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Tag der Promotion: 13. 07. 2005

ii



To my family

and

all my Ourtown friends





Abstract

An aspect of the thesis is to investigate well-known ordinal notation systems for
PA. It will be shown that the so-called phase transition phenomenon can be
observed, i.e., there are thresholds between provability and unprovability. This
investigation leads to a comparison of the ordinal notation systems.

The thesis gives also a guide how one can generally establish such phase tran-
sitions in every logic system which is strong enough in the sense of Gödel. We
shall see that Friedman style miniaturizations play the central role.

Another point of the thesis is the parametrized version of the Kanamori-
McAloon principle. This variants of the finite Ramsey theorem is equivalent to
the Paris-Harrington principle. It will be shown that phase transitions occur with
respect to the provability of the Kanamori-McAloon principle as the parameter
function varies.
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Chapter 1

Introduction

In the 1930s, Gödel’s work showed that the proposal for the foundation of clas-
sical mathematics known as Hilbert’s Program cannot be carried out. However,
starting with Gentzen’s consistency proof of Peano arithmetic [21], work on re-
vised Hilbert Programs have been central to the development of proof theory:
the question of finding consistency proofs is still of value, since the methods used
in such proofs might provide genuine insight into the constructive content of
arithmetic and stronger theories. Ordinal analysis belongs, for example, to the
programs which have been pursued in proof theory. Gentzen’s ordinal analysis of
PA [21, 22, 23] and the Ackermann-Kreisel classification of the provably recursive
functions of PA [1, 33] are two classic examples.

This thesis follows this spirit of ordinal analysis. We study ordinal notation
systems of theories and classify the provabably recursive functions of them by
defining fast growing hierarchies. On the other hand, the main results are about
thresholds between provability and unprovability of some sentences in a given
theory. In this sense, this thesis lies also in the line of Gödel’s approach. Another
aspect of this thesis is that we show how concrete mathematics can be applied in
solving abstract problems of logic. And this aspect has something to do with the
question if logic matters to mathematicians. Let us explain this something more.

Though Gödel’s work is astonishing and remarkable, there is however a point
which is not so satisfactory for mathematicians. The point is that Gödel’s work
talks about coding of a system into itself. And this does not so care mathemati-
cians, since there would be still the possibility that mathematical sentences which
are independent of a reasonably strong theory might be never formulated in the
everyday enterprise of a mathematician.

The situation was changed when the 1977 work of Paris and Harrington [40]
was published. It furnished a completely transparent theorem of finite combina-
torics. The theorem deals with the so-called Paris-Harrington principle (PH) and

1



2 Chapter 1. Introduction

actually a very simple finite combinatorial variation of Ramsey’s Theorem. (PH)
is the following Π0

2 sentence:

For any natural numbers n, c, k there is an natural number ` such

that, given C : [`]n → c, there is a set H ⊆ ` such that C �[H ]n is a

constant function and H contains at least max{k, min(H)} elements.

Here [X]n is the set of all n element subsets of X. Paris and Harrington showed
model-theoretically that (PH) is PA-independent, i.e., (PH) is not PA-provable,
though it is true.

The second achievement of logicians which attracts attention of mathemati-
cians is the Friedman style miniaturization of Kruskal’s theorem about finite
rooted trees. A finite rooted tree T is a finite partial ordering (T,�) such that, if
T is not empty, there is a smallest element called the root of T and that for each
b ∈ T the set {a ∈ T : a � b} is totally ordered. Let a∧ b denote the infimum
of a and b for a, b ∈ T . A finite rooted tree T1 is called homeomorphically em-
beddable into a finite rooted tree T2 if there is an injection f : T1 → T2 such that
f(a∧ b) = f(a)∧ f(b) for all a, b ∈ T1. Kruskal’s theorem says:

Given a sequence of finite rooted trees (Tk)k<ω, there are indices ` < m
such that T` is homeomorphically embeddable into Tm.

This is a true sentence, cf. Kruskal [35]. Moreover, Friedman [49] showed that
Kruskal’s theorem is ATR0-independent. The formula complexity of Kruskal’s
theorem is Π1

1, i.e., it does not belong to the language of first-order arithmetic.
By the Friedman style miniaturization, however, it can be transformed into a
sentence of a relatively simple complexity, namely Π0

2. This is done with the help
of a certain norm function. By using it one can just talk of finite sequences of
finite rooted trees instead of infinite ones:

For any natural number k there is a constant n so large that, for any

finite sequence T0, . . . , Tn of finite rooted trees such that the number

of nodes of Ti is at most k + f(i) for all i ≤ n, there are indices

` < m ≤ n such that T` is homeomorphically embeddable into Tm.

Note that this is a Π0
2 sentence if f : N → N is primitive recursive, i.e., it is

mathematically not more complicated than its infinite prototype. Moreover, for
f(i) = i it is still ATR0-independent, cf. [49]. This was later sharpened by Loebl
and Matoušek [37]: if f(i) = 4 log2 i then the miniaturization is PA-independent,
and if f(i) = 1

2
log2 i then provable in PA.

Now a question arises: is there a real number c such that the miniaturization
is provable if and only if f(i) = r log(i) for some r ≤ c ? This question was one
of the starting points of the pioneer work Weiermann [60]. He noticed that an
analysis of the combinatorial behavior of the given norm function could really give
a secret away in solving the provability problem. Through his following works it
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has suddenly become clear that a part of “concrete” mathematics, e.g. analytic
number theory, earns respect of logicians in solving problems from “abstract”
mathematics. Indeed, he found out there are phenomena which can be called
phase transitions whose concept stems originally from physics.

1.1 Phase transitions

In physics, a phase transition is the transformation of a thermodynamic system
from one phase to another. The distinguishing characteristic of a phase transition
is an abrupt change in one or more physical properties, e.g. the heat capacity,
with a small change in a thermodynamic variable such as the temperature. And
it is one of the cornerstones of equilibrium statistical mechanics that macroscopic
systems undergo phase transitions as the external parameters change. Typical
examples are the transitions between the solid, liquid, and gaseous phases, i.e.,
evaporation, boiling, melting, freezing, sublimation, etc. For a mathematical
description of phase transitions see Gibbs [24] and Lee and Yang [36, 64]

e
r
u
s
s
e
r
P

X (critical point)

liquid

solid

gas

Temperature

Figure 1.1: phase transitions in physics

Also in mathematics the interest in the study of phase transitions has grown,
especially in random combinatorial problems. The classic combinatorial phase
transition occurs in the random graph model of Erdös and Rényi [15]. There
one considers a graph on n vertices with edge occupation probability α/n. As
the parameter α passes through 1, the model undergoes a phase transition in the
sense that the size of the largest connected component changes from order logn
to order n. More recently, there has been much study of the phase transition
in the random k-SAT model, both by heuristic and rigorous methods, see [8].
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In k-SAT, the instances are formulas in conjunctive normal form; each formula
has m clauses, and each clause has k distinct literals drawn uniformly at random
from among n Boolean variables and their negations. For fixed k ≥ 2, the model
undergoes a sharp transition from solvability to insolvability as the parameter
α = m/n passes through a particular k-dependent value, cf. Friedgut [20].

What about logic? Weiermann [60] showed that there is a real number c such
that the miniaturized version of Kruskal’s theorem with the parameter function
f(x) = r log2 x is provable iff r ≤ c. Indeed, c = 1

log2 α
, where α = 2.9557652 . . .

is Otter’s tree constant, cf. Otter [39].

y = c log x

y = 1
2

log x

y = x

y = 4 log x

provab
le

unprovab
le

Figure 1.2: phase transitions in PA

Another example of phase transitions in logic were given in Weiermann [60]
and Arai [4]1. Using the Friedman style miniaturization of well-foundedness of
ordinals below ε0 they showed that the PA-provability of this Π0

2 sentence with
a parameter function changes abruptly as the parameter function varies. See
Chapter 2.

This aspect of these two works is one of the starting points of this thesis
in the sense that one demonstrates some more Friedman style miniaturizations
concerning several well-known ordinal notation systems for PA which share the
phase transition property. And this investigation leads to a comparison of the
ordinal notation systems.

The thesis gives also a guide how one could generally construct such exam-
ples in every logic system which is strong enough in the sense of Gödel. An-
other point of the thesis is the investigation of the parametrized version of the
Kanamori-McAloon principle which is equivalent to the Paris-Harrington princi-
ple. The two variants of the finite Ramsey theorem show also phase transitions

1Arai’s work is based on Weiermann’s work though the latter is published later.
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as the growth speed of the parameter function changes. This part of the thesis
is invoked by Kanamori-McAloon’s work [29] and Weiermann [61] which shows
phase transitions with respect to the Paris-Harrington principle.

1.2 Overview

We now give a short overview of the single parts and chapters. The thesis is
composed of three parts.

Part I We introduce six well-known ordinal notation systems for PA and study
them with regard to the question whether or not they are isomorphic to each
other. This is closely connected with the conceptual problem2 which criteria one
can use to answer the question about ‘natural’ or ‘canonical’ notation systems for
ordinals in proof theory. This will be done by giving certain intrinsic mathemat-
ical properties, namely phase transitions, that are independent of their possible
use in proof-theoretic work.

In Chapter 2 the main results of Weiermann [60, 59] and Arai [4] are sum-
marized. It is shown that some ordinal notation systems for PA are intrinsically
different.

The main object of Chapter 3 is in contrast to show that many of the six
systems are intrinsically isomorphic though at first glance they seem to have
nothing to do with each other.

Part II The Kanamori-McAloon principle (KM) is a variant of the finite Ramsey
theorem and equivalent to the Paris-Harrington principle (PH). Given a function
f : N → N we define the parametrized version (KM)f and compare it with (PH)f

both in the local level, that is, with respect to IΣn, and in the full strength of PA.
For this we construct fast growing hierarchies of Ramsey functions which are the
Skolem functions of (KM)f .

Chapter 4 contains the following: some comparisons between (KM)f and
(PH)f and the upper bounds for the growth of the Skolem functions of (KM)f

and its provability for some f .
By constructing a fast growing hierarchy we show in Chapter 5 that the para-

metrized Kanamori-McAloon principle undergoes phase transitions as the para-
meter function f varies. It is demonstrated how fast the parameter function
f should grow, so that (KM)f is PA-independent or so that (KM)n+1

f is IΣn-
independent.

Part III In this part we present a general way of using Friedman style miniatur-
ization to construct Π0

2 sentences independent of a given theory beyond PA and
show that they also share the phase transition property. This is directly connected
with the construction of the ordinal notation system for the given theory.

2See Feferman [19] and Kreisel [34] for more discussions on the conceptual problems in logic.
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We investigate in Chapter 6 the ordinal number system for the small Veblen
ordinal ϑΩω which is the proof-theoretic strength of ACA0 + Π1

2-BI. We recon-
struct the ordinal notation system of ϑΩω given by Rathjen and Weiermann [43]
as a set of closed terms and define a norm function on it. This is necessary for
the construction of Π0

2 sentences which shows phase transitions with respect to
ACA0 + Π1

2-BI.

1.3 Preliminaries

We summarize some notations and their properties which serve as basics for the
whole part of the thesis.

1.3.1 Well-partial-ordering

A quasi-ordering is a pair (X,�), where X is a set and � is a transitive, reflexive
binary relation on X. If Y ⊆X we write (Y,�) instead of (Y,� �Y ×Y ). A quasi-
ordering (X,�) is called a partial ordering if � is antisymmetric, too. Modulo
the equivalence relation ∼= on X defined by

x ∼= y iff x � y and y � x

any quasi-ordering may be regarded as a partial ordering of the set X/ ∼=.

Given a partial ordering (X,�), we call ‖ · ‖ : X → N a norm function on X
if for every n ∈ N the set {α ∈ X : ‖α‖ ≤ n} is finite. The structure (X,�, ‖ · ‖)
is called then a normed partial ordering.

For any partial ordering (X,�) and any x, y ∈ X we write x ≺ y for x � y
and y 6� x. A linear ordering is a partial ordering (X,�) in which any two
elementary are �-comparable.

A well-quasi-ordering (wqo) is a quasi-ordering (X,�) such that there is no
infinite sequence 〈xi〉i∈ω of elements of X satisfying: xi 6� xj for all i < j. A well-
partial-ordering (wpo) is a partial ordering which is well-quasi-ordered. (X,≺) is
called well-ordering if (X,�) is a linear wpo. The following condition is necessary
and sufficient for a partial ordering (X,�) to be a wpo:

Every extension of � to a linear ordering on X is a well-ordering.

Given a well-ordering (X,≺+) and a partial ordering (X,�) there is a natural
question concerning well-orderings and their order types: Under what condition is
there a non-trivial upper bound for the order type of (X,≺+) which depends only
on (X,�)? (“non-trivial” means “lower than the obvious upper bound obtained
by considering the cardinality of X.) In [12, 1977] de Jongh and Parikh gave an
answer to this question.
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Definition 1.3.1. Given a wpo (X,�) we define its maximal order type by

o(X,�) := sup{otype(≺+) : ≺+ is a well-ordering on X extending �}.

otype(≺+) denotes the order type of the well-ordering ≺+.

We write o(X) for o(X,�) if it causes no confusion.

Theorem 1.3.2 (de Jongh and Parikh [12]). If (X,�) is a wpo, then there exists
a well-ordering ≺+ on X extending � such that o(X,�) = otype(≺+).

1.3.2 Friedman style miniaturizations

Let T be a subsystem of second order Peano arithmetic and 〈B,≤〉 be a “rea-
sonable” ordinal notation system of T based on a norm function ‖ · ‖b : B → N.
Assume that this norm function is provably recursive in PA and that there is a
uniform elementary bound on {β ∈ B: ‖β‖b ≤ n} for every n ∈ N.

Provably accessible elementary recursive ordinal notation systems are e.g. rea-
sonable. More information (and proofs) about such systems can be found in Smith
[51]. All of the notation systems which are usual in proof theory are “reasonable”.

WO(B) is the assertion that 〈B,≤〉 is well ordered. For each β ∈ B, WO(β) is
the assertion that B is well ordered up to β, i.e. B contains no infinite descending
sequence beginning with β. Though WO(B) is not provable from T we have a
problem that the statement WO(B) does not belong to the domain of pure finite
combinatorics, because it contains a quantifier over infinite sequence. In other
words, its syntactic form is Π1

1.
Friedman overcame this objection by replacing the Π1

1 statement WO(B) with
its so-called Π0

2 finite miniaturization. It is a variation of the following assertion
PRWO(B) that B is primitive recursively well ordered, i.e. B contains no infinite
decreasing primitive recursive sequence. In an analogous way we define PRWO(β)
for each β ∈ B. Note that the assertions PRWO(B) and PRWO(β) are Π0

2.

Definition 1.3.3 (Friedman [49], Smith [51]). An infinite sequence 〈βi〉i<ω from
B is called slow if

there is a natural number k such that ‖βi‖b ≤ k + i for all i ∈ N.

SWO(B,≤, id) is the assertion that B is slowly well ordered, i.e. B contains no
slow infinite descending sequence. By König’s Lemma [32], SWO(B,≤, id) is
equivalent to the following Π0

2 assertion3: Let f(i) = i.

For any k there exists an n so large that B contains no finite descending
sequence β0 > β1 > · · · > βn such that ‖βi‖b ≤ k+ f(i) for any i ≤ n.

This Π0
2 assertion is also denoted by SWO(B,≤, f).

3We use the refined version of R. Smith [51].
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Let (Q,�) be a “reasonable” well-partial-ordering based on a norm function
‖ ·‖q : Q→ N. Assume that the maximal order type is the proof-theoretic ordinal
of T. For more about reasonable well-partial orderings we refer to [51]. The
“slowly well partial-orderedness” of Q, SWP(Q,�, f), is defined as follows:

For any k there exists an n such that for any finite sequence γ0, . . . , γn

from Q satisfying the condition that ‖γi‖q ≤ k + f(i) for any i ≤ n
there are ` < m ≤ n satisfying γ` � γm.

Note that SWO(B,≤, f) and SWP(Q,�, f) are all true for any function
f : N → N if B and Q are a well-ordering and a wpo, respectively.

Theorem 1.3.4 (Friedman [49], Smith [51]). In ACA0 the following assertions
are pairwise equivalent:

(i) SWO(B,≤, id).

(ii) SWP(Q,�, id).

(iii) 1-consistency of T.

(iv) Π0
2 soundness of the formal system ACA0 + {WO(β) : β ∈ B}.

The 1-consistency of a theory T is the assertion: if ϕ is a Σ0
1 sentence provable

from T, then ϕ is true.

Corollary 1.3.5. SWO(B,≤, id) and SWP(Q,�, id) are T-independent.

1.3.3 Concrete mathematics

This section demonstrates a very small and simple part of the symbolic approach
to combinatorial enumerations and is by no means self-contained. In his long
history it has actually developed various and sophisticated systematic ways in
considering combinatorial structures. However, we will concentrate on the most
basic things and their properties needed for our future works. Two topics are
especially useful: generating functions and asymptotics.

Over generating functions many general set-theoretic constructions can be
directly translated into objects of symbolic methods. It is the most powerful way
in dealing with sequences of numbers to manipulate infinite series that “generate”
those sequences. We give a catalogue based on a core of important constructions
which includes the operations of union, Cartesian product, sequence, powerset,
and multiset. In this way, a specification language for elementary combinatorial
objects is defined. The problem of enumerating a class of combinatorial structures
then simply reduces to finding a proper specification, a sort of formal “grammar”,
for the class in terms of the basic constructions.
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Another advantage of such translations becomes obvious when deriving exact
mathematical results is not available and we, nevertheless, still would like to
know something about the answer. In such cases asymptotic methods provide a
convenient way to calculate good approximations to specific values for quantities
of interest. The word asymptotic means any approximate value that gets closer
and closer to the truth, when some parameter approaches a limiting value. Here
of course we will be content with an introduction to the subject. We will be
particularly interested in understanding the definitions of ‘∼’ and ‘O’ symbols.

There are many standard books the reader can refer to. Stanley [53, 54]
seem to be classic and cover almost all materials on this subject. Segdewick
and Flajolet [48] is somewhat compact, but deals with useful technical methods
concerning generating functions and asymptotic approximations. We owe the
title “concrete mathematics” to Graham, Knuth, and Patashnik [26]. For the
one who wants to sniff the attractiveness and power of generating functions and
asymptotics this is a very interesting book. Basic definitions and techniques are
introduced through many simple, but instructive examples.

Generating functions

In the framework to be described in the following, classes of combinatorial struc-
tures are defined, either iteratively or recursively, in terms of simpler classes by
means of a collection of elementary combinatorial constructions. The approach
followed resembles the description of formal languages by means of context-free
grammars.

Definition 1.3.6. A class of combinatorial structures is a pair (A, ‖ · ‖) where
A is at most denumerable and the norm function ‖ · ‖ : A → N is such that the
inverse image of any integer is finite.

We write ‖·‖A when needed. Given a class of combinatorial structures (A, ‖·‖),
we consistently let

An := {α ∈ A : ‖α‖ = n}.

Then An, the number of elements of An, are all finite.

Definition 1.3.7. The generating function2 of a sequence (An)n∈ω is

A(z) =
∑

n≥0

Anz
n.

The coefficient An of zn in A(z) is often denoted by [zn]A(z).

2Actually, this kind of generating function is called ordinary generating function. Cf. [54, 48].
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Two kinds of “closed forms” come up when we work with generating functions.
We might have a closed form for A(z), expressed in terms of z; or we might have
a closed form for An, expressed in terms of n. For instance, binary sequences
S and permutations P, with the usual conventions that the size of a word is its
length and the size of a permutation is the number of its elements, correspond to
the counting sequences

Sn = 2n and Pn = n! resp.

Hence we have

S(z) =
∑

n≥0

2n zn =
1

1 − 2z
and P (z) =

∑

nβ0

n! zn.

The generating function S(z) exists as standard analytic objects since the series
converge in a neighborhood of 0, while P (z) is a purely formal power series. The
radius of convergence, r.o.c., of S(z) at 0 is positive and that of P (z) is 0.

The sums in generating functions runs over all natural numbers, but we often
find it more convenient to extend the sum over all integers. We can do this by
simply putting A−1 = A−2 = · · · = 0. In such cases we might still talk about the
sequence (An)n≥0, as if the An’s didn’t exist for negative n.

Admissible constructions for generating functions

We introduce some admissible operators that form the core of a specification lan-
guage for combinatorial structures. A, B, C, etc. denote classes of combinatorial
structures.

Cartesian Product: Assume that A is the Cartesian product of B and C,

A = B × C,

the size of a pair α = (β, γ) being defined by ‖α‖A = ‖β‖B + ‖γ‖C. Then, the
counting sequences corresponding to A, B, C are related by the relation

An =

n∑

k=0

Bk Cn−k.

Therefore, we find a product of generating functions

A(z) = B(z) · C(z).

Disjoint Union: We take the sum

A = B + C
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to represent the set-theoretic disjoint union of two disjoint copies of B and C.
One way of formalizing this notion is to introduce two distinct “markers” ε1 and
ε2, each of size zero, and define the disjoint union A = B + C of B, C by

A = B + C = ({ε1} × B) ∪ ({ε2} × C).

Therefore, the size of A-element coincides with that of the corresponding element
in B or C. We have clearly An = Bn + Cn and

A(z) = B(z) + C(z).

Sequence: Let B be a class of combinatorial structures such that B contains
no object of size 0, i.e. [z0]B(z) = 0. Then the sequence class S{B} is defined as
the infinite sum

S{B} = {ε} + B + (B × B) + (B × B × B) + · · ·

with ε being a “null” structure, meaning a structure of size 0. Note that the
construction A = S{B} defines a proper class satisfying the finiteness condition
for sizes since there are no objects of size 0 in B. By definition of size for sums
and products the size of a sequence is the sum of the sizes of its components:

‖α‖ = ‖β1‖ + · · ·+ ‖β`‖,

where α = (β1, . . . , β`). Hence

A(z) = 1 +B(z) +B2(z) +B3(z) + · · · =
1

1 −B(z)
,

where the geometric sum converges in the sense of formal power series since
[z0]B(z) = 0.

Powerset: A = P{B} is defined as the class consisting of all finite subsets of
class B permitting no repetitions. The size of a set is the sum of the sizes of its
non-repeating components:

‖α‖ = ‖β1‖ + · · ·+ ‖β`‖,

where α = {β1, . . . , β`}. Then

A(z) = exp

(
B(z)

1
− B(z2)

2
+
B(z3)

3
− · · ·

)

= exp

(
∑

k≥1

(−1)k−1B(zk)

k

)

.

Multiset: Multisets [ β1, . . . , β` ] are like sets except that repetitions of elements
are allowed, the notation being A = M{B}. Additionally, we also assume that
[z0]B(z) = 0. The size of a multiset is the sum of the sizes of its components:

‖α‖ = ‖β1‖ + · · ·+ ‖β`‖,
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where α = [β1, . . . , β` ]. Then

A(z) = exp

(
B(z)

1
+
B(z2)

2
+
B(z3)

3
+ · · ·

)

= exp

(
∑

k≥1

B(zk)

k

)

.

For more details about power set and multiset constructions we refer the reader
to the following excellent books [53, 54, 48].

