
Roland Peetz

Spectrum of

N=1 Super Yang Mills Theory

on the Lattice with a

Light Gluino

2003









Theoretische Physik

Spectrum of

N=1 Super Yang Mills Theory

on the Lattice with a

Light Gluino

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich Physik

der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Roland Peetz

aus Wrexham

2003



Dekan:

Erster Gutachter:

Zweiter Gutachter:

Tag der mündlichen Prüfungen:
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Chapter 1

Introduction

In this thesis we study the N = 1 supersymmetric Yang Mills theory on the lattice.

Supersymmetry extends the symmetries of the Standard Model of elementary particles

to include a symmetry between fermions and bosons.

This introductory chapter will first make the case of why one should study supersym-

metric theories at all, despite the fact that to this date the existence of supersymmetric

partners of the usual particles has not been verified in accelerator experiments. We will

then outline the reasons for a lattice investigation. Finally we will give an overview of

the structure of this study.

1.1 Why Supersymmetry?

There is a great amount of interest in supersymmetric theories. The reasons for the

apparent mismatch to its experimental status are numerous.

To begin with, it has to be clearly stated that the Standard Model (SM) currently

faces only two significant challenges from experiment. One, somewhat unrelated to

supersymmetry (SUSY), is the existence of dark matter. Up to now there is no clear

way how to include any such, possibly only gravitationally interacting fields, in the

Standard Model. The second, more exciting experimental challenge in the context

of SUSY are the by now famous results from the experiment E821 at the Brookhaven

National Laboratory measuring the anomalous magnetic moment of the muon. There is

a discrepancy between prediction from theory, i. e. the SM, and the experimental value.

However, there still remain uncertainties in the corresponding theoretical calculation,

which draws on other experimentally determined input parameters. On some of these

the accuracy is not yet sufficient. So the jury still has to decide, whether the SM falsely

predicts the outcome of that experiment. Therefore one cannot argue the failure of the
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SM on experimental grounds (yet).

Nevertheless, for all the sweeping success the Standard Model has enjoyed, it has several

theoretical shortcomings. In some of these cases, supersymmetry is the only proposed

solution that has not been ruled out yet. We will give a quick overview of the most

important problems.

1. The Standard Model is based on the product of three gauge groups, SU(3)×SU(2)×
U(1), each with separate gauge coupling. It gives no apparent explanation for the fact

that only the electroweak sector is chiral. Also, all particles have quantized charges,

multiples of the electric charge e/3. Strongly related to this question is the cancellation

of anomalies. Possible explanations of these properties can be found by studying Grand

Unified Theories (GUTs), where the above product of groups is a subgroup of a larger

group and the need arises to impose constraints on the values of charges. It turns out

that simply taking gauge theories with larger groups such as SU(5) is not a sufficient

condition to unify the Standard Model. One needs further constraints, such as SUSY,

to make the couplings actually match into a unified one at a higher scale.

2. Another intriguing mystery of the SM is the family structure of fermions. In the

low energy regime, most terrestrial matter can be constructed from the first family

(νe, e
−, u, d). However, in cosmic radiation and especially in high-energy laboratory

experiments, two more families with successively higher mass have been shown to

exist: (νµ, µ
−, c, s) and (ντ , τ

−, t, b). The SM gives no explanation for their existence

nor does it predict any of the masses and consequently why the members of one family

are consistently heavier than the other, on a range that spans at least eleven orders of

magnitude (mνe . 0.28 eV, mt = 174.3 GeV).

3. From considerations of consistency of the SM, one expects the mass of the until

now unobserved Higgs particle to be similar to the mass of the W boson, mH ∼
O(mW ≈ 102 GeV). Additionally, from constraints imposed by theory and laboratory

experiments one obtains an upper limit on mH of ≈ 1 TeV. Unfortunately though,

in the SM the bare Higgs mass receives quadratically divergent corrections from loop

diagrams with heavy fermions, such that

m2
H = m2

H,bare +O(λ, g2, h2)Λ2

where Λ is the next higher scale in the theory. The next scale on offer currently would

be either that of gravitation (if there is no GUT), such that Λ is of the Planck scale

mP = G
− 1

2
N ∼ 1019 GeV or that of a GUT-scale, where one expects Λ to be of order

of the unification scale, mX ∼ 1014 GeV. So, the natural scale of mH is O(Λ) which

is much higher than the expected value. For this to work, the parameter in front of

Λ would have to be extremely finely tuned, in the case of the Planck scale up to 30

decimal places.

To this problem, up to recently [1], supersymmetry was the only viable answer [2]
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which would protect the Higgs from receiving renormalization by symmetry-induced

cancellations.

4. A second fine tuning problem is the so-called strong CP problem. It is entirely

possible to add a θ
32π2 g

2
sFF̃ to the QCD Lagrangian. This extra term breaks P ,T ,

and CP symmetry. Adding this term would lead to a non-zero value for the dipole

moment dN of the neutron. The current experimental upper limit on dN constrains θ

to |θ| < 6 × 10−10 [3]. Therefore the question is, why θ should be so small, since CP

breaking in the weak sector causes it to receive additive renormalization of O(10−3).

Hence, one is again faced with an apparently contrived fine tuning problem in order to

cancel these corrections against the bare value, which one could assume to be zero. The

solution is not well understood. An elegant solution, a massless up-quark [4], currently,

does not seem to be the most probable [5].

5. Finally, gravity cannot fundamentally be unified with the other interactions of the

standard model. Although it is possible to study quantum field theories on a curved

space time (classical general relativity), it is far from obvious how to unify or even

merely connect a quantized version of gravity with the standard model. In this con-

text, a second related problem is the cosmological constant, the energy of the vacuum.

The energy density calculated by invoking spontaneous symmetry breaking in the SM

is 50 orders higher than the observational limit. Yet again, this necessitates excessive

fine tuning between generated and bare pieces, which have, a priori, no reason to be

related to each other at all. The most elegant solutions to this problem are super-

gravity theories [2], in which global supersymmetry is promoted to a local symmetry.

Renormalizability requirements and the cosmological problem seem to make super-

string theories necessary though [6]. Nevertheless these rely on supersymmetry as an

essential ingredient.

Finally, one can invoke elegance and esthetics as the often successful guides in theoret-

ical physics, rendering SUSY worthy of study. Haag, Lopuszanski and Sohnius showed

in 1974 that the supersymmetry algebra constitutes the only possible non-trivial gen-

eralization involving the Poincaré and internal symmetry Lie algebra [7].

In conclusion, SUSY is a strong, if not the leading contender of Standard Model exten-

sions. It is therefore important to study supersymmetric theories with respect to the

concrete predictions they make. To this end, the phenomenologically relevant variants

have N = 1 supercharges [8]. These types, such as the minimally supersymmetric

standard model (MSSM), are most interesting, especially with softly broken supersym-

metry in the low energy regime, which would be the world we live in. The simplest of

these is the N = 1 Super Yang Mills theory, which includes the gluons as the bosons of

QCD and massless gluinos as their supersymmetric partners. Several non-perturbative

assumptions and predictions from analytical calculations are available. From its sim-
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ilarity to QCD, color confinement and the spontaneous breaking of chiral symmetry

are expected. Important questions include the (non-) existence of a SUSY anomaly

and the implications of softly broken SUSY by a massive gluino. A problem open for

debate is still the exact breaking mechanism of SUSY. Clarifications on the possibility

of spontaneous SUSY breaking are needed. Finally one would like to know what the

spectrum of lightest particles is. Predictions are available [9, 10], but an independent

check is desirable.

1.2 Why on the Lattice?

Since K. G. Wilson introduced his formulation of QCD on the lattice [11], the field

of computational physics has become an industry of its own in modern high energy

physics. It is unique in the sense that by performing first principles simulations one

can calculate quantities independently from analytical calculations and from experi-

ments. It has delivered important insight into our understanding of the quantum field

theories that govern the standard model. Furthermore, since physicists are in full con-

trol of the parameters of the computer simulation, it allows the creation of isolated

testbeds not found in nature and therefore the independent study of problems.

One of its theoretically most important features is that the lattice is the only known

non-perturbative regulator for quantum field theories. Its importance is appreciated

if one considers QCD in the low energy regime. Here the coupling becomes large and

therefore a meaningful definition of the theory in terms of a perturbation series in the

coupling ceases to exist. Nevertheless, the non-perturbative dynamics, such as confine-

ment, are rich and essential to the theory of QCD. So the lack of analytical accessibility

to that part of field theories has been largely compensated by lattice field theory.

Also recently, a serious theoretical drawback of lattice gauge theory, the explicit break-

ing of chiral symmetry in simulations, has been resolved [12, 13], unfortunately at the

price of dramatically increasing the computational demands of the simulation. Through

these related methods, domain wall fermions and overlap fermions, the largest bottle-

neck is nevertheless mainly practical: the ever present lack of sufficient CPU power.

However, the success of lattice gauge theory up to now has been remarkable. It has

allowed the calculation of, for example, hadronic matrix elements, experimentally un-

accessible quark and hadron masses, parts of the phase diagram of QCD, the study

of the role of confinement in non-Abelian gauge theories and also the study of the

electroweak sector or Higgs models.

Given the interest in the non-perturbative features of supersymmetric theories and the

success of the lattice method, it is therefore natural to consider the possibilities of their

combination. This has been done by the “DESY-Münster-Roma-Collaboration”. The

Curci-Veneziano approach [14] was used which breaks SUSY explicitly on the lattice

by using Wilson fermions, but fine tuning of the input fermion mass of the simulation
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lets the renormalized mass approach zero. The two step multibosonic algorithm [15]

has proven to be a suitable algorithm to simulate light fermions at reasonable cost and

stability. So far the main focus of the project has been

• algorithmic studies [15, 17, 18]

• the investigation of the lattice SUSY Ward identities [19, 20, 21]

• spectrum calculations [18, 19, 22, 23]

• chiral symmetry breaking and confinement studies [18, 24]

This thesis represents the continuation of the “SUSY on the lattice” project. We give

more accurate results on the spectrum by using larger lattices and lighter gluinos to

alleviate some of the systematics effects in the previous results. We will show, that the

lattice spectrum is far from being well understood.

The thesis is organized as follows:

• Chapter 2 will review the physics of the N = 1 Super Yang Mills theory relevant

to us. We will turn our attention to the low energy regime via the effective

model by Farrar et al. [10] and give an overview of its predictions with respect

to the particle spectrum. The verification of the underlying assumptions and the

predictions they produce constitutes the rationale for this thesis.

• Chapter 3 considers the numerical aspects of formulating the model on the lattice.

We will briefly explain the algorithm and concentrate on the methods of extract-

ing the relevant masses. A short exposition on calculating the supersymmetric

Ward-Identities is also given.

• Chapter 4 presents the numerical results from this study. These include charac-

terization of the ensembles used, algorithmic parameters such as autocorrelations,

the spectrum of lightest particles, renormalization factors and computational re-

sults.

• Chapter 5, as might be expected, summarizes the results and gives an outlook

on viable directions for future research.

• The appendices list issues not immediately relevant to the topics discussed, but

nevertheless too important to omit. These mostly include technical details, con-

ventions and notations.

The computational work for this thesis was carried out on the Cray T3E and IBM

Regatta at NIC, Jülich, the SunFire-SMP-Cluster at RWTH Aachen and the Linux-PC-

cluster at the University of Münster. Partial results were presented at the conferences

Lattice 2001 in Berlin [20] and Lattice 2002 in Boston [23].



Chapter 2

The Physics of N=1 Super Yang

Mills Theory

This chapter will give a brief overview of the model in the continuum. We will first

introduce the supersymmetric Yang Mills action in the superfield formalism, write it out

in its component fields and verify that it is indeed invariant up to total divergence under

supersymmetric transformations. From there on we will investigate the consequences of

a non-zero gluino mass and then concentrate on formulating the SUSY-Ward identities.

We will then review the low energy features of this model using the effective action

approach following the ideas of [14] and finally see what predictions can be extracted

from the model, mainly concerning the spectrum of particles.

2.1 N=1 SYM Theory

In four dimensions, one arrives at the simplest SUSY-invariant theory by explicitly ex-

tending the Poincaré Lie algebra to become a Z2-graded algebra by adding a Majorana

spinor charge with components Qa, a = 1, . . . , 4. Extended (N > 1)-supersymmetry

can be formulated by adding N Majorana charges. We will confine ourselves to N = 1

here, since this is the phenomenologically relevant case and the topic of this thesis.

Furthermore, in four dimensions, it is currently the only model viable for a lattice

simulation. So for this case, the regular Poincaré algebra becomes the following super-
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Poincaré algebra:

[P µ, P ν ] = 0

[P µ,Mρσ] = i(gµρP σ − gµσP ρ)

[Mµν ,Mρσ] = −i(gµρM νσ − gµσM νρ − gνρMµσ + gνσMµρ) (2.1)

[Qa, P
µ] =

[
Q̄a, P

µ
]

= 0

[Qa,M
µν ] = σµνabQb

{Qa, Q̄b} = 2γµabPµ (2.2)

where the P µ and Mµνs are the generators of displacement and homogenous Lorentz-

transformations of space-time, i.e. (2.1) is the regular Poincaré algebra extended by (2.2).

Since Q is a Majorana spinor, it obeys the relation

Q = QC = CQ̄T (2.3)

with the charge conjugation matrix C (please refer to the appendix for γ-matrix nota-

tions). In the literature, fermionic degrees of freedom are commonly expressed in terms

of Weyl spinors. We will use both notations freely, remembering that a Majorana spinor

can be assembled from two Weyl spinors:

Qa =

(
θA
θ̄Ȧ

)
. (2.4)

Through the introduction of superspace as Minkowski space with the fermionic exten-

sion of Weyl spinor variables (θ, θ̄) and superfields acting on the superspace, one arrives

at reducible representations of the algebra. However, to get irreducible representations

one has to impose additional covariant constraints, such as

D̄ȦF = 0, (2.5)

or DAF = 0, (2.6)

or F = F †, (2.7)

where F is a generic superfield F = F(x, θ, θ̄) and D is the superspace derivative

obeying

D̄Ȧ = − ∂

∂θ̄Ȧ
+ i(σ̃µθ)Ȧ∂µ, DA =

∂

∂θA
+ i(σµθ̄)A∂µ . (2.8)

It acts on the Minkowski component xµ of superspace and its fermionic components

(θ, θ̄). In passing, we define the Pauli matrix vector σ̃µ = (1,−σ1,−σ2,−σ3). The

resulting fields are labeled chiral (2.5), anti-chiral (2.6) and vector (2.7) superfields

respectively. In terms of these fields, the most general supersymmetric Lagrangian one

can write down is

L =
1

4g2
Tr{(WAWA)F + (W̄ȦW̄

Ȧ)F}

+
(
Φ†eV Φ

)
D

+

(
1

2
mijΦiΦj +

1

2
gijkΦiΦjΦk

)

F

. (2.9)
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Several explanations are necessary here: Φ is a chiral superfield, Φ† an anti-chiral and

WA = WA(x, θ, θ̄) is the spinorial field strength

WA = −1

4
(D̄D̄)e−VDAe

V (2.10)

constructed from the vector superfield V = V (x, θ, θ̄). The subscripts (. . . )D and

(. . . )F indicate the selection of the highest non-zero component of the corresponding

superfield with respect to the expansion in (θ, θ̄), so (. . . )F = (. . . )|θθθ̄θ̄ in the case

of vector superfields and (. . . )D = (. . . )|θθy→x in the case of chiral superfields. These

transform under SUSY transformations as a total divergence and leave according to

Gauss’ law the integral

S =

∫
d4x L (2.11)

and therfore the action and the physics it describes invariant. This is the behavior we

are searching for.

From here on we will concentrate on the Yang-Mills part in eqn. (2.9) and neglect the

matter fields described by the chiral superfields Φi. If we expand the vector superfield

into its components in the Wess-Zumino-gauge

VWZ(x, θ, θ̄) = θσµθ̄Aµ(x) + i(θθ)θ̄λ̄W (x)− i(θ̄θ̄)θλW (x) +
1

2
(θθ)(θ̄θ̄)D(x),

(2.12)

we see its particle content:

a spin 1 boson field : Aµ(x) = −igT aAaµ(x) (2.13)

a spin
1

2
Weyl spinor field : λW (x) = T aλaW (x) (2.14)

an auxiliary field : D(x) (2.15)

where the T a are the generators of an SU(Nc) gauge group, a = 1, . . . , N2
c − 1. One

can thus rewrite that part of the Lagrangian in terms of the component fields

L = −1

4
F a
µνF

a,µν +
i

2
λaWσµ(D

µλ̄W )a − i

2
(Dµλ̄W )aσ̃µλaW +

1

2
DaDa (2.16)

with the regular gluonic field strength

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (2.17)

and the covariant derivative in the adjoint representation

(Dµλ̄W ) = ∂µλ̄W + [Aµ, λ̄W ]. (2.18)

Since the auxiliary field Da(x) has no kinetic term and is therefore uninteresting for the

dynamics of the theory, it is integrated out. Finally we rotate (2.16) from Minkowski

to Euclidean space and rewrite the fermionic part with massless Majorana fermions
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(gluinos) in the adjoint representation of SU(N) : λ = ((λW )A, (λ̄W )Ȧ) to arrive at the

on-shell Lagrangian of N = 1 Super Yang Mills theory:

LSYM =
1

4
F a
µν(x)F

a
µν(x) +

1

2
λ̄a(x)γµDµλ

a(x) . (2.19)

This will be the basis of our study. The observant reader will have noticed that this

Lagrangian looks suspiciously like QCD:

LQCD =
1

4
F a
µν(x)F

a
µν(x) + q̄a(x)γµDµq

a(x) . (2.20)

The difference is that in QCD the fermions q(x) (quarks) are Dirac fermions with 4

degrees of freedom and they lie in the fundamental representation of the gauge group

SU(3) as opposed to the Majorana nature of the gluinos which transform according

to the adjoint representation. Nevertheless, the similarity will be heavily drawn upon

when transferring the theory to the lattice.

From its explicit construction it is expected that the action

SSYM =

∫
d4x

{1

4
F a
µν(x)F

a
µν(x) +

1

2
λ̄a(x)γµDµλ

a(x)
}

(2.21)

is invariant under (global) supersymmetric transformations. Written in the component

fields, the supersymmetric variations are

δAµ(x) = −2gλ̄(x)γµε (2.22)

δλ(x) = − i
g
σρτFρτ (x)ε (2.23)

where ε is an infinitesimal continuous Grassmann parameter vanishing outside some

bounded regionM. Note the explicit expression of the boson (Aµ, Fµν) to fermion (λ)

symmetry in the equations. Plugging (2.22) and (2.23) into the Lagrangian (2.19) and

doing a considerable amount of algebra one arrives at

δL(x) = ∂µ

(
4

g
λ̄a(x)F a

µν(x)γν +
i

g
λ̄a(x)F a

ρτ (x)γµσρτ

)
ε̄ (2.24)

confirming that the Lagrangian truly only transforms as a divergence. This gives rise

to the construction of the spin-3
2

super-current via Noether’s theorem:

Sµ =
4

g
λ̄a(x)F a

µν(x)γν +
i

g
λ̄a(x)F a

ρτ (x)γµσρτ (2.25)

=
i

g
λ̄a(x)F a

ρτ (x)σρτγµ (2.26)

where again between (2.25) and (2.26) lies a lengthy calculation. This current will be

considered later in the lattice formulation.
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Also drawing further on the analogy with QCD, (2.19) is invariant under a global UA(1)

rotation1

λ′ = e−iφγ5λ, λ̄′ = λ̄e−iφγ5 . (2.27)

This coincides with the so-called R-symmetry of supersymmetry. It is broken by the

anomaly, again similar to QCD. The associated current J5
µ ≡ λ̄γµγ5λ satisfies the

anomalous Ward identity

∂µJ5
µ =

Ncg
2

32π2
εµνρσF a

µνF
a
ρσ . (2.28)

The anomaly, however, leaves a residual Z2Nc-symmetry of the transformation (2.27)

with

φ = φk =
kπ

Nc

, k = 0, . . . , 2Nc − 1 (2.29)

unbroken. The case is again analogous to QCD in that one expects the residual Z2Nc-

symmetry to be spontaneously broken by a non-vanishing gluino condensate 〈λλ〉 to

the group Z2.

2.1.1 Non-Zero Gluino Mass

Introducing a mass term for the gluino mg̃ in the Lagrangian (2.19) breaks supersym-

metry, albeit softly

L = LSYM +mg̃λ̄λ . (2.30)

Soft breaking of supersymmetry in this context means that the breaking vanishes suf-

ficiently fast to retain the advantages of SUSY at high energies, especially the solution

of the hierarchy problem. This is evident here, since one can readily approximate

the gluino mass, which is not expected to be much larger than the weak scale, to be

zero when approaching the unification scale. Note that this leaves the question of

exactly how supersymmetry is broken in our world completely open. Historically, the

concept of the soft breaking of supersymmetry was an essential ingredient in making

supersymmetric theories’ predictions at low energies compatible with our world [25].

Furthermore, the breaking pattern of the UA(1)-symmetry (2.27) implies the existence

of a first order phase transition at mg̃ = 0. For Nc = 2 this means that two degenerate

ground states exist which have opposite signs of the gaugino condensate 〈λλ〉. Since

the breaking is linear in mg̃, these two ground-states coexist at mg̃ = 0. The Nc > 2

case is more involved.

1Due to the Majorana nature of gluinos there is no U(1) vector symmetry.
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2.1.2 Ward Identities

The expectation value of any operator O constructed from local field operators φi(x)

can be formally calculated by

〈O ({φi(x)})〉 = Z[0]−1

∫
D[φ]O ({φi(x)}) e−S[φi(x)] (2.31)

where we work in Euclidean space and define the partition function Z[J ] to be

Z[J ] =

∫
D[φ]e−S[φ]−K[J,φ] (2.32)

with the generating functional K[J, φ] =
∫
d4xφ(x) J(x). D[φ] in eqn. (2.31) denotes

the usual Feynman path integral over all local fields φi(x).

