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Summary

We consider lower bounds for the second moment of prime numbers in short
intervals as well as the pair correlation function, whose asymptotic behavior is
predicted by Montgomery’s Pair Correlation Conjecture. D. Goldston obtained
such lower bounds by employing a truncated version of the von Mangoldt func-
tion.

Using a modified approach based upon his method, we improve on former results
in the conditional as well as in the unconditional case. Our method can also be
applied to obtain lower bounds for the variance of primes over residue classes
as well as to gain further information about the distribution of primes in short
intervals.
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O Introduction

In his paper “The Pair Correlation of Zeros of the Zeta function” [23], H. L.
Montgomery studied the distribution of zeros of the Riemann zeta function on
the critical line and assuming RH he conjectured an asymptotic formula for the
pair correlation of zeros. In fact, Montgomery’s Pair Correlation Conjecture is a
special case of the conjecture that normalized spacings between nontrivial zeros
of ((s) are distributed like eigenvalues of random matrices from the Gaussian
Unitary Ensemble (GUE).

It was observed that there is a natural correspondence between pair correlation
of zeros and primes in short intervals. Assuming RH, Goldston and Montgomery
[11, p. 186, eq.(16)] showed an equivalence between a certain form of the Pair
Correlation Conjecture and an asymptotic formula for the variance of primes in
short intervals. In [2], Chan made this equivalence more precise and based on
this result also formulated a more precise Pair Correlation Conjecture.

This work takes into consideration second moments for primes in short intervals
of the form

Iash) = / “(lysh) — by,

where ¥(y; h) := Z A(n) and I(z; h) denotes the variance of primes in short

y<n<y+h
intervals, as well as the pair correlation function, defined by

4

F(z,T) := Z 0 p(y — 4, where w(u) := Tra
u

0,7 <T

and 7,7’ denote imaginary parts of nontrivial zeros of the Riemann zeta function.
The aforementioned equivalence between I(x;h) and F(x,T) states that under
the assumption of RH, the asymptotic formulas

I(x;h) ~ hzlog (%) uniformly in 1 < h<2'"¢e>0, z—00, (0.1)
and
T : : A
F(I,T)Nz—logT uniformly in 7 <z <7 A>1, T —o00, (0.2)
m

are equivalent to each other. Here (0.2) is known as the strong form of Mont-
gomery’s Pair Correlation Conjecture. Moreover, Goldston and Yildirnm [12,



Thm. 1], proved (0.1) assuming RH as well as a strong quantitative form of the
Twin Prime Conjecture, which states that

> Am)A(n+ k) = &(k)y + O(y'*™) (0.3)

n<y
for 0 < |k| < y. Setting h = 2®, we can express (0.1) as
I(z;h) ~ (1 — a)hxlogx, a€[0,1—¢l.

Goldston, see |7, p.366, eq.(1.5)] and [6, p,154, eq.(1.5)], proved supporting
lower bounds, namely

1

I(x;h) > (E—QQ—E)hxloga:, a € [0,1/4], (0.4)
assuming GRH and
1
I(xz;h) > (5 —¢)hxlogz, 1<h<(logz), A>0 (0.5)

unconditionally for x large enough.

More generally, in [13], Goldston and Yildirim considered second moments over
arithmetic progressions, defined by

ho\2
m)a

where (a,7) =1 and 1 <r < h <z and showed that under GRH, one has

2x
I(wshra) == / ($(y + by a) — P(g; 7, 0) —

1 zh xr xh
x;h,r,a) > ———log —O—log10g37" r<h<(zr)/3e.
Iash,ra) > 5~ log (35) — O( g (loglog(3n))?). (ar)
(0.6)
Employing this with » = 1 improves (0.4) to
1 3
I(z;h) > (5 -5 e)hxzlog , a€10,1/3]. (0.7)
The proof of (0.4)—(0.7) essentially relies on the simple inequality
[ i) — vty Py > 0, ©05)
0

where ¢p(z) := > Ar(n), ¥r(y; h) = ¥r(y + h) — ¢r(y) and

n<x




see [7, p. 367, eq. (1.9)], and a lower bound for I(x; h) can be derived by examining
both [" ¢ (y; h)r(y; h)dy and [ % (y; h)dy. The function Ag is a truncated form
of A motivated by the identity

/j((r) Z du(d), n>1,

T) d|(r,n)

cp. |25, p.373, eq. (1.7)], and copies the distribution of A over arithmetic pro-
gressions. It was first used in the paper [16] by Heath-Brown on the Goldbach
problem and Goldston observed that it is the best approximation to A among
sums of the form Za(r, R), a(1,R) = 1, a(r,R) € R in an L? sense, as men-

r<R
rln

tioned in [14, p.2].

The equivalence of (0.1) and (0.2) arises the question whether lower bounds
for F(x,T) can be obtained similarly by applying Ag. In [10], Goldston et al.
obtained such a result, namely

T .
(5-losT) "F(T*T) > 2 —|o|—¢ (0.9)

DN W

for any € > 0, uniformly in 1 < |a| < 3/2—2¢ and all T' > Tj(e) assuming GRH,
cp. [10, p. 34, eq. (3.1)].

This work is organized as follows. In Chapter 1, using a modified approach based
upon Goldston’s method and using ideas of Hooley employed in [19], we examine
which preferably weak additional assumptions beyond GRH lead to improved
lower bounds compared to (0.7).

In Chapter 2 we consider the unconditional case and employing the Basic Mean
Value Theorem, we improve the range for h for which (0.5) holds from a power
of logx to a subexponential factor of x, which corresponds to the Vinogradov-
Korobov zero free region for ((s), cp. [24, p. 194, eq. (6.26)]. Since it is the widest
unconditional zero free region known so far, it also provides the widest region for
h in which a nontrivial unconditional lower bound for I(z; h) can be derived. We
also give an application to the comparable case of lower bounds for the variance
of primes in an arithmetic progression and improve former results obtained by
Friedlander and Goldston [5, Thm. 3] and Hooley [19, pp. 53-54, eq. (6)—(7)], see
p. 38 for a more detailed discussion of this.

In Chapter 3 we apply the methods of Chapter 1 to the pair correlation function,
using techniques from [10]. Analogously to Chapter 1, our goal is to find a weak
condition beyond GRH, which improves (0.9).



Introducing a suitably modified function X;%(n) in Chapter 4, we examine ¢ (n; h)
and its mean value h. For any 9 > 0 it is conjectured that

¢Y(N;h) ~h  uniformly in N’ <h < N (0.10)

7
and Huxley showed that (0.10) holds for any fixed ¢ > 13 P [17, p. 22]. Subject
to RH, Cramer |24, p.421, 1. 24| established that there exists some C' > 0 with

BN + h) — (N — h) >g for h — CVN log N, (0.11)

N > 2, from which it follows that the interval (N, N + Cv/N log N) contains at
least v N prime numbers, cp.[24, p.421, Thm.13.3]. We show unconditionally
that for any € > 0 and § € (0, 1), there exists some ny € [N, 2N] with

Y(ng;h) > (1—=38)h  for 267! < h <« NYV6=¢ (0.12)

if N is large enough in terms of € and 6. Results like (0.11) and (0.12) also suggest
that the second Hardy-Littlewood Conjecture, cp. [18, p.375, Conj. (A)], which
asserts that

(N +h) —7n(N) < 7(h) for N, h > 2, (0.13)

is false, although our method does not suffice to disprove it. In [18|, Hensley and
Richards showed that (0.13) and the Twin Prime Conjecture are incompatible.

Conjecture (0.10) can be specified to arithmetic progressions:

h h
(x4 h;q,a) —P(r;q,a) = @ + O, (xa(g)lm) uniformly in 1 <¢<h<uz,
(0.14)

where (a,q) = 1, cp. |24, p.422, Conj. 13.9] for the analogue conjecture in the
case h = x and with methods developed in Chapter 1-2, we show in Chapter 5
that the error term of (0.14) is sharp, more precisely, we prove that for ¢, kK > 0
with k < 1/2 — ¢, infinitely many x and every h € [1,2%/=¢] U [2%, 2'/?7¢] there
exists some ¢y < h and a constant C(e) with

> C(a)(LlogI)m.

xz+ h;qo,a) —UY(x;q0,a) —
¢( + ; 40, ) w( ; 4o, ) §0<Q)

N
©(q)



1 The conditional case

As this section will show, the strength of the error term occurring in the prime
number theorem for arithmetic progressions mainly predicts the range in which
nontrivial results concerning lower bounds for I(z;h) can be established. Conse-
quently, it seems unlikely that a nontrivial lower bound for I(z; h) can be proved
in a wider range for h using this approach under GRH. Additionally, another lim-
iting factor comes from the error we make by evaluating fox VY2 (y; h)dy, which is
mainly of order h?R?%, cp. [7, p. 369, eq. (2.8)] and the proof of the main Theorem
stated in [7].

Applying a method of Hooley (cp.[19]) to examine the variance of primes in
arithmetic progressions, we show that this error term estimates can be improved
to terms of order h¥2R?, which gives an asymptotic formula for [; ¢%(y; h)dy
valid for 1 < h < 22/57¢, see Lemma 1.11 below. Hooley’s method uses Vaaler’s
approximation to the sawtooth curve and the large sieve inequality.

However, to obtain lower bounds for I(z;h) in larger ranges for h and to take
advantage of our result concerning fom V34 (y; h)dy, we have to go further than
GRH. For instance, we give such a stronger result by the following weakened and
modified version of Montgomery’s Conjecture concerning the error term of the
Prime Number Theorem in arithmetic progressions.

Hypothesis M. Let m € N with m < \/x, € > 0 and x be a Dirichlet character
mod m. Then we have the estimate

1
3te

x

(7 x) — oy < —yrE
For comparison, the original Montgomery-Conjecture, cp. [21, p. 34|, asserts that
for any a, m with m < x that

rm,a) = _r 25 (),
dlazm,a) = Bno—ros +0((1))

The aim of this section is to prove the following theorem:.

Theorem 1. Assume Hypothesis M. Then for any e >0 and 1 < h < 22/57¢ we

have
2172
I(z;h) > hzlog (W) + o(hx log x),

uniformly in h.



As in |6, Cor. 2|, we can state the following Corollary, which follows immediately
from Theorem 2.

Corollary 1. Assuming Hypothesis M we have for 6 > 0 and 1 < h < 22/°79;

max [ (y; h) — h| >5 \/hlogz.

yE[O,I]
Proof. We fix 6 > 0. An application of Theorem 1 yields
)
I(x;h) > (15 —¢)logz for 1 <h < 22570 £ >0, & > xo(e). (1.1)
If for 1 < h < 22/>~% we had
max |¢¥(y; h) — h| < /(0 —e)hlogx
y€[0,7]
for infinitely many =z, say, it follows that
I(z;h) < (6 — e)halogx for 1 < h < 2?°7° and inf. many z,

which contradicts (1.1). |

1.1 Auxiliary Results

We provide some general auxiliary results, which will be needed during this Chap-
ter and later.

1.1.1 General Lemmas

Lemma 1.1 (Large Sieve Inequality, [25, p. 157, eq. (8)]). Let (a,) be a sequence
of complex numbers and M, N natural numbers. Then we have

>0 Y aue(n)

m<M a(m) 'n<N

2 < (N+ M) anl” (1.2)

n<N

Lemma 1.2. Under the assumption of Hypothesis M, we have for m < \/x that

" ) l,lJrs
(2:) E*(z;m,a) < i



Proof. The proof goes along the lines of the classical GRH estimate

Z*Ez(aj; m,a) < o't
a(m)
cp. [22, p. 145, Thm. 17.1]: By orthogonality, we have
ZEmea Z|¢xx — &y
a(m)

1+e

and the Lemma follows, since [1(x;x) — 0,2]* < ‘ by Hypothesis M. [ |

mi/2

Lemma 1.3. For every h < x and € > 0 we have
/Oxw(y; h)dy = hx + h(¢(z + h) — (z + h)) + O(h*z®) (1.3)
and we obtain the unconditional result
/Ox U(y; h)dy = ha + O(hpeos)*/*loglogn)™ /%y o )(p24) (1.4)
with a suitable constant ¢ > 0 as well as
/: U(y; h)dy = ha + O(hz'/?*2) + O(h2x°) (1.5)

assuming RH.

Proof. First we can write

/:wy;h)dy—/x(w(wh dy—/ )y - /zb
/ bly)dy — /w (1.6)

On using summation by parts we get

/ Y(y)dy = mp(z+h)— Y A(m)(m— z)

z<m<z+h
=h(x+h+d@+h)—(@+h)— > Alm)(m-z)
z<m<x—+h
= hx +h(y(z +h) — (z +h)) + O(h*z%), (1.7)



whereas fohw(y)dy < h? by Chebyshev’s estimate ¢(y) = O(y). Plugging this
together with (1.7) into (1.6) gives (1.3).

Equation (1.4) now follows from (1.3) because of the Vinogradov-Korobov Prime
Number Theorem, cp. |25, p. 194, eq. (6.28)], which can be formulated as

() =1+ O(a:e’c(logx)g/s(loglog"”)_l/5) for some ¢ > 0,
and noting that

(a4 B) = (0 4+ h) < (z + h)eeoutetn)oglog(e)

< xe—c(logaf)3/5(10gIng)71/5 + hxt.

Analogously, we obtain (1.5) on using ¢(z) — 2 = O(2/?*¢) under RH and the
fact that

(x4 h) — (x4 h) < Vo + h(log(z + h))?* < />
for h < z. [ |

Lemma 1.4 (cp.|7, p.374]). Let (an), (bn) be complex sequences and let ||c|| =
max |c,| for a complex sequence (c,). Then we have

/Ox ( D an> ( > bm) dy =h> anb, + Y (h—k) ( > anbuir+ Y bnan+k>

y<n<y+h y<m<y+h n<zx k<h n<x n<x

+O([lalll[b]|2?).

Lemma 1.5 (|13, Lemma 3|). For each integer m > 1 and real R > 1 we have

) _plm), L g(m)
TSZR o(r) R (log R+ c+ f( ))+O(\/ﬁ)7

(rym)=1

where

lo lo 2(d
C::7+Xp:p(pg— % f(m) ::Z gp’ g(m) ::ZM\/(E)

p
plm

and vy denotes Euler’s constant.



Lemma 1.6 (|4, Lemma 2.1|). For m > 1 and y > m we have

pA(d) — p(2m) L vy
% pa(d) — 2m If,lf},L(ler(p—%)1 8y +0() (18)
(d,2m)=1

where the implicit constant is absolute.

Lemma 1.7 (|8, Lemma 2|). For real numbers c,d, we have for y > 1 real

(c=d+1ic,d) , c—d+1 c—d+1 .

Iu2(7a)rc : —dar1 Y it Oc,d(y ), ife—d>—1,
Y =3 90¢ = Ld)logy + Ou(1), ife—d=—1,
r<y () — D al0: c. d) + Ye=dtlicd) c—d+1 c—d+1 fe—d< —1

C(C )g( e ) + c—d+r1 Y + OC,d(y )7 if c < )

where
1 pretd(l — (1 — 1)6’)
g(s; Gy d) = | | (1 o (p _ 1)dp2(sfc)+dp )

p

2 c
In particular, if c —d < —1, the series Z a ET;Z converges to ((c — d)g(0; ¢, d)
— P
2 c
and we have the estimate Z a ET;Z = Oca(y™™ ).
o(r
r>y

Lemma 1.8. For real R > 1 and integers d > 1 we have the estimates

o p2(r)a(r) 0 S 2 e BY
(a) ot < logd, (b) ,;%—90(7’) <R, (¢ 7;%@(7’) < (log R)?,
(d) Zw(r) < Rloglog R

Proof. (a) follows e.g. from d/¢(d) = [],,(1 — 1/p)~! and Mertens’ Theorem,
(b) is stated in [13, Lemma 9, eq. (3.16)], (c) follows from Y 24" < Rlog R,
cp. [24, p. 42], (a) and summing by parts and (d) follows from [24, p. 58, eq. (2.22)].

|



1.1.2 Lemmas involving sums of Ar(n) and A(n)

Following the approach in [7] resp. [19], we now present some Lemmas allowing
us to derive asymptotic formulas of sums involving A(n) and Ag(n), which are
a crucial part of the proof of Theorem 2. Lemmas 1.9-1.11 are independent of
Hypothesis M. In contrast to [7], we give a more elementary proof of Lemmas
1.11 and 1.12 by evaluating occurring terms directly instead of using the singular
series.

