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DEUTSCHSPRACHIGE ZUSAMMENFASSUNG

Uber Moduli von Vektorbiindeln auf p-adischen Kurven und zugeordneten
Darstellungen

In der vorliegenden Arbeit wird das von Deninger/Werner entwickelte p-
adische Analogon der klassischen Narasimhan-Seshadri Theorie hinsichtlich
der Formulierbarkeit in den Termen der Moduli von Vektorbiindeln und
entsprechenden Darstellungen untersucht.

Sei X eine glatte, projektive und zusammenhéngende Kurve tiber @p.
Einem Vektorblindel F mit stark semistabiler Reduktion auf Xc, ordnet
das étale Paralleltransport unter anderem eine stetige endlich-dimensionale
Darstellung der étalen Fundamentalgruppe von X zu. Andererseits ist
jedes Vektorbiindel mit stark semistabiler Reduktion ebenfalls semistabil,
induziert also einen Cp,-wertigen Punkt in dem Modulraum My, der semista-
bile Vektorbiindel von entsprechendem Rang und Grad parametrisiert.

In der vorliegenden Arbeit wird gezeigt, dass die Klasse der Vektorbiindel
auf Xc, (von festem Rang und Grad), die stark semistabile Reduktion iiber
Zy, haben, im p-adischen Sinne eine offene Teilmenge in Mx(Q,) induziert.
Desweiteren beschreiben wir die obige Zuordnung der Darstellungen in den
Termen der Moduli von Vektorbiindeln sowie zugeordneten Darstellungen.
Wir zeigen, dass diese unter einer technischen Voraussetzung stetig ist.
Dafiir werden die Methoden aus dem Beweis des ersten Resultats verwendet.
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INTRODUCTION

The classical Narasimhan-Seshadri correspondence relates stable vector
bundles of degree zero on a Riemann surface to irreducible unitary repre-
sentations of its fundamental group. In the last years a partial p-adic ana-
logue of the Narasimhan-Seshadri correspondence has been simultaneously
developed by Deninger/Werner in [DW05a, [DWO05bl, [DW07, [Den10, DWI10]
and Faltings in [Fal05]. In fact, Faltings even developed a p-adic version of
Simpson’s theory.

Recall that a vector bundle F on a smooth projective curve over a field
of characteristic p is called strongly semistable if the pullbacks of E by
all non-negative powers of the absolute Frobenius morphism are strongly
semistable. A vector bundle on a reduced not necessarily irreducible curve
is called strongly semistable if its pullback to the normalization of every
irreducible component is strongly semistable. Let X be a smooth projective
and connected curve over @p. Let C,, be the field of p-adic complex numbers
and o its ring of integers. Deninger and Werner introduced the following
subclass of semistable vector bundles on X¢,: A vector bundle £ on Xc,
has strongly semistable reduction (of degree zero) if there exist a certain
model X over Z, and a vector bundle £ on X, with generic fiber isomorphic
to E such that the special fiber of £ is strongly semistable. For this class of
vector bundles they established the étale parallel transport, which assigns
to F a continuous representation of the étale fundamental groupoid of X.
In particular, after restriction to the étale fundamental group m (X, x) of
X, one obtains for each F a p-adic representation of this group.

In the classical theory the correspondence is also formulated in terms of
moduli of vector bundles and corresponding representations. The goal of
this thesis is to study in what extent this situation can be adapted to the
p-adic analogue.

As already mentioned, every vector bundle on X¢, having strongly semi-
stable reduction is semistable. Let Mx be the moduli space of semistable
vector bundles on X of fixed rank and degree. We may consider the latter
class of vector bundles (of suitable rank and degree) as a subset of the set of
Cp-valued points of My. We formulate the following question: Is this subset
p-adically open in Mx(C,)? The answer for the vector bundles of degree
zero having (potentially) strongly semistable reduction over Zp is positive.

Theorem (7.2} 10.9). Consider a smooth projective and connected
curve X over Q, of genus g > 2. Let E be a vector bundle on X of degree

zero, which has potentially strongly semistable reduction. Let Mx be the
moduli space of vector bundles on X of rank rk E and degree zero. Then
there exists a p-adic neighborhood U C Mx(@p) of the S-equivalence class
of E consisting of S-equivalence classes of vector bundles having potentially
strongly semistable reduction.

By definition, the property of E to have strongly semistable reduction
depends on the reduction of some model £ of E over a certain model X
of X over Z,. The fundamental theorem of Langer/Maruyama [Lan04b)
Mar96| states the existence of a certain moduli space M of semistable sheaves
in mixed characteristic. Applying this theorem to X we could try to use
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M as a connection between F and its reduction. However, the difficulty
lies in the question whether £ belongs to the class of objects which are
parametrized by M. Assuming that X is simple enough, we can overcome
this problem by using a result of Teixidor i Bigas [TiB95], which establishes
a characterization of semistability for vector bundles on semistable curves.

Eventually, we have to eliminate the assumption on the model X to be
simple enough, in our terms, to be almost stable, which means that the
special fiber of X is a semistable curve, and every rational component of
the special fiber intersects the other irreducible components in at least two
points.

Theorem . Consider a smooth projective and connected curve X
over @p of genus g > 1. Let E be a vector bundle on X. Assume that E
has a reduction which is either (i) strongly semistable of degree zero or (ii)
trivial. Then E has also a reduction with (i) resp. (ii) over an almost stable
model.

The proof of this theorem is based on the birational geometry of arith-
metic surfaces over discrete valuation rings and a theorem of Ishimura [Ish83]
about the descent of vector bundles on blowing-ups of regular surfaces.
These tools force us to consider the reduction of E over Zp.

The last important ingredient in the construction of the p-adic neighbor-
hood is the well-known theorem of Langton. It allows us to extend semistable
vector bundles on X to the whole model X, but it also forces us to work
over Zy.

Let x € X and m = 71 (X, z) be the étale fundamental group of X. We
construct a set-theoretic mapping

Mx (@p) - XW((CID)’

where the topological space on the right hand side is the character space of
p-adic representations of 7, which is introduced in the third part. The proof
of the first theorem yields a method to show the continuity of this map,
however under a technical assumption (cf. Proposition[14.4). I do not know
whether this assumption is satisfied or not.

This thesis is organized as follows. The first part is introductory. In the
first section we consider the notion of semistability of pure sheaves. We
begin with the general definition and then restrict it to the case of curves.
In the end we give an example of a curve such that the trivial vector bundle
on it is never semistable.

The second section deals with the moduli spaces of semistable sheaves.
We give a general definition of a moduli space and recall the main existence
theorem. Since we are particularly interested in the case of curves, we collect
results for such moduli spaces.

In the third section we state and prove the theorem of Langton. As we
could not find any proof of it in the generality we need, we include it here.

In the fourth section we introduce the notion of Jordan-Hélder filtrations
in an abelian category. All statements in this section are straightforward
to prove. However, since we need them for the category of vector bundles
having strongly semistable reduction of degree zero as well as for the category
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of continuous finite dimensional representations, we decided to include this
section to avoid duplication.

In the second part we construct the p-adic neighborhood in the moduli
space of semistable vector bundles. In the fifth section we recall the notion
of strongly semistable reduction and prepare some auxiliary results.

In the sixth section, in some sense, we test the idea for the construction of
the p-adic neighborhood on families of vector bundles without considering
the moduli spaces parameterizing them.

In the next section we adapt the results of the previous section to the
situation of moduli spaces in the case of good strongly semistable reduction,
that is, the models we consider are smooth. This assumption completely
eliminates the difficulties with different notions of semistability on the special
fiber.

Now after the main result is proved in a special case, we need to analyze
the semistability of vector bundles on semistable curves. This was done by
Teixidor i Bigas. Unfortunately, the original article contains small inaccu-
racies. Therefore we decided to include the full proof of the main result in
the eighth section.

In the ninth section we construct in a purely combinatorial way a weight-
ing of the irreducible components of a semistable curve provided the curve
is almost stable. This weighting can then be used to construct an ample
divisor such that certain vector bundles are semistable with respect to this
divisor. The result is based on the theorem from the previous section.

In the tenth section we prove the main theorem. We proceed in an analo-
gous way to the seventh section. We also include some redundant arguments
to make this section self-contained without referring to the proof in the case
of good reduction. The weightings from the previous section are used to ad-
just the different notions of semistability on the special fiber. The theorem
is proved under the assumption that we can always reduce the situation to
an almost stable model. In the second part of this section we show that this
can indeed be achieved.

The eleventh section is more or less unconnected to the rest of this thesis.
We describe the jet spaces of the moduli space of semistable vector bundles
on a smooth projective and connected curve in terms of such bundles. We
included this section since the parallel transport immediately induces a map-
ping on the jet space using this description. Using the mapping on the level
of moduli constructed in the next section one can relate these, provided one
has a “good” moduli space of continuous finite dimensional representations,
where “good” means that its jet spaces can be defined.

In the third part we consider the parallel transport restricted to the étale
fundamental group on the level of moduli. In the twelfth section we revisit
the construction and the properties of the parallel transport for the vector
bundles with strongly semistable reduction.

In the next section we define two topological spaces describing the iso-
morphism and Jordan-Hoélder equivalence classes of continuous finite di-
mensional representations. We call the latter the character space of repre-
sentations. Further, we use the notion of (uniform) physical convergence and
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convergence in trace introduced by Bellaiche, Chenevier, Khare and Larsen
to describe convergence in these spaces.

In the fourteenth section a mapping is defined on the level of moduli of
vector bundles to the character space introduced before. It is induced by
the parallel transport restricted to the étale fundamental group. First we
define it for the families and show the continuity of this mapping. Then we
apply a similar approach to the moduli of semistable vector bundles. The
continuity of the parallel transport follows, provided a technical assumption
is satisfied. The proofs rely on variants of the main results from the second
part.

In the last section we give a necessary condition for a p-adic representa-
tion, considered there, to be induced by the parallel transport of a vector
bundle, which has strongly semistable reduction.

Acknowledgments. I would like to thank my advisor Christopher Deninger
for the great encouragement and stimulation I have received. I would
also like to thank Marten Bornmann, Torsten Schoeneberg and Wolfgang
Spindeler for lively discussions and numerous comments.

This thesis was supported by the Deutsche Forschungsgemeinschaft at
the SFB 878 Groups, Geometry & Actions in Miinster.



Part 1

Preliminaries



1. SEMISTABILITY OF PURE SHEAVES

Let E be a coherent sheaf on a Noetherian scheme X. The dimension
dim F of F is the dimension of the support Supp(F) of E. We say that E is
pure of dimension d if dim F' = d for all proper coherent subsheaves F' C F.
The sheaf E is pure if it is pure of dimension d = dim FE. The purity of
a sheaf is a generalization of the property to be torsion free on an integral
scheme. Indeed, there exists a unique filtration of a coherent sheaf F

0CTyE)CTh(E)C...CTyFE)=E,

where d is the dimension of E and T;(E) is the maximal subsheaf of E of
dimension less or equal i. The sheaf E is then pure of dimension d if and
only if Ty_1(E) = 0. A coherent sheaf E on an integral scheme X is torsion
free if and only if its torsion subsheaf T'(E) C E is zero. By definition of
the above filtration we have T(E) = Ty_1(E).

Proposition 1.1. A coherent sheaf E on a Noetherian scheme X is pure of
dimension d if and only if all associated points of E have the same dimension
d.

Proof. Denote by Ass(FE) the set of all associated points of E.

Assume that F is pure of dimension d. Let z € Ass(F) and {z} be the
closure of {z} in X. There exist an open neighborhood U C X of = and a
quasi-coherent subsheaf F’ C E|y on U such that U N {z} is an irreducible
component of Supp(F’) (cf. [EGAIV3] Proposition 3.1.3). We may extend
F’ to a quasi-coherent subsheaf F' of E, which is a posteriori coherent. By
assumption it follows that dim F = 0, in particular

d = dim (@m U) = dim, U = dim, X = dim {z}.

Conversely, let F' C E be a subsheaf on X. Let x be a generic point of an
irreducible component of Supp(F). Then x € Ass(F) (cf. loc. cit. 3.1.1.1).

Since Ass(F') C Ass(E), we have by assumption dim {z} = d. It follows
that dim I’ = d. ]

Ezample. Let X be a projective reduced (not necessarily irreducible) curve
over an algebraically closed field k. Seshadri introduced in [Ses82| septieéme
partie the notion of coherent sheaves of depth one. A module M over a local
ring (A, m) is called to be of depth one if there exists an element in m which
is not a zero-divisor of M. A coherent sheaf E on X is of depth one if E,
is of depth one over Ox , for all x € X. One can show that the restriction
modulo torsion of a sheaf of depth one to an irreducible component of X is
either zero or torsion-free. Therefore in this situation the notion of a pure
one dimensional sheaf coincides by the above proposition with the notion of
a depth one sheaf.

Now let X be a projective scheme over a field k. The cohomology groups
H'(X, E) are finite dimensional vector spaces over k. We put h'(E) =
h(X,E) = dim; H (X, E). Since h'(E) = 0 for i > d = dim X, we may

define
d

X(E) = X(X,E) =Y W(X, E),
i=0
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which is called the Euler characteristic of E. Let H be an ample line bundle
on X. There exists a polynomial Pr with rational coefficients such that
Pr(m) = x(E® H™) of degree dim E. This polynomial depends only on E
and H and is called the Hilbert polynomial of E (with respect to H). We
write

dim E mi
Pp(m) = P(E.m) = Y ai(B)"-
1=0

with rational coefficients «;(E). The reduced Hilbert polynomial p(E) = pg
of F is defined as the quotient Pgr/cag(E). There is a natural ordering <
of polynomials given by the lexicographic order of their coefficients. In
other words, p < p’ if there is an N > 1 such that for all n > N we have
p(n) < p'(n).

Definition 1.2. Let X be a projective scheme over a field k. A coherent
sheaf E on X is called (Gieseker) semistable if it is pure and for all proper
subsheaves F' C E we have the inequality

PF < PE-
If the inequality is strict, then we call E (Gieseker) stable. We say that E

is geometrically stable if for every finite field extension K of k the inverse
image Ex of F along X = X ®; K — X is stable.

Obviously, if & is algebraically closed, the notions of stability and geomet-
rical stability coincide. Analogously, we could define geometrical semista-
bility, however in this case this would be equivalent to the usual notion (cf.
[HL10] p. 13).

Proposition 1.3. Consider a projective scheme X over a field k. The
category of semistable sheaves on X with a fixed reduced Hilbert polynomial
P is abelian, in which every object is Noetherian and Artinian. Further, it
1s closed under extensions. In particular, it is a Serre subcategory of the
category of coherent sheaves on X.

Proof. For the first statement cf. [HL10] Remark 1.5.12, for the second cf.
[Mar96] Proposition 1.1 (6). O

Recall that a non-empty full subcategory B of an abelian category A is
called a Serre subcategory if for every short exact sequence in A

0—+A —-A—-A"=0

the object A is in B if and only if A" and A” are in B.

The next proposition follows from the general framework of Jordan-Holder
filtrations in arbitrary abelian categories (cf. section . For a direct argu-
ment cf. [HL10] Proposition 1.5.2.

Proposition 1.4. Consider be a projective scheme X over a field k. Let E

be a semistable sheaf on X. There exists a filtration
O=FyCFE,C...CE.=F

by semistable sheaves on X such that the quotients gr, E = E;/E;_1 are

stable with reduced Hilbert polynomial pr. Up to isomorphism, the sheaf
gr E = @egr; E is uniquely determined by E.
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Proof. The existence follows from the above proposition combined with
Corollary the uniqueness from Proposition .9 O

The above filtration is called Jordan-Hélder filtration of E. We say that
two semistable sheaves E and E’ on X are S-equivalent if the associated
gradings gr ' and gr £’ are isomorphic. We will see later that S-equivalent
sheaves cannot be distinguished in the moduli space. On the other hand,
S-equivalence allows us to resolve the problem of the jump phenomenon (cf.

Remark (2)).

Semistability in case of smooth curves. Let X be a smooth projective
and connected curve over an algebraically closed field k. Denote by g the
(arithmetic) genus of X, that is, g = h'(Ox). It follows either using the
torsion filtration or from Proposition that a coherent sheaf E' on an
integral scheme which is pure of dimension one is necessarily torsion-free.
Therefore every pure sheaf on X is locally free. We give an argument using
the proposition:

Let T'=T(E) C E be the torsion subsheaf. Then Supp(T) consists of
finitely many points. On the other hand, we have Ass(T) C Ass(E). By
the proposition every point in Ass(F) is one dimensional, hence Ass(T) is
empty, since Ass(T) C Supp(T). But then T = 0.

We denote by r the rank and by d the degree of E' (the degree of the line
bundle A" E). Then by the Riemann-Roch theorem for curves the Hilbert
polynomial of E (with respect to an ample line bundle H of degree h) has
the following simple form

(1) Pp(m)=rhm+d+r(1—g).
We define the slope u(E) of E by
d
E) =2
wE) =

It follows that E is semistable if and only if u(F) < u(E) for all proper
subbundles F' C E. This condition is obviously independent of the ample
line bundle H. It is the original condition for the semistability introduced by
Mumford in [Mum63] and successfully used by Seshadri in [Ses67] to solve
the moduli problem of vector bundles in the present situation.

Semistability in case of singular curves. In case of a singular curve the
situation is more complicated.

Let X be a reduced (not necessarily irreducible) projective curve over an
algebraically closed field k. Fix an ample line bundle H on X of degree h
and consider a coherent sheaf ' on X. The Hilbert polynomial of E is of
the form

Pg(m) = aam + ap.
If E is pure of dimension one, then «a; is non-zero. We define the rank
rky (E) and the degree degy (E) of E with respect to H by
o1

rky(E) = 5 degy (E) = apg — kg (E)(1 — g).

In particular, by definition we have the identity , hence for m =0
degy(E) = x(E) — tky (E)x(Ox).
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Note that rank and degree are not necessarily integers. It may also happen
that the rank of F “jumps” on an irreducible component of X.

Ezxample. Let X be the union of two smooth projective and connected curves
X1 and X5 over k meeting at a unique point P. Let H be an ample divisor
on X of degree h and H; its restriction to X; of degree hi. Consider a
locally free sheaf F' of rank 2 and degree d on X;, hence rky, F' = 2 since
it does not depend on the polarization on a smooth curve. The coherent
sheaf £ = i, F on X, where 7 : X; — X is the closed immersion, is pure
of dimension one (Ass(F) consists only of the generic point of X1, now use
Proposition with Hilbert polynomial

Pr(m)=x(F® H™) = x(i*E @ H") = x(F ® H{") = 2hym + x(F).

The second equality follows from the fact that E is supported on the closed
subscheme X; C X and therefore H'(X, E) = H'(X;,i*E), the third using
the isomorphism *i, F' = F. Thus rky(F) = 2hy/h. Since h = hy + ha (hs
is the degree of the restriction of H to X3), we have e.g. rky(E) = 1/2 if
hi =1, hg = 3 and rky = 1 if hy = ha. On the other hand, E|x, = Ep,
hence it is of rank zero.

Now we define as in the case of a smooth curve the slope pg(E) of E with
respect to H by
degy (E)
E)y=—"—=.
ni(E) = <50 )
Here the slope depends on H. The semistability translates in the given
situation to the condition that for each proper subsheaf F' C E we have

pr(F) < pp(E).

Seshadri introduced in [Ses82] septieme partie a slight different notion of
semistability.

Assume for a moment that X is integral. Let E be a pure one-dimensional
sheaf on X, in other words, it is torsion-free. The set of singular points X ™9
of X is finite, denote by U its complement. Let Ey be the subsheaf of E
consisting of sections vanishing on X*"9. Then Ey is locally free, say of
rank 7, and we have rky(E) = r. Indeed, there exists an exact sequence

0—-Fy—>F—>T—0,

where T is a skyscraper sheaf concentrated at X*"9. Hence Pr(m) is con-
stant, therefore rky (7)) = 0 and rky(F) = rky(Ey). But the latter is just
r by Riemann-Roch.

The above discussion allows us to define the rank of a torsion free sheaf
on an integral curve just as the rank of its restriction to the open dense
subset of non-singular points, which is a locally free sheaf.

Now let X be again reduced, not necessarily irreducible. Let Xq,..., X,
be the irreducible components of X (we always endow each X; with the
reduced subscheme structure).

For a coherent sheaf E on X we denote by F; the restriction of E to
X; modulo torsion, i.e. the inverse image of E along the closed immersion
X; <= X modulo its torsion subsheaf. Let a = (ai,...,a,) be a weighting
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of irreducible components of X, that is, a;’s are rational numbers with 0 <
a; < 1and Z?:l a; = 1. For a pure one-dimensional sheaf F on X we define

the a-rank by
a-tk(E Z a;rk(E

Definition 1.5. Let X be a reduced projective curve over a field k. We say
that a pure one-dimensional sheaf E on X is a-semistable if for all proper
subsheaves F' C E we have the inequality

M(F) _ x(B)
a-tk(F) ~ a-rk(E)’
If the inequality is strict, then we say that E is a-stable.

Proposition 1.6. Consider X and E as in the above definition. Let d; be
the degree of L restricted to X;. Then we have

X(E®L)= —I-Zdrk

Proof. Cf. [Ses82] septieme partie, corolldire 8. O

Let h be the degree of the fixed ample line bundle H on X, h; the degree
of the restriction of H to X;. Define a weighting a by a; = h;/h. We use the
above proposition to write down the Hilbert polynomial of E in a different
form

Pg(m) = x(E® H™) = > hirk(E;)m + x(E),

concluding that a-rk(E) = rky (E). One sees immediately that semistability
is equivalent to a-semistability for this specific weighting a.

