Jin-Sook Lee

Molekulare Analysen zur Oligosaccharidbildung in Actinoplanes sp.

2002

Mikrobiologie

Molekulare Analysen zur Oligosaccharidbildung in Actinoplanes sp.

Inagural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Biologie der Mathematisch-Naturwissenschaftlichen Fakultät der Westfälischen Wilhelms-Universität Münster

> vorgelegt von Jin-Sook Lee aus Seoul, Korea -2002-

Dekan:Prof. Dr.Erster Gutachter:Prof. Dr.Zweiter Gutachter:Prof. Dr.Tag der mündlichen Prüfung:09.10.11Tag der Promotion:11.12.02

Prof. Dr. R. J. Paul Prof. Dr. H. Pape Prof. Dr. F. Meinhardt 09.10.11.12.02 11.12.02

Danksagung

Bei Herrn Prof. Dr. Hermann Pape möchte ich mich von Herzen für die Überlassung des Themas, seine stetige Bereitschaft zur Diskussion und seine vielseitige Unterstützung während der Erstellung meiner Promotionsarbeit bedanken.

Weiterhin möchte ich Herren Prof. Dr. Friedhelm Meinhardt für die Übernahme des Koreferats und fachliche Beratung während meiner Promotionsarbeit herzlich danken.

Ich möchte Herrn Dipl. Biol. Roland Klassen, Herrn Dipl. Biol. Hannes Nahrstedt und Herrn Dipl. Biol. Jens Waldeck für die kritische Durchsicht und für die Korrekturen der Arbeit ganz herzlich danken.

Mein besonderer Dank gilt Frau Oili Much, Frau Dr. Angelika von Wallbrunn, und Frau Katharina Kuhnert für ihre moralische Unterstützung, Freundschaft und Hilfsbereitschaft.

Ferner danke ich allen Mitarbeitern des Arbeitskreises Prof. Dr. H. Pape sowie des Arbeitskreises Prof. Dr. H. Meinhardt herzlich für ihre ständige Hilfsbereitschaft, die nette Zeit des Zusammenarbeitens und die angenehme Arbeitsatmosphäre. Besonders bedanke ich mich bei Herrn Dipl. Biol. Martin Jahring für seine praktische Hilfe.

Ein großer Dank gilt meinen Eltern und meinem Schwager Won-Chull Yoo, die mir dieses Studium ermöglicht haben.

Inhaltsverzeichnis

1. Einleitung	1
1.1 Die Gattung Actinoplanes	1
1.2 Trehalose	1
1.2.1 Trehalose-Metabolismus	2
1.2.1.1 Trehalose-Biosynthese aus aktivierten Vorstufen	2
1.2.1.2 Trehalose-Biosynthese aus Maltose	3
1.2.1.3 Trehalose-Biosynthese aus Maltooligosacchariden	4
1.2.1.4 Trehalose-Biosynthese aus Glucose und Glucose-1-Phosphat	6
1.2.2 Funktionen der Trehalose	6
1.2.2.1 Trehalose als extrazelluläre Kohlenhydratquelle	6
1.2.2.2 Trehalose als Osmolit (<i>compatible solute</i>)	8
1.2.2.3 Trehalose als Kohlenhydratreserve	8
1.2.2.4 Trehalose als Stressmetabolit	9
1.2.3 Regulatorfunktion der Trehalose bei der Glycolyse von Saccharomyces cerevisiae	10
1.2.4 Biotechnologische Bedeutung der Trehalose	11
1.3 Pseudooligosaccharide	12
1.4 Ziel der Arbeit	15
2.Material und Methoden	16
2.1 Material	16
2.1.1 Mikroorganismen, Phagen und Plasmide	16
2.1.2 Oligonukleotide	19
2.1.3 Datenbanken und Computerprogramme	20
2.1.4 Medien, Puffer und Stammlösungen	20
2.1.4.1 Medien	20
2.1.4.2 Puffer	23
2.1.4.3 Stammlösung	24
2.2 Methoden	24
2.2.1 Zellanzucht und Stammhaltung	24
2.2.1.1 Escherichia coli	24
2.2.1.2 λ-Phagen	25
2.2.1.3 Actinoplanes sp	25

2.2.1.4 Streptomyceten	25
2.3 Molekularbiologische Methoden	26
2.3.1 Agarose-Gelelektrophorese	26
2.3.2 Photometrische Konzentrationsbestimmung von DNA	26
2.3.3 Isolation von Plasmid-DNA	27
2.3.3.1 Minipräparation von Plasmid-DNA aus E. coli	27
2.3.3.2 Minipräparation von Plasmid-DNA aus Streptomyceten	28
2.3.4 Isolation und Amplifikation von λ-EMBL3-Phagen	28
2.3.4.1 Bestimmung des Phagentiters	28
2.3.4.2 λ-EMBL3-Phagenlysat	29
2.3.4.3 DNA-Isolierung aus λ-Phagen	29
2.3.5 Isolation chromosomaler DNA aus Actinoplanes sp	30
2.3.6 Reinigung und Konzentration von DNA	31
2.3.6.1 Phenol/Chloroform-Extraktion	31
2.3.6.2 Alkoholpräzipitation	31
2.3.7 Filterblattdialyse	32
2.3.8 Isolation und Reinigung von DNA-Fragmenten aus Agarosegelen	32
2.3.9 Polymerase-Kettenreaktion (PCR; polymerase chain reaction)	32
2.3.10 Modifizierung von DNA	33
2.3.10.1 Restriktion von DNA	33
2.3.10.2 Dephosphorylierung von 5`-Enden	34
2.3.10.3 Ligation von DNA	34
2.3.10.4 Auffüllungsreaktion überstehender 5`-Enden	35
2.3.11 Transformationstechniken	36
2.3.11.1 Transformation von <i>E. coli</i>	36
2.3.11.2 Transformation von Streptomyceten	37
2.3.12 Hybridisierung von DNA	38
2.3.12.1 Nicht radioaktive Markierung von DNA durch random priming	38
2.3.12.2 Transfer von Nukleinsäuren auf Nylonmembranen	39
2.3.12.2.1 Koloniefilter-Hybridisierung	39
2.3.12.2.2 Plaquehybridisierung	40
2.3.12.2.3 Southern Blot	40
2.3.12.3 DNA-DNA-Hybridisierung	41
2.3.12.4 Immunologischer Nachweis	42
2.3.13 Sequenzierung von DNA	43
2.3.13.1 Polyacrylamidgelelektrophorese	44
2.4 Physiologische Untersuchungen	45

2.4.1 Zellaufschluss von Streptomyceten	
2.4.2 Proteinisolation	45
2.4.2.1 Heterologe Proteinexpression mit dem pET19b-System	45
2.4.2.2 Aufreinigung heterolog exprimierter Proteine mittels	
Ni-Affinitätchromatographie	46
2.4.2.3 Aufkonzentrierung des Proteins	
2.4.3 Proteinbestimmung nach Bradford	47
2.4.4 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)	48
2.4.4.1 Färbung von SDS-Polyacrylamidgelen mit Coomassie-Brilliant Blue R2	5050
2.4.5 Western Blot	50
2.4.5.1 Immunologischer Nachweis von His-tag-markierten Proteinen	51
2.4.6 Nachweis enzymatischer Aktivität der MTSase (TreY)/MTHase (TreZ),	
TreSase bzw. Tps1ase	52
2.4.6.1 Qualitative Trennung der Produkte mittels Dünnschichtchromatographie	; 52
2.4.6.2 Nachweis enzymatischer Aktivitäten mit Hilfe des gekoppelten Enzymte	ests53
2.4.6.2.1 Enzymatischer Nachweis der Trehalose mit 3,5 Dinitrosalicylsä	ure53
2.4.6.2.2 Nachweis der Bildung der Trehalose	
mittels eines gekoppelten Enzymtests	55
2.4.6.2.2.1 Nachweis der Glucose mittels ABTS	55
2.4.6.2.2.2 Nachweis der Glucose	57
2.4.6.2.3 Nachweis von Trehalose-6-Phosphat	58
2.4.7 Charakterisierung der MTSase (TreY), TreSase und Tps1ase	59
2.4.7.1 Bestimmung des Temperaturoptimums	60
2.4.7.2 Bestimmung des Puffer- und pH-Optimums	60
2.4.7.3 Bestimmung der Metallionenabhängigkeit des Enzyms	60
2.4.7.4 Substratspezifität	60
2.4.8 HPLC (High Performance Liquid Chromatography)	61
2.4.8.1 Nachweis von Trehalose durch HPLC	61
2.4.8.2 Nachweis von Komponente C mittels HPLC	61
2.4.9 Sicherheitsbestimmumg	62
3. Ergebnisse	63
3.1.1 Identifizierung und Isolierung der MTSase (TreY)/ MTHase (TreZ)-kodierenden	Region
aus Actinoplanes sp. SN223/229	63
3.1.2 Sequenzanalyse der putativen MTSase- und MTHase-kodierenden Region	65

3.1.3 Charakterisierung der identifizierten potentiellen Trehalose-Biosynthese-Genen

durch Sequenzvergleich	70
3.1.3.1 Genprodukte des <i>tre</i> -Operons	70
3.1.3.2 Genprodukte von ORF1 bzw. ORF2	73
3.2.1 Identifizierung und Isolierung einer Trehalosesynthase (TreS)-kodierenden Region	
von Actinoplanes sp. SN223/229 mit Hilfe der PCR	73
3.2.2 Sequenzanalyse der potentiellen TreSase-kodierenden Region	-74
3.2.3 Genprodukt des treS Gens	77
3.2.4 Genprodukte des stromaufwärts bzw. stromabwärts des treS-Gens	
liegenden DNA-Bereichs	·79
3.3.1 In vitro-Amplifikation und Klonierung eines DNA-Bereichs des für die Trehalose-6-	
Phosphat-Synthase (Tps1)-kodierenden Gens aus Actinoplanes sp. SN223/229	·79
3.3.2 Sequenzanalyse der potentiellen Trehalose-6-Phosphat-Synthase-kodierenden Region	81
3.3.3 Genprodukt des potentiellen <i>tps</i> 1-Gens	85
3.3.4 Genprodukte von stromaufwärts bzw. stromabwärts gelegenen DNA-Bereichen	
des <i>tps</i> 1-Gens	86
3.4.1 Konstruktion von Vektoren zur heterologen Expression der Gene treY, treZ, treS	
und <i>tps</i> 1 in <i>E. coli</i>	86
3.4.2 Konstruktion eines Vektors zur heterologen Expression eines bifunktionalen	
Fusionsproteins aus MTSase (TreY) und MTHase (TreZ)	87
3.5.1 Optimierung der heterologen Expression der MTSase, MTHase, TreSase und Tps1	
in E. coli und Aufreinigung durch Ni-Affinitätschromatographie	89
3.5.2 Expression der MTSase, MTHase, TreSase, Tps1ase und des bifunktionalen Enzyms	
und Aufreinigung durch Ni-Affinitätschromatographie	-92
3.6 Nachweis der Enzymaktivität von TreY, TreZ, TreYZF, TreS und Tps1	
durch gekoppelte Enzymtests	94
3.7 Charakterisierung der MTSase (TreY), TreSase und Tps1ase	96
3.7.1 Puffer-Optimum	96
3.7.2 pH-Optimum	97
3.7.3 Temperaturoptimum	97
3.7.4 Einfluss von Metallionen auf MTSase (TreY), TreSase bzw. Tps1ase-Enzymaktivität	.98
3.7.5 Substratspezifität	99
3.7.5.1 Substratspezifität der MTSase (TreY)	.99
3.7.5.2 Substratspezifität der TreSase	100
3.7.5.3 Substratspezifität der Tps1ase	101
3.8 Nachweis der Trehalosebildung der MTSase mit MTHase, TreSase und Tps1ase	
durch die Dünnschichtchromatographie	-101
3.9 Nachweis der Trehalosebildung mittels HPLC	-103

3.10 HPLC-Analyse der Bildung der Komponente C bei der Umsetzung von Acarbose	
durch MTSase (TreY) bzw. TreSase	105
3.11 Gendisruption der Gene treY und treZ aus Actinoplanes sp. SN223/229	107
4. Diskussion	109
4.1 Das Trehalose-Biosynthesegencluster aus Actinoplanes sp. SN223/229	109
4.1.1 Identifizierung und Sequenzanalyse der Maltooligosyltrehalose-Synthase (TreY) bz	W.
Maltooligosyltrehalose-Trehalohydrolase (TreZ)	109
4.1.2 Identifizierung und Sequenzanalyse der Trehalosesynthase (TreS)-kodierenden Reg	ion-112
4.1.3 Identifizierung und Sequenzanalyse Trehalose-6-Phosphat-Synthase (Tps1)	114
4.2 Charakterisierung der Proteine TreX, TreY, TreZ und TreS	115
4.3 Heterologe Expression der Proteine TreY, TreZ, TreS, Tps1 und TreYZF	117
4.3.1 Nachweis der Trehalosebildung und Charakterisierung der exprimierten Proteine	118
4.4 Die Bildung der Komponente C	121
4.5 Funktionen der Trehalose in Actinoplanes sp	128
5. Zusammenfassung	131
6. Literaturverzeichnis	132
7. Anhang	146
7.1 Sequenzen	146
7.1.1 Sequenz des 7,7 kb großen chromosomalen DANN-Bereichs der MTSase/MTHase-	
kodierenden Region	146
7.1.2 Sequenz eines Teils von putativem Glutamat-Bindungsproteins (ORF2)	152
7.1.3 Sequenz eines Teils von putativem Uroporphyrin III-Methyltransferase	152
7.2.1 Homologievergleich der Glycogen debranching Enzyme (TreX)	153
7.2.2 Homologievergleich der Glycosylhydrolasen	156
7.2.3 Homologievergleich der Maltooligosyltrehalose-Synthase (TreY)	157
7.2.4 Homologievergleich der Maltooligosyltrehalose-Trehalohydrolasen (TreZ)	159
7.2.5 Homologievergleich der Trehalose-Synthasen (TreS)	160
7.2.6 Homologievergleich der Trehalose-6-Phosphat-Synthasen (Tps1)	162
7.3 Plasmide	165
7.3.1 pUCBM20	165
7.3.2 pET19b	165

Abkürzungsverzeichnis

А	Adenin
Abb	Abbildung
ABTS	2,2°-Azino-bis-(3-ethylbenzthiazolin)-6-sulfonsäure
A. demin./A. dest.	demineralisiertes Wasser/destilliertes Wasser
ADP	Adenosin 5`-diphosphat
ADPG	Adenosin 5`-diphosphoglucose
Akt.	Aktivität
Amp ^R	Ampicillinresistenz
APS	Ammoniumperoxodisulfat
AS	Aminosäure
ATP	Adenosin-5`-triphosphat
bp	Basenpaare
BSA	Rinderserumalbumin (engl.: bovine serum albumin)
bzw.	beziehungsweise
С	Cytosin
°C	Grad Celsius
ca.	circa
CDP	Cytidin 5`-diphosphat
CDPG	Cytidin 5'-diphosphoglucose
CIP	calf intestine phosphatase
CPSD	3-(4-Methoxyspiro [1,2-Dioxetan-3,2`-(5`-Chlor)Tricyclo
	(3.3.1.1 ^{3,7}) Decan]-4-yl) Phenyphosphat, Dinatriumsalz
d	Desoxy-
Da	Dalton
DC	Dünnschichtchromatographie
dd	Didesoxy-
ddNTP	Didesoxynukleosid-5`-triphosphat
DIG	Digoxigenin
d.h.	das heißt
DMF	N,N`-Dimethylformamid
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
Dnase	Desoxyribonuklease
DSM	Deutsche Stammsammlung für Mikroorganismen
ΔΕ	Extinktionsänderung

Е.	Escherichia
ed (s)	Herausgeber (engl.: editor)
EDTA	Ethylendiamintetraacetat
EMBL	engl.: European Molecular Biology Laboratory
et al.	und andere (lat.: <i>et alii</i>)
EtBr	Ethidiumbromid
Fa.	Firma
g	Gramm
g	Erdbeschleunigung
G	Guanin
GDP	Guanosin 5'-diphosphat
GDPG	Guanosin 5'-diphosphoglucose
GOD	Glucose-Oxidase
G-6-P	Glucose-6-phosphat
G-6-P-DH	Glucose-6-phosphat-Dehydrogenase
h	Stunden
HPLC	engl.: high performance liquid chromatography
HUSAR	engl.: Heidelberg Unix Sequence Analysis Resources
IPTG	Isoproyl-B-D-thiogalactopyranoid
in vivo	lat.: im lebenden Organismus
in vitro	lat.: im Reagenzglas (außerhalb des Organismus)
I.U.B	International Union of Biochemistry
kat	katal
kb	Kilobasen
kDa	Kilodalton
Km ^R	Kanamycinresistenz
λ	Symbol für den Bakteriophagen Lambda
1	Liter
LB	Luria-Bertani
Lactat-DH	Lactat-Dehydrogenase
m	Meter, milli (1 x 10 ⁻³)
М	Molarität
MCS	engl.: multiple cloning site (Multiple Klonierungsstelle)
MG	Molekulargewicht
mRNA	messenger-Ribonukleinsäure
min	Minute
mM	Millimolar

μ	mikro (1 x 10 ⁻⁶)
Na-Ac	Natriumacetat
NAD^+	Nicotinamid-adenin-dinukleotid (oxidiert)
NADH	Nicotinamid-adenin-dinukleotid (reduziert)
$NADP^+$	Nicotinamid-adenin-dinukleotid-phosphat (oxidiert)
NADPH	Nicotinamid-adenin-dinukleotid-phosphat (reduziert)
nt	Nukleotide
OD	optische Dichte
ORF	offener Leserahmen (engl.: open reading frame)
ori	Replikationsursprung (engl.: origin of replication)
PAGE	Polyacrylamid-Gelelektrophorese
PCR	Polymerase-Kettenreaktion (engl.: polymerase chain reaction)
PEG	Polyethylenglykol
PEP	Phosphoenolpyruvat
рН	negativer dekadischer Logarithmus der Protonenkonzentration
POD	Peroxidase
PVDF	Polyvinyldifluorid
RNA	Ribonukleinsäure
Rnase	Ribonklease
rRNA	ribosomale Ribonkleinsäure
rpm	Umdrehungen pro Minute (engl.: rotation per minute)
RT	Raumtemperatur
Rt	retention time
S	Sekunde
S.	siehe
SAP	alkalische Phosphatase aus Schrimps
S/D	Shine/Dalgarno-Sequenz (Ribosomenbindungsstelle)
SDS	Natriumlaurylsulfat (engl.: sodium dodecyl sulfate)
sp.	lat.: species
spez.	spezifisch
Т	Tymin
Tab.	Tabelle
TEA	Triethanolamin
TEMED	N,N,N`,N`-Tetramethylethylendiamin
TES	N-(Tris(hydroxymethyl)methyl)-3-aminopropansulfonsäure
Thio ^R	Thiostreptonresistenz
Т-6-Р	Trehalose-6-phosphat

TDP	Thymidin 5`-diphosphat
TDPG	Thymidin 5`-diphosphoglucose
Tps1	Trehalose-6-phosphat-Synthase
Tps2	Trehalose-6-phosphat-Phosphatase
TreS	Trehalosesynthase
TreY	Maltooligosyltrehalose-Synthase
TreZ	Maltooligosyltrehalose-Trehalohydrolase
Tris	Tris-(hydroxymethyl)-aminomethan
TSB	Tryptic Soy Broth
ü.N.	über Nacht
U	Unit
UDP	Uridin 5`-diphosphat
UDPG	Uridin 5`-diphosphoglucose
UV	Ultraviolett
V	Volt
VF	Verdünnungsfaktor
vgl.	vergleiche
v/v	Volumenprozent (engl.: volume per volume)
w/v	Gewichtsprozent (engl.: weight per volume)
X-Gal	5-Brom-4-chlor-3-indolyl-ß-D-galactosid
z. B.	zum Beispiel

Abkürzungen für Aminosäuren

А	Ala	Alanin	М	Met	Methionin
С	Cys	Cystein	Ν	Asn	Asparagin
D	Asp	Asparaginsäure	Р	Pro	Prolin
E	Glu	Glutaminsäure	Q	Gln	Glutamin
F	Phe	Phenylalanin	R	Arg	Arginin
G	Gly	Glycin	S	Ser	Serin
Н	His	Histidin	Т	Thr	Threonin
Ι	Ile	Isoleucin	V	Val	Valin
Κ	Lys	Lysin	W	Trp	Tryptophan
L	Leu	Leucin	Y	Tyr	Tyrosin

1. Einleitung

1.1 Die Gattung Actinoplanes

Die Gattung Actinoplanes gehört zur Gruppe der Gram-positiven, aeroben, mycelbildenden Bakterien aus der Familie der Micomonosporaceae (Stakebrand et al., 1997; Boone & Castenholz, 2001). Das ausgebildete Substratmycel besteht aus dünnen sowie nicht fragmentierten Hyphen mit einem Durchmesser 0,2 - 1,0 µm. Ein Luftmycel wird im allgemeinen nur schwach ausgebildet. Das natürliche Habitat der Gattung Actinoplanes ist der Boden, mariner Standorte und vor allem Süßwasser, welches im Zersetzungsprozess befindliche Pflanzenmaterialen enthält, vorkommen. Das Sporangium wird durch Zerfall innerer Hyphen direkt bei oder nach einer Verzweigung gebildet. Die Planosporen sind kugelförmige bis kurze Stäbchen mit einem Durchmesser von 1,0 bis 1,5 µm. Die Sporen sind nach der Freisetzung aus den Sporangien durch polare oder laterale Begeißelung beweglich (Buchanan & Gibbons, 1986). Actinoplanes sind mesophil, chemo-organotroph und wachsen in einem Temperaturbereich von 15 bis 35 °C. Die Kolonien sind oft durch eine gelb-braune Pigmentierung auffällig gefärbt. Es können jedoch auch rote, violette, grüne oder purpurfarbene Kolonien beobachtet werden (Vobis, 1989). Ferner besitzt die chromosomale DNA dieser Gattung einen hohen GC-Gehalt von 72 - 73 Mol % (Parenti & Coronelli, 1979). Aufgrund der Produktion einer Vielzahl von Sekundärmetaboliten hat die Gattung Actinoplanes in letzter Zeit zunehmend an Bedeutung gewonnen (Crueger & Crueger, 1989). Zu den bekanntesten Vertretern dieser Sekundärmetaboliten gehören die als ein a-Glucosidase-Inhibitor (Schmidt, fungierende Acarbose al.. et 1977) und das Glycopeptidantibiotikum Teichoplanin (Jovetic et al., 1998), welches auf Gram-positive Bakterien und *Neisseria gonorrhoea* inhibitorisch wirkt (Goldstein et al., 1987).

1.2 Trehalose

Trehalose ist ein nicht-reduzierendes Disaccharid (1-O-(α -D-Glucopyranosyl)- α -D-Glucopyranosid), das aus zwei α -1,1-glycosidisch verknüpften Glucosemolekülen besteht. Die α , α -Trehalose ist ubiquitär in Bakterien, Pilzen, Hefen, Euglena, Insekten, Algen, Pflanzen und Invertebraten verbreitet (Elbein, 1974; Ohguchi et al., 1997). Die Isomere der α,α -Trehalose (α,β -, und β,β -Trehalose) konnten bisher nur chemisch synthetisiert werden. In wenigen Fällen kommt die α,β -Trehalose natürlich vor (Nikolov et al., 1989).

1.2.1 Trehalose-Metabolismus

1.2.1.1 Trehalose-Biosynthese aus aktivierten Vorstufen

Die Trehalose-Biosynthese aus aktivierten Vorstufen konnte in verschiedenen Organismen nachgewiesen werden. Beispiele für die Trehalosesynthese wurde für *E. coli* (Kaasen et al., 1992), *Streptomyces*, Mycobacterien (De Smet et al., 2000), *Saccharomyces cerevisiae* (Bell et al., 1998), *Candida albicans* (Zaragoza, et al. 1998) *Aspergillus niger* (Wolschek & Kubicek, 1997), *A. nidullans* (Fillinger et al., 2001), *Arabidopsis thaliana* (Blàzquez et al., 1998; Vogel et al., 2001) und in Nematoden (Behm, 1997) beschrieben.

Hierbei wird mittels der Trehalose-6-Phosphat-Synthase (OtsA bzw. TPS1) Glucose von Glucosenucleotiden (ADP-, TDP-, GDP-, CDP-, UDP-Glucose) auf Glucose-6-Phosphat unter Abspaltung eines Nucleosid-Diphosphats übertragen. Das entstehende Zwischenprodukt wird als Trehalose-6-Phosphat bezeichnet. Anschließend wird Trehalose-6-Phosphat durch Trehalose-6-Phosphat-Phosphatase (OtsB, bzw. TPP) hydrolysiert. Trehalose entsteht unter Freisetzung von anorganischem Phosphat (P_i). Die Trehalose-6-Phosphat-Synthase liegt als substratspezifisches Enzym vor. In den meisten Fällen konnte das Substrat UDP-Glucose verwendet werden. In *Saccharomyces cerevisiae* wird Trehalose sowohl unter Verwendung von UDP-Glucose als auch von ADP-Glucose synthetisiert (Paschoalin et al., 1989). In Streptomyceten wie z. B. *Streptomyces griseus, S. hygroscopicus* erfolgt dagegen die Synthese aus GDP-Glucose (Elbein, 1968). *Mycobacterium smegmatis* ist in der Lage, verschiedene Glucosenucleotide für die Trehalosesynthese zu nutzen (Lapp et al., 1971).

In der Abbildung 1.1 ist eine schematische Darstellung der Trehalose-Biosynthese aus aktivierten Vorstufen zu sehen.

Abb. 1.1: Schematische Darstellung der Trehalose-Biosynthese aus aktivierten Vorstufen.

Abkürzungen: TPS1 = Trehalose-6-Phosphat-Synthase; TPP2 = Trehalose-6-Phosphat-Phosphatase; P_i = Orthophosphat; UDP = Uridin-5'-Diphosphat.

1.2.1.2 Trehalose-Biosynthese aus Maltose

Eine weitere Möglichkeit der Trehalosebildung wird durch die intramolekulare Transglycosyltransferase (Trehalosesynthase) katalysiert, wobei Trehalose aus Maltose synthetisiert wird. Wie bereits bei *Mycobacterium* nachgewiesen (De Smet et al., 2000), wird auch die Rückreaktion von der Trehalosesynthase katalysiert. Das Gen für Trehalosesynthase wurde in *Pimelobacter* sp. (Tsusaki et al., 1996), *Peudomonas aeroginosa* (Stover et al.,

2000), *Thermus aquaticus* (Tsusaki et al., 1996), *Streptomyces coelicolor* (Bruton et al., 1995) und *Mycobacterium* (De Smet et al., 2000) identifiziert. In Abbildung 1.2 ist ein Reaktionsschema der Trehalosebildung aus Maltose dargestellt.

Abb. 1.2: Schematische Darstellung der Trehalose-Biosynthese aus Maltose. Abkürzung: TreS = Trehalosesynthase.

1.2.1.3 Trehalose-Biosynthese aus Maltooligosacchariden

Für die Trehalose-Bildung aus Maltooligosacchariden sind die beiden Enzyme Maltooligosyltrehalose-Synthase(MTSase) und die Maltooligosyltrehalose-Trehalohydrolase (MTHase) verantwortlich. MTSasen (TreY) und MTHasen (TreZ) aus den verschiedenen Organismen sind bereits in einigen Arten wie *Arthrobacter* (Maruta et al., 1996c; Maruta et al., 2000), *Brevibacterium helvolum* (Kim et al., 2000), *Rhizobium* (Maruta et al., 1996b), *Sulfolobus acidocaldarius* (Maruta et al., 1996a; Gueguen et al., 2001), *S. solfataricus* (Kobayash et al., 1996) *Micrococcus roseus* und *Mycobacterium tuberculosis* (De Smet et al., 2000) nachgewiesen. Bei der Nucleotidsequenz-Analyse von *Arthrobacter* sp. und *Sulfolobus acidocaldarius* stellte sich heraus, dass drei *tre*-Gene *treX*, *tre*Y und *treZ* in einem Operon lokalisiert sind (Maruta et al., 2000; Gueguen et al., 2001). Das *treX*-Gen ist homolg zu den Isoamylasen verschiedener Organismen. Die Isoamylase hydrolysiert die α -1,6-glycosidischen Bindungen in Amylopectin, Glycogen und Dextrinen. Dabei entstehen Maltooligosaccharide unterschiedlicher Längen, welche von der Maltooligosyltrehalose-

Synthase (TreY) als Substrate verwendet werden können. Die MTSase wandelt die α -1,4glycosidische Bindung am reduzierenden Ende eines Maltooligosaccharids in eine α -1,1glycosidische Bindung um, wobei Maltooligosyltrehalose entsteht. Anschließend katalysiert die MTHase (TreZ) die spezifische Hydrolyse der benachbarten α -1,4-glycosidischen Bindung der Maltooligosyltrehalose, wobei Trehalose und ein verkürztes Maltooligosaccharid entsteht, welches als Substrat erneut verwendet werden kann. Die Abbildung 1.3 zeigt die schematische Darstellung eines Beispiels für die Trehalose-Biosynthese aus Maltohexaose.

Abb. 1.3: Schematische Darstellung der Trehalose-Biosynthese aus Maltooligosacchariden.

Abkürzungen: MTSase = Maltooligosyltrehalose-Synthase (TreY); MTHase = Maltooligosyltrehalose-Trehalohydrolase (TreZ).

1.2.1.4 Trehalose-Biosynthese aus Glucose und Glucose-1-Phosphat

In den *Basidiomyceten*, *Grifola frondosa* wurde eine weitere Trehalosesynthase (TSase), welche die Trehalose-Biosynthese aus Glucose und Glucose-1-Phosphat katalysiert, nachgewiesen. Hierbei dient Glucose-1-Phospht als Glucosyldonor. Bei der Kombination der Trehalosesynthase mit der Saccharose-Phosphorylase konnte Trehalose aus Saccharose generiert werden. Die Enzymaktivität wird auch in Hefe, *Pichia fermentans, Flammulina velutipes* nachgewiesen (Saito et al., 1998).

1.2.2 Funktionen der Trehalose

Trehalose kann der Zelle als extrazelluläre Kohlenstoffquelle, Kohlenhydratreserve, Osmoprotektor (*compatible solute*), Stressmetabolit und strukturelle Komponente dienen.

1.2.2.1 Trehalose als extrazelluläre Kohlenhydratquelle

Von Bakterien wie *E. coli, Bacillus* sp., *Neurospora* sp., *Aspergillus niger* und Hefen kann Trehalose als extrazelluläre C-Quelle verwendet werden. In *E. coli, Vibrio parahaemolyticus* und *Bacillus subtilis* erfolgt die Aufnahme der extrazellulären Trehalose über das PEPabhängige-Phosphotransferase-System (PTS) (Argüelles, 2000).

Bacillus substilis verwendet Trehalose nicht als Osmoprotektor, sondern als extrazelluläre Kohlenstoffquelle (Whatmore & Reed, 1990), wobei die Trehalose über das Enzym IIBC^{Tre} des PTS aufgenommen wird. Durch Trehalose-Phosphat-Hydrolase (TreA) wird Trehalose-6-Phosphat im Cytoplasma in Glucose und Glucose-6-Phosphat gespalten. Das *tre*P-Gen kodiert für das Enzym IIBC^{Tre}. Die Gene *tre*A und *tre*P bilden dabei ein Operon, welches durch Trehalose-6-Phosphat induziert und durch Glucose und Fruktose reprimiert wird (Helfert et al., 1995).

E. coli ist in der Lage, Trehalose sowohl aus Medien mit geringer Osmolarität, als auch mit hoher Osmolarität als C-Quelle zur Verfügung zu stellen. In Medien geringer Osmolarität erfolgt die Aufnahme der Trehalose ins Cytoplasma über das Enzym IICB^{Tre} (TreB) und IIA^{Glu} des PTS (Klein et al., 1995). Das dabei gebildete Trehalose-6-Phosphat wird anschließend mittels Trehalose-6-Phosphat-Hydrolase (TreC) in Glucose und Glucose-6-

Phosphat gespalten (Rimmele & Boos 1994; Horlacher & Boos, 1997). In Medien hoher Osmolarität wird die Trehalose hingegen durch eine periplasmatisch lokalisierte Trehalase (TreA), welche durch NaCl (250 mM) induziert wird, hydrolysiert. Die entstehende Glucose wird über die Enzyme IIA^{Glu} und IICB^{Glu} ins Cytoplasma aufgenommen (Boos et al, 1990; Horlacher & Boos, 1997). Die Gene *tre*B und *tre*C liegen in einem Operon vor, welcher durch Trehalose-6-Phosphat induziert wird. Der *tre*B/*tre*C-Operon unterliegt der Katabolit-Repression durch Glucose und Fruktose (Horlacher & Boos, 1997).

In der Abbildung 1.4 ist ein Schema der extrazellulären Trehaloseaufnahme bei geringer bzw. hoher Osmolarität des Mediums dargestellt.

Abb. 1.4: Potentielle Trehaloseaufnahme aus dem Medium mit hoher (A) bzw. geringer Osmolarität (B) bei *E. coli* (verändert nach Rimmel & Boos, 1994).

Abkürzungen: LamB = *pore* Protein; OtsA = Trehalose-6-Phosphat-Synthase; OtsB = Trehalose-6-Phosphat-Phosphatase; TreA = Trehalase; TreB = Enzym IICB^{Tre}; TreC = Trehalase-Phosphat-Hydrolase.

1.2.2.2 Trehalose als Osmolit (compatible solute)

Unter osmotischem Stress bilden Mikroorganismen niedermolekulare Metabolite, sogenannte *compatible solute* im Cytoplasma (Zucker, Aminosäuren, Betain, Polyole).

Bei hoher Osmolarität wird die Trehalose als Osmoprotektor bei *E. coli* verwendet, wobei die Trehalosesynthese aufgrund der Salzkonzentration (NaCl ≥ 250 mM) induziert wurde (Dinnbier et al., 1988) und sich Trehalose in der Zelle akkumuliert. Die akkumulierte Trehalose wird bei sinkender Osmolarität durch die im Cytoplasma lokalisierte Trehalase (TreF) wieder abgebaut.

Weitere Beispiele für die Nutzung von Trehalose als Osmolit finden sich in vielen Bakterien, darunter *Salmonella typhimurium* (Cànovas et al., 2001), Cyanobakterien (Reed et al., 1984), halophilen Bakterien, wie *Ectothiorhodospira halochloris* (Galiski & Herzog, 1990) und *Desulfovibrio halophilus* (Welsh et al., 1998) und den Archea *Sulfolobus*. Die Akkumulation der Trehalose ist abhängig von den Komponenten im Medium. So steigt z. B. in *D. halophilus* die intrazelluläre Trehalose-Konzentration unter Abwesenheit von Glycin-Betain. Bei *E. halochloris* steigt die Trehalose-Akkumulation unter Stickstoffmangel im Medium. Bei halophilen Bakterien scheint die Trehalosesynthese durch zunehmende Salzkonzentration (NaCl von 100 – 300 mM) induziert zu werden (Argüelles, 2000). Im Cyanobakterium *Scytonema* sp. wird die Trehalosesynthese ebenfalls durch Salz-Stress induziert. Unter anfänglichem osmotischem Stress (0,7 M NaCl) wird Trehalose oder Saccharose gebildet. Ab einen Salzstress von 1,8 M wird Glucosylglycerol akkumuliert, ab 2,7 M hingegen Glycin-oder Glutamat-Betain (Page-Sharp et al., 1999).

1.2.2.3 Trehalose als Kohlenhydratreserve

Da Trehalose in den Überdauerungsstadien der Actinomyceten und Pilze in hohen Konzentration akkumuliert wird, wird sie als Kohlenhydratreserve angesehen. Trehalose wird vor allem in den Sporen von *Saccharomyces, Aspergillus, Streptomyces* bis zu 15 % des Trockengewichts eingelagert (Elbein, 1974; De Silva-Udawatta & Cannon, 2001). In *Streptomyces* wurde Trehalose während der Zelldifferenzierung des Luftmycels und der Sporulation synthetisiert und eine erhöhte Trehalose-Akkumulation in der reifen Sporen festgestellt (McBride & Ensign, 1987a; 1987b; 1990; Miguélez et al., 1997; Rueda et al., 2001) Die in den Sporen befindliche Trehalose dient zum einen als Energie- und

Kohlenhydrat-Quelle bei der Germination. Während der Sporenkeimung kann Trehalose durch hoch aktivierte Trehalase sehr schnell abgebaut werden, wobei die Trehalaseaktivität aufgrund vorangehender Rehydratisierung der Sporen sehr stark ansteigt. Zum anderen wirkt Trehalose in *Streptomyces* als Schutz gegen Austrockung, so dass Proteine bei Wassermangel stabilisiert werden können.

Trehalose liegt in Insekten (Mayer & Candy, 1969) und Nematoden als Kohlenhydratquelle der Hämolymphe und Muskulatur vor. In Nematoden und deren Eiern wird Trehalose zum Schutz gegen den Gefrierprozess sowie als Energiequelle eingelagert (Behm, 1997).

1.2.2.4 Trehalose als Stressmetabolit

Bei den meisten Bakterien hat Trehalose eine wichtige Bedeutung als Stressmetabolit, der unter Stressbedingungen wie Hitze, Kälte, Trockenheit, oxidativem Stress oder Nahrungsmangel gebildet wird (Van Laere, 1989). Wie bereits für zahlreiche Bakterien beschrieben (Behm, 1997; Argüelles, 2000), geht die Schutzfunktion der Trehalose auf eine Stabilisierung der Membran sowie von Proteinen zurück. Bei Dehydratation bilden die Hydroxylgruppen der Trehalose Wasserstoffbrücken mit den Phosphatgruppen der Membran-Phospholipide aus. Auf diese Weise wird der Phasenübergang der Membran in die Gel-Phase vermieden und die Stabilität und Fluidität der Membran bei Trockenheit sowie Kälte und Gefriertrockungsprozessen gewährleistet. Trehalose scheint dabei die Funktion des Wassers zu übernehmen, so dass die Membran in hydratisierter Konfiguration bei Abwesenheit des Wassers vorliegt (Crowe et al., 1984). Eine Dehydratisierung von Proteinen bei Gefriertrockung und Hitze könnte durch Hydrogen-Bindung zwischen den Hydroxylgruppen der Trehalose und polaren Gruppen des Proteins verhindert werden (Sun & Davidson, 1998; Mazzobre & Buera, 1999).

Im Pflanzenreich wurde Trehalose bei *Pteridophytes* (*Selaginella lepidophylla, Botrychium lunaria*) und *Apiaceae* nachgewiesen. Wie bereits von Romero et al., 1997 beschrieben, handelt es sich hierbei um Stressmetabolit gegen Austrockung. Höhere Pflanzen benutzen vermutlich anstelle von Trehalose Saccharose als Stressmetabolit. Das Gen für die Trehalose-6-Phosphat-Synthase von *Saccharomyces cerevisiae* wurde mittels *Agrobacterium* in die Pflanzen transformiert. Bei diesen Pflanzen wurde nachgewiesen, dass durch Trehaloseakkumulation die Resistenz gegenüber Trockenheit verbessert werden konnte (Romero et al., 1997; Goddijn & van Dun, 1999).

In *Mycobakterium* und nahe verwandten Bakterien wie *Nocardia*, *Rhodococcus* und *Corynebacterium* liegt Trehalose nicht nur als freies Moleküle in der Zelle vor, sondern auch als Zellwandbestandteil in Form eines Glycolipids (α,α -Trehalose-6,6'-Dimycolat) (Argüelles, 2000). Das Glycolipid bezeichnet den sogenannten *Cord* Faktor, welcher für eine Pathogenität dieser Bakterien verantwortlich ist (Spargo et al., 1991).

1.2.3 Regulatorfunktion der Trehalose bei der Glycolyse von Saccharomyces cerevisiae

In Saccharomyces cerevisiae (Thevelein & Hohmann, 1995) und Apergillus nidulans (Fillinger et al., 2001) scheint die Trehalose-Biosynthese offenbar auch an einer regulatorischen Funktion während der Glycolyse beteiligt zu sein. Der Trehalosesynthase-Komplex aus S. cerevisiae besteht aus drei Unterheinheiten, deren Aminosäuresequenzen eine hohe Homologie zueinander aufweisen (Trehalose-6-Phosphat-Synthase; TPS1/GGS1 (56 kDa), Trehalose-6-Phosphat-Phosphatase; TPS2 (100 kDa) und die regulatorischen Untereinheiten; TPS3 und TSL1 (123 kDa)). Der Trehalosemetabolismus ist eng mit dem Glucosestoffwechsel verbunden (Thevelein & Hohmann, 1995, Bell et al., 1998). Es wurde festgestellt, dass die Trehalose-6-Phosphat-Synthase TPS1/GGS1 (= glucosesensor protein) an der Kontrolle der Glucose-Aufnahme in die Zelle beteiligt ist. Die Mutante TPS1/GGS1 konnte in Glucose- oder Fructose-haltigen Medien nur schwach wachsen und zeigte eine schwache Sporulation sowie einen negativen Einfluss auf den Glycogen-Methabolismus (Hohmann et al., 1996). Vermutlich wurde die Glucose-Aufnahme in die Zelle dereguliert, wodurch sich zuviel Zucker-Phosphat unter Verbrauch von ATP durch die Hexokinase anreicherte (Bell et al, 1998; De Silva-Udawatta & Cannon, 2001). Die Glucose-Aufnahme in die Zelle und die damit einhergehende Bereitstellung für die Glycolyse wird durch die Trehalosesynthese kontrolliert. Das unter Verwendung von Glucose-6-Phosphat der Glycolyse synthetisierte Trehalose-6-Phsphat inhibiert die Hexokinase. Trehalose-6-Phosphat kann auch durch die Trehalose-6-Phosphat-Phosphatase (TPS2) unter Freisetzung von anorganischem Phosphat zu Trehalose hydrolysiert werden. Dabei wirkt das freigesetzte Phosphat inhibitorisch auf die Regulation des Trehalosesynthase-Komplexes, kann aber auch als Substrat von der Glycerinaldehyd-3-Phosphat-Dehydrogenase verwendet werden. Das bei der Glycolyse entstehende Fructose-6-Phosphat stimuliert die regulatorische Aktivität des Trehalosesynthese-Komplexes. Abbildung 1.5 zeigt schematisch die Kontrollemechanismen des Glucose-Aufnahme durch den Trehalosesynthase-Komplex.

Abb. 1.5: Signaltransduktionskette des Trehalosesynthase-Komplexes bei der Glycolyse von *Saccharomyces cerevisiae* (verändert nach Thevelein & Hohmann, 1995).

Abkürzungen: GGS1/TPS1 = Trehalose-6-Phosphat-Synthase; TPS2 = Trehalose-6-Phosphat-Phosphatase; TSL1, TPS3 = regulatorische Untereinheit; P_i = Orthophosphat.

1.2.4 Biotechnologische Bedeutung der Trehalose

In Vergleich zu anderen Zuckern zeigt das ungeladene, nicht-reduzierte Disaccharid Trehalose eine chemische Stabilität und hohe Hydrophilie (Behm, 1997; Goddijn & van Dun, 1999; Argüelles, 2000). Daher ist Trehalose interessant für biotechnologische Anwendungen, so unter anderen zur Stabilisation von Enzymen, der Konservierung von Kosmetikprodukten und Lebensmitteln sowie Phamazeutika (Sun & Davidson, 1998; Mazzobre & Buera, 1999). Wie bereits unter 1.2.2.4 erwähnt, bleibt die Stabilität und Vitalität von Enzymen, Gewebezellen und Embryonen durch Zugabe der Trehalose während einer Trockung, Hitze oder Gefriertrockung erhalten.

1.3 Pseudooligosaccharide

Der von *Actinoplanes* sp. SN223/229 gebildete Sekundärmetabolit Acarbose gehört zu einer Reihe homologer Pseudooligosaccharide, deren *Core*-Struktur aus einem verzweigten, ungesättigten C₇N-Cycliten (Valienamin) und einer 4,6-Didesoxy-D-glucopyranose besteht. Die beiden Moleküle sind dabei über eine α -1,4-N-glycodische Bindung verknüpft. Die als Acarviosin bezeichnete *Core*-Struktur ist essentiell für die Hemmwirkung von Acarbose und deren homologen Pseudooligosacchariden (Heiker et al., 1981). Das Hemmspektrum der Acarbose sowie der homologen Pseudooligosaccharid umfasst vornehmlich α -Glucosidasen. β -Amylasen sowie β -Glucosidasen, β -Galactosidasen, Pullulanasen und Isoamylasen verschiedener Organismen werden nicht gehemmt.

Die kürzeren Homologen zeichnen sich durch die Hemmung der Disaccharidasen und Maltasen aus (Qian et al., 2001), während die höheren Homologen auf die α -Amylasen hemmend wirken (Müller et al., 1981). Die Zusammensetzung der unterschiedlichen Homologen bei der Fermentation ist abhängig von der jeweils angebotenen C-Quelle. Kürzere Homologen werden vorwiegend bei der Frementation in Glucose- oder Maltose-haltigen Medien gebildet. Dagegen nimmt die Bildung höherer Homologen in Medien mit Stärke zu (Frommer et al., 1979). In der Abbildung 1.6 ist die Struktur der Acarbose dargestellt.

Bezeichnung	m	n
Komponente 2	0	1
Komponente 3 (Acarbose)	0	2
Komponente 4-Isomer *	1	2
Komponente 5-Isomer *	2	2
Komponente 6-Isomer *	3	2

*: Hauptanteil des Isomerengemisches mit m + n = 3, 4 bzw. 5

Abb. 1.6: Grundstruktur der Glucosidase-Inhibitoren aus *Actinoplanes* sp. (modifiziert nach Truscheit et al., 1981; Legeler, 1990).

Seit 1990 ist eine Acarbose, welche als Hemmwirkstoff der intestinalen α -Glucosidase wirkt, unter dem Handelsnamen Glucobay® (BAY g 5421) als oral wirkendes Antidiabetikum von der Bayer AG zugelassen. Die Acarbose führt zu einer Verminderung des postprandialen Blutglucosespiegels bei Diabetes mellitus Typ II (nicht Insulin-abhängige Diabetes-Form), wobei eine Verzögerung der Glucose-Bildung durch die Hemmung der Kohlenhydratabbauenden Enzyme hervorgerufen wird (Puls et al., 1980).

Acarbose hemmt Disaccharidasen nach einem kompetitiven Mechnismus. Die Saccharase spaltet die Bindung der Saccharose zwischen dem C1 des Glycosylrestes und dem Sauerstoff der glycosidischen Bindung. Der Glutamatreste im aktiven Zentrum des Enzyms überträgt ein Proton auf den glycosidischen Sauerstoff, wobei ein resonanzstabilisiertes Oxocarbeniumion an C1 gebildet wird, das über eine benachbarte Carboxlygruppe im aktiven Zentrum stabilisiert wird. Nach Dissoziation der Fructose reagiert das Enzym mit einem Wassermolekül in der Lösung zur α -Glucose und dem reprotonierten Glutamat-Reste im

aktiven Zentrum. Nach Bindung von Acarbose im aktiven Zentrum befindet sich an der Stelle des glycosidischen Sauerstoffs der glycosidische Stickstoff des Acarviosyl-Restes. Der sehr stabile Enzym-Inhibitor-Komplex wird über eine Wasserstoffbrücke eines analogen Oxocarbeniumions des planaren ungesättigten Cyclitols mit der benachbarten Carboxylgruppe im aktiven Zentrum des Enzyms gebildet, deren C1-N-Bindung nicht durch die Protonierung gespalten werden kann (Brayer et al., 2000). Die Saccharase bindet Acarbose mit einer ca. 15000-fach höheren Affinität als ihr eigentliches Substrat Saccharose.

Die Abbildung 1.7 zeigt ein Beispiel für die Bindung der homologen Pseudosaccharide an den sechs Substrat-Bindestellen im aktiven Zentrum der α -Amylase von *Aspergillus oryzae* (Brzozowski & Davies, 1997).

Abb. 1.7: Schematische Darstellung der Bindung homologer Pseudosaccharide an den Substrat-Bindestellen der α -Amylase aus *Aspergillus oryzae* (nach Brzozowski & Davies, 1997).

-3 - +3 kennzeichnen Substrat-Bindestelle. Die schwarzen Punkte stellen ein Wassermoleküle dar.

Neben den in Abbildung 1.6 dargestellten Homologen finden sich weitere von Actinoplanes sp. synthetisierte acarviosylhaltige Nebenkomponenten während der Fermentation. Die extrazelluläre Acarviosyltransferase (ATase) scheint die Nebenkomponenten-Biosynthese zu katalysieren, wobei diese unter der Freisetzung von Maltose der Acarbose das Acarviosyl-Core mit unterschiedlichen Kettenlängen bzw. Substituenten verknüpft und somit für die Vielfalt der verschiedenen Nebenkomponenten verantwortlich ist. Bei der Acarviosyl-Maltose-Austauschreaktion konnten Lactose, Saccharose und vor allem Trehalose nicht als Substrate der ATase verwendet werden, Glucose konnte hingegen wohl als Substrat genutzt werden. (Hemker et al., 2001).

Bezeichnung	Zusammensetzung
Acarbose (Komponente 3)	Acarviosyl-1-4-Glc-1-4-Glc
Komponente A	Acarviosyl-1-4-Glc-1-4-Fru
Komponente B	Acarviosyl-1-4-Glc-1-4-ungesättigte Cyclit-Einheit
Komponente C	Acarviosyl-1-4-Glc-1-1-Glc
Komponente D	Acarviosyl-1-4-Glc-1-4-Man
Komponente 4a	Acarviosyl-1-4-Glc-1-4-Glc-1-4-Fru
Komponente 4b	Acarviosyl-1-4-Glc-1-4-Glc-1-4-Glc
Komponente 4c	Acarviosyl-1-4-Glc-1-4-Glc-1-1-Glc

Tab. 1: Nebenkomponenten der Acarbose (nach Hemker et al., 2001) Abkürzungen: Glc = Glucose; Fru = Fructose; Man = Mannose; strukturelle Unterschiede

1.4 Ziel der Arbeit

Da die Trehalose-Biosynthesewege in zahlreichen Organismen beschrieben worden sind, sollten im Rahmen dieser Arbeit potentielle Trehalose-Biosynthesegencluster im Genom von *Actinoplanes* sp. SN223/229 identifiziert, isoliert und sequenziert werden. Zur effektiven Expression der Schlüsselenzyme für die Trehalose-Biosynthese sollten die identifizierten Gene aus *Actinoplanes* sp. mit der Hilfe von Expressionsvektoren in *E. coli* heterolog exprimiert und das rekombinante Enzym bei unterschiedlichen Test-Bedingungen charakterisiert werden.

Neben der Acarbose konnten homologe Pseudooligosaccharide von *Actinoplanes* sp. während der Fermentation synthetisiert werden. Die Komponente C besteht aus einem Acarviosyl-*Core* und einer Trehalose anstatt Maltose. Ferner sollte überprüft werden, ob die Maltooligosyltrehalose-Synthase (TreY) im Zusammenhang mit der Komponente C-Biosynthese steht. Nach der Identifizierung des an der Komponente C-Biosynthese beteiligten Gens sollte eine Mutante dieses Gens zur funktionellen Analysen durch eine Mutagenese *via* gezielter Gendisruption erzeugt werden.

