) of the Coxeter diagram.

Proposition 6.4. The homomorphism Aut(G) → Aut(∆) is injective, and
thus

Aut(G) ∼= Aut(G) ∼= Aut(Ad(G)) →֒ Aut(∆).

If G is two-spherical and if Aut(ΓA) = Aut(W,S), then it is an isomorphism,
and thus

Aut(G) ∼= Aut(G) ∼= Aut(Ad(G)) ∼= Aut(∆).

Proof. Every diagram automorphism of G induces a nontrivial automorphism
on each of the two halves of ∆, and the Cartan–Chevalley involution swaps
these two halves. It thus follows from Theorem 6.2 that the kernel of the
homomorphism Aut(G) → Aut(∆) necessarily lies in the subgroup of Aut(G)
generated by the inner and the diagonal automorphisms of G, which is a group
with an RGD system with abelian maximal torus, trivial center, and the same
twin building ∆. By [1, Prop. 8.82] therefore the kernel of the homomorphism
Aut(G) → Aut(∆) is trivial.

Now assume that G is two-spherical and that Aut(ΓA) = Aut(W,S). To
prove surjectivity, one needs to prove that any automorphism α ∈ Aut(∆) is
induced by an automorphism of G.

Each automorphism α of ∆ induces a well-defined permutation of the dia-
gram of ∆, which necessarily has to be an automorphism of the underlying
Coxeter diagram. Hence the automorphism α is the product of a type-preserv-
ing automorphism of ∆ and a Coxeter diagram automorphism. If G and ∆
admit the same diagram automorphisms, i.e., if the automorphisms of the
Dynkin diagram equal the automorphisms of the Coxeter diagram, one may
assume that α is type-preserving.

Let C+ and C− = θ(C+) be opposite chambers of the twin building ∆. By
the strongly transitive action of G on ∆ (see [1, Lem. 6.70 and Thm. 8.9])
there exists an inner automorphism of G that maps the set {α(C+), α(C−)}
onto the set {C+, C−}. By composing α with this inner automorphism and,
if necessary, the Cartan–Chevalley involution θ, one may actually assume that
the type-preserving automorphism α fixes the chambers C+ and C−.

If the diagram is two-spherical, then the extension theorem by Mühlherr and
Ronan [48, Thm. 1.2] (see also [1, Thm. 5.213]) implies that the type-preserving
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automorphism α is the unique extension that fixes C− of its restrictions to
the residues of rank two containing C+ in the positive half ∆+ of the twin
building ∆.

By inspection, those local rank-two restrictions are all induced by auto-
morphisms of the corresponding split real Lie groups of rank two that as
a family together provide an automorphism of the amalgam A(A) of funda-
mental subgroups of rank two of G. This amalgam automorphism, again using
two-sphericity, induces a unique automorphism of G by [23, Thm. 7.22] (see
Section 3.3) whose image under the natural map is α. �

Now, note that in the two-spherical case we always have an isomorphism
AutS(G) ∼= AutS(∆), irrespective of the automorphism group of the Dynkin
diagram.

Proposition 6.5. The group Out(G) := Aut(G)/ Inn(G) is finite. More
explicitly, we have

Aut(G) ∼= (Ad(G)⋊ (D × 〈θ〉))⋊Aut(ΓA),

where Inn(G) ∼= G/Z(G) = Ad(G) and D is a finite elementary abelian
2-group of diagonal automorphisms. Moreover, θ commutes with the elements
of Aut(ΓA).

Proof. Note that Aut(ΓA), as the automorphism group of a finite graph, is
finite and that the group generated by the involution θ has order 2. Thus the
first claim follows from the second claim.

Now consider the subgroup H of Aut(G) generated by the inner and diag-
onal automorphisms. By [7, Thm. 4.2], it suffices to consider the diagonal
automorphisms coming from a diagonal automorphism of fundamental rank-1
subgroups Gαi

∼= SL2(R), with αi ∈ Π. But these are either inner, or are inner
followed by conjugation with

(
−1 0
0 1

)
∈ GL2(R).

Denote the latter automorphisms of G by di. Then H is generated by Inn(G)

together with D̃ := 〈d1, . . . , dn〉. Clearly D̃ is an elementary abelian 2-group,

i.e., it is an F2-vector space. Hence it contains a complement D to D̃∩ Inn(G),
and one has H ∼= Inn(G)⋊D.

The Cartan–Chevalley involution θ centralizes the di, and hence θ commutes
withD and of course normalizes Inn(G). ThusH ′ := 〈H, θ〉 ∼= Inn(G)⋊(D×θ).

Finally, any diagram automorphism permutes the Gαi
and hence normal-

izes D̃; it also commutes with θ. Thus Aut(ΓA) normalizes H ′. Since all
elements of H ′ centralize the Weyl group, one moreover has

Aut(ΓA) ∩H ′ = {1}. �

Since θ commutes with the diagonal automorphisms in D and with diagram
automorphisms, we also conclude the following.
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Corollary 6.6. The Aut(G)-conjugacy class of θ in Aut(G) coincides with its
Ad(G)-conjugacy class.

Remark 6.7. A large part of the proof of Proposition 6.5 is dedicated to
proving that there are only finitely many diagonal automorphisms modulo
inner automorphisms. This is also implied (but non-constructively) by the
fact, which is also true for (rational points of) algebraic groups, that the index
of the adjoint quotient Ad(G) inside the adjoint split real Kac–Moody group
of type A is finite: Indeed, the exact sequence

0 → F → T sc → T ad → 0

of torus schemes (where T sc
is the simply connected torus of the semisimple

adjoint quotient G and T ad is the torus of the adjoint Kac–Moody group of
type A and F is defined as the kernel of T sc → T ad) yields an exact sequence

0 → F(R) → T sc
(R) → T ad(R) → H1

et(R,F) → 0

of R-points; since étale cohomology is finite over R (see, e.g., [46]), the claim
follows.

6.8. Automorphisms of the main group. The next main goal is to describe
the automorphism group of the reduced Kac–Moody symmetric space X =
G/K. Recall from Proposition 4.11 that

Trans(X ) = Ad(G) and G(X ) = Ad(G)⋊ 〈θ〉.
Also recall from Remark 2.6 that there exists an embedding

c : Aut(X ) → Aut(G(X )) = Aut(Ad(G)⋊ 〈θ〉), α 7→ cα,

where cα(g) := α ◦ g ◦α−1. Thus in order to determine Aut(X ) one first needs
to determine Aut(Ad(G) ⋊ 〈θ〉). For this we will use the following general
lemma.

Lemma 6.9. Let H be a perfect group and θ ∈ Aut(H) an involution. Endow
Aut(H) with the multiplication αβ := β ◦ α. Then the following hold:

(i) The following is a well-defined subgroup of the holomorph Aut(H) ⋉H
of H:

Holθ(H) := {(β, b) ∈ Aut(H)⋉H | β ◦ θ = cb ◦ θ ◦ β, θ(b) = b−1},
where cb is the inner automorphism x 7→ bxb−1.

(ii) There is an isomorphism ϕ : Aut(H ⋊ 〈θ〉) → Holθ(H).
(iii) Let π : Holθ(H) → Aut(H) be the restriction of the natural projection

Aut(H)⋉H → Aut(H). Then

kerπ = {(id, z) | z ∈ Z(H), θ(z) = z−1}.
(iv) For the inner automorphisms of Aut(H ⋊ 〈θ〉), we have

ϕ(c(h,id)) = (ch, τ(h)) and ϕ(c(1,θ)) = (θ, 1).
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Proof. (i) Clearly, Holθ(H) contains the identity (idH , 1H). Let (β, b), (γ, c) ∈
Holθ(H). To see that (β, b)(γ, c) = (βγ, γ(b)c) is contained in Holθ(H), we
verify that

θ(γ(b)c) = (θ ◦ γ)(b)θ(c) = (c−1
c ◦ γ ◦ θ)(b)c−1 = c−1γ(b−1) = (γ(b)c)−1

as well as

(βγ) ◦ θ = γ ◦ β ◦ θ = γ ◦ cb ◦ θ ◦ β = cγ(b) ◦ cc ◦ θ ◦ γ ◦ β = cγ(b)c ◦ θ ◦ (βγ).

Finally, (β, b)−1 = (β−1, β−1(b−1)) is in Holθ(H) because

θ(β−1(b−1)) = (β−1 ◦ cb ◦ θ)(b−1) = β−1(b),

and furthermore β ◦ θ = cb ◦ θ ◦ β implies

θ ◦ β−1 = β−1 ◦ cb ◦ θ = cβ−1(b) ◦ β−1 ◦ θ =⇒ cβ−1(b−1) ◦ θ ◦ β−1 = β−1 ◦ θ.
(ii) By slight abuse of notation, we identify H with the subgroup

{(h, 1) | h ∈ H} ≤ H ⋊ 〈θ〉.
Then the commutator subgroup of H⋊〈θ〉 is contained in H . But H is perfect,
and hence it equals that commutator subgroup, which is characteristic. It
follows that every α ∈ Aut(H ⋊ 〈θ〉) normalizes H , thus its restriction to H is
an automorphism β ∈ Aut(H).

Since α is surjective and normalizes H , we must have α((1, θ)) = (b, θ) for
some b ∈ H , and then α is uniquely determined by the pair (β, b). The fact
that α is a homomorphism puts restrictions on the pair (β, b): For g, h ∈ H ,
we must have

(β(gθ(h)), id) = α((gθ(h), id))

= α((g, θ)(h, θ))

!
= α((g, θ))α((h, θ))

= (β(g)b, θ)(β(h)b, θ)

= (β(g)bθ(β(h))θ(b), id),

and hence β(θ(h)) = bθ(β(h))θ(b). For h = 1 this yields θ(b) = b−1. We thus
find

β ◦ θ = cb ◦ θ ◦ β.
One readily checks that these two conditions are necessary and sufficient to
make α a homomorphism. This yields the desired map ϕ, which by construc-
tion is bijective. It remains to verify that ϕ is indeed a group homomorphism
to verify the claim.

To this end, suppose we have α, α′ ∈ Aut(H ⋊ 〈θ〉) satisfying ϕ(α) = (β, b),
resp. ϕ(α′) = (γ, c). Let αα′ := α′ ◦ α and let α′′ be the preimage under ψ of
ϕ(α)ϕ(α′) = (βγ, γ(b)c). Then for h ∈ H and e ∈ {0, 1} we have as desired

(αα′)(h, θe) = α′((β(h)be, θe)) = (γ(β(h))(γ(b)c)e, θe) = α′′(h, θe).
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(iii) Suppose α ∈ kerϕ. Then β = id, and we get cb = [id, θ] = id, i.e.,
b ∈ Z(H).

(iv) Follows from elementary computations. �

Proposition 6.10. (i) There is a short exact sequence

1 → Z(G) → Aut(G⋊ 〈θ〉) π−→ Aut(G) → 1.

(ii) There is an isomorphism

Aut(Ad(G)⋊ 〈θ〉) → Aut(Ad(G)) ∼= Aut(G).

(iii) Following the notation in Definition 4.8 and Proposition 6.5, there is an
isomorphism

Aut(Geff ⋊ 〈θ〉) → Auteff(G) := (Geff ⋊ (D × 〈θ〉))⋊Aut(ΓA).

Proof. (i) We choose for π the composition of the maps from Lemma 6.9 (ii)
and (iii). To see that this map is surjective, let β ∈ Aut(G). By Proposition 6.5
one then has β = cg ◦ d ◦ θr ◦ γ for an inner automorphism cg, some d ∈ D,
r ∈ {0, 1} and γ ∈ Aut(ΓA). Recall that θ commutes with the elements of D
and Aut(ΓA) and also with itself. Therefore,

β ◦ θ = (cg ◦ d ◦ θr ◦ γ) ◦ θ = cg ◦ θ ◦ d ◦ θr ◦ γ = cτ(g) ◦ θ ◦ β.

Since also θ(τ(g)) = τ(g)−1, we have (β, τ(g)) ∈ Holθ(H). By Lemma 6.9 (ii)
it follows that β is in the image of π, which thus is surjective.

The center of G is contained in T . But θ acts on T and hence on Z(G) by
inversion. Thus by Lemma 6.9 (iii) we have ker(π) ∼= Z(G) as claimed.

(ii) This follows similarly to (i) together with the fact that Ad(G) is center-
free.

(iii) Consider the natural epimorphism

p : Auteff(G) → Aut(G), (g, d, θr, γ) 7→ cg ◦ d ◦ θr ◦ γ,

which maps g ∈ Geff to cg (here, we equip Aut(G) with the composition ◦ as
multiplication). Then the claim follows by showing that the following map is
an anti-isomorphism (recall that anti-isomorphic groups are isomorphic):

κ : Auteff(G) → Holθ(Geff), α = (g, d, θr, γ) 7→ (p(α), τ(g)).

The map is well-defined by an argument similar to that in (i). To verify that
it is an anti-homomorphism, let

α := (g, d, θr, γ), β := (h, d′, θs, γ′)

be arbitrary elements of Auteff(G) and set

α̃ := d ◦ θr ◦ γ, β̃ := d′ ◦ θs ◦ γ′.
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Then we get

(α)κ(β) = (p(α), τ(g)) · (p(β), τ(h))
=

(
p(α)p(β), ch(β̃(τ(g))) · hθ(h−1)

)
(since p(β) = ch ◦ β̃)

= (p(α)p(β), hτ(β̃(g))θ(h−1)) (since β̃ ◦ θ = θ ◦ β̃)
= (p(β) ◦ p(α), τ(hβ̃(g))),
= (p(βα), τ(hβ̃(g)))

= κ((hβ̃(g), d′γ′(d), θr+s, γ′γ))

= κ(βα).

Finally, we compute

ker(κ) = {α = (g, d, θr, γ) ∈ Auteff(G) | α ∈ ker(p) and τ(g) = 1}
= {(g, id, id, id) | g ∈ Z(Geff) and θ(g) = g}.

But θ acts by inversion on Z(Geff), and hence g ∈ Z(Geff) with θ(g) = g
satisfies g2 = 1, i.e., is torsion. But Geff = G/CK(G), and CK(G) = Z(G)∩M
is precisely the torsion part of Z(G), and hence Z(Geff) is torsion-free. It
follows that the kernel of κ is trivial, whence κ is an isomorphism. �

6.11. Global automorphisms of reduced Kac–Moody symmetric
spaces. In this section we prove Theorem 1.9.

Theorem 6.12. Consider the reduced, resp. non-reduced, Kac–Moody sym-
metric spaces X = G/K, resp. X = G/K. Then the following are true:

(i) Aut(X ) ∼= Auteff(G).
(ii) Aut(X ) ∼= Aut(G) ∼= Aut(G) ∼= Aut(Ad(G)).

Proof. (i) By Proposition 4.11 (iii) we have G(X , µ) = Geff ⋊ 〈θ〉. Combining
the maps c from Remark 2.6, ϕ from Lemma 6.9 (ii) and κ from 6.10 (iii), we
get an embedding

Aut(X , µ)
c−→ Aut(Geff ⋊ 〈θ〉) ϕ−→ Holθ(Geff)

κ−1

−−→ Auteff(G).

It suffices to show that the composition ψ := κ−1 ◦ ϕ ◦ c is surjective. The-
orem 6.2 allows us to reduce a case-by-case analysis of the different types of
automorphisms which together generate Auteff(G).

(i)(a) Let h ∈ Geff . Then h acts on X as an automorphism, which c maps to
the inner automorphism c(h,id) of Aut(Geff ⋉ 〈θ〉). By Lemma 6.9 (iii), ϕ maps

this to (ch, τ(h)) ∈ Holθ(Geff). Thus ψ(h) = κ−1(ch, τ(h)) = (h, id, id, id),
whence Geff considered as a subgroup of Auteff(G) is contained in the image
of ψ.

(i)(b) Let f ∈ CAut(G)(θ), so in particular we may consider f = θ or f ∈ D
or f ∈ Aut(ΓA). Then f(K) = K and thus f induces a permutation of G/K.
Moreover, f is compatible with µ; indeed,

f(µ(gK, hK)) = f(gθ(g−1h)K) = f(g)θ(f(g)−1f(h))K = µ(f(gK), f(hK)).
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It follows that f induces an automorphism of X . Then for

(g, θe) ∈ Geff ⋊ 〈θ〉 = G(X , µ)✂Aut(X , µ)

and any hK ∈ G/K = X , we get

c(f)(g, θe)(hK) = f(gθe(f−1(hK))) = f(g)θe(hK) = (f(g), θe)(hK).

Thus ϕ(c(f)) = (f, 1) ∈ Holθ(Geff), and ψ(f) = κ−1(f, 1) = f ∈ Auteff(G).
(ii) By Proposition 6.4 one has Aut(G) ∼= Aut(G) ∼= Aut(Ad(G)). It

therefore suffices to construct an isomorphism Aut(X ) → Aut(Ad(G)), which
follows analogously to case (i). �

Remark 6.13. By Theorem 6.2 one can write Aut(G) as a semi-direct product
Aut(G) = Aut+(G) ⋊ 〈θ〉, where Aut+(G) denotes the index two subgroup
generated by all inner automorphisms, diagram automorphisms and diagonal
automorphisms. In the sequel denote by Aut+(X ) the image of Aut+(G) under
the isomorphism Aut(G) → Aut(X ) from Theorem 6.12. Then

(21) Aut(X ) = Aut+(X )⋊ 〈so〉,
where o ∈ X is an arbitrary basepoint. We also denote by AutS(X ) the
subgroup of Aut(X ) which corresponds to AutS(G) under the isomorphism
from Theorem 6.12 (ii). Note that both Aut+(X ) and Aut(X ) contain the
transvection group Ad(G).