At last, we give an example of a curve X such that the trivial line bundle
is never semistable, i.e. it is not semistable with respect to any ample line
bundle H on X. The next proposition gives a characterization of semistabil-
ity for a line bundle. Later we will use a more powerful theorem of Teixidor
i Bigas (cf. Theorem [8.2)).

Proposition 1.7. Consider a reduced connected and projective curve X
over an algebraically closed field k with a fixed ample line bundle H. Let h;
be the degree of H restricted to X;. Let L be a line bundle on X. Then L
is semistable with respect to H if and only if for every proper and connected
curve D C X the following inequality is satisfied

hp
"D (L) < x(Lp),
where hp = incD hi, and Lp is the restriction of L to D.

Proof. Assume that L is H-semistable. Let D C X be a connected proper
subcurve. By computing the ranks

rky (L Z—rk Z N 1,
hi hi hp
rky(Lp) = Y Zrk(LD,i): > o rk(Li) = ==,

X;CD X;CD
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we obtain the above inequality using the characterization of semistability by
Seshadri.

Conversely, let M C L be a subsheaf. Let D be the support of M and D
the closure of its complement in X. We have a surjective morphism L — Lp
(after identifying i.Lp = Lp, where ¢ : D < X is the closed immersion).
Let Lp be its kernel, that is, the following sequence is exact

0->LP 5L —>Lp—0.

The sheaf M’ = im(M < L — Lp) is supported on the finite set D N D,
therefore it is a torsion subsheaf of Lp, which is torsion-free, hence M’ = 0
and M C LP. It follows that x(M) < x(LP). Since x(L) = x(L?) + x(Lp)
and h = h; + hp, the inequality hp/h - x(L) < x(Lp) is equivalent to

X(L7) < "Dy (1)

Combining both yields
x(M) x(L)
rky (M) — rkg(L)

since tkyy (M) = >y -phi/htk(M;) = hp/h. Following Seshadri L is
semistable with respect to H.

We may restrict ourselves to connected proper subcurves D since for every
sheaf F on X we have Ep = @ Ep,, where D; are the connected components
of D. For D = X the inequality is trivial. O

<

In the above proposition we have implicitly used the fact that every line
bundle on an integral curve is semistable. Since the Fuler characteristic of
the restriction to D can be computed from the Euler characteristic of the
restriction to D, some inequalities may be superfluous. This observations
will be examined in section Bl

Ezample. Let X be as in the previous example. Moreover, assume that the
intersection point P of X7 and X5 is an ordinary double point. For every
line bundle L on X such that the degree of the restriction of L to X; and
Xs is zero, we have x(L) = x(Ox) and x(L;) = x(Ox;) (i = 1,2) since the
degree of L is also zero. Then L is semistable with respect to H if and only
if

h;

5, X(0x) < x(Ox,)
is satisfied for ¢« = 1,2. There exists an exact sequence

0—-+0x -0x,®0x, =T —0,

where T is the skyscraper sheaf concentrated at P with dimy7p = 1 by
assumption on P. It follows that

x(Ox) = x(Ox,) + x(Ox,) — 1.
Thus the semistability of L with respect to H is equivalent to
h h
fX(OX) <x(0x,) < fX(OX) +1.

Assume now that X7 is isomorphic to P}, hence x(Ox,) = 1. The above
inequality implies then x(Ox,) > 0 (hy and h are positive). Therefore, if X9
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is of genus greater than one, then there is no polarization H on X such that
L is semistable. In particular, in this case the trivial line bundle is never
semistable.
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2. MODULI SPACES OF SEMISTABLE SHEAVES

Roughly, a moduli problem is a problem of classifying given objects vary-
ing in families. Therefore, before we formulate the moduli problem for pure
sheaves, we introduce the notion of a family.

Let f : X — S be a projective morphism of schemes. Fix a relatively
ample line bundle on f, we sometimes call it polarization of X/S. A family
of coherent sheaves on the fibers of f is an S-flat coherent sheaf F' on X.
If S is locally Noetherian, then flatness implies that the Hilbert polynomial
P(Fs) is locally constant as a function in s € S. We say that the property
P of a coherent sheaf on a scheme is open if for every projective morphism
f : X — S of Noetherian schemes and every family of coherent sheaves F'
on f the set

{s € S| F; satisfies P} C S

is open. A family F' is said to be a family with P if Fy satisfies the property
P for every s € S. For example, we may speak about families of pure,
locally free, semistable or geometrically stable sheaves. In fact, we have the
following

Proposition 2.1. The properties of being pure, locally free, semistable or
geometrically stable are open in families of coherent sheaves.

Proof. Cf. [HL10] Lemma 2.1.8 and Proposition 2.3.1. O

Let (Sch/S) be the category of schemes over S. Fix a numerical polyno-
mial P, that is, P(m) € N for every integer m > 0, and let f : X — S be
a projective morphism of Noetherian schemes. For a scheme T in (Sch/S)
define the following set as follows

families of semistable
M(T) = Mi/S(T) = { sheaves on X7 =X xgT 5/ ~,
with Hilbert polynomial P

where ~ is the following equivalence relation: E ~ E’ if and only if for some
line bundle L on T'

(1) EX E' ®p, L, or

(2) there exist filtrations

O=FCE C...CE,=FE,
0O=Ey,CE|C...CE.=F,

by coherent subsheaves such that successive gradings gr; E, gr; E' are flat
over T, gr E = gr E' ®,. L and for every geometric point ¢ in 7' the above
filtrations restricted to t are Jordan-Holder filtrations of E' and E’, respec-
tively.

We say that elements of M(T') are equivalence classes of families E of
semistable sheaves on X parametrized by T and write [E] for such an equiv-
alence class.

If g : T" — T is a morphism in (Sch/S), then the pullback along idx X g g
respects families of semistable sheaves and the above equivalence relation,
hence induces a mapping M(T") — M(T). This make M to a (contravari-
ant) functor from the category (Sch/S) to the category of sets.
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We can also restrict ourselves only to the families of geometrically stable
sheaves. We define

families of geometrically stable
M3(T) = M;;S = sheaves on X7 = X xgT / ~,
with Hilbert polynomial P

where second condition in ~ becomes trivial.

Definition 2.2. The defined functor M : (Sch/S) — (Set) is called the
moduli problem of semistable sheaves. The subfunctor M?® C M is called
the moduli problem of stable sheaves.

Note that both functors depend on the polarization of X/S. Shortly, we
will explain why we restrict ourselves to the semistable sheaves, and why
the equivalence relations ~ is defined in such a way.

Before defining the notion of a moduli space, we need a less restrictive
concept of the representability of a functor. Let C be a category with finite
fiber products and C’ the category of contravariant functors C — (Set) with
natural transformations as morphisms. Denote for an object X € C by hx
the functor in ¢’ which sends each object Y € C to Home (Y, X).

Definition 2.3. (1) A functor F € C' is corepresented by an object R € C
and a morphism « : F — hg in C' if « satisfies the following universal
property: any morphisms 8 : F — hp, where T is an object in C, factors
uniquely through «. Whenever clear from the context, we will omit « and
say that F is corepresented by R.

(2) The functor F'is universally corepresented by R if the corepresentabil-
ity of F' is stable under the arbitrary base change, i.e. for every morphism
f:T — R in C the induced fiber product functor 7" = hg xj,, F is corepre-
sented by T'.

(3) In the case, where C = (Sch/S) is the category of schemes over a
fixed scheme S, the functor F is uniformly corepresented by R if the corep-
resentability of F by R is stable under the flat base change.

Definition 2.4. A coarse moduli space of the moduli problem of semistable
sheaves is a scheme M over S which corepresents M, and such that the
natural transformation M — hjs induces a bijection for every geometric
point of S. If M represents M, then we say that M is a fine moduli space.

Remark 2.5. (1) The reason why one considers only semistable sheaves lies
deeply in the geometric invariant theory (GIT) introduced by Mumford in
IMFK94]. In case of smooth projective curves over an algebraically closed
field one constructs the moduli space as a quotient of a certain Quot scheme
by an action of an affine group scheme. Taking only semistableﬂ points
with respect to this actions gives an invariant scheme, whose quotient by
the action is a quasi-projective variety. Another fact is that the set of
semistable vector bundles with fixed Hilbert polynomial is bounded, which
is also important for the construction using GIT.

Here we mean semistability introduced in GIT.
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(2) One may be tempted to take the equivalence relation defined by the
isomorphism classes of families instead of ~. We will explain why we choose
to work with ~ as above.

Let F' be a family of semistable sheaves parametrized by an S-scheme T'.
If L is an arbitrary line bundle on S, then the fibers (F' ® f7.L); and F; are
isomorphic for every ¢ € T. Thus set-theoretically we cannot distinguish
these families. That’s why we identify them by (1).

The reason for the second identification lies deeper. We explain this for
the case, where S is a point. Assume that S = Speck, k is an algebraically
closed field. Let

0—=-F -F—=F' =0

be an exact sequence of semistable sheaves on X/k. One can construct
a family F parametrized by Al such that F, = F for all s # 0 in A} and
Fo =2 F'@F". The construction is done e.g. in the proof of [Sim94] Theorem
1.21, part (3).

Assume that the coarse moduli space M for M exists. Then the con-
structed family F yields by the property of the corepresentability a mor-
phism f : A}C — M. By construction f] AI\{0} is constant, hence f is
constant. It follows that F' and F' @& F” define the same point in M (k).
Inductively one sees that S-equivalent semistable sheaves on X define the
same closed point in M. Since we want that M(k) = M (k) holds, we
identify those by (2) in ~.

A projective coarse moduli space always exists (cf. [Lan04b] Theorem 0.2,
[Mar96] Theorem 0.6).

Theorem 2.6 (Langer, Maruyama). Let R be a universally Japanese ring.
Let f: X — S be a projective morphism of R-schemes of finite type over R
with geometrically connected fibers. Then for a fized numerical polynomial P
there exists a projective S-scheme M = M )1? /s which uniformly corepresents

the functor M = ./\/li/s.

Moreover, there exists an open subscheme M)I?/SS C M§/s which univer-

sally corepresents the subfunctor M?.

Recall that an integral domain R is called a Japanese ring if for every
finite field extension L of its quotient field K the normalization of R in L
is a finite R-module. A ring is called universally Japanese if every finitely
generated integral domain over it is Japanese.

Regression: Moduli of vector bundles on a smooth projective
curve. Let X be a smooth projective curve over an algebraically closed
field k. As already noticed, pure sheaves on X are locally free sheaves of
finite rank or synonymously, vector bundles. The Hilbert polynomial of a
vector bundle on X is fully determined by its rank and degree. Fix two
integers r > 1 and d. The moduli problem of vector bundles on X of fixed
rank and degree becomes then
r,d o
M(8) = M (5) = { on X x S of rank r and degree d

families of semistable vector bundles} /
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Contrary to the general moduli problem it does not depend on the polariza-
tion.

Theorem 2.7. Let X be smooth projective and connected curve of genus g
over an algebraically closed field k.
(i) The moduli space M5 of stable vector bundles is smooth (if not empty).
(ii) The tangent space Tig) M5 of M at the point [E] induced by a stable
vector bundle E on X s canonically isomorphic to

Exty (E, E).
(iii) The dimension of MY is r2(g —1) + 1.
Proof. For (i) and (ii) cf. [LP97] Theorem 8.3.2, (iii) follows from (ii) by the

following calculation:
We have Ext (E, E) = HY(X,End(E)). Now End(E) = E ® E*. Hence

degénd(E) =rk Edeg E* + rk E* deg E.

It follows that End(FE) is of rank r? and degree zero. Applying Riemann-
Roch and using that F is simple, in particular h°( X, End(E)) = 1, we obtain

dimy, Tjgy M5 = h' (X, End(E)) =1 - x(E) =r*(g — 1) + 1. O
In fact, except in cases of g = 2, r = 2 and d is even, the singular points

on My are exactly those not in M5 (cf. [Ses82] premiere partie, Théoreme
45).

Theorem 2.8. Let X be as in the above theorem. The moduli space M;}’d
s fine if v and d are coprime.

Proof. Cf. [LP97] Theorem 8.4.2. O

Note that, if r and d are coprime, then every semistable vector bundle is
already stable.

Theorem 2.9. Let X be as in the above theorem. The moduli space Mx is
irreducible.

Proof. Cf. [LP97] Theorem 8.5.2. O

Theorem 2.10. Let X be as in the above theorem.
(i) If g = 0, there are no stable vector bundles on X of rank r > 2.

(ii) If g > 2, then M)T(’d’s is non-empty for all r > 2, d.
(iii) If g = 1, then M;}d is non-empty for all v > 2, d.

Proof. The statement (i) follows from [LP97] Lemma 4.4.1, the remaining
statement are exactly loc. cit. Theorems 8.6.1 and 8.6.2. (]
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3. THEOREM OF LANGTON

The well-known theorem of Langton in [Lan75] on p. 99 is a statement (in
its original form) about the degeneration of semistable sheaves on a smooth
projective scheme on X. The valuative criterion of properness together with
this theorem implies that the moduli space of semistable sheaves on X is
proper. The most general form (known to the author) is stated in [Mar96]
Theorem 7.6.

Theorem 3.1. Let R be a discrete valuation ring with quotient field K and
residue field k. Consider a projective and flat scheme X over R. Let E be a
semistable sheaf on the generic fiber X of X. Then there exists a family £
of semistable sheaves on X with generic fiber Ex = E.

Unfortunately, Maruyama has never given a proof of this theorem. The
case, where the special fiber X of X is a smooth projective scheme, is proved
in [HL10] Section 2.B (consider the semistability in Cohgq_; there). Our
goal is to give a proof of this theorem for a general X. The proof was com-
municated by C. Deninger to the author and is based on the corresponding
proof from the lectures “Vector Bundles on curves”, held by G. Faltings in
Bonn 1995.

Lemma 3.2. Let M be a non-empty set of polynomials with rational coeffi-
cients such that every polynomial in M is a quotient of a polynomial of the
form

L (T+i-1
by aq, where d > 0 is fived, a;’s are integers and aq > 0. Assume that M is
bounded below (with respect to lexicographical order) by a polynomial f(T')
of the form (x), and the set of aq’s of polynomials in M is bounded above.
Then M has a minimum.

Proof. Let o be an upper bound of the ay’s. For p € M we write P for the
polynomial such that p = P/ay. Put C = dlal. Then for all p € M the
polynomial

!
PI) _ 2 pepy
aq aq!

has integral coefficients. Let p be a polynomial in M. By assumption f <p
and hence C'f < Cp. There exist finitely many polynomials with integral
coefficients between C'f and Cp. Therefore the set of polynomial in M
between f and p is also finite. A finite non-empty set has a minimum. [

C-p(T)=C-

For a pure sheaf E on a projective scheme X we write p(E) for the reduced
Hilbert polynomial of E (with respect to a fixed polarization). There exists
a subsheaf F' C F such that for all subsheaves G C F' we have p(F) > E,
and in the case of equality F' O G. This subsheaf is uniquely determined
and is semistable. It is called the mazimal destabilizing subsheaf of E.

Lemma 3.3. Let
0—-E/F—-E —-F—=0
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be an exact sequence of pure sheaves on a projective scheme, where F is a
mazimal destabilizing subsheaf of E. Then ppma.(E') < p(F).

Proof. Since F' is the maximal destabilizing subsheaf of F, there exists a
Harder-Narasimhan filtration

OcF=FC...CF,=F,
and the filtration
0CF/FCF3/FC...CF,/JF=E/F.

is a Harder-Narasimhan filtration of £/F. Hence the maximal destabilizing
sheaf E//F is isomorphic to F5/F, and therefore pp..(E/F) = p(F2/F) <
p(F).

Let F’ be the maximal destabilizing subsheaf of E' and ¢ : F' — F the
composition of the inclusion F’ C E’ and the arrow on the right hand side
in the exact sequence. Assume that p(F’) > p(F). Then ¢ = 0 (cf. [HLIO]

Proposition 1.2.7). Hence F' C E/F, and we have p(F') < pmaz(E/F) <
p(F'), which is a contradiction to the assumption. Thus p(F') < p(F). O

Proof of the theorem. Step 0: Minimal family. Let £ be a family of coherent
pure sheaves on X with £ = E. Since £ is flat over R, we have p(&;) =
p(E), in particular if F' C & is the maximal destabilizing subsheaf, we have
P(F) = Pmaz(Ek) > p(Ek) = p(E). Hence the set {pma(Ek) | € as above} is
bounded below. On the other hand, we have for the multiplicities ag(F') <
aq(&) = aq(F), where d = dim X. By Lemma the above set has a
minimum p. Put
a=min{aq(F) | £ pure with Ex = E, pmas(Ek) = 0},
and let £ be a family of pure sheaves such that
Pmaz(E) =p, oy(F)=a and Ex = E.

Step 1: Construction of a sequence E™. Assume that F' # &, otherwise
the theorem follows. Let £ be a sheaf with 7€ C &' C & defined as the
preimage of F' via fy : £ — &, where i : X — X is the canonical inclusion
and T € R a uniformizing element. Note that £}, = E. The morphism f;
induces an isomorphism

EYynE = F c £/nE
and an exact sequence

0 ——n&/nEl ——= &Y/ F 0

N

EYmE—— E/TE.
We have 7&€/n&! = £/&' = (£/7€)/(EV/nE) = (£/7E)/F. The above
sequence transforms into the exact sequence
0— &E/F =& — F —0.

By Lemma the maximal destabilizing subsheaf F’ of £} satisfies p(F") <
p(F). Since by choice of £ the polynomial p,,4. (Ex) is minimal, it follows that
p(F’) = p(F). Let G be the kernel of F/ — F. Assume that G # 0. Let F”
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be the image of I/ — F. Since the latter sheaves are semistable, it follows
that p(F") < p(F) and p(F") > p(F'), therefore p(F') = p(F") = p(F).
From the exact sequence

0G—F —-F—>0

we conclude that p(G) = p(F’) = p(F). On the other hand, G C ker(€} —
F) =& /F. It follows that p(G) < pmaz(Ek/F) < Pmaz(Ex) = p(F) (com-
pare for that Harder-Narasimhan filtrations as in Lemma , which is
a contradiction. Hence, G = 0. Therefore F/ — F is injective, write
F’ C F. From the definition of a we conclude ag(F’) < aq(F) = «, hence
agq(F') = « since « is minimal. Together with the above identity we obtain
P(F') = P(F). It follows that F/F' = 0, therefore F’ = F. This gives a
splitting of the above exact sequence, whence ! = &, @ F.

Inductively we define £" with 7€"~1 c £&" C £"! as the preimage of F
via f_1: &7 = i*Sl?_l, where F' is the maximal destabilizing subsheaf of
5,?_1 (as shown above F'is independent of n). The morphism f,_; induces
an isomorphism

EV &t S P c gl ment,

We have a split exact sequence

(%) 0—=&Y/F ETSF 0,

which is obtained from the commutative diagram

0 —> & fn&" — = E™ /7€ F 0

1N

F ~ gn/ﬂgnflgé gnfl/ﬁgnfl

with exact first row. Since (*) splits, we have 7" 1/7€" N F = 0 in
EM/mE™ = EN. Since F = E"/n€M it follows that 7&€"~1 N EMTL C wEM,
and since the other inclusion is trivial, we have

2) rEPln et = ren,

Further, again since (x) splits we have 7"~ 1 /7" + F = £"/7€™ and again
because of F = £+ /xen

(3) EM =gy gntl,

Step 2: Compatibility of (£™). We prove the following claim: the inclusion
Entl C €7 induces an isomorphism

(k) EMtlp e @p R/a™ =2 £ /a"E.

The identity with €771 5 7#7~1€, in particular 7€7~! D 7"&, implies
E™ O € + E™L and since the other inclusion is clear, we have
(4) E" = "€ 4 £

It follows that £ — £" — £7/7"€ is surjective. Since 7"H1€ C 7€
in £", this map induces a surjective map

5n+1/7rn+15 N gn/ﬂng_
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Tensoring with R/7" yields a map ¢
EMtlantle @p R/ — £/7"E @ R/7" = EM/1"E,

where the domain is isomorphic to €71 /(7" 1€ +7"E"+1). Thus the kernel
of ¢ is T"E N EMHL /(A" TLE 4 7 ENFL). We have to show that

T"ENEM = a e 4 et

It follows then that ¢ is an isomorphism, and therefore (xx) holds.

The inclusion D is clear. We proceed by induction. Let n = 1. We have
TENE? =& by . On the other hand, 72€ + 7€2% = n(n€ + £2) = n&!,
where the last identity is given by .

Assume now that

T ENEM = 7 HlE 4 prent]
holds. Multiplying with 7 yields
ﬂ_n+1g N 7_(_((57“L+1 — ﬂ_n+25 + ﬂ_n+18n+1'

The left hand side is contained in 7"*1&€ N "2, Since 7€ C " and
therefore 7" 1E C €™, we have 7"H1E N EVF2 = 7 HlE N (7€7 N EMF2E) =
7€ N wE T where the last identity is (2.

The right hand side contains 7"12£ + 7?+t1En+2. The identity im-
plies 7€ + EMTL = 7€ + (7€ + E"F2) = 7€ + £"F2, and therefore after
multiplication with 7"+, we have

,n_n—f—Zg + 7_‘_n+1gn+1 — 7Tn+2(€ + 7Tn+1gn+2.

Thus the induction step follows, and the identity as claimed holds.

Step 3: Algebraization. Put F" = " /x"E. It is a coherent sheaf on the
scheme X,, = X ®@p R/7n"™. Define a formal sheaf F = lgln F™ on the formal
scheme X = lim ~X,. We have Fp=F/nF =F' =& /n€ = F on X;. The
inclusions F" — £" /"€ induce an inclusion F — €. By Grothendieck’s
existence theorem (cf. [EGAIIL;] Théoreme 5.1.4) there exists a coherent
sheaf 7 C £ on X with F @ R/7" = F".

