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Abstract

Biomedical imaging techniques allow to assess the structure or function of living organ-
isms in a non-invasive way. In recent years, they established various important new
diagnostic and therapeutic approaches in clinical applications and became the key tool
in many scientific studies. One prominent example is the understanding of function and
pathology of the human brain on the macroscopic level.
Besides innovations in the instrumentation, the development of new and improved
methods for processing and analysis of the measured data has become a vital field of
research. Building on traditional signal processing, this area nowadays also comprises
mathematical modeling, numerical simulation and inverse problems. The latter describes
the reconstruction of quantities of interest from measured data and a given generative
model. Unfortunately, most inverse problems are ill-posed, which means that a robust
and reliable reconstruction is not possible unless additional a-priori information on the
quantity of interest is incorporated into the solution method. Bayesian inversion is a
mathematical methodology to formulate and employ a-priori information in computa-
tional schemes to solve the inverse problem.
This thesis develops a recent overview on Bayesian inversion and exemplifies the pre-
sented concepts and algorithms in various numerical studies including challenging
biomedical imaging applications with experimental data. A particular focus is on using
sparsity as a-priori information within the Bayesian framework. The back-and-forth
between developments in theory, algorithms and their translation into real imaging
applications was the guiding motivation behind the work for the thesis.



Key contributions

• Conceptual aspects of Bayesian inversion: The comparison of Bayesian inversion
to other approaches to solve the inverse problem such as variational regularization
and compressed sensing is an important aspect of this thesis. This entails the
comparison between different estimation methods in Bayesian inference. For this,
a unique combination of various computed examples and new, ground-breaking
theoretical results are presented. Another focus is on the different ways in which
sparsity is incorporated into Bayesian inversion and its implications.

• Development of fast algorithms for Bayesian inversion: Markov chain Monte Carlo
(MCMC) methods are required to solve various computational tasks in Bayesian
inversion. As common MCMC schemes are not applicable in high-dimensional
settings, it was not possible to compute and evaluate several Bayesian inversion
techniques in these scenarios so far. In this thesis, fast MCMC methods are
developed that allow to perform such computations even in very high-dimensional
problems. The results not only initiated the theoretical developments mentioned
in the previous point but also challenge common beliefs about the applicability of
Bayesian inversion in high-dimensional scenarios in general.

• Application of Bayesian inversion to experimental data: Reconstructing the brain-
activity-related ion currents by measuring the induced electromagnetic fields
outside the skull (EEG/MEG source reconstruction) constitutes a challenging,
severely ill-posed inverse problem. In addition, its solution requires the usage of
sophisticated preprocessing, modeling and simulation techniques. Hierarchical
Bayesian inversion as one way to incorporate sparsity in the Bayesian framework
is examined for EEG/MEG source reconstruction of experimental data. As a
second application, a computed tomography (CT) scenario is examined. Bayesian
inversion relying on the MCMC techniques mentioned in the previous point is
developed for total variation and Besov space priors and applied to analyze a
specific experimental data set.
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1
INTRODUCTION

1.1. Biomedical Imaging

Background Biomedical imaging techniques try to map structure or function of living
organisms to image-like data formats in a non-invasive way. Commonly, “non-invasive”
in this context is understood in the sense that no solid instrumentation is introduced
into the organism. Biomedical imaging techniques established various important new
diagnostic and therapeutic approaches in clinical applications and became the key tool
in many scientific studies. One prominent example is the understanding of function
and pathology of the human brain on the macroscopic level: Neuroimaging allows

(a) (b)

Figure 1.1.: (a) Wilhelm Röntgen discovered X-rays in 1885. The photography
shows an X-ray examination of a deformed hand published shortly after in Nouvelle
iconographie de la Salpétrière (Tome 9; plaque XXI). (b) Brain regions of activation
are visualized by a statistical extraction of the BOLD signal (yellow-red scale) on the
background of an averaged structural T1-MRI image (grey scale). Source for both
images: Wikimedia Commons.
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neuroscientists to observe far more direct correlates of brain function than previously
used measures such as behavioral experiments or lesion studies.
A classical example of an imaging technique is given by radiography, i.e., the use of
X-rays to expose the anatomical structure of the body’s tissues: Density and compo-
sition of the different tissues determine how much of a beam of X-rays transmitted
through the body is absorbed; see Figure 1.1a. Functional imaging techniques often
target correlates of the process they want to expose. A prominent example is the use of
functional magnetic resonance imaging (fMRI ) to image brain activity: Active neurons
consume oxygen at a higher rate than inactive ones, causing the body to adjust its
blood flow quickly (hemodynamic response). The difference in magnetic susceptibility
of oxygen-rich and oxygen-poor blood (BOLD-contrast) can be detected using magnetic
resonance imaging (MRI ) technology; see Figure 1.1b. In this example, the BOLD
signal is used as an indirect marker of the targeted neuronal activity.
The discovery of suitable, non-destructive interactions of biological tissues and pro-
cesses with physical quantities such that the interaction exposes desired, measurable
information provides the physical basis for imaging techniques. However, in contrast
to a single X-ray projection (Figure 1.1a), the measured information often does not
directly allow for human interpretation. Therefore, the development of modern imaging
techniques crucially relied on the increasing availability and power of computers in the
1960’s. Computed tomography (CT ) refers to techniques that assemble single projection
measurements to a tomographic image by the use of computational algorithms. A
prominent example is the use of X-ray projections from multiple directions to produce
3D anatomical images (X-ray CT ; see Figure 1.2). In general, all modern imaging
techniques rely on computational algorithms to process and decode the measured in-
formation to reconstruct the quantities of interest in an image-like data format. The
development of new and improved methods for these tasks has become a vital field of
research. Building on traditional signal processing, this area nowadays also comprises
mathematical modeling, numerical simulation and inverse problems. The latter describes
the reconstruction of the quantities of interest from the measured data and a given
generative model. Unfortunately, most inverse problems are mathematically ill-posed,
which means that a robust and reliable reconstruction is not possible unless additional
a-priori information on the quantity of interest is incorporated into the solution method.
The next section will introduce different inversion methods that formulate and employ
a-priori information in computational schemes to solve the inverse problem. This thesis
is particularly devoted to the methodology of Bayesian inversion.

EEG and MEG Besides X-ray CT, the main imaging techniques examined in this the-
sis are electroencephalography (EEG) and magnetoencephalography (MEG): Neuronal
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Figure 1.2.: Transversal slices of an X-ray CT of a human head. Source: Wikimedia
Commons.

activity is accompanied by the flow of ionic currents. This current flow induces elec-
tromagnetic fields which propagate through the head’s tissues and can be measured
on the outside. Traditionally, EEG measurements were directly used for diagnostic
or scientific purposes, much like electrocardiography (ECG) is used for the diagnosis
of heart pathology. For these reasons, EEG and MEG are often not considered as
imaging techniques in the original sense. However, a computational reconstruction of
the neuronal activity to produce 3D images that align with other functional imaging
techniques such as fMRI is possible (EEG/MEG source reconstruction). In the past
decades, strong efforts to facilitate the use of EEG and MEG for this purpose were
undertaken (cf. Michel and Murray 2012) and this thesis will present parts of the
corresponding methodology.

Recent trends A single imaging modality is typically limited in two important aspects:
First, it can only resolve certain temporal and spatial scales, and second, only a specific
type of information is delivered (e.g., only anatomical or functional information). Mul-
timodal integration tries to overcome these limitations by either fusing information from
different measurements or by developing simultaneous measurement devices (see Figure
1.3). In this thesis, we will examine the results of combined EEG-MEG source analysis.
Imaging from coupled physics or hybrid imaging follows a different approach: Instead
of simply measuring two distinct imaging modalities at the same time, one imaging
modality is used to probe the quantity of interest while the other is used to measure
this interaction.
Traditional techniques were designed to deliver images to be read and interpreted by
trained radiologists or scientists. This is a qualitative usage of the image information.
Recently, there is an increasing demand for a quantitative usage of image data: Numer-
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Figure 1.3.: Multimodal imaging by simultaneous acquisition of CT (left, gray scale)
and positron emission tomography (PET, middle, inverted gray scale). The right image
shows an overlay produced by a color-coded image fusion of the single modalities.
Source: Wikimedia Commons.

ous images are subject to subsequent, automatized image processing procedures and
the objective, quantitative results are used to statistically test a scientific hypothesis.
An example from neuroimaging is given by dynamic causal modeling (DCM ), a method-
ology to test hypotheses about the modulation of brain networks on the basis of the
reconstructed spatio-temporal brain activity from groups of subjects. Another example
is the automated acquisition and analysis of cell microscopy images to measure the
statistics of dynamical cell processes, e.g., to assess the dynamics of neurotransmitters
in synaptic transmission. On the basis of such procedures, hypotheses about the effects
of diseases or drugs on these dynamics can be tested.
An apparent feature of the above examples is the focus on understanding (and poten-
tially also modeling) dynamical processes. While this seems a natural aim for functional
imaging, techniques traditionally used for imaging static, anatomical structures such
as CT or MRI are also increasingly used and further developed to yield temporal
information. This is especially important for applications where a coupling between
anatomy and function is of interest, e.g., in cardiac imaging.
In the applications sketched above, two potential methodical challenges arise:

1. The shift towards subsequent quantitative, statistical analysis of the reconstructed
images would benefit from a quantification of the uncertainties of the reconstruction
procedure. Bayesian inversion techniques can deliver such measures.

2. The amount of data acquired and processed in these applications may require
compression techniques to be integrated into the reconstruction procedure. We
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will discuss compressed sensing techniques on several occasions throughout this
theses.

1.2. Inverse Problems

In this section, we will formalize the problem of image reconstruction that arises in all
biomedical imaging applications we consider.

Setting The unknown image u†,∞ is represented by an element of an infinite dimensional
function space U over some domain Ω. From now on, “image” is to be understood in
this abstract sense rather than with a correspondence to image-like data. The physical
process by which the imaging modality generates measurable data is described by a
forward operator A : U → X which maps u†,∞ to the infinite dimensional, noise-free
data f †,∞:

f †,∞ = A(u†,∞) (1.1)

Most often, A is given as the solution operator of an underlying PDE model. We
will examine concrete examples in Chapter 2. In practice, only a finite dimensional
projection f † ∈ R

m, f † = Pf †,∞ can be measured, which is often also corrupted by
noise:

f = Noi(f †, ε) = Noi(PA(u†,∞), ε) (1.2)

(a) u†,∞ (b) A(u†,∞)

Figure 1.4.: An illustration of a typical non-uniqueness of inverse problems: (a) u†,∞ is
a 3D object and (b) A(u†,∞) is its 2D shadow given a light source and a wall. While it is
simple to compute the shadow (forward problem), recovering u†,∞ from the 2D projection
is under-determined. This situation is stereotypical for many biomedical imaging
applications which try to reconstruct quantities from lower-dimensional projections.
Images were taken from Hand Shadows To Be Thrown Upon The Wall (Henry Bursill,
1895, available through www.gutenberg.net) and modified.
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Here, ε ∈ Rm denotes a noise variable, which can be modeled as deterministic or
stochastic and Noi : Rm × R

m → R
m is a deterministic noise function.

While the discretization and perturbation of f †,∞ is a natural consequence of the mea-
surement process, discretization or other restrictions imposed on u†,∞ are an intentional
choice we have to make. As such, its consequences with regard to further assumptions
on u†,∞ and the concrete imaging application have to be considered. We will return to
this issue in forthcoming sections and assume for now that a computational model,

f = Noi(A(u†), ε), (1.3)

was chosen, where u† ∈ R
n represents a discretization of u†,∞ and A : Rn → R

m

subsumes discretization and projection of A. A specific but often encountered scenario
is to assume that A is linear and the noise function is a simple addition:

f = Au† + ε (1.4)

Inverse Problems Solving any of the forward equations (1.1)-(1.4) for u†,∞ or u†

constitutes an inverse problem: Generally speaking, we want to reconstruct the cause
that led to an observed result. As this is also the basis of our everyday rational decisions,
it seems like a simple task at first glance. However, the reversal of a (physical) causal
relationship necessarily bears a potential ambiguity as many causes can lead to the
same result. In addition, it suffers from an unavoidable loss of information or entropy
increase due to energy dispersal. The mathematical field of inverse problems formalizes
and examines scenarios, where these difficulties become severe, and simple approaches
to invert (1.1)-(1.4) fail.
It turns out that inverse problems are typically ill-posed in the sense of Hadamard
(Hadamard 1923):

• The potential ambiguity in the cause-effect reversal can manifest in the non-
uniqueness of the solution to (1.1)-(1.4): A, respectively A is not invertible; see
Figure 1.4.

• The abstract “loss of information” due to dispersal or dissipation manifests in the
properties of A. Typically, A is a compact operator whose singular values decay
very fast. This leads to an increased loss (or compression) of information in the
higher singular functions; see Figure 1.5. Therefore, a recovery of this information
becomes difficult and unstable. In mathematical terms, the inverse of A restricted
to its co-kernel is unbounded. As a result, the solution of (1.1) is not a continuous
function of f †,∞. These properties are inherited by A, which is ill-conditioned.
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• While f †,∞ may be in the range of A (whereby (1.1) would have a solution),
f = Noi(PA(u†,∞), ε) might not be in the range of A. Even if so, the spectral
properties of typical noise functions are very distinct from those of compact
operators. For instance, in the situation of (1.4), ε typically also adds components
to the singular vectors of A with very small singular values. As a consequence,
the contribution of the noise dominates the signal in these singular functions.
In simple terms, something is added to the signal, which should not be there
anymore. Using a simple, straight forward inversion, these singular functions
would be strongly amplified. Hence, the solution is dominated by the inversion of
the noise.

In the following, we will sketch some of the main inversion frameworks developed in the
field of inverse problems.

Regularization Theory The first approach relies on techniques and concepts developed
for analyzing, solving or simulating the underlying PDEs. In particular, concepts from
functional analysis such as spectral theory, the theory of weak solutions, Sobolev spaces
and variational calculus are used to analyze A with respect to U and X to identify
the structure of the ill-posedness of inverting (1.1). Typical questions to be answered
concern the singular system of A, existence and uniqueness of solutions and stability with
respect to deterministic perturbations f †,∞ + δε. Subsequently, the ill-posed problem is
approximated by a well-posed one in a reasonable, controlled manner (regularization).
Variational regularization is a particular regularization strategy, which is of importance
to this thesis. The idea is to define the regularized solution as a minimizer of a suitable

G H 6 Q
4 F X 2 N U
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(a) u†,∞ (b) A(u†,∞)

Figure 1.5.: An illustration of the effects of ill-condition: A simple Gaussian blurring
(see Section 2.2) has a different impact on the image information on different spatial
scales. While it does not prevent the visual system from correctly identifying the large
characters, it renders the recognition of the small ones impossible.
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functional. Applied to the discrete forward equation (1.2), we obtain:

uλ = argmin
u∈W⊂U

{Hf (u) + λJ (u)} . (1.5)

Here, Hf : W → R measures the misfit between measured and predicted data (data
fidelity term), usually in a distance suitable for the noise function in (1.2). The
regularization functional, J : W → R has to render the minimization problem (1.5)
well-posed by ensuring existence, uniqueness and stability of uλ. This can be analyzed by
methods from variational calculus. In addition, J (u) can be used to penalize unwanted
features of uλ, thereby encoding a-priori knowledge about the solution. Especially if
Hf (u) is a convex functional, using a J (u) which is also convex is a popular and well
studied choice. Concepts from convex analysis can be used to examine the properties
of uλ by the optimality condition of (1.5). Questions of interest may be the rate of
convergence in the noiseless limit or whether and how an exact recovery of certain
features of u†,∞ is possible. Typical for this approach is to formulate the inversion in a
function space setting. A technical difficulty arises when stochastic noise models are
considered.

Statistical Inference An approach starting from a stochastic noise model is to treat
the inverse problem as a special instance of a statistical inference problem. For example,
(1.4) can be seen as a classical linear regression problem. The unknowns of interest
u become a possible model of reality belonging to a class of models U . Forward
modeling, discretization and noise contamination are summarized by a forward mapping
u �→ plike(f |u), which links u to a likelihood probability distribution for f . The likelihood
distribution is determined by (1.3). We will return to this issue in Section 3.1. If
the forward mapping is one-to-one, the statistical model is identifiable. This is closely
related to the uniqueness of solutions examined in regularization theory. Any function
û : Rm → U (e.g., given by (1.5)) which maps given data to an estimate of u† is
an estimator. As it relies on the random realization of the data, it is also a random
variable. Statistical decision theory was developed to classify and validate estimators.
Many concepts are closely related to concepts of regularization theory. One example
is the consistency of estimators: Loosely speaking, an estimator for u† is consistent,
if it converges to u† if the data gets “better”. This is related to the general definition
of regularization strategies which demand inverse methods to be continuous and to
converge in the noiseless limit.
The statistical approach is very well suited to treat the stochastic nature of the noise.
However, many concepts are less suitable to treat other features of typical inverse
problems scenarios such as the ill-posedness or the inherently infinite dimensional nature
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(a) (b) (c)

Figure 1.6.: (a) Photograph of a cross-section of a Walnut (see Section 2.3.3) and its
Haar wavelet reconstruction after keeping only the (b) 10% or (c) 1% largest coefficients.

of the problem.

Bayesian Inference As this thesis will emphasize on the Bayesian approach to inverse
problems, an extensive introduction will be given in Chapter 3. Loosely speaking, in
the Bayesian approach the ill-posedness of the inversion is understood in the sense that
f alone does not contain enough suitable information to determine u†. The remaining
uncertainty can only be removed by incorporating additional a-priori information.
Probability distributions are used to encode this and all other information available.

1.3. Sparsity

All inverse approaches rely on incorporating a-priori information on u†,∞ in some
way. Sparsity is the assumption that the most distinctive features of u†,∞ can be
approximated using only a few elements of a suitable representation system, i.e., a basis,
frame or dictionary. We will speak of such u†,∞ as being compressible. In Figure 1.6,
an example for the compressibility of photographic images is presented. A straight-
forward realization of using sparsity as a-priori information to solve (1.3) would be to
minimize the number of non-zero coefficients of u in a representation system encoded
by DT ∈ R

h×n:
û0 := argmin |DTu|0, s. t. Au = f, (1.6)

where |v|0 := card({i|vi �= 0}) counts the number of non-zero elements of a vector. The
non-convex optimization problem (1.6) is of combinatorial complexity. A common way
to cope with that is to replace |DTu|0 by a convex surrogate, e.g., the �1-norm:

û1 := argmin
∥∥DTu

∥∥
1
, s. t. Au = f, (1.7)



10 1 Introduction

Considering the ill-posed nature of (1.3), relaxing the strict equality constraint Au = f

is preferable. A possible way is to use a variational reformulation of the equality
constraint and to minimize a weighted sum of sparsity and equality constraints:

ûλ = argmin
u∈Rn

{
1

2
‖f − Au‖22 + λ

∥∥DTu
∥∥
1

}
(1.8)

This is obviously an instance of (1.5), and using variational regularization is the most
common way to formulate sparsity constraints for inverse problems. One popular
example is given by total variation (TV ) inversion (Rudin et al. 1992), which imposes
sparsity constraints on the gradient of u†,∞ and will be examined in the upcoming
chapters. Using sparsity constraints in Bayesian inversion is far less elaborate up to
now and will be a central topic of this thesis.

Compressed Sensing Solving inverse problems using sparsity constraints is closely
related to a recently developed signal processing framework called compressed sensing
(Candes et al. 2006, Donoho 2006, Foucart and Rauhut 2013). In an abstract
sense, inverse problems can also be viewed as a specific instance of signal transmission
problems: The unknown signal u†,∞ is sampled or encoded by PA into f †. Signal
processing theory provides conditions under which a suitable recovery or decoding of
u†,∞ or u† from f † or f is possible. A classical example is the Nyquist-Shannon sampling
theorem which guarantees the perfect recovery of frequency-limited signals if a certain
sampling rate (Nyquist rate) is used. Compressed sensing extends these results for
signals that are also sparse or compressible: Conditions were developed under which a
non-linear decoding by (1.7) perfectly recovers a sparse, linearly encoded u†,∞ or u† using
a sampling rate lower than the Nyquist rate (undersampling). Many applications of
compressed sensing aim at designing sensing schemes which are optimal in the sense that
the same reconstruction quality is achieved with as few data acquired as possible. This
is also desirable in many biomedical imaging applications. For instance, the exposure to
the ionizing X-radiation in CT is harmful for living tissue. Therefore, designing scanning
procedures that provide the same diagnostic information while using less radiation is
advantageous. In dynamic imaging modalities , higher temporal resolutions may be
achieved using reduced spatial sensing schemes. However, in other inverse problems
scenarios like the spatial inversion in EEG/MEG, the situation is contrary to the typical
compressed sensing application: The sensing scheme used is fixed and already insufficient
for a satisfactory recovery of the solution. Only incorporating additional information
such as sparsity can compensate for this. On the other hand, the temporal inversion of
EEG/MEG is a different issue since the temporal mapping is nearly one-to-one even at
high sampling rates. Many inverse problems exhibit a similar split of its spatial and
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temporal characteristics. In this case, complementing inverse methods in one domain
with concepts of compressed sensing in the other domain can be advantageous.

1.4. Organization

This thesis is organized as follows: The next chapter introduces the imaging applications
examined in this thesis. Chapter 3 develops the conceptual principles of the Bayesian
approach to inverse problems while Chapter 4 presents the computational methods
required to apply it in practice. Extensive numerical studies to illustrate and examine
all the aspects discussed by then will be carried out in Chapter 5, which will also
include the application of Bayesian inversion to challenging experimental data scenarios.
Chapter 6 revisits and reflects the theoretical considerations of Chapter 3 in the light of
the computational results and develops new theoretical ideas. Finally, Chapter 7 draws
conclusions and highlights topics and directions for future work.
To enhance its readability, the presentation of the main text is kept intentionally
concise. Several chapters or sections end with a “Notes and Comments” subsection,
which supplements the main text with more detailed references and considerations
about advanced topics. In addition, the appendix contains supplementary material and
technical details.
Parts of the contents of this thesis were already published in journal articles, or presented
in other forms. A detailed record of this is given in Section A.9.

1.5. Notes and Comments

Treating inverse problems by regularization theory, statistical or Bayesian inference
expresses a different conceptual perspective on the same problem. All three have their
own advantages and shortcomings and lead to more or less intuitive formulations in
particular scenarios. However, while seemingly different in nature, they often lead
to similar reconstruction methods. As a consequence, there is a growing interest to
overcome the traditional boundaries of the separate fields. Section 3.5.6 will point to
some important contributions in this direction.
Detailed references to Bayesian inference and compressed sensing will be given in
Sections 3.7 and 3.5.6, respectively. Extensive introductions to regularization theory are
given by Engl et al. (1996), Kirsch (1996), Schuster et al. (2012). Vogel (2002)
complements these by a detailed introduction to the computational solution of inverse
problems. Good introductions to the statistical approach to inverse problems can be
found in Evans and Stark (2002), O’Sullivan (1986). A very recent, general and
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application oriented introduction to linear and nonlinear inverse problems is given by
Mueller and Siltanen (2012).
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2
COMPUTATIONAL SCENARIOS

In this chapter, we will introduce the computational scenarios used in this thesis. The
image deblurring scenarios in Section 2.2 will mainly be used to illustrate the theoretical
and computational aspects presented in Chapters 3 and 4. The more complex CT and
EEG/MEG scenarios introduced in Sections 2.3 and 2.4 will also provide the basis for
real data analysis in Chapter 5.

2.1. Inverse Crimes

Working with artificial inverse problems scenarios to examine certain theoretical or
computational aspects comprises a potential pitfall: The scenario used to simulate the
data and the one assumed for the inversion are usually more coherent than in real-world
applications. In the extreme case, they even coincide: Inverse model and reality are
identified. The inverse results obtained in such situations are usually of a better quality
than those obtained in real-world scenarios. As a consequence, they may give an overly
optimistic impression about the performance of a particular inverse method. We will
speak of “inverse crimes” when referring to this difficulty of designing and interpreting
computational studies with simulated data. While it is not possible to commit no
inverse crimes at all when working with simulated data, it is easy to avoid some rather
obvious ones. For instance, simulated data should never be generated using the same
discretization (1.3) used in the inversion. Further information and illustration of this
phenomena can be found in Siltanen (2009), Chapter 3, Kaipio and Somersalo

(2007) and Colton and Kress (1992).
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(a) Unknown function u†,∞.
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(b) Clean measurement f† for m = 30.

Figure 2.1.: “Boxcar” scenario.

2.2. Image Deblurring

Image deblurring problems are simple, intuitive and illustrative examples of inverse
problems. Still, they already exhibit the elementary features of ill-posedness. We will
examine two artificial scenarios, one in 1D and one in 2D.

2.2.1. Boxcar Reconstruction in 1D

The first scenario mimics a measurement made by a charge coupled device (CCD) used
in digital cameras or medical imaging devices. These devices integrate the amount of
light illuminating a pixel over a certain period of time. It is adopted from Lassas and

Siltanen (2004) which inspired some of our computational studies.
Using our previous notation, we model the unknown, continuous light intensity by a
positive function u†,∞ ∈ U , u†,∞ : [0, 1] → R

+, where U is a suitable space of positive
functions on Ω = [0, 1]. A is simply the identity on U , while P models the integration
into the m pixels of the CCD. The pixel are constructed as the inner subintervals of an
equidistant division of [0, 1] into 2M subintervals. As a result, the j-th of the m = 2M −2

pixel is represented by the interval [ j
2M

, j+1
2M

]. The measurement f †j is then given by:

f †j =

∫ j+1

2M

j

2M

u†,∞(x) dx (2.1)

For discretizing u†,∞, we choose the grid xn
i = i

2N
, i = 1, . . . , n, with n = 2N − 1 and

N > M . The discretization of the forward mapping implied by (2.1) in terms of the
m× n matrix A can then be implemented by the trapezoidal quadrature rule. The jth

row of A is given by

AT
j :=[0, 0, . . . , 0,︸ ︷︷ ︸

j 2(N−M)−1

1
2
δh, δh, δh, . . . , δh︸ ︷︷ ︸

2(N−M)−1

, 1
2
δh, 0, 0, . . . , 0], (2.2)
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(a) Unknown function u†,∞. (b) Clean measurement f† for m = 129× 129.

Figure 2.2.: “Spots” scenario

where δh := 1
n+1

defines the grid size (we will always use Bi to denote the i-th column
of a matrix B and BT

i to denote its i-th row). The unknown function u†,∞ we actually
use is the indicator function (also called boxcar function) on [1

3
, 2
3
]; see Figure 2.1a. In

Figure 2.1b, the corresponding f † is shown. It was computed directly by (2.1).
This first scenario will simply be called “Boxcar” from now on. It is a simplification of
the task to reconstruct a spatially distributed intensity image that is known to consist
of piecewise homogeneous parts with sharp edges. One example is given by the recovery
of the body’s organs and their boundaries from X-ray CT measurements; see Sections
2.3 and 5.3.

2.2.2. Point Source Reconstruction in 2D

As a second scenario, we examine the convolution of a 2D intensity function u†,∞ :

[0, 1]2 → R
+ with a Gaussian kernel with standard deviation σA = 0.015:

f †,∞ = g ∗ u, with g(x, y) =
1

2π σ2
A
exp

(
−(x2 + y2)

2 σ2
A

)
(2.3)

The measurement is, again, given by a subsequent integration of f †,∞ into measurement
pixel. Here, we subdivide the image into m = (2N + 1) × (2N + 1) equidistant pixel.
The unknowns will be reconstructed on the same pixel grid using Neumann boundary
conditions; hence, n = (2N − 1)× (2N − 1). In this scenario, A will not be computed
explicitly, but direct, matrix-free implementations of all computational operations



16 2 Computational Scenarios

involving it will be used, see Section A.2. f † will be computed using the same routines,
but to avoid an obvious inverse crime, the grid used for these computations will be 4
times finer.
The concrete u†,∞ we reconstruct is shown in Figure 2.2a. It consists of 30 point sources,
i.e., circular spots of constant intensity. Their locations, radii and intensities were
generated using a simple stochastic model. Figure 2.2b shows f † for m = 129 × 129.
We will call this scenario “Spots” from now on.

2.3. Computed Tomography

In general, the propagation of electromagnetic radiation in biological tissues is a complex
process. While Maxwell’s equations give a valid mathematical description for it on
the microscopic scale, quantities of interest for medical imaging applications can be
described by the radiative transport equation (RTE ). The RTE is a PDE for the spatial
distribution of the steady-state spectral intensity I(λ) of the radiation. In absence
of internal sources, it includes absorption and scattering processes. For the almost
monochromatic, high-energy X-radiation, scattering can be neglected and the RTE
reduces to a simple ODE along the ray l (parameterized by t ∈ [0, T ]):

d

dt
I(t) = −u†,∞(t) I(t) (2.4)

Here, u†,∞ corresponds to the mass absorption coefficient, which is assumed to be
proportional to the tissue density. If we assume that the X-ray source with intensity I0

is placed at t = 0 we can compute the intensity Il measured by a detector at t = T as:

Il = I0 exp

(
−

∫ T

0

u†,∞(t) dt
)

(2.5)

This formula, known as Beer’s law, can be rearranged to

f †,∞l := log

(
I0
Il

)
=

∫ T

0

u†,∞(t) dt =
∫
l

u†,∞(t) dl(t). (2.6)

For given measurements along a set of lines L∗, the inverse problem is to recover
u†,∞(x, y) from its integrals along these lines. This is a problem of integral geometry
formulated and treated in the work of Johann Radon in 1917 (Radon 1917, 1986).
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(a) (b)

Figure 2.3.: Radon transform R[u†,∞] for (a) u†,∞ used in the “Spots” scenario (see
Section 2.2.2 and Figure 2.2a) and (b) for Figure 1.6a interpreted as a 2D function.

2.3.1. The Radon Transform

Radon introduced an invertible integral transform for piecewise continuous, compactly
supported functions of two variables based on line-integrals like (2.6). Any line l ⊂ R

2

can be described by the angle θ of its normal vector w and its (signed) distance s to
the origin:

l(θ, s) = {(x(t), y(t)) = (t sin θ + s cos θ,−t cos θ + s sin θ) | t ∈ R}

The space L of all lines in R
2 can now be parameterized by θ ∈ [0, π) and s ∈ R. The

Radon transform R[u] of a function u : R2 → R defines a function on L by:

R[u](θ, s) =

∫
l(θ,s)

u(x(t), y(t)) dl(t)

=

∫ ∞

−∞
u(t sin θ + s cos θ,−t cos θ + s sin θ) dl(t) (2.7)

We will denote the transform for a fixed angle θ by Rθ[u](s) := R[u](θ, s). Figure 2.3
shows two exemplary Radon transforms. The Radon transform of a Dirac delta distri-
bution is a distribution supported on the graph of a sine wave. Therefore, visualizations
of Radon transforms look like compositions of multiple sine waves and are usually called
sinograms. This connection to trigonometric functions is formalized by the Fourier slice
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(a) (b) (c)

Figure 2.4.: (a) Parallel beam geometry. (b) Fan beam geometry. (c) Different angle
distribution schemes: Sparse (blue dots) and limited (green dots) angle scanning.

theorem, which states that for piecewise continuous, compactly supported u:

F [Rθ[u]](ν) = F [u](νw) (2.8)

This means that the Radon transform along a certain angle fully determines one slice
of the 2D Fourier transform of u. Therefore, R[u] fully determines F [u] and, thereby,
u, and the complete Radon transform is invertible. Based on these relations, direct
analytical as well as approximative, numerically stable inversion formulas to analyze CT
data can be derived (filtered back projections, see Natterer 1986). These approaches
often require a sufficiently dense sampling of the Radon transform. In the next section,
we will develop a formulation similar to those of the other scenarios which will also be
applicable if only a sparse sampling of the Radon transform is used.

2.3.2. Computational Model for Computed Tomography

We assume that u†,∞ is supported in Ω = [0, 1]2. A is given as the Radon transform
restricted to a subset L∗ ⊂ L. We will define L∗ by the subset of measurement angles
θi ∈ [0, 2π), i = 1, . . . ,mθ and the beam geometry used. The latter describes the
spatial radiation pattern for a fixed angle. We will consider parallel-beam and fan-beam
geometries. In parallel-beam geometry all beams transverse the target parallel to each
other; see Figure 2.4a. This directly corresponds to Rθi [u](s), is easy to implement and
intuitive to examine. In the fan beam geometry, a point source and a detector placed
opposite to each other are rotated around the origin. This leads to an angular spread
of the lines from the source to the detector; see Figure 2.4b. The projection for a given
measurement angle θi does not directly correspond to Rθi [u](s) but is spread out in
angular direction. Furthermore, changing source and detector, i.e., taking measurements
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(a) (b)

Figure 2.5.: (a) Geometrical drawing to illustrate the derivation of g(s) for a rectangle.
(b) Geometrical drawing to illustrate formula (2.11).

for angles θi and θi + π does not lead to the same results anymore. This beam geometry
corresponds to the configuration used to collect the experimental data used in this
thesis.
Choosing a dense, equidistant distribution of the measurement angles θi ∈ [0, 2π),
i = 1, . . . ,mθ leads to the best reconstruction quality. However, there are situations
where this is not possible or desirable:

• In limited angle tomography, the measurement setup restricts the range of θ to
[θmin, θmax]. This occurs, e.g., in mammography, dental radiology, intraoperative
or rotational aniography or electron tomography. The inversion of limited angle
data is severely ill-posed. Only specific features of the solution can be recovered
and several artifacts may appear. See Frikel (2013) for a recent overview on the
theoretical implications of this scanning setup.

• One focus of research in CT is to reduce the radiation dose delivered to the patient
(Yu et al. 2009) while another is reconstruct spatio-temporal images (4D-CT ).
For both aims, a reduction of the number of measurement angles is an often
discussed option (sparse angle tomography). Thereby, the loss of spatial resolution
and quality of the images has to be tolerable and outweighed by the potential
benefits.

Figure 2.4c illustrates both angle distribution schemes.
The transmitted intensity Au†,∞ is not measured directly. As in the image deblurring
scenarios examined in the previous section, we rather measure its integral over a
sensor pixel, which is, again, modeled by the operator P : We assume that we have ms
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(a) (b)

Figure 2.6.: (a) Geometrical drawing to derive g(s) of a rectangle in fan-beam geometry.
(b) Geometrical drawing to illustrate the computation of g(si): First, the ray (orange
line) parameterized as Or + β(si − Or) is crossed with the horiontal and vertical
extensions of the rectangle edges (red lines), resulting in the beta coordinates of the
crossings (pink crosses), β−h , β

+
h , β

−
v and β+

v (if the ray is too parallel to these lines,
these values have to be corrected). Then, g(si) (visualized by the green line segment) is
given by the length of [β−h , β

+
h ] ∩ [β−v , β

+
v ] normalized by the length of (si −Or).

measurement pixel of equal size δs. In total, this leads to m = ms ·mθ measurements.
The unknowns u will, again, be discretized using a pixel basis with n = 2N × 2N . To
compute A for this basis (and for certain wavelets in Section 5) we need to compute
f † = PAv for v being the indicator function of a rectangle. For this, let A, B, C, D
denote the corners of the rectangle, ω its width and � its height. For a fixed measurement
angle θ in parallel- or fan-beam geometry, let g(s) denote the transmitted intensity.
We first consider parallel beams for which we can deduce g(s) from simple geometric
considerations: g(s) will be zero until the beam hits the first corner of the rectangle.
After that, it grows linearly as the beam enters at one side of the rectangle and leaves
at an adjacent side. When it hits the second corner, it becomes constant as the beam
enters at one side and leaves on the opposite side. After hitting the third corner, it
starts to decrease to zero again, with the same slope as in the beginning. Figure 2.5a
shows a sketch of the situation. As a consequence, g(s) is a simple, piecewise linear
function, which we can easily parameterize by the s-values of the beams hitting the
corners, sA, sB, sC and sD, and its value ν in the constant part. The s-values can be
computed by solving the beam parametrization

A =

(
xA

yA

)
=

(
tA sin θ + sA cos θ

−tA cos θ + sA sin θ

)
(2.9)
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for sA:
sA = xA cos θ + yA sin θ (2.10)

The longest intersection of a beam with the rectangle determines ν: Define φ as the
short angle of the rectangle’s diagonal to the x-axis, and ψ be the corresponding short
angle of the beam to the x-axis. If ψ is smaller than φ, the beam enters and leaves at
the right and left side; otherwise, it enters and leaves at bottom and top (see Figure
2.5b). A simple computation yields:

ν =

⎧⎨
⎩

ω

sin θ
if ψ < φ

�

cos θ
otherwise

, φ = arctan
�

ω
, ψ = θ − π

2
(2.11)

The integral of the parameterized, piecewise linear function g(s) over the pixels of a
given sensor grid can then be computed explicitly.
For the fan-beam geometry, the situation is more complicated and no simple parametriza-
tion of g(s) is available; see Figure 2.6a. Therefore, we will approximate g(s) by a
piecewise linear function ḡ(s), which can then also be integrated over the sensor pixels ex-
plicitly. We construct the grid on which ḡ(s) is defined starting from S = {sA, sB, sC , sD}.
Ordering the four elements in S yields three intervals. Each of these intervals is then
divided into equidistant sub-intervals such that no sub-interval exceeds a chosen length
δfan. Then, for each si of the resulting grid S, we compute the intersection of a ray
from the source to the sensor point corresponding to si with the rectangle to determine
g(si). The details of our approach are explained in Figure 2.6b. These basic operations
can be implemented in a fast and robust way. The step size δfan determines the scale on
which a linear approximation of g(s) is acceptable. This corresponds to approximating
the fan-beams that fall into this sensor interval by parallel beams. For a fixed δfan and
target, the error of this approximation depends on the distance d between source and
target. The parallel-beam geometry can be seen as an approximation of the fan-beam
geometry in the limit of d → ∞.

2.3.3. Computational Scenarios

Phantom Reconstruction in Parallel-Beam Geometry

The first computational scenario we consider is an artificial data scenario in parallel-beam
geometry. The unknown function u†,∞ is a slightly scaled version of the Shepp-Logan
phantom (Shepp and Logan 1974), a toy model of the human head defined by 10
ellipses; see Figure 2.7a. Figure 2.7b shows the sinogram for a dense angular spacing,
while 2.7c shows the sinogram for the sparse angle scenario we will examine: ms = 500,
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(a) (b) (c)

Figure 2.7.: “Phantom-CT” scenario. (a) Unknown function u†,∞. (b) Clean mea-
surement f † for ms = mθ = 500 (c) Clean measurement f † for ms = 500, mθ = 45.

mθ = 45. We will refer to this scenario as “Phantom-CT”.

Walnut Reconstruction in Fan-Beam Geometry

The second scenario is a real data scenario modeled using the fan-beam geometry. The
data set was also analyzed in Hämäläinen et al. (2014, 2013). The target is a walnut,
chosen for its resemblance to a human brain. The apparent advantage of this setting is
that an unlimited number of measurements can be taken without radiation concerns.
Furthermore, photographs of cross-sections of other walnuts can easily be taken and
examined to generate a-priori information used by the inverse method. Figure 1.6a
shows such a photograph.
The data were recorded using a fixed setup of an X-ray source facing a planar detector.
The walnut was placed on a rotatable bar in-between, see Figure 2.8a. Figure 2.8b
shows one projection of the whole walnut. In this thesis, we will only consider the 2D
reconstruction of the central slice of the walnut from the corresponding horizontal line
of measurement pixels. The sinogram data is shown in Figure 2.8c. We will refer to
this scenario as “Walnut-CT”.

2.3.4. Notes and Comments

Buzug (2008) is a general reference for CT, a mathematical one is given by Natterer

(1986).
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(a)

(b) (c)

Figure 2.8.: (a) Photograph of the measurement setup; Image courtesy of Samuli
Siltanen. (b) A single projection of the walnut. (c) Full sinogram using an angular
spacing of 3◦. The senor resolution has been reduced by 4, i.e., every 4 subsequent
pixels of the 2296 original pixels were added up.

Radiography (see Section 1.1) played a pioneering role for biomedical imaging partly
because the RTE can be reduced to a simple form of the RTE for the high-energy
X-rays. Optical tomography working with lower-energy radiation has to consider more
sophisticated approximations of the RTE, e.g., scattering needs to be accounted for. In
return, such imaging techniques can be used for different applications, especially for the
examination of soft tissues. See Arridge (1999), Arridge and Schotland (2009)
for an introduction and overview.
In most CT scanners, source and sensor array rotate around the patient. For obtaining
high sampling rates, a high rotation frequency needs to be realized. As a result, such
scanners are heavy and immobile. Using multiple fixed sources and detectors that collect
data at a high temporal rate is discussed as a potential alternative to this scanning
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(a) (b)

Figure 2.9.: (a) EEG electrode cap. (b) MEG device. Source for both images:
Wikimedia Commons.

paradigm, also for realizing 4D-CT. Such a setup naturally leads to a sparse angle
tomography problem. See Niemi et al. (2013) for a further discussion.

2.4. EEG/MEG Source Reconstruction

A detailed introduction into EEG/MEG source reconstruction was given in Section 1 in
Lucka (2011), including the neurophysiological generators, the mathematical modeling
of the forward problem and an overview on the different inverse approaches developed in
this field. To integrate EEG/MEG source reconstruction into the concept of this thesis,
we will only summarize the most important aspects here. On several other occasions,
more detailed explanations of certain sub-topics will be given.
The phenomenon of electromagnetic fields generated by living organisms is called
bioelectromagnetism. In the neuronal tissue of the brain, bio-chemical activity causes ion
current flows that induce electromagnetic fields. Maxwell’s equations and the material
equations provide the accurate physical description of these fields, but similar to CT,
only suitable simplifications of these equations lead to tractable computational models.
We will consider the following forward equations for the electric potential Φ, caused by
a primary current density u†,∞ : Ω → R

3:

∇ · (σ∇Φ) = ∇ · u†,∞ in Ω (2.12)

ν · (σ∇Φ) = 0 on ∂Ω (no-penetration condition) (2.13)
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∫
∂Ω

ΦdS = 0 (fix ground potential), (2.14)

where σ(r) is the electric conductivity of the tissues. Given Φ, the corresponding
magnetic field B can be computed by the Biot-Savart law :

B(r′) =
μ0

4π

∫
Ω

(
u†,∞(r)− σ(r) · ∇Φ(r)

)
× r′ − r

‖r′ − r‖32
dr for r′ ∈ R

3\Ω̄, (2.15)

where μ0 is the magnetic constant and ν the normal of ∂Ω. Following our notation,
Au†,∞ = f †,∞ = (Φ|∂Ω,B). Probing the fields with P to generate f † describes the
concrete measurement setup. We might perform EEG or MEG recordings alone or
simultaneously (which we will refer to as EMEG). For EEG, we model the electrode
measurement of the electric potential (see Figure 2.9a) by a simple point evaluation of
Φ at the electrode position. For probing the extremely weak magnetic field caused by
neuronal activity, we will use a specific type of magnetometers called SQUIDs. SQUIDs
measure the magnetic flux through a coil by a quantum effect. Here, the magnetic flux
is the surface integral of the normal component of B over the coil area. Gradiometers
combine two of such coils on top of each other to measure the spatial derivative of the
magnetic flux in normal direction of the coils. The elementary, physical, measurement
sensors can furthermore be combined (sensor montage) to form measurement channels.
Montages can be designed to reduce certain noise or artifact signals or to enhance the
contrast of a certain brain activity. They can already be implemented in an analog
way (as the combination of two magnetometers into a gradiometer) or realized after
the digitization of the physical measurement channels. We will return to this issue in
Section 5.4.5.

2.4.1. Computational Model for EEG/MEG Source Reconstruction

Developing a computational model to simulate (2.12) and (2.15) requires considering
three related difficulties.

Head modeling First, the dielectric properties of the different head tissues (called
compartments) have to be modeled to define σ(r). Depending on the desired degree of
realism, building such a volume conductor model of the head can be a sophisticated
task. An early, but still commonly used, approach is to approximate the compartment
boundaries by closed surfaces with a simple analytical form such as spheres or ellipsoids
(see Figure 2.10a). For every compartment, a constant conductivity is assumed. More
sophisticated models replace the parametric surfaces by realistically shaped ones, usually
discretely defined by triangulations (see Figure 2.10b). A triangulation of the complete
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(a) (b) (c)

Figure 2.10.: Different approaches to volume conductor modeling: (a) The geometry
is approximated by an ellipse. (b) The geometry is defined by triangulated surfaces. (c)
The complete volume is triangulated.

volume instead of the surfaces allows to define σ(r) individually for every tetrahedron
(see Figure 2.10c). This offers the possibility to incorporate local conductivity models:
In general, σ(r) describes the mobility of electric charge carriers in a medium. Isotropic
media, i.e., with no directional structure, can be described by a scalar value. For
highly directed tissues, such as the fibrous white matter, more sophisticated models are
required. Equation (2.12) allows for a tensor representation of σ(r), which we will refer
to as anisotropic conductivity.
With increasing flexibility for realistic, anisotropic, individual head modeling, the model
construction also needs an increasing amount of precise, individual anatomical imaging
information and more sophisticated image analysis methods.

Source Modeling A second difficulty is to find a mathematical model for the primary
current density u†,∞. Together with the choice of σ, it determines which numerical
methods we can use to solve (2.12). Commonly, the microscopic current flow is modeled
by a mathematical current dipole with a suitable dipole moment (see Brazier 1949,
deMunck et al. 1988). An ensemble of such microscopic dipoles can be approximated
by a single, macroscopic, equivalent current dipole qdip δ(r − rdip). Most numerical
methods developed for EEG/MEG solve (2.12) and (2.15) for such a dipole source term.
An arbitrary u can then be discretized by a finite number of unit-strength dipoles:

u†,∞ ≈
n∑
i

u†i qiδ(r − ri), ‖qi‖2 = 1, (2.16)
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where u† ∈ R
n represents the amplitudes of the dipoles. By the linearity of (2.12) and

(2.15) the measurements generated by u†,∞ can then be approximated by

f † = PAu†,∞ ≈
n∑
i

PA u†i qiδ(r − ri) =
n∑
i

u†i PAqiδ(r − ri)=:Au†. (2.17)

Source reconstruction relying on the lead-field matrix A to be used in the inverse
problems approaches introduced in Section 1.2 is called current density reconstruction
(CDR). The set of dipoles {(qi, ri) | i = 1, . . . , n} used for the discretization define the
source space. Physiological as well as computational constraints have to be considered
in its construction; see Figure 2.11a for an example.

Numerical Solver Dependent on the type of volume conductor and source model used,
different numerical approaches to solve (2.12) and (2.15) are available. For simple
conductor geometries, such as multiple concentric spheres, explicit asymptotic formulas
for dipole sources can be derived. For volume conductors defined by realistically shaped
surfaces, boundary element (BE ) methods were developed. BE methods reformulate
(2.12) as an integral equation on the compartment boundaries and compute a discrete
solution on the given surface triangulation. Finite element (FE ) methods have to be
used if the volume conductor is given as a triangulation of the complete volume. They
rely on the weak formulation of (2.12) and approximate its solution by a Galerkin
approach using local basis functions. Using a singular source model such as the current
dipole (we have δ(r) ∈ H−3/2−ε(Ω) ∀ε > 0) is a potential difficulty for both the FE
and the BE approach (Vorwerk et al. 2012). Different solutions have been proposed:
The Venant direct method (Buchner et al. 1997), the partial integration direct method
(Schimpf et al. 2002) and the subtraction approach (Wolters et al. 2007).

2.4.2. Computational Scenarios

All EMEG studies in this thesis rely on anatomical MRI data and EEG/MEG recordings
of a healthy, 25-year-old, male subject. In Section 5.4.1, we will describe how to construct
head models with a varying degree of realism based on the MR images. The most
realistic head model (which is depicted in Figure 2.10c) will differentiate between ten
tissue compartments of which some will be modeled anisotropic. The construction of
corresponding source spaces for different purposes will be described in Section 5.4.3.
The head models and source spaces will be used in the computational studies with
simulated as well as with real EEG/MEG recordings.
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(a) (b)

Figure 2.11.: (a) Illustration of a source space: The dipoles (black cones) are located
in the gray matter compartment and oriented along the normal direction of the interface
between gray and white matter. This surface is shown with a parceling representing the
assignment of its surface triangles to the nearest dipole (cf. Section 5.4.3). (b) Sensor
configuration used in the “simEMEG” scenario consisting of 63 electrodes (disks) and
63 magnetometers (rings) colored by the fields generated by a single dipolar source in
the brain (green cone).

EEG vs. MEG Scenario

For the first scenario the most realistic head model is used. The artificial sensor
configuration employed was designed to examine the differences between EEG and
MEG based source reconstruction: From 134 points corresponding to a regular sampling
of the skin surface of the head model, m = 63 locations corresponding to realistic
electrode positions were selected to create the EEG sensors (cf. Figure 8 in Lucka

et al. 2012). To create a matching MEG sensor configuration, these positions were
shifted by 3 cm away from the surface in normal direction. This corresponds to the
average sensor-to-surface distance we encountered in real MEG sensor configurations.
At each of the new positions, a magnetometer directed towards the center of the head
model is placed. Figure 2.11b shows the sensor configurations and simulated fields for a
single dipole source. For the source space locations, a volumetric division of the gray
matter based on a 3D-lattice with 6 mm spacing is used. On each of the resulting
1336 locations, 3 dipoles in x, y and z direction are placed, leading to n = 3 × 1336

unknowns to recover. We will use this setup to reconstruct real source configurations
u†,∞ consisting of one to three single dipoles located uniformly at random in the gray
matter and refer to this scenario as “simEMEG”.
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(a) AEF (MEG) butterfly (b) AEF (MEG) topography

Figure 2.12.: Auditory evoked fields, averaged over 89 trials. (a) Butterfly plot :
Each graph corresponds to the trail-averaged temporal evolution of one channel. (b)
Topography plot at t = 92 ms after stimulus onset: The channel positions are mapped
to a disk representing the view from above onto the head surface. The measurement
data is then interpolated and color-coded to visualize the spatial field distribution.

Evoked Potentials and Fields

Evoked potentials/fields (EP/EF ) describe the EEG/MEG recordings of the brain’s
response to a specific external stimulus. An important class of EPs/EFs are sensory
evoked potentials/fields (SEP/SEF ) which follow a sensory stimulation. In this thesis, we
will investigate auditory evoked potentials/fields (AEP/AEF ) following the presentation
of a tone and somatosensory evoked potentials/fields (SSEP/SSEF ) elicited by the
stimulation (tactile or electric) of a sensory nerve in the periphery. Single SEP/SEF
signals also reflect all other ongoing brain processes aside the stimulus related activity.
In addition, they are contaminated by internal and external noise and nuisance sources.
To reduce this interference by non-stimulus related signals, an averaging strategy is
employed: The same SEP/SEF are recorded multiple times (trials) and the signals
are averaged. As the SEP/SEF are time-locked to the stimulus onset whereas the
interference signals are not (apart from those caused by the stimulus generation), the
interference signals will average out in the long run. Figure 2.12 shows AEF signals
for a simulation by a 350 Hz tone, averaged over 89 trials. In addition to averaging,
several pre-processing techniques were employed; details will be described in Section
5.4.5. We will invert the fields at t = 92 ms, using the same head model and source
space as in the previous scenario but realistic sensor configurations which are registered
to the head model.
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(a) (b) (c) (d) (e)

Figure 2.13.: “Head model cascade” scenario. From left to right, the degree of realism
is decreasing. A detailed description will be given in Section 5.4.6.

Head Model Cascade

From the most realistic head model, a cascade of less realistic head models is derived
(see Figure 2.13). Source spaces of varying spatial density n that align for all head
models are constructed and realistic EEG and MEG sensor configurations, similar to
those in the real data scenario, are employed. The aim of this setting will be to examine
the interplay between realistic head modeling and sparse inverse methods by testing
if the corresponding lead-field matrices fulfill certain recovery conditions; cf. Section
1.3. The details of the model generation process and the computations will be given in
Sections 5.4.2 and 5.4.6.

2.4.3. Notes and Comments

As mentioned at the beginning of this Section, Lucka (2011) contains a more detailed
introduction into several of the topics discussed here, including a lot of references. In
addition, some points will be discussed in forthcoming chapters. We will therefore limit
the discussion here to some complementary topics.
The theoretical aspects of solving the inverse problem of EEG/MEG are less developed
compared to CT. A particular reason is the lack of an analytical framework that provides
similar insights into the structure of forward and inverse problem of EEG/MEG as
integral geometry does for the Radon transform. In particular, there is no equivalent of
the Fourier slice theorem with all its consequences. Dassios and Fokas made important
contributions to this topic, see Dassios and Fokas (2013) for a recent overview on
their work.
Forward modeling and computation approaches are a constant matter of debate in
EEG/MEG source reconstruction. Several aspects are to consider: The modeling error
describes the error in forward computation caused by replacing the true conductivity
σ†,∞ by the volume conductor model σ. It has to be compared to the numerical error
of the computational approach used to solve (2.12) for a fixed σ. Both numerical and
modeling error strongly rely on the concrete source configuration u†,∞ used. However,
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when using state-of-the-art numerical methods the overall error is usually dominated by
the modeling error. See Vorwerk (2011), Vorwerk et al. (2014, 2012) for a recent
overview on this topic.
Reducing the modeling error requires a lot of practical efforts like acquiring additional
MRI scans or performing sophisticated segmentation procedures. Especially in studies
with a large number of subjects, a trade-off between accuracy and modeling effort has
to be made.
Modeling the measurement of the surface electrodes by a point evaluation introduces a
modeling error that can be avoided if more detailed complete electrode models (CEM )
are used. In Pursiainen, Lucka and Wolters (2012) a detailed comparison be-
tween both models is conducted. A realistic modeling of the measurement electrodes is
especially important if the surface covered by electrodes is large, like encountered with
high density electrode caps on (premature) infants.
Using the mathematical model of a dipole to describe the primary currents is advan-
tageous if used in combination with simple surfaces or BE methods. Therefore, the
first forward computation approaches used in practice all relied on this source model
(see Vorwerk 2011, for an overview), thereby establishing it as a de facto standard
in the field. The first FE approaches for EEG/MEG tried to reproduce the results of
the former methods and therefore tried to model the source terms as single dipoles as
well. As mentioned above, the singular model is a potential difficulty for FE approaches.
However, a mathematical model is not an end in itself. It is an approximation with
the explicit intention that it leads to a tractable problem. If it fails to do so, there
is no real need to stick to it. Instead of developing FE methods that can cope with
singular source models, one could therefore also employ less singular source models
like u†,∞ ∈ H(div,Ω, ;R3) (see, e.g., Calvetti et al. 2009, Pursiainen et al. 2012,
Tanzer et al. 2005).
Trail averaging as a recording paradigm has certain limitations. It is based on the as-
sumption that the external stimulus always provokes the same spatio-temporal response
of the brain. In this perception, the brain is a passive, linear signal processing machine.
In particular, it assumes that there is no dynamic internal state of the brain with which
the stimulus interacts. Inter-individual variability of the brain response cannot be ex-
plained or studied with this model. In recent years, there is a shift towards studying the
brain’s internal states ( microstates) and their functional role (Michel and Murray

2012). This is one motivation for performing single-trail analysis of EEG/MEG data.
Other areas where such an analysis is of interest include the spontaneous, un-evoked
generation of pathological activity such as inter-ictal spikes in epilepsy (see Aydin et al.
2014, for a case study and further references) and Brain-Computer Interface (BCI )
applications (Nicolas-Alonso and Gomez-Gil 2012).
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3
THE BAYESIAN APPROACH TO

INVERSE PROBLEMS

In this chapter, we will introduce the basic principles of Bayesian inference applied to
inverse problems and imaging. First, different stochastic noise models for (1.2) will
be discussed in Section 3.1. Thereby, f will become a random variable governed by
the likelihood distribution plike(f |u), and the inverse problem a problem of statistical
inference (cf. Section 1.2). Due to the ill-posedness of inverse problems, standard
statistical inference based on plike(f |u) alone is not suited to obtain satisfactory results.
Bayesian inference strategies extend the standard framework to cope with these problems:
The main idea is to rethink the concept of probability in order to incorporate a-priori
information on the solution. The core assumption is that probability and information are
dual to each other. Therefore, all variables are naturally modeled as random variables,
not only f but also u†,∞ and u† (and potentially also A and A). However, this randomness
introduced should not be confused with real physical properties of the objects in question.
It rather reflects our lack of information about them. Encoding the available a-priori
information into a probability distribution pprior(u) (the a-priori or prior probability
distribution) is called Bayesian modeling and will be discussed in Sections 3.2 and 3.3. In
an abstract sense, solving the inverse problem now amounts to combining all sources of
information about u†,∞: The information before the measurement (encoded in the prior)
with the information gained by performing the measurement (encoded in the likelihood).
This information can also be represented by a probability distribution ppost(u|f), called
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a-posteriori or posterior probability distribution, which can be computed by Bayes’ rule:

ppost(u|f) =
plike(f |u) pprior(u)

p(f)
(3.1)

Bayesian estimation is the process of extracting the information of interest from the
posterior and will be discussed in Section 3.4. Two particular examples thereof are the
popular point estimators for u†, the maximum a-posteriori estimate (MAP),

ûMAP := argmax
u∈Rn

{ ppost(u|f)} , (3.2)

and the conditional mean estimate (CM ),

ûCM :=E [u|f ] =
∫

u ppost(u|f) du. (3.3)

The general analysis of such estimators is the topic of Bayesian decision theory, which
will be introduced as well.
Sparsity as introduced in Section 1.3, is a specific type of a-priori information. We will
encounter several ways to encode it into prior distributions. For some sparse priors,
ûMAP will allow for a more detailed examination by concepts from compressed sensing
theory (cf. Section 1.3). This will be discussed in the last section of this chapter. The
next chapter, Bayesian Computation will then discuss the practical aspects of Bayesian
inference, for instance, how to compute ûMAP and ûCM.