The basic idea of Ward identities is that the expectation value of an operator should be

insensitive to a variable change in the path integral under local SUSY transformations,

〈O〉 = 〈O〉ε , (2.33)

therefore assuming the invariance of the measure and the absence of a supersymmetric

anomaly. Promoting the Grassmann parameter in equations (2.22) and (2.23) to be

local, ε→ ε(x),

δAµ(x) = −2gλ̄(x)γµε(x) (2.34)

δλ(x) = − i
g
σρτFρτ (x)ε(x) (2.35)

and using the Leibnitz chain rule, we formally get

〈δO〉 − 〈(δS)O〉 = 0. (2.36)

We know δS to be the total divergence of (2.26), i.e.

δS = ∂µSµ = ∂µ(
i

g
λ̄aFρτσρτγµ) . (2.37)

With a local insertion operator Q(y) the Ward identity then reads

〈∂µSµ(x)Q(y)〉 = 0 , (2.38)

where we further assumed that the product of operators O is localized outside the

domain M of ε(x), such that the variation δO vanishes. This implies x 6= y in equa-

tion (2.38).

As pointed out, mg̃ 6= 0 breaks the SUSY invariance. So in that case, the additional

term in the Lagrangian Lm = mg̃(λ̄λ) gives rise to an additional term in eqn. (2.36),

labeled χ

χ(x) =
2i

g
σρτF

a
ρτ (x)λ

a(x) (2.39)
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changing the Ward identity to

〈∂µSµ(x)Q(y)〉 −m0〈χ(x)Q(y)〉 = 0 (2.40)

where m0 is the bare gluino mass.

2.2 Low Energy Effective Action

It is natural to assume that at low energies, the degrees of freedom relevant to the

dynamics of a theory are different from those at high energies. This is illustrated in

the argument made above, that the standard model is believed to exhibit a higher

degree of symmetry at some higher energy scale. This implies that the fundamental

degrees of freedom at that scale are not seen in our world. Rather, what we currently

see in our experiments, we call the “elementary” interactions of the SM. In other words

it is believed that the SM is an effective theory of a more unified theory.

So if we are interested in the low energy features of the above theory (2.19), we are

naturally led to formulate it as an effective theory which consists of composite fields,

but nevertheless retains the important symmetries of the more fundamental theory.

This is the approach taken in [9] and developed further in [10].

The effective action is a functional of the superfield S, where

S ≡ β(g)

2g
〈TrWαWα〉Q ≡ A(y) +

√
2θλW (y) + θ2F (y) , (2.41)

where β(g) stands for SYM β-function which is known exactly [26]. In terms of S, the

effective Lagrangian proposed in [10], respecting the underlying symmetries and the

anomaly structure, has the form

LV Y = α−1
(
S†S

) 1
3

D
+ γ

[
(S log

S

µ3
− S)F + h.c.

]
+ δ−1

(
− U2

(S†S)
1
3

)

D

(2.42)

where α, γ, δ are arbitrary positive constants, µ is the dimensionally transmuted scale

of the model and U is a real tensor superfield.

Studying the potential of the model one finds that the physical eigenstates fall into

two different multiplets. Neither of them contain pure gluino-gluino, gluino-gluon or

gluon-gluon bound states. Instead, they are mixed states of these composites, while

the mixing occurs between the different multiplets. The contents of the lighter multi-

plet [10], which appears in addition to the regular multiplet of [9], is

• a scalar meson, which for small mixing becomes the 0++ glueball,
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Figure 2.1: Qualitative behavior of the mass spectrum when passing from SYM to the softly
broken model. [10]

• a pseudo-scalar state, which is identified as the 0−+ glueball for small mixing ,

• a mixed fermionic gluino-gluon state,

while the heavier set of states contains

• a pseudo-scalar meson, which without mixing reduces to the 0−+ gluino-gluino

bound state, in analogy to QCD, called the a−η′,

• a scalar meson, that without mixing is a 0++ gluino-gluino, in analogy again to

QCD, called the a−f0,

• a mixed fermionic gluino-gluon bound state.

The interesting feature to observe here is that through the introduction of the gluino

mass term which breaks SUSY softly, the masses, from being degenerate in the multi-

plets, split into the case which is relevant to us (see Figure 2.1).



Chapter 3

The Numerics of N=1

Super-Yang-Mills Theory

Since we now have a picture of the theory in the continuum, we turn to its formulation

on the lattice. Following the Curci and Veneziano approach [14], we will use Wilson

fermions to write down the lattice action. We will give an outline of the two-step-

multi-boson algorithm (TSMB), describe how we measure the masses of the states and

explain how we approach the Ward identities. Also a few remarks on selected numerical

techniques are given.

3.1 Simulating SUSY on the Lattice

At first sight, the task of putting SUSY on the lattice seems daunting. The most

striking reason is easily appreciated by looking at equation (2.2), namely that

{Qa, Q̄b} = 2γµabPµ .

The anti-commutator of the SUSY charges closes with the four-momentum P µ, the

generator of infinitesimal translations. Since there are no infinitesimal translations on

the lattice, Poincaré invariance is broken and therefore SUSY is fundamentally broken.

Furthermore, SYM is a theory that requires an exact balance of massless bosonic and

fermionic degrees of freedom. Until recently [12, 13] a formulation of exactly massless

fermions on the lattice was not believed to exist [27].

To address these problems, we follow Curci and Veneziano [14]. Here, SUSY and chiral

symmetry is explicitely broken using Wilson’s formulation of lattice gauge theory [11].

In this formulation, the gluino acquires a mass which is subject to additive renormal-

ization. The strategy is to fine tune the simulation input parameter of the bare gluino
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mass, such that the renormalized mass is close to zero. This limit of zero renormalized

gluino mass coincides with the chiral limit in which, when performed, the continuum

limit leads to a supersymmetrically invariant theory. However, if we set the coupling β

to be in the scaling region, the features of the underlying supersymmetric theory should

become apparent in the simulation, for example, by letting the particle spectrum split

up from its multiplet form linearly in m0.

The possibility of defining the chiral and SUSY limit lies in the Ward identities. When

approaching this limit, the additional renormalized SUSY breaking terms vanish and

the Ward identities should appear as in their continuum form.

3.1.1 The SU(2), N = 1 SYM Lattice Action

The lattice action consists of a gauge and a fermion part

Slat = Sg + Sf . (3.1)

The gauge field action Sg is the standard action made up from plaquettes of links. A

link

Uµ(x) = e−aAµ(x) ∈ SU(Nc) (3.2)

is the lattice version of the µ’th component of the parallel transporter Aµ(x) from

the continuum, where a denotes the lattice spacing and µ ∈ {0, 1, 2, 3} the Euclidean

space-time direction. The smallest gauge invariant object that can be constructed from

links is a plaquette in the µν-plane of the lattice

Uµν(x) = U †ν(x)U
†
µ(x+ aν̂)Uν(x+ aµ̂)Uµ(x) . (3.3)

Since

Uµν(x) = e−a
2Gµν where Gµν(x) = Fµν(x) +O(a2), (3.4)

the plaquette reduces to the regular gauge field strength

Re TrUµν(x) = NcTr1+ a4F 2
µν(x) +O(a5) . (3.5)

Thus the gauge action can be written as the sum over all plaquettes

Sg[U ] = β
∑
x

∑
µν

[
1− 1

Nc

ReTrUµν

]
, (3.6)

where β = 2Nc

g
for Uµ(x) ∈ SU(Nc) is the bare gauge coupling. From here on, we set

Nc = 2.

The fermion action is more involved. A “naive” discretization would result in 2d = 16

fermions on the lattice with equal and opposite chirality. This complies with the well-

known Nielsen-Ninomiya theorem [27] which states that, under very general assump-

tions, it is not possible to formulate massless fermions on the lattice. Wilson solved the
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problem [11] by giving the doublers a weight of O(a−1), which decouples them in the

continuum limit completely from the theory. Only one fermion, the desired, survives.

This method yields the fermion action

Sf [U, λ̄, λ] =
1

2

∑
x

λ̄(x)λ(x) +
κ

2

∑
x

∑
µ

[λ̄(x+ µ̂)Vµ(x)(r + γµ)λ(x)

+λ̄(x)V T
µ (x)(r − γµ)λ(x+ µ̂)] (3.7)

with the Wilson parameter r, which we take to be 1, the hopping parameter κ =

(2m0 + 8r)−1. We have also rescaled the fermion fields λ→
√

1
2κ
λ, here in the adjoint

representation of the gauge group. This parameterization breaks chiral invariance

by introducing a bare gluino mass mg̃,0 ∝ κ−1. In order to simulate a massless or

sufficiently light gluino, one needs to tune κ to a critical κc, such that the renormalized

mass mg̃ → 0. The required determination of κc will be explained below.

The above adjoint matrices are defined as

[Vµ(x)]ab ≡ 2Tr[U †µ(x)T
aUµ(x)T

b] = [V ∗
µ (x)]ab = [V T

µ (x)]−1
ab . (3.8)

The trace acts on the color indices of the links in the fundamental representation Uµ(x).

The generators T a in the SU(2) case are the Pauli matrices T a = 1
2
τa. Since we are

dealing with Majorana fermions here, i.e.

λ = λC = Cλ̄T , (3.9)

where C is the charge conjugation matrix, there is a factor of 1
2

in front of the sum in

equation (3.7) when compared to the QCD action. If we now introduce the fermion

matrix

Qy,x[U ] ≡ δyx − κ
∑
µ

[
δy,x+µ̂(1 + γµ)Vµ(x) + δy+µ̂(1− γµ)V T

µ (y)
]
, (3.10)

we can write Sf more compactly as

Sf =
1

2

∑
xy

λ̄(x)Qx,yλ(y) (3.11)

=
1

2

∑
xy

λ(x)CQx,yλ(y) . (3.12)

We note that the fermion matrix has the following symmetries:

Q† = γ5Qγ5, (3.13)

CQC = QT , (3.14)

Cγ5Qγ5C−1 = Q∗ . (3.15)

Using equation (3.13) we can see, since det[γ5Q ] = detQ , that

detQ ∈ R . (3.16)
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Furthermore, (3.14) and (3.15) show us after some algebra that CQ is antisymmetric,

that its eigenvalues are doubly degenerate and that the fermion determinant is positive.

Since Grassmann variables cannot be formulated on a computer directly, they are

integrated out and the result is written in terms of the fermion matrix Q , which is

completely defined by the easily programmable link matrices Uµ(x) and its space time

structure.

If we consider the case of regular Dirac fermions, where the fermionic variables ψ and

ψ̄ are independent, one gets
∫
D[ψ̄, ψ]e−Sf =

∫
D[ψ̄, ψ]e−ψ̄Qψ = detQ . (3.17)

For the following it is instructive to construct the Majorana fields from a Dirac field:

λ1 =
1√
2
(ψ + Cψ̄T ), λ2 =

1√
2
(−ψ + Cψ̄T ) (3.18)

Writing down the analog to equation (3.11) with Dirac spinors, we have

Sf =
∑
xy

ψ̄Qψ =
1

2

2∑

k=1

∑
xy

λ̄kQλk . (3.19)

So, integrating the fermions out as advertised above and noting the redundancy (3.9)

in λ and λ̄, we arrive at

∫
D[ψ̄, ψ]e−ψ̄Qψ = detQ =

2∏

k=1

∫
D[λ] e−

1
2
λ̄kQλk

=

(∫
D[λ] e−

1
2
λ̄Qλ

)2

. (3.20)

Note here that the fermionic Feynman path integral for Majorana fields is only over

D[λ] and not over D[λ, λ̄]. Putting the pieces together, we see that the detQ from

Dirac fermions is the square of the result we really want:
∫
D[λ] e−Sf =

∫
D[λ] e−

1
2
λ̄Qλ = ±

√
detQ . (3.21)

This relation leaves the sign on the right hand side undetermined. However, a unique

definition of the path integral is given by
∫
D[λ] e−

1
2
λ̄Qλ =

∫
D[λ] e−

1
2
λ̄Mλ = Pf[M] (3.22)

where the complex antisymmetric matrixM, defined as

M = CQ = −MT , (3.23)

has the same determinant as Q . Pf[M] is the so-called Pfaffian of M. Generally, the

Pfaffian of a complex antisymmetric matrix of dimension 2N can be written as

Pf[M] ≡ 1

N !2N
εα1β1...αNβN

Mα1β1 . . .MαNβN
=

∫
D[φi] e

− 1
2
φαMαβφβ (3.24)
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with 1 ≤ α, β ≤ 2N and the totally antisymmetric unit tensor ε. The second relation

indicates that the Pfaffian can be thought of as a Gaussian integral over Grassmann

numbers, which is exactly the form we are interested in. As a side note it should be

mentioned that the so-called Witten anomaly problem of the theory, not being defined

due to the sign of ±√detQ not being gauge invariant [28], does not apply here, since

the quantity Pf[M] is inherently gauge invariant (see e.g. [19]).

With the formula (3.22), we can proceed to define the generating functional for the

theory entirely in terms of the gauge fields U ,

Z[J ] =

∫
D[U ] Pf[M[U ]] e−Sg− 1

2

P
x,y J(x)M−1(x,y)J(y) , (3.25)

and write down expectation values of operators of fermion fields in the standard way

of functional differentiation [29]:

〈T{λ(x1)...λ(xn)λ̄(y1)...λ̄(yn)}〉 = 〈T{λ(x1)...λ(xn)λ(y1)...λ(yn)}〉 · Cn

= 2n
[

δ2n lnZ[J ]

δJ(x1)...δJ(xn)δJ(y1)...δJ(yn)

]
· Cn .

(3.26)

The gluino propagator then is, for example,

〈T{λ(x)λ̄(y)}〉 = 〈T{λ(x)λ(y)}〉 · C = 2

[
δ2 lnZ[J ]

δJ(x)δJ(y)

]
· C

= 〈M−1(x, y)〉 · C
= 〈Q−1[U ]〉 . (3.27)

For practical calculations with Majorana fermions it is important to remember that,

in contrast to QCD or other theories with Dirac fermions, Wick contractions such as

λ(x)λ(y) =M−1
xy = λ̄(x)λ̄(y) (3.28)

are allowed and yield a non-zero value.

3.1.2 The TSMB Algorithm

The method of performing simulations of lattice gauge theory on computers centers

around the Monte Carlo generation of an ensemble of field configurations with a given

equilibrium distribution of the theory. To extract physical information it suffices to pro-

duce a relatively small number of configurations and perform measurements on these,

i.e. to sample only the important region of configuration space where the probability

measure is strongly peaked. To use this method, one needs a positive probability mea-

sure to calculate the weight of a single configuration. In gauge theories with Wilson
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fermions in the fundamental representation, this is given by

f(U) = e−Seff = e−Sg [U ]−Sf [U ] , (3.29)

where Sf [U ] = − log
[
detQ [U ]

]Nf . In our case of the SYM theory with the Curci-

Veneziano action, the definition of an Seff is not as straightforward, since the measure

would not be strictly positive (3.21). Here, Sf [U ] is the Pfaffian of CM. Since calculat-

ing the Pfaffian explicitly would lead to enormous storage and CPU requirements [16],

the solution is to replace it with the positive square root of the regular determinant.

In this case, an effective action can be derived as

S = β
∑

pl

[
1− 1

2
ReTrUpl

]
+

1

2
log detQ [U ] . (3.30)

Due to the positivity of the measure, stochastic methods can now be applied to this part

of the problem. Effectively, it gives us a theory with Nf = 1
2

and a light fermion in the

adjoint representation. The sign of Pf[CM] is then taken into account by reweighting

the configurations in the measurement process by

〈O〉 =
〈O signPf[M]〉
〈signPf[M]〉 . (3.31)

So what is needed now is an algorithm that easily reproduces fractional powers of the

fermion determinant and is capable of simulating at light fermion masses. The most

suitable for this function is the two step multi boson algorithm (TSMB) [15]. It relies

on the polynomial approximation

| detQ |Nf = [det(Q†Q)]
Nf
2 ≈ 1

detPn(Q †Q)
(3.32)

where the polynomial Pn(x) satisfies

lim
n→∞

Pn(x) = x−
Nf
2 for x ∈ [ε, λ] , (3.33)

where ε and λ delimit the interval of validity for the approximation. This interval,

however, should cover the spectrum of eigenvalues of Q†Q

ε ≥ min{spec(Q†Q)} (3.34)

λ ≤ max{spec(Q †Q)}. (3.35)

For convenience we define

Q̃2 ≡ Q†Q (3.36)

and proceed to write Pn(Q̃
2) in its representation by roots zj (j ∈ {1, . . . n}) as a

product of monomials

Pn(Q̃
2) = z0

n∏
j=1

(Q̃2 − zj). (3.37)
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Since the roots zj come in complex conjugate pairs, an equivalent and manifestly

positive form is

Pn(Q̃
2) = z0

n∏
j=1

[
(Q̃ − µj)2 + ν2

j

]
= z0

n∏
j=1

[
(Q̃ − ρ∗j)(Q̃ − ρj)

]
(3.38)

where we defined ρj ≡ µj + iνj ≡ √zj with νj > 0. Every value of νj occurs twice and

the corresponding µj’s have equal magnitude and opposite sign. Now we introduce lo-

cal, complex boson (pseudo-fermion) fields Φj(x) and can finally write the determinant

as a path integral over Φ’s

z0

n∏
j=1

det
[
(Q̃ − ρ∗j)(Q̃ − ρj)

]−1

∝
∫
D[Φ]e

−Pn
j=1

P
xy Φ†j(y)[(Q̃−ρ∗j )(Q̃−ρj)]

yx
Φj(x) . (3.39)

This form is known as the multi-boson representation of the fermion determinant.

However, for any finite polynomial order n, simply updating the pseudo-fermion fields

would not be exact and one would have to extrapolate any results to n → ∞. Here

the problem arises that at small fermion mass mg̃ the condition-number λ
ε

becomes

O(104−106) in turn necessitating a polynomial order of n v O(103). This would lead to

enormous storage and CPU requirements and additionally to very large autocorrelation

times in the simulation. The key to this problem is to use a two-step approximation

leading to the introduction of a second polynomial such that

lim
n2→∞

P (1)
n1

(x)P (2)
n2

(x) = x−
Nf
2 for x ∈ [ε, λ]. (3.40)

The idea is that P
(1)
n1 (x) with a relatively low order n1 can be a crude approximation

to the function x−
Nf
2 . This is used in a heat-bath and over-relaxation update sweep

with the additional correction as a global accept/reject step (see [18] for details). The

correction is obtained through noisy estimation by generating a complex Gaussian

random vector η according to the distribution

eη
†P (2)

n2
(Q̃2)η

∫ D[η]eη
†P (2)

n2
(Q̃2)η

(3.41)

and accepting the newly produced field configuration [U ′] (proposed via P
(1)
n1 ) with

probability

min{1, ω(η, U ′ ← U)} (3.42)

where the probability measure is defined as

ω(η, U ′ ← U) = exp
[− η†P (2)

n2
(Q̃2[U ′])η + η†P (2)

n2
(Q̃2[U ])η

]
(3.43)

ensuring detailed balance in the updating process. So now we would have an exact

algorithm for fixed n1 in the limit of n2 → ∞. In most cases of practical usage,
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however, moderate values of n2 already give errors which are negligible, when compared

to the statistical fluctuations. Only in sporadic cases, when the smallest eigenvalue of

the fermion matrix approaches the lower limit of approximation of the polynomial, a

final correction must be performed. This can be achieved by the introduction of a third

polynomial. So one would then fix, as above, n1 to be of relatively low order, n2 to be of

high enough order to ensure a good quality Markov chain with the desired distribution

and then finally reweight each field configuration while measuring observables according

to

lim
n3→∞

P (1)
n1

(x)P (2)
n2

(x)P (3
n3

(x) = x−
Nf
2 for x ∈ [ε′, λ]. (3.44)

In the limit of n3 →∞ this procedure would be exact on every configuration. But P
(3)
n3

can be obtained more easily up to a satisfactory order and precision through recurrence

relations and by monitoring the changes in the values of the observable in question. So

finally the measurement would have to be corrected by

〈O〉 =
〈O eη

′†(1−P (3)
n3

(Q̃2))η′〉U,η′
〈eη′†(1−P (3)

n3
(Q̃2))η′〉U,η′

(3.45)

where η′ is a simple Gaussian noise vector distributed as

e−η
′†η′

∫ D[η′]e−η′†η′
. (3.46)

In this reweighting step the sign of the Pfaffian can also be included. So then one has

〈O〉 =
〈O signPf[Q ] eη

′†(1−P (3)
n3

(Q̃2))η′〉U,η′
〈signPf[Q ] eη

′†(1−P (3)
n3

(Q̃2))η′〉U,η′
. (3.47)

Practically, one chooses n2 high enough such that the subsequent measurement correc-

tion has a negligible impact on the values of the measured observables and as such can

be omitted altogether, except for the sporadic cases mentioned above.

Now we still have not revealed how to obtain the sign of the Pfaffian. Since we do not

want to calculate the Pfaffian itself explicitely, we simply monitor the sign changes of

PfM as a function of the hopping parameter κ. The Hermitian fermion matrix for the

gluino Q̃2 has doubly degenerate real eigenvalues [17] and therefore

detM = det Q̃ =

Ω/2∏
i=1

λ̃2
i (3.48)

where λ̃i are the eigenvalues of Q̃ . So from that we find

|PfM| =
Ω/2∏
i=1

|λ̃i| ⇒ PfM =

Ω/2∏
i=1

λ̃i . (3.49)
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The last implication is due to the fact that PfM is a polynomial in κ which cannot

have any discontinuities in its derivatives. So when any odd numbers of eigenvalues

λ̃i change sign, so must PfM. Additionally, for κ = 0, we know that PfM = 1. The

method is then to start from low κ (i.e. large mg̃) and simply count the zero-crossings

of eigenvalues, up to κ = κsimulation [30]. It is of practical importance that frequent sign

changes could possibly cause the performance of the algorithm to deteriorate severely

due to large cancellations and a subsequent unacceptably large increase in statistical

noise. This is also known as the sign problem. The experience of the DESY-Münster-

Roma collaboration has been though, that zero-level crossings occur extremely rarely

for all practical purposes [18, 21], in particular for κ < κc.

