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An improvement of de Jong-Oort’s

purity theorem
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(Communicated by Peter Schneider)

Abstract. Consider an F -crystal over a noetherian scheme S. De Jong-Oort’s purity the-
orem states that the associated Newton polygons over all points of S are constant if this is
true outside a subset of codimension bigger than 1. In this paper we show an improvement
of the theorem, which says that the Newton polygons over all points of S have a common
break point if this is true outside a subset of codimension bigger than 1.

1. introduction

De Jong-Oort’s purity theorem [4, Thm. 4.1] states that for an F -crystal
over a noetherian scheme S of characteristic p the associated Newton polygons
over all points of S are constant if this is true outside a subset of codimension
bigger than 1. This theorem has been strengthened and generalized by Vasiu
[14], who has shown that each stratum of the Newton polygon stratification
defined by an F -crystal over any reduced, not necessarily noetherian Fp-scheme
S is an affine S-scheme. In the case of a family of p-divisible groups, alternative
proofs of the purity have been given by Oort [11] and Zink [15]. In this paper
we show an improvement, which implies that for an F -crystal over a noetherian
scheme S the Newton polygons over all points have a common break point if
this is true outside a subset of codimension bigger than 1. As to a stronger
statement analogous to that in Vasiu’s paper, our method does not apply. The
main result is the following theorem.

Theorem 1.1. Let S be a locally noetherian scheme of characteristic p and
E be an F -crystal over S. Fix s ∈ S. If there exists an open neighborhood U
of s in S such that the Newton polygons NP (E)x over all points x ∈ U\{s}−

have a common break point, then either codim({s}−, U) ≤ 1 or NP (E)s has
the same break point.

The following example explains how Theorem 1.1 improves de Jong-Oort
purity theorem. Look at Figure 1. Consider the spectrum of some local noe-
therian integral domain of dimension 2 and characteristic p. Then we ask:
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does there exist an F -crystal such that the associated Newton polygon over
the closed point is ξ, over a finite number of points of codimension 1 is γ and
over each of all other points is η? Theorem 1.1 tells us that the answer is
negative, while it cannot be easily seen from [4, Thm. 4.1].

In our main theorem, the condition on “one of the break points” cannot be
generalized to an arbitrary point of the Newton polygon which is not a break
point. Consider a family of elliptic curves f : X → S, where S is a curve over a
field k of positive characteristic. Look at Figure 2. Assume that all the fibers
of f are ordinary except over a closed point 0 ∈ S. Then Figure 2 shows all the
Newton polygons associated to the family of abelian surfaces X×kX → S×kS.
Namely, over the special point (0, 0) the associated Newton polygon is ξ; over
each point in {0} × S ∪ S × {0}, it is γ′; over each of all other points, it is η′.
We see that outside the one-point set {(0, 0)} of codimension 2, the Newton
polygons have a common point P .
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This paper is organized as follows. In Section 2, we review some facts about
F -crystals before showing that if the Newton polygon of an F -crystal over a
field has a break point (1,m), then there exists a unique subcrystal of rank 1
and slope m. In Section 3, we describe the kernel of Gal(K/K)→ π1(X, η) as
the normal subgroup generated by local kernels (Proposition 3.2) and particu-
larly obtain another description when X is the spectrum of a discrete valuation
ring (Corollary 3.9). In Section 4, we define the Galois representation asso-
ciated to an F -crystal, and discuss the relationship between its ramification
property and Newton slopes (see Proposition 4.6). Section 5 contains the proof
of Theorem 1.1. The proof essentially follows the proof of [4, Thm. 4.1], yet is
more accessible because the relationship between the ramification property of
the representation and the Newton slopes has been clarified.

