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       ZUSAMMENFASSUNG 

Einfluß von Dopamin auf die Spreading depression 

Anna Maria Haarmann 
Bei der spreading Depression(SD) handelt es sich um eine, sich mit einer Geschwindigkeit von 2-

5mm/ min über den gesamten Cortex ausbreitende Depolarisationswelle, die von einer Abflachung 

bioelektrischer Aktivität begleitet wird.  

Es ist anzunehmen, dass die spreadind depression Einfluss auf mehrere klinische Symptome wie 

Migräne, Kopfschmerzen oder vorübergehende globale Amnesie hat.  

Dopamin ist ein essentieller Neurotransmitter, der wichtige modulierende Aufgaben übernimmt. Bei 

Patienten, die an Migräne leiden, besteht eine Hypersensivität für Dopamin, viele dafür typische 

Symptome können durch diesen Neurotransmitter getriggert werden. 

Spreading depression führt zu einer Freisetzung von Dopamin . 

Offensichtlich besteht also ein Zusammenhang zwischen spreading depression mit der konsekutiven 

Freisetzung von Dopamin und den klinischen Manifestationen der Migräne. 

Die vorliegende Arbeit untersucht, in wie weit Dopaminagonisten bzw. – antagonisten Einfluß auf die 

spreading depression nehmen. 

Die Experimente wurden am somatosensorischen Neocortex erwachsener Ratten durchgeführt. 

Dabei wurden extrazelluläre Feldpotentiale abgeleitet und durch die Applikation von KCL  eine 

spreading depression ausgelöst. Anschließend wurde der Einfluß sowohl von D2 Antagonisten als 

auch –Agonisten auf die SD untersucht.  

Eine anschließende Versuchsreihe untersuchte den Einfluss von D2 Antagonisten bzw.-Agonisten auf 

evozierte exitatorische postsynaptische Feldoptentiale  (EPSP), um so zu klären, ob ein Einfluss auf 

die längerfristige Modifikation synaptischer  Übertragung besteht. 

Die Resultate aus oben beschriebenen Versuchen ergaben, dass die Inhibition von D2 Rezeptoren- im 

vorliegendem Fall durch Sulpiride- zu einer signifikanten Suppression der spreading depression führt. 

Auch die synaptische Übertragung wird durch D2 Antagonisten beeinflusst. 

Zusammenfassend ist festzuhalten, dass die Blockade von D2 Rezeptoren eine wichtige Rolle in der 

Behandlung von z. B. Migräne mit Aura spielt, der therapeutische Effekt mag in der Inhibition der 

neocortikalen SD liegen. 

 

Tag der mündlichen Prüfung: 20.11.2009        
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Introduction 

Spreading depression (SD) is a propagating wave of depolarisation associated by a depression 

of the neuronal bioelectrical activity for a period of minutes. SD could be initiated by 

different methods in animal models. SD is an "all-or-none" type process and propagates in the 

manner of a wave through gray matter. SD appears first at the stimulated site and spreads out 

in all directions at the velocity of 2–3 mm/min, so that increasingly distant areas undergo 

successively a similar temporary depression. A crucial manifestation of SD is a propagating 

negative potential with an amplitude of 10–30 mV and a duration of more than 0.5–1 min, 

which may be preceded or succeeded by a positive fluctuation of variable amplitude and 

duration. Underlying this cellular depolarisation is a dramatic change in the distribution of 

micromilieu ions between extra- and intracellular compartments. Potassium and proton 

release from the cells, while sodium, calcium and chloride enter together with water causing 

cells to swell and the volume of the extracellular compartment to be decreased. SD is 

accompanied by an increase of glucose utilization and O2 consumption. Recovery of SD 

depends on energy metabolism. 

The first paper on SD, titled "Spreading depression of activity in the cerebral cortex" appeared 

in 1944, written by a young Brazilian investigator, Aristides Leão, working at the Harvard 

laboratory. Leão wanted to study the electrocorticogram (ECoG) of experimental epilepsy in 

anesthetized rabbits, but he was distracted from his original goal by an unexpected flattening 

of the ongoing normal bioelectrical activity that took the place of the anticipated epileptiform 

field potentials.The silencing of the ECoG trace crept slowly over the cortex, from one 

recording electrode pair resting on the cortical surface to the one beside it. According to Leão, 

SD and propagating focal seizures were related phenomena, generated by the same cellular 

elements, an inference later supported by others. 

