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Chapter 1

Introduction

Labor income always received a lot of attention in the economics literature. As

early as 1776, Adam Smith analyzed the determinants of wage differentials among

individuals and among employments in his Magnum Opus The Wealth of Nations.

To date, a large amount of studies has analyzed the structure of wages. While early

quantitative work examined differences and changes in wages by occupation (blue

vs. white collar workers, Douglas et al. (1930)) and by industry (Slichter (1950)), the

human capital revolution in the 1960s and 1970s shifted emphasis to the differences

in wages by education and age, and therefore by potential experience. Indeed,

models of life-cycle earnings that arise from educational and on-the-job training

investments (Ben-Porath (1967), Mincer et al. (1974)) provide an explanation of the

timeless qualitative features of wage structures that have been found in most data

sets and across countries: more educated workers receive higher earnings, and the

age-earnings profiles are upward sloping and concave (Willis (1987)). However, in

quantitative terms, the wage structure has been subject to substantial changes in

the last decades. In particular since the 1980s, wage inequality and educational wage

differentials have increased. This pattern induced a great variety of studies which

examine the changes in the wage structure and in earnings inequality, especially
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for the U.S. (Gottschalk and Moffitt (1994), Katz et al. (1999), Atkinson et al.

(2011), among many others). Besides, these studies benefit from large-scale micro

data sets which became increasingly available during the last decades. However, all

studies mentioned so far aim at explaining earnings inequality and therefore deal

with earnings in terms of an aggregate economic level.

A different strand of literature that arose in the late 1970s approaches earnings

from the individuals’ perspectives. Properly modeling individuals’ earnings dynam-

ics is important as it forms the basis for a wide variety of studies. These include

studies on the modeling of labor supply (Abowd and Card (1989)), on the predic-

tion of future earnings paths given individual information (Chamberlain and Hirano

(1999)), and on earnings inequality, when modeling the time series variation in the

earnings distribution (Moffitt and Gottschalk (2002)). Moreover, correctly modeling

individual earnings is crucial for the determination of the earnings risk that both

individuals and households face.

Various dynamic models on individual incomes have been proposed (Lillard and

Weiss (1979), Baker (1997), Guvenen (2009), Hryshko (2012)). To date, two major

strands on modeling individual earnings dynamics have prevailed in the literature.

They mainly differ in their assumptions on the persistence of income shocks, on the

degree of heterogeneity of the individuals and therefore implicitly on the amount of

earnings risk that individuals face. Interestingly, the literature has not yet reached

a consensus about how to best or even “correctly” model earnings dynamics.

The present thesis extends the existing literature on individuals’ earnings dynam-

ics in three aspects. Starting from a general point of view, an alternative approach to

the identification of earnings risk is presented. Its main advantage is the fact that it

does not only use earnings data to gather information on earnings risk. It moreover



3

includes the economic consumption and portfolio allocation choices of individuals.

This approach is even applicable when consumption data are not available. Instead,

it can then employ realized capital income data as this results from those very two

choices.

Moreover, this thesis ties in with the disaccord in the literature on how to most

suitably model individual income dynamics. For this purpose, this thesis first ad-

dresses the question if explosiveness needs to be taken into account when modeling

income profiles - a question that has been ruled out in previous studies. Explor-

ing whether some incomes evolve in an explosive way accounts for the idea that

deviations of earnings from a common trend could be self-reinforcing. To this end,

a right-tailed panel unit root test is proposed. Even though many models exist

that test for unit roots in panel data, no panel test against explosiveness is known

heretofore. Furthermore, this thesis provides new evidence with respect to the two

contrasting strands of the literature outlined above. To the best of our knowledge,

we are the first to employ a dynamic linear model and to allow for time-varying

coefficients. Using Markov chain Monte Carlo (MCMC) methodology, the results

provide evidence against one of the two literature strands.

This thesis proceeds as follows. Chapter 2 suggests a method that uses not

only earnings data to elicit the amount of earnings risk, but also considers the joint

dynamics of capital income and earnings. Since capital income reflects the amount of

savings, it contains important information about consumption and savings behavior

and therefore implicitly about earnings risk. For this purpose, a life-cycle model of

consumption and savings decisions, stated as a dynamic programming problem, is

presented. Estimation of the unknown parameters of the earnings process and, if

required, of further model parameters is carried out by indirect inference. Simulation
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results show that the estimates are centered near the true values. The estimation

method is variably applicable since it can easily be adapted to estimate different sets

of unknown parameters or include different information available on capital income.

Chapter 3 investigates whether explosiveness is a pattern that needs to be taken

into account when modeling income profiles. In this context, explosiveness implies

that high income trajectories tend to detach from the common trend disproportion-

ately high and vice versa. To this end, a panel test against explosiveness is proposed

and applied to German and U.S. earnings data. The null hypothesis of no explo-

siveness is rejected. However, the proportion of explosive profiles is small. Hence,

explosiveness does not need to be considered when modeling labor incomes in the

following chapter.

Chapter 4 delves more into the details of how to accurately model labor income

profiles. The first part of this chapter provides an overview of the empirical literature

on modeling labor incomes in order to depict the two main opposing approaches.

To contribute to the disaccord of the literature on these two approaches, a dynamic

linear model is proposed in the second part. It allows for both individual-specific and

time-varying coefficients. Estimation of the unknown model parameters is carried

out using Gibbs sampling, a Markov chain Monte Carlo (MCMC) algorithm. The

framework is applied to German earnings data. The key finding of this chapter is

the fact that one of the two competing approaches is rejected by the framework.

The rejected approach, in particular, assumes that individuals are subject to large

and persistent income shocks, while there exist no systematic differences between

income profiles.
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Chapter 5 summarizes the main results of this thesis. Note that for the imple-

mentation of the econometric methods and the empirical applications the software

R is used.
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Chapter 2

Eliciting earnings risk from labor

and capital income

2.1 Introduction

Earnings risk plays a central role in many economic decisions that individuals make.

Hence, numerous studies deal with the effects of earnings risk on various economic

variables. These include studies which investigate its impact on life-cycle consump-

tion and portfolio allocation (Carroll and Samwick (1997), Campbell et al. (2001))

and studies on how earnings uncertainty affects wealth distribution over the life-

cycle (Huggett (1996), Castaneda et al. (2003)). Beyond, its characteristics serve

as a basis for modeling earnings dynamics. Two leading views on modeling earn-

ings dynamics have been established in the current literature, which mainly differ in

their assumptions on the degree of earnings risk that individuals face. The first view

assumes that earnings risk is rather weak and income follows a deterministic path

over the life-cycle with shocks of moderate persistence (Lillard and Weiss (1979),

Baker (1997), Guvenen (2009)). The other view, however, assumes earnings shocks

to have a unit root, therefore having a large and persistent effect on the rest of



7

an individual’s working life (MaCurdy (1982), Abowd and Card (1989), Hryshko

(2012)). Therefore, quantifying earnings risk is of interest.

Although there is a large range of literature on earnings risk, most of it lacks

inclusion of the fact that individuals do indeed have superior information on their

very earnings risk. Therefore, Guvenen and Smith (2014) have suggested an esti-

mation method for earnings risk that takes into account economic choices of the

individuals. Obviously, the most important economic choice is the decision about

the consumption level. If individuals feel insecure about their future earnings, they

tend to consume less and, instead, save more to build up a buffer against negative

future shocks, see e.g. Carroll (2004) on the theory of buffer saving. Beyond, when

feeling insecure, individuals tend to invest more into safe assets rather than into

risky ones. Therefore, earnings risk also affects portfolio allocation decisions. How-

ever, from an econometric point of view, estimation methods that need all these

data are infeasible. There exist hardly any panels providing information jointly on

earnings and consumption on an individual level over longer time spans.

Therefore, our main contribution is the suggestion of a method to measure earn-

ings risk from individual earnings and capital income data, whereas further data such

as consumption panel data are not required. By doing so, our approach takes into

account different sources of capital income, particularly income from risk-free assets

and from risky assets. Supposing that an individual knows his earnings risk, our

method uses not only information from observing the earnings themselves, but also

from the realized capital income resulting from consumption and portfolio allocation

decisions. We use this variety of information in order to draw conclusions on the

earnings risk, which we expect to increase the estimation accuracy compared with

methods that only rely on information from earnings trajectories. Another benefit
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of our method is that it allows us to estimate the risk aversion of the individual and,

if required, further unknown model parameters.

In particular, our model is based on the classical dynamic stochastic optimization

described by Samuelson (1969). While the Samuelson model ignores labor income,

we assume that earnings are an (exogenous) stochastic process which makes the dy-

namic optimization problem more complex and analytically intractable. Moreover,

we model both the working life of individuals, as well as their retirement. To es-

timate the parameters of such a life-cycle model, we closely follow Gourinchas and

Parker (2002) and Guvenen and Smith (2014). The former authors estimate a life-

cycle model of consumption and savings using simulated moments. However, they

first estimate income process parameters from earnings data and then the parame-

ter of risk aversion from consumption data. Therefore, they do not use information

from individuals’ consumption behavior when estimating earnings risk. Guvenen

and Smith (2014) estimate all parameters by indirect inference, jointly using both

data sources. Their model is much more complex than the one we propose here.

Among other things, they allow the individuals to learn about their earnings paths

in a Bayesian way, such that the econometrician needs to handle a cumbersome va-

riety of unknown parameters. Following their suggestion, we use indirect inference

to estimate the parameters of our model.

The remainder of this chapter is organized as follows. Section 2.2 introduces

stochastic dynamic optimization and describes the economic model which is based on

such a framework. In Section 2.3 we briefly present the simulation-based estimation

method of indirect inference and explain how we use it to estimate the parameters

of interest. The results of a simulation study are reported in Section 2.4. Finally,

Section 2.5 concludes.
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2.2 Stochastic dynamic programming framework

This section first introduces the basic ideas of stochastic dynamic programming,

in particular for the case when the number of discrete time periods is finite. This

method enables us to solve our life-cycle model of consumption and investment

decisions, which is stated as a dynamic programming problem. Its formulation and

a short literature overview on life-cycle models are included in a second subsection.

2.2.1 Introduction to dynamic programming

“An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.”

Principle of optimality, Richard Bellman, 1957

Many economic applications aim at analyzing optimal behaviour under certain con-

straints. In simple problems, it is often assumed that only the present period is

affected by the choice of an agent. This, however, turns out to be a severe restric-

tion since it assumes that all variables of an economic system (called state variables)

adjust within the present period, therefore excluding any possible dynamic effects

of a choice. This restriction can not be maintained for most real world applications,

meaning that intertemporal effects have to be taken into account when deciding on

the action. Hence, in many cases it is sensible to formulate economic applications as

dynamic programming problems. Since our application in the subsequent sections

is based on a finite number of periods, we introduce the formulation and solution of

dynamic programming problems in discrete time with finite time horizon.



10

Consider an individual with a concave contemporaneous utility function r(xt, ut)

that depends on both the state xt and the control ut, which is the action taken

by the individual. For simplicity, take both to be scalars, however, they could be

extended to vectors. The state variable is driven by a stochastic difference equation

xt+1 = g(xt, ut, εt+1), (2.1)

which is referred to as the transition equation.

At any period t, assume the value of xt to be known. Future values, however,

are random variables since they are a function of the current state xt and the action

ut, but also of a stochastic shock εt+1. Assume that the process is Markov, thus all

(past and current) information relevant for the determination of the distribution of

the future states is summarized in the current information set.

In general, the individual’s objective is to choose the sequence of controls {uT0 }

so as to maximize the expected sum of its discounted contemporaneous utilities

E0

T∑
t=0

βtr(xt, ut), 0 < β < 1, (2.2)

subject to (2.1). In doing so, assume that the initial state x0 is known and the error

terms εt to be independently and identically distributed over time, being indepen-

dent of preceding states and controls. To solve this problem, we aim at finding a

sequence of optimal policies {u∗t}, where u∗t maps state xt into control ut,

ut = u∗t (xt), (2.3)

so that the objective function (2.2) is maximized for any given state and period.
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Denote by Vs(xs) the value function which is the objective function, starting

from state xs in period s. Hence

Vs(xs) = max
{ut}Tt=s

[
T∑
t=s

βtr(xt, ut)

]
. (2.4)

According to the principle of optimality by Richard Bellman, any optimal solu-

tion consists of optimal partial solutions. Roughly speaking, this means assuming

{u∗0, . . . , u∗T} to be the optimal policy of a dynamic problem, then for the subproblem

starting at time i, the truncated policy {u∗i , u∗i+1, . . . , u
∗
T} is optimal. This implies

that the dynamic optimization problem can be broken down to simpler subprob-

lems. For each period, the decision sequence can be split into two parts, the actual,

present period and the entire continuation beyond.

The optimal choice of control ut in period t is the one which maximizes the sum

of the instantaneous utility and the discounted continuation value, assuming optimal

decisions in the future. The result, by definition, will be the value function Vt(xt).

This connection yields the Bellman equation

Vt(xt) = max
ut
{r(xt, ut) + β · EtVt+1[g(xt, ut, εt+1)]} , (2.5)

which reformulates the optimization problem in a recursive way. Moreover, it is

rather easy to handle since only the immediate control ut is to be chosen optimally,

while future optimal choices ut+1, ut+2, etc. are collected in the continuation value.

Hence, the dynamic programming approach substantially simplifies the optimization

problem, decomposing the problem into a sequence of optimizations, each over the

control, rather than optimizing over a whole set of policies at once.
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As the time horizon is finite, the dynamic optimization problem can be ap-

proached by backward recursion from the very last period. The terminal value

function in T is specified as the sum of the contemporaneous utility and some ter-

mination value VT+1(xT+1), which is often assumed to be zero. Even if it is not zero,

the terminal value function is known apart from the realization of the state in T +1.