The sheaf F is flat over R as a subsheaf of a flat sheaf and since R is a
principal ideal domain. It follows that p(F) = p(Fx) = p(Fk) and hence

p(E) = p(&) < p(Fk).
In particular, E is not semistable, which is a contradiction to the assump-

tion. Therefore & is semistable, and the family £ is then the family whose
existence is claimed in the theorem. O
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4. JORDAN-HOLDER FILTRATIONS IN ABELIAN CATEGORIES

A subobject of an object A in a category C is an isomorphism class of
monos B — A. Two morphisms B — A and B’ — A are isomorphic if there
exists an isomorphism B — B’ such that the following diagram commutes

B\A. /B/

The class of all subobjects of an object A is denoted by Sub(A). A category
C is said to be well-powered if Sub(A) is a set for every object A in C.
Regardless of whether Sub(A) is a set or not, we call it the set of subobjects
of A. There is a natural partial order on Sub(A):

(b:B— A) < (' :B — A)
if and only if there exists a morphism k : B — B’ satisfying b = b'k.
Consider a partially ordered set X. Let x,y € X. An element z € X

satisfying the following two properties

(i) <z and y <z,

(i) for all 2’ € X with z < 2/, y < 2/ follows that z < 2/
is called the supremum of x and z. By (ii) it is uniquely determined. Dually,
we define the infimum of x and y. A lattice L is a partially ordered set such
that any two elements have a supremum and infimum. The supremum of x
and y is denoted by x V y and the infimum by z A y. A lattice L is called
modular if the following law is satisfied

xV(yANz)=(xVy Az (r,y,z€ L, = < z).

In an abelian category A we may define naturally the supremum and
infimum of two subobjects of a given object A.

Definition 4.1. Let A; be a family in Sub(A). We define the intersection
() A; of A; as an object B C A satisfying:

(i) B < A; for all ¢, and

(ii) if B’ € A with B’ < A, for all 4, then B’ < B.

The intersection of finitely many subobjects A; C A always exists since
in an abelian category finite limits exist, and the intersection of A; is just
the limit of the monos A; — A. Note that the intersection () 4; is unique.

Definition 4.2. Let A; be a family in Sub(A). We define the union (J A;
of A; as an object B C A satisfying:

(i) A; < B for all i, and

(ii) if B' ¢ A with A; < B for all i, then B < B'.

For a finite family A; in Sub(A) take the direct sum € A; and consider
the image of @@ A; — A. This is the union of the A;’s, which is unique.

From now on we assume that all considered categories are well-powered.
We conclude directly from the above definitions the following

Proposition 4.3. Consider an abelian category A. Then for every object
A in A the set of objects Sub(A) is a lattice with union and intersection as
supremum and infimum, respectively.
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In fact, we have a stronger property.

Proposition 4.4. The lattice Sub(A) for A in an abelian category A is
modular.

An interval I = [a,b] in a lattice L is defined as the set of all z € L
with a <z <b. Let x € I. An element z € I is called a complement of
zifxAz=aand xVz =10 We will use the following characterization of
modular lattices to prove the above proposition.

Lemma 4.5. A lattice L is modular if and only if every interval I C L
satisfies the following property: any x, y € I, which are comparable and
have a common complement z in I, are equal.

Proof. Cf. |[Coh89] §2 Proposition 1.3. O

Proof of the proposition. Let A, B be two objects in A with A < B. First
note that we have a lattice isomorphism [A, B] — [0, B/A] = Sub(B/A)
defined by X — X/A. Hence we may consider only intervals of the form
Sub(A) for an object A in A.

By the above lemma we have to show that for any two comparable objects
C, C' < A with a common complement D < A the objects C and C’ are
isomorphic. Assume C' < (C’, i.e. we have a morphism « : C — C’ with
o = i, where i : C — A and i/ : C' — A are monos. Since D is a
complement of C' and C’ in Sub(A), we have

CNnD=C'ND =0,
CuD=(C'UD=A.
From the exact sequence
0-CNnD—-C&®D—-CUD =0

and the analogous exact sequence for C’ it follows that A 2 C & D &
C’' @ D. Since in an abelian category every (co)product is a biproduct, we
have morphisms p: A - C,p': A —-C',q: A— D and ¢ : A — D such
that (i,7,p,q) and (¢, 7,p',¢") are biproducts, where j : D — A is a mono.
We have

ip+jq =idc +idp = idg = idcr +idp = i'p' + jq’.
Multiplying by p’ from the left yields

/-l !

plip+p'jg=p"i'p" +p'jqd.
Using the relations i = i'a, p’j = 0 and p'i = idc we obtain
ap = p'i'ap = p/,
hence api’ = idcr. On the other hand, pi'a = p'i = a¢. Thus a is an

isomorphism. 0

Corollary 4.6. Let A be an object in an abelian category A such that there
exists a maximal filtration of A of length n. Then every filtration of A is
finite and can be refined to a filtration of length n.

Proof. The statement follows from the above proposition and the corre-
sponding statement [Coh89] §2 Proposition 2.4 for modular lattices. O
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We define the length of an object A in an abelian category A as the length
of the maximal filtration in Sub(A). If the length is finite, we say that A is of
finite length. In this case a maximal filtration of A is called a Jordan-Holder
filtration (short, JH-filtration). It is not necessarily uniquely determined by
A. An object A is called simple if Sub(A) consists exactly of two elements
0 and A. An object is simple if and only if its length is one. Note that the
zero-object is not simple.

Proposition 4.7. Let A be an object in an abelian category A of finite
length. Then every subquotient of a JH-filtration of A is simple.

Proof. Let
0=AyCA C...CA,=A

be a JH-filtration of A. Assume that there is an 1 < i < n such that A;/A;_
is not simple. Then there exists a proper subobject A C A;/A;_1. Taking
the preimage of A via the canonical morphism A; — A;/A;_1 yields a proper
object A;—1 C A C A;, and we have found a filtration of length n + 1, which
is a contradiction. O

Proposition 4.8. Let A, B be simple objects in an abelian category A.
Then every morphism A — B is either O or an isomorphism. In particular,

End(A) is a skew field.

Proof. Assume that f: A — B is non-zero. Then the kernel C — A of f is
non-zero. Since kernels in A are monos, and A is simple, C = A and f is
a mono. Let B’ be the image of f. It is a non-zero subobject of B, hence
B’ = B. Since B = imf = ker(cokerf), it follows that cokerf = 0, and f
is epi. Hence f is an isomorphism. O

Let
0=AyCcA1C...CA,=A

be a JH-filtration of A. We denote the subquotients of this filtration by
gr; A = A;/A;—1 for 1 < i < n and call gr; A the i-th grading of A. The
object grA = @', gr; A is called the associated grading to A. The next
proposition ensures that these objects are well-defined.

Proposition 4.9. Let A be an object of finite length n in an abelian cat-
egory A. Consider two JH-filtrations (A;) and (AL) of A. Then (after a
permutation if necessary) the subquotients of (A;) and (A}) are isomorphic.
In particular, gr A is well-defined up to isomorphism.

Proof. We proceed by induction on n. If n = 1, then there is nothing to
show. Assume n > 1. Let 1 < j < n be the smallest integer such that
Al C Aj, ie. for all i < j we have A] ¢ A;. The canonical morphism
A} — Aj/A;_1 is then non-zero. Therefore it induces an isomorphism A’ =
A;/A;_; since both are simple by the above proposition, hence A; = A} &
Aj_1. We obtain an exact sequence

0— Aj_l — A/A/l — A/Aj — 0.
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Define B; for ¢ > j as the pullback

B; AJAL
A;iJA; — AJA;.
The canonical morphisms B; — B;y1 are monos, and we obtain a filtration
(*) 0CA1CAQC...CAj_1CBj+1CBj+2C...CBn:A/A/1.

From the commutative diagram with exact rows and columns

0 0
0 K Ajoq ——0

0 0 0

we see that the kernel K; of B; — A;/A; is isomorphic to A;_; for all
j <1 S n. It follows that BjJrl/Aj,l = Ai+1/Aj and Bi/Bi,1 = Ai/Ai,1
for i > j+1. Hence the filtration (x) is a JH-filtration of A/A} with gradings
A;j/A;—1 for 1 <i<mn,i# joflengthn—1. On the other hand, the filtration

0C Ay/A| c AyJA L C ... C AJA]

is also a JH-filtration of A/A] of length n—1. By induction hypothesis there
exists a permutation o € S,, with o(j) = 1 such that

AifAia = AL AL )
for i # j. Since A;/A;j_1 = A}, the proposition follows. O
Consider an exact sequence
04 —-A—-A"=0

in A. Tt is easy to see that the grading gr A is the direct sum of the gradings
gr A" and gr A”. Indeed, we may take a JH-filtration of A’ and refine it to
the JH-filtration of A. The terms between A’ and A modulo A’ define a
JH-filtration of A”.

Remark 4.10. Let P be a property of objects in A which is stable under
isomorphisms, and such that for a given exact sequence in A

0-A 545450
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A has property P if and only if A’ and A” have property P. In other words,
P passes onto subobjects and quotients of A and is stable under extensions.
Then it is easy to see that P is compatible with JH-equivalence.

Indeed, let A, B be two objects in A which are of finite length and are
JH-equivalent. Assume that A satisfies P. Let

0=ApCcA C...cA,=A
be a JH-filtration of A. Then every A; satisfies P, and therefore also every
Ai/Aifl- Now let

0=BycByc...cB,=B
be a JH-filtration of B. Then, since B;/B;_ is isomorphic to some A;/A;_;

for every 1 < i < n, they all satisfy P. It follows inductively that every B;
satisfies P, since

0— B;,_1 — B; —>BZ'/Bi71 — 0

is exact.

Lemma 4.11. Consider an exact functor F' : A — B of abelian categories.
Let A be an object in A and B = F(A). Assume that A and B are both of
finite length. Then F(gr A) is JH-equivalent to B.

Proof. Let
0=AyCcA cCc...cA,=A
be a JH-filtration. Put B; = F(4;) for 1 <i <n. Then we have F(grA) =

@D;" | Bi/B;_1 since F is exact. On the other hand, again by exactness of
F we obtain a filtration

0=ByCBiC...CB,=B.

By Corollary [.6] we may refine this filtration to a JH-filtration, which con-
sists filtrations

(*) Bi-1=BioCB11C...CBin =B

between B;_1 and B; of length n; for every 1 <1 < n. Hence we have

n n;
grB = @@Bi7j/Biaj—1'

i=1 j=1
Since gr is compatible with short exact sequences, in particular with direct
sums, we have gr F(gr A) = ;. gr B;/B;j—1. Therefore it is enough to
show that gr B;/B;—1 = @;“:1 B; j/Bij—1. But this identity follows from
the facts that () modulo B; is a JH-filtration of B;/B;_1 and by using the
canonical isomorphisms (B; j/Bio)/(Bij-1/Bio) = Bij/Bij—1. O

Remark. In general, we cannot expect that F' is compatible with the grading
F(grA) = gr F(A). Indeed, this is equivalent to the fact that F' preserves
JH-filtrations, and this again to the fact that F' sends simple objects to
simple objects.

Proposition 4.12. An exact functor between abelian categories preserves
JH-equivalence.
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Proof. Let F : A — B be an exact functor of abelian categories. Let A and
A’ be two objects of finite length in A. We have to show that if A ~ A’,
then also F'(A) ~ F(A’), where ~ stands for the JH-equivalence. By the
above lemma we have

F(A) ~ F(gr A) = F(gr B) ~ F(B). O
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REMARKS ON LITERATURE

Section [1} I learned Definition [1.2] from [Mar96] Definition 0.2. which goes back
in such generality to Simpson p. b5, see also [Gie7T]. The Jordan-Holder
filtration of semistable vector bundles and S-equivalence was introduced originally
by Seshadri in [SesG7] (S stands for Seshadri). The definition of slope and semista-
bility on a smooth projective curve is due to Mumford [Mum63]. The original
article does not include the construction of the moduli space of vector bundles of
fixed slope. The earliest construction of this moduli space known to me is done in
[Ses67]. The example on page [17]is inspired by [LMO05] example 2.2. Definition
is due to Seshadri [Ses82] septieme partie, I1.9. For the definition of ordinary double
point cf. [Lin02] Definition 7.5.13. The idea to test semistability of line bundles by
restricting to proper connected subcurves is from [LM05] 3.

Section 2} The general theory about the moduli spaces of pure sheaves I learned
from [HLIO] Part I. The Hilbert polynomial in families over locally Noetherian
schemes is constant by [EGAIIL;] Théoréme 7.9.4. The exact definition of the mod-
uli functor and in particular of the S-equivalence of families is due to Maruyama,
cf. [Mar96] Definition 0.5. The definition of corepresentability of a functor is from
p. 60 (a comment on p. 60 in [HLI10] says that this definition is actually
due to Simpson). For boundedness of sheaves cf. [HLI0] Definition 1.7.5. For the
main existence theorem by Langer and Maruyama besides the given sources in the
text cf. also [Lan04a] Theorem 4.1. A good reference on Japanese rings is [Mat0]
chapter 12 (a Japanese ring is a N-2 ring in the terminology there) or [EGATV]
§7. The rest of this section is a summary of the results presented in part I

and [Ses82] premiére partie.
Section 3} For the notion of the maximal destabilizing sheaf cf. [HLI0] Definition
1.3.6.

Section [} All categorical notions are from [MLI8]. The definitions and results
concerning modular lattices are from [Coh89] §2. Note that Proposition is
well-known and may be formulated in terms of Grothendieck groups.
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5. STRONGLY SEMISTABLE REDUCTION

There are examples of vector bundles on a smooth projective and con-
nected curve C over a field of characteristic p, which are semistable, but their
pullback by some power of the (absolute) Frobenius morphism F': C — C
is not. A vector bundle F on C is called strongly semistable if F™E is
semistable for all n > 0.

Definition 5.1. Consider a purely one-dimensional proper scheme Z over
a field k£ of characteristic p. Let E be a vector bundle on Z.

(i) We say that E is strongly semistable if for every irreducible compo-
nent C; of Z (endowed with its canonical reduced subscheme structure) the
pullback F| ¢, of E to the normalization C; of C; is strongly semistable.

(ii) We say that E is strongly semistable of degree zero if E is strongly
semistable, and additionally all Es are of degree zero.

Note that a vector bundle E on Z which is strongly semistable of degree
zero has degree zero, but E which is strongly semistable with deg £ = 0
may have a restriction of degree non-zero.

Proposition 5.2. Let Z be as above and E a vector bundle on Z. Then E
is strongly semistable (of degree zero) if and only if for all smooth projective
and connected curves C and all k-morphisms C — Z the pullback of E to C
is semistable (of degree zero).

Proof. Cf. [DWQT7] Proposition 12.2.4. O

The category of strongly semistable vector bundles of degree zero on Z
is abelian (cf. [Nor82] Lemma 3.6). It is also closed under extensions since
the pullback is exact on short exact sequences of vector bundles, and the
category of semistable vector bundles on a smooth projective and connected
curve is closed under extensions (Proposition [1.3]).

Let R be a valuation ring with quotient field K and residue field k. Con-
sider a smooth projective and connected curve X over K. We say that X is
a model of X over R if X is a finitely presented, proper and flat scheme over
R with generic fiber isomorphic to X. We say a scheme X over R is a model
(without referring to X)) if the generic fiber of X is a smooth projective and
connected curve over K, and X is a model of its generic fiber. A model X’
of X over R dominates X if there exists an R-morphism ¢ : X’ — X, and ¢
induces an isomorphism on generic fibers, in other words, ¢ is a birational
morphism. Since X is integral, it follows that the scheme X is also integral
(cf. [Liu02] Proposition 4.3.8).

Denote by Zp and o the ring of integers of @p and C,, respectively. Then
k =T, is the residue field of Z, and 0. By a model X of a smooth projective
and connected curve X over @p we always mean a model X of X over Z,.
We denote by X, the base change to 0 and by Xj; the special fiber of X,,
which coincides with the special fiber of X.

Before we proceed with the next definition, we recall some well-known re-
sults we will frequently use from the theory of Noetherian descent developed
in [EGAIV3] §8. The ring Z, is the inductive limit Z, = limog, where K
runs over all finite field extensions of Q,, and ok is the ring of integers of
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K. Since a model X over Zp is of finite presentation over Zp, it is already
defined over some ok, that is, there exists a scheme X over ox with

X =X ®o % Zp.
Sometimes we also say that X descends to Xg. The properness and flatness
are inherited by Xj from X, hence Xk is a model. A coherent sheaf F on X
is already defined over Xy for some K as above. If F is locally free of finite
rank, then the corresponding sheaf is also locally free of the same rank. In
an analogous way, we may use the same theory for the fields @p and k.

Definition 5.3. Consider a smooth projective and connected curve X over
@p. Let E be a vector bundle on Xc,.

(i) We say that E has strongly semistable reduction (of degree zero) if E
is isomorphic to the generic fiber of a vector bundle £ on X, for some model
X of X such that the special fiber & of £ is strongly semistable (of degree
7Z€ero).

(ii) We say that E has potentially strongly semistable reduction if there
is a finite morphism « : Y — X of smooth projective and connected curves
over @p such that a%pE has strongly semistable reduction.

Let u € Q. We introduce the following categories:

B — the full subcategory of vector bundles on X¢, which have strongly
semistable reduction of degree zero,

B’ — the full subcategory of vector bundles on Xc, of slope p which have
potentially strongly semistable reduction.

We have the following inclusion of categories

B C BY.
Proposition 5.4. Consider a smooth projective and connected curve X over
@p. Let E be a vector bundle on Xc, of slope p. Then E has potentially
strongly semistable reduction, i.e. E lies in B, if and only if there exists a
finite morphism o 1Y — X of smooth projective and connected curves over
@p and a line bundle L on Y, such that a?épE ® L has strongly semistable
reduction of degree zero, i.e. it lies in B3, .

Proof. This is exactly the statement of [DW10] Theorem 3 i). O

Proposition 5.5. Consider a smooth projective and connected curve X over
@p. Let E be a vector bundle on Xc¢,. Assume that E has strongly semistable
reduction (of degree zero) over X,, where X is a model of X over Z,. Let
Y be a model dominating X. Then E has also strongly semistable reduction
(of degree zero) over Y.

Proof. By assumption there exists a vector bundle £ on X, with generic fiber
isomorphic to E such that & is strongly semistable (of degree zero). Let
F be the pullback of £ to },. Then the generic fiber of F is isomorphic to
E since Vg — X is an isomorphism. Let C be a smooth projective and
connected curve and « : C' — Vi a k-morphism. It follows from Proposition
that the pullback of &, via C' % ), — X}, which is a*Fy, is semistable
(of degree zero). Again using the same proposition we conclude that Fj is
strongly semistable (of degree zero). O
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6. p-ADIC NEIGHBORHOOD FOR FAMILIES

Let f : X — S be a morphism of schemes and T a scheme over S. As
defined in section [2 a family F' (of coherent sheaves) on X parametrized by
T is a coherent sheaf on X7 = X xg T flat over T.

Proposition 6.1. Consider a morphism X — S of schemes of finite pre-
sentation. Let ' be a family on X parametrized by a scheme T over S.
Then the set

{t € T | F; is locally free of finite rank}

15 open in T'.

Proof. Use the setup explained in [EGAIV3] 8.1.2 a) and apply loc. cit.
Proposition 8.5.5. O

Let S be a scheme of finite type over a field K. If K is a topological field,
then the set S(K) of K-valued points of S naturally inherits its topology.
It is the strong topology on S(K) induced by the topology on K. When
K = @p or K = C,, we refer to it in the following always as to the p-
adic topology. More generally, for a scheme Z locally of finite type over
a local topological ring R such that R* is open in R and has continuous
inversion there exists a global topology on Z(R) uniquely determined by
similar functorial properties as of the strong topology (cf. [Con| Proposition
3.1). When R is a field, it coincides with the usual strong topology. We
refer to it as well as to the p-adic topology when R =7, or R = o.

For a continuous homomorphism R — R’ of topological rings the natural
map Z(R) — Z(R') is continuous. If Z is affine of finite type over R and
R — R’ is a topological embedding, then so is Z(R) — Z(R') (cf. loc.
cit. Example 2.2). Therefore, when Z is not necessarily affine, the latter
map is locally a topological embedding. In particular, we may apply this
to 0 — C,. It follows that if Z is proper scheme over o, then the bijection
Z(o) = Z(C,) is a homeomorphism. The analogous statement is true for

Zp — Q.

Notation 6.2. We fix the following notation £/%,/5, where X is a model
over Zp, S is a connected scheme of finite type over Zp, which will play the
role of the parameter space, and £ is a family on X, parametrized by S.
Recall that the generic fiber X of X is a smooth projective and connected
curve over @p. By E we denote the family £c, on X¢, parametrized by S.

The following natural question arises: Is the property of vector bundles
to have strongly semistable reduction (of degree zero) p-adically open on
the base in families? More exactly, given a family £/%,/S and a t € S(o)
such that & is a vector bundle having strongly semistable reduction (of
degree zero), can we find a p-adic neighborhood of ¢ such that the family
& restricted to this neighborhood consists only of vector bundles having
strongly semistable reduction (of degree zero)?

Proposition 6.3. Consider a family £/X,/S as in[6.4 Lett € S(o).
Assume that &; is a vector bundle on X, having strongly semistable reduction
(of degree zero). Then there exists a p-adic neighborhood U C S(0) of t such
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that for all s € U the sheaf Es is a vector bundle having strongly semistable
reduction (of degree zero).