This circumstance yields the added benefit of making the complete reweighting step in

measurements unnecessary, if one has actually confirmed to be safe from zero crossings

and to have a high enough order for the second polynomial. This is typically verified

on a representative subset of the ensemble of configurations.

So, having all the machinery in place to produce ensembles of configurations, we now

show what to do with them once they have been generated.

3.2 Measuring Observables

Since one of the goals of this study and previous work performed by the collaboration

is to elucidate what the lattice has to say about the spectrum of the N = 1 SYM,

one needs to measure expectation values on the ensemble of configurations of quan-

tities which correspond to the various operators of the continuum theory. A prime

property to check is confinement, since it is widely assumed to hold for SYM. This is

realized analogously to QCD by measuring the potential between two fermions in the

fundamental representation. Closely related to the potential is the Sommer scale R0,

which characterizes the typical physical length scale of a simulation at the given input

parameters. From there one can proceed to measure the masses of bound states with

the relevant quantum numbers outlined in Chapter 2. Finally, we want to check the

Ward-identities on the lattice which give us an independent estimate on the proximity

of the simulation to the supersymmetric point.

Common to all steps of the above measurement program are some general aspects,

which are collected in the following. Using the TSMB algorithm, an ensemble of

field configurations is created, which will serve as the basis of any physical statements

that are made about the theory on the lattice. Any given observable, after fermion

integration, is a gauge invariant operator of link variables Uµ(x). Its expectation value
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〈O([U ], x)〉U =
1

N

N∑
i=1

O([U ]i, x) (3.50)

is an average over all configurations of the ensemble. To give the expectation value any

meaning, it is necessary to assess its error which can come from a variety of sources:

finite volume effects, discretization effects or statistics. It is desirable to keep the

systematic errors below the statistical. This is achieved by choosing the correct setup

of the simulation, such as lattice size, action, β and κ. Once the ensemble is created,

one has to get a handle on the statistics. Of importance here are the related concepts

of autocorrelation times of operators and Jackknife error analysis.

3.2.1 Autocorrelation Times

Let A be a primary quantity with measured values A1, A2, . . . , AN . The average over

the sample is, as above,

Ā =
1

N

N∑
i=1

Ai (3.51)

where N is the sample size. If the basis of the measurement, i.e. the field configurations,

are mutually independent, the regular Gaussian error suffices. However, one is often

faced with a correlated measurement series, so the error needs to be adjusted accord-

ingly. The autocorrelation time serves this purpose. The normalized autocorrelation

function is defined as

CAA(t) =
〈AnAn+t〉
〈AnAn〉 (3.52)

where n denotes the n-th configuration in the Markov chain and t its distance in the

update cycle. For large t it typically decays exponentially

CAA(t)→ e−
|t|

τ(A) (3.53)

which immediately leads to the definition of the exponential autocorrelation time

τexp(A):

τexp(A) ≡ − lim
t→∞

sup
|t|

log |CAA(t)| . (3.54)

This quantity naturally lends itself to the interpretation of being the decay time of the

slowest mode in A. The so-called integrated autocorrelation time is defined as

τint(A) ≡ 1

2
+

∞∑
t=1

CAA(t) (3.55)

which in principle is better suited to adjust the error, since on can show that

lim
N→∞

σ2(A) =
2 τint(A)

N
(Ā2 − (Ā)2) . (3.56)
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This relation gives us a direct prescription on how to rescale the Gaussian error (Ā2−
(Ā)2). Conversely, one can also read off that in an ensemble of N configurations,

effectively N
2 τint(A)

are independent with respect to the quantity A. In practice, due to

low statistics, it is not always possible to compute τint(A) reliably. Also, there is no

straightforward way of its determination for secondary quantities, such as the masses

of mesons, for example. In this case, one can estimate the error independently from

Jackknife analysis.

3.2.2 Jackknife Error Estimation

The idea of Jackknife analysis is to treat the process of measurement and subsequent

transformation of primary quantities to secondary ones as a black box [29]. From that

perspective one can get a more stable estimate of the error by simply deleting one

measurement from the sample and determining its impact on the average value. Let

A
(J)
j be the average over the sample with the j-th measurement removed,

A
(J)
j =

1

N − 1

∑

i6=j
Ai . (3.57)

This yields the jackknife estimators y
(J)
j = y(A

(J)
j ) of the secondary quantity y(A) with

an average of

ȳ(J) =
1

N

N∑
j=1

y
(J)
j =

1

N

N∑
j=1

y(A
(J)
j ) . (3.58)

The variance of the secondary estimators can be obtained as

σ2(ȳ(J)) =
N − 1

N

N∑
i=1

(y
(J)
j − ȳ(J))2 (3.59)

which coincides in the case that y(A) = A with the Gaussian standard deviation.

So far we have achieved nothing more than getting a stable estimate of the error of

secondary quantities, although still implicitly assuming uncorrelated measurements and

thus underestimating the true error. The missing enhancement to this method is to

aggregate n subsequent measurements into a block and treat the average of that block

as one measurement, repeating the same procedure on the blocked data. The block

size is then to be increased successively until the measured error approaches a plateau

from below. In the limit of an infinite number of measurements, the stabilized error is

the correct one for completely uncorrelated measurements. It can easily be seen that

this method also serves as an implicit determination of τint(y(A)). In fact, it can be

extracted via

τint(y(A)) =
1

2

σ2
nu

(ȳ)

σ2
1(ȳ)

(3.60)
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where σ2
n(ȳ) denotes the obtained error at block size n and nu being the block size at

which the blocked data appears uncorrelated.

All errors quoted in this work were obtained by Jackknife analysis.

3.3 String Tension σ and Sommer Scale R0

The string tension between two color sources in the fundamental representation is

defined as a parameter of the potential between these sources. The potential can be

determined by measuring rectangular Wilson loops

W(R, T ) = 〈TrU(CR,T )〉 (3.61)

as a product of all links Uµ(x) along the rectangular curve CR,T with spatial and tem-

poral separation R and T . The potential is defined as the large T behavior of these

Wilson loops

V (R) = − lim
T→∞

logW(R, T )

T
(3.62)

such that

W(R, T ) v
T→∞

C e−T V (R) . (3.63)

The coefficient

σ ≡ lim
R→∞

V (R)

R
= − lim

R,T→∞
logW(R, T )

RT
(3.64)

is the so-called string tension. If the string tension is non-zero, the potential rises

linearly with R:

V (R) v
R→∞

σR (3.65)

which indicates a constant force σ between two color sources. This in turn is the signal

for static confinement, which leads to the famous area law for Wilson loops [11]:

lim
R,T→∞

W(R, T ) = C e−σR·T , (3.66)

i.e. the loop expectation value falls off with the exponential of the enclosed area of the

loop (A = RT ). To determine the potential from the measured expectation values we

proceed as follows. Defining V (R, T ) in accordance to the above as

V (R, T ) ≡ log
〈W(R, T )〉
〈W(R, T + 1)〉 (3.67)

we fit V (R, T ) to the ansatz

V (R, T ) = V (R) + a e−b T (3.68)
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at each spatial separation R with the three fit parameters {V (R), a, b}. The ansatz is

motivated by studying the spectral decomposition of the Wilson loops and expanding

the logarithm to lowest order [22]. This allows us to extract V (R) at each R in the

T →∞ limit. Following [31, 32], we then fit V (R) to the Cornell-potential ansatz

V (R) = V0 + σR− e[ 1

R
] (3.69)

with three fit parameters {V0, σ, e}, and where [ 1
R

] is the tree-level lattice Coulomb

term

[
1

R
] = 4π

∫ π

−π

d3k

(2π)3

cos(k ·R)

4
∑3

j=1 sin2(
kj

2
)
. (3.70)

The Cornell-potential ansatz was originally motivated by two of the defining properties

of QCD: confinement and asymptotic freedom. These aspects are encoded in the σR-

and the e[ 1
R
]-term respectively. Since it is assumed that these properties also hold in

the four dimensional SYM theory, it is the ansatz we employ. The results of the fit to

(3.69) allow us to read off the string tension σ. Deviations of the measured potential

from that form would indicate false assumptions about confinement.

Closely related to the potential is the Sommer scale R0 [33]. It is a useful quantity for

measuring the typical physical scale in the simulation in units of the lattice spacing

a. From it one can in principle determine the lattice spacing itself in physical units,

if compared to real-world experimental data. The scale R –motivated by QCD– is

defined through the relation

F (R)R2 |R=R(c) = c (3.71)

where F (R) is the force between static color sources and R(c) is some hadronic length

scale, usually taken to be

R(1.65) ≡ R0 ' 0.49 fm (3.72)

in QCD. For purposes of comparison we use the same convention here. It is impor-

tant to notice, though, that the physical lattice spacing and therefore the size of the

box one simulates is inaccessible in SYM theory, since no connection can be made to

experiments. Nevertheless, it is useful as a quantity that can be compared to QCD

simulations on a numerical basis since one expects it to be of the same order of mag-

nitude. Following [31], one can use the fits to (3.69) as reliable estimates (up to O(a))

for the parameters of the corresponding continuum version of the potential. Rewriting

equation (3.71) we get

R2
0

dV

dR R0

= 1.65 . (3.73)

Combining this relation with equation (3.69), where we replace the lattice [ 1
R

] with the

continuum 1
R
, we can determine from

R0 =

√
1.65− e

σ
(3.74)

the value of the Sommer scale R0 in units of a.
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3.4 Obtaining Masses of States

The masses and amplitudes can be computed from zero-momentum two-point correla-

tion functions at the timeslice distance ∆t:

C(∆t) = 〈S†(t+ ∆t)S(t)〉 − 〈S†(t+ ∆t)〉〈S(t)〉 (3.75)

where S(t) is the timeslice sum of an operator OU(x) depending on the gauge fields

{U(x)}:
S(t) =

1√
VS

∑

~x

OU(~x, t) , (3.76)

while VS is the spatial volume (LS)
3. Summing over the timeslice projects out the zero

momentum component of the operator. Writing out C(∆t) in its spectral decomposi-

tion we see that

C(∆t) = |〈0|S(t)|0〉|2 +
∑
n

|〈n|S(t)|0〉|2 e−mn∆t ± |〈n|S†(t)|0〉|2 e−mn(T−∆t)

= c20 +
∑
n

c2n
(
e−mn ∆t ± e−mn (T−∆t)

)
. (3.77)

Here we already assume periodic (+) or antiperiodic (−) boundary conditions for the

lattice fields. The (T −∆t)-term accounts for the fact that the (anti-) periodic lattice

implies a symmetry around T
2

where T is the maximum time-extent of the lattice. This

symmetry can be exploited to reduce the noise of the correlators (time-symmetrization).

For this simulation, periodic boundaries in the spatial directions are imposed in order

not to break supersymmetry. In the time direction we have antiperiodic boundaries for

fermions and periodic for bosonic fields.

For large values of ∆t, the states with higher masses mn for n > 1 in the correlator

(3.77) die off exponentially, since mn > · · · > m1, and we are left with only the lightest

state

C(∆t) → c20 + c21
(
e−m1 ∆t ± e−m1 (T−∆t)

)
(3.78)

surviving. This form will be the basic object we will fit to, when determining masses

of states created by the various operators from the vacuum as described below. In the

case that the operator has the same quantum numbers as the vacuum, it acquires a

non-zero vacuum expectation value, i.e. c20 6= 0. This needs to be taken into account

when fitting to this function.

The strategy then is to fit the time-symmetrized correlators to (3.78) in an interval

∆t ∈ [0, . . . , T
2
] where the high-t end of the interval tf = tfinal is kept fixed and to

increase the starting point of the fit interval ti = tinitial, starting from ti = 0. The

idea is that by increasing ti we successively exclude more and more higher states from

the measured correlator. From some point ti onwards, the fit stabilizes to a plateau of
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the fit parameters, since the only significant signal from that ti onwards remaining in

C(∆t) will be the one from the lightest state.

It is quite possible though, that even at large ∆t, the given operator displays a signifi-

cant overlap with the next higher, i.e. the first excited state. In this case one needs to

take that into account by not cutting off the series (3.77) after n = 1, but after n = 2

and thus fit to

C(∆t)→ c20 + c21
(
e−m1 ∆t ± e−m1 (T−∆t)

)
+ c22

(
e−m1 ∆t ± e−m2 (T−∆t)

)
. (3.79)

As we will see, one is faced with various numerical challenges when fitting correlators.

The most frequently encountered is the presence of a next higher state while at the

same time the noise/signal ratio in the data is too bad to obtain a stable two-mass fit.

For the subtleties, the interested reader is referred to the next chapter for the particular

subtraction method used for extracting two masses in stable one mass fits.

A second independent method for obtaining mass estimates from correlation functions

is the calculation of effective masses [29] which are defined at a given T and times-

lice pair (t1, t2). Starting from equation (3.78) and assuming c20 = 0 and periodic

boundaries, we can define c21 and m(t1, t2, T ) to be the solution to the system of two

equations

〈S(t+ t1)S(t)〉 = c21
(
e−m(t1,t2,T )t1 + e−m(t1,t2,T ) (T−t1)

)

〈S(t+ t2)S(t)〉 = c21
(
e−m(t1,t2,T )t2 + e−m(t1,t2,T ) (T−t2)

)
(3.80)

where m(t1, t2, T ) is the true mass in the limit of {t1, t2, T} → ∞. Defining the ratio

r12 ≡ 〈S(t+ t1)S(t)〉
〈S(t+ t2)S(t)〉 =

e−m(t1,t2,T )t1 + e−m(t1,t2,T ) (T−t1)

e−m(t1,t2,T )t2 + e−m(t1,t2,T ) (T−t2)
(3.81)

and

τi ≡ (
T

2
− ti), x ≡ e−m(t1,t2,T ) (3.82)

one can simply solve

r12(x
τ2 + x−τ2) = (xτ1 + x−τ1) (3.83)

numerically for x, where of course m(t1, t2, T ) = − log x. The advantage of this ap-

proach lies in the implied locality. It allows for a clearer determination of the vanishing

influence of higher states in the correlator. It, however, comes at the cost of decreased

stability, since one uses less information to extract the mass than when fitting over an

entire interval. Note though, that at larger t-values and for good enough data both

methods should give a mutually consistent plateau.

We used both methods concurrently as a cross-check where possible. However, final

quotes on mass values are mostly obtained from the global fits of correlators since, in

most cases, the effective mass estimates become noisier and less stable.
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3.4.1 Fermionic Correlators

From equation (3.27) we see that in order to get correlation functions with fermionic

content, we need to calculate matrix elements of the inverse fermion matrix (Q−1)ybβxaα.

The strategy to tackle this problem is to find solutions to the linear system

Qz = ω → z = Q−1ω. (3.84)

The vector ω is referred to as the source, while Q−1 is of course the propagator. The

source can have various forms, the most prominent being delta like in spin, color and

space:

ω
[xaα]
ybβ = δxyδabδαβ (3.85)

where (y, b, β) labels the indices of the vector and [xaα] the position of the source, i.e.

only this component of the vector set to 1, all others to zero. The solution vector z

encodes the propagator from [x, a, α] to any other site, color and spin component, the

so-called sink. The computation of z is achieved by using iterative solvers, in our case

the widely used conjugate gradient algorithm (see e.g. [34] for details). It iteratively

minimizes the functional

f(z) =
1

2
〈z,Qz〉 − ωz (3.86)

up to a desired precision yielding z as the solution vector.

Other forms of sources include so-called wall sources, where a complete timeslice is filled

with non-zero entries in the source vector ω, such that the solution vector encodes the

time slice sum of propagators from any point in this wall to a given end point.

3.4.2 Glueballs

Glueballs are a well known object of investigation in lattice QCD (for a detailed study

see [35]). In the continuum they are objects with integer spin J and as such are

classified by the irreducible representations DJ of the group of space rotations SO(3).

Additional indices denote their transformational properties under parity P and charge

conjugation C. As indicated in Chapter 2, we are interested in the glueballs

JPC = 0++ and JPC = 0−+ . (3.87)

On the lattice, however, continuous rotational symmetry is broken down to the cubic

group Oh. Accordingly, here the states of the (lattice-) Hamiltonian are classified by

the irreducible representations of the cubic group, of which there are five, namely

A1, A2, E, T1, T2 with respective dimensions 1, 1, 2, 3, 3. (3.88)
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Since Oh is a subgroup of SO(3), any representation DJ induces a subduced represen-

tation DJ ↓ Oh on Oh. The subduced representation no longer has to be an irreducible

representation of Oh, but is a direct sum of these:

DJ ↓ Oh = Γ1 ⊕ Γ2 ⊕ . . . with Γi ∈ {A1, A2, E, T1, T2}. (3.89)

Physically this means that on the lattice one would find different masses, for example,

for the E-doublet and the T1-triplet, which make up the subduced representation D2 ↓
Oh. Taking the continuum limit, however, their masses should become degenerate,

since there we have full rotational symmetry again and they both are the same spin-2

glueball. Of interest for our work is D0 ↓ Oh , since we are only concerned about spin-0

glueballs. Luckily

D0 ↓ Oh = A1 , (3.90)

so we only need to look for operators with A1-content. Naturally, the basic operators

to be taken are Wilson loops, since they are purely gluonic and as such create gluonic

excitations from the vacuum. An additional requirement is that the loops should have

no temporal extension in order to get a clean signal in the correlation function. The

composition of the irreducible representation of the cubic group of all possible Wilson

loops up to length 8 was carried out in [36]. It turns out that all loops have A++
1 -content

while only the loops in Figure 3.1 have A−+
1 -content.
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Figure 3.1: Wilson loop operators with A−+
1 -content. These correspond to #4, #16 and #18

in [36].

As in previous works by the collaboration, we opted for the single spatial plaquette

for the 0++ glueball and loop #4 for the 0−+ glueball. These basic loops are averaged

over every possible cubic rotation such that the composite operator is invariant under

transformations of Oh and therefore represents a spin-0 object. Moreover, in the case

of the 0−+, we project out the negative parity part by subtracting out the same, but

with respect to x parity transformed, Wilson loop. So

O0++(U, x) ≡ Tr
[
U12(x) + U23(x) + U31(x)

]
, (3.91)

and

O0−+(U, x) ≡
∑
R∈Oh

(
Tr[W(CR)]− Tr[W(PCR)]

)
(3.92)
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where Uµν(x) again denotes the simple plaquette at x in the (µ, ν)-plane and W(CR)

the Wilson loop along the line C (= #4 above) starting at x, rotated by the element R
of Oh and finally parity-mirrored by P with respect to the point x. It is immediately

clear, that Wilson loops with A−+
1 -content cannot be loops, which can be rotated into

their parity mirrored loop by elements of Oh, since then the second sum would be

identically zero. Note that here we are working with the gauge group SU(2) while the

analysis of [36] was carried out for SU(3). Since any product of elements of SU(2) has

a real trace, like the above Wilson lines, the direction of traversing a loop C becomes

irrelevant:

W(C−1) =W†(C) W∈SU(2)
= W(C), (3.93)

in contrast to SU(3). Note further that if we add the parity transformed part of

Tr [U(RC)] instead of subtracting it in (3.92), we get an operator with the same quan-

tum numbers as the 0++. Since this measurement requires no additional computational

effort, we use it as a useful independent determination of the mass of the 0++ glueball.

3.4.3 Gluino-Glue Bound States

In contrast to QCD, in SYM theory it is possible to construct mixed gluonic and

fermionic bound states. A spin-1
2

color singlet in particular can be built from the

gluino fermion field λ and the gluonic field strength Fµν . It is part of the predicted

chiral multiplet lined out in Chapter 2. In the continuum, its simplest form is [40]

Σ(x) = σµνTr[λ(x)Fµν(x)]. (3.94)

As the operator on the lattice, which projects onto the lightest state, we choose

Σα =
∑
i,j

σαβij Tr[Pij(x)λ
β(x)]. (3.95)

Here Pij is the clover plaquette operator around x with only spatial indices {i, j} to

avoid contact terms in the correlator.

Pµν(x) =
1

8ig

4∑
i=1

(
U (i)
µν (x)− U (i)†

µν (x)
)

(3.96)

U (1)
µν (x) = U †ν(x)U

†
µ(x+ ν̂)Uν(x+ µ̂)Uµ(x)

U (2)
µν (x) = U †µ(x)Uν(x− ν̂ + µ̂)Uµ(x− ν̂)U †ν(x− ν̂)

U (3)
µν (x) = Uν(x− ν̂)Uν(x− ν̂ − µ̂)U †µ(x− ν̂ − µ̂)U †µ(x− µ̂)

U (4)
µν (x) = Uµ(x− µ̂)U †ν(x− µ̂)U †µ(x+ ν̂ − µ̂)Uν(x) (3.97)

where U
(1)
µν (x) is the regular plaquette defined in equation (3.3). This choice of the clover

plaquette vs. the regular plaquette as the gluonic field strength operator in (3.95) is

motivated by the correct behavior under parity P and time reversal T transformations



3.4 Obtaining Masses of States 32

as opposed to just Uµν(x). By “correct” we mean here the exact equivalence between

continuum and lattice. This aspect is of importance for the study of the Ward-identities

on the lattice, as we will show below.

The correlation function can thus be written as

Cαβ(∆t) = −1

4

∑

~x

∑

ij,kl

σαα
′

ij Tr[Pij(x)σ
a](Q−1)ybβ

′,xaα′Tr[Pkl(y)σ
b]σβ

′β
kl

= −1

4

∑

~x

∑

ij,kl

σαα
′

ij χaij(x) (Q−1)ybβ
′,xaα′χbkl(y)︸ ︷︷ ︸
I

σβ
′β

kl (3.98)

where, in the second line, we defined χaij(x) = Tr[Pij(x)σ
a] and naturally ∆t = (x0−y0).