Hence, starting in period T , a natural approach is to discretize a continuous state

variable into D levels {xdT}d=1,...,D. The optimization problem in T is solved for each

possible discrete state to obtain the optimal control strategy u∗dT which maximizes

V d
T (xdT ) = max

uT

{
r(xdT , u

d
T ) + β · ETV d

T+1[g(xdT , u
d
T , εT+1)]

}
.

Hence for each state xdT , a corresponding value V d
T is obtained. Since the realized

states are continuous, the values are interpolated. The approximated specification

of the value function in T allows us to solve the optimization problem in T − 1 for

the discrete states {xdT−1}d=1,...,D. This procedure is repeated until all optimizations

in period 0 are done. We thus obtain a sequence of optimal policies, only depending

on the possible states for each period. By means of these policies and a given

initial state x0, the decision problem can be solved starting in period 0. Note that

when implementing this approach, one has to take into account the tradeoff between

precision of the optimization, which can be increased by choosing a small grid step

size, and computational costs caused by that.

However, in order to save computational effort, especially when dealing with more

than one control, another common approach is to approximate the value function

by a functional form V f
t (xt). Again we proceed backwards starting in T . As in the

naive grid-based method introduced before, the optimization problem in T is solved

for each possible discrete state {xdT}d=1,...,D. In contrast to the above solution, we
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no longer save the value V d
T for each possible state. Instead, the values {V d

T }d=1,...,D

are “compressed” by fitting the functional form V f
T (xT ) by choosing appropriate

coefficients which are saved. In some applications, the functional form can even

be derived analytically. When the functional form is known, the precision of the

optimization is increased compared to the grid-based method since we no longer

need to interpolate between states.

2.2.2 The economic model

In the following, we introduce a life-cycle model of consumption and investment de-

cisions, which is stated as a dynamic programming problem. The model’s structure

is based on Samuelson (1969) and Viceira (2001). Samuelson was the first to formu-

late the lifetime planning of consumption and investment decisions as a many-period

problem. He considers an individual who maximizes the discounted sum of his con-

temporaneous utilities subject to his initial wealth. Wealth is either consumed or

invested. For the fraction of wealth that is invested, the individual faces a portfolio

problem: He has to choose the proportion of wealth he wants to invest into a risky

asset; while the remainder is invested into a riskfree asset. It should be noted that

Samuelson’s optimization problem can be solved in closed-form.

Since then, a variety of studies have emerged which build on Samuelson’s basic

optimization problem. Here, we focus on the most relevant ones for our model

specification. Departing from the lack of labor income in Samuelson’s work, Bodie

et al. (1992), Heaton and Lucas (1997) and Koo (1998) propose to incorporate

labor income into the standard intertemporal model of consumption and portfolio

choice. Bodie et al. (1992) examine the effect of labor-leisure choice on consumption

and portfolio investment decisions over the life-cycle. They find that labor and
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investment choices are closely related: the ability to vary labor supply ex post tends

to induce an individual to take greater investment risks in his portfolio. This is likely

to explain why young workers with greater labor supply flexibility over their entire

working lifetime should hold proportionally more risky assets in their portfolios. The

authors assume future earnings to be non-stochastic or at least perfectly hedgeable.

Since future labor income might be uncertain for most individuals, Heaton and

Lucas (1997) and Koo (1998) introduce uninsurable labor income risk - combined

with several portfolio constraints in their model. However, they assume individuals

to work their entire lifetime - ignoring retirement - and only consider the case in

which labor income is uncorrelated with asset returns. Viceira (2001) argues that

retirement matters for portfolio choice and suggests to incorporate retirement with

zero income into the model. Moreover, he allows labor income to be correlated with

asset returns such that consumption may be hedged from negative labor income

shocks. He finds both risky labor income and retirement to affect the optimal

portfolio choice: increasing labor income risk raises the investor’s willingness to

save and leads him to increase the proportion invested riskfree. Beyond, the optimal

fraction of savings invested into the risky asset turns out to be positively related to

the retirement horizon of the investor.

To date, many more applications have come up, in particular in the financial

literature. We adopt most of the ideas mentioned above in order to formulate a

dynamic optimization problem to estimate labor income risk and, additionally, the

degree of risk aversion. Specifically, we include both idiosyncratic labor income and

retirement. Otherwise we keep our model rather basic since our focus is to provide

a framework to infer the parameters related to earnings risk, rather than deducing

an optimal asset allocation.
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In particular, we consider an individual whose preferences are described by the

standard CRRA utility function over consumption C

U(C) =
C1−γ

1− γ

where γ > 0, γ 6= 1 is the measure of relative risk aversion.

The model includes two state variables: wealth W and labor income Y with

initial wealth W0 and initial labor income Y0. Let S denote the number of periods

in which the individual works. We follow Viceira (2001) and model labor income

evolving stochastically according to a geometric random walk

Yt+1 = Yt exp (µε + θεεt+1) , t = 1, . . . , S (2.6)

with parameters µε and θε and a random innovation εt ∼ N (0, 1).

In each period, the individual decides about two control variables, namely: the

level of consumption Ct and the portfolio composition parameter αt which denotes

the proportion of wealth invested into a risky asset with return Zt ∼ LN (µZ , θZ),

where 0 ≤ αt ≤ 1.1 The remaining proportion (1 − αt) is invested riskfree with

interest rate r. Accordingly, the budget constraint and therefore the transition

equation of wealth is

Wt+1 = ((1− αt) (1 + r) + αtZt+1) (Wt + Yt − Ct) . (2.7)

After having worked for S periods, the individual retires and stays pensioner un-

til period T , which is the final period of the model. During retirement, labor income

becomes zero and the individual instead receives a pension Yt for t = (S+ 1), . . . , T ,

1The random asset returns Zt and income innovations εt may be dependent; however, for ease of
illustration we assume that they are uncorrelated.
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which depends only on the last salary and is fully predictable. Strictly speaking,

the individual is assumed to receive 80% of his last salary in the first retirement pe-

riod, which thereafter increases by 2% per period, hence Yt = (1.02)t−(S+1) · 0.8 · YS.

The rest of the model remains unchanged during retirement, hence the individual

still decides on consumption and portfolio composition, while wealth still evolves

according to the transition equation (2.7). Moreover, our model contains no be-

quests, meaning that the termination value VT+1 is zero, irrespective of the state in

T + 1. From this follows that the optimal amount of consumption in the last period

T equals the sum of the pension and the remaining wealth, hence CT = YT + WT

and WT+1 = 0.

Finally, we assume that the current states are known when deciding on the

controls. Thus, the timing of decisions and realization of the random variables is

as follows:

. . .→

 Wt

Yt


observe the state

→

 αt

Ct


decide the control

→

 εt+1

Zt+1


realization of r.v.

→

 Wt+1

Yt+1


new state

→ . . .

Since earnings Yt are modeled as an exogenous stochastic process, simply observing

Y1, . . . , YT would, of course, already allow the econometrician to estimate the earn-

ings risk parameter θε. However, taking into account additional information about

capital income from risk-free and risky assets may increase the precision of the es-

timator. This is particularly important if the observation period is relatively short.

Besides, this allows us to estimate further parameters such as the risk aversion.

An important practical problem is the fact that savings or, equivalently, con-

sumption or wealth, are not reliably observable for the econometrician in most
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panels. In contrast, many panels provide accurate and detailed information about

different sources of income. If individuals feel insecure, they will increase both their

savings to build up a buffer and their portion of wealth invested into the risk-free

asset. Hence, in an indirect way, an increase in interest income indicates larger

earnings risk.

Regardless whether consumption or wealth data are available or not, the in-

tertemporal optimization problem

max
α1,C1,...,αT ,CT

Et

(
T∑
t=1

(
1

1 + ρ

)t
C1−γ
t

1− γ

)

subject to (2.7) and (2.6) has to be solved prior to implementing any estimation

strategy. The parameter ρ is a subjective discount rate. The value function can be

stated according to the Bellman equation as

Vt (Wt, Yt) = max
αt,Ct

{
C1−γ
t

1− γ
+

1

1 + ρ
Et (Vt+1 (Wt+1, Yt+1))

}
. (2.8)

While Samuelson’s model (1969) excluding labor income can be solved analyt-

ically, adding a stochastic labor income process makes the problem much more

complex. Zeldes (1989) derives an approximation to the closed-form solution for op-

timal consumption with CRRA utility and stochastic labor income. Compared with

Samuelson’s model, he ignores portfolio investment decisions. Instead, the entire

wealth is invested with a risk-free interest rate. However, since our model includes

decisions on the portfolio allocation, the problem becomes analytically intractable.

Numerical optimization methods are required, and therefore, it is important to keep

the number of state variables as small as possible.
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In the following, we show that the two state variables Wt and Yt can be collapsed

into a single state variable wt = Wt/Yt, cf. Carroll (2004). Since the time horizon

is finite, we start in the last period T and then proceed backwards. As mentioned

before, the optimal amount of consumption then equals the sum of the pension

income and the remaining wealth. Hence the value function can be written as

VT (WT , YT ) = Y 1−γ
T

(wT + 1)1−γ

1− γ
(2.9)

where wT = WT/YT . Then, the transition equation for the single state wt is

Wt+1

Yt
=

((1− αt) (1 + r) + αtZt+1) (Wt + Yt − Ct)
Yt

Wt+1

Yt+1

· Yt+1

Yt
= ((1− αt) (1 + r) + αtZt+1) (wt + 1− ct)

wt+1 =
(1− αt) (1 + r) + αtZt

Yt+1/Yt
(wt + 1− ct) (2.10)

with ct = Ct/Yt. Proceeding back to period T − 1, the value function becomes

VT−1 (WT−1, YT−1) = max
αT−1,CT−1

{
C1−γ
T−1

1− γ
+

1

1 + ρ
ET−1 (VT (WT , YT ))

}

= max
αT−1,cT−1

{
(cT−1YT−1)

1−γ

1− γ
+

1

1 + ρ
ET−1

(
Y 1−γ
T

(wT + 1)1−γ

1− γ

)}

= Y 1−γ
T−1 max

αT−1,cT−1

{
c1−γT−1

1− γ
+

1

1 + ρ
ET−1

((
YT
YT−1

)1−γ
(wT + 1)1−γ

1− γ

)}
.

Proceeding from there and using equation (2.9), we define a new optimization prob-

lem with the single state variable wt

vt (wt) = max
αt,ct

{
U (ct) +

1

1 + ρ
Et

((
Yt+1

Yt

)1−γ

vt+1 (wt+1)

)}
, (2.11)
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subject to transition equation (2.10) with terminal value function

vT (wT ) =
(wT + 1)1−γ

1− γ
.

Note that for both the single-state transition equation and the value function we have

to distinguish retirement and working life since the transition equation of income

differs between both. In particular, Yt+1/Yt equals 1.02 during retirement, 0.8 in

the transitional period t = S which is the last period for the individual with labor

income and, moreover, it is exp(µε + θεεt) during working life.

Then for all t = 1, . . . , T , the relation between the value functions for one and

two state variables is

Vt (Wt, Yt) = Y 1−γ
t vt (Wt/Yt) .

After optimization, the policy function c∗t (wt) can be re-transformed into

C∗t (Wt, Yt) = Ytc
∗
t (Wt/Yt).

The policy function α∗t (wt), i.e. the share of wealth invested in the risky asset, needs

not be re-transformed.

2.2.3 Solution of the dynamic optimization problem

It is sensible to use backward recursion when facing a decision problem in finite time,

where the value function in the last period is known. Because of the computational

complexity, we approximate the value function by a functional form, in particular

by

vt(wt) =
(wt + at)

bt

dt
,
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which in T exactly equals the value function with aT = 1 and bT = dT = 1− γ.

We solve the dynamic programming problem for a time horizon of T = 60 years,

which we refer to as periods. Moreover, we assume the individual to work in the

first S = 45 years. Table 2.1 shows the parameterization of the model. Following

Viceira (2001), we set the value for the standard deviation of innovations in log

labor income θε to 15% per year. Expected log income growth µε is set such that

the expected income growth rate approximately equals 3% per year.

Parameter

r, ρ 0.05

µZ 0.04

θZ 0.2

µε 0.018

θε 0.15

γ 2

Table 2.1: Parameterization

We assume the initial state to be w0 = W0/Y0 = 1 and consider an attainable range

of 50 equidistant grid points between 0 and 10.

Figure 2.1 shows typical policy functions C∗t (Wt, Yt) and α∗t (Wt, Yt) solving the

dynamic optimization problem. The vertical dashed lines illustrate the period of

retirement. In most cases, consumption increases during working life, reaching its

maximum near the end. This pattern probably results from income increasing by

an average of 3% per year. Just before retirement, consumption drops and stays

almost constant during pension, however, on a lower level than during working life

since pension payments are rather low. In the last periods of retirement, consump-
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Figure 2.1: Typical optimal policy functions

tion slightly increases again, probably due to the fact that our model contains no

bequests.

The second policy function reveals that the optimal fraction of risky assets starts

at 100% which holds for almost all individuals in our sample. This may be explained

by the fact that the expected value of the risky asset is larger than the expected

value of the risk-free asset, while the degree of risk aversion is rather moderate.2

Regardless of the larger expected value of risky assets, we find a shift towards the

risk-free investments during working life. After retirement, facing secure pension

payments, the fraction slightly increases again. However, in the last periods, the

individuals finally shift their investments towards safe assets. Finding the optimal

allocation to risky assets to be larger for employed individuals is consistent with the

literature on asset allocation, which typically advises younger people to invest in

stocks. An explanation for this suggestion might be that they have more years of

labor income ahead in which to recover from the potential losses associated with risky

assets, see e.g. Jagannathan and Kocherlakota (1996), among many others. This

2Zt is lognormal distributed with E(Zt) = exp
(
µZ + θ2Z/2

)
= 1.0618.
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Figure 2.2: Realized paths of states

implies that investments should be shifted towards safer assets as the individuals

age.

