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Abstract. The optimal transport problem in the context of Lorentz–Finsler geometry is
studied. Besides deducing the existence of optimal couplings a result on the intermediate
regularity of optimal couplings is given. Furthermore, a solution to the Monge problem and
an exact criterion for the existence of causal couplings are established. The results generalize
parts of [6], [8] and [11].

1. Introduction

This article studies optimal transportation in Lorentz–Finsler manifolds
from the geometric point of view. The geometric viewpoint necessitates that
one passes to a spacetime as configuration space. In a spacetime the time
parameter is part of the geometry. There are multiple choices for the time pa-
rameter and, as is well known in Lorentzian geometry, no choice is preferred. In
other words it is not canonical which part of the spacetime is space, or equiv-
alently which points are isochronous. Thus isochronicity in Lorentz–Finsler
geometry is subject to a choice. Usually this choice is made via singling out a
time function whose level sets are then thought of as constituting space. After
choosing a time function a transport problem can be posed between two level
sets of this time function. Solutions to such transport problems are provided
for example in [6]. Transport problems originating in applications to relativity
though, such as the early universe reconstruction problem (see below), cannot
be brought into such a form thus motivating the spacetime perspective. This
follows from the fact that the support of one martingale is the boundary of
the causal past of a set. In this case the support is in general not acausal (see
Section 2). Sets that are not acausal are never the level set of a time function.
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In the formulation of other transport problems the measures are not concen-
trated on a single level set of a time function, but are rather distributed on a
continuum of level sets, i.e. distributed over a continuum of time parameters.
This appears for example when the same transport problem relative to two
different time functions is considered. For a discussion of the dependence on
different time functions see [15].

Brenier [7] was the first who took notice of the problem of optimal trans-
portation in Lorentzian geometry. He proposed a transportation problem
which, only weakly disguised, is the problem of transportation between par-
allel spacelike hyperplanes in Minkowski space with respect to the negative
Lorentzian distance extended by ∞. Here a strong form of isochronicity is
assumed for the support of each measure, i.e. being supported on level sets
of a linear time function. Following this formulation, Bertrand and Puel [6]
generalized the problem to a wider class of functions called relativistic costs,
and gave inter alia a solution to the Monge problem while staying in the same
basic geometric frame.

The early universe reconstruction problem, studied in [8] and [13] with meth-
ods of optimal transportation, asks whether one can construct the trajectories
of masses from the big bang to their present day positions in Robertson–
Walker spacetimes. A mathematical formulation for general globally hyper-
bolic spacetimes would read as follows: Given two measures, one concentrated
on a Cauchy hypersurface, the other on the past cone of a point, what can be
said about the trajectories of the minimizers in a dynamical optimal coupling
(see Definition 2.8) of the two measures? Frisch et al. [13] gave a justification
to why the problem can be studied with methods from optimal transportation.

The first question that comes to mind when studying a cost function which
take an infinite value, such as the cost function considered here, is whether
there exists a coupling of two given measures with finite cost. This problem
was studied in [6]. Recently, in a more systematic approach, Eckstein and
Miller [11, 15, 10] studied the problem and the causal evolution of measures in
Lorentzian geometry. Theorem 2.6 below extends the existing results on the
question to a more abstract setting including metric spaces.

The other results in this article generalize the previous approaches to the
problem of Lorentzian optimal transportation in two directions: The first goal
as already mentioned above is the structure of the support of the measures
involved, i.e. passing from being supported on surfaces of isochronicity (level
sets of time functions) to being distributed in space and time or on achronal
sets, see Theorems 2.10, 2.12, 2.13, and 2.14. From the physics point of view
this means that observations are not only made at a single point in time but
rather over a stretch of time or cannot be brought into the form of a single
time parameter.

Second, there is the extension to Lorentz–Finsler geometry. This category
includes Lorentzian geometry. Thus one can now study transport problems in
relativity in their full generality. The step from relativistic cost functions and
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Robertson–Walker spacetimes, respectively, to globally hyperbolic Lorentz–
Finsler spacetimes is comparable with passing from Euclidian space to Rie-
mannian manifolds in the theory of optimal transport.

The study was motivated by these comments and the prospect of future
developments mimicking the relations between optimal transport and fluid
dynamics, Riemannian geometry and formulations of synthetic curvature. Be-
sides these generalizations the article gives new results on the structure of
optimal couplings not known even for relativistic cost functions. Section 2 de-
scribes the setting and states the main results. Section 3 provides the proofs.

2. The results

Let M be a smooth manifold of dimension m ≥ 2. Denote by πTM : TM →
M the canonical projection of tangent vectors to their base point. Throughout
the article one fixes a complete Riemannian metric h on M . The norm |.| and
distances dist(., .) are understood to be induced by h, unless noted otherwise.
Recall that h induces a Riemannian metric on TM . Distances in TM are
understood to be induced by this metric. The metric ball around y with
radius r is denoted by Br(y). Set T

0M to be the image of the zero section of
TM and 0p the zero vector in TMp.

Consider a continuous function L : TM → R smooth on TM \ T 0M and
positive homogenous of degree 2 such that the second fiber derivative is non-
degenerate with index m− 1. One says that C ⊂ TM is a closed cone field if
Cp := C ∩ TMp is a closed convex cone for all p ∈M and C ∪ T 0M is a closed
subset of TM . A causal structure C of (M,L) is then a choice of a closed cone
field C with πTM (C) =M such that int C, the open interior of C, is a connected
component of {L > 0}. For every point p ∈ M every connected component
of TMp ∩ {L > 0} ⊂ TMp belongs to a unique causal structure up to a finite
cover, see Section 3.1.

Fix a causal structure C for (M,L). Define a new Lagrangian L on TM by
setting

L(v) :=

{

−
√

L(v) if v ∈ C,
∞ otherwise.

The function L is fiberwise convex, finite on its domain and positive homoge-
nous of degree one. It further is smooth on int C. The function L has the
features of a Finsler metric of Lorentzian type. This justifies calling the pair
(M,L) a Lorentz–Finsler manifold. The generality of Lorentz–Finsler geome-
try is chosen in view of recent developments in the area, see e.g. [14, 16, 17, 18],
and the goal to achieve a scope comparable to the one of Tonelli–Lagrangian
systems, see e.g. [3, 4, 12].

An absolutely continuous curve γ : I → M is called (C-)causal if γ̇ ∈ C
whenever the tangent vector exists. A causal curve γ : I →M is timelike if for
all s ∈ I there exist ε, δ > 0 such that dist(γ̇(t), ∂C) ≥ ε|γ̇(t)|, for every t ∈ I
for which γ̇(t) exists and |s− t| < δ.
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Denote by J+(p) the set of points q ∈ M such that there exists a causal
curve with initial point p and terminal point q. Denote by J−(p) the set of
points q ∈ M such that there exists a causal curve with initial point q and
terminal point p. The sets I±(p) are defined in a similar way where causal
curves are replaced by timelike ones. For A ⊂ M set J±(A) :=

⋃

p∈A J
±(p).

Define the set

J+ :=
{

(p, q) ∈M ×M | q ∈ J+(p)
}

.

For an open set U ⊆M define J±
U and I±U as before for the restriction (U, C|U ),

with C|U := TU ∩ C.
A Lorentz–Finsler manifold is said to be causal if it does not admit a closed

causal curve.

Definition 2.1. A causal Lorentz–Finsler manifold (M,L) is globally hyper-
bolic if the sets J+(p) ∩ J−(q) are compact for all p, q ∈M .

Every causal structure is a closed and nondegenerate cone field which is
wider than an open nondegenerate cone field in the sense of [5]. Therefore Def-
inition 2.1 implies that the causal structure of a globally hyperbolic Lorentz–
Finsler manifold is globally hyperbolic in the sense of [5]. By [5, Thm. 3] there
exists a smooth function τ : M → R (called a splitting) with

−dτ(v) ≤ min{L(v),−|v|}
for all v ∈ C. Corollary 1.8 of [5] implies that there exists a diffeomorphism
(also called a splitting) M ∼= R×N such that

τ : M ∼= R×N → R, p ∼= (θ, x) 7→ θ

if (M,L) is globally hyperbolic. Note that τ is by far not unique.

Remark 2.2. For a causal curve γ : (a, b) → M which leaves every compact
subset of M for both t ↓ a and t ↑ b, one has limt↓a τ ◦ γ(t) = −∞ and
limt↑b τ ◦ γ(t) = ∞. This follows from the completeness of h.

Define the Lagrangian action relative to L:

A(γ) :=

{

∫

L(γ̇)dt if γ is C-causal,
∞ otherwise.

A causal curve γ : I →M is an A-minimizer between its endpoints p, q ∈M if

A(γ) = inf
{

A(η) | η connects p and q
}

.

Proposition 2.3. Let (M,L) be globally hyperbolic. Then for every pair of
points p, q ∈ M with (p, q) ∈ J+ there exists an A-minimizer γ : I → M with
finite action connecting the two points. The minimizer γ solves the Euler–
Lagrange equation of L up to monotone reparameterization and one has γ̇ ∈ C
whenever the tangent vector exists.

Since the arguments are completely analogous to the Lorentzian case, only
a brief summary of the proof is given for completeness.
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Sketch of proof. For (p, q) ∈ J+ consider the space C(p, q) of causal curves η
from p to q with τ ◦η ≡ id and equipped with the uniform C0-topology. C(p, q)
is nonempty and compact since (M, C) is globally hyperbolic by [5, Prop. 5.15].

The restriction A : C(p, q) → R is lower semi-continuous. Therefore there
exists an A-minimizer γ : [τ(p), τ(q)] →M in C(p, q) with γ̇ ∈ C whenever the
tangent exists. Now by [17, Thm. 6] γ is a pregeodesic, i.e. solves the Euler–
Lagrange equations of the action functional associated to L up to a monotone
reparameterization. �

For a globally hyperbolic Lorentz–Finsler manifold define the cost function
relative to L:

cL : M ×M → R ∪ {∞},
(p, q) 7→ inf

{

A(γ) | γ connects p and q
}

.

This cost function satisfies the triangle inequality:

cL(p, r) ≤ cL(p, q) + cL(q, r)

for all p, q, r ∈M . The inequality is nontrivial only if (p, q), (q, r) ∈ J+. In this
case the inequality follows from the observations that the causal relation J+ is
transitive and cL is defined via an infimum. For an A-minimizer γ : [a, c] →M
and a ≤ b ≤ c one has

cL(γ(a), γ(c)) = cL(γ(a), γ(b)) + cL(γ(b), γ(c)).

For two Borel probability measures µ, ν on M call a Borel probability mea-
sure π on M ×M a coupling of µ and ν if (p1)♯π = µ and (p2)♯π = ν where
p1, p2 : M ×M → M are the projections onto the first and second factor. Re-
call that the push-forward (pi)♯π is defined as (pi)♯π(A) := π(p−1

i (A)). The
set of couplings of µ and ν is denoted by Π(µ, ν).

The cost of a coupling π is
∫

M×M

cL(p, q) dπ(p, q).

Denote by CL(µ, ν) the minimal cost relative to cL of couplings between µ and
ν, i.e.

CL(µ, ν) := inf

{
∫

cLdπ | π ∈ Π(µ, ν)

}

∈ R ∪ {∞}.

A coupling π of two probability measures µ and ν is optimal if the cost of π is
minimal, i.e.

∫

cLdπ = CL(µ, ν).

Denote by P(M) the set of Borel probability measures on M and set

Pτ (M) :=
{

µ ∈ P(M) | τ ∈ L1(µ)
}

for a splitting τ : M → R.

Proposition 2.4. Let µ, ν ∈ Pτ (M). Then there exists an optimal coupling π
of µ and ν.
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Proof. The statement is a direct consequence of [21, Thm. 4.1]. One thus
has to check the assumption. Manifolds are Polish spaces and cL is lower
semi-continuous. For the other assumptions one has to find two upper semi-
continuous functions a, b : M → R ∪ {−∞} with a ∈ L1(µ), b ∈ L1(ν) and
a(p) + b(q) ≤ cL(p, q).

The inequality −dτ(v) ≤ L(v) for all v ∈ TM implies τ(p)−τ(q) ≤ cL(p, q).
Thus setting a := τ ∈ L1(µ) and b := −τ ∈ L1(ν) yields the claim. �

The abstract existence result in Proposition 2.4 immediately raises the ques-
tion: Under what assumptions does a coupling with finite cost exist? The
simplest case is that of two Dirac measures µ = δp and ν = δq. A coupling of
δp and δq with finite cost exists if and only if (p, q) ∈ J+. In turn (p, q) ∈ J+

if and only if δq(J
+(A)) ≥ δp(A) and δp(J

−(B)) ≥ δq(B) for all measurable
A,B ⊂ M . The necessity of the condition was noticed in [6] for relativistic
cost functions and general measures.