2. Material und Methoden

2.1 Material

2.1.1 Mikroorganismen, Phagen und Plasmide

Stamm	Genotyp	Referenz
E. coli BL21	F, ompT, gal (dcm), (Ion), hsdS _B (r _B m _B), λ Prophage	Novagen, Madison,
(DE3)pLysS	mit T7 RNA-Polymerase-Gen, pLysS, cat	USA
E. coli SF8	recB21, recC22, lop-11, tonA1,thr1, leu6, thi-1, lacY1, supE44, hsdR, hsdM	Struhl et al., 1976
<i>E. coli</i> SMH50 (isogen mit <i>E. coli</i> JM107)	F [`] , traD36, lac1 ^q , Δ (lacZ) M15, proA ⁺ B ⁺ /e14 ⁻ (McrA ⁻), Δ (lac-proAB), thi, gyrA96 (Na1 ^r), endA1, hsdR17 (r _k ⁻ , m _k ⁺), relA1, supE44	Yanish-Perron et al., 1985
E. coli DH5α	F', endA1, hsdR17, (r_k, m_k^+) , supE44, thi-1, recA1, gyrA(Nal'), deoR, Δ (lacZYA-argF) U169, $(\phi 80 dlac \Delta (lacZ) M15)$, relA1	Grant et al., 1990
<i>E. coli</i> ET12567	F`, dam13::Tn9, dcm6, hsdM, hsdR, recF143, zjj201::Tn10, galK2, galT22, ara-14, lacY1, xyl-5, leuB6, thi-1, tonA31, rpsL136, hisG4, tsx-78, mtl-1, glnV44	MacNeil et al., 1992
E. coli KW251	F' , e14 ⁻ , (McrA ⁻), lacY1, Δ (lac)6, supE44, galK2,galT22, rfbD1, metb1, mcrB1, hsdS3 ($r_k m_k^-$)	Promega
E. coli K803	F`, supE44, galK2, galT22, metB1, hsdR2, mcrB1, mcrA ⁻ , argA81::Tn10, recD1014	Maniatis et al., 1989
<i>E. coli</i> S17-1	<i>thi-1, proA, hsdR17</i> , (r_k, m_k^+) , <i>recA1, tra</i> -Gene des Plasmids RP4 im Chromosom integriert	Simon et al.,1983
<i>Actinoplanes</i> sp. SN223/229	Höhere Acarbose-Produzent (ca. $1,5-2,0$ g/l)	Bayer AG, Wuppertal
Streptomyces lividans	spe ⁻¹	John Innes Institut,
1 N 2 3		NOIWICH, Eligianu

Tab. 2.2: Bakteriophagen

Stamm	Genotyp	Referenz
λ-EMBL3-Genbank von <i>Actinoplanes</i> sp. SN223/229	λ-EMBL3 mit ca.20 kb-Insert aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229	Universität Wuppertal

Tab. 2.3: Plasmide

Bezeichnung	Beschreibung	Referenz
pUCBM20	2.7 kb: α -Peptid des <i>lacZ</i> -Gens; MCS-Region; Amp ^R	Boeringer Mannheim, 1990
1	in E. coli	
pUCBM21	2,7 kb; α-Peptid des <i>lacZ</i> -Gens; MCS-Region in	Boeringer Mannheim, 1990
_	inverser Orientierung; Amp ^R in <i>E. coli</i>	
pET19b	$5,7 \text{ kb}; \text{Amp}^{R}, LacI \text{ T7-}\phi 10 \ lacO \text{ s10 His-}tag,$	Calbiochem-Novabiochem
	Expressionsvektor in <i>E. coli</i>	GmbH, Bad Soden
pPWW50	7,5 kb; pUWL201, <i>Streptomyces-E. coli-shuttle-</i>	Jahring, per. Mitteilung
LIW/L 201	Vektor, HIS- <i>tag</i> , Amp, 100	Wahmaian 1005
pUwL201	6,6 KD; pIJ101, pUC18, Sirepiomyces-E. con-snume- Vektor Amp ^R Thio ^R	Wenmeler, 1995
nPLGa	6.6 kh: nBCmac-Derivat <i>Bacillus-E, coli-shuttle-</i>	Strev ner Mitteilung
predu	Vektor, promotorloses Glucanasegen (<i>bgl</i> M) aus	Strey, per. mitteriang
	Paenibacillus macerans, Amp ^R , Tc ^R	
pPLGaTre12	8,8 kb; 1,2 kb SmaI- und 1 kb SphI-Fragment aus	diese Arbeit
1	Actinoplanes sp. in pPLGa	
pTre12Glu	10,4 kb; 1,6 kb ermE-Gen aus Saccharopolyspora	diese Arbeit
	erythraea über KpnI in pPLGaTre12	
pUCTre12	7 kb; 4,3 kb <i>Hin</i> dIII-Fragment aus pTre12Glu in	diese Arbeit
11700	pUCBM20	17'
$p_{1J}/02$	8,5; 1nio, Keplikationsursprung in sirepiomyces	Kleser et al., 1985
pddkiwico-2	5,2 KD, <i>Droud nost range ori</i> tui <i>E. cou</i> , Kiii , <i>moo</i>	diaga Arbait
PDREIJR	nBRR1MCS-2	diese Alben
pBJKTreGl	10.9 kb: 2.9 kb <i>Eco</i> RI/ <i>Hin</i> dIII-Fragment aus	diese Arbeit
p========	pPLGaTre12 in pBRPIJK	
pUCN85	10,2 kb; 8,5 kb <i>Not</i> I-Fragment aus rekombinaten λ -	diese Arbeit
	EMBL3-Phagen in pUCBM20 (enthält ein gesamtes	
	Gen <i>treY</i> und einen Teil des Gens <i>treZ</i>)	
pNPS2	4,7 kb; 2 kb <i>Pst</i> I-Fragment aus pUCN85 in	diese Arbeit
ND017	pUCBM20	1' A 1 _:.
pinps15	4,2 kb; 1,5 kb <i>Pst</i> I-Fragment aus pucinos in	diese Arbeit
nNPS13	4.0 kb ⁻ 1.3 kb PstI-Fragment aus nUCN85 in	diese Arbeit
p111 012	pUCBM20	
pNPSR	6,4 kb; pUCN85 ohne <i>Pst</i> I-Fragment religiert	diese Arbeit
pNH3	3,0 kb; 300 bp <i>HincII</i> -Fragment aus pUCN85 in	diese Arbeit
	pUCBM20	
pSC35	3,1 kb; 350 bp <i>Sac</i> II-Fragment aus pUCN85 in	diese Arbeit
	pUCBM20	1' A .1
рримк	3,7 kb; 1 kb <i>Mlu</i> I-Fragment aus pounos in pUCBM20	diese Arbeit
nNPSRBR	4.9 kb: pNPSR ohne <i>Bam</i> HI-Fragment religiert	diese Arbeit
pNPSRBRHR15	4.2 kb: pNPSRBR ohne <i>Hin</i> cII-Fragment religiert	diese Arbeit
pPSRB7	3.4 kb; 700 bp <i>Bam</i> HI-Fragment aus pNPSR in	diese Arbeit
1	pUCBM20	
pNPSRBRH6	3,3 kb; 600 bp <i>HincII</i> -Fragment aus pNPSRBR in	diese Arbeit
	pUCBM20	
pUCN45	7,5 kb; 4,5 kb <i>Not</i> I-Fragment aus rekombinanten λ -	diese Arbeit
	EMBL3-Phagen in pUCBM20	
pTR5	7,7 kb; 5 kb <i>Eco</i> RI/ <i>Mlu</i> I-Fragment aus	diese Arbeit
1	rekombinanten λ -EMBL3-Phagen in pUCBM20	

pTR2	4,7 kb; 2 kb <i>Mlu</i> I-Fragment aus rekombinanten λ -EMBL3-Phagen in pUCBM20	diese Arbeit
pUCN25	5,2 kb; 2,5 kb <i>Not</i> I-Fragment aus rekombinanten λ -EMBL3-Phagen in pUCBM20 (enthält einen Teil des Gens <i>treZ</i>)	diese Arbeit
pMS1	3,7 kb; 1 kb <i>MluI/SacI</i> -Fragment aus rekombinaten λ -EMBL3-Phagen in pUCBM20	diese Arbeit
pUCTreY	5,0 kb; <i>in vitro</i> amplifiziertes <i>treY</i> -Gen (2268 bp, Primer treY1 + treY2) aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM21	diese Arbeit
pUCTreYF	5,0 kb; <i>in vitro</i> amplifiziertes <i>treY</i> -Gen (2268 bp, Primer treY1 + TREYF1) aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM20	diese Arbeit
pUCTreZ	4,46 kb; <i>in vitro</i> amplifiziertes <i>treZ</i> -Gen (1734 bp, Primer treZ1 + treZ2) aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM21	diese Arbeit
pUCTreZF	4,47 kb; <i>in vitro</i> amplifiziertes <i>treZ</i> -Gen (1734 bp, Primer TREYF2 + treZ2) aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM20	diese Arbeit
pUCTreYZF	6,7 kb; 1,7 kb <i>HpaI/Bam</i> HI-Fragment aus pUCTreZF in pUCTreYF	diese Arbeit
pUCTreS	4,5 kb; <i>in vitro</i> amplifiziertes <i>treS</i> -Gen (1758 bp, Primer TreS1 + TreS2) aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM21	diese Arbeit
pUCB35	6,2 kb; 3,5 kb <i>Bam</i> HI-Fragment aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM21 (enthält des <i>treS</i> -Gens)	diese Arbeit
pUCTps35	6,2 kb; 3,5 kb <i>Bam</i> HI-Fragment aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM20 (enthält das <i>tps</i> 1-Gen)	diese Arbeit
pUCTps750	3,4 kb; <i>in vitro</i> amplifiziertes 750 bp-Fragment (Primer trep1 + TREPS2) aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM20	diese Arbeit
pUCTps1	4,1 kb; <i>in vitro</i> amplifiziertes <i>tps</i> 1-Gen (1386 bp, Primer TPS1 + TPS2) aus chromosomaler DNA von <i>Actinoplanes</i> sp. SN223/229 in pUCBM20	diese Arbeit
pETTreY	8,0 kb; 2,3 kb <i>NdeI/Bam</i> HI-Fragment aus pUCTreY in pET19b	diese Arbeit
pETTreZ	7,44 kb; 1,7 kb <i>NdeI/Bam</i> HI-Fragment aus pUCTreZ in pET19b	diese Arbeit
pETTreYZF	9,7 kb; 4,0 kb <i>NdeI/Bam</i> HI-Fragment aus pUCTreYZF in pET19b	diese Arbeit
pETTreS	7,42 kb; 1,76 kb <i>NdeI/Bam</i> HI-Fragment aus pUCTreS in pET19b	diese Arbeit
pETTps1	7,3 kb; 1,4 kb <i>NdeI/Bam</i> HI-Fragment aus pUCTps1 in pET19b	diese Arbeit
pPWWTreZ	9,2 kb; 1,7 kb <i>NdeI/Bam</i> HI-Fragment aus pUCTreZ in pPWW5	diese Arbeit
pPWTreYZF	11,5 kb; 4,0 kb <i>NdeI/Bam</i> HI-Fragment aus pUCTreYZF in pPWW5	diese Arbeit

2.1.2 Oligonukleotide

Alle Oligonukleotide wurden von den Firmen Gibco Life Technologies GmbH (Eggenstein, BDR) und MWG Biotech GmbH (Ebersberg, BRD) bezogen.

Bezeichnung	Sequenz (5`→3`)	Länge (nt)	Schnittstelle (Modifikation)
M13uniCS (-43)	AGGGTTTTCCCAGTCACGACGTT	23	-
M13revCS (-49)	GAGCGGATAACAATTTCACACAGG	24	-
TPS1	GGAGGTGTACTC <u>CATATG</u> GCCCAACG	26	NdeI
TPS2	AG <u>GGATCC</u> GCTCAGCTCTCGTCGTCG	26	BamHI
Tre1	GACATCGUSCCSAACCA	17	
Tre2	CGCTTSGTGTCGTGSGT	17	
TreS1	GGGGGAAC <u>CATATG</u> GAGTTGACGA	25	NdeI
TreS2	CAACCACTC <u>GGATCC</u> AGTCAGCGTCA	26	BamHI
treY1	CAGGACGGT <u>CATATG</u> CGCCCCAG	23	NdeI
treY2	TCTCC <u>GGATCC</u> CTTACCTCGAAGG	24	BamHI
treZ1	CTCCTGGTGAA <u>CATATG</u> ACAACC	23	NdeI
treZ2	GGG <u>GGATCC</u> CGGGTGGCGTCAGCG	24	BamHI
trep1	GGSTKSTTCCTSCACAYSCCSTTCCCS	27	-
trep2	SCCCTTSGTGTAGTCSAGSCKSTC	24	-
TREYF1	CATTTC <u>GTTAAC</u> CAGGAGAGCGAC	24	HpaI
TREZF2	GTCGCTCTCCTG <u>GTTAAC</u> GAAATG	24	HpaI
TRPS1	CTGGRTCCACGATTACCACCTG	22	-
TRPS2	CCAGGTTCATMCCGTCACG	19	-
otsB1	CGGMGAGGCCTACCGCGGSCAYGTC	25	-
otsB2	GASGCCTGGTAGTTGTTSACGCTGTCG	27	-

Tab. 2.4: Oligonukleotide

Die Schnittstelle sind unterstrichen.

Dabei bedeuten nach der I. U. B.-Nomenklatur:

N: A,T,G,C	D: G, A, T	H: A, C, T	B: G, T, C	V: G, A, C	R: G, A
W: A,T	K: G, T	Y: T, C	M: A, C	S: G,C	

2.1.3 Datenbanken und Computerprogramme

Zur Analyse von DNA-Sequenzdaten wurden die Programme und Datenbanken des HUSAR (*Heidelberg Unix Sequence Analysis Resources*, Version 5,0) des Deutschen Krebsforschungszentrums in Heidelberg verwendet. Zur Vergleich der Aminosäure- und DNA-Sequenz mit den Datenbanken wurde weiterhin das Programmpaket BLAST (Altschul et al., 1990) bzw. FASTA (Pearson & Lipman, 1988) benutzt. Für die Erstellung von Proteinund DNA-Alignments wurde das Programm Clustal W 1.8 eingesetzt.

2.1.4 Medien, Puffer und Stammlösungen

2.1.4.1 Medien

Soweit nicht anders vermerkt, wurde als Lösungsmittel für Medienbestandteile A. dest. verwendet.

LB-Medium (Luria-Bertani)

Pepton	10	g/l
Hefeextrakt	5	g/l
NaCl	5	g/l
pН	7,5	; ;

Zur Herstellung von LB-Festmedium wurden 1,5 % Agar (w/v) zugesetzt.

LB-Amp-Medium

Zugabe von 1 ml Ampicillin- Stammlöung (100 mg/ml) pro Liter LB-Medium nach dem Autoklavieren.

AIX-Medium

Zugabe von 2 ml X-Gal (20 mg/ml) und 200 µl IPTG (200 mg/ml) pro Liter LB-Amp-Medium nach dem Autoklavieren.

Mg-Top-Agar

$MgSO_4$	10	mМ
Agarose	0,7	%

LBM-Medium

Peton	10	g
Hefeextrakt	5	g
NaCl	5	g
MgSO ₄	2	g
Maltose	0,2	% (nach dem Autoklavieren zugegeben)
A. dest.	ad 1000	ml
pН	7,5	

M9-Minimalmedium

Glucose (20 % (w/v))		10	ml
M9-Salzlösung (10 x)		100	ml
MgSO ₄ (100 mM)		10	ml
$CaCl_2$ (1 M)		0,1	ml
A. dest.	ad	1000	ml
pН		7,4	

M9-Salzlösung (10 x)

Na ₂ HPO ₄		60	g
KH ₂ PO ₄		30	g
NH ₄ Cl		10	g
NaCl		5	g
A. dest.	ad	1000	ml
pН		7,4	

Zur Herstellung von M9-Festmedium wurden 2 % (w/v) Bacto-Agarose (Biozym Diagostik GmbH, Hameln, BRD) in A. dest. autoklaviert und nach Abkühlung auf ca. 70 °C mit den getrennt autoklavierten Stammlösungen versetzt.

%

%

Plate-Count-Agar Pepton 0,5 Hefeextrakt 0,28 % 0,1 Glucose NaCl 0,56 % 1,2 Agar

Agar	1,2	%
A. dest	ad 1000	ml
pН	7,5	

TSB-Medium (Hopwood et al., 1985)

Tryptic Soy Broth	3	% (für Vorkulturmedien)
A. dest.	ad 1000	ml
рН	7,2	
MgCl ₂	5	mM (zusätzlich in Hauptkulturmedium)
L-Alanin	0,85	% (nach dem Autoklavieren zugegeben)

YEME-Medium (Hopwood et al., 1985)

Hefeextrakt	3	g
Pepton (aus Casein)	5	g
Malzextrakt	3	g
Glucose	10	g
Saccharose	103	g
A. dest.	ad 100	0 ml
рН	7,0	
MgCl ₂ (2,5 M)	2	ml (nach dem Autoklavieren zugeben)

SPMR-Agar (Babcock und Kendrick, 1998)

Saccharose	103	g
MgCl ₂	10	g
Glucose	5	g
Hefeextrakt	5	g
Bacto-Agar	22	g
Spurenelemente	2	ml
A. dest.	ad 900	ml
$CaCl_2$ (5 M)	2	ml (nach dem Autoklavieren zugeben)
TES-Puffer (20 mM, pH7,6)	100	ml (nach dem Autoklavieren zugeben)

Spurenelemente (Hopwood et al. 1985)

$CuCl_2$ (x 2H ₂ O)	10	mg/ml
$FeCl_3$ (x 6H ₂ O)	200	mg/ml
$MnCl_2 (x 4H_2O)$	10	mg/ml
Na ₂ B ₄ O ₇ (x 10 H ₂ O)	10	mg/ml
(NH ₄) ₂ Mo ₇ O ₂₄ (x 4 H2O)	10	mg/ml
ZnCl ₂	10	mg/ml
A. dest.	ad 1000	ml

2.1.4.2 Puffer

Soweit nicht anders vermerkt, wurde als Lösungsmittel für die Pufferbestandteile Aqua dest. verwendet.

Gelladepuffer		
Saccharose	40	% (w/v)
Bromphenolblau	0,25	% (w/v)
EDTA	20	mM
SSC-Puffer (20 x)		
NaCl	3	М
Natriumcitrat	300	mM
рН	7,0	
TAE Duffor (50 m)		
TAE-Puller (50 X)	2.42	/1
l ris	242	g/I
Eisessig	57,1	ml/l
EDTA	14,7	g/l
A. dest.	ad 1000	ml
pH	8,0	
TBE-Puffer (10 x)		
Tris/HCl	1 M	
Borsäure	1 M	
EDTA	20 m	М
pН	8,3	
TE-Puffer		
Tris/HCl	10 m	М
EDTA	1 m	М

TT	0.0
рн	8,0
2.1.4.3 Stammlösung

Ampicillin	100 mg/ml in Aqua dest.; sterilfiltiert; bei -20 °C gelagert;
	Arbeitskonzentration: 100 µg/ml
Chloramphenicol	100 mg/ml in DMSO bzw. Ethanol; bei -20 °C gelagert; Arbeitskonzentration
	100 μg/ml
Ethidiumbromid	10 mg/ml in TAE-Puffer (1 x); lichtgeschützt bei 4 °C gelagert;
	Arbeitskonzentration: 10 µg/ml
Erythromycin	200 mg/ml in Ethanol (100 %) bei -20 °C gelagert; Arbeitskonzentration:
	200 µg/ml
Kanamycin	50 mg/ml in Aqua dest.; bei -20 °C gelagert; Arbeitskonzentration: 25 µg/ml
IPTG	200 mg/ml in Aqua dest.; sterilfiltiert; bei 4 °C gelagert; Arbeitskonzentration:
	40 µg/ml
RNase A	10 mg/ml in Aqua dest.; 10 min bei 100 °C aufgekocht; langsam abgekühlt; bei
	4 °C gelagert
Thiamin	10 mg/ml in Aqua dest.; bei -20 °C gelagert; Arbeitskonzentration: 10 µg/ml
Thiostrepton	50 mg/ml in DMSO; bei –20 °C gelagert; Arbeitskonzentration: 20 – 25 $\mu g/ml$
	für flüssige Medien
X-Gal	20 mg/ml in Dimethylformamid; lichtgeschützt bei -20 °C gelagert;
	Arbeitskonzentration: 40 µg/ml

2.2 Methoden

2.2.1 Zellanzucht und Stammhaltung

2.2.1.1 Escherichia coli

Mit einer Einzelkolonie von *E. coli* wurde 10 ml LB-Medium in Reagenzgläsern beimpft. Die Zellen wurden über Nacht bei 37 °C im Wasserbad (180 rpm) inkubiert. Der F'-Plasmid tragende Stamm *E. coli* SMH50 bzw. DH5 α wurde auf M9-Agarplatten gehalten, um gegen den Verlust des Plasmids zu selektionieren. Zur dauerhaften Stammhaltung wurden 700 µl einer Übernachtkultur in ein steriles Kryoröhrchen mit 300 µl Glycerin (87 %ig) gegeben. Nach dem Durchmischen wurde die Kultur bei –70 °C gelagert. Die Selektion Plasmid-

haltiger *E. coli*-Stämme erfolgte durch Kultivierung in Gegenwart von Antibiotikum entsprechender Konzentration.

2.2.1.2 λ-Phagen

Zur Anzucht und Vermehrung der λ -Phagen wurde Phagenlysat (2.3.4.2) zu 50 µl Kultur des Stamms *E. coli* K803 bzw. KW251 gegeben und 30 Minuten bei 37 °C inkubiert. Mit dieser Bakterien-Phagensuspension wurden 10 ml LBM-Medium (0,2 % Maltose (v/v)) beimpft. Durch Zusatz von Maltose wird das *mal*-Operon induziert, wodurch der Maltoserezeptor des λ -Phagens stärker expremiert wird. Die Kultur wurde über Nacht bei 37 °C (180 rpm) inkubiert. Zur längerfristigen Lagerung wurden 700 µl einer Übernachtkultur in ein mit 300 µl Glycerin (87 %ig) autoklaviertes Kryoröhrchen überführt und bei –70 °C gelagert. Nach der Zellernte (5000 g, 10 min) wurden die aufkonzentrierten Zellen in 1 ml MgSO₄ (10 mM) aufgenommen und konnten nach Lagerung bei 4 °C zur Vermehrung der Phagen bis zu zwei Wochen verwendet werden.

2.2.1.3 Actinoplanes sp. (Howood et al., 1985)

Zur Fermentation von *Actinoplanes* sp. wurden 125 ml TSB-Vorkultur-Medium, welches sich in 500 ml-Erlenmyerkolben mit Spiralfeder befand, mit 5 ml Dauerkultur beimpft und für 72 h bei 28 °C auf einer Rotationsschüttelmaschine (150 rpm) inkubiert. Anschließend wurden 125 ml Hauptkultur mit 5 ml Vorkultur beimpft, für 48 h (28 °C, 150 rpm) fermentiert und geerntet.

Zur Stammhaltung wurden 5 ml einer 72 h-Vorkultur in sterile Reagenzgläser überführt und bei –20 °C gelagert.

2.2.1.4 Streptomyceten (Howood et al., 1985)

Streptomyces lividans TK23 wurde in 20 ml TSB-Medium Vierschikanne-Erlenmyerkolben für 48 h und bei 28 °C auf einer Rotationsschüttelmaschine (150 rpm) fermentiert. Für die

Herstellung von Protoplasten wurden 10 ml dieser Vorkultur in eine 100 ml YEME-Hauptkultur übergeimpft. Die Inkubation erfolgte über Nacht bei 28 °C und 150 rpm.

Zur Stammhaltung wurden die auf einer TSB-Platte gewachsenen Sporen mit 1 ml TBS-Medium abgeschwemmt, 700 μ l dieser Sporensuspension mit 300 μ l Glycerin (89 %ig) versetzt und bei –70 °C gelagert.

2.3 Molekularbiologische Methoden

2.3.1 Agarose-Gelelektrophorese

Zur Herstellung von Agarosegelen wurde die Agarose (Biozym Diagnostic GmbH, Hameln, BRD) in TAE-Puffer (1 x) durch Aufkochen gelöst und die Agaroselösung anschließend im Wärmeschrank bei 65 °C gelagert. Je nach der Größe der aufzutrennenden DNA-Fragmente wurde die Agarose in Konzentrationen zwischen 0,7 - 2 % eingesetzt. Zur Anfärbung der DNA-Banden wurde das Gel nach der Elektrophorese für ca. 1 min in einer Ethidiumbromid-Lösung (40 µg/ml in TAE-Puffer (1 x)) inkubiert und anschließend auf einem UV-Transilluminator liegend photographisch dokumentiert.

2.3.2 Photometrische Konzentrationsbestimmung von DNA

Konzentration und Reinheit einer DNA-Probe können photometrisch ermittelt werden. Ein Aliquot der Probe wurde in 1 ml Aqua bidest. verdünnt und die Extinktion bei den Wellenlängen 260, 280 und 310 nm in einer Quarzküvette (Schichtdicke: 1 cm) gemessen. Das Verhältnis der Absorption A_{260}/A_{280} spiegelt den Reinheitsgrad der DNA-Probe wieder. Bei sauberen Präparationen liegt der Quotient zwischen 1,8 und 2,0. Niedrigere Werte deuten auf Verunreinigung mit Protein, höhere Werte auf Verunreinigung mit Phenol hin. Bei der angegebenen Reinheit entspricht ein A_{260} -Wert von 1,0 einer Konzentration von 50 µg/ml doppelsträngiger DNA. Die Konzentration wurde nach folgender Formel berechnet:

 $c (\mu g/\mu l) = (A_{260}-A_{310}) \times 0.05 \times VF$

c (µg/µl)	Konzentration der DNA-Probe
A ₂₆₀	Absorptionsmaximum der DNA (260 nm)
A ₂₈₀	Absorptionsmaximum der aromatischen Aminosäuren (280 nm)
A ₃₁₀	Grundabsorption der DNA-Probe (310 nm)
0,05	Extinktionskoeffizient der DNA bei 260 nm
VF	Verdünnungsfaktor

2.3.3 Isolation von Plasmid-DNA

2.3.3.1 Minipräparation von Plasmid-DNA aus Escherichia coli

(verändert nach Birnboim & Doly 1979)

10 ml LB-Medium (mit Antibiotikum) wurden mit einer plasmidtragenden E. coli-Einzelkolonie beimpft und über Nacht im Wasserbad-Schütter bei 37 °C und 180 rpm kultiviert. Nach der Zellernte (7 min, 5000 g) wurde das Pellet in 200 µl TE(H)-Puffer resuspendiert und in ein 1,5 ml-Reaktionsgefäß überführt. Anschließend wurden der Suspension 200 µl alkalischer Lysepuffer zugegeben und vorsichtig geschwenkt. Nach 5minütiger Inkubation bei Raumtemperatur wurde die Probe mit 200 μl Neutralisierungspuffer versetzt, der Ansatz gut gemischt und 10 min auf Eis inkubiert. Chromosomale DNA und Proteine wurden anschließend abzentrifugiert (13500 rpm, 20 min, 4 °C). Der Überstand wurde in ein neues 1,5 ml-Reaktionsgefäß überführt und einer Phenol/Chloroform-Extraktion (2.3.6.1) mit nachfolgender Alkoholpräzipitation (2.3.6.2) unterzogen.

Alkalischer Lysepuffer

NaOH	200	mM
SDS	1	% (w/v)

Neutralisierungspuffer

Kaliumacetat	3	М
pН	5,:	5

Um Plasmid-DNA mit hohem Reinheitsgrad zu erhalten, erfolgte die Plasmid-Minipräparation durch das JETQuick Plasmid Miniprep Spin Kit (Genomed GmbH, Bad Oeynhausen, BRD) über Anionenaustauscherchromatographie nach den Herstellerangaben. Die größere Mengen an Plasmid-DNA aus *E. coli* wurde mit Hilfe des JETSTAR Plasmid Midiprep Kit (Genomed GmbH, Bad Oeyenhausen, BRD) nach demselben Prinzip isoliert.

2.3.3.2 Minipräparation von Plasmid-DNA aus Streptomyceten

Die Plasmid-Isolation aus Streptomyceten verlief bis auf wenige Abweichungen analog zu der aus *E. coli*:

Aus einer 48 h alten Kultur (2.2.1.4) wurden 1,5 ml abgenommen und abzentrifugiert (13500 rpm, 5 min, RT). Das Pellet wurde mit 200 μ l TE(H)-Puffer versetzt, 10 μ l einer Lysozym-Lösung (2 mg/ml) zur Protoplastierung zugegeben und bei 37 °C für 30 min inkubiert. Die weitere Schritte sind identisch mit Isolation von Plasmid-DNA aus *E. coli*.

2.3.4 Isolation und Amplifikation von λ -EMBL3-Phagen

2.3.4.1 Bestimmung des Phagentiters

Um gewünschte Einzelplaques zu erhalten, wurde zunächst eine Verdünnungsreihe der Phagensuspension (2.3.4.2) in SM-Puffer erstellt. Je 10 µl der Verdünnungsreihe des Phagenlysats wurden mit 50 µl aufkonzentrierter Kultur von *E. coli* K803 versetzt und bei 37 °C für 30 min inkubiert. Anschließend wurde der Ansatz in 5 ml Mg-Top-Agar (45 °C) aufgenommen, gut gemischt und auf LBM-Platten überschichtet. Nach einer über Nacht-Inkubation bei 37 °C konnte der Phagentiter bestimmt werden. Bakterienplaques auf LBM-Agarplatten können bis zu drei Monaten bei 4 °C gelagert werden.

SM-Puffer

Tris/HCl	50	mМ
$MgSO_4$	10	mМ
NaCl	100	mМ
pН	7,5	

2.3.4.2 λ-EMBL3-Phagenlysat

Eine entsprechende Menge an Phagen (10^6 bis 10^9) eines Phagenlysats wurden zu 50 µl einer über Nacht-Kultur von E. coli K803 gegeben und für 30 min bei 37 °C inkubiert. Diese Bakterien-Phagensuspension wurde in 200 ml LBM-Medium im Vierschikane-Erlenmeyerkolben überimpft. Die Kultur wurde über Nacht bei 37 °C mit 180 rpm geschüttelt. Die intakten Bakterienzellen wurden durch Zugabe von 4 ml Chloroform und 20minütiges Weiterschütteln lysiert. Nach dem Absinken des Chloroforms wurde der wässrige Überstand zur PEG-Fällung der Phagen in einen SS34-Sorvallröhrchen überführt. Um die bakterielle DNA und RNA zu hydrolysieren, wurde je 10 µl DNase und RNase (Endkonzentration 1 µg/ml) zugegeben und bei RT für 30 min inkubiert. Es folgte ein Aussalzen der bakteriellen Proteine durch Zugabe von NaCl in einer Endkonzentration von 1 mol/l für 1 h bei 4 °C. Anschließend wurde der Ansatz durch Zentrifugation (15000 g, 4 °C, 25 min) pelletiert. Der in ein neues Zentrifugengefäß überführte Überstand wurde 10 %ig mit PEG 6000 (40 %) versetzt und gut gemischt. Zur Quervernetzung der Phagen durch PEG 6000 wurde der Überstand über Nacht bei 4 °C inkubiert. Es folgte eine Zentrifugation bei 15000 g und 4 °C für 10 min und der Überstand wurde verworfen. Das erhaltene Phagenpellet wurde durch erneutes Zentrifugieren (15000 g, 4 °C, 2 min) aufkonzentriert und in SM-Puffer (1/40 des Ausgangsvolumens) aufgenommen.

2.3.4.3 DNA-Isolierung aus λ-Phagen

Die resuspendierten Phagen (2.3.4.2) wurden in Aliquots von je 0,5 ml in 1,5 ml-Reaktionsgefäße überführt, um PEG 6000 zu extrahieren. Die Ansätze wurden mit dem doppelten Volumen Chloroform versetzt, vorsichtig gemischt und abzentrifugiert (12000 g, 5 min) Der wässrige Überstand, in dem sich die Phagen befinden, wurde in neue 1,5 mlReaktionsgefäße überführt. Um die Phagen-DNA aus dem Phagen-Capsid zu isolieren, muß die aus Proteinen bestehende Capsidhülle destabilisiert werden. Durch Zugabe von 10 μ l EDTA (pH 8,0) kommt es zur Chelatkomplexbildung mit Mg²⁺-Ionen, welche für die Stabilität des Capsids verantwortlich sind. Die so aufgelockerte Capsidhülle wurde mit 8 μ l SDS (20 %) denaturiert (bei RT, 10 min) und die Phagen-DNA aus dem Capsid freigesetzt. Im Anschluß erfolgte eine Phenol/Chloroform-Extraktion (2.3.6.1) und eine Alkoholpräzipitation (2.3.6.2).

Um λ -Phagen-DNA mit hohem Reinheitsgrad und in großer Menge zu erhalten, wurde das auf Anionenaustauschchromatographie basierende QIAGEN[®] Lambda Kit (QIAGEN GmbH, Hilden, BRD) verwendet.

2.3.5 Isolation chromosomaler DNA aus Actinoplanes sp.

50 ml TSB-Medium in einem 500 ml Erlenmeyerkolben wurden mit 5 ml Gefrierstammkultur (2.2.1.3) inkubiert und für 72 h bei 28 °C und 150 rpm kultiviert. Anschließend wurden weitere 50 ml TSB-Medium in einem 500 ml Erlelmeyerkolben mit 5 ml aus dieser Vorkultur beimpft und für 48 h bei 28 °C und 150 rpm kultiviert. Nach der Zellernte (5000 g, RT, 10 min) wurden die Zellen in 5 ml TEN-Puffer resuspendiert und erneut abzentrifugiert (5000 g, RT, 10 min). Anschließend wurde das Pellet mit 20 ml Lysis-Puffer versetzt, zur Protoplastierung Lysozym in einer Konzentration von 5 mg/ml zugesetzt und bei 37 °C für 30 min inkubiert. Durch Zugabe von 0,1 ml Proteinase K (10 mg/ml in Lysispuffer) und 0,5 ml SDS-Stammlösung (20 %) wurden die Protoplasten während der Inkubation bei 70 °C (15 min) zerstört und anschließend auf Eis gelagert. Je 600 µl der Ansätze wurden in 1,5 ml-Reaktionsgeäße verteilt, mit 100 µl KAc-Puffer (5M) versetzt und 15 min auf Eis inkubiert. Nach Zugabe von 1 Volumen eiskaltem Isopropanol (-20 °C) zum Überstand wurde der Ansatz gemischt, bis weißliche Flocken chromosomaler DNA sichtbar waren. Die ausgefallene chromosomale DNA wurde mit Hilfe einer Pipettenspitze in 500 µl TE-Puffer überführt, mit 1 µl RNase A-Stammlösung (20 mg/ml) versetzt und über Nacht bei 37 °C im Wärmeschrank gelöst. Die gelöste DNA wurde mit Hilfe einer Phenol/Chloroform-Extraktion (2.3.6.1) gereinigt. Zur Fällung chromosomaler DNA wurden die Ansätze mit 2 Volumen eiskaltem Isopropanol (-20 °C) und 1/50 Volumen LiCl (4 M) versetzt. Die prätipizierte DNA wurde in 50 µl TE-Puffer überführt und zum Lösen wiederum über Nacht bei 37 °C im Wärmeschrank inkubiert.

TEN-Puffer			Lysispuffer		
Tris/HCl	10	mM	Tris/HCl	25	mМ
NaCl	10	mM	Saccharose	15	%
EDTA	1	mM	EDTA	25	mМ
pН	8,0		рН	8,0	

SDS-Stammlöung

20 % (w/v) SDS in Aqua dest.

2.3.6 Reinigung und Konzentration von DNA

2.3.6.1 Phenol/Chloroform-Extraktion

(nach Sambrook et al., 1989)

Durch die Phenol/Chloroform-Extraktion ist es möglich, Proteine und andere Zelltrümmer aus wässrigen Nukleinsäure-Lösungen zu entfernen. Die DNA-Lösung wurde hierzu mit 1 Volumen Phenol/Chloroform/Isoamyalkohol (25:24:1) versetzt und kräftig gemischt. Zur Trennung der oberen wässrigen Phase und der organischen Phase wurde der Ansatz zentrifugiert (12000 g, 3 min, RT). Dabei wurden die durch das Phenol denaturierten Proteine in der unteren organischen Phase bzw. in der Interphase zwischen wässriger und organischen Phase angesammelt. Dieser Schritt wurde ein weiteres Mal wiederholt. Zur Entfernung von Phenol-Resten wurde die abgenommene wässrige Phase zweimal mit 1 Volumen Chloroform/Isoamyalkohol (24:1) ebenso extrahiert. Schließlich wurde die wässrige Phase zur Fällung der DNA einer Alkoholpräzipitation (2.3.6.2) unterzogen.

2.3.6.2 Alkoholpräzipitation

Zur Fällung der DNA wurde die wässrige Phase im Anschluß an eine Phenol/Chloroform-Extraktion mit 1 Volumen eiskaltem Isopropanol (-20 °C) versetzt und gut gemischt. Zur Pelletierung von Plasmid-DNA erfolgte eine Zentrifugation bei 4 °C, 12000 g und für 30 min. Das Pellet wurde mit 200 μ l eiskaltem 70% igem Ethanol (-20 °C) überschicht und erneut abzentrifugiert (13500 rpm, 10 min, 4 °C), um Salze zu entfernen. Nach dem Trocken des Pellets im Vakuumkonzentrator (5 min, 45 °C) wurde die DNA in 19 μ l TE-Puffer und 1 μ l RNase A (0,1 mg/ml) aufgenommen. Zum Lösen der DNA wurde der Ansatz für mindest. 1 h bei 37 °C im Wärmeschrank inkubiert.

2.3.7 Filterblattdialyse

Ein Celluloseester-Filter (Fa. Millipore, Frankreich) mit einer Porengröße von 0,025 µm (Typ VWSP) wurde auf die Oberfläche einer mit Aqua dest. gefüllten Petrischale gelegt (glänzende Seite nach oben). Maximal 60 µl DNA-Lösung wurde auf das Filterblättchen aufpipettiert und nach 30 min die gereinigte DNA-Lösung wieder aufgenommen.

2.3.8 Isolation und Reinigung von DNA-Fragmenten aus Agarosegelen

Die Isolation von DNA-Fragmenten aus Agarosegelen erfolgte mit Hilfe des JETQUICK Gel Extraction Spin Kits (Genomed GmbH, Bad Oeynhausen, BRD) nach Angaben des Herstellers

2.3.9 Polymerase-Kettenreaktion (PCR; polymerase chain reaction)

Mit Hilfe der Polymerase-Kettenreaktion (PCR; *polymerase chain reaction*) können gezielt ausgesuchte DNA-Bereiche aus einem Gemisch vom DNA-Molekülen *in vitro* amplifiziert werden.

Es wurde für alle Reaktionen die *Pfu*- (Promega GmbH, Mannheim, BRD) bzw. *Vent*TM-Polymerase (New England Biolabs GmbH, Schwalbach, BRD) eingesetzt. Die Hybridisierungstemperatur der Oligonukleotide (Tm) wurde nach folgender Formel berechnet (Itakura et al., 1984):

 $Tm (^{\circ}C) = [4 ^{\circ}C x GC-Paar + 2 ^{\circ}C x AT-Paar] - 5 ^{\circ}C$

Die Reaktionsansätze wurden wie folgt zusammenpipettiert:

Reaktionsansatz			
Polymerase-Puffer mit Mg	$\int_{0}^{2^{+}} (10 \text{ x})$	10	μl
dNTPs (2 mM)		10	μl
Primer 1 (1 µg/µl)		1	μl
Primer 2 (1 µg/µl)		1	μl
Template-DNA (0,2 µg/µl))	1	μl
Formamid bzw. DMSO		1	μl
Aqua dest.		ad 100	μl
DNA-Polymerase		1	μl (nach der initialen Denaturierung)
PCR-Programm:			
1. initiale Denaturierung	98 °C	5 min	
2. Zugabe DNA-Polymeras	se (hot start)		
3. Denaturierung	95 °C	1 min	
4. Hybridisierung	variabele Temp.	1 min	35 x
5. Elongation	72 °C	variable Zeit	
6. terminale Elongation	72 °C	4 min	

Die PCR-Produkte wurden mit Hilfe des JETPURE-Kits (Genomed GmbH, Bad Oeynhausen, BRD) nach Herstellerangaben aufgereinigt, um Salze, Oligonukleotide und das Enym aus den Ansätzen zu entfernen.

2.3.10 Modifizierung von DNA

2.3.10.1 Restriktion von DNA

Zur spezifischen Spaltung von DNA-Molekülen wurden Restriktionsendonukleasen sowie die mitgelieferten Puffer der Firmen MBI Fermentas (St. Leon-Rot, BRD) und New England Biolabs (Schwalbach/Taunus, BRD) verwendet.

Beispiel für einen Restriktionsansatz:

DNA-Lösung (1 µg/µl)		1	μl
Restriktionspuffer (10 x)		1	μl
Restriktionsenzym (1 U/µl)		1	μl
Aqua dest.	ad	10	μl

2.3.10.2 Dephosphorylierung von 5'-Enden

Um die Rate der Vektor-Religationen bei Klonierungen möglichst herabzusetzen, wurden die 5`-Phosphatgruppen restringierter DNA-Fragmente durch Dephosphorylierung entfernt. Nach der Restriktion des Vektors wurde pro 50 ng DNA 1 U SAP (*Shrimp Alkaline Phosphatase*, Roche Diagnostics GmbH, Mannheim, BRD) eingesetzt und für 1 h bei 37 °C, inkubiert. Anschließend wurde das Enzym bei 65 °C für 15 min hitzeinaktiviert.

Beispiel für einen Dephosphorylierungsansatz:

Vektor	3 µl
SAP-Puffer (10 x)	1 µl
SAP (1 U/µl)	1 μl
Aqua dest.	ad 10 µl

SAP-Puffer (10 x)

NaCl	1	М
Tris/HCl	500	mМ
MgCl ₂	200	mМ
Dithiothreitol	10	mМ
рН	7,9	

2.3.10.3 Ligation von DNA

Durch DNA-Ligasen wird die Bildung von Phosphodiesterbindungen zwischen benachbarten 5`-Phosphatenden und 3`-Hydroxygruppen katalysiert. Die vom Phagen T4 kodierte Ligase (68 kD) wird häufig in der Gentechnik eingesetzt, da diese nicht nur Restriktionsfragmente mit überstehenden Enden, sondern auch mit glatten Enden effizient miteinander verknüpfen kann (Sgaramella & Kohrana, 1972). Sie benötigt ATP als Energiequelle und Mg²⁺ als Cofaktor. Zur Vermeidung unerwünschter Nebenprodukte (wie z. B. dem Ringschluß des Vektors) wird die Insert-DNA in einer höheren molaren Konzentration als Vektor-DNA eingesetzt. Das molare Verhältnis von Vektor- zu Insert-DNA sollte dabei 1:5 betragen. Glatte Enden können durch höhere Enzymkonzentration, durch Zugabe von Polyethlylenglykol (PEG 8000) und Erhöhung der ATP-Konzentration (Ferretti & Sgaramella, 1981) effizient ligiert werden.

Zur Auftrennung der DNA-Enden wurden die Ansätze zufor für 5 min bei 65 °C inkubiert, auf Eis abgekühlt und T4-DNA-Ligase und T4-Ligase-Puffer (MBI Fermentas GmbH, St. Leon-Rot, BRD) zugegeben. Die Ligationsansätze wurden über Nacht bei 14,5 °C im Wasserbad inkubiert.

2.3.10.4 Auffüllungsreaktion überstehender 5`-Enden

Zur Erzeugung glatter Enden konnten 5'-überstehende Enden von DNA-Fragmenten aufgefüllt werden. Die Auffüllungsreaktion wurde in einem Mastercycler (Eppendorf, Netheler, Hinz GmbH, Hamburg, BRD) durchgeführt. 8 μ l Vektor (4 – 5 μ g/ μ l) und 2 μ l Sequinase Rxn-Puffer (5 x) (Sequitherm Excel Kit LC, Biozym GmbH, Hess Oldendorf, BRD) wurden in einem 0,5 ml Reaktionsgefäß zusammenpippetiert. Nach der 5minütigen Denaturierung bei 68 °C im Cycler wurde auf Eis inkubiert. Anschließend wurden folgende Komponenten zugegeben:

Auffüllungsreaktionsansatz überstehender 5`-Enden:

Dithiothreitol1 μl dNTPs (80 μ M)2,5 μl Sequinase (VF: 8 x)2 μl

Es folgten 35 Reaktionszyklen mit je einer Hybridisierungsphase (15 s, 37 °C) und einer Synthesephase (5 s, 75 °C).

2.3.11 Transformationstechniken

2.3.11.1 Tranformation von E. coli

Um die Transformationseffizienz nicht natürlich kompetenter Bakterien zu erhöhen, werden durch chemisch/physikalische Vorbehandlungen kompetente Zellen hergestellt (wie z. B. durch Behandlung mit eiskaltem CaCl₂ im Fall von *E. coli*) (Mandel & Higa, 1970). Infolge eines kurzzeitigen Hitzschocks (42 °C, 2 min) kann die DNA dann in die Zelle eindringen (Rodriguez & Tait, 1983).

Mit der zu transformierenden *E. coli*-Vorkultur wurden 50 ml LB-Medium 3 %ig (v/v) inokuliert und bis zu einer OD₅₄₆ von 0,7 angezogen. Nach der Zentrifugation (5000 g, 7 min, 4 °C) wurden die Zellen in 5 ml eiskalter CaCl₂-Lösung (100 mM) resuspendiert. Nach 30minütiger Inkubation auf Eis wurden die Zellen erneut zentrifugiert (5000 g, 7 min, 4 °C) und in 1 ml eiskalter CaCl₂-Lösung (100 mM) aufgenommen. Je 200 μ l kompetente Zellen wurden mit der zu transformierenden DNA (1 – 2 μ g der Plasmid-DNA) gemischt und für 30 min auf Eis inkubiert. Dann wurde der Ansatz für 2 min einem Hitzschock bei 42 °C (Hitzeschock) inkubiert. Zur Regeneration der Zellen wurden 890 μ l LB-Medium, 100 μ l Glucoselösung (20 %) und 10 μ l Thiamin-Stammlösung (10 mg/ml) zugegeben und im Thermoschüttler (37 °C, 90 min, 450 rpm) inkubiert. Aliquots (20 – 200 μ l) wurden auf entsprechende Selektivnährböden ausplattiert und über Nacht bei 37 °C im Wärmeschrak inkubiert. Zur Blau-Weiss-Selektion der transformieren Zellen wurden hierzu AIX-Platten verwendet.

AIX-Agar

LB-Medium	1	1
IPTG-Stammlösung (200 mg/ml)	1	ml
X-Gal-Stammlösung (20 mg/ml)	200	μl
Ampicillin-Stammlösung (100 mg/ml)	2	ml
Agar	1,5	% (w/v)

Nach dem Autoklavieren des LB-Mediums mit Agar wurden IPTG-, X-Gal- und Ampicillin-Stammlösung zugegeben.

2.3.11.2 Transformation von Streptomyceten

(Hopwood et al., 1985)

Zur Herstellung von Protoplasten wurde eine 18 h alte Streptomyceten-Kultur in YEME-Medium verwendet (2.1.4.1). Die Zellen wurden abzentrifugiert (5000 g, 10 min, bei RT), in 5 ml P-Puffer resuspendiert und zur Protoplastierung mit Lysozym (2 mg/ml in P-Puffer) versetzt. Der Ansatz wurde im Wasserbad (37 °C) für 2 – 3 h inkubiert, wobei die Zellen mikrokopisch kontrolliert wurden. Zur Abtrennung der Mycelreste wurde der gesamte Ansatz in eine sterile, mit Watte gefüllte Spritze überführt und filtriert. Um das Volumen des Filtrats einzuengen, wurde der Ansatz zentrifugiert (3000 g, 10 min, bei RT) und das Protoplastenpellet in 1 ml P-Puffer resuspendiert. Ein Aliquot von 100 μ l der Protoplasten-Suspension wurde mit der zu transformierenden Plasmid-DNA (\approx 1 μ g) in einem 1,5 ml-Reaktionsgefäß gemischt und 200 μ l T-Puffer versetzt. Der Ansatz wurde auf SPMR-Platten ausplattiert und bei 28 °C über Nacht inkubiert. Als Negativkontrolle wurde ein Ansatz ohne Plasmid ausplattiert. Die Platten wurden mit einer entsprechenden Antibiotika-Lösung überschichtet. Nach einer Inkubation von 3 – 4 Tagen konnten resistente Transformanten identifiziert werden.

P-Puffer

Saccharose	103	g/l
K_2SO_4	0,25	g/l
MgCl ₂ (x 6 H2O)	2,02	g/l
Spurenelemente	2	ml
KH ₂ PO ₄ (0,5 %w/v)	10	ml (nach dem Autoklavieren zugegeben)
CaCl ₂ (3,68 % w/v)	10	ml (nach dem Autoklavieren zugegeben)
TES (5,73 % w/v, pH 7,2)	10	ml (nach dem Autoklavieren zugegeben)
Aqua dest.	ad 1000	ml

T-Puffer

Saccharose (10 % w/v)	25	ml
H ₂ O	75	ml
Spurenelemente	0,2	ml
K ₂ SO ₄ (2,5 % w/v)	1	ml
Tris/Maleinat (1 M, pH 8,0)	0,5	ml (nach dem Autoklavieren zugegeben)
CaCl ₂ (5 M)	0,2	ml (nach dem Autoklavieren zugegeben)
PEG 1500	25	% (w/v) (nach dem Autoklavieren zugegeben)

2.3.12 Hybridisierung von DNA

Die zu untersuchende DNA wurde durch Hybridisierung mit nicht radioaktiv-markierten, komplementären Nukleinsäuremolekülen (= Sonde) analysiert.

2.3.12.1 Nicht radioaktive Markierung von DNA durch random priming

Bei der Synthese nicht radioaktiv-markierter DNA-Sonden dienen einzelsträngige, lineare DNA-Fragmente als Matrize für das Klenow-Fragment der DNA-Polymerase I aus *E. coli*. Ausgehend von zufällig an die Matritzen-DNA bindenden Hexanukleotiden (*random*-Hexanukleotide) wird bei Synthese des komplementären DNA-Stranges in Gegenwart von dNTPs und Digoxigenin-dUTP ca. alle 20 – 25 Nukleotide ein Digoxigenin-dUTP eingebaut.

Linearisierte dsDNA $(0,5 - 1,0 \mu g)$ wurde in einem 1,5 ml-Reaktionsgefäß mit Aqua dest. auf ein Gesamtvolumen von 15 μ l aufgefüllt, für 10 min bei 100 °C (im Wasserbad) denaturiert und aus Eis abgekühlt. Danach wurden die folgenden Komponenten des DIG DNA Labeling Kits (Boehringer Mannheim, BRD) zupipettiert:

Hexanukleotid-Gemisch (10 x)	2	μl
dNTP-Markierungsgemisch (10 x)	2	μl
Klenow-Enzym (2 U/µl)	1	μl

Nach über Nacht-Inkubation bei 37 °C wurde das Reaktionsgemisch in 25 ml Hybridisierungspuffer (s. 2.3.12.3) aufgenommen und als Sonde für die Hybridisierung bei -20 °C gelagert. Vor jeder Verwendung wurde die Sonde jeweils für 10 min im Wasserbad bei 100 °C denaturiert.

2.3.12.2 Transfer von Nukleinsäuren auf Nylonmembranen

2.3.12.2.1 Koloniefilter-Hybridisierung

Mit Hilfe der Koloniefilter-Hybridisierung können gleichzeitig eine große Anzahl von Klonen nach einer bestimmten DNA-Sequenz durchsucht werden. Zunächt wurden mehrere hundert Klone auf eine Selektivagar-Platte überpickt und über Nacht bei 37 °C inkubiert. Nach einer mindestens 30minütigen Inkubation der Platte bei 4 °C wurde eine Hybond-N-Rundmembran (Amersham Buchler GmbH & Co KG, Braunschweig, BRD) auf die Oberfläche der Platte aufgelegt und die Position der Membran durch Einstiche mit einer Kanüle markiert. Nach einer 10minütigen Inkubation wurde die Membran abgezogen. Anschließend wurde die Membran mit der das Zellmaterial tragenden Seite nach oben nacheinander für je 10 min auf mit SDS-Lösung (10 % (w/v)), Denaturierungspuffer und Neutralisierungspuffer getränktes GB002-Papier (Schleicher und Schuell GmbH, Dassel, BRD) inkubiert. Die Membran wurde an der Luft getrocknet und für 30 min bei 80 °C hitzefixiert. Die Membran konnte direkt für eine Hybridisierung (2.3.12.4) oder bis auf weiteres trocken bei 4 °C gelagert werden.

Denaturierungspuffer

NaCl	1,5	М
NaOH	0,5	М

Neutralisierungspuffer

NaCl	2	Μ
Tris/HCl	1	М
pH	5,:	5

2.3.12.2.2 Plaquehybridisierung

Mit Hilfe der Titerbestimmung der λ -EMBL3-Genbank (2.3.4.1) wurde die Menge an Phagenlysat bestimmt, um eine ausreichend große Anzahl an auszählbaren Einzelplaques zu erzielen. 10 µl einer Phagen-Suspension wurden mit 50 µl aufkonzentrierter Kultur *E. coli* K803 für 30 min bei 37 °C inkubiert. Die Ansätze wurden zu 5 ml Mg-Top-Agar gegeben, kurz gemischt, auf LBM-Platten ausplattiert und über Nacht bei 37 °C inkubiert.Vor dem Plaquetranfer auf eine Hybond-N-Rund-Membran wurden die LBM-Platten mindestens für 1 h bei 4 °C inkubiert. Die weiteren Schritte erfolgten wie unter 2.3.12.2.1 beschrieben. Nach der Freisetzung der DNA aus den Phagenköpfen wurde die Membran durch UV-Licht (302 nm) für 5 min fixiert. Die sich anschließende DNA-Hybridisierug erfolgte wie unter (2.3.12.4) beschrieben.

2.3.12.2.3 Southern Blot

Unter dem Begriff *Blotting* versteht man den Transfer geladener Moleküle auf die Oberfläche einer immobilisierenden Membran (*Southern Blot, Northern Blot, Western Blot*) Diese Methodik erweitert die Nachweismöglichkeiten für elektrophoretisch getrennte Fraktionen (Darnell et al., 1994).

Mit Hilfe des von E. M. Southern (1975) entwickelten *Southern Blottings* werden die zuvor im Gel elektrophoretisch aufgetrennten DNA-Fragmente durch Kapillarkräfte auf eine Nylonoder Nitrocellulosemembran übertragen, immobilisiert und mit Hilfe von DNA-Sonden analysiert.

Nach Auftrennung der hydrolysierten DNA wurde das Agarosegel mit Ethidiumbromid angefärbt und photographiert (2.3.1). Um den Kapillar-Transfer von DNA-Fragmenten aus dem Gel auf eine Hybond-N-Nylonmembran (Amersham Buchler GmbH & Co KG, Braunschweig, BRD) als Trägermatrix zu erleichtern, wurde die DNA in dem zu blottenden Gel zunächt für 15 min mit HCl (0,1 M) depuriniert. Anschließend wurde das Gel im Aqua dest. gewaschen und nacheinander für jeweils 30 min mit Denaturierungs- und Neutralisierungspuffer behandelt. Eine Blotwanne wurde mit Zellstoff und mehreren Lagen GB002-Filterpapier (Schleicher & Schuell, Dassel, BRD) ausgelegt. Das Gel wurde auf dem Filterpapier platziert und die Blotwanne mit SSC-Puffer (20 x) bis unterhalb des Gels aufgefüllt. Die Nylonmembran wurde luftblasenfrei auf das Gel aufgelegt und Geltaschen auf der Membranrückseite mit einem Kugelschreiber markiert. Die Membranränder wurden mit Haushaltsfolie abgedeckt, um laterale Diffusion zu verhindern. Die Membran wurde mit einigen Lagen Filterpapier und Zellstoff bedeckt und durch ein Gewicht beschwert. Der Kapillar-Transfer erfolgte 2 h oder über Nacht. Zur DNA-Fixierung wurde die Membran anschließend so behandelt, für 5 min mit UV-Licht ($\lambda = 302$ nm) bestrahlt und an der Luft getrocknet. Die Membran konnte direkt einer Hybridisierung (2.3.12.4) zugeführt oder in Plastikfolie eingeweißt, bei 4 °C gelagert werden.

2.3.12.3 DNA-DNA Hybridisierung

Die Nylonmembran wurde in einer Hybridisierungsröhre platziert, mit Hybridisierungspuffer überschichtet und für 1 h bei 68 °C im Hybridisierungsofen prähybridisiert, um so eine Absättigung unbesetzter Bindungsstellen auf der Membran zu gewährleisten. Nach dem Abgießen des Hybridisierungspuffers wurde dieser durch die denaturierte DNA-Sonde (2.3.12.1) ersetzt und über Nacht bei 68 °C im Hybridisierungsofen inkubiert. Die Sonde wurde am darauffolgenden Tag wieder abgenommen und bis zur weiteren Verwendung bei -20 °C aufbewahrt. Zur Entfernung ungebundener Sonden-DNA wurde die Membran zweimal für je 5 min in Waschpuffer (2 x) bei Raumtemperatur und zweimal für je 10 min in Waschpuffer (0,1 x) gewaschen. Anschließend wurde die Membran für den immunologischen Nachweis (2.3.12.5) eingesetzt.

Hybridisierungspuffer

SSC	5 x	
SDS	0,02	% (w/v)
N-Lauroylsarcosin	0,1	% (w/v)
Blocking Reagenz	1	% (w/v)

Nach dem Autoklavieren und Abkühlen des Hybridisierungspuffer wurde das Blocking Reagenz (Roche Diagnostic GmbH, Mannheim, BRD) zugegeben, für ca. 30 min bei 50 - 70 °C gelöst und bei 4 °C bis zur weiteren Verwendung gelagert.

Waschpuffer (2 x)

SSC	2 x
SDS	0,1 % (w/v)

Waschpuffer (0,1 x)

SSC	0,1 x
SDS	0,1 % (w/v)

2.3.12.4 Immunologischer Nachweis

Die gewaschene Membran (2.3.12.3) wurde für 1 min bei RT in Puffer I äquilibriert, und für 30 - 60 min bei RT in Puffer II inkubiert. Durch Puffer II werden die unbesetzten Bindungsstellen auf der Membran abgesättigt. Das Antikörper-Konjugat wurde 1:10000 in Puffer II verdünnt und die Membran für 1 h bei RT in der Antikörperlösung inkubiert. Zur Entfernung von ungebundenem Antikörper-Konjugat wurde zweimal für je 15 min in Puffer I gewaschen. Danach wurde die Membran für 2 min in Puffer III äquilibriert und in einer Plastikfolie platziert. Das Antikörper-Konjugat, das mit einer alkalischen Phosphatase gekoppelt ist (Anti-Digoxigenin-AP, Fab-Fragmente; Roche Diagnostic GmbH, Mannheim, BRD), koppelt spezifisch an das Digoxigenin der DNA-Sonden. Anschließend erfolgt die Zugabe des Chemolumineszenzsubstrates CSPD (C₁₈H₂₁O₇PNa₂; Roche Diagnostic GmbH, Mannheim, BRD). CSPD wird durch gebundene alkalische Phosphatase zum instabilen Phenoxid-Dioxethan umgesetzt. Das Phenoxid-Dioxethan zerfällt in Adamantanon und ein angeregtes Methyl-meta-oxybenzoat, welches Licht emittiert. Die CSPD-Stammlösung wurde 1:100 in Puffer III verdünnt und mit einer Pipette auf der Membran verteilt. Die Membran wurde luftblasenfrei in einer Folie eingeschweißt und nach einer 15minütigen Inkubation bei 37 °C für 30 – 60 min zum Nachweis der Lichtemission auf einem Röntgenfilm (Hyperfilm MP, Amersham Buchler GmbH & Co KG, Braunschweig, BRD) exponiert.