Figure 2.2 depicts the corresponding income and wealth paths. In this case, “in-

come” means labor income in the first 45 periods and pension payments thereafter.

The third panel shows the wealth-to-income ratio w = W/Y . Income is exogenous

throughout the entire life-cycle. In the first 45 periods, it follows a geometric random

walk with drift. During retirement, income evolves deterministically, increasing by

2% per period. The wealth path indicates that the individual starts accumulating

wealth in the middle of his working life, attaining its maximum in the last working

period S = 45. This pattern can be explained by precautionary savings motives

since the individual is well informed about the date of retirement and future pen-

sion payments. After retirement, the wealth buffer decreases fairly constantly until

the final period T .

2.3 Estimation by indirect inference

In the following, the parameters of the earnings process and the risk aversion pa-

rameter are assumed to be unknown. The method of indirect inference enables us

to estimate all parameters simultaneously. Since we take into account not only the
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earnings process but also interest income, we suppose the estimates of the earnings

processes parameters to be more precise than maximum likelihood estimates, which

are based on the earnings process only.

The first part of this section provides a general introduction to indirect inference,

presenting the basic idea and a formal definition. Beyond, in the second part, we

go into detail on how to use indirect inference to estimate the unknown parameters

of the earnings process and the risk aversion parameter γ.

2.3.1 Introduction to indirect inference

Econometric models are often determined by complex links between endogenous and

exogenous variables. In such cases, complexity rules out a direct estimation approach

since the likelihood function of the model is analytically intractable or too difficult

to evaluate. Numerous examples in the literature include nonlinear dynamic models,

models with latent or unobserved variables and models with incomplete data.

The goal of indirect inference is to choose the parameters of the economic model

such that the generated data and the observed data are as similar as possible, com-

pared by means of the auxiliary model. That is, the parameters of the auxiliary

model are estimated using either the generated or the observed data. Indirect in-

ference chooses the parameters of the economic model such that the two sets of

estimates of the auxiliary model’s parameters are as close as possible. This method

is actually similar to the generalized method of moments (GMM). However, its ad-

vantage over GMM is that the auxiliary model does not require moment conditions

of the economic model for the estimates to be consistent.

Since indirect inference is a simulation-based method, it requires only little an-

alytical tractability. The economic model must, however, allow for simulating data
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for various values of its parameters. If this condition is met, indirect inference can be

used to estimate almost any identifiable model from which it is possible to generate

data. In contrast to many other simulation-based methods, the criterion function

is an auxiliary model which needs not be an accurate description of the data gen-

erating model. However, if it exactly specifies the true model, indirect inference is

asymptotically equivalent to maximum likelihood.

Indirect inference was first introduced by Smith (1990, 1993) and later extended

by Gourieroux et al. (1993) and Gallant and Tauchen (1996). Since then, there

have been many applications to economic models. These include applications to

stochastic volatility models (Monfardini (1998)), to semi-parametric models (Dridi

and Renault (2000)), to discrete choice models (Keane and Smith (2003)) and studies

with Bayesian learning (Guvenen and Smith (2014)).

Mainly following Gourieroux et al. (1993) and Smith (1993), the ideas of indirect

inference are now put in a more precise form. Suppose the economic model to be

defined as

yt = r(yt−1, xt, ut, θ), t = 1, . . . , T (2.12)

where x1:T is a sequence of observed exogenous variables, y1:T is the corresponding

sequence of observed endogenous variables. The error terms u1:T are, however, not

observable and further follow a white noise process with known distribution G0. θ

is the unknown parameter vector of the economic model.

Auxiliary model and the first step:

The auxiliary model forms the criterion function. It usually depends on the observa-

tions x1:T and y1:T and on the auxiliary parameter vector β which can be determined
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analytically.3 In a first step, the parameter vector β of the auxiliary model is esti-

mated using the observed data. The criterion function is maximized with respect to

β:

β̂T = arg max
β

QT (x1:T , y1:T , β). (2.13)

The estimated parameter vector β̂T captures certain features of the observed data.

Indirect inference chooses the parameter vector of the economic model θ such that

these features are reproduced as closely as possible.

The second step:

To simulate from the economic model (2.12), one first draws a sequence of random

errors ũm1:T from their known distribution G0. Usually, indirect inference uses M

such sequences, with m = 1, . . . ,M indicating the number of the simulation step.4

Assume the initial value y0 to be known. Using the simulated error terms and

the observed path x1:T it is straightforward to iterate ỹm1:T (θ), given a value of the

parameter vector θ. For each of these M paths, the auxiliary parameter vector is

estimated by maximizing the criterion function:

β̃m(θ) = arg max
β

QT (ỹm1:T (θ), x1:T , β). (2.14)

Hence, for each value of θ we obtain M estimates of β which are finally averaged

over all M repetitions:

β̃(θ) =
1

M

M∑
m=1

β̃m(θ) (2.15)

3Note that the number of parameters in the auxiliary model must be at least as large as the number
of parameters in the economic model.

4To obtain comparability between data simulated for different parameter values of θ, the M se-
quences of error terms are drawn only once and then held fixed during the estimation.
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The idea of indirect inference is to calibrate the parameter vector θ so as to

minimize the distance between β̂T and β̃(θ). Hence, θ̂(Ω) is the solution of the

minimum distance problem

θ̂(Ω) = arg min
θ

[
β̂T − β̃(θ)

]′
Ω
[
β̂T − β̃(θ)

]
, (2.16)

where Ω denotes the positive definite weighting matrix.

Under the assumption that the true parameter θ0 is the only value of θ which

satisfies the previous equation, indirect inference generates consistent estimates as

may be argued heuristically: It can be shown that β̃(θ) converges in probability

(with T growing large) to a ’pseudo-true value’ that depends on θ. Call it h(θ),

which in the following is referred to as the “binding function”. The binding function

induces a mapping from the parameters of the economic model θ to the auxiliary

parameters β. Similarly, the estimated parameter vector in the actually observed

data β̂T converges to a pseudo-true value β0. Indirect inference chooses θ to satisfy

β0 = h(θ) for T → ∞. Furthermore, (Gourieroux et al., 1993, p. 91f) showed that

the indirect inference estimator is asymptotically normal when M is fixed with

√
T (θ̂(Ω)− θ0)

d−−−→
T→∞

N(0,W (M,Ω)), (2.17)

where W is the asymptotic variance-covariance matrix.

2.3.2 Estimation of the consumption-savings model

After introducing the most important features of the indirect inference approach, we

now turn to the estimation of the economic model described in Section 2.2.2. The

three parameters of interest are µε and θε for the stochastic earnings process (2.6)

and the risk aversion parameter γ of the CRRA utility function. We collect them in
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a vector θ = (µε, θε, γ). Besides, we assume that the other parameters (i.e. interest

rate r, subjective discount rate ρ, expected stock return µZ , and volatility θZ) are

known or have been estimated outside our model. For simplicity we also assume that

the panel is balanced and that all individuals have the same parameters and known

starting values. These restrictions can be relaxed, but simplify the simulation study

below.

To estimate the parameters by indirect inference, we have to formulate an aux-

iliary model which captures the main features of the data. We assume the auxiliary

model to consist of several components. In particular, we specify the auxiliary model

to be a composition of

� the mean growth rate of earnings (which is the first entry of β),

� the standard deviation of the growth rate of earnings for t = 1, ..., T (second

entry of β),

� and additional information about capital income, i.e. the coefficients of a linear

regression of interest payments on a constant, age and age squared (entry 3-5

of β).

Hence, the auxiliary parameter vector β has length five. The estimation is carried

out as outlined in Section 2.3.1. First, the auxiliary parameter vector is estimated

for each individual i = 1, . . . , N using the actually observed earnings and interest

payments data. Since we observe N individuals with the same characteristics, we

aggregate the results by averaging the estimates over all N individuals. The resulting

vector of estimates (from the observed data) refers to β̂T in equation (2.13).

Again, let θ be an arbitrary vector of the parameters of interest and let θ0 denote

the true parameter vector. For parameter vector θ, it is straightforward to compute
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the corresponding policy functions α∗t , C
∗
t . Assuming that the starting values of the

states are given, we simulate M data sets. M can be larger than N to mitigate the

influence of sampling errors. The auxiliary parameter vector β is estimated for each

of these M data sets, where the average of all M estimates refers to β̃(θ) in equation

(2.15).

As proposed in the previous section, the indirect inference estimate is the solution

of the minimum distance problem stated in equation (2.16). In doing so, we assume

the weighting matrix Ω to be the identity matrix. Note that no matter how Ω is

chosen, the indirect inference estimator is consistent and asymptotically normal.

As the asymptotically efficient weighting matrix can be far from optimal in finite

samples, we set Ω to the identity matrix.

While the mean and standard deviation of earnings growth are sufficient to es-

timate the parameters of interest µε and θε, adding information about capital in-

come may increase the precision of the estimates and allows us to estimate the

coefficient of risk aversion γ. The amount of information on capital income de-

pends on the question, which variables are observable. In the present setting, the

econometrician observes capital income from the risk-free asset in period t, i.e.

(1− αt) r (Wt + Yt − Ct), but has no information on capital income due to chang-

ing stock prices. Observing interest payments is, of course, much less informative

than observing wealth or consumption, but more common in typical panel data

sets. However, no matter which information on capital income is observable, the

estimation method can be very easily adapted to the relevant setting since it is very

flexible.
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Indirect Inference ML (Benchmark)

True value Estimate MSE Estimate MSE

µε 0.018 0.01814 2.599 · 10−6 0.01807 1.021 · 10−5

θε 0.15 0.15028 7.785 · 10−6 0.14918 6.154 · 10−6

γ 2 1.99705 0.016

Table 2.2: Mean estimates and MSEs

2.4 Simulation studies

We simulate both the income process and the capital income of N = 50 individuals

in a dynamically optimal way. Assuming henceforth to be unknown, we aim at

estimating the stochastic income parameters µε and θε as well as the risk aversion

parameter γ by indirect inference. We set M = 100 and therefore obtain 100 data

sets for each parameter value of θ. The indirect inference estimate θ̂ minimizes the

distance between β̂T and β̃(θ).

We perform a Monte Carlo procedure and repeat the entire estimation procedure

described above 1000 times. Table 2.2 summarizes our average results. Since we

know from theory that indirect inference generates consistent estimates, it comes as

no surprise that the estimates are centered near the true values. Figure 2.3 shows

the corresponding histograms of the estimates, where the true values are illustrated

by the vertical black lines. They indicate that the estimates are also symmetrically

distributed, even in our finite sample.

As a benchmark, we also estimate the earnings processes’ parameters by means of

a maximum likelihood estimation that is solely based on earnings data. To make the

estimation comparable to our indirect inference approach, we repeat this procedure

1000 times. For each repetition, we generate earnings data for N = 50 individuals.
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The two right columns of table 2.2 present the average results. Comparing the es-

timates and the MSEs of the estimation approaches shows that both provide similar

results. This applies to the point estimates as well as to the variation of the esti-

mates. However, maximum likelihood is limited to the estimation of the parameters

of the earnings process. In contrast, indirect inference is very flexible, providing the

possibility of estimating additional parameters of the economic environment such

as the risk aversion or the subjective discount factor. Furthermore, it is still well

applicable when the length of the sample period is rather small.

2.5 Conclusion

In general, the information set of individuals about their earnings risk differs from

the one that is available to the econometrician. Departing from that, in this chapter

we suggest a method that uses not only earnings data to elicit the amount of earn-

ings risk, but considers the joint dynamics of capital income and earnings. Since

capital income reflects the amount of savings, it contains important information

about consumption and savings behavior and therefore implicitly about earnings

risk.

To this end, we assume that the true model is a life-cycle model of consump-

tion and investment decisions, stated as a dynamic programming problem. When

assuming the parameters of the earnings process and the risk aversion parameter to

be known, the optimal controls can be derived by backward recursion. Since these

parameters are unknown to the econometrician, we aim at estimating these parame-

ters (from a simulated data set). Using indirect inference enables us to estimate the

set of parameters simultaneously. Moreover, it is fairly flexible, meaning that it can

easily be adapted to estimate different sets of unknown parameters or include dif-
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ferent information available on capital income. The results show that the estimates,

obtained from indirect inference, are centered near the true values. Compared with

maximum likelihood estimates, no major difference can be observed based on point

estimates and MSEs. Hence, our suggestion that a larger information set improves

the estimates was not confirmed by the results of our implementation. However,

our estimation framework has the distinct advantage that it provides the possibility

of estimating further parameters of the economic environment, making it variably

applicable. Moreover, it is well employable when the observation period is short.

For future research, it may be interesting to apply our framework to real-world

data. Doing so, an interesting modification will be to replace the CRRA utility

function by Epstein-Zin preferences which have become quite popular in the recent

literature. In contrast to the standard CRRA utility, Epstein-Zin preferences specifiy

the utility recursively and allow to separate two of the dimensions along which people

care about their allocations; namely, risk aversion and intertemporal substitution.

Hence, they might describe the individuals’ preferences in a more realistic way.
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Chapter 3

Whoever has will be given more:

Are earnings subject to a

self-reinforcing mechanism?

