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Zusammenfassung

Die Arbeit beschreibt einen neuen Ansatz zur Simulation von Messdaten, wie sie bei
der Durchfithrung von Experimenten mit der Atomsondentomographie erzeugt wer-
den. Derartige Simulationen stellen einen komplementiren Ansatz dar, mit dessen
Hilfe die Interpretation der Messergebnisse verbessert werden soll.

Als Grundlage dient ein flexibles Rechengitter, auf dem die Poisson-Gleichung
gelost wird. Die atomare Struktur der zu untersuchenden Probe wird hierbei maf-
stabsgerecht durch Wigner-Seitz-Zellen beschrieben. Im Anschluss wird die Probe
schrittweise, Atom fiir Atom, durch simulierte Feldverdampfung abgetragen. Aus
der Berechnung der Trajektorien feldemittierter lonen ergeben sich zweidimensio-
nale Detektorkoordinaten, vergleichbar zu den Messdaten, die beim Experiment
aufgezeichnet werden.

Eine Analyse der simulierten Trajektorien zeigt qualitativ vergleichbare Abbil-
dungseigenschaften, wie sie auch mit anderen Simulationsverfahren und in Experi-
menten ermittelt wurden. Die Flexibilitéit in der Beschreibung der Probenstruktur
beim hier verwendeten Ansatz zeigt sich darin, dass Felddesorptionsbilder fiir belie-
bige Gitterstrukturen und -orientierungen berechnet werden kénnen (z. B. kubisch,
hexagonal). Fiir eine bestimmte Probe stellt sich im Detail heraus, dass die De-
tektorposition feldverdampfter Atome nicht eindeutig festgelegt ist, sondern von
der genauen Reihenfolge der Verdampfung abhéngt. Unterschiede im Emissions-
winkel identischer Atome von ca. 1,1° sind moglich. Ergebnisse fiir Simulationen
bei erhdhter Probentemperatur lassen eine Verringerung der Tiefenauflésung in der
dreidimensionalen Probenrekonstruktion erwarten, die im Bereich typischer Git-
terabstédnde liegen kann. Ein Vergleich der urspriinglichen Probengestalt mit dem
Ergebnis nach der Simulation und der Rekonstruktion offenbart eine falsche Tie-
fenskalierung, falls der weit verbreitete Rekonstruktionsalgorithmus von Bas et al.
benutzt wird. Eine Korrektur ergibt sich, wenn das Volumen einer diinnen Scha-
le an der Spitzenoberfliche in Abh#ngigkeit vom Emissionswinkel beriicksichtigt
wird. Die mittels Fouriertransformation bestimmte Auflésung in der berechneten
Rekonstruktion betriigt ca. 0,8 A in der Tiefe und ca. 1,5 A in lateraler Richtung.

Anhand von Beispielrechnungen werden die erweiterten Fahigkeiten des Simula-
tionsverfahrens verdeutlicht. Feldinduzierte Kréfte, die auf ein in die Probenmatrix
eingebettetes Partikel einwirken, werden abgeschétzt. Die Zugspannung auf das Par-
tikel dndert sich quadratisch zum relativen Unterschied im Verdampfungsfeld. Die
neue Moglichkeit, Proben mit komplexen Gitterstrukturen zu untersuchen, wird am
Beispiel eines Schichtsystems von abwechselnd kristallinen und amorphen Bereichen
illustriert. In den 3D Rekonstruktionen von Proben mit einer 35-Korngrenze, ist ei-
ne deutliche Verringerung der Atomdichte in der Korngrenzebene zu finden. Im Fal-



le von Korngrenzsegregation sind inhomogene Verdampfungsfelder fiir zusétzliche
Artefakte verantwortlich. Ermittelte Konzentrationsprofile zeigen sich daher stark
verfilscht.
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Abstract

This thesis deals with a new approach for the simulation of measurement data
as they are usually obtained in atom probe experiments. Simulations represent a
complementary method which enables an improved interpretation of such measure-
ment results. As a general basis, a flexible computational mesh is used on which
the Poisson equation is solved. The detailed atomic structure of the sample to be
analysed is described true to scale by differently shaped Wigner-Seitz cells. By the
simulated field evaporation, the sample shrinks atom by atom. From the calculated
trajectories of field emitted ions, two-dimensional detector coordinates comparable
to the recorded measurement data in the experiments are obtained.

An analysis of the trajectories reveals qualitatively the same imaging properties
as they have been determined before based on other simulation approaches or in
experiments. The offered flexibility in the description of arbitrary sample structures
by this approach is demonstrated on the basis of calculated field desorption maps
for different lattice types and orientations, e.g. for cubic and hexagonal lattices.
In particular, it is shown that the determined detector positions are not unique.
They depend on the respective evaporation sequence. A shift in the launch angle
of about 1.1° for identical atoms is possible. In addition, simulations at elevated
sample temperatures indicate a degrading depth resolution of the 3D reconstruction
in the range of typical lattice distances.