Theorem 1.3.8. The constructions of union, Cartesian product, sequence, power
set, and multiset are all admissible. The associated operators are

Union: A = B + C and A(z) = B(z) + C(z)

Product: A = B × C and A(z) = B(z) · C(z)

Sequence: A = S{B} and A(z) = 1
1−B(z)

Power set: A = P{B} and A(z) = exp
(
∑

k≥1(−1)k−1 B(zk)
k

)

Multiset: A = M{B} and A(z) = exp
(
∑

k≥1
B(zk)

k

)

Asymptotic analysis

We say that, given two sequences (an)n and (bn)n of real numbers, an is asymptotic
to bn if

an ∼ bn, i.e., lim
n→∞

an

bn
= 1.

The next very helpful notational convention for asymptotic analysis was in-
troduced by Paul Bachmann in [5], namely the O-notation. We say that

an = O(bn)

when there are two constants C and n0 such that

|an| ≤ C|bn| whenever n ≥ n0,

where |a| means the absolute value of a given real number a.

Most of the generating functions that occur in combinatorial enumerations
are analytic functions. Their expansions converge in a neighborhood of the origin
and suitable uses of Cauchy’s integral formula make it possible to determine
effective bounds for coefficients of such analytic generating functions. For the
fairly common case of functions that have singularities at a finite distance the
exponential growth formula relates the location of the singularities closest to the
origin to the exponential order of growth of coefficients. The following shows why
the singularity nearest to the origin is important.
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Theorem 1.3.9 (The exponential growth formula). If f(z) is analytic at 0 and
R is the modulus of a singularity of f(z) nearest to the origin, then the coefficient
fn = [zn]f(z) satisfies

lim sup |fn|1/n =
1

R
.

In other word, for any ε > 0:

• |fn| exceeds (R−1 − ε) infinitely often, and

• |fn| is dominated by (R−1 + ε) almost everywhere.

Definitions and properties of analytic functions, Taylor sequences, radius of
convergence (r.o.c.), singularities, and Cauchy’s integral formula can be found
in any standard book on complex function theory. In particular, two theorems
provide us with very important tools for the future work.

Theorem 1.3.10 (Pringsheim’s lemma). If a function with a finite r.o.c. has
Taylor coefficients that are nonnegative, then one of its singularities of smallest
modulus is real positive.

Proof. See Section 7.21 in [52].

In the following this theorem will be always applicable since the Taylor coef-
ficients of a generating function are always nonnegative.

Theorem 1.3.11 (Weierstrass’ preparation theorem). Let F (z, w) be a function
of two complex variables which is analytic in a neighborhood |z−z0| < r, |w−w0| <
ρ of the point (z0, w0), and suppose that

F (z0, w0) = 0 and F (z0, w) 6≡ 0.

Then there is a neighborhood |z−z0| < r′ < r, |w−w0| < ρ′ < ρ in which F (z, w)
can be written as

F (z, w) = (A0(z) + A1(z) · w + · · · + Ak−1(z) · wk−1 + wk) ·G(z, w),

where k is such that

∂F (z0, w0)

∂w
= · · · =

∂k−1F (z0, w0)

∂wk−1
= 0,

∂kF (z0, w0)

∂wk
6= 0,

the functions A0(z),. . . , Ak−1(z) are analytic if |z − z0| < r′, and the function
G(z, w) is analytic and nonzero if |z − z0| < r′, |w − w0| < ρ′.

Proof. See e.g. Theorem 3.10 in [38].

Thus, despite the seeming generality of the equation F (z, w) = 0, there is a
neighborhood of the point (z0, w0) where it is equivalent to the equation

A0(z) + A1(z) · w + · · ·+ Ak−1(z) · wk−1 + wk = 0,

which is algebraic in w.
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1.3.4 Basic functions and conventions

We list some basic functions and conventions which will be used in the whole part
of the thesis.

Natural numbers The small Latin letters n, m, . . . range over natural numbers.

Cardinalities Given a finite set X, ¯̄X denotes the cardinality of X.

Theories The mathematical systems we are going to talk about are PA, ACA0,
ATR0, ACA0 + Π1

2-BI. Their definitions and proof-theoretic properties are
investigated e.g. in [50, 43].

Norm functions Given a partial ordering (X,�), we just write ‖ · ‖ generally
without any subscript for any norm function on X if it causes no confusion.

Modulus Given a real number r, |r| means its absolute value. There will be no
confusion with the following binary length function.

Iterated binary length functions Given a nonnegative real number x, b x c is
the largest natural number not bigger than x and d x e is the least natural
number not less than x. Set

|x| := d log2(x+ 1) e ,

i.e., |x| is the length of the binary representation of x. We iterate the
|·|-function:

|x|0 := x and |x|m+1 := ||x|m|

And we write log x for log2 x.

Inverse functions A function f : N → N is said to be unbounded if we have

∀i, j [ i ≤ j =⇒ h(i) ≤ h(j) ] and lim
i→∞

h(i) = ∞.

For any unbounded function f let us define its inverse as follows:

f−1(i) := min{` : i < f(`)}.

Then f−1(i) ≤ ` iff i < f(`).

Fast growing hierarchies Given α, β ∈ ε0 put

α0(β) := β, αn+1(β) := ααn(β), and αn := αn(1).



1.4. Acknowledgments 15

For any limit ordinal λ < ε0, there is a so-called “fundamental sequence” of
λ and defined as follows: Let λ = ωλ1 + · · ·+ωλk be in Cantor normal form.

λ[n] :=

{

ωλ1 + · · ·+ ωλk−1 + ωλk−1 · (n + 1) if λk is not a limit,

ωλ1 + · · ·+ ωλk−1 + ωλk[n] otherwise.

Then λ[n] < λ[n+ 1] and limn→∞ = λ. Given f : N → N we define

f (0)(i) := i and f (`+1)(i) := f(f (`)(i)).

The Hardy-Wainer hierarchy (Hα)α<ε0 and the Schwichtenberg-Wainer hi-
erarchy (Fα)λ<ε0 are defined as follows:

H0(i) = i
Hα+1(i) = Hα(i+ 1)
Hλ(i) = Hλ[n](i)

and

F0(i) = i+ 1

Fα+1(i) = F
(i+1)
α (i)

Fλ(i) = Fλ[n](i)

Further let Hε0(i) := Hωi
(i) and Fε0(i) := Fωi

(i). Then Fα(i) = Hωα(i).
And it is a folklore in proof theory that Hα (resp. Fα) is provably recursive
in PA iff α < ε0. See Fairtlough and Wainer [16] for details.
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Ordinal Notation Systems
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Chapter 2

Intrinsic differences

The feeling is that what distinguishes such orderings are certain
intrinsic mathematical properties that are independent of their
possible use in proof-theoretical work.

S. Feferman [19]

It is one of the so-called ‘conceptual’ problems which criteria we can use to an-
swer the question about ‘natural’ or ‘canonical’ notation systems for ordinals in
proof theory. A conceptual problem is one which cannot be stated in a precise
mathematical way. See [34, 25, 19] for intensive discussions. At least since the
consistency proof for Peano arithmetic by Gentzen [21], several primitive recursive
ordinal notation systems have been used to give consistency proofs for formal the-
ories. These are given by natural well-orderings of expressions in some notation
systems for ordinals.

Most famous is the notation system for ordinals less than the Cantor ordinal
ε0, based on a system of expressions generated by closure under addition and
exponentiation to the base ω. This ordering relation is primitive recursive, and
the consistency of Peano arithmetic can be proved by transfinite induction along
this ordering. Moreover, this is best possible, in the sense that for any proper
initial segment of this ordering, we can prove transfinite induction applied to
arbitrary arithmetical formulas up to that segment in PA.

What we shall do in the following is to point out some intrinsic common or
diverse properties among a few systems of natural ordinal representation that
have been of interest in proof-theoretic analysis of PA. The ordinal notation
systems considered here are all historically well-known, probably except for the
system extracted from the graded provability algebra. L. Beklemishev refined this
system and introduced a certain combinatorial game, called the Worm principle,
such that the termination of the principle cannot be proved in PA, cf. Chapter 3.

19
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(i) The Cantor system

This is the closure under the function χ = λξ, η . ωξ#η of {0}, where # is
the natural sum of ordinals.

(ii) The binary trees

A rooted binary tree is a set of nodes such that, if it is not empty, there is one
distinguished node called the root and the remaining nodes are partitioned
into two rooted binary trees. The homeomorphic embeddability relation on
the set B of all rooted binary trees is well-founded and has the maximal
order type ε0.

(iii) Japaridze’s GLP

The set of the so-called letterless formulas without > in the language of
Japaridze’s propositional polymodal logic system GLP and the consistency
ordering constitute an well-founded partial ordering of height ε0.

(iv) Countable tree-ordinals

A certain set of countable tree-ordinals resembles the Cantor system. How-
ever, the sub-tree ordering on the set builds no well-ordering, although it is
well-founded and has the height ε0.

(v) Schütte-Simpson’s ordinal notation system

K. Schütte and G. Simpson confined the ordinal number notation system
of Buchholz [10] by letting away the addition and the construction of ωα

as basic operations. This system contains a subset with a well-ordering of
order type ε0.

(vi) Ackermann’s ε-substitution method

Ackermann’s original paper [1] on the termination of the ε-substitution
method used for the consistency proof of PA used a coding of ordinals
up to ε0.

2.1 The Cantor system

For any nonzero ordinal α < ε0 there exist a unique natural number n and
uniquely determined ordinals α1, . . . , αn < ε0 such that α = ωα1 + · · · + ωαn and
α > α1 ≥ · · · ≥ αn. It is denoted by α =NF ωα1 + · · · + ωαn and said to be in
Cantor normal form. Then the norm Nα is the number of ω-occurrence in α:
N0 := 0 and if α =NF ωα1 + · · ·+ ωαn , then

Nα := n +Nα1 + · · ·+Nαn.
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This norm function gives rise to a hierarchy which can be defined by pointwise
transfinite recursion1.

Definition 2.1.1. For α < ε0 set

Aα(i) := max{Aβ(i) + 1: β < α and Nβ ≤ Nα + i}.

Then the function Aε0 := λi . Aωi
(i) grows too fast to be provably total in PA.

Theorem 2.1.2. PA 0 ∀k ∃n(Aωk
(1) = n)

Proof. See Arai [2] and Weiermann [57].

Let f : N → N be given. The Friedman style miniaturization of the well-
foundedness of ε0 gives the following true Π0

2 assertion SWO(ε0, <, f):

For any k there exists a constant n which is so large that, for any
finite ordinal sequence α0, . . . , αn < ε0 with Nαi ≤ k + f(i) for all
i ≤ n, there exist indices ` < m ≤ n satisfying α` ≤ αm.

According to Friedman [49, 51] the slowly well-orderedness of ε0, that is
SWO(ε0, <, id), cannot be proved in PA. Using Theorem 2.1.2, Weiermann char-
acterized in a nearly optimal way the class of functions f such that SWO(ε0, <, f)
is PA-unprovable.

Theorem 2.1.3 (Weiermann [60]). Let m ∈ N.

(i) SWO(ε0, <, λi . |i| · inv(i)) is PRA-provable.

(ii) SWO(ε0, <, λi . |i| · |i|m) is PA-unprovable.

Having seen this results, Arai gave a direct connection between the slowly
well-orderedness of ε0 and the Schwichtenberg-Wainer hierarchy (Fα)α≤ε0 .

Let fα(i) := |i|·|i|F−1
α (i) and L(·;F−1

α ) be the Skolem function of SWO(ε0, F
−1
α ),

i.e. L(k;F−1
α ) is the least n such that

for any finite α0, . . . , αn < ε0 with Nαi ≤ k+ |i| · |i|F−1
α (i) for all i ≤ n,

there exist indices ` < m ≤ n satisfying α` ≤ αm.

Theorem 2.1.4 (Arai [4]). Let α ≤ ε0.

(i) L(·;F−1
α ) is primitive recursive in Fα and vice versa. Therefore, L(·;F−1

α )
is provably total in PA iff α < ε0.

(ii) SWO(ε0, fα) is PA-unprovable iff α = ε0.

1For more about pointwise transfinite recursion see e.g. Weiermann [57]
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2.2 Binary trees

The system (B, <) obtained from the Feferman-Schütte notation system2 for Γ0

by omitting the addition terms constitutes a well-ordering of order type ε0. More-
over, < is a canonical extension of the homeomorphic embeddability relation E

on the set of binary relation. We give here a direct definition of (B, <).

A rooted binary tree T is a set of nodes such that, if it is not empty, there is one
distinguished node called the root of T and the remaining nodes are partitioned
into two rooted binary trees. The following definition of the set B of all rooted
binary trees is very convenient for our study.

Assume that a constant symbol o and a binary function symbol ϕ are given.
Then B is the least set of terms defined as follows:

• o ∈ B;

• if α, β ∈ B, then ϕ(α, β) ∈ B.

ϕ(α, β) will be abbreviated by ϕαβ if it causes no confusion.

Definition 2.2.1. The homeomorphic embeddability relation E on B is the least
subset of B × B defined as follows:

• if α = o, then αE β for all β ∈ B;

• if α = ϕα1α2, β = ϕβ1β2, and (αE β1 or αE β2), then αE β;

• if α = ϕα1α2, β = ϕβ1β2, and (α1 E β1 and α2 E β2), then αE β.

Theorem 2.2.2 (Higman [28]). (B,E) is a wpo.

The following theorem is an unpublished result by de Jongh.

Theorem 2.2.3 (de Jongh). o(B,E) = ε0.

In case of (B,E) we easily find a well-ordering < on B with the order type ε0.

Definition 2.2.4. < is the least binary relation on B defined as follows:

• if α = o and β 6= o, then α < β;

• if α = ϕα1α2 and β = ϕβ1β2, then α < β if one of the following hold:

➤ α1 < β1 and α2 < β,

➤ α1 = β1 and α2 < β2,

➤ α1 > β1 and α ≤ β2.

2See e.g. [17, 18, 45, 46]
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Lemma 2.2.5. < is a well-ordering on B such that E⊆ ≤ and otype(<) = ε0.

Since ACA0 does not prove the well-foundedness of ε0, it cannot prove that
(B,E) and (B,≤) are wpos. And the claim that (B,E) is a wpo is Π1

1, and the
same for (B,≤). One can translate them into Π0

2-formulae in the language of first
order Peano arithmetic by Friedman style miniaturization. A norm function is
needed: ‖ · ‖ : B → ω is defined as follows:

• ‖o‖ := 0,

• ‖ϕαβ‖ := ‖α‖ + ‖β‖ + 1.

That is, ‖α‖ is the number of occurrences of ϕ in α ∈ B.

Using a standard coding, it is evident that B, E, <, and ‖ · ‖ are all primitive
recursively definable in PA. Given f : N → N we call (B,E) slowly well-partial-
ordered by f if the following holds:

For any k there exists a constant n which is so large that, for any
finite sequence α0, . . . , αn of finite trees with |αi| ≤ k + f(i) for all
i ≤ n, there exist indices ` < m ≤ n satisfying α` E αm.

This is denoted by SWP(B,E, f). The slowly well-orderedness SWO(B, <, f) is
defined similarly.

Given a primitively recursive real number r put fr(i) := r|i|.

Theorem 2.2.6 (Weiermann [59]).

(i) If r > 1
2
, then SWP(B,E, fr) and SWO(B, <, fr) are PA-unprovable.

(ii) If r ≤ 1
2
, then SWP(B,E, fr) and SWO(B, <, fr) are PRA-provable.

Remark: Intrinsic differences

Theorem 2.1.3 and Theorem 2.2.6 point out that the Cantor system for ε0 differs
intrinsically from (B, <):

• PA ` SWO(ε0, <, λi . r · |i|) for any r;

• PA 0 SWO(B, <, λi . r · |i|) if r > 1
2
.





Chapter 3

Intrinsic isomorphisms

One of the popular criteria for the problem on canonical ordinal notation systems
of a given theory is formulated as the question whether there is a natural ordinal
classification of all provably total functions of the theory. In a significant number
of well-known theories in mathematical logic there do exist plausible solutions,
such as the classifications of provably recursive functions through Hardy-Wainer
or Schwichtenberg-Wainer hierarchies. However, there still remains many ques-
tions about ordinal notation systems of a theory: How can it be explained that
proof-theoretic ordinals are sensitive to the choice of particular proof systems?
What are the intrinsic properties that distinguishe some ordering from other?
Are they independent of their possible use in proof-theoretic work?

One of the latest approaches to these questions is done by Beklemishev [7].
He was concerned with the question of recovering a ordinal notation system from
a given theory. He posed the question what would make a formal theory possible
to rigorously specify its canonical ordinal notation system? He pointed out that
an algebraic view point of proof theory, e.g., a well-behaved notion of graded
provability algebra, could give a positive answer. In case of Peano arithmetic,
such a view point is indeed helpful in clarifying the question where a canonical
ordinal notation system comes from and how the whole process can be specified.

This chapter studies some more notation systems for ε0 and demonstrates
that the systems, including Beklemishev’s system, share some common intrinsic
properties. This will be done by showing the following:

• They build more or less the same structured systems. A structured system of
countable ordinals is a system in which an arbitrary, but fixed “fundamental
sequence” has been assigned to each limit.

• Some Friedman style independence results will be achieved such that the
results are essentially regardless of the systems.

25
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3.1 The graded provability algebra

Let T be an elementarily represented, sound fragment of PA such that IΣ1 ⊆T.
The Lindenbaum boolean algebra LT is the set of all sentences modulo provable
equivalence in T.

Let n-Con(T) denote a natural formula expressing that the theory T+ThΠn(N)
is consistent, where ThΠn(N) is the set of all true arithmetical Πn sentences.

The graded provability algebra of T, MT, is the structure of Lindenbaum
boolean algebra LT with the n-consistency operator 〈n〉T, n ∈ N, defined by
〈n〉Tϕ := n-Con(T + ϕ).

The subscript T will be suppressed if the underlying theory is known from
the context. The n-provability operator [n] is defined by [n]ϕ := ¬〈n〉¬ϕ. 〈0〉ϕ is
usually written by �ϕ and [0]ϕ by �ϕ. Terms of the graded provability algebra
correspond to propositional polymodal formulas.

GLP based on the identities of MT is an extension of the Gödel-Löb system
GL1: Let m, n ∈ N.

• Axioms

➤ Boolean tautologies

➤ 〈n〉(ϕ∨ψ) → (〈n〉ϕ∨〈n〉ψ)

➤ ¬〈n〉¬>
➤ 〈n〉ϕ→ 〈n〉(ϕ∧¬〈n〉ϕ)

➤ 〈n〉ϕ→ 〈m〉ϕ for m ≤ n

➤ 〈m〉ϕ→ [n]〈m〉ϕ for m < n

• Rules

➤ modus ponens

➤ ϕ→ ψ ` 〈n〉ϕ→ 〈n〉ψ

Then we have

GLP ` ϕ(~x) iff MT |= ∀~x(ϕ(~x) = >).

Let S be the set of all finite words in the alphabet N, including the empty
word Λ. Sn is the restriction of S to the alphabet {n, n + 1, . . . }. We identify
each element α = n1 · · ·nk of S with its modal interpretation 〈n1〉 · · · 〈nk〉>.

We write α ∼ β if GLP ` α ↔ β. And α = β means the graphical identity.
The orderings <n are defined on S by:

α <n β iff GLP ` β → 〈n〉α.

1Cf. Boolos [9] for more about provability logic
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Note that <n are transitive and irreflexive. Below we summarize Beklemishev’s
results, referring the reader to [7].

Given α ∈ S let αk denote the k times iterated concatenation of α. The
function o : S → ε0 is given as follows:

• o(0k) = k;

• if α = α00 · · ·0αn, where all αi ∈ S1 and not all of them empty, then

o(α) = ωo(α−
n ) + · · · + ωo(α−

0 ).

Here γ− is obtained from γ ∈ S1 by replacing every letter m+ 1 with m.
Note that some of the elements of S are pairwise equivalent. However, there

is a set of elements which represent each equivalence class, namely the set NF of
normal forms. We define α ∈ NF by recursive induction on the width w(α), i.e.
the number of different letters occurring in α.

• if w(α) ≤ 1, then α ∈ NF ;

• assume w(α) > 2 and let n be the smallest letter in α such that graphically
α = α0n · · ·nαk, where all αi ∈ Sn+1. Then α ∈ NF if all αi ∈ NF and
o(αi+1) 6<n+1 (αi) for any i < k.

Theorem 3.1.1 (Beklemishev [7]). Let α, β ∈ S.

(i) (S,<0) is a well-partial ordering of height ε0.

(ii) Every word α ∈ S has an uniquely defined equivalent normal form.

(iii) If α ∼ β then o(α) = o(β).

(iv) If α <0 β then o(α) < o(β).

(v) o �NF : NF → ε0 is an order-preserving isomorphism.

It is also possible to assign fundamental sequences to each element of S. For
α ∈ S and any k ∈ N we define α[k] ∈ S as follows:

• if α = 〈0〉β then α[k] = β;

• if α = 〈n+ 1〉γ〈m〉β, where γ ∈ Sn+1 and m ≤ n, then α[k] = (nγ)k+1mβ.

Theorem 3.1.2 (Beklemishev [7]). Let α = 〈n+ 1〉β and k ∈ N.

(i) If α ∈ NF , then α[k] ∈ NF .

(ii) α[k] <0 α[k + 1] <0 α.

(iii) For every β ∈ S there is a natural number ` such that β <0 α[`].
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3.2 Worms, Hydras, and tree-ordinals

The Hydra battle introduced by L. Kirby and J. Paris [30] has an isomorphic
formulation in terms of ordinals, namely fundamental sequences for ordinals below
ε0. Let ·[·] denote the standard assignments of fundamental sequences and let
α(0) = α and α(i + 1) = α(i)[i]. Then the fact that chopping of the rightmost
head is a winning strategy for Hercules is formalized by:

for any n there exists an i such that ωn(i) = 0

This is a true Π0
2 sentence which is PA-unprovable since

Hα(0) ≤ min{i : α(i) = 0}.

Another combinatorial game similar to the Hydra battle is introduced by
Beklemishev in [6] as an application of proof-theoretic analysis to his ordinal
notation system S based on the concept of graded provability algebra. This
principle deals with objects called worms and is hence called the Worm principle.
We shall see that, modulo some isomorphism, they are mutually translatable.

A worm is just a finite function with natural numbers as values. We identify
the worm f : [ 0, n ] → N with the list f(0) · · ·f(n) or 〈f(0), . . . , f(n)〉. We call
f(n) the head of the worm. ∅ denotes the empty function. Let W be the set of
all worms and Wn the subset of W whose elements have values at least n.

A worm game begins with a worm and at each step we chop off its head. In
response the worm grows in length according to some rules. Formally, we specify
a function next : W × N →W . Let α range over worms.

• next(∅, k) := ∅.

• Let α = a0 · · ·an.

➤ If an = 0, then next(α, k) := a0 · · ·an−1.

➤ If an > 0, let m := max{i < n : ai < an}. We define

next(α, k) := r ∗ s ∗ s ∗ · · · ∗ s
︸ ︷︷ ︸

k+1 times

.

where r = 〈a0, . . . , am〉, s = 〈am+1, . . . , an−1, an − 1〉.

