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Abstract. Given a finitely aligned k-graph Λ, we let Λi denote the (k−1)-graph formed by
removing all edges of degree ei from Λ. We show that the Toeplitz–Cuntz–Krieger algebra
of Λ, denoted by T C∗(Λ), may be realized as the Toeplitz algebra of a Hilbert T C∗(Λi)-
bimodule. When Λ is locally-convex, we show that the Cuntz–Krieger algebra of Λ, which
we denote by C∗(Λ), may be realized as the Cuntz–Pimsner algebra of a Hilbert C∗(Λi)-
bimodule. Consequently, T C∗(Λ) and C∗(Λ) may be viewed as iterated Toeplitz and iterated
Cuntz–Pimsner algebras over C0(Λ0), respectively.

1. Introduction

Higher-rank graphs were first introduced by Kumjian and Pask as a gen-
eralization of directed graphs [17]. Loosely speaking, a higher-rank graph of
rank k (or simply a k-graph) is a countable small category Λ together with
a functor d : Λ → Nk satisfying the following factorization property: for any
λ ∈ Λ and m,n ∈ Nk, with d(λ) = m + n, there exist unique µ, ν ∈ Λ with
d(µ) = m and d(ν) = n such that λ = µν. In the same paper, Kumjian and
Pask showed how to associate a C∗-algebra to each row finite higher-rank graph
Λ with no sources, which we call the Cuntz–Krieger algebra of Λ. Subsequently
Raeburn, Sims, and Yeend [23], showed how to relax the hypotheses of [17],
and defined Cuntz–Krieger algebras for arbitrary finitely aligned higher-rank
graphs. Sims subsequently defined relative Cuntz–Krieger algebras for finitely
aligned higher-rank graphs, which includes the class of Toeplitz–Cuntz–Krieger
algebras as a special case [28, 29].

In this article, we show how the Toeplitz–Cuntz–Krieger algebra and Cuntz–
Krieger algebra of a finitely aligned higher-rank graph Λ may be viewed as
iterated Toeplitz and iterated Cuntz–Pimsner algebras over C0(Λ

0) (the space
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of functions on the graph’s vertex set that vanish at infinity), respectively.
Writing e1, . . . , ek for the standard generators of Nk, we let Λi denote the
higher-rank graph formed by removing all edges of degree ei from Λ. In Theo-
rem 3.7 we show that the Toeplitz–Cuntz–Krieger algebra of Λ may be realized
as the Toeplitz algebra of a Hilbert bimodule whose coefficient algebra is the
Toeplitz–Cuntz–Krieger algebra of Λi. In Theorem 4.16 we show that, pro-
vided Λ is locally-convex, the Cuntz–Krieger algebra of Λ may be realized as
the Cuntz–Pimsner algebra of a Hilbert bimodule whose coefficient algebra is
the Cuntz–Krieger algebra of Λi. Repeatedly removing all edges of a fixed
degree from Λ eventually leaves a graph consisting solely of vertices, whose
Toeplitz–Cuntz–Krieger and Cuntz–Krieger algebras are both isomorphic to
C0(Λ

0). When k = 1 the bimodule we construct is equivalent to the graph
correspondence associated to a directed graph [22, Example 8.3], and so we
like to think of our procedure as a higher-rank graph correspondence. We also
point out that our procedure is similar to the work of Kumjian, Pask, and Sims
on k-morphs [18] (introduced as a systematic way of extending a k-graph to
a (k + 1)-graph by inserting a collection of edges of degree ek+1 between the
vertices of the original graph). In [18, Remark 6.9] Kumjian, Pask, and Sims
show that C∗(Λ) may be realized as the Cuntz–Pimsner algebra of a Hilbert
C∗(Λi)-bimodule, provided Λ is row finite, and has no sources and no sinks
(in contrast to our procedure, which only requires local-convexity and finite
alignment).

Our main motivation for wanting to view Cuntz–Krieger algebras associ-
ated to higher-rank graphs as iterated Cuntz–Pimsner algebras is to try and
determine their K-theory. It is well-known that the K-theory of a directed
graph algebra (equivalently a 1-graph algebra) can be readily extracted from
the graph’s adjacency matrix [3, Theorem 6.1]. Using a homological spectral
sequence, Evans derived expressions for the K-theory of Cuntz–Krieger alge-
bras associated to row finite 2-graphs with no sources, again in terms of the
graph’s adjacency matrices [8, 9]. Unfortunately, Evans’ techniques do not
generalize to k ≥ 3, and it remains an open problem to find nice formulae for
the K-groups of higher-rank graph algebras in terms of just their graphical
data. In the future, we hope to be able to combine Theorem 4.16 and the
Pimsner–Voiculescu exact sequence [15, Theorem 8.6] (a result that relates the
K-theory of a Cuntz–Pimsner algebra associated to a Hilbert bimodule and
the K-theory of the bimodule’s coefficient algebra) to do this. As an imme-
diate consequence of combining Theorem 3.7 with [21, Theorem 4.4], we are
able to conclude that the Toeplitz–Cuntz–Krieger algebra of a finitely aligned
higher-rank graph Λ is KK-equivalent to C0(Λ

0), generalizing an earlier result
of Burgstaller [5, Theorem 1.1]. Consequently, K0(T C∗(Λ)) ∼=

⊕

v∈Λ0 Z and
K1(T C∗(Λ)) ∼= 0.

The inspiration for our attempts to realize the Toeplitz–Cuntz–Krieger and
Cuntz–Krieger algebras of a finitely aligned higher-rank graph as iterated
Toeplitz and Cuntz–Pimsner algebras was Deaconu’s work on iterating the
Pimsner construction [6]. Unfortunately, some of Deaconu’s proofs lack detail,
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and it is not clear which of his various hypotheses are necessary to make the
procedure work. Motivated by this lack of clarity, as well as the results in
[11, Chapter 2], we explained in [12] how Deaconu’s iterative procedure can be
extended to quasi-lattice ordered groups that are more general than (Z2,N2).
In particular, [12, Theorem 4.17] shows that the Nica–Toeplitz algebra of a
compactly aligned product system over Nk can be realized as a k-fold iterated
Toeplitz algebra. Furthermore, [12, Theorem 5.20] shows that the Cuntz–Nica–
Pimsner algebra can be realized as a k-fold iterated Cuntz–Pimsner algebra,
provided the action on each fibre of the product system is faithful and by
compacts.

In [31, Section 5.3] Sims and Yeend show that the Cuntz–Krieger algebra of
a finitely aligned k-graph may be realized as the Cuntz–Nica–Pimsner algebra
of a compactly aligned product system over Nk. It is routine to show that
the action on each fibre of this product system is faithful if and only if the
graph has no sources, and by compacts if and only if the graph is row finite. In
Section 5.2 we discuss how, in the situation where the graph is row finite and
has no sources, Theorem 4.16 can be deduced from [31, Proposition 5.4] and
[12, Theorem 5.20]. The main purpose of this paper is thus to show that our
iterative procedure still works if we drop the hypothesis of row finiteness and
the hypothesis of no sources is relaxed to local-convexity. The construction
presented in this paper is also significantly simpler and easier to understand
than the construction found in [12], which could be of use to those interested
specifically in the C∗-algebras associated to higher-rank graphs, and do not
want to delve into the theory of product systems. Furthermore, the isomor-
phisms given by Theorem 3.7 and Theorem 4.16 are more explicit than those
given by combining the results of [12] and [31, Section 5.3].

In the analysis of [11, Section 2.6], the assumption that Λ has no sources
serves two key purposes. Firstly, it ensures that the inclusion of Λi in Λ
induces an (injective) ∗-homomorphism from C∗(Λi) to C∗(Λ) (which we use
to construct our bimodule), and secondly, it implies that C∗(Λi) acts faithfully
on our bimodule. The assumption that Λ is row finite is used to ensure that
C∗(Λi) acts compactly on our bimodule. Combining these two hypotheses,
we concluded in [11, Theorem 2.6.12] that the Katsura ideal of our bimodule
was all of C∗(Λi), which made it relatively easy to determine the structure
of the bimodule’s Cuntz–Pimsner algebra. As shown in [12, Example 5.4] and
Remark 4.7, if Λ has sources, then C∗(Λ) need not contain a copy of C∗(Λi). In
Proposition 4.6, we show that this issue can be avoided, provided we restrict
our attention to locally-convex graphs. Allowing Λ to have sources and/or
infinite-receivers can also result in the Katsura ideal being a proper ideal of
C∗(Λi), and the majority of Section 4 is spent determining what the ideal looks
like in this situation.

Our strategy is to show that the Katsura ideal is gauge-invariant (see Propo-
sition 4.9), and then use the results of [30] to determine its generators. Given
a finitely aligned k-graph Σ, it follows from [30, Theorem 4.6] that if I is a
gauge-invariant ideal of C∗(Σ), then I is generated as an ideal by its vertex
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projections and a collection of projections corresponding to certain finite ex-
haustive subsets of a subgraph of Σ. In Proposition A.1 we show that it suffices
to consider only those finite exhaustive sets consisting of edges. We present
this result separately in an appendix since it may be of general interest to those
investigating gauge-invariant ideals of higher-rank graph algebras.

Applying these results to our bimodule, we show in Proposition 4.14 that
the Katsura ideal is generated as an ideal by the vertex projections correspond-
ing to vertices admitting a finite and nonzero number of edges of degree ei (see
Proposition 4.12) and a collection of projections corresponding to finite ex-
haustive subsets of a subgraph of Λi that can be extended to finite exhaustive
subsets of Λ (see Lemma 4.13 for the precise description). With this descrip-
tion of the Katsura ideal, it is then relatively straight-forward to check that
the Cuntz–Pimsner algebra of our bimodule coincides with the Cuntz–Krieger
algebra of our original graph.

Finally, we point out that the results in Section 4 suggest that the hypothesis
of faithful and compact actions present in the author’s work on iterating the
Cuntz–Nica–Pimsner construction for compactly aligned product systems (see
[12, Theorem 5.20]) can be relaxed (at least for product systems over Nk).
The idea would be to develop a suitable notion of local-convexity for product
systems (see the discussion before and after [12, Example 5.4]), and then make
use of Katsura’s work on gauge-invariant ideals of Cuntz–Pimsner algebras [16,
Theorem 8.6].

2. Preliminaries

2.1. Hilbert bimodules and their associated C
∗-algebras. Let A be a

C∗-algebra. An inner product A-module is a complex vector space X equipped
with a map 〈 · , · 〉A : X × X → A, linear in its second argument, and a right
action of A, such that for any x, y ∈ X and a ∈ A, we have

(i) 〈x, y〉A = 〈y, x〉∗A,
(ii) 〈x, y · a〉A = 〈x, y〉Aa,
(iii) 〈x, x〉A ≥ 0 in A,
(iv) 〈x, x〉A = 0 if and only if x = 0.

It follows from [19, Proposition 1.1] that the formula ‖x‖X := ‖〈x, x〉A‖
1/2
A

defines a norm on X . If X is complete with respect to this norm, we say that
X is a Hilbert A-module.

We say that a map T :X → X is adjointable if there exists a map T ∗ :X → X
such that 〈Tx, y〉A = 〈x, T ∗y〉A for each x, y ∈ X . Every adjointable opera-
tor T is automatically linear and continuous, and the adjoint T ∗ is unique.
The collection of adjointable operators on X , denoted by LA(X), equipped
with the operator norm is a C∗-algebra. For each x, y ∈ X , there is an ad-
jointable operator Θx,y ∈ LA(X) defined by Θx,y(z) = x · 〈y, z〉A. We call
operators of this form generalized rank-one operators. The closed subspace
KA(X) := span{Θx,y : x, y ∈ X} is an essential ideal of LA(X), whose ele-
ments we refer to as generalized compact operators.
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A Hilbert A-bimodule consists of a Hilbert A-module X together with a
∗-homomorphism φ : A→ LA(X). We think of φ as implementing a left action
of A on X , and frequently write a · x for φ(a)(x). Since each φ(a) ∈ LA(X) is
A-linear, we have that a · (x · b) = (a · x) · b for each a, b ∈ A and x ∈ X . If
we let A act on itself by left and right multiplication, and define an A-valued
inner product on A by 〈a, b〉A := a∗b, we get a Hilbert A-bimodule, which we
denote by AAA. We say that a map between two Hilbert A-bimodules is a
Hilbert A-bimodule isomorphism if it is left A-linear, surjective, and preserves
the A-valued inner product (this last condition implies that the map is right
A-linear and injective).

The balanced tensor product of a pair of Hilbert A-bimodules X and Y ,
which we denote by X ⊗A Y , is the completion of the complex vector space
spanned by elements x ⊗A y, where x ∈ X and y ∈ Y , subject to the relation
(x · a) ⊗A y = x ⊗A (a · y), in the norm determined by the A-valued inner
product 〈x ⊗A y, w ⊗ z〉A = 〈y, 〈x,w〉A · z〉A. There are right and left actions
of A on X ⊗A Y determined by a · (x⊗A y) · b = (a · x)⊗A (y · b), which gives
X ⊗A Y the structure of a Hilbert A-bimodule. We define the balanced tensor
powers of X as follows: X⊗0 := AAA, X

⊗1 := X , and X⊗n := X ⊗A X⊗n−1

for n ≥ 2.
A Toeplitz representation of a Hilbert A-bimodule X in a C∗-algebra B

consists of a pair of maps (ψ, π), where ψ : X → B is linear and π : A → B is
a ∗-homomorphism, satisfying the following relations

(T1) ψ(a · x) = π(a)ψ(x) for each a ∈ A, x ∈ X ,
(T2) ψ(x · a) = ψ(x)π(a) for each a ∈ A, x ∈ X ,
(T3) ψ(x)∗ψ(y) = π(〈x, y〉A) for each x, y ∈ X .

Given a Hilbert A-bimodule X , we define the Fock space FX to be the set of
sequences (xn)

∞
n=0 such that xn ∈ X⊗n for each n ≥ 0 and

∑

n≥0〈xn, xn〉A con-

verges in A. One can then show that 〈(xn)∞n=0, (yn)
∞
n=0〉A :=

∑

n≥0〈xn, yn〉A
converges in A for (xn)

∞
n=0, (yn)

∞
n=0 ∈ FX . Letting A act on FX component-

wise gives FX the structure of a Hilbert A-bimodule [19, p. 6]. There exists a
∗-homomorphism π : A → LA(FX) such that π(a)((xn)

∞
n=0) = (a · xn)∞n=0, as

well as a linear map ψ : X → LA(FX) such that

(

ψ(x)((xn)
∞
n=0)

)

m
=











0 if m = 0,

x · x0 if m = 1,

x⊗A xm−1 if m ≥ 2.

Routine calculations show that the pair (ψ, π) is a Toeplitz representation of
X in LA(FX), which we call the Fock representation of X .

Proposition 1.8 of [13] shows that a Toeplitz representation (ψ, π) of a
Hilbert A-bimodule X gives rise to Toeplitz representations of the tensor pow-
ers of X . If we define ψ⊗0 := π, ψ⊗1 := ψ, and, for n ≥ 2, let ψ⊗n be the linear
map determined inductively by ψ⊗n(x ⊗A y) = ψ(x)ψ⊗n−1(y) for x ∈ X and
y ∈ X⊗n−1, then (ψ⊗n, π) is a Toeplitz representation of X⊗n for n ∈ N∪{0}.
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Using relations (T1)–(T3) and the Hewitt–Cohen–Blanchard factorization the-
orem, [24, Proposition 2.31], it can be shown that the C∗-subalgebra generated
by ψ(X) ∪ π(A) is span{ψ⊗m(x)ψ⊗n(y)∗ : m,n ≥ 0, x ∈ X⊗m, y ∈ X⊗n}.

Theorem 2.10 of [20] can be used to show that there exists a C∗-algebra TX ,
which we call the Toeplitz algebra of X , and a Toeplitz representation (iX , iA)
of X in TX , that are universal in the following sense:

(i) TX is generated by iX(X) ∪ iA(A);
(ii) given any Toeplitz representation (ψ, π) of X in a C∗-algebra B, there

exists a ∗-homomorphism ψ ×T π : TX → B such that

(ψ ×T π) ◦ iX = ψ and (ψ ×T π) ◦ iA = π.

It follows that TX = span{i⊗mX (x)i⊗nX (y)∗ : m,n ≥ 0, x ∈ X⊗m, y ∈ X⊗n}.
The universal property of the Toeplitz algebra ensures it carries a strongly

continuous action of the circle group γ : T → Aut(TX), which we call the gauge
action. The action is determined by γz(iX(x)) = ziX(x) and γz(iA(a)) = iA(a)
for each z ∈ T, x ∈ X , and a ∈ A.

In [15] Katsura defined what has come to be accepted as the correct notion
of a Cuntz–Pimsner algebra for a Hilbert bimodule with a non-faithful left
action. Given a Toeplitz representation (ψ, π) of a Hilbert A-bimodule X in
a C∗-algebra B, by [22, Proposition 8.11], there exists a ∗-homomorphism
(ψ, π)(1) : KA(X) → B such that (ψ, π)(1)(Θx,y) = ψ(x)ψ(y)∗ for x, y ∈ X .
We also define ker(φ)⊥ := {a ∈ A : ab = 0 for all b ∈ ker(φ)}. We then
say that (ψ, π) is Cuntz–Pimsner covariant if (ψ, π)(1)(φ(a)) = π(a) for every
a ∈ JX := φ−1(KA(X)) ∩ ker(φ)⊥.

Theorem 2.10 of [20] can again be used to show that there exists a C∗-algebra
OX , which we call the Cuntz–Pimsner algebra of X , and a Cuntz–Pimsner
covariant Toeplitz representation (jX , jA) of X in OX that are universal in the
following sense:

(i) OX is generated by jX(X) ∪ jA(A);
(ii) given any Cuntz–Pimsner covariant Toeplitz representation (ψ, π) ofX

in a C∗-algebra B, there exists a ∗-homomorphism ψ ×O π : OX → B
such that

(ψ ×O π) ◦ jX = ψ and (ψ ×O π) ◦ jA = π.

It follows that OX is a quotient of TX , and routine calculations show that the
gauge action on the Toeplitz algebra descends to this quotient.

2.2. Higher-rank graphs and their associated C
∗-algebras. A higher-

rank graph of rank k (also known as a k-graph) consists of a countable small
category Λ and a functor d : Λ → Nk, called the degree map, satisfying the
following factorization property: if m,n ∈ N

k and λ ∈ Λ with d(λ) = m + n,
then there exist unique µ, ν ∈ Λ, with d(µ) = m and d(ν) = n, such that
λ = µ ◦ ν. Since we think of the morphisms in the category as paths in a
graph, we write λµ for λ ◦ µ whenever λ, µ ∈ Λ with dom(λ) = cod(µ).
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The factorization property has some important consequences. Firstly, it
follows that d−1(0) = {ido : o ∈ Obj(Λ)}. Secondly, if λ ∈ Λ and m,n ∈ Nk

with m ≤ n ≤ d(λ), then two applications of the factorization property shows
that there exist unique µ, ν, η ∈ Λ with λ = µνη and d(µ) = m, d(ν) = n−m,
d(η) = d(λ) − n. We write λ(0,m) for µ, λ(m,n) for ν, and λ(n, d(λ)) for η.