The author would like to thank her advisor, Aise Johan de Jong, without
whose patient and effective instruction this paper would not have come into
existence. Also the author owes a lot to the referees who have made many
suggestions and particularly pointed out a significant improvement of the main
theorem, which had originally treated the first few break points of the Newton
polygon instead of any break point.
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2. Results on F -crystals

2.1. Conventions. In this paper, k always denotes a field of characteristic p,
where p is a prime number; k denotes an algebraic closure of k; S denotes
a connected scheme of characteristic p. We use the term crystal to mean a
crystal of finite locally free Ocris-modules. See [1, p. 226]. Here Ocris denotes
the structure sheaf on the category CRIS(S/ SpecZp) (big crystalline site of
S). If T → S is a morphism, then we use E|T to denote the pullback of E to
CRIS(T/ SpecZp). For a crystal E , we denote by E(n) the pullback of E by the
nth iterate of the Frobenius endomorphism of S. An F -crystal over S is a pair
(E , F ), where E is a crystal over S and F : E(1) → E is a morphism of crystals.
We usually denote an F -crystal by E , with the map F being understood.
Recall that E is a nondegenerate F -crystal if the kernel and cokernel of F are
annihilated by some power of p, see [12, 3.1.1]. All F -crystals in this paper
will be nondegenerate.

A perfect scheme S in characteristic p is a scheme such that the Frobenius
map (−)p : OS → OS is an isomorphism. A crystal over a perfect scheme S is
simply given by a finite locally free sheaf of W (OS)-modules (see [6, p. 141]).

2.2. Suppose that S = Spec k. Choose a Cohen ring Λ for k, and let σ : Λ→ Λ
be a lift of Frobenius on k. By [2, Prop. 1.3.3], we know that an F -crystal E
over k is given by a triple (M,∇, F ) over Λ, where M is a finite free Λ-module
of rank r, ∇ is an integrable, topologically quasi-nilpotent connection, and F
is a horizontal σ-linear self-map of M .

2.3. Let kpf be the perfect closure of k. Note that under the identification
kpf = lim

−→
(k → k→ . . .), and by [13, Chapter II, Prop. 10], we obtain

W (kpf ) = p-adic completion of lim
−→

(Λ
σ
−→ Λ

σ
−→ . . .).

Furthermore σ can be extended to an endomorphism of W (kpf ), which is a lift
of Frobenius on kpf , still denoted by σ. Thus we get an injection Λ→W (kpf )
compatible with σ.

The pullback E|Spec(kpf ) of E corresponds to the pair (M⊗ΛW (kpf ), F ⊗σ).
According to [6, 1.3], we can describe Newton slopes associated to E|Spec(kpf ) as

follows. Choose an algebraic closure k of kpf and some positive integer N divis-
ible by r!. Consider the valuation ring R =W (k)[X ]/(XN − p) =W (k)[p1/N ]
and denote its fraction field by K. We extend σ to an automorphism of R
by requiring that σ(X) = X . Then by Dieudonné (cp. [7]), M ⊗W (k) K

admits a K-basis e1, . . . , er such that (F ⊗ σ)(ei) = pλiei for λi ∈ Q and
0 ≤ λ1 ≤ . . . ≤ λr. These λi’s are defined to be the Newton slopes of (M,F )
or E .

For each λ, we define mult(λ) as the number of times λ occurs among
{λ1, . . . , λr}. By Dieudonné again, the product λ·mult(λ) ∈ Z≥0. The Newton
Polygon of (M,F ) is a polygonal chain consisting of line segments S1, . . . , Sr,
where Si connects the two points (i− 1, λ1 + . . .+ λi−1) and (i, λ1 + . . .+ λi).
The points at which the Newton polygon changes slope are called break points.
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We now turn to an F -crystal E over an arbitrary Fp-scheme S. For every
point s ∈ S, let s : Spec k(s)→ S be the natural map. We can assign to s the
Newton polygon associated to E|Speck(s), denoted by NP (S, E)s or NP (E)s.

The following result about the existence of some special subcrystal will be
significant in proving the theorem.

Proposition 2.4. Let (E , F ) be a crystal over S = Spec(k). If the first break
point of NP (S, E) is (1,m) for m ∈ Z≥0, then it has a unique subcrystal E1 ⊂ E
of rank 1 and slope m such that any subcrystal of slope m is a subcrystal of E1.