The first Lemma is Lemma 1 of [19], which we prove in a different way here.

Lemma 1.9 (cp.[19, Lemma 1|). For real R,x > 1 and integers a, m let

Yr(z;m,a) = Z Ag(n).

n<x
n=amodm

Then for 0 < a <m < R we have

(m)

and the error term can be expressed explicitly as

¢R($, m, CI,) — Em,a + O(R) (19)

ad a d

) e S o (BT
o(r) MO samy — 5w/ 2\ w0 '
dla T<R dlr
(d;m)=0
where d', m' and d' are defined by
d=6d, m=20m', and dd =1(m). (1.11)

Proof. First we have

1) Z du(d)#{n < z;d| n,n =a(m)} (1.12)

prlem @)= 2 oy 2

and the simultaneous congruences

n = 0(d), n = a(m) (1.13)
are only solvable if § = (d, m)|a, in which case they define a unique residue class
dm . . .
mod ) Writing n = dn’ and using (1.11), we can express the simultaneous
,m

congruences (1.13) for n as

10



the solutions n’ mod d'm’ being given by

/
n

dT(d'm’)

SIS

by the Chinese Remainder Theorem. Hence the inner sum in (1.12) equals

T add add
Z Z du(d)([é‘d/m/ - gd’m’] - [_ gd’m’])

m r<R SO(T) d|r d
(d;m)=06
- wir) > duld) (ol — 2 L) o - gz))
= o(r) 0 od'm’  dm om’
(d;m)=0

A crude estimate gives

p(r) ad ad p(r)
2.2 o) Z du(d 5d' 5ol = 5—)) <<ZW > d

dla <R r<R d|r
s (dm)la
2
<<Z,U (r)o(r) < R,
= o)
by Lemma 1.8 (b). Using (1.11), the main term on the RHS of (1.14) is seen to
equal
" S )
dIs
where
11 » (115)
plr
(pm)la

11



and since p(d)(d, m) is a multiplicative function in d, we have for p(r) # 0

S (@) (dm) = [~ (.m) = {”“ ajp(r,a), rim, (1.16)
d|s

ola 0, r{m.

Therefore the main term on the RHS of (1.14) equals

Z,U . ZM (r,a)

7"<R r\m
rim
_gH pp,a)e(p,a)\ x
_mpm(” PR Ty o

using m < R in the first equation and that p?(r)u(r,a)e(r,a)/e(r) is a multi-
plicative function of r in the second equation. |

Lemma 1.10 (|7, Lemma 1, eq.(2.5), Lemma 2, eq. (2.7)]). (A) For 1 < R <
x/log z, we have

Z)\R n) = xlog R+ O(x). (1.18)

n<x

(B) If 1 < R < \/z, then

> Ah(n) = xlog R+ O(x). (1.19)

n<x

Proof. We first prove (1.18) by noting that the definition of the function g gives

> Ar(m)A( - o Zd d) Y Aln)

n<x r<R n<lz
d|n

= () w2 (r) i Z ,u?((:)) Zdﬂ(d) ZA(n)

r<R ¥ T) r<R

< d|r n<x
d>2 dln
r
= () log R + O(¢(x) +Z“<(T) > dp(d) Y " A(n). (1.20)
r<R d|r Tzl|<x
d>2 n

Now the innermost sum of the triple sum on the RHS of (1.20) is only non-zero,
if d = p is a prime number and since

ZA <logplg }<<log35
log p

n<x
pln

12



the contribution of this triple sum is bounded by
pRLELEY
ogr < Rlogx
r<R

using Lemma 1.8 (b), which is O(z) provided R < z/logz. Now inserting the
Prime Number Theorem in the form

U(z) =x+ O((long)A) with A > 1

into (1.20) shows (1.18).
Finally (1.19) can be proved as follows. First we have

3 N(n) Z “ Zdeu n(e) Y1 (1.21)

n<lz ror’'<R n<lz
e\ d,e|n

and we see that the simultaneous congruences
n = 0(d), n=0(e)
for n occurring in the innermost sum of (1.21) are always solvable and define a
de
(de)’
2 /
()2 (r') p2(r)o(r)p*(r)o(r')
I Z .0+ o 30 I

raor'<R rr'<R

unique residue class mod so that the expression in (1.21) equals

e|r

where the error is bounded by R? by Lemma 1.8 (b), which is O(x) provided
R < \/x. Next, for any d | r, we have

> ud)(de) =] - (p,d) = {(E[pw(l —p) = p(r)e(r), :: JI[ Z:

el|r’ p|r’

hence the double sum in (1.22) becomes

S Y ) =2 3 S ) Y e
<R d|r r

SRSD

<R dlr r'|d
r'|d
2
,
— 23 ((T)) u(d)da
rer P\,
2
=x ﬂ(r):xlogRqLO(x)
= )
and this shows (1.19). |

13



Now the following Lemma is the main step in the proof of Theorem 1.

Lemma 1.11. For x > 1 real and 1 < h < R < x we have

2
D (h=k)Y  Ar(n)Ag(n+ k) e h—xlogh + O(hz) + O(h*?R?x%)

2
k<h n<x
+ O(R*z). (1.23)
Here every error term is bounded by O(hx) if we assume
x1/2f€
and h < x'/27¢. Moreover for 1 < y, R < x we have

Z Z Ar(M)Ar(n+ k) =x Z Sr(k) 4+ O(y?R*z) + O(y*z°). (1.25)

k<y n<zx k<y

Proof. Using the definition of Ag(n) we have

> (h=k)> Ap(n)Ag(n+ k)

k<h n<z

—S -k 2“2(:)’ )+ i)~ dnt )

k<h

=S"h- kZ’u:;Zd d)r(z; d, k)

k<h r<R

+O(Zh k;k;Z” r) ) (1.26)

k<h r<R

where we employed the estimates

Yp(r + ki d, k) = Yp(x;d, k) + O(xﬁg), Vrpk;d, k) = O(x5§)7

which follow from Ag(n) < n®, cp. |7, p. 374, eq. (3.4)], and then used the identity
Z % (d) = 20 for r squarefree. Thus using Lemma 1.8 (¢) and (1.9) of Lemma

1.9 together with the explicit description (1.10) of the error term, we can write
the RHS of (1.26) as

21 + 22 + O(h?’lﬁ)

T) w(d
S =3 (- kzﬂ 3 ﬁ

k<h d|r

with

14



and

Sim -0 Y S D ST ad ot d. ko),

k<h S|k rr'<R P T)SO<T) d|r
dl ,r,l
(d,d’l):6
where
d= (Sdl, d/ = (Sdg, (dl, dg) = 1, dgd_g = 1(d1)
and _ _
T k d2 k d2
cd,d' k5 = —=—)—o(—=—). 1.27
Q(’x? Y Y Y ) Q(ddldg 5d1) Q( 6d1> ( )

1. Evaluation of ;.

Since for d squarefree, we have

du(d) p o\ -1 —1)
Zw—ﬂ(l——)—ﬂ—— 1 110-p)

dlr p|r p—1 plr p-1 plr P plr.k
(d,k)=1 ptk ptk
pi(r)
= w(r, k)p(r, k 1.28
SR E)

by multiplicativity, we obtain

5, = xz MQ((T)

r<R ¥

> (h—k)u(r k)e(r, k). (1.29)

’I“) k<h

Using the identity

> w0yt = pulr, k)p(r, k)

£|(r,k)

we conclude that

> (h—E)u(r k)e(r k) =Y (h=k) > p0)t=>" pu)t> (h—Fk)

k<h k<h £|(r,k) {<h k<h
L|r L)k
h
= w0 Y (4 m)
{<h m<h
£)r -
h? h ,
=TS -5 S+ o( o8),
Zglh Eg‘h Zg‘h
Lr Llr Llr

15



where we used

Sw-m=%-Lion

m<y

in the second last equation, and so we obtain

21:81—82+5

with
hw o~ p(r)
S (),
1 2 — (,02(7’) % ( )
Llr
ha <~ p(r)
S w(l)e,
2 2 — @2(T) % ( )
and

<R <h
L)r
1.1 Estimation of €.
We have
2 2 2
,u r) 2 2 M r) w ()L pe(r')
ELx ==z 14 =
2ane L LI TS A 2 )
lr lr (r’,Z)ezl
2 N2 X 20
2 (0)¢ p=(r')
<
@; () ;::1902(7“’)
2 )
pe(0)¢
<L
; ©?({)
and therefore
&< hx (1.30)

by Lemma 1.7.

1.2 Evaluation of S;.

16



We have

where the first double sum equals

p : Z _ > wlr) s

r<R 2 r<R SO(T)

2
and the second double sum can be evaluated as
h2 ’u ) B h T Z ,UQ(E) N(T/>
2 2
h<£<R 7“<‘R () h<egR90 (0) in ¥ (r")
Llr

= ©*(0)

< hzx,

(¢
the last inequality following from the estimate Z (0

w2 ()
n ¥
deduce from Lemma 1.7 with ¢ = 0 and d = 2. Thus in view of (1.31) we obtain

h2

1.3 Evaluation of S,.

We have

(1.33)

and because of the identity

Zu ) =T]1 = p) = pulr)e(r),

plr

17



the first double sum of (1.33) is seen to equal

,u 10gR+ o)) = hQ—xlogR + O(hz), (1.34)

r<R

while the second double sum of (1.33) equals

hx hx (¢ !
2 Z Iu Z ” (g) Z ,u2<(r/))

h<£<R r<R h<e<R <R ¥
— £
(r',0)=1
= M; + &
with
hx >
Ml =
2
h<€§R r'=1
' 0)=1
and

, 2€€ 27“/
fane Y u;<g) s 0

n<i<r ¥ oor ¥

We can estimate the error £ as

, u u r)  he 12 (0)¢
& < hx Z Z R 2 <he
h<e<R h<(<R

the last estimate being a consequence of Lemma 1.7 with ¢ = d = 2.

Next we evaluate M. Since we have

S 1 -1
oo y [0 -———) . if2]¢
Z £2<(74/)):H<1_(p_;1)2): 2pp>|£2 P=1) (1.35)
if24¢

e

L
X

=

h&x w2 (0)e 1 —1
= I
R Oy (p—1)?
2|¢ p>2
hSx w2 (e 1 1
- 2(p1 H(l _ 2)
? sz ¥ () 3o (=1
20/



F<U<y
o4/
since
209N\ p!
7] (g )g H( 1 -1 P 1 -1
T | Erod | (R
2(p1 _ 2 _ 2 _ 2
) o (p—1) e Cad (p—1)
_ p__(p—1) 1.7
_ 2 _ 2 _ 2 __
e @212 =1 Do pt —2p
I
- - . 1.36
L= am (139

Now we make use of (1.8) of Lemma 1.6 with m = 1 obtaining

_ hGzx pAl)  hx S 1 R
Ml—T Z 902(€/>—75 (1+p(p_2))10g(ﬁ)+0(h$)

f<t<g p>2
210/
hxrS &, 1 R
hx R
=5 log (ﬁ) + O(hx),

hence the second double sum of (1.33) equals

h R
M+ & = 795 log (7-) + O(ha),

so that in view of (1.34) we obtain
h
S, = ; log h + O(ha). (1.37)
From (1.30), (1.32) and (1.37) we infer that ¥, can be written as
h*x  hx

2 Estimation of X,.

We write the innermost sum of ¥, as

p2(6)0% " pld)p(da)drdao(; 5dy, 6dy, K, ),

s
do| %
(d1,d2)=1

19



so that >5 becomes

r 2 7,/
Z(h_ k)ZIUQ 52 Z N :U’< /) Z M(dl)u(dQ)dldQQ(l';5d1,(5d2,k,(s)
k<h S|k r/' <R T 90 d1|§
do| %
(d1, d2)=
=3 @2(0)8* > pld)u(da)didy Y al o 3 (( )) > (h— k)ol(a; ddy, ddy; k, 5)
5<h di,doa<R/6 ' <R k<h
(d1,d2)=1 §dsr ok
dda|r’
2 2( ../
()= (r h
:Zu2(5)(53 Z p(dy)pu(dz)dyds Z L/> Z (5—m)
<h dq d2<R/5 rr' <R SD(T>S0(T) m<h/5 5
N (d1,dz)=1 5dilr -
dda|r’

(ZL" (5d1, 5d2, m5 5)

S SECIED L CUI UL BT U
<h di d2<R/6 (MQ) r1<R/(dd1) SO(TI)SO(TQ) m<h/§ 0
(di,d2)= ra<R/(5ds)
(r1,0d1)=(r2,0r2)=1

o(x; ddy, dds, mo, 5)

R R h
<<6Z<:M2 ST i(dy)p(dy) 1og(5d1)1og(5d2) >, (5-m)
<h dy,d2a<R/§ m<h/s
(d1,d2)=1
(1.39)

: |Q(.ZU7 5d17 6d27 m67 5>|a
where we used a consequence of Lemma 1.5, namely

,U/ 7“1 ((Sdz) R .
log (—- fori=1,2
Z T'Z 5dl o8 ((Sdl) ore ’
ri<R/(0d; )
(r;,0d;)=1

in the last inequality.
Next, on using the triangle inequality and by writing out o(x; dd;, dds; k, §) again,
we see that the RHS of (1.39) is

R R h
< Z/vb2 Z d1d2 log (5d1) log (5d2) Z (g o m)
5<h d1,d2<R/5 m<h/§
(d1,d2)=1
T dy dy
(‘ <5d1d2 —md—j)’—FlQ(—md—Q)l) (1'40)
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2.1 Application of Vaaler’s Theorem

Vaaler’s Theorem (cp. [1, p. 299, Thm.6.1]) states that for every L > 1 real and
any real w, there exist complex coefficients ¢, satisfying

o L L7 (1.41)
such that
lo(w)| S L7H+ Y eve(tw). (1.42)
0<[4I<L

Applying this, we see that the RHS of (1.40) is < U, + U, with

U =203 2000 S () (ds) og 5]; ) log ( 5];2) > G-m)

5<h d1,do<R/5 m<h/é
(d1,d2):1
and
R R h
Uy = Z 0g2u2 Z d2)10g(6d)log(5d) Z (g—m)
0<|(|<L  o<h d1,d2<R/S 1 2 <h/s
(dl,d2)=1
lx ldy (dy

(el — ) +e(—mi)),

Estimating trivially, we can conclude that

R R\ b2
U < L' *( *(dy)1 1
1< Z’u Z (d2) Og((5d1) Og(5d2)(5)
5<h 1 d2<R/6
(dl d2)=
< L™ Z,u 10gR) (h)
4]
5<h
— [ 1p2 RQ Z 1 (
53
5<h
< L7'R*R?*(log R)*. (1.43)
[t remains to deal with the second expression Uy involving exponential terms,
1
where we only treat the part involving e( ? —m— ) since the other part can
ddydy dy

be treated similarly. To this end we write for each ¢ the corresponding summand
in Uy as

ngu2 Z d2)10g(5§1)10g(5§2) Z (% —m)

5<h d1,d2<R/S m<h/s
(d1,d2)=1
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e
ddydsy dy

:c@Z Z/f Z *(dydsy) log ((551) log ((552) Z (% —m)

nle 6<h di,d2<R/S m<h/s
(d1,da)=1
(d1,6)=n
(o m
odydy dy
2 2 2/ 1 R R h
=ed_ 100 w3 pldida)log (o) log (5) 3 (5 m)
5<h nle &\ <R/ (nd) U 2 m<h/s
n<R/d da<R/6
(d/11d2):1
(dy.¢/m)=1
(¢/n)x (£/n)dy
— 1.44
6( d/1d2 m Cl/1 )’ ( )

on substituting d, = nd in the last equation, where we just need to redefine dy

_ l
mod d| by dads = 1(d}). Since the factor e(%) occurring in the innermost
142
sum of (1.44) does not depend on m, an application of the triangle inequality
gives

8 Y ) X ) log () s () X (5 —m)

0<h nle dy <R/(nd) m<h/§
n<R/6 d2<R/$
(dy,d2)=1
(dy,€/m)=1

e((f/n) mw)
dyds dy

R R h
SZZMQ(W D) D wddr)log (L) los () D (5= m)
5<h nle &\ <R/(15) U 2V n<hys
n<R/é da<R/$
() d2)=1
(dy,¢/n)=1
(f/n) (¢/n)ds
9 R R h
Yy Y wh) Y (] Y ¢
5<h i &, <R/ () L 4,<R/s 2 n<hys
(d},£/m)=1 (d2,d})=1
0/n)dy
e( _ m< /CZ) 2)
1
3:Sh,R,€7
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on using (1.41) in the second estimate and dropping the restrictions that the
integers 0, d; and dy are squarefree and n < R/J in the last inequality.