Puffer I

Maleinsäure	100	mМ
NaCl	150	mМ
pН	7,5	

Pufer II

1 % (w/v) Blocking Reagenz (Roche Diagnostic GmbH, Mannheim, BRD) in Puffer I, bei 50 - 70 °C gelöst und bei 4 °C gelagert.

Puffer III

Tris/HCl	100	mМ
NaCl	100	mМ
MgCl ₂	50	mМ
рН	9,5	

2.3.13 Sequenzierung von DNA

Die DNA-Sequenzierungen erfolgten mittels einer modifizierten nicht radioaktiven Form des Kettenabbruch-Verfahrens nach Sanger (1977). Die Sequenzierungsreaktion wurde unter Verwendung des SequiTherm EXCEL[™] II Kits (Biozym Diagnotik, Hess, Oldendorf, BRD) nach den Vorgaben des Herstellers durchgeführt. Für eine solche nicht radioaktive Sequenzierung wurden Infrarot (IRD-41)-5`-endmarkierte Primer (Tab. 2.4) eingesetzt, wobei über einen N-Linker der Infrarot-Chromophor IRD-41 kovalent an das jeweilige 5`-Ende des Primers gebunden ist.

Beispiel für einen Reaktionsansatz zur Sequenzierung:

Plasmid-DNA $(0,5 - 1,0 \mu g/\mu l)$	1	μl
Primer (5 pmol/µl)	2	μl
Sequenzierungspuffer	7,2	μl
SequiTherm-DNA-Polymerase (5 U/µl)	1	μl
Aqua dest.	ad 17	μl

Je 2 µl der vier Terminationsmixe (SequiTherm EXCEL[™] II Long-Read[™] 2X Premix A, C, G, bzw. T) wurden in jeweils einem 0,5 ml-Reaktionsgefäß auf Eis vorgelegt. Je 4 µl des Primer-DNA-Gemisches wurden in diese Reaktionsgefäße zupipettiert. Die Sequenzierungsreaktion wurde im Mastercycler (Eppendorf-Netheler-Hinz GmbH, Hamburg, BRD) durchgeführt. PCR-Schritte erfolgten nach fogendem Ablauf:

PCR-Programm

1. initiale Denaturierung	95 °C	5 min
2. Denaturierung	95 °C	30 s
3. Hybridisierung	50 °C	15 s 35 x
4. Elongation	70 °C	1 min
5. terminale Elongation	70 °C	2 min

Nach Beendigung des Programms wurden die Ansätze mit jeweils 3 μ l Formamid-Ladepuffer versetzt und kurz vor dem Auftragen auf das Gel für 3 min bei 95 °C denaturiert.

2.3.13.1 Polyacrylamidgelelektrophorese

Die Gelplatten mit dem entsprechenden Zubehör wurden zunächst mit 10 %iger SDS-Lösung, dann mit abs. Ethanol gereinigt und entfettet. Zur Herstellung der Gelmatrix wurden vorgefertige Lösungen (Biozym, Diagnostik GmbH, Hess Oldendorf, BRD) eingesetzt. Das Gel wurde zwischen die mit Klammern befestigten Gelplatten gegossen. Nach 2stündiger Polymerisation des Gels wurden die Gelplatten gereinigt und das Gel wurde vertikal in die Sequenzierungsapparatur eingespannt. Die beiden Pufferresservoirs der Apparatur wurden mit TBE-Puffer (1 x) bis zur Markierung gefüllt. Nach dem Aufgetragen von je 1,5 µl der Reaktionsansätze (2.3.13) auf das Gel wurde die Elektrophorese über Nacht bei 15000 Volt durchgeführt. Zur Detektion der Infrarot-makierten DNA-Fragmente wurde die automatische Sequenzierungsanlage DNA Sequencer Modell 4000L (LI-COR GmbH, Licon, Nebrasca, USA) verwendet.

Zusammensetzung der Polyacrylamidgels

SequagelTM XR	30	ml
SequagelTM Complete	7,5	ml
APS (10 % (w/v))	300	μl

2.4 Physiologische Untersuchungen

2.4.1 Zellaufschluss von Streptomyceten

Zur Gewinnung zellfreier Extrakte aus Streptomyceten erfolgte zunächst eine Zellernte durch Zentrifugation bei 4 °C, 5000 g und für 10 min. Darauf folgte ein Waschschritt in 10 ml Tris/HCl-Puffer (50 mM, pH 7,5). Anschließend wurden die Zellen wiederum in 1 ml kaltem Tris/HCl Puffer (50 mM, pH 7,5) pro g Feuchtmasse aufgenommen. Der Zellaufschluss durch Ultraschall erfolgte in 8 x Intervallen mit je 15 s Pause und 15 s Beschallung unter verwendung einer Mikrospitze MS 72-Sonde (Branson Instruments, Stanford, Conneticut, USA). Während des Zellaufschlusses wurden die Proben durch ein Eisbad gekühlt. Um Cytoplasma-, Membranfraktion und nicht aufgeschlossene Zellen zu beseitigen, wurde das Homogenisat für 30 min bei 5000 g und 4 °C abzentrifugiert, wobei der Überstand abgenommen und bis zur weiteren Verwendung auf Eis gelagert wurde.

2.4.2 Proteinisolation

2.4.2.1 Heterologe Proteinexpression mit dem pET19b-System (Novagen, 1992)

Zur Überexpression von Proteinen wurde das pET-System mit His-*tag* in *E. coli* verwendet. Dabei werden die Gene für die zu exprimierenden Proteine unter die Kontrolle des T7-Promotors gestellt. Zur Expression wird das Plasmid in den Expressionswirt *E. coli* BL21 (DE3) pLysS transformiert. Der Stamm *E. coli* BL21 (DE3), der über ein chromosomal lokalisiertes T7-RNA-Polymerase-Gen unter Kontrolle des *lac*UV5-Promotors verfügt, diente als Expressionswirt. Durch Zugabe von IPTG ist der *lac*UV5-Promotor induzierbar. Ferner trägt der Wirtstamm den Vektor pLysS, welcher für das T7-Lysozym codiert. Die Zellen können durch Einfrieren oder durch Zugabe von Detergenzien lysiert werden.

Eine 150 ml-LB-Kultur (Difco Laboratories, Detroit, USA) wurde bei 180 rpm und 37 °C bis zu OD_{600} von 0,3 – 0,6 fermentiert. Die Induktion der Expression erfolgte durch Zugabe von 1 mM IPTG. Anschließend wurde die Kultur bei 15 °C und 180 rpm über Nacht im Luftschüttler inkubiert (New Brunswick Scientific Co., Inc., Edison, N.J., USA). Die Zellen

wurden geerntet (5000 g, 10 min, 4 °C) und bei -20 °C bis zur weiteren Verwendung (2.4.2.2) aufbewahrt.

2.4.2.2 Aufreinigung heterolog exprimierter Proteine mittels Ni-Affinitätchromatographie

Der Zellaufschluß erfolgte durch Einfrieren und Auftauen der *E. coli*-Zellen wie unter 2.4.2.1 beschrieben. Für die native Aufreinigung des rekombinanten His-*tag*-Proteins wurden die lysierten Zellen in 5 ml Aufschlusspuffer pro g Zellfeuchtgewicht resuspendiert, in 2 ml Reaktionsgefäße überführt und bei 4 °C abzentrifugiert (20 min, 13500 rpm). Der Überstand wurde erneut in 2 ml Reaktionsgefäße überführt und abzentrifugiert, um eventuelle Zellreste vollständig zu entfernen. Anschließend wurde der Überstand (ca. 4 ml) mit 600 µl Ni-NTA-Matrix (Qiagen GmbH, Hilden, BRD) in einem Falcon-Tube versetzt und für 1 h bei 4°C unter Rühren inkubiert. Danach wurde das Lysat-Ni-NTA-Gemisch auf eine leere PD10-Säule gegeben. Nach der Absetzung der Ni-NTA-Agarose wurde der Überstand ablaufen gelassen. Danach wurde die Säule mit Imidazolpuffer (2 ml 5 mM, 2 ml 10 mM und 1 ml 50 mM) gewaschen. Das Protein wurde mit 1 ml 50 mM und 2 ml 250 mM Imidazolpuffer von der Ni-NTA-Matrix eluiert und Proben der einzelnen Fraktionen auf einem SDS-Polyacrylamidgel (2.4.4.1) analysiert. Alle Aufreinigungsschritte wurden bei 4 °C durchgeführt.

Aufschlusspuffer

NaH ₂ PO ₄	50	mМ
NaCl	300	mM
Imidazol	3	mM
Tween 20	0,1	% (v/v)
рН	8,0	

Imidazolpuffer

Aufschlußpuffer mit 5 mM/10 mM/50 mM/250 mM Imidazol

2.4.2.3 Aufkonzentrierung des Proteins

Die Elutionsfraktionen (2.4.2.2) wurden auf eine CentripusTM-Säule (Vivascience Ltd, UK) mit einer Ausschlußgröße von 50 kDa gegeben und durch Zentrifugation (4000 g, bei 4 °C) für 5 – 20 min ankonzentriert. Danach wurde die Proteinlösung mit 4 ml von Tris/HCl- bzw. Na-Phosphat-Puffer (50 mM, pH7,0) umgepuffert. Zum Auffangen des Eluats in 2 ml-Reaktionsgefäß wurde die umgedrehte Säule zentrifugiert (4 °C, 3 min und 4000 g).

2.4.3 Proteinbestimmung nach Bradford (1976)

Die Proteinbestimmung nach Bradford (1976) beruht auf der Bildung eines Farbstoff-Protein-Komplexes, bei der das Absorptionmaximum des Farbstoffes von 465 nm nach 595 nm verschoben wird. Die Eichung der Messung erfolgte durch Bestimmung der Extinktion von Lösung bekannter Rinerserumalbumin (BSA)-Konzentration.

Zur Proteinbestimmung wurde 20 μ l Probe mit 1 ml Bradfordreagenz versetzt. Nach 10 – 30 minütiger Inkubation bei RT erfolgte die Messung der Extinktion der Probe bei 595 nm gegen einen Leerwert. Als Leerwert diente ein Ansatz, der mit 20 μ l Aqua dest. versetzt worden war. Die Eichung wurde mit 10 bis 100 μ g/ml BSA-Lösung (Sigma-Aldrich Chemie GmbH & Co., Deisenhofen, BRD) durchgeführt.

Bradford-Reagenz

Coomassie-Brilliant-Blue G250	0,1	g
Phosphorsäure (85 % (w/v))	100	ml
Ethanol (96 % (v/v))	50	ml
Aqua dest.	ad. 1000	ml

Zuerst wurde Coomassie-Brilliant-Blue G250 (Serva Feinbiochemica GmbH Co., Heidelberg, BRD) in Ethanol gelöst und mit Wasser und Phosphorsäure aufgefüllt. Das Reagenz wurde durch einen Faltenfilter filtriert und lichtschützt bei RT aufbewahrt.

2.4.4 SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)

(Laemmli, 1973, verändert nach Pharmacia, 1998)

Die SDS-Polyacrylamidgelelektrophorese wurde in der modifizierten Version nach Pharmacia (1998) durchgeführt.

Zur Herstellung der 10% igen Gele mit der Größe 8 x 8,5 x 0,08 cm wurden folgende Lösungen eingesetzt:

Acrylamidstammlösung

Acrylamid		29,2	% (w/v)
N,N'-Methylenbisacrylamid		0,8	% (w/v)
Trenngelpuffer			
Tris/HCl		1,5	М
рН		8,7	
Sammelgelpuffer			
Tris/HCl		0,25	М
рН		6,8	
Kathodenpuffer			
Tris		50	mM
Glycin		400	mМ
SDS		1	g
Aqua dest.	ad	1000	ml
Anodenpuffer			
Tris/HCl		50	mМ
pН		8,8	

SDS-Stammlösung

20 % (w/v) in Aqua dest.

APS-Stammlösung

10 % (w/v) in Aqua dest.

Probenpuffer

Tris/HCl	62,5	mM
Glycerin	10	% (v/v)
SDS	2	% (w/v)
2-Mercaptoethanol	5	% (v/v)
Bromphenolblau	2,5	mg
Aqua dest.	ad 1000	ml
pН	6,8	

Ein Beispiel für einen Reaktionsansatz für die 10 %ige SDS-Gelelektrophorese:

Trenngel		
Acrylamidstammlösung	2,65	ml
Trenngelpuffer	1,87	ml
Aqua dest.	2,92	ml
SDS-Stammlösung	37,5	μl
TEMED	7,5	μl
APS	75	μl

Sammelgel

Acrylamidstammlösung	0,86	ml
Sammelgelpuffer	1,25	ml
Aqua dest.	2,85	ml
SDS-Stammlösung	25	μl
TEMED	5	μl
APS	50	μl

Nach dem Auftragen der Proben auf das Gel wurde der elektrophoretische Lauf im Sammelgel bei 80 Volt und beim Eintritt der Proben im Trenngel bei 120 Volt durchgeführt. Als Protein-Molekulargewichtmarker wurde der *High Molecular Weight Standard Mixture* SDS-6H (Sigma, Aldrich Chemie GmbH, Deisenhofen, BRD) verwendet, welcher folgende Proteine enthält:

Myosin aus Kaninchenmuskel		kD
β-Galactosidase aus <i>E. coli</i>	116	kD
Phosphorylase b aus Kaninchenmuskel	97,4	kD
Albumin aus Rinderserum	66	kD
Carboanhydrase aus Rindereryhtrocyten	29	kD

2.4.4.1 Färbung von SDS-Polyacrylamidgelen mit Coomassie-Brilliant Blue R250

(verändert nach Jahnen et al., 1990)

Durch Proteinfärbung mit Coomassie Brilliant Blue R250 werden die aufgetrennten Markromoleküle im Polyacrylamidgel sichtbar gemacht.

Färbelösung			
Isopropanol		25	% (v/v)
Essigsäre		10	% (v/v)
Coomassie-Brilliant R250		0,25	% (w/v)
Aqua dest.	ad	1000	ml
Entfärbelösung			
Isopropanol		10	% (v/v)
Essigsäure		10	% (v/v)
Aqua dest.	ad	1000	ml

Das Gel wurde ca. 30 min in der Färbelösung unter ständigem Schütteln auf einer Diffusion-Entfärbe-Apparatur inkubiert. Um die Banden sichtbar zu machen, wurde das Gel in Entfärbelösung inkubiert. Während der Inkubation des Gels wurde die Entfärbelösung mehrmals gewechselt.

2.4.5 Western Blot

Als *Western Blotting* bezeichnet man das Übertragen von Protein aus Polyacrylamidgelen auf Membranen.

Der Transfer der Proteine erfolgt aus SDS-Polyacrylamidgelen auf eine PVDF (*Polyvinylidenfluorid*)-Membran (Waters-Millipore, Bedford, Mass., USA) durch Elektrotransfer mit Hilfe des *Semidry*-Trans-Blot[®] SD-Gerätes (Bio-Rad Laboratories, California, USA). Dabei bestand ein sogenanntes *Blottingsandwich* aus vier Lagen GB002-Filterpapier (Schleicher & Schuell, Dassel, BRD), der PVDF-Membran, dem SDS-Gel und abschließend wiederum vier Lagen GB002-Filterpapier. Das zu blottende SDS-Gel wurde nach der Elektrophorese von der Glasplatte gelöst und für 10 min in Transfer-Puffer (2.4.5.1) inkubiert. Vor dem Auflegen der PVDF-Membran auf das SDS-Gel wurde die Membran in Methanol inkubiert, mit Aqua dest. gewaschen und zusammen mit dem SDS-Gel in Transfer-Puffer inkubiert. Der Transfer der Proteine erfolgte für 1 h bei 5 mA/cm² Gelfläche.

Anschließend konnte die Membran dem immunologischen Nachweis His-*tag*-markierter Proteinen zugeführt werden (2.4.5.1).

2.4.5.1 Immunologischer Nachweis von His-tag-markierten Proteinen

(chromogener Nachweis, Qiagen 2000)

Zum Nachweis von Proteinen mit einem N-terminalen His-tag (2.4.4.1) wurde die Blotmembran zweimal für 10 min in TBS-Puffer gewaschen und zur Absättigung freier Bindungsstellen der PVDF-Membran für 1 h in 3 %igem Blocking-Reagenz inkubiert. Anschließend erfolgten zwei Waschschritte mit TBS-Tween/Triton für 10 min (2 x) und TBS-Puffer für 10 min (1 x). Danach folgte die Inkubation mit dem primären Antikörper (IgG Anti-His-Tag aus Maus, Qiagen, Hilden, BRD) in 10 ml Blocking-Reagenz für 1 h. Zur Entferung der ungebundenen primären Atikörper wurde die Membran zweimal mit TBS-Tween/Triton-Puffer (10 min) gewaschen. Nach einem weiteren Waschschritt mit TBS-Puffer (10 min) wurde sie mit dem sekundären Antikörper, der mit alkalischer Phosphatase gekoppelt ist (IgG Anti-Maus, Roche GmbH, Mannheim, BRD), in 10 ml Blocking-Reagenz, für 1 h versetzt. Anschließend wurde die Membran viermal mit TBS-Tween/Triton-Puffer (10 min) gewaschen, um die nicht an den primären Antikörper gebundenen sekundären Antikörper zu entfernen. Als Substrat für die alkalische Phosphatase wurde ein in 10 ml Detektionspuffer verdünnte NBT/BCIP (Roche GmbH, Mannheim, BRD)-Gemisch verwendet. Die alkalische Phosphatase setzt NBT/BCIP katalytisch optisch um. Der Detektionsnachweis dauerte 5 - 45 min. Die Membran wurde zweimal mit Aqua dest. gewaschen und bei 4 °C gelagert.

Transferpuffer

Tris/HCl Glycin pH **TBS-Puffer**

5,82 g/l	Tris/HCl	10 mM
2,93 g/l	NaCl	150 mM
9-9,4	pН	7,5

TBS-Tween/Triton-Puffer

Tris/HCl	20	mМ
NaCl	500	mМ
Tween 20	0,05	% (v/v)
Triton X-100	0,2	% (v/v)
pН	7,5	

Blocking-Reagenz

BSA (Sigma-Aldrich Chemie GmbH & Co., Deisenhofen, BRD) 3 % (w/v) in TBS-Puffer

Primärer Antikörper (Qiagen, Hilden, BRD)

IgG Anti-His5 aus Maus	10 µl
------------------------	-------

Sekundärer Antikörper (Roche GmbH, Mannheim, BRD)

IgG Anti-Maus (2	2 – 4 U/ml)	10	μl
------------------	-------------	----	----

Detektionspuffer

Tris/HCl	10	mМ
NaCl	10	mМ
pН	9,5	

NBT (Nitro-Blau-Tetrazolium-Chlorid) Stammlösung

75 mg/ml in 70 %igem Dimethylformamid (pro Nachweis 90 µl)

BCIP (5-Brom-4-Chlor-3-Indolphosphat) Stammlösung

9,4 mg/ml in 67 %igem Dimethylformamid (pro Nachweis 70 µl)

2.4.6 Nachweis enzymatischer Aktivität der MTSase (TreY)/MTHase (TreZ), TreSase bzw. Tps1ase

2.4.6.1 Qualitative Trennung der Produkte mittels Dünnschichtchromatographie

Zum Enzymtest wurden 2 – 4 μ g Proteinlösung (2.4.2.3), 100 μ l Substrat-Lösung (20 mg/ml) und 150 μ l Puffer (Na-Phosphat- bzw. Tris/HCl-Puffer 100 mM, pH 7,0) in ein 1,5 ml-Reaktionsgefäß überführt und bei 37 °C über Nacht inkubiert. Die Ansätze des Enzymtests

wurden je nach Inkubationszeit bei 100 °C für 3 min aufgekocht. Anschließend wurden die Ansätze zentrifugiert (13000 rpm, 5 min, RT). Die 300 μ l Überstände wurden wieder aufgenommenen. Zur Indentifizierung der gebildeten Produkte wurden Glucose, Maltose, Trehalose (20 mg/ml) als Standards verwendet. Je 1 μ l Standardlösung und je 1 μ l Probe wurden auf der Platte (Kieselgel 60, 0,2 mm Schichtdicke, Merk GmbH, Darmstadt, BDR) aufgetragen (pro Spur 1 – 10 μ g Substanz). Die DC-Platte wurde in die mit Laufmittel gefüllte Laufkammer gestellt. Ist die Laufmittelfront bis ca. 2 cm unterhalb des oberen Randes der Platte gestiegen, wird sie mit Bleistift markiert und die Platte unter dem Abzug getrocknet. Zum Sichtbarmachen der Substanzflecken wurde die Platte mit einem Methanol/H₂SO₄-Gemisch (80:20) besprüht und 10 – 15 min bei 110 °C im Trockenschrank entwickeltet. Alle organischen Verbindung wurden verascht.

Laufmittellösung (Nishimoto et al., 1995)

n-Butanol	70	% (v/v)
Pyridin	30	% (v/v)
Aqua. demin	ad 100	ml

2.4.6.2 Nachweis enzymatischer Aktivitäten mit Hilfe des gekoppelten Enzymtests

2.4.6.2.1 Enzymatischer Nachweis der Trehalose mit 3,5-Dinitrosalicylsäure (DNSS) (verändert nach Miller, 1959)

Das Prinzip des Enzymtest beruht auf der zeitabhängigen Zunahme der Menge an freien nicht-reduzierenden Zuckern (wie z. B. Trehalose) durch die Umwandlung der α -1,4- in eine α -1,1-glycosidische Bindung. Die reduzierenden Hemiacetalgruppen reagieren mit dem Farbreagenz 3,5-Dinitrosalicylsäure (DNSS). Die Konzentration der gebildeten Nitroaminosalicylsäure ist äquivalent zur Enzymaktivität und kann photometrisch bei 547 nm erfasst werden. Mit Hilfe einer Verdünnungsreihe der Zucker (z. B. Glucose, Glucose-6-P bzw. Maltose) wurden entsprechende Eichgeraden erstellt.

Nach einer Inkubation (von 1 min bis über Nacht) bei 37 °C und 450 rpm im Thermoschüttler wurde die Reaktion durch Zugabe von DNSS-Lösung (1:1) gestoppt. Anschließend erfolgte eine 10minütige Inkubation der Ansätze bei 100 °C im Wasserbad. Nach Abkühlung der Proben im Eisbad wurde die Quantifizierung des freigesetzten Zuckers, bei 547 nm gegen

einen Leerwert photometrisch gemessen. Als Leerwert diente jeweils ein Ansatz mit Aqua demin. Mit den jeweils eingesetzten Probe wurde zusätzlich eine Proteinbestimmung nach Bradford (2.4.3) durchgeführt.

Die drei bekannten Trehalose-Synthesewege sind folgende:

Ein Beispiel für die Zusammensetzung der Reaktionsansätz wurde in der Tabelle 2.5 und 2.6 aufgelistet.

Tab. 2.5: Zusammensetzung	der Reaktionsansätze	zur Bildung des	Trehalose-6-Phosphats	durch das
Protein Tps1 (Syntheseweg 3)).			

Stammlösung	Menge im Testansatz	Konz. im Testansatz
Protein (Tps1 (2.4.2.3))	4 µg	0,008 µg/µl
Tris/HCl (100 mM, pH7)	100 µl	20 mM
UDP-Glucose (80 mM)	100 µl	16 mM
Glucose-6-phosphat (80 mM)	100 µl	16 mM
MgCl ₂ (60 mM)	100 µl	12 mM
Gesamtvolumen	500 µl	-

Tab. 2.6: Zuammensetzung der	Reaktionsansätze zur	Trehalosebildung	durch das	Protein	TreY/TreZ
bzw. TreS (Syntheseweg 1 bzw.	2).				

Stammlösung	Menge im Testansatz	Konz. im Testansatz
Protein (TreY/TreZ bzw. TreS (2.4.2.3))	2 – 4 µg	0,007 – 0,013 µg/µl
Na-Phosphat (100 mM, pH7)	100 µl	33,3 mM
Maltooligosaccharide bzw. Maltose (10 mM)	100 µl	3,3 mM
Gesamtvolumen	300 µl	-

DNSS-Reagenz

3,5-Dinitrosalicylsäure (C7H4N2O7)	1	% (w/v)
NaOH	1,6	% (w/v)
Natrium-Kalium-Tartrat (C4H4KNaO6 x 4H2O)	30	% (w/v)

2.4.6.2.2 Nachweis der Bildung der Trehalose mittels eines gekoppelten Enzymtests

Der indirekte Nachweis der Trehalose über eine Hilfsreaktion basiert auf die Hydrolyse der glycosidischen Bindung der Trehalose durch die Trehalase (Sigma-Aldrich Chemie GmbH & Co., Deisenhofen, BRD). Die aus der hydrolytischen Reaktion entstandene Glucose wurde über einen gekoppelten Enzymtest (2.4.6.2.2.1 bzw. 2.4.6.2.2.2) bestimmt.

Tab. 2.7: Zusammensetzung des Reaktionsansatzes mit Trehalase (Tourinho dos Santos et al., 1994).

Stammlösung	Menge im Testansatz (µl)	Konz. im Testansatz
Reaktionsansatz (2.4.6.2.1)	100	-
Citrat-Puffer (135 mM, pH7,5)	295	100 mM
Trehalase, 6 mg/ml (0,02 U)	5	0,075 µg/µl
Gesamtvolumen	400	-

Der Ansatz wurde für 1 h bei 37 °C und 450 rpm im Thermoschüttler inkubiert. Anschließend wurde der Ansatz für 3 min bei 100 °C zum Abstoppen der Reaktion gekocht und kurz abzentrifugiert. Der Überstand wurde erneut in Reaktionsgefäß überführt und für den Nachweis der entstandene Glucose (2.4.6.2.2.1 bzw. 2.4.6.2.2.2) verwendet.

2.4.6.2.2.1 Nachweis der Glucose mittels ABTS (2,2`-Azino-bis-(3-ethylbenzthiazolin)-6sulfonsäure)

Die Bestimmung der Menge an Glucose im Ansatz, welcher mit der Trehalase (2.4.6.2.2) versetzt wurde, erfoglte über den kolorimetrischen Test nach Zimmerman & Eaton (1974).

Testprinzip1:

Trehalose + H₂O \longrightarrow 2 x Glucose Glucose + O₂ + H₂O $\xrightarrow{\text{Glucose-Oxidase}}$ Gluconat + H₂O₂ Peroxidase H₂O₂ + ABTS red. \longrightarrow ABTS ox. + 2H₂O

Die durch Trehalase hydrolysierten Glucosemoleküle wurden mit Glucose-Oxidase zu Gluconat, in der Lösung befindliches Wasser zu Wasserstoffperoxid oxidiert. Durch Peroxidase wird ein ABTS von der reduzierten in die oxidierte Form überführt. Die oxidierte Form von ABTS kann bei einer Wellenlänge von 430 nm verfolgt werden.

Zum Nachweis der in diesem Ansatz freigesetzten Glucose (2.4.6.2.2) wurde ein Ansatz von 50 μ l mit 2,5 ml Nachweisreagenz für 30 min bei RT inkubiert. Die Menge an ABTS ox. wurde photometrisch bei 430 nm gegen einen Leerwert (Wasser statt Probe) gemessen. Zur Berechnung der Glucosekonzentration wurde 50 μ l (0,091 mg Glucose/ml) mit 2,5 ml Nachweisreagenz versetzt. Die Glucosekozentration (mg/ml) wurde mit folgender Formel berechnet:

 $c (mg/ml) = \frac{E_{Probe} \times 0,091 \times VF}{E_{Standard}}$

E_{Probe}: Extinktion der Probe bei 430 nm

Estandard: Extinktion der Glucosestandardlösung bei 430 nm

VF: Verdünnungsfaktor

Bei der Berechnung der Konzentration der Trehalose wurde der Faktor 1/2 berücksichtigt, da bei der Spaltung von einem Molekül Trehalose zwei Moleküle Glucose entstehen.

Nachweisreagenz		
Na ₂ HPO ₄ x 2H ₂ O	120	mМ
NaH ₂ PO ₄ x 2H ₂ O	120	mM
GOD (20000 U/63,9 mg)	4	U/ml
POD (10000 U/52,6 mg)	2	U/ml
ABTS (548,9 g/mol)	0,92	mМ

2.4.6.2.2.2 Nachweis der Glucose (nach Gutmann, 1974)

Die Bestimmung der Glucose-Konzentration im Ansatz (2.4.6.2.2) erfolgte photometrisch nach Gutmann (1974).

Dabei wird unter Verbrauch von ATP die freigesetzte Glucose durch Hexokinase phosphoryliert. Zum Nachweis der Reduktion von NADP⁺ wurde das entstandene Glucose-6-Phosphat im Ansatz mit Glucose-6-Phosphat-Dehydrogenase versetzt und die Extinktion für 5 min bei 340 nm photometrisch gemessen.

Testprinzip 2:

Trehalose + H_2O — Trehalase	→ 2 x Glucose
Glucose + ATP	➤ Glucose-6-Phosphat + ADP
Glucose-6-Phosphat + NADP ⁺ -	Glucose-6-P-DH \blacktriangleright 6-Phosphoglucolacton + NADPH + H ⁺

Stammlösung	Volumen im Testansatz (µl)	Konz. im Testansatz	
Ansatz (2.4.6.2.2)	50	-	
TEA-Puffer (100 mM, pH 7,5)	400	61,5 mM	
MgCl ₂ (100 mM)	50	7,7 mM	
ATP (150 mM)	50	11,5 mM	
NADP ⁺ (150 mM)	50	11,5 mM	
Aqua dest.	50	-	
Gesamtvolumen	650	-	
Extinktion 1 bei 340 nm			
Hexokinase (961 U/ml)	2	-	
Glucose-6-P-DH (140 U/ml)	2	-	
Extinktion 2 bei 340 nm für 5 min			

Tab. 2.8: Zusammensetzung des Reaktionsansatzes mit Hexokinase bzw.Glucose-6-P-DH.

Über Differenz der beiden gemessenen Extinktion (E2 – E1) wurde die Menge an Trehalose (mg/ml) im Testansatz nach folgender Formel berechnet:

$$c (mg/ml) = \frac{\Delta E \times M \times VF \times V}{\varepsilon \times v \times d \times 2}$$

ΔE: Extinktionsänderung (E2 – E1)
V: Gesamtvolumen des Testansatzes (μl)
v: von Testansatz 1 in Testansatz 2 überführtes Volumen (μl)
M: Molekulargewicht von Trehalose (g/mol)
VF: Verdünnungsfaktor
ɛ: Extinktionskoeffizient von NADPH bei 340 nm (6300 l/mol x cm)
d: Schichtdicke der Küvette (1 cm)
2: da ein Molekül Trehalose wird durch dieTrehalase in zwei Moleküle Glucose gespalten wird.

2.4.6.2.3 Nachweis von Trehalose-6-Phosphat

Die Aktivität der Tps1ase wurde über einen gekoppelten Enzymtest nach Bergmeyer (1974) bestimmt.

Um die Bildung von Trehalose-6-Phosphat aus XDP-Glucose (z. B. ADP-, TDPG-, GDPG-, CDPG-, bzw. UDP-Glucose) und Glucose-6-Phosphat messen zu können, wurde folgender Enzymtest als Nachweisreaktion für das im Testansatz freigesetzte XDP (2.4.6.2.1) gewählt:

Testprinzip:

 $\begin{array}{c} Tps1ase \\ XDP-Glucose + Glucose-6-P & \longrightarrow \\ Trehalose-6-P + XDP \\ \hline \\ XDP + PEP & \longrightarrow \\ Pyruvat + XTP \\ \hline \\ Pyruvat + NADH & \xrightarrow{} \\ Lactat-DH \\ \hline \\ Lactat + NAD^{+} \end{array}$

	vorannen des Testansatzs warden aufen Tiqua dest. ausgegnenen.			
Stammlösung	Volumen im Testansatz (µl)	Konz. im Test		
Testansatz (2.4.6.2.1.)	50	-		
Tris/HCl (1 M, pH8)	50	100 mM		
MgCl ₂ (20 mM)	50	2 mM		
PEP (8 mM)	50	0,8 μΜ		
NADH (3 mM)	50	0,3 μΜ		
Aqua dest.	240	-		
Lactat-DH (5 mg/ml)	5	0,05 µg/µl		
Gesamtvolumen	500	-		
Extinktion 1 bei 340 nm				
Pyruvat-Kinase (10 mg/ml)	5	0,5 µg/µl		
	Extinktion 2 bei 340 nm			

Tab. 2.9: Zusammensetzung des Testansatzes zum Nachweis von Trehalose-6-P. Die Variationen im Volumen des Testansatzs wurden durch Aqua dest. ausgeglichen.

Um zu kontrollieren, ob die Pyruvat-Kinase tatsätzlich XDP phosphorylieren kann, wurde XDP (Sigma-Aldrich Chemie GmbH & Co., Deisenhofen, BRD) statt Testansatz (2.4.6.2.1) als Kontrolle eingesetzt und die Oxidation von NADH photometrisch gemessen.

Für die Umsetzung von NADH wurde folgende Formel verwendet:

$$c (mol/l) = \frac{\Delta E}{\varepsilon x d}$$

 ΔE : Extinktionsänderung (E2 – E1)

ε: Extinktionskoeffizient von NADH bei 340 nm (6300 l/mol x cm)

d: Schichtdicke der Küvette (1 cm)

2.4.7 Charakterisierung der MTSase (TreY), TreSase und Tps1ase

Zur Ermittlung der optimalen Bedingungen für das Enzym wurden folgende Parameter untersucht:

- * Temperatur-Optimum
- * pH-Optimum
- * Puffer-Optimum
- * Substratspezifität
- * Metallionenabhängigkeit als Cofaktor
2.4.7.1 Bestimmung des Temperaturoptimums

Zur Bestimmung eines Temperaturoptimums wurde der Enzymtest (2.4.6.2.1) bei Temperaturen zwischen 10 °C und 60 °C (in 5 °C Schritten) durchgeführt. Nach einer 30minütigen Inkubation erfolgten die unter 2.4.6.2.1, 2.4.6.2.2 bzw. 2.4.6.2.3 erläuterten Enzymtests.

2.4.7.2 Bestimmung des Puffer- und pH-Optimums

Zur Ermittelung des pH-Optimums für das Enzym wurden die pH-Werte des Tris/HCl-, Tris/Maleinat-, TEA-, Na-Phosphat-, Acetat- und Citrat-Puffer (100 mM, pH 7) mit/ohne Mercaptoethanol (0,3 μ l im Testansatz) variiert. Der Puffer wurde mit einem pH-Bereich von 5 bis 9,5 hergestellt. Die weitere Durchführung entsprach den unter 2.4.6.2.1, 2.4.6.2.2 bzw. 2.4.6.2.3 beschriebenen Enzymtests.

2.4.7.3 Bestimmung der Metallionenabhängigkeit des Enzyms

Um die Abhängigkeit der Enzyme von Metallionen als Cofaktor zu untersuchen, wurde die Probelösung mit den Substanzen CaCl₂, CuSO₄, EDTA, FeCl₂, MgSO₄, MnCl₂, ZnCl₂ (Endkonz. 10 mM) versetzt. Nach einer 30minütigen Inkubation erfolgten die Enzymtests (wie unter 2.4.6.2.1, 2.4.6.2.2 bzw. 2.4.6.2.3 beschrieben). Als Kontrolle wurden die Probelösungen ohne Zusatz von Metallionen verwendet.

2.4.7.4 Substratspezifität

In den Untersuchungen zur Substratspezifität der MTS-, TreS- bzw. Tps1ase wurden verschiedene Substrate (wie z. B. Trehalose, Maltose, Maltotriose, Maltotetraose, Maltopentaose, Maltohexaose, Maltoheptaose, XDP-Glucose (Sigma-Aldrich Chemie GmbH & Co., Deisenhofen, BRD) verwendet. Nach einer 10 bzw. 30minütigen Inkubation wurde die Enzymaktivität bestimmt.

2.4.8 HPLC (High Performance Liquid Chromatography)

2.4.8.1 Nachweis von Trehalose durch HPLC

Die Bildung der Trehalose (2.4.6.2.1) konnte mittels HPLC-Analyse qualitativ und quantitativ ermittelt werden. Zur Denaturierung von Proteinen wurde der Ansatz (2.4.6.2.1) zunächst für 5 min bei 100 °C aufgekocht und abzentrifugiert. 50 μ l des Überstandes wurden zur Bestimmung der Trehalose mittels HPLC verwendet. Die Detektion der Trehalose erfolgte durch einen RI-Detektor.

Das folgende HPLC-System (Merck/Hitachi, Darmstadt, BRD) diente zur Bestimmung der Trehalose im Ansatz:

Vorsäule (Länge: 4 mm, Partikelgröße: 3 µm)	Shandon Hypersil APS -Säule (NH ₂)
Hauptsäule (Länge: 150 mm, Partikelgröße: 3 µm)	Shandon Hypersil APS -Säule (NH ₂)
Temperatur	RT
Laufmittel*	Acetonitril:H ₂ O (80:20)
Flussrate	1 ml/min
Detektor	RI-Detektor
Probenvolumen	50 µl

* Vor dem Auftragen der Probe wurde das Laufmittel im Ultraschallbad (Sonorex TK52, Gerätebau Eppendorf GmbH, Engelsdorf, BRD) für 15 min entgast.

2.4.8.2 Nachweis von Komponente C mittels HPLC

Mit Hilfe der HPLC wurde die Umsetzung von Acarbose durch die MTSase bzw. TreSase analysiert. Die Proteine TreY (2 μ g) bzw. TreS (4 μ g) wurden mit jeweils 100 μ l Acarbose-Stammlösung (20 mM) versetzt und bei 37 °C über Nacht inkubiert. Um die Proteine zu beseitigen, wurde der Ansatz anschließend für 5 min aufgekocht und abzentrifugiert. Zur Bestimmung der Bildung einer Komponente C wurden 50 μ l der Probe aufgetragen. Die Detektion der Komponent C erfolgte durch einen UV-Detektor. Als Vergleichsstandard dienten eine Acarbose-Stammlösung (10 mM) und ein Komponentengemisch (20 mg/ml) der Firma Bayer AG (LEJ 3333-3).

Vorsäule (Länge: 4 mm, Partikelgröße: 3 µm)	Shandon Hypersil APS -Säule (NH ₂)
Hauptsäule (Länge: 150 mm, Partikelgröße: 3 µm)	Shandon Hypersil APS -Säule (NH ₂)
Temperatur	RT
Laufmittel*	Eluens A:Eluens B (27:73)
Flussrate	1 ml/min
Detektor	UV-Detektor
Probenvolumen	50 µl

*Vor dem Auftragen der Probe wurde das Laufmittel im Ultraschallbad für 15 min entgast.

Eluens A			Eluens B
K_2HPO_4 (x 2H ₂ O)	380	mg	Acetonitril
KH ₂ PO ₄	620	mg	
Aqua dest.	ad 1000	ml	

2.4.9 Sicherheitsbestimmung

Alle gentechnischen Arbeiten wurden gemäß dem Gentechnikgesetz vom 16. 12. 1993 unter Berücksichtigung der in § 7, Abs. 1 aufgeführten Sicherheitsmaßnahmen durchgeführt. Die Anmeldung der Arbeiten erfolgte gemäß § 8, Abs. 1 und § 11 des Gentechnikgesetzes.

3. Ergebnisse

Seit längerem ist bekannt, dass zahlreiche Organismen - darunter auch *Actinoplanes* sp. SN223/229 (Kleinholz, 1994; Frye, 1995) - Trehalose synthetisieren. Zuletzt wurden die bekannten drei Trehalose-Biosynthesewege in *Mycobacterium* nachgewiesen (De Smet et al., 2000).

Bei der Inkubation des Rohextraktes von *Actinoplanes* sp. sowohl mit Maltooligosacchariden als auch mit Glucose-6-Phosphat und UDP-Glucose als Substrat konnte die Bildung der Trehalose mittels HPLC-Analyse bestätigt werden (Kleinholz, 1994; Frye, 1995). In der weiteren Untersuchung wurde ein Bereich des potentiellen *tre*Y-Gens mit Hilfe der degenerierten Primer Tre1 und Tre2, welche aus hochkonservierten Regionen der Maltooligosyltrehalose-Synthase (TreY)-Familie verschiedener Prokaryonten abgeleitet wurden, *in vitro* amplifiziert, sequenziert und identifiziert (Reckenfelderbäumer, 1998).

In dieser weiterführenden Arbeit wurden die drei putativen Trehalose-Biosynthesegencluster aus *Actinoplanes* sp. SN223/229 identifiziert, isoliert und sequenziert. Eine funktionelle Charakterisierung der an der Trehalose-Biosynthese in *Actinoplanes* sp. beteiligten Enzyme sollte nach heterologer Expression der identifizierten Gene in *E. coli* erfolgen. So konnte u. a. eine Hypothese bezüglich der Beteiligung der MTSase (TreY) an der Komponente C-Biosynthese (Hemker et al., 2001) verifiziert werden.

3.1.1 Identifizierung und Isolierung der MTSase (TreY)/MTHase (TreZ)-kodierenden Region aus *Actinoplanes* sp. SN223/229

Zur Identifizierung und Isolierung der möglichen Maltooligosyltrehalose-Synthase (MTSase)/Maltooligosyltrehalose-Trehalohydrolase (MTHase)-kodierenden Region wurde eine bereits zur Verfügung stehende λ -EMBL3-Genbank von *Actinoplanes* sp. SN223/229 (Piepersberg, Universität Wuppertal) verwendet. Aus überprüften Plaquehybridisierungen (2.3.12.2.2) konnten fünf positive, signalgebende Phagen, deren DNA mit der 700 bp großen pUCTreY1E-Sonde hybridisierte, detektiert werden (Schünke, persönliche Mitteilung). Die entsprechende Sonde wurde mit Hilfe der PCR unter Verwendung der degenerierten Primer Tre1 und Tre2 *in vitro* amplifiziert und enthielt einen Teil der MTSase (TreY)-kodierenden Region (Abb. 3.4) (Reckenfelderbäumer, 1998).

Die mit Hilfe der Sonde identifizierte Phagen-DNA (P7, P9, P12, P13 und P21) wurde isoliert und einer Restriktionsanalyse mit den Enzymen *Not*I, *Sac*I, *Sal*I und *Bam*HI unterzogen. Bei der Restriktion der DNA aus den Phagen P7 und P12 mit der Restriktionsendonuklease *Not*I ergaben sich drei Fragmente (8,5 kb, 4,5 kb und 2,5 kb), die für eine Subklonierung geeignet waren. Hierzu wurden die entsprechenden Fragmente aus einem der *Not*I-restringierten Phagen isoliert und jeweils in pUCBM20 ligiert. Nach der Transformation in *E. coli* DH5α erhielten die rekombinanten Plasmide die Bezeichnungen pUCN85, pUCN45 und pUCN25. Mittels einer *Southern*-Analyse unter Verwendung der Sonde pUCTreY1E konnte desweiteren nachgewiesen werden, dass das Plasmid pUCN85 das für die MTSase kodierende *tre*Y-Gen aus *Actinoplanes* sp. SN223/229 trägt. Hierzu wurde die Plasmide pUCN85, pUCN45 und pUCN25 sowie die als Referenz aufgetragene, chromosomale DNA aus *Actinoplanes* sp. mit *Not*I restringiert und nach einem *Southern Blot* mit der oben genannten Sonde hybridisiert. Dabei stimmte die Größe des signalgebenden Fragments aus pUCN85 mit der des chromosomalen Fragments aus *Actinoplanes* sp. überein (Abb. 3.1).

Abb. 3.1: *Southern*-Analyse der chromosomalen DNA aus *Actinoplanes* sp. SN223/229 und der Plasmide pUCN85, pUCN45 und pUCN25.

Southern-Analyse (2.3.12.2.3); 1%iges Agarosegel; eingesetzte Sonde pUCTreY1E (Abb. 3.4). Spur M: 1 kb *Ladder*-Molekulargewichtsmarker; Spur 1: pUCN85/*Not*I; Spur 2: pUCN45/*Not*I; Spur 3: pUCN25/*Not*I; Spur 4: chromosomale DNA aus *Actinoplanes* sp. SN223/229/*Not*I (Positivkontrolle). Ergebnisse

3.1.2 Sequenzanalyse der putativen MTSase- und MTHase-kodierenden Region

Zur weiteren Sequenzanalyse wurden ausgehend vom Plasmid pUCN85 mehrere Subklone in pUCBM20 konstruiert. Nach der Isolierung und Aufreinigung der Plasmid-DNA der Subklone erfolgte die vollständige Sequenzierung eines 7 kb-Insert-Bereiches von pUCN85 mit Hilfe der Sequenzierungsprimer M13uni (-43) und M13revCS (-49). Es konnten zwei komplette (treX- und treY-Gen) und zwei unvollständige offene Leserahmen (treZ-Gen und ORF1) identifiziert werden (Abb. 3.4). Desweiteren konnte durch Sequenzanalyse festgestellt werden, dass der dem Gen für die Maltooligosyltrehalose-Trehalohydrolase (treZ) fehlende 3'-Bereich auf dem 2,5 kb-Insert von pUCN25 enthalten ist. Zur Identifizierung der überlappenden Region von pUCN85 und pUCN25 diente ein 1,3 kb großes PstI-Fragment aus dem Plasmid pNPS13 als Sonde für die Hybridisierung gegen das treZ-Gen. Ein so identifiziertes 1 kb großes *Mull/SacI*-Fragment wurde aus dem λ -EMBL3-Phagen isoliert und nach Ligation in pUCBM20 in E. coli DH5a transformiert. Durch Sequenzierung des so erhaltenen Plasmids pMS1 konnte der Sequenzbereich zwischen den Plasmiden pUCN85 und pUCN25 sichergestellt werden (Abb. 3.2). Nach Zusammenfügen der 7 kb-Region aus pUCN85 mit dem ca. 1,2 kb umfassenden Sequenzbereich des im Plasmid pUCN25 klonierten 2,5 kb-Fragments konnte eine Nukleotidsequenz vom insgesamt 8,2 kb ermittelt werden, welche im Anhang 7.1.1 aufgeführt ist.

Abb. 3.2: Subklonierungsstrategie zur Ermittelung der 8,2 kb umfassenden Sequenz innerhalb des ca. 17 kb großen Fragments aus dem λ -EMBL3-Phagen.

Die Lage der im pUCBM20 subklonierten Fragmente und die Bezeichnung der entsprechenden rekombinanten Plasmide sind eingezeichnet. Abkürzungen: E = EcoRI; M = MluI; N = NotI; P = PstI; SI = SacI

Mit Hilfe des Programms BLASTP (Altschul et al., 1990) wurde die ca. 8,2 kb lange Nukleotidsequenz auf Aminosäureebene analysiert. Im Vergleich mit bereits bekannten Proteinen wurden drei vollständige (*treY*, *treZ* und *treX*) und zwei unvollständige (ORF1 und ORF2) offene Leserahmen identifiziert (Abb. 3.3 und Abb. 3.4). Die Sequenz der intergenischen Bereiche zwischen den jeweiligen Genen ist in Abbildung 3.3 dargestellt.

(A):

	961	GCA A	GGG(P	CGT(R	GTT(T	CGGG R	GTCG T	GGT P	GCGC H <i>P</i>	CAGG(A P	CCGC' R	ICAC E	CGGI R	'GCC H	CCGA G	L L	CCC <i>I</i> G	ACCC V	CGCC R	CGA R
	1021	GAC S	CGT(R	CGC: R	rgao Q	CCAG G	GCCA A	M M	CCGI	CC <u>G</u>	<u>ftcc</u> s/d	GGCG	GTCC	GGI	GCG	GGG	GACO	GCCC	GCAC	CAC
	1081	CTG	CGGZ	ACC	GAA(GGTC	CAGG	←O GAGA	RF1 TCC <i>F</i>	ATGC	GCGG	CACG	GTCG	STCI	CTA	TGC	CTCC	GTTI	דרכ - אי	AA
	1141	CAC	GCTZ	AAA	ccc	CCGI	TAAG	GGG	A TA _1	ATT	AGCG	CCTA	ATC	GGA	ACAG	GTCC	GGGC	CCGF	ACCG	, STA
	1201	TCA	GCC	CGC	rcco	GGAA	AGAA	TTG	CCGF	AAGA	CGCG	GCCG	GGGC	CAGG	GATI	'AAC	CCGF	ACCO	CCGC	CGG
	1261	ATG	GGC2	ATGZ	AAC	CGCG	GGGC	CGG	TCGC	CGAC	CGAC	GCAA	AGGC	CG <u>A</u>	AGGG S/I	<u>GG</u> ()	GTTC	CGAC	CACA N	ATG 1
	1321	CAG(Q V	GTC: V V	rgg(V 1	CCTC P (GGTC G F	CACC H F	GGT Y	ATCO P	L L	GGGG(G	GCG <i>P</i> A I	ACCI Y	'ACC	GACO	GG <i>I</i> ; 1		GTA G 1	ACCA	AC I
(B)	:																			
	3361	GTC(V 1	GAG(E 2	GCC(A (GGC(G H	CACA H F	AAGA K I	TCC	TGGI V	IGCC(P	GGAC D	CGGI R S	CCC I	CTCA I	ATCO V	GTGC 7 I	CTCC L I	GAC <u>7</u>) F	AGGA R I	<u>CG</u> 'D
	3421	GTG V	rga: *	FGC	GCCO	CCAG	GCAG	TAC	GTAC	CCGA	GTCC	AAGI	CCG	STCC	CCGA	CTI	rcco	CGCI	'GA <i>P</i>	GG
	\rightarrow	treX	М	R	P	S	S	Т	Y	R V	V Q	V	R	P	D	F	P	L	K	A
			\rightarrow	tre¥	7															
(C)	:																			
	5641	CCG V	ICG(A	CCG2 D	ATCI L	rgcı L	IGCA Q	IGAC T	CTAT Y	CCCC	GTCG	CTCI	CCI	GGI	GAA	AGA	AATC	GAC	AACC	CTT
											V A	L	L	V	K	Ľ				
											V A	L	L	V S/	K D	->tı	reY M →tr	Т ••7.	Т	F
	5701	CGA	GGT2 V	ATG(W	GGC	GCCG	GGAG	GAAG K	TCGC	CCCA	AGCT(L GCGC R	L CCTO	V S/ GAC	K 'D CGAC	$\rightarrow tr$	reY M →tr GGAC	т •eZ GCAC	T CGAC E	F GAT M
(D)	5701 :	CGA(E	GGT <i>I</i> V	ATG(W	GGC(A	GCCG P	GGAG E	aag K	TCGC S I	CCCAI P K	AGCTO L	L GCGC R	L CTG L	V S/ GAC D	K 'D CGAC D	→tr →tr	re¥ M →tr GGAC E	T FeZ GCAC H	T CGAG E	F GAT M
(D)	5701 : 7321	CGA(E TCC(P	GGTZ V CTCC S	ATGO W GGCO A	GGCC A GGTC V	GCCG P GCTG L	GGAG E GCTG L	AAG K GCC A	TCGC S I ACCC T <i>I</i>	CCCAR PK GCCGR	AGCT(L ACGG(G	L GCGC R CGTC V	L CCTG L CATC I	V SGAC D CTG L	K 'D CGAC D GGAA E	→tı CAC Q	reY M →tr GGAC E	T GCAC H	T CGAG E GGTC V	F AT M CGT V
(D)	5701 : 7321 7381	CGA(E TCC(P GCT(L	GGTI V CTCC S GCCC P	ATGO W GGCO A CCCO P	GGCC A GGTC V GGAZ E	GCTG P GCTG L AAGC S	GGAG E GCTG L CGCC A	GGCC A GGTG V	TCGC S F ACCC T F GTCC V N	CCCA2 PK GCCG2 AD GTCCG VR	AGCT L ACGG G GCAC	L GCGC R CGTC V CTCC S	L CCTC L CATC I GCGC R	V SGAC D CCTG L CTGA *	K 'D CGAC D GGAA E	$\rightarrow tr$	reY M →tr GGAC E	T GCAC H	T E GGTC V CACC	F AT M CGT V CCC
(D)	5701 : 7321 7381 7441	CGA(E TCC(P GCT(L <i>CGT</i> (CTCC S GCCC P CCCC	ATGO W GGCCO A CCCCO P CGAS	GGCC A GGTC V GGA <i>I</i> E ICGC	GCCG P GCTG L AGC S GC <i>G</i> C	GGAG E GCTG L CGCC A	GCC A GCC A CGTG V	TCGC S F ACCC T F GTCC V N	GCCG2 GCCG2 A D GTCCC 7 R GCTC2	AGCT(L ACGG(G GCAC(T ACGG(L GCGCC R CGTCC S - CGTA	L CCTC L CATC I GCGC R →fre ACCC	V SGAC D CCTG L CTGP * Z SCTC	K (D CGAC D GGAA E ACGC	L →tr CCAC Q ACGC R CCAC	reY M →tn GGAC E CGAC D CCCCC	T FeZ GCAC H CCGC R GGCC CTTC	T CGAG E GGTC V <i>CACC</i> GATC	F AT M CGT V CCC

(Fortsetzung)

```
7561 TGACGAATGTGCCCGACGACCTTGTCGCCGCCGAGCCGGACGAGCCGGGAAGCGGAACC

M C P T T L S P P S R T S R G S G T

\rightarrowORF2

7621 GGTGGTATGACAACTCGCGACTGCGGTCCCGGGTGCGATCTGCCGATT

G G M T T R D C G P G C D L P I
```

Abb. 3.3: Die Nukleotidsequenzen der intergenischen Bereiche zwischen ORF1 und *treX* (A), sowie *treX* und *treY* (B), *treY* und *treZ* (C) und *treZ* und ORF2 (D).

Die von der Nukleotidsequenz abgeleiteten Aminosäuren der einzelnen ORFs sind unterhalb der Nukleotidsequenz (5'-3'Richtung) im Ein-Buchstaben-Code wiedergegeben. Die Ribosomenbindungsstellen sind unterstrichen (S/D). Invers repetitive Sequenzen sind mit Pfeilen gekennzeichnet und kursiv gedruckt. Die potentiellen Promotorstrukturen (-10, -35) sind durch Fettdruck markiert.

Die genetische Anordnung der identifizierten offenen Leserahmen und die putativen Funktionen der Gene sind in Abbildung 3.4 dargestellt.

Abb. 3.4: Vergleich der genetischen Organisation der MTSase (TreY)-/MTHase (TreZ)-kodierenden Region aus *Actinoplanes* sp. SN223/229 mit der unterschiedlicher Organismen.

Mycobacterium tuberculosis H37Rv (Cole et al., 1998); *Arthrobacter* sp. Q36 (Maruta et al., 2000); *Sulfolobus acidocaldarius* (Maruta et al., 1996a). Die Orientierung des einzelnen ORFs sind durch Pfeile gekennzeichnet, welche die Transkriptionsrichtung anzeigen. Die Haarnadelstruktur markiert einen potentiellen Terminator. Die als Sonde markierten PCR-Amplifikat (pUCTreY1E-Sonde) ist oberhalb des *tre*Y-Gens von *Actinoplanes* sp. dargestellt. Abkürzungen: *tre*X, *glg*X = Gen für putatives Glycogen *debranching* Enzym; *tre*Y, *glg*Y = Gen für putative Maltooligotrehalose-Synthase; *tre*Z, *glg*Z = Gen für putative Maltooligotrehalose-Trehalohydrolase; ORF1 = unbekannt; ORF2 = putatives Glutamat-Bindungsprotein.