Here ∗ means the concatenation function of worms. Now let α(0) := α and
α(n+ 1) := next(α(n), n+ 1). Then the Worm principle says that Every Worm
Dies:

EWD := for any worm α there exists an n such that α(n) = ∅
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Note that EWD is a Π0
2 sentence since α(n) is defined primitive recursively

and that the size of maximal element of worms cannot increase. Hence α(n) = β
can be written out as a ∆0 formula in three variables.

Theorem 3.2.1 (Beklemishev [6]).

(i) EWD is true, but PA-unprovable.

(ii) EWD is PA-equivalent to 1-Con(PA).

In order to emphasize the relevance to S we use below another notation αJkK
instead of next(α, k).

Definition 3.2.2. Let α, β, γ ∈W .

αJkK := next(α, k) =







∅ if α = ∅,

β if α = β0,

βm(γn)k+1 if α = βmγ〈n+ 1〉, γ ∈Wn+1, m ≤ n.

The next question is what is responsible for the PA-unprovability of EWD.
Note that the Skolem function of EWD should grow too fast to be provably total
in PA. Below we characterize the growth rate conditions which make the function
grow fast. Given f : N → N and α ∈W set

α(f, 0) := α, α(f, n+ 1) := α(f, n)Jf(n+ 1)K,

and define

EWD(f) :≡ ∀α ∃nα(f, n) = ∅.

Then EWD = EWD(id). And EWD(f) remains Π0
2 if f is primitive recursive.

Now we analyse growth rates of the Skolem functions of EWD(f) in terms
of fast growing hierarchies. Notice that the correspondence o between S and the
Cantor system for ε0 defined above cannot be used in its original form since the
correspondence is not one-to-one. This is the reason why we should turn our
attention to tree-ordinals instead of (normal) ordinals below ε0.

Definition 3.2.3. The set Ω of countable tree-ordinals is generated inductively
as follows:

• 0 ∈ Ω;

• if α ∈ Ω, then α + 1 := α ∪ {α} ∈ Ω;

• if αn ∈ Ω for all n ∈ N, then α := 〈αn〉n∈N ∈ Ω.
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λ will always denote a limit λ = 〈λn〉n := 〈λn〉n∈N. Addition, multiplication,
and exponentiation are defined as usual:

• Addition: α+ 0 := α; α + (β + 1) := (α + β) + 1; α + λ := 〈α + λn〉n
• Multiplication: α · 0 := 0; α · (β + 1) := (α · β) + α; α · λ := 〈α · λn〉n
• Exponentiation: α0 := 1; α(β+1) := αβ · α; αλ := 〈αλn〉n

We define also a set T⊆Ω of tree-ordinals which correspond to (normal) or-
dinals up to ε0. Set

n := 0 + 1 + · · · + 1
︸ ︷︷ ︸

n times

and ω := 〈1 + n〉n .

Definition 3.2.4. T is defined inductively as follows:

• 0 ∈ T;

• if α0, . . . , αn ∈ T, then also ωα0 + · · · + ωαn ∈ T.

Note that each tree-ordinal in T represents a unique determined (ordered)
tree figure other than the ordinals in the Cantor system. And though there is a
canonical fundamental sequence for each limit tree-ordinal, we shall make some
modifications for technical reasons. This modifications will have no significant
effect on the fast growing hierarchy we consider. We write α ·m for α + · · ·+ α

︸ ︷︷ ︸

m times

.

Definition 3.2.5 (Fundamental sequences for tree-ordinals). Let α ∈ T.

• If α = 0, then α[k] = 0.

• If α = β + 1, then α[k] = β.

• If α = n + ω for some n ∈ N, then α[k] = n+ k + 1.

• If α = β + ω and β 6= n for any n ∈ N, then α[k] = β + k + 2.

• If α = β + ωγ+1 and γ 6= 0, then α[k] = β + ωγ · (k + 1) + 1.

• If α = β + ωλ and λ a limit, then α[k] = β + ωλ[k].

Definition 3.2.6. The sub-tree ordering ≺ is the transitive closure of the rule:

α[m] ≺ α for all α ∈ T \ {0} and m ∈ N.

Theorem 3.2.7. The set {β |β ≺ α} is well-ordered by ≺ and of order type less
than ε0.

Proof. Cf. Fairtlough and Wainer [16].
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Now we are going to establish an one-to-one and onto correspondence between
worms and tree-ordinals from T. We use the same notion o as in the case of the
correspondence between S and ε0 since the former is indeed a kind of extension
of the latter.

Definition 3.2.8. o : W → T is defined recursively as follows:

• o(0k) := k;

• if α = α00 · · ·0αn, where all αi ∈W1 and not all of them empty, then

o(α00α10 · · ·0αn) := ωo(α−
0 ) + · · ·+ ωo(α−

n ).

The function o : W → T is one-to-one and onto, since g : T → W defined by

• g(k) := 0k;

• if α = ωα0 + · · ·+ ωαn and αi 6= 0 for some i ≤ n, then

g(α) = g(α0)
+0 · · · 0g(αn)

+,

is obviously the inverse function of o, where β+ is obtained from β ∈ W by
replacing every letter m with m+ 1.

Lemma 3.2.9. Let α, β ∈W . Then

o(α0β) =

{

o(α) + 1 + o(β) if 0m ∈ {o(α), o(β)} for some m ∈ N,

o(α) + o(β) otherwise.

Proof. (i) Let α = 0m and β = 0n for some m, n ∈ ω. Then

o(α0β) = o(0m+1+n) = m+ 1 + n = o(α) + 1 + o(β).

(ii) Let α = 0m for some m ∈ ω and β = β00 · · ·0βn, where all βj ∈W1 and not
all of them empty. Then

o(α0β) = o(0m+1β00 · · ·0βn)

= m+ 1 + ωo(β−
0 ) + · · ·+ ωo(β−

n )

= o(α) + 1 + o(β).

(iii) Similar for the case that β = 0n for some n ∈ ω and α = α00 · · ·0αm, where
all αi ∈W1 and not all of them empty.
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(iv) Let α = α00 · · ·0αm and β = β00 · · · 0βn, where all αi, βj ∈ W1 and there
are some αi 6= ∅ and βj 6= ∅. Then

o(α0β) = o(α00 · · ·0αm0β00 · · ·0βn)

= ωo(α−
0 ) + · · · + ωo(α−

m) + ωo(β−
0 ) + · · · + ωo(β−

n )

= o(α) + o(β).

The proof is now complete.

If needed, this lemma will be used tacitly. Let β−n be obtained from β ∈Wn

by replacing every letter m with m − n. β+n is similarly defined for β ∈ W .
Below we write o(β) < ω for o(β) = k for some k ∈ N and o(β) ≥ ω otherwise.

Theorem 3.2.10. o(αJkK) = o(α)[k] for all α ∈W .

Proof. There is nothing to prove if α = ∅. If α = β0, then αJkK = β and

(o(α))[k] = (o(β) + 1)[k] = o(β) = o(αJkK).

Now let α = βmγ〈n+ 1〉, where m ≤ n and γ ∈Wn+1.

1. case: γ = ∅ and βm = ∅, i.e. α = 〈n+ 1〉 and αJkK = nk+1.

o(α)[k] = ωn+1[k] = ωn(k + 1) = o(nk+1) = o(αJkK).

2. case: γ = ∅ and βm 6= ∅. We use an induction on n.

(2.a) m is the minimum of the occurrences in βm.

o(α) = o(βm〈n+ 1〉)
= ωm(o(β−m0〈n+ 1 −m〉))

=

{

ωm(o(β−m) + ωn+1−m) , o(β−m) ≥ ω,

ωm(o(β−m) + 1 + ωn+1−m) , o(β−m) < ω.

And

o(α)[k] =







ωm(o(β−m) + ωn−m(k + 1)) , o(β−m) ≥ ω, n > m,

ωm(o(β−m) + k + 2) , o(β−m) ≥ ω, n = m,

ωm(o(β−m) + 1 + ωn−m(k + 1)) , o(β−m) < ω.



3.2. Worms, Hydras, and tree-ordinals 33

On the other hand,

o(αJkK) = o(βmnk+1)

= ωm(o(β−m0〈n−m〉k+1))

=







ωm(o(β−m) + o(〈n−m〉k+1)) , o(β−m) ≥ ω, n > m,

ωm(o(β−m) + 1 + k + 1) , o(β−m) ≥ ω, n = m,

ωm(o(β−m) + 1 + o(〈n−m〉k+1)) , o(β−m) < ω,

=







ωm(o(β−m) + ωn−m(k + 1)) , o(β−m) ≥ ω, n > m,

ωm(o(β−m) + k + 2) , o(β−m) ≥ ω, n = m,

ωm(o(β−m) + 1 + ωn−m(k + 1)) , o(β−m) < ω.

Note that the case n = 0 is also proved since m should then be 0.

(2.b) n > 0, m > p and β = β0p · · ·pβt+1, where all βi ∈Wp+1.

o(α) = o(β0p · · · pβt+1m〈n+ 1〉)
= ωp(o(β

−p
0 0 · · · 0β−p

t+1)〈m− p〉〈n+ 1 − p〉)
= ωp(ω

o(β−p−1
0 ) + · · ·+ ωo(β−p−1

t ) + ωo(β−p−1
t+1 〈m−p−1〉〈n−p〉))

Since o(β−p−1
t+1 〈m− p− 1〉〈n− p〉) is a limit, we have

o(α)[k] = ωp(ω
o(β−p−1

0 ) + · · ·+ ωo(β−p−1
t ) + ωo(β−p−1

t+1 〈m−p−1〉〈n−p〉)[k])
i.h.
= ωp(ω

o(β−p−1
0 ) + · · ·+ ωo(β−p−1

t ) + ωo((β−p−1
t+1 〈m−p−1〉〈n−p〉)JkK))

= ωp(ω
o(β−p−1

0 ) + · · ·+ ωo(β−p−1
t ) + ωo(β−p−1

t+1 〈m−p−1〉〈n−p−1〉k+1))

On the other hand,

o(αJkK) = o(β0p · · ·pβt+1mn
k+1)

= ωp(o(β
−p
0 0 · · ·0β−p

t+1)〈m− p〉〈n− p〉k+1)

= ωp(ω
o(β−p−1

0 ) + · · ·+ ωo(β−p−1
t ) + ωo(β−p−1

t+1 〈m−p−1〉〈n−p−1〉k+1))

3. case: γ 6= ∅ and βm = ∅, i.e. α = γ〈n+ 1〉, γ ∈Wn+1.

o(α) = ωn+1(o(γ
−n−10))

= ωn+1(o(γ
−n−1) + 1)

Since o(γ−n−1) > 0, we have

o(α)[k] = ωn(ωo(γ−n−1) · (k + 1) + 1).

On the other hand,

o(αJkK) = o((γn)k+1)

= ωn(o((γ−n0)k+1))

= ωn(ωo(γ−n−1) · (k + 1) + 1).

4. case: γ 6= ∅ and βm 6= ∅. The claim will be shown by induction on n.
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(4.a) m is the minimum of the occurrences in βm.

o(α) = o(βmγ〈n+ 1〉)
= ωm(o(β−m0γ−m〈n+ 1 −m〉))

=

{

ωm(o(β−m) + ωn+1−m(o(γ−n−10))) , o(β−m) ≥ ω,

ωm(o(β−m) + 1 + ωn+1−m(o(γ−n−10))) , o(β−m) < ω.

=

{

ωm(o(β−m) + ωn+1−m(o(γ−n−1) + 1)) , o(β−m) ≥ ω,

ωm(o(β−m) + 1 + ωn+1−m(o(γ−n−1) + 1)) , o(β−m) < ω.

Since o(γ−n−1) > 0, we have

o(α)[k] =

{

ωm(o(β−m) + ωn−m(ωo(γ−n−1) · (k + 1) + 1)) , o(β−m) ≥ ω,

ωm(o(β−m) + 1 + ωn−m(ωo(γ−n−1) · (k + 1) + 1)) , o(β−m) < ω.

On the other hand,

o(αJkK) = o(βm(γn)k+1)

= ωm(o(βm0(〈n−m〉γ−m)k+1))

=

{

ωm(o(β−m) + o((γ−m)k+1〈n−m〉)) , o(β−m) ≥ ω,

ωm(o(β−m) + 1 + o((γ−m)k+1〈n−m〉)) , o(β−m) < ω,

=

{

ωm(o(β−m) + ωn−m(o((γ−n)k+10))) , o(β−m) ≥ ω,

ωm(o(β−m) + 1 + ωn−m(o((γ−n)k+10))) , o(β−m) < ω,

=

{

ωm(o(β−m) + ωn−m(ωo(γ−n−1) · (k + 1) + 1)) , o(β−m) ≥ ω,

ωm(o(β−m) + 1 + ωn−m(ωo(γ−n−1) · (k + 1) + 1)) , o(β−m) < ω.

Note that the case n = 0 is also proved since m should then be 0.

(4.b) n > 0, m > p and β = β0p · · ·pβt+1, where all βi ∈Wp+1.

o(α) = o(β0p · · · pβt+1mγ〈n+ 1〉)
= ωp(o(β

−p
0 0 · · · 0β−p

t+1〈m− p〉γ−p〈n + 1 − p〉))
= ωp(ω

o(β−p−1
0 ) + · · ·+ ωo(β−p−1

t ) + ωo(β−p−1
t+1 〈m−p−1〉γ−p−1〈n−p〉))

Since o(β−p−1
t+1 〈m− p− 1〉γ−p−1〈n− p〉) is a limit, we have

o(α)[k] = ωp(ω
o(β−p−1

0 ) + · · · + ωo(β−p−1
t ) + ωo(β−p−1

t+1 〈m−p−1〉γ−p−1〈n−p〉)[k])
i.h.
= ωp(ω

o(β−p−1
0 ) + · · · + ωo(β−p−1

t ) + ωo((β−p−1
t+1 〈m−p−1〉γ−p−1〈n−p〉)JkK))

= ωp(ω
o(β−p−1

0 ) + · · · + ωo(β−p−1
t ) + ωo(β−p−1

t+1 〈m−p−1〉(γ−p−1〈n−p−1〉)k+1))
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On the other hand,

o(αJkK) = o(β0p · · ·pβt+1m(γn)k+1)

= ωp(o(β
−p
0 0 · · ·0β−p

t+1〈m− p〉(γ−p〈n− p〉)k+1))

= ωp(ω
o(β−p−1

0 ) + · · · + ωo(β−p−1
t ) + ωo(β−p−1

t+1 〈m−p−1〉(γ−p−1〈n−p−1〉)k+1))

This completes the proof.

Remember that an ordinal α 6= 0 below ε0 is said to be in Cantor normal
form if α = ωα0 + · · · + ωαn and α > α0 ≥ · · · ≥ αn. We can demand the same
property from every αi and so on. Furthermore, if we make no difference between
an ordinal below ε0 in Cantor normal form and an tree-ordinal which has the
same tree figure, we can specify a set B of all tree-ordinals in so-called Cantor
normal form. This implies in turn that B corresponds isomorphically to the set
NF ⊆ S of all words in normal forms.

Let NF (W ) ⊆ W be the set of all worms which are converses of a word in
NF . The worms in NF (W ) are also said to be in Cantor normal form and the
set NF (W ) is isomorphic to ε0.

Lemma 3.2.11. NF (W ) can be characterized inductively as follows:

• ∅ and any worm of length 1 belong to NF (W );

• assume that the length of the worm α is larger than 1 and α = α00 · · ·0αn,
where all αi ∈ W1. Then α ∈ NF (W ) iff all α−

i ∈ NF (W ) and o(α−
j+1) ≤

o(α−
j ) for all j < n.

Note that o(α) ∈ B for every α ∈ NF (W ), so we might talk about the linear
order < of ordinals. It is also obvious that αJkK ∈ NF (W ) for all α ∈ NF (W )
and k ∈ N. Let ≺0 be the well-order on NF (W ) induced by the isomorphism o.

Lemma 3.2.12. o �NF (W ) : NF (W ) → B is an order-preserving isomorphism.

Having established an correspondence between W and T (resp. between
NF (W ) and B) it is now obvious that the Worm principle is the counterpart
of the Hydra battle game on the tree-ordinals in T (resp. on the ordinals up to
ε0). On the other hand, the Hydra battle game has a direct connection to the
Hardy-Wainer hierarchy. It is a folklore that the Hardy-Wainer hierarchy up to
ε0 features exactly the provably recursive functions in PA. Fairtlough and Wainer
[16] showed that an similar characterization of provably recursive functions in PA
is possible using the tree-ordinals from T. Furthermore, Weiermann [58] made an
refinement in such a way that how fast heads of a hydra should be multiplied at
cutting off the right-most head, so that the Hydra battle game on the ordinals up
to ε0 remains unprovable in PA. Using the same idea we show that an analogous
process is possible using the tree-ordinals from T.
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First we recall some well-known definitions and lemmata from subrecursive
hierarchy theory based on the fundamental sequences defined in Definition 3.2.5.
Let f, g range over unary arithmetical functions, k, n, x over N, and α, β, λ, etc.
over T.

Definition 3.2.13. Let λ ∈ Lim.

(i) P f
x 0 := 0, P f

x (α + 1) := α and P f
x λ := P f

x (λ[f(x)]).

(ii) Qf
x0 := 0, Qf

x(α+ 1) := α and Qf
xλ := λ[f(x)].

(iii) Let R ∈ {P,Q}.

• Rxα := Rid
x α.

• α �R,n
f β if β = Rf

n · · ·Rf
1α.

• α �R
f β if β = Rf

n · · ·Rf
1α for some positive n.

• α �R
k β if α �R

f β, where f ≡ k.

• α �R
k β if α �R

k β or α = β.

(iv) Gx(0) := 0, Gx(α + 1) = Gx(α) + 1 and Gx(λ) := Gx(λ[x]).

(v) Hf
0 (x) := x, Hf

α+1(x) := Hf
α(x+ 1) and Hf

λ (x) := Hf
λ[f(x)](x).

(vi) Hα := H id
α .

(vii) mc(m) := m and mc(α) := max{m1, . . . , mn,mc(α1), . . . ,mc(αn)}, where
α = ωα1 ·m1 + · · ·+ ωαn ·mn such that αi > αi+1 for each i < n.

(viii) α0(β) := β, αn+1(β) := ααn(β) and αn := αn(1).

(ix) ε0 := 〈ωn+1〉n and ε0[k] := ωk+1.

(x) Hε0(x) := Hε0[x](x).

Note that G1(ωn+1) ≥ 2n(2). In fact, G1(ω2) > 22. It is another difference
compared to the hierarchy with ordinals up to ε0.

Theorem 3.2.14. Let α, β ∈ T.

(i) Gα is increasing (strictly if α infinite), and if β ≺ α[n], then Gβ(n) < Gα(n)
for all n and Gα eventually dominates Gβ.

(ii) Hα is strictly increasing, and if β ≺ α[n], then Hβ(n) < Hα(n) for all n
and Hα eventually dominates Hβ.

(iii) Hα is provably recursive in PA.
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(iv) Every provably recursive function in PA is dominated by Hα for some α.

(v) Hε0 is not provably recursive in PA.

Proof. See [16].

Given R ∈ {P,Q} set R
(0)
x α := α and R

(i+1)
x α := RxR

(i)
x α. For α ∈ T and n ∈ N

let α[ω := n] be the natural number obtained by replacing every occurrence of ω
in α with n.

Lemma 3.2.15. Let R ∈ {P, Q}.

(i) Rx(α + β) = α +Rxβ for β 6= 0.

(ii) If α �P
x β then α �Q

x β.

(iii) If α �R
x β then γ + α �R

x γ + β.

(iv) If α �R
x β then ωα �R

x ωβ.

(v) If λ is a limit then λ[x+ 1] �Q
0 λ[x].

(vi) If λ is a limit then λ[x+ 1] �Q
x+1 λ[x] + 1.

(vii) If x > 0 then ωα+1 �Q
x ωα + ωα.

(viii) If x ≥ 0 then ωα+1 �Q
x ωα + 1.

(ix) If x > 0 then ωn+1(α + 1) �Q
x ωn+1(α) + ωn+1.

(x) If α > 0 then α �Q
x+1 Pxα+ 1.

(xi) α �Q
x Pxα.

(xii) If f, g are increasing, where g(i) ≤ f(i) for all i, and α �R,m
g β, then

α �R,n
f β for some n ≥ m.

(xiii) If α �Q
x β �P,m

x γ then α �P,n
x γ for some n ≥ m.

(xiv) There are at most Gx+1(α) elements in {β ≺ α : mc(β) ≤ x+ 1}.

(xv) α[ω := x+ 1] ≤ Gx(α) ≤ α[ω := x+ 2].

(xvi) Gx(α) = min{i : P (i)
x α = 0}.

(xvii) Hα(x) = min{i : Pi+x−1 · · ·Pxα = 0} + x, so

Hα(x) = min{i ≥ x : Pi · · ·Pxα = 0} + 1.

Proof. (i) ∼ (xvi) are more or less obvious. (xvii) is proved in [16].
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Given n ∈ N set gn(i) := |i|n and given α ∈ T ∪ {ε0} set fα(i) := |i|H−1
α (i).

Lemma 3.2.16. Given a limit λ ∈ T let β := ωn+1(λ) + ωn+1. Then there exists
an i ≥ Hλ(1) such that β �P,i

gn
ωn+1(0).

Proof. Let L := Hλ(1) − 1 = min{i : Pi · · ·P1λ = 0}. By definition we have
gn(i) ≥ 1 for all i. Further we obtain

β = ωn+1(λ) + ωn+1

�P
1 ωn+1(λ) + P1ωn+1

�P
1 ωn+1(λ) + P1P1ωn+1

�P
1 · · ·

Hence, there exists i0 ≥ 2n(2) such that β �P,i0
1 ωn+1(λ) since

min{n : P
(n)
1 ωn+1 = 0} = G1ωn+1 ≥ 2n(2).

And for i ≥ i0 we have 2 ≤ gn(i). In addition, we have

ωn+1(λ) �P
2 ωn+1(P1λ+ 1)

�Q
2 ωn+1(P1λ) + ωn+1

�P
2 ωn+1(P1λ) + P2ωn+1

�P
2 ωn+1(P1λ) + P2P2ωn+1

�P
2 · · ·

Therefore, there exists i0 ≥ 2n(2) such that β �P,i0
1 ωn+1(λ) since

min{k : P
(k)
2 ωn+1 = 0} = G2ωn+1 ≥ 3n(3).

This process shows that given k ≤ L there is a sequence 〈i`〉`≤k such that

i` ≥ (`+ 2)n(`+ 2)

for all ` ≤ k and

β �P,i0+i1+···+ik
gn

ωn+1(Pk · · ·P1λ).

The assertion follows now from the fact that i0 + · · · + iL ≥ L+ 1 = Hλ(1).

Lemma 3.2.17. Given n ≥ 2 and α := ωn+1(ωn) + ωn+1 there is δ ≥ ωn+1(0)
such that α �P,i

fε0
δ for some i ≥ Hωn(1).

Proof. If k ≤ Hωn(1) =: i0, then H−1
ε0

(k) ≤ H−1
ε0

(i0) ≤ n. Hence

fε0(k) = |k|H−1
ε0

(k) ≥ |k|n = gn(k).

By Lemma 3.2.16 there exists δ > ωn+1(0) such that α �P,i0
gn

δ. This implies that

there is i ≥ i0 such that α �P,i
fε0

δ.
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Theorem 3.2.18. Let n be a natural number.