Proof. Let (M,∇, F ) be the triple corresponding to the crystal E by 2.2. Then
the existence of the required subcrystal is equivalent to the existence of a
unique Λ-submodule M1 of rank 1 and slope m, preserved by the action of ∇.
We will first find a submodule of rank 1 and slope m, then show it is preserved
by ∇. The uniqueness of such a submodule follows from the fact that the
lowest slope is of multiplicity 1.

Choose k ⊃ kpf ⊃ k. From 2.3, we have a faithfully flat homomorphism

Λ
i
−→ W (k). Let M = M ⊗Λ W (k). By [6, Thm. 2.6.1], there is an isogeny

ψ : M → N , where 1
pmFN : N → N is a σ-linear self-map. By [6, Thm. 1.6.1],

N has a unique free submodule N1 of rank 1 and slope m such that N/N1 is
free as a W (k)-module. Let M1 = ψ−1(N1). It is clear that M1 is a module
of rank 1 and slope m, and M2 =M/M1 is a free Λ-module of rank r− 1 and
slopes > m.

Since ψ is an isogeny, there exists some D ∈ Z>0 such that pDψ−1(N) ⊂M .

As for every ν > 0, pD
(
F
pm

)ν
= pDψ−1

(
FN

pm

)ν
ψ, thus pD

(
F
pm

)ν
: M → M .

Actually we can choose Dν ∈ [0, D] such that the matrix of fν = pDν

(
F
pm

)ν

mod p does not vanish. Let fν = pDν

(
F
pm

)ν
: M → M , then fν mod p does

not vanish either. Since the Newton slopes ofM2 are greater thanm, according
to [6, 1.4.3], for each n > 0 there exists cn > 0 such that fν(M2) ⊂ p

nM2 for
all ν ≥ cn. Let fνn : M/pnM → M/pnM . Then Im(fνn) ⊂ M1/p

nM1. Let
Eνn = 〈Im(fνn)〉. Note that 〈G〉 is denoted as the smallest R/pnR-submodule of
M containing G, where R is a discrete valuation ring with p as its uniformizer,
M is a finite free R/pnR-module and G ⊂M a subset.

Let fνn : M/pnM → M/pnM , Eνn = 〈Im(fνn )〉, and En =
⋂

ν≥cn

Eνn. We get

Eνn = Eνn⊗ΛW (k), and En = En⊗ΛW (k) =
⋂

ν≥cn

Eνn. By the above argument,

when ν ≥ cn, Eνn ≃M1/p
nM1, a free W (k)/pnW (k)-module of rank 1.

As Λ
i
−→W (k) is faithfully flat and Eνn = Eνn⊗ΛW (k) is a freeW (k)/pnW (k)

-module of rank 1 for ν ≥ cn, then Eνn is a free Λ/pnΛ-module of rank 1,
hence so is En. Also the surjectivity of En+1 → En implies the surjectivity
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of En+1 → En. Let M1 = lim
←−n>0

En, it is easy to see that M1 is a free Λ-

module. Since M1 ⊗Λ W (k) = M1 has slope m, so does M1. It is clear that
any subcrystal of slope m is contained in M1.

Now we show ∇(M1) ⊂ M1 ⊗Λ ΩΛ. Here ΩΛ = lim
←−n

Ω1
(Λ/pnΛ)/Z is the p-

adic module of differentials. Let {e1, ..., er} be a basis of M and e1 ∈ M1.
Suppose ∇(e1) =

∑r
i=1 ei ⊗ ηi. We need to show ηi = 0 for i > 1. As

F ν is a horizontal σν-linear self map for ν > 0, it exchanges with ∇ in the

following sense: F̃ ν ◦ ∇ = ∇ ◦ F ν , where F̃ ν = F ν ⊗ σ̃ν is the endomorphism
of M ⊗ΛΩΛ and σ̃ν is the map ΩΛ → ΩΛ given by αdβ 7→ σν(α)dσν (β). Then

from F̃ ν ◦ ∇(e1) = ∇ ◦ F
ν(e1) we deduce that

pmνµν
∑

i>1

ei ⊗ η
i =

∑

i>1

F ν(ei)⊗ σ̃ν(η
i) mod M1 ⊗ ΩΛ,

where µν ∈ Λ∗. By [6, 1.4.3], F ν(M/M1) ⊂ pmν+1(M/M1) for ν ≫ 0. By
comparing terms before ei in the above equation, we get ηi ∈ pΩΛ. Replace η

i

by pη̃i on the right side, then we get ηi ∈ p2ΩΛ. By repeating, ηi ∈ pnΩΛ for
every n. By [2, Prop. 1.3.1], ΩΛ is a free Λ-module. Then ηi = 0 for i > 1.
Hence M1 is preserved by ∇. �

Remark 2.5. The proposition can be generalized in the following way: Let
(E , F ) be a crystal over S = Spec(k). If the first break point of NP (S, E) is
(µ1, µ1λ1), where λ1 is the lowest Newton slope and µ1 is its multiplicity, then
there is a unique sub-crystal E ′ ⊂ E of rank µ1 with its Newton slopes all equal
to λ1.

Applying the lemma to (∧µ1E ,∧µ1F ), we obtain a subcrystal E1 of ∧µ1E .
To see that E1 is of the form ∧µ1E ′ for some subcrystal E ′ ⊂ E , we need to
use the Plücker coordinate and check if E1 satisfies the Plücker equations. By
extending the scalars to the fraction field K of W (k)[X ]/(XN − p) for some
proper N , we obtain that E ⊗ K admits a K-basis over which the matrix of
F is diagonalized, hence the unique subcrystal E1 ⊗K of rank 1 and slope m
satisfies the Plücker equations, and so does E1.

3. Facts about Fundamental Groups

3.1. Let X be a noetherian normal integral scheme with its generic point η.
Let η be a geometric point over η. By [5, Exposé V, Prop. 8.2], the canonical
map φ : Gal(K/K) → π1(X, η) is surjective, and the kernel is Gal(K/M),
where K is some algebraic closure of the fraction field K of X and M is the
union of all finite subextensions K ⊂ L(⊂ K) such that L is unramified over
X , which means that the normalization of X in L is unramified over X .

This section focuses on describing the kernel of φ in terms of local kernels.

Assume that the completion ÔX,x of the local ring OX,x at every point x is an

integral domain. Denote the fraction field and residue field of ÔX,x by Kx or

k(x) respectively. LetKx be an algebraic closure ofKx and ηx be the geometric
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point defined by SpecKx → Spec ÔX,x. Fix some injection ω : K → Kx such
that we have the following commutative diagram:

K //

��

K

ω

��

Kx
// Kx

Thus we have maps of Galois groups depending on ω:

ψx : Gal(Kx/Kx)→ Gal(K/K), φx : Gal(Kx/Kx)→ π1(Spec ÔX,x, ηx)

Proposition 3.2. Let X be a noetherian normal integral scheme with K as
its function field. Let φ, φx and ψx be the same as above. If assuming that the

completion ÔX,x of the local ring OX,x at each closed point x ∈ X is a normal
domain and that the same condition holds for the normalization of X in every
finite separable extension L/K, then Kerφ = H, where H is the normal closed
subgroup of Gal(K/K) generated by {ψx(Kerφx) | x is a closed point of X}.

Note that if moreover X is an excellent scheme, the conditions on the local
ring OX,x at every closed point x ∈ X are satisfied. In the following, let x ∈ X

be a closed point and L/K be a finite separable subextension in K if no other
description is given.

3.3. Let X̃ be the normalization of X and ÕX,x be the integral closure of

OX,x in L. By [13, Chapter I, Prop. 8], X̃ → X is a finite morphism, and

ÕX,x is a finitely generated OX,x-module. Let {xi ∈ X̃, i ∈ I} be the set of

points over x. Since ÕX,x is a semilocal ring and a finite OX,x-module, then

by [9, Chapter I, Thm. 4.2], ÕX,x ⊗OX,x
ÔX,x =

∏
i∈I ÔX̃,xi

, where ÔX̃,xi
is

the completion of the local ring of xi ∈ X̃ , and ÔX̃,xi
is a finite ÔX,x-algebra.