A comparison of the original sample with the result subsequent to the calculated
3D reconstruction clearly reveals a wrong depth scaling if the reconstruction is
computed following the common protocol of Bas et al. A correction is possible if
the volume of a thin shell at the sample surface as a function of the emission angle
is considered. Based on an in this way corrected reconstruction, the resolution is
determined by Fourier transformation. The depth resolution amounts to 0.8 A and
in lateral direction it is 1.5 A.

The enhanced abilities of the simulation approach are illustrated by exemplary
calculations. An estimation of the field-induced force, which acts on an embedded
particle in a sample matrix is presented. The tensile stress changes with the square
of the relative difference in the critical evaporation threshold. The new possibility
to take account for complex lattice structures is demonstrated by the example of a
layer system with alternating crystalline and amorphous stacking. The 3D recon-
struction of samples, which contain a X5 grain boundary (GB), shows depletion of
the atom density in the GB plane. In the case of segregation, an inhomogeneous
evaporation threshold of the GB is responsible for additional artifacts. Determined
concentration profiles appear strongly distorted.
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1. Introduction

Atom probe tomography (APT) is a high resolution measurement technique with
application in materials science and engineering. The three-dimensional (3D) chem-
ical composition at the apex of small needle shaped tips is accessed by the controlled
field evaporation of atoms. Typical measurements include tenth of millions of atoms
corresponding to nano-metric volumes of about 50 nm x 50 nm x 250 nm.

In recent years, APT has seen a remarkable progress. Not so long ago, only
a handful of research institutes in the world were equipped with atom probe in-
struments. The deployed devices were mainly self-constructed and needed to be
operated by trained specialists. But nowadays, this situation is changing. Compa-
rable to transmission electron microscopy (TEM), APT has evolved into a standard
method in materials research. In particular, it plays a leading role for analyses
which require for 3D imaging, high spatial resolution, and highest chemical sensi-
tivity. The rise of APT began early in the last decade with decisive innovations
[KMO7; Aud+09]:

e The analysis of a broadened range of materials classes (e.g. insulators and
composites) was enabled by a new type of instruments utilizing laser-assisted

field evaporation.

e The probed volume was increased by a factor of four, while the overall mea-

surement time was shortened by at least twenty times.

e Sample preparation and measurements of selective features (e.g. grain bound-

aries, triple lines) were facilitated.

Besides, the application of APT by researchers who are not dedicated experts was
eased. On this background, a large-scale commercial distribution of instruments
all over the world has started.! Indeed, the commercial success may be seen as
best evidence for the new status of APT. On the other side, this success was made
possible not at least because of the clear demand for its unique analytic capa-
bilities. The access to the 3D stoichiometry at the nano-scale is getting in general
increasingly important for modern technologies [Gle89; Gle00]. Therefore, a further
increasing demand for appropriate analysis methods in the future can be expected.
For instance, the ongoing trend for miniaturization in the semiconductor indus-
try as described by Moore’s law [Moo65] requires higher resolving characterization

techniques beyond the limits of secondary ion mass spectrometry (SIMS) which is

1At the time of writing, at least 61 instruments have been sold since 2006 on a commercial
basis (www.atomprobe.com). Important customers are public research facilities but also the
industry.


http://www.atomprobe.com

the current standard method. Here, APT can fill the needs [Lar+11b; Lar+11a;
Pro+13].

In contrast to this success story, the achieved instrumental progress cannot hide
the fact that APT measurement results still suffer from intrinsic inaccuracies. Ar-
tifacts are likely encountered in the 3D reconstructions if materials with different
evaporation properties are investigated [Mil87; MH91; MV08]. Current state of
the art reconstruction protocols do not take into account such material dependent
effects [Gau+11; Lar+13; Vur+13]. Thus, the next step for improving APT must
consist in the development of a reliable model of the field evaporation process. First,
this should allow to reveal present artifacts by the comparison of measured data
with those derived from the model. The procedure resembles the similar practice in
high resolution TEM. Second, such a model may be further utilized to directly guide
the 3D reconstruction process of actual measurement data. In both directions, the
numeric simulation of atom probe experiments provides invaluable information.

In this work, two dedicated approaches for APT simulation are addressed. Both
are founded on the numeric solution of the Poisson equation. In this way, surface
fields at a modelled 3D emitter structure are enabled and trajectories of field emitted
ions are derived. The approaches are dynamic: protruding atoms, exposed to
stronger fields at the emitter apex, are removed preferentially one after the other.
Therefore, the computed electrostatic solution must be repeatedly updated so that
the simulation reflects field conditions comparable to the experiments.