Durch Vergleich der abgeleiteten Aminosäuresequenz der identifizierten ORFs mit homologen Proteinen verschiedener Organismen konnten die Positionen der Startcodone der jeweiligen Gene zugeordnet werden. Die potentiellen Shine/Dalgarno-Sequenzen (Shine & Dalgarno, 1975) der putativen Gene aus *Actinoplanes* sp. SN223/229, die 5 – 12 Nukleotide stromaufwärts des Startcodons (ATG oder GTG) entfernt liegen, wurden ermittelt (Strohl, 1992). Diese potentiellen Shine-Dalgarno-Sequenzen sind in der Tabelle. 3.1 dargestellt und der entsprechenden *Streptomyces* 16S rRNA-Sequenz gegenübergestellt. Die Berechnung der freien Bindungsenergie der 16S rRNA und der Ribosomenbindungsstelle der mRNA erfolgte nach Tinoco et al. (1973). Die Δ G-Werte für *Streptomyces* liegen bei -9,2 kJ/mol bis -92,9 kJ/mol, während *B. subtilis* Δ G-Werte von -58,6 bis -96,3 kJ/mol aufweist (Strohl, 1992).

Tab. 3.1: Vergleich der identifizierten S/D-Sequenzen mit dem 3`-Ende der 16S rRNA von *Streptomyces*.

Die	Konsensussequenz	des	3'-Endes	der	16S	rRNA	von	Streptomyces	ist	unterstrichen.	Die
Bind	lungsenthalpie ΔG w	urde	nach Tino	co et	al. (1	973) bei	rechno	et.			

	S/D-Sequenz	Abstand (nt) zum	∆G (kJ/mol)	Referenz
		Startcodon		
16S rRNA	3`-(U/C) <u>CCUCC</u> -5`	5 – 12 (ATG, GTG oder	-47,3 ± 21	Strohl, 1992;
Streptomyces		TTG)		Bibb et al., 1985
treX	5`-AGGGGG-3`	9 (ATG)	-51,05	diese Arbeit
treY	5`-AGGACG-3`	5 (ATG)	-39,33	diese Arbeit
treZ	5`-GGTGA-3`	4 (ATG)	-30,13	diese Arbeit
ORF1	5`-GGAAC-3`	8 (ATG)	-35,15	diese Arbeit
ORF2	5`-GGCCG-3`	6 (ATG)	-21,0	diese Arbeit

Die Identifizierung des potentiellen Promotors erfolgte durch Vergleich der stromaufwärts der putativen Gene ermittelten Startcodone mit der Konsensussequenz des Promotors aus *Streptomyces*. Zwischen Transkriptionsstartpunkt und kodierender Region liegen bei Genen von *Streptomyces* sp. zwischen 9 und 345 Nukleotiden. Die Abstand ist deutlich größer als bei *E. coli*-Genen (Strohl, 1992). Ca. 133 bp stromaufwärts des Startcodons des *treX*-Gens liegt eine Sequenz mit Ähnlichkeit zu σ^{70} -*E. coli*-Promotoren. Die Nukleotidsequenz der –10-(TAAATT) und –35-Region (TTCGAA) zeigt signifikante Übereinstimmungen mit der Konsensussequenz des Promotors nach Strohl (1992). Der Abstand zwischen diesen beiden Motiven beträgt allerdings 23 bp (Tab. 3.2). In den 5'-kodierenden-Bereichen der Gene *treY* und *treZ* konnte keine signifikante Übereinstimmung zu den Konsensussequenzen des Promotors identifiziert werden.

	-35-Region (5`-3`)	Abstand (nt) zwischen der	-10-Region (5`-3`)
		–10- und –35-Region	
Streptomyces	TTGACR	16 – 18	TAGRRT
<i>E. coli</i> (σ^{70})	TTGACA	16 - 18	TATAAT
treX	TTCGAA	23	TAAATT

Tab. 3.2: Vergleich der potentiellen *tre*X-Promotor-Sequenz mit der σ^{70} -ähnlichen Promotor-Konsensussequenz. Abkürzung: R = G oder A.

Für die Identifizierung eines möglichen Rho-unabhängigen Terminators wurden die intercistronischen Regionen zwischen den Genen *treX*, *treY*, *treZ* und dem ORF2 analysiert. Ein solches potentielles Terminationssignal konnte in einem Abstand von 11 nt stromabwärts des Stoppcodons von *treZ* gefunden werden. Durch die GC-reiche Sequenz, die in einem *inverted repeat* angeordnet ist, besteht die Möglichkeit zur Ausbildung einer stabilen Haarnadelstruktur auf mRNA-Ebene (Abe et al., 1999). Dem potentiellen Terminator fehlt jedoch die typische, sich anschließende Uridin-reiche Sequenzabfolge. Die freie Bindungsenthalphie ΔG für diese Haarnadelstruktur wurde nach Tinoco (1973) berechnet und beträgt -120,5 kJ/mol. Der Umstand, dass stromabwärts des *treX*- sowie des *treY*-Gens keine potentiellen Terminator-Strukturen gefunden werden konnten, deutet darauf hin, dass die Gene *treX*, *treY* und *treZ* bei *Actinoplanes* sp. wie bei *Arthrobacter* sp. Q36 (Maruta et al., 2000) eine Transkriptionseinheit bilden, wobei die mRNA-Sekundärstruktur hinter dem *treZ* die Termination für das Transkript der drei offenen Leserahmen ermöglichen könnte. Der potentielle Rho-unabhängige Terminator ist in Abbildung 3.5 dargestellt.

Abb. 3.5: Struktur des potentiellen Rho-unabhängigen Terminators stromabwärts des *treZ*-Gens. Das Stoppcodon für die Translation des Gens *treZ* ist durch Fettdruck markiert.

3.1.3 Charakterisierung der identifizierten potentiellen Trehalose-Biosynthese-Gene durch Sequenzvergleiche

Wie oben dargestellt, führte die Sequenzanalyse zur Identifizierung des kompletten 2268 bp langen Maltooligosyltrehalose-Synthase-Gens (*tre*Y). Stromabwärts und stromaufwärts des *tre*Y-Gens wurde das 1734 bp lange Maltooligosyltrehalose-Trehalohydrolase-Gen (*tre*Z) und ein 2109 bp umfassender offener Leserahmen, der ein putatives Glycogen *debranching* Enzym (*tre*X) kodiert, identifiziert.

3.1.3.1 Genprodukte des tre-Operons

Das 2109 bp lange *tre*X-Gen kodiert fur ein putatives Glycogen *debranching* Enzym mit einer Länge von 702 Aminosäuren. Die von der Nukleotidsequenz abgeleitete Aminosäuresequenz des *tre*X-Gens aus *Actinoplanes* sp. wies hohe Homologien zu Glycogen *debranching* Enzymen bzw. zu Isoamylasen (Krohn et al., 1997; Beatty et al., 1997) aus verschiedenen Pro- und Eukaryonten auf. Die Aminosäuresequenz des Gens *tre*X sowie ein Homologievergleich mit anderen Isoamylasen verschiedener Organismen ist im Anhang 7.2.2 dargestellt. Die Tabelle 3.3 enthält einen Homologievergleich der genannten Proteine.

1 lotemen.	Tiokaizangen. Tiert, olgri	offedgen ac	or allering En	Eyin, 641 160	am juse.
Protein/	Organismus	Länge (AS)	Identität	Accession-Nr.	Referenz
Enzym			(Gaps) [%]		
TreX	Actinoplanes sp. SN223/229	702	-	-	diese Arbeit
TreX	Arthrobacter sp. Q36	823	67 (0)	BAA94842	Maruta et al., 2000
GlgX	Mycobacterium tuberculosis H37Rv	721	64 (0)	NP216080	Cole et al., 1998
GlgX	Streptomyces coelicolor A3(2)	715	63 (0)	CAB92884	Redenbach et al., 1996
GlgX	Deinococcus radiodurans R1	720	56 (0)	NP293987	White et al., 1999
TreX	Sulfolobus acidocaldarius ATCC33906	713	49 (2)	BAA11864	Maruta, 1996a
Su1	Zea mays	789	40 (5)	AAB97167	Beatty et al., 1997
Isoamylase	Oryza sativa	733	40 (5)	BAA29041.1	Fujita, 1999

Tab. 3.3: Homologievergleich des Genprodukts von *treX* aus *Actinoplanes* sp. mit bekannten Proteinen. Abkürzungen: TreX, GlgX = Glycogen *debranching* Enzym; Su1 = Isoamylase.

Die aus den Nukleotidsequenzen der Gene *tre*Y bzw. *tre*Z abgeleiteten Proteine umfassen 756 bzw. 578 Aminosäuren. Die beiden Genprodukte stimmen in großem Maße mit MTSasen/MTHasen aus verschiedenen Bakterien überein. Die Aminosäuresequenzen der

Gene *treX*, *treY* und *treZ* sowie Homologiebereiche sind im Anhang 7.2.1, 7.2.3 und 7.2.4 dargestellt. In Tabelle 3.4 sind die Ergebnisse zusammengefasst.

Protein	Organismus	Länge (AS)	Identität	Accession-Nr.	Referenz
			(Gaps) [%]		
TreY	Actinoplanes sp. SN223/229	756	-	-	diese Arbeit
TreY	Arthrobacter sp. Q36	775	50 (2)	S65769	Maruta et al., 1996c
GlgY	Mycobacterium tuberculosis H37Rv	765	47 (3)	CAA98328	Cole et al., 1998
TreY	Rhizobium sp.	772	51 (1)	BA11186	Maruta et al., 1996b
TreY	Brevibacterium helvolum	776	49 (2)	AAB95368	Kim et al., 2000
GlgY	Deinococcus radiodurans R1	978	34 (20)	NP294186	White et al., 1999
TreY	Sulfolobus solfataricus	732	34 (4)	AAK42274	Sch et al., 2001
TreZ	Actinoplanes sp. SN223/229	578	-	-	diese Arbeit
TreZ	Arthrobacter sp. Q36	598	56 (1)	Q44316	Maruta et al., 1996c
GlgZ	Mycobacterium tuberculosis H37Rv	580	53 (1)	CAA98329	Cole et al., 1998
TreZ	Rhizobium sp.	596	55 (1)	BAA11187	Maruta et al., 1996b
TreZ	Brevibacterium helvolum	589	51 (1)	AAB95369	Kim et al., 2000
GlgZ	Deinococcus radiodurans	600	39 (2)	NP294187	White et al., 1999
TreZ	Sulfolobus solfataricus	561	42 (0)	AAK42272	Sch et al., 2001

Tab. 3.4: Homologievergleich der Genprodukte von *tre*Y bzw. *tre*Z aus *Actinoplanes* sp. mit bekannten Proteinen. Abkürzungen: TreY, GlgY = MTSase; TreZ, GlgZ = MTHase.

Eine Isoamylase hydrolysiert die α -1,6-glycosidischen Bindungen in Amylopectin, Glycogen und Dextrinen. Die Maltooligosyltrehalose-Synthase (TreY) wandelt die α -1,4-glycosidischen Bindungen am reduzierenden Ende eines Maltooligosaccharids in eine α -1,1-glycosidische Bindung um. Die Maltooligosyltrehalose-Trehalohydrolase (TreZ) greift die benachbarte α -1,4-glycosidische Bindung der Maltooligosyltrehalose an und spaltet sie in Trehalose und Maltooligosaccharide (Maruta et al., 1996a; Maruta et al., 2000).

Glycogen $\xrightarrow{\text{TreX}}$ Maltodextrin

MTSase (TreY) Maltodextrin — Maltooligosyltrehalose

Maltooligosyltrehalose MTHase (TreZ) Trehalose + Maltodextrin

Die α -Amylase, besonders Taka-Amylase A aus *Aspergillus oryzae* (Matsuura et al., 1984) wurde intensiv - bishin zur dreidimensionalen Struktur des Protein-Substrat-Komplex untersucht und die funktionell wichtigen Aminosäuren charakterisiert (Janeček & Bateman, 1996). Aus einem Aminosäuresequenzvergleich der Proteine TreX, TreY bzw. TreZ mit der Familie 13 der Glycosidhydrolasen lässt sich aussagen, dass es sich offensichtlich bei den Enzymen Glycogen *debranching* Enzym (TreX), MTSase (TreY) bzw. MTHase (TreZ) um Mitglieder der Familie 13 handelt (MacGregor et al., 2001). Die stark konservierten Regionen I - IV der α -Amylasen aus verschiedenen Organismen (Janeček, 1997) sind auch in den Genprodukten der Gene *treX*, *treY* und *treZ* vorhanden (Maruta et al., 1996c; Maruta et al., 2000; MacGregor et al., 2001; Gueguen et al., 2001). Die Konsensussequenz innerhalb dieser konservierten Regionen I – IV sowohl der Glycosidhydrolasen als auch der Proteine TreX, TreY bzw. TreZ ist in Tabelle 3.5 aufgeführt.

Tab. 3.5: Vergleich der konservierten Regionen der Familie 13 der Glycosidhydrolasen mit denen der Proteine TreX, TreY bzw. TreZ aus *Actinoplanes* sp. SN223/229.

Enzyme	Organismus		Ι		II		III		IV
α-Amylase	A. oryzae	117	DVVAN H	202	GIRI D TVKH	230	CIG E VLD	292	FVEN HD
α-Amylase	B. stearothermoplius	101	DVVFD H	230	GFRL D GLKH	264	E YWS	326	FVDN HD
Pullulanase	B. subtilis	338	LDVVFN H	404	GFRF D LLGI	461	LLFG E GWD	521	YVES HD
Isoamylase	Flavobacterium sp.	329	LDVVYN H	408	GFRF D LASV	465	DLIA E PWA	533	FVVA HD
CGTase	B. macerans	135	DFAPN H	225	GIRF D AVKH	258	E WFL	324	FIDN HD
CGTase	B. stearothermophilus	131	DFAPN H	221	GIRM D AVKH	253	EWFL	319	FIDN HD
Cyclodextrinase	Bacillus	238	DAVFN H	321	GWRL D VANE	354	EVWH	416	LLDS HD
Glycogen	Actinoplanes sp.	265	LDVVYN H	339	GFRF D LAST	375	KLIA E PWD	445	FVTA HD
debranching									
MTSase	Actinoplanes sp.	84	VDIVPN H	229	GIRV D HPDG	256	WLVI e kil	467	SLST HD
MTHase	Actinoplanes sp.	180	LDVVYN H	240	GLRL D AVHA	278	TLIA E SDL	372	FLQN HD
Konsensus AS			XDXXXN H		GXRX D XXZZ	XXX	(G/A) E ZZ		XXBB HD
			٠		•		•		• •

Der katalytische Rest bzw. die Substratbindungstelle ist durch Fettdruck markiert. Abkürzung: X = hydrophobe Aminosäure; B = hydrophile Aminosäure; Z = wichtig für Spezifität; \blacklozenge = katalytischer Rest; \bullet = Substratbindungstelle. *Aspergillus oryzae* (Toda et al., 1982); Alkalophilic *Bacillus* (Kim et al., 1999); *Bacillus subtilis* (Kunst et al., 1997); *Bacillus macerans* (Takano et al., 1986); *Bacillus stearothermophilus* (Hayato et al., 1985); *Flavobacterium* sp. (Krohn et al., 1997).

Vermutlich an der Substratbindung beteiligte Histidine befinden sich ebenfalls in der Region I und IV. Die beiden katalytischen Aspartatreste im aktiven Zentrum befinden sich in der Region II und IV. Ein Glutamatrest der Region III überträgt im Rahmen der katalysierten Reaktion ein Proton auf den glycosidischen Sauerstoff, wodurch ein stabiles Oxocarbeniumion entsteht (Janeček, 1997; Svensson, 1994).

3.1.3.2 Genprodukte von ORF1 bzw. ORF2

Die abgeleiteten Aminosäuresequenzen der zwei identifizierten, unvollständigen offenen Leserahmen ORF1 und ORF2 aus *Actinoplanes* sp. SN223/229 wurden computergestützt auf Homologien zu verwandten Proteinen untersucht. Das ORF1-Genprodukt wies keine signifikanten Ähnlichkeiten zu anderen Proteinen in Datenbanken auf.

Das aus der Nukleotidsequenz des ORF2 abgeleitete Protein wies dagegen eine eindeutige Übereinstimmung mit einem putativen Glutamat-Bindungsprotein aus *Streptomyces coelicolor* (Redenbach et al., 1996) bzw. *Mycobacterium tuberculosis* (Cole et al., 1998) auf.

3.2.1 Identifizierung und Isolierung einer Trehalosesynthase (TreS)-kodierenden Region von *Actinoplanes* sp. SN223/229 mit Hilfe der PCR

Die Trehalose-Biosynthese aus Maltose wurde durch die Trehalosesynthase (TreS) in verschiedenen Organismen wie *Mycobakterien* (De Smet et al., 2000) und *Pimelobacter* (Tsusaki et al., 1996) nachgewiesen.

Da der Stamm *Actinoplanes* sp. sehr nahe verwandt mit *Actinoplanes missouriensis* ist, wurde zur Identifizierung und Isolierung einer Trehalosesynthase-Gens (*treS*) aus *Actinoplanes* sp. SN223/229 eine *in vitro*-Amplifikation mit Hilfe der Oligonukleotide (TreS1 und TreS2) versucht, die aus dem *treS*-Gen von *A. missouriensis* abgeleitet worden waren (Cauvet, persönliche Mitteilung). Ein ca. 1,8 kb DNA-Fragment wurde mit chromosomaler DNA aus *Actinoplanes* sp. als Matrizen-DNA *in vitro* amplifiziert. Das 1,8 kb große Fragment wurde aus dem Gel eluiert, direkt zur Ligation mit *Eco*RV linearisiertem pUCBM20 eingesetzt und so erhaltenes Plasmid pUCTreS sequenziert. Dabei konnte ein 1758 bp großer ORF mit Homologien zu prokaryontischen Trehalosesynthasen identifiziert werden (Tab. 3.6).

Um die DNA-Sequenz stromaufwärts bzw. stromabwärts des *tre*S-Gens weiter zu untersuchen, wurde chromosomale DNA aus *Actinoplanes* sp. mit unterschiedlichen Restriktionsendonukleasen hydrolysiert und anschließend mit dem als Sonde markierten 1,8 kb großen *tre*S-Fragment hybridisiert. Bei dieser *Southern*-Analyse wurde ein ca. 3,5 kb großes *Bam*HI-Restriktionsfragment zur weiteren Sequenzanalyse ausgewählt (Abb. 3.6).

Abb. 3.6: *Southern*-Analyse chromosomaler DNA aus *Actinoplanes* sp. SN223/229 nach Hydrolyse mit verschiedenen Restriktionsendonukleasen.

Southern-Analyse (2.3.12.2.3); 1% iges Agarosegel; ein mit Primern TreS1 und TreS2 amplifiziertes 1,8 kb-Fragment wurde als Sonde eingesetzt.

Spur M: 1kb *Ladder*–Molekulargewichtsmarker; Spur 1: chromosomale *Actinoplanes* sp.-DNA/*Bam*HI; Spur 2: chromosomale *Actinoplanes* sp.-DNA/*Kpn*I; Spur 3: chromosomale *Actinoplanes* sp.-DNA/*Mlu*I; Spur 4: chromosomale *Actinoplanes* sp.-DNA/*Not*I.

3.2.2 Sequenzanalyse der potentiellen TreSase-kodierenden Region

Nach Restriktion der chromosomalen DNA aus *Actinoplanes* sp. mit *Bam*HI und Auftrennung mittels Agarosegelelektrophorese wurden Fragmente aus einem Größenbereich von ca. 3 – 5 kb in das Plasmid pUCBM20 kloniert. Mittels Koloniefilterhybridisierung (2.3.12.2.1) konnte ein positiver Klon gefunden und das ca. 3,5 kb *Bam*HI-Fragment nach Isolierung des rekombinanten Plasmids pUCB35 einer Sequenzanalyse unterzogen werden. Nach entsprechenden Subklonierungen und Sequenzierung dieser Subklone mit den Primern M13uni (-43) und M13revCS (-49) konnte ein 3276 bp umfassender Sequenzbereich des Inserts von pUCB35 ermittelt werden. Bei einer Analyse auf Nukleotidebene mittels des Programms BLASTP (Altschul et al., 1990) konnte der offene Leserahmen des kompletten 1758 bp langen Trehalosesynthase-Gens (*tre*S), sowie Teile der stromaufwärts und stromabwärts benachbarten offenen Leserahmen identifiziert werden (Abb. 3.7 und 3.8).

Abb. 3.7: Vergleich der genetischen Organisation der Trehalosesynthase-kodierenden Region aus *Actinoplanes* sp. mit der anderer Organismen.

Streptomyces coelicolor A3(2) (Bruton et al., 1995); *Mycobacterium tuberculosis* H37Rv (Cole et al., 1998); *Pseudomonas aeruginosa* PA01 (Stover et al., 2000). Die Orientierungen der einzelnen ORFs sind durch Pfeile darstellt. Abkürzungen: *treS*, *Rv*126 = Gen für putative Trehalosesynthase; *pep*I, *pep*IA = Gen für putative Glucanase; *pep*II, *pep*IIB, *Rv*0127 = Gen für putative Maltokinase; *pA*2152 = Gen für putatives, bifunktionales Enzym (Trehalosesynthase und Maltokinase).

Mögliche Shine-Dalgarno-Sequenzen sind 5 bp bzw. 7 bp stromaufwärts des Startcodons (Position 251 – 256 bzw. Position 2004 – 2008) des potentiellen *tre*S- bzw. *pep*II-Gens lokalisiert. Die Gene für die putative TreSase und die Maltokinase (PepII) überlappen um vier Basenpaare. Die Δ G-Werte für die S/D-Struktur nach Tinoco (1973) wurde als -81,2 kJ/mol bzw. -60,3 kJ/mol ermittelt.

Die Suche nach einer Promotor- bzw. Terminator-Region für das *tre*S-Gen ergab keine erkennbare Sequenz. Bei *Streptomyces coelicolor* ist das *tre*S-Gen zusammen mit dem stromaufwärts positionierten *pep*I-Gen sowie dem stromabwärts gelegenden *pep*II- und *glg*B-Gen in einem Operon lokalisiert (Schneider et al., 2000). Vermutlich werden die drei Gene *pepI*, *tre*S und *pep*II aus *Actinoplanes* sp. wie in *Streptomyces coelicolor* ebenfalls cotranskribiert werden. Die ca. 3,3 kb große Nukeotidsequenz ist in der Abbildung. 3.8 dargestellt.

¹ CGCGCTGCTGTGCTTCTCCAAGCGCGACGCGACACCGGCAACACCGTGCTGTGATCGTGTCGTTCGACTCTGCCAACGTG R C C A S P S A T R H R Q H R A V I V S F D S A N V →pepI

⁸¹ CAGTGGGGCAACACCACTCTCGACATGCCGGCCCTCGGGAAGGACTGGCACGAGAAGTTCACTGTGGTCGATCAGATCAG Q W G N T T L D M P A L G K D W H E K F T V V D Q I S

¹⁶¹ CGGTGCGACGTACGAGTGGGGGCAGTACAACGCGGTCCGGATCGACCCCTATGTCGAGCCGGCGCACATTTTCGTGGTGC G A T Y E W G Q Y N A V R I D P Y V E P A H I F V V Q

(Fortsetzung)

241	$\begin{array}{rcl} \mbox{AGGCGGGGTA}{\mbox{AGGGGGA}} \mbox{CACCGATGGAGTTGACGAGCGAGCATGATCCGGCAGAGGGAAGTCACACCGAGGACGGGATGGT\\ \mbox{A} & \mbox{M} & \mbox{E} & \mbox{L} & \mbox{T} & \mbox{S} & \mbox{H} & \mbox{D} & \mbox{A} & \mbox{C} & $
321	CGAGCACCCGTCCGCGGACGACTTCGGCCATGCCCGGGCGGCGCCGACCGCACGTGGTTTCAACGCGCGGTCTTCT E H P S A D D F G H A R A L P A D R T W F Q R A V F Y
401	ACGAGGTGCTGGTCCGGGCGTTCTACGACTCGGGCTCGGACGGCGGCGGCGGCCTGGCGGGCCTGGACGGCGGCGGCGGGCCTGGACGGCGGCGGCGGCGGCCGGC
481	TACCTGCAGTGGCTCGGCGTGGACTGCCTCTGGCTGCCCCGTTCTACGACTCGCCGCGCGGCGGGGGGGG
561	CCGCGACTTCTACAAGGTGCTGCCCGAGTTCGGCACGACGACGACGACGACGACGACGACGACGACGACG
641	GCATCCGGGTGATCACCGACCTGGTCATGAACCACACGTCCGACCGCGCGTGGTTCCAGGCGTCCCGGCACGACCCG I R V I T D L V M N H T S D S H P W F Q A S R H D P
721	GACGGGCCGTACGGCGACTTCTACGTCTGGAACGACGACGACGAGGAGGAGGACGACGCGCGGATCATCTTCGTCGACAC D G P Y G D F Y V W N D T S E K Y K D A R I I F V D T
801	$\begin{array}{cccc} {\tt CGAGGAGTCGAACTGGACGTTCGACCGGTCCGGCGGCGGCAGTTCTACTGGCACCGGTTCTTCTCCCACCAGCCGGACCTCA}\\ {\tt E} & {\tt S} & {\tt N} & {\tt W} & {\tt T} & {\tt F} & {\tt D} & {\tt P} & {\tt V} & {\tt R} & {\tt Q} & {\tt F} & {\tt Y} & {\tt W} & {\tt H} & {\tt R} & {\tt F} & {\tt S} & {\tt H} & {\tt Q} & {\tt P} & {\tt D} & {\tt L} & {\tt N} \end{array}$
881	ACTACGAGAACCCGGCCGTGCAGGAGGCCATGCTCGACGTGCGCGGCTCGGGCATCGACGGGTTCCGG Y E N P A V Q E A M L D V L R F W L D L G I D G F R
961	CTGGACGCCGTGCCGTACCTGTTCGAGGAGGAGGGGGGCCAACTGCGAGAACCTGTCGCAGACCCACGCCTTCCTCAAGCA L D A V P Y L F E E G T N C E N L S Q T H A F L K H
1041	CTGCCGCAAGGTGATCGACGACGAGTTCCCCGGCCGGGTGCTGCTGGCCGAGGCGAACCAGTGGCCGGCC
1121	AGTACTTCGGCGACGCGAAGTCCGGTGGCGACGAGTGCCACATGGCGTTCCACTTCCCGCTGATGCCGCGGATCTTCATG Y F G D A K S G G D E C H M A F H F P L M P R I F M
1201	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1281	CATCTTCCTGCGTAACCACGACGAGCTGACCTCGAGATGGTCACCGACGAGGAACGCGACTACATGTACGCGGAGTACGIFIC $I \ F \ L \ R \ N \ H \ D \ E \ L \ T \ L \ E \ M \ V \ T \ D \ E \ E \ R \ D \ Y \ M \ Y \ A \ E \ Y \ A$
1361	CCAAGGACCCGCGGATGAAGGCGAACGTCGGCATCCGGCGGCGGCGGCCGCCGCTGCTGGAGAACGACCGGAACCAGATC K D P R M K A N V G I R R R L A P L L E N D R N Q I
1441	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1521	CATCTGGCTCGGCGACCGCGACGGCGTGCGCACCCCGATGCAGTGGACCCCGGACCGCAACGCCGGCTTCTCCACCGCCAI W L G D R D G V R T P M Q W T P D R N A G F S T A T
1601	CCCCCGGCCGGCTCTACCTGCCGGTCAACCAGGACCCGGTGTACGGGTACCAGGCGGTCAACGTGGAAGCTCAGCGCGAC P G R L Y L P V N Q D P V Y G Y Q A V N V E A Q R D
1681	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1761	CCGGGAGCTGGGCGGCTCGAACCCCTCGGTGCTGGCGTCCTGCGCGAGTTCGGCGACGACGTGGTGCTGTGCGTCAACA R E L G G S N P S V L A F L R E F G D D V V L C V N N
1841	ACCTGTCCCGGTTCCCGCAGCCGATCGAGCTGAACCTGCAGCACTGGAACGGGTACACCCCGGTGGAGCTGACCGGCCAC L S R F P Q P I E L N L Q H W N G Y T P V E L T G H
1921	GTGAACTTCCCGCGGATCGGGCAGCTGCCGTACCTCCTGACCCTTCCGGGCCACGGCTTCTACTGGTTCCAGTTGTGCGG V N F P R I G Q L P Y L L T L P G H G F Y W F Q L C G
2001	$GTC_{GGAGG}AGGAAGCAATGACGCTGCCCTATACCGAGTGGTTGCCGAAACAGCGCTGGTACGCGGGGACGCAGCCGGGTGCTS E E K Q *$
2081	→pepII GGCCTCGCTCAAGGAGGCGCCCCGCCGGGCGAGGAACTGGAGCTGGTCCTGCTCGACGTGTCGTACACCGACG
2161	A S L K E A S S T P L G E E L E L V L L D V S Y T D G GCAGTTCCGAGCGGTACCAGGTGCTCATCGCCCGGCGGGGCCGAGCTGCTGCCGGAGTACAGCGCGGTGGCCACCATCGGC
	A V P S G T R C S S P G G P S C C R S T A V A T I G

(Fortsetzung)

2241	ACCGACGAGGAGGGGCGGGGGGGGGGGGGGGGGGGGGG
2321	CTCCGAACCGGTCGCCGACCTGACCTTCGAGAAGGAGCCCGGGGTCGAGCTGCCGCTGGACAAGTGGCCCCGGGTGTTCG S E P V A D L T F E K E P G V E L P L D K W P R V F D
2401	ACGCCGAGCAGAGCAACACCAGCGTGATCTTCGAGCAGGACGCGATCCTCAAGGTGTTCCGCCGGGTCACCTGCGGGATC A E Q S N T S V I F E Q D A I L K V F R R V T C G I
2481	AACCCGGACATCGAGCTGAACCGGGTGCTCGGCCGGGCGGG
2561	GACCGACGACGCGGGGCAGTGCTCGCTCGGGGATGGTCACCGCGCGAATTCCGCCGAGGGCTGGGCGATGGCGATGGCGATGGCGATGGCGATGGCGATGGCGATGGCGATGGCGATGGCGATGGCGATGGCGACGACGGCGGGGGGGG
2641	CCGCGTCGGCCCGTGACCTGTTCGCCGACGACGACGACGCGACGGCGACTTCCAGGGCGAGTCGTAC A S A R D L F A D A E M A A D E V G G D F Q G E S Y
2721	CGGCTCGGCGAGGCGGTCGCCTCGGTCCACCTGACCCTGGCCGAGCAGCTCGGCTCCGGGCCGTCGCCGTTCCCGGTGGA R L G E A V A S V H L T L A E Q L G S G P S P F P V D
2801	CGCGGTGCTGGCCCGGCTGCGGGACCGCCGACGCGGTCCCCGAGCTGCAGCAGTACGTGCCGGCGATCACCGCGAAGT A V L A R L R T A A N A V P E L Q Q Y V P A I T A K F
2881	TCGAGGCACTCACCGGGCATCAGGTGACCGTCCAGCGGGGTACACGGCGACCTGCACCTGGGCCAGGTGCTGCGGACCCCG E A L T G H Q V T V Q R V H G D L H L G Q V L R T P
2961	GAGGCGTGGCTGCTGATCGACTTCGAGGGCGAGCCCGGTCAGCCGCTGGACGAACGCCGGCTGCCCGACTCCCCGCTGCG E A W L L I D F E G E P G Q P L D E R R L P D S P L R
3041	$\begin{array}{cccc} GGACGTGGCCGGGGTGCTGCCCCCCCCCCCCCGGGGGGGG$
3121	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3201	CGGGCCGAGGGCGCACTGCTGCGGCCTACGAGTTGGACAAGGCGGTCTACGAGGCCGCATACGAGGCACGGCACC R A E G A L L A A Y E L D K A V Y E A A Y E A R H

Abb. 3.8: Sequenz des ca. 3,3 kb großen chromosomalen DNA-Fragments im Bereich des *tre*S-Gens. Die abgeleitete Aminosäuresequenz der einzelnen ORFs ist unterhalb der Nukleotidsequenz (5`-3` Richtung) im Ein-Buchstaben-Code angegeben. Die potentiellen S/D-Sequenzen sind unterstrichen.

3.2.3 Genprodukt des treS-Gens

Bei dem Vergleich der abgeleiteten Aminosäuresequenz der TreSase aus *Actinoplanes* sp. mit Sequenzen aller über BLASTP zugänglichen Datenbanken liessen sich hohe Homologien zu anderen TreSasen aus Bakterien feststellen. Die Ergebnisse sind in der Tabelle 3.6 zusammengefasst. Die abgeleitete Aminosäuresequenze des *tre*S-Gens sowie Homologiebereiche sind im Anhang 7.2.5 dargestellt.

Protein	Organismus	Länge (AS)	Identität (<i>Gaps</i>) [%]	Accession-Nr.	Referenz
TreS	Actinoplanes sp.	586	-	-	diese Arbeit
Rv0126	<i>M. tuberculosis</i> H37Rv	601	84 (0)	NP214640	Cole et al., 1998
TreS	<i>S. coelicolor</i> A3(2)	566	73 (0)	CAA04601	Bruton et al., 1995
TreS	Pimelobacter sp. R48	573	73 (1)	BAA11303	Tsusaki et al., 1996
PA2152	P. aeruginosa PA01	1100	58 (1)	NP250842	Stover et al., 2000
TreS	D. radioduransR1	552	54 (1)	NP295759	White et al., 1999
TreS	Thermus aquaticus	963	54 (0)	BAA19934	Tsusaki et al., 1997

Tab. 3.6: Homologievergleich der putativen TreSase aus *Actinoplanes* sp. mit anderen TreSasen aus verschiedenen Bakterien. Abkürzung: TreS, Rv0126, PA2152 = Trehalosesynthase.

Bei der Trehalosesynthase (TreS) handelt es sich ebenso wie bei den Proteinen TreX, TreY und TreZ um die Familie 13 der Glycosidhydrolasen (Tsusaki et al., 1996; Ohguchi et al., 1997; Tsusaki et al., 1997). Die essentiellen, hochkonservierten Motive der α -Amylase konnten anhand der abgeleiteten Aminosäuresequenz der Trehalosesynthase aus *Actinoplanes* sp. SN223/229 identifiziert werden. Die Abbildung 3.9 zeigt die Aminosäuresequenzen der TreSasen verschiedener Bakterien mit den vier hochkonservierten Regionen der typischen Familie13 der Glycosidhydrolasen.

78

(Fortsetzung)

Abb. 3.9: Homologievergleich der TreSasen verschiedener Organismen mit den vier hochkonservierten Regionen einer α -Amylase.

Abkürzungen: Mycobacterium tuberculosis H37Rv (Rv0126, Cole et al., 1998); Streptomyces coelicolor (treS, Redenbach et al., 1996); C I = Cluster I; C II = Cluster II; Pimelobacter sp. R48 (treS, Tsusaki et al., 1996); Pseudomonas aeroginosa PA01(pA2152, Stover et al., 2000). Die nummerierten, konservierten Regionen sind unterhalb der Aminosäuresequenz durch Sterne gekennzeichnet. Abkürzungen: \blacklozenge = katalytischer Rest; \blacklozenge = Substratbindungstelle. Die \ge 75 %ige Identität der Aminosäuren ist durch schwarze Boxen markiert. Die \ge 75 %ige Ähnlichkeit der Aminosäuren ist durch graue Boxen gekennzeichnet.

3.2.4 Genprodukte des stromaufwärts bzw. stromabwärts des *tre*S-Gens liegenden DNA-Bereichs

Auf Aminosäureebene des stromabwärts des Trehalosesynthase-Gens (*treS*) gelegenen DNA-Bereichs konnte eine hohe Homologie zu putativen Maltosekinasen (PepII) verschiedener Organismen wie *Mycobacterium tuberculosis* H37Rv (Cole et al., 1998), *Pseudomonas aeruginosa* (Stover et al., 2000), *Streptomyces coelicolor* A3(2) (Bruton et al., 2000) festgestellt werden. Die abgeleitete Aminosäuresequenz von PepII ähnelt dem Mph1 Protein aus *Actinoplanes missouriensis*, welches Maltose zu Maltose-1-Phosphat umwandeln kann (Grundmeier, 2001). Stromaufwärts des Trehalosesyntase-Gens (*treS*) konnte ein Teil eines putativen Glucanase-Gens (*pepI*, *S. coelicolor* A3(2), Redenbach et al., 1996) nachgewiesen werden.

3.3.1 *In vitro*-Amplifikation und Klonierung eines DNA-Bereichs des für die Trehalose-6-Phosphat-Synthase (Tps1)-kodierenden Gens aus *Actinoplanes* sp. SN223/229

Im Zuge der Trehalosesynthese wird aus den aktivierten Vorstufen Glucose-6-Phosphat und UDP-Glucose mit Hilfe des Enzyms Trehalose-6-Phosphat-Synthase (z. B. Tps1 bzw. OtsA) Trehalose-6-Phosphat gebildet. In einem nachfolgenden Schritt wird Trehalose-6-Phosphat

durch die Trehalose-6-P-Phosphatase (z. B. Tps2 bzw. OtsB) hydrolysiert (Vandercammen et al., 1989; Kaasen et al., 1994).

Zur Amplifizierung eines Abschnittes des Gens für die Trehalose-6-Phosphat-Synthase (Tps1) aus *Actinoplanes* sp. SN223/229 mussten zunächst geeignete Oligonukleotide ausgewählt werden. Aus diesem Grund wurden Aminosäuresequenzen von bekannten Tps1 bzw. OtsA aus verschiedenen Organismen computergestützt miteinander verglichen (Cole et al.,1998; Blattner et al., 1997; Vuorio et al., 1993). Zur Auswahl der Primer wurden die zwei höchst konservierten Regionen zwischen den Positionen der Aminosäure 157 – 165 und 365 - 371 herangezogen (Primer trep1 und TRPS2, s. Anhang 7.2.6). Bei der abgeleiteten Oligonukleotidsequenz wurde der Codon-Gebrauch verschiedener *Streptomyces* sp. berücksichtigt. Mittels PCR mit den Primern trep1 und TPRS2 wurde ein Fragment der erwarteten Größe von ca. 750 bp mit chromosomaler DNA aus *Actinoplanes* sp. mit Hilfe der Vent[™]-Polymerase *in vitro* amplifiziert und in den Vektor pUCBM20 kloniert. Der Vektor pUCTps750 wurde einer Sequenzanalyse unterzogen und es konnte festgestellt werden, dass die Sequenz auf Aminosäureebene mit Trehalose-6-Phosphat-Synthasen verschiedener Pround Eukaryonten identisch ist (Abb. 3.12).

Um einen weiteren Bereich des Gens für die Trehalose-6-Phosphat-Synthase (Tps1) zu klonieren, wurde chromosomale DNA aus *Actinoplanes* sp. mit verschiedenen Enzymen restringiert, gelelektrophoretisch aufgetrennt und mit dem als Sonde markierten PCR-Amplifikat einer *Southern*-Analyse unterzogen (Abb. 3.10). Dabei konnte u. a. ein ca. 3,5 kb großes *Bam*HI-Fragment detektiert werden. Für eine entsprechende *Shotgun*-Klonierung wurde *Bam*HI-geschnittene DNA zwischen 2,5 kb und 4,5 kb aus dem Gel isoliert und anschließend in pUCBM20 kloniert. Nach der Transformation in *E. coli* DH5 α wurden positive Klone mit Hilfe einer Koloniefilterhybridisierung (2.3.12.2.1) ausgewählt. Der Vektor pUCTps35 enthielt das ca. 3,5 große *Bam*HI-DNA-Fragment.

Abb. 3.10: *Southern*-Analyse chromosomaler DNA aus *Actinoplanes* sp. nach Hydrolyse mit verschiedenen Restriktionsendonukleasen.

Southern-Analyse (2.3.12.2.3); 1% iges Agarosegel; ein mit Primern trep1 und TRPS2 amplifiziertes 750 bp-Fragment wurde als Sonde eingesetzt (Abb. 3.12).

Spur M: 1 kb *Ladder*-Molekulargewichtsmarker; Spur 1: chromosomale DNA aus *Actinoplanes* sp. nach der Restriktion mit *Bam*HI; Spur 2: chromosomale DNA aus *Actinoplanes* sp. nach der Restriktion mit *Kpn*I; Spur 3: chromosomale DNA aus *Actinoplanes* sp. nach der Restriktion mit *Not*I; Spur 4: chromosomale DNA aus *Actinoplanes* sp. nach der Restriktion mit *Sph*I.

3.3.2 Sequenzanalyse der potentiellen Trehalose-6-Phosphat-Synthase-kodierenden Region

Das Plasmid pUCTps35, welches das ca. 3,5 kb große *Bam*HI-Fragment aus *Actinoplanes* sp. enthält, wurde in das Plasmid pUCBM20 subkloniert (nicht dokumentiert); durch Sequenzierung der verschiedenen subklonierten Fragmente wurde die Nukleotidsequenz ermittelt (Abb. 3.11).

Trotz wiederholter Sequenzierungsansätze konnte für einen ca. 200 bp langen DNA-Bereich zwischen den Genen *tps*1 und ORF3 die Nukleotidsequenz nicht ermittelt werden. Die Sequenzierung der DNA aus *Actinoplanes* sp. bereitet erhebliche Probleme. Wegen des hohe GC-Gehalts von 71 - 76 % (Skinner & Sykes, 1972) konnte eine Sekundärstruktur in der zu sequenzierenden DNA von *Actinoplanes* aufgetreten werden. Die Sequenz eines Teils von ORF3 ist im Anhang 7.1.3 dargestellt.

1	GGATCCAGCCGGCCACGTTGTCCAGGAAGTACCGGTCGTGGGTGATCGCCAGGACGGTACCCGCGTACTTGGCCAGGTGC I W G A V N D L F Y R D H T I A L V T G A Y K A L H
81	TGCTCCAGCCAGCTCACGCTCCGCGCGCGCGGGGGGGGGG
161	CAGCTTGCACAGCGCGGCGCGCGGCGCGCGCGCGCGGCGGCGGCGG
241	$ \begin{array}{cccc} \texttt{GTCCATCGCCAGCCTCGAGCTTGGAGTCGACGTCGAGCTCGCCATCTCG} \\ \texttt{R} & \texttt{G} & \texttt{D} & \texttt{G} & \texttt{A} & \texttt{E} & \texttt{L} & \texttt{K} & \texttt{S} & \texttt{D} & \texttt{V} & \texttt{D} & \texttt{W} & \texttt{A} & \texttt{D} & \texttt{L} & \texttt{H} & \texttt{D} & \texttt{L} & \texttt{E} & \texttt{Q} & \texttt{L} & \texttt{K} & \texttt{G} & \texttt{M} & \texttt{E} \\ \end{array} $
321	TCCATCAGCTCGTCGGAGTAGTCGGTCGCCATCTGCTCGGCGATCTTATTGAACCGGTCCAGCTTGGCCTTGGTCTCGGC D M L E D S Y D T A M Q E A I K N F R D L K A K T E A
401	GACCGCCTCCTCGATGTTGCCGAGGACCGTCTTCGCGTCGTTGAGCGGCGGCTCCTGCGCGAGCATGCCGACGGTGTAGC V A E E I N G L V T K A D N L P P E Q A L M G V T Y
481	CGGGCATCAACCGGGCCTCGCCGTGGTCGTCGTCTTGTCGAGCCCGCCATGATTTTGAGCAGGCTGGACTTACCGGCGCCG G P M L R A E G N S T K D L G A M I K L L S S K G A G
561	TTCGGGCCGACGACGCCGGCAGCAGGAAGCTCAGCGTCACGTTGTCGAGCACGACCTTGTCGCCGTGCGC N P G V V G I K A G P L F S L T V N D L V V K D G H A
641	CTTGCGCGCCTTTTCCAGGACGTAGATGTACTGGGCCACGGTGTGCCCTA <u>CCTCC</u> GAGATAACGTGGATTTCTCATGCCG K R A K E L V Y I Y Q A V S/D * A CORF1
721	GAATCAAAAGGCAATCCTTCCAGGTCGGCTCACCGTCGCCTACGCCAACCCCGCCGGTCAGTCGCCGACCACCCGCTGTT P I L L C D K W T P E G D G V G V G G T L R R G G A T
801	CCGCCTCGGTCCGTCCGACTTGGTGACCAGCAGCCGCTCCCGGTTGATCGAAAAGGTGTTGCCGTCCTGCGGCGCGGACC G G R D R G V Q H G A A A G P Q D F L H Q R G A A R G
881	GCACTGGAAACTGCCGTCGTCCTGCCTCGTCACTCCGGCCAAAAACAGCGCGGGTGACCCCCTCCTTCCACGGCGCGGGGGCGCGG C Q F S G D D Q R T V G A L F L A T V G E K W P A A
961	TGCCACCGCGGTTGGCGTGGTAGAACAGCCGCCCCGGTCGTCCTGGCAGATCCAGATCACCGTCTTGCGCTCGGTGGTG T G G R N A H Y F L R G R D D Q C I W I V T K R E T T
1041	ACGCGGAACACCTGCAGGAGGTCGCCGGTCGCGCGTGCCGGGGCCCCATCTCCTGGGTCTGGTCGGGGGCACAACCCCTC V R F V Q L L D G T A G N R H G M E Q T Q D P C L G E
1121	GGTGGGCAACGACGGCCCGTCGGAGGCGTCGGTGGTGGCCGATGCGGAGGGCCTGGCGGTGCCCCGGGCGTCGCGAC T P L L S P G D S A D T T A S A S P R A T G R A D R
1201	GCTCGCTGAGCAGATACCCGCCGTTCATGCCGATGATGGTCAGCAACACCGTGGCGTTCACCACAGGAAAGAAGTTCGGC R E S L L Y G G N M G I I T L L V T A N V V P F F N P
1281	$\begin{array}{c} CGCCACGGCTGGGAATGATCATCGAGGGGTGTCACCGGGACAGGATGGCATCCAAGTCAAGACCCCGAGAGCAGAGTGGGG\\ R \ \ W \ \ P \ \ Q \ \ S \ \ H \ \ D \ \ D \ \ L \ \ P \ \ T \ \ V \ \ \ \ S/D \end{array}$
1361	TACGTTCCTTGGTGGCTACGCACAG TAGGCT CGCTAGGGGAACAGAAACCACCC <u>GGAGG</u> TGTACTCAGCGTGGCCCAACG -10 S/D V A Q R →trs1
1441	AAGTTCCTTCGTCGTCGTCGCCAACCGTCGCCGTTGACGAGGGCACCCTGCCCAGCGGGGGAGAAGCAGTGGCGGTCCA S S F V V V A N R L P V D E V T L P S G E K Q W R S S
1521	GTCCGGGAGGCCTGGTCACGGCGTTGCATCCGGTGCTCACCGAGCATCGCGGCCGGC
1601	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1681	TTACGAGGGTCAGTCGAACGCGACGATCTGGCCGCTCTACCACGACGCGGGGGAGACGCCGGCCTACAACGCCTGGCGCG Y E G Q S N A T I W P L Y H D A V E T P A Y N A W R D
1761	ACTCGTACCGTACGGTCAATCAGCGGTTCGCCGAGGCGCCGCGGACGTCGCGGCGGCGGCGCCACCGTCTGGGTGCAGGA S Y R T V N Q R F A E A A A D V A A G R H R L G A G
1841	CTACCAGCTCCAGCTGTGCCCGCGATGCTCGGGAGGATGCGGCCCGACCTGCGGATCGGCTTCTTCCTGCACATCCCGTT L P A P A V P A M L R E M R P D L R I G F F L H I P F
1921	CCCGCCGATCGAACTGTTCATGCAGATGCCGTTCCGGGGCCGAGATCCTGCGCGGCCGGC

2001 TCCAGCAGCGACTGGCCGGCAGAACTTCGTCCGGCTGGCCCGGCACCTGCGCTGCGCTACGAGGGCCAGTCGATC \mathbb{Q} \mathbb{Q} R L A A \mathbb{Q} N F V R L A R H L L G L R Y E G \mathbb{Q} S I

(Fortsetzung)

2081	. CTGGTCGACGGCCGGCGGTGAAGGCCGGGGCGTTCCCGATCAGCATCGACACCGGGGACATGGAGCGGCTGGCCGCGAC L V D G R R V K A G A F P I S I D T R D M E R L A A T	
2161	. CCGGCGTGCAGGCCCGGGCCAAGCAGATCCGCGCCGAGCTGGGCGATCCCAAGACGGTCATCCTCGGCGTCGACCGGCTG R R A G P G Q A D P R R A G R S Q D G H P R R R P A G	
2241	GATTACACCAAGGGCATCGAGCTGCGCGCCTCAAGGCCTTCCGCGAGGCCGACGACGAGAACTGCAGGTCGGCGACGCG L H Q G H R A A P Q G L P R A A G R R E L Q V G D A	
2321	GTGATGGTGCAGGTCGCAACGCCGAGCCGGGAGCGGTCGAGCATTACCAGACGCTGCGGGTCAAGGTCGAGCGTGAGGT V M V Q V A T P S R E R V E H Y Q T L R V K V E R E V	
2401	CGGCCGGATCAACGGCGAGTTCGGCAAGGTCGGCACGCCGGCGGTGCACTACCTGCACCAGTCGGTCCACAGCAGGAGCT G R I N G E F G K V G T P A V H Y L H Q S V H S R S S	
2481	CGCCGATGTACGCGGCCGCCGACGTGATGATGGTGACCCCGCTGCGGGACGGGATGAACCTGGTCGCGAAGGAGTACATC P M Y A A A D V M M V T P L R D G M N L V A K E Y I	
2561	. GCCTGCCGCGGTGACACCGGGGGGCGCCCTGGTGCTCAGCGAGTTCGCCGGCGGCGGCGACCGAGCTGCGCCAGTCGTTCCT A C R G D T G G A L V L S E F A G A A T E L R Q S F L	
2641	. GTGCAACCCGCACGACCGGGGGGGGGGGAGGGGGGGGGG	
2721	. GGATGCGGGTGATGCAGCGGCATCTGCGCACCACGACGTCGCCCGGGGGCCCGCACGTCCCTGGACGAACTCACCGTC M R V M Q R H L R T H D V A R W A R T S L D E L T V	
2801	GACGACGAGAGCTGAGCCGATCTCT D D E S *	

Abb. 3.11: Sequenz des ca. 2,8 kb großen Teilbereichs aus pUCTps35, auf dem sich das *tps*1-Gens befindet.

Die abgeleitete Aminosäuresequenz der einzelnen ORFs ist unterhalb der Nukleotidsequenz (5`-3` Richtung) im Ein-Buchstaben-Code angegeben. Die möglichen S/D-Sequenzen sind unterstrichen. Der potentielle Promotor ist durch Fettdruck gezeichnet.

Die so erhaltene Nukleotidsequenz wurde auf Homologien zu anderen Genen in den Datenbanken untersucht. Neben dem kompletten offenen Leserahmen (*tps*1), welcher für die Trehalose-6-Phosphat-Synthase kodiert, wurden noch drei unvollständige offene Leserahmen (ORF1, ORF2 und ORF3) identifiziert (Abb. 3.11 und 3.12).

Vor den Startcodons (ATG bzw. GTG) der putativen offenen Leserahmen konnte jeweils potentielle S/D-Sequenzen identifiziert, welche in Tabelle 3.7 aufgeführt sind.

Bindungsenthalpie ΔG wurde nach Tinoco et al. (1973) berechnet.				
S/D-Sequenz		Abstand (nt) des Startcodons zur S/D-Sequenz	∆G (kJ/mol)	Referenz
16S rRNA	3`-(U/C) <u>CCUCC</u> -5`	5 - 12	-47,3 ± 21	Strohl, 1992; Bibb
Streptomyces				et al., 1985
tps1	5`-GGAGG-3`	10 (GTG)	-60,3	diese Arbeit
ORF1	5`-GGAGG-3`	11 (GTG)	-60,3	diese Arbeit
ORF2	5`-GGATG-3`	13 (GTG)	-46,86	diese Arbeit

Tab. 3.7: Vergleich der S/D-Sequenzen putativer Gene aus *Actinoplanes* sp. SN223/229. Die Konsensussequenz des 3'-Endes der 16S rRNA von *Streptomyces* ist unterstrichen. Die

In Analogie zu einem σ^{70} -*E. coli* ähnlichen Promotor ist in dem stromaufwärts liegenden Bereich des Gens *tps*1 nur eine mögliche –10-Region (TAGGCT), welche ca. 39 bp von dem Startcodon entfernt liegt, lokalisiert. Aufgrund der schwach konservierten Consensussequenz des *Streptomyces*-Promotors (Strohl, 1992) konnte eine –35-Region des Promotors nicht identifiziert werden.

Eine Rho-unabhängige Terminatorstruktur konnte in der stromabwärts gelegenen Region des Gens *tps*1 nicht ermittelt werden, da im diesem Bereich ein Teil der DNA-Sequenz nicht bekannt ist.

Ein Vergleich der genetischen Anordnung der identifizierten offenen Leserahmen und der potentiellen Funktionen der Gene aus *Actinoplanes* sp. mit der anderer Prokaryonten ist in der Abbildung 3.12 darstellt.

Abb. 3.12: Vergleich der für die Trehalose-6-Phosphat-Synthase-kodierenden Region aus *Actinoplanes* sp. mit der aus unterschiedlichen Prokaryoten.

Streptomyces coelicolor A3(2) (Redenbach et al., 1996); Mycobacterium tuberculosis H37Rv (Cole et al., 1998); E. coli =157:H7 (Makino et al., 1999); Rhizobium sp. NGR (Freiberg et al., 1997). Die Orientierungen des einzelnen ORFs sind durch Pfeile gekennzeichnet. Ein mit degenerierten Primern amplifiziertes 750 bp-Fragment ist oberhalb des *tps*1-Gens von Actinoplanes sp. SN223/229. dargestellt. Abkürzungen: *tps*1, *ots*A, *Rv*3490 = Gen für putative Trehalose-6-Phosphat-Synthase; *ots*B = Gen für putative Trehalose-6-Phosphat-Phosphatase; ORF1 = Gen für putatives ABC-Transporterprotein; ORF2 = unbekannt; ORF3 = Gen für putative Uroporphyrin-III-Methyltransferase; ORF = Gen für hypothetisches Protein.

3.3.3 Genprodukt des potentiellen tps1-Gens

Die insgesamt 462 Aminosäuren umfassende Tps1ase aus *Actinoplanes* sp. ist homolog zu anderen Trehalose-6-Phosphat-Synthasen aus verschiedenen Organismen. In der Tabelle 3.8 sind die Resultate des Homologievergleichs zusammengestellt. Die abgeleitete Aminosäuresequenz des *tps*1-Gens sowie das entsprechende Alignment sind in Anhang 7.2.6 darstellt.

Protein	Organismus	Länge (AS)	Identität (Gaps) [%]	Accession-Nr.	Referenz
Tps1	Actinoplanes sp.	462	-	-	diese Arbeit
OtsA	M. tuberculosis H37Rv	500	50 (5)	NP218007	Cole et al., 1998
Tps	S. coelicolor A3(2)	462	33 (3)	CAB93050	Redenbach et al., 1996
OtsA	<i>Rhizobium</i> sp. NGR234	464	32 (2)	AAB91813	Freiberg et al., 1997
OtsA	<i>E. coli</i> K12	474	31 (4)	AAC74966.1	Blattner et al., 1997
Tps	Pyrobaculum aerophilum IM2	737	37 (6)	AAL63365	Fitz-Gibbon et al., 2002
Tps	Selaginella lepidophylla	994	34 (4)	AAD00829	Zentella et al., 1999
Tps1p	S. cerevisiae AS2.1416	495	32 (4)	AAC16974	Duan et al., 1998
Tps	Kluyveromyces lactis ATCC8585	488	32 (5)	CAA51164	Luyten et al., 1993

Tab. 3.8: Homologievergleich der Trehalose-6-Phosphat-Synthasen verschiedener Organismen. Abkürzungen: Tps1, Tps1, OtsA = Trehalose-6-Phosphat-Synthase.