The problem can be formulated in a more abstract setting though. Let
(X , dX ) and (Y, dY) be locally compact Polish spaces. Denote by πX : X×Y →
X and πY : X × Y → Y the canonical projections. For J ⊆ X × Y, A ⊆ X
and B ⊆ Y define

J +(A) := πY(π
−1
X (A) ∩ J ) ⊂ Y,

J −(B) := πX (π−1
Y (B) ∩ J ) ⊂ X .

Definition 2.5. Two probability measures µ ∈ P(X ) and ν ∈ P(Y) are J -
related if there exists a coupling π of µ and ν with π(J ) = 1.

For X = Y =M and J = J+ a coupling π with π(J+) = 1 is called a causal
coupling. Further for two probability measures µ, ν ∈ Pτ (M) the J+-relation
is equivalent to the finiteness of the optimal cost, i.e. |CL(µ, ν)| <∞. Indeed,
if |CL(µ, ν)| <∞, there exists a coupling π of µ and ν with |

∫

cLdπ| <∞, i.e.
π(J+) = 1. If on the other hand there exists a causal coupling of µ and ν then

∣

∣

∣

∣

∫

cLdπ
′

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

τdµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

τdν

∣

∣

∣

∣

<∞

for every causal coupling π′. It follows that |CL(µ, ν)| <∞.

Theorem 2.6. Let (X , dX ) and (Y, dY ) be Polish spaces and J ⊆ X × Y
closed. Further let µ ∈ P(X ), ν ∈ P(Y). Then the following are equivalent:

(i) µ and ν are J -related.
(ii) ν(J +(A)) ≥ µ(A) and µ(J −(B)) ≥ ν(B) for all measurable A ⊆ X

and B ⊆ Y.

Recently, Eckstein and Miller [11] proved a similar statement for causally
simple Lorentzian spacetimes. Therein the authors study the existence of
causal couplings for different causality assumptions via causal function, a re-
laxed notion of time function.
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After addressing the existence problem of optimal couplings, attention turns
towards the structure of the optimal couplings. Recall that a set A ⊆M ×M
is cL-cyclically monotone if

∑

cL(pi, qi) ≤
∑

cL(pi, qσ(i))

for all {(pi, qi)}1≤i≤n ⊆ A and all σ ∈ S(n).
Define

P+
τ (M) :=

{

(µ, ν) | µ, ν ∈ Pτ (M) are J+-related
}

.

Proposition 2.7. Let (µ, ν) ∈ P+
τ (M).

(i) One has

CL(µ, ν) = sup

(
∫

M

ϕ(q)dν(q) −
∫

M

ψ(p)dµ(p)

)

where the supremum is taken over the functions ψ ∈ L1(µ), ϕ ∈ L1(ν)
with ϕ(q)− ψ(p) ≤ cL(p, q).

(ii) Every optimal coupling π is concentrated on a cL-cyclic monotone Borel
subset of M ×M .

Proof. Consider the modified cost function c′L(p, q) := cL(p, q) + τ(q) − τ(p).
Since 0 ≤ L(v) + dτ(v), it follows that c′L ≥ 0. Now the claim follows from
[2, Thms. 3.1, 3.2]. �

Denote by Γ the set of A-minimizers γ : [0, 1] →M such that

dτ(γ̇) ≡ τ(γ(1))− τ(γ(0)).

Set ev : Γ × [0, 1] → M , (γ, t) 7→ γ(t) and evt := ev(., t). For (p, q) ∈ J+

consider the subspace

Γp→q := ev−1
1 (q) ∩ ev−1

0 (p).

Recall the definition of a dynamical optimal coupling from [21]:

Definition 2.8. A dynamical optimal coupling is a probability measure Π on
Γ such that π := (ev0, ev1)♯Π is an optimal coupling between µ := (ev0)♯Π
and ν := (ev1)♯Π.

Proposition 2.9. For every (µ, ν) ∈ P+
τ (M) there exists a dynamical optimal

coupling Π for µ and ν.

Define the map [∂tev] : Γ× [0, 1] → PTM , (γ, t) 7→ [γ̇(t)] ∈ PTMγ(t) where
PTM denotes the projective tangent bundle. For the canonical projection
P : PTM → M one has ev = P ◦ [∂tev]. Denote by suppµ the support of the
measure µ.

Theorem 2.10. Let (µ, ν) ∈ P+
τ (M) with suppµ ∩ supp ν = ∅. Then every

dynamical optimal coupling Π of µ and ν has the following property: The
canonical projection P restricted to the image of T := [∂tev](suppΠ × ]0, 1[)
is injective. Further the inverse (P |T )−1 is locally Hölder continuous with
exponent 1

2 .
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The following example shows the optimality of the Hölder continuity in
Theorem 2.10.

Example 2.11. Consider the Minkowski space (R3, 〈., .〉1), where 〈., .〉1 =
dx2 + dy2 − dz2 for the natural coordinates {x, y, z} on R3. Set

C :=
{

v ∈ TR3 | 〈v, v〉1 ≤ 0, dz(v) ≥ 0
}

with the Lorentz–Finsler metric L|C(v) = −
√

|〈v, v〉1|.
Next let Φ: R × (−ε, ε) → R3 be the map (x, ϕ) 7→ (x + cosϕ, sinϕ, 1) for

0 < ε < π
2 . The map Φ is an embedding and for x fixed the curve ϕ 7→ Φ(x, ϕ)

parameterizes ∂J+(x, 0, 0) ∩ {z = 1} near (x + 1, 0, 1). For ϕ ∈ (−ε, ε) the
Φ-preimage of

{z = 1} ∩ ∂J+((x − cosϕ,− sinϕ,−1))

near Φ(x, ϕ) = (x+ cosϕ, sinϕ, 1) is described by a smooth function

j(x,ϕ) : (−ε, ε) → R

with j(x,ϕ)(ϕ) = x, j′(x,ϕ)(ϕ) = 0 and j′′(x,ϕ)(ϕ) > 0. Choose a constant

j′′(x,ϕ)(ϕ) < C <∞ and consider the function w : [0, ε) → R, w(ϕ) = C · ϕ2.

By diminishing ε if necessary, the fact that

{x ≤ w(ϕ)} × (−ε, ε) ⊂ Φ−1
(

J+(w(ϕ) − cosϕ,− sinϕ,−1)
)

and the choice of C ∈ R imply that

Φ−1
(

J+(w(ϕ) − cosϕ,− sinϕ,−1)
)

∩ graph(w) ⊂ (−∞, w(ϕ)] × [0, ϕ]

for every ϕ ∈ [0, ε). By restricting ε further, one can in fact assume that

(1) Φ−1
(

J+(w(ϕ) − cosϕ,− sinϕ,−1)
)

∩ graph(w) = graph(w|[0,ϕ]).

Now consider the 1-dimensional Lebesgue measure µ on the interval im(w) =
[0, C · ε2) normalized to 1. Define two maps ψ0,1 : [0, C · ε2) → R3 by setting

ψ0(x) = (x− cosw−1(x),− sinw−1(x),−1),

ψ1(x) = (x+ cosw−1(x), sinw−1(x), 1).

Denote by µ0 := (ψ0)♯µ and µ1 := (ψ1)♯µ. Since

(2) ψ1(x) = ψ0(x) + 2(cosw−1(x), sinw−1(x), 1),

µ0 and µ1 are J+-related. Due to (1) one knows that (ψ0)♯µ|[0,x] is coupled

by any causal coupling to (ψ1)♯µ|[0,x] for all x ∈ [0, C · ε2). Therefore up to
changes on a neglectable set the only possible causal coupling is induced by (2).
Thus every dynamical coupling Π is concentrated on the curves

γx : t 7→ ψ0(x) + 2t(cosw−1(x), sinw−1(x), 1),

x ∈ [0, C · ε2) and their monotone reparameterizations.
Then the evaluations are

ev
(

γx,
1

2

)

= (x, 0, 0)

Münster Journal of Mathematics Vol. 11 (2018), 13–47
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and

[∂tev]
(

γx,
1

2

)

= [(cosw−1(x), sinw−1(x), 1)].

The map (P |T )−1 is given by (x, 0, 0) 7→ [(cosw−1(x), sinw−1(x), 1)] and is
therefore only 1

2 -Hölder.

The map (P |T )−1 in Theorem 2.10 is Lipschitz for m = 2, i.e. if M is a sur-
face. This is a well known fact for positive definite Lagrangians relying on the
fact that trajectories (i) solve a differential equation with smooth coefficients
and (ii) have codimension 1 in a surface. These facts carry over readily to this
case.

Theorem 2.12. Let (µ, ν) ∈ P+
τ (M) with disjoint supports. Further let K be a

compact subset of int C, the open interior of C. Then the canonical projection
P restricted to the image of [∂tev](suppΠ × ]0, 1[) ∩ K is injective and its
inverse is Lipschitz for every dynamical optimal coupling Π.

A set X ⊂M is (C-)achronal if every timelike curve η : I →M intersects X
at most once. Using a splitting, one sees that X can be written as the graph of
a function fX over a subset of N . With the same proof as for [19, Prop. 14.25],
one sees that fX is locally Lipschitz with respect to the metric induced by h.
Now one can use a Lipschitz-continuous extension of fX to N to say that X
is the subset of a locally Lipschitz hypersurface.

A locally Lipschitz hypersurface X has a tangent space almost everywhere,
and with the induced Riemannian metric one can thus define a Lebesgue mea-
sure LX on X . A measure concentrated on X is absolutely continuous with
respect to the Lebesgue measure if it is absolutely continuous with respect to
LX . Note that the definition is independent of the chosen Riemannian met-
ric since for any pair LX ,L′

X of Lebesgue measures induced by Riemannian
metrics the measure LX is absolutely continuous with respect to L′

X and vice
versa.

Call a hypersurface Y locally uniformly spacelike if for one (hence every)
splitting there exists a locally Lipschitz continuous function fY : N → R with
Y being the graph of fY and for all compact K ⊆ M there exists ε > 0,
such that the Hausdorff distance between TYy ∩ T 1M and C1 := C ∩ T 1M is
bounded below by ε for all y ∈ K ∩ Γ such that TYy exists. T 1M denotes the
unit tangent bundle of h. With these notions the following generalization of
[6, Thm. 4.3] can be given.

Theorem 2.13. Let (µ, ν) ∈ P+
τ (M). Assume that µ and ν are concentrated

on a locally uniformly spacelike hypersurface A and an achronal set B, re-
spectively. Further assume that µ is absolutely continuous with respect to the
Lebesgue measure on A. Then there exists a unique optimal coupling π and a
Borel map F : M →M such that π = (id, F )♯µ.

Uniqueness fails if both A and B are allowed to be achronal only. Consider
for example subsets A,B ⊂ ∂J−(p) in Minkowski space for some p ∈ Rm.
For suitable choices of A and B not every optimal coupling is supported on a
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graph. More precisely every causal coupling has vanishing cost, but not every
causal coupling is supported on a graph.

Existence fails if B is not assumed to be achronal. An example is given by µ
defined as the 1-dimensional Lebesgue measure on [0, 1]× {0} in the 2-dimen-
sional Minkowski space and ν a nontrivial superposition of the 1-dimensional
Lebesgue measures on [1, 2] × {1} and [2, 3] × {2}. The only possible causal
coupling and therefore optimal one splits every point in [0, 1] × {0} into two
parts with weights depending on the superposition. Since the superposition is
nontrivial, the coupling cannot be induced by a graph.

Theorem 2.14. Let (µ, ν) ∈ P+
τ (M). Assume that µ is absolutely continuous

with respect to the Lebesgue measure onM and ν is concentrated on an achronal
set B. Then there exists a unique optimal coupling π and a Borel map F : M →
M such that π = (id, F )♯µ.

Theorem 2.13 corresponds to the classical Monge problem which from the
spacetime perspective deals with the problem of coupling two measures con-
centrated on different level sets of a splitting τ (hence time function) and µ
being absolutely continuous with respect to the Lebesgue measure on that level
set. Theorem 2.14 on the other hand is a version where the initial measure is
distributed in space and time, i.e. from the classical point of view a family of
measures.