Notation and Remark: The augmentation of the classical, deterministic inverse
problems setting into a fully stochastic one requires some technical terms and concepts.
However, the aim of this chapter is to provide an intuitive, gentle introduction rather
than a solid mathematical one in the sense of probability theory. For this sake, some
terms will be used somewhat loosely. We will speak of distributions and densities
instead of probability distributions and probability densities in the following and will
only differentiate between the random variable X and its concrete realization X = x and
between the terms probability, probability distributions and probability density where
it is necessary. The multivariate normal distribution will simply be called “Gaussian
distribution”, and random variables distributed according to this distribution will be
called “Gaussian random variables”. Probability densities will often only be described
up to their normalization factor, e.g., as p(t) ∝ exp(−t2). This lack of mathematical
precision can be justified in our setting: All random variables defined in this chapter
are finite dimensional random variables on R

n and either have a probability distribution
that is absolutely continuous with respect to the Lebesgue measure on R

n or are a
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(a) (b) σ = 0.05 ·
∥∥f†∥∥

∞ (c) σ = 0.5 ·
∥∥f†∥∥

∞

Figure 3.1.: Noisy measurement data f for f † from Figure 2.2b and additive i.i.d.
Gaussian noise model.

Dirac measure. All these measures are Radon measures. Since a regular version of
the conditional probability densities exists (Ambrosio et al. 2008, Klenke 2008),
problems potentially arising with conditional probability densities are not relevant.

3.1. Stochastic Noise Modeling

In (1.2) or (1.3), the noise variable ε summarizes all features of the inverse problem
that are poorly known but are, unlike u†,∞ or u†, not of central interest. As such, it
can describe:

• Errors from the use of simplified forward models. For instance, our models for CT
(2.4) and EMEG (2.12) were derived from more complicated models by making a
couple of simplifications.

• Discretization errors of the forward models.

• Poorly known parameters of the forward models. In EMEG, even when assuming
that (2.12) in combination with a volume conductor model of σ can be considered
a sufficiently accurate model, the difficulty of determining the bulk conductivities
of the tissue compartments remains a source of uncertainty.

• Noise generated by the measurement device. This can comprise sensor-specific
noise, amplification noise, electric circuit noise, or digitization errors.

• Background activity v ∈ U distinct from u†,∞. In EMEG, this amounts to residual



36 3 The Bayesian Approach to Inverse Problems

(a) Short counting time (b) Long counting time

Figure 3.2.: Noisy measurement data f for f † from Figure 2.2b and Poisson noise
model.

brain activity that is not related to the recording paradigm (cf. Section 2.4.2).

• Recorded signals from other sources. In CT, this can amount to photons that
arrive at the sensor but are not in any way related to the X-rays used for
scanning. In EMEG, a large number of such signals are known. Examples include
bioelectromagnetic signals originating from other processes in the body, such
as the heart-activity, or from external electromagnetic fields, for instance those
originating from the power supply of the measurement site.

These features can be deterministic or inherently random, static or dynamic in the
course of the measurement. Several techniques can be employed to assess and mitigate
the contribution of the different factors. We will discuss some of them when examining
the real data scenarios in Chapter 5. For now, we assume that this has been done
and that ε contains the residual contributions that we have to take into account. The
noise function Noi(f †, ε) models the way in which ε interacts with the clean data f †.
However, apart from this, ε may also directly depend on u† in some way (usually on
A(u†)). Noise function and the distribution of ε, pnoise(ε) determine the stochastic
noise model. This model determines the likelihood distribution, which describes the
probability that a known u leads to an observed f(cf. Section 1.2). The most simple
model is the independent additive noise model :

f = Noi(A(u), ε) = A(u) + ε, (3.4)
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where ε is mutually independent from u. The corresponding likelihood is given as

plike(f |u) = pnoise (f − A(u)) (3.5)

A common example is given by assuming that ε follows a multivariate normal distribution
with zero mean and a covariance matrix Σ−1ε :

plike(f |u) = (2π)−
m
2 |Σε|−

1
2 exp

(
−1

2
‖f − A(u)‖2Σ−1

ε

)
, (3.6)

where ‖f − A(u)‖2Σ−1
ε

:=(f −A(u))TΣ−1ε (f −A(u)). The special case Σ−1ε ∝ Im is called
i.i.d. (independent and identically distributed) noise model. Due to its alpha-stability and
the central limit theorem, assuming a Gaussian distribution is often a reasonable model
for a macroscopic quantity, which is actually the sum of an ensemble of microscopic
random variables with bounded variability and spatially decaying correlations. Especially
in a real data scenario this seems to be a suitable noise approximation: The multitude
of potential noise contributions described above suggests that deriving an explicit model
based on physical considerations may be hopeless. In addition, using such a complex
noise model will limit the number of computational techniques we can use for the
practical inversion. A Gaussian model can already be estimated from first and second
order statistics. This can, of course, also be seen as a disadvantage: A Gaussian model
cannot account for anything but these statistics. In Sections 5.4.5 and 5.3.2, we perform
Gaussian modeling for the real data scenarios we consider and examine the sensitivity
of inverse methods to noise modeling errors.
In many imaging applications, the measurements consist of counting discrete events.
These events have a certain probability to occur that is related to f †. In principle, each
event can be modeled by a Bernoulli variable and their sum, which is the measurement,
by a binomial distribution. However, the discrete, combinatorial character of the
binomial distribution is not easy to handle and continuous approximations would be
advantageous. For sensors that count a large number of events during measurement
time (f †i is relatively large) the de Moivre-Laplace theorem (Klenke 2008) assures
that after re-scaling of the event counts, using a Gaussian model is a good limiting
approximation. However, for sensors where this is not true, the binomial distribution can
be approximated with the limiting distribution in the case of rare events, the Poisson
distribution. One possible Poisson noise model assumes that fi ∼ Pois(A(u†)+η), where
η � 0 models the counts of events that are not related to u†, for instance, background
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radiation. The likelihood is then given as

plike(f |u) =
m∏
i=1

(A(u) + η)fii
fi!

exp (−(A(u) + η)i)

u∝ exp
(
−|A(u) + η|1 + fT log(A(u) + η)

)
(3.7)

In contrast to the Gaussian limit, signal and noise are not independent in this noise
model. Figures 3.1 and 3.2 illustrate the impact of low and high noise levels in both
noise models.
In both artificial image deblurring scenarios, i.i.d. Gaussian noise will be employed:
Σε = σ2Im. For the “Boxcar” scenario (cf. Section 2.2.1), σ = 0.001 will be used,
corresponding to a relative noise level of σ/

∥∥f †∥∥∞ = 0.032. For the “Spots” (cf. Section
2.2.2) we will fix the relative noise level to 0.1 leading to σ = 0.1

∥∥f †∥∥∞. For the
“Phantom-CT” scenario, we will fix the relative noise level to 0.01. The reason for
choosing a relative noise level in these two scenarios is that m, the dimension of the
measurement space, will vary.
In the statistical approach, the ill-posedness of the inverse problem manifests in the
properties of the likelihood. The ill-conditioning leads to a wide spread of the likelihood:
If two very distinct u and v lead to very similar A(u), A(v) then plike(u|f) and plike(v|f)
will also be very similar. As a result, the likelihood cannot be concentrated on particular
regions of R

n but is rather flat and uninformative. If the problem is even under-
determined, the likelihood cannot even be normalized. Standard statistical inference
based only on plike(f |u) is therefore doomed to fail: Computing the maximum likelihood
estimate (ML) ûML would correspond to maximizing plike(f |u). For the Gaussian noise
model (3.6), this would lead to

ûML = argmax
u∈Rn

{
exp

(
−1

2
‖f − A(u)‖2Σ−1

ε

)}
= argmin

u∈Rn

{
‖f − A(u)‖2Σ−1

ε

}
(3.8)

This means that every (weighted) least-squares solution to f = A(u) is an ML estimator.
This is not a major improvement: The ML estimator inherits all the ill-posedness of the
inverse problem, in particular its instability. Therefore, statistical approach to inverse
problems examines the properties of alternative estimators. For instance, penalized max-
imum likelihood estimation defines estimators using variational regularization schemes
such as (1.5). As discussed in the introduction to this chapter, the Bayesian approach
tries to compensate the deficits of the likelihood by introducing the prior.
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Notes and Comments

References to statistical inference for inverse problems were given in the first Chapter.
We chose to define the noise model for the finite dimensional projections f † = PA(u†,∞)

only. Dealing with infinite dimensional noise models (or the limit of finite dimensional
models) turns out to be quite involved. Section 1.4. in Kekkonen et al. (2014) gives a
recent literature overview on this topic. Most of these works address the mathematical
difficulties of infinite dimensional models. However, the physical validity of such models
is often problematic. Consider the photon-count based measurement of CCD pixels:
For a fixed measurement time, a fixed number of photons arrives at the sensor array.
The limit m → ∞ means that the size of the pixels goes to zero. Thereby, the average
number of photons arriving in a pixel also goes to zero. Neither Gauss nor Poisson
distribution are valid approximations of the binomial distribution in this limit. New
mathematical models are required to accurately model such measurement situations
(see Helin et al. 2010, for an example of such an approach). Practically, the limit of
small pixel sizes in CCD devices also amplifies a number of internal noise contributions
and changes the overall signal-to-noise ratio.

3.2. Bayesian Modeling

3.2.1. General Concepts

The central step in Bayesian inference is the construction of priors, called Bayesian
modeling. In this step, we encode all a-priori information on u. The main difficulty is that
a-priori information is often of qualitative nature, whereas a prior represents quantitative
information. For instance, consider u†,∞ in the point source reconstruction scenario
(Figure 2.2a). Our qualitative a-priori information could be that the solution consists of
a few, small, circular bright objects. To turn this into quantitative information, we have
to specify what we mean by “few”, “small” and “bright” and find a suitable probability
density that would actually produce images similar to u†,∞. In general, many kinds of
a-priori information can be available:

• A certain representation that captures the most distinct features of u; maybe
a basis, frame or dictionary (cf. Section 1.3). Commonly, geometrical features
are chosen, e.g., spatial smoothness. In spatio-temporal scenarios, this can also
include known features of the temporal evolution.

• Information on the statistics of u with respect to the above representation; possibly
represented by parameters describing the distribution. Examples include moments,
location, shape or scale parameter, decay characteristic of the tails, multi-modality
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(in the sense of probability distributions).

• “Natural” constraints. Especially in biomedical imaging, the objects to recover are
restricted in some way. For instance, the neuronal activity in EMEG cannot lead
to arbitrarily high currents. Related to this is the a-priori definition of regions of
interest (ROIs) to restrict Ω.

• Multimodal integration (cf. Section 1.1): Information from another imaging
modality is incorporated to enhance the recovery of u. Examples include the
utilization of fMRI activations to enhance EMEG source localization. This
asymmetric data fusion operating on the level of the prior is not to be confused
with symmetric data fusion or joint reconstruction, which operates on the level of
the likelihood, e.g., combined EEG/MEG source reconstruction.

• Empirical information extracted from the solutions of previously inverted data.
Preferably, these solutions should come from similar scenarios with a better data
situation. One example is to construct a prior for limited-angle CT reconstructions
from solutions of full-angle CT scans of the same body part.

In this section, we will discuss how to account for the first three points. Apart from
encoding all available information the prior has to counteract the ill-posedness of the
inverse problem. For this, it has to be sufficiently informative or tight, especially in
regions where the likelihood is flat and uninformative. In addition, it should lead to a
posterior tractable in practical computations.

3.2.2. Incorporating Hard Constraints

The easiest part is to account for hard constraints, such as restricting the support of u
to a ROI or to restrict u(x) to a physical or physiological plausible interval, for instance,
to enforce non-negativity. A prior model p̃prior(u) defined on R

n can be restricted to
the feasible set C ⊂ R

n of all u admissible to the constraints by amending it with an
indicator function on C:

pprior(u) ∝ p̃prior(u) · 1C(u) =
{
p̃prior(u) if u ∈ C
0 otherwise

(3.9)

3.2.3. Gibbs Priors

Originating from statistical physics, Gibbs distributions often provide an accurate
description of the statistics of high-dimensional quantities u:

pprior(u) ∝ exp (−λJ (u)) (3.10)
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Here, J (u) is a functional measuring an energy of the configurational state of u. In the
context of inverse problems, especially in imaging, “energy” is to be understood in an
abstract sense, often rather related to entropy in the sense of information theory. In
the special case of J (u) being convex, the prior is called log-concave.
Using a Gaussian likelihood (3.6) with a Gibbs prior, the posterior is given by:

ppost(u|f) ∝ exp

(
−1

2
‖f − A(u)‖2Σ−1

ε
− λJ (u)

)
(3.11)

Computing ûMAP for this posterior (cf. (3.2)) can be done by minimizing the negative
logarithm of the posterior:

ûMAP = argmin
u∈Rn

{
1

2
‖f − A(u)‖2Σ−1

ε
+ λJ (u)

}
(3.12)

Comparing this expression with (1.5) and (1.8) reveals the close connection that the
MAP estimate establishes between Bayesian inference and variational regularization.

3.2.4. Gibbs Priors Based on �qp-Norms

A typical construction of Gibbs energies for Bayesian inversion relies on �p vector
norms. Let’s assume that the characteristic features of u can be extracted by a mapping
DT : Rn �→ Y and an a-priori estimate of the mean of u, μu is known. Then, a canonical
energy construction scheme would be given by

J (u) = dist
(
DT (u), DT (μu)

)q
, (3.13)

where dist : Y × Y �→ R is a quasi-metric which grows sub-exponentially fast. In this
thesis, we will only consider the case where DT is a linear mapping to R

h and μu = 0.
On R

h, defining dist(DTu, 0) by vector norms is then a convenient choice which leads to

pprior(u) ∝ exp
(
−λ

∥∥DTu
∥∥q

p

)
= exp

⎛
⎝−λ

(
h∑
i

|DT
i u|p

)q/p
⎞
⎠ , (3.14)

where Di ∈ R
h is, again, the i-th column of D. We will call this construction �qp-prior,

the special case of q = p simply �p prior. Besides D, which we assume to be normalized
in some way, the three scalar parameters λ, p and q control different aspects of the
multivariate distribution: λ controls the scale of pprior(u), while p and q determine the
shape of it. p controls the geometry of the level-sets of pprior(u) in R

n while q determines
the radial profile of it, i.e., the 1D distribution conditioned along a certain direction
v ∈ R

n. Figure 3.3 illustrates different choices of λ, p and q. Note that (3.14) also
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defines a prior in the case of 0 < p < 1, although ‖·‖p does not define a proper norm
anymore. In this case, the level-sets are not convex anymore (and the prior is, therefore,
not log-concave). In the case of 0 < q < 1, the prior is not log-concave either. Both
cases lead to practical challenges for many computational techniques.
Often, the components of u have certain sub-structures that we want to respect when
formulating a prior. In EMEG for example, we want to reconstruct a vector field based
on a source space {qi, ri} (cf. Section 2.4.1). The source space can be chosen in such
a way that the first three components of u correspond to three orthogonal dipoles
{qx1 , q

y
1 , q

z
1} placed at the same location. Often, one does not have any prior knowledge

on how to choose this local coordinate system and want our prior to be invariant with
respect to rotations of it. In addition, we may have a-priori knowledge about the spatial
distribution of amplitude of the currents, but not about their direction. Using (3.14)
with p �= 2 would not fulfill these requirements. We first have to group all components
of u that belong to one of the N different source locations, compute the amplitude of
the resulting current and formulate our prior information in terms of the amplitudes. If
we just want to impose a simple �qp prior with D = IN on the amplitudes, we can just
re-arrange the components of u to a matrix U ∈ R

N×3 and defining the prior by the
matrix norm

‖C‖r,p :=

⎛
⎝ N∑

i

(
l∑
j

|Cij|r
)p/r

⎞
⎠1/p

, for C ∈ R
N×l (3.15)

as

pprior(u) ∝ exp
(
−λ‖U‖q2,p

)
= exp

⎛
⎝−λ

(
N∑
i

(
u2
i,x + u2

i,y + u2
i,z

)p/2)q/p
⎞
⎠ (3.16)

We will call such constructions �qp-block priors as one formally has to order the compo-
nents of u into blocks.

The Gaussian Case

A special case is given by the �2 prior which corresponds to a Gaussian distribution

exp
(
−λ

∥∥DTu
∥∥2

2

)
= exp

(
−1

2
uT (2λDDT )u

)
= exp

(
−1

2
uTC−1u

)
, (3.17)

with covariance matrix C = (2λDDT )−1. By the same reasoning as for the noise model-
ing in Section 3.1, Gaussian distributions can be considered as the most fundamental
priors in Bayesian modeling. They can be used to model various different kinds of
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(a) (b)

Figure 3.3.: (a) Level sets of different (unnormalized) �qp priors for the values
{1/6, 2/6, . . . , 1}. Green lines: p = q = 2, λ = 2. Red lines: p = q = 1, λ = 2.
Blue lines: p = 2, q = 1, λ = 1.82. (b) Radial profiles thereof along the black line in (a).

a-priori information. Section 3.4. in Kaipio and Somersalo (2005) contains a
detailed introduction into Gaussian modeling and an illustrative collection of examples.
Besides these capacities, using Gaussians for both likelihood and prior distribution
facilitates the computational inference considerably: The resulting posterior is also
a Gaussian (see Figure 3.4a). Its mean and covariance can be computed explicitly.
Furthermore, ûMAP and ûCM coincide. Despite these advantages, Bayesian inference
methods with Gaussian priors also suffer from severe drawbacks. For instance, consider
recovering the Boxcar function (cf. Figure 2.1) with a Gaussian prior with DT being
the forward difference operator:

Di = ei+1 − ei, =⇒ DT
i u = ui+1 − ui, i = 1, . . . , n− 1 (3.18)

D is a discretization of the first spatial derivative with Neumann boundary conditions.
This choice puts a prior on the increments ξi := ui+1 − ui (increment prior) and aims
at recovering functions that can rather be characterized by their jumps than by their
values, which seems to be appropriate in this scenario. Figure 3.4b shows ûMAP(λ) for
three values of λ. The estimates are either too noisy or too smooth. The original
function u†,∞ has a sparse jump-set: DTu is sparse for any given n. In general, using
Gaussian priors, sparse solutions cannot be recovered. In addition, Bayesian inference
with Gaussian priors may suffer from other drawbacks, such as systematic errors. In
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Figure 3.4.: (a) Illustration of Bayesian inference with a Gaussian prior: Level sets of
likelihood (green), prior (red) and resulting posterior (blue). The markers indicate the
corresponding maxima. (b) MAP estimates for the “Boxcar” scenario (n = 63) using a
Gaussian prior with different λ and D being the forward difference operator.

Lucka (2011), the phenomenon of depth-bias in EEG/MEG source reconstruction was
examined: Using �2 priors, deep-lying sources are not reconstructed in the correct depth,
but always on the surface of the source space.
For these reasons, a lot of recent research, including the work for this thesis, was devoted
to examine non-Gaussian prior models.

�1 priors

If we compare the MAP estimate for �qp priors,

ûMAP = argmin
u∈Rn

{
1

2
‖f − A(u)‖2Σ−1

ε
+ λ

∥∥DTu
∥∥q

p

}
, (3.19)

with (1.8), and recall that solutions to (1.8) were sparse, we recognize that using an
�1 prior leads to a sparse MAP estimate. Comparing Figure 3.5a to 3.4a, one can
observe that due to the shape of the �1 prior, the MAP estimate (blue star) lies on the
vertical coordinate axis, which means that the component in horizontal direction is zero.
Comparing Figure 3.5b with Figure 3.4b, we see that using an �1 increment prior we
can obtain reconstructions with a sparse jump set, i.e., they are neither smooth nor
noisy. Hence, �1 priors seem like promising candidates for sparse Bayesian inference and
will be examined in more detail in this thesis.
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Figure 3.5.: (a) Illustration of Bayesian inference with an �1 prior: Level sets of
likelihood (green), prior (red) and resulting posterior (blue). The star markers indicate
the corresponding maxima, the dot marker the CM estimate of the posterior. (b) MAP
estimates for the “Boxcar” scenario (n = 63) using an �1 prior with different λ and D
being the forward difference operator.

Total Variation Priors

Total variation (TV ) deblurring techniques (Burger and Osher 2013, Rudin et al.
1992) try to solve (3.12) for J (u) being a discrete version of the total-variation seminorm:

TV(u∞) := sup
ϕ∈C∞0 (Ω;Rs)
‖ϕ‖∞�1

∫
Ω

u∞ divϕ dx, (3.20)

which is defined for functions u∞ ∈ Lp(Ω), Ω ⊂ R
s. Restricted to the Sobolev space

W 1,1, TV (u∞) becomes

TV(u∞) =
∫
Ω

‖∇u∞‖2dx, u∞ ∈ W 1,1. (3.21)

Total variation imaging is a prominent example of edge-preserving image reconstruction
techniques that are used in scenarios where the exact reconstruction of feature edges is
of superior importance to, e.g., the contrast of these features.
Using a discretized version TVdis(u) of TV(u∞) to define a Gibbs prior as pprior(u) ∝
exp(−λTVdis(u)) has become popular in Bayesian inversion as well (TV priors). The �1

increment prior used in the last paragraph is one possible realization of a TV prior in
1D. In 2D and higher dimensions, a direct implementation of (3.21) leads to isotropic
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TV techniques: The �2-norm of the gradient is implemented correctly and apart from
discretization errors, the prior is invariant with respect to rotations of the coordinate
system. For instance, for a 2D image where we can index the components of u as u(i,j)

with i = 1, . . . , N , j = 1, . . . , N , n = N2, we can use forward differences in both spatial
directions to define

piTV (u) ∝ exp

⎛
⎝−λ

n∑
(i,j)

√
(u(i+1,j) − u(i,j))2 + (u(i,j+1) − u(i,j))2

⎞
⎠ (3.22)

This corresponds to an �1-block prior (cf. (3.16)): piTV (u) ∝ exp (−λ‖Gu‖21), where
each row of G contains the discrete spatial derivatives, GT

(i,j) = (u(i+1,j)−u(i,j), u(i,j+1)−
u(i,j)). As in EMEG, we use a block prior on the amplitudes of a vector field (the
gradient field) in order to obtain rotation invariance. In contrast, anisotropic TV
techniques, derived from replacing (3.20) by an equivalent semi-norm (Berkels et al.
2006), can be implemented using a conventional �1 prior. In the most simple case, (3.21)
will be replaced by

aTV(u†,∞) :=
∫
Ω

∣∣∂xu†,∞∣∣ + ∣∣∂yu†,∞∣∣ dx, (3.23)

which can be used to define

paTV (u) ∝ exp

⎛
⎝−λ

n∑
(i,j)

∣∣u(i+1,j) − u(i,j)

∣∣ + ∣∣u(i,j+1) − u(i,j)

∣∣
⎞
⎠ = exp

(
−λ

∥∥∥∥∥
[
DT

x

DT
y

]
u

∥∥∥∥∥
1

)
.

(3.24)
Here, DT

x and DT
y implement the partial derivative in x and y direction. This prior

favors image edges aligned to the coordinate axes, but given a sufficiently high spatial
resolution, the differences between isotropic and anisotropic models are negligible.
Although TV priors are commonly defined as �qp priors with p = q = 1 (as above), we
will also examine their extension to other values of p and q.

Orthonormal Bases, Wavelets and Besov Space Priors

A special class of �p priors can be derived by choosing DT = WV T , where V is
an orthonormal basis {v1, . . . , vn} and W is a diagonal matrix of positive weights
{w1, . . . , wn}:

pprior(u) ∝
n∏
i

exp (−λwp
i |〈vi, u〉|

p) (3.25)

We consider bases V that were constructed by discretizing the first n basis functions
of an orthonormal basis of a suitable function space on Ω. The relative size of the
coefficients |〈vi, u〉| for growing i often encodes certain regularity features of u. Take for
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Figure 3.6.: Random draws from (3.25) for p = 1 and (a) a discrete cosine wave basis
(n = 64) with wi = iα and (b) a Haar wavelet basis (n = 128) with wi being the scale
weights raised to the power of α

instance V to be composed of discrete cosine waves (with increasing frequency). For
smooth functions u, the coefficients will be large for some small frequencies and decay
quickly for large ones. Non-smooth functions u that consist of many oscillations on
small spatial scales will have a lot of large high frequency coefficients. Using a prior
model like (3.25), we can adjust the relative variance of the different frequencies by wi

to choose whether smooth or non-smooth functions u should a-priori be more or less
likely. An illustration is given in Figure 3.6.
A very promising class of orthonormal bases for imaging applications is given by wavelets
that form a multiresolution analysis. These bases consist of wavelets generated from
dyadic dilations and translations of certain generating functions that are piecewise
continuous and compactly supported (see Figures 3.7a and A.3). As a result, u is
decomposed into different scales and locations. The compact localization in space is
an advantage of wavelet analysis over Fourier analysis, which is not suited to represent
localized small scale variations or discontinuities of u in a compact way. Especially for
the analysis of “natural” images or signals, wavelet-based multiresolution approaches
can yield superior results (cf. Figures 1.6c and 3.7b).
As for the discrete cosine prior, using these bases allows to assign different variances to
image features on different spatial scales which induces a certain type of spatial regularity.
A specific, scale-dependent choice of wi yields the Besov space priors introduced in
Lassas et al. (2009). They have some appealing properties for Bayesian inversion
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(a) (b)

Figure 3.7.: (a) Visualization of the Haarwavelet basis in 1D: Each row of the image
represents a basis function vi. The color scale ranges from blue (negative) to red
(positive), cf. Figures 2.12b and 2.11b. One can clearly observe the dilation and
translation. (b) Reconstruction of Figure 1.6a after keeping only the 1% largest discrete
cosine transformation (dct) coefficients.

which will be examined in Section 5.2.6.

Notes and Comments

The definition of multivariate priors by �qp norms is inspired by variational regulariza-
tion approaches using corresponding energies (cf. (3.19)), and the infinite dimensional
Hilbert/Banach space setting behind the continuous models. As it also facilitates prac-
tical computations, similar approaches are used in related fields where high dimensional
settings dominate, for instance in statistical (machine) learning. In traditional Bayesian
statistics, one would deduce priors from concepts such as maximum entropy or by
characteristic functions. This leads to the use of exponential families as prior models,
which also possess a structure that facilitates practical computations.
For these reasons, the priors commonly used in traditional Bayesian statistics and
in Bayesian inverse problems differ. In particular, the �1 prior can be considered a
product of 1D Laplace distributions but is not a multivariate extension of the 1D
Laplace distribution as often confused in Bayesian inversion literature. One possibility
to define such an extension is discussed in Eltoft et al. (2006)). Another issue is
the incorporation of covariance information by D. An explicit relation to the prior
covariance is only given in the Gaussian case where C = (2λDDT )−1. We will further
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discuss this issue in Section 6.1.
Bayesian modeling is one of the big advantages of Bayesian inference, but not really
exploited here. We only described general constructions to encode scaling and general
relationships between coordinates. Sophisticated models include contextual, geometri-
cal, physiological or empirical information and draw from the rich field of (stochastic)
mathematical modeling. On the other hand, computational inference for such models
may be more challenging.
While Figure 3.5b shows that MAP estimation for the TV prior is able to recover
the edges of u†,∞ within the computational grid, it also reveals a crucial drawback of
standard TV-based reconstructions: The estimates increasingly suffer from contrast loss.
This well-known phenomena is more than a simple scaling problem as suggested by our
example. In Osher et al. (2006), Bregman iterations were developed to compensate for
it: A series of MAP estimates is computed for a prior that is iteratively updated. While
this idea is conceptually close to inference procedures used in hierarchical Bayesian
modeling (which we will introduce in Section 3.3), the rigorous formalization of the
Bregman iteration within the Bayesian framework is not straightforward. See Burger

and Osher (2013) for further details and a possible Bayesian interpretation.

3.2.5. Heavy-tailed Prior Models

The decay of a 1D distribution p(u) for |u| −→ ∞ (the tails of the distribution)
determines the likelihood of u taking exceptionally large absolute values. For many
phenomena, empirical distributions have been observed which cannot be described by dis-
tributions that are exponentially bounded : They cannot be dominated by C exp (−α|u|)
for any choice of C and α. Such distributions are called heavy-tailed. In the multivariate
case, the decay of the distribution into any particular direction (the radial profile)
determines whether a distribution is heavy-tailed or not. For instance, all �qp priors
with q � 1 are not heavy-tailed as they are exponentially bounded for ‖u‖2 −→ ∞. For
general Gibbs priors, the growth of J (u) for this limit is important.
While �qp priors are heavy-tailed for q < 1, we will also examine a class of distributions
with an even slower tail decay, namely, a power law decay: Fat-tailed distributions are
characterized by an asymptotic decay of

p(u) ∼ ‖u‖−(1+α) as ‖u‖ −→ ∞, α > 0. (3.26)

They occur in the description of extreme events such as earthquakes. Fat-tailed
distributions often do not have finite moments, in particular no finite covariance for
0 < α < 2, and are not log-concave. A popular example of a fat-tailed distribution in
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1D is the (centered) Cauchy distribution:

p(u) ∝
(
1 +

u2

θ

)−1
(3.27)

which decays like |u|−2. Here, θ determines the scale of the distribution, but should not
be confused with the (non-existent) variance. The Cauchy distribution is a special case
of the generalized (but centralized) Student’s t-distribution:

p(u) ∝
(
1 +

1

ν

(
u2

θ

))− ν+1
2

(3.28)

with ν > 0 degrees of freedom. The Student’s t-distribution decays like |u|−(ν+1). From
(3.28) we can construct a multivariate prior of the form:

pprior(u) ∝
h∏
i

(
1 +

1

ν

(
(DT

i u)
2

θ

))− ν+1
2

= exp

(
−ν + 1

2

h∑
i

log

(
1 +

(DT
i u)

2

ν θ

))
, (3.29)

where DT
i ∈ R

n, i = 1, . . . , h corresponds to the i-th row of a matrix D (similar to the
construction of �qp priors). We will refer to (3.29) as product t-prior and to the special
case of ν = 1 as product Cauchy prior. As demonstrated in (3.29) this prior can, of
course, be written as a Gibbs prior with a logarithmic energy term (cf. (3.10)). However,
compared to other prior models, this is not a “natural” description. One should also
note that the parameterization does not allow for a linear scaling of the energy as in
exp (−λJ (u)). Figure 3.8 shows the level-sets and radial profiles of three heavy-tailed
distributions. An interesting feature of the product t-priors compared to �qp priors is
that their level-sets change their shape from a convex, �2-like shape near the origin
to a non-convex shape. Figure 3.9 illustrates the use of the product Cauchy prior in
Bayesian inversion.
As in the case of �qp priors we might want to preserve certain sub-structures in the
components of u. We can define product t-block priors as

pprior(u) ∝
h∏
i

⎛
⎜⎝1 +

1

ν

⎛
⎜⎝

∥∥∥DT
[i]u

∥∥∥2

2

θ

⎞
⎟⎠

⎞
⎟⎠
− ν+1

2

(3.30)
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(a) (b)

Figure 3.8.: (a) Level sets of different (unnormalized) non-log-concave priors for the
values {e0, e−1, e−2, . . .}. Green lines: �p prior with p = 1/2, λ = 2. Red lines: Product
Cauchy prior with θ = 0.03. Blue lines: Product t-prior with θ = 0.03, ν = 2. (b)
Radial profiles thereof along the black line in (a), with a logarithmic scaling of the
vertical axis.

where DT
[i] ∈ R

hi×n, i = 1, . . . , h. In the case of EEG/MEG, DT
[i] extracts the hi = 3

vector components at the i-th location and
∥∥∥DT

[i]u
∥∥∥
2

would compute the corresponding
current amplitude.

Notes and Comments

The parameterization of the product t-priors used in this thesis is rather non-standard
but allows for an easy comparison with the other prior models. Note that multivariate
t-distributions are commonly not defined by (3.29) but rather as

p(u) ∝
(
1 +

1

ν
(u− μ)TΣ−1(u− μ)

)− ν+n
2

(3.31)

with a scale matrix Σ. In the context of variational regularization, the properties of the
product Cauchy energy as a regularization term were analyzed in Offtermatt and

Kaltenbacher (2011), where also promising numerical results were presented.
In correspondence to �p priors, it is tempting to generalize the product t-prior by
replacing (DT

i u)
2 with |DT

i u|p. While such distributions have not been considered in
statistics (to the best of our knowledge), we will see that we can derive them from a
hierarchical Bayesian model in Section 3.3.3.
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Figure 3.9.: (a) Illustration of Bayesian inference with a Cauchy prior: Level sets of
likelihood (green), prior (red) and resulting posterior (blue). The star markers indicate
the corresponding maxima; the dot marker the CM estimate of the posterior. (b) MAP
estimates for the “Boxcar” scenario (n = 63) using a Cauchy prior with different θ and
D being the forward difference operator.

3.2.6. Normalization and Improper Priors

Prior distributions do not necessarily have to be proper probability distributions in
the sense that they are normalizable, i.e., that they are in L1(Rn). They only have to
complement the likelihood distribution as a function of u in such a way that the posterior
is normalizable. For linear inverse problems they have to be proper distributions only
on the sub-spaces spanned by the singular vectors of A corresponding to singular values
that are very small or even zero. Applied to the prior models introduced above, this is
achieved if the condition of DT restricted to these sub-spaces is sufficiently large. In
particular, the null-space of DT should not overlap with them. Another example is to
use only hard constraints as a prior. While the Lebesgue measure of C may be infinite
or zero, their usage can lead to a proper posterior. Prior distributions that are not
normalizable are called improper priors. As one normally tries to incorporate as little
a-priori knowledge as possible to rather let the data determine the solution, their usage
is very common.
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3.3. Hierarchical Bayesian Modeling

Hierarchical Bayesian modeling (HBM ) is an extension of classical Bayesian modeling.
The aim is to construct complex prior models that comprise different levels for the
embedding of a-priori information of different origin and kind, organized in a top-down
structure. In this thesis, we will mainly use HBM to develop alternative prior models
for sparse Bayesian inversion that have interesting properties compared to �p priors. We
will first develop HBM as an intuitive extension of Gaussian priors, and then generalize
this construction to �p priors.
In Figure 3.4b, we saw that modeling all increments of a function as Gaussian random
variables,

pprior(u) ∝
∏
i

exp
(
−λ(ui+1 − ui)

2
)
, (3.32)

is not suited for recovering functions with sparse increments. From a stochastic perspec-
tive, this is not surprising: Gaussian variables take their values on a characteristic length
scale defined by their standard deviation; they are not scale invariant. If all increments
have the same standard deviation 1/

√
2λ, it is rather likely that their amplitudes are

also similar. A sparse (or rather compressible, cf. Section 1.3) increment vector would
consist of a few large-scale and a lot of small-scale increments. Within the Gaussian
model, such vectors are extremely unlikely. The key idea is now to replace the fixed,
uniform standard deviation of the Gaussian model by an individual, flexible γi for every
component,

pprior(u) ∝
n−1∏
i

exp

(
−(ui+1 − ui)

2

γi

)
, (3.33)

and to estimate γi from the data as well. Such parameters that determine the prior and
have to be estimated from the data as well are called hyperparameters or latent variables.
The latter term emphasizes that, in contrast to u, they were artificially introduced,
often do not have a concrete physical meaning, and cannot be observed directly. In the
Bayesian approach, they are modeled as random variables as well and their uncertainty
is, again, modeled by a prior distribution phyper(γ) on the vector of γi’s (hyperprior).
The joint prior over u and γ is usually expressed in the conditional form as

pprior(u, γ) ∝ pprior(u|γ) phyper(γ) (3.34)

and the full posterior for both u and γ becomes

ppost(u, γ|f) ∝ plike(f |u) pprior(u|γ) phyper(γ). (3.35)
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As the posterior now depends on two different kinds of unknowns, more possibilities for
Bayesian estimation are available (see “Notes and Comments”). We will concentrate on
fully-Bayesian estimates, which treat u and γ in an equal way:

(ûMAP, γ̂MAP) := argmax
(u,γ)

{ ppost(u, γ|f)} (3.36)

( ûCM , γ̂CM ) :=E [(u, γ)|f ] =
∫

(u, γ) ppost(u, γ|f) du dγ (3.37)

In Figure 3.10, the extension of the Gaussian increment model to an HBM using an
inverse gamma distribution,

phyper(γ) ∝
∏
i

γ
−(α+1)
i exp

(
− β

γi

)
, (3.38)

as a hyperprior is illustrated. With increasing spread of the hyperprior, the individual
γi’s are allowed to vary more widely. As a result, two components of the increment
vector can take significantly larger values than the rest and accurately reproduce the
block function.
In principle, any parameters of the prior can be declared a hyperparameter and be
estimated from the data. The next section describes the specific construction we examine
in this thesis. Further models can be found in the “Notes and Comments” section.
Hyperprior modeling is presented in Section 3.3.3.

3.3.1. Conditionally �p Hypermodels

The construction scheme used to extend the Gaussian increment model to the HBM
(3.33) can easily be generalized to �p priors,

exp
(
−λ

∥∥DTu
∥∥p

p

)
=

h∏
i

exp
(
−λ

∣∣DT
i u

∣∣p) , (3.39)

by replacing the uniform scale parameter 1/λ with an individual γi:

pprior(u|γ) =
h∏
i

1

N (γi)
exp

(
−

∣∣DT
i u

∣∣p
γi

)
(3.40)

The normalization factor N (γi) depends on γ. In principle, this dependence has to
be computed in order to build (3.35). However, any particular dependence can be
compensated for by choosing a specific hyperprior. Even if this leads to an improper
prior, the posterior can still be proper (cf. Section 3.2.6). Therefore, we will only
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approximate the dependence of normalization, but in a way that is exact for invertible
D. We can easily compute that

∫
exp

(
− 1

γi
|v|p

)
dv =

∫
exp

(
−

∣∣∣∣∣ v

γ
1/p
i

∣∣∣∣∣
p)

dv
sub.
= γ

1/p
i

∫
exp (−|w|p) dw.

Hence, we can define the (conditionally) �p hypermodels as

pprior(u|γ) :∝
h∏
i

γ
−1/p
i exp

(
−

∣∣DT
i u

∣∣p
γi

)
= exp

(
−

h∑
i

∣∣DT
i u

∣∣p
γi

− 1

p
log(γi)

)

= exp

(
−

∥∥Γ−1/pDTu
∥∥p

p
− 1

p
log(det (Γ))

)
, with Γ :=diag (γ1, . . . , γh) (3.41)

The generalization to (conditionally) �p-block hypermodels can be done similar to (3.30),
only the normalization has to be adapted:

pprior(u|γ) ∝
h∏
i

γ
−hi/p
i exp

⎛
⎜⎝−

∥∥∥DT
[i]u

∥∥∥p

2

γi

⎞
⎟⎠ (3.42)

3.3.2. Hyperprior Modeling

Prior models for the positive scale parameters γ in �p hypermodels are usually different
from those introduced for u in Section 3.2. For instance, a prior for ui would be
non-informative if it is translation invariant:

P(ui ∈ [a, b])
!
= P(ui ∈ [a+ c, b+ c]) ∀ c ∈ R (3.43)

Obviously, only the flat prior pprior(ui) ∝ 1 fulfills this requirement. Using this prior
for all components ui basically means that u is solely determined by the likelihood,
i.e., by the data. For a scale variable γi, a hyperprior would be non-informative if the
probability that the variable lives on a certain scale is invariant:

P(ui ∈ [ea, eb])
!
= P(ui ∈ [ea+c, eb+c]) ∀ c ∈ R (3.44)

A flat hyperprior would not fulfill this requirement. Instead, the non-informative
hyperprior is given by the fat-tailed phyper(γi) ∝ γ−1i :

P(ui ∈ [ea+c, eb+c]) =

∫ eb+c

ea+c

1

γi
dγi = log

(
eb+c

)
− log

(
ea+c

)
= b− a. (3.45)
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Figure 3.10.: Extension of the Gaussian prior (3.32) to an HBM (3.33). (a) Inverse
gamma hyperpriors with mean γ(λ) = 1/1002 and increasing variance. (b) Correspond-
ing MAP estimates using an HBM. The legend displays the hyperprior parameter (α, β),
cf. Section 3.3.2. The first hyperprior (blue line) is very narrow. As a result, the
corresponding MAP estimate does not differ from the corresponding Gaussian model
with λ = 1002, cf. Figure 3.4b. For growing variance, the estimates change. Black line:
MAP estimate using a parametrization of the hyperprior chosen to achieve the best
reconstruction results, but with a different mean. The corresponding hyperprior would
not fit well into plot (a).

In HBM, we often do not have too much a-priori knowledge about γ except that its
components should be mutually independent. Therefore, we would like to use the
non-informative hyperprior on all γi to let the data determine them. However, the
improper distribution γ−1i leads to an improper posterior (Gelman 2006) and cannot
be used. Instead, approximations are used that preserve certain properties of γ−1i while
suppressing others. One possibility is given by the inverse gamma distribution:

phyper(γi) ∝ γ
−(α+1)
i exp

(
− β

γi

)
= exp

(
− β

γi
− (α + 1) log(γi)

)
, (3.46)

with the shape parameter α > 0 and the scale parameter β > 0. The ratio behind this
choice is that α > 0 is introduced to increase the decay towards infinity. Now, the tail
is integrable, but at the price of blowing up the integral towards zero. This is fixed by
introducing the mollifier exp(−βγ−1i ), a positive function that decreases fast to zero for
small values of γi and approaches 1 for large values of γi. The mollifier leads to a cut-off
at a certain scale, determined by β, while not interfering with the power law decay.
Figure 3.11 illustrates this construction. Inverse gamma distributions have the further
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Figure 3.11.: Illustration of the approximation of γ−1i by the inverse gamma distribu-
tion.

advantage that they are conjugate to the �p hypermodel pprior(u|γ): Conditioned on u,
the prior is also a product of inverse gamma distributions

pprior(γ|u) ∝
h∏
i

exp

(
−

∣∣DT
i u

∣∣p + β

γi
− (α + 1 + 1/p) log(γi)

)
(3.47)

with the parameters ᾱi = α + 1/p and β̄i =
∣∣DT

i u
∣∣p + β. A potential drawback of using

the fat-tailed inverse gamma hyperprior is the non-convexity of its energy, i.e., the
hyperprior is not log-concave. A related approximation of γ−1i is given by the gamma
distribution,

phyper(γi) ∝ γα−1
i exp

(
−γi
β

)
= exp

(
−γi
β

+ (α− 1) log(γi)

)
, (3.48)

which is log-concave and exponentially bounded for α � 1 (for α = 1 it reduces to the
exponential distribution). Section A.1.7 in Lucka (2011) contains a detailed comparison
between both distributions.
Another popular approximation is given by the log-normal distribution describing a
random variable constructed as γi = exp(z) where z ∼ N (μ, σ):

phyper(γi) ∝ γ−1i exp

(
−(log(γi)− μ)2

2σ2

)
(3.49)

Here, γ−1i is modulated around a mean scale μ. Choosing a large value of σ leads to a
better approximation.
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3.3.3. Implicit Priors

The hyperparameter were only introduced to construct priors by a certain scheme. As
already noted, they do not have a physical meaning by themselves. One might therefore
ask, which implicit prior on u,

pprior(u) =

∫
pprior(u|γ)phyper(γ) dγ, (3.50)

results from their use. For �p hypermodels with an inverse gamma hyperprior, we can
explicitly compute it:

∫
pprior(u|γ)phyper(γ) dγ

u∝
h∏
i

∫
exp

(
−

∣∣DT
i u

∣∣p + β

γi
− (α + 1 + 1/p) log(γi)

)
dγi

(3.51)
The integrands are inverse gamma distributions with parameters ᾱi = α + 1/p and
β̄i =

∣∣DT
i u

∣∣p + β. The integrals are therefore given by the normalization of these
distributions:

h∏
i

∫
exp

(
− β̄i

γi
− (ᾱi + 1) log(γi)

)
dγi =

h∏
i

Γ(ᾱi)

β̄ᾱi
i

=
h∏
i

Γ(α + 1/p)(
|DT

i u|
p
+ β

)(α+1/p)

u∝
h∏
i

(∣∣DT
i u

∣∣p + β
)−(α+1/p) u∝

h∏
i

(
1 +

∣∣DT
i u

∣∣p
β

)−(α+1/p)

(3.52)

Here, Γ(x) denotes the Gamma function. It turns out that the implicit prior is a
heavy-tailed distribution that looks like a re-parameterized generalization of the product
t-prior defined in (3.29) which we obtain for p = 2, α = ν/2 and β = νθ. Using a
similar parameterization as (3.29), we will therefore define the product tp-prior as:

pprior(u) ∝
h∏
i

(
1 +

1

ν

(∣∣DT
i u

∣∣p
θ

))−ν+1
p

(3.53)

Figure 3.12a compares the level-sets of different product tp priors and Figure 3.12b
illustrates the use of the product t1 prior.

3.3.4. Notes and Comments

To the best of our knowledge, neither �p hypermodels nor product tp priors have been
considered for Bayesian inversion apart from p = 1, 2 (see, e.g., Garrigues and

Olshausen 2010, for an �1 hypermodel).
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(a) (b)

Figure 3.12.: (a) Level sets of different (unnormalized) product tp-priors for the values
{e0, e−1, e−2, . . .}. Green lines: p = 2, ν = 2, θ = 0.03. Red lines: p = 1.5, ν = 1,
θ = 0.06. Blue lines: p = 1, ν = 1, θ = 0.3. (b) Illustration of Bayesian inference with
a product t1 prior: Level sets of likelihood (green), prior (red) and resulting posterior
(blue). The star markers indicate the corresponding maxima, the dot marker the CM
estimate of the posterior.

Note that the HBM construction here is different from the one used in Lucka (2011),
where Gaussian scale mixture models were defined as

pprior(u) ∼ N (0,Σu), Σu =
h∑
i

γiCi

=⇒ pprior(u) ∝ exp

⎛
⎝−1

2
uT

(
h∑
i

γiCi

)−1

u

⎞
⎠

with semi-positive definite covariance components Ci. This can easily be extended to
other multivariate distributions that are constructed from 1D distributions by replacing
the uni-variate quantity u2/σ2 by uTΣ−1u with a scale matrix Σ (elliptical distributions,
cf. the notes to Section 3.2.5). However, it cannot be extended to �qp prior models with
a general D for p �= 2: In this case, we do not have an explicit analogue to a scale
matrix. Therefore, we use a hierarchical extension of D as described above and use the
term “�p hypermodel” to differentiate it from scale mixture models. In the Gaussian
case, we can transform

pprior(u) ∝= exp

(
−1

2

∥∥∥√2Γ−1/2DTu
∥∥∥2

2

)
= exp

(
−1

2
uT

(
2DΓ−1DT

)
u

)
, (3.54)
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so we indirectly model the inverse covariance matrix
(
2DΓ−1DT

)
by a direct modeling

of Γ−1/2DT . However, in general, both HBM formulations for the Gaussian case are
different. An exception here is the case D = In.
Fully-Bayesian inference as applied in this thesis relies on treating u and γ equally. As u
corresponds to the physical quantity of primary interest while γ is just a mathematical
parameter we introduced to formulate the prior model, this is not the only reasonable
choice. Type I approaches first integrate the joint posterior with respect to γ and then
maximize it with respect to u, usually in an iterative expectation maximization (EM )
scheme. Type II or empirical Bayesian approaches first integrate over u and maximize it
with respect to γ to then use the prior model corresponding to this optimal γ to infer u
in a classical Bayesian way. Again, EM schemes are typically used for the computational
tasks. Both methods are normally referred to as semi-Bayesian methods. Variational
Bayesian approaches assume that the joint posterior factorizes with respect to u and γ

and approximate the single-variable posteriors by distributions that facilitate the use of
alternating updating schemes. They are normally referred to as approximate-Bayesian
methods.
While we use the term “hierarchical Bayesian model” in this thesis for a very specific
type of prior construction, there is no sharp general definition of it. Hierarchical models
can be considered as a specific type of Bayesian (belief) networks, also known as latent
variable or graphical models, which are among the most popular inference models used
in contemporary statistics, in particular in the wider field of machine learning. A general
reference is given by MacKay (2003). A recent overview of hierarchical models used in
EEG/MEG source reconstruction can be found in Lucka (2011), further examples in
other inverse problems include Bardsley et al. (2010), Calvetti and Somersalo

(2007, 2008), Helin (2010b), Helin and Lassas (2009), Wang et al. (2013).

3.4. Bayesian Estimation and Decision Theory

3.4.1. Bayesian Estimators

Apart from the two popular point estimates ûMAP and ûCM, the information contained
in the posterior can be exploited in other ways:

• Point estimates can be based on other criteria. In the next section, we will develop
a theoretical framework to derive alternative point estimates that are optimal for
certain criteria. Another example are heuristically defined estimates. For instance,
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we could define û such that ûi is the median of the marginal posterior on ui:

pipost(ui|f) :=
∫

ppost(u|f) du1 . . . dui−1 dui+1 . . . dun (3.55)

• Credible interval estimates are a Bayesian analogue to confidence intervals in
frequentist statistics: For a component ui, one searches for intervals [a, b] that
contain a certain fraction p of the probability mass of the marginal posterior on
ui. There are different possible choices of such intervals. One could search for
the narrowest interval, an interval such that pipost(a|f) = pipost(b|f), such that it is
centered around the mean, or that it fulfills other reasonable constraints.

• Credible region estimates are a multivariate version of credible intervals: One
searches for superlevel sets of the full posterior containing a certain fraction p of
the total posterior probability mass.

• Extreme value probabilities try to estimate the a-posteriori probability that a
feature g(u), g : Rn −→ R exceeds some critical value.

• Conditional covariance (CCov) estimates try to assess the spatial distribution of
the variance and explore the dependencies between the components of u:

Cov [u|f ] =
∫

(u− ûCM)(u− ûCM)
T ppost(u|f) du (3.56)

Conditional variance (CVar) and conditional standard deviation (CStd) are defined
accordingly.

The computational challenges of the different estimates vary considerably. We will
revisit this issue in the next Chapter.

3.4.2. Bayes Cost Method

In the Bayesian framework, an estimator û for u† is a random variable as well: It
relies on the random variables ε and u. As such, it might perform well in certain cases
while giving catastrophic results in others. Bayesian decision theory (or more general,
statistical estimation theory) examines the general behavior of estimators to find optimal
estimators for a given task. A common approach to measure the desired and undesired
properties of an estimator û is to define a cost or loss function Ψ(u, û). This is the basis
of the Bayes cost method : The Bayes cost is defined by the expected cost or average
performance:

BCΨ(û) :=E [Ψ(u, û(f))|f ] =

∫ ∫
Ψ(u, û(f)) p(u, f) du df
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=

∫ ∫
Ψ(u, û(f)) plike(f |u) df pprior(u) du

(3.1)
=

∫ ∫
Ψ(u, û(f)) ppost(u|f) du p(f) df (3.57)

The Bayes estimator ûΨ is the estimator, which minimizes BCΨ(û):

ûΨ := argmin
û

{BCΨ(û)} (3.58)

In (3.57), û(f) only depends on f and the marginal density p(f) is non-negative. Thus,
ûΨ also minimizes

ûΨ(f) = argmin
û

{∫
Ψ(u, û(f)) ppost(u|f) du

}
. (3.59)

The Bayes cost method is one way to design estimators for a given task. Conversely,
it can be used to examine estimators that were defined in other ways by deriving and
comparing their Bayes cost functions. A focus of this thesis is to compare MAP and
CM estimates for sparse prior models in high dimensional scenarios. Once defined (cf.
(3.2) and (3.3)), an immediate and obvious question arises: What are their differences
and which of them is “better”? This is not only a matter of constant debate within
the field of Bayesian inversion, but due to the direct correspondence of ûMAP to the
solution of (3.12), it is also a dispute with the field of variational regularization theory.
In the next section, we will review the “classical” view on this issue as found in all
standard presentations on Bayesian inference (see, e.g., Gelman et al. 2003, Kaipio

and Somersalo 2005, Kay 1993).

3.4.3. MAP or CM Estimation: The Classical View

The CM estimate is the mean of the posterior, while the MAP estimate is the (highest)
mode of the posterior (see Figure 3.13a). However, this does not provide any intuition
why one of them should be better suited to represent a distribution. Hence, a lot of
presentations of the topic provide plots of hypothetical distributions like Figures 3.13b
and 3.13c to show that none of them is better in general. However, one might argue
that the CM estimator as the mean value is an intuitive choice: It is the “center of
(probability) mass” and corresponds to the average of a sample, familiar from every-day
descriptive statistics.
As the illustrative comparison does not give any useful intuition, the Bayes cost formalism
is usually used to provide a decisive theoretical argument:
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Figure 3.13.: (a) Comparison of MAP and CM estimates for two posterior densities.
(b)-(c) Hypothetical, bimodal posterior distributions to show that none of the point
estimates is better in general.

• The CM estimate is the Bayes estimator for the mean squared error,

ΨMSE(u, û) = ‖u− û‖22, (3.60)

which seems to be a very natural and reasonable choice for Ψ. Interpreted
geometrically, one also speaks of a “well-centeredness” of ppost(u|f) around ûCM.
As it is by default unbiased with respect to ppost(u|f), one can further show that
ûCM is also the minimum error variance estimator.

• On the other hand, the MAP estimate can only be seen as an asymptotic Bayes
estimator of

Ψδ(u, û) =

⎧⎨
⎩0 if ‖u− û‖∞ � δ

1 otherwise
(3.61)

for δ → 0 (uniform cost or 0-1 loss). Therefore, it is usually not considered a
proper Bayes estimator. This characterization also does not seem to allow for an
intuitive geometrical interpretation of ûMAP akin to the one for ûCM.

In summary, the classical view favors the CM estimate and discriminates the MAP
estimate on the basis of the Bayes cost method.
The theoretical difference between MAP and CM estimates seems to fit to the different
kind of operation by which they are defined: One as an optimization, the other as
an integration task (cf. (3.2), (3.3)). Our computational studies will involve the
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computation of many MAP and CM estimates. In light of these results, we will revisit
the “MAP or CM?” question in Chapter 6, where we will also provide new theoretical
results.

3.4.4. Notes and Comments

Due to computational challenges, the full range of Bayesian estimation in high dimen-
sional inverse problems is rarely explored up to now. Exemplary applications to remote
sensing, algae population dynamics, image deblurring and geothermal reservoir modeling
can be found in Calvetti and Somersalo (2007), Cui et al. (2011), Haario et al.
(2004, 2006).

3.5. Recovery Conditions for MAP Estimates

In this section, we will introduce concepts from compressed sensing (cf. Section 1.3) to
examine the performance of MAP estimates for �1 priors in the noise-free limit, i.e., we
assume tr (Σε) −→ 0:

plike(f |u) ∝ 1{Au=f}(u) (3.62)

We are particularly interested whether the exact recovery of sparse u† is possible, i.e.,
ûMAP = u†. These examinations can be seen as complementary to Bayesian decision
theory. Examining ûMAP in this limit is related to the concept of consistency of estimators
in frequentist statistics, and can be seen as assessing the “best-case” performance: In
practical applications, the noise-free limit often corresponds to optimal measurement
conditions like the limit of long recording times or high radiation doses in CT or the
limit of many averaged trials in the EP/EF analysis with EMEG. The assumption of u†

being really sparse rather than compressible should also be understood in a “best-case”
sense: For the continuous prior models we use, the probability of |u|0 < n is zero.
In this section and the following chapters, basic concepts from convex analysis will be
used which are summarized in Section A.1. An extensive reference containing the proofs
to all presented theorems is given by Foucart and Rauhut (2013).

Basic Properties We are interested in recovering u† being the unique k-sparse solution
to Au = f : {u |Au = Au†, |u|0 � k} = {u†}. It turns out that u† is the unique solution
to

min |u|0, s. t. Au = f. (L0)
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While solving (L0) is difficult we recall that computing ûMAP for an �1 prior and (3.62)
would correspond to solving

min‖u‖1, s. t. Au = f. (L1)

This problem (also called basis pursuit) is considerably less difficult to solve due to the
convexity of the �1-norm. Hence, conditions that guarantee that u† and ûMAP are equal
would be very advantageous. For the most fundamental one we have to define:

Definition 3.1. A matrix A ∈ R
m×n is said to satisfy the null space property (NSP)

relative to a set I ⊂ {1, . . . , n} if

‖vI‖1 < ‖vIc‖1 ∀ v ∈ ker(A) \ {0}, (NSP)

where vI/VIc are the vectors of all components of v belonging to I/Ic. A satisfies the
null space property of order k if it satisfies the NSP relative to all sets with card(I) � k.

The NSP basically requires the kernel of A to be spread out in R
n; in particular, it

should not contain any sparse elements.

Theorem 3.1. Given A ∈ R
m×n, every u† ∈ R

n with support I is the unique solution
to (L1) with f = Au† if and only if A satisfies the NSP relative to I.

Theorem 3.2. Given A ∈ R
m×n, every k-sparse u† ∈ R

n is the unique solution to (L1)
with f = Au† if and only if A satisfies the NSP of order k.

Theorem 3.1 is an example of a non-uniform or local recovery condition as it depends
on the concrete u†, while Theorem 3.2 is a uniform or global recovery condition that
guarantees the recovery for all k-sparse u†. While both NSP conditions are optimal
in the sense that they are necessary and sufficient, they are hard to verify in practice.
In the next two sections, we will examine stronger conditions that will imply that the
NSP condition holds but are easier to compute.

Normalization Some of these conditions will require A to be column-normalized:
‖Ai‖2 = 1. Let W := diag (‖A1‖2 . . . , ‖An‖2), A� :=AW−1, v :=Wu. Then, Au = A�v

and we can also examine the normalized problems:

v† := argmin |v|0, s. t. A�v = f (nL0)

v̂MAP := argmin‖v‖1, s. t. A�v = f (nL1)

Note that v̂MAP corresponds to the MAP estimate for an �1 prior with diagonal weighing
matrix D = W . We can also re-transform ûv :=W−1v̂MAP, but this estimate does not
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correspond to a MAP estimate in an obvious way anymore. We will examine the
differences between normalized and un-normalized recovery in more detail in Section
5.4.6. If we formulate a recovery condition using A� it means that this condition is only
valid for the normalized setting. If we use A instead, it can be used in both cases.