This phenomenon has been studied in vivo in several animal species and in vitro in brain 

slices and in retinal preparations under different experimental conditions. It has been also 

observed in human neocortical tissue in vitro and in human hippocampus as well as striatum 

and neocortex in vivo. SD can be regularly initiated if the tissue susceptibility is artificially 

raised. Hypoglycemia and hypoxia as well as changing the extracellular ionic micromilieu by 

applying solutions with increased K+, decreased NaCl or with the Cl− of the latter replaced by 

certain other anions lower the threshold. 
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Conversely, the susceptibility of SD initiation is lowered or the occurrence of SD is prevented 

in previously susceptible tissue by solution with increased Mg2+ or NaCl, or with the Na+ 

replaced by certain other cations. SD also is triggered by various modes of mechanical, 

chemical and electrical stimulation. 

The unparalleled increase in extracellular potassium concentration ([K+]o) is accompanied by 

a precipitous drop in extracellular chloride concentration ([Cl ]o), extracellular sodium 

concentration ([Na+]o), and extracellular calcium concentration ([Ca2+]o), suggesting that K+ 

leaving neurons is exchanged against Na+ and Ca2+ that are entering and increased up to 60 

mM. [Ca2+]o decreases from its normal level of 1.2-1.5 mM to <0.3 mM. Cations are not 

exchanged one for one between intra- and extracellular solutions, for the reduction in [Na+]o is 

greater than the increase in [K+]o. The concomitant drop in [Cl ]o indicates that some of the 

Na+ entering the cells is accompanied by Cl . It has been suggested that the deficit in 

extracellular anions is made up by anions leaving the cytosol. Organic anions, including 

glutamate, have been shown to be released during SD, although some of the glutamate 

originates from glial cells. An exact and complete balance sheet of all ingredients displaced 

during SD is yet to be completed, however, so much larger than that of the interstitial 

 
Fig. 1: Aristides Azevedo Pacheco Leão. Journal of Nourophysiology, 1944, Changes of 

bioelectrical activities recorded from a rabbit during propagation of spreading depression 

(SD). Traces reveal propagating flattening of epileptiform field potentials induced by 

spreading of cortical SD as well as propagating recovery of these activities. 
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compartment that neurons need to give up but a fraction of the K+ they contain to achieve a 

many fold rise in [K+]o. Calculations based on the simultaneously recorded levels of [Na+]o 

and [K+]o and the known fractional volume of the interstitial space in hippocampal tissue 

indicate that a much reduced but still substantial trans-membrane potassium concentration 

gradient remains standing during SD. 

The unusual magnitude of the changes in extracellular ion concentrations created the 

impression that intra- and extracellular ion concentrations equilibrate during SD, and this idea 

was bolstered by the nearly complete depolarization of neurons during SD. The volume of the 

cytosol is, however, so much larger than that of the interstitial space that cells need to give up 

but a fraction of the K+ they contain to achieve a many fold rise in [K+]o. Calculations based 

on the simultaneously recorded levels of [Na+]o and [K+]o and the known fractional volume of 

the interstitial space in hippocampus indicate that a much reduced but still substantial 

transmembrane K+ concentration gradient remains standing during SD.  

No explanation of the propagation of SD has been suggested that accounts for all the facts 

presently proven. The hypothesis that gained wide acceptance is that the propagation of SD 

probably involves the release of different chemical mediators, most likely K+ and glutamate 

into the interstitial fluid. Given the widespread potential signalling capacities of Ca2+ waves, 

observations of the interactions between astrocytes and neurons in cell culture have suggested 

that Ca2+ waves may also play a role in SD propagation. 
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Figure 2. Propagation of cortical spreading depression and its electrophysiological 

recordings. 

 

Clinical relevance of SD 

SD belongs in the domain of the pathophysiology of the brain, and there are reasons to believe 

that it is involved in different clinical disorders, including migraine, cerebrovascular diseases, 

head injury and transient global amnesia. Processes similar to spreading depression in animal 

cortex are thought to take place in a number of pathological conditions in humans. These 

disorders include brain trauma, ischemia/infarction, migraine, epilepsy, hemorrhage and 

transient global amnesia. Direct alterations of electrical activity of cortical neurons by the 

locally spreading wave can lead to clinical symptoms (e.g. the aura phase of migraine). These 

same neuronal processes can also alter the neurochemistry of subcortical structures, 

modulating oxygen distribution, cell survival in these structures and behavior. This problem 
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has not been addressed before, mainly because SD induces such a short depression in each 

cortical loci, that transient neurochemical changes cannot be examined with conventional 

approaches, for example by microdialysis. 