6.14. Local transformations and the Coxeter complex.

Convention 6.15. For the remainder of Section 6 we assume that A is non-
affine.

In this section we investigate the local transformations of X . Recall that
for a pointed maximal flat (p, F ) the set F sing(p) of singular points of F with
respect to p and the group GL(p, F, F sing(p)) of local transformations of (p, F )
were defined in Definition 2.35. By strong transitivity, these notions do not
depend on the choice of pointed maximal flat up to isomorphism, and we will
work with the standard pointed flat (e, AK) of the coset model.

By Proposition 5.2 a chart of the flat AK centered at e is given by

(22) ϕe : a → AK, X 7→ exp(X)K.

Recall from Definition 2.35 that AK
sing

(e) denotes the subset of AK consisting
of points singular with respect to e. If one defines

asing := ϕ−1
e (AK

sing
(e))

and

GL(a, asing) := {f ∈ GL(a) | f(asing) = asing},
then one obtains an isomorphism

(23) GL(e, A)
∼=−→ GL(a, asing), F 7→ f := ϕ−1

e ◦ F ◦ ϕe.
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By strong transitivity ofG (see Corollary 5.18) any two maximal flats through e
in G/K are K-conjugate, i.e.

(24) asing =
⋃

{k∈K|Ad(k)a 6=a}

a ∩Ad(k)a.

The results from the appendix allow one to describe this set in a more com-
binatorial way. Recall from Definition A.21 the definition of the Kac–Moody
representations ρKM : W → GL(a) and the reduced Kac–Moody representa-
tion ρKM : W → GL(a) of the Weyl group. As A is assumed to be non-affine,
both of these representations are faithful by Corollary A.24, and reflections
in W act as linear reflections under these representations.

Given a real root α ∈ Φ with associated root reflection řα ∈ W , denote by

Hα := Fix(ρKM (řα)) < a and Hα := Fix(ρKM (řα)) < a

the corresponding reflection hyperplanes in a and a, respectively (cp. Defini-
tion A.28). Recall from (40) on page 102 that the reflections ρKM (řα) and
ρKM (řα) are orthogonal with respect to suitable choices of invariant bilinear
forms on a and a. Since the invariant form on a is non-degenerate (cp. the proof
of Proposition A.23), the map ρKM (řα) is in fact the unique orthogonal reflec-
tion at the hyperplane Hα. This implies in particular that the map α 7→ Hα

defines a one-to-one correspondence between positive real roots α ∈ Φ+ and
reflection hyperplanes Hα.

Proposition 6.16. Assume that G is of non-affine type. Under the chart ϕe
the singular set of the pointed maximal flat (e, A) in G/K corresponds to the
union of the reflection hyperplanes of root reflections under ρ̂KM , i.e.

ϕ−1
e (A

sing
(e)) = asing =

⋃

α∈Φ+

Hα.

Proof. Assume first that X ∈ asing. By (24) there exists k ∈K with Ad(k)a 6= a

such that X ∈ a ∩ Ad(k)a. Recall that T is the unique maximal torus of G
such that A = T ∩ τ (G). Consequently, T

k
is the unique maximal torus of G

such that

A
k
= T

k ∩ τ (G).

Assuming X 6= 0, one obtains a nontrivial intersection H := T ∩ T
k ∋ exp(X).

As in [7, Prop. 4.6], let

ΦH = {α ∈ Φ | [Uα, H ] = 1} and G
H

= T .〈Uα | α ∈ ΦH〉.
Since H is contained in the distinct tori T and T

k
, it is not regular in the

sense of [7, Sect. 4.2.3], i.e., H fixes more than a single twin apartment of the
twin building ∆. Hence [7, Prop. 4.6 (i) and (ii)] imply that (G

H
, (Uα)α∈ΦH )

is a locally R-split twin root datum with Weyl group WH = 〈sα | α ∈ ΦH〉
and maximal torus T . Also T

k
is a maximal torus of G

H
by [7, Prop. 4.6 (v)],

and G
H

centralizes H . Since G
H

acts transitively on twin apartments of the
twin building associated with the twin root datum (G

H
, (Uα)α∈ΦH ) and these
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correspond to maximal tori in G
H

(see, e.g., [1, Cor. 8.78]), one deduces that
T and T

k
are conjugate in G

H
.

Next observe that H is θ-invariant as T and T
k
are. It then follows that for

each α ∈ ΦH one has −α ∈ ΦH because

[Uα, H ] = 1 ⇐⇒ [U−α, H ] = [θ(Uα), θ(H)] = 1.

Therefore, θ leaves 〈Uα, U−α〉, α ∈ ΦH invariant and acts as an automorphism
on G

H
. Consequently, the group G

H
admits an Iwasawa decomposition

G
H

= K
H
AU

H
,

where K
H ≤ K ∩G

H
and U

H ≤ U+ ∩G
H
.

By [12, Thm. 1.2] the commutator subgroup [K
H
,K

H
] is generated by the

family

(K ∩ 〈Uα, U−α〉)α∈ΦH

and acts chamber-transitively on each half of the twin building of G
H
. In

particular, there exist suitable βi ∈ ΠH and ki ∈ K ∩ 〈Uβi
, U−βi

〉 such that

t∏

i=1

ki =: kH ∈ [K
H
,K

H
]

maps any chosen pair (c, θ(c)) of opposite chambers of the twin building of
G
H

with stabilizer T onto some pair (d, θ(d)) of opposite chambers with sta-
bilizer T

k
. Consequently, the groups T and T

k
are conjugate by the element

kH ∈ [K
H
,K

H
].

Not all elements ki can normalize T , for otherwise T
k
=T . Pick i∈ {1, . . . , t}

such that T
ki 6= T . Then

H ≤ T
ki ∩ T ,

as ki ∈ G
H
. Furthermore, T

ki ∩ T has corank 1 in T because

βi ∈ ΠH ⊂ ΦH ⊂ Φ and ki ∈ 〈Uβi
, U−βi

〉.
Now

s̃βi
∈ N

KH (A) ≤ NK(A) ≤ NG(T )

(cp. Section 3.13 and Lemma 3.27) fixes the intersection T
ki ∩ T and, as it

has corank one in T , this intersection must be the exponential of the reflection
hyperplane of Hβi

. This shows that X ∈ Hβi
and, since X was arbitrary, one

obtains asing ⊂ ⋃
α∈ΦHα.

Conversely, if X ∈ Hα, then exp(X) ∈ A ∩A
k
, where k ∈ K ∩ 〈Uα, U−α〉 is

any element not normalizing T . �

One concludes from Proposition 6.16 that the subset asing ⊂ a is precisely
the hyperplane arrangement which is denoted by the same symbol asing in the
appendix. Note in passing that Proposition 6.16 carries over to a non-reduced
Kac–Moody symmetric space as follows.
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Corollary 6.17. Assume that G is of non-affine type. Under the chart

ϕe : a → AK, X 7→ exp(X)K

the singular set of the pointed maximal flat (e, A) in G/K is given by

ϕ−1
e (Asing(e)) = asing =

⋃

α∈Φ+

Hα.

Proof. This follows from Corollary 5.18 and Proposition 6.16; see also Propo-
sition A.23. �

We also record the following consequence of the proof of Proposition 6.16.

Corollary 6.18. Assume that G is of non-affine type and let F1, F2 be max-
imal flats of X . Then there exists g ∈ G stabilizing F1 ∩ F2 element-wise with
g(F1) = F2.

Proof. If |F1∩F2| ≤ 1, this is an immediate consequence of strong transitivity.
If |F1∩F2| ≥ 2, then strong transitivity allows one to assume e ∈ F1∩F2. Then,
as in the proof of Proposition 6.16, the maximal flats F1 and F2 correspond
to maximal tori T and T

k
with nontrivial intersection H . By the arguments

given in that proof, the maximal tori T and T
k
are in fact conjugate by an

element of K = StabG(e) centralizing H . �

The same argument also applies to the G-action on maximal flats in X .

Proposition 6.16 allows one to compute the group GL(p, F, F sing(p)) of local
transformations of (p, F ) for a pointed flat (p, F ). By strong transitivity, every
pointed maximal flat (p, F ) can be mapped by an automorphism of X to the
standard pointed flat (e, AK). Composing the chart ϕe defined in (22) with
this automorphism provides a chart ϕ : a → F centered at p which by Propo-
sition 6.16 identifies asing with F sing(p). Hence for every pointed flat (p, F )
there exists an isomorphism

GL(p, F ) ∼= GL(a, asing) =

{
f ∈ GL(a)

∣∣∣ f
( ⋃

α∈Φ+

Hα

)
=

⋃

α∈Φ+

Hα

}
.

Since A is irreducible, symmetrizable and non-affine, it follows from Corol-
lary A.37 that there exists a non-degenerate bilinear form B on a such that
every element of GL(a, asing) is a similarity with respect to B, i.e., a product of
a B-orthogonal linear transformation and a homothety. Moreover, this form B
is unique up to multiples. Since this result depends only on the hyperplane
arrangement (a, asing), one concludes the following.

Corollary 6.19. Assume that A is non-affine. Let (p, F ) be a pointed flat and
let ϕ : Rrk(A) → F be a chart centered at p. Then ϕ−1(F sing(p)) is a hyper-
plane arrangement in Rrk(A), and there exists a non-degenerate bilinear form B
on Rrk(A), unique up to multiples, such that every linear transformation of
Rrk(A) preserving this hyperplane arrangement is a similarity with respect
to B. �
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Let f ∈ GL(p, F, F sing(p)) be a local transformation. Then for every chart
ϕ : Rrk(A) → F centered at p the map ϕ−1 ◦ f ◦ ϕ is a linear map preserving
the hyperplane arrangement ϕ−1(F sing(p)). By the preceding corollary it can
be written as a product of a homothety and a B-orthogonal transformation.

The map f is called a local automorphism of (p, F ) if it is B-orthogonal,
i.e., if it does not involve a nontrivial homothety. This notion does neither
depend on the choice of B (since B is unique up to multiples), nor on the
choice of chart (since a change of charts maps the corresponding hyperplane
arrangements and, thus, the associated forms to each other). Denoting the
group of local automorphisms of (p, F ) by Aut(p, F ) leads to a splitting

GL(p, F, F sing(p)) ∼= R>0 ×Aut(p, F ),

where R>0 acts on F by homotheties.
It is possible to describe the right-hand side explicitly. Under a suitable

chart,

Aut(p, F ) = O(a, asing) := O(a, B) ∩GL(a, asing),

where B is a bilinear form in the canonical homothety class for (a, asing) (cp.
Definition A.38) that, under a suitable isomorphism a ∼= Rrk(A), can in fact be
chosen to be the bilinear form B from Corollary 6.19.

Fix a simplicial Coxeter complex Σ for (W,S) (see Subsection A.1), denote
by Aut(Σ) its group of simplicial automorphisms and by Aut(W,S) the auto-
morphism group of the Coxeter graph ofW with respect to S. Proposition A.32
and Remark A.33 imply the following corollary.

Corollary 6.20. Assume that A is non-spherical and non-affine. Then for
every pointed flat (p, F ) one has

Aut(p, F ) ∼= Aut(Σ)× Z/2Z ∼= (W ⋊Aut(W,S))× Z/2Z,

and hence

GL(p, F, F sing(p)) ∼= R>0 × (W ⋊Aut(W,S))× Z/2Z.

Remark 6.21. (i) In the spherical case, the same result holds, except that
the Z/2Z-factor is missing (see Remark A.33).

(ii) The isomorphisms in Corollary 6.20 can be made more explicit: Let g be
an automorphism of X which maps (p, F ) to the standard pointed flat
(eK,AK) and let ϕe : a → AK as in (22). Then ϕ := g ◦ ϕe : a → F
is a chart for F centered at p with ϕ(F sing(p)) = asing. In particular, if

f ∈ GL(p, F, F sing(p)), then ϕ ◦ f ◦ ϕ−1 ∈ GL(a, asing) < GL(a). This
linear map can then be written as a product of a homothety, an element
of the Weyl group acting on a by the reduced Kac–Moody representa-
tion (see Definition A.21), a Cayley graph isomorphism of (W,S) and
possibly the antipode map v 7→ −v. Here the action of Aut(W,S) on a

is given as follows: By the discussion in Subsection A.25, the reduced
Tits cone C ⊂ a is a cone over a colored polyhedral complex whose dual
graph is isomorphic to the Cayley graph ofW with respect to (W,S), and
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hence Aut(W,S) acts on the reduced Tits cone by combinatorial auto-
morphisms, which can be realized uniquely by linear automorphisms of
the ambient vector space a.

(iii) All homotheties and all elements of Aut(Σ) preserve the Tits cone when
acting on a, whereas the antipodal map exchanges the Tits cone and its
negative. In particular, all elements of GL(p, F, F sing(p)) preserve the
Tits double cone, i.e., the union of the Tits cone and its negative.

6.22. Local vs. global automorphisms. By Corollary 5.18 the Kac–Moody
group G and hence the full automorphism group Aut(X ) act strongly transi-
tively on X . In particular, the corresponding Weyl groups W (Aut(X ) y X )
and W (G y X ) and local actions are well-defined (see Definition 2.37). A pri-
ori, these local actions take values in the group GL(p, F, F sing(p)) of local
transformations of a given pointed flat. If A is non-affine, then they actually
take value in the subgroup Aut(p, F ) < GL(p, F, F sing(p)) of local automor-
phisms, as we will discuss in this section.

Recall that M < T denotes the torsion subgroup of T so that T = A×M .

Proposition 6.23. Assume that A is non-affine and let (p, F ) be a pointed
flat in X .

(i) StabG(p, F ) ∼= NK(T ) and FixG(p, F ) ∼= M .

(ii) The geometric Weyl group W (G y X ) is isomorphic to the algebraic
Weyl group W of G.

(iii) There exists a chart ϕ : a → F centered at p which intertwines the
action of W on F via the isomorphism in (ii) and the reduced Kac–
Moody representation.

Proof. By Proposition 2.36 one may assume without loss of generality that
(p, F ) is given by the standard pointed flat (e, AK). By Remark 5.5 the stabi-
lizer in G of the standard flat AK is given by NG(T ). Since the fixator of e is

given by K, one has StabG(e, AK) = NK(T ). Recall from Corollary 3.28 that

if π : G → G denotes the canonical projection, then NK(T ) = π(W̃ ) is the

image of the extended Weyl group. In particular, since M < W̃ , the stabilizer
StabG(e, AK) contains M = π(M).

Consider the action of StabG(e, AK) on the standard flat AK. The sub-

group M centralizes A and is contained in K, hence acts trivially on AK, i.e.,
M < FixG(e, AK). Consequently, the action of StabG(e, AK) factors through
the group

StabG(e, AK)/M = π(W̃ )/π(M) = π(W̃ /M).

The standard chart ϕ : a → AK from (22) intertwines the action of this
group on AK with the restriction of the adjoint action on a. As discussed

in Subsection 3.13 there exists an isomorphism W̃/M ∼= W and under this

isomorphism the adjoint action of W̃/M on a is given by the Kac–Moody
representation of W . It follows that the adjoint action of StabG(e, AK)/M

on a identifies StabG(e, AK)/M with the subgroup ρKM (W ) < GL(a). In
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particular, since the reduced Kac–Moody representation is faithful, one obtains
an isomorphism StabG(e, AK)/M ∼= W . Moreover, since every element of W

acts nontrivially on a, the inclusion M →֒ FixG(e, AK) is actually an equality.
This finishes the proof. �

As before, denote by Σ = Σ(W,S) a simplicial Coxeter complex of the Cox-
eter system (W,S) underlying A. Recall from Corollary 6.20 (or Lemma A.31)
that the simplicial automorphism group Aut(Σ) splits as the semi-direct prod-
uct Aut(Σ) = W ⋊ Aut(W,S), where Aut(W,S) denotes the group of
automorphisms of the Coxeter diagram, and that

GL(p, F, F sing(p)) ∼= R>0 × (W ⋊Aut(W,S))× Z/2Z

as long as A is non-spherical and non-affine. Proposition 6.23 and Corol-
lary 6.20 imply the following corollary.

Corollary 6.24. Assume that A is non-spherical and non-affine and let (p, F )
be a pointed flat in X . Then the local action of W (G y X ) on (p, F ) is
intertwined by the isomorphisms from Corollary 6.20 and Proposition 6.23
with the canonical inclusion

W →֒ R>0 × (W ⋊ Aut(W,S))× Z/2Z,

i.e., the local action fits into a commutative diagram of the form

W (G y X )

∼=

��

// GL(p, F, F sing(p))

∼=

��
W // R>0 × (W ⋊Aut(W,S))× Z/2Z,

In particular, the local action takes values in the subgroup

Aut(p, F ) < GL(p, F, F sing(p))

of local automorphisms. �

In what follows, we conclude this section by analyzing the action of the
group W (Aut(X ) y X ). Recall from Remark 6.3 that Aut(ΓA) < Aut(W,S).

Theorem 6.25. Assume that A is non-spherical and non-affine and let (p, F )
be a pointed flat in X . Then the local action of W (Aut(X ) y X ) fits into
a commutative diagram of the form

W (Aut(X ) y X )

∼=

��

// GL(p, F, F sing(p))

∼=

��
(W ⋊Aut(ΓA))× Z/2Z // R>0 × (W ⋊Aut(W,S))× Z/2Z.