Proof. By the above proposition we may assume without loss of generality
that & is a vector bundle for all s € S(0). Let ¢ty € S(k) be the morphism

Speck — Speco LS. Then &ty = &k is a strongly semistable vector bundle
on the curve Xj by assumption. The mapping S(0) — S(k) induced by the
reduction 0 — k is continuous with respect to the p-adic topology on S(o)
and discrete topology on S(k). Therefore the preimage U C S(0) of ¢y is p-
adically open. By construction the vector bundle £ has the same reduction
as & for all s e U. O

Corollary 6.4. Let £/X,/S and t be as in the above proposition. Assume
that S is proper over Z,. Then there exists a p-adic neighborhood U C S(C,)
of tc, such that for all s € U the vector bundle Es on Xc, has strongly
semistable reduction (of degree zero), where E = & ® C,,.

Proof. By the above proposition there exists a p-adic neighborhood U’ C
S(o0) of t such that & has strongly semistable reduction (of degree zero) for
all s € U'. Let U be the image of U’ via the natural mapping S(o) — S(C,).
Since S is proper over Zp, the latter is a p-adic homeomorphism, hence U is
p-adically open in S(C,). Let s € U. Denote by s, : Spec o — S the o-section
which induces s. Then &, has strongly semistable reduction (of degree zero)
since s, € U’. The statement follows then from &, ®, C, = & = E;. U

Instead of taking the reduction modulo the maximal ideal p C o0 we also
may take the reduction mod p" for n > 1. Put o, = o/p"o. Note that we
also have 0, = Z,/p"Z,.

Corollary 6.5. With £/%,/S and t as in the above proposition there exists
for alln > 1 a p-adic neighborhood U = U(n) C S(o) of t such that for all
seU

gs,n = gt,n-

Proof. Replace the mapping S(0) — S(k) in the proof of the above propo-
sition by the continuous mapping S(o) — S(0,) induced by the natural
homomorphism modp™ : 0 — 0,, where the topology on S(0,) is also dis-
crete. (]

Remark. In the above proofs we have used that o, has the discrete topology.
The statement is a special case of the following simple fact: the quotient
topology on the quotient of a topological group by an open subgroup is
always discrete.
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7. p-ADIC NEIGHBORHOOD FOR SMOOTH MODELS

In this section we will prove a similar result to Corollary However,
instead of considering individual families of vector bundles parametrized by
a given scheme we will work with the moduli space parameterizing those.
One of the main ingredients of the proof is Theorem of Langton, which
works for discrete valuation rings. Therefore we restrict ourselves to vector
bundles with reduction over Z,.

To be more precise, consider a smooth projective and connected curve X
over @p. We say that a vector bundle EF on Xc, has strongly semistable
reduction (of degree zero) over Z, if there exist a model X and a vector
bundle £ on X with & ®z, C, = FE such that the special fiber &, of £ is

strongly semistable (of degree zero). Note that £ is defined on X without
base change to o contrary to Definition [5.3] It follows that E is obtained by
base change to C, of a vector bundle already defined on X. Thus, by abuse
of notations, we regard E as a vector bundle on X and just say that it has
strongly semistable reduction (of degree zero).

Proposition 7.1. Consider a smooth projective and connected curve X over
T,
(i) Every vector bundle on Xc, with potentially strongly semistable reduc-
tion is semaistable.

(ii) Every vector bundle on X with strongly semistable reduction (of degree
zero) is semistable.

Proof. All vector bundles in the category B% are semistable by [DW05b]
Theorem 13 and Theorem 17. Hence (i) follows from Proposition

For (ii) the proofs of Theorem 13 and Theorem 17 work in exactly the
same way for vector bundles defined over Z,. In fact the proof of Theorem
13 is even easier since the descent argument there can be made more directly
using Noetherian descent for Z,. U

Let Mx be the moduli space of vector bundles of fixed rank r and degree
zero. By the above proposition vector bundles of rank r having reduction as
in (ii) induce points in Mx (Q,). Similarly to the previous section we ask the
following question: Is the property of vector bundles on X to have strongly
semistable reduction of degree zero open in the p-adic topology on M x (@p)?
In the case of good reduction the answer is positive, as shown below. We
say that a vector bundle E has good strongly semistable reduction (of degree
zero) if E has strongly semistable reduction (of degree zero) over a smooth
model.

Theorem 7.2. Consider a smooth projective and connected curve X over
@p. Let E be a vector bundle on X of rank r which has good strongly
semistable reduction of degree zero. Then there exists a p-adic neighborhood
U C MX(@p) of the S-equivalence class of E consisting of S-equivalence
classes of vector bundles with strongly semistable reduction of degree zero.

Proof. By assumption there exists a smooth model X of X over Z, and a
vector bundle £ on X with generic fiber isomorphic to F such that the special
fiber & of £ is strongly semistable of degree zero. By Noetherian descent
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there exists a finite field extension K /Q, with ring of integers o and residue
field k such that X descends to a smooth model X over ox. Therefore Xy
is regular and by Theorem 2.8 of Lichtenbaum [Lic68] it is projective. Fix
a relatively ample line bundle H on X — Specog. Further, by Zariski’s
connectedness principle X — Spec ox has geometrically connected fibers.
Finally, o is universally Japanese (cf. [EGAIVy| Corollaire 7.7.4). Thus
by Theorem there exists the moduli space M = My, /,, parameterizing
families of semistable sheaves on X of fixed rank r and degree zero with
respect to the line bundle H.

By assumption the vector bundle & is strongly semistable on Xj. Since
X} is smooth, semistability on X; does not depend on H, and & is trivially
semistable on X;. The vector bundle E on X is semistable of degree zero.
Therefore, £ is a semistable family on X, which induces a point [€] in M (Z,).

We have the followings natural maps induced by the homomorphisms
Zy — k and Zy — Q,

M (k) «— M(Zy) — M(Qp),

which are continuous with respect to the p-adic topology on M(Z,) and
M (@p)7 and the discrete topology on M (k). The moduli space M is projec-
tive, in particular proper. It follows that the map on the right hand side is
a homeomorphism. Since M corepresents the corresponding moduli functor
uniformly, and oy — K — @p is flat, M ®,,, @p is canonically isomorphic to
Mx by the universal property of the coarse moduli space, where the latter
is the moduli space of semistable vector bundles of rank r and degree zero
on X.

Let U be the preimage in Mx (Q,) of the S-equivalence class [£;] € M (k)
of & after identifying M(Z,) = Mx (@p). Then U is p-adically open in
Mx(Q,). By construction [E] € U. We show that every vector bundle F
on X with [F] € U has strongly semistable reduction of degree zero.

Let F' be such a vector bundle. By Noetherian descent there exists a
finite field extension L/K such that F' descends to a vector bundle Fy on
X1 = Xk ®o, L, which is semistable. By Theorem of Langton there
exists a family F7, on X1 = X ®,, o1 of semistable sheaves with generic
fiber isomorphic to Fy, where oy, is the ring of integers of L. The restriction
of F, to the special fiber of X, is locally free, since the latter is smooth.
Therefore since the restriction of F; to X is also locally free it follows
from [HLI0] Lemma 2.1.7 that Fy is locally free. Put F = FL ®,, Zp.
By construction of U we have [F;] = [&] as points in M (k). Since M
is a coarse moduli space, the set M (k) is in bijection with the set of S-
equivalence classes of semistable vector bundles on Xj of rank r and degree
zero. It follows that Fj, and & are S-equivalent as semistable vector bundles
on X;. Now since the property to be strongly semistable of degree zero is
stable under subobjects and quotients (cf. [Nor82] Lemma 3.6 (a)) and is
stable under extensions in the category of semistable vector bundles of slope
zero on Xy, it is compatible with the S-equivalence. We conclude that Fj, is
strongly semistable of degree zero (cf. Remark . Hence F' has strongly
semistable reduction of degree zero as claimed. O
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Remark. (i) In order to use Theorem of Langton we have to descend to a
model over a discrete valuation ring, which is possible if we consider vector
bundles over Zp.

(ii) Restricting to the smooth models of X allows us to consider the
vector bundle & as a point in M(k). Strong semistability on a smooth
curve implies then trivially semistability, which moreover does not depend
on the polarization of the model.

(iii) The last paragraph of the above proof states that a vector bundle on
X having a reduction, which is S-equivalent to a strongly semistable vector
bundle of degree zero, has already a strongly semistable reduction of degree
Zero.

In the above proof instead of taking the special fiber we may also take
the reduction modulo p™. With similar argument we obtain the following
more precise result. Let K be a finite field extension of Q, and o its ring
of integers. Consider a model Xx over oxg. We have seen in the above
proof that the moduli space My, of semistable sheaves on Xg of rank r
and degree zero exists (smoothness of X was not necessary for that). We
write [€] for the induced point in My, by a family £ of semistable sheaves
on X K-

Proposition 7.3. Consider a smooth model X over ox. Let £ be a vec-
tor bundle on X which has strongly semistable reduction of degree zero with
generic fiber E of rank r. Then for every n > 1 there exists a p-adic neigh-
borhood U = U(n) C Mx(Q,) of the S-equivalence class of E consisting of
S-equivalence classes of vector bundles F with the following property:

There exists a vector bundle F on X with generic fiber isomorphic to F
having strongly semistable reduction of degree zero such that

[Fnl = (€] in Mx, (o),
where Fp, = F Qo 0p, Ep = E R 0y

Proof. Put M = My, . By assumption £ is a family on X of semistable
sheaves. The reduction mod p" : Z, — 0, induces a mapping

Ty M(Zp) — M(o0,),

which is continuous with respect to the p-adic topology on M (Z,) and the
discrete topology on M(o,). Let U be the preimage of the S-equivalence
class [E;] of & via 1, after identifying M(Zy,) = M(Q,) = Mx(Q,) as in
the proof of the above theorem. Hence U is p-adically open and contains
the S-equivalence class of E.

We claim that U has the desired property. Let F' € U. By Noetherian de-
scent and Theorem of Langton [3.1] there exists a family F on X of semistable
sheaves with ‘7:@,, = F. By construction of U we have [F,| = [£,] in M (0,,).

In particular [Fy| = [€k] in M (k). The rest follows in the same way as at
the end of the proof of the above theorem. O
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8. CHARACTERIZATION OF SEMISTABILITY

The main result of this section is due to Teixidor i Bigas (cf. [TiB95]
Proposition 1.2). Since the proof in the original article contains certain
inaccuracies, we decided to include the full proof here.

Consider a semistable curve X over a field k. Recall that a curve X over
an algebraically closed field is semistable if it is reduced, connected and has
only ordinary double points as singularities. A curve X over a field k (not
necessarily algebraically closed) is semistable if the base change of X to the
algebraic closure of k is semistable.

Write X = (J;c; Xi, where X; are the irreducible components of X. Let
{Pj};cs, be the set consisting of intersection points of the irreducible com-
ponents of X.

Consider a coherent sheaf ' on X. Let F; be the restriction of F' to X;
modulo torsion. Note that for every ¢ € I we have a canonical surjective
morphismﬂ F' — F; which induces an exact sequence

0—F— @ Fi—T —0,
i€l
where T is a skyscraper sheaf with support lying in {P;}jes,. Since X
is semistable, every point P; lies on exactly two components X; and X;.
Computing the k-dimensions of the stalks in the above sequence at P; yields

dimg Tp]. = dimyg E,Pj + dim Fi’,Pj — dim ij = dimy FP]. .

On the other hand, by taking Euler characteristic we obtain

X(F) =Y x(Fy) = hO(T) = x(F) = > U(Tw),

iel iel jedo

where [(Tp;) is the length of the Ox p,-module Tp,. If P; is rational, then
[(Tp,) and dimy Tp; coincide.

An ordinary double point P on X is called split if all points in the nor-
malization of X lying over P are rational over k. In particular, P is rational
over k. Assume that F is locally free of rank r and all intersection points
of the irreducible components of X are split. In this case, the above exact
sequence yields the following identity

(5) X(F) = x(F) = ),
i€l j€Jdo
where r; = dimy, Fp,.

Let D be a subcurve of X. We define following coherent sheaves on X:
Fp is the restriction of F' to D, that is, Fp = i,i*F, where i : D <— X is the
closed immersion. The sheaf F'P is the subsheaf of F of all sections which
vanish on the “complement” of D. To be more precise, denote by D the
closure of the complement of D in X, then F'” is the kernel of the canonical
surjection F' — Fp. We have a canonical exact sequence

(6) 0—FP - F— Fy—0.

2We denote by F; as well the direct image via the closed immersion X; — X of Fj.
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Note that if a split singular point P € X lies on exactly two irreducible
components of X, then these component are smooth at P (cf. [Liu02] Lemma
3.11). In particular, we have D™ = X*"9\ (DN D).

Proposition 8.1. Consider a semistable curve X over a field k with split
intersection points of its irreducible components. Let E be a locally free sheaf
on X of rank r. Then for every subcurve D C X we have the following
identities

X(Ep)= > X(E)—r#{j€Jo| Pj€ D™},
X,CD

X(EP)= Y x(E)—r#{j€Jo | PjeD}.
X,CcD

Proof. The first identity follows from applied to Ep, the second from

(). O

Assume that X is projective and fix an ample line bundle H of X. Using
the semistability notion of Seshadri (Definition with weightings h;/h,
where h is the degree of H and h; the degree of the restriction of H to the
irreducible component X; C X, our goal is to prove the following result.

Theorem 8.2 (Teixidor i Bigas). Consider a projective semistable curve
X over a field k with split intersection points of its irreducible components.
Fiz an ample line bundle H on X. Let E be a vector bundle on X of rank
r such that the restriction E; of E to every irreducible component X; C X
is semistable. Further, assume that for each connected subcurve D C X the
following inequality is satisfied:

7) S B v | /| M) < ),

X;CD X;CD

where kp = #{j € Jo | P; € D}. Then E is semistable with respect to H.
Moreover, if all inequalities are strict and additionally at least one E; is
stable, then E is stable with respect to H.

Remark. If we assume that E is H-semistable, then the conditions in the
theorem will arise in a natural way. Indeed, for every connected subcurve
D C X the sheaf EP is a subsheaf of E as discussed before. The H-
semistability of E implies then

(%) _ X(E)
2wt T

where r; = rk(EB)i. But r; = r if X; C D and zero otherwise. Therefore
the above inequality translates into

D
X(E”) <y

Finally, using the computation of the Euler characteristic of ED in the
above proposition we obtain the inequality for D.

)

(E).



47

The proof of the theorem is purely combinatorial. First we need some
notations.

For J C Jy we define X ; as the subcurve of X consisting of the irreducible
components X; containing at least one of the points of J. By J. we denote
the following set of subsets of Jy: J € J. if and only if X ; is connected.

Remark. In the original article the definition of X is slightly different. The
curve X j consists of the same irreducible components X; as above, however
it is glued only at the points P; € J. Hence, X; may not be a subcurve of
X. In this case, we consider for each J € J. a similar inequality to (7))

(5) S xE) k| [ 5] <aim)

X;CXy X;CXy

where we denote k; = kx .

Although it seems that with this definition we obtain more inequalities as
considered in the theorem, this is not the case. Indeed, let J be such a subset.
We add to J the missing points on X ;, which have to be glued in order to
obtain a subcurve. This yields a set J' = {j € Jo | Py € X;} D J. Note
that X j is now a subcurve of X and is still connected. Even if X; # Xy,
they both have the same irreducible components and k; = kj, hence the
inequalities for X ;; and for X ; are the same.

For sake of simplicity we fix a total ordering of J.
T =4{J(1) = Jo, J(2),....,J(M)},

such that J(t) has at least as many elements as J(t + 1).

Fix positive integers r; for j € Jp and r; for i € I satisfying r; > r; for all
J € Jo with P; € X;. (Later r;’s will be the dimensions of a coherent sheaf
at the points P; and r;’s the ranks of its restriction to X;’s.) We define for
1<t< M and j € Jy inductively

rj0 = T
ar = min {r;; 1},
JEJ(t)

Tit—1 — Qt ifj € J(t)

. {""j,t—1 if j ¢ J(t),
Tj’t =

Moreover, we define for every ¢ €
(9) i =1 — Z at.
Xy)2Xi

Lemma 8.3. We have for all j € Jy:

(i) rj+ and a; are non-negative for all 1 <t < M.
(ii) For all1<t< M

t
7’]'7t = 7’]' — E Q.
k=1

J(k)>j

(iii) Tj,M =0.
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(iv) 75 =32 )35 Ot-

Proof. The statements (i) and (ii) follow inductively from the definition. For
(iii) note that for every j € Jy there exists a 1 < ¢t < M with J(t) = {j}.
Hence, a; = rj4—1 and rj = rj;—1 —a; = 0. The statement (iv) follows
from (ii) for t = M and (iii). O

Put foreach 1 <t < M

(1) — tudex min {md .
j(t) = in ex min {ri}

Lemma 8.4. For all 1 <t < M we have a; = T(t),t—1-

Proof. We show the identity by induction on ¢t. For ¢ = 1 there is nothing
to show. Let ¢ > 1. By definition of a; we have to show that for all j € J(¢)

Tit)t—1 < Tjt—1-

Fix a jo € J(t). By (ii) in the above lemma this is equivalent to

t—1 t—1

Z ap < Z ay.

k=1 k=1

J(k)3jo J(k)25(t)

Since all a; are non-negative, it is enough to show that ap = 0 for all k < ¢

with jo € J(k), j(t) ¢ J(k). Since jo € J(k) N J(t), the union of J(k) and

J(t) defines a connected curve, hence J(k) U J(t) = J(K') with &' < k. We

have k/ < k since otherwise J(k) D J(t) and therefore j(t) € J(k). By the

induction hypothesis ag = () 17—1. Now j(k') = index min {rj(k),rj(t)}.
Assume first that j(k") = j(¢). Then a variant of (ii) in the above lemma

yields

t—1 t—1
Tj(t),tfl = Tj(t),k’fl — agr — E a; = — E aj.

I=k'+1 I=Kk'+1
J(1)35(t) J(1)24(t)

Since all a; and 7)1 are non-negative, the right-hand side is zero, and

we obtain a; = 7 -1 directly.

Assume now that j(k') = j(k). Then by a similar argumentation as in
the first case we have 7 ;-1 = 0 = a as we have to show. U

From the above lemma we deduce the following

Corollary 8.5. Let jo € J(t). If rj, is the minimum of the r;j’s for j in
some J(k) with k < t, then a; = 0.

Proof. By definition we have

ag = min {rj—1} <7rjoe—1 < tjg k-1 — Q-
jEJ(t) J Jo Jo

The second inequality follows as in the first case of the above proof. The
right hand side is zero by the above lemma. (]

Lemma 8.6. For all i € I the number r} is non-negative.
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Proof. Fix an ¢ € I. Let jo € Jo such that r;, > r; for every j € Jy with
P; € X;. We show that

Tjo = E ag.

Xy)2Xi

Since r; > rj,, the statement follows then directly from the definition of 7.
From Lemma (iv) we know that

Tjo = E Qag.

J(t)3jo

We have to show that a; = 0 for all 1 <t < M with jo ¢ J(t) such that
there exists a j # jo with P; € X; and j € J(t). Since J(t) U {jo} defines
a connected curve, there exists a t' < ¢t with J(¢') = J(¢t) U {jo}. Thus we
have j(t') = j(t) since r; < rj,. From the above corollary it follows that
ay = 0 O

Proof of the theorem. Let F' C E be a subsheaf. Denote by r; the k-
dimension of the stalk Fp, for every j € Jy. Define an effective Weil divisor

on X; by
D= > P
PiEX;
There is a natural exact sequence
(%) 0— Fy(-D) = F, — F;p — 0,

where F; p is a sheaf supported at D with the stalk at P; isomorphic to Fp,.
Hence we have

X(E) =x(Fi(-D)+ Y_

PjEXi

since all P; are split. Assume that r; = rkF; > 0. The sheaf E;(D) is
H-semistable since the H-semistability is preserved by tensoring with a line
bundle. Then since F;(D) C E;(D) and r; = rk F;(—D) = rk F; we have

X(F(=D)) _ X(E(=D))

T T

For each i € I let o; be the number of the points P; on X;. It follows that

T

X(E) < Zx(Bi(=D) + Y == (X(B) —air) + Y 7,
PjEX; PieXi

where the equality follows from the exact sequence (%) with F; replaced by
F;. In the case r; = 0 the above inequality is trivial.
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Using we conclude

o = POCIED ) MO 9
> ier BT iel jedo icl

IN

LS B —an + Y Y - Y /<Z};>

iel icl PjeX; jedo i€l

(%) i

Now using Lemma (4) we have

PN IES SN

i€l PjeX; J(t)3j5 J€Jo J(t)
—Zzat #{jedo| PjeXijedt Zat #J(t)
i€l t=1

M
=Y a| Y #{jed|PeX,jelt)}—#JI()

t=1 XzCXJ(t)

M
= ar-#J(t)
t=1

The last equality follows from the fact that X is semistable, in particular
every intersection point P; lies on exactly two irreducible components of X.
Hence, from this calculation and the definition @ of 7} we get an upper
estimate for the numerator

M

1

- Z rit > (B =) + D ar- #J(t)
el XJ(t) oX; t=1

M
LIS @) e+ a | B - air) + #T(00)

T
iGI t=1 XiCXJ(t)

M
ZT J—air)+ > ar | D> x(Ei) = ker

_ZEI t=1 XiCX )

S =
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The last identity follows from
Y a—#I)= D #{jed|PeX;je)}

XiCXJ(t) XiCXJ(t)
+ > #{ed | PeXiji )} —#J)
X1‘CXJ(t)
—2. I+ S #{iedo| PeXujd It} —#I(t)
XiCXJ(t)
=#J(t) + Z #{jed | PjeXyjd Jt)} =k
XiCXJ(t)

Putting all together and using the inequalities (or more precise and
(8)) we obtain

X))
Dier %Ti
M
- % [Ziel 7“2 (X(Ez> - Ozﬂ“) + Zt:l ag (ZXiCXJ(t) X(EZ) B ktr):|
~ . M i
Zie] %T; + Zt:l at (ZXiCXJ(t) %>

hi M hi
< X(E) ' Zie] %7’7{ + Zt=1 ag (ZXZ'CXJ(” W) . X(E)

- h; M h;
" Ziel WT’/L + Zt:1 ag (ZXiCXJ(t) F) "

Note that we have used the positivity of the r’s (cf. Lemma to obtain
an upper bound.