 

The designation migraine with aura denotes the syndrome of headache associated with 

characteristic sensory, motor, or visual symptoms, usually gradually developed over 5–20 min 

and lasting less than 60 min. The most common symptoms in aura phase are visual arising 

from dysfunction of occipital lobe neurons. The positive (stimulative) neurological symptoms, 

e.g., flashing lights are usually followed by negative (suppressive) ones, e.g., scotoma or 

hemianopia in this phase. Magnetoencephalographic studies in human revealed that the 

magnetic signals were seen in migraine patients but not in patients suffering from other forms 

of headache or normal controls. Three distinctive signal patterns; suppression of spontaneous 

cortical activity, slow field changes and large-amplitude waves, were observed strictly in 

migraine patients. In some migraine patients, magnetic signals were also recorded between 

attacks. The same magnetic fields appeared during the propagation of SD in the cortex of 

anesthetized animals. High-field functional MRI was used to detect blood oxygenation level-

dependent (BOLD) changes during visual aura in three migraineurs. A focal increase in 

BOLD signals developed first in extrastriate cortex and spread at the velocity of 3.5 ± 1.1 

mm/min over occipital cortex. These initial BOLD features were consistent with scintillations 

and paralleled by decreases in the stimulus-driven MR oscillations. Increasing in BOLD 

signals was followed by a decrease in the mean signal. This phase appeared to correspond to 

the localized scotoma and MR stimulus-induced response remained suppressed. Within 15 ± 3 

min, both BOLD signals and MR stimulus-induced response recovered. During periods with 

no visual stimulation, but while the subject was experiencing scintillations, BOLD signal 

followed the retinotopic progression of the visual percept. Spreading BOLD signal changes as 

neocortical SD did not cross prominent sulci. 

Recent investigations provide early insights into mechanisms that lead to trigeminovascular 

activation. SD is the first endogenous event identified upstream to trigeminovascular 

activation that appears to be noxious in experimental models. Neocortical SD, originally 

described by Leão. The slow spread of SD at 3–5 mm/min matches the propagation velocity 

of wave fronts in the Belousov–Zhabotinsky reaction, that is, a thermodynamic chemical 

reaction that shows the properties of a nonlinear chemical oscillator even in a Petri dish. 
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Unlike an epileptic seizure, which spreads asynchronously to activate adjacent brain, SD 

begins within a synchronously activated brain space. 

In experimental animals, SD stimulates ipsilateral trigeminal axons that surround cortical 

blood vessels. SD causes a breakdown of the blood–brain barrier by mechanisms dependent 

on matrix metalloproteinase-9. Furthermore, neocortical SD causes ipsilateral extravasation of 

plasma proteins in dura mater, serving as an experimental marker of trigeminal nerve 

activation; it also induces c-Fos expression within the trigeminal nucleus caudalis. These 

findings and a transcription MRI study suggest that intense cortical perturbations like repeated 

SD can open the blood–brain barrier, thereby activating the trigeminovascular system. SD 

releases chemicals such as H+, K+, nitric oxide, and neurotransmitters into the extracellular 

space. It has been hypothesized that released molecules reach the pial surface by diffusion and 

accumulate in proximity to trigeminovascular afferents. Extracellular K+ levels about 60 

mmol/l were measured in the pial space during SD. 

Consistent with an upstream role for SD, prolonged application of migraine prophylactic 

drugs suppresses SD in rats as a proposed mechanism of action. In line with the growing 

clinical recognition that prolonged administration of prophylactic drugs is important to 

achieve maximum therapeutic efficacy, treatment extension beyond 3–4 weeks also 

maximizes the inhibitory effects of topiramate, valproate, methysergide, amitriptyline, and 

propranolol on SD.  

Dopamine  

Dopamine is an essential neurotransmitter in a wide variety of animals, including both 

invertebrates and vertebrates. In the brain, this phenethylamine functions as a 

neurotransmitter, activating the five types of dopamine receptors; D1, D2, D3, D4 and D5, and 

their variants. Dopamine is produced in several areas of the brain, including the substantia 

nigra and the ventral tegmental area Dopamine is also a neurohormone released by the 

hypothalamus.  

Dopamine has many functions in the brain, including important roles in behavior and 

cognition, motor activity, motivation and reward, inhibition of prolactin production (involved 

in lactation), sleep, mood, attention, and learning. Dopaminergic neurons (i.e., neurons whose 

primary neurotransmitter is dopamine) are present chiefly in the ventral tegmental area  of the 

midbrain, the substantia nigra pars compacta, and the arcuate nucleus of the hypothalamus 
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.  