(i) PA 0 ∀k ∃mQ
fε0
m · · ·Qfε0

1 ωk = 0.

(ii) PA 0 ∀k ∃mQgn
m · · ·Qgn

1 ωk = 0.

Proof. It follows from the fact that the function λi .Hωi
(1) is not provably recur-

sive in PA. Cf. [16].

Theorem 3.2.19. Let α ∈ T.

PRA ` ∀k ∃mQfα

m · · ·Qfα

1 ωk = 0.

Proof. Assume that k is large enough. How large k should be will be obvious
from the context. We claim that

Qfα

m · · ·Qfα

1 ωk = 0,

where m := 2Hωα·2(k). Assume otherwise. Since

mc(ωk[fα(1)] · · · [fα(i)]) ≤ fα(i) + 2 ≤ fα(m) + 2

for every i ≤ m we have by Lemma 3.2.15.(xiv)

m ≤ G2+fα(m)(ωk).

By Lemma 3.2.15.(xv)

m ≤ (4 + |2Hωα·2(k)|H−1
α (2Hωα·2(k))

)k(1)

≤ (4 + |2Hωα·2(k)|Hωα(k))k(1)

= (5 + 2Hωα·2(k)−Hωα(k))k(1)

< 2Hωα·2(k) = m

for sufficiently large k. Contradiction!

Note that, for any α, β ∈ T, there is k ∈ N such that

min{m : Qfα
m · · ·Qfα

1 β = 0} ≤ min{m : Qfα
m · · ·Qfα

1 ωk = 0}.

The existence of such k is provable in PA.

Theorem 3.2.20. Let n ∈ N and α ∈ T ∪ {ε0}.
(i) PA 0 EWD(| · |n).

(ii) PA 0 EWD(| · |H−1
α (·)) iff α = ε0.

Proof. Obvious by Theorem 3.2.10, Theorem 3.2.18, and Theorem 3.2.19.

Remark 3.2.21. Of course, we can talk of the same independence results concern-
ing the Worm principles with the worms from NF (W ) only.
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3.3 Schütte-Simpson’s ordinal notation system

Schütte and Simpson [47] introduced another interesting ordinal notation system
π0(ω) for ε0. It is a segment of π(ω) defined by letting out the addition and the
function λα . ωα in the construction of the ordinal notation system developed by
Buchholz [10].

At first glance, the new defined ordinal terms seem so artificial that it would
make no sense to say about their meaning. Hence it is all the more meaningful
to see a canonical correspondence between them and worms which in turn can be
interpreted in terms of some graded provability algebras.

In the following, we will proceed as in [47]. However with different proofs in
the sense that we don’t refer to the original collapsing functions. This seems to
be somewhat more technical, but has the advantage that one can easily see the
correspondence between Schütte-Simpson’s system and Beklemishev’s one.

The small Greek letters α, β, γ, . . . range over ordinals. We set Ω0 := 0 and,
for i > 0, Ωi the i-th regular ordinal and Ωω := sup{Ωi : i < ω}.
Definition 3.3.1. We define Bm

i (α), Bi(α) and πi(α) (by the main induction on
α and the subsidiary induction on m):

(B1) if γ = 0 or γ < Ωi, then γ ∈ Bm
i (α);

(B2) if i ≤ j, β < α, β ∈ Bj(β), and β ∈ Bm
i (α), then πjβ ∈ Bm+1

i (α);

(B3) Bi(α) := ∪{Bm
i (α) : m < ω};

(B4) πiα := min{η : η /∈ Bi(α)}.

Lemma 3.3.2.

(i) If k < m, then Bk
i (α)⊆Bm

i (α).

(ii) If i ≤ j and α ≤ β, then Bi(α)⊆Bj(β), πiα ≤ πjβ.

(iii) Ωi ≤ πiα < Ωi+1.

(iv) If γ ∈ Bi(α) and γ < Ωi+1, then γ < πiα.

(v) If α ∈ Bi(α) and α < β, then πiα < πiβ.

(vi) If α ∈ Bi(α), β ∈ Bi(β), and πiα = πiβ, then α = β.

Proof. Standard. Cf. [47].

Definition 3.3.3. π(ω) is defined as follows:

• 0 ∈ π(ω);

• if α ∈ π(ω) and α ∈ Bi(α) then πiα ∈ π(ω).
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To see that π(ω) may be considered as a primitive recursive ordinal notation
system we must be able to decide the relation α ∈ Bi(α) for α ∈ π(ω). For this
purpose we introduce an auxiliary concept of coefficients sets. The idea stems
from Rathjen and Weiermann [43].

Definition 3.3.4. Inductive definition of a set of ordinals Kiα for α ∈ π(ω).

(i) Ki(0) := ∅;

(ii) Ki(πjα) :=

{

{α} ∪Ki(α) if i ≤ j,

∅ otherwise.

Lemma 3.3.5. Let α ∈ π(ω).

Ki(α) < β ⇐⇒ α ∈ Bi(β)

Proof. By induction on α.

Theorem 3.3.6. Let α, β ∈ π(ω).

(i) The set π(ω) is primitive recursive and can be characterized as follows:

• 0 ∈ π(ω);

• if α ∈ π(ω) and Ki(α) < α, then πiα ∈ π(ω).

(ii) π(ω) = B0(Ωω).

(iii) α < β if one of the following three cases holds:

• α = 0 and β 6= 0;

• α = πiδ, β = πjγ, and i < j;

• α = πiδ, β = πiγ, and δ < γ.

Proof. (i) and (ii) are obvious. (iii) follows from Lemma 3.3.2.

Remark 3.3.7. By Theorem 3.3.6.(iii) it can be decided whether α < β, α = β, or
α > β for any α, β ∈ π(ω). In other words, α < β can be read as a ∆0-formula
in PA with two variables.

We define π0(ω) as the set of ordinals from π(ω) which are less than Ω1. Then

π0(ω) = {α ∈ π(ω) |α = 0 or α = π0β for some β ∈ π(ω)} = π0Ωω.

We consider every element of π(ω) as a term defined according to the induction
and call it an ordinal term. Below α, β, γ, . . . denote ordinal terms. If we use
abbreviations

i1 · · · ik0 := πi1 · · ·πik0,
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then every α ∈ π0(ω) is of the form

α = 0α10 · · ·0αn0m0

for some n, m ∈ N, where αi ∈ W1. Note that, if n = 0, then it is of the form
0m0, so 0 if m = 0, too.

The following lemma reveals something about the relationship between the
elements of π0(ω) and NF (W ).

Lemma 3.3.8. Let α = 0α10 · · ·0αn0m0 be in π0(ω) with n > 1. If αi = ∅ for
some i, 1 ≤ i < n, then αi+1 = ∅, too.

Proof. Assume αi = ∅ and αi+1 6= ∅ for some i < n. Then α has the form
π0 · · ·π0π0πl · · ·0 for some ` > 0. However, this cannot be in π0(ω), since

K0(π0π` · · · 0) = {π` · · · , . . . } ≮ π0π` · · ·0.

Hence αi+1 = ∅.

Remark 3.3.9. Hence we may assume for every α ∈ π0(ω) that α is of the form

α = 0α10 · · ·0αn0m0,

where αi ∈W1 \ {∅} if n ≥ 1.

By a functional we mean a finite sequence γ of natural numbers such that
γ0 ∈ π(ω). For α = i1 · · · in0 ∈ π(ω), n ≥ 1, define a functional ᾱ by

ᾱ := 〈i1 + 1〉 · · · 〈in + 1〉.

Lemma 3.3.10. Let α, β > 0 and γ, δ ∈ π0(ω).

(i) ᾱγ ∈ π(ω) \ π0(ω).

(ii) ᾱγ < β̄δ iff α < β, or α = β and γ < δ.

(iii) Ki+1(ᾱγ) < β̄γ iff Ki(α) < β.

Proof. By induction on α.

Lemma 3.3.11. For every γ ∈ π(ω)\π0(ω) there are unique α > 0 and δ ∈ π0(ω)
such that γ = ᾱδ. In fact, if γ = γ10γ2 with γ1 ∈ W1, then γ = ᾱ0γ2, where
α := γ−1 0.

Proof. The uniqueness of α and δ follows from Lemma 3.3.10.(ii). It remains to
show that α := γ−1 0 ∈ π(ω). By induction on the length of γ1 we show the claim.

• γ1 = 〈i+ 1〉. Then α = πi0 is obviously in π0(ω).
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• γ1 = 〈i + 1〉η, where η0γ2 ∈ π(ω) \ π0(ω) and Ki+1(η) < η. Then by I.H.
β := η−0 ∈ π(ω) with η = β̄0γ2, and Ki(β) < β follows from Ki+1(η) < η.
So α = iβ ∈ π(ω).

Lemma 3.3.12. Let α, β > 0 and δ ∈ π0(ω). If K0(ᾱδ) < β̄δ, then K0(α) < β.

Proof. By induction on α.

• If α = πi0, then it is obvious since β > 0.

• Let α = πiη and η > 0. Then ᾱδ = πi+1η̄δ. Since K0(ᾱδ) < β̄δ we have
η̄δ < β̄δ and K0(η̄δ) < β̄δ. By I.H. K0(η) < β, hence K0(πiη) < β.

Lemma 3.3.13. Let α, β > 0 such that K0(α) < β and δ ∈ π0(ω).

K0(ᾱδ) < β̄δ iff δ < π0β̄δ

Proof. If K0(ᾱδ) < β̄δ, then K0(δ) < β̄δ. Hence δ ∈ B0(β̄δ). By Theo-
rem 3.3.2.(iv) we have δ < π0β̄δ. Now assume δ < π0β̄δ, i.e., K0(δ) < β̄δ.
There are two cases.

• If α = π00, then ᾱδ = πi+1δ. Hence K0(ᾱδ) < β̄δ.

• Let α = πiη, η > 0, and ᾱδ = πi+1η̄δ. Since K0(α) < β then η < β and
K0(η) < β. Hence η̄δ < β̄δ andK0(η̄δ) < β̄δ by I.H.. The claim follows.

Definition 3.3.14. Define [α] for α ∈ π0(ω) as follows:

• [0] := 0;

• if α = 0m+10 for some m, then [α] := 0ᾱ = 01m+1;

• if α = 0β with β ∈ π(ω) \ π0(ω), then [α] := 0β̄.

At first glance this definition seems to be somewhat different from the original
one. But it isn’t because of Lemma 3.3.8.

Lemma 3.3.15. If α, δ ∈ π0(ω), then [α]δ ∈ π0(ω) iff δ < [α]δ.

Proof. By induction on α.

• If α = 0, then [α]δ = π0δ. Hence [α]δ ∈ π0(ω) iff K0(δ) < δ. This is exactly
the case if δ < π0δ = [α]δ because of Lemma 3.3.8.

• Let α = π0β, K0(β) < β, and [α]δ = π0γ̄δ, where α = γ = 0m+10 for some
m by Lemma 3.3.8 if β ∈ π0(ω), and γ = β otherwise. In the first case,
β < α, hence K0(β) < α and K0(α) < α. Therefore, we have K0(γ) < γ
in both cases. By Lemma 3.3.10.(i) γ̄δ ∈ π(ω). Moreover, by Lemma 3.3.13
K0(γ̄δ) < γ̄δ iff δ < π0γ̄δ = [α]δ. This was to show.
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Corollary 3.3.16. [α] is a functional for every π0(ω).

The following characterization is obvious.

Lemma 3.3.17. Let α, β, γ, δ, [α]γ and [β]δ be from π0(ω). Then [α]γ < [β]δ
in exactly one of the following two cases:

• α < β:

• α = β and γ < δ.

Note that if α = 0α10 · · ·0αn0m0 ∈ π0(ω) and αi = 1η, then η = 1k for some k.
If not, we would have K0(αi0 · · ·0αn0m0) ≮ αi0 · · ·0αn0m0 which is not allowed.
Hence the following lemma makes sense.

Lemma 3.3.18. For every γ ∈ π0(ω) \ {0} there are unique α, η ∈ π0(ω) such
that γ = [α]η. In fact, if γ = 0β0δ and β ∈W1, then

γ =

{

[0]0δ if β = ∅,

[β ′]0δ otherwise,

where β ′ :=

{

β−0 if β = 1k for some k,

0β−0 if β = jη for some η and j ≥ 2.

Proof. The uniqueness follows from Lemma 3.3.17. Let

γ′ :=

{

0 if β = ∅,

β ′ otherwise.

We claim γ′ ∈ π0(ω) and γ = [γ′]0δ. In case of β = ∅ it is obvious. Let β 6= ∅.
Since K0(β0δ) < β0δ

K0(0δ) < β0δ and 0δ < 0β0δ = γ

and by Lemma 3.3.11 and Lemma 3.3.12

β−0 ∈ π(ω) and K0(β
−0) < β−0.

Hence 0β−0 ∈ π0(ω). If β = 1η for some η, then β−0 = 0m for some m. So
[β ′] = [β−0] = 0β−+ = 0β. If β = jη for some η and j ≥ 2, then [β ′] = [0β ′0] =
0β−+ = 0β.

Lemma 3.3.19. Let n > 0 and α = 0α10 · · ·0αn0m0 from π0(ω) with a non-
empty αn.

(i) α′
1 ≥ · · · ≥ α′

n.

(ii) α = [α′
1] · · · [α′

n]0m0 .
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Proof. (ii) is true by Lemma 3.3.18. For (i) note that for every i < n

[α′
i+1] · · · [α′

n]0m0 < [α′
i] · · · [α′

n]0m0

by Lemma 3.3.15. The claim follows now by Lemma 3.3.17.

Definition 3.3.20. Define ǒ : π0(ω) → ε0 by

ǒ(0α10 · · ·0αn0m0) := ωǒ(α′
1) + · · ·+ ωǒ(α′

n) +m,

where α′
i is defined as above.

Theorem 3.3.21. ǒ : π0(ω) → ε0 is an order-preserving isomorphism.

Proof. Define ǧ : ε0 → π0(ω) by

ǧ(ωα1 + · · ·+ ωαn +m) := 0ǧ(α1)
′′0 · · ·0ǧ(αn)′′0m0,

where α1 ≥ · · · ≥ αn > 0 and

β ′′ :=

{

〈j + 1〉γ+ if β = 0jγ0 and j ≥ 1,

1k if β = 0k0 for some k.

Then we have obviously ǧ ◦ ǒ = ǒ ◦ ǧ = id. Note only that (α′′)′ = α for every
α ∈ π0(ω) and (β ′)′′ = β for every β ∈ W1. That ǒ and ǧ are order-preserving
follows from Lemma 3.3.19.

Theorem 3.3.21 is interesting in the sense that it together with the defini-
tion of o gives simple and canonical order-preserving isomorphisms among π0(ω),
NF (W ), and NF ⊆S. Indeed, ι1 : π0(ω) → NF (W ) and ι2 : π0(ω) → NF are
order-preserving isomorphisms:

ι1(0α10 · · ·0αn0m0) := α10 · · ·0αn0m

and

ι2(0α10 · · ·0αn0m0) := 0mα∗
n0 · · ·0α∗

1,

where β∗ is the converse of β.

Remark 3.3.22. The question is why it is so. Why is the correspondence between
Schütte-Simpson’s system and Beklemishev’s one so obvious, at least judging by
its appearance? A naive answer is that the former and its order type represent
really the proof-theoretic strength of PA as it is so in case of the graded provability
algebra of PA.
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3.4 Phase transitions

In this section we devote ourselves to some phase transitions demonstrating the
intrinsic relations among the Cantor system, Beklemishev’s system, and Schütte-
Simpson’s system. As in case of the Cantor system we need some norm functions.
Let lh(α) be the length of the word α and ht(α) a maximal component of α+.

Definition 3.4.1. Ň : π0(ω) → N and N̂ : NF (W ) → N are defined as follows:

Ň(0α10 · · ·0αn0m0) := N̂(α10 · · ·0αn0m)

:= m+ n ·− 1 +
n∑

i=1

lh(αi) +
n∑

i=1

ni∑

k=0

aik ,

where αi = ai0 · · ·aini
∈W1.

Roughly speaking, Ňα and N̂α are the addition of the length of α and all
of its components. Given X ∈ {ε0, NF, NF (W ), π0(ω)} and f : N → N define
SWO(X,v, f) by:

for any k there exists a constant n which is so large that, for any finite
sequence α0, . . . , αn from X with Ñαi ≤ k + f(i) for all i ≤ n, there
exist indices ` < m ≤ n satisfying α` v αm.

Here Ñ ∈ {N, Ň, N̂} and v∈ {≤, ≤0, �} depending on X.

Lemma 3.4.2. Let α ∈ {π0(ω), NF}.

(i) N(ǒ(α)) ≤ Ňα and Ň(α+p) ≤ (ht(α) + p) ·N(ǒ(α)) for every α ∈ π0(ω).

(ii) N(o(α)) ≤ N̂α and N̂(α+p) ≤ (ht(α) + p) ·N(o(α)) for every α ∈ NF .

Proof. It suffices to show (ii) since (i) follows from it. We write just N for
N̂ . There will be no confusions. Let α = 0mα10 · · ·0αn ∈ NF . We show
the claim by induction on the maximal component in α. Note that o(α) =

ωo(α−
n ) + · · ·+ ωo(α−

1 ) +m.

If n = 0 it is obvious. Now assume n > 0.

N(o(α)) = m+ n+

n∑

i=1

N(o(α−
i ))

≤ m+ n+
n∑

i=1

Nα−
i (by I.H.)

≤ m+ n− 1 +

n∑

i=1

Nαi = Nα
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Further, we have

Nα+p = N(α+p
1 ) + · · ·+N(α+p

n ) + p(m+ n− 1) + (m+ n− 1)

= N((α−
1 )+(p+1)) + · · ·+N((α−

n )+(p+1)) + (p+ 1)(m+ n− 1)

≤ (ht(α−
1 ) + p+ 1) ·N(o(α−

1 )) + · · ·+ (ht(α−
n ) + p+ 1) ·N(o(α−

n ))

+ (p+ 1)(m+ n− 1) by I.H.

≤ (ht(α) + p)(N(o(α−
1 )) + · · ·+N(o(α−

n )) +m+ n− 1)

= (ht(α) + p) ·N(o(α))

This completes the proof.

Lemma 3.4.2 implies that the norm condition does not causes any essential
difference in transformations between every two systems from ε0, NF , NF (W ),
π0(ω). Hence the following theorem is a direct consequence of Theorem 2.1.3 and
Theorem 2.1.4.

Let X be one of the systems ε0, NF, NF (W ), π0(ω).

Theorem 3.4.3. Let n be a natural number and α ≤ ε0.

(i) PRA ` SWO(X,v, λi . |i| · inv(i)).

(ii) PA 0 SWO(X,v, λi . |i| · |i|n).

(iii) PA 0 SWO(X,v, λi . |i| · |i|H−1
α (i)) iff α = ε0.

Remark: Ackermann’s consistency proof for PA

T. Arai made an observation in [3] that Ackermann’s consistency proof of PA in
[1] based on the ε-substitution method uses a coding of ordinals up to ε0 which
is similar to Schütte-Simpson’s ordinal notation system π0(ω). Indeed, it is much
more obvious to see there is a connection with Beklemishev’s system NF (W ).
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Chapter 4

Finite Ramsey theorems

The Paris-Harrington principle is the first PA-independent sentence that math-
ematicians could encounter in their customary enterprise after Gödel introduced
his classical work. It is a slight variation of the finite Ramsey theorem.

Another relevant principle is introduced by Kanamori and McAloon [29] who
showed that the two principles are equivalent. In this part we investigate a
generalization of the Kanamori-McAloon principle by some parameter functions
and show phase transitions both in PA and in its fragments IΣn.

We recall the original finite Ramsey theorem. Let the small Latin letters range
over natural numbers and X over sets of natural numbers. Put

[X]n := {Y ⊆X : ¯̄Y = n}.

If C is a function with domain [X]n, we write C(x1, . . . , xn) for C({x1, . . . , xn}),
where x1 < x2 < · · · < xn. Also, we identify each natural numbers ` with the set
of its predecessors, i.e. ` = {0, . . . , `− 1}. Let

X → (k)n
c

denote the following:

for any C : [X]n → c, there is H s.t. C is constant on [H ]n and ¯̄H ≥ k.

We call H homogeneous or monochromatic for f . One might try to notice the
notation X → (k)n

c as follows:

given any coloring C with the n-dimensional domain [X]n and the
range of c colors, there is a subset H of X such that C is konstant on
[H ]n and ¯̄H ≥ k.

51
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Ramsey [42] proved that for any n, c, k there is ` such that ` → (k)n
c . Erdös

and Rado [14] gave an upper bound for such ` depending super-exponentially on
n, c and k.

Given f : N → N call C : [X]n → N f -regressive if C(s) < f(min(s)) for any
s ∈ [X]n such that f(min(s)) > 0. If f is the identity function it is just called
regressive. A set H is min-homogeneous for C if C(s) = C(t) for any s, t ∈ [H ]n

such that min(s) = min(t); that is, f �[H ]n depends only on the minimum element.
Given n, k

X → (k)n
f -reg

denotes that, whenever C : [X]n → N is f -regressive, there is a subset H of X
such that H is min-homogeneous for C and ¯̄H ≥ k. Then given f : N → N set

(KM)f :≡ for any n, k there is ` such that `→ (k)n
f -reg.

Kanamori and McAloon [29] proved that (KM)f is true for any f : N → N.
They even showed that (KM) :≡ (KM)id is PA-provably equivalent to the Paris-
Harrington theorem.

The Paris-Harrington theorem is a variant of the finite Ramsey theorem.
Given H ⊆N and f : N → N, we say that H is f -large if ¯̄H ≥ f(min(H)). For
f = id we just say large. The notation

X →∗
f (k)n

c

denotes that for any C : [X]n → c there is an f -large monochromatic set H for
C such that ¯̄H ≥ max{k, min(H)}. Paris and Harrington [40] showed that the
proposition

(PH) :≡ for any n, c, k there is ` such that `→∗
id (k)n

c

is PA-independent. Weiermann [61] generalized this by considering f -largeness:

(PH)f :≡ for any n, c, k there is ` such that `→∗
f (k)n

c

Here the largeness is replaced with f -largeness, i.e., ¯̄H ≥ max{k, f(min(H))}. He
characterized via the fast growing hierarchy for which function class of f (PH)f

remains unprovable in PA. We shall give an analogous classification of functions
f such that (KM)f remains PA-independent and show that some refinements are
also possible with respect to IΣn. For this we work with

(KM)n
f :≡ for any k there is ` such that `→ (k)n

f -reg.

Weiermann worked with (PH)n
f .

(PH)n
f :≡ for any c, k there is ` such that `→∗

f (k)n
c .
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4.1 Paris-Harrington vs. Kanamori-McAloon

We give some combinatorial connections between the Paris-Harrington principles
and the Kanamori-McAloon principles. These results can be formalized in IΣ1 or
in Primitive Recursive Arithmetic, PRA.

Lemma 4.1.1. Let f, g : N → N be increasing such that

∀i ∃m ∀` ≥ m ( f(`) ≥ g(`) + i ) .

Then (PH)f implies (KM)g.

Proof. Assume

∀n, x, c, k ∃y ([x, y] →∗
f (k)n

c ) .

To show is

∀n, x, k ∃y ([x, y] → (k)n
g-reg ) .