2.2 Employment of the Large Sieve Inequality

We remark that the number (¢/7)d, runs through at most R/(dd}) many complete
sets of reduced residues mod d} when dy does, and thus

2
Shrt < M Z Z 1 (n)

0<h nle di<R/( 776 (a,d})

(5= m)e(mp)]|

(1.45)
where we can evaluate the RHS in (1.45) using the Large Sieve Inequality, cp.
Lemma 1.1 with M = R/(nd), N = h/§, and employing Cauchy’s inequality
twice to obtain

o 2 1/2
Sh.re <MZZM2(U)( Z dl,)

5<h ¢ &\ <R/(ns) *

(T 2]z <§—m>e<m§,l>\)2)”2

di<R/n (a,d}) ' m<h/é

R(log R)>/? )
<TE Y S ) ( >

0<h nl¢ d’<R/(n5) a,d})

logR ZZ ) )1/2(2)3/2

m<h/§

m<h/5

0<h nl¢
h%R(log R)>/? ) h3/2 R2( logR )2/2 12 (
<<#Z§ZM(77>+ Z 5/22
5<h n|e 5<h n|e

log ¢ )
<<%(1og R)P2(h2R + h*2R2)
and hence we obtain the estimate

S Spue < (log B2 (log L)* (R + WP R?),

0<|¢|<L
which together with (1.43) implies

Yo < Uy + Uy < L h2R%(log R)? + (log R)*?(log L)*(h*R + h3/*R?).
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If we pick L = Vvh and consider that 1 < h < R < x by assumption, we are led
to
Yy < 2R (log R)? + (log R)*?(h?R + h*?R?) <« h*?R%1*,

which together with (1.38) gives (1.23).
e We next prove (1.25). Analogously to the proof of (1.23), we can infer

SN Arm)Ar(n + k) = ZZ“ Z +2+0( 2°)

k<y n<zx k<y r<R
(dk) k
= ZGR( +Y 4+ O(y z%) by (1.28) and definition of Gp,
k<y
where

=222 " :Z(Sﬁ) Y wdu(d)dd o(z;d, 'k, 0).

k<y olk m7'<R dlr
d'|r’
(d,d")=6

Estimating 3 like 3, of p. 14 yields (1.25). |

Lemma 1.12. Let 1 < h < R < x. Then assuming Hypothesis M, we have

Zh k) Z/\ _ﬂ_@ 2pl/4, 1/2+e
r(n)A(n+k) = logh+ O(h"R/*x )

2
k<h n<lz

+ O(R*2R¥42Y% ) L O(R*Raf),  (1.46)

the same asymptotic formula applying to

Zh kZA JAr(n+ k).

k<h n<x

Here every error term is bounded by O(hx) if we assume that
r2—¢ x2/3—€ rl—e
e 23 ).

Proof. Inserting the definition of Ag(n) and E(y;d, k) we first have

> Ar(m)A(n+ k) = Z 2%)261 (d) > Aln+k)

n<x d|r n<z
dln

R < min ( (1.47)
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— T Zd,u x+k;d7k>_¢<k;d7k))

T’SR dlr
and since
klog x klog x
V(o +kid k) = plaid k) + O(—7), (ki k) = O(——2),
this gives
(r) p2(r)2¢t)
> Ar(n)A(n + k) = Zdu (z;d,k) + O k:long— :
n<x T§R d|r r<R QD(T)
whence
p2(r)
D (h=k)Y Ar()A(n+k) =Y (h—k) ) > dp(d)y(w; d, k)
k<h n<z k<h rgR djr
+0 (:v > (h- k)k)
k<h
by Lemma 1.8 (c), which by inserting
x
id, k) = Egp—— + E(z;d, k
QZJ(I, ’ ) d,k(p(d) + (fL’, ’ )
equals
du(d
vy (h—k) (T)Z#+Z(h k) TZdu E(x:d, k)
k<h r<R w(r) djr w(d) k<h r<r ¥ djr
(d,k)=1
+ O(R*z9). (1.48)

In order to estimate the second triple sum in (1.48), we note that interchanging
the order of summation of r and d yields

S (h - kZ“ Zdu B(r;d, k) =Y (h— k)Y du(d) xdk2“2(:>)

k<h r<R k<h d<R r<|R
d|r
=S -0y Y WD) .. k) Z “
k<h d<R p(d ) ’<R/d
(r',d)=1
where - p R
r'<R/d ¥

(r',d)=1
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by Lemma 1.5, so that

= kZ“ Zdu ycd,k)<<Zlog(%)Z(h—k}\E(m;d,kﬂ.

k<h r<R d<R k<h

(1.49)
To estimate the double sum in (1.49), we insert the condition (d, k) = 1 intro-
ducing an error, which is bounded by

hlogRY Y |E(xid, k)| =hlog R~ Y 4(xid, k),

k<h d<R k<h d<R
(d,k)>1 (d,k)>1

so that this additional error contributes at most

iR1sRY Y Am) = hRI0g RS S logp < hRlog RS Y logp[ 8]

lo
k<h ( ng)ac k<h plk 1771n<<ac k<h plk gp
n,k)>1 P x

< hR(log z)? Z w(k)

k<h
< h*R2® by Lemma 1.8 (d).
We note that for d < R with (d,k) = 1, the numbers k run through at most

h
[3] + 1 many complete sets of reduced residues mod d. We deduce that by
Cauchy’s inequality,

S tog (5) 7 (h - KB d,B)

d<R k<h

(d,k)=1
R 1/2 1/2
2 20 .
< log ( 7 (Z h—k)) (ZE(x,d,k))
d<R k<h k<h
R 2 . 1/2
< Zlog E (Z (h — k‘)Q) (E + 1)1/2 (Z E?(x,d, a))
d<R k<h a(d)
<h?/? logRZ ((E)l/2 + 1) (Z*E2<l‘ d a)) v
— d ) ) Y
d<R a(d)

where this sum can be bounded using Hypothesis M (Lemma 1.2), which gives

. 1/2
WlogRY ((%)1/2 + 1) (Z E(x,d, a))
a(d)

d<R

< W32y 1/ 2+e Z ((%)1/2 + 1) ﬁ

d<R
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< h2RVALV/2He 4 3/2 p3/41 /24

Finally, by the estimates A(m), Ag(m) < m*, we have

D (h=k)> AmAr(n+k) =Y (h—k) > An—k)Ag(n) + O(h’z°)

k<h n<z k<h k<n<zx

and since ¥(x;k,d) = ¥(x;—k,d), the result for this expression follows from
(1.46). u

1.2 Proof of Theorem 1

We are now ready to prove Theorem 1.

Throughout the proof we assume that 1 < h < R as well as h < z'/27¢. From
the inequality
| @i~ vntys )Py > 0
0
we infer
/ 2 (y; h)dy > 2/ w(y;h)wzz(y;h)dy—/ VR(y; h)dy (1.50)
0 0 0

and the estimate Ag(n) < 2° for n < x combined with Lemma 1.4 gives

/wy, Yr(y; h)dy =h Y Ar(n)A(n) + Y (h—k) Y Ar(n)A(n + k)

n<lz k<h n<z
+Y (b= k)A(n)Ar(n + k) + O(h*z?) (1.51)
k<h

as well as

/l/JRya )dy hZ)x2 +2Zh /{?Z)\R JAR(n + k)

n<lz k<h n<lz

+ O(h3x°). (1.52)

Now we choose R subject to (1.24) and (1.47).

Then by applying Lemma 1.10 (A) on p.12 and Lemma 1.12 on p.24 to (1.51)

we obtain N

Y(y; h)vgr(y; h)dy = halog (%) + h*x + O(hx). (1.53)
0
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Moreover, inserting Lemma 1.10 (B) on p.12 and (1.23) of Lemma 1.11 on p. 14
into (1.52) yields

/w Y&(y; h)dy = hx log (%) + h*z 4+ O(hx) (1.54)
0

and thus resubstituting (1.53) and (1.54) into (1.50) leads us to
i R 2
/ »*(y; h)dy > hxlog (E) + h*z + O(h). (1.55)
0

The conditions on R from (1.24) and (1.47) now read

p2—e pl-e 1'2/3_6 1.1/2—5 $1/2—6

R <min (S, 5= S Sr) = o i 1Sh <2

1/2—

B1/4

and substituting the choice of R = into (1.55) gives

xl/

/0 V2 (y; h)dy > haxlog (h5/4> + h*z + O(hx) (1.56)

uniformly in 1 < h < 22/57¢. Tt remains to establish a similar bound for I(z;h),
which equals

[y —npay = [“ny =2 [ oy + i

0 0 0

For this purpose we employ (1.5) of Lemma 1.3 together with the lower bound
(1.56) for [ ¢*(y; h)dy to obtain

21/2

I(x;h) > hxlog (W) + o(hzlog )

uniformly in 1 < h < 22/57¢, which shows Theorem 1. [ |
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2 The unconditional case

In [6, Thm. 1], Goldston proved a lower bound for the second moment of prime
numbers in the unconditional case, namely

1
I(z;h) > (5 —¢)hxlogx uniformly in 1 < h < (logx)%, (2.1)

a main ingredient of his proof being the Bombieri—Vinogradov Theorem, cp. [25,
p. 161, eq. (1)], which states that

> [nax sup |E(y; 4, a)| <a VaQ(log ),
a,q

9 :1
q<Q )=l y<e

for fixed A > 0, provided that VT T < Q< \/x, to estimate the error occurring

(logz)
in Lemma 1.12 of Chapter 1. The gained factor (logx)~* then determines the
possible range for h.

Applying the Basic Mean Value Theorem instead, see Theorem 5 below, which
itself plays a central role in the proof of the Bombieri-Vinogradov Theorem, we
show how to gain a subexponential factor in the proof of Lemma 1.12, which in
turn widens the possible range for h.

The main result of this section is

Theorem 2. Let 1 < h < ecllog@)*/?(loglog@)™1/% 4 iuh o certain constant ¢ > 0.
Then for e >0 and x > X (g, c¢) we have

1
I(z;h) > (5 —e)hxlogz  uniformly in h.

As in |6, Cor. 1], we can state the following Corollary, which follows immediately
from the Theorem.

Corollary 2. Let ¢ be as in Theorem 2. Then for arbitrary ¢ > 0 and 1 < h <

eclogz)3/5(loglog ) ~1/% o p oo
m{gmx} [(y; h) — h| > m-
yel0,z
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2.1 Ingredients of the proof

Theorem 3 (Polya—Vinogradov Inequality; [25, p. 135, eq. (2)]). Every primitive
Dirichlet character x mod m with m > 1 satisfies the inequality

> x(n)

n<N

< v/mlogm.

Corollary 3. If a Dirichlet character x mod m is induced by a primitive character
X" mod m* with m* > 1, then

> x(n)

n<N

< 2 /m* logm*.

Proof. We have

dxm)= > xm)=>_x"(m) > puls)=> us)> x'(n)

n<N n<N n<N s|ln,m s<N n<N
(n,m)=1 s|lm s|n
= uls)x*(s) > x'(n)
S%N n’<N/s
and hence
Z x(n)| < ZMQ(S) Z X" (n')] < 2#2(5)\/m* logm* = 2™ y/m*log m*.

n<N slm n'<N/s slm

In order to control the contribution of moduli m which are small compared to x,
we apply to the following sharpened version of the Siegel-Walfisz Theorem.

Theorem 4 (|20, Theorem 1.1]). Let A > 0. Then for (a,m) = 1 and m <
(log )" we have that

Y(x;m,a) =

—+0 $€_CA(10gx)3/5(10g log z)~1/5
p(m) ( )

for some constant c4, which cannot be computed effectively.

Moreover, we shall need the

Theorem 5 (Basic Mean Value Theorem; |25, p. 162, eq. (2)]). For M > 1 and
x> 2 let

T(e, M) = Y =3 sup[v(z, ). (2:2)

m<M p(m) m) V<E
Then we have the estimate

T(x, M) < (x + 2>M + /zM?)(log(xM))>. (2.3)
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Lemma 2.1. For a Dirichlet character X' mod d we have

Y(a;X) = dypa = Z*x’(a)E(fL’, d; a).

a(d)

Proof. We have

a(d") o P @
1 *
=Y = (W x) = 6y2) Y X'(a)xX(a)
< p(d") ;
x(d*) a(d*)
=Y(z;xX') — oy
by orthogonality. [

From Theorems 3-5 we can deduce the following Proposition, which is the main
part in the proof of Theorem 2.

Proposition 1. Let ¢ > 0, x > 2 and g : N — R be a function supported on
squarefree integers d with |g(d)| < (logx)®, B > 1, for each d. Moreover let
(log x)BT6te < h < a°. Then there exists some ¢ > 0, such that

STh=k) Y g(d)E(w;d, k) <hPpeclorn* losloe )™ 4 2 R /o (log )P+

k<h d<R

(dk)=1
+ hzx.

Proof. For each pair d, k with (d, k) = 1 we have by definition of E(z;d, k) and
orthogonality of Dirichlet characters that

E(z;d,k) = ﬁ %mw(x;x) — ),

which gives

(dk)=1
DIEUD IECH) BCIENELES
k<h (ddf)fil (d)
-y % S W) — 62) 3 (h— B)X(K)
d<R x(d) p<h
(di)=1

31



- %Z (@) = ) S (h = WX (R, (2.4

R k<h

where the last equation holds since x (k) = 0 for (d, k) > 1. Letting x* mod d* be
the uniquely determined primitive character which induces the character y mod
d, the triple sum in (2.4) equals

M= Zgjzz S (9~ ) 20— BT

d<R d*|d x* k<h
x* 1nduces X

where the second last sum of M actually contains only one character y mod d.
Now we can utilize 1 (z; x) — 0y = ¥(z; x*) — =2 + O((log z)?), cp. |3, p. 163,
1. 6], to infer

M = Zgézz V—der) Y S (h—k)x(k

d<R d*|d x* x(d) k<h
x* induces x

with

2 |9(d)] * 2 B dyi*(d) 2 B
h dSZRWd*'dgo(d ) < h*(log x) dSZR o) < h*R(log x)

noting that Z o(d") = d, the last estimate following from Lemma 1.7.
d*|d
In a next step we decompose M into

M =T+ T+ Ts+ O(h*R(log z)"*?) (2.5)
with
_\ 9@ SRR -
T = ﬂ (P(z; X)) — Oyrx) Z Z (h—k)x(k
d<R ¥y d*|ld  x*(d¥) x(d) k<h
d*<(logz)4 x* induces x

T = % 3 ( RSIPMDY T

i<r ¥ a*|d v (d*) k<h
(log )4 <d*<h? x* mducesx
and
Ny 9d)
oI S WIS RIS S S

i<r ¥ d*ld  x* x(d)  k<h

h2<d*<R x* 1nduces X
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and continue investigating each expression 7;.
e Estimation of Ty

Changing the order of summation of d and d* we obtain

2(d
ITi] < W*(log2)® Y Z )
d*<(logz)4 x* d<R ()
d*|d
1
) B
d*<(logz)4 X (d*) ( {

1 ;
< h*(log z)5 ™ Z Z [(z; x*) = Oy

d*
d*<(logz)4 SO( )X*(d*)
< h?(log z) 5™ Z ©o(d*) max |E(x d*,a)| by Lemma 2.1  (2.6)
(a,d*)=
d*<(logz)4
< h2(log z)*AHBH1gecloan)* (loglogn)™ /> g some ¢ > 0, by Theorem 4
< h2xe¢ogm)* P oglogx) ™7 g1 some ¢ with 0 < ¢ < c. (2.7)

e Estimation of 75

In the estimation of 73 it is advantageous to refer to Corollary 3, from which it

follows that
S| = | [ (Sxem )< [

k<h

> X(m ‘dt < h2 D/ d* log d*

m<t

on summing by parts. Noting that d,~ = 0 for a primitive character with con-
ductor d* > 1, we can bound 7; as

B+1 2* d)ﬂ 249 p*(d)
75| < h(log ) SooovE Yy sup [ (y: 1 Ny

(log x)A<d*<h? x*(d*) 7= d<R )
d*|d
VA2 P (d7) o~ . 2402 (d!
= h(logz)®* Y @) o oswlyx) D T)
(log 2)A<d* <h2 e (de) YT d'<R/d* ¥

(d',d*)=1
(d*)1/2+5 %

o) > sup [v(y; x|

<z
X* (d*) Y=

< h(logz)P+? Z

(log z)A<d*<h?
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using 2¢(4) < (d*), which follows from and Lemma 1.8 (c) in the last estimate.
On using summation by parts we can write

2.