In particular, the local action takes values in the group of local automorphisms.
Moreover, every local automorphism extends to a global automorphism if and
only if Aut(ΓA) = Aut(W,S).
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Proof. By Theorem 6.12 one has Aut(X ) ∼= Aut(G), and by Theorem 6.2 ev-
ery automorphism of G can be written as a product of an inner automorphism
of G, a diagram automorphism, a diagonal automorphism and a power of the
Cartan–Chevalley involution θ. One needs to determine which of these auto-
morphisms stabilize the standard pointed flat (p, F ) = (e, AK), and how they
act on F . Among the inner automorphism, these are precisely the elements
of NK(T ), and these correspond to the elements of W by Corollary 6.24. In
addition, all diagram automorphisms stabilize the standard pointed flat and
act as Coxeter automorphisms, and all diagonal automorphisms fix the stan-
dard pointed flat pointwise. Finally, the Cartan–Chevalley involution preserves
the standard pointed flat and acts on it by inversion. Hence it corresponds to
the generator of Z/2Z. The theorem follows. �

The same argument also shows that W (Aut+(X ) y X ) ∼= W ⋊ Aut(ΓA).
We have shown Theorem 1.11 and Corollary 1.12.

7. Causal structures and the causal boundary

We keep the notation of the previous section. That is, G denotes a sim-
ply connected centered split real Kac–Moody group with semisimple adjoint
quotient G and adjoint quotient Ad(G). We are going to consider the reduced
Kac–Moody symmetric space X in its group model G/K.

Convention 7.1. Throughout Section 7 we will assume that G is of non-
spherical and non-affine type.

7.2. Invariant causal structures. The goal of this subsection is to introduce
an Aut(X )-invariant field of double cones in X . Our starting point is the
observation that the vector space a contains a canonical cone C ⊂ a with open
interior Co and tip 0, called the reduced Tits cone; see Section A.25 in the
appendix. Since the generalized Cartan matrix A is irreducible non-spherical
and non-affine, this cone is pointed in the sense that

C ∩ (−C) = {0}.
Refer to the union Co ∪ (−Co) as the open Tits double cone in a. Denote by
A
o

± := exp(±Co) the corresponding subsemigroups of A and refer to A
o

+ ∪ A
o

−

as the canonical (open) double cone in A.

Remark 7.3. Let F be an arbitrary flat through e in the groupmodel ofX . By
strong transitivity, there exists k ∈ Aut(X )e such that k.A = F . Moreover, the
subset C

+,−

e (F ) := k.(A
o

+ ∪ A
o

−) ⊂ F is independent of the choice of k. Indeed,
if k′ is a different choice, then k−1k′ acts on A by a local automorphism, and
by Theorem 6.25 any such automorphism leaves the canonical double cone
invariant.

Define
C

+,−

e :=
⋃

C
+,−

e (F ),

where the union is taken over all flats containing the basepoint e.
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Proposition 7.4. Assume that A is non-spherical and non-affine. Then for
every flat F containing e one has

C
+,−

e ∩ F = C
+,−

e (F ).

In particular, C
+,−

e intersects each flat in a double cone, whose two halves do
not intersect.

Proof. One needs to show that if F1 and F2 are flats containing e and x ∈ F1∩
C

±

e (F2), then x ∈ C
±
(F1). By Corollary 6.18 there exists α ∈ Aut(X ) which

fixes F1∩F2 pointwise and maps F2 to F1. In particular, since x ∈ F1∩F2, one
has x = α(x) ∈ α(C

±

e (F2)). Moreover, since e ∈ F1 ∩F2 one has α ∈ Aut(X )e,
and hence

α(C
±

e (F2)) = C
±

e (F1)

by the argument above. This shows x ∈ C
±

e (F1) and finishes the proof. �

By abuse of language, we will also call C
+,−

e a double cone. By construc-
tion, this double cone is invariant under all automorphisms in Aut(X )e. In
particular, if x ∈ X and if α ∈ Aut(X ) maps e to x, then

C
+,−

x := α(C
+,−

e )

is independent of the choice of α. Moreover, if ϕ : a → F is any chart centered
at x, then

C
+,−

x [F ] := C
+,−

x ∩ F = ϕ(Co ∪ (−Co)).

Note also that by construction the family (C
+,−

x )x∈X of double cones is Aut(X )-
invariant in the sense that

α(C
+,−

x ) = C
+,−

α(x) (α ∈ Aut(X ), x ∈ X ).

We refer to (C
+,−

x )x∈X as the canonical double cone field on X .

If ϕ, ϕ′ : (0, a) → (p, F ) are charts, then ϕ−1 ◦ ϕ′ is a linear map preserving

the decomposition a = areg ⊔ asing as well as the open double Tits cone Co ∪
(−Co) ⊂ a. There are thus two possibilities: Either ϕ−1 ◦ϕ′ preserves the open
Tits cone or it maps the open Tits cone to its negative.

Definition 7.5. Two charts ϕ, ϕ′ : (0, a) → (p, F ) of F centered at the same
point p are called causally equivalent if ϕ−1 ◦ ϕ′ preserves the open Tits cone.
A causal orientation of X is a choice of one of the two causal equivalence classes
of charts for every maximal pointed flat (p, F ).

If a group H acts by automorphisms on X , then a causal orientation is
called H-invariant if for every h ∈ H and every chart ϕ in the chosen causal
equivalence class also the chart h ◦ ϕ is in the chosen equivalence class.

Proposition 7.6. There exist exactly two Aut+(X )-invariant causal orienta-
tions on X .
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Proof. Since Aut+(X ) acts strongly transitively on X and since every pointed
maximal flat admits only two causal equivalence classes, there are at most two
G-invariant causal structures on X . By Theorem 6.25 one has

W (Aut(X ) y X ) ∼= (W ⋊Aut(ΓA))× Z/2Z,

where the first factor acts on the Tits cone, and the second factor swaps the Tits
cone and its negative. Moreover, W (Aut+(X ) y X ) is given by the subgroup
(W ⋊Aut(ΓA))×{e}. One thus obtains two distinct Aut+(X )-invariant causal
orientations, one for which the charts {α ◦ exp | α ∈ Aut+(X )} are positive,
and one for which the charts {−α ◦ exp | α ∈ Aut+(X )} are positive. �

Charts in the unique Aut+(X )-invariant causal orientation containing exp
are called positive charts , charts in the unique Aut+(X )-invariant causal orien-
tation containing − exp negative charts . Given a pointed maximal flat (x, F )
in X and a positive chart ϕ : a → F centered at x, define

C
+

x [F ] := ϕ(Co) and C
−

x [F ] := ϕ(−Co).
By definitions, these cones do not depend on the choice of positive chart, and
if one defines

C
±

x :=
⋃

F∋x

C
±

x [F ],

then C
+,−

x = C
+

x ∪C
−

x . This decomposes the canonical double cone field on X
into two cone fields.

Definition 7.7. The cone field (C
+

x )x∈X is called the positive causal structure

on X , and the cone field (C
−

x )x∈X is called the negative causal structure on X .

Note that the positive and negative causal structure are invariant under
Aut+(X ), and in particular G-invariant. At this point we have established
Proposition 1.13.

Remark 7.8. In Lorentzian geometry, invariant causal structures arise nat-
urally. Namely, if (gx)x∈X is a Lorentzian metric on a manifold X , then the
associated field of light cones (Cx ⊂ TxX)x∈X is invariant under all Lorentzian
automorphisms. In our setting, there is always an invariant bilinear form on a

since A is assumed to be symmetrizable. However, this bilinear form need not
be Lorentzian, and even if it is Lorentzian it may happen that the Tits cone is
not contained in the light cone of the invariant Lorentzian form (see, e.g., [15]).
We emphasize that our G-invariant causal structures are modelled on the Tits
cone, rather than the light cone of a bilinear form, hence our geometry here
is causal rather than Lorentzian. This being said, in certain hyperbolic exam-
ples, including E10, the interiors of the Tits cone and the light cone coincide
according to [15, 8]; hence in these cases our results do admit a Lorentzian
interpretation. In these examples our construction of causal boundaries below
is a global version of the lightcone embedding provided in [8].
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7.9. Causal geodesic rays and the municipality. The positive causal
structure gives rise to a notion of causal curves in the following standard way.

Definition 7.10. Let I ⊆ R be an interval which is open on the right, i.e., for
every t ∈ I there is ε > 0 such that t+ ε ∈ I. A continuous map γ : I → X is
called a causal curve if for every t ∈ I there exists ε > 0 such that

γ((t, t+ ε)) ⊂ C
+

γ(t).

If instead for every t ∈ I there exists ε > 0 such that

γ((t, t+ ε)) ⊂ C
−

γ(t),

then γ is called an anti-causal curve.

A (anti-)causal curve, which is also a geodesic ray, respectively a geodesic
segment, will be called a (anti-)causal ray, respectively (anti-)causal segment .

Lemma 7.11. Let r : [0,∞) → X be a geodesic ray, let 0 < S < T < ∞ and
let γ : [S, T ] → X be the geodesic segment obtained by restricting r to [S, T ].
Then the following are equivalent:

(i) γ is a causal segment.

(ii) r(t) ∈ C
+

r(0) for some t ∈ R.

(iii) r(t) ∈ C
+

r(s) for all 0 ≤ s < t < ∞.

(iv) γ(t) = r(t) ∈ C
+

r(s) for all S ≤ s < t ≤ T .

(v) r is a causal ray.

Proof. First, the implications (i) =⇒ (ii), (iii) =⇒ (iv) =⇒ (i) and (iii) =⇒
(v) =⇒ (i) are immediate from the definitions. To show the remaining implica-
tion (ii) =⇒ (iii) one may assume by strong transitivity that r is contained in A
and emanates from e, i.e., r(t) = exp(tX) for some X ∈ a. Under this assump-
tion, (ii) amounts to tX ∈ C for some t ∈ R. This implies that (t − s)X ∈ C
for all 0 ≤ s < t < ∞, which is (iii). �

In the sequel, ∂•X denotes the collection of all geodesic rays r : [0,∞) → X .
Then ∂•X fibers over X by the map

(25) ev0 : ∂•X → X , r 7→ r(0),

and we refer to the fiber ∂xX := ev−1
0 (x) over x as the point horizon of x.

Given a flat F containing x, we also denote by ∂xX [F ] ⊂ ∂•X the subset of
rays emanating from x and contained in F . The action of the automorphism
group Aut(X ) preserves geodesic rays and thus induces an action on ∂•X , for
which the projection ev0 is equivariant. In particular, for every x ∈ X the
point stabilizer Aut(X )x acts on ∂xX , and Aut(x, F ) acts on ∂xX [F ].

To explicitly parametrize geodesic rays in X , consider again the standard
pointed maximal flat (e, A) in the group model of X . Then the geodesic rays
contained in A and emanating from e are given by re,X(t) := exp(tX), whereX

runs through the Lie algebra a. Since X is strongly transitive, every geodesic
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ray in X is of the form rg,X(t) := g. exp(tX) for some g ∈ Aut(X ) and X ∈ a.
One thus obtains a surjective map

Aut(X )× a → ∂•X , (g,X) 7→ rg,X .

Note that this map is not injective, i.e., the ray rg,X does not determine the
parameters g and X .

Definition 7.12. A geodesic ray r : [0,∞) → X is called regular if it is
contained in a unique maximal flat of X and singular otherwise.

Note that by Lemma 2.19 these notions are invariant under automorphisms
of X . Recall the notation asing := log(A

sing
(e)) for the logarithm of the singular

set of (e, A) from Subsection 6.14; denote by areg := a \ asing its complement.
In terms of the parametrization above, regular and singular geodesic rays can
be characterized as follows.

Lemma 7.13. The geodesic ray rg,X is singular if X ∈ asing and regular if
X ∈ areg.

Proof. By invariance of regular/singular rays under automorphisms, it suffices
to show this for g = e. It therefore remains to prove that if X ∈ areg, then the
whole open ray {tX | t ∈ (0,∞)} is contained in areg. This, however, follows

from the fact that asing is a hyperplane arrangement by Proposition 6.16. �

Definition 7.14. The subset ∆• ⊂ ∂•X consisting of all causal and anti-causal
rays is called the municipality of X .

The terminology refers to the fact, to be proved in Proposition 7.26 below,
that the fibers of ∆• with respect to the map ev0 are geometric realizations of
the twin building of G, hence we will think of the municipality as a collection
of (mutually isomorphic) twin buildings parametrized by X . By construction,
∆• ⊂ ∂•X is Aut(X )-invariant, and if one denotes by ∆±

• ⊂ ∆• the collections
of causal/anti-causal rays, then these are invariant under Aut+(X ). Also note
that one can characterize causal/anti-causal rays in terms of the standard
parametrization as follows.

Proposition 7.15. The ray rg,X is contained in the municipality ∆• if and

only if X ∈ Co ∪ −Co. �

Denote by

∆reg
• = {rg,X ∈ ∆• | X ∈ areg}, resp. ∆sing

• = {rg,X ∈ ∆• | X ∈ asing},
the subsets of regular, resp. singular rays in the municipality. Furthermore,
given x ∈ X , denote by ∆x, ∆

reg
x and ∆sing

x the corresponding fibers over x by
the map ev0.

Since the notion of a municipality ray is invariant under automorphisms,
the subset ∆• ⊂ ∂•X is Aut(X )-invariant, and the induced Aut(X )-action

preserves the decomposition ∆• = ∆reg
• ⊔∆sing

• . Consequently, for every x ∈ X
the point stabilizer Aut(X )x acts on ∆x preserving the decomposition

∆x = ∆reg
x ⊔∆sing

x .
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7.16. Ideal polyhedral complexes and their combinatorial descrip-
tions. Our next goal is to equip the municipality with a certain polyhedral
structure and to compare this structure with a certain polyhedral realization
of the twin building. In contrast to the spherical case, the classical language
of simplicial complexes is not sufficient to discuss these matters for a number
of reasons: Firstly, our complexes will be built from more general polyhedra
than simplices. Secondly, we also need to discuss cones over polyhedral com-
plexes, which have a polyhedral structure with noncompact cells. Finally, we
will need to work with subsets of polyhedral complexes in which some faces
(of codimension ≥ 2) are missing. We thus need to develop a framework which
deals with all of these complications.

A halfspace in Rn is defined as a connected component of the complement of
an affine hyperplane in Rn. An intersection of finitely many half-spaces will be
called a polyhedron if it is nonempty. Thus by definition polyhedra are always
closed and convex, but not necessarily compact. A nonempty convex subset F
of a polyhedron P is called a face if for every x ∈ F and every y, z ∈ P such
that x lies on the line segment between y and z we have {y, z} ⊂ F . Every
face of a polyhedron is again a polyhedron.

Definition 7.17. A pair (X, (ϕi)i∈I) consisting of a set X and a family of
injective maps ϕi : Pi → X from polyhedra Pi to X is called a polyhedral
complex if the following two conditions are satisfied for all i, j ∈ I:

(i) If F is a face of Pi, then there exists k ∈ I such that ϕk(Pk) = ϕi(F )
and ϕ−1

k ◦ ϕi|F is an isometry.
(ii) If ϕi(Pi) ∩ ϕj(Pj) 6= ∅, then there exist k ∈ I and ϕk : Pk → X such

that ϕk(Pk) = ϕi(Pi) ∩ ϕj(Pj) and ϕ−1
i ◦ ϕk and ϕ−1

j ◦ ϕk are isometric
embeddings.

The weak topology on X is the weakest topology which makes all the inclu-
sions ϕi continuous.

In the sequel we will always equip polyhedral complexes with their weak
topology unless mentioned otherwise. If all the polyhedra Pi are simplices, then
we recover the notion of a simplicial complex . We refer to the images ϕ(Pi)
as closed cells of X ; the interior of a closed cell is called an open cell , and an
open or closed cell which is not the face of any other cell is called an open or
closed chamber . An open or closed cell σ is called a face of an open or closed
cell τ if σ ⊂ τ . In this case the difference between the dimension of τ and the
(covering) dimension of σ is called the codimension of σ in τ .

If X is a polyhedral complex, then the polyhedral cone CX over X is the
following polyhedral complex: The underlying set of CX is the quotient of
([0,∞)×X) obtained by collapsing {0}×X . The polyhedral structure is then
obtained by declaring the basepoint [(0, x)] to be a closed cell and declaring
the image of [0,∞)× σ to be a closed cell for every closed cell σ ⊂ X .

Definition 7.18. If X is a polyhedral complex, then a subset X ⊂ X is called
an ideal polyhedral complex with completion X if X is a union of open cells and
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contains all open chambers of X and their codimension 1 faces. If X1 and X2

are two ideal polyhedral complexes, then a bijection f : X1 → X2 will be
called a geometric isomorphism if f is a homeomorphism with respect to the
respective weak topologies and maps open cells homeomorphically onto open
cells. An action of a group on an ideal polyhedral complex is called cellular if
it is by geometric automorphisms.

Typical examples of ideal polyhedral complexes are given by “ideal tessella-
tions” of the hyperbolic plane with some vertices at infinity, hence the name.

Remark 7.19. Assume that V is a vector space and that C ⊂ V is a sub-
set which carries the structure of an ideal polyhedral complex such that every
closed cell contains 0 and is invariant under the action of R>0 on V by homo-
theties. Let S(V ) := (V \ {0})/R>0 and denote by S : (V \ {0}) → S(V )
the canonical projection. Then S(C) has an ideal polyhedral structure whose
closed cells are of the form S(τ), where τ is a closed cell of C different from {0}.
Alternatively, one can realize S(C) as the intersection of C with an arbitrary
sphere centered at 0, and hence we refer to S(C) as the link complex of C.
Furthermore, if C is contained in an open half-space of V , then one can also
realize S(C) as the intersection of C with a suitable affine hyperplane of V .