Remark 2.15. In the spirit of the present approach all results are formulated
with as little reference to the splitting τ as possible. Note that τ enters the
assumptions of the main results only through an integrability condition, i.e.
“τ ∈ L1(µ) ∩ L1(ν)”. This is automatically satisfied for compactly supported
measures. That is, in this special case all results are indeed independent of the
splitting.

3. The proofs

3.1. Causal structures. The existence of causal structures is implicitly stated
in [16, p. 1534] and [17, p. 583]. The argument is standard material and known
for Lorentzian metrics. For completeness it is briefly outlined here.

Let L : TM → R be a continuous function positive homogenous of degree 2
and smooth on TM \T 0M such that the second fiber derivative is nondegener-
ate with index m− 1. By [16, Prop. 2] the number k of connected components
of TMp ∩ {L > 0} is independent of p ∈ M . Thus every point p ∈ M has a

neighborhood U such that the fiber bundle π−1
TM (U) ∩ {L > 0} → U is iso-

morphic to
⊔k

i=1 U × Ci → U where Ci denotes the forward time cone in the
Minkowski m-space Rm

1 . Let {Ul}l∈N be a locally finite open covering of M
such that

π−1
TM (Ul) ∩ {L > 0} ∼=

k
⊔

i=1

(Ul × Ci).
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Take the disjoint union

M :=
⊔

l

(Ul × {1, . . . , k})

and define “∼” to be the equivalence relation generated by (p, r) ∼ (q, s) if
p = q and {p}×Cr and {q}×Cs are mapped to the same connected component
of {L > 0} ∩ TMp by their respective trivializations. Now one shows that the
set

ML := M / ∼
is a smooth manifold and the map πL : ML → M , [(p, r)] 7→ p is a finite
covering. See [19, Chap. 7] for the case of Lorentzian manifolds.

Consider the pullback L := (πL)∗L. Then for every [(p, r)] ∈ ML and
every connected component of TML

[(p,r)] ∩ {L > 0} there exists a vector field
X ∈ Γ(TML) with

X[(q,s)] ∈ TML

[(q,s)] ∩ {L > 0}
for all [(q, s)] ∈ML, i.e. it belongs to a causal structure. This causal structure
is unique since the components of TML

[(p,r)] ∩ {L > 0} are strictly convex.

3.2. Proof of Theorem 2.6. (i) ⇒ (ii): Let π ∈ P(X × Y) be a coupling of
µ and ν with π(J ) = 1. For any set B ⊆ Y one has

π−1
Y (B) ∩ J ⊆ π−1

X (J −(B)).

Since
ν(B) = π(π−1

Y (B)) = π(π−1
Y (B) ∩ J )

and
µ(J −(B)) = π(π−1

X (J −(B)))

for B ⊆ Y measurable, the claim follows. The other inclusion is analogous.
(ii) ⇒ (i): For this part of the proof one needs two lemmata.

Lemma 3.3. Assume that µ and ν satisfy the condition in Theorem 2.6 (ii).
If there exists a measurable set A ⊆ X such that µ(A) = ν(J +(A)) ∈ (0, 1),

then the pairs

(µA, νA) :=

(

1

µ(A)
µ|A,

1

µ(A)
ν|J +(A)

)

and

(µAc , νAc) :=

(

1

µ(Ac)
µ|Ac ,

1

µ(Ac)
ν|J +(A)c

)

satisfy the condition in Theorem 2.6 (ii).
If ν(B) = µ(J −(B)) ∈ (0, 1) for a measurable set B ⊆ Y, then the pairs

(µB, νB) :=

(

1

ν(B)
µ|J −(B),

1

ν(B)
ν|B

)

and

(µBc , νBc) :=

(

1

ν(Bc)
µ|J −(B)c ,

1

ν(Bc)
ν|Bc

)

satisfy the condition in Theorem 2.6 (ii).
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Proof. It suffices to consider the first case. The second case follows by exchange
of X and Y. So assume µ(A) = ν(J +(A)) ∈ (0, 1) for some measurable set
A ⊆ X . First note that all four measures µA, νA, µAc and νAc are well-defined
probability measures by the assumption. One has

µA(B) =
1

µ(A)
µ(B ∩A)

≤ 1

µ(A)
ν(J +(B ∩A))

=
1

µ(A)
ν(J +(B) ∩ J +(A)) = νA(J

+(B))

which shows µA(B) ≤ νA(J +(B)).
Next note that µ(Ac) = ν(J +(A)c). Assume that there exists a measurable

set C ⊆ X with νAc(J +(C)) < µAc(C), i.e.

ν(J +(C) ∩ J +(A)c) = ν|J +(A)c(J
+(C)) < µ|Ac(C) = µ(C ∩ Ac).

Then a contradiction follows from

µ(C ∪ A) = µ(C ∩ Ac) + µ(A)

> ν(J +(C) ∩ J +(A)c) + ν(J +(A)) = ν(J +(C ∪ A))
since J +(C) ∪ J +(A) = J +(C ∪ A). Therefore one has

µAc(C) ≤ νAc(J +(C))

for all measurable C ⊆ X . This shows the first set of inequalities.
It remains to show µA(J −(D)) ≥ νA(D) and µAc(J −(D)) ≥ νAc(D) for

D ⊆ Y measurable. If µA(J
−(D)) < νA(D), one has

µA(J
−(D)c) = 1− µA(J

−(D)) > 1− νA(D) ≥ νA(J
+(J −(D)c))

since J +(J −(D)c) and D are disjoint. This contradicts the first part. The
inequality µAc(J −(D)) ≥ νAc(D) follows analogously. �

Lemma 3.4. Let n ∈ N. Consider the product {1, . . . , n}×{1, . . . , n} with the
canonical projections π1, π2 onto the first and second factor, respectively. Let
K ⊆ {1, . . . , n} × {1, . . . , n} have the property that

♯π1(π
−1
2 (A) ∩ K ) ≥ ♯A and ♯π2(π

−1
1 (A) ∩ K ) ≥ ♯A

for all A ⊆ {1, . . . , n}. Then K contains the graph of a permutation σ ∈ S(n).

Proof. The proof is carried out by induction over n. If n = 1, the claim is
trivial since K = {1} × {1}.

Now assume that the claim has been shown for numbers less than n. First
assume that

♯π1(π
−1
2 (A) ∩ K ) > ♯A and ♯π2(π

−1
1 (A) ∩ K ) > ♯A

for all nonempty proper subsets A. Choose 1 ≤ j ≤ n with (n, j) ∈ K . By
renumbering, one can assume j = n. Now consider

I := K ∩ {1, . . . , n− 1} × {1, . . . , n− 1}.
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Since

♯π1(π
−1
2 (A) ∩ I ) ≥ ♯π1(π

−1
2 (A) ∩ K )− 1 ≥ ♯A

and vice versa for all A ⊆ {1, . . . , n − 1}, one obtains from the induction
hypothesis a permutation o ∈ S(n − 1) whose graph is contained in I . The
permutation o extends to a permutation σ ∈ S(n) whose graph is a subset of
K by setting σ(n) := n and σ|{1,...,n−1} ≡ o.

If there exists a nonempty proper subset A of {1, . . . , n} with

♯π1(π
−1
2 (A) ∩ K ) = ♯A or ♯π2(π

−1
1 (A) ∩ K ) = ♯A,

one reduces the problem to constructing two separate permutations on A
and Ac. Thus again the induction hypothesis gives separate permutations
on A and Ac which together form a permutation σ whose graph is contained
in K .

One only needs to consider the case ♯π1(π
−1
2 (A)∩K ) = ♯A. The other case

follows by exchanging the order. Further by renumbering one can assume that
A = π1(π

−1
2 (A)∩K ). Set KA := K ∩A×A, KAc := K ∩Ac ×Ac. The goal

is to show that KA and KAc satisfy the assumptions of the lemma.
It is clear that

♯π1(π
−1
2 (B) ∩ KA) = ♯π1(π

−1
2 (B) ∩ K ) ≥ ♯B

for all B ⊆ A since π1(π
−1
2 (B) ∩ K ) ⊆ A. If however there exists C ⊆ Ac

with ♯π1(π
−1
2 (C) ∩ KAc) < ♯C then ♯π1(π

−1
2 (A ∪ C) ∩ K ) < ♯(A ∪ C) which

contradicts the initial assumption.
Assume now that there exists a set D ⊆ A with ♯π2(π

−1
1 (D) ∩ KA) < ♯D.

Set E := A\π2(π−1
1 (D)∩KA). ThenD and π1(π

−1
2 (E)∩KA) are disjoint. This

can be seen as follows. If i ∈ π1(π
−1
2 (E) ∩ KA) then there exists j ∈ E such

that (i, j) ∈ KA. If i ∈ D then for all (i, j) ∈ KA one has j ∈ π2(π
−1
1 (D)∩KA).

Thus the sets are disjoint. It follows that

♯E = ♯A− ♯π2(π
−1
1 (D) ∩ KA) > ♯A− ♯D ≥ ♯π1(π

−1
2 (E) ∩ KA)

which clearly contradicts the first part of the argument. Now the same argu-
ment applies to subsets of Ac. �

Assume first that there exists n ∈ N such that

µ =
1

n

n
∑

i=1

δxi
and ν =

1

n

n
∑

j=1

δyj
.

Identify {x1, . . . , xn} and {y1, . . . , yn} with {1, . . . , n}. Define the set

K :=
{

(i, j) | (xi, yj) ∈ J
}

⊆ {1, . . . , n} × {1, . . . , n}.
Denote by π1 and π2 the canonical projections from {1, . . . , n}×{1, . . . , n} onto
the first and second factor, respectively. Since µ and ν are counting measures,
the assumptions become

♯π1(π
−1
2 (A) ∩ K ) ≥ ♯A and ♯π2(π

−1
1 (A) ∩ K ) ≥ ♯A
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for all A ⊆ {1, . . . , n}. Lemma 3.4 now gives a permutation σ whose graph is
contained in K . Reversing the identifications, one obtains a bijective map

σ′ : {x1, . . . , xn} → {y1, . . . , yn}

with (xi, σ
′(xi)) ∈ J for all i. Since µ and ν are counting measures, (id, σ′)♯µ

is the desired coupling.
The general case follows from this special case by an approximation argu-

ment. Choose sequences of locally finite, disjoint and measurable coverings of
suppµ and supp ν, respectively. Then one can approximate both measures in
the weak-∗ topology by finite measures whose support is contained in a given
neighborhood of the supports of µ and ν. Consider Jε := Bε(J ), the closure
of the ε-neighborhood of J with respect to the metric on X × Y, for ε > 0.
Then every pair of finite measures µ′ =

∑

biδxi
and ν′ =

∑

cjδyj
, approximat-

ing µ and ν sufficiently well, satisfies the assumptions in Theorem 2.6 (ii) for
Jε instead of J . In order to apply the special case it would suffice to have
bi, cj ∈ Q. Simply approximating the weights bi and cj by rational numbers
and retaining the assumptions of Lemma 3.4 will in general only work if

(3) ν′(J +
ε (A)) > µ′(A) and µ′(J −

ε (B)) > ν′(B)

for all measurable A ⊂ X and B ⊂ Y. With Lemma 3.3 one can split µ′ and ν′

into submeasures until (3) is satisfied and proceed with the submeasures. Since
µ′ and ν′ have finite supports, this division process terminates after finitely
many steps. For µ′ or ν′ supported in a single point it is obvious how to build
a coupling in Jε.

If (3) is satisfied, the weights can be approximated by rational numbers such
that (3) still holds for the perturbed measures. Then by the special case there
exists a coupling supported in Bε(J ). By construction the approximations of
µ and ν form precompact sets in the weak-∗ topology. This implies that the
set of couplings is precompact in the weak-∗ topology as well, see [21, Chap. 4].
The claim follows when passing to the limit using that J ∩ suppµ× supp ν is
closed.

3.5. Dynamical optimal coupling. For the splitting τ : M → R choose a
smooth vector field Xτ on M with dτ(Xτ ) ≡ 1. Then Xτ is considered to be
a vector field on R×N . Define a Lagrange function

Lτ : R× TN → R ∪ {∞}, Lτ (t, v) := L(Xτ (t, πTN (v)) + v).

Denote by Dτ ⊆ R × TN the domain of Lτ . The function Lτ is continuous
on Dτ and smooth on intDτ , the interior of Dτ . Note that Lτ |intDτ

< 0. For
(t, x) ∈ R × N set D(t,x) := Dτ ∩ ({t} × TNx). The point (t, v) ∈ D(t,x) is
identified with the vector Xτ (t, x) + v ∈ C.