The development of the first simulation approach has originally been motivated
from atom probe analyses of insulating oxide films (WOs, NiO, Aly03, ...) by
means of laser assisted evaporation [Obe+07]. For this application, an extended
possibility to account for dielectric effects at the emitter has been added [OS11].
But apart from this, the approach mostly follows the established standard proce-
dure for APT simulation introduced by Vurpillot et al. [Vur+99; VBB00; Vur+00]
about twelve years ago.

In the course of the first work on APT simulation, deliberations for a different
second simulation approach have been initiated [OES13]. Related results are mainly
addressed in this thesis. This so called “generalized approach” features major

improvements:

e in the possible treatment of the physics of field evaporation and

e in the way the atomic structure of the field emitter sample is represented.

The new approach is deeply founded on the 3D Voronoi tessellation. This way,

existing geometric constraints by the simulation mesh are removed. For example,
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the new approach can operate at largely different scales in space. The microscopic
field at the atoms of a simulated emitter tip as well as the field at the mesoscopic
scale is considered. Such a coherent treatment has not been possible before.

Having a nice idea is one thing, filling it with live is another: the programming
part of this work took by far most of the time. The involved numerics with 3D
geometry may be fairly tricky and complex. All together about 50.000 lines of
source code in C++ have been written — not just for operating the simulation
but also for additional presentation and analysis tools. Only a little part of this
programming work is directly apparent from the descriptions in the thesis. In this
regard, any presented results are only the cherry on the cake.

However, a practical outcome in addition to the thesis is the TAPSim? software
package which is dedicated to APT simulation. It is freely offered to all “atom

probers” in the IFES? community.

2Download opportunity and description: www.uni-muenster.de/physik.mp/schmitz/tapsim
3International field emission society (www.fieldemission.org)


http://www.uni-muenster.de/physik.mp/schmitz/tapsim
http://www.fieldemission.org

Outline

The next chapter provides an introduction to APT. Besides the description of the
theoretical basis of the field emission effects, broad emphasis is put on the appli-
cation of APT as an experimental measurement method. With this focus, details
of the ion projection and the geometric reconstruction process will be described.
Assorted experimental results may ease the understanding of the presented back-
ground information. Readers who are familiar with the technique may skip this
part.

The numeric foundations of the simulations are elaborated in chapter 3. Notable
concepts like the partitioning of space, the constitution by a point mesh, and asso-
ciated topological properties are described in detail. In the application to physics,
the approaches for the discrete solution of the Poisson equation and for extract-
ing the field in the simulations are derived. The standard simulation approach
by Vurpillot et al. operates on a regular mesh, whereas for the new “generalized
approach” an irregular mesh applies. Descriptions are treated separately for each
type of mesh. The general application of both simulation approaches to APT is
described in chapter 4. The next chapters exclusively demonstrate features of the

newly introduced approach:

e The imaging properties of the evaporation process are characterized (chap-
ter 5). Desorption patterns mainly of the cubic lattices are investigated. The
effect of disturbed evaporation sequences under the influence of temperature

is shown.

e The output of the simulations can be directly fed into existing algorithms for
APT reconstruction. Test results for the consistency and the spatial resolution

of computed reconstructions are presented in chapter 6.

e The new ability to account for the detailed atomic structure of simulated
emitter samples is demonstrated in chapter 7. Here, inter alia, results for
the simulated evaporation of an amorphous phase and for the case of samples

with a grain boundary are presented.

Finally, the main results of the thesis are concluded.
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2. Background: Atom Probe Microscopy

This chapter aims to give essential background information on atom probe to-
mography (APT). The text is constrained to the relevant topics as far as they are
suited to improve the understanding of the present work. For a general introduc-
tion to APT, the reader is referred to the increasing collection of textbooks [MS89;
Ts090; Mil00; Gau+12a].

First, the physics behind APT is described, thereafter the basics of the method
from the view of the experimenter. Recently, improved capabilities of the technique,
mainly focused on instrumentation, have been achieved. As a consequence, aspects,
which are ought to be already known, appear in different light. But also solutions
for newly raised problems are required. These issues are addressed at the end of

this chapter.

2.1. Field emission

In a historic view, the evolution of APT cannot be thought without the scientific
genius of Erwin Miiller (* 1911 - 11977) [Mel13] and his original work on field emis-
sion. Starting in the 1930s dealing with field induced electron emission, he continued
later in the 1950s focussing on field ion emission. Miiller initiated a completely new
field in physics which is in modern language termed high-field nanoscience. It deals
with investigations on the solid state in the presence of extraordinary high electric
fields (~ 10 GVm™1). Miiller’s particular merit lies not so much in the role as a dis-
coverer of new physical effects or in that of a theorist finding a solution for a tricky
problem but rather in pushing forward the application of the emission phenomena

which led to a new type of microscope and finally to the atom probe.