If X is an ideal polyhedral complex, then we define a partial order on
the set of open cells of X by setting σ ≤ τ if σ is a face of τ . We denote
by Σ(X) the resulting poset (partially ordered set). Posets together with
order-preserving maps form a category, and we say that two ideal polyhedral
complexes are combinatorially isomorphic if their underlying posets are isomor-
phic in this category. If X is an ideal polyhedral complex and Σ is a poset with
Σ ∼= Σ(X), then we say thatX is a polyhedral realization of Σ. For example, the
r-dimensional simplex ∆r realizes the poset Nr given by all nonempty subsets
of {0, . . . , r}.

A poset is called polyhedral , respectively simplicial , if it can be realized
by a polyhedral, respectively simplicial, complex. Ideal polyhedral posets and
ideal simplicial posets are defined similarly. If Σ is a poset, then its augmenta-
tion Σ+ is the poset obtained from Σ by adjoining a minimum ∅Σ. If Σ can be
realized by a polyhedral complex X , then Σ+ can be realized by the polyhedral
cone CX ; in particular, augmentations of polyhedral posets are polyhedral.

A poset Σ is simplicial if and only if for all σ, τ ∈ Σ there exists a greatest
lower bound σ ∧ τ and for every σ ∈ Σ the downward link

Σ≤σ = {τ ∈ Σ | τ ≤ σ}

is isomorphic to Nr for some r ∈ N0; cp. [1, p. 661]. We then call σ an (abstract)
r-simplex of Σ and refer to r as its dimension. The 0-simplices of Σ are also
called its vertices and if σ is an r1-simplex, τ is an r2-simplex and σ ≤ τ ,
then σ is called a face of τ of codimension r2 − r1. Ideal simplicial posets are
the subposets of simplicial cosets which contain all maximal and comaximal
elements.
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Every simplicial poset Σ admits a canonical simplicial realization |Σ| called
its geometric realization; cp. [1, p. 662]. Denote by |Σ+| := C|Σ| the real-
ization of Σ+ given by the simplicial cone over |Σ|. In the geometric reali-
zation of a simplicial poset Σ, every abstract r-simplex is realized by an r-
dimensional simplex. While every simplicial realization of Σ is geometrically
isomorphic to |Σ|, there may exist other (non-simplicial) ideal polyhedral re-
alizations of Σ which are not geometrically isomorphic to |Σ|, and in which
abstract r-simplices are realized by polyhedra of dimensions different from r
(cp. Example A.2).

If S is a finite set, then an S-coloring of a polyhedral poset Σ is a map
from the comaximal elements of Σ to S which restricts to a bijection on the
codimension 1 faces of each given chamber. If Σ = Σ(X) for an ideal poly-
hedral complex X , then such a map is also called a coloring of X , and we
call Σ together with this map an S-colored ideal polyhedral poset . In this case
every s ∈ S defines an equivalence relation σs on the set Ch(Σ) of chambers
of Σ by setting σ ∼s τ if σ ∧ τ is a codimension 1 face colored by s. The pair
(Ch(Σ), (∼s)s∈S) is then a chamber system in the sense of [1, Def. 5.21], called
the underlying chamber system of Σ (or of X). If X is an ideal polyhedral com-
plex with completion X, then every S-coloring of X restricts to an S-coloring
of X , and this restriction determines the underlying chamber system uniquely.
We say that two S-colored polyhedral complexes or posets are chamber isomor-
phic if the underlying chamber systems are isomorphic in the sense that there
is a bijection between chambers preserving all of the equivalence relations.

For colored polyhedral complexes we thus have three notions of isomor-
phism: geometric isomorphism (the strongest), combinatorial isomorphism and
chamber isomorphism (the weakest).

7.20. Ideal polyhedral realizations of the twin building. So far we have
considered the twin building ∆ associated with G as a chamber system. Indeed,
in our previous notation we have ∆ = ∆− ⊔∆+, where ∆± = G/B± are the
sets of chambers of the two halves. Since B± are self-normalizing we can iden-
tify ∆+ and ∆− with the set of conjugates of B+ and B−, respectively. More
generally, we can consider the sets Σ(∆+) and Σ(∆−) of all parabolic sub-
groups of G (excluding G) which contain a conjugate of B+, respectively B−.
If we define partial orders on these sets by reverse inclusion, then ∆± can be
seen as the underlying chamber systems of the posets Σ(∆±) with respect to
a suitable coloring. Note that the augmentations Σ+(∆±) = Σ(∆±)∪{G} give
rise to the same chamber complex.

The posets Σ(∆±) are in fact simplicial, and hence admit simplicial geomet-
ric realizations |Σ(∆±)| with underlying chamber systems ∆±. See [1, Ch. 4]
for a discussion of these simplicial complexes. In the context of our municipal-
ities we will be interested in different realizations of the chamber systems ∆±.

Definition 7.21. The subposet Σsph(∆
±) ⊂ Σ(∆±) consisting of all parabolic

subgroups of spherical type is called the positive/negative Davis poset . We also
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define the Davis poset by Σsph(∆) := Σsph(∆
−) ⊔ Σsph(∆

+), and use similar
notation for the augmented versions.

The significance of these posets was pointed out by Davis who provided
a CAT(0) ideal polyhedral realization |Σsph(∆

±)|Davis of Σsph(∆
±) in [10],

which is now called the Davis realization. Such a CAT(0) realization was
known previously in the affine case by classical results of Bruhat and Tits.
To obtain a CAT(0) realization in the spherical case one has to replace the
positive/negative Davis poset by the augmented positive/negative Davis poset
Σ+

sph(∆
±) := Σsph(∆

±) ∪ {G} in order to avoid positive curvature.

By construction, the positive/negative Davis posets realize the chamber
systems ∆±. In particular, the Davis posets inherit a canonical coloring, and G
acts on them via conjugation by coloring-preserving automorphisms. If we
consider only those parabolic subgroups in Σsph(∆

±) which contain a fixed
split torus, then we obtain a poset which is isomorphic to the Davis–Moussong
poset of the underlying Coxeter poset (see Definition A.3 and the subsequent
discussions).

We now describe the alternative realization of the Davis poset which we
will use in our study of the municipality of a reduced Kac–Moody. Recall from
Subsection A.25 that the closed fundamental chamber of the reduced Tits cone
is given by

C = {X ∈ a | ∀i = 1, . . . , n : αi(X) ≥ 0} ⊂ a,

and that it is a polyhedral cone which is bounded by the root hyperplanes Hαi

of the simple roots in a; its polyhedral cells are given by intersections of these
hyperplanes, and there is a natural coloring of the faces by S, which colors
each reflection hyperplane with the corresponding simple reflection. The inter-
section of the fundamental chamber with the interior of the Tits cone is the
ideal subcomplex given by the union of those cells which have finite stabilizer
under the reduced Kac–Moody representation of the Weyl group on a. We
denote by PS(a) the image of this ideal polyhedral cone under the projection
S : a \ {0} → S(a) from Remark 7.19 and call it the reduced ideal fundamental
cell . It is an ideal polyhedral complex with a single chamber whose faces are
colored by S.

We now form the quotient of direct products ∆±×PS(a) by identifying (C, x)
and (C′, x) in each half provided C and C′ are s-adjacent for some s ∈ S
and x is contained in the closure of the face of PS(a) labelled by s. This yields

a colored ideal polyhedral complex |∆±|a and we set |∆|a := |∆+|a ⊔ |∆−|a.
By construction, |∆±|a are realizations of the chamber systems ∆±, and hence
we refer to |∆|a as the a-realization of the twin building ∆. Note that the
action of the combinatorial automorphism group Aut(∆) on the first factor of
∆ × PS(a) descends to an action by polyhedral automorphisms on |∆±|a. In

particular, Aut(X ) acts on |∆±|a via the embedding Aut(X ) →֒ Aut(∆).
We have thus obtained three realizations of the twin building ∆: The

simplicial realization |∆|, the Davis realization |Σsph(∆)|Davis and the a-realiza-
tion |∆|a. All three realizations are chamber isomorphic, but in general not
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geometrically isomorphic. We will see below that (under our standing assump-
tion that A is non-spherical and non-affine) |Σsph(∆

±)|Davis and |∆|a are com-
binatorially isomorphic, namely they both realize the Davis poset Σsph(∆

±).
On the other hand, the simplicial realization is not combinatorially isomor-
phic to either of them. Our polyhedral structure on the municipality will be
modelled on the a-realization.

7.22. The polyhedral cell structure of the municipality. Recall from
Definition 7.14 the definition of the municipality ∆•. Throughout this subsec-
tion we fix x ∈ X and denote by ∆x the fiber of ∆• under the surjection ev0
from (25). By definition, Aut(X ) acts on ∆• and the stabilizer Aut(X )x pre-
serves ∆x. The goal of this subsection is to define an ideal polyhedral structure
on ∆x and to show that the resulting ideal polyhedral complex is Aut(X )x-
equivariantly geometrically isomorphic to the a-realization |∆|a, and combina-
torially isomorphic to the Davis realization |Σsph(∆)|Davis. As a by-product
we will obtain that |∆|a realizes Σsph(∆).

Our first goal is to construct a polyhedral structure on ∆x for a fixed x ∈ X .
For this we will need to recall some results from the appendix. Firstly, the
Weyl group W acts on a by the reduced Kac–Moody representation, and in
view of Convention 7.1 we deduce from Corollary A.24 that (a, (−|−), π(Π̌nor))
is a root basis for (W,S) under this action. By (42) and the discussion in A.25,
the reduced Tits cone

C = {X ∈ a | α(X) ≥ 0 for almost all α ∈ Φ+} ⊂ a

is isomorphic to the dual Tits cone associated with this root basis, and hence
provides a polyhedral realization of the augmented Coxeter poset Σ+(W,S).
Note that, in fact, Σ+(W,S) = Σ(W,S) since W is assumed to be non-
spherical. With this observation it then follows from Proposition A.10 that
the interior of the Tits cone is a polyhedral realization of the Davis–Moussong
poset Σsph(W,S). In particular, this polyhedral complex admits a canonical
coloring by S.

We call a ray in a with origin 0 a Tits ray if it is contained in the interior of
the Tits cone. We can then identify the sets of all Tits rays with the link com-
plex of the interior of the Tits cone in the sense of Remark 7.19, and thereby
define an ideal polyhedral structure on the set of all Tits rays. This complex
then realizes the Davis–Moussong poset Σsph(W,S). Geometrically it is iso-
morphic to a twin apartment in |∆|a since the closed fundamental chambers
in both complexes carry the same geometry by definition, and since W acts
chamber-transitively on both complexes preserving the geometry. We refer to
open chambers in this complex as open Weyl chambers in S(a).

Given x ∈ X and a flat F containing x, pick a positive chart ϕ : a → F
so that ϕ(±Co) = C

±

x . If one denotes by ∆±
x (F ) ⊂ ∆±

x the subset of rays
contained in F , then ϕ sends regular Tits rays (respectively their negatives)
to geodesic rays in ∆±

x (F ), and hence induces bijections

ϕ∗ : S(±C) → ∆±
x (F ).
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By transport of structure one can thus turn ∆+
x (F ) and ∆−

x (F ) into S-colored
ideal polyhedral complexes. We thus refer to these polyhedral structures
on ∆±

x (F ) as the canonical ideal polyhedral structure on ∆±
x (F ) and refer to

their open chambers as open Weyl chambers in ∆±
x (F ). We also denote by

Σ(∆±
x (F )) the underlying posets.

Remark 7.23. In order to define the canonical ideal polyhedral structure we
have chosen a positive chart ϕ : a → F . If ψ is any other positive chart, then
by Remark 7.3 and Theorem 6.25 we have a commutative diagram

a
ϕ // F

a,

α

OO

ψ

@@��������

where up to an automorphism of the Coxeter diagram which changes only the
labelling α is given by an element of the Weyl group, acting via the reduced
Kac–Moody representation of a. Since the Weyl group acts on the double
Tits cone and its interior by geometric automorphisms, we deduce that the
canonical ideal polyhedral structure is independent of the choice of positive
chart ϕ used to define it.

We can summarize the properties of our construction so far as follows.

Corollary 7.24. For every pointed flat (x, F ) the set

∆x(F ) := ∆−
x (F ) ⊔∆+

x (F )

with its canonical ideal polyhedral cell structure is geometrically isomorphic to
a twin apartment in the a-realization |∆|a and combinatorially isomorphic to
a twin apartment in the Davis realization |Σsph(W,S)|Davis of the twin build-
ing ∆ of G. Hence Σ(∆±

x (F )) is isomorphic to the Davis–Moussong poset
Σsph(W,S). Under any such isomorphisms the subsets ∆±

x (F ) ⊂ ∆x(F ) cor-
respond to the two halves of the twin apartment. �

Our next goal is to establish a global equivariant version of this result. To
formulate our result, we first discuss the relevant actions of Aut(X ).

Remark 7.25. We have the following actions of subgroups of Aut(X ):

(i) The action of Aut(X ) on X induces an action of the stabilizer Aut(X )x
on ∆x. This action is by geometric automorphisms. Hence it induces an
action on the underlying poset Σx.

(ii) Every coloring-preserving automorphism α of the colored poset Σ(∆)
preserves Σsph(∆) and induces a type-preserving automorphism of the
chamber system ∆. Moreover, α can be recovered from the corresponding
automorphism of ∆ by [1, Cor. 4.11]. We may thus identify coloring-
preserving automorphisms of Σ(∆) or Σsph(∆) and type-preserving
automorphisms of ∆. Similarly, we can (and will) identify Aut(∆) with
the automorphism groups of the poset Σ(∆) or of the poset Σsph(∆).
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Any such automorphism induces a geometric automorphism of the a-real-
ization |∆|a.

(iii) Via the canonical embedding Aut(X ) →֒ Aut(∆), the group Aut(X )
acts on the chamber complex ∆. By the previous remark this induces
embeddings

Aut(X ) →֒ Aut(Σsph(∆)) and Aut(X ) →֒ Aut(|∆|a).
Proposition 7.26. There exists a unique ideal polyhedral structure on ∆x

such that for every pointed flat (x, F ) the subset ∆x(F ) ⊂ ∆x is an ideal poly-
hedral subcomplex and carries its canonical cell structure. With this structure,
∆x is Aut(X )x-equivariantly geometrically isomorphic to |∆|a and Aut(X )x-
equivariantly combinatorially isomorphic to the Davis realization |Σsph(W,S)|
of the twin building ∆. In particular, it is an ideal polyhedral realization of
Σsph(∆).

In view of the proposition we refer to ∆x ⊂ ∂xX as the twin building at the
horizon of x. We will refer to the polyhedral structure on ∆x given by the
proposition as the canonical polyhedral structure. Since ∆x is covered by the
subsets ∆x(F ) there is clearly at most one such structure. In order to obtain
existence of the canonical polyhedral structure and to deduce Proposition 7.26
from Corollary 7.24 we need to discuss the effect of automorphisms on the
various complexes above.

First note that if α ∈ Aut(X ) maps the pointed flat (x, F ) to a pointed
flat (x′, F ′), then by equivariance of our construction, α induces a geometric
isomorphism ∆±

x (F ) → ∆±
x (F

′), which in turn induces a combinatorial isomor-
phism Σ(∆±

x (F )) → Σ(∆±
x (F )). Moreover, this map preserves the respective

colorings if α ∈ AutS(X ).
Now assume that F, F ′ are two flats through x and denote by I :=F ∩F ′ ⊂F

their intersection. Also set Σx(F, I) := {C ∈ Σ(∆x(F )) | C ⊂ I} and define
Σx(F

′, I) accordingly. Finally, let ∆x(I) := {r ∈ ∆x | r((0,∞)) ⊂ I} and note
that ∆x(I) = ∆x(F ) ∩∆x(F

′).
By Corollary 6.18 there exists an automorphism α ∈ Aut+S (X ) which maps F

to F ′ and fixes I, hence in particular x. By construction, α induces a geomet-
ric isomorphism between the polyhedral complexes ∆±

x (F ) and ∆±
x (F

′). In
particular, since α fixes I, one obtains Σx(F, I) = Σx(F

′, I); moreover, this set
is the underlying poset of an ideal polyhedral structure on ∆±

x (I). With this
polyhedral structure, ∆±

x (I) is an ideal polyhedral subcomplex of both ∆x(F )
and ∆x(F

′). It is therefore possible to glue ∆x(F ) and ∆x(F
′) along ∆x(I)

to obtain an ideal polyhedral structure on ∆x(F ) ∪∆x(F
′). All these gluings

are compatible, and hence one obtains the desired canonical ideal polyhedral
structure on

∆x =
⋃

F∋x

∆x(F ).

The underlying poset is

Σx =
⋃

F∋x

Σx(F ),
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and it inherits a coloring from the Σx(F ). It remains to show that there exists
an Aut(X )x-equivariant isomorphism Σx → Σsph(∆). This will establish the
desired combinatorial statement, and the geometric statement will follow since
the geometries of the cells are matched in each apartment and since these cover
the buildings in question. To prove the combinatorial statement we compare
flats through x in X to twin apartments of the twin building ∆. For this we
denote by Fx the set of maximal flats in X containing x, and by Ax the set
of twin apartments of ∆ which are invariant under sx. Then one observes the
following.

Lemma 7.27. For every x ∈ X there exists an Aut(X )x-equivariant bijection
ϕx : Fx → Ax.

