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Abstract

We define finitely summable K-homology K∗
fin for the category of topological

∗-algebras in terms of homotopy classes of finitely summable Fredholm modules
and study various properties of this theory: we show that K∗

fin is invariant
under stabilization with the algebras of Schatten class operators, but that it is
not additive with respect to countable direct sums of topological ∗-algebras.
We calculate the finitely summable K-homology of AF-algebras and discuss
the theory for manifolds. Moreover, we consider classes of algebras for which
K∗
fin degenerates. In particular, we prove that there cannot exist any finitely

summable Fredholm modules of interest over the convolution algebra ℓ1(Γ) of
any discrete group Γ.

Zusammenfassung

Wir definieren für die Kategorie der topologischen ∗-Algebren endlich summier-
bare K-Homologie-Gruppen K∗

fin, deren Elemente durch Homotopieklassen
endlich summierbarer Fredholm-Moduln gegeben sind, und studieren einige
ihrer Eigenschaften: Wir zeigen, dass K∗

fin invariant ist unter Stabilisierung mit
Schatten-Klassen, im Allgemeinen jedoch nicht additiv für abzählbar unendliche
direkte Summen von topologischen ∗-Algebren ist. Des Weiteren berechnen wir
die endlich summierbare K-Homologie von AF-Algebren und behandeln den
Fall von Mannigfaltigkeiten. Darüber hinaus untersuchen wir einige Klassen von
Algebren, für die K∗

fin degeneriert. Insbesondere beweisen wir, dass abgesehen
von trivialen Beispielen keine endlich summierbaren Fredholm-Moduln über
der Faltungsalgebra ℓ1(Γ) einer diskreten Gruppe Γ existieren können.
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Introduction

The index theorem of Atiyah and Singer states that the Fredholm index of
an elliptic differential operator on a closed smooth manifold agrees with its
topological index, which is computed in terms of the K-theory class associated
to the symbol of the operator. Applying the Chern character, a transformation
of the K-theory of a manifold to its de Rham cohomology, yields an explicit
formula for the index in terms of characteristic classes.

K-homology is a generalized homology theory dual to K-theory. Its cycles
are given by Fredholm modules, which can be thought of as abstract elliptic
operators: each elliptic operator determines a Fredholm module, and the index
of the operator can be expressed by the duality pairing between K-theory and
the K-homology class of the associated Fredholm module.

Like K-theory, K-homology naturally extends to non-commutative spaces.
In his groundbreaking work on non-commutative differential geometry [Con85],
Connes defines a non-commutative Chern character, which assigns to a Fred-
holm module a class in periodic cyclic cohomology, the non-commutative
analogue of de Rham homology. Using this character, he obtains an explicit
trace formula for the duality pairing, which leads to non-commutative general-
izations of the index formula by Atiyah and Singer.

However, there is one drawback to this construction: to define the Chern
character, the Fredholm module must satisfy the strong regularity condition of
being finitely summable. It is therefore of great interest to determine which
K-homology classes of a non-commutative space have a finitely summable
Fredholm module as a representative. Moreover, it is desirable to have a
homology theory at hand on which Connes’ Chern character is well-defined, as
this is not the case for standard K-homology.

One obvious approach to these questions is to restrict the class of Fredholm
modules one considers in the definition of K-homology to only those which
are finitely summable. We call the theory which is obtained this way ‘finitely
summable K-homology’. In this thesis we strive to get a better understanding
of this theory about which very little is known so far.

Basic concepts. Let D be an elliptic first-order differential operator between
vector bundles V and W over a smooth, closed manifold M of dimension n.
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2 INTRODUCTION

Elliptic theory states that D is a Fredholm operator. It is the aim of index
theory to compute its Fredholm index.

Atiyah proposed to condense the properties of D which are crucial for
the theory into the notion of an abstract elliptic operator. These abstract
elliptic operators became the building blocks of Kasparov’s analytic K-homology
[Kas75], where they are called Fredholm modules. Little later, this development
culminated in Kasparov’s celebrated bivariant K-theory, encompassing K-theory
and K-homology.

We can easily describe how to obtain a Fredholm module from D: if ϕ is the
representation of C(M) by multiplication on the L2-sections† L2(M,V ⊕W )
of V ⊕W , then the Fredholm module associated to D is given as the triple

FD :=

ϕ, L2(M,V ⊕W ), F :=


0 D∗

0
D0 0


where D0 := D

I +D
∗
D

and D denotes the closure of D.
By elliptic theory, (I + D

∗
D )1/2 has a compact inverse, which easily

implies that F 2− I is a compact operator as well. Moreover, since D is of first
order, the commutators between D and operators of multiplication by smooth
functions are given by multiplication with the symbol of D, which is a bounded
operator from L2(M,V ) to L2(M,W ). Using this and the compactness of
(I +D

∗
D )−1/2, one can show that the commutators of F with ϕ are not only

bounded but even compact.
These two properties,

F 2 − I ∈ K(L2(M,V ⊕W )) and [F,ϕ(C(M))] ⊆ K(L2(M,V ⊕W )),

are the defining properties for FD to be a Fredholm module over C(M). More-
over, the direct sum decompositions of L2(M,V ⊕W ) = L2(M,V )⊕L2(M,W )
and ϕ, with respect to which F is an odd operator, add additional grading
information to FD making it a so-called even Fredholm module.

The even K-homology group K0(C(M)) of C(M) is obtained by considering
all even Fredholm modules over C(M), forming equivalence classes of homotopic
or unitarily equivalent modules, and then taking the Grothendieck group with
addition given by the direct sum of Fredholm modules. The odd K-homology
group K1(C(M)) is defined similarly by considering ungraded Fredholm
modules over C(M).

One can easily check that the Fredholm index of D is the same as the
graded index of F .‡ As the Fredholm index is homotopy invariant and additive
for direct sums of Fredholm operators, the index of D can be computed using
any representative of [FD] ∈ K0(C(M)).

†With respect to arbitrary metrics on M , V , and W .
‡I.e. the Fredholm index of D0.
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The duality pairing between K-homology and K-theory, commonly referred
to as the index pairing,

Ind : K0(C(M))×K0(C(M)) −→ Z

generalizes the operation of computing the Fredholm index of F . In particular,
the index of D agrees with Ind([FD], [1C(M)]).

Connes’ formula for the index pairing is given as follows. Choose any
representative F ′ = (ϕ′,H′, F ′) of [FD] satisfying F ′∗ = F ′ and F ′2 = I (such
a representative can always be found). If p is a projection in C∞(M) and γ is
the grading operator† of L2(M,V ⊕W ), then the index pairing between [FD]
and [p] can be computed as

Ind([FD], [p]) = (−1)k

2 Tr

γF ′ [F ′, ϕ(p)][F ′, ϕ(p)] . . . [F ′, ϕ(p)]  

(2k+1)−times


(∗)

where 2k + 1 > n and Tr denotes the usual trace of Hilbert space operators
(this formula easily generalizes to matrix algebras over C∞(M)). Note that
if one interprets the commutators as taking derivatives and Tr as a kind of
non-commutative integral, this formula can be seen as an integral over a
non-commutative differential form.

For this formula to be well-defined, it is necessary that the argument of the
trace belongs to the subalgebra L1(L2(M,V ⊕W )) ⊆ K(L2(M,V ⊕W )) of trace-
class operators, i.e. those compact operators whose sequence of characteristic
values is ℓ1-summable.

In the case of compact manifolds, this poses no problem. A refinement of
Rellich’s Lemma leads to an asymptotic lower bound on the growth of the
eigenvalues of (I +D

∗
D )1/2. Its inverse lies in Ln+1(L2(M,V )), the class of

compact operators whose sequence of characteristic values is ℓn+1-summable.
This implies that FD is (n+ 1)-summable over C∞(M):

F 2−I ∈ Ln+1(L2(M,V ⊕W )) and [F,ϕ(C∞(M))] ⊆ Ln+1(L2(M,V ⊕W )).

If a Fredholm module is p-summable for some p <∞, we say that the module
is finitely summable. We define the even finitely summable K-homology group
K0
fin(C∞(M)) of C∞(M) to be the Grothendieck group of the equivalence

classes of all finitely summable even Fredholm modules over C∞(M) with
respect to the same equivalence relations as for K-homology and with addition
given again by the direct sum. K1

fin(C∞(M)) is defined analogously.
Note that the commutator relation [F,ϕ(f)] ∈ Ln+1(L2(M,V ⊕W )) does

not extend to C(M) since Ln+1(L2(M,V ⊕W )) is not a closed subspace of
B(L2(M,V ⊕W )) as K(L2(M,V ⊕W )) is. Thus, D does not define a finitely
summable module over C(M).

†γ := IL2(V ) ⊕ −IL2(W ).
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Now, if we choose F ′ to be (n + 1)-summable as well (which is always
possible), formula (∗) makes sense since (Ln+1)2k+1 ⊆ L1.

In the language of cyclic homology, the (2k + 1)-linear functional

(−1)k

2 Tr

γF ′ [F ′, ϕ(·)][F ′, ϕ(·)] . . . [F ′, ϕ(·)]  

(2k+1)−times



is a cyclic cocycle on C∞(M) whose class in HP 0(C∞(M)), the periodic cyclic
cohomology of C∞(M), is called the Chern-Connes character ch0(F ′) of F ′

(up to a normalization constant depending on k). Together with the Chern
character in K-theory, the index pairing transforms into the duality pairing
between HP 0(C∞(M)) and HP0(C∞(M)):

Ind([FD], [p]) =

ch0(F ′), ch0([p])


.

In contrast to K-theory, we cannot expect that ch0 extends to a well-defined
map from K0(C∞(M)) to HP 0(C∞(M)) since Connes’ formula is only valid
for finitely summable Fredholm modules. However, we can extend it to a
well-defined map on finitely summable K-homology

ch0 : K0
fin(C∞(M)) −→ HP 0(C∞(M)).

A similar character ch1 exists for K1
fin(C∞(M)), and we obtain for both, even

and odd K-homology, the following commutative diagram, in which the lower
map is the duality pairing between periodic cyclic homology and cohomology:

K∗
fin(C∞(M)) × K∗(C∞(M)) Z

⊆

HP ∗(C∞(M)) × HP∗(C∞(M)) C

ch∗ ch∗

Ind

It does not matter if we write K∗(C∞(M)) or K∗(C(M)) in this diagram,
since K-theory is invariant under passing to ‘smooth’ subalgebras like C∞(M).
Yet, K∗

fin, like cyclic homology, does not make much sense as a theory for
C∗-algebras: in general there are very few Fredholm modules which are finitely
summable over a whole C∗-algebra.

The following questions are immediate:

— What classes of ‘smooth’ algebras are adequate for studying K∗
fin?

— If A is a dense subalgebra of a C∗-algebra A, how do K∗
fin(A) and K∗(A)

relate? In many cases there is a natural map from K∗
fin(A) to K∗(A)

by extending Fredholm modules over A to modules over A. Is this map
surjective, i.e. can every K-homology class of A be realized as a finitely
summable module over A? Are there cases where this map is not injective
(making K∗

fin a finer invariant than K∗)?
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— How can K∗
fin be computed? In particular, is K∗

fin well-behaved with
respect to constructions like short exact sequences, direct sums, stabi-
lization or inductive limits?

In the course of this thesis, we will discuss these questions from various points
of view.

Previous work. Literature treating finitely summable K-homology is very
sparse. Most notable are Douglas’ and Voiculescu’s work on smooth sphere
extensions [DV81], where they give a lower bound for the summability of
non-trivial Fredholm modules over odd spheres, and more recently, Puschnigg’s
proof that there are (basically) no finitely summable Fredholm modules over
the group algebras of lattices in higher rank Lie groups [Pus11]. We review
these results in Sections 5.2 and 7.3. Apart from that, we are only aware of the
paper by Salinas [Sal83], where a similar theory in the language of extensions
is introduced but not extensively studied, and the approach by Wang [Wan95],
which seems to have been unsuccessful as the announced papers containing his
most important results never appeared.

Summary. We give a brief summary of the contents of this thesis.
Chapter 1 contains some prerequisites which we shall need further on. In

particular, we introduce the Schatten classes of finitely summable operators
Lp(H) and discuss some properties of pre-C∗-algebras. While we define K∗

fin

for arbitrary topological ∗-algebras, pre-C∗-algebras come up naturally when
dealing with K∗

fin since every finitely summable module has a pre-C∗-algebra
as maximal domain (see Proposition 1.4.14). Moreover, the algebras of smooth
functions on manifolds fall into this class. This makes them good candidates
for non-commutative algebras of ‘smooth’ functions.

Apart from the contents of Chapter 1, we only assume some basic knowledge
of functional analysis and C∗-algebra theory in most parts of this thesis. For
the reader’s convenience, we supplement some results we use in the appendix.

After a short account of standard K-homology and a few of its features, we
introduce finitely summable K-homology in Chapter 2. We spend some time
discussing various choices of equivalence relations and give a normalization
result for finitely summable modules.

Chapter 3 collects various elementary results on K∗
fin. We prove that K∗

fin

is well-behaved with respect to direct sums and unitization, and that K∗
fin is

stable under taking the projective tensor product with the algebras Lp(H).
In Chapter 4 we compute K∗

fin for the class of AF-algebras. More precisely,
we show the following: if A =


nAn is an AF-algebra, then K∗

fin(

nAn) agrees

with K∗(A). While this does not sound very surprising, the proof requires
some work.

The surprising difficulty in understanding K∗
fin for AF-algebras stems from

the fact that K∗
fin is not very well-behaved with respect to direct limits. In
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particular, we show in Chapter 5 that K∗
fin is not σ-additive in general, even

for algebraic direct sums. As a related result we prove that even if K∗
fin is

σ-additive for a specific algebraic direct sum, this by no means implies that
we can pass to smooth completions of this direct sum (like sequences of rapid
decay).

We discuss the finitely summable K-homology of manifolds in Chapter 6.
In the first section we fill in some details we left out in this introduction
and give an account of the well-known fact that every K-homology class of a
closed manifold is represented by a finitely summable module. In the second
section we discuss the difficulties that arise if one tries to prove that finitely
summable K-homology and standard K-homology of a closed manifold really
are isomorphic.

In the last chapter we consider classes of algebras for whichK∗
fin degenerates.

These include algebras which contain ideals with bounded approximate units,
C∗-algebras, amenable Banach algebras and the convolution algebra ℓ1(Γ) for
any countable discrete group Γ.

Conclusion. While we can give answers to the questions we have raised in
special cases, we cannot say very much about K∗

fin in general. In particular,
the questions if K∗

fin is diffeotopy invariant, how it behaves under suspensions
and if it has good exactness properties are still open. The main difficulty in
approaching these problems is the lack of a finitely summable analogue of
Kasparov’s Technical Theorem, as we discuss in Section 2.2. This theorem
lies at the very heart of Kasparov’s K-homology, being the central tool for
constructing the product in K-homology and proving homotopy invariance or
half-exactness of K∗. As long as no adequate replacement is found, general
answers probably cannot be given.

Nevertheless, we have covered the topic from a broad range of perspectives
and thus hope to give the reader a better impression of what can be expected
of K∗

fin and what cannot.



Conventions and Notation

0 is not a natural number

N0 the set of natural numbers and 0

⌈x⌉ the smallest n ∈ Z such that x ≤ n

δij 1 if i = j, otherwise 0

A,B, C, . . . algebras

A,B,C, . . . completions of A,B, C, . . .

F ,D ,G , . . . Fredholm modules

A+ the algebra A with a unit adjoined

Ã A if A is unital, A+ if A is not unital

P⊥ I − P

F-Ind Fredholm index

Ind index map (Definition 2.2.4)

GL(A) invertible elements of A

B(H) bounded operators on H

DX , DpX equations (1.12), (1.13)

K(H) compact operators on H

Lp(H) p-summable operators on H (Definition 1.1.4)

R(H) finite-rank operators on H

F∗(A) Fredholm modules over A (Definition 2.1.2)

D∗(A) degenerate modules (Definition 2.1.4)

F∗
p(A) p-summable modules (Definition 2.3.3)

7



8 CONVENTIONS AND NOTATION

F∗
p(A) p-summable, normalized modules (Theorem 2.4.1)

K∗(A) K-Homology of A (Definition 2.1.7)

K∗
p(A) p-summable K-Homology of A (2.3.7)

K∗
fin(A) finitely summable K-Homology of A (2.3.7)

path a continuous map γ : [0, 1] −→ X into some topological
space X

smooth path an infinitely differentiable path in a topological vector
space such that all its derivatives vanish at the boundary
points 0 and 1†

system of matrix
units

Definition A.2.1

system of matrix
units for A

Definition A.2.3

†This definition has the advantage that we can concatenate two smooth paths and obtain
again a smooth path. However, this is a mere technicality: every infinitely differentiable path
(with bounded derivatives) can be reparameterized such that it becomes smooth in the sense
of our definition.



Chapter 1

Preliminaries

1.1 Schatten class operators
In this section we give a short introduction to the theory of Schatten class (or
p-summable) operators. The standard reference on this topic is the monograph
by Simon [Sim05], to which we will also refer for most proofs. The first three
chapters contain all we need.

Consider a compact operator T on a (possibly finite-dimensional) Hilbert
space H. Its absolute value |T | is thus a positive compact operator. The
spectral theorem for compact operators states that |T | is diagonal, 0 is the
only accumulation point of sp(T ), and that all eigenspaces of |T | are finite-
dimensional with the possible exception of its kernel. In other words: there
is a decreasing sequence of non-zero positive numbers {µk(T )} (namely the
sequence of non-zero eigenvalues of |T | counted by multiplicity) and a sequence
of orthonormal vectors {ξk} such that

|T |ξ =

k

µk(T )(ξ | ξk)ξk for all ξ ∈ H.

Note that this sum can also be finite.
Since we can write T in its polar decomposition as T = V |T | with a partial

isometry V , it follows that T must be of the form

Tξ =

k

µk(T )(ξ | ξk)ηk for all ξ ∈ H

where {ηk} := {V ξk} is another sequence of orthonormal vectors. Any operator
of this form is obviously compact and the numbers {µk(T )} must be the
eigenvalues of its absolute value (except for 0). Thus, we obtain the following
theorem:

9



10 CHAPTER 1. PRELIMINARIES

1.1.1 Theorem. Any compact operator T on a Hilbert space H is of the form

Tξ =

k

µk(T )(ξ | ξk)ηk for all ξ ∈ H (1.1)

with a decreasing sequence of non-zero positive numbers {µk(T )} and sequences
of orthonormal vectors {ξk}, {ηk}.

The sequence {µk(T )} is independent of the choice of {ξk}, {ηk} and is
called the sequence of characteristic values of T .

The following min-max-formula holds for the characteristic values of a
compact operator:

1.1.2 Proposition. If T is a compact operator on a Hilbert space H, then the
characteristic values of T are given by

µk(T ) = min
F⊆H subsp.
dim F=k−1

max
ξ∈F⊥
∥ξ∥=1

Tξ. (1.2)

Proof. Let T be of the form (1.1). Then, by choosing F := span{ξ1, . . . , ξk−1},
we see that the left-hand side of (1.2) must be larger than or equal its right-hand
side (with the minimum replaced by the corresponding infimum).

On the other hand, let any (k − 1)-dimensional subspace F of H be given,
and let Ek := span{ξ1, . . . , ξk}. The intersection F⊥ ∩ Ek cannot be zero-
dimensional: otherwise, the quotient map π : H −→ H/F⊥ would be injective
on Ek, but H/F⊥ ∼= F is of smaller dimension than Ek.

Since F⊥ ∩ Ek ̸= {0}, we can find a unit vector ξ′ in the intersection, and
as T is bounded from below on Ek by µk(T ), we obtain

max
ξ∈F⊥
∥ξ∥=1

Tξ ≥ Tξ′ ≥ µk(T ).

The minimum is attained for F := span{ξ1, . . . , ξk−1}.

1.1.3 Corollary. If T and S are compact operators and V is an arbitrary
bounded operator, then

µk(V T ) ≤
V µk(T ) and µk(TV ) ≤

V µk(T ) for all k (1.3)

as well as

µk+l+1(T + S) ≤ µk+1(T ) + µl+1(S) for all k, l ≥ 0. (1.4)

Proof. The first inequalities are obvious. For proving (1.4), fix k and l. Then
there is a k-dimensional subspace FT and an l-dimensional subspace FS of H
such that

µk+1(T ) = max
ξ∈F⊥

T
∥ξ∥=1

Tξ and µl+1(S) = max
ξ∈F⊥

S
∥ξ∥=1

Sξ.



1.1. SCHATTEN CLASS OPERATORS 11

Since FT + FS is at most (k + l)-dimensional, we conclude that

µk+l+1(T + S) ≤ max
ξ∈(FT +FS)⊥

∥ξ∥=1

(T + S)ξ


≤ max
ξ∈(FT +FS)⊥

∥ξ∥=1

Tξ+ max
ξ∈(FT +FS)⊥

∥ξ∥=1

Sξ
≤ µk+1(T ) + µl+1(S).

For p ∈ [1,∞), a p-summable operator is simply a compact operator whose
sequence of characteristic values is p-summable:

1.1.4 Definition. Let H be a Hilbert space. For 1 ≤ p < ∞ and T ∈ K(H)
we define Tp :=

{µk(T )}

p =


k

µk(T )p
 1

p
.

The pth Schatten class is given by

Lp(H) :=

T ∈ K(H)

 Tp <∞.
Elements of Lp(H) are called p-summable operators. If T is p-summable for
some p, we call T finitely summable.

1.1.5 Remarks. 1. This definition as well as the statements in the rest
of this section extend in an obvious way to compact operators between
different Hilbert spaces (one way to see this is to regard operators between
Hilbert spaces H1 and H2 as elements of B(H1 ⊕H2)).

2. If we want to point out that an operator T acting on a Hilbert space H
is p-summable, we will often just write T ∈ Lp instead of T ∈ Lp(H).

3. The Schatten classes are named after Robert Schatten. Also see his
classic monograph [Sch70].

With the little we have proven about the characteristic values of compact
operators, we can already deduce some important properties of the Schatten
classes:

Let T, S ∈ Lp(H). From (1.4) we obtain

µ2m+1(T + S) ≤ µm+1(T ) + µm+1(S)
µ2m(T + S) ≤ µm(T ) + µm+1(S),

which leads to the estimate{µk(T + S)}
p
p ≤ 2p+1{µk(T )}

p
p + 2p+1{µk(S)}

p
p . (1.5)
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Thus, Lp(H) is a vector space. Inequality (1.3) implies that Lp(H) is an ideal
in B(H) (of course, not a closed one).

From estimate (1.5) we obtain ∥T + S∥p ≤ 21+1/p (∥T∥p + ∥S∥p). With a
bit of extra work, one can get rid of the factor 21+1/p:

1.1.6 Proposition. ∥·∥p is a norm on Lp(H) turning it into a Banach space.
Lp(H) is an ideal in B(H) andUTV p ≤ U · Tp · V  for all T ∈ Lp(H), U, V ∈ B(H).

Proof. The triangle inequality for ∥·∥p follows easily from the fact that ∥·∥p
can be computed as Tp = sup

(ξk),(ηk)
o.n. bases

{(ηk | Tξk)}p
where the supremum is taken over all possible pairs of orthonormal bases of H.

The completeness of Lp(H) can also be easily deduced from this represen-
tation of ∥·∥p [Sim05, Proposition 2.6 and Theorem 2.7].

1.1.7 Proposition. If p < q, thenTq ≤ Tp for all T ∈ K(H),

hence Lp(H) ⊆ Lq(H).

Proof. Let T ∈ Lp(H) with ∥T∥p = 1 be given. In particular, we have
|µk(T )| ≤ 1 for each k, so

1 =
Tpp =


k

|µk(T )|p ≥

k

|µk(T )|q =
Tqq.

If T is a positive bounded operator and {ξk} is an orthonormal basis, the
quantities (ξk | Tξk) are positive for all k. This implies that the trace

Tr(T ) =
∞
k=1

(ξk | Tξk)

of T is a positive, possibly infinite number, and it is easily seen that Tr(T )
is independent of the choice of the orthonormal basis. In particular, if
T is compact, choosing an orthonormal basis of eigenvectors reveals that
Tr(T ) = ∥T∥1. Since the characteristic values of an arbitrary compact T are
the eigenvalues of |T |, we conclude:
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1.1.8 Proposition. If T ∈ K(H), then

Tp = (Tr |T |p)
1
p . (1.6)

1.1.9 Remark. The right-hand side of (1.6) makes sense for any bounded
operator T . It is finite if and only if T ∈ Lp(H).

It turns out that Tr can be extended by the same formula to all operators
in L1(H), not only positive ones [Sim05, Theorem 3.1]. Therefore, L1(H) is
often called the set of trace-class operators.

The trace of TS is the same as the trace of ST , like in the finite-dimensional
setting:

1.1.10 Proposition. If T, S ∈ B(H) have the property that TS and ST lie in
L1(H), then

TrTS = TrST .

Proof. [Sim05, Corollary 3.8].

If TS lies in L1, this does not automatically imply that ST lies in L1.
Consider, for example, two isometries T, S with orthogonal range. Then
T ∗S = 0 ∈ L1, whereas ST ∗ is a partial isometry of infinite rank.

Like for commutative Lp-spaces, there is a Hölder inequality for the p-norms:

1.1.11 Proposition (Non-Commutative Hölder Inequality). If the numbers
1 ≤ p, q, r <∞ satisfy 1

r = 1
p + 1

q and T ∈ Lp(H), S ∈ Lq(H), then

TSr ≤ Tp · Sq.
Proof. [Sim05, Theorem 2.8].

In particular, if 1 = 1
p + 1

q , Hölder’s inequality implies that TS lies in L1,
thus Tr(TS) defines a bilinear pairing between Lp and Lq. If T and S are
diagonal with respect to the same orthonormal basis {ξk}, which means that
T and S are of the form

Tξ =
∞
k=1

tk(ξ | ξk)ξk and Sξ =
∞
k=1

sk(ξ | ξk)ξk ,

then we have

Tr(TS) =
∞
k=1

tksk .

Thus, Tr(TS) generalizes the duality pairing between ℓp(N) and ℓq(N). In
fact, one can prove:
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1.1.12 Proposition. Let 1 < p, q <∞ such that 1 = 1
p + 1

q . Then Lq(H) can
be identified with the dual space of Lp(H) under the duality pairing

Lp(H)× Lq(H) −→ C

(T, S) →−→ Tr(TS).

In particular, Lp(H) is reflexive.
The same pairing yields the dualities

K(H)∗ = L1(H) and L1(H)∗ = B(H).

Proof. [Sim05, Theorem 3.2].

Finally, we shall need the following non-commutative analogue of Fatou’s
Lemma:

1.1.13 Proposition (Non-Commutative Fatou Lemma). Let {Aλ} be a net
in Lp(H) which converges weakly to A ∈ B(H). If supλ∥Aλ∥p < ∞, then
A ∈ Lp(H) and Ap ≤ sup

λ

Aλp.
Proof. [Sim05, Theorem 2.7].

1.2 Representations of ∗-algebras
In this section we will establish a few elementary results about the representa-
tion theory of topological ∗-algebras.

1.2.1 Definition. A ∗-algebra A is a complex algebra with an anti-linear map
∗ : A −→ A such that

∗ ◦ ∗ = idA and (xy)∗ = y∗x∗ for all x, y ∈ A.

If A carries a Hausdorff vector space topology making algebra multiplication
and the involution ∗ continuous maps, we call A endowed with this topology a
topological ∗-algebra.

We call an ideal of A any subspace of A which is a two-sided ideal in the
sense of ring theory and which is closed under the involution.† An ideal of a
topological ∗-algebra is closed if it is closed as a linear subspace.

1.2.2 Definition. A ∗-representation (short: representation) of a ∗-algebra A
on a Hilbert space H is an algebra homomorphism ϕ : A −→ B(H) satisfying

ϕ(x∗) = ϕ(x)∗ for all x ∈ A.

If A is a topological ∗-algebra and ϕ is continuous, then we call ϕ a continuous
∗-representation of A.

†Such ideals are often called ∗-ideals, but since all ideals we consider are ∗-ideals, we
drop the ∗.
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All results in this section are well-known in the C∗-algebra case and we
claim no originality in proving them in the slightly more general setting of
topological ∗-algebras, in which they are certainly known as well. We begin by
establishing the notion of the support of a ∗-representation and prove that if A
has an ideal J , then each representation of A has the support of its restriction
to J as an invariant subspace.

1.2.3 Proposition. Let A be a ∗-algebra, ϕ : A −→ B(H) a ∗-representation,
and let J be an Ideal of A.

If P is the orthogonal projection of H onto ϕ(J )H,† then

[ϕ(x), P ] = 0 and ϕ(j)P⊥ = 0 for all x ∈ A, j ∈ J .

Thus, ϕ can be decomposed as the direct sum of representations on PH and
P⊥H, and ϕ restricts to the zero representation of J on P⊥H.

Proof. For any ϕ(j)ξ ∈ ϕ(J )H and x ∈ A we have

(Pϕ(x))ϕ(j)ξ = ϕ(x)ϕ(j)ξ

since J is an ideal in A. Thus, by continuity, Pϕ(x) and ϕ(x) agree on PH,
which means that

Pϕ(x)P = ϕ(x)P for all x ∈ A.

Substituting x∗ for x and using that ϕ is a ∗-representation we get

Pϕ(x)P = Pϕ(x).

Therefore, Pϕ(x) = ϕ(x)P for all x ∈ A. Moreover, for any j ∈ J we have
Pϕ(j) = ϕ(j) and in particular

ϕ(j)P⊥ = P⊥ϕ(j) = 0.

1.2.4 Corollary. If A is a ∗-algebra, ϕ : A −→ B(H) a ∗-representation, and
P the projection onto ϕ(A)H, then

Pϕ(x) = ϕ(x)P = ϕ(x) for all x ∈ A.

P is called the support projection of ϕ.
†The (topological) closure of ϕ(J )H is indeed a vector subspace of H: if ϕ(x)ξ,

ϕ(y)η ∈ ϕ(J )H and if {uλ} is an approximate unit for the C∗-algebra ϕ(J ), then

ϕ(x)ξ + ϕ(y)η = lim
λ

uλϕ(x)ξ + lim
λ

uλϕ(y)η = lim
λ

uλ(ϕ(x)ξ + ϕ(y)η) ∈ ϕ(J )H = ϕ(J )H.

By continuity, this extends to all of ϕ(J )H.
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We call a net {uλ} in a topological ∗-algebra A a left-approximate unit if
limλ→∞ uλx = x for all x ∈ A. We call {uλ} bounded if it is bounded as a
subset of A in the sense of Definition A.1.2.

1.2.5 Proposition. Let A be a topological ∗-algebra with a bounded left-
approximate unit {uλ}. If ϕ is a continuous ∗-representation of A with support
projection P , then

s-lim
λ→∞

ϕ(uλ) = P

in the strong operator topology on B(H).

Proof. For any x ∈ A, ξ ∈ H we have

lim
λ→∞

ϕ(uλ)ϕ(x)ξ = lim
λ→∞

ϕ(uλx)ξ = ϕ(x)ξ. (1.7)

Since {uλ} is bounded and ϕ is continuous, the operators ϕ(uλ) are uniformly
bounded in norm. Combined with (1.7), this implies that ϕ(uλ)ξ converges to
ξ for any ξ ∈ PH. Since moreover ϕ(uλ)η = 0 for all η ∈ P⊥H, the proposition
follows.