In practice, a source of χ(y) is constructed on a randomly chosen timeslice covering

it completely (wall source) on which the fermion matrix Q is inverted. From this,

expression I in equation (3.98) is obtained. The complete correlator is then constructed

by multiplying and contracting I, χ(x) and the σ matrices accordingly.

It can be shown [19] that the gluino glue correlator has the simple Lorentz structure

Cαβ(∆t) = C1(∆t)δ
αβ + C2(∆t)γ

αβ
0 (3.99)

with Ci(∆t) ∈ R. From time reversal symmetry on also sees that these components

have different periodicity

C1(∆t) = − C1(T −∆t)

C2(∆t) = C2(T −∆t) (3.100)

giving us the benefit of having two independent ways to measure the mass of the lightest

state in this channel.

3.4.4 Adjoint Mesons

To measure the complete predicted multiplet we also have to include operators con-

sisting exclusively of gluinos, which in the sequel will be called a-mesons to remind us

of the fact that the gluinos transform according to the adjoint representation of the

gauge group. In analogy to QCD,

Oa−f0(x) ≡ λ(x)λ(x) Oa−η′(x) ≡ λ(x)γ5λ(x) , (3.101)

where the f0 and η′ would be the equivalent flavor singlet mesons consisting of quarks

in the fundamental representation of SU(3). We will also refer to the a−f0 as the scalar

and to the a−η′ as the pseudo-scalar meson. As in QCD, the two-point function of the

a-mesons have a disconnected and a connected piece

C(∆t) =
∑

~x

〈Tr[ΓQ−1
x,x]Tr[ΓQ−1

y,y ]〉 − 2〈Tr[ΓQ−1
x,yΓQ−1

y,x]〉 (3.102)
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Figure 3.2: The gluino line graphs for the two-point function of the color singlet a-meson
operators.

with the difference of a factor of 2, however, which comes from the Majorana property

of the gluino. Here the trace is meant to cover color and spin.

The numerical evaluation of the correlator is computationally the most demanding

part. The connected piece is obtained by the regular method of choosing a delta-like

source on a random site y in spin and color and calculating the propagator Q−1
y,x to

every point x, color a and spin α. The sink is summed over to project out the zero

momentum part.

The disconnected propagator is known as an all-to-all propagator. In theory one would

have to compute the full propagator from every lattice point y, spin and color back to

itself, which would mean doing NV ol ×Nspin ×Ncolor inversions of the fermion matrix

on each configuration. Since this is computationally not feasible, one has to resort

to one of the various approximations to the problem that are available. In the past,

the diagram was calculated by means of the volume source technique (VST) by the

collaboration, but due to its associated problems which will be explained below, we

used stochastic estimators in this work.

3.5 Matrix Inversion Methods

This section explores in detail how to obtain the all-to-all propagators for the a-mesons.

We present two techniques, the VST and the use of stochastic estimators. Currently, a

third method is also in use by the lattice community, the truncated eigenmode expan-

sion [37], which we will not touch on here.

Up to now, we mostly suppressed color and spin indices when referring to the fermion

matrix Q . At times, it is necessary to write them out explicitly, as we will see in the
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following. Restating equation (3.102), we have the object of investigation

Cg̃g̃(∆t) =
1

VS

∑

~x

〈
Trsc[ΓQ−1

x,x]Trsc[ΓQ−1
y,y ]− 2Trsc[ΓQ−1

x,yΓQ−1
y,x]

〉
(3.103)

≡ Cg̃g̃(∆t)disc. + Cg̃g̃(∆t)conn. (3.104)

where from now on, we focus on the evaluation of the disconnected part. Its time slice

sum is

Sα,β(t)disc. =
∑

~x

Trc[Q
−1
xα,xβ] (3.105)

where Trc is the trace over color and x = (t, ~x) with spin indices explicit. This is used

to construct the correlator

Cg̃g̃(∆t)disc. =
1

TVS

∑
t

∑

α,β

[ΓS(t)]α,α[ΓS(t+ ∆t)]β,β (3.106)

where Γ ∈ {1, γ5}.

3.5.1 Volume Source Technique

Employing the “volume source technique” [39] we can estimate the disconnected part.

For the connected part, we usually perform the inversion of Q with the source ω
[x,a,α]
ybβ .

In contrast, the VST puts a (real) 1 at every site for every spin and color1:

QZ = ωV
[a,α] =

∑
x

ω[x,a,α] (3.107)

The solution we then get is

Z [a,α] = Q−1ω
[a,α]
V , (3.108)

more explicitly,

QZ = Qxaα,ybβZybβ =
∑
z

ω[z,c,δ]
xaα (3.109)

⇒ Q−1
rdγ,xaαQxaα,ybβ︸ ︷︷ ︸

δrdγ,ybβ

Zybβ = Q−1
rdγ,xaα

∑
z

ω[z,c,δ]
xaα (3.110)

Zrdγ = Q−1
rdγ,xaα

∑
x

δxaα,zcδ

=
∑
z

Q−1
rdγ,zcδ

= Q−1
rdγ,rcδ +

∑

z 6=r
Q−1
rdγ,zcδ (3.111)

1This means we have to do Nspin ×Ncolor inversions per configuration.
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with the first piece obviously being the one we are interested in and the second piece

being the “error” of the approximation by this method. In their original work, the in-

ventors of the VST claim that the second term is zero when averaged over the ensemble,

essentially relying on Elitzur’s theorem [38] stating that any non gauge invariant quan-

tity averages away when measured over the complete ensemble. The basis of this claim

is to be checked in the following.

The structure of the time slice sum (after renaming dummy indices) is as follows:

SV (t)α,β =
∑

~x

Trc

(
Q−1
xα,xβ +

∑

y 6=x
Q−1
xα,yβ

)
(3.112)

≡ Sgi(t)α,β + Sngi(t)α,β (3.113)

where gi and ngi denote the gauge-invariant and the supposedly non-gauge-invariant

part respectively. The correlator then has the structure (suppressing spin indices)

C(V ST )(∆t)

=
1

TVS

∑
t

Trs

[
ΓS(t)

]
Trs

[
ΓS(t+ ∆t)

]

=
1

TVS

∑
t

Trs

[
ΓTrc

∑

~x

(
Q−1
x,x +

∑

y 6=x
Q−1
x,y

)]
Trs

[
ΓTrc

∑

~x′

(
Q−1
x′,x′ +

∑

y′ 6=x′
Q−1
x′,y′

)]

(3.114)

where t′ = t+ ∆t.

To begin with, we first look at the gauge average of the generic quantity

〈
TrcQ

−1
x,y[V

g]
〉
g

(3.115)

where 〈 . . . 〉g denotes the average over different gauges, which is the same as performing

the integral over the group manifold using the Haar measure where V g is the gauge

transformed SU(2) matrix in the adjoint representation defined in (3.8):

〈
TrcQ

−1
x,y[V

g]
〉
g

=
〈
g−1
x,aa′Q

−1
xa′,yb′ [V ]gy,b′a

〉
g

=
〈
g−1
x,aa′gy,b′a

〉
g
Q−1
xa′,yb′ (3.116)

1) x 6= y :
〈
g−1
x,aa′

〉 〈
g−1
y,b′a

〉
= 0 (3.117)

2) x = y :
1

3
δa′b′δaa = δa′b′ (3.118)

2)
= δxyδa′b′Q

−1
xa′,yb′ [V ] (3.119)

The results (3.117) and (3.118) were taken from [22] (equation (4.68) for SO(3)). With

this result we want to look for non-zero contributions of the correlator with terms

coming from Sngi(t)α,β.
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The Cross Term

The cross term is of type

Q−1
xα,xβ[V

g]
∑

y′ 6=x′
Q−1
x′β′,y′α′ [V

g] (3.120)

resulting in the color structure
〈
g−1
x,aa′gx,b′ag

−1
y′,cc′gx′,d′c

〉
g

(3.121)

Note the color trace apparent in the indices a and c. We would get non zero contribu-

tions from this expression if

1. x′ = y′: this is by definition excluded

2. x = x′, x = y′ ⇒ x′ = y′: see 1.

So here we do not get any contributions in the gauge average, i.e. the object has no

gauge invariant piece.

The Sum Term

The term involving the two sums looks like

∑
y 6=x
y′ 6=x′

Trc

[
Q−1
xα,yβ[V

g]

]
Trc

[
Q−1
x′α′,y′β′ [V

g]

]
, (3.122)

yielding the color structure
〈
g−1
x,aa′gy,b′ag

−1
x′,cc′gy′,d′c

〉
g

where y 6= x, y′ 6= x′. (3.123)

As above we get (non-zero) contributions if

1. y = y′, x = x′: can be excluded by requiring ∆t = (x0−x′0) 6= 0 in the correlator.

2. y = x′, y′ = x, this gives (from above):
〈
g−1
x,aa′gy,b′ag

−1
x′,cc′gy′,d′c

〉
g

=
〈
g−1
x,aa′gx′,b′ag

−1
x′,cc′gx,d′c

〉
g

here
=

〈
g−1
x,aa′gx,d′c

〉
g

〈
gx′,b′ag

−1
x′,cc′

〉
g

=
〈
gx,a′agx,d′c

〉
g

〈
gx′,b′agx′,c′c

〉
g

[22]
=

1

32
δa′d′δac δb′c′δac

=
1

3
δa′d′δb′c′ . (3.124)
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So plugging this result into (3.122), we get

1

3
δa′d′δb′c′Q

−1
xa′,x′b′Q

−1
x′c′,xd′ =

1

3
Q−1
xa′,x′b′Q

−1
x′b′,xa′ . (3.125)

In the end, we have for the disconnected piece

Cg̃g̃(∆t)disc. =

[
[ΓS(t)][ΓS(t+ ∆t)]

]

=
1

TVS

∑
t

∑

~x,~x′

[
Trsc[ΓQ

−1
x,x]Trsc[ΓQ

−1
x′,x′ ] +

1

3
Trs[ΓQ

−1
x′a′,xb′ ]Trs[ΓQ

−1
xb′,x′a′ ]

]
,

(3.126)

where again t′ = t+ ∆t. The second term is clearly a term we have not bargained for.

It represents an unwanted gauge invariant contribution that has so far been ignored

in applications of the VST. Note that the unwanted term looks suspiciously like the

connected piece Cg̃g̃(∆t)conn., but putting back the spinor indices from (3.103), we see

that these do not match up with the connected piece:

Trsc

[
ΓQ−1

x,x′ΓQ
−1
x′,x

]
vs. Trc

[
Trs[ΓQ

−1
x,x′ ]Trs[ΓQ

−1
x′,x]

]
. (3.127)

Size of the Error

In our case, the zero momentum two point correlator (3.77) works out to be (without

the spurious piece)

1

VS
〈Trsc[ΓS(x0)]Trsc[ΓS(x′0)]〉−VS

〈
1

TVS

∑
t

Trsc[ΓS(t)]

〉2

− 2

VS

∑

~x~x′

〈
Trsc[ΓQ

−1
x,x′ΓQ

−1
x′,x]

〉
.

(3.128)

Where the left most term is the disconnected part, the middle piece is the vacuum

expectation value of the operator (this is only relevant in the scalar case, since for

Γ = γ5, its vacuum expectation value is zero due to the invariance of the vacuum under

parity) and the right most term is the connected part. So we can write relation (3.127)

with the exact normalization factors

− 2

VS

∑

~x~x′

Trsc

[
ΓQ−1

x,x′ΓQ
−1
x′,x

]
vs.

1

3VS

∑

~x~x′

Trc

[
Trs[ΓQ

−1
x,x′ ]Trs[ΓQ

−1
x′,x]

]
. (3.129)

It is hard to theoretically judge the exact size of the error, since the spin structure is not

familiar. One can speculate though, that it should be of the same order of magnitude

as the connected correlator. We can, however, measure it numerically. On small

lattices, for example L3×T = 63× 8, one can calculate the exact all-to-all propagator.

On larger lattices one can perform several (volume source) inversions, separated by a

random gauge transformation and then compare the correlators configuration-wise by

averaging
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1. the time-slice sums over gauge transformations, which would let the extra piece

in (3.111) disappear from the beginning, up to small, controllable errors. This

method we call the correct.

2. the correlation functions, which would most closely mimic the classic application

of the VST of calculating one inversion per configuration for every configuration

in the ensemble and then calculating the average correlator. This is bound to

produce the wrong correlator (3.126).

We defer the numerical assessment to the next chapter and note for the protocol here

that the original claim [39] of the VST converging to the wanted two-loop correlator

in the limit of an infinitely large ensemble is indeed incorrect.

3.5.2 Stochastic Estimators

Since we saw that the VST possibly yields wrong results, it is important to have an

independent alternative at hand. The stochastic estimation technique (SET) provides

this alternative, as the error of the approximation is purely statistical and as such can

be separated from the systematic errors inherent in the VST.

The idea is straightforward: let {ηa} be an ensemble of complex normalized source

vectors with a ∈ {1, . . . , Nest}. Their random entries are chosen such that in the limit

of Nest →∞,

〈ηai 〉 ≡
1

Nest

Nest∑
a=1

ηai = 0 (3.130)

and

〈η†i ηj〉 = δij, (3.131)

where {i, j} label the vector indices of η. In our context this can mean either the site

x, color, or spin or their combination. These conditions are fulfilled if the entries of

the noise vectors carry, for example, Gaussian or complex Z2 noise. In the latter case

the entries consist of a randomly chosen 1√
2
(±1 ± i). Performing the fermion matrix

inversion on each of these sources, we get from the solution of

∑
i

QjiZi = ηj ⇒ Zi =
∑
j

Q−1
ij ηj (3.132)
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that

〈η†jZi〉Nest
= 〈

∑

k

Q−1
ik η

†
jηk〉Nest

=
∑

k

Q−1
ik 〈η†jηk〉Nest

(3.133)

= Q−1
ji 〈η†jηj〉Nest

+
∑

k 6=j
Q−1
ik 〈η†jηk〉Nest

(3.134)

Nest→∞= Q−1
ji . (3.135)

To calculate the diagonal elements Q−1
xx that are needed for the disconnected propaga-

tor, we therefore simply have to average the scalar product of the solution vector to

the source and the source itself:

〈η†iZi〉Nest
→ Q−1

ii (3.136)

for a sufficient number of random sources.

The main advantage of the stochastic method is that, in contrast to the VST, the

accuracy of the determination of Q−1
ii or, conversely, its errors are entirely separated

from the errors coming from the simulation. In principle one could perform Nest =∞
estimations to get an exact all-to-all propagator on each configuration. For any finite

Nest, the error is purely statistical. With the VST, the ordinary2 error only averages

away over the trajectory in simulation space, therefore an exact determination is only

possible for Nconfigs →∞.

However, the stochastic method can lead to a big variance

σ√
Nest

=
1

Nest

√∑
i

(xi − x̄)2 (3.137)

on the observables Trs,c,x[ΓQ−1]. The goal is to suppress this variance while still main-

taining statistical correctness. As one standard enhancement we use the so-called spin-

explicit method (SEM): the statistical error of Tr[ΓQ−1
ii ] receives contributions from

off-diagonal elements (the second term in equation (3.134)), which are only suppressed

in the Nest →∞ limit

σ(Q−1
ii ) ∼

∑

j 6=i
Q−1
ji 〈η†jηi〉 . (3.138)

For Wilson fermion matrices we have

Tr[Q−1
ii ]À Tr[Q−1

ij ] with i 6= j, (3.139)

where i, j = (x, spin) here. So the evaluation of off-diagonal elements of Q−1
ij with

i 6= j, such as Tr[γ5Q
−1], is also influenced by the greater diagonal elements

σ(Q−1
ij ) ∼ Q−1

ii 〈η†i ηi〉. (3.140)

2as opposed to the “extra” error we determined above, that does not average away,
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Therefore their relative statistical error is greater than that of Tr[Q−1
ii ]. Using the SEM,

one performs stochastic inversion in the spin subspaces. This is achieved by Z2 noise

on only one spin-component. For regular Dirac fermions, it introduces a factor of four

more fermion matrix inversions; for the Majorana case considered here, the number of

inversions doubles, see Appendix A.2. On the other hand it reduces the error terms

contributing in (3.140) by a half (by four for Dirac fermions). This reduces the error

of Tr[γ5Q
−1
ii ] approximately by a factor of 1√

2
, as we will see in the following chapter,

where the numerical results are collected. One has to note, though, that for the same

reasons the error of Tr[Q−1
ii ] increases, albeit by less than

√
2. We consider this to be

an acceptable trade-off.

3.6 Ward Identities

We finally turn to the derivation of the lattice formulation of the SUSY Ward identities.

We will keep this section brief and blatantly brush over various subtleties since we do

not want to rehearse the exercise but to provide the reader with the relevant tools

and concepts needed to understand the numerical work in the following chapter. For a

thorough discussion of these issues, please see [19] and [21] where the original work was

developed. Here we will mostly follow [21] and the continuum equivalent in Chapter 2,

cutting a few corners in the process.

Supersymmetry is explicitely broken on the lattice by a non-zero gluino mass mg̃, the

Wilson action and by the lattice discretization a 6= 0 itself. However, when taking the

a → 0 continuum limit, it should be restored. One can nevertheless derive the lattice

SUSY Ward identity corresponding to (2.40) if one takes the symmetry-breaking terms

into account. If the corresponding Ward identity is then satisfied in the simulation,

albeit up toO(a)-effects, it gives a good indication for the restoration of supersymmetry

in the continuum limit at the chosen simulation parameters.

A lattice transcription of the SUSY continuum transformations (2.22) and (2.23) is

not unique. Their only requirement is that they have to reproduce the continuum

transformations in the a → 0 limit. Therefore one can aim to minimize the SUSY

breaking at O(a) by choosing appropriate irrelevant operators. Requiring the lattice

operators to transform as their continuum counterparts with respect to time reversal
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and parity, one finds that a particular choice is

δUµ(x) = −iga
2

(ε̄(x)γµUµ(x)λ(x) + ε̄(x+ µ̂)γµλ(x+ µ̂)Uµ(x))

δU †µ(x) =
iga

2
(ε̄(x)γµλ(x)U †µ(x) + ε̄(x+ µ̂)γµU

†
µ(x)λ(x+ µ̂))

δλ(x) =
1

2
Pµν(x)σµνε(x)

δλ̄(x) = −1

2
ε̄(x)σµνPµν(x) , (3.141)

where Pµν is the clover plaquette as defined in equation (3.97) and ε(x) an infinites-

imal local Majorana parameter. Using the same strategy as in the continuum, these

transformations lead us to the bare lattice Ward identity

〈 (∇µSµ(x))Q(y)〉 = m0〈χ(x)Q(y)〉+ 〈XS(x)Q(y)〉 − 〈δQ(y)

δε̄(x)
〉 , (3.142)

where we used the symmetric lattice derivative

∇µ =
f(x+ µ̂)− f(x− µ̂)

2a
(3.143)

and with χ(x) the same as in equation (3.95)

χα(x) =
∑
µν

σαβµνTr[Pµν(x)λ
β(x)]. (3.144)

This leads to the definition of the supercurrent

Sµ(x) = −
∑
ρσ

σσργµTr[Pσρ(x)λ(x)]. (3.145)

The last term in equation (3.142) is a contact term, which vanishes on-shell (x 6= y) and

is therefore ignored in the following. All SUSY breaking terms in (3.142) were collected

in the operator XS(x). The explicit form is rather complicated [41, 42]. Important

here is only its behavior towards the continuum limit, namely that of an operator of

dimension d = 11
2

O(x) ≡ lim
a→0

XS(x) . (3.146)

A different possibility is to use the lattice backwards derivative∇b
µ = f(x)−f(x−µ̂)

a
instead

of the symmetric, appropriate for a point-split definitions for operators. The Ward

identity remains formally unchanged by such a redefinition. See [19, 21] for details.

Here we only work with point-like currents.

In order to study the renormalized Ward identity, one needs to investigate the mixing

pattern of the operator XS. The analysis is similar to that of the axial Ward identity

on the lattice for QCD [43, 44]. Operator mixing occurs with operators of dimensions

d ≤ 11
2

with the same quantum numbers (i.e. the same transformation properties
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under equations (3.141) as O(x)). The on-shell mixing pattern involving operators

with 7
2
≤ d ≤ 11

2
is given by

OR11/2(x) = Z11/2[O11/2(x) + a−1(ZS − 1)∇µSµ(x) + a−1ZT∇µTµ(x) + a−2Zχχ(x)]

+
∑
j

Z
(j)
11/2O(j) R

11/2 (x) . (3.147)

The mixing current Tµ(x) is

Tµ(x) = 2
∑
ν

γνTr[Pµν(x)λ(x)] . (3.148)

So now, one can substitute O11/2(x) by means of (3.147) into the bare Ward identity

of equation (3.142), yielding

ZS〈(∇µSµ(x))Q(y)〉+ ZT 〈(∇µTµ(x))Q(y)〉 = mS〈χ(x)Q(y)〉+O(a) , (3.149)

with the subtracted gluino mass

mS = m0 − a−1Zχ , (3.150)

and the supposedly renormalized SUSY current can then be written as

Ŝµ(x) = ZSSµ(x) + ZTTµ(x) . (3.151)

In principle the identity is satisfied for any insertion operator Q. To investigate this

in a numerical study, we need to choose a specific one to test. Since trivial cases are

uninteresting, a gauge invariant Q(y) with the same quantum numbers as χ, Sµ,∇µTµ
is needed. Otherwise the expectation values 〈 . . . 〉 = 0 would fulfill the WI trivially.

So Q(y) needs to have spin-1
2
. Examples of the lowest possible d = 7

2
operators are

S0, T0, χ and also

χ(sp)(y) =
∑
i<j

σijTr[Pij(y)λ(y)] (3.152)

with i, j spatial. However, at d = 7
2
, there can only exist two independent spin-1

2

operators. Indeed on finds that

χ(y) = γ0T0(y)− 2χ(sp)(y) (3.153)

S0(y) = 2γ0(γ0T0(y)− 2χ(sp)(y)) . (3.154)

For our work we take χ(sp) as the insertion operator. The other possible independent

insertion operator T0 turns out to be very noisy [21].