Figure 3.  Chemical structure of Dopamine 

The distributions of the transcripts encoding the five dopamine receptors have been 

determined in the human striatum and selected regions of the neocortex. In the prefrontal 

cortex as well as the temporal neocortex D1 and D4 receptor mRNAs are the most abundant, 

although the other three transcripts are seen at lower levels. In the occipital neocortex, D1 

receptor mRNA is the most abundant, D3 the rarest, while the other three transcripts are 

present at modest levels of expression (Meador-Woodruff et al., 1996). 

Dopamine and spreading depression 

It has been shown that SD changed neuronal activity and consequently modulated 

extracellular dopamine in the terminal fields during stimulation of the prefrontal cortex 

(Murase et al., 1993, Taber and Fibiger, 1995, Karreman and Moghaddam, 1996 and Rossetti 

et al., 1998). There is a pronounced release of dopamine during both spreading depression and 

anoxia. In spreading depression, the sharp increase of potassium concentration that follows an 

initial smaller and slower increase of potassium is accompanied by the release of dopamine in 

in vivo experiments (Moghaddam et al., 1987). Cortical stimulation increases basal levels of 

dopamine in the caudate (Strafella et al., 2001) and in the nucleus accumbens (Tucci et al., 

2000; You et al., 1998). In line with these data, blockade of the prefrontal cortex activity by 

tetrodotoxin (Karreman and Moghaddam, 1996) or by local anesthetics (Murase et al., 1993) 

decreased basal dopamine levels in the nucleus accumbens. The mechanisms by which SD 
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can modulate the dopaminergic presynaptic terminals in striatum are unknown. There is 

evidence that cortex can enhance dopamine release in striatum via activation of glutamatergic 

neurotransmission (Cheramy et al., 1986, Cheramy et al., 1990, Kilpatrick and Phillipson, 

1986, Leviel et al., 1990 and Romo et al., 1986). Other data favour an opposite view on the 

role of glutamate in impulse-dependent dopamine release (Wu et al., 2000 and Zhang and 

Sulzer, 2003) and have proposed more complicated interactions via H2O2 (Avshalumov et al., 

2003). Another study indicates elevation of evoked dopamine release in the nucleus 

accumbens and a decrease in the nucleus caudatus resulting from depression of the cortical 

activity induced by SD. These findings suggest that in the nucleus caudatus dopaminergic 

presynaptic terminals are under cortical tonic activating control, but in the mesolimbic 

terminal fields in the nucleus accumbens, they are under tonic depression. Therefore, SD in 

the cortex, may modulate neurotransmitter release in subcortical structures and may have a 

general impact on the redistribution of the oxygen supply in these subcortical areas. 

In spite of these studies, the ole of dopamine in initiation and propagation of cortical SD still 

needed to be clarified. The dopaminergic system has also been explored for a potential role in 

susceptibility to different neurological disorders. Several dopaminergic candidate genes have 

been investigated in different migraine case–control cohorts with varying results (Del Zompo 

et al.,1998; Mochi et al., 2003). Most migraine symptoms can be induced by dopaminergic 

stimulation. Moreover, there is dopamine receptor hypersensitivity in migraineurs, as 

demonstrated by the induction of yawning, nausea, vomiting, hypotension, and other 

symptoms of a migraine attack by dopaminergic agonists at doses that do not affect non-

migraineurs. Bromocriptine, a dopamine agonist, produces a predictable dose-related series of 

clinical signs. Yawning is the first to appear. Increasing the dose induces mood changes, 

nausea, gastrokinetic changes, hypotension, vomiting, and lastly dyskinesia. Migraine patients 

yawned four times more often per hour and showed a higher incidence of headache than 

controls after 0.25 mg sublingual apomorphine, another dopamine agonist (Del Bene et al., 

1994). In a large subgroup of migraineurs, dopamine acts as an endogenous protagonist in the 

pathophysiology of the disorder. Antagonism of this protagonist neurotransmitter therefore 

results in symptomatic relief of both the headache and associated symptoms (Peroutka, 1997). 

Prochlorperazine and Domperidone D2 receptor antagonists have a high degree of efficacy in 

the acute treatment of migraine (Amery and Waelkens, 1983; Coppola et al., 1995). Neurons 

containing D1 receptor may play a role in modulating trigeminovascular nociception. These 

neurons offer an important target to understanding pathophysiology of migraine and may 

offer new directions for therapy. The aim of this study was to investigate the effect of D1 and 
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D2 receptors on the characteristic features of cortical SD. Therefore, we investigated the 

effects of inhibition of both D1 and D2 receptors on SD in rat neocortical tissues. 

Material and methods 

The experiments were performed on adult rat (250-350g) somatosensory neocortical slices. 