If all inequalities in are strict, then the second inequality in the above
estimate is strict unless all r] are zero and all a; except a; are zero. This
implies that all r; are equal. Assume that there exists an ig such that E;, is
stable. If F;, # E;,, then the inequality is strict. If F;, = Ej,, then the rank
r; of Fj, is r and hence Fj is of rank r for all ¢. It follows that ' = E. [
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9. COMBINATORICS

Let X be a reduced (not necessarily irreducible) curve over a field k.
The dual graph T' of X is the (undirected) graph consisting of irreducible
components X; of X as vertices and #(X; N X;) many edges from X; to Xj.

Consider a graph I'. For an edge e of I' we denote by e; and es the vertices
of e. For two subsets of vertices I, I’ C I we define the intersection number
of I and I’ as

arp=#{cedgeinT | e €l,ea€l'}.

Since I' is undirected, we have trivially ay 7 = ap ;. Put ay = ay ;. For all
disjoint I, I’ C T' we have the following identity

(10) apupr = oy +ap +ag .

A weighting on I' is a Z-valued function w on the vertices of I'. We will
write w; instead of w(i) for a vertex i € I'. Extend w to the power set P(I")
of vertex of I' by setting

(11) w;szi—aI (I cCT).

i€l
Then from it follows that the extended weighting w satisfies
wrur =wy +wp —ag

for disjoint I, I’ C T.

Consider the dual graph TV of X. Remove all edges starting and end-
ing at the same vertex in IV and denote by I' the resulting graph. If we
assume that X is projective, the Euler characteristic of irreducible compo-
nents X1q,...,X, of X defines a weighting x on I' by

xi = x(Ox;).

Here 4 is the vertex in I' corresponding to the irreducible component X;.
We refer to the extended weighting of the weighting induced by x; as to the
characteristic weighting.

Proposition 9.1. Consider a projective semistable curve X over a field k
with irreducible components X1, ..., X,. Assume that all intersection points
of the X;’s are split. Then the characteristic weighting attached to the dual
graph of X coincides with the Euler characteristic of subcurves of X.

Proof. Let D C X be a subcurve. Then D induces a subgraph I'p C I'. We
have to show that
XTp = X(OD)'

If we can show the statement for X, it will a posteriori also be true for D.
Thus we may assume without loss of generality that D = X.
Since X is reduced, we have the following exact sequence

n
O%OX%@OXZ.HT%O.
i=1
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The sheaf T is a skyscraper sheaf supported on the set .S consisting of the
intersection points of X1,..., X,. Since X is semistable and all points in S
are split, we have dimy Tp = 1 for all P € S. Therefore
n n
X(0x) =Y x(Ox,) = #5 = xi —ar = xr- O
i=1 i=1
The next proposition is just a reformulation of Theorem

Proposition 9.2. Consider a projective semistable curve X over a field k
with split intersection points of its irreducible components. Fix an ample
line bundle H on X. Let I, x be attached to X as above. If for every proper
I C T the condition L
X1 < FIXF +armg

is satisfied, where hy =) ;. h;i, h; = deg H;, then every vector bundle E on
X with semistable restrictions of degree zero to irreducible components of X
1s semistable with respect to H.

Moreover, if the above inequalities are all strict, and additionally the re-
striction of E to at least one irreducible component of X is stable, then E
1s stable with respect to H.

Note that we do not require that I is connected and therefore we allow
superfluous conditions we could deduce from the condition for a connected
1. However, this will make it possible to argue in a less technical way.

We fix the situation in the above proposition and let H vary. Our goal is
to find an ample line bundle H on X such that the above (strict) inequalities
are satisfied. As we will see shortly, the exact values of the characteristic
weighting x are not important, only whether x; = 1 or not. Therefore we
will call the vertices with x; = 1 marked and forget x. We proceed with a
purely combinatorial construction of weightings of vertices of I', from which
the existence of H will easily follow.

Construction. Let I' be a connected graph with n > 2 many vertices, without
edges starting and ending at the same vertex, and consisting of two types of
vertices: marked and non-marked. Further, assume that following conditions
are satisfied:

(12) If 7 € I" is marked, then 7 has at least two neighbors;
(13) If all vertices in I' are marked, then ar > n.

We will construct rational numbers {J; };cr satisfying

(14) 0; >0, ¢; > 1if4is marked,
(15) or = ar,
(16) oy <ar+app\g (I C T proper),

where 07 = >, 0;.

We consider the following non-generic situation. Let C' be a subgraph of
I" as in Figure[l| The marked vertices are black, and the vertices i¢9 and 7;
may be marked or non-marked, which is indicated by the vertex with a dot.
We call C' a chain of length [. An edge not contained in a chain is called
generic.
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F1GURE 1. Chain of marked vertices of length [

FI1GURE 2. Ring of marked vertices

i J io i1 ik Ut 1 i 141
O——m0 o06—e oo e— 0
20 1/2 25 0+ s(+g) s0+d) s0+g) 2/5

FIGURE 3. Weightings of edges (1 < k <)

Further, consider a graph as in Figure The graph I' cannot contain
such a subgraph. Indeed, in this case since I' is connected, it would coincide
with this subgraph. It would follow that xp = n—ar = 1, which contradicts
the assumption .

Now assign to each edge e and each vertex i in I' a number (e, i) as in
Figure |3| depending on the case, whether the edge e is generic, a margin of
a chain or an inner edge of a chain. For a vertex ¢ which does not lie on e
we put d(e, i) = 0. By definition

(17) Zé(e,i) =d(e,e1) +d(e,e2) =1, if e is generic.
i€l

For a chain C as in Figure [I] of length [ > 1 we have

+1 9 1 9
( ) =0 eCC (6’ l) e ! ( " 5l) ' e ! e

Note that if [ = 0, then C' is just a generic edge.
We define

5= 0(ei)  (i€T).

Since n > 2 and I is connected, each vertex ¢ € I" has at least one neighbor,
hence §; > 0. Let ¢ be marked and not an inner vertex in a chain. Then ¢
has at least three neighbors by condition , hence 6; > 3-2/5 > 1. If i
is an inner point of a chain of length [, then §; = 1+ 1/50 > 1 since [ > 1.
Therefore we have the condition .
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We show . Let C4,...,C,), be the chains in I' of lengths 1,..., 0,
respectively. Put C' = J)"_; C,,. We compute using and

o= 6i=> > dlei)y= > D e i)+ D de,i)

el €l e e generic i€l v=1eCC, i€l’

m
=ap\c tapc,ct Z(lu +1) = ap\¢ + ar\¢,c + ac = ar.
v=1
The last identity follows from .
We show . Let I C I'" be proper. We have four different types of edges
e in I' depending on I:
Fy: e C I and is generic,
F: e is generic and has exactly one vertex lying in I,
F: e lies in a chain which is contained in I,
FE5: e has at least one vertex in I and lies in a chain which is not contained

in I.
We write
0= 0= dlei)=> D dlei)+ D Y dlei)+
iel e i€l e€Ey i€l e€Ey i€l
Z Z(S(@,i) + Z Zé(e,i).
eckEy iel ecE3 i€l

and compute the four summands on the right hand side. With we have

DD (e i) = #Eo.

ecEy i€l

Further, we have

DN dlei) < YD d(ei) = #En.

eckEy iel ecky i€l

Note that the above inequality is strict if £y # ().
As above we may write Fo as a disjoint union of chains lying in I and
conclude with that

SN ey =YY d(edi) =Y (I(C) + 1) = #Ey,

ecFEs iel ccl ecC ccl
chain chain

where [(C) is the length of the chain C. Let C,...,Cy, be the connected
components of the subgraph of I' defined by the union of vertices lying on
the edges in E5. Then C), is of the form as one of the graphs in Figure [
i.e. in the first case it is a segment of a chain, which starts in I and ends in
I'\ I, therefore i; € I for all 0 < j < k, in the second case it is a segment of
a chain starting and ending in I' \ I, therefore i; € I for 0 < j < k. Let k,
be the length of C,, that is, the number of vertices in C), lying in I, and [,
the length of the full chain in I" containing C,. We have k, < ,.
For the weighting of the first graph in Figure {4 we have

1 1 3
2 E(1+=)<2 El+—=)=k+=-<k+1
/5+(+5l)_ /5+(+5k) +5< +1,
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20 1 19 Up—1 1k
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el

FiGURE 4. Chain segments

of the second
k(1 L < k(1 L k ! k+1
( +5l), ( +5k)— +y <k+l,
where [ is the length of the full chain containing the corresponding segment.
Let C be the union of the C,’s. It follows that

m

YD ey =) > Y e <Y (kv +1) =) (ac, +ac,n)
v=1

ecks icl v=1eCC, i€l v=1

=ac + o\ — Z ac,.c, = ac + Qo T\I-
vEp
Note that the above inequality is strict if E3 # 0.
All in all, it follows that

or <#Eo+ #E1 +#E>+ ac +ac\;-

The inequality is strict since I is proper, and therefore Ey # () or E3 # (.
Now #Ey + #FE> = apc +apnc,c and #E1 = apcr\7- It follows that

o <apc+ancct+ancr t+ac+acrg =ar+armg.
Therefore follows, and the construction is finished.

Remark. The weighting 2/5 of the margin vertices in a chain is ambiguous.
Every rational constant 0 < ¢ < 1/2 would be suitable. We have to guaran-
tee that §; > 1 for an inner vertex i of a chain. Further, the identity
should also be satisfied. Hence, if we distribute the weightings on the inner
vertices uniformly, then
di=({+1-2¢)/l.

In this case, d; > 1 if and only if ¢ < 1/2. The inequalities for chain segments
in Figure [4] used above yield both that ¢ > 0.

Lemma 9.3. Consider a connected graph I' with n > 2 many vertices with-
out edges starting and ending at the same vertex. Let x be a weighting of I’
extended as in with x; <1 for alli € I’ and xp < 0. Moreover, assume
that the following condition is satisfied:

(S) If xi =1, then i € T has at least two neighbors.

Then there exist positive rational numbers {q; tier with > q; = 1 satisfying
for every proper I C T’

X1 < qIXr + arm\r,
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where qr = i1 G-

Proof. We consider all vertices in ¢ € I" with x; = 1 as marked. Then
the assumption is exactly (12). The condition follows from the
assumption that y; < 0. Indeed, if all vertices are marked, we have

XF:ZXi—aF:n—aF-
el
Therefore we are in the situation of the above construction, which yields
rational numbers {J; };er with properties — (16). Put g¢; = (xs — d;)/xr-
Then the inequality x; — d; < 0 is satisfied, which follows from the assump-
tions that x; € Z and x; < 1 combined with . Hence ¢; > 0, since

xr < 0. Now yields

qu:xlr (Zm—&) ler <in—ar> — 1.

i€l iel iel
Let I C T be a proper subset. It follows from that

X1 = ZXi —ar < ZXi —O0r+arrg =aqxr +arng
i€l icl
as required. O

Proposition 9.4. Consider a projective semistable curve X over a field k
of genus g > 2 with irreducible components X1,..., X, (n > 2) and split
intersection points of the X;’s. Assume that the following condition is sat-

1sfied
(S) If g(X;) =0, then X; meets other components in at least two points.

Then there exists an ample line bundle H on X such that every vector bundle
E on X with semistable restrictions E; to X; of degree zero is semistable
with respect to H.

Moreover, if at least one E; is stable, then E is stable with respect to H.

Proof. Let T' be the graph attached to X as described in the paragraph
before Proposition [0.1] Let x be the characteristic weighting on I'. By
assumption I' is connected and xp = 1 — g < 0 by Proposition [9.1] Further,
implies the corresponding condition in the above lemma for I' and y.
Hence there exist positive rationals q1, . . ., g, with corresponding properties.
Write ¢; = d;/d with d;,d > 0 integers.

The subset of singular points X*™9 C X is finite. Hence X’ = X \ X9
is an open smooth and dense subscheme of X. Therefore every irreducible
component X; contains a closed point P; € X’. Define a divisor D on X by

D= Zn:di - B
=1

Let H = Ox(D) be the induced line bundle on X. Then H; = H|x, =
Ox,(d;P;), and therefore h; = deg H; = d; by construction of P;, hence
hi > 0. It follows that H is ample (cf. [Liu02] Proposition 7.5.5). Further,
we have h = deg H =} d; = d since ) g; = 1. The statement follows then
from Proposition [9.2 O
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Corollary 9.5. With notations from the above proposition, the S-equiva-
lence class (with respect to H) of the trivial vector bundle on X of rank r
consists of locally free sheaves of rank r.

Proof. By the above proposition Ox is stable on X with respect to H. It
follows that
0COxCcO%cC...cO%
is a JH-filtration of O%. Let F' be a semistable sheaf on X which is S-
equivalent to O, and consider a JH-filtration of F’
OCFHCF,C...CF,=F.

Then s = r and gr; F' = Ox for 1 < ¢ < r. We proceed by induction on r.
For » = 1 there is nothing to show. Let » > 1. Then

OCFiCF,C...CF.

is a JH-filtration of F;._1, hence it is S-equivalent to the trivial bundle on X
of rank r — 1. By induction hypothesis it follows that F)._1 is locally free of
rank r — 1. The JH-filtration of F' induces an exact sequence

0—F._1—~F—0x —0,

from which the statement follows. O
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10. p-ADIC NEIGHBORHOOD FOR NON-SMOOTH MODELS

The goal of this section is to generalize Theorem to a bigger class
of models than smooth ones. As noted in the remark after Theorem
we have to guarantee that the reductions of vector bundles to the special
fiber of the considered model are semistable with respect to some relatively
ample line bundle on this model. To obtain such a line bundle, we use the
characterization of semistability on semistable curves by Teixidor i Bigas
(Theorem[8.2) and results from section[9] To make this section self-contained
and independent of section [7] we repeat some arguments already given there.

Recall that a model X over a valuation ring R is called semistable if its
generic X = X ®@r K and special fiber X, are semistable (K is the quotient
field and k the residue field of R). The next proposition allows us to consider
the reduction of strongly semistable vector bundles over semistable models.

Proposition 10.1. Consider a smooth projective and connected curve X
over @p. Let E be a vector bundle on Xc, with strongly semistable reduction
(of degree zero). Then E has strongly semistable reduction (of degree zero)
with respect to a projective semistable model of X.

Proof. By definition there exists a model X of X over Z, such that E has
strongly semistable reduction (of degree zero) with respect to X. We show
that there exists a model X’ dominating X with stated properties. The claim
follows then from Proposition [5.5

By Noetherian descent the tuple the model X descends to a model X g over
the integer ring o of a finite field extension K/Q,. Since Xk is integral,
the model Xk is also integral. By normalizing X and applying Lipman’s
resolution of singularities, we may replace Xx by a regular model of X
(cf. [DWO05Db] I in the proof of Theorem 1). By [Liu06] Theorem 2.3 and
Remark 4.19 the model Xk is dominated by a semistable regular model X,
over the ring of integers o, of a finite field extension L/K after the base
change to o7. By Theorem 2.8 of Lichtenbaum [Lic68] the model X', is
projective. Let X’ be the base change of X, to Zj. U

Corollary 10.2. Consider a model X over Zp. Let £ be a vector bundle
on X, with strongly semistable reduction of degree zero. Then there exist a
projective semistable model Y and a morphism w: Y — X inducing a finite
morphism g, Y — X of smooth projective and connected curves such that

the vector bundle F = m;& has trivial reduction Fj, on the curve Y.

Proof. The existence of Y follows from [DW05b] Theorem 17 . Now use the
above proposition to replace ) by a projective semistable model. O

Definition 10.3. Let X be a projective semistable model over a valuation
ring R. We call X almost stable if its special fiber satisfies the condition
in Proposition [9.4]

The next construction and corollary allow us to consider semistable mod-
els having a special fiber with only smooth irreducible components.

Construction. Let R be a discrete valuation ring with quotient field K and
residue field k. Consider a semistable model Z over R. Let C C Zj be
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an irreducible component of the special fiber of Z which is geometrically
irreducible, x € C' a singular point with only C' passing through z. After
a finite field extension of K we may assume that z € Z is a split ordinary
double point (cf. [Liu02] Corollary 10.3.22). The latter result tells us also
that R

OZ,:E = R[[“? U]]/(U’U - C)
for some ¢ # 0 in R of valuation e; = vg(c) > 1.

Assume first that e, > 1. Then there exists a model f : Z’ — Z domi-
nating Z, which is a sequence of blowing-ups, such that f~!(z) is made of a
chain of (e; — 1)-many IP’,%; meeting transversally at rational points and such
that f is an isomorphism outside of f~!(x) (cf. [Liu02] Lemma 10.3.21).
Moreover, the unique irreducible component of Z; dominating C' is smooth.

Assume now that e, = 1. By adjoining a square root of ¢ to K we obtain
a finite field extension L of K. Let vz be the unique normalized valuation
of L extending the valuation of K. Then vy (c) = 2. It follows that after
the base change to the integral closure R’ of R in L, we have e, = 2 for x
considered as a point in the model Zg/. Hence, we may proceed as in the
first case.

All in all, we have constructed a model Z’ over the integral closure R’
of R in some finite field extension of K and a morphism f : 2’ — Zg/ of
models with following properties:

(1) f~'(z) consists of a chain of Pj meeting transversally,

(2) f is an isomorphism outside of f~1(x),

(3) the unique irreducible component of Z;, dominating Cjs is smooth,
where £’ is the residue field of R’.

Applying the above construction to each irreducible component of Z
yields the following

Proposition 10.4. Consider a semistable model X over Z,. Then there
exists a model X' dominating X such that all irreducible components of X
are smooth. If X is almost stable, then X' is also almost stable.

Proof. First, by Noetherian descent X descends to a model X over the
integer ring oxof a finite field extension K/Q,. Without loss of generality
we may assume that all singular points of X, are split (after the base change
to a finite extension of K') and its irreducible components are geometrically
irreducible, where k is the residue field of ox. Let S be the set consisting
of those singular points of X, each of which lies on a unique irreducible
component of X,;. The set S is finite. Inductively we apply the above
construction to each point of S and obtain in the end a model X’ over the
integer ring oy, of some finite field extension L/K dominating X ® oy, such
that the special fiber of X, has only smooth irreducible components. Since
the preimage of S in X’ consists of chains of P}C’s, and other irreducible
components of the special fiber of X’ are the same as of X,; (after the base
change to the residue field of o), the model X’ is almost stable if Xy, is

almost stable. The base change to Z, yields the desired model. O

Remark. In the above proposition we may also assume that X’ is regular.
Indeed, the model X, at the end of the proof may be replaced by its min-
imal desingularization (cf. [Liu02] Corollary 10.3.25). In fact, the minimal
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desingularization also remains almost stable if X’ is almost stable, since its
fiber over each singular point in the special fiber of X’ consists of a chain
of PL’s.

k

Fix a positive integer r and let X be as above. We denote by Mx the
(coarse) moduli space of vector bundles on X of rank r and degree zero. Re-
call that Mx (@p) carries a natural topology induced by the p-adic topology
on @p. Our goal is to prove the following

Theorem 10.5. Consider a smooth projective and connected curve X over
@p of genus g > 2. Let E be a vector bundle on X of rank r which has
strongly semistable reduction of degree zero, i.e. E lies in B%. Then there
exists a p-adic neighborhood U C MX(@p) of the S-equivalence class of
consisting of S-equivalence classes of vector bundles with potentially strongly
semistable reduction, i.e. lying in ‘B())(.

The idea of the proof is the following.

Step 1. Using Corollary we obtain a finite cover Y of X such that
the pullback F' of E to Y has trivial reduction over some semistable model
of Y. Further, this cover induces a p-adically continuous mapping

My (Qp) — Mx (Qp)7
where My is the moduli space of vector bundles on Y of rank r and degree
zero. Hence it is enough to construct the p-neighborhood for F. We may
assume without loss of generality that F has trivial reduction.

Step 2. We assume that E has trivial reduction & over an almost stable
model X of X. Therefore the dual graph I' attached to the semistable
curve X behaves well, and we are able to produce rational weighting of
I’ by combinatorial Lemma [9.3] The next proposition and lemma show
the existence of a relatively ample line bundle on X, which is built from
the information given by the weightings, such that the vector bundle E is
semistable with respect to that bundle. Finally, we descend to a finite field
extension K of Q, and consider the moduli space M = My, of semistable
sheaves of rank r and degree zero with respect to the constructed ample line
bundle. The trivial bundle & induces then a point in M (k).

Step 3. This is similar to the proof of Theorem The moduli space
comes with two p-adically continuous maps

M (k) < M(Zy) — M(Q,).