In the previous chapter we used a consumption-savings model to gather information

on earnings risk. Our model’s main advantage is the fact that it not only uses

earnings data but also considers the joint dynamics of earnings and capital income

that we assume to contain information on both consumption and savings behavior

and therefore implicitly on earnings risk. Following this application, the next two

chapters rather deal with the question of how to model earnings dynamics. To begin

with, the present chapter addresses the question if explosiveness should be taken into

account when modeling income profiles. Exploring whether incomes evolve in an

explosive way accounts for the idea that deviations of earnings from a common trend

could be self-reinforcing. Departing from these findings, a more detailed analysis

of the nature of individual income profiles will be carried out in the subsequent

chapter.
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3.1 Introduction

Income and earnings dynamics receive a lot of attention in the economics literature.

Understanding the nature of earnings profiles is important as it provides a lot of

information on earnings risk. In turn, earnings risk is an important part of the over-

all economic risk, that individuals and households face. Therefore, several studies

examine the structure of earnings. In their seminal work, Nelson and Plosser (1982)

found that most macroeconomic variables including wages have a time series struc-

ture with a unit root. Beyond, studies like Perron (1988), Carruth and Schnabel

(1993) found evidence for the fact that wages follow a random walk with drift.

Incomes following a unit root not only induces a large amount of income risk,

but also provides evidence for strong divergence of incomes over time. There is a

widespread concern internationally about the rise in earnings inequality since the

1980s. In real terms, workers at the bottom of the income distribution have lost in

many countries during the last decades, while we have witnessed a large increase

in the share of earnings accruing to the top decile and, even more pronounced, the

top percentile of the distribution, especially in English-speaking countries. A whole

strand of literature arose from this trend (Gottschalk and Moffitt (1994), Katz et al.

(1999), Atkinson et al. (2011)).

In this chapter, we go one step further and suggest to test if explosiveness is

a pattern that needs to be taken into account when modeling income profiles. In

this context, explosiveness implies that positive deviations tend to boost the income

growth rate such that deviations from a common trend will increase even more. In

the same way, negative shocks will induce the growth rate to decline or even to

become negative. We call this a “self-reinforcing effect”. This could, for instance,
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occur for managers, who typically start their career earning a relatively high wage,

which then increases even more. Explosiveness is ruled out in previous studies on

earnings dynamics even though the extreme divergence of some individual income

profiles has been noted before (Lillard and Weiss (1979), Guvenen et al. (2015)).

This in particular applies to Lillard and Weiss (1979), who found that individuals

with greater mean earnings also are subject to greater earnings growth. Moreover,

they found the variance of individual mean earnings to increase substantially within

the 1970s.

A well specified statistical model of earnings dynamics is of interest not only for

economists, but also for policy makers. If, on the one hand, shocks are permanent –

and not insurable – policy makers should aim to introduce or facilitate risk sharing

mechanisms. On the other hand, if the evolution of earnings is mainly deterministic,

an obvious policy response is to improve education in order to shift workers who

would end up on low-performing trajectories onto higher profiles.

In our analysis, we employ earnings data which are adjusted for their common

trend. We suggest to use a panel unit root test on these data which tests against

the alternative of explosiveness. Statistical tests against explosiveness exist for uni-

variate time series (Phillips et al. (2011)) but have not been applied to earnings or

other panel data heretofore. Following a suggestion by Hanck (2013) we construct

a panel unit root test based on Simes’ (1986) intersection test, and apply the test

procedure to earnings data from the cross-national equivalent files of the German

Socio-Economic Panel (GSOEP) and the U.S. Panel Study of Income Dynamics

(PSID) data sets. We find that the null hypothesis of stationarity or unit roots can

be rejected in both countries. Explosiveness is evident in the data, but only for a

small fraction of the population.
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This chapter is organized as follows. Section 3.2 provides an overview of the

existing literature on panel unit root tests. In Section 3.3 we formulate an income

process which will serve as a basis for the ADF regressions later on when testing

for explosiveness. Section 3.4 introduces the right-tailed panel unit root test. The

used data are described and the empirical applications are reported in Section 3.5.

We apply the panel test to GSOEP and PSID earnings data. Finally, Section 3.6

concludes.

3.2 Literature on panel unit root tests

The main drawback of classical univariate unit root tests is that they often suffer

from low power. Adding a cross-sectional dimension could be a way to overcome this

problem. Therefore, the application of unit root tests to panel data has attracted

much attention in the recent years. The literature thereby distinguishes two “gener-

ations” of panel unit root tests. First generation tests are based on the assumption

that individual time series are cross-sectionally independent. For instance, Maddala

and Wu (1999) applied a method of aggregating individual tests, which was orig-

inally suggested by Fisher (1925). Doing so, they tested the joint null hypothesis

that all individual processes have a unit root against the alternative that at least

one process is stationary. The null is rejected at level α if the test statistic, which

combines the p-values of N time series ADF tests, is larger than a given critical

value. The critical value was shown to be the (1−α)-quantile of the χ2 distribution

with 2N degrees of freedom. However, this aggregation method is restricted to test

statistics (and hence p-values) which are cross-sectionally independent. Further first

generation panel unit root tests were suggested by Levin et al. (2002) and Im et al.

(2003). Both approaches test the null hypotheses that all time series are indepen-
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dent random walks. They mainly differ in the set up of the alternative. On the one

hand, the autoregressive coefficients are assumed to be identical for all cross section

units (Levin et al. (2002)). On the other hand, the autoregressive parameters are

supposed to be individual-specific and hence, the alternative states that at least one

panel unit is stationary (Im et al. (2003)).

However, for economic applications it is rather inappropriate to assume cross

section units to be independent. Especially in macroeconomic applications, time se-

ries are often contemporaneously correlated for a variety of reasons such as common

factors or spatial spillover effects. Numerous panel unit root tests were developed

that allow for different forms of cross section dependence, such as Chang (2002),

Phillips and Sul (2003), Bai and Ng (2004), Breitung and Das (2005) and Moon and

Perron (2004).

Chang (2002) proposes a test based on a nonlinear instrumental variable esti-

mation of the common augmented Dickey-Fuller regression. With nonlinear trans-

formations of lagged levels used as instruments, she shows that individual ADF

statistics are asymptotically independent. The test statistic is defined as a stan-

dardized sum of the individual IV t-ratios. However, her test was shown1 to be valid

only if the number of cross section units N is fixed as T →∞.

Phillips and Sul (2003), Moon and Perron (2004) and Bai and Ng (2004) approach

the problem in a similar fashion. They make use of a residual factor model which

takes into account cross section dependence. Phillips and Sul (2003) suggest an

orthogonalization procedure which may asymptotically remove the common factors2.

Standard panel tests can then be applied to the transformed series. In line with

1See Im and Pesaran (2004).
2They address the dependence problem using an iterative method of moments approach to estimate
cross section dependence parameters in the factor model.
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this, Moon and Perron (2004) suggest to first de-factor the panel data, which is

accomplished by means of a principal components estimation of the factor loadings.

They show that their proposed test has good asymptotic power properties if there are

no deterministic trends. While both previous approaches only allow the idiosyncratic

components in the factor model to have unit roots, Bai and Ng (2004) additionally

allow for the possibility of unit roots and cointegration in common factors. This

method, however, requires large panels with N/T → 0. Again the common factors

are estimated by principal components. Both the idiosyncratic components and

common factors are then separately tested for unit roots. The approaches based on

factor models are particularly attractive if the number of cross section units (N) is

large compared to the number of time periods (T ).

Breitung and Das (2005) propose a robust version of the OLS Dickey-Fuller t-

statistic which still performs well if the number of time periods is less than the

number of cross-sectional units. As an alternative, they suggest a GLS approach

obtained from an OLS estimation of a transformed model. The GLS approach,

however, is only feasible if T > N . Pesaran (2007) introduces the cross section

augmented Dickey-Fuller (CADF) test. It augments the standard ADF test with

the cross-section averages of both lagged levels and first differences of the individual

series. First generation unit root tests can then be applied to the results of the

individual CADF tests (e.g. Maddala and Wu (1999)).

All of the panel unit root tests outlined above are tests against stationarity; none

of them tests against explosiveness. In the literature, tests against explosiveness are

only applied for the detection of financial bubbles, and they are restricted to time

series data. Among them are Bhargava (1986), Phillips et al. (2011), Phillips et al.

(2015a) and Phillips et al. (2015b).
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Our approach follows the idea of Hanck (2013) who proposes a panel unit root

test based on Simes (1986) classical intersection test. Hanck sets up the global

null hypothesis H0 that all individual null hypotheses Hi,0, i = 1, ..., N are true.

This method is easy to implement since it only requires p-values of N time series

unit root tests. These are ordered ascendingly and compared to increasing critical

values. The panel null hypothesis is rejected if at least one p-value is smaller than

the corresponding critical value. Hanck’s method further enables us to identify

those units of the panel, for which Hi,0 is rejected. Moreover, it accounts for the

multiple testing nature since it controls the Familywise Error Rate (FWER), i.e.

the probability of falsely rejecting at least one individual null hypothesis, at level α.

By combining the p-value approach of Simes (1986) and the p-values of univariate

right-tailed unit root tests, we obtain a procedure to test for explosiveness in panel

data sets.

3.3 Modeling earnings

The aim of this section is to set up an income process which will serve as a basis for

the first-order autoregressive panel model and hence for our test procedure later on.

First, we adjust labor incomes for a common trend. To this end, we assume that

labor market experience hit is approximated by age minus school years minus 6. For

each period t, we carry out a regression of log earnings in t on a cubic polynomial in

potential experience hit and dummy variables for the level of education (with levels

less than high school/high school/more than high school), and let yih,t denote person

i’s residual of this regression. This is the usual way of eliminating common effects

that affect all individuals in period t (Guvenen (2009)). Since the regressions are
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run separately for each period, they also capture other time-specific variations in

the labor market such as increasing returns to education (Autor (2014)).

In the following, yih,t will simply be referred to as “earnings”. Earnings are

modeled as

yih,t = αi + βihit + zih,t + εih,t (3.1)

where αi and βi are individual specific random effects with zero expectations, vari-

ances σ2
α and σ2

β and covariance σα,β. The random shock εih,t represents the short-

term transitory earnings shocks and is assumed to be homoscedastic and independent

of αi and βi. Shocks that are longer lasting are modeled by

zih,t = ρizih−1,t−1 + ηih,t (3.2)

where ηih,t is a (homoscedastic) random shock. Note that the initial value of the

persistent shocks is set to zi0,t = 0.

3.4 The right-tailed panel unit root test

As a basis for our test procedure, we first rewrite our earnings model (3.1) and (3.2)

as a first-order panel autoregression. Let µih,t = E(yih,t) = αi +βihit be individual i’s

expected earnings in t. Then, our earnings model implies that

yih,t − µih,t = ρi(yih−1,t−1 − µih−1,t−1) + uih,t i = 1, . . . , N ; t = 1, . . . , T (3.3)

where T denotes the number of time series observations on each of the N individuals,

and uih,t is a stochastic process capturing the error terms with

uih,t = ηih,t + εih,t − ρiεih−1,t−1,
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and therefore uih,t has an MA component.

Before we continue with the panel case, we consider the univariate unit root test

against explosiveness, i.e. the null hypothesis H0 : ρi ≤ 1 against H1 : ρi > 1. Tests

for explosiveness in time series are commonly used in the literature on the testing

for speculative bubbles which are usually referred to as right-tailed unit root tests,

for example in Phillips et al. (2011). Pursuant to this approach, we employ the

standard univariate Augmented Dickey-Fuller (ADF) test for each time series. To

substantiate which version of the ADF test to use, equation (3.3) is transformed

into

∆yih,t = αi(1− ρi) + βi(hit + ρi − ρihit) + (ρi − 1)yih−1,t−1 + uih,t. (3.4)

Since the first two terms are linear in t, we find that the ADF test should be based

on a regression including both a constant and a trend. Therefore, the ADF test for

individual i is based on the regression

∆yih,t = γi + βihit + φiyih−1,t−1 +

Ki∑
k=1

∆yih−k,t−k + vih,t. (3.5)

with φi = ρi−1 and an appropriate γi. The additional lagged differences are included

to capture autocorrelations in the error term uih,t such that vih,t is uncorrelated. Since

time series with an MA component can be approximated by AR processes with a

large number of lags, the number of additional lagged differences Ki must not be

set too low. Gustavsson and Österholm (2014) suggest to use the BIC to determine

the number of lags. In the appendix, we show that the BIC may fail to choose

the correct number of lags in relatively short time series. Therefore, we set Ki = 3

which is large enough to pick up the autocorrelation of the error term, but still small

enough to ensure a sufficiently large number of observations.
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The regression (3.5) does not only include a constant γi but also a trend. The

trend is necessary to allow for diverging earnings profiles under the null hypothesis

in case of stationarity, i.e. if ρi < 1. In the absence of a trend, ρi < 1 would imply

a stationary time series around a constant level.

As in ADF tests against stationarity, the test statistic in the test against explo-

siveness is the t-statistic belonging to the regression coefficient φi in (3.5). As we

consider the right tails of the Dickey-Fuller distribution, the p-values are computed

as the probabilities of obtaining larger test statistics than those actually resulting

from the ADF tests under the null hypothesis. Since we need precise individual

p-values even if they are extremely small, we derived the distribution of the test

statistic under the null hypothesis by Monte-Carlo simulations with 1 million repli-

cations.