The following notation and terminology is standard when working with
higher-rank graphs. We write ei for the ith generator of Nk, and ni for the ith
component of n ∈ Nk. We define a partial order on Nk bym ≤ n ⇐⇒ mi ≤ ni
for all i. For a nonempty finite set E := {m1, . . . ,mn} ⊆ Nk, we write

∨

E
and

∧

E for the component-wise maximum and component-wise minimum
of m1, . . . ,mn, respectively (and define both

∨

∅ and
∧

∅ to be zero). For
simplicity’s sake, we write m ∨ n for

∨

{m,n}, and m ∧ n for
∧

{m,n}. For
each n ∈ Nk, we define Λn := {λ ∈ Λ : d(λ) = n}. For each λ ∈ Λ, we
define r(λ) := id(cod(λ)) ∈ Λ0 and s(λ) := id(dom(λ)) ∈ Λ0. The maps
r, s : Λ → Λ0 are called the range and source maps of Λ. Given a subset
E ⊆ Λ and a path λ ∈ Λ, we define λE := {λµ : µ ∈ E, s(λ) = r(µ)} and
Eλ := {µλ : µ ∈ E, r(λ) = s(µ)}. We say that a k-graph Λ has no sources if
for every v ∈ Λ0 and every n ∈ Nk, the set vΛn is nonempty. For n ∈ Nk, we
define Λ≤n := {λ ∈ Λ : d(λ) ≤ n and d(λ)i < ni =⇒ s(λ)Λei = ∅} (a simple
induction argument shows that each vΛ≤n is always nonempty). We say that
a k-graph Λ is locally-convex if whenever λ ∈ Λei and µ ∈ Λej , with i 6= j and
r(λ) = r(µ), we have s(λ)Λej 6= ∅ and s(µ)Λei 6= ∅.

Before we look at associating C∗-algebras to higher-rank graphs, we need
to discuss the concept of (minimal) common extensions. For µ, ν ∈ Λ, we set

CE(µ, ν) := µΛ ∩ νΛ,

MCE(µ, ν) := CE(µ, ν) ∩ Λd(µ)∨d(ν).

We call elements of CE(µ, ν) common extensions of µ and ν, and elements of
MCE(µ, ν) minimal common extensions of µ and ν. We also define

Λmin(µ, ν) :=
{

(α, β) : µα = νβ ∈ MCE(µ, ν)
}

.

That is, a common extension of µ, ν ∈ Λ is a path that ends with both µ
and ν, and a minimal common extension is a common extension that has
minimal degree (i.e., d(µ) ∨ d(ν)). Elements of Λmin(µ, ν) are then ordered
pairs of paths that when prepended to µ and ν, respectively, give a minimal
common extension. The factorization property implies that if λ is a common
extension of µ and ν, then λ(0, d(µ)∨d(ν)) is a minimal common extension and
(λ(d(µ), d(µ) ∨ d(ν)), λ(d(ν), d(µ) ∨ d(ν))) ∈ Λmin(µ, ν). We can also extend
the notion of minimal common extensions to arbitrary nonempty finite subsets
G ⊆ Λ by setting CE(G) :=

⋂

ν∈G νΛ and MCE(G) := CE(G) ∩ Λ
∨
d(G). We

say that a higher-rank graph Λ is finitely aligned if Λmin(µ, ν) is finite (possibly
empty) for every µ, ν ∈ Λ (equivalently MCE(µ, ν) is finite for every µ, ν ∈ Λ).

Given v ∈ Λ0, we say that a set E ⊆ vΛ is exhaustive in Λ if for each
µ ∈ vΛ, there exists ν ∈ E such that Λmin(µ, ν) is nonempty. We point out
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that if v ∈ E, then E is automatically exhaustive. We write

FE(Λ) :=
⋃

v∈Λ0

{

E ⊆ vΛ \ {v} : E is finite and exhaustive in Λ
}

.

For E ∈ FE(Λ), we write r(E) for the vertex v ∈ Λ0 such that E ⊆ vΛ. We
also define vFE(Λ) := {E ∈ FE(Λ) : r(E) = v}.

We now define Toeplitz–Cuntz–Krieger families for finitely aligned k-graphs.
We say that a collection {qλ : λ ∈ Λ} of elements in a C∗-algebra is a Toeplitz–
Cuntz–Krieger Λ-family if

(TCK1) {qv : v ∈ Λ0} is a set of mutually orthogonal projections,
(TCK2) qµqν = qµν for all µ, ν ∈ Λ with s(µ) = r(ν),
(TCK3) q∗µqν =

∑

(α,β)∈Λmin(µ,ν) qαq
∗
β for all µ, ν ∈ Λ, where the empty

sum is interpreted as zero.

It follows from relation (TCK3) that q∗λqµ = δλ,µqs(λ) for each λ, µ ∈ Λ
with d(λ) = d(µ), and so, by (TCK1), Toeplitz–Cuntz–Krieger families con-
sist of partial isometries. Furthermore, relations (TCK1)–(TCK3) imply that
C∗({qλ : λ ∈ Λ}) = span{qλq∗µ : λ, µ ∈ Λ}. Given a vertex v ∈ Λ0 and a finite
set E ⊆ vΛ, we fix the following notation:

∆(q)E :=
∏

λ∈E

(qv − qλq
∗
λ).

Using [20, Theorem 2.10], it can be shown that there exists a C∗-algebra
T C∗(Λ), called the Toeplitz–Cuntz–Krieger algebra of Λ, and a Toeplitz–
Cuntz–Krieger Λ-family {tΛλ : λ ∈ Λ} in T C∗(Λ), that are universal in the
following sense:

(i) T C∗(Λ) is generated by {tΛλ : λ ∈ Λ};
(ii) if {qλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger Λ-family in a C∗-algebraB,

then there exists a ∗-homomorphism πq : T C∗(Λ) → B that carries tΛλ
to qλ for each λ ∈ Λ.

It is useful to know when the ∗-homomorphism induced by the universal
property of T C∗(Λ) is faithful. By [30, Theorem 3.15], if {qλ : λ ∈ Λ} is
a Toeplitz–Cuntz–Krieger Λ-family, then πq is faithful provided each vertex
projection qv is nonzero and ∆(q)E 6= 0 for each E ∈ FE(Λ).

We say that a Toeplitz–Cuntz–Krieger Λ-family {qλ : λ ∈ Λ} is a Cuntz–
Krieger Λ-family if

(CK) ∆(q)E = 0 for each E ∈ FE(Λ).

It follows from [20, Theorem 2.10] that there exists a C∗-algebra C∗(Λ), which
we call the Cuntz–Krieger algebra of Λ, and a Cuntz–Krieger Λ-family {sΛλ :
λ ∈ Λ} in C∗(Λ), that are universal in the following sense:

(i) C∗(Λ) is generated by {sΛλ : λ ∈ Λ};
(ii) if {qλ : λ ∈ Λ} is a Cuntz–Krieger Λ-family in a C∗-algebra B, then

there exists a ∗-homomorphism πq : C
∗(Λ) → B that carries sΛλ to qλ

for each λ ∈ Λ.
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The universal property of the Cuntz–Krieger algebra gives the existence of
an action γΛ : Tk → Aut(C∗(Λ)), which we call the gauge action, such that

γΛz (s
Λ
λ ) = zd(λ)sΛλ for each λ ∈ Λ and z ∈ T

k (where zm :=
∏k
i=1 z

mi

i for each
m ∈ Nk). An ε/3 argument shows that γΛ is strongly continuous.

We can use the gauge action to determine when representations of Cuntz–
Krieger algebras are faithful (see [23, Theorem 4.2]). If π : C∗(Λ) → B is
a representation in a C∗-algebra B, then π is injective provided π(sΛv ) is
nonzero for each v ∈ Λ0 and there exists a strongly continuous action θ : Tk →
Aut(C∗({π(sΛλ) : λ ∈ Λ})) such that θz ◦ π = π ◦ γΛz for z ∈ Tk.

3. Realizing T C∗(Λ) as a Toeplitz algebra

Given a k-graph Λ (with k ≥ 1), we fix some i ∈ {1, . . . , k} and define
Λi := {λ ∈ Λ : d(λ)i = 0} (i.e., we remove all edges of degree ei from Λ).
Restricting the degree functor gives Λi the structure of a (k − 1)-graph. In
this section we show how the Toeplitz–Cuntz–Krieger algebra of Λ may be
realized as the Toeplitz algebra of a Hilbert T C∗(Λi)-bimodule. We will define
the Hilbert T C∗(Λi)-bimodule that we are interested in to be a certain closed
subspace of T C∗(Λ). To equip this set with left and right actions of T C∗(Λi),
we want a ∗-homomorphism from T C∗(Λi) to T C∗(Λ). Moreover, to ensure
that we have a T C∗(Λi)-valued inner product, we need to know that this
∗-homomorphism is injective.

Proposition 3.1. Let Λ be a finitely aligned k-graph. Then there exists an

injective ∗-homomorphism φ : T C∗(Λi) → T C∗(Λ) such that φ(tΛ
i

λ ) = tΛλ for

each λ ∈ Λi.

Proof. Clearly, the collection {tΛλ : λ ∈ Λi} satisfies (TCK1) and (TCK2).
To see that {tΛλ : λ ∈ Λi} also satisfies (TCK3), it suffices to show that
Λmin(µ, ν) = (Λi)min(µ, ν) for any µ, ν ∈ Λi. To see this, observe that for
any (α, β) ∈ Λmin(µ, ν), we have

d(α)i =
(

d(µ) ∨ d(ν)− d(µ)
)

i
= max

{

d(µ)i, d(ν)i
}

− d(µ)i = 0

and

d(β)i =
(

d(µ) ∨ d(ν) − d(ν)
)

i
= max

{

d(µ)i, d(ν)i
}

− d(ν)i = 0,

and so (α, β) ∈ (Λi)min(µ, ν). Thus, {tΛλ : λ ∈ Λi} is a Toeplitz–Cuntz–Krieger
Λi-family in T C∗(Λ), and so by the universal property of T C∗(Λi), there
exists a ∗-homomorphism φ : T C∗(Λi) → T C∗(Λ) such that φ(tΛ

i

λ ) = tΛλ for
each λ ∈ Λi. It remains to check that φ is injective.

Routine calculations show that for each λ ∈ Λ, there exists wλ ∈ B(ℓ2(Λ))
such that wλξµ = δs(λ),r(µ)ξλµ for each µ ∈ Λ (where {ξλ : λ ∈ Λ} is the

canonical orthonormal basis for ℓ2(Λ)). Further straight-forward calculations
show that the adjoint of wλ is determined by the formula

w∗
λξν =

{

ξη if ν = λη for some η ∈ Λ,

0 otherwise,
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and that the collection {wλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger Λ-family in
B(ℓ2(Λ)). Since the ∗-homomorphism πw : T C∗(Λ) → B(ℓ2(Λ)) that sends tΛλ
to wλ is necessarily norm-decreasing, and wλξs(λ) = ξλ 6= 0 for each λ ∈ Λ,
we conclude that each tΛλ in the universal Toeplitz–Cuntz–Krieger Λ-family is
nonzero. In particular, tΛv 6= 0 for each v ∈ Λ0. Thus, to prove that φ is
injective, by [30, Theorem 3.15], it remains to show that ∆(tΛ)E 6= 0 for each
E ∈ FE(Λi). A simple calculation shows that for each µ ∈ Λ,

∆(w)Eξµ =

{

ξµ if r(µ) = r(E) and µ 6∈ λΛ for all λ ∈ E,

0 otherwise.

Since r(E) 6∈ E, we have that πw(∆(tΛ)E)ξr(E) = ∆(w)Eξr(E) = ξr(E) 6= 0,

and so ∆(tΛ)E 6= 0. We conclude that φ is injective. �

Using the injective ∗-homomorphism from the previous proposition, we de-
fine a collection of Hilbert T C∗(Λi)-bimodules.

Proposition 3.2. Let Λ be a finitely aligned k-graph. For each n ≥ 0, define

Xn := span
{

tΛλ t
Λ
µ

∗
: λ, µ ∈ Λ, d(λ)i = n, d(µ)i = 0

}

⊆ T C∗(Λ),

taking the closure with respect to the norm on T C∗(Λ). Then Xn is a Hilbert

T C∗(Λi)-module with inner product and right action given by

(1) 〈x, y〉nT C∗(Λi) = φ−1(x∗y) and x · a = xφ(a)

for x, y ∈ Xn, a ∈ T C∗(Λi). The norm on Xn induced by 〈 · , · 〉nT C∗(Λi)
agrees with the norm on T C∗(Λ). Additionally, there exists a ∗-homomorphism

ψn : T C∗(Λi) → LT C∗(Λi)(Xn) such that ψn(a)(x) = φ(a)x for each a ∈

T C∗(Λi) and x ∈ Xn, giving Xn the structure of a Hilbert T C∗(Λi)-bimodule.

Proof. By [21, Lemma 3.2 (1)] (see also [7] for a more categorical approach), if

(i) X∗
nXn ⊆ φ(T C∗(Λi)),

(ii) Xnφ(T C∗(Λi)) ⊆ Xn,

then Xn is a Hilbert T C∗(Λi)-module with inner product and right action
given by (1), and the norm on Xn agrees with the norm on T C∗(Λ).

Let us check that (i) holds. Fix λ, λ′, µ, µ′ ∈ Λ with d(λ)i = d(λ′)i = n and
d(µ)i = d(µ′)i = 0. If (α, β) ∈ Λmin(λ, λ′), then

d(µα)i = d(µ)i + d(α)i = d(α)i = max{d(λ)i, d(λ
′)i} − d(λ)i = n− n = 0,

d(µ′β)i = d(µ′)i + d(β)i = d(β)i = max{d(λ)i, d(λ
′)i} − d(λ′)i = n− n = 0.

Hence, making use of relation (TCK3), we see that
(

tΛλ t
Λ
µ

∗)∗(
tΛλ′tΛµ′

∗)
= tΛµ t

Λ
λ

∗
tΛλ′tΛµ′

∗
=

∑

(α,β)∈Λmin(λ,λ′)

tΛµαt
Λ
µ′β

∗
∈ φ(T C∗(Λi)).

Since both the adjoint and multiplication are continuous on T C∗(Λ), and
φ(T C∗(Λi)) is a ∗-subalgebra of T C∗(Λ), we see that X∗

nXn ⊆ φ(T C∗(Λi)).
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Now we check that (ii) holds. Again, by linearity and continuity, it suffices
to show that if λ, η, ρ, µ ∈ Λ with d(λ)i = n and d(η)i = d(ρ)i = d(µ)i = 0,

then tΛλ t
Λ
µ
∗
φ(tΛ

i

η t
Λi

ρ

∗
) ∈ Xn. Observe that if (α, β) ∈ Λmin(µ, η), then

d(λα)i = d(λ)i + d(α)i = n+ d(α)i = n+max{d(µ)i, d(η)i} − d(µ)i = n

and

d(ρβ)i = d(ρ)i + d(β)i = max{d(µ)i, d(η)i} − d(η)i = 0.

Hence,

tΛλ t
Λ
µ

∗
φ
(

tΛ
i

η t
Λi

ρ

∗)
= tΛλ t

Λ
µ

∗
tΛη t

Λ
ρ

∗
=

∑

(α,β)∈Λmin(µ,η)

tΛλαt
Λ
ρβ

∗
∈ Xn,

as required.
To complete the proof we must show that there exists a ∗-homomorphism

ψn : T C∗(Λi) → LT C∗(Λi)(Xn) with ψn(a)(x) = φ(a)x for each a ∈ T C∗(Λi),
x ∈ Xn. Note that if λ, η, ρ, µ ∈ Λ with d(λ)i = n, d(η)i = d(ρ)i = d(µ)i = 0,
and (α, β) ∈ Λmin(ρ, λ), then

d(ηα)i = d(η)i + d(α)i = d(α)i = max{d(ρ)i, d(λ)i} − d(ρ)i = d(λ)i − 0 = n

and

d(µβ)i = d(µ)i+d(β)i = d(β)i = max{d(ρ)i, d(λ)i}−d(λ)i = d(λ)i−d(λ)i = 0.

Thus, an application of relation (TCK3) shows that

φ
(

tΛ
i

η t
Λi

ρ

∗)
tΛλ t

Λ
µ

∗
= tΛη t

Λ
ρ

∗
tΛλ t

Λ
µ

∗
=

∑

(α,β)∈Λmin(ρ,λ)

tΛηαt
Λ
µβ

∗
∈ Xn.

By linearity and continuity, we have that φ(T C∗(Λi))Xn ⊆ Xn. It follows
from [21, Lemma 3.2(2)] that for a ∈ T C∗(Λi), the map ψn(a) : Xn → Xn

defined by ψn(a)(x) := φ(a)x is adjointable. Since φ is a ∗-homomorphism,
the map ψn : T C∗(Λi) → LT C∗(Λi)(Xn) is also a ∗-homomorphism. �

Our aim is to show that the Toeplitz algebra of the Hilbert T C∗(Λi)-
bimodule X := X1 is isomorphic to the Toeplitz–Cuntz–Krieger algebra of Λ.
Before we do this, we need to analyze the tensor powers of X . Firstly, we need
a lemma telling us how, given paths η, ρ ∈ Λ, we can factorize elements of
Λmin(η, ρ).

Lemma 3.3. Let Λ be a finitely aligned k-graph. For each η, ρ ∈ Λ andm ∈ Nk

with m ≤ d(ρ), we have

Λmin(η, ρ) =
{

(αγ, δ) : (α, β) ∈ Λmin(η, ρ(0,m)), (γ, δ) ∈ Λmin(β, ρ(m, d(ρ)))
}

.

Proof. To start, we prove that
{

(αγ, δ) : (α, β) ∈ Λmin(η, ρ(0,m)), (γ, δ) ∈ Λmin(β, ρ(m, d(ρ)))
}

⊆ Λmin(η, ρ).

Fix (α, β) ∈ Λmin(η, ρ(0,m)) and (γ, δ) ∈ Λmin(β, ρ(m, d(ρ))). Then

ηαγ = ρ(0,m)βγ = ρ(0,m)ρ(m, d(ρ))δ = ρδ,
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which shows that ηαγ = ρδ ∈ CE(η, ρ). We show that the common extension
ηαγ = ρδ of the paths η and ρ is minimal by computing the degree of ρδ. Since
(γ, δ) ∈ Λmin(β, ρ(m, d(ρ))), we see that

d(ρδ) = d(ρ(0,m)) + d(ρ(m, d(ρ))δ)

= m+ d(β) ∨ d(ρ(m, d(ρ))

= m+ d(β) ∨ (d(ρ)−m) .

Since (α, β) ∈ Λmin(η, ρ(0,m)), this must be the same as

m+ (d(η) ∨ d(ρ(0,m)) − d(ρ(0,m))) ∨ (d(ρ)−m)

= m+ (d(η) ∨m−m) ∨ (d(ρ)−m).

Fix i ∈ {1, . . . , k}. If d(η)i ≥ mi, then
(

m+ (d(η) ∨m−m) ∨ (d(ρ) −m)
)

i
= mi +max{d(η)i −mi, d(ρ)i −mi}

= max{d(η)i, d(ρ)i} = (d(η) ∨ d(ρ))i.

On the other hand, suppose d(η)i < mi. Using the fact that d(η)i < mi ≤ d(ρ)i
for the penultimate equality, we see that
(

m+ (d(η) ∨m−m) ∨ (d(ρ) −m)
)

i
= mi +max{0, d(ρ)i −mi} = d(ρ)i

= max{d(ρ)i, d(η)i} = (d(η) ∨ d(ρ))i.

Thus, d(ρδ) = d(η) ∨ d(ρ), and we conclude that (αγ, δ) ∈ Λmin(η, ρ).
Next we check that

Λmin(η, ρ) ⊆
{

(αγ, δ) : (α, β) ∈ Λmin(η, ρ(0,m)), (γ, δ) ∈ Λmin(β, ρ(m, d(ρ)))
}

.

Suppose that (λ, τ) ∈ Λmin(η, ρ) and define paths α := λ(0, d(η) ∨m − d(η)),
β := (ρτ)(m, d(η)∨m), γ := λ(d(η)∨m−d(η), d(λ)), and δ := τ . By construc-
tion, (αγ, δ) = (λ, τ). Thus, it remains to show that (α, β) ∈ Λmin(η, ρ(0,m))
and (γ, δ) ∈ Λmin(β, ρ(m, d(ρ))). Since ηλ = ρτ , we see that

ηα = ηλ(0, d(η) ∨m− d(η)) = (ηλ)(0, d(η) ∨m)

= (ρτ)(0, d(η) ∨m) = (ρτ)(0,m) (ρτ)(m, d(η ∨m)).

As m ≤ d(ρ), this must be the same as

ρ(0,m) (ρτ)(m, d(η ∨m)) = ρ(0,m)β.

Hence, ηα = ρ(0,m)β ∈ CE(η, ρ(0,m)). Since

d(ηα) = d(η) + d(α) = d(η) + d(η) ∨m− d(η)

= d(η) ∨m = d(η) ∨ d(ρ(0,m)),

we conclude that (α, β) ∈ Λmin(η, ρ(0,m)). Since d(η) ≤ d(η)∨m, we see that

βγ = (ρτ)(m, d(η) ∨m)λ(d(η) ∨m− d(η), d(λ))

= (ηλ)(m, d(η) ∨m)λ(d(η) ∨m− d(η), d(λ))

= (ηλ)(m, d(η) ∨m) (ηλ)(d(η) ∨m, d(ηλ))

= (ηλ)(m, d(ηλ)).
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As ηλ = ρτ and m ≤ d(ρ), this is equal to

(ρτ)(m, d(ρτ)) = ρ(m, d(ρ))τ = ρ(m, d(ρ))δ.

Thus, βγ = ρ(m, d(ρ))δ ∈ CE(β, ρ(m, d(ρ))). Since (λ, τ) ∈ Λmin(η, ρ), we
have

d(βγ) = d(η) ∨m−m+ d(λ) − d(η) ∨m+ d(η) = d(λ) + d(η)−m

= d(η) ∨ d(ρ)− d(η) + d(η)−m = (d(η) ∨ d(ρ)) −m.

As m ≤ d(ρ), this is the same as

d(η) ∨m ∨ d(ρ)−m = (d(η) ∨m−m) ∨ (d(ρ) −m)

= d(β) ∨ (d(ρ) −m) = d(β) ∨ d(ρ(m, d(ρ))),

which shows that (γ, δ) ∈ Λmin(β, ρ(m, d(ρ))). �

Proposition 3.4. Let Λ be a finitely aligned k-graph. Define Xn as in Propo-

sition 3.2 and set X := X1. Then for each n ∈ N ∪ {0}, there exists a Hilbert

T C∗(Λi)-bimodule isomorphism Ωn : Xn → X⊗n such that Ω0 = φ−1 and, for

n ≥ 1,

(2) Ωn
(

tΛλ t
Λ
µ

∗)
= tΛλ(0,ei) ⊗T C∗(Λi) Ωn−1

(

tΛλ(ei,d(λ))t
Λ
µ

∗)

for each λ, µ ∈ Λ with d(λ)i = n and d(µ)i = 0.

Proof. Define Ω0 : X0 → X⊗0 = T C∗(Λi) to be φ−1. Clearly, Ω0 is a Hilbert
T C∗(Λi)-bimodule isomorphism. For n ≥ 1, we claim that there exists a
Hilbert T C∗(Λi)-bimodule isomorphism Ωn : Xn → X⊗n satisfying (2). We
will define this collection of maps inductively.

Fix n ≥ 0 and suppose that Ωn : Xn → X⊗n is a Hilbert T C∗(Λi)-bimodule
isomorphism satisfying (2). Let λ, µ, ν, η ∈ Λ with d(λ)i = d(ν)i = n+ 1 and
d(µ)i = d(η)i = 0. Using the fact that Ωn is left T C∗(Λi)-linear for the second
equality, we see that

〈

tΛλ(0,ei) ⊗T C∗(Λi) Ωn
(

tΛλ(ei,d(λ))t
Λ
µ

∗)
, tΛν(0,ei) ⊗T C∗(Λi) Ωn

(

tΛν(ei,d(λ))t
Λ
η

∗)〉

=
〈

Ωn
(

tΛλ(ei,d(λ))t
Λ
µ

∗)
, 〈tΛλ(0,ei), t

Λ
ν(0,ei)

〉1T C∗(Λi) · Ωn
(

tΛν(ei,d(λ))t
Λ
η

∗)〉

=
〈

Ωn
(

tΛλ(ei,d(λ))t
Λ
µ

∗)
,Ωn

(

〈tΛλ(0,ei), t
Λ
ν(0,ei)

〉1T C∗(Λi) · t
Λ
ν(ei,d(λ))

tΛη
∗)〉

.

Since Ωn is inner product preserving, this is equal to
〈

tΛλ(ei,d(λ))t
Λ
µ

∗
, tΛλ(0,ei)

∗
tΛν(0,ei)t

Λ
ν(ei,d(λ))

tΛη
∗〉n

T C∗(Λi)

= φ−1
(

tΛµt
Λ
λ(ei,d(λ))

∗
tΛλ(0,ei)

∗
tΛν(0,ei)t

Λ
ν(ei,d(λ))

tΛη
∗)

= φ−1
(

tΛµt
Λ
λ

∗
tΛν t

Λ
η

∗)

=
〈

tΛλ t
Λ
µ

∗
, tΛν t

Λ
η

∗〉n+1

T C∗(Λi)
.

Thus, there exists a well-defined norm-decreasing map
∑

c(λ,µ)t
Λ
λ t

Λ
µ

∗
7→

∑

c(λ,µ)t
Λ
λ(0,ei)

⊗T C∗(Λi) Ωn
(

tΛλ(ei,d(λ))t
Λ
µ

∗)
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on span{tΛλ t
Λ
µ
∗
: λ, µ ∈ Λ, d(λ)i = n+ 1, d(µ)i = 0}, which extends to Xn+1 by

continuity. We denote this extension by Ωn+1. The previous calculation then
shows that Ωn+1 is inner product preserving.

We now show that Ωn+1 is left T C∗(Λi)-linear. For any λ, µ, ν, η ∈ Λ with
d(λ)i = n+ 1 and d(ν)i = d(µ)i = d(η)i = 0, we have

tΛ
i

ν t
Λi

η

∗
· Ωn+1

(

tΛλ t
Λ
µ

∗)
(3)

= tΛ
i

ν t
Λi

η

∗
·
(

tΛλ(0,ei) ⊗T C∗(Λi) Ωn
(

tΛλ(ei,d(λ))t
Λ
µ

∗))

= tΛν t
Λ
η

∗
tΛλ(0,ei) ⊗T C∗(Λi) Ωn

(

tΛλ(ei,d(λ))t
Λ
µ

∗)

=
∑

(α,β)∈Λmin(η,λ(0,ei))

tΛναt
Λ
β

∗
⊗T C∗(Λi) Ωn

(

tΛλ(ei,d(λ))t
Λ
µ

∗)
.

To simplify this expression, observe that if (α, β) ∈ Λmin(η, λ(0, ei)), then

d(να)i = d(ν)i +max{d(η)i, d(λ(0, ei))i} − d(η)i = 1

and

d(β)i = max{d(η)i, d(λ(0, ei))i} − d(λ(0, ei))i = 0.

Thus, since Ωn is left T C∗(Λi)-linear, we see that (3) is equal to
∑

(α,β)∈Λmin(η,λ(0,ei))

tΛ(να)(0,ei) ⊗T C∗(Λi) t
Λi

(να)(ei,d(να))
tΛ

i

β

∗
· Ωn

(

tΛλ(ei,d(λ))t
Λ
µ

∗)

=
∑

(α,β)∈Λmin(η,λ(0,ei))

tΛ(να)(0,ei) ⊗T C∗(Λi) Ωn
(

tΛ(να)(ei,d(να))t
Λ
β

∗
tΛλ(ei,d(λ))t

Λ
µ

∗)

=
∑

(α,β)∈Λmin(η,λ(0,ei))

(γ,δ)∈Λmin(β,λ(ei,d(λ)))

tΛ(να)(0,ei) ⊗T C∗(Λi) Ωn
(

tΛ(να)(ei,d(να))γt
Λ
µδ

∗)
.

As d(να) ≥ ei, the factorization property gives that (να)(0, ei) = (ναγ)(0, ei)
and (να)(ei, d(να))γ = (ναγ)(ei, d(ναγ)). Assembling these arguments and
using Lemma 3.3 for the third equality, we have

tΛ
i

ν t
Λi

η

∗
· Ωn+1

(

tΛλ t
Λ
µ

∗)

=
∑

(α,β)∈Λmin(η,λ(0,ei))

(γ,δ)∈Λmin(β,λ(ei,d(λ)))

tΛ(ναγ)(0,ei) ⊗T C∗(Λi) Ωn
(

tΛ(ναγ)(ei,d(ναγ))t
Λ
µδ

∗)

=
∑

(α,β)∈Λmin(η,λ(0,ei))

(γ,δ)∈Λmin(β,λ(ei,d(λ)))

Ωn+1

(

tΛναγt
Λ
µδ

∗)

=
∑

(τ,σ)∈Λmin(η,λ)

Ωn+1

(

tΛντ t
Λ
µσ

∗)

= Ωn+1

(

tΛ
i

ν t
Λi

η

∗
· tΛλ t

Λ
µ

∗)
.
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Using the fact that

Xn+1 = span
{

tΛλ t
Λ
µ

∗
: λ, µ ∈ Λ, d(λ)i = n+ 1, d(µ)i = 0

}

and

T C∗(Λi) = span
{

tΛ
i

ν t
Λi

η

∗
: ν, η ∈ Λi

}

,

we conclude, by linearity and continuity, that Ωn+1 is left T C∗(Λi)-linear.
Next, we show that Ωn+1 : Xn+1 → X⊗n+1 is surjective. Fix λ, µ, ν, η ∈ Λ

with d(λ)i = 1, d(ν)i = n, and d(µ)i = d(η)i = 0. Using the left T C∗(Λi)-
linearity of Ωn for the last equality, we see that

Ωn+1

(

∑

(α,β)∈Λmin(µ,ν)

tΛλαt
Λ
ηβ

∗
)

=
∑

(α,β)∈Λmin(µ,ν)

tΛ(λα)(0,ei) ⊗T C∗(Λi) Ωn
(

tΛ(λα)(ei,d(λα))t
Λ
ηβ

∗)

=
∑

(α,β)∈Λmin(µ,ν)

tΛλ(0,ei) ⊗T C∗(Λi) Ωn
(

tΛλ(ei,d(λ))αt
Λ
ηβ

∗)

= tΛλ(0,ei) ⊗T C∗(Λi) Ωn
(

tΛλ(ei,d(λ))t
Λ
µ

∗
tΛν t

Λ
η

∗)

= tΛλ t
Λ
µ

∗
⊗T C∗(Λi) Ωn

(

tΛν t
Λ
η

∗)

∈ X ⊗T C∗(Λi) X
⊗n.

Since Xm = span{tΛλ t
Λ
µ
∗
: λ, µ ∈ Λ, d(λ)i = m, d(µ)i = 0} for each m ≥ 0 and

the map Ωn : Xn → X⊗n is surjective, we conclude that Ωn+1 is surjective.
We have now shown that Ωn+1 is inner product preserving and surjec-

tive. Thus, Ωn+1 is adjointable (with adjoint Ω−1
n+1). Since Ωn+1 is also left

T C∗(Λi)-linear, we conclude that Ωn+1 is a T C∗(Λi)-bimodule isomorphism
from Xn+1 to X⊗n+1, as required. �

We now work towards showing that the Toeplitz algebra of the Hilbert
T C∗(Λi)-bimodule X is isomorphic to the Toeplitz–Cuntz–Krieger algebra
of Λ. The idea is to use the universal properties of TX and T C∗(Λ) to get
∗-homomorphisms between the two C∗-algebras, and then argue that these
maps are mutually inverse. Firstly, we need a result telling us how the Hilbert
T C∗(Λi)-bimodule isomorphisms from Proposition 3.4 interact with the tensor
product.

Lemma 3.5. Let {Ωn : n ≥ 0} be the collection of Hilbert T C∗(Λi)-bimodule

isomorphisms defined in Proposition 3.4. Then for any m,n ≥ 0 and x ∈ Xm,

y ∈ Xn,

(4) Ωm(x)⊗T C∗(Λi) Ωn(y) = Ωm+n(xy).

In particular, if λ, µ ∈ Λ with r(µ) = s(λ), then

Ωd(λ)i(t
Λ
λ )⊗T C∗(Λi) Ωd(µ)i(t

Λ
µ ) = Ωd(λµ)i(t

Λ
λµ).
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Proof. We use induction on m. The m = 0 case is equivalent to left T C∗(Λi)-
linearity of Ωn, which we proved in Proposition 3.4. Now suppose that (4)
holds for some m ≥ 0. Let n ≥ 0 and fix λ, µ, ν, τ ∈ Λ with d(λ)i = m + 1,
d(ν)i = n, and d(µ)i = d(τ)i = 0. Applying the inductive hypothesis, we see
that

Ωm+1

(

tΛλ t
Λ
µ

∗)
⊗T C∗(Λi) Ωn

(

tΛν t
Λ
τ

∗)
(5)

= tΛλ(0,ei) ⊗T C∗(Λi) Ωm
(

tΛλ(ei,d(λ))t
Λ
µ

∗)
⊗T C∗(Λi) Ωn

(

tΛν t
Λ
τ

∗)

= tΛλ(0,ei) ⊗T C∗(Λi) Ωm+n

(

tΛλ(ei,d(λ))t
Λ
µ

∗
tΛν t

Λ
τ

∗)

=
∑

(α,β)∈Λmin(µ,ν)

tΛλ(0,ei) ⊗T C∗(Λi) Ωm+n

(

tΛλ(ei,d(λ))αt
Λ
τβ

∗)
,

where the final equality follows from applying relation (TCK3) in T C∗(Λ).
Since d(λ) ≥ (m+ 1)ei ≥ ei, (5) must be equal to

∑

(α,β)∈Λmin(µ,ν)

tΛ(λα)(0,ei) ⊗T C∗(Λi) Ωm+n

(

tΛ(λα)(ei,d(λα))t
Λ
τβ

∗)

=
∑

(α,β)∈Λmin(µ,ν)

Ωm+n+1

(

tΛλαt
Λ
τβ

∗)

= Ωm+n+1

(

tΛλ t
Λ
µ

∗
tΛν t

Λ
τ

∗)
.

Since Xj = span{tΛλ t
Λ
µ
∗
: λ, µ ∈ Λ, d(λ)i = j, d(µ)i = 0} for each j ≥ 0, we

conclude that (4) holds for m+ 1 as well. �

We now get a ∗-homomorphism from T C∗(Λ) to TX by exhibiting a Toeplitz–
Cuntz–Krieger Λ-family in TX .

Proposition 3.6. Let Λ be a finitely aligned k-graph. Define Xn as in Proposi-

tion 3.2 and set X := X1. Consider the collection of Hilbert T C∗(Λi)-bimodule

isomorphisms {Ωn : n ≥ 0} defined in Proposition 3.4. For each λ ∈ Λ, define
uλ ∈ TX by

uλ := i
⊗d(λ)i
X (Ωd(λ)i(t

Λ
λ )).

Then {uλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger Λ-family in TX . Hence, there

exists a ∗-homomorphism πu : T C
∗(Λ) → TX such that πu(t

Λ
λ ) = uλ for each

λ ∈ Λ.

Proof. Firstly, we check that {uλ : λ ∈ Λ} satisfies (TCK1). For any v ∈ Λ0,
we see that

uv = i
⊗d(v)i
X (Ωd(v)i(t

Λ
v )) = i⊗0

X (Ω0(t
Λ
v )) = iT C∗(Λi)(φ

−1(tΛv )) = iT C∗(Λi)(t
Λi

v ).

Since iT C∗(Λi) is a ∗-homomorphism and {tΛ
i

v : v ∈ Λ0} is a collection of
mutually orthogonal projections, it follows that the set {uv : v ∈ Λ0} also
consists of mutually orthogonal projections.
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Next we check that {uλ : λ ∈ Λ} satisfies (TCK2). Fix λ, µ ∈ Λ with
r(µ) = s(λ). Making use of Lemma 3.5, we see that

uλuµ = i
⊗d(λ)i
X (Ωd(λ)i(t

Λ
λ ))i

⊗d(µ)i
X (Ωd(µ)i(t

Λ
µ))

= i
⊗(d(λ)i+d(µ)i)
X

(

Ωd(λ)i(t
Λ
λ)⊗T C∗(Λi) Ωd(µ)i(t

Λ
µ)
)

= i
⊗d(λµ)i
X (Ωd(λµ)i(t

Λ
λµ)) = uλµ.

Finally, we check that {uλ : λ ∈ Λ} satisfies (TCK3). Let λ, µ ∈ Λ. Suppose
that d(µ)i ≥ d(λ)i. By Lemma 3.5,

Ωd(µ)i(t
Λ
µ ) = Ωd(λ)i(t

Λ
µ(0,d(λ)iei)

)⊗T C∗(Λi) Ωd(µ)i−d(λ)i(t
Λ
µ(d(λ)iei,d(µ))

),

and it follows that

u∗λuµ = i
⊗d(λ)i
X (Ωd(λ)i(t

Λ
λ ))

∗i
⊗d(µ)i
X (Ωd(µ)i(t

Λ
µ))

= i
⊗d(µ)i−d(λ)i
X

(〈

Ωd(λ)i(t
Λ
λ ),Ωd(λ)i(t

Λ
µ(0,d(λ)iei)

)
〉

· Ωd(µ)i−d(λ)i(t
Λ
µ(d(λ)iei,d(µ))

)
)

.

As Ωd(λ)i preserves inner products and Ωd(µ)i−d(λ)i is left T C
∗(Λi)-linear, this

must be the same as

i
⊗d(µ)i−d(λ)i
X

(

Ωd(µ)i−d(λ)i
(〈

tΛλ , t
Λ
µ(0,d(λ)iei)

〉d(λ)i

T C∗(Λi)
· tΛµ(d(λ)iei,d(µ))

))

= i
⊗d(µ)i−d(λ)i
X

(

Ωd(µ)i−d(λ)i
(

tΛλ
∗
tΛµ(0,d(λ)iei)t

Λ
µ(d(λ)iei,d(µ))

))

= i
⊗d(µ)i−d(λ)i
X

(

Ωd(µ)i−d(λ)i
(

tΛλ
∗
tΛµ
))

= i
⊗d(µ)i−d(λ)i
X

(

Ωd(µ)i−d(λ)i

(

∑

(α,β)∈Λmin(λ,µ)

tΛαt
Λ
β

∗
))

,

where the last equality comes from the fact that {tΛλ : λ ∈ Λ} satisfies (TCK3).
Moreover, if (α, β) ∈ Λmin(λ, µ), then

d(α)i = max{d(λ)i, d(µ)i} − d(λ)i = d(µ)i − d(λ)i

and

d(α)i = max{d(λ)i, d(µ)i} − d(µ)i = 0.

Thus, as Ωd(µ)i−d(λ)i is right T C
∗(Λi)-linear,

u∗λuµ =
∑

(α,β)∈Λmin(λ,µ)

i
⊗d(µ)i−d(λ)i
X

(

Ωd(µ)i−d(λ)i(t
Λ
α) · t

Λi

β

∗)

=
∑

(α,β)∈Λmin(λ,µ)

i
⊗d(µ)i−d(λ)i
X

(

Ωd(µ)i−d(λ)i(t
Λ
α)
)

i⊗0
X

(

tΛ
i

β

∗)

=
∑

(α,β)∈Λmin(λ,µ)

i
⊗d(α)i
X (Ωd(α)i)(t

Λ
α))i

⊗d(β)i
X (Ωd(β)i(t

Λ
β ))

∗

=
∑

(α,β)∈Λmin(λ,µ)

uαu
∗
β.
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If d(λ)i ≥ d(µ)i, we can apply the previous working to (u∗λuµ)
∗ = u∗µuλ. This

completes the proof that {uλ : λ ∈ Λ} satisfies (TCK3). Hence, {uλ : λ ∈ Λ} is
a Toeplitz–Cuntz–Krieger Λ-family in TX . The universal property of T C∗(Λ)
then induces a ∗-homomorphism πu : T C∗(Λ) → TX such that πu(t

Λ
λ ) = uλ for

each λ ∈ Λ. �

It is considerably easier to get a ∗-homomorphism from TX to T C∗(Λ).
Once we have it, there is still some work left to show that it is the inverse of
the ∗-homomorphism πu : T C∗(Λ) → TX from Proposition 3.6.

Theorem 3.7. Let Λ be a finitely aligned k-graph. Define Xn as in Propo-

sition 3.2 and set X := X1. Let ι : X → T C∗(Λ) denote the inclusion map.

Then (ι, φ) is a Toeplitz representation of X in T C∗(Λ), and hence, by the uni-

versal property of TX , there exists a ∗-homomorphism ι×T φ : TX → T C∗(Λ)
such that (ι ×T φ) ◦ iX = ι and (ι ×T φ) ◦ iT C∗(Λi) = φ. Moreover, πu and

ι×T φ are mutually inverse. Thus, T C∗(Λ) ∼= TX .

Proof. It is elementary to check that (ι, φ) is a Toeplitz representation of X in
T C∗(Λ). For any x ∈ X and a ∈ A, we have ι(a ·x) = a ·x = φ(a)x = φ(a)ι(x)
and ι(x · a) = x · a = xφ(a) = ι(x)φ(a), which proves that (ι, φ) satisfies (T1)
and (T2). If x, y ∈ X , then ι(x)∗ι(y) = x∗y = φ(φ−1(x∗y)) = φ(〈x, y〉1T C∗(Λi)),
and so (ι, φ) satisfies (T3).

It remains to check that ι×T φ and πu are mutually inverse. Fix λ ∈ Λ. If
d(λ)i = 0, then

((ι ×T φ) ◦ πu)(t
Λ
λ ) = (ι×T φ)(uλ) = (ι×T φ)

(

i
⊗d(λ)i
X (Ωd(λ)i(t

Λ
λ ))

)

= (ι×T φ)
(

iT C∗(Λi)

(

tΛ
i

λ

))

= φ
(

tΛ
i

λ

)

= tΛλ .

If d(λ)i = 1, then

((ι ×T φ) ◦ πu)(t
Λ
λ ) = (ι×T φ)(uλ) = (ι×T φ)

(

i
⊗d(λ)i
X (Ωd(λ)i(t

Λ
λ ))

)

= (ι×T φ)
(

iX(t
Λ
λ )
)

= ι(tΛλ ) = tΛλ .

If d(λ)i ≥ 2, then

((ι×T φ) ◦ πu)(t
Λ
λ ) = (ι×T φ)(uλ)

= (ι×T φ)
(

i
⊗d(λ)i
X (Ωd(λ)i(t

Λ
λ))

)

= (ι×T φ)
(

iX(tΛλ(0,ei)) · · · iX(tΛλ((d(λ)i−1)ei,d(λ))
)
)

= tΛλ(0,ei) · · · t
Λ
λ((d(λ)i−1)ei,d(λ))

= tΛλ .

As T C∗(Λ) is generated by {tΛλ : λ ∈ Λ}, we see that (ι×T φ) ◦ πu = idT C∗(Λ).

We now show that πu ◦ (ι×T φ) = idTX
. If µ ∈ Λi, then

(πu ◦ (ι×T φ))
(

iT C∗(Λi)

(

tΛ
i

µ

))

= πu
(

φ
(

tΛ
i

µ

))

= πu(t
Λ
µ ) = uµ

= i
⊗d(λ)i
X

(

Ωd(µ)i(t
Λ
µ)
)

= iT C∗(Λi)(t
Λi

µ ).
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For any λ ∈ Λ with d(λ)i = 1 and µ ∈ Λi, we see that

(πu ◦ (ι×T φ))
(

iX
(

tΛλ t
Λ
µ

∗))
= πu

(

tΛλ t
Λ
µ

∗)
= uλu

∗
µ

= i
⊗d(λ)i
X (Ωd(λ)i(t

Λ
λ))i

⊗d(µ)i
X (Ωd(µ)i(t

Λ
µ ))

∗

= iX(tΛλ )iT C∗(Λi)

(

tΛ
i

µ

)∗
= iX

(

tΛλ t
Λ
µ

∗)
.

Since TX is generated by iX(X) ∪ iT C∗(Λi)(T C
∗(Λi)), whilst T C∗(Λi) is gen-

erated by {tΛ
i

µ : µ ∈ Λi} and X = span{tΛλ t
Λ
µ
∗
: λ, µ ∈ Λ, d(λ)i = 1, d(µ)i = 0},

we conclude that πu ◦ (ι ×T φ) = idTX
. Thus, ι ×T φ and πu are mutually

inverse. �

Corollary 3.8. Let Λ be a finitely aligned k-graph. Then the ∗-homomorphism

Φ: C0(Λ) → T C∗(Λ) that sends δv to tΛv for each v ∈ Λ0 induces a KK-

equivalence between C0(Λ
0) and T C∗(Λ).

Proof. We will use induction on k. If k = 0, then the map Φ is an isomor-
phism between C0(Λ) and T C∗(Λ), and so of course gives a KK-equivalence.
Now suppose that the result holds for some k ≥ 0 and let Λ be a finitely
aligned (k + 1)-graph. Fix i ∈ {1, . . . , k + 1} and let Φ′ : C0(Λ) → T C∗(Λi)
denote the ∗-homomorphism that sends δv to tΛ

i

v for each v ∈ Λ0. By the
inductive hypothesis, Φ′ induces a KK-equivalence. Proposition 3.1 gives a ∗-
homomorphism φ : T C∗(Λi) → T C∗(Λ) such that φ(tΛ

i

v ) = tΛv for v ∈ Λ0. By
Proposition 3.2 and Theorem 3.7, there exists a Hilbert T C∗(Λi)-bimodule X
and an isomorphism ι×T φ : TX → T C∗(Λ) such that (ι×T φ) ◦ iT C∗(Λi) = φ.

Since higher-rank graphs are countable categories, T C∗(Λi) is separable and X
is countably generated as a right T C∗(Λi)-module. Thus, by [21, Theorem 4.4],
the ∗-homomorphism iT C∗(Λi) induces a KK-equivalence between T C∗(Λi)
and TX . Hence, the ∗-homomorphism Φ := φ ◦ Φ′ = (ι ×T φ) ◦ iT C∗(Λi) ◦ Φ

′

induces a KK-equivalence between C0(Λ) and T C∗(Λ) and sends δv to tΛv for
each v ∈ Λ0. �

Remark 3.9. Since KK-equivalent C∗-algebras have the same K-theory, we
have an alternative proof of [5, Theorem 1.1] that K0(T C∗(Λ)) ∼=

⊕

v∈Λ0 Z

and K1(T C∗(Λ)) ∼= 0 for any finitely aligned k-graph.

4. Realizing C∗(Λ) as a Cuntz–Pimsner algebra

In Section 3 we showed how the Toeplitz–Cuntz–Krieger algebra of a finitely
aligned k-graph Λ can be realized as the Toeplitz algebra of a Hilbert T C∗(Λi)-
bimodule. In this section we prove an analogous result for Cuntz–Krieger
algebras: we define a Hilbert C∗(Λi)-bimodule (which, for simplicity, we also
denote by X) and show that the Cuntz–Pimsner algebra of this bimodule is
isomorphic to C∗(Λ).

Our methodology is very similar to that of Section 3. Similar to Propo-
sition 3.1, the first step is to show that the inclusion of Λi in Λ induces
an (injective) ∗-homomorphism from C∗(Λi) to C∗(Λ). However, unlike in
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Proposition 3.1, such a ∗-homomorphism need not exist unless we place addi-
tional constraints on the graph (see Remark 4.7 for an example of what can
go wrong). In the analysis of [11, Chapter 2], to get around this problem we
assumed that Λ had no sources (see [11, Proposition 2.6.4]). In Proposition 4.6
we improve the situation, by showing that local-convexity of Λ is sufficient. Be-
fore we prove Proposition 4.6, we prove some (probably) well-known properties
of locally-convex higher-rank graphs that we will need.

Lemma 4.1. Let Λ be a locally-convex k-graph. If µ ∈ Λei and ν ∈ r(µ)Λ
with d(ν)i = 0, then s(ν)Λei 6= ∅.

Proof. We use induction on the quantity L(ν) :=
∑k

j=1 d(ν)j . If L(ν) = 0, then
ν ∈ Λ0 and so µ ∈ r(ν)Λei = s(ν)Λei . Suppose M ∈ N ∪ {0} and the result
holds whenever L(ν) =M . Fix ν′ ∈ r(µ)Λ with d(ν′)i = 0 and L(ν′) =M +1.
Hence, d(ν′)l ≥ 1 for some l ∈ {1, . . . , k} \ {i}. Then L(ν′(0, d(ν′)− el)) =M ,
and so s(ν′(0, d(ν′) − el))Λ

ei is nonempty by the inductive hypothesis. Since
Λ is locally-convex and ν′(d(ν′) − el, d(ν

′)) ∈ s(ν′(0, d(ν′) − el))Λ
el , we have

that s(ν′)Λei = s(ν′(d(ν′)− el, d(ν
′)))Λei 6= ∅, as required. �

Lemma 4.2. Let Λ be a k-graph. Then Λ≤mΛ≤n ⊆ Λ≤m+n for m,n ∈ Nk. If

Λ is locally-convex, then Λ≤mΛ≤n = Λ≤m+n.

Proof. Firstly, suppose that µ ∈ Λ≤m and ν ∈ Λ≤n with s(µ) = r(ν). Clearly,
d(µν) = d(µ) + d(ν) ≤ m+ n. Suppose that d(µν)i < (m + n)i = mi + ni for
some i. If d(ν)i < ni, then s(µν)Λei = s(ν)Λei = ∅, since ν ∈ Λ≤n. Thus,
µν ∈ Λ≤m+n. Alternatively, d(µ)i < mi, and so s(µ)Λei = ∅, since µ ∈ Λ≤m.
By the factorization property, s(µν)Λei = s(ν)Λei = ∅. Thus, µν ∈ Λ≤m+n.

Now suppose that Λ is locally-convex. We need to show that Λ≤m+n is
contained in Λ≤mΛ≤n. Fix λ ∈ Λ≤m+n. Letm′ := m∧d(λ) be the component-
wise minimum of m and d(λ), and set µ := λ(0,m′) and ν := λ(m′, d(λ)).
Clearly, λ = µν. We claim that µ ∈ Λ≤m and ν ∈ Λ≤n. Obviously, d(µ) ≤ m,
and routine calculations show that d(ν) ≤ n. Suppose that d(ν)i < ni for
some i. Then d(λ)i < (m′ + n)i ≤ (m + n)i and so s(ν)Λei = s(λ)Λei = ∅.
Thus, ν ∈ Λ≤n. Now suppose that d(µ)i < mi for some i. Hence, m′

i < mi, and
so m′

i = d(λ)i = d(µ)i and d(ν)i = 0. Also, d(λ)i = m′
i < mi ≤ (m+ n)i, and

so s(ν)Λei = s(λ)Λei = ∅. By Lemma 4.1, this forces s(µ)Λei = r(ν)Λei = ∅.
Thus, µ ∈ Λ≤m. �

We now work towards showing that the inclusion of Λi in Λ induces a
∗-homomorphism from C∗(Λi) to C∗(Λ). The key point is that when Λ is
locally-convex, finite-exhaustive subsets of Λi are also exhaustive in Λ.

Definition 4.3. Let Λ be a k-graph. For any E ⊆ Λ and µ ∈ Λ, we define

ExtΛ(µ;E) :=
⋃

λ∈E

{

α ∈ s(µ)Λ : µα ∈ MCE(µ, λ)
}

.

Informally speaking, ExtΛ(µ;E) is the set of paths in Λ that when prepended
to µ give a minimal common extension of µ with something in E.
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Lemma 4.4 ([23, Lemma C.5]). Let Λ be a finitely aligned k-graph. Fix v ∈ Λ0

and let E ⊆ vΛ be a finite exhaustive set in Λ. Then for any µ ∈ vΛ, the set

ExtΛ(µ;E) ⊆ s(µ)Λ is finite and exhaustive in Λ.

Proof. Firstly, we check that ExtΛ(µ;E) is finite. For each λ ∈ E, since Λ
is finitely aligned, the set {α ∈ Λ : µα ∈ MCE(µ, λ)} is finite. As E is
finite, ExtΛ(µ;E) is the finite union of finite sets, and so finite. It remains
to verify that ExtΛ(µ;E) is exhaustive in Λ. Fix σ ∈ s(µ)Λ. Since µσ ∈ vΛ
and E ⊆ vΛ is exhaustive in Λ, there exists λ ∈ E and α, β ∈ Λ such that
µσα = λβ ∈ MCE(λ, µσ). Let τ := (σα)(0, d(λ) ∨ d(µ) − d(µ)), which is
well-defined because

d(λ) ∨ d(µ)− d(µ) ≤ d(λ) ∨ d(µσ) − d(µ) = d(µσα) − d(µ) = d(σα).

Then

µτ = µ(σα)(0, d(λ) ∨ d(µ)− d(µ)) = (µσα)(0, d(λ) ∨ d(µ))

= (λβ)(0, d(λ) ∨ d(µ)) = λβ(0, d(λ) ∨ d(µ) − d(λ)) ∈ Λd(λ)∨d(µ),

which shows that µτ ∈ MCE(µ, λ). As λ ∈ E, we see that τ ∈ ExtΛ(µ;E).
Furthermore,

τ(σα)(d(λ) ∨ d(µ)− d(µ), d(σµ)) = σα,

which shows that CE(τ, σ) 6= ∅, and so MCE(τ, σ) 6= ∅. Therefore, ExtΛ(µ;E)
is exhaustive in Λ. �

Lemma 4.5. Let Λ be a locally-convex k-graph. Then FE(Λi) ⊆ FE(Λ).

Proof. We need to show that if E ∈ FE(Λi), then E is exhaustive in Λ. Fix
a path λ ∈ r(E)Λ and write λ = λ′λi with λ′ ∈ Λi and λi ∈ ΛNei . Let
N :=

∨

{d(µ) : µ ∈ ExtΛi(λ′;E)}, which exists since ExtΛi(λ′;E) is finite
by Lemma 4.4. Since Ni = 0, we can choose τ ∈ s(λi)Λ

≤N ⊆ Λi. Thus,
λiτ ∈ Λ≤d(λi)Λ≤N ⊆ Λ≤d(λi)+N . Since Λ is locally-convex, Lemma 4.2 says
that we can find τ ′ ∈ Λ≤N ⊆ Λi and λ′i ∈ Λ≤d(λi) ⊆ ΛNei such that λiτ = τ ′λ′i.
Since r(τ ′) = r(λi) = s(λ′) and ExtΛi(λ′;E) ⊆ s(λ′)Λi is exhaustive in Λi,
by Lemma 4.4, there exists µ ∈ ExtΛi(λ′;E) such that MCE(µ, τ ′) 6= ∅.
That is, we can find α, β ∈ Λi such that τ ′α = µβ ∈ Λd(µ)∨d(τ

′). As N is
maximal, N ≥ d(µ), and so d(µ) ∨ d(τ ′) ≤ N . Since τ ′ ∈ Λ≤N , this forces
α = s(τ ′), and so τ ′ = µβ. Moreover, since µ ∈ ExtΛi(λ′;E), we know that
λ′µ = σξ ∈ MCE(λ′, σ) for some σ ∈ E and ξ ∈ Λi. Therefore,

σξβλ′i = λ′µβλ′i = λ′τ ′λ′i = λ′λiτ = λτ.

Thus, CE(σ, λ) 6= ∅, and so MCE(σ, λ) 6= ∅. As σ ∈ E, we conclude that E
is exhaustive in Λ. �

Proposition 4.6. Let Λ be a finitely aligned locally-convex k-graph. Then

there exists an injective ∗-homomorphism φ : C∗(Λi) → C∗(Λ) carrying sΛ
i

λ to

sΛλ for each λ ∈ Λi.
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Proof. We claim that {sΛλ : λ ∈ Λi} ⊆ C∗(Λ) is a Cuntz–Krieger Λi-family.
The same argument as in the proof of Proposition 3.1 shows that {sΛλ : λ ∈ Λi}
satisfies (TCK1), (TCK2), and (TCK3), so we need only worry about checking
that relation (CK) holds. With this in mind, fix v ∈ (Λi)0 = Λ0 and suppose
that E ∈ vFE(Λi). By Lemma 4.5, E is exhaustive in Λ. As {sΛλ : λ ∈ Λ}
satisfies relation (CK), we conclude that {sΛλ : λ ∈ Λi} does as well. The
universal property of C∗(Λi) then induces a ∗-homomorphism φ from C∗(Λi)

to C∗(Λ) such that φ(sΛ
i

λ ) = sΛλ for each λ ∈ Λi.
The injectivity of φ follows from an application of [23, Theorem 4.2]. For

each v ∈ Λ0, we have φ(sΛ
i

v ) = sΛv , which is nonzero by [23, Proposition 2.12].
Restricting the gauge action γΛ of Tk on C∗(Λ) to Tk−1 gives an action of
Tk−1 on C∗({φ(sΛ

i

λ ) : λ ∈ Λi}) = C∗({sΛλ : λ ∈ Λi}) ⊆ C∗(Λ) that intertwines
φ and the gauge action γΛ

i

of Tk−1 on C∗(Λi). �

Remark 4.7. There are simple examples to show what can go wrong if we do
not have a locally-convex graph. Consider the 2-graph Λ consisting of just two
edges λ ∈ Λe1 and µ ∈ Λe2 with common range v and distinct sources. In this
situation the second part of Lemma 4.2 is false: the path λ ∈ Λ≤e1+e2 cannot
be written in the form ην, where η ∈ Λ≤e2 and ν ∈ Λ≤e1 (due to the presence
of the edge µ, the vertex v is not in Λ≤e2). Furthermore, {λ} is exhaustive
in Λ2, but not exhaustive in Λ, since MCE(λ, µ) = ∅. Thus, the conclusion
of Lemma 4.5 need not hold if we drop the local-convexity hypothesis. This
example also shows that the conclusion of Proposition 4.6 is false if we drop the
local-convexity hypothesis. The Cuntz–Krieger relation in C∗(Λi) says that

sΛ
i

v = sΛ
i

λ s
Λi

λ

∗
.

On the other hand, the Cuntz–Krieger relation in C∗(Λ) (applied to the finite
exhaustive set {λ, µ}) gives

0 =
(

sΛv − sΛλs
Λ
λ

∗)(
sΛv − sΛµs

Λ
µ

∗)
= sΛv − sΛλs

Λ
λ

∗
− sΛµs

Λ
µ

∗
,

since λ and µ have no common extensions. Hence, if there existed a ∗-
homomorphism φ from C∗(Λi) to C∗(Λ) induced by the inclusion of Λi in Λ,
we would have that

0 = φ(0) = φ
(

sΛ
i

v − sΛ
i

λ s
Λi

λ

∗)
= sΛv − sΛλs

Λ
λ

∗
= sΛµs

Λ
µ

∗
.

Thus, sΛµ = 0, which is impossible, since universal Cuntz–Krieger families al-
ways consist of nonzero partial isometries [23, Proposition 2.12].

We are now ready to define the collection of Hilbert C∗(Λi)-bimodules that
we are interested in. Suppose that Λ is locally-convex so that the injective ∗-
homomorphism φ from Proposition 4.6 exists. The same working as in Propo-
sition 3.2 shows that

Xn := span
{

sΛλs
Λ
µ

∗
: λ, µ ∈ Λ, d(λ)i = n, d(µ)i = 0

}

⊆ C∗(Λ)

has the structure of a Hilbert C∗(Λi)-bimodule for n ∈ N ∪ {0}, with actions
and inner product given by a · x · b := φ(a)xφ(b) and 〈x, y〉nC∗(Λi) := φ−1(x∗y)
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for each x, y ∈ Xn and a, b ∈ C∗(Λi). For notational convenience, we set
X := X1, and write 〈 · , · 〉C∗(Λi) for 〈 · , · 〉1C∗(Λi). We again write ψ for the

∗-homomorphism that implements the left action of C∗(Λi) on X . For each
n ∈ N ∪ {0}, the same working as in Proposition 3.4 gives a Hilbert C∗(Λi)-
bimodule isomorphism Ωn : Xn → X⊗n, where, in particular, Ω0 = φ−1 and
Ω1 is the identity map.

Our goal is to analyze the Cuntz–Pimsner algebra of X . In order to do this,
we need to get a grip on the Katsura ideal JX := ψ−1(KC∗(Λi)(X))∩ ker(ψ)⊥.

In [11, Lemma 2.6.7] we showed that if Λ has no sources, then C∗(Λi) acts
faithfully on X . Lemma 2.6.8 of [11] also shows that if vΛei is finite for each
v ∈ Λ0, then C∗(Λi) acts compactly on X . Thus, when Λ is row finite and has
no sources, the Katsura ideal of X is all of C∗(Λi). Consequently, to determine
whether a Toeplitz representation of X was Cuntz–Pimsner covariant, we only
needed to check the covariance relation on the generating set {sΛ

i

λ : λ ∈ Λ} of
C∗(Λi) (see [11, Theorem 2.6.12]). In this paper we are not assuming that the
graph Λ is source free and row finite (recall, our only assumption so far is that
Λ is locally-convex), and so it is not immediately obvious what the Katsura
ideal looks like, and whether it has a ‘nice’ generating set that is easy to work
with. Our strategy is to show that JX is gauge-invariant and calculate its
generators using [30, Theorem 4.6]. We begin in Proposition 4.9 by showing
that the ideals ker(ψ), ker(ψ)⊥, and ψ−1(KC∗(Λi)(X)) are all gauge-invariant.
First, we require a lemma.

Lemma 4.8. Let Λ be a locally-convex finitely aligned k-graph. For each

z ∈ Tk−1, there exists a unitary Uz ∈ LC∗(Λi)(X) such that

Uz(s
Λ
λφ(a)) = sΛλφ(γ

Λi

z (a))

for each λ ∈ Λei and a ∈ C∗(Λi). Moreover, for each a ∈ C∗(Λi),

ψ(γΛ
i

z (a)) = Uzψ(a)U
∗
z .

Proof. We show that for z ∈ Tk−1, the formula sΛλφ(a) 7→ sΛλφ(γ
Λi

z (a)), where
λ ∈ Λei , a ∈ C∗(Λi), extends by linearity and continuity to X . Let m ∈ N and
fix λ1, . . . , λm ∈ Λei and a1, . . . , am ∈ C∗(Λi). Then

∥

∥

∥

∥

m
∑

j=1

sΛλj
φ(γΛ

i

z (aj))

∥

∥

∥

∥

2

X

=

∥

∥

∥

∥

〈 m
∑

j=1

sΛλj
φ(γΛ

i

z (aj)),
m
∑

j=1

sΛλj
φ(γΛ

i

z (aj))

〉

C∗(Λi)

∥

∥

∥

∥

C∗(Λi)

=

∥

∥

∥

∥

m
∑

j,l=1

φ−1
((

sΛλj
φ(γΛ

i

z (aj))
)∗(

sΛλl
φ(γΛ

i

z (al))
))

∥

∥

∥

∥

C∗(Λi)

=

∥

∥

∥

∥

m
∑

j,l=1

γΛ
i

z (aj)
∗φ−1(sΛλj

∗
sΛλl

)γΛ
i

z (al)

∥

∥

∥

∥

C∗(Λi)

.

Münster Journal of Mathematics Vol. 12 (2019), 93–137



116 James Fletcher

Since λ1, . . . , λm ∈ Λei , relation (TCK3) says that sΛλj

∗sΛλl
= δλj ,λl

sΛs(λj)
, and

so the previous line is equal to
∥

∥

∥

∥

m
∑

j,l=1

δλj ,λl
γΛ

i

z (a∗j )s
Λi

s(λj)
γΛ

i

z (al)

∥

∥

∥

∥

C∗(Λi)

=

∥

∥

∥

∥

m
∑

j,l=1

δλj ,λl
γΛ

i

z (a∗j )γ
Λi

z (sΛ
i

s(λj)
)γΛ

i

z (al)

∥

∥

∥

∥

C∗(Λi)

=

∥

∥

∥

∥

γΛ
i

z

( m
∑

j,l=1

δλj ,λl
a∗js

Λi

s(λj)
al

)
∥

∥

∥

∥

C∗(Λi)

=

∥

∥

∥

∥

m
∑

j,l=1

δλj ,λl
a∗js

Λi

s(λj)
al

∥

∥

∥

∥

C∗(Λi)

,

where the last equality follows from the fact that γz is an automorphism, and
hence isometric. Finally, this is the same as
∥

∥

∥

∥

m
∑

j,l=1

a∗jφ
−1(sΛλj

∗
sΛλl

)al

∥

∥

∥

∥

C∗(Λi)

=

∥

∥

∥

∥

〈 m
∑

j=1

sΛλj
φ(aj),

m
∑

j=1

sΛλj
φ(aj)

〉

C∗(Λi)

∥

∥

∥

∥

C∗(Λi)

=

∥

∥

∥

∥

m
∑

j=1

sΛλj
φ(aj)

∥

∥

∥

∥

2

X

.

Thus, the formula sΛλφ(a) 7→ sΛλφ(γ
Λi

z (a)) extends by linearity and continuity
to an inner product preserving map onX , which we denote by Uz. The map Uz
is surjective, since Uz(s

Λ
λφ(γ

Λi

z (a))) = sΛλφ(a) for any λ ∈ Λei and a ∈ C∗(Λi).
Consequently, Uz ∈ LC∗(Λi)(X), with U∗

z = U−1
z = Uz.

It remains to check that for each z ∈ Tk−1 and a ∈ C∗(Λi), we have

Uzψ(a)U
∗
z = ψ(γΛ

i

z (a)) ∈ ψ(C∗(Λi)) ⊆ LC∗(Λi)(X).

To see this, fix η, ρ, ν, τ ∈ Λi and λ ∈ Λei . Then

ψ
(

sΛ
i

η s
Λi

ρ

∗)(
sΛλφ

(

sΛ
i

ν s
Λi

τ

∗))
= sΛη s

Λ
ρ

∗
sΛλs

Λ
ν t

Λ
τ

∗
=

∑

(α,β)∈Λmin(ρ,λν)

sΛηαs
Λ
τβ

∗

=
∑

(α,β)∈Λmin(ρ,λν)

sΛ(ηα)(0,ei)φ
(

sΛ
i

(ηα)(ei,d(ηα))
sΛ

i

τβ

∗)
.

Observe that if (α, β) ∈ Λmin(ρ, λν), then

d(τ) − d(ν) + d((ηα)(ei, d(ηα))) − d(τβ)

= d(η) + d(α) − ei − d(ν)− d(β)

= d(η) + d(ρ) ∨ d(λν) − d(ρ)− ei − d(ν) − d(ρ) ∨ d(λν) + d(λν)

= d(η)− d(ρ)− ei + d(λ)

= d(η)− d(ρ).

Münster Journal of Mathematics Vol. 12 (2019), 93–137



Higher-rank graph algebras are iterated Cuntz–Pimsner algebras 117

Hence, we see that
(

Uzψ
(

sΛ
i

η s
Λi

ρ

∗)
U∗
z

)(

sΛλφ
(

sΛ
i

ν s
Λi

τ

∗))

= Uzψ
(

sΛ
i

η s
Λi

ρ

∗)(
sΛλφ

(

γΛ
i

z

(

sΛ
i

ν s
Λi

τ

∗)))

= zd(τ)−d(ν)Uz

(

∑

(α,β)∈Λmin(ρ,λν)

sΛ(ηα)(0,ei)φ
(

sΛ
i

(ηα)(ei,d(ηα))
sΛ

i

τβ

∗)
)

= zd(τ)−d(ν)
∑

(α,β)∈Λmin(ρ,λν)

sΛ(ηα)(0,ei)φ
(

γΛ
i

z

(

sΛ
i

(ηα)(ei,d(ηα))
sΛ

i

τβ

∗))

=
∑

(α,β)∈Λmin(ρ,λν)

zd(η)−d(ρ)sΛ(ηα)(0,ei)φ
(

sΛ
i

(ηα)(ei,d(ηα))
sΛ

i

τβ

∗)

= ψ
(

γΛ
i

z

(

sΛ
i

η s
Λi

ρ

∗))(
sλλφ

(

sΛ
i

ν s
Λi

τ

∗))
.

Since span{sΛλφ(s
Λi

ν s
Λi

τ

∗
) : λ ∈ Λei , ν, τ ∈ Λi} is dense in X , we conclude that

Uzψ(a)U
∗
z = ψ(γΛ

i

z (a)) for each a ∈ C∗(Λi). �

Proposition 4.9. Let Λ be a locally-convex finitely aligned k-graph. Then

ker(ψ), ker(ψ)⊥, and ψ−1(KC∗(Λi)(X)) are gauge-invariant ideals of C∗(Λi).

Hence, the Katsura ideal JX :=ψ−1(KC∗(Λi)(X))∩ker(ψ)⊥ is a gauge-invariant

ideal of C∗(Λi).

Proof. We begin by showing that ker(ψ) is gauge-invariant. For z ∈ Tk−1, let
Uz be the map described in Lemma 4.8. For any a ∈ ker(ψ), we have that
ψ(γΛ

i

z (a)) = Uzψ(a)U
∗
z = 0. Hence, γΛ

i

z (a) ∈ ker(ψ). From this we also see
that ker(ψ)⊥ is gauge-invariant: if a ∈ ker(ψ)⊥, b ∈ ker(ψ), and z ∈ Tk−1,
then

γΛ
i

z (a)b = γΛ
i

z (aγΛ
i

z (b)) = γΛ
i

z (0) = 0.

It remains to show that ψ−1(KC∗(Λi)(X)) is gauge-invariant. This follows from
the fact that KC∗(Λi)(X) is an ideal of LC∗(Λi)(X), Uz ∈ LC∗(Λi)(X) for each

z ∈ Tk−1, and ψ(γΛ
i

z (a)) = Uzψ(a)U
∗
z for each a ∈ C∗(Λi). �

Now that we know the Katsura ideal JX is gauge-invariant, we seek to
apply the analysis of [30, Section 4] to determine its generators. Note that
when k = 2, we could also apply the somewhat simpler analysis of [3], which
deals just with directed graphs. Loosely speaking, if Σ is a finitely-aligned
k-graph, then a gauge-invariant ideal of C∗(Σ) is generated (as an ideal) by
its vertex projections and a collection of projections corresponding to certain
finite exhaustive subsets of a subgraph of Σ. We now summarize the parts of
[30] that we will need.

Suppose I is a gauge-invariant ideal of C∗(Σ). By [30, Lemma 4.3], the set

HI :=
{

v ∈ Σ0 : sΣv ∈ I
}

is saturated and hereditary (in the sense of [30, Definition 4.1]). In particular,

Σ \ ΣHI :=
{

λ ∈ Σ : s(λ) 6∈ HI

}
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is itself a finitely aligned k-graph. If we define

B̃I :=

{

E ∈ FE(Σ \ ΣHI) : E ⊆
k
⋃

j=1

Σej , ∆(sΣ)E ∈ I

}

,

then [30, Theorem 4.6] (along with Proposition A.1) tells us that I is generated
as an ideal of C∗(Σ) by the collection of projections

{

sΣv : v ∈ HI

}

∪
{

∆(sΣ)E : E ∈ B̃I
}

.

We now determine the generators of the gauge-invariant ideal ker(ψ). We
will see that due to the local-convexity of Λ, the ideal ker(ψ) is generated
(as an ideal of C∗(Λi)) precisely by those vertex projections that act trivially
on X , and that these projections correspond to the vertices that do not admit
an edge of degree ei.

Proposition 4.10. Let Λ be a locally-convex finitely aligned k-graph. Consider
the gauge-invariant ideal ker(ψ) of C∗(Λi). Then

(i) Hker(ψ) = {v ∈ Λ0 : vΛei = ∅},

(ii) B̃ker(ψ) = {E ∈ FE(Λi \ ΛiHker(ψ)) : E ⊆
⋃k
j=1 Λ

ej}, with

∆(sΛ
i

)E = 0 for any E ∈ FE(Λi \ ΛiHker(ψ)).

Hence, ker(ψ) is generated as an ideal of C∗(Λi) by the collection of vertex

projections {sΛ
i

v : vΛei = ∅}. In particular, if vΛei is nonempty for each

v ∈ Λ0, then the left action of C∗(Λi) on X is faithful.

Proof. For any v ∈ Λ0, λ ∈ Λei , and a ∈ C∗(Λi), we see that

ψ(sΛ
i

v )(sΛλφ(a)) = φ(sΛ
i

v )sΛλφ(a) = sΛv s
Λ
λφ(a) =

{

sΛλφ(a) if r(λ) = v,

0 otherwise.

Since X = span{sΛλφ(a) : λ ∈ Λei , a ∈ C∗(Λi)}, part (i) now follows immedi-
ately.

We now prove part (ii). Suppose E ∈ FE(Λi \ ΛiHker(ψ)). We claim that
r(E)Λei is nonempty. Since E is nonempty, we can choose ν ∈ E. Then
s(ν) 6∈ Hker(ψ), and so s(ν)Λei 6= ∅ by part (i). By the factorization property,
we have that r(E)Λei = r(ν)Λei 6= ∅, which proves the claim. Next we show
that E ∈ FE(Λi). Fix λ ∈ r(E)Λi. Since Λ is locally-convex and r(E)Λei 6= ∅,
we must have that s(λ)Λei 6= ∅. Thus, s(λ) 6∈ Hker(ψ), and we see that

λ ∈ r(E)Λi \ ΛiHker(ψ). Since E is exhaustive in Λi \ ΛiHker(ψ), we can find

µ ∈ E such that MCE(λ, µ) 6= ∅. Hence, E ∈ FE(Λi) as claimed. Applying
relation (CK) in C∗(Λi) gives ∆(sΛ

i

)E = 0, which is certainly an element of
ker(ψ). This completes the proof of part (ii). �

We will use the following product to sum transformation repeatedly, so we
state it as a separate result.
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Lemma 4.11. Let Λ be a finitely aligned k-graph and {rλ : λ ∈ Λ} a Toeplitz–

Cuntz–Krieger Λ-family. Then for each v ∈ Λ0 and each nonempty finite set

F ⊆ vΛ, we have

(6) ∆(r)F = rv +
∑

∅ 6=G⊆F
λ∈MCE(G)

(−1)|G|rλr
∗
λ.

In particular, if n ∈ Nk and F is a nonempty finite subset of vΛn, then

(7) ∆(r)F = rv −
∑

λ∈F

rλr
∗
λ.

Proof. To prove (6), we will use induction on |F |. Clearly, when |F | = 1 (say
F = {λ}), both sides of (6) are rv − rλr

∗
λ. So suppose that (6) holds whenever

|F | = n and fix a set F ′ ⊆ vΛ with |F ′| = n + 1. Then for any µ ∈ F ′, the
inductive hypothesis gives

∆(r)F
′

= (rv − rµr
∗
µ)∆(r)F

′\{µ}

= (rv − rµr
∗
µ)

(

rv +
∑

∅ 6=G⊆F ′\{µ}
λ∈MCE(G)

(−1)|G|rλr
∗
λ

)

= rv − rµr
∗
µ +

∑

∅ 6=G⊆F ′\{µ}
λ∈MCE(G)

(−1)|G|rλr
∗
λ −

∑

∅ 6=G⊆F ′\{µ}
λ∈MCE(G)

(−1)|G|rµr
∗
µrλr

∗
λ.

Applying relation (TCK3) to the product in the last sum shows that this is
equal to

rv − rµr
∗
µ +

∑

∅ 6=G⊆F ′\{µ}
λ∈MCE(G)

(−1)|G|rλr
∗
λ +

∑

∅ 6=G⊆F ′\{µ}
λ∈MCE(G∪{µ})

(−1)(|G|+1)rλr
∗
λ

= rv +
∑

∅ 6=G⊆F ′

λ∈MCE(G)

(−1)|G|rλr
∗
λ.

Thus, (6) follows by induction.
To see how (7) follows from (6), observe that if F ⊆ vΛn, then for any

∅ 6= G ⊆ F , we have MCE(G) = G if G is a singleton set, whilst MCE(G) = ∅

if |G| ≥ 2. �

The next result tells us precisely which vertex projections belong to the
gauge-invariant ideals ker(ψ)⊥ and ψ−1(KC∗(Λi)(X)) (and so to JX).

Proposition 4.12. Let Λ be a locally-convex finitely aligned k-graph. Then

for any vertex v ∈ Λ0, sΛ
i

v ∈ ker(ψ)⊥ if and only if vΛei is nonempty, and

sΛ
i

v ∈ ψ−1(KC∗(Λi)(X)) if and only if vΛei is finite. Hence,

HJX
=

{

v ∈ Λ0 : 0 < |vΛei | <∞
}

.
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In particular, when vΛei is finite,

(8) ψ(sΛ
i

v ) =
∑

λ∈vΛei

ΘsΛ
λ
,sΛ

λ
.

If, in addition, vΛei is nonempty, then

sΛv =
∑

λ∈vΛei

sΛλs
Λ
λ

∗
.

Proof. We begin by proving that sΛ
i

v ∈ ker(ψ)⊥ if and only if vΛei is nonempty.
Fix v ∈ Λ0. If vΛei = ∅, then sΛ

i

v ∈ ker(ψ), by Proposition 4.10. Thus,

sΛ
i

v 6∈ ker(ψ)⊥ (otherwise we would have 0 = (sΛ
i

v )2 = sΛ
i

v , which is clearly
impossible). For the converse, suppose that vΛei 6= ∅. We need to show that

sΛ
i

v a = 0 for each a ∈ ker(ψ). Since Proposition 4.10 tells us that ker(ψ) is
generated as an ideal of C∗(Λi) by the projections {sΛ

i

w : wΛei = ∅}, it suffices
to show that

sΛ
i

v (sΛ
i

λ s
Λi

ν

∗
sΛ

i

w ) = 0

whenever λ, ν ∈ Λi and w ∈ Λ0 is such that wΛei = ∅. Now sΛ
i

v (sΛ
i

λ s
Λi

ν

∗
sΛ

i

w ) is
certainly zero if r(λ) 6= v, or s(λ) 6= s(ν), or r(ν) 6= w, so we suppose otherwise.
Since vΛei 6= ∅ and λ ∈ Λi, the local convexity of Λ forces s(λ)Λei 6= ∅. Since
s(λ) = s(ν), the factorization property then implies that r(ν)Λei 6= ∅. But
this is impossible since r(ν) = w. Thus, sΛ

i

v ∈ ker(ψ)⊥. We conclude that
sΛ

i

v ∈ ker(ψ)⊥ if and only if vΛei is nonempty.
Now we move on to proving that sΛ

i

v ∈ ψ−1(KC∗(Λi)(X)) if and only if vΛei

is finite. The proof uses the same ideas as [13, Proposition 4.4].
We claim that for any v ∈ Λ0, the set vΛei is exhaustive in Λ, provided it

is nonempty. To see this, suppose that λ ∈ vΛ. We need to show there exists
µ ∈ vΛei such that Λmin(λ, µ) 6= ∅. If λ = v, then for any µ ∈ vΛei , we have
{(µ, s(µ))} = Λmin(λ, µ). If d(λ)i 6= 0, then with µ := λ(0, ei) ∈ vΛei , we
have {(s(λ), λ(ei, d(λ)))} = Λmin(λ, µ). If d(λ)i = 0, then the local-convexity
of Λ allows us to choose ν ∈ s(λ)Λei . With µ := (λν)(0, ei) ∈ vΛei , we
have (ν, (λν)(ei, d(λν))) ∈ Λmin(λ, µ). Thus, vΛei is exhaustive in Λ. Thus, if
vΛei is finite and nonempty, then relation (CK) tells us that ∆(sΛ)vΛ

ei
= 0.

Applying Lemma 4.11 with F = vΛei , we conclude that sΛv =
∑

λ∈vΛei s
Λ
λs

Λ
λ

∗
.

Note that for each λ ∈ vΛei , sΛλ ∈ X . To show that sΛ
i

v ∈ ψ−1(KC∗(Λi)(X))
when vΛei is finite, it suffices to show that (8) holds. If vΛei = ∅, then the
right-hand side of (8) is the empty sum, and so zero, whilst ψ(sΛ

i

v ) = 0, by
Proposition 4.10. On the other hand, if vΛei is nonempty and finite, then for
any µ ∈ Λei and a ∈ C∗(Λi), we have

ψ(sΛ
i

v )(sΛµφ(a)) = sΛv s
Λ
µφ(a) =

∑

λ∈vΛei

sΛλs
Λ
λ

∗
sΛµφ(a)

=
∑

λ∈vΛei

sΛλ · 〈sΛλ , s
Λ
µφ(a)〉C∗(Λi) =

∑

λ∈vΛei

ΘsΛ
λ
,sΛ

λ
(sΛµφ(a)).
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Since X = span{sΛµφ(a) : µ ∈ Λei , a ∈ C∗(Λi)}, we conclude that (8) holds
whenever v ∈ Λ0 and vΛei is finite.

It remains to show that if v ∈ Λ0 and sΛ
i

v ∈ ψ−1(KC∗(Λi)(X)), then vΛei

is finite. Looking for a contradiction, suppose that vΛei is infinite and ψ(sΛ
i

v )
is compact. Since X = span{sΛλφ(a) : λ ∈ Λei , a ∈ C∗(Λi)}, there exist finite
sets E,F ⊆ Λei , G,H ⊆ C∗(Λi) such that

‖K − ψ(sΛ
i

v )‖L
C∗(Λi)(X) < 1,

where

K :=
∑

(λ,a)∈E×G,
(µ,b)∈F×H

ΘsΛ
λ
φ(a),sΛµφ(b)

∈ KC∗(Λi)(X).

Since F is finite and vΛei is infinite, we can choose ν ∈ vΛei \F . Then sΛν ∈ X
and

ψ(sΛ
i

v )(sΛν ) = φ(sΛ
i

v )sΛν = sΛv s
Λ
ν = sΛν .

However, since d(µ) = d(ν) for each µ ∈ F , we have that MCE(µ, ν) = ∅ for
every µ ∈ F , and so

K(sΛν ) =
∑

(λ,a)∈E×G,
(µ,b)∈F×H

ΘsΛ
λ
φ(a),sΛµφ(b)

(sΛν ) =
∑

(λ,a)∈E×G,
(µ,b)∈F×H

sΛλφ(ab
∗)sΛµ

∗
sΛν = 0.

Since the norm on X is the restriction of the norm on C∗(Λ), we have that

‖sΛν ‖
2
X = ‖sΛν ‖

2
C∗(Λ) = ‖sΛν

∗
sΛν ‖C∗(Λ) = ‖sΛs(ν)‖C∗(Λ) = 1.

Thus,

‖K − ψ(sΛ
i

v )‖L
C∗(Λi)(X) = sup

‖x‖X≤1

‖(K − ψ(sΛ
i

v ))(x)‖X

≥ ‖(K − ψ(sΛ
i

v ))(sΛν )‖X = ‖sΛν ‖X = 1,

which is a contradiction. �

Now that we have determined HJX
, we move on to B̃JX

. In contrast to
ker(ψ), where the set B̃ker(ψ) did not contribute any nonzero generators, the
ideal ψ−1(KC∗(Λi)(X)) is not necessarily generated solely by its vertex projec-
tions (i.e., the projections corresponding to vertices that admit finitely many
edges of degree ei). The purpose of the next lemma is to determine for which

finite exhaustive sets E ∈ FE(Λi \ ΛiHJX
) with E ⊆

⋃k
j=1 Λ

ej does the pro-
jection ∆(sΛ

i

)E belong to the Katsura ideal. We were somewhat surprised to
discover that this occurs if and only if E can be extended to an exhaustive
subset of Λ by adding in a finite collection of edges of degree ei.

Lemma 4.13. Let Λ be a locally-convex finitely aligned k-graph. Suppose

E ∈ FE(Λi \ ΛiHJX
) with E ⊆

⋃k
j=1 Λ

ej . Then ∆(sΛ
i

)E ∈ JX if and only if
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there exists a finite set F ⊆ r(E)Λei such that E ∪ F ∈ FE(Λ). In particular,

if E ∪ F ∈ FE(Λ) for some F ⊆ r(E)Λei , then

ψ
(

∆(sΛ
i

)E
)

=
∑

G⊆E∪F
G∩F 6=∅

µ∈MCE(G)

(−1)(|G|+1)ΘsΛµ ,sΛµ ∈ KC∗(Λi)(X).

Proof. Fix E ∈ FE(Λi \ ΛiHJX
) with E ⊆

⋃k
j=1 Λ

ej . We begin by showing

that ∆(sΛ
i

)E ∈ ker(ψ)⊥. Consider the situation where r(E)Λei = ∅. We
claim that r(E)Λi = r(E)Λi \ ΛiHJX

. Clearly, r(E)Λi \ ΛiHJX
⊆ r(E)Λi,

and we just need to check the reverse set inclusion. If λ ∈ r(E)Λi, then
the factorization property implies that s(λ)Λei = ∅, and so s(λ) 6∈ HJX

by
Proposition 4.12. Hence, λ ∈ r(E)Λi \ ΛiHJX

, which proves the claim. Thus,
E ∈ r(E)FE(Λi), and relation (CK) in C∗(Λi) says that ∆(sΛ

i

)E = 0, which is
certainly in ker(ψ)⊥. On the other hand, if r(E)Λei 6= ∅, then Proposition 4.12

tells us that sΛ
i

r(E) ∈ ker(ψ)⊥. Since ker(ψ)⊥ is an ideal of C∗(Λi), we see that

∆(sΛ
i

)E = sΛ
i

r(E)∆(sΛ
i

)E ∈ ker(ψ)⊥.

Now suppose that there exists a set F ⊆ r(E)Λei such that E ∪F ∈ FE(Λ).
Applying the Cuntz–Krieger relation in C∗(Λ), Lemma 4.11 gives

0 = ∆(sΛ)E∪F = sΛv +
∑

∅ 6=G⊆E∪F
µ∈MCE(G)

(−1)|G|sΛµs
Λ
µ

∗
.

Splitting this sum, we get that

(9) sΛv +
∑

∅ 6=G⊆E
µ∈MCE(G)

(−1)|G|sΛµs
Λ
µ

∗
=

∑

G⊆E∪F
G∩F 6=∅

µ∈MCE(G)

(−1)(|G|+1)sΛµs
Λ
µ

∗
.

Since E ⊆ Λi, we can again use Lemma 4.11 to see that

sΛv +
∑

∅ 6=G⊆E
µ∈MCE(G)

(−1)|G|sΛµs
Λ
µ

∗
= φ

(

sΛ
i

v +
∑

∅ 6=G⊆E
µ∈MCE(G)

(−1)|G|sΛ
i

µ s
Λi

µ

∗
)

(10)

= φ
(

∆(sΛ
i

)E
)

.

Next, observe that if G ⊆ E∪F and G∩F 6= ∅, then max{d(ν)i : ν ∈ G} = 1.

Hence, if µ ∈ MCE(G), then d(µ)i = 1, and so sΛµ ∈ X . Since ψ(∆(sΛ
i

)E) is
multiplication by φ(∆(sΛ

i

)E) on X ⊆ C∗(Λ), and ΘsΛµ ,sΛµ is multiplication by

sΛµs
Λ
µ
∗
for each sΛµ ∈ X , (9) and (10) imply that

ψ
(

∆(sΛ
i

)E
)

=
∑

G⊆E∪F
G∩F 6=∅

µ∈MCE(G)

(−1)(|G|+1)ΘsΛµ ,sΛµ .

Thus, ∆(sΛ
i

)E ∈ ψ−1(KC∗(Λi)(X)), and we conclude that ∆(sΛ
i

)E ∈ JX .
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Conversely, suppose that ∆(sΛ
i

)E ∈ JX . Since ∆(sΛ
i

)E acts compactly on
X , we can find finite sets G,H ⊆ {λ ∈ Λ : d(λ)i = 1} such that

(11)
∥

∥K − ψ
(

∆(sΛ
i

)E
)∥

∥

L
C∗(Λi)(X)

< 1,

where

K :=
∑

(µ,ν)∈G×H

c(µ,ν)ΘsΛµ,sΛν ∈ KC∗(Λi)(X),

and the c(µ,ν) are constants.
We define F := {λ(0, ei) : λ ∈ r(E)H} and claim that E∪F ∈ FE(Λ). Since

E and H are finite, so is E ∪ F . Furthermore, since r(E) 6∈ E, and F consists
of edges, we see that r(E) 6∈ E ∪ F . Thus, it remains to show that E ∪ F is
exhaustive in Λ. Looking for a contradiction, suppose that there exists some
τ ∈ r(E)Λ that does not have a minimal common extension with anything in
E ∪ F . We consider the situations where d(τ)i = 1, d(τ)i = 0, and d(τ)i ≥ 2
separately.

Firstly, we consider the case where d(τ)i = 1 (note: this implies that
sΛτ ∈ X). Clearly, if ν ∈ H and r(ν) 6= r(E), then MCE(ν, τ) = ∅. Since
MCE(τ, ν(0, ei)) is, by assumption, empty for each ν ∈ r(E)H , the factoriza-
tion property implies that MCE(τ, ν) = ∅ for each ν ∈ H . Hence,

K(sΛτ ) =
∑

(µ,ν)∈G×H

c(µ,ν)ΘsΛµ ,sΛν (s
Λ
τ ) =

∑

(µ,ν)∈G×H

c(µ,ν)s
Λ
µs

Λ
ν

∗
sΛτ

=
∑

(µ,ν)∈G×H

(α,β)∈Λmin(ν,τ)

c(µ,ν)s
Λ
µαs

Λ
β

∗
= 0.

Similarly, since MCE(τ, λ) = ∅ for each λ ∈ E, we have that

(sΛr(E) − sΛλs
Λ
λ

∗
)sΛτ = sΛτ −

∑

(α,β)∈Λmin(λ,τ)

sΛλαs
Λ
β

∗
= sΛτ

for each λ ∈ E. Thus,

ψ
(

∆(sΛ
i

)E
)

(sΛτ ) =
(

∏

λ∈E

(

sΛr(E) − sΛλs
Λ
λ

∗)
)

sΛτ = sΛτ ,

and so

(12)
(

K − ψ
(

∆(sΛ
i

)E
))

(sΛτ ) = −sΛτ .

Since

‖sΛτ ‖X = ‖sΛτ ‖C∗(Λ) = ‖sΛτ
∗
sΛτ ‖

1/2
C∗(Λ) = ‖sΛs(τ)‖

1/2
C∗(Λ) = 1 6= 0,

(12) contradicts (11). Hence, for each τ ∈ r(E)Λ with d(τ)i = 1, there must
exist λ ∈ E ∪ F such that MCE(τ, λ) 6= ∅.

Now consider the situation when d(τ)i = 0. Consider the case where
r(E)Λei is nonempty. The local-convexity of Λ allows us to choose ξ ∈ s(τ)Λei ,
and so by the argument in the previous paragraph, we can find λ ∈ E ∪ F
such that MCE(τξ, λ) 6= ∅. The factorization property then implies that
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MCE(τ, λ) 6= ∅. On the other hand, if r(E)Λei is empty, then sΛ
i

r(E) ∈ ker(ψ),
and so

∆(sΛ
i

)E = ∆(sΛ
i

)EsΛ
i

r(E) = 0

because ∆(sΛ
i

)E ∈ JX ⊆ ker(ψ)⊥. Thus,
(

∏

λ∈E

(

sΛr(E) − sΛλs
Λ
λ

∗)
)

sΛτ = ∆(sΛ
i

)EsΛτ = 0,

which is impossible if MCE(τ, λ) = ∅ for each λ ∈ E. Hence, MCE(τ, λ) is
nonempty for some λ ∈ E.

It remains to consider the case where d(τ)i ≥ 2. Let Kτ be the (possibly
empty) set {j : r(E)Λej 6= ∅, d(τ)j = 0}. Since Λ is locally-convex, we may

choose ξ ∈ s(τ)Λ
∑

j∈Kτ ej. Define τ ′ := (τξ)(0, d(τξ) − (d(τξ)i − 1)ei) and
observe that d(τ ′)i = 1 and d(τ ′)j = d(τξ)j for j 6= i. Hence, we can find
λ ∈ E ∪ F such that MCE(τ ′, λ) 6= ∅. If λ ∈ F (which is a subset of Λei),
then τ ′ must extend λ because d(τ ′) ≥ ei. Hence, τξ also extends λ, and
we have that {τξ} = MCE(τξ, λ). By the factorization property, it follows
that MCE(τ, λ) 6= ∅. Alternatively, λ ∈ E, and so λ ∈ Λej for some j 6= i.
Since d(τ ′)j = d(τξ)j ≥ 1 by our choice of ξ, we see that τ ′ (and so τξ) must
extend λ. Thus, {τξ} = MCE(τξ, λ). Hence, by the factorization property,
MCE(τ, λ) 6= ∅. This completes the proof of the claim that E∪F is exhaustive
in Λ. �

We now have enough information to give a complete description of the
Katsura ideal.

Proposition 4.14. Let Λ be a locally-convex finitely aligned k-graph. Then

Λi \ ΛiHJX
=

{

λ ∈ Λi : |s(λ)Λei | ∈ {0,∞}
}

and

B̃JX
=

{

E∈FE(Λi\ΛiHJX
) :E⊆

k
⋃

j=1

Λej, E∪F ∈FE(Λ) for some F ⊆r(E)Λei
}

.

Furthermore, the Katsura ideal JX is generated as an ideal of C∗(Λi) by the

collection of projections

(13)
{

sΛ
i

v : 0 < |vΛei | <∞
}

∪
{

∆(sΛ
i

)E : E ∈ B̃JX
, r(E)Λei 6= ∅

}

.

Proof. We proved in Proposition 4.12 that HJX
= {v ∈ Λ0 : 0 < |vΛei | <∞},

from which the description of Λi \ ΛiHJX
follows. Lemma 4.13 shows that

if E ∈ FE(Λi \ ΛiHJX
) and E ⊆

⋃k
j=1 Λ

ej , then ∆(sΛ
i

)E ∈ JX if and only
if there exists F ⊆ r(E)Λei such that E ∪ F ∈ FE(Λ). This gives us the
description of B̃JX

. The first paragraph of the proof of Lemma 4.13 shows
that if E ∈ FE(Λi \ ΛiHJX

) and r(E)Λei = ∅, then E ∈ FE(Λi), and so
∆(sΛ

i

)E = 0. Consequently, [30, Theorem 4.6] and Proposition A.1 tell us that
the collection of projections in (13) generate the gauge-invariant ideal JX . �
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The next example illustrates the subtlety addressed by Proposition 4.14
for graphs with infinite receivers, and served as the main motivation for the
formulation of Lemma 4.13. We thank Aidan Sims for bringing this example
to our attention.

Example 4.15. Consider the locally-convex finitely aligned 2-graph Λ de-
scribed in [23, Example A.3] with 1-skeleton

v λ

β

µ α

where solid edges have degree e1 and dashed edges have degree e2.
Let i = 2 (i.e., we are removing the dashed edges from the graph). Propo-

sition 4.12 tells us that
HJX

= s(vΛe1 \ {λ}).

We now determine the finite exhaustive sets in Λ2 and Λ2 \ Λ2HJX
. Since

s(µ)Λe1 = s(µ)(Λ2 \ Λ2HJX
)e1 is infinite, we see that both s(µ)FE(Λ2) and

s(µ)FE(Λ2 \ Λ2HJX
) are empty. Since v(Λ2 \ Λ2HJX

)e1 = {λ} whilst vΛe1

is infinite,, we see that vFE(Λ2) is empty and vFE(Λ2 \ Λ2HJX
) = {{λ}}.

Observe that {λ} is contained in {λ, µ} ∈ FE(Λ). For each η ∈ vΛe2 \ {µ},
we have that s(η)Λe1 = s(η)(Λ2 \ Λ2HJX

)e1 is a singleton. Hence, for each
η ∈ vΛe2 \ {µ}, s(η)FE(Λ2) = s(η)FE(Λ2 \ Λ2HJX

) = {s(η)Λe1}. Moreover,
for each η ∈ vΛe2 \ {µ}, the singleton set {s(η)Λe1} is exhaustive in Λ. Hence,
we conclude that

FE(Λ2) =
{

{s(η)Λe1} : η ∈ vΛe2 \ {µ}
}

and
FE(Λ2 \ Λ2HJX

) = FE(Λ2) ∪ {{λ}} = B̃JX
.

Since s(η)Λe2 = ∅ for each η ∈ vΛe2 \ {µ}, Proposition 4.14 tells us that JX
is generated as an ideal of C∗(Λ2) by the projections

{

sΛ
2

w : w ∈ s(vΛe1 \ {λ})
}

∪
{

sΛ
2

v − sΛ
2

λ sΛ
2

λ

∗}
.
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Furthermore, for any w ∈ s(vΛe1 \ {λ}), Proposition 4.12 tells us that

ψ(sΛ
2

w ) =
∑

τ∈wΛe2

ΘsΛτ ,sΛτ ,

which is a rank-one operator. By Lemma 4.13, we also get that

ψ
(

sΛ
2

v − sΛ
2

λ sΛ
2

λ

∗)
= ΘsΛµ ,sΛµ −ΘsΛ

µβ
,sΛ

µβ
.

We now use Proposition 4.14 to prove our main theorem when Λ is locally-
convex, OX and C∗(Λ) are isomorphic.

Theorem 4.16. Let Λ be a locally-convex finitely aligned k-graph. If we let

ι : X → C∗(Λ) denote the inclusion map, then (ι, φ) is a Cuntz–Pimsner

covariant Toeplitz representation of X in C∗(Λ). For each λ ∈ Λ, define

uλ ∈ OX by uλ := j
⊗d(λ)i
X (Ωd(λ)i(s

Λ
λ )). Then {uλ : λ ∈ Λ} is a Cuntz–Krieger

Λ-family in OX . Furthermore, the ∗-homomorphisms ι ×O φ : OX → C∗(Λ)
and πu : C

∗(Λ) → OX induced by the universal properties of OX and C∗(Λ)
are mutually inverse. Hence, C∗(Λ) ∼= OX .

Proof. The proof is very similar to the analogous statement for Toeplitz alge-
bras in Theorem 3.7. We begin by showing that (ι, φ) is a Cuntz–Pimsner
covariant Toeplitz representation of X in C∗(Λ). Exactly the same argu-
ment as in the proof of Theorem 3.7 shows that (ι, φ) is a Toeplitz repre-
sentation. It remains to check that (ι, φ) is Cuntz–Pimsner covariant, i.e.,
(ι, φ)(1)(ψ(a)) = φ(a) for each a ∈ JX = ψ−1(KC∗(Λi)(X)) ∩ ker(ψ)⊥. Using
the generating set of JX that we found in Proposition 4.14, it suffices to show
that:

(i) If v ∈ Λ0 and 0 < |vΛei | <∞, then

(ι, φ)(1)
(

ψ
(

asΛ
i

v b
))

= φ
(

asΛ
i

v b
)

for each a, b ∈ C∗(Λi).

(ii) If E ∈ FE(Λi \ ΛiHJX
), with E ⊆

⋃k
j=1 Λ

ej , and E ∪ F ∈ FE(Λ) for

some F ⊆ r(E)Λei , then

(ι, φ)(1)
(

ψ
(

a∆(sΛ
i

)Eb
))

= φ
(

a∆(sΛ
i

)Eb
)

for each a, b ∈ C∗(Λi).

Let us check (i) first. If v ∈ Λ0 with 0 < |vΛei | < ∞ and a, b ∈ C∗(Λi),
making use of Proposition 4.12, we see that

ψ(asΛ
i

v b) = ψ(a)ψ(sΛ
i

v )ψ(b) = ψ(a)
(

∑

µ∈vΛei

ΘsΛµ ,sΛµ

)

ψ(b)

=
∑

µ∈vΛei

Θψ(a)sΛµ ,ψ(b∗)sΛµ =
∑

µ∈vΛei

Θφ(a)sΛµ ,φ(b∗)sΛµ .

Thus, using Proposition 4.12 again, we get that

(ι, φ)(1)
(

ψ(asΛ
i

v b)
)

=
∑

µ∈vΛei

φ(a)sΛµs
Λ
µ

∗
φ(b) = φ(a)sΛv φ(b) = φ(asΛ

i

v b).
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This completes the proof of (i).
Next we check that (ii) holds. Fix a, b ∈ C∗(Λi) and E ∈ FE(Λi \ ΛiHJX

)
with E ⊆

⋃k
j=1 Λ

ej . Suppose E ∪ F ∈ FE(Λ) for some F ⊆ r(E)Λei . By
Lemma 4.13, we have that

ψ
(

a∆(sΛ
i

)Eb
)

= ψ(a)ψ
(

∆(sΛ
i

)E
)

ψ(b)

=
∑

G⊆E∪F
G∩F 6=∅

µ∈MCE(G)

(−1)(|G|+1)Θψ(a)sΛµ,ψ(b∗)sΛµ

=
∑

G⊆E∪F
G∩F 6=∅

µ∈MCE(G)

(−1)(|G|+1)Θφ(a)sΛµ,φ(b∗)sΛµ .

Thus, combining equations (9) and (10) for the second equality, we see that

(ι, φ)(1)
(

ψ
(

a∆(sΛ
i

)Eb
))

=
∑

G⊆E∪F
G∩F 6=∅

µ∈MCE(G)

(−1)(|G|+1)φ(a)sΛµs
Λ
µ

∗
φ(b)

= φ(a)φ
(

∆(sΛ
i

)E
)

φ(b)

= φ
(

a∆(sΛ
i

)Eb
)

.

We conclude that (ι, φ) is a Cuntz–Pimsner covariant Toeplitz representa-
tion of X . Hence, there exists a ∗-homomorphism ι ×O φ : OX → C∗(Λ) such
that (ι ×O φ) ◦ jX = ι and (ι ×O φ) ◦ jC∗(Λi) = φ, where (jX , jC∗(Λi)) is the
universal Cuntz–Pimsner covariant Toeplitz representation of X .

Next, we show that the collection {uλ : λ ∈ Λ} ⊆ OX of partial isometries
defined by uλ := j

⊗d(λ)i
X (Ωd(λ)i(s

Λ
λ )) is a Cuntz–Krieger Λ-family. The same

calculations as in the proof of Theorem 3.7 show that {uλ : λ ∈ Λ} is a
Toeplitz–Cuntz–Krieger Λ-family. It remains to check that {uλ : λ ∈ Λ}
satisfies (CK). By [23, Theorem C.1], it suffices to show that if v ∈ Λ0 and
E ⊆

⋃k
j=1 vΛ

ej belongs to vFE(Λ), then ∆(u)E = 0.
Firstly, we consider the case where E ∩ Λei = ∅. Then E = E ∩ Λi ∈

vFE(Λi), and so

∆(u)E = jC∗(Λi)

(

∆(sΛ
i

)E
)

= 0,

where the last equality comes from applying the Cuntz–Krieger relation in
C∗(Λi).
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It remains to consider the situation where E ∩Λei 6= ∅. Using Lemma 4.11,
we get that

∆(u)E = uv +
∑

∅ 6=G⊆E
λ∈MCE(G)

(−1)|G|uλu
∗
λ

= uv +
∑

∅ 6=G⊆E∩Λi

λ∈MCE(G)

(−1)|G|uλu
∗
λ +

∑

∅ 6=G⊆E
G∩Λei 6=∅

λ∈MCE(G)

(−1)|G|uλu
∗
λ

= jC∗(Λi)

(

∆(sΛ
i

)E∩Λi)

+ (jX , jC∗(Λi))
(1)

(

∑

∅ 6=G⊆E
G∩Λei 6=∅

λ∈MCE(G)

(−1)|G|ΘsΛ
λ
,sΛ

λ

)

.

Since ∅ 6= E ∩Λei ⊆ vΛei , Proposition 4.12 tells us that sΛ
i

v ∈ ker(ψ)⊥. Thus,

∆(sΛ
i

)E∩Λi

= sΛ
i

v ∆(sΛ
i

)E∩Λi

∈ ker(ψ)⊥

as well. Since the Toeplitz representation (jX , jC∗(Λi)) is, by definition, Cuntz–

Pimsner covariant, to establish that ∆(u)E = 0, we need only verify that

(14) ψ
(

∆(sΛ
i

)E∩Λi)

=
∑

∅ 6=G⊆E
G∩Λei 6=∅

λ∈MCE(G)

(−1)(|G|+1)ΘsΛ
λ
,sΛ

λ
.

Again applying Lemma 4.11 (now to the Cuntz–Krieger Λ-family {sΛλ : λ ∈ Λ}),
and recalling that E is finite and exhaustive in Λ, we get that

0 = ∆(sΛ)E = ∆(sΛ)E∩Λi

+
∑

∅ 6=G⊆E
G∩Λei 6=∅

λ∈MCE(G)

(−1)|G|sΛλs
Λ
λ

∗
.

Rearranging, we see that

φ
(

∆(sΛ
i

)E∩Λi)

= ∆(sΛ)E∩Λi

=
∑

∅ 6=G⊆E
G∩Λei 6=∅

λ∈MCE(G)

(−1)(|G|+1)sΛλs
Λ
λ

∗
,

and so (14) follows.
Thus, {uλ : λ ∈ Λ} is a Cuntz–Krieger Λ-family in OX . The universal

property of C∗(Λ) then induces a ∗-homomorphism πu : C
∗(Λ) → OX such that

πu(s
Λ
λ ) = uλ for each λ ∈ Λ. Exactly the same argument as in Theorem 3.7

shows that πu and ι ×O φ are mutually inverse. Hence, we conclude that
C∗(Λ) ∼= OX . �

5. Relationships to other constructions

5.1. Graph correspondences. It is well known that if E = (E0, E1, r, s)
is a directed graph, then the graph algebra C∗(E) may be realized as the
Cuntz–Pimsner algebra of a Hilbert C0(E

0)-bimodule. We summarize this
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procedure and show that it is a special case of our construction when k = 1.
Given a, b ∈ C0(E

0) and x, y ∈ Cc(E
1) we define a · x · b ∈ Cc(E

1) and
〈x, y〉C0(E0) ∈ C0(E

0) by

(a · x · b)(e) := a(r(e))x(e)b(s(e))

and

〈x, y〉C0(E0)(v) :=
∑

e∈s−1(v)

x(e)y(e)

for each e ∈ E1 and v ∈ E0. Taking the completion of Cc(E
1) with respect to

the semi-norm induced by 〈 · , · 〉C0(E0) gives a Hilbert C0(E
0)-bimodule X(E)

(see [24, Lemma 2.16] for the details of this procedure), which we call the graph
correspondence. For v ∈ E0 and e ∈ E1, we write δv and δe for the point
masses of v and e, which we view as elements of C0(E

0) and Cc(E
1) ⊆ X(E),

respectively. It follows from [22, Example 8.8] that the Katsura ideal of the
graph correspondence is JX(E) = span{δv : 0 < |r−1(v)| <∞}. Moreover, [22,

Example 8.13] tells us that the maps sEv 7→ jC0(E0)(δv) and sEe 7→ jX(E)(δe)

for v ∈ E0 and e ∈ E1 induce an isomorphism from C∗(E) to OX(E).
Let Λ be the path category of E. Then Λ is a locally-convex 1-graph, and

we can apply our procedure from Section 4 to Λ. Removing edges of degree
e1 from Λ leaves Λ1 = E0, and so C∗(Λ1) ∼= C0(E

0) via the isomorphism
sΛ

1

v 7→ δv. Similarly, X = span{sΛλs
Λ
µ
∗
: λ, µ ∈ Λ, d(λ)1 = 1, d(µ)1 = 0}

is just span{sΛe : e ∈ E1}, which (if we identify the respective coefficient
algebras) is isomorphic to X(E) as a Hilbert bimodule via the map sΛe 7→ δe.
Thus, the isomorphism given by Theorem 4.16 is the same as that given by
[22, Example 8.13]. For this reason, we like to think of the construction in
Section 4 as a higher-rank graph correspondence. It is also not difficult to
see that the description of the Katsura ideal for the graph correspondence
given by [22, Example 8.13] is just a special case of Proposition 4.14. Since
Λ1 \ Λ1HJX

consists of just vertices, it follows that FE(Λ1 \ Λ1HJX
) = ∅,

and so B̃JX
= ∅. Thus, Proposition 4.14 tells us that JX is generated as

an ideal of C∗(Λ1) by the vertex projections {sΛ
1

v : 0 < |vE1| < ∞}, and so
JX = span{sΛ

1

v : 0 < |vE1| <∞}.

5.2. Iterating the Nica–Toeplitz and Cuntz–Nica–Pimsner construc-

tion. Sims and Yeend showed in [31, Section 5.3] that the Cuntz–Krieger al-
gebra of a finitely aligned k-graph may be realized as the Cuntz–Nica–Pimsner
algebra of a compactly aligned product system over Nk. In [12] we showed how
the Nica–Toeplitz and Cuntz–Nica–Pimsner algebras of a compactly aligned
product system overNk can be realized as iterated Toeplitz and iterated Cuntz–
Pimsner algebras, respectively. We now briefly explain how the results of the
current paper can be deduced by combining these two constructions (at least
for row finite graphs with no sources). For the relevant background informa-
tion on product systems and their associated C∗-algebras, we direct the reader
to [31].
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Let Λ be a finitely aligned k-graph. For each n ∈ Nk, (Λn,Λ0, r|Λn , s|Λn)
is a directed graph, and we write X(Λ)n for the associated graph correspon-
dence. It can be shown that there exists an associative multiplication on
X(Λ) :=

⊔

n∈Nk X(Λ)n such that δµδν = δs(µ),r(ν)δµν for each µ, ν ∈ Λ. This

multiplication induces a Hilbert C0(Λ
0)-bimodule isomorphism from the bal-

anced tensor product X(Λ)m ⊗C0(Λ0) X(Λ)n to X(Λ)m+n for each m,n ∈ Nk,
and so X(Λ) has the structure of a compactly aligned product system over
Nk with coefficient algebra C0(Λ

0). It can then be shown that there is an
isomorphism from the Nica–Toeplitz algebra NT X(Λ) to T C∗(Λ) that maps

iX(Λ)(δλ) to tΛλ for each λ ∈ Λ. Similarly, there exists an isomorphism from

the Cuntz–Nica–Pimsner algebra NOX(Λ) to C∗(Λ) mapping jX(Λ)(δλ) to s
Λ
λ

for each λ ∈ Λ.
Fix i ∈ {1, . . . , k}. Then X′ :=

⊔

{n∈N
k:ni=0} X(Λ)n has the structure of a

compactly aligned product system over N(k−1). Clearly, X′ is isomorphic as
a product system to X(Λi), and so NT X′ ∼= T C∗(Λi) and NOX′ ∼= C∗(Λi).
It follows from [12, Proposition 4.2] that the inclusion X′ ⊆ X(Λ) induces an
injective ∗-homomorphism φNT

X′ : NT X′ → NT X(Λ). Similarly, [12, Propo-

sition 5.6] says that if C0(Λ
0) acts faithfully on each X(Λ)n (i.e., Λ has no

sources), then there is an injective ∗- homomorphism φNO
X′ : NOX′ → NOX(Λ)

induced by the inclusion X′ ⊆ X(Λ). It follows from [12, Propositions 4.3
and 4.6] that the closed subspace

YNT
1 := span

{

iX(Λ)(X(Λ)ei )φ
NT
X′ (NT X′)

}

⊆ NT X(Λ)

has the structure of a Hilbert NT X′ -bimodule with operations

a · y · b = φNT
X′ (a)yφNT

X′ (b) and 〈y, w〉NT
X′ = (φNT

X′ )−1(y∗w)

for y, w ∈ YNT
1 and a, b ∈ NT X′ . After identifying the coefficient algebras

NT X′ and T C∗(Λi), routine calculations show that the map

iX(Λ)(δλ)φ
NT
X′

(

iX′(δµ)iX′(δν)
∗
)

7→ tΛλµt
Λ
ν

∗

for λ ∈ Λei , µ, ν ∈ Λi, with s(λ) = r(µ), s(µ) = s(ν) extends to a Hilbert
bimodule isomorphism from YNT

1 to the bimodule X constructed in Proposi-
tion 3.2. Using φNO

X′ in place of φNT
X′ , we also have a Hilbert NOX′ -bimodule

YNO
1 := span

{

jX(Λ)(X(Λ)ei )φ
NO
X′ (NOX′)

}

⊆ NOX(Λ),

which we can identify with the bimodule X from Section 4. Finally, [12,
Theorem 4.17] says that the inclusionYNT

1 ⊆ NT X(Λ) induces an isomorphism

T
Y

NT
1

∼= NT X(Λ), whilst [12, Theorem 5.20] says that if C0(Λ
0) acts faithfully

and compactly on each X(Λ)n, then the inclusion YNO
1 ⊆ NOX(Λ) induces an

isomorphism O
Y

NO
1

∼= NOX(Λ). Consequently, in the situation where Λ is row

finite and has no sources, the main result of this paper (Theorem 4.16) can be
obtained by combining [31, Proposition 5.4] and the results of [12].
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5.3. Semi-saturated circle actions and generalized crossed products.

Let B be a C∗-algebra and α : T → Aut(B) an action of the circle group. For
n ∈ Z, define Bn := {b ∈ B : αz(b) = znb for each z ∈ T} (the nth spectral
subspace for α). It is routine to check that each Bn is a closed subspace
of B, and B0 (which we call the fixed point algebra of α) is also closed under
multiplication and taking adjoints. Moreover, B∗

n = B−n and BnBm ⊆ Bn+m
for each n,m ∈ Z. In particular, since B0B1B0 ⊆ B1 and B∗

1B1 ⊆ B0,
[21, Lemma 3.2 (1)] tells us that B1 is a Hilbert B0-bimodule with left and
right actions given by multiplication and inner product 〈ξ, η〉B0 = ξ∗η for each
ξ, η ∈ B1. In fact, since B1B

∗
1 ⊆ B0, B1 also has a left B0-valued inner product

given by B0〈ξ, η〉 = ξη∗ for each ξ, η ∈ B1, which gives B1 the structure of a left
Hilbert B0-bimodule. It is straight-forward to see that the two inner products
satisfy the imprimitivity condition

(15) ξ · 〈η, µ〉B0 = B0〈ξ, η〉 · µ for ξ, η, µ ∈ B1.

Thus, if B∗
1B1 = B0 = B1B

∗
1 , then both of these inner products are full, and

B1 is a B0–B0 imprimitivity bimodule (see [24, Definition 3.1]). If the action α
is semi-saturated in the sense that B is generated as a C∗-algebra by the fixed
point algebra B0 and the first spectral subspace B1 (see [10, Definition 4.1]),
then [1, Theorem 3.1] says that B can be realized as the generalized crossed
product B0 ⋊B1 Z. Proposition 3.7 of [14] tells us that B0⋊B1 Z is canonically
isomorphic to OB1 , and so we conclude that any C∗-algebra with a semi-
saturated circle action may be realized as the Cuntz–Pimsner algebra of a
Hilbert bimodule whose coefficient algebra is equal to the fixed point algebra
of the action.

Suppose that Λ is a locally-convex finitely aligned k-graph and resume the
notation of Section 4. Let γΛi : T → Aut(C∗(Λ)) denote the restriction of
the gauge action γΛ to the ith coordinate of Tk. The nth spectral subspace
for γΛi is then C∗(Λ)n = span{sΛλs

Λ
µ
∗
: λ, µ ∈ Λ, d(λ)i − d(µ)i = n}. Thus,

φ(C∗(Λi)) ⊆ C∗(Λ)0 and X ⊆ C∗(Λ)1. Theorem 4.16 tells us that φ(C∗(Λi))
and X generate C∗(Λ), and so we see immediately that γΛi is a semi-saturated
action. Consequently, the discussion in the previous paragraph shows that
C∗(Λ) can be realized as the Cuntz–Pimsner algebra of the Hilbert C∗(Λ)0-
bimodule C∗(Λ)1. We now explain how this decomposition of C∗(Λ) as a
Cuntz–Pimsner algebra relates to that given by Theorem 4.16.

The first point to note is that whilst φ(C∗(Λi)) and X are always subsets of
C∗(Λ)0 and C∗(Λ)1 respectively, these containments are usually strict. Thus,
the descriptions of C∗(Λ) given by [1, Theorem 3.1] and Theorem 4.16 are not
the same. For example, consider the 1-graph Σ consisting of a single vertex and
n ≥ 2 loops {e1, . . . , en}. Then C∗(Σ) is the Cuntz algebra On, and removing
all the edges from Σ leaves the graph Σ1 consisting of just one vertex. Hence,
φ(C∗(Σ1)) ∼= C, whilst we see that sΣeis

Σ
ei

∗
∈ C∗(Σ)0 \ φ(C

∗(Σ1)) for each i ∈
{1, . . . , n} (in fact C∗(Σ)0 is the UHF algebraMn∞). In general, the bimodules
X and C∗(Λ)1 (and their respective coefficient algebras C∗(Λi) and C∗(Λ)0)
are related by Pimsner’s process of extending the scalars (see [21, Section 2]
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and [2, Section 3.1] for the details): the map

sΛλs
Λ
µ

∗
7→ sΛλ(0,ei) ⊗C∗(Λi) s

Λ
λ(ei,d(λ))

sΛµ
∗

for λ, µ ∈ Λ, with d(λ)i − d(µ)i = 1,

extends by linearity and continuity to an Hilbert C∗(Λ)0-bimodule isomor-
phism from C∗(Λ)1 to X ⊗C∗(Λi) C

∗(Λ)0.
Another key difference between our procedure for realizing C∗(Λ) as a

Cuntz–Pimsner algebra and that of [1] is the existence of a left inner prod-
uct satisfying the imprimitivity condition. Since C∗(Λ)1C

∗(Λ)1
∗ ⊆ C∗(Λ)0,

the spectral subspace C∗(Λ)1 carries a left C∗(Λ)0-valued inner product given
by C∗(Λ)0〈ξ, η〉 = ξη∗, and the left and right inner products on C∗(Λ)1 sat-

isfy (15). On the other hand, it is not true in general that XX∗ ⊆ φ(C∗(Λi)).
For example, if we return to the 1-graph Σ discussed above, then sΣei ∈ X
for each i ∈ {1, . . . , n}, but sΣeis

Σ
ei

∗
6∈ φ(C∗(Σ1)). It would be interesting to

see what the condition XX∗ ⊆ φ(C∗(Λi)) implies about the structure of the
graph Λ. As the next result shows, this condition determines precisely when
X also has the structure of a left Hilbert C∗(Λi)-bimodule and the two inner
products satisfy the imprimitivity condition.

Proposition 5.4. Let Λ be a locally-convex k-graph and let X be the Hilbert

C∗(Λi)-bimodule constructed in Section 4. Then there exists a left C∗(Λi)-
valued inner product C∗(Λi)〈 · , · 〉 giving X the structure of a left Hilbert C∗(Λi)-
bimodule and satisfying the imprimitivity condition

C∗(Λi)〈x, y〉 · z = x · 〈y, z〉C∗(Λi) for each x, y, z ∈ X

if and only if XX∗ ⊆ φ(C∗(Λi)).

Proof. It follows from [15, Proposition 5.18] that X has left C∗(Λi)-valued in-
ner product with the required properties if and only if KC∗(Λi)(X) ⊆ ψ(JX).

By [21, Lemma 3.2(3)], the ∗-homomorphism (ι, φ)(1) : KC∗(Λi)(X) → XX∗,
which sends Θx,y to ι(x)ι(y)∗ = xy∗ for x, y ∈ X , is an isomorphism. By
Theorem 4.16, the Toeplitz representation (ι, φ) is Cuntz–Pimsner covariant,
and so (ι, φ)(1) ◦ψ and φ agree on JX . Thus, X has a left C∗(Λi)-valued inner
product with the required properties if and only if XX∗ ⊆ φ(JX). Conse-
quently, to prove the result it remains to show that XX∗ ⊆ φ(C∗(Λi)) implies
XX∗ ⊆ φ(JX).

Suppose that XX∗ = span{sΛλs
Λ
µ
∗
: λ, µ ∈ Λ, d(λ)i = d(µ)i = 1} is con-

tained in φ(C∗(Λi)). By linearity and continuity, it suffices to show that
sΛλs

Λ
µ
∗
∈ φ(JX) for each λ, µ ∈ Λ with d(λ)i = d(µ)i = 1 and s(λ) = s(µ).

By assumption, sΛλs
Λ
µ
∗
= φ(a) for some a ∈ C∗(Λi), and so we need only check

that a ∈ JX . Since sΛλ , s
Λ
µ ∈ X , we see immediately that ψ(a) = ΘsΛλ ,sΛµ , and

so a ∈ ψ−1(KC∗(Λi)(X)). Thus, it remains to show that a ∈ ker(ψ)⊥. By

Proposition 4.10, ker(ψ) is generated as an ideal of C∗(Λi) by the collection of
vertex projections {sΛ

i

v ∈ Λ0 : vΛei = ∅}. Hence, by linearity and continuity,

if asΛ
i

ν s
Λi

η

∗
sΛ

i

v = 0 whenever ν, η ∈ Λi, v ∈ Λ0 with vΛei = ∅, and s(ν) = s(η),

r(η) = v, then a ∈ ker(ψ)⊥ as required. Since φ(asΛ
i

ν s
Λi

η

∗
sΛ

i

v ) = sΛλs
Λ
µ
∗
sΛν s

Λ
η
∗
sΛv
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and φ is injective, we need only show that r(µ) 6= r(ν). Looking for a contra-
diction, suppose that r(µ) = r(ν). Since d(µ)i = 1 and d(ν)i = 0, Lemma 4.1
tells us that s(ν)Λei 6= ∅. As s(ν) = s(η), the factorization property implies
that vΛei 6= ∅, which is impossible. Hence, a ∈ ker(ψ)⊥, and we conclude that
a ∈ JX . Thus, sΛλs

Λ
µ
∗
= φ(a) ∈ φ(JX), as required. �

Finally, we note that even when XX∗ is not contained in φ(C∗(Λi)), X can
still have the structure of a left C∗(Λi)-bimodule, provided we do not require
that the two inner products satisfy the imprimitivity condition. If E is a di-
rected graph, then, as shown in [26, Proposition 3.8], the graph correspondence
X(E) has a left C0(E

0)-valued inner product given by

C0(E0)〈f, g〉(v) =
∑

e∈r−1(v)

f(e)g(e) for f, g ∈ Cc(E
1), v ∈ Λ0,

which gives X(E) the structure of a left Hilbert C0(E
0)-bimodule. It is

straight-forward to see that the left and right C0(E0)-valued inner products
on X(E) do not satisfy the imprimitivity condition (as predicted by Proposi-
tion 5.4): if e, f ∈ E1 are distinct edges with common range, then

C0(E0)〈δe, δe〉 · δf = δr(e) · δf = δf 6= 0 = δe,fδe · δs(e) = δe · 〈δe, δf 〉C0(E0).

However, the left and right inner products on X(E) are compatible in the sense
that the right action of C0(E

0) is adjointable with respect to the left inner
product and the left action of C0(E

0) is adjointable with respect to the right
inner product. As shown in [4, Remark 1.9], this compatibility condition is
automatic if the two inner products satisfy the imprimitivity condition. Thus,
the graph correspondenceX(E) is a bi-Hilbertian C∗(Λi)-bimodule in the sense
of [25, Definition 2.1]. Unfortunately, we have so far been unable to determine
whether an analogous left inner product exists for the bimodule X associated
to graphs of rank 2 or more. This is certainly an issue worth exploring further:
if X has the structure of a bi-Hilbertian C∗(Λi)-bimodule, then the results of
[2, 25, 26, 27] could be applied to higher-rank graph algebras.

Acknowledgements

The results in this article extend the work from the second chapter of my
PhD thesis. I would like to thank my supervisors Adam Rennie and Aidan Sims
at the University of Wollongong for their advice and encouragement during my
PhD and during the writing of this article.

Appendix A. Gauge-invariant ideals of higher-rank graph
algebras

Suppose Σ is a finitely aligned k-graph and I is a gauge-invariant ideal of
C∗(Σ). If

HI :=
{

v ∈ Σ0 : sΣv ∈ I
}

and BI :=
{

E ∈ FE(Σ \ ΣHI) : ∆(sΣ)E ∈ I
}

,
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then [30, Theorem 4.6] tells us that I is generated as an ideal of C∗(Σ) by the
collection of projections

{

sΣv : v ∈ HI} ∪ {∆(sΣ)E : E ∈ BI
}

.

In this appendix we show that to get a generating set for I, we need only
consider those finite exhaustive sets in the collection BI consisting of edges.
We make use of this refinement of [30, Theorem 4.6] in our proof of Lemma 4.13.

To this end, we prove in the next result that if

B̃I :=

{

E ∈ BI : E ⊆
k
⋃

j=1

Σej
}

and F ∈ BI , then ∆(sΣ)F belongs to the ideal of C∗(Σ) generated by the
collection of projections {∆(sΣ)E : E ∈ B̃I}. Our proof uses the same tech-
niques as deployed in [23, Appendix C] to show that a Toeplitz–Cuntz–Krieger
Σ-family {qλ : λ ∈ Σ} satisfies relation (CK) if and only if ∆(q)E = 0 for each

E ∈ FE(Σ) with E ⊆
⋃k
j=1 Σ

ej .

Proposition A.1. Let Σ be a finitely aligned k-graph and suppose I is a

gauge-invariant ideal of C∗(Σ). Let J denote the ideal of C∗(Σ) generated by

the projections {∆(sΣ)E : E ∈ B̃I}. Then

(16) E ∈ BI =⇒ ∆(sΣ)E ∈ J.

Proof. We use induction on L(E) :=
∑k

j=1 max{d(λ)j : λ ∈ E}. If E ∈ BI
and L(E) = 1, then E ⊆ Σej for some j ∈ {1, . . . , k}, and so E ∈ B̃I . Thus,
∆(sΣ)E ∈ J as required.

Now let n ≥ 1 and suppose that (16) holds whenever L(E) ≤ n. Fix F ∈ BI
with L(F ) = n+ 1. Define

I(F ) :=
k
⋃

j=1

{

λ(0, ej) : λ ∈ F, d(λ)j ≥ 1
}

.

Since F ∈ FE(Σ \ ΣHI), [23, Lemma C.6] tells us that I(F ) ∈ FE(Σ \ ΣHI).
Moreover, since ∆(sΣ)F ∈ I, and each element of F extends an element of
I(F ), we see that

∆(sΣ)I(F ) = ∆(sΣ)I(F )∆(sΣ)F ∈ I.

Thus, I(F ) ∈ B̃I .
For each µ ∈ I(F ), we also define

ExtΣ\ΣHI
(µ;F ) :=

⋃

λ∈F

{

α ∈ s(µ)(Σ \ ΣHI) : µα ∈ MCE(µ, λ)
}

.

We claim that

(17) ∆(sΣ)ExtΣ\ΣHI
(µ;F ) ∈ J.

Firstly, note that L(ExtΣ\ΣHI
(µ;F )) ≤ n, by [23, Lemma C.8]. If s(µ) is

contained in ExtΣ\ΣHI
(µ;F ), then ∆(sΣ)ExtΣ\ΣHI

(µ;F ) = 0, which is certainly
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in J , so we suppose that s(µ) 6∈ ExtΣ\ΣHI
(µ;F ). Since F ∈ FE(Σ \ΣHI), [23,

Lemma C.5] says that ExtΣ\ΣHI
(µ;F ) ∈ s(µ)FE(Σ\ΣHI). Since ∆(sΣ)F ∈ I,

we can use [30, Lemma 3.7] to see that

∆(sΣ)ExtΣ\ΣHI
(µ;F ) = sΣµ

∗
∆(sΣ)F sΣµ ∈ I.

Thus, ExtΣ\ΣHI
(µ;F ) ∈ BI , and we may apply the inductive hypothesis to

conclude that ∆(sΣ)ExtΣ\ΣHI
(µ;F ) ∈ J . This completes the proof of claim (17).

Observe that if µ ∈ I(F ) and λ ∈ ExtΣ\ΣHI
(µ;F ), then there exists ν ∈ F

such that µλ ∈ MCE(µ, ν), and so

sΣr(F ) − sΣν s
Σ
ν

∗
= (sΣr(F ) − sΣν s

Σ
ν

∗
)(sΣr(F ) − sΣµλs

Σ
µλ

∗
).

Hence,

∆(sΣ)F = ∆(sΣ)F
∏

µ∈I(F )

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
).

Thus, ∆(sΣ)F will belong to the ideal J , provided

(18)
∏

µ∈I(F )

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
) ∈ J.

For µ ∈ I(F ), we have

sΣr(F ) − sΣµ s
Σ
µ

∗
= (sΣr(F ) − sΣµ s

Σ
µ

∗
)

(

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
)

)

.

On the other hand,

(sΣr(F ) − sΣµs
Σ
µ

∗
)

(

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
)

)

= sΣr(F )

(

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
)

)

− sΣµs
Σ
µ

∗
(

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
)

)

=

(

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
)

)

−

(

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣµ s
Σ
µ

∗
− sΣµλs

Σ
µλ

∗
)

)

=

(

∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F ) − sΣµλs
Σ
µλ

∗
)

)

− sΣµ∆(sΣ)ExtΣ\ΣHI
(µ;F )sΣµ

∗
.
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Combining the last two calculations, we see that
∏

λ∈ExtΣ\ΣHI
(µ;F )

(sΣr(F )−s
Σ
µλs

Σ
µλ

∗
) = (sΣr(F )−s

Σ
µs

Σ
µ

∗
)+sΣµ∆(sΣ)ExtΣ\ΣHI

(µ;F )sΣµ
∗
.

Taking the product as µ ranges over the set I(F ) and recalling that

∆(sΣ)ExtΣ\ΣHI
(µ;F ) ∈ J and

∏

µ∈I(F )

(sΣr(F ) − sΣµs
Σ
µ

∗
) = ∆(sΣ)I(F ) ∈ J,

we conclude that (18) holds. Thus, ∆(sΣ)F ∈ J , and the result holds by
induction. �

Remark A.2. The results of [30] in fact deal with the more general situation
of twisted relative Cuntz–Krieger algebras associated to higher-rank graphs.
In this more general setting, the analogous version of Proposition A.1 still
holds using exactly the same argument: all our calculations take place in the
diagonal subalgebra (which is the same regardless of the twist) and do not
make use of relation (CK).
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