The underlying topological space of the space on the left hand side is a
discrete one. Hence taking the preimage of [€x] with respect to the first map
and noticing that the second map is a homeomorphism yields a neighborhood
of [E]. To show that it satisfies the stated property we use again Theorem
of Langton [3.1

Step 4. To apply Step 3 we have to show that every vector bundle on X
with trivial reduction has trivial reduction over some almost stable model
of X. This is one of the statements of Theorem I0.10l

The next proposition is a relative version of Proposition [9.4]

Proposition 10.6. Let R be a valuation ring with algebraically closed residue
field k. Consider a projective almost stable model X over R with generic fiber
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of genus g > 2. Let C4,...,C, be the irreducible components of the special
fiber X of X. Assume that n > 2. Then there exists a relatively ample line
bundle H on X such that every vector bundle E on Xj with semistable re-
strictions F; to C; of degree zero is semistable with respect to Hy. Moreover,
if additionally at least one of the restrictions E; is stable, then E is stable
with respect to Hy,.

Proof. Let I' be the dual graph of X; without the edges starting and ending
at the same vertex. Let y be the characteristic weighting on I'" defined in
section [0l Since X is flat over R, the genus of X is g > 2, hence xr =
X(Ox,) < 0. By assumption I' is connected, satisfies the condition in
Lemma [9.3] and has n > 2 many vertices. Since k is algebraically closed,
all intersection points of the C;’s are split. Thus we may apply Lemma [9.3]
which yields positive rational numbers ¢, ..., g, with ) ¢ = 1 satisfying
for every proper I C I

(*) X1 < @IxXr + ar\g-

Write ¢; = d;/d with d;,d > 0 integers.
The model X is integral since X is. Applying the lemma below we obtain
a line bundle H on X with

hi = deg H|c, = d;, h =deg H = deg H;, = d,

where H = H|x, Hr = H|x,. The curves X, X}, are without embedded
points as reduced curves, thus every line bundle on X and X is of the form
Ox (D) resp. Ox, (D) for some Cartier divisor D on X resp. Xj,. We deduce
from [Liu02] Corollary 7.5.5 that H is ample as h;, h are positive. Since
X is a scheme over an affine base, ampleness of H is equivalent to relative

ampleness of H.
The claim follows from (%) and Proposition g

Lemma 10.7. Let R be a valuation ring with quotient field K and alge-
braically closed residue field k. Consider a semistable model Z over R with
generic fiber Z and special fiber Zy. Let Cy, ..., C, be the irreducible compo-
nents of the special fiber Zj. Fixz some integers dy,...,d, and put d =" d;.
Then there exists a line bundle L on Z with

deg L; = d;, deg L, = deg L = d,
where Ly, = L|z,, L = L|z and L; = Li|c;.

Proof. Since Z is semistable, the subset S = Z%9 of singular points of Z,
consists of finitely many closed points. Therefore the scheme Z' = Z '\ S is
an open smooth subscheme of Z such that Z; C Zj, is dense. It follows that
every C; contains a closed point P; € Z;. Since k is algebraically closed, we
may consider P; as a k-valued point of Z;. By [BLRI0] 2.3, Proposition 5

Z'(R) — 2'(k) = Z;,(k)

is surjective, therefore there exists a A; € Z'(R) with A;, = P;. Identify
A; with its image in Z’. In this way we may consider A; as a Weil divisor
on Z'. Since Z’ is regular, we have Div(Z’') = Pic(Z2'). This gives a line
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bundle O(A;) on Z’ which is trivial over Z’\ A;. Thus we can glue O(4;)
with Oz\a, and obtain a line bundle £(i) on Z with

deg L(i)k|c; = ij-

Put £L=L(1)" ®...®L(n)%". We have deg Ly = . d;deg L(i) =>.d; =d
and deg £; = d;. The Euler characteristic is constant on the fibers of £ since
L is locally free, therefore by Riemann-Roch

degL = X(L) - X(Oz) = X(Lk) - X(ng) = degﬁk =d. U

Lemma 10.8. Consider a smooth projective and connected curve X over
Q, of genus g > 2. Fiz a positive integer r. Assume that X admits an

almost stable model over Zp. Then there exists a model
A: Xg — Specog,

where K is a finite field extension of Q,, together with a A-ample line bundle
Hi on X with following properties
(1) X = Xk ®Zy is a model of X,
(2) Xk is almost stable and all irreducible components of the special fiber
X are smooth,
(8) the moduli space M = My 1o, Of semistable sheaves on Xk of rank
r and degree zero with respect to H exists, and
(4) the trivial line bundle is stable with respect to Hy,.

Proof. Let X be an almost stable model of X over Z,. Using Noetherian
descent we obtain a model

A:Xg — Specog

satisfying (1), where K is a finite field extension of Q,. By Proposition m
we may assume that all irreducible components of X are smooth and X is
projective. Hence, X satisfies (2). Since X is connected, X has geomet-
rically connected fibers. Further, ox is universally Japanese (cf. [EGAIVY]
Corollaire 7.7.4). Fix a A-ample line bundle Hx on Xx. By Theorem
the moduli space M = My, /1n, as in (3) exists.

It remains to show that Hg can be chosen in such a way that every
vector bundle on X as in (4) is semistable with respect to Hy = Hx ® k.
If the special fiber of Xg is geometrically irreducible, then it is smooth
by assumption on X and (4) follows trivially. Assume that Xj is not
irreducible. By Proposition applied to A = A ® Zp there exists a A-
ample line bundle A on X such that the trivial line bundle is stable with
respect to Hy. Hence we have (4). O

Proof of the theorem. By assumption there exist a model X of X and a vec-

tor bundle £ on X with generic fiber isomorphic to . Corollary pro-

vides us with a model ) and a morphism 7 : ) — X such that o) is a
P

finite morphism of smooth projective and connected curves, and F = 7*&

has trivial reduction on ). The pullback of a semistable vector bundle on

X via o) is semistable since we are in the characteristic zero case, hence it
P

induces a natural transformation

Mx—>./\/ly
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of moduli functors of semistable vector bundles on X resp. Y of rank r and
degree zero. By the universal property of the coarse moduli space we obtain
a morphism

M X — My

of projective schemes over @p. It induces a p-adically continuous map

Mx(Q,) = My (Q,).

Now the vector bundle E having strongly semistable reduction is semistable
on X (cf. Proposition , whence F' = .7-"@ is also semistable. Therefore F'
P

induces a point [F] in My (Q,). If we can construct a p-adic neighborhood V/
of [F] in My (@p) such that every vector bundle F’ inducing a point in V has
a trivial reduction over some model of Y, then taking the preimage of V in
My (@p) via the above continuous map induces a p-adic neighborhood U in
Mx (@p) of [E] with stated properties. Indeed, by construction every vector
bundle E’ inducing a point in U satisfies the following: 7% E’ induces a

point in V' and therefore trivializes over some model of Y. Sincpe every trivial
vector bundle on ), is obviously strongly semistable, the vector bundle E’
has potentially strongly semistable reduction of degree zero as required.

Note that we may always replace ) by a dominant model and F by its
pullback to it, since its reduction remains trivial and it still has the generic
fiber F'. Therefore after replacing ) first by an almost stable model from
Theorem and then by a model constructed in the above lemma (using
the property (1)), we may assume that ) satisfies the properties (1) — (4).
Consider the moduli space

M = My,

provided by (3). By (4) the trivial bundle F}, defines a point in M(k). As a
locally free sheaf, F is flat over Zp, hence it is a family of semistable sheaves
on Y and therefore defines a point [F] € M(Z,).

We have the following natural maps induced by the homomorphisms Zp —
k and Z, — Q,

which are continuous with respect to the p-adic topology on M(Z,) and
M (@p)7 and the discrete topology on M (k). The map on the right hand
side is a homeomorphism since the moduli space M is projective, in partic-
ular proper. Since @p is flat over ox and the moduli space M uniformly
corepresents the corresponding moduli functor, M ®,, @p is canonically
isomorphic to My by the universal property of the coarse moduli space.

Let V' be the preimage of My (Q,) of the S-equivalence class [F;] € M (k)
of Fy after identifying M(Z,) = My(@p). Then V is p-adically open in
Mx (Q,) and by construction [F] € U.

The proof is completed by showing that V' consists of S-equivalence classes
of vector bundles on Y having strongly semistable reduction of degree zero.
Let F’ be a vector bundle on Y with [F’] € V. By Noetherian descent there
exists a finite field extension L/K such that F”’ descends to a vector bundle
F] onYy, = YK ®,, L which is semistable. By Theorem of Langton there
exists a family .F’L on YV, = Vi ®o 01, of semistable sheaves with generic



65

fiber isomorphic to F, where oy, is the integer ring of L. Put F' = F1®,, Z,.
By construction [F}] = [F]. Since M is the coarse moduli space, it induces
a bijection between M (k) and S-equivalence classes of semistable sheaves
on X}, of rank r and degree zero. Therefore Fj, is S-equivalent to Fj. Now
Fi is trivial, and by Corollary its S-equivalence class consists of locally
free sheaves. Hence, F}, is locally free. By replacing L with a finite field
extension we may assume that the restriction of ¥ to the special fiber of
Y1, is locally free. Therefore since the restriction of F} to Y7, is also locally
free, it follows from [HL10] Lemma 2.1.7 that F7, in particular F, is locally
free. Now since the property of being strongly semistable of degree zero on
YV is stable under subobjects and quotients (cf. [Nor82] Lemma 3.6 (a)) and
is stable under extensions in the category of semistable vector bundles of
slope zero on ) it is compatible with the S-equivalence. We conclude that
Fj. is strongly semistable of degree zero (cf. Remark 4.10). Hence F’ has
strongly semistable reduction of degree zero. O

Remark. The above proof differs slightly from the proof in the smooth
case. To use the same technique as in Theorem we need to know that
if a semistable sheaf on a semistable curve is S-equivalent to a strongly
semistable vector bundle, then it is locally free and strongly semistable.
Since a JH-filtration of an arbitrary semistable sheaf may contain non-locally
free sheaves (e.g. sheaves with support consisting of some but not all irre-
ducible components of the curve in question), it is difficult to establish this.
Therefore we trivialize the reduction by passing to an appropriate cover of
X. Then we have a canonical JH-filtration consisting of trivial vector bun-
dles and the above statement follows easily by induction over the length.

Corollary 10.9. Consider a smooth projective and connected curve X over
@p of genus g > 2. Let E be a vector bundle on X of rank r and degree zero,
which has potentially strongly semistable reduction, i.e. E lies in ‘Bg(. Then
there exists a p-adic neighborhood U C MX(@p) of the S-equivalence class
of E consisting of S-equivalence classes of vector bundles having potentially
strongly semistable reduction, i.e. lying in %g(.

Proof. There exists a finite morphism « : Y — X of smooth projective and
connected curves over @, and a line bundle L on Y such that F'=o*EF® L
lies in B% (cf. Proposition [5.4). The pullback via a and tensoring with L
induces a natural transformation

a* ®L
MX —)MY —)MY

of moduli functors of semistable vector bundles on X resp. Y of rank r
and degree zero. By the coarse moduli property we obtain a morphism of
corresponding moduli spaces

Mx 5 My 25 My,
which induces a p-adically continuous map
J— * — L —
Mx (@) = My (@) == My (Q,).

Now by Theorem [10.5{we have a p-adic neighborhood U’ of the S-equivalence
class [F] of F'in My (Q,) such that every vector bundle on Y defining a point
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in U’ lies in BY,. Let U be the preimage of U’ in Mx(Q,) via the above
mapping. By construction [E] € U. Let E’ be a vector bundle on X such
that [E'] € U. Then F' = o*E’ ® L defines a point in U’. Hence, F’ lies in
‘Bg,. Again, using Proposition we obtain a finite morphism 3:Y’' — Y
and a line bundle M on Y’ such that 8*F’ ® M lies in B3,. We have

B*F @M=p8"E @B LeM=(aoB)E®(BLRM).
Hence by the same proposition E’ lies in ‘B% as required. O

Almost stable models. To complete the proof of Theorem we have
to show that every vector bundle (on a curve of genus g > 2) with trivial
reduction has a trivial reduction over an almost stable model. We establish
this result also in the case of strongly semistable reduction of degree zero.

Theorem 10.10. Consider a smooth projective and connected curve X over
@p of genus g > 1. Let E be a vector bundle on X. Assume that E has a
reduction which is either (i) strongly semistable of degree zero or (ii) trivial.
Then E has also a reduction with (i) resp. (ii) over an almost stable model.

We prove the theorem in two steps. First we construct an almost stable
model ) with a map X — ), where X is a model of X. Then we show that
a vector bundle £ on X with generic fiber isomorphic to E and satisfying (i)
respectively (ii) descends to ) and still satisfies the corresponding property.

The next proposition is due to Ishimura (cf. [[sh83] Theorem 1) for smooth
projective algebraic varieties. The proof below is just an adaption of the
original proof to our situation.

Proposition 10.11. Consider a reqular model X over a discrete valuation
ring R. Let C' C X, be an irreducible component with C = ]P’}C, and C? < 0,
where k' is a finite field extension of the residue field k of R. Let f : X —
Y be the contraction of C. Then each vector bundle £ on X with trivial
restriction to C' is isomorphic to the pullback f*F of a vector bundle F on

V.
Note that the contraction of C exists by Castelnuovo’s criterion.

Lemma 10.12. In the situation of the above proposition we have for all
n>0
H'(C,0x(-nC)|¢) = 0.

Proof. By definition of the intersection number we have
C? = [k : k] - deg,s Ox(C)|c-

Put d = — deg,s Ox(C)|c. Then Ox(—C)|c = O¢(d) since C = P}, whence
Ox(—nC)|c = O¢(nd). Therefore we have for all n > 0 by [Liu02] Lemma
5.3.1

H'(C,0¢(nd)) = H(C,Oc(—nd —2))Y =0
since C? < 0. (]

Proof of the proposition. Step 1. We show that f.€ is a locally free sheaf on
Y of rank r =1k £.

Let Y be the formal completion of ) along the closed point s = f (C), X
the formal completion of X along C. The morphism f induces a morphism
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f:X = Y. Let T be the ideal subsheaf of Oy defining the closed (reduced)
subscheme C' C X. Put &, = £ ®o, Ox /T for n > 0 and = @n En.
Since f is proper, the theorem on formal functions (cf. [EGAIII;] Théoreme
4.1.5) implies that the natural morphism

(f:€) = f.€

is an isomorphism. Assume that for every n > 0 there exists an isomorphism
©On : En — (Ox/T"1)" such that the following diagram

(c:n $ (O};/In+1)r

]

Ens1 —= (Ox/T"F2)

Pn+1

is commutative. Then again applying the theorem on formal functions to
the trivial sheaf on X of rank r we obtain an isomorphism

(f«8) = (£:O0x)"".

Since the generic fiber of ) is normal, ) is also normal. Therefore it follows
from [Liu02] Corollary 4.4.3 that f.Ox = Oy since f is proper and birational.
Further, f.€ is coherent. Now taking the stalks at s yields

(f*g)s ®Oy,s @y,s = @5),57

where @y7s is the completion of the local ring Oy , at its maximal ideal.
It follows that the Oy s-module (f.€)s is free of rank r. Indeed, as we
have seen the completion of the module (f.€)s, which coincides with the
scalar extension to @yﬁ, is free, in particular it is flat. It follows that the
finitely generated module (f.€)s over the local Noetherian ring Oy  is flat
(cf. [Bou72] IIT §5.4 Proposition 4), hence it is already projective, which
further implies that it is free.

Since f is an isomorphism from X\ C to Y\ {s}, we conclude that f.£ is
locally free of rank r.

It remains to show the existence of the isomorphisms ,,. We proceed by
induction on n. For n = 0 there is nothing to show. Let n > 0. We have
the following exact sequence

0—I"E/T2E = £ — £, — 0.
Taking the cohomology yields an exact sequence
HY(C,E1) = HY(CLE,) — HY(C, T /T H2€E).

Now we have Z"T1E/T"2€ = Ox((—n — 1)C)€|c. Indeed, by definition 7
is isomorphic to Ox(—C). On the other hand, we compute

g jT2e = T T2 g £
= (InJrl ®0, Oc) @0y €
>~ 77 e .
By assumption &|¢ is trivial, hence

HY(C,I"TE/T2€) = H(C, Ox((—n — 1)C)|c)" =0
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by the previous lemma. It follows that « is surjective.
Let fi,..., fr be a basis of H(C,&,) over k, f1,..., fr lifts of the f;’s via
a and M C ™! the subsheaf generated by the sections {f;}. We have

M+ In+1€n+1 = €n+1'

It follows from Nakayama lemma that M = &,,1. Since fi,..., fr are
linearly independent, the sheaf M is isomorphic to (Ox/Z"1)". This gives
an isomorphism
on t Eng1 — (O%/In+1)r7

which (after a possible composition with an automorphism of the trivial
sheaf on the right hand side) is compatible with ¢,_;. By induction hy-
pothesis the isomorphisms ¢; for 0 <[ < n are compatible. This completes
the proof of Step 1.

Step 2. We show that the natural morphism f*f.£ — £ is an isomor-
phism. The sheaf on the left hand side is locally free of rank r by Step 1.
Therefore it is enough to show that this morphism is surjective. This follows
from Lemma 2 in [Ish83], which also holds for Noetherian schemes. O

Construction. Let X be a semistable model over a discrete valuation ring R
with geometrically irreducible components of X, and smooth generic fiber
of genus g > 1, where k is the residue field of R. We construct an almost
stable model ) from X with certain properties stated at the end of the
construction.

The minimal desingularization of f : X — X exists (cf. [Liu02] Corollary
10.3.25). Assume that there exists a rational irreducible component C' of X/,
meeting the other components in exactly one point, that is, C' contradicts
the condition . Using [Liu02] Proposition 9.1.21 we compute

0=C-X, =) C-C;=C*+C"D,

where C;’s are the irreducible components of X, and D = 7. 2c Ci. By
assumption C'- D = 1, hence C? = —1. Note that since g > 1, the divisor D
is non-zero. By Castelnuovo’s criterion there exists a contraction f : X’ — )
of C. In other words, f is a morphism of regular models, ) is semistable,
f(C) is a regular point in Y and f: X'\ C — Y\ f(C) is an isomorphism.

Now, if Y has again a rational irreducible component which contradicts
the condition , we proceed as in the last paragraph. Eventually, we obtain
a morphism

f: X =D,

which is a sequence of contractions of irreducible components of X/, such that
Y is almost stable. More exactly, let S be the set of chains of irreducible
components of X/ of genus zero, which are attached to other irreducible
components of X/ at exactly one point. Then S = f(S) is a set of finitely
many closed regular points in ), and f is an isomorphism outside of S:

desing.

Uscx, —sx“x

N

Scyney
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Lemma 10.13. With notation as in the above construction let £ be a vector
bundle on X and &' the pullback of € to X'. Then there exists a vector bundle
F on Y such that
fFFeE.
In particular, Fg = Ex. Moreover,
(i) if £ has strongly semistable reduction of degree zero, then also F,
(i) if € has trivial reduction, then also F.

Proof. First, if £ satisfies (i) (resp. (ii)), then & also satisfies (i) (resp. (ii)),
which follows from Proposition for (i) and is trivial for (ii). Further,
the morphism f is a sequence of successive contractions of the irreducible
components C in S satisfying ¢(C') = 0 and C? = —1. In particular, C' = IP’;,
for some finite field extension «’ of k. In both cases (i) and (ii) the restriction
of £ to a such component C' is trivial (note that there are no non-trivial
semistable vector bundles on C' of degree zero). Thus we may inductively
apply Proposition beginning with £’. It follows that there exists a
vector bundle F on ) with f*F = £’

Assume that & satisfies (i). Let D be an irreducible component of ).
By construction of ) there is an irreducible component D’ of X’ which is
isomorphic to D via f. In particular we may identify F|p with f},F = &'|pr.
It follows that F has strongly semistable reduction of degree zero.

Assume that & satisfies (ii). The curves X/ and ), are both semistable,
and the morphism f, is an isomorphism outside of S and S = f(S). The
latter set consists of finitely many regular points in ). Therefore the com-
position of the inverse morphism of f.|s and the inclusion X/, \ & C X/, can
be extended to the whole curve ), since the latter is proper. This gives a
section g : YV, — X of fi. From ¢g*&, = g* [ F, = F, it follows that F is
trivial. O

Proof of the theorem. Let X be a model of X over Z, and £ a vector bundle
on X with 8@p = F satisfying (i) resp. (ii). By Proposition we may
assume that X is semistable. Using Noetherian descent the tuple (X,¢)
descends to a tuple (Xk, k), where X is a model over the integer ring o x
of a finite field extension K/Q,, and £k is a vector bundle on Xg. After
replacing K by a finite extension we assume that all irreducible components
of X, are geometrically irreducible, where x is the residue field of 0.

Let Vi be the almost stable model constructed from X g as in the previous
construction. By the above lemma there exists a vector bundle F on Vg
with Fx @, K 2 Ex ®o, K. Put F = Fg ®q, Zp. Then ]:@p ~ F, and F

satisfies (i) resp. (ii). O
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11. JET SPACES

In this section we will describe the jet spaces of the moduli space Mx of
semistable vector bundles of fixed rank and degree on a smooth projective
and connected curve X over an algebraically closed field £ in terms of jet
filtrations introduced below. We begin with the description of the jet spaces
of its corresponding moduli functor.

Fix a natural number n > 1. Let A,, be the local Artinian ring k[t]/t" 1,
I = (t) the maximal ideal in A,, and n : A, — k the canonical projection
defined by ¢ — 0.

Definition 11.1. For a contravariant functor F : (Sch/k) — (Set) we
define the n-th jet space J'F of F at x € F(k) as the preimage of x via the
mapping F'(n), i.e.
ToF = F(n) ' (z) C F(An).
Note that A; is the algebra of dual numbers, and the first jet is the tangent
space T, F to F at x (cf. [Sch68] Notation 2.6).