2.1.1. Historic context: field electron emission

Nowadays, the era of electric light bulbs is drawing to an end. The long period of
more than hundred years in which they have been in use is remarkable. In contrast
to the application as a light source, a light bulb represents perhaps the easiest
example of an electron emitter besides conventional cathode rays'. We consider
the electrons inside a metal as a gas enclosed in a potential well formed by the
positively charged atom cores. The height of the well is given by the work function
®. The kinetic energy of the electrons follows a statistic distribution. Thus, it
happens that at equilibrium at a given temperature 1" some of the electrons gain

enough energy to overcome the barrier and leave the bulk. The flux for this so

'Philipp Lenard (* 1862 - 11947), Nobel prize 1905
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called thermionic emission is described by Richardson’s law? [Ric24]

@
U~T? exp | ——rs 2.1
p( kBT> (2.1)
with kp denoting the Boltzmann constant. On the other hand, electron emission
may be seen as the thermal activated jump over the potential barrier with an
activation energy equal to ®y. This is indicated by the exponential Boltzmann

relation.

Electrons are charged particles. Therefore, it is natural to expect an effect on
the observed emission if a positive electric field additionally applies. This approach
has been followed by Walter Schottky (*1886 - +1976)3. He discovered that by
the presence of the field £ at the metal vacuum interface, the activation energy
for the electron emission becomes decreased. In this way, the field accelerates the
emission. The effect is attributed to the interaction of the escaping electron with

its own image force
2

Fle) =  dmey (23)2

(2.2)

Here, e and ¢y denote the electron charge and the vacuum permittivity, respectively.

The electron potential well, formerly described by a step-function, then approx-

imately writes as
¢ 1 g (z > 0) (2.3)
— ——eF -z (2 :
16meg =«

O(x) =

This function has a maximum at Tyax = 1/%. The consequence of this so

called Schottky effect [Sch23] is a reduction of the barrier height by A® = jjrf(; .
The electron flux (eqn. 2.1) gets decisively enhanced due to the field:
oy — AD
‘IISChottky ~ T2 - €Xp - = (24)
kT

At very high field strengths, above about 0.1 GVm™!, the barrier gets so nar-
row that quantum mechanical tunneling is the dominant mechanism. Then field
emission becomes independent of temperature. Therefore, it is often referred to as
cold emission because it takes equally part at ambient or cryogenic conditions. In a
theoretical paper dated 1928, Fowler and Nordheim [FN28] calculated the tunneling

20.W. Richardson (* 1879 - 11959), Nobel prize 1928
3A former PhD student of Max Planck (* 1858 - 11947) who was awarded the 1919 Nobel prize.
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flux by considering a triangular shape for the tunneling barrier:

4/2m. D3
\I]FN ~ exp (_M) (25)

3heFE

Here, m. and A = h/(27) denote the electron mass and Planck’s constant, re-
spectively. Equation (2.5) forms the theoretical basis of modern electron emitters
applied in the field emission gun of state of the art transmission electron micro-
scopes (TEM).

Interestingly, at about the same time, Erwin Miiller was engaged with his PhD
research under the supervision of Gustav Hertz (* 1887 - 11975) in Berlin. In 1935
he constructed the first field electron microscope (FEM) and analysed the voltage-
current characteristics of the observed emission. The FEM is directly based on the
described field effects [Miil36b; Miil36a]. The instrumental setup was very sim-
ple: It consists of an evacuated bulb. Inside, a needle shaped electron emitter is
placed opposite to an anode. For operation, the emitter is subjected to a negative
potential of a few hundred volts. Produced electrons get captured by the anode.
In later instruments, the anode was replaced by a phosphor screen which allowed
for studying the spatial distribution of the emission. Furthermore, cooling to cryo-
genic temperature reduced thermal velocities of the electrons and allowed for less

disturbed imaging conditions.

2.1.2. Field ion emission

Considering the same setup as described before but with a positive voltage applied
to the emitter, emission of field-induced ions becomes possible. The field ion mi-
croscope (FIM) presented by Erwin Miiller in 1951 [Miil51] follows this principle.
Tons are routinely imaged by the use of a phosphor screen. Because higher fields are
necessary, the applied voltage shifts into the range of some kilovolts, up to 20kV
are quite common.