Given n, x, k choose m and y such that

∀` ≥ m ( f(`) ≥ g(`) + n ) and [x+m, y] →∗
f (n+ k)n+1

3 .

We claim

[x, y] → (k)n
g-reg.

Let C : [x, y]n → N be g-regressive. Define D0 : [x+m, y]n+1 → 3 as follows:

D0(x0, . . . , xn) =







0 if C(x0 −m, x1 −m, . . . , xn−1 −m)

= C(x0 −m, x2 −m, . . . , xn −m),

1 if C(x0 −m, x1 −m, . . . , xn−1 −m)

< C(x0 −m, x2 −m, . . . , xn −m),

2 if C(x0 −m, x1 −m, . . . , xn−1 −m)

> C(x0 −m, x2 −m, . . . , xn −m).

By assumption there is Y0 ⊆[x+m, y] homogeneous for D0 such that

¯̄Y0 ≥ max{f(min(Y0)), n + k}.

Put Y := {i−m : i ∈ Y0}. Then Y is homogeneous for D : [x, y]n+1 → 3 defined
by:

D(x0, . . . , xn) =







0 if C(x0, x1, . . . , xn−1) = C(x0, x2, . . . , xn),

1 if C(x0, x1, . . . , xn−1) < C(x0, x2, . . . , xn),

2 if C(x0, x1, . . . , xn−1) > C(x0, x2, . . . , xn).
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Further, we have

¯̄Y = ¯̄Y0 ≥ f(min(Y0)) = f(min(Y ) +m) ≥ g(min(Y )) + n.

Let x0 < x1 < · · · < xg(x0)+n−1 be the first g(x0) + n elements of Y , where
x0 = min(Y ). Then

D(x0, x1, . . . , xn) = D(x0, x2, . . . , xn+1) = · · · = D(x0, xg(x0), . . . , xg(x0)+n−1).

We claim D �[H ]n+1 ≡ 0. Assume otherwise, then

C(x0, x1, . . . , xn−1) < C(x0, x2, . . . , xn) < · · · < C(x0, xg(x0)+1, . . . , xg(x0)+n−1)

or

C(x0, x1, . . . , xn−1) > C(x0, x2, . . . , xn) > · · · > C(x0, xg(x0)+1, . . . , xg(x0)+n−1).

Hence C(x0, xi, . . . , xi+n−1) ≥ g(x0) for some i. This contradicts the fact that C
is g-regressive.

Now let H be the set of the first k elements of Y and z1 < z2 < · · · < zn the
last n elements of Y . We claim H is min-homogeneous for C. Let x0 < x1 <
· · · < xn−1 and x0 < y1 < · · · < yn−1 be from H . Then

C(x0, x1, . . . , xn−1) = C(x0, x2, . . . , xn−1, z1)

= C(x0, x3, . . . , xn−1, z1, z2)
...

= C(x0, z1, . . . , zn−1).

The same holds for C(x0, y1, . . . , yn−1). We showed the claim.

Lemma 4.1.2. Let d ∈ N.

(i) ∀i ∃m ∀` ≥ m (|`|d ≥ |`|d+1 + i ).

(ii) Given α < ε0 there is β < ε0 such that α < β and

∀i ∃m ∀` ≥ m (|`|H−1
β (`) ≥ |`|H−1

α (`) + i ) .

Proof. The first claim is obvious. We show the second one.

Given α set β := α + ω. Let i ∈ N be given. Putting m := Hα+i+3(i+ 1) we
claim

∀` ≥ m (|`|H−1
β

(`) ≥ |`|H−1
α (`) + i ) .

Let ` ≥ m be given. Then there is p > i such that

Hα+i+3(p) ≤ ` < Hα+i+3(p+ 1).
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Since Hα+i+3(p) = Hα(p+ i+ 3), we have H−1
α (`) ≥ p+ i+ 3. Hence

|`|H−1
α (`) + i ≤ |`|p+i+3 + i.

On the other hand

|`|H−1
β

(`) = |`|H−1
α+ω(`) ≥ |`|H−1

α+i+3(`)
≥ |`|p+1 ≥ |`|p+i+3 + i

since ` ≥ m ≥ 22i

.

Corollary 4.1.3. Let d ∈ N and α < ε0.

(i) (PH)|·|d implies (KM)|·|d+1
.

(ii) (PH)|·|
H

−1
α+ω

(·)
implies (KM)|·|

H
−1
α (·)

.

In the next chapter the following theorem will be proved .

Theorem 4.1.4. (KM)n
|·|n ·−3

implies (PH)n for any n > 1.

The relation is much more compact with respect to (PH) and (KM).

Theorem 4.1.5 ([40, 29]). The following are equivalent in IΣ1:

(i) (PH),

(ii) (KM),

(iii) 1-Con(PA).

Theorem 4.1.6 ([40, 29]). If n > 0, the following are equivalent in IΣ1:

(i) (PH)n+1,

(ii) (KM)n+1,

(iii) 1-Con(IΣn).

Theorem 4.1.7 ([40, 29]). Let n > 0.

(i) IΣn ` (PH)n ∧(KM)n.

(ii) IΣ1 ` (PH)n+1 ↔ (KM)n+1.

(iii) IΣn 0 (PH)n+1.

(iv) IΣn 0 (KM)n+1.

We are now going to introduce a more general concept. Let n, c, k, `, s be
natural numbers such that s ≤ n, 1 ≤ n ≤ k and 1 ≤ c. U, V, W, etc denote
finite sets of natural numbers.
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Definition 4.1.8. Let C : [`]n → c be a coloring. Call a set H s-homogeneous
for C if for any s-element set U ⊆H and for any (n− s)-element sets V, W ⊆H
such that maxU < min{minV, minW}, we have

C(U ∪ V ) = C(U ∪W ).

(n− 1)-homogeneous sets are called end-homogeneous.

Note that 0-homogeneous sets are homogeneous and 1-homogeneous sets are
min-homogeneous. Let

X →s 〈k〉nc

denote that given any coloring C : [X]n → c, there is H s-homogeneous for C such
that ¯̄H ≥ k. The following lemma shows a connection between s-homogeneity
and homogeneity.

Lemma 4.1.9. Let s ≤ n and assume

(i) `→s 〈k〉nc ,

(ii) k − n+ s→ (m− n+ s)s
c.

Then we have

`→ (m)n
c .

Proof. Let C : [`]n → c be given. Then (i) implies that there is H ⊆ ` such that
|H| = k and H is s-homogeneous for C. Let z1 < · · · < zn−s be the last n − s
elements of H . Set H0 := H \ {z1, . . . , zn−s}. Then ¯̄H0 = k − n + s. Define
D : [H0]

s → c by

D(x1, . . . , xs) := C(x1, . . . , xs, z1, . . . , zn−s).

By (ii) there is Y0 such that Y0 ⊆H0,
¯̄Y0 = m − n + s, and homogeneous for D.

Hence D �[Y0]
s = e for some e < c. Set Y := Y0 ∪ {z1, . . . , zn−s}. Then ¯̄Y = m

and Y is homogeneous for C. Indeed, we have for any sequence x1 < · · · < xn

from Y

C(x1, . . . , xn) = C(x1, . . . , xs, z1, . . . , zn−s) = D(x1, . . . , xs) = e.

The proof is complete.



4.2. Ramsey functions and provability 57

4.2 Ramsey functions and provability

Given n, s such that s ≤ n define Rs
µ(n, ·, ·) : N2 → N by

Rs
µ(n, c, k) := min{` : `→s 〈k〉nc }.

Then

• R0
µ(1, c, k − n+ 1) = c · (k − n) + 1,

• Rn
µ(n, c, k) = Rs

µ(n, 1, k) = k,

• Rs
µ(n, c, n) = n,

• Rs
µ(n, c, k) ≤ Rs−1

µ (n, c, k) for any s > 0.

Rs
µ are called Ramsey functions. Set

R(n, c, k) := R0
µ(n, c, k) and Rµ(n, c, k) := R1

µ(n, c, k).

Define a binary operation ∗ by putting, for positive natural numbers x and y,

x ∗ y := xy.

Further, we put for p ≥ 3

x1 ∗ x2 ∗ · · · ∗ xp := x1 ∗ (x2 ∗ (· · · ∗ (xp−1 ∗ xp) · · · ))

Erdös and Rado [14] gave an upper bound for R(n, c, k): Given n, c, k such that
c ≥ 2 and k ≥ n ≥ 2, we have

R(n, c, k) ≤ c ∗ (cn−1) ∗ (cn−2) ∗ · · · ∗ (c2) ∗ (c · (k − n) + 1).

This estimate turned out to be very useful in Weiermann [61]. However, we
shall need somewhat more sharp estimate to deal with regressive functions and
min-homogeneous sets.

Theorem 4.2.1 (IΣ1). Let 2 ≤ n ≤ k, 0 < s ≤ n, and 2 ≤ c.

Rs
µ(n, c, k) ≤ c ∗ (cn−1) ∗ (cn−2) ∗ · · · ∗ (cs+1) ∗ (k − n + s) ∗ s.

In particular, Rµ(2, c, k) ≤ ck−1.

Proof. The proof construction below is motivated by Erdös and Rado [14]. We
shall work with s-homogeneity instead of homogeneity.

Let X be a finite set. In the following construction we assume that ¯̄X is large
enough. How large it should be will be determined after the construction has
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been defined. Throughout this proof the letter Y denotes subsets of X such that
¯̄Y = n− 2.

Let C : [X]n → c be given and x1 < . . . < xn−1 the first n− 1 elements of X.
Given x ∈ X \ {x1, . . . , xn−1} put

Cn−1(x) := C(x1, . . . , xn−1, x).

Then Im(Cn−1)⊆ c, and there is Xn ⊆X \ {x1, . . . , xn−1} such that Cn−1 is con-
stant on Xn and

¯̄Xn ≥ c−1 · ( ¯̄X − n + 1).

Let xn := minXn and given x ∈ Xn − {xn} put

Cn(x) :=
∏

{C(Y ∪ {xn, x}) : Y ⊆{x1, . . . , xn−1}}.

Then Im(Cn)⊆ c ∗
(

n−1
n−2

)
, and there is Xn+1 ⊆Xn −{xn} such that Cn is constant

on Xn+1 and

¯̄Xn+1 ≥ c−(n−1
n−2) · ( ¯̄Xn − 1) .

Generally, let p ≥ n, and suppose that x1, . . . , xp−1 and Xn, Xn+1, . . . , Xp have
been defined, and that Xp 6= ∅. Then let xp := minXp and for x ∈ Xp − {xp}
put

Cp(x) :=
∏

{C(Y ∪ {xp, x}) : Y ⊆{x1, . . . , xp−1}}.

Then Im(Cp)⊆ c ∗
(

p−1
n−2

)
, and there is Xp+1 ⊆Xp − {xp} such that Cp is constant

on Xp+1 and

¯̄Xp+1 ≥ c−(p−1
n−2) · ( ¯̄Xp − 1) .

Now put

` := 1 +Rs
µ(n− 1, c, k − 1).

Then ` ≥ k > n. If ¯̄X is sufficiently large, then Xp 6= ∅, n ≤ p ≤ `, so that
x1, . . . , x` exist. Note also that x1 < · · · < x`. For 1 ≤ ρ1 < · · · < ρn−1 < ` put

D(ρ1, . . . , ρn−1) := C(xρ1 , . . . , xρn−1 , x`).

By definition of ` there is Z ⊆{1, . . . , `− 1} such that Z is s-homogeneous for D
and ¯̄Z = k − 1. Finally, we put

X ′ := {xρ : ρ ∈ Z} ∪ {x`}.
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We claim that X ′ is min-homogeneous for C. Let

H := {xρ1 , . . . , xρn} and H ′ = {xη1 , . . . , xηn}

be two subsets of X ′ such that ρ1 = η1, . . . , ρs = ηs and

1 ≤ ρ1 < · · · < ρn ≤ `, 1 ≤ η1 < · · · < ηn ≤ `.

Since xρn , x` ∈ Xρn , we have Cρn−1(xρn) = Cρn−1(x`) and hence

C(xρ1 , . . . , xρn−1 , xρn) = C(xρ1 , . . . , xρn−1 , x`).

Similarly, we show that

C(xη1 , . . . , xηn−1 , xηn) = C(xη1 , . . . , xηn−1 , x`).

In addition, since {xρ1 , . . . , xρn−1} ∪ {xη1 , . . . , xηn−1}⊆X ′, we have

D(ρ1, . . . , ρn−1) = D(η1, . . . , ηn−1),

i.e.,

C(xρ1 , . . . , xρn−1 , x`) = C(xη1 , . . . , xηn−1 , x`).

This means that C(H) = C(H ′). So X ′ is s-homogeneous for C.
We now return to the question how large ¯̄X should be in order to ensure that

the construction above can be carried through.
Set

tn := c−1 · ( ¯̄X − n+ 1),

tp+1 := c−(p−1
n−2) · (tp − 1) (n ≤ p < `).

Then we require that t` > 0, where

t` = c−(`−2
n−2) ·

(
c−(`−3

n−2) ·
(
· · ·
(
c−(n−1

n−2) ·
(
tn − 1

))
· · ·
)
− 1
)

= c−(`−2
n−2)−···−(n−1

n−2) · tn − c−(`−2
n−2)−···−(n−1

n−2) − · · · − c−(`−2
n−2)−(`−3

n−2) − c−(`−2
n−2) .

Since c = c(
n−2
n−2) a sufficient condition on ¯̄X is then

¯̄X − n + 1 > c(
`−3
n−2)+···+(n−2

n−2) + c(
`−4
n−2)+···+(n−2

n−2) + · · ·+ c(
n−2
n−2) .

A possible value is

¯̄X = n+

`−2∑

p=n−1

c(
p

n−1),
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so that

Rs
µ(n, c, k) ≤ n+

`−2∑

p=n−1

c(
p

n−1) ≤ n+
`−2∑

p=n−1

cp
n−1

≤ n+

`−2∑

p=n−1

(
c(p+1)n−1 − cp

n−1)

= n+ c(`−1)n−1 − c(n−1)n−1

≤ c(`−1)n−1

= cRµ(n−1,c,k−1)n−1

.

Hence

Rs
µ(n, c, k) ∗ n ≤ (cn) ∗Rs

µ(n− 1, c, k − 1) ∗ (n− 1).

After (n− s) times iterated applications of the inequality we get

Rs
µ(n, c, k) ∗ n ≤ (cn) ∗ (cn−1) ∗ · · · ∗ (cs+1) ∗Rs

µ(s, c, k − n + s) ∗ s
= (cn) ∗ (cn−1) ∗ · · · ∗ (cs+1) ∗ (k − n+ s) ∗ s.

This completes the proof.

Remark 4.2.2. Lemma 26.4 in [13] gives a slight sharper estimate for s = n− 1:

Rn−1
µ (n, c, k) ≤ n +

k−2∑

i=n−1

c(
i

n−1)

Corollary 4.2.3. Let 2 ≤ n ≤ k and 2 ≤ c.

Rµ(n, c, k) ≤ c ∗ (cn−1) ∗ (cn−2) ∗ · · · ∗ (c2) ∗ (k − n+ 1).

Now we come back to f -regressiveness.

Definition 4.2.4. Given f : N → N set

Rf(n, x, k) := min{` : [x, `] → (k)n
f -reg}.

Lemma 4.2.5. Given n ≥ 1 and α ≤ ε0 set fn
α (i) := H

−1
α (i)
√

| i |n−1 . Then

Rfn
α
(n+ 1, x, k) ≤ 2n−1(Hα(x+ q)k+p)

for some p, q ∈ N depending (primitive-recursively) on n, x, k.
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Proof. Given n, x, k note first that there are two natural numbers p and q such
that n < p < q and

` := 2n−1(Hα(x+ q)k+n + 1) +Hα(x+ q) ≤ 2n−1(Hα(x+ q)k+p) =: m.

Let C : [x,m]n+1 → N be any fn
α -regressive function and

D : [Hα(x+ q), `]n+1 → N

be defined from C by restriction. Then for any y ∈ [Hα(x+ q), `], we have

H
−1
α (y)
√

|y|n−1 ≤ H
−1
α (Hα(x+q))

√

|2n−1(Hα(x+ q)k+p)|n−1

= x+q
√

Hα(x+ q)k+p + 1.

Hence

Im(D)⊆bHα(x+ q)(k+p)/(x+q) c+1.

Put now c := bHα(x+ q)(k+p)/(x+q) c+1. Then

(c) ∗ (cn) ∗ · · · ∗ (c2) ∗ (k − n) < 2n−1(Hα(x+ q)k+n + 1)

if q is sufficiently larger than p. By Theorem 4.2.1 there is H min-homogeneous
for D, hence for C, such that ¯̄H ≥ k.

Theorem 4.2.6. Let n ≥ 1.

(i) (KM)log∗ is provable in IΣ1.

(ii) (KM)n+1
|·|n is provable in IΣ1.

(iii) (KM)n+1
H

−1
α (·)

√
|·|n−1

is provable in IΣn if α < ωn+1.

Proof. Given n, k ≥ 1 we claim that

max{Rlog∗(n, x, k), R|·|n(n+ 1, x, k)} ≤ x+ 2n(x+ k) =: `

if x is sufficiently large.

(i) Given n, x, k let C : [x, `]n → N be log∗-regressive. Put c := x+ k. Then

log∗ ` ≤ c

and

c ∗ (cn−1) ∗ (cn−2) ∗ · · · ∗ (c2) ∗ (k ·− n + 1) < 2n(x+ k)

if x is sufficiently larger than n and k. By Theorem 4.2.1 we can find H
min-homogeneous for C such that ¯̄H ≥ k.
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(ii) Given n, x, k let C : [x, `]n+1 → N be | · |n-regressive. Put c := 2x+k. Then

|`|n ≤ c

and

c ∗ (cn) ∗ (cn−1) ∗ · · · ∗ (c2) ∗ (k ·− n) < 2n(x+ k)

if x is sufficiently larger than n and k. By Theorem 4.2.1 we can find
H ⊆[x, `] min-homogeneous for C such that ¯̄H ≥ k.

(iii) Hα is provably recursive in IΣn for α < ωn+1. See e.g. [55, 56] for a proof.
Then the assertion follows from 4.2.5

Theorem 4.2.7. Given α ≤ ε0 set fα := |·|H−1
α (·). Then

Rfα(n, x, k) ≤ 2n+1(Hα(x+ k))

if x is large enough.

Proof. Given n, x, k set ` := 2n+1(Hα(x+ k)). Then

m := 2n(Hα(x+ k)) +Hα(x+ k) ≤ `.

Let C : [x,N ]n → N be any fα-regressive function. Define from C

D : [Hα(x+ k), m]n → N

by restriction. Note that, for any y ∈ [Hα(x+ k), m], we have

|y|H−1
α (y) ≤ |2n+1(Hα(x+ k))|H−1

α (Hα(x+k))

< Hα(x+ k),

if x+ k > n + 1. Hence,

Im(D)⊆Hα(x+ z).

In addition, we have for c := Hα(x+ k)

(c) ∗ (cn−1) ∗ · · · ∗ (c2) ∗ (k − n + 1) < 2n(Hα(x+ k)),

if x is large enough. By Theorem 4.2.1 there is Y min-homogeneous for D, hence
for C, such that ¯̄Y ≥ k.

Corollary 4.2.8. Let n > 0.

(i) (KM)n+1
|·|

H
−1
α (·)

is provable in IΣn for any α < ωn+1.

(ii) (KM)|·|
H

−1
α (·)

is provable in PA for any α < ε0.

Proof. Hα is provably recursive in IΣn for any α < ωn+1. See e.g. [55, 56]. The
assertion follows now from Theorem 4.2.7.



Chapter 5

Fast growing functions

In this chapter we classify function classes of f such that Rf build fast growing
hierarchies. We owe a great deal of this chapter to [14], [29] and [61]. We want
to express special thanks to J. Paris and A. Kanamori who sent a personal hand-
written note of J. Paris. It contains a purely combinatorial proof that (KM)n

implies (PH)n for n ≥ 2 and is one of the starting points of this thesis.
We begin with a foretaste, that is, we study the growth rate of Rf (2, ·, ·) using

the functions Fα, α ≤ ω.

5.1 Ackermannian Ramsey functions

Kojman and Shelah [31] gave a very short and elementary, but a little technical
proof that Rid(2, ·, ·) is Ackermannian. The first proof of this fact had already
been given in Kanamori and McAloon [29] but with model-theoretic methods.
Here we are going to give a complete classification of the parameter functions
such that the resulting Ramsey functions are Ackermannian.

Given c ≥ 1 set

Rµ(c, k) := Rµ(2, c, k).

Then Rµ(1, k) = k and Rµ(c, 2) = 2.

Lemma 5.1.1. Rµ(c, k) ≤ 2 · ck−2 for c, k ≥ 2.

Proof. See Lemma 26.4 in [13].

Note that Lemma 26.4 in [13] talks about end-homogeneous sets. However, if
we confine ourselves to the 2-dimensional case it is just about min-homogeneous
sets.

63
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Throughout this section m denotes a fixed positive natural number. Set

gA(i) := b A−1(i)
√
i c , gm(i) := b F

−1
m (i)

√
i c and hm(i) := b m

√
i c .

where A := Fω . Given f ∈ {gA, gm, hm} set

Rf(k) := Rf(2, 0, k) = min{` : `→ (k)2
f -reg} − 1.

Theorem 5.1.2. Rgm is primitive recursive.

Proof. Given k ≥ 2 set p := Fm(k2)k+1. We claim that

Rgm(k) ≤ p

Set ` := Fm(k2)k + Fm(k2) < p and let C : [p]2 → N be a gm-regressive function.
Consider the function D : [Fm(k2), `]2 → N defined from C by restriction. For
any y ∈ [Fm(k2), `] we have

F
−1
m (y)

√
y ≤ F

−1
m (Fm(k2))

√

Fm(k2)k+1 = Fm(k2)(k+1)·k−2

,

hence Im(D)⊆Fm(k2)(k+1)·k−2
+ 1. On the other hand,

2 · (Fm(k2)(k+1)·k−2

+ 1)k−2 < (Fm(k2)(k+1)·k−2+1)k−1 < Fm(k2)k + 1.

By Lemma 5.1.1 we find a set H min-homogeneous for D, hence for C, such that
|H| ≥ k. This implies that Rgm is primitive recursive. Note that class of primitive
recursive functions is closed under the bounded µ-operator, see [41].

We show further that some refinements of the ideas elaborated by Kanamori
and McAloon in [29] give us the counterpart of Theorem 5.1.2. Define a sequence
of strictly increasing functions fm,n for as follows:

fm,n(i) :=

{

i+ 1 if n = 0,

f
(bm

√
i c)

m,n−1 (i) otherwise.

Note that fm,n are strictly increasing.

Lemma 5.1.3. Rhm(Rµ(c, i+ 3)) ≥ fm,c(i) for all c and i.