Consider a scheme X over a field k. Let FE be a coherent sheaf on X. A
deformation of E over a local Artinian k-algebra A is a pair (F, ) where
F is a coherent sheaf on X ®; A, flat over A, and ¢ : F ®4 k — FE is an
Ox-isomorphism. Here F is tensored with k over the canonical projection
A — k. Let (Art/k) be the category of local Artinian k-algebras. Then the
deformation functor of E is the (covariant) functor

Dg : (Art/k) — (Set),

which assigns to each local Artinian k-algebra A the set of equivalence classes
of deformations of E over A. Two deformations (F,¢) and (F’,¢’) are
equivalent if there exists an isomorphism « : F/ — F compatible with ¢ and
¢, that is, p = (a ® idy)¢’.
A jet filtration is a filtration of
OcCE=FCFkHC...CF,=F,

where F; are coherent sheaves on X, with additional datum 0 € Endx(F),
which fits for every 0 < ¢ < n into the exact sequence

(19) 0—>F0—>Fii>Fi—>griF—>O

In particular, 0|, = 0. We say that two such filtrations (F, 0) and (F’, ) are
equivalent if there exists an O y-isomorphism « : F/ — F which commutes
with 6, that is, o = af’. Denote by Filt"(E) the set of equivalence classes
of jet filtrations of length n.

Proposition 11.2. Consider a scheme X over a field k. Let E be a coherent
sheaf of X. Then we have a natural bijection

Dr(Ay) ~ Filt"(E).
Proof. Let (F, ) be a deformation of E over A,. Define F; = F ®4, I

for 0 < i < n. It follows from flatness of F' over A, that F; C F;;1. Again
using flatness the canonical exact sequence

0—kL A, ™ A, 10
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yields an exact sequence

0 F@u ko> FS5F™ Fos Ay g — 0.

Hence F® k = kerm, = FF®4, I" = Fp, and we identify via ¢ the sheaves
Fy = E. The canonical exact sequence

0—-I—A,—-k—0

is split, hence induces a splitting Ox — Ox,,, where X,, = X ®j A,,. Thus
we may consider the sheaves F; as Ox-modules and obtain a filtration

OCE=FCFC...CF,=F.
Define 0 as multiplication by ¢ on F. From the exact sequence
e e S L e

it follows that 0 fits into for every 0 < i < n. If we take a different
deformation (F’,¢'), which is equivalent to (F,¢), the corresponding fil-
trations are obviously equivalent. We have constructed a well-defined map
® : Dp(A,) — Filt"(F). Next, we construct its inverse map.

Consider a jet filtration

OCE=FCF C...CF,=F, 0 € Endx(F).
To give F' an Ox, -module structure we define a multiplication with ¢ on F'
using 6:
t.f=46(f), f germ of F.
If f is germ of Fj, then it follows from that

t.f =0 mod Fz;l,

and therefore ¢.f is a germ of F;_. Inductively, we deduce that t"*1.f =0,
which means that the Ox, -module structure on F'is well-defined.

We show that F' is flat over A,,. By the lemma below it is enough to show
the injectivity of the natural mapping I ® 4, ' — F. Let f be a germ of F'
with ¢.f = 0, which means that f is already a germ of Fy. If f/ is a germ
of F;_1, then using we find a germ ¢’ of F; with t.¢g/ = f’. Thus there
exists a germ g of F with t".g = f. It follows t® f = t@t".g = t"t1® g = 0.

Tensoring the exact sequence

()—>I"—>Ani>An—>An/I—>0

with F' over A, induces by construction of the multiplication with ¢ on F
the exact sequence

0= Fea, " F5F 5 F®A,/I—0.

It follows with that E = Fy 2 F®y4, " and F,,—1 = F ®4, I. Hence,
the canonical exact sequence

0—-1—A,—k—0

tensored with F' yields the required isomorphism ¢ : FF®4, k — E.
Consider another jet filtration

OCE=F,CFC...CF, =F, 0" € Endx(F"),



72

which is equivalent to (F,0). Let « : F/ — F be an O x-isomorphism, which
defines the equivalence between the filtrations considered. Then it follows
that o is already an isomorphism regarding Ox, -module structure on F' and
F' as constructed above since o commutes with 6 and 6. We claim that
a(F}) = Fy. Indeed, we have Oa(Fj)) = o' (F}) = 0, which follows from
for F’ and ¢ = n. Hence, again from for F we have o(F{) C ker 0 = Fj.
The claim follows then from the same arguments for a~!. Consider the
following commutative diagram

E=F —>F @y I"—>F ®4, k

\L \La@idjn la@idk

E=Fy—>F®y I"—>F®yu, k.

The compositions of horizontal arrows are by construction ¢ and ¢’, respec-
tively. The left vertical arrow is the identity as we have just seen. Thus
the constructed deformations are equivalent and we obtain a well-defined
mapping ¥ : Filt"(E) — Dg(A,).

The constructed mappings ® and ¥ are inverse to each other. O

Lemma 11.3. Let A’ — A be a surjective homomorphism of Noetherian
rings with nilpotent kernel I. Then an A’-module M’ is flat if and only if

(1) M =M ®4 A is flat over A,
(2) the natural mapping M' @ 4 I — M’ is injective.
Proof. The proof is a slight generalization of [Harl0] Proposition 2.2. O

Remark. (i) Using the construction in the proof one sees that for 0 <i <n
gr =L,
where F' is a jet filtration of F. Indeed, as we have seen F' = F}, becomes
an Ox, -module, flat over A,. Hence by tensoring the exact sequence
01" 5 k=0
with F' we obtain the exact sequence
0—>F,_1—F,—FE—0

for each 1 < i < n.

(ii) Note that if E is locally free, then all sheaves appearing in a jet
filtration of E are also locally free since they all arise as successive extensions
of locally free sheaves as explained in (i).

Now we express the n-th jet of the moduli functor M of semistable vector
bundles of fixed rank and degree on a smooth projective and connected curve
X over an algebraically closed field k using jet filtrations. For a vector bundle
FE on X we always assume that E has the appropriate rank and degree to
define an S-equivalence class in M(k), and we denote it by [E].

Proposition 11.4. Consider a smooth projective and connected curve X
over an algebraically closed field k. Let E be a stable vector bundle on X.
Then we have a natural bijection of sets

iy M = Filt"(E).
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for alln > 1.

Proof. Since E is stable and hence simple, i.e. Endx(F) = k, the defor-
mations of E over A, are just the coherent sheaves F' on X, = X ®; A,
flat over A, with F ®4, k = E. Thus Dg(A4,) C M(A,), which induces a
bijection
Dg(A,) ~ J[%]M
for all n > 1. Using the above proposition we obtain the required bijection.
O

Corollary 11.5. Consider a smooth projective and connected curve X over
an algebraically closed field k. Let E be a stable vector bundle on X. Then
there is a natural bijection of sets

TeM ~ Exty (E, E).

Proof. By the above proposition it is enough to show that Filt'(E) =
Ext'(E,E). Let (F,0) be a jet filtration of length one. Then the homo-
morphism 6 induces an exact sequence

0—F—F—FE—O0.

On the other hand, such an extension gives us a filtration F C F and
a homomorphism 6 as the composition of the surjection followed by the
inclusion. O

Consider a jet filtration (F,#) of length n. Reducing mod Fy induces a
filtration
FocF,Cc...CcF,.1=F

consisting of coherent modules F; = F; /Fy on X. By the remark after
Proposition it follows that Fy = E. Since by (19) the kernel of @ is
Fy, it induces an endomorphism @ of F also satisfying (19). Given another
jet filtration (F’,6’) of length n, which is equivalent to F, the equivalence
isomorphism « : F' — F satisfies a(F)) = Fy as we have seen in the proof
of Proposition and hence induces an isomorphism & : F/ — F, which
commutes with § and @. Hence F and F are equivalent. We obtain a
reduction mapping

red : Filt"(E) — Filt" Y(E).

Proposition 11.6. Consider a smooth projective and connected curve X
over an algebraically closed field k. Let E be a stable vector bundle on X.
The bijections between J[CLE]M and Filt"(E) commute with the reduction

map constructed above and the map J[%}/\/l — J[’EIM induced by canonical

projection A, mod ¢ A1, that is, for all n > 2 we have a commutative
diagram

n n—1

j ]

Filt"(B) —% Filgn—1(E).
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Proof. Let [F| € JlpM. Then F = F®a, A,_1 is a representative of the

image of [F] in J> ' M. Consider the commutative diagram with exact rows

(E]
mod t
0 I A, A, 0
oo
0 I A, modty 0.

By construction in Proposition [11.2]and flatness of F over A,, tensoring with
F induces a commutative diagram with exact rows

0 F FRodlE 0
]
0 Fy j gty 0,
from which the proposition follows. U

Jet spaces of the moduli space of vector bundles.

Definition 11.7. Let X be a scheme and z € X. Let m, be the maximal
ideal of Ox , and k(x) the residue field of x. We call the dual vector space

of the vector space @, mt/mitt the n-th jet space of X at the point z
and denote it by J'X.

Note that the first jet is just the Zariski tangent space. We want to show
that the n-th jet space of the moduli functor M at a stable vector bundle FE
coincides with the n-th jet space of the coarse moduli space M at the point
induced by E in M in the sense of the above definition. Intuitively, it means
that although M does not represent M in general, locally at stable points
it is not too far from a fine moduli space.

Consider a scheme X over a field k. Let E be a coherent sheaf on X.
Let (R, m) be a local complete Noetherian k-algebra. The ring R is not
necessarily in (Art/k), however R/m™ is a local Artinian k-algebra for every
n > 1. Consider a § € lim Dr(R/m™) = Dg(R). Then ¢ induces a natural
transformation

5 :Dg —h R
where hp is the functor given by hr(A) = Homy (R, A). We say that
(R, &) pro-represents Dg if the natural transformation £ is an isomorphism.

Theorem 11.8. Let E be a stable vector bundle on a smooth projective
curve X over an algebraically closed field k. Then the deformation functor
Dg attached to E s pro-represented by the completion Oy (g of Oy [g)-

Proof. Cf. [HL10] Theorem 4.5.1. O

Proposition 11.9. Let E be a stable sheaf on a smooth projective and
connected curve X over an algebraically closed field k. Then for every integer
n > 1 we have a natural bijection
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Proof. Using the same argumentation as in the proof of Proposition [11.4]
we know that JEM = Dg(A,) for all n > 1. On the other hand, it follows
from the above theorem that Dg(A4,) = Homk(@M’E,An). Using the fact
that Homk(@MvE, Ap) = Homy(Own g, Ay) the proposition follows from the
lemma below. O

Lemma 11.10. Let (B,m) be a local k-algebra with B/m = k. Then for
every integer n > 1 we have a canonical isomorphism

n
Homy.ay(B, An) = Homp(@D m' /m™*1 k).
i=1
Proof. We show the statement by induction on n.

Let n =1 and ¢ : B — A, be a k-algebra homomorphism. Then ¢
induces a homomorphism m — kt = k of k-vector spaces, which factors
through m/m?. Conversely, a k-vector space homomorphism 1 : m/m? — k
induces a homomorphism m — kt. By assumption B/k = m we can lift this
map to a k-algebra homomorphism B — A,,. These two constructions are
inverse to each other.

Let n > 1. Consider a k-algebra homomorphism ¢ : B — A, and the
canonical projection 7 : A, — A,—_1. Then by induction hypothesis wy
induces a homomorphism 3 ¢ in Homk(@?;ll m?/m'T1 k). On the other
hand, the restriction of ¢ to m” induces a homomorphism ¢(™ : m” /m"+! —
kt" ~ k. Hence, we obtain a Y () € Homy (@}, m'/m*+1 k).

Conversely, consider a ¢ € Homy (!, m’/m'™1 k). Then by induction
hypothesis 1) induces a k-algebra homomorphism v/ : B — A, 1 and a
k-vector space homomorphism go(") :m?/m"t! — k. We have an exact
sequence

0— m"/m" ™ - m/m"* — m/m" =0,
which gives us a decomposition m/m"*! ~ m” /m"*! ¢ m/m"*! as k-vector
spaces. Thus we may consider ¢/ + ¢(™ as a k-algebra homomorphism
m/m" ™ — A,. This defines an element in Homy (B, A,). One checks
that both constructions are inverse to each other, and the proposition fol-
lows. (]
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REMARKS ON LITERATURE

Section [5f The whole content of this section is a summary of the definitions in
§1. For an example of a semistable vector bundle which is not strongly
semistable cf. [Gie73] Theorem 1. The theory of Noetherian descent is introduced
in [EGAIV;] §8. We list the results implicitly used in the summary: 8.10.5, 11.2.6,
8.5.2, 8.5.5. The result referred to for the proof of Proposition [5.2] is exactly the
statement of the proposition, however only for strongly semistable vector bundles
of degree zero; the proof remains the same for vector bundles not necessarily of
degree zero.

Section [6} For the definition of the strong topology, in addition to the exposé

[Conl, also cf. [Mum99] I. §10.

Section [} For Zariski’s connectedness principle or more exactly its implication
we used [III05] Corollary 2.14.

Section |8t For the notion of a semistable curve cf. [Liu02] Definition 10.3.1; for
the definition of a split ordinary double point cf. loc. cit. Definition 10.3.8.

Section [9} The dual graph of a curve is defined in Section 10.1.4.

Section The Proposition is based basically on the proof of Theorem 1
in [DWO05b]. The statement for vector bundles with strongly semistable reduction
may be concluded also indirectly using Theorem 17 (characterization of the latter
property) and Lemma 7 in loc. cit. The construction after Definition is based
on Remark 1 of Coleman in [Lud13]. The construction of the line bundle of given
degree in Lemma [10.7] is contained in the proof of [DWI10] Theorem 3.

Section For the notions from the deformation theory see [HLI0] Appendix
2.A. For a more conceptual approach to jets cf. [Voj07].
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p-adic representations for vector
bundles



12. CONSTRUCTION REVISITED

In this section we briefly recall the construction of the parallel trans-
port introduced in [DWO05b]. Consider a smooth projective and connected
curve X over @p. Let TI;(X) be the fundamental groupoid of X. The p-
adic parallel transport attaches to a vector bundle £ in 5% a continuous
representation

pe  11(X) = Vecg,,
that is, a continuous functor pg into the category of finite dimensional vector
spaces over C,,. Such a representation is called the (p-adic) parallel transport
for E. The parallel transport is functorial in F, it defines a C,-linear functor

X — Repc, Il (X)

into the category of continuous representations of IT; (X)), that is, the cate-
gory of continuous functors Iy (X) — Vecg,.

For a divisor D on X we write X \ D for X \ Supp D.

Theorem 12.1. Consider a smooth projective and connected curve X over
@p. Let X be a model of X and £ a wvector bundle on X, with strongly
semistable reduction of degree zero. Then there exists a proper o-morphism
w:Y — X such that the following properties are satisfied:
(i) Y is a model of a smooth projective and connected curve Y over @p,
(1) g, Y — X is finite and

W@p:Y\(w_lD)—)X\D

is étale for a divisor D on X,

(iii) MOy = Ospeco 1 satisfied universally, where A : ) — Speco is the
structural morphism,

() & is a trivial vector bundle.

As before we denote by o, the ring o/p"o for every n > 1.

Variant 12.2. With notations as in the above theorem there exists a mor-
phism m for every n > 1 satisfying (i), (i), (iit) and

(v’) T &y, is a trivial vector bundle.
Here mp, = m ®id,, and &, = E ® o,.

Let Bx p be the full subcategory of the category of vector bundles on X,
such that for every object £ in Bx p and every n > 1 there exists a finitely
presented proper o-morphism 7 : ) — X of models with (ii) and (iv’).

Proof. From [DWO05b] Theorem 17 it follows that there exists a divisor D on
X such that & belongs to Bx p. Using loc. cit. Theorem 1 we may replace
Y by a model additionally satisfying (i) and (iii). O

Remark. Theorem 1 in [DWO05D] also states that )’ can be chosen to be a
semistable curve over o.

Fix a model X of X. Let 85 be the full subcategory of the category of
vector bundles on X, with strongly semistable reduction of degree zero. The
functor

¥ — BY, E E®,C,y
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is essentially surjective by the definition of B%. The next lemma follows
from the above theorem.
Lemma 12.3. We have
B% =Bz,
D

where D runs over divisors of X.

Let X be a model of X over Z, and £ a vector bundle on X, with strongly
semistable reduction of degree zero. Fix a divisor D on X and put U =
X \ D. By properness we have X(C,) = X,(0). Consider a geometric point
z € X(Cp) as a section z, : Speco — X,. Write &,, = 23€ viewed as a
free o0-module of finite rank r. The reduction mod p™ : 0 — 0, induces a
mapping X,(0) — X,(0y,), which maps z, to the morphism

Ty @ Spec o, — Speco — X,.
Put &, = x5 = &, ®, 0, viewed as a free 0,-module of rank r. We have

Ex, = @ Exp
as topological modules, where &, is considered as a discrete module.

Construction. For x € U(Cp) = II1(U) put pg = &;,. For z,2' € U(C,) we
have to construct a continuous mapping on étale paths

PE - HomH1(U)(xv CC/) — Homo(gxna gxg)
Denote by Fy the fiber functor defined on étale neighborhoods of U by taking
the fiber of x. It is enough to define a mapping
pen : Iso(Fy, Fyr) — Homy, (Ex,, Exr)

for each n > 1, which induces a projective system of mappings. In fact, we
define then pg = @pg,n. The continuity of pg follows from construction.

Let v be an étale path from z to 2/ in U. Fix an n > 1. By the above
theorem there exists a morphism 7 : ) — X with properties (i) — (iii) and
(iv’) such that

o En
is a trivial bundleon Y,,. Set Y = y®@p, V = Y\r~ (D). Then by property
(ii) the morphism 7 : V' — U is a finite étale covering. Let y € V(C,) be a
point over x € U(C,) and let ' = vy be the image of y under the mapping

o Fx(V) — F:):’(V)

Hence y' lies over /. Now property (iii) yields the identity MOy, = Ospecaoy, -
Therefore the pullback under y,, : Speco,, — ), induces an isomorphism

yr : D(Vn, mEn) — T'(Specon, ypmin&n) = Ex,,-
We define pg () as
pen(y) = (Voo (i)t = (W) o (n) ! €y = Eny,
and set
pe(y) =lmpe n(7) : €y = Epy-
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Proposition 12.4. The construction of pg is independent of the choice of
the model I and the point y. It gives a well-defined continuous representa-
tion

pe Hl(U) — Mod,
into the category of free finitely generated o-modules.

Proof. Cf. [DW05b] Theorem 22. O

The next step is to turn the map & — pg into a functor
p: %1:7[) — Repol'[l(U)
to the category of continuous representations, that is, the category of con-
tinuous functors Iy (X) — Mod,.

Let f : &€ — & be a morphism in By p. Then the family of o-module
homomorphisms

foo =x5f 1 €5y — 5;0, z e U(Cp)

defines a natural transformation py : pg — pg/. Indeed, let v be an étale path
from x € U(C,) to 2’ € U(C,). Fix an n > 1. From a slight generalization
of Theorem (cf. [DW05D] Corollary 3 (3)) there exists a model Y — X
such that both 7:&, and 7€, are trivial. Put f,, = z} f, choose a point y
over x and set ¥y = ~y. From the commutative diagram

fan

(C/‘x n g:i‘ n

yZT: y?LT:

DYy, 738y — 2l )

y’le y’le
£

Ty /
gz'/n SI;L

we see that fir o pe n(v) = pern(7) o fz,. Taking the projective limit yields
fay 0 pe(y) = per(7) © fa,-

Now, after we have defined the functor p, we want to get rid of the divisor
D. Theorem 17 in [DW05b] gives us slightly more information about D than
stated in Theorem . Indeed, it also says that for every bundle £ in B%
there are trivializing covers ) and )’ with respect to divisors D and D',
which have disjoint support.

Proposition 12.5. Let U, U' C X open, i :UNU' = U, :UNU — U’
and 7 : U - UUU, 5 : U — UUU' canonical immersions. This data
induces the following commutative diagram

=

MU NU") I, (U)
L (U) — = U u).

Let C be a Hausdorff topological category, p : 11 (U) — C and p' : TI1(U") = C
two continuous functors satisfying pi. = p'i,. Then there exists a unique
continuous functor T : 11 (U UU’) — C such that 7j. = p and Tj, = p'.
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Proof. Cf. [DWO05b] Proposition 34. O

From this proposition it is clear that the parallel transport pg ; for £, con-
structed with respect to D, and the parallel transport pg o for £, constructed
with respect to D’, give a unique continuous representation

pe 1 (X) — Mod,
since DN D" = (). Using Lemma we conclude the following
Theorem 12.6. There is a well defined functor
p By — Rep,l (X),

which extends the constructed functors p : B% p — RepoIli(U), where D
runs over dwisors of X =X ®,C, and U = X \ D.

Now we are able to construct the functor
BY — Repe, I11(X).

For an object E in B% we obtain a continuous functor pg : II1(X) —
Vece, by setting pp(z) = E; = 2*E for € X(C,). For z,2" € X(C,) the
continuous map

PE Homnl(x)(az,x') — Homc, (Ey, Ey)

is given by
pE(Y) =¥, o (pe(7) ®o Cp) 0 1y

Here X is a model of X, and £ is a vector bundle in B3 with an isomorphism
Y E— &®, Cp of vector bundles on X¢,. Moreover 1, is the fiber map

Q]Z)x = :U*’QZ) : Ex — (5 Ro (Cp)x = Exﬂ Xo Cp-

For a morphism f : E — E’ of vector bundles in 8% the map p(f) is given
by the family of linear maps f, = 2*(f) : E; — Ey for each x € X(C,).