1.2.6 Corollary. If ϕ is a ∗-representation of a ∗-algebra A with support
projection P , then P lies in the strong closure of ϕ(A).

Proof. The strong closure of ϕ(A) agrees with the strong closure of ϕ(A)
which, being a C∗-algebra, has a bounded approximate unit. The identity
representation of ϕ(A) has the same support as ϕ.

1.2.7 Proposition. Let A be a topological ∗-algebra. If J is an ideal of A with
a bounded left-approximate unit {uλ}, then each continuous ∗-representation
of J extends uniquely to a continuous ∗-representation of A with the same
support.

Proof. Let ϕ be a continuous ∗-representation of J on H and P its support
projection. For any x ∈ A define an operator ϕ(x) on the linear span of ϕ(J )H
by setting

ϕ(x)
 n
k=1

ϕ(jk)ξk


:=
n
k=1

ϕ(xjk)ξk ∈ PH (1.8)

for jk ∈ J , ξk ∈ H (1 ≤ k ≤ n). To show that this is well-defined, assume thatn′
k=1 ϕ(j′

k)ξ′
k =

n
k=1 ϕ(jk)ξk. Since {uλ} is a left-approximate unit for J , we

know that xuλjk converges to xjk and that xuλj′
k converges to xj′

k. Hence, by
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the continuity of ϕ,
n
k=1

ϕ(xjk)ξk =
n
k=1

lim
λ→∞

ϕ(xuλjk)ξk

= lim
λ→∞

ϕ(xuλ)
n
k=1

ϕ(jk)ξk

= lim
λ→∞

ϕ(xuλ)
n′
k=1

ϕ(j′
k)ξ′

k

=
n′
k=1

lim
λ→∞

ϕ(xuλj′
k)ξ′

k =
n′
k=1

ϕ(xj′
k)ξ′

k.

(1.9)

By definition, ϕ(x) is linear on the span of ϕ(J )H, and (1.9) also shows that
ϕ(xuλ) converges strongly to ϕ(x) on this space. It is moreover clear that
formula (1.8) extends the action of J on the span of ϕ(J )H.

Since the net {uλ} is bounded in J and the multiplication inA is continuous,
xuλ is bounded in J . Hence, by the continuity of ϕ, there is a C <∞ such
that ϕ(xuλ)

 ≤ C for all λ.
Therefore, we also have ∥ϕ(x)∥ ≤ C on the span of ϕ(J )H, so ϕ(x) can be
continuously extended to a bounded operator on PH and then to an operator
on H by extending it with the zero operator on the complement of PH.

Next, since

ϕ(µ1x+ µ2y)ϕ(j)ξ :=ϕ((µ1x+ µ2y)j)ξ
=µ1ϕ(xj)ξ + µ2ϕ(yj)ξ =: µ1ϕ(x)ϕ(j)ξ + µ2ϕ(y)ϕ(j)ψ

and

ϕ(xy)ϕ(j)ξ := ϕ(xyj)ξ =: ϕ(x)ϕ(yj)ξ =: ϕ(x)ϕ(y)ϕ(j)ξ

for µ1, µ2 ∈ C, x, y ∈ A, we see that ϕ is linear and multiplicative. Since ϕ is
multiplicative on A and a ∗-homomorphism on J , we conclude that

ϕ(x∗)ϕ(j)ξ = ϕ(x∗j)ξ = ϕ(j∗x)∗ξ = (ϕ(j∗)ϕ(x))∗ξ = ϕ(x)∗ϕ(j)ξ

for all x ∈ A, j ∈ J , and ξ ∈ H. Thus, ϕ is indeed a ∗-representation of A.
Finally, we prove the continuity of ϕ. Let ε > 0 be given. Since ϕ is

continuous on J , ϕ−1(Bε(0))∩J is a neighbourhood of 0 in J . Multiplication
in A is continuous, so there are neighbourhoods U ⊆ A, V ⊆ J of 0 such that

U · V ⊆ ϕ−1(Bε(0)) ∩ J .

Since {uλ} is bounded in J , there is an r <∞ such that {uλ} ⊆ rV . Hence,

1
r
U · {uλ} ⊆ ϕ−1(Bε(0)) ∩ J ,
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which implies that
ϕ(xuλ)

 < ε for all λ and x ∈ 1
r
U.

As ϕ(x) is the strong limit of ϕ(xuλ), we conclude that

ϕ(x)
 ≤ ε for all x ∈ 1

r
U.

Thus, ϕ is continuous.
There can only be one extension of ϕ to A with the same support since

equation (1.8) already determines such ϕ for all x ∈ A.

1.3 Holomorphic functional calculus
As we have already indicated in the introduction, the category of C∗-algebras
is not an adequate setting for finitely summable K-homology: neither the
Schatten classes Lp(H) nor algebras of smooth functions like C∞(M) are
C∗-algebras. Therefore, functional calculus with arbitrary continuous functions
will not be at our disposal. However, we will make use of a functional calculus
with holomorphic functions which is available for a larger class of algebras,
including arbitrary Banach algebras:

1.3.1 Definition (Holomorphic functional calculus). If x is an element of a uni-
tal Banach algebra A and f : U −→ C is holomorphic on some neighbourhood
U of sp(x) ⊆ C, then define

f(x) := 1
2πi


Γ
f(z)(z − x)−1 dz (1.10)

where Γ is a Cauchy contour in U \ sp(x) such that sp(x) lies in the domain
enclosed by Γ.

It is clear that the integral in (1.10) converges as inversion is continuous
in GL(A). By standard arguments from function theory, one sees that this
definition is indeed independent of the choice of Γ.

If A is not unital, we can embed A into its unitization A+ and obtain an
element f(x) ∈ A+. With π being the quotient map A+ −→ C, we have

π(f(x)) = 1
2πi


Γ
f(z)(z − 0)−1 dz = f(0)

by the continuity of π and Cauchy’s integral formula. This implies:

1.3.2 Proposition. If f is holomorphic on a neighbourhood of sp(x) with
f(0) = 0, then f(x) ∈ A.

We list some important properties of holomorphic functional calculus:
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1.3.3 Proposition. Let x ∈ A, λ ∈ C and let f, g be functions which are
holomorphic on a neighbourhood of sp(x). Then:

(i) (λf + g)(x) = λf(x) + g(x)

(ii) (fg)(x) = f(x)g(x)

(iii) sp f(x) = f(sp(x))

(iv) If f can be written as a power series f(z) =
∞
k=0 µkz

k with radius of
convergence greater than ∥x∥, then f(x) =

∞
k=0 µkx

k.

If A is a C∗-algebra and x is normal, then (for holomorphic functions)
the holomorphic functional calculus for x agrees with the continuous
functional calculus for x.

A nice exposition of holomorphic functional calculus containing a proof of
this proposition can be found in [GGK90, Chapter 1].

1.4 Pre-C∗-algebras
Pre-C∗-algebras are C∗-normed algebras that are closed under holomorphic
functional calculus. Since the typical K-theory constructions for projections and
unitaries only depend on holomorphic functional calculus (see Section 1.5), pre-
C∗-algebras posses a well-behaved K-theory. In fact, the K-theory of a pre-C∗-
algebra agrees with the K-theory of its C∗-algebra completion (Theorem 1.5.9).

The closure under holomorphic functional calculus can also be seen as a
minimal requirement for an algebra to be a (non-commutative) algebra of
smooth functions. In particular, if M is a smooth manifold, then C∞

0 (M) is a
pre-C∗-algebra.

While we define finitely summable K-homology for arbitrary topological
∗-algebras, every p-summable Fredholm module F = (ϕ,H, F ) extends to a
p-summable module over a pre-C∗-algebra. Moreover, from a dual point of
view, F lies in the pre-C∗-algebra of all operators that commute with ϕ up to
p-summable operators. This allows us to perform certain deformations of F
while preserving the commutation relation with ϕ.

1.4.1 Definition. Let A be a normed algebra and A its norm completion.
Since A is a Banach algebra, we can define by holomorphic functional calculus
an element f(x) ∈ A for each x ∈ A and each function f which is holomorphic
on a neighbourhood of spA(x) (with f(0) = 0 if A is non-unital). If f(x) ∈ A
for each such x and f , we say that A is closed under holomorphic functional
calculus.

1.4.2 Definition. A pre-C∗-algebra is a ∗-algebra A endowed with a C∗-norm
such that Mn(A) with its induced C∗-norm is closed under holomorphic
functional calculus for all n ∈ N.
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1.4.3 Remarks. 1. It follows in particular from the definition that for any
x ∈ A we have spA(x) = spA(x).

2. In the literature, the term ‘pre-C∗-algebra’ sometimes refers to the class
of all C∗-normed ∗-algebras.

3. Our definition is the same as in [Bla98], where such algebras are called
‘local C∗-algebras’, but it seems that this term has come out of fashion.

The following two propositions from [Sch92] show that if spA(x) = spA(x)
for all x ∈ A, then this often already implies that A is a pre-C∗-algebra.

1.4.4 Proposition. Let A be a C∗-normed ∗-algebra and A its completion. If
spA(x) = spA(x) for all x ∈ A, then

spMn(A)(x) = spMn(A)(x) for all x ∈Mn(A), n ∈ N.

Proof. The non-unital case can be easily reduced to the unital case, so assume
that A is unital. Moreover, we prove the proposition only for n = 2. For
arbitrary n, the claim follows by embedding Mn(A) into M2k(A) where n ≤ 2k.

First, let

x =

x11 x12
x21 x22


∈M2(A) ∩M2(A)−1 with

1M2(A) − x
 < 1

be given. Then we also have ∥1A−x11∥ < 1, which implies that x11 is invertible
in A. By assumption, its inverse lies in A. This means that we can factorize x
over M2(A) as

x11 x12
x21 x22


=


1 0
x21x

−1
11 1

 
x11 0
0 x22 − x21x

−1
11 x12

 
1 x−1

11 x12
0 1


.

The left and right factors are obviously invertible in M2(A). Because x is
invertible in M2(A), the factor in the middle must also be invertible in M2(A)
and, being diagonal, in M2(A). Thus, x is invertible in M2(A).

Now, let x ∈M2(A)∩M2(A)−1 be arbitrary. SinceA is dense in A, there is a
y ∈M2(A) with ∥x−1 − y∥ < 1/∥x∥. Then ∥1M2(A) − xy∥ = ∥x(x−1 − y)∥ < 1.
By the argument above, there exists an inverse z ∈ M2(A) to xy. Thus,
yz ∈M2(A) is the inverse of x.

1.4.5 Definition. A Fréchet algebra is a topological algebra whose underlying
topological vector space is a Fréchet space (we only require that multiplica-
tion is continuous but not that the topology is generated by a sequence of
submultiplicative semi-norms).

1.4.6 Proposition. Let A be a C∗-normed ∗-algebra with completion A such
that spA(x) = spA(x) for all x ∈ A.

If A can be endowed with a Fréchet algebra topology stronger than its norm
topology, then A is a pre-C∗-algebra.
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Proof. Let A be given with its Fréchet algebra topology, and assume without
loss of generality that A is unital. The inclusion ι of A into A is continuous by
assumption. Thus, GL(A) = ι−1(GL(A)) is open in A, which makes it possible
to find a complete metric on GL(A) which induces the subspace topology of
GL(A) ⊆ A.† It can be shown that a group with a complete metric that makes
multiplication continuous has continuous inversion [Wae71].

Therefore, the integrands in (1.10) are continuous and the completeness of
A implies that A is closed under holomorphic functional calculus.

The Fréchet topology on A induces a Fréchet algebra topology on Mn(A)
stronger than the norm topology. Using Proposition 1.4.4 we thus see that
Mn(A) must be closed under holomorphic functional calculus by the same
argument.

1.4.7 Corollary. If M is a smooth manifold, then C∞
0 (M) is a pre-C∗-

subalgebra of C0(M).

Proof. If U ⊆ Rn is open, then C∞
0 (U) can be made a Fréchet algebra using

the semi-norms

|f |k :=


|α|=k

∂αf∞ for all f ∈ C∞
0 (U), k ∈ N0.

If M is an arbitrary smooth manifold, cover M with coordinate patches
and define on each patch semi-norms by the same formula.

1.4.8 Proposition. If ϕ is a ∗-homomorphism from a pre-C∗-algebra A into
a C∗-normed algebra B, then ϕ is automatically continuous. In particular, any
such ∗-homomorphism extends to a ∗-homomorphism between the completions
A,B of A and B.

Proof. Using the invariance of the spectrum, the proof is the same as for
C∗-algebras:x2 =

x∗x
 = ρA(x∗x) = ρA(x∗x) ≥ ρB(ϕ(x)∗ϕ(x)) =

ϕ(x)
2

for all x ∈ A with ρ(x) denoting the spectral radius of x.

1.4.9 Proposition. If A is a pre-C∗-algebra and J a closed ideal of A, then
J is a pre-C∗-algebra as well.

Proof. Let J be the norm-closure of J in A. Consider j ∈ J and a function
f holomorphic on a neighbourhood of spJ(j) with f(0) = 0. Then we have
f(j) ∈ J and, since spJ(j) ∪ {0} = spA(j) ∪ {0}, also f(j) ∈ A. Moreover,
J = J ∩ A since J is closed in A. Thus, f(j) ∈ J . If J is unital and f
holomorphic on spJ(j) with f(0) ̸= 0, then f(j) = (f−f(0))(j)+f(0) ·1J ∈ J .

The same arguments hold for matrix algebras over J .
†Consider the embedding ϕ : GL(A) −→ A × R, x →−→ (x, d(x, ∂ GL(A))−1) where d

denotes a metric on A which induces the Fréchet space topology. The pullback of the product
metric on A ×R via ϕ has this property.
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Schmitt proves in [Sch91] that quotients of pre-C∗-algebras are again pre-
C∗-algebras. We reproduce the proof in the following proposition and its
corollary with a little more verbosity.

The proof is based on the fact that closedness under holomorphic functional
calculus is equivalent to being closed under functional calculus with power
series, a property which is easily seen to pass to quotients.

1.4.10 Definition. Let A be a unital normed algebra. If f(a) ∈ A for any
a ∈ A and any f holomorphic on a disk around the origin of radius greater
than ∥a∥, we say that A is closed under functional calculus with power series.

1.4.11 Proposition. If A is closed under functional calculus with power series,
then A is closed under holomorphic functional calculus.

Proof. First, note that the following is true in general: if hn : [0, 1] −→ C

(n ∈ N) are uniformly bounded continuous functions and
∞
n=1 ξn is an

absolutely converging series in some Banach space, then

 1

0

∞
n=1

hn(t)ξn dt =
∞
n=1

 1

0
hn(t) dt


· ξn. (1.11)

Denote by A the completion of A. The function f(x) = 1/(1 − x) is
holomorphic on the open disk of radius 1 around 0. So if ∥1A − x∥ < 1, then
x−1 = f(1A − x) lies in A. As in the proof of Proposition 1.4.4, it follows that
spA(x) = spA(x) for all x ∈ A.

Let now f be an arbitrary function that is holomorphic on an open
neighbourhood U of spA(x), and let Γ be a piecewise linear Cauchy contour in
U enclosing spA(x) (such a contour can always be found). We have to prove
that the integral 

Γ
f(z)(z − x)−1 dz

converges in A. To this end, parameterize Γ by linear paths γj : [0, 1] −→ C

such that

|γj(1)− γj(0)| < 1
∥(γj(0)− x)−1∥

for all j.

Then we can write (γj(t)− x)−1 as

(γj(t)− x)−1 = (γj(0)− x)−1
∞
l=0


(γj(0)− γj(t))(γj(0)− x)−1

l
.
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Abbreviating γj(1)− γj(0) by δ and using (1.11), we thus obtain
Γj

f(z)(z − x)−1 dz =
 1

0
f(γ(t))

∞
l=0

(−δt)l(γj(0)− x)−l−1 · δ dt

=
 1

0

∞
l=0


f(γ(t))(−t)l

 
δ(γj(0)− x)−1

l+1
dt

=
∞
l=0

 1

0
f(γ(t))(−t)l dt

 
δ(γj(0)− x)−1

l+1

= g

δ(γj(0)− x)−1


where

g(z) :=
∞
l=0

 1

0
f(γ(t))(−t)l dt


zl+1.

g is a power series with radius of convergence at least 1. By assumption, the
integral must therefore lie in A.

1.4.12 Corollary. If A is a pre-C∗-algebra and J a closed ideal of A, then
A/J is also a pre-C∗-algebra.

Proof. First assume that A is unital. By the last proposition, it suffices to
show that A/J is closed under functional calculus with power series. For this
let [x] ∈ A/J and let f be holomorphic on a disk of radius r greater than
∥[x]∥. There is a representative x′ ∈ A of [x] such that ∥x′∥ < r. Hence, we
can apply f to x′, and since A is a pre-C∗-algebra, f(x′) lies in A. Thus,
f([x]) = [f(x′)] ∈ A/J .

If A is a non-unital pre-C∗-algebra, then A+ is a pre-C∗-algebra as well.
Thus, A/J is a closed ideal of the pre-C∗-algebra A+/J and therefore a
pre-C∗-algebra.

The same arguments hold for matrix algebras.

1.4.13 Proposition. If Ai (i ∈ I) is a system of pre-C∗-subalgebras of a
C∗-algebra B, then


i∈I Ai is a pre-C∗-algebra.

If Ai (i ∈ I) is an increasing union of pre-C∗-subalgebras of B, then
i∈I Ai is a pre-C∗-algebra.

Proof. Obvious.

If X is a set of operators on a Hilbert space H, then

DX :=

T ∈ B(H)

 [X,T ] ∈ K(H) for all X ∈ X ∪ X ∗


(1.12)

is easily seen to be a C∗-algebra. As a final result for this section, we show that
the set of operators which commute with X ∪ X ∗ up to p-summable operators
forms a pre-C∗-subalgebra† of DX .

†As we will see later on, Dp
X is not necessarily dense in DX .
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1.4.14 Proposition. If X ∈ B(H), then

DpX :=

T ∈ B(H)

 [X,T ] ∈ Lp(H) and [X∗, T ] ∈ Lp(H)


is a pre-C∗-algebra.

Proof. DpX is a ∗-algebra since Lp(H) is an ideal and

[X,TS] = T [X,S] + [X,T ]S and [X,T ∗] = −[X∗, T ]∗

for all T, S ∈ B(H). If T ∈ DpX is invertible as an operator on H, then

[X,T−1] = −T−1[X,T ]T−1 ∈ Lp(H).

This means that spDp
X

(T ) = spB(H)(T ) for all T ∈ DpX .
Moreover, the normT∗ :=

T+
[X,T ]


p +

[X∗, T ]

p

is submultiplicative on DpX becauseTS+
[X,TS]


p +

[X∗, TS]

p

=
TS+

T [X,S] + [X,T ]S

p +

T [X∗, S] + [X∗, T ]S

p

≤
TS+

T[X,S]

p +

[X,T ]

p

S
+
T[X∗S]


p +

[X∗, T ]

p

S
≤
T+

[X,T ]

p +

[X∗, T ]

p

S+
[X,S]


p +

[X∗, S]

p


for all S, T ∈ DpX .

If Tn is a Cauchy sequence in DpX with respect to ∥·∥∗, then Tn converges
in operator norm to a bounded operator T . Thus, [X,Tn] converges in B(H)
to [X,T ]. Since Lp(H) is complete, [X,Tn] also converges in Lp(H) to an
operator K. However, since the topology induced by ∥·∥p is stronger than the
topology induced by ∥·∥, both limits must agree. So [X,T ] ∈ Lp(H) and, by
the same argument, [X∗, T ] ∈ Lp(H). This shows that DpX endowed with ∥·∥∗
is a Banach algebra. Thus, DpX is a pre-C∗-algebra by Proposition 1.4.6.

1.4.15 Corollary. If X is a set of operators on a Hilbert space H, then

DpX :=

T ∈ B(H)

 [X,T ] ∈ Lp(H) for all X ∈ X ∪ X ∗


(1.13)

is a pre-C∗-algebra.

Proof. DpX =

X∈X D

p
X and Proposition 1.4.13.
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1.5 Projections and unitaries in pre-C∗-algebras
We collect some standard results about homotopies of projections and unitaries
in pre-C∗-algebras. The following proofs are taken from [Bla98]. Our main
point in repeating these results is to give the reader the opportunity to convince
himself that all arguments work as well in the setting of pre-C∗-algebras as
they do for C∗-algebras (for which he might be familiar with them).

In the whole section A will denote a pre-C∗-algebra.

1.5.1 Proposition. Every invertible w ∈ A admits a polar decomposition
w = u|w|.

Proof. w∗w is invertible, so
√
· is holomorphic on sp(w∗w). Thus, |w| and

therefore u = w|w|−1 lie in A.

1.5.2 Proposition. Every invertible w ∈ A is homotopic to a unitary via a
path of invertibles. Two unitaries which are homotopic via a path of invertibles
are homotopic via a path of unitaries.

Proof. If w is invertible and w = u|w| its polar decomposition, then w and u
are connected via the path wt = u((1− t)|w|+ t).

If wt is a path of invertibles connecting unitaries u and v, then by the conti-
nuity of functional calculus, |wt| is also a continuous path. Thus, ut = wt|wt|−1

is a continuous path of unitaries connecting u and v.

1.5.3 Proposition. If u ∈ A is unitary and homotopic to 1A via a path of
unitaries, then there are positive a1, . . . , an ∈ A such that

u = eia1 · · · eian .

Proof. If ∥1 − u∥ < 2, then −1 /∈ spu. Thus, the branch of the complex
logarithm taking S1 \{−1} to (−iπ, iπ) is holomorphic on sp(u), so log(u) ∈ A.
Let a1 := 2π · 1A + 1

i log(u) to obtain u = eia1 .
If u and v are connected via a path of unitaries, by the compactness of [0, 1]

we can find unitaries u = u0, u1, . . . , un = v with ∥ui+1u
∗
i−1∥ = ∥ui+1−ui∥ < 2,

and the general case follows from what we have already shown.

1.5.4 Corollary. Any two unitaries u, v ∈ A that are homotopic via a path
of invertibles can be joined by paths eita0u0, . . . , e

itan−1un−1 where a0, . . . , an−1
are positive and u = u0, u1, . . . , un = v unitaries with eiajuj = uj+1 for
j = 0, . . . , n− 1.

1.5.5 Proposition. Every idempotent in A is homotopic to a projection via
a path of idempotents. Two projections in A which are homotopic via a path
of idempotents are homotopic via a path of projections.
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Proof. Let e be an idempotent in A. Since A is a pre-C∗-algebra, the element
z = 1+(e−e∗)(e∗−e) must be invertible in Ã. Then p = ee∗z−1 is a projection
in A, which is homotopic to e via the path (1− tp+ te)e(1 + tp− te).

If et is a path of idempotents between projections p0 and p1, set again
zt = 1 + (et − e∗

t )(e∗
t − et). Then pt = ete

∗
t z

−1
t is a path of projections from p0

to p1.

1.5.6 Proposition. If a, b are self-adjoint and w is invertible in A with
waw−1 = b, then there is a unitary u in A such that uau∗ = b. In fact, u can
be chosen to be the unitary part of the polar decomposition of w.

Proof. We have wa = bw and by taking adjoints aw∗ = w∗b. Thus, we get
w∗wa = w∗bw = aw∗w. This implies that |w| commutes with a. If w = u|w|
is the polar decomposition of w, we conclude that

uau∗ = w|w|−1au∗ = wa|w|−1u∗ = bw|w|−1u∗ = b.

1.5.7 Proposition. If p, q are projections in A such that ∥p − q∥ < 1, then
p and q are homotopic via utpu

∗
t where ut is a path of unitaries in Ã with

u0 = 1.

Proof. Let v = (2q − 1)(2p− 1) + 1. Then ∥1− v
2∥ = ∥(2q − 1)(q − p)∥ < 1, so

v is invertible. If wt = tv2 + 1 − t, then wt is also invertible for 0 ≤ t ≤ 1 as
∥1− wt∥ = ∥t(1− v

2)∥ < 1. Because vp = 2qp = qv, we see that wtpw−1
t is a

path from p to q. If ut is the unitary part of the polar decomposition of wt,
then utpu

∗
t is the path we are looking for by the last proposition.

1.5.8 Corollary. Any two projections p, q homotopic in A via a path of
idempotents can be connected via paths eita0p0e

−ita0 , . . . , eitan−1pn−1e
−itan−1

where a0, . . . , an−1 are positive and p = p0, p1, . . . , pn = q projections with
eiajpje

−iaj = pj+1 for j = 0, . . . n− 1.

As these propositions indicate, pre-C∗-algebras play nicely with K-theory
constructions. In fact, for K-theory calculations of C∗-algebras, we can always
restrict to a dense pre-C∗-subalgebra:

1.5.9 Theorem. If A is dense in A, then the inclusion ι : A −→ A induces
isomorphisms

ι∗ : K∗(A) −→ K∗(A).

Proof. (Sketch) Assume that A is unital. As Mn(A) is dense in Mn(A), we
can find to each projection p of Mn(A) a self-adjoint p′ ∈Mn(A) near p such
that 0 and 1 do not lie in the same connected component of sp(p′). Using
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holomorphic functional calculus on p′, we find a projection p′′ near p′ which is
homotopic to p in Mn(A) by Proposition 1.5.7. Thus, ι0 is surjective.

If p, q ∈ Mn(A) are homotopic in Mn(A), dissect a connecting path into
small pieces at points pi such that ∥pi − pi+1∥ < 1/2. Find projections
p′
i ∈Mn(A) with ∥p′

i − pi∥ < 1/4. Then p′
i and p′

i+1 are homotopic in Mn(A),
again by Proposition 1.5.7. This shows that p and q can be connected in
Mn(A) by a path of projections, proving that ι0 is injective.

Similar arguments work for ι1.





Chapter 2

Finitely Summable
K-Homology

We introduce finitely summable K-homology. In the first section we review
the basic definitions of K-homology and also settle some notation we will use
later on. In Section 2.2 we discuss two prominent features of K-homology: the
Kasparov product and the index pairing. We will argue why we cannot expect
to have a product for finitely summable K-homology. Section 2.3 contains the
definition of finitely summable K-homology. In Section 2.4 we discuss how
some standard normalization procedures for Fredholm modules carry over to
our theory.

2.1 K-Homology

The purpose of this and the following section is to give a brief overview of
K-homology, providing the most important definitions and stating some central
properties. We have by no means the space to give an adequate introduction
to the subject, as it can be found in [HR00] or, more condensed and in the full
bivariant setting, in [Bla98]. However, we do hope that we can give the reader
a sufficient foundation for understanding what follows. This section also serves
the purpose of establishing some notation.

Topological K-theory, the classification of vector bundles up to stabilization,
is a generalized cohomology theory on the category of finite CW-complexes.
Spanier-Whitehead duality dictates the existence of a dual homology theory.
This theory is called K-homology.

There are two different but mostly equivalent approaches to a concrete
realization of K-homology, which both, like K-theory, generalize naturally to
non-commutative spaces, i.e. C∗-algebras. Since the transition from spaces to
algebras reverses arrows, K-homology then becomes a cohomology theory for
C∗-algebras, which we denote by K∗.

29
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The starting point for the first approach to K-homology is the classification
of essentially normal operators on a Hilbert space by unitary equivalence up
to compact operators. Brown, Douglas and Fillmore observed that such an
operator defines an extension of the C∗-algebra of continuous functions on the
essential spectrum of the operator by the algebra of compact operators and
that the classification problem for operators with the same essential spectrum
X can be reduced to classifying these extensions of C(X) up to an appropriate
equivalence relation [BDF77].

Under this equivalence relation, the class of extensions of C(X) by the
algebra of compact operators becomes an abelian group denoted by Ext(C(X)).
By defining higher order Ext-groups via suspensions of C(X), Ext becomes a
homology theory, which can be shown to agree with K-homology. This is the
‘Ext-picture’ of K-homology. We will not work with it except for the proof of
Theorem 4.1.1, where we will say a few more words about it.

The second approach, which is the one we will work with, comes from index
theory. Index theory is concerned with calculating the Fredholm indices of
elliptic differential operators over smooth manifolds. Based on ideas of Atiyah
to condense the properties of elliptic operators which are relevant for index
theory into a more abstract notion, Kasparov defined homology groups in
terms of equivalence classes of so-called Fredholm modules [Kas75]. These
groups turn out to be another realization of K-homology.

2.1.1 Definition. A Hilbert space H is called Z2-graded (or just graded) if it
is equipped with a decomposition into a positive and a negative subspace

H = H+ ⊕H−.

An operator on H is called even if it maps H+ into H+ and H− into H−. If
an operator on H maps H+ into H− and H− into H+, it is called odd.

If H is a graded Hilbert space, then Hop is the same Hilbert space H
endowed with the opposite grading: the positive subspace of H is the negative
subspace of Hop and the negative subspace of H is the positive subspace of
Hop. In particular, the identity operator on H becomes an odd operator, when
viewed as a map between H and Hop.

2.1.2 Definition. An odd Fredholm module over a C∗-algebra A is a triple
(ϕ,H, F ) where ϕ : A −→ B(H) is a ∗-representation of A on a (possibly
finite-dimensional) separable Hilbert space H and F is a bounded operator on
H satisfying the relations

ϕ(x)(F 2 − I) ∈ K(H) and [F,ϕ(x)] ∈ K(H) for all x ∈ A. (2.1)

An odd Fredholm module together with a Z2-grading of H is called an even
Fredholm module if ϕ is even and F is odd with respect to this grading. In
other words, an even Fredholm module is an odd Fredholm module of the form

ϕ+ ⊕ ϕ−, H+ ⊕H−,


0 V
U 0


.
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We denote the class of odd Fredholm modules over A by F1(A) and the class
of even Fredholm modules by F0(A).

2.1.3 Remarks. 1. Defining Fredholm modules as triples (ϕ,H, F ) is a
bit redundant, since H is already given as the representation space of ϕ.
We have opted for this more verbose definition to always have a name
for this space at hand.

2. There are quite a few variations of how Fredholm modules are defined.
For example, F is often required to be self-adjoint or self-adjoint up to
compact operators. We have chosen here the most general definition and
show further below that all these definitions lead to the same homology
groups.†

As we will demonstrate in Chapter 6, elliptic differential operators over a
closed manifold M give rise to Fredholm modules over C(M) (one obtains F by
making the differential operator bounded). This justifies to think of Fredholm
modules as abstract elliptic operators over (possibly) non-commutative spaces.

If a Fredholm module is constructed from an elliptic operator, the relations
in (2.1) are not only satisfied up to compact operators but even up to
p-summable operators, where p depends on the dimension of the manifold.
This observation is the starting point of finitely summable K-homology.

Now, to define Kasparov’s K-homology groups K∗(A), we first need to
introduce the notions of degeneracy and direct sum of Fredholm modules:

2.1.4 Definition. A Fredholm module (ϕ,H, F ) ∈ F∗(A) is called degenerate
if

F ∗ = F, F 2 − I = 0 and [F,ϕ(x)] = 0 for all x ∈ A.

The classes of degenerate odd and even Fredholm modules over A will be
denoted by D∗(A) ⊆ F∗(A).