Denote by ∂2vLτ the second fiber derivative of Lτ , i.e.

(∂2vLτ )(t,v)(w, z) :=
d2

drds

∣

∣

∣

r=s=0
Lτ (t, v + rw + sz).
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Lemma 3.6. (i) D(t,x) is a compact strictly convex domain with smooth
boundary for all (t, x) ∈ R×N .

(ii) For all K ⊆ R×N compact there exists δ > 0 such that the second fiber
derivative satisfies

(∂2vLτ )(t,v) ≥
δ

|Lτ (t, v)|
· id

for all (t, x) ∈ K and v ∈ intD(t,x).

Proof. (i) Denote by C∗
(t,x) the dual cone of C(t,x) = Cp via the identification

(t, x) ∼= p. Since τ is a Lyapunov function for C, one has dτ(t,x) ∈ int C∗
(t,x).

This implies that D(t,x) is compact since Xτ + v ∈ C yields

1 = dτ(Xτ + v) ≥ |v| − |Xτ |
which bounds the norm of v. It is further smooth since ∂C(t,x) is smooth
away from the zero section and ker dτ ∩ C = {0}. Finally, the strict convexity
follows from the fact that at points in ∂C \T 0M the bilinear form ∂2vL|T∂C×T∂C

is semidefinite with kernel equal to the radial direction, i.e. definite on any
hyperplane transversal to the radial direction. Here the radial direction at
v ∈ TM is d

ds |s=0(1+ s)v ∈ T (TMp)v ∼= TMx and ∂2vL is defined analogous to

∂2vLτ .
(ii) Recall the formula for the second derivative of L in the fiber direction:

∂2vL =
1

2
√
L

(

1

2

∂vL⊗ ∂vL

L
− ∂2vL

)

where ∂vLv(w) :=
d
ds |s=0L(v + sw). As seen in (i) one has

∂2vL|T∂D(t,x)×T∂D(t,x)
< 0

for all (t, x) ∈ R×N . Thus one can choose n <∞ and δ1 > 0 such that
(n

2
∂vL⊗ ∂vL− ∂2vL

)∣

∣

∣

TDτ×TDτ

> δ1 · id

on a neighborhood U of ∂Dτ in R×TN over K. This implies the claim on the
smaller neighborhood U ∩ {L < 1

n}.
For the remaining points outside of U ∩ {L < 1

n} note that

1

2

∂vL⊗ ∂vL

L
− ∂2vL ≥ 0

with kernel equal to the radial direction. Thus one has

1

2

∂vL⊗ ∂vL

L
− ∂2vL > δ2 · id

on Dτ \ U ∩ {L < 1
n} over K for a δ2 > 0. �

Let V ⊂ N be open with a chart V → Rm−1 ofN . The induced trivialization
of TV → TRm−1 ∼= Rm−1×Rm−1 gives local coordinates (x, v) ∈ Rm−1×Rm−1

Münster Journal of Mathematics Vol. 11 (2018), 13–47



28 Stefan Suhr

on TN . The Euler–Lagrange equation of the action functional associated to
Lτ reads in these coordinates:

(4)
∂Lτ

∂t
+
∂Lτ

∂x
− d

dt

(∂Lτ

∂v

)

= 0.

The equation defines an explicit ordinary differential equation of second order
since ∂2Lτ/∂v

2 > 0 at points in intDτ . It is standard that the solutions to (4)
are of the form t 7→ η̇(t) for some curve η : I → N , i.e. the solutions are tangent
curves in TN . For (t, v) ∈ intDτ denote by η(t,v) : I → N the unique maximal
solution to (4) with η̇(t,v)(0) = v. The solutions define a local flow

Φτ : Uτ → intDτ , (s, (t, v)) 7→ (s+ t, η̇(t,v)(s))

where Uτ ⊂ R× intDτ is an open neighborhood of {0} × intDτ .

Proposition 3.7. Φτ extends to a smooth local flow on an open neighborhood
of {0}×Dτ , i.e. there exists an open neighborhood U of {0}×Dτ in R×R×TN
and Φ̃τ : U → R × TN smooth with Φ̃τ ≡ Φτ on Uτ . Furthermore, Φ̃τ is
complete on Dτ with Φ̃τ -invariant intDτ and ∂Dτ . The extension of Φτ to Dτ

is unique and will be denoted by Φτ again.

For a local trivialization W ×Rm of TM with coordinates (p, w) ∈W ×Rm

the Euler–Lagrange equation of the action functional associated to L,

(5)
d

dt

( ∂L

∂w

)

− ∂L

∂p
= 0,

defines a local flow outside the zero section since ∂2L/∂w2 is nondegenerate.
For w ∈ TM \T 0M let γw : J →M be the unique maximal solution to (5) with
γ̇w(0) = w. Denote by ΦL : U ⊂ R× TM → TM , (t, w) 7→ γ̇w(t) the maximal
flow defined by (5) extended to the zero section by constant flow lines, see [17].
ΦL is smooth outside the zero section.

A causal curve η : I → N is a Φτ -trajectory if t 7→ (t, η̇(t)) solves (4). A
curve γ : J →M is a ΦL-trajectory if t 7→ γ̇(t) solves (5).

Lemma 3.8. A curve η : I → N with (t, η̇(t)) ∈ intDτ for all t ∈ I is a
Φτ -trajectory if and only if its graph H : t 7→ (t, η(t)) is a reparameterization
of a ΦL-trajectory γ with γ̇ ∈ int C. Especially the trajectories of Φτ and ΦL

are in one-to-one correspondence via reparameterization.

Proof. Fix a local chart of W → Rm of M and the induced trivialization of
TW → TRm ∼= Rm × Rm. Let (p, w) ∈ Rm × Rm. Expanding the Euler–
Lagrange equation of L on int C gives

(6) 0 =
d

dt

( ∂L

∂w

)

− ∂L

∂p
=

d

dt

( 1

2
√
L

) ∂L

∂w
+

1

2
√
L

[

d

dt

( ∂L

∂w

)

− ∂L

∂p

]

.

Since L is autonomous, L is preserved along orbits of the local Euler–Lagrange
flow ΦL of L. This immediately shows that int C and ∂C \ T 0M are invariant
under ΦL. Thus according to (6) an orbit of ΦL in int C solves the Euler–
Lagrange equation of L. Conversely let θ : I → M solve the Euler–Lagrange
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equations of L. Reparameterizing θ to a curve γ such that L is constant along
γ̇ yields an orbit of ΦL.

Now one shows that η is a Φτ -trajectory if and only if H solves the Euler–
Lagrange equation of L. Let η : I → N be a Φτ -trajectory. Consider a smooth
variationH : I×(−ε, ε) → R×N ofH with fixed endpoints. SinceH is smooth,
one can assume, by diminishing ε if necessary, that ∂t(τ ◦ H) > 0 everywhere.
Thus one can smoothly reparameterizeH to satisfy ∂t(τ◦H) = 1, i.e.H consists
of graphs of curves ηs : I → N (s ∈ (−ε, ε)). This shows that any sufficiently
small variation of H can be reparameterized to be a variation by graphs. The
reparameterization does not affect the value of A on the variation. Note that

∫

Lτ (t, η̇s(t))dt =

∫

L(∂tH(t, s))dt.

Now if the first variation of η vanishes, the first variation of the graph vanishes
as well, i.e. H solves the Euler–Lagrange equations of L. The converse is
obvious, i.e. if H solves the Euler–Lagrange equations of L, then the first
variation of η vanishes.

Combining both paragraphs gives the first claim. For the second claim one
has to use the positive homogeneity of ΦL, i.e. ΦL(λt, w) = ΦL(t, λw) for λ > 0.
Thus reparameterizing a ΦL-trajectory to a curve γ with dτ(γ̇) ≡ 1 gives the
same curves for initial values w and λw where λ > 0. It remains to note that
half lines in int C are in one-to-one correspondence with points in Dτ . �

Recall that πTM : TM →M denotes the canonical projection.

Proof of Proposition 3.7. Since ΦL is a smooth local flow on TM \T 0M , every
v ∈ ∂C \ T 0M admits an ε(v) > 0 and a neighborhood W in TM \ T 0M such
that dτ(ΦL(t, w)) > 0 for all |t| ≤ ε(v) and w ∈W .

Parameterize the trajectories t 7→ πTM (ΦL(t, w)) to curves γw such that

dτ(γ̇w) ≡ 1 and γ̇w(0) =
w

dτ(w)
.

Since ΦL(t, λv) = ΦL(λt, v) for λ > 0, the curves γw and γλw coincide for
positive λ. The tangent curves t 7→ γ̇w(t) define a local flow. This is due to
the fact that

γ̇w(s+ t) = γ̇γ̇w(s)(t)

for |s|, |t| sufficiently small. Now since ΦL is autonomous, these local definitions
of the extensions patch together to give a local flow on a neighborhood of
C ∩ {dτ = 1} in {dτ = 1} which preserves int C ∩ {dτ = 1} and ∂C ∩ {dτ = 1}.
Projecting the flow to R × TN gives a smooth extension since the projection
coincides with Φτ on intDτ by Lemma 3.8.

It remains to prove the completeness of the extension. But this follows
directly from Remark 2.2 since the γw are causal for w ∈ C and

τ(γw(t))− τ(γw(s)) = t− s. �
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The Riemannian metric h induces a Riemannian metric on all higher tangent
bundles T (k)M where T (k)M := T (T (k−1)M) and T (1)M := TM . For a ≤ b ∈
R define the Ck-topology on smooth curves γ : [a, b] → M via the induced
metrics as

distk(γ, η) := sup
{

dist(γ(k)(t), η(k)(t)) | t ∈ [a, b]
}

.

Lemma 3.9. For all (p, q) ∈ J+ the set Γp→q is nonempty, consists of smooth
curves and is compact in the Ck-topology for all k.

Proof. By Proposition 2.3 there exists an A-minimizer between p and q and
every A-minimizer solves the Euler–Lagrange equations of L up to monotone
reparameterization. Monotonously reparameterizing an A-minimizer between
p and q to γ : [0, 1] → M with dτ(γ̇) ≡ τ(q) − τ(p) yields γ ∈ Γp→q, i.e. Γp→q

is nonempty. Every curve in Γp→q solves the Euler–Lagrange equations of L.
Γp→q contains only the constant curve if p = q, i.e. in this case Γp→q is

compact in every topology. If on the other hand one has p 6= q, an A-minimizer
γ ∈ Γp→q induces a Φτ -trajectory η : [τ(p), τ(q)] → N via the graph

H(t) = (t, η(t)) := γ
( t− τ(p)

τ(q) − τ(p)

)

of η by Lemma 3.8. Identify p ∼= (τ(p), x) and q ∼= (τ(q), y) via the splitting
M ∼= R×N . The set of Φτ -trajectories δ : [τ(p), τ(q)] → N between x and y is
compact in all Ck-topologies on C∞([τ(p), τ(q)], N) by Proposition 3.7 since
it is part of a smooth flow. Now the compactness of Γp→q is obvious. �

The following results are analogous to results in [21, Chap. 7].

Proposition 3.10. There exists a Borel map S : J+ → C0([0, 1],M) such that
S(p, q) ∈ Γp→q.

Proof. For every (p, q) ∈ J+ the set Γp→q is nonempty and compact in every
Ck-topology by Lemma 3.9, i.e. nonempty and closed. Further the evaluation
map ev0 × ev1 is Lipschitz. This implies that the correspondence (for the
definition see [1, p. 4])

(ev0 × ev1)
−1 : J+

։ Γ

is weakly measurable in the sense of [1, Def. 18.1]. Now [1, Thm. 8.13] implies
that (ev0 × ev1)

−1 has a measurable selection S, i.e.

(ev0 × ev1) ◦ S ≡ id |J+ . �

Proof of Proposition 2.9. Let (µ, ν) ∈ P+
τ (M) and let π be an optimal coupling

of µ and ν for the cost cL. Consider Π := S♯π. Since (ev0, ev1) ◦ S ≡ id, the
claim follows from the definition of optimal dynamical couplings. �

Corollary 3.11. Let Π be a dynamical optimal coupling between J+-related
measures µ0 and µ1 and σ1, σ2 : Γ → [0, 1] measurable functions with σ1 ≤ σ2.
Then the restriction

πσ1,σ2 := (ev ◦(id×σ1), ev ◦(id×σ2))♯Π
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is an optimal coupling of µσ1 := (ev ◦(id×σ1))♯Π and µσ2 := (ev ◦(id×σ2))♯Π.
If furthermore (σ1, σ2) 6= (0, 1) Π-almost everywhere then πσ1,σ2 is the unique
optimal coupling of µσ1 and µσ2 .