The brain was removed under deep methohexital anaesthesia and placed in cold (1–4°C) 

artificial cerebrospinal fluid (ACSF) pre-equilibrated with 5% CO2 in O2 to give a pH of 7.4. 

The ACSF contained (in mM): NaCl 124, KCl 4, CaCl2 1.0, NaH2PO4 1.24, MgSO4 1.3, 

NaHCO3 26 and glucose 10. The somatosensory neocortices were dissected and cut into slices 

of 500 µm thickness. The slices were incubated in ACSF solution for >1 h at 28°C. After 30-

min incubation, CaCl2 was elevated to 2.0 mM. Slices were transferred to an interphase-type 

experimental chamber and superfused with ACSF at 32°C (1.5–2 ml/min).  

Electrophysiological recordings 

Extracellular field potentials were recorded with glass microelectrodes (150 mmol/l NaCl; 2–

10 M ) connected to the amplifier by an Ag/AgCl–KCl bridge in the third and the fifth layers 

of neocortical tissues. Field potentials were traced by an ink-writer and recorded by a digital 

oscilloscope.  

Induction of neocortical SD 

 

SD was elicited by KCl microinjection. A glass electrode filled with 2 M KCl was fixed in a 

special holder connected with plastic tube to a pressure injector and the tip inserted into the 

sixth layer of the neocortical slices. A high-pressure pulse was applied to inject an amount of 

K+ in the tissue sufficient to induce cortical SD (tip diameter: 2 µm; injection pressure 0.5–1.0 

bar applied for 200–300 ms, two injections, 1–3 nl per pulse). Cortical SD-like events were 

evaluated with respect to their amplitude, duration and velocity rates. SD duration was defined 

as the interval between the time of half-maximal voltage shift during onset and recovery of the 

negative DC potential deflection. 

 

Long-term potentiation 
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Single pulses of electrical stimulation were applied through a bipolar platinum electrode 

attached to the white matter perpendicular to the recording electrodes. Evoked field excitatory 

postsynaptic potentials (fEPSP) were recorded in the third layer of neocortical slices. The 

fEPSP was elicited by adjusting the intensity of stimulation to 50% of that at which 

population spikes after fEPSP began to appear. The amplitude of fEPSP 1 ms after the onset 

was measured for data analysis. In long-term potentiation (LTP) experiments, the cortex was 

sequentially stimulated once every minute. Ten trains of four pulses (pulse duration 0.1 msec; 

interpulse interval 50 msec; intensity 5 V) were repeated at intervals of 10 msec. LTP was 

operationally defined as the mean change in fEPSP amplitude in response to five stimuli 

given 30 min after tetanic stimulation compared with the mean response to five test pulses 

applied immediately before the stimulation. Thus % potentiation = [(posttetanus amplitude of 

fEPSP/baseline amplitude of fEPSP) 1] 100. Tetanic stimulation was applied 60 min after 

application of drug.  

Experimental protocols 

The experimental protocol consisted of four periods as follows: (a) control period, neocortical 

slices were superfused with ACSF (30 min), tested for spontaneous SD; (b) KCl injection, 

induction of SD (SD1); (c) application of D2 dopamine receptor agonist quinpirole (10-200 

µM), or the dopamine D2 dopamine receptor antagonist sulpiride (0.1-10 µM, 60 min) before 

the second injection of KCl (SD2); (d) washout of quinpirole or sulpiride with ASCF (45 min, 

second control period), third injection of KCl (SD3). Only a single concentration of quinpirole 

or sulpiride was used in a given slice. In control experiments, DMSO (0.5%) was added to the 

bath solution after the first KCl injection (60 min) and washed with ASCF (45 min) after the 

second and before the third KCl application. 

Drugs 

Quinpirole or sulpiride both purchased from Sigma-Aldrich.  

Statistical analysis 

All data are given as mean ± SEM. The data were statistically analysed using the Mann–

Whitney Rank Sum test. Multiple comparisons were performed by analysis of variance test 

(ANOVA) for repeated measures followed by a Holm-Sidak’s test. Significance was 

established when the probability values were less than 0.05. The investigations were approved 
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by the local ethics committee (Tierversuchsgenehmigung, Bezirksregierung Münster, 

Deutschland, AZ: 50.0835.1.0, G79/2002). 
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Results: 

The effect of D2 dopamine receptor agonist quinpirole on SD 

Focal application of KCl in the sixth layer of neocortical tissues induced negative DC 

deflections followed by positive waves (amplitude of 15.6 ± 1.9 mV; duration of 113 ± 5 sec). 