Die genetische Organisation der Gene *tps*1 bzw. *ots*A und *tps*2 bzw. *ots*B ist von Organismus zu Organismus verschieden. In den meisten Fällen bilden die Gene *tps*1 bzw. *ots*A und das Gen *tps*2 bzw. *ots*B ein Operon (Abb. 3.12). Im Gegensatz dazu liegen bei *Mycobacterium tuberculosis* ca. 370 bzw. 480 weitere Gene zwischen den Genen *ots*A und *ots*B2 bzw. *ots*B (De Smet et al., 2000). In *Streptomyces coelicolor* ist dagegen ein für ein putatives Protein kodierendes kleines Gen zwischen den Genen *ots*A und *ots*B lokalisiert (Redenbach et al., 1996), dessen Funktion noch nicht näher untersucht ist.

Um degenerierte Primer zur Amplifikation eines Teils von *tps*2 aus *Actinoplanes* sp. abzuleiten, wurden die Aminosäuresequenzen von bekannten Trehalose-6-Phosphat-Phosphatasen (OtsB bzw.Tps2) computergestützt miteinander verglichen. Im Rahmen dieser Arbeit war es allerdings nicht möglich, unter Verwendung der so erhaltenen degenerierten Primer (otsB1und otsB2) einen Teil von *tps*2 zu amplifizieren. Auch eine Sequenzanalyse der weiter stromaufwärts bzw. stromabwärts des *tps*1-Gens gelegenen Bereiche (ca. 6 kb *Kpn*I-bzw. ca. 7 kb *Sph*I-Fragment) erbrachten keine Hinweise auf die Anwesenheit eines *tps*2-homologen ORFs.

3.3.4 Genprodukte der stromaufwärts bzw. stromabwärts gelegenen DNA-Bereiche des *tps*1-Gens

Für die abgeleitete Aminosäuresequenz des ORF2, der stromaufwärts des Gens *tps*1 lokalisiert ist, konnte keine eindeutige Homologie zu anderen Proteinen in Datenbanken gefunden werden. Der ORF1 ist homolog zu einem Gen für ein putatives ABC-Transporter-ATP-Bindungsprotein aus *Streptomyces coelicolor* A3(2) (Redenbach et al., 1996) bzw. *Mycobacterium leprae* (Cole et al., 2001) und der ORF3 wies Homologien zu einem putativen Uroporphyrin-III-Methyltransferase-Gen aus *Streptomyces coelicolor* A3(2) (Redenbach et al., 1996) auf.

3.4.1 Konstruktion von Vektoren zur heterologen Expression der Gene *tre*Y, *treZ*, *treS* und *tps*1 in *E. coli*

Um grössere Mengen der Enzyme für eine weiterführende biochemische Charakterisierung zu erhalten, wurden die entsprechenden Gene jeweils in einen Expressionsvektor kloniert und heterolog in *E. coli* BL21 (DE3)pLysS exprimiert. In dem hierzu verwendeten Expressionsvektor pET19b steht die Expression des Gens unter der Kontrolle des mit IPTG induzierbaren *lac*UV5-Promotors.

Um einen optimalen Translationsstart für die Überexpression des Proteins zu gewährleisten, sollte das Startcodon des Vektors pET19b genutzt werden. Aus diesem Grund musste eine *Nde*I-Erkennungssequenz am Startcodon der Gene *tre*Y, *tre*X, *tre*S und *tps*1 konstruiert werden (Abb. 3.13). Zur Generierung entsprechender Schnittstellen (*NdeI/Bam*HI) an den DNA-Fragment-Enden wurden Polymerasekettenreaktionen mit chromosomaler DNA aus *Actinoplanes* sp. unter Verwendung geeigneter Primer durchgeführt (Tab. 2.4). Die amplifizierten Fragmente wurden direkt in den *Eco*RV geschnittenen Vektor pUCBM20 ligiert und in *E. coli* DH5 α transformiert. Anschließend wurden die Plasmide zur Kontrolle ansequenziert. Die entsprechenden DNA-Fragmente aus diesen Plasmiden wurden mit den Restriktionsendonukleasen *NdeI/Bam*HI einem Doppelverdau unterzogen und aus dem Gel isoliert. Um die Proteine mittels Ni-Affinitätschromatographie aufreinigen zu können (Yoshihisa & Ito, 1996), wurden die DNA-Fragmente über *NdeI/Bam*HI in den Expressionsvektor pET19b umkloniert. Über den Expressionsvektor werden zehn

Histidinreste an den N-Terminus der zu exprimierenden Proteine fusioniert. Die rekombinanten Plasmide wurden in den Stamm *E. coli* BL21 (DE3)pLysS transformiert, der weder die OmpT-Protease, noch Lon-Protease synthetisiert, um einen Abbau der überexprimierten Proteine zu vermeiden. Die rekombinanten Expressionsplasmide wurden mit pETTreY, pETTreZ, pETTreS bzw. pETTps1 bezeichnet.

Abb. 3.13: Darstellung der Expressionsvektoren pETTreY, pETTreZ, pETTreS bzw. pETTps1.

A: Exemplarische Darstellung der Nukleotid- und Aminosäuresequenz der Fusionstelle im Expressionsplasmid pETTreZ. B: Nuklotidsequenz mit eingefügten Restriktionsstellen im Vektor pET19b. Die für die Enterokinase-Schnittstelle kodierenden Nukleotide sowie die *Nde*I-Schnittstelle sind unterstrichen. Das Startcodon für das Gen *treZ* ist fettgedruckt. Die Translationsrichtung ist durch einen Pfeil gezeichnet. Die Aminosäuresequenz ist im Ein-Buchstaben-Code unterhalb der Nukleotidsequenz angegeben. Abkürzungen: *ori* = Replikationsursprung für *E. coli*; *amp* = Ampicillin-Resistenzgen; *lacI* = Lactose-Repressorgen; *treY* = Gen für MTSase; *treZ* = Gen für MTHase; *treS* = Gen für Trehalosesynthase; *tps*1 = Gen für Trehalose-6-Phosphat-Synthase.

3.4.2 Konstruktion eines Vektors zur heterologen Expression eines bifunktionalen Fusionsproteins aus MTSase (TreY) und MTHase (TreZ)

Bifunktionale Fusionprotein zeigten einerseits einen großen Vorteil bei der Aufreinigung der Proteine mittels Ni-Affinitätschromatographie und andererseits konnte eine höhere Enzymaktivität aufgrund der erhöhten Transfereffizienz der Substrate zwischen den beiden aktiven Zentren, wie die z. B. bereits bei bifunktionaler Trytophansynthase (Pan et al., 1997) und Dihydrofolatreduktase-Thymidylatsynthase (DHFR-TS) (Elcock et al., 1997) gezeigt werden.

Aus diesem Grund wurde ein Vektor konstruiert, der die heterologe Expression eines bifunktionalen Enzyms bestehend aus der MTSase (TreY) und MTHase (TreZ) von *Actinoplanes* sp. ermöglichen sollte. Zunächst wurde durch PCR ein Adeninrest zwischen den Genen *tre*Y und *tre*Z eingefügt und gleichzeitig eine *Hpa*I-Schnittstelle generiert, um die beiden Gene über die *Hpa*I-Erkennungsstelle fusionieren zu können. Die Vektorkonstruktion für die Expression des bifunktionalen Proteins ist schematisch in den Abbildungen. 3.14 und 3.15 dargestellt.

Abb. 3.14.: Schematische Darstellung zur Fusion von *tre*Y und *tre*Z mit einer Auswahl der Oligonukleotide, die zur Konstruktion des Fusionsproduktes (MTSase und MTHase) verwendet wurden.

Die Aminosäuresequenzen sind unterhalb der Nukleotidsequenz im Ein-Buchstaben-Code angegeben. Die Restriktionsstelle für *Hpa*I ist unterstrichen. Der inserierte Adeninrest ist fettgedruckt. Die Lage und Orientierung der Oligonukleotide TREYF1 und TREZF2 ist durch Pfeile gekennzeichnet. * = Stoppcodon.

Das 2,3 kb große PCR-Produkt mit dem *tre*Y-Gen wurde aus chromosomaler DNA von *Actinoplanes* sp. mit den Primern treY1 und TREYF1 *in vitro* amplifiziert, wodurch im N-Terminus eine Schnittstelle für *Nde*I und am C-Terminus für *Hpa*I erzeugt wurden. Anschließend wurde das Amplifikat direkt in den *Eco*RV-geschnittenen Vektor pUCBM20 ligiert und in *E. coli* DH5α transformiert. Das Plasmid wurde mit pUCTreYF bezeichnet. Ebenfalls mittels PCR erfolgte unter Verwendung der Primer TREYF2 und treZ2 die Amplifikation eines 1,7 kb großen Produkts mit dem *tre*Z-Gen. Das PCR-Produkt wird von den Schnittstellen *Hpa*I und *Bam*HI flankiert, welche durch die Primer generiert wurden. Nach der Ligation in pUCBM20 wurde der so erhaltene Vektor pUCTreZF genannt. Die

Plasmide pUCTreYF und pUCTreZF konnten zur Kontrolle ansequenziert werden. Nach einer Doppelrestriktion mit den Restriktionsendonukleasen *Nde*I und *Hpa*I wurde das 2,3 kb-Fragment aus dem Plasmid pUCTreYF in die korrespondierenden Schnittstellen des Plasmids pUCTreZF ligiert, um einen offenen Leserahmen für beide Gene zu erzeugen. Nach einer *NdeI/Bam*HI-Doppelrestriktion wurde das insgesamt 4 kb große Fragment aus dem Plasmid pUCTreYZF isoliert, anschließend in den Expressionsvektor pET19b umkloniert und in *E. coli* BL21 (DE3)pLysS transformiert. Die Vektorkonstruktion des MTSase- und MTHase-Fusionproteins ist in der Abbildung 3.15 schematisch dargestellt.

3.5.1 Optimierung der heterologen Expression der MTSase, MTHase, TreSase und Tps1ase in *E. coli* und Aufreinigung durch Ni-Affinitätschromatographie

Der Stamm *E. coli* BL21 (DE3)pLysS mit den Expressionsplasmiden pETTreY, pETTreZ, pETTreS und pETTps1 wurde bei einer OD₆₀₀ von 0,3 zusätzlich mit 1 mM IPTG induziert und weiter bei 37 °C bis zu einer OD₆₀₀ von 1,0 kultiviert. Nach der Induktion mit IPTG waren die überexprimierten Proteine in *E. coli* unlöslich. Es ist davon auszugehen, dass die Überexpression der Proteine zur Bildung von Zelleinschlusskörpern (*inclusion bodies*) führte. Die Bildung unlöslicher Proteine bei einer Überexpression in *E coli* wurde schon häufig beobachtet (Rajan et al., 2001; Nominé et al., 2001). Durch Absenken der Kultivierungstemperatur von 25 °C auf 15 °C in 5 °C-Schritten konnte die Löslichkeit des Proteins jedoch positiv beeinflusst werden. Aufgrund des langsamen Wachstums wurde die Expression des Proteins bei der abgesenkten Kultivierungstemperatur (15 °C) allerdings deutlich reduziert (Abb. 3.16: Vergleich Spur 1 mit Spur 2).

Nach der Induktion mit 1 mM IPTG bei einer OD_{600} von 0,3 wurde die Kultur bei 15 °C und 180 rpm über Nacht im Luftschüttler inkubiert. Nach der Zentrifugation der Kultur wurde das Zellpellet bei –20 °C gelagert (2.4.2.1). Anschließend wurden die Zellen durch kurzes Auftauen bei Raumtemperatur in Tris/HCl-Puffer (50 mM, pH7,0) aufgeschlossen. Nach dem Zellaufschluß wurden die rekombinanten Proteine durch Ni-Affinitätschromatographie unter nativen Bedingungen aufgereinigt (2.4.2.2). Die an die Ni-NTA-Matrix gebundenen Proteine wurden mit Imidazol-haltigen Puffer (5 - 250 mM) bei 4 °C eluiert. Anschließend wurden SDS-PAGE-Analysen sowie immunologische Nachweise durchgeführt.

Abb. 3.15: Schematische Darstellung der Vektorkonstruktion zur Expression des MTSase/MTHase-Fusionproteins.

Offene Leserahmen sind durch Pfeile gekennzeichnet. Eine Auswahl an Restriktionsschnittstellen ist angegeben. Abkürzungen: *amp*, Ampr = Ampicillin-Resistenzgen; *lacZ* = für das α -Peptid codierender Teil des *lacZ*-Gens von *E. coli*; *lacI* = Lactose-Repressorgen; ori = Replikationsursprung für *E. coli*; *treY* = MTSase-Gen; *treZ* = MTHase-Gen; *treYZF* = Gen für bifunktionales Enzym.

In der Abbildung. 3.16 ist als Beispiel der Nachweis der Überexpression des Proteins TpS1 mit Coomassie-Färbung dem einer immunologischen Detektion gegenübergestellt.

Abb. 3.16: *Western*-Analyse nach Aufreinigung des rekombinanten Proteins Tps1 aus *Actinoplanes* sp. SN223/229 unter nativen Bedingungen.

Western-Analyse (2.4.5); 10% ige SDS-PAGE (2.4.4.1); primärer Antikörper (IgG Anti-His₅ aus Maus); sekundärer Antikörper (IgG Anti-Maus).

Spur M: Proteinmarker; Spur 1: Unlösliche Fraktion von *E. coli* BL21 (DE3) pLysSpETTps1 bei 37 °C (ca. 66 kD) nach Zellaufschluß; Spur 2: Rohextrakt von *E. coli* BL21 (DE3) pLysSpETTps1 bei 15 °C nach Zellaufschluß; Spur 3: Durchlauf nach Inkubation mit Ni-NTA-Agarose; Spur 4: Elution mit 5 mM Imidazol-Puffer; Spur 5: Elution mit 10 mM Imidazol-Puffer; Spur 6: Elution mit 50 mM Imidazol-Puffer; Spur 7: Elution mit 250 mM Imidazol-Puffer.

Zu diesem Zweck wurden der Rohextrakt der Expression des Gens *tps*1 und die mit 5 mM, 10 mM, 50 mM und 250 mM Imidazol eluierten Waschfraktionen auf zwei SDS-Gele aufgetragen. In der immunologischen Analyse konnte eine deutliche Expression des löslichen, rekombinanten Proteins nachgewiesen werden. Im Durchlauf (Spur 3) ist eine Proteinbande zu erkennen, da ein Teil des Proteins an die Ni-NTA-Säule nicht gebunden wurde. Der Proteinanteil, der nur schwach mit der Säule interagierte, wurde in dem ersten Waschschritt mit 5 mM Imidazol heruntergespült (Spur 4). In den beiden weiteren Waschschritten (10 mM, 50 mM) war die Proteinbande nicht mehr erkennbar (Spur 5 und Spur 6). Erst durch Zugabe von 250 mM Imidazol konnte der restliche noch gebundene Proteinanteil in größeren Mengen eluiert werden (Spur 7). Anhand der abgeleiteten Aminosäuresequenz war für das Protein Tps1 ein theoretisches Molekulargewicht von ca. 51 kDa berechnet worden. Im *Western Blot* bandierte das Protein jedoch bei ca. 66 kDa, da die zusätzlichen zehn N-terminalen Histidin-

Reste zusammen mit der Enterokinase-Schnittstelle (Abb. 3.15) das Molekulargewicht des rekombinanten Proteins vergrößern.

Aufgrund dieser Ergebnisse konnte davon ausgegangen werden, dass die Überexpression von löslichem Tps1-Protein nach der Induktion mit IPTG bei der Kultivierungstemperatur von 15 °C erfolgleich verlaufen ist.

3.5.2 Expression der MTSase, MTHase, TreSase, Tps1ase und des bifunktionalen Enzyms und Aufreinigung durch Ni-Affinitätschromatographie

Um grössere Mengen an rekombinantem Protein zu erhalten, wurde *E. coli* BL21 (DE3)pLysS mit den jeweiligen Plasmiden pETTreY, pETTreZ, pETTreS, PETTps1 bzw. pETTreYZF in größerem Maßstab angezogen. Wie unter 3.5 beschrieben, erfolgte die Kultivierung nach der Induktion mit 1 mM IPTG bei einer OD₆₀₀ von 0,3 über Nacht bei 15 °C. Anschließend wurde die Kultur bei 4 °C für 10 min geerntet und das Zellpellet bei –20 °C gelagert. Nach dem Zellaufschluß durch Auftauen bei RT wurden die rekombinanten Proteine durch Ni-Affinitätschromatographie unter nativen Bedingungen bei 4°C aufgereinigt. Um nach der Aufreinigung über die Ni-NTA-Säule das Imidazol aus der Probe zu entfernen, wurde das Protein über eine Ultrafiltration mit einer Ausschlußgröße von 50 kDa umgepuffert und gleichzeitig ankonzentriert. Anschließend wurde ein Aliquot des Filtrats einem immunologischen Nachweis unterzogen und zur weiteren Charakterisierung verwendet (2.4.6). Bei dem immunologischen Nachweis ist in den Spuren 2 bis 5 jeweils eine ausgeprägte Proteinbande im Vergleich zur Negativkontrolle in Spur 1 (*E. coli* BL21 (DE3)pLysSpET19b) zu erkennen. Somit konnten die rekombinanten Proteine TreY, TreZ, TreS und Tps1 aus *Actinoplanes* sp. in löslicher Form exprimiert werden (Abb. 3.17).

Abb. 3.17: *Western*-Analyse nach Aufreinigung der rekombinanten His-*tag*-Proteine aus *Actinoplanes* sp. SN223/229 unter nativen Bedingungen.

Western-Analyse (2.4.5); 10% ige SDS-PAGE (2.4.4.1); primärer Antikörper (IgG Anti-His₅ aus Maus); sekundärer Antikörper (IgG Anti-Maus).

Spur M: Proteinmarker; Spur 1: *E. coli* BL21 (DE3)pLysSpET19b als negative Kontrolle; Spur 2: Eluat von *E. coli* BL21 (DE3)pLysSpETTreY (ca. 83,9 kDa); Spur 3: Eluat von *E. coli* BL21 (DE3)pLysSpETTreZ (ca. 64,1 kDa); Spur 4: Eluat von *E. coli* BL21 (DE3)pLysSpETTreS (ca. 67,1 kDa); Spur 5: Eluat von *E. coli* BL21 (DE3)pLysSpETTreY (ca. 148 kDa) nach dem Zellaufschluß; Spur 7: Zellaufschluß von *E. coli* BL21 (DE3)pLysSpETTreYZF (ca. 148 kDa) unter denaturierenden Bedingungen. Das aus abgeleiteten Aminosäuresequenz berechnete theoretische Molakulargewicht der jeweiligen rekombinanten Proteine wurde angegeben.

Das rekombinante, bifunktionale Enzym TreYZF ist während der Expression bei 37 °C zu Einschlusskörpern aggregiert und ausgefallen (Abb. 3.17: Spur 6 und 7). Die in Spur 7 unter denaturierenden Bedingungen deutliche Proteinbande bei ca. 148 kDa ist in Spur 6 jedoch nicht vorhanden, da das unlösliche Protein TreYZF nach der Zentrifugation des Rohextraktes wahrscheinlich zusammen mit dem übrigen Zellbestandteilen pelletiert worden ist. Zur Vermeidung der Bildung von unlöslichem Protein wurde zum einen die Kultivierungstemperatur gesenkt, zum anderen NaCl, Sorbitol und Betain der Kultur zugegeben (Lottspeich, 1998). Nach einer Temperaturabsenkung von 25 auf 15 °C war das Fusionsprotein mittels SDS-PAGE jedoch immer noch nicht nachweisbar. Die Expression des Fusionsproteins unter osmotischen Stressbedingungen war ebenfalls nicht erfogleich. Die Zugabe von NaCl (4 %), Sorbitol (0,5 M) und Glycin-Betain (10 mM) zum Kulturmedium verursachte, dass die Zellen aufgrund des osmotischen Stresses sehr langsam wuchsen (Barth et al, 2000). Aus diesem Grund wurde versucht, die Expression des MTSase-/MTHase-Fusionsproteins in Streptomyces lividans TK23 durchzuführen. Zur heterologen Expression in

S. lividans T23 wurde das 4 kb große Insert des Expressionsvektors pETTreYZF über eine *NdeI/Bam*HI-Restriktion in den Schaukelvektor pPWW50, welcher einen Replikationsursprung für Streptomyces enthält, umkloniert und das rekombinante Plasmid pPWTreYZF genannt. Aufgrund der äußerst schwachen Expression in S. lividans TK23 konnte in einer nachfolgenden SDS-PAGE-Analyse durch Coomassie-Färbung allerdings keine ausgeprägte Proteinbande beobachtet werden; sie war nur immunologisch nachweisbar (nicht dokumentiert). Mittels Ni-Affinitätschromatographie unter nativen Bedingungen konnten keine nennenswerten Mengen des Proteins isoliert werden. Aufgrund der Schwierigkeit bei der Aufreinigung des Proteins musste der Rohextrakt in einem Enzymtest auf bifunktionale Aktivität eingesetzt werden (2.4.6.2).

3.6 Nachweis der Enzymaktivität von TreY, TreZ, TreYZF, TreS und Tps1 durch gekoppelte Enzymtests

Zum Nachweis der Bildung von Trehalose wurden die Proteine TreY, TreZ, TreS bzw. Tps1 unter Standardbedingungen mit dem jeweiligen Substrat inkubiert (von 1 min bis zu 60 min). Die Enzymaktivität von TreY mit TreZ, sowie TreYZF, TreS und Tps1 wurde dabei durch einen gekoppelten Enzymtest ermittelt (2.4.6.2). Das folgende Testprinzip wurde übergenommen, wobei der Glucosenachweis durchgeführt werden konnte:

Testprinzip1:

Trehalase \rightarrow 2 x Glucose Trehalose + H_2O -Glucose-Oxidase $Glucose + O_2 + H_2O$ – \rightarrow Gluconat + H₂O₂ Peroxidase \longrightarrow ABTS ox. + 2 H₂O $H_2O_2 + ABTS red. -$ Testprinzip 2: Trehalase Trehalose + H_2O – \rightarrow 2 x Glucose Hexokinase \rightarrow Glucose-6-Phosphat + ADP Glucose + ATP -Glucose-6-P-DH $Glucose-6-Phosphat + NADP^+$ \rightarrow 6-Phosphoglucolacton + NADPH + H⁺ Die Aktivitäten der Enzyme MTSase (TreY) mit MTHase (TreZ) bzw. Tps1ase stiegen signifikant bis zu einer Inkubationszeit von 40 min an, bei längerer Inkubation nahm die Aktivität wieder ab. Im Vergleich mit der Aktivität von MTSase mit MTHase zeigte die TreSase insgesamt nur eine geringe Enzymaktivität (Abb. 3.18).

Abb. 3.18: Graphische Auswertung der Enzymaktivitäten von MTSase (TreY) mit MTHase (TreZ), TreSase und Tps1ase zu verschiedenen Inkubationszeiten.

Durchführung nach 2.4.6.2; das ankonzentrierte Protein (2 μ g) wurde mit dem jeweiligen Substrat unter Standardbedingungen inkubiert (bei 37 °C, pH 7,0). Die Aktivität des Enzyms wurde durch den gekoppelten Enzymtest ermittelt.

Aufgrund der schwachen Expression musste der Rohextrakt von *Streptomyces lividans* TK23 (pPWTreYZF) direkt in einem Enzymtest auf bifunktionale Aktivität eingesetzt werden. Als negative Kontrolle wurde der Rohextrakt von *S. lividans* TK23 (pPWW50) im Testansatz verwendet. Die gebildete Trehalose wurde mittels des gekoppelten Enzymtests nachgewiesen (2.4.6.2.2 und 2.4.2.2.2). Die Ergebnisse sind in Tabelle 3.9 angegeben.

Tab. 3.9: Die Enzymaktivität des bifunktionalen Proteins TreYZF nach der 30 minütigen Inkubation bei 37 °C mit Maltoheptaose (20 mM).

Rohextrakt	umgesetzte Trehalose (µM)
S. lividans TK23 (pPWTreYZF)	481
S. lividans TK23 (pPWW50)	120
3.7 Charakterisierung der MTSase (TreY), TreSase und Tps1ase

Für eine nähere Charakterisierung der einzelnen Enzyme wurde die optimale Temperatur, das pH-Optimum, das Puffer-Optimum und ihre Metallionenabhängigkeit bestimmt.

3.7.1 Puffer-Optimum

Um zu überprüfen, ob die Aktivität der Enzyme wie z. B MTSase (TreY), TreSase und Tps1ase durch den Puffer verbessert werden kann, wurden Testansätze in den verschiedenen Puffern mit bzw. ohne Mercaptoethanol erstellt (2.4.7.2). Die Disulfid-Bindungen des Proteins können durch geringe Mengen an Mercaptoethanol gespalten werden, so dass sich die Aktivität der Enzyme unter Umstände verbessert.

Die Ergebnisse sind in Abbildung 3.19 graphisch dargestellt. Im Gegensatz zur Tps1ase zeigten die MTSase im eingesetzten Phosphatpuffer mit Mercaptoethanol bzw. die TreSase im Phosphatpuffer ohne Mercaptoethanol hohe Aktivitätswerte. Die höchste Aktivität für die Tps1ase wurde dagegen im Tris/HCl-Puffer ohne Mercaptoethanol nachgewiesen.

Abkürzugen: TH = Tris/HCl; TM = Tris/Maleinsäure; TEA = Triethanolamin; Cit. = Citrat; Acet. = Acetat; Phos. = Phosphat; m: mit Mercaptoethanol; o: ohne Mercaptoethanol. Durchführung nach 2.4.7.2; die Testansätze wurden mit dem jeweiligen Puffer (100 mM) versetzt (bei 37 °C für 10 bzw. 30 min). Die höchste Enzymaktivität wurde als 100 % definiert und die übrigen Enzymaktivitäten in Relation zu diesem Wert gesetzt.

3.7.2 pH-Optimum

Zur Bestimmung des pH-Optimums wurden die Proteine mittels Ultrafiltration ankonzentriert, unter Standardbedingungen mit dem jeweiligen Substrat inkubiert (2.4.7.2) und mittels des gekoppelten Enzymtests die Enzymaktivität ermittelt. Für den Enzymtest wurde der Bereich des pH-Wertes in Tris/HCl- bzw. Na-Phosphat-Puffer (100 mM) von 5 bis 9,5 eingestellt. (Abb. 3.20).

Die höchste MTSase-Aktivität lag bei einem pH-Wert von 7,0. Die optimalen Enzymaktivitäten für die TreSase und Tps1ase wurden bei einem pH-Wert von 7,5 bestimmt.

Abb. 3.20: pH-Optima der MTSase (TreY), TreSase und Tps1ase.

Durchführung nach 2.4.7.2; der Phosphat-Puffer (100 mM) wurde mit den ankonzentrierten Proteinen TreY bzw. TreS (jeweils 2 μ g) versetzt (bei 37 °C für 10 bzw. 30 min). Der Tris/HCl-Puffer (100 mM) wurde mit dem ankonzentrierten Protein Tps1 (2 μ g) versetzt (bei 37 °C für 10 min). Die jeweils höchste Enzymaktivität wurde als 100 % definiert und die übrigen Enzymaktivitäten bei den verschiedenen pH-Bereichen in Relation zu diesem Wert gesetzt.

3.7.3 Temperaturoptimum

Bei Temperaturen von 10 °C bis 60 °C wurden die Aktivitäten von MTSase (TreY), TreSase und Tps1ase bestimmt (2.4.7.1).

Dabei konnte die höchste Enzymaktivität der MTSase (TreY), TreSase und Tps1ase bei einer Temperatur von 35 °C bzw. 40 °C ermittelt werden (Abb. 3.21). Bei Temperaturen oberhalb von 45 °C nahmen die Enzymaktivitäten deutlich ab.

Abb. 3.21: Enzymaktivität der MTSase (TreY), TreSase bzw. Tps1ase bei verschiedenen Temperaturen.

Durchführung nach 2.4.7.1; das ankonzentrierte Protein (2 µg) wurde unter Standardbedingungen mit dem jeweiligen Substrat inkubiert (bei der angegebenen Temperatur für 10 min Inkubation). Die jeweils höchste Enzymaktivität der MTSase, TreSase bzw. Tps1ase bei der Temperatur wurde als 100 % definiert und die übrigen spezifischen Enzymaktivitäten bei den unterschiedlichen Temperaturen in Relation zu diesem Wert gesetzt.

3.7.4 Einfluss von Metallionen auf MTSase, TreSase bzw. Tps1ase-Enzymaktivität

Um den Einfluss von Spurenelementen auf die Enzymaktivität für die MTSase (TreY), TreSase und Tps1ase zu untersuchen, wurden die ankonzentrierten Proteineluate (2.4.2.3) mit potentiell inhibitorisch oder aktivierend wirkenden Substanzen versetzt (2.4.7.3). Die Ergebnisse des Einflusses von Metallionen auf die Enzymaktivitäten sind in der Abbildung 3.22 graphisch dargestellt.

Die Aktivitäten der MTSase (TreY), TreSase und Tps1ase konnten durch Mg²⁺-Metallionen gesteigert werden. Im Vergleich mit der Aktivität der MTSase bzw. TreSase wurde die eindeutige Aktivitätssteigerung der Tps1ase konnte bei der Inkubation mit dem Mg²⁺-Metallion nachgewiesen. Die Abbildung 3.22 zeigt, dass Schwermetallionen wie Cu²⁺ und Fe²⁺ eine stark inhibitorische Wirkung auf die MTSase (TreY), TreSase bzw. Tps1ase ausüben, ebenso wie es z. B für die MTSase (TreY) und MTHase (TreZ) aus *Arthrobacter* Q36 bereits nachgewiesen werden konnte (Nakada et al., 1995). Aufgrund der Komplexierung zweiwertiger Metallionen besitzt EDTA ebenfalls eine stark hemmende

Wirkung auf die Aktivitäten von MTSase, TreSase bzw. Tps1ase.

relative Aktivität (%)

Abb. 3.22: Einfluss von Metallionen bzw. EDTA auf die Enzymaktivität für die MTSase (TreY), TreSase bzw. Tps1ase.

Durchführung nach 2.4.7.3; das ankonzentrierte Protein (2 μ g) wurde unter Standardbedingungen mit dem jeweiligen Substrat inkubiert (bei 37 °C, für 10 min), wobei Metallionen (100 mM) ebenso wie EDTA zugegeben wurden. Abkürzung: Kon. = Kontrolle, ohne Zusatz von Metallion oder EDTA, deren Aktivität als 100 % definiert wurde.

3.7.5 Substratspezifität

Um zu überprüfen, welche Substrate von den Enzymen umgesetzt werden können, wurden die ankonzentrierten Proteine (2 μ g) mit verschiedenen Substraten unter Standardbedingungen inkubiert (2.4.7.4).

3.7.5.1 Substratspezifität der MTSase (TreY)

Die MTSase (2 µg) wurde mit verschiedenen Substraten (Maltotriose, Maltotetraose, Maltopentaose, Maltohexaose, Maltoheptaose) bei 37 °C für 10 min inkubiert und die Aktivität durch den gekoppelten Enzymtest ermittelt (2.4.6.2.1). Dabei konnte festgestellt werden, dass von der MTSase aus *Actinoplanes* sp. die Substrate Maltotetraose bis Maltoheptaose für die Trehalose-Biosynthese akzeptiert wurden. Gleiche Substratspezifität

wurde bereits für die MTSase aus *Arthrobacter* sp. Q36 beschrieben, wobei mit Maltopentaose der höchsten Aktivitätwert bestimmt werden konnte (Nakada et al., 1995). Dagegen wurde die höchste Enzymaktivität der MTSase von *Actinoplanes* sp. unter Verwendung des Substrats Maltoheptaose beobachtet. Die Resultate der Enzymaktivitäten mit den verschiedenen Substraten sind in der Tabelle 3.10 aufgelistet.

Tab. 3.10: Überprüfung der Substratspezifität der MTSase (TreY) von *Actinoplanes* sp. SN223/229, wobei als Bezugswert (0 %) der Zuckergehalt des Ansatzes mit hitzeinaktiviertem Enzym (100 °C, 5 min) verwendet wurde.

Substrat	DNSS-Nachweis (relative Zuckerumsatz (%))
Maltotriose	0
Maltotetraose	6,84
Maltopentaose	79,87
Maltohexaose	86,12
Maltoheptaose	99,09

3.7.5.2 Substratspezifität der TreSase

Die TreSase (2 µg) aus *Actinoplanes* sp. wurde mit den Substraten Maltose bzw. Trehalose bei 37 °C für 30 min inkubiert. Es zeigte sich, dass das Enzym als Substrat sowohl Maltose als auch Trehalose akzeptiert, ebenso wie die TreSase aus *Mycobacterium tuberculosis* (De Smet et al., 2000). Dabei wurde Trehalose mit einer Konzentration von 0,207 mM aus Maltose (0,6 mM) gebildet, während Trehalose (0,6 mM) zu Maltose mit einer Konzentration von 0,038 mM umgesetzt wurde.

In der Regel ist das *tre*S-Gen bei verschiedenen Organismen zusammen mit dem *pep*II-Gen, dessen Genprodukt Maltose in Maltose-1-Phosphat umwandelt (Grundmeier, 2001), innerhalb eines Operons lokalisiert (Abb. 3.7). Aus diesem Grund wurde ein möglicher Zusammenhang zwischen der Trehalosesynthese und einer regulatorischen Funktion von Maltose-1-Phosphat untersucht. Zum einen wurde die Enzymaktivität nach der Inkubation der verschiedenen Reaktionsansätze (2.4.6) mit bzw. ohne Maltose-1-Phosphat (50 mM) bestimmt. Dabei konnte keine unterschiedliche Aktivität der TreSase festgestellt werden (Ergebnisse nicht dokumentiert). Zum anderen wurde als Substrat Maltose-1-Phosphat statt Maltose im Testansatz eingesetzt und die Enzymaktivität gemessen. Das Enzym TreSase konnte Maltose-1-Phosphat zu Trehalose nicht umsetzen. Maltose-1-Phosphat hat daher weder einen Einfluss auf die Aktivität der TreSase noch kann es als Substrat dienen.

3.7.5.3 Substratspezifität der Tps1ase

Zur Bestimmung der Substratspezifität der Tps1ase wurde das Enzym mit Glucose-6-Phosphat bzw. mit XDP-Glucose (ADP-, TDP-, GDP- und UDP-Glucose) inkubiert. Nach 30minütiger Inkubation wurden die Enzymansätze auf ihren Trehalose-6-Phosphat-Gehalt mittels des gekoppelten Enzymtests untersucht (2.4.6.2.3). Der Enzymansatz mit UDP-Glucose zeigte eine deutliche Aktivität. GDP- und ADP-Glucose werden jedoch ebenfalls in geringerem Maße zur Trehalose-Synthese genutzt. Es kann somit festgestellt werden, dass Trehalose aus Glucose-6-Phosphat und UDP-Glucose in *Actinoplanes* sp. synthetisiert wird. Die Ergebnisse sind Tabelle 3.11 aufgeführt.

Substrat (8 mM)	freigesetzte Trehalose-6-Phosphat (mM)
UDP-Glucose	0,563
ADP-Glucose	0,024
TDP-Glucose	0
GDP-Glucose	0,127

Tab. 3.11: Überprüfung der Substratspezifität der Tps1ase nach 30 minütiger Inkubation.

In *Saccharomyces cerevisiae* konnte bereits gezeigt werden, dass sich Fructose-6-Phosphat aktivierend auf den Trehalose-6-Phosphat-Synthase-Komplex auswirkt (Londesborough & Vuori, 1993). Um einen Einfluss von Fructose-6-Phosphat auf die Trehalose-6-Phosphat-Synthase von *Actinoplanes* sp. zu untersuchen, wurde zusätzlich Fructose-6-Phosphat (20 mg/ml) in den Reaktionsansatz gegeben. Als Kontrollen wurden zum einen UDP-Glucose und Glucose-6-Phosphat (ohne Fructose-6-Phosphat), zum anderen UDP-Glucose und Fructose-6-Phosphat (statt Glucose-6-Phosphat) verwendet. Es wurde jedoch kein Unterschied bei der Bildung von Trehalose-6-Phosphat im Test- und Kontrollansatz festgestellt und Fructose-6-Phosphat statt Glucose-6-Phosphat konnte auch als Substrat nicht verwendet werden.

3.8 Nachweis der Trehalosebildung der MTSase mit MTHase, TreSase und Tps1ase durch die Dünnschichtchromatographie

Der Umsatz von Substrat in Trehalose durch die Enzyme (MTSase mit MTHase, sowie TreSase bzw. Tps1 mit unspezifischer akalischer Phosphatase als Ersatz für die Trehalose-6Phosphat-Phosphatase) wurde mittels Dünnschichtchromatographie überprüft (2.4.6.1). Nach der Inkubation des jeweils ankonzentrierten Proteins mit dem jeweiligen Substrat wurden die Proben neben Standardlösungen als Referenzen (Glucose, Maltose und Trehalose) auf eine DC-Platte aufgetragen und einer chromatographischen Auftrennung unterzogen (Abb. 3.23: A und B).

Als positive Kontrolle wurde der Rohextrakt von *E. coli* BL21 (DE3) pLysSpETTreS mit dem Substrat Maltose versetzt. Dagegen wurde der Rohextrakt von *E. coli* BL21 (DE3) pLysS ohne Expressionsplasmid mit dem Substrat Maltose als negative Kontrolle inkubiert. Ein Substanzfleck von Maltose in Spur 4 (Abb. 3.23: A) ist zu erkennen, welcher im Reaktionsansatz mit dem Rohextrakt ohne Expressionsplasmid nicht zu Trehalose umgesetzt wurde. In Spur 5 (Abb. 3.23: A) wurde die Bildung der Trehalose in der positiven Kontrolle nachgewiesen; außerdem ist ein zusätzlicher Substratfleck auf der Höhe von Glucose zu erkennen.

Ein deutlicher Substanzfleck in Spur 4 bis Spur 6 (Abb. 3.23: B) lag auf der Höhe des Trehalose-Standards. In Spur 4, wobei die Enzyme MTSase (TreY) und MTHase (TreZ) mit dem Substrat Maltohexaose versetzt wurden, sind zwei ausgeprägte Substanzflecken zu erkennen, die vermutlich Trehalose und Maltose entsprechen. Aufgrund der unterchiedlichen Intensität der Substanzflecken könnte die Maltohexaose durch die Enzyme MTSase und MTHase vermutlich zu zwei Molekülen Trehalose und einem Molekül Maltose umgesetzt werden. Im Vergleich dazu konnte in Spur 5 ein zusätzlicher Substanzfleck detektiert werden, wobei hier das Enzym TreSase mit dem Substrat Maltose inkubiert wurde. Es handelt sich hierbei um Glucose, welche nach der Hydrolyse der α -1,4-glycosidischen Bindung nicht α -1,1-glycosidisch verknüpft werden konnte. In Spur 6, in welcher die Enzyme Tps1ase und unspezifische alkalische Phosphatase mit den Substraten Glucose-6-Phosphat und UDP-Glucose inkubiert wurden, ist ein langegezogener Substanzfleck zu sehen. Eventuell handelt es sich hierbei um Trehalose.

Abb. 3.23: Dünnschichtchromatographischer Nachweis der Trehalosebildung bei *Actinoplanes* sp. SN223/229.

A: Spur 1: Glucose (20 mg/ml); Spur 2: Maltose (20 mg/ml); Spur 3: Trehalose (20 mg/ml); Spur 4: Ansatz nach Inkubation (Maltose (20 mg/ml) mit dem Rohextrakt von *E. coli* BL21 (DE3)pLysSpET19b als negative Kontrolle); Spur 5: Ansatz nach Inkubation (Maltose (20 mg/ml) mit dem Rohextrakt von *E. coli* BL21 (DE3)pLysSpETTreS als positive Kontrolle).

B: Spur 1: Glucose (20 mg/ml); Spur 2: Maltose (20 mg/ml); Spur 3: Trehalose (20 mg/ml); Spur 4: Ansatz nach Inkubation (Maltohexaose (20 mg/ml) mit dem ankonzentrierten Protein TreY (MTSase) mit TreZ (MTHase) (je 2 μ g)); Spur 5: Ansatz nach Inkubation (Maltose (20 mg/ml) mit dem ankonzentrierten Protein TreS (2 μ g)); Spur 6: Ansatz nach Inkubation (UDP-Glucose/Glu-6-P (je 60 mM)) mit dem ankonzentrierten Protein Tps1 (2 μ g) mit alkalischer Phosphatase; Probenvolumen: 1 μ l; Trägermaterial: Kieselgel G60; Laufmittel: n-Butanol/Pyridin/H₂O (7/3/1); Die Anfärbung der Substanzen mit Methanol/H₂SO_{4konz} (80/20).

3.9. Nachweis der Trehalosebildung mittels HPLC

Nach einer entsprechender Inkubation wurde die Trehalosebildung in den zwei Enzymansätzen (MTSase und MTHase mit dem Substrat Maltohexaose sowie TreSase mit dem Substrat Maltose) mittels HPLC quantativ überprüft.

Zur Identifizierung der in den Ansätzen enthaltenen Substanzen wurden verschiedene Standardlösungen (Glucose, Maltose, Trehalose, Maltotriose, Maltotetraose, Maltopentaose) für eine Eichung verwendet. Die Abbildung 3.24, B zeigt für den Trehalose-Standard zwei Peaks mit einer Retentionszeit von 16,93 bzw. 17,74 min; eine Erklärung dafür kann nicht gegeben werden. Ein Peak für Maltose ist dagegen nach 13,20 min ist zu beobachten (Abb. 3.24: A) Bei der HPLC-Analyse der Reaktionsansätze mit MTSase (TreY) und MTHase (TreZ) (Abb. 3.25: B) und mit TreSase (Abb. 3.25: A) konnten drei Substanzen

nachgewiesen werden. Die Substanz mit einer Retentionszeit von 6,12 min entsprach Glucose, welche nach der Hydrolyse α -1,4-glycosidischen Bindung freigesetzt werden konnte. Bei den beiden anderen Substanzen handelt es sich um Trehalose (Retentionszeiten von 16,93 bzw. 17,74 min) und Maltose (Retentionszeit von 13,29 min). Hierbei konnte Maltohexaose durch die Enzyme MTSase und MTHase zu zwei Molekülen Trehalose und einem Moleküle Maltose umgewandelt werden. Maltotriose als Standard wird nach einer Retentionszeit von 25,48 min detektiert (nicht dokumentiert).

Abb. 3.24: HPLC-Chromatogramm der Standards von Maltose und Trehalose.

A: Maltose-Standard (20 mg/ml); B: Trehalose-Standard (20 mg/ml); Probenvolumen: 50 μ l; Laufmittel: Acetonitril/H₂O (80/20); RI-Detektor; NH₂-Säule.

Abb. 3.25: HPLC-Analyse der Auftrennung des Reaktionsansatzes nach der Umsetzung von Maltohexaose durch die Enzyme MTSase (TreY) und MTHase (TreZ) und von Maltose durch das Enzym TreSase.

A: Inkubation von Maltose (20 mg/ml) mit dem ankonzentrierten Protein TreS (2 μ g), Probenvolumen: 50 μ l; B: Inkubation von Maltohexaose (20 mg/ml) mit MTSase und MTHase (je 2 μ g), Probenvolumen: 30 μ l; Laufmittel: Acetonitril/H₂O (80/20); RI-Detektor; NH₂-Säule.

3.10 HPLC-Analyse der Bildung der Komponente C bei der Umsetzung von Acarbose durch MTSase (TreY) bzw. TreSase

Komponente C trägt am Acarviosyl-*Core* anstelle der Maltose einen Trehalose-Rest (s. Einleitung). Eine Übertragung des Trehalose-Restes durch die Acarviosyl-Transferase (ATase) konnte nicht nachgewiesen werden (Hemker et al., 2001). Daraus ließ sich vermuten, dass die Komponente C-Biosynthese auf die Aktivität der MTSase zurückgeht. Es konnte auch nicht ausgeschlossen werden, dass aufgrund der Umsetzung der Maltose zu Trehalose die TreSase an der Bildung der Komponente C aus Acarbose beteiligt sein könnte.

Um die Bildung der Komponente C aus Acarbose durch MTSase (TreY) bzw. TreSase zu untersuchen, wurde Acarbose (30 mg/ml) zum einen mit MTSase (2 µg), zum anderen mit. TreSase (2 µg) versetzt und über Nacht inkubiert. Mittels HPLC wurde eine Umsetzung von

Acarbose zur Komponente C nachgewiesen. Bei der Identifizierung der Komponente C nach der Inkubation mit der MTSase mittels HPLC traten neben Acarbose (10,48 min) zwei weitere Peaks mit einer Retentionszeit von 6,53 min bzw. 11,93 min auf (Abb. 3.27: A). Die Retentionszeit von 11,93 min ist nahezu identisch mit der der Komponente C aus dem Standardgemisch (Abb. 3.26: B, Bayer AG, LEJ 3333-3). Die Abbildung 3.27 B zeigte keine Bildung der Komponente C aus Acarbose mit der Inkubation der TreSase. Diese Ergebnisse geben einen deutlichen Hinweis darauf, dass bei *Actinoplanes* sp. die Komponente C durch die MTSase aus Acarbose gebildet werden könnte.

Abb. 3.26: HPLC-Chromatogramm des Standards von Acarbose und Komponentengemisch (Bayer AG, LEJ 3333-3).

A: Standard von Acarbose (10 mM); B: Standard des Komponentengemisches (50 mg/ml). Laufmittel: Acetonitril/Phosphat-Puffer (27/73); UV-Detektor bei 210 nm; NH₂-Säule.

Abb. 3.27: HPLC-Analyse der Auftrennung des Reaktionsansatzs nach der Umsetzung der Acarbose durch MTSase (TreY) bzw. TreSase.

A: Inkubation von Acarbose (40 mM) mit MTSase (2 µg); B: Inkubation von Acarbose (10 mM) mit TreSase (2 µg); Laufmittel: Acetonitril/Phosphat-Puffer (27/73); UV-Detektor bei 210 nm; NH₂-Säule.

Um den Einfluss des Puffersystems auf die Bildung der Komponente C zu überprüfen, wurde das Enzym MTSase (2 μ g) mit dem Substrat Acarbose (40 mM) in den verschiedenen Puffern inkubiert. Die Ergebnisse sind in der Tabelle 3.12 aufgeführt. Der mit dem Phosphat-Puffer versetzte Testansatz zeigte die höchte Aktivität bei der Bildung der Komponente C.

Tab. 3.12: Nach der Inkubation der MTSase (2 µg) mit Acarbose (40 mM) in den verschiedenen Puffern gemessene relative Peakfläche.

Puffer (100 mM, pH7,0)	relative Peakfläche (%)
Tris/HCl	1,12
Citrat	1,75
Phosphat	2,48

Nach der Inkubation in einem Zeitraum von 15 min bis 12 h wurde die Bildung der Komponente C aus der Acarbose mittels HPLC überprüft. Innerhalb eines Inkubationszeitraums von 15 min bis 3 h wurde eine relative Peakfläche der Komponente C von 0,05 % gemessen. Bei 12stündiger Inkubation wurde die Bildung der Komponente C mit der relativen Peakfläche von 1,1 % nachgewiesen.

3.11 Gendisruption der Gene treY und treZ aus Actinoplanes sp. SN 223/229

Mittels HPLC-Analyse konnte nachgewiesen werden, dass die MTSase (TreY) an der Bildung der Komponente C beteiligt ist (Abb. 3.27: A). Um zu überprüfen, ob das Genprodukt des Gens treY aus Actinoplanes sp. für die Komponente C-Biosynthese essentiell ist, sollte das treY-Gen durch Mutagenese via Einzelkopie-Austausch mit einem Disruptionsvektor gezielt inaktiviert werden. Als Ausgangsvektor für die Konstruktion des treY-Disruptionsvektors diente pPLGa, ein pBCmac–Derivat, welches das *bgl*-Gen (β -Glucanase) aus Paenibacillus macerans (Borriss et al., 1990) trägt. Das als Reportergen zu nutzende bgl-Gen wurde mit Rekombinationsflanken versehen, die einen Teil des treY-Gens sowie den 3'-Bereich des benachbarten *tre*X-Gens (ca. 1,2 kb) und den 3`-Bereich des *tre*Z-Gens (ca. 1 kb) umfassen. Der so konstruierte Vektor wurde pPLGaTre12 genannt. Um eine mögliche Disruption über Antibiotikaresistenz selektieren zu können, wurde werterhin ein 1,6 kb großes ermE-Gen aus Saccharopolyspora erythraea, welches Erytromycinresistenz vermittelt, zwischen den beiden Flanken in pPLGaTre12 ligiert. Das resultierende Plasmid wurde pTre12Glu genannt. Das isolierte Plasmid pTre12Glu wurde mit dem Restriktionsenzym HindIII hydrolysiert, das ca. 4,3 kb-HindIII-Fragment isoliert und in den mit HindIII linearisierten Vektor pUCBM20 ligiert. Das rekombinante Plasmid erhielt die Bezeichnung pUCTre12. Zum Austausch des intakten chromosomalen Gens die gegen insertionsinaktivierte plasmidständige Kopie wurde pUCTre12 aus dem nicht-methylierenden E. coli ET12567-Stamm isoliert. Der isolierte Vektor pUCTre12 wurde sowohl für die Transformation der Protoplasten von Actinoplanes sp. (2.3.11.2) als auch für die Elektroporation von Actinoplanes sp. eingesetzt. Mittels beider Methoden konnten jedoch keine Transformanten erhalten werden.

Zum anderen wurde ein Vektor zur Konjugation von *Actinoplanes* sp. mit *E. coli* S17 konstruiert. Zur Konstruktion eines *E. coli-Streptomyces*-Schaukel-Vektors wurde das *rep*-Gen für *Streptomyces* aus dem Vektor pIJ702 isoliert und anschließend über *KpnI/ClaI* in den Vektor pBBR1MCS-2 ligiert, welcher sowohl einen Replikationsursprung für *E. coli* als auch ein *mob*-Gen trägt. Das Plasmid wurde als pBRPIJK bezeichnet. Das Insert aus dem Plasmid pPLGaTre12, welches die Rekombinationsflanken des *tre*Y-Gens sowie das *bgl*-Gen trägt, wurde über *Eco*RI und *Hin*dIII in pBRPIJK umkloniert und als pBJKTreGl bezeichnet. Anschließend wurde der zu übertragende Vektor pBJKTreGl in den Stamm *E. coli* S17-1 transformiert, welcher als Donor dient. Als Rezipient wurde der Stamm *Actinoplanes* sp. eingesetzt. Trotz wiederholter Versuche konnten mittels dieses Vektors keine Transkonjuganten erhalten werden.

4. Diskussion

Das Pseudooligosaccharid Acarbose nimmt als orales Antidiabetikum bei der Therapie des Diabetes mellitus Typ II eine wichtige Rolle ein (Bischoff et al., 1994). Bei der Fermentation von Actinoplanes sp. SN223/229 konnten neben Acarbose das Auftreten von höheren Homologen der Acarbose nachgewiesen werden. Es ist davon auszugehen, dass Actinoplanes sp. in der Lage ist, mittels der Acarvioslytransferase (ATase) die Nebenkomponenten, bei denen verschiedene Zucker auf die Acarviosyleinheit von Acarbose unter der Freisetzung von Maltose übertragen werden, zu bilden. Ein Umsatz von Trehalose und Acarbose zu Komponente C und Maltose konnte durch die ATase nicht nachgewiesen werden (Hemker et al., 2001). Eine Hypothese bezüglich der Beteiligung der Maltooligosyltrehalose-Synthase (TreY) an der Komponente C-Biosynthese sollte somit in dieser Arbeit überprüft werden. Dabei könnte das Enzym die Umwandlung der α -1,4 glycosidischen Bindung in eine α -1,1 glycosidische Bindung katalysieren. Im Rahmen der vorliegenden Arbeit konnte des weiteren ein an der Trehalose-Biosynthese beteiligter Gencluster im Genom von Actinoplanes sp. SN223/229 identifiziert, isoliert und charakterisiert werden. Darüber hinaus wurden die an der Trehalose-Biosynthese beteiligten Enzyme zur Charakterisierung des Komponente C-Stoffwechsels heterolog exprimiert.

4.1 Das Trehalose-Biosynthesegencluster aus Actinoplanes sp. SN223/229

4.1.1 Identifizierung und Sequenzanalyse der Maltooligosyltrehalose-Synthase (TreY) bzw. Maltooligosyltrehalose-Trehalohydrolase (TreZ)

Unter Verwendung der pUCTreY1E-Sonde (Reckenfelderbäumer, 1998) konnte bei der Durchmusterung einer bereits zur Verfügung stehenden λ -EMLB3-Genbank von *Actinoplanes* sp. SN223/229 die MTSase (TreY)/MTHase (TreZ)-kodierende Region identifiziert und isoliert werden. Eine nachfolgende Sequenzanalyse ergab, dass das ca. 8,2 kb große Fragment fünf offene Leserahmen enthält, darunter das potentielle *tre*-Operon, in dem die Gene *treX*, *treY* und *treZ* lokalisiert sind, und angrenzende Bereiche. Innerhalb des *tre*-Operons befinden sich stromabwärts des *treX*-Gens die Gene *treY* und *treZ*, wobei diese drei Gene um jeweils ein Basenpaar überlappen, wie auch z. B. bei *Sulfolobus acidocaldarius* (Maruta et al., 1996a) und *Arthrobacter* sp. Q36 (Maruta et al., 1996c). Vermutlich werden die drei Gene gekoppelt transkribiert. Stromaufwärts der jeweiligen *tre*-Gene liegen potentielle Shine/Dalgarno-Sequenzen (GGAGG) im optimalen Abstand von 5 – 12 Nukleotiden zum Startcodon ATG, welche mit der Konsensus-Shine/Dalgarno-Sequenz ((A/G)GGAGG) von *Streptomyces* (Strohl, 1992; Bibb & Coehen, 1985) gut übereinstimmen. Die nach Tinoco *et al.* (1973) berechnete Bindungsenthalpie ΔG der jeweiligen Ribosomenbindungsstellen entspricht den Werten von *Streptomyces*, die zwischen -9,2 kJ/mol und -92,88 kJ/mol liegen (Strohl, 1992). Die potentiellen –10- und –35-Regionen des Promotors konnten 133 bp stromaufwärts des Startcodons von *treX* identifiziert werden, wobei beide Elemente in einem Abstand von 23 bp angeordnet sind. Der nach Strohl (1992) berechnete Abstand zwischen diesen beiden Regionen beträgt im allgemeinen zwischen 16 und 18 Basenpaaren und der Promotor ist zwischen 9 und 345 Nukleotiden vor dem Transkriptionsstartpunkt lokalisiert.

Das Motiv eines hypothetischen Rho-unabhängigen Terminators mit einer GC-reichen invertierten Sequenzwiederholung konnte im intergenischen Bereich zwischen dem *tre*Z-Gen und ORF2 identifiziert werden, wodurch eine Terminationsstruktur für die drei *tre*-Gene ausgebildet werden könnte. Allerdings fehlt diesem potentiellen Terminator die sonst typische, anschließende Uridinreiche Sequenzabfolge (Abb. 3.5).

Die Struktur eines Rho-unabhängigen-Terminators in *E. coli* besteht aus einer ca. 30 - 50 bp GC-reichen invertierten Sequenzwiederholung und anschließenden Uridinbasenpaare (Reynolds & Chamberlin, 1992). Die beiden strukturellen Elemente sind wichtig für eine effiziente Termination der Transkription (Platt, 1981; Cheng et al, 1991; Yang et al., 1995; Abe & Aiba, 1996). Am Beispiel des *trp*-Operon bei *E. coli* konnte gezeigt werden, dass die GC-reiche invertierte Sequenzwiederholung nicht nur für die Termination erforderlich ist, sondern auch zur Stabilität der mRNA beiträgt (Mott et al., 1985). Eine Disruption der nachfolgenden Uridinreste reduzierte hingegen nur die Terminationseffizienz, nicht aber die mRNA-Stabilität (Abe & Aiba, 1996).