We now turn to the strategy of numerical evaluation. Considering the zero momentum

Ward identity

∑

~x

〈∇0S0(x)Q(y)〉+ ZT
ZS

∑

~x

〈∇0T0(x)Q(y)〉 =
ms

ZS

∑

~x

〈χ(x)Q(y)〉+O(a), (3.155)



3.7 The Massless Gluino Limit 43

we focus on the correlator containing the SUSY current (the following analysis holding

for the other correlators analogously). We see its structure, with spin indices explicitly

written out, is

CS,Q
αβ (∆t) = adQ+9/2

∑

~x

〈(∇0S0)α(x)Q̄β(y)〉 (3.156)

Consider its expansion in the basis of Dirac matrices Γ,

CS,Q
αβ (∆t) =

∑
Γ

CS,Q
Γ (∆t)Γαβ (3.157)

where

CS,Q
Γ (∆t) ≡ Trsc[ΓC

S,Q(∆t)] ∈ R . (3.158)

Using the discrete lattice symmetries, one finds that only two of these coefficients are

non-zero:

CS,Q
1 (∆t) ≡

∑

~x

〈(∇0S0(x))Q(y)〉 (3.159)

CS,Q
γ0

(∆t) ≡
∑

~x

〈(∇0S0(x))γ0Q(y)〉 . (3.160)

So with these two equations we can solve a system of equations for the ratios of the

renormalization factors:

CS,Q
1 (∆t) +

ZT
ZS

CT,Q
1 (∆t) =

ams

ZS
Cχ,Q
1 (∆t)

CS,Q
γ0

(∆t) +
ZT
ZS

CT,Q
γ0

(∆t) =
ams

ZS
Cχ,Q
γ0

(∆t) , (3.161)

with the insertion operator that was chosen above. This is the agenda for the numerical

check of the fulfilled Ward identities. In particular, their study allows us to determine

the quantity amSZ
−1 for the gluino mass and the soft breaking of SUSY on the lattice.

3.7 The Massless Gluino Limit

The only theoretically founded method to assess the massless gluino limit is the in-

vestigation of the Ward identity (3.155). The massless gluino limit corresponds to

mS → 0. By determining amsZ
−1
s at different κ’s and under the assumption that it

behaves linearly in 1/κ,

ams → a

(
1

κ
− 1

κc

)
, (3.162)

one can make an extrapolation to mS = 0 and read off κc.

A second method, though not completely rigorous, is based on the OZI approximation.

It has been suggested in [9] that in this approximation, where only the connected
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piece of the correlator is retained, the a−η′ should behave like the pion in QCD. This

means that in this approximation the a−π, as we shall call it, should become massless

at some critical value of the bare gluino mass mc or κc respectively. In this limit,

the disconnected part of Ca−η′(∆t) should give the particle its non-zero mass and the

mass degeneracy between members of the multiplet should be restored in the continuum

limit, since chiral symmetry and supersymmetry are restored simultaneously at mc [14].

It is important to realize that “the a−π” is not a physical state of the theory, since we

only have one flavor of gluino and cannot construct flavor non-singlets like the pions

of QCD. Because of this, only a “pseudo”-chiral limit can be defined. In short, one

expects within the OZI approximation the mass of the a−π-mode to behave according

to the PCAC relation. Using the methods of Section 3.4 one can determine the mass of

this mode at different κ’s and extrapolate it to the m2
a−π = 0 case, giving an estimate

for κc.

Comparison of the first estimate with the latter should give a good indication of the

internal consistency of the lattice formulation of the theory.



Chapter 4

Analysis and Results

In the following we present the numerical results of our study. Its agenda for the

investigation was outlined in the previous chapter. Starting by the characterization

of the individual ensembles we used by simulation parameters and quantities such as

the potential and the Sommer scale, we move onto results from tests of the stochastic

estimation method and converge on the results of the mass spectrum. The numerical

results for the Ward identities will be discussed and, finally, we will give some comments

on the finite volume effects we believe are present.

Our objective is to give a coherent picture of the numerical results concerning theN = 1

SYM model on the lattice. This entails at some points using results not determined

here, but in previous studies. These numbers will be flagged appropriately.

4.1 Simulation Details

A summary of the ensembles we used for this investigation is displayed in Table 4.1. Of

these, the 12c-ensembles of lattice size 123×24 were previously produced and partially

analyzed [19, 20], while the larger 1940.16c of size 163 × 32 was newly generated

and the 1955.16c is a current production run. From the table one observes a gradual

progression to lighter gluino masses, i.e. larger κ, and larger lattices, while maintaining

a constant bare coupling β. The reason for this is twofold. Obviously, the goal is to

approach the massless gluino limit as close as numerically possible. As the gluino

becomes lighter we simulate in the region, where the symmetry breaking effects occur

linearly in mg̃. A big problem is that a lighter gluino mass causes the algorithm to

exhibit critical slowing down, i.e. the computational effort to generate an independent

configuration grows as a large power of the gluino mass. So the κ → κc limit must

be approached gradually in order to keep the systematic errors of the algorithm under
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control. Secondly, in order not to suffer from finite volume effects, such as unnaturally

constraining bound state correlation functions, the lattice size must suitably increased.

The question of suitability of a given lattice size will be addressed in the course of our

analysis.

Originally, the choice of β was based on the observation that for pure SU(2) Yang Mills

theory, β = 2.3 lies in the scaling region, where the continuum limit leaves the physics

of the theory invariant. For SU(2)-SYM, this is also expected to hold.

label κ lattice size β Nconfig Nupdates Nlat

1925.12c 0.1925 123 × 24 2.3 4320 216000 9

1940.12c 0.1940 123 × 24 2.3 2034 42030 9

1940.16c 0.1940 163 × 32 2.3 3890 25650 4

1955.12c 0.1955 123 × 24 2.3 4272 65832 8

1955.16c 0.1955 163 × 32 2.3 ∼ 520 ∼ 3500 2

Table 4.1: Overview of the ensembles used and/or produced in this work.

To give an idea of the algorithmic parameters, we summarized those of the new runs

of the 1940.16c and 1955.16c ensemble in Table 4.2, where the parameter notation

refers to that of Section 3.1.2. Here we see that for lighter gluino masses, higher orders

of the polynomials are needed in the simulation. Simulations at hopping parameters

closer to the critical κc entail a lower bound on the smallest eigenvalues of the fermion

matrix Q . Therefore the interval of approximation must be enlarged to a smaller ε,

creating the need for higher order polynomials. So in addition to the need for larger

lattices, the simulation algorithm needs to be more refined in the polynomials.

ε λ n1 n2 n3

1940.16c 0.0001 4.0 28 420 500

1955.16c 0.00002 4.0 40 800 700

Table 4.2: Algorithmic parameters of ensembles 1940.16c and 1940.16c.

Figure 4.1 shows the history of the production run for the 1940.16c ensemble with

respect to the plaquette and the smallest eigenvalue of the fermion matrix. From the ex-

perience of previous simulations performed by the collaboration [20], we conclude that

we can skip the reweighting with respect to the correction factors in the measurement

process (3.45), if the lowest eigenvalue stays above the lower limit of approximation,

which is the case for almost the entire simulation run here. The few configurations

that do not pass this criterion are simply excluded from the measurements, since they

only contribute with negligible weight in the statistical average.

Similarly, on the set of configurations with smaller lattices, the sign of the Pfaffian was

determined in [20] on sub-samples consisting of ∼ 10% of the total ensemble by the

use of the spectral flow method. It was found that in the region relevant to the study,
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Figure 4.1: Run history of ensemble 1940.16c for the plaquette and the smallest eigenvalue
up to Nupdate ∼ 14000 . The horizontal line in the lower panel shows the lower
limit of approximation by the polynomial.
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κ ≤ 0.196, no zero-level crossings occurred. If we relate that to the findings of [18],

where some negative signs were detected on a considerably smaller lattice (63 × 12)

with a lighter gluino of κ = 0.196, we conclude that for the 1940.16c ensemble, we

are safe from zero level crossings. As hinted in the previous chapter, we therefore skip

the measurement correction process entirely and take expectation values of operators

at face value. It should, however, be noted that the further one simulates to the

critical κc, the more one should be alert to the negative signs. Therefore, when enough

configurations are accumulated for the 1955.16c sample, an explicit check of negative

Pfaffian signs should be performed.

4.2 Computational Results

In the following section we present two issues of computational interest. The first

is the estimation of a sufficient number Nest of stochastic estimators for use in the

determination of the a-meson masses. Secondly we will give a rather brief assessment

of the numerical error we discovered for the VST in the previous chapter. Both analyses

are based on a subset of the ensemble 1940.16c. The subset was chosen to obtain a

maximum number of decorrelated configurations with respect to the smallest eigenvalue

(see Section 4.4.3 for details).

4.2.1 SET Performance

With the use of stochastic estimators one needs to assess the number of estimates Nest

sufficient to produce the desired matrix elements up to a given numerical accuracy.

There are two considerations that need to be taken into account here, namely the

convergence of the average value as the number of estimates increases and, secondly,

the sufficient statistical suppression of the error. We explained in Section 3.5.2 our use

of the spin explicit method, which is applied here throughout. So in studying the plots,

one needs to remember that in fact one estimation is equivalent to two inversions of

the fermion matrix (cf. Section 3.5.2). Since this was the first serious commitment of

computational resources to the SET, being cost-conscious, we chose single (as opposed

to double) precision for this study, i.e. our variables are declared as float (32bit)

rather than double (64bit). As will be elaborated on later, this might have proven to

be a mistake.

In Figure 4.2 the average value of the estimated quantity of interest Tr[ΓQ−1] for

Γ ∈ {1, γ5} is plotted for a single, randomly chosen configuration of the ensemble. We

observe that after, approximately one hundred estimates, the value of each of the traces

converges to a plateau within error bounds. This already gives us a good idea of the
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Figure 4.2: Evolution of the average value of of Tr[Q−1] and Tr[γ5Q−1] as a function of Nest

on single configuration. The dashed lines represent the error bounds.
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Figure 4.3: Evolution of the average value of Tr[Q−1] and Tr[γ5Q−1] as a function of Nest

averaged over the complete ensemble 1940.16c. The dashed lines represent the
error bounds.

order of magnitude Nest has to be. Note that the operator Tr[γ5Q
−1] as a sum over time

slices has a vanishing vacuum expectation value, since the vacuum is parity even. Yet

this expectation does not apply here, since we are investigating a single configuration

and a single configuration does not have to be representative of the physics of the

whole ensemble. Only after averaging over the ensemble and therefore performing the

path integral over different configurations, can one make use of the physical intuition,

if available. In this light, it is entirely acceptable that the average value over stochastic

estimates in the right panel of Figure 4.2 does not converge to zero, but in fact here to

a value below zero, within the given statistical error.

When studying the average over the ensemble as a function of Nest in Figure 4.3,

we can observe a different behavior between the Γ = 1 and Γ = γ5 cases. Note in

particular the different scales for the left and right panel. The former reaches a plateau

within errors very quickly after about 50 estimates, while the latter takes considerably
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Figure 4.4: Evolution of the statistical error (3.137) of Tr[Q−1] and Tr[γ5Q−1] as a function
of Nest for a single configuration (left) and averaged over the complete ensemble
1940.16c (right).

longer to converge. The most probable explanation of this mismatch is that for Γ = 1,

the average value is a sum, while for Γ = γ5, it is a sum of differences which relies

on cancellations in order to converge to its expected value of zero. As such, it is

drastically more sensitive to possible numerical inaccuracies. In an equivalent study

with increased precision (i.e. double precision) it would be worthwhile to study this

effect more closely. Nevertheless, we observe that after about 150 estimates, the value

of the pseudo-scalar trace converges, albeit to a non-zero value. We see the failure to

reach the theoretical value of zero as a further argument for the interpretation that,

even in the ensemble average, the necessary cancellations are possibly impaired by

insufficient numerical accuracy.

Focusing on Γ = 1, we see very clearly that the measured error is more or less of

constant size. This demonstrates beautifully the property of the SET that in the limit

of Nest → ∞, the estimation error is suppressed and we are left with an error that is

completely generated by the fluctuations of the ensemble itself. This property of the

disentanglement of systematics and statistics was our original motivation for the use

of this method.

Finally, we compare the average error reduction per estimate (3.137) in Figure 4.4.

Again, we first look at a single configuration (left panel). As one might expect from

the use of the SEM, the relative error in the pseudo-scalar case performs slightly better

than the scalar, but both are of comparable size. One could expect that, since the

relative precision of 32bit variables is approximately 10−6, we would observe that the

error approaches approximately this value. But due to limited computational resources

we chose to break off beforehand. When viewing the ensemble average, we are again

confronted with the relative instability of the pseudo-scalar case. However, both errors

stay of O(10−4), which we regard as acceptable.
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In conclusion, we fix the Nest to be 150, which we expect will deliver us an error by

and large independent from the statistical fluctuations of SET. It should be noted that

for stochastic estimation techniques in this context, there are in fact more advanced

techniques for variance reduction on the market [45] which could be tested in the future.

4.2.2 VST Error Analysis

The spurious piece detected in the two-loop correlator (3.126) when applying the vol-

ume source method warrants a numerical investigation, since it is unclear how to assess

its size or its impact on the actual object of our interest, the masses of the relevant

particles. The classical algorithm for the VST is to generate one estimate E [Tr[ΓQ−1]]

for every field configuration, calculate a correlator from that estimate and average

correlators over the ensemble, i.e.

CV ST = 〈C〉Ω =

〈
C

(E [
Tr[ΓQ−1]

] )〉

Ω

, (4.1)

where 〈 . . . 〉Ω denotes the average over the ensemble Ω. For the analysis, our strategy

is to compare the method of generating K estimates of one configuration Ek [Tr[ΓQ−1]],

each separated by a random gauge transformation, calculating a correlation function

for each individual estimate and then averaging those correlation functions over gauge

transformations and the ensemble:

CV ST
wrong ≡

〈
〈C(Ek

[
Tr[ΓQ−1]

] )〉g
〉

Ω

, (4.2)

where 〈 . . . 〉g denotes the average over K random gauge transformations. This is con-

trasted with first averaging the estimates of one configuration over random gauge trans-

formations, then calculating a correlator, and finally averaging these correlators over

the ensemble

CV ST
correct ≡

〈
C

(〈Ek
[
Tr[ΓQ−1]

] 〉g
)〉

Ω

. (4.3)

Note in particular the difference in the order of averaging and calculating correlations

between (4.2) and (4.3). By using the correct version, the extra piece is averaged

away from the beginning, while in the wrong version it should appear. In passing, we

remark that, indeed, (4.3) is a novel way of thinking about the VST and in consequence

applying it. Seen in this way, it is more akin to the SET, since we could choose to

apply the above SET analysis in exactly the same fashion, replacing repeated stochastic

estimates with repeated random gauge transformation and subsequent VST estimates.

From that perspective, one could separate the statistical and the systematic error by

the same logic. It is then merely a question of numerical performance in terms of noise

suppression that would make one method preferable to the other.

As in the SET analysis, we first compare average correlators of a randomly chosen,

single configuration (i.e. not taking the average over Ω in (4.2) and (4.3)) and then
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Figure 4.5: Comparison of the disconnected correlator Cg̃g̃(∆t)disc. in (3.103) for Γ = γ5,1
on a single configuration. For the definitions of correct (boxes) and wrong (cir-
cles) see text. Note the different scales on the y-axes in the right panel.

look at the ensemble average to see, whether the erroneous piece might average away

due to yet unfound symmetries that only become apparent in the ensemble average.

Finally we assess its impact on the mass determination. The number of random gauge

transformations and estimates applied was fixed to K = 15.

We can see from Figure 4.5 that the correlators for a single configuration are indeed

different. In the pseudo-scalar channel (left panel) it is not as pronounced as in the

scalar (right panel), where we chose to have different scales to make them comparable.

In both cases, the wrong version produces a “noisier” signal that deviates markedly

from a clean correlation function. In the scalar case, the offset is –purely numerically–

quite consistently ∼ 25531 which is approximately of the order of the volume O(L3 ×
T ) = O(104) of the lattice.

In the ensemble average, the “noisiness” of the wrong method has averaged away,

most strikingly for the pseudo-scalar (see Figure 4.6, left panel). The statistical errors

are similarly large for the pseudo-scalar case, while for both cases, generally, at low

time separation the wrong method produces higher correlations than the correct. In

addition, for the scalar, we observe that the offset we saw on the single configuration

has manifested itself. However, from ∆t = 5 onwards, both correlations are virtually

the same, modulo the offset and the size of the error in the scalar case. This implies

that the error is a constant for large ∆t. But interpreting the pseudo-scalar correlator

seems to suggest that the difference is absorbed into a larger amplitude.

A separate remark concerning the error of the scalar correlator needs to be made here.

We see that, disregarding other discrepancies, the wrong method produces an offset

and an enormous difference for the statistical error. To get the true correlation, we

need to subtract the non-zero vacuum expectation value (VEV) from the correlator,

v = 〈Tr[Q−1]〉. The definition of the VEV itself implies though that it cannot be
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calculated wrongly in the above sense, since the error term only appears in correlation

functions, i.e. the estimate of the VEV is the same for the two methods. This has two

implications for the wrong method. Firstly, as we witness from the plot 4.6, it produces

the familiar offset. Secondly, the correct subtraction of the VEV within a Jacknife

error analysis reduces the variance of the subtracted correlator significantly, since the

VEV and the non-subtracted correlator are strongly correlated. Within the incorrect

framework, this numerical effect is completely missed. Moreover, it is turned into its

opposite, since the correct VEV is subtracted from the wrong correlator, increasing

the already very large variance. The result can be seen in the markedly different size

of the error bars in the right panel of Figure 4.6.

Somewhat surprisingly, the larger values of the correlations do not greatly influence the

mass calculations, see Figure 4.7. We will concentrate on the pseudo-scalar case, since

the data simply is not good enough to extract a viable a−f0 mass, as can be clearly seen

in Figure 4.7, right panel. To get better data, one would have to increase the number

of estimates per configuration and possibly the number of independent configurations.

The largest deviations between the two methods occur at the high ti-end for the global

fits and the high t for effective masses respectively. Except for some sporadic cases, the

values agree with each other within errors. But one still needs to be cautious before

arguing the irrelevance of the mismatch of the two methods for the masses for this

particle. The comparison was made for only a relatively low number of estimates per

configuration. It might well be possible that with higher quality of the data we would

detect a measurable impact. It might also be possible, though, that the erroneous

piece in (3.126) with Γ = γ5 is not invariant under other non-trivial symmetries of the

vacuum that manifest themselves in the ensemble average and therefore might not play

a role for the a−η′.
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Figure 4.8: Static potential and fit of ensemble 1940.16c.

4.3 Static Potential

As explained previously, it is assumed that the property of confinement holds also for

the four dimensional N = 1 SYM theory. This amounts to the conjecture that the

adjoint fermion loops have no substantial screening effect on fundamental sources. As

can be seen in Figure 4.8, there is no plateau at high R for the ensemble 1940.16c,

which could be interpreted as screening. The line is the corresponding fit to (3.69),

resulting in the R0 and string tension shown in Table 4.3. This judgment is perfectly in

line with the previous experience of the collaboration [22, 18]. The values for the 12c

ensembles were determined in [21] and are recorded here for reference and comparison.

Of particular interest is the possibility to directly compare the 1940.12c with the

1940.16c ensemble. We observe almost identical values for R0 and
√
σ, which leads
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us to the conclusion that, at least for gluonic quantities, we are free of finite volume

errors from 12c onwards.

ensemble Sommer scale R0/a Lx/R0 string tension a
√
σ

1925.12c 6.71(19) 1.79(5) 0.176(4)

1940.12c 7.37(30) 1.63(7) 0.160(6)

1940.16c 7.16(25) 2.2(1) 0.165(9)

1955.12c 7.98(48) 1.50(9) 0.147(8)

1955.16c 7.3(5) 2.2(15) 0.161(11)

Table 4.3: Sommer Scale and string tension results for the investigated ensembles.

From a numerical point of view, one can compare these scales with QCD. It has to

be stressed, though, that the analogy should not be pushed too far, since after all, we

are comparing two different theories. With that in mind, in QCD the experimental

value of R0 as defined in (3.72) is RQCD
0 = 2.53 GeV−1. This would give us a rough

estimate for the lattice spacing of a ∼ (3.15 GeV)−1 ≈ 0.06 fm for κ = 0.1955, and

therefore the size of the box is roughly 0.7 fm across, which for QCD would be rather

small. Common lattice lore requires a sufficient size to be ∼ 2 fm. But as we saw for

the gluonic sector, we are likely to be free from finite volume effects.

4.4 Masses

We finally turn the determination of the masses for the measured operators. As we

know from Section 3.4, the simulation generates a Monte Carlo estimate GO(∆t) of

the correlator for a given operator O at a finite number of time separations 0 . . . Nt.

From theory, the exact form of a correlator is a sum of exponentials (3.77). The goal

in fitting the data is to find a tmin and a tmax, where the higher states have died off

(tmin) but where there still is a good signal for the (second) lightest (tmax) so that in

the following mass fits one hopefully gets a plateau, where the lightest mass (or both

masses in two mass fits) stabilizes.

4.4.1 Details of Mass Fits

Fitting a function to a set of data is a minimization procedure, which seeks to minimize

the quantity known as χ2. Its definition is

χ2 =
N∑
i=1

(yi − y(xi; aj))2

σ2
i

(4.4)
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where y(xi; aj) represents the fit to a function y(x) depending on the fit parameters aj.

Further, yi± σi are the measured values at points xi, in this case the correlation C(xi)

with xi = (∆t)i and N the number of data points. Probability theory tells us that,

at the minimum of χ2, lie the most probable values for the fit parameters [46]. For

reference, the fitting routines were implemented with the help of the GNU Scientific

Library [47] using a Levenberg-Marquardt solver with derivatives.