(log z)A<d*<h?

(d*)1/2+€
p(d*)

‘ o T(x,h?)  T(z,(logz)*
> suplply )| = (hﬂ)—(léz;)iiﬁ)i

<z
X () Y=

1 " dt
+(3—¢) /(1 T(@t) 5=

ogz)4

with T'(z,t) as in (2.2), where by Theorem 5 the RHS is majorized by
(z + 1?2 + h*/2)h* (log 2)* + (7 + (log #)*2%/C + (log v)**y/z) (log 2)*~A1/279)

h2
dt
5/6 2 3
+ /(1 (z +tz”° + t°y/x)(log x) Py

og )4

<<(% L plte5/6 +h3+5\/5)(logx)3 + z(log x)3~A1/2=9)
<<hfc_5 (log )% + z(log £)>~41/272) since h < 2° by assumption.

Therefore relying on our assumption that (logz)®7*¢ < h and choosing A =
B+6

we have
1/2—¢

To < hex(log x)PT0 + ha(log 2)B~A0/2=9+6 « py. (2.8)

e Estimation of 73

Lastly we can bound 73 as

LS T sup [ X)) (2.9)

|7§’ S h2(10gI>B+l
Z W(d*)x*(d*) y<z

h2<d*<R

where summation by parts yields

1 * . T(z,R) T(x,h? R dt
> 2 sl = T - T [
n2ear<r P\ gy V=T h

and the RHS is bounded by

(z 4+ Rz®° + R*/z)R ' (log z)® + (= + h*2*/% + h*y/z)h2(log z)*

R

dt

+ / (z + tz®/® + t*\/z)(log a:)3t—2
h2

= + 2%/ + R\/E) (log z)?

<t
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according to Theorem 5. Applying this to (2.9) we obtain
Ts < z(log2)®™ + h?Ry/z(log 2)®™ < ha + h* Ry/z(log 2) 5™, (2.10)

since (logx)BT6+¢ < h by assumption. The assertion follows by plugging (2.6),
(2.8) and (2.10) into (2.5). |

Lemma 2.2. Let € > 0, h < R < z and suppose that (logz)¥™ < h < x°. Then
there exists some ¢ > 0, such that

h? 5 -
Z(h — k)Ar(n)A(n + k) ITI — halogh + O(the*C(logx)w (loglog ) 1/5)

k<h

+ O(h*Ry/z(log 2)°) + O(hx),

the same asymptotic formula applying to

Zh kZA Mr(n + k).

k<h n<lz

Proof. Proceeding as in the proof of Lemma 1.12 in Chapter 1, we are led to

> (= k)AR()A(n + k) = %y + € + O(h*)

k<h

with ) duld
~ o) 4= wld)
(d,k)=1

and )

e=>(h-0 Y~ (r) dp(d)E(x; d, k)

k<h r<R gD(T) d|r
(d,k)=1
where 12 .
S = Tx—gl h+ O(ha), (2.11)

cp. (1.38) on p.19. As for &£, we can change the order of summation of d and r
to obtain

e=Y"(h—k 3 du(d)E(x;d.k Z“ r)

k<h d<R r<R
(d,k)=1 dr
dpi(d) (')
=> (h=k) Y ——ZE(x;dk) : (2.12)
k<h d<R ld) r'<R/d (1)
(d,k)=1 (' d)=1
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/

2
(") is bounded by

,r/

By Lemma 1.8 (a), the function ggr(d) := _d,u((dd)) Z
y R

r'<R/d

(r',d)=1
(logx)?. Setting gr(d) := Cgr(d) with a suitable constant C' > 0 and noting
that h > (log x)®*¢ by assumption, we can apply Proposition 1 to infer

£ < h2ypeclose)”/*(loglogx)™/% | h*Rv/z(log )® + hx

for some ¢ > 0, and the Lemma follows. [ |

2.2 Proof of Theorem 2

Proof of Theorem 2. We let € > 0 and suppose that (logz)¥™ < h < z° as well

as
1.1/2 €
Rell (2.13)

and h < R. We start from the inequality

/1/) y; h)dy >R Ag(n)(2A(n) — Ap(n))

+2Z (h—k) Z rR(M)A(n + k) + A(n)Ag(n + k))
- 22 (h—k) /\R JAr(n + k) + O(R*z%), (2.14)
k<h

which follows by inserting (1.51) and (1.52) into (1.50). Then, by Lemma 1.8,

hY " An(n) — \g(n)) = hzlog R+ O(hx) (2.15)
n<lz
and Lemma 2.2 yields

D (h=k)> (Ar(n)A(n+ k) + A(n)Ag(n + k)

k<h n<zx
=h2z — hxlog h + O(h*Rx"/*te) 4+ O(h2xeoe®)*(oglogx) ™"y | O (ha) (2.16)
for some ¢ > 0. Lastly, by Lemma 1.11 and referring to (2.13), we have
h?z  hx

;(h = k) Ar(m)An(n + k) = —= = —~logh + O(hx). (2.17)
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Employing (2.15)(2.17) to (2.14) yields

/0 ¢2(y§ h)dy >hzlog (%) + W2+ O(h2Rx1/2+€) + O(the—C(log1)3/5(loglogm)—l/5)

for some ¢ > 0. Now we want R to be as large as possible to keep h? Rz'/*** <« hax,
1/2—¢

which leads to the choice R =

and by applying this to (2.18) we obtain

T 1/2—¢
/ V2 (y; h)dy > haxlog (x f/LZ ) + h2x + O(the_C(logx)S/S(loglog”G)il/E) + O(hz).
0
(2.19)
Next, by squaring out,
Hash) = [ o idy =2 [ othdy+ o
0 0
and since (1.4) of Lemma 1.3 tells us that
/ Y(y; h)dy = hx + O(hxe_cl(logx)3/5(loglogm)_w) + O(h*2°)
0
for some ¢ > 0, we can deduce from (2.19) that
(El/Q_a . / 3/5 —~1/5
I(x;h) > hxlog (T) + O(h*pe~ min(ec)log2)* P (loglog2) ™%y 4 O (B34°) 4 O(ha).

Thus, noting that A < 2° by assumption, we obtain
I(x;h) > (% —e)hxlogz  for (logx)*te < h < emin(ee)(oga)®/? (logloga) =%

and x large enough. Theorem 2 now follows, since (2.1) gives the assertion in the
range 1 < h < (log z)%*e. |
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2.3 Application to the variance of primes

In this section we employ the methods used for the proof of Theorem 2 to inves-
tigate the mean square sum

G(r;q) =Y  E*(x:1q.0).
a(q)

Assuming RH as well as the usual strong form of the Twin Prime Conjecture,
see (0.3) on p.2, Friedlander and Goldston (cp.[5, Theorem 3|) established the
asymptotic formula

G(z;q) ~ xlogq uniformly in z'/?7 < ¢ <z (2.20)

and proved an unconditional lower bound, namely
1 T
G(z;q) > (5 —¢g)zlogq for Tog )@ <g<z, A>D0, (2.21)

for x large enough. Hooley (see for example [19, pp. 53-54, eq. (6)—(7)]), improved
on (2.21) by showing unconditionally that

1
G(z;q) > (5 —¢)zlogz for < ¢ <z and some C' >0 (2.22)

x
eC\/logx

for x large enough. Analogously to the case of I(x;h), the proof of (2.21) and
(2.22) is essentially based on the inequality

3 (Wi q.a) — vr(ziq,a))* = 0.

a(q)

The aim of this subsection is to improve on (2.22) by establishing

Theorem 6. Let ¢ > 0 and x be sufficiently large. Then there exists some ¢ > 0,
such that

T

1
G(z;q) > (5—5)xloga: for —5 <q<u.

ecllog x)3/5(log log x)

Throughout this section we need the estimate 7 < loglogq, ¢ > 3, cp. |24,

e(q)
p.55, Thm.2.9].
We continue with some preparatory results.
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Proposition 2. Lete >0, 2 > 2, 1 <y <z and g : N — R be a function

supported on squarefree integers d with |g(d)| < (logx)®, B > 1, for each d and
let

Ry P — 2.23

o4 (log z)B+6+ (2.23)

Then there exists some ¢ > 0, such that

; a? —c(log z)3/5 (log log x)~1/5 333/2 B+4
Z Z 9(d)E(y;d, jq) < ;6 ® 508 + TR(log:c) + .
j<x d<R
T e
(2.24)

Proof. First by arguing as in the proof of Proposition 1, we see that the LHS of
(2.24) equals

Zg > Z )=bex) > X)X X0) + O Rlog)?).

= ) o x(d) i<a/q
x* induces x

which we write as

Tia+ Tog + Tog + o(gRaog 7)),

according to whether d* < (logx)?, (logx)? < d* < (x/q)? or (x/q)? < d* < R.

Brbte < = < 27 by (2.23), we can repeat the estimations of 7; in the

Since (log x)
proof of Proposition 1 with /g in place of h and with y instead of x to obtain
% oe )5 logloga)-1/5 T2 B+4
7'1,q + 7'2’(1 + 73’[1 < _efc( og z)°/°(loglog x) + —R(log x) + s
q q

for some ¢ > 0, which shows Proposition 2. [ |

The next two Lemmas are g-analogs of Lemmas 2.2 and 1.11.
q

Lemma 2.3. Let ¢ > 0, z'/?** < ¢ < = and o < R< . Then there
q'e (log x)?
exists some ¢ > 0, such that
2 - s
S 3 A i) =g = e () + O( e Tt
j<z/qn<z—jq vl q q
3/2

+ O(%R(log 2)%) + O(zloglog q),

the same asymptotic formula holding for

Z Z A(n)Ar(n + jq).

j<z/qn<z—jq
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Proof. By definition of Ag(n), we have

PR BRVOICESIEDS Z“ o Z du(d) > A+ ja)

j<z/qnlz—jq j<z/qr<R n<z—jq
dln

= Z“ S ) S au(@) (@l d.jg) — (g d, i)

jertar<k T\ Cap
=X,+& (2.25)
with 2(r) ()
, w(r du(d
L=y (@—ja)) O > ) (2.26)
i<z/q r<R ¥ d|r ¥
(djg)=1
and
p2(r) .
£, = o0 Zdu E(x;d, jq) — E(jg;d, jq)).  (2.27)
j<zx/qr<R
e Estimation of &,
We can introduce the condition (d,jq) = 1 to &, causing an error, which is
bounded by
(2 (r) p2(rjo(r) _ Rx 2
log x Z w(jq) Z Zd ) < — logx Z < —(logx)* < z,
=, = ) q

using the estimate w(n) < logn, cp. |24, p.55, Thm.2.10], Lemma 1.8 (b) and
the assumptions on R. Noting that jq¢ < x we can clearly estimate & using
Proposition 2 (with the same function gr we used in the proof of Lemma 2.2 on
p.36) to obtain

2 L3/
&< T gclloga)®/*(logloga)H/* | ~—R(logx)® +x for somec>0. (2.28)
q q

e Evaluation of X,

Since
du(d) _ p(r) oo o 1) p(r @)l @), je(r, )
D e LAk o R =y
(d.ja)=1

cp. (1.28) on p. 15 for the first equation, we have
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Zq _ qz M(T)M(T’, q)@(h Q) Z (ZL‘ _]) #(Ta])SD(T,J)

oy w2 (r) ¢ 7l ga)e(r g, q)

and using the identity

p o w(rd,q)e(r j,q)

£)(r,9) plr,j pIr.j.q
(¢,9)=1
we obtain
p(r)u(r, ¢)e(r, q) T
2q = qz 2(r) Z (= —J) Z n(0)L,
r<R Jj<z/q lr,j
(67Q):1
where
s 9 €T
DOy (C=g)= > wOF ) (= —m)
tr I<g 1 Lr m< 5 q
(£,9)=1 olj (6,q)=1
<Z <z
_ (0 =23 woerol Y e
(t,9)=1 (t,9)=1 (6,q)=1
<2 <2 <2
Thus we can write
Sy = S1g— S +E,
With ()l g)plra)
T pA\T) T, q)e\r, q
Sia=5:2 ; > ulo),
n S0 4
(6,9)=1
(<z/q
z ~x—~ p(r)plr, q)p(r, q)
S 5 0,
2q 2 Z 2(r) Z 1(£)
r<R Lr
(¢,9)=1
{<z/q
e ()2, 0)lr. )
/ H AT, q)P\T, g 2 2
£ <q) 20 ST,
T<R Lr
(67(1):1
{<z/q
where
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iz O LS
B 1°(0) > (0) 0 uQ(T”)
N QZ ©(0) Z ©2(0) Z ©2(r")
Slq (<z/q r’(’gxg)(qfﬁ)
r.8)=1

2
)
<L Z /;(((5)) by Lemma 1.7

< xloglogq (2.29)

(5 1
using Z o H + py 1) = go(qq) < loglog g in the last step.

dlq plg

e Moreover we have

dlg r"<R/§ ¥ L’
0<R r,q)=1 L<z/q
and )
v q
O =1+0(-
o2(r') Z 1(€) + (x)’
r"<R/é L’
(r'q)=1 (<z/q

which can be deduced like in the estimation of S; with x/q instead of h on p. 17,
the only difference being the additional (r’,q) = 1 to the outer sum. Therefore,
noting that

10©0) 5 7(g)log g q 7
%qj 6 Z w )= toR e
<R
we obtain ) 2(5) ) )
I N e o
S= 9, ; o0~ 2o O ) (2:81)
5<R

e Finally, using (¢,q) = 1, we obtain

Spym -t p (0L 3 p(r)u(r', g)e(r', )

2 2( gt
(<z/q #*(0) " <R/L p2(r')
(t,q)=1 ' 0)=1
oy SO0 Sl e )
2 2 (gt
{<z/q (f) 7/«/:1 ¥ (T)
(Z,q):l (T‘ =1
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where the error term is bounded by

1% 12%( u r *(0)o 1%
(%/q Z >;/ ) T” R% (¥) gz;q

.1'2 2
<L = 1 <
I qT(Q) 080 <€ 5=

using Lemma 1.7 for the first estimate. Now since

Z p(r 1°(9) i pu(r”)
1 Slq 5) =1 902<T”>
( )=1 (r'" tg)=1
q 6 1 -1 .
—— 1-— , if 2|{q,
_ ) wla) 2 11 (p—1)2) |
= pléq
p>2
0, if 21 4q,
cp. (1.35) on p. 18, the main term of Sy, equals
Tt S S T
I f)
4 ola) oo = " p(p—2)
p>2 (bg)= p>2
2|€q
T T T N ( + )7 if 2 | q,
4 olg) oo ol = (f W p(p—2)
p>2 (f q)= p>2
Rl D |
T T T N ( + )7 if 2 T q,
4 pla) oo =1 e Pp=2)
p>2 (t,q)= p>2
\ 2|¢
which becomes
G}
R H (1+ Z ,u = —Elog (E) + O(zloglog q),
2 ¢(q) p( 2 g
plq z'<z(2 2 ¥
P2 (¢ 20)=

where the first equation follows from (1.36) on p.19, and using Lemma 1.6 on
p. 8 for the last equation. Thus we obtained
22

Say = ~5 log( ) +O( + O(z loglog q) (2.32)

Rla)
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and on combining (2.29)-(2.32) we can conclude

x? T x?
Y= - =1 oL O(=——) + O(xlogl
x? x
= — —log + O(z loglog q) since —— < R by assumption, (2.33
2o 28l q) ( ) since - (2.33)
which together with (2.28) shows the Lemma. |

Lemma 2.4. Lete > 0,3 < g <2x and 1i < R. Then we have
q —€

2 2,
Z Z Ar(M)Ar(n + jq) = 23:( )——log( )+O(R )+O(:Eloglogq)
j<z/qn<z—jq Plq q q

\)

Since we shall only consider the case 2'17¢ < ¢ < z in the proof of Theorem 6, we
do not need to refer to Lemma 1.11 in full force, which leads to the error term