After considering the univariate unit root test against explosiveness, we now

come back to the panel case. The global null hypothesis states that all N time

series are either unit root processes or stationary:

H0 : ρ1 ≤ 1, ρ2 ≤ 1, . . . , ρN ≤ 1

The global null hypothesis is the intersection over N individual hypotheses, H0 =⋂
i=1,...,N Hi,0 with Hi,0 : ρi ≤ 1. The alternative hypothesis states that at least one

process is explosive. This test setting is based on Simes’ intersection test which

is a less conservative modification of Bonferroni’s procedure for testing multiple

hypotheses. The latter lacks power if the test statistics are correlated. The modified

version overcomes this problem and controls the FWER even if the test statistics

are not independent. If they happen to be independent, the type I error probability

is equal to α.
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Let p(1) ≤ . . . ≤ p(N) denote the ordered p-values of the tests belonging to the

individual hypotheses Hi,0. Simes’ test rejects the global H0 at level α if

p(j) ≤ j · α
N

for some j = 1, . . . , N,

i.e., one compares p-values, sorted from most to least significant, to gradually in-

creasing points j ·α/N . The global null hypothesis is rejected if there exists at least

one p-value which is sufficiently small.

The main advantage of this p-value combination approach is that we only require

p-values from univariate test statistics, even if these are not independent. At the

same time, as found by e.g. Maddala and Wu (1999), p-value combination tests

are typically competitive in terms of power and size to computationally much more

demanding procedures.

In contrast to previously suggested panel unit root tests, this approach moreover

allows to specify the fraction and the identity of the rejected units by means of

a procedure suggested by Hommel (1988). He criticizes that Simes’ test does not

allow statements about individual hypotheses since the FWER is not controlled in

this case.3 To overcome this problem, Hommel introduced an improved multiple test

procedure which allows to make statements about individual hypotheses. He applies

Simes’ test to each intersection hypothesis of a closed test procedure. His procedure

controls the FWER at level α, provided Simes’ test has level α. The test decisions

for each individual hypothesis is performed according to the following algorithm:

1. Compute j = max{(i ∈ {1, . . . , N} : p(N−i+k) > kα/i for all k = 1, . . . , i}.

2. If p(N) ≤ α, reject all Hi,0. Else, reject all Hi,0 with pi ≤ α/j.

3Simes proposed to reject H1,0, . . . ,Hk,0 where k = max{j : p(j) ≤ jα/N}. This procedure was,
however, shown not to control the FWER at level α.
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Like other p-value combination approaches that are based on transformed sums of

p-values, Simes’ procedure is consistent as T → ∞ for any N < ∞ (e.g. Hanck

(2013)). Many other panel unit root tests (e.g. Im et al. (2003), Pesaran (2007))

further require that the fraction of rejected individual null hypotheses must not

converge to zero in order to be consistent. However, this is not necessary for tests

which are based on the combination of p-values like Simes’ test, since the global null

is already rejected if one p-value is sufficiently small.

3.5 Empirical applications

We use earnings data from the cross-national equivalent files of the German SOEP

(GSOEP) and the U.S. Panel Study of Income Dynamics (PSID) to empirically in-

vestigate our research question. More precisely, we employ the annual 1984-2012

waves of the GSOEP and the 1970-1997 waves of the PSID, which comprise a maxi-

mum of 29 and 28 years of observations. For both data sets, we restrict our analysis

to individuals aged between 20 and 64 who worked at least 520 hours per year. The

maximum amount of hours worked is restricted to 5110 and the average number

of hours worked is 1852, which corresponds to approximately 35 working hours per

week. Moreover, we only consider individuals that have an hourly wage rate of

larger than or equal to 3 Euro. Finally, we only take into account individuals with

at least 15 observations that, however, need not be consecutive. Following these

restrictions, we obtain a data set with size N = 4270 for the GSOEP and N = 4472

for the PSID. Table 3.1 briefly summarizes these values.

As outlined in Section 3.3, we eliminate possible time effects such as inflation or

a potential rise in the skill premium. To this end, we run a cubic regression of log

income on experience hit and a dummy variable for the level of education (less than
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GSOEP PSID

number of observations 4270 4472

∅ years with earnings obs. 20.0 19.8

∅ age in first wave 29.3 24.9

∅ age in last wave 53.8 50.4

Table 3.1: Data description

high school, completed high school, or more than high school). The regressions are

carried out separately for each wave in each data set. We approximate experience

in the usual way by calculating age minus school years minus 6. The resulting

residuals constitute the earnings yih,t which are modeled in equation (3.1). To test

if explosiveness is evident in earnings, we make use of the panel unit root test

suggested in the previous section. We first investigate the GSOEP data set. The

first two columns in table 3.2 outline the smallest ordered p-values of the univariate

right-tailed unit root tests (left column) and compares them to Simes’ cutoff-values

(right column).4

The results show that the global null hypothesis that all time series are unit

root or stationary processes, is rejected at the 5% level. Figure 3.1 (upper panel)

illustrates this result: The first 49 p-values are below Simes’ cutoff line, represented

by the dashed line. Using Hommel’s (1988) procedure, we can identify the time

series for which non-explosiveness is rejected. At the same time we control the

FWER at level α = 0.05. With a Hommel’s j equal to 4045, all p-values smaller than

α/j = 1.23 ·10−5 lead to rejections of the corresponding individual hypotheses. This

procedure reduces the amount of rejected time series to 13 in case of the GSOEP

and only 3 in case of the PSID (see figure 3.2). Apparently, while explosiveness

4Some of the time series contain too many consecutive NAs such that we can not carry out unit
root tests for them. Excluding these time series reduces the number of individuals to N = 4061.
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GSOEP PSID

p-values Simes’ cutoff p-values Simes’ cutoff

p(1) 0.000000 0.000012 0.000000 0.000012

p(2) 0.000000 0.000025 0.000000 0.000024

p(3) 0.000000 0.000037 0.000003 0.000035

p(4) 0.000000 0.000049 0.000013 0.000047
...

...
...

...
...

p(12) 0.000004 0.000148 0.000071 0.000141

p(13) 0.000006 0.000160 0.000077 0.000153

p(14) 0.000014 0.000172 0.000087 0.000165
...

...
...

...
...

p(28) 0.000188 0.000345 0.000293 0.000329

p(29) 0.000194 0.000357 0.000321 0.000341

p(30) 0.000201 0.000369 0.000389 0.000353

p(31) 0.000226 0.000382 0.000449 0.000365
...

...
...

...
...

p(48) 0.000590 0.000591 0.001081 0.000565

p(49) 0.000597 0.000603 0.001081 0.000576

p(50) 0.000723 0.000616 0.001084 0.000588

p(51) 0.000724 0.000628 0.001087 0.000600

p(52) 0.000794 0.000640 0.001099 0.000612

Nnew 4061 4251

Table 3.2: First sorted p-values and Simes’ cutoff
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Figure 3.1: First sorted p-values compared to Simes’ cutoff line, upper panel:

GSOEP, lower panel: PSID
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is evident in a statistically significant way in both data sets, it does not play a

quantitatively important role. We conclude that explosiveness cannot be ruled out

for a very limited number of individuals but needs not to be taken into account

when modeling income profiles.5
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Figure 3.2: First sorted p-values compared to Hommel’s cutoff line, upper panel:

GSOEP, lower panel: PSID

5The null hypothesis that all individuals have non-stationary (i.e. unit root or explosive) processes
is also rejected at the 5% significance level. Simes’ cutoff yields 85 rejections (i.e. significantly
stationary processes) for the PSID and 123 rejections for the GSOEP. Hommel’s procedure boils
these numbers down to 31 (PSID) and 50 (GSOEP) rejections.
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3.6 Conclusion

In many countries earnings inequality has risen sharply in the last decades. Workers

at the bottom of the distribution lost, while top earnings increased ever more. De-

parting from this observation, we suggest to test if individuals are subject to earnings

which evolve explosively. In this context, explosiveness implies that earnings above

a certain threshold experience higher growth rates than individuals below that very

line. If found, such a pattern may be interpreted as a self-reinforcing mechanism

of incomes. Moreover, earnings evolving explosively indicates that individuals are

subject to a large amount of earnings risk.

A possible method to distinguish between explosive and non-explosive (i.e. sta-

tionary or unit root) dynamics is our panel unit root test against explosiveness. We

suggest a procedure based on Simes’ (1986) intersection test. The global null hy-

pothesis states that all individuals have either stationary earnings processes or unit

root processes. This test is robust to cross-sectional dependence and, moreover,

rather easy to implement since it only requires p-values of univariate test statistics

that are combined into a panel test statistic. Applying this procedure, we may

detect the units for which the individual null hypotheses do not hold.

Our test is illustrated for U.S. and German earnings panel data ranging over

almost 30 years. We find that the null hypothesis can be rejected at common sig-

nificance levels, but the number of significantly explosive earnings profiles is very

small. Hence, we conclude that explosiveness can be neglected when modeling in-

come dynamics. However, our approach does not provide information as to whether

individuals’ income profiles are unit root processes or rather stationary around a

trend. Therefore, the next chapter aims at investigating individual incomes in more
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detail. In particular, it explores if incomes are driven by large and persistent shocks

or by deterministic components. It therefore provides further information on the

nature of earnings risk.
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Chapter 4

Is there a systematic fanning out

of income profiles?

A correctly specified model of earnings dynamics is important as it provides essential

information on earnings risk that individuals face. In the previous chapter we showed

that explosiveness is not to be considered when modeling labor incomes. Departing

from there, this chapter delves more into the details of how to accurately model labor

income profiles. In particular, we now turn to the question if labor incomes mainly

evolve deterministically or if they are rather driven by stochastic components. This

distinction is closely related to the question if earnings have a unit root or if they are

trend-stationary. Two main approaches on modeling earnings dynamics have been

established in the literature. Finding evidence for either one of both approaches will

be in the focus of the present chapter.

4.1 Introduction

The nature of labor income risk is important for various economic decisions. This

equally holds for individuals who participate in the labor market and wish to hedge
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their income risk as well as for policymakers pursuing the goal of reducing consump-

tion inequality. How individuals respond to variations in their earnings depends

to a large degree on the persistence of shocks and whether there are deterministic

components that can be anticipated. Both components as well determine optimal

policy. When facing persistent shocks which are not insurable, policy makers should

aim to introduce risk sharing mechanisms. If the evolution of incomes is mainly

deterministic, policy makers rather should improve education and support human

capital investments. Hence, a well specified statistical model is of interest.

Two different approaches to modeling labor income profiles have been established

in the literature: The heterogeneous income profile model (HIP) and the restricted

income profile model (RIP). Both models mainly differ in their assumptions about

whether differences in labor income profiles are driven deterministically or stochas-

tically. The restricted income profile model assumes that individuals are exposed

to large and persistent income shocks which account for most differences in income

courses. The life-cycle labor income profiles, however, are rather similar. According

to heterogeneous income profile model, individuals are subject to moderate income

shocks, while facing individual-specific income profiles that differ systematically. A

literature overview on both models can be found in Section 4.2.

In this chapter we empirically investigate which of the two models is more suit-

able to describe earnings data. For this issue, we provide a model to estimate labor

income courses and thereby distinguish between common coefficients and individual-

specific coefficients. Common coefficients encompass effects that affect individuals

with similar demographic characteristics in the same way, such as economic or ed-

ucation indicators. By means of individual-specific components the divergence of

income profiles can be explained.
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More so, extending the models that are used in the literature, our model allows

all coefficients to be time-varying, hence enabling us to test if income courses follow

a random walk, indicated by varying individual intercepts. If this holds true, it

indicates that the RIP model is more suitable to accurately describe labor income

profiles than the HIP model.

Estimation of the latent state vector and of the unknown variance parameters is

carried out using Gibbs sampling, a Markov chain Monte Carlo (MCMC) algorithm.

In our application, the Forward Filtering Backward Sampling (FFBS) algorithm

is used as a building block, while further draws result from the conjugate prior

distributions. Applying our framework to the German SOEP (GSOEP) data, we

find evidence that the earnings data disprove the RIP approach. For validation we

employ the Bayes factor, which confirms our finding.

The rest of this chapter is structured as follows. Section 4.2 introduces both HIP

and RIP models in more detail. Section 4.3 describes the economic model and the

Bayesian estimation framework. In Section 4.4, the estimation of an artificial data

set is presented. Section 4.5 describes the GSOEP panel data that will be used for

empirical analysis, whose results are presented in Section 4.6. Finally, Section 4.7

concludes.

4.2 Overview - HIP vs. RIP model

Two different approaches for modeling idiosyncratic labor incomes have been estab-

lished in the literature. The first one assumes that income grows at an individual-

specific, deterministic and non-observable rate, facing stationary shocks around this

very rate. Since each labor income profile is unique - even in the absence of shocks
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- Guvenen (2009) suggested to label this model the “heterogeneous income profile”

model (HIP). The human capital model possibly serves as a theoretical basis for this

approach, which suggests that the systematic differences in income profiles stem, for

example, from different talents in accumulating skills. In contrast, the “restricted

income profile” model (RIP) assumes that income contains a random walk and a

transitory stationary component. Hence, each individual is subject to large and per-

sistent income shocks, while there exist no systematic differences between income

profiles.

Many studies empirically examine both approaches. The HIP model has a long-

standing tradition in the literature beginning in the late 1970’s. Lillard and Weiss

(1979) proposed a parameterization of an individual earnings function whose covari-

ance structure accounts for individual differences in level and growth of earnings as

well as for serially correlated transitory differences. Their specification is successful

in predicting the pattern of the data. Estimating the parameters of the residual co-

variance structure, they found that individuals with larger mean earnings also had

larger earnings growth. Moreover, they found a substantial increase of the variance

of individual mean earnings with increased experience, even though the variance of

the growth component is constant. Both results led them to infer that there exists a

sizable amount of inequality in their (quite homogeneous) sample. Hause (1980) was

primarily motivated by the on-the-job training hypothesis and allowed for determin-

istic growth rate heterogeneity. Moreover, he discussed a random walk alternative

which he found to be inappropriate. More recently, Baker (1997) estimated a nested

version of both models using an equally weighted minimum distance estimator. In

this nested specification, the hypothesis of a unit root is rejected. Baker also tested

for serial correlation in the income growth rates. The presence of serial correlation
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in the data could only be explained by the HIP, but not by the RIP model. Baker

found rather weak evidence in favor of the HIP model. However, since the test has

poor small sample properties, it does not seem entirely reliable. Guvenen (2009) for-

mulated an income process which he estimated using a minimum distance approach.