3.5.1. Uniform Recovery Conditions

The strongest uniform condition is related to the coherence of a matrix A,

μ(A) :=max
i 
=j

|AT
i Aj|

‖Ai‖‖Aj‖
, (3.63)

which measures the maximal similarity of the matrix columns by their scalar product.
One can show that the bounds√

1

m
�

√
n−m

m(n− 1)
� μ(A) � 1 (3.64)

hold. Two matrix columns Ai and Aj correspond to the signals Av1, Av2 produced
by two 1-sparse solutions v1 = ei, v2 = ej. Intuitively, if the coherence is small, they
cannot be too similar and it should be possible to separate v1 and v2 correctly. The
next theorem formalizes this:

Theorem 3.3. Let A� ∈ R
m×n have �2 normalized columns. If

k � 1
2
(μ(A�)−1 + 1), (Coh)

then every k-sparse u† can be recovered as the unique solution to (L1) with f = A�u†.

While the coherence is easy to compute, its recovery guarantees are rather restrictive
and can be improved a lot by conditions that rely on the restricted isometry constant
of A�, which is the smallest number δk such that

(1− δk)‖u‖22 �
∥∥A�u

∥∥2

2
� (1 + δk)‖u‖22 ∀u : |u|0 � k. (3.65)

There are different theorems relying on δk that give sufficient conditions under which
further assumptions (such as noise or modeling errors) which algorithm will recover any
k-sparse u†. They typically take the form

δpk < δ∗, (3.66)

where p is an integer. For our purpose, we have:
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Theorem 3.4. Let A� ∈ R
m×n have �2 normalized columns. If

δ2k � 4/
√
41 ≈ 0.6246, (RIP)

then every k-sparse u† can be recovered as the unique solution to (L1) with f = A�u†.

3.5.2. Non-uniform Conditions

If uniform recovery conditions for a given k are not fulfilled, we can still examine local
recovery conditions for a large number of k-sparse vectors to make statements like “x%
of all k-sparse vectors u† can be recovered as the unique solution to (L1) with f = Au†”.
In Tropp (2004), the following sufficient recovery condition is established:

Theorem 3.5. Given A ∈ R
m×n, a k-sparse u† with support I can be recovered as the

unique solution to (L1) with f = Au† if AI is injective and

∥∥A+
I aj

∥∥
1
< 1 ∀j /∈ I, (Tr)

where A+
I denotes the Moore-Penrose pseudo-inverse of AI .

One can easily show that (Coh) implies (Tr). In Fuchs (2004), the optimality conditions
of (L1) and its dual problem were analyzed to derive the following weaker condition,
which turns out to be sufficient and necessary (cf. Theorem 4.30 in Foucart and

Rauhut 2013):

Theorem 3.6. Given A ∈ R
m×n, a k-sparse u† with support I can be recovered as the

unique solution to (L1) with f = Au† if and only if AI is injective and a dual vector
w ∈ R

m exists such that

|wTAj| < 1 ∀j /∈ I and AT
I w = sign(u†I). (FuB)

In addition to (FuB), a stronger but easier to verify sufficient condition is also given in
Fuchs (2004):

Theorem 3.7. Given A ∈ R
m×n, a k-sparse u† with support I can be recovered as the

unique solution to (L1) with f = Au† if AI is injective and

|wT
+Aj| < 1 ∀j /∈ I for w+ :=(AT

I )
+ sign(u†I) (FuA)

Comparing (FuA) and (FuB), we note that the idea behind (FuA) is to restrict the
dual vector from being any solution to AT

I w = sign(u†I) to the minimum-norm solution
w+ :=(AT

I )
+ sign(u†I). Hence, (FuA) implies (FuB) (which explains the notation using
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A and B). As one can easily check that (Tr) implies (FuA), we have a chain of stronger
to weaker recovery conditions:

(Coh) ⇒ (Tr) ⇒ (FuA) ⇒ (FuB)

Unfortunately, the verification of the conditions also becomes increasingly computation-
ally demanding, as we will see in Section 4.4.

3.5.3. Stable and Robust Conditions

The above conditions hold for the noise-free limit under the assumption of exact
sparsity. They can be turned into stronger conditions that also cover compressible u†

and measurement noise. Naturally, these conditions are harder to fulfill for a matrix A.
Stable conditions cover the case of compressible u†. Instead of exact recovery guarantees
they bound the �1-error

∥∥u† − u1

∥∥
1

of the solution u1 of (L1) by the best k-term
approximation of u† which is defined as

σk(u)p := inf
|v|0�k

‖u− v‖p (3.67)

We have
σk(u)q �

cp,q
k1/p−1/q ‖u‖p, p � 2, cp,q � 1, (3.68)

in particular

σk(u)2 �
1

2
√
k
‖u‖1. (3.69)

As one example, one can obtain the stable NSP with constant ρ by replacing ‖vI‖1 <
‖vIc‖1 in (NSP) with ‖vI‖1 < ρ‖vIc‖1, 0 < ρ < 1, including the following error estimate:

∥∥u† − u1

∥∥
1
� 2(1 + ρ)

1− ρ
σk(u

†)1, (3.70)

Robust recovery conditions also cover the case of measurement noise. The equality
constraint Au = f in (L1) is replaced by ‖Au− f‖2 � δ, where δ is an a-priori bound
on ‖ε‖2:

min‖u‖1, s. t. ‖Au− f‖2 � δ, (3.71)

The robust NSP with constants ρ and τ is obtained by replacing ‖vI‖1 < ‖vIc‖1 in
(NSP) with ‖vI‖1 < ρ‖vIc‖1 + τ‖Av‖2, 0 < ρ < 1, τ > 0. The solution uδ

1
of (3.71)

then fulfills: ∥∥u† − uδ
1

∥∥
1
� 2(1 + ρ)

1− ρ
σk(u)1 +

4τ

1− ρ
δ (3.72)



3.5 Recovery Conditions for MAP Estimates 69

For matrices A fulfilling (RIP), one can obtain

∥∥u† − uδ
1

∥∥
1
� Cσk(u)1 +D

√
kδ (3.73)∥∥u† − uδ

1

∥∥
2
� C√

k
σk(u)1 +Dδ (3.74)

with constants C,D > 0 depending only on δ2k.

3.5.4. Source Conditions

Regularization theory (cf. Section 1.2) is also concerned with deriving error estimates
but the setting is usually different from the one considered in typical compressed sensing
applications. One would start in the infinite dimensional setting (1.2) and analyze the
convergence of solutions uδ

λ(δ,fδ)
of (1.5) in the noise-less limit, which is in some way

parameterized as δ ↘ 0. The regularization parameter λ should be chosen depending
on δ, requiring that λ(δ, f δ) ↘ 0 as δ ↘ 0. Compared to typical compressed sensing
scenarios, A is (severely) ill-conditioned. The error between uδ

λ(δ,fδ)
and u†,∞ is measured

by a non-negative error measure E(uδ
λ(δ,fδ)

, u†,∞) and one tries to derive convergence
rates of the form

E(uδ
λ(δ,fδ), u

†,∞) = O(φ(δ)) for δ ↘ 0 (3.75)

for an index function φ, i.e., φ is a positive, strictly increasing function on R+ with
limt→0 φ(t) = 0. A central observation is that such rates cannot be established without
assuming some kind of smoothness of u†,∞ with respect to A and its adjoint A∗. In
the discrete setting and for �p-norm data fidelities Hf = 1

p
‖Au− f‖pp (which covers the

Gaussian noise model), such a smoothness assumption is given by:

Definition 3.2. An element u meets a source condition (SC ) with respect to a regular-
ization functional J if there exists a source element w ∈ R

m such that ATw ∈ ∂J (u)

(cf. Section A.1).

Put differently, u satisfies a SC if a subgradient ξ ∈ ∂J (u) exists that is in the range of
AT . As AT is typically a smoothing operator in inverse problems, this implies that ξ is
smooth. In addition to a SC, one has to measure the error in the Bregman distance
induced by J (u) (cf. Section A.1) to derive convergence rates, in particular in the case
of non-smooth J (u):

E(uδ
λ(δ,fδ), u

†,∞) :=Dξ
J(u

δ
λ(δ,fδ), u

†,∞) = J (uδ
λ(δ,fδ))− J (u†,∞)−

〈
ξ, uδ

λ(δ,fδ) − u†,∞
〉

(3.76)
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For the �1-norm, the i-th component of the subdifferential is given as the set-valued
function:

(∂J (u))i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 for ui > 0

[−1, 1] for ui = 0

−1 for ui < 0

(cf. Figure A.1b) (3.77)

The SC then takes the form

∃w :
∣∣(ATw)j

∣∣ � 1 ∀j /∈ I and AT
I w = sign(uI). (SC)

with |(ATw)j| = |wTAj| we note the close resemblance to (FuB). However, (SC) cannot
guarantee the uniqueness of the solution to (L1) unless we modify the inequality to
|(ATw)j| < 1. This variant is then equivalent to (FuB) and was called strong source
condition (SSC ) in Moeller (2012), where also further analysis and interpretation of
source conditions in the compressed sensing framework can be found.
For the noisy case, if a source condition with source element w such that

(Σ−1/2ε A)Tw = ξ ∈ ∂J (u) (3.78)

is met, we can get the following error estimates:

Dξ
J (ûMAP, u) �

1

2λ
‖ε‖2Σ−1

ε
+

λ

2
‖w‖22 (3.79)

1

2
‖AûMAP − Au‖2Σ−1

ε
+ λDsym

J (ûMAP, u) �
1

2
‖ε‖2Σ−1

ε
+

λ2

2
‖w‖22 (3.80)

They are adopted by applying those given in Benning (2011), Burger et al. (2007)
to the whitened forward equation:

f̄ = Āu+ ε̄, where x̄ :=Σ−1/2ε x (3.81)

Treating sparsity defects requires the introduction of variational inequalities as smooth-
ness conditions (Burger et al. 2013).
For EEG/MEG source reconstruction, we will also examine the addition of a positivity
constraint to the �1 prior (cf. Section 3.2.2). The strong source condition for this case
is given by:

∃w : (ATw)j < 1 ∀j /∈ I and AT
I w = sign(uI). (SSC+)
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3.5.5. Block-Sparsity

As for the prior modeling, we might only be interested in the sparsity of u† with respect
to certain sub-structures. To examine recovery conditions for such situations, we need
to introduce some notation: We will only examine partitions of the n components of
u† into N blocks of equal size l, i.e, n = Nl. Let u[i] :=(u(i−1)l+1, . . . , uil)

T ∈ R
l be

the i-th block vector, A[i] :=
[
A(i−1)l+1, . . . , Ail

]
∈ R

m×l the corresponding columns of
A and I :={i|u[i] �= 0} as the block support. We define |u|[0] := card(I) as number of
non-zero blocks, and ‖u‖[1] :=

∑N
i

∥∥u[i]

∥∥
2

as the �1 norm of the block amplitudes
∥∥u[i]

∥∥
2

(which can be expressed as an �2,1-matrix norm, cf. (3.15)). We are now interested in
recovering u† being the unique k-block-sparse solution to Au = f , as

min |u|[0], s. t. Au = f. (BlkL0)

Again, we rather compute ûMAP for an �1-block prior and (3.62) which corresponds to
solving the convex problem

min‖u‖[1], s. t. Au = f, (BlkL1)

All presented recovery conditions can be transformed to the block sparse case. We start
with (Coh). The key idea is to replace the absolute value of the scalar product AT

i Aj

by the spectral norm of A� T
[i] A

�
[j] to define the block coherence

μblk(A
�) :=max

i 
=j

ρ
(
A� T

[i] A
�
[j]

)
l

. (3.82)

It measures how well signals generated by linear combinations of the i-th block can
be approximated by those of the j-th block. The maximal coherence within the single
blocks is measured by the sub coherence

μsub(A
�) :=max

i
μ

(
A�

[i]

)
(3.83)

The block recovery condition corresponding to (Coh) is then given by

Theorem 3.8. Let A� ∈ R
m×Nl have �2 normalized columns. If

kl � 1
2

(
μblk(A

�)−1 + l − (l − 1)μsub(A
�)μblk(A

�)−1
)

(BlkCoh)

then every k-block sparse u† can be recovered as the unique solution to (BlkL1) with
f = A�u†.
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If we define the restricted block isometry constant of A�, as the smallest number δ[k]

such that

(1− δ[k])‖u‖22 �
∥∥A�u

∥∥2

2
� (1 + δ[k])‖u‖22 ∀ u : |u|[0] � k (3.84)

one can show (see Eldar and Mishali 2009):

Theorem 3.9. Let A� ∈ R
m×Nl have �2 normalized columns. If

δ[2k] �
√
2− 1, (BlkRIP)

then every k-block sparse u† can be recovered as the unique solution to (BlkL1) with
f = A�u†.

For a kl × l matrix B build by stacking k blocks B1, . . . , Bk of size l × l, we can define

ρl(B) :=
∑
i

ρ (Bi) (3.85)

With this, we can extend (Tr) to the block sparse case (adopted from Eldar et al.
2010):

Theorem 3.10. Given A� ∈ R
m×Nl, a k-block sparse u† with block support I can be

recovered as the unique solution to (BlkL1) with f = A�u† if A�
[I] is injective and

ρl

(
A� +

[I] )A
�
[j]

)
< 1 ∀j /∈ I (BlkTr)

For extending (FuA) and (FuB) we use the equivalence to the strong source condition.
The subgradient is characterized by

ξ ∈ ∂|u|[1] ⇐⇒

⎧⎪⎨
⎪⎩

∥∥ξ[i]∥∥2
< 1 if i /∈ I

ξ[i] = ∇
∥∥u[i]

∥∥
2
=

u[i]∥∥u[i]

∥∥
2

if i ∈ I , (3.86)

which means that for a single block [i] with u[i] �= 0 the subgradient ξ[i] is the unit vector
describing the slope of the tangent plane to the l-dim. cone given by the epigraph of
‖·‖2 in u[i]. For u[i] = 0, it is the set of the slopes of all planes passing through the tip of
cone that stay beneath it (see also Tellen 2013). The source condition ATw ∈ ∂|u|[1]
can then be formulated as

Theorem 3.11. Given A ∈ R
m×Nl, a k-block sparse u† with block support I can be

recovered as the unique solution to (BlkL1) with f = Au† if a dual vector w ∈ R
m
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exists such that

∥∥(ATw)[j]
∥∥
2
< 1 ∀j /∈ I and AT

[I]w = ξ[I], (BlkFuB)

where ξ[I] is defined as in (3.86).

The restriction of w to a particular dual vector gives

Theorem 3.12. Given A ∈ R
m×Nl, a k-block sparse u† with block support I can be

recovered as the unique solution to (BlkL1) with f = Au† if A[I] is injective and

∥∥(ATw+)[j]
∥∥
2
< 1 ∀j /∈ I with w+ = (AT

[I])
+ξ[I]. (BlkFuA)

3.5.6. Notes and Comments

The field of compressed sensing was established around 2006 by the works of Candes

et al. (2006) and Donoho (2006) who linked various earlier works, ideas and develop-
ments and coined the term compressed sensing. Although being a relatively young field,
there is an extensive amount of publications already. Fortunately, a number of topical
reviews appeared lately. Foucart and Rauhut (2013) is an exhaustive reference
that was found most helpful for writing this section. Two further reviews used are
Fornasier (2010) and Eldar and Kutyniok (2012).
From the Bayesian point of view, the analysis in this section can be seen as an exami-
nation of the MAP estimate conditioned on a concrete realization u† of the prior and in
the noise-free limit. As noted, one problem of this is that the priors used cannot really
represent exactly sparse elements. A further problem is that the recovery conditions
are all formulated for u†, not for u†,∞. Unless we commit the inverse crime assumption
u† = u†,∞, i.e., the prior model is defined on the correct space (cf. Section 2.1), the
recovery conditions for u† might be of limited use for u†,∞. This also affects the validity
of the noise-free limit: ε does not only consist of a noise term, which might vanish
in a best-case scenario, but also of the model error term Au† − PAu†,∞, which will
not vanish. Again, this underlines that the examination of the recovery conditions
presented here should be understood as an assessment of the best performance of the
MAP estimate that is theoretically possible, ignoring noise, sparsity defects, model
errors and neglecting an inverse crime.
The error estimates for a non-vanishing noise term all relied on the concrete realization
of ε or an a-priori bound on it. In the statistical sense, we examined error estimates
conditioned on the subset { ε | ‖ε‖2 < δ}. Deriving unconditional error estimates and
convergence rates is much more involved. In particular, an appropriate notion of con-
vergence that allows for deriving such rates is required. References are Bissantz et al.
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(2004, 2007), Engl et al. (2005), Hofinger (2006), Hofinger and Pikkarainen

(2007, 2009), Kekkonen et al. (2014), Mathé and Tautenhahn (2011). For further
reading on deterministic convergence rates in Bregman distances we refer to Benning

(2011), Burger and Osher (2004), Grasmair (2010), Schuster et al. (2012).
Apart from Moeller (2012), the connection between source conditions and exact
recovery conditions was also examined in Benning (2011), Lorenz et al. (2011),
Trede (2009). We developed (FuA) from (FuB) by restricting the dual vector w to
only one element of the (m− k)-dim affine subspace defined by AT

I dI = sign(u†I). Of
course, a continuum of recovery conditions between (FuA) and (FuB) can be formulated
by restricting w to other subsets of the subspace. This could be used to obtain condi-
tions that guarantee further properties of the MAP estimates, for instance demanding
‖w‖2 < t can be used to fix the rates (3.79) and (3.80).

3.6. Selected Advanced Topics

In this section, we discuss some advanced topics in Bayesian inversion that are closely
related to the topics examined in this thesis.

3.6.1. Infinite Dimensional Bayesian Inversion

While regularization theory is traditionally formulated and analyzed in an infinite
dimensional function space setting (cf. Section 1.2), Bayesian inversion is traditionally
formulated as an application of normal, finite dimensional Bayesian inference to dis-
cretized inverse problems. In recent years, a lot of research on extending the Bayesian
approach to the function space setting has been carried out. The underlying motivations
are manifold:

• The properties of high dimensional objects are often different than intuition based
on low dimensional illustrations, such as Figures 3.3, 3.5a or 3.13, might predict.
For large n, their properties might in fact be closer to those of their infinite
dimensional limits. Therefore, one should also study those. Related to this issue
is the problem of formulating prior information in a discretization invariant way:
We usually have a-priori information about the infinite dimensional u†,∞ only,
but need to encode them into a prior for the n-dim. u†. As n can typically be
chosen freely, we want to construct the prior in such a way that the same a-priori
information is expressed for all n and estimates and the posterior converge to well
defined limits for n → ∞. The search for discretization invariant non-Gaussian
priors is an active field of research initiated by Lassas and Siltanen (2004), who
found out that the conventional TV prior cannot be formulated in a discretization
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invariant way. We will further examine this phenomena in the computational
studies in Chapter 5.

• Apart from the prior, the discretization has also influence on the likelihood, where
it manifests in the difference between A and PA. Examining or compensating
for (see below) the influence of using coarse discretizations or model reduction
techniques requires an infinite dimensional Bayesian model as a reference. Another
topic is how estimates and posterior behave in the infinite dimensional limits of
measurement projection P and noise model Noi (cf. Section3.1).

• A discretization invariant prior and a consistent approximation of the forward
operator are important for designing multi-level algorithms. These can accelerate
the high-dimensional non-linear computations that some estimates require. Such
algorithms rely on a correspondence between the computed estimates for different
n. One way to achieve this is to derive all priors and likelihoods from one infinite
dimensional model in a consistent way.

• Related to the last point is the observation that many algorithms that were
formulated and developed in a discrete setting work well for small n, but loose
efficiency for n → ∞. We will encounter examples of this behavior in Section
5.1.2. One idea to overcome this problem is to design and formulate algorithms
in the infinite dimensional setting first and to discretize them in a second step.
While this is an established approach for developing optimization techniques for
variational regularization problems like (1.5), and, thereby, for MAP estimation,
it is less common for developing sampling schemes for computing other Bayesian
estimators. An example of such an approach can be found in Cotter et al.
(2013).

• It would offer the possibility to further investigate the relations between variational
regularization and Bayesian techniques.

Bayesian inversion with infinite dimensional unknowns involves several difficulties.
A particular challenge is that there is no analogue of the Lebesgue measure on an
infinite dimensional Banach space. As noted at the beginning of this chapter, the way
we presented Bayesian inversion here crucially relied on the existence of probability
densities/Radon-Nikodym derivatives with respect to the Lebesgue measure. In infinite
dimensions, priors have to be constructed in a different way.

Notes and Comments

In the introduction of Lassas et al. (2009), a detailed review on previous work on
the topic is given. Comelli (2011), Hämäläinen et al. (2013), Kolehmainen et al.
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(2012), Lassas et al. (2009), Lassas and Siltanen (2004) are of particular importance
to this thesis. In Helin (2010a, b), Helin and Lassas (2009), infinite dimensional
hierarchical Bayesian models were also investigated as a consequence of the missing
discretization invariance of the TV prior. A new line of work initiated by Stuart et
al. mainly targets non-linear inverse problems with prior measures that have a density
with respect to an infinite dimensional Gaussian measure,. See Stuart (2010) for an
introduction and Agapiou et al. (2013), Dashti et al. (2012, 2013), Hairer et al.
(2011) for further works.

3.6.2. Bayesian Treatment of Nuisance Parameters

In addition to u, the likelihood may contain further parameters that are uncertain
in practical applications but, unlike the unknowns, are not of interest. We call such
parameters nuisance parameters:

• Most often, the noise model itself is only an approximation (cf. Section 3.1).
In addition, its parameters (e.g. Σ−1ε ) have to be estimated in some way and
therefore usually carry uncertainty.

• Solving the forward problem usually involves some kind of discretization errors.
They can be regarded as nuisance parameters as well.

• In addition, the forward problem typically depends on parameters, for instance
PDE coefficients in linear problems (such as the conductivity σ in (2.12)) or sensor
parameters (such as the exact location of the electrodes in EEG).

Their choice might be crucial but difficult. The Bayesian approach offers several
techniques to mitigate the effects of nuisance parameters. Again, the central step
is, to model all uncertain parameters as random variables and to encode any prior
knowledge about their values into a probability distribution. Then, they become subject
to Bayesian inference as well.

Noise Parameters

As an example, consider a Gaussian noise model with Σε = σ2Im, where the variance σ2

is unknown, but some prior knowledge about its mean and variance is available. Similar
as in Section 3.3, a convenient prior model for σ2 able to encode this information is
given by the inverse gamma distribution (3.46) (cf. Figures 3.10a, 3.11):

pprior(σ
2) =

βα

Γ(α)
(σ2)−(α+1) exp

(
− β

σ2

)
(3.87)
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The joint posterior over u and σ2 given f is then given by

ppost(u, σ
2|f) ∝ plike(f |u, σ2)pprior(σ

2)pprior(u) (3.88)

We now have different possible ways to account for the uncertainty in σ2:

• Marginalization: If we integrate over σ2, its uncertainty propagates to the other
variables, in this case to u. This is a form of generalized error propagation.

• Model selection: We can also integrate over u to obtain the posterior distribution
ppost(σ

2|f) and compute a MAP estimate σ̂2
MAP from it. In a second step, we

fix σ2 = σ̂2
MAP in the likelihood and carry out inference for u. Practically, this

procedure involves the computation of the conditional model evidence p(f |σ2):

p(σ2|f) ∝ pprior(σ
2)

∫
plike(f |u, σ2)pprior(u) du = pprior(σ

2)p(f |σ2) (3.89)

For a fixed σ2, p(f |σ2) = p(f) is the normalization factor appearing in (3.1) and
is of no further importance. For model selection, it becomes the central object. In
general, given two models M1 and M2, model selection compares the posterior
odds

p(M1|f)
p(M2|f)

=
p(M1)

p(M2)

p(f |M1)

p(f |M2)
. (3.90)

The posterior odds is the product of the prior odds and the Bayes factor, which
compares the conditional model evidences p(f |M1,2) (also called marginalized
likelihoods).

• Joint inference: We use the full posterior to jointly estimate u and σ2. The
estimate of σ2 can be used to calibrate subsequent measurements or as a fixed
parameter in subsequent inversions.

Note that while the introduction of a new variable seems similar to hierarchical Bayesian
modeling, the difference is that the prior does not depend on σ2.

Approximation Error Modeling

Let us assume that the forward operator PA depends on parameters c and that
A[c, ndof ](u) is the discrete forward operator built using these parameters in a numerical
forward computation with ndof degrees of freedom. Furthermore, we denote the real
but unknown parameters by c†, and assume that Ndof corresponds to a discretization
fine enough such that the discretization error is negligible. Then, we can describe the
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approximation error η of using A(c, ndof ) instead of A(c†, Ndof ) as

f = A[c†, Ndof ](u) + ε

= A[c†, Ndof ](u) + A[c, ndof ](u)− A[c, ndof ](u) + ε

= A[c, ndof ](u) + A[c†, Ndof ](u)− A[c, ndof ](u)︸ ︷︷ ︸
:= η

+ε (3.91)

The concrete realization of the approximation error is not known as it depends on the
unknown parameters c†, the unknown discretization error, and the solution u itself.
In many applications, ignoring the approximation error leads to systematic inversion
errors often called artifacts. In EMEG for instance, specifying a wrong conductivity σ

(cf. (2.12)) can lead to a systematic mislocalization of focal source configurations (see
Lanfer et al. 2012). Approximation error modeling (AEM ) is a Bayesian technique
that computes η’s a-priori statistics by using the prior on u and assuming a prior
on c (similar as in the previous section), and incorporates them into the inversion.
This way, the approximation error is compensated for, and systematic inversion errors
are mitigated. In principle, one could infer a posterior distribution for u from (3.91)
by marginalizing c. This is called complete error model but is often computationally
not feasible. Instead, the enhanced error model assumes that η and u are mutually
independent and approximates the distribution of η by a Gaussian: η ∼ N (μη,Ση).
The mean μη can be computed as

μη =

∫
(A[c′, Ndof ](u)− A[c, ndof ](u)) pprior(c

′)pprior(u) dc′ du, (3.92)

the covariance Ση accordingly. This way, accounting for the approximation error can be
achieved by modifying the measurement noise statistics (which explains the name of
the approach):

f = A[c, ndof ](u) + ε̄, ε̄ := η + ε ∼ N (μη + με,Σε + Ση) (3.93)

Notes and Comments

Model selection can also be used to determine parameters of the prior model, i.e.,
hyperparameters. This approach is very popular in the machine learning community
(see, e.g., Hastie et al. 2009). For the application to EEG/MEG, see Sato et al.
(2004) for the choice of the source space model, and Henson et al. (2009a), Strobbe

et al. (2014) for the choice of the head model. Model selection is one way to exploit
the information given by model comparison (3.90). Another possibility is to perform
model averaging. See Hastie et al. (2009), Toussaint (2011) for general references
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and Trujillo-Barreto et al. (2004) for an application to EEG/MEG. Finally, model
comparison can be used to give data-based evidence for the advantage of using one
forward model instead of others. For instance, see Henson et al. (2010, 2009b) for the
validation of the benefits of multimodal integration over single modality-based imaging.
General references for approximation error modeling are given by Kaipio and Som-

ersalo (2005, 2007). AEM has been applied to a couple of applications with very
promising results. See Nissinen (2011), Nissinen et al. (2008, 2009, 2011) and ref-
erences therein for electrical impedance tomography (EIT ), Arridge et al. (2006),
Heiskala et al. (2012), Kolehmainen et al. (2011), Tarvainen et al. (2010, 2013)
for optical and photo-acoustic applications, Lipponen et al. (2013) for cloud modeling
and Cui et al. (2011) for geothermal reservoir modeling.
In our presentation of AEM, we omitted the technical difficulty that the discretization
of the unknowns to R

n might produce an approximation error and that in some inverse
problems (including EIT), the discretization of the unknowns is coupled to ndof . To
account and compensate for this requires a discretization invariant formulation of the
prior (cf. Section 3.6.1). For the inverse problems scenarios we consider, our imple-
mentations of the forward mapping do not depend on n. Therefore, we do not face the
coupling problem.

3.7. Notes and Comments

Bayesian inference is often treated as a straightforward extension of statistical inference
or only used to motivate the choice of a particular variational regularization scheme (1.5).
However, both approaches obscure its main potential which comes from the radically
different concept of probability employed in its reasoning. Jaynes and Bretthorst

(2003) is an exceptional reference for a deeper introduction into this topic. For the work
and conception of this thesis, Kaipio and Somersalo (2005) was the main inspiration.
Further notable references for Bayesian inversion include Stuart (2010), Tarantola

(2005) while Gelman et al. (2003), Kay (1993) provide a broader overview on Bayesian
inference beyond inverse problems.
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4
BAYESIAN COMPUTATION

In this chapter, we will present and develop computational methods required for
applying Bayesian inversion. In particular, sparse, high-dimensional imaging scenarios
pose specific challenges not encountered in other areas of Bayesian inference. Although
some of the algorithms presented here are applicable to arbitrary noise, forward and
prior models, the presentation is tailored towards linear inverse problems with Gaussian
noise and the prior models described in the last chapter.
In general, the estimators introduced in Section 3.4.1 either rely on optimization or
integration tasks, or even a mix of both. For instance, computing the narrowest credible
interval containing the probability mass q requires solving

Îcr = argmin
[a,b],b>a

(b− a) s. t.

∫ b

a

pipost(ui|f) dui = q (4.1)

In the first section of this chapter, we will examine posterior sampling methods that
allow to integrate the posterior by Monte Carlo integration. A lot of the work for this
thesis was devoted to developing fast sampling schemes that can be applied in the typical
scenarios we examine, especially in the experimental data scenarios. Therefore, this
section is more detailed than the following Section 4.2 about optimization methods. In
Section 4.3, we will examine the similarities between sampling and optimization methods,
and illustrate how techniques developed to accelerate optimization methods can also
be used to speed up sampling schemes. Finally, Section 4.4 will discuss computational
schemes to verify the recovery conditions presented in Section 3.5.
A particular challenge for the implementation is that both forward operator A and
prior operator D may not be available in an explicit form, i.e., as a matrix. Instead,
we need to use matrix-free algorithms that only involve multiplications with A or D

(or their transposes) with a vector. To keep the presentation concise, details of the
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implementation have been moved to Section A.2 in the appendix. However, we stress
here that they often constitute the most challenging and tedious works for this thesis.

Whitening All algorithms presented in this chapter are formulated (and implemented)
for ε ∼ N (0, Im). This can be achieved by a pre-whitening/decorrelation of the forward
equation (1.4):

Σ−1/2ε f = Σ−1/2ε A+ Σ−1/2ε ε. (4.2)

If ε ∼ N (0,Σε), then Σ
−1/2
ε ε ∼ N (0, Im). Therefore, one can use Σ

−1/2
ε f and Σ

−1/2
ε A

instead of f and A in the algorithms.

4.1. Posterior Sampling Methods

This section will develop methods to draw random samples ui from the posterior
ppost(u|f). Such samples can be used to compute integrals over the posterior by Monte
Carlo (MC ) integration.

4.1.1. Monte Carlo Integration

Suppose we want to compute integrals like

E [g(x)] =

∫
g(x)p(x) dx, (4.3)

where p(x) is a probability density, and g ∈ L1(Rn) is a feature of interest. For n = 1

and a given number of function evaluations K, traditional Gauss-type quadratures would
first compute a suitable grid {xi}, i = 1, . . . , K, and corresponding weights ωi, and then
approximate ∫

g(x)p(x) dx ≈
K∑
i

ωig(xi). (4.4)

The grid points and the weights are only determined by p(x) and are typically chosen
in such a way that (4.4) is exact for polynomials g up to a high degree. Unfortunately,
such a procedure is infeasible in high dimensions: Extending a K-point rule to R

n

requires Kn integration points and computing these points and the weights requires
a good knowledge of p(x). In our case, p(x) is the Bayesian solution to the inverse
problem: It is exactly what we do not know well.
Intuitively, if we cannot compute weights, our computational grid {xi} should be dense
where p(x) is relatively large and thus, a large contribution to (4.3) is to be expected.
The idea of Monte Carlo integration is that such a grid is automatically generated if
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(a) (b)

Figure 4.1.: An illustration of accept-reject methods. (a) To sample from the density
p(x) (red line), uniform samples (xi, yi) (blue and green dots) are generated in a region
enclosing its graph. All samples fulfilling yi � p(xi) (blue dots) are accepted. (b)
Histogram computed from the x values of all accepted samples.

we chose xi to be i.i.d. samples of p(x). The law of large numbers guarantees that this
stochastic strategy works:

lim
K→∞

1

K

K∑
i

g(xi) = E [g(x)] =

∫
g(x)p(x) dx, a.s., (4.5)

with a rate O(1/
√
K), which is independent of n (Klenke 2008). While the rate of

convergence is poor compared to deterministic approaches, the independence of n is a
striking advantage of MC integration. To implement MC integration, we need to be
able to produce random realizations of p(x). Algorithms for this purpose are called
samplers or sampling/simulation schemes. In the next section, we will introduce some
basic samplers.

4.1.2. Direct Sampling Methods

All computational sampling methods rely on a pseudorandom number generator (PRNG),
which produces a sequence of numbers that cannot be distinguished from real random
numbers. Formally, one usually demands that the numbers pass a certain hypothesis
test for being i.i.d. samples of the underlying distribution. The most widely used
PRNG is the Mersenne twister (Matsumoto and Nishimura 1998), which is also
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used in Matlab (version R2014a). It generates integers in a certain range, which can
be re-scaled to provide uniformly distributed random numbers in [0, 1]: ri ∼ unif(0, 1).
Uniform samples are the basis of all other samplers. For instance, the most direct way
to utilize them is given by the inverse cumulative distribution (icd) method: Let

F (y) =

∫ y

−∞
p(x) dx (4.6)

be the cumulative distribution function (cdf ) of p(x) and F−1(r) : [0, 1] → R its
(generalized) inverse. If r ∼ unif(0, 1) then F−1(r) ∼ p(x). For example, consider the
exponential distribution p(x) = λ exp(−λx) on R+. F (y) is given by 1− exp(−λy) and
F−1(r) = − log(1 − r)/λ. However, F−1(r) is often not available in a closed form or
its numerical evaluation or approximation is too expensive or unstable. The idea of
transformation methods is to transform uniform samples such that the distribution of
result is p(x). One example is the Box-Muller transform (Box and Muller 1958),
which transforms two unif(0, 1) numbers r and r′ into two independent standard normal
distributed numbers z and z′ by

z =
√

−2 log(r) cos(2πr′), z′ =
√
−2 log(r) sin(2πr′). (4.7)

We can then generate x ∼ N (μ, σ2) from the above by x := σz + μ. Another example
is to generate a random sign by sign(r − 0.5). With these ingredients, we can already
construct a sampler for an �1 prior with D = In:

ui = sign(ri − 0.5)
log(1− r′i)

λ
, i = 1 . . . , n, ri, r

′
i ∼ unif(0, 1) (4.8)

The random draws from (3.25) in Figures 3.6a and 3.6b were also generated by such a
scheme.
A more general class of sampling methods relies on a simple observation: Sampling from
a distribution p(x) is equivalent to sampling uniformly from the area under the graph of
p(x): Gp :={(x, z)|0 � z � p(x)}. This finding, formalized as the Fundamental Theorem
of Simulation, is the basis for accept-reject methods, which draw uniform samples (x, z)

from a region enclosing Gp and only accept the sample if it fulfills z � p(x). Figure
4.1 shows an illustration of this principle. For instance, the method we use to sample
(inverse) gamma distributions is a combination of a transformation of a uniform and a
standard normal random number with an accept-reject step (Marsaglia and Tsang

2000).
Unless the single components are mutually independent, sampling multivariate random
variables is considerably more difficult. One exception is the multivariate normal
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distribution: If x ∼ N (μ,Σ), then Ax+ b ∼ N (b+ Aμ,AΣAT ). Converse, if AAT = Σ

(e.g., by Cholesky decomposition) and x ∼ N (0, In), we can generate y ∼ N (μ,Σ) by
setting y = Ax + μ. Note that the computation can also be performed by solving
a linear system. For example, consider sampling from a general �2 prior pprior(u) ∝
exp(−λ

∥∥DTu
∥∥2

2
): In principle, the covariance of the prior is given as Σu = (2λDDT )−1,

and one could compute and decompose it to draw a sample v. However, often it is
preferable to generate x ∼ N (0, Ih) and let v be the least squares solution to the linear
equation

√
2λDTv = x, given by v = (2λDDT )−1

√
2λDx. This way, v also has the

covariance matrix

(
(2λDDT )−1

√
2λD

) (
(2λDDT )−1

√
2λD

)T

= (2λDDT )−1(2λDDT )(2λDDT )−1 = (2λDDT )−1 (4.9)

Likewise, one can draw samples from the posterior that results from using such an �2

prior. It is a Gaussian with mean and covariance given by

E[u|f ] =
(
2λDDT + ATA

)−1
ATf (4.10)

Cov[u|f ] =
(
2λDDT + ATA

)−1 (4.11)

(see Section A.1.4 in Lucka 2011 or Section 3.4 in Kaipio and Somersalo 2005).
One can sample from it by generating x ∼ N (0, Im+h) and solving[

A√
2λDT

]
v

ls
=

[
f

0

]
+ x (4.12)

in a least-squares sense.

4.1.3. Markov Chain Monte Carlo Methods

Often, direct samplers generating independent samples from p(x) are not known. How-
ever, the strong ergodic theorem ensures that Monte Carlo integration (4.5) still converges
if the sequence {xi} is dependent, but originates from an ergodic Markov chain that
has p(x) as its equilibrium distribution. A proper introduction of ergodicity theory and
Markov chains that have an infinite dimensional state space is rather technical and is
omitted here. We will give an informal introduction and refer to Klenke (2008), Liu

(2008), Robert and Casella (2005) for further reading.
An illustrative example of a Markov chain is a Gaussian random walk:

xi+1 = xi + εi+1, i ∈ N0 x0 = 0; εi+1 ∼ N (0, σ2
i ) (4.13)
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Every xi is the realization of a random variable X i. Such an ordered series of random
variables {X i}∞i=0 is called stochastic process ; the discrete index i stands for a time step.
Conditioned on all past states Xj = xj, j = 0, . . . , i, the distribution of X i+1 is given
as N (xi, σ2

i ). Therefore, it only depends on the current state xi:

P
(
X i+1 = x|X1 = x1, . . . , X i = xi

)
= P

(
X i+1 = x|X i = xi

)
(4.14)

This property is called Markov property. In common language, one might put it as
“the future depends on the past only through the present”, or “the present already
contains all past information about the future”. One can also say that the process has
“no memory”. A Markov chain is a stochastic process that possess the Markov property.
A time-homogeneous Markov chain is further characterized by

P
(
X i+1 = y|X i = x

)
= P

(
X i+k+1 = y|X i+k = x

)
, ∀ k ∈ N, (4.15)

which means that the transition probability distribution is stationary in time. In the
random walk (4.13), this would correspond to σ2

i = σ2 ∀ i. Markov chains can be
characterized by a transition kernel T i(x,B), which generates the i-th step:

T i(x,B) = P
(
X i+1 ∈ B|X i = x

)
(4.16)

In the random walk (4.13), T i(x,B) can be described by the transition density ti(x, y) =

N (y; x, σ2
i ). A chain is time-homogeneous if T i(x,B) = T (x,B) ∀ i. In this case, the

following properties of the transition kernel are important to determine the behavior of
the chain:

• Assume that the realization of the current state X i can be described by the
probability measure μi. Using the transition kernel, we can define a linear
propagation operator T mapping μi to the probability measure μi+1 of X i+1:

μi+1(B) = T [μi](B) :=

∫
T (x,B)μi(dx) (4.17)

In our random walk example (4.13), assume that the realization X i = x can
be described by the density pi(x). Then, T generates the density of X i+1 by a
convolution with the kernel N (0, σ2):

pi+1(y) =

∫
N (y; x, σ2) pi(x) dx =∫

1√
2πσ

exp

(
−(y − x)2

2σ2

)
pi(x) dx = N (0, σ2) ∗ pi (4.18)
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Eigenfunctions of T are called invariant/stationary/equilibrium distributions of
the kernel T . The random walk obviously does not have such a distribution.

• A kernel is irreducible if there is a positive probability that, regardless of the
starting point x0, every set with positive measure is reached after a finite number
of steps.

• A kernel is aperiodic if the probability that the chain gets trapped in a periodic
loop is zero.

Although the formal definition of these properties for Markov chains with infinite
dimensional state space is rather involved, and further technical conditions have to be
met, they provide the conceptual basis on which the ergodicity of the Markov chain can
be established: Independent of the starting point x0, the distribution of X i converges
to the equilibrium distribution μ of the Markov chain and the time average 1

K

∑K
i g(xi)

(ergodic average) of a function g(x) converges to the space-average
∫
g(x)μ(dx).

While Markov chain theory is devoted to analyzing a given Markov chain to find its
equilibrium distribution, Markov chain Monte Carlo (MCMC ) theory tries to construct
a Markov chain such that it has a desired equilibrium distribution. If we are given a
density p(x) to sample from, this is the MCMC strategy:

Algorithm 4.1. Markov chain Monte Carlo

1. Construct an ergodic transition kernel T such that p(x) is the density of its
equilibrium distribution.

2. Choose an initial state x0 and define a burn-in time K0.

3. Simulate xi+1 ∼ T (xi, · ) for i = 0, . . . , K0 +K − 1.

4. Discard {xi}K0
i=0 and use {xi}K0+K

i=K0+1 as a sample of p(x).

One realization of this procedure is called a run. The time steps i = 1, . . . , K0 are called
burn-in phase. There are generic schemes to construct an ergodic transition kernel for
every given p(x). The problem is rather to construct a kernel that is efficient. We will
return to this point after introducing the two basic schemes on which most MCMC
methods rely. Often, the chain {xi} is thinned by a certain sub-sampling rate (SSR) to
decrease the statistical dependence between subsequent samples and to safe memory.
Theoretically, the sub-sampled chain corresponds to a Markov chain whose transition
kernel is given as the SSR-fold convolution of the single-step transition kernel of the
original chain.
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Figure 4.2.: (a) Example of an MCMC run by a Metropolis-Hastings sampler. Red
lines: Level-sets of p(x). Green lines: Level-sets of the Gaussian proposal kernel. (b)
Examples of scaling functions used in the automatic κ-adaptation scheme.

4.1.4. Metropolis Hastings Sampling

The Metropolis-Hastings (MH ) method (Hastings 1970, Metropolis et al. 1953) is
a very simple construction of the transition kernel:

Algorithm 4.2. (Metropolis-Hastings Sampling)
Let q(x, y) : Rn × R

n → R+ be a function satisfying
∫
q(x, y) dy = 1 for all x ∈ R

n

(proposal distribution). Step 3. in Algorithm 4.1 is implemented as:

3.1. Draw y from the proposal distribution q(xi, y).

3.2. Compute the acceptance ratio

acc(xi, y) =
p(y) q(y, xi)

p(xi) q(xi, y)
. (4.19)

3.3. Draw r ∼ unif(0, 1).

3.4. If acc(xi, y) � r, set xi+1 = y, else set xi+1 = xi.

Note that the requirements on p(x) for this scheme are minimal: As only ratios of
probabilities are used, we only have to know p(x) up to a scaling factor. Furthermore,
we only need to be able to evaluate p(x) for any given x. Each sampling step requires
one such evaluation (in inverse problems, the computational demanding part of this
evaluation is usually applying the forward mapping A). In this respect, MH can be
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considered a “black-box sampler”, which explains its success in many different application
areas (Liu 2008). However, the whole difficulty in MH is shifted to the construction of
the proposal function q(x, y): While the scheme works for a lot of proposal distributions
in theory, its application is only feasible if q(x, y) leads to a chain that moves “fast”.
This way, all the important regions of the sampling space are explored in a reasonable
amount of computational time and consecutive samples are as uncorrelated as possible.
It is easy to see that these demands lead to a dilemma: The optimal proposal function
is given by q(x, y) = p(y), which turns the MH scheme into a direct sampler for p(x).
However, if we would know a direct sampler for p(x), we would not consider performing
MCMC in the first place. As a rule of thump, the more information about p(x) is
incorporated into the design of q(x, y), the better. This is an obvious contradiction to
the “black-box” character of MH. As a consequence of this dilemma, a huge number of
different MH-based schemes exist for various types of p(x) that try to improve upon
the basic approaches that construct q(x, y) without any reference to p(x). However, we
will only consider these basic, but most commonly applied MH schemes in this thesis:
The symmetric random-walk MH schemes (SRWMH ) which generate y by

y = x+ ϑ, E[ϑ] = 0, ϑ ∼ q̃(‖ϑ‖2), (4.20)

for a suitable probability distribution q̃ on R+. This means that a new proposal is
generated by perturbing the current state x in a random, unbiased, symmetric way.
Therefore, q(x, y) ∝ q̃(‖x− y‖2), and q vanishes from the acceptance ratio (4.19). The
two models for ϑ we will mainly use are:

1. MH-Iso: All components of x are updated: ϑi ∼ N (0, κ2), ∀ i.

2. MH-Si : One component i∗ of x is randomly chosen and updated while all other
components remain unchanged: ϑi∗ ∼ N (0, κ2), ϑ−i∗ = 0.

Here, ϑ−i denotes all components of ϑ except the i-th one. See Figure 4.2a for an
illustration of an MH-Iso chain for a 2D Gaussian distribution p(x).
For the SRWMH schemes, the proper choice of κ is essential. If it is very small, the
proposals will always be accepted since p(x) is usually continuous. In return, the
exploration of the sampling space takes a long time. On the contrary, if κ is too large,
the differences in probability may be huge because the tails of the Gaussian likelihood
decay very fast. Consequently, new proposals will hardly be accepted. A good overview
on this topic is given in Neal and Roberts (2006), Roberts and Rosenthal

(2001). The remarkable result is that in high dimensions, having a total acceptance rate
ακ of new proposals of about 0.234 leads to an optimal efficiency, independent of the
distribution to sample from (we will discuss what efficiency for MCMC sampling means
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in more detail in Section 4.1.6). Furthermore, this optimal efficiency hardly drops in
the range ακ ∈ [0.1, 0.4]. This yields an easy-to-implement rule to tune κ: One could
find a κ that leads to such an ακ rate in a preliminary run and initialize the real run
with it. However, it turns out that this κ is typically only optimal once the chain has
left the burn-in phase and reached the main support of the distribution: It can hinder
the chain from ever getting there if used right from the start. For these reasons, online
adaptation of κ is usually used. The empirical acceptance rate ακ is monitored, and
κ is increased if it is higher than some αu

κ and decreased if it is lower than some αl
κ.

In theory, the resulting chain is not a Markov chain anymore (but it is still ergodic).
Nevertheless, in practice, a large enough interval [αl

κ, α
u
κ] ⊂ [0.1, 0.4] can be chosen such

that κ hardly ever changes once the burn-in phase is over. Thereby, the real chain is
not affected by the adaptation. The concrete adaptation scheme we use is that for
every 1000 samples, κ is multiplied with a scaling function τκ(ακ). This function is
monotonically increasing, 1 in [αl

κ, α
u
κ] and a shifted monomial with a little offset in

the other intervals. Furthermore, we demand that τκ(0) = τ 0κ > 0, τκ(1) = τ 1κ > 1.
Figure 4.2b shows examples of such functions. Every time κ changes (i.e., τκ �= 1), the
acceptance count is reset.

Notes and Comments

While the numerical implementation of basic SRWMH scheme is trivial, the Metropolis-
Hastings proposal acceptance-rejection scheme is the basis for very sophisticated algo-
rithms:

• Adaptive MH methods adapt the proposal distribution based on the sampling
history, for instance by using scaled versions of the sample covariance matrix as
a distribution on ϑ in SRWMH schemes. Obviously, this destroys the Markov
property of the resulting stochastic process, but under some conditions, the process
remains ergodic. The introduction of Latuszynski et al. (2013) provides a recent
literature overview while more specific aspects can be found in Andrieu and

Thoms (2008), Haario et al. (2004, 2001, 2005), Roberts and Rosenthal

(2009). Note that this is a more radical and explicit online adaptation than the
tuning scheme for κ that we constructed with the explicit intention that it is no
longer active in the main phase of the run.

• Delayed Rejection MH methods design proposal distributions that can locally
adapt to the target distribution (unlike Adaptive MH, which globally adapts the
proposal). See Haario et al. (2006), Mira (2001).

• Delayed Accepetance MH was developed for large-scale non-linear inverse problems
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Figure 4.3.: (a) Example of an MCMC run by a SC Gibbs sampler. Red lines:
Level-sets of p(x). (b) Plots of log(ppost(ui|f)) using the RSG sampler in the Boxcar
scenario with n = 1023 for a TV prior with λ = 800. Red, green and blue plots: Three
independent realizations. Black plot: The average of 5000 independent realizations.

that come with a high computational cost for evaluating the forward model. New
proposals are first “tested” with a reduced forward model. Only accepted proposals
are then evaluated with the full model. See Christen and Fox (2005), Cui

et al. (2011).

4.1.5. Gibbs Sampling

The basic idea of Gibbs sampling (Geman and Geman 1984) is to construct the
transition kernel directly from conditioned, lower dimensional versions of p(x). One
often encounters a partition of the n components of x into blocks I1, . . . , IN ⊂ {1, . . . , n}
such that fast samplers for the conditional density of xIj given x[−Ij ] are available. For
instance, consider the posterior ppost(u, γ|f) of the conditionally �2 hypermodel (3.41)
with inverse gamma hyperprior (3.46):

ppost(u, γ|f) ∝ exp

(
−1

2
‖f − Au‖2Σ−1

ε
−

h∑
i

(dTi u)
2 + β

γi
− (α + 3/2) log(γi)

)
(4.21)

By construction, x = (u, γ) is a partition such that ppost(u|γ, f) is a multivariate
Gaussian distribution and ppost(γ|u, f) = ppost(γ|u) is a product of inverse gamma
distributions (see (3.47)). For both distributions, fast direct samplers are known (see
Section 4.1.2). A Gibbs sampler alternates between updating one of them through an
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explicit sampler while keeping the other fixed. This can be generalized:

Algorithm 4.3. (Gibbs Sampling)
Let [1], [2], . . . , [N ] denote a partition of {1, . . . , n}, and IndN : N −→ {1, . . . , N} a
block index choice function. Step 3. in Algorithm 4.1 is implemented as:

3.1. Choose a block index j = IndN(i).

3.2. Draw y ∼ p
(
x[j]

∣∣ xi
[−j]

)
.

3.3. Set xi+1
[j] = y, and xi+1

[−j] = xi
[−j].

The most basic variant of this scheme (often simply called the Gibbs sampler) is the
single component (SC) Gibbs sampler : [j] = {j}. Starting at i = 1, every N subsequent
steps of the sampler are called a sweep. IndN determines, in which order the blocs are
updated. We will use two variants in this thesis:

1. Systematic scan Gibbs (SSG): A fixed order is repeated over and over again, for
instance, IndN(i) = mod (i, N) + 1.

2. Random scan Gibbs (RSG): In each step, a block is chosen uniformly at random.

A Gibbs sampler is determined by the blocking and the updating scheme. The blocking
scheme is usually more or less predetermined by p(x) and the choice of the updating
scheme is not too important for performance of the sampler (RSG always works, but
occasionally, other schemes are a little faster). In particular, there are no parameters like
κ in MH whose tuning is essential for obtaining an acceptable performance. Therefore,
it is often said that “the Gibbs sampler automatically adapts to p(x)”. The drawback
of Gibbs sampling is that it cannot be considered a “black-box” sampler like MH: An
efficient implementation of a Gibbs sampler needs to

(a) compute the conditional, low dimensional densities in an explicit, parameterized
form in a fast way.

(b) employ a fast, robust and exact sampling scheme for the parameterized form of
the low dimensional densities.

Especially point (a) rules out Gibbs sampling for Bayesian inversion if the posterior has
a complicated structure. Non-Gaussian noise models, non-linear forward operators and
non-Gaussian priors are such complications. For these reasons, SRWMH schemes are
commonly used in such situations. A main contribution of this thesis was to develop SC
Gibbs samplers for various non-Gaussian priors. Section 4.1.7 covers point (a) for the
likelihood and prior models we use. The sampling in point (b) then needs a 1D sampler.
Direct methods will be developed for some priors in Section 4.1.8, but cannot be derived
for all priors. In Section 4.1.9, we will introduce a fast and flexible 1D sampling scheme
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called slice sampling, which we will implement for the remaining non-hierarchical prior
models in Section 4.1.10. In Section 4.1.11, we will construct Gibbs samplers for �p

hypermodels based on the samplers for �p priors developed before.

Notes and Comments

Note that the main idea of Gibbs sampling is to move the current state along certain
low dimensional affine subspaces: For instance in SC Gibbs, the state moves along the
line xi+ tej with j = IndN (i). However, these affine subspaces do not need to be aligned
to the coordinate axes. One could also move along xi + tv, by drawing t from the 1D
density pv(t) ∝ p(xi + tv). This corresponds to conditioning p(x) orthogonal to v. A
move along v = e1 + e2 amounts to updating x1 and x2 simultaneously by the same
amount: We collapsed two dimensions into one by this move. This observation is the
basis of multigrid Monte Carlo techniques that sample along directions indicated by a
restriction operator similar to those used in multigrid methods in numerical analysis
(see Goodman and Sokal 1989, Liu 2008, Liu and Sabatti 2000). A further
generalization is to allow more general moves in R

n than only linear shifts, see Liu and

Sabatti (2000).
Parallel to the development of adaptive MH samplers, adaptive Gibbs samplers were
proposed. There are two principled options for adapting the Gibbs sampler: The first
is to adjust the directions v in which the updates are performed, while the other is to
adjust the selection function IndN . A recent overview of such techniques can be found
in Latuszynski et al. (2013), we will further discuss this issue in Chapter 7.

4.1.6. MCMC Convergence Diagnostics

Defining and assessing the efficiency of a sampling algorithm for a general purpose
rather than a specific aim is a difficult task (Liu 2008). Two types of convergence
diagnostics are usually applied: Qualitative diagnostics rely on the visual inspection of
some property of the chain {xi}. In contrast, quantitative diagnostics try to compute
characteristics that can be used to tune the sampler in an automated fashion. This
should allow unexperienced users to perform “black box” Bayesian inference. Despite a
lot of research on theses topics (Brooks and Roberts 1998, Cowles and Carlin

1996, Roberts and Sahu 1997, Thompson 2010), no universal method is known.
The approach we take here is more or less the current gold standard in the field.
Heuristically, it is easy to identify two key ingredients of a good MCMC algorithm: {xi}
should be as close as possible to independent samples of p(x). Therefore, it should have
a short burn in time (otherwise, the samples do not come from p(x)) and subsequent
samples should become uncorrelated as fast as possible.
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Figure 4.4.: (a) Three stochastic processes and (b) their autocorrelation functions.

Burn-in analysis The sufficient length of the burn-in phase, K0, can be deduced from
observing log(p(xi)). Once it starts oscillating around a constant value, the distribution
of xi is close enough to the equilibrium distribution and the chain reached the stationary
phase. Averaging log(p(x)) over a large number of independent chains that all started
at the same initialization removes the oscillations and allows to determine K0 in an
easy fashion. See Figure 4.3b for an example of such a plot.