The usual FIM operation mode utilizes a so called imaging gas (typical is He,
Ne or another inert gas). Caused by the diverging emitter field, gas atoms are
polarized and attracted to the emitter apex where they get trapped and lose their
kinetic energy by thermal accommodation. Figure 2.1a shows the potential diagram
for such an trapped atom in front of a metallic tip in the view of its electron.
The binding potential is decisively deformed by the applied field. I denotes the
ionization energy, ®r the Fermi level, respectively. Assuming a sufficient high field,

ionization may appear by tunneling of an electron from the potential well of the

10
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Figure 2.1.: Potential curves for (a) an electron and (b) an adatom in the vicinity to
the emitter metal-vacuum interface with applied field.

adatom into the metal. Clearly, this is only possible if the binding level of the
electron is shifted above the Fermi level of the metal. The critical distance x. for

this to happen reads
I -9

el

In the case of a tungsten tip imaged with He for example, this distance amounts

Te =

(2.6)

to about 5 A or almost two lattice spacings. Imaging contrast in the FIM mostly
develops owing to the local varying surface field. Protruding positions like kinks
or edges of atomic terraces concentrate the field and are therefore responsible for
bright contrast while, for instance, the inner parts of atomic terraces appear dark.
Related properties of the projective images will be addressed in section 2.2.1 in

more detail.

2.1.3. Field desorption and field evaporation

If the applied field is further increased beyond the necessary threshold for gas
ionization, direct desorption of atoms from the surface is observed. If the removed
ions have formerly been part of the emitter bulk, one speaks more precisely of
field evaporation. Field desorption is the more general term that addresses also
the removal of adatoms. For explaining the physics of the effect, various models
have been proposed [Gomb59; GS63; Kin82a; Kin82b] and also numeric approaches
based on Density Functional Theory (DFT) calculations have been tested [KN87].

11



2. Background: Atom Probe Microscopy

But nevertheless, most popular is the image hump model already introduced by
Miiller [Mil56] — although it is severely questioned [BF82]. Its origin is the energy
balance of the ionized state after desorption with the neutral bound state (without
any field). The basic idea is analogue to the case of electron emission: In order to
remove a neutral atom from the bulk, one has to spend the sublimation energy A
and the ionization energy (fig. 2.1b). On the other hand, an electron is drained into
the bulk during ionization. Therefore, one times the work function is retrieved. In

summary, the energy balance writes as
Qo=A+1-9 (2.7)

Considering in addition the field dependency as mainly determined by the image
potential of the formed ion, the final outcome is Miiller’s formula. The height of

the activation barrier in the presence of a field then reads

e3

Q(E) = Qo —

E 2.8
4meq (28)
A naive application of this equation derives an estimate for the critical field strength

at which the barrier completely vanishes:

4dmeg
Eciit 3 Q(Q) (2.9)

This field is commonly called the materials evaporation field.

A comparison of predicted evaporation fields with experimentally observed ones
is presented by figures 2.2a and 2.2b for different materials. As a general trend,
we see that the evaporation field of the materials correlates with their melting
temperature. The higher the melting temperature the higher is the evaporation
field which can be expected. To some part, this can be easily understood because
the binding energy is essential for both field induced evaporation and melting.
Nevertheless, in a second view, the correlation between the evaporation field and
melting is still astonishing as for field evaporation additional electric effects have
an impact.

On the other hand, details of field evaporation theory are rudimentary understood
and even surprising insights may still arise in the future. Avoiding theoretical
pitfalls, two general relations confirmed by experimental evidence turn out to be

useful:

First, experiments which have been conducted with constant desorption flux in-

12
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Figure 2.2.: Evaporation fields plotted versus temperature: (a) predicted by the image
hump model and (b) observed in experiments. For the image hump an extension to
multiple charged ionic appearances was considered. Derived fields refer to the most
prominent charge states observed in experiments. The original data are tabulated in
[MS89] and [Ts090]. Melting temperatures are taken from [Sto00].

dicate that a linear relation between the acting field and the activation barrier is
realistic [Vur4-06]. Although this result contradicts at first sight with the described
dependence (eqn. 2.8), this finding is nevertheless consistent if the particular field
conditions close to the critical threshold are adressed. A Taylor approximation of

equation (2.8) with E' ~ Eci; clearly predicts this linear field dependence:

QE) ~ (1 _F ) (2.10)

In turn, this form represents a useful starting point for further experimental or
theoretical considerations. — Fairly, this is at the cost of treating Qg and Ecyit as

free parameters.

Second, experiments with constant field reveal an Arrhénius dependency when

the temperature is raised [Kel84]:

Ulons ~ €xp <—i$)> (2.11)

This observation is a strong hint to a thermally controlled process. Thus, kinetic
models of field evaporation [WK90] appear justified. Equation (2.11) is also the
theoretical basis for understanding effects with laser-assisted field evaporation for
which a short heat pulse to the tip is assumed [KT80; Vel+06; Gau+06; Obe+07].
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2. Background: Atom Probe Microscopy

2.2. Basic principles of atom probe tomography

APT represents the direct application of field desorption as a measurement tech-
nique. Under common experimental conditions, the necessarily high field strengths
in the order of 10GV m™! are difficult to reach. Even if best vacuum conditions
apply, the dielectric strength is about three orders of magnitude to low. A simple
setup consisting of a plate capacitor would suffer from breakdown before a suffi-

ciently high field is reached.