Thus we have the following cartesian diagram:

Spec ÔX,x

��

Spec
∏
i∈I ÔX̃,xi

oo

��

Spec ÔX̃,xi

��

oo

SpecOX,x Spec ÕX,xoo SpecOX̃,xi

oo

3.4. By [9, Chapter I, Prop. 3.5], L is unramified overX if and only if Ω1
X̃/X

=

0. As the branch locus where Ω1
X̃/X

6= 0 is a closed subset, and Ω1 behaves

well with respect to base change, then L is unramified over X if and only if

Ω1
SpecO

X̃,xi
/ SpecOX,x

= 0, for every closed point xi ∈ X̃ over x ∈ X.

As ÔX̃,xi
is a faithfully flat OX̃,x-module, this is also equivalent to

(1) Ω1
Spec Ô

X̃,xi
/ Spec ÔX,x

= 0 for every closed point xi ∈ X̃ over x ∈ X.
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3.5. Let L.Kx = ω(L)Kx. It is clear that L.Kx is a separable extension

of Kx. Actually L.Kx is the fraction field of ÔX̃,xi
for some i. Since by base

change the diagram in 3.3 from Spec ÔX,x → SpecOX,x to SpecKx → SpecK,

we have L ⊗K Kx ≃
∏
i∈I Frac(ÔX̃,xi

); by choosing ω, one has to choose

L → Frac(ÔX̃,xi
). Hence L/K is fixed by H if and only if for every closed

point x ∈ X , there exists some xi over x such that Frac(ÔX̃,xi
) is unramified

over Spec ÔX,x; by assumption this is equivalent to Spec ÔX̃,xi
→ Spec ÔX,x

being unramified. Hence L/K is fixed by H if and only if

(2) Ω1
Spec Ô

X̃,xi
/ Spec ÔX,x

= 0

for every closed point x ∈ X , some xi ∈ X̃ over x.

3.6. Assume that L/K is a finite Galois extension. Let U ⊂ X be an affine

neighborhood of x and Ũ be its normalization in L. By [8, Chapter 2, 5.E],

for two given points xi, xj ∈ Ũ over x ∈ U , there exists a U -automorphism

of Ũ mapping xi to xj , hence Ω1
SpecO

Ũ,xi
/ SpecOU,x

≃ Ω1
SpecO

Ũ,xj
/ SpecOU,x

. It

follows that X̃ → X is unramified at some point over x if and only if it is
unramified at every point over x.

Proof of Proposition 3.2: Let N be the subfield ofK fixed by H . Since both H
and Kerψ are normal subgroups, then it suffices to show that N =M . Assume
L/K is a finite Galois subextension. From discussions in 3.6, the conditions (1)
and (2) are equivalent. Then we have L ⊂M ⇔ L ⊂ N , hence M = N . �

We will also need the following facts about Galois groups.

Claim 3.7. Let (K, ν) be a henselian field with a nonarchimedean valuation
ν. Let (Kν , ν) be its completion. Denote by K(resp. Kν) the algebraic closure
of K (resp. Kν). Then the homomorphism Gal(Kν/Kν) → Gal(K/K) is
surjective.

Fact 3.8. Let l/k be an algebraic extension. Let K = k((t)), L̂ = l((t)), and
L =

⋃
m((t)) where m runs over all finite subextensions of k in l. There

is an obvious valuation ν on L and L̂ by sending tn to n. It is clear that

L̂ is the completion of L. As the valuation ring of L is R =
⋃
m[[t]], from

Definition (6.1) in [10, Chapter II], L is a henselian field. Thus GalL̂ → GalL
is surjective.

Corollary 3.9. Let R be a discrete valuation ring of characteristic p with
fraction field K and residue field k. Let s ∈ SpecR be the closed point and η
be a geometric point over the generic point. Let Rs be the completion of R,
which is of the form k[[t]]. Then the kernel of the canonical homomorphism