Autocorrelation analysis To measure the average correlation between subsequent sam-
ples, we choose a test function g : Rn → R and estimate the autocorrelation function
(acf ) R : N −→ [−1, 1] of the series gi := g(xi):

R(τ) :=
〈(gi − μ) (gi+τ − μ)〉i

�2
, μ :=

〈
gi

〉
i
, � :=

〈
(gi− μ)2

〉
i

(4.22)

Here, 〈·〉i denotes the time-average over the infinite series. R(τ) is called lag-τ autocor-
relation w.r.t. g. For ergodic Markov chains, R(τ ) is positive and strictly decreasing. A
fast decay of R(τ) indicates that consecutive samples get mutually uncorrelated fast
(for uncorrelated gi we would have R(τ) = δ(τ,0)). Figure 4.4 shows R(τ) for three
stochastic processes. Such a visual comparison is often most instructive to compare
different samplers and, as we will see in the numerical studies, can furthermore reveal
additional properties. The integrated autocorrelation time τint is the integral of R(τ)
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extended to a piecewise linear function on R+:

τint =
1

2
+

∞∑
τ=1

R(τ). (4.23)

τint is a quantitative measure of the amount of autocorrelation contained in a chain.
An ergodic Markov chain of length K in its stationary phase has effectively the same
statistical power for MC integration as Keff = K/(2τint) independent samples of its
stationary distribution. Keff is often called effective sample size and can guide the
choice of the sub-sampling rate SSR. In practice, we have to estimate R(τ) by

R̂(τ) :=
1

(K − τ)�̂2

K−τ∑
i=1

(
gi − μ̂

) (
gi+τ − μ̂

)
(4.24)

�̂2 :=
1

K

K∑
i=1

(
gi − μ̂

)2
, μ̂ :=

1

K

K∑
i=1

gi (4.25)

(there are other possibilities to define R̂, but we need R̂(0) = 1). We estimate R(τ) on
the basis of (K − τ ) samples. As a result, the error of the estimation grows with τ and
the tails of R̂(τ) typically oscillate and also become negative. For these reasons, we
should also estimate the error of R̂(τ). In addition, estimating τint by

τ̂int =
1

2
+

K∑
τ

R̂(τ). (4.26)

turns out to be unstable. A robust estimation of R̂(τ ), τint and their error is an involved
topic (Thompson 2010). Here, we will use the approach presented in Wolff (2004),
which also allows to reduce the estimation error by incorporating multiple independent
chains.
For practical comparisons, the decrease of autocorrelation with respect to the raw
number of samples (statistical efficiency) is not decisive. A sampler with a slow decrease
might still outperform other samplers if it computes new samples considerably faster
(computational efficiency). To address this, the acf and τint can be scaled by the
computation time per sample ts: R∗(t = τ/ts) :=R(τ ), tint := tsτint. This facilitates the
comparison of conceptually different sampling methods. R∗(t) and tint measure how
fast a sampler can produce a certain loss in autocorrelation, which is of main interest
for practical applications. However, while these measures are more decisive to compare
different samplers, they rely on their concrete implementation.
Typically, the test function g is chosen with respect to the specific aim of inference. For
instance, one could use the distance to the empirical mean of the whole chain if CM
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estimation is performed, or the projection onto a specific coordinate if that coordinate
should be marginalized. Then, the rate of autocorrelation decrease is a measure of
the efficiency of the chain for the specific inference aim. Often, g(x) = log(p(x)) is
regarded as a generic choice, but we experienced that it might be rather uninformative
in Bayesian inversion.
Instead of relying on 1D projections of the chains, it would arguably be better to develop
and monitor a multivariate extension of the acf, e.g., the autocorrelation matrix function
R : {0, . . . , K − 1} → R

n×n

Rk,l(τ) :=
1

(K − τ)�̂k�̂l

K−τ∑
i=1

(
xi
k − μ̂k

) (
xi+τ
l − μ̂l

)
(4.27)

�̂2k :=
1

K

K∑
i=1

(
xi
k − μ̂k

)2
, μ̂k :=

1

K

K∑
i=1

xi
k. (4.28)

One could then define an integrated autocorrelation time as a measure of the integrated
autocorrelation matrix,

1

2
In +

∑
i

R(τ), (4.29)

for instance, its determinant or trace. However, its computation requires the storage
of the whole chain {xi}, not only of its projection {gi}, which is infeasible in typical
imaging applications.
Autocorrelation analysis for multimodal posteriors, especially for those originating from
fat-tailed priors (cf. Section 3.2.5), is way more difficult to carry out and should be
interpreted with care: As it is based on second order statistics, R(τ) might not be too
meaningful to characterize the chain, or it might not even exist (the classical estimators
for sample mean and variance will diverge). But also practically, estimating R(τ) by
(4.24) and (4.25) becomes considerably more difficult. One reason is that R̂(τ) is very
sensitive to the accuracy of μ̂ (4.25). Consider a bi-modal distribution in 1D consisting
of two Gaussians with equal variance but different means μ̃ and −μ̃: An MH sampler
initialized in x = μ will stay in the first mode for some time before crossing zero and
entering the second mode. Let’s assume that a short chain is used for estimating R(τ)

for g(u) = u. If the chain did not yet cross zero, all estimated quantities only reflect the
properties of the local movement of the chain within the mode. As such, μ̂ ≈ μ̃ and τ̂int

will be small, as the samples are more or less evenly distributed around μ̂. However,
once the chain crosses zero to enter the other mode, the estimate for μ̂ will shift and τ̂int

will increase fast. All estimates are now dominated by the switch between the modes,
and no longer by the local movement of the chain within a particular mode. If we have
a second estimate for μ, μ̂ref (possible from an independent, longer MCMC run), we
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can replace μ̂ by μ̂ref in (4.24) and (4.25) to compute τ̂ refint as a second estimate for τint.
If the difference between τ̂ refint and τ̂int is large, we probably face the problems sketched
above.
In general, autocorrelation analysis might not be the most suitable way to assess the
performance of MCMC samplers for multimodal distributions. One should rather try
to measure the ability of the sampler to switch between different modes of the posterior
in a more direct way.

4.1.7. SC Gibbs Posterior Sampling

For sampling ppost(u|f) with SC Gibbs sampling, we first need simple, parameterized
representations of the conditional 1D densities. In this section, we will derive such
representations for the prior models we introduced. The aim is to find a basis {v1, . . . , vn}
of Rn to represent u =

∑
ξivi =:V ξ such that ppost(ξi|ξ−i, f) can be described using

as few parameters as possible. Once such a basis is found, the part of ppost(ξi|ξ−i, f)
coming from the likelihood is easy to derive: We define Ψ :=AV and ϕ(i) := f −Ψ−iξ−i.
Then, we find that

1

2
‖f − Au‖22 =

1

2
‖f − AV ξ‖22 =

1

2
‖f −Ψξ‖22 =

1

2
‖f − (Ψ−iξ−i +Ψiξi)‖22

=
1

2
‖(ϕ(i)−Ψiξi‖22

ξi∝ 1

2
‖Ψi‖22ξ2i +ΨT

i ϕ(i)ξi =: ax2 − bx, (4.30)

where we introduced x := ξi, a := 1
2
‖Ψi‖22, and b :=ΨT

i ϕ(i) = ΨT
i f − (ΨT

i Ψ−i)ξ−i to
ease the notation for the following sections. Note that while a and ΨT

i f can be
precomputed, (ΨT

i Ψ−i)ξ−i relies on the current state of the ξ-chain and has to be
computed in every step of the sampler. Especially for complicated forward operators
in high dimensional scenarios, this operation is the computational bottle-neck of SC
Gibbs samplers. Therefore, a careful, scenario-dependent implementation is important
to obtain a fast sampler. The details of this step can be found in Appendix A.2.
Now we proceed to determine V and the part of ppost(ξi|ξ−i, f) coming from the prior.
The energies of the �qp and the tp priors we introduced can be written as

J (u) =

(
h∑
j

φ
(∣∣DT

j u
∣∣))α

=

(
h∑
j

φ

(∣∣∣ ∑
l

(DT
j vl)ξl

∣∣∣
))α

, (4.31)

with a function φ(z) fulfilling φ(0) = 0 and an exponent α. To obtain simple conditional
densities for all ξi, we thus have to choose V such that

max
i

|DTvi|0 (4.32)
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is as small as possible. In this thesis, we will mainly consider the particular case of
DT ∈ R

h×n having full rank and h � n. This includes the case where the columns D

are elements of a basis, (3.25), and the increment prior in 1D with Neumann boundary
conditions, (3.18). Due to the full rank, we can choose v1, . . . , vh such that DTvl = el

for l = 1, . . . , h, and vh+1, . . . , vn such that DTvl = 0 for l = h+ 1, . . . , n (for D being a
basis, we have V = D). With this transformation, J (ξ) simplifies to

J (ξ) ∝
(

h∑
l

φ (|ξl|)
)α

=

(
φ (|ξi|) +

h∑
l 
=i

φ (|ξl|)
)α

. (4.33)

As above, we will define x := ξi. For �qp priors, we have φ(z) = |z|p and α = q/p. The
conditional posterior can then be written as

p(x) ∝ exp
(
−ax2 + bx− c (|x|p + d)q/p

)
, c :=λ1{i�h}, d :=

h∑
l 
=i

|ξl|p, (4.34)

which simplifies to

p(x) ∝ exp
(
−ax2 + bx− c|x|p

)
, c :=λ1{i�h}, (4.35)

for �p priors. For the product tp-priors (3.53), we have φ(z) = log(1 + |z|p/(νθ)) and
α = 1. The conditional posterior can be written as

p(x) ∝ exp

(
−ax2 + bx− c log

(
1 +

|x|p
d

))
, c :=

ν + 1

p
1{i�h}, d := νθ. (4.36)

The block prior energies we introduced can be written as

J (u) ∝
(

h∑
j

φ
(∥∥DT

[j]u
∥∥
2

))α

=

(
h∑
j

φ

(∥∥∥∥∥∑
l

(DT
[j]vl)ξl

∥∥∥∥∥
2

))α

. (4.37)

If we denote the block to which the i-th component belongs by [li] and assume that a
similar transformation as above is available, we can simplify (4.37) to

(
h∑
l

φ
(∥∥ξ[l]∥∥2

))α

=

⎛
⎝φ

⎛
⎝√

ξ2i +
∑

j∈[li], j 
=i

ξ2j

⎞
⎠ +

h∑
l 
=li

φ

⎛
⎝√∑

j∈[l]
ξ2j

⎞
⎠

⎞
⎠α

. (4.38)

The conditional posterior for the �qp-block prior can then be written as

p(x) ∝ exp

(
−ax2 + bx− c

((
x2 + g

)p/2
+ d

)q/p
)
,
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where c :=λ1{i�h}, g :=
∑

j∈[li], j 
=i

ξ2j , d =
h∑

l 
=li

⎛
⎝∑

j∈[l]
ξ2j

⎞
⎠p/2

. (4.39)

For the tp-block prior, we obtain

p(x) ∝ exp

(
−ax2 + bx− c log

(
1 +

(x2 + g)
p/2

d

))
,

where c :=−ν + 1

p
1{i�h}, d := νθ, g :=

∑
j∈[li], j 
=i

ξ2j . (4.40)

In other cases that cannot be treated by the above scheme, a simple parameterization
has to be derived explicitly. For instance, consider the isotropic TV prior in 2D, (3.22).
Every pixel u(i,j) only appears in tree terms of the energy:

JiTV

(
u(i,j)

∣∣u−(i,j)) (i,j)∝
√

(u(i+1,j) − u(i,j))2 + (u(i,j+1) − u(i,j))2

+
√
(u(i,j) − u(i−1,j))2 + (u(i−1,j+1) − u(i−1,j))2

+
√
(u(i+1,j−1) − u(i,j−1))2 + (u(i,j) − u(i,j−1))2. (4.41)

Therefore, we can write the conditional posterior as

p(x) ∝ exp

(
−ax2 + bx− c

3∑
j=1

√
dj(x− ej)2 + gj

)
, dj ∈ {0, 1, 2}, gj � 0, (4.42)

with appropriately computed parameters dj, ej, gj. For a general �1, prior where D

does not fulfill the above requirements, an explicit form is given by

p(x) ∝ exp

⎛
⎝−ax2 + bx− c

∑
j∈supp(DT vi)

|djx− ej|

⎞
⎠ ,

where c :=λ1{i�h}, dj :=
(
DTvi

)
j
, ej :=

(
DTV−iξ−i

)
j

(4.43)

The difficulty of incorporating additional hard constraints (cf. Section 3.2.2) depends
on the shape of the feasible set C and the transformation V applied. In the following,
we assume that they lead to a feasible (semi-)finite interval [xmin, xmax] to which the
continuous densities computed above can be restricted. In the case of C being convex,
such an interval always exists and there are computationally efficient ways to compute
it.
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4.1.8. Direct SC Gibbs Posterior Sampling

After having derived the parameterized SC densities p(x), we can now turn to the second
challenge in designing a fast SC Gibbs sampler: Developing fast, robust and exact 1D
samplers for p(x). For some p(x), we can rely on direct samplers (cf. Section 4.1.2).

�2-prior For (4.35) and p = 2, we find that p(x) is, as expected, a Gaussian density:

exp
(
−ax2 + bx− cx2

)
∝ exp

(
−(x− μsc)

2

2σ2
sc

)
, (4.44)

where μsc := b/(2a+2c), and σ2
sc = 1/(2a+2c). Hence, direct samplers can be employed.

For the constrained (truncated) case x ∈ [xmin, xmax], various direct samplers were
developed. We will use a modified, more robust, version of Chopin (2011) throughout
this thesis.

�1-prior For (4.35) and p = 1, a direct, icd-based method was developed in Lucka

(2012): First, we need to compute the normalization factor for p(x) ∝ exp(−a x2+ b x−
c |x|). Splitting the integral from −∞ to ∞ into two parts (from −∞ to 0 and the rest)
yields subproblems that can be treated like the normalization of the normal distribution
(completing the square and a linear integral transformation). This leads to:

N :=

∫ ∞

−∞
exp(−ax2 + b x− c|x|) dx

=
1

2

√
π

a

(
e

(b+c)2

4a erfc

(
b+ c

2
√
a

)
+ e

(c−b)2

4a erfc

(
c− b

2
√
a

))
=:χ (ẽ+ erfc (α+) + ẽ− erfc (α−)) , (4.45)

where erfc(y) := 2√
π

∫∞
y

e−t
2
dt denotes the complementary error function. The cdf F (y)

is given by:

F (y) =
1

N

∫ y

−∞
exp(−a x2 + b x− c |x|) dx

=
χ

N ·
{
ẽ+erfc

(
−
√
a y + α+

)
, if y < 0,

ẽ+erfc (α+) + ẽ−
(
erfc (α−)− erfc

(√
a y + α−

))
, if y > 0.

(4.46)

Inverting this cdf for a given r ∼ unif(0, 1) is simple. To find y = F−1(r), we first check
if y < 0 by using the cdf for this domain: Let

z := erfcinv

(
rN
χ ẽ+

)
= erfcinv

(
r χ (ẽ+ erfc (α+) + ẽ− erfc (α−))

χẽ+

)
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= erfcinv

(
r

(
erfc (α+) +

ẽ−
ẽ+

erfc (α−)
))

= erfcinv

(
r

(
erfc (α+) + exp

(
−b c

a

)
erfc (α−)

))
. (4.47)

Then, y is given by y = −(z − α+)/
√
a. If y > 0, the other half of the cdf has to be

inverted: Let

z := erfcinv

((
−rN

χ
+ ẽ+erfc (α+) + ẽ−erfc (α−)

)
ẽ−1−

)

= erfcinv

(
(1− r)

(
exp

(
b c

a

)
erfc (α+) + erfc (α−)

))
. (4.48)

Then, y is given by y = (z − α−)/
√
a. The constrained case x ∈ [xmin, xmax] is, in

principle, easy to handle using the icd method: Instead of drawing r ∼ unif(0, 1) we
compute F (xmin) and F (xmax) by (4.46) and draw r ∼ unif(F (xmin), F (xmax)).
The complementary error function and its inverse are difficult to handle numerically,
because there are no identities that allow to rescale or shift their evaluation to other
intervals. Therefore, a robust numerical implementation of formulas (4.46), (4.47) and
(4.48) is rather involved. For the sake of a concise presentation, we present all details in
Section A.3.

�21-prior As

exp
(
−ax2 + bx− c (|x|+ d)2

)
∝ exp

(
−(a+ c)x2 + bx− 2cd|x|

)
, (4.49)

we can also use the above formulas for a direct sampler for (4.34) with p = 1 and q = 2.

4.1.9. Slice Sampling

In this section, we introduce an MCMC technique to sample from the SC density p(x)

for those cases where no fast and robust direct samplers are known. One could, of course,
employ SRWMH schemes with a univariate Gaussian proposal N (0, κ) for this purpose.
The whole sampler would then be called Metropolis-within-Gibbs sampler. Compared
to MH-Si, a Metropolis-within-Gibbs sampler explicitly computes the SC densities and
uses MH to sample from those, not for the whole multivariate density. However, the
proper tuning of κ is way more difficult than in the multivariate case: The SC densities
can be very different between components, and even for a fixed component, they may
vary dramatically over the run. This is particularly true for multimodal posteriors from
sparse, non-log-concave priors. An example is given in Figure 4.5a, where the shape
and spatial spread of a SC density vary considerably for a small variation in one of its
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b = 9.4 · 10
6

b = 9.6 · 10
6

b = 9.8 · 10
6

b = 10.0 · 10
6

b = 10.2 · 10
6

(a) (b)

Figure 4.5.: (a) The SC density (4.35) for p = 0.8 with a = 6.6·106, c = 106 and several,
slightly varying values for b (such values occur, e.g., in the point source reconstruction
scenario, cf. Section 2.2.2). In addition, non-negativity constraints are used. (b) Slice
sampling. The x coordinates of the blue dots are samples of p(x) (red line), the dashed
black line illustrates the path of the sampler.

parameters. A fixed κ cannot be tuned to yield similar and stable acceptance rates for
all components. Using an individual κi for each component might fail due to potential
multimodality, and tuning it automatically would require n times more samples than
tuning one κ for all components.
The Gibbs sampler automatically adapts to a distribution, but cannot be applied to a
1D density p(x). However, it can be used to sample uniformly from its 2D subgraph Gp

which will also generate a sample of p(x) (see Section 4.1.2 and Figure 4.1). This is the
basic idea of slice sampling (Neal 2003):

Algorithm 4.4. (Basic Slice Sampling)
For a univariate density p(x), Step 3. in Algorithm 4.1 can be implemented as:

3.1. Draw y uniform from [0, p(xi)] (vertical move).

3.2. Draw x uniform from Sy :={z | p(z) � y} (horizontal move).

3.3. Set xi+1 = x.

An illustration is given in Figure 4.5b. In general, the difficulty of slice sampling is
determining Sy in Step 3.2. If it does not allow for an explicit formulation, numerical
root-finding algorithms have to be used to determine all {z | p(z)− y = 0} and Sy has
to be constructed from them. For non-log-concave p(x), Sy may consist of multiple
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intervals. For the SC posterior densities we derived in Section 4.1.7, determining Sy

numerically is not a feasible option. We will rather need to generalize the principle
behind slice sampling: Slice sampling is a variant of auxiliary variables algorithms that
introduce an additional variable y with a suitable density p(y|x). Then, samples (xi, yi)

from p(x, y) = p(x)p(y|x) are obtained by a Gibbs sampler (which relies on p(y|x) and
p(x|y)), and only the xi are kept. For the basic slice sampler, p(y|x) is chosen as

p(y|x) = 1

p(x)
1{[0,p(x)]}(y), (4.50)

i.e., as unif(0, p(xi)). We then have

p(x, y) = p(x)
1

p(x)
1[0,p(x)](y) (4.51)

p(x|y) ∝ 1{[0,p(x)]}(y) = 1{x | p(x)�y}(x) (4.52)

If p(x) can decomposed as p(x) ∝ p1(x)p2(x) - for instance, for p(x) ∝ exp(−J1(x)−
J2(x)) - we can define

p(y|x) = 1

p2(x)
1{[0,p2(x)]}(y), (4.53)

which leads to

p(x, y) = p(x)p(y|x) = p(x)
1

p2(x)
1{[0,p2(x)]}(y) = p1(x)1{[0,p2(x)]}(y), (4.54)

p(x|y) = p1(x)1{x | p2(x)�y}(x). (4.55)

This split is appealing if
Sy
2 := {z | p2(z) � y} (4.56)

is a single interval and easy to determine and p1(x) constrained to an interval is easy to
sample from.

Algorithm 4.5. (Slice Sampling)
For a univariate density p(x) ∝ p1(x)p2(x), Step 3. in Algorithm 4.1 can be implemented
as:

3.1. Draw y uniform from [0, p2(x
i)] (vertical move).

3.2. Draw x from p1(x)1Sy
2
(x) (weighted horizontal move).

3.3. Set xi+1 = x.
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4.1.10. Slice Sampling Withing SC Gibbs Posterior Sampling

We want to use the slice sampler to sample from the SC densities, which we might
call slice-within-Gibbs sampling. For the SC densities, a split of p(x) into likelihood
p1(x) = exp(−ax2 + bx) and prior parts p2(x) is advantageous: As most prior terms are
unimodal and even symmetric to zero, Sy

2 is a single interval and can be determined
explicitly:
For (4.34), we have p2(x) ∝ exp

(
−c (|x|p + d)q/p

)
and

exp
(
−c (|x|p + d)q/p

)
� y ⇐⇒ |x| �

((
− log(y)

c

)p/q

− d

)1/p

. (4.57)

For (4.39), we have p2(x) ∝ exp

(
−c

(
(x2 + g)

p/2
+ d

)q/p
)

and

exp

(
−c

((
x2 + g

)p/2
+ d

)q/p
)

� y ⇐⇒ |x| �

√√√√((
− log(y)

c

)p/q

− d

)2/p

− g.

(4.58)

For (4.36), we have p2(x) ∝
(
1 + |x|p

d

)−c
and

(
1 +

|x|p
d

)−c
� y ⇐⇒ |x| � d1/p

(
y−1/c − 1

)1/p
. (4.59)

For (4.40) we have p2(x) ∝
(
1 + (x2+g)p/2

d

)−c
and

(
1 +

|x|p
d

)−c
� y ⇐⇒ |x| �

√
d1/p (y−1/c − 1)

2/p − g. (4.60)

For the TV prior, (4.42), we need to compute Sy
2 numerically. However, the energy of

p2(x) is convex. Therefore, Sy
2 is a single interval given by the solutions to p2(x) = y.

As the energy of p2(x) is also piecewise smooth and can be bounded from below, we
can easily find starting points for fast, derivative-based root-finding-algorithms. The
details are given in Appendix A.4. A generalization to other convex, piecewise-smooth
energies is straight-forward. The piecewise linear energy from (4.43) is a special case:
p2(x) = y can be solved explicitly in a simple way.
The likelihood part is a Gaussian with μSS = b/(2a) and σ2

SS = 1/(2a). As noted in
Section 4.1.8, fast and robust samplers for truncated Gaussians exist. Incorporating
hard constraints in slice sampling is very easy: Instead of sampling p1(x) truncated to
Sy
2 , we sample it truncated to Sy

2 ∩ [xmin, xmax].
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In principle, the slice sampler will generate a full Markov chain, but practically, we only
need one sample from it. We will initialize it with the current value ξi of the component
we want to update. Then, we only have to determine the length of the burn-in phase k0

and choose the first sample of the real run as a sample of p(x).

4.1.11. Posterior Sampling for Hierarchical Bayesian Models

As mentioned in the introduction of Section 4.1.5, the construction of hierarchical
Bayesian models by conditional distributions is appealing for carrying out Gibbs sampling
over the partition into u and γ: ppost(u|f, γ) usually belongs to a class of distributions for
which a sampler is known, and ppost(γ|f, u) = ppost(γ|u) often factorizes into univariate
distributions over γi. In fact, hierarchical modeling is often only used because it allows
for Gibbs posterior sampling.
The conditionally �p hypermodels (3.41) we use in this thesis were constructed such that
ppost(u|f, γ) is a posterior resulting from using an �p prior. For these posteriors, samplers
were developed in the previous sections. As we usually use a factorizing hyperprior of
the type

phyper(γ) ∝
h∏
i

γ−δi exp (−ϕi(γi)) , (4.61)

the conditional posterior ppost(γ|u) also factorizes:

ppost(γ|u) ∝
h∏
i

exp

(
−

∣∣DT
i u

∣∣p
γi

− (δ + 1/p) log(γi)− ϕi(γi)

)
(4.62)

In certain cases, for instance for the inverse gamma distribution we mainly use in this
thesis, direct univariate samplers can be used (cf. (3.47)). As shown in Section 3.3.3, �p
hypermodels with inverse gamma hyperpriors can be used as surrogate prior models for
product tp priors. Thereby, we have a second sampling scheme for product tp priors. To
distinguish this sampler from the SC Gibbs sampler, we will refer to it as blocked Gibbs
sampler.

4.1.12. Notes and Comments

Random number generation and Monte Carlo strategies are a vast topic. In particular,
since samplers for more complex tasks usually have to be constructed by combining
various simpler samplers, the number of possible sampling techniques is huge. However,
no universal method is known which exhibits a good performance for all types of
distributions. For a comprehensive overview, we refer to Liu (2008), Robert and

Casella (2005).



106 4 Bayesian Computation

4.2. Posterior Optimization Methods

In this section, we will present algorithms that can be used to compute MAP estimates
for different prior distributions.

4.2.1. Least Squares Methods for Gaussian Priors

As mentioned in Section 4.1.2, the posterior using a Gaussian prior is also a Gaussian.
Therefore, the MAP and the CM estimate are given by

ûMAP = ûCM = E[u|f ] =
(
2λDDT + ATA

)−1
ATf (4.63)

The most efficient way to solve this problem depends on the properties of A and D. In
Lucka (2011), various techniques to reformulate and solve (4.63) are discussed. If A
or D cannot be used as an explicit matrix, only iterative methods that compute ûMAP

by solving [
A√
2λDT

]
v

ls
=

[
f

0

]
(4.64)

in a least-squares sense can be used. We will use the conjugate gradient least squares
(CGLS ) method for this purpose, see Section 3.5 in Lucka (2011). A general reference
is given by Saad (2003).

4.2.2. ADMMMethods for Log-Concave Priors

The optimization problem arising from computing the MAP estimate for log-concave
priors (cf. Section 3.2.3),

min
u

E(u) := 1

2
‖f − Au‖22 + λJ (u), (4.65)

is convex. Convex optimization problems, which comprise least-squares and linear
optimization problems, are a fundamental class of optimization problems. Using
concepts from convex analysis such as duality and subgradient calculus, they can be
solved in a very efficient and generic way (Boyd and Vandenberghe 2004). A
further advantage of (4.65) is that the posterior energy E(u) naturally decomposes into
likelihood and prior energy terms, which are both convex. Due to this separation, it is
possible to introduce an auxiliary variable v ∈ R

l to reformulate (4.65) as

min
u,v

h(u) + g(v) s. t. Eu+ Fv = b, (4.66)
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where E ∈ R
l×n, F ∈ R

l×k, b ∈ R
l. For instance, h(u) = 1

2
‖f − Au‖2Σ−1

ε
, g(u) = λJ (u),

u− v = 0 is always possible. For �qp priors with a matrix DT , v = λp/qDTu would be a
reasonable split. The split problem (4.66) can be solved efficiently with the alternating
direction method of multipliers (ADMM ). An extensive reference is given by Boyd

et al. (2011). ADMM builds on dual ascent, augmented Lagrangian techniques, and the
method of multipliers: Solving the dual problem to (4.66) by gradient ascend would
consist of the iteration

(ui+1, vi+1) := argmin
(u,v)

L(u, v, yi) (4.67)

yi+1 := yi + α
(
Eui+1 + Fvi+1 − b

)
, (4.68)

where
L(u, v, y) :=h(u) + g(v) + yT (Eu+ Fv − b) (4.69)

is the Lagrangian for problem (4.66), y the dual variable and α a step size. Augmented
Lagrangian techniques replace L(u, v, y) by

Lρ(u, v, y) = h(u) + g(v) + yT (Eu+ Fv − b) +
ρ

2
‖Eu+ Fv − b‖22, (4.70)

with a penalty parameter ρ. While the primal problem for (4.70) is equivalent to (4.66),
the dual problem is easier to solve. Applying dual ascend to the modified problem
would consist of the iteration

(ui+1, vi+1) := argmin
u,v

Lρ(u, v, y
i) (4.71)

yi+1 := yi + ρ
(
Eui+1 + Fvi+1 − b

)
, (4.72)

whereby, ρ is now the step size α. This is known as the method of multipliers for solving
(4.66). It has the nice property that all iterates (ui, vi, yi) are dual feasible. ADMM
consists of replacing the joint minimization in the first step by a single alternation
between u and v:

Algorithm 4.6. (Alternating Direction Method of Multipliers)
Given ρ, Lρ(u, v, y), v0,y0, repeat

ui+1 := argmin
u

Lρ(u, v
i, yi) (4.73)

vi+1 := argmin
v

Lρ(u
i+1, v, yi) (4.74)

yi+1 := yi + ρ
(
Eui+1 + Fvi+1 − b

)
(4.75)
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In principle, the alternation between u and v can be carried out multiple times before
the dual variable y is updated. We will mainly use the scaled form of ADMM, which
we obtain by replacing w := y/ρ. Then, the explicit formulation of ADMM is given as

Algorithm 4.7. (ADMM, explicit scaled form)
Given ρ, h(u), g(u), v0,w0, repeat

ui+1 := argmin
u

(
h(u) +

ρ

2

∥∥Eu+ Fvi − b+ wi
∥∥2

2

)
(4.76)

vi+1 := argmin
v

(
g(v) +

ρ

2

∥∥Eui+1 + Fv − b+ wi
∥∥2

2

)
(4.77)

wi+1 :=wi +
(
Eui+1 + Fvi+1 − b

)
(4.78)

Posterior Optimization

We will now apply ADMM to the posterior energy (4.65) with a prior energy of the
form λJ (DTu). We will split by DTu = v, i.e., E = DT , F = −Ih, b = 0 and obtain

ui+1 := argmin
u

(
1

2
‖f − Au‖2Σ−1

ε
+

ρ

2

∥∥DTu− (vi − wi)
∥∥2

2

)
(4.79)

vi+1 := argmin
v

(
J (v) +

ρ

2λ

∥∥v − (DTui+1 + wi)
∥∥2

2

)
(4.80)

wi+1 :=wi +DTui+1 − vi+1. (4.81)

The split decouples the operators A and D from the potentially non-quadratic J (v).
Problem (4.79) is a least-squares problem which we can solve as in Section 4.2.1. If we
define the proximity operator by

proxJ ,α(x) := argmin
z

(
J (z) +

α

2
‖z − x‖22

)
, (4.82)

the solution of (4.80) is given by:

vi+1 = proxJ ,ρ/λ

(
DTui+1 + wi

)
. (4.83)

The proximity operators of many functionals can be evaluated using closed-form ex-
pressions (see Combettes and Pesquet 2011, for an extensive overview). For
J (z) = ‖z‖1, z∗ :=prox‖·‖1,α(x) is given by component-wise soft thresholding/shrinkage:

z∗i = sign(xi) ·max{0, |xi| − 1/α} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi − 1/α if xi > 1/α

0 if |xi| � 1/α

xi + 1/α if xi < −1/α

(4.84)
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In Appendix A.5, we generalize the above to other �1-norm based prior energies we use
in this thesis.

Stopping criterion

The primal feasibility of (ui, vi) can be measured by the norm of the primal residuum
ri+1 :=Eui+1 + Fvi+1 − b of the equality constraint. The dual feasibility can measured
by the norm of the quantity si+1 := ρETF (vi+1 − vi), which we will call dual residuum.
The necessary and sufficient optimality conditions for the ADMM problem are fulfilled
if both residuals are zero. Therefore, one can derive a suitable stopping criterion for
ADMM based on their norms (see Boyd et al. 2011, for details):

∥∥ri∥∥
2
� εpri and

∥∥si∥∥
2
� εdual, (4.85)

where

εpri =
√
lεabs + εrel max

{∥∥Eui
∥∥
2
,
∥∥Fvi

∥∥
2
, ‖b‖2

}
(4.86)

εdual =
√
nεabs + εrelρ

∥∥ETwi
∥∥
2
, (4.87)

and εabs > 0 and εrel > 0 are predefined absolute and relative tolerances.

Penalty parameter adaptation

In practice, the speed of convergence of the ADMM method strongly depends on the
proper choice of the penalty parameter ρ. For these reasons, an automatic online
adaptation of ρ would be advantageous. Given that ρ becomes stationary after a finite
number of iterations, ADMM is still guaranteed to convergence. We use a simple scheme
that is based on the convergence criterion we use: One should keep primal and dual
residual norms ‖ri‖2 and ‖si‖2 close to each other while they both converge to zero. If
the primal residuum is too large, we should increase ρ, which penalizes deviations from
the equality constraint:

ρi+1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τ incρi if ‖ri‖2 > μ‖si‖2
ρi/τ dec if ‖si‖2 > μ‖ri‖2
ρi otherwise

(4.88)

Here, τ inc > 1, τ dec > 1 and μ > 1 are parameters that control the adaptation. Whenever
ρ is changed, the scaled dual variable w needs to be adjusted: wi+1 :=(ρi/ρi+1)wi+1.
While adopting ρ, one has to keep in mind that it also controls the condition of the
least-squares problem (4.79), which becomes ill-conditioned in the limit of ρ → 0.
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Thereby, iterative methods such as CGLS will need considerably more iterations to solve
it to a given tolerance. As this step is the computational bottle-neck of the ADMM
method, it limits the ability of ρ-adaptation to speed up the convergence of ADMM in
terms of computational time. In these situations, a lower bound for ρ should be chosen.

Constraints

To account for additional constraints of the form u ∈ C (cf. Section 3.2.2), ADMM has
to be modified. Depending on the concrete form of C, several options are available:

• The constraints can be incorporated in h(u). Then, (4.79) becomes a constrained
least squares problem. For certain constraints, like non-negativity, tailored algo-
rithms have been developed (Chen and Plemmons 2009).

• The constraints can be incorporated into g(v). Then, the proximity operator
for solving (4.80) has to be modified. This only works if the constraints can be
transferred from u to v.

• If C has a complicated or non-explicit structure, an additional splitting

min
u,v,t

h(u) + g(v) + c(t) s. t. Eu+ Fv +Gt = b, (4.89)

with

c(t) =

⎧⎨
⎩0 if t ∈ C

∞ else
(4.90)

has to be applied.

Notes and Comments

The appealing property of ADMM is its generality. Provided that they are convex, it
offers a principled but simple way to treat various prior energies. Furthermore, it works
for all combinations of operators A and D. In contrast, faster and even simpler methods
are often available that only work for a specific combination of A and D.
Interestingly, ADMM can also be interpreted as an implementation of the Bregman
iteration (Bregman 1967) for (4.66): For a convex optimization problem

min
u

E(u) s. t. Fu = b (4.91)
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the Bregman iteration is given by

ui+1 = argmin
u

{
Dp
E(u, u

i) +
ρ

2
‖Fu− b‖22

}
= argmin

u

{
E(u)−

〈
ξi, u− ui

〉
+

ρ

2
‖Fu− b‖22

}
, (4.92)

where Dp
E(u, v) is, again, the Bregman distance encountered in (3.76) (cf. Section

A.1). Using this iteration for image reconstruction is analyzed in Osher et al. (2006).
Applied to the split problem (4.66), the Bregman iteration is called split Bregman
method (Goldstein and Osher 2009). In most scenarios, the split Bregman method
is equivalent to ADMM (Esser 2009). More general relations to other methods can be
found in Boyd et al. (2011), Zhang et al. (2011).

4.2.3. Parameter Fitting for �qp Priors

Consider a non-negative, convex functional J (u) and let

ûr
MAP(μ) := argmin

u∈Rn

{
1

2
‖f − A(u)‖2Σ−1

ε
+ μJ (u)r

}
. (4.93)

The optimality condition (cf. Section A.1) for ûr
MAP(μ) is given by

0 ∈ ∂ (μJ (ûr
MAP(μ))

r) + AT (Aûr
MAP(μ)− f)

=⇒ 0 ∈ μrJ (ûr
MAP(μ))

r−1∂J (ûr
MAP(μ)) + AT (Aûr

MAP(μ)− f) (4.94)

If we define λ∗ :=μrJ (ûr
MAP(μ))

r−1, we see that ûr
MAP(μ) also fulfills the optimality

condition for
ûMAP(λ∗) := argmin

u∈Rn

{
1

2
‖f − A(u)‖2Σ−1

ε
+ λ∗J (u)

}
, (4.95)

and hence ûMAP(λ∗) = ûr
MAP(μ). Therefore, by computing a MAP estimate ûMAP(λ) for

a given λ, we obtain ûr
MAP(μ(λ)) for

μ(λ) =
λ

rJ (ûMAP(λ))(r−1)
, (4.96)

given that J (ûMAP(λ)) > 0. Let λ0 ∈ (R+ ∪ {∞}) be the smallest λ such that
J (ûMAP(λ)) = 0. As J (ûMAP(λ)) is decreasing on (0, λ0), (4.96) is a strictly increasing,
super-linear function on (0, λ0). Therefore, one can easily compute ûr

MAP(μ∗) for a
given μ∗ by inverting μ(λ) numerically, i.e., by iteratively fitting λ such that μ(λi) is
sufficiently close to μ∗. Simple bisection or secant methods can be used for this purpose.
In general, the regularization path {(λr, û

r
MAP(λr) |λr > 0} is equal for all r � 1: For
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Figure 4.6.: (a) μ(λ) for �q1 priors in the “Boxcar” scenario (n = 63). (b) Simulated
annealing of a density to optimize (red line). The vertical soild lines indicates the
location of the mean, the dashed lines the locations of mean ± standart deviation. With
decreasing temperature more and more probability mass is concentrated in the highest
mode, the mean converges to the mode and the standart deviation decreases.

every ûr
MAP(λr), there is a λr′ such that ûr′

MAP(λr′) = ûr
MAP(λr). One could easily generalize

the above to g(J (u)), for more general functions g(·) with certain properties.
We will use the above procedure to compute MAP estimates for �qp priors pprior(u) ∝
exp

(
−μ

∥∥DTu
∥∥q

p

)
with q > p. In this case, we have J (u) =

∥∥DTu
∥∥p

p
and r = q/p. For

p � 1, MAP estimates for �p priors can be computed using ADMM. Figure 4.6a shows
μ(λ) for p = 1 and various values of q.

4.2.4. Simulated Annealing

The idea of simulated annealing (SA, Kirkpatrick et al. 1983) is simple: The location
of the MAP estimate is invariant to a rescaling of the posterior energy E(u) by a scalar
temperature T ,

argmax
u

{ppost(u|f)} = argmax
u

{exp (−E(u))} = argmax
u

{exp (−E(u)/T )} . (4.97)

However, if we define the tempered posterior pTpost(u|f) as exp (−E(u)/T ), the normal-
ization of the distributions changes as well and induces a second, uniform, rescaling
of the whole distribution. This interplay between energy rescaling and probability
normalization asymptotically concentrates the whole probability in the MAP estimate
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of ppost(u|f) (see Figure 4.6b). In particular, we have

lim
T→0

EpTpost(u|f) [u] = lim
T→0

∫
u exp (−E(u)/T ) du∫
exp (−E(u)/T ) du = argmax

u
{exp (−E(u))} . (4.98)

This yields a simple stochastic optimization scheme:

Algorithm 4.8. (Simulated Annealing)
Given ppost(u|f), an initial point u0 and an annealing schedule {Ti}NT

i=1, Ti ∈ R+,
Ti+1 < Ti, repeat for i = 1, . . . , NT

1. Run a Markov chain for pTi
post(u|f) initialized at ui−1 for Ki steps.

Output: {ui,j}Ki
j=1

2. Set ui to the last sample ui,Ki of the chain.

Compute
û := argmax

i,j

{
ppost(u

i,j|f)
}

(4.99)

as an approximation to ûMAP.

In this formulation, Ki has to be chosen such that the Markov chain reaches its
equilibrium phase after cooling. Its choice depends on the annealing schedule {Ti}NT

i=1.
A slow annealing schedule will lead to better results, in particular for multimodal
posteriors. Discrete cooling schedules use large values for Ki and a large decrease in T .
Neal (1993) advocates the use of a slow but continuous cooling: Ki = 1 for all i and a
slow decrease in T . We will use such a scheme:

Ti = qi · T0, where q :=

(
Tend

T0

)(1/NT )

< 1, Ki = 1 ∀ i (4.100)

Here, T0 and Tend are predefined start and end temperatures. For unimodal posteriors,
T0 = 1 will be chosen, but for multimodal posteriors, T0 > 1 can be used to avoid
getting trapped in sup-optimal local modes at the beginning.
All samplers used in this thesis can easily be reformulated to incorporate the energy
scaling by T . Details can be found in Appendix A.6.
Simulated annealing is different from deterministic optimization techniques. It is usually
applied in combination with MH sampling as a probabilistic, “black-box” metaheuristic
for global optimization of complicated, discrete energy functions (Liu 2008, Robert

and Casella 2005). Applying it to continuous optimization using Gibbs sampling is
rather uncommon, in particular in high dimensional settings like image reconstruction.
We will especially use it in situations where no other optimization techniques can be
applied, for instance when using non-convex, non-smooth prior energies such as the �p
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energies for p < 1. In Section 5.1.5, we will compare its performance to deterministic
optimization.

Notes and Comments

Simulated annealing is inspired by the annealing technique in metallurgy: A solid
material is exposed to a heat bath with a temperature high enough to melt it. During
a subsequent cooling, the particles will spatially arrange in a state of minimal energy.
The energy typically features many local minima, reflecting various possible defects of
the optimal lattice structure. The temperature corresponds to mobility of the material
to switch to new energy states. A fast cooling (quenching) will very likely result in the
system being trapped in a sub-optimal minimum (which might, however, correspond
to a state with desirable material properties). Slow annealing aims to optimize the
crystallinity of the material.
Simulated tempering (Liu 2008, Robert and Casella 2005) is a related MCMC
sampling technique: Aside the main chain, multiple auxiliary chains with T > 1 are
run in parallel. The chains occasionally switch states which allows the main chain to
escape local modes.

4.2.5. Alternating Optimization for Hierarchical Bayesian Models

For �p hypermodels, optimizing the joint posterior ppost(u, γ|f) with respect to both u

and γ will be based on the same considerations as sampling from it (cf. Section 4.1.11):
The conditional construction is exploited in a block coordinate descent scheme.

Algorithm 4.9. (Alternating HBM Optimization)
Given ppost(u, γ|f) and an initial γ0, repeat for i = 1, 2, 3, . . .

1. ui := argmaxu {ppost(u|f, γi−1)}

2. γi := argmaxγ {ppost(γ|f, ui)} = argmaxγ {ppost(γ|ui)}

until ppost(ui+1, γi+1|f) < ppost(u
i, γi|f) or a maximal number of iterations is reached.

Step 1. corresponds to computing a MAP estimate for an �p prior and the methods
introduced in the previous sections can be used. For step 2., we, again, consider the
case of factorizing hyperpriors of the form (4.61). This leads to the factorization of the
conditional posterior ppost(γ|ui); cf. (4.62). Therefore, the optimization over γ consists
of a component-wise optimization of all 1D conditional densities:

γi
j = argmax

γj

{
exp

(
−

∣∣DT
j u

i
∣∣p

γj
− (δ + 1/p) log(γj)− ϕi(γj)

)}
(4.101)
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For the inverse gamma distribution, pprior(γj|ui) is, again, an inverse gamma distribution
with the parameters ᾱj :=α + 1/p, β̄ :=

∣∣DT
j u

i
∣∣p + β; cf. (3.47). Its mode (4.101) is

given by

γi
j =

β̄

ᾱ + 1
=

∣∣DT
j u

i
∣∣p + β

α + 1 + 1/p
; (4.102)

cf. Section A.1.7 in Lucka (2011). As the posterior with an inverse gamma hyperprior
is not log-concave, the alternating optimization Algorithm 4.9 will only converge to a
local mode. For the case of p = 2, this was examined in Lucka (2011), Lucka et al.
(2012). Therefore, heuristic initialization approaches were developed for computing
full-MAP estimates with this scheme: It was observed that using full-CM estimates
for γ0 resulted in local modes corresponding to reconstructions of good quality. The
result of this heuristic will be called near-mean (NM ) estimate. Another approach is to
compute several full-CM estimates from small chains, use all of them in the alternating
optimization scheme, and pick the result with the highest posterior probability. In
Lucka (2011), it was shown that this strategy most often outperforms NM estimates
with respect to the posterior probability. Therefore, the result of this strategy will be
referred to as “the” MAP estimate.
For the gamma distribution (3.48), (4.101) is given by

argmin
γj

{∣∣DT
j u

i
∣∣p

γj
+

γj
β

− (α− 1− 1/p) log(γj)

}
. (4.103)

We can easily compute the optimality conditions:

1st order: 0 = γ2
j − (α− 1− 1/p)βγj −

∣∣DT
j u

i
∣∣pβ (4.104)

2nd order: 0 �
2
∣∣DT

j u
i
∣∣p

γ3
j

+
α− 1− 1/p

γ2
j

(4.105)

The second order condition is fulfilled for α � 1 + 1/p. The positive solution of the first
order condition is given by

γj =
(α− 1− 1/p)β

2
+

√
(α− 1− 1/p)2β2

4
+

∣∣DT
j u

i
∣∣pβ (4.106)

Note that if p � 1 and α > 1, the whole posterior is log-concave. Therefore, the
alternating optimization scheme 4.9 will converge to a global minimum.
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4.3. Iterative Optimization and MCMC Sampling

Traditionally, deterministic optimization and stochastic sampling are two very distinct
fields of applied mathematics with their own terminology and very little exchange.
Therefore, iterative optimization methods such as ADMM seem conceptually very
different from the basic MCMC sampling methods such as MH at first glance. While
both produce a series {xi} of points in R

n, iterative optimization schemes seem to
construct this series in a clear and determined way, while MCMC chains seem to be
characterized by a fuzzy, random-walk-like behavior. However, in principle, both series
{xi} are constructed to lead to the convergence of a certain quantity in a computationally
efficient way:

• In iterative optimization, {xi} is constructed such that xi → x̂ ∈ argmin{− log p(x)}
as fast as possible.

• MCMC schemes construct {xi} such that 1
K

∑K
i g(xi) →

∫
g(x)p(x) dx as fast as

possible.

The fuzzy, random-walk-like behavior of MCMC chains is clearly not the main aim
of MCMC samplers, it is rather an undesired by-product of its construction scheme.
Remind that the two “MC’s” in “MCMC” refer to two different kinds of randomness:

• Markov chain: The unwanted, random-walk-like randomness that one has to
tolerate because direct methods to draw independent samples for p(x) are not
known.

• Monte Carlo: The wanted, independent-samples-like randomness that leads to the
convergence of the integral.

Designing fast MCMC schemes essentially means getting rid of the first “MC”.
Practically, one can observe a lot of similarities between iterative optimization and
sampling:

• Both suffer from similar problems, for instance from strong dependencies between
single components. This is a natural feature of inverse problems as the compact
forward operator A “wraps up and compresses” many dimensions, cf. Section 1.2.

• Many algorithms for sampling and optimization are surprisingly similar: We saw
in Sections 4.1.2 and 4.2.1 that sampling or optimizing a Gaussian distribution
only requires a slight modification of the right hand side of a linear system. In
Sections 4.1.11 and 4.2.5, we saw that both sampling and optimization for HBM
follow the same alternation scheme (cf. Section 3.2 in Lucka 2011). Both ADMM
and the general slice sampler are splitting schemes that decouple the posterior
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into likelihood and prior parts by introducing auxiliary variables, and alternate
between updating them (although we use the slice sampler only for the conditional
SC densities, one could also split the complete posterior). Simulated annealing
shows how to employ MCMC sampling to construct an optimization scheme.

• In the computational studies in Chapter 5, we will see that both are only com-
putationally efficient if they exploit the analytical structure of p(x), for instance,
both ADMM and slice sampling are only efficient if the split is chosen in a way
that explicit solutions to the updates of all variables are available.

As a result, it could be fertile to transfer techniques from one field to the other. The field
of optimization is older and way better explored compared to computational sampling,
which was established in Metropolis et al. (1953) and only recently gained practical
importance. Hence, transferring optimization techniques to sampling, especially to
suppress superfluous randomness, is an important future field of research.

4.3.1. Over-relaxation Techniques

As an example for a transfer from optimization to sampling, we examine how over-
relaxation can be applied to speed up Gibbs sampling: For a symmetric, positive-definite
G ∈ R

n×n and a given c ∈ R
n, consider a Gaussian density p(x) ∼ N (ν,Σ) where

ν = G−1c and Σ are not known or cannot be computed directly. Instead, we can only
compute mean μ(x, j) and standard deviation σ(x, j) of the conditional single component
densities p(xj

∣∣x−j) (which are also Gaussian). Therefore, we can only optimize or sample
over the single component densities. The iterative optimization is the well-known Gauss-
Seidel method to solve the linear system Gx = c: In each step, xj is replaced by μ(x, j)

and the iteration repeatedly runs over all components (see Figure 4.7a). The sampling
is just the SC Gibbs sampler: In each step, xj is replaced by μ(x, j) + σ(x, j)z, where
z ∼ N (0, 1) (cf. Figure 4.3a and Section 4.1.2). Obviously, the convergence of both
methods is strongly affected by strong correlations between single components. As noted
above, this occurs naturally in typical under-determined inverse problems. For the
Gauss-Seidel solver, successive over-relaxation (SOR, see Saad 2003) is a well known
technique to counteract this coupling between single components in order to increase
the convergence rate: In each step, xj is replaced by μ(x, j) + α(xj − μ(x, j)), where
−1 < α < 1 (often, the equivalent parameterization by ω = 1− α is used). If α < 0, xj

is over-relaxed to the other side of the mean, while α > 0 leads to under-relaxation or
damping. Figures 4.7b and 4.8a illustrate how SOR speeds up the convergence of the
Gauss-Seidel solver. Adler (1981) showed that the Gibbs sampler can be accelerated
by the same idea: Replacing xj by μ(x, j) + α(xj − μ(x, j)) +

√
1− α2σ(x, j)z leads to

an over-relaxed Gibbs sampler that converges faster (see Figure 4.8b). Note that with
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(a) (b)

Figure 4.7.: Illustration of successive over-relaxation in the Gauss-Seidel solver: (a)
No over-relexation, α = 0, (b) over-relaxation, α = −0.25

increasing |α|, the random part of the update is more and more suppressed while the
chain is still ergodic. Hence, this technique is getting rid of the first “MC” in MCMC
as discussed above. In Neal (1995), this idea is generalized to arbitrary distributions
using order statistics :

Algorithm 4.10. (Ordered Over-relaxation, OOR)
The SC sampling step 3.2. in Algorithm 4.3 is replaced by

3.2.1. Draw NO random values s1, . . . , sNO from the conditional, 1D density p(xj|xi
−j),

where NO ∈ N is odd.

3.2.2. Sort s1, . . . , sNO plus the current value xi
j in non-decreasing order, labeling

them as follows:

s(0) � s(1) � · · · � s(t) = xi
j � · · · � s(NO) (4.107)

3.2.3. Set y = s(NO−t).

Here, NO functions like an over-relaxation parameter: A large NO leads to stronger
over-relaxation and suppresses more randomness of the sampling process. In the limit
of NO → ∞, we have that F (y) = 1− F (xi

j): The update is completely deterministic
and mirrors the cdf value of xi

j around 0.5, i.e., around the median of the distribution.
For SC densities that are symmetric around the mean (and mean and median coincide),
xi
j is mirrored at the mean and p(y

∣∣xi
−j) = p(xi

j

∣∣xi
−j). This gives some intuition why
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(b) Over-relaxed Gibbs sampler by Adler

Figure 4.8.: Error of (a) SOR iterate, (b) chain mean for different values of α

OOR accelerates the convergence: The mean of p(·
∣∣xi
−j) can be computed from only

two samples: It is given by (y + xi
j)/2.

We can use OOR in all Gibbs samplers that work with univariate distributions:

• For sampling the SC densities in SC Gibbs sampling (see Section 4.1.5).

• For vertical and horizontals moves in the slice sampler (see Sections 4.1.9 and
4.1.10).

• For sampling the univariate conditional hyperparameter posteriors ppost(γi|u) in
the HBM-Gibbs sampler (see Section 4.1.11).

The basic Algorithm 4.10 requires NO times more computation time for these sampling
steps. Therefore, its benefits might be overcompensated by the increase of computational
time. However, one can often either avoid the linear increase of computational time by
a different implementation or neglect it:
Whenever drawing y consists of a monotone, invertible transformation g(z) of another
random variable z, OOR can also be performed on z using zij := g−1(xi

−j). For instance,
in Neal (1995) an implementation of OOR for the inverse cumulative distribution
method is given which renders the computation time nearly independent of NO:

Algorithm 4.11. (ICD Implementation of OOR)
The SC sampling step 3.2. in Algorithm 4.3 is replaced by

3.2.1. Compute r = F
(
xi
j

)
, r ∈ [0, 1].

3.2.2. Let r′ be the ordered over-relaxation of r with respect to the uniform distri-
bution on [0, 1] and NO (computed with Algorithm 4.10).

3.2.3. Replace y by F−1(r′).

Usually, the first and the third step are computationally most demanding. As they
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do not depend on NO, the computation time is nearly independent of NO. In Lucka

(2012), this scheme was used to implement OOR for the direct �1 sampler (cf. Section
4.1.8).
Even if using Algorithm 4.11 is not possible, one can often neglect the additional
computational load: In SC Gibbs sampling, computing the parameters of the SC
densities requires way more computation time than sampling from them. As a result, one
can spend more time on this sampling step without increasing the total computational
time in a significant way. In the HBM-sampler, the same is true for updating the
hyperparameters: Sampling ppost(u|f, γ) is the computational bottleneck as it involves
the forward operator. In slice sampling, the situation is different, but for multimodal
densities, OOR might increase the probability of the sampler to escape from a mode.
We will denote the over-relaxed versions of SSG, RSG and RPSG by by appending “-
ONO”: For instance, “SSG-O7” denotes the systematic scan Gibbs Sampler with ordered
over-relaxation using NO = 7. A detailed, computational examination of over-relaxation
will be carried out in Section 5.1.4.

4.3.2. Notes and Comments

The example of using over-relaxation to speed up the optimization or sampling of
Gaussian densities was used for illustrative reasons only. In most situations, SOR
(or other stationary solvers) are no longer used to solve linear systems, in particular
large, sparse ones. Instead, conjugate gradient methods are often employed (cf. Section
4.2.1). Interestingly, the concepts behind conjugate gradient optimization can also be
transferred to sample high dimensional Gaussians with a sparse correlation matrix, see
Schneider and Willsky (2003) and Parker and Fox (2012).

4.4. Computation of Recovery Conditions

In this section, we will discuss how the recovery conditions introduced in Section 3.5 can
be tested computationally. The null space property (NSP) can usually not be verified
by direct computations, only a falsification by Monte Carlo simulation is possible. The
other recovery conditions were developed because of this shortcoming.
Computing the coherence numbers μ(A), μblk(A) and μsub(A) is trivial if A is given as
a matrix of moderate size. In other cases (which are not relevant to this thesis) the
computations need to be arranged in a suitable way.
It is hard to compute the RIP constant δk in a direct way, but we can bound it by
brute-force Monte Carlo computations:
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Algorithm 4.12. (RIP Bounds)
For A with coherence μ(A), the RIP constant δk can be bounded by [δlbk , δ

ub
k ], where

δubk = μ(A)(k − 1) and the lower bound δlbk can be refined iteratively:
Set δlbk = 0, nlast = 0, δdiff = 0. For i = 1, 2, 3, . . . do

1. Generate u ∈ R
n with |u|0 = k and ‖u‖2 = 1 uniform at random.

2. Compute δu = |1− ‖Au‖2|

3. If δu > δlbk , set nlast := 0; δdiff := δu − δlbk ; δlbk := δu. Else, set nlast :=nlast + 1.

One can stop the iteration once [δlbk , δ
ub
k ] is sufficiently narrow, the recovery condition to

be checked is falsified or if nlast, the number of samples since the last change of δlbk , is
sufficiently large.

Although this brute-force algorithm is not very elegant, it will suffice for our compu-
tational studies. The block variant, where one can further use that δk � δ[k] � δdk, is
straightforward to derive.
Conditions (Tr), (FuA), (BlkTr), (BlkFuA) are easy to compute. Condition (FuB) is a
feasibility problem with linear equality and inequality constraints:

(FuB) comp.⇐⇒
[

AT
Ic

−AT
Ic

]
w � 1 and AT

I w = sign(u†I), (4.108)

where “�” is understood in a component-wise sense and the “computational equivalence”
should indicate that the strict distinction between “�” and “<” is difficult. For computing
(SSC+), the inequality constraint simplifies to AT

Icw � 1. We will use primal-dual interior
point methods to tackle these problems (see Boyd and Vandenberghe 2004, for a
general reference). Depending on the study design, a direct Matlab implementation
(through linprog.m) or a MOSEK or SeDuMi implementation (interfaced through
CVX) are used. See Section A.8 for an overview of the software used. In addition to
testing (FuB) by (4.108), we may also want to minimize

∥∥AT
Icw

∥∥
∞ or ‖w‖2 on the set of

feasible points (the latter for the error estimates (3.79) and (3.80)). In Matlab, we can
use quadprog.m for minimizing ‖w‖2 and reformulate the minimization of

∥∥AT
Icw

∥∥
∞ to

a linear program in standard form (solved by linprog.m). Using CVX, both problems
can be formulated in an easy way. In (BlkFuB), we have conic instead of linear inequality
constraints:

(BlkFuB) :
∥∥(ATw)[j]

∥∥
2
< 1 ∀j /∈ I and AT

[I]w = ξ[I] (4.109)

As conic constraints are also convex, interior point methods can be used to tackle such
a second-order cone feasibility problem (Boyd and Vandenberghe 2004) as well.
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We use MOSEK or SeDuMi implementations (interfaced through CVX). Additional
convex functions such as maxj /∈I

(∥∥(ATw)[j]
∥∥
2

)
or ‖w‖2 can be incorporated as well.

Both optimization problems are very ill-conditioned. To stabilize them, imposing
additional upper and lower bound constraints lb � w � ub is often necessary. Still,
one may also need to try a sequence of different solver implementations as no single
implementation works for all u†. For instance, the active-set and even the simplex
implementations of the linear solver linprog.m in Matlab have to be used if the
interior point implementation fails.
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5
COMPUTATIONAL STUDIES

In this chapter, we will examine the aspects discussed in the last chapters by numer-
ical studies. The computational methods introduced in the previous chapter will be
investigated in Section 5.1. Section 5.2 contains a collection of simulated data studies
on various conceptual aspects of Bayesian inversion while Sections 5.3 and 5.4 contain
application specific studies for CT and EMEG. In particular, they will discuss the
challenges of experimental data scenarios.

5.1. Evaluation of the Computational Methods

Whenever computation times are discussed, special attention was paid that implemen-
tations and computational platforms used were as comparable as possible. In addition,
Matlab was limited to a single computational thread (parallelization is discussed in
Section 7.4). However, all computation time comparisons should give a general idea
about the behavior and applicability of the algorithms rather than absolute figures.

5.1.1. Prior Sampling

We start by using the Gibbs samplers to sample different prior distributions. This
illustrates which kind of results they promote. Figure 5.1 shows the results.

5.1.2. Comparison of MCMC Samplers for �1 priors

In this section, a comparison between MH and SC Gibbs samplers for �1 priors is carried
out. The computations are based on more extensive studies published in Lucka (2012),
but were partly rearranged and recomputed for this thesis.
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Table 5.1.: Burn-in length K0 for the Boxcar scenario using a TV prior, u0 = 0 and
different combinations of (n, λ). All samplers use an SSR of n.