For this reason, a particular geometric setup is considered in APT. By making
use of small needle shaped samples, a sufficient field is then already achieved if
only moderate voltages in the range of some kilovolts apply. Indeed, utilizing the
needle like geometry is one of Erwin Miiller’s first merits. Figure 2.3 shows the
basic geometric setup which is used for FIM as well. Due to the tip geometry,
the enhanced field is constricted to the apex of the emitter as the curvature is
highest there. For the experiments, a micro-channel plate combined with a position
sensitive delay-line detector or phosphor screen acts as counter electrode in order
to catch the emitted ions. As mentioned before, cooling of the emitter to cryogenic

temperatures is favourable as thermal noise becomes reduced this way.

An approximate analytic solution for the potential and field of this setup may
be obtained if the geometry of two confocal paraboloids as electrode surfaces is
considered [SW78]. By virtue of rotational symmetry, two independent coordinates
(v,z) are sufficient for the description. With the origin taken to be in the common
focus, the small paraboloid representing the emitter is given by y? = 42, - (Z, — 2).
The curvature radius at the tip is r = 2Z,. For the second paraboloid, a focal
length Zg is used which is considered equal to the distance between emitter and

counter electrode (fig. 2.4). With this, the solution of the potential writes as

o(y,z) =1In (Z + 2;2}:_ y2) : ln(Z(r]/ZR) (2.12)

Parameter U denotes the applied voltage. The field (E,, E.)T(y,2) is given by the

gradient. So we get

B,=— " Y
YU I(Zr/Zy) 2424 222 12
E, v ! (2.13)

“In(Zr/Z) 212
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2.2. Basic principles of atom probe tomography

( measurement chamber \
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() field emitter ...
structure ...
diameter: <100 nm ' -
cooling: T~ 40 K counter
electrode
I
II
high voltage +3 kV ... +15 kV =
(b)

aperture

Figure 2.3.: Basic setup for APT measurements: (a) schematic sketch of the field
emitter structure in front of the counter electrode. With an applied voltage, the trajec-
tories of emitted ions approximately follow the field. (b) View inside the measurement
chamber of the atom probe at Miinster University [Ste+07] showing the same basic
arrangement. The emitter is fixed inside the sample holder. The micro-channel plate
(MCP) on the left acts as the counter electrode. The additional aperture is grounded
to 0V and enables slightly enhanced field conditions for emitted ions.
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2. Background: Atom Probe Microscopy

Figure 2.4.: The analytic solution of the Laplace
; equation considers the geometry of two confocal
Zg paraboloids with different heights Z, and Zg.

Although this solution turns out to be of limited use in order to describe the real
electrostatic conditions of the experiments, particularly if an additional aperture or
a sophisticated lens system is present, this analytic approach provides nevertheless
interesting clues. For instance, the field along the emitter axis with (0, z) equates

to

U

B-_ 2
" In(Zg/Z) 2

In particular, it reads
2 U

Elz=2;) = m(Zr/Z,) T

(2.14)

at the apex. Here, the pre-factor only weakly depends on geometric parameters as
Zr > Z,. This leads us to consider the apex field to be in general expressible in

the form
U

Br

with a practically constant 8 as it is common practice in APT. The here newly

Eapex = (2.15)

introduced factor f replaces the logarithm in equation (2.14) and is called field-
factor. 1t is generally considered as a sample and instrument related parameter.
Usual experimental values are in the range between three and twelve. — If, for
example, in the application to the paraboloidal model, a curvature radius of 50 nm
and a distance of Zr = 15cm are used, the calculated “analytic” field factor yields
B8 ="7.5.

Vice versa, equation (2.14) can also be used to determine the curvature at the
apex if § and the voltage are known. In an experiment starting at zero voltage,
the emitter begins to form itself on the onset of field desorption until a steady

shape is established. Observed curvature changes are then proportional to the
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2.2. Basic principles of atom probe tomography

submitted voltage and to the coefficient (BEcrit)*l which is essentially controlled
by the critical evaporation field of the material.

The so established desorption is very sensitive to the applied field or voltage
(eqn. 2.11). The ability for the fine grained control and to trigger single desorption

events establishes the core of any APT measurement approach.