Proof. Let k := Rµ(c, i+ 3) and define a function Cm : [Rhm(k)]2 → N as follows:

Cm(x, y) :=

{

0 if fm,c(x) ≤ y,

` otherwise,

where the number ` is defined by

f (`)
m,p(x) ≤ y < f (`+1)

m,p (x)
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where p < c is the maximum such that fm,p(x) ≤ y. Note that Cm is hm-regressive

since f
(bm

√
x c)

m,p (x) = fm,p+1(x). Let H be a k-element subset of Rhm(k) which is
min-homogeneous for Cm. Define a c-coloring Dm : [H ]2 → c by

Dm(x, y) :=

{

0 if fm,c(x) ≤ y,

p otherwise,

where p is as above. Then there is a (i+ 3)-element set X ⊆H homogeneous for
Dm. Let x < y < z be the last three elements of X. Then i ≤ x. Hence, it
suffices to show that fm,c(x) ≤ y since fm,c is an increasing function.

Assume fm,c(x) > y. Then fm,c(y) ≥ fm,c(x) > z by the min-homogeneity.
Let Cm(x, y) = Cm(x, z) = ` and Dm(x, y) = Dm(x, z) = Dm(y, z) = p. Then

f (`)
m,p(x) ≤ y < z < f (`+1)

m,p (x).

By applying fm,p we get the contradiction that z < f
(`+1)
m,p (x) ≤ fm,p(y) ≤ z.

It remains to show that Rhm is not primitive recursive. We are going to show
this by comparing the functions fm,n with the Ackermann function.

Lemma 5.1.4. Let i ≥ 4m and ` ≥ 0.

(i) (2i+ 2)m < fm,`+2m2(i) and fm,`+2m2((2i+ 2)m) < f
(2)
m,`+2m2(i).

(ii) Fn(i) < f
(2)

m,n+2m2(i).

Proof. (1) By induction on k it is easy to show that fm,k(i) > (bm
√
i c)k for any

i > 0. Hence for i ≥ 4m

fm,2m2(i) > (bm
√
i c)2m2 ≥ (bm

√
i c)m2 · 2m2+m ≥ (m

√
i+ 1 )m2 · 2m = (2i+ 2)m

since 2 · bm
√
i c ≥ m

√
i+ 1. The second claim follows from the first one.

(2) By induction on n we show the claim. If n = 0 it is obvious. Suppose the
claim is true for n. Let i ≥ 4m be given. Then by induction hypothesis we have
Fn(i) ≤ f

(2)
m,n+2m2(i). Hence

Fn+1(i) = F (i+1)
n (i) ≤ f

(2i+2)

m,n+2m2(i) ≤ fm,n+2m2+1((2i+ 2)m) < f
(2)

m,n+2m2+1(i).

The induction is now complete.

Corollary 5.1.5. Fn(i) ≤ fm,n+2m2+1(i) for any i ≥ 4m.

Theorem 5.1.6. Rhm and RgA
are not primitive recursive.
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Proof. Lemma 5.1.3 and Corollary 5.1.5 imply that Rhm is not primitive recursive.
For the second assertion we claim that

p := RgA
(Rµ(i+ 2i2 + 1, 4i + 3)) > A(i)

for all i. Assume to the contrary that p ≤ A(i) for some i. Then for any ` ≤ p

we have A−1(`) ≤ i, hence
i
√
` ≤ A−1(`)

√
`. Hence

RgA
(Rµ(i+ 2i2 + 1, 4i + 3)) ≥ Rhi

(Rµ(i+ 2i2 + 1, 4i + 3))

≥ fi,i+2i2+1(4
i)

> A(i)

by Lemma 5.1.3 and Corollary 5.1.5. Contradiction!

5.2 Fast growing Ramsey functions

The emphasis of Section 4.2 lies in combinatorial results which give upper bounds
for Ramsey functions in primitive recursive way. We shall discuss now how one
can make use of the results from Kanamori and McAloon [29] to get some refine-
ment results of the parametrized Kanamori-McAloon principle. For this we base
ourselves on the independence results proved in Paris and Harrington [40] and
Weiermann [61]. Let’s start with some technical lemmata from [29]. The proofs
will be repeated because they help to understand the following ideas.

Lemma 5.2.1 (Kanamori and McAloon [29]). Let I ⊆N. If C : [I]n → N is
regressive, then H ⊆ I is min-homogeneous for C iff every Y ⊆H of cardinality
n+ 1 is min-homogeneous for C.

Proof. If H ⊆ I is not min-homogeneous, let x0 < · · · < xn−1 be the lexicograph-
ically least sequence drawn from H such that there are x0 < y1 < · · · < yn−1

all from H with C(x0, x1, . . . , xn−1) 6= C(x0, y1, . . . , yn−1), where we can take
〈y1, . . . , yn−1〉 to be the lexicographically least with this property. If i is the least
such that xi 6= yi, then xi < yi. Hence we have

C(x0, . . . , xn−1) = C(x0, . . . , xi, yi, . . . , yn−2)

and thus Y = {x0, . . . , xi, yi, . . . , yn−1} is not min-homogeneous for C.

The following lemma is a slight modification of Lemma 3.3 in [29].

Lemma 5.2.2. If C : [x, y]n → y is f -regressive and f(i) ≤ i, then there is an C ′

such that

• C ′ : [x, y]n+1 → y is 2|f | + 1-regressive, and

• if H ′ is min-homogeneous for C ′, then H = H ′ − (7 ∪ {max(H ′)}) is min-
homogeneous for C.
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Proof. Given x ∈ N note that any y < x can be represented as (y0, . . . , yd−1)2

in binary notation, where d = |x|. Write C(s) = (C0(s), . . . , Cd−1(s))2, where
s ∈ [x, y]n and d = |f(min(s))|. Define C ′ on [x, y]n+1 by:

• C ′(x0, . . . , xn) = 0 if either x0 < 7, or {x0, . . . , xn} is min-homogeneous for
C;

• C ′(x0, . . . , xn) = 2i + Ci(x0, . . . , xn−1) + 1, otherwise, where i < |f(x0)| is
the least such that {x0, . . . , xn} is not min-homogeneous for Ci.

Then C ′ is 2|f |+ 1-regressive. (Notice that 2 log(x+ 1) + 1 ≤ x for every x ≥ 7.)
Suppose thatH ′ is min-homogeneous for C ′ andH is as described. If C ′ �[H ]n+1 =
{0}, then we are done by the previous lemma. Suppose on the contrary that there
were x0 < · · · < xn all in H such that C ′(x0, . . . , xn) = 2i+ Ci(x0, . . . , xn−1) + 1.
Given any s, t ∈ [{x0, . . . , xn}]n with min(s) = min(t) = x0, note that

C ′(s ∪ {max(H ′)}) = C ′(x0, . . . , xn) = C ′(t ∪ {max(H ′)})

by min-homogeneity. But then, Ci(s) = Ci(t), so that {x0, . . . , xn} were min-
homogeneous for Ci after all, which contradicts the assumption.

Define a sequence of functions as follows:

b0(i) := i and bm+1(i) := 2 · |bm(i)| + 1

Lemma 5.2.3. Let n, m ≥ 1.

IΣ1 ` (KM)n+m
bm

→ (KM)n

Proof. Assume (KM)n+m
bm

. Let x and k be given. Note that given any ` there is
t` such that 7 ≤ b`(i) for any i ≥ t`. We may assume x ≥ tm. By assumption we
can find y such that

[x, y] → (k +m)n+m
bm-reg.

We claim [x, y] → (k)n . To see this let C : [x, y]n → y be regressive. Applying
the previous lemma m times we get C ′ : [x, y]n+m → y, bm-regressive. Therefore,
there is H ′ min-homogeneous for C ′ such that ¯̄H ≥ k +m, so

H = H ′ − {the last m elements of H ′}

is min-homogeneous for C and ¯̄H ≥ k.

Corollary 5.2.4. Let m > 0.

(i) IΣ1 ` (KM)|·|m −→ (KM).

(ii) PA 0 (KM)|·|m, i.e. R|·|m is not provably recursive in PA.
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Remark 5.2.5. Later in Theorem 5.2.13 we will see that R|·|m build a fast growing
hierarchy.

Lemma 5.2.6 ([29]). There are three regressive functions η1, η2, η3 : [N]2 → N

such that whenever H ′ is min-homogeneous for all of them, then

H = H ′ \ {the last three elements of H ′}
has the property that x < y both in H implies xx ≤ y.

Proof. Define η1, η2, η3 : [N]2 → N by:

η1(x, y) =

{

0 if 2x ≤ y,

y − x otherwise,

η2(x, y) =

{

0 if x2 ≤ y,

u otherwise, where u · x ≤ y < (u+ 1) · x,

η3(x, y) =

{

0 if xx ≤ y,

v otherwise, where xv ≤ y < xv+1.

Suppose that H ′ is as hypothesized, and let z1 < z2 < z3 be the last three
elements of H ′. If x < y are both in H ′ \ {z3}, then since η1(x, y) = η1(x, z3),
clearly we must have η1(x, y) = 0. Hence, η1 on [H ′ \ {z3}]2 is constantly 0.

Next, assume that x < y are both in H ′ \ {z2, z3} and η2(x, y) = u > 0. then

u · x ≤ y < z2 < u · x+ x

by min-homogeneity, and so we have

u · x+ x ≤ y + x ≤ y + y ≤ z2

by the previous paragraph. But this leads to the contradiction z2 < z2. Hence,
η2 on [H ′ \ {z2, z3}]2 is constantly 0.

Finally, we can iterate the argument to show that η3 on [H ′ \ {z1, z2, z3}]2 is
constantly 0, and so the proof is complete.

The following theorem stems from the brilliant, purely combinatorial idea
sketch by J. Paris. He gave a combinatorial proof of the propositions

(KM)n → (KM)n
22· and (KM)n

22· → (PH)n

for n ≥ 2. During a trial to give a direct proof of the proposition

(KM)n → (PH)n,

it turned out that the idea could be optimalized. The basic idea is to get very
large min-homogeneous sets such that some fine thinning can be chosen whose
every two elements lie far away enough from each other. This is also one of the
basic ideas of Paris’ original proof. We shall demand somewhat more, and this
will be achieved by fitting Lemma 5.2.6 into the construction of such sets.
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Theorem 5.2.7 (IΣ1). Let n ≥ 2.

(i) (KM)n
|·|n ·−3

→ (PH)n.

(ii) (KM)n → (PH)n.

Proof. The second assertion follows from the first. For a better readability we give
here a proof of the first assertion for n = 3. Though the following construction is
general enough, a general proof for arbitrary n ≥ 2 will be given later.

Given x, z, N let y be such that

[x, y] −→ (m)3
reg,

where m comes from

m −→ (`+ 7)3
4,

where ` = 21z+ 22. Such an m exists by the finite Ramsey theorem (provable in
IΣ1). We may assume that x is very much larger than max{7, z, N,M}, where
M is so large that for all i ≥ M

2|i| + 1 < i, 22|i|3 < i, and |i|3 > 2.

These conditions will be used to ensure that the following function g is regressive.
Claim that

[x, y] −→∗ (N)3
z .

For this let f : [x, y]3 → z and define a regressive function g : [x, y]3 → y as
follows:

Let α < β < γ be from [x, y]. First define a function Qγ by:

• Qγ(0) := x, Qγ(1) := x+ 1, and if Qγ � i defined then

• Qγ(i) := the smallest t such that t > Qγ(i− 1), t < γ, and

∀j, k < i [ j < k −→ f(Qγ(j), Qγ(k), t) = f(Qγ(j), Qγ(k), γ) ] .

• If such a t does not exist, set Qγ := Qγ � i.

Now put for j < k ∈ α ∩ dom(Qγ)

Rγα(j, k) := f(Qγ(j), Qγ(k), γ).

Notice that Qγ �α can be regained from f and Rγα, i.e. γ is not necessary.

For β ∈ dom(Qγ) define a function Pγβ by
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• Pγβ(0) := x, and if Pγβ � i defined then

• Pγβ(i) := the smallest t such that t > Pγβ(i− 1), t ∈ Im(Qγ �β), and

∀j < i(f(Pγβ(j), t, γ) = f(Pγβ(j), Qγ(β), γ)).

• If such a t does not exist, set Pγβ := Pγβ � i.

Define for j ∈ α ∩ dom(Pγβ)

Sγβα(j) := f(Pγβ(j), Qγ(β), γ) .

Notice that Pγβ �α can be regained from f , Sγβα and γ.

Before we define g we need one more assistant function which guarantees
some distances between numbers. Remember the three regressive functions ηj ,
j = 1, 2, 3, from Lemma 5.2.6. Applying Lemma 5.2.2 define η̄j : [x, y]3 →
2|y| + 1, j = 1, 2, 3, such that, if H̄ min-homogeneous for all η̄j , then H :=
H̄ − {the last element of H̄} is min-homogeneous for all ηj from Lemma 5.2.6.
Let

h(α, β, γ) :=

{

0 if η̄j(α, β, γ) = 0 for each j ∈ {1, 2, 3},
j otherwise, where j is the least s.t. η̄j(α, β, γ) 6= 0.

Then define g on [x, y]3 as follows:

• If h(α, β, γ) = j > 0, then

g(α, β, γ) := η̄j(α, β, γ);

• Assume h(α, β, γ) = 0.

➤ Unless x ≤ |α|3 < |β|3 < |γ|3, then

g(α, β, γ) := 0.

Assume now additionally x ≤ |α|3 < |β|3 < |γ|3.
➤ If |β|3 /∈ dom(Q|γ|3), then

g(α, β, γ) := 〈R|γ|3|α|3, |γ|3 (mod 2z|α|3)〉.

➤ If |β|3 ∈ dom(Q|γ|3), then

g(α, β, γ) := 〈R|γ|3|α|3, S|γ|3|β|3|α|3, |γ|3 (mod 2z|α|3)〉.
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Here 〈·, · · · , ·〉 are suitable coding functions s.t. for all α < β < γ

〈Rγα, Sγβα, γ (mod 2zα)〉 ≤ 22α

, (∗)

if α is large enough. This is possible since dom(Rγα) ∪ dom(Sγβα)⊆α and
Im(Rγα) ∪ Im(Sγβα)⊆ z. The finite functions R and S are of course to be under-
stood as their codes. (In fact, it is not so important which coding function should
be used.) From now on assume that (∗) is always satisfied for any α ≥ x. Then

g(α, β, γ) ≤ max{η̄j(α, β, γ), 2
2|α|3} < α,

since α > M , so g is regressive.

Let X0 be min-homogeneous for g and homogeneous for h with |X0| ≥ ` + 7,
and set

X1 := X0 − {the last four elements of X0},
X := X1 − {the first three elements of X1},

hence |X| ≥ `. Let also Y ′ be the set of every third element of X and Y the
set of every second element of Y ′, i.e. Y is the set of every 6th element of X, so
|Y | ≥ `/7 > 3z + 3.

Claim 1 : h �[X1]
3 is the constant function 0.

Proof of Claim 1: Let a < b < c < d be the last four elements of X0 and assume
h �[X1]

3 = 1. Then

h �[X0]
3 = 1 and g �[X0]

3 = η̄1 �[X0]
3.

It follows that X0 is min-homogeneous for η̄1, so X0 \{d} is min-homogeneous for
η1. By the proof of Lemma 5.2.6 η1 �[X0\{c, d}]2 = 0. Hence η̄1 �[X0\{c, d}]3 = 0
contradicting h �[X0]

3 = 1. Therefore, h �[X0]
3 6= 1 and η̄1 �[X0]

3 = 0 since
it is a constant function. In particular, X0 is min-homogeneous for η̄1, and so
η1 �[X0 \ {c, d}]2 = 0.

Finally, we can iterate the same argument to show that η2 �[X0\{b, c, d}]2 = 0
and η3 �[X0\{a, b, c, d}]2 = 0. It follows that h �[X1]

3 /∈ {1, 2, 3}, and so we should
have h �[X1]

3 = 0. q.e.d.

Then by Lemma 5.2.2 and Lemma 5.2.6 it follows for all α < β ∈ X1 that
2α < β, hence |α|3 < |β|3 if |α|3 > 2. And since there are three elements from X1

which are smaller than min(X) we also have x ≤ |α|3 for all α ∈ X. Therefore,
g �[X]3 > 0.

Furthermore, we need to show the following claims.

(1) Let α < β < δ < γ from Y ′.

Claim 2 : z|α|3 < |δ|3 − |β|3.
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Proof of Claim 2 : Let τ < ρ ∈ X such that α < τ < ρ < β < δ. Since

g(α, τ, ρ) = g(α, τ, β) = g(α, τ, δ)

we have

|ρ|3 (mod 2z|α|3) = |β|3 (mod 2z|α|3) = |δ|3 (mod 2z|α|3).

Then for some n1 < n2 ∈ N

|β|3 = |ρ|3 + 2z|α|3 · n1 and |δ|3 = |ρ|3 + 2z|α|3 · n2 ,

hence |δ|3 − |β|3 > z|α|3. q.e.d.

Claim 3 : |β|3 ∈ dom(Q|γ|3), Q|γ|3(|β|3) < |δ|3, Q|γ|3 � |β|3 = Q|δ|3 � |β|3, and
dom(R|γ|3|α|3) = |α|3.
Proof of Claim 3 : Let τ, ρ ∈ X such that β < τ < ρ < δ. Since

g(β, τ, ρ) = g(β, τ, γ)

we have R|ρ|3|β|3 = R|γ|3|β|3 and Q|ρ|3 � |β|3 = Q|γ|3 � |β|3. Hence, for each j < k ∈
|β|3 ∩ dom(Q|ρ|3) = |β|3 ∩ dom(Q|γ|3)

f(Q|ρ|3(j), Q|ρ|3(k), |ρ|3) = f(Q|γ|3(j), Q|γ|3(k), |γ|3).

Let µ := |β|3 ∩ dom(Q|ρ|3). Then µ = |β|3, since otherwise it would follow that
Q|γ|3(µ) were defined. Note that |ρ|3 < |γ|3. This contradicts the definition of µ.
Here we used the fact that Q|ρ|3 �µ = Q|γ|3 �µ. In the same way we show that

|β|3 ∈ dom(Q|γ|3) and Q|γ|3(|β|3) ≤ |ρ|3 < |δ|3.

Replacing |γ|3 by |δ|3 above one can see that

Q|δ|3 � |β|3 = Q|γ|3 � |β|3.

Therefore, dom(R|γ|3|α|3) = |α|3. q.e.d.

(2) Let α < β < δ < γ < η from Y .

Claim 4 : dom(S|γ|3|β|3|α|3) = |α|3 and P|γ|3|β|3(|α|3) < |β|3.
Proof of Claim 4 : Let τ ∈ Y ′ such that α < τ < β, then g(α, τ, γ) = g(α, β, γ).
By the same arguments as above we may talk about S|γ|3|τ |3|α|3 = S|γ|3|β|3|α|3 , i.e.

µ := |α|3 ∩ dom(P|γ|3|τ |3) = |α|3 ∩ dom(P|γ|3|β|3)

and for each j < µ

f(P|γ|3|τ |3(j), Q|γ|3(|τ |3), |γ|3) = f(P|γ|3|β|3(j), Q|γ|3(|β|3), |γ|3).
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(Remember that S|γ|3|β|3|α|3 is a code of a finite function.) As above we can show
that µ = |α|3 and P|γ|3|β|3(|α|3) ≤ Q|γ|3(|τ |3) < |β|3. q.e.d.

Claim 5: P|γ|3|δ|3(|α|3) < |β|3 and P|δ|3|β|3 � |α|3 = P|η|3|γ|3 � |α|3.
Proof of Claim 5 : Let τ be as above. Replacing β by δ above one sees that

P|γ|3|δ|3(|α|3) ≤ Q|γ|3(|τ |3) < |β|3.

P|δ|3|β|3 � |α|3 = P|η|3|γ|3 � |α|3 follows directly from g(α, β, δ) = g(α, γ, η). q.e.d.

Now let Y = {αi | i ≤ k} in ascending order and pick sets

Zi ⊆ Im(P|αk|3|αk−1|3 �[ |α3i|3, |α3i+1|3)),

where i < [k/3] − 1, such that

|Zi| ≥
|α3i+1|3 − |α3i|3

z

and the function λt.f(t, Q|αk|3(|αk−1|3), |αk|3) is constant on Zi, with say constant
value ci < z. This is possible since P|αk|3|αk−1|3 is strictly increasing. Since [k/3]−
1 > z we have ci0 = ci1for some i0 < i1 < [k/3] − 1. We claim that Zi0 ∪ Zi1 is a
large homogeneous set for f .

• f is constant on [Zi0 ∪ Zi1 ]
3:

Let u < v < w from Zi0 ∪ Zi1. Then

f(u, v, w) = f(u, v, |αk|3) (by {u, v, w}⊆ Im(Q|αk|3))
= f(u,Q|αk|3(|αk−1|3), |αk|3) (by def. of P|αk|3|αk−1|3)

On the other hand, we have

f(u,Q|αk|3(|αk−1|3), |αk|3) = f(u′, Q|αk|3(|αk−1|3), |αk|3)

for all u′ ∈ Zi0 ∪ Zi1 . So f is homogeneous on Zi0 ∪ Zi1 .

• Zi0 ∪ Zi1 is relatively large:

min(Zi0 ∪ Zi1) ≤ min(Zi0) < |α3i0+2|3
<

|α3i1+1|3 − |α3i1 |3
z

≤ |Zi1 | < |Zi0 ∪ Zi1|

Moreover, |Zi0∪Zi1 | > |Zi1| ≥
|α3i1+1|3−|α3i1

|3
z

> |α3i1−1|3 > x > N . This completes
the proof.
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A slight modification of the proof above shows the following.

Theorem 5.2.8 (IΣ1). (KM)n
bn−2

implies (PH)n for every n ≥ 2.

Corollary 5.2.9. Let n ≥ 1.

(i) IΣn 0 (KM)n+1
|·|n−2

.

(ii) IΣn 0 (KM)n+1
bm

iff m ≤ n− 1.

Proof. IΣn ` (KM)n+1
bn

can be proved similarly as Theorem 4.2.6.(ii).

Remark 5.2.10. Let n ≥ 1.

(i) At the moment we don’t know whether (KM)n+1
|·|n−1

is IΣn-provable or not.
We conjecture that it is unprovable. We believe even that

IΣn 0 (KM)n+1
d
√

|·|n−1

for any d ≥ 1. As we have seen, this is true for n = 1.

(ii) Weiermann has recently shown that in the local level there is a difference
between (PH)n

f and (KM)n
f . Indeed, he could show that

IΣn ` (PH)n+1
|·|n−1

.

In the full strength of PA, however, there is no difference between (PH)f

and (KM)f . See the following.

Now we are going to see how fast Rf with respect to the iterated binary
functions grows. This will be based upon Weiermann’s results with respect to
the Paris-Harrington principle. Given f : N → N set

r∗f(n, x, c) := min{y : [x, y] →∗
f (n+ 1)n

c }.

For the rest of this section put

fα := |·|H−1
α (·).

Theorem 5.2.11 (Weiermann [61]). Set k(s) := k + 3 + 32 + · · · + 3s.

(i) Let n ≥ 2 and k ≥ 4.

r∗|·|n−2
(n + 1, 3n(n+ k + 3), k(n)) ≥ Hωk

n
(k − 1)

(ii) Let n ≥ 4.

r∗fε0
(n+ 1, 3n(2n+ 3), n(n)) ≥ Hε0(n− 2)
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Corollary 5.2.12. Let n ≥ 5.

r∗id(n, p(n), q(n)) ≥ Hε0(n− 3),

where p, q : N → N are some primitive recursive functions.

Theorem 5.2.13. Let m ∈ N.