1/2+¢ 2
O(RQQ; ) instead of O(%)

RE

Proof. We have

> Mr(m)Arn+jg) =) v Zdﬂ Wr(2;d, ja) = Yr(ia; d, 19))

j<z/qn<z—jq j<z/qr<R d|r

ST Z e

~—

+0 (ﬁ 0 3 d,ﬂ(d)) (2.34)

on using
Yy

(m)

cp. Lemma 1.9 on p. 10, for the second equation. Noting that Zd/ﬁ(d) =o(r)
dlr

d)R(y) m, a’) = Em,a + O(R)v

for r squarefree, the error term in (2.34) is bounded by

R2
Z () ’ by Lemma 1.8 (b),
r<R T q

whereas the main term equals 3, defined by (2.26) on p.40. The Lemma now
follows by (2.33) on p. 44. |
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Lemma 2.5. There exists some ¢ > 0, such that

d 2
- Z ¢2(x’ q, CL) - x_ —+ O(x—e_cl(bg$)3/5(10glogac)*l/f’) ‘
a=1 @(CZ) q

Proof. By |5, p. 323, eq. (3.1)], we have
2

NS e - T2 e ot los )
=2 vwna) - oo = W) —a) + O )

+ O((log(gx))?) (2.35)

and using the Prime Number Theorem in the form

W(x) = 2+ O(wecloam) (oglogn) ™%y £y gome ¢ > 0

and Lemma 1.8 (a) we can infer

T z(log x)? ,  a? (o 213/ (log log 2)~1/5
——(¥(x) — 2) + =+ (log(qz))* < —(log q)e~ s (oglog®)
¢(q) ©(q) q

< $_2€—c’(log:c)3/5(loglog x)~1/5
q
for some ¢ with 0 < ¢ < c. [ |
Proof of Theorem 6. We fix ¢ > 0 and suppose that 2! < ¢ < _ as
(10g x)8+€
well as 1L < R < /. First from the inequality
q —€
q
S ({10, 0) — (i g, @) = 0
a=1
we can deduce that
q q
> WP (g, )>2Z@qu, Wr(z;q,0) = > Uh(xig,a
a=1 a=1 a=1
—QZ >, Al Z > Ar(mAr(m)
n narzfog(ci q n nan;bn<ogcci q
m=a mod q m=a mod q
:QZA(n))\R(n) +2( Z + Z )A n)Ar(m
n<x nm<x nm<x

n<m n>m
n=m(q) n=m(q)
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_ZA;@)_( DY )AR<n>AR<m>

n<x n,m<x n,m<x
n<m n>m
n=m(q) n=m(q)
=2 A(n)Ar(n) = Y Ni(n)
nlx n<lx

+2 3 3" (M)A + jg) + Am)Ar(n + jq))

j<z/qnlz—jq

=2 > Ar(m)Ar(n+ jq). (2.36)

j<z/qn<z—jq

Now by Lemma 1.10 (A) and (B) on p. 12, we have

23 " A(n)Ap(n) = Y Aa(n) = zlog R+ O(x) (2.37)

n<lx n<lx

and from Lemma 2.3 on p.39 comes

> > (r(n)A(+ i) + A(n)Ar(n + jq))

j<z/qn<z—jq

.2132 RLE3/2+€ 1’2 3/5 —1/5
— —rl +0 +0O(= —c(log z)3/° (log log x)
olg)  ® (q) ( q )+ 0l ¢ )

+ O(xloglog q) (2.38)

for some ¢ > 0. Finally, by Lemma 2.4 on p. 44, we have

2 RQ
> Ar)Ar(n+jg) = 2x( = glog (2) +0(=2). (2.39)
j<z/qn<z—jq Pl q q

Substituting (2.37)—(2.39) into (2.36) yields

2

q 2
2/ .. @ £ l’_ —c(log )3/ (log log ') ~1/5
Zw(:v,q,a) ZIlOg(a:)+_go(q)+O(qe )

Rx3/2+5

+O( ) + O(zloglog q), (2.40)

q

where we used our assumption that R < /z. Now we choose R as large as
3/2+4¢

possible to keep < x, which gives R = # Inserting this into (2.40)
yields
ijq/]z(x, >l q° x? 9‘7_2 —c(log z)3/5(log log z) /5
— 100) 22 Og<x3/2+5)+90(Q) +O<q6 )
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+ O(xloglogq) (2.41)

and since

.1'2

x? — (log x)3/% (log log ) ~1/°
+ O(—e )

G(z;q) =Y ¢ (x;9,0) — 2@ .

by Lemma 2.5, we can deduce from (2.41) that

2 2

G(l’; q) > zlog (#) + O(%6—min(c,c’)(loggg)3/5(logloga:)1/5) i O(ZE log log (])-

Thus, noting that 217¢ > ¢ by assumption, we obtain
1
G(z;q) > (5 —¢)zlogx

for
T

,1/5 ng(

emin(c,¢’)(log 2)3/5 (log log ) lOg ZL’)8+E

and z large enough, which shows Theorem 6, since the range qg<zx

37 <
(log x)SJrs -
is covered by (2.21). [

In contrast to the case of G(z;q) alone, more is known about the sum
S(x;:Q) ==Y _ Glx;q).
9<Q

The Barban—Davenport—Halberstam Theorem, in a version sharpened by Gal-
lagher, gives the upper bound
x

: — T <<z A
S(z;Q) < Qulogx for Tog ) <Q<z A>0,

cp. |3, p.169, eq. (1)]. Assuming GRH, Friedlander and Goldston (|5, Thm. 4])
showed the asymptotic formula

S(w;Q) = Qrlog Q — cQu + O(min(Q**x'/*(log 2)"/%, Qx)) + O(a**(log )°)
for /2 < Q < z with a suitable constant ¢ > 0.

As far as lower bounds for S(x; Q) are concerned, Hooley (cp. [19, p.54|) showed
that

S(z;Q) > (1 —£)QulogQ  for e(lg% <Q<umz >0, x> 0(e),

and as mentioned in [15, p.2]|, Perelli showed a lower bound for S(x; Q) in the
range 1179 < @ < z, where > 0 is small enough. Recently, in [15], Harper and
Soundararajan improved on this by showing the following
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Theorem 7 ([15, Thm.1]). Let € > 0, N be large enough and VN < Q < N.
Then there exists an absolute constant C such that

S5 (N g,a) - ¢;(;v s - s)@N(log (%) - oglos N),

9=Q a(q) (9)

where

Yo(N) =) A(n). (2.42)
(1

Their proof uses exponential sums and gives a lower bound by the minor arc
contribution in the circle method.

Employing the Basic Mean Value Theorem, we can show

Theorem 8. Let € > 0 and x large enough. Then for x?/3 < Q < x we have

3/2

Although Theorem 8 is weaker than Theorem 7, its proof illustrates how the
Basic Mean Value Theorem can be used to obtain a lower bound for S(z; @) in
nontrivial ranges for Q.

We continue with some preparations.

5(:Q) ~ S(r:Q/2) > (5 — £)Qulos(

Lemma 2.6. For s squarefree and M > 1 we have

Y 1= @M +0(2¥®).

m<M
(m,s)=1

Proof. We have

m<M m<M l|s,m ls m<M ls l)s
(m,s)=1 Lm <M
() -1 2 w(s)
=M §e| 7 + O(MM Ee p(l) | +0(24%)

= @M +0(249).
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Proposition 3. Lete > 0 and Q1, Q, R be real numbers with /> < Q; < Q <
x and let
Q

(logz)*

(logz)* < R<

Ol =

Then we have

> oy e Z () Bl o) =(0le) a0 3 s

Q1<g¢<Q j<z/qr<R Q1<q<Q <p(q

(d Jq

+O( 51 (:Jc+x5/6\/_—|— VIR?))
+ O(Qx). (2.43)
Proof. By orthogonality, we first we write the LHS M of (2.43) as
M =M + M,

with

- Y Y ey M -0,
Q1<Q<Q]<:c/qr<R djr (10( )
(djg)=1

where 1), is defined in (2.42), and

2(r du(d
-y yyrEy TS v

Q1<q<Q j<z/qr<R dlr x(d)
(d.jg)=1 XF#X0
e Estimation of M;
Since () Z A(n Z Z logp < w(d)logzr < x° for d < x,
n<lz pld m<z
(n,d)>1 P <z

we have

du(d
M) - Y 30 5 A

Q1<¢<Q j<z/qr<R d|r

+0( eyl Z p2(r) duzg)w)

q<Q r<R T) d|r ¥

ow(r)y

for r squarefree as well as

2 2p — 1
where on using Z dp”(d) = H d <
il C) o Pl (r)

Lemma 1.8 (a) and (c) the error is bounded by O(z'™). The main term of M,
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1 12(r)
_ N 2 d
(¥(x) x):chéquKR ) ; p(d)
(d,g)=
o( @it —+ 3 LS HIBED) by Leanina 2,
T§R d|r
where
2 (d)d2<(@) d2“’
Qi) — o Y L ST EIEE _ Gy - 3 OB 5 L
r<R SD(T) dlr gp( ) d<R r<R/d
(r',d)=
3 2“ @
< Qlogx)’[¢h(x) — x| Y | ———

d<R
< Q(logz)*|9(z) — x| by Lemma 1.8 (c)
< Qx by the Prime Number Theorem.

Therefore, because of the identity

1, ifr|gq,
o) =T[0+pp) = {o, ifricq]’

d|r plr
(d,g)=1 plg
we obtain
M= @) —ne 3 23D L 6w
o orereq 1izn #07)
rlg
1 2 |
= (Y(z) — m)xQZ<Q w + O(% <ZQ %) + O0(Qx)

= @) —o)r Y L O(%(logm)Z) +0(Qx)

= (¢Y(x) — x)x Z O(Qx) since %(log )2 <R (2.44)
0i<azq PL9)
on using (2.30) on p.42 for the second equation and Z () < log @), which

<@
follows from [24, p.38, Thm. 2.3] and summation by parts, for the last equation
n (2.44).
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e Estimation of M,

Proceeding as in the proof of Proposition 1, we see that M, equals

Z” Z ZZ “oex) > > X@) ) X0)

r<R d*|d x* x(d)  Q1<e<LQ i<z/q
X#Xo
x* induces x
T 12 (d) o\ L
+0(stogap Y SIS a3 ),
r<R djr v d*|d q<Q q

where the error term is bounded by

d2 2 d 5 2 dd2 2 r!
z(log x) Zu Z :(ag)):m(logm) Zﬂwg(;) Z ()

r<R

< z(logx 42
= £

< Rz(logz)! by Lemma 1.7
Q
(log z)*
If a primitive character x* mod d* induces a non principal character y, we have

d* > 1 and on noting that d,~ = 0 for a primitive character with conductor
d* > 1, it follows that the main term My of Mj equals

<L Qr since R <

N DIPWCEISID VD WU T

r<R (T) d|7‘ d*‘d x* X(d ]<$/Q1 Q1<q§min(x/j,Q)
. X;’ZXO
induces x
12 (r) x~ dp*(d) - Y
< Z Z o(d) Z Z ;X)) Z Z Z x(a)
r<R dlr d*|d x*(d*) # Jj<z/Q1 ' Q1<q<min(z/j,Q)
X XO

x* induces x

Sy ) 5 B Z@Z (2.45)

r<R dlr ¢ d*|d

employing the Polya—Vinogradov Inequality in the last step. Interchanging the
order of summation and substituting " = r/d in the RHS of (2.45) and applying
Lemma 1.8, we can infer

) - * 2w(r’)/2(/)
M, <Q—logx2\/d—,ud Z :1:)(|Z ) Z#

d*<R x* (d*) d<R r'<R/d
d*|d (', d)=1

o1



\ w(d) ;2
< VE ) Y ) Y S

2
d*<R x*(d*) d<R *(d)
d*|d
rlte 2w(d*)(d*)3/2 N 2w(d’)d/,u2<d/)
<D PO Sy Y O
1 d <R ©*(d*) (@) 4 <R/ p*(d)
(d',d*)=1

plte ﬁ " .
<5 d;%w(d*) Y sup ey x|,

<
x*(dx) Y="

Proposition 3 now follows, since on summing by parts and by the Basic Mean
Value Theorem (Theorem 5, p. 30) we obtain

v . .
> o) > sup [v(y; x|

d*<R x(d*) Y=T

T(z,R) 1 [ dt

i dt
<R Y%(log z)3(x + Rz%® + R*\/x) + (log z)* / (z 4 tz*/5 + tzﬁ)m
1

< (log z)*(z + 2%V R + Tt R*?).

Lemma 2.7. Lete > 0 and Q, Q1, R be real numbers with 2'/*7¢ < Q1 < Q < x
and let

a (1
max (@(logx)z, 1_5) <R< flog 1)1
Then
i 1 Qz Q1 z
A(n)Ag( * 1 Q= Qe
ngl;@ﬂzx;qn;]q )= 2 Q1§1:SQ #la) 2 % (Q> i o8 (Ql)
1
’ (w(w) ) x)wQ1<q<Q @
(33612 (z + 25/5VR + VTR¥?))
1
O(Qrloglog Q).

Proof. Since 1Ie <R< 0 q 7 for every ¢ € (@1, Q] by assumption, we can
- ogx

apply (2.25)—(2.27) of Lemma 2.3 on pp. 40-40 and then (2.33) on p. 44, and then

L
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sum over ¢ to obtain

x? 1 x x
SO0 Y Amentja) =5 Y @2 3 log ()

Q1<q<Q j<z/qn<z—jq Q1<q<Q Q1<q<Q
w3 ( : : .
+ > > Z Zdu d)(E(z;d, jq) — E(jg: d, jq))
Q1<q<Q j<z/qr<R dlr
@) (m Z log log q) : (2.46)
<@

where

Z 10g(§):Qlog(g) Q1log(Q1)+O(/1Q[t]%)

Q1<g¢<Q

Z@log(g)

by summation by parts. We can introduce the condition (d, jq) = 1 to the triple
sum on the RHS of (2.46) causing an error term, which is bounded by

logxzz w(jq) Z'u ) Zd ) < z(log x) Z Z'u o)

q<Q j<m/q r<R q<Q 7'<R

@1 log (Q ) +0(Q) (2.47)

< Ra(logz)® < Qu.

Applying this as well as Proposition 3 to (2.46) yields the Lemma. [

Lemma 2.8. Let € > 0 and @, Q1, R be real numbers with 3 < Q1 < Q < x and
< R < x. Then we have

l—e
1

Z Z Z Ar(n)Agr(n + jq) = 9:22 Z L—%log(%)

Q1<¢<Q j<z/qnlz—jq 01<q<Q QD(Q)
+ @1 g (=) + O(R*z'*)
@1
+ O(Qm loglog Q).

x
Proof. Since — < R < z for every q € [Q1, Q] by assumption, we can use

Lemma 2.4 on p. 44 to infer

S Y X etio =5 Y -2 S g (d)

@1<4<Q j<z/qn<T—iq Qr<q<q P\ Q1<4<Q
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(RQI’Z ) (:p > loglogq)

q<Q 3<q<@Q

and the Lemma follows now by (2.47). |

e Proof of Theorem 8

We let ¢ > 0 and for

x, (which implies

Q > z'/%*%), 50 that we can utilize Lemma 1.10 (A) and (B) as well as Lemmas
2.7 and 2.8 with @ = Q/2. By (2.36) on p.45 we have

> > ez Y (23 Awnln —an))

q~Q/2 a=1 q~Q/2 n<z n<z

+92 Z Z Z n)Ar(n + jq) + Ar(n)A(n + jq))

q~Q/2 j<z/qn<r—3jq

=23 3 > Ar(m)As(n + jg). (2.48)

q~Q/2 j<z/qn<z—jq
where by Lemma 1.10 (A) and (B), we have
> (QZA(n) =) Nan ) = —logR+ 0(Qx), (2.49)
q~Q/2 n<w n<z
while by Lemma 2.7,

2% > D (AmAr(n + ja) + Ae()A(n + jq))

q~Q/2 j<z/qn<T—jq

1 x 1
=277 —— —Qzlog (=) + —
% @ 2 e
- O( 0 (:1: + 2%V R+ aRY?)) + O(Qx loglog Q) (2.50)

and Lemma 2.8 yields

22 Z Z Ar(n )\RnﬂLJQ)—ﬁZL_%Ig(g)

q~Q/2 j<z/qn<z—jq 4~Q/2 SO(Q)
+O(R’z'°) + O(Qzloglog Q). (2.51)

Plugging (2.49)-(2.51) into (2.48) yields

Qu
Z Zw i q,a >—logR+2x Z @—Qxlog(Q)

q~Q/2 a=1 q~Q/2
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ol S, eld)
Qx T

R 1
O 10g (B9 4 22ﬂ+f’ (2.52)

q~Q/2 P

where F can be evaluated as
14+

F K %(x + 2°/%V/R + VIRY?) + Rz + Qzloglog Q. (2.53)

In the next step we choose R such that every summand of (2.53) involving R is
bounded by O(Qx) and hence such that F < Qzloglog@. This leads to

Ql < R« mlH(Q T —5/3—¢ Q4/3 —1/3—¢ Q1/2 —e) — Ql/Ql,—e for Q >>$1/2+5

and the condition 0 < QY227 implies 223t <« Q.