From [DWO05b] Proposition 27 it follows that this functor does not de-
pend on the choice of the model X of X and the vector bundle £. This
concludes the construction of the parallel transport for vector bundles in
B% . Although we have only focused on the construction of this functor, we
state the properties of p proved in loc.cit.

Theorem 12.7. The constructed functor
By — Repe,I11(X)

is an exact additive functor, which commutes with tensor products and in-
ternal homs. It behaves functorially with respect to morphisms of smooth
projective and connected curves over Q, and automorphisms of Q, over Q.

Proof. Cf. [DWO05b] Theorem 36. O

Eventually the parallel transport (i.e. the above functor) extends to the
category BY. This is one of the main results in [DWI0]. Since we won’t
use the explicit construction, we only state this result.
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Theorem 12.8. There exists a functor

B% — Repc, I (X),  Ew pg,
such that pp(x) = E, for every x € X, extending the functor in the above
theorem. It commutes with tensor products and internal homs, and behaves

functorially with respect to morphisms of smooth projective and connected
curves over Q, and automorphisms of Q, over Q.

Proof. Cf. [DW10] Theorem 10. O
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13. CHARACTER SPACE OF CONTINUOUS REPRESENTATIONS

Consider a topological group G. Let K be complete non-archimedean
valued field of characteristic zero. A finite dimensional K-vector space V is
always equipped with the topology induced by the topology on K. In the
following, by a representation G — GL(V') we mean a continuous homomor-
phism from G to the K-linear automorphism group of V.

Fix an integer r > 1 and let

Hom.(G,GL,(K))

be the set of continuous homomorphisms G — GL,(K). We regard this
set as a subset of the space CO(G, K ”2) of continuous functions on G. The
latter is equipped with the topology of the uniform convergence. To be more
precise, the topology on C%(G, K 7"2) is defined by the neighborhoods

Be(f) = {f’ € C'(G,K") | Sug\lf’(g) - flgll < 6},
ge

where ||| is a fixed norm on K™ (a different choice of the norm leads to
the same topological space). The space C°(G, K TQ) is Hausdorff since the
target space is Hausdorff, and is first-countable, which directly follows from
the definition of the topology. The set Hom.(G,GL,(K)) as a subspace
inherits this properties.

Consider a representation p : G — GL(V). Let ¢ : V.— K" be an isomor-
phism of K-vector spaces. It induces an isomorphism GL(V) = GL,(K),
f = ¢fe~! and hence by composition with p a continuous homomorphism
©*p: G — GL(V). The choice of a different isomorphism ¢ : V' — K" yields
an A € GL,(K) such that ¢ = ¢ A. The homomorphism ¢*p: G — GL,(K)
satisfies

©*p(9) = op(9)p™ ' = vAp(g) AWt = ¢*(Adap)(g) (9 € G),
where Ads : GL.(K) — GL.(K), B+~ ABA~! is the conjugation with A.
Thus p defines an equivalence class in the space

Rq(K) = Rg(K) = Homo(G,GL,(K))/GL,(K)

equipped with quotient topology. Here the action of A € GL,(K) is given
by the composition with Ad4. On the other hand, two isomorphic repre-
sentations of G induce the same equivalence class in Rg(K). Therefore we
have proved the following

Proposition 13.1. The set of isomorphism classes of r-dimensional contin-
uous representations of G is in bijection with the topological space Ra(K).

Remark 13.2. In general, the topology on Rg(K) is not Hausdorff. Here is
a well-known example. Let G = Z. Let (a,) be a sequence in K with a,, # 0
for all n > 1, which converges to zero. Define

1 a,
A, = (0 1> EGLQ(K).

Let f, : Z — GL2(K) be the homomorphism defined by 1 — A,. If we
consider Z as a discrete topological group, all f,, are trivially continuous
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and define the same class ¢ in Ry 2(K), since for n # m the matrices A,

1 0
0 1). Hence

every neighborhood of the conjugation class [f] = {f} contains c.

and A,, are conjugated. But f,, converges to f:1— F =

Recall that the category of finite dimensional continuous K-represen-
tations is abelian. Further, every object in this category is of finite length,
since the condition on the finite K-dimension does not allow infinite filtra-
tions. Therefore, using the abstract formalism from section [d we have the
notion of the Jordan-Holder filtration and Jordan-Holder equivalence for
every such representation. Define

Xeo(K) = Xgr(K) = Hom¢(G,GL(K))/~jH,

where ~ jp is the JH-equivalence and equip X (K) with the quotient topol-
ogy. This space is naturally a quotient space of the space Rg(K) since
the JH-equivalence is coarser than the equivalence relation given by taking
isomorphism classes.

Let Hom?*(G,GL,(K)) C Hom.(G,GL.(K)) be the subset of semisim-
ple representations G — GL,(K). The JH-equivalence descends to this set
and is given by taking isomorphism classes, since two semisimple represen-
tations are JH-equivalence if they are already isomorphic. Hence, we obtain
a canonical inclusion

Hom?* (G, GL,(K))/GL,(K) C Xg(K).

On the other hand, every JH-equivalence class ¢ in the set on the right
hand side has a unique (up to isomorphism) semistable representation as a
representative. This is just the associated grading to some (and hence any)
representation in ¢. Therefore the inclusion is indeed a homeomorphism of
topological spaces.

Proposition 13.3. We have a canonical homeomorphism
Xo(K) = Hom® (G, GLy(K)) [GL (K)
induced by taking the associated grading.

A quotient of a first-countable space by a topological group, which acts
continuously on it, is again a first-countable topological space. Hence, the
topologies on the space Rg(K) and Xg(K) introduced above can be char-
acterized by limit points of convergent series. Basically, this is what we will
do using the next definition, which is due to Bellaiche, Chenevier, Khare
and Larsen (cf. [BCKLO5| Definition 1.1).

Definition 13.4. Let (px)x>1 be a sequence of representations of G on
K-vector spaces V.

(i) We say that (py) is (uniformly) physically convergent if for each A
there exists a K-basis of V; such that the coeflicients cl’-\J : G — K of py
with respect to this basis satisfy:

(1) cl’-\7 ; converges uniformly on G, and

(2) p(g) = limaroo(c;(9))ig € GL,(K) for all g € G.
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The isomorphism class of p is called a physical limit of (py).
(ii) We say that (py) is (uniformly) trace convergent if the sequence of
functions satisfy

(1) trpy : G — K converges uniformly in G, and
(2) t: G — K, t(g) = limy_o tr pa(g) is a trace of some representation
p of G.

The JH-equivalence class of p is called the trace limit of (py).

There is an ambiguity in the definition of the physical convergence due to
the choice of a basis. The sequence (f,) defined in Remark physically
converges to f. But after choosing a different basis we may achieve that
fn(1) = A; for all n > 1. Thus (f,) also physically converges to fi. On
the other hand, physical convergence implies trace convergence. But since
the topology of uniform convergence on C°(G, K) is Hausdorff, the trace
limit of (py) is unique. Therefore two representations whose isomorphism
classes are physical limits of (py) have the same trace. It follows then from
the theorem of Brauer-Nesbitt (cf. [Boub8] §12 1. Proposition 3) that these
representations are JH-equivalent. Hence we have proved the following

Proposition 13.5. Consider a physically convergent sequence (py) of rep-
resentations of G. Let p and p’ be two representations, whose isomorphism
classes are both physical limits of (px). Then p and p’ are JH-equivalent. In
particular, they both define the same point in Xg(K).

Proposition 13.6. Let (py) be a sequence of representations of G.

(1) If (pr) converges physically to ¢ € Rg(K), then the induced sequence
(¢n) in Rg(K) converges to q. On the other hand, if a sequence in Rg(K)
converges to q, then there exists a sequence of representations (py) of G such
that py represents g\ and (py) converges physically to q.

(11) If a sequence (qy) in Xg(K) converges to q, then every sequence of
representations representing (qx) converges in trace to q.

Proof. The statement (i) is just another formulation of the definition of
physical convergence. For (ii) note that tr : M, (K) — K is continuous. In
fact, tr is even Lipschitz. In particular tr is uniformly continuous, which
implies that

Homo(G,GL,(K)) 2225 Hom.(G, K) C C°(G, K)

is continuous. Since JH-equivalent representations have the same trace,
the above map factors through a continuous map Xg(K) — Hom.(G, K),
which we also denote by tr. Thus tr ¢, converges to tr ¢, and the statement
follows. O

Corollary 13.7. The topology on Xg(K) is Hausdorff.

Proof. From Proposition [13.3it follows that the space X (K) is first-count-
able. Hence, its topology is determined by convergent sequences, and we
have to check that limits of convergent sequences are unique. Let (g)) be a
sequence in Xg(K) converging to ¢ and ¢’. From (ii) of the above proposition
it follows that (trgy) converges uniformly to tr¢ and tr¢’, hence tr ¢ = tr¢
since Hom.(G, K) is Hausdorff. The theorem of Brauer-Nesbitt (cf. [Bou58]
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§12 1. Proposition 3) implies then that semisimple representatives of ¢ and
¢ are JH-equivalent, hence ¢ = ¢’ (cf. Proposition [13.3)). O
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14. p-ADIC REPRESENTATIONS FOR MODULI OF VECTOR BUNDLES

After introducing the spaces of representation of fixed dimension, we will
use the p-adic parallel transport to define set theoretic maps first on the pa-
rameter scheme, which parametrizes a family of vector bundles, and secondly
on the level of moduli space of vector bundles. From now on let K = C,,.

Consider a smooth projective and connected curve over @p. Let X be a
model of X over Z,. Consider a family £/X/S as in that is, S is a
connected scheme of finite type over Z,, and £ is a family of vector bundles
on X, parametrized by S. Let I be the family & ®, C,,.

Assume that S is proper. Using the identity S(C,) = S(o) we write s,
for the induced point in S(o0) by s € S(C,). By Corollary the set

SH(Cy)

of points s € S(C,) such that &, has strongly semistable reduction of degree
zero, which trivially implies that E; has strongly semistable reduction of
degree zero, is p-adically open.

Let z € X(Cp) and m = m; (X, z) the étale fundamental group of X with
base point x. The parallel transport revisited in section 12| for the category

% yields an exact functor to the category of finite dimensional continuous
C,-representations of m. Therefore for each s € S'(C,) the vector bundle
E, induces a continuous representation pg, , : T = GL(FEs ;). By taking its
isomorphism class we obtain a set theoretic mapping

(20) p:SHCy) = Re(Cy), 5+ [ppaal,

where [-] on the right hand side denotes the isomorphism class of the repre-
sentation in question.

Proposition 14.1. Let £/X/S be as in[6.3, E = £ ®, Cp. Assume that S
is proper. Then the mapping (20) induced by £/X/S

p: Sl((cp) — R (Cp)
is continuous with respect to the p-adic topology on S* (Cp).

Note that by the construction of the parallel transport for the category

% we have pp, . = pe,, = ® Cp, i.e. the representations are obtained by
scalar extension to C,, of finitely generated free o-modules. For the proof of
the proposition we consider first such representations.

Lemma 14.2. Let G be a topological group. Let (L)\))\Zl be a sequence of
free o-modules of rank r. Consider a sequence of representations py : G —
Aut, (L) and a representation p : G — GL,(0). Assume that for eachn > 1
there exists a \(n) > 1 such that

(*) Prn = P,

where py n and py, are the induced representations of G on the o/p"o-modules
LA /p" L resp. of. Then the sequence (py) is physically convergent to the
isomorphism class of p.
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Proof. Let n > 1. By (x) after a choice of a different basis of L* there exists
a A(n) > 1 such that for all A > A\(n) we have

Pxn = Pn-
It follows that py(g) — p(g) € p™o” for all g € G and A > A(n), in particular
taking the ij-th component of the corresponding matrices (1 < 4,7 < r)
yields
1

sup |px(9)i; — p(9)ij] < —-

geGI (9)ij = p(9)is] p
Hence (py)i,; converges uniformly to p; ;. U

Proof of the proposition. Consider a sequence (s*) in S1(C,) converging p-
adically to s. Write £} = Ex and E0 = &,,. Using Proposition (i) we
have to show that pg , » = pex , ®, C,, converges physically to p(s), which is
the isomorphism class of PE.x = Pz Qo Cp. By Corollary foralln > 1
there exists a A(n) > 1 such that for all A > A\(n) we have

Er=&D.
Hence, pgx ,, = pgo ,,- By the above lemma it follows that pgx ,, is physically
convergent to the isomorphism class of pgo ;. (]

Mapping on the moduli of vector bundles. Instead of considering fam-
ilies, we work with the moduli space of vector bundles parameterizing those.

Let Mx be the moduli space of semistable vector bundles of fixed rank r
and degree zero (cf. section . By Theorem and its Corollary the
subset

M} (Q,) € Mx(Q,)

of S-equivalence classes of vector bundles on X having potentially strongly
semistable reduction, i.e. lying in 239(, is p-adically open. On the other
hand, the category B% is abelian (cf. [DWI10] Corollary 5 iii) and is a full
subcategory of the abelian category of semistable vector bundles of slope
zero (cf. loc. cit.). Hence the notion of S-equivalence coincides with the
abstract notion of JH-equivalence in the category ‘B())( (note that all objects
in the latter category are of finite length). For a vector bundle E on X
in %9( we write pg for the p-adic representation induced by the parallel
transport for the category ‘Bg(

PEc, @ T = GL(E, ® Cp),
where Ec, = F ®g C,. All in all, we have the following
P

Proposition 14.3. The parallel transport induces a well-defined mapping
p: Mg)((@p) — er((cp)7 [E] = [pE,:E]a

where [-] on the right hand side denotes the JH-equivalence class of the rep-
resentation in question.

Remark. The locus M5 (Q,) of stable vector bundles in Mx(Q,) is open,
in particular p-adically open. Hence, we may consider the p-adically open
subset M;{,o (@p) consisting of stable vector bundles on Xc¢, of rank r having
strongly semistable reduction. Unfortunately, we do not know whether p
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preserves simple objects. This would imply that p also preserves the length
and gradings, and we could consider the mapping

p: MY (@) = Re(Cyp), Bl = [pmal-

We introduce the following subset of Mx(Q,): Let E be a vector bundle
on X of rank r. Assume that there exists a vector bundle £ on a smooth
model X of X over Z, with generic fiber E such that the reduction & is
strongly semistable of degree zero and stable as a vector bundle on the
smooth projective curve Xj. In particular, ¥ has good strongly semistable
reduction of degree zero and induces a point in M$(Q,). We denote by
M5 (Q,) the subset of Mx(Q,) parametrized by such vector bundles. The-
orem yields for every vector bundle E as above a p-adic neighborhood in
Mx(Q,) and by its construction it lies in M (Q,). Hence, the latter space
is p-adically open in My (@p).

For a smooth model X we denote by M = My, the moduli space of
semistable sheaves on Xx of rank r and degree zero, where Xy is a model
obtained from X by descent to a finite field extension K of Q,. In the
following the choice of K is irrelevant.

Proposition 14.4. Consider a smooth projective and connected curve X
over Q,. Let M}((Qp) be as above. Under the assumption: for all vector
bundles € and F on a smooth model X we have

(x)  If [&n] = [Fn] in M(0y), and & or Fy is stable, then pg n, = pr.n;

the mapping

p: Mx(Q,) = Xx(Cp)
induced by the parallel transport is continuous with respect to the p-adic
topology on M}((@p)

Proof. Consider a sequence (ay) in M} (Q,) converging p-adically to a. Let
E* and E be vector bundles on X representing ay and a, respectively. By
definition of M} (Q,) there exist a smooth model X of X over Z, and a
vector bundle 5 on X with an isomorphism 1) : 6 — k.

It follows from Proposition [7.3|that for each n > 1 there exists a A(n) > 1
such that for each E* we have a vector bundle £* on ¥ with an isomorphism
P Eé — FE satisfying

P

(€3] = [€n] in M(0y)
for all A > A(n). By assumption (x) this implies that representations pgx ,,
and pg 5, are isomorphic. By Lemma we conclude that pgx , physically

converges to the isomorphism class of pg ..
Now by construction of the parallel transport we have

PEXN ¢ = Adw%pé’k,:p? PEx = Adwmps,m
In particular, the representations pex , (resp. pg o) considered as Cp-represen-
tations (by extending scalars to C,) define the same point in R (C,) as pga ,
(resp. pp ). By Proposition (i) the sequence [pga ,] in R (Cp) converges
then to [pe .]. Let px = p(axn) = [ppa] = [per » ®0 Cp in X (Cp). It follows
that the sequence (py) converges to p(a) = [pr] = [pe ®o Cp]. O
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15. IMAGE OF p

We follow the idea of [DW05a] Definition 18 and define a similar notion
to the rank one case of a representation of co-type. Every representation
induced by the p-adic parallel transport on a vector bundle defined over @p
is then of a such type.

Consider a smooth projective and connected curve X over @p. By Noe-
therian descent there exist a finite field extension K of @, and a smooth pro-
jective and geometrically connected curve X over K with Xg ®x @p = X.
Let # € X(K) and denote by Gk the absolute Galois group of Q,/K. By
functoriality of the étale fundamental group 7 (X, ) for every o € G there
exists an isomorphism

(X, z) 2% 1 (X, ).

satisfying a. = id and a,r = aya, for o, 7 € Gg. Note that o(z) = z. In
other words the group Gx acts on 7 = 71 (X, x).

Let V' be a finite dimensional C,-vector space. Recall that Autx(C,) =
Autg(Q,). We define 0,V = 7V as the abelian group V with twisted C,-
vector space structure

(1) a-v=0ca)v (e CpveV).

More conceptually, 7V =V &c, » C, tensored over the automorphism o :
C, — C,. We have

CV:"/; UT(V) :T(O'V)'

We denote the identity V' — “V by o since it is o-linear. Let d, : GL(V) —
GL(°V) be the homomorphism induced by o, i.e.

do(f) =ofo™",  feGL(V).
We have
(2) dor = 04(dr),
where o, : GL("V) — GL(°"V) is again the induced homomorphism by
o:7V = 2TV but now it is defined on a different vector space.

As before, a representation of 7 is always a continuous representation of
on a finite dimensional C,-vector space. With the above notations we define
an “action” of Gx on representations of .

Let p: ™ — GL(V) be a representation. We define “p for o € Gk by the
following commutative diagram

m—2L GL(V)
laa idg—
7p
™ ——=GL(°V).
Because of and we have
(3) ‘p=p,  Tp=7(p).

Lemma 15.1. Consider two isomorphic representations p : m — GL(V)
and p' : 7 — GL(W'). Then %p is isomorphic to p’ for all o € G
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Proof. Let ¢ : V.— V' be a Cp-linear isomorphism inducing an isomorphism
of representations p and p’, i.e. pp = p’. We have a commutative diagram

r—5% GLV) —E= GLW)

Lao' ida ldo—
7p Oxp

T —LGLEV) -Z% GLEW).

/

It follows that 7p" = 7(pp) = 0.7 p. Therefore “p and ?p’ are isomorphic
via o.. O

Let G, be the following subset of G g
G, ={0 € Gk | 7p = p as representations} .
Proposition 15.2. The set G, is a subgroup of Gk.
Proof. Let o, p € G,. Applying and the above lemma yields

Tp="(p) = p=0p.

Hence, o7 € G,. The identity °p = p is trivial. It remains to show that
ol e G,if o € Gy. Let ¢ : V =7V be a Cp-linear isomorphism inducing
an isomorphism between p and ?p. From it follows that

p="p="

o o1 —

p=7" (pp) = ou(dg-1)ppa,’ts,
which is equivalent to ¢ lo.(d,~1)"'p = pa, since a;_ll = ay. Define
Y =dy-1p"to.(d,-1)7", ie. ¢ is the composition

1 U*(dd—l)
«— 7

V="V

d 1 _-1
A VAL VN A V4

Then we have yp = Uﬁlp, hence 0~ € G p» and the proposition follows. [
Definition 15.3. Consider a smooth projective and geometrically con-
nected curve Xg over a finite field extension K of @Q,. Denote by X
its base change to Q@,. Fix an z € X(K). A continuous representation

p:m(X,z) = GL(V) on a finite dimensional C,-vector space V is called
to be of co-type if the subgroup G, C G is open.

Proposition 15.4. Consider a curve X as in the above definition. Let E
be a vector bundle on Xc¢, with strongly semistable reduction of degree zero.

Assume that E is defined over @p. Then the representation
PEx : 7T1<X,.ZC) — GL(E$)
induced by the parallel transport is of co-type.

Proof. By assumption F is defined over @p, hence by Noetherian descent
there exist a finite field extension L/K and a vector bundle E; on X =
Xk ®k L such that Fr, @, C, = E. We compute for o € G,
(“E)2 = Er @c,0 Cp = (BLe O Cp) @c, .0 Cp
= EL,:E ®L,U\L Cp = EL,m QL (Cp = E;.
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The last identity holds since o|;, = id. Therefore we have a commutative
diagram with = = 71 (X, x)

Ao

m—5% GL(E,)
§
™ —> GL(E;),

which shows that ?p is equal to p. Thus G, C G, in other words, the group
G, contains an open subgroup of G g, hence is itself open in Gk . O
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REMARKS ON LITERATURE

Section [12} The whole section is based on §3. For the definition of the
étale fundamental groupoid cf. loc. cit. p. 577.

Section The topology of the uniform convergence may be defined in a more
elegant or, in some sense, more conceptual way using the notion of uniformity, cf.

Chapter X, L.
Section [T} —

Section[I5} The definition of the G- “action” on representations is from [DWO5D]
p. 583.
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