(i) (KM)|·|m is unprovable in PA.

(ii) (KM)|·|
H

−1
ε0

(·)
is unprovable in PA.

Proof. (i) A slight modification of the proof of Lemma 5.2.3 shows

R|·|m(n+m+ 1, x, k +m+ 1) ≥ Rid(n, x, k)

if x is sufficiently large. On the other hand, we know by Corollary 5.2.12and
the proof of Theorem 5.2.7 that

Rid(n, p1(n), q1(n)) > Hε0(n− 3),

where n is sufficiently large and p1, q1 are some primitive recursive functions.
So

R|·|m(n+m+ 1, p2(n), q2(n)) > Hε0(n− 3),

where n is sufficiently large and p2, q2 are some primitive recursive functions.
Hence R|·|m cannot be provably recursive in PA.

(ii) Using the same notation we have R|·|m(n, p2(n), q2(n)) > Hε0(n−m−4) for
sufficiently large n. So

R|·|n(2n, p2(2n), q2(2n)) > Hε0(n− 4).

We claim for sufficiently large n

Rfε0
(2n, p2(2n), q2(2n)) > Hε0(n− 4).

Assume Rfε0
(2n, p2(2n), q2(2n)) ≤ Hε0(n − 4). By definition there is some

| · |n-regressive function G : [p2(2n), Hε0(n − 4)]2n → N which has no min-
homogeneous set of cardinality q2(2n). On the other hand, G is |·|H−1

ε0
(·)-

regressive. In fact, we have for all i ≤ Hε0(n− 4)

H−1
ε0

(i) ≤ n− 4,

so |i|n < |i|n−4 ≤ |i|H−1
ε0

(i). So G has a min-homogeneous set of cardinality

q2(2n). Contradiction!
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A general proof of Theorem 5.2.7

A general proof of the following will be given: Given n ≥ 2

IΣ1 ` (KM)n
|·|n ·−3

−→ (PH)n.

Proof. Let n ≥ 2 be given. Let x, z, N be given and y be such that

[x, y] −→ (m)n
|·|n ·−3−reg,

where m comes from

m −→ (`+ n′)n
4 ,

where

n′ :=

{

2n+ 2 if n = 2,

2n+ 1 otherwise.

Here ` = 3(n!+1)(z+n−2)+1. Such an m exists by the Finite Ramsey Theorem.

We may assume that x is much larger than max{7, z, N,M(n)}, where M(n)
is so large that for all j ≥M(n)

• 22|j|3 < j and |j|3 > 2 for n = 2,

• fn−2(j) < |j|n−3, 22|j|n < |j|n−3, and |j|n > 2 for n ≥ 3,

where

fp(i) :=

{

2 · d log(i+ 1) e+1 if p = 1,

2 · d log(fp−1(i) + 1) e+1 if p ≥ 2.

These conditions will be used to ensure that the following function g is |·|n ·−3-
regressive. (So it depends on n.) Claim

[x, y] −→∗ (N)n
z .

For this let f : [x, y]n → z and define g : [x, y]n → |y|n ·−3 which is a |·|n ·−3-
regressive function as follows:

Let α1 < α2 < · · · < αn be from [x, y]. Then we define gradually the following
functions Qj

αn···αn−j+1
and Rj

αn···αn−j+1α1
for j ∈ {1, . . . , n− 1}.

For a better readability set

Qj
n := Qj

αn···αn−j+1
and Rj

n := Rj
αn···αn−j+1α1

.

Furthermore, we use the abbreviation ~im for i1, . . . , im such that i1 < · · · < im
and h(~im) for h(i1), . . . , h(im), where h : N → N.
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(1) j = 1:

• Q1
n(0) := x, Q1

n(1) := x+ 1, . . . , Q1
n(n− 2) := x+ n− 2.

Assume Q1
n � i is defined.

• Q1
n(i) := the smallest t such that t > Q1

n(i− 1), t < αn, and

∀~in−1 < i [ f(Q1
n(~in−1), t) = f(Q1

n(~in−1), αn) ] .

• If such a t does not exist, set Q1
n := Q1

n � i.

(2) 1 < j ≤ n− 1: Assume αi ∈ dom(Qn−i
n ) for i ∈ {n− j + 1, . . . , n− 1}.

• Qj
n(0) := x, . . . , Qj

n(n− j − 1) = x+ n− j − 1.

Assume Qj
n � i is defined.

• Qj
n(i) := the smallest t such that t > Qj

n(i− 1), t ∈ Im(Qj−1
n �αn−j+1),

and for all i1 < · · · < in−j < i

f(Qj
n(~in−j), t, Q

j−2
n (αn−j+2), . . . , Q

1
n(αn−1), αn)

= f(Qj
n(~in−j), Q

j−1
n (αn−j+1), . . . , Q

1
n(αn−1), αn).

• If such a t does not exist, set Qj
n = Qj

n � i.

(3) Let j ∈ {1, . . . , n− 1}. Put for i1 < · · · < in−j ∈ α1 ∩ dom(Qj
n)

Rj
n(i1, . . . , in−j) := f(Qj

n(~in−j), Q
j−1
n (αn−j+1), . . . , Q

1
n(αn−1), αn).

Notice that Qj
n �α1 can be regained from f , Qj−1

n (αn−j+1), . . . , Q
1
n(αn−1), R

j
n,

and αn. Before we define g we need one more assistant function which guarantees
some distances between numbers.

Remember the three regressive functions ηj, j = 1, 2, 3, from Lemma 5.2.6.
Applying Lemma 5.2.2 n − 2 times define η̄j : [x, y]n → |y|n−2 such that, if H̄ is
min-homogeneous for all η̄j , thenH := H̄−{the last n− 2 elements of H̄} is min-
homogeneous for all ηj . Let ~αn denote α1, . . . , αn ∈ [x, y] such that α1 < · · · < αn.
We define

h(~αn) :=

{

0 if η̄j(~αn) = 0 for each j ∈ {1, 2, 3},
j otherwise, where j is the least s.t. η̄j(~αn) 6= 0.

Then define g on [x, y]3 as follows:
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• If h(~αn) = j > 0, then

g(~αn) := η̄j(~αn).

• If h(~αn) = 0 and unless x ≤ |α1|n+1 < · · · < |αn|n+1, then

g(~αn) := 0.

From now on assume that h(~αn) = 0 and x ≤ |α1|n+1 < · · · < |αn|n+1. For
a better readability we use the following abbreviation: For β1 < . . . < βm and
j ∈ {1, . . . , m− 1} set

Qj
β,m := Qj

|βm|n∗ ···|βm−j+1|n∗

and

Rj
β,m := Rj

|βm|n∗ ···|βm−j+1|n∗ |β1|n∗
,

where n∗ = 3 if n = 2 and n∗ = n otherwise.

• If n = 2, then

g(α1, α2) := 〈R1
α,2, |α2|3 (mod 2z|α1|3)〉.

Let n > 2.

• If |αj|n /∈ dom(Qn−j
α,n ) and |αj |n ∈ dom(Qn−j

α,n ) for j = n − 1, . . . , 2 and
p = n− 1, . . . , j + 1, then

g(~αn) := 〈R1
α,n, R

2
α,n, . . . , R

n−j
α,n , |αn|n (mod 2z|α1|n)〉.

• If |αj |n ∈ dom(Qn−j
α,n ) for j = 2, . . . , n− 1, then

g(~αn) := 〈R1
α,n, R

2
α,n, . . . , R

n−1
α,n , |αn|n (mod 2z|α1|n)〉.

Here 〈·, · · · , ·〉 are suitable coding functions s.t. for all α1 < · · · < αn

〈R1
n, . . . , R

n−1
n , αn (mod 2zα1)〉 ≤ 22α1 (∗)

if α1 is large enough. (Here without any iterated binary length function.) This is
possible since dom(Rj

n)⊆α and Im(Rj
n)⊆ z. The finite functions Rj

n are of course
to be understood as their codes. (In fact, it is not so important which coding
function should be used.) From now on assume that (∗) is always satisfied for
any α ≥ x. Then g is | · |n ·−3-regressive since x > M(n).
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Let X0 be min-homogeneous for g and homogeneous for h with |X0| ≥ `+ n′,
and set

X1 := X0 − {the last n+1 elements of X0},

X := X1 − {the first n∗ elements of X1},
hence |X| ≥ `. And define Y1, . . . , Yn1 as follows:

Y1 := the set of every n-th element of X,

Y2 := the set of every (n− 1)-th element of Y1,
...

Yn−1 := the set of every 2nd element of Yn−2.

Yn−1 is then the set of every n!-th element of X, hence

|Yn−1| > `/(n! + 1) > 3z + 3(n− 2).

Claim 1: h �[X1]
n is the constant function 0.

Proof of Claim 1: Let a < b < c < d1 < · · · < dn−2 be the last n + 1 elements of
X0 and assume h �[X1]

n = 1. Then

h �[X0]
n = 1 and g �[X0]

n = η̄1 �[X0]
n.

I.e., X0 is min-homogeneous for η̄1, so X0 \ {~dn−2}, ~dn−2 := d1, . . . , dn−2, is min-

homogeneous for η1. By the proof of Lemma 5.2.6 η1 �[X0\{c, ~dn−2}]2 = 0. Hence

η̄1 �[X0\{c, ~dn−2}]n = 0. Therefore, η̄1 �[X0]
n = 0 contradicting h �[X0]

n = 1. This
implies h �[X0]

n 6= 1, so η̄1 �[X0]
n = 0 since it is a constant function. In particular,

X0 is min-homogeneous for η̄1, and so η1 �[X0 \ {c, ~dn−2}]2 = 0.

Finally, we can iterate the same argument to show η2 �[X0 \ {b, c, ~dn−2}]2 = 0

and η3 �[X0 \ {a, b, c, ~dn−2}]2 = 0. It follows that h �[X1]
n /∈ {1, 2, 3}, and so we

should have h �[X1]
n = 0. q.e.d.

Then by Lemma 5.2.2 and Lemma 5.2.6 it follows for all α < β ∈ X1 that
2α < β, hence |α|n∗ < |β|n∗ if |α|n∗ > 2. And since there are n∗ elements from X1

which are smaller than min(X) we also have x < |α|n∗ for all α ∈ X. Therefore,
g �[X]n > 0.

Furthermore, we show the following.

Claim 2 : For α1 < α2 < α3 from Y1 we have

z|α1|n∗ < |α3|n∗ − |α2|n∗ .

Proof of Claim 2 : Let ~τn−1 := τ1, . . . , τn−1 from X such that α < τ1 < · · · <
τn−1 < α2 < α3 . By min-homogeneity

g(α1, ~τn−1) = g(α1, ~τn−2, α2) = g(α1, ~τn−2, α3),
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hence

|τn−1|n∗ (mod 2z|α1|n∗) = |α2|n∗ (mod 2z|α1|n∗)

= |α3|n∗ (mod 2z|α1|n∗).

There are some k1, k2 ∈ N such that k1 < k2,

|α2|n∗ = |τn−1|n∗ + k1 · 2z|α1|n∗,

and

|α3|n∗ = |τn−1|n∗ + k2 · 2z|α1|n∗.

Hence |α3|n∗ − |α2|n∗ > z|α1|n∗ . q.e.d.

Let m ∈ {1, . . . , n − 1} and α1, . . . , αm+1, β1, . . . , βm be from Ym such that
α1 < β1 < α2 < · · · < βm < αm+1.

Claim 3 : For j = 1, . . . , m and p = 1, . . . , j we have

|αj|n∗ ∈ dom(Qm−j+1
α,m+1 ) and Qm−j+1

α,m+1 (|αp|n∗) < |βp|n∗.

Proof of Claim 3 : We argue by induction on m.

(1) m = 1: Take ~τn−1 ∈ X such that α1 < τ1 < · · · < τn−1 < β1. Then the
min-homogeneity implies

g(α1, ~τn−1) = g(α1, ~τn−2, α2).

It follows that R1
|τn−1|n∗ |α1|n∗

= R1
|α2|n∗ |α1|n∗

. That is to say,

µ := |α1|n∗ ∩ dom(Q1
τ,n−1) = |α1|n∗ ∩ dom(Q1

α,2)

and

Q1
τ,n−1 �µ = Q1

α2,3 �µ.

Therefore, for all ~in−1 such that i1 < · · · < in−2 < µ we have

f(Q1
τ,n−1(~in−1), |τn−1|n∗) = f(Q1

τ,n−1(~in−1), |α2|n∗).

If µ < |α1|n∗ this would mean that Q1
τ,n−1(µ) were defined, contradicting the

definition of µ. In the same way we can show that |α1|n∗ ∈ dom(Q1
α,2) and

Q1
α,2(|α1|n∗) ≤ |τn−1|n∗ < |β1|n∗ .

(2) m ≥ 2: Take ~τn−m from Ym−1 such that

α1 < τ1 < · · · < τn−m < β1 < α2 < β2 < · · · < αm+1.
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By min-homogeneity

g(α1, ~τn−m, α3, . . . , αm+1) = g(α1, ~τn−m−1, α2, . . . , αm+1).

On the other hand, we have by I.H.

|αj|n∗ ∈ dom(Qm−j+1
α,m+1 )

for j = 2, . . . , m and

Qm−j+1
α,m+1 (|αp|n∗) < |βp|n∗

for p = 2, . . . , j. So |τn−m|n∗ ∈ dom(Qm−1
α,m+1) and

Rm
α,m+1 = Rm

|αm+1|n∗ ···|α3|n∗ |τn−m| |α1|n∗
.

This means that

µ := |α1|n∗ ∩ dom(Qm
α,m+1)

= |α1|n∗ ∩ dom(Qm
|αm+1|n∗ ···|α3|n∗ |τn−m|n∗

)

and

Qm
α,m+1 �µ = Qm

|αm+1|n∗ ···|α3|n∗ |τn−m|n∗
�µ.

Then for all i1 < · · · < in−m < µ

f(Qm
α,m+1(~in−m), Qm−1

α,m+1(|α2|n∗), . . . , Q1
α,m+1(|αm|n∗), |αm+1|n∗)

= f(Qm
α,m+1(~in−m), Qm−1

α,m+1(|τn−m|n∗), . . . , Q1
α,m+1(|αm|n∗), |αm+1|n∗).

As in the case (1) we can show that µ = |α1|n∗ and |α1|n∗ ∈ dom(Qm
α,m+1). Then

Qm
α,m+1(|α1|n∗) ≤ Qm−1

α,m+1(|τn−m|n∗) < |β1|n∗ by induction hypothesis. q.e.d.

Let Yn−1 = {αi | i ≤ k} be in ascending order and pick sets

Zi ⊆ Im(Qn−1
α,k � [ |α3i|n∗ , |α3i+1|n∗)),

where i < bk
3
c − dn−2

3
e, such that

|Zi| ≥
|α3i+1|n∗ − |α3i|n∗

z

and the function

t 7→ f(t, Qn−2
α,k (|αk−n+2|n∗), . . . , Q1

α,k(|αk−1|n∗), |αk|n∗)

is constant on Zi, with say constant value ci < z. This is possible since Qn−1
α,k is

strictly increasing. Since bk
3
c − dn−2

3
e > z we have ci0 = ci1for some i0 < i1 <

bk
3
c − dn−2

3
e. We claim that Zi0 ∪ Zi1 is a large homogeneous set for f .
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• f is constant on [Zi0 ∪ Zi1 ]
n: Let u1 < · · · < un from Zi0 ∪ Zi1 . Then

f(~un) = f(u1, . . . , un−1, |αk|n∗)

= f(u1, . . . , un−2, Q
1
α,k(|αk−1|n∗), |αk|n∗)

...

= f(u1, Q
n−2
α,k (|αk−n+2|n∗), . . . , Q1

α,k(|αk−1|n∗), |αk|n∗),

since ui ∈ Im(Q2
α,k) for all i = 1, . . . , n.

On the other hand, we have

f(u1, Q
n−2
α,k (|αk−n+2|n∗), . . . , Q1

α,k(|αk−1|n∗), |αk|3)
= f(u′1, Q

n−2
α,k (|αk−n+2|n∗ , . . . , Q1

α,k(|αk−1|n∗), |αk|n∗)

for all u′1 ∈ Zi0 ∪ Zi1 . So f is homogeneous on [Zi0 ∪ Zi1]
n.

• Zi0 ∪ Zi1 is large:

min(Zi0 ∪ Zi1) = min(Zi0)

< |α3i0+2|n∗

<
|α3i1+1|n∗ − |α3i1|n∗

z
≤ |Zi1 | < |Zi0 ∪ Zi1|

In addition, |Zi0 ∪ Zi1| > |Zi1| ≥
|α3i1+1|n∗−|α3i1

|n∗

z
> |α3i1−1|n∗ > x > N .
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Chapter 6

Kruskal’s theorem and ϑΩω

Simpson [49] presented some Friedman style independence results about of finite
rooted trees. They are based in part on the existence of a close relationship
between finite trees on the one hand and ordinal notation systems well-known in
Gentzen-style proof theory on the other. It is shown that both Kruskal’s theorem
and its miniaturization are too strong to be provable in ATR0.

Moreover, Rathjen and Weiermann [43] showed that Kruskal’s theorem is
much stronger than ATR0. The proof-theoretic strength of ACA0 with Kruskal’s
theorem is the small Veblen ordinal ϑΩω, also called Ackermann’s ordinal, and
much bigger than Γ0, the proof-theoretic strength of ATR0.

In this chapter we show that Friedman style miniaturization could be an
adequate tool for showing phase transitions with respect to provability in theories
beyond PA.

6.1 Kruskal’s theorem

A finite rooted tree is a finite partial ordering (T,�) such that, if T is not empty,

• T has a smallest element called the root of T ;

• for each b ∈ T the set {a ∈ T : a � b} is totally ordered.

Let a∧ b denote the infimum of a and b for a, b ∈ T . Given finite rooted trees
T1 and T2, a homeomorphic embedding of T1 into T2 is an one-to-one mapping
f : T1 → T2 such that f(a∧ b) = f(a)∧ f(b) for all a, b ∈ T1. We write T1 E T2

if there exists a homeomorphic embedding f : T1 → T2, and T1 is said to be
homeomorphically embeddable into T2.

Theorem 6.1.1 (Kruskal’s theorem [35]). For every sequence of finite rooted
trees (Tk)k<ω, there are indices ` < m satisfying T` E Tm.

85
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Note that Kruskal’s theorem is a Π1
1 sentence. Let T be the set of all finite

rooted trees. Kruskal’s theorem says that 〈T,E〉 is a well-partial-ordering.

Theorem 6.1.2 (Friedman). Kruskal’s theorem is not provable in ATR0.

Proof. In ACA0 the well-foundedness of 〈T,E〉 implies that of Γ0, see [49].

Let ‖T‖ denote the number of nodes of the finite tree T . Assume further
that the set of finite rooted trees is coded primitive recursively into a set of
natural numbers as usual. Given f : N → N let SWP(T,E, f) be the following
Π0

2 sentence:

For any k there exists a constant n so large that, for any finite sequence
T0, . . . , Tn of finite rooted trees with ‖Ti‖ ≤ k + f(i) for all i ≤ n,
there are indices ` < m ≤ n satisfying T` E Tm.

Theorem 6.1.3 (Friedman [49], Smith [51]). ATR0 0 SWP(T,E,+)

It is furthermore possible to give a threshold for provability. According to
Otter [39] there are two positive real numbers α, β such that

t(n) ∼ β · αn · n− 2
3 ,

where t(n) is the cardinality of {T : ‖T‖ = n}. α = 2.9557652856 . . . is called
Otter’s tree constant.

Theorem 6.1.4 (Weiermann [60]). Let c = 1
log(α)

and r be a primitively recursive

real number. Set fr(i) := r · |i|.

(i) If r > c, then SWP(T,E, fr) is PA-unprovable.

(ii) If r ≤ c, then SWP(T,E, fr) is PRA-provable.

Using the general approach developed in Simpson [49] and Smith [51], Theo-
rem 1.3.4, and the results from Rathjen and Weiermann [43], especially the proof
of Theorem 1.2, it is possible to show that Theorem 6.1.4 can be extended to
ACA0 +Π1

2-BI. That is, we have phase transitions of provability in ACA0 +Π1
2-BI

with respect to Kruskal’s theorem:

Theorem 6.1.5. Let c, r > c, fr be as above.

ACA0 + Π1
2-BI 0 SWP(T,E, fr)

Proof. Cf. the proof of Theorem 6.2.8.
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6.2 Ordinal notation systems of ϑΩω

The proof-theoretic ordinal ϑΩω of ACA0+Π1
2-BI is given by the study of Rathjen

and Weiermann [43]. It is called the small Veblen ordinal or Ackermann’s ordinal.
The ordinal notation system for ϑΩω is based on fixed-point free Veblen functions.
We summarize some results from [43].

Let On be the class of ordinals. AP := {α ∈ On : ∃β ∈ On(α = ωβ)} is the
class of additive principle ordinals, and E := {α ∈ On : α = ωα} is the class of
ε-numbers. Let λη . εη enumerate the elements of E. By Cantor’s normal form
theorem, for every α 6∈ E ∪ {0}, there are uniquely determined ordinals β and δ
such that α =NF ωβ + δ.

Let Ω := ℵ1. For any α < εΩ1 , EΩ(α) denotes the ε-numbers below Ω which
are needed for the unique representation of α in Cantor normal form:

• EΩ(0) := EΩ(Ω) := ∅;

• EΩ(α) := {α} if α ∈ E ∩ Ω;

• EΩ(α) := EΩ(β) ∪EΩ(δ) if α =NF ωβ + δ.

Let α∗ := max(EΩ(α) ∪ {0}).
Given β < Ω we define C(α, β) and Cn(α, β) by main recursion α < εΩ+1 and

subsidiary recursion n < ω as follows:

• {0, ω} ∪ β⊆Cn(α, β);

• if γ, δ ∈ Cn(α, β) and ξ =NF ωγ + δ, then ξ ∈ Cn+1(α, β);

• if δ ∈ Cn(α, β) ∩ α, then ϑδ ∈ Cn+1(α, β);

• C(α, β) :=
⋃
{Cn(α, β) : n < ω};

• ϑα := min{ξ < Ω: C(α, ξ) ∩ Ω⊆ ξ and α ∈ C(α, ξ)}.

Lemma 6.2.1 (Rathjen and Weiermann [43]). Let α < εΩ+1.

(i) ϑα is well-defined and ϑα ∈ E.

(ii) α ∈ C(α, ϑα).

(iii) ϑα ∈ C(α, ϑα) ∩ Ω and ϑα 6∈ C(α, ϑα).

(iv) γ ∈ C(α, β) iff γ∗ ∈ C(α, β).

(v) α∗ < ϑα.

(vi) If ϑα = ϑβ, then α = β.
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(vii) ϑα = ϑβ iff (α < β ∧α∗ < ϑβ)∨(β < α∧ϑα ≤ β∗).

(viii) β < ϑα iff ωβ < ϑα.

Below we shall frequently draw on the following result.

Lemma 6.2.2 (Rathjen and Weiermann [43]). Let α ∈ E ∩ ϑΩω. Then there
exist uniquely defined ordinals n ∈ ω and α0, . . . , αn < α such that

α = ϑ(Ωn · αn + · · ·+ Ω0 · α0),

and αn 6= 0 if n 6= 0.