Inserting this choice of R into (2.52) we obtain for %/t < @ and z large enough
that

1 3/2 1
Zzw (759,a Z——&)leog(Q )—l—xQZ—
q~Q/2 a=1 v q~Q/2 #la)
+2 Y L (2.54)
Lo el
Lastly by (2.35) on p.45 we have
1
S(x;Q) —S(x:Q/2) = Z Z¢2$Q> Z (—
q~Q/2 a=1 q~Q/2 2
1 1
o) ) Y +0(maogaz>2 L
S, P =5 ¢a)
+ O(Q(log z)?) (2.55)
and Theorem 8 follows by inserting (2.54) into (2.55). |
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3 An Application to the Pair
Correlation Function

In this chapter we investigate the question whether a similar result to Theorem
1 in Chapter 1 also holds for the Pair Correlation function F(z,7T). In [10],
Goldston et al. obtained

T ~1 3
—logT) F(I*T)>=—|o|—

uniformly in 1 < |a| < 3/2 —2¢ and all T' > Ty(e) assuming GRH, cp. [10, eq.
(3.1)]. The proof also makes use of the auxiliary function Ap and it is natural
that a similar result to Theorem 1 of Chapter 1 also holds for F'. The aim of this
chapter is to proof the following

Theorem 9. Assume Hypothesis M and let ¢ > 0. Then there exists some To(¢),
such that T -
“logT) 'F(T%,T) >~ — “|a| -
uniformly in 1 < |a] < 5/3 — ¢ provided T' > Ty(e).
The method of proof in [10] is to connect F' to Dirichlet Polynomials involving

A(n) and then to find a lower bound for them: More precisely, the proof is based
on the inequalities

RS

[ e ) S Aatmyn
where Wy is a smooth function specified in Section 3.1. Similar to the case
of I(x;h), Theorem 9 does not follow from Hypothesis M alone, but also from
improved estimations of error terms occurring in the evaluation of

o t 12 0o " -
/_ \I!U(T) Z)\R(n)nl/Q—zt dt and/_ ‘I’U(f) Z)\R(n)n—3/2—zt

n<lx n>r
by means of Lemma 1.12 of Chapter 1. Continuing the more elementary approach
of Chapter 1, we shall investigate sums of Gg(-) instead of &(-) for the proof of
Theorem 9.

2
dt >0

> (A(n) = Ag(n))nt/>*

n<x

and

2
dt > 0,

2

dt
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3.1 Preliminaries

To prove Theorem 9, we first provide some necessary preliminaries. Like in
[11], we now introduce a smooth weight function Wy with U > 1, which has the
properties that supp ¥y C [0,1],0 < Wy (t) < 1, Uy(t) = 1for 1/U <t <1-1/U
and WU (t) < U7 for j € N, cp.[11, p.37]. Denoting the Fourier transform of W,
with \TIU as usual, we have

(a) Wy(0)=14+0(1/U). (b)) Yu(v) =Ty(0)+O(v),

(¢) Vy(v) < min (1, %) (3.1)

cp. [10, p.45, eq.(7.3)] and [9, p. 184, 1.16]. The function ¥y is used to control
some of the occurring error terms, whose estimation would be quite difficult
without it.

The next Lemma connects the function F' to integrals over certain Dirichlet poly-
nomials. By this connection, lower bounds for these integrals imply a lower bound
for F.

Lemma 3.1 (|10, Lemma 1]). Assuming RH we have for T < z andU = (log T)%
with B > 1 that

1 z? T(log T)? zite
F(z,T) = 27m72]1(x7T) + %]g(x,T) + O(T) +O( L ),
where
= t L. L it ’
I(x,T) = Uy ()| A==z +it)— [ w du| dt
—00 T 2 1
and
) 0o ' 2
Lz, T) = / v(= )‘A*( +it) — / w327 qu| dt.
A(n) A(n)
H = — *(s) := )
ere, for a complex number s, A(s) Z o and A*(s) Z o

n<lz n>x

The next Lemma is a generalization of Lemma 1.7 of Chapter 1.

Lemma 3.2. Letting

m(s;¢,d) ZMZ

o7



for real numbers ¢, d, we have

gm(i:flill;c,d) s 4o, (5670, ifc—d> —1,
Gn(s;c,d) = gm(0;¢—1,d)1log s + O, 4(1), ifc—d=—1,
C(c—d)gm(0;¢,d) + g’”(%fl;c’d)sc’d“ + 0ca(s™Y), difc—d < —1,

where

-1 1 p*etd(1 - (1_ l)d)
gm(z; C, d) = H (1 t i (p _ 1 P c H p 1)dp2(z—c)+d )

plm P

Proof. This can be proven like [8, Lemma 2|, the difference being considering the
more general function

o0

m(2;¢,d) Z drz C—C(Z—C+d)gm(2;c,d)

r=1
(r m):l

instead of ®;(z; ¢, d) and proceeding in the same way as it is described there. W

Lemma 3.3. Letting

for r odd, cp. |4, eq. (2.8)], into H(s;c) we infer

ZM

2

1 (d) pe(d)de p(5)o°
Z 2(d) =2 p2(d)p(d) ¢(9)

C

r<s do<s
2Ar 2)(d6
( )
-3 e =
6<s /d
2+d (52d)
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= spl: (92d(0 ¢ 1)(d) +0(2)C)

d<s
2fd
1 d
Z M de C; C, + o(s Z M >
d<s d<s (,02 ('0
2(d 2d
1
Z” de Gel) | ose)
d<s
Ad
c 2
5° o K(d) ¢
5 Zd@(d) +o(s°)
d<s
fd
0 2 2
5° 1 (d) 1 (d) ) ¢
= — — + o(s
(2 o S ) )
2d 2td
_ & (1+ ( 1_2))+O(sc ) + o(s°)
s p(p

where we employed the first case of Lemma 3.2 in the fourth equation and used
1 - 2d d

g2a(c;c, 1) = 1_2[d (1 + ]:) - % = %d) in the seventh equation. [ |

p

For the following we let

o) =>4 Zu o) =5 3 B oy
r<R Z‘T r<R £Z§|ry

bels) = 30 7 S utb)eo(})

<R i<y
L\r
We note that for y > R, we obtain
1 w(r ,u
grly) = 2SS D jlshion).  (32)
2 <r ¥ (r) or r<R
Lemma 3.4. We have
> &r(m) = yfay) — gr(y) — haly) (3-3)

m<y
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and

hr(y) <log*®y  fory <R

Proof. By definition of Gg(-),
> m = Y z 0. e m) = 3 24
r<R

m<y m<y r<R

Zurm

m<y

m<y €|7“m
_ M ()
_ ;@2(@ ;M(W;y 2 26 ;u
a Ir fm a r
= ; 52(8 ;u(@ﬁ(% - % - Q(%))

L)r

=yfry) — gr(y) — hr(y),
which is (3.3).

It remains to prove (3.4). We have

ha(e) = Y ;“()) S n(te(%) = S uoe(2) o A

2
r<R L)r 1<y r<R ¥ <T)
Z<y Lr
Z 1% pu(r')
2( et
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S
_GHP 2 0a()2) (3.6)

1
while H (1- <—1)2) = 0 for ¢ odd. By inserting this into (3.5) and noting
p R

that y < R by assumption we get

Zu y/2 ) +0(1).

Z’<y/2
21/
Thus employing the result
2 M /
p (m)g(_) <« _1og2 1,
2 om) ) € o)
(m,2m/)=1
cp. [4, Lemma 2.2|, with m’ = 1 shows (3.4). |
Lemma 3.5. Let
3
A 2 Yy L (‘SR(m) 1
So.r(y) == Z Sr(m)m= — ) as well as Ty r(y) == Z m
m<y m>y
We have
yS 1 Y
> @nlm)m? = faly) + g (miny, B) ~ y*haly) + [ 2tha(ti
m<y !
. 7R 3
+ o((min(y, R))?) + O((mm(+>)), (3.7)
So.r(y) < (min(y, R))?, (3.8)
and
Tor(y) <y~ (3.9)
Proof. @ We can prove (3.7) by noting that
> Sr(m)m® =y*(yfr(y) — gr(y) — hr(y))
m<y
y
~ [ 2tesnlt) - gnlt) < ()l (320)
1
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by partial summation using (3.3) of Lemma 3.4. Another summation by parts
over { gives

2 Iny) - /yathR<t>dt:§Z“m S uoe

2
r
1 r<R Y ( ) ¢{<min(y,R)
Lr

and y . "
r
vonty) - [ 2ondr =3 S LTS e,
1 2<Rgp(r>e<'(3
r< <min(y,R)
Lr
so that

1 p(r)
7 Z :U’(€>€3 Z 2
6 {<min(y,R) 'rzglR ¢ (T)
1 > P p(r’)
2 2( ot
£<min(y,R) ¥ (6) r'<R/¢ ¥ (7")
(r',6)=1
Sy (S s )
¢<min(y,R) SOQ(K) r'=1 (p2<r/) >R/l @2(7’/)
(r',6)=1 (' 0)=1
1 PO o~ ) ( 1 MWW)
6 Z 2 Z 2o YOl & Z 2
£{<min(y,R) ¥ (g) (1;’:)1_1 ¥ (T’/) R £<min(y,R) Y (@)
1 ,UQ(E)E:S H 1 1 . 3
=— 1— ———) + O(=(min(y, R))%). (3.11)
2 ( _ 2 ’
2 O Ry (p—1) R

& 1 0/2)?
¥*(0) (r—1) wa(l/2)
and by inserting this into (3.11) and then applying Lemma 3.3 we obtain

S0 Tals) = [ 20 u(t)it = yPon) + [ 2tan(tyd
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2 20002 1 .
:§6 Z s ((2,) + O(E(mln(y, R))s)
C<min(/2,R/2) 2
24’

:%(min(y, R))? + o((min(y, R))?) + O(%(min(y, R))3). (3.12)

Then (3.7) follows by plugging (3.12) into (3.10).

e Now we prove (3.8). By (3.7) we have

Z Spr(m)m® = y;fR(y) — v’ he(y) + /ly 2thg(t)dt + O((min(y, R)*)  (3.13)

m<y
and analogously to the derivation of (3.12) we find on using |o(w)| < 1 that

() e (y/2
©a (V) v

yhr(y) — / ’ 2hp(t)dt =46 Y

1 ¢ <min(y/2,R/2)
o4

N O((min(j[/z, R))S)

< (min(y, R))*. (3.14)

) + o((min(y, R))?)

Moreover, for y < R,

y’ y? p(r) oy p(r)
L haly) -1 = L (fR<y> -y 2 ZM) DI ED WL

2
rSR(p Llr L L)r
>y
o ' pw(r) oy = 1P (0) pu(r') 9
B Vv PV PV
>y TZS‘R >y r'<R/{
r r’0)=1

(3.15)

while fr(y) =1 for y > R. Thus (3.8) follows from inserting this and (3.14) into
(3.13).

e We next prove (3.9). Summation by parts using (3.3) of Lemma 3.4 gives

> an(;m =M > GR(m)+2/yM( > GR(m))%

y<m<M y<m<M y<m<t

=M"*(M fr(M) — gr(M) — hg(M) — yfr(y) + gr(y) + hr(y))

4 2/ (tfr(t) — gr(t) — hr(t) — yfr(y) + gr(y) + hR(y»%a
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from which it follows that

S S [ ule) = n(0) — hn(0) = ulo) + 90(0) + helo)

m>y
fr(Y) /Oo dt  gr(y) /Oo dt  hg(y)
=—"—242 t)— -2 t)—
) " Yy fR()t2+ y? y gR()t3+ y?
o dt
9 / ha(t) -
y
Summing by parts over £ gives

o8y [T G+ 20 [ g

Y y2 ” 13
e A 3 u(e) 3 12(0) 3 u(r')
r<R L (r) >y ¢ >y &P2<€) r'<R/¢ 902(71/)
Lr r’0)=1
<y 2

and analogously using |o(w)| < 1 we can show that

h o dt
R(y) . 2/ hR(t)— < y72.
Yy

yz t3

Thus we can write

3 Sr(m) _ fr(y) Lo(L) (3.16)

m>y

and (3.9) follows from

which follows from (3.15). |

3.2 Lower Bounds for I1(x,T) and Iy(x,T)

We recall the definition of I;(x,T") and Iy(x,T') from Lemma 3.1:

2

1
dt

Li(z,T) =/ ‘Ilu(%)‘fl(— 5 Tit) —/ w2ty
- 1

oo
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and
2

I2(I,T):/ ‘IJU(%)‘A*(ngit)—/ w Py dt.

—00

Here we choose U = (logT)? with B > 1.

From now on we assume R > T

3.2.1 Treatment of I;(x,T)

By [10, p. 46, eq. (7.4)], which holds with no change if we replace &(-) by Gg(-),
we have for the range T < x < T?7¢, that

Uy (0
Li(z,T) 2$Tx2 log R+ I1(x,T) + 2Ry (x, T) — Ry (z,T)

+ O(T2?) (3.17)
with
T 00 2rzv/T N d
Ly (z,T) = 477(2—)3/ ( Z Sr(m)m? — / u2du) Re \I/U(v)—;},
T T/2mx m<2mzv/T 0 v

where Ry(z,T) and R)(z,T) are certain error terms, which we will consider in
Section 3.2. (We note that in [10, eq. (7.4)], Ri(z,T) and R}(z,T') are incorpo-
rated in the single error term O(T'z?).) We continue to show

Ii(z,T) > TT:C? log (%)(1 +o(1)) + 2R (2, T) — Ry (z,T). (3.18)

On substituting y = 27zv/T we can write

I (2, T) = 2T2*(Jy (2, T) + Jo(x, T)) (3.19)
with
z/T
= oyl \dy
Jl([E,T) == \/1 SQ R(y) RGWU(%)E
and
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where S5 g(y) is as in Lemma 3.5. The estimation of Jy(x, T) is quick; from (3.8)
of Lemma 3.5 and (3.1) (c) comes

(/zU/T /xU/T>SQR( ) Re Uy, (iz;)c;y

zU/T d Ux ©
« [T U
z/T Y T «u/T Y

=logU + O(1)
< loglog T (3.20)
Next since R R R
Re Uy (v) = Re ¥y (0) + O(v) = ¥y (0) + O(v) (3.21)

because of (3.1) (b), we have

T, T) = By (0) /lx/Tsz,R( )Z%o( /lx/ 1S r(y >Zy>

T z/T dy
— S. — <1
st <,

which follows from (3.8) of Lemma 3.5.

where

x
Now for — < R
oworT_,

[ (Zonom)ig= X oot 755

m<y m<z/T m
1 1., T
=3 Z 63(”@‘5(;)2 Z Sp(m)m?
m<z/T m<z/T
1
5 (107~ 9n(7) ~ (7))

(A - 2 o @) o)

_ (E)ZhR(E) + /j/T 2thR(t)dt) by (3.3) and (3.7)

T T
3% — %log (%) +O(log*? (%)) by (3.2) and (3.4), (3.22)

so that

Ji(x,T) = —%@U(O) log (%) + o(log (;))
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Inserting this together with (3.20) into (3.19) yields

Ln(e,T) = —TTx{I}U(O) log (=) + (T2 log ()

and (3.18) follows by substituting this into (3.17) and then using (3.1) (a).