Proof. By the triangle inequality for cL and the parameterization invariance
of A one has

CL(µ0, µ1) ≤ CL(µ0, µσ1) + CL(µσ1 , µσ2) + CL(µσ2 , µ1)

and
∫

cLdπ0,1 =

∫

cLdπ0,σ1 +

∫

cLdπσ1,σ2 +

∫

cLdπσ2,1.

Since
∫

cLdπ0,1 = CL(µ0, µ1) and CL is the minimal cost, the three terms on
the right-hand sides must individually coincide. More precisely, if one coupling
on the right-hand side, without loss of generality π0,σ1 , is not optimal, one can
replace this coupling by an optimal coupling π′ with strictly smaller cost. Let
π′ be an optimal coupling of (ev0)♯Π and (ev ◦(id×σ1))♯Π. Then one has

∫

cLdπ0,1 >

∫

cLdπ
′ +

∫

cLdπσ1,σ2 +

∫

cLdπσ2,1.

Gluing the three couplings gives a coupling of µ0 and µ1 with strictly smaller
cost, a contradiction. The second statement follows directly from the triangle
inequality for cL, see Section 2. �

Corollary 3.12. Let (µ0, µ1) ∈ P+
τ (M). Further let Π be a dynamical optimal

coupling of µ0 and µ1. If Ξ is a measure on Γ, such that Ξ ≤ Π and Ξ(Γ) > 0,
set

Ξ′ :=
Ξ

Ξ(Γ)
and νi := (evi)♯Ξ

′

for i = 0, 1. Then Ξ′ is a dynamical optimal coupling between ν0 and ν1.

Proof. The assumption Ξ ≤ Π implies that Π− Ξ is a measure on Γ. Set

π := (ev0, ev1)♯Π, π0 := (ev0, ev1)♯Ξ, π1 := (ev0, ev1)♯(Π− Ξ).

Then one has π = π0 + π1 and

(7)

∫

cLdπ =

∫

cLdπ
0 +

∫

cLdπ
1.

Since the left-hand side of (7) is optimal, so must be the terms on the right-
hand side. Here optimality of π0 means optimality of the cost

∫

cLdπ
′ among

all Borel measures π′ on M × M with π′(M × M) = π0(M × M) = Ξ(Γ)
and martingales equal to Ξ(Γ)ν0 and Ξ(Γ)ν1. Optimality of π1 is defined
analogously. Now if π0 was not optimal, one could replace π0 by a coupling σ
of (ev0)♯Ξ and (ev1)♯Ξ with strictly smaller cost. σ + π1 is a coupling of µ0

and µ1 by construction, but
∫

cLdπ >
∫

cLdσ+
∫

cLdπ
1, a contradiction. This

shows that Ξ′ is a dynamical optimal coupling. �
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3.13. Intermediate regularity of dynamical optimal couplings. Recall
that U ⊆ R × TM denotes the maximal domain of the Euler–Lagrange flow
ΦL of L. Let U be defined by {1} × U := ({1} × TM) ∩ U. It is a fiberwise
star-shaped neighborhood of the zero section. Define the exponential map
expL : U →M ×M by

expL(v) := (πTM (v), πTM ◦ ΦL(1, v)).

Proposition 3.14. expL is a C1-diffeomorphism on a neighborhood of T 0M
in TM onto its image. Further expL is smooth outside T 0M .

Proof. Choose local coordinates V → Rm on M and consider the induced
coordinates TV → TRm ∼= Rm × Rm on TM . The chart V → Rm induces
coordinates V × V → Rm × Rm on M ×M as well.

Abbreviate ΦL
t := ΦL(t, .). In order to show continuous differentiability it

suffices to show this for πTM ◦ΦL
1 at the zero section, since πTM is everywhere

smooth and ΦL
1 is smooth outside of the zero section.

(i) For all (W,Z) ∈ Rm × Rm the directional derivatives

(p, v) 7→ ∂(W,Z)(πTM ◦ ΦL

1 )(p,v)

exist on U and

d(expL)0p(W,Z) = (W,W + Z)

in the above coordinates. The only place to check is the zero section. Let
(W,Z) ∈ T (TM)0p for p ∈ V . Then one has

(8)
1

t

(

πTM ◦ΦL

1(p+tW, tZ)−πTM ◦ΦL

1(p, 0)
)

=
1

t

(

πTM ◦ΦL

1 (p+tW, tZ)−p
)

.

For Z = 0 one has

1

t

(

πTM ◦ ΦL

1 (p+ tW, 0)− p
)

=
1

t
(p+ tW − p) =W.

For Z 6= 0 it follows that the right-hand side of (8) converges for t→ 0 to

dπTM

(

d

dt

∣

∣

∣

t=0
ΦL

t (p+ tW,Z)

)

= dπTM

(

d

dt

∣

∣

∣

t=0
ΦL

0 (p+ tW,Z) +
d

dt

∣

∣

∣

t=0
ΦL

t (p, Z)

)

= dπTM ((W, 0) + (Z, 0)) =W + Z

since dπTM (W,Z) =W . This proves the claim.
(ii) The directional derivatives (p, v) 7→ d(πTM ◦ ΦL

1 )(p,v)(W,Z) are contin-
uous. This implies that expL is C1 on U by a standard theorem of calculus.
The diffeomorphism property follows from the inverse function theorem and (i),
since

d(expL)0p(W,Z) = (W,W + Z).
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In order to show that the directional derivatives are continuous let (p, v) ∈
TV ∩ U with v 6= 0 and (W,Z) ∈ T (TM)(p,v). One has

∂(W,Z)(πTM ◦ ΦL

1 )(p,v)

=
d

dt

∣

∣

∣

t=0
πTM ◦ ΦL

1 (p+ tW, v) +
d

dt

∣

∣

∣

t=0
πTM ◦ ΦL

1 (p, v + tZ),

since πTM ◦ ΦL
1 is smooth around (p, v).

Setting ε :=
√

h(v, v), one has for the first term

d

dt

∣

∣

∣

t=0
πTM ◦ ΦL

1 (p+ tW, v) =
d

dt

∣

∣

∣

t=0
πTM ◦ ΦL

ε

(

p+ tW,
v

ε

)

= dπTM (dΦL

ε )(p,v/ε)(W, 0).

The last term converges to W uniformly on compact subsets of M for ε → 0,
because v

ε is bounded away from the zero section.
For the second term one has

d

dt

∣

∣

∣

t=0
πTM ◦ ΦL

1 (p, v + tZ) =
d

dt

∣

∣

∣

t=0
πTM ◦ ΦL

ε

(

p,
v + tZ

ε

)

= dπTM (dΦL

ε )(p,v/ε)

(

0,
Z

ε

)

.

The last term equals Y (ε) where Y is the unique solution of the Jacobi equation

of L along γ : t 7→ πTM ◦ ΦL
t (p,

v
ε ) with Y (0) = 0 and Ẏ (0) = Z

ε . Since
v
ε 6= 0,

one can write
(

Y

Ẏ

)

(t) = exp

[
∫ t

0

Aγ(σ)dσ

](

0
Z
ε

)

for a curve t→ Aγ(t) of 2m× 2m matrices. Since v
ε is bounded away from the

zero section, Aγ is uniformly bounded for bounded flow parameters t. Further
since the Jacobi equation is an equation of second order, Aγ(t) has the form

Aγ(t) =

(

0 En

Bγ(t) Cγ(t)

)

.

Thus

lim
ε→0

Y (ε) = lim
ε→0

1

ε
dπTM

(

exp

[
∫ ε

0

Aγ(σ)dσ

] (

0
Z

))

= lim
ε→0

1

ε
(En0 + 0 + ε · EnZ) = Z.

This shows that the partial derivatives are continuous. �

Denote by Aτ the action of Lτ , i.e. for η : [s, t] → N set

Aτ (η) :=

∫ t

s

Lτ (σ, η̇(σ))dσ ∈ R ∪ {∞}.

Define the sets J±((s, x)) and I±((s, x)) via the splitting M ∼= R×N .
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Lemma 3.15. Every (s, x) ∈ R×N has a neighborhood V ⊆ R×N such that
for every (t, y) ∈ V ∩ J+((s, x)) the unique Φτ -trajectory η : [s, t] → N from x
to y strictly minimizes Aτ among all curves α : [s, t] → N from x to y.

Proof. As usual define expLp := πTM ◦ ΦL(1, .)|U∩TMp
at p ∈ M . According

to Proposition 3.14 every point p ∈ M admits a normal neighborhood V ,
i.e. expLp is a diffeomorphism from a neighborhood of 0p onto V . Further

according to [17] every point q ∈ J+
V (p) (recall the definition from Section 2) is

connected to p via a unique ΦL-trajectory γ with γ(0) = p and γ(1) = q. This
γ strictly minimizes A among all causal curves in V from p to q up to monotone
reparameterizations. Since τ(q) − τ(p) bounds the h-length of a causal curve
between p and q (see Section 2), every causal curve between p and q is contained
in V given p and q belong to a sufficiently small subneighborhood. Thus the
ΦL-trajectory γ is strictly minimal among all causal curves inM from p to q up
to monotone reparameterizations. Since causal curves are the only curves inM
with finite A-action, the strict minimality up to monotone reparameterizations
even holds for all curves in M between p and q.

Since Aτ (η) = A(H) for every curve η : [s, t] → N , where H : [s, t] → M
denotes the graph of η, the local minimality follows for the Φτ -trajectories.
Strict minimality follows from the fact that the conditions τ ◦ H(u) = u fix
the parameterization of H : [s, t] → M uniquely. Define V ⊂ R × N via the
identification of R×N ∼=M . �

Remark 3.16. For (s, x) ∈ R×N , (t, y) ∈ U ∩ J+((s, x)) as in Lemma 3.15
and η : [s, t] → N the unique Φτ -trajectory from x to y, one has

Aτ (γ) = L(v),

where v = (expL(s,x))
−1(t, y). Further denote by St

s(x, y) the minimal action

of a curve from x to y with respect to Aτ . Then the previous equality and
Lemma 3.15 imply

St
s(x, y) = L(v)

with v as before. Thus (t, y) 7→ St
s(x, y) is smooth for (t, y) ∈ I+V ((s, x)) and

V as in Lemma 3.15 as follows from Proposition 3.14.

Proposition 3.17. Let ε > 0 and let I×K ⊆ R×N be a compact subset. Then
there exist δ, κ > 0 and C <∞ such that for a, b, c ∈ I with b−a, c− b ≥ ε and
Φτ -trajectories xi : [a, c] → N , i = 1, 2, with dist(x1(b), x2(b)) ≤ δ, xi(b) ∈ K
and

dist(ẋ1(b), ẋ2(b))
2 ≥ C dist(x1(b), x2(b))

there exist Aτ -minimizers yi : [a, c] → N with y1(a) = x1(a), y1(c) = x2(c),
y2(a) = x2(a), y2(c) = x1(c) and

Aτ (y1) +Aτ (y2)−Aτ (x1)−Aτ (x2) ≤ −κ dist(ẋ1(b), ẋ2(b))2.

A curve η : [a, b] → N is causal if the graph H is causal in R×N ∼=M .
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Lemma 3.18. Let I×K ⊆ R×N be compact and ε ∈ (0, 1). Then there exists
δ > 0 such that for all a, b, c ∈ I with b−a, c−b ≥ ε and causal Aτ -minimizers
η : [a, b] → N , γ : [b, c] → N with η(b) = γ(b) and η̇(b) 6= γ̇(b) one has

Sc
a(η(a), γ(c))−Aτ (η)−Aτ (γ) ≤ − δ

|Sc
a(η(a), γ(c))|

|η̇(b)− γ̇(b)|2.