2.2.1. Sample geometry and image formation

The way in which the field factor has been introduced here already emphasizes
the crucial role of the emitter geometry for APT experiments. In practice, a more
simple geometry than the paraboloidal one is used as approximation. The tip is
considered to be assembled of a truncated cone and a half-spherical closing cap (see
fig. 2.5a). Decisive parameters are the taper angle v, and the curvature radius
riip- (The particular advantage of this practice will become clear in the latter part
of this section, when the 3D reconstruction is discussed.) Although the preparation
of the required needle shaped samples seems to be tedious, this constraint does not
really represent a bottle neck in modern APT. For instance, the samples depicted in
figure 2.5 have been prepared utilizing conventional electrolytic etching techniques.
If this etching is used in combination with a polishing step in the FIM, such samples
can also serve well as substrate for deposition of even more complex multi-layer
structures (fig. 2.5b).

Less tricky but requiring an expensive instrumental equipment, state-of-the art
APT sample preparation is enabled by the focused ion beam (FIB) technique
[KL12]. This not only allows for site specific preparation directly from a bulk
source, but also enables a verifiable control of the milling process which finally
results in perfectly shaped samples with improved measurement yield.

As a lens-less microscope, APT is really unique: Each sample acts as its own
projective imaging system. In the FIM mode as well as in APT measurements,
the trajectories of emitted ions are controlled by the emitter apex. For illustration,
figure 2.6 shows two field ion micrographs which have been obtained both at a
low voltage (fig. 2.6a) and at an elevated voltage (fig. 2.6b). In the first case, the
estimated curvature amounts to about 8 nm which represents a very sharp tip and
results in a high magnification. Clearly, these conditions are way sufficient to easily
resolve individual atoms at the apex. In the latter case, the curvature amounts to
about 40 nm. The magnification is much lower. We see, the continuous erosion of
the tip apex by increasing the voltage not only results in a blunting of the tip but

is also responsible for a dramatic change in magnification.
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2. Background: Atom Probe Microscopy
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(a) Measurement of the emitter shape
by determining its taper angle and the
curvature radius at the apex. Before
imaging with the TEM, the emitter has
LA been submitted to a voltage of 13kV
‘50 nm (Courtesy of M. Roussel, University of
= Miinster).

(b) Typical sample geometry
in the application to mate-
rial analysis [Sch+10].  Four
different layers prepared by
sputter-deposition onto a pre-
sharpened tungsten tip are seen
(Py = FelgNigl).

Figure 2.5.: Exemplary TEM micrographs of used APT field emitter samples

The general image formation is described by a point projection, with the origin of
the projection off-centred of the half-sphere at the apex. As an effect of the needle
shaft, the origin shifts somewhat backwards along the emitter axis. In consequence,
the imaging conditions are best described by an intermediate projection between a

central and a stereographic projection [Bas+95; AIK+03].

In detail, the ring like pole patterns, which are easily visible in the FIM mode,
coincide with distinct crystal orientations. A careful microscopic description of
the projection therefore derives from the angular relations of the image at the
FIM screen and the comparison with the lattice orientations [WSS74]. As the
result, a linear relationship between the imaging angle and the corresponding launch

angle for field emitted ions is revealed (See figure 2.7 for the definition of the

18



2.2. Basic principles of atom probe tomography

(a) Low voltage: =~ 3.0kV, high magnifica- (b) Elevated voltage: =~ 15.0kV, low mag-
tion: > 5 - 106 nification: < 109

Figure 2.6.: Field ion micrographs of a tungsten emitter. Crystallographic orienta-
tions are revealed by distinguished pole patterns.

;
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B ,,“L -imaging
Figure 2.7.: Sketch of the angles P O |
which become considered for the /8' S L
image compression. A iYauneh i
angles.) [CWS99]:
ﬁimaging =& Vlaunch (216)

The controlling factor denoted by ¢ is called the image compression (0.0 < £ < 1.0).
The image compression establishes the link between the original location at the apex
and the final position in the image. Therefore, it is essential for the application
in APT reconstruction, as we will shortly see. But firstly, we can use it to give
the equation for the magnification of the projection. According to the principle of

intercepting lines, the magnification simply becomes

S

r

M : (2.17)
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2. Background: Atom Probe Microscopy

if the emitter to screen distance is [.

2.2.2. Field desorption experiments

Figure 2.8 shows in atomic detail the crystal structure at the apex of an Al field
emitter which has been imaged with an high resolution TEM. Atomic columns
of the fcc structure are seen. From this, the present lattice orientation can be
determined. Most remarkably here is the rough morphology with kinks and edges
at the boundary to the vacuum. This picture makes immediately clear that for
the details of the desorption and the following trajectories towards the detector the
surface does play an essential role. Whereas the usual imaging properties described
before are determined by the macroscopic field, the local field in direct vicinity to the
surface is responsible for observed patterns and also for possible imaging artifacts.
In order to understand this relation it is instructive to compare the imaging process
in the FIM (fig. 2.6) with its counterpart in APT.