Negative DC-fluctuations were sometimes preceded by small positive waves. These cortical 

SD waves propagated opposite to the direction of the ACSF flow at propagation velocity of 

3.1 ± 0.1 mm / min. The effect of five different concentrations of D2 dopamine receptor 

agonist quinpirole (10, 20, 50, 100, 200 µΜ; n = 6 for each concentration) was tested on 

potassium-evoked SD in neocortical tissues. The ratio between the second and the first DC 

potential waves (SD2/SD1) was calculated in control slices and slices treated with quinpirole. 

Sixty minutes of quinpirole application at 10 µM did not significantly change different 

characteristics of SD, i.e. amplitude, duration, and propagation velocity. Quinpirole at higher 

concentrations dose-dependently increased the amplitude and the duration of negative 

depolarisation potential shifts occurring after the second KCl application (SD2). The 

amplitude as well as the duration of SD2 and the SD2/SD1 ratio significantly increased after 

superfusion of quinpirole at 20-200 µM (Fig. 4; P ≤ 0.001; ANOVA test, Holm-Sidak’ 

method). Quinpirole increased the SD amplitude and duration between 23 ± 4 to 80 ± 7 % and 

between 18 ± 5 to 59 ± 5 % of the baseline level, respectively. Quinpirole did not change the 

velocity of negative DC potential propagation at all different concentrations. After washout of 

the compound, the amplitude, the duration, and the velocity of the propagation of the negative 

DC waves (SD3) returned close to the initial levels (SD1; Fig. 4).  

The effect of dopamine D2 dopamine receptor antagonist sulpiride on neocortical SD 

Sulpiride at 1-10 µM dose-dependently decreased the amplitude of negative DC potentials 

occurring after the second KCl application (SD2; Fig. 5; P ≤ 0.001; ANOVA test). 

Application of sulpiride for sixty minutes reduced the SD amplitude to 38 ± 5 % of the 

baseline level (SD2/SD1 ratio). Sulpiride at these concentrations also significantly and dose-

dependently decreased the mean duration of cortical SD to 48 ± 6 % of the baseline value. 

Sulpiride at all different concentration did not change the speed of the DC-wave propagation. 

Sulpiride at 0.1 µM did not affect SD. After washout of the compound, the amplitude of the 

deflection of DC potentials (SD3) returned close to the initial levels (SD1; Fig. 5).  
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Figure 4. Effects of quinpirole on cortical spreading depression (SD) in somatosensory 

neocortical tissues. A: Recording of DC potential shifts in the third layer of a neocortical slice 

before (A1), during (A2), and after (A3) application of quinpirole (50 µM). Field potentials 

were recorded by an ink-writer. SD was elicited by KCl microinjection. B: The curve 

indicates the plot of percentage enlargement of SD amplitude vs. quinpirole concentrations (n 

= 6 for each concentration).  Quinpirole dose-dependently increased the amplitude of SD. The 
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percentage of SD amplitude enlargement was measured by division of the amplitude of SD 

induced after application of sulpiride to the amplitude of SD elicited before superfusion of the 

substance. Values represent mean ± SEM. Significance was determined by ANOVA test 

followed by Dunn’s post-test (B; P ≤ 0.001). 
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Figure 5. Effects of sulpiride on cortical spreading depression (SD) in somatosensory 

neocortical tissues. A: Recording of DC potential shifts in the third layer of a neocortical slice 

before (A1), during (A2), and after (A3) application of sulpiride (5 µM). Field potentials were 
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recorded by an ink-writer. SD was elicited by KCl microinjection. B: The curve indicates the 

plot of percentage decreases of SD amplitude vs. sulpiride concentrations (n = 6 for each 

concentration).  Sulpiride dose-dependently decreased the amplitude of SD. The percentage of 

SD amplitude reduction was measured by division of the amplitude of SD induced after 

application of sulpiride to the amplitude of SD elicited before superfusion of the substance. 

Values represent mean ± SEM. Significance was determined by ANOVA test followed by 

Dunn’s post-test (B; P ≤ 0.001). 