Proof. First notice that it suffices to prove the statement for (b, η̇(b)), (b, γ̇(b)) ∈
intDτ since δ is claimed to be independent of γ and η. The assertion then fol-
lows for (b, η̇(b)), (b, γ̇(b)) ∈ Dτ via approximating them by tangent vectors

(b, ˙̃η(b)), (b, ˙̃γ(b)) ∈ intDτ and using the continuity of Aτ and S.
Choose δ > 0 such that

(∂2vLτ )(s,v) ≥
δ

|Lτ (s, v)|
id

for all (s, v) ∈ intDτ with s ∈ I and v based at a point in K according to
Lemma 3.6 (ii). Cover I × K with finitely many neighborhoods V ⊂ R × N
according to Lemma 3.15. Choose ε > ε′ > 0 such that for every (s, x) ∈
I × K the open set W := (s − ε′, s + ε′) × Bε′(x) is contained in at least
one V . It suffices to prove the claim for a′, b, c′ with b− a′ = c′ − b = ε′ since
concatenating an Aτ -minimizer from η(a′) to γ(c′) with the arcs η|[a,a′] and
γ|[c′,c] only decreases the left-hand side as well as increases the right-hand side.
The proof continues to use a and c instead of a′ and c′ though.

For (t, y) ∈ I+(a, η(a)) ∩W denote by Yt,y the tangent at t to the unique
Φτ -trajectory on [a, τ(y)] from η(a) to y. The map (t, y) 7→ Yt,y is smooth for
(t, y) ∈ I+((a, η(a))) by Lemma 3.8 and Proposition 3.14. The inequality

St
a(η(a), γ(t)) ≤ Aτ (γ|[b,t]) + Sb

a(η(a), η(b))

for b ≤ t ≤ c implies

∂t|t=sSt
a(η(a), γ(t)) ≤ Lτ (s, γ̇(s))

with equality if and only if γ̇(s) = Ys,γ(s). One has

∂t|t=sSt
a(η(a), γ(t)) = (∂t|t=sSt

a)(η(a), γ(s)) + (∂2Ss
a)(η(a),γ(s))(γ̇(s)),

i.e. ∂t|t=sSt
a(η(a), γ(t)) is an affine function of γ̇(s) ∈ TNγ(s). Thus it must

coincide with the tangent to Lτ at Ys,γ(s), i.e.

∂s|t=sSt
a(η(a), γ(t)) = Lτ (s, Ys,γ(s)) + (∂vLτ )Ys,γ(s)

(γ̇(s)− Ys,γ(s)).

Then one has

Lτ (s, γ̇(s)) ≥ Lτ (s, Ys,γ(s)) + ∂vLτ (γ̇(s)− Ys,γ(s))

+
δ

2|Lmin(s)|
|γ̇(s)− Ys,γ(s)|2

= ∂s
[

Ss
a(η(a), γ(s))

]

+
δ

2|Lmin(s)|
|γ̇(s)− Ys,γ(s)|2.
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Claim. Denote by S a lower bound of St
s(x, y) for (s, x), (t, y) ∈ I × K and

set

C1 := 2 exp
(1

δ

(2S

ε

)2)

.

Further denote by Lmin(s) the minimum of Lτ on the convex hull of γ̇(s) and
Ys,γ(s). Then there exists a subset B of [0, ε] of measure at least ε

2 such that
|Lmin(s)| ≤ C1|LYs,γ(s)

| for all s ∈ B.

Proof of the claim. For v, w ∈ intD(s,x) with v 6= w and (s, x) ∈ I×K consider
the convex hull conv{v, w}. Parameterize conv{v, w} by

f : λ ∈ [0, |v − w|] 7→
(

1− λ

|v − w|
)

v +
λ

|v − w|w.

Next denote by Lmin the minimum of L ◦ f and by λ0 with 0 ≤ λ0 ≤ |v − w|
the parameter achieving this minimum. Let Y ∈ conv{v, w} and denote

L′
Y :=

d

dλ

∣

∣

∣

λ=λ1

(L ◦ f)(λ)

where f(λ1) = Y . Then one has

(L′
Y )

2 = |L′
Y | · |0− L′

Y |

= |L′
Y | ·

∣

∣

∣

∣

∫ λ0

λ1

(L ◦ f)′′(λ)dλ
∣

∣

∣

∣

≥ |L′
Y | · δ

∣

∣

∣

∣

∫ λ0

λ1

1

|L ◦ f(λ)|dλ
∣

∣

∣

∣

≥ δ

∫ λ0

λ1

(L ◦ f)′(λ)
|L ◦ f(λ)| dλ = δ log

∣

∣

∣

∣

Lmin

LY

∣

∣

∣

∣

where the last two manipulations follow from the convexity of L ◦ f .
Now assume that |Lmin(s)| ≥ C1|LYs,γ(s)

| on a set B ⊆ [b, c] of measure at
least ε

2 . Then from the first paragraph one has |L′
Ys,γ(s)

| ≥ √
δ logC1 on B.

Note that this implies L′
Ys,γ(s)

≤ 0 since

0 ≥ ∂sSs
a(η(a), γ(s)) = Lτ (s, Ys,γ(s)) + L′

Ys,γ(s)

implies L′
Ys,γ(s)

≤ −Lτ (s, Ys,γ(s)) ≤ −S by Remark 3.16. Consequently,

∂sSs
a(η(a), γ(s)) = Lτ (s, Ys,γ(s)) + L′

Ys,γ(s)
≤ L′

Ys,γ(s)
< −

√

δ logC1

which implies

Sc
a(η(a), γ(c)) − Sb

a(η(a), γ(b)) ≤
∫

B

∂sSs
a(η(a), γ(s))ds ≤ −ε

2

√

δ logC1.

This constitutes a contradiction to the definition of C1. �
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The claim thus implies

Sc
a(η(a), γ(c)) − Sb

a(η(a), γ(b)) ≤ Aτ (γ)−
δ

2

∫ c

b

|γ̇(s)− Ys,γ(s)|2
|Lmin(s)|

ds

≤ Aτ (γ)−
δ

2C1

∫

B

|γ̇(s)− Ys,γ(s)|2
|LYs,γ(s)

| ds.

Next note that the continuity of Φτ and the invariance of ∂Dτ = L−1
τ (0) under

Φτ implies the existence of a C2 < ∞ depending only on I × K such that
(s− a)|LYs,γ(s)

| ≤ C2|Ss
a(η(a), γ(s))| for all t ∈ [b, c]. Thus one has

Sc
a(η(a), γ(c)) − Sb

a(η(a), γ(b))

≤ Aτ (γ)− δ1

∫

B

|γ̇(s)− Ys,γ(s)|2
|Ss

a(η(a), γ(s))|
ds

≤ Aτ (γ)−
δ1

|Sc
a(η(a), γ(c))|

∫

B

|γ̇(s)− Ys,γ(s)|2ds.

Note that again due to the continuity of Φτ there exists C3 <∞ depending only
on I ×K such that for all t ∈ [b, c] one has |γ̇(t)− Yt,γ(t)| ≤ C3|γ̇(b)− Yb,γ(b)|.
This follows from the fact that the image of Y is locally invariant under Φτ .
Thus there exists δ3 > 0 such that

Sc
a(η(a), γ(c))− Sb

a(η(a), γ(b)) ≤ Aτ (γ)−
δ3

|Sc
a(η(a), γ(c))|

|γ̇(b)− Yb,γ(b)|2.

Finally, notice that Yb,γ(b) = η̇(b). This finishes the proof. �

Proof of Proposition 3.17. With the same argument as in the preceding proof
one can assume that the curves are contained in a normal neighborhood.

(i) The first step is to show that

(c, x2(c)) ∈ J+((a, x1(a)))

under the assumptions in the proposition and for 0 < C <∞ sufficiently large.
Using the local Lipschitz continuity of

(s, x) 7→ D(s,x) = Dτ ∩ ({s} × TNx)

with respect to the Hausdorff distance, which follows directly from local Lip-
schitz continuity of p 7→ C ∩ {dτ = 1} with respect to the Hausdorff distance,
one sees that there exists C0 <∞ only depending on I ×K such that one can
choose (b, χ̇2(b)) ∈ D(b,x1(b)) with

(9) dist(χ̇2(b), ẋ2(b)) ≤ C0 dist(χ2(b), x2(b)) = C0 dist(x1(b), x2(b)).

With the smoothness of Φτ this then implies

dist(χ2(c), x2(c)) ≤ C1 dist(x1(b), x2(b))
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for some C1 <∞ only depending on I ×K and ε. Now the triangle inequality
yields

dist
(

(c, x2(c)), ∂J
+((a, x1(a)))

)

≥ dist
(

(c, χ2(c)), ∂J
+((a, x1(a)))

)

− C1 dist(x1(b), x2(b)).

Recall from Remark 3.16 that

Sc
a(x1(a), χ2(c))

2 = L
(

(expL

(a,x1(a))
)−1((c, χ2(c)))

)2

and that L2 is smooth up to and beyond ∂Dτ . Thus there exists δ0 > 0, only
depending on I ×K and ε, such that

dist
(

(c, χ2(c)), ∂J
+((a, x1(a)))

)

≥ δ0Sc
a(x1(a), χ2(c))

2.

Now Lemma 3.18 implies Sc
a(x1(a), χ2(c))

2 ≥ δ2 dist(ẋ1(b), χ̇2(b))
2 as a special

case. With (9) one then obtains

Sc
a(x1(a), χ2(c))

2 ≥ δ3 dist(ẋ1(b), ẋ2(b))
2

for some δ3 > 0 if C is sufficiently large. Consequently, one has

dist
(

(c, x2(c)), ∂J
+((a, x1(a)))

)

≥ 1

2
dist

(

(c, χ2(c)), ∂J
+((a, x1(a)))

)

for dist(ẋ1(b), ẋ2(b))
2 ≥ C dist(x1(b), x2(b)) with C sufficiently large. Thus one

concludes (c, x2(c)) ∈ J+((a, x1(a))).
(ii) Remark 3.16 implies that

Sc
a(x1(a), x2(c))

2 ≥ δ4 dist
(

(c, x2(c)), J
+((a, x1(a)))

)

for some δ4 > 0 depending only on I ×K and ε, since the fiber derivative of
L2
τ does not vanish anywhere on ∂Dτ . Thus one has

Sc
a(x1(a), x2(c))

2 ≥ δ4δ0
2

Sc
a(x1(a), χ2(c))

2.

With the convexity of S one then concludes
∣

∣Sc
a(x1(a), x2(c))− Sc

a(x1(a), χ2(c))
∣

∣(10)

≤ C2

|Sc
a(x1(a), χ2(c))|

dist(x1(b), x2(b))

for some C2 <∞ depending only on I ×K and ε. Finally, one has

Sc
a(x1(a), x2(c)) − Sb

a(x1(a), x1(b))− Sc
b (x2(b), x2(c))

≤ Sc
a(x1(a), χ2(c))− Sb

a(x1(a), x1(b))− Sc
b (χ2(b), χ2(c))

+ |Sc
a(x1(a), χ2(c)) − Sc

a(x1(a), x2(c))|
+ |Aτ (x2|[b,c])−Aτ (χ2)|.

The first term on the right-hand side is bounded from above by

− δ

|Sc
a(x1(a), χ2(c))|

dist(ẋ1(b), ẋ2(b))
2
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according to Lemma 3.18 and the choice of χ2 for some δ > 0. The second
term is bounded from above by

C2

|Sc
a(x1(a), χ2(c))|

dist(x1(b), x2(b))

according to (10). Finally, one has

|Aτ (x2|[b,c])−Aτ (χ2)| ≤ C3 dist(x1(b), x2(b))

according to (9) for some C3 <∞. Now note that

dist(ẋ1(b), χ̇2(b)) ≥ dist(ẋ1(b), ẋ2(b))− C0 dist(x1(b), x2(b))

by the triangle inequality and (9). This implies that

Sc
a(x1(a), x2(c))− Sb

a(x1(a), x1(b))− Sc
b (x2(b), x2(c)) ≤ − δ

2
dist(ẋ1(b), ẋ2(b))

for C <∞ sufficiently large.
Repeating the arguments for Sc

a(x2(a), .), x2|[a,b] and x1|[b,c], one obtains

Sc
a(x1(a), x1c) + Sc

a(x2(a), x2(c)) − Sc
a(x1(a), x2(c))− Sc

a(x2(a), x1(c))

≤ −δ dist(ẋ1(b), ẋ2(b))2

for C < ∞ sufficiently large. The claim is now immediate for y1 : [a, c] → N
the Aτ -minimizer from x1(a) to x2(c) and y2 : [a, c] → N the Aτ -minimizer
from x2(a) to x1(c). �

Proof of Theorem 2.10. Let Π be a dynamical optimal coupling of µ and ν.
For k ∈ N consider the subcoupling

Πk := Π|{γ|τ(γ(1))−τ(γ(0))≥1/k}.

Since the supports of µ and ν are disjoint, one knows that for every compact
set I ×K ⊆ R×N ∼=M there exists k with

(evt)♯Π|I×K ≡ (evt)♯Πk|I×K

for all t ∈ [0, 1]. Fix I ×K ⊂ M compact and k ∈ N such that γ ∈ suppΠk

for all γ ∈ suppΠ with γ ⊂ I ×K.
Consider the reparameterization η : [τ(γ(0)), τ(γ(1))] → M of γ ∈ suppΠk

such that τ ◦ η(s) = s. Next let ε0 > 0 be given and consider the restriction
of γ ∈ suppΠk to [ε0, 1 − ε0]. Then there exists ε1 > 0 only depending on ε0
such that |s(t) − τ(γ(0))|, |s(t) − τ(γ(1))| ≥ 2ε1 for all γ ∈ suppΠk and the
reparameterization η with η(s(t)) ≡ γ(t) and t ∈ [ε0, 1− ε0].

Let (γ1, t1), (γ2, t2) ∈ suppΠk × [ε0, 1− ε0]. Denote by

ηi : [τ(γi(0)), τ(γi(1))] →M

the reparameterization of γi as in the previous paragraph. Since τ is Lipschitz
on I ×K with constant L <∞, i.e.

|τ(γ1(t1))− τ(γ2(t2))| ≤ L dist(γ1(t1), γ2(t2)),
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one has |b2 − b1| ≤ L dist(γ1(t1), γ2(t2)) for bi = τ(γi(ti)) and i = 1, 2. For
dist(γ1(t1), γ2(t2)) smaller than ε1/L one has thus

b1 − τ(γ2(0)), τ(γ2(1))− b1 ≥ ε1.

Therefore η2 is well defined on [b1 − ε1, b1 + ε1]. With the smoothness of Φτ

one concludes that there exists a constant C0 <∞ depending only on ε0 such
that

dist(η̇2(b1), η̇2(b2)) ≤ C0 dist(γ1(t1), γ2(t2)).

Further the triangle inequality implies that

dist(η̇2(b1), η̇1(b1)) ≥ dist(η̇1(b1), η̇2(b2))− C0 dist(γ1(t1), γ(t2))

and
dist(η2(b1), η1(b1)) ≤ C1 dist(γ1(t1), γ2(t2))

for some C1 <∞ depending only on I ×K.
Now choose δ, κ > 0 and C < ∞ for ε := ε1 and I × K according to

Proposition 3.17. For C2 <∞ sufficiently large assuming that

C2 dist(γ1(t1), γ2(t2)) < dist([γ̇1(t1)], [γ̇2(t2)])
2

and dist(γ1(t1), γ2(t2)) ≤ min{δ/C1, ε1/L} one has

C dist(η2(b1), η1(b1)) < dist(η̇2(b1), η̇1(b1))
2.

Then Proposition 3.17 implies that

cL(η1(b1 − ε), η2(b1 + ε)) + cL(η2(b1 − ε), η1(b1 + ε))

− cL(η1(b1 − ε), η1(b1 + ε))− cL(η2(b1 − ε), η2(b1 + ε)) < 0.

With the triangle inequality for cL it follows that

cL(γ1(0), γ2(1)) + cL(γ2(0), γ1(1))− cL(γ1(0), γ1(1))− cL(γ2(0), γ2(1)) < 0,

which clearly contradicts the cyclic monotonicity of the optimal coupling
(ev0, ev1)♯Π of µ and ν, see Proposition 2.7. Thus there exists D <∞ with

dist([γ̇1(t1)], [γ̇2(t2)])
2 ≤ D dist(γ1(t1), γ2(t2)),

showing the injectivity of the projection and the Hölder continuity of the in-
verse. �

A C2-function LT : R× TN → R is a Tonelli–Lagrangian, see [4], if for all
(t, x) ∈ R×N

(i) the restriction LT |{t}×TNx
is convex with positive definite Hessian every-

where,
(ii) LT (t, v)/|v| → ∞ as |v| → ∞ for v ∈ TNx, and
(iii) the Euler–Lagrange flow of LT is complete.

Proof of Theorem 2.12. Choose a compact set K ′ ⊆ intDτ such that K ⊆
intK ′. Next construct a Tonelli–Lagrangian LT : R× TN → R with LT ≥ Lτ

and LT |K′ ≡ Lτ |K′ . Then every Aτ -minimizer γ with γ̇ ∈ K ′ is also a mini-
mizer for the action induced by LT . Now the claim follows from the classical
regularity result for Tonelli–Lagrangians, see e.g. [4, Thm. A]. �
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3.19. Proof of Theorems 2.13 and 2.14. First the proof of Theorem 2.13
is given. After that the necessary changes to the argument for the proof of
Theorem 2.14 are indicated.

The proof of Theorem 2.13 is essentially carried out via two propositions.

Proposition 3.20. Let (µ, ν) ∈ P+
τ (M). Assume that µ and ν are concen-

trated on a locally uniformly spacelike hypersurface A and an achronal set B,
respectively. Further assume that µ is absolutely continuous with respect to
the Lebesgue measure on A and that suppµ is ν-neglectable. Then for every
optimal coupling π of µ and ν there exists a set R ⊂M ×M of full π-measure
such that for all (x, y1), (x, y2) ∈ R there exists an A-minimizer γ : [0, 1] →M
containing x, y1, y2 in its trace.

The proof of Proposition 3.20 needs the following lemma. Recall that x ∈ N
is a Lebesgue point of a set C ⊂ N if

lim
δ→0

Ln(C ∩Bδ(x))

Ln(Bδ(x))
= 1,

where Bδ(x) continues to denote the metric ball of radius δ > 0 around x.

Lemma 3.21. Let N be a manifold, µ, ν ∈ P(N), π ∈ Π(µ, ν) and Σ a σ-
compact set such that π(Σ) = 1. Assume that µ is absolutely continuous with
respect to the Lebesgue measure on N . Then π is concentrated on a σ-compact
set R(Σ) such that for all (x, y) ∈ R(Σ) ⊂ N × N the point x is a Lebesgue
point of π1(Σ ∩ (N ×Br(y))) for all r > 0.

A version for the case M = Rn is proved in [9, Lem. 4.3]. The proof carries
over mutatis mutandis to the present situation of manifolds.

Proof of Proposition 3.20. Let Π be a dynamical optimal coupling of µ and ν.
Then π := (ev0, ev1)♯Π is an optimal coupling of µ and ν. One can assume that
A-minimizers between points in suppµ and supp ν are unique up to parameter-
ization. This can be seen as follows. By passing to a dynamical subcoupling Ξ′,
according to Corollary 3.12, one can first assume that suppµ is compact. The
proof continues to use the notation Π for the dynamical optimal coupling. By
Corollary 3.11 one can assume that the A-minimizers between points in suppµ
and supp ν are unique up to parameterization by considering the transport π0,σ
between 0 and σ : Γ → [0, 1] with 0 < σ(γ) sufficiently small. One can choose
σ such that supp ν is compact.

Note that
0 = ν(suppµ) = π(suppµ× supp ν ∩△)

where △ denotes the diagonal in M ×M . Thus Π-almost every A-minimizer
is nonconstant. The assumption that µ is concentrated on a locally uniformly
spacelike hypersurface implies that every nonconstant causal curve can inter-
sect suppµ at most once. Therefore suppµ is (evt)♯Π-neglectable for all t > 0.

Note that since µ and ν are supported on Lipschitz graphs over N , one
can consider both measures to be supported on N without losing the absolute
continuity of µ with respect to the Lebesgue measure. Therefore one can apply
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Lemma 3.21 to µ and ν seen as measures on N and obtain a set R ⊆ A×B by
revoking the identification via the graphs. Choose a set R = R(Σ) ⊆ A × B
according to Lemma 3.21.

Assume that there exist (x, y1), (x, y2) ∈ R such that yi does not lie on the
A-minimizer between x and yj for i 6= j. Then one knows that the tangents
γ̇i(0) to the A-minimizers γi ∈ Γx→yi

are not parallel. Choose a diffeomor-
phism ψ from the unit ball B1(0) in Rm to a neighborhoodU of x with ψ(0)= x.
For δ > 0 define ψδ : B1(0) → U , v 7→ ψ(δv).

It is obvious that Lδ := 1
δψ

∗
δ (L) converges for δ → 0 to L|Cx

uniformly on

compact subsets of int C in any Ck-topology. Especially the minimizers of the
action induced by Lδ converge uniformly to straight lines in B1(0).

Next choose sequences δn, rn ↓ 0 such that

(11) lim
n→∞

LA

(

π1(Σ ∩ (A×Brn(y2))) ∩ im(ψδn)
)

LA(A ∩ im(ψδn))
= 1

where LA denotes the Lebesgue measure on A. Since the distance from x
to y2 can be bounded from below and due to the structure of the ψδ’s one
concludes that the tangents η̇ at x converge to γ̇2(0) at x for A-minimizers
η ∈ Γ connecting a point in imψδn with a point in Brn(y2). Further by (11)
one can choose points (wn, zn) ∈ imψδn ×Brn(y2) with (wn, zn) ∈ suppπ,

dist(ψ−1
δn

(x), ψ−1
δn

(wn)) ≥
1

2
and ψ−1

δn
(wn) → aγ̇1(0) + bγ̇2(0)

with a, b ∈ R and b < 0. Thus the L|Cx
-minimizer t 7→ t · γ̇1(0) and t 7→

v + t · γ̇2(0) intersect for some positive value of t. A simplified version of
Proposition 3.17 now shows that this crossing can be shortened by a nonzero
amount. Since the convergence is uniform, a fraction of this shortening survives
when passing to Lδn for n sufficiently large. This now contradicts the cyclic
monotonicity of the optimal coupling. �

Consider the set I ′B of A-minimizers γ′ ∈ Γ which intersect B in more than
one point. Note that γ̇′ ∈ ∂C for all γ′ ∈ I ′B since B is achronal. Identify M
with R×N via the splitting τ as in Section 3.13. Define the set IB to be the
set of reparameterizations γ of γ′ ∈ I ′B with τ ◦ γ = id. Then the curves in IB
correspond one-to-one with Φτ -orbits in N . Denote the set of these Φτ -orbits
by IB as well.

Proposition 3.22. If A is a locally uniformly spacelike hypersurface and B
is achronal, then the set formed by the intersections of orbits in IB with A is
LA-neglectable.

Assume for the moment that (i) A is uniformly spacelike, (ii) B is pre-
compact, and (iii) the distance between the first and the last intersections
of A-minimizers with B is uniformly bounded from below. Let (y1, y2) ∈
J+ ∩ (B × B) and let γ ∈ IB be an A-minimizer between y1 and y2. Choose
δ > 0 such that τ(Bδ(y1)) and τ(Bδ(y2)) are disjoint. Choose b ∈ R between
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τ(Bδ(y1)) and τ(Bδ(y2)). Denote by SB the set of intersections of curves
γ ∈ IB with {b}×N and let L{b}×N denote the Lebesgue measure on {b}×N .

Lemma 3.23. SB is an L{b}×N -neglectable set.

Proof. Consider η ∈ Γ with endpoints in Bδ(y1) ∩ B and Bδ(y2) ∩B. Denote
by z the intersection of η with {b} × N . Choose a convex neighborhood U
around z disjoint from Bδ(y1) ∩ B and Bδ(y2) ∩B. Denote by ηα and ηω the
initial and the terminal point on η in U , respectively. Then one has

SB ∩ U ⊆ J−(ηω)
c ∩ J+(ηα)

c = (J−(ηω) ∪ J+(ηα))
c.

With the same argument as in the proof of Proposition 3.20 one can assume,
after possibly restricting U , that ({b} ×N) ∩ J+(ηα) and ({b} ×N) ∩ J−(ηω)
are strictly convex sets. Thus there exists r > 0 such that for every point
z0 ∈ SB there exist two points z1, z2 ∈ {b} ×N with

Br(z1) ⊂ ({b} ×N) ∩ J+(ηα), Br(z2) ⊂ ({b} ×N) ∩ J−(ηω)

and
Br(z1) ∩Br(z2) = {z0}.

Therefore, for every ε > 0, SB can be covered by at most εn disjoint sets with
volume less than εn+1. This shows that SB is L{b}×N -neglectable. �

Lemma 3.24. The map SB → TN ∼= {b} × TN mapping z ∈ SB to the
tangent vector in Dz of an Aτ -minimizer in IB intersecting z is well defined
and Lipschitz.

Proof. Let γ1 be an A-minimizer between y1, y2 ∈ B, let γ2 be an A-minimizer
between y3, y4 ∈ B, and let both meet at an intermediate point z with dif-
ferent tangent vectors. Then y2 ∈ I+(y3) and y4 ∈ I+(y1), which induces a
contradiction to the achronality of B. Thus the map is well defined.

Now let x, z ∈ SB and let γx, γz ∈ IB contain respectively x and z in their
traces. Choose y1, y2 ∈ B such that γz connects y1 and y2. Then one has
x ∈ I+(y1)

c ∩ I−(y2)c by the achronality of B. Therefore

dist(x, I+(y1)), dist(x, I
−(y2)) ≤ C1 dist(x, z)

2

for some C1 <∞ depending only on suppµ ∪ supp ν.
Choose w ∈ ∂J+(y1) ∩ ({b} ×N) the nearest point to x. Then there exist

C2 <∞ and (b, χ̇(b)) ∈ Dw with

(12) dist((b, χ̇(b)), γ̇x(b)) ≤ C2 dist(w, z).

Recall that one has assumed that the distance between the intersections of
A-minimizers with B is bounded from below. Therefore there exists ε > 0
such that

max τ |Bδ(y1) < b− ε < b+ ε < min τ |Bδ(y2).

Then by Lemma 3.18 there exists δ1 > 0 only depending on suppµ ∪ supp ν
such that

cL(γz(b− ε), (b+ ε, χ(b+ ε)))2 ≥ δ1 dist(χ̇(b), Yw)
2
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where Yw denotes the tangent to the unique Aτ -minimizer ηw : [b− ε, b] → N
whose graph connects γz(b−ε) and w. Further since cL(γz(b−ε), .)2 is Lipschitz
up to the boundary of its domain, there exists δ2 > 0 with

dist
(

(b + ε, χ(b+ ε)), ∂J+(γz(b− ε))
)

≥ δ2c
2
L(γz(b− ε), (b+ ε, χ(b+ ε))).

By the triangle inequality and (12) one has

dist(χ̇(b), Yw) ≥ dist(Yw, γ̇x(b))− C2 dist(w, x)

≥ dist(γ̇z(b), γ̇x(b))− C3 dist(w, z)− C2 dist(w, x)

where the last inequality follows from the Lipschitz continuity of the vector
field u 7→ Yu. Since dist(w, x) ≤ dist(z, x), one concludes

dist(χ̇(b), Yw) ≥ dist(γ̇z(b), γ̇x(b))− (2C3 + C2) dist(z, x)

≥ 1

2
dist(γ̇z(b), γ̇x(b)).

if dist(γ̇z(b), γ̇x(b)) ≥ 2(2C3 + C2) dist(z, x). Now the triangle inequality and
the last estimate imply that

dist
(

γx(b+ ε), ∂J+(γz(b − ε))
)

≥ dist
(

(b+ ε, χ(b+ ε)), ∂J+(γz(b− ε))
)

− dist
(

γx(b + ε), (b+ ε, χ(b+ ε))
)

≥ δ3 dist(γ̇z(b), γ̇x(b))
2 − dist

(

γx(b + ε), (b+ ε, χ(b+ ε))
)

for some δ3 > 0. Next by the continuity of Φτ one has

dist
(

γx(b+ ε), ∂J+(γz(b − ε))
)

≥ δ3 dist(γ̇z(b), γ̇x(b))
2 − C4 dist(w, x)

≥ δ4 dist(γ̇z(b), γ̇x(b))
2 − C4C1 dist(z, x)

2

for some C4 <∞. Now if

dist(γ̇z(b), γ̇x(b)) ≥ max

{

2(2C3 + C2),

√

C4C1

δ4

}

dist(z, x),

one concludes γx(b+ε) ∈ I+(γz(b−ε)). This in turn implies that the endpoint
of γx in B is contained in I+(y2), clearly a contradiction to the achronality
of B. �

Proof of Proposition 3.22. Since a countable union of neglectable sets is ne-
glectable, one makes a few simplifying assumptions. One assumes that (i) A is
uniformly spacelike, i.e. the distance of TA ∩ T 1M from C1 is bounded away
from 0, (ii) B is precompact, and (iii) the distance between the first and the
last intersections of A-minimizers with B is uniformly bounded from below.

By Lemma 3.23 the set SB is L{b}×N -neglectable. Further by Lemma 3.24
the map that assigns to each intersection point the tangent of the correspond-
ing Aτ -minimizer is Lipschitz. Choose a Lipschitz extension of this map to N
according to Kirzbraun’s theorem, cp. [20, Thm. 1.31]. Then the unique inter-
section of Aτ -minimizers in IB with A is the image of an L{b}×N -neglectable
set under a Lipschitz map. Therefore it is LA-neglectable. �
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Proof of Theorem 2.13. First one shows that any optimal coupling is concen-
trated on the graph of a map. Any such map is measurable since couplings
are Borel measures. Choose a dynamical optimal coupling Π. Denote by Π△

the restriction of Π to the set of constant A-minimizers and ΠC := Π − Π△.
Further set µ△ := (ev0)♯Π△ and µC := (ev0)♯ΠC . Note that by construction
one has µ = µ△ + µC .

First one shows that suppµ△ ∩ suppµC is an LA-neglectable set. To this
end note that suppµ△ ⊆ supp ν since µ△ is induced by constant curves. Now
if x ∈ suppµ△ ∩ suppµC , then x is contained in supp ν and there exists y ∈
supp ν∩J+(x)\{x}. So x lies on an A-minimizer that intersects the support of
ν at least twice. The set consisting of such points was shown in Proposition 3.22
to be LA-neglectable which implies the initial claim.

Assume for the moment that π△ := (ev0, ev1)♯Π△ and πC := (ev0, ev1)♯ΠC

are separately concentrated on a graph. Then π is concentrated on the union
of these graphs since π = π△ + πC . The overlap of these graphs lies in
π−1
1 (suppµ△ ∩ suppµC). Since suppµ△ ∩ suppµC is LA-neglectable, it is also

µ-neglectable and therefore π−1
1 (suppµ△ ∩ suppµC) is π-neglectable. Thus π

is concentrated on a graph.
Therefore one has to show that π△ and πC are concentrated separately on

a graph. This claim is trivial for π△ since π△ is concentrated on the diagonal
of M ×M .

For πC note that by construction πC(△) = 0. Since πC(△) ≥ ν(suppµ), one
can apply Proposition 3.20 to the situation of µC and νC := (ev1)♯ΠC with the
coupling πC . Assume first that there exists a set S ⊂M with µC(S) > 0 such
that for every x ∈ S there exist y1, y2 ∈ supp νC with y1 6= y2, (x, yi) ∈ suppπC
and noA-minimizer from x to yi meets yj for i 6= j. By the martingale property

of πC one has πC(π
−1
1 (S)) = µC(S) > 0. Now for the set R constructed in

Proposition 3.20 one has R ∩ π−1
1 (S) 6= ∅. But this contradicts the property

of R given in Proposition 3.20. Therefore the set of points transported into
two different directions is µC -neglectable.

It remains to show that the set transported along one A-minimizer, but to
at least two points in B is LA-neglectable. But this is the content of Propo-
sition 3.22 since µC is absolutely continuous with respect to LA. This fol-
lows directly from the assumption that µ is absolutely continuous with respect
to LA.

Uniqueness of the optimal coupling follows from the observation that if two
optimal couplings exist, any convex combination of both is optimal as well. But
any nontrivial convex combination of two couplings, concentrated on separate
graphs, is not concentrated on a graph unless they coincide. �

The proof of Theorem 2.14 differs only in minor details from that of Theo-
rem 2.13. These modifications are indicated in the following.

Proposition 3.25. Let µ, ν ∈ P(M) be as in the assumptions of Theorem 2.14
and assume that suppµ is ν-neglectable. Then for every optimal coupling π of µ
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and ν there exists a set R of full π-measure such that for all (x, y1), (x, y2) ∈ R
there exists an Aτ -minimizer γ containing x, y1, y2 in its trace.

Proof. Choose a dynamical optimal coupling Π between µ and ν. Like in
Proposition 3.20 one can assume that A-minimizers between suppµ and supp ν
are nonconstant and unique up to parameterization. To see this, first consider
dynamical subcouplings Ξ′ instead of Π, according to Corollary 3.12, for the
restriction of µ to Br(p) ∩Bε(supp ν)

c for p ∈ suppµ, ε > 0 and r < inj(L)/2,
where inj(L) denotes the injectivity radius of L on a sufficiently large compact
subset of M . The proof continues to use the notation Π for the dynamical
optimal coupling.

Since the distance between suppµ and supp ν is positive, Π-almost all A-
minimizers are nonconstant. Consequently, one can choose a measurable func-
tion σ : Γ → (0, 1] such that γ(σ(γ)) ∈ (suppµ)c ∩ Binj(L)(γ(0)) for Π-almost
all γ ∈ Γ. The resulting restriction is optimal according to Corollary 3.11. By
construction one knows that suppµ is (ev ◦(id×σ))♯Π-neglectable.

Now one applies Lemma 3.21 to µ and ν to obtain the set R ⊂ M ×M .
The remainder of the argument is absolutely analogous. �

Recall that IB denotes the set of A-minimizers γ : I → M with τ ◦ γ = id
which intersect B in more than one point.

Proposition 3.26. The set formed by the traces of orbits in IB is LM -
neglectable.

Proof. As before one can assume that B is precompact and the distance be-
tween two intersections of an A-minimizer with B is uniformly bounded from
below. Then as above Lemmata 3.23 and 3.24 apply to the present case as well
with the same notation. Choose a Lipschitz extension of the Lipschitz map
obtained in Lemma 3.24 to M . Then the union of the traces of orbits in IB
is the image under the locally Lipschitz map of evaluation of an L1 ×L{b}×N -
neglectable set. Therefore it is LM -neglectable. �

The proof of Theorem 2.14 follows word-by-word the proof of Theorem 2.13
except for obvious changes.

Acknowledgements. The author would like to thank Victor Bangert for sug-
gesting the problem of optimal transportation in the context of Lorentzian
geometry and Albert Fathi for encouraging the pursuit of the project. The
author would further like to thank Patrick Bernard for providing the opportu-
nity to carry out the ideas for this article and making numerous suggestions
which helped to shape the exposition of the present results. Valentine Roos
and Rodolfo Rı́os-Zertuche are kindly thanked for many helpful discussions in
the process of this research.

References

[1] C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, third edition, Springer,
Berlin, 2006. MR2378491

Münster Journal of Mathematics Vol. 11 (2018), 13–47



Optimal transport for Lorentzian cost functions 47

[2] L. Ambrosio and A. Pratelli, Existence and stability results in the L
1 theory of opti-

mal transportation, in Optimal transportation and applications (Martina Franca, 2001),
123–160, Lecture Notes in Math., 1813, Springer, Berlin, 2003. MR2006307

[3] P. Bernard and B. Buffoni, Weak KAM pairs and Monge-Kantorovich duality, in As-

ymptotic analysis and singularities—elliptic and parabolic PDEs and related problems,
397–420, Adv. Stud. Pure Math., 47-2, Math. Soc. Japan, Tokyo, 2007. MR2387248

[4] P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, J. Eur.
Math. Soc. (JEMS) 9 (2007), no. 1, 85–121. MR2283105

[5] P. Bernard and S. Suhr, Lyapounov Functions of closed cone fields: From Conley theory
to time functions, Comm. Math. Phys. 359 (2018), no. 2, 467–498. MR3783554

[6] J. Bertrand and M. Puel, The optimal mass transport problem for relativistic costs,
Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 353–374. MR3016512

[7] Y. Brenier, Extended Monge-Kantorovich theory, in Optimal transportation and appli-

cations (Martina Franca, 2001), 91–121, Lecture Notes in Math., 1813, Springer, Berlin,
2003. MR2006306

[8] Y. Brenier, U. Frisch, M. Henon, G. Loeper, S. Matarrese, R. Mohayaee, and A.
Sobolevskii, Reconstruction of the early universe as a convex optimization problem,
Mon. Not. Roy. Astron. Soc. 346 (2003), 501–524.

[9] T. Champion and L. De Pascale, The Monge problem for strictly convex norms in Rd,
J. Eur. Math. Soc. (JEMS) 12 (2010), no. 6, 1355–1369. MR2734345

[10] M. Eckstein and T. Miller, Causal evolution of wave packets, Phys. Rev. A 95 (2017),
032106.

[11] M. Eckstein and T. Miller, Causality for nonlocal phenomena, Ann. Henri Poincaré 18
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