3.2.2 Treatment of Iy(z,T)
By [10, p.47, eq. (7.10)] with &(-) instead of &(-),

log R

212

]2(.I,T) Z(I\/U(())T +121(ZL’,T> +2R2<I,T) —Ré(l‘,T) +O(§), (323)

with

or [T Gr(m) " du ~ yT
In(x,T) = p/ ( > 2 —/ @) Re Wy (5—)ydy,
1 y<m<H* Y

where

(3.24)

and Rs(x,T), R)(x,T) are certain error terms, which are incorporated in the

T
single error term O(—;) in [10, eq. (7.10)]. We will consider them in Section 3.2
T

and continue showing

Iy(z,T) > 21332 log (%)(1 +0(1)) + 2Ry (z, T) — Ry(z,T). (3.25)

In order to do this, we write Iy (z,T) as

2T A o~ yT
Ly(z,T) = — Js(x, T) + Jy(z,T) — Tor(H )Re\PU(%)ydy (3.26)
1

with
z/T R yT
Jg(QI,T) = /1 T2,R<y) Re @U(%)ydy
and

Jy(z,T) = /H*T (y)Re\Tf (£)ydy
a(z, o 2,R vig :
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The integral on the right in (3.26) can be estimated as O(1) by using T, p(H*) <

T
(H*)72, ¢cp. (3.9) of Lemma 4.1, and noting that \IIU(Qy ) < 1.
Employlng (3.9) again we obtain

zU/T T
(/ / >T2R Re‘I’U(2 )ydy
zU/T

Wi dy Uz [ d
< [ U

/T Y T «U/T Y
< logU.

Finally we estimate Js;. Referring to (3.21) we can write

~ z/T T z/T )
B ) =F0(0) [ Tuatuds +0( L [ Tatolitan ),
1 1

where

T :E/T )
;/ Tor(y)ly2dy < 1
1

by the estimate Ty r(y) < y~2. Changing the order of integration and summation
yields

z/T GR(’ITL) o GR(m) min(m,z/T)
/1 (Z o )ydy—z o /1 ydy

B T\ 2 Gr(m
- < /TgR(mH%(?) ;T zlm)
(B + o) - ra(F)) by e
(5 +00) by (316
__ ;llog (7) +0(log?® (3)) by (3.2) and (3.4),

so that
J3(x,T) = —%\TJU(O) log (%) + o(log (%))

Now (3.25) follows from plugging this into (3.23) and using (3.1) (a).
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3.3 Treatment of the error terms and proof of
Theorem 9

3.3.1 The error terms R;(x,T), R(x,T)

Throughout this section we assume 7' < x < T27¢.

e We first examine R;(z,T). Let R = z¥ with 0 < v < 1/2. In [10, p.42,
eq. (6.8)], the error R} (z, T) is directly estimated by 237" +x2t?. We will estimate
R\ (x,T) later more precisely. Thus it follows from [10, eq. (6.8)] that we can
estimate Ry(x,T) as

r—Fk

Ri(z,T) < (%3 +7T Z K(u, k)d,Gr(u, k)>x5, (3.27)

kT

where d,G r(u, k) denotes the Lebesgue-Stieltjes measure associated with Gg(u, k),

_ z __ mil—e
H_T+1, =T Ggr(v,k)= ;wwk
where K (u, k) is a smooth function with
0
K(u,k) <u  and —K(u, k) < T° for k <u/r, (3.28)

ou
cp. |10, p. 43, eq. (6.10)]. Assuming Hypothesis M we have the estimate

% Ul—i—a
; |E(/U;7n? a)‘z << T1/2 Y (329)

cp. Lemma 1.1 of Chapter 1, and employing this instead of Hooley’s GRH-result

> max |E(v;r, a)|? < u(log(2u))’
ar)

into the deduction of [10, p. 43, eq. (6.11)] we obtain

ZGRUk ZZ]Evrk

k<y r<R k<y
= Z Z |E(v;r, k)| + O(Zlogr)
r<R k<y r<R
(r,k)=1
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1/2
<<Zy1/2( Z ]E(v;r,k)|2> + Rlog R

r<R k<y
(rk)=1

1/2
<y1/22 (1+= 1/2(2 |Evra2> + Rlog R

r<R
1/24¢
< yl/QZ 1/22) - + Rlog R

r<R

< <y1/2R3/4 +yR1/4)v1/2+8 +RlOgR

and therefore

z—k
Ty K (u, k)d,Gr(u, k) <<xT( > Gr(z—k, k))
k<H kT k<H
z—k
+T1+E(/ G u,kzdu)
kT Z R( )

k<H
<<x3/2+eT1+e(H1/2R3/4 + HR1/4) + RaxTHe
KRV 4 RVAS/2HE | T4 (3.30)

using summation by parts and (3.28) to derive the first inequality, cp. [10, p. 43,
eq. (6.12)]. By inserting (3.30) into (3.27) we have

Ri(z,T) < = = + R¥Ag2TV/2e L RYAgS/HHe 4 Ryte (3.31)

and we see that Ry(z,T) < Tz? provided this holds for every summand in
(3.31), which in turn is the case, if
T =z

R<<min(T2/3 € ﬁ Ta)

%375 for x < T3, (3.32)

e Next we turn to R} (z,7T), which can be treated similarly. Defining G'5(v, k) by

Gr(v k) ==Y Ap(n)Ap(n+ k) — &p(k)v, (3.33)
n<v
we have
.1'3 z—k
Ri(e,T) < 5+ T > < K (u, k)d, Gy (u, k))xa (3.34)
E<H kT

which can be derived in the same way as (3.27), where 7 and H are as in (3.27).
Now since

Z G (v, k) < y 2R + y*f, (3.35)

k<y
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cp. (1.25) of Lemma 1.12, we have

z—k
Ty K (u, k)d Gy (u, k) <<:cT< > Gz —k, k))
k<H kT k<H
—I—T1+€</ ZG’ ukdu)
kT

E<H
3+
< R2pHY2T Ve o e

ZL‘3+E

< R23/21/2+e | T

so that
3+e

Ri(x,T) < “TT + R/

by (3.34), and it follows that this is bounded by O(Tz?) if R < (T'z)Y/*~¢. Thus
in view of (3.32) we obtain

2R (z,T) — R, (z,T) < Ta?
provided

R < min(T?37¢ (Tx)Y4%) = (Tx)Y*=  for x < T°/3. (3.36)

Now by [10, eq. (6.16)], we can estimate Ry(x,T) as

Rg(m,T)<<( +T Z/

k<H* max(z,kT)

J(u, k)d,Gr(u, k:)) (3.37)

where Gr(v, k) is as before, 7 = T'¢, H* is given by (3.24) and J(u, k) is a
smooth function satisfying

d
J(u, k) < u™? and a—J(u, k) <u*T¢ for k <u/r, (3.38)
u
cp. [10, p. 44, eq. (6.17)]. (We note that in [10, eq. (6.16)], R, (z,T) is directly esti-
mated by 2717+ 22*~2). Now on using summation by parts as well as employing
(3.29) in the deduction of [10, eq. (6.20)], one has

= T N2 5374 L p1/4y 1/24¢
Ty T, k)duGr(u, k) < —=((7) "R + ZRVY)w
k<H* max(z,kT)
T1/2+a

3/4 4 1/4
< = —R x3/2R
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and thus Loy
Y Sy
R2($,T)<<Fx+ $5/2 R +WR
from (3.37), and similar to the case of Ry, we see that Ry(x,T) < Ta?, if R

satisfies condition (3.32).

e Similarly for R(z,T) we have

Ry(z,T) < L7 > /Oo J(u, k)dyGlr(u, k) |25 < = +Tl/2+€R2
o Tz b+ Y max(z,kt) 7 B Tl x>/
by employing (3.35) and we see that
Ry(x,T) < T/2% if R< (Tx)Y/*=.

After all we have

T
2Ry (2, T) — Ry(2,T) < —, if R< (Tx)"/** (3.39)

Xz

in the range x < T°/37¢, see also eq. (3.36).

3.3.2 Proof of Theorem 9

By plugging (3.36) with the choice R = (Tx)'/4~¢ into (3.18) we obtain

T2 T5/4—¢
L(z,T) > (1+0(1)) ; log (—5—=) for T << T
xT €

and by using (3.39) with R = (Tx)"/4~¢ in (3.25) we obtain

T5/4—s

W) for T S r <L T5/3—€‘
T €

T
Inserting these inequalities into Lemma 3.1 gives the lower bound

T5/4—5 T(lOg T)Q 1+e
x3/475> + O( U ) T )

m
in the range T < = < T°37%. Now since z'*¢/T < T for x < T?7¢ and
T(logT)?/U = T(logT)* B <« T for B > 2, we can rewrite (3.40) as

T

F(z,T) > Z(1 + o(1)) log ( +0O( (3.40)

T T5/4—s
o T 53
—1 a
(%lOgT) F(T ,T)ZZ—ZOK—E,
respectively. The assertion of the Theorem now follows from this and the obser-
vation that F(T*,T) = F(T-*,T). |
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4 A further inequality for ¥ (n;h)

In [14], Goldston and Yildirim asymptotically evaluated moments of the form
> wnmih)w(nih), > Wkn:h),
n~N n~N

which enabled them to prove inequalities for ¢ (n; h) — h without absolute value,
more precisely they proved

Theorem (|14, Theorem 3|). Assume GRH. Then for any arbitrary small but
fized n > 0 and for sufficiently large N with (log N)** < h < NY7=¢ and writing
h = N, there exist ny,ny € [N + 1,2N] such that

V(mih) —h > (33T~ 5a —n)(hlog N)*
Y(naih) —h < (= %M— 1) (hlog N)'/2.

In this Chapter we prove the following

Theorem 10. Let € > 0 and § € (0,1). Then there exists some natural number
No(e,8) such that for N > Ny and 261 < h < NY9¢ there exists an integer
ng € [N + 1,2N] with

b(no:h) > (1= d)h.

For the following we set
p2(r)
o(r)’

L.(R):= Z

r<R
p(r)>z

where z > 1 and p(r) denotes the smallest prime factor of r. We define

Mol i= 3 ST du(d), Sl = Xa) < £R)
dlr,n

r<R (’D(T
p(r)>z

and note that by definition of \(n) and L£,(R) we can write
2
—~ r

r<R d|r,n
p(r)>z d>1
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Finally for ¢ > 0 we let

M= M8, N, h, A Ag) = ((nsh) — ( ( > e (m )

n~N n<m<n-+h

The distinction between 5\;(71) and Ny(n), i.e. the case when d = 1 or not, turns
out to be a crucial, see the proof of Lemma 4.3 below.

To derive Theorem 10, we need to show that M is positive for N sufficiently
large, thus the proof of Theorem 10 relies upon deriving a lower bound for the
expression M.

We remark that we cannot show that M is positive if we replace ¥ (n;h) by

m(n;h) and h with w(h): One can show that by the Prime Number Theorem, the
2

part of M involving 7(h) contributes terms of order Toa whereas the part of

0g
2

log N’
We continue with some preparations needed for the proof.

M involving 7(n; h) is of order

4.1 Preparatory Lemmas

The first Lemma is essentially shown in [14, p. 219-220]; we include the proof for
completeness.

Lemma 4.1. For positive and squarefree integers by, by we have

applar jas il as bl b2 )
2 l;(([ai,al:]() - Zibl)) Zi@i II »*-p-Dr-0. (4.1)

a1|by,a2|b2 plb1,b2

Proof. We set ¢ := (a1, aq) and d}| := a1/, a}y := as/0. Then we can write

Y, w3 sy A S

SO([ala a?

ax|by,az|bz 8|b1,b2 al|by /s ab|ba/8
(ay,a})=1
where
az/(as) p (=1) (1)
> Sy - H 0= =11 ;= =11 = Il a-»
‘12|b2/‘S 2 plb2/d plb2/d plb2/d pla),b2/é
(ah,a})=1 play pla)
M(bQ/(S) / /
= ay,ba/0)p(ay, by/o
(,D(bg/(s)'u( 1 2/ )30( 1 2/)
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= p(0)p(d)u(ar, ba/0)p(ar, ba/0), (4.3)

the last equality holding since (by/d,0) = 1, which follows from the fact that bo
is squarefree. We plug (4.3) into (4.2) obtaining

S ledenlen) 10D 5 gy S S ot b,

a1|by,az|b2

(4.4)
where
ayplay) : p
S Nt b f0)an /) = T (1= Lo/ ) o(p. b))
’ Sp(al) P — 1
ay|b1/é plb1/d
p —1
- I asnIla--2)- I a+n IS0 T1 a-0)
plb1/6,b2 /5 plb1/6 plb1/6,b2/5 plb1 /6 plb1/6,b2/5
ptba /s
pi(b1/0) p1(b1) ppo (ba, bo)
== po(b1/d,bs/6) = ,
(b)) = T30 6)
the last equality following since by is squarefree, and so (4.4) reads
b b 5)6*
Z arpi(ar)asp(as) _ (1) p 2>u900(51,b2) Z 1(0)
wiiy,  $llaa) p(b1) (b2) siora, 700
with
5 52 p2
ugo(bn ) 3 MO T - pa+n (- -22) = T] 0*—p- D1,
a(9) p+1
8|b1,b2 p|b1,b2 plb1,b2
which shows (4.1). |

Lemma 4.2. For the functions defined in (x) on p.73 the following holds: For
R < N, we have

> Xp(n) = N + O(R) (4.5)
and for 1 < R < V/N we haZ;N
Y (Ni(n))* = NL.(R) + O(R?) (4.6)
as well as :N
Y Ar (n) = N(LI(R) — L(R)) + O(R?). (4.7)

n~N
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Proof. First (4.5) and (4.6) can be proven like (1.19) of Lemma 1.4 in Chapter
1, the only difference being the additional assumption p(r) > z on the outer sum
over r, while the inner sum over d remains unchanged.

(4.7) follows immediately from (4.6) and (4.5) by using /\R( ) = Np(n) — L.(R)
and multiplying out. [

Lemma 4.3. For 1 <h,R< N and 1< z < R? we have

S b8 3 S e+ k) =N ez - .y - MY exm) - )

k<h n~N 2
FOURN) + O (5 + NY° 4 V) V°)
(4.8)

and the same lower bound applies for

ST h—k) S Am)Ng (0 + k).

k<h n~N
The error terms are smaller than the main terms provided that hR* < N1,

Proof. We may restrict ourselves to showing (4.8), see also the proof of Lemma
1.12 in Chapter 1. By definition of Ag(n) we have

S mAn k= 3y L0 52 du(den(e) - A+

n~N r,r’'<R d\’r‘e\r n~N
p(f‘),p(r’)>z d,e>1 d,eln
(r) 2N+k
= > E dp(d)ep(e) Y A(m),  (4.9)
rr'<R d\re\r m=N+k+1
p(r‘),p(r’)>z de>1 m=kmod d

m=k mod e

where the simultaneous congruences occurring in the innermost sum of (4.9) are
always compatible and determine a unique residue class jmod([d, €]), where j
depends on k, d, e. Thus on writing

2N+k N
> Am)= + BN +k;[d, €], j) — E(N + k; [d, ], §)
AT o([d, e])
m=j mod|[d,e]
N

- o([d, €]) + E(2N;[d,e],j) — E(N;[d, €], j) + O(|k|log N)
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we see that

S X (m)A(n + k) :S+5+O<IkllogN(ZM)2>

=S+ &+ O(Jk|R*log N) by Lemma 1.8 (b)  (4.10)

i 20r) o did)ente)
w2 (r wu(d)ep(e
S:=N Z Z
rr'<R (,0(7') d|r.e|r ([d7 6])
p(r),p(r')>z d,e>1
and

2
u r . .
rr' <R d|r.e|r’
p(T)up(T’)>Z d,e>1

and we continue investigating S and &.

1.1 Estimation of £.

We have

de el f) — 12 ( :“
E K Z W|E(2N’[d7 ]7]) E Z Z

d,e<R r1<R/d ( 7‘2<R/€
p(d).p(e)>= (r1,d)= (r1.6)=1
p(r1)>z p(re)>z

<R Y (IE@N;[d el j)| + |E(N;[d,e], )
d,e<R
p(d),p(e)>z

<R ) (max |[E@2N;D,a)|+ max [E(N;D,a)|) > 1

amod D amod D
1<D<R? d,e<R
p(D)>z [d,e]=D
<R ) (D) max [E(2N; D, a)| + max |E(N;D,a)])
2<D<R2 ame
< N <;R2(a1g11iixD|E(2N D,a)| + max |E(N;D,a)|)

the second last estimate following from the fact that the number of ways of writing
D as lem of two integers d, e is bounded by 72(D), since then d and e must be
divisors of D and the last estimate following from 7(D) < D <« R* < N°.