(63,100) (63,200) (63,400) (127,280) (255,400) (511,560) (1023,800)

MH-Iso 4.0e2 8.0e2 4.0e3 4.0e3 1.3e4 6.0e4 2.0e5
MH-Si 4.0e2 1.0e3 5.0e3 5.0e3 1.5e4 6.0e4 2.0e5
RSG 2.0e2 2.0e2 2.0e2 8.0e1 5.0e1 3.0e1 2.0e1
SSG 4.0e2 5.0e2 5.0e2 1.5e2 1.0e2 1.5e2 1.5e2

Visual Comparison

We start by a visual impression of the convergence of the MCMC samplers in the
“Spots” scenario. We use n = 513 × 513 = 263 169, and a simple �1 prior (D = In)
with λ = 2 · 107. In Figure 5.2, the CM estimates obtained after 1, 4 and 16 hours of
computational time are shown for MH-Iso, MH-Si, RSG and SSG. The burn-in length
K0 (cf. Section 4.1.6) used to compute the CM estimates was determined in a pre-study:
For RSG, K0 = 15 and for SSG, using K0 = 25 is sufficient. The burn-in analysis for
the MH samplers revealed that even after 20 hours of computation, the chain was still
far away from the stationary phase. Therefore, each CM estimate shown was computed
discarding the first half of the samples generated so far. Choosing a good color scale to
compare the results for a single sampler is not easy because of outliers in the 1h image:
These outliers would lower the contrast if a simple linear min-max scaling based on all
images is chosen. Using an individual scaling for each image would, instead, lead to
the impression that the value of ûCM in certain regions changes although it is actually
constant. Therefore, we use the following scaling: For each method, we merged and
sorted the absolute pixel values of all three CM estimates. From this sorted set, the
largest 0.1% elements are discarded. All estimates are divided by the maximum of the
remaining values and clipped to [−1, 1].
In these first, qualitative results, Gibbs and MH samplers show a very different perfor-
mance. In the following sections, we try to quantify this impression.

Burn-In Analysis

We perform the quantitative studies using the Boxcar scenario and the TV prior. Two
different combinations of n and λn are examined here:

1. n = 63 in combination with λ = 100, 200 and 400, respectively. This focuses on
increasing the impact of the prior. The posterior becomes less and less Gaussian
because the weight of the �1 prior is increased.

2. n = 2N − 1 for N = 7, 8, . . . with λn = 25 ·
√
n+ 1. This scaling is related to the
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Table 5.2.: Estimated integrated autocorrelation time τ̂int for the “Boxcar” scenario
using a TV prior and different combinations of (n, λ). All samplers use an SSR of n.

(63,100) (63,200) (63,400)

MH-Iso (1.77±0.06)e2 (5.27±0.28)e2 (1.14±0.09)e3
MH-Si (1.27±0.01)e1 (1.89±0.02)e1 (3.22±0.05)e1
RSG (4.59±0.13)e2 (3.39±0.08)e2 (2.39±0.05)e2
SSG (2.43±0.05)e2 (1.75±0.03)e2 (1.19±0.02)e2

(127,280) (255,400) (511,560) (1023,800)

MH-Iso (2.63±0.21)e3 (4.73±0.48)e3 (1.33±0.23)e4 (9.01±3.74)e4
MH-Si (6.78±0.15)e1 (2.07±0.05)e2 (1.97±0.39)e4 (6.18±2.75)e4
RSG (7.18±0.33)e2 (9.78±0.25)e1 (3.65±0.04)e0 (0.53±0.00)e0
SSG (3.61±0.12)e2 (5.67±0.14)e1 (1.99±0.02)e0 (0.26±0.00)e0

study of the discretization invariance of the TV prior (cf. Section 3.6.1) which
will follow in Section 5.2.2.

Table 5.1 lists the burn-in length K0, determined as described in Section 4.1.6. The
burn-in length is an important factor for the practicability of the algorithms, but it is a
difficult measure for a fair and definite comparison of the sampling methods: First, it
crucially relies on the initialization of the chain. Hence, one would have to compare all
methods for various common initialization strategies, which would be infeasible and too
application specific. Second, K0 also relies on the κ-adaptation strategy for the MH
schemes (cf. Section 4.1.4). We always use a piecewise linear scaling function τκ(ακ)

such as the red plot in Figure 4.2b. The parameters are αopt
κ = 0.2341, αl

κ = 0.1841,
αu
κ = 0.2841, τ 1κ = 2.5, τ 0κ = 0.375 τ lκ = 0.95, τuκ = 1.05. While these additional tuning

parameters render the problem of a meaningful comparison worse, their influence on
K0 decreases with increasing n: For n = 1023, the κ adaptation is usually finished after
about 102 samples, i.e., after a small fraction of K0. Despite these problems, Table 5.1
indicates a clear trend, which we also observed in Figure 5.2: The burn-in length of
MH samplers increases with n and λ while it stays constant or even decreases for the
SC Gibbs samplers. For n = 1023, the computation time for completing the burn-in
phase is already about 18 hours for the MH samplers while it is about half a second for
the RSG sampler.

Autocorrelation Analysis

As discussed in Section 4.1.6, we need to define a suitable test function g(u) to perform
an autocorrelation analysis. As we want to examine different n, it should be a function
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Table 5.3.: Estimated integrated autocorrelation time τ̂int of the RSG sampler in
the “Spots” scenario using a simple �1 prior and different combinations of (N , λ):
n = (2N − 1)2; SSR = (2N−2 − 1)2.

(5,8e5) (6,1e6) (7,5e6) (8,1e7)

12.68±0.26 7.68±0.13 5.75±0.12 6.56±0.29

that can be consistently defined for all n and captures the main variability of the
posterior in some way. For the “Boxcar” scenario, we will project onto the direction
of the largest variance, i.e., the first eigenvector ν1 of the covariance matrix of the
posterior:

g(u) :=〈ν1, u〉 (5.1)

In general, it should be challenging for all MCMC samplers to reduce the correlation of
subsequent samples in this direction ν1. For each scenario we examine, the covariance
matrix of the posterior was estimated from a long chain of the RSG sampler, as this
sampler will turn out to be the most reliable at a high performance. Note that this
choice does not give an advantage to the RSG sampler in the autocorrelation analysis:
It is rather a disadvantage if other samplers would have different directions of highest
variance. We checked that this is not the case in a test scenario examined in preliminary
studies.
Table 5.2 lists the estimates τ̂int of the integrated autocorrelation times. Note that the
accurate estimation of a large τint naturally requires computing a very long chain (some
of the acf computations in this thesis took up to two weeks). For n = 1023 and SSR = n,
the integrated autocorrelation time τint of the RSG sampler corresponds to about 15ms
computation time whereas τint of MH-Iso corresponds to about 3h. Thereby, the results
confirm the visual impression and the trends observed in the burn-in analysis: The
efficiency of MH samplers dramatically decreases when n or λ is increased. In contrast,
the Gibbs samplers show the opposite behavior. While the results for the MH samplers
could have been anticipated from previous studies (e.g., Comelli 2011, Kolehmainen

et al. 2012, Lassas and Siltanen 2004), the results for the Gibbs samplers come as a
surprise. To gain confidence in them, we also performed autocorrelation studies in other
imaging scenarios. For the “Spots” scenario using a simple �1 prior (D = In), we also
found that the burn-in length decreases to around 20 with n increasing. For defining the
test function g(u) to estimate τint, we cannot compute the covariance matrix anymore.
Instead, we simply took the projection u onto the green box in Figure 5.2, i.e., g(u)
sums up all components of u inside this image area. The estimates τ̂int can be found
in Table 5.3. The λ’s for the different n were chosen by visual inspection. We will
later examine the use of Besov space priors with Haar wavelets and p = 1 (cf. Section
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3.2.4) in the “Phantom-CT” scenario. Therefore, we also performed an extensive burn-in
and autocorrelation analysis of the RSG sampler for scenarios from n = 4096 up to
n = 1048 576 using different values for λ. A detailed record of the results is omitted
here: The burn-in length again decreases to around 10-30 with increasing n. As a test
function g(u), a projection of the wavelet coefficients of u onto the wavelet coefficients
of u†,∞ was used. For the values of λ considered later on, and an SSR of n, the estimate
for τint was always close to 1. Using a lower SSR, the trend that τint is decreasing with
increasing λ could also be replicated.

Discussion

More detailed results and discussions can be found in Lucka (2012). Here, we only
stress the points important for the following studies:

MH The quantitative studies showed that the efficiency of the basic SRWMH samplers
dramatically decreases when either the influence of the �1 prior increases (i.e., λ is
increased) or the dimension of the unknowns, n, is increased. For the largest examined
number of unknowns, n = 1023 (which is still moderate for typical inverse problem
scenarios), both the burn-in and integrated autocorrelation time are in the order of
a few hours. The visual results in Figure 5.2 clearly confirm this. Furthermore, our
findings are in line with those of former applications of SRWMH samplers to similar
inverse problems scenarios with �1 priors (e.g., in Comelli 2011, Kolehmainen et al.
2012, Lassas and Siltanen 2004).

Gibbs The visual results in Figure 5.2 already suggested that the SC Gibbs samplers
are applicable to high dimensional scenarios. The quantitative studies further reveal the
surprising trend that their efficiency actually increases with increasing n and λ. While
the burn-in length for high dimensions saturates around 10-30 complete sweeps (SSR
= n), the integrated autocorrelation time gets so small that using SSR < n becomes
reasonable. Comparing RSG and SSG, Tables 5.1 and 5.2 show that the SSG sampler
usually requires a longer burn-in time while having a shorter τ̂int. A more detailed
examination in Section 5.1.4 will reveal the cause for this phenomenon: R̂(τ) becomes
negative for SSG, i.e., it produces anti-correlated samples.

General There are multiple reasons for the loss of performance of the basic SRWMH
samplers compared to the SC Gibbs samplers in the specific scenarios examined here.
The crucial part for an MH sampler is the design of a good proposal distribution (cf.
Section 4.1.4). The basic MH samplers we applied are “black-box sampler” algorithms. In
the design of their proposal distributions, no specific information about the posterior is
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taken into account. In return, they exhibit short computation times. They are designed
to sample from low dimensional, Gaussian-like distributions. However, high dimensional
posteriors from sparsity promoting priors seem to have very different properties. As a
result, the SRWMH-samplers have to take very small steps to obtain a good acceptance
rate. This leads to long burn-in times and a slow decrease in autocorrelation. SC Gibbs
samplers incorporate more posterior-specific information into the sampling procedure at
the costs of a larger computation time (cf. Section 4.1.5). The conditional SC densities
are the optimal transition densities for the conditional move but have to be computed
and sampled explicitly. Incorporating this small extra amount of problem specific
information seems to be sufficient to generate an efficient sampling procedure even for
high dimensional scenarios: In the upcoming studies, we will use Gibbs sampling up to
n > 106. This is far beyond any previously reported use of MCMC for similar scenarios
(typically, n = 103 − 104 is regarded as the feasible limit).
One should stress that our findings only apply for the specific scenarios we examined:
In general, both MH and Gibbs sampling have advantages and disadvantages and will
outperform the other given a specific scenario. However, the surprising properties of
the SC Gibbs sampler enabled and motivated many of the investigations in this thesis.
In particular, it motivated the extension of the direct sampler for specific �1 priors as
introduced in Lucka (2012) to other important prior models by the slice sampler (cf.
Section 4.1.10).
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(b) �2 prior (c) �1 prior (d) �21 prior (e) �101 prior
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Figure 5.1.: (a) Prior samples in the “Boxcar” scenario using n = 1023 and D as in
(3.18). The functions were rescaled and recentered such that max(u) = 1, min(u) = −1.
(b)-(i) Prior samples in the “Spots” scenario using n = 33 × 33, D = In and non-
negativity constraints. The functions were rescaled such that max(u) = 1. (j)-(m)
Isotropic TV prior samples in the “Spots” scenario using n = 33× 33 and the constraint
u1 = 0. The functions were rescaled such that ‖u‖∞ = 1.
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(a) MH-Iso, 1h (b) MH-Iso, 4h (c) MH-Iso, 16h

(d) MH-Si, 1h (e) MH-Si, 4h (f) MH-Si, 16h

(g) RSG, 1h (h) RSG, 4h (i) RSG, 16h

(j) SSG, 1h (k) SSG, 4h (l) SSG, 16h

Figure 5.2.: Visual results for the “Spots” scenario using n = 513× 513 and a simple
�1 prior with λ = 2 · 107. The inset shows a zoom into the marked area in the original
figure. The scaling used in these images is explained in the text.
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Figure 5.3.: (a) Histogram (blue bars) of the slice sampler compared to targeted
SC density (red line here and in Figure 4.5a). (b) For the “Boxcar” scenario, two
approximations to the CM estimate using an �1/2 increment prior were computed from
two independent chains (each about 16h of computational time).

Table 5.4.: Comparison of τint for direct and slice-within-RSG samplers using different
burn-in lengths for the slice sampler. The “Boxcar” scenario with n = 255, a TV prior
with λ = 400, an SSR of n and a projection onto the largest eigenvector of the covariance
matrix as g(u) was used.

direct Kss
0 = 200 Kss

0 = 100 Kss
0 = 40 Kss

0 = 20 Kss
0 = 10

97.8±2.5 101.3±2.6 102.0±2.6 109.4±2.9 149.2±4.6 231.4±8.6

5.1.3. Examination of the Slice Sampler

First, extensive studies were carried out to verify that the slice samplers developed
in Section 4.1.10 accurately reproduce all the SC densities they aim to sample from.
For this, the convergence of the sample histograms to the underlying SC densities was
checked visually. Figure 5.3a shows such a comparison.
When using slice sampling as a 1D sampler within a SC Gibbs sampler, the length of
the burn-in phase of the slice sampler, Kss

0 , determines how well a direct 1D sampler is
resembled. We studied its influence on the efficiency of the SC Gibbs sampler in terms
of burn-in length K0 and integrated autocorrelation time τint as in the previous section.
Table 5.4 lists the results for τint for a scenario, where the direct �1 sampler examined in
the last section can be used as a reference. One can observe that already for small Kss

0 ,
the differences between direct and slice sampler are negligible in practice. Concerning
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K0, a slightly longer burn-in length was only detected for Kss
0 = 10. From Kss

0 � 20

on, no visual difference was observed (cf. Section 4.1.6). Similar examinations using �2

priors (where, again, a direct sampler can be used as a reference) showed that in this
case, significant differences vanish for even smaller values of Kss

0 . Tables 5.6a, 5.6b and
5.6c show the results of similar examinations for an �p prior with p = 1.2, an �qp prior
with p = 1, q = 10 and the isotropic TV prior in 2D, respectively. While we do not
have a direct sampler as a reference here, one can clearly see that τint is converging to a
limit for increasing Kss

0 (the results in Table 5.6c seem to suggest that in some cases,
even using KSS

0 = 1 might be sufficient).
While the application to such log-concave priors was the main motivation behind the
development of slice-within-Gibbs samplers, the application to non-log-concave priors
like �p for p < 1 or product tp priors seems tempting. However, the examination of the
slice-within-Gibbs samplers in this situation is considerably more difficult: While tests
such as shown in Figure 5.3a suggest that the slice sampler is able to reproduce the
SC densities, they also show that the number of steps required for switching between
two modes of the SC density might be quite large. This difficulty of switching between
conditional SC modes adds to the general difficulty of the SC Gibbs sampler to switch
between the unconditional modes of the full posterior in R

n. The latter would also
occur if direct samplers would be used for the SC densities. Both difficulties interact
in a non-trivial way. Often, visual results can be deceiving about the true extent of
the problem: In Figure 5.3b, we compare two CM estimates using an �p increment
prior with p = 0.5, each computed using 16 hours of computation time. The first,
red plot is an almost perfect reconstruction, which gives confidence in the sampler
as well. However, the second, blue plot clearly indicates that the sampler got stuck
in a sub-optimal mode and could not escape from it. As discussed in Section 4.1.6,
autocorrelation analysis may fail in such a case as well. For instance, we computed
CM and CCov estimates for the “Boxcar” scenario with n = 63 and a product Cauchy
increment prior (θ = 10−6) using one day of computational time. The first eigenvector
was used for an autocorrelation analysis as in the previous section. While τ̂int estimated
τint to 12.06± 0.25, τ̂ refint , which used the projection of the pre-computed CM estimate
as μ̂, estimated τint to 78 788± 35 676.

Discussion

The slice-within-Gibbs samplers were mainly developed for �p priors with 1 < p < 2,
�qp priors with p = 1, 1 < q, the TV prior in 2D, (3.22), and other �1-block priors.
The results show that for these log-concave priors, a good performance can already be
obtained when using only a few steps of the slice sampler. Thereby, the computational
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Table 5.5.: Comparison of τint for slice-within-RSG samplers using different burn-in
lengths for the slice sampler.

(a) The “Boxcar” scenario with n = 255, an �p increment prior with p = 1.2, λ = 400, an SSR
of n and a projection onto the component with the largest variance as g(u) is used.

Kss
0 = 1 Kss

0 = 2 Kss
0 = 4 Kss

0 = 8 Kss
0 = 16 Kss

0 = 32 Kss
0 = 64

41.9±1.1 33.3±0.8 23.4±0.5 18.3±0.3 15.8±0.4 14.6±0.3 14.8±0.3

(b) The “Boxcar” scenario with n = 255, an �qp increment prior with p = 1, q = 10, λ = 0.02,
an SSR of n and a projection onto the largest eigenvector of the covariance matrix as g(u) is
used.

Kss
0 = 1 Kss

0 = 2 Kss
0 = 4 Kss

0 = 8 Kss
0 = 16 Kss

0 = 32 Kss
0 = 64

638±46 425±26 307±16 198±9 161±6 155±7 135±6

(c) The “Phantom-CT” scenario with n = 129× 129, an isotropic TV prior with λ = 500, an
SSR of 4096 and a projection onto the green box in Figure 5.10e as g(u) is used.

Kss
0 = 0 Kss

0 = 1 Kss
0 = 2 Kss

0 = 4 Kss
0 = 8 Kss

0 = 16 Kss
0 = 32

23.8±1.4 21.2±1.1 21.3±1.2 22.3±1.2 20.9±1.1 19.5±1.0 20.8±1.1

time it takes to sample the SC density is still considerably shorter than the time it
takes to compute its parameters in high dimensional scenarios (cf. Section 4.1.7). The
application of slice-within-Gibbs sampling to non-log-concave prior models is in an
experimental state up to now. For such scenarios, the question of whether slice sampling
is an adequate technique to sample the SC densities is in fact of secondary importance.
First, the general potential of SC Gibbs sampling for non-log-concave prior models
has to be examined. For product tp priors with 1 � p, using a blocked Gibbs sampler
for an �p hypermodel (cf. Sections 4.1.11 and 3.3.3) is an attractive alternative which
can be used to tackle this question. In any case, new performance measures need
to be developed to replace MCMC autocorrelation analysis for multi-modal target
distributions (cf. Section 4.1.6).

5.1.4. Oriented Overrelaxation Studies

Direct Sampler For the direct SC Gibbs sampler and the �1 prior, OOR can be
implemented using Algorithm 4.11 (details can be found in Lucka 2012). As discussed
in Section 4.3.1, this renders the additional computational time nearly independent
of NO. However, as noted above, the computational effort of the SC sampling step in
high dimensional scenarios is negligible, anyhow. In Lucka (2012), visual convergence,
burn-in and autocorrelation analysis were performed in the same way as in Section 5.1.2
for both RSG and SSG using NO = 3 and NO = 7 in addition to the normal samplers
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Figure 5.4.: (a)-(b) Influence of OOR on R(τ) and τint (SSR = n). The “Boxcar”
scenario with n = 255 and a TV prior with λ = 400 were used. (c) Influence of OOR
on the cross statistic (5.2).

(a) SSG-O1, 2h (b) SSG-O7, 2h (c) Reference solution, 7d

Figure 5.5.: Comparison between normal and overrelaxed SSG sampler after two hours
of computation time and a reference solution. All figure settings are the same as in
Figure 5.2.

(i.e., NO = 1). Here, we only summarize the most notable results: The burn-in length of
RSG samplers is unaffected by OOR, while it slightly increases for SSG samplers (e.g.,
from 150 to 200 for NO = 7 in the (1023, 800) case in Table 5.1). Figures 5.4a and 5.4b
show the results of an autocorrelation analysis. For the RSG sampler, OOR leads to a
noticeable decrease in autocorrelation. For large NO, τint saturates at almost half of its
value for NO = 1. For SSG, using OOR seems to produce a R(τ ) which oscillates around
zero: Samples after a certain number of steps get anti-correlated to each other. The
estimation of τint we use (Wolff 2004) is not designed to be used in situations where
R(τ) < 0 (in contrast, it assumes R̂(τ) < 0 is the result of a too short chain length).
However, OOR actually only amplifies this behavior: In the (1023, 800) case in Table
5.2, a closer look reveals that R(1) = −0.24 already for the un-over-relaxed SSG. This
also explains that τint = 0.26 is lower than τint = 0.5 of an uncorrelated series of random
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Table 5.6.: τ̂int of the blocked Gibbs sampler using the �2 hypermodel with an inverse
gamma hyperprior (α = 0.5, β = 10−4) for the recovery of a single source in the
“simEEG” scenario. As a projection g(u, γ) we use the first eigenvector of the full
covariance matrix for (u, γ) after applying a specific block weighting to it. OOR was
applied to the sampling of the univariate conditional hyperparameter posteriors.

NO = 1 NO = 3 NO = 5 NO = 7 NO = 9

8550±283 6504±191 5977±169 5829±163 5396±145

variables. A visual comparison is given in Figure 5.5 (the study design was the same as
in Section 5.1.2). However, note that Figures 5.4a and 5.4b show the combination of
sampler and computation time that produced the most distinctive difference between
normal and overrelaxed samplers. In this scenario, using OOR also seems to pay off
in terms of computational efficiency (NO = 7 only takes about 1.03 times longer than
NO = 1).

Slice Sampler For the slice sampler examined in Table 5.4 we introduced OOR for
Kss

0 = 20 and computed the corresponding τ̂int. Without OOR, we have τ̂int =
(149.2±4.6). Using NO = 3, we obtain τ̂int = (108.0±2.9) which is better than using
K0 = 40 without OOR. Using NO = 7, we obtain τ̂int = (101.1±2.6) which is better than
using K0 = 200 without OOR. Currently, OOR for the slice sampler is implemented in
the naive way using Algorithm 4.10 and not in an efficient way. However, using K0 = 20

and NO = 7 is already faster than using K0 = 200 without OOR.
We also examined the influence of OOR for slice sampling with a non-log-concave �p

prior with p = 0.8. We chose the specific SC density corresponding to the green plot in
Figure 4.5a. Instead of relying on autocorrelation analysis, we computed a statistic that
relates to the ability of the sampler to switch between the two modes: One can easily
derive that the modes must be located in [0, μ], where μ = b/(2a) > 0 is the mode of
the Gaussian likelihood part on the SC posterior. Therefore, if one starts one chain,
{xi

1}, in 0, and another one, {xi
2}, in μ, it will take a while until both chains cross for

the first time:
iX :=min

{
i | xi

1 > xi
2

}
(5.2)

The probability distribution of ix carries information about the ability of the chains
to switch between the two modes. Figure 5.4c shows empirical histograms of this
cross-statistic using different values of NO. One can clearly see that using OOR leads
to earlier crossings. However, when interpreting the absolute numbers, one should bear
in mind that the initialization with x0 = μ is far outside (μ = 7.6e-5, while the second
mode is actually at 2.6e-5).
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HBM Sampler For �p hypermodels, OOR can be applied to the sampling of the uni-
variate conditional hyperparameter posteriors ppost(γi|u) in the HBM-Gibbs sampler
(see Sections 4.1.11 and 4.3.1). Again, OOR is currently implemented in the naive
way using Algorithm 4.10. Table 5.6 lists τ̂int using the �2 hypermodel with an inverse
gamma hyperprior in the “simEEG” scenario. As discussed in Section 4.1.6, performing
autocorrelation analysis is difficult for multimodal posteriors. Our analysis is based
on reference statistics of the posterior computed in about 300 days of single CPU
computation time. The estimates τ̂int are each based on six independent chains (4 · 107

samples for each chain, which corresponds to about one week of computation time).
Using this much computational effort, the difference between τ̂int and τ̂ refint was small
enough so that autocorrelation analysis can provide reasonable results. Again, we see
that using OOR can significantly reduce τ̂int. In the concrete scenario, the dimensions
of sensor and source space are low. Therefore, the decrease in τint is compensated for by
the increase of computational time. However, for the full EMEG sensor configuration
used in the EP/EF studies and a source grid with 3mm instead of 6mm spacing, the
additional computational effort is negligible and the increase of the statistical efficiency
comes without the cost of a significant decrease in computational efficiency.

Discussion

The results consistently show that using OOR reduces the autocorrelation of MCMC
samplers and thereby increases their statistical efficiency. Using cross statistics, we
showed it can also enhance the ability of slice samplers to switch between single modes
of a distribution. If the sampling step in which OOR is used is the computational bottle
neck of the whole sampler, efficient implementations of OOR such as Algorithm 4.11
are required to translate the superior statistical efficiency of OOR into superior compu-
tational efficiency. However, if other parts of the whole sampler are the computational
bottle neck, even naive implementations of OOR can increase the overall computational
efficiency of the sampler. This is often the case in high dimensional scenarios which,
unfortunately, do not allow for similar extensive, quantitative evaluation studies as
performed in this section.

5.1.5. Simulated Annealing Studies

Once a fast and robust sampler is available, adding simulated annealing to its imple-
mentation is easy (cf. Sections 4.2.4 and A.6). Therefore, using SA for MAP estimation
was originally intended as a fill-in for low-dimensional situations where ADMM is not
applicable (due the non-convexity of the prior energy) or not implemented yet (such
as for �p priors with 1 < p < 2). Typically, SA is used in combination with MH and
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(a) ADMM, 16d 13h (b) SA with RSG, 1d 12h

Figure 5.6.: Visual comparison of the MAP estimates computed by ADMM and SA.
The “Spots” scenario with n = 513 × 513 and a simple �1 prior with λ = 2 · 107 was
used. The inset shows a zoom into the marked area in the original figure.

is not even considered for high-dimensional scenarios if no deterministic alternative is
available. The reason is the extremely long burn-in time of MH for large n (cf. Section
5.1.2): After the initial burn-in time required to sample the un-tempered posterior, each
cooling step necessitates a new burn-in phase of the chain. In addition, the proposal
distribution in MH needs to be adapted after every cooling step as well. Before this
adaptation has taken place (e.g., by an auto-tuning procedure such as we are using),
the chain hardly moves. In total, these issues render SA with MH practically infeasible
for high dimensional scenarios.
However, the surprising properties of SC Gibbs samplers suggest that using SA with
Gibbs sampling might be more promising: Its short burn-in times might enable the
Gibbs samplers to follow even fast cooling schedules and its “auto-adaptation” to the
target density might be another crucial advantage over MH in this respect. Therefore,
we compared SA with RSG to ADMM for �1 priors. First, we checked in the “Boxcar”
scenario using a TV prior that SA and ADMM really converge to the same result. Then,
we compared both methods in the “Spots” scenario with N = 9, i.e., n = 513× 513. For
ADMM, εabs = εrel = 10−4 were defined as stopping tolerances. The adaptation of ρ
was not stable for these tolerances: ‖ri‖2 and ‖si‖2 started to oscillate. As discussed
in Section 4.2.2, this might be a problem of the iterative solution of the least-squares
problem. Instead, a number of values for ρ were tested, of which ρ = 1 was finally
used for all ADMM computations in the “Spots” scenario (this is also advocated in
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Figure 5.7.: Comparison of posterior optimization by ADMM and SA: Different Meth-
ods are ranked by the posterior energy obtained after a certain amount of computational
time. A lower rank corresponds to a superior performance.

Goldstein and Osher 2009). As in Boyd et al. (2011), Goldstein and Osher

(2009), we used only one alternation between u and v updates (we will denote this
number by Nalt). The computation stopped after 111 464 iterations which took 16
days and 13 hours of computation time on a single CPU. SA with RSG was used with
K = 5000, K0 = 200, T0 = 1 and Tend = 10−50. The computation took 1 day and 12
hours of computation time on a single CPU. Figure 5.6 shows the final results of both
methods. While they seem very similar at first glance, the zoom reveals that the SA
result is sparser. An examination of the chain of posterior energies produced by SA
shows that the energies of ui are already smaller than the energy of the final ADMM
result after half of the total chain1.
In a more detailed study, we compare the posterior energies reached by the different
methods after a certain amount of computational time. We use the “Boxcar” scenario
with n = 255 and a TV prior with λ = 400. First, we fixed a number of computation
times ti for which we want to compare the different methods. For ADMM, we then
only have to fix Nalt (ρ is automatically adapted) and let the algorithm run for a
certain number of iterations. The result is a vector of posterior energies obtained after
a certain amount of computational time. We can define the posterior energy reached at
ti by a linear interpolation from this vector. For SA, an inherent problem with such a
comparison is that the concept behind its parameterization is usually different: One

1A potential complication in the comparison is that the forward operator used by ADMM is imple-
mented using ffts, whereas the SC Gibbs sampler relies on a direct application of the convolution
kernel. However, we checked and this is not the reason.
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fixes K0, T0 and Tend and chooses K (and thereby, q) depending on the amount of
computation time available. With this parameterization, results with shorter or longer
chains are not really representative for the method. Therefore, we ran SA for each
computation time ti independently (although with the same random number generation
seed). We initialized SA with a sample from the un-tempered posterior to get rid of the
burn-in phase which further complicates a meaningful comparison. To facilitate the
interpretation of the results, Figure 5.7 shows a ranking of posterior energies obtained
by the different methods at ti rather than the absolute energy values. The ADMM
results show that using only one inner iteration is preferable for short computation
times less than 5 seconds. After that, the additional computational effort of using more
inner iterations pays off: First using two iterations ranks best, then using four. Finally,
after about 35 seconds, there is no clear order among the ADMM methods anymore.
SA clearly ranks before the ADMM methods for long computation times. For short
times, the situation is less clear, but the results show that SA is at least competitive to
ADMM.

Discussion

In total, the first results obtained for using SA in combination with Gibbs sampling are
quite promising. In particular, they challenge common beliefs about the applicability of
SA for high-dimensional optimization. However, more detailed studies need to be done.
It should also be pointed out that although SC Gibbs samplers for various scenarios
and priors have been developed, deterministic optimization strategies such as ADMM
are still way more generally applicable.

5.2. General Bayesian Inversion Studies

In this section, we will present a collection of simulated data studies that addressed
different topics in Bayesian inversion. Most often, they aimed to verify or illustrate
certain theoretical results. The key topics are discretization invariance (cf. Section
3.6.1), the comparison of MAP and CM estimates and sparsity.

5.2.1. “Spots” Reconstruction with an �1 Prior

Figure 5.8 compares MAP and CM estimates for the “Spots” scenario. While the MAP
estimate yields a sparse reconstruction, the CM estimate does not.
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(a) MAP by ADMM (b) CM by RSG-O7

Figure 5.8.: MAP and CM estimate for the “Spots” scenario (n = 1023× 1023) using
the standart �1 prior with λ = 4 · 107.

5.2.2. The Discretization Dilemma of the TV Prior

The edge-preserving properties of the MAP estimate using a TV prior (cf. Figure
3.5b) stimulated interest in the general properties of Bayesian inversion with such
non-Gaussian prior models, with a focus on the comparison between CM and MAP
estimates (cf. Section 3.4.3). As mentioned in Section 3.6.1, Lassas and Siltanen

(2004) showed that the TV prior in 1D is not discretization invariant. In particular,
the posterior cannot converge to a well-defined, edge-preserving limit for n → ∞. To
summarize their results:

• For n → ∞, the posterior only converges to a non-trivial limit if λn ∝
√
n+ 1.

However, this limit is a Gaussian smoothness prior and the CM estimate converges
to a smooth limit while the MAP estimate converges to constant function.

• For n → ∞ and λn = const., both posterior and CM estimate diverge while the
MAP estimate converges to an edge-preserving limit.

The limit n → ∞ is a severe challenge for the computational verification of these results.
In Lassas and Siltanen (2004), an MH sampler similar to MH-Iso or MH-Si (it
updates a fraction of components in every step) was used to compute CM estimates
in the “Boxcar” scenario for n = 63, 255, 1023, 4095. Although the whole computation
took about a month of time on a desktop PC equipped with a 2.8 GHz single core CPU,
the authors admitted that the results for n = 4095 were only partly satisfying. The
examinations in Section 5.1.2 were tailored to this scenario and explain this failure of the
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MH sampler (the more detailed examinations in Lucka 2012 also included the sampler
used in Lassas and Siltanen 2004). However, due to its surprising properties, the SC
Gibbs samplers is the right tool to carry out a satisfactory computational examination
of the limit n → ∞: Figures 5.9a and 5.9b compare MAP and CM estimates for
λn = 25

√
n+ 1 up to n = 65 535. The results clearly match the theoretical predictions.

The CM estimate for n = 65 535 can be obtained in about 3 hours of computational
time on a CPU comparable to the one used in Lassas and Siltanen (2004). Figures
5.9c and 5.9d show the same comparison for λn = const. Figure 5.9e shows a zoom into
the plot to clarify the divergence of the CM estimate. By comparing two CM estimates
computed from independent MCMC chains, Figure 5.9f demonstrates that this is not
an error of the RSG sampler to compute it.
For image dimensions higher than one, no theoretical results are available yet (to the
best of our knowledge). Using slice sampling within the RSG-O7 sampler as developed
in Section 4.1.10, we can explore such a case computationally. The details of the slice
sampler implementation used to sample from the SC densities (cf. Section 4.1.10) are
given in Section A.4. Figure 5.10 shows MAP and CM estimates for the “Phantom-CT”
scenario using an isotropic TV prior with λ = 500. Contrary to the 1D case, the CM
estimates get smoother for a constant value of λ as the resolution increases. In Section
5.3, we will use the “Walnut-CT” scenario to compare CM and MAP estimates for the
TV prior in 2D computed with experimental data .
In total, the CM estimates either get smooth when n → ∞ or diverge. For the 1D
case, these results confirm the theoretical predictions. Thereby, the gradient of the CM
estimates is never sparse and the edge-preserving properties of the MAP estimate are
lost. For denoising using a TV prior, i.e., A = In, this lack of sparsity has also been
examined theoretically in Louchet (2008). These problems of the TV prior motivated
research on whether and how it is possible to formulate edge-preserving priors in a
consistent, discretization invariant way. In the following sections, we will illustrate some
of these developments.
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(c) MAP by ADMM, λn = 200

0 1/3 2/3 1

0

1

u
†,∞

n = 63

n = 255

n = 1 023

n = 4 095

n = 16 383

n = 65 535

(d) CM by RSG-O7, λn = 200
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Figure 5.9.: (a)-(d) MAP and CM estimates for the “Boxcar” scenario using the TV
prior with different scalings of λn. (e) A zoom into (d). (f) Two approximations to the
CM estimate for n = 65 535 computed from independent MCMC chains to demonstrate
the oscillations of the CM estimate are not caused by the MCMC error.
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(a) MAP by ADMM, n = 64× 64 (b) CM by RSG-O7, n = 64× 64

(c) MAP by ADMM, n = 128× 128 (d) CM by RSG-O7, n = 128× 128

(e) MAP by ADMM, n = 256× 256 (f) CM by RSG-O7, n = 256× 256

Figure 5.10.: MAP and CM estimates for the “Phantom-CT” scenario using an isotropic
TV prior with λ = 500. In the highest resolution, a zoom inset is added.
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(a) MAP by ADMM and parameter fitting.
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(b) CM by RSG-O7.

Figure 5.11.: MAP and CM estimates for the “Boxcar” scenario using the q-TV prior
with q = 2, λn = 100 .

5.2.3. q-TV Priors

In Comelli (2011), q-TV priors were defined as �qp increment priors with p = 1, which
means that we modify the TV prior by raising the whole TV functional to the power
of q. Theoretically, it was shown that using q = 2 and λn = const., both MAP and
CM estimate converge to a limit function, while choosing λn ∝

√
n+ 1, both converge

to zero. No theoretical characterization of the non-zero limit of the CM estimates for
λn = const. was given, but numerical studies using MH samplers were conducted. The
results suffered from the same problems as those in Lassas and Siltanen (2004)
and, in fact, initiated the development of the SC Gibbs samplers in Lucka (2012).
Figure 5.11 compares MAP and CM estimates for λn = 100 up to n = 65 535. The
MAP estimates were computed as described Section 4.2.3 whereas the CM estimates
were computed by the RSG-O7 sampler. We clearly see that both estimates converge
to a non-trivial limit function. The MAP estimates do not differ from those for the
normal TV prior (cf. Figure 5.9c). The CM estimates converge to a smooth limit which
differs from the λn ∝

√
n+ 1 limit for the normal TV prior (cf. Figure 5.9b). From

the visual impression, the limit for q = 2 is more convincing than the limit for the
normal TV prior, i.e., q = 1. Finally, Figure 5.12a shows CM estimates for q = 10 and
λn =const. Comelli (2011) did not find a theoretical prediction for this situation, but
the numerical results suggest that the CM estimates converge to a constant function in
this case.
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Figure 5.12.: (a) CM estimates for the “Boxcar” scenario using the q-TV prior with
q = 10, λn = 1.625e-2 (cf. Table A.2). (b) CM estimates using the q-TV prior for the
“Boxcar” scenario (n = 63), different q and λq from Table A.2.

In a second study, we wanted to compare MAP and CM estimates for n = 63 and
q = 1, . . . , 20. For a meaningful comparison, we needed to adjust λ dependent on q: A
parameter choice rule related to the discrepancy principle (Kaipio and Somersalo

2005) is to demand that the likelihood energies ‖f − Aû‖2Σ−1
ε

of all estimates should
be equal to the likelihood energy of the MAP estimate for q = 1 and λ = 200.
The implementation of this criterion is straight-forward for MAP estimates computed
with deterministic optimization, but needs some care for CM estimates computed by
MCMC. However, we achieved that the differences in relative likelihood energy, i.e.,
‖f − Aû‖2Σ−1

ε
/‖f‖2Σ−1

ε
, are all below 1.2%. Table A.2 lists the resulting λq. One can see

that λCM and λMAP diverge from each other for increasing q. By intention, the parameter
choice rule forces all MAP estimates to be equal (cf. Section 4.2.3). More surprisingly,
Figure 5.12b suggests that the same seems to hold true for the CM estimates. The
implications of this finding have to be examined in more detail. If the results hold for
arbitrary n and λ, one could reproduce any CM estimate for q1 for a second q2 �= q1.
Thereby, all limits for q1 could be reproduced for q2. For instance, it could be possible
to reproduce the limit for q = 2, λn =const. with q = 1. As this limit clearly differs
from the q = 1, λn ∝

√
n+ 1 limit, it would mean that there is a limit for q = 1 not

considered in Lassas and Siltanen (2004).
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Figure 5.13.: MAP and CM estimates for the “Boxcar” scenario using the p-TV prior
and n = 63.

5.2.4. p-TV Priors

Another apparent modification of the original, �1-based TV prior is to consider �p

increment priors. We will refer to these priors as p-TV priors. Figure 5.13 compares
MAP and CM estimates for different values of p. As in the previous section, λ was
chosen in such a way that all likelihood energies are equal and that λ = 200 for p = 1.
The results suggest that using p < 1 leads to superior results for both MAP and CM
estimates compared to p = 1. The MAP estimate is closer to the real solution as
it is both sparser in the increment basis and the contrast loss is reduced. The CM
estimate for p = 0.8 looks way more convincing compared to those for p � 1: It has
clear pronounced edges that separate smooth, denoised parts. However, as discussed in
Section 5.1.3, using the slice-within SC Gibbs samplers for p < 1 needs to be examined
carefully (and possibly improved). Therefore, we did not yet compute results for smaller
values of p or for larger values of n to examine the limit n → ∞ as in the p = 1 case (cf.
Figure 5.3b for the inherent dangers of such computations).

5.2.5. �p Hypermodels

Various hierarchical Bayesian models have been considered for edge-preserving image
reconstruction (see, e.g., Bardsley et al. 2010, Calvetti and Somersalo 2007, 2008,
Helin 2010b, Helin and Lassas 2009), in particular with the intention that such
models might posses the discretization invariance the TV prior lacks. A simple, heuristic
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Figure 5.14.: NM and CM estimates for the “Boxcar” scenario using the �2 hypermodel
for the increments with α = 0.5, β = 10−10.

explanation why the TV prior is not discretization invariant is given by Calvetti

and Somersalo (2007): In the 1D “Boxcar” scenario, we can construct a continuous
estimation u∞n for u†,∞ by extending u ∈ R

n to a piecewise constant function with
u∞(x) = ui for x ∈ [xn

i−1, x
n
i ]. Using the increment basis ξj = uj+1 − uj, we have that

ui = u0 +
i−1∑
j=0

ξj (5.3)

and thereby:

u∞n (x) = u0 +

�xn∑
j=0

ξj, (5.4)

where �xn� is the integer part of xn. For increasing n, the number of summands
increases for a fixed location x. The discrete TV prior encodes that the increments
ξj are all mutually independent, identically Laplace distributed random variables,
ξj ∝ exp (−λ|ξj|). As a result, u∞n (x) is the sum of mutually independent, identically
distributed random variables with finite second moments. Due to the central limit
theorem, its distribution will becomes more and more Gaussian with increasing n: The
edge-preserving TV prior converges to a Gaussian smoothness prior.
This explanation motivates examining �p hypermodels as increment priors: Their use
implicitly leads the to fat-tailed tp priors on the increments which decay as |xij|−α̃−1
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Figure 5.15.: Filtered back projection of the “PhantomCT” data for n = 256× 256.

with α̃ = α + 1
p
− 1 (cf. Section 3.3.3). As they do not have a finite second moment for

0 < α̃ < 2, the standard central limit theorem does not hold for them anymore. Instead,
a generalization by Gnedenko and Kolmogorov (1954) asserts that they converge
to an alpha-stable distribution with the stability parameter α̃ (see also Klenke 2008).
For instance, using p = 2 and α = 0.5, we obtain a Cauchy prior on the increments, and
the sum of Cauchy-distributed random variables is, again, a Cauchy distribution which
does not converge to a Gaussian (in contrast, the sum of Poisson distributed random
variables is Poisson distributed but, with a certain scaling, converges to a Gaussian).
However, to the best of our knowledge, there is no detailed theoretical examination
of this topic yet. In particular, it is not clear how α and β have to be scaled with n.
In Figure 5.14, we compared NM and CM estimates for keeping α and β constant. In
general, the results look quite promising compared to those obtained with �p priors:
They look sparse and do not seem to suffer from contrast loss. However, while the MAP
estimates stay sparse, the CM estimates tend to develop variations on the small scales
using constant values for α and β.

5.2.6. Besov Priors

In Kolehmainen et al. (2012), Lassas et al. (2009), Besov space priors with p = 1 (cf.
Section 3.2.4) were proposed and examined as edge-preserving, �1-based alternatives to
TV priors. By theoretical arguments, it was shown that they are discretization invariant
and that the CM and MAP estimate both converge to non-trivial limit functions
for λn = const. In Kolehmainen et al. (2012), these findings were confirmed in a
low-dimensional 1D image deblurring scenario. Haar wavelets (see Figures 3.7a and
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A.3) were found to be most appropriate to represent piecewise constant functions. In
Hämäläinen et al. (2013), these numerical studies were extended to high-dimensional
2D problems corresponding to our two CT scenarios. However, only MAP estimates were
computed. For this thesis, an efficient implementation of the SC Gibbs sampler for the
specific combination of Haar wavelets vi and the CT forward operator A (both for para-
and fan-beam geometry) was developed that allows to carry out sample-based posterior
inference in this scenario. Details of the implementation can be found in Section A.2. In
this section, we will use these developments to tie in with the discretization invariance
studies of the previous sections and extend the results of Kolehmainen et al. (2012) to
the 2D “Phantom-CT” scenario. Section 5.3 will contain the application to the real-data
“Walnut-CT” scenario.
In Figure 5.16, single samples of the posterior are shown. The visual impression suggests
that most variability of the posterior is found at small image scales. In Figure 5.17,
CM and MAP estimates for increasing n are compared. In line with Kolehmainen

et al. (2012), Lassas et al. (2009), we can confirm that both estimates converge to
edge-preserving limits for n → ∞ and that they are sparse/compressible in the wavelet
basis. We can also confirm the surprising result of Kolehmainen et al. (2012) that
the differences between MAP and CM estimates decreases for increasing λ: As the
growing impact of the non-Gaussian prior renders the posterior less and less Gaussian,
one would rather expect the opposite. Figure 5.18 compares the regularization paths
{(ûCM, λ) |λ > 0} and {(ûMAP, λ) |λ > 0}. We see that small values of λ lead to different
kinds of errors for MAP and CM estimates: The MAP estimates look as if noise
consisting of small scale wavelets was added to the regularized solution for a larger λ

whereas the CM estimates look more like the filtered back projection (see Figure 5.15
and cf. Section 2.3). In particular, they start to feature the typical stripe-like artifacts.
Despite the interesting theoretical properties for Bayesian inversion, one has to admit
that the MAP estimates using a TV prior (cf. Figure 5.10) are visually more convincing
for this scenario.
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(a) (b)

(c) (d)

Figure 5.16.: Four posterior samples in the “PhantomCT” scenario using n = 1024×
1024 and a Haarwavelet Besov prior with λ = 2 · 104
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n = 64 × 64

n = 128 × 128

n = 256 × 256

n = 512 × 512

n = 1024 × 1024

Figure 5.17.: “Phantom-CT” reconstructions using a Besov prior and λ = 2 ·104. MAP
(left column) and CM (right column) estimates are shown for increasing n.
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(a) MAP, λ = 5.0 · 102 (b) CM, λ = 5.0 · 102

(c) MAP, λ = 2.0 · 103 (d) CM, λ = 2.0 · 103

(e) MAP, λ = 8.0 · 103 (f) CM, λ = 8.0 · 103

Figure 5.18.: “Phantom-CT” reconstructions using a Besov prior with n = 256× 256.
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δs

Figure 5.19.: Sketch of the measurement setup: d = 110mm, f = 300mm, c = 144.8mm,
e = 21.05mm, δs = 0.0367mm

5.3. Computed Tomography Studies

In this section, we will show how to apply the methods developed in this thesis to the
real-data “Walnut-CT” scenario. For this, we will first have to discuss details of the
measurement setup and the noise modeling. A general review of Bayesian inversion
applied to CT can be found in Kolehmainen et al. (2003), Siltanen et al. (2003).

5.3.1. Measurement Setup

As described in Section 2.3.3, the X-ray source faces a fixed, planar detector and the
target is placed on a rotatable bar in-between (see Figure 2.8a). In the following, we
will only describe those aspects of the measurement setup that are important for the
2D reconstruction of the central slice of the walnut:
The detector is composed of M = 2296 pixel with 0.05mm width, yielding a total
detector width of 144.8mm. The distance between source and detector is 300mm
and the distance between source and target is 110mm. We assume that a virtual
detector is placed 110mm away from the target instead of the real detector. Thereby,
we eliminate one parameter from the description of the fan-beam forward operator
(although incorporating two different distances is actually trivial in our implementation
approach). The transformed pixel-width of the virtual detector is δs = 0.0367. The use
of the virtual detector leads to a linear scaling of the reconstructed activity which could
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(a) (b) (c)

Figure 5.20.: (a) TV reconstruction (128 × 128 pixel) used in the noise modeling
procedure. (b) Binary source mask derived from it. (c) TV reconstruction restricted to
the mask.

easily be removed after reconstruction. We choose the target to define the center of the
physical coordinate system. The area used for the reconstruction is the square [−e, e]2,
where e = 21.05mm. See Figure 5.19 for a geometrical sketch of the setup. The length
e will define the unit-length in the mathematical coordinate system used to formulate
and implement the inversion algorithms: [−e, e]2 will correspond to [−1, 1]2. Full angle
recordings with an angular spacing of 3◦ were recorded (see Figure 2.8c).

5.3.2. Noise Modeling

As discussed in Section 3.1, additive Gaussian noise models, ε ∼ N (με,Σε), provide
good approximations in many real data scenarios. For typical CT applications, a
detailed discussion, review and justification of the Gaussian noise model can be found
in Siltanen et al. (2003). Unfortunately, we do not have reference measurements
that would allow to estimate με and Σε independently from the data f we use for the
reconstruction. Therefore, we have to use strongly simplifying assumptions on με and
Σε and estimate them relying on a kind of boot-strap procedure using f only (which
contains only a single realization of ε!): We will make use of the a-priori knowledge that
the measurement setup was chosen such the walnut covers only a fraction of the field of
view of every angular projection. Therefore, there will be sensor pixels where f † is 0 and
only ε determines f . To identify those pixels, we need a rough estimate of the support
of u†,∞. We obtain this by exploiting that the walnut has a clear defined boundary.
Therefore, edge-preserving reconstruction techniques should be able to identify this
boundary reasonably well, even if ε ∼ N (0, Im) is assumed as a noise model. We
computed the MAP estimate for a TV prior on a coarse n = 128× 128 computational
grid using a high value of λ to ensure that background and support are well separated.
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Figure 5.21.: (a) Data mask derived from a forward mapping of the source map. (b)
Rescaled full sinogram restricted to the complement of the data mask. In both images,
the resolution in angular direction was increased by a factor of 10. (c) Anglewise
histograms of the noise pixels. The horizontal axis corresponds to the angle. (d)
Anglewise empirical mean (blue line and marks) and standard deviation (green line and
marks) of the noise pixels.

Figure 5.20a shows the solution used. This solution was subsequently thresholded and
the resulting binary mask was filled and dilated by one pixel in all directions. Figure
5.20b shows the source mask and Figure 5.20c shows the MAP estimate restricted to it.
The support of the sinogram of the source mask was computed to construct a data mask
(see Figure 5.21a). In any pixels not belonging to this mask we can assume that f † is 0.
These 55 463 pixels (see Figure 5.21b) are now used to estimate με and Σε. The simplest
noise modeling would consist of computing the global empirical mean and variance of
all noise pixels, μgl and σ2

gl, and assuming an i.i.d. Gaussian noise model on every single
pixel with these global statistics: (με)i = μgl for all i and Σε = σ2

glIm. However, Figure
5.22a shows a (normalized) histogram of the noise pixels with respect to the 107 different
discrete values they take compared to a normal distribution N (μgl, σ

2
gl). One can see

that this global approximation leads to a considerable misfit between model and reality.
From Figure 5.21b, one can already guess that the noise statistic seems to depend on the
projection angle θ. Figure 5.21c shows a 2D histogram in which the angular dependence
is resolved, while 5.21d shows the angle-wise empirical means and standard deviations:
While the standard deviation stays almost constant over angles, the mean shifts. A
possible explanation for this might be that the noise in the image is mainly caused by
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Figure 5.22.: Normalized histograms of all noise pixels (blue bars) and normal pdfs
(red lines) fitted to them: (a) without correction, N (μgl, σgl), (b) after subtraction of
the angle-wise mean, N (0, σgl2), using 50 bins and (c) using 500 bins.

photons scattered inside the walnut or on the interface between air and walnut (notice
that there is a halo around the walnut in Figure 2.8b). Then, the angular dependence
would be reasonable as the scattering depends on the concrete position of the walnut
with respect to the X-ray source. Scattering is a modeling error or nuisance term rather
than a classical measurement noise term (cf. Sections 2.3 and 3.6.2). As it strongly
relies on the object to to recover, calibration measurements to pre-estimate με and Σε

would not be of too much help in our situation. Based on these findings, we refine
the noise model by assuming that ε(i, θ) ∼ N (μθ, σgl2), i.e., we use an angle depended
mean and a modified global standard deviation. For estimating the empirical angle-wise
mean, between 387 and 543 measurement values per angle can be used. Figure 5.22b
shows a histogram of all pixel values after their angle-wise mean has been subtracted.
The red line shows a normal distribution with zero mean and a standard deviation
estimated from all 55 463 mean-corrected pixels. Assuming that the standard deviation
has no angular dependence seems like a reasonable approximation from Figure 5.21d.
While extending the noise model to an angle-wise standard deviation would easily be
possible, it would unnecessarily increase the number of parameters to estimate from the
single noise realization in this boot-strap fashion. In such a situation, a conservative
modeling approach involving less parameters is to be preferred. Figure 5.22b seems
to suggest that the chosen normal approximation is nearly optimal. However, if one
increases the number of bins used to compute the histogram from 50 to 500, one can
see in Figure 5.22c that it fits less well on smaller scales as the discrete nature of the
measurements is still present. As the angular spacing of 3◦ corresponds to a rather
sparse angle setup, i.e., a low resolution in θ-direction, we will also decrease the sensor
resolution, i.e., the resolution in s-direction: Every four subsequent pixels of the 2296
original pixels were added up (see Figure 2.8c). The noise model for these 574 virtual
pixels has to be adjusted accordingly.
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5.3.3. Reconstruction Results

Full Angle

First, we examine reconstructions using a full (but sparse) set of 120 angles from 0◦

to 357◦. Using a TV prior with λ chosen by manual inspection and a resolution of
n = 256 × 256 pixel, we computed MAP estimates by ADMM and used the RSG
sampler to draw posterior samples. Compared to the “Phantom-CT” scenario, the
sampler needs a lot more burn-in steps when initialized by u0 = 0: Early samples show
ring-like artifacts on the boundaries that seem to stem from the fan-beam geometry.
The problem can easily be avoided by choosing another initialization u0, for instance
the result of a few ADMM iterations for computing the corresponding MAP estimate.
In Figures 5.24a and 5.24b, MAP and CM estimates are compared. From the visual
impression, they seem to coincide. In Figures 5.23c and 5.23d, pixel values above 20
% of the maximal intensity were set to white and the color scale was adjusted to the
remaining values. Thereby, we can see that on smaller scales, the MAP estimate features
the typical “staircase” artifact of producing artificial jumps while the CM estimate does
not seem to suffer from it. This confirms the findings of Louchet and Moisan (2013),
who examined a denoising scenario (A = In). However, we know from our results in the
“Phantom-CT” scenario (cf. Figure 5.10), that in return, the CM estimate also blurs
real edges. Figure 5.24c shows the CStd estimate. We see that most of the variability
of the posterior (which reflects uncertainty) seems to concentrate on feature boundaries.
Within the boundaries, there are hot-spots of high uncertainty.
Images of the �2 norm of the gradient of a structural image u are of interest for a variety
of applications, in particular to enhance the inversion of functional imaging data in
multimodal imaging (cf. Section 1.1 and Figure 1.3). In Figure 5.23f, we computed the
CM estimate of the gradient image:∫

‖∇u‖2 ppost(u|f) du (5.5)

Although ‖·‖2 is not a linear function, the relative error to simply taking the gradient
image of ûCM (cf. Figure 5.24b) is only 0.3%. With 2.3 %, the relative error to the
gradient image of ûMAP (cf. Figure 5.24a) is only slightly larger. Therefore, we did not
include these images here.
As a second prior model, we examine Besov space priors with p = 1, formulated in the
Haar wavelet basis (cf. Sections 3.2.4 and 5.2.6). Our results complement Hämäläinen

et al. (2013), who used the same data to compare MAP estimates to filtered back
projections for a decreasing number of angles and to examine a sparsity-based criterion
to choose λ. Figure 5.24 shows MAP, CM, and CStd computed for λ = 750 (found by
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manual inspection) and n = 512 × 512. Similar to our results in the “Phantom-CT”
scenario, and to the TV results presented in the last paragraph, MAP and CM visually
coincide. The CStd result shows that also using the Besov prior, most of the uncertainty
concentrates in feature boundaries.

Limited Angle

Now, we examine reconstructions using a limited and sparse set of only 41 angles from
30◦ to 150◦. In Figure 5.25, results corresponding to those computed in the last section
are show. Certain structures, such as parts of the shell, cannot be reconstructed with
this setup. While one would assume that such regions carry a larger uncertainty than
the regions that can be recovered, the CStd estimates show that the opposite is true.
Compared to the full angle setup, another artifact of the reconstructions is more
apparent: With both priors, the MAP and CM estimates of the non-negative mass
absorption coefficient u are negative in several pixels. To avoid this, we can incorporate
the a-priori information of non-negativity as a hard constraint (cf. Section 3.2.2). In
Figure 5.25, CM and CStd estimates for a TV prior with λ = 0.1 are compared with or
without non-negativity constraints. Besides the negative regions, other image artifacts
are removed as well. The CStd estimates (which share the same color scale) show that a
significant reduction of uncertainty is achieved, in particular in the background regions.
Comparing Figures 5.25b and 5.26b, we see that without constraints, λ has to be chosen
four times larger to achieve a similar reduction of noise and artifacts. But this comes at
the cost of smoothing out more image details as well.

5.3.4. Discussion

A major aim of this section was to demonstrate the application of various Bayesian
inversion techniques presented and developed in this thesis to a challenging, high-
dimensional real-world problem:

• In Section 5.3.1 the physical measurement setup was converted into a mathematical
forward model.

• Section 5.3.2 examined a boot-strap approach to define the noise model, i.e., the
likelihood distribution.

• Finally, we computed and examined different estimates for different prior models
in Section 5.3.3. Besides the classical MAP and CM estimates, CStd estimates
were computed to assess the spatial distribution of the posterior variance, which
reflects the uncertainty of the reconstructions. In addition, the CM estimate of
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the �2 norm of the gradient was computed as an example of an estimator of a
feature g(u) instead of u itself.

Several observations about the concrete results can be made:

• If we compare the results for TV and Besov priors, we again have to admit that
the visual impression of the TV results is more convincing (cf. Section 5.2.6). In
the Besov results, the blocky shape of the Haar wavelets (cf. Figure A.3) is clearly
visible. Figure 5.26e compares the ability of different wavelet families to compress
the photograph of the walnut, Figure 1.6a. We see that testing other wavelets
as a basis for the Besov prior might be an interesting topic for future studies.
Another improvement might be the development of isotropic or structured Besov
priors, which exploit the scale-space relationships between the different wavelet
coefficients more efficiently.

• Using the TV prior, MAP estimation produces results with sharper edges compared
to CM estimation. However, not all of these edges need to be feature edges which
leads to the well-known staircase artifact. Not surprisingly, the size of the
differences depends on the amount of information given by the data: While the
differences in the full angle setup are hardly visible using a normal color scaling,
they are more pronounced in the limited angle case.

• Our results confirm that the inclusion of hard constraints such as non-negativity
can enhance the reconstruction quality significantly. Although this finding is
already quite well known, it is often neglected in designing inversion techniques
due to the additional implementation effort.