Da dem identifizierten potentiellen Terminator der *tre*-Gene von *Actinoplanes* sp. die nachfolgenden Uridinreste fehlen, kann nicht mit Sicherheit davon ausgegangen werden, dass an dieser Stelle eine Transkriptionstermination stattfindet. Andererseits liegen keine Erkenntnisse über die effiziente Termination in *Actinoplanes* sp. vor, so dass es noch keine Consensus-Sequenzen bzw. Strukturen für Terminatoren gibt, wie es bei *E. coli* der Fall ist.

Aufgrund der Position der potentiellen Promotor- und Terminatorsequenz kann vermutet werden, dass bei Actinoplanes sp. die drei Gene treX, treY und treZ ein tre-Operon ähnlich

wie z. B. bei *Mycobacterium tuberculosis* (De Smet et al., 2000), *Arthrobacter* sp. Q36 (Maruta et al., 2000), *Sulfolobus acidocaldarius* (Maruta et al., 1996a) bilden (Abb. 3.3). *Sulfolobus acidocaldarius* zeigt demgegenüber jedoch eine andere genetische Organisation. Das *tre*X-Gen ist zwischen den Genen *tre*Y und *tre*Z lokalisiert. Die Funktionen des *tre*-Operons aus *S. acidocaldarius* ähneln jedoch denen aus anderen Organismen (Maruta et al.,

1996a; Maruta et al., 2000).

Das abgeleitete Protein des *tre*X-Gens von *Actinoplanes* sp. SN223/229 hat eine Länge von 702 Aminosäuren. In Homologievergleichen zeigt die abgeleitete Aminosäuresequenz des *tre*X-Gens signifikante Ähnlichkeiten zu den Enzymen, welche zur Klasse der *Glycogen debranching* Enzyme bzw. Isoamylasen aus Prokaryonten und Eukaryonten gehören (Tab.3.3). Die abgeleitete Aminosäuresequenz des 2268 bp langen *tre*Y-Gens ist dagegen homolog zu Proteinen der Maltooligosyltrehalose-Synthase (MTSase)-Familie (Tab. 3.4: bis zu 50 % Identität). Dabei umfasst die von *Actinoplanes* sp. kodierte MTSase (TreY) 775 Aminosäuren mit einem Molekulargewicht von 83,9 kDa. Das weiter stromabwärts liegende *tre*Z-Gen für die Maltooligosyltrehalose-Trehalohydrolase (MTHase) mit dem Molekulargewicht von 64,1 kDa zeigt hohe Homologien zu prokaryotischen MTHasen, insbesonders zu denen von *Arthrobacter* sp. Q36 (56 % Identität), *Mycobacterium tuberculosis* (53 % Identität) und *Rhizobium* sp. (55 % Identität).

Das Protein TreX, welches der Isoamylase-Familie zugeordnet werden kann, hydrolysiert die α -1,6-glycosidischen Bindungen in Amylopectin, Glycogen und Dextrinen (Maruta et al., 1996a; Maruta et al., 1996c; Maruta et al, 2000; Gueguen et al., 2001). Die Maltooligosyltrehalose-Synthase (TreY) verwendet Maltooligosaccharide unterschiedlicher Länge als Substrat (Nakada et al., 1995b; Kim et al., 2000; Gueguen et al., 2001), wobei sie die α -1,4-glycosidische Bindung am reduzierenden Ende eines Maltooligosaccharids hydrolysiert und ein Oligomer dieses Glucans auf die C1-OH-Position eines Glucosemoleküls transferiert; dabei wird die α -1,4-Bindung am reduzierenden Ende in eine α -1,1-Bindung umgewandelt und es entsteht Maltooligosyltrehalose. Im Anschluss wird die benachbarte α -1,4-glycosidische Bindung der Maltooligosyltrehalose durch die Maltooligosyltrehalose-Trehalohydrolase (TreZ) abgespalten, so dass durch die beiden Enzyme Trehalose und das um zwei Moleküle Glucose verkürzte Maltooligosaccharid entsteht; letzteres kann erneut als Substrat verwendet werden (Nakada et al., 1995a; Nakada et al., 1995b; Kato et al., 1996;

Maruta et al., 1996a; Maruta et al., 1996b; Maruta et al., 2000; De Smet et al., 2000; Gueguen et al., 2001).

4.1.2 Identifizierung und Sequenzanalyse der Trehalosesynthase (TreS)-kodierenden Region

Mit Hilfe der Primer TreS1 und TreS2, die aus dem *tre*S-Gen von *A. missouriensis* abgeleitet wurden, konnte der entsprechende offene Leserahmen von *Actinoplanes* sp. mittels PCR isoliert werden. Im weiteren Verlauf der Arbeit konnte die ca. 3,3 kb umfassende Sequenz mit dem vollständigen offenen Leserahmen *tre*S und den angrenzenden Bereichen, die ein putatives Maltokinase- (*pep*II) sowie ein putatives Glucanohydrolase-Gen (*pep*I) beinhalten, ermittelt werden.

Die potentielle Shine/Dalgarno-Sequenz befindet sich jeweils 5 bp bzw. 7 bp vor den Startcodons der beiden Gene *tre*S und *pep*II. Die Abwesenheit einer Promotor- bzw. Terminator-Region in den intergenischen Bereichen zwischen den Genen *pep*I und *tre*S bzw. *tre*S und *pep*II deutet darauf hin, dass die drei Gene aus *Actinoplanes* sp. ein Operon bilden könnten. Eine analoge Situation wurde bei *Streptomyces coelicolor* A3 (2) mit dem *glg*B-Operon gefunden (Schneider et al., 2000).

Das Gen *tre*S kodiert für eine potentielle Trehalose-Synthase, welche Maltose in Trehalose umwandelt. Die 586 Aminosäuren umfassende Trehalosesynthase aus *Actinoplanes* sp. zeigt 84 % Identität zu dem TreS-Protein aus *Mycobacterium tuberculosis* (Cole et al., 1998) bzw. 73 % Identität zu dem TreS-Protein aus *Streptomyces coelicolor* (Bruton et al., 1995).

Die Gene *pep*I, *tre*S und *pep*II aus *Actinoplanes* sp. ähneln in ihrer Anordnung den Glycogenclustern I und II aus *Streptomyces coelicolor* (Schneider et al., 2000) bzw. *Mycobacterium tuberculosis* (Cole et al., 1998) (vgl. Abb. 3.9 mit Abb. 4.1). Aufgrund der Ähnlichkeit der genetischen Anordnung kann vermutet werden, dass die entsprechenden Genprodukte analoge Funktionen in *Actinoplanes* sp. erfüllen. Die Funktionen der Glycogencluster I und II aus *S. coelicolor* wurden bereits ermittelt (Schneider et al., 2000). Die genetische Anordnung der Trehalosesynthase (TreS)-kodierenden Regionen I und II aus *S. coelicolor* A3(2) ist in Abbildung 4.1 zu sehen.

Abb. 4.1: Genetische Organisation der Trehalosesynthase (TreS)-kodierenden Regionen I und II aus *Streptomyces coelicolor* A3 (2) (nach Schneider et al., 2000).

Abkürzungen: glgP = putatives Gen für eine Glycogenphosphorylase; glgX: putatives Gen für ein Glycogen *debranching* Enzym; *pepI*: putatives Gen für eine Glucanohydrolase; *tre*S: putatives Gen für eine Trehalosesynthase; *pepII*: putatives Maltokinase-Gen; *glgB* putatives Gen für ein Glycogen *branching* Enzym.

Bei S. coelicolor sind die Gene pepI sowie treS, pepII und glgB in einem Operon lokalisiert. Das pepI-Gen kodiert vermutlich für eine Glucanohydrolase, welche Glycogen spaltet. Vermutlich handelt es sich bei dem Produkt der Hydrolyse um Maltose, welche anschließend als Substrat für die TreSase dienen könnte. Bei Mycobacterium smegmatis wurde nachgewiesen, dass *glg*E-Mutanten (= *pep*I-Mutation) nur eine geringe Menge an Trehalose synthetisieren können (Schneider et al., 2000). Durch die TreSase wird die α -1,4-glycodische Bindung der Maltose in eine α -1,1-glycosidische Bindung umgewandelt, wobei Trehalose entsteht. Für das Gen pepII konnte noch keine Funktion bestimmt werden. Die abgeleiteten Genprodukte von *pep*II ähneln auf Aminosäuresequenzebene jedoch dem Protein Mph1 aus Actinoplanes missouriensis. welches Maltose zu Maltose-1-Phosphat umwandelt (Grundmeier, 2001). Das Gen pA2152 aus Pseudomonas aeroginosa (Stover et al., 2000) sowie ORF2 aus P. putida kodiert für ein bifunktionales Enzym mit den Aktivitäten der potentiellen TreSase und Maltokinase. Aus diesem Grund wurde ein Zusammenhang zwischen den Produkten des treS- und pepII-Gens untersucht. Die Ergebnisse zeigten, dass Maltose-1-Phosphat weder als Substrat noch als Aktivator bzw. Inhibitor für die Trehalosesynthase dient (s. 3.7.5.2). Die Trehalosesynthase (TreS) aus M. bovis sowie Mycobacterium smegmatis (De Smet et al., 2000) bzw. Actinoplanes sp. (s. 3.7.5.2) katalysiert sowohl die Hin- als auch die Rück-Reaktion, d.h. es kann auch Trehalose in Maltose umgesetzt werden. Es kann vermutet werden, dass die durch die TreSase aus Trehalose entstehende Maltose als Substrat für die potentielle Maltokinase (PepII) dienen kann. Das stromabwärts des pepII-Gens liegende glgB-Gen aus S. coelicolor kodiert für ein Glycogen *branching* Enzym, welches an der Glycogensynthese beteiligt ist (Schneider et al., 2000). Die beiden Glycogencluster in Streptomyces coelicolor werden in unterschiedlichen Zelldifferenzierungsphasen exprimiert. Der Glycogencluster I wird in der Phase der

Luftmycel-Differenzierung von exprimiert. Die Expression des Gens glgB im Glycogencluster I sorgt in der Übergangszone zwischen Substratmycel und Luftmycel für eine Kohlenstoffspeicherung in Form von Glycogen und die Expression von TreSase für Trehalose-Bildung. Hingegen wird der Glycogencluster II erst während der Sporenbildung im Bereich der Hyphenspitzen des Luftmycels aktiviert. Trehalose tritt in allen Stadien der Zelldifferenzierung auf und hohe Mengen an Trehalose werden besonders in den Sporen akkumuliert. Wie bereits bei Streptomyces (McBride & Ensign 1987a und 1987b; McBride & Ensign 1990; Miguélez et al., 1997; Rueda et al., 2001) beschrieben, dient die in Sporen akkumulierte Trehalose sowohl als Schutz gegen Austrockung als auch als Kohlenhydratreserve bei der Auskeimung. Bei der Sporenkeimung bzw. Auswachsen in stabförmige Zellen wird dort akkumulierte Trehalose durch die im Cytoplasma lokalisierte Trehalase innerhalb eines kurzen Zeitraums zu zwei Molekülen Glucose abgebaut und verwertet. Dagegen wird Glycogen in der Übergangszone zwischen Substratmycel und Luftmycel und in den unreifen Sporen gefunden.

4.1.3 Identifizierung und Sequenzanalyse der Trehalose-6-Phosphat-Synthase (Tps1)

Mit Hilfe von PCR-Primern, die aus konservierten Proteindomänen der Trehalose-6-Phosphat-Synthase-Familie abgeleitet wurden, konnte ein Teil des *tps*1-Gens von *Actinoplanes* sp. amplifiziert werden. Durch den Einsatz des Digoxigenin markierten DNA-Fragments (750 bp PCR-Tps1-Sonde) konnte ein ca. 3,3 kb *Bam*HI-Fragment, welches das *tps*1-Gens trägt, aus chromosomaler DNA von *Actinoplanes* sp. identifiziert und kloniert werden. Im Rahmen der weiteren Sequenzanalyse der Trehalose-6-Phosphat-Synthase-kodierenden Region konnten drei offene Leserahmen (ORF1, ORF2 und ORF3) identifiziert werden. Sowohl dem unvollständig sequenzierten ORF1 als auch dem ORF2 gehen mögliche Ribosomenbindungsstellen voraus.

Das 465 Aminosäuren-umfassende Tps1-Protein aus *Actinoplanes* sp. zeigt signifikante Homologien zu Proteinen der Trehalose-6-Phosphat-Synthase-Familie aus Pro- bzw. Eukaryonten (Tab. 3.7).

Bei den meisten Organismen erfolgt die Trehalose-Biosynthese aus aktivierten Vorstufen mittels des Trehalose-6-Phosphat-Synthase/Phosphatase-Systems. Durch die Trehalose-6-Phosphat-Synthase (OtsA bzw. TPS1) wird Glucose von Nucleosid-Diphosphat-Glucose

(ADP-, TDP-, GDP-, CTP-, UDP-Glucose) auf Glucose-6-Phosphat unter Abspaltung von Nucleosid-Diphosphat übertragen. Anschließend wird das entstehende Zwischenprodukt, Trehalose-6-Phosphat, durch die Trehalose-6-Phosphat-Phosphatase (OtsB bzw. TPS2) dephosphoryliert, wobei unter Freisetzung von Orthophosphat Trehalose entsteht.

Die genetische Organisation der Gene für die Trehalose-6-Phosphat-Synthase (OtsA bzw. TPS1) und die Trehalose-6-Phosphat-Phosphatase (OtsB bzw. TPS2) ist von Organismus zu Organismus verschieden. Zumeist bilden die beiden Gene ein Operon. Bei *Mycobacterium tuberculosis* hingegen wurden zwei unterschiedliche Trehalose-6-Phosphat-Phosphatase-Gene (*ots*B und *ots*B2) identifiziert. Die Kernregion des Gens *ots*B bzw. *ots*B2 ist homolog zu Trehalose-6-Phosphat-Phosphatasen verschiedener Bakterien. Die Gene *ots*A, *ots*B und *ots*B2 sind dabei über das gesamte Genom verteilt angeordnet (De Smet et al., 2000). In *Actinoplanes* sp. konnte stromabwärts bzw. stromaufwärts des *tps*1-Gens die Trehalose-6-Phosphat-Phosphatase (Tps2) nicht identifiziert werden, da vermutlich auch hier die beiden Gene *tps*1 und *tps*2 ebenfalls kein Operon bilden (Abb. 3.14).

4.2 Charakterisierung der Proteine TreX, TreY, TreZ und TreS

Die Proteine TreX sowie TreY, TreZ und TreS aus *Actinoplanes* sp. konnten aufgrund der durchgeführten Aminosäuresequenzvergleiche in die Familie 13 der Glycosylhydrolasen eingeordnet werden. Die konservierten Regionen I – IV mit den drei katalytisch wirksamen Aminosäuren, ein Glutamat-Rest und zwei Asparat-Reste sowie die als Substratbindungstelle dienenden zwei Histidin-Reste sind in den Proteinen TreX, TreY, TreZ und TreS aus *Actinoplanes* sp. ebenfalls in der entsprechenden Position lokalisiert (Tab. 3.5).

Bisher wurden die α -Amylasen (Matsuura et al., 1984; Qian et al., 1993; Kadziola et al., 1994) und die Cyclodextrin-Glycosyltransferasen (CGTasen) (Klein & Schulz 1991; Knegtel et al., 1996) intensiv, bis zur dreidimensionalen Röntgenstruktur untersucht. Aufgrund der konservierten Aminosäurereste können die α -Amylasen, Isoamylasen, CGTasen bzw. Pullulanasen als Mitglieder der Familie 13 der Glycosylhydrolasen klassifiziert werden (Herissat, 1991; Herissat & Bairoch, 1993). Die Stärke- bzw. Maltodextrin-umwandelnden Enzyme sind typischerweise in die Domänen A-E eingeteilt. Die katalytische Domäne A in den Enzymen besteht aus einem ($\beta/\alpha)_8$ -*Barrel*. Die kleine Domäne B befindet sich zwischen β_3 -Strang und α_3 -Helix in der Domäne A (Klein & Schulz, 1991; Qian et al, 1993). Die Domäne E bei der CGTase ist essentiell für die Bindung von granulärer Stärke (MacGregor,

116

et al., 2001). Die Region I - IV des aktiven Zentrums ist charakteristisch für die Familie 13 der Glycosylhydrolasen hochkonserviert. Für die Hydrolyse sind ein Glutamat-Rest und zwei Asparat-Reste von Bedeutung, welche an den Positionen 230, 206 und 297 der Taka-Amylase A aus Aspergillus oryzae (Qian et al., 1994; Janeček et al., 1997; Janeček, 1997) lokalisiert sind. Glu230 im aktiven Zentrum der Taka-Amylase A überträgt ein Proton auf das Sauerstoffatom der C1-O1-Bindung im Glucosemolekül. Anschließend wird die C1-O1-Bindung gespalten, wobei ein resonanzstabilisiertes Oxocarbenium-Ion an C1 gebildet wird. Im weiteren Verlauf lagert das Oxocarbenium-Ion das OH eines Wassermoleküls in der Lösung an, wobei das Produkt und der reprotonierte Säurekatalysator entstehen. Während Asparat 206 und Asparat 297 im aktiven Zentrum als Nucleophil fungieren, dient Glutamat 230 als allgemeiner Säure-Base-Katalysator. Die ionisierte Carboxylgruppe von Asp206 trägt zur Stabilisierung des entstandenen Oxocarbenium-Ions durch ionische Wechselwirkungen bei (elektrostatische Katalyse). Der Asparat 175-Rest der Taka-Amylase ist an der Bindung eines Ca²⁺-Ions beteiligt. Eine Ca⁺-Bindungsstelle ist zwischen den Domänen A und B lokalisiert. Metallionen wirken als Cofaktor auf die Aktivität und fungieren als stabilisierende Brückenglieder zwischen den Domänen A und B (Matsui & Svensson, 1997).

Aufgrund der Ähnlichkeiten der konservierten Regionen I - IV auf Aminosäureebene funktionieren die Proteine TreX, TreY, TreZ und TreS hinsichtlich ihres Mechnismus analog. In der Abbildung 4.2 ist der katalytische Mechanismus der Taka-Amylase A aus *Aspergillus oryzae* dargestellt.

Abb. 4.2: Katalytischer Mechanismus der Taka-Amylase A aus *Aspergillus oryzae* (modifiziert nach Brzozowski & Davies, 1997).

4.3 Heterologe Expression der Proteine TreY, TreZ, TreS, Tps1 und TreYZF

In dieser Arbeit wurden vier *tre* Gene aus *Actinoplanes* sp. SN223/229 heterolog in *E. coli* exprimiert. Bei der Kultivierungstemperatur von 37 °C konnten die Proteine TreY, TreZ, TreS und Tps1 mit dem Expressionsplasmidsystem (pET19b) nur in Form von *inclusion bodies* exprimiert werden. Diese Aggregate treten häufig bei der Überexpression rekombinanter Proteine, die nicht in nativer Konformation vorliegen, in Bakterien auf. Die Aggregatebildung kann durch eine limitierte Induktion unterdrückt werden (Lottspeich & Zorbas, 1998). Eine Kultivierung bei niedrigen Temperaturen sowie die Zugabe von NaCl, Sorbitol und Glycin-Betain kann sich auf die Bildung von *inclusion bodies* ebenfalls limitierend auswirken (Barth et al., 2000). Aufgrund des langsamen Wachstums bei der Kultivierungstemperatur von 15 °C wurden die Proteine TreY, TreZ, TreS und Tps1 aus

Actinoplanes sp. löslich exprimiert. Zur funktionellen Charakterisierung der Enzyme wurden die rekombinanten Proteine mit Hilfe der Ni-Affinitätschromatographie unter nativen Bedingungen über den angefügten His-*tag* aufgereinigt und immunologische nachgewiesen (Abb. 3.17).

Trotz abgesenkter Kultivierungstemperatur (15 °C) und osmotischer Stressbedingungen konnte das rekombinante Fusionsprotein TreYZF mit Hilfe des Expressionsvektorsystems pET19b in *E. coli* nicht in löslicher Form exprimiert werden. Hingegen gelang eine schwache, heterologe Expression des bifunktionalen Enzyms TreYZF in *Streptomyces lividans* T23 mit dem rekombinanten Plasmid pPWTreYZF, welches ebenfalls über einen angefügten His-*tag* verfügt. Wie bereits bei *Brevibacterium helvolum* (Kim et al., 2000) und *E. coli* (Seo et al., 2000) gezeigt, kann die Aktivität eines Fusionsproteins aufgrund der verbesserten Transfereffizienz der Substrate (Elcock et al., 1997; Pan et al., 1997) deutlich erhöht werden. Aufgrund der schwachen Expression in *S. lividans* konnte eine höhere Aktivität des Bienzyms TreYZF im Vergleich mit der Aktivität von MTSase (TreY) zusammen mit der MTHase (TreZ) allerdings nicht nachgewiesen werden.

4.3.1 Nachweis der Trehalosebildung und Charakterisierung der exprimierten Proteine

Mittels verschiedener Methoden kann eine Bildung von Trehalose nachgewiesen werden (Julio et al., 1997). Der indirekte, qualitative Trehalose-Nachweis ist möglich, indem DC-Platten mit verschiedenen Nachweisreagenzien wie z. B. Anisidinphtalat-, Pyridin-Reagenz (Nischmoto et al., 1995) zur Identifizierung der Trehalose entwickelt werden. Die enzymatische Aktivität der relevanten Enzymreaktion konnte mit photometrisch erfassbaren Hilfsreaktionen gekoppelt werden (Tourinho dos Santos et al., 1994; Zimmermann & Eaton, 1994) und somit indirekt über die dabei ermittelten Extinktionsänderungen gemessen werden. Mit Hilfe der HPLC konnte die Trehalose quantativ und qualitativ nachgewiesen werden (Vuorio et al., 1993).

Die Trehalosebildung aus Maltooligosacchariden durch MTSase (TreY)/MTHase (TreZ) von *Actinoplanes* sp. wurde mittels des gekoppelten Enzymtests sowie mit der dünnschichtchromatographischen Analyse bzw. HPLC-Analyse nachgewiesen (Abb. 3.18; Abb. 3.23: B; Abb. 3.25: B).

Die Charakterisierung der MTSase (TreY) bezüglich pH-, Temperatur- und Puffer-Optimum sowie Spurenelementabhängigkeit wurde ermittelt. Die Bestimmung des pH-Opimums erfolgte in einem Bereich zwischen 5,0 und 9,5, während die Temperaturabhängigkeit der Aktivität in einem Bereich von 10 °C bis 60 °C gemessen wurde. Die optimale Enzymaktivität der MTSase (TreY) wird bei einem pH-Wert von 7,0 im Phosphat-Puffer (100 mM) und einer Temperatur von ca. 35 °C erreicht. Die Enzymaktivität zeigt in einem Bereich um die optimale Wachstumstemperatur (28 – 30 °C) sowie den optimalen pH-Bereich (7 - 7.3) von Actinoplanes sp. SN223/229. Bei Temperaturen oberhalb von 40 °C ist die Enzymaktivität stark reduziert. Bei der Cofaktor-Bestimmung wurde die Enzymaktivität der MTSase (TreY) durch Zugabe von Metallionen Mg²⁺ im Vergleich zu der Kontrolle ohne Metallionen um ca. 20 % gesteigert. Bei Arthrobacter sp. Q36 wurde hingegen eine solche Aktivitätssteigerung durch Metallionen nicht gefunden (Nakada et al., 1995b). Die zweiwertigen Metallionen benötigen die α-Amylasen zur Aufrechterhaltung der Stabilität zwischen den Domänen A und B und als Cofaktoren im aktiven Zentrum zu der Aktivität (Brzozowski & Davies, 1997; Qian et al., 2001; Savchenko et al., 2002). Die Substratspezifität der MTSasen variiert von Organismus zu Organismus (Tab. 4.1). Das amylolytische aktive Zentrum der MTSase aus Actinoplanes sp. wird ebenfalls durch die Länge der Malooligosaccharide beeinflusst. Maltooligosaccharide mit zunehmender Länge erzeugten einen Anstieg der Enzymaktivität der MTSase. Die MTSase aus Actinoplanes sp. verwendet bevorzugt ebenso wie die aus Sulfolobus acidocaldarius (Gueguen et al., 2001) als Substrat Maltoseheptaose. Arthrobacter sp. Q36 synthetisiert dagegen Trehalose unter Verwendung der Maltopentaose (Nakada et al., 1995b). Keine Trehalosebildung aus Maltotriose könnte die Folge einer Überspannung bei Einlagerung im aktiven Zentrum sein, wie z. B. bei Lysozym beschrieben (Voet & Voet, 1994).

Die Trehalose als Endprodukt nach Inkubation der TreSase aus *Actinoplanes* sp. mit Maltose ist beim gekoppelten Enzymtest sowie bei der dünnschichtchromatographischen Analyse bzw. HPLC-Analyse zu erkennen (Abb. 3.18; Abb.3.23: B; Abb. 3.25: A).

Zur Charakterisierung der TreSase wurden wie der bei MTSase (TreY) die pH-, Temperaturund Puffer-Optima sowie die Spurenelementabhängigkeit bestimmt. Die optimale Enzymaktivität der TreSase lag zwischen den pH-Werten 6,5 und 7,0 im Phosphat-Puffer (100 mM). Eine TreSase aus *Pseudomonas* sp. F1 hat ihren optimalen pH-Wert bei 8,0 – 9,0 (Ohguchi et al., 1997) und TreSase aus *Mycobacterium smegmatis* bei 6,0 (De Smet et al., 2000). Im Vergleich zur optimalen Temperatur der TreSase aus *Pseudomonas* sp. F1 (45 °C) ist das Temperaturoptimum von *Actinoplanes* sp. etwas niedriger ($35 \circ C - 40 \circ C$). Die Zugabe von Mg²⁺-Ionen zeigte einen positiven Effekt auf die Aktivität der TreSase aus *Actinoplanes* sp. SN223/229. Die TreSase aus *Actinoplanes* sp. konnte, wie z. B. die aus *Mycobacterium bovis* als Substrat sowohl Maltose als auch Trehalose umsetzen (De Smet et al., 2000).

Trehalose-6-Phosphat kann bei Actinoplanes sp. aus Glucose-6-Phosphat und UDP-Glucose durch die Trehalose-6-Phosphat-Synthase (Tps1ase) gebildet werden. Mittels des gekoppelten Enzymtests wurden das pH- sowie Temperatur- und Puffer-Optimum sowie die Spurenelementabhängigkeit des Enzyms Tps1 bestimmt. Die höchste Aktivität zeigte die Tps1ase bei 35 °C und pH 7,5 in Tris/HCl-Puffer (100 mM). Phosphat-Puffer zeigte einen inhibierenden Effekt auf die Tps1sae von Actinoplanes sp. SN223/229. Wie bereits bei Saccharomyces cerevisiae beschrieben (Bell et al., 1998), nahm die Aktivität der Trehalose-6-Phosphat-Synthase Phosphatkonzentration mit steigender signifikant ab. Die Substratspezifität der Trehalose-6-Phosphat-Synthase variiert von Organismus zu Organismus. In vielen Fällen wird zur Trehalosesynthese UDP-Glucose genutzt. In Saccharomyces cerevisiae (Paschoalin et al., 1989) erfolgt die Trehalosesythese aus UDPbzw. ADP-Glucose und Glucose-6-Phosphat. In Actinomyceten wie Mycobacterium kann sowohl GDP-Glucose als auch UDP-Glucose für die Trehalosesynthese genutzt werden (Lapp et al., 1971). Die Tps1ase von Actinoplanes sp. konnte UDP- und GDP-Glucose umsetzen, nicht aber ADP- und TDP-Glucose.

Für den Trehalose-Phosphat-Synthase-Komplex von *Saccharomyces cerevisiae* wurde von Thevelein & Hohmann (1995) ein Regulatiosmechanismus für die Aufnahme von Glucose beschrieben. Dieser Komplex, welcher aus Trehalose-6-Phosphat-Synthase (TPS1), Trehalose-6-Phosphat-Phosphatase (TPS2) und den regulatorischen Untereinheiten (TPS3 und TSL1) besteht, wird durch Fructose-6-Phosphat allosterisch aktiviert und durch Phosphat gehemmt, welches durch die Trehalose-6-Phosphat-Phosphatase mit Trehalose-6-Phosphat freigesetzt wird. Fructose-6-Phosphat hat jedoch keinen Einfluss auf die Aktivität der Tps1ase aus *Actinoplanes* sp. (s. 3.7.5.3).

Die optimalen Bedingungen für die Aktivität der an der Trehalose-Biosynthese beteiligten Enzyme sind in Tabelle 4.1 zusammengefasst. Tab. 4.1: Vergleich der optimalen Bedingungen für die Aktivität der Proteine MTSase (TreY), TreS und Tps1 aus verschiedenen Organismen mit den der Enzyme MTSase (TreY), TreSase und Tps1ase aus *Actinoplanes* sp. SN223/229.

Mycobacterium smegmatis (TreS, OtsA, De Smet et al., 2000); *Sulfolobus acidocaldarius* (TreY, Gueguen et al., 2001); *Sulfolobus shibatae* (SsTDFE, Di Lernia et al., 1998) *Pseudomonas* sp. F1 (TreS, Ohguchi et al., 1997); *Thermus aquaticus* (TreS, Tsusaki et al., 1997); *Saccharomyces cerevisiae* (Tps1, Vandercammen et al., 1989); *E. coli* (OtsA, Klein et al., 1991). Die pI-Werte bzw. Molekulargewichte der einzelnen Proteine wurden zum einen mittels des Programms Husar (PETSTATS) berechnet, zum anderen aus der Literatur entnommen.

Protein	pH-Optimum	TempOptimum	Substratspezifität	MG (kDa)	pI-Wert
TreY (Actinoplanes sp.	6,5 – 7,0 (Phosphat-	35 – 40 °C	Maltoheptaose	83,9	5,58
SN223/229)	Puffer)				
TreY (Arthrobacter sp. Q36)	7,0	40 °C	Maltopentaose	81,0	4,1
TreY (S. acidocaldarius)	5,0 (Citrat-Puffer)	75 °C	Maltoheptaose	84,7	5,0
SsTDFE (S. shibatae)	4,5 (Citrat-Puffer)	70 °C	Maltohexaose	80,0	5,0
TreS (Actinoplanes sp.	6,5 – 7,0 (Phosphat-	35 – 40 °C	Maltose	67,1	4,64
SN223/229)	Puffer)				
TreS (M. smegmatis)	6,0	37 °C	Maltose	68,6	4,66
TreS (Pseudomonas sp. F1)	8,0-9,0	45 °C	Maltose	250	5,8
TreS (Thermus aquaticus)	6,5	65 °C	Maltose	105	4,3
Tps1 (Actinoplanes sp.	7,5 (Tris/HCl-Puffer)	35 °C	UDP-Glucose	51,0	10,18
SN223/229)					
Tps1 (S. cerevisiae)	6,8	37 °C	UDP-,ADP-Glucose	56,1	6,2
OtsA (E. coli)	7,5	37 °C	UDP-Glucose	53,8	6,85
OtsA (M. smegmatis)	7,0	37 °C	alle Glucosenukleotide	55,8	6,73

4.4 Die Bildung der Komponente C

Der α -Glucosidase Inhibitor Acarbose ist ein Pseudooligosaccharid, das struktuell zu den Aminoglycosiden gezählt wird. Eine *Core*-Struktur besteht aus einem ungesättigen C₇N-Cyclitol (Valienamin) und einer 4,6-Didesoxy-D-glucopyranose, die über eine α -1,4 Nglycosidische Bindung verknüpft sind. Diese *Core*-Struktur wird als Acarviosin bezeichnet und ist essentiell für die Hemmwirkung (Heiker et al., 1981). Neben Acarbose werden von *Actinoplanes* sp. verschiedene Homologen der Acarbosereihe während der Fermentation gebildet, die sich durch die Länge und die Lage der Substituenten am Acarbiosyl-*Core* unterscheiden (Frommer et al., 1979; Schmidt et al., 1997). Die Bildung der verschiedenen Homologen ist abhängig von der Zusammensetzung der Kohlenstoffquelle. Eine Aufklärung der Acarbose-Biosynthese und der Bildung der verschiedenen Homologen ist für die biotechnologische Fermentation von *Actinoplanes* sp. SN223/229 von Bedeutung, weil die Acarbose und die medizinisch nicht nutzbaren Nebenkomponenten durch aufwendige Verfahren voneinander getrennt werden müssen und darüber hinaus die Ausbeute der Acarbose erniedrigt wird.

Die Acarbose-Biosynthese ist bisher nur teilweise aufgeklärt. Der C7N-Cyclit ist identisch mit dem Valienamin, einem Bestandteil von Validamycin A sowie Pyralomicin (Naganawa et al., 2002). Durch die Fütterung von [U-¹³C]-Glycerin wurde eine Beteiligung des Pentosephosphat-Weges an der Cyclit-Biosynthese mit Sedoheptulose-7-Phosphat als Vorstufe nachgewiesen (van Hülst, 1995). Das AcbC-Protein, welches als C₇-Cyclit Synthase aus Actinoplanes sp. identifiziert wurde, katalysiert die Umwandlung von Sedoheptulose-7-Phosphat zu 2-epi-5-epi-Valiolon, die Vorstufe für Valienamin-Einheit (Stratmann et al., 1999). Vergleichbare Ergebnisse wurden bei der Bildung des Bestandteils von Pyralomicin nachgewiesen (Naganawa et al., 2002). Die Fütterung mit D-[1-¹³C]-Glucose zeigte, dass 4-Keto-6-deoxy-D-glucopyranose Glucose-1-Phosphat vorausgegangener aus nach Dehydratisierung durch die dTDP-D-Glucose-4,6-Dehydratase synthetisiert wird (Goeke, 1986). Die weitere Reaktion der Bildung des Acarviosins aus dem Cycliten und dTDP-4-Keto-6-desoxy-D-Glucose ist noch unbekannt. Nach der Übertragung von Glucose bzw. Oligosacchariden auf das intrazellulär gebildete Acarviosin könnten primäre Komponenten über einen carrier-Transporter sekretiert werden (Abb. 4.6: Variante I). Alternativ ist es möglich, das intrazellulär gebildete Acarviosin durch ein noch nicht bekanntes Transportersystem aus die Zell ausgeschleust wird (Abb. 4.6: Variante II), wobei die Übertragung von Glucose bzw. Maltooligosacchariden auf das Acarviosin durch ATase extrazellulär abläuft. Das extrazelluläre Enzym, das die Acarviosyl-Maltose-Austauschreaktion katalysiert, wurde als Acarviosyl-Transferase (ATase) bezeichnet (Goeke 1986; Schaper 1991). Während der Biosynthese von Acarbose verknüpft die ATase den intrazellulär gebildeten und ins Medium abgegebenen Acarviosyl-Core extrazellulär mit Maltose und anderen Zuckern aus dem Medium (Hemker et al., 2001).

Acarviosyl-Maltose* (= Acarbose) + R-OH <u>ATase</u> Acarviosyl-OR (Komponente) + Maltose* Maltose* = radioaktiv markiert; R-OH = Zuckereinheit

Bei der Komponente C, die im Kulturfiltrat von *Actinoplanes* sp. gefunden werden kann, ist nun der Acarviosyl-*Core* statt mit einer Maltosyleinheit mit einer Trehalosyleinheit verknüpft. Da Trehalose nicht von der ATase als Substrat akzeptiert wird, könnte die MTSase (TreY) die Acarbose als Substrat verwenden und die α -1,4-glycosidische Bindung in eine α -1,1-glycosidische Bindung umwandeln (Hemker, et al., 2001).

Das jeweils ankonzentrierte Enzym MTSase (TreY) bzw. TreS wurde mit Acarbose inkubiert und die Produkte qualitativ mittels HPLC nachgewiesen (Abb. 3. 27: A). Das untersuchte Produkt nach Inkubation von Acarbose mit der MTSase wies im Vergleich zu Komponente C als Standard eine sehr ähnliche Retentionszeit auf (vgl. Abb. 3.26: B mit Abb. 3. 27: A). Es kann daher davon ausgegangen werden, dass die MTSase (TreY) die Biosynthese von Komponente C aus Acarbose katalysiert. In der Abbildung 3.27: A ist ein zusätzlicher Peak bei 6,44 min zu sehen. Es könnte sich bei diesem Peak um Komponente 2 handeln, die vermutlich als Nebenprodukt der MTSase-katalysierten Reaktion entsteht (s. Abb. 1.6).

Die Abbildung 4.3 zeigt hypothetische Biosynthesewege von Acarbose und der Komponente C aus Acarbose. Die Abbildung 4.3: A I zeigt einen möglichen Weg eines Nucleotid-aktivierten Acarviosin, wohingegen in A II die Beteiligung eines Nucleotid-aktivierten Valienols dargestellt ist, analog der Pyralomicin-Biosynthese in *Nonomuraea spiralis* entspricht (Nagawawa et al., 2002).

Abb. 4.3: Mögliches Schema der Acarbose- bzw. Komponente C-Biosynthese aus Acarbose durch die MTSase (TreY) aus *Actinoplanes* sp. SN223/229.

Abkürzung: MTSase (TreY): Maltooligosyltrehalose-Synthase; NDP: Nucleosid-Diphosphat; dTDP: Desoxythymidin-Diphosphat.

Die höchste Enzymaktivität der MTSase (TreY) aus *Actinoplanes* sp. wurde bei Inkubation mit Maltooligosacchariden als Substrat bestimmt (Abb. 3.18). Hingegen zeigte sich bei der Umsetzung von Acarbose nur die Bildung einer geringen Menge an Komponente C (s. 3.10). Eine Erklärung für die unter den *in vitro*-Bildungen beobachtete relativ geringe Ausbeute an Komponente C könnte entweder in einer *Feedback*-Hemmung der zur Familie 13 der Glycosylhydrolasen gehörenden MTSase (Tab. 3.5) durch das Endprodukt liegen oder in einer Hemmung des Enzyms durch Acarbose selbst bestehen. Eine unter *in vitro*-Bildung zu geringe Stabilität der MTSase dürfte auszuschließen sein, die Maltooligosaccharide unter definierten Bedingungen bis zu 40 min lang umgesetzt werden (Abb. 3.18).

Es wurde ebenfalls in Betracht gezogen, dass die TreSase (TreS) aufgrund der Umsetzung der Maltose zu Trehalose an der Synthese von Komponete C beteiligt sein könnte. Bei der HPLC- Analyse konnte die *in vitro*-Bildung von Komponente C aus Acarbose durch Trehalosesynthase (TreSase) jedoch nicht nachgewiesen werden (Abb. 3.27: B).

Andererseits ist denkbar, dass die Bildung von Komponente C durch eine Verknüpfung von Trehalose mit NDP-4-Amino-6-desoxyglucose (Abb. 4.4: B I; Abb. 4.5: C I) oder/und eine Isomerisierung des hypothetischen 4-Amino-6-desoxyglucosyl-(α -1,4)-Maltose mittels MTSase (TreY) (Abb. 4.4: B II) im Zuge der Pseudooligosaccharid-Biosynthese erfolgt (Pape, persönliche Mitteilung).

Abb. 4.4: Hypothetische Biosynthese von Komponente C mittels MTSase (TreY) bzw. TreSase aus *Actinoplanes* sp. SN 223/229.

Abkürzung: MTSase (TreY): Maltooligosyltrehalose-Synthase; NDP: Nucleosid-Diphosphat; TreSase: Trehalosesynthase.

Eine Vorstellung für die Bildung von höheren Homologen der Komponente C ist in der Abbildung 4.5: C II formuliert. Durch die MTSase (TreY) wird Maltooligosaccharid zu Maltooligosyltrehalose umgesetzt. Diese könnte dann auf eine der in Abbildung 4.3: AI oder A II angegebenen Wegen zu höheren Homologen der Komponente C umgesetzt werden.

Abb. 4.5: Hypothetische Biosynthese von Komponente C bzw. höherer Homologe mittels MTSase (TreY) bzw. MTHase (TreZ) aus *Actinoplanes* sp. SN 223/229.

Abkürzung: NDP: Nucleosid-Diphosphat; MTSase (TreY): Maltooligosyltrehalose-Synthase; MTHase (TreZ): Maltooligosyltrehalose-Trehalohydrolase.

Es konnte bis jetzt nicht geklärt werden, durch welches Transportsystem Pseudooligosaccharide extrazellulär ausgeschleust werden. Obwohl es keine ausreichenden Hinweise über einen Transporter-Mechanismus gibt, lässt sich die Hypothese aufstellen, dass intrazellulär synthetisierte primäre Komponenten sowie Komponente C über einen speziellen *carrier*-Transporter (Abb. 4.6, Variante I) aus der Zelle sekretiert werden (Stratmann, 1997). In Abbildung 4.6 ist ein mögliches Transportersystem der Komponenten dargestellt.

Abb. 4.6: Mögliches Schema des Acarbose-Stoffwechsels in *Actinoplanes* sp. (modifiziert nach Stratmann, 1997).

Abkürzungen: I und II = vermutliches *carrier*-Transporter-System; R = Glucose oder Oligosaccharide; TreY = Maltooligosyltrehalose-Synthase (TreY), AcbD = Acarviosyl-Transferase; AcbE = α -Amylase; AcbK = Acarbose-7-Phosphotransferase; F = MalF-ähnliches Membranprotein eines Bindeprotein-abhängigen ABC-Transporter (AcbF); G = MalG-ähnliches Membranprotein eines Bindeprotein-abhängigen ABC-Transporter (AcbG); gestrichelte Linien zeigen vermutete Reaktionen an.

Acarbose und Komponenten werden von *Actinoplanes* sp. synthetisiert und extrazellulär akkumuliert. So ergibt sich für *Actinoplanes* sp. ein Vorteil in der Nutzung des Substrats gegenüber konkurrierenden Organismen, da Acarbose und Homologe von konkurrierenden

128

Organismen als Substrat in die Zelle aufgenommen werden und intrazelluläre α -Glucosidasen gehemmt werden (Hemker et al., 2001).

4.5 Funktionen der Trehalose in Actinoplanes sp.

Wie bereits unter 1.2.1 erwähnt, wurden die bekannten drei Trehalose-Biosynthesewege in *Mycobacterium tuberculosis*, *M. bovis* und *M. smegmatis* nachgewiesen (De Smet et al., 2000). Die Bedeutung des Vorkommens mehrerer Biosynthesewege für ein Produkt wie Trehalose in einem Organismus konnte bislang nicht geklärt werden. So ist z. B. beschrieben, dass einige Bakterien über zwei der drei möglichen Diaminopimelinsäure (m-DAP)-Biosynthesewege verfügen (Wehrmann et al., 1998), und bei *E. coli* sind zwei verschiedene Glutamat-Biosynthesewege bekannt (Helling, 1998).

Bakterien verwenden Trehalose, die sich als nicht-reduziertes Disaccharid durch hohe Hydrophilie und chemische Stabilität auszeichnet, als extrazelluläre Kohlenhydratquelle, Kohlenhydratreserve, Osmolit (*compatible solute*), Stressmetabolit oder als strukturellen Bestandteil (Argüelles, 2000).

In den Gattungen *Mycobacterium, Nocardia, Rhodococcus* und *Corynebacterium* ist die mit Fettsäuren veresterte Trehalose als Bestandteil in Form eines Glycolipides (α , α -Trehalose 6,6,'-Dimycolat) in der Zellwand lokalisiert. Das als *cord factor* bezeichnete Glycolipid ist verantwortlich für die Pathogenität dieser Bakterien (Spargo et al., 1991).

Bacillus subtilis, E. coli, Saccharomyces cerevisiae, Neurospora sp., *Aspergillus niger* und *Candida albicans* können Trehalose als extrazelluläre Kohlenhydratquelle nutzen (Strøm & Kaasen, 1993; Horlacher & Boos, 1997; Dahl, 1997; Argüelles, 2000). *E coli* und *Bacillus subtilis* können die Trehalose als extrazelluläre Kohlenhydratquelle über das PEP-abhängigen-Phosphotransferase-System (PTS) aufnehmen. Trehalose wird in Form Trehalose-6-Phosphat über das Enzyme CBII^{Tre} und IIA^{Glu} des PTS ins Cytoplasma transportiert und durch die im Cytoplasma lokalisierte Trehalose-6-Phosphat-Hydrolase in Glucose und Glucose-6-Phosphat abgebaut (Boos et al., 1990; Horlacher & Boos, 1997; Dahl, 1997). Bei *E. coli* erfolgt die Trehalose-Aufnahme im Medium höher Osmolarität durch einen alternativen Weg, wobei durch im Periplasma lokalisierte Trehalase Trehalose in zwei Moleküle Glucose gespalten und über das Enzym IICB^{Tre} und IIA^{Glu} (Klein et al., 1995) vom PTS ins Cytoplasma transportiert wird.

Das Trehalosesynthase-System OtsA/OtsB bei *E. coli* wird durch hohe Osmolarität induziert und in größeren Mengen Trehalose als Schutzmetabolit (als *compatible solute*) bei hohen osmotischen Konzentrationen akkumuliert (Strøm & Kaasen, 1993; Horlacher & Boos, 1997). Weitere Beispiele finden sich bei dem extrem-halophilen *Ectothiorhodospira halochloris* (Galinski & Herzog, 1990), einigen Schwefelpurpurbakterien wie z. B *Rhodosprillium* (Welsh et al, 1998) und einigen Cyanobakterien (Page-Sharp et al., 1999).

Bei *Saccharomyces cerevisiae* spielt die Trehalose-6-Phosphat-Synthase (TPS1) eine regulatorische Rolle im Glycolysestoffwechel. Aufgrund der Deregulation der Glucose-Aufnahme konnten die *tps*1 Mutanten in Glucose- oder Fructose-haltigen Medien schwach wachsen (De Silva-Udawatta & Cannon, 2001). Darüber hinaus konnte nachgewiesen werden, dass eine Mutation von TPS1 zu einem geringeren Widerstand gegenüber Stress wie z. B. Hitze führt (Hounsa et al., 1998).

Die intrazelluläre Akkumulation von Trehalose sowohl in den vegetativen Zellen des Mycels, als auch in Sporen von verschiedenen Streptomyceten wurde nachgewiesen (McBride & Ensign, 1987a, 1987b, 1990; Miguélez et al., 1997; Rueda et al., 2001). In diesen Sporen kann der Trehalose-Gehalt bis zu 15 - 20 % des Trockengewichts ausmachen (Elbein 1974; Thevelein, 1984). Die Trehalose dient sowohl als Kohlenhydratereserve als auch als Schutzmetabolit gegenüber Stress wie z. B. Austrockung.

Bislang konnte keine eindeutige physiologische Funktion der Trehalose in *Actinoplanes* sp. nachgewiesen werden. Daher stellt sich die Frage, welchen Zweck die in dieser Arbeit identifizierten drei Trehalose-Biosynthesewege in *Actinoplanes* sp. erfüllen könnte. Die Funktion sowohl eines Osmoprotektors als auch eines Hitzeprotektors in *Actinoplanes* sp. wurde untersucht, konnte aber nicht nachgewiesen werden (Kleinholz, 1994). Bei *Actinoplanes* weisen die Sporen eine hohe Widerstandsfähigkeit gegenüber Austrocknung auf. Viele Arten der Gattung *Actinoplanes* zeigen eine ausgesprochen hohe Toleranz gegenüber Austrockung, da der saprophytische Organismus *Actinoplanes* bevorzugt in Böden lebt (Vobis, 1989). Es müssen außerdem Schutzmechanismen für Thermotoleranz vorliegen. Man könnte postulieren, dass auch von *Actinoplanes* sp. Trehalose intrazellulär in vegetativen Zellen des Mycels akkumuliert und so ein Schaden durch Austrockung vermieden wird. Die Hydroxylgruppen der Trehalose bilden Wasserstoffbrücken zu den Phospholipiden der Membranen und halten somit deren Konfiguration trotz dehydratisiertem Zustand aufrecht. Bei der Fermentaion von *Actinoplanes* sp. konnte im Kulturfiltrat die Trehaloseakkumulation bis zu 3,3 g/l nachgewiesen werden (Kleinholz, 1994). *Actinoplanes* sp. synthesiert Acarbose

bzw. Nebenkomponenten, welche als Inhibitor der α-Glucosidase wie Maltase, Saccharase und α-Amylase fungieren. Ein Schutzmechanismus, der vorhanden sein müsste, um die Hemmwirkung auf eigene α-Glucosidasen zu vermeiden, ist bislang jedoch noch nicht bekannt. Bis jetzt wurde nachgewiesen, dass die extrazelluläre α-Amylase (AcbE) aus *Actinoplanes* sp. durch Acarbose (1 mM) nicht gehemmt werden konnte (Stratmann, 1997). Es ist zu vermuten, dass Trehalose durch drei Trehalose-Biosynthesewege gebildet und aus der Zelle sekretiert wird. Mit steigender Acarboseproduktion nimmt die Hemmung der α-Glucosidase zu. Die zuvor aus der Zelle sekretierte Trehalose könnte durch das PEPabhängige Phosphotransferase-System (PTS) wieder in das Zellinnere transportiert und mittels Trehalose-6-Phosphat-Hydrolase im Cytoplasma in Glucose und Glucose-6-Phosphat gespalten werden. Wie bereits nachgewiesen wurde (Kleinholz, 1994), zeigt *Actinoplanes* sp. deutliches Wachstum auf Trehalose als einziger C-Quelle. Das deutet darauf hin, dass ein Zuckeraufnahme-Mechnismus ähnlich wie das PTS bei *Streptomyces coelicolor* (Kamionka et al., 2002) in *Actinoplanes* sp. vorhanden sein könnte.

Zur weiteren Untersuchung einer physiologischen Funktion könnte durch eine Deletions- oder Insertionsmutagenese *via* gezielter Gendisruption eine Mutante jeweils eines Gens der drei Trehalose-Biosynthesewege von *Actinoplanes* sp. erzeugt werden. Es könnte endgültig geklärt werden, welcher Trehalose-Biosyntheseweg an der physiologischen Funktion beteiligt ist. Bisher gibt es jedoch kein Beispiel für eine erfolgreiche Transformation oder gezielte Mutagenese von *Actinoplanes* sp..

5. Zusammenfassung

Mit Hilfe von DNA-Hybridisierungstechniken und degenerierter PCR-Primer, die aus konservierten Proteindomänen der Trehalosesynthase-Familie abgeleitet wurden, konnten die drei verschiedenen potentiellen Trehalose-Biosynthesegencluster aus *Actinoplanes* sp. SN223/229 identifiziert, isoliert und charakterisiert werden. Bei Homologievergleichen der abgeleiteten Aminosäuresequenzen zeigten die an den drei jeweiligen Trehalose-Biosynthesewegen beteiligten Enzyme (TreX, TreY, TreZ, TreS und Tps1) signifikante Ähnlichkeiten zu Proteinen aus Pro- bzw. Eukaryonten.

Die funktionelle Analyse der an der Trehalose-Biosynthese in *Actinoplanes* sp. beteiligten Enzyme erfolgte nach heterologer Expression der identifizierten Gene (*treY*, *treZ*, *treS* und *tps*1) in *E. coli*. Die rekombinanten Proteine wurden durch Ni-Affinitätschromatographie unter nativen Bedingungen über den angefügten His-*tag* aufgereinigt und immunologisch nachgewiesen. Die Aktivität der aufgereinigten Proteine wurde mit Hilfe verschiedener gekoppelter Enzymtests nachgewiesen und die Trehalosebildung mittels HPLC und Dünnschichtchromatographie quantativ und qualitativ bestätigt; (1) die Trehalose-Bildung aus Maltooligosaccharid mittels der MTSase (TreY) zusammen mit der MTHase (TreZ), (2) die Umsetzung von Maltose zu Trehalose durch die TreSase (TreS), (3) die Trehalose-6-Phosphat-Biosynthese aus aktivierten Vorstufen wie UDP-Glucose und Glucose-6-Phosphat durch die Tps1ase (Tps1). Außerdem wurden die spezifischen enzymatischen Eigenschaften der Enzyme wie Temperatur-, pH- und Puffer-Optimum sowie der Metallionenabhängigkeit und Substratspezifität ermittelt.

Bei der weiteren Untersuchung wurde die *in vitro*-Bildung von Komponente C aus Acarbose durch die MTSase (TreY) mittels HPLC nachgewiesen. Bei der Umsetzung von Acarbose zu Komponente C zeigte sich die geringe Enzymaktivität der MTSase (TreY), dagegen die höchste Aktivität bei der Trehalose-Biosynthese bestimmt wurde.
6. Literaturverzeichnis

Abe H & Aiba H (1996) Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization. Biochimie 78: 1035-1042

Abe H, Abo T, Aiba H (1999) Regulation of instrinsic terminator by translation in *Escherichia coli*: transcription termination at a distance downstream. Gen. Cell. 4: 87-97

Altschul S.F, Gish W, Miller W, Myers E.W, Lipmann D.J (1990) Basic logical alignment search tool. J. Mol. Biol. 215: 403-410

Arenskötter M; persönliche Mitteilung, Universität Münster, Institut für Mikrobiologie.

Argüelles J.C (2000) Physiological roles of trehalose in bacteria and yeasts: a comperative analysis. Arch. Microbiol. 1-14

Babcock M & Kendrick K (1988) Cloning of DNA involved in sporulation of *Streptomyces griseus*. J. Bacteriol. 170 (6): 2802-2808

Barth S, Huhn M, Matthey B, Klimka A, Galinski E.A, Engert A (2000) Compatible-solutesupported periplasmic expression of funktional rekombinant proteins under stress conditions. Appl. Environ. Microbiol. 66 (4): 1572-1579

Beatty M.K, Myers A.M, James M.G (1997) Genomic nucleotide sequence of a full-length wildtype allele of the maize sugaryl (Su1) gene (Accession No. AF030882) (PGR97-187). Plant Physiol. 115

Behm C (1997) The role of trehalose in the physiology of Nematodes. Internat. J. Parasitol. 27 (2): 215-229

Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein J.M (1998) Composition and functional analysis of the *Saccharomyces cerevisiae* trehalose synthase complex. J. Biol. Chem. 237 (50): 33311-33319

Bergmeyer H.U (1974) Methoden der enzymatischen Analyse, Band I und II, Verlag Chemie GmbH, Weinheim.

Bibb M.J, Ward J.M, Cohen S.N (1985) Nucleotide sequences encoding and promoting expression of three antibiotic resistence genes indigenous to *Streptomyces*. Mol. Gen. Genet. 199: 26-36

Birnboim H.C & Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523

Bischoff H, Ahr H.J, Schmidt D, Stoltefuß J (1994) Acarbose-ein neues Wirkprinzip in der Diabetestherapie. Nachr. Chem. Tech. Lab. 42: 1119-1128

Blattner F.R, Plunkett G.I, Bloch C.A, Perna N.T, Burland V, Riley M, Collado-Vides J, Glasner
F.D, Rode C.K, Mayhew G.F, Gregor J, Davis N.W, Kirkpatrick H.A, Goeden M.A, Rose D.J,
Mau B, Shao Y (1997) The complete genome sequence of *Escherichia coli* K-12. Science 277 (5331):
1453-1474

Blàzquez M.A, Santos E, Flores C.L, Martínez-Zapater J.M, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the *Arabidopsis* TPS1 gene, encoding trehalose-6phosphate synthase. Plant. J. 13 (5): 685-689

Boone D.R & Castenholz R.W (2001) Bergey's manual of systematic bacteriology. Second edition, The *Archaea* and the deeply branching and phototrophic bacteria. Springer-Verlag New York, Berlin, Heidelberg. 163- 164

Boos W, Ehmann U, Forkl H, Klein W, Rimmele M, Postma P (1990) Trehalose transport and Metabolism in *Escherichia coli*. J. Bacteriol. 172 (6): 3450-3461

Borriss R, Buettner K, Maentsaelae P (1990) Structure of the β -1,3-1,4-glucanase gene of *Bacillus macerans*: homologies to other β -glucanases. Mol. Gen. Genet. 222: 278-283

Braford M.M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-252

Brayer G.D, Sidhu G, Maurus R, Rydberg E.H, Braun C, Wang Y, Nguyen N.T, Overall C.M, Withers S.G (2000) Subsite mapping of the human pancreatic α -amylase active site through structural, kinetic and mutagenesis techniques. Biochemistry 39: 4778-4791

Brunello F (unpublished) Identification of 57 mycobacterial species by PCR restriction fragment length polymorphism analysis of the hsp65 gene.