GalK
φ
−→ π1(SpecR, η) is the normal subgroup of GalK generated by the image

of the composition Galk((t)) −→ Galk((t))
ψs
−→ GalK .
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Proof. Since SpecR satisfies the assumption in Proposition 3.2, Kerφ is gen-
erated by ψs(Kerφs). Apply Fact 3.8 to the case when l = ksep. Note that L
is the maximal unramified algebraic extension of X = Spec k[[t]] in the sense
of 3.1, and hence Kerφs in 3.1 is the normal subgroup generated by the image
of Galksep((t)) ։ GalL → Galk((t)). Apply Fact 3.8 to the field extension k/ksep

to see that Galk((t)) → Galksep((t)) is surjective. In conclusion, Kerφs is the

image of Galk((t)) → Galk((t)). �

4. Galois Representations Associated to F -crystals of Rank 1

4.1. Consider an F -crystal E of rank 1 and slope m over k. Let (M,∇, F )
over Λ be the triple defining the crystal E . If {e} is chosen to be the basis of
M , then F (e) = pmµe, where µ is a unit in Λ ⊂ W (kpf ). By 2.3, there exists
some unit α ∈W (k) such that F (e⊗ α) = pme ⊗ α, i.e. σ(α)µ = α. As every
g ∈ Gal(k/k) = Gal(k/kpf ) can be uniquely lifted as a W (kpf )-automorphism

of W (k), it is easy to show that g(α)α−1 ∈ Z∗
p. Thus we get a continuous

homomorphism ρ : Gal(k/k)→ Z∗
p by sending g to g(α)α−1.

Definition 4.2. Let E be an F -crystal over a noetherian integral scheme X
of characteristic p. Let K be the fraction field of X and η be the generic
point. Assume that the first break point of NP (X, E)η is (1,m) for m ∈ Z≥0

and let E1 ⊂ Eη be the unique subcrystal of rank 1 and slope m same as
in Proposition 2.4. By the above discussion we obtain from the crystal E1
a continuous homomorphism ρ : Gal(K/K) → Z∗

p. We call it the Galois
representation associated to E , or the associated representation of E .

4.3. Let X and Y be noetherian integral schemes. Let f : X → Y be a
morphism mapping the generic point of X to the generic point of Y . Assume
that E is a crystal over Y satisfying the assumption of the definition. Then the
representation associated to E|X is the composition GalK(X) → GalK(Y ) → Z∗

p.

Lemma 4.4. Let (E , F1) and (E ′, F2) be two F -crystals over a noetherian
integral scheme X satisfying the assumptions in Definition 4.2. If there exists
an isogeny ψ : E → E ′, then their associated representations are identical.

Proof. Let E1 (resp. E ′1) be the subcrystal of (E)η (resp. (E ′)η) obtained in
Proposition 2.4. As ψ ◦ F1 = F2 ◦ ψ, then ψ(E1) ⊂ E

′
1. Actually we can

choose a basis ei of E1 (resp. E ′1) so that ψ(e1) = pne2 for some n ∈ N ,
and Fiei = pmµei for some unit µ ∈ Λ. Then it is obvious that the Galois
representations associated to E and E ′ are identical. �

Lemma 4.5. Let E be an F -crystal of rank 1 and slope m ∈ N over S = Spec k,
where k is a field of characteristic p. If the associated representation is trivial,
then E is a trivial crystal, i.e. there exists some basis {e} of E such that
F (e) = pme, and ∇(e) = 0.

Proof. Let e be a basis of E , and F (e) = pmµe. From 4.1, there is some unit
α ∈ W (k) such that σ(α)µ = α; the associated representation is trivial if and
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only if the unit α ∈ W (kpf ). It suffices to show that α ∈ Λ, and ∇(e) = 0
follows automatically.

Let Un(k) = 1+pnΛ and Un(kpf ) = 1+pnW (kpf ). First choose µ ∈ U1(k)
and α ∈ U1(kpf ). Considering σ(α)µ = α (mod p), we have αpµ = α, where
α = (α mod p) ∈ kpf . Moreover, the equation implies that α is separable over
k, and hence α ∈ k. Choose γ0 ∈ Λ such that γ0 (mod p) = α. Replace the
basis e by γ0e, then replace µ by σ(γ0)µγ

−1
0 and α by α ·γ−1

0 . Then σ(α)µ = α
still holds, and µ ∈ U1(k), α ∈ U1(kpf ).