• One motivation behind computing CStd estimates was that we expected them to
provide an uncertainty image that allows to identify the regions missed by limited
in contrast to full angle tomography easily. Unfortunately, this expectation was
not met.
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(a) MAP by ADMM (b) CM by RSG

(c) MAP, thresholded colorscaling (d) CM, thresholded colorscaling

(e) CStd by RSG (f) CM of ‖∇u‖2 by RSG

Figure 5.23.: Different estimates in the full angle “Walnut-CT” scenario using a TV
prior with λ = 3 and a resolution of n = 256× 256 pixel.
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(a) MAP by ADMM (b) CM by RSG (c) CStd by RSG

Figure 5.24.: Different estimates in the full angle “Walnut-CT” scenario using a Besov
prior with λ = 750 and a resolution of n = 512× 512 pixel.

(a) MAP by ADMM (b) CM by RSG (c) CStd by RSG

(d) MAP by ADMM (e) CM by RSG (f) CStd by RSG

Figure 5.25.: Different estimates in the limited angle “Walnut-CT” scenario using
(a)-(c) a TV prior with λ = 0.4, n = 256× 256 and (d)-(f) a Besov prior with λ = 250,
n = 512× 512.
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(a) CM, no constraints (b) CM, non-negativity constraints

(c) CStd, no constraints (d) CStd, non-negativity constraints
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Figure 5.26.: (a)-(d) CM and CStd in the limited angle “Walnut-CT” scenario using
a TV prior with λ = 0.1 with or without non-negativity constraints. The color scales
of both CM estimates and both CStd estimates are equal. (e) Compression rates of
different wavelet representations of Figure 1.6a: The fractional energy ‖XN‖22/‖X‖22 of
the N largest wavelet coefficients is plotted vs. the truncation index N in powers of 2.
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Figure 5.27.: Sketch of the head model generation pipeline.

5.4. EEG/MEG Source Reconstruction Studies

In the last section of this chapter, we will present the results for the EEG/MEG source
reconstruction studies introduced in Section 2.4.2. Compared to the other applications
considered in this thesis, source reconstruction comes with the most practical effort:
Sophisticated head modeling, source space construction, real data processing, noise
modeling and inverse reconstruction are often tedious to carry out and implement and
require the integration of different software tools and visualization techniques. The scope
and extent of this thesis does not permit an exhaustive description of all procedures
and topics relevant to this work. Therefore, many details will be cited from other
publications.

5.4.1. Head Model Generation

For the specific aims of our studies, we need a highly realistic, individual, anisotropic
head model and cannot rely on standard head models (semi-)automatically provided by
currently available software solutions. Figure 5.27 sketches the steps required to obtain
our model. First, different MRI scans are acquired: T1- and T2-weighted scans provide
anatomical information about the head’s soft tissues while diffusion-weighted (DW )
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(a) (b)

Figure 5.28.: (a) The first eigenvectors of the anisotropic conductivity tensors of
GM and WM scaled by the corresponding FA values and visualized by bi-directional
color-coded cones in one transversal slice of the data set. The spatial resolution of the
tensor data was decreased, a cross-section of the FEM model with gray scale color-coded
elements was added. The corpus callosum connecting left and right cerebral hemispheres
and the pyramidal tracts connecting upper motor neurons and the brainstem are most
noticeable. (b) Comparison between the GM surface (red) and the ellipsoid surface
representing the intercranial tissues (light blue).

scans provide information on the local diffusion properties of water molecules. For a
joint usage of the information obtained, all MR images need to be transformed into
the same coordinate system. This is an image registration problem; see Modersitzki

(2004) for a general overview. Especially registering the DW-MR images is a non-trivial
task (Ruthotto et al. 2012).
Once this is achieved, the anatomical images can be used to classify every image voxel
into a predefined set of tissues that one would like to differentiate. This problem is called
image segmentation; see Section 4 in Aubert and Kornprobst (2006) for a general
reference and Lanfer (2014) for a recent overview on head tissue segmentation for EEG
source reconstruction. The different tissue contrast of T1 and T2 images can facilitate
this problem. The result is a labeled voxel-image (cf. Figure 5.27). For our studies, we
segmented the image into ten tissue compartments: Skin, eyes, cortical/compact and
cancellous/spongious bones of the skull (called “skull compacta” and “skull spongiosa”
from now on), cerebrospinal fluid (CSF ), brainstem and gray and white matter of the
cerebrum and the cerebellum. In the following, we will refer to the cerebrum gray- and
white matter by GM/WM (we will not perform source reconstruction of cerebellum
activity).
The geometry of a tissue compartment is defined by the cluster of voxels that carry
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its label. In principle, using slight adaptations, this voxel-based geometry description
can be converted directly into a hexahedral finite element mesh. See Section 1.4.2.
in Aydin et al. (2014) and references therein for such an approach. Here, we aim
to describe the geometries of the tissue compartments by surface representations.
For this, we extracted high resolution triangular surface meshes from the voxelized
compartments. After some further processing, these meshes can be used to generate
tetrahedral finite element meshes fulfilling certain geometrical constraints (constraint
Delaunay tetrahedralizations). A fine spatial meshing is required to achieve a high level
of detail and to fulfill constraints on the volume of the elements (volume constraints),
which is required to obtain a satisfactory numerical accuracy. Details will be discussed
in the next section. Note that the resulting FEM mesh is labeled, i.e., every tetrahedron
belongs to a tissue compartment.
The DW-MRI data can be used to estimate the water diffusion tensor for every voxel
(diffusion tensor imaging, DTI ). Its eigenvectors and eigenvalues reflect the local
direction of the tissue. If the eigenvalues are very different from each other, the tissue in
the corresponding voxel is highly directed. The fractional anisotropy (FA) measures this
difference, and thereby, the degree of anisotropy, by a scalar value between zero and one
in every voxel and provides a quantitative image-based measure for clinical diagnostics
(see Basser and Pierpaoli 1996, for a formal definition). The DW-MRI data is
symbolized by such an image in Figure 5.27: The image above the “brain anisotropy”
box is an overlay of the thresholded FA image with the T1 images. There are several
physical models to convert the water diffusion tensor into a conductivity tensor that
we can use for modeling GM and WM as anisotropic. For this thesis, we relied on
the approach proposed in Rullmann et al. (2009). Figure 5.28a visualizes the first
eigenvectors of the resulting conductivity tensors.

Notes and Comments

This head model was also used in Janssen et al. (2013), Lucka (2011), Lucka et al.
(2012), Pursiainen et al. (2012), Rampersad et al. (2014), Vorwerk et al. (2014).
The most thorough description of the technical details omitted in this section is given in
the supplementary material2 of Janssen et al. (2013). However, note that the procedure
used to convert the water diffusion tensors into conductivity tensor as described in
Section "Anisotropic conductivity tensors" therein, namely the one of Opitz et al.
(2011), differs from the approach used in this thesis. In Janssen et al. (2013), the
head model was used to simulate transcranial magnetic stimulation (TMS ). Therefore,
the importance of many modeling steps was motivated by references from the field of

2stacks.iop.org/PMB/58/4881/mmedia
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Table 5.7.: Compartments and conductivities used for the different head models. An
“i” indicates that this compartment is included in the model and modeled isotropic
whereas an “a” means that it is modeled anisotropic.

Compartment σ (S/m) HM1 HM2 HM3 HM4 HM5 HM6

Skin 0.43 i i i i i -
Eyes 0.505 i i - - - -
Skull 0.01 - - i i i -
Skull comp. 0.0064 i i - - - -
Skull spong. 0.02865 i i - - - -
CSF 1.79 i i i - - -
GM (cerebrum) 0.33 a i i - - -
WM (cerebrum) 0.14 a i i - - -
Cerebellum GM 0.33 i i i - - -
Cerebellum WM 0.14 i i i - - -
Brainstem 0.33 i i i - - -
Intracranial 0.33 - - - i i i

electro-magnetic brain stimulation. Lucka et al. (2012), Pursiainen et al. (2012),
Vorwerk et al. (2014) contain references that motivate them for EEG/MEG source
reconstruction. Section A.8 contains a listing of the software packages used.

5.4.2. Head Model Cascade

We used the data set described in the last section to construct a series of different
head models reflecting various degrees of realism encountered in EEG/MEG source
reconstruction (cf. Section 2.4.2 and Figure 2.13). For the construction of the most
realistic head models, called HM1 and HM2, all surfaces were meshed. The element
size in the skull compartments and in the GM was restricted to 1mm3, in all other
compartments it was restricted to 3mm3. This results in a triangulation consisting
of 984 569 vertices and 6 107 561 elements. A compartment representing the CSF was
constructed using a closed inner skull surface. In HM1, GM and WM are anisotropic as
described in the last section whereas they are isotropic and homogeneous in HM2. For
head model HM3, only the surfaces skin, skull compacta, brainstem, gray and white
matter of the cerebrum and the cerebellum were used. For meshing, the same volume
constraints were used which resulted in a triangulation consisting of 931 564 nodes and
5 782 609 elements. A CSF compartment was included as well. For head model HM4,
only the surfaces skin and skull compacta were used. For meshing, a volume constraint
of 1.2mm3 was used which resulted in a triangulation consisting of 885 655 nodes and
5 591 986 elements. A compartment representing all intracranial tissues was constructed
using a closed inner-skull surface. This three-compartment head model corresponds to
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the head models most commonly used in BEM approaches (cf. Section 2.4.1).
Head models HM1-HM4 are realistically shaped. As described in the previous section,
the construction of such head models requires the acquisition of anatomical MRI images.
If such data is not available, simplified geometries like spheres are fitted to the sensor
positions. An advantage of such models is that semi-analytical formulas for solving the
forward problem are known, which can be evaluated fast (e.g., Munck and Peters

1993). We want to mimic the use of such models and compare them to the realistically
shaped ones. For this, we will later need to construct source space positions r1, . . . , rN

that are valid source locations in all head models. It turned out that using spherically
shaped head models fitted to the sensor positions is too restrictive for this purpose.
Instead, an ellipsoid was used as the basic geometric shape. In addition, the fit needed
to incorporate the actual GM surface in addition to the sensor positions to result in a
compatible head model. In the following, we outline the construction of the ellipsoid
model: In a first step, a triangular surface of the outer CSF compartment boundary
(which corresponds to the inner skull boundary) was extracted from HM1. All vertices
inside the convex hull of the EEG sensor positions were determined and their convex
hull was constructed as a triangulated surface. The number of faces of this surface
was reduced to 100 by Matlab’s reducepatch.m routine, resulting in a smoothed
surface consisting of almost equal size faces. The 52 vertices of this surface were then
projected to the actual GM surface vertices, resulting in 52 equally sampled locations
in the superior GM surface areas (in the convex hull of the EEG sensors). An ellipsoid
was fitted to them (details are given in Section A.8). This initial fit was then refined
to enclose all GM surface vertices: Iteratively, the ellipsoid was re-centered in the
transversal plane and then all semi-axes were simultaneously slightly enlarged or shrunk.
Figure 5.28b shows the final ellipsoid representing the intracranial tissue surface. The
ellipsoids representing skull and skin surfaces were computed by assuming a ratio of
1:0.93:0.85 between skin, skull and brain semi-axes lengths. After that, triangulated
surfaces of the different compartments were generated using Matlab’s isosurface.m
routine and were meshed like the realistically shaped head models. The number of
surface triangles and the volume constraints used for meshing were chosen to match
the number of FEM vertices and elements of the other head models. Note that it
would be possible to solve the forward problem for this geometry using explicit formulas
(Dassios 2009). However, for the sake of compatibility with the other models, the same
FEM-based forward approach was used for the ellipsoidal models as well. While head
model HM5 consists of the three compartments skin, skull and intracranial tissue as
described above, head model HM6 consists of only one compartment, generated by the
ellipsoidal skin surface.
Table 5.7 lists the compartments and their conductivities used for creating the different
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head models. References for their choice can be found in Baumann et al. (1997),
Dannhauer et al. (2011), Ramon et al. (2006), Rullmann et al. (2009).

5.4.3. Source Space Construction and Forward Computation

The location of the source space nodes is a crucial choice for EEG/MEG source
reconstruction by CDR methods (cf. Section 2.4.2). In principle, the neural generators of
the EEG/MEG signal are the pyramidal cells located in parts of the GM (Hämäläinen

et al. 1993, Murakami and Okada 2006, Nunez and Srinivasan 2005, Okada

et al. 1997). Volume-based source space constructions aim at a discretization of this
compartment into voxels and place three orthogonal dipoles at the center of each voxel.
The reconstructed source activity can be represented as a 3D image which can easily be
aligned with other 3D images. For instance, it can be compared with fMRI activation or
visualized overlayed on an anatomical T1-weighted MRI. Due to the deep but thin sulci
and the strong folding of the cortex, this approach requires a very accurate segmentation.
In addition, the 3D character of the spatial discretization leads to a cubic growth of
n with decreasing spatial resolution of the source space. These difficulties often lead
to the usage of surface-based source space constructions. These approaches rely on
the fact that the pyramidal cells are organized in thin layers oriented normal to the
cortical surface: They aim to discretize a 2D surface representing such a layer rather
than the whole volume. This leads to a quadratic growth of n with decreasing spatial
resolution. Furthermore, the directedness of the pyramidal cells with respect to the
surface can be used to constrain the orientation of the reconstructed current vectors: In
the most extreme case, only one normally oriented dipole is placed at each location,
which reduces n by a factor of three and simplifies the vector reconstruction to a scalar
reconstruction problem. This is called normal constraint (NC ) or cortical orientation
constraint. As the forward operator is very sensitive to changes in dipole orientation,
this constraint requires a very accurate surface segmentation and a very fine spatial
resolution. Loose orientation constraints (LOC ) (Lin et al. 2006) circumvent these
problems by computing local orientations statistics to allow for a certain variability of
the current direction around the local averaged normal direction. Thereby, the effective
dimension of the current vector at a given location is in-between one and three. LOC
can be realized using block-based prior models with weightings. The physiological
a-priori knowledge about the neural generators actually allows for incorporating a
further constraint on u, which is rarely discussed in source reconstruction literature:
The pyramidal cells not only determine the orientation of the currents but also its
direction. Using the NC, this can be modeled by using an additional non-negativity
constraint on u (cf. Section 3.2.2). We will examine the additional benefit of this
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constraint in Section 5.4.6.
Both volume and surface based approaches have advantages and disadvantages. Surface
based approaches often rely on a flattened and smoothed representation of the cortical
surface, which does not include the deep-lying GM areas or areas encased by WM (e.g.,
the insular, the cingulate cortex, the hippocampus or the thalamus). Nevertheless,
working with such surface representations is reasonable and even advantageous for
a wide range of experimental designs. However, other brain networks often involve
deep-lying sources as well. For instance, the evoked potentials and fields examined in
this thesis also contain components reflecting such activity (Parkkonen et al. 2009,
Sander et al. 2010, Scherg and Buchner 1993) and the analysis of both networks
is a common clinical application of EEG/MEG.

Volume-based Construction

In principle, this construction approach is straight-forward to implement. A regular
spatial grid is constructed such that it encases the head model. The grid points will
represent the center of the source space voxels and the grid spacing their size. The
Venant approach we use for the forward computation (cf. Section 2.4.2) imposes a
technical constraint on possible source locations: All FEM elements attached to the
nearest FEM node to a source location have to be GM elements (Venant constraint).
Therefore, all grid points not meeting this constraint are discarded. All remaining points
that are located inside a GM FEM element build the source grid. A fast implementation
of this construction requires to pre-compute which elements are attached to a node,
which elements are connected via common faces and the usage of convex hulls and k-d
trees for nearest neighbor searches.
If a source space with a fixed number of voxels instead of a fixed voxel-size should be
constructed , the above procedure has to be iterated until a suitable grid is found. As
the number of voxels obtained with the above procedure is a complicated, discrete and
non-monotonic function of grid spacing and location, a robust fitting heuristic had to
be implemented.
It is often advantageous to have a parceling of the gray matter volume with respect to
the source locations found (source volumes). For instance, for defining neighborhood
relations or visualization purposes. Using FEM head models, we can construct the
source volumes by first assigning all FEM nodes to a source location. Thereby, each
FEM element is assigned to one or more source volumes by its nodes. If it is assigned
to more than one source volume, it lies on the boundary between source volumes. The
initial assignment of all FEM nodes to a source location should not be done by nearest
neighbor searches based on the normal, euclidean distance: As the gray matter volume
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is very non-convex due to the strong folding of the cortex, this can result in scattered,
disconnected source volumes. Instead, we first map each source location to the nearest
FEM node based on the euclidean distance and assign all remaining FEM nodes to
these source volume centers based on the euclidean graph distance on the triangulation:
The distance between two nodes of the triangulation is given by the shortest sequence
of edges connecting both nodes. Practically, the assignment can be computed using
Dijkstra’s algorithm (Cormen et al. 2001, Dijkstra 1959)

Surface-based Construction

This construction approach is particularly popular for BEM head models, for which
the geometries are described by triangulated surfaces anyway (cf. Section 2.4.2). The
GM surface, the interface between GM and WM or a surface constructed in-between
the former two is used for the source space construction. The nodes and the normal
vectors of the facets of that surface can directly be used to define the source space. For
the volume-based FEM head models, surface-based source space construction is more
difficult: For all forward approaches, the locations of the source space nodes should lie
in the interior of the GM compartment, not on its boundary. Therefore, one has to find
a way to choose source locations inside the GM with a meaningful correspondence to
the GM’s surface. Meanwhile, the method should also lead to an equal parceling of the
surface. In the following, we outline the final approach we developed:

1. A pool of candidate locations C = {c1, . . . , cr} that are inside a GM FEM element
and fulfill the Venant constraint is generated. At minimum, one should take all
interior FEM nodes of the GM compartment for this purpose.

2. A triangulated surface Υ of the interface between GM and WM is extracted.
The normal vectors Γ = {ν1, . . . , νh} in the surface vertices S = {s1, . . . , sh} are
computed.

3. A grid size is chosen and a regular 3D voxel grid is constructed to cover the GM
compartment.

4. All voxels {V1, . . . , Vl} containing surface vertices are determined. Of all surface
vertices Sj = {sj1 , . . . , sjk} inside a given voxel Vj, the one closest to the center
of the voxel is computed and added to a set S̃ ⊂ S. This procedure aims at
constructing a regular sampling of Υ. However, as S̃ is build from nodes of the
GM-WM interface, these locations are not valid for the forward computation.

5. Optimally, one would shift each s̃i ∈ S̃ from the GM-WM interface in normal
direction to a position right in the middle of the GM. However, the curvature of
Υ is very strong in the sulci of the cortex. This can result in shifting a lot of s̃i
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towards a common center, resulting in a clustering of source locations. In addition,
there might be no locations fulfilling the Venant constraint on the direct beam
from s̃i in the direction of νi. The pragmatic solution we chose is to project every
s̃i to the set of valid locations C by the use of a local metric: We split dij = s̃i− cj

into parts that are locally normal and tangential: dij = dνi,⊥ij + d
νi,‖
i,j and defined

distθ(i, j) =

√
(1− θ)2

∥∥∥dνi,‖i,j

∥∥∥2

2
+ θ2

∥∥∥dνi,⊥i,j

∥∥∥2

2
. (5.6)

Then, we chose c̃i as the element cj in C, which minimizes distθ(i, j) for θ = 2/3

and defined C̃ = {c̃1, . . . , c̃N} as the source locations.

6. Steps 3.-5. can be iterated to find the grid size g, which leads to a source space
with the desired number of sources N . As in the volume-based construction, a
robust fitting heuristic is required for this task.

7. The normal orientation for each c̃i is defined as a specific local average of Γ: Let
σi be half the distance of c̃i to the nearest c̃j 
=i. Then, ν̃i is computed as

ν̃i =
t∑
j

νj exp

{
− 1

2σ2
i

‖c̃i − sj‖22
}
, (5.7)

and re-normalized.

Using the normal constraint, {c̃i, ν̃i}, i = 1, . . . , N describes the source space, thus,
n = N . If a full or weighted vector reconstruction should be performed, two dipoles
spanning the tangential plane at each location are added and n = 3N .

Forward Computation

For the forward computations in all of our studies, we used the Venant direct method
(cf. Section 2.4.2) with piecewise linear basis functions. For sufficiently regular meshes,
recent studies (Lew et al. 2009, Vorwerk 2011, Vorwerk et al. 2012) show that this
approach yields suitable accuracy over all realistic source locations. Furthermore, this
approach has a high computational efficiency when used in combination with the FE
transfer matrix approach (Wolters et al. 2004). The computations were performed
with SimBio (cf. Section A.8).
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5.4.4. Hierarchical Bayesian Inversion Studies for EEG, MEG and EMEG

Background

In Lucka (2011), Lucka et al. (2012), we compared EEG source reconstruction using
an �2 hypermodel (D = In) with an inverse gamma hyperprior to established, �2 prior
based inverse methods. For multiple focal (i.e., sparse) source scenarios, fully-Bayesian
inference with the HBM prior improved upon the �2 based methods in many aspects.
In particular, the results showed good localization properties for single dipoles and did
not suffer from systematic depth mislocalization: Compared to source spaces based on
smoothed and flattened surfaces, source spaces based on an accurate cortical surface
segmentation or volume-based source spaces contain many more deep-lying locations. In
this case, a phenomenon called depth bias is of fundamental importance for the correct
localization of source activity. Many inverse methods fail to reconstruct deep-lying
sources at the correct depth; rather, the sources are reconstructed too close to the
skull. This is a well-known systematic error (see the references in Lucka et al. 2012),
which can be crucial in clinical applications. One example is given by the pre-surgical
functional mapping of the eloquent cortex (Schiffbauer et al. 2002). Our studies
showed that the HBM-based reconstruction results did not suffer from this error.
Another effect related to the depth bias is the masking of deep-lying sources by superficial
sources: If the true source configuration consists of multiple, spatially separated sources
with different depths, many inverse methods only recover the sources close to the skull
(see, e.g., Wagner et al. 2004). This effect complicates the analysis of networks of
interacting brain areas which is a recent topic of interest in brain imaging (Kiebel

et al. 2009). Furthermore, several clinical applications require a correct detection and
separation of multiple sources, for instance, the reconstruction of the auditory pathway
(Parkkonen et al. 2009) or specific cases of epileptiform discharges (Hufnagel et al.
1994, Janszky et al. 2000). In contrast to the established inverse methods, HBM-based
methods were less likely to miss single sources in multiple source scenarios and were
more often able to reconstruct the correct number of sources.

Motivation

In this study, we addressed two points that were left for future work in the outlook of
Lucka et al. (2012):

• In the article, only EEG was investigated. Here, we investigate whether the
findings also apply for MEG and how they compare to EEG/MEG combination,
i.e., EMEG. The question of whether EEG or MEG is better suited for source
reconstruction in general or for a specific experiment is an old but still ongoing
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discussion in the neuroimaging field of research. As many different aspects need to
be considered, no general answer was given yet (and may not exist). A common
objection against using EEG and MEG recordings for a combined, multi-modal
reconstruction by EMEG is that the combined modality might rather reflect the
deficits of the single modalities and not their strengths. Aydin et al. (2014) give
a recent overview on several of these aspects. Concerning the inverse problem,
the difference between EEG and MEG source reconstruction has mainly been
examined by �2-based inverse methods up to date (see, e.g., Molins et al. 2008).

• To facilitate the interpretation of our results, Lucka et al. (2012) used a head
model with a homogeneous intracranial compartment. Especially for EEG/MEG
combination, the use of a realistic, individual, anisotropic and calibrated (see
Section 5.4.5) head model is mandatory (see Aydin et al. 2014, for a recent
overview).

Study Design

For this study, we used the “simEMEG” scenario described in Section 2.4.2, i.e., the
most realistic head model and artificial EEG/MEG sensor configurations that enable
a fair comparison between both modalities. A volume-based source space with a grid
spacing of 6 mm was used which leads to 1336 source locations and n = 4008 unknowns
to recover. For u†,∞, source configurations consisting of one, two or three dipoles with
100nAm amplitude were used. This current amplitude corresponds to the expected
source strength in the evoked potentials/fields scenario. The locations of the dipoles
were randomly chosen in the GM compartment, with the restriction that they fulfill the
Venant constraint. The orientations were chosen randomly. Simulated measurements
were computed and i.i.d. Gaussian noise with a signal-to-noise ratio (SNR) of 20 was
added to all measurements: σ = ‖f‖2/(m · 20).
For combined EMEG, fEEG/MEG and σEEG/MEG were computed for the single modalities,
first. Then, they were stacked to construct the combined inversion model. The combined
lead-field AEMEG was constructed in the same fashion from AEEG and AMEG. Note
that the different units and scales for EEG and MEG vanish from the inverse model
once the pre-whitening (4.2) is performed: For the i.i.d. noise model, both fEEG/MEG

and AEEG/MEG are divided by σEEG/MEG. The resulting variables do not carry a
physical unit anymore but correspond to statistical significance measured in multiples
of the standard deviation of a normal distribution. We considered the following inverse
methods:

• Fully-Bayesian point estimates for an inverse gamma hyperprior with α = 0.5,
β = 10−4:
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– HBM-CM : Full-CM estimate computed with the blocked Gibbs sampler (cf.
Section 4.1.11). The burn-in length, K0, was 1000 for single dipole recovery
and 5000 for multiple dipole recovery. The size of the real run, K, was 50 000
for single dipole recovery and 200 000 for multiple dipole recovery.

– HBM-NM : Full-NM estimate (cf. Section 4.2.5) initialized with the full-CM
estimate.

– HBM-MAP : Full-MAP estimates computed with the multiple-seed heuristic
explained in Section 4.2.5. For computing the full-CM estimate seeds, we
used K0 = 25, K = 200. For the single dipole recovery, 128 of such seeds
were tested; for the multiple dipoles scenarios, 256 were used.

• MAP estimates for �2 priors with different diagonal weightings D ∈ R
n×n (weighted

minimum-norm estimates, see Fuchs et al. 1998a, Lucka et al. 2012, for an
overview and further references):

– MNE : D = In.

– WMNE-�2: D = diagi (‖Ai‖2).

– WMNE-�reg2 : D = diag
(

χ2
i+β2

χi

)
, with χi = ‖Ai‖2 , β = maxi {χi} mσ2

‖f‖22
.

– WMNE-�reg∞ : D = diag
(

χ2
i+β2

χi

)
, with χi = ‖Ai‖∞, β = maxi {χi} mσ2

‖f‖22
.

Each D was normalized such that det (D) = 1. The prior parameter λ was chosen
by the discrepancy principle (Kaipio and Somersalo 2005). Several other
weighting strategies were examined as well but the results are omitted here.

• sLORETA (Pascual-Marqui 2002): This inverse method consits of using an �2

prior with D = In and standardizing the MAP estimate for the current vector at
a given location, u[i], by the posterior covariance:

F = uT
[i] (Cov [u[i]|f ])−1 u[i], Cov [u[i]|f ] =

(
AT

(
AAT + λIm

)−1
A

)
[i,i]

(5.8)

This yields a pseudo statistic of F-type for every source space node.

We will refer to sLORETA and the WMNEs as “the established methods”. As in
Lucka et al. (2012), we validated inverse methods by computing the statistics of dipole
localization error (DLE ) and earth mover’s distance (EMD) between reference and
reconstructed activity. Both measures are explained in the appendix in Section A.7.

Results and Discussion

EEG vs. MEG Table 5.8a lists the results for the single dipole recovery and Table 5.8b
for the recovery of two or three dipoles. The DLE results for WMNE-�2 and WMNE-�reg2
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Table 5.8.: Results of the simulated EEG, MEG and EMEG inversion studies.

(a) Statistics of DLE and EMD (displayed as “mean± std”) of different inverse methods for the recovery
of 1000 source configurations consisting of one dipole.

DLE EMD
Method EEG MEG EMEG EEG MEG EMEG

MNE 21.3± 11.7 20.0± 13.2 17.8± 10.1 59.5± 5.1 60.1± 5.5 55.2± 5.3
WMNE-�2 26.5± 16.3 45.3± 21.6 21.2± 14.5 59.6± 3.9 58.3± 5.8 55.0± 5.1
WMNE-�reg2 23.2± 12.5 18.8± 11.3 15.7± 8.6 59.6± 3.9 59.0± 4.7 55.0± 4.9
WMNE-�reg∞ 17.6± 9.1 13.6± 8.2 11.3± 6.1 59.1± 4.4 59.0± 4.7 54.3± 5.2
sLORETA 7.2± 3.9 6.3± 3.6 5.0± 2.4 44.6± 4.7 48.8± 5.3 34.8± 4.9
HBM-CM 10.8± 5.8 10.6± 6.7 8.6± 4.4 12.9± 5.8 12.9± 6.2 11.0± 4.6
HBM-NM 9.9± 5.2 9.9± 6.7 7.8± 4.2 10.2± 5.6 10.5± 6.5 9.0± 4.6
HBM-MAP 7.4± 5.0 8.1± 7.3 6.4± 4.4 7.8± 5.8 8.5± 7.1 7.8± 5.6

(b) Statistics of EMD (displayed as “mean± std”) of different inverse methods for the recovery of k
source configurations consisting of l dipoles.

l = 2, k = 500 l = 3, k = 100
Method EEG MEG EMEG EEG MEG EMEG

MNE 49.2± 3.6 49.9± 4.3 45.4± 3.7 44.1± 3.6 45.0± 4.0 40.9± 3.1
WMNE-�2 49.5± 3.2 49.0± 4.4 45.8± 3.4 44.1± 3.2 43.9± 4.2 40.9± 3.0
WMNE-�reg2 49.4± 3.2 49.2± 3.9 45.7± 3.3 44.1± 3.2 44.0± 3.8 40.9± 3.0
WMNE-�reg∞ 49.0± 3.4 49.2± 3.9 45.1± 3.4 43.8± 3.3 44.1± 3.7 40.5± 3.0
sLORETA 41.1± 4.0 44.7± 4.8 35.3± 4.5 39.0± 4.6 41.5± 5.4 34.8± 5.3
HBM-CM 19.5± 7.3 22.8± 10.3 13.3± 5.5 27.1± 8.3 28.4± 9.1 18.2± 6.6
HBM-NM 19.3± 9.0 22.2± 11.6 12.2± 6.2 28.7± 9.3 29.1± 10.2 17.9± 7.3
HBM-MAP 21.4± 8.8 27.4± 13.3 16.3± 6.9 30.7± 7.3 35.3± 11.1 22.9± 7.2

(c) Fraction of 1000 single dipoles that are reconstructed too deep.

Method EEG MEG EMEG

MNE 0.300 0.182 0.240
WMNE-�2 0.467 0.616 0.526
WMNE-�reg2 0.406 0.515 0.455
WMNE-�reg∞ 0.336 0.410 0.459

Method EEG MEG EMEG

sLORETA 0.522 0.524 0.539
HBM-CM 0.518 0.529 0.533
HBM-NM 0.527 0.516 0.529
HBM-MAP 0.532 0.526 0.525
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demonstrate that introducing the regularization of the weighting by Fuchs et al. (1998a)
is particularly important for MEG. Without the WMNE-�2 results, the results of the
established methods suggest that MEG has better localization properties compared
to EEG. However, the HBM results do not confirm this but rather suggest that EEG
and MEG have very similar localization properties for single dipoles. The EMD results
confirm that the established methods are not able to reconstruct focal sources. In
the multiple dipole scenarios, the HBM-based methods show better reconstruction
performance for EEG than for MEG.
The comparison to similar studies on this topic (see, e.g., Babiloni et al. 2004, Baillet

et al. 1999, Fuchs et al. 1998b, Liu et al. 2002, Molins et al. 2008) is difficult: Other
studies often used realistic sensor setups, which means that the number of MEG sensors
is considerably higher than the number of EEG sensors (yet, conclusions about the
general properties of the single modalities were made). In addition, other studies often
committed the inverse crime of placing the reference sources on the computational grid,
used other error metrics and inverse methods or analyzed single source scenarios, only.
For these reasons, there is no consensus to which we can compare our results.

EEG/MEG Combination Tables 5.8a and 5.8b show that the combination of EEG and
MEG improves the average performance of all methods. In particular, the improvement
of the HBM-based methods in the multiple dipole scenarios is noticeable. A closer
look at the statistics of the EMD for these scenarios shows that especially extremely
erroneous reconstructions can be avoided by EEG/MEG combination. Figure 5.29
discusses the HBM-NM results for three interesting source scenarios. The results for
single dipoles are in line with former studies investigating the combination for other
inverse methods (see, e.g., the references given in the previous paragraph). However,
as those studies most often did not investigate multiple-dipole scenarios due to the
lack of a suitable error measure like the EMD, our results stress the particular value of
EEG/MEG combination for multiple-source configurations.

Depth-Bias For examining the depth bias, we defined the depth of a point in the
realistic head model as its minimal distance to the superior skin surface nodes (all nodes
whose z-coordinate is larger than the minimal z-coordinate of the sensor positions).
Then, we compared the depth of the single dipole sources with the depth of the source
space node with the largest reconstructed amplitude. Table 5.8c shows the fraction of
dipole sources that were reconstructed too deep. A value close to 0.5 indicates that the
inverse method does not suffer from systematic depth mislocalization. The results show
that especially the MNE fails to reconstruct sources in the correct depth. The different
weightings introduced in the WMNE schemes aim to compensate for this. However, our
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results show that a single weighting cannot prevent from depth-bias in all modalities.
Furthermore, a comparison with Table 5.8a shows that while the depth localization
may profit from the weighting compared to the MNE, the overall localization does not
necessarily improve accordingly. The HBM-based methods and sLORETA did not show
a depth bias in any modality.

Conclusions

The differences between established and HBM methods for the comparison between EEG
and MEG show that it is difficult to make general statements about the localization
properties of a single modality. The ill-posed nature of the EEG/MEG inverse problem
prohibits a separation of the properties of the modality from the properties of the inverse
method used. Meaningful statements are only possible for their combination. Our
results show that EMEG seems to rather combine the strengths and not the weaknesses
of both modalities: The source reconstruction results are stabilized and improved to a
considerable amount for all inverse methods. Again, a more detailed comparison shows
that especially the HBM methods profit from the combination, in particular for source
separation in multiple source scenarios. This further underlines the potential of these
methods for complex source scenarios in real applications.
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(a) EEG (b) MEG (c) EMEG

(d) EEG (e) MEG (f) EMEG

(g) EEG (h) MEG (i) EMEG

Figure 5.29.: HBM-NM reconstructions (red cones) of three different source scenarios
with three dipolar sources (green cones). Note that the real sources lie in-between
the source space nodes. Therefore, a perfect recovery is not possible. (a)-(c) EEG
failed to reconstruct all three dipoles satisfactorily. MEG was only able to reconstruct
the tangential part of the rightmost dipole. EMEG was able to reconstruct location,
amplitude and orientation of all sources satisfactorily. (d)-(f) Among other deficits, both
EEG and MEG failed to reconstruct the bottom left source. Again, the EMEG result is
much more convincing. (g)-(i) The EEG result was already quite good while the MEG
had problems to reconstruct the radial, frontal source. EMEG was not disturbed by
the weakness of MEG but was able to produce an even slightly better result than EEG
alone.
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5.4.5. Auditory and Somatosensory Evoked Potentials and Fields

Motivation: From Simulated to Real Data

The results of the simulation studies clearly demonstrated the potential of fully-Bayesian
inference for HBM for the reconstruction of focal source configurations. Therefore,
one main goal of this thesis was to process real, experimental data. As introduced
in Section 2.4.2, we will use auditory and somatosensory evoked potentials and fields.
The early components of these responses are well-studied and are commonly assumed
to correspond to rather focal brain activations. In contrast to our expectations, the
first results were quite unsatisfactory: Especially the full-MAP estimates were very
unstable with regard to parameter choices and too dependent on the randomness in
the initialization by the CM estimate. The CM estimate seemed more robust, but the
results were also less good than expected. These first results (which we will not present
in detail here) motivated the development and implementation of a new processing
pipeline and a more careful examination of its different steps; in particular, whether the
non-linear, non-convex optimization employed for computing the full-MAP estimate is
sensitive to the uncertainties these steps involve:

• While some obvious inverse crimes (cf. Section 2.1) were avoided in the simulation
studies, the uncertainty concerning the forward model is certainly larger for real
data: Even sophisticated head models rely on simplifying assumptions, are prone
to MRI errors and artifacts as well as registration and segmentation errors and
use standard values for the conductivities of many compartments. In addition,
the sensor positions also carry uncertainty (see below). HBM inference may be
too sensitive to the resulting error of A.

• The raw SEP/SEF data is a complex spatio-temporal mixture of various signals
of which most are actually unrelated to the stimulation paradigm (cf. Section
3.1). As explained in Section 2.4.2, trial-averaging is used to reduce the impact of
unrelated signals on the evoked response. However, averaging is a Monte Carlo
technique (cf. Section 4.1.1). Therefore, even with very optimistic assumptions on
the nuisance signals, averaging can reduce the error only with the rate O(1/

√
K).

As a consequence, various additional signal processing techniques are used to
improve the SNR. In the end, the noise model has to account for the nuisance
signals remaining after all the different preprocessing steps. As a result, the
Gaussian model we use might not be a valid approximation or its estimation may
be too inaccurate. Again, HBM inference may be too sensitive to this error of the
likelihood distribution.



180 5 Computational Studies

• As EEG/MEG is severely ill-conditioned and under-determined, all inverse solu-
tions are necessarily prior-dominated, i.e., they reflect more information from the
prior than from the likelihood. Therefore, inverse results are very sensitive to a
miss-specification of the prior. While the hierarchical prior model we use is strongly
based on the assumption of sparsity/focality, the stimulation-unrelated brain ac-
tivity is still present in the trial-averaged signal as a distributed, low-amplitude
source. Thereby, our prior model is not fully correct.

To account for these issues, we will conduct sensitivity studies at certain points of the
development of the processing pipeline. Finally, we will present the source reconstruc-
tions obtained with the new processing pipeline and revisit topics that we previously
examined in simulation studies.
General guidelines for data acquisition and preprocessing are given by Picton et al.
(2000) for EEG and by Gross et al. (2013) for MEG. All technical details and terms
not explained in the following sections can be found in these articles and the references
therein.

Data Acquisition

All recordings were performed in a magnetically shielded room and in supine position.
In total, the whole head MEG system (CTF, VSM MedTech Ltd.) comprises 595
SQUID coils of which 548 are arranged to form physical gradiometers while the rest
are commonly used to define reference channels. The combination of the coils into
different measurement channel layouts can be described by a m× 595 matrix applied to
the full data. The position of the subject’s head inside the dewar (cf. Figure 2.9) is
continuously tracked by recording the locations of three small head localization coils
placed at the anatomical fiducials nasion, left and right ear canals. The same fiducials
are also used in the MRI acquisition. This can be used to register the MEG sensors to
the head model in the later analysis. The technical details of this procedure are omitted
here. Simultaneous EEG recordings were performed using 74 electrodes arranged in
the 10-20 system using the 10% division (10-10 system). The electrode positions are
measured and digitized using a Polhemus device. In addition, EOG and ECG channels
were recorded but are not used in this work. All data was acquired at a sampling rate
of 1200Hz and filtered online with a 300Hz low pass filter. Section A.8 lists the software
used for the different processing tasks.

Empty Room Recordings Besides the evoked responses, we recorded 5 minutes of empty
room recordings of MEG only. These recordings can be regarded as samples of the
measurement noise and will be used in the noise modeling studies. Two gradiometer
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Figure 5.30.: Time courses of a selection of MEG channels before pre-processing (the
mean was removed to fit all courses into one plot).

channels were broken and were not recorded.

Somatosensory Stimuli Somatosensory responses can be evoked by tactile or electrical
stimulation of the median nerve of the subject. The data processed here stems from
electrical stimulation: Electrical square pulses with 0.5ms duration were applied to
either the left or the right wrist. The stimulation side was varied randomly between left
and right and the inter-stimulus interval (ISI ) was varied randomly in-between 350ms
to 450ms. One reason for applying this procedure is to avoid habituation. Another
reason is that stimulation-locked responses from earlier stimulations that might fall into
a following pre-stimulus interval should average out. The electrical stimulation current
creates an artifact, which declines fast. To further reduce its influence, the polarity of
the stimulation is switched in the second half of the recording session. In total, 978
left-hand trials and 972 right-hand trials were recorded. In this thesis, we will only
examine the left-hand trials.

Auditory Stimuli Prior to the measurement, a hearing test is conducted to determine
the hearing threshold for a pure sinusoidal tone with 350 Hz frequency. Then, this tone
is presented bilaterally, 55dB above this threshold, in 125 trials. The ISI was varied
randomly between 3.5s and 4.5s.

Signal Processing

For the first reconstructions of real data, we used rather standard, conservative pre-
processing steps. There are two main strategies to clear the data from artifacts and
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other unwanted signal components: The first aims at identifying contaminated trials
to fully exclude them from the further analysis. The second strategy tries to clear the
trial from the nuisance signal by applying signal processing techniques. We will use a
combination of both approaches.

Empty Room Recordings The MEG data was processed in the synthetic first order
gradiometer channel layout. This means that the reference channels are used in a
specific way to correct for the finite distance between the two coils that constitute the
main physical gradiometer channels. Figure 5.30 shows the time courses of several single
channels. The mean of each channel (baseline) was subtracted to fit them into one plot.
One can clearly see that all channels jump shortly before t = 100s. This is an example
of the well-known SQUID jump artifacts. Around t = 200s and t = 290s, two further
artifacts with a smooth temporal evolution are visible that most probably correspond
to a field caused by an event outside the recording chamber. We can further see that
the baseline of the time courses seems to change over time. This drift artifact can be
modeled by a linear regression.
To clear the data from these artifacts, we first chopped the continuous data into 60 trials
of 5s length. Based on a visual inspection the trials corresponding to 85s < t � 105s
(SQUID jump), 195s � t < 205s and 280s � t < 295s (external artifacts) were removed.
Then, a specific DTF-based line noise removal procedure was applied and the baseline
of each trial was corrected for constant and linear trends.

Somatosensory Stimuli The EEG channels FC1 and F1 were very noisy and showed
shifts on long temporal scales, suggesting that the electrodes were not attached properly
and the electric contact between electrode and skin was varying. Therefore, they are
excluded from the further analysis. The electric potential at one electrode can only be
measured with respect to a reference electrode. Therefore, EEG recordings have one
degree of freedom that can be defined by the user. We transform the EEG channels
to common average reference: The sum of all channels is always zero. The MEG data
was processed in the synthetic third order gradiometer channel layout. In this scheme,
the reference channels are also used to reduce the contribution of far away but strong
magnetic fields to the measurements. The data was chopped into trials of 200ms length
before and after each stimulus onset. Within each trial, the stimulus onset corresponds
to t = 0ms. First, the baseline of the MEG channels of each trial was reset to zero based
on the mean values in the pre-stimulus interval, i.e., −200ms � t � 0ms. As a second
step, we applied band-pass filtering from 1Hz to 30Hz using a zero-phase forward and
reverse Butterworth filter of order four. Thereby, we may also remove stimulus-related,
high-frequency signals reflecting short-lived brain activity, but for the localization of the
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N20 response, signals from outside this frequency band are mainly noise contributions.
To avoid filtering artifacts resulting from the short trial length, each trial was padded
by the 2s of data before and after the trial before the filtering was applied. As a final
step, we exclude those trials from averaging that are severely contaminated by artifacts:
In general, trial rejection is a difficult task as one has to decide whether a trial can
improve the quality of the unknown signal or not. This choice also relies on the total
number of trials available which is rather large in our case. Therefore, we used a simple,
conservative, automatic trial rejection procedure: The variance of each channel for
each trial is computed and the 20% trials with the largest maximal channel variance
are rejected, leaving 782 of 978 trials for averaging. Figure 5.31 shows butterfly and
topography plots. Note that unfortunately, the strong band-pass filtering we use in this
first examination leads to a shift in the timings of the physiological components, which
therefore have to be interpreted with care. We will reconstruct the peak of the N20(m)
signal component found around t = 15ms. In un-filtered data, this component is found
around t = 23ms after stimulus onset (see Buchner et al. 1995, 1994, Fuchs et al.
1998b, and references therein).

Auditory Stimuli We only report the differences to the SSEP/SSEF data here: In
addition to the EEG channels FC1 and F1, also the MEG channels MLO32 and MLC32
were excluded from the further analysis. A trial length of 1s before and after each
stimulus onset is used. The variance of each MEG channel for each trial is computed
and visualized. Based on the maximal channel variance per trial, 36 of the 125 trials
are rejected by visual inspection. For EEG, the trials rejected for MEG were rejected
as well. Using a visual inspection of the remaining trials, only one further trial was
rejected. We will reconstruct the signal at 92ms at the rising flank of the N100(m)
component. Figures 2.12 and 5.31 show butterfly and topography plots.

Noise Modeling

Similar to CT, we want to use an additive Gaussian noise model, ε ∼ N (με,Σε). The
empty room recordings were carried out to assess the statistics of the noise contributions
that are not due to the measurement of a subject. Figure 5.32a shows a scatter plot
of the two MEG channels with the largest covariance after pre-processing and Figure
5.32b a histogram of one of them compared to a Gaussian fit. By visual inspection,
using a Gaussian model seems to be very adequate for the noise contributions present
in empty room recordings. Due to the baseline correction, με = 0. Figures 5.32c and
5.32d visualize Σε estimated from the whole empty room recording data.
The pre-stimulus intervals of the real recordings only contain non-stimulus related signals.
In contrast to the empty room recordings, this includes also nuisance signals produced
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by the subject such as heart beat signals and un-evoked brain activity. Figures 5.32e -
5.32l visualize the covariance (and correlation) matrices of the pre-stimulus data (before
averaging). Compared to the empty room recordings, inter-channel correlations are more
pronounced and the covariance structure is more degenerate: The condition number of
the empty room covariance matrix is about 50 while it is about 6839 for the pre-stimulus
matrix. The correlation pattern seems to reflect the spatial arrangement and grouping
of the sensors. This suggests that spatially smooth nuisance fields dominate the signal
in the pre-stimulus interval, most likely caused by other forms of brain activity.

Sensitivity Study In our first attempt to produce HBM results for experimental MEG
data, we used the diagonal part of the pre-stimulus covariance matrix after averaging.
We will now examine whether HBM is sensitive to such noise simplifications by a
simulation study. For this, we use the same single dipole recovery scenario as in Section
5.4.4 (using MEG only) but with four different noise models. We will again use an SNR of
20, which is a typical value for evoked potentials, and therefore define σ = ‖f‖2/(m ·20).
Then, the empirical covariance matrix Σemp (empty room or pre-stimulus data) is
re-scaled to define the full noise model :

Σf =
σ2m

tr (Σemp)
Σemp (5.9)

For generating the permuted noise model, we take the singular value decomposition of
Σf = V SV T , randomly permute the columns of V to obtain Vp, and define Σp = VpSV

T
p .

Obviously, Σp has the same algebraic properties as Σf , but its correlation pattern does
not reflect the spatial correlation between the sensors anymore. The diagonal noise
model is defined by Σd = diag (Σf ) and the i.i.d. noise model by Σi = σ2Im. By
construction,

tr (Σf ) = tr (Σp) = tr (Σd) = tr (Σi) = σ2m, (5.10)

and thereby, the noise levels of the models are comparable. The sensitivity study
examines what happens, if the noise model chosen for the reconstruction does not
match the one used to generate the data. Table 5.9a lists the results if the empty room
covariance is used as Σemp. We see that in general, there are only small differences in
localization performance with the exception of using the permuted noise model for data
generation and the full model for inversion with the established methods. For the HBM
methods, all variations are small and consistent in the sense that using the same noise
model for data generation and inversion should yield the best results. Table 5.9b lists
the results if the pre-stimulus covariance is used as Σemp. Now all methods are severely
disturbed if the permuted noise model is used for data generation and the full model
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Table 5.9.: Mean DLE of different inverse methods for the recovery of 1000 source
configurations consisting of one dipole when different noise models for data generation
and inversion are used.

(a) The empirical covariance matrix Σemp is derived from the empty room recordings.

WMNE-�reg2
data noise

Σi Σd Σf Σp

in
v

no
is

e Σi 13.38 13.41 13.43 13.61
Σd 13.69 13.60 14.25
Σf 14.45 32.72
Σp 13.72

sLORETA data noise
Σi Σd Σf Σp

in
v

no
is

e Σi 5.20 5.18 5.22 5.40
Σd 5.18 5.18 5.93
Σf 5.22 27.21
Σp 5.12

HBM-CM data noise
Σi Σd Σf Σp

in
v

no
is

e Σi 5.49 5.68 5.88 5.58
Σd 5.57 5.77 5.74
Σf 5.66 5.89
Σp 5.48

HBM-NM data noise
Σi Σd Σf Σp

in
v

no
is

e Σi 5.47 5.64 5.87 5.56
Σd 5.59 5.76 5.71
Σf 5.57 5.73
Σp 5.52

(b) The empirical covariance matrix Σemp is derived from the pre-stimulus data.

WMNE-�reg2
data noise

Σi Σd Σf Σp

in
v

no
is

e Σi 13.38 13.33 14.17 17.36
Σd 13.56 14.12 22.15
Σf 17.87 88.46
Σp 36.20

sLORETA data noise
Σi Σd Σf Σp

in
v

no
is

e Σi 5.20 5.18 5.45 8.80
Σd 5.18 5.43 12.71
Σf 5.00 82.23
Σp 4.82

HBM-CM data noise
Σi Σd Σf Σp

in
v

no
is

e Σi 5.68 5.76 6.17 5.60
Σd 5.84 6.29 5.53
Σf 5.47 76.20
Σp 5.01

HBM-NM data noise
Σi Σd Σf Σp

in
v

no
is

e Σi 5.73 5.70 6.30 5.53
Σd 5.78 6.18 5.55
Σf 5.64 72.98
Σp 5.24

for inversion. Otherwise, the variations for HBM and sLORETA are, again, very small,
while WMNE-�reg2 is affected more strongly.

Sensitivity to Background Activity

As described above, another potential disturbance for sparse inverse methods might be
the presence of the signals originating from the averaged un-evoked brain activity u∞bkg
in f :

f = A(u†,∞ + u∞bkg) + ε (5.11)
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Table 5.10.: Mean DLE/EMD of different inverse methods for the recovery of 1000
source configurations consisting of one dipole when background activity is added to f .

Method none focal, 10% focal, 20% Gauss, 10% Gauss, 20%

WMNE-�reg2 13.38/55.66 13.39/56.29 13.67/57.82 13.39/56.43 13.96/58.27
sLORETA 5.20/41.67 5.29/42.20 5.57/43.76 5.26/42.26 5.59/43.93
HBM-CM 5.55/7.12 5.90/8.85 6.12/14.30 5.72/8.05 6.62/14.35
HBM-NM 5.58/5.81 5.81/6.19 6.23/9.68 5.69/5.95 6.80/7.35

If necessary, one could discretize u∞bkg, introduce a prior model for it, and apply one
of the techniques introduced in Section 3.6.2. However, we will first conduct another
sensitivity study using the same single dipole recovery scenario as in Section 5.4.4 (with
MEG) to test if it is necessary: We want to examine how the reconstruction results
change from u∞bkg = 0 if we assume that u∞bkg either consists of two focal sources different
from the main one to recover, or it consists of a Gaussian random field at the source
space nodes (Au∞bkg = Az, z ∼ N (0, In)). In both cases, we scale Au∞bkg to either 10%
or 20% of Au†,∞ + ε (measured in �∞-norm). Table 5.10 lists the results. We see that
adding background activity only leads to a moderate impairment of the reconstruction
properties of all methods.
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(a) SSEP (EEG) butterfly (b) SSEP (EEG) topography, 15ms
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(c) SSEF (MEG) butterfly (d) SSEF (MEG) topography, 15ms
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(e) AEP (EEG) butterfly (f) AEP (EEG) topography, 92ms

Figure 5.31.: Butterfly and topography plots for SSEP, SSEF and AEP data (cf.
Figure 2.12).
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Figure 5.32.: (a) Empty room data after pre-processing: Scatter plot of two (sub-
sampled) MEG channels. (b) Normalized histogram of empty room channel MRF24 after
pre-processing (blue bars) and normal approximation (red line). (c)-(l) Visualizations
of covariance and correlation matrices.



5.4 EEG/MEG Source Reconstruction Studies 189

(a) SDS (b) HBM-NM

Figure 5.33.: HBM and SDS results for the SSEP data, computed for a volume-based
source space with a grid spacing of 6mm. (a) SDS results using the i.i.d. (red cone),
diagonal (green cone) or full (blue cone) noise model. (b) HBM-NM results using the
i.i.d. or diagonal noise model (yellow cone) or the full noise model (blue cone).

Source Reconstruction Results

Somatosensory Data We first process the somatosensory data because the generator of
the N20(m) component of left-hand stimulation is supposed to be a source configuration
with a simple structure: It is commonly assumed to be well-approximated by a single
equivalent current dipole in the right-hemispheric somatosensory 3b area, i.e., in
a superficial location and with a quasi-tangential orientation (see Buchner et al.
1995, 1994, Fuchs et al. 1998b, Hämäläinen et al. 1993, and references therein).
The EEG and MEG topographies (Figures 5.31b and 5.31d) support this assumption:
They are both dominated by two opposing poles, which suggests a single source. The
midpoints between both poles are roughly above the location in both modalities. Finally,
the EEG poles are orthogonal to the MEG ones. Compare also Figure 2.11b, which
shows artificial topographies for such a source scenario.
As we know that a single source is a reasonable source model, we will compare HBM
results for SSEP data to a single dipole scan (SDS ):

ûSDS := argmin
u

‖f − Au‖2Σ−1
ε

s. t. |u|[0] = 1, (5.12)

Practically, we minimize
∥∥f − A[i]vi

∥∥2

Σ−1
ε

, vi ∈ R
3, for each source space node i and

choose the dipole vi which achieves the best fit as the solution. Using this inverse method
can be seen as the current “gold-standard” for this source reconstruction problem.
We use this scenario to revisit the noise modeling and sensitivity studies. Three noise
models will be used to process the SSEP data: The full noise model will use the
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(a) i.i.d. noise model (b) diagonal noise model (c) full noise model

Figure 5.34.: MNE for the SSEP data, thresholded at 75 % and computed for different
noise models and a volume-based source space with a grid spacing of 2 mm.

pre-stimulus covariance matrix Σpre (see Figure 5.32e) but with a slight regularization:

Σreg = (1− δ)Σpre + δIm, (5.13)

where we choose the smallest δ such that the condition of Σreg is below 104. The
diagonal noise model uses diag (Σreg), and the i.i.d. noise model uses σ̄2Im, where σ̄2 is
the geometrical mean of the diagonal of Σreg.
Figure 5.33 shows the results, computed with the same volume-based source space (grid
spacing: 6mm) used in Section 5.4.4. Both methods show the same result for the full
covariance model which is assumed to be the most accurate one. However, note that
HBM does not limit the number of active sources explicitly! We also see that HBM
does not seem to be more sensitive to noise simplification than SDS, which is commonly
regarded a very robust source reconstruction technique.
In Figure 5.34, we compare MNEs, computed for a volume-based source space with
a grid spacing of 2mm. While the Gaussian prior model used by the MNE is not
appropriate to describe the single, dipolar activity we expect, we see from the results
that accurate noise modeling is also important for MNEs: The result for the full noise
model is much more focused than the others and its support is in good correspondence
with the location found by HBM and SDS.
While all three inverse methods show coherent results with respect to location and
influence of noise modeling, the location found does not exactly correspond to the
expected somatosensory 3b area but is slightly shifted towards frontal regions.
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Auditory Data Compared to the somatosensory N20(m), the auditory N100(m) compo-
nent is presumably generated by a more complicated source configuration: Commonly,
two dipolar, bi-lateral sources near the planum temporale are assumed to be an accu-
rate description of it (Pantev and Lutkenhoner 2000). An examination of the
topographies (see Figures 5.31f and 2.12b) reveals why MEG is commonly considered
a more reliable modality for auditory source reconstruction: Figure 2.12b shows two
separated single dipole patterns, each consisting of two opposing poles, and one in each
hemisphere. For EEG, the specific arrangement of the two sources leads to a topography,
which does not give such a clear indication: Both sources approximately point into the
same direction. Due to the head geometry, their positive poles overlay (big blue area
in Figure 5.31f), while their negative poles are not well-captured by the electrode cap.
Therefore, we use this scenario to revisit the comparison of the single modalities and
their combination examined in Section 5.4.4.
For the single modalities, we use the full noise model with the regularized pre-stimulus
covariance matrices (see Figures 5.32i, 5.32k) as above. For EMEG, a block diagonal
noise model ΣEMEG

reg = diag
(
ΣEEG

reg ,ΣMEG
reg

)
is build from the single modalities. Thereby,

we do not account for the covariance between EEG and MEG channels, which we
leave for future work. Figure 5.35 shows the results computed with the same source
space as before. For MEG, we used the same hyperprior parameters α and β as in the
simulation studies, as those were chosen to reconstruct multiple dipole scenarios with
similar source amplitudes. The result fits very well to our expectations. For EEG, we
needed to increase α to obtain a reasonable result. However, the corresponding result
also fits surprisingly well to our source hypothesis. The slight differences in location and
orientation compared to the MEG-based reconstructions may result from the insufficient
coverage of the EEG cap in the lower parts of the head: For an accurate estimation of
location and orientation, a coverage of the maxima of the poles by the EEG cap would
be necessary. Finally, the EMEG result resembles the MEG result. If we assume that
the MEG result is more reliable than the EEG one, this behavior is consistent with the
simulation studies we performed in Section 5.4.4: If one modality yields a better result
than the other, the combined reconstruction is not disturbed by the weaker modality
but can profit from both information (cf. Figure 5.29).

Discussion and Outlook

In this section, we examined the inversion of experimental data for a quite challenging
inverse problem:

• Compared to CT, realistic and accurate forward modeling and computation is
much more involved (cf. Section 5.4.1). Geometrically, our head model features



192 5 Computational Studies

a degree of realism that is seldom found in EEG/MEG source reconstruction.
However, concerning EEG/MEG combination, a considerable improvement could
still be achieved if calibrated conductivities would be used: The conductivities we
assigned (cf. Table 5.7) were standard values found in the literature. While certain
compartments like the CSF show little inter- and intra-subject variability, it is
known that, for instance, the skull conductivity can vary considerably. This uncer-
tainty was found to be a major problem for EEG/MEG combination. Therefore,
calibration procedures were developed that try to identify the skull conductivity or
the ratio of the two skull compartments by using reference SSEP/SSEF measure-
ments. A recent overview of this topic can be found in Aydin et al. (2014) and
references therein. While the principled computations required by the calibration
procedure were carried out for the SSEP/SSEF data examined in this section, the
results were not included in this thesis anymore.