Bruton C.J, Plaskitt K.A, Chater K.F (1995) Tissue-specific glycogen branching isoenzymes in a muticellular prokaryote, *Streptomyces coelicolor* A3 (2). Mol. Microbiol. 18 (1): 89-99

Brzozowski A.M & Davies G.J (1997) Structure of the *Aspergillus oryzae* α-Amylase complexed with the inhibitor Acarbose at 2.0 Å resolution. Biochemistry 36: 10837-10845

Brzozowski A.M, Lawson D.M, Turkenburg J.P, Bisgaard-Frantzen H, Svendsen A, Borchert T.V, Dauter Z, Wilson K.S, Davies G.J (2000) Structural analysis of a chimeric bacterial α-amylase. High-resolution anylysis of native and ligand complexes. Biochemistry 39: 9099-9107

Buchanan R.E & Gibbons N.E (1986) Bergey's manual of determinative bacteriology, 8 Edition. The Williams & Wilkins Co., Baltimore: 657-710

Cànovas D, Fletcher S.A, Hayashi M, Csonka L.N (2001) Role of trehalose in growth at high temperature of *Salmonella enterica* serovar Typhimurium. J. Bacteriol. 183 (11): 3365-3371

Cauvet T; persönliche Mitteilung, Universität Münster, Institut für Mikrobiologie.

Cheng S.W.C, Lynch E.C, Leason K.R, Court D.L, Shapiro B.A, Friedman D.L (1991) Functional importance of sequence in the stem-loop of a transcription terminator. Science 254: 1205-1207

Cole S.T, Brosch R, Parkhill Z, Garnier T, Churcher C, Harris D, Gordon S.V, Eiglmeier K, Gas S, Barry III C.E, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J (1998) Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. Nature 393 (6685): 537-544

Cole S.T, Eiglmeier K, Parkhill J, James K.D, Thomson N.R, Wheeler P.R, Honore N, Ganier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies R.M, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K (2001) Massive gene decay in the leprosy *Bacillus*. Nature 409 (6823): 1007-1011

Crowe J.H, Crowe L.M, Chapmann D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223: 701-703

Crowe J.H, Crowe L.M, Carpenter J.F, Aurell W.C (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242: 1-10

Crueger W & Crueger A (1989) Biotechnologie-Lehrbuch der angewandten Mikrobiologie. 3. neubearbeitete Auflage. R. Oldenburg Verlag München.

Dahl M.K (1997) Enzyme II^{Gle} contributes to trehalose metabolism in *Bacillus subtilis*. FEMS Microbiol. Lett. 148: 233-238

Darnell J, Lodish H, Baltimore D (1994) Molekulare Zellbiologie. Walter de Gruyter, Berlin, New York.

De Silva-Udawatta M.N & Cannon J.F (2001) Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Mol. Microbiol. 40 (6): 1345-1356

De Smet K.A.L, Weston A, Brown I.N, Young D.B, Roberson B.D (2000) Three pathways for trehalose biosynthesis in *Mycobacteria*. Microbilogy 146: 199-208

Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M (1998) Enzymes from *Sulfolobus shibatae* for the produktion of trehalose and glucose from starch. Extremophiles 2: 409-416 **Dinnbier U, Limpinsel E, Schmid R, Bakker E.P** (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of *Escherichia coli* K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150:348-357

Duan Y, Dong Z, Jin C, Fang X, Zhang S (1998) cDNA cloning and sequence analysis of the trehalose-6-phosphate synthase gene from *Saccharomyces cerevisiae*. Chin. J. Biothechnol. In press

Elbein A.D (1968) Trehalose phosphate synthesis in *Streptomyces hygroscopicus*: purification of guanosine diphosphate D-glucose: glucose-6-phosphate-1-glucosyl-transferase. J. Bacteriol. 96: 1623-1631

Elbein A.D (1974) The metabolism of α, α -trehalose. Adv. Carbohyd. Chem. Biochem. 30: 227-256

Elcock A.H, Huber G.A, McCammon A (1997) Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment. Biochemistry 36: 16049-16058

Feese M.D, Kato Y, Tamada T, Kato M, Komeda T, Miura Y, Hirose M, Hondo K, Kobayashi K, Kuroki R (2000) Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic Archaeum *Sulfolobus solfataricus*. J. Mol. Biol. 301: 451-464

Ferretti L & Sgaramella V (1981) Specific and reversible inhibition of bunt end joining activity of the T4 DNA ligase. Nucleic Acids Res. 9: 3695-3705

Fillinger S, Chaveroche M.K, van Dijck P, de Vries R, Ruijter G, Thevelein J, d'Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus *Aspergillus nidulans*. Microbiology 147: 1851-1862

Fitz-Gibbon S.T, Ladner H, Kim U.J, Stetter K.O, Simon M.I, Miller J.H (2002) Genome sequence of the hyperthermophilic crenarchaeon *Pyrobaculum aerophilum*. Proc. Natl. Acad. Sci. USA 99 (2): 985-989

Freiberg C, Fellay R, Bairoch A, Broughton W.J, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between *Rhizobium* and legumes. Nature 387 (6631): 394-401

Frommer W, Junge B, Müller L, Schmidt D.D, Truscheit E (1979) Neue Enzyminhibitoren aus Mikrorganismen. J. Med. Plant Res. 35: 195-217

Frye H (1995) Transglycosylaseaktivität von *Actinoplanes* spec.. Diplomarbeit, Institut für Mikrobiologie, Westfälische Wilhelms Universität Münster.

Fujita N, Kubo A, Francisco P.B Jr., Nakakita M, Harata K, Minaka N, Nakamura Y (1999) Purifikation, characterization and cDNA structure of isoamylase from developing endosperm of rice. Planta 208 (2): 283-293

Galinski E.A & Herzog R.M (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (*Ectothiorhodospira halochloris*) Arch. Microbiol. 153: 607-613

Goddijn O.J.M & van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci. 4 (8): 315-319

Goeke K (1986) Enzymatische Untersuchungen zum Zuckerstoffwechsel und zur Biosynthese des α -Glucosidase-Inhibitors Acarbose bei *Actinoplanes* spec.. Dissertation, Westfälische Wilhelm-Universität Münster.

Goldstein B.P, Selva E, Gastaldo L, Berti M, Pallanza R, Ripamonti F, Ferrari P, Denaro M, Arioli V, Cassani G (1987) A40926, a new glycopepetide antibiotic with anti-*Nesseria* activity. Antimicrob. Ag. Chemother. 31: 1961-1966

Grant S.G.N, Jessee J, Bloom F.R, Hanahan D (1990) Diffential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. Proc. Natl. Acad. Sci. 87: 4645-4649

Grundmeier M (2001) Zur Funktion von Maltokinase. Diplomarbeit, Institut für Mikrobiologie, Westfälische Wilhelms Universität Münster.

Gueguen Y, Rolland J.L, Schroeck S, Flament D, Defretin S, Saniez M.H, Dietrich J (2001) Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon *Sulfolobus acidocaldarius*. FEMS Microbiol. Lett. 194: 201-206

Gutmann I (1974) in: Methoden der enzymatischen Analyse (ed.) Bergmeyer, HU, Verlag Chemie, Weinheim.

Hagemann M & Steinbruch R (nicht veröffentlicht) Isolation and characterization of a glucosylglycerol-phosphate-synthase from heterotrophic bacteria. in preparation.

Hayato I, Takuji S, Akio T, Hideo Y, Norihiro T, Shigezo U (1985) Complete nucleotide sequence of a thermophilic α -amylase gene: homology between prokaryotic and eukaryotic α -amylase at the active sites. J. Biochem. (Tokyo) 98 (1): 95-103

Heiker F.R, Böshagen H, Junge B, Müller L, Stoltefuß J (1981) Studies designed to localize the essential structural unit of glycoside-hydrolase inhibitors of the acarbose type. In Creutzfeldt, W (Hrsg.): first international symposium on acarbose S. 137-141; Amsterdam: Exerpta Medica

Helfert C, Gotsch S, Dahl M (1995) Cleavage of trehalose-phosphate in *Bacillus subtilis* is catalysed by a phospho- α (1-1)-glucosidase encoded by the *treA* gene. Mol. Microbiol. 16: 111-120

Helling R.B (1998) Pathway choice in glutamate synthesis in *Escherichia coli*. J. Bacteriol. 180: 4571-4575

Helling R.B, Goodmann H.M, Boyer H.W (1974) Anaylsis of *Eco*RI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J. Virol. 14: 1235-1244 Hemker M, Stratmann A, Goeke K, Schröder W, Lenz J, Piepersberg W, Pape H (2001) Identification, cloning expression and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from *Actinoplanes* sp. strain SE50. J. Bacteriol. 183:4484-4492

Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316

Henrissat B & Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788

Hopwood D.A, Bibb M.J, Chater K.F, Kieser T, Burton C.J, Kieser H.M, Lydiate D.J, Smith C.P, Ward J.M, Schrempf H (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual; Norwich; The John Inne Foundation.

Horlacher R & Boos W (1997) Characterization of TreR, the major regulator of the *Escherichia coli* trehalose system. J. Biol. Chem. 272: 13026-13032

Jahnen W, Ward L.D, Reid G.E, Moritz R.L, Simpson R.J (1990) Internal amino acid sequencing of proteins by in situ cyanogen bromide cleavage in polyacrylamid gels. Biochem. Biophys. Res. Com. 166 (1): 139-145

Janeček S (1997) α-Amylase family: molecular biology and evolution. Prog. Biophys. Mol. Biol. 67: 67-97

Janeček S, Svensson B, Henrissat B (1997) Domain evolution in the α-Amylase family. J. Mol. Evol. 45: 322-331

Jahring M; persönliche Mitteilung, Universität Münster, Institut für Mikrobiologie.

Jovetic S, Tramper J, Marinelli F (1998) Biotransformation of the lipoglycopeptide antibiotic A40926 with immobilized cells of *Actinoplanes teichomyceticus* in situ supply of nutrients. Enzyme and Microbial Technology 22: 117-121

Julio C.F, Vănia M.F.P, Anita D.P, Luiz C.T (1997) Comparison of three different methods for trehalose determination in yeast extracts. Food Chemistry 60: 251-254

Itakura K, Rossi J.J, Walace R.B (1984) Synthesis and use of synthetic oligonucleotides. Annu. Rev. Biochem. 53: 323-356

Kaasen I, Falkenberg P, Styrvold O.B, Strom A.R (1992) Molecular cloning and physical mapping of the *ots*BA gene, which encode the osmoregulatory trehalose pathway of *Eschericha coli*: evidence that transcription is activated by *Kat*F (AppR). J. Bactreiol. 174: 889-898

Kaasen I, Mcdougall J, Strom A.R (1994) Analysis of the *ots*BA operon for osmoregulatory trehalose synthesis in *Escherichia coli* and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145: 9-15

Kadziola A, Abe J, Svensson B, Haser R (1994) Crystal and molecular structure of barley α amylase. J. Mol. Biol. 239: 104-121

Kamionka A, Parche S, Nothaft H, Siepelmeyer J, Jahreis K, Titgemeyer F (2002) The phosphotransferase system of *Streptomyces coelicolor* IIA^{Crr} exhibits properties that resemble transport and inducer exclusion function of enzyme IIA^{Glucose} of *Escherichia coli*. Eur. J. Biochem. 269: 2143-2150

Kato M, Miura Y, Kettoku M, Shindo K, Iwamatsu A, Kobayashi K (1996) Purification and characterization of new trehalose-producing enzymes isolated from the hyperthermophilic Archaeum, *Sulfolobus solfataricus* KM1. Biosci. Biotech. Biochem. 60: 546-550

Kim T.J, Kim M.J, Kim B.C, Cheong T.K, Kim J.W, Park K.H (1999) Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a *Thermus* strain. Appl. Environ. Microbiol. 65 (4): 1644-51

Kim Y.H, Kwon T.K, Park S, Seo H.S, Cheong J.J, Kim C.H, Kim J.K, Lee J.S, Choi Y.D (2000) Trehalose synthesis by sequential reactions of recombinant Maltooligosyltrehalose Synthase and Matooligosyltrehalose Trehalohydrolase from *Brevibacterium hevolum*. Appl. Environ. Micrebiol. 66 (11): 4620-4624

Kieser K, Hopwood D.A, Wright H.M, Thompson C.J (1985) pIJ101, a multi-copy broad hostrange *Streptomyces* plasmid. Functional analysis and development of DNA cloning vectors. Mol. Gen. Genet. 185: 223-238

Klein W, Ehmann U, Boos W (1991) The repression of trehalose transport and metabolism in *Escherichia coli* by high osmolarity is mediated by trehalose-6-phosphate phosphatase. Res. Microbiol. 142: 359-371

Klein C & Schulz G.E (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J. Mol. Biol. 217: 737-750

Klein C, Horlacher R, Boos W (1995) Molecular analysis of *tre*B encoding the *Escherichia coli* enzyme II specific for trehalose. J. Bacteriol. 177: 4043-4052

Kleinholz H (1994) Bildung und Stoffwechsel von Trehalose bei *Actinoplanes* sp.. Diplomarbeit, Institut für Mikrobiologie, Westfälische Wilhelms Universität Münster. **Knegtel R.M.A, Wind R.D, Rozeboom H.J, Kalk K.H, Buitelaar R.M, Dijkizen L, Dijkstra B.W** (1996) Crystal structure at 2.3 Å resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from *Themoanaerobacterium thermosulfurigenes* EM1. J. Mol. Biol. 256: 611-622

Kobayashi K, Kato M, Miura Y, Kettoku M, Komeda T, Iwamatsu A (1996) Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic Archaeum *Sulfolobus solfataricus* KM1. Biosci. Biotech. Biochem. 60: 1882-1885

Krohn B.M, Barry G.F, Kishore G.M (1997) An isoamylase with neutral pH optimum from a *Flavobacterium* species: cloning, characterization and expression of the *iam* gene. Mol. Gen. Genet. 254 (5): 469-478

Kunst F, Ogasawara N, Moszer I, Albertini A.M, Alloni G, Azevedo V, Bertero M.G, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell S.C, Bron S, Brouillet S, Bruschi C.V, Caldwell B, Capuano V, Carter N.M, Choi S.K, Codani J.J, Connerton I.F, Danchin A (1997) The complete genome sequence of the gram-positive bacterium *Bacillus suctilis*. Nature 390 (6657): 249-256

Laemmli U.K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685

Lapp D, Patterson B.W, Elbein A.D (1971) Properties of a trehalose phosphate synthetase from *Mycobacterium smegmatis*. Activation of the enzyme by polynucleotides and other polyanions. J. Biol. Chem. 246: 4567-4579

Legeler G (1990) Glycoside hydrolases: Mechnistic information from studies with reversible and irreversible inhibitors. Adv. Carbohyd. Chem. Biochem. 48: 319-384

Lynn S.P, Kasper L.M, Gardner J.F (1988) Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the *thr* operon attenuator. J. Biol. Chem. 263: 472-479

Londesborough J & Vuori O (1993) Purification of trehalose synthase from baker's yeast. Its temperature dependent activation by fructose-6-phosphat and inhibition by phosphate. Eur. J. Biochem. 216: 841-848

Lottspeich F & Zorbas H (1998) Bioanalytik, Spektrum Akademischer Verlag Heidelberg. Berlin.

Luyten K, de Koning W, Tesseur I, Ruiz M.C, Ramos J, Cobbaert P, Thevelein J.M, Hohmann S (1993) Disruption of the *Kluyveromyces lactis* GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Eur. J. Biochem. 217 (2): 701-713

MacGregor E.A, Janeček Š, Svensson B (2001) Relationship of sequence and structure to specificity in the α -amylase family of enzymes. Biochim. Biophys. Acta. 1546: 1-20

MacNeil D.J, Gewain K.M, Ruby C.L, Dezeny G, Gibbons P.H, MacNail T (1992) Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vektor. Gene 111: 61-68

Makino K, Yokoyama K, Kubota Y, Yutsudo C.H, Kimura S, Kurokawa K, Ishii K, Hattori M, Tatsuno I, Abe H, Iida T, Yamamoto K, Ohnishi M, Hayashi T, Yasunaga T, Honda T, Sasakawa C, Shinagawa H (1999) Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic *Escherichia coli* O157:H7 derived from the Sakai outbreak. Gen. Genet. Syst. 74 (5): 227-239

Mandel M & Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol. 53: 154-162

Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996a) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium *Sulfolobus acidocaldarius*. Biochim. Biophys. Acta. 1291: 177-181

Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M (1996b) Cloning and sequencing of trehalose biosynthesis genes from *Rhizobium* sp. M-11. Biosci. Biotechnol. Biochem. 60 (4): 717-720

Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M (1996c) Cloning and sequencing of trehalose biosynthesis genes from *Arthrobacter* sp. Q36. Biochim. Biophys. Acta. 1289 (1): 10-13

Maruta K, Kubota M, Fukuda S, Kurimoto M (2000) Cloning and nucleotide sequence of a gene encoding a gylcogen debranching enzyme in the trehalose operon from *Arthrobacter* sp. Q36¹. Biochim. Biophys. Acta. 1476: 377-381

Matsui I & Svensson B (1997) Improved activity and modulated action pattern obtained by random mutagenesis at the fourth β - α -loop involved in substrate bindung to the catalytic(β/α)₈-barrel domain of barley α -Amylase1. J. Biol. Chem. 272 (36): 22456-22463

Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka amylase A. J. Biochem. 95: 697-702

Mayer R.J & Candy D.J (1969) Changes in energy reserves during flight of the desert locust *Schistocera gregaria*. Comp. Biochem. Physiol. 31: 409-418

Mazzobre M.F & Buera M.D.P (1999) Combined effects of trehalose and cations on the thermal resistance of β -galactosidase in freeze-dried systems. Biochim. Biophys. Acta. 1473: 337-344

McBride M.J & Ensign J.C (1987a) Metabolism of endogenous trehalose by *Streptomyces griseus* spores and by spores or cells of other *Actinomycetes*. J. Bacteriol. 169 (11): 5002-3647

McBride M.J & Ensign J.C (1987b) Effects of intracellular trehalose content on *Streptomyces* griseus spores. J. Bacteriol. 169 (11): 4995-5001

McBride M.J & Ensign J.C (1990) Regulation of trehalose metabolism by *Streptomyces griseus* spores. J. Bacteriol. 172 (7): 3637-3643

McClelland M, Sanderson K.E, Spieth J, Clifton S.W, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N,

Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson R.K (2001) Complete genome sequence of *Salmonella* enterica serovar *typhimurium* LT2. Nature 413 (6858): 852-856

Miguélez E.M, Fernàndez M, Hardisson C. (1997) Nitrogen starvation-induced glycogen sythesis depends on the developmental stage of *Streptomyces antibioticus* mycelium. FEMS Microbiol. Lett. 153: 57-62

Miller G.L (1959) Use of dinitrosalicyl acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428

Mott J.E, Galloway J.L, Platt T (1985) Maturation of *Escherichia coli* tryptophan operon mRNAs: Evidence for 3'exonucleolytic processing after rho-independent termination. EMBO J 4: 1887-1891

Müller L, Junge B, Rauenbusch E, Frommer W, Schmidt D, Truscheit E (1981) Chemical and enzymatic degradation of α -glucosidase inhibitors of the acarbose type. In Creutzfeldt, W. (Hrsg.): first international symposium on acarbose S. 142-146; Amsterdam: Exerpta Media

Naganawa H, Hashizume H, Kubota Y, Sawa R, Takahashi Y (2002) Biosynthesis of the cyclitol moiety of pyralomicin 1a in *Nonomuraea spiralis* MI178-34F18. J. Antibiotics Vol. 55: 578-584

Nakada T, Maruta K, Mitsuzumi H, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y (1995a) Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from *Arthrobacter* sp. Q36. Biosci. Biotech. Biochem. 59 (12): 2215-2218

Nakada T, Maruta K, Tsusaki K, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y (1995b) Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from *Arthrobacter* sp. Q36. Biosci. Biotech. Biochem. 59 (12): 2210-2214

Nishimoto T, Nakano M, Ikegami S, Chaen H, Fukada S, Sugimoto T, Kurimoto M, Tsujisaka Y (1995) Existence of a novel Enyme Converting Maltose into Trehalose. Biosci. Biotech. Biochem. 59 (11): 2189-2190

Nikolov Z.L, Meagher M.M, Reilly P.J (1989) Kinetics, equilibra and modeling of the formation of oligosaccharides from D-glucose with *Aspergillus niger* glucoamylases I and II. Biothechnol. Bioeng. 34: 694-704

Nominé Y, Ristrian T, Laurent C, Lefévre J.F, Weiss É, Travé G (2001) Formation of soluble inclusion bodies by HPV E6 oncoprotein fused to maltose-binding protein. Protein Exp. Purif. 23: 22-32

Ohguchi M, Kubota N, Wada T, Yoshinaga K, Uritani M (1997) Purification and properties of trehalose-synthesizing enzyme from *Pseudomonas* sp. F1. J. Ferment. Bioeng. 84 (4):358-360

Page-Sharp M, Behm C.A, Smith G.D (1999) Involvment of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial *Scytonema* species isolated from desert soils. Biochim. Biophys. Acta. 519-528

Pan P, Woehl E, Dunn M.F (1997) Protein architecture, dynamics and allostery in tryptophan synthase channeling. Trends Biochem. Sci. 22: 22-27

Parenti F & Coronelli C (1979) Members of the genus *Actinoplanes* and their antibiotics. Ann. Rev. Microbiol. 33: 389-411

Paschoalin V.M.F, Silva J.T, Panek A.D (1989) Identification of an ADPG-dependent trehalose synthase in *Saccharomyces*. Curr. Genet. 16: 81-87

Pearson W.R & Lipmann D.J (1988) Improved tools for biological sequence analysis. Proc. Natl. Acad. Sci. USA 85: 2444-2448

Piepersberg W; Institut für chemische Mikrobiologie. Bergische Universität Gesamthochschule Wuppertal.

Platt T (1981) Termination of transcription and its regulation in the tryptophan operon of *E. coli*. Cell 24: 10-23

Puls W, Keup U, Krause H.P, Müller L, Schmidt D.D, Thomas G, Truscheit E (1980) Pharmacology of a glucosidase inhibitor. Front. Hormone Res. 7: 235-247

Qian M, Haser R, Payan F (1993) Structure and molecular model refinement of pig pancreatic α amylase at 2.1 Å resolution. J. Mol. Biol. 231: 785-799

Qian M, Haser R, Buisson G, Ducé E, Payan F (1994) The active center of a mammalian α amylase. Structure of the complex of a pancreatic α -amylase with a carbohydrate inhibitor refined to 2.2-Å resolution. Biochemistry 33: 6284-6294

Qian M, Nahoum V, Bonicel J, Bischoff H, Henrissat B, Payan F (2001) Enzyme-catalyzed condensation reaction in a mammalian α -amylase. High-resolution structural analysis of an enzyme-inhibitor complex. Biochemistry 40: 7700-7709

Rajan R.S, Illing M.E, Bence N.F, Kopito R.R (2001) Specificity in intracellular protein aggregation and inclusion body formation. PNAS: 13060-13065

Reckenfelderbäumer N (1998) Biochemische und molekularbiologische Untersuchungen zur Trehalosebildung aus Maltooligosacchariden bei *Actinoplanes* spec.. Diplomarbeit, Institut für Mikrobiologie, Westfälische Wilhelms Universität Münster.

Redenbach M, Kieser H.M, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood D.A (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb *Streptomyces coelicolor* A3 (2) chromosome. Mol. Microbiol. 21 (1): 77-96

Reed R.H, Richardson D.L, Warr S.R, Stewart W.D (1984) Carbohydrate accumulation in cyanobacteria. J. Gen. Microbiol. 130: 1-4

Reynolds R & Chamberlin M.J (1992) Parameters affecting transcription termination by *Escherichia coli* RNA polymerase II, Contruction and analysis of hybrid terminators. J. Mol. Biol. 224: 53-63

Rimmele M & Boos W (1994) Trehalose-6-phosphate hydrolase of *Escherichia coli*. J. Bacteriol. 176: 5654-5664

Rodriguez R.I & Tait R.C (1983) Recombinant DNA techniques, an introduction. Addison-Wesley Publishing Company, London, Amsterdam, Sydney, Tokyo.

Romeo T, Kumar A, Preiss J (1988) Analysis of the *Escherichia coli* glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene 70 (2): 363-376

Romero C, Bellés J.M, Vayà J. L, Serrano R (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201: 293-297

Rueda B, Miguélez E.M, Hardisson C, Manzanal M.B (2001) Changes in glycogen and trehalose content of *Streptomyces brasiliensis* hyphae during growth in liquid cultures under sporulating and non-sporulating conditions. FEMS Microbiol. Lett. 194: 181-185

Saito K, Yamazaki H, Ohnishi Y, Fujimoto S, Takahashi E, Horinouchi S (1998) Production of trehalose synthase from a basidiomycete, *Grifola frondosa*, in *Escherichia coli*. Appl. Microbiol. Biotechnol. 50: 193-198

Sambrook J, Frisch E.F, Maniatis T (1989) Molecular cloning. A laboratory manual. Second edition. Cold Spring Harbor Laboratory Press, New York

Sanger F, Nickler S, Coulson A.R (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467

Savchenko A, Vieille C, Kang S, Zeikus G (2002) *Pyrococcus furiosus* α -amylase is stabilized by calcium and zinc. Biochemistry 41: 6193-6201

Sch Q, Singh R.K, Confalonieri F, Zivanovic Y, Allard G, Awayez M.J, Chan-Weiher C.C, Clausen I.G, Curtis B.A, De Moors A, Erauso G, Fletcher C, Gordon P.M, Heikamp-D Jong I, Jeffries A.C, Kozera C.J, Medina N, Peng X, Thi-Ngoc H.P, Redder P, Schenk M.E, Theriault C, Tolstrup N, Charlebois R.L (2001) The complete genome of the crenarchaeon *Sulfolobus solfataricus* P2. Proc. Natl. Acad. Sci. USA 98 (14): 7835-7840

Schaper B (1991) Biochemische und Physiologische Studien zur Biosynthese des α -Glucosidase-Inhibitors Acarbose, Dissertation, Westfälische Wilhelms Universität Münster.

Schmidt D.D, Frommer W, Junge B, Müller L, Wingender W, Truscheit E (1977) α-Glucosidase inhibitors: new complex oligosaccharides of microbial origin. Naturwissenschaften 64: 535-536

Schmizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kubara S, Hayashi H (2002) Complete genome sequence of *Clostrium perfringens*, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99 (2): 996-1001

Schneider D, Bruton C.J, Chater K.F (2000) Duplicated gene clusters suggest an interplay of glycogen and trehalose metabolism during sequential stages of aerial mycelium development in *Streptomyces coelicolor* A3(2). Mol. Gen. Genet 263: 543-553

Schünke H; persönliche Mittelung. Universität Münster, Institut für Mikrobiologie.

Seo H.S, Koo Y.J, Lim J.Y, Song J.T, Kim C.H, Kim J.K, Lee J.S, Choi Y.D (2000) Chracterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of *Escherichia coli*. Appl. Environ. Microbiol. 66 (6): 2484-2490

Sgaramella V & Khorana H.G (1972) Studies on polynucleotides. CXVI. A further study of the T4 ligase-catalyzed joining of DNA at base-paired. J. Mol. Biol. 72: 493-502

Shine J & Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34-38

Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biol. Technol. 1: 784-791

Skinner F.A & Sykes G (1972) Actinomycetales, Academic Press, London, New York: 30-31

Southern E.M (1975) Detection of specific sequences among DNA fragments seperated by gel electrophoresis. J. Mol. Biol. 98: 503-517

Spargo B.J, Crowe L.M, Ioneda T, Beaman B.L, Crowe J.H (1991) Cord factor (α , α -trehalose 6,6'dimycolate) inhibits fusion between phospholipid membranes. Proc. Natl. Acad. Sci. 88: 737-740

Stackebrand E, Rainey F.A, Ward-Rainey N.L (1997) Proposal for new hierachic classification system, *Actinobacteria* classis nov. Int. J. Sys. Bact. 47 (2). 479-491

Stover C.K, Pham X-Q.T, Erwin A.L, Mizoguchi S.D, Warrener P, Hickey M.J, Brinkman F.S.L, Hufnagle W.O, Kowalik D.J, Lagrou M, Garber R.L, Goltry L, Tolentino E, Westbrook-Wadman S, Yuan Y, Brody L.L, Coulter S.N, Folger K.R, Kas A, Larbig K, Lim R.M (2000) Complete genome sequence of *Pseudomonas aeruginosa* PA01, an opportunistic pathogen. Nature 406 (6799): 956-964

Stratmann A (1997) Identifizierung eines Acarbose-Biosynthesegenclusters in *Actinoplanes* sp. und Charakterisierung ausgewählter Enzyme des Acarbose-Stoffwechsels. Dissertation, Institut für chemische Mikrobiologie. Bergische Universität Gesamthochschule Wuppertal.

Stratmann A, Mahmud T, Lee S, Distler J, Floss H.G, Piepersberg W (1999) The AcbC protein from *Actinoplanes* species is a C₇-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the α -glucosidase inhibitor acarbose. J. Biolo. Chem. 274: 10889-10896.

Strohl W.R (1992) Complication and analysis of DNA sequences associated with apparent *streptomyces* promoters. Nucleic Acids Res. 20: 961-974

Strøm A.R & Kaasen I (1993) Trehalose metabolism in *Escherichia coli*: stress protection and stress regulation of gene expression. Mol. Microbiol. 8 (2): 205-210

Struhl K, Cameron J.R, Davie R.W (1976) Functional genetic expression of eukaryotic DNA in *Escherichia coli*. Pro. Natl. Acad. Sci. 73: 1471-1475

Strey J; persönliche Mittelung. Universität Münster, Institut für Mikrobiologie.

Sun W.Q & Davidson P (1998) Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization. Biochem. Biophys. Acta. 1425: 235-244

Svensson S (1994) Protein engineering in the α -amylase family: catalytic mechanism, substrate specificity and stability. Plant Mol. Biol. 25: 145-157

Takano T, Fukuda M, Monma M, Kobayashi S, Kainuma K, Yamane K (1986) Molecular cloning, DNA nucleotide sequencing, and expression in *Bacillus subtilis* cells of the *Bacillus macerans* cyclodextrin glucanotransferase gene. J. Bacteriol. 166: 1118-1122

Thevelein J.M (1984) Regulation of trehalose mobilization in fungi. Microbiol. Rev. 48: 42-59

Thevelein J.M & Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast ? Talking Point, TIBS20: 3-9

Tinoco I.J, Borer P.N, Dengler B, Levine M (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biology Vol. 246:40-41

Toda H, Kondo K, Narita K (1982) The complete amino acid sequence of Taka-amylase A. Proc. Jpn. Acad. 58 (7): 208-12

Tourinho dos Santos C.F, Bachinszi N, Paschoalin V.M.F, Paiva C.L.A, Silva J.T, Panek A.D (1994) Periplasmatic trehalase from *Escherichia coli*. Characterisation and immobilisation on spherisorb. Braz. J. Med. Biol. Res. 27:627-633

Town C.D, Haas B.J, Wu D, Maiti R, Hannick L.I, Chan A.P, Tallon L.J, Rooney T, Utterback T.R, Van Aken S.E, Feldblyum T.V, White O, Fraser C.M (nicht veröffentlicht) *Arabidopsis thaliana* chromosome 2 CHR2v12152001 genomic sequence.

Truscheit E, Frommer W, Junge B, Müller L, Schmidt D.D, Wingender W (1981) Chemie und Biochemie mikrobieller α-Glucosidase-Inhibitoren. Angew. Chem. 93: 738-755

Tsusaki K, Nishimoto T, Nakata T, Kubota M, Chaen H, Fukuta S, Kurimoto M (1996) Cloning and sequencing of trehalose synthase gene from *Pimelobacter* sp. R48. Biochim. Biophys. Acta. 1290 (1): 1-3

Tsusaki K, Nishimoto T, Nakata T, Kubota M, Chaen H, Fukuta S, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from *Thermus aquaticus* ATCC33923. Biochim. Biophys. Acta. 1334 (1): 28-32

Vandercammen A, Francois J, Hers H.G (1989) Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphat phosphatase of *Saccharomyces cerevisiae*. Eur. J. Biochem. 182: 613-620

Van Laere A (1989) Trehalose, riserve and/or stress metabolite?. FEMS Microbiol. Rev. 63: 201-210
Voet D & Voet JG (1994) Biochemie, Weinheim, New York, Basel, Cambridge, Tokyo.

Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boller T, Wiemken A, Aeschbacher R.A, Wingler A (2001) Trehalose metabolism in *Arabidopsis* occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J. Experi. Botany 52 (362): 1817-1826

Vobis G (1989) Bergey's manual of systematic bacteriology. The Williams & Wilkins Co., Baltimore, USA, Vol. 4: 2418-2950

Vuorio V.E, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding the 56kDa and 123-kDa subunits of trehalose synthase from yeast *Saccharomyces cerevisiae*. Eur. J. Biochem. 216: 849-861 Whatmore B.M & Reed R.H (1990) The effects of osmotic upshock on the intracellular solute pools of *Bacillus subtilis*. J. Gen. Microbiol. 136: 2527-2535

Wehmeier U.F (1995) New multifunctional *Escherichia coli-Streptomyces* shuttle vectors allowing blue-white screening on XGal plates. Gene 165: 149-150

Wehrmann A, Phillipp B, Sahm H, Eggeling L (1998) Different modes of Diaminopimelate synthesis and their role in cell wall integrity: a study with *Corynebacterium glutamicum*. J. Bacteriol. 180: 3159-3165

Welsh D.T, Guyoneaud T, Caumette P (1998) Utilization of the compatible solutes sucrose and trehalose by purple sulphur and nonsulphur bacteria. Can. J. Microbiol. 4: 974-979

White O, Eisen J.A, Heidelberg J.F, Hickey E.K, Peterson J.D, Dodson R.J, Haft D.H, Gwinn M.L, Nelson W.C, Richardson D.L, Moffat K.S, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan J.J, Lam P, McDonald L, Utterback T, Zalewski C, Makarova K.S, Aravind L, Daly M.J, Minton K.W, Fleischmann R.D, Ketchum K.A, Nelsdon K.E, Salzberg S, Smith H.O, Venter J.C, Fraser C.M (1999) Genome sequence of the radioresistant bacterium *Deinococcus radiodurans* R1. Science 286 (5444). 1571-1577

Wolschek M.F & Kubicek C.P (1997) The filamentous fungus *Aspergillus niger* contains two differentially regulated trehalose-6-phosphate synthase-encoding genes, *tps*A and *tps*B. J. Biol. Chem. 272 (5): 2729-2735

Yang M.T, Scott II H.B, Gardner J.F (1995) Transcription termination at the *thr* attenuator: Evidence that the adenine residues upstream of the stem and loop structure are not required for termination. J. Biol. Chem. 270: 23330-23336

Yanish-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119

Yoshihida T & Ito K (1996) Pro-OmpA derivatives with a his6 tag in their N-terminal "translocation initiation domains" are arrested by Ni^{2+} at an early post-targeting stage of translocation. J. Biol. Chem. 271 (16): 9429-36

Zaragoza O, Blazquez M.A, Gancedo C (1998) Disrution of the *Candida albicans* TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J. Bacteriol. 180 (15): 3809-3815

Zentella R, Mascorro-Gallardo J.O, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias A.A, Nieto-Sotelo J, Thevelein J.M, Iturriaga G (1999) A *Selaginella lepidophylla* trehalose-6-phosphat synthase complements growth and stress-tolerance defects in yeast tps1 mutant. Plant Physiol. 119 (4): 1473-1482

Zimmerman F & Eaton N.R (1974) Genetics of induction of catabolic repression of maltose synthesis in *Saccharomyces cerevisiae*. Mol. Gen. Genet. 134: 165-275

7. Anhang

7.1 Sequenzen

7.1.1 Sequenz des 7,7 kb großen chromosomalen DNA-Bereichs der MTSase (TreY)/MTHase (TreZ)-kodierenden Region

P D L R M G P S A A L S O R L L R G L P 61 ACGGCCGACGCGGGGCCAGGTCGCTGTCCCCGGTGCGGGTCACGTGCCGGTCGATCGCG V A S A R A L D S D G T R T V H R D I A 121 TGCACCAGCCAGAGCGGGAAGTCGACCCCGCCGGACGGCTGCTCGACCAGGGCGGTGAGC H V L W L P F D V G G S P Q E V L A T L 181 AGCTCGCGGCCCTCGTCGGCGCGGCCGGTGTCGAGGAACAGGCCCTCGTAGGCGGCGAGC L E R G E D A R G T D L F L G E Y A A L 241 GGGGCCGGCCGGCCGACCACGGGTAGCCGTCGGCCACTGCGGGCCGTCGAGGATGAAGGT P A P R G V V P L R R G S R A T S S S 301 GTCGGCCGCCAGGGCCAGGGTTCCCGCGTACCCCTCCGCCTTGGCCGCGGTGACCAGCCG TPRW PWPERTGRRRPRP S W G P R N R A A A L V V P P A P P Y R R Τ 421 GCCGGCCCAGGCCGAGATCTCCAGGTCTCGCCCGGTCCGACCTGCTTGCCGAAGGTCCCG A P G P R S R W T E G P G V Q K G F T G 481 GCCAGCCACAGGTCCTCGATCTGCTCGCCGGTGCGGGCGCCCAGATGCCACTGCCCGGCA A L W L D E I Q E G T R A G L H W 0 G 541 GCCTGCCAACCGGTTCCGGCCAGCCGGTACGCGTCCTCGATGACCACCCCGTCGGCGGCC A Q W G T G A L R Y A D E I V V G D A A P E I R L G P G D A R R S T A A A R W T 661 CACATCGCGGCGACGGTCAGGGTGACCGGGCCGGGCGCGCTGAGCACGCGATGGATCACG C M A A V T L T V P G P A S L V R H I 721 GCGAGGCCGGGCCGCATCGCGAGTTCGCGCTCGATCACCACGTCGCCGATCCGCCAGCGC A L G P R M A L E R E I V V D G I R W R 781 CACGGGGCAGTCCGCCGGCGAGGGTGAACGTCTCCAGGAGGCGGTACCGGCCCGGATCGA W P A T R R R P H V D G P P V P G S R 841 GGCGCCCGGATTCCCACGCATGGGTGTAAAGCGGGACTTTGGTGCCCGTGGCGAGCGTCA PARIGVCPHLAPSOHGHRA D R D S R T L G V G R T A H T G T R R R 961 GCAGGGCGTGTTCGGGTCGGGTGCGCAGGCCGCTCACGGTGCCCGAGGCCCACCCGCCGA A P R T R T P H A P R E R H G L G V R R

1021	GACCGTCGCTGACCAGCCATTCCCGTCC GGCGTCCGGTGCGGGGGACGCCGCACAC
	S R R Q G A M S/D
	←ORF1
1081	$\tt CTGCGGACCGAAGGTCAGGAGATCCATGCGCGGCACGTCGTCTCTATGCTCGTT {\tt TTCGAA}$
	-35
1141	CACGCTAAACCCCCGTAAGGGGA TAAATT AGCGCCTAATCGGACAGTCGGGCCGACCGTA
	-10
1201	
1261	
1201	
	57 D M
	treX→
1321	CAGGTCTGGCCTGGTCACCGGTATCCACTGGGGGGCGACCTACGACGGGACCGGTACCAAC
	Q V W P G H R Y P L G A T Y D G T G T N
1381	${\tt TTCGCGATCTTCTCCGAGGTGGCCGAGGCGGTCGAGCTCTGTCTCTTCGACGCCTCCGGG}$
	F A I F S E V A E A V E L C L F D A S G
1441	AACGAGCGCAAGGTGCTGCTGCACGAGCAGGACGCCTTCGTCTGGCACGCGTATCTGCCC
	N E R K V L L H E Q D A F V W H A Y L P
1501	GGTGTCGAGCCCGGCCAGCGGTACGGATACCGGGTCTACGGGCCCTACGAGCGCACCGCG
	G V E P G Q R Y G Y R V Y G P Y E R T A
1561	GGGCGCTGCAACCCGCACAAGCTGCTGCTCGACCCGTACGCGCGGGCGG
	G R C N P H K L L L D P Y A R A V D S D
1621	ATCGACTGGCATCCCTCGCTGTACGCGTACGAGATGGGCAACCCCGACCAGATGTCGGAC
	I D W H P S L Y A Y E M G N P D O M S D
1681	
TOOT	
1741	
± / 1±	
1001	
TOOT	
1001	
1901	GGULATUUGGUGATUATUGAGUAUUTUAAGAGUUTUGGUGTGAUUGUGTUGAGTUGAT
	G H P A I I E H L K S L G V T A V E L M
1921	CCGGTGCACCAGTTCGTGCACGACAACCGGCTGCACGACCTGCGCCACTACTGG
	PVHQFVHDNRLHDLGLRNYW
1981	GGTTACAACACGCTGGGCTTCTTCGCGCCCGTACCACGGTTATTCCGGGACCGGCACGCTC
	G Y N T L G F F A P Y H G Y S G T G T L
2041	GGCCAGCAGACCCAGGAGTTCCGCGGCATGGTCAAGGCCCTGCACGCGGCCGGGATGGAG
	G Q Q T Q E F R G M V K A L H A A G M E
2101	GTCATCCTGGACGTGGTCTACAACCACCGCGGAGGGCAACCACCTCGGGCCCACCCTC
	VILDVVYNHTAEGNHLGPTL
2161	${\tt TCGCTGAAGGGCATCGACAACCGCACCTATTACCGGCTGGTCGACGACCAGCCGCAGTTC}$
	SLKGIDNRTYYRLVDDQPQF
2221	TACATGGACTACACCGGCACCGGGAACAGCCTGAACGTGCGCAGCCCGCAGAGCCTGCAG
	Y M D Y T G T G N S L N V R S P Q S L Q
2281	CTGATCATGGACTCGCTGCGCTACTGGGTTACCGAGATGCACGTCGACGGCTTCCGCTTC
	L I M D S L R Y W V T E M H V D G F R F
2341	GATCTCGCGTCGACGCTGGCCCGCGAGTTCTACGACGTGGACCGGCTCTCCACCTTCTTC
	D L A S T L A R E F Y D V D R L S T F F

147

2401	GAGG	TGGI	CCA	GCA	GGA	CCC	GAI	CG	rcg	GGC	AGG	rca <i>i</i>	AGC'	TGA:	rcg	CCG	AGC	CGT	GGG	AC
	E V	V	Q	Q	D	Ρ	I	V	G	Q	V	K	L	I	A	Ε	Ρ	W	D)
2461	GTCG	GCCC	CGGG	CGG	CTA	CCA	GGI	CG	GCA	ACT	rcco	CGC	CGA	ACT	GGA	CCG	AGT	GGA.	ACG	GC
	V G	Ρ	G	G	Y	Q	V	G	Ν	F	P	Ρ	Ν	W	Т	Ε	W	Ν	G	ł
2521	AAGT	ACCO	GGGA	CAC	GGT	CCG	CGP	ACT	ГСТО	GGC	GCG	GCGZ	AGC	CGG	CCA	CCC	IGG	CCG	AGT	TC
	K Y	R	D	Т	V	R	D	F	W	R	G	Ε	Ρ	A	Т	L	A	Ε	F	,
2581	GCCA	GCCG	GGAI	CAC	CGG	CTC	GGC	CCGI	ACC	fCT2	ACC	AGGi	ACG	ACG	GGC	GCA	AGC	CGT	тсс	AC
	A S	R	I	Т	G	S	A	D	L	Y	Q	D	D	G	R	K	Ρ	F	Н	1
2641	TCGA	TCAA	ACTI	CGT	'CAC	CGC	GCF	ACGI	ACG	GGT	TCA	CCC	rca:	ACG	ACC	rgg'	ICG	CGT.	ACA	AC
	S I	Ν	F	V	Т	A	Н	D	G	F	Т	L	N	D	L	V	A	Y	N	[
2701	GACA	AGCA	ACAA	CGA	GGC	CAA	CGG	GCGI	AGGZ	AGA	ACCO	GGGZ	ACG	GCG	AGA	GCC	ACA.	ACC	GGT	CC
	D K	Н	Ν	Е	A	Ν	G	Е	Е	Ν	R	D	G	Е	S	Н	N	R	S	ļ
2761	TGGA	ACTO	GCGG	CAT	'CGA	GGG	CCC	CCAG	CCC	AGG	ACGI	AGAZ	AGG	IGC:	rgg2	AGC'	IGC	GCG	ССА	AG
	W N	С	G	I	E	G	Ρ	Т	Q	D	Е	K	V	L	E	L	R	A	K	
2821	CAGC	GCCG	GCAA	CTT	CCT	GGC	GAC	GC	rga:	rgc:	TCAG	GCC	AGG	GCG	IGC	CGA'	TGA	TCT	CGC	AC
	Q R	R	N	F	L	A	Т	L	М	L	S	Q	G	V	Ρ	М	I	S	Н	l
2881	GGCG	ACGA	AGCI	CGG	CCG	CAC	CCF	AGCI	AGG	GCA	ACA	ACAZ	ACG	CGTZ	ACT	GCC	AGG.	ACG.	ACG	AG
	G D	E	L	G	R	Т	Q	Q	G	N	Ν	N	A	Y	С	Q	D	D	E	
2941	ATCA	GCTG	GGAT	'CGA	CTG	GGA	GAA	ACG	CGGZ	ACG	AGC	AGC	rgc'	ГСG	AGT	rcg	CCC	GCA.	AGC	TG
	I S	W	I	D	W	E	N	A	D	Е	0	L	L	Е	F	A	R	K	L	1
3001	ACCG	CGTI	CCG	GCA	CCG	GCA	CCA	AGG:	rgt:	FCC	AGCO	GTC	GCC	GCT	TCT	rca(CCG	GTC	TGC	CG
	ТА	F	R	Н	R	Н	0	V	F	0	R	R	R	F	F	т	G	L	Р	J
3061	GTGA	CCGC	CGCG	CGG	CGG	CGG	~ CGZ		CGC	~ FGC(CCGA	ACC	rggi	AGT	GGTT	TCA	ccc	CGG	ACG	GG
	V T	A	R	G	G	G	D	P	T.	P	D	Τ.	E	W	 न	т	P	D	G	:
3121	CGGC	ССАТ	 יההר	'CGG	CGA	CGA	- Стс	-	- CA7	ACG	- ۵	- TCG	-	 266(- רקקי	- TCG		тGт	тсс	TC
0101	R P	М	A	G	D	D	W	G	N	D	F	G	R	A	v	A	L	F	v	,
3181	AACG	GCGA		CAT	-	CGA	GCG	- CG	3007	- AGT	ACG(-	AGC	GGC	ACG	rgg	ACA	GCT	CGT	TC
0101	N G	E	G	т	R	E	R	G	0	Y	G	0	R	н	v	л П	S	S	- C C C	1
3241	СТСС	— TGTT	ירייי	- רבסי		- GCA	CGZ		~ יררנ	- יברר	TCG	× AGTri	TCG		7600	- רער	CCG	CGG	- AGT	'AC
5211	T. T.	F	F	N	A	Н	.001 Д	A	P	Т	E	F	A	т	P	P	2000 A	E E	Y	,
3301			- AGTIC	GGA	GAA	GGT		ירקי					ייי קדו ^ר		- רםסר	- 4 T C (GCC	<u>-</u> ССТ	- רהה	TC
0001	GE	ĸ	W	E	ĸ	v	т	E	т	Δ	E E	P	S	P	л П	R	P	S	v	r r
3361	GTCG		 ירקה	- CCA	CAA	Gat	- יררי	- יההי	-	ngg:		- 3670	- ירחר	- דרםי	- TCG	rgc'	TCG	ACA	GGA	CG
0001	VE	Δ	ے م	н	ĸ	т	т.	v	P	ם ח	R	2 I I I I	т.	Т	v	т.	лоо. П	R	<u>т</u>	1
	V L	11	0	11	10	-		v	L	D	1(D		1	v		D	10	י ת/ פ)
3421	CTCT	сатс				аст		2 ጥ አ ሰ	2007	۵.CTU	~~ a z	۵.C.Tr	~~C	TCC	~C. \	، سبب		CCT	слл	CC
J421	v *	GAIG	5000		AGC	AGI	ACC	JIA		1910		1910			JGA			GCI	GAA	.99
	v	м	D	D	c	c	т	v	D	57	0	57	D	D	П	F	D	т	ĸ	7
		M		Г	5	5	T	T	I	v	Ŷ	v	1	Г	D	Г	Г	Ц	I	л
0.4.0.1	~~~~	→t	rei			~			~~~	~~~		~~~	~ ~ =	~ - ~ .	~~-	~~~	~	~ - ~	~ ~ ~	
3481	CCAC	CGCC	CGAG	ATC	GCC	GAC	TAT:	CTC	GGC(CGA'	FCT(GGG(CGT	GAG(CCA	CCT	СТА	CTC	GGC	.CC
	Т	A	Ε	Ι	A	D	Y	L	A	D	L	G	V	S	Η	L	Y	S	A	P
3541	CGTT	GCTO	JACC	GCC	TCG	CCC	GGC	TC	GA(JCA(CGG	JTA(CGA(CGT	GGT(GA)	JCA	CAC	CCA	.GG
	L	L	Т	A	S	Ρ	G	S	Е	Η	G	Y	D	V	V	D	Η	Т	Q	V
3601	TCAG	CCCG	GGAG	CTG	GGC	GGC	GCG	GA	CGG	ССТ	GCG	GGC	GCT	GTC	CGC	GGC	GCT	GAA	GAA	.CG
	S	Ρ	Ε	L	G	G	A	D	G	L	R	A	L	S	A	A	L	K	Ν	A

3661 CCGGGCTCGGCCTGGTCGTCGTCGTCGTCGCCGAACCACGCCGGGGTGGCCGTCGCCAAGG G L G L V V D I V P N H A G V A V A K A 3721 CCAACCCGACCTGGTGGGACGTGCTCAAGCGCGGTCGGGAATCGGCCTACGCCAAGTTCT N P T W W D V L K R G R E S A Y A K F Y 3781 ACGACATCGACTGGGAGCGGGGGAAGATCCTGCTCCCGGTGCTGGCCGCCGACCCGGGCG D I D W E R G K I L L P V L A A D P G A 3841 CGCTCGACGAGGTCCAAGGTCGAGGGCGACGAGCTGGTCTACTACGACAAGCGCTACCCGA L D E L K V E G D E L V Y Y D K R Y P I 3901 TCGCGGACGGGACCGGTGGCGGCGCCCCCGCGCGGGGGCACCGGCGGCACCACTACGAGC A D G T G G G T P R E V H D R Q H Y E L 3961 TGGCCGACTGGACCCGTGGCGACTCCGAGATCAACTACCGCCGGTTCTTCGCGATCACCG A D W T R G D S E I N Y R R F F A I T E LAGLRVEDPEVFEATHAEIL 4081 TGCGCTGGGTCCGCGAGGGCCTGGTCGACGGCATCCGGGTCGACCACCCGGACGGCCTGC R W V R E G L V D G I R V D H P D G L R D P A G Y L O R L H D A A P E A W L V I 4201 TCGAGAAGATCCTGGAGCCGGGCGAGCCGCTGCCCGCTGGCCGGTCGCCGGCACCACCG E K I L E P G E P L P R W P V A G T T G 4261 GGTACGACGCGATGGCCGAGGTCAACGGCGTGTTCGTGGACACCGGCACGGAGGCCTTCT Y D A M A E V N G V F V D T G T E A F F 4321 TCGATACGCTGGACCACCTGACCGGCGCCACCGTCACCTTCCAGAACCTGACGCACG D T L D H H L T G A T V T F Q N L T H D 4381 ACACCAAGCACCACGTCGCCACCCGGCTGCTCGCCGAGCTCGCCCGGCTCGCCCGGC T K H H V A T R L L A A E L A R L A R L 4441 TGGTCCCCGAGGTCGAGGCGGCGCGCGCGGGGGCCTCGCGGAGCTGGCCGCCTGCTTCCCGG V P E V E A A P R G L A E L A A C F P V Y R S Y L P G G A R H L A Q A R A E A G R R R P Q M I S T L D R L T G R L R N P 4621 CCGCCGACGAGCTCGCCATCCGCTTCCAGCAGTTCACCGGCGGCGGTGATGGCCAAGGGCG A D E L A I R F Q Q F T G A V M A K G V 4681 TCGAGGACACCGGGTTCTACCGCTGGACCCGGTTCGTGGCCCGCAACGAGGTGGGCAACG E D T G F Y R W T R F V A R N E V G N D P T R F G V S T D E F H E C S G A R O O 4801 AGGACTGGCCGGACACGATGACCTCGCTGAGCACCCACGACACCAAGCGCGGCGAGGACG D W P D T M T S L S T H D T K R G E D V 4861 TCCGGGCCCGGCTGGCGGTCCTGTCCGAACTGCCCGGCGACTGGACCGAGGTGGTGCGCC R A R L A V L S E L P G D W T E V V R R 4921 GCTGGGTCCGGCCGTCTCCGGCCCGGACCCCGCGCCGCCGCCATCTGATCTGGCAGGTCA W V R P S P L P D P A L A H L I W Q V T 4981 CGGTCGGCGCGTGGCCGCTGTCCAAAGACCGATTACTGGCGTACGCCGTGAAGGCCGCCC V G A W P L S K D R L L A Y A V K A A R 5041 GGGAGGCCGCGACCTCCACCACGTGGCAGCAGCCGGACGAACCGTTCGAGACCGCCGCTGC E A A T S T T W Q Q P D E P F E T A L R 5101 GGGAGATGGTCGACCGGATCTACGACGACCCCGACCTGCACCGCGAGGTGACCGATTTCG E M V D R I Y D D P D L H R E V T D F A 5161 CCGCCTCGATCACCCCGCCCGGCTGGTCCAACTCACTGGGCCAGAAACTCGTCCAGTTGA A S I T P P G W S N S L G O K L V O L T 5221 CCATGCCCGGCGTCCCGGACGTCTACCAGGGCACCGAGCTCTGGGACTACTCGCTGGTCG M P G V P D V Y O G T E L W D Y S L V D 5281 ACCCGGACAACCGGCGGCCGGTCGACTTCGCCGCCGCCGCGAGTTGCTCGGCCGTCTCG P D N R R P V D F A A R R E L L G R L D 5341 ACGACGGGTGGCAGCCGCCGGTCGACGAGACCGGCCGCCAAGCTGCTGGTGGTCAGCC D G W Q P P V D E T G A A K L L V V S R T L R L L R R R P E L F R S Y R P V F A 5461 CCGAGGGGCGCCTCGGTGAGCACGTGCTCGCCTTCGACCGCGGCGGCGTGGTGGCGGTCG EGRLGEHVLAFDRGGVVAVA 5521 CCACCCGCCTCCCGGTCGGATTGTCACGCCACGGCGGGGGGGCACGACACCACCCTGTCAC T R L P V G L S R H G G W H D T T L S L 5581 TCGACGGCCACAGTTGGACGGAAGTGTTCACGAATACCAGCTACGGTGGAAACCGCCTGG D G H S W T E V F T N T S Y G G N R L A 5641 CCGTCGCCGATCTGCTGCAGACCTATCCCGTCGCTCTCCTGGTGAAAGAATGACAACCTT V A D L L Q T Y P V A L L V K E * МТТГ

S/D →treZ

5701 CGAGGTATGGGCGCCGGAGAAGTCGCCCAAGCTGCGCCTGGACGACCAGGAGCACGAGAT E V W A P E K S P K L R L D D Q E H E M 5761 GGAGCCGGGCGACGGCGGCTGGTGGCGCCTGGACGTGCCCACCGCCGGTCCCGGCACCGA E P G D G G W W R L D V P T A G P G T D 5821 CTACGCGTACGTGTTGGAGGACGTCGCCGCCCCGGTCCCCGACCCGCGGTCGGCCTGGCA Y A Y V L E D V A A P V P D P R S A W Q 5881 GCCGCAGGGTGTGCACGGGCCCAGCCGGGTCTACGACCACGCCGCCTTCACCTGGACCGA P Q G V H G P S R V Y D H A A F T W T D Q R W P G R Q L P G A V L Y E L H I G T 6001 GTTCACCCCGGCCGGCACGTTCGACGCCGCGATCGAGCGTCTCGACCACCTCGTCGACCT FTPAGTFDAAIERLDHLVDL 6061 CGGTGTCGACCTGGTCGAACTGCTGCCGGTCAACGCGTTCAACGGCGAGCACAACTGGGG G V D L V E L L P V N A F N G E H N W G 6121 GTACGACGGCGTCTGCTGGTACGCCCCGCACGAGGCGTACGGCGGGCCGGACGGGCTGAA Y D G V C W Y A P H E A Y G G P D G L K 6181 ACGGTTCGTCGACGCGGCCCACGCCAAGGGCCTGGGCGTGGTGCTCGACGTCGTCTACAA R F V D A A H A K G L G V V L D V V Y N 6241 CCACTTCGGCCCCTCCGGGGCGTACGCGCCGATGTTCGCGCCCTACCTGAGCGCCGGGCA H F G P S G A Y A P M F A P Y L S A G Q 6301 GAACACCTGGGGCAGCTCGCTCAACCTGGACGGCCCCGACTCCGGCGAGGTCCGGCGGTA N T W G S S L N L D G P D S G E V R R Y

150

6361 CATCGCCGACAGCGTGCTGATGTGGCTGCGTGACTACCACATCGACGGGCTGCGGCTCGA I A D S V L M W L R D Y H I D G L R L D A V H A L H D E G A V H L L E Q L A V E 6481 GGTGGAGTCGCTGTCCACGGCGCTGCGCCGACCACTGACGCTGATCGCCGAGTCCGACCT V E S L S T A L R R P L T L I A E S D L 6541 CAACGATCCGAAACTGATCACCCCGCGCGAGGCCGGCGGGTACGGCCTGCACGCCCAGTG N D P K L I T P R E A G G Y G L H A O W 6601 GGACGACGACGTGCACCACGCGCTGCACAGCCTGCTGACCGGGGAACGCCAGGGCTACTA D D D V H H A L H S L L T G E R Q G Y Y 6661 CGGCGACTTCGGCTCGCTGGACTGCCTGCGTACCGTGCTGGAGGGCGCGTTCTACCACGC G D F G S L D C L R T V L E G A F Y H A 6721 CGGCACCTGGTCGTCGTCCGCCACCGGCGGCACCGGCCGACCGGTCGACCGGCAGCGCAC G T W S S F R N R R H G R P V D R Q R T 6781 CGCGGGCCACCGGTTCGTCGCCTTCCTGCAGAACCACGACCAGATCGGCAACCGGGCGAT A G H R F V A F L Q N H D Q I G N R A I 6841 CGGCGACCGGCTCACCGCCACGCTGTCCCCGGGACTGCTCAAGGTCGGCGCGACGCTGCT G D R L T A T L S P G L L K V G A T L L 6901 GCTGACCTCGCCGTTCACGCCGATGCTCTTCATGGGCGAGGAGTGGGCGGCGAGCAGCCC L T S P F T P M L F M G E E W A A S S P 6961 GTGGCAGTTCTTCACCAGCCACCCGAGCCGGAGCTGGCGGCCGCGGTGCAGACCGGACG W Q F F T S H P E P E L A A A V Q T G R 7021 CCGCCGCGAGTTCGCCCGGCACGGGTGGGCCGAGGCGGACGTGCCCGACCCGCAGGACCC R R E F A R H G W A E A D V P D P Q D P 7081 GGCCACCTTCCAACGATCCAAGCTGGACTGGTCGGAGCTCGGCAAACCGGAGCACGCCGA A T F O R S K L D W S E L G K P E H A E 7141 GATGCTGGCCCTGTACAAGAAGCTGATCCGGCTGCGCCGTGAGGTGCCCGACCTGACCGA M L A L Y K K L I R L R R E V P D L T D 7201 TCCCTGGCTGTCCGAGGTCGAGGTGTGGCACGGCGACCAGTTCGTGGTGATCCGTCGCGG PWLSEVEVWHGDQFVVIRRG 7261 CCGGCACGCGGTCGCGGCGAACCTCGCCGAGACGCCGCAGACGGTGAGTCTGCGCGCCGT R H A V A A N L A E T P Q T V S L R A 7321 TCCCTCGGCGGTGCTGCTGGCCACCGCCGACGGCGTCATCCTGGAACGCGACCGGGTCGT P S A V L L A T A D G V I L E R D R V V 7381 GCTGCCCCCGGAAAGCGCCGTGGTCGTCCGCACCTCGCGCTGACGCCACCCGGCCACCCC L P P E S A V V V R T S R * 7441 CGTCGCCGATCGGCGGCGGCGGGGGGGGGCGCACCGCTCAATGGTGTTTTGATCTT 7501 GGATCTTCTGGCGGTTCCGGGGATCGTGACCGGTGGAGCGGGTCCGGCACGATGTGGCCG S/D 7561 TGACGAATGTGCCCGACGACCTTGTCGCCGCCGAGCCGGAGGCCGGGGAAGCGGAACC M C P T T L S P P S R T S R G S G T \rightarrow ORF2

7621 GGTGGTATGACAACTCGCGACTGCGGTCCCGGGTGCGATCTGCCGATT G G M T T R D C G P G C D L P I

Abb. 7.1.1: Nucleotidsequenz des 7,7 kb großen chromosomalen DNA-Bereichs der MTSase (TreY)/MTHase (TreZ)-kodierenden Region.