The induction step: Assume µn−1 ∈ U
n(k), αn−1 ∈ U

n(kpf ), and αn−1 =
σ(αn−1)µn−1. It suffices to show that there exists some γn ∈ U

n(k) such that
γn = αn−1 (mod pn+1). Write µn−1 = 1 + pnνn, αn−1 = 1 + pnδn for some
νn ∈ Λ, δn ∈ W (kpf ). By assumption we have

σ(δn) + νn = δn (mod p) or δ
p

n + νn = δn.

As δn ∈ k
pf and the above equation implies that it is separable over k, then

δn ∈ k. Hence we can choose γn ∈ U
n(k) such that γn = αn−1 (mod pn+1).

Let µn = σ(γn)µn−1γ
−1
n and αn = αn−1 · γ

−1
n . We can easily see that they

satisfy the induction assumptions. Thus we can get a sequence {γn ∈ U
n(k) |

n ≥ 1}. As Λ is complete,
∏
n γn converges to some β ∈ Λ. It is not hard to

see that α · β−1 = 1, and thus α ∈ Λ. �

Proposition 4.6. Let R be a discrete valuation ring of characteristic p with
fraction field K and residue field k. Let E be an F -crystal over SpecR. Let η
and s be the generic and closed point of SpecR. Assume that the first break
point of NP (E)η is (1,m). Then the following two conditions are equivalent:

(a) The Galois representation associated to E is unramified, i.e., it factors
through φ : GalK → π1(SpecR).

(b) The first break point of NP (E)s is (1,m).

Proof. First consider Spec k[[t]] → SpecR. By Corollary 3.9 and 4.3, Con-
dition (a) is equivalent to the triviality of the associated representation of
E|Speck[[t]]. Moreover, as the Newton polygons of E are preserved after pulled

back to Spec k[[t]], Condition (b) holds if and only if the first break point
of NP (E|Speck[[t]])s is (1,m). Hence it suffices to prove the proposition for

R = k[[t]] with k algebraically closed. Note that in this case (a) is equivalent
to the following: (a)’ The Galois representation associated to E is trivial.

Condition (b)⇒(a)’: By [6, Cor. 2.6.2], E is isogenous to an F -crystal E ′

which is divisible by pm, which contains a subcrystal E ′1 of rank 1 and slope m.
By Lemma 4.4, the Galois representation in question is the same as the one
associated to E ′1|SpecK . By [6, Thm. 2.7.4], E ′1 becomes isogenous to a constant
F -crystal over k((t))pf , and therefore the associated representation is trivial.

(a)’⇒(b): By Lemma 4.5, ESpecK has a trivial subcrystal of rank 1 and
slope m. Then we get an injection Φ : LSpecK → ESpecK , where L is a trivial
F -crystal of rank 1 and slope m over SpecR. Apply [3, Main Theorem] to
E ,L and Φ. We obtain a nontrivial map L → E . Restricting to s, we see
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that Es contains a subcrystal of rank 1 and slope m. On the other hand,
by Grothendieck’s specialization theorem [6, 2.3.1], NP (E)s lies on or above
NP (E)η. Hence (1,m) is the first break point of NP (E)s. �

5. The proof

Let P = (i,m) be the common break point. Assume that codim(U, {s}−)
> 1, now we need to show that P is also a break point of NP (E)s.

Step 1: Reduce to the special case when the common break point P is of
the form (1,m).

In the general case, let E ′ = ∧iE . By assumption, (1,m) is the first break
point of NP (E ′)x for all x ∈ U\{s}−. Applying the result for the special case,
we obtain that (1,m) is a break point of NP (E ′)s, and hence P is a break
point of NP (E)s.

Step 2: First as S is locally noetherian, we may shrink S to an open affine
neighborhood SpecA of s such that (SpecA\{s}−) ⊂ U . Then we follow
the same reduction steps as in the proof of [4, Thm. 4.1]. We obtain that
there exists a noetherian complete local normal domain A of dimension 2 with
algebraically closed residue field k and a morphism φ : SpecA → S that
maps closed point to s and other points into U . Hence it suffices to prove
the statement when S is the spectrum of a noetherian complete local normal
domain A of dimension 2 with algebraically closed residue field k, s is the
closed point and U = S\{s}.