• We investigated the aspect of data preprocessing, which we ignored up to now.
While we only carried out very elementary, conservative preprocessing procedures,
further improvements can be expected if signal unmixing strategies are applied:
Principal component analysis (PCA) and independent component analysis (ICA,
Makeig et al. 1996) are most commonly used to clear signal components such as
the heart’s signal. Model-based factor analysis approaches such as stimulus-evoked
independent factor analysis (SEIFA, Nagarajan et al. 2006) have been developed
to unmix stimulus-related and background brain activity (factor analysis is closely
related to low-rank approximation).

• Even after improving upon the previous two aspects, uncertainties will remain.
While Section 3.6.2 introduced principled ways to address them, we conducted
sensitivity studies to examine how potential modeling errors will affect the re-
construction results. We found that HBM was surprisingly robust to noise
mis-specification and residual background activity.

• We computed the first fully-Bayesian HBM source reconstructions for experimental
data (to the best of our knowledge) and could demonstrate that HBM does
not only give promising results in simulated data studies but can also provide
reasonable source estimates in real data scenarios. To consolidate our results,
further evaluations have to be carried out:

– For the SSEP data, the HBM results matched those of the well-established,
robust SDS. However, as both results did not fully match our a-priori expec-
tations on the location of the underlying brain activity, further examinations
have to be carried out: A problem of the current studies may be the strong
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band-pass filtering we used. Aside altering the timings of the physiological
components, it may also affect the spatial topographies in a non-trivial
way. In addition, the reconstructed locations have to be compared to an
atlas-based cortical segmentation matched to the head model.

– For the AEP/AEF data, the location of the HBM results fitted well to our
a-priori expectations on the underlying brain activity and the results of
EMEG compared to EEG or MEG alone fitted well to our simulation studies
in Section 5.4.4. However, the impact on the orientation of the sources has
to be investigated in more detail.

In addition to the above points, the stability of the results to the SNR of the data
has to be examined; for instance by reducing the number of trials selected for
trial averaging. Most importantly, different subjects and source scenarios have to
be investigated.

• We ignored the temporal aspect of EEG/MEG inversion up to now: Its high
temporal resolution is one of the main arguments for using EEG/MEG in many
situations. For source reconstruction, the temporal information can further be used
to supplement the poor spatial information of a single time-point measurement.
The section “Static and dynamic inverse problems” in Lucka et al. (2012) contains
a discussion of possible spatio-temporal inversion techniques, in particular in
combination with HBM.
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(a) EEG, HBM parameters: α = 1.2, β = 10−4

(b) MEG, HBM parameters: α = 0.5, β = 10−4

(c) EMEG, HBM parameters: α = 0.5, β = 10−4

Figure 5.35.: HBM-NM results for the AEP/AEF data visualized by colored cones
inside the gray matter surface.
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5.4.6. Sparse Recovery Conditions

Motivation

Using sparsity constraints has become popular in source reconstruction as well (we give
references at the end of this section). Besides the HBM-based approaches we examined
in the previous sections, various kinds of �1 (block) priors were proposed. In Section
3.5, we discussed that under certain “best-case” assumptions, the performance of MAP
estimates for such prior models can be examined using different recovery conditions.
Here, we test whether and which of these conditions may be suitable to investigate
topics in source reconstruction such as

• the interplay between realistic forward and sparse inverse modeling: How do
the intrinsic recovery properties of A evolve with modeling complexity? This is
different from examining which kind of reconstruction errors the use of a simplified
head model induces (see, e.g., Lanfer et al. 2012). It rather tries to assess how
predictive the reconstruction performance of an inverse method in a simplified
head model is for its performance in a more realistic one.

• the number source space locations N needed for sparse inversion: Clearly, the
spatial resolution is ultimately limited by the imaging modality and not by the
user-defined N . Choosing a small N for computational reasons might potentially
lower the spatial resolution achievable. On the other hand, choosing a large N

does not mean that the source grid size actually reflects the real spatial resolution
and leads to unnecessary computational effort. The dependence of the recovery
conditions on N may shed new light on this question.

• the comparison between EEG, MEG and EMEG was often examined by simulation
studies like the one in Section 5.4.4, only. Sparse recovery conditions may provide
a new perspective on this topic.

Study Design and Results

We examined all the head models HM1-HM6 described in Section 5.4.2. Figure A.5
shows the sensor configuration used. It consists of 74 EEG electrodes and 273 MEG
gradiometer channels and corresponds to a realistic setup similar to the one used in the
real data studies. We constructed surface-based source spaces consisting of N = 62, 125,
250, 500, 1000, 2000, 4000, 8000 and 16000 source locations. For source reconstruction in
real data scenarios, N is typically at least 1000. Therefore, we will refer to N = 62−500

as “small” and to N � 1000 as “realistic”. We examined two sparse reconstruction
approaches (cf. Section 5.4.3):
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1. Scalar reconstruction using the normal constraint: In this setting, a simple �1 prior
(D = In) is used and the normal recovery conditions apply for the MAP-estimates.

2. Full vector reconstruction without the normal constraint: In this setting, an �1-
block prior, (3.16), is used and the block recovery conditions discussed in Section
3.5.5 apply.

The following computations were carried out for EEG, MEG and EMEG:

• All coherence measures, (3.63), (3.82) and (3.83) were computed for all N .

• The lower bound δlb2 on δ2 was computed by Algorithm 4.12 using 108 2-sparse
samples for all N .

• All non-uniform recovery conditions were tested for 1000 source configurations u†

with k = 2 and k = 3 active locations. In the full vector reconstruction, only the
normally oriented of the three source dipoles at each active location was active. We
excluded source configurations where two of the active locations were neighboring
each other as one would not speak of two separated sources in this case. For
the scalar conditions (Tr), (FuA), (FuB)/(SSC) and (SSC+), computations were
limited to N = 8000; for the block conditions (BlkTr), (BlkFuA), (BlkFuB)/(SSC),
computations were limited to N = 1000. Whenever a condition can be applied to
both A and A�, both variants were tested.

The lead-field matrices AEEG, AMEG were re-scaled by their spectral norm prior to
these computations. AEMEG was build by stacking the re-scaled AEEG, AMEG. This
corresponds to assuming that both modalities have the same signal-to-noise ratio (cf.
Sections 5.4.4, 5.4.5). Note that the column-normalization required by some conditions
is performed after this re-scaling and is not related to it.
All results are listed in tables A.3-A.19 in the appendix. For the non-uniform conditions,
the empirical probability and confidence intervals for a significance level of α = 5% are
displayed.

Discussion

Coherence Note that the source space locations for smaller N are not a subset of those
for a larger N . Therefore, a monotonic increase of the coherence cannot be expected.
Tables A.3 and A.4 show that even for the small N , the coherence values μ(A) are
so close to 1 that (Coh) only guarantees exact recovery in the trivial case of 1-sparse
solutions u†. Tables A.5 and A.6 show that the situation is even worse for full vector
reconstruction: Although the block coherence is notably smaller than the normal one,
(BlkCoh) does not even give exact recovery guarantees for 1-block-sparse solutions. A
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particular reason for this is that the sub coherence is very close to 1, which means that
there are certain locations where the topographies of the three dipoles at these locations
are very similar. Note, however, that (BlkCoh) would guarantee for the exact recovery
of both location and orientation. In source reconstruction, we are often only interested
in the exact location.
The results do not yield a clear trend for the comparison between EEG and MEG.
However, for their combination, the coherence results suggest that EMEG is stronger
than the stronger one of the single modalities for small N , while it is weaker for large
N : min(μ(AEEG, AMEG) � μ(AEMEG) is never true for N � 500 but true in 16 of 18
cases for N � 4000. The latter seems to confirm the common objection that combining
EEG and MEG might rather compensate the particular strengths of one modality with
weaknesses of the other (cf. Section 5.4.4). However, as the results, above all, show
that the coherence condition is too strong for examining exact recovery for source
reconstruction, it is not yet clear whether drawing such conclusions is really valid.

RIP Table A.7 lists δlb2 , while δub2 is given by μ(A) (cf. Table A.3). Comparing both
values, we see that the upper bound is quite tight. Unfortunately, the results for δlb2 also
already prohibit (RIP) from being true for k = 1. As all other RIP (block) constants
δk, δ[k] are even larger than δ2, condition (RIP) will never be fulfilled in our scenario.
Concerning the comparison between EEG, MEG and EMEG, the RIP results suggest
the same conclusions as the coherence results. However, one should, again, be cautious
as the results primarily show that uniform recovery conditions seem to be too strong to
analyze sparse source reconstruction.

Non-uniform, scalar We first examine the results for the normalized lead-field A�:
Comparing the results for (Tr) (Table A.8), (FuA) (Table A.10) and (FuB)/(SSC)
(Table A.12), we see that the empirical probabilities differ dramatically. This suggests
that the sufficient conditions (Tr) and (FuA) are also too strong and only the sufficient
and necessary condition (FuB)/(SSC) is adequate for examining exact recovery in source
reconstruction. Therefore, we omitted the results for k = 3 for the other conditions. The
results also clearly show that using the normalized lead-field has a dramatic influence on
the recovery performance; see for instance Table A.13. As discussed in Section 3.5, the
implications of this difference are not fully examined yet. Comparing the results with or
without an additional non-negativity constraint (e.g., Tables A.11 and A.14) shows that
the inclusion of such constraints can significantly enhance the recovery performance
and motivates further research in this direction.
In contrast to the uniform recovery conditions, the non-uniform conditions (FuB)/(SSC)
and (SSC+) clearly show that the MEG sensor configuration is superior to the EEG
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one for sparse recovery. As the number of MEG channels is considerably larger than
the number of EEG electrodes, this is also the expected result. A fair comparison like
the one carried out in Section 5.4.4 is difficult for realistic sensor configurations: One
should at least compare this MEG sensor configuration to a high-resolution EEG cap
consisting of 256 channels (Oostenveld and Praamstra 2001). However, for this
study we chose to use the same sensor configurations as in the real data recordings.
Concerning the combination of EEG and MEG, the results for (FuB)/(SSC) and (SSC+)
clearly support the findings of Section 5.4.4: The combination significantly increases the
average reconstruction performance compared to the single modalities. These findings
underline that the results of sufficient but not necessary conditions like (Coh) should
be interpreted with care and might be misleading.

Non-uniform, vectorial The full vector reconstruction results are similar to the scalar
ones: There is a dramatic difference between conditions (BlkTr) and (BlkFuA) and the
condition BlkFuB/(SSC). (BlkTr) was actually never full-filled in this study. With 1000

samples tested, this amounts to a 5%-confidence interval of [0.000, 0.004]. Concerning
the comparison between EEG, MEG and EMEG, the results also show that the MEG
sensor configuration used is superior to the EEG one and that combining EEG and
MEG can significantly improve over the single modalities: Using N = 1000 and HM1
is for instance a situation comparable to the scenarios used in the studies in Sections
5.4.4 and 5.4.5. Table A.18 shows that in this case, the empirical recovery probability
increases from 1.5% for EEG alone or 13% for MEG alone to 46.1% in the combined
case.

Head Model Comparison Based on the results for (FuB)/(SSC) in Tables A.11-A.13,
we will draw some preliminary conclusions on the comparison between the different
head models HM1-HM6:

• HM1 and HM2 differ by modeling the GM and WM anisotropic or isotropic.
Without the normalization of A, both EEG and MEG show decreased recov-
ery probabilities for HM1 compared to HM2. The decrease for EEG is more
pronounced. Using normalization, this effect disappears. Therefore, a better
understanding of the effect of normalization on the recovery conditions is also
needed to fully understand this phenomenon.

• The difference between HM2 and HM3, which consists of neglecting the eye
compartment and replacing the two-layered skull by a single-layered one does not
seem to have a major impact on the recovery probabilities.

• From HM4 to HM5, the realistic geometry of the three compartment model is
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replaced by the ellipsoidal shape. While EEG and EMEG do not show significant
differences in recovery probability, MEG is strongly effected by it.

• HM6 is somewhat special in the comparison in the sense that it would not be
considered an appropriate head model for EEG in practice. The large differences
for EEG between HM5 and HM6 also partly reflect this. For MEG, we see only
subtle changes. This suggests that from the sparse recovery perspective, both
models are similar.

In general, the interpretation of the results using the normalized A� is complicated by
the high recovery probabilities found in this case (ceiling effect). For distinguishing
probabilities very close to one, a larger number of samples would have to be drawn.
Compared to the scalar reconstruction, the results for the vectorial case, BlkFuB, are
more difficult to interpret: They guarantee the exact recovery of location and orientation,
but we are typically rather interested in the correct location and would allow for an
imprecision in orientation. Therefore, we did not include the vectorial results into the
discussion above.

Conclusions

Uniform recovery conditions are easy to compute, give very general recovery guarantees
and are therefore most often considered in compressed sensing theory. However, our
results show that they are too strong for the inverse problem of EEG/MEG and cannot
be used to tackle the type of questions that motivate our work. From the non-uniform
recovery conditions, only the weakest one, (FuB)/(SSC), gives promising recovery
guarantees in a range, where, for instance, a meaningful comparison between different
head models is possible (although the preliminary conclusions we drew in the last
paragraph need to be refined). However, the computational verification of this condition
is more difficult and time-consuming.

Extensions

As discussed in Section 5.4.3, given the inherent uncertainties of the MRI-derived
surface representations, using the flexible loose instead of the fixed normal orientation
constraint is probably a better way to include direction information. As these constraints
correspond to weighted block priors, the studies carried out in this section can easily be
repeated for them.
Since

min ‖w‖22 s. t. w fulfills (FuB)/(SSC) (5.14)
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is related to obtaining optimal error estimates by (3.79) and (3.80) in the case of
non-vanishing noise, computing its statistics can help to extend the current results
beyond the noise-free assumption. Preliminary studies of such kind were already carried
out but are not included in this thesis anymore. First results suggest that normalizing
the lead-fields does not only lead to improved exact recovery rates in the noise-free case
but also lead to significantly lower mean values of (5.14).

Outlook

The aim of these first, elementary studies was to implement and identify the right tools
to tackle relevant questions in source reconstruction. For this purpose, a rather general
study design was used and only empirical recovery statistics were computed. Future
studies can tackle more application-specific questions:

• Experimental design: If a hypothesis about the source configuration to recover is
available, we can use this methodology to examine which modality is best suited
to recover it or how to alter the configuration to improve its reconstruction, for
instance by using additional electrodes.

• The spatial resolution of sparse source reconstruction: For a given source location
i, BlkFuB/(SSC) is tested for all 2-sparse u† consisting of i and another site j

(using the NC). The result is a binary map which can be visualized on the cortical
surface. It displays in which spatial configuration the second source has to be
placed to be separable from the source at location i. It should be possible to
define a measure of local spatial resolution from this binary map. This leads to a
map of local spatial resolution which can be used to classify the different brain
regions depending on whether the modality can offer a good or bad resolution.
The comparison between EEG, MEG and EMEG could then be focused to certain
brain regions, for instance, “should one use EEG or MEG for examining auditory
activity and which benefit would EMEG provide for this scenario?”.

• While the previous point contained ideas to define a local spatial resolution for a
fixed source space, the next step would be to use this methodology to compare
source spaces with different N to obtain a reasonable balance between the number
of locations used and the spatial resolution they actually achieve.

• Designing source spaces would be a more sophisticated use of these ideas: The task
would be to arrange a fixed number of source locations N in order to exploit the
limits of the local spatial resolution. This might result in a more dense covering
of the superficial cortical layers compared to the deep-lying regions. While such a
paradigm may seem odd for applications where source reconstruction is performed
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after the measurement and is not time-critical (such as the analysis of evoked
potentials), a recent field of research with exiting potential applications is in
EEG/MEG online source reconstruction (Pieloth et al. 2013).

• Using this methodology to quantify the reliability of a reconstructed solution would
be interesting for clinical applications: For instance, for the pre-surgical diagnosis
of epilepsy patients, it is important to assure that the source reconstruction did
not miss any active source.

Notes and Comments

Important contributions to the use of �1-based approaches to EEG/MEG source recon-
struction include Chang et al. (2010), Gramfort et al. (2013), Haufe et al. (2008),
Huang et al. (2006), Matsuura and Okabe (1995), Ou et al. (2009), Uutela et al.
(1999). A recent overview also covering the use of orientation constraints can be found
in Chang et al. (2013).
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6
CLASSICAL BAYESIAN THEORY

REVISITED

In this chapter, we will revisit some topics discussed in Chapter 3 in the light of the
computational results we presented in the previous chapter.

6.1. MAP or CM Estimation Revisited

In Section 3.4.3, we discussed the classical view on the “MAP or CM” topic, which favors
the CM estimate over the MAP estimate on the basis of the Bayes cost formalism. This
point of view is not only challenged by our computational results, but also by recent
work of others. We will summarize these observations and results in the next section.
Then, we will introduce new theoretical ideas, which are not longer contradictory, but fit
to all of these results, disprove certain common myths, and will lead to new insights and
perspectives for the comparison of variational regularization and Bayesian inference.

6.1.1. Converse Observations and Results

We start off with a very basic observation: As discussed in Sections 3.1 and 3.2.4,
Gaussian priors are the most popular and arguably the most fundamental class of priors,
due to various reasons such as their maximum entropy property, alpha-stability and the
central limit theorem. However, for this most fundamental class of priors, the seemingly
fundamentally different MAP and CM estimate happen to be equal. From the classical
view, this can only be interpreted as a meaningless coincidence, which is arguably not
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fully satisfactory.
Another observation is that the theoretical discrimination of the MAP estimate contrasts
its popularity and success in practical applications, in particular in high-dimensional
scenarios. Its popularity may be due to pragmatical reasons: Without MCMC tech-
niques such as those developed in this thesis, computing CM estimates is infeasible in
high-dimensional scenarios. Therefore, one often encounters a strange contrariness in
publications about high-dimensional Bayesian inversion: Usually, a careful prior model-
ing is presented and the CM estimate is regarded as the optimal inference technique.
However, for computational reasons, often only a MAP estimate can be computed. This
circumstance is usually regretted and excused for. If the computational results are not
fully satisfactory, shortcomings of the MAP estimate are discussed as a potential reason
for it. However, even if the results are really good, concern is expressed that computing
MAP estimates is not a proper Bayesian technique, and that CM estimates may even
be superior.
The MCMC techniques developed in this thesis allowed us to bridge this gap between
theoretical considerations and practical experience for various high-dimensional scenar-
ios and prior models, in particular for sparsity-promoting priors. Our computational
studies in Chapter 5 contained several comparisons between CM and MAP estimates:

• Figures 5.8, 5.9c, 5.9a, 5.10, 5.11a, 5.13, 5.17, 5.18, 5.23, 5.24 and 5.25 visually
compare MAP and CM estimates for �qp priors. In most cases, the MAP estimates
are clearly more convincing. The only exceptions are those cases, where MAP and
CM estimate visually coincide, for instance for the Besov priors with a large λ,
and the TV prior results for the “Walnut-CT” scenario, Figures 5.23 and 5.25. In
the latter case, it is not yet clear which estimate one should prefer for a subsequent
use of the images produced (cf. Section 1.1).

• For the HBM-based source reconstructions in EEG/MEG, we already showed in
Lucka (2011), Lucka et al. (2012) that full-MAP estimates appeared superior
to full-CM estimates by visual impression and comparable by error measure
statistics if they are suitably computed. The studies in Section 5.4 confirm this. In
particular, we only showed images of HBM-NM results (which can be regarded as
a suitable approximation to full-MAP estimates) because they were either visually
identical, or superior to HBM-CM estimates.

Recently, Gribonval (2011), Gribonval and Machart (2013), Louchet and

Moisan (2013) revealed that every CM estimate for a prior pprior(u) is also a MAP
estimate for a different prior p̃prior(u). Their intention was to warn against the common
“reverse reading” of designing a particular J (u) for recovering certain classes of real
solutions with (3.12) and then claiming to perform Bayesian MAP estimation with the
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prior pprior(u) = exp (−λJ (u)). In Gribonval et al. (2012), it was shown that this
MAP estimate is usually not very well suited to recover solutions u† that are really
distributed like exp (−λJ (u)). In our studies, the true solutions did also not correspond
well to the priors used: This is apparent when comparing the random draws in Section
5.1.1 with the true solutions in Chapter 2. For the topic of this section, these results
mean that a general discrimination of MAP estimates based on the Bayes cost formalism
would only make sense if one strongly believes that the chosen prior most accurately
models the distribution of the real solution. Otherwise, one ends up in the contradiction
that the appraised CM estimate is simultaneously a discredited MAP estimate (just for
another prior). The next sections resolve these contradictions between the observations
and the classical view.

6.1.2. A Novel Characterization of the MAP Estimate

In this section, we will present a novel Bayes cost approach to MAP estimates for
log-concave Gibbs priors (cf. Section 3.2.3). Throughout this section we will assume
that J : Rn → R ∪ {∞} is a Lipschitz-continuous convex functional, such that for
λ > 0 the function u �→ ‖Au‖2 + λJ (u) has at least linear growth at infinity. Due to
Rademacher’s theorem (cf. Evans and Gariepy 1991), this implies that ppost(u|f) is
log-concave and differentiable almost everywhere in R

n. The main ingredient will be
the (generalized) Bregman distance (cf. Section A.1).

New Bayes Cost Functions

The classical discrimination of the MAP estimate as only being asymptotically a Bayes
estimator for the uniform cost (3.61) (cf. Section 3.4.3) has a crucial flaw: It does not
mean that the MAP estimate cannot be a proper Bayes estimator for a different cost
function. This suggests that one should search for alternative costs better suited to the
asymptotic Banach space structure such as Bregman distance costs:

Definition 6.1. Let L ∈ R
n×n be regular and β > 0. Define

ΨLS(u, û) := ‖A(û− u)‖2Σ−1
ε

+ β‖L(û− u)‖22 (6.1)

ΨBrg(u, û) := ‖A(û− u)‖2Σ−1
ε

+ 2λDJ (û, u). (6.2)

Both ΨLS(u, û) and ΨBrg(u, û) are proper, convex (with respect to û) cost functions. In
the following, we will need the decay property

lim
R→∞

∫
∂BR(0)

ppost(u|f) du = 0, (6.3)
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which is fulfilled under the linear growth assumption above, which yields constants a, b

independent of R such that

ppost(u|f) ≤ a exp

(
− b

R

)
on BR(0). (6.4)

Theorem 6.1. Let J be as above and let λ > 0 and β � 0. Then, the CM estimate is a
Bayes estimator for ΨLS(u, û) and the MAP estimate is a Bayes estimator for ΨBrg(u, û).

Proof. We start from (3.59) and insert the definition of ΨLS(u, û):

ûΨLS(f) = argmin
û

{∫ (
‖A(û− u)‖2Σ−1

ε
+ β‖L(û− u)‖22

)
ppost(u|f) du

}
(6.5)

We can rewrite the above by inserting ûCM and expanding squares

ûΨLS(f) = argmin
û

{ ∫ (
‖A(û− ûCM)‖2Σ−1

ε
+ β‖L(û− ûCM)‖22

)
ppost(u|f) du

+

∫ (
‖A(u− ûCM)‖2Σ−1

ε
+ β‖L(u− ûCM)‖22

)
ppost(u|f) du

− 2

∫ (
〈A(û− ûCM), A(u− ûCM)〉Σ−1

ε
+ β〈L(û− ûCM), L(u− ûCM)〉2

)
ppost(u|f) du

}
(6.6)

Due to the linearity and the definition of the CM estimate (3.3) the last integral vanishes
and hence, û = ûCM is obviously a minimizer. For the MAP estimate, we again start
from (3.59) and insert the definition of ΨBrg(u, û):

ûΨBrg(f) = argmin
û

{∫
Rn

(
‖A(û− u)‖2Σ−1

ε
+ 2λDJ (û, u)

)
ppost(u|f) du

}
(6.7)

Now, we can exclude the null-set where J (u) is not Fréchet-differentiable,

S := {u ∈ R
n| card (∂J (u)) �= 1}, (6.8)

from the integration and insert the definition of DJ (û, u) on Sc:

ûΨBrg(f) = argmin
û

{ ∫
Sc

(
‖A(û− u)‖2Σ−1

ε

+ 2λ (J (û)− J (u)− 〈J ′(u), û− u〉)
)
ppost(u|f)du

}
(6.9)

The squared norm can be developed as in the case of the CM estimate, while for the
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Bregman distance we use the following elementary identity:

DJ (û, u) = DJ (û, ûMAP) +DJ (ûMAP, u) + 〈p̂MAP − J ′(u), û− ûMAP〉, (6.10)

where p̂MAP ∈ ∂J (ûMAP). Thus, on Sc we have

‖A(û− u)‖2Σ−1
ε

+ 2λDJ (û, u) =

‖A(û− ûMAP)‖2Σ−1
ε

+ 2λDJ (û, ûMAP) + ‖A(ûMAP − u)‖2Σ−1
ε

+ 2λDJ (ûMAP, u)

+ 2〈A(û− ûMAP), A(ûMAP − u)〉Σ−1
ε

+ 2λ〈p̂MAP − J ′(u), û− ûMAP〉. (6.11)

The first two terms in the second line are obviously minimal for û = ûMAP, while
the other terms in this line are independent of û. In the last line we can insert the
subgradient from the optimality condition for ûMAP,

p̂MAP = −1

λ
A∗Σ−1ε (AûMAP − f) ∈ ∂J (ûMAP), (6.12)

and rewrite

2〈A(û− ûMAP), A(ûMAP − u)〉Σ−1
ε

+ 2λ〈p̂MAP − J ′(u), û− ûMAP〉
= −2〈A(û− ûMAP), Au− f〉Σ−1

ε
− 2λ〈−J ′(u), û− ûMAP〉

= −2〈A∗Σ−1ε (Au− f) + λJ ′(u), û− ûMAP〉
= 2〈∇u log ppost(u|f), û− ûMAP〉. (6.13)

Using the logarithmic derivative ∇uppost(u|f) = (∇u log ppost(u|f))ppost(u|f), the poste-
rior expectation of the latter equals

2

∫
Sc

〈∇u log ppost(u|f), û− ûMAP〉 ppost(u|f) du = 2〈
∫
Sc

∇uppost(u|f) du, û− ûMAP〉.
(6.14)

With Gauss’ theorem and (6.3) we finally obtain:

∥∥∥∥
∫

∇uppost(u|f) du
∥∥∥∥ = lim

R→∞

∥∥∥∥
∫
BR(0)

∇uppost(u|f) du
∥∥∥∥

= lim
R→∞

∥∥∥∥
∫
∂BR(0)

ppost(u|f)
u

R
du

∥∥∥∥ � lim
R→∞

∫
∂BR(0)

ppost(u|f) du = 0 (6.15)

First, we apply Theorem 6.1 to the fundamental case of Gaussian priors. We can
parameterize any (centered) Gaussian energy as J (u) = β/(2λ)‖Lu‖22. For this choice,
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2λDJ (û, u) = β‖L(û− u)‖22, and ΨLS(u, û) = ΨBrg(u, û): The equality of MAP and CM
estimate in the Gaussian case is no longer a strange coincidence but follows naturally
from the properties of the Bregman distance.
In the non-Gaussian case, the domain of J usually defines a Banach space or a subset
thereof in the limit n → ∞. For instance, the discrete total variation prior will define
the space of functions of bounded variation in the limit (Burger and Osher 2013).
In such a space, there is no natural Hilbert space norm that one should obtain as the
limit of ‖Lu‖2. Even worse, it is questionable whether any Hilbert space norm is a
meaningful measure for functions of bounded variation. The only reasonable choice
might be L = 0, which means that ΨLS(u, û) measures purely in the output space, which
will be a Hilbert space. However, for ill-posed inverse problems with noisy data it is
well-established that one should not just minimize a criterion related to the output Au.

A MAP-Centered Form of the Posterior

As pointed out in Section 3.4.3, one classical geometrical argument was that the CM
estimate is in the center of mass of ppost(u|f), while the MAP estimate does not allow
for such an interpretation. Using Bregman distances, we can rewrite ppost(u|f) in a
MAP-centered form, which also disqualifies this argument. We use the optimality
condition of the MAP-estimate (3.12),

A∗Σ−1ε (AûMAP − f) + λp̂MAP = 0, p̂MAP ∈ ∂J (ûMAP), (6.16)

to rewrite A∗Σ−1ε f in the posterior energy:

1

2
‖Au− f‖2Σ−1

ε
+ λJ (u) =

1

2
‖Au‖2Σ−1

ε
− 〈A∗Σ−1ε f, u〉+ λJ (u) +

1

2
‖f‖2Σ−1

ε

=
1

2
‖Au‖2Σ−1

ε
− 〈A∗Σ−1ε AûMAP + λp̂MAP, u〉+ λJ (u) +

1

2
‖f‖2Σ−1

ε

=
1

2
‖Au‖2Σ−1

ε
− 〈Σ−1ε AûMAP, Au〉+

1

2
‖AûMAP‖2Σ−1

ε

+ λ (J (u)− J (ûMAP)− 〈p̂MAP, u− ûMAP〉)

− 1

2
‖AûMAP‖2Σ−1

ε
+ λ (J (ûMAP)− 〈p̂MAP, ûMAP〉) +

1

2
‖f‖2Σ−1

ε

=
1

2
‖A (u− ûMAP)‖2Σ−1

ε
+ λDp̂MAP

J (u, ûMAP) + const., (6.17)

where const. sums all terms not depending on u. Hence, we can write the posterior as

ppost(u|f) ∝ exp

(
−1

2
‖A(u− ûMAP)‖2Σ−1

ε
− λDp̂MAP

J (u, ûMAP)

)
. (6.18)
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Now, the posterior energy is the sum of two convex functionals both minimized by ûMAP.
Thereby, ûMAP is the center of ppost(u|f) with respect to the distance induced by (6.17).

Average Optimality of the CM Estimate

To further compare MAP and CM estimates, we derive an “average optimality condition”
for the CM estimate. Let

p̂CM := E [J ′(u)] =
∫

J ′(u) ppost(u|f) du (6.19)

be the CM estimate for the (sub)gradient of J (u). We have:

A∗Σ−1ε (AûCM − f) + λp̂CM = A∗(AΣ−1ε E[u]− f) + λE[J ′(u)]

= E
[
A∗Σ−1ε (Au− f) + λJ ′(u)

]
=

∫
Sc

A∗Σ−1ε (Au− f) + λJ ′(u) ppost(u|f) du

=

∫
Sc

∇uppost(u|f) du = 0, (6.20)

where the integral term, again, vanishes. Comparing (6.20) to (6.16), we see that the
CM estimate fulfills an optimality condition “on average”, i.e., with respect to the average
gradient, p̂CM = E[J ′(u)], but not with respect to the gradient J ′(ûCM) = J ′(E[u]).
The difference between MAP and CM estimate here manifests in J ′(E[u]) �= E[J ′(u)],
which, again, vanishes for the Gaussian case where J ′(u) is linear.

New Inequalities

Finally, we show that when measured in the Bregman distance DJ(û, u), which is a
more reasonable error measure than norms in the case of a non-quadratic J (u) (cf.
Section 3.5.4), the MAP estimate performs better than the CM estimate. In return, the
CM estimate out-performs the MAP estimate when the error is measured in a quadratic
distance:

Theorem 6.2. Let L ∈ R
n×n be regular, then we have

E
[
‖L(ûCM − u)‖22

]
� E

[
‖L(ûMAP − u)‖22

]
(6.21)

E [DJ (ûMAP, u)] � E [DJ (ûCM, u)] . (6.22)

Proof. The first inequality directly follows from the fact that ûCM is also the Bayes
estimator for Ψ(u, û) = ‖L(ûCM − u)‖22, which follows from the proof to Theorem 6.1.
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For the second inequality, we use the minimizing properties of MAP and CM estimates:∫ (
‖A(ûMAP − u)‖2Σ−1

ε
+ 2λDJ (ûMAP, u)

)
ppost(u|f) du

�
∫ (

‖A(ûCM − u)‖2Σ−1
ε

+ 2λDJ (ûCM, u)
)
ppost(u|f) du

�
∫ (

‖A(ûMAP − u)‖2Σ−1
ε

+ 2λDJ (ûCM, u)
)
ppost(u|f) du

+ β

∫ (
‖L(ûMAP − u)‖22 − ‖L(ûCM − u)‖22

)
ppost(u|f) du (6.23)

Since β > 0 is arbitrary, we can consider β → 0 and obtain∫
DJ (ûMAP, u) ppost(u|f) du �

∫
DJ (ûCM, u) ppost(u|f) du (6.24)

Notes and Comments

A potential irritation might be that the cost function for the MAP estimate depends on
the chosen prior while the one for the CM estimate does not. However, this is usually
not a drawback but rather an advantage: The prior energy J (u) is chosen such that it
grasps the most distinctive features of u (cf. Section 3.2). Often, one is consequently also
most interested in estimating these features correctly, which is measured by DJ (u, v)

better than in some squared error metric. For instance, in the “Spots” scenario, one
is mainly interested in the correct separation and location of the intensity spots while
their absolute amplitudes might be of minor interest. In such situations, the standard
squared error is a poor indicator of reconstruction quality (see also the discussions in
Benning 2011, Burger and Osher 2004, Burger et al. 2007, Schuster et al.
2012). On the other hand, the induced Bregman distance DJ (u, v) is 0 if the sign
pattern of u and v coincide (cf. Table A.1) and grows only linearly, otherwise.

6.2. Sparsity in Bayesian Inversion

In the computational results, we saw that both �1 priors and conditionally �2 hypermodels
can lead to sparse or at least compressible estimates. In this section, we will discuss the
differences between the two approaches to encode sparsity as a-priori information in the
Bayesian framework. For simplicity, we assume that all prior operators are the identity,
D = In.
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6.2.1. The �p Approach to Sparsity

The starting point for this approach is the observation that the solution to

ûMAP,2 = argmin
u∈Rn

{
1

2
‖f − Au‖2Σ−1

ε
+ λ‖u‖22

}
(6.25)

is easy to compute but not sparse, while the solution to

ûMAP,0 = argmin
u∈Rn

{
1

2
‖f − Au‖2Σ−1

ε
+ λ|u|0

}
(6.26)

is sparse but hard to compute. Obviously, (6.25) can be interpreted as the MAP estimate
for using an �p prior with p = 2, while (6.26) can be interpreted as the limit thereof for
p → 0. This suggests to use the MAP estimate with the smallest p that allows for an
efficient computation. Due to the fact that convex optimization problems can be solved
very efficiently (cf. Section 4.2.2), this happens to be p = 1. While this procedure
produces excellent results in a variety of applications, labeling it as a Bayesian inversion
technique has certain flaws: In Bayesian inversion, the choice of the prior should reflect
our a-priori knowledge about the solution, not the limitations of our computational
abilities. If sparsity or compressibility is what we expect, the prior samples in Figure 5.1
illustrate that an �1 prior is not the correct model. In addition, from the Bayesian point
of view, the sparsity of the MAP estimate can almost be considered a defect. The only
reason for it is the non-differentiability of the convex �1 norm at 0, i.e, on a null-set: As
the optimality condition is given by

− 1

λ
AT (AûMAP − f) ∈ ∂|ûMAP| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{1} for (ûMAP)i > 0

[−1, 1] for (ûMAP)i = 0

{−1} for (ûMAP)i < 0

, (6.27)

(cf. Section A.1), sparse u are most likely to fulfill it (cf. Figure 3.5a). For these reasons,
one should rather characterize this approach as “reverse reading” as already discussed
in Section 6.1.1: First, an optimization problem is designed such that it produces a
solution with certain features. Then, the solution is interpreted as a MAP estimate in a
Bayesian framework. The latter is problematic for the discussed reasons.
In general, the prior models used in this thesis all rely on probability densities and are
therefore not well-suited to express sparsity measured in this binary sense of components
being either exactly zero or having an arbitrary non-zero value: The set of u where at
least one component is exactly zero is a null-set in all density-based prior models. For
modeling this kind of sparsity, one should actually use semi-discrete prior models such
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as a Bernoulli-Gauss model:

ui = ξi · vi, vi ∼ N (0, σ2
u), P(ξi = 0) = q; P(ξi = 1) = (1− q), (6.28)

and define q as the expected fraction of non-zero components of u. However, such
models are extremely difficult to handle computationally.

6.2.2. The HBM Approach to Sparsity

In Section 3.3, we introduced hierarchical prior models as an alternative to the �p-based
ones. Section 3.3.3 further showed that using the non-log-concave inverse gamma
distribution (3.46) as a hyperprior leads to a class of heavy-tailed implicit priors on u,
which we called product tp priors:

pprior(u) ∝
h∏
i

(
1 +

∣∣DT
i u

∣∣p
νθ

)−ν+1
p

(6.29)

The parameter p is typically not varied but fixed by computational considerations:
Choosing p = 2 is most common as the conditional updating of u in alternating
algorithms (cf. Sections 4.1.11 and 4.2.5) can then be carried out by solving a linear
system. Since θ is a scaling parameter with a similar meaning as λ for �p priors, the
only parameter that can still influence the shape of the prior is ν. Its function is similar
to the function of p in the �p based approach to model sparsity:

• There is a Gaussian limit: For ν → ∞, we can use that log(1+x) ≈ x for |x| � 1:

ν + 1

2

n∑
i

log

(
1 +

u2
i

νθ

)
≈ ν

2

n∑
i

u2
i

νθ
=

1

2θ
‖u‖22 (6.30)

In the general case, the limit is given by (pθ)−1‖u‖pp. For finite values of ν, the
above approximation holds only in a region around 0 (cf. Figure 3.12a) and the
complete prior is never log-concave. One can easily compute that the region of
convexity is characterized by ‖u‖∞ <

√
νθ.

• There is a sparse limit: We can re-write the energy as

ν + 1

2

n∑
i

log

(
1 +

u2
i

νθ

)
u∝ ν + 1

2

n∑
i

log
(
νθ + u2

i

)
=

1

2

n∑
i

ν log
(
νθ + u2

i

)
+

1

2

n∑
i

log
(
νθ + u2

i

)
. (6.31)
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For ν ↘ 0, the limit of the first summand is always 0. The limit of the second
summand is given as

lim
ν↘0

(
1

2

n∑
i

log
(
νθ + u2

i

))
=

⎧⎨
⎩−∞ if ui = 0 for any i∑n

i log (|ui|) else
(6.32)

This limit is universal for all p. As (6.32) is not bounded from below, it is more
intuitive to examine Jε(u) =

∑
log(ε+ |ui|) for a small but finite ε ≈

√
νθ. Jε(u)

sums up the scales of the components of u with respect to the reference scale ε.
Thereby, it can be considered a measure of compressibility: If the components of u
take their values on very different scales, u can be well-approximated by a sparse
u0. The corresponding prior samples in Figure 5.1 where generated using ν = 1.
Another intuition for the sparsifying properties of (6.32) is given by recognizing
that

n∑
i

log (|ui|) = log

(
n∏
i

|ui|
)
, (6.33)

which means that the prior energy is given by the logarithm of the n-dim volume
spanned by the components of u. By its multiplicative nature, it is more effectively
minimized by collapsing single dimensions to zero than by shrinking all components
isometrically.

Note that in the full HBM prior model parameterized by α and β, one has to choose
α = ν/2, β = νθ to obtain the above limits for p = 2.

6.2.3. Comparison and Fusion

Table 6.1 compares the prior energies of the two approaches. Most notably, the type
of sparsity induced differs: �p-based approaches lead to a binary type of sparsity by
the non-differentiability in the tip of the prior density at zero. HBM-based approaches
lead to a scale-based compressibility by the slow decay of the tails of the prior density
combined with the multiplicative way in which the single components interact. This
combination leads to the non-convex shape of its level sets. Note that the non-log-
concavity of the prior alone is not generating compressible solutions: If we would define
a multivariate Cauchy prior by

pprior(u) ∝
(
1 +

∥∥DTu
∥∥2

2

θ

)−1

(6.34)

instead of the product-type way we used in (3.29), the posterior would only be bi-modal,
with a second mode in zero: Figure 6.1 shows the level sets of the resulting posterior.
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Given these two different mechanisms that lead to compressibility/sparsity, it would be
interesting to examine �1 hypermodels, which combine both properties. Computing full-
MAP estimates via Algorithm 4.9 would require to compute a series of MAP estimates
for changing �1 priors. While this is computationally feasible (e.g., by ADMM), our
experience with �2 hypermodels suggests that a suitable initialization for the iteration
is essential to avoid getting stuck in sub-optimal modes as discussed in Section 4.2.5.
Initialization strategies based on full-CM estimates require the development of efficient
sampling techniques. The �1 sampler developed in this thesis could be particularly
well-suited to be used within the blocked Gibbs scheme also used for sampling �2

hypermodels (cf. Section 4.1.11): As the conditional posterior to be sampled from
changes after every γ update, a burn-in phase for the u-sampler is necessary. In addition,
the new sample for u has to get uncorrelated to the current sample u which is used as
an initialization. Our studies in Section 5.1.2 suggest that the direct �1 sampler might
be able to achieve those demands efficiently.

Table 6.1.: Comparison between the �p-based and the HBM-based approach to sparsity
(for an �2 hypermodel).

feature �p model �2 hypermodel

J (u) ‖u‖pp ν+1
2

∑
log

(
1 + u2

νθ

)
sparsifying parameter p > 0 ν > 0

quadratic limit p = 2 ν → ∞
sparse limit p → 0 ν → 0

limit functional |u|0
∑n

i log (|ui|) if all ui �= 0,

−∞ else

solutions sparse compressible

differentiable p > 1 always

convex everywhere for p � 1 ‖u‖∞ <
√
νθ

homogeneous yes no
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Figure 6.1.: Illustration of Bayesian inference with prior (6.34): Level sets of likelihood
(green), prior (red), and resulting posterior (blue). The star markers indicate the
corresponding maxima; the dot marker the CM estimate of the posterior.
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7
CONCLUSION, OUTLOOK AND

PERSPECTIVES

While each of the numerical studies included a separate discussion pointing to possible
extensions, this chapter aims to summarize and reflect upon this thesis as a whole. In
addition, it will point to possible future directions of research.

7.1. Bayesian Inversion as a General Framework for

Biomedical Imaging

We demonstrated that Bayesian inversion can be applied to realistic, challenging imaging
scenarios in two experimental data studies:

• Using appropriate MCMC algorithms, we carried out sample-based Bayesian
inference in very high dimensional (n > 106) computed tomography scenarios.

• Hierarchical Bayesian modeling is a popular prior modeling paradigm that is
usually applied in considerable lower-dimensional and less ill-posed statistical
inference problems. We demonstrated that it can also be used to obtain physio-
logically plausible source reconstructions in the notoriously ill-posed EEG/MEG
inverse problem.

Both studies had a “proof-of-concept” character: The aim was to produce reasonable,
first results with a tolerable amount of computational effort. To explore the full potential
of Bayesian inversion, it would be interesting to apply these techniques to a concrete,
more specific imaging task, for which the uncertainty representation by the posterior
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density can really add to the information given by a simple point estimate. Similarly
interesting and relevant for many applications is the explicit incorporation of the various
kinds of model uncertainties into the inversion (cf. Section 3.6.2).

7.2. MAP and CM Estimation

One main aim of the thesis was to shed new light on the “MAP or CM?” question, both
from computational and theoretical perspectives. Our results were quite surprising in
many ways: In certain situations, for instance in the 2D “Walnut-CT” scenario, MAP
and CM estimates were almost identical even when using the TV prior. Despite the
fact that one would typically not expect this to happen when using a non-Gaussian
prior, also the theoretical results and computed examples in 1D suggested the opposite.
The similarity of MAP and CM estimate when using a Besov prior is also not fully
understood yet, especially since it increases when the impact of the non-Gaussian prior
is increased (by λ). While examining these phenomena from a theoretical perspective
is an important future direction of research, the closeness of MAP and CM estimates
supports the practical relevance of the Bayesian approach in applications: If MAP and
CM would always be as different as in the 1D “Boxcar” scenario using the TV prior and
the CM estimate would always correspond to a very sub-optimal solution, the general
use and relevance of posterior-based inference could not be justified. For instance, CStd
estimates to characterize the spatial distribution of the posterior variance like those
shown in Figures 5.26c and 5.26c would, as they characterize the spread of the posterior
around the CM estimate, be of limited value if the MAP estimate would be chosen as
the primary estimate of interest.
The theoretical results presented in Section 6.1 are of more fundamental nature: The
rehabilitation of the MAP estimate as a proper Bayes estimator by the use of Bregman
distances justifies its popularity in practical applications, resolves a number of otherwise
converse results and observations, and disproves common misconceptions about the
nature of MAP estimation. This opens a new perspective to relate variational regular-
ization and Bayesian inference: The “MAP or CM?” question was always seen as the
key question of such a comparison. However, while it might be an obvious question,
it puts the focus on a direct comparison between point estimates and suggests that
one should choose between one of the two approaches. The real strength of Bayesian
approaches is to model and quantify uncertainty and information at all stages of the
problem, beyond point estimates. In this direction, Bayesian techniques can very well
complement variational approaches.
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7.3. Prior Models

In the general studies on Bayesian inversion in Section 5.2, we examined various prior
models to replace the conventional TV prior due to its lack of discretization invariance
in 1D. In particular, we found that non-log-concave prior models are an interesting topic
for future investigations, although this will require various methodical developments.
For the experimental data studies, we focused on the �1-based TV and Besov priors for
CT and on �2 hypermodels with inverse gamma hyperpriors for EEG/MEG.
The TV estimates appeared visually more convincing than the Besov estimates with
Haar wavelets, but as discussed in Section 5.3.4, several possible modifications of the
Besov prior should be investigated in future studies. In Figure 5.23, we saw that CM
estimates suffer less from the staircasing artifact than MAP estimates. Recently, also
alternative regularization approaches that aim to reduce this artifact while preserving
the desired properties if the TV functional have been proposed. Benning et al. (2013)
give an overview of these higher-order TV methods. As they correspond to MAP
estimates for alternative prior models, it would be interesting to examine them from a
Bayesian perspective as well.
Concerning HBM priors, various future investigations and developments are possible:

• Potentially most interesting is the examination of the proposed �p hypermodels for
p �= 2, in particular for p = 1. While the methodical and algorithmical requirements
for such an examination were developed in this thesis, a computational examination
was not carried out yet.

• As discussed in Section 3.3.4, we chose a specific construction scheme different from
the more commonly used Gaussian scale mixture models. It would be interesting
to compare both prior models.

• We only considered the inverse gamma distribution as a hyperprior model in this
thesis, although there are interesting alternatives (cf. Section 3.3.2).

• The fully-Bayesian inference techniques we employed in this thesis should be com-
pared to semi- and variational Bayesian inference approaches (cf. Section 3.3.4).

Both �1-based and HBM-based prior models aim to encode sparsity as a-priori infor-
mation. While we compared their theoretical properties in Section 6.2 and computed
examples for the “Boxcar” scenario, a direct comparison for an application with experi-
mental data was not carried out yet.
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Prior Parameter Choice

A topic neglected in this thesis was the choice of the prior parameters λ, θ, α or β. We
chose them by visual inspection, which is arguably neither convincing with respect to
the Bayesian modeling paradigm (they should reflect our a-priori knowledge on the
scales and shapes of the distributions), nor practical in most real applications.
Choosing them by our a-priori knowledge as suggested by the Bayesian philosophy has
two flaws:

• Often, our prior model is only a surrogate for the real stochastic model we would
prefer to describe the unknowns. This complicates the choice of its parameters.
One example is the “Spots” scenario: u†,∞ was generated by a simple stochastic
model. While one could, in principle, derive a pdf for u from this and use it as
a prior, this approach would lead to an intractable posterior. Using an �1 prior
as a surrogate is clearly not justified by its statistical properties (cf. the random
sample in Figure 5.1c) and therefore, choosing λ such that it reflects any concrete
a-priori knowledge on the original image is difficult.

• Even if our prior model would reflect an accurate stochastic description of the
unknowns, using it might result in undesired solutions: The ill-posedness of the
inverse problem usually requires to choose the prior parameters more conservative
than our a-priori knowledge would suggest.

In such a situation, the Bayesian philosophy suggests to consider λ (or the corresponding
parameters of the other prior models) as a hyperparameter to be estimated from the data
as well. This leads to a hierarchical prior model and potentially to a non-log-concave
posterior.
In the non-Bayesian literature, several parameter choice rules λ(ε, f) were proposed,
either inspired by analytical, statistical or heuristical considerations: See Engl et al.
(1996), Kaipio and Somersalo (2005) for a general overview and Almeida and

Figueiredo (2013), Deledalle et al. (2012), Eldar (2009), Giryes et al. (2011),
Kolehmainen et al. (2012) for concrete procedures.
A heuristic parameter choice rule for Besov and TV priors in 2D could actually be
formulated and examined by using the surprising phenomenon that MAP and CM
estimate are very similar if λ is large enough, and start to develop different artifacts if
it is too small (cf. Figure 5.18): One can choose the smallest λ such that the relative
difference between MAP and CM estimate is below some threshold.
A important contribution would be to establish efficient parameter choice rules for the
HBM parameter (α,β); a problem which is more or less completely open up to now.
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7.4. Bayesian Computation

Another main objective of this thesis was to demonstrate that sample-based Bayesian
inversion is feasible in high dimensions if suitable computational tools are available: We
developed and examined fast MCMC sampling techniques for various prior distributions
and applied them to various imaging scenarios, including studies with experimental.
The dimensions of u in the computed examples were often chosen to be very high (up
to n = 1048 576) just to demonstrate the capabilities of the new algorithms. To the
best of our knowledge, n > 106 is far beyond the dimensions realized for sample-based
Bayesian inference in similar imaging scenarios.
While new and fast sampling techniques were established with this thesis, not all of
them were evaluated carefully enough and their full potential for practical applications
is yet to be explored: Sampling the posteriors arising from the use of �p hypermodels
for p �= 2 as suggested in the previous section will, for instance, require to combine
the slice-within-Gibbs sampling developed in Section 4.1.10 with the blocked Gibbs
sampling for HBM presented in Section 4.1.11, and is a very interesting future direction
of research.
While the algorithms developed here already enabled us to perform investigations that
were not possible before, one should not forget that they are conceptually still extremely
simple: We only perform random scan SC Gibbs sampling (the challenging part is to
derive and implement its sub-steps). Therefore, major improvements could be realized
by implementing more sophisticated variants of the SC Gibbs scheme. A promising
future direction would be to develop adaptive Gibbs sampling for our scenarios: In
the RSG sampler, the new component to update is randomly chosen by a selection
probability pi > 0,

∑
pi = 1. In our studies, we fixed it as pi = 1/n; thereby, the

component was chosen uniformly at random. This may be extremely sub-optimal: In
sparse imaging scenarios such as the “Spots” scenario, using a sparse prior will result in
most of the components ui having little variability and low correlations while only a few
show large fluctuations and significant correlations (for the “spots” scenario, an image
of CStd essentially looks like the CM estimate shown in Figure 5.8b). For the Gibbs
sampler to converge fast, it would be advantageous to update the few components with
a large variance more often than the others. As we typically do not know them in
advance, we would adapt the selection probabilities used at step i+ 1 on the fly, i.e.,
based on the chain history {uj}ij=1. Essentially, we would take advantage of the inherent
sparsity of the problem to let the algorithm’s performance depend on the sparsity level
k rather than on n. The ideas developed in Latuszynski et al. (2013) could be a
starting point for such developments.
Another significant speed-up can be achieved by parallel computing : The most simple
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and straight forward way is to run several MCMC chains independently from each other,
each on a single CPU core, and to pool the samples afterwards. This does not require
any sophisticated implementation and can result in the optimal linear speed-up if the
chains mix is fast (i.e., short burn-in and integrated autocorrelation times). Fortunately,
our results suggest that this is the case for the samplers developed in this thesis. In fact,
many of the computations were already performed based on multiple, parallel chains,
but we did not discuss this detail in the corresponding sections. More sophisticated
parallelization techniques rely on interactions between the parallel chains in order to
increase the mixing time (see Liu 2008, for further details). In particular, they try
to avoid that the main chain gets stuck in a local mode of the posterior. Their use
for multimodal posteriors resulting from non-log-concave priors should be examined in
future studies.
Finally, multigrid strategies as discussed in Section 4.1.5 could be particularly advanta-
geous to avoid getting trapped in local modes of multimodal posteriors.
The surprising results obtained by using simulated annealing with Gibbs instead of
MH samplers have to be investigated more thoroughly: They need to be confirmed for
more imaging applications and other prior models. As SA was originally designed for
non-log-concave distributions, the application to HBM would be extremely interesting.
We investigated over-relaxation as one example of optimization techniques transferred to
sampling schemes, and found that it can significantly enhance their statistical, and often
also their computational efficiency. This motivates the search for other transferable
optimization concepts.
The inverse problems examined in this thesis are well-modeled by a linear forward
operator and additive Gaussian noise. For several other inverse problems, this is not the
case. Therefore, an important future development would be to extend our results and
studies to non-linear inverse problems and other noise models, for instance, to Poisson
noise (cf. Section 3.1).
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APPENDIX

A.1. Subdifferentials and Bregman Distances

Subdifferential and Optimality

In this section, we summarize some basic concepts of convex analysis on R
n that will

be needed throughout the thesis. A concise introduction tailored to convex, variational
regularization of inverse problems in the general (infinite dimensional) case can be found
in Chapters 2 and 3 of Benning (2011). A more general presentation of convex analysis
and optimization is given in Boyd and Vandenberghe (2004).

Definition A.1. For a proper, convex functional J : Rn −→ R ∪ {∞}, the subdiffer-
ential ∂J (u) at u is defined as

∂J (u) := {p ∈ Rn | J (v) � J (u) + 〈p, v − u〉 , ∀v ∈ R
n} . (A.1)

The subdifferential is always a non-empty, convex and compact set and an element
p ∈ ∂J (u) is called a subgradient of J in u. If J is differentiable in u, ∂J (u) = {J ′(u)}.
Thereby, subdifferentiability extends (Fréchet-)differentiability for the important class
of convex functionals. In 1D, the subgradient (or subderivative) has a simple illustrative
meaning: J (u) + p(v − u) describes a line through (u,J (u)) with slope p. The set
of all slopes p such that this line is either touching or below the graph of J (u) is the
subderivative ∂J (u). It is a non-empty, closed interval [p−, p+], where

p− = lim
h↘0

J (u)− J (u− h)

h
, p+ = lim

h↘0

J (u+ h)− J (u)

h
. (A.2)
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Both limits exist and fulfill p− � p+. Apparently, if the subderivative contains only one
element, i.e., p− = p+, then J is differentiable at u and J ′(u) = p− = p+. A classical
example where subdifferentiability extends the normal differentiability is given by the
absolute value function J (u) = |u|:

∂|u| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 for u > 0

[−1, 1] for u = 0

−1 for u < 0

(A.3)

The minima of such convex functionals J (u) cannot be characterized using normal
derivatives but using subgradients:

Theorem A.1. A point u ∈ Rn is a minimum of a proper, convex functional J :

R
n −→ R ∪ {∞} if and only if 0 ∈ ∂J (u).

The proof of this optimality condition is simple and instructive: If 0 ∈ ∂J (u), we have
that

0 = 〈0, v − u〉 � J (v)− J (u) ∀v ∈ R
n, (A.4)

and thereby, u is a global minimizer of J . If 0 /∈ ∂J (u), there must be at least one
v ∈ Rn such that

J (v) > J (u) + 〈0, v − u〉 = J (u), (A.5)

and thereby, u cannot be a global minimizer of J . The uniqueness of the minimizer
can only be guaranteed if J (u) is strictly convex. To apply these concepts to MAP
estimation (e.g., for �1 priors), we further note that

∂

(
1

2
‖f − Au‖22 + λJ (u)

)
= AT (Au− f) + λ∂J (u). (A.6)

Bregman Distances

Definition A.2. For a proper, convex functional J : Rn −→ R ∪ {∞}, the Bregman
distance Dp

J (u, v) between u, v ∈ R
n for a subgradient p ∈ ∂J (v) is defined as

Dp
J (u, v) = J (u)− J (v)− 〈p, u− v〉, p ∈ ∂J (v) (A.7)

We will often simplify the notation to DJ (u, v), and use Dp
J (u, v) only if we want to

stress the potential ambiguity arsing from the set-valued character of the subdifferential.
Table A.1 lists the Bregman distances induced by some Gibbs energies J (u). Figure
A.1 gives an illustration: Basically, DJ (u, v) measures the difference between J and
its linearization in u at another point v. Further, DJ (u, v) � 0 and for strictly convex
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0

0

J (x)

J (v) + J ′(v)(x− v)

DJ (u, v) = J (u)− J (v)− J ′(v)(u− v)

DJ (u, v)

u v

(a) J (x) = x2

0

J (x)

Dq
J (u, v) =J (u)− J (v)− q(u− v)

with q ∈ ∂J (v)

vuw

Dp
J (u, v)

J (v) + p(x− v)

J (v) + r(x− v)

Dr
J (w, v)

p, r ∈ ∂J (v) = [−1, 1]

(b) J (x) = |x|

Figure A.1.: Illustrative explanation of the Bregman distance.

Table A.1.: Bregman distances induced by some Gibbs energies J (u) commonly used
for prior modeling. Note that if J is separable, so is DJ (u, v). In these cases, the scalar
expression is listed, only.