2.1.5 Definition. For (ϕ,H, F ), (ϕ′,H′, F ′) ∈ F∗(A) define

(ϕ,H, F )⊕ (ϕ′,H′, F ′) := (ϕ⊕ ϕ′,H⊕H′, F ⊕ F ′).

In the even case, the direct sum is to be understood as a direct sum of graded
Hilbert spaces (the even (resp. odd) subspace of H⊕H′ is the direct sum of
the even (resp. odd) subspaces of H and H′).

It is obvious that (ϕ,H, F )⊕ (ϕ′,H′, F ′) ∈ F∗(A). If both summands are
degenerate, their direct sum is degenerate as well.

†See Theorem 2.4.1 and Remark 2.4.8.
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Next, we define some equivalence relations on the sets† of odd and even
Fredholm modules:

2.1.6 Definition. 1. Two odd modules (ϕ,H, F ), (ϕ′,H′, F ′) ∈ F1(A) are
called unitarily equivalent if there is a unitary U : H −→ H′ such that

F ′ = UFU∗ and ϕ′(x) = Uϕ(x)U∗ for all x ∈ A.

Two even modules are called unitarily equivalent if, moreover, U respects
the grading, sending the even (resp. odd) subspace of H to the even (resp.
odd) subspace of H′. We write (ϕ,H, F ) ∼u (ϕ′,H′, F ′).

2. (ϕ,H, F ), (ϕ′,H′, F ′) ∈ F∗(A) are said to differ by degenerate modules
if there are (ψ,N , G), (ψ′,N ′, G′) ∈ D∗(A) such that

(ϕ,H, F )⊕ (ψ,N , G) = (ϕ′,H′, F ′)⊕ (ψ′,N ′, G′).

We denote this by (ϕ,H, F ) ∼d (ϕ′,H′, F ′).

3. (ϕ,H, F ), (ϕ,H, F ′) ∈ F∗(A) are called operator homotopic if there is
a continuous path Ft ∈ B(H) with F0 = F and F1 = F ′ such that
(ϕ,H, Ft) ∈ F∗(A) for all t ∈ [0, 1]. We write (ϕ,H, F ) ∼oh (ϕ,H, F ′).

4. If ∼1,∼2, . . . ,∼k are equivalence relations, we define ⟨∼1,∼2, . . . ,∼k⟩ to
be the transitive closure of the ∼j . So x ⟨∼1,∼2, . . . ,∼k⟩ y if and only if
there exists a finite chain

x ∼i0 x1 ∼i1 . . . ∼in−1 xn ∼in y

with ij ∈ {1, 2, . . . , k}.

It is immediately apparent that these relations are indeed equivalence
relations.

If a Fredholm module F is defined by an elliptic operator D, then the
index data‡ of D is preserved by F . As the Fredholm index is invariant under
unitary equivalence and homotopies, additive with respect to direct sums, and
zero for degenerate modules, the following definition is plausible (compare
Definition 2.2.4).

†The vigilant reader will have noticed that F∗(A) and D∗(A) are no sets at all but
honest classes since there are class-many separable Hilbert spaces. The same is true for the
equivalence classes of Fredholm modules we are going to define. Thus, to define K∗(A) as
the set of these equivalence classes is completely meaningless!

If you should feel uncomfortable now, there is an easy remedy: choose for each at most
countable cardinality a fixed Hilbert space and consider only Fredholm modules which are
defined on these spaces. If you moreover choose fixed unitaries which identify direct sums of
these spaces with other Hilbert spaces of this set, you are out of trouble. We happily leave
the details to readers with a romantic attitude towards formalism.

‡The (graded) Fredholm index of D, but also the index of D after twisting it with some
vector bundle.
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2.1.7 Definition. The K-homology groups K0(A) and K1(A) of a C∗-algebra
A are given by

K∗(A) := F∗(A) / ⟨∼u,∼d,∼oh⟩.

It is obvious that the direct sum operation on Fredholm modules is
compatible with all equivalence relations introduced so far. Therefore, we can
define the sum of elements x,y ∈ K∗(A) to be the class of the direct sum of
two of their representatives. The following proposition shows that K0(A) and
K1(A) really form a group when equipped with this addition.

2.1.8 Proposition. The sets K∗(A) form abelian groups with addition given
by the direct sum of representatives.

Proof. First note that, by dividing out ∼d and ∼u, all degenerate odd (resp.
even) modules are equivalent. The class 0 ∈ K∗(A) they represent is a neutral
element under addition.

If x = [(ϕ,H, F )] ∈ K∗(A), then the inverse of x is represented by
(ϕ,Hop,−F ). This is because

ϕ⊕ ϕ, H⊕Hop,

cos(π2 t)F sin(π2 t)I
sin(π2 t)I − cos(π2 t)F



is an operator homotopy connecting the direct sum of the modules to a
degenerate module.

Finally, K∗(A) is abelian since a direct sum of modules F ⊕F ′ is unitarily
equivalent to F ′ ⊕F .

2.1.9 Remark. In the introduction we have definedK∗(A) as the Grothendieck
group of F∗(A) / ⟨∼u,∼oh⟩. Both definitions agree: if D is a degenerate
Fredholm module over A, then


ND is a Fredholm module as well. Since

D ⊕

ND ∼u


ND , cancellation implies that the class of D must be zero.

2.1.10 Definition. If α : A −→ B is a ∗-homomorphism and F = (ϕ,H, F )
a Fredholm module over B, then define the pullback of F via α to be the
module over A given by

α∗F := (ϕ ◦ α,H, F )

This pullback operation descends to K-homology, making K0 and K1

contravariant functors from the category of C∗-algebras to the category of
abelian groups.
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2.2 Product and index pairing in K-homology
One of the remarkable features of Kasparov’s K-homology is the existence of a
bilinear product

× : Ki(A)×Kj(B) −→ Ki+j(A⊗B) (2.2)

(the sum i+ j is to be understood modulo 2 and A⊗B denotes the minimal
C∗-algebraic tensor product of A and B). More precisely, the following theorem
is true:

2.2.1 Theorem (Kasparov). For any separable C∗-algebras A and B there
are bilinear maps of the form (2.2) such that the following statements are true:

(i) If A is a separable C∗-algebra and 1 is the generator of K0(C) of index
1,† then under the isomorphisms

C⊗A ∼= A ∼= A⊗C

we have for any x ∈ K∗(A)

1× x = x = x× 1.

(ii) The product is natural in the following sense: if α : A −→ A′ and
β : B −→ B′ are ∗-homomorphisms between separable C∗-algebras,
x ∈ K∗(A′) and y ∈ K∗(B′), then

(α⊗ β)∗(x× y) = α∗x× β∗y.

(iii) The product is associative: if x ∈ K∗(A), y ∈ K∗(B) and z ∈ K∗(C),
then under the isomorphism (A⊗B)⊗ C ∼= A⊗ (B ⊗ C) we obtain

(x× y)× z = x× (y× z).

Proof. [HR00, Chapter 9].

The K-homology groups K∗(A) are just special cases of Kasparov’s bivariant
K-theory groups. In this setting, we have

K∗(A) = KK∗(A,C),

and the product becomes an instance (the external product) of the even more
powerful bivariant product in KK-theory

KKi(A1, B1 ⊗ C)×KKj(C ⊗A2, B2) −→ KKi+j(A1 ⊗A2, B1 ⊗B2).

Much of K-homology revolves around the product, and more than one deep
property of K-homology can be derived from its properties. As an example, we
indicate how to prove the homotopy invariance of K∗(A) using the product:

†The index paring with 1 ∈ C (Definition 2.2.4) is an isomorphism between K0(C) and Z.
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2.2.2 Theorem. If αt : A −→ B is a homotopy of ∗-homomorphisms between
separable C∗-algebras, then

α∗
0 = α∗

1 : K∗(B) −→ K∗(A).

Proof. (Sketch) Assume we have already proven that the evaluation maps

ev0, ev1 : C([0, 1]) −→ C

of C([0, 1]) at 0 and 1 satisfy

ev∗
0 = ev∗

1 : K0(C) −→ K0(C([0, 1])).

The homotopy αt is nothing but a ∗-homomorphism

α : A −→ C([0, 1])⊗B,

and
αi = (evi⊗ idB) ◦ α for i = 0, 1.

Thus, for x ∈ K∗(B) we have

α∗
0x = α∗ ◦ (ev0⊗ idB)∗(1× x)

= α∗ ◦ (ev∗
0 1× x) = α∗ ◦ (ev∗

1 1× x)
= α∗ ◦ (ev1⊗ idB)∗(1× x) = α∗

1x,

using properties (i) and (ii) of Theorem 2.2.1.
For a full proof see [HR00, Theorem 9.3.3].

Bott periodicity of K∗ can be proven by a similar use of the product (in
fact, one even uses the product to prove Bott periodicity for C). See [HR00,
Theorem 9.5.2] and also [Ati68].

If F1 = (ϕ1,H1, F1) and F2 = (ϕ2,H2, F2) are even Fredholm modules
over separable C∗-algebras A1 and A2, then a representative of the product
[F1]× [F2] can be constructed as

F1 ×F2 :=

ϕ1⊗̂ϕ2,H1⊗̂H2, N1(F1⊗̂I) +N2(I⊗̂F2)


.

Here, N1, N2 are certain positive operators and ⊗̂ denotes the graded tensor
product.† In particular, since F1 and F2 are odd, F1⊗̂I and I⊗̂F2 anti-
commute.

†If A, B are graded algebras and a1, a2 ∈ A, b1, b2 ∈ B homogeneous (i.e. either odd or
even) elements, then multiplication in A⊗̂B is defined as

(a1⊗̂b1)(a2⊗̂b2) := (−1)∂b1∂a2 a1a2⊗̂b1b2

where ∂x is 0 or 1 depending on whether x is even or odd.
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Assuming that F1 and F2 are symmetries, we have

(F1⊗̂I + I⊗̂F2)2 = F 2
1 ⊗̂I + I⊗̂F 2

2 = 2 · I⊗̂I.

Thus, if we set N1 = N2 = I/
√

2, we obtain a symmetry again. However, the
commutators with ϕ1⊗̂ϕ2 will only lie in K(H1)⊗̂ϕ2(A) + ϕ1(A)⊗̂K(H2) and
therefore will not be compact in general.

One can easily check that the following conditions on N1, N2 suffice to
make F1 ×F2 a Fredholm module:

(i) N1, N2 are even and N2
1 +N2

2 = I.

(ii) [N1, F1⊗̂I], [N1, I⊗̂F2] ∈ K(H1⊗̂H2)

(iii) [N1, ϕ1(A1)⊗̂ϕ2(A2)] ⊆ K(H1⊗̂H2)

(iv) N1 · K(H1)⊗̂I ⊆ K(H1⊗̂H2) and N2 · I⊗̂K(H2) ⊆ K(H1⊗̂H2).

Such operators N1, N2 can be found for separable A1, A2 by a theorem of
Kasparov, which is known as Kasparov’s Technical Theorem (or Kasparov’s
Technical Lemma).

Kasparov’s Technical Theorem is an existence theorem for non-commutative
partitions of unity. A basic version of it can be stated as follows.

2.2.3 Theorem (Kasparov’s Technical Theorem). Let a separable Hilbert
space H, separable C∗-algebras B1, B2 ⊆ B(H) and a separable subset ∆ of
B(H) be given such that B1 ·B2 ⊆ K(H) and [∆, B1] ⊆ B1. Then there is an
X ∈ B(H) with 0 ≤ X ≤ I and

XB1 ⊆ K(H), (I −X)B2 ⊆ K(H), [∆, X] ⊆ K(H).

Proof. [HR00, Theorem 3.8.1].

To obtain N1 and N2 from this theorem, choose

∆ := {F1⊗̂I, I⊗̂F2, γ} ∪ ϕ1(A1)⊗̂ϕ2(A2)

where γ denotes the grading operator of H1⊗̂H2 (the symmetry which is the
identity on the positive subspace of H1⊗̂H2 and minus the identity on its
negative subspace). Let B1 be the smallest C∗-subalgebra of K(H1)⊗̂B(H2)
which contains K(H1)⊗̂I and satisfies [∆, B1] ⊆ B1. Let B2 := I⊗̂K(H2).
Then we can set

N1 :=

X + γXγ

2

 1
2

and N2 := (I −N2
1 )

1
2

[HR00, Proposition 9.2.3 and Proposition 9.2.5].
Theorem 2.2.3 can also be used to prove excision in K-homology [HR00,

Theorem 5.4.5].



2.2. PRODUCT AND INDEX PAIRING IN K-HOMOLOGY 37

The proof of Kasparov’s Technical Theorem crucially depends on C∗-
algebra techniques. In particular, one needs to construct an approximate unit
of K(H1⊗̂H2) which is quasi-central† for ∆.

If one wanted to construct a product of finitely summable Fredholm modules
(Definition 2.3.3) which is again finitely summable, K(H1⊗̂H2) would have to
be replaced by Lp(H1⊗̂H2) everywhere above. In particular, an approximate
unit of Lp(H1⊗̂H2) would have to be found which is quasi-central for ∆.
However, this is not possible in general, even for a single operator. In fact,
Voiculescu’s kp precisely measures the obstruction for the existence of such
approximate units [Voi79].

All in all, there does not seem to be much hope to define a product for
finitely summable K-homology. This is the main reason why working with
finitely summable K-homology is much harder than working with standard
K-homology.

* * *
A second important feature of K-homology is its duality pairing with K-theory.
Being defined in terms of Fredholm indices, this pairing is also called the ‘index
pairing’. If a K-homology class is constructed from a differential operator,
the index data of the operator can be calculated via the index pairing of its
K-homology class with K-theory. Therefore, it is of particular interest to obtain
formulas for calculating this index pairing (see the introduction to this thesis
for further discussion).

There are two index pairings, an odd one between K1(A) and K1(A) and
an even one between K0(A) and K0(A). We will only need the even one:

2.2.4 Definition and Proposition. Let A be a unital C∗-Algebra and

F =

ϕ+ ⊕ ϕ−, H+ ⊕H−,


0 V
U 0



an even Fredholm module over A. If p is a projection in Mn(A), define IndF (p)
to be the Fredholm index

IndF (p) := F-Ind


(idMn(C)⊗ϕ−)(p) · (In ⊗ U) · (idMn(C)⊗ϕ+)(p)


where (idMn(C)⊗ϕ−)(p) · (In ⊗U) · (idMn(C)⊗ϕ+)(p) is regarded as a map be-
tween the spaces (idMn(C)⊗ϕ+)(p)(Cn⊗H+) and (idMn(C)⊗ϕ−)(p)(Cn⊗H−).

This definition descends to a well-defined bilinear map

K0(A)×K0(A) −→ Z,

called the index pairing between K0(A) and K0(A).
†If I is an ideal in A and x ∈ A, then an approximate unit uλ of I is quasi-central for x

if limλ[uλ, x] = 0.
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Proof. First, let p be a projection in A. We have
ϕ+(p)V ϕ−(p)Uϕ+(p)− ϕ+(p) 0

0 ϕ−(p)Uϕ+(p)V ϕ−(p)− ϕ−(p)



= (ϕ+⊕ϕ−)(p)·


0 V
U 0


· (ϕ+ ⊕ ϕ−)(p) ·


0 V
U 0


· (ϕ+ ⊕ ϕ−)(p)− I


∈ K.

This means that ϕ−(p)Uϕ+(p) is up to compact operators an invertible map
between ϕ+(p)H+ and ϕ−(p)H− and therefore Fredholm.

If p is a projection in Mn(A), the same argument applies since

F (n) :=


idMn(C)⊗(ϕ+ ⊕ ϕ−), Cn ⊗ (H+ ⊕H−), In ⊗


0 V
U 0



is a Fredholm module over Mn(A). Moreover, it is clear that the index is
invariant under the embedding of p ∈Mn(A) into Mn+1(A). In particular, for
the rest of the proof it suffices to consider only projections in A since we can
always replace A by Mn(A) and F by F (n).

Next, observe that if q = upu∗ for some unitary u ∈ A, then

F-Ind ϕ−(upu∗)Uϕ+(upu∗) = F-Ind ϕ−(p)ϕ−(u∗)Uϕ+(u)ϕ+(p)
= F-Ind ϕ−(p)Uϕ+(u∗)ϕ+(u)ϕ+(p)
= F-Ind ϕ−(p)Uϕ+(p)

since the Fredholm index is invariant under compact perturbations (of course,
the Fredholm indices have to be taken with respect to the right domains and
codomains).

Furthermore, if q is orthogonal to p, then

ϕ−(p+ q)Uϕ+(p+ q)

differs by a compact operator from

ϕ−(p)Uϕ+(p) + ϕ−(q)Uϕ+(q).

Thus, IndF is a homomorphism from the semigroup of unitary equivalence
classes of projections in M∞(A) to Z. Since Z is a group, this homomorphism
descends to a homomorphism from the Grothendieck group of M∞(A), namely
K0(A), to Z.

It is clear that if F ′ is another even Fredholm module over A, we have
IndF⊕F ′ = IndF + IndF ′ since everything decomposes as direct sums. By
homotopy invariance of the Fredholm index, we see that IndF = IndF ′ if F
and F ′ are operator-homotopic Fredholm modules.

Finally, unitarily equivalent modules obviously have the same index map
and if F is degenerate, then

ϕ+(p)V ϕ−(p)Uϕ+(p) = ϕ+(p) and ϕ−(p)Uϕ+(p)V ϕ−(p) = ϕ−(p).
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Thus, ϕ−(p)Uϕ+(p) is invertible as a map from ϕ+(p)H+ to ϕ−(p)H− and
therefore has index 0.

These observations show that IndF is independent of the class of F in
K0(A), which concludes the proof.

One can prove that the index map is actually a special case of the bivariant
Kasparov product: if one identifies K0(A) with KK0(C, A) and K0(A) with
KK0(A,C) as well as KK0(C,C) with Z, the index pairing becomes the
product

KK0(C, A)×KK0(A,C) −→ KK0(C,C).

2.2.5 Remark. The index map is natural in the following sense: let α be
a ∗-homomorphism between unital C∗-algebras A and B, x ∈ K0(B) and
p ∈ K0(A). Then it follows immediately from the definition of the index map
that

Indx(α∗p) = Indα∗x(p).

Using this, we can extend the definition of the index map to non-unital
C∗-algebras A: if we denote by ι the inclusion of A in A+, define

Indι∗x(p) := Indx(ι∗p) for all p ∈ K0(A).

This is indeed well-defined: we have the short exact sequence†

0←− K0(A) ι∗←− K0(A+) π∗
←− K0(C)←− 0,

therefore ι∗ is surjective. If ι∗x = ι∗y, then there is a z ∈ K0(C) with
π∗z = x− y. Thus, Indx−y(ι∗p) = Indz(π∗ι∗p) = 0.

2.3 Definition of finitely summable K-homology
For the rest of this chapter A denotes any topological ∗-algebra.

Since we want to define finitely summable K-homology for arbitrary
topological ∗-algebras, we first have to extend the notion of a Fredholm module
to such algebras. The definition carries over verbatim from Definition 2.1.2
with the only exception that we require the representation to be continuous
since this is not automatic for arbitrary topological ∗-algebras:

2.3.1 Definition. An odd Fredholm module over a topological ∗-algebra A
is a triple (ϕ,H, F ) where ϕ : A −→ B(H) is a continuous ∗-representation
of A on a (possibly finite-dimensional) separable Hilbert space H and F is a
bounded operator on H satisfying the relations

ϕ(x)(F 2 − I) ∈ K(H) and [F,ϕ(x)] ∈ K(H) for all x ∈ A.
†This is proven in Proposition 3.2.1 for finitely summable K-homology. The same proof

works for K-homology.
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An odd Fredholm module together with a Z2-grading of H is called an even
Fredholm module if ϕ is even and F is odd with respect to this grading. In
other words, an even Fredholm module is an odd Fredholm module of the form

ϕ+ ⊕ ϕ−, H+ ⊕H−,


0 V
U 0


.

We denote the class of odd Fredholm modules over A by F1(A), the class of
even Fredholm modules by F0(A).

2.3.2 Remark. Everything in this chapter and some of what we say in later
chapters is also true in a purely algebraic setting. We restrict to topological
algebras and continuous representations at this point mainly to not have several
variants of finitely summable K-homology floating around.

2.3.3 Definition. We call a Fredholm module (ϕ,H, F ) ∈ F∗(A) p-summable
(1 ≤ p <∞) if

ϕ(x)(F 2 − I) ∈ Lp and [F,ϕ(x)] ∈ Lp for all x ∈ A.

We denote the classes of odd and even p-summable Fredholm modules over A
by F∗

p(A). A Fredholm module is called finitely summable if it is p-summable
for some p.

From now on we shall always assume that 1 ≤ p < ∞. Whenever a
statement or definition contains the unquantified variable p, it is to
be understood that it holds for all such p.

Degenerate modules and direct sums of Fredholm modules over topological
∗-algebras are defined exactly as for C∗-algebras in Definitions 2.1.4 and 2.1.5.
Note that direct sums of p-summable modules are again p-summable.

We define two more equivalence relations for p-summable Fredholm mod-
ules:

2.3.4 Definition. 1. If (ϕ,H, F ), (ϕ,H, F ′) ∈ F∗
p(A) are operator homo-

topic via a continuous path Ft ∈ B(H) such that (ϕ,H, Ft) ∈ F∗
p(A) for

all t ∈ [0, 1], we write (ϕ,H, F ) ∼oh,p (ϕ,H, F ′).

2. For (ϕ,H, F ), (ϕ′,H′, F ′) ∈ F∗
p(A) write (ϕ,H, F ) ∼d+oh,p+u (ϕ′,H′, F ′)

if there are degenerate modules (ψ,N , G), (ψ′,N ′, G′) ∈ D∗(A) such that
(ϕ,H, F )⊕ (ψ,N , G) is operator homotopic via p-summable modules to
a module which is unitarily equivalent to (ϕ′,H′, F ′)⊕ (ψ′,N ′, G′).

2.3.5 Proposition. ∼d+oh,p+u is an equivalence relation.
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Proof. Only the transitivity of ∼d+oh,p+u might not be completely obvious.
For i = 1, 2, 3 let (ϕi,Hi, Fi) ∈ F∗

p(A) be given with

(ϕ1,H1, F1) ∼d+oh,p+u (ϕ2,H2, F2) ∼d+oh,p+u (ϕ3,H3, F3).

This means that there are

(ψ1,N1, G1), (ψ2,1,N2,1, G2,1), (ψ2,2,N2,2, G2,2), (ψ3,N3, G3) ∈ D∗(A),

p-summable operator homotopies

(ϕ1 ⊕ ψ1,H1 ⊕N1, F
(1)
t ) and (ϕ2 ⊕ ψ2,2,H2 ⊕N2,2, F

(2)
t ),

as well as unitaries

U1 : H1 ⊕N1 −→ H2 ⊕N2,1 and U2 : H2 ⊕N2,2 −→ H3 ⊕N3

such that:

(i) F
(1)
0 = F1 ⊕G1

(ii)

U1(ϕ1⊕ψ1)U∗

1 ,H2⊕N2,1, U1F
(1)
1 U∗

1


=

ϕ2⊕ψ2,1,H2⊕N2,1, F2⊕G2,1


(iii) F

(2)
0 = F2 ⊕G2,2

(iv)

U2(ϕ2 ⊕ ψ2,2)U∗

2 ,H3 ⊕N3, U2F
(2)
1 U∗

2


=

ϕ3 ⊕ ψ3,H3 ⊕N3, F3 ⊕G3


Let S be the unitary

S : H2 ⊕N2,1 ⊕N2,2 −→ H2 ⊕N2,2 ⊕N2,1

which flips the last two summands, and define

Ũ1 := S(U1 ⊕ I) : H1 ⊕N1 ⊕N2,2 −→ H2 ⊕N2,2 ⊕N2,1.

We then have

Ũ1(ϕ1 ⊕ ψ1 ⊕ ψ2,2)Ũ∗
1 = ϕ2 ⊕ ψ2,2 ⊕ ψ2,1 (2.3)

and
Ũ1(F (1)

1 ⊕G2,2)Ũ∗
1 = F

(2)
0 ⊕G2,1

by properties (ii) and (iii). Thus, we can concatenate the two operator
homotopies 

ϕ1 ⊕ ψ1 ⊕ ψ2,2,H1 ⊕N1 ⊕N2,2, F
(1)
t ⊕G2,2


and 

ϕ1 ⊕ ψ1 ⊕ ψ2,2,H1 ⊕N1 ⊕N2,2, Ũ
∗
1 (F (2)

t ⊕G2,1)Ũ1
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to an operator homotopy

Ft :=

ϕ1 ⊕ ψ1 ⊕ ψ2,2,H1 ⊕N1 ⊕N2,2, F̃t


.

Property (i) implies that Ft starts at
ϕ1 ⊕ ψ1 ⊕ ψ2,2,H1 ⊕N1 ⊕N2,2, F1 ⊕G1 ⊕G2,2


.

By Property (iv) and (2.3), we have

(U2 ⊕ I)Ũ1(ϕ1 ⊕ ψ1 ⊕ ψ2,2)Ũ∗
1 (U2 ⊕ I)∗ = ϕ3 ⊕ ψ3 ⊕ ψ2,1

and

(U2 ⊕ I)Ũ1

Ũ∗

1 (F (2)
1 ⊕G2,1)Ũ1


Ũ∗

1 (U2 ⊕ I)∗ = F3 ⊕G3 ⊕G2,1.

Therefore, the endpoint of Ft is unitarily equivalent to
ϕ3 ⊕ ψ3 ⊕ ψ2,1,H3 ⊕N3 ⊕N2,1, F3 ⊕G3 ⊕G2,1


.

2.3.6 Corollary.
⟨∼u,∼d,∼oh,p⟩ = ∼d+oh,p+u .

2.3.7 Definition. The finitely summable K-homology groups of A are defined
as

K∗
p(A) := F∗

p(A) / ⟨∼u,∼d,∼oh,p⟩
K∗
fin(A) := lim−→

p

K∗
p(A).

The inductive limit is taken with respect to the maps K∗
p (A) −→ K∗

q (A) which
are induced by the inclusion F∗

p(A) ⊆ F∗
q(A) for p < q.

In particular, two finitely summable modules F ,F ′ represent the same
class in K∗

fin(A) if and only if there is some p such that F ∼d+oh,p+u F ′.

The direct sum of two p-summable modules is again p-summable and
therefore defines an addition on K∗

p(A) as for K-homology. We obtain:

2.3.8 Proposition. The sets K∗
p(A) and K∗

fin(A) form abelian groups with
addition given by the direct sum of representatives.

Proof. For K∗
p(A) the proof is exactly the same as for standard K-homology

(Proposition 2.1.8). K∗
fin(A) is an abelian group because it is an inductive

limit of abelian groups.
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If α : A −→ B is a continuous ∗-homomorphism between topological
∗-algebras, and F ∈ F∗

p(B), then α∗F is a p-summable module over A. Thus,
K∗
p and K∗

fin become contravariant functors from the category of topological
∗-algebras and continuous ∗-homomorphisms to the category of abelian groups.

2.3.9 Proposition. For any F ∈ F∗
p(A) we have [F ] = 0 ∈ K∗

p(A) if and
only if there is a degenerate D ∈ D∗(A) such that F ⊕D is operator homotopic
to a degenerate module via a path of p-summable modules.

We have, [F ] = 0 ∈ K∗
fin(A) if and only if there is a D ∈ D∗(A) such that

F ⊕D is operator homotopic to a degenerate module via a path of q-summable
modules for some 1 ≤ q <∞.

Proof. This follows directly from Corollary 2.3.6.

2.3.10 Proposition. If F = (ϕ,H, F ),F ′ = (ϕ,H, F ′) ∈ F∗
p(A) and

ϕ(x)(F − F ′) ∈ Lp for all x ∈ A,

then
[F ] = [F ′] ∈ K∗

p(A).

We say that F ′ is a p-summable perturbation of F with respect to ϕ.

Proof. The linear path between F and F ′ defines a p-summable operator
homotopy.

Let A be a topological ∗-algebra which is at the same time a pre-C∗-algebra
with C∗-completion A. If F = (ϕ,H, F ) is any Fredholm module over A,
then ϕ is automatically continuous in the C∗-topology (Proposition 1.4.8) and
therefore extends to a ∗-representation of A.† Moreover, if {xn} is a sequence
in A converging to x ∈ A, then

[F,ϕ(xn)] n→∞−−−→ [F,ϕ(x)] and ϕ(xn)(F 2 − I) n→∞−−−→ ϕ(x)(F 2 − I)

as bounded operators on H. Since K(H) is closed in B(H), we see that F
extends to a Fredholm module over A. Thus, we obtain natural maps

Φp : K∗
p(A) −→ K∗(A) and Φ : K∗

fin(A) −→ K∗(A).

2.3.11 Definition. We call the maps Φp and Φ the comparison maps between
K∗
p(A) (resp. K∗

fin(A)) and K∗(A). We say that every class in K∗(A) is
representable by a finitely summable module over A if Φ is surjective.

†Of course, if the topology on A is induced by the C∗-norm, then this is trivially true,
whether A is a pre-C∗-algebra or not.
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2.4 Normalization of finitely summable modules
In this section we prove that the standard normalization procedures which are
known for K-homology are also applicable in the finitely summable setting.
We will see that, compared to ordinary K-homology, a bit of extra care has to
be taken when working with K∗

p(A).
Denote by F1

p(A) those modules (ϕ,H, F ) ∈ F1
p(A) for which F = F ∗ and

F 2 = I, and by F0
p(A) those modules in F0

p(A) which are of the form
ϕ⊕ ϕ, H⊕H, F =


0 U∗

U 0



with a unitary U .
For (ϕ,H, F ), (ϕ,H, F ′) ∈ F∗

p(A) we write (ϕ,H, F ) ∼soh,p (ϕ,H, F ′) if
there is an operator homotopy Ft = (ϕ,H, Ft) with Ft ∈ F∗

p(A) for all t such
that the paths Ft : [0, 1] −→ B(H) and [Ft, ϕ(x)] : [0, 1] −→ Lp(H) are smooth
for each x ∈ A. We call this a smooth operator homotopy.

Define

K∗
p(A) := F∗

p(A) / ⟨∼u,∼d,∼soh,p⟩K∗
fin(A) := lim−→

p

K∗
p(A)

where in the even case we require the degenerate modules in the definition of
∼d to lie in F0

p(A). K∗
p(A) and K∗

fin(A) are groups by the same argument as
for Proposition 2.3.8.

2.4.1 Theorem. The natural maps

K∗
p(A) −→ K∗

p(A)K∗
fin(A) −→ K∗

fin(A)

induced by the inclusions F∗
p(A) ⊆ F∗

p(A) are isomorphisms.

In other words: we can define K∗
p(A) and K∗

fin(A) by only allowing
Fredholm modules (ϕ,H, F ) with symmetries F and restricting to smooth
operator homotopies.

To proof the surjectivity of this map, we need to make the operator F of
any given module (ϕ,H, F ) a symmetry. The standard procedure, assuming
that F is already self-adjoint and contractive, would be to replace the module
by 

ϕ⊕ 0, H⊕Hop,


F
√

1− F 2
√

1− F 2 −F


(2.4)

as described in [HR00, Chapter 8]. However, the following example shows that
we cannot expect this module to be p-summable again.
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2.4.2 Example. On ℓ2(Z) let X be the self-adjoint unitary given by

X(en) := e−n,

where en denotes the characteristic function of {n}, and define F as

F (en) :=


(1− 1
n)en n > 0

en otherwise
.

We have F ∗ = F , ∥F∥ = 1, and

(I − F 2)en =


( 2
n −

1
n2 )en n > 0

0 otherwise
,

so I − F 2 ∈ L2. Moreover,

[F,X](en) = [F − I,X](en) =


0 n = 0
1
ne−n n ̸= 0

,

hence [F,X] ∈ L2. Thus, if we let A be the ∗-algebra generated by X, then
(idA, ℓ

2(Z), F ) is a 2-summable Fredholm module over A.
On the other hand, we have X(I − F 2)

1
2 /∈ L2, so the module

idA⊕0, ℓ2(Z)⊕ ℓ2(Z),


F
√
I − F 2

√
I − F 2 −F



is not 2-summable.

While (2.4) is not a p-summable Fredholm module in general, we can use a
variation of this construction to stay within F∗

p(A):

2.4.3 Lemma. If F = (ϕ,H, F ) ∈ F∗
p(A), then

F ′ :=

ϕ⊕ 0,H⊕Hop, F ′ where F ′ :=


3
2F −

1
2F

3 (I − F 2)(I − 1
4F

2)
I − F 2 −(3

2F −
1
2F

3)



is a p-summable odd (resp. even) Fredholm module over A such that F ′2 = I
and

[F ] = [F ′] ∈ K∗
p(A).

Proof. Direct computation shows that F ′ is a p-summable Fredholm module
and that F ′2 = I. Moreover, F ′ is a p-summable perturbation of

(ϕ,H, F )⊕ (0,Hop, 0)

with respect to ϕ⊕ 0, and the second summand is zero in K∗
p(A).
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How to find such an F ′? With the Ansatz

F ′ =

A C
B −A



where A,B,C are polynomials in F , we get that F ′2 = I if and only if
BC = I −A2. Now A should be a p-summable perturbation of F with respect
to ϕ(A), so we assume A = F +D(I − F 2). Moreover, we would like B and C
to be p-summable with respect to ϕ. This will be the case if they both contain
I − F 2 as a factor. This leads to the condition that

(I − F 2)2 divides I − [F +D(I − F 2)]2 ,

which is fulfilled for D = 1
2F .

Proof of Theorem 2.4.1. First, note that the maps K∗
p(A) −→ K∗

p(A) com-
mute with the connecting maps K∗

p(A) −→ K∗
q (A) (p < q). Thus, if the

theorem is true for every K∗
p(A), it must also hold for their inductive limit

K∗
fin(A).

To prove the theorem for K∗
p(A), we consider the odd and even case

separately:
∗ = 1. Let F be an odd p-summable Fredholm module. By Lemma 2.4.3,

there is an F ′ = (ϕ′,H′, F ′) ∈ F∗
p(A) such that [F ′] = [F ] ∈ K1

p(A) and
F ′2 = I.

Corollary 1.4.15 states that Dpϕ′(A) = {X ∈ B(H′) | [ϕ′(A), X] ⊆ Lp(H′)}
is a pre-C∗-algebra. P ′ := 1

2(F ′ + I) is an idempotent in Dpϕ′(A), so by
Proposition 1.5.5 there is a continuous path P ′

t ∈ D
p
ϕ′(A) of idempotents from

P ′ to a projection. From it, we obtain the operator homotopy (ϕ′,H′, 2P ′
t − 1)

between F ′ and a module in F1
p(A). This proves surjectivity.

Now, let F ∈ F1
p(A) be a module with [F ] = 0 ∈ K1

p(A). By Proposi-
tion 2.3.9 there is a D ∈ D1(A) such that F ⊕ D is operator homotopic to
another degenerate D ′ ∈ D1(A). Since [D ] = [D ′] = 0 ∈ K1

p(A), it suffices to
show that F ⊕D and D ′ represent the same class in K1

p (A) to prove injectivity.
Let (ϕ,H, F ) := F ⊕D , (ϕ,H, G) := D ′ and let Ft be the path implement-

ing the operator homotopy. Differing by a degenerate module, (ϕ,H, F ) and
(ϕ⊕ 0,H⊕H, F ⊕−F ) represent the same class in K1

p(A). Again by Lemma
2.4.3,

P ′
t := 1

2


3
2Ft −

1
2F

3
t (I − F 2

t )(I − 1
4F

2
t )

I − F 2
t −(3

2Ft −
1
2F

3
t )


+ I2



is a homotopy of idempotents in Dϕ⊕0(A) connecting P ′ := 1
2(F ⊕ (−F ) + I2)

to Q′ := 1
2(G ⊕ (−G) + I2). By Corollary 1.5.8, we can find in Dϕ⊕0(A)

positive A0, . . . , An−1 and projections P ′ = P ′
0, P

′
1, . . . , P

′
n = Q′ such that
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eiAjP ′
je

−iAj = P ′
j+1 (i = 0, . . . , n − 1). Defining F ′

j := 2P ′
j − 1, we obtain

operator homotopies

(ϕ⊕ 0,H⊕H, eitAjF ′
je

−itAj ) for j = 0, . . . , n− 1 (2.5)

connecting (ϕ⊕ 0,H⊕H, F ′
j) to (ϕ⊕ 0,H⊕H, F ′

j+1).
Note that e±itAj : [0, 1] −→ B(H ⊕ H) is smooth, having nth derivative

(±iAj)ne±itAj . Hence, eitAjF ′
je

−itAj : [0, 1] −→ B(H ⊕H) is smooth as well
(the derivatives at 0 and 1 do not vanish, so one has to reparameterize the
paths to obtain smooth paths in the sense of our definition on page 8).

Finally, we show that the map [ϕ(x), e±itAj ] : [0, 1] −→ Lp(H ⊕ H) is
smooth for every x ∈ A with nth derivative [ϕ(x), (±iAj)ne±itAj ] (here again
the path has to be reparameterized). This then implies the smoothness of
[ϕ(x), eitAjF ′

je
−itAj ] : [0, 1] −→ Lp(H⊕H).

We haveϕ(x), 1
h


(±iAj)ne±i(t+h)Aj − (±iAj)ne±itAj


− (±iAj)n+1e±itAj


p

=
ϕ(x), (±iAj)ne±itAj

1
h

(e±ihAj − I −±hiAj)

p

≤
ϕ(x), (±iAj)ne±itAj


p
·
1
h

(e±ihAj − I)−±iAj


+
(±iAj)ne±itAj

 · ϕ(x), 1
h

(e±ihAj − I −±hiAj)

p
.

The first summand tends to zero for h→ 0 since e±itAj : [0, 1] −→ B(H⊕H)
has the derivative ±iAje±itAj . For the p-norm in the second summand we get

ϕ(x), 1
h

(e±ihAj − I −±hiAj)

p

=
ϕ(x),

∞
k=2

(±iAj)khk−1

k!

p

≤
∞
k=2

k
Ajk−1[ϕ(x), Aj ]


p
|h|k−1

k!

=
[ϕ(x), Aj ]


p(e|h|∥Aj∥ − 1) h→0−−−→ 0.

Thus, the homotopies in (2.5) are smooth (after reparameterization) and

[F ⊕D ] = [(ϕ⊕ 0,H⊕H, F ′
0)] = [(ϕ⊕ 0,H⊕H, F ′

n)] = [D ′] = 0 ∈ K1
p(A).

∗ = 0. Let F = (ϕ+⊕ϕ−,H+⊕H−, F ) be an even p-summable Fredholm
module. By Lemma 2.4.3, we can again assume that F 2 = I. Furthermore,
consider the degenerate module

D :=

ψ ⊕ ψ, N ⊕N ,


0 I
I 0


(2.6)

where N =

NH+ ⊕


NH− and ψ =


N ϕ+ ⊕


N ϕ−. F ⊕D is unitarily
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equivalent to a module of the form F ′ = (ψ ⊕ ψ,N ⊕N , F ′) with F ′2 = I, so

F ′ =


0 U ′−1

U ′ 0


where U ′ ∈ Dpψ(A) is invertible.

By Proposition 1.5.2, there is a continuous path U ′
t of invertibles in Dp

ψ(A)
from U ′ to a unitary U ′

1, which leads to the operator homotopy
ψ ⊕ ψ, N ⊕N ,


0 U ′−1

t

U ′
t 0



from F ′ to a module in F0
p(A). This proves surjectivity.

Now, let F ∈ F0
p(A) be a module with [F ] = 0 ∈ K0

p(A). By Proposition
2.3.9 there is a D ∈ D0(A) such that F ⊕D is operator homotopic to another
degenerate D ′ ∈ D0(A). Adding a degenerate module of the form (2.6), we
can assume that D ,D ′ ∈ F0

p(A). Using Lemma 2.4.3 again, we finally arrive
at an operator homotopy

ϕ⊕ ϕ, H⊕H, F =


0 U−1
t

Ut 0



between modules in F0
p(A) equivalent to F ⊕D and D ′. The unitaries U0 and

U1 are thus connected by a path of invertibles in Dpϕ(A).
By Corollary 1.5.8 there are positive A0, . . . , An−1 ∈ Dpϕ(A) and unitary

U0 = V0, V1, . . . , Vn = U1 ∈ Dpϕ(A) such that eiAjVj = Vj+1 (i = 0, . . . , n − 1).
Defining

Fj :=


0 V ∗
j

Vj 0


we get operator homotopies

ϕ⊕ ϕ, H⊕H,


0 V ∗
j e

−itAj

eitAjVj 0


for j = 0, . . . , n− 1

connecting (ϕ⊕ϕ,H⊕H, Fj) to (ϕ⊕ϕ,H⊕H, Fj+1). The arguments from the
odd case show that these homotopies are smooth (after reparameterization),
so F ⊕D and D ′ are equivalent in K0

p(A).

2.4.4 Corollary. If F = (ϕ,H, F ), F ′ = (ϕ,H, F ′) ∈ F1
p(A) are operator

homotopic via a path of symmetries, then there is a unitary U ∈ Dpϕ(A) such
that F ′ = UFU∗.

2.4.5 Remark. In our proof we have made use the fact that p-summable
Fredholm modules are related to projections and unitaries in the algebras
Dpϕ(A). This connection between K-homology and the K-theory of such dual
algebras was first observed by Paschke in [Pas81].
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2.4.6 Remark. Theorem 2.4.1 implies that the Chern-Connes character we
discussed in the introduction is indeed well-defined for finitely summable
K-homology. See [Con85, Theorem I.5.2].

2.4.7 Proposition. If F = (ϕ,H, F ) ∈ F∗
p(A) and P is an (even) projection

onto a closed subspace of H containing the support of ϕ, then

[F ] = [(Pϕ, PH, PFP )] ∈ K∗
p(A).

Proof. Write F as

(ϕ,H, F ) =

Pϕ⊕ 0, H,


PFP PFP⊥

P⊥FP P⊥FP⊥


.

Since ϕ(A)PFP⊥ ⊆ Lp, we see that F is with respect to ϕ a p-summable
perturbation of (Pϕ, PH, PFP )⊕ (0, P⊥H, P⊥FP⊥). The second summand
is zero in K∗

p(A).

2.4.8 Remark. Theorem 2.4.1, Corollary 2.4.4, and Proposition 2.4.7 are
obviously true for standard K-homology as well if one replaces Lp everywhere
by the algebra of compact operators and the dual algebras Dpϕ(A) by Dϕ(A).





Chapter 3

Basic Properties

This chapter covers some basic properties of finitely summable K-homology. We
start by considering Fredholm modules (ϕ,H, F ) where F commutes exactly
with ϕ, and we compute K∗

p of algebras over which every p-summable Fredholm
module is a p-summable perturbation of such a module (we will use this result
in Chapter 7). Section 3.2 covers the behaviour of K∗

fin with respect to
unitizations and direct sums. In Section 3.3 we prove that, given a p-summable
Fredholm module (ϕ,H, F ) over a topological ∗-algebra A, the p-norms of the
commutators [F,ϕ(x)] are bounded if the topology of A satisfies the condition
of being barreled. Stability of K∗

fin under taking tensor products with algebras
of Schatten class operators is proven in Section 3.4. The last section contains
two technical lemmas which we will use in the next chapter.

In this chapter A will always denote a topological ∗-algebra.

3.1 Nearly degenerate Fredholm modules
3.1.1 Definition. Let F = (ϕ,H, F ) ∈ F∗

p(A) be a p-summable Fredholm
module. We call F nearly degenerate if

[F,ϕ(x)] = 0 for all x ∈ A.

3.1.2 Lemma. If F = (ϕ,H, F ) is nearly degenerate, then there is a nearly
degenerate F ′ = (ϕ′,H′, F ′) such that [F ] = [F ′] ∈ F∗

p(A) and F ′∗ = F ′.

Proof. We can prove this using a slight variation of the proof of Theorem 2.4.1.
∗ = 1. Consider the module from Lemma 2.4.3 given by

F ′ :=

ϕ⊕ 0,H⊕H, F ′

where
F ′ :=


3
2F −

1
2F

3 (I − F 2)(I − 1
4F

2)
I − F 2 −(3

2F −
1
2F

3)


. (3.1)

51
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Note that the idempotent P ′ := 1
2(F ′ + I) lies not only in the pre-C∗-

algebra Dpϕ⊕0(A) but also in M2(C∗(F, I)). The intersection of both al-
gebras is a pre-C∗-algebra as well. Therefore, we can find a homotopic
projection P̃ ∈ Dpϕ⊕0(A) ∩ M2(C∗(F, I)), from which we obtain a module
F̃ := (ϕ⊕ 0,H⊕H, F̃ ) with self-adjoint

F̃ := 2(P̃ − 1) ∈ Dpϕ⊕0(A) ∩M2(C∗(F, I))

representing the same class in K1
p(A) as F .

Now, [ϕ(A), F ] = {0} implies that [ϕ(A), C∗(F, I)] = {0}. So if we write
F̃ as

F̃ =

F̃11 F̃ ∗

21
F̃21 F̃22


,

then [ϕ(A), F̃11] = {0} and F̃ ∗
11 = F̃11. Thus, by Proposition 2.4.7, (ϕ,H, F̃11)

is a nearly degenerate, self-adjoint module which is equivalent to F .
∗ = 0. After adding a degenerate module as in the proof of Theorem 2.4.1,

we can assume that

F =

ϕ⊕ ϕ, H⊕H,


0 V
U 0



and [ϕ(A), C∗(U, V, I)] = {0}. Applying Lemma 2.4.3 gives us an equivalent
module

F ′ =

(ϕ⊕ ϕ)⊕ (0⊕ 0), (H⊕H)⊕ (H⊕H)op, F ′


where F ′ is again of the form (3.1). In particular, F ′ is an odd operator
with respect to the grading on (H ⊕H) ⊕ (H ⊕H)op, we have F ′2 = I and
F ′ ∈M4(C∗(U, V, I)). Taking the part of F ′ which maps the positive subspace
(the first and fourth summand) to the negative subspace (the second and third
summand), we obtain an invertible operator U ′ with

U ′ ∈ Dpϕ⊕0(A) ∩M2(C∗(U, V, I)).

As above, we find a homotopy of U ′ to a unitary in Dpϕ⊕0(A) ∩M2(C∗(U, V, I))
which defines an operator homotopy between F ′ and a module

F̃ =

(ϕ⊕ ϕ)⊕ (0⊕ 0), (H⊕H)⊕ (H⊕H)op, F̃


.

F̃ satisfies F̃ 2 = I, F̃ ∗ = F̃ , and F̃ ∈ M4(C∗(U, V, I)). Again denoting the
compression of F̃ to the first two copies of H by F̃11, (ϕ⊕ ϕ,H⊕H, F̃11) is
an even nearly degenerate module with self-adjoint F̃11 that is equivalent to
F .
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3.1.3 Proposition. If F ∈ F1
p(A) is nearly degenerate, then

[F ] = 0 ∈ K1
p(A).

If F ∈ F0
p(A) is nearly degenerate, then there is a module

F ′ = (ϕ′
+ ⊕ ϕ′

−,H′ ⊕H′, 0) ∈ F0
p(A) (3.2)

such that [F ] = [F ′] ∈ K0
p(A). (ϕ′

+ and ϕ′
− can be chosen to be non-

degenerate.)

Proof. Let F = (ϕ,H, F ) ∈ F1
p(A) be nearly degenerate. We can assume

F ∗ = F by Lemma 3.1.2. Define f : R −→ R as

f(x) :=


1 x ≥ 0
−1 x < 0

.

By Borel functional calculus, f(F ) is a symmetry with [ϕ(A), f(F )] = {0}.
Moreover, defining g : R −→ R as

g(x) :=
 1

1+x x ≥ 0
−1

1−x x < 0
,

we have f(x)− x = (1− x2)g(x). Thus,

ϕ(x)(f(F )− F ) = ϕ(x)(I − F 2)g(F ) ∈ Lp for all x ∈ A.

This means that F is with respect to ϕ a p-summable perturbation of the
degenerate module (ϕ,H, f(F )) and thus represents the zero class in K1

p(A).
Next, let F = (ϕ,H, F ) ∈ F0

p(A) be an even, nearly degenerate module.
The argument from the odd case does not carry over since the function f is
not odd and therefore f(F ) might not be odd, either. Instead, we modify
f, g : R −→ R to

f(x) :=


1 x > 0
0 x = 0
−1 x < 0

and g(x) :=


1

1+x x > 0
0 x = 0
−1

1−x x < 0
.

Again we can write f(x)− x = (1− x2)g(x), so [F ] = [(ϕ,H, f(F ))] ∈ K0
p (A).

Let P := χ{0}(F ) where χ{0} denotes the characteristic function of the
Borel set {0}. P is an even projection commuting with ϕ and f(F ), hence

(ϕ,H, f(F )) = (Pϕ, PH, 0)⊕ (P⊥ϕ, P⊥H, P⊥f(F ))

and thus [(ϕ,H, f(F ))] = [(Pϕ, PH, 0)] ∈ K0
p(A) since the second summand

is degenerate.
Finally, by applying Proposition 2.4.7 we can restrict the module to the

support of Pϕ to make the representation non-degenerate.
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3.1.4 Definition. Let FR(A) be the monoid of unitary equivalence classes
of continuous, non-degenerate, finite-dimensional ∗-representations of A with
the direct sum as monoid operation.

Denote by FR(A) the Grothendieck group of FR(A).

Remember the definition of F∗
p(A) (Theorem 2.4.1): F1

p(A) consists of
those p-summable modules (ϕ,H, F ) over A which satisfy F ∗ = F and F 2 = I.
The elements of F0

p(A) are p-summable even modules over A of the form
ϕ⊕ ϕ, H⊕H,


0 U∗

U 0



with unitary U .
From the preceding proposition we can conclude:

3.1.5 Theorem. Let A be unital. If every module in F∗
p(A) is a p-summable

perturbation (with respect to the representation) of a nearly degenerate module,
then K1

p(A) = 0 and there is a natural isomorphism

K0
p(A) ∼= FR(A).

Proof. Keeping Theorem 2.4.1 in mind, the odd case is already contained in
Proposition 3.1.3. For the even case, note that the map

ϕ →→ (ϕ⊕ 0,H⊕ 0, 0)

sending a continuous, finite-dimensional ∗-representation ϕ : A −→ B(H) to
an even p-summable Fredholm module over A descends to a homomorphism
from FR(A) to K0

p(A). Since K0
p(A) is a group, this yields a well-defined

homomorphism
Φ : FR(A) −→ K0

p(A).

As −[(ϕ,H, F )] = [(ϕ,Hop,−F )], we see that Φ ([ϕ]− [ψ]) is represented by
the module

(ϕ⊕ ψ,H⊕H′, 0).

Thus, the surjectivity of Φ follows directly from Proposition 3.1.3 (note that if
the representations ϕ′

+ and ϕ′
− in (3.2) are non-degenerate, then they have to

be finite-dimensional since A is unital).
For proving the injectivity of Φ, assume Φ ([ϕ]− [ψ]) = 0, and let

F :=

ϕ⊕ ψ,H⊕H′, 0


.

Let J := ker(ϕ ⊕ ψ) and B := A/J endowed with the quotient topology.
Denote by π the quotient map. Since B is algebraically isomorphic to the
finite-dimensional C∗-algebra (ϕ⊕ψ)(A) and there is only one Hausdorff vector
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space topology on finite-dimensional vector spaces, the topology on B is given
by a C∗-norm making it a C∗-algebra isomorphic to (ϕ⊕ ψ)(A).

ϕ and ψ factor through π, so there are ϕ′, ψ′ such that ϕ = ϕ′ ◦ π and
ψ = ψ′ ◦ π.

If we define F ′ to be the module F ′ := (ϕ′ ⊕ ψ′,H ⊕ H′, 0) over B, we
have

0 = Φ([ϕ]− [ψ]) = [F ] = π∗[F ′].

To proof the theorem it therefore suffices to show: (i) [F ′] = 0 ∈ K0
p (B) implies

[ϕ] = [ψ]. (ii) π∗ is injective.

(i) As a finite-dimensional C∗-algebra, B is of the form B =
d

i=1Mni(C).
Let ei be arbitrary minimal projections in Mni(C). Under the assumption
[F ′] = 0, we know that IndF ′(ei) = 0 for all i. This means by definition
of the index map that

rkϕ′(ei) = rkψ′(ei) for i = 1, . . . , d.

As ϕ′ and ψ′ are non-degenerate by definition of FR(A), this implies that
ϕ′ and ψ′ are unitarily equivalent and hence also ϕ and ψ.

(ii) By Theorem 2.4.1, every class of K0
p(B) is represented by a module of

the form
G ′ := (ρ′ ⊕ ρ′,H⊕H, G′) ∈ F0

p(B)

with a symmetry G′. Suppose that π∗[G ′] = 0. Then by Proposition 2.3.9†

and Theorem 2.4.1, there is a degenerate

D = (µ,N , N) ∈ F0
p(A)

such that π∗G ′ ⊕D is operator homotopic to a degenerate module via a
path Gt of symmetries. Let P be the orthogonal projection onto µ(J )N .
By Proposition 1.2.3, we can define a ∗-representation µ′ of B on P⊥N
by

µ′(x′) := P⊥µ(x) where x′ = π(x).

Since P lies in the weak closure of µ(A), it commutes exactly with N ,
and we obtain a degenerate module

D ′ := (µ′, P⊥N , P⊥NP⊥)

over B.

†Strictly speaking, we do not use Proposition 2.3.9 but the analogous statement forK∗
p (A), which has, of course, exactly the same proof.
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Let P ′ := 0⊕ 0⊕ P ∈ B(H⊕H⊕N ). We want to show that

G ′
t :=


ρ′ ⊕ ρ′ ⊕ µ′, H⊕H⊕ P⊥N , P ′⊥GtP

′⊥


is an operator homotopy between G ′ ⊕D ′ and a degenerate module over
B. Since G ′

1 is degenerate by the same argument as above, we only need
to show that G ′

t really is a p-summable module for every t ∈ [0, 1].
Fix one t, and to shorten notation let

ρ := (ρ′ ⊕ ρ′) ◦ π ⊕ µ,

so P ′ is the projection onto ρ(J )(H⊕H⊕N ).
By assumption, (ρ,H⊕H⊕N , Gt) is (with respect to ρ) a p-summable
perturbation of some nearly degenerate module (ρ,H⊕H⊕N , G̃t). Since
P ′ lies in the weak closure of ρ(J ), P ′ commutes exactly with G̃t. P ′

also commutes exactly with ρ. Thus, for any x ∈ A we obtain

ρ(x)[P ′, Gt] = [P ′, ρ(x)Gt] = [P ′, ρ(x)(Gt − G̃t)] ∈ Lp,

and therefore

ρ(x)(P ′⊥GtP
′⊥GtP

′⊥ − P ′⊥) ∈ Lp.

This proves that G ′
t is indeed a p-summable module over B for any t.

3.1.6 Corollary.
K0
p(C) = Z and K1

p(C) = 0

as well as
K0
fin(C) = Z and K1

fin(C) = 0.

Proof. Given any p-summable module F = (ϕ,H, F ) over C, the module
ϕ,H, ϕ(1)Fϕ(1) + ϕ(1)⊥Fϕ(1)⊥


is a nearly degenerate, p-summable perturbation of F . Therefore, Theo-
rem 3.1.5 applies.

The statement for K∗
fin(C) follows immediately since the isomorphisms

Φ : FR(A) −→ K0
p(C) commute with the connecting maps K0

p(C) −→ K0
q (C)

(p < q).
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3.2 Unitization and direct sums
By adjoining a unit to A, we obtain the split exact sequence

0 −→ A ι−→ A+ π−→ C −→ 0.

As for standard K-Homology, this sequence induces an exact sequence in finitely
summable K-homology:

3.2.1 Proposition. The sequence

0←− K∗
p(A) ι∗←− K∗

p(A+) π∗
←− K∗

p(C)←− 0

is split exact, so

K1
p(A+) = K1

p(A) and K0
p(A+) = K0

p(A)⊕ Z.

The same is true for K∗
fin.

Proof. Define a split e : K∗
p(A) −→ K∗

p(A+) as follows: if x ∈ K∗
p(A) is

represented by (ϕ,H, F ) with F ∗ = F , F 2 = I, then let

e(x) := [(ϕ+,H, F )] ∈ K∗
p(A+)

where ϕ+ denotes the extension of ϕ to A+ by setting ϕ+(1) := I. The
well-definedness of e is guaranteed by Theorem 2.4.1.

By construction we have ι∗ ◦ e = idK∗
p (A), so ι∗ is surjective.

Next, let y ∈ K∗
p(A+) be given. By Theorem 2.4.1, there is a module

(ϕ,H, F ) with F ∗ = F , F 2 = I representing y. By definition, e ◦ ι∗(y) is
represented by (ϕ̂,H, F ) where ϕ and ϕ̂ agree on A, but ϕ̂(1) = I.

Since [ϕ(1), F ] ∈ Lp and [ϕ(1), ϕ̂(A+)] = {0}, we see that (ϕ̂,H, F ) is a
p-summable perturbation of
ϕ(1)ϕ̂, ϕ(1)H, ϕ(1)Fϕ(1)


⊕

ϕ(1)⊥ϕ̂, ϕ(1)⊥H, ϕ(1)⊥Fϕ(1)⊥


=

ϕ,ϕ(1)H, ϕ(1)Fϕ(1)


⊕

ϕ(1)⊥ϕ̂, ϕ(1)⊥H, ϕ(1)⊥Fϕ(1)⊥


.

The first summand is in the class of y by Proposition 2.4.7. So if ι∗y = 0, then

0 = y +

ϕ(1)⊥ϕ̂, ϕ(1)⊥H, ϕ(1)⊥Fϕ(1)⊥


.

Now, ϕ(1)⊥ϕ̂(A) = {0} implies that ϕ(1)⊥ϕ̂ factorizes over π. Thus, the
second summand lies in the image of π∗, which proves exactness in the middle.

Finally, π∗ is injective by the functoriality of K∗
p and the split-exactness of

the algebra extension.
The statement for K∗

fin follows immediately.
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Finitely summable K-homology is also well-behaved with respect to direct
sums:

3.2.2 Proposition. Given the direct sum exact sequence

0 −→ A1

π1x−→
ι1
A1 ⊕A2

ι2x−→
π2
A2 −→ 0,

the sequence

0←− K∗
p(A1)

π∗
1y←−
ι∗1

K∗
p(A1 ⊕A2)

ι∗
2y←−
π∗

2
K∗
p(A2)←− 0

is exact as well. In particular,

K∗
p(A1 ⊕A2) = K∗

p(A1)⊕K∗
p(A2).

The same is true for K∗
fin.

Proof. By the functoriality of K∗
p , we only need to show that Im π∗

2 = ker ι∗1.
Let F = (ϕ,H, F ) ∈ F∗

p(A1 ⊕ A2) be given and let P be the support
projection of ϕ ◦ ι1. F is with respect to ϕ a p-summable perturbation of

F1 ⊕F2 := (Pϕ, PH, PFP )⊕ (P⊥ϕ, P⊥H, P⊥FP⊥).

We have ι∗1[F2] = 0 and thus ι∗1[F ] = 0 can only hold if ι∗1[F1] = 0. But since
[F1] ∈ Im π∗

1, this is only possible if [F1] = 0, so [F ] = [F2] ∈ Im π∗
2.

The statement for K∗
fin follows immediately.

Later on, we shall see that this proposition does not carry over to countable
direct sums.

3.3 Barreled algebras
We call a topological algebra barreled if it is barreled as a topological vector
space (Definition A.1.3). In particular, all Fréchet algebras are barreled. As
an immediate consequence of the closed graph theorem, which also is valid
for linear maps with barreled domains, we obtain the following boundedness
property for finitely summable modules over these algebras:

3.3.1 Proposition. If A is a barreled topological ∗-algebra and (ϕ,H, F ) a
p-summable Fredholm module over A, then the maps

D : A −→ Lp(H)
x →−→ [F,ϕ(x)]

and
S : A −→ Lp(H)
x →−→ ϕ(x)(F 2 − I)

are continuous.
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In particular, for every bounded subset X ⊆ A there is a constant C such
that [F,ϕ(x)]


p < C and

ϕ(x)(F 2 − I)

p < C for all x ∈ X .

Proof. Let {xn} ⊆ A be a net converging to x ∈ A such that D(xn) converges
to T in Lp(H). Denote by ι the embedding of Lp(H) into B(H). Since ι is
continuous, ι ◦D(xn) converges to T in B(H). But ι ◦D is continuous as well,
so T = D(x). The same argument holds for S and thus the graphs of D and S
are closed in A×Lp(H). Since A is barreled and Lp(H) is a Banach space, the
closed graph theorem (Theorem A.1.7) implies the continuity of D and S.

3.4 Stability
In this section we show that K∗

fin is stable under taking tensor products with
Lp for arbitrary 1 ≤ p <∞.

To simplify notation, we will assume throughout this section that
Lp denotes the fixed algebra Lp(ℓ2(N)).

We denote by ei the ith basis vector of the canonical orthonormal basis of
ℓ2(N) and by eij the corresponding matrix units for Lp satisfying the relations

eijek = δjkei for all i, j, k ∈ N.

Moreover, we abbreviate eii by ei.

3.4.1 Lemma. If S, T ∈ Lp, then the operator S ⊗ T ∈ B(ℓ2(N)⊗ ℓ2(N)) is
p-summable and S ⊗ Tp =

Sp · Tp.
Proof. Since S and T are compact, there are families of orthonormal vectors
{ξn}, {ηn}, {ξ′

n}, {η′
n} such that

S(ξ) =

n

µn(S)(ξ | ξn)ηn and T (ξ) =

n

µn(T )(ξ | ξ′
n)η′

n

for all ξ ∈ ℓ2(N). {ξm⊗ ξ′
n} and {ηm⊗ η′

n} are families of orthonormal vectors
in ℓ2(N)⊗ ℓ2(N) and

(S ⊗ T )(ξ) =

m


n

µm(S)µn(T )(ξ | ξm ⊗ ξ′
n)(ηm ⊗ η′

n)

for all ξ ∈ ℓ2(N)⊗ ℓ2(N).
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This means that S ⊗ T has (up to order) the characteristic values µm(S)µn(T )
and thus S ⊗ Tpp =


m


n

(µm(S)µn(T ))p

=

m

µm(S)p


n

µn(T )p


=
Spp · Tpp.

3.4.2 Lemma. Let A be a ∗-algebra and ϕ̃ : Lp ⊙A −→ H̃ a non-degenerate
∗-representation of the algebraic tensor product Lp ⊙ A. Then there is a
∗-representation ϕ : A −→ H of A such that up to unitary equivalence

ϕ̃ = idLp ⊗ϕ.

Proof. Let P be the support projection of the representation of A on H̃ given by
x →→ ϕ̃(e1 ⊗ x), and let ϕ be the restriction of this representation to H := P H̃.

We define isometries Si : H −→ H̃ by the rule

Si(ϕ̃(e1 ⊗ x)ξ) := ϕ̃(ei1 ⊗ x)ξ (3.3)

and linear and continuous extension.
Note that the assignment in (3.3) is indeed well-defined: for any x, y ∈ A,

ξ, η ∈ H̃ we have
ϕ̃(ei1 ⊗ x)ξ

 ϕ̃(ej1 ⊗ y)η


= δij

ϕ̃(e1 ⊗ y∗x)ξ

 η
= δij


ϕ̃(e1 ⊗ x)ξ

 ϕ̃(e1 ⊗ y)η

.

(3.4)

So if
m
k=1 ϕ̃(e1 ⊗ xk)ξk =

n
l=1 ϕ̃(e1 ⊗ yl)ηl, then

 m
k=1

ϕ̃(ei1 ⊗ xk)ξk −
n

l=1
ϕ̃(ei1 ⊗ yl)ηl

2

=
 m

k=1
ϕ̃(ei1 ⊗ xk)ξk −

n
l=1

ϕ̃(ei1 ⊗ yl)ηl

 m
k=1

ϕ̃(ei1 ⊗ xk)ξk −
n

l=1
ϕ̃(ei1 ⊗ yl)ηl


=
 m

k=1
ϕ̃(e1 ⊗ xk)ξk −

n
l=1

ϕ̃(e1 ⊗ yl)ηl

 m
k=1

ϕ̃(e1 ⊗ xk)ξk −
n

l=1
ϕ̃(e1 ⊗ yl)ηl


= 0.

Equation (3.4) also shows that the Si are indeed isometric and have orthogonal
range.
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If η is orthogonal to the image of Sj , then for any i ∈ N and x ∈ A we
have ϕ̃(eij ⊗ x)η

2 =

ϕ̃(eij ⊗ x)η

 ϕ̃(eij ⊗ x)η


=

η
 ϕ̃(ej1 ⊗ x∗)ϕ̃(e1j ⊗ x)η


=

η
 Sj(ϕ̃(e1j ⊗ x∗x)η)


= 0.

Thus, the closed span of the ranges of the Sj must be H̃ since ϕ̃ is non-
degenerate. Therefore, we can define a unitary

U : ℓ2(N)⊗H −→ H̃
ei ⊗ ξ →−→ Si(ξ).

For any ϕ̃(ek1 ⊗ y)ξ ∈ SkH we then have

U(eij ⊗ ϕ(x))U∗(ϕ̃(ek1 ⊗ y)ξ)
= U(eij ⊗ ϕ(x))(ek ⊗ ϕ̃(e1 ⊗ y)ξ)
= δjkU(ei ⊗ ϕ̃(e1 ⊗ xy)ξ)
= δjkϕ̃(ei1 ⊗ xy)ξ
= ϕ̃(eij ⊗ x)ϕ̃(ek1 ⊗ y)ξ,

i.e.
U (idLp ⊗ϕ)(y)U∗ = ϕ̃(y) for all y ∈ Lp ⊙A.

Let A be a locally convex ∗-algebra whose topology is generated by a
family of semi-norms νi (i ∈ I). The projective tensor product Lq⊗̂A is the
completion of the algebraic tensor product Lq ⊙A endowed with the locally
convex topology generated by the family of semi-norms ∥·∥q ⊗ νi where

(
·q ⊗ νi)(y) := inf

 n
j=1

Tjqνi(xj)  y =
n
j=1

Tj ⊗ xj


for all y ∈ Lq ⊙A.
We can continuously embed A into Lq⊗̂A via the map

ι : A −→ Lq⊗̂A
x →−→ e1 ⊗ x

(the concrete choice of the minimal projection in Lq does not matter, of course).
The embedding ι induces isomorphisms in finitely summable K-homology as
the following theorem shows.
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3.4.3 Theorem. If A is a barreled, locally convex ∗-algebra, then for any
1 ≤ q <∞ the embedding ι of A into Lq⊗̂A induces isomorphisms

K∗
fin(A) ι∗←− K∗

fin(Lq⊗̂A).

Proof. Let ϕ : A −→ B(H) be a continuous ∗-representation of A. ϕ induces a
∗-representation idLq ⊗ϕ of Lq ⊙A on ℓ2(N)⊗H sending T ⊗ x to T ⊗ ϕ(x).
Note that by Lemma 3.4.1 there is a continuous semi-norm ν on A such thatT ⊗ ϕ(x)

 =
T · ϕ(x)

 ≤ Tqν(x)

for all T ∈ Lq and x ∈ A. Thus, if y =
n
i=1 Ti ⊗ xi, then

(idLq ⊗ϕ)(y)
 ≤ n

i=1

Ti ⊗ ϕ(xi)
 ≤ n

i=1

Tiqν(xi),

and, taking the infimum over all such representations of y,(idLq ⊗ϕ)(y)
 ≤ (

·q ⊗ ν)(y).

This shows that idLq ⊗ϕ is continuous for the projective topology on Lq ⊙A
and thus extends to a continuous ∗-representation of Lq⊗̂A.

Now, if F = (ϕ,H, F ) is a p-summable module over A with p ≥ q, then
by Proposition 3.3.1 there is a continuous semi-norm ν on A such that[F,ϕ(x)]


p ≤ ν(x) and

ϕ(x)(F 2 − I)

p ≤ ν(x) for all x ∈ A.

Setting ϕ̃ := idLq ⊗ϕ, F̃ := I ⊗ F , we obtain[F̃ , ϕ̃(T ⊗ x)]

p =

T ⊗ [F,ϕ(x)]

p =

Tp[F,ϕ(x)]

p ≤

Tqν(x)

and ϕ̃(T ⊗ x)(F̃ 2 − I)

p =

T ⊗ (ϕ(x)(F 2 − I))

p ≤

Tqν(x).

As above, we conclude that[F̃ , ϕ̃(y)]

p ≤ (

·q ⊗ ν)(y) and
ϕ̃(y)(F̃ 2 − I)


p ≤ (

·q ⊗ ν)(y)

for all y ∈ Lq⊗̂A. Thus, F̃ := (ϕ̃, ℓ2(N)⊗H, F̃ ) is a p-summable module over
Lq⊗̂A.

This operation of extending F to F̃ is compatible with direct sums,
unitary equivalence, and operator homotopies and hence induces a group
homomorphism ρ : K∗

fin(A) −→ K∗
fin(Lq⊗̂A). Moreover, it is easy to check

that ι∗ is a left-inverse to ρ, so ρ is injective.
To show that ρ is surjective, let F̃ = (ϕ̃, H̃, F̃ ) be any p-summable module

over Lq⊗̂A with self-adjoint F̃ . We can assume that p ∈ N is even and greater
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than q. Assuming moreover that ϕ̃ is non-degenerate (Proposition 2.4.7) and
using Lemma 3.4.2, we can write F̃ as

F̃ = (idLq ⊗ϕ, ℓ2(N)⊗H, F̃ ).

Let
F ′ :=

∞
i=1

(ei1 ⊗ I)F̃ (e1i ⊗ I).

We want to show that

F ′ := (idLq ⊗ϕ, ℓ2(N)⊗H, F ′)

is a p2-summable module over Lq⊗̂A which is a p2-summable perturbation of
F̃ with respect to idLq ⊗ϕ. If we then identify H with e1 ⊗H and define F to
be the restriction of (e1 ⊗ I)F̃ (e1 ⊗ I) to H, then

F ′(ei ⊗ ξ) = (ei1 ⊗ I)F̃ (e1i ⊗ I)(ei ⊗ ξ) = (ei1 ⊗ I)(e1 ⊗ Fξ) = ei ⊗ Fξ.

Thus F ′ = I ⊗ F , and [F ′] lies in the image of ρ, proving the theorem.
To prove our claim, note that Lq⊗̂A is barreled by Proposition A.1.6 so that

we can apply Proposition 3.3.1 again. Hence, there is a continuous semi-norm
ν on A such thatT ⊗ ϕ(x)

 ≤ Tqν(x) for all T ∈ Lq, x ∈ A (3.5)

and [F̃ , T ⊗ ϕ(x)]

p ≤

Tqν(x) for all T ∈ Lq, x ∈ A. (3.6)

Since the involution is continuous, there is another continuous semi-norm
ν ′ ≥ ν on A such that

ν(x∗) ≤ ν ′(x) for all x ∈ A. (3.7)

Now we have[F ′, T ⊗ ϕ(x)]

p =

T ⊗ [F,ϕ(x)]

p

=
Tp · [(e1 ⊗ I)F̃ (e1 ⊗ I), e1 ⊗ ϕ(x)]


p

≤
Tq · e1 ⊗ I

 · [F̃ , e1 ⊗ ϕ(x)]

p ·
e1 ⊗ I


≤
Tq · e1


qν(x) =

Tqν(x)

and thus[F ′, (idLq ⊗ϕ)(y)]

p ≤ (

·q ⊗ ν)(y) for all y ∈ Lq⊗̂A. (3.8)

To show that F̃ and F ′ are p2-summable perturbations with respect to
idLq ⊗ϕ, first suppose that T :=

∞
j=1 ajej ∈ Lq with aj ∈ R and that x ∈ A

is self-adjoint.



64 CHAPTER 3. BASIC PROPERTIES

Abbreviating T ⊗ ϕ(x) by X and F̃ − F ′ by Y , we have(T ⊗ ϕ(x))(F̃ − F ′)
p2

p2 =
|XY |p21

=
|XY |ppp

=
(Y X2Y )

1
2p
p
p,

and after permuting the factors:

≤ C
Xp−1Y p−1[X,Y ]


p +

XpY p

p
p

≤ C ′Tpqν(x)p +
XpY


p
p

where in the last line we used (3.5), (3.6) and (3.8). The constants C and C ′

only depend on p and the norm of F̃ − F ′.
We estimate the second summand byXpY


p

=
 ∞
i=1
|ai|p(ei ⊗ ϕ(x)p−1)


(ei ⊗ ϕ(x))F̃ − (ei1 ⊗ ϕ(x))F̃ (e1i ⊗ I)


p

≤
∞
i=1
|ai|pν(x)p−1

[ei1 ⊗ ϕ(x), F̃ ]

p +

[ei ⊗ ϕ(x), F̃ ]

p


≤

∞
i=1

2|ai|pν(x)p ≤ 2
Tpqν(x)p,

so all in all we get (T ⊗ ϕ(x))(F̃ − F ′)

p2 ≤ C ′′Tqν(x).

If S ∈ Lq is arbitrary, then we can find a T ∈ Lq as above and unitaries
U, V such that S = UTV . Then(S ⊗ ϕ(x))(F̃ − F ′)


p2

≤
U ⊗ I(TV ⊗ ϕ(x))(F̃ − F ′)


p2

≤
[TV ⊗ ϕ(x), F̃ − F ′]


p2 +

(F̃ − F ′)(TV ⊗ ϕ(x))

p2

≤
[TV ⊗ ϕ(x), F̃ − F ′]


p +

(V ∗T ⊗ ϕ(x))(F̃ − F ′)

p2

≤ 2
TV qν(x) +

V ∗ ⊗ I
C ′′Tqν(x)

= (2 + C ′′)
Sqν(x).

Finally, if x is not self-adjoint, then from ν

x∗+x

2


≤ ν′(x)+ν(x)

2 ≤ ν ′(x) and in

the same way ν

x∗−x

2


≤ ν ′(x), we conclude that for any S ∈ Lq, x ∈ A

(S ⊗ ϕ(x))(F̃ − F ′)

p2 ≤ C ′′′Sqν ′(x)
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and thus(idLq ⊗ϕ)(y)(F̃ − F ′)

p2 ≤ C ′′′(

·q ⊗ ν ′)(y) <∞ for all y ∈ Lq⊗̂πA.

From this we also obtain that (idLq ⊗ϕ)(y)(F ′2−I) ∈ Lp2 for all y ∈ Lq⊗̂A, so
F ′ is indeed a p2-summable Fredholm module, which concludes the proof.

3.5 Miscellaneous results
We end this chapter with two technical lemmas that we will use in the next
chapter.

3.5.1 Lemma. If ϕ : A −→ B(H) is a ∗-representation and P ∈ B(H) a
projection such that

Pϕ(x∗x)P − Pϕ(x∗)Pϕ(x)P ∈ Lp for all x ∈ A,

then
Pϕ(x)P⊥ ∈ L2p and P⊥ϕ(x)P ∈ L2p for all x ∈ A.

The statement remains true if Lp and L2p are replaced by K(H) or R(H).

Proof. Write ϕ with respect to the decomposition H = PH⊕ P⊥H as

ϕ =

ϕ11 ϕ12
ϕ21 ϕ22


.

Since ϕ is a ∗-representation, we have ϕ12(x∗) = ϕ21(x)∗ and
ϕ11(x∗x) ϕ12(x∗x)
ϕ21(x∗x) ϕ22(x∗x)


=

ϕ11(x∗)ϕ11(x) + ϕ12(x∗)ϕ21(x) ∗

∗ ∗



for any x ∈ A. Therefore, the assumption implies that

ϕ21(x)∗ϕ21(x) = ϕ12(x∗)ϕ21(x) ∈ Lp,

thus ϕ21(x) ∈ L2p and ϕ12(x) = (ϕ21(x∗))∗ ∈ L2p.

In general, there is no smaller q < 2p such that Pϕ(x)P⊥ ∈ Lq: consider,
for example, the ∗-algebra generated by

X :=
√

I − T 2 T

T −
√
I − T 2



with 0 < T < I and T ∈ L2p, but T /∈ Lq for any q smaller than 2p. Then the

identity representation of this algebra and P :=

I 0
0 0


satisfy the conditions

of Lemma 3.5.1, but PXP⊥ /∈ Lq for q < 2p.
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3.5.2 Lemma. Let F = (ϕ,H, F ) and F ′ = (ϕ′,H′, F ′) be p-summable
odd Fredholm modules over A such that F and F ′ are symmetries. If for
P := 1

2(F + I), P ′ := 1
2(F ′ + I) there is a unitary

U : PH −→ P ′H′

such that
UPϕ(x)PU∗ − P ′ϕ′(x)P ′ ∈ Lp for all x ∈ A,

then F and F ′ represent the same class in K1
p(A).

The analogous statement for K1(A) is true as well.

Proof. First, note that

F̃ :=

ϕ⊕ 0, (PH⊕ P⊥H)⊕ P ′⊥H′, (I ⊕−I)⊕−I


is the direct sum of F with a degenerate module. Similarly, if Ũ is the unitary

Ũ := U ⊕ I : PH⊕ P ′⊥H′ −→ P ′H′ ⊕ P⊥′H′,

then

F̃ ′ :=

Ũ∗ϕ′(·)Ũ ⊕ 0, (PH⊕ P ′⊥H′)⊕ P⊥H, (I ⊕−I)⊕−I


is the direct sum of a module which is unitarily equivalent to F ′ and a
degenerate module. If S is the unitary

S : PH⊕ P⊥H⊕ P ′⊥H −→ PH⊕ P ′⊥H′ ⊕ P⊥H

which flips the last two summands, then F̃ ′ is unitarily equivalent to the
module

F̃ ′′ :=

S∗(Ũ∗ϕ′(·)Ũ ⊕ 0)S, PH⊕ P⊥H⊕ P ′⊥H′, I ⊕−I ⊕−I


.

F̃ and F̃ ′′ satisfy the conditions of the proposition with U = I, so we see that
is suffices to prove the proposition under the assumption that H = H′, F = F ′

and U = I.
Decompose ϕ and ϕ′ with respect to H = PH⊕ P⊥H as

ϕ =

ϕ11 ϕ12
ϕ21 ϕ22


and ϕ′ =


ϕ′

11 ϕ′
12

ϕ′
21 ϕ′

22


,

and consider the operator homotopy

Ft :=



ϕ11 ϕ12
ϕ21 ϕ22

ϕ′
11 ϕ′

12
ϕ′

21 ϕ′
22

 , H⊕H,


cos(πt)I sin(πt)I
−I

sin(πt)I − cos(πt)I
I


 .

F0 is a representative of [F ]− [F ′] ∈ K1
p(A), whereas for t = 1 we obtain a

degenerate module. Explicit calculation shows that Ft is in fact a p-summable
module for any t (bearing in mind that by assumption ϕ11(x)−ϕ′

11(x) ∈ Lp and
that ϕ12(x), ϕ21(x), ϕ′

12(x), ϕ′
21(x) ∈ Lp since F and F ′ are p-summable).



Chapter 4

AF-Algebras

AF-Algebras are the inductive limits of finite-dimensional C∗-Algebras. In
other words, every AF-Algebra A can be written as A =


nAn with an

increasing sequence An (n ∈ N) of finite-dimensional C∗-subalgebras. Since
every An, being a C∗-algebra, is a pre-C∗-algebra, the same is true for their
union. So every AF-Algebra


nAn comes equipped with


nAn as a dense

pre-C∗-subalgebra.
In this chapter we will analyse the relation between the finitely summable

K-homology of

nAn and the ordinary K-homology of A.

The algebra

nAn is not uniquely determined by A, of course (think of

A = K(H) and M∞(C) with respect to two different orthonormal bases as
dense subalgebras). However, they are unique up to unitary equivalence:

4.0.3 Proposition. If an AF-algebra A can be written as

A =

n

An =

n

Bn

with increasing sequences of finite-dimensional C∗-subalgebras An and Bn, then
for every ε > 0 there is a unitary u ∈ Ã with ∥u− 1Ã∥ < ε such that

u ·

n

An · u∗ =

n

Bn.

Proof. [Dav96, Theorem III.3.5].

Such a u can be constructed recursively with the help of the following
lemma:

4.0.4 Lemma. For every ε > 0 and n ∈ N there is a δ > 0 such that the
following is true:
Let A,B be C∗-subalgebras of a common unital C∗-algebra D with dimA ≤ n
such that there is a system of matrix units {e(k)

ij } for A with dist(e(k)
ij , B) < δ

67
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for all i, j, k. Then there is a unitary u ∈ C∗(A,B, 1D) with ∥u − 1D∥ < ε
such that

u A u∗ ⊆ B.

Moreover, u can be chosen to commute with A ∩B.

Proof. [Dav96, Lemma III.3.2 and Corollary III.3.3].

The proof of Lemma 4.0.4 works by first finding matrix units in B which
lie near the given matrix units. Then a unitary is constructed which translates
the old matrix units to the new ones in B.

We do not reproduce the proof of Lemma 4.0.4 as we will prove a variation
of the statement in Section 4.1, anyway. The part of finding the unitary is
contained in Lemma 4.1.4, while the construction of adequate matrix units is
contained in the proof of Theorem 4.1.5.

Throughout this chapter A =

nAn will denote an AF-algebra

with an increasing sequence An (n ∈ N) of finite-dimensional
C∗-subalgebras.

4.1 The odd case
In this section we compute K1

p(

nAn).

4.1.1 Theorem. Every element of K1(A) can be represented by a 1-summable
Fredholm module over


nAn.

Proof. Let x ∈ K1(A) be given. By Theorem 2.4.1 and Remark 2.4.8, x has
a representative (ϕ,H, F ) with F ∗ = F and F 2 = I. Let P := 1/2(F + I).
Adding a degenerate module if necessary, we may assume that Pϕ(x)P /∈ K(H)
for any x ∈ A \ {0}.

Such a module defines an extension of A by K(PH) as follows. Consider
E ⊂ B(PH) given by

E := Pϕ(A)P +K(PH).

E is a ∗-algebra since ϕ commutes with P up to compact operators. Denote
by q the quotient map from B(PH) to the Calkin-Algebra B(PH)/K(PH) and
by σ the c.p.c.† map from A to E sending x to Pϕ(x)P . Again because ϕ and
P commute up to compact operators, q ◦ σ is a ∗-homomorphism onto q(E).
It is injective since Pϕ(x)P /∈ K(H) for x ∈ A \ {0}. Therefore, we obtain the
C∗-algebra extension

0 −→ K(PH) ⊆−→ E
σx−→
π

A −→ 0

with π = (q ◦ σ)−1 ◦ q (E is complete since q(E) is closed in B(PH)/K(PH)).
†Completely positive contractive (Definition A.3.1).
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Extensions of AF-algebras are again AF-algebras [Dav96, Theorem III.6.3].
Therefore, since A and K(PH) are AF, E is also AF and there is an increasing
sequence of finite-dimensional C∗-subalgebras En of E such that E =


nEn.

By a standard result on ideals in inductive limits of C∗-algebras, we can write
K(PH) =


nKn where Kn := K(PH) ∩ En [Dav96, Lemma III.4.1].

Note that the Kn are finite-dimensional C∗-algebras of compact operators.
However, this is only possible if they are, in fact, algebras of finite-rank
operators (every compact projection has finite rank). Therefore, we have the
extension

0 −→

n

Kn
⊆−→

n

En
π−→

n

π(En) −→ 0,

where

nKn is an algebra of finite-rank operators.

A priori, there is no reason why

n π(En) should be equal to


nAn, but

this can be fixed easily: since

nEn is dense in E, we have


n π(En) = A.

According to Proposition 4.0.3, there is a unitary u ∈ Ã homotopic to the
identity such that

u ·

n

π(En) · u∗ =

n

An.

Lift u to a unitary U ∈ Ẽ. Replacing En by UEnU∗ and Kn by UKnU∗, we
arrive at the extension

0 −→

n

Kn
⊆−→

n

En
π−→

n

An −→ 0.

Now we are done if we can find a c.p.c. split σ′ :

nAn −→


nEn of

this extension: let ϕ′ be a Stinespring dilation (Theorem A.3.3) of σ′ on
H′ := PH ⊕ N and P ′ the projection of H′ onto PH. Since σ′ splits the
extension,

P ′ϕ′(xy)P ′ − P ′ϕ′(x)P ′ϕ′(y)P ′ = σ′(xy)− σ′(x)σ′(y) ∈ R(PH)

holds for all x, y ∈

nAn. Thus, (ϕ′,H′, 2P ′ − I) is a 1-summable Fredholm

module over

nAn by Lemma 3.5.1. Lemma 3.5.2 shows that this module

extends to a representative of the same K-homology class of A as (ϕ,H, F ).
To construct σ′, observe that, since each En is finite-dimensional and Kn is

an ideal in En, En decomposes as En = Kn ⊕Qn for some finite-dimensional
Qn isomorphic to π(En) via π. Regarding the union


nEn as an inductive

limit, we obtain an inductive system of the form

. . . Kn−1 Kn Kn+1 . . .

⊕ ⊕ ⊕

. . . Qn−1 Qn Qn+1 . . .

kn−1 kn

qn−1 qn

q̃n
−1

q̃n

with connecting maps en := (kn, qn + q̃n).
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The projections πn of Kn ⊕Qn onto Qn define maps to the sub-diagram

. . . Qn−1 Qn Qn+1 . . .
qn−1 qn

which are compatible with the connecting maps. The inductive limit of this
diagram is isomorphic to


nAn via π. Therefore, it suffices to find c.p.c.

maps σ′
n : Qn −→ Kn ⊕Qn which split πn and which are compatible with the

connecting maps.
Since Qn and Qn+1 are finite-dimensional, we can find a c.p.c. left-inverse

sn : Qn+1 −→ Qn for the injection qn:
Let {e(k)

ij } be a system of matrix units for Qn, choose minimal projections
p(k) ∈ Qn+1 with p(k) ≤ qn(e(k)

1 ), and let p :=

k,i qn(e(k)

i1 )p(k)qn(e(k)
1i ). Then

the compression γn+1 : Qn+1 −→ Qn+1 sending x ∈ Qn+1 to pxp is c.p.c.,
and γn+1 ◦ qn is a ∗-isomorphism onto the image of γn+1. Thus, we can set
sn := (γn+1 ◦ qn)−1 ◦ γn+1.

Now, let ιQn denote the embedding of Qn into En and define recursively

σ′
1 := ιQ1 and σ′

n+1 := (kn, q̃n) ◦ σ′
n ◦ sn + ιQn+1 .

Each σ′
n is obviously c.p.c. and splits πn, so we only need to check compatibility

with the connecting maps:

σ′
n+1 ◦ qn − en ◦ σ′

n =

(kn, q̃n) ◦ σ′

n ◦ sn + ιQn+1


◦ qn − en ◦ σ′

n

= (kn, q̃n) ◦ σ′
n + ιQn+1 ◦ qn − (kn, qn + q̃n) ◦ σ′

n

= ιQn+1 ◦ qn − (0, qn) ◦

(kn−1, q̃n−1) ◦ σ′

n−1 ◦ sn−1 + ιQn


= ιQn+1 ◦ qn − (0, qn) ◦ ιQn

= 0.

To answer the question whether every p-summable module over

nAn

which is zero in K1(A) is already zero in K1
p(

nAn), we need a bit more

preparation. We start with two simple lemmas about operators which lie near
projections or near partial isometries:

4.1.2 Lemma. If P ∈ B(H) is a projection and X ∈ B(H) is self-adjoint,
then χ[1/2,∞)(X)−X

 ≤ X − P,
where χ[1/2,∞) denotes the characteristic function of the interval [1/2,∞).

If X2 −X ∈ I where I = Lp(H) or I = K(H), then

χ[1/2,∞)(X)−X ∈ I.
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Proof. Abbreviate ∥X − P∥ by d. Since sp(P ) = {0, 1}, we have

sp(X) ⊆ [−d, d] ∪ [1− d, 1 + d].

Thus, |χ[1/2,∞)−idR| is bounded on sp(X) by d. Since Borel functional calculus
is norm decreasing, the first claim follows.

To prove the second claim, define functions p, q : R −→ R by

p(x) :=
 1
x−1 x < 1

2
1
x x ≥ 1

2
and q(x) := x2 − x.

Then
X − χ[1/2,∞)(X) = p(X)q(X) = p(X)(X2 −X) ∈ I.

4.1.3 Lemma. Let T ∈ B(H) and a projection P ∈ B(H) be given such
that TP = T . Then the partial isometry part V of the polar decomposition
T = V |T | satisfies V − T ≤ P − T ∗T

 1
2 .

If P − T ∗T ∈ I where I = Lp(H) or I = K(H), then

V − T ∈ I.

Proof. Abbreviate ∥P −T ∗T∥ by d. We have T ∗T = PT ∗TP , so T ∗T restricts
to an operator on PH whose spectrum is contained in [max(0, 1− d), 1 + d].
Checking that |1−

√
·| is bounded on [max(0, 1− d), 1 + d] by

√
d, we obtainV − T ≤ V  · P − (T ∗T )

1
2
 ≤ √d.

To prove the second claim, note that V − T factors as

V − T = (V − T )P = V

I − (T ∗T )

1
2

P = V


I + (T ∗T )

1
2
−1

(I − T ∗T )P

= V

I + (T ∗T )

1
2
−1

(P − T ∗T ).

Next, we prove a lemma stating that two systems of matrix units which lie
close enough to each other can be transformed into each other by a unitary near
the identity. This is a slight variation of a part of the proof of Lemma 4.0.4.

4.1.4 Lemma. For any N ∈ N and ε > 0 there is a δ > 0 such that the
following statement is true:
If {E(k)

ij } and {F (k)
ij } are two systems of matrix units of operators on a Hilbert
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space H with the same indices and with in total N projections E(k)
i (resp. F (k)

i )
such that E(k)

ij − F
(k)
ij

 < δ for all i, j, k,
then there is a unitary U ∈ B(H) with

UE
(k)
ij U

∗ = F
(k)
ij for all i, j, k and

U − I < ε.

If moreover I = Lp(H) or I = K(H) and

E
(k)
ij − F

(k)
ij ∈ I for all i, j, k,

then U can be chosen to satisfy

U − I ∈ I.

For ε ≤ 1, an appropriate δ is ε2

25N2 .

Proof. Define

V :=

k


i

F
(k)
i1 E

(k)
1i +


I −


k


i

F
(k)
i


I −


k


i

E
(k)
i


.

Then for δ ≤ 1
2N we haveV − I ≤

k


i

(F (k)
i1 − E

(k)
i1 )

+

k


i

F (k)
i − E(k)

i


< 2Nδ ≤ 1,

so V is invertible and has the polar decomposition V = U |V | with a unitary
U . Moreover, Lemma 4.1.3 implies thatU − I ≤ U − V +

V − I ≤ V ∗V − I
 1

2 +
V − I

<
V ∗ − I

V +
V − I 1

2 + 2Nδ

< (6Nδ)
1
2 + 2Nδ < 5Nδ

1
2 .

Thus, ∥U − I∥ < ε if δ ≤ ε2/(25N2).
Check that

V E
(k)
ij = F

(k)
i1 E

(k)
1j = F

(k)
ij V,

hence
V ∗V E

(k)
ij = V ∗F

(k)
ij V = E

(k)
ij V

∗V.

The second identity implies that |V |−1 commutes with all E(k)
ij and therefore

UE
(k)
ij U

∗ = V |V |−1E
(k)
ij U

∗ = V E
(k)
ij |V |

−1U∗ = F
(k)
ij V |V |−1U∗ = F

(k)
ij

for all i, j, k.
If F (k)

ij − E
(k)
ij ∈ I for all i, j, k, then I − V ∈ I. In particular we have

I − V ∗V ∈ I and thus Lemma 4.1.3 implies that U − V ∈ I.
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Now we can finish the computation of K1
p(

nAn):

4.1.5 Theorem. Let F be a p-summable Fredholm module over

nAn. If

[F ] = 0 ∈ K1(A), then [F ] = 0 ∈ K1
p(

nAn).

Proof. Let F = (ϕ,H, F ) ∈ F1
p(

nAn) with [F ] = 0 ∈ K1(A) be given, and

extend it to a Fredholm module over A. By Theorem 2.4.1 we can assume that
F ∗ = F and F 2 = I. Let P := 1/2(F + I).

[F ] = 0 ∈ K1(A) implies by Theorem 2.4.1 and Remark 2.4.8 that (after
adding a degenerate module) we can assume that F is operator homotopic to
degenerate module via a path of symmetries. Thus, by Corollary 2.4.4 there
must be a unitary U ∈ Dϕ(A) such that (ϕ,H, UFU∗) is a degenerate module.
This means that

[F,U∗ϕ(x)U ] = 0 and U∗ϕ(x)U − ϕ(x) ∈ K(H) for all x ∈ A.

Let σ and σ0 be the compressions of ϕ and U∗ϕ(·)U to PH. Since F
commutes with U∗ϕ(·)U , we know that σ0 is a ∗-homomorphism. Moreover,
we have

σ0(x)− σ(x) ∈ K(PH) for all x ∈ A

(in the Ext-picture of K-homology this means that σ0 is a ∗-homomorphism
split for the trivial extension associated to F ).

Now, by twisting σ0 we want to find a ∗-homomorphism σ′ : A −→ B(PH)
with σ′(x) − σ(x) ∈ Lp for all x ∈


nAn. Then the degenerate module

(σ′, PH, I) will be in the same class of K1
p (

nAn) as F (Lemma 3.5.2), proving

the theorem.
To define σ′, we will construct recursively ∗-homomorphisms σn from A to

B(PH) with the following properties:

(i) σn(x)− σ(x) ∈ K(PH) for all x ∈ A

(ii) σn(x)− σ(x) ∈ Lp(PH) for all x ∈ An

(iii) σn(x) = σn−1(x) for all x ∈ An−1 (if n > 1)

Then we can just define σ′ to be σn(x) for x ∈ An.
Assume σn−1 has already been constructed, and let {f (k)

ij } be matrix units
for An with in total d projections.

Our first aim is to show that we can find for each 0 < δ < 1 matrix units
{F (k)

ij } with the same indices as {f (k)
ij } satisfyingF (k)

ij − σn−1(f (k)
ij )

 < δ and F
(k)
ij − σ(f (k)

ij ) ∈ Lp for all i, j, k. (4.1)

We will then use Lemma 4.1.4 to find a unitary which translates the σn−1(f (k)
ij )

to the F (k)
ij . Along the lines of the proof of Lemma 4.0.4, we construct the

F
(k)
ij in two steps:
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Step 1. First, we find the projections F
(k)
i . To this end, let F

(ks)
is

(s = 1, . . . , d) be an enumeration of these projections. The F (ks)
is

we construct
will have the additional property that

F (ks)
is
− σn−1(f (ks)

is
)
 < δs where δs := (16d)−(3+d−s)δ2. (4.2)

Since σn−1(f (ks)
is

)− σ(f (ks)
is

) ∈ K(PH) and Lp(PH) is dense in K(PH), we
can find self-adjoint F̃ (ks)

is
such that

F̃ (ks)
is
− σn−1(f (ks)

is
)
 < 1

16δs and F̃
(ks)
is
− σ(f (ks)

is
) ∈ Lp.

The latter implies since σ(f (ks)
is

)2 − σ(f (ks)
is

) ∈ Lp that we also have


F̃

(ks)
is

2
− F̃ (ks)

is
∈ Lp.

Defining
F

(k1)
i1

:= χ[1/2,∞)(F̃
(k1)
i1

),

Lemma 4.1.2 implies ∥F (k1)
i1
− F̃ (k1)

i1
∥ < 1

16δ1 and F
(k1)
i1
− F̃ (k1)

i1
∈ Lp. Thus,

F
(k1)
i1

satisfies (4.1) and (4.2).
For the other F (ks)

is
we proceed in the same way, but we have to ensure

that we end up with pairwise orthogonal projections. To this end, assume that
we have already constructed F

(k1)
i1

, . . . , F
(ks−1)
is−1

. Let

Ps :=
s−1
r=1

F
(kr)
ir

and ps :=
s−1
r=1

f
(kr)
ir

.

Then define
F

(ks)
is

:= χ[1/2,∞)(P⊥
s F̃

(ks)
is

P⊥
s ),

which is obviously a projection orthogonal to the earlier defined F
(kr)
ir

. Since

Ps − σ(ps), F̃ (ks)
is
− σ(f (ks)

is
), σ(ps)σ(f (ks)

is
), σ(f (ks)

is
)σ(ps) ∈ Lp,

we also have
P⊥
s F̃

(ks)
is

P⊥
s − F̃

(ks)
is
∈ Lp,

hence P⊥F̃
(ks)
is

P⊥ − σ(f (ks)
is

) ∈ Lp. Again, this implies


P⊥
s F̃

(ks)
is

P⊥
s

2
− P⊥

s F̃
(ks)
is

P⊥
s ∈ Lp. (4.3)
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Moreover,P⊥
s F̃

(ks)
is

P⊥
s − F̃

(ks)
is


≤ 2

Ps − σn−1(ps)
 · F̃ (ks)

is

+
σn−1(ps)⊥F̃

(ks)
is

σn−1(ps)⊥ − F̃ (ks)
is


< 4(s− 1)δs−1 + 2

F̃ (ks)
is
− σn−1(f (ks)

is
)


<
1
4δs + 1

8δs = 3
8δs,

and we obtain P⊥
s F̃

(ks)
is

P⊥
s − σn−1(f (ks)

is
)
 < 1

2δs. (4.4)

Equations (4.3) and (4.4) imply together with Lemma 4.1.2 that F (ks)
is

satisfies
(4.1) and (4.2).

Having constructed the projections F (k)
i , let us note that (4.2) in particular

implies that each F
(k)
i satisfiesF (k)

i − σn−1(f (k)
i )

 < δd = (16d)−3δ2 ≤ 2−12δ2.

Step 2. To construct the partial isometries F (k)
ij , find as above operators

F̃
(k)
i1 such that

F̃ (k)
i1 − σn−1(f (k)

i1 )
 < 1

32−10δ2 and F̃
(k)
i1 − σ(f (k)

i1 ) ∈ Lp. (4.5)

F
(k)
i1 has to be a partial isometry between F

(k)
1 and F

(k)
i , so we first cut

F̃
(k)
i1 down to

F̂
(k)
i1 := F

(k)
i F̃

(k)
i1 F

(k)
1 .

Since the F̃
(k)
i1 are p-summable perturbations of the σ(f (k)

i1 ), the F
(k)
i are

p-summable perturbations of the σ(f (k)
i ) and since

σ(f (k)
i )σ(f (k)

i1 )σ(f (k)
1 )− σ(f (k)

i1 ), σ(f (k)
i1 )∗σ(f (k)

i1 )− σ(f (k)
1 ) ∈ Lp,

we obtain

F̂
(k)
i1 − σ(f (k)

i1 ) ∈ Lp and F̂
(k)∗
i1 F̂

(k)
i1 − F

(k)
1 ∈ Lp. (4.6)

Moreover,F̂ (k)
i1 − F̃

(k)
i1
 < 2 · 2−12δ2F̃ (k)

i1
+

σn−1(f (k)
i )F̃ (k)

i1 σn−1(f (k)
1 )− F̃ (k)

i1


< 2−10δ2 + 2
F̃ (k)

i1 − σn−1(f (k)
i1 )


< 2−10δ2 + 2

3 · 2
−10δ2,
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hence F̂ (k)
i1 − σn−1(f (k)

i1 )
 < 2−9δ2

andF̂ (k)∗
i1 F̂

(k)
i1 − F

(k)
1
 < 2−9δ2F̂ (k)

i1
+ 2−9δ2 +

σn−1(f (k)
1 )− F (k)

1


< 2−8δ2 + 2−9δ2 + 2−12δ2 < 2−7δ2.
(4.7)

Thus, if we define F (k)
i1 to be the partial isometry part of the polar decomposition

of F̂ (k)
i1 , (4.6) and (4.7) together with Lemma 4.1.3 imply thatF (k)

i1 − F̂
(k)
i1
 < 2−3δ and F

(k)
i1 − F̂

(k)
i1 ∈ L

p,

thus F (k)
i1 − σn−1(f (k)

i1 )
 < 2−2δ and F

(k)
i1 − σ(f (k)

i1 ) ∈ Lp.

Moreover, the estimate (4.7) implies that F̂ (k)∗
i1 F̂

(k)
i1 is invertible on F (k)

1 (PH),
so the source projection of F (k)

i1 is F (k)
1 . In the same way one can see that F (k)

i

is the range projection of F (k)
i1 . This shows that

F
(k)
ij := F

(k)
i1 F

(k)∗
j1

are matrix units satisfying (4.1).
End of Proof. Now we are ready to apply Lemma 4.1.4. Let δ be the

number which is given by Lemma 4.1.4 for N = d and ε = 1/(50d2). Use
the above construction to find matrix units F (k)

ij satisfying (4.1) for this δ. In
particular,

F
(k)
ij − σn−1(f (k)

ij ) =

F

(k)
ij − σ(f (k)

ij )


+

σ(f (k)

ij )− σn−1(f (k)
ij )


∈ K(PH)

for all i, j, k. Thus, the lemma provides us with a unitary U1 such that
U1 − I ∈ K(PH) and

U1σn−1(f (k)
ij )U∗

1 = F
(k)
ij for all i, j, k.

Since An is the linear span of the matrix units {f (k)
ij }, we obtain

U1σn−1(x)U∗
1 − σ(x) ∈ Lp for all x ∈ An.

Moreover, U1 − I ∈ K(PH) implies that

U1σn−1(x)U∗
1 − σ(x) ∈ K(PH) for all x ∈ A.

Thus, for n = 1 we can just define σ1(·) := U1σ0(·)U∗
1 . However, for n > 1 we

have to ensure that σn extends σn−1.
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If {e(k)
ij } are matrix units for An−1, we have

U1σn−1(e(k)
ij )U∗

1 − σn−1(e(k)
ij )

 ≤ 2
U1 − I

 < 1
25d2 .

Moreover,

U1σn−1(e(k)
ij )U∗

1 − σn−1(e(k)
ij )

=

U1σn−1(e(k)

ij )U∗
1 − σ(e(k)

ij )


+

σ(e(k)

ij )− σn−1(e(k)
ij )


∈ Lp.

Since An−1 is a subalgebra of An, {e(k)
ij } cannot contain more than d projections.

Thus, we can apply Lemma 4.1.4 again for ε = 1 to obtain a unitary U2 such
that

U2U1σn−1(e(k)
ij )U∗

1U
∗
2 = σn−1(e(k)

ij ) for all i, j, k,

and U2 − I ∈ Lp. If we define

σn(x) := U2U1σn−1(x)U∗
1U

∗
2 for all x ∈ A,

then σn must agree with σn−1 on An−1. And since U2 − I ∈ Lp, we have for
x ∈ An

σn(x)− σ(x) =

σn(x)− U1σn−1(x)U∗

1


+

U1σn−1(x)U∗

1 − σ(x)

∈ Lp,

and
σn(x)− σ(x) ∈ K(PH) for all x ∈ A.

4.2 The even case
To understand the even case we will make use of the fact that the even
K-homology of an AF-algebra A is determined by its index map. By this we
mean that the index map

Ind : K0(A) −→ Hom(K0(A),Z)

is an isomorphism. One way to see this is as follows.
Being a σ-additive cohomology theory on the category of separable nuclear

C∗-algebras, K∗ has an exact Milnor lim←−
1-sequence for inductive limits

0 −→ lim←−
1K1(An) −→ K0(A) γ−→ lim←−K

0(An) −→ 0.

γ is induced by the maps K0(A) ι∗n−→ K0(An) where ιn denotes the embedding
of An into A (see [Bla98, Theorem 21.3.2 and Example 21.1.2 (c)] or [Sch84,
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Theorem 7.1]). Since each An is finite-dimensional, we have K1(An) = 0 and
thus lim←−

1K1(An) = 0. It is easy to verify that the index maps

Ind : K0(An) −→ Hom(K0(An),Z)

are isomorphisms. By their naturality, they induce an isomorphism lim←− Ind
between the projective limits lim←−K

0(An) and

lim←−Hom(K0(An),Z) ∼= Hom(lim−→K0(An),Z) ∼= Hom(K0(A),Z).

Checking the definitions, one sees that the isomorphism (lim←− Ind) ◦ γ is the
index map for K0(A).

4.2.1 Theorem. Every element of K0(A) can be represented by a 1-summable
even Fredholm module over


nAn.

Proof. To simplify notation we shall assume that A is unital and that its unit
is shared by each An. By Proposition 3.2.1, this means no loss of generality.

Let F be any even Fredholm module over A =

nAn and IndF the asso-

ciated index map. By the preceding discussion and since K0(A) = K0(

nAn)

(Theorem 1.5.9), we are done if we can construct a 1-summable even Fredholm
module over


nAn which has the same index map on each Am ⊆


nAn.

To this end, let H be a separable infinite-dimensional Hilbert space. We
will recursively construct ∗-homomorphisms

ϕ±
n : An −→ B(H)

such that ϕ±
n extends ϕ±

n−1. Then

F ′ :=


lim−→ϕ+
n ⊕ lim−→ϕ−

n , B(H)⊕ B(H),

0 I
I 0


(4.8)

will be the Fredholm module we are after.
To make our construction work, we will ensure that the ϕ±

n enjoy the
following property for each n:

There is a system of matrix units {e(k)
ij } for An and pairwise

orthogonoal projections P (k), P±(k) ∈ B(H) such that for all i, k:

(i) ϕ±
n (e(k)

1 ) = P (k) + P±(k)

(ii) ϕ+
n (e(k)

i1 )P (k) = ϕ−
n (e(k)

i1 )P (k)

(iii) rkP (k) =∞, rkP±(k) <∞

(iv)

rkP+(k) = IndF (e(k)
1 ), P−(k) = 0 if IndF (e(k)

1 ) ≥ 0
rkP−(k) = |IndF (e(k)

1 )|, P+(k) = 0 if IndF (e(k)
1 ) < 0

(4.9)
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Since each e
(k)
ij can be written as e(k)

i1 e
(k)∗
j1 , properties (i)–(iii) imply that ϕ+

n

and ϕ−
n differ only by finite-rank operators. Thus, (4.8) well be a 1-summable

Fredholm module over

nAn. As the e

(k)
1 generate the K-theory of An,

property (iv) guarantees that IndF and IndF ′ agree on K0(An) by definition
of the index map:

IndF ′(e(k)
1 )

= F-Ind

ϕ−
n (e(k)

1 )Iϕ+
n (e(k)

1 ) : (P (k) + P+(k))H −→ (P (k) + P−(k))H


= rkP+(k) − rkP−(k).

It is clear that we can find such ϕ±
1 for A1, but it might be a little less

obvious that ϕ±
n+1 with property (4.9) can be found which extend ϕ±

n . The
construction goes as follows.

Let ϕ±
n be given, satisfying property (4.9) with matrix units {e(k)

ij }. Take a
system {f (l)

rs } of compatible matrix units for An+1 (Proposition A.2.4), and
assume that the matrix units are numbered in such a way that for each l there
is a k with f

(l)
1 ≤ e

(k)
1 .

Decompose P (k) + P+(k) and P (k) + P−(k) with projections Q(l)
r , Q

±(l)
r as

P (k) + P±(k) =

(l,r)

f
(l)
r ≤e(k)

1

Q(l)
r +Q±(l)

r

such that for each l, r:

(a) Q
(l)
r ≤ P (k), rkQ(l)

r =∞

(b)

rkQ+(l)
r = IndF (f (l)

1 ), Q−(l)
r = 0 if IndF (f (l)

1 ) ≥ 0
rkQ−(l)

r = |IndF (f (l)
1 )|, Q+(l)

r = 0 if IndF (f (l)
1 ) < 0

This is only possible since the P (k) are infinite-dimensional by property (iii)
and 

(l,r)
f

(l)
r ≤e(k)

1

rkQ+(l)
r −


(l,r)

f
(l)
r ≤e(k)

1

rkQ−(l)
r =


(l,r)

f
(l)
r ≤e(k)

1

IndF (f (l)
r )

= IndF

 
(l,r)

f
(l)
r ≤e(k)

1

f (l)
r



= IndF (e(k)
1 ) = rkP+(k) − rkP−(k)

by property (iv), thus
(l,r)

f
(l)
r ≤e(k)

1

rkQ+(l)
r − rkP+(k) =


(l,r)

f
(l)
r ≤e(k)

1

rkQ−(l)
r − rkP−(k).
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Now define
ϕ±
n+1(f (l)

1 ) := Q
(l)
1 +Q

±(l)
1 ,

satisfying property (i). Properties (iii) and (iv) are satisfied by properties (a)
and (b).

For each f (l)
r (r ̸= 1) so that there is some k with f (l)

r ≤ e(k)
1 choose arbitrary

partial isometries

ϕ±
n+1(f (l)

r1 ) :

Q

(l)
1 +Q

±(l)
1


H −→


Q(l)
r +Q±(l)

r


H

such that ϕ+
n+1 and ϕ−

n+1 restrict to the same map from Q
(l)
1 H onto Q(l)

r H. We
can choose these partial isometries because all Q+(l)

r (resp. Q−(l)
r ) have the

same rank for fixed l by (b). Note that all ϕ±
n+1(f (l)

r1 ) satisfy property (ii).
If f (l)

r is arbitrary with f
(l)
r ≤ e(k)

i for some i, k such that i ̸= 1, define

ϕ±
n+1(f (l)

r1 ) := ϕ±
n (e(k)

i1 ) · ϕ±
n+1(e(k)

1i f
(l)
r1 ).

By construction, if e(k)
1i f

(l)
r1 = f

(l)
s1 , then ϕ+

n+1(e(k)
1i f

(l)
r1 ) and ϕ−

n+1(e(k)
1i f

(l)
r1 )

restrict to the same map from Q
(l)
1 to Q

(l)
s . Q

(l)
s is contained in P (k) by

property (a), and ϕ+
n (e(k)

i1 ) and ϕ−
n (e(k)

i1 ) agree on P (k) by property (ii). Thus,
all ϕ±

n+1(f (l)
r1 ) satisfy property (ii).

Extend ϕ±
n+1 to ∗-homomorphisms from An+1 to B(H). As we have seen,

ϕ±
n+1 satisfy all properties of (4.9). So to finish the proof we only have to check

that ϕ±
n+1 extend ϕ±

n .
Fix i, k and assume that e(k)

i1 =
d
m=1 f

(lm)
smrm . In particular,

e
(k)
1 =

d
m=1

f (lm)
rm

and e
(k)
1i f

(lm)
sm1 = f

(lm)
rm1 for all 1 ≤ m ≤ d.

Hence,

ϕ±
n+1(e(k)

i1 ) =
d

m=1
ϕ±
n+1(f (lm)

smrm
)

=
d

m=1
ϕ±
n+1(f (lm)

sm1 ) · ϕ±
n+1(f (lm)

rm1 )∗

=
d

m=1
ϕ±
n (e(k)

i1 ) · ϕ±
n+1(f (lm)

rm1 ) · ϕ±
n+1(f (lm)

rm1 )∗

= ϕ±
n (e(k)

i1 )
d

m=1
ϕ±
n+1(f (lm)

rm
)

= ϕ±
n (e(k)

i1 )

(l,r)

f
(l)
r ≤e(k)

1

Q(l)
r +Q±(l)

r

= ϕ±
n (e(k)

i1 ).
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4.2.2 Theorem. Let F be an even p-summable Fredholm module over

nAn.

If [F ] = 0 ∈ K0(A), then [F ] = 0 ∈ K0
p(

nAn)

Proof. Because of Theorem 2.4.1, we can assume F to be of the form

F =

ϕ⊕ ϕ, H⊕H,


0 U∗

U 0



with unitary U . Since [F ] = 0 ∈ K0(A), we know in particular that IndF = 0.
We can use this to construct unitaries Un which commute exactly with ϕ(An)
and which are p-summable perturbations of U as follows.

Let {e(k)
ij } be a system of matrix units for An. Let Ũ (k)

n := ϕ(e(k)
1 )Uϕ(e(k)

1 ).
Ũ

(k)
n is, up to p-summable operators, unitary as an operator on ϕ(e(k)

1 )H.
By definition of the index map, IndF (e(k)

1 ) = 0 means that its Fredholm
index is 0. Thus, we can add a finite-rank operator on ϕ(e(k)

1 )H to make
Ũ

(k)
n invertible. After that, we can use Lemma 4.1.3 to find a unitary Û

(k)
n

on ϕ(e(k)
1 )H such that Ũ (k)

n − Û (k)
n ∈ Lp. Since U is unitary, IndF = 0 also

implies that the compression of U to (I −

k,i ϕ(e(k)

i ))H must have index 0
as well. Hence, we can find a unitary Ûn on this space which agrees with
(I −


k,i ϕ(e(k)

i ))U(I −

k,i ϕ(e(k)

i )) up to p-summable operators.
Now just define

Un :=

k,i

ϕ(e(k)
i1 )Û (k)

n ϕ(e(k)
1i ) + Ûn.

One easily checks that Un is a unitary which commutes exactly with ϕ(An)
such that U − Un ∈ Lp.

Let U0 := U and note that [ϕ (

iAi) , Un+1U

∗
n] ⊆ Lp for each n ∈ N0.

Since Un+1U
∗
n − I ∈ Lp, there is a branch of the complex logarithm which is

holomorphic on a neighbourhood of sp(Un+1U
∗
n). Let

Xn := log(Un+1U
∗
n).

Using Corollary 1.4.15, we conclude
ϕ(

i

Ai ), Xn


⊆ Lp,

Xn

 ≤ 2π, and eXnUn = Un+1.

Now define

F ′ :=
 ∞
n=0

(ϕ⊕ ϕ),
∞
n=0

(H⊕H),
∞
n=0


0 U∗

n

Un 0


.

By construction, each Un commutes exactly with ϕ(Ai) for n ≥ i. Therefore,
F ′ is a p-summable even Fredholm module over


nAn.
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Further, since the norms of the Xn are bounded, the path

F ′
t :=

∞
n=0


0 U∗

ne
−tXn

etXnUn 0



is continuous. Moreover, ϕ(Ai) commutes exactly with every Xn for n ≥ i.
Thus, F ′

t defines a p-summable operator homotopy between F ′ and

F ′′ :=
 ∞
n=0

(ϕ⊕ ϕ),
∞
n=0

(H⊕H),
∞
n=0


0 U∗

n+1
Un+1 0


.

But F ⊕F ′′ is unitarily equivalent to F ′, so

F ⊕F ′ ∼oh,p F ⊕F ′′ ∼u F ′.

Since K0
p(

nAn) is a group, we conclude that [F ] = 0 ∈ K0

p(

nAn).

4.2.3 Corollary. The comparison maps

K∗
p(

n

An) −→ K∗(A) and K∗
fin(


n

An) −→ K∗(A)

are isomorphisms.

4.2.4 Remarks. 1. We have actually proven that every class of K∗(A) can
even be represented by a module (ϕ,H, F ) over


nAn satisfying

F 2 − I ∈ R(H) and [F,ϕ(x)] ∈ R(H) for all x ∈

n

An.

2. In the proof of Theorem 4.2.2 we have only used that [F ] ∈ K0(A)
implies IndF = 0. Thus, replacing Lp(H) everywhere by K(H) yields a
proof that the even K-homology of an AF-algebra is determined by its
index map without referring to the Milnor lim←−

1-sequence.



Chapter 5

Direct Sums

In this chapter we study the finitely summable K-homology of infinite direct
sums of topological ∗-algebras.

The first section concerns direct sums of countably many copies of C. As
we have seen in Chapter 4, every K-homology class of the direct sum


NC

can be represented by a finitely summable Fredholm module over the algebraic
direct sum

alg
N
C. We show that there is no larger subalgebra of


NC which

still has this property.
In the second section we give an example of a family of pre-C∗-algebras

Ai such that every K-homology class of the completions Ai of Ai can be
represented by a finitely summable module over Ai, but not every K-homology
class of


NAi can be represented by a finitely summable module over

alg
i∈NAi.

In particular, K∗
fin is not σ-additive in general, even for algebraic direct sums.

5.1 Direct sums of C
It is a well-known fact that K-Homology is σ-additive [Bla98, Theorem 19.7.1].
This means that for countably many separable C∗-algebras Ai (i ∈ N) the
K-homology of their direct sum is given by

K∗

i∈N

Ai


=

i∈N

K∗(Ai).

The isomorphism is implemented by the map

Ψ : K∗

i∈N

Ai

−→


i∈N

K∗(Ai)

x →−→ (ι∗ix)i∈N

where ιi is the embedding of Ai into the direct sum. In particular,

K0

N

C


=

N

Z and K1

N

C


= 0.

83
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Denote by
alg
N
C the algebraic direct sum of countably many copies of C.

Since

NC is an AF-algebra, we know by the results of Chapter 4 that the

comparison maps

K∗
fin

 alg
N

C


−→ K∗


N

C


are isomorphisms. In particular, K∗

fin is σ-additive for this direct sum.
One might wish to extend this result to slightly larger smooth subalgebras

of

NC, for example the algebra of rapidly decreasing sequences. However, it

turns out that
alg
N
C is in fact the largest subalgebra of


NC for which we

can maintain σ-additivity:

5.1.1 Theorem. Let A be a pre-C∗-subalgebra of

NC which is strictly larger

than
alg
N
C. Then the comparison map

K0
fin(A) −→ K0


N

C


is not surjective.

Proof. Since A is strictly larger than
alg
N
C, there is an x = (xi)i∈N ∈ A such

that xi ̸= 0 for infinitely many i. Let {λn} be the set {|xi|} \ {0} ordered as a
strictly decreasing sequence, and let

ki :=

0 xi = 0
n

λn−λn+1

n
|xi| = λn .

We are going to show that there cannot be a finitely summable even Fredholm
module over A which represents the class x ∈ K0 (


NC) given by

Indι∗i x(1) = ki for all i ∈ N

where ιi : C −→

NC denotes the embedding of C into


NC as its ith

summand.
Assume that such a p-summable module exists. By Theorem 2.4.1, we can

assume F to be of the form

F =

ϕ⊕ ϕ, H⊕H,


0 U∗

U 0



with unitary U . Denote the element of

NC which is zero everywhere except

for the ith summand, where it is 1, by ei. Thus, x =
∞
i=1 xiei. Finally, define

pn (n ∈ N) to be the projections

pn :=


|xi|≥λn

ei.
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By assumption we know for

Tn := ϕ(pn)U∗
 ∞
i=1

xiϕ(ei)

Uϕ(pn)−


|xi|≥λn

xiϕ(ei)

that Tnp =
ϕ(pn) (U∗ϕ(x)U − ϕ(x))ϕ(pn)


p

≤
(U∗ϕ(x)U − ϕ(x))


p <∞ .

Therefore, to prove our claim it suffices to show that ∥Tn∥p must get arbitrarily
large when n tends to infinity.

To this end, first note that by the choice of x,

Indx(pn) =


|xi|≥λn

Indx(ei) =


|xi|≥λn

ki

≥


n

λn − λn+1

n
.

Remember that Indx(pn) is given by

Indx(pn) = F-Ind

ϕ(pn)Uϕ(pn) : ϕ(pn)H −→ ϕ(pn)H


,

so ϕ(pn)Uϕ(pn) must have an at least ⌈(n/(λn − λn+1))n⌉-dimensional kernel
when regarded as an operator on ϕ(pn)H. If we denote the projection onto
this kernel by Kn, thenϕ(pn)U∗

 ∞
i=1

xiϕ(ei)

Uϕ(pn)Kn


=
ϕ(pn)U∗

 
|xi|<λn

xiϕ(ei)

Uϕ(pn)Kn


≤
 

|xi|<λn

xiϕ(ei)
 = λn+1.

On the other hand,


|xi|≥λn
xiϕ(ei) is bounded from below on KnH by λn.

Therefore, for any unit vector ξ ∈ KnH, we find that

Tnξ ≥   
|xi|≥λn

xiϕ(ei)ξ
− ϕ(pn)U∗

 ∞
i=1

xiϕ(ei)

Uϕ(pn)Knξ

 
≥ λn − λn+1.

Hence, Tn is bounded from below on KnH by λn−λn+1. We conclude that
for n ≥ p we haveTnp ≥ TnKn


p ≥ (λn − λn+1) · (dimKnH)

1
p ≥ n.
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5.1.2 Corollary. If A is a pre-C∗-subalgebra of

NC containing

alg
N
C

which is at the same time a Fréchet ∗-algebra, then the comparison map

K0
fin(A) −→ K0


N

C


is not surjective.

Proof. Let A be a Fréchet ∗-algebra containing
alg
N
C and | · |n (n ∈ N)

semi-norms generating the topology of A. Let µi := 1 + max1≤n≤i|ei|n.
It is easy to see that the sum

∞
i=1 2−iµ−1

i ei converges to some element x
in A. By the continuity of the multiplication in A, we have

ejx = 2−jµ−1
j ej ̸= 0 for all j ∈ N.

Thus, x cannot lie in
alg
N
C, and A must be strictly larger than

alg
N
C.

5.2 Algebraic direct sums
In the last section we have seen that K∗

fin is not very well-behaved with respect
to completed direct sums. In view of the results of Chapter 4, one might
still hope that finitely summable K-homology is σ-additive for algebraic direct
sums.

In the case of K∗
p , it is at least clear that the map

Ψ : K∗
p

 alg
i∈N
Ai

−→


i∈N

K∗
p(Ai)

x →−→ (ι∗ix)i∈N,

is surjective: if Fi = (ϕi,Hi, Fi) are p-summable Fredholm modules over Ai
with ∥Fi∥ ≤ 1 (i ∈ N), then

F :=

i∈N

ϕi,

i∈N
Hi,


i∈N

Fi


(5.1)

is a p-summable module over
alg

i∈NAi which satisfies Ψ([F ]) = ([Fi]).†

†The problem with proving the injectivity of Ψ is the following: if (ϕi, Hi, F
(i)
t )

are operator homotopies of p-summable modules over Ai, then one has to show that
(


ϕi,


Hi,


F
(i)
0 ) and (


ϕi,


Hi,


F
(i)
1 ) represent the same class of K∗

p (
alg Ai).

However, the path


F
(i)
t is not necessarily continuous in the norm topology of B(


Hi).

For the ordinary K-homology of direct sums of separable C∗-algebras, this is no obstruction:
if we assume the F

(i)
t to be uniformly bounded in norm, then


F

(i)
t is at least strong-∗-

continuous. One can show using the Kasparov product that Fredholm modules which are
connected by a strong-∗-continuous operator homotopy represent the same K-homology class
[Bla98, Definition 17.2.2 and Theorem 18.5.3].
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However, this argument does not work for K∗
fin since the modules Fi might

only be p-summable with p getting arbitrarily large for increasing i. Then the
module (5.1) would not be p-summable for any p.

In fact, we can give a simple counterexample to the σ-additivity of K∗
fin

using the following classical observation by Douglas and Voiculescu:

5.2.1 Theorem. For n > 1 there is no (2n− 2)-summable Fredholm module
over C∞(S2n−1) which represents a non-zero class in K1(C(S2n−1)).

Proof. [DV81].

More precisely, the authors prove that there are no non-trivial (n − 1)-
smooth extension of the (2n− 1)-sphere by K(H). An extension of the form

0 −→ K(H) −→ E −→ C(S2n−1) −→ 0

with E ⊆ B(H) is called p-smooth if the complex coordinate functions zi
(i = 1, . . . , n) of S2n−1 ⊆ Cn admit lifts Ti ∈ E such that

[Ti, Tj ] ∈ Lp and [T ∗
i , Tj ] ∈ Lp for all 1 ≤ i, j ≤ n.

An extension is called trivial if it admits a split which is a ∗-homomorphism.
Remembering how to construct extensions from Fredholm modules as

we have discussed in the proof of Theorem 4.1.1, it is easy to see that every
(2n−2)-summable module over C∞(S2n−1) defines an (n−1)-smooth extension
of C(S2n−1).† As Lemma 3.5.2 implies that modules which induce trivial
extensions are zero in K-homology, Theorem 5.2.1 follows.

Also note that by Bott periodicity of K-homology we have

K1(C(S2n−1)) ∼= K1(C(S1)) ∼= Z.

In particular, K1(C(S2n−1)) does not vanish for every n ∈ N. Moreover, every
class of K1(C(S2n−1)) can be represented by a finitely summable module over
C∞(S2n−1) as we demonstrate in Section 6.1.

With the help of these observations, we can construct a counterexample to
the σ-additivity of K∗

fin as follows.

5.2.2 Proposition. Not every class of K1(
∞

n∈NC(S2n−1)) can be repre-
sented by a finitely summable Fredholm module over the algebraic direct sumalg

n∈NC
∞(S2n−1).

Proof. By the σ-additivity of K∗, there is a class x ∈ K1(


n∈NC(S2n−1))
such that ι∗nx is not zero in K1(C(S2n−1)) for every n ∈ N. If there was a
p-summable module F over

alg
n∈NC

∞(S2n−1) which represents x, then ι∗nF
would be a p-summable module over C∞(S2n−1) representing ι∗nx for each
n ∈ N. This is impossible for 2n− 2 ≥ p.

†If (ϕ, H, F ) ∈ F
1
2n−2(C∞(S2n−1)), F ∗ = F , F 2 = I, and P := 1/2(F + I), then

[P ϕ(zi)P, P ϕ(zj)P ] = −P ϕ(zi)P ⊥ϕ(zj)P + P ϕ(zj)P ⊥ϕ(zi)P ∈ L2n−2 · L2n−2 ⊆ Ln−1 since
zi and zj commute.





Chapter 6

Manifolds

It is common folklore that for a closed manifold M every class of K∗(C(M))
can be represented by a finitely summable Fredholm module over C∞(M).
The reason is that every class of K∗(C(A)) is represented by an elliptic pseudo-
differential operator over M , and such operators define finitely summable
Fredholm modules over C∞(M). We explain this in more detail in the first
section.

In the second section we discuss the injectivity of the comparison map
between K∗

fin(C∞(M)) and K∗(C(M)). Unfortunately, we can neither prove
injectivity nor give a counterexample, but we hope to shed light on some of
the difficulties that arise.

6.1 Representability by finitely summable modules

Let M be a smooth, closed (compact, without boundary) manifold of dimension
n. Since C∞(M) is a pre-C∗-subalgebra of C(M) (Corollary 1.4.12), we can
compare K∗

fin(C∞(M)) to K∗(C(M)). We want to prove:

6.1.1 Theorem. Every K-homology class of C(M) can be represented by a
finitely summable Fredholm module over C∞(M).

The proof of this theorem requires some knowledge of pseudo-differential
operators and topological K-theory. We cannot develop all required technical
machinery here, but we will try to make it clear how the finite summability
comes into play.

If U ⊆ Rn is open, a differential operator of order m ∈ N between C∞
0 (U)k

and C∞
0 (U)l is an operator of the form

P : (C∞
0 (U))k −→ (C∞

0 (U))l

f →−→


|α|≤m
aαD

αf. (6.1)

89
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Here, α = (α1, . . . , αn) ∈ Nn
0 denotes a multi-index, |α| = α1 + . . .+ αn, and

Dα = (−i∂1)α1 . . . (−i∂n)αn . The aα are smooth Ml,k(C) valued functions on
U . We call the matrix valued polynomial

σtotP (x, ξ) :=


|α|≤m
aαξ

α

the total symbol of P .
A differential operator between a k-dimensional vector bundle V and an

l-dimensional vector bundle W over M is an operator

P : C∞(M,V ) −→ C∞(M,W )

which is local (i.e. (Pf)(x) only depends on f on an arbitrary small neighbour-
hood of x) and which in local coordinates is of the form (6.1).

The total symbol of a differential operator does not transform nicely under
coordinate changes. However, the principal symbol

σP (x, ξ) =


|α|=m
aαξ

α

transforms like a covector. For differential operators on manifolds the principal
symbol can therefore be defined invariantly as an element

σP ∈ Hom(π∗V, π∗W )

where π : T ∗M −→ M denotes the base space projection of the cotangent
bundle T ∗M of M onto M .

Returning to the case U ⊆ Rn and by applying the Fourier transform to
(6.1), we obtain

Pf(x) = 1
(2π)n


Rn

eix·ξσtotP (x, ξ)f̂(ξ) dξ. (6.2)

A pseudo-differential operator on U is an operator of the same form (6.2), but
we allow a larger class of symbols, not only polynomials in ξ. There are quite
a few symbol classes to choose from, which lead to slightly different theories,
but they all share important properties similar to differential operators. One
possible choice is the class of symbols σ for which each matrix entry σij belongs
to the Hörmander classes Sm1,0(U×Rn) of smooth functions on U×Rn satisfying

|∂αξ ∂βxσij(x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|α| for all x ∈ K, ξ ∈ Rn

where K ⊆ U is compact, α, β are arbitrary multi-indices and Cα,β,K are
constants depending only on α, β and K. The order m can be any real number.

Like differential operators, pseudo-differential operators on manifolds can be
defined as operators which are of the form (6.2) when restricted to a coordinate
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chart. The condition of being local is replaced by the notion of pseudo-locality.
Again, a principal symbol can be defined invariantly, but only up to lower
order terms, as an element of

Sm1,0(Hom(π∗V, π∗W )) / Sm−1
1,0 (Hom(π∗V, π∗W )).

Further details on pseudo-differential operators can be found in the mono-
graph [Shu01], among many others.

* * *
The proof of Theorem 6.1.1 can be broken down into two parts: first, every
elliptic pseudo-differential operator on M defines a finitely summable Fredholm
module over C∞(M). Second, every K-homology class of M can be represented
by such an operator.

For the first part, we need to introduce the Sobolev spaces

Hs(M,V ) ⊆ L2(M,V )

for vector bundles V over M (to define L2(M,V ) we can equip M and V with
arbitrary metrics).

We begin with the special case of L2-functions on the n-torus Tn with
values in Rk. By taking the L2-scalar product, these functions define Rk-valued
distributions on Tn. The sth Sobolev space Hs(Tn,Rk) is then the subspace
of those functions in L2(Tn,Rk) whose sth distributional derivatives in all
directions are again represented by L2-functions. With the scalar product

(f | g)s :=


|α|≤s


Tn

(∂αf | ∂αg),

where the sum is taken over all multi-indices α of length less or equal than s,
Hs(Tn,Rk) becomes a Hilbert space.

Let now V be a k-dimensional vector bundle over M . To define Hs(M,V ),
let {Ui} be a finite covering of M by coordinate patches trivializing V .
Embedding the Ui intoTn, we obtain trivializations ϕi : V |Ui −→ Tn×Rk. Let
{ui} ∈ C∞(M) be a partition of unity subordinate to {Ui}. If f ∈ C∞(M,V )
is a smooth section of V , then we can push forward uif via ϕi to a function in
C∞(Tn,Rk) by extending it with 0 outside the range of ϕi. Define

(f | g)s :=

i

(ϕi∗(uif) | ϕi∗(uig))s for f, g ∈ C∞(M,V ),

and let Hs(M,V ) be the completion of C∞(M,V ) with respect to this scalar
product.

We have made various choices in the definition of Hs(M,V ). Different
choices of trivializations, embeddings into the torus and of partitions of unity
lead to different scalar products onHs(M,V ), but all these scalar products yield
equivalent norms. In particular, H0(M,V ) can be identified with L2(M,V ).
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Rellich’s Lemma states that the embedding of H1(M,V ) into L2(M,V ) is
compact. The crucial point for proving Theorem 6.1.1 is that this embedding
is even finitely summable, as it was already observed by Weyl [Wey12].

6.1.2 Theorem (Finitely summable Rellich Lemma). If M is a closed manifold
of dimension n and V is a vector bundle over M , then the inclusion

ι : H1(M,V ) −→ L2(M,V )

is p-summable for every p > n.

Proof. If V is of dimension k, denote by ι̃ the embedding of H1(Tn,Rk) into
L2(Tn,Rk). Let {ϕi} be trivializations and {ui} a partition of unity as above.
Then we can write

ι(f) =

i

ϕ∗
i ◦ ι̃ ◦ ϕi∗(uif) for all f ∈ H1(M,V )

with continuous maps

ϕi∗(ui · ) : H1(M,V ) −→ H1(Tn,Rk) and ϕ∗
i : L2(Tn,Rk) −→ L2(M,V ).

Thus, it suffices to prove that ι̃ is p-summable for each p > n. Moreover, we
can obviously assume that k = 1.

Remember that an orthonormal basis of L2(Tn) (with respect to the Haar
measure) is given by the functions

ek(z1, . . . , zn) := zk1
1 . . . zkn

n for z1, . . . , zn ∈ T1 ⊆ C

with k = (k1, . . . , kn) ∈ Zn. Moreover,

∂jek = ikjek.

Thus, the H1-scalar product between these basis vectors is given by

(ek | er)1 = (ek | er) +
n
j=1

(ikjek | irjer) = δkr

1 +

n
j=1

k2
j


ek.

This means that the functions

fk :=

1 +

n
j=1

k2
j

−1/2
ek

form an orthonormal basis of H1(Tn). As ι̃ sends fk to (1 +
n
j=1 k

2
j )−1/2ek,

it has (up to order) the characteristic values

µk =

1 +

n
j=1

k2
j

−1/2
≤

n n


(1/n+ k2

1) . . . (1/n+ k2
n)
−1/2

.

Thus,
k∈Zn

|µk|p ≤ n− p
2

k1∈Z

(1/n+ k2
1)− p

2n


. . .
 
kn∈Z

(1/n+ k2
n)− p

2n


<∞.
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One reason for the importance of the Sobolev spaces is that they are natural
domains for differential operators. In fact, if P : C∞(M,V ) −→ C∞(M,W ) is
a differential operator of order m between vector bundles V and W over M ,
then P extends to a bounded operator

P : Hs+m(M,V ) −→ Hs(M,W ),

as it is immediate from the definitions. This is also easily seen to be true for
pseudo-differential operators.

Let P : C∞(M,V ) −→ C∞(M,W ) be a pseudo-differential operator of
order m. P is called elliptic if and only if it has a pseudo-differential operator
pseudo-inverse Q : C∞(M,W ) −→ C∞(M,V ) of order −m such that QP − I
and PQ− I are smoothing operators, i.e. pseudo-differential operators of order
d for any d ∈ R.

In particular, if P is of order 0, so is Q and both extend to bounded
operators between L2(M,V ) and L2(M,W ). Let ϕV , ϕW be the representations
of C∞(M) on L2(M,V ) and L2(M,W ) by multiplication. We want to prove
that

F :=

ϕV ⊕ ϕW , L2(M,V )⊕ L2(M,W ), F :=


Q

P



is an (n+ 1)-summable even Fredholm module over C∞(M).
First, note that as a smoothing operator, QP − I is in particular a pseudo-

differential operator on V of order −1. Thus, it maps L2(M,V ) continuously
into H1(M,V ). As an operator on L2(M,V ) it therefore factorizes as

QP − I : L2(M,V ) −→ H1(M,V ) ι−→ L2(M,V ),

making it a (n+1)-summable operator by Rellich’s Lemma. The same argument
holds for PQ− I, so F 2 − I ∈ Ln+1.

Next, note that F and ϕV (f) ⊕ ϕW (f) are pseudo-differential operators
of order 0 on L2(M,V )⊕ L2(M,W ) ∼= L2(M,V ⊕W ). Since the commutator
of two pseudo-differential operators of order m is an operator of order m− 1,
[ϕV (f)⊕ϕW (f), F ] is a pseudo-differential operator of order −1. By the same
argument as above, the commutator must therefore be (n+ 1)-summable.

Thus, we have assigned to each elliptic pseudo-differential operator of order
0 over M a class in K0

n+1(C∞(M)).
If P : C∞(M,V ) −→ C∞(M,V ), is a (formally) self-adjoint elliptic

operator of order 0, then one easily sees that its class in K0
n+1(C∞(M)) must

be zero. However, we can assign to P a class in K1
n+1(C∞(M)) as follows.

We have already seen that P extends to a self-adjoint bounded operator on
L2(M,V ) that, up to (n+ 1)-summable operators, is invertible and commutes
with ϕ. In particular, 0 is an isolated point in sp(P ) ⊆ R.
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Thus, the function f : R −→ R given by

f(x) :=


1 x ≥ 0
−1 x < 0

is holomorphic on a neighbourhood of sp(P ), and Corollary 1.4.15 implies that
F := f(P ) commutes with ϕ up to (n+ 1)-summable operators as well. Hence,

(ϕ,L2(M,V ), F )

is a (n+ 1)-summable module over C∞(M).
These constructions can also be extended to operators of higher order: if P

is a classical elliptic pseudo-differential operator of order greater than 0, then
we can consider

P√
I + P ∗P

,

which is by [See67] an elliptic operator of order 0, and construct an (n+ 1)-
summable module from it as above.

To prove that every class of K∗(C∞(M)) arises in this way, first note
that the compactly supported K-theory of a locally compact space X can be
described in terms of homotopy classes of complexes

0 −→ V0
α0−→ V1

α1−→ . . .
αn−1−→ Vn −→ 0,

where the Vi are complex vector bundles over X and the αi are vector bundle
maps satisfying αi+1 ◦ αi = 0 such that the sequence is exact outside a
compact subset of X [Seg68]. In [AS68] the authors show that in the case of
K0(C0(T ∗M)) one can restrict to complexes of the form

0 −→ π∗V
α−→ π∗W −→ 0

with complex vector bundles V , W over M and α defined outside the zero
section of π∗V where it is invertible and satisfies

α(λv) = α(v) for all λ > 0. (6.3)

Moreover, by standard differential topology arguments, one can always assume
that V , W are smooth vector bundles and α is a smooth bundle map. In par-
ticular, α belongs to the symbol class S0

1,0(Hom(π∗V, π∗W )) (after smoothing
it on a small neighbourhood of the zero-section of π∗V ).

Using a partition of unity and working in local coordinates, we can construct
an order 0 pseudo-differential operator Pα : C∞(M,V ) −→ C∞(M,W ) with
principal symbol α (up to operators of order −1). The invertibility of α
implies that Pα is elliptic and thus defines a class [Pα] ∈ K0(C(M)). Since
operators of order −1 are compact, [Pα] does not depend on how exactly we
have constructed Pα.
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This construction descends to a map

P : K0(C0(T ∗M)) −→ K0(C(M)).

Computing this map on spheres and using Mayer-Vietoris sequences on both
sides, one can show that P is an isomorphism, proving Theorem 6.1.1 in the
even case [BD82a],[BD82b].

Similarly, K1(C0(T ∗M)) can be described by maps

α : π∗V −→ π∗V

where V is a complex vector bundle overM and α is a self-adjoint automorphism
satisfying (6.3). As above, we can construct from α a self-adjoint elliptic
operator on V of order 0, which defines a class in K1(C(M)). Again, this
construction induces an isomorphism between K1(C0(T ∗M)) and K1(C(M)).

6.2 Injectivity
Unfortunately, we cannot say if the comparison map between K∗

fin(C∞(M))
and K∗(C(M)) is injective in general or not. In fact, we cannot even compute
K0
fin for C∞(S1), the smooth suspension C∞

0 ((0, 1)), or the smooth cone
C∞

0 ([0, 1)). Note that appropriate exact sequences, homotopy invariance, and
Bott periodicity are not available for K∗

fin since the proofs of all these properties
depend in one way or another on the Kasparov product or at least Kasparov’s
Technical Theorem (see Section 2.2). In the following we discuss some further
problems that arise.

First, reconsider the proof that P : K∗(C0(T ∗M)) −→ K∗(C(M)) is an
isomorphism. It is true that P factors as

K∗(C0(T ∗M))
Pfin−−−→ K∗

fin(C∞(M)) Φ−→ K∗(C(M)),

where Φ denotes the comparison map between K∗
fin and K∗. Since P is an

isomorphism, Pfin must be injective in particular. However, we cannot prove
its surjectivity like above as neither we have a Mayer-Vietoris sequence for
K∗
fin, nor can we compute K∗

fin of arbitrary spheres (the latter would involve
Bott periodicity).

From a more abstract point of view, the isomorphism between the K-theory
of C0(T ∗M) and the K-homology of C(M) can be seen as a case of Poincaré
duality in KK-theory: it is possible to construct KK-elements

∆ ∈ KK(C(M)⊗ C0(T ∗M),C) and ∆̂ ∈ KK(C, C(M)⊗ C0(T ∗M))

whose Kasparov products with each other satisfy

∆̂×C0(T ∗M) ∆ = 1 ∈ KK(C(M), C(M))

∆̂×C(M) ∆ = 1 ∈ KK(C0(T ∗M), C0(T ∗M))

[Con94, Section 6.1.4.β].
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Using only the formal properties of the product, one can conclude that the
maps

K∗(C0(T ∗M)) −→ K∗(C(M))
x →−→ x×C0(T ∗M) ∆

and
K∗(C(M)) −→ K∗(C0(T ∗M))

x →−→ ∆̂×C(M) x

must be inverse to each other [Eme01, Theorem 2.4]. Thus, the proof that
K∗(C0(T ∗M)) and K∗(C(M)) are isomorphic is reduced to the computation
of the Kasparov products of ∆ with ∆̂. However, without a product which is
compatible with K∗

fin, this argument is obviously of not much use to us (as
we have seen, we can define a potential isomorphism between K∗(C0(T ∗M))
and K∗

fin(C∞(M)), but it is the formal properties of a product for K∗
fin we

are lacking to complete the proof).

* * *
One possible approach to prove the injectivity of the comparison map might be
as follows. Assume that F = (ϕ,H, F ) and F ′ = (ϕ,H, F ′) are p-summable
Fredholm modules over C∞(M) which are operator homotopic as ordinary
Fredholm modules via a path of symmetries Ft. By definition, Ft lies in
Dϕ(C(M)) for every t. If we could approximate elements of Dϕ(C(M)) in operator
norm by elements of Dqϕ(C∞(M)) for some q, then we could also connect F0
and F1 by a path F̃t of symmetries in Dqϕ(C∞(M)):

Choose 0 = t0 < t1 < . . . < tn = 1 such that ∥Ft − Ft+1∥ < 1/2.
Approximate Ft by an F̃t ∈ Dq

ϕ(C∞(M)) such that ∥F̃t − Ft∥ ≤ 1/4. Using
holomorphic functional calculus, we can assume that F̃t is a symmetry. We
then have ∥F̃t − F̃t+1∥ < 1, which by Proposition 1.5.7 implies that F̃t and
F̃t+1 can be joined by a path of symmetries in Dqϕ(C∞(M)).

However, it turns out that it is impossible to approximate operators in
Dϕ(C∞(M)) by elements of Dqϕ(C∞(M)) in general. To prove this, we need a
classical result of Voiculescu which implies that there is up to finitely summable
perturbations only one representation of C∞(M) which does not contain any
compact operator:

6.2.1 Theorem. If X1, . . . , Xn (n ≥ 2) are commuting self-adjoint operators
on a separable Hilbert space H, then there is an approximate unit {An} of
Ln(H) which is quasi-central for X1, . . . , Xn.

In other words: there is an increasing sequence of positive, contractive
finite-rank operators {Ai} strongly converging to I such that

[Ai, Xk]

n

i→∞−−−→ 0 for all 1 ≤ k ≤ n.

Proof. [Voi79, Theorem 4.2].
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6.2.2 Theorem. Let A be a unital commutative C∗-algebra. If x1, . . . , xn ∈ A
(n ≥ 2) are self-adjoint and ϕ,ψ unital, faithful ∗-representations of A on
separable Hilbert spaces H,H′ such that no non-zero compact operator lies in
their images, then there is a unitary

U : H −→ H′

satisfying
Uϕ(xi)U∗ − ψ(xi) ∈ Ln for i = 1, . . . , n.

Proof. This follows from the p-summable version of Voiculescu’s non-commuta-
tive Weyl-von Neumann Theorem [Voi79, Corollary 2.5] and Theorem 6.2.1.

6.2.3 Theorem. Let A be an infinite-dimensional, commutative C∗-algebra
generated by finitely many self-adjoint elements x1, . . . , xn. If ρ : A −→ B(H)
is a faithful representation of A on a separable Hilbert space H such that Im ρ
contains no compact operator except 0, then

p

Dp{ρ(x1),...,ρ(xn)} is not dense in D{ρ(x1),...,ρ(xn)}.

In other words: not every operator commuting with ρ(x1), . . . , ρ(xn) up
to compact operators can be approximated by operators which commute with
ρ(x1), . . . , ρ(xn) up to finitely summable operators.

Proof. Abbreviate D{ρ(x1),...,ρ(xn)} by D and Dp{ρ(x1),...,ρ(xn)} by Dp.
Let P denote the support projection of ρ. If T ∈ D, S ∈ Dp, then we have

∥PTP − PSP∥ ≤ ∥T − S∥ and PTP ∈ D, PSP ∈ Dp since P commutes with
ρ. Thus, if the theorem is true for the compression of ρ to its support, then it
must also be true for ρ. We can therefore assume that ρ is non-degenerate.

If A is not already unital, extend ρ to a unital ∗-representation ρ+ of A+

and add 1A+ to the set {x1, . . . , xn}. Im ρ+ also cannot contain a non-zero
compact operator: otherwise, there is a self-adjoint x ∈ A such that I + ρ(x)
is compact. Then there must be an isolated point λ ∈ sp(I + ρ(x)) which is an
eigenvalue of a finite-dimensional eigenspace of I + ρ(x). The corresponding
spectral projection Pλ lies in Im ρ+. Since Im ρ is an ideal in Im ρ+ and Im ρ
contains no non-zero compact operator, we conclude that (Im ρ)Pλ = {0}. But
this implies that ρ is degenerate.

All in all, we can assume that A and ρ are unital.
Since A is infinite-dimensional, spec(A) is infinite. As x1, . . . , xn generate

A, there is an xk with infinite spectrum. Thus, as a function on spec(A),
xk has an infinite range. Since spec(A) is compact, there is in particular a
converging sequence {λi} ⊆ spec(A) such that {xk(λi)} has no repetitions and
moreover limi→∞ λi does not belong to {λi}.
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Let
α :


N

{pt} −→ spec(A)

be the map which sends the ith point to λi. Note that α induces a surjective
∗-homomorphism

α∗ : A −→

N

C

+
.

Moreover, let
y := α∗(xk − lim

i→∞
xk(λi) · 1A) ∈


N

C.

Since xk(λi) has no repetitions, y does not lie in the algebraic direct sum of
the Cs.

Finally, let

F =

ϕ⊕ ϕ, H′ ⊕H′,


0 V ∗

V 0


with unitary V be a representative of the K-homology class x of


NC which is

constructed in the proof of Theorem 5.1.1 using the element y ∈

NC\

alg
N
C.

Extend ϕ to a unital ∗-representation of (

NC)+ on H′, which we also denote

by ϕ.
Note that ρ and ϕ ◦ α∗ ⊕ ρ satisfy the conditions of Theorem 6.2.2. Hence,

there is a unitary U : H −→ H′ ⊕H such that

Uρ(xi)U∗ − ϕ ◦ α∗(xi)⊕ ρ(xi) ∈ Lmax(n,2) for i = 1, . . . , n.

In particular,

[ρ(xi), U∗(V ⊕ 0)U ] = U∗[Uρ(xi)U∗, V ⊕ 0]U ∈ K(H) for i = 1, . . . , n,

thus U∗(V ⊕ I)U ∈ D.
Now assume that


pDp is dense in D. Then there is a p ≥ max(n, 2) and

a W ∈ Dp such that U∗(V ⊕ 0)U −W
 < 1.

This implies thatV ⊕ 0− UWU∗ < 1 and UWU∗ ∈ Dp{ϕ◦α∗(xi)⊕ρ(xi)}.

Denoting by P the projection onto H′, we arrive atV − PUWU∗P
 < 1 and PUWU∗P ∈ Dp{ϕ◦α∗(xi)} ⊆ Dϕ(


N
C).

This implies that

F ′ :=

ϕ⊕ ϕ, H′ ⊕H′,


0 (PUWU∗P )−1

(PUWU∗P ) 0
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is a representative of x satisfying [ϕ(y), PUWU∗P ] ∈ Lp. Applying Propo-
sition 1.5.2 for Dϕ(


N
C) ∩ D

p
ϕ(y), we see that we can replace PUWU∗P by

its unitary part while preserving these properties. However, the proof of
Theorem 5.1.1 shows that such a module cannot exist.

6.2.4 Corollary. Let M be a smooth, connected, compact manifold of dimen-
sion greater than zero. If ϕ is a faithful representation of C(M), then

p

Dpϕ(C∞(M)) is not dense in Dϕ(C(M)).

Proof. C(M) is generated by finitely many self-adjoint smooth coordinate func-
tions xi. Since M is connected, every non-constant continuous function f on M
has an infinite, connected range. Thus, sp(ϕ(f))∪{0} = Ran f ∪{0} cannot be
the spectrum of a compact operator. Moreover, note that D{ϕ(xi)} = Dϕ(C(M)).

* * *

In his recent work on operators with trace-class self-commutator [Voi11],
Voiculescu introduces Banach algebras EΛ(Ω) for Borel sets Ω ⊆ C. If Ω is
bounded, EΛ(Ω) agrees with D2

Z ⊆ B(L2(Ω)) where Z denotes the operator
on L2(Ω) of multiplication by the identity function on Ω.

If P is a projection in D2
Z , then the commutator

[PZ∗P, PZP ] = −(PZ∗P⊥ZP − PZP⊥Z∗P )

lies in L1 since PZ∗P⊥ZP, PZP⊥Z∗P ∈ L2 · L2 ⊆ L1. Therefore, PZP
has a Helton-Howe measure with density function δP ∈ L1(Ω) assigned to
it [HH73],[Pin72]. This means that if f, g ∈ C[X,Y ] are polynomials (in
commuting variables X,Y), then

Tr

f(RePZP, ImPZP ), g(RePZP, ImPZP )


=

R2
h(x, y)δP (x, y) dxdy

where h is the polynomial given by

h(X,Y ) = ∂f

∂X

∂g

∂Y
− ∂f

∂Y

∂g

∂X
.

Using Theorem 6.2.1, Voiculescu proves that the assignment P →→ δP
descends to a map

K0(EΛ(Ω)) −→ L1(Ω)
[P ] →−→ δP

(each K-theory class of EΛ(Ω) is represented by a projection in EΛ(Ω)). In
particular, Tr[P (ReZ)P, P (ImZ)P ] does not depend on the K-theory class of
P .

We translate this statement into the language of finitely summable K-
homology and cyclic cohomology and reproduce his proof in this setting:
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6.2.5 Theorem. If F = (ϕ,H, F ) is a 2-summable Fredholm module over
a commutative topological ∗-algebra A with F ∗ = F , F 2 = I, then its one-
dimensional character

τF := 1
4 Tr


F [F,ϕ(·)][F,ϕ(·)]


depends (as a bilinear form on A) only on the class of F in K1

2 (A).

Proof. Let x, y ∈ A be given. By the linearity of τF , we can assume that x
and y are self-adjoint. τF is obviously invariant under unitary equivalence and
addition of degenerate modules. Thus, by Theorem 2.4.1 and Corollary 2.4.4, it
suffices to show that τF (x, y) = τF ′(x, y) if F ′ is given as F ′ = (ϕ,H, UFU∗)
where U is a unitary that commutes with ϕ up to 2-summable operators.

Since F is a symmetry, we have for P := 1/2(F + I)

P [F,ϕ(x)] = Pϕ(x)− Pϕ(x)F = 2Pϕ(x)P⊥

and
P⊥[F,ϕ(x)] = −P⊥ϕ(x)− P⊥ϕ(x)F = −2P⊥ϕ(x)P,

thus

F [F,ϕ(x)][F,ϕ(y)] = P [F,ϕ(x)][F,ϕ(y)]− P⊥[F,ϕ(x)][F,ϕ(y)]
= −4Pϕ(x)P⊥ϕ(y)P + 4P⊥ϕ(x)Pϕ(y)P⊥.

By assumption, P⊥ϕ(x)P and Pϕ(y)P⊥ lie in L2, so

τF (x, y) = −Tr

Pϕ(x)P⊥ϕ(y)P − Pϕ(y)P⊥ϕ(x)P


= Tr [Pϕ(x)P, Pϕ(y)P ],

(6.4)

where we have used Proposition 1.1.10 and the commutativity of A. For τF ′

we obtain

τF ′(x, y) = Tr [UPU∗ϕ(x)UPU∗, UPU∗ϕ(y)UPU∗]
= Tr [PU∗ϕ(x)UP,PU∗ϕ(y)UP ].

By Theorem 6.2.1, there exists an increasing sequence {An} of positive,
contractive finite-rank operators strongly converging to I that is quasi-central
for ϕ(x) and ϕ(y) in the L2-norm. In particular, we have for increasing n:[PAnP, Pϕ(x)P ]

2 =
[P (I −An)P, Pϕ(x)P ]

2

=
P [P (I −An)P,ϕ(x)]P

2

≤
[P,ϕ(x)](I −An)

2 +
[I −An, ϕ(x)]

2 +
(I −An)[P,ϕ(x)]

2 → 0.

The first and third summand tend to zero since [P,ϕ(x)] ∈ L2 and An is an
approximate unit for L2. The same holds true for ϕ(y), so Bn := PAnP is
quasi-central for Pϕ(x)P , Pϕ(y)P and converges strongly to P .
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Abbreviating Pϕ(x)P , Pϕ(y)P , PU∗ϕ(x)UP , PU∗ϕ(y)UP by X,Y,X ′,
and Y ′, we thus obtain

|(τF − τF ′)(ϕ(x), ϕ(y))|

= lim
n→∞

Tr

Bn([X,Y ]− [X ′, Y ′])


≤ lim sup

n→∞

Tr

Bn[(X −X ′), Y ]

+ lim sup
n→∞

Tr

Bn[X ′, (Y − Y ′)]

 .
For the first summand we haveTr


Bn[(X −X ′), Y ]

 =
Tr


[Bn(X −X ′), Y ]


− Tr


[Bn, Y ](X −X ′)


=
Tr


[Bn, Y ](X −X ′)


≤
[Bn, Y ]

2 ·
X −X ′2

n→∞−−−→ 0 .

Here we have used that Bn(X −X ′) is, as a finite-rank operator, trace-class
and that X−X ′ ∈ L2 since [U,ϕ(x)] ∈ L2. For the second summand we obtain
in the same wayTr


Bn[X ′, Y − Y ′]

 ≤ [Bn, X ′]
2 ·

Y − Y ′2

≤
[Bn, X]

2 +
[Bn, X ′ −X]

2
Y − Y ′2

n→∞−−−→ 0 .

∥[Bn, X ′ −X]∥2 converges to 0 since X ′ −X ∈ L2(PH).

We can use this result to prove that K1
2(C∞(M)) never vanishes as long

as M is at least 2-dimensional:

6.2.6 Theorem. If M is a smooth manifold of dimension greater than or
equal 2, then

K1
2 (C∞

0 (M)) ̸= 0.

Proof. First, consider the Fredholm module F := (ϕ,L2(S1), F ) over C∞(S1)
where ϕ is the representation of C∞(S1) on L2(S1) by multiplication and F is
given with respect to the standard orthonormal basis {zn} (n ∈ Z) as

Fzn :=

zn n ≥ 0
−zn n < 0

.

By direct computation one sees that [F,ϕ(z)] is a rank-one operator. In
particular, it lies in L1. If f ∈ C∞(S1) is a smooth function, then we can write
f as a (uniformly convergent) series f(z) =


n∈Z cnz

n with rapidly decreasing
Fourier coefficients cn. Thus[F,ϕ(f)]

1 ≤

n∈Z
|cn| ·

[F,ϕ(z)n]
1

≤

n∈Z
|n| · |cn| ·

[F,ϕ(z)]
1 <∞.
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Hence, F is a 1-summable Fredholm module over C∞(M). Moreover, using
equation (6.4) we get for P := 1/2(F + I)

τF (z−1, z) = −Tr

Pϕ(z−1)P⊥ϕ(z)P − Pϕ(z)P⊥ϕ(z−1)P


= Tr


Pϕ(z)P⊥ϕ(z−1)P


= 1.

Since M is at least 2-dimensional, we can find a smooth embedding of
S1 into M , which induces a surjective map α : C∞(M) −→ C∞(S1). If
f, g ∈ C∞(M) are pre-images of z−1 and z, then

τα∗F (f, g) = τF (z−1, z) = 1 ̸= 0.

Thus, we conclude from Theorem 6.2.5 that K1
2 (C∞(M)) cannot vanish.

Using Bott periodicity, one easily checks that K1(C(S2)) = K1(C) = 0.
Thus, we have proven that the comparison map K1

2 (C∞(S2)) −→ K1(C(S2))
is not injective.

By considering different disjoint embeddings of S1 into M and evaluating
the Chern character with pre-images of z−1 and z that vanish on the respective
other embeddings of S1, it is easy to see that K1

2 (C∞(M)) is in fact very large.
Using similar methods, Salinas shows in [Sal83] that if F = (ϕ,H, F )

(F ∗ = F, F 2 = I) is a 2n-summable Fredholm module over a commutative
topological ∗-algebra A and P := 1/2(F + I), then the fundamental trace form
given by

LF (x1, . . . , x2n) := Tr

σ∈S2n

sgn(σ)Pϕ(xσ(1))P · · ·Pϕ(xσ(2n))P

only depends on the class of F in K1
2n(A) (the author shows this for smooth

extensions of compact subsets of Cn, but the proof carries over to K1
2n).

From this it should be possible to obtain higher-dimensional analogues of
Theorem 6.2.6.

Note that by [Con85, Proposition I.7.7], LF is in fact the complete anti-
symmetrization of the (2n−1)-dimensional Chern character of F . Thus, while
both agree for n = 1, LF is a coarser invariant than the Chern character for
n > 1. In particular, it is unclear whether Theorem 6.2.5 also extends in some
way to higher dimensions.



Chapter 7

Degenerate Cases

In this final chapter we consider several cases in which K∗
fin degenerates. We

start by proving that if A contains a closed barreled ideal J with a bounded
approximate unit, then the associated sequence

0←− K∗
fin(J )←− K∗

fin(A)←− K∗
fin(A/J )←− 0.

is always exact.
The rest of this chapter contains examples of algebras A over which

every p-summable Fredholm module is a p-summable perturbation of a nearly
degenerate module. By Theorem 3.1.5, these algebras have degenerate finitely
summable K-homology groups

K0
fin(A) = FR(A) and K1

fin(A) = 0.

The classes of algebras we study are amenable Banach algebras (Section 7.2),
group algebras of lattices in higher rank Lie groups (Section 7.3) and algebras
which are generated by a bounded group of unitaries like C∗-algebras or ℓ1(Γ)
for any discrete group Γ (Section 7.4).

7.1 Algebras with bounded approximate units

7.1.1 Theorem. Let A be a topological ∗-algebra and J a closed, barreled
∗-ideal of A with a bounded left-approximate unit. If ι denotes the embedding
of J into A and π the quotient map from A to A/J , then the sequence

0←− K∗
p(J )

ey←−
ι∗

K∗
p(A) π∗

←− K∗
p(A/J )←− 0

is split-exact with a natural split e.
The same is true for K∗

fin.

103
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Proof. We first define the split e. Let x be a class in K∗
p(J ) represented by a

p-summable Fredholm module F = (ϕ,H, F ).
If {uλ} is a bounded left-approximate unit for J , then the set {xuλ} is

bounded in J for any fixed x ∈ A since multiplication in A is continuous. J
is barreled, so Proposition 3.3.1 implies that there is a C <∞ such that[F,ϕ(xuλ)]


p < C and

ϕ(xuλ)(F 2 − I)

p < C for all λ.

Extend ϕ to a representation of A with the same support (Proposition 1.2.7).
By Proposition 1.2.5, the net {uλ} converges strongly to the support projection
of ϕ. As left and right multiplication are strongly continuous, ϕ(xuλ)(F 2 − I)
converges strongly to ϕ(x)(F 2 − I) and [F,ϕ(xuλ)] converges strongly to
[F,ϕ(x)]. The non-commutative Fatou lemma (Proposition 1.1.13) hence
implies that

[F,ϕ(x)] ∈ Lp and ϕ(x)(F 2 − I) ∈ Lp.

Thus, by extending ϕ to A, F extends to a p-summable module over A, and
we define e(x) to be its class in K∗

p(A).
This assignment is obviously compatible with direct sums, unitary equiva-

lence, and operator homotopies, so e is indeed a well-defined group homomor-
phism. By definition, ι∗ is a left-inverse to e, so ι∗ is surjective.

Next, we prove exactness in the middle. To this end, let F = (ϕ,H, F ) now
be a p-summable module over A. Since {uλ} is bounded and ϕ(uλ) converges
strongly to the support projection P of ϕ restricted to J , by the same line
of argument as above we see that [P, F ] ∈ Lp. Moreover, P commutes exactly
with ϕ (Proposition 1.2.3), so

FP ⊕FP⊥ := (Pϕ, PH, PFP )⊕ (P⊥ϕ, P⊥H, P⊥FP⊥)

is a p-summable perturbation of F .
We have P⊥ϕ ◦ ι = 0, so ι∗[FP⊥ ] = 0, whereas e ◦ ι∗([FP ]) = [FP ]. Thus,

ι∗[F ] = 0 implies [FP ] = 0 ∈ K∗
p(A) and it remains to show that [FP⊥ ] lies

in the image of π∗.
Since P⊥ϕ vanishes on J , P⊥ϕ factors through π, and we can write

P⊥ϕ = ϕ̃ ◦ π. Note that ϕ̃ is continuous by definition of the quotient topology.
Thus,

(ϕ̃, P⊥H, P⊥FP⊥)

is a p-summable module over A/J and FP⊥ = π∗ (ϕ̃, P⊥H, P⊥FP⊥).
Finally, we have to prove the injectivity of π∗. Thus, let F = (ϕ,H, F )

be a p-summable module over A/J and assume that π∗[F ] = 0. This means
that there is a degenerate module D = (ψ,N , G) over A such that π∗F ⊕D
is operator-homotopic to a degenerate module via an operator homotopy of
the form

(ϕ ◦ π ⊕ ψ,H⊕N , Ft).
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Let P be the support projection of ϕ ◦ π ⊕ ψ restricted to J . By the same
arguments as above we obtain an operator homotopy

P⊥(ϕ ◦ π ⊕ ψ), P⊥(H⊕N ), P⊥FtP
⊥

. (7.1)

If Q denotes the support projection of ψ restricted to J , then P⊥ = I⊕Q⊥

since ϕ ◦ π vanishes identically on J . Moreover, Q⊥ψ again factors as ψ̃ ◦ π.
Therefore, we can rewrite (7.1) as

ϕ ◦ π ⊕ ψ̃ ◦ π,H⊕Q⊥N , (I ⊕Q⊥)Ft(I ⊕Q⊥)

.

Thus, 
ϕ⊕ ψ̃,H⊕Q⊥N , (I ⊕Q⊥)Ft(I ⊕Q⊥)


is an operator homotopy between the modules

F ⊕ (ψ̃, Q⊥N , Q⊥GQ⊥) and

ϕ⊕ ψ̃,H⊕Q⊥N , (I ⊕Q⊥)F1(I ⊕Q⊥)


.

Since D and (ϕ ◦ π,H⊕N , F1) are degenerate, Q⊥ and I ⊕Q⊥ commute
exactly with G and F1 (they are strong limits of operators which exactly
commute with G and F1). This implies that

(ψ̃, Q⊥N , Q⊥GQ⊥) and (ϕ⊕ ψ̃,H⊕Q⊥N , (I ⊕Q⊥)F1(I ⊕Q⊥))

are degenerate as well, so [F ] = 0 ∈ K∗
p(A/J ).

The analogous statement for K∗
fin follows immediately from the statement

for K∗
p .

7.1.2 Remark. Closed subspaces of barreled spaces are not barreled in general.
But closed subspaces of Fréchet spaces are, of course, again Fréchet spaces.
Thus, the conditions of Theorem 7.1.1 are fulfilled if A is a Fréchet ∗-algebra
and J a closed ideal in A with a bounded left-approximate unit.

7.1.3 Example. Consider the cone CR of smooth functions on R given by

CR :=

f ∈ C∞(R)

 limx→∞ f(x) exists, limx→−∞ f(x) = 0,
limx→±∞ f (n)(x) = 0 for all n ∈ N


.

Endowed with the topology given by the semi-norms |f |n := supx∈R |f (n)(x)|
(n ∈ N0), CC becomes a Fréchet ∗-algebra. We want to show that K0

fin(CR)
does not vanish.

To this end, note that CR contains as an ideal the suspension algebra

SR :=

f ∈ C∞(R)

 lim
x→±∞

f (n)(x) = 0 for all n ∈ N0


= C∞
0 (R).
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SR is the kernel of the evaluation map sending f ∈ CR to limx→∞ f(x), so
we obtain the short exact sequence

0 −→ SR −→ CR −→ C −→ 0.

Let g : [0, 1] −→ R be a smooth function such that g(0) = 1, g(1) = 0 and
limx→0 g

(n)(x) = limx→1 g
(n)(x) = 0 for all n ∈ N. Then we can define an

approximate unit {un} of SR as

un(x) :=


0 x /∈ [−n− 1, n+ 1]
g(−x− n) x ∈ [−n− 1,−n]
1 x ∈ [−n, n]
g(x− n) x ∈ [n, n+ 1]

.

Obviously, all un lie in SR, and it is easy to check that {un} is indeed a
bounded approximate unit for SR.

Thus, Theorem 7.1.1 applies and we obtain the exact sequence

0←− K0
fin(SR)←− K0

fin(CR)←− K0
fin(C)←− 0.

As K0
fin(C) = Z, the claim follows.

Note that this argument does not work if we define CR in terms of functions
whose derivatives are of rapid decay since then {un} would not be bounded in
the appropriate Fréchet algebra topology on CR.

7.2 Amenable Banach algebras
Let A be a Banach algebra. A bimodule M over A is called a Banach bimodule
if M is a Banach space and there is a C > 0 such thataξb ≤ Caξb for all a, b ∈ A, ξ ∈M.

If M is a Banach bimodule, its topological dual M∗ also carries the structure
of a Banach bimodule defined by

xa, ξ


:=

x, aξ


ax, ξ


:=

x, ξa

 for all a ∈ A, ξ ∈M, x ∈M∗. (7.2)

A bounded derivation of A into M is a continuous map ϕ : A −→M such
that

ϕ(ab) = ϕ(a)b+ aϕ(b) for all a, b ∈ A.
It is called inner, if there is a ξ ∈M such that

ϕ(a) = [ξ, a] for all a ∈ A.

One readily checks that such a map is indeed a bounded derivation for any
ξ ∈M .
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7.2.1 Definition ([Joh72]). A Banach algebra A is called amenable if every
bounded derivation of A into any dual Banach bimodule M∗ is inner.

7.2.2 Theorem. If A is an amenable Banach ∗-algebra, then

K1
p(A) = 0

and there is a natural isomorphism

K0
p(A) ∼= FR(A).

The same is true for K∗
fin.

Proof. First assume that A is unital. To prove the theorem for K∗
p(A), it

suffices by Theorem 3.1.5 to show that every p-summable module in F∗
p(A) is

a p-summable perturbation of a nearly degenerate module.
Remember that all Schatten classes Lp(H) (p ≥ 1) are dual spaces with

predual Lq(H) (q := (1− 1/p)−1) for p > 1 and with predual K(H) for p = 1
(Proposition 1.1.12). The pairing between these spaces is given by

T, S


= TrTS

for T ∈ Lp(H) and S ∈ Lq(H) (resp. S ∈ K(H)).
Left and right multiplication by bounded operators turn each Lp(H) into a

Banach bimodule over B(H). We have
TU, S


= TrTUS =


T, US


UT, S


= TrUTS = TrTSU =


T, SU


for all T ∈ Lp(H), S ∈ Lq(H) (resp. S ∈ K(H)), and U ∈ B(H). Thus, each
Lp(H) (1 ≤ p <∞) is a dual Banach bimodule over B(H) in the sense of (7.2).
Note that this is not the case for the compact operators.

To prove our claim in the odd case, let F = (ϕ,H, F ) be a p-summable
odd Fredholm module over A. Pull back Lp(H) via ϕ to a dual bimodule over
A (i.e. the left and right actions of A on Lp(H) are given by ϕ(x) · T and
T · ϕ(x)).

By Proposition 3.3.1, the map DF : A −→ Lp(H), x →−→ [F,ϕ(x)] is
continuous. Hence, it is a bounded derivation of A into Lp(H). The amenability
of A implies that there is a T ∈ Lp(H) such that

[F,ϕ(x)] = DF (x) = [T, ϕ(x)] for all x ∈ A.

It follows that F is a p-summable perturbation of the nearly degenerate module
(ϕ,H, F − T ).

For the even case let

F =

ϕ⊕ ϕ, H⊕H,


0 U∗

U 0


∈ F0

p(A)

be an even p-summable module over A with unitary U .



108 CHAPTER 7. DEGENERATE CASES

As above, the map DU : A −→ Lp(H), x →−→ [U,ϕ(x)] is a bounded
derivation of A into Lp(H), so there exists a T ∈ Lp(H) such that

[U,ϕ(x)] = [T, ϕ(x)] for all x ∈ A.

Hence, F is a p-summable perturbation of the nearly degenerate module
ϕ⊕ ϕ, H⊕H,


0 U∗ − T ∗

U − T 0


.

Next, let A be non-unital. Since C is amenable and extensions of amenable
Banach algebras by amenable Banach algebras are again amenable [Joh72,
Proposition 5.1], A+ is amenable as well.

Thus, K1
p(A) = 0 immediately follows from the unital case and Proposi-

tion 3.2.1. For the even case, consider the following diagram.

0 K0
p(A) K0

p(A+) K0
p(C) 0

0 FR(A) FR(A+) FR(C) 0

ι∗ π∗

r π∗
Φ Φ+ ΦC

In this diagram Φ, Φ+ and ΦC denote the natural maps from Theorem 3.1.5,
π : A+ −→ C is the quotient map, and r is obtained by restricting representa-
tions of A+ to A and then taking their non-degenerate part.

The commutativity of the square to the right is immediate from the
definitions, and the square to the left is commutative by Proposition 2.4.7.
The upper row is exact by Proposition 3.2.1. Moreover, by definition we
have r ◦ π∗ = 0, and we can extend every representation of A to a unital
representation of A+, so r is surjective. The injectivity of π∗ and the exactness
in the middle of the lower row is given by Proposition 1.2.3. Thus, the lower
row is exact as well.

We already know that Φ+ and ΦC are isomorphisms. Therefore, Φ must
also be an isomorphism by the Five Lemma.

Finally, since the isomorphisms between FR(A) and K0
p (A) are compatible

with the connecting maps K0
p(A) −→ K0

q (A) (p < q), we obtain the same
isomorphism for the inductive limit K0

fin(A).

7.3 Higher rank Lie groups
In [Pus11] Puschnigg discusses the existence of finitely summable modules over
higher rank Lie groups. A higher rank Lie group is a product of simple real
Lie groups (with finite center) which are of real rank at least 2.

If Γ is a discrete group, denote by FR(Γ) the Grothendieck group of the
monoid of unitary equivalence classes of finite-dimensional unitary representa-
tions of Γ with addition given by the direct sum.

The author proves:
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7.3.1 Theorem. Let Γ be a lattice in a higher rank Lie group and CΓ the
group algebra of Γ endowed with the C∗(Γ) topology. Then for p > 1

K1
p(CΓ) = 0

and there is a natural isomorphism

K0
p(CΓ) ∼= FR(Γ).

The same is true for K∗
fin.

The starting point for the proof of this theorem is the work of Bader,
Furman, Gelander and Monod on rigidity theory in [BFGM07] where the
authors show that for a standard measure space (X,µ), any action of Γ on
Lp(X,µ) (1 < p <∞) by affine isometries has a global fixed point.

Puschnigg transfers this result to the non-commutative Lp-spaces Lp(H)
[Pus11, Corollary 5.10]. In particular, he obtains that if F = (ϕ,H, F ) is a
p-summable Fredholm module over CΓ with unital ϕ, then the action of Γ on
Lp(H) which for γ ∈ Γ is given by

T →→ ϕ(γ)Tϕ(γ−1) +

ϕ(γ)Fϕ(γ−1)− F


has a global fixed point T0 ∈ Lp(H). This implies that (ϕ,H, F + T0) is a
nearly degenerate module. By a similar construction for even modules, one
sees that the conditions of Theorem 3.1.5 are met (we use the same line
of argument in Section 7.4, where we provide more details). The theorem
now follows by noting that there is a one-to-one correspondence between the
continuous, non-degenerate, finite-dimensional representations of CΓ (with the
C∗(Γ) topology) and the finite-dimensional unitary representations of Γ.†

By the same argument the author obtains:

7.3.2 Theorem. Let Γ be a lattice in a higher rank Lie group and CΓ the
group algebra of Γ endowed with the C∗

red(Γ) topology. Then for p > 1

K∗
p(CΓ) = 0.

The same is true for K∗
fin.

The proof carries over verbatim from Theorem 7.3.1. The only thing to note
is that FR(CΓ) contains fewer representations in this case, as not every unitary
representation of Γ induces a continuous representation of CΓ with respect to
the C∗

red(Γ) topology. In fact, Puschnigg argues that Γ, being non-compact
and enjoying Kazhdan’s Property (T), is not amenable from which it follows
that no finite-dimensional unitary representation of Γ extends to a continuous
representation of C∗

red(Γ). Therefore, FR(CΓ) = 0.
†Puschnigg proves the injectivity of the map from FR(Γ) to K0

p(CΓ) differently by
showing that the composition

FR(Γ) −→ K0
p(CΓ) −→ K0(C∗(Γ)) Ind−−→ Hom(K0(C∗(Γ)),C)

is injective for every group enjoying Kazhdan’s property (T) [Pus11, Lemma 3.7].
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7.4 Algebras with bounded groups of unitaries
A Banach space V is called L-embedded if its bidual can be decomposed as

V ∗∗ = V ⊕ V0,

where V is identified with its canonical embedding in V ∗∗, such thatv + v0
 =

v+
v0
 for all v ∈ V, v0 ∈ V0.

In particular, reflexive Banach spaces and preduals of von Neumann algebras†

are L-embedded. Since the Schatten classes Lp(H) (1 < p <∞) are reflexive
and L1(H) is the predual of B(H), we see that every Lp(H) (1 ≤ p < ∞) is
L-embedded.

In [BGM11] the authors prove the following fixed point theorem:

7.4.1 Theorem. Let X be a non-empty bounded subset of an L-embedded
Banach space V . Then there is a common fixed point in V for all affine
isometries S of V satisfying S(X) = X.

The proof proceeds as follows. Let ρV (X) denote the circumradius of X in
V given by

ρV (X) := inf

r ≥ 0

 ∃x ∈ V : X ⊆ B(x, r)

.

The Chebyshev center of X in V is then defined as

CV (X) :=

c ∈ V

X ⊆ B(c, ρV (X))

.

The authors show that if V is L-embedded, then CV (X) is convex, weakly
compact and non-empty. Since CV (X) is preserved by any affine isometry of
V preserving X and since the set of all these maps forms a non-contracting
semigroup (Definition A.1.8), the Ryll-Nardzewski fixed point theorem (Theo-
rem A.1.9) applies and provides the desired fixed point. Note that this fixed
point, while lying in CV (X), does not need to lie in X.

Similarly to Corollary C in [BGM11], we can conclude:

7.4.2 Theorem. If A is a barreled topological ∗-algebra such that Ã contains
a bounded group U of unitaries generating a dense subalgebra of Ã, then

K1
p(A) = 0

and there is a natural isomorphism

K0
p(A) ∼= FR(A).

The same is true for K∗
fin.

†If M is a von Neumann algebra, then M∗ can be decomposed into M∗ and a so-called
singular part M⊥ [Tak02, Theorem III.2.14].
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Proof. First, let A be unital and let F = (ϕ,H, F ) be an odd Fredholm
module over A. We want to show that F is a p-summable perturbation of a
nearly degenerate module so that we can apply Theorem 3.1.5 again.

Note that F is a p-summable perturbation of the direct sum
ϕ(1A)ϕ,ϕ(1A)H, ϕ(1A)Fϕ(1A)


⊕

0, ϕ(1A)⊥H, ϕ(1A)⊥Fϕ(1A)⊥


.

Since the second summand is nearly degenerate, we can assume that ϕ is
unital.

For each u ∈ U define αu to be the map αu : Lp(H) −→ Lp(H) given by

αu(T ) = ϕ(u)Tϕ(u∗) +

ϕ(u)Fϕ(u∗)− F


for all T ∈ Lp(H).

Since each u ∈ U is unitary and ϕ is a unital ∗-homomorphism the αu are
affine isometries. Moreover,

αu(αv(T ))

= ϕ(u)

ϕ(v)Tϕ(v∗) + ϕ(v)Fϕ(v∗)− F


ϕ(u∗) + ϕ(u)Fϕ(u∗)− F

= ϕ(uv)Tϕ(v∗u∗) + ϕ(uv)Fϕ(v∗u∗)− ϕ(u)Fϕ(u∗) + ϕ(u)Fϕ(u∗)− F
= αuv(T ).

Thus, α is a group action.
A is barreled and U is bounded, so we know by Proposition 3.3.1 that

ϕ(u)Fϕ(u∗)− F
u ∈ U

is bounded in Lp(H). Since this is the orbit of 0 ∈ Lp(H), it is preserved by α.
Therefore, Theorem 7.4.1 implies that there is a T0 ∈ Lp(H) such that

ϕ(u)T0ϕ(u∗) + ϕ(u)Fϕ(u∗)− F = T0 for all u ∈ U ,

thus
[F + T0, ϕ(u)] = 0 for all u ∈ U .

Since this relation extends to the C∗-algebra generated by {ϕ(u) |u ∈ U}, it
holds for all x ∈ A. Hence, F is a p-summable perturbation of the nearly
degenerate module (ϕ,H, F + T0).

For the even case, let

F =

ϕ⊕ ϕ, H⊕H,


0 U∗

U 0


∈ F0

p(A)

be given. By the same argument as for the odd case, it suffices to consider
instead modules F ′ of the form

F ′ =

ϕ′ ⊕ ϕ′, H′ ⊕H′,


0 U ′∗

U ′ 0


where ϕ′ is unital but U ′ is no longer necessarily unitary.
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Let U act on Lp(H) by the affine isometries

αu(T ) = ϕ′(u)Tϕ′(u∗) +

ϕ′(u)U ′ϕ′(u∗)− U ′


.

Proposition 3.3.1 implies again that {ϕ′(u)U ′ϕ′(u∗)− U ′ |u ∈ U} is bounded.
If T0 ∈ Lp(H) is a fixed point of the action, then

ϕ′ ⊕ ϕ′,H′ ⊕H′


0 U ′∗ + T ∗
0

U ′ + T0 0



is nearly degenerate and a p-summable perturbation of F ′.
Finally, if A is non-unital, note that A+ is barreled if A is because A+ is

(as a topological vector space) the direct sum of A and C, and direct sums of
barreled spaces are barreled again (Proposition A.1.5). Therefore, what we
have proven applies to A+ and we can reduce the non-unital to the unital case
as in the proof of Theorem 7.2.2.

The analogous statement for K∗
fin again follows immediately from the

statement for K∗
p .

7.4.3 Corollary. If A is a C∗-algebra, then

K0
p(A) ∼= FR(A) and K1

p(A) = 0

as well as
K0
fin(A) ∼= FR(A) and K1

fin(A) = 0.

7.4.4 Corollary. If Γ is a discrete group, then

K0
p(ℓ1(Γ)) ∼= FR(ℓ1(Γ)) and K1

p(ℓ1(Γ)) = 0

as well as

K0
fin(ℓ1(Γ)) ∼= FR(ℓ1(Γ)) and K1

fin(ℓ1(Γ)) = 0.
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A.1 Functional analysis
A.1.1 Definition. A topological vector space is a vector space endowed with
a topology making addition and scalar multiplication jointly continuous.

A.1.2 Definition. A subset X of a topological vector space V is called
bounded if for every neighbourhood U of 0 there exists a λ ∈ R such that

X ⊆ λU.

A.1.3 Definition. Let V be a topological vector space. A barrel in V is an
absorbing, balanced, closed, and convex set. V is called barreled if every barrel
in V is a neighbourhood of 0.

A.1.4 Examples. The class of barreled spaces includes:

— Fréchet spaces, in particular all Banach spaces

— all locally convex spaces which are Baire spaces

— LF-spaces (e.g. the test spaces C∞
c (Rn) in distribution theory)

[SW99, Chapter II, 7.1 and 7.2].

A.1.5 Proposition. If V1 and V2 are barreled topological vector spaces, then
V1 ⊕ V2 is a barreled topological vector space.

Proof. Let X be a barrel in V1⊕ V2. If ιi : Vi −→ V1⊕ V2 (i = 1, 2) denote the
embeddings of Vi into V1 ⊕ V2, then ι−1

i (X) are barrels in Vi containing open
neighbourhoods Ui of 0 ∈ Vi. Thus, X contains U1 ⊕ 0 ∪ 0⊕ U2 and, since X
is convex, the open set 1

2U1 ⊕ 1
2U2.

A.1.6 Proposition. If V1 is a barreled normed space and V2 is a barreled
locally convex space, then their projective tensor product V1⊗̂V2 is barreled as
well.

Proof. [PCB87, Proposition 11.2.2].
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A.1.7 Theorem (Closed Graph Theorem). Let f : V −→W be a linear map
between a barreled space V and a Fréchet space W . If

Graph(f) :=

(v, f(v))

 v ∈ V  ⊆ V ×W
is closed, then f is continuous.

Proof. [SW99, Chapter IV, 8.5].

A.1.8 Definition. Let Q ⊂ V be a subset of a locally convex vector space.
A set S of maps from Q into itself is called non-contracting if for all ξ, η ∈ Q
with ξ ̸= η there is a continuous semi-norm ν on V and an ε > 0 such that

ν(Sξ − Sη) > ε for all S ∈ S.

A.1.9 Theorem (Ryll-Nardzewski). Let Q be a non-empty, weakly compact,
convex subset of a Hausdorff locally convex vector space V. If S is a non-
contracting semigroup of weakly continuous affine maps of Q into itself, then
all maps in S share a common fixed point.

Proof. [NA67].

A.2 Finite-dimensional C∗-algebras and matrix
units

A.2.1 Definition. Let A be a ∗-algebra and nk ∈ N (1 ≤ k ≤ N). A set
{e(k)
ij | 1 ≤ i, j ≤ nk} ⊆ A is called a system of matrix units if its elements

satisfy the conditions

(e(k)
ij )∗ = e

(k)
ji and e

(k′)
i′j′ e

(k)
ij = δkk′δj′ie

(k)
i′j

for all 1 ≤ i, j ≤ nk and 1 ≤ i′, j′ ≤ nk′ . We also write e(k)
i for the projections

e
(k)
ii .

A.2.2 Theorem. If A is a finite-dimensional C∗-algebra, then A is isomorphic
to the direct sum

A ∼=
N
i=1

Mni(C),

for some natural numbers N and ni (1 ≤ i ≤ N).

Proof. [Dav96, Theorem III.1.1].

A.2.3 Definition. Let A be a finite-dimensional C∗-algebra. We call a system
of matrix units {e(k)

ij } ⊆ A a system of matrix units for A (short: matrix units
for A) if it forms a linear basis of A.

By Theorem A.2.2, one can find a system of matrix units for each finite-
dimensional C∗-algebra.
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A.2.4 Proposition. Let A be a C∗-subalgebra of a finite-dimensional C∗-
algebra B and {e(k)

ij } a system of matrix units for A. Then there is a compatible
system of matrix units {f (l)

rs } for B in the sense that each e(k)
ij can be uniquely

written as
e

(k)
ij =

m
n=1

f (ln)
rnsn

where the f (ln)
rnsn have pairwise orthogonal support and range projections.

Proof. Without loss of generality we can assume that A and B share the same
unit (otherwise replace A by A⊕C(1B − 1A)). Furthermore, by considering
every direct summand of B separately, we can assume that B = Mn(C).

Decompose each e
(k)
1 as an orthogonal sum of minimal projections

e
(k)
1 = fk11 + fk12 + . . .+ fk1mk

,

and choose arbitrary partial isometries fk1r,111 between fk1r and fk11. Then
define

fkir,111 := e
(k)
i1 · fk1r,111 and fkir,ljs := fkir,111 · f∗

ljs,111.

Since A and B share the same unit, this defines matrix units for B.
If e(k)

ij belongs to the matrix units for A, then

mk
r=1

fkir,kjr =
mk
r=1

e
(k)
i1 · fk1r,111 ·


e

(k)
j1 · fk1r,111

∗

= e
(k)
i1

mk
r=1

fk1r,111 · f∗
k1r,111


e

(k)
1j

= e
(k)
i1 · e

(k)
1 · e

(k)
1j

= e
(k)
ij .

A.3 Completely positive maps
A.3.1 Definition. Let A and B be C∗-algebras. A bounded linear map
ϕ : A −→ B is called positive if it maps positive elements to positive elements.
ϕ is called completely positive if ϕ(n) : Mn(A) −→ Mn(B) is positive for all
n ∈ N, where ϕ(n) is defined as

ϕ(n)([aij ]) := [ϕ(aij)] for [aij ] ∈Mn(A).

We call ϕ a completely positive contraction (c.p.c.) if ϕ is completely positive
and ∥ϕ∥ ≤ 1.
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A.3.2 Example. If ϕ : A −→ B is a ∗-homomorphism between C∗-algebras
and x ∈ B with ∥x∥ ≤ 1, then xϕ(·)x∗ is a completely positive contraction.

A.3.3 Theorem (Stinespring). Let A be a C∗-algebra, H a Hilbert space and
ϕ : A −→ B(H) a completely positive contraction. Then there exists a Hilbert
space H′ and a ∗-representation

ϕ̃ : A −→ B(H⊕H′)

such that ϕ̃ is of the form

ϕ̃(x) =

ϕ(x) ϕ̃12(x)
ϕ̃21(x) ϕ̃22(x)


for all x ∈ A.

ϕ̃ is called a Stinespring dilation of ϕ.

Proof. [BO08, Theorem 1.5.3 and Remark 1.5.4].
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