 

 

 

The effect of quinpirol and sulpiride on LTP  

A conditioning tetanic stimulation was delivered to the white substance of neocortical slices 

followed by pulses with stimulation parameters identical to control values. The evoked fEPSP 

was stable for at least 30 min before application of tetanic stimulation (less than 10% 

variation; Fig. 6). Administration of tetanic stimulation produced a rapid and stable 

enhancement of the amplitude of the fEPSP in all tested preparations (n = 6, 164 ± 12 % 

control; Fig. 6). LTP lasted as long as the fEPSP were recorded (at least for 90 min). The 

potentiation rose within 1–2 min and stabilized within 5 minutes after the train of 

stimulations. Application of sulipride (5 µM; n = 10) sixty min before tetanic stimulation 

significantly suppressed LTP induction in all tested slices (122 ± 3 % baseline, Mann–

Whitney Rank Sum test; P ≤ 0.001, Fig. 6). However, Application of quinpirole (50 µM; n = 

10) sixty min before tetanic stimulation did not significantly change the LTP induction in 

compare with control tissues (147 ± 6 % baseline, Mann–Whitney Rank Sum test; P = 0.08, 

Fig. 6). 
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Figure 6. The effect of D2 dopamine receptor agonist quinpirole and the dopamine D2 

dopamine receptor antagonist sulpiride on long-term potentiation (LTP) of the evoked field 

excitatory postsynaptic potentials (fEPSP) in neocortical preparations. (A) Tetanic stimulation 

(Ten trains of four pulses; pulse duration 0.1 msec; interpulse interval 50 msec; intensity 5 V)) 

produces a rapid and stable potentiation in the amplitude of the evoked field potentials, 

calculated as a percentage of baseline mean response amplitude. Open triangles, open square, 

and closed circles show the evoked fEPSP after application of  sulipride (5 µmol/l), quinpirole 
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(50 µmol/l) and control, respectively. Arrow shows the time of tetanic stimulation, 60 min 

after application of substances. Application of  sulipride significantly inhibited LTP of the 

evoked field potentials (Mann–Whitney Rank Sum test, P = 0.001), calculated as a percentage 

of baseline mean response amplitude. B: Representative examples of the evoked field 

potentials before and after tetanic stimulation in  sulipride, quinpirole, and ACSF (control) 

affected slices. 
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Dsicussion 

 

The present data reveal a dose dependent suppression of the amplitude and duration of the 

neocortical SD in the presence of the dopamine D2 dopamine receptor antagonist sulpiride. In 

contrary, D2 dopamine receptor agonist quinpirole dose dependently enhanced the amplitude 

and duration of the neocortical SD. The data point to the involvement of D2 dopamine 

receptor in initiation of neocortical SD. Furthermore, application of D2 dopamine receptor 

antagonist significantly suppressed LTP, whereas, D2 dopamine receptor agonist did not 

change LTP. This indicates the modulatory effect of this receptor-type on the somatosensory 

neocortical synaptic transmission.  

Dopamine is widely distributed in the central nervous system and serves a variety of functions 

in the mature brain, including control of movement, cognition, endocrine responses, and 

reward. Dysfunction of dopaminergic system plays an important role in many neurological 

and psychiatric disorders, including schizophrenia, Parkinson's disease, attention-deficit 

hyperactivity disorder, and drug addiction (Arnsten and Li, 2005; Biederman and Faraone, 

2005; Kalivas and Volkow, 2005). Dopamine receptors are G protein-coupled receptors, 

characterized by an extracellular N-terminal region, intracellular C-terminal region, and seven 

membrane-spanning regions. There are two subfamilies of DA receptors, D1 receptors and D2 

receptors, based on their pharmacological profiles and sequence homology (Lachowicz and 

Sibley, 1997; Missale et al., 1998). D1 receptors, including the D1 and D5 receptor subtypes, 

catalyze synthesis of cAMP. D2 receptors, including the D2, D3, and D4 receptor subtypes, 

inhibit cAMP synthesis. The receptors also affect activation of potassium channels and 

mitogen-activated protein kinases (Neve et al., 2004; Beaulieu et al., 2005). Several studies 

have identified binding partners for the D2 receptor including coreceptors, signaling 

molecules, and scaf-folding proteins  (Smith et al., 1999; Macey et al., 2004; Negyessy and 

Goldman-Rakic, 2005; So et al., 2005; Liu et al., 2006 , 2007; Rashid et al., 2007; Kim et al., 

2008). 

 

The D2 dopamine receptor has been one of the most extensively investigated gene in 

neurological as well as psychological disorders. A higher D2 A1 allelic frequency and 

prevalence was reported in alcoholics when compared to controls. Variants of the D2 gene 

have also been associated with cocaine, nicotine and opioid dependence and obesity. The D2 
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gene has also been implicated in schizophrenia, posttraumatic stress disorder, movement 

disorders and migraine (Noble, 2003).  

 

A huge amount of data suggests that dopaminergic activation is a primary pathophysiologic 

component in certain subtypes of migraine (Peroutka, 1997). This has led to an examination 

of D2 variants in this disorder. In one study the NcoI D2 C to T polymorphism located in exon 

6 was assessed in individuals having migraine with aura and without aura (Peroutka, 1997). 