Up to now, we have shown that it suffices to prove the following simplified
statement: Let A be a noetherian complete local normal integral domain of
dimension 2 with algebraically closed residue field k. Let s ∈ S = SpecA be
the closed point and U = S\{s}. If (1,m) is the first break point of NP (E)x
for every x ∈ U , then (1,m) is the first break point of NP (E)s.

Let K be the fraction field of A. Consider the Galois representation ρ :
Gal(K/K) → Z∗

p defined in 4.2. Let H be the kernel of the composition of ρ

and Z∗
p

mod p
−−−−→ F∗

p. Let L be the subfield of K fixed by H . As Gal(K/K)/H

is a finite set, L is a finite Galois extension of K. Let Ã be the integral

closure of A in L. By a standard argument, we see that Ã is a noetherian
complete local normal domain of dimension 2 with residue field k. Consider

the finite morphism Spec Ã → SpecA. It is not hard to see that we only

need to prove the statement for Ã. Replacing A by Ã, we may assume that
Im(ρ) ⊂ 1 + pZp if p > 2 or Im(ρ) ⊂ 1 + p2Zp if p = 2, such that the

homomorphism Gal(K/K)
log ◦ρ
−−−→ Zp is valid.

Let x ∈ U . Assume that φ, φx and ψx are the same as in 3.2. Since
E|Spec ÔU,x

satisfies the assumptions and Condition (b) in Proposition 4.6, the

associated representation of E|Spec ÔU,x
, which is the composition of ψx and ρ,

factors through φx. It follows that ψx(Kerφx) ⊂ Ker ρ. By Proposition 4.6, we
obtain that ρ factors through φ. Thus we obtain a map ι : π1(U, η)→ Z∗

p → Zp.
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Take a resolution of singularities S̃ → S; if A happens to be regular, let

S̃ be the blowup of the special point of Spec A. Then the main result of [4,

Sec. 3] implies that ι can be extended to ι̃ : π1(S̃, η) → Zp. Let ξ denote the

generic point of a component of the exceptional fiber of S̃ → S. Now we have
the following diagrams:

SpecK

��

// U

��

Gal(K/K)

��

//

**

π1(U, η)

��

SpecOS̃,ξ
// S̃ π1(SpecOS̃,ξ, η)

// π1(S̃, η) // Z∗
p

Proof. By definition the representation associated to ESpecO
S̃,ξ

is the dotted

arrow, and it is unramified by the above commutative diagram. By Proposi-

tion 4.6 again, (1,m) is the first break point of NP (S̃, E)ξ. Since ξ is mapped
to s, (1,m) is thus the first break point of NP (E)s. �
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1979. MR0563463 (81i:14014)

[7] Ju. I. Manin, Theory of commutative formal groups over fields of finite characteristic,
Uspehi Mat. Nauk 18 (1963), no. 6 (114), 3–90. MR0157972 (28 #1200)

[8] H. Matsumura, Commutative algebra. Second edition. Mathematics Lecture Note Se-
ries, 56. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR0575344
(82i:13003)

[9] J. S. Milne, Étale cohomology, Princeton Mathematical Series, 33, Princeton Univ.
Press, Princeton, NJ, 1980. MR0559531 (81j:14002)

[10] J. Neukirch, Algebraic number theory, translated from the 1992 German original and
with a note by Norbert Schappacher. With a foreword by G. Harder. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
322. Springer-Verlag, Berlin, 1999. MR1697859 (2000m:11104)

[11] F. Oort, Purity reconsidered, see: http://www.math.uu.nl/people/oort/
[12] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265,

Springer, Berlin, 1972. MR0338002 (49 #2769)
[13] J.-P. Serre, Local fields, translated from the French by Marvin Jay Greenberg. Grad-

uate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979. MR0554237
(82e:12016)

Münster Journal of Mathematics Vol. 4 (2011), 129–140



140 Yanhong Yang

[14] A. Vasiu, Crystalline boundedness principle, Ann. Sci. École Norm. Sup. (4) 39 (2006),
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