Detailed results from the literature about the image projection have been almost
exclusively been gathered by FIM experiments, despite the process of field ionization
and field induced desorption are not identic. In FIM, the whole apex surface is
imaged simultaneously by means of field ionization of an imaging gas, whereas
APT is based on the consecutive evaporation of single apex atoms. — For sure,
the latter process is also routinely observed in FIM. But the important difference

is that FIM does not really image the evaporation: the image of the emitter apex

~ (vacuum)

Figure 2.8.: High resolution TEM image of an Al field emitter sample after prepara-
tion with FIB (Courtesy of W. Levebvre, Institut des Matériaux, Universite de Rouen).
The atomic rough surface morphology of the apex is clearly predetermined by the crys-
tal lattice.
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2.2. Basic principles of atom probe tomography

before and after the evaporation event is visible. In contrast, what is not visible, is
the image of the evaporated atom itself at the screen, like it is the case in APT.

The insight that both processes obey somewhat different rules is emphasized by
patterns captured with the so called field desorption microscope (FDM). The basic
instrumental setup of the instrument is the same as for the FIM, but in this case, the
device operates without any image gas. Instead, the imaging screen is coupled with
a timing gate which is used to activate the screen for preset time slots right after a
high voltage pulse has been applied [WDJ75; WDJ76; KMMT77]. The magnitude of
these trigger pulses is adjusted such that the atoms of a few mono-layers at the apex
are removed. Unintended contribution of noise due to residual ions in the chamber
is prevented by means of the time gated detector screen. This way, incoming ions
are filtered by their time-of-flight.

FDM experiments must be conducted with great care for the best possible vacuum
and temperature conditions in order to avoid misleading results. For example,
the presence of residual gases in the chamber like Ha, HoO or He and Ne from
a previous operation as a FIM does selectively promote the desorption of atoms
[Kel84]. Unfortunately, most of the available FDM micrographs [WDJ76; KMM77],
which are almost exclusively published in the 1970s of the last century, probably
suffer from less than optimal conditions.

A counter example is given by figure 2.9 published by Geiser et al. in 2009
[Gei+09]. This extraordinary detailed desorption map of a high-purity Al field
emitter was obtained using a modern commercial atom probe instrument®. The
shown pattern is the cumulative result of many single desorption events which have
been captured. It is one of the best measurements known to the author. Very good
vacuum conditions (~ 107! mbar) at the lowest possible temperature (~ 20K)
offered by the instrument have been ensured. A complex pattern with rings around
low indexed crystallographic poles appears which has some similarities to typical
FIM micrographs, although the origin here is from field desorption. Particularly
striking is the detailed appearance of clear zone lines of the crystalline Al apex
which are revealed by dark stripes depleted in hit intensity. Different widths are
also recognized. Most remarkably, in the stripe center, a bright contrast is restored.
Thus, no or at least less depletion of atoms seems to be present here.

In comparison to other FDM images, this observation is unique and a result of
the excellent measurement conditions. Notably, in older publications, the zone lines

appeared also with elevated intensity but a detailed inner structure could not be

4Cameca LEAP 3000 X Si
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2. Background: Atom Probe Microscopy
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Figure 2.9.: Al desorption pattern obtained at a very low temperature of T=20K
and particular clean vacuum conditions [Gei+09] (Courtesy of M. Moody, Department
of Materials, Oxford University).

observed. Elevated intensity is presumably a result of promoted desorption. It is
well known that in particular at zone lines elevated fields are present which must be
considered to play a decisive role [Pan74]. The observed loss of internal structure is
presumably due to degraded vacuum conditions in combination with an in general

elevated emitter temperature (> 70 K).

2.2.3. Outline of the APT measurement process

Practically, the FDM almost operates like a modern atom probe but with the
notable limitation that only cumulative desorption events could be reasonably de-
tected and no further information on the desorbing atoms is accessed. Actually, the
capability of the detection system of determining the 2D hit position for each of the
incoming ions is one of the main instrumental characteristics of the so called “three-
dimensional” (3DAP) [CGS88] or “tomographic” (TAP) [Bla+93] atom probe in-
struments.

In state of the art devices, fast delay line detectors are used for this purpose.
Unfortunately, these detectors have only limited capacity to discriminate the posi-
tion information in the case of multiple hits at a time. For this reason, atom probe

measurements are conducted in a sequential manner, atom by atom. The controlled
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desorption of mostly single atoms is enabled by pulsed high-voltage or laser-assisted
field evaporation in combination with a standing voltage (fig. 2.10): While without
any pulse, the actual emitter field is not sufficient, suited evaporation conditions are
either achieved by a short high-voltage pulse superimposed to the standing voltage
or by illