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Higher-rank graph algebras are iterated
Cuntz—Pimsner algebras

James Fletcher
(Communicated by Siegfried Echterhoff)

Abstract. Given a finitely aligned k-graph A, we let A* denote the (k — 1)-graph formed by
removing all edges of degree e; from A. We show that the Toeplitz—Cuntz—Krieger algebra
of A, denoted by TC*(A), may be realized as the Toeplitz algebra of a Hilbert 7C™*(A%)-
bimodule. When A is locally-convex, we show that the Cuntz—Krieger algebra of A, which
we denote by C*(A), may be realized as the Cuntz—Pimsner algebra of a Hilbert C*(A?)-
bimodule. Consequently, 7C*(A) and C*(A) may be viewed as iterated Toeplitz and iterated
Cuntz—Pimsner algebras over Cp(A9%), respectively.

1. INTRODUCTION

Higher-rank graphs were first introduced by Kumjian and Pask as a gen-
eralization of directed graphs [17]. Loosely speaking, a higher-rank graph of
rank k (or simply a k-graph) is a countable small category A together with
a functor d: A — N satisfying the following factorization property: for any
A € A and m,n € NF, with d(\) = m + n, there exist unique u,v € A with
d(u) = m and d(v) = n such that A = pv. In the same paper, Kumjian and
Pask showed how to associate a C*-algebra to each row finite higher-rank graph
A with no sources, which we call the Cuntz—Krieger algebra of A. Subsequently
Raeburn, Sims, and Yeend [23], showed how to relax the hypotheses of [17],
and defined Cuntz—Krieger algebras for arbitrary finitely aligned higher-rank
graphs. Sims subsequently defined relative Cuntz—Krieger algebras for finitely
aligned higher-rank graphs, which includes the class of Toeplitz—Cuntz—Krieger
algebras as a special case [28, 29].

In this article, we show how the Toeplitz—Cuntz—Krieger algebra and Cuntz—
Krieger algebra of a finitely aligned higher-rank graph A may be viewed as
iterated Toeplitz and iterated Cuntz—Pimsner algebras over Co(A") (the space
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of functions on the graph’s vertex set that vanish at infinity), respectively.
Writing eq,...,e; for the standard generators of N*, we let A’ denote the
higher-rank graph formed by removing all edges of degree e; from A. In Theo-
rem 3.7 we show that the Toeplitz—Cuntz—Krieger algebra of A may be realized
as the Toeplitz algebra of a Hilbert bimodule whose coefficient algebra is the
Toeplitz—Cuntz-Krieger algebra of A?. In Theorem 4.16 we show that, pro-
vided A is locally-convex, the Cuntz—Krieger algebra of A may be realized as
the Cuntz—Pimsner algebra of a Hilbert bimodule whose coefficient algebra is
the Cuntz—Krieger algebra of A’. Repeatedly removing all edges of a fixed
degree from A eventually leaves a graph consisting solely of vertices, whose
Toeplitz—Cuntz—Krieger and Cuntz—Krieger algebras are both isomorphic to
Co(AY). When k = 1 the bimodule we construct is equivalent to the graph
correspondence associated to a directed graph [22, Example 8.3], and so we
like to think of our procedure as a higher-rank graph correspondence. We also
point out that our procedure is similar to the work of Kumyjian, Pask, and Sims
on k-morphs [18] (introduced as a systematic way of extending a k-graph to
a (k + 1)-graph by inserting a collection of edges of degree er11 between the
vertices of the original graph). In [18, Remark 6.9] Kumjian, Pask, and Sims
show that C*(A) may be realized as the Cuntz—Pimsner algebra of a Hilbert
C*(A%)-bimodule, provided A is row finite, and has no sources and no sinks
(in contrast to our procedure, which only requires local-convexity and finite
alignment).

Our main motivation for wanting to view Cuntz—Krieger algebras associ-
ated to higher-rank graphs as iterated Cuntz—Pimsner algebras is to try and
determine their K-theory. It is well-known that the K-theory of a directed
graph algebra (equivalently a 1-graph algebra) can be readily extracted from
the graph’s adjacency matrix [3, Theorem 6.1]. Using a homological spectral
sequence, Evans derived expressions for the K-theory of Cuntz—Krieger alge-
bras associated to row finite 2-graphs with no sources, again in terms of the
graph’s adjacency matrices [8, 9]. Unfortunately, Evans’ techniques do not
generalize to k > 3, and it remains an open problem to find nice formulae for
the K-groups of higher-rank graph algebras in terms of just their graphical
data. In the future, we hope to be able to combine Theorem 4.16 and the
Pimsner—Voiculescu exact sequence [15, Theorem 8.6] (a result that relates the
K-theory of a Cuntz—Pimsner algebra associated to a Hilbert bimodule and
the K-theory of the bimodule’s coefficient algebra) to do this. As an imme-
diate consequence of combining Theorem 3.7 with [21, Theorem 4.4], we are
able to conclude that the Toeplitz—Cuntz—Krieger algebra of a finitely aligned
higher-rank graph A is K K-equivalent to Co(AY), generalizing an earlier result
of Burgstaller [5, Theorem 1.1]. Consequently, Ko(7TC*(A)) = @, p0 Z and
K1 (TC*(A)) 0.

The inspiration for our attempts to realize the Toeplitz—Cuntz—Krieger and
Cuntz—Krieger algebras of a finitely aligned higher-rank graph as iterated
Toeplitz and Cuntz—Pimsner algebras was Deaconu’s work on iterating the
Pimsner construction [6]. Unfortunately, some of Deaconu’s proofs lack detail,
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and it is not clear which of his various hypotheses are necessary to make the
procedure work. Motivated by this lack of clarity, as well as the results in
[11, Chapter 2], we explained in [12] how Deaconu’s iterative procedure can be
extended to quasi-lattice ordered groups that are more general than (Z2, N?).
In particular, [12, Theorem 4.17] shows that the Nica—Toeplitz algebra of a
compactly aligned product system over N¥ can be realized as a k-fold iterated
Toeplitz algebra. Furthermore, [12, Theorem 5.20] shows that the Cuntz—Nica—
Pimsner algebra can be realized as a k-fold iterated Cuntz—Pimsner algebra,
provided the action on each fibre of the product system is faithful and by
compacts.

In [31, Section 5.3] Sims and Yeend show that the Cuntz—Krieger algebra of
a finitely aligned k-graph may be realized as the Cuntz—Nica—Pimsner algebra
of a compactly aligned product system over N¥. It is routine to show that
the action on each fibre of this product system is faithful if and only if the
graph has no sources, and by compacts if and only if the graph is row finite. In
Section 5.2 we discuss how, in the situation where the graph is row finite and
has no sources, Theorem 4.16 can be deduced from [31, Proposition 5.4] and
[12, Theorem 5.20]. The main purpose of this paper is thus to show that our
iterative procedure still works if we drop the hypothesis of row finiteness and
the hypothesis of no sources is relaxed to local-convexity. The construction
presented in this paper is also significantly simpler and easier to understand
than the construction found in [12], which could be of use to those interested
specifically in the C*-algebras associated to higher-rank graphs, and do not
want to delve into the theory of product systems. Furthermore, the isomor-
phisms given by Theorem 3.7 and Theorem 4.16 are more explicit than those
given by combining the results of [12] and [31, Section 5.3].

In the analysis of [11, Section 2.6], the assumption that A has no sources
serves two key purposes. Firstly, it ensures that the inclusion of A* in A
induces an (injective) *-homomorphism from C*(A?) to C*(A) (which we use
to construct our bimodule), and secondly, it implies that C*(A?) acts faithfully
on our bimodule. The assumption that A is row finite is used to ensure that
C*(A?) acts compactly on our bimodule. Combining these two hypotheses,
we concluded in [11, Theorem 2.6.12] that the Katsura ideal of our bimodule
was all of C*(A?), which made it relatively easy to determine the structure
of the bimodule’s Cuntz—Pimsner algebra. As shown in [12, Example 5.4] and
Remark 4.7, if A has sources, then C*(A) need not contain a copy of C*(A?). In
Proposition 4.6, we show that this issue can be avoided, provided we restrict
our attention to locally-convex graphs. Allowing A to have sources and/or
infinite-receivers can also result in the Katsura ideal being a proper ideal of
C*(A%), and the majority of Section 4 is spent determining what the ideal looks
like in this situation.

Our strategy is to show that the Katsura ideal is gauge-invariant (see Propo-
sition 4.9), and then use the results of [30] to determine its generators. Given
a finitely aligned k-graph 3, it follows from [30, Theorem 4.6] that if I is a
gauge-invariant ideal of C*(X), then I is generated as an ideal by its vertex
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projections and a collection of projections corresponding to certain finite ex-
haustive subsets of a subgraph of ¥. In Proposition A.1 we show that it suffices
to consider only those finite exhaustive sets consisting of edges. We present
this result separately in an appendix since it may be of general interest to those
investigating gauge-invariant ideals of higher-rank graph algebras.

Applying these results to our bimodule, we show in Proposition 4.14 that
the Katsura ideal is generated as an ideal by the vertex projections correspond-
ing to vertices admitting a finite and nonzero number of edges of degree ¢; (see
Proposition 4.12) and a collection of projections corresponding to finite ex-
haustive subsets of a subgraph of A? that can be extended to finite exhaustive
subsets of A (see Lemma 4.13 for the precise description). With this descrip-
tion of the Katsura ideal, it is then relatively straight-forward to check that
the Cuntz—Pimsner algebra of our bimodule coincides with the Cuntz—Krieger
algebra of our original graph.

Finally, we point out that the results in Section 4 suggest that the hypothesis
of faithful and compact actions present in the author’s work on iterating the
Cuntz—Nica—Pimsner construction for compactly aligned product systems (see
[12, Theorem 5.20]) can be relaxed (at least for product systems over N¥).
The idea would be to develop a suitable notion of local-convexity for product
systems (see the discussion before and after [12, Example 5.4]), and then make
use of Katsura’s work on gauge-invariant ideals of Cuntz—Pimsner algebras [16,
Theorem 8.6].

2. PRELIMINARIES

2.1. Hilbert bimodules and their associated C*-algebras. Let A be a
C*-algebra. An inner product A-module is a complex vector space X equipped
with a map (-,-)a: X x X — A, linear in its second argument, and a right
action of A, such that for any z,y € X and a € A, we have

(1) <x7y>A = (y,x>f‘4,
(11; <$,y : CL>A = <3§‘, y>Aa,

(iii) (x,x)a >01in A,
(iv) (xz,x)a =0 if and only if x = 0.
It follows from [19, Proposition 1.1] that the formula ||z|x := |\<x,x>AH114/2

defines a norm on X. If X is complete with respect to this norm, we say that
X is a Hilbert A-module.

We say that amap T: X — X is adjointable if there existsamap 7% : X — X
such that (Tz,y)a = (x,T*y) 4 for each z,y € X. Every adjointable opera-
tor T is automatically linear and continuous, and the adjoint 7™ is unique.
The collection of adjointable operators on X, denoted by L£4(X), equipped
with the operator norm is a C*-algebra. For each z,y € X, there is an ad-
jointable operator ©,, € L4(X) defined by ©,4(2) = z - (y,2)a. We call
operators of this form generalized rank-one operators. The closed subspace
Ka(X) :=span{O,, : z,y € X} is an essential ideal of £4(X), whose ele-
ments we refer to as generalized compact operators.
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A Hilbert A-bimodule consists of a Hilbert A-module X together with a
*-homomorphism ¢: A — £4(X). We think of ¢ as implementing a left action
of A on X, and frequently write a - for ¢(a)(x). Since each ¢(a) € L4(X) is
A-linear, we have that a - (x-b) = (a-z) - b for each a,b € A and xz € X. If
we let A act on itself by left and right multiplication, and define an A-valued
inner product on A by (a,b)4 := a*b, we get a Hilbert A-bimodule, which we
denote by 4Ax. We say that a map between two Hilbert A-bimodules is a
Hilbert A-bimodule isomorphism if it is left A-linear, surjective, and preserves
the A-valued inner product (this last condition implies that the map is right
A-linear and injective).

The balanced tensor product of a pair of Hilbert A-bimodules X and Y,
which we denote by X ® 4 Y, is the completion of the complex vector space
spanned by elements x ® 4 y, where x € X and y € Y, subject to the relation
(r-a)®ay = 2 ®4 (a-y), in the norm determined by the A-valued inner
product (x ®4 y,w ® 2)a = (y,{x,w)a - z) 4. There are right and left actions
of Aon X ®4 Y determined by a- (z®4y) b= (a-z)®a4 (y-b), which gives
X ®4Y the structure of a Hilbert A-bimodule. We define the balanced tensor
powers of X as follows: X®0 := 44,4, X®! := X, and X®" := X @4 X®"1
for n > 2.

A Toeplitz representation of a Hilbert A-bimodule X in a C*-algebra B
consists of a pair of maps (¢, w), where ©: X — B is linear and 7: A — B is
a *-homomorphism, satisfying the following relations

(T1) ¢(a-z) =m(a)P(x) for each a € A, v € X,

(T2) Y(x-a) =y(x)r(a) for each a € A, v € X,

(T3) (x)*y¥(y) = 7((x,y)a) for each z,y € X.

Given a Hilbert A-bimodule X, we define the Fock space Fx to be the set of
sequences ()32 such that z, € X®" for eachn > 0 and }_, < o (Zn, Tn) 4 con-
verges in A. One can then show that ((2,)2%0, (Un)20) 4 = 3 p50(Tn, Yn) 4
converges in A for (1,)5%,, (yn)5% € Fx. Letting A act on Fx component-
wise gives Fx the structure of a Hilbert A-bimodule [19, p.6]. There exists a
s-homomorphism 7: A — L4(Fx) such that w(a)((z,)5%y) = (a - 2,)22,, as
well as a linear map ¢: X — L4(Fx) such that

0 ifm=0,
(w(w)((wn)i‘;o))m =37 %o ifm=1,
TRA L1 ifm>2.

Routine calculations show that the pair (¢, ) is a Toeplitz representation of
X in L£4(Fx), which we call the Fock representation of X.

Proposition 1.8 of [13] shows that a Toeplitz representation (¢, 7) of a
Hilbert A-bimodule X gives rise to Toeplitz representations of the tensor pow-
ers of X. If we define 1®° := 7, 9®! := 1), and, for n > 2, let »®" be the linear
map determined inductively by ¥®"(z ®4 y) = ¥(z)®"1(y) for z € X and
y € X®"~1 then (®", ) is a Toeplitz representation of X®™ for n € NU{0}.
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Using relations (T1)—(T3) and the Hewitt—Cohen-Blanchard factorization the-
orem, [24, Proposition 2.31], it can be shown that the C*-subalgebra generated
by ¥(X) Um(A) is span{y®™(2)y®" (y)* : m,n > 0,z € X®™ y € X®"},
Theorem 2.10 of [20] can be used to show that there exists a C*-algebra Tx,

which we call the Toeplitz algebra of X, and a Toeplitz representation (ix,i4)
of X in Tx, that are universal in the following sense:

(i) Tx is generated by ix(X)Uia(A);

(ii) given any Toeplitz representation (¢, 7) of X in a C*-algebra B, there

exists a s-homomorphism ¢ X7 7 : Tx — B such that

(Y xym)oix =19 and (Y Xymw)ois=m.

It follows that Tx = span{i{™ (2)i$" (y)* : m,n > 0,z € X®™ y € XO"},

The universal property of the Toeplitz algebra ensures it carries a strongly
continuous action of the circle group v: T — Aut(7Tx ), which we call the gauge
action. The action is determined by . (ix (x)) = zix(z) and v, (ia(a)) =ia(a)
foreach z € T, x € X, and a € A.

In [15] Katsura defined what has come to be accepted as the correct notion
of a Cuntz—Pimsner algebra for a Hilbert bimodule with a non-faithful left
action. Given a Toeplitz representation (i, ) of a Hilbert A-bimodule X in
a C*-algebra B, by [22, Proposition 8.11], there exists a *-homomorphism
(1, ™) Ka(X) — B such that (¢, 7)(0,,) = ¥(x)(y)* for z,y € X.
We also define ker(¢)t = {a € A : ab = 0 for all b € ker(¢)}. We then
say that (i, ) is Cuntz-Pimsner covariant if (¢, 7)) (4(a)) = 7(a) for every
a€ Jx = ¢ H(Ka(X)) Nker(p):.

Theorem 2.10 of [20] can again be used to show that there exists a C*-algebra
Ox, which we call the Cuntz—Pimsner algebra of X, and a Cuntz—Pimsner
covariant Toeplitz representation (jx,j4) of X in Ox that are universal in the
following sense:

(i) Ox is generated by jx(X) U ja(A);

(ii) given any Cuntz—Pimsner covariant Toeplitz representation (¢, 7) of X
in a C*-algebra B, there exists a *-homomorphism ¢ xp 7: Ox — B
such that

(Y xom)ojx =19 and (W xXpom) oja=m.

It follows that Ox is a quotient of Tx, and routine calculations show that the
gauge action on the Toeplitz algebra descends to this quotient.

2.2. Higher-rank graphs and their associated C*-algebras. A higher-
rank graph of rank & (also known as a k-graph) consists of a countable small
category A and a functor d: A — NF, called the degree map, satisfying the
following factorization property: if m,n € N¥ and A € A with d(\) = m + n,
then there exist unique p,v € A, with d(u) = m and d(v) = n, such that
A = powv. Since we think of the morphisms in the category as paths in a
graph, we write Au for A o p whenever A, p € A with dom(A) = cod(u).
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The factorization property has some important consequences. Firstly, it
follows that d=1(0) = {id, : 0 € Obj(A)}. Secondly, if A € A and m,n € N*
with m < n < d(X), then two applications of the factorization property shows
that there exist unique p,v,n € A with A = pvn and d(u) = m, d(v) =n —m,
d(n) = d(A) —n. We write A(0,m) for p, A(m,n) for v, and A(n,d(X)) for n.

The following notation and terminology is standard when working with
higher-rank graphs. We write e; for the ith generator of N*, and n; for the ith
component of n € N¥. We define a partial order on N* by m < n <= m; <n;
for all i. For a nonempty finite set E := {my,...,m,} C N*¥ we write \/ F
and A E for the component-wise maximum and component-wise minimum
of my, ..., my, respectively (and define both \/ @ and A @ to be zero). For
simplicity’s sake, we write m V n for \/{m,n}, and m A n for A{m,n}. For
each n € N¥| we define A" := {\ € A : d(\) = n}. For each A\ € A, we
define r()\) := id(cod())) € A° and s()\) := id(dom()\)) € A°. The maps
r,s: A — AC are called the range and source maps of A. Given a subset
E C A and a path A € A, we define A\E := {Ap: p € E,s(\) = r(u)} and
EX:={pX:p € E, r(A) = s(u)}. We say that a k-graph A has no sources if
for every v € A and every n € N*, the set vA™ is nonempty. For n € N*, we
define AS" := {A € A:d(\) <nand d(N\); <n; = s(\)A% = @} (a simple
induction argument shows that each vA<" is always nonempty). We say that
a k-graph A is locally-convex if whenever A € A and p € A%, with i # j and
r(A) = r(u), we have s(A\)A% # & and s(u)A¢ # &.

Before we look at associating C*-algebras to higher-rank graphs, we need
to discuss the concept of (minimal) common extensions. For p, v € A, we set

CE(p,v) := pANvA,
MCE(, v) := CE(p, v) N AVt

We call elements of CE(yu, ) common extensions of p and v, and elements of
MCE(u, v) minimal common extensions of p and v. We also define

A™(u,v) = {(a, B) : pov = vB € MCE(p1,v) }.

That is, a common extension of p,v € A is a path that ends with both pu
and v, and a minimal common extension is a common extension that has
minimal degree (i.e., d(u) V d(v)). Elements of A™®(u,v) are then ordered
pairs of paths that when prepended to p and v, respectively, give a minimal
common extension. The factorization property implies that if A is a common
extension of u and v, then A(0,d(u)Vd(v)) is a minimal common extension and
(Ad(p),d(p) V d(v), \d(v),d(p) V d(v))) € A™"(u,v). We can also extend
the notion of minimal common extensions to arbitrary nonempty finite subsets
G C A by setting CE(G) := e VA and MCE(G) := CE(G) N AV 4%, We
say that a higher-rank graph A is finitely aligned if A™"(y, v) is finite (possibly
empty) for every p,v € A (equivalently MCE(u, v) is finite for every p,v € A).

Given v € AY, we say that a set £ C vA is exhaustive in A if for each
u € vA, there exists v € E such that A™"(y,v) is nonempty. We point out
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that if v € F, then E is automatically exhaustive. We write

FE(A) := U {E CvA\ {v}: E is finite and exhaustive in A}.
vEAO

For E € FE(A), we write r(E) for the vertex v € A® such that E C vA. We
also define vFE(A) := {E € FE(A) : r(E) = v}.

We now define Toeplitz—Cuntz—Krieger families for finitely aligned k-graphs.
We say that a collection {gy : A € A} of elements in a C*-algebra is a Toeplitz—
Cuntz—Krieger A-family if

(TCK1) {q, : v € A%} is a set of mutually orthogonal projections,

(TCK2) ¢uqv = g for all p,v € A with s(u) = r(v),

(TCK3) q,qv = 2 (a,B)eAmin(up) dadp for all v € A, where the empty

sum is interpreted as zero.

It follows from relation (TCK3) that ¢g, = 0xugs(n) for each A\, u € A
with d(A\) = d(u), and so, by (TCK1), Toeplitz—Cuntz—Krieger families con-
sist of partial isometries. Furthermore, relations (TCK1)—-(TCK3) imply that
C*({gr : X € A}) =span{grg}; : A, € A}. Given a vertex v € A° and a finite
set E C vA, we fix the following notation:

A(Q)” = ] (@ — axg3).

AeE

Using [20, Theorem 2.10], it can be shown that there exists a C*-algebra
TC*(A), called the Toeplitz—Cuntz—Krieger algebra of A, and a Toeplitz—
Cuntz-Krieger A-family {t} : A\ € A} in 7C*(A), that are universal in the
following sense:

(i) TC*(A) is generated by {t5 : A € A};

(i) if {gx : A € A} is a Toeplitz—Cuntz—Krieger A-family in a C*-algebra B,
then there exists a *-homomorphism 7,: 7C*(A) — B that carries t}
to gy for each A € A.

It is useful to know when the s*-homomorphism induced by the universal
property of TC*(A) is faithful. By [30, Theorem 3.15], if {gx : A € A} is
a Toeplitz—Cuntz—Krieger A-family, then m, is faithful provided each vertex
projection ¢, is nonzero and A(q)¥ # 0 for each E € FE(A).

We say that a Toeplitz—Cuntz—Krieger A-family {gx : A € A} is a Cuntz—
Krieger A-family if

(CK) A(q)¥ =0 for each E € FE(A).

It follows from [20, Theorem 2.10] that there exists a C*-algebra C*(A), which
we call the Cuntz—Krieger algebra of A, and a Cuntz—Krieger A-family {sﬁ\‘ :
A € A} in C*(A), that are universal in the following sense:
(i) C*(A) is generated by {s) : A € A};
(ii) if {gr : A € A} is a Cuntz—Krieger A-family in a C*-algebra B, then
there exists a *-homomorphism 7,: C*(A) — B that carries s} to gy
for each A € A.
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The universal property of the Cuntz—Krieger algebra gives the existence of

an action ¥*: T* — Aut(C*(A)), which we call the gauge action, such that
A (sd) = 29N sh for each A € A and z € T% (where 2™ := [[+_, 2™ for each
m € NF). An ¢/3 argument shows that " is strongly continuous.

We can use the gauge action to determine when representations of Cuntz—
Krieger algebras are faithful (see [23, Theorem 4.2]). If 7: C*(A) — B is
a representation in a C*-algebra B, then 7 is injective provided m(s2) is
nonzero for each v € A® and there exists a strongly continuous action §: T* —

Aut(C*({m(s)) : A € A})) such that 6, om = 7o+ for z € T.

3. REALIZING TC*(A) AS A TOEPLITZ ALGEBRA

Given a k-graph A (with k& > 1), we fix some ¢ € {1,...,k} and define
At = {\ € A :d()\); = 0} (i.e., we remove all edges of degree ¢; from A).
Restricting the degree functor gives A’ the structure of a (k — 1)-graph. In
this section we show how the Toeplitz—Cuntz—Krieger algebra of A may be
realized as the Toeplitz algebra of a Hilbert 7 C*(A%)-bimodule. We will define
the Hilbert 7C*(A?)-bimodule that we are interested in to be a certain closed
subspace of TC*(A). To equip this set with left and right actions of TC*(A?),
we want a *-homomorphism from 7C*(A?) to TC*(A). Moreover, to ensure
that we have a 7C*(A?%)-valued inner product, we need to know that this
*x-homomorphism is injective.

Proposition 3.1. Let A be a finitely aligned k-graph. Then there exists an
injective *-homomorphism ¢: TC*(AY) — TC*(A) such that ¢(ty) = 3 for
each X € A%

Proof. Clearly, the collection {t{ : X\ € A} satisfies (TCK1) and (TCK2).
To see that {t} : A € A’} also satisfies (TCK3), it suffices to show that
A (g p) = (AD)™0(y,v) for any p,v € A, To see this, observe that for
any (a, 3) € A™?(u,v), we have

d(a); = (d(u) v d(v) = d(u)), = max{d(u);, d(v);} —d(n); =0
and

A(B)i = (d() v d(v) — d(v)), = max{d(u);, d(v);} — d(v); = 0,
and so (a, 8) € (A))™(y, v). Thus, {t} : A € A’} is a Toeplitz—Cuntz-Krieger
Aifamily in TC*(A), and so by the universal property of 7C*(A?), there
exists a *-homomorphism ¢: TCO*(A?) — TC*(A) such that ¢(td") =t} for
each A € A’. It remains to check that ¢ is injective.

Routine calculations show that for each A € A, there exists wy € B(£%(A))
such that wx&, = 0sn),r(érn for each p € A (where {{x : X € A} is the
canonical orthonormal basis for £2(A)). Further straight-forward calculations
show that the adjoint of w) is determined by the formula

{fn if v = A\n for some n € A,

*
w)\gu = .
0 otherwise,
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and that the collection {w) : A € A} is a Toeplitz—Cuntz—Krieger A-family in
B(£2(A)). Since the *-homomorphism 7,,: TC*(A) — B(¢2(A)) that sends 3
to wy is necessarily norm-decreasing, and wx§yn) = §x # 0 for each A € A,
we conclude that each ¢{ in the universal Toeplitz—Cuntz-Krieger A-family is
nonzero. In particular, ¢t} # 0 for each v € A°. Thus, to prove that ¢ is
injective, by [30, Theorem 3.15], it remains to show that A(t*)F # 0 for each
E € FE(AY). A simple calculation shows that for each u € A,

if r(u) =r(F) and AA for all A € E,
A(w)Eé,, _ g# (:u) ] ( ) K ¢
0  otherwise.
Since r(E) ¢ E, we have that m,(A(t)?). 5 = A(w)P& 5 = &(m) # 0,
and so A(t*)® # 0. We conclude that ¢ is injective. O

Using the injective *-homomorphism from the previous proposition, we de-
fine a collection of Hilbert 7C*(A?)-bimodules.

Proposition 3.2. Let A be a finitely aligned k-graph. For each n > 0, define
X, c=span{tyth "\ € A, d(N); = n,d(u); =0} € TC*(A),

taking t'he closure with respect to the norm on TC*(A). Then X,, is a Hilbert

T C*(AY)-module with inner product and right action given by

(1) (T, ) Fonaiy = o Hz*y) and z-a=z¢(a)

for z,y € X,, a € TC*(A"). The norm on X, induced by (- s Vo (A
agrees with the norm on TC*(A). Additionally, there exists a *x-homomorphism
Yn: TC*(AY) = Lyc-ai)(Xn) such that ¢n(a)(x) = ¢(a)z for each a €
TC*(AY) and x € X,,, giving X,, the structure of a Hilbert TC*(A?)-bimodule.
Proof. By [21, Lemma 3.2 (1)] (see also [7] for a more categorical approach), if
(i) X;Xn C ¢(TC*(AY)),
(il) Xno(TC*(A")) C X,
then X,, is a Hilbert 7C*(A%)-module with inner product and right action
given by (1), and the norm on X,, agrees with the norm on 7C*(A).
Let us check that (i) holds. Fix A\, X, u, ¢/ € A with d(X); = d(X'); = n and
d(p)i = d(p')i = 0. If (o, B) € A™P(A, X'), then
d(pa)i = d(p)i + d(@); = d(a); = max{d(\);, d(X);} — d(N)i =n—n =0,
d(i'B)i = d(u)i + d(B); = d(B); = max{d(\);,d(\);} —d(N)i =n—n=0.
Hence, making use of relation (TCK3), we see that
(BE) (thth ") = 83" th” = > thoth " € o(TC*(AY)).
(a,B)EA™In(X,N)

Since both the adjoint and multiplication are continuous on 7C*(A), and
d(TC*(AY) is a x-subalgebra of TC*(A), we see that X*X,, C ¢(TC*(A?)).
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Now we check that (ii) holds. Again, by linearity and continuity, it suffices
to show that if \,n, p,u € A with d(\); = n and d(n); = d(p); = d(p); = 0,
then t‘}tifﬂtfl\ltf ) € X,,. Observe that if (o, 8) € A™"(p, 7), then

d(Aar); = d(A)i +d(a); = n+ d(a); = n+max{d(p)i,d(n):} — d(p); =n
and

d(pB)i = d(p)i + d(B)i = max{d(p)i,d(n)i} — d(n); =0.
Hence,
Rl (1 ) = e = YT ey e X,
(o, B) €A™ (1)
as required.

To complete the proof we must show that there exists a >k—homomorphis‘m
Y TCO*(A') = Lyowaiy(Xn) with ¥, (a)(x) = ¢(a)z for each a € TC*(A?),
x € X,,. Note that if \,n, p,u € A with d(N\); = n, d(n); = d(p); = d(u); =0,
and (a, ) € A™"(p, \), then

d(nar); = d(n)i + d(a)i = d(a); = max{d(p)i,; d(A)i} — d(p)i =d(A)i —0=n
and
d(ppB)i = d(p)i+d(B); = d(B); = max{d(p)i, d(A)i} —d(N); = d(A)i—d(A); = 0.
Thus, an application of relation (TCK3) shows that
S ATV AT = AT — S b e X,
(o, B)EA™I™(p,\)

By linearity and continuity, we have that ¢(7C*(A"))X,, C X,. It follows
from [21, Lemma 3.2(2)] that for a € TC*(A?), the map ¥,(a): X, — X,
defined by ¥, (a)(z) := ¢(a)x is adjointable. Since ¢ is a x-homomorphism,
the map 1, : TC*(A?) — Lyc»aiy(Xn) is also a x-homomorphism. O

Our aim is to show that the Toeplitz algebra of the Hilbert 7C*(A?)-
bimodule X := X; is isomorphic to the Toeplitz—Cuntz—Krieger algebra of A.
Before we do this, we need to analyze the tensor powers of X. Firstly, we need
a lemma telling us how, given paths 7,p € A, we can factorize elements of

Amin(n’ p)

Lemma 3.3. Let A be a finitely aligned k-graph. For eachn,p € A andm € NF
with m < d(p), we have

A™(n, p) = {(a,6) : (a, B) € A™(n, p(0,m)), (7,6) € A™™(B, p(m, d(p)))}-
Proof. To start, we prove that
{(a7,6) : (a, B) € A™" (1, p(0,m)), (7,0) € A™(8, p(m,d(p)))} T A™" (1, p).
Fix (o, 8) € A™ (1, p(0,m)) and (v,0) € A™(8, p(m, d(p))). Then

nay = p(0,m)By = p(0,m)p(m,d(p))d = pé,
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which shows that nay = pd € CE(n, p). We show that the common extension
nay = pd of the paths i and p is minimal by computing the degree of pd. Since
(7,0) € A™(B, p(m, d(p))), we see that

d(pd) = d(p(0,m)) + d(p(m, d(p))9)
=m+d(B) vV d(p(m,d(p))
=m+d(B)V (d(p) —m).
Since (o, B) € A™®(n, p(0,m)), this must be the same as
i+ (d() v d(p(0,m)) — d(p(0,m))) V (d(p) — m)
— -+ (dn) v m —m) v (d(p) — m).
Fix i € {1,...,k}. If d(n); > m;, then
(m + (d(n) vm —m) Vv (d(p) —m)), = m; + max{d(n); — ms, d(p); — m;}
= max{d(n), d(p)i} = (d(n) vV d(p))i-

On the other hand, suppose d(n); < m;. Using the fact that d(n); < m; < d(p);
for the penultimate equality, we see that

(m+ (d(n) vim —m) Vv (d(p) —m)), = m; + max{0,d(p); — m;} = d(p)i
= max{d(p),d(n)i} = (d(n) V d(p))i-

Thus, d(pd) = d(n) V d(p), and we conclude that (ay,d) € A™(, p).
Next we check that

A™ (i, p) € {(0,0) : (0, B) € AT (1, p(0,m)), (3,6) € A™™ (8, p(m, d(p)))}.
Suppose that (A, 7) € A™%(n, p) and define paths o := A(0,d(n) V m — d(n)),
B = (pr)(m,d(n)vm), v := A(d(n) Vm—d(n), d()), and 6 := 7. By construc-
tion, (ay,d0) = (A, 7). Thus, it remains to show that (a, 8) € A™™(n, p(0,m))
and (v,0) € A™n(3, p(m,d(p))). Since N\ = p7, we see that

noe=nA(0,d(n) v m —d(n)) = (nA)(0,d(n) v m)

= (p7)(0,d(n) v m) = (p7)(0,m) (p7)(m,d(n V m)).
As m < d(p), this must be the same as
p(0,m) (p7)(m,d(nV m)) = p(0,m)B.
Hence, na = p(0,m)s € CE(n, p(0,m)). Since
d(na) = d(n) + d(a) = d(n) + d(n) V- m — d(n)
=d(n) vm =d(n)Vd(p(0,m)),

we conclude that (a, 8) € A™(n, p(0,m)). Since d(n) < d(n) V m, we see that

)

By = (pr)(m, d(n) v m) Ad(n) v m — d(n),d(A))
= (nA)(m, d(n) V:m) A(d(n) V- m — d(n),d(\))
= (nA)(m, d(n) vV :m) (nA)(d(n) V m, d(nX))
= (nA)(m, d(nA)).
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As nA = p7 and m < d(p), this is equal to

(p7)(m, d(pT)) = p(m, d(p))T = p(m, d(p))d.
Thus, By = p(m,d(p))s € CE(B, p(m,d(p))). Since (A\,7) € A™™"(1, p), we
have
d(Bry) = d(n) vV m —m+dQA) —d(n) vVm+d(n) = dA) +d(n) -
= d(n) v d(p) —d(n) +d(n) —m = (d(n) v d(p)) —m.
As m < d(p), this is the same as
d(n) v mVd(p) —m = (d(n) Vm—m)V(d(p) —m)
=d(B) v (d(p) —m) = d(B) V d(p(m, d(p))),

which shows that (v, ) € A™R(3, p(m,d(p))). O
Proposition 3.4. Let A be a finitely aligned k-graph. Define X,, as in Propo-
sition 8.2 and set X := X;. Then for each n € NU {0}, there exists a Hilbert
TC*(AY)-bimodule isomorphism Q,: X,, — X®" such that Qy = ¢~ and, for
n>1,
(2) Qu(BR87) = Bh0,er) @70 (a1) Lamt (BReraon )
for each A\, € A with d(\); =n and d(u); = 0.
Proof. Define Qp: Xo — X®0 = TC*(A?) to be ¢~—L. Clearly, Qp is a Hilbert
TC*(A%)-bimodule isomorphism. For n > 1, we claim that there exists a
Hilbert 7C*(A%)-bimodule isomorphism Q,: X,, — X®" satisfying (2). We
will define this collection of maps inductively.

Fix n > 0 and suppose that Q,,: X,, — X®" is a Hilbert 7C*(A?)-bimodule
isomorphism satisfying (2). Let A, p,v,n € A with d(\); = d(v); =n + 1 and

d(p); = d(n); = 0. Using the fact that Q,, is left TC*(A?)-linear for the second
equality, we see that

(BN 0,er) BT (0) U (Breraon e )s tooen) BT (a) 2 (EDeraciytn )
= (2 (Beraontn ) Eo.cos thio.en Vo) W (tieraitn )
= (U (B ccaontn ) 2 ((E0.e ti0.c0) (0 * tiendotn ))-

Since 2, is inner product preserving, this is equal to

n

A A* A A*
(Beraonth 180, tooentoesdonty >TC “(A%)
=o' (th t)\ (e5,d(N)) tx(o ei) tl/(O ei) l/(el (A))tn )
_ ¢ (tAtA*tAtA )
AgA* A A\
=(tx by s tty >TC*(A)
Thus, there exists a well-defined norm-decreasing map

AgA* A A A*
docamtith = D couwtio.e) OTo ah (e aonth )
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on span{tﬁ\\ti}* s\ p €A dN); =n+1,d(u); =0}, which extends to X,,41 by
continuity. We denote this extension by €2,11. The previous calculation then
shows that 2,41 is inner product preserving.

We now show that €2, is left 7C*(A%)-linear. For any A, u,v,n € A with
d(A\); =n+1and d(v); = d(p); = d(n); =0, we have

(3) AT (10T)
AN A . A A*
=, t; - (tA(O,ei) QT (A%) Qn(txel do) e )

AgA* A A*
=1, t)\((),ei) QTC*(Af) Qy, (t)\(el d()\))tu )

_ A JA* ) A A*
— Z oty @7 (an) Qn(t/\(ei,d(/\))tu ).
(a0, B)EA™IN (1, (0, 1))

To simplify this expression, observe that if (a, 8) € A™®(n, (0, ¢;)), then
d(va); = d(v); +max{d(n)i, d(A(0,€;)):} — d(n); =1

and

d(B)i = max{d(n):, d(A(0, €;));} — d(A(0,e;)); = 0.
Thus, since Q,, is left TC*(A?)-linear, we see that (3) is equal to
A A APF A*
> Ha)(0,e0) OTC (1) Livay(endwantd o (Beraoti )
(a!B)EAmm(T]!A(O!ei))

— A , A A* A A
= Z e (0.e0) @TC*(A%) U (Eva) (esda) 8 Eries,aola )
(e, B)eA™(1,A(0,¢4))
— A v A A ¥
B Z t(l’a)(07ei) ®TC*(A1) Qn (t(ua)(ei7d(ua))ytu5 )
(. B)EA™" (1, A(0,1))
(7,0)EA™(B,X(e:,d(N)))
As d(va) > e;, the factorization property gives that (va)(0,e;) = (vay)(0, ;)
and (va)(e;,d(va))y = (vay)(ei,d(vay)). Assembling these arguments and
using Lemma 3.3 for the third equality, we have

AT (1307)

A . A A *
= > tvar)©.e) OTC (1% U (than)(erdwar) tus )
(a,B)GA_“""(n,A(O,ei))
(7,6)EA™™ (8,7 (e4,d(N)))

= Q1 (Bartis )
(@,B) €A™ (1, A(0,¢,)
(1,6)EA™IR (8 7 (e4,d(M)))

_ S Qi (8h,7)

(T,0) €A™ (n,A)

— Qo (AT,
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Using the fact that
Xnt1 = span{tﬁ\\tﬁ* tAp €A dN); =n+1,d(p); =0}

and
TC* (A =span{ A" v e A7),
we conclude, by linearity and continuity, that €, is left 7C*(A?)-linear.
Next, we show that Q,41: X,r1 — X®H is surjective. Fix A\, u,v,n € A
with d()\); = 1, d(v); = n, and d(u); = d(n); = 0. Using the left 7C*(A?)-
linearity of €2,, for the last equality, we see that

A GAF
D S X

(c,B)eA™i(pu,v)

A A A *
= > tOa)(0,e) BT (85) D (tOa)(er,drantng )
(o, B) €A™ (1)

A A A X
- Z N 0.e0) @TC(0) D (BR(er.d(r))alns )
(a,B)eAmin(p,v)
A A A% A A*
= T\0,e) @TC"(A%) {n (t)\(e¢7d()\))tu tht))
=ty @70 (a0 W(toty )
€ X ®7c=(a%) xen,

Since X,, = spﬁ{tﬁ\\tf}* A u € A d(N); =m,d(u); = 0} for each m > 0 and
the map Q,: X,, — X®" is surjective, we conclude that Q,,,1 is surjective.
We have now shown that €),4; is inner product preserving and surjec-
tive. Thus, Q.41 is adjointable (with adjoint Q;}rl). Since 41 is also left
TC*(AY)-linear, we conclude that 9,41 is a TC*(A?)-bimodule isomorphism
from X, 11 to X®"1 as required. O

We now work towards showing that the Toeplitz algebra of the Hilbert
TC*(A%)-bimodule X is isomorphic to the Toeplitz—Cuntz—Krieger algebra
of A. The idea is to use the universal properties of Tx and TC*(A) to get
x-homomorphisms between the two C*-algebras, and then argue that these
maps are mutually inverse. Firstly, we need a result telling us how the Hilbert
T C*(A%)-bimodule isomorphisms from Proposition 3.4 interact with the tensor
product.

Lemma 3.5. Let {Q, : n > 0} be the collection of Hilbert T C*(A?)-bimodule
isomorphisms defined in Proposition 3.4. Then for any m,n >0 and x € X,,,
Yy € X,

(4) Qi () @7c(a) DY) = Qnn(TY).
In particular, if A\, u € A with r(p) = s(\), then

Qaen), (1) @70+ (ar) Qg (E) = Qaoney, (Eay,)-
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Proof. We use induction on m. The m = 0 case is equivalent to left 7C*(A?)-
linearity of €2,,, which we proved in Proposition 3.4. Now suppose that (4)
holds for some m > 0. Let n > 0 and fix \, u,v,7 € A with d(\); = m + 1,
d(v); =mn, and d(u); = d(7); = 0. Applying the inductive hypothesis, we see
that

(5) Qg1 (té\\ti}*) ®7’C*(Ai) Qp (tll}t.,/.\*)
A"

- t§(07ei) &1 (A% m (tlkx(ei,d(A))tﬁ ) QTC* (M%) Qn( Vs )
A A A* A A*
= th0,e0) @TC(A) Yt (Beraop b ot )
A A A %
- Z tA(O7ei) ®TC*(A1) Qm+" (tA(Ei,d(A))OLtTB )7
(a’ﬁ)eAmin(‘u’u)

where the final equality follows from applying relation (TCK3) in 7C*(A).
Since d(A) > (m 4+ 1)e; > e;, (5) must be equal to
A A A*
Z ) (0.e0) @TC=(A) Ymtn () (er,d(rap B8 )
(o, B) €A™ (p,v)

= > Qi1 (BratDs)
(o, B) €A™ (1)
= Qa1 (B E0127).

Since X; = span{tﬁ\\ti}* s p € A dN); =g, d(u); = 0} for each j > 0, we
conclude that (4) holds for m + 1 as well. O

We now get a *-homomorphism from 7 C*(A) to Tx by exhibiting a Toeplitz—
Cuntz—Krieger A-family in 7x.

Proposition 3.6. Let A be a finitely aligned k-graph. Define X,, as in Proposi-
tion 3.2 and set X := X,. Consider the collection of Hilbert TC*(A?)-bimodule
isomorphisms {0y, : n > 0} defined in Proposition 3.4. For each A € A, define
uy € Tx by

uy = i?}d(x)i (Qd(k)l (té}))
Then {ux : XA € A} is a Toeplitz—Cuntz—Krieger A-family in Tx. Hence, there

exists a x-homomorphism m,: TC*(A) — Tx such that 7Tu(t1>}) = uy for each
AeEA.

Proof. Firstly, we check that {uy : A € A} satisfies (TCK1). For any v € A°,
we see that
.®d(v)i . . _ . i
uy = 157 (Qu), (15)) = i(Q0(t))) = izce(an (67H(ED)) = irc-(an (t)).
Since i1« (i) 18 a *-homomorphism and {tﬁl : v € A%} is a collection of
mutually orthogonal projections, it follows that the set {u, : v € A%} also
consists of mutually orthogonal projections.
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Next we check that {uy : A € A} satisfies (TCK2). Fix A\, p € A with
r(pu) = s(\). Making use of Lemma 3.5, we see that
.Qd(N); d(p)i
wnty = 1" Qg (BN Q. (1)

_ i?}(d(A)ihi(#) )(Qd(A)i(tx) ®TC*(Ai) Qd(ll«)i(t}/}))

=i P Qg (13,)) = uge

Finally, we check that {uy : A € A} satisfies (TCK3). Let A\, u € A. Suppose
that d(u); > d()\);. By Lemma 3.5,
Qagy, (t) = Qar), Eno anien) @785 Qaguyi—dn): Easend()):
and it follows that
i o @d(1);
i = 5 Qaeny, (#3)) 8 (Qagy, (£)
@d(1)i—d(N);
=iy ()= ((Qaeny, (E2), Qg (£ (0.4 en))
Q)= Eaasena)) -

As Qg(»), preserves inner products and (), —acn), is left TC* (AY)-linear, this
must be the same as

@d(w); AN
I I Qagy,—a, (8 E0.dnyien ) Tom ) Eitayiend(nn)

.@d(p)i—d(N)q
=1y (i=d) (Qd(ﬂ)i*d(A)i (tA t#(O,d(A)iei)tu(d(A)iei,d(,u))))

= I Q0 _aen), (17ED))
= ii?}d(ﬂ)z )\)z (Qd(‘u)l—d(A)l < Z tAtB ))7
(a,B)eA™In (X, )

where the last equality comes from the fact that {t} : A € A} satisfies (TCK3).
Moreover, if (a, 3) € A™®(\, i), then

d(a); = max{d(X);,d(n)i} — d(N); = d(p); — d(N);
and
d(a); = mas{d(\), d(n)i} — d(s2); = 0.
Thus, as Qg(,),—a(x), is right TC*(A")-linear,

* .Qd i—d(N)i
W= > iR INQu aen, (#) - t8T)
(aB)EATIn (1)

= ST IV Q0 aoy, ()iS0 ()
(a,B)EA™In(\, 1)

.®d(a); .®d(B)i *

= Y N Q)T (g, (D))

(e, B)eA™in (A, )

= Z uau};.

(e.B)eAmin(A, 1)

Minster Journal of Mathematics VoL. 12 (2019), 93-137



110 JAMES FLETCHER

If d(\); > d(p)i, we can apply the previous working to (uju,)* = ujux. This
completes the proof that {uy : A € A} satisfies (TCK3). Hence, {uy : A € A} is
a Toeplitz—Cuntz—Krieger A-family in 7x. The universal property of 7TC*(A)
then induces a *-homomorphism 7, : 7C*(A) — Tx such that 7, (t}) = uy for
each A € A. O

It is considerably easier to get a *-homomorphism from Tx to 7TC*(A).
Once we have it, there is still some work left to show that it is the inverse of
the *-homomorphism 7, : TC*(A) — Tx from Proposition 3.6.

Theorem 3.7. Let A be a finitely aligned k-graph. Define X,, as in Propo-
sition 3.2 and set X := X;1. Let 1: X — TC*(A) denote the inclusion map.
Then (¢, ¢) is a Toeplitz representation of X in TC*(A), and hence, by the uni-
versal property of Tx, there exists a x-homomorphism v X7 ¢: Tx — TC*(A)
such that (v X7 ¢) oix = ¢ and (v X7 @) 0 igc=(psy = ¢. Moreover, 7, and
L X7 ¢ are mutually inverse. Thus, TC*(A) = Tx.
Proof. 1t is elementary to check that (¢, ¢) is a Toeplitz representation of X in
TC*(A). Forany z € X and a € A, we have t(a-z) = a-z = ¢(a)x = ¢(a)i(x)
and t(z - a) = - a = x¢(a) = t(x)¢p(a), which proves that (¢, ¢) satisfies (T1)
and (T2). If 2,y € X, then o(2)°1(y) = o*y = 6(6~ (2°9)) = ({2, 5o (e
and so (¢, ¢) satisfies (T3).

It remains to check that ¢« x4 ¢ and 7, are mutually inverse. Fix A € A. If
d(N); =0, then

(e x7 ¢) om) (1Y) = (¢ X7 $)(ur) = (¢ x7 ) (15" M (Quin), (£4)))
= (tx7 O)(iTc-an (tr ) = o(tx ) =13
If d(M\); =1, then
(¢ X7 @) 0 ) (£2)

(e x7 @) (ur) = (e x7 &) (12" M (Quin), (£2)))
(37 ) (ix(80)) = o(t)) = 5.

If d(N\); > 2, then
(¢ X7 ¢) om)(13)

(¢ X7 @) (ur)

(1 %7 &) (1% (Que), (12))

(07 &) (ix (E0.e) - 1x (EN((atr)s —1)erdin))))
t

t

O " IO ~1)erd()

As TC*(A) is generated by {tg\ : A€ A}, we see that (¢ X7 @) oy = id7c=(a)-
We now show that 7, o (t X7 @) = idr,. If u € A?, then

(w0 (0 x7 0) (ircean) (1) = mu (6 (1)) = mu(t) = uy
= i?}d(/\)i (Qap), (tf})) = iTC*(AY) (tf}l)
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For any A € A with d(\); =1 and pu € A%, we see that
(a0 (e x7 9)) (ix (327)) = mu (3L7) = s,
= 1% Q. (B (Qa, ()"
= ix (t8)iroe(an ()" = ix (t327).

Since Tx is generated by ix (X) U irc«(as )(TC* (A%)), whilst TC*(A?) is gen-
erated by {tA p €A} and X = span{tAtA c A €A dN); =1,d(p); =0},
we conclude that 7y © (L X7 @) = id7y . Thub, t X7 ¢ and m, are mutually
inverse. .

Corollary 3.8. Let A be a finitely aligned k-graph. Then the x-homomorphism
®: Co(A) — TC*(A) that sends 6, to ti for each v € A° induces a KK-
equivalence between Co(A°) and TC*(A).

Proof. We will use induction on k. If k& = 0, then the map ® is an isomor-
phism between Cy(A) and T C*(A), and so of course gives a K K-equivalence.
Now suppose that the result holds for some & > 0 and let A be a finitely
aligned (k + 1)-graph. Fix i € {1,...,k + 1} and let ®': Co(A) — TC*(AY)
denote the x-homomorphism that bendb S, to tA" for each v € A%, By the
inductive hypothesis, ® induces a K K-equivalence. Proposition 3.1 gives a *-
homomorphism ¢: 7C*(A?) — TC*(A) such that ¢(t}") = t2 for v € A°. By
Proposition 3.2 and Theorem 3.7, there exists a Hilbert 7C*(A%)-bimodule X
and an isomorphism ¢ X7 ¢: Tx — TC*(A) such that (v X7 ¢) 0igc«(ai) = ¢.
Since higher-rank graphs are countable categories, TC* (A?) is separable and X
is countably generated as a right 7C*(A?)-module. Thus, by [21, Theorem 4.4],
the x-homomorphism i7¢-(ai) induces a K K-equivalence between 7C* (AY)
and Tx. Hence, the *-homomorphism ® := ¢ o &' = (v X7 ¢) 0 igc=(piy 0 D’
induces a K K-equivalence between Cy(A) and 7C*(A) and sends 6, to 2 for
each v € A0, (]

Remark 3.9. Since K K-equivalent C*-algebras have the same K-theory, we
have an alternative proof of [5, Theorem 1.1] that Ko(7C*(A)) = @, cp0Z
and K1(7TC*(A)) =0 for any finitely aligned k-graph.

4. REALIZING C*(A) As A CUNTZ-PIMSNER ALGEBRA

In Section 3 we showed how the Toeplitz—Cuntz—Krieger algebra of a finitely
aligned k-graph A can be realized as the Toeplitz algebra of a Hilbert 7C* (A?)-
bimodule. In this section we prove an analogous result for Cuntz—Krieger
algebras: we define a Hilbert C*(A%)-bimodule (which, for simplicity, we also
denote by X) and show that the Cuntz—Pimsner algebra of this bimodule is
isomorphic to C*(A).

Our methodology is very similar to that of Section 3. Similar to Propo-
sition 3.1, the first step is to show that the inclusion of A’ in A induces
an (injective) *-homomorphism from C*(A?) to C*(A). However, unlike in
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Proposition 3.1, such a *-homomorphism need not exist unless we place addi-
tional constraints on the graph (see Remark 4.7 for an example of what can
go wrong). In the analysis of [11, Chapter 2], to get around this problem we
assumed that A had no sources (see [11, Proposition 2.6.4]). In Proposition 4.6
we improve the situation, by showing that local-convexity of A is sufficient. Be-
fore we prove Proposition 4.6, we prove some (probably) well-known properties
of locally-convex higher-rank graphs that we will need.

Lemma 4.1. Let A be a locally-convex k-graph. If u € A% and v € r(p)A
with d(v); =0, then s(v)A® # &.

Proof. We use induction on the quantity L(v) := Z?Zl d(v);. If L(v) = 0, then

v € AY and so p € r(v)A% = s(v)A%. Suppose M € NU {0} and the result
holds whenever L(v) = M. Fix v/ € r(u)A with d(v'); = 0 and L(v') = M +1.
Hence, d(v'); > 1 for some I € {1,...,k}\ {i}. Then L(v/(0,d(v') —¢e;)) = M,
and so s(v'(0,d(v) — e;))A% is nonempty by the inductive hypothesis. Since
A is locally-convex and v/ (d(v') — e;,d(v')) € s(v'(0,d(v") — e;))A®, we have
that s(v/)A% = s(V/(d(V') — e;,d(V")))A% # @, as required. O

Lemma 4.2. Let A be a k-graph. Then AS™AS™ C AS™+" for m,n € NE. If
A is locally-convex, then AS™AS™ = AS™+n,

Proof. Firstly, suppose that y € AS™ and v € AS" with s(u) = r(v). Clearly,
d(pv) = d(u) + d(v) < m+ n. Suppose that d(uv); < (m +n); = m; + n; for
some i. If d(v); < n;, then s(uv)A% = s(v)A® = @, since v € AS". Thus,
pv € AS™Tn Alternatively, d(p); < m;, and so s(pu)A% = &, since yu € AS™,
By the factorization property, s(uv)A% = s(v)A% = @. Thus, ur € AS™+n,
Now suppose that A is locally-convex. We need to show that AS™+" ig
contained in AS™AS". Fix A € AS™*", Let m’ := mAd(\) be the component-
wise minimum of m and d()), and set p := A(0,m’) and v := A(m/,d(N)).
Clearly, A\ = uv. We claim that g € AS™ and v € AS". Obviously, d(u) < m,
and routine calculations show that d(v) < n. Suppose that d(v); < n; for
some i. Then d(A\); < (m' +n); < (m+ n); and so s(¥)A% = s(A)A% = 2.
Thus, v € AS". Now suppose that d(u); < m; for some i. Hence, m/ < m;, and
so m; = d(X); = d(p); and d(v); = 0. Also, d(A); = m} < m; < (m+ n);, and
so s(V)A% = s(A\)A® = @. By Lemma 4.1, this forces s(u)A% = r(v)A% = @.
Thus, 4 € AS™. O

We now work towards showing that the inclusion of A? in A induces a
x-homomorphism from C*(A?) to C*(A). The key point is that when A is
locally-convex, finite-exhaustive subsets of A’ are also exhaustive in A.

Definition 4.3. Let A be a k-graph. For any E C A and p € A, we define

Exta(p; E) = U {a € s(p)A : pa € MCE(u, M) }.
AEE

Informally speaking, Exta (u; E) is the set of paths in A that when prepended
to u give a minimal common extension of y with something in F.

Miinster Journal of Mathematics VoL. 12 (2019), 93-137



HIGHER-RANK GRAPH ALGEBRAS ARE ITERATED CUNTZ-PIMSNER ALGEBRAS 113

Lemma 4.4 ([23, Lemma C.5)). Let A be a finitely aligned k-graph. Fizv € A°
and let E C vA be a finite exhaustive set in A. Then for any p € vA, the set
Exta(u; E) C s(u)A is finite and exhaustive in A.

Proof. Firstly, we check that Exta(u; E) is finite. For each A € E, since A
is finitely aligned, the set {a € A : pa € MCE(u,A\)} is finite. As F is
finite, Exta(u; F) is the finite union of finite sets, and so finite. It remains
to verify that Exta(u; E) is exhaustive in A. Fix o € s(u)A. Since po € vA
and E C vA is exhaustive in A, there exists A € F and «, 8 € A such that
poo = A3 € MCE(A, uo). Let 7 := (0a)(0,d(N\) V d(p) — d(p)), which is
well-defined because

AN V d(p) — d(z) < d(N) V () — d() = d(poa) — d(pz) = d(oa).
Then

i = (o) (0,d(N) V d() — d(w)) = (oa)(0,d(X) V d())
— (AB)(0,d(N) V d(n)) = AB(0,d(N) V d(p) — d(N)) € ATV,

which shows that ur € MCE(u,A). As A € E, we see that 7 € Exta(u; F).
Furthermore,

T(oa)(d(A) V d(p) — d(p), d(op)) = oa,

which shows that CE(7,0) # @, and so MCE(T, o) # @. Therefore, Exta (u; F)
is exhaustive in A. O

Lemma 4.5. Let A be a locally-convex k-graph. Then FE(A?) C FE(A).

Proof. We need to show that if E € FE(A?), then E is exhaustive in A. Fix
a path A € r(E)A and write A = XN); with X € A® and \; € AN¢. Let
N = \/{d(p) : p € Extpi(N; E)}, which exists since Exty:(\; F) is finite
by Lemma 4.4. Since N; = 0, we can choose 7 € s(\;)ASYN C A’ Thus,
N7 € ASIODASN € ASAQD+N - Gince A is locally-convex, Lemma 4.2 says
that we can find 7/ € ASN C A* and N, € AS4N) C ANei such that \;7 = 7/ ).,
Since 7(7') = r(N\;) = s(N) and Extp:(N; E) C s(N)A? is exhaustive in A?,
by Lemma 4.4, there exists u € Extpi(N; E) such that MCE(u, ') # @.
That is, we can find «, 3 € A’ such that 7'a = pfB € AdWVAT) A N s
maximal, N > d(p), and so d(u) vV d(7’) < N. Since 7/ € A=Y, this forces
a = s(7'), and so 7" = pfB. Moreover, since p € Extpi(N; E), we know that
Nu = c& € MCE(XN, o) for some o € E and £ € A’. Therefore,

a€BN, = NuBXN; = N 7'\ = N\t = AT

Thus, CE(0,\) # &, and so MCE(o, \) # &. As 0 € E, we conclude that F
is exhaustive in A. O

Proposition 4.6. Let A be a finitely aligned locally-convex k-graph. Then
there exists an injective x-homomorphism ¢: C*(A?) — C*(A) carrying sy to

s‘} for each A € A*.
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Proof. We claim that {s{ : A € A’} C C*(A) is a Cuntz—Krieger A’-family.
The same argument as in the proof of Proposition 3.1 shows that {sg\ : A €AY
satisfies (TCK1), (TCK2), and (TCK3), so we need only worry about checking
that relation (CK) holds. With this in mind, fix v € (A*)? = A° and suppose
that E € vFE(A?). By Lemma 4.5, E is exhaustive in A. As {s) : X € A}
satisfies relation (CK), we conclude that {s{ : A € A’} does as well. The
universal property of C*(A?) then induces a *-homomorphism ¢ from C*(A?)
to C*(A) such that ¢(sy ) = s3 for each A € A",

The injectivity of ¢ follows from an application of [23, Theorem 4.2]. For
each v € A%, we have ¢(s2") = s, which is nonzero by [23, Proposition 2.12].
Restricting the gauge action 4 of T* on C*(A) to TF~! gives an action of
T+ on C*({p(s)") : A € A'}) = C*({s% : A € A'}) C C*(A) that intertwines
¢ and the gauge action 4" of TF=1 on C*(A?). O

Remark 4.7. There are simple examples to show what can go wrong if we do
not have a locally-convex graph. Consider the 2-graph A consisting of just two
edges A € At and p € A®? with common range v and distinct sources. In this
situation the second part of Lemma 4.2 is false: the path A € AS€1+¢2 cannot
be written in the form nv, where n € AS°2 and v € A=t (due to the presence
of the edge ju, the vertex v is not in AS¢?). Furthermore, {\} is exhaustive
in A2, but not exhaustive in A, since MCE(\, u) = @. Thus, the conclusion
of Lemma 4.5 need not hold if we drop the local-convexity hypothesis. This
example also shows that the conclusion of Proposition 4.6 is false if we drop the
local-convexity hypothesis. The Cuntz—Krieger relation in C*(A?) says that
L=

On the other hand, the Cuntz—Krieger relation in C*(A) (applied to the finite
exhaustive set {\, u}) gives

S

(oD GAAFN (A AN A A AT A AF
0= (sv — 83 S\ )(sv — S, Sy )—sv —SXSx T SuSy s

since A and g have no common extensions. Hence, if there existed a *-
homomorphism ¢ from C*(A") to C*(A) induced by the inclusion of A* in A,
we would have that

0=0¢(0) = (;5(811}1 - sﬁ\\isﬁt*) = sﬁ - sﬁ}sﬁ}* = sﬁsﬁ*

Thus, sf} = 0, which is impossible, since universal Cuntz—Krieger families al-
ways consist of nonzero partial isometries [23, Proposition 2.12].

We are now ready to define the collection of Hilbert C*(A?)-bimodules that
we are interested in. Suppose that A is locally-convex so that the injective *-
homomorphism ¢ from Proposition 4.6 exists. The same working as in Propo-
sition 3.2 shows that

X, = span{sﬁ\\sﬁ* s e, dN); =n, d(u); =0} € C*(A)
has the structure of a Hilbert C*(A?)-bimodule for n € N U {0}, with actions
and inner product given by a -z - b := ¢(a)zé(b) and (z, y)’é*(m) = ¢~ (2%y)
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for each x,y € X,, and a,b € C*(A?). For notational convenience, we set
X = Xi, and write (-,-)c=(ai) for <'v'>1c*(Ai)' We again write ¢ for the
*-homomorphism that implements the left action of C*(A?) on X. For each
n € NU {0}, the same working as in Proposition 3.4 gives a Hilbert C*(A?)-
bimodule isomorphism Q,,: X,, = X®", where, in particular, Qg = ¢! and
Q; is the identity map.

Our goal is to analyze the Cuntz—Pimsner algebra of X. In order to do this,
we need to get a grip on the Katsura ideal Jx := 1~ (Ko« (ar)(X)) Nker(1h)*.
In [11, Lemma 2.6.7] we showed that if A has no sources, then C*(A?) acts
faithfully on X. Lemma 2.6.8 of [11] also shows that if vA® is finite for each
v € AY, then C*(A?) acts compactly on X. Thus, when A is row finite and has
no sources, the Katsura ideal of X is all of C*(A?). Consequently, to determine
whether a Toeplitz representation of X was Cuntz-Pimsner covariant, we only
needed to check the covariance relation on the generating set {s5 : A\ € A} of
C*(A?) (see [11, Theorem 2.6.12]). In this paper we are not assuming that the
graph A is source free and row finite (recall, our only assumption so far is that
A is locally-convex), and so it is not immediately obvious what the Katsura
ideal looks like, and whether it has a ‘nice’ generating set that is easy to work
with. Our strategy is to show that Jx is gauge-invariant and calculate its
generators using [30, Theorem 4.6]. We begin in Proposition 4.9 by showing
that the ideals ker(¢)), ker(¥)*, and ¢~ (Kc-(ai) (X)) are all gauge-invariant.
First, we require a lemma.

Lemma 4.8. Let A be a locally-convex finitely aligned k-graph. For each
z € TFL, there exists a unitary U, € Lowpiy(X) such that
U.(sé(a)) = s36(72 ()
for each A € A% and a € C*(A"). Moreover, for each a € C*(AY),
(72 (@) = U4 (@)U}

Proof. We show that for z € TF*~!, the formula s\ ¢(a) — sg\qb(vﬁi (a)), where
A € A%, a € C*(AY), extends by linearity and continuity to X. Let m € N and
fix A1,...,Am € A% and aq,...,a,, € C*(A?). Then

2

> sk, 008 ()

X

= [( X sto02 @ o0 @)
j=1 j=1 C=(AT)I1C=(A?)
=11 37 671 (2 o2 (@))) " (58,02 (@)

Gl=1 C=(A?)
= " A @) e sy, s @)

Jl=1 C*(A%)
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Since A1,..., Ay € A%, relation (TCK3) says that sA sAl =, a8 s(n,) and
so the previous line is equal to

Z 5}\J,>\1A/z j )72 ( ) )
ji=1 C*(A%)
= Z 6>\J,>\17z Yz ( s()\j))’\/z (a‘l) )
7,0l=1 (A7)
A? * A"
=17z <Z 5Aj7/\zaj53(xj)al)H
ji=1 o9
m .
* A*
=11 Y dnanaisinga K
iil=1 e A9

where the last equality follows from the fact that v, is an automorphism, and
hence isometric. Finally, this is the same as

S o s s =H<§;iw%x§?xw%»

7,0=1
m 2
Zs§j¢(ag‘)

Thus, the formula s{¢(a) — sho(v2 "(a)) extends by linearity and continuity
to an inner product preserving map on X, which we denote by U.. The map U,
is surjective, since U, (s3¢(v2 (a))) = shd(a) for any A € A% and a € C*(A?).
Consequently, U, € Lo=pi)(X), with U} = U L= Us.

It remains to check that for each z € T*~! and a € C*(A?), we have

Ub(a)UF = (2 () € $(C*(A)) C Lo an (X).
To see this, fix 1, p,v,7 € A" and A € A%. Then

lsy'sp ) (Aol o)) = s Asdet = DT sy’

(e,B)eA™(p,Av)

(A% cr @i llosah

’L*

_ A A?
= > o) (0,0) (ST (erd(ma) 578 )-
(e B) AR (p, A1)

Observe that if (a, 8) € A™"(p, \v), then
d(7) = d(v) + d((na)(ei, d(na))) — d(r)
=d(n) +d(@) —e; —d(v) = d(p)
=d(n) + d(p) v d(Av) = d(p) — e; — d(v) — d(p) V d(\v) + d(Av)
=d(n) = d(p) = ei +d(A)
= d(n) —d(p)-
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Hence, we see that
(Ua(sh s )UZ) (she(st 2 ™))
= Uai(sh'si) (R (o2 (s s2)))

_ d(r)—d(v) A A AL
=z Uz( > $(n0) (0,e) D (5(n) (es . (na)) 578 )>
(o) E AT (p,2w)

= 40~ > St P (72 (SCaa(enndtnanses )
(or,8) A0 (p, A0)

_ Ld(n)—d(p) g
= > DOl ) 0,00 P (5 er atman 525 )
(0, B) AT (p, )

= (2 (s) ,? )) (36 (s0's2))-
Since span{sy@(s2 Al Az ): A€ A% v, 7 € A’} is dense in X, we conclude that
U p(a)Us = (N (a )) for each a € C*(AY). O

Proposition 4.9. Let A be a locally-convex finitely aligned k-graph. Then
ker(¢)), ker(¥)*, and = (Kg- (a1 (X)) are gauge-invariant ideals of C*(A?).
Hence, the Katsura ideal Jx := ¢~ (Ko a1y (X))Nker(¥)* is a gauge-invariant
ideal of C*(A").

Proof. We begin by showing that ker(z)) is gauge-invariant. For z € TF~1 let
U. be the map described in Lemma 4.8. For any a € ker(¢), we have that
V(v (a)) = U.4p(a)UF = 0. Hence, ¥ (a) € ker(¢)). From this we also see
that ker(¢)! is gauge-invariant: if a € ker(¢)t, b € ker(¢)), and z € TF1,
then v v _ v
72 ()b = 72 (72 (b)) = 72 (0) = 0.

It remains to show that ¢~ (K« (ai) (X)) is gauge-invariant. This follows from
the fact that Keo«(4:)(X) is an ideal of Low(21)(X), Uz € Le=(ai)(X) for each
z € TF1 and (v} (a)) = U.p(a)U; for each a € C*(AY). O

Now that we know the Katsura ideal Jx is gauge-invariant, we seek to
apply the analysis of [30, Section 4] to determine its generators. Note that
when k = 2, we could also apply the somewhat simpler analysis of [3], which
deals just with directed graphs. Loosely speaking, if ¥ is a finitely-aligned
k-graph, then a gauge-invariant ideal of C*(X) is generated (as an ideal) by
its vertex projections and a collection of projections corresponding to certain
finite exhaustive subsets of a subgraph of ¥. We now summarize the parts of
[30] that we will need.

Suppose I is a gauge-invariant ideal of C*(X). By [30, Lemma 4.3], the set

Hy={vex’:s)el}
is saturated and hereditary (in the sense of [30, Definition 4.1]). In particular,
S\SH; = {AeX:s(\) ¢ H)
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is itself a finitely aligned k-graph. If we define
) k
By = {EGFE(Z\EHI U B¢ 1}

then [30, Theorem 4.6] (along with Proposition A.1) tells us that I is generated
as an ideal of C*(X) by the collection of projections

{SE tv e HpU {A(SZ)E NS BI}.

We now determine the generators of the gauge-invariant ideal ker(¢)). We
will see that due to the local-convexity of A, the ideal ker(t) is generated
(as an ideal of C*(A?)) precisely by those vertex projections that act trivially
on X, and that these projections correspond to the vertices that do not admit
an edge of degree e;.

Proposition 4.10. Let A be a locally-convez finitely aligned k-graph. Consider
the gauge-invariant ideal ker(v)) of C*(A?). Then

(1) err(ﬂ’) = {U S AO A& = @},

(i1) Buer(y) = {E € FE(A'\ A Hyer(y) : B C Us_ A}, with

AGM)E =0 for any E € FE(A"\ A Hyer(p))-

Hence, ker(v) is generated as an ideal of C*(A?) by the collection of vertex
projections {s% : vA® = @}. In particular, if vA® is nonempty for each
v € AY, then the left action of C*(A?) on X is faithful.

Proof. For any v € A% X\ € A% and a € C*(A?), we see that

) ) A : _
w5 )(s30(0)) = 651 )s3o(a) = s} s30(a) = {“‘bm) Hr =
0 otherwise.
Since X = span{si¢(a) : A € A%, a € C*(AY)}, part (i) now follows immedi-
ately.

We now prove part (ii). Suppose E € FE(A" \ A"Hyey(y)). We claim that
r(E)A® is nonempty. Since F is nonempty, we can choose v € E. Then
5(v) € Hyer(y), and so s(v)A® # & by part (i). By the factorization property,
we have that r(E)A® = r(v)A® # &, which proves the claim. Next we show
that E € FE(A?). Fix A € r(E)A*. Since A is locally-convex and r(E)A% # @,
we must have that s(A\)A% # @. Thus, s(\) ¢ Hyer(y), and we see that
A € r(E)A"\ A"Hyey(yy- Since E is exhaustive in A* \ A"Hye,(y), we can find
p € E such that MCE(\, ) # @. Hence, E € FE(A?) as claimed. Applying
relation (CK) in C*(A?) gives A(s2 )P = 0, which is certainly an element of
ker(¢)). This completes the proof of part (ii). O

We will use the following product to sum transformation repeatedly, so we
state it as a separate result.
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Lemma 4.11. Let A be a finitely aligned k-graph and {ry : A € A} a Toeplitz—
Cuntz-Krieger A-family. Then for each v € A° and each nonempty finite set
F C oA, we have

(6) AT =ry+ D (=D
@+GCF
AEMCE(G)

In particular, if n € N¥ and F is a nonempty finite subset of vA™, then

(7) A =7, = rars.

Proof. To prove (6), we will use induction on |F|. Clearly, when |F| =1 (say
F = {\}), both sides of (6) are r, —r\rx. So suppose that (6) holds whenever
|F| = n and fix a set F/ C vA with |F’'| = n + 1. Then for any p € F’, the
inductive hypothesis gives

AW = (1o = rur) AT

SR RS DRIt

GAGCF\{u}
AEMCE(G)
=Ty — Tl + Z (=1)ICGlpyrt — Z (—l)IGIer;rArj.
GAGCF\ {1} GAGCF\ {1}
AEMCE(G) XEMCE(C)

Applying relation (TCK3) to the product in the last sum shows that this is
equal to

R D DR G L S SN CR LI,

G#GCF \{u} @#GCF \{u}
AeMCE(G) AeEMCE(GU{u})
=71, + Z (—1)‘6‘7")\7“3‘\.
GAGCF'
AEMCE(G)

Thus, (6) follows by induction.

To see how (7) follows from (6), observe that if F' C vA”™, then for any
@ # G C F, we have MCE(G) = G if G is a singleton set, whilst MCE(G) = &
if |G| > 2. O

The next result tells us precisely which vertex projections belong to the
gauge-invariant ideals ker(1)* and 1! (Kc«(ai) (X)) (and so to Jx).

Proposition 4.12. Let A be a locally-convex finitely aligned k-graph. Then
for any vertex v € A°, sN € ker(v)L if and only if vA® is nonempty, and

sM ¢ w’l(ICC*(Ai)(X)) if and only if vA® is finite. Hence,

Hyo ={veA’:0< |vA%]| < co}.
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In particular, when vA® is ﬁmte,

(8) = ) Og.4

AEVACi

If, in addition, vA® is nonempty, then

%
Y sy

AEVACi

Proof. We begin by proving that s € ker(¢)* if and only if vA® is nonempty.
Fix v € A%, If vA® = @, then s} € ker(¢), by Propos1t10n 4.10. Thus,
s2 & ker(y)L (otherwise we would have 0 = (s2')2 = sA', which is clearly
impossible). For the converse, suppose that vA¢ # @&. We need to show that
sMa = 0 for each a € ker(t). Since Proposition 4.10 tells us that ker(¢) is
generated as an ideal of C*(A?) by the projections {s}" : wA® = @}, it suffices
to show that
sﬁl(sﬁ\vsAl 1) 0

whenever \,v € A® and w € A is such that wA® = &. Now s’ (sﬁ\‘isﬁl Ai) is
certainly zero if r(\) # v, or s(\) # s(v), or r(v) # w, so we suppose otherwise.
Since vA® # @ and A € A%, the local convexity of A forces s(\)A% # &. Since
s(A) = s(v), the factorization property then implies that r(v)A% # &. But
this is impossible since 7(v) = w. Thus, s € ker(:))*. We conclude that
sA" € ker(y)* if and only if vA® is nonempty.

Now we move on to proving that s%" € Y (Kes (a1 (X)) if and only if A%
is finite. The proof uses the same ideas as [13, Proposition 4.4].

We claim that for any v € A°, the set vA® is exhaustive in A, provided it
is nonempty. To see this, suppose that A € vA. We need to show there exists
p € vA% such that A™®(\, ) # @. If A = v, then for any u € vA®, we have
{(p, ()} = A™n(X\ ). If d(N); # 0, then with p := X(0,¢;) € vA®, we
have {(s(N), AMes, d(N)} = A™n(\, ). If d(N); = 0, then the local-convexity
of A allows us to choose v € s(A)A%. With u = (A)(0,e;) € vA%, we
have (v, (A\v)(e;, d(\v))) € A™B(\, ). Thus, vA% is exhaustive in A. Thus, if
vA® is finite and nonempty, then relation (CK) tells us that A(s*)"A™ = 0.
Applying Lemma 4.11 with F' = vA®, we conclude that s& = 3", ., sasy .

Note that for each A € vA®, s{ € X. To show that s2" € V(Ko (ai) (X))
when vA® is finite, it suffices to show that (8) holds. If vA% = @, then the
right-hand side of (8) is the empty sum, and so zero, whilst ¢ (s2") = 0, by
Proposition 4.10. On the other hand, if vA® is nonempty and finite, then for
any u € A% and a € C*(A?), we have

Y(sB)(sho(a) = shsho(a) = D shsh'sh
AEvVAECi
= > S shsd@)ean = D O (o).
AEvA©i A€vA®
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Since X = span{s)¢(a) : p € A%, a € C*(A")}, we conclude that (8) holds
whenever v € A° and vA® is finite. _

It remains to show that if v € A® and s2" € ¥~ (Kg-(a1)(X)), then vAei
is finite. Looking for a contradiction, suppose that vA® is infinite and 1 (s}")
is compact. Since X = span{sy¢(a) : X € A%, a € C*(A?)}, there exist ﬁmte
sets B, F C A%, G, H C C*(A?) such that

K — %/J(SQI)HLC*W)(X) <1,
where

K := Z ®s§¢(a),sﬁ¢(b) € ICC*(Ai)(X)
(Na)EEXG,
(u,b)eFxH

Since F is finite and vA® is infinite, we can choose v € vA® \ F. Then s € X
and

Y(sh ) (sD) = d(s])sh = shsh = 5.

However, since d(u) = d(v) for each p € F, we have that MCE(p,v) = @ for
every u € F, and so

K(sh)= > Ot p(a).sh o) (5) = > shelab)sh sh =0.
(Na)EEXG, (X\,a)EEXQG,
(u,b)eFxH (m,b)eFxH

Since the norm on X is the restriction of the norm on C*(A), we have that

A A A* A A
lso % = 15018+ ) = 50 52l a) = llsg) ey = 1.

Thus,
1K =92 Yoo = sup (K = (52 ) @)llx
lz|lx <1
> (K = (sh ) (sh)llx = Ishllx =1,
which is a contradiction. O

Now that we have determined H;,, we move on to B Jx- In contrast to
ker(v), where the set Bker(w) did not contribute any nonzero generators, the
ideal ¢! (Kc+(a1)(X)) is not necessarily generated solely by its vertex projec-
tions (i.e., the projections corresponding to vertices that admit finitely many
edges of degree e;). The purpose of the next lemma is to determine for which
finite exhaustwe sets E € FE(A*\ A'H;,) with E C U 1 A% does the pro-
jection A(s™)E belong to the Katsura ideal. We were somewhat surprised to
discover that this occurs if and only if E can be extended to an exhaustive
subset of A by adding in a finite collection of edges of degree e;.

Lemma 4.13. Let A be a locally convex finitely alzgned k-graph. Suppose
E € FE(A'\ A'H ;) with E C U (A% Then A(sM)F € Jx if and only if
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there exists a finite set F' C r(E)A% such that EU F € FE(A). In particular,
if EUF € FE(A) for some F C r(E)A®, then

w(A(sAl)E) = Z (_1)(IGI+1)@SQ7SQ € ’CC*(AI)(X)
GCEUF
GNF#o
HEMCE(G)

Proof. Fix E € FE(A*\ A'H;,) with E C U?:l A% . We begin by showing
that A(s* )P € ker(y))t. Consider the situation where r(E)A% = @. We
claim that r(E)A* = r(E)A" \ A'Hy,. Clearly, r(E)A"\ A'H;, C r(E)AY,
and we just need to check the reverse set inclusion. If A € r(E)A?, then
the factorization property implies that s(A)A% = &, and so s(A) € Hj, by
Proposition 4.12. Hence, A € r(E)A"\ A'H ., which proves the claim. Thus,
E € 7(E)FE(A?), and relation (CK) in C*(A?) says that A(s»)® = 0, which is
certainly in ker(t/)*. On the other hand, if r(E)A® # @, then Proposition 4.12

tells us that s ) € ker(y)*. Since ker(¢)* is an ideal of C*(A’), we see that
A(A)E = 8 A(s2)P € ker(p) .

Now suppose that there exists a set F' C r(E)A% such that EUF € FE(A).
Applying the Cuntz—Krieger relation in C*(A), Lemma 4.11 gives

0=A(sMPYUE =54 4 Z (—1)‘G‘sﬁsﬁ*.

@#GCEUF
HEMCE(G)
Splitting this sum, we get that
(9) sh+ > (=D9shshT = Y (—)UehssAT
@£GCE GCEUF
HEMCE(G) GNF#2
HEMCE(G)

Since E C A?, we can again use Lemma 4.11 to see that

(10) 5{} + Z (—1)‘6‘51}32* = gb(sﬁ + Z (—l)lGlsﬁisﬁi*>

PAGCE @+GCE
REMCE(G) nEMCE(G)
=o(A(s™)H).

Next, observe that if G C EUF and GNF # &, then max{d(v); : v € G} = 1.
Hence, if 4 € MCE(G), then d(u); = 1, and so 5;/} € X. Since Y(A(s2)F) is
multiplication by ¢(A(s*)F) on X C C*(A), and Oa o4 is multiplication by
shs2" for each S;/} € X, (9) and (10) imply that o

nSu
ANNEY _ _1\(|G]+1)
GCEUF
GAF#D
HEMCE(G)

Thus, A(sAi)E € ¥~ (Ke«(ai)(X)), and we conclude that A(sAi)E € Jx.
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Conversely, suppose that A(sAi)E € Jx. Since A(sAi)E acts compactly on
X, we can find finite sets G, H C {\ € A : d()\); = 1} such that

ANE
1) 1K (A6 <1,
where
K = Z ) Osh sp € Ko (ai)(X),
(n,v)EGXH

and the ¢, ,) are constants.

We define F := {\(0,¢;) : A € r(E)H} and claim that EUF € FE(A). Since
E and H are finite, so is E U F. Furthermore, since r(F) ¢ E, and F consists
of edges, we see that r(E) ¢ EUF. Thus, it remains to show that £ U F is
exhaustive in A. Looking for a contradiction, suppose that there exists some
T € r(E)A that does not have a minimal common extension with anything in
E U F. We consider the situations where d(7); = 1, d(7); = 0, and d(7); > 2
separately.

Firstly, we consider the case where d(7); = 1 (note: this implies that
sh € X). Clearly, if v € H and r(v) # 7(E), then MCE(v,7) = @. Since
MCE(t,v(0,¢;)) is, by assumption, empty for each v € r(E)H, the factoriza-
tion property implies that MCE(7,v) = & for each v € H. Hence,

K(sY) = Z C(u) O s (s2) = Z c(u’u)sﬁsf} sh

(p,v)EGXH (p,v)EGXH
A _A*
= Z () Suasp =0
(p,v)EGXH

(e, B)EA™ ™ (v,7)
Similarly, since MCE(7, A\) = & for each A € E, we have that
¥ SRS DU W S
(a,B)eAmin(x,T)
for each A\ € E. Thus,

H(AE)E)(2) = (T (shm) —s3sd") ) s = s,

AEE
and so
(12) (K =9 (AM)P)) (s2) = =52
Since
* 1/2 1/2
st lx = sl = st sty = st ldin = 1#0,

(12) contradicts (11). Hence, for each 7 € r(E)A with d(7); = 1, there must
exist A € E'U F such that MCE(7, \) # @.

Now consider the situation when d(7); = 0. Consider the case where
r(E)A% is nonempty. The local-convexity of A allows us to choose £ € s(7)A%,
and so by the argument in the previous paragraph, we can find A € EU F
such that MCE(7¢,A) # @. The factorization property then implies that
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MCE(T, \) # @. On the other hand, if 7(E)A® is empty, then sﬁ(iE) € ker(v),
and so » ‘ ‘
A(SA Ve = A(sA )ESQ(E) =0

because A(sAi)E € Jx Cker()t. Thus,

( H (sﬁ\(E) - sg\sﬁ\\*))sf =A(s")Fsh =0,
A\EE
which is impossible if MCE(r, A\) = @ for each A € E. Hence, MCE(T, A) is
nonempty for some A € E.

It remains to consider the case where d(7); > 2. Let K, be the (possibly
empty) set {j : r(E)A% # @,d(r); = 0}. Since A is locally-convex, we may
choose £ € s(1)AXick- ej. Define 7/ := (7£)(0,d(7¢) — (d(7€); — 1)e;) and
observe that d(7'); = 1 and d(7’); = d(7€); for j # i. Hence, we can find
A € EUF such that MCE(7/,X) # @. If A € F (which is a subset of A®),
then 7/ must extend A because d(7') > e;. Hence, 7€ also extends A, and
we have that {T7¢} = MCE(7¢{, A). By the factorization property, it follows
that MCE(r, \) # &. Alternatively, A € E, and so A € A% for some j # i.
Since d(7"); = d(7€); > 1 by our choice of £, we see that 7' (and so 7¢) must
extend A\. Thus, {r¢} = MCE(7&,\). Hence, by the factorization property,
MCE(T, \) # @. This completes the proof of the claim that EUF is exhaustive
in A. |

We now have enough information to give a complete description of the
Katsura ideal.

Proposition 4.14. Let A be a locally-convex finitely aligned k-graph. Then
AN\AN'Hy, = {/\ e A" |s(VNA%| € {(),oo}}

and

k
By, = {EeFE(Ai\AiHJX) :EC | JA%, EUF €FE(A) for some FCT(E)Aei}.
j=1

Furthermore, the Katsura ideal Jx is generated as an ideal of C*(A?) by the
collection of projections

(13) {811}1 10 < [vA%| < oo} U {A(sAi)E :E € By, r(E)\% # @}

Proof. We proved in Proposition 4.12 that H;, = {v € A?: 0 < [vA%]| < o0},
from which the description of A\ A’H;, follows. Lemma 4.13 shows that
if € FE(A\A'H;,) and E C J5_, A%, then A(s*)F € Jx if and only
if there exists F' C r(E)A% such that E U F € FE(A). This gives us the
description of By,. The first paragraph of the proof of Lemma 4.13 shows
that if £ € FE(A'\ A'Hy,) and r(E)A% = g, then E € FE(A?), and so
A(s™)F = 0. Consequently, [30, Theorem 4.6] and Proposition A.1 tell us that
the collection of projections in (13) generate the gauge-invariant ideal Jx. O
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The next example illustrates the subtlety addressed by Proposition 4.14
for graphs with infinite receivers, and served as the main motivation for the
formulation of Lemma 4.13. We thank Aidan Sims for bringing this example
to our attention.

Example 4.15. Consider the locally-convex finitely aligned 2-graph A de-
scribed in [23, Example A.3] with 1-skeleton

) Y

v

where solid edges have degree e; and dashed edges have degree es.

Let ¢ = 2 (i.e., we are removing the dashed edges from the graph). Propo-
sition 4.12 tells us that

Hi = s(uA® \ {A}).

We now determine the finite exhaustive sets in A% and A%\ A2H;,. Since
s(u)Ae = s(u)(A?\ A2Hy,)® is infinite, we see that both s(u)FE(A?) and
s(u)FE(A2\ A%2H;, ) are empty. Since v(AZ\ A2H;, ) = {\} whilst vA®
is infinite,, we see that vFE(A?) is empty and vFE(A% \ A2H,,) = {{\}}.
Observe that {A} is contained in {\, u} € FE(A). For each n € vA® \ {u},
we have that s(n)A® = s(n)(A? \ A2H,, ) is a singleton. Hence, for each
n € vA® \ {u}, s(n)FE(A?) = s(n)FE(A?\ A’H ;) = {s(n)A®}. Moreover,
for each n € vA®2 \ {u}, the singleton set {s(n)A°*} is exhaustive in A. Hence,
we conclude that

FE(A?) = {{s(mA“} : n € vA™ \ {u}}
and
FE(A*\ A’H;,) = FE(A*) U {{\}} = By,.
Since s(n)A®2 = & for each n € vA®2 \ {u}, Proposition 4.14 tells us that Jx
is generated as an ideal of C*(A?) by the projections

{5A2 cw e s(A\ {A})} U {sf}g - 81;283\2*}.

w
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Furthermore, for any w € s(vA® \ {\}), Proposition 4.12 tells us that
P(sh) = O sh,
TEWA®2
which is a rank-one operator. By Lemma 4.13, we also get that
A A% AT
¢(SU — 8\ Sy ) = @SQ,SA O, shyshy e
We now use Proposition 4.14 to prove our main theorem when A is locally-

convex, Ox and C*(A) are isomorphic.

Theorem 4.16. Let A be a locally-convex finitely aligned k-graph. If we let
t: X — C*(A) denote the inclusion map, then (i,¢) is a Cuntz—Pimsner
covariant Toeplitz representatwn of X in C*(A). For each A € A, define
uy € Ox by uy == ]X 4 “(Qaen, (s2)). Then {ux : XA € A} is a Cuntz—Krieger
A-family in Ox. Furthermore, the x-homomorphisms  Xo ¢: Ox — C*(A)
and 7, : C*(A) — Ox induced by the universal properties of Ox and C*(A)
are mutually inverse. Hence, C*(A) =2 Ox.

Proof. The proof is very similar to the analogous statement for Toeplitz alge-
bras in Theorem 3.7. We begin by showing that (i, ¢) is a Cuntz—Pimsner
covariant Toeplitz representation of X in C*(A). Exactly the same argu-
ment as in the proof of Theorem 3.7 shows that (¢,¢) is a Toeplitz repre-
sentation. It remains to check that (¢,¢) is Cuntz—Pimsner covariant, i.e.,

(1, )V (¢(a)) = ¢(a) for each a € Jx = ¢~ (Ko-(ai)(X)) Nker(y)L. Using
the generating set of Jx that we found in Proposition 4.14, it suffices to show
that:

(i) If v € A® and 0 < |vA®| < oo, then

(¢, (b)(l) (¢ (asﬁi b)) = ¢(a5ﬁi b)
for each a,b € C*(AY).
ii) If E € FE(A*\ A‘H, ), with E C |J*_, A%, and EUF € FE(A) for
X 7j=1
some F' C r(E)A%, then
(1) (¥ (aA(sY) b)) = B(atr(s") ")
for each a,b € C*(AY).

Let us check (i) first. If v € A® with 0 < |[vA%| < oo and a,b € C*(A?),
making use of Proposition 4.12; we see that

Wlasy'b) = pla)v(sd )ob) = v(@)( Y O )uld)

pHEVA©
= > Op@stust = D Opa)shsersh-
pEVA©i pEVA©i

Thus, using Proposition 4.12 again we get that
(1:0) M ((asy'b) = D dla)spsy 6(b) = b(a)shd(b) = d(as) ).

pEVA©
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This completes the proof of (i).

Next we check that (ii) holds. Fix a,b € C*(A?) and E € FE(A*\ A’H )
with E C U?Zl A% . Suppose EUF € FE(A) for some F C r(E)A%. By
Lemma 4.13, we have that

G (a(s2)Eb) = () (AN E) (D)

G|+1
D DR G ) R CHTR GPS

GCEUF
GNF#@
HEMCE(G)

G
= Y DUMO4 0 m s0ms-

GCEUF
GAF+40D
HEMCE(G)

Thus, combining equations (9) and (10) for the second equality, we see that

o)V @A™ )P0) = ST (~1)IGHDp(a)st s (b)
GCEUF
GNF#2
HEMCE(G)

= ¢<a)<z>(A(s“>E)¢<b>
= ¢(aA(sN)Eb) .

We conclude that (¢, ¢) is a Cuntz—Pimsner covariant Toeplitz representa-
tion of X. Hence, there exists a x-homomorphism ¢ xp ¢: Ox — C*(A) such
that (v xo @) 0 jx =t and (¢ Xo @) © jo=(aiy = ¢, Where (jx, jc=(ai)) is the
universal Cuntz—Pimsner covariant Toeplitz representation of X.

Next, we show that the collection {uy : A € A} C Ox of partial isometries
defined by uy := j;eéd()‘)i (Qq(x);(58)) is a Cuntz-Krieger A-family. The same
calculations as in the proof of Theorem 3.7 show that {uy : A € A} is a
Toeplitz—Cuntz—Krieger A-family. It remains to check that {uy : A € A}
satisfies (CK). By [23, Theorem C.1], it suffices to show that if v € A® and
EC U§:1 vA% belongs to vFE(A), then A(u)f = 0.

Firstly, we consider the case where E N A® = @. Then F = ENA* €
vFE(A?Y), and so

A" = je-ao (AGY)F) = 0,

where the last equality comes from applying the Cuntz—Krieger relation in
C*(AY).
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It remains to consider the situation where £FNA®% # @. Using Lemma 4.11,
we get that

Aw?f =u,+ Y (=1)uzu;

@#GCE
AEMCE(G)
= Uy + Z (=1)ICluyul + Z (=) Cluyu
P#AGCENA® 9#GCE
AEMCE(G) GNA%i £

AEMCE(G)

=J'c*(A'i)(A(8AI)EmAI)+(jx,jc*(m))(1)< > (—1)G@s§7s§)-
G4GCE
e ICEY.
AEMCE(G)

Since @ # ENA% C vA%, Proposition 4.12 tells us that s € ker(1))*. Thus,

v
A(sAi)EﬂAi = sf}IA(sAi)EﬂAi € ker(y)*
as well. Since the Toeplitz representation (jx, jo=(ai)) is, by definition, Cuntz—
Pimsner covariant, to establish that A(u)® = 0, we need only verify that

ANENATY _ _1\(Gl+1)
(14) w(AGE)TY) = Y (DITe .
@#£GCE
GNA®i 4z
AEMCE(G)

Again applying Lemma 4.11 (now to the Cuntz—Krieger A-family {s3 : A € A}),

and recalling that F is finite and exhaustive in A, we get that

0= A(SA)E _ A(SA)EﬁAi + Z (_1)\6“5/)}5/)}*
G4GCE
GNA%i £
AEMCE(G)

Rearranging, we see that

(ZS(A(S/V)EQA') _ A(SA)EOA' _ Z (_1)(|G|+1)81>}5$\\*’
@#GCE
GNA®i 4o
AEMCE(Q)
and so (14) follows.

Thus, {ux : A € A} is a Cuntz—Krieger A-family in Ox. The universal
property of C*(A) then induces a *-homomorphism 7, : C*(A) — Ox such that
Tu(sy) = uy for each A € A. Exactly the same argument as in Theorem 3.7
shows that 7, and ¢ Xp ¢ are mutually inverse. Hence, we conclude that
C*(A) = Ox. O

5. RELATIONSHIPS TO OTHER CONSTRUCTIONS

5.1. Graph correspondences. It is well known that if £ = (E°, E',r,s)
is a directed graph, then the graph algebra C*(E) may be realized as the
Cuntz-Pimsner algebra of a Hilbert Cp(E®)-bimodule. We summarize this
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procedure and show that it is a special case of our construction when k = 1.
Given a,b € Co(E®) and z,y € C.(E') we define a -z -b € C.(E') and
(,9)co(m0) € Co(E®) by

(a-z-d)(e) := a(r(e))z(e)b(s(e))

and

(T, Y) o0y (V) := Z @y(e)

ecs—1(v)

for each e € E and v € EY. Taking the completion of C.(E!) with respect to
the semi-norm induced by (-, )¢, (go) gives a Hilbert Co(E?)-bimodule X (E)
(see [24, Lemma 2.16] for the details of this procedure), which we call the graph
correspondence. For v € E° and e € E', we write §, and J, for the point
masses of v and e, which we view as elements of Cy(E?) and C.(E') C X (E),
respectively. It follows from [22, Example 8.8] that the Katsura ideal of the
graph correspondence is Jx gy = 5pan{d, : 0 < |r=1(v)] < co}. Moreover, [22,
Example 8.13] tells us that the maps s} — jc,(poy(6y) and sZ — jx(g)(de)
for v € E® and e € E* induce an isomorphism from C*(E) to Ox ().

Let A be the path category of E. Then A is a locally-convex 1-graph, and
we can apply our procedure from Section 4 to A. Removing edges of degree
e; from A leaves A = E° and so C*(A') = Cy(E®) via the isomorphism
sf}l — 0p. Similarly, X = spﬁ{s’)}sf}* s Ap € AdN) = 1,d(p) = 0}
is just span{s} : e € E'}, which (if we identify the respective coefficient
algebras) is isomorphic to X (E) as a Hilbert bimodule via the map s + 6.
Thus, the isomorphism given by Theorem 4.16 is the same as that given by
[22, Example 8.13]. For this reason, we like to think of the construction in
Section 4 as a higher-rank graph correspondence. It is also not difficult to
see that the description of the Katsura ideal for the graph correspondence
given by [22, Example 8.13] is just a special case of Proposition 4.14. Since
AL\ A'Hj;, consists of just vertices, it follows that FE(A' \ A'H,,) = @,
and so B Jx = . Thus, Proposition 4.14 tells us that Jx is generated as
an ideal of C* (A1) by the vertex projections {s2 : 0 < [vE!| < oo}, and so
Jx = Spﬁ{sf}l 10 < [vEY| < oo}

5.2. Iterating the Nica—Toeplitz and Cuntz—Nica—Pimsner construc-
tion. Sims and Yeend showed in [31, Section 5.3] that the Cuntz—Krieger al-
gebra of a finitely aligned k-graph may be realized as the Cuntz—Nica—Pimsner
algebra of a compactly aligned product system over N*. In [12] we showed how
the Nica—Toeplitz and Cuntz—Nica—Pimsner algebras of a compactly aligned
product system over N¥ can be realized as iterated Toeplitz and iterated Cuntz—
Pimsner algebras, respectively. We now briefly explain how the results of the
current paper can be deduced by combining these two constructions (at least
for row finite graphs with no sources). For the relevant background informa-
tion on product systems and their associated C*-algebras, we direct the reader
to [31].
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Let A be a finitely aligned k-graph. For each n € N*¥, (A" A® 7|pn, 8[pn)
is a directed graph, and we write X(A),, for the associated graph correspon-
dence. It can be shown that there exists an associative multiplication on
X(A) = |, ent X(A)y such that 6,0, = dg(u),r)0u for each y,v € A. This
multiplication induces a Hilbert Cy(A°)-bimodule isomorphism from the bal-
anced tensor product X(A)m, ®c,a0) X(A)n to X(A)yqn for each m,n € NF,
and so X(A) has the structure of a compactly aligned product system over
N* with coefficient algebra Cy(A®). It can then be shown that there is an
isomorphism from the Nica-Toeplitz algebra N'Txa) to TC*(A) that maps
ix(a)(0x) to t§ for each A € A. Similarly, there exists an isomorphism from
the Cuntz-Nica—Pimsner algebra NOx ) to C*(A) mapping jx(a)(dx) to BN
for each A\ € A.