To this end, he minimized the distance between the elements of the empirical covari-

ance matrix of income residuals and the covariance matrix implied by the theoretical

model for HIP and RIP model, respectively. Moreover, he qualitatively compared

the evolution of the empirical variances and autocovariances of the income residuals

and the theoretical counterparts implied by HIP and RIP when using the estimated

coefficients from the previous step. Overall, he found empirical evidence in favor of

the HIP model and showed that the results of the existing literature arguing against

profile heterogeneity may have been misinterpreted. Browning et al. (2010) showed

that conventional income processes are unable to capture many features of the ob-

served data due to limited allowance for heterogeneity. They suggest a non-linear

factor model which, among others, allows for heterogeneity in the starting value,

the variance of shocks, in MA and AR parameters and in the measurement error

variances. The model is estimated by indirect inference. The authors revealed a sub-

stantial amount of heterogeneity among individuals. Moreover, they found strong

evidence against unit root models.

In contrast, numerous studies support the RIP model. MaCurdy (1982) fitted an

error structure to earnings data which combines factor schemes and time series pro-

cesses. Since he found the autocovariances of the earnings growth rates to be zero for

any lag larger than 2, he rejected the presence of growth rate heterogeneity in earn-

ings. If earnings profiles were heterogeneous, individual income growth should be

positively autocorrelated, still for higher-order lags. Furthermore, MaCurdy found
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that error processes associated with income in levels are non-stationary with increas-

ing variability over time. These results were supported by Abowd and Card (1989)

who found that all higher-order autocovariances of earnings growth are jointly equal

to zero.

Carroll and Samwick (1997) and Meghir and Pistaferri (2004) focused on the

structure of incomes, considering its single components. The former showed that

idiosyncratic income can be decomposed into a random walk and a transitory com-

ponent. As they moreover exclude income growing at a deterministic rate, their ap-

proach clearly supports the RIP model. Beyond, Meghir and Pistaferri (2004) tested

the hypothesis that there are no permanent shocks in earnings which was strongly

rejected. Based on this result, they concluded that earnings should be modeled

as the sum of a permanent component and a transitory shock and therefore found

empirical evidence in favor of the RIP model. Recently, Hryshko (2012) proposed

an income process which encompasses both transitory and persistent components

of earnings and, moreover, allows for income profile heterogeneity. His estimation

results indicate that the variance of the deterministic income growth is zero. Hence,

the HIP model can be rejected. At the same time, the variance of the permanent

component is significantly larger than zero such that the RIP model appears to be

correct one.

Overall, a great number of studies support one of the two approaches and the

literature has not yet reached a consensus as to which model is more suitable to

mirror reality. Therefore, the present chapter aims at providing further evidence for

one of both models.

The nature of income profiles plays a central role in many economic applica-

tions. If earnings have a unit root, predictability decreases dramatically over time.
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If income courses evolve differently in a systematic fashion, further covariates must

be considered when modeling future outcomes, cf. Baker (1997). As motivated by

Hryshko (2012), different income profiles can also lead to very different policy and

welfare implications, for instance when estimating models dealing with household

consumption or portfolio choice behavior. Based on the HIP model, individuals

must be able to update their beliefs about their individual income profiles in order

to sequentially decide on their optimal consumption level and portfolio allocation,

cf. Guvenen and Smith (2014). However, if the variation in income is due to either

transitory and permanent shocks rather than being influenced by heterogeneous in-

come profiles, it is more reasonable to model households’ consumption and portfolio

choice in an incomplete market model, such as Castaneda et al. (2003). Another

reason for distinguishing both models may arise in the context of politics. In the

general economic theory, a policymaker’s goal is to reduce consumption inequality.

If the true income process is expressed by the HIP model, which deals with mod-

erate income shocks and income differences that may be explained by the human

capital model, the policymaker may want to implement a subsidy system to support

human capital investments in indigent families. As the income risk is rather mod-

erate, self-insurance may be an adequate instrument to protect against shocks. If,

however, the true income process is RIP with substantial and long-lasting income

shocks, self-insurance might not be sufficient. In that case, it would rather be useful

to educate the public about risk-sharing instruments like human capital contracts.

4.3 The model

In order to find empirical evidence for either one of the two approaches outlined

above, this section will now present the basic estimation framework. This framework
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provides a flexible estimation of income profiles, allowing both for individual-specific

and time-varying coefficients. As a consequence, it is able to capture both processes.

As we permit parameters to evolve through time, we now consider a dynamic lin-

ear model (DLM). Inference is accomplished using the Gibbs sampler (Geman and

Geman (1984)), a Bayesian method, iteratively sampling states, the observational

variance and the state variance, each contingent upon the others. As we consider

a linear Gaussian model, states can be sampled jointly via forward filtering back-

ward sampling (FFBS) (Carter and Kohn (1994), Frühwirth-Schnatter (2008)), an

algorithm based on the Kalman filter (Kalman (1960)).

We now present our income profile model in state-space formulation. It allows

for time varying coefficients and controls for the part of variation that is common

to all individuals. As typically used in the literature, the state space model consists

of an observation equation and a state equation,

yt = Xt · βt + vt, vt ∼ N(0, σ2
v IN) (4.1)

βt = G · βt−1 + wt, wt ∼ N(0,W).

yt corresponds to the N × 1 endogenous income vector, containing the logarithmic

labor incomes of all individuals (i = 1, . . . , N) at time t. The (2N + 3)×1 vector βt

consists of the unobservable and time-varying regression coefficients. It is given by
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βt =



βGDPt

βMALEt

βEDUt

α1,t

βAGE1,t

α2,t

βAGE2,t

...

αN,t

βAGEN,t



. (4.2)

The first three coefficients correspond to effects that are common to all individuals,

capturing the global effects on income driven by GDP, sex and education. These are

the so called “fixed effects” as they influence the income of individuals with similar

demographic characteristics identically. Additionally, βt contains both individual

intercepts and individual slope coefficients, that are referred to as “individual effects”

here. The intercepts are related to permanent shocks in income, since an unrestricted

αi,t may capture the (permanent) random walk component of income. Thus, if αi,t

has a unit root, the RIP model will be concluded to more appropriately describe

the data.

Furthermore, we have to allow for heterogeneity in income profiles for mapping

the HIP model. Therefore, we use individual-specific slope coefficients that may

evolve through time. More precisely, this effect is encompassed by the age of all

individuals which serve as our proxy for time. A large variation between individuals’

slope coefficients would strongly indicate the HIP model to be more suitable to

describe the data.
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The N × (2N + 3) matrix Xt represents all explanatory variables at time t.

Xt =


log(GDPt) MALE1 EDU1,t 1 AGE1,t 0 0 0 0 . . . 0

log(GDPt) MALE2 EDU2,t 0 0 1 AGE2,t 0 0 . . . 0

...
...

...
...

...
...

...
. . .

. . . . . .

log(GDPt) MALEN EDUN,t 0 0 0 0 0 . . . 1 AGEN,t


(4.3)

The first column of Xt contains the logarithmic GDP at time t, which is identical for

all individuals in the sample. The second and third column contain gender dummies

and the number of years of education for each individual. Furthermore, Xt contains

a constant for each individual and the corresponding age.

The observational error vt is assumed to be normally distributed with mean

zero and unknown covariance matrix V = σ2
v IN . For simplicity, the variances are

assumed to be identical for all individuals. The errors are further assumed to be

independent, which seems reasonable since common influences are already taken into

account by the fixed effects. In terms of the two income models introduced above,

the observational error vector vt is related to short-term shocks which die out rather

quickly. More so, in this present model short-term shocks are assumed to die out

within one single period. This assumption accounts for the fact that the number of

observed periods in our data is rather small.

The state equation describes the evolution of the latent state vector βt. In our

framework, G, which is usually referred to as the state evolution matrix, is assumed

to be the known, time invariant identity matrix I(2N+3). Furthermore, wt is the

innovation at time t and assumed to be normally distributed with zero mean and

covariance matrix W (that in the following is referred to as the “system variance
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matrix”). Similar to the observational matrix, the system variance matrix is a

diagonal matrix, which here is

W =



σ2wGDP
0 0 0 0 0 0 . . .

0 σ2wMALE
0 0 0 0 0 . . .

0 0 σ2wEDU
0 0 0 0 . . .

0 0 0 σ2wα 0 0 0 . . .

0 0 0 0 σ2wAGE
0 0 . . .

0 0 0 0 0 σ2wα 0 . . .

...
...

...
...

...
...

. . .


. (4.4)

Unlike V, which only depends on the single parameter σ2
v , W allows the coeffi-

cients to vary to different degrees and is therefore assumed to consist of five unknown

variation parameters. Besides the one related to each of the common coefficients,

there are variation parameters for the intercepts and slope coefficients, which are

identical for all individuals.

Note that both the RIP and HIP model are included in the state-space model.

Reconsider the HIP model, which assumes individuals’ labor incomes profiles to

differ systematically while facing moderate shocks. The HIP model is present if there

is a large variation in individuals’ coefficients βi,t, along with a rather constant, or at

least stationary, αi,t and a transitory component vt. However, if the individual slope

coefficients βi,t are almost identical among individuals and the individual intercepts

αi,t have a unit root, the RIP model seems to apply. The transitory shock vt may

as well occur in this model.

However, the state vector βt, the observational variance parameter σ2
v and the

system variance parameters Σ2
w := {σ2

wGDP
, . . . , σ2

wAGE
} are unknown in the state-

space model. Using a normally distributed prior for βt and Inverse Gamma dis-
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tributed priors for σ2
v and for each element of Σ2

w allows to perform a fully conjugate

Bayesian analysis, meaning that both the prior and posterior distributions come

from the same distribution families. More concretely, this leads to the following

prior specification:

(β0|Σ2
w, σ

2
v ,D0) ∼ N(m0,C0), (4.5)

(σ2
v |D0) ∼ IG(a0, b0), (4.6)

(σ2
wk[i]
|D0) ∼ IG(ν0k[i] , s0k[i]), (4.7)

for k = (GDP MALE EDU α AGE)′ and i = 1, ..., 5. The prior for the coefficient

vector is centered around m0 with covariance matrix C0. a0 and ν0k[i] denote the

shape parameters of the Inverse Gamma draws and b0, s0k[i] are the scale parameters.

Furthermore, let Dt = {y1, ...,yt} be the information set available at time t.

The joint posterior density is proportional to the product of the likelihood and

the joint prior distribution1 of βt, σ
2
v and Σ2

w:

p(β1:T , σ
2
v ,Σ

2
w|y1:T ) ∝

T∏
t=1

N(yt|βt, σ2
v ,Σ

2
w) ·N(βt|σ2

v ,Σ
2
w) · IG(σ2

v)

· IG(σ2
wGDP

) · · · IG(σ2
wAGE

)

(4.8)

Samples from this joint posterior density can be obtained by Gibbs Sampling,

that performs alternating draws from the full conditional densities

p(β1:T |σ2
v ,Σ

2
w,y1:T ), p(σ2

v |β1:T ,y1:T ) and p(σ2
wk[i]
|βk[i],1:T ,y1:T ). In order to initialize

the Gibbs sampling, one has to set a start value for either σ2
v and σ2

wk[i]
(for

i = 1, ..., 5) or for β1:T . Here this is accomplished by drawing σ2
v and σ2

wk[i]
from

1Note that all priors that are related to σ2
v and Σ2

w are assumed to be independent.
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their prior distributions, stated in (4.6) and (4.7). These draws can then be used

to determine the initial matrices of V and W.

While drawing from the latter conditional posteriors is specified by the set of

conjugate priors, we need an algorithm for sampling from p(β1:T |σ2
v ,Σ

2
w,y1:T ). For

this purpose we use the FFBS algorithm, an algorithm sequentially updating the

information set by new observations (Forward Filtering) and then drawing from the

joint distribution of the states given the data (Backward Sampling).

This procedure is now presented in more detail, starting with the (Kalman) filtering :

� Prediction step: Predict the new state based on the information up to time

t − 1.2 The prior for the state vector at time t (βt|Dt−1) is N(at,Rt) with

at = Gmt−1 and Rt = GCt−1G
′ + W.

� The one-step-ahead predictive distribution based on time t − 1 is then given

by:

(yt|Dt−1) ∼ N(ft,Qt) with ft = Xtat and Qt = XtRtX
′
t + V.

� Update step: Given the updated information set Dt, the posterior distribution

for the state vector at time t (βt|Dt) is N(mt,Ct) with mt = at + At(yt− ft),

Ct = Rt −AtQtA
′
t and At = RtX

′
tQ
−1
t .

However, the goal is to sample from the joint posterior distribution of the states.

It is therefore not sufficient to consider only the past information Dt at each time

t. One rather needs to take into account all information that is available, including

the future state vectors.

2Keep in mind that the initial distribution of the state (β0|Σ2
w, σ

2
v ,D0) is N(m0,C0).
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In general, the joint posterior distribution can be written as the product of the

conditional distributions

p(β1:T |V,W,DT ) =
T∏
t=1

p(βt|βt+1:T ,V,W,DT ), (4.9)

where the last factor is p(βT |V,W,DT ): the known filtering distribution of βT that

is N(mT ,CT ). Then, for t = T − 1, T − 2, ..., 1, one can recursively draw βt from

p(βt|βt+1:T ,V,W,DT ).