The question how really strong Kruskal’s theorem is answered by:

Theorem 6.2.3 (Rathjen and Weiermann [43]). In ACA0, Kruskal’s theorem
and WF(ϑΩω) are equivalent.

We are now going to give an ordinal notation system for Ackermann’s ordinal
ϑΩω as a set of terms. Let [α1, . . . , αn] denote the multiset of α1, . . . , αn.

Assume a constant symbol o and (j + 1)-ary function symbols fj are given.
The sets S, P, M are defined as follows:

• o ∈ S;

• if α0, . . . , αj ∈ S, then fjα0 · · ·αj ∈ P ⊆ S;

• if α0, . . . , αm+1 ∈ P , then [α0, . . . , αm+1] ∈M ⊆ S.

Instead of defining an ordering on S directly we give a correspondence σ
between S and ϑΩω.

• σ(o) := 0;

• σ(f0α) = ϑα;

• assume j ≥ 1.

➤ if σ(α0) < ω, then

σ(fjα0 · · ·αj) := ϑ(Ωj · (σ(α0) + 1) + Ωj−1 · σ(α1) + · · ·+ Ω0 · σ(αj));

➤ if σ(α0) ≥ ω, then

σ(fjα0 · · ·αj) := ϑ(Ωj · σ(α0) + Ωj−1 · σ(α1) + · · · + Ω0 · σ(αj));

• σ([α0, . . . , αm+1]) := ωσ(α0)# · · ·#ωσ(αm+1).

Here # denotes the natural sum of ordinals. Then by Lemma 6.2.2 we know
that σ : S → ϑΩω is surjective. The intention is that fj represents a j + 1-ary
fixed-point free version of Veblen function. Defining the binary relation ≺ on S
canonically, we have just shown following lemma.
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Lemma 6.2.4. ≺ is a wpo on S and o(S) = ϑΩω.

Proof. See also Schmidt [44].

The following lemma is easy to show and very useful. We write fjᾱ for
fjα0 · · ·αj . And ≺lex denotes the lexicographic ordering on S∗, the set of all
finite sequences of elements from S, which is based on ≺.

Lemma 6.2.5.

(i) fj+10̄ is the first infinite ordinal closed under + and fk, k ≤ j.

(ii) fjᾱ ≺ fj γ̄ is true if one of the following holds:

• fjᾱ � γi for some i ≤ j;

• (ᾱ) ≺lex (γ̄) and all αi ≺ fjγ̄.

We define a norm function on S.

Definition 6.2.6. Inductive definition of ‖ · ‖ : S → ω.

• ‖o‖ := 0;

• ‖fjα0 · · ·αj‖ := 1 + j + ‖α0‖ + · · ·+ ‖αj‖;

• ‖[α0, . . . , αm+1]‖ := ‖α0‖ + · · ·+ ‖αm+1‖.

Note that ‖α‖ > 0 for any α ∈ P , hence ‖ · ‖ is really a norm function. Given
f : N → N define SWP(S,�, f) as follows:

For any k there exists a constant n which is so large that, for any
finite sequence α0, . . . , αn from S with ‖αi‖ ≤ k + f(i) for all i ≤ n,
there are indices ` < m ≤ n satisfying αi � αj.

Let Ff be the Skolem function of SWP(S,�, f). By König’s Lemma Ff is a
total function for any f . And by Theorem 1.3.4 we have

Theorem 6.2.7. ACA0 + Π1
2-BI 0 SWP(S,�, id)

In particular, Fid is not provably total in ACA0 + Π1
2-BI. We shall even see

that there is a phase transition of provability.

Given a real number r let fr(i) := r|i|.
Theorem 6.2.8. There is a real number r0 such that the following hold for any
primitively recursive real number r.

(i) ACA0 + Π1
2-BI 0 SWP(S,�, fr) if r > r0.

(ii) PRA ` SWP(S,�, fr) if r ≤ r0.

Proof. See Section 6.4.
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6.3 Generating functions

In searching for thresholds for provability via Friedman style miniaturizations,
we have seen that norm functions play the crucial role. Here we will demonstrate
again the importance of generating function methods to show how one can deal
with norm functions.

We start with a classification of certain subsystems of S which build a cumu-
lative hierarchy for S. The following process in dealing with generating functions
is based on that of Woods [63].

For any natural number d we define simultaneously Sd, P d, Md as follows:

• o ∈ Sd;

• if j ≤ d and α0, . . . , αj ∈ Sd, then fjα0 · · ·αj ∈ P d ⊆ Sd;

• if α0, . . . , αm+1 ∈ P d, then [α0, . . . , αm+1] ∈Md ⊆ Sd.

With S, Sd we associate S` and Sd
` as follows:

S` := {α ∈ S : ‖α‖ = `} and Sd
` := {α ∈ Sd : ‖α‖ = `}

S≤`, S
d
≤`, M`, P`, etc. are defined similarly. Let s` := ¯̄S`, s

d
` :=

¯̄
Sd

` and so on, and
S(z), Sd(z), etc. be the corresponding generating functions:

S(z) =

∞∑

`=0

s` · z`, Sd(z) =

∞∑

`=0

sd
` · z`, etc.

Using the admissible operators from Section 1.3.3, we get the following equations
of the generating functions.

S(z) = 1 + P (z) +M(z),

P (z) =
∞∑

`=0

(z · S(z))`+1 = −1 +
∞∑

`=0

(z · S(z))`, (6.1)

M(z) = M(P (z)) − (1 + P (z)),

where M(f(z)) := exp(
∑∞

`=1 f(z`)/`) is the multiset operator. Furthermore,

Sd(z) = 1 + P d(z) +Md(z),

P d(z) =

d∑

`=0

(z · Sd(z))`+1, (6.2)

Md(z) = M(P d(z)) − (1 + P d(z)),

Then by (6.1) and (6.2)

S(z) = 1 + P (z) +M(z) = M(P (z)),

P (z) = −1 +

∞∑

`=0

(z · M(P (z)))`,
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and

Sd(z) = 1 + P d(z) +Md(z) = M(P d(z)),

P d(z) = −1 +
∞∑

`=0

(z · M(P d(z)))`.

We can use simple bounds on sn to show that S(z) has a positive radius of
convergence (r.o.c.) ρ < 1. Note just that the sequence and multiset operator are
admissible operators with positive r.o.c.s. Note also that S, P, M have the same
r.o.c. ρ. We shall work with P (z) to get some information about ρ, since it is
easier to handle. We won’t calculate ρ concretely and just refer to some programs
such as Mathematica or Maple.

Since all the coefficients of P (z) are positive, z = ρ is a singularity of P (z) by
Pringsheim’s lemma, Theorem 1.3.10. Hence for z, |z| < ρ, we have

P (z) = −1 +
1

1 − z · M(P (z))
,

i.e.

P (z)

1 + P (z)
= z · M(P (z)). (6.3)

This implies P (x) converges as x −→ ρ− for x ∈ R, hence for all z with |z| = ρ
P (z) converges and satisfies (6.3). Let g(z, w) := (1 + w) · ew ·G(z), where

G(z) = exp

(
∑

`≥2

P (z`)

`

)

.

Then we have

P (z) = z · g(z, P (z)). (6.4)

Since ρ < 1 is the r.o.c. of P (z), g(z, w) is holomorphic (i.e. analytic in z, w
separately and continuous) for |z| < ρ1/2. The implicit function theorem says
that if |z0| ≤ ρ and w0 = P (z0), then unless

z0
∂g

∂w
(z0, w0) = 1, (6.5)

there is a neighborhood of z0 in which the equation w = z · g(z, w) has a unique
solution with w = w0 at z = z0, which must be (an analytic continuation of)
w = P (z). From (6.4) it follows that

z · ∂g
∂w

= z · (ew ·G(z) + (1 + w) · ew ·G(z))

= z · (2 + w) · ew ·G(z) .
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By (6.3)

ρ(eP (ρ) ·G(ρ) + (1 + P (ρ)) · eP (ρ) ·G(ρ)) = ρ · eP (ρ) ·G(ρ) + P (ρ) (6.6)

= 1

and ρ(2 + P (ρ)) · eP (ρ) ·G(ρ) = 1, that is,

ρ · eP (ρ) ·G(ρ) =
1

2 + P (ρ)
. (6.7)

By (6.7) and (6.6) P (ρ)2 + P (ρ) − 1 = 0, hence

P (ρ) =
−1 +

√
5

2
. (6.8)

Notice that (6.8) is true for every z0, |z0| = ρ, at which P (z) fails to be analytic.
On the other hand, if |z0| = ρ and P (z0) = P (ρ), then |P (ρ)| = P (|z0|). Since,

however, all the coefficients pn, pn+1 are positive, it follows that |pn + pn+1 · z0| =
pn + pn+1 · |z0| which is possible only if z0 = |z0| = ρ. Therefore, z = ρ is the only
singularity on the circle |z| = ρ in the complex plane.

Theorem 6.3.1. The generating function S(z) has the positive r.o.c. ρ < 1
which is the only singularity on the circle |z| = ρ in the complex plane.

Proof. It follows directly from (6.1) since the generating function S(z), P (z) and
M(z) have the same r.o.c.

Now we use the Weierstrass’ preparation theorem, Theorem 1.3.11, to show
that the singularity of S(z) at z = ρ turns out to be a branch point. From (6.1)
we know

S(z) = M
( ∞∑

`=1

(z · S(z))`

)

= exp

(
z · S(z)

1 − z · S(z)

)

·H(z),

where H(z) = exp

(
∑∞

`=2

(
�∞

k=1(z`·S(z`))k)
`

)

. Set

g(z, w) = exp

(
z · w

1 − z · w

)

·H(z).

This is holomorphic (i.e., analytic in z, w separately and continuous) for |z| <
ρ1/2, and we have

S(z) = g(z, S(z)).

Set F (z, w) = g(z, w) − w, z0 = ρ, and w0 = S(ρ). We claim

F (z0, w0) = 0, F (z0, w) 6≡ 0,
∂F

∂w
(z0, w0) = 0, and

∂2F

∂w2
(z0, w0) 6= 0.
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Still to show is ∂2F
∂w2 (z0, w0) 6= 0. By definition it follows that

∂F

∂w
(z, w) =

z

(1 − z · w)2
· exp

(
z · w

1 − z · w

)

·H(z) − 1, (6.9)

∂2F

∂w2
(z, w) =

z2

(1 − z · w)3
·
(

1

1 − z · w + 2

)

· exp

(
z · w

1 − z · w

)

·H(z)

=

(
∂F

∂w
(z, w) + 1

)

· z

1 − z · w ·
(

1

1 − z · w + 2

)

.

For z 6= 0, ∂F
∂w

(z, w) = ∂2F
∂w2 (z, w) = 0 implies z · w = 3

2
. On the other hand,

F (z0, w0) = exp

(
z0 · w0

1 − z0 · w0

)

·H(z0) − w0 = 0,

so by (6.9)

z0 · w0

(1 − z0 · w0)2
= 1.

This means that ∂2F
∂w2 (z0, w0) 6= 0 if z0 · w0 = 3

2
.

According to the Weierstrass’ preparation theorem, the equation F (z, w) = 0
is locally equivalent to the equation

A0(z) + A1(z)w + w2 = 0, (6.10)

where A0(z) and A1(z) are analytic in some neighborhood of z0 = ρ. Following
the arguments in Section 3.12 of [38], we can show that z0 = ρ is actually a branch
point. In fact, in a neighborhood of z0 = ρ, the analytic continuations of S(z) at
all points other than z0 = ρ are given by

S(z) = h(
√
ρ− z) = 1 + h1

√
ρ− z + h2(ρ− z) + h3(

√
ρ− z)3 + · · · , (6.11)

where h1 6= 0 and

h(w) = 1 + h1w + h2w
2 + h3w

3 + · · ·

is an analytic function in a neighborhood of w = 0. The following lemma as-
serts that the coefficients sn of the power series S(z) are asymptotic to those of
h1

√
ρ− z expanded (by the binomial theorem) about z = 0.

Lemma 6.3.2 (Darboux). Suppose a(z) = a0 +a1z+a2z
2 + · · · has r.o.c. ρ, and

has no singularities other than z = ρ on the circle |z| = ρ. If in a neighborhood
of z = ρ

a(z) = h0 + h1

√
ρ− z + h2(ρ− z) + h3(ρ− z)3/2 + · · ·
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with h1 6= 0, where h(w) = h0 + h1w + h2w
2 + · · · is analytic in a neighborhood

of w = 0, then for each m ≥ 0,

a` =
−h1

2
√
πτ

τ 3

`3/2

{

1 +
c1
`

+
c2
`2

+ · · · + cm
`m

+ Om

(
1

`m+1

)}

,

where τ = ρ−1, c1, c2, . . . , cm are constants, and the subscript m indicates that the
implied O constant may depend onm. More generally, if m is the least odd number
such that hm 6= 0, but all the other conditions hold, then a` ∼ C · ρ−` · `−(m+2)/2

for some constant C.

Proof. See e.g. Wilf [62].

Together with this lemma, (6.11) implies that

s` ∼ C · ρ−` · `−3/2

for some constant C > 0. Harary, Robinson, and Schwenk [27] gave an algorithmic
way to deal with such arguments above.

Up to now we have only talked about the generating function S(z), i.e., the
case which has no restriction on the arity of fj. We, however, can see that the
arguments above can be slightly adapted to the function Sd(z).

Theorem 6.3.3. Let ρ and ρd, d ≥ 1, be the r.o.c.s of S(z) and Sd(z), resp.

(i) The sequence (ρd)d≥1 is decreasing and converges to ρ.

(ii) There is a real number C > 0 such that

s` ∼ C · ρ−` · `−3/2.

(iii) There are real numbers Cd > 0 such that

sd
` ∼ Cd · ρ−`

d · `−3/2.

Proof. It remains to show (i). Obviously we have ρd ≥ ρd+1 ≥ ρ. Thus (ρd)d≥1

converges, say to ρ∞ ≥ ρ. Note that, since ρd < 1, we have for any z such that
|z| < ρ2

d

Sd(z) = gd(z, S
d(z)),

where gd(z, w) = exp(zw+z2w2 + · · ·+zd+1wd+1) ·Hd(z) and Hd(z) depends only
on z and d.

Put αd := Sd(ρd) and f(z) := z + 2z2 · αd + · · · + (d+ 1) · zd+1 · αd
d. Then

∂gd

∂w
(ρd, αd) = f(ρd) · gd(ρd, αd) = 1,
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hence

1

f(ρ1)
≤ αd = Sd(ρd) = gd(ρd, αd) =

1

f(ρd)
≤ 1

f(ρ∞)
.

So αd must be bounded, say by M > 0. It also means that

lim
d→∞

Sd(ρ∞) ≤M .

Now assume ρ∞ > ρ. Then there is an n satisfying

n∑

`=0

s` ρ
`
∞ > M .

This yields a contradiction:

M <

n∑

`=0

s` ρ
`
∞ =

n∑

`=0

sn
` ρ

`
∞ ≤

∞∑

`=0

sn
` ρ

`
∞ ≤M

So we should have ρ∞ = ρ.

6.4 Phase transitions in ACA0 + Π1
2-BI

We prove Theorem 6.2.8 with r0 := 1
log(ρ−1)

. Given a primitively recursive real

number r let fr(i) := r|i|.

Provability

We need the following lemma called Schur’s theorem.

Lemma 6.4.1 (Schur). Let U(z) =
∑∞

`=0 u` · z` and V (z) =
∑∞

`=0 v` · z` be two
power series such that for some τ ≥ 0

• V (z) has the r.o.c. τ , and

• U(z) has the r.o.c. larger than τ .

Then

lim
`→∞

[z`](U(z) · V (z))

v`
= U(τ).

Proof. See e.g. [11].
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Proof of Theorem 6.2.8: provability

By Cauchy’s formula for the product of two power series we have

∞∑

`=0

s≤` · z` =
1

1 − z
· S(z).

Employing Lemma 6.4.1, we find a natural number D so large that

s≤i <
1

1 − η−1
· 11

10
· C · ηi · i−3/2

for any i ≥ D. Let k > 2 be given, where η := ρ−1. Note that ηr0 = 2. Put

n := 2P k+D

,

where P := (n0 +1) ·m0 · dC · 22/10 e, and n0, m0 ∈ N satisfying n0 ≤ η < n0 +1
and r0 ·m0 > 1. Assume α0 < · · · < αn is a sequence of elements from S such
that

‖αi‖ ≤ k + r0 · |i|

for any i ≤ n. Then

‖αi‖ ≤ k + r0 · |n| = k + r0(P
k+D + 1).

Hence

n <
1

1 − η−1
· 11

10
· C · ηk+r0(P k+D+1)

(k + r0(P k+D + 1))3/2

<
n0

n0 − 1
· 11

10
· C · η

k · (ηr0)P k+D+1

r
3/2
0 · P (k+D)· 3

2

<
n0

n0 − 1
· 22

10
· C · η

k · (2)P k+D ·m3/2
0

P (k+D)· 3
2

=
n0

n0 − 1
· 22

10
· C · m

3/2
0

P (k+D)· 3
2

· ηk · 2P k+D

<
n0

n0 − 1
· 22

10
· C · (m0 · (n0 + 1))k

P 3(k+D)/2
· 2P k+D

< 2P k+D

= n.

Contradiction!
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Unprovability

This will be done in two steps. Let n0 is a fixed natural number such that
n0 > 1 + r0.

Lemma 6.4.2. ACA0 + Π1
2-BI 0 SWP(S,�, fn0).

Proof. Let ηi := ρ−1
i and η := ρ−1. Then ηi ≤ ηi+1 ≤ η and limi→∞ ηi. Since

n0 > 1+r0 there is a primitively recursive real number r′ > r0 such that n0 > 1+r′.
Then choose d such that r′ > 1

log ηd
. By Theorem 6.3.3 there is a natural number

E such that for all i ≥ E

sd
i ≥ 9

10
· Cd · ηi

d · i−3/2.

Choose also a natural number D > d+ 1 such that for any i ≥ D

• b r′|i| c ≥ E;

• 9
10

· Cd · 2b r′|i| c · log(ηd) · (b r′|i| c)−3/2 ≥ 2|i|.

Let k be given. We may assume w.l.o.g. that

k0 := b k/2 c ≥ D and k0 + d+D + 4 ≤ k.

Set

Mi := {α ∈ Sd : ‖α‖ ≤ b r′|i| c}

and µi be the enumeration function of Mi with respect to a well-ordering on Mi

expanding ≺. If Fid is the Skolem function for SWP(S,�, id), then by Theo-
rem 6.2.7 Fid is not provably recursive in ACA0 + Π1

2-BI.

Put n := Fid(k0) − 1 and β0, . . . , βn−1 be a sequence from S such that

σ(β0) > · · · > σ(βn−1) and ‖βi‖ ≤ k0 + i

for any i < n. Then there are no ` < m such that β` � βm. Note that all
βi ≺ fk0 0̄ since ‖β0‖ ≤ k0. Define a new sequence as follows.

αi :=

{

fk0+D−i0̄ if i ≤ D,

f1(fd+1β|i|0̄)µi(2
|i| − i) if D < i ≤ n.

Then all αi, i ≤ n, are well-defined. Indeed for any i > D

¯̄Mi ≥ sd
b r′|i| c ≥

9

10
· Cd · ηb r′|i| c

d · (b r′|i| c)−3/2 ≥ 2|i|
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and

‖αi‖ ≤ max{k0 +D − i+ 1, 2 + d+ 2 + ‖β|i|‖ + r′|i|}
≤ max{k0 +D − i+ 1, 4 + d+ k0 + (1 + r′)|i|}
< k + n0|i|.

Using Lemma 6.2.5 we show now σ(α`) > σ(αm) for all ` < m ≤ n. For simplifi-
cation we shall make no difference between σ(α) and α.

(i) ` < m < D: α` = fk0+D−`0̄ > fk0+D−m0̄ = αm .

(ii) ` < D ≤ m: fk0+D−`0̄ ≥ fk0 0̄ > fd+1β|m|0̄ .

(iii) D ≤ ` < m ≤ n:

• |`| < |m|: Then since β|`| > β|m|

fd+1β|`|0̄ > fd+1β|m|0̄ and fd+1β|`|0̄ > fd+10̄ > µm(2|m| −m).

Hence α` > αm.

• |`| = |m|: Then it is obvious since β|`| = β|m| and µ`(2
|`| − `) >

µm(2|m| −m).

The assertion follows now from the fact that λk . Fid(b k/2 c) is not provably
recursive in PA.

Proof of Theorem 6.2.8: unprovability

Let r > r0 and Fr be the Skolem function of SWP(S,�, fr). And let n0 and ηi be
defined as in Lemma 6.4.2. We choose a rational number r′ and a natural number
d such that r > r′ > 1

log ηd
. By Theorem 6.3.3 there is a natural number E so

large that

sd
i ≥ 9

10
· Cd · ηi

d · i−3/2

for all i ≥ E. Let D > d + 1 be so large that the following inequalities hold for
any i ≥ D:

• b r′|i| c ≥ E;

• 9
10

· 2b r′|i| c · log(ηd) · Cd · (b r′|i| c)−3/2 ≥ 2|i|;

• r′|i| + n0 · |i|2 < r|i|.
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Assume that k is given. We may also assume that

k0 := b k/2 c ≥ D and k0 + d+D + 4 ≤ k.

Let n := Fn0(k0) − 1 and β0, . . . , βn−1 be a finite sequence from S such that
σ(β0) > · · · > σ(βn−1) and all ‖βi‖ ≤ k0 + n0 · |i|. Set

Mi := {α ∈ Sd : ‖α‖ ≤ b r′|i| c}

and µi be the enumeration function of Mi with respect to a well-ordering on Mi

expanding ≺. Define a new sequence of length n by

αi =

{

fk0+D−i0̄ if i ≤ D,

f1(fd+1β|i|0̄)µi(2
|i| − i) if D < i ≤ n.

Then all αi are well-defined. Indeed, we have for any i > D

¯̄Mi ≥ Sd
b r′|i| c ≥

9

10
· Cd · ηbr

′|i|c
d · (br′|i|c)−3/2 ≥ 2|i|

and

‖αi‖ ≤ max{k0 +D − i+ 1, 2 + d+ 2 + ‖β|i|‖ + b r′|i| c}
≤ max{k0 +D − i+ 1, d+ 4 + k0 + n0 · |i|2 + b r′|i| c}
< k + r|i|.

Now assume that ` < m ≤ n. Then σ(α`) > σ(αm) follows by an argument
similar to that of Lemma 6.4.2.

This shows that Fr(k) majorizes Fn0(b k/2 c) for large k. Thus Fr is not
provably recursive in PA since Fn0 eventually dominates every provably recursive
function of PA. Thus the claim is proved.

Remark: Norm sensitivity of phase transitions

Simpson [49] introduced also a certain extension of Kruskal’s theorem using finite
trees with marks from k. In this case the generating function for the set Tk of all
finite trees does not change so much:

Tk(z) = k · z · M(Tk(z))

However, if we define a different norm of a tree with marks, then we could get a
generating function for Tk which behaves differently: Let T be a finite tree with
marks from k and define

‖T‖ = the number of nodes + the total sum of marks in T .
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Then Tk satisfies

Tk(z) =
k∑

`=1

z` · M(Tk(z)).

This means that we could observe another phase transition and that phase tran-
sitions are sensitive to norm functions.
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