Individuals having migraine with aura had a significantly higher frequency of the D2 C allele 

than did control or migraine without aura individuals. No D2 C allele frequency difference 

was found, however, between the latter two groups. The association of NcoI DRD2 variants in 

comorbid migraine with aura, anxiety and depression was also reported (Peroutka, 1998). The 

D2 C allele frequency was significantly higher in individuals with migraine without aura, 

anxiety disorders or major depression than in individuals who had none of these disorders. 

Another group (Del Zompo et al.,1998) utilized the Transmission Disequilibrium Test and the 

dinucleotide repeat alleles within intron 2 of the D2 gene to test for association with patients 

affected by migraine without aura. Although no difference was observed in D2 repeat allelic 

distribution in the overall sample, allelic distribution differed significantly in a subgroup of 

dopaminergic migraineurs. Another D2 gene polymorphism (promoter -141C Ins/Del), 

however, was not found to be associated with migraine (Maude et al., 2001). Furthermore, a 

significant and independent association was found of SNPs in the insulin receptor and the D2 

SNP93 with migraine subjects (McCarthy et al., 2001). 

 

SD is believed to play a crucial role in migraine with aura. In 1945, Leão and Morison 

hypothesized that the slow march of the negative (suppressive) neurological symptoms, e.g., 

scotoma or hemianopia appeared after positive (stimulative) ones, e.g., flashing lights in the 

visual or sensory sphere is related to the SD phenomenon (Leão and Morison 1945). SD 

consists of a wave of neuronal activation followed by a suppression of neuronal activity that 

propagates slowly across the surface of the brain. SD-like waves were recorded from human 

neocortex during the aura phase of migraine attacks (Welch et al. 1993; Hadjikhani et al. 

2001). Furthermore, increasing evidence suggesting the intense perturbations generate the 

cellular, molecular, and vascular changes in brain akin to SD could cause the headaches of 

aura-induced migraine (Moskowitz et al. 1993; Bolay et al. 2002; Gorji et al. 2004). It has 

been shown that sulpiride is an effective substance in the treatment of migraine headache 

(Piccini et al., 1990; Siniachkin et al., 1997). In the present study, sulpiride suppressed 
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characteristic features of SD. This suggests that blocking effect of D2 dopamine receptor 

antagonist, sulpiride on neocortical SD may be responsible for its efficacy in migraine 

headache. Several other anti-migraine substances such as Topiramate, valproate, propranolol, 

amitriptyline, and methysergide also have inhibitory effects on SD (Ayata et al., 2006). 

 

LTP is an experimental phenomenon, which can be used to demonstrate the repertoire of 

long-lasting modifications of which individual synapses are capable (Collingridge & Singer 

1990, Malenka & Bear 2004). In the present experiments, neocortical slices perfused with 

sulpiride exhibited a pronounced, persisting, and significant suppression of LTP, whereas, D2 

receptors agonist, quinpirol did not change LTP.  Induction of LTP in the synaptic pathway 

from the basolateral amygdala to the dentate gyrus is regulated by D2 dopamine receptors 

(Abe et al., 2009). In line with our data, it has been reported that blocking of D2 dopamine 

receptors led to the inhibition of LTP (Abe et al., 2008). It has been suggested that the role of 

dopamine D2 receptors in the induction of LTP is modulatory and depends on GABAergic 

inhibition (Abe et al., 2009). SD induces an LTP-like effect in rat neocortical slices (Footitt 

and Newberry 1998) and enhances LTP induction in human neocortical tissues (Berger et al., 

2008). Both inhibition of LTP induction and SD generation were observed by drug 

manipulation in rat neocortical tissues (Muller et al., 2006). Conversely, enhancement of LTP 

induction and facilitation of SD occurrence was observed under female hormones application 

in rat somatosensory neocortical tissues (Sachs et al, 2007). Modulation of LTP responses was 

also observed remote from the SD propagation site in hippocampal tissues (Wernsmann et al. 

2006). The inhibition of LTP after administration of dopamine D2 receptors and reduction of 

synaptic efficacy may be responsible for its suppressive effect on SD.  

 

Conclusion 

D2 dopamine receptors seem to participate in the pathophysiological mechanisms of migraine 

attacks as well as other neurological and psychological disorders. Inhibition of D2 dopamine 

receptors plays an important role in the treatment of these disorders including migraine with 

aura. The therapeutic effects of blocking D2 dopamine receptors in migraine attacks may be 

due to its inhibitory action on neocortical SD. In addition, present data indicate the 

importance of D2 receptors in neocortical synaptic efficacy which may be involved in its 

inhibitory action on SD. 
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