Die abgeleiteten Aminosäuresequenzen der einzelnen ORFs sind unterhalb der Nucleotidsequenz (5'-3'Richtung) im Ein-Buchstaben-Code angegeben. Die Ribosomenbindungsstellen sind unterstrichen (S/D). Die potentiellen Promotorstrukturen (-10, -35) sind durch Fettdruck markiert. Abkürzungen: treX = Gen für potentielles Glycogen *debranching* Enzym; treY = Gen für potentielle Maltooligosyltrehalose-Synthase; treZ = Gen für potentielle Maltooligosyltrehalose-Trehalohydrolase; ORF1 = unbekannt; ORF2 = Gen für putatives das Glutamat-Bindungsprotein

7.1.2 Sequenz eines Teils von putativem Glutamat-Bindungsproteins (ORF2)

Abb. 7.1.2: Nucleotidsequenz der 650 bp großen chromosomalen DNA im Bereich eines putativen Glutamat-Bindungsproteins-kodierenden Region. Erkennungssequenzen für das Restriktionsendonuklease *Not*I ist unterstrichen.

7.1.3 Sequenz eines Teils von putativem Uroporphyrin III-Methyltransferase

Abb. 7.1.3: Nucleotidsequenz der 400 bp großen chromosomalen DNA im Bereich einer putativen Uroporphyrin III-Methyltransferase-kodierenden Region. Erkennungssequenzen für das Restriktionsendonuklease *Pst*I ist unterstrichen.

7.2.1 Homologievergleich der Glycogen *debranching* Enzyme (TreX) verschiedener Bakterien

			370		420
Art A. M. S. D. S. S.	throbacter sp. SN223/229 tuberculosis coelicolor radiodurans typhimurium acidocaldarius	266 265 285 273 275 274 280	L I DVVYNHTAEGNHLGPTLSFKGI DVVYNHTAEGNHLGPTLSLKGI DVVYNHTAEGNERGPTLSFRGI DVVYNHTAEGNERGPTLSFRGI DVVYNHTAEGNELGPTLSFKGI DVVYNHTAEGNELGPTLSFKGI *****	DNEAYYRLVEDDKQYYMDYTGTGNT DNRTYYRLVDDQPQYMDYTGTGNS DNTAYYRLMDHDLRFYKDFTGTGNS DNASYYRLVDGDWQHYYDTTGTGNS DNASYYRLVADDQRFYFDYTGTGNS DNFSYYRTMPDQHRYYINDTGTGNT DNSSYYMLDPKNKRYYIDFTGTGNT	I NVRQPHSLQLIM NVRSPQSLQLIM NARHPHTLQLIM LMRHPYVLQLIM NVRHPQTLQLIM NTSHPRVLQMVM NLSHPRVLQLVL
			• 430		480
Art A. M. S. D. S. S.	throbacter sp. SN223/229 tuberculosis coelicolor radiodurans typhimurium acidocaldarius	326 325 345 333 335 334 340	II DSLRYWVTEMHVDGFRFDLAAA DSLRYWVTEMHVDGFRFDLAST DSLRYWVTEMHVDGFRFDLAST DSLRYWVTEMHVDGFRFDLAST DSLRYWVTEMHVDGFRFDLAST DSLRYWVLEMHVDGFRFDLASA ********	LAREFYDVDRLSTFFELIQQDPVV LAREFYDVDRLSTFFEVVQQDPIV LARELHDVDRLSAFFDLVQQDPVV LARQFHEVDRLSAFFDLIQQDPV LARGLH VDQLSGFFTIIHQDPI LGREPEGFDQRGGFFDAVTQDPVI LARQLYSVNMLSTFFVAIQQDPII	III /SQVKLIAEPWDV /GQVKLIAEPWDV /SQVKLIAEPWDV (SQVKLIAEPWDV LAKLKLIGEPWDI LSQVKLIAEPWDV *******
			490 I		540
Art A. M. S. D. S. S.	throbacter sp. SN223/229 tuberculosis coelicolor radiodurans typhimurium acidocaldarius	384 383 403 391 393 392 398	GPGGYQVGNFPPQWTEWNGK GPGGYQVGNFPPNWTEWNGK GEGGYQVGNFPGLWTEWNGK GEGGYQVGNFPQLWSEWNGK GEGGYQVGNFPVNWAEWNGI GPGGYQVGGFPPGWGEWNDK GPGGYQVGNFPYLWAEWNGK	YRDTVRDFWRGEPATLGEFASRITGS YRDTVRDFWRGEPATLAEFASRITGS YRDTVRDYWRGEPATLGEFASRITGS YRDAVRDFWRAEDHSLGEFASRITGS YRDDMRSFWKGEGGLASEIGYRITGS YRDTVREYWKGDNVTN-DFAARLLGS YRDTIRRFWRGDPVPYEELANRLLGS	SADLYEHSGRRP SADLYQDDGRKPF SDLYEATGRRPS SDLYQHSRRPR SDLYEFNGRKPY SGDLYDLRGRPW SPDLYAGSNKTPF
			550 IV		600 I
Art A. M. S. D. S.	throbacter sp. SN223/229 tuberculosis coelicolor radiodurans typhimurium	442 441 461 449 451 449	ASINFVTAHDGFTLRDLVSYNE HSINFVTAHDGFTLNDLVAYND ASINFVTAHDGFTLNDLVSYND ASVNFVTAHDGFTLRDLVSYND ASINFVTAHDGFTLRDSVTYEQ SSVNFITAHDGFTLNDLVSYND ASINYITSHDGFTLQDLVSYNQ ******	KHNEANGEDNKDGESHNRSWNCGVEC KHNEANGEENRDGESHNRSWNCGIEC KHNEANGENNRDGESYNRSWNCGVEC KHNEANGEDNRDGESHNRSWNCGAEC KHNEANGEGNNDGHNHNIIWNCGVEC KHNEANGEDNNDGHNDNRS <mark>CNY</mark> GAEC KHNEAN <mark>KLNN</mark> EDGMNENYSWNCGVEC	PTDDPKVLSLRA PTQDEKVLELRA PTDDPDILALRA GTKDPAVRELRG PTDDPEINRLRG PTDDEGINAIRE ETNDSNILYCRE
			610		660
Art A. M. S. D. S. S.	throbacter sp. SN223/229 tuberculosis coelicolor radiodurans typhimurium acidocaldarius	502 501 521 509 511 509 516	I ROORNFIATMLISOGVPMILHG KORRNFLATLMISOGVPMISHG ROMRNMWATLMVSOGTPMIAHG ROORNFLATLLISOGIPMICHG OMRNFLATLLIGOGTPMILGG ROKRNFLTTLLFSHGTPMILAG KORRNFVITLFVSOGIPMILGG	DEMGRTQQGNNNGYCQDSELTWVNWI DELGRTQQGNNNAYCQDDEISWIDW DEIGRTQYGNNNVYCQDSELSWMDW DELGRTQRGNNNAYCQDNEISWIDW DEFGRTQGGNNNAYCQDNDISWYDW DEFGRSQMGNNNGYCQDSEISWVHWI DEIGRTQKGNNNAFCQDNETSWYDW	DSVDQPLIEF ENADEQLLEF SLVDKNA-DLLAF RLDGEQR-ALLDF EKVDEELLAF DNLPETANALREF N-LDENRVRFHDF
			670 		720
Art A. M. S. D. S. S.	throbacter sp. SN223/229 tuberculosis coelicolor radiodurans typhimurium acidocaldarius	559 558 580 568 568 569 575	TAAVNSLRAKHPTFRRSRFFDG ARKLTAFRHRHQVFQRRRFFTG ARKATTLRKNHKVFRRRFFEG ARRLIALRADHPVLRRRFFHG TRKLIALRKAHPSLHRRKFFAG TRHLIQLRATQPLLRRESWRDG VRRLTNFYKAHPIFRRARYFQG	RPVR-RGEGERLPDIVWLDPDGNLMS LPVTARGGGDPLPDLEWFTPDGRPM EPIRS-GDEVRDIAWLTPSGREM ETLTHADQPLPDLVWLLPDAREM RNIRGEDVRDIVWLRFDGAEM LEIRGSPLKDVTWLKPDGNEVI	SPEDWDSGFGRSV AGDDWGNDFGRAV THEDWGRGFDRCV TDDDWQRSDAHTV SDEDWNNPQTQSL QSEQWDEGSTI DDSVWKSP-TNHI

			730 78	0
Arth A. S M. t S. c D. r S. t S. a	nrobacter sp. SN223/229 Suberculosis coelicolor radiodurans Syphimurium acidocaldarius	618 618 637 626 624 615 630	GMFLNGDGIQGHDDRGRRITDVNFLLYFNAHDGDVERTLPPDEYAPAWDVIIDTAGEG ALFVNGEGIRERGQYGQRHVDSSFLLFFNAHDAPIEFATPPAEYGEKWEKVIETAEPS AVFLNGEAITAPDARGERVVDDSFLLCFNAHDHDVEFVMPHDGYAQQWTGELDTNDPV GVFLNGDAIAEPDPRGRPVVDDSFLLLNSHWEPADFRLPDAGYGERWTALVDTADPDGV GMFLAGDGLADVDAEGKPLTDDHLLLLSSSYVDLPEKMPDLGGCGEWDLLLDTSDD GVCISRPDLQFEAGIWHDALLFNPFEGSVPERIPMWGEGG-WVLEITTADN IYILEGSAIDEINYNGERIADDTFLIILNGASTNLKIKVPHGKWELVIHPYPHE-P	
Arth	probacter sp.	676	790 84 AD-SKPADAGTILS <mark>V</mark> AAK <mark>S</mark> LVVLRAHSAPEEEPDHSVAASLAALTQTATAETAALTAPAV	0
A. S M. t S. c D ra S. t S. a	N223/229 cuberculosis coelicolor adiodurans cyphimurium acidocaldarius	676 695 686 680 666 685	PDRPSVVEAGHKILVPDRSLIVLDRTVDRTV	
			850 90	0
Arth A. S M. t S. c D. r S. t S. a	nrobacter sp. N223/229 Suberculosis Soelicolor Fadiodurans Syphimurium Acidocaldarius	735 702 721 715 720 691 713	PEPAKTKKPAADPVAEPADPPVADPADPVADPVADPAPEPAAEPAKSAAEPGAEPAKDPE	
			910 920	
Arth A. S M. t S. c D. r S. t S. a	nrobacter sp. N223/229 Suberculosis coelicolor radiodurans Syphimurium acidocaldarius	795 702 721 715 720 691 713	EQPAEKPARKPAAKRGGHLRAVKPAGEDA 	

Abb. 7.2.1: Homologievergleich von TreX aus *Actinoplanes* sp. SN223/229 zu TreX-Proteinen verschiedener Bakterien.

Abkürzungen: Actinoplanes sp. SN223/229; Arthrobacter sp. Q36 (TreX, Maruta et al., 2000); Mycobacterium tuberculosis H37Rv (GlgX, Cole et al., 1998); Streptomyces coelicolor A3 (2) (GlgX, Redenbach et al., 1996); Deinococcus radiodurans R1 (GlgX, White et al., 1999); Salmonella typhimurium LT2 (McClelland et al., 2001); Sulfolobus acidocaldarius (TreX, Maruta et al., 1996). Die nummerierten, konservierten Regionen sind unterhalb der Aminosäuresequenz durch Sterne gekennzeichnet. Abkürzungen: \bullet = katalytischer Rest; \bullet = Substratbindungstelle. Die \geq 75 %ige Identität der Aminosäuren ist durch schwarze Boxen markiert. Die \geq 75 %ige Ähnlichkeit der Aminosäuren ist durch graue Boxen gekennzeichnet.

7.2.2 Homologievergleich der Glycosylhydrolasen verschiedener Bakterien

Die nummerierten, konservierten Regionen sind unterhalb der Aminosäuresequenz durch Sterne gekennzeichnet. Abkürzungen: Actinoplanes sp. SN223/229 (Glycogen debranching); E. coli (Glycosidase, Romeo et al., 1998); Mycobacterium tuberculosis (Glycogen debranching, Cole et al., 1998); Arabidopsis thaliana (putative Isoamylase, Town et al., Ergebnisse nicht veröffentlicht); Flavobacterium sp. (Isoamylase, Krohn et al., 1997); Clostridium perfringens (Pullulanase, Shimizu et al., 2002); Bacillus subtilis (Pullulanase, Kunst et al., 1997); Sulfolobus solfatarius (α -Amylase, Kobayashi et al., 1996); \bullet = katalytischer Rest; \bullet = Substratbindungstelle. Die \geq 75 %ige Identität der Aminosäuren ist durch schwarze Boxen markiert. Die \geq 75 %ige Ähnlichkeit der Aminosäuren ist durch graue Boxen markiert.

10 60 Rhizobium sp. STYR IGYDV 1 MRT-PASTYRLQIRR----GFTLFDAAETVPYLKS MRT-PVSTYRLQIRK----GFTLFDAAKTVPYLHS MKT-PVSTYRFQIRT----SFTLFDAAEQVPYLKD MR--PSSTYRVQVRP----DFPLKATAEIADYLAD MAFPVISTYRVQMRGRSNGFGFTFADAENLIDYLDD Arthrobacter sp.1 НS LGV DW YLSF G۶ HGYDV LTA ---SFTLFDAAEQVPYLKDLRVHWVFLSP ---DFPLKATAEIADYLADLGVSHLYSAP 1 B. helvolum ILTA ΕK GS HGYNS LLTASPGS A. SN223/229 HGYDV 1 SHLYLSP M. tuberculosis 1 THGYDV 70 120 Ι YLIDIVPNHVGVA<mark>S</mark>PPQNPWWWSI YLIDIVPNHVGVA<mark>TP</mark>AQNPWWWSI Rhizobium sp. 55 TDPSAVDPERGGPEGLAAVSKAARAAGMGVLIDIVPNHVGVASTION TDPSAVDPERGGPEGLAAVSKAARAAGMGVLIDIVPNHVGVATPAONPWWWSLLKE TDPSPVDPDRGGPKALQALSKVARKHGMGVLLDIVTNHVGVATPVONPWWWSLLKE VDHTQVSPELGGADGLRALSAALKNAGIGLVVDIVPNHAGVAVAKANPTWWDVLKR TDPTTVSPELGGSDGLARLSAAARSRGMGLIVDIVPSHVGVGKPEONAWWWDVLKF LLKEGRQS LLKEGRKS /LKRGRES Arthrobacter sp.55 55 B. helvolum A. SN223/229 54 M. tuberculosis 61 ****** . 130 180 Rhizobium sp. 115 P<mark>ya</mark>va DŴ KDG /LGSDD-DLDQLEIRDGELRYYDHR-FPLAEGJIRDGD /LGSDD-DLDQLEIRDGELRYYDHR-FPLAEGTYAEGDAP /LGSDN-NLDNLEVKDGKLRYYNHRSFRLGK-ENREGDSL /LAADPGALDELKVEGDEL<mark>V</mark>YYDKR-YPIADGTG--GGTP p.115 yae fd 115 pyaeafd DWDI Arthrobacter sp.115 LΡ VDWDL B. helvolum LP KVF ΚFYD A. SN223/229 114 AYA IDWER--LΡ RIILPLLGSDS-DVANLRVDGDLLRLGDLA F<mark>FDIDWEL</mark>GDG M. tuberculosis 121 AYA -DGTG -LP190 240 Rhizobium sp.173QDVHGRQHYELIGWRRADNELNYRRFFAVNTLAGIRVEVPPVFArthrobacter sp.173RDVHARQHYELIGWRRADNELNYRRFFAVNTLAGVRVEIPAVFB. helvolum173QEVHTRQHYQLMDWRRADAELNYRRFLAVTTLAGIRVEEPSVFA. SN223/229169REVHDRQHYELADWTRGDSEINYRRFFAITELAGIRVEDPEVF RWF RAGT. DEZ REDLAD TEGLVD REGLVD TEGLVD ΕV RWF GRWF EKVHAEV(EATHAEII RWVF M. tuberculosis 177 PAVHDRQHYRLVGWRHG--LCGYRRFFSITSLAGLRQEDRAVF DASHA RWF 250 300 II III Rhizobium sp.233GIRIDHPDGLADPEGYLKRLREVTG-GAYLLIEKILEPGEQLPASFECEGTTGYDALAArthrobacter sp.233GLRIDHPDGLADPEGYLKRLREVTG-GAYLLIEKILEPGEQLPASFECEGTTGYDALAB. helvolum233GRVDHPDGFADPDRYFRWFKDVSG-AYVLVEKILEPGEVLPQDFACEGTTGYDALAA. SN223/229229GIRVDHPDGLRDPAGYLQRLHDAAP-EAWLVIEKILEPGEPLPR-WPVAGTTGYDAM M. tuberculosis 235 CVRVDHLDGLSDPSGYLAQLRELLGPNAWIVVEKILAVDEALEPTLPVDGSTGYDVLREI ****** ٠ ٠ 360 310 Rhizobium sp.292DRVFVDPRGQEPLDRLDARLRG-GAPADYEDMIRGTKRRITDGILHSEILRLARLVPEQTArthrobacter sp.292DRVLVDPRGQEPLDRLDASLRG-GEPADYQDMIRGTKRRITDGILHSEILRLARLVPGDAB. helvolum292DRVFVDPAGQQALDALDASLRGTSEPADYAEMIRGTKRMIADGILRSEVLRLARLVPESHA. SN223/229287NGVFVDIGTEAFFDTLDHHLTG--ATVTFQNLTHDTKHHVATRILAAELARLARLVP----M. tuberculosis295GGVLVDPQGESPLTALVESAG--VDYQEMPAMLADLKVHAAVHTLASELRRLRRCLAAAA 370 420 Rhizobium sp. 351 GIPGEAAADAIAEIIAA QPLLLDT FPVYF YLP CDL<mark>a</mark>arf sp.351 NVSIDAGADALAEIIAAFPVYRTYLEEGAEVLKEACELAARRRPELDQAIQALQPLLLDT 352 GFSVDQAADAIAEIIASFPVYRSYLEVGADVLKEACESAAAHRPDLEVAVGTLQPLLLDP Arthrobacter sp.351 NVSIDAGADALAEIIAAFPVYRTYLPEGAE B. helvolum 341 -- EVEAAPRGLAELAACFPVYRSYLPGGARHLAQARAEAGRRRP MISTLDRLTGRLRNP A. SN223/229 M. tuberculosis 353 GADHPLLPAAVAALLRHIGRYRCDYPGOAAVLPCALAETHSTTPOLAPGLQLIAAAVAR-

7.2.3 Homologievergleich der Maltooligosyltrehalose-Synthasen (TreY) verschiedener Bakterien

Abb. 7.2.3: Homologievergleich der MTSase (TreY) aus Actinoplanes sp. SN223/229 mit MTSasen verschiedener Bakterien.

Abkürzungen: Actinoplanes sp. SN223/229; Rhizobium sp. (TreY, Maruta et al., 1996b); Arthrobacter sp. Q36 (TreY, Maruta et al., 1996c); Brevibacterium helvolum (TreY, Kim et al., 2000); Mycobacterium tuberculosis H37Rv (GlgY, Cole et al., 1998). Die nummerierten, konservierten Regionen sind unterhalb der Aminosäuresequenz durch Sterne gekennzeichnet. Abkürzungen: \bullet = katalytischer Rest; \bullet = Substratbindungstelle. Die \geq 75 %ige Identität der Aminosäuren ist durch schwarze Boxen markiert. Die \geq 75 %ige Ähnlichkeit der Aminosäuren ist durch graue Boxen markiert.

60 10 MTHTYPREAAKPVLGPARYDVWAPNAESVTLLAGGERYAMORRAETGPEDAGWWTAAGAP MTQ--PNDAAKPVQGAGREDIWAPEAGTVTLLAGGERYEMGRRPGNGPADEGWWTAADAP MTL-----VNV-GPEREDVWAPDVSSVVLVADGROYPMOKK-ETAPGSEGWWTASDAP MTT------PGDGGWWRLDVPT MPE-----FRVWAPEK-SPKLRLDDQEHEME-----PGDGGWWRLDVPT MPE-----FRVWAPKPALVRLDVNGAVHAMTR----SAD-GWWHTTVA Arthrobacter sp.1 Rhizobium.sp. 1 B. helvolum 1 1 A. SN223/229 M. tuberculosis 1 70 120 Arthrobactersp.61TDGNVDYGYLLDGDETPLPDPRTRRQPDGVHALSRTFDPSA---YSWQDDAWQGRIRhizobium59TGADVDYGYLLDGDEIPLPDPRTRRQPEGVHALSRTFDPGA---HRWQDAGWQGRIB. helvolum52PNGDVDYGYLLDGNTTPVPEPRSRRLPAGVHNHSRTYNPPP---YRWQDSRWRGKIA. SN223/22939AGPGTDYAYVLEDVAAPVPDPRSAWQPQGVHGPSRVYDHAA---FTWTDQRWPGRM. tuberculosis40P-ADARYGYLLDDPTVLPDPRSARQPDGVHARSQRWEPPGQFGAARTDTGWPGR GKELQGJ GKELQGT QLPG 130 180 Arthrobacter sp.118VIYELHLGTFTPEGTLEAAAGKLDYLAGLGVDFIELLPVNAFNGTHNWGYDGVRhizobium sp.116VIYELHIGTFTPEGTLDAAGKLDYLAGLGIDFIELLPVNAFNGTHNWGYDGVB. helvolum109IIYQLHVGTSTPDGTLDAAGEKLSYLVDLGIDFIELLPVNGFNGTHNWGYDGVA. SN223/22996VIYELHIGTFTPAGTFDAAIERLDHLVDLGVDLVELLPVNAFNGEHNWGYDGV VHF VHE Y T VHE QW WYAP**he** VIYELHIGTFTTAGTFDAAIEKLDYLVDLGIDFVELMPVNSFAGTRGWGYDGV M. tuberculosis 99 VHE 190 240 Т GLG I ODVVYNHLGPSGNYI Arthrobacter sp.178 AYGGPEAYQRFVDAAHA NT.D JTWGDS DVVYNHLGPSGNY<mark>L</mark>P Rhizobium sp. 176 GYGGPAAYQRFVDAAHAAGLGV GPYLKH<mark>GEG</mark>NTWGDS NLD ZDVVINHLGISSNIFIKIGPNLKQGDANTLGDSVNLD I DVVYNHFGPSGAYAPMFAPYLSAG I DAVFNHLGPSGNYLPRFGPYLSSA-S<mark>N</mark>PWGDGINIA 169 GYGGPAAYQRFVDAAHA<mark>A</mark>GLGV B. helvolum A. SN223/229 156 AYGGPDGLKRFVDAAHAKGLGV M. tuberculosis 159 PYGGPDGLVRFIDACHARRLGV 300 250 II Arthrobacter sp.238 GPG RLDAVHAL DFGALAD Arthrobacter sp.230GrGSDHVNCHRhizobium sp.236GPGSDHVNCYIB. helvolum229GAGSDVFREYIA. SN223/229215GPDSGEVRRYIM. tuberculosis218GADSDEVRHYI DGLRLDAVHALK<mark>DE</mark>RAVHILEEFGALADA VA e g<mark>gr</mark> DGVGF<mark>DAVHA</mark>VR<mark>DE</mark>RAVHILEDLGALGDA /GDY HI<mark>DGLRLDAVHAL</mark>H<mark>DEGAVH</mark>LLEQLAVEVESLSTALRF *7*Т RDY HADGLRLDAVHALVDTTAVHVLEELANATRW 'AT.F RD ******* ٠ 360 310 TTT Arthrobacter sp.298 PLTLIAESDLN PRI T.A TYGI. חחו НΗΔ Rhizobium sp.296PLTLIAESDINB. helvolum289PKTLIAESDFNPKTLIAESDFN289PKTLIAESDFN PRI PR OW LΑ VN GYGI AG DE НΗΖ VN GE ΥY DF PRL IY<mark>PRDVN</mark>GYGL AG<mark>QW</mark>S ΗTA HVSVS LА DDE GE ΞΥΥ DF 275 PLTLIAESDLNI) PKL I TPREAGGYGLHAOWDDDVHHA A. SN223/229 LHSLLTGE DF **γ**γ TR M. tuberculosis 278 PLSLIAETDRNDPRLITRPSHGGYGITAQWNDDIHHA ****** ٠

7.2.4 Homologievergleich der Maltooligosyltrehalose-Trehalohydrolasen (TreZ) verschiedener Bakterien

• •

Abb. 7.2.4: Homologievergleich der MTHase (TreZ) aus Actinoplanes sp. SN223/229 mit MTHasen verschiedener Bakterien.

Abkürzungen: Actinoplanes sp. SN223/229 ; Arthrobacter sp. Q36 (TreZ, Maruta et al., 1996c); Rhizobium sp. (TreZ, Maruta et al., 1996b); Brevibacterium helvolum (TreZ, Kim et al., 2000); Mycobacterium tuberculosis H37Rv (GlgZ, Cole et al., 1998). Die nummerierten, konservierten Regionen sind unterhalb der Aminosäuresequenz durch Sterne gekennzeichnet. Abkürzungen: \bullet = katalytischer Rest; \bullet = Substratbindungstelle. Die \geq 75 %ige Identität der Aminosäuren ist durch schwarze Boxen markiert. Die \geq 75 %ige Ähnlichkeit der Aminosäuren ist durch graue Boxen markiert.

7.2.5 Homologievergleich der Trehalose-Synthasen (TreSasen) verschiedener Bakterien

		10	60
M. tuberculosis	1	MNEAEHSVEHPPVQGSHVEGGVVEHPDAKDFGSAAALPADPTWFKHAVFYEVLVRAFF	DA
A. SN223/229	1	MELTSEHDPAEGSHTEDGMVEHPSADDFGHARALPADRTWFQRAVFYEVLVRAFY	DS
S. coelicolor (CI)	1	PHIVNEPVPDTFEDTPAKDRDPDWFKRAVFYEVLVRSFQ	DS
S. coelicolor (CII)	1	PHTVNEPVPDTFEDTPAGDRHPDWFKRAVFYEVLVRSFQ	DS
Pimelobacter sp.	1	BIAESTVLGEEPEWERTAVFYEVLVRSER	DP
P. aeroginosa	1	MARREKPVFLNDPQWYKDAVIYQVHVKSFY	DA
		70	120
			1
M. tuberculosis	61	SADGSGDLRGLIDRLDYLQWLGIDCIWLPPFYDSPLRDGGYDIRDFYKVLPEFGTVDD	V
A. SN223/229	58	GSDG <mark>GGDLRGLIERLDYLQWLGVDCLWLPPF</mark> YD <mark>SPLRDGGYDIR</mark> DFYK <mark>VLPEFG</mark> TVDD	V
S. coelicolor (CI)	41	NGDGIGDLKGLTAKLDYLQWLGVDCLWLPPFFKSPLRDGGYDVSDYTAVLPEFGDLAD	V
S. coelicolor (CII)	41	NGDGIGDLKGLTAKLDYLQWLGVDCLWLPPFFKSPLRDGGYDVSDYTAVLPEFGDLAD	V
Pimelobacter sp	33	NAG <mark>GTGDFRGLAEKLDYLQWLGVDCLWVPPF</mark> FS <mark>SPLRDGGYDVA</mark> DYTGILPE <mark>IG</mark> TVED	Н
P. aeroginosa	33	NNDGIGDFAGLIEKLDYIADLGVNTLWLLPFYPSPRRDDGYDIAQYRGVHSDYGSLAD	AR

	130	180
M. tuberculosis 121 A. SN223/229 118 S. coelicolor (CI) 101 S. coelicolor (CII)101 Pimelobacter sp. 93 P. aeroginosa 93	I ALVDAAHRRGIRIITDLVMNHTSESHP ALLDAAHKRGIRVITDLVMNHTSDSHP EFVDAAHQRGMRVIIDFVMNHTSDQHP EFVDAAHQRGMRVIIDFVMNHTSDQHP AFLDGAHERGIRVIIDFVMNHTSDAHP RFIAEAHRRGLRVITELVINHTSDQHP *******	WFQESRRDPDGPYG-DYYVWSDTSERYTDARII WFQASRHDPDGPYG-DFYVWNDTSEKYKDARII WFQESRRNPDGPYG-DYYVWADDDKQFQDARII WFQESRKNPDGPYG-DYYVWADDDTRYADARII WFQASRSDPDGPYG-DFYVWSDTDELYQDARVI WFIRARHAKK <mark>G</mark> SRARDYYVWSDSDEKYQGTRII
	190 	240 II
M. tuberculosis 180 A. SN223/229 177 S. coelocolor (CI) 160 S. coelicolor (CII)160 Pimelobacter sp. 152 P. aeroginosa 153	FVDTEESNWSFDPVRROFYWHRFFSHQ FVDTEESNWTFDPVRROFYWHRFFSHQ FVDTEASNWTYDPVRKOYYWHRFFSHQ FVDTEASNWTHDPVRGOYYWHRFFSHQ FVDTEPSNWTWDQTRGOYYWHRFFHHQ FIDTEQSNWTWDPVAQOYYWHRFYSHQ	PDLNYDNEAVQEAMIDVIRFWLGLGIDGFRLDA PDLNYENEAVQEAMLDVLRFWLDLGIDGFRLDA PDLNYENEVVQEEMISALKFWLDLGIDGFRLDA PDLNYENEAVQEEMIAALKFWLDLGVDGYRLDA PDLNFDNEKVQDAMLEAMAFWLDMGLDGFRLDA PDLNFDNEQVLREVLGVMRYWLDMGVDGLRLDA *****
	250	♦
M. tuberculosis 240 A. SN223/229 237 S. coeicolor (CI) 220 S. coelicolor (CII)220 Pimelobacter sp. 212 P. aeroginosa 213	VPYLFEREGTNCENLPETHAFLKRVRK VPYLFEEEGTNCENLSOTHAFLKHCRK VPYLYQEEGTNCENLPRTHDFLKRVRK VPYLYAEEGTNCENLPASHAFLKRVRR VPYLYERPGTNGENLPETHEMLKRVRR IPYLIERDGTSSENLPETHQVLKRIRA	III VVDDEFPGRVLLAEANQWPGDVVEYFGD VIDDEFPGRVLLAEANQWPADVVEYFGD EIDAQYPDTVLAEANQWPEDVVDYFGD EIDAQYPDTVLLAEANQWPEDVVDYFGD FVDDNYPDRVLLYEANQWPTDVVEYFGPEERED ELDAHYPDRMLLAEANQWPEDTRPYFGGE *******
	310	360 TV
M. tuberculosis 295 A. SN223/229 292 S. coelicolor (CI) 275 S. coelicolor (CII) 275 Pimelobacter sp. 272 P. aeroginosa 269	PNTGGDECHMAFHFPI MPRIFMAVRRE AKSGGDECHMAFHFPI MPRIFMAVRRE YAAGGDECHMAFHFPVMPRIFMAVRRE YSTGGDECHMAFHFPVMPRIFMAVRRE GTVVGPESHMAFHFPVMPRIFMAVRRE DGGEGDECHMAFHFPIMPRMYMAIAOE	SRFPISEITAOTPPIPDMAQWGIFLRNHDELTL SRFPISEILAOTPAIPENCQWGIFLRNHDELTL SRYPVSEILAKTPAIPSGCQWGIFLRNHDELTL SRYPVSEILAKTPAIPSGCQWGIFLRNHDELTL SRFPISEIMEOTPAIPEGCQWGIFLRNHDELTL DRYPITDILROTPDIPANCQWAIFLRNHDELTL ******
	370	420
M. tuberculosis 355 A. SN223/229 352 S. coelicolor (CI) 335 S. coelicolor (CII) 335 Pimelobacter sp. 332 P. aeroginosa 329	I EMVTDEERDYMYAEYAKDPRMKANVGI EMVTDEERDYMYAEYAKDPRMKANVGI EMVTDEERDYMYAEYAKDPRMRANIGI EMVTDEERDYMYAEYAKDPRMRANIGI EMVTDEDRDYMWGEYAKDPRMKANIGI EMVTDDERDYLWNHYAADRRARINLGI	RRRLAPLLENDRNQIELFTALLLSLPGSPVLYY RRRLAPLLENDRNQIELFTALLLSLPGSPVLYY RRRLAPLLENDRNQIELFTALLLSLPGSPILYY RRRLATLLENDRDQIELFTALLLALPGSPILYY RRRLAPLLENDTNQIELFTALLLSLPGSPVLYY RRRLAPLVERDRRRIELLHSLLSMPGTPTLYY
	430 	480
M. tuberculosis 415 A. SN223/229 412 S. coelicolor (CI) 395 S. coelicolor (CII) 395 Pimelobacter sp. 392 P. aeroginosa 389	GDEIGMGDVIWLGDRDGVRIPMQWTPD GDEIGMGDNIWLGDRDGVRTPMQWTPD GDEIGMGDNIWLGDRDAVRTPMQWTPD GDEIGMGDNIWLGDRDAVRTPMQWTPD GDEIGMGDNIWLGDRDGVRTPMQRTPD GDEIGMGDNIYLGDRDGVRTPMQWSVD	RNAGFSTANPGRLYLPPSQDPVYGYQAVNVEAQ RNAGFSTATPGRLYLPVNQDPVYGYQAVNVEAQ RNAGFSSSDPGRLFLPTIMDPVHGYQVTNVEAS RNAGFSTCDPGRLYLPAIMDPVYGYQVTNVEAS RNVGFSAATPGKLHLPTIQDPVYGYQSVNVEAQ RNGGFSRADP <mark>AKLVLP</mark> ILDPLYGYQTINVEAQ
	490 I	540
M. tuberculosis 475 A. SN223/229 472 S. coelicolor (CI) 455 S. coelicolor (CII)455 Pimelobacter sp. 452 P. aeroginosa 449	RDTSTSLLNFTRTMLAVRRRHPAFAVG RDSATSLLNWTRTMLRCAAGTKAFAVG MASPSSLLHWTRRMIEIRKONVAFGLG MASPSSLLHWTRRMIEIRKONPAFGLG LENPSSLLHWTRRMIHIRRORDAFGLG ARDPH <mark>SLLNWMRRLIAVR</mark> SOQKAFGRG	AFQELGGSNPSVLAYVRQVAGDD-GDTVLCVNN TFRELGGSNPSVLAFLREFGDDVVLCVNN TYTELPSSNPAVLAFLREHEDDLVLCVHN TYTELPSSNPAVLAFLREYEDDLVLCVNN TFEDLGGSNPAVLSYVRELPGDGGDDVILCVNN SLKMLAPSNRRILAYLREYAEGERQDSILCVAN

M. tuberculosis 5 A. SN223/229 5 S. coelicolor (CI) 5 S. coelicolor (CII) 5 Pimelobacter sp. 5	5 34 LSRFPQPIE 28 LSRFPQPIE 11 FSRFAQPTE 11 FARFAQPTE 2 LSRFPQPVE	50 LDLQQWTNYTPVELTGH LNLQHWNGYTPVELTGH LDLSAFDGRHPVELFGG LDLREFAGRHPVELFGG LDLRKYEGRVPVELIGG	600
M. tuberculosis 5 A. SN223/229 5 S. coelicolor (CI) 5 S. coelicolor (CII) 5 Pimelobacter sp. 5 P. aeroginosa 5	6 6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	10 GERRL- SAGTRDAA IGRRA GRPVL- ELPTLVVKQRLGELLQG	AGCWPRSRRPAPRWARNWSWSCSTCRTPTAVPSG GASRNILEGETLPAYLPKRRWFAGEKGQPRLCYIV
M. tuberculosis 6 A. SN223/229 6 S. coelicolor (CI) 5 S. coelicolor (CII) 5 Pimelobacter sp. 5 P. aeroginosa 6	6 01 38 T 56 72 73 29 PLDEAEPRC.	570 ALCEVEIDGLRYQLPLG	72

Abb. 7.2.5: Homologievergleich der TreSase von Actinoplanes sp. SN223/229 mit TreSasen verschiedener Organismen.

Abkürzungen: Actinoplanes sp. SN223/229; Mycobacterium tuberculosis H37Rv (Rv0126, Cole et al., 1998); Streptomyces coelicolor (treS, Redenbach et al., 1996); C I = Cluster I; C II = Cluster II; Pimelobacter sp. R48 (treS, Tsusaki et al., 1996); Pseudomonas aeroginosa PA01 (pA2152, Stover et al., 2000). Die nummerierten, konservierten Regionen sind unterhalb der Aminosäuresequenz durch Sterne gekennzeichnet. Abkürzungen: \bullet = katalytischer Rest; \bullet = Substratbindungstelle. Die \geq 75 %ige Identität der Aminosäuren ist durch schwarze Boxen markiert. Die \geq 75 %ige Ähnlichkeit der Aminosäuren ist durch graue Boxen markiert.

7.2.6 Homologievergleich der Trehalose-6-Phosphat-Synthasen (Tps1ase) verschiedener Bakterien

		10 6	0
A. SN223/229	1	VAQRSSFVVVANRLPVDEVTLPSGEKQWRSSPGGLVTALHPV	'L
M. tuberculosis	1	MAPSGGQEAQICDSETFGDSDFVVVANRLPVDLERLPDGSTTWKRSPGGLVTALEPV	'L
P. anguilliseptica	1	MVYHRLPYEEFRGADGKLQRRRPTSPNGIIPTLLSF	Έ
<i>E.coli</i> K12	1	HAASAGGLAVGILGA	L
S. typhimurium	1	NKGGA <mark>GGL</mark> AVGVLGA	L
Rhizobium sp.	1	GIAPAGGLAVALKVA	L
S. cerevisiae	1	MTTDNAKAQLTSSSGGNIIVVSNRLPVTITKNSSTGQYEYAMSSGGLVTALEG	βI
S. coelicolor	1	MASSFGAAQVLVASNRGPVSYEVREDGSLHAKRGGGGLVSGLSA	I

		70		120
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	44 TE 59 RF 38 GL 35 KA 32 KA 34 EE 55 KK 46 GE	I C-HRGTWIGWAGGDG R-RRGAWVGWPGVND-DG DGRAGSWVAWAEHDENSG AAGG-LWFGWSGETGNEI AAGG-LWFGWSGETGNEI CQGGGIWMGWSGKSSGEI KTYTFKWFGWPGLEIPDI PDAGALWVCSALSDG	GPAPEPFDLEG GAEPD HVLDGPIIQD GETFDSHTTVDAERYP DQPLKKVKKG DEPLKKVTKG DEPAPLAQLQQG DERDQVRKDLLE GDREAVRRGVGE	I I HIHPVPLSADELERY YEGQSNATI ELELHPVRLSTTDIAQY YEGFSNATL KLTAARVALSKEEVDIFYERFSKEAF NITWASFNLSEQDLDEY YNQFSNAVL NITWASFNLSEQDYEDY YCQFSNAVL NITYALTDLTDTDVEEY YHGFANRVL KFNAVPIFLSDEIADLH YNGFSNSIL - DGVRMLDVPADVHADAYNGIANSVL
		130		180
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	94 WF 117 WF 98 WF 88 WF 85 WF 90 WF 111 WF 98 WF	LYHDAVETPAYN LYHDVIVKPLYHR TLHTFWERAQFRE AFHYRLDLVQFQR AFHYRLDLVQFQR ICHYRLDLAEYGR LFHYHPGEINFDE VHHMLYQTPLEPVFDAE		AEAAADVAAGRHRIGAG-LPAPAVPA AEAASRAAAHGATVWVQDYQUQLVPK AERTALEAAEGATVWIHDYNUWMVPG ADKLLPLLQDDDIIWIHDYHULPFAH ADKLLPLIKENDIIWVHDYHULPFAS AHRLAPLVKPDDVIWVHDYPUIPLAA TNEIAKTMNHNDLIWVHDYHUMLVPE AALAEEAAEGAVAIVQDYHUTIVPG
		190		240
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	146 MI 171 MI 152 YI 142 EI 139 EI 144 EI 165 MI 158 MI	REMRPDLRIGFE RMLRPDLTIGFE RELRPDLRIAFE RKRGVNNRIGFE RKRGVNNRIGFE RQMGLENRIGFE RVKIHEKQLQNVKVGME RELRPDLRIGFE	TLH IPFPPIELFMQMP TLH IPFPPVELFMQMP TLH IPFPPVELFMQMP TLH IPFPTPEIFNALP TLH IPFPTPEIFNALP TLH IPFPSSEIYRILP TLH IPFPSSEIYRILP TSH TPMAPLDYFRLLP	-FRAEILRGLLGADLVGFQQRLAAQ -WRTEILQGLLGADLVGFHLPGGAQ -WRRQILGSLLQCDYIGFHLPGGAQ -TVDTLLEQLCDYDLLGFQTENDRL -PHDELLEQLCDFDLIGFQTENDRL -VHEEIMRGLSHYDVVGFQTDHDLE -VRQEILKGVLSCDLVGFHTYDYAR DDIAEQVLRGMLGADRLGFLTRRWAD
		250		300
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	199 NE 224 NE 205 NE 195 AE 192 AE 197 NE 223 HE 213 AE	250 VRLARHLLG UILSRRLVGTDTSRG VDAARGVMPLQTVSRQN LDCLSNLTRVTTR LDSLSSQTRVTTR ASCLRREGIGDAL LSSVQRVLNVNTL TACCDAVVG	LR TVGVR ICAPRFITYGCAVGLE	300 YEGQSILVDGRRVKAGAF PISIDTRD SRFGAAVLGSRTIRVGAF PISVDSGA RMTTAVDTGNRVVKLGAH PVGLDIER -SAKSHTAWGKAFRTEVYPIGIEPKE -SGKQHIAWGKDFQTEVYPIGIEPDE -GGGRLSAYGRIFKGGVYAIGIETAA -PNG-VEYQGRFVNVGAFPIGIDVDK GLGGTEIGVHGICADGDF
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	199 NE 224 NE 205 NE 195 AF 192 AF 197 NE 223 HE 213 AF	250 VRLARHLLG UILSRRLVGTDTSRG VDAARGVMPLQTVSRQN LDCLSNLTRVTTR DSLSSQTRVTTR ASCLRREGIGDAL TACCDAVVG 310 	LR TVGVR NCAPRFITYGCAVGLE	300 YEGQSILVDGRRVKAGAF PISIDTRD SRFGAAVLGSRTIRVGAF PISVDSGA RMTTAVDTGNRVVKLGAH PVGLDIER -SAKSHTAWGKAFRTEVYPIGIEPKE -SGKQHIAWGKDFQTEVYPIGIEPDE -GGGRLSAYGRIFKGGVYAIGIETAA -PNG-VEYQGRFVNVGAFPIGIDVDK GLGGTEIGVHGLGADGDF 360
 A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	199 NF 224 NF 205 NF 195 AF 197 NF 223 HF 223 HF 213 AF 237 FF 232 IF 237 FF 232 IF 237 FF 232 IF	250 VRLARHLLG	TVGVR ICAPRFITYGCAVGLE ICAPRFITYGCAVGLE ICAPRFITYGCAVGLE ICAPRFITYGCAVGLE ICAPRFITYGCAVGLE ICAPRFITIG ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITIC ICAPRFITYGCAVGLE ICAPRFITIC ICAPRFITYGCAVGLE ICAPR	300 YEGQSILVDGRRVKAGAF PIS I DTRD SRFGAAVLGSRTIRVGAF PIS VDSGA RMTTAVDTGNRVVKLGAHPVGLDIER -SAKSHTAWGKAFRTEVYPIGIEPKE -GGGRLSAYGRIFKGGVYAIGIETAA -PNG-VEYQGRFVNVGAFPIGIDVDK GLGGTEIGVHGLGADGDF 360 I LHQGHRAAPQGLPRAAGRREL VDRLDYTKGIDVRLKAFSELDAEGRV VERLDYTKGIDVRLKAFSELDAEGRV VERLDYSKGLPERFLAYEALDEKYPQ VERLDYSKGLPERFLAYEALDEKYPQ VDRLDYSKGLTQRIEAFERFILANPA VDRLDYLKGVPQKLHAMEVFINEHPE VDRTELSKNIVRGLLAYRELDAGRPE
 A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	199 NE 224 NE 205 NE 195 AE 197 NE 223 HE 223 HE 213 AE 238 ME 272 LE 265 VE 235 TF 232 FF 232 FF 237 FF 262 FT 242 LE	250 WRLARHLLG VDAARGVMPLQTVSRQN DLSNLTRVTTR DSLSSQTRVTTR ASCLRREGIGDAL TACCDAVVG TACCDAVVG SSUQRVLNVNTL SSQRVLNVNTL ALQAAGPLP-PK ALQAAGPLP-PK	AGRSODGHPRRPAG EIRTELGNPRKILLG REIRTELGNPRKILLG RURSELAG-VKLILS OLKAELKN-VONIFS KARESIER-RSLIG OLKETFKG-CKIIVG	300 YEGQSILVDGRRVKAGAF PISID TRD SRFGAAVLGSRTIRVGAF PISVD SGA RMTTAVDTGNRVVKLGAHPVGLDIER -SAKSHTAWGKAFRTEVYPIGIPPKE -SGKQHIAWGKDFOTEVYPIGIPPCE -GGGRLSAYGRIFKGGVYAIGIPTAA -PNG-VEYQGRFVNVGAFPIGIDVDK GLGGTEIGVHGLGADGDF 1 LHQGHRAAPQGLPRAAGRREL VDRLDYTKGIDVRLKAFSELAEGRV VERLDYSKGIPERFLAYEALLEENPE VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPE VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPQ VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPPG VERLDYSKGLPERFLAYEALLENPFG VERLDYSKGLPERFFA

	430	480
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	I 352 PM YAAA DVMMVTPLRDGMNLVAKEYIACRGDT 388 AFFVASDVMLVTPLRDGMNLVAKEYVACRSDI 380 AWYAMA DVMWITPLRDGLNLVAKEFVAAOGLI 349 KIFRYSDVGLVTPLRDGMNLVAKEFVAAODPA 346 KIFRYSDVGLVTPLRDGMNLVAKEFVAAODPA 352 GLYRLGKVGLVTPLRDGMNLVAKEFVAAODPA 377 SLYAVSDVCLVSSTRDGMNLVSKEYIACOE-E 357 AAYRLADVALVNPVRDGMNLVAKEVVSDTG *******	GGALVLSEFAGAATEL-RQSFLCNPH GGALVLSEFTGAAAEL-RHAYLVNPH DGRGVLVLSEFAGAAAEL-KGALLTNPH NP-GVLVLSQFAGAANEL-TSALIVNPY NP-GVLVLSQFAGAANEL-TSALIVNPY DP-GVLVLSRFAGAAREL-QGALLVNPY KK-GSLILSEFTGAAQSL-NGAIIVNPW GCALVLSRFAGAYEELGEDAVVVNPY
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	490 409 DPDGVKDALLRAINAEPAELKRRMRVMQRHLF 445 DLEGVKDGIEEALNQTEEAGRRRMRSLRRQVI 439 DPVDMTQTCYVALNMPKAEAQARLRELFDIVN 407 DRDEVAAALDRALTMSLAERISRHAEMLDVIV 404 DRDDVAAALNRALTMPLAERISRHAEMLDVIV 410 DIEGTANAMARSLSMPLEPRQERWTTMDQLI 434 NTDDISDAINEALTLPDVKKEVNWEKLYKYIS 414 DVVGTADALHAALGLPAGDRAERSKRLAAAGT	540
A. SN223/229 M. tuberculosis P. anguilliseptica E.coli K12 S. typhimurium Rhizobium sp. S. cerevisiae S. coelicolor	550 461 500 499 VG 467 DKVATFPKLA 464 NNVATFPKLA 464 494 KN 462	

Abb. 7.2.6: Homologievergleich der Tps1ase von Actinoplanes sp. SN223/229 mit Tps1asen verschiedener Organismen.

Abkürzungen: Actinoplanes sp. SN223/229; Mycobacterium tuberculosis H37Rv (Rv3490, Cole et al., 1998); Pseudomonas anguilliseptica (ggpS, Hagemann & Steinbruch, nicht veröffentlicht); E. coli K12 (otsA, Blattner et al., 1997); Salmonella typhimurium LT2 (otsA, McClelland et al., 2001); Rhizobium sp. (otsA, Freiberg et al., 1997); S. cerevisiae (tps1p, Duan et al., 1998); Streptomyces coelicolor (otsA, Redenbach et al., 1996). Die \geq 75 %ige Identität der Aminosäuren ist durch schwarze Boxen markiert. Die \geq 75 %ige Ähnlichkeit der Aminosäuren ist durch graue Boxen markiert. Die Positionen der degenerierten Primer sind unterhalb der Aminosäuresequenz durch Sterne gekennzeichnet.

7.3 Plasmide

7.3.1 pUCBM20

Abb. 7.3.1: Genetische Karte des Plasmids pUCBM20.

Eine Auswahl an Schnittstellen für Restriktionsendonukleasen ist eingezeichnet. Abkürzungen: Ampr = Ampicillin-Resistenzgen; *ori* = Replikationsursprung für *E. coli*; *lacZ* = für das α -Pertid kodierender Teil des *lacZ*-Gens von *E. coli*.

7.3.2 pET19b

Abb. 7.3.2: Genetische Karte des Plasmids pET19b.

Eine Auswahl an Schnittstellen für Restriktionsendonukleasen ist eingezeichnet. Abkürzungen: amp = Ampicillin-Resistenzgen; ori = Replikationsursprung für *E. coli*; lacI = Lactose-Repressorgen; his = Histidin-Reste.