Proof. Argue in the group model. By transitivity of Aut(X ) on X it suffices
to establish the lemma for the basepoint x = e. Recall from (19) that maximal
flats are in G-equivariant bijection with maximal tori of G, and hence with
twin apartments in ∆. Since the point reflection se is induced by θ, the flats
through e correspond to θ-stable tori and thus to twin apartments which are
invariant under se, and this correspondence is equivariant with respect to the
point stabilizer K of e in G.

One can argue as follows to establish that the correspondence is Aut(X )e-
equivariant: By Theorem 6.12 one has Aut(X )e ∼= Aut(G)e and every element
of Aut(G)e is a product of an element of K with an automorphism which fixes
both the flat A through e and the corresponding twin apartment ϕe(A) of ∆.
It follows that the given bijection is not only K-equivariant, but moreover
Aut(X )e-equivariant. �

Proof of Proposition 7.26. Choose a bijection ϕx as in Lemma 7.27 and a flat
F ∈ Fx. Set A := ϕx(F ) and let Σsph(A) ⊂ Σsph(∆) be the subset of the
Davis poset of ∆ corresponding to the twin apartment A. By Corollary 7.24
there is a poset isomorphism ιo : Σx(F ) → Σsph(A), which one may choose
to be coloring-preserving. It remains to show that ιo can be extended to an
Aut(X )x-equivariant combinatorial isomorphism ι : Σx → Σsph(∆).

For this let c be a polyhedral cell in ∆x which is contained in ∆x(F
′) with

some flat F ′. By Corollary 6.18 there exists an automorphism α ∈ Aut(X )c
which maps F to F ′ and fixes F ∩ F ′, and hence in particular fixes x. Define
ι(c′) := α ◦ ιo ◦α−1(c) and observe that this definition does not depend on the
choice of automorphism α. Indeed, assume that β is another automorphism
which maps F to F ′ and fixes F ∩ F ′. Then

β ◦ ιo ◦ β−1 = α ◦ (α−1 ◦ β ◦ ιo ◦ β−1 ◦ α) ◦ α−1.

Now β−1 ◦ α is an automorphism which stabilizes F and fixes x; by Theo-
rem 6.25 it is thus given by an automorphism of the Coxeter complex up to
possibly swapping the two halves of the apartment. It thus follows that β−1 ◦α
commutes with ιo, and one concludes

β ◦ ιo ◦ β−1 = α ◦ ι ◦ α−1.
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This proves that ι is well-defined, and it is Aut(X )x-equivariant by construc-
tion. �

7.28. The global structure of the municipality. In the previous subsec-
tion we have constructed an ideal polyhedral structure on ∆x for every x ∈ X .
Combining these structures, we also obtain an ideal polyhedral structure on
the disjoint union ∆• =

⊔
∆x. We denote the underlying poset by Σ• =

⊔
Σx;

by definition elements of Σ• are open cells in ∆•. Also turn X ×Σsph(∆) into
a poset by setting (x, c) ≤ (x′, c′) if and only if x = x′ and c ≤ c′, and turn

X × |∆|a =
⊔

x∈X

|∆|a

into a (disconnected) ideal polyhedral complex by equipping each |∆|a with
its canonical polyhedral structure. By Remark 7.25 the group Aut(X ) acts
on |∆|a, and hence diagonally on X × |∆|a by polyhedral automorphisms.
This action then induces an action by combinatorial automorphisms on the
underlying poset X × Σsph(∆).

For the remainder of this section we fix a basepoint o ∈ X and an
Aut(X )o-equivariant geometric isomorphism |ιo| : |∆|a → ∆o with underly-
ing combinatorial isomorphism ιo : Σsph(∆) → Σo. We may and will assume
that ιo maps Σsph(∆

+) to Σ+
o and preserves colorings. A geometric isomor-

phism |ι| : X × |∆|a → ∆• will be called an extension of |ιo| if |ι|(o, · ) = |ιo|.
Proposition 7.29. |ιo| admits a unique coloring-preserving Aut(X )-equivari-
ant extension

|ι| : X × |∆|a → ∆•, (x, ξ) 7→ |ιx|(ξ)
such that |ιx| : |∆|a → Σx is an isomorphism of posets for every x ∈ X .

Remark 7.30. (i) It is immediate from Proposition 7.26 that

X × |∆|a ∼= ∆•

as polyhedral complexes. The point of the proposition is that the exten-
sion can be chosen equivariantly.

(ii) The proposition implies on the combinatorial level that ιo can be extended
to a unique Aut(X )-equivariant automorphism of posets

ι : X × Σsph(∆) → Σ•, (x,C) 7→ ιx(C)

such that ιx : Σsph(∆) → Σx is an isomorphism of posets for every x ∈ X .
(iii) Conversely, the combinatorial statement in (ii) implies the geometric one

since the cells have the same geometry by Proposition 7.26.

Proof of Proposition 7.29. By the previous remark, it suffices to show the
combinatorial statement. Every equivariant extension ι clearly has to sat-
isfy ιx(C) := α−1(ιo(α(C))) for any α mapping x to o. We now show that this
formula defines indeed a map with the desired properties.

Thus let (x,C) ∈ X ×Σsph(∆). To define ι(x,C) we pick α ∈ AutS(X ) with
α(x) = o. Via the isomorphism AutS(X ) → AutS(Ad(G)), this α corresponds
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to an automorphism α of Ad(G). Think of the chamber C as a parabolic
subgroup of Ad(G); then α(C) is also a parabolic subgroup (of the same type
since α and hence α are type-preserving), and hence one may define

ιx(C) := α−1(ιo(α(C))).

This does not depend on the choice of α. Indeed, let β ∈ Aut(X ) with β(x) = o.
Then βα−1 ∈ Aut(X )o, and thus by Aut(X )o-equivariance of ιo,

β−1(ιo(β(C))) = β−1(ιo(βα−1 α(C))) = β−1βα−1ιo(α(C)) = α−1(ιo(α(C))).

We have now established that ι is well-defined; by construction it is order-
and coloring-preserving. Finally, it is Aut(X )-equivariant by the following
argument: Let (x,C) ∈ X × ∆ and β ∈ Aut(X ). If α ∈ Aut(X ) satisfies
α(x) = o, then γ := α ◦ β−1 satisfies γ(β(x)) = o. One thus gets

ιβ(x)(β(C)) = γ−1
(
ιo(γ(β(C)))

)
= βα−1

(
ιo(α ◦ β−1(β(C)))

)
= β(ιx(C)).

This finishes the proof. �

From now on we will use the notations |ι| and |ιx| for the maps defined by
Proposition 7.29 and write ι and ιx for the corresponding combinatorial maps.
Note that if α ∈ Aut(X ) ⊂ Aut(Σsph(∆)) satisfies α(x) = y for some x, y ∈ X ,
then the diagrams

(26) ∆x
α // ∆y Σx

α // Σy

|∆|a

|ιx|

OO

α
// |∆|a,

|ιy|

OO

Σsph(∆)

ιx

OO

α
// Σsph(∆)

ιy

OO

commute, and this property together with the choice of |ιo| determines all the
isomorphisms |ιx|.

Given x, y ∈ X , we set |ιx,y| := |ιy| ◦ |ι−1
x | and ιx,y := ιy ◦ ι−1

x . Then,
by definition, |ιx,y| is a coloring-preserving isomorphism of ideal polyhedral
complexes with underlying combinatorial isomorphism ιx,y and the following
diagrams commute:

(27) ∆x

|ιx,y| // ∆y Σx
ιx,y // Σy

|∆|a,
|ιx|

aa❈❈❈❈❈❈❈❈ |ιy|

==④④④④④④④④
Σsph(∆).

ιx

cc●●●●●●●●● ιy

;;✇✇✇✇✇✇✇✇✇

Remark 7.31. Each ∆x decomposes into the subsets ∆+
x and ∆−

x of causal
and anti-causal rays emanating from x. Accordingly, |ιo,x| splits into two
combinatorial isomorphisms

(28) |ιo,x|+ : ∆+
o → ∆+

x and |ιo,x|− : ∆−
o → ∆−

x ,

as a consequence of the following simple observation.

Lemma 7.32. Let r ∈ ∆•. Then r is causal if and only if |ιr(0),o|(r) ∈ ∆+
o .
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Proof. Note that the action of the subgroup Aut+(X ) on ∆ and ∆• preserves
the two halves. Since Aut+(X ) acts strongly transitively on X and in view of
the commuting diagram (26), one may thus assume that x = o, whence the
lemma follows from our choice of ιo. �

7.33. Asymptoticity of causal and anti-causal rays. Recall that two geo-
desic rays in a Riemannian symmetric space are called asymptotic if they are
at bounded Hausdorff distance. For example, geodesic rays r1, r2 in En are
called asymptotic provided they are parallel and point in the same direction,
i.e., they are of the form r1(t) = x + tv and r2(t) = y + tv for some x, y ∈ Rn

and a unit vector v. Similarly, two geodesics rays in the hyperbolic plane H2

are asymptotic if they converge to the same point in ∂H2 ∼= S1. Our goal is to
define similar notions of asymptoticity for causal and anti-causal rays in Kac–
Moody symmetric spaces. We keep the notation of the previous subsection
and make the following definition.

Definition 7.34. Two rays r1 ∈ ∆x and r2 ∈ ∆y are asymptotic, denoted
r1 ‖ r2, provided |ιx,y|(r1) = r2.

Remark 7.35. By Remark 7.31 the isomorphisms |ιx,y| : ∆x → ∆y preserve
the two halves, and thus induce combinatorial isomorphisms

|ιx,y|± : ∆±
x → ∆±

y .

In particular, causal rays can only be asymptotic to causal rays, and similarly
anti-causal rays can only be asymptotic to anti-causal rays.

The following proposition summarizes the main properties of the equivalence
relation ‖. Concerning the statement of the proposition, we observe that if
Gi < G is a standard rank one subgroup, then the orbit Gi.o ⊂ X is an
embedded hyperbolic plane H2

(i) ⊂ X . We then refer to a subset of X of the
form g.H2

(i) for some g ∈ G and i ∈ {1, . . . , n} as a standard hyperbolic plane

in X .

Proposition 7.36. Let x, y ∈ X and let r1 ∈ ∆x and r2 ∈ ∆y. Then the
equivalence relation ‖ satisfies the following properties:

(A1) For every r ∈ ∆x there exists a unique r′ ∈ ∆y with r ‖ r′.

(A2) ‖ is invariant under Aut(X ), i.e., if r1 ‖ r2, then α(r1) ‖ α(r2) for all
α ∈ Aut(X ).

(A3) If r1, r2 are contained in a standard hyperbolic plane, then r1 ‖ r2 if and
only if they are asymptotic in the hyperbolic sense.

(A4) If r1, r2 are contained in a common maximal flat F , then r1 ‖ r2 if and
only if they are asymptotic in the Euclidean sense.

Proof. (A1) This is immediate from the fact that |ιx,y| is a bijection.
(A2) If r1 ‖ r2, then there is a ξ ∈ |∆|a such that r1 = |ι|(x, ξ) and r2 =

|ι|(y, ξ). Since |ι| is Aut(X )-equivariant one thus has

α(r1) = α(|ι|(x, ξ)) = |ι|(α(x), α(ξ))
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and

α(r2) = α(|ι|(y, ξ)) = |ι|(α(y), α(ξ)),
which implies α(r1) ‖ α(r2).

(A3) By (A2) it suffices to prove the statement under the assumption that r1
and r2 are contained in H2

(j) for some j = 1, . . . , n. One can identify H2
(j) with

the upper half-plane model H2 of the hyperbolic plane in such a way that the
base point o gets identified with i. Furthermore, one can identify the image
ι−1
o (H2

(j)) ⊂ |∆|a with R∪ {∞} in such a way that ι−1
o |H2

(j)
identifies geodesics

in H2
(j) emanating from o with the endpoint of the corresponding geodesic in H2

in R ∪ {∞}.
Fix this identification and work in the upper half plane model from now on.

If x = i + λ ∈ H2 for some λ ∈ R, then an automorphism of H2 mapping o
to x is given by τλ : z 7→ z + λ. This automorphism is induced by an element
of the corresponding rank one subgroup Gj , and hence extends to X . Given

r ∈ ∆x, by (26) one has |ιx|−1(r) = (τλ ◦ |ιo|−1 ◦ τ−1
λ )(r). In other words,

ι−1
x (r) is obtained by translating r by λ to the left, taking the endpoint and
then shifting it by λ to the right. This, however, is the same as just taking the
endpoint of r since this is the case for vertical geodesic rays emanating from x
and the construction is equivariant with respect to the point stabilizer of x in
the automorphism group. One deduces that r ∈ ∆xH is asymptotic to r′ ∈ ∆o

if and only if r and r′ have the same endpoint. Since every pair of points in H2

can be mapped by an automorphism of H2 to (i, i + λ) for a suitable λ, and
since any such automorphism extends to an automorphism of X , one deduces
that our notion of asymptoticity restricts to usual hyperbolic asymptoticity
on H2

(j).
(A4) In view of (A2) one may assume that F = A is the standard maximal

flat in the group model and that x = o. Let ~σ be the unique oriented geodesic
segment from o to y and let τ := t[~σ] be the parallel transport along ~σ. Then τ
acts on F as a Euclidean translation. By (26) one has a commuting diagram

(29) ∆o
τ // ∆y

|∆|a

|ιo|

OO

τ
// |∆|a.

|ιy|

OO

Now the map τ : |∆|a → |∆|a is given by an element of the maximal torus
T ⊂ A, which fixes pointwise the realization of the apartment corresponding
to A. Thus if one denotes by ∆o(A), respectively ∆y(A), the subsets of ∆o

and ∆y consisting of causal or anti-causal rays in A, then one has a commuting
diagram

∆o(A)
τ // ∆y(A)

|∆|a.
|ιo|

cc●●●●●●●●● |ιy|

;;✇✇✇✇✇✇✇✇✇
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This shows that the restriction of |ιo,y| to ∆o(A) is induced by τ , i.e., ro ∈∆o(A)

is parallel to ry ∈ ∆y(A) if and only if ry is obtained from ro by a Euclidean
translation, i.e., ry is parallel to ro in the Euclidean sense. �

One can also describe the equivalence relation ‖ in group-theoretic terms.
For this we introduce some notations concerning parabolic subgroups of G.
Given an element ξ ∈ |∆|a, we denote by Pξ the stabilizer of ξ in Ad(G)
and by supp(ξ) ∈ ∆ the smallest open cell containing ξ. Then Pξ is the
stabilizer of supp(ξ) in ∆, whence a parabolic subgroup, and in particular
acts transitively on X by the Iwasawa decomposition. Depending on whether
ξ ∈ |∆+| or ξ ∈ |∆|−

a
, we call the parabolic Pξ a positive or a negative parabolic.

By [52, Thm. 6.4.1] every parabolic subgroup Pξ splits as a semi-direct product
Pξ = Mξ⋉Uξ, whereMξ is a Levi factor and Uξ is generated by the appropriate

positive root subgroups. Given a point x ∈ X and ξ ∈ |∆|a, we refer to the
orbit Hξ(x) := Uξ.x as the horosphere with center ξ through x, and we call
the horosphere positive or negative according to whether ξ ∈ |∆±|.
Proposition 7.37. Let x ∈ X , let rx ∈ ∆x and let ξ = |ιx|−1(rx) ∈ |∆|a.
Then r ∈ ∆• is asymptotic to rx if and only if there exists p ∈ Pξ such that
r = p.rx.

Proof. Let y ∈ X , denote by Ky the stabilizer of y in G, and let g ∈ G with
g.x = y. Then g.rx ∈ ∆y and

|ιy|−1(g.rx) = |ιgx|−1(g.rx) = g.|ιx|−1(rx) = g.ξ.

Recall that |∆|a was defined as a certain quotient of ∆×PS(a) on which G acts
only on the first factor; there thus exist C,C′ ∈ ∆ and p ∈ PS(a) such that
ξ = [(C, p)] and g.ξ = [(C′, p)]. Since Ky acts transitively on ∆, there exists
k ∈ Ky such that k.C′ = C. If we define p := kg, then

p.ξ = k.(g.ξ) = k.[(C′, p)] = [(k.C′, p)] = [(C, p)] = ξ

and

p.x = k.(g.x)) = k.y = y.

From the former we deduce that p ∈ Pξ, and from the latter we deduce that

|ιy|−1(p.rx) = |ιp.x|−1(p.rx) = |ιx|−1(rx) = ξ.

Thus the unique ray ry ∈ ∆y with ry ‖ rx is given by ry = p.rx. This shows
that the asymptoticity class of rx is contained in Pξ.rx. Conversely, if r = prx
for some p ∈ Pξ and y := p.x, then

|ιy |−1(r) = |ιp.x|−1(p.rx) = p.|ιx|−1(rx) = p.ξ = ξ,

showing that r ‖ rx. �

Remark 7.38. In conjunction with Lemma 7.32, Proposition 7.36 implies that
parallel classes of causal rays are orbits of positive parabolic subgroups, and
parallel classes of anti-causal rays are orbits of negative parabolic subgroups.
In particular, parallel classes of regular causal rays are orbits of positive Borel
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subgroups. Geometrically, this means that one can obtain all rays parallel to
a given regular causal ray r by translating r inside a flat and then sliding along
a suitable positive horosphere.