Next we utilize the estimate

N
max [E(N; D, a)| < (- + N%6 4+ R*V/N)(log N)*,

amod D
2
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which follows from the Basic Mean Value Theorem and summation by parts,
leading to

N
£< (= + N%% 4 R%V/N)N®. (4.11)

1.2 Evaluation of S.

We can decompose S into

S§=38 —-285+8;

with

2(r) (0’ du(d)eu(e

S=N Y () p*( )Z M()M())’
rr’'<R
p(r),p(r')>z elr

_ () () < dild)en(e)
S=N 2 N0 e 2 plidd)

!

rr'<R

p(r),p(r')>z elr
d=1

and S3 = NL?(R), the latter sum corresponding to the case when d = e = 1.

Now we have

Sp= NL(R) 3 3= ée)) = NL.(R) Y 52((7:,))

r'<R e|r’ r"<R
p(r')>z p(r')>z
2 7,/
= NL.(R)+ O (NL‘Z(R) “2( />)
1<r'<R L (7’ )
p(r')>z

and therefore

z

Sy = NL.(R) + O

We turn to the evaluation of S;. By (4.1) of Lemma 4.1, we have

r r’
Si=N > ulr) wlr) [[P-p-Dp-1)
rr’'<R
p(r),p(r')>z
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Z 77 1|—[ P—p—1) Z p(s1) p(s2)

n<R 77 s1,52<R/n
p(n)>z (s1,82)=(s1,m)=(s2,m)=1
p(s1),p(52)>2

and with the substitution s = s;s5 the inner double sum can be combined to a
single sum

> “8)—1+ > 52(2)_1+O< Mz>:1+0(é)

s<(R/n)? 1<s<(R/n)?
(s,;m)=1 (s,m)=1
p(s)>= p(s)>z
showing

S=NY" MH@? —p—1)+ 0(% 3 “2<”)772)

3 3
e P ) o = ¢
p\n 4
Nlog R
=N Z ) H —p—1)+0(—=T). (4.14)

3(n)

p(n)>z

(4.13) and (4. 14) then give

SNZ

r<R p|'r
(r)>z

Nlog R

z

2—p—1)—2NL.(R)+ NLY(R) + O(

)

Nlog R
z

> N ; Zzg; [T — 1) —2NL.(R) + NLA(R) + O(
p(r)>z

= NL2(R) — NL.(R) + O(

)

plr

Nlog R

z

), (4.15)

using H —1)? ) for r squarefree in the last step.

plr

On inserting (4.15) and (4.11) into (4.10) we obtain

— N
Sk ()A(n+k) > NL2(R) = NL(R)+ (= + N0+ RVN) N+ O( k| F2N°),
n~N

from which it follows that

S h=k)) M (WA + k) z(hQN — h—N) (L2(R) — L.(R)) + O(h*R?N?)

2 2
k<h n~N

+ O(hQ(g + N6+ R2VN)N¢).

This proves Lemma 4.3. [ |
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4.2 Proof of Theorem 10

Throughout the proof we assume 1 < hR? < N'7¢ and 1 < z < R, so that we
can make use of Lemmas 4.2 and 4.3. The assumption z < R also ensures that
L.(R) > 1.

By Lemma 1.4 of Chapter 1, we have

vt S ) ) =h S AR () + 00— 8 3 e (a4 )

n~N n<m<n+h n~N k<h n~N
+Y (h—k) > An) Mr (n+ k) + O(RPN°),
k<h n~N
(4.16)
where L L
> AR (n) =) logprg (p) =0, (4.17)
n~N p~N
since /\R( ) = Z Zd = 0 for p > R. Now it follows from Lemma
r<R d\rp
p(r )>Z d>1
4.3 that
—~9 —~2
> (h=k) Y (Ar (M)A + k) + An)Ag (n+k))
k<h n~N
>h*N(LI(R) — L:(R)) — hN(LL(R) — Lo(R))) + O(h*R*N7)
N
+O(R*(— + N*° + RPVN)N?) (4.18)

and by applying (4.17) and (4.18) to (4.16) we obtain

S (n:h) ( 3 i?f<m>) SI2N(EA(R) — £.(R)) — hN(C2(R) — £.(R))
) + O(h*R*N?)
+O(h2(§+N5/6+R2\/N)N€). (4.19)

On the other hand we have

(X Wm)- X W ¥ oo

n~N >n<m<n-+h N<m<2N+h m—h<n<m
— 1S An (m) + O(h2N)
m~N
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= hN(L2(R) — L.(R)) + O(R*(R* + N¢))  (4.20)
applying (4.7) of Lemma 4.2 in the last step. Then (4.19) and (4.20) lead to

M=S st~ -om( X A'm)

n~N n<m<n-+h

>(0h*N — hN)(L2(R) — L.(R)) + O(h* R*N*)
+ O(hQ(g + N*% 4+ R*V/N)N?)
> hN(L2(R) — L.(R)) + O(h*R*N?)
+ O(h2(g + N6+ R®VN)N?)  ifh>

STl

where every occurring error term is bounded by o(hN), if the conditions

Nl/?—a Nl/4—a N1/4—5

1/6—¢ :
h < NY6=¢ R < min ( ) T e

for h < NYV%

and hN® < z (< R) are satisfied, which are all compatible in the range 2/6 <
h < N'/6=¢ Hence we established

M > hN(LER) — L.(R)) + o(hN)

and since £.(R) > 1 we can conclude that there exists some Ny(g,d) such that
M is positive for N > N. [ |
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5 An alternate result for the
second moment of primes over
an arithmetic progression

We let
By h,r) = max |B(y +hir,a) = B(yir,a)],

and for (a,r) =1and 1 <r < h <z we let

v h
Hashora)i= [ (6l +hsra) = vl ) - —=)dy.
0 o(r)
Here Ozliik (see [13, Theorem B]) proved unconditionally that
1 hx
I(x;h,r,a) > (= —¢)——
( > G )90(7“)

for any ¢ > 0 and for 1 < r < (logz)'™° and h < (logz)¢ uniformly in r < h,
where §, ¢ > 0. In this Chapter we shall prove the following

log x

Theorem 11. Let k, ¢ > 0 with k < 1/2 — . Then for infinitely many x,

the following holds true: For every h € [1,2"/5] U [x%, 2'/%27¢] there exists some
ro = 1o(h,k,€) < h and a constant C = C(g) > 0, such that

Iwshyro,a) > C(e)

log x.
(ro)

Moreover, we can state the following Corollary, which follows immediately from
the Theorem.

Corollary 4. Let k, € be as in the Theorem. Then for infinitely many xr we
have the following: For every h € [1,2%/5] U [%, 2Y/27¢] there exists some 1y =
ro(h,k,€) < h and a constant C = C(e) > 0, such that
max E'(y; h,ro) > C(e)( )1/2.
y<z gO(To)

log x
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In connection with this result it is surmised that, for ¢ > 0,

E'(z,h;q) <. :I:‘f(g)l/2

for all 1 < ¢ < h < x. The analogue conjecture in the case h = x is precisely
Montgomery’s Conjecture stated in Chapter 1.

5.1 Auxiliary Results

To prove the above Theorem, we shall utilize the following auxiliary results. The
first Lemma is a special case of Lemma 1.4 in Chapter 1, whose proof we include
for completeness.

Lemma 5.1. For every h < x we have

/om ( 2 “")dy = (h+0(1)) Y _an+O(|lal[h*). (5.1)

y<n<y+h n<w

Proof. By Lemma 1.4 of Chapter 1 we have

(h+0(1))/0$< > an>dy:/0$( > an>( > 1)dy

y<n<y+h y<n<y+h y<m<y+h
=0 an+ > (b= a,+O([allh?)
n<z 0<|k|<h n<x
=hY an+ (B> —h+0(1)) a,+ O(|al|h?)
n<lx n<lx
and we obtain (5.1) on dividing both sides by h + O(1). |

Lemma 5.2. Let h, R be real numbers with 1 < h < R < x. Then for any real
number Ry with 1 < Ry < R we have

v R
|ty mydy =hatos () + 1

+O( h*logx r) max |E(x;r a )
(1108 3 olo) e B
h2
+0 ((Fx + B0 4 hQR\/E):U‘E) + O(h*29).
0
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Proof. By (1.51) on p. 27, we have
Léxﬂiyﬂw¢3@nhﬁw
=h Y Am)Ar(n) + Y (h—k) > (An)Ar(n+ k) + Ap(n)A(n + k)) + O(h*27),

n<lz k<h n<lx

where
Z A(n =xzlog R+ O(x)
n<x

by Lemma 1.10 (A) on p.12. Moreover, we have

Zh kZ)\R An+k)=%+&

k<h nlx
with 12
¥ = - - halogh + O(hz) + O(h*x°)

E=> (h—k) > du(d)E(z;d,k) Z”Q(:;

k<h d<R <R
(d,k)=1 dlr

and

cp. for example (2.11) and (2.12) on p.35. Now by arguing as in the proof of
Proposition 1 on p.31, we can write £ as

E=T+T, (5.2)
with
: pA(r)
T =) (h—k) Z Z ) . Z Oy+)
k<h d<R r<R Y d*|d x(d*)
dlr d*<Ry
and
: p(d) N~ 1 (r) . .
=S -0y )Z o > (X"
k<h d<R r<R d*ld  x(d*)
d|r Ro<d*<R
By (2.6) on p.33 with B = 1, we have
T < hi(logz)’ 3, (d) max |E(w;d",a) (5.3)
d*<Ro ¢

and T can be estimated like 73 in the proof of Proposition 1 on p.31 with Ry
instead of h? as

h2
T, < (R + k226 + h?Ry/7)a". (5.4)
0

Since the same applies to the double sum Z(h— k) Z A(n)Ar(n+k), this shows
k<h n<lx
the Lemma.
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5.2 Proof of Theorem 11

Given any h < '/27¢ we let 79 = ro(h) € N with

I(x;h,1o,a) = max I(x;h,r a)

and distinguish two cases.
e Case 1

1/2—8]

For every h € [z",x we have

hx
¢(ro)

Then the assertion of the Theorem holds true.

I(x;h,ro,a) >, log z, x> xo(€).

o Case 2

There exists some hg € [2%, £'/27¢], such that for every C = C(g) > 0 we have

hgil?
(o)

I(z; h,ro,a) < Cle) log = for infinitely many x. (5.5)

Starting from (5.5), we now show in 5.1.2-5.1.6 that this implies I(z;h) >,
halog  for every 1 < h < "/6=¢ for infinitely many x, which shows the Theorem
with ro = 1.

We have @(ro)I(x; ho,70,a) < C(e)hxlogz and therefore, since I(z;h,r a) <
I(x; h,ro,a) by definition of rq, it follows that

I(z; hg,r,a) < C(e)hxlogx uniformly in r < hg, for infinitely many x. (5.6)

5.2.1 Estimation of E(x;r,a)
First we can infer from (5.1) of Lemma 5.1 with the choice

A(m), if m =amodr,
Ay, =
0, otherwise,

that
/O > A(n)>dy = (ho + O(1))d(x;7,a) + O(h2log ),

y<n<y-+hg
n=amodr
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implying

/< > A >)d3/_(ho+0< NE(z;7,a) + O(h2log ),

y<n<y+ho
n=amodr

which on using the triangle inequality as well as Cauchy’s inequality gives

Z A(n )'dy+h210ga:’

y<n<y+ho
n=amodr

< Y21(x; ho,r, a)/? + hilog x

(ho + O(1))|E(x;r,a)| < /Ox

h
(o

< 2'%(holog z)Y? + h2log . (5.7)

I) log z)"? + hilog x by (5.5)

Thus we see that

max |E(z;7,a)| <. 217 log"? 2 4+ 2% log =

(a,r)=

< 21702 Jogh? (5.8)

on dividing both sides (5.7) by ho + O(1) and writing hy = 2

5.2.2 A lower bound for [ 4?(y; h)dy

We first recall
/ Gy h)dy > 2 / (s DYor(y; h)dy — / Byhdy  (5.9)
0 0 0

and since

g R
/ W(y; h)Yr(y; h)dy =halog (3-) +h*z + O <h2 logz > o(r) [fnax | Bz, a)l)
0 r<Ro arI=

+O((fj12 + B2 + W’ Ry/x)x >+O(h3x5) (5.10)

for any 1 < Ry < R by Lemma 5.2 and

=h Y Ap(n)+2> (h—k)Ap(n)Ag(n+ k) + O(h’z°) by Lemma 1.4

n<lz k<h
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=hx log (%) + W2z + O(R*2R2%2°) + O(h3x%), (5.11)

using Lemma 1.10 (B) on p.12 and Lemma 1.11 on p.14 in the last step, we
obtain the lower bound

/ Y (y; h)dy >hz log (%) + h’x + O(h2 log x Z o(r) max |E(z;m, a)|)
0 Z

"<Ro (a;r)

h2
+ OB s RBP4 1007 (52)
0

for some 1 < Ry < R by substituting (5.10) as well as (5.11) into (5.9).

5.2.3 The appropriate choice of R and R,

As for the first error term of (5.12), we may use (5.8) to obtain the estimate

h?log © Z o(r) (max |E(z;7,a)| < h*R2x' =20/ 10g®/? 1,

a,r)=1
r<Ro

which by (5.12) leads us to the inequality

/ V*(y; h)dy > halog (%) + b’z + F, (5.13)
0

where F can be estimated as

h2
F < h*Rgz' = log” z + (?x + h22 + hER/x)a® + WP R 4 B2t (5.14)
0

In the next step we want to choose R resp. Ry in an appropriate range to ensure
F = O(hx), which especially holds true if every single term on the RHS of (5.14)
is bounded by O(hz).

2,..14€
Here the conditions h>R2z'~*/?(log z)? < hx and < hz imply
0
A $a0/4
h R, — 5.15
T <K 0 < h1/2 lOg ma ( )
whereas the conditions h?Rz/**¢ <« ha and h*?R%*1® < hx require that
. xl/Q—s xl/?—e .1'1/2_6
R<<m1n< — (T >: — (5.16)
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5.2.4 A possible range for h

First of all (5.15) implies i < £°/°~¢ and moreover the condition h?z5/0+¢ < hx
to keep F = O(hz), cp. (5.14), implies h < /7%, so that we obtain the range

1 < h < z/67¢ (5.17)

Altogether, by putting (5.16) into (5.13) and choosing a suitable R, satisfying
(5.15), we can establish the lower bound

T 1/2—¢
/o V*(y; h)dy > haxlog (x 72 )+ h*z + O(hz), (5.18)
provided that h satisfies (5.17).
5.2.5 End of proof
By squaring out,
Hash) = [ i)y =20 [ vy + b (5.19)
0 0

and since
/$¢(y; h)dy = hi)(x)+O(x+h?log x) = ha+O(z+h|y(z)—z|+h*logz), (5.20)
0

which follows from (5.1) of Lemma 5.1 and the estimate ¢ (z) < x, it remains
to control the error term |¢)(x) — z|, which also determines a possible range for
h. In order to do this, we first observe that (5.1) of Lemma 5.1 with a,, = A(n)
together with the estimate ¢ (z) < x imply

(ho + O()(Wh(x) — x) = > ((n; ho) = ho) + Ol + hi log )

= "(@(n: ho) — ho) + O(x).
Next we have
Z(w(n; ho) — ho)? < C(e)horloga (5.21)

n<x

from our assumption (5.6) and hence

(ho + O(M)e(x) — x| <> [1b(n; ho) — hol + O(x)

n<zx
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< \/5( > (@(n; ho) — h0)2> " +O(x)

n<x
<L xy/hologx (5.22)

using the triangle inequality and Cauchy’s inequality, so we obtain

[ (z) — 2] < \/ih_o\/ng

on dividing both sides of (5.22) by ho + O(1). Thus we see
/ U(y; h)dy = ho(z) + Oz + h*log z) = ha + O(x)
0

by inserting (5.22) into (5.20). Using this as well as (5.18) in (5.19), we obtain

1/2—¢

I(z;h) > hxlog ( ) 4+ O(hz),

2
which establishes a nontrivial lower bound for I(z; k) if
1<h K min(xao/f‘*‘f,xl/‘lfs) Y
by (5.17). In particular we have
I(z;h) > C(e)hxloga for 1 < h < x"/6-¢

for a constant C'(¢) > 0, which shows the Theorem. |
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