Note that the Markovian structure of the model implies that

p(βt|βt+1:T ,V,W,DT ) = p(βt|βt+1,V,W,Dt),

meaning that solely the state vector in period t + 1 is relevant to determine the

distribution of βt. Based on this, it can be shown that the distribution of βt is

N(m∗t ,C
∗
t ) with

m∗t ≡ E(βt|βt+1,V,W,Dt) = mt + Bt(βt+1 − at+1), (4.10)

C∗t ≡ V (βt|βt+1,V,W,Dt) = Ct −BtRt+1B
′
t, (4.11)

where Bt = CtGR−1t+1.

Hence, the FFBS algorithm provides a way to generate a sample from the joint

posterior distribution of the states.

Sampling from the conditional posteriors p(σ2
v |β1:T ,y1:T ) and

p(σ2
wk[i]
|βk[i],1:T ,y1:T ) is more straightforward since we know from their conjugate

priors that the conditional posterior distributions are Inverse Gamma.

We first derive the conditional posterior distributions of the elements in Σ2
w.

Since they are independent from each other, each can be drawn separately. As the
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first three variation parameters have the same structure, they are updated in the

same way. Accordingly, we first consider i ∈ {1, 2, 3}. Assume Ki to be a matrix

whose i′th diagonal element is 1, while the rest of the matrix is 0.

In general, p(σ2
wk[i]
|βk[i],1:T ,y1:T ) is proportional to the joint likelihood of βk[i],1:T

multiplied by the prior distribution of σ2
wk[i]

:

p(σ2
wk[i]
|βk[i],1:T ,y1:T ) ∝ f(βk[i],1:T |y1:T , σ

2
wk[i]

) · p(σ2
wk[i]

). (4.12)

For i ∈ {1, 2, 3}, this is

∝
T∏
t=1

det(W)−
1
2 · exp

(
−1

2

(
βt −Gβt−1

)′ ·Ki ·W−1 ·
(
βt −Gβt−1

))

×
(
σ2
wk[i]

)−ν0k[i]−1 · exp

(
−
s0k[i]
σ2
wk[i]

)
,

where all parameters in W and βt, that are not related to k[i], are treated as

constants. Due to the proportionality in the above expression, the constants need

not be considered any further in this derivation. Therefore, W is replaced by σ2
wk[i]

and the product equals

(
σ2
wk[i]

)−T
2 · exp

{
−1

2

T∑
t=1

(
βt −Gβt−1

)′ ·Ki ·
1

σ2
wk[i]

·
(
βt −Gβt−1

)}

×
(
σ2
wk[i]

)−ν0k[i]−1 · exp

(
−
s0k[i]
σ2
wk[i]

)
.

Excluding 1
σ2
wk[i]

and rearranging yields

exp

{(
−1

2

T∑
t=1

(
βt −Gβt−1

)′ ·Ki ·
(
βt −Gβt−1

)
− s0k[i]

)
· 1

σ2
wk[i]

}

×
(
σ2
wk[i]

)−T
2
−ν0k[i]−1

.
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Hence, the conditional posterior distribution is

IG

(
ν0k[i] +

T

2
, s0k[i] +

1

2

T∑
t=1

(
βt −Gβt−1

)′ ·Ki ·
(
βt −Gβt−1

))
,

for i ∈ {1, 2, 3}.

However, the posteriors of σ2
wα and σ2

wAGE
(that is σ2

wk[i]
for i ∈ {4, 5}) are slightly

different since each of the two parameters occurs N times in W. To derive their

conditional posteriors we again consider the parameters that are not related to k[i],

as constants and exclude them from the derivation. The conditional posterior of

σ2
wk[i]

is proportional to

∝ det(W)︸ ︷︷ ︸
=
(
σ2
wk[i]

)N
−T

2 · exp

{
−1

2

T∑
t=1

(
βt −Gβt−1

)′ ·Kj ·
1

σ2
wk[i]

·
(
βt −Gβt−1

)}

×
(
σ2
wk[i]

)−ν0k[i]−1 · exp

(
−
s0k[i]
σ2
wk[i]

)
,

for i ∈ {4, 5} and j = (i i+ 2 i+ 4 ... 2N + 3)′.

Rearranging yields the conditional posterior distribution of σ2
wk[i]

, which is

IG

(
ν0k[i] +

NT

2
, s0k[i] +

1

2

T∑
t=1

(
βt −Gβt−1

)′ ·Kj ·
(
βt −Gβt−1

))
.

Now that we derived the conditional posterior distributions of all the parameters

contained in W, it is straightforward to derive the conditional posterior distribution

of σ2
v . This is

IG

(
a0 +

NT

2
, b0 +

1

2

T∑
t=1

(yt −Xtβt)
′ (yt −Xtβt)

)
.

Given the conditional posteriors, the observational variance parameter σ2
v and the

system variance parameters collected in Σ2
w are sampled independently of one an-
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other. Both matrices V and W can then easily be determined from the draws as

their structures are known.

The Gibbs steps are iterated a large number of times. After a burn-in period,

the Gibbs Sampler generates draws from the joint posterior distribution of σ2
v , Σ2

w

and β1:T . Finally, the variety of draws is averaged.

4.4 Estimation of simulated data sets

We intend to find evidence in favor of either the RIP or HIP model. To verify

our estimation framework, we apply it to a simulated panel data set with known

coefficients. To this end, we use the state-space model (4.1) as the data generating

process and simulate data for 100 individuals over 50 years of time. The chosen

parameters and start values can be found in table 4.1.

Parameter Value

σ2v 5 · 10−5

σ2wGDP , σ
2
wMALE

, σ2wEDU 1 · 10−5

σ2wα , σ
2
wAGE

2 · 10−5

β0



0.5


0.15

0.02

0.5

0.01
...

0.5

0.01

Table 4.1: Parameterization
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Figure 4.1: Generated log income paths

Figure 4.1 illustrates the artificial data used. It contains the income courses of

all individuals which mirror both common and individual-specific effects. Either

individual-specific income parameters or idiosyncratic shocks cause a fanning out of

income courses over time. More so, individuals are subject to common influences,

which is indicated by local peaks in periods 21 and 28.
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Figure 4.2: Sampled exogenous variables

Figure 4.2 depicts the set of the exogenous variables, namely the randomly gen-

erated GDP (following a Brownian motion with drift) and the initial distributions
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of age and education for all N individuals. Both the initial distributions of age

and education are sampled from a uniform distribution within the ranges shown in

the corresponding barplots. The gender dummy - not illustrated in this figure - is

sampled from a binomial distribution, assuming the probability of drawing a male

individual to be 70%.

To initialize our estimation, we choose a (normally/inverse-gamma) prior distri-

bution for the latent states βt and the unknown variance parameters σ2
v and Σ2

w.

To test if data patterns are adapted by the method, we center the initial values for

the state vector away from the true values. However, they are centered close to

them since we have expectations regarding the elasticities between log income and

the demographic variables used. Moreover, each coefficient is surrounded by a high

degree of uncertainty with C0 = diag(5, . . . , 5). For the detailed specification of the

priors, see table 4.2.

Parameter Value

ν0GDP , . . . , ν0AGE 2N

s0GDP , . . . , s0AGE 0.002

a0 2N

b0 0.01

m0



0.4


0.1

0.01

0

0
...

0

0

C0 5 · I2N+3

Table 4.2: Prior specification
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Figure 4.3: True coefficients (black line) vs. estimates (gray dashed line)
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We run our estimation with 5000 Gibbs sampling repetitions and assume the

burn-in phase to have length 1000. Figure 4.3 compares some of the true (known)

values of βt with the corresponding estimates for all periods t = 1, ..., T . The

results show that the Bayesian method provides quite accurate estimates for the

individual slope coefficients since the trajectories are almost identical. In contrast,

the estimates for the individual intercepts are almost constant and may obviously

not uncover the true coefficients, possibly due to an identification problem. For

validation we strongly increase their variance in the data generating process to

σ2
α = 0.05. We find that the estimates for the individual intercepts still are almost

constant and do not have a unit root.

To focus on the estimates in more detail, we now consider the distribution func-

tions of the estimates of individual intercepts and coefficients.

The left column in figure 4.4 plots the empirical distribution function for αi (for

i = 1, . . . , N) in comparison to the true distribution function (in cross section and

for three different periods). It turns out that the median of the estimates is near

to their prior of 0 and that the distribution of the estimates is much less centered

than the “true” distribution. The right column in figure 4.4 plots the equivalent

comparison of the distribution functions for all βi in the cross section. Here, we

find that both distribution functions are quite similar. Moreover, we find that the

estimates adapt to the true values away from the priors, and that the medians of

both distributions are almost identical.

To derive the expectation of the estimates, we repeat the above estimation 1000

times. However, for ease of calculation, we reduce the number of individuals to

N = 10. Doing so, it turns out that the average of the differences between all true

and estimated cross-sectional individual intercepts converges to 0.5. This exactly is
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Figure 4.4: Comparison of distribution functions within various periods;

True distribution function (black line) vs. distribution function of estimates (gray

line)
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the difference between the prior and the true value. A different picture emerges for

the individual slope coefficients. Here, the mean difference between the true values

and the estimates converges to 0. Figure 4.5 illustrates both.
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Figure 4.5: Evolution of mean differences

However, regarding the discussion about which model best describes income

dynamics, our findings suggest that any interpretation should be based on the indi-

vidual slope coefficients and not on the intercepts. Indeed, this allows us to examine

the extent of heterogeneity in income profiles.

To test whether our results remain unchanged if our data are driven by only

one of both effects, we repeat the exercise and simulate data for both the RIP and

HIP model separately. We thereby reduce the complexity of our model, because we

impose restrictions on the parameters when generating data from the state space

model. Firstly, we generate data based on the RIP approach. In this case, the

individual slope coefficients βAGEi,t are simulated such that they are identical for all

individuals within one period. Nonetheless, they are allowed to vary in time and we

therefore set σ2
wAGE

= 3 · 10−5. We also allow for time variation of the individual
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intercepts by setting σ2
wα = 0.05. By doing so, we generate a unit root structure in

the intercepts. We simulate data for 50 individuals over 50 years of time.
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Figure 4.6: RIP: True coefficients (black line) vs. estimates (gray dashed line)

The estimation is initialized with the same priors as before; they are summarized

in table 4.2. Figure 4.6 depicts our results of the first six individuals. It turns out

that the estimates of the individual intercepts do not entirely reflect the pattern of

the true intercepts, however, they still seem to follow a random walk. We fail to reject

the null hypothesis of a unit root on every single individual intercept. Moreover,
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a KPSS test rejects the null hypothesis of stationarity for each trajectory at the

10% significance level. We therefore conclude that the RIP model best describes the

earnings data because the unit roots are not detected when both effects are present.

The estimates of the slope coefficients, however, seem to differ among individuals.

In a next step, we examine which of the following two models is best supported by

our data: either the model which does not impose restrictions on the individual slope

coefficients in the estimation, or the model restricting the estimation by assuming

βAGE1,t = βAGE2,t =, . . . ,= βAGEN,t . To stay in line with our Bayesian framework,

we suggest to employ Bayes factors which are the Bayesian analogues of likelihood-

ratio tests. They contrast the evidence provided by the data for competing models.

In order to compare two models Mj and Mk, the posterior odds in favor of model

Mj are computed using Bayes theorem as

p(Mj|y)

p(Mk|y)
=
p(y|Mj)

p(y|Mk)

p(Mj)

p(Mk)
,

where p(Mj|y) is the probability that model Mj is the correct model, given the

data. Moreover, p(Mj) is the prior probability that Mj is the true model. Assigning

both models equal prior probabilities as it is commonly done, the prior odds ratio

becomes 1. Bayes factor is then given by

Bjk =
p(y|Mj)

p(y|Mk)
,

which equals the quotient of the marginal likelihoods of the two models. A large

value of Bjk is evidence that model Mj is better supported by the data. A small value

can be interpreted as evidence in favor of Mk being the better model. Values around

1 indicate that both models are equally well supported. In most cases, the marginal

likelihoods can not be derived analytically and must be determined numerically. The
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Bayesian information criterion (BIC) was developed as a computationally tractable

approximation of the log marginal likelihood of a model. Therefore, the difference

between two BIC estimates may be a good approximation of the natural log of the

Bayes factor. Formally, the BIC is defined as

BIC = −2 · ln(L̂) + k · ln(N),

where k is the number of estimable parameters and L̂ is the maximized likelihood.

We compare the BICs of the model which is restricted by βAGE1,t = βAGE2,t =

, . . . ,= βAGEN,t and of the unrestricted alternative where the latent state vector

equals the estimated one. Note that both likelihoods can easily be extracted from

the Kalman filtering of the corresponding models. We exploit that (yt|Dt−1) ∼

N((Xtat), (XtRtX
′
t + V)) and that the sample log likelihood is

∑T
t=1 log fyt|Dt−1 .

We find vigorous support of the “RIP” data for the restricted model which even

remains unchanged when choosing a (non-extreme) prior odds ratio different from 1.

Hence, based on the Bayes factor, our data support the assumption that the individ-

uals are subject to a common income profile. For validation of the Bayes factor, we

additionally generate data from the HIP model. Again we compare the BICs of the

unrestricted model and of the model restricted by βAGE1,t =, . . . ,= βAGEN,t , which

we do not expect to be supported by the data. In fact, we find strong evidence in

favor of the unrestricted model and therefore against the RIP model.

In sum, our results show that the estimated intercepts have unit roots when

the data are generated according to the RIP approach. Moreover, the Bayes factor

supports the restriction that individuals are subject to a common income profile.

Overall, we conclude that we are able to identify the RIP model if it is indeed the

underlying one.
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In the heterogeneous case (HIP), the individual slope coefficients βAGEi,t are as-

sumed to differ systematically and allowed to vary over time with σ2
wAGE

= 5 · 10−5.