7.39. The causal boundary.

Definition 7.40. The space ∆‖ := ∆•/ ‖ of asymptoticity classes of causal

and anti-causal rays in X is called the causal boundary of XG. Its subset

∆+
‖
:= ∆+

• / ‖

is called the future boundary of X , and the complement

∆−
‖
:= ∆−

• / ‖

is called the past boundary of X
By Proposition 7.36 the Aut(X )-action on ∆• descends to an Aut(X )-action

on ∆‖, and similarly the subgroup Aut+(X ) acts on the future and the past
boundary, whereas each point reflection swaps the two boundaries.

Corollary 7.41. (i) There exists a unique ideal polyhedral structure on ∆‖

such that for every x ∈ X the map

ϕx : ∆x →֒ ∆• → ∆‖

is a geometric isomorphism.
(ii) The group Aut(X ) acts on ∆‖ by geometric automorphisms with respect

to this structure.
(iii) The ideal polyhedral complex ∆‖ is Aut(XG)-equivariantly geometrically

isomorphic to the a-realization |∆|a of the twin building ∆. In particular,
it is combinatorially isomorphic to the Davis realization |∆|Davis and an
ideal polyhedral geometric realization of the chamber system ∆.

(iv) Every automorphism of X is uniquely determined by the induced combi-
natorial automorphism of the causal boundary.

Proof. Given x, y ∈ X , we consider the diagram

∆x

|ιx,y|

��

// ∆•

  ❆
❆❆

❆❆
❆❆

❆

|∆|a

|ιx|
==④④④④④④④④

|ιy| !!❈
❈❈

❈❈
❈❈

❈
∆‖,

∆y
// ∆•

>>⑥⑥⑥⑥⑥⑥⑥⑥

where the horizontal maps are the canonical inclusions and the final maps are
the canonical quotient maps. We observe that the diagram commutes since
the left-hand side commutes by (27) and the right-hand side commutes by
definition of asymptoticity. In particular, the map ϕ := ϕx ◦ |ιx| : |∆|a → ∆‖

is independent of the choice of x. Moreover, ϕ is a bijection by Property (A1)
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of Proposition 7.36. Since both |ιx| and ϕx are Aut(X )x-equivariant, so is the
map ϕ = ϕx ◦ |ιx|, and since the groups Aut(X )x generate Aut(X ), it follows
that ϕ is Aut(X )-equivariant.

The ideal polyhedral structure on |∆|a defines an ideal polyhedral structure
on ∆‖ by transport of structure via ϕ. Since |ιx| is a geometric isomorphism for
every x ∈ X , we conclude that also ϕx = |ιx|−1 ◦ϕ is a geometric isomorphism.
Since ϕx is surjective, this implies (i), and since ϕ is Aut(X )-equivariant, we
deduce that (ii) and (iii) hold.

Unravelling definitions one now checks that the composition

Aut(XG) → Aut(∆‖) → Aut(∆)

coincides with the inclusion Aut(XG) ∼= Aut(G) → Aut(∆) given by Theo-
rem 6.12 and Proposition 6.4. This implies (iv) and finishes the proof. �

We have shown Theorems 1.15 and 1.16.

7.42. Causal curves and the causal pre-order.

Definition 7.43. A piecewise geodesic causal curve is defined as a causal curve
γ : [S, T ] → X with 0 < S < T < ∞ for which there exist S = t0 < t1 < · · · <
tN = T such that γ|[ti,ti+1] is a causal segment for every i = 0, . . . , N − 1.

Given x, y ∈ X , write x ≺ y and say that x strictly causally precedes y if
there exists a piecewise geodesic causal curve γ : [S, T ] → X with γ(S) = x and
γ(T ) = y. Write x � y if x ≺ y or x = y and say that x causally precedes y.

By definition, � is a pre-order, i.e., a reflexive and transitive relation, called
the causal pre-order on X . Since the group Aut+(X ) preserves the class of
piecewise geodesic causal curves, it also preserves the causal pre-order � in
the sense that

(30) x � y =⇒ α(x) � α(y) (x, y ∈ X , α ∈ Aut+(X )).

Definition 7.44. Let x ∈ X . The strict causal future and strict causal past ,
of x are respectively defined by

X+

x := {y ∈ X | y ≻ x} and X−

x := {y ∈ X | y ≺ x}.

Remark 7.45. If one denotes by S
± ⊂ G the semigroups generated by A±

(as defined in Section 7.2) and K, then X±

e is simply the S
±
–orbit through e.

Note that, by definition,

S
±
=

∞⋃

n=1

(KA±K)n

and that A+ is a subsemigroup of G. Since S
±
contains K, the semigroups S

±

can also be characterized as

S
+
= {g ∈ G | e � g.e} and S

−
= {g ∈ G | g.e � e}.

In particular, � is a partial order if and only if S
+ ∩ S

−
= K.
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Proposition 7.46. Exactly one of the following two options holds in X :

(i) � is a partial order and S
+ ∩ S

−
= K.

(ii) g � h � g for all g, h ∈ X and S
+
= S

−
= G.

Proof. Obviously, the two conditions are mutually exclusive. Assume that (i)
fails, i.e., that � is not anti-symmetric. By G-invariance one then finds x ∈ X
such that

e ≺ x ≺ e.

By definition, this means that there exist points x1, . . . , xn = x, y1, . . . , yn = y
and causal geodesic segments from e to x1, x1 to x2, . . . , xn−1 to xn and xn to
y1, . . . , yn−1 to yn and yn to e. In particular, y ≺ e is contained in a common
flat F with e and the geodesic ray in F emanating from y and through e is
causal. Since K acts transitively on flats through e, there exists k ∈ K which
maps F to the standard flat AK. Then z := k.y has the following properties:
Firstly, since y ≺ e ≺ y and k.e = e, one has

z ≺ e ≺ z.

Moreover, z lies in A and the geodesic ray emanating from e through z is anti-
causal. In other words, z = exp(−X) for some X ∈ Co. Now consider parallel
transport τ along the geodesic segment from e to z. One has τ(exp(−nX)) =
exp(−(n+ 1)X) for all n ≥ 0. Therefore, e ≺ z implies that for all n ≥ 0,

exp(−nX) = τn(e) ≺ τn(z) = exp(−(n+ 1)X).

Thus transitivity of ≺ yields

e ≺ exp(−nX) for all n ≥ 1,

and thus

X+

e ⊃
⋃

n≥1

C
+

exp(−nX).

In particular,

X+

e ∩ AK ⊃
⋃

n≥1

(C
+

exp(−nX) ∩AK) ⊃
⋃

n≥1

exp(Co − nX)K

= exp

( ⋃

n≥1

Co − nX

)
K

= exp(a)K

= AK,

i.e., AK ⊂ X+

e = {x ∈ X | x ≻ e}. Since

S
+
=

∞⋃

n=1

(K A+K)n = {g ∈ G | g.e ≻ e},
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the semigroup S
+

contains A and K. It therefore contains each of the finite

products KAK · · ·AK. Proposition 5.14 implies X+

e = X , i.e., x ≻ e for all
x ∈ X , and thus (ii) holds. �

We have shown Proposition 1.17.

Appendix A. Complex Kac–Moody algebras and their Weyl
groups

A.1. Ideal polyhedral complexes associated with Coxeter systems.
Recall that a Coxeter system is a pair (W,S) consisting of a group W and
a (finite) generating system S = {r1, . . . , rn} such that

W = 〈r1, . . . , rn | r2i = 1, (rirj)
mij = 1〉

for suitable (mij)i,j ⊂ Z ∪ {∞} is a presentation of W by generators and
relations. The matrix M = (mij)i,j is called the Coxeter matrix of the Coxeter
system (W,S). The group W is then called a Coxeter group. Finite Coxeter
groups are also called spherical Coxeter groups.

With each Coxeter system one can associate certain canonical ideal polyhe-
dral complexes; concerning such complexes and the underlying posets, we will
use the language and notation from Subsection 7.16.

If T ⊂ S is a subset, then WT := 〈T 〉 < W is called a standard parabolic
subgroup of W , and any conjugate of a standard parabolic subgroup is called
a parabolic subgroup of W . Given a Coxeter system (W,S), we denote by
Σ+(W,S) the poset of all left-cosets of standard parabolic subgroups of W ,
ordered by reverse inclusion, and set Σ(W,S) := Σ+(W,S) \ {W}. Then
Σ(W,S) is a simplicial poset, called the Coxeter poset of (W,S), and its aug-
mentation Σ+(W,S) is called the augmented Coxeter poset . The geometric
realization |Σ(W,S)| of Σ(W,S) is called the Coxeter complex of (W,S); the
cone |Σ+(W,S)| over |Σ(W,S)| is called the augmented Coxeter complex .

The comaximal elements in Σ(W,S) and Σ+(W,S) are of the form σ = w〈s〉
for some w ∈ W and s ∈ S, and if we color each coset of 〈s〉 by s, then we obtain
canonical colorings of Σ(W,S) and Σ+(W,S) by S. The group W acts on
Σ(W,S) and Σ+(W,S), and this action is both order- and coloring-preserving.
Similarly, W acts cellularly on |Σ(W,S)| and |Σ+(W,S)|, preserving the
coloring.

By definition, the Coxeter complex is a simplicial realization of Σ(W,S);
however, it is sometimes convenient to work with non-simplicial realizations.

Example A.2. For 1 ≤ i ≤ n, given

mi ∈ (N ∪ {∞}) \ {1} with

n∑

i=1

1

mi
< n− 2,

there exists a (possibly ideal) hyperbolic n-gon embedded in the Poincaré disc
with interior angles π

mi
. According to Poincaré’s theorem (see [11, Thm. 6.4.3]),
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the hyperbolic reflections in the sides of the hyperbolic polygon generate a Cox-
eter groupW , called a hyperbolic n-gon group. TheW -translates of the closure
of the hyperbolic polygon in the closed disc provide a polyhedral realization
of Σ(W,S). For n ≥ 4 this realization certainly is not simplicial, and its
dimension is always 2 (and hence smaller than the dimension of |Σ(W,S)|).

In the previous example, it is natural to consider also the ideal polyhedral
complex obtained by removing ideal vertices, i.e., intersecting all cells with
the open disc, since this ideal polyhedral complex admits a CAT(-1) metric.
The search for CAT(0)-realizations of Coxeter complexes led Moussong in his
thesis [47] to consider the following subposets of the extended Coxeter complex.

Definition A.3. The augmented Davis–Moussong poset of the colored sub-
poset Σ+

sph(W,S) of Σ+(W,S) consists of all cosets of spherical parabolic
subgroups, and we define the Davis–Moussong poset

Σsph(W,S) := Σ+
sph(W,S) \ {W} ⊂ Σ(W,S).

Note that if W is spherical, then Σ+
sph(W,S) = Σsph(W,S)+; otherwise we

have Σ+
sph(W,S) = Σsph(W,S).

Remark A.4. The Davis–Moussong poset Σsph(W,S) and its augmentation
Σ+

sph(W,S) have the same underlying chamber system as the Coxeter poset

Σ(W,S). By [1, Prop. A.20], the Coxeter poset can be recovered from this
chamber system as the residue poset. This implies that every automorphism
of the chamber system, and in particular every automorphisms of the Davis–
Moussong poset extends to an automorphism of the Coxeter poset.

Moussong has established in his thesis that the augmented Davis–Moussong
poset always admits a CAT(0)-realization (cp. [47] and [11, Ch. 12]). A variant
of this construction was later given by Krammer in his thesis [37, Appendix B].
Krammer’s construction is based on the notion of a root basis [37, Def. 1.2.1],
which we briefly recall.

Definition A.5. A triple (E, (−|−),Π) is called a root basis if E is a real
vector space, (−|−) is a symmetric bilinear form on E and Π ⊂ E is a finite
set such that the following hold:

(i) For every ξ ∈ Π one has (ξ|ξ) = 1.
(ii) For any pair of distinct ξ1, ξ2 ∈ Π one has

(ξ1|ξ2) ∈ {− cos(π/m) | m ∈ N} ∪ (−∞,−1].

(iii) There exists λ ∈ E∗ such that λ(ξ) > 0 for all ξ ∈ Π.

Lemma A.6. Let (E, (−|−),Π) be a root basis. Then 0 is not contained in
the set {∑

ξ∈Π

λξξ | λξ ≥ 0 for all ξ ∈ Π, and λξ 6= 0 for some ξ ∈ Π
}
.
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Proof. Any λ ∈ E∗ satisfies

λ
(∑

ξ∈Π

λξξ
)
=

∑

ξ∈Π

λξλ(ξ).

If the λξ are nonnegative with at least one positive and λ is as in Defini-
tion A.5 (iii), then the hypothesis λ(ξ) > 0 for all ξ ∈ Π implies that the right-
hand side of this equality is greater than 0, which by linearity of λ implies that
the linear combination on the left-hand side is different from zero. �

Remark A.7. The preceding lemma implies that a root basis in the sense of
Definition A.5 is also a root basis in the sense of [29, Def. 2.1].

The relation to Coxeter groups is as follows.

Proposition A.8 (cp. [37, Thm. 1.2.2]). Let (E, (−|−),Π) be a root basis, for
each ξ ∈ Π define sξ ∈ GL(E) via

sξ(v) = v − 2(ξ|v)ξ,
let S := {sξ | ξ ∈ Π}, and let W := 〈S〉 < GL(E). Then (W,S) is a Coxeter
system and W < O(E, (−|−)) is a discrete subgroup. �

In the situation of Proposition A.8 we say that (E, (−|−),Π) is a root basis
for the Coxeter system (W,S). The following example shows that every Coxeter
group admits a root basis.

Example A.9. Let (W,S) be a Coxeter group with Coxeter system S =
{r1, . . . , rn} and with Coxeter matrix (mij)1≤i,j≤n. Then the classical root
basis given by E = Rn, Π = {e1, . . . , en} and (ei | ej) = − cos(π/mij) if
mij < ∞, and (ei | ej) = −1 if mij = ∞, is a root basis for (W,S).

In the case of the classical root basis, Π is a basis of E. In general, we do
not assume that Π is linearly independent, and we explicitly allow (−|−) to be
degenerate. From now on, (W,S) denotes a Coxeter system and (E, (−|−),Π)
denotes a root basis for (W,S). For I ⊂ Π we defined a subset of the dual
space E∗ of E by

C∗
I := {ϕ ∈ E∗ | (∀α ∈ I : ϕ(α) = 0) and (∀α ∈ Π \ I : ϕ(α) > 0)}.

We say that I ⊂ Π is facial if CI 6= ∅. The set

C∗ :=
⊔

I⊂Π facial

C∗
I

is called the closed fundamental chamber of the given root basis; it has dense
interior given by Int(C∗) = C∗

∅. The group W acts on E∗ by the dual action,

i.e., w.ϕ(x) = ϕ(w−1.x), and we refer to the translates w.C∗ of the closed
fundamental chambers (respectively their interiors) as closed (resp. open) Tits
chambers ; the union

C∗ =
⋃

w∈W

w.C∗ ⊂ E∗
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of the closed Tits chambers is called the dual Tits cone of the root bases. By
[37, Thm. 1.2.2] the dual Tits cone is naturally a polyhedral complex whose
cells are given by the subsets of the form w.C∗

I with w ∈ W and I ⊂ Π. Note,
however, that the weak-topology on C∗ is finer than the subspace topology
from E∗ and that C∗ is not closed in E∗.

If we identify Π with S by identifying α ∈ Π with the corresponding reflec-
tions rα, then the stabilizer of x ∈ w.C∗

I is given by the parabolic subgroup
wWIw

−1. Its underlying poset is the subposet Σ+
fac(W,S) ⊂ Σ+(W,S) con-

sisting of those wWI for which I is facial.

Proposition A.10 ([37, Cor. 2.2.5]). The interior Int(C∗) of the dual Tits
cone is the union of the cells w.C∗

I such that WI is spherical. In particular, the
interior of the dual Tits cone is a realization of the augmented Davis–Moussong
poset Σ+

sph(W,S). �

Remark A.11. As explained in [37], the interior of the dual Tits cone has
several advantages over the full dual Tits cone. Firstly, it is open by definition,
whereas the dual Tits cone is neither open nor closed in general. Secondly, the
W -action on Int(C∗) is proper, whereas the action on C∗ is in general not
proper. Thirdly, the interior of the dual Tits cone admits a CAT(0) metric
(namely, the Moussong metric). Finally, while the subspace topology of C∗

is finer than the weak topology in general, the subspace topology on Int(C∗)
actually coincides with the weak topology.

From the dual Tits cone we can also construct a realization of the (non-
augmented) Davis–Moussong poset Σsph(W,S) by passing to the link complex
as in Remark 7.19.

Corollary A.12. Let W be non-spherical. If C∗ is the dual Tits cone of
a root basis (E, (−|−),Π) for (W,S), then the link complex S(Int(C∗)) is an
ideal polyhedral realization of the Davis–Moussong poset Σsph(W,S). �

A.13. Complex Kac–Moody algebras. Throughout this appendix let A
be an irreducible generalized Cartan matrix in the sense of Definition 3.4 (see
also [30, §1.1]). We will mostly be interested in the case where A is neither of
spherical nor of affine type, and starting from Subsection A.22 we will have to
assume that A is symmetrizable. However, for the moment no such assump-
tions are necessary.

One can associate to A several complex Lie algebras as follows: In [30, §1.3]
Kac defines a quadruple

(31) (g(A), h(A),Π, Π̌)

consisting of a complex Lie algebra g(A), an abelian subalgebra h(A) and
finite subsets Π = {α1, . . . , αn} ⊂ h(A)∗ and Π̌ = (α̌1, . . . , α̌n) ⊂ h(A) called
simple roots and simple coroots , respectively. A useful characterization of
this quadruple (g(A), h(A),Π, Π̌) is given in [30, Prop. 1.4]. In the present
article g(A) is called the complex Kac–Moody algebra associated with A. If
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one denotes by

∆ :=

{
α ∈

n∑

i=1

Zαi
∣∣∣ gα 6= {0}

}

the set of h(A)-roots in g(A), then by [30, (1.3.1)] one has the root space
decomposition

(32) g(A) =
⊕

α∈∆

gα.

Denote by gi < g(A) the complex subalgebra generated by the root spaces gαi

and g−αi
. By [30, (1.3.3), (1.4.1), (1.4.2)] one has

gi = 〈gαi
, g−αi

〉 ∼= sl(2,C).

Given I ⊂ {1, . . . , n}, define
gI := 〈gi | i ∈ I〉

and call gI a standard rank |I| subalgebra of g(A).
The main object of interest in this appendix is the derived subalgebra

(33) g := [g(A), g(A)] < g(A),

which is called the derived complex Kac–Moody algebra associated with A. It
is denoted by g′(A) in [30, §1.3]. The Lie algebra g contains all the standard
rank one subalgebras, as sl(2,C) is perfect, and in fact is generated by these
by [30, Prop. 1.4]. The intersection

(34) h := h(A) ∩ g =

n∑

i=1

Cα̌n

is given by the complex span of the simple coroots; see [30, §1.3] (where it is
denoted by h′). By [30, Prop. 1.6] the Lie algebra h contains the center of g(A)
and of g, which is given by

(35) z(g(A)) = z(g) = c := {h ∈ h(A) | ∀i = 1, . . . , n : αi(h) = 0}.
The third Lie algebra of interest in this appendix is the quotient

g := g/c,

called the adjoint complex Kac–Moody algebra associated withA. Since sl(2,C)
is simple, the standard rank one subalgebras gi embed into g and so do in fact
all root spaces gα for α 6= 0, from (32), whereas the image of g0 = h in g is
given by h := h/c.

If A is of size n × n and of rank l, then the complex dimensions of the
abelian subalgebras are given by

(36) dimC h(A) = 2n− l, dimC h = n, dimC h = l,

cp. [30, (1.1.3), resp. §1.3, resp. Prop. 1.6]. In particular, on one hand one has
the following observation.
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Observation A.14. Let A be an invertible generalized Cartan matrix. Then

g(A) = g = g.

On the other hand, the following example illustrates the differences between
the Lie algebras g(A), g and g for an irreducible generalized Cartan matrix of
affine type.

Example A.15. Let A be an irreducible generalized Cartan matrix of affine
type and denote by

◦
g the finite-dimensional simple Lie algebra associated with

the corresponding Cartan matrix of finite type. Then in the notation of [30,
Ch. 7] the Lie algebra

g = L(◦g)
is the loop algebra of

◦
g, whereas

g = L(◦g)⊕ CK

is a one-dimensional central extension of the loop algebra and

g(A) = L(◦g)⊕ CK ⊕ Cd

for a certain derivation d. The complex dimensions of h(A), h and h are given
by rk(

◦
g) + 2, rk(

◦
g) + 1 and rk(

◦
g), respectively.

For a symmetrizable generalized Cartan matrix A as defined in [30, §2.1]
(see also Definition 3.4) the Gabber–Kac Theorem provides a very efficient way
of defining the derived Kac–Moody algebra g.

Theorem A.16 (Gabber–Kac Theorem). Let A = (aij)1≤i,j≤n be a sym-
metrizable generalized Cartan matrix of size n× n. Then the derived complex
Kac–Moody algebra g is isomorphic to the quotient of the free complex Lie
algebra on 3n generators ei, fi, hi, 1 ≤ i ≤ n, modulo the following relations:

[hi, hj ] = 0, [ei, fi] = hi, [ei, fj ] = 0 (i 6= j),

[hi, ej] = aijej , [hi, fj ] = −aijfj ,

(ad ei)
1−aij ej = 0 (i 6= j), (ad ei)

1−aijfj = 0 (i 6= j),

via the homomorphism that maps hi to α̌i and transforms aij into αj(α̌i).
In particular, g is the colimit of the amalgam of Lie algebras consisting of

its standard subalgebras gi, gi,j of rank one and two.

Proof. See [17], [30, Thm. 9.11] plus [30, Rem. 1.5]. �

The presentation of g from the preceding theorem is called the Gabber–Kac
presentation. Of course, one obtains a presentation of g by adding the elements
of c as relators to the Gabber–Kac presentation.

Notation A.17. Since h =
∑n

i=1 Cα̌n, one can define a real form a of h by
setting

a := spanR(α̌1, . . . , α̌n).

Dually, also define a subspace V ⊂ h(A)∗ by

V := spanR(α1, . . . , αn).
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Then the image of a under the canonical projection h → h defines a real form
of h which is denoted by a. One then has the following commutative diagram,
where all maps are the obvious inclusions/projections, respectively their dual
maps:

(37) h(A) h(A)∗

ι∗

||||③③
③③
③③
③③
③

ι∗
C

����

V

����

? _oo

a
.
�

ι

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥

π
����

� � j // h

πC

����

?�

ιC

OO

a∗ h∗
j∗oooo ι∗

C
(V )? _oo

a
� � // h, a∗

?�

π∗

OO

h
∗
.

?�

π∗

C

OO

oooo

All of these maps are linear (overR andC, respectively) and injective/surjec-
tive as indicated by the arrows. The dual maps ι∗ and j∗ are defined by
considering ι and j as linear maps between real vector spaces.

A.18. The Weyl group, its Coxeter system and its Kac–Moody rep-
resentation.

Definition A.19. Following [30, §3.7]), given i ∈ {1, . . . , n}, define rαi
∈

GL(h(A)∗) by

(38) rαi
(λ) = λ− λ(α̌i)αi;

dually, define řαi
∈ GL(h(A)) by

(39) řαi
(h) = h− αi(h)α̌i.

The groups W := 〈řα1 , . . . , řαn
〉 < GL(h(A)) and 〈rα1 , . . . , rαn

〉 < GL(h(A)∗)
are canonically isomorphic via řαi

7→ rαi
; the groupW is called the Weyl group

associated with the generalized Cartan matrix A.

For S := {rα1 , . . . , rαn
} the pair (W,S) is a Coxeter system by [30, §3.13].

According to [30, Prop. 3.13] (see also Definition 3.4), its Coxeter matrix
M = (mij)i,j is given by mii = 1 and mij for i 6= j by

mij =





2, aijaji = 0,

3, aijaji = 1,

4, aijaji = 2,

6, aijaji = 3,

∞, aijaji ≥ 4;

recall here from [30, (1.1.2)] that aij = αj(α̌i).
The action of the Weyl group W on h(A)∗ defined in (38) preserves the

set ∆ of h(A)-roots in g(A), and the elements of Φ = W.Π ⊂ ∆ are called
the real roots of g(A). To a real root α = w.αi ∈ Φ, w ∈ W , corresponds the
root reflection řα := wřαi

w−1 ∈ W , which depends only on α; see [30, proof
of Lemma 3.10].
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The tuple (W,S,Φ,Π) is called the Coxeter datum associated with the gen-
eralized Cartan matrix A. Note that the Coxeter datum determines uniquely
a system Φ+ ⊂ Φ of positive roots by demanding that Φ+ contains Π.

With the notation introduced in Notation A.17 one has the following result.

Proposition A.20. (i) The action of the Weyl group W defined in (39)
stabilizes the complex subalgebra h < h(A) and its real form a, acts
trivially on c and thus induces actions of W on h and a.

(ii) The action of the Weyl group W defined in (38) stabilizes the real sub-
space V < h(A)∗.

(iii) The map j∗ induces an isomorphism

ι∗C(V )
∼=−→ π∗(a∗).

(iv) The action of the Weyl group W from assertion (ii) acts trivially on
ker(ι∗) and, thus, induces an action of W on π∗(a∗) ∼= ι∗

C
(V ) and, by

transport of structure, on a∗.

Proof. It is immediate from (38) and (39) that each rαi
maps simple roots

to R-linear combinations of simple roots and each řαi
maps simple coroots to

R-linear combinations of simple coroots. Moreover, each rαi
acts trivially on c

by (35) and (39). Assertions (i) and (ii) follow.
In order to prove (iii) recall from (36) that the quotient a has R-dimension

l, and so do a∗ and π∗(a∗). For each h ∈ c ∩ a one has

(ι∗(αi))(h) = (αi ◦ ι)(h) = (αi)a(h) = 0.

That is, each ι∗(αi) = αi|a in fact is of the form π∗(αi) = αi ◦ π for a uniquely
determined αi ∈ a∗; in other words, ι∗(αi) ∈ π∗(a∗). Since V equals the
R-span of the simple roots α1, . . . , αn, the image ι∗(V ) equals the R-span of
the images ι∗(α1), . . . , ι

∗(αn). In particular, ι∗(V ) ≤ π∗(a∗).
Since a is the R-span of the simple coroots α̌1, . . . , α̌n, the R-dimension

of the image ι∗(V ) equals the rank of the generalized Cartan matrix A, i.e.,
dimR(ι

∗(V )) = l. One concludes π∗(a∗) = ι∗(V ).
In order to prove (iv), observe that λ ∈ ker(ι∗) if and only if for each

1 ≤ i ≤ n one has λ(α̌i) = 0. Therefore, for any λ ∈ ker(ι∗) one has rαi
(λ) =

λ− λ(α̌i)αi = λ by (38); that is, W acts trivially on ker(ι∗). �

Definition A.21. The real representations

ρKM : W → GL(a) and ρKM : W → GL(a)

discussed in Proposition A.20 are called the Kac–Moody representation of W
and the reduced Kac–Moody representation of W , respectively. The real rep-
resentation

W → GL(a∗)

is called the dual reduced Kac–Moody representation.

Note that the Kac–Moody representation of W depends on the generalized
Cartan matrix A and not just on the Coxeter system (W,S) (or the Coxeter
matrix M), hence the name.

Münster Journal of Mathematics Vol. 13 (2020), 1–114



102 Walter Freyn, Tobias Hartnick, Max Horn, and Ralf Köhl

A.22. Existence of root bases for Weyl groups and symmetrizability.
In general, given an irreducible generalized Cartan matrix A, one cannot find
a root basis for ρKM (W ) in a or for ρKM (W ) in a. For instance, if A is not
symmetrizable, then by [38, Ex. 1.5E(2)] (also [30, §2.10, Ex. 2.3]) there simply
does not exist a suitable ρKM (W )-invariant bilinear form on a. We will see in
this section that non-symmetrizability actually is the only obstruction for the
existence of a root basis in a. The case of the quotient a is a bit more subtle;
however, if one excludes the affine case, it is also possible to construct a root
basis for W in a, as we will discuss below.

For a symmetrizable generalized Cartan matrix A and a diagonal matrix
D = diag(ε1, . . . , εn) with positive entries such that D−1A = (bij) is symmet-
ric, following [30, (2.1.4)], one defines an invariant symmetric bilinear form
on a via

(α̌i|α̌j) := bijεiεj .

Note that bjjεj = ajj = 2, whence

řαj
(α̌i)

(39)
= α̌i − αj(α̌i)α̌j(40)

= α̌i − aij α̌j

= α̌i − εibijα̌j

= α̌i − 2
bijεiεj
bjjε2j

α̌j

= α̌i − 2
(α̌j |α̌i)
(α̌j |α̌j)

α̌j ,

i.e., řαj
|a is the (−|−)-orthogonal reflection associated with α̌j , in particular

(−|−) is invariant under the action of W on a.
Define the normalized coroots by

ňj :=
α̌j

(α̌j |α̌j)
1
2

=
1√
2εj

α̌j

and set Π̌nor := {ň1, . . . , ňn}.
Following [30, (2.1.6)], one dually defines an invariant symmetric bilinear

form on V via

(αi|αj) := bij =
aij
εi

.

As above one computes

rαj
(αi)

(38)
= αi − αi(α̌j)αj = αi − ajiαj(41)

= αi − bjiεjαj

= αi − 2
bjiεj
ajj

αj

= αi − 2
(αj |αi)
(αj |αj)

αj .
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Define the normalized roots by

nj :=
αj

(αj |αj)
1
2

=

√
εj√
2
αj

and set Πnor := {n1, . . . , nn}.
Proposition A.23. Let A be a symmetrizable irreducible generalized Cartan
matrix and let (W,S) be the associated Coxeter system (cp. Proposition A.8).

Then the triples

(a, (−|−), Π̌nor) and (V, (−|−),Πnor)

are root bases for (W,S). If A is non-affine, then also their images

(π(a) = a, (−|−)/ ker(π), π(Π̌nor)),

(π∗(a∗) = ι∗(V ), (−|−)/ ker(ι∗), ι∗(Πnor))

are root bases for (W,S).

Proof. One computes

(ňi|ňi) =
( 1√

2εi
α̌i|

1√
2εi

α̌i

)
=

1

2εi
(α̌i|α̌i) =

1

2εi
biiεiεi =

1

2εi
aiiεi = 1

and

(ňi|ňj) =
( 1√

2εi
α̌i|

1√
2εj

α̌j

)
=

1

2
√
εiεj

(α̌i|α̌j)

=
1

2

√
εj√
εi
aij

= −1

2

√
aji
aij

|aij |

= −1

2

√
aijaji.

Moreover,

(ni|ni) =
(√εi√

2
αi|

√
εi√
2
αi

)
=

εi
2
(αi|αi) = 1

and

(ni|nj) =
(√εi√

2
αi|

√
εj√
2
αj

)
=

√
εiεj

2
(αi|αj)

=
1

2

√
εj√
εi
aij

= −1

2

√
aji
aij

|aij |

= −1

2

√
aijaji.

It follows that (ňi|ňj), (ni|ni) ∈ {− cos(π/m) | m ∈ N}∪ ]−∞,−1]. Alto-

gether, (a, (−|−), Π̌nor) and (V, (−|−),Πnor) satisfy axioms (i) and (ii) of the
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definition of a root basis. Linear independence of Π̌nor and Πnor further-
more imply axiom (iii). Thus (a, (−|−), Π̌nor) and (V, (−|−),Πnor) are root
bases, and in view of Proposition A.8 it follows from the explicit formulas (40)
and (41) that the corresponding Coxeter systems are isomorphic to (W,S).

Equation (40) moreover implies that the radical of the invariant bilinear
form on a equals ker(π) = c∩a (see also [30, Lem. 2.1]). Equation (41) implies
that the radical of the invariant bilinear form on V equals ker(ι∗), as for any
λ ∈ ker(ι∗) one has rαi

(λ) = λ−λ(α̌i)αi = λ and dimR ker(ι
∗) = n− l, where l

is the rank of A. Thus if A is non-affine, then [37, Prop. 6.1.3] applies, and the
images of (a, (−|−), Π̌nor) and (V, (−|−),Πnor) on a and ι∗(V ) are root bases
as well, for the same Coxeter system. �

Note that the bilinear form (−|−)/ ker(π) on a is always non-degenerate
since the radical of the invariant bilinear form on a equals

ker(π) = c ∩ a < {h ∈ h(A) | ∀i = 1, . . . , n : αi(h) = 0}.
In the sequel we will usually denote the bilinear form (−|−)/ ker(π) on a simply
by (−|−), unless we want to distinguish it explicitly from the form (−|−) on a.
We will also write σi := ρKM (řαi

) for the Coxeter generators of ρKM (W ).

Corollary A.24. If A is irreducible, symmetrizable and non-affine, then
(a, (−|−), π(Π̌nor)) is a root basis for the Coxeter system

(ρKM (W ), {σ1, . . . , σn}) ∼= (W,S)

and the reduced Kac–Moody representation ρKM : W → GL(a) is faithful. �

Note that the statement of the corollary does not hold in the affine case.
Here the image ρKM (W ) is just the canonical finite quotient of W given by
the underlying spherical Coxeter diagram, and thus the reduced Kac–Moody
representation is not faithful.

A.25. The unreduced and reduced Tits cone. From now on we will always
assume that our irreducible generalized Cartan matrix A is symmetrizable.
As before we denote by (W,S) the associated Coxeter system. By Proposi-
tion A.23 we then have a root basis for (W,S) given by (a, (−|−), Π̌nor). We
refer to the associated dual Tits cone C∗ ⊂ a∗ as the unreduced dual Tits cone
of A. Explicitly, the fundamental chamber of the unreduced dual Tits cone is
given by

C∗ := {ϕ ∈ a∗ | ϕ(ňi) ≥ 0 for 1 ≤ i ≤ n}
= {ϕ ∈ a∗ | ϕ(α̌i) ≥ 0 for 1 ≤ i ≤ n} ⊂ a∗.

If A is non-affine, then Proposition A.23 also provides another root basis
for (W,S), given by (a, (−|−), π(Π̌nor)), where π : a → a denotes the canonical
projection as before. If A is affine, then (a, (−|−), π(Π̌nor)) is still a root basis,
but the associated Coxeter system is no longer (W,S), but rather the underly-
ing spherical Coxeter system. Either way we refer to the associated dual Tits
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cone C∗ ⊂ a∗ as the reduced dual Tits cone of A. Explicitly, the fundamental
chamber of the reduced dual Tits cone is given by

C
∗
:= {ϕ ∈ a∗ | ϕ(π(ňi)) ≥ 0 for 1 ≤ i ≤ n}
= {ϕ ∈ a∗ | ϕ(π(α̌i)) ≥ 0 for 1 ≤ i ≤ n} ⊂ a∗.