In order to reduce the freedom of possible parameters for the fitter and thus numerically

stabilize the fits, the amplitudes and masses were parameterized as an =
√
An and

εn =
√
En to enforce their positivity. The resulting fitting function then is

G(t) =
N∑
n=1

a2
n

(
e−ε

2
nt ± e−ε2n(T−t)

)
(4.5)

with N = 1, 2 for one mass and two mass fits respectively. Other parameterizations

are found in the literature, notably an = logAn and εn = log (En − En−1) and variants

thereof. These were found to render the minimization routine unstable due to the

large gradients that were computed during the fit. The same behavior was found for

εn =
√
En − En−1.

As we will see below, often enough we are faced with the situation where a one mass

fit produces a hopeless result, i.e. no plateau is visible and a two mass fit is unreliable

due its freedom to choose four, or even five, if the correlator has an offset from zero,

different values for the fit parameters. The failure of a fit to produce a plateau can

have a number of reasons. First and foremost, the correlator can contain a considerable

signal for another, higher state. In this case, we expect the gradual reduction of the fit

interval to higher time separations to produce masses that are consistently too large,

because the sum of N exponentials falls off faster than a single one, since

∂t(e
−mt +

a2
1

a2
n

e−Mt + . . . ) < ∂t(e
−mt) . (4.6)

This will fail to produce a plateau, if the signal of the higher state(s) is strong enough

at large t. Furthermore, we expect the overestimate of the mass to decrease for higher

ti, as the higher states die off successively. Within this scenario it is also quite possible

that the next higher state is not far off from the lightest, thus its fall off is delayed,

nevertheless giving bad results for one mass fits. Secondly, the signal/noise ratio at

larger time separation may decrease faster than the suppression of higher states in the

correlator, such that any signal is lost completely and reliable conclusions cannot be

drawn. In the second case, the smearing of operators has proven to be a helpful tool

(for details, see the appendix A.3). The idea is to improve the signal by increasing the

overlap of the operator with the wave function of the lightest state. Essentially, one

seeks to maximize the amplitude c1 in (3.77) relative to the other amplitudes.

Our strategy in dealing with first case is the following. From the unstable two mass

fit, we take hints for the possible mass of a higher state, which naturally has some
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detectable signal, since it was a result of the fit. We then feed this information back

by subtracting the contribution of the supposed second exponential from the actual

measured correlation function. Let the mass M and the amplitude A be the a priori

untrusted suggestions from the two mass fit. We then attempt to fit

G(∆t) ′ ≡ G(∆t)− A(e−M∆t ± e−M(t−∆t)) → c(e−m∆t ± e−m(t−∆t)) (4.7)

which will either produce some signal or almost none, depending on the quality of the

guess. Repeating this procedure over the range of suggested M and A, we single out the

best signal and subject it to a stress test by automatically scanning below and above

the chosen values of M and A. If the results are stable under this test, we read off the

lowest mass from the one mass fit. As a cross-check, we then subtract the exponential

with the lower mass from the measured correlator to see whether the higher mass M

is reproduced. This procedure might seem cumbersome at first sight. Nevertheless we

found it to produce the most reliable results in this study.

4.4.2 Gluino-Glue Bound States

We begin with the investigation of the gluino-glue particle. As we already saw, we can

split up the correlation function into a part that is proportional to 1 and one that is

proportional to γ0 (3.99),

Cαβ(∆t) = C1(∆t)δ
αβ + C2(∆t)γ

αβ
0 (4.8)

where the two parts have different periodicity. To exemplify this behavior for all ensem-

bles, we show the two corresponding correlation functions of the 1940.16c ensemble

in Figure 4.9. Note here especially the excellent signal/noise ratio, as indicated by the

tiny error on these points and the exact symmetry as predicted by equation (3.100).

For the corresponding plot with symmetrized correlation functions in Figure 4.10, we

chose a logarithmic scale to again highlight the good quality of the signal. Of interest

here is also the non-linear character which indicates that we indeed do not have a

single exponential, but a sum of two or more, reflected at T . This can be seen from

the pronounced deviation of the linear behavior in the log-plot at large time separation

∆t.

The structure of the following section is such that we first analyze the small lattices

(Lx = 12) while going from small κ to larger, i.e. from heavier to lighter bare gluino

mass. This is followed by the large lattice (Lx = 16), for which up to now we only have

a viable ensemble at κ = 0.194.

On all lattices we used both APE and Jacobi smearing for the sink and the source.

The primary point of reference was the previous analysis [19]. We found exactly the
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Figure 4.9: Gluino-glue correlation function for C1(∆t) and C2(∆t), as defined in the text.

same parameters for APE and Jacobi smearing to produce the best signal. So for the

complete analysis of the gluino glue, we used

NAPE = 9, εAPE = 0.5 and NJacobi = 18, κJacobi = 0.2 , (4.9)

just as [19]. As a general observation, pertaining to all of the studied ensembles, the

Cγ0(∆t) data seems to give a better signal than the C1(∆t). We do not have a sound

explanation for that fact. However, in [19] the same was found to be true. A possible

reason for this could be that the smearing procedure creates a larger overlap of the

wave function with one spin-Lorentz structure than the other. Nevertheless, it is an

open question.

Ensemble 1925.12c

This ensemble was already analyzed with respect to the gluino-glue in [19]. We used

it as a reference and cross-check in order to fine tune our own fitting procedures. It

should be mentioned that we are unable to reproduce the two-mass fit quoted there.

Fitting the Cγ0(∆t) data to the one mass ansatz, we see the definite influence of other

states, hindering the emergence of a plateau (see Figure 4.11). Neither does the effective

mass ansatz help here (cf. equations (3.83) and (3.83)). But since the effective mass

is a more local property, one could optimistically say that there is something akin to a

plateau in the high ∆t region. This picture shows almost exactly, what was found in

the analysis in [19].

By subjecting the Cγ0(∆t) correlator to a two mass fit, we get extremely unstable
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results, as might be expected, when judging the quality of the data from Figure 4.11.

This is the first instance where we apply our subtraction procedure outlined above. It

is found that when subtracting a higher mass of

amhigh = 0.949(...) (4.10)

we get a stable fit. This becomes particularly evident from Figure 4.12, where we

witness a plateau on the lower mass (circles) over a wide range of fit intervals, starting

from ti = 2. Moreover, when repeating the procedure, as indicated above, by sub-

tracting the contribution of the small mass from the correlator, we indeed regain the

signal for the higher mass (boxes). Consistent with our above discussion of the fitting

routine, one also sees that for fit intervals with larger ti, the signal of the higher mass

is fading, as indicated by the increasing error. Thus we quote the lightest mass on this

ensemble as

amlow = 0.33(4) . (4.11)

Comparing with [19], and therein Table 3.7 at ti = 9, we indeed find a weak signal for

a value of the mass in this region which we take to be a corroboration of our result.

We interpret the slight fall off of the subtracted mass fit in Figure 4.12 as a statistical

effect, since those values are still, within their respective error, compatible with the

clear plateau. As the value for the higher mass we find

amhigh = 0.95(3) . (4.12)

Unfortunately, in the case of the C1(∆t) component (Figure 4.13), we already find a

clear signal in the one mass fits, which is not compatible with the value obtained for

the Cγ0(∆t) correlator, i.e. it is much higher. The effective masses and the global fitted
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Figure 4.11: Effective mass and one mass fit to the Tr[Cg̃gγ0] correlator for the 1925.12c

ensemble.
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Figure 4.12: One mass fit to the subtracted Tr[Cg̃gγ0] correlator for the 1925.12c ensemble.
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Figure 4.13: Effective mass and one mass fit to the Tr[Cg̃g] correlator for the 1925.12c en-
semble.

masses agree on this too. However, we notice from ti = 7 onwards, that the results

from the mass fits begin to drop. This could be evidence for the fall-off of the heavier

mode in the correlator. This would lead us to the suspicion that the lattice extent is

too small, since it is possible that a plateau will emerge beyond these values of ti. So

failing to extract a lighter mass in this channel, we quote as our best estimate

am = 0.88(1) . (4.13)

We see here the first instance of the general observation we described above, namely

that the quality of the Cγ0(∆t) correlator data is substantially better than that for the

C1(∆t).

Ensemble 1940.12c

As we move to a lighter gluino, we find that the Cγ0(∆t) correlator on this data set

behaves similarly to the C1(∆t) on the previous. The one mass fit of Figure 4.14 shows

that the fits over large intervals, i.e. from ti to tf = 12, produce a significant signal

at am ' 0.82. Again, the fitted mass drops considerably for higher ti, hinting at the

existence of a lower mass in the correlator. If we take the high mass at face value and

eliminate its contribution from the correlation, we find what is plotted in Figure 4.15.

We see that we are in fact able to extract a signal for a lower mass, although it vanishes

from ti > 7. This might be due to the fact that here the higher mass also starts to

drop as the signal fades and one is only left with the lowest mass. The approximation
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Figure 4.14: Effective mass and one mass fit to the Tr[Cg̃gγ0] correlator for the 1940.12c

ensemble.

one makes by subtracting the higher mass from the correlator necessarily goes astray.

Nevertheless, as above, the fit results shown in Figure 4.15 reproduce each other. So

we are confident that these are the relevant masses and estimate them to be

amlow = 0.49(4) and amhigh = 0.85(2) . (4.14)

For the second component of the correlator, C1(∆t), we find a similar outcome. Fig-

ure 4.16 displays the results of its one mass fit. As in the 1925.12c case, it was not

possible to extract a lower mass by our subtraction procedure. This can be attributed

to the fact, that we do not observe the typical fall-off like for the Cγ0(∆t), which would

suggest a lighter mass. Effective mass determination and fitted mass give consistent

results. Keeping in mind that this might not be the lowest mass for this correlator, we

estimate it to be

ma = 0.80(2) (4.15)

which seems more in line with the higher mass found for the Cγ0(∆t) component.

Ensemble 1955.12c

By now, the reader is familiar with our approach in extracting the masses of the light-

est states in the correlation functions for the gluino-glue particles. So for this ensemble

we simply show in Figure 4.17 the result of an unconstrained one mass fit and in Fig-

ure 4.18 the result, as obtained by the elimination of the contribution of a higher mass,
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Figure 4.15: One mass fit to the subtracted Tr[Cg̃gγ0] correlator for the 1940.12c ensemble.
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Figure 4.16: Effective mass and one mass fit to the Tr[Cg̃g] correlator for the 1940.12c en-
semble.
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Figure 4.17: One mass fit and effective mass of the Tr[Cg̃gγ0] correlator for the 1955.12c

ensemble.

amhigh = 0.984(...), which is the approximate value one expects from the experience

above. Unfortunately, the mutual cross-check of subtracting the contribution of the

lighter mass in this case is inconclusive, most probably due to the fact that the heavier

mode dies off very quickly. Nevertheless we get a result that stays impressively stable

over a wide range of fit intervals, leading to an estimate of

amlow = 0.35(4) . (4.16)

For the C1(∆t) channel, a rather intriguing result is found (see Figure 4.19). Just

trying a one mass fit, one finds an extremely stable plateau (within errors) right from

the start of ti = 1. This is insofar intriguing, as the value for this mass is higher than

the range for the lower masses we found in the cases above, but the hope of finding a

low mass here is clearly faint, as is confirmed by numerical analysis. Thus, our best

estimate for the gluino-glue mass for this component of the correlator is

am = 0.66(4) , (4.17)

where we again judiciously omitted the index (. . . )high or (. . . )low for this quote.

Ensemble 1940.16c

We now turn to the larger lattice, which without doubt produces the cleanest results

for the gluino-glue in this study. For the Cγ0(∆t) correlator, the primary result is
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Figure 4.18: One mass fit to the subtracted Tr[Cg̃gγ0] correlator for the 1955.12c ensemble.
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semble.
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Figure 4.20: One mass fit to the subtracted Tr[Cg̃gγ0] correlator for the 1940.16c ensemble.

shown in Figure 4.20. By identifying the higher mass to be

amhigh = 0.85(2) (4.18)

and again subtracting its contribution from the correlation function we find the lower

mass to exhibit a plateau over almost all possible fit ranges of the lattice. As an

estimate, we get

amlow = 0.43(1) . (4.19)

This result is beautifully confirmed for the plain one mass fit shown in Figure 4.21.

Here we most clearly see the fall-off of the mass fits until the higher states have died

off and only the lightest mode survives, resulting in a plateau (as usual within errors).

The estimate from this plateau

amplateau = 0.49 (4.20)

is only slightly higher than the above, which we believe is firmer due to its stretched out

plateau of Figure 4.20. By virtue of the high quality of the data, another interesting

effect can be noticed in Figure 4.21. We see that before the plateau emerges, the global

mass fit consistently produces a lower mass than the effective local mass. Looking

at ti = 1 or ti = 2, the global fit uses the full interval from this ti onwards up to

t = T/2 = 16 to get an estimate while the local mass essentially computes the logarithm

of the ratio C(ti)/C(ti+1). This means that in the global fit, the contribution of the

lightest state is fully taken into account, while the local mass completely ignores it. So

it becomes clear that the local mass results in a higher estimate than the global, since

at small time separations, the correlator is dominated by the higher states.
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Figure 4.21: One mass fit to the full Tr[Cg̃gγ0] correlator for the 1940.16c ensemble.

Turning our attention to the C1(∆t) part of the correlation function (see Figure 4.22),

the data exhibits the same emergence of a plateau by simple application of the one

mass fit algorithm, albeit not as cleanly. It should be remarked that also here, as in

the previous cases of the C1(∆t), we were not able to use a tentative estimate for a

higher mass to improve the fits.

From that we can draw two conclusions. First, the perception that the data quality

of the two correlation functions Cγ0(∆t) and C1(∆t) differ, also holds on the large

lattice. So there is a systematic effect, which one might want to explore in the future.

However, by going to larger lattices, we can circumvent the drawback, since we can

simply wait for the correlator to reach a plateau at high ti. This was not possible on

the smaller lattices. The second conclusion is that, since our mass estimate for the

C1(∆t) component is

am = 0.40(7) , (4.21)

the two components describe the same particle, as their mass estimates are compatible

with each other. One could have been inclined to doubt that, based on the results for

small lattices. So obviously, the case for going to a larger lattice is strong in the case

of the gluino glue particle.

We conclude the analysis of the gluino glue by summarizing our results, where we

apply a somewhat draconian filter. We finally only quote masses in table 4.4, for which

we were able to extract a lower mass, nevertheless saving the higher masses for the

discussion later.
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Figure 4.22: effective mass and one mass fit to the g̃g correlator at κ = 0.1940.

amCγ0(∆t) amC1(∆t)

1925.12c 0.33(4)

1940.12c 0.49(4)

1940.16c 0.43(1) 0.40(7)

1955.12c 0.35(4)

Table 4.4: Summary of results for the lightest masses of the gluino glue bound state.

4.4.3 Adjoint Mesons

The second large block of analysis and certainly the most computational work involved

the study of the adjoint mesons a−η′ and a−f0. The structure of the correlations

function is, as reported in Section 3.4.4,

C(∆t) = C2 loop(∆t)− 2C1 loop(∆t) . (4.22)

The one-loop correlation functions are obtained by inverting Q on randomly chosen

point sources, while, as we have discussed at length, for the two-loop correlators we

use stochastic estimators.

In comparison with the gluino glue, there is one ensemble missing from this analysis,

1925.12c. On this ensemble, the analysis was already performed in [19]. We will

compare those results with our own, as they provide a useful guide. For reference, it

was found that

ama−η′ = 0.52(5) and ama−f0 < 1.0(1) . (4.23)

In the following, we will first justify our choice of subsamples from the complete en-
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semble by the use of the autocorrelation time. We will then proceed to analyze these

subsamples in the same format as for the gluino glue, i.e. in the order 1940.12c,

1955.12c, 1940.16c.

Autocorrelations

Since we opted for SET estimation techniques for the computationally demanding

two-loop graph, we need to cut down the number of configurations that are to be

evaluated. In Section 4.2.1 we determined the number of necessary estimates to be

Nest ≈ 150. Clearly, it is computationally impossible and not even useful to use

every available configuration. So we need to find the maximal set of uncorrelated

configurations in an ensemble with respect to the quantity we want to estimate. Since

we want to estimate the lightest purely fermionic particle, it makes sense to use the

smallest eigenvalue of the fermion matrix λmin as a reference. This choice is popular in

the literature, as it is an easily accessible primary quantity, for which the measurement

of the integrated autocorrelation time is straightforward. By determining a set of

decorrelated configurations with respect to the smallest eigenvalue, we ensure keeping

the number of configurations that need to be evaluated to a minimum while at the same

time we do not waste any physical information. Using the defining equation (3.55) of

the integrated autocorrelation time τint(λmin), we perform the analysis on the ensembles

listed above.

Ensemble 1940.12c

For this set of configurations, the measured autocorrelation time with respect to λmin
is τint(λmin) ∼ 240 updates. As a practical matter, therefore, on average only every

12th configuration was used, since each configuration is separated by 20 updates. This

fixes the number of configurations to analyze at ∼ 320. As an example of such an

estimate we show in Figure 4.23 a typical measurement of the autocorrelation on one

of the eight lattices updated in parallel.

For the actual mass determination we first measure the one-loop and two-loop corre-

lation functions separately on each configuration of our subsample. Next, we combine

the two configuration-wise to form the physical correlation (4.22). Then we proceed as

for the gluino-glue particle by fitting the correlator to the expected exponential form.

Figure 4.24 shows in the same manner the one-mass fits, each with the other’s con-

tribution from the state subtracted. As can be clearly seen, the lower mass provides

an excellent fit, giving a plateau from ti = 2 up to ti = 10, almost the entire possible

range of fit intervals. This leads us to estimate the mass of the a−η′ for this ensemble
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Figure 4.23: Autocorrelation of the minimal eigenvalue on lattice 1 (of a total of 8) run in
parallel with an exponential fit.

to be

amlow = 0.421(9) . (4.24)

Unfortunately, the a−f0 is not so friendly. The core of the problem does not lie in

the bad quality of the data, but in the fact that its two-loop correlator has a vacuum

expectation value, which needs to be subtracted to arrive at a combined correlation

function which approaches zero in the ∆t → ∞ limit. In other words, the actual cor-

relator sits on a huge numerical mountain that needs to be taken care of. In principle,

the information is provided by simply calculating

〈Tr[Q−1]〉2 (4.25)

on the ensemble from the available data and subtracting it from the correlation. How-

ever, it turns out that when subtracting the measured constant from the symmetrized

scalar correlator, one gets an acceptable correlator except for the fact that it does not

go to zero for large ∆t, but, for this ensemble, to a value of ∼ 5. The most probable

explanation is that through the repeated application of the stochastic estimates, nu-

merical inaccuracies accumulate to produce the offset. To verify this speculation, one

would have to repeat the same study, using improved precision, most notably 64bit

variables and more advanced summing techniques to ensure accuracy throughout. A

second possibility could be that Nest for the SET is still too low to suppress the noise

sufficiently for this operator. In view of our above analysis of the SET method though,

this does not seem to be the case.

In practice, the most obvious solution, to fit to the function (3.78) with c20 6= 0, fails

to render stable results. However, if we fit to (3.78) with a manually fixed c20, i.e.

subtracting out a constant from the correlation data, stable fits emerge. The apparent

question then becomes, which non-arbitrary subtraction constant one should choose.

Here we proceeded by noting two (purely numerical) observations. First, using the
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Figure 4.24: One mass fit to the subtracted a−η′ correlation function on the 1940.12c en-
semble.

form of (3.78) as the correlation function, we notice that in the high ∆t region for

∆t = T/2 = 12 and m ∼ 0.2, taking the mass of the a−η′ as our first guess, the

numerical value of the expected correlation (e−m∆t+e−m(T−∆t)) is ∼ O(0.1). Secondly,

if we normalize the correlator, such that the correlation is 1 at ∆t = 1, we conclude

that all amplitudes for the various states in (3.77) should be less than 1, specifically

0 < c2n < 1 ∀n. This holds in particular for n = 1 which is the case we are looking for.

Therefore we see that in an ideal world, where all the heavier modes have died off at

large ∆t, the value of the normalized correlator at ∆t = T/2 and with ma > 0.2 would

numerically have to be smaller than 0.1. So we can take this number as a reference

point and scan the constant space systematically to search for a subtracted correlation

that gives a plateau, i.e. where a stable and physically meaningful fit emerges.

This method is not the most elegant solution. From a theoretical point of view, it

has the disadvantage of being ambiguous, since it does not lead to a definite result,

rather to a collection of possible ones. It does enable us to extract a rough estimate for

the a−f0 for this ensemble though, as presented in Figure 4.25. The large error bars

reflect the fact that a number of possible candidates give reasonable fits here. This

estimate represents the weighted average over these, obtained via (A.19). So finally, as

an estimate for the a−f0, we quote

am = 0.3(3) . (4.26)
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Figure 4.25: Estimate of the a−f0 mass for the 1940.12c ensemble.

Ensemble 1955.12c

On this ensemble the measured autocorrelation time with respect to the smallest eigen-

value is τint(λmin) ∼ 330 updates. Therefore, on average, only every 24th configuration

of the total ensemble was used, making a total of 224 configurations. Again, we show

the corresponding exponential fit in Figure 4.26.
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Figure 4.26: Autocorrelation of the minimal eigenvalue on lattice 1 (of 8) run in parallel with
an exponential fit.

As in the previous case, we find that the a−η′ gives a very good signal and therefore

produces a fit that is constant over an extremely wide range of fit intervals (see Fig-

ure 4.27). The higher mass present in this correlation, which was extracted by the

above methods, displays a similar stability over a long range of fit intervals, although
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with larger errors. This suggests, that it indeed might be the next higher state in this

channel1. As best estimates on this ensemble, we find

amlow = 0.24(2) and amhigh = 0.81(6) . (4.27)
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Figure 4.27: One mass fit to the subtracted a−η′ correlation function on the 1955.12c en-
semble.

In the scalar channel we are confronted with somewhat the same problems we saw for

the previous ensemble. The correlator, after subtracting the vacuum contribution, is

still plagued by an offset. Applying the method described above, we nevertheless find

a surprisingly good and unique signal with respect to the subtraction constant (see

Figure 4.28). The large errors, especially at larger ti, underline our observation that

this channel is characterized by a low signal/noise ratio.

For the a−f0, we quote as our best estimate on this ensemble

am = 0.24(9) . (4.28)

Ensemble 1940.16c

Finally, on the large lattice we measured the autocorrelation to be τint(λmin) ∼ 130

updates. Since we ran four lattices in parallel with each ∼ 6400 updates, we end up

choosing every 18th configuration, giving us a subset of a total of 218 configurations

1This conclusion is not always possible to draw, since we merely single out one higher state with
a large amplitude, not necessarily the next highest.
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Figure 4.28: Mass estimate for the a−f0 on the 1955.12c ensemble.

On this ensemble, the pseudo-scalar adjoint meson provides us again with an unequiv-

ocal signal for a fit. Using the familiar subtraction scheme2 we find two masses, of

which the lower concerns us the most (see Figure 4.29). It generates a clear plateau

starting from ti = 4, continuing within error up to ti = 13. For the higher ti we see

a systematic drop in both masses. We attribute this to statistical effects. Notice also

that for ti = 12 the higher mass estimate and the lower coincide, indicating the fading

of the higher mass in the sum of exponentials. Therefore our best estimate for the

ensemble in this channel is

amlow = 0.24(1) and amhigh = 0.65(2) . (4.29)

During the course of our error analysis of the volume source method, this ensemble was

the basis of our study. Therefore we take the opportunity to compare the result above

with the one obtained by estimating the two-loop graph by 15×Nspin×Nadj.color = 90

VST inversions of the fermion matrix, using the correct version, as defined above. As

can be seen from Figure 4.30, this gives a comparable estimate, somewhat larger than

the SET version,

amV ST
low = 0.29(5) (4.30)

with a larger error. We therefore conclude that one would need to increase NV ST
est

to lower the error bar and possibly approach the estimate obtained by the stochas-

tic method. As a side note let us compare the costs of the two estimates. The SET

2The determination of the effective masses for the a−η′ on this ensemble gives a clear indication for
the presence of higher states. The corresponding plot, Figure 4.46, is to be found in the finite volume
analysis.
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Figure 4.29: One mass fit to the subtracted a−η′ correlation function on the 1940.16c en-
semble.

value (4.29) was computed, as described above, by 150 stochastic estimates and there-

fore 300 inversions in total (using the spin explicit method) per configuration. In

computational cost, it was therefore roughly three times as expensive as the VST esti-

mate.

We finally turn to the scalar channel. On the larger lattice it was not possible to

extract any meaningful estimate for the lowest mass, due to the problems described

above. Even subtracting the constant “by hand” did not produce a reliable signal. We

see the main problem, insufficient numerical accuracy, as the most probable reason.

In addition the problems outlined for the previous ensembles, on the larger lattice we

simply have larger global sums, which amplify the problem. We nevertheless attempt

to extract an upper limit on the lowest mass of the a−f0. Since we experienced the

signal to be washed rather fast for larger time separations, we fixed ti here instead and

varied the other side of the fit interval, tf , thus fitting to the higher states still present

at low time separations. The results are presented in Figure 4.31 as a function of tf .

Thus, we simply get an upper bound on the lowest mass, which in this case amounts

to

am < 0.78 . (4.31)

Concluding this section, we present a summary of the reliable estimates for the lowest

mass on the a-mesons in Table 4.5.
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Figure 4.30: One mass fit to the subtracted a−η′ correlation function on the 1940.16c en-
semble using the volume source technique correctly.
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Figure 4.31: Upper bound for the lowest mass of the a−f0 on the 1940.16c ensemble.
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ama−η′ ama−f0
1925.12c 0.52(5)

1940.12c 0.421(9)

1940.16c 0.24(1)

1955.12c 0.24(2) 0.24(9)

Table 4.5: Summary of results for the lightest masses of the adjoint mesons a−η′ and a−f0,
where the 1925.12c value was taken from [19].

4.4.4 Glueballs

Although the glueballs are a well known object in lattice gauge theory investigations,

they belong to the most notorious particles to measure. This stems from the fact

that their purely gluonic correlations are plagued by a relatively low signal/noise ratio.

The operators for the JPC = 0++, 0−+ glueballs were introduced in Section 3.4.2 in

equations (3.91) and (3.92).

To increase the overlap of the operators with the respective lightest state and to improve

the signal, we used APE smearing extensively, as described in the appendix, with

parameters as quoted. We will proceed as in the previous sections, going from heavier

to lighter gluino mass and from smaller lattices to the larger one.

Ensemble 1925.12c

We will confine ourselves again to the glueball states that have not been determined

yet. As such we quote for reference the scalar glueball mass from [19] on the 1925.12c

ensemble as

am0++ = 0.53(10) , (4.32)

which was obtained with smearing parameters (εAPE, NAPE) = (0.285, 20).

The noisiness of the data is exemplified by the fact that in all cases during this study, it

was not possible to obtain reliable mass fits for the glueballs, in contrast to the previous

particles. This comes as a consequence that at high temporal separation ∆t the signal

is all but washed out. The traditional fitting routines, however, try to incorporate

this signal too and thus are rendered unstable. Systematically lowering the higher end

of the fit interval tfinal has no perceivable effect either, so we rely on effective mass

analyses for this section.

The pseudo-scalar glueball is more elusive than the scalar. On the 1925.12c ensemble

it was not possible to optimize our smearing procedure such that one obtains a signal

beyond timeslice t = 3. The local masses shown in Figure 4.32 were calculated, accord-
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Figure 4.32: Effective masses of the 0−+ glueball for the 1925.12c ensemble.

ing to the formulae (3.80)-(3.83). For the final estimate we use m(t1, t2, T ) = m(1, 2, T )

and m(2, 3, T ) after APE smearing with parameters (εAPE, NAPE) = (0.285, 36). We

discard the data at higher t as noise. Therefore, the estimated value of the mass should

be interpreted with care since, as indicated in the previous Sections 4.4.2 and 4.4.3, at

low time separations, the correlator possibly contains contamination of higher states

in spite of smearing, which aims to reduce their influence. With this in mind, we find

as the best estimate for the pseudo-scalar glueball on this ensemble

am0−+ = 0.8(2) . (4.33)

The true value of this state is likely to be somewhat below the estimated.

Ensemble 1940.12c

Here, for the pseudo-scalar glueball, we have a similar situation (see Figure 4.33). At

higher t, it was not possible to extract a signal and again, the data points on the far

end should be viewed as noise. The smearing parameters for this operator, as for the

scalar glueballs, are (εAPE, NAPE) = (0.285, 40), leading us to a tentative estimate for

the pseudo-scalar of

am0−+ = 1.1(3) , (4.34)

with the same caveats as above.

The scalar glueball is more friendly with respect to its signal/noise ratio. As we pointed

out in Section 3.4.2, we have the opportunity to cross check the correlator obtained

by simple spatial plaquettes, labeled v1, with the parity even version of the operator
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Figure 4.33: Effective masses for the 0−+ glueball obtained for the 1940.12c ensemble.

that was used for the 0−+, labeled v2. The corresponding plots are shown in Figures

4.34 and 4.35. We see that they show almost exactly the same results, emphasizing the

correctness of the interpretation of the operators. In fact, in both figures we see a signal

up to timeslice t = 5, encoded in the effective mass m(4, 5, T ). We also observe a drop

of approximately 10% in the mass values, leading us to the conclusion that we still have,

albeit marginal, higher state contributions in the correlation function. Nevertheless,

based on the better quality of the data, we can give a more sound estimation of the

lowest mass for the scalar glueball, namely

am0++ = 0.4(1) . (4.35)

Ensemble 1955.12c

The scalar glueball on this ensemble presents us with a signal comparable to that of

the previous. Smearing was found to be optimal when performed with the parameters

(εAPE, NAPE) = (0.285, 24). The resulting effective mass calculations, Figure 4.36 and

4.37, show a plateau almost from the beginning, within error. Note, however, that

this is also due to the large error bars. In particular, the higher effective mass point

at time distance ∆t = 4 we interpret as a statistical outlier, similarly the data points

for ∆t > 5. We determine our estimate by the weighted average (A.19) of data points

∆t = 2, 3, 4, 5 to be

am0++ = 0.36(4) . (4.36)

Using the second version of the operator gives the same estimate, although with a

slightly larger error.
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Figure 4.34: Effective masses for the 0++ glueball on the 1940.12c ensemble, using the sum
of spatial plaquettes as the operator (v1).
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Figure 4.35: Effective masses for the 0++ glueball on the 1940.12c ensemble, using the parity
even part of the 0−+ glueball operator (v2).
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Figure 4.36: Effective masses for the 0++ glueball on the 1955.12c ensemble, using the sum
of spatial plaquettes as the operator (v1).
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Figure 4.37: Effective masses for the 0++ glueball on the 1955.12c ensemble, using the parity
even part of the 0−+ glueball operator (v2).
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Figure 4.38: Effective masses for the 0−+ glueball obtained for the 1940.16c ensemble.

Unfortunately, we were not able to determine a reasonable mass estimate for the

pseudo-scalar glueball on this ensemble. This is due to reasons laid out above, namely

a remarkably low signal/noise ratio. We will comment on viable methods on how to

approach this problem in Chapter 5.

Ensemble 1940.16c

For the pseudo-scalar glueball we are faced again with very low signal/noise ratio.

Figure 4.38 shows a typical plot of attempts to determine a mass from the correlation

function. The large noise is especially visible in the size of the error bars and that for

∆t = 3, the numerical instabilities were too large to obtain an effective mass. The

smearing parameters used in this case were (εAPE, NAPE) = (0.1, 48). To estimate the

mass, we include points from ∆t = 1, 2, while discarding the higher points as unreliable.

We then get

am0−+ = 0.69(14) , (4.37)

where again, this value should be treated with the appropriate caution. We once more

suspect the true value to be somewhat below the estimated.

In contrast to the other ensembles, here the scalar glueball proves to be hardest to

pin down because of the large fluctuations in the correlator. This outcome is some-

what surprising, since we find no argument for an increase in noise with larger lattice

sizes. Since we were unable to extract a viable effective mass calculation beyond time

separation ∆t = 3, we estimate an upper bound to its mass in the following way. In

Figure 4.39 we plot the dependence of the mass from ∆t = 2, i.e. m(1, 2, T ), as a func-
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Figure 4.39: Effective masses m(1, 2, T ) for the 0++ as a function of smearing steps with
εAPE = 0.5 on the 1940.16c ensemble.

tion of smearing steps at εAPE = 0.5. We see that, as NAPE grows larger, a plateau

within error emerges. Smearing seeks to enhance the overlap of a given operator with

the lightest state. If we observe a plateau after a number of smearing steps, it indicates

that we have the lowest possible mass estimate at a given time separation, in this case

m(1, 2, T ). Ideally, this is already the mass of interest, in our case the lowest in this

channel. However, since we can not be completely sure that the effective masses at low

time separations are free of higher states, or conversely that – if the data were good

enough – the effective mass estimates would not drop at higher ∆t to a lower plateau,

this method can only serve as an upper bound to the lowest mass. In this spirit, we

estimate the mass of the scalar glueball on this ensemble to be

am0++ < 0.52(1) . (4.38)

4.5 Ward Identities

We turn to the numerical determination of the ratios of the renormalization factors

amSZ
−1
S and ZTZ

−1
S , as defined in equations (3.150) and (3.151), through the super-

symmetric Ward identities. These are obtained by solving the system of equations

(3.161) for the insertion operator χsp(y). For our study, we will follow [19, 20] rather

closely, where the analogous analysis was carried out on all the 12c lattices. We there-

fore use the 1940.16c ensemble in this section exclusively.

Since the experience by the collaboration is that the above point-like insertion operators
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Figure 4.40: Renormalization factors amSZ−1
S and ZTZ−1

S for the insertion operator χsp(y)
and the ensemble 1940.16c .

usually give a noisy signal, we used APE and Jacobi smearing concurrently on the gluon

and gluinos. We find the optimal parameters to be the same as for the gluino-glue,

namely

NAPE = 9, εAPE = 0.5 and NJacobi = 18, κJacobi = 0.2 . (4.39)

As a further practical matter, we choose the point of insertion y for χsp(y) randomly on

each configuration in order to decorrelate subsequent measurements. This approach

is supported by the subsequent Jackknife error analysis, which hardly lets the error

increase (O(0.5%)) if we move to larger block sizes, indicating mostly decorrelated

measurements.

For the linear fit, we rewrite the equations (3.161) in compact notation as

xi + ayi = bzi , (4.40)

where a and b denote the ratios of renormalization factors ZTZ
−1
S and amSZ

−1
S and

x =
∑

~x

〈∇0S0(x)χ
sp(y)〉 , (4.41)

y =
∑

~x

〈∇0T0(x)χ
sp(y)〉 , (4.42)

z =
∑

~x

〈χ(x)χsp(y)〉 . (4.43)

For each time separation ∆t the Ward identities are fulfilled independently, so we have

as solutions

a =
x2z1 − x1z2

y1z2 + y2z1

b =
x1y2 − x2y1

y1z2 + y2z1

. (4.44)
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with i ∈ {1, 2} denoting the two different projections Tr[γ0,1] performed in equations

(4.41)-(4.43). In Figure 4.40 we show the resulting ratios of the renormalization factors

as a function of their time separation t from y. We see that for low t, the correlation

still contains contact terms, which loose their influence for t & 3, resulting in a behavior

consistent with a plateau. The signal is, however, washed out for large time separations.

The onset of a plateau enables us to make a simultaneous linear fit for the system

of equations (3.161) over all time separations, rather than at every time separation

independently as was done in Figure 4.40. This results in an overdetermined system

of equations.

Using the above notation, we want to minimize the corresponding χ2 =
∑

k(xk +ayk−
bzk)

2 with respect to the parameters a and b, where k now runs over the two traces

and over time separations ∆t, starting at tmin. We find as solutions

a =
(y, x)(z, z)− (y, z)(x, z)

(y, z)2 − (y, y)(z, z)
b =

(y, x)(y, z)− (y, y)(x, z)

(y, z)2 − (y, y)(z, z)
(4.45)

with (x, y) =
∑

k xkyk. Note that these reduce to the solution 4.44 for k ∈ {1, 2}.
Thus we fit from tmin ≥ 3 up to the maximum extent of the symmetrized correlation

functions, t = T/2. The resulting values are collected in table 4.6, showing a relatively

small dependence on the chosen tmin, supporting our view that indeed contact terms

do not play a big role for t & 3.

tmin = 3 4 5

ZTZ
−1
S 0.226(7) 0.23(1) 0.22(2)

amSZ
−1
S 0.100(2) 0.115(4) 0.137(7)

Table 4.6: Dependence of amSZ−1
S and ZTZ−1

S on tmin on the ensemble 1940.16c.

Thus we find from the above data as our best estimates for the two ratios of renormal-

ization factors

ZTZ
−1
S = 0.226(7) and amSZ

−1
S = 0.100(2) . (4.46)

If we compare the values from [20] for the same operator and κ to ours, as listed

in Table 4.7, we find agreement, up to approximately 10% for ZTZ
−1
S and 5% for

amSZ
−1
S . We would have been surprised to see substantial deviation simply stemming

from the increase in lattice size, since the Ward identity as such holds for any lattice

volume. For smaller lattices, O(a) discretization effects play a larger systematic role.

In consequence, we attribute the discrepancy between the two results to this effect and

the large statistical fluctuations at higher time separations. It is still an open question

though, how the second possible insertion operator compares to the smaller lattice. An

investigation of these issues can be used to study discretization effects as was carried

out in [20]. It was not pursued here, however, as it was not the focus of our study.
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tmin = 3 4 5

ZTZ
−1
S 123 0.202(15) 0.176(33) 0.186(6)

163 0.226(7) 0.23(1) 0.22(2)

amSZ
−1
S 123 0.124(6) 0.126(12) 0.142(24)

163 0.100(2) 0.115(4) 0.137(7)

Table 4.7: Comparison of amSZ−1
S and ZTZ−1

S for the 1940.12c [20] and 1940.16c ensem-
ble.

We conclude that our present findings do not change the scenario found in [20], namely

that the renormalization of the operators is relatively small and that within our nu-

merical accuracy the Ward identity as defined in (3.155) indeed holds.

4.6 The Massless Gluino Limit

As we discussed in the previous chapters, the massive gluino we encounter in our

simulations breaks supersymmetric and chiral invariance softly. We have argued that

to alleviate these effects and in particular to reach the region where the effects are

linear in mg̃, it is necessary to tune the bare gluino mass as the input parameter of

the simulation, essentially κ, close to a value κc where the renormalized gluino mass

vanishes. Conversely, a good estimate of κc provides a sound measure of proximity to

the massless gluino limit. In Section 3.7 we presented two methods that can be used

to arrive at such estimates. We will apply them here with the available data that was

extracted in the previous sections of this chapter. As an addendum to the OZI picture

borrowed from QCD, we also discuss the relative size of contributions of the partial

correlation functions to the total a−η′ correlation function.

4.6.1 Critical Hopping Parameter from Ward Identities

The subtracted gluino mass mS defined through the Ward identities in equation (3.150)

is, by its definition, expected to vanish linearly if κ approaches its critical value. Sup-

plementing our data with that from [20], we plot the dependence of the ratio amsZ
−1
S

on 1/κ in Figure 4.41. We observe a dependence on 1/κ which is compatible with a

linear decrease. Using the data for a linear regression fit, one can estimate the value

of κc by extrapolating to amSZ
−1
S → 0. The result we obtain by this method is

κc = 0.19693(17) (4.47)

with a surprisingly small error. Comparing the value to our previous estimate, i.e.

the same data with the result from the large lattice excluded, one arrives at κc =
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Figure 4.41: Dependence of amSZ−1
S on κ−1 combined with results from [20], fitted linearly.

κ 0.1925 0.1940 0.1955

amg̃ 0.0593(64) 0.0392(64) 0.0195(64)

Table 4.8: amg̃ obtained by (4.48) for κc = 0.19693(17).

0.19750(38) [20]. It is interesting to note that although the results are compatible

at the one standard deviation level, we get a slightly smaller value. It is naturally

of considerable interest how this result varies, once the corresponding data from the

larger lattice at κ = 0.1955 is available, where we expect to get sound estimates nearer

to κc.

Turning the argumentation around, we can use the above value of κc to give an estimate

of the subtracted gluino mass amg̃ by plugging κc into the formula (3.162), assuming

one is in its region of validity:

amg̃ =
1

2

(
1

κ
− 1

κc

)
. (4.48)

Note that this definition is equivalent to that of the “bare quark mass” in QCD. The

resulting values are collected in Table 4.8 for the various hopping parameters used

in this study. Judging mg̃ from QCD units, we would arrive for κ = 0.194 at an

approximate value of mg̃ ≈ 125MeV using amg̃ = 0.0392 and a ≈ 3.15 GeV from

Section 4.3, which is of the order of the strange quark mass. For QCD calculations,

such a value for the quark mass is considered to be far from the chiral limit. This

suggests that from the point of view of the Ward identities, we are not yet very near to

κc. We do, however, definitely see the linear behavior of amSZ
−1
S with respect to the

inverse hopping parameter in Figure 4.41. This indicates that here the O(amg̃) effects

are small.
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Figure 4.42: Squared Mass of OZI a−π mode on κ−1 combined with a result from [19] as a
function of κ−1.

4.6.2 Critical Hopping Parameter from OZI Arguments

As described in Section 3.7, the second method used to estimate κc comes from OZI

arguments in the quenched approximation made by G. Veneziano and S. Yankielowicz

in [9]. The analogy to QCD is drawn, where firstly the pion becomes massless in the

chiral limit, with m2
π ∝ mq, and therefore secondly, the η′ correlation function should

be purely governed by the two-loop correlator. Since the N = 1 SYM model behaves

in many respects similarly to QCD, one can try to carry over these arguments.

To test the hypothesis, we plot the squared mass of what we call the a−π, i.e. the mass

induced by the connected correlator

C(∆t) =
∑

~x

〈Tr[γ5Q
−1
x,yγ5Q

−1
y,x]〉 (4.49)

in equation (3.102), remembering the “unphysicalness” of the “state”, as a function

of κ−1 in Figure 4.42. Indeed it shows the expected linear behavior. If we perform

a fit and extrapolate to am2
a−π → 0, we find as an estimate for the critical hopping

parameter

κ(a−π)
c = 0.1977(2) , (4.50)

which disagrees slightly with the value of κc obtained from the Ward identities. How-

ever, it should be stressed that both values are compatible within error to that obtained

in [20]. Since the deviation is only small, O(0.1%), it would certainly be too soon to

declare the failure of the QCD analogy.

On the other hand, the analogous behavior is reaffirmed impressively, if we compare
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Figure 4.43: Comparison of the constituent correlations in the a−η′ propagator.

the relative contributions of the connected and the disconnected correlator to the a−η′
propagator (see Figure 4.43). In QCD, the structure of the η′ correlation function is

very similar. There, the one-loop piece is the pion. As we saw above, in the chiral limit,

the pion becomes the massless Goldstone boson, while the η′ retains its mass. Thus,

the two-loop contribution has to be completely generated from the mass, which in

QCD is attributed to the chiral anomaly. Again, it is not clear if we should see similar

behavior in the case of N = 1 SYM theory, although we know from effective field

theory (cf. Chapter 2) that in the supersymmetric limit the a−η′ remains massive.

From Figure 4.43 we see that at high time separations, the correlator is dominated

by the disconnected piece up to approximately 70% of the total (lower panel). This

figure compares nicely with determinations of that ratio extracted from lattice QCD

calculations [48]. There, one finds very similar relative contributions. Again, it would

be most interesting to see the comparison with the corresponding data at κ = 0.1955

on the large lattice in order to test the hypothesis that the value of the ratio should

grow for lighter gluino masses in accordance with the above analogy.