Moreover, the individual intercepts which potentially capture the random walk com-

ponent of incomes are assumed to be constant over time. However, they may be

different among individuals. Again employing the priors in table 4.2, our resulting

estimates are presented in figure 4.7. The slope coefficients are well captured and

the estimates of the intercepts are constant and again centered around their prior

0. From the figure it clearly appears that there is heterogeneity in income profiles.

Moreover, as stressed above, the restriction that the slope coefficients are identical

among individuals can be refuted based on the Bayes factor.

As the individual intercepts follow a random walk, we conclude that the RIP

approach is the underlying model of the data. In the two other simulation scenarios

the unit roots are not detected. If, on the contrary, the estimates of the intercepts

are constant, we can reject the RIP model being suitable to describe the data.

Beyond, the Bayes factor provides an alternative procedure to examine whether the

RIP approach is the underlying model of the data or not. However, if the RIP

model is rejected, we can not clearly infer whether elements of both approaches are

present in the data or if the fanning out of earnings is solely driven by individual

income profiles. Nonetheless, since the slope coefficients are well captured by the

estimates in both scenarios, they allow us to determine the extent of heterogeneity

in the earnings data.

4.5 The data

For our empirical analysis we use the 1984-2009 waves of the German SOEP

(GSOEP). More precisely, we will employ the $PEQUIV-file containing extended
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Figure 4.7: HIP: True coefficients (black line) vs. estimates (gray dashed line)
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income information on the GSOEP. The $PEQUIV-file is the German portion of

the Cross-National Equivalent File (CNEF) created by the Cornell University in

cooperation with the DIW-Berlin, the ISER-Essex and StatsCan-Ottawa. It aims

at providing comparable variables from the American PSID, the German SOEP,

the British BHPS and the Canadian SLID based on common definitions. Besides

the imputation of missing income information, all income variables are annualized

and the variable names are matched across all countries. The CNEF further

provides income information on an individual basis, while the classical GSOEP

contains income information on household basis only.

Since our estimation framework is computationally intensive and the computer’s

calculation time grows disproportionately with the number of individuals in the data

set, the estimation will be carried out for a very limited number of individuals only.

This allows the consideration of a balanced panel data set. For this reason (and for

obtaining as many periods as possible), we take into account individuals that are

present in all waves between 1984 and 2009. More so, the data set consists solely of

those individuals that answered all the questions that are crucial to our estimation.

Our analysis will be further restricted to individuals that work at least 1000 hours

per year in order to exclude those with part time jobs. Following these restrictions,

we obtain a data set of size N = 301.

However, in order to draw conclusions on the income profiles of the entire popula-

tion, one additionally has to consider sampling weights to correct for sample dispro-

portionality. The disproportionality may be due to unequal probabilities of selection

or to a biased sample by random chance, even if dealing with equal probabilities.

Thus, by using weights, a sample can be made representative for the population. As

we implicitly deal with time series data for each individual, we need to construct
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longitudinal weights. In general, they are created by multiplying the cross-sectional

weights of the first period by the staying factors of each further period. By defini-

tion, staying factors are the inverse of the probability that an individual participates

in the named wave, given participation in the previous wave.

Both the cross-sectional weights and the staying factors are contained in the

$PEQUIV-file. For simplicity, we deal with one time-invariant weight per individual.

Therefore, only the longitudinal weights of the last period are taken into account.

From these weights one can easily determine the corresponding individual sampling

probabilities. This is achieved by dividing each weight by the sum of all weights.

Finally, the sampling probabilities are applied to the data performing a boot-

strapping step. Accordingly a sample of size N = 301 is redrawn from the original

sample, taking into account the sampling probabilities that were calculated in the

previous step. Thus, the new data set implicitly includes the weights and can be used

for empirical analysis. Figure 4.8 shows the logarithmic incomes of all individuals

in the resampled data set.

4.6 Empirical findings

Our estimation results are presented in the following. Figure 4.9 plots the estimates

of three randomly chosen intercepts and six slope coefficients, respectively.

Apparently, the estimates of the individual intercepts do not have a unit root. In

particular, they are almost constant and again seem to be subject to an identification

problem. Note that this holds not only for the individual intercepts depicted here;

this pattern can actually be observed in the entire sample. Figure 4.10 plots the

empirical distribution functions for αi and βi (for i = 1, ..., N), each in cross section
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and for three different time periods. The left column suggests that the estimates of

the intercepts are centered around their prior 0.

Of course, our results need to be interpreted carefully. Overall, they resemble

those obtained when the data are simulated according to the HIP model or when

elements of both approaches are present in the simulated data: in both simulations,

the estimated intercepts do not have a unit root which also applies here. If, on the

contrary, the data are simulated according to the RIP approach, we indeed detect a

unit root. Therefore, we conclude that the RIP approach is unable to describe our

earnings data. This finding is also supported by the fact that there is a large extent

of heterogeneity in the individual slope coefficients. These coefficients were reliably

uncovered in both simulations - when the HIP model or a mixture of both models

is underlying.3

3Note that foregoing the resampling step in the data preparation does not affect our conclusions.
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Figure 4.9: Estimates of various intercepts and coefficients (GSOEP)

Calculating the Bayes factor to compare the unrestricted model and the model

which is restricted by imposing the individual slope coefficients to be identical in

the cross section, it clearly favors the unrestricted model. Hence, we find further

confirmation that the data contradict the RIP approach. To sum up, there is no

clear evidence in favor of one of the models. Our results, however, suggest that

the RIP approach alone is not suitable to describe the present earnings data. We
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Figure 4.10: Distribution functions of individual parameters (GSOEP)

moreover find a large amount of heterogeneity in the earnings data and deduce that

they tend to fan out systematically, rather than due to large and persistent shocks.

4.7 Conclusion

This chapter departs from a present disaccord in the literature about how to model

idiosyncratic labor income profiles. Two different approaches have prevailed in the
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literature that mainly differ in their assumptions on the nature of income growth

rates.

The heterogeneous income profile model proclaims that income grows at an

individual-specific rate. Income further contains a stochastic, but stationary com-

ponent, causing the growth rate to fluctuate around the deterministic trend. As

a result, income courses differ systematically. The restricted income profile model

assumes that individuals are exposed to large and persistent income shocks which

account for most differences in income courses. The labor income profiles, however,

are similar and hence there is no systematic fanning out of income courses.

To evaluate both approaches, we use a state-space model. This model provides a

flexible framework as it enables us to allow for both common and individual coeffi-

cients, as well as time-varying coefficients. To estimate the dynamic income model,

we use Gibbs sampling, a MCMC algorithm which approximates the joint distribu-

tion of the latent states and unknown variance parameters by iteratively sampling

from their conditional posteriors. First, a full path of the latent state vector is

drawn from its conditional posterior distribution by means of the FFBS algorithm.

Second, we employ the conjugacy of the prior distributions. This characteristic en-

ables us to derive the posterior distributions of the variance parameters analytically.

After iterating both Gibbs steps, one finally obtains draws from the joint posterior

distribution of the latent states and unknown variance parameters.

As an intermediate step, we verify our framework by applying it to simulated

data with known coefficients. We first assume that elements of both approaches

are contained in the data. In this scenario, the individual-specific slope parameters

are estimated precisely, while the intercepts can not be identified. However, in this

case conclusions on the nature of income profiles can be drawn from the former as
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one can determine the variation among individuals’ coefficients. Beyond, the same

results are found when data are generated according to the HIP approach. When

using data obtained from the RIP approach - and only in this case - the estimated

intercepts have unit roots and reveal the presence of long-lasting income shocks.

Hence not finding a unit root indicates that the data contradict the RIP approach.

Moreover, using the Bayes factor provides another way to discriminate between both

approaches. We find that it also enables us to reject the RIP model.

For an empirical analysis, our framework is applied to the German SOEP data.

Our results indicate that the RIP approach is unsuitable to describe our earnings

data - this equally holds when building our interpretation on the structure of the

individual intercepts and on the Bayes factor. Instead, we find a large amount

of heterogeneity in earnings. Even though we can not completely rule out the

possibility that elements of both approaches are present and blurred, it seems that

income courses evolve differently in a systematic fashion and do not comprise a high

amount of income risk.
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Chapter 5

Summary

This thesis investigates labor income dynamics at the individual level and extends

the existing literature in several aspects. To begin with, it presents a rather general

econometric application on the identification of earnings risk. The two subsequent

chapters aim at gaining new insights into the modeling of individual income dynam-

ics. For this purpose, the work first examines if explosiveness is evident in the data

and therefore needs to be further taken into account. To this end, a panel unit root

test against explosiveness is introduced. Based on the finding that explosiveness can

be neglected, the thesis ties in with the disaccord in the literature regarding two

major strands of the literature on modeling income profiles. That is, it examines

whether the RIP or the HIP approach is more suitable to mirror earnings data.

The framework is established in a state space form. For parameter estimation and

estimation of the latent state variable MCMC methodology is employed.

Chapter 2 presents an alternative approach to the identification of earnings risk

which accounts for economic choices of individuals, in particular the level of con-

sumption and the portfolio allocation. Since there exist hardly any panel data

on consumption over longer time spans, the approach allows for employing capital

income data instead as these result from consumption and portfolio allocation deci-
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sions. Enlarging the information set is expected to increase the estimation accuracy

compared to methods that solely rely on earnings data. The economic framework

is assumed to be a life-cycle model of consumption and investment decisions, stated

as a dynamic programming problem. Earnings risk parameters and, optionally, fur-

ther parameters of interest are estimated by the simulation-based method of indirect

inference. The procedure is applied to simulated data resulting from the (true) life-

cycle model. The estimates obtained are centered near the true values and only

show little variation. Compared with maximum likelihood estimates solely based on

earnings data, no major difference can be observed in terms of the point estimates

and MSEs. However, the estimation framework is variably applicable, providing the

possibility of estimating further parameters of the economic model. Moreover, it can

include different information sets available on capital income and is also employable

with short observation periods.

Chapter 3 investigates if explosiveness is a pattern that needs to be taken into ac-

count when modeling income profiles. If evident, explosiveness implies that positive

deviations tend to boost the income growth rate such that deviations from a common

trend will increase even more and vice versa. Here this is called a “self-reinforcing

effect”. To this end, this thesis proposes a panel unit root test which tests against

explosiveness, using a p-value combination approach. The test procedure is applied

to earnings data from the cross-national equivalent files of the German SOEP and

the U.S. PSID data sets. The null hypothesis of stationarity or unit roots can be

rejected in both countries. Explosiveness is evident, but only for a small fraction of

the population. Hence it needs not to be considered when modeling labor incomes.

Chapter 4 proposes a new approach to empirically investigate whether income

courses differ systematically due to a large amount of heterogeneity or if the fan-
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ning out of incomes is rather driven by persistent income shocks. Pursuant to the

literature, the two opposing views are labeled HIP and RIP model, respectively.

In order to explore which model is more suitable to correctly mirror labor income

data, a dynamic linear model is proposed. It allows for both individual-specific and

time-varying coefficients. The latent state and the unknown model parameters are

estimated by Gibbs sampling, using artificial as well as real-world data from the

German SOEP. A simulation study reveals that the model correctly rejects the RIP

approach underlying the data if, in fact, it is not. This conclusion derives from the

finding that the individual coefficients do not comprise a unit root structure which

would indicate the presence of long-lasting income shocks. Moreover, it is supported

by the Bayes factor which evaluates the probability of the RIP approach to be true,

given the data. Finally, the framework is applied to the German SOEP data. The

results indicate that the real-world income data contradict the RIP approach. How-

ever, it is not clear whether the HIP model or a mixture of both approaches is better

suitable to describe the data. Since individuals, moreover, are found to be highly

heterogeneous, the results are in line with the literature suggesting that incomes

rather fan out systematically over time and are not so much driven by large and

persistent shocks.
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Appendix A

Lag order determination for the

ADF test

The panel test against explosiveness is based on N univariate ADF tests. The

number of lags Ki to be included in regression (3.5) can be determined by the

Bayesian (or Schwarz) information criterion (Gustavsson and Österholm (2014)).

However, if there are measurement errors, the BIC does not, in general, choose a

sufficiently large lag order as can be demonstrated by means of a simple Monte-Carlo

simulation.

Figure A.1 (solid line) shows the distribution function of the ADF test statistic

(with constant and trend) under a unit root when there is no measurement error.

The time series is generated as yt = zt + t with

zt = zt−1 + ηt, t = 1, . . . , 50

where ηt ∼ N(0, 1) is white noise and z0 = 0. The number of lags to be included is

chosen by the BIC (of course, the correct number is 0). The number of Monte-Carlo

replications is R = 10000.

The dashed line in figure A.1 depicts the distribution function of the ADF test

statistics if white noise measurement error is added to the time series,

yt = zt + t+ εt
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Figure A.1: Distribution function of the ADF test statistic; solid line: distribution

under a unit root without measurement error and lag order determined by BIC;

dashed line: distribution with measurement error and lag order determined by BIC;

dotted-dashed line: distribution with measurement error and lag order set to 3.

where εt ∼ N(0, 1). Measurement error leads to an MA component in the first

differences of yt. The number of lags has again been selected by the BIC. Apparently,

the distribution is shifted to the left and does not equal the null distribution (solid

line). We conclude that the BIC does not succeed in selecting the correct lag order.

The same result holds for the Akaike information criterion AIC (not shown).

If we set the number of lags to Ki = 3 the resulting distribution of the test

statistic is shown by the dotted-dashed line in figure A.1. Apparently, it virtually

equals the true null distribution (solid line). In our empirical application we therefore

set the lag order to Ki = 3 for all individuals.
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