Note that the form (−|−) on a is non-degenerate and W -invariant; it induces
a W -equivariant linear isomorphism a → a∗ by v 7→ (v|−). We denote by C
and C respectively the preimages of C∗

and C
∗
under this linear isomorphism,

which we call the reduced Tits cone ofA, respectively its fundamental chamber .
By definition,

C = {v ∈ a | (v|π(ňi)) ≥ 0 for 1 ≤ i ≤ n} and C = W.C.

To describe these sets more explicitly, we observe the following.

Lemma A.26. If A is symmetrizable, then the linear map

ϕ : (π(a) = a, (−|−)/ ker(π), π(Π̌nor))

→ (π∗(a∗) = ι∗(V ), (−|−)/ ker(ι∗), ι∗(Πnor)),

π(ňj) 7→ ι∗(nj)

is a well-defined isometry. Furthermore,

(π(ňi)|π(ňj)) = (ι∗(ni)|ι∗(nj)) = nj(ňi).

Proof. Note that the family (π(ňj))1≤j≤n is not necessarily linearly indepen-
dent and so, a priori, it is not even clear that there exists a linear map at all
such that π(ňj) 7→ ι∗(nj). However, there certainly exists a linear map

ϕ : (a, (−|−), Π̌nor) → (V, (−|−),Πnor),

ňj 7→ nj .

By the computation in the proof of Proposition A.23 one has

(ϕ(ňi)|ϕ(ňj)) = (ni|nj) =
1

2

√
εj√
εi
aij =

1

2

√
εj√
εi
αj(α̌i) = nj(ňi).

By that proof, moreover, ker(π) equals the radical of the bilinear form on a and
ker(ι∗) equals the radical of the bilinear form on V , so that factoring out the
respective radicals induces the desired isometry between π(a) and ι∗(V ). �

Now every element v ∈ a can be written as v =
∑

vjπ(ňj) for some vj ∈ R,
and since by Lemma A.26

(π(ňi)|v) =
n∑

j=1

vj(π(ňi)|π(ňj)) =
n∑

j=1

vjι
∗ni(π(ňj)) = ι∗ni(v),

we have (π(ňi)|−) = ι∗ni, and thus

C = {v ∈ a | ι∗ni(v) ≥ 0 for 1 ≤ i ≤ n} = {v ∈ a | ι∗αi(v) ≥ 0 for 1 ≤ i ≤ n},
and hence we have C = π(C), where

C = {v ∈ a | αi(v) ≥ 0 for 1 ≤ i ≤ n}.
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Since π : a→ a is W -equivariant, we thus have C= π(C), where C=
⋃
w∈W w.C.

The set C ⊂ a is precisely the intersection of a with the set which Kac calls
the Tits cone in [30, §3.12]; we will refer to it as the unreduced Tits cone. To
summarize, our reduced Tits cone is the projection to a of the intersection of
Tits cone (in the sense of Kac) with a, and it is geometrically isomorphic to the
dual Tits cone (in the sense of Krammer) of the root basis (a, (−|−), Π̌nor). If
A is non-affine, then the latter is a root basis for (W,S), and hence Proposition
A.10 and Corollary A.12 imply the following corollary.

Corollary A.27. Assume A is of non-spherical and non-affine type. Then the
interior Int(C) of the reduced Tits cone is an ideal polyhedral realization of the
augmented Davis–Moussong poset Σ+

sph(W,S), and its link complex S(Int(C))
is an ideal polyhedral realization of the Davis–Moussong poset Σsph(W,S). In
particular, both have the same underlying chamber system which is isomorphic
to the chamber system of the Coxeter complex |Σ(W,S)|. �

We close this subsection by discussing various alternative descriptions of the
reduced and unreduced Tits cone. These descriptions apply both in the affine
and the non-affine case (although the reduced Tits cone is less interesting in
the affine case).

Firstly, since every simple root reflection turns precisely one positive root
negative, the unreduced Tits cone can be characterized by

(42) C = {X ∈ a | α(X) ≥ 0 for almost all α ∈ Φ+};
cp. [30, Prop. 3.12(c)]. Since C = π(C), this also yields a description of the
reduced Tits cone. Secondly, we can obtain a description of the reduced and
unreduced Tits cone in terms of the following hyperplane arrangements.

Definition A.28. Let α ∈ Φ be a real root. Then Hα := ker(α|a) ⊂ a and
Hα := π(Hα) ⊂ a are called the root hyperplanes of α in a and a, respectively.

Since α|a 6= 0 for all α ∈ Φ, the subspaces Hα are indeed hyperplanes, and
since by (35) one has

c ∩ a =
n⋂

i=1

Hαi
,

the subspaces Hα are hyperplanes as well. By definition, Hα and Hα are
precisely the fixpoint sets of the roots reflections ρKM (řα) and ρKM (řα),
respectively. We refer to elements in the unions

asing :=
⋃

α∈Φ

Hα and asing :=
⋃

α∈Φ

Hα

as singular points of a and a, respectively. Non-singular points are called
regular points and we write

areg := a \ asing, Creg := C ∩ areg

and
areg := a \ asing, Creg

:= C ∩ areg.
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Since the fundamental chamber is bounded by root hyperplanes, and the
arrangement of root hyperplanes is W -invariant by construction, we deduce
that the connected components of Creg and Creg

are precisely the open cham-
bers of the respective Tits cones. We thus refer to these connected components
as open Tits chambers and to their closures as closed Tits chambers .

Note that the hyperplanes bounding the fundamental chamber are precisely
the root hyperplanes Hαi

corresponding to the simple roots. Thus if we fix
a chamber Co of |Σ(W,S)| and denote by Hi the face of Co labelled by the
element řαi

∈ S, then we can restate Corollary A.27 as follows.

Corollary A.29. If A is of non-spherical and non-affine type, then there
is a unique incidence-preserving bijection ϕ between the set of chambers and
co-dimension 1 faces of the Coxeter complex |Σ(W,S)| and the set of chambers
and co-dimension one faces of the interior of the reduced Tits cone (respectively
its link complex) such that the following hold:

(i) ϕ is ρKM (W )-equivariant and inclusion-preserving.
(ii) ϕ maps the chamber Co of |Σ(W,S)| to the fundamental chamber C of C

(respectively to S(C)).
(iii) ϕ(Hi) = Hαi

(respectively ϕ(Hi) = S(Hαi
)). �

A.30. Automorphisms of the unreduced and reduced Tits cone. Keep
the assumption that A be a symmetrizable irreducible generalized Coxeter
matrix with associated Coxeter system (W,S) and denote by Σ := |Σ(W,S)|
the underlying Coxeter complex. We are interested in the group Aut(Σ) of
simplicial automorphisms of the Coxeter complex, which do not necessarily
preserve the coloring. Equivalently, one can think of Aut(Σ) as the automor-
phisms of the Cayley graph Cay(W,S) (not necessarily preserving the edge
coloring). Denote by Aut(W,S) < Aut(W ) the subgroup of automorphisms
of W which preserve S as a set. This subgroup acts faithfully by automor-
phisms on the Cayley graph of (W,S) and thus Aut(W,S) < Aut(Σ). Also,
W acts by automorphisms on Σ and thus can be considered as a subgroup of
Aut(Σ).

Lemma A.31 ([1, Remark 3.34 and Exercise 3.35]). The automorphism group
Aut(Σ) splits as a semi-direct product Aut(Σ) = W ⋊ Aut(W,S). Moreover,
Aut(W,S) is isomorphic to the group of automorphisms of the Coxeter diagram
of (W,S). �

Now assume that A is non-affine so that the reduced Kac–Moody repre-
sentation ρKM : W → GL(a) is faithful (Corollary A.24). Every diagram
automorphism α ∈ Aut(W,S) then corresponds to a permutation of the walls
of the fundamental chamber which preserves angles, and any such permutation
can be realized by a unique linear map α of the ambient vector space a. One
thus obtains a monomorphism

ρ : Aut(Σ) = W ⋊Aut(W,S) → GL(a)
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which maps each diagram automorphism α to α and restricts to ρKM on W .
Refer to ρ as the canonical linear realization of Aut(Σ) over a. By construction,
this representation takes values in the group

GL(a, asing) := {f ∈ GL(a) | f(asing) = asing}
of those linear automorphisms of a which preserve the hyperplane arrange-
ment asing.

The semi-direct product Aut(Σ) = W ⋊Aut(W,S) certainly also preserves
the non-degenerate symmetric bilinear form (−|−) on a from Section A.22.
One concludes that the representation ϕ actually takes values in

O(a, asing) := O(a, (−|−)) ∩GL(a, asing).

Both the hyperplane arrangement and the bilinear form are also invariant
under − ida, which may or may not be contained in the image of ρ. One can
thus extend the canonical linear realization to a homomorphism

ρ : Aut(Σ)× Z/2Z → O(a, asing),

by letting the generator of Z/2Z act by − ida. One then has the following
rigidity result, which was pointed out to us by Bernhard Mühlherr.

Proposition A.32 (Mühlherr, personal communication). Let A be a non-
affine irreducible symmetrizable generalized Cartan matrix of size n × n with
n ≥ 2, let (W,S) be the associated Coxeter system and let Σ be an associated
Coxeter complex. Then the canonical linear realization defines a surjective
homomorphism

ρ : Aut(Σ)× Z/2Z → O(a, asing).

If − ida 6∈ ρ(Aut(Σ)), then this map is an isomorphism.

Proof. Let ϕ ∈ GL(a, asing). First establish that ϕ normalizes W := ρKM (W )
and that conjugation by ϕ preserves reflections in W . To this end, as before,
denote by

σi := ρKM (rαi
)

the orthogonal reflection at the hyperplane Hi := Hαi
. Recall that the hyper-

planes H1, . . . , Hn bound the fundamental chamber C ∈ C.
Since the pair (W, {σ1, . . . , σn}) is a Coxeter system, its conjugate

(W
ϕ
, {σϕ1 , . . . , σϕn})

by ϕ is also a Coxeter system. Each σϕi is a reflection because it has a 1-eigen-
space of codimension 1 and is of order 2. It follows that all reflections of the
Coxeter system (W

ϕ
, {σϕ1 , . . . , σϕn}) act by reflections on a. These reflections

preserve asing since ϕ does. Moreover, every hyperplane in asing is the set of
fixed points of a unique reflection in W

ϕ
since ϕ(asing) = asing. In particular,

for every i = 1, . . . , n there is a unique reflection σ̃i in W
ϕ
with fixed-point

set Hi.
Note that, by definition, σ̃i exchanges i-adjacent Tits chambers. In partic-

ular, both σi and σ̃i map the fundamental chamber C to its unique i-adjacent
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chamber. It follows that for i = 1, . . . , n the linear map σ̃iσ
−1
i preserves the

hyperplane Hi pointwise and the fundamental chamber C setwise. Since A
is irreducible with n ≥ 2, the product σ̃iσ

−1
i therefore fixes a basis of a and

hence σ̃i = σi for all i = 1, . . . , n. In particular,W = 〈σ̃1, . . . , σ̃n〉 is a subgroup
of W

ϕ
.

The reflections {σ̃1, . . . , σ̃n} actually generate W
ϕ
. Indeed, since W

ϕ
is

generated by reflections at certain hyperplanes Hα, it will suffice to show
that W = 〈σ̃1, . . . , σ̃n〉 contains reflections at all such hyperplanes. Since W
acts sharply transitively on the Coxeter complex of (W,S), it acts sharply
transitively on chambers in the reduced Tits cone. In particular, it contains
reflections at all hyperplanes in asing which intersect the Tits cone. Since in
fact every wall in asing intersects the Tits cone, one deduces that W = W

ϕ
.

That is, ϕ normalizes W . Moreover, ϕ maps fundamental reflections, and
thus arbitrary reflections, to reflections. If

ϕ ∈ O(a, asing) = O(a, (−|−)/ ker(π)) ∩GL(a, asing),

then by [29, Thm. 1.2] for any root basis Π there exists w ∈ W such that
ϕ(Π) = ±wΠ. (Note that this theorem applies by Remark A.7.)

One may thus assume that the automorphism ϕ of W induced by conjuga-
tion with ϕ stabilizes S and thus induces an automorphism α of Σ. Then ρ(α)
agrees with ϕ up to λ ida for λ ∈ R \ {0}. Indeed, by definition, ϕ and ρ(α)
are both linear maps preserving the hyperplane arrangement asing and (since

every hyperplane intersects the Tits cone) they map each hyperplane in asing

to the same hyperplane. This is only possible if they are linear multiples
of one another, that is, if they coincide up to multiplication with ± ida, by
orthogonality. �

Remark A.33. For an irreducible symmetrizable generalized Cartan matrixA
of size ≥ 2 one has the following trichotomy concerning the isomorphy type of
O(a, asing):

(i) If A is spherical, then C = a and thus − ida ∈ ρ(Aut(Σ)). In this case,

ρ yields an isomorphism Aut(Σ) ∼= O(a, asing).
(ii) If A is non-spherical and non-affine, then by (42) we have

C ∩ (−C) = {π(X) ∈ a | X ∈ a, α(X) = 0 for almost all α ∈ Φ+} = {0},
i.e., the reduced Tits cone and its negative only meet at their tips. The
action of ρ(Aut(Σ)) on a preserves the two cones C and −C, whereas
− ida exchanges the two cones. In particular, ρ induces an isomorphism

Aut(Σ)× Z/2Z ∼= O(a, asing)

in this case.
(iii) IfA is affine, then the action ofW on a is not faithful, and the W -module

a is given by the Kac–Moody representation of the underlying spher-
ical Coxeter system (Wo, So). In this case one thus has O(a, asing) ∼=
Aut(Σ(Wo, So)) by (i).
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The proof of Proposition A.32 implies the following statement concerning
arbitrary linear automorphisms preserving the hyperplane complement asing.

Corollary A.34. Let A be a non-affine irreducible symmetrizable generalized
Cartan matrix of size n×n with n ≥ 2, let (W,S) be the associated Coxeter sys-

tem and let Σ be an associated Coxeter complex. Then every ψ ∈ GL(a, asing)
can be written as ψ = Tλ ◦ ϕ = ϕ ◦ Tλ, where λ ∈ R×, Tλ is the homothety
x 7→ λx and ϕ ∈ ρ(Aut(Σ)) is induced by an automorphism of Σ. �

A.35. The canonical homothety class of bilinear forms of (a, asing).
We keep the notation of the previous subsection. The bilinear form (−|−)
on a is non-degenerate and invariant under the reduced Kac–Moody repre-
sentation of the Weyl group. Moreover, reflections of the Weyl group act by
reflections along the hyperplanes contained in asing with respect to this bilinear
form. Certainly, any nonzero multiple of this invariant form also satisfies these
properties. The following proposition states that this actually characterizes
this homothety class of bilinear forms.

Proposition A.36. Let (W,S) be a non-spherical non-affine irreducible Cox-
eter system, let a be the W -module afforded by the reduced Kac–Moody
representation and let b : a × a → R be a nondegenerate symmetric bilin-
ear form with the property that the reflections of the Weyl group act on a as
b-orthogonal maps. Then b is a multiple of the bilinear form (−|−).

Proof. Let s ∈ S and let σs ∈ W be a simple reflection. Then by hypothe-
sis the (−|−)-orthogonal eigenspace decomposition a = E1(σs) ⊕ E−1(σs) is
also b-orthogonal. Given two reflections σs and σt with orthogonal eigenspace
decompositions E1(σs) ⊕ E−1(σs) = a = E1(σt) ⊕ E−1(σt), we conclude that
the (−|−)-orthogonal projection of E−1(σs) onto E1(σt) also is b-orthogonal.
By induction there exists a decomposition of a into a direct sum of one-
dimensional subspaces that is both (−|−)-orthogonal and b-orthogonal. With
other words, there exists a (−|−)-orthogonal basis (bi)1≤i≤dim(a) of a that
is also a b-orthogonal basis. We conclude that, with respect to this basis
(bs)s∈T , the forms b and a only differ by rescaling with a diagonal matrix
diag(λ1, . . . , λt).

Since W is irreducible, to any given pair of vectors bi, bj in this basis

there exists a reflection hyperplane H in asing that contains neither bi nor bj .
Repeating the above construction with the reflection of W that has H as
eigenspace with respect to the eigenvalue 1, one necessarily has λi = λj . The
claim follows. �

Corollary A.37. The homothety class [(−|−)] is the unique homothety class
of nondegenerate symmetric bilinear forms on a such that GL(a, asing) is a sub-
group of the group of linear similarities of that class.

Proof. By Corollary A.34 any element of GL(a, asing) is a scalar multiple of
the image of an element of Aut(Σ) = W ⋊Aut(W,S) under its canonical linear
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realization over a. By Proposition A.36 this determines the homothety class
[(−|−)]. �

Definition A.38. The unique homothety class of non-degenerate symmetric
bilinear forms on a with the property that GL(a, asing) acts by linear similarities
is called the canonical homothety class of bilinear forms on (a, asing).
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[20] R. Gramlich, M. Horn, and B. Mühlherr, Abstract involutions of algebraic groups and
of Kac–Moody groups, J. Group Theory 14 (2011), no. 2, 213–249. MR2788084

[21] G. Hainke, R. Köhl, and P. Levy, Generalized spin representations, Münster J. Math. 8
(2015), no. 1, 181–210. MR3549525
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[54] G. Rousseau, Groupes de Kac–Moody déployés sur un corps local, immeubles mi-
croaffines, Compos. Math. 142 (2006), no. 2, 501–528. MR2218908

Münster Journal of Mathematics Vol. 13 (2020), 1–114



114 Walter Freyn, Tobias Hartnick, Max Horn, and Ralf Köhl
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