4.7 Finite Volume Effects

As we have two ensembles that have the same simulation parameters, except for their

respective simulated lattice volume, we take the opportunity to search for systematical

finite volume errors in the spectrum results, where possible.
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Gluino Glue

Beginning with the Gluino Glue particle, we compare the bare correlators of the statis-

tically better determined Cγ0(∆t) in Figure 4.44 for the 1940.12c and the 1940.16c

ensembles on a logarithmic scale. For a clean correlation function of one particle, one

expects a linearly falling function up to where the reflected correlator gains influence at

∆t ≈ T/2. We see that for the lower ∆t this is the case for both correlators, although

with the caveat that the smaller lattice exhibits a larger fall off, indicating a larger

mass. This behavior is to some degree expected, since the smaller lattice “squeezes” a

light state into a box, giving it more energy and a larger mass. The difference between

the true mass of a particle in the infinite volume M(∞), and the mass of the particle

M(L), simulated on a lattice of size L3 × T , was calculated in [49]. Its functional

dependence can be expressed as

∆M(L) = M(L)−M(∞) ∝ L−pe−cmL > 0 (4.51)

where m is the mass of the lightest meson in the theory and the constants p and c,

both of O(1), depend on the particle under consideration. The main feature to note

here is the exponential fall off of the difference when going to larger lattice sizes.

If we now compare the respective mass determinations

am163 = 0.43(1) vs. am123 = 0.49(4) (4.52)

we see a deviation which can be attributed to that effect, rendering the same particle

on the large lattice approximately 10% lighter. The second striking feature is the

much earlier onset of the influence of the reflected correlator. This is not a finite

volume effect per se, but nevertheless gives us less points to fit the mass to. From

the discussion in Section 4.4.2 we also saw that for the effective mass to be able to

reach a plateau, with the current simulation parameters, a temporal extent of 32 is

needed for a secure identification of the particle. In conclusion, we see in the case

of the gluino glue quantitatively an effect of approximately 10% in the determined

mass. Qualitatively, as was argued above, one needs larger lattices to obtain cleaner

results for the unambiguous identification of particles (cf. discussion on C1(∆t) vs.

Cγ0(∆t) and particle identification in Section 4.4.2). This issue becomes particularly

evident if we compare the effective mass determinations under the premise that they

have the least dependence on other external fitting parameters, see Figure 4.45. Here

we observe a somewhat clean signal emerge on the large lattice, while for the smaller

no firm statement based on the effective mass can be made.

Adjoint Mesons

Looking at mesonic quantities, we focus on the a−η′, since here we obtained the most

reliable results. We again choose to compare the effective masses in Figure 4.46. We
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see that for both masses, the onset of a plateau is delayed until extremely high ∆t.

The most obvious explanation is the contribution of higher states, which prompted us

to devise alternative fitting procedures as described above. Nevertheless, we observe

the onset of hugely differing plateaus for the two lattice sizes. Our analysis determined

the a−η′ mass on the two lattices to be

am163 = 0.24(1) vs. am123 = 0.421(9) , (4.53)

differing by approximatelyO(am) itself. This is even more surprising, as the assessment

of the reliability of the individual values deemed them to be very sound. We are

somewhat hesitant to attribute this difference completely to the finite volume effects

when going from 123 to 163 lattices, since we do not observe such enormous effects

in the other quantities. To get a clearer answer, however, one should employ Jacobi

smearing or a similar method for future studies, in order to decrease the influence of

the higher states and thus have a clearer view of a plateau for comparisons of effective

masses.

Glueballs

In view of the tentative results obtained for the glueballs, especially in the case of

the pseudo-scalar, we believe that a meaningful comparison between results from the

small and the large lattice at κ = 0.1940 is not possible in this case. We saw from the

determination of R0 in Section 4.3 though, that purely gluonic states should not be

affected dramatically by the finite volume of the lattice. However, this is a conjecture

and it should be verified when reliable results on the glueballs are available.
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0++ 0−+ a−η′ a−f0 g̃g

0.1925.12c 0.53(10)† 0.80(10)†† 0.52(10)† <1.10(9)† 0.33(4)

0.1940.12c 0.40(11) 1.10(28)†† 0.421(9) 0.3(3) 0.49(4)

0.1940.16c 0.52(1)†† 0.69(14)†† 0.24(1) <0.78 0.43(1)

0.1955.12c 0.36(4) 0.24(2) 0.24(9) 0.35(4)

Table 4.9: Summary of spectrum results for the lightest states , (. . . )† were taken from [19];
(. . . )†† should be regarded as upper bounds for the true value.

4.8 Summary and Discussion

We summarize this chapter by giving an overview of the results we obtained for the

spectrum of the lightest particles in this calculation, collected in Table 4.9, and dis-

cussing their relevance. As we want to focus on the lightest states, we discard the

results for the higher masses in the name of clarity. For a summary of all calculated

masses, please refer to the appendix, Table B.1.

As we saw during our analysis, the particles obtained with the most confidence are the

a−η′ and the gluino glue, here especially its Cγ0(∆t) component. For others, especially

the a−f0 and some glueballs, we found that various problems, such as small lattice

size, low signal/noise ratios and other numerical issues, require a more cautious view

of their estimates. We made clear that for the a−f0 on the large lattice, we can only

give an upper bound, while the true values for some masses in Table 4.9 are expected

to be below the obtained. These, we marked by an additional superscript.

Graphing the results as a function of the hopping parameter κ in Figure 4.47, we get

an overall picture of the lightest spectrum for this study. We find that at higher κ, two

doublets of particles seem to form. The lighter of the two comprises the a−η′ and a−f0,

while the heavier one contains the gluino glue and the scalar glueball. The picture at

κ = 0.194 and κ = 0.1925 is less clear. Making out multiplets here would amount to

speculation, especially because of the larger error bars on the scalar glueball and the

a−f0. Generally, one can observe a slight trend to lighter masses for the bound states,

as κ increases in the direction of the estimated κc. This is especially visible in the

mass of the scalar glueball 0++. However, in view of the comparably large error bars,

it would be premature to interpret this as an effect that could be attributed to the soft

breaking of SUSY, linear in mg̃. In consequence, a linear extrapolation up to κ = κc
would not yield a reliable estimate for the states in the massless gluino limit. Note

further, that we view the exact agreement of the a−η′ mass at κ = 0.1955 on the 12c

lattice and at κ = 0.194 on the 16c lattice as coincidental.

Effective field theory calculations from [9, 10] predict the formation of two multiplets

of similar mass (cf. Section 2.2). The lighter of the two contains the two glueballs 0++
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and 0−+ and a gluino-glue state g̃g while the heavier should be made up of the adjoint

mesons a−η′ and a−f0 and another, heavier g̃g [10]. Comparing this prediction with

our results at κ = 0.1955 we do indeed find, as pointed out, a degenerate pair of adjoint

mesons at am ∼ 0.24 and additionally, an almost degenerate – within error – scalar

glueball and gluino-glue of larger mass, am ∼ 0.35. At the risk of redundancy, we

stress that these four values are determined with good confidence. We see, however,

that the relative masses of the multiplets do not match the predicted form. In our

view, the most probable reason is not that the lattice simulation produces results in

contradiction to [9, 10], but rather that on the lattice a number of issues have to be

addressed in order to rule out possible shortcomings.

Firstly, as we observed in Section 4.6, our “distance” to the massless gluino limit,

as judged by Ward identities, seems to be non-negligible. It is entirely reasonable

to expect individual masses to shift further, as we proceed further with κ → κc. In

particular, viewing the general trend of Figure 4.47, a possible scenario could even

be the interchange or complete degeneracy of particle multiplets with respect to their

masses. It was argued in [50] that a possible scenario is also a very small mass differ-

ence between the predicted multiplets. This would raise the principal question of the

attainable resolution of mass extractions in a given lattice simulation.
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Secondly, finite volume effects might be of influence for the values of the 1955.12c

ensemble. As we found in Section 4.7, going to the larger lattice, the change in volume

induces a drop in mass of approximately 10% for the gluino glue and of 50% for the

a−η′. If these effects were present at κ = 0.1955, we would again expect an overall

drop of values. Since the relative drops vary significantly, however, a reordering of the

observed particle multiplets is also possible from this perspective.

And thirdly, for a final statement, a continuum extrapolation would have to be per-

formed. This is currently not within reach of the project, as it would entail a complete

spectrum analysis at different couplings β and the subsequent extrapolation to β → 0.

However, we do know from the numerical validity of the supersymmetric Ward identity

that in the continuum limit, we arrive at a supersymmetric theory. This knowledge

enables us to backup our results as nevertheless being indicative of the continuum

supersymmetric theory.

Finally, comparing our findings with previous results from the project [18], we find

a disagreement with the observed optimistic scenario therein. In [18] two multiplets

were determined: a lighter containing the glueball 0++, the a−η′ and a light gluino-glue

and a heavier multiplet containing the 0−+ glueball, the a−f0 and a heavier gluino-glue

state. With the experience obtained throughout this work and especially in comparison

with the results it produced with their varying quality, we conclude that the previous

picture was to some degree influenced by the effects outlined above.



Chapter 5

Conclusions and Outlook

We want to conclude this study by providing an overview of the work and based on

that, recommend specific directions for future research to improve results.

We examined the spectrum of N = 1 Super Yang Mills Theory on the lattice in the

Curci and Veneziano formulation [14]. We aimed to obtain high quality results for

the particles of the spectrum proposed in [9, 10] in order to compare these with the

predicted form. We used several ensembles of configurations, differing in the hopping

parameter κ and in lattice size.

To determine the masses of the adjoint mesons, we needed a viable method to estimate

the disconnected part of the correlation function. A careful analysis of the previously

employed volume source technique revealed the existence of a yet unaccounted for erro-

neous term. Within a numerical assessment, it was found to produce an immeasurable

effect in the determination of the a−η′ masses, while at the examined precision, a clear

comparison for the a−f0 could not be made. The check itself was done by applying

the VST in a novel way, namely as a variant of a stochastic estimator. By perform-

ing large enough NV ST
est > 1 estimates per configuration, we were able to decouple the

Monte-Carlo errors of the simulation from the statistical errors made by the estimation

of the two-loop graph. Increasing that value significantly beyond 15 should increase

the precision on the error assessment to a satisfactory level. A further study is war-

ranted for two reasons. Firstly, a considerable volume of lattice literature is based on

the traditional use of the VST. It should be of interest to the community, exactly how

to judge these results. Secondly, the correctly used VST could be an easy to imple-

ment and computationally cheaper alternative to other costly methods of estimating

the two-loop graph. One should benchmark these against each other.

For the actual investigation of the adjoint mesons, we chose stochastic estimators with

complex Z2 noise. It was found that Nest ∼ 150 estimates produced an acceptable
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precision for our ensembles. However, in the case of the a−f0 a build up of numerical

errors was observed. This was attributed to the choice of 32bit machine precision in

combination with large lattices and the fact that the correlation is a large number

obtained by the summation of small quantities. Increasing the numerical precision and

an increase of Nest should mitigate that problem in the future. It is of great interest to

obtain reliable results for the a−f0 on large lattices, since it is an integral part of the

predicted multiplet formation. In contrast, the a−η′ belongs to the best determined

particles. Also, for the adjoint mesons, a smearing scheme, such as Jacobi smearing,

should be used. This would lead to cleaner signal for the lowest mass and therefore

reduce the reliance of their mass calculations on fitting techniques, thus giving cleaner

results from a theoretical point of view.

The results from the gluino glue particle underlined the need for larger lattices. In some

cases it was not possible to separate the higher states from the lowest in the correlator

on the small lattices. From the large lattice we obtained an impressive confirmation of

this problem, where it was possible to witness the higher states dying off by the use of

effective masses, i.e. without fitting, leaving the lowest lying state to form a plateau.

It should be most interesting to see result from the large lattice at κ = 0.1955 which

is currently in production.

The glueballs proved to be the hardest to measure, due to a low signal/noise ratio.

On most ensembles, mass fits produced no reliable estimates. The estimates were

nevertheless obtained by using various degrees of smearing and calculating effective

masses. Here, there are two directions one could pursue to improve on our results.

One, the most straightforward, would be the use of variational methods [51] applied

to smearing and to linear combinations of different operators. The main idea is to

maximize the overlap for a given state by directly determining the most suitable linear

combination of operators and smearing parameters. This should help significantly in

getting better signals. The second, more dramatic option would be to explore the

possibility of using anisotropic lattices. These provide a higher resolution in the time

direction and therefore, independently of the noise present in the simulation, more

data points for the correlation function before the signal disappears. In pure glueball

calculations in lattice gauge theory, this option is widely used [35].

In passing, we analyzed the supersymmetric Ward identities on the large lattice along

the lines of [20]. We found the results to be consistent with the previous work and

therefore the breaking pattern of SUSY when formulated on the lattice. From these

results, we estimated the critical hopping parameter κc and concluded by the use of

QCD analogies, that κ = 0.194 is not near the mg̃ → 0 limit since as in QCD units, the

gluino mass is of the order of the strange quark mass. We therefore reiterate the need

to go to larger κ on larger lattices. The current production run serves this purpose.

Comparing mass estimates at κ = 0.194 on different lattice sizes revealed considerable
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finite size effects, ranging from 10 to 50%, the latter case being the a−η′. This somewhat

dramatic drop is surprisingly large, reinforcing the case for larger lattices.

Finally, when bringing all the pieces together, we formulated our primary result, an

overview of the spectrum of lightest particles in Table 4.9 and the corresponding Figure

4.47. We found the results to deviate from the predicted picture of [10] as we observe

two doublets of lightest particles, one consisting of the adjoint mesons with a mass of

am ∼ 0.24, and the other containing the scalar glueball and a gluino glue with mass

am ∼ 0.35. We concluded in view of the analysis, that at the current parameters, the

deviation should not be alarming. We outlined the possible reasons for the missing

agreement. It was also found, that our results do not match the overall picture found

in [18].

We conclude by restating that the next step should be the determination of the spec-

trum on the larger lattice at κ = 0.1955. The lattice size of 163 × 32 seems to be large

enough under the criteria developed here. Prior to that, reliable results on the lightest

masses for the glueballs, especially the pseudo-scalar, for the already available ensemble

would be of great interest. This should be complemented by a reliable determination

of the a−f0, since firm statements about lattice results vs. continuum predictions can

only be formulated on the basis of reliable estimates on all particles of the predicted

multiplet.



Appendix A

Conventions and Methods

In this appendix we collect various notations, conventions and methods used in our

work. On a fundamental level we assumed throughout that

2 + 2 = 4 and eiπ + 1 = 0 (A.1)

hold.

A.1 Gamma Matrices

We define our Euclidean γ-matrices to be in the chiral representation

γ0 =

(
0 1
1 0

)
, γk = −i

(
0 σk
−σk 0

)
, (A.2)

where σk = τk are the venerable Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.3)

The Euclidean matrices fulfill

γµ = γ†µ (A.4)

and

{γµ, γν} = 2δµν . (A.5)
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We also define the following matrices to be

γ5 =
3∏
i=0

γi =

(
1 0

0 −1
)

(A.6)

C = γ0γ2 = i

(
σ2 0

0 −σ2

)
(A.7)

σµν ≡ 1

2
[γµ, γν ] . (A.8)

The γ5 has the properties

{γ5, γµ} = 0 , (γ5)
2 = 1 , γ†5 = γ5 , (A.9)

while the charge conjugation matrix obeys the relations

C−1 = −C = CT , C−1γµC = −γTµ , (A.10)

and finally the tensor σµν obeys

σ†µν = −σµν . (A.11)

A.2 Majorana Fermions

The Majorana condition for a spinor reads

λC = λ = Cλ̄T ⇔ λ̄ = λTC . (A.12)

We can work out the Majorana fermion matrix Q defined in equation (3.10) to have

the following convenient properties

C−1QC = QT and γ5Q
†γ5 = Q , (A.13)

which also hold for its inverse, Q−1. This implies a linear dependence of entries in

the fermion matrix. The redundancy can be used when calculating propagators to cut

down the number of necessary inversions. In general, Q−1 therfore has the following

form

Q−1 =




a11 −a∗21 a13 −a∗23

a21 a∗11 a23 a∗13

a31 −a∗41 a33 −a∗43

a41 a∗31 a43 a∗33


 , (A.14)

where the entries in the second and fourth column can be read off from the first and

third columns respectively.
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A.3 Smearing Techniques

Smearing seeks to increase the overlap of a given operator with the actual wave function

of the particle one wants to measure, thus achieving a better signal/noise ratio and the

reduction of contamination by higher states in the correlation function. On the lattice,

particle masses are determined by investigating the fall-off of correlation functions of

an operator for increasing time separation. At higher temporal separations, only the

lightest state survives, rendering a plateau. The onset of this plateau is also determined

by the relative amplitudes of the states in the linear combination of states (3.77). By

smearing, we alter the coefficients of the series, such that the amplitude for the lowest

mass is increased with respect to the others. This should then lead to an earlier plateau

formation in the mass calculations and a preciser overall signal, thus increasing the

signal/noise ratio.

There are several iterative smearing schemes available. We opted for the APE scheme [52]

for gluonic and Jacobi smearing [53] for fermionic operators.

APE Smearing

At every iteration, APE smearing substitutes a given link Uµ(x) with the sum of itself

and the sum of space-like staples surrounding it, perpendicular to its direction µ

U ′µ(x) = PSU(2)


Uµ(x) + εAPE

±3∑
ν=±1
ν 6=µ

U †ν(x+ µ̂)Uµ(x+ ν̂)Uν(x)


 . (A.15)

The operator PSU(2) projects the resulting link back into the SU(2) group. Let U
′
µ(x) /∈

SU(2) be the non-projected result after a smearing step. The projection is achieved

by

PSU(2)[U
′
µ(x)] =

U
′
µ(x)√

1
2
Tr[U

′
µ(x)

†
U
′
µ(x)]

∈ SU(2) . (A.16)

For gluonic operators, the algorithm is applied NAPE times to the complete lattice. It

can easily be checked that this algorithm is gauge-invariant. At too high NAPE or εAPE
it is possible for any correlation to be washed out completely. We can qualitatively

appreciate that such a scheme increases the spatial size of the object to be correlated.

The physical picture one has, is that through the method, the physical wave function

of, for example, a glueball is approximated more correctly.
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Jacobi Smearing

From the point of view of analytical calculations, the easiest method to construct a

source, i.e. a point source, does not serve the lattice method very well. The true wave

function of a particle is again an extended object. By using the solution to the three

dimensional Klein-Gordon equation as a guide, a spinor λ(~x, t) is smeared as

λ̄(~x, t) =
∑

~y

F (~x, ~y)λ(~y, t) (A.17)

where the kernel F (~x, ~y) is defined through

F (~x, ~y) = δabδ~x,~y +

NJacobi∑
i=1

(
κJacobi

3∑
ν=1

[
δ~x+ν̂,~yU

ab
ν (x) + δ~x,~y+ν̂U

ab
ν (x)†

]
)i

, (A.18)

which amounts to the solution kernel to the Klein-Gordon equation for small κJacobi
and NJacobi →∞. On the lattice, the two parameters have to be tuned in order to get

optimal results for the investigated correlators. Again, this scheme is gauge-invariant.

A.4 Combining Estimates

Sometimes one has a series of estimates with errors xi ± σi where i ∈ {1, . . . , N} one

wants to average over, as in the case of N ensembles of lattices updated independently

in parallel. The Maximum Likelihood Method tells us that under the assumption of

Gaussian statistics, the correct way to combine the measurements is [46]

x̄ =

∑
i
xi

σ2
i∑

i
1
σ2

i

, (A.19)

and using the linear propagation of errors to calculate the variance:

σ̄2
x =

1∑
i

1
σ2

i

. (A.20)

The assumption of Gaussian statistics is also justified in the context of lattice gauge

theory if the estimated errors σi were obtained by Jackknife analysis, see 3.2.2 for

details.



Appendix B

Overview of Spectrum Results

0++ 0−+ a−η′ a−f0 g̃gγ0 g̃g1

0.1925.12c 0.53(10)† 0.80(10)†† 0.52(10)† <1.10(9)† 0.33(4)

1.09(5)† 0.95(3) 0.88(1)

0.1940.12c 0.40(11) 1.10(28)†† 0.421(9) 0.3(3) 0.49(4)

0.99(1) 0.85(2) 0.80(2)

0.1940.16c 0.52(1)†† 0.69(14)†† 0.24(1) <0.78 0.43(1) 0.40(7)

0.65(2) 0.85(2)

0.1955.12c 0.36(4) 0.24(2) 0.24(9) 0.35(4)

0.81(6) 0.66(4)

Table B.1: Summary of spectrum results for all states measured. The first/second row of
an ensemble contains the lower/higher mass, if determination was possible. The
values marked by (. . . )† were taken from [19] for reference while (. . . )†† should be
considered as upper bounds on the lowest masses.



Bibliography

[1] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513 (2001) 232

[arXiv:hep-ph/0105239].

[2] H. P. Nilles, Phys. Rept. 110 (1984) 1.

[3] M. Pospelov and A. Ritz, Nucl. Phys. B 573 (2000) 177 [arXiv:hep-ph/9908508].

[4] D. B. Kaplan and A. V. Manohar, Phys. Rev. Lett. 56 (1986) 2004.

[5] D. R. Nelson, G. T. Fleming and G. W. Kilcup, Phys. Rev. Lett. 90 (2003) 021601

[arXiv:hep-lat/0112029].

[6] M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol. 1: Intro-

duction”,Cambridge, UK: Univ. Pr. (1987).

[7] R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B 88 (1975) 257.

[8] S. Weinberg, “The Quantum Theory Of Fields. Vol. 3: Supersymmetry”, Cam-

bridge, UK: Univ. Pr. (2000).

[9] G. Veneziano and S. Yankielowicz, Phys. Lett. B 113 (1982) 231.

[10] G. R. Farrar, G. Gabadadze and M. Schwetz, Phys. Rev. D 58 (1998) 015009

[arXiv:hep-th/9711166].

[11] K. G. Wilson, Phys. Rev. D 10 (1974) 2445.
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