Fix i € {1,...,k}. Then X' := ||, enr .y, =0} X(A)y has the structure of a
compactly aligned product system over N*~1) Clearly, X’ is isomorphic as
a product system to X(A?), and so NTxs = TC*(A?) and NOx: = C*(AY).
It follows from [12, Proposition 4.2] that the inclusion X’ C X(A) induces an
injective *-homomorphism ¢%, : NTx: — N Tx(a)- Similarly, [12, Propo-
sition 5.6] says that if Cp(AY) acts faithfully on each X(A), (i.e., A has no
sources), then there is an injective *- homomorphism ¢§‘(//O : NOx: = NOxn)
induced by the inclusion X’ € X(A). It follows from [12, Propositions 4.3
and 4.6] that the closed subspace

YT = span{ix ) (X(A)e, )oX! NTx)} S NTxa
has the structure of a Hilbert /T x/-bimodule with operations
a-y-b=¢X (a)ydX (b) and (v, w)nry, = (X)) (y w)

for y,w € YNT and a,b € NTx/. After identifying the coefficient algebras
NTx: and TC*(A?), routine calculations show that the map

ix(a) (6x) % (i (8,)ix: (8,)7) > th, b0

for A € A%, p,v € AY, with s(\) = r(u), s(u) = s(v) extends to a Hilbert
bimodule isomorphism from Y%7 to the bimodule X constructed in Proposi-
tion 3.2. Using ¢§‘(f/o in place of ¢§‘(f/T , we also have a Hilbert N'Ox/-bimodule

YO = span{ix () (X(A)e, )% N Ox:)} € NOxa),

which we can identify with the bimodule X from Section 4. Finally, [12,
Theorem 4.17] says that the inclusion lev TCN Tx () induces an isomorphism
TynT = NTx(a), whilst [12, Theorem 5.20] says that if Co(A%) acts faithfully
and compactly on each X(A),, then the inclusion Y© C A Ox(a) induces an
isomorphism OY{m =~ N Ox(a)- Consequently, in the situation where A is row
finite and has no sources, the main result of this paper (Theorem 4.16) can be
obtained by combining [31, Proposition 5.4] and the results of [12].
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5.3. Semi-saturated circle actions and generalized crossed products.
Let B be a C*-algebra and a: T — Aut(B) an action of the circle group. For
n € Z, define B,, := {b € B : a,(b) = 2™b for each z € T} (the nth spectral
subspace for «). It is routine to check that each B, is a closed subspace
of B, and By (which we call the fixed point algebra of «) is also closed under
multiplication and taking adjoints. Moreover, B} = B_,, and B, B, C Bpipm,
for each n,m € Z. In particular, since BoB1By C B; and BiB; C By,
[21, Lemma 3.2 (1)] tells us that B; is a Hilbert By-bimodule with left and
right actions given by multiplication and inner product (£, ), = £*n for each
&,m € By. In fact, since B1BY C By, By also has a left By-valued inner product
given by p, (¢, n) = {n* for each £, € By, which gives B; the structure of a left
Hilbert By-bimodule. It is straight-forward to see that the two inner products
satisfy the imprimitivity condition

(15) E-(n)B, = Bo(&,m) - for &,m,p € By

Thus, if Bf By = By = BBy, then both of these inner products are full, and
By is a By—By imprimitivity bimodule (see [24, Definition 3.1]). If the action «
is semi-saturated in the sense that B is generated as a C*-algebra by the fixed
point algebra By and the first spectral subspace By (see [10, Definition 4.1]),
then [1, Theorem 3.1] says that B can be realized as the generalized crossed
product By x g, Z. Proposition 3.7 of [14] tells us that By x p, Z is canonically
isomorphic to Op,, and so we conclude that any C*-algebra with a semi-
saturated circle action may be realized as the Cuntz—Pimsner algebra of a
Hilbert bimodule whose coefficient algebra is equal to the fixed point algebra
of the action.

Suppose that A is a locally-convex finitely aligned k-graph and resume the
notation of Section 4. Let v : T — Aut(C*(A)) denote the restriction of
the gauge action v to the ith coordinate of T*. The nth spectral subspace
for v is then C*(A), = spﬁ{s‘)}sf}* A € Ad(N); —d(u); = n}. Thus,
B(C*(A%)) C C*(A)o and X C C*(A);. Theorem 4.16 tells us that ¢(C*(A?))
and X generate C*(A), and so we see immediately that 7/ is a semi-saturated
action. Consequently, the discussion in the previous paragraph shows that
C*(A) can be realized as the Cuntz—Pimsner algebra of the Hilbert C*(A)o-
bimodule C*(A);. We now explain how this decomposition of C*(A) as a
Cuntz—Pimsner algebra relates to that given by Theorem 4.16.

The first point to note is that whilst ¢(C*(A?)) and X are always subsets of
C*(A)o and C*(A); respectively, these containments are usually strict. Thus,
the descriptions of C*(A) given by [1, Theorem 3.1] and Theorem 4.16 are not
the same. For example, consider the 1-graph ¥ consisting of a single vertex and
n > 2 loops {e1,...,ey}. Then C*(X) is the Cuntz algebra O,,, and removing
all the edges from X leaves the graph X! consisting of just one vertex. Hence,
#(C*(X1)) = C, whilst we see that sasg* € C*(X)o \ #(C* (L)) for each i €
{1,...,n} (in fact C*(X)o is the UHF algebra M,,~ ). In general, the bimodules
X and C*(A); (and their respective coefficient algebras C*(A?) and C*(A)g)
are related by Pimsner’s process of extending the scalars (see [21, Section 2]
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and [2, Section 3.1] for the details): the map

s‘}sf}* — s§(07ei) ®c= (A% sﬁ\\(ehd()\))sﬁ* for A, € A, with d(A\); — d(p); =1,
extends by linearity and continuity to an Hilbert C*(A)g-bimodule isomor-
phism from C*(A)1 to X ®¢=(aiy C*(A)o.

Another key difference between our procedure for realizing C*(A) as a
Cuntz-Pimsner algebra and that of [1] is the existence of a left inner prod-
uct satisfying the imprimitivity condition. Since C*(A);C*(A);" C C*(A)o,
the spectral subspace C*(A); carries a left C*(A)p-valued inner product given
by c+(a), (&, m) = &n*, and the left and right inner products on C*(A); sat-
isfy (15). On the other hand, it is not true in general that X X* C ¢(C*(A?)).
For example, if we return to the 1-graph X discussed above, then SE e X
for each i € {1,...,n}, but sZs>" & ¢(C*(X1)). It would be 1nterest1ng to
see what the condltlon XX* Q ¢(C* (A%)) implies about the structure of the
graph A. As the next result shows, this condition determines precisely when
X also has the structure of a left Hilbert C*(A?)-bimodule and the two inner
products satisfy the imprimitivity condition.

Proposition 5.4. Let A be a locally-convex k-graph and let X be the Hilbert
C*(A%)-bimodule constructed in Section 4. Then there exists a left C*(A?)-
valued inner product cw(ni)( -, - ) giving X the structure of a left Hilbert C*(A*)-
bimodule and satisfying the imprimitivity condition

oA (T, y) 2= 2 - (Y,2)cx(a1)y for each x,y,z € X
if and only if XX* C ¢(C*(AY)).

Proof. Tt follows from [15, Proposition 5.18] that X has left C*(A?)-valued in-
ner product with the required properties if and only if Ke«(21)(X) C ¥(Jx).
By [21, Lemma 3.2(3)], the *-homomorphism (¢, ¢)(!) : Kesai)(X) = XX*,
which sends ©,, to «(z)i(y)* = ay* for z,y € X, is an isomorphism. By
Theorem 4.16, the Toeplitz representation (¢, ¢) is Cuntz—Pimsner covariant,
and so (1, )Y 09) and ¢ agree on Jx. Thus, X has a left C*(A?)-valued inner
product with the required properties if and only if XX* C ¢(Jx). Conse-
quently, to prove the result it remains to show that X X* C ¢(C*(A?)) implies
XX* C ¢(Jx).

Suppose that X X* = bpan{sxs A€ A dN); = d(w); = 1} is con-
tained in ¢(C*(A%)). By hneamty and continuity, it suffices to show that
sﬁ\\sA € ¢(Jx) for each A€ A with d(A); = d(p); = 1 and s(A) = s(p).
By assumption, s4 = ¢( ) for some a € C*(A?), and so we need only check
that a € Jx. Slnce sﬁ\‘, € X, we see immediately that 1(a) = ©s%,s%, and
so a € Y (Kes(a1)(X)). Thus, it remains to show that a € ker(y)*. By
Proposition 4.10, ker(@[}) is generated as an ideal of C*(A?) by the collection of
vertex pI‘OJGCthDS {sM € AV : vA® = @}. Hence, by linearity and continuity,

if asA sA7sA" = 0 whenever v,n € A, ve A° with vA® = @, and s(v) = s(n),

n
r(n) = v, then a € ker(¢)* as required. Since (b(asA sg sf} )= sﬁ\\sﬁ s‘l}sg*sf}
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and ¢ is injective, we need only show that r(u) # r(v). Looking for a contra-
diction, suppose that r(u) = r(v). Since d(u); = 1 and d(v); = 0, Lemma 4.1
tells us that s(v)A% # &. As s(v) = s(n), the factorization property implies
that vA® # @, which is impossible. Hence, a € ker())*, and we conclude that
a € Jx. Thus, sis A = ¢(a) € ¢(Jx), as required. O

Finally, we note that even when X X* is not contained in ¢(C*(A?)), X can
still have the structure of a left C*(A?)-bimodule, provided we do not require
that the two inner products satisfy the imprimitivity condition. If E is a di-
rected graph, then, as shown in [26, Proposition 3.8], the graph correspondence
X (E) has a left CO(EO)—Valued inner product given by

coe) (1,9)(0) = D fle)gle) for f,g € C(E"), ve A’

ecr—1(v)

which gives X (E) the structure of a left Hilbert Co(EY)-bimodule. It is
straight-forward to see that the left and right Cy(Ep)-valued inner products
on X (FE) do not satisfy the imprimitivity condition (as predicted by Proposi-
tion 5.4): if e, f € E' are distinct edges with common range, then

CD(ED)<557 5€> ! 5f = 5’r(e) ' 5f = 5f 7& 0= 5€,f55 ' 58(8) = e - <585 5f>Co(E0)-

However, the left and right inner products on X (E) are compatible in the sense
that the right action of Co(E°) is adjointable with respect to the left inner
product and the left action of Co(E°) is adjointable with respect to the right
inner product. As shown in [4, Remark 1.9], this compatibility condition is
automatic if the two inner products satisfy the imprimitivity condition. Thus,
the graph correspondence X (E) is a bi-Hilbertian C*(A*)-bimodule in the sense
of [25, Definition 2.1]. Unfortunately, we have so far been unable to determine
whether an analogous left inner product exists for the bimodule X associated
to graphs of rank 2 or more. This is certainly an issue worth exploring further:
if X has the structure of a bi-Hilbertian C*(A?)-bimodule, then the results of
[2, 25, 26, 27] could be applied to higher-rank graph algebras.
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APPENDIX A. GAUGE-INVARIANT IDEALS OF HIGHER-RANK GRAPH
ALGEBRAS

Suppose ¥ is a finitely aligned k-graph and I is a gauge-invariant ideal of
c*(%). If

Hr:={vex®:s)el} and B;:={E€FEX\XH):A(s”)" eI},
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then [30, Theorem 4.6] tells us that I is generated as an ideal of C*(X) by the
collection of projections

{sY :ve H}U{A(s®)? : E € Br}.

In this appendix we show that to get a generating set for I, we need only

consider those finite exhaustive sets in the collection B; consisting of edges.

We make use of this refinement of [30, Theorem 4.6] in our proof of Lemma 4.13.
To this end, we prove in the next result that if

k
BI::{EEBI:EC Uz%}

j=1
and F € By, then A(s¥)" belongs to the ideal of C*(X) generated by the
collection of projections {A(s”)F : E € Br}. Our proof uses the same tech-
niques as deployed in [23, Appendix C] to show that a Toeplitz—Cuntz—Krieger
Y-family {gy : A € X} satisfies relation (CK) if and only if A(q)F = 0 for each
E € FE(X) with E € J}_, 5.
Proposition A.1. Let ¥ be a finitely aligned k-graph and suppose I is a

gauge-invariant ideal of C*(X). Let J denote the ideal of C*(X) generated by
the projections {A(s¥)¥ : E € Br}. Then

(16) Ee B — A(s®)P e

Proof. We use induction on L(E) := Z?Zl max{d(\); : A€ E}. If E € By
and L(E) = 1, then E C X% for some j € {1,...,k}, and so E € By. Thus,
A(s*)F € J as required.

Now let n > 1 and suppose that (16) holds whenever L(E) < n. Fix F € By

with L(F) = n + 1. Define

k
I(F) = [ J{A0,¢) : A€ F, d(\); > 1}.
j=1
Since F' € FE(X \ ¥ Hy), [23, Lemma C.6] tells us that I(F) € FE(X \ XHj).

Moreover, since A(s*)f € I, and each element of F extends an element of
I(F), we see that

A(sP)IE) = A(s®) I A(sP)F e T
Thus, I(F) € By.
For each p € I(F), we also define

Exts\en, (15 F) = | J {a € s(u)(S\ £H;) : po € MCE(, M) }.
AEF

We claim that
(17) A(s®)Extoven (5F) ¢

Firstly, note that L(Exts\sg, (u; F)) < n, by [23, Lemma C.8]. If s(u) is
contained in Extsy sy, (43 F), then A(s¥) s 6F) — () which is certainly
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in J, so we suppose that s(u) ¢ Exts\sq, (1; F'). Since F € FE(X\ ¥Hy), [23,
Lemma C.5] says that Exts\ s, (13 F) € s(u)FE(X\ $Hj). Since A(s*)F € I,
we can use [30, Lemma 3.7] to see that

A(SE)E’“Z\EHI(’“F) = SE*A(SE)FSE cl.

Thus, Exts\sq, (4; F) € By, and we may apply the inductive hypothesis to

conclude that A(s”)Ext=\=m; (F) ¢ 7 This completes the proof of claim (17).
Observe that if y € I(F) and A € Extsy\sg, (4; F), then there exists v € F

such that uA € MCE(u, v), and so

STZ(F) - SESE* = (STZ(F) - SESE*)(SE(F) - SEASE)\*)'
Hence,
A=A T] I1 (Sr(r) = Sinsin )-

HEI(F) NeExts\su, (1;F)
Thus, A(s*¥) will belong to the ideal .J, provided
REI(F) A€Exts\ s, (1 F)
For € I(F), we have
Sr(r) ~ Sisi = (Sn(r) — Sush )( II (570F) — SinSin ))~
A€Exts\su, (1 F)
On the other hand,
- T1 R - she)

AEExts\xm, (1;F)

= STE(F)( H (STE(F) - SEASEA ))

AEExts\sm, (1 F)

(T e )

A€Exts\su; (1 F)

= < H (STE(F) - SEASEA*)>

A€Exts\su; (1 F)

¥y u* » oy ok
- ( H (susu = SuASua ))

A€Exts\su, (1 F)

_ ) s .y * S A S\Extsnna, (1 F) (S
= < II (8(m) = SuxsSiin )> — s A7) s
A€Exts\su; (1 F)
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Combining the last two calculations, we see that

I Ghim=sinsin ) = (srm —susy )+ ATt (5057,

AE€Exts\xnu, (13 F)
Taking the product as u ranges over the set I(F') and recalling that

A(SE)Extz\zHI(#;F) cJ and H (SE](F) _SESE*) _ A(SE)I(F) cJ
HEI(F)

we conclude that (18) holds. Thus, A(s*)f € J, and the result holds by
induction. d

Remark A.2. The results of [30] in fact deal with the more general situation
of twisted relative Cuntz—Krieger algebras associated to higher-rank graphs.
In this more general setting, the analogous version of Proposition A.1 still
holds using exactly the same argument: all our calculations take place in the
diagonal subalgebra (which is the same regardless of the twist) and do not
make use of relation (CK).
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