J (u) dom(J ) DJ (u, v)

1
2
‖Lu‖22 R

n 1
2
‖L(u− v)‖22

|u|p, (1 < p < ∞) R |u|p − p u sign(v)|v|p−1 + (p− 1)|v|p

|u| R (sign(u)− sign(v)) u

u log u− u R�0 u log u
v
+ v − u (Kullback-Leibler divergence)

J (u), DJ (u, v) = 0 implies u = v. However, the Bregman distance is not a distance
in the usual mathematical sense (i.e., a metric) as it is, in general, neither symmetric
nor satisfies the triangle inequality. We will further use that DJ (u, v) is convex in
u. Bregman distances have become an important tool in variational regularization,
e.g., to derive error estimates and convergence rates (Benning 2011, Burger et al.
2013, Burger and Osher 2004, Burger et al. 2007), to enhance inverse methods by
Bregman iterations (Burger et al. 2007, Moeller 2012) or to develop optimization
schemes like the Split-Bregman algorithm (Goldstein and Osher 2009) which is
closely related to the ADMM algorithm we use for computing MAP estimates (cf. “Notes
and Comments” in Section 4.2.2).
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A.2. Application Specific Implementation Details

In this section, we discuss all details that are required to implement the algorithms
described in this thesis in Matlab for the each specific imaging scenario separately.
Details about the functions used can be found in Matlab’s documentation1. While
tailored to the algorithms used in this thesis, the techniques presented can easily be
adopted to implement many other algorithms for the specific scenarios. In particular,
those used for SC Gibbs sampling can be used for implementing fast greedy algorithms
as used in compressed sensing (Foucart and Rauhut 2013). Although this section
was moved to the appendix to keep the main presentation concise, parts of it contain
the most challenging and tedious works for this thesis.

Boxcar

For generating the measurement data, (2.1) is directly implemented using quad.m on a
continuous representation of u†,∞.

ADMM A and DT can be explicitly constructed as (sparse) matrices by (2.2) and
(3.18). Then, the least squares system resulting from (4.79) can also be formed explicitly
and solved by the backslash operator.

MH We only need to implement the matrix-vector products Au and DTu. While
we simply use the explicitly constructed matrix A to compute Au, we implement the
application of the difference operator DTu by diff.m.

SC Gibbs DT has full rank h = n− 1. Therefore, we can find v1, . . . , vn−1 such that
DTvi = ei and vn such that DTvn = 0. It is easy to see that complementing the step
functions (vi)j = 1{j>i}, i = 1, . . . , n− 1, by the constant function vn = 1 fulfills these
requirements. If we reorder them and define V := [vn, v1, . . . , vn−1], we can write V as

V(i,j) =

⎧⎨
⎩1 if i � j

0 else
(A.8)

V u can be implemented as cumsum(u,1) and V −1 is given by [u(1);diff(u,1,1)]. In
a similar way, Ψ = AV can be computed explicitly by applying the cumsum function to
A and some reordering of the result. Using this, we can pre-compute a := 1

2
‖Ψi‖22. For

computing b :=ΨT
i ϕ(i) = ΨT

i f − (ΨT
i Ψ−i)ξ−i, we pre-compute ΨT

i f and ‖ψi‖22 for all i

1online available at http://www.mathworks.co.uk/help/matlab/
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and build the n× n matrix Φ := ΨtΨ. Then, computing (ΨT
i Ψ−i)ξ−i can be performed

by using
(Ψt

i Ψ[−i]) ξ[−i] = ξtΦ(·,i) − ξi‖ψi‖22, (A.9)

which involves a scalar product of dimension n as the most extensive operation.

Point source reconstruction

For generating the measurement data, (2.3) is implemented by applying imfilter.m to
a discretization of u†,∞ on a spatial grid with a 4 times higher resolution than the one
used in the inversion.

ADMM and MH As the Gaussian kernel is symmetric, A = AT . We will implement the
matrix-vector multiplication Au (and ATu = Au) using the convolution theorem

F [g ∗ u] = F [g] · F [g], (A.10)

and fast Fourier transforms (ffts). For this, we pre-compute F [g] by applying fft2.m

to a discretization of g, g_dis, on the computational grid. Then, Au is basically given
as ifft2(fft2(u) .* g_ft)), i.e., a 2D-fft of u followed by a point-wise multiplication
and an inverse 2D-fft. For achieving a higher accuracy, images and kernels are padded
with zeros before applying the ffts.
As we only use DT = In in this scenario, using the procedures to compute Au (and ATu)
are all we need to implement MH in straight forward way. The details of implementing
ADMM are explained in Section A.5.

SC Gibbs Since V = In, Ψ = A. Ai is simply the kernel function g, centered at the
i-th pixel. We again pre-compute ΨT

i f and ‖ψi‖22. For computing b, we can then derive
that (ΨT

i Ψ−i)ξ−i is given by

(Ψt
i Ψ[−i]) ξ[−i] =

[(
ATA

)
· ξ

]
i
− ξi‖Ai‖22. (A.11)

Here, ATA is a twofold Gaussian convolution which could be replaced by a single
Gaussian convolution with a larger variance, but we only need its discrete kernel which
is given by imfilter(g_dis,g_dis,’conv’). The value of the i-th pixel of a discrete
convolution applied to an image u can be computed by the scalar product of the
discrete convolution kernel centered at this pixel with the image. As such, A.11 can
be implemented in a fast, direct way, exploiting that the spatial width of the double
Gaussian kernel is still considerable smaller than the image size.
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Computed Tomography

Matlab comes with a couple of functions to simulate CT, such as radon.m, iradon.m,
fanbeam.m and ifanbeam.m. However, we eventually decided to use the algorithms
sketched in Section 2.3.2 only: They rely on very basic geometrical operations like
computing the crossings of two lines which can be implemented in a fast and robust
way using .mex files in Matlab. In addition, they are extremely easy to parallelize as
the computations for the different angles are completely independent from each other.
The geometric nature of the operations involved and their massive parallelizability
suggest that an implementation on a GPU might be of orders faster than the serial
CPU implementation developed and used for the studies in this thesis.
For generating the measurement data, u†,∞ is discretized on a spatial grid that is about
3 finer than the grid used in the inversion. For this u†, our algorithms are used to
compute g(i,j) = PAv(i,j) for all rectangles v(i,j), i, j = 1, . . . , 2N representing non-zero
pixels, i.e., u†(i,j) �= 0. Here, v(i,j) is the indicator function of the square representing the
(i, j)-th pixel. Then, we compute f by

f =
∑
(i,j)

u†(i,j)g
(i,j) (A.12)

ADMM and MH We explicitly construct the matrix A by computing g(i,j) = PAv(i,j)

for all pixel as above and stacking the sinograms g(i,j) into column vectors. For the
isotropic 2D TV prior, (3.22), we need to implement the difference operators in x and y

direction and their transposes. The details of this can be found in Section A.5. For the
Besov prior, (3.25), using Haar wavelets, we need to construct the 2D multiresolution
analysis and compute the weights ωi. The details of this construction can be found
in Section 2.1 of Hämäläinen et al. (2013). Here, we only note that for p = 1 and
a 2D image, ωi = 1 ∀ i and that the wavelets can be indexed by (j, l, k1, k2), where
j = 0, 1, 2, . . . , N determines the scale (n = 2N ·2N ) , l ∈ {1, 2, 3} the shape, and (k1, k2)

the location of the wavelet. In Figure A.3, the first sixteen Haarwavelets are shown
to illustrate the construction principle. Using multiresolution wavelet constructions is
computationally attractive because decomposition and analysis (i.e., V c, V Tu) can be
performed by fast wavelet transforms.

SC Gibbs Using a TV prior, we also construct the matrix A as above and compute
a and b as in “Boxcar” scenario. The parameters of the prior part of the SC density,
(4.42), are in principle simple to compute. However, the concrete implementation is
tedious due to the correct handling of the boundary pixels.
As the Besov prior is an �1 prior on the coefficients of a basis, we can simply use V = D,
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i.e., we transform the posterior into the wavelet basis. Ψi = (AV )i is the integrated
Radon transform of the i-th wavelet: Ψ(j,l,k1,k2) = PAv(j,l,k1,k2). As Haar wavelets can be
described as the sum of the indicator functions of one to four rectangles, we can, again,
use our algorithms to compute Ψ(j,l,k1,k2) as well as the scalar product ΨT

(j,l,k1,k2)
g for

a given tupel (j, l, k1, k2) and g ∈ R
m. Figure A.4 shows Ψ(j,l,k1,k2) for the first sixteen

Haar wavelets. We can now compute b by using

b = ΨT
(j,l,k1,k2)

f −ΨT
(j,l,k1,k2)

(Ψξ) + ξ(j,l,k1,k2)
∥∥Ψ(j,l,k1,k2)

∥∥2

2
(A.13)

in the following way:

• We again pre-compute ΨT
(j,l,k1,k2)

f and
∥∥Ψ(j,l,k1,k2)

∥∥2

2
for all (j, l, k1, k2). Then, we

store the measurement that the current state ξ would cause as fξ and initialize it
by Au0. In principle, fξ is given as Ψξ, and can be directly computed at any time
but this computation is too expensive to be performed at every SC update.

• For a given wavelet coefficient ξ(j,l,k1,k2) that is to be updated, we construct
Ψ(j,l,k1,k2) and compute the scalar product ΨT

(j,l,k1,k2)
fξ to update b by the above

formula (note that ΨT
(j,l,k1,k2)

(f − Ψξ) is just a projection of Ψ(j,l,k1,k2) onto the
current residual of fξ = Ψξ). With the constructed Ψ(j,l,k1,k2) and the change,
δ(j,l,k1,k2), in ξ(j,l,k1,k2) caused by the sampling step, we can then update fξ =

fξ + δ(j,l,k1,k2)Ψ(j,l,k1,k2).

• While this iterative updating of fξ is fast, inaccuracies can accumulate over time,
leading to a misfit between fξ and Ψξ. Therefore, we reset fξ to the exact Ψξ

every n steps.

Discussion Using Matlab’s radon.m function turned out to be problematic for the
following reasons:

• iradon.m is not the exact adjoint to radon.m, at least a scaling needs to be added
to fix this, but this scaling is not explicitly given.

• It further involves an offset of its center with respect to the coordinate system
which complicates comparisons between different n.

• It only implements the Radon transform, the integration over the sensor pixels
needs to be done subsequently (and the adjoint of the integration needs to be
computed as well).

• By default, the number of points on the sensor grid for which the Radon transform
is computed is fixed and depends on n. This is a tedious complication when
results for different n should be compared and ms should remain fixed.
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• Implementing the SC Gibbs sampler for the Besov prior with radon.m would
be too slow anyhow. Given this, using the same implementation of the forward
operator in all algorithms is advantageous, for instance for comparing MAP and
CM estimates.

The procedure described above, i.e., using the algorithms described in Section 2.3.2 to
construct A explicitly turned out to be both feasible and advantageous:

• A is of size (msmθ) × n but is very sparse as the columns are the sinograms
of single pixels. For the “Phantom-CT” scenario (ms = 500, mθ = 45) with
n = 1024× 1024, it has only 0.3% non-zeros and its size is 1GB.

• The setup time for this configuration takes about 3 minutes (using radon.m, the
setup would take several hours). However, as discussed above, parallelization
could significantly reduce this time.

• Both the center of the coordinate system and the sensor size can be chosen freely.

• It is fully compatible with the implementation used by the Gibbs samplers.

• Applying Au by the matrix is usually way faster than calling radon.m. For the
example above, it is about 7 times faster (although one has to bear in mind
that the output of radon.m is of size ms = 1453 in sensor space and not of size
ms = 500.

While we derived the algorithms and implementation for 2D only, the basic operations
are standard problems of computer graphics. Therefore, an extension to cone beam
scanning geometry for 3D reconstruction should not be a principled problem: A voxel
would be projected onto a 2D surface by a diverging bundle of rays.

EMEG

The challenging part in EMEG is the setup of the lead-field matrix A as described in
Section 5.4. Once assembled, its small size (m � n) allows for an easy implementation
of all algorithms. In particular, the least-squares problems that arise in ADMM or
HBM sampling or optimization can be solved fast and explicitly. Details are given in
Lucka (2011).

A.3. Implementation Details of the �1 Sampler

In this section, we discuss how to implement formulas (4.46), (4.47) and (4.48). The
complementary error function and its inverse are difficult to handle numerically because
there are no identities that allow to rescale or shift their evaluation to other intervals.
For the applications we address, problems due to limited precision occur if formulas
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(4.46), (4.47) and (4.48) are implemented directly (formula (4.46) is only required for
applying ordered overrelaxation). Dependent on the signs of α+ and α−, we use different
alternative formulas that allow for a stable numerical evaluation. Additionally, we express
erfc(x) in terms of the scaled complementary error function erfcx(x) = exp(x2)erfc(x),
which decays slower for x → +∞. As the corresponding transformations are elementary
but lengthy to write down, we only list the results here. Because c � 0, not both α+

and α− can be negative, which leaves three different cases to examine:
α+ > 0, α− > 0: Let γ++ := erfcx (α+) + erfcx (α−). Then, the parts of (4.46) are
given by:

y < 0 : exp
(
−ay2 + 2

√
ayα+

)
erfcx

(
−
√
ay + α+

)
/γ++ (A.14)

y > 0 : 1− exp
(
−ay2 − 2

√
ayα−

)
erfcx

( √
ay + α−

)
/γ++ (A.15)

The arguments of erfcinv in (4.47) and (4.48) are given by:

In (4.47) : r exp
(
−α2

+

)
γ++ (A.16)

In (4.48) : (1− r) exp
(
−α2

−
)
γ++ (A.17)

α+ < 0, α− > 0: Since erfcx increases very fast for x → −∞, one has to use the
identity erfcx(−x) = 2 exp(x2)− erfcx(x). Let γ−+ := erfcx (−α+)− erfcx (α−). Then,
the formulas to implement the parts of (4.46) are given by:

y < 0

−
√
ay + α+ > 0

:
exp

(
− (

√
ay − α+)

2
)
erfcx(−

√
ay + α+)

2− exp (−α2
+) γ−+

(A.18)

y < 0

−
√
ay + α+ < 0

:
2− exp

(
− (

√
ay − α+)

2
)
erfcx(

√
ay − α+)

2− exp (−α2
+) γ−+

(A.19)

y > 0
√
ay + α− > 0

: 1−
exp

(
− (

√
ay − α−)

2
)
erfcx(

√
ay + α−)

2 exp
(
bc
a

)
− exp (−α2−) γ−+

(A.20)

y > 0
√
ay + α− < 0

: 1−
2− exp

(
− (

√
ay − α−)

2
)
erfcx(−

√
ay − α−)

2 exp
(
bc
a

)
− exp (−α2−) γ−+

(A.21)

The arguments of erfcinv in (4.47) and (4.48) are given by:

In (4.47) : r
(
2− exp(−α2

+)γ−+
)

(A.22)

In (4.48) : (1− r)

(
2 exp

(
bc

a

)
− exp(−α2

−)γ−+

)
(A.23)



X A Appendix

α+ > 0, α− < 0: Let γ+− := erfcx (α+)− erfcx (−α−). Then, the parts of (4.46) are
given by:

y < 0 :
exp

(
− (

√
ay − α+)

2
)
erfcx(−

√
ay + α+)

2 exp
(
− bc

a

)
+ exp (−α2

+) γ+−
(A.24)

y > 0
√
ay + α− > 0

: 1−
exp

(
− (

√
ay + α−)

2
)
erfcx(

√
ay + α−)

2 + exp (−α2−) γ+−
(A.25)

y > 0
√
ay + α− < 0

: 1−
2− exp

(
− (

√
ay + α−)

2
)
erfcx(−

√
ay − α−)

2 + exp (−α2−) γ+−
(A.26)

The arguments of erfcinv in (4.47) and (4.48) are given by:

In (4.47) : r

(
2 exp

(
−bc

a

)
+ exp(−α2

+)γ+−

)
(A.27)

In (4.48) : (1− r)
(
2 + exp(−α2

−)γ+−
)

(A.28)

Using the above expressions directly can still lead to stability issues, because very large
numbers are often multiplied with very small numbers. It is preferable to compute the
logarithms of the expressions, first. For this, let x > 0, (x+ y) > 0, then:

log(x+ y) = log(x) + log(1 + sign(y) exp(log(|y|)− log(x)) (A.29)

Using this identity we can compute the logarithms of expressions (A.14)-(A.28). We
note that sign (±erfcx(·)) = ±1.

log ((A.14)) = −ay2 + 2
√
ayα+ + log

(
erfcx(−

√
ay + α+)

)
− log (γ++) (A.30)

log (1− (A.15)) = −ay2 − 2
√
ayα− + log

(
erfcx(

√
ay + α−)

)
− log (γ++) (A.31)

log ((A.16)) = log(r)− α2
+ + log(γ++) (A.32)

log ((A.17)) = log(1− r)− α2
− + log(γ++) (A.33)

log ((A.18)) = −
(
−
√
ay + α+

)2
+ log

(
erfcx(−

√
ay + α+)

)
− log(2)

− log
(
1− sign(γ−+) exp

(
−α2

+ + log(|γ−+|)− log(2)
))

(A.34)

log ((A.18)) = log
(
1− exp

(
log

(
erfcx(

√
ay − α+)

)
− log (2)−

(√
ay − α+

)2))
− log

(
1− sign(γ−+) exp

(
−α2

+ + log(|γ−+|)− log(2)
))

(A.35)

log (1− (A.20)) = −
(√

ay + α−
)2

+ log
(
erfcx(

√
ay + α−)

)
− log(2)− bc

a

− log

(
1− sign(γ−+) exp

(
−α2

− + log(|γ−+|)− log(2)− bc

a

))
(A.36)
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log (1− (A.21)) = log
(
1− exp

(
log

(
erfcx(−

√
ay − α−)

)
− log (2)−

(√
ay + α−

)2))
− bc

a
− log

(
1− sign(γ−+) exp

(
−α2

− + log(|γ−+|)− log(2)− bc

a

))
(A.37)

log ((A.22)) = log(r) + log(2)

+ log
(
1− sign(γ−+) exp

(
−α2

+ + log(|γ−+|)− log(2)
))

(A.38)

log ((A.23)) = log(1− r) + log(2) +
bc

a

+ log

(
1− sign(γ−+) exp

(
−α2

− + log(|γ−+|)− log(2)− bc

a

))
(A.39)

log ((A.24)) = −
(
−
√
ay + α+

)2
+ log

(
erfcx(−

√
ay + α+)

)
− log(2) +

bc

a

− log

(
1 + sign(γ+−) exp

(
−α2

+ + log(|γ+−|)− log(2) +
bc

a

))
(A.40)

log ((A.25)) = −
(√

ay + α−
)2

+ log
(
erfcx(

√
ay + α−)

)
− log(2)

− log
(
1 + sign(γ+−) exp

(
−α2

− + log(|γ+−|)− log(2)
))

(A.41)

log ((A.26)) = log
(
1− exp

(
log

(
erfcx(−

√
ay − α−)

)
− log (2)−

(√
ay + α−

)2))
− log

(
1 + sign(γ+−) exp

(
−α2

− + log(|γ+−|)− log(2)
))

(A.42)

log ((A.27)) = log(r) + log(2)− bc

a

+ log

(
1 + sign(γ+−) exp

(
−α2

+ + log(|γ+−|)− log(2) +
bc

a

))
(A.43)

log ((A.28)) = log(1− r) + log(2)

+ log
(
1 + sign(γ+−) exp

(
−α2

− + log(|γ+−|)− log(2)
))

(A.44)

To obtain the numerical stability required for performing simulated annealing, one needs
to use three further identities in the above expressions:

(
−
√
ay + α+

)2
= α2

+ + y (ay − c− b) (A.45)(√
ay + α−

)2
= α2

− + y (ay + c− b) (A.46)

α2
+ = α2

− +
bc

a
(A.47)

For (4.47) and (4.48), if w denotes the logarithm of the argument of erfcinv, one can
compute erfcinvlog(w) := erfcinv (exp(w)) using a standard implementation of erfcinv
if w is not too small (the loss of precision using exp(w) instead of computing the
full argument of erfcinv is negligible since the variation of erfcinv is very small even
on logarithmic scale). However, even using 64 bit precision is not sufficient for the
applications we address. Therefore, we use an asymptotic approximation of erfcinvlog(w)
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for w < −680 from the Digital Library of Mathematical Functions2:
An approximation of z = erfcinv (exp(w)) for w −→ −∞ is given by:

θ := − log(π)− log(−w)

v := (−θ − 2)

s := 2/(θ − 2w)

a2 :=
1

8
v

a3 := − 1

32
(v2 + 6v − 6)

a4 :=
1

384
(4v3 + 27v2 + 108v − 300)

z ≈ s−1/2 + a2s
3/2 + a3s

5/2 + a4s
7/2 (A.48)

The discrepancy of this approximation to the implementation of erfcinv in Matlab is
2.34 · 10−12 for w = −690 and as it is an asymptotic formula, the error further decreases
for w → −∞.

A.4. Implementation Details of the TV Slice Sampler

We have

p2(x) = exp

(
−c

3∑
j=1

√
dj(x− ej)2 + gj

)
, dj ∈ {0, 1, 2}, gj � 0, (A.49)

and have to solve

y = p2(x) ⇐⇒ − log(y)

c
=

3∑
j=1

√
dj(x− ej)2 + gj, (A.50)

where y ∈ (0, p2(x
i)) with probability 1 and p2(x

i) � 1. Assume that {e1, e2, e3} are
sorted and define Jj(x) :=

√
dj(x− ej)2 + gj and h :=− log(y)/c. Then, J(x) :=

∑
j Jj(x)

is convex and smooth in I1 :=(−∞, e1), I2 :=(e1, e2), I3 :=(e2, e3) and I4 :=(e3,∞). It is
monotonic in I1 and I4 and is bounded from below by b(x) :=

∑
j

√
dj|x− ej|. Define[

x∗−, x
∗
+

]
= argmin J(x) as the interval of minimizers and x−, x+ as the solutions to

y = p2(x). We have x− < x∗−, x+ > x∗+, x− ∈ I1 ∪ I2 ∪ I3 and x+ ∈ I2 ∪ I3 ∪ I4 with
probability 1 and [x∗−, x

∗
+] ⊂ [e1, e3]. See Figure A.2 for two illustrations.

2National Institute of Standards and Technology, http://dlmf.nist.gov/, 2011
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We will compute x− by a Newton’s method:

xi
− = xi−1

− − J(xi−1
− )− h

J ′(xi−1
− )

, (A.51)

initialized in a point x0
− such that x0

− � x− and J(x) is smooth on [x0
−, x−]. In each step,

the Newton’s method approximates J(x) by a tangent in xi−1
− . Due to the convexity of

J(x) and x0
− � x− < x∗− the iterates never overshoot: x0

− � xi
− � x− for all i. Thereby,

they stay in [x0
−, x−] and the derivative exists. Finding such an initialization x0

− requires
some simple considerations:
The subdifferential ∂J(x) is given as the sum of the subdifferentials of Ji(x) (in the
set-valued sense of addition):

∂Jj(x) =

⎧⎪⎪⎨
⎪⎪⎩

{
dj(x− ej)√

dj(x− ej)2 + gj

}
, if x �= ej or gj > 0[

−
√
d,
√
d
]
, if x = ej and gj = 0.

(A.52)

Now, let J∗e :=minj J(ej). We can distinguish two cases:
h > J∗e : In this case, we check the following conditions in sequence:

• If h > J(e1), x− is in I1. We use the lower bound b(x) to determine x0
−

such that b(x0
−) = h:

x0
− = e1 +

J(e1)− h∑
j

√
dj

(A.53)

As b(x) � J(x), and both are monotonic in I1, we have that x0
− < x−.

• Else if h > J(e2), x− is in I2. We perform one Newton step from e1 using
the maximal subgradient in e1:

x0
− = e1 −

J(e1)− h

max (∂J(e1))
(A.54)

This way, x0
− � x− and [x0

−, x−] ⊂ I2, i.e., J(x) is differentiable for all
iterates.

• Else, h > J(e3) and x− is in I3. With a similar reasoning, we set

x0
− = e2 −

J(e2)− h

max (∂J(e2))
(A.55)

For finding x+, a similar reasoning can be applied. In the locations of non-
differentiability, the minimal subgradient has to be used.

h < J∗e : In this case, J(x) is not piecewise linear (cf. the yellow line in Figure A.2a)
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J (x)

b(x)

h1

h2

e2x
∗

e3e1

(a)

J (x) = b(x)

h

x
∗

+
=e3e2x

∗

−

=e1

(b)

Figure A.2.: J(x) (blue line), b(x) (red line) and h (green and yellow lines) for
(e1, e2, e3) = (−1, 0, 1) and (a) (d1, d2, d3) = (2, 1, 1), (g1, g2, g3) = (0, 0.5, 1), (b)
(d1, d2, d3) = (1, 0, 1), (g1, g2, g3) = (0, 0, 0)

and the unique minimizer x∗ is not in {e1, e2, e3}. The convexity ensures that
x− < x∗ < x+ are all either in I2 or I3. If max(∂J(e1)) < 0 and min(∂J(e2)) > 0

we have that x∗ (and thereby x− and x+) are in I2. Otherwise, they are in
I3. As above, initial points x0

− and x0
+ fulfilling the conditions can be found

by performing one Newton step from the corners of the interval using the
maximal/minimal subgradient.

The case h = J∗e has probability zero.

A.5. Implementation Details of ADMM

In this section, we provide details on the Matlab implementation used for all ADMM
computations in this thesis. We want to solve

min
u

{
1

2
‖Au− f‖22 + J (u)

}
, (A.56)

with

J (u) :=
N∑
i

li∑
k

√√√√ Mi∑
j

(Θi,jDT
iju)

2
k, (A.57)

where DT
ij ∈ R

hi×n is a fixed linear mapping and Θi,j : R
hi → R

hi is a linear weighting.
For both of them, matrix-vector and transpose-matrix-vector multiplications must be
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available as function handles. For the normal �1 prior, Θi,j(v) = λv. However, by
introducing Θi,j as a function handle, we can use this formulation to treat varying
weightings, for instance as appearing in �p hypermodels. Examples for (A.57) are given
by

• Standard �1 prior (e.g., in the “Spots” scenario):

DT
11u = u, D11v = v

• �1-block priors in EMEG:

DT
1iu = u(i:3:end), D1iv = stretch(v,i,3,n),

where i = 1, 2, 3 and strech(v,i,j,n) results in a vector of length n, which has
the fields of u on every j-th field, starting with the i-th field.

• TV prior in 1D with NB boundary conditions (e.g., in the “Boxcar” scenario):

DT
11u = diff(u), D11v = [-v(1);-diff(v);v(end)]

• Isotropic TV prior (NB) in a 2D N ×N grid (e.g., in the “Phantom-CT” scenario):

DT
11u = [diff(u,1,2),zeros(N,1)], DT

12u = [diff(u,1,1);zeros(1,N)]

D11v = [-v(:,1),-diff(v,1,2)], D12v = [-v(1,:);-diff(v,1,1)]

• Product of the previous prior and an �1 Besov prior in 2D: DT
11, D

T
12, D11, D12 as

above and

DT
21u = s * wavedec2(u), D21v = s * waverec2(v),

where s is a scaling factor.

To treat the problem (A.56) with the ADMM formalism, we split by Θi,jD
T
iju− vij = 0,

which can be written as DTu− v = 0 by vertically stacking all Θi,jD
T
ij . Then, we obtain

uk+1 = argmin
u

{
1

2
‖Au− f‖22 +

N,Mi∑
i,j

ρ

2

∥∥vij −Θi,jD
T
iju− wij

∥∥2

2

}
(A.58)
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for the update of uk, cf. (4.76). This least-squares problem is solved by an own CGLS
implementation, which solves the problem

argmin
x

{
N∑
i

βi‖Gix− ci‖22

}
(A.59)

if function handles for Gix and GT
i y are provided.

The update of v, (4.77), is given by:

vk+1
ij = max

(
aki −

1

ρ
, 0

)
Θi,jD

T
iju

k+1 + wk
ij

aki
, (A.60)

where

aki =

√√√√ Mi∑
j

(
Θi,jDT

iju
k+1 + wk

ij

)2
. (A.61)

Finally, the update of w, (4.78), is given by :

wk+1
ij = wk

ij +
(
Θi,jD

T
iju

k+1 − vk+1
ij

)
(A.62)

The norms of primal residuum r and dual residuum s are given by

∥∥rk+1
∥∥2

2
=

∥∥DTuk+1 − d
∥∥2

2
=

N,Mi∑
i,j

∥∥Θi,jD
T
iju

k+1 − vk+1
ij

∥∥2

2
(A.63)

∥∥sk+1
∥∥2

2
= ρ2

∥∥∥∥∥
N,Mi∑
i,j

DijΘ
T
i,j(v

k
ij − vk+1

ij )

∥∥∥∥∥
2

2

(A.64)

A.6. Implementation Details of Simulated Annealing

In the SC Gibbs sampling, only the parameters of the SC densities have to be changed.
However, as the annealing proceeds, the distributions get more and more concentrated
and singular. As a result, extremely robust implementations of the SC samplers are
required. For �2-hypermodels, an elementary computation shows that sampling from
the tempered conditional Gaussian part of the posterior can easily be implemented by
replacing (4.12) by [

A√
2λDT

]
v

ls
=

[
f

0

]
+
√
T x. (A.65)
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Using an inverse gamma hyperprior, the tempered part of the posterior depending on γ

is given by

pprior(γ|u) ∝
h∏
i

exp

(
−

∥∥DT
i u

∥∥2

2
+ β

Tγi
− α + 1 + 1/p

T
log(γi)

)
, (A.66)

which is, again, an inverse gamma distribution with the parameters

β̄ =
α + 3/2

T
− 1 β̄ =

∥∥DT
i u

∥∥2

2
+ β

T
. (A.67)

A.7. Validation Measures for EMEG Studies

In this section, we present the performance measures we use to validate the EMEG
source reconstruction studies with simulated data. A detailed discussion can be found in
Section 1.3.3 in Lucka (2011) and in Lucka et al. (2012). The dipole localization error
(DLE ) can be used to validate the reconstruction u of a single source u†,∞ = qδ(r− r∗),
cf. (2.16). It measures the spatial distance between r∗ and the source space node j

with the largest estimated current vector u[j]:

DLE(u, u†,∞) := ‖rj − r∗‖, with j = argmax
i

{‖u[i]‖2} .

While the DLE is the most commonly used validation measure, it suffers from several
drawbacks:

• Its generalization to multiple source scenarios is difficult: The source grid {ri} is
often arranged in an irregular fashion. Thereby, the definition of local maxima of
u is difficult.

• It is only sensitive to the mode of the estimated current; its spatial extend is not
accounted for.

To overcome these limitations, the earth mover’s distance (EMD) was independently
proposed in Haufe et al. (2008) and Lucka (2011) as a new validation measure for
EMEG source reconstruction. It can be computed for arbitrary u†,∞ and u, is sensitive
to location, relative amplitude and spatial extend and does not rely on committing the
obvious inverse crime of identifying u†,∞ = u†. The EMD is a Wasserstein metric, which
are distance measures between probability distributions originating from the theory of
optimal transport (Ambrosio et al. 2008):

Definition A.3 (Wasserstein metric). Let μ and ν be two probability measures on
a Radon space (Ω, d) that have a finite pth moment for some p ≥ 1. Then the pth
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Wasserstein distance Wp(μ, ν) is defined as:

Wp(μ, ν) =

(
inf

γ∈Γ(μ,ν)

∫
Ω×Ω

dist(r, r′)p dγ(r, r′)
)1/p

, (A.68)

where Γ(μ, ν) denotes the class of all transport maps, i.e., measures on Ω × Ω with
marginals μ and ν.

The EMD is the p = 1 Wasserstein distance for the 3D-Euclidean distance dist(r, r′) =

‖r − r′‖2 between the probability measures induced by the amplitudes of u†,∞ and u:

EMD(u, u†,∞) = W1(μu, μu†,∞) (A.69)

where

μu(B) :=

∑
i‖u[i]‖21B(ri)∑

‖u[i]‖2
, μu†,∞(B) :=

∫
B

∥∥u†,∞(r)∥∥
2
dλ(r)∫

‖u†,∞(r)‖2 dλ(r)
. (A.70)

Section 3.7 in Lucka (2011) discusses how to compute this quantity.
The name “earth mover’s distance” comes from the intuitive explanation of this quantity
given by Monge in 1781: The first probability measure is considered as an amount of
sand piled on a space Ω and the second measure as a hole with the same size. For a
given distance function dist, the minimum-cost transport of the sand into the holes
has to be determined (where the cost of a single assignment is understood as classical
physical work in terms of distance times amount of sand). This minimal cost is the
Wasserstein distance between the two measures.
While the EMD can be computed for arbitrary complex u and u†,∞, it reduces to
intuitive measures in simple scenarios. For instance, if both u and u†,∞ are given by a
single dipole, it yields the spatial distance between them, and thereby, the DLE. If both
consist of the same number of single dipoles and all dipoles have the same amplitude,
the EMD is the minimal-distance assignment of the dipoles of u†,∞ to the dipoles of u.

A.8. Software

In this section, we give a brief overview of the software used for this thesis.

External

MATLAB (www.mathworks.com/products/matlab)
is a high-level language and interactive environment for numerical computation, visu-
alization and programming. Most of the computations performed in this thesis were
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carried out with MATLAB, mainly through two toolboxes which are described in
the next section. In addition, most of the figures were produced with MATLAB, for
instance, such as Figures 1.6, 2.1, 2.2, 2.10b, 2.12a, 3.3a, 3.4, 3.10, 3.13, 4.1, 4.2, 5.1,
5.2, 5.7 and 5.23.

CVX (cvxr.com/cvx)
is a Matlab-based modeling system for convex optimization. It allows for an easy
and intuitive formulation of convex optimization problems, converts them internally
and calls external solvers to solve the reformulated problems. We used it to compute
the recovery conditions (FuB)/(SSC) and (BlkFuB). As external solvers, we used
MOSEK (www.mosek.com), a multipurpose large-scale optimization software, and
SeDuMi (sedumi.ie.lehigh.edu), a software for optimization over symmetric cones.

GeoGebra (www.geogebra.org)
is a dynamic mathematics software for all levels of education that joins geometry,
algebra, tables, graphing, statistics and calculus in one package. We used it to produce
the geometrical drawings in Figures 2.4, 2.5, 2.6, 5.19.

SimBio (https://www.mrt.uni-jena.de/simbio)
is a software for forward and inverse computations in EEG/MEG. We used the Neu-
roFEM sub-package for FEM-based EEG/MEG forward computations (cf. Section
5.4.3).

TetGen (www.tetgen.org)
is a program to generate high quality tetrahedral meshes of 3D polyhedral domains
fulfilling certain constraints (so called constrained Delaunay tetrahedralizations). We
used it in our EEG/MEG head modeling pipeline described in Section 5.4.1: From the
triangulated compartment surfaces, we generated the tetrahedral finite element volume
meshes for the FEM-based forward computations.

FieldTrip (fieldtrip.fcdonders.nl, Oostenveld et al. 2011)
is a MATLAB toolbox for EEG/MEG data analysis that is mainly developed at
the Donders Institute (Nijmegen, Netherlands). We used it for the pre-processing of
the experimental EEG/MEG data described in Section 5.4.5 and for producing the
EEG/MEG topography plots such as Figure 2.12b.

SCIRun (www.scirun.org)
is a problem solving environment, for modeling, simulation and visualization of scientific
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problems. It mainly targets bioelectrical applications and is developed by the SCI
Institute (Utah, USA). For this thesis, we only used its 3D volume rendering capacities
to visualize different objects in EMEG source reconstruction (Figures 2.10c, 2.11, 2.13,
5.28, 5.29, 5.33, 5.34, 5.35 and A.5)

Misc For EEG/MEG head modeling, CURRY (www.compumedicsneuroscan.com),
FSL (www.fmrib.ox.ac.uk/fsl) and BESA (www.besa.de) were used. A detailed descrip-
tion of their usage is given in the supplementary material3 of Janssen et al. (2013).
The ellipsoid fit used in the head model cascade scenario described in Section 5.4.2 was
performed using MATLAB code written by Yury Petrov and distributed through the
Matlab central file exchange portal:
www.mathworks.de/matlabcentral/fileexchange/24693-ellipsoid-fit

Own Developments

Two MATLAB toolboxes were developed that will be made available on the author’s
homepage4 alongside the publication of this thesis.

BayesInversion is a toolbox that implements Bayesian inversion for various inverse
problems scenarios in a generic, conceptual, pseudo-object-orientated way: In a first step,
an instance of an inverse problems scenario is created, which includes all the information
about sensor, noise and forward modeling and the choice of the discretization approach.
For simulated data scenarios, a continuous representation of u†,∞ is created as well.
Then, non-inverse-crime data for u†,∞ is generated or pre-processed experimental data is
imported. Next, a prior model is chosen. Finally, an inference procedure is determined
and the computational inversion is carried out.
More specifically, the toolbox contains:

• All the inverse problems scenarios examined in Chapter 2. For the EMEG scenarios,
the second toolbox described below is interfaced.

• All the prior models examined in Chapter 3.

• All the computational routines developed and examined in Chapter 4. MCMC-
based computations can be parallelized.

• Functions to analyze the inversion results for carrying out studies such as those
in Chapter 5. For instance, functions that compute EMD and DLE for EMEG
source reconstructions or perform autocorrelation analysis of MCMC chains.

3stacks.iop.org/PMB/58/4881/mmedia
4currently: http://wwwmath.uni-muenster.de/num/Arbeitsgruppen/ag_burger/organization/lucka/
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• Various functions to create and export visualizations of the results in a simple
way. Examples include Figures 2.1, 2.2, 2.7, 3.4b, 5.2, 5.23 5.8, 5.10, 5.20 and
5.32c.

• Various template scripts that combine the above procedures to carry out extensive
computational studies such as presented in this thesis in an efficient, script-based
and user-friendly way.

• Optimized implementations of several computationally demanding routines by
compiled fortran code (interfaced through .mex files). Some examples of the
speed-ups that can be obtained include:

– Using the MATLAB implementation of slice-within-RSG sampler for the
isotropic TV prior (cf. Section A.4 ) to sample the posterior in the “Phantom-
CT” scenario with n = 64× 64 takes about 90 times longer than the .mex

version.

– Using the MATLAB implementation of the RSG sampler to sample the
posterior in the “Walnut-CT” scenario with n = 64 × 64 using the Besov
prior takes about 40 times longer than the .mex version.

– Data generation in the “Phantom-CT” scenario using n = 1024 × 1024

takes about 3-4 times longer using a MATLAB implementation of the CT-
simulation function described in Section A.2 compared to using the .mex

version.

SimBioInterface is a toolbox to work with EMEG head models. It contains functions

• to read and write the file formats used by SimBio and TetGen (see above). This
includes FEM volume meshes consisting of tetrahedra or hexahedra, triangular
surface meshes, conductivity tables, sensor configurations and source configurations
to be used with SimBio.

• to perform various operations with the FEM meshes. Examples include identifying
the element in which a given point lies, computing adjacency matrices of the
mesh’s faces, computing the volume of the elements or extracting and refining
compartment surfaces.

• to construct different kinds of source spaces (cf. Section 5.4.3), to assign the FEM
elements or surface facets to the source space nodes or to compute mesh-based or
surface-based distances between the nodes.

• to generate different kinds of random source configurations to be used as reference
sources in simulation studies.
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• to carry out forward computations using SimBio as described in Section 5.4.3.
For this purpose, the toolbox generates all the input files for SimBio, including
the parameter file, calls SimBio by the system.m command, and imports the
results into MATLAB after SimBio’s termination. It allows to distribute forward
computations to multiple CPU cores by splitting the sensor configurations.

• to visualize head models, sensor configurations, measurement data, source spaces
and inverse reconstructions: Figures 2.10c, 2.11, 2.13, 5.29, 5.33, 5.34, 5.35 and
A.5 were generated by these functions. All functions can either be used for
visualization within MATLAB, which is most convenient for most practical tasks,
or to call SCIRun, which is preferable for high quality images.

A.9. Publications and Presentations Related to the Thesis

In this section, we summarize which publications and presentations are related to this
thesis, in particular, which of the passages or results contained in this thesis were
published/presented before and/or also contain major contributions from other authors.

• The derivation and examination of the direct SC Gibbs sampler for �1 priors
was published in Lucka (2012). The computational studies therein were partly
rearranged and recomputed for this thesis. In particular, the visual presentation
of the results was improved and the techniques of Wolff (2004) were used in the
autocorrelation analysis (thanks to the anonymous reviewer for this suggestion).

• The EEG/MEG/EMEG comparison studies in Section 5.4.4 were first presented
on the “18-th International Conference on Biomagnetism” in Paris, 2012 and on
several other occasions thereafter.

• Parts of the reconstructions of the SEP/SEF data and the sensitivity studies
(Section 5.4.5) were first presented at the “Applied Inverse Problems Conference”
in Daejeon, 2013. The full results were first presented on the “International
Conference on Basic and Clinical Multimodal Imaging” in Geneva, 2013, and on
several other occasions thereafter.

• The examination of the sparse recovery conditions for EEG/MEG (Section 5.4.6)
started as the Master’s thesis Tellen (2013), which was co-supervised by the
author. The results of the Master’s thesis were then extended and refined and first
presented at the “Matheon Workshop on Compressed Sensing and its Applications”
in Berlin, 2013, and on several other occasions thereafter.

• The novel Bayes cost functions presented in Section 6.1.2 were developed by
Martin Burger. Together with some of the computational comparisons between
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MAP and CM estimates carried out in this thesis (cf. the overview in Section
6.1.1), they were first presented at the “Applied Inverse Problems Conference”
in Daejeon, 2013 and on several occasions thereafter. They were subsequently
published in Burger and Lucka (2014).

• In Pursiainen, Lucka and Wolters (2012), the head model described in this
thesis was used to examine the effects of including a model of the measurement
electrodes in the EEG forward computation (cf. Section 2.4.3)

• The head model was also used in Janssen, Rampersad, Lucka, Lanfer,

Lew, Aydin, Wolters, Stegeman and Oostendorp (2013) and Ramper-

sad, Janssen, Lucka, Aydin, Lanfer, Lew, Wolters, Stegeman and

Oostendorp (2014) to study the effects of realistic head modeling on simulating
electro-magnetic brain stimulation techniques.
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A.10. Additional Figures

(a) (0,0,0,0) (b) (0,1,0,0) (c) (0,2,0,0) (d) (0,3,0,0)

(e) (1,1,0,0) (f) (1,1,0,1) (g) (1,1,1,0) (h) (1,1,1,1)

(i) (1,2,0,0) (j) (1,2,0,1) (k) (1,2,1,0) (l) (1,2,1,1)

(m) (1,3,0,0) (n) (1,3,0,1) (o) (1,3,1,0) (p) (1,3,1,1)

Figure A.3.: The first sixteen Haarwavelets in 2D, labeled as (j, l, k1, k2) and in
blue-to-red color coding.
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(a) (0,0,0,0) (b) (0,1,0,0) (c) (0,2,0,0) (d) (0,3,0,0)

(e) (1,1,0,0) (f) (1,1,0,1) (g) (1,1,1,0) (h) (1,1,1,1)

(i) (1,2,0,0) (j) (1,2,0,1) (k) (1,2,1,0) (l) (1,2,1,1)

(m) (1,3,0,0) (n) (1,3,0,1) (o) (1,3,1,0) (p) (1,3,1,1)

Figure A.4.: The Radon transformation of the first sixteen Haarwavelets in 2D, labeled
as (j, l, k1, k2) and in blue-to-red color coding.
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(a) EEG (b) MEG

Figure A.5.: Realistic EEG/MEG sensor configuration.

A.11. Additional Tables

Table A.2.: Values for λ defined by the parameter choice rule described in Section
5.2.3

.

q λCM λMAP

1 1.714e2 1.997e2
2 3.976e1 1.059e2
3 1.222e1 5.611e1
4 4.268e0 2.974e1
5 1.553e0 1.577e1
6 5.913e-1 8.357e0
7 2.356e-1 4.430e0
8 9.825e-2 2.348e0
9 3.931e-2 1.245e0
10 1.625e-2 6.597e-1

q λCM λMAP

11 7.170e-3 3.497e-1
12 2.826e-3 1.854e-1
13 1.278e-3 9.826e-2
14 5.379e-4 5.208e-3
15 2.386e-4 2.761e-2
16 1.048e-4 1.463e-2
17 4.503e-5 7.757e-3
18 1.937e-5 4.112e-3
19 8.174e-6 2.180e-3
20 3.856e-6 1.155e-3
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Table A.3.: The value 1− μ(A) for all combinations of head model and N using the
normal constraint.

EEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 4.30e-2 9.30e-3 1.01e-2 3.63e-2 5.31e-2 7.91e-2
125 1.10e-2 5.87e-3 7.22e-3 3.01e-2 2.26e-2 1.93e-2
250 3.92e-3 9.38e-3 9.72e-3 8.76e-3 5.84e-3 1.58e-2
500 5.32e-3 4.64e-3 6.95e-3 4.55e-3 3.57e-3 7.12e-3
1000 4.78e-4 1.21e-3 8.72e-4 1.04e-3 1.75e-3 2.18e-3
2000 2.35e-4 9.05e-4 1.25e-3 1.01e-3 9.44e-4 1.32e-3
4000 4.09e-6 2.32e-5 3.22e-5 1.85e-7 7.88e-7 1.44e-6
8000 2.58e-6 1.47e-6 1.52e-6 9.24e-9 5.58e-9 1.56e-8
16000 8.84e-7 1.28e-6 1.52e-6 9.24e-9 4.44e-9 1.56e-8

MEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 8.46e-2 6.06e-2 6.65e-2 6.50e-2 4.54e-2 8.03e-2
125 2.34e-2 4.50e-2 4.24e-2 1.78e-2 2.21e-2 2.11e-2
250 2.33e-2 2.09e-2 2.27e-2 1.32e-2 1.52e-2 1.44e-2
500 4.02e-3 3.23e-3 3.35e-3 5.82e-3 5.26e-3 5.63e-3
1000 1.09e-3 1.73e-3 1.35e-3 1.39e-3 1.31e-3 1.24e-3
2000 1.84e-3 2.49e-3 1.86e-3 8.57e-4 7.85e-4 7.69e-4
4000 9.63e-5 8.58e-5 6.83e-5 4.59e-5 5.47e-5 4.59e-5
8000 2.08e-7 9.77e-7 1.01e-6 1.01e-7 9.25e-8 7.63e-8
16000 2.08e-7 9.77e-7 1.01e-6 4.40e-8 9.25e-8 7.63e-8

EMEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 1.23e-1 9.66e-2 1.06e-1 1.21e-1 1.10e-1 1.44e-1
125 4.22e-2 5.19e-2 3.65e-2 7.40e-2 3.70e-2 3.51e-2
250 4.06e-2 4.47e-2 4.13e-2 4.32e-2 1.11e-2 1.93e-2
500 6.86e-3 6.94e-3 6.99e-3 1.36e-2 1.76e-2 1.79e-2
1000 1.20e-3 2.28e-3 1.90e-3 1.19e-3 2.00e-3 1.89e-3
2000 2.44e-3 2.08e-3 1.66e-3 1.05e-3 1.14e-3 1.26e-3
4000 5.76e-5 6.35e-5 5.91e-5 2.05e-5 2.22e-5 2.14e-5
8000 1.63e-6 1.45e-6 1.51e-6 7.86e-8 7.23e-8 7.18e-8
16000 7.90e-7 1.45e-6 1.51e-6 6.03e-8 6.63e-8 7.14e-8
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Table A.4.: The value 1−μ(A) for all combinations of head model and N using three
orthogonal dipoles per location.

EEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 2.45e-2 9.30e-3 1.01e-2 2.99e-2 1.53e-2 4.23e-2
125 1.10e-2 5.87e-3 7.22e-3 2.11e-2 1.35e-2 1.93e-2
250 3.92e-3 5.67e-3 6.07e-3 5.66e-3 5.84e-3 1.54e-2
500 3.65e-3 4.63e-4 3.52e-4 4.43e-3 2.80e-3 3.33e-3
1000 4.78e-4 1.21e-3 8.72e-4 1.04e-3 1.75e-3 2.18e-3
2000 2.35e-4 2.93e-4 3.84e-4 1.01e-3 6.79e-4 1.32e-3
4000 4.09e-6 2.32e-5 3.22e-5 1.85e-7 7.88e-7 1.44e-6
8000 2.58e-6 1.47e-6 1.52e-6 9.24e-9 5.58e-9 1.56e-8
16000 8.84e-7 1.28e-6 1.52e-6 9.24e-9 4.44e-9 1.56e-8

MEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 1.61e-3 2.09e-3 1.51e-3 9.96e-3 6.43e-3 1.16e-2
125 4.77e-3 4.16e-4 5.76e-4 1.23e-3 2.25e-3 8.41e-3
250 6.34e-4 2.88e-3 3.02e-3 1.29e-3 1.65e-3 3.13e-3
500 3.46e-4 8.45e-4 1.92e-3 1.06e-3 1.27e-3 3.66e-3
1000 1.09e-3 5.92e-4 5.00e-4 3.82e-4 4.93e-4 1.07e-3
2000 4.17e-4 8.82e-4 8.04e-4 3.50e-4 4.87e-4 6.33e-4
4000 9.63e-5 8.58e-5 6.83e-5 4.59e-5 5.47e-5 4.59e-5
8000 2.08e-7 9.77e-7 1.01e-6 1.01e-7 9.25e-8 7.63e-8
16000 2.08e-7 9.77e-7 1.01e-6 4.40e-8 9.25e-8 7.63e-8

EMEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 6.23e-2 7.10e-2 7.57e-2 8.62e-2 6.33e-2 7.00e-2
125 4.34e-2 2.80e-2 2.77e-2 2.91e-2 3.17e-2 4.25e-2
250 1.67e-2 1.14e-2 1.04e-2 1.13e-2 7.67e-3 1.82e-2
500 4.28e-3 2.31e-3 2.50e-3 5.85e-3 4.04e-3 4.46e-3
1000 1.04e-3 1.93e-3 1.49e-3 1.14e-3 2.19e-3 2.15e-3
2000 2.12e-3 1.99e-3 1.63e-3 1.04e-3 1.13e-3 1.27e-3
4000 5.55e-5 6.09e-5 5.68e-5 1.93e-5 2.17e-5 1.98e-5
8000 1.65e-6 1.45e-6 1.52e-6 7.88e-8 7.33e-8 7.20e-8
16000 7.91e-7 1.45e-6 1.52e-6 6.11e-8 6.86e-8 7.22e-8
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Table A.5.: The value μblk(A) for all combinations of head model and N using three
orthogonal dipoles per location.

EEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 0.64 0.63 0.61 0.54 0.52 0.53
125 0.69 0.68 0.65 0.56 0.55 0.59
250 0.76 0.72 0.70 0.62 0.58 0.63
500 0.78 0.82 0.80 0.62 0.58 0.66
1000 0.85 0.85 0.85 0.66 0.59 0.68
2000 0.82 0.81 0.80 0.69 0.60 0.67
4000 0.88 0.88 0.87 0.73 0.59 0.66
8000 0.89 0.90 0.90 0.73 0.61 0.69
16000 0.90 0.91 0.91 0.72 0.61 0.70

MEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 0.65 0.69 0.69 0.63 0.61 0.61
125 0.68 0.70 0.69 0.65 0.66 0.66
250 0.73 0.73 0.73 0.77 0.67 0.67
500 0.83 0.84 0.84 0.74 0.72 0.72
1000 0.84 0.78 0.78 0.82 0.73 0.72
2000 0.89 0.86 0.85 0.86 0.74 0.73
4000 0.88 0.90 0.89 0.82 0.73 0.73
8000 0.92 0.89 0.89 0.90 0.74 0.74
16000 0.92 0.89 0.89 0.90 0.74 0.73

EMEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 0.54 0.56 0.56 0.53 0.52 0.47
125 0.62 0.65 0.62 0.53 0.53 0.52
250 0.73 0.69 0.67 0.58 0.58 0.59
500 0.75 0.80 0.78 0.65 0.61 0.62
1000 0.79 0.78 0.79 0.66 0.61 0.60
2000 0.80 0.79 0.77 0.73 0.64 0.64
4000 0.83 0.83 0.81 0.71 0.64 0.65
8000 0.87 0.85 0.84 0.80 0.64 0.65
16000 0.88 0.86 0.87 0.75 0.64 0.66
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Table A.6.: The value 1− μsub(A) for all combinations of head model and N using
three orthogonal dipoles per location.

EEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 2.05e-1 1.25e-1 1.45e-1 2.51e-1 2.87e-1 1.42e-1
125 6.05e-2 1.26e-1 1.22e-1 1.95e-1 1.94e-1 9.86e-2
250 4.35e-2 4.78e-2 6.90e-2 1.38e-1 2.35e-1 8.15e-2
500 5.92e-2 7.02e-2 8.19e-2 2.09e-1 2.06e-1 1.01e-1
1000 4.99e-2 6.45e-2 7.52e-2 1.59e-1 1.89e-1 1.17e-1
2000 2.72e-2 4.22e-2 4.87e-2 1.70e-1 1.89e-1 7.67e-2
4000 3.53e-2 4.35e-2 4.85e-2 8.80e-2 2.03e-1 7.51e-2
8000 1.45e-2 2.16e-2 2.87e-2 1.12e-1 1.92e-1 5.97e-2
16000 1.43e-2 1.79e-2 2.22e-2 9.37e-2 1.73e-1 4.73e-2

MEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 1.61e-3 2.09e-3 1.51e-3 9.96e-3 6.43e-3 1.16e-2
125 4.77e-3 4.16e-4 5.76e-4 1.23e-3 2.25e-3 8.41e-3
250 6.34e-4 2.88e-3 3.02e-3 1.29e-3 1.65e-3 3.13e-3
500 3.46e-4 8.45e-4 1.92e-3 1.06e-3 1.27e-3 3.66e-3
1000 1.25e-3 5.92e-4 5.00e-4 3.82e-4 4.93e-4 1.07e-3
2000 5.08e-4 8.82e-4 8.04e-4 7.42e-4 6.32e-4 8.42e-4
4000 1.27e-4 9.50e-4 1.04e-3 4.57e-4 5.21e-4 1.38e-3
8000 1.33e-4 4.21e-4 5.35e-4 5.45e-4 2.65e-4 6.03e-4
16000 3.86e-4 3.07e-4 4.75e-4 2.41e-4 1.32e-4 4.79e-4

EMEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 1.27e-1 1.44e-1 1.79e-1 2.62e-1 4.42e-1 3.56e-1
125 6.92e-2 1.12e-1 1.48e-1 1.72e-1 2.70e-1 1.52e-1
250 2.97e-2 2.31e-2 3.56e-2 1.56e-1 2.48e-1 1.80e-1
500 4.30e-2 8.17e-2 9.14e-2 1.40e-1 2.59e-1 1.12e-1
1000 3.94e-2 5.85e-2 7.52e-2 1.29e-1 2.29e-1 1.43e-1
2000 2.20e-2 3.13e-2 4.07e-2 1.42e-1 2.29e-1 1.52e-1
4000 2.65e-2 4.16e-2 4.24e-2 6.45e-2 1.39e-1 6.71e-2
8000 6.64e-3 1.05e-2 1.46e-2 9.71e-2 1.59e-1 7.99e-2
16000 7.42e-3 9.24e-3 1.31e-2 9.04e-2 1.22e-1 5.35e-2
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Table A.7.: The value 1− δlb2 (A) for all combinations of head model and N computed
by Algorithm 4.12 using 108 2-sparse samples.

EEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 4.30e-2 9.30e-3 1.01e-2 3.63e-2 5.31e-2 7.91e-2
125 1.10e-2 5.87e-3 7.22e-3 3.01e-2 2.26e-2 1.93e-2
250 3.92e-3 9.38e-3 9.72e-3 8.76e-3 5.84e-3 1.58e-2
500 5.35e-3 4.64e-3 6.95e-3 4.55e-3 3.57e-3 7.12e-3
1000 5.25e-4 1.26e-3 9.19e-4 1.09e-3 1.78e-3 2.18e-3
2000 2.58e-4 9.28e-4 1.40e-3 1.41e-3 1.50e-3 1.89e-3
4000 8.71e-4 6.61e-4 6.34e-4 1.69e-4 1.95e-4 1.63e-4
8000 3.96e-4 1.47e-3 1.13e-3 7.91e-4 1.03e-3 1.22e-3
16000 5.16e-4 5.17e-4 5.40e-4 1.15e-3 7.81e-4 1.21e-3

MEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 8.46e-2 6.06e-2 6.65e-2 6.50e-2 4.54e-2 8.03e-2
125 2.34e-2 4.50e-2 4.24e-2 1.78e-2 2.21e-2 2.11e-2
250 2.33e-2 2.09e-2 2.27e-2 1.32e-2 1.52e-2 1.44e-2
500 4.02e-3 3.23e-3 3.35e-3 5.82e-3 5.26e-3 5.64e-3
1000 1.15e-3 1.80e-3 1.43e-3 1.46e-3 1.37e-3 1.31e-3
2000 2.28e-3 2.50e-3 2.25e-3 1.24e-3 1.17e-3 1.16e-3
4000 5.11e-4 5.00e-4 4.83e-4 5.48e-4 5.31e-4 5.08e-4
8000 5.60e-6 6.37e-6 6.40e-6 5.49e-6 5.48e-6 5.47e-6
16000 4.70e-4 9.39e-4 9.51e-4 7.87e-4 4.15e-4 4.77e-4

EMEG
N HM1 HM2 HM3 HM4 HM 5 HM6

62 1.23e-1 9.66e-2 1.06e-1 1.21e-1 1.10e-1 1.44e-1
125 4.22e-2 5.19e-2 3.65e-2 7.40e-2 3.70e-2 3.51e-2
250 4.06e-2 4.47e-2 4.13e-2 4.32e-2 1.11e-2 1.93e-2
500 6.86e-3 6.97e-3 7.02e-3 1.36e-2 1.76e-2 1.79e-2
1000 1.24e-3 2.32e-3 1.94e-3 1.23e-3 2.04e-3 1.93e-3
2000 2.56e-3 2.08e-3 1.66e-3 1.18e-3 1.67e-3 1.97e-3
4000 1.44e-4 1.50e-4 1.45e-4 1.22e-4 1.45e-4 1.50e-4
8000 5.94e-4 6.19e-4 5.35e-4 3.13e-4 4.02e-4 8.07e-4
16000 1.14e-3 1.42e-3 1.48e-3 8.29e-4 7.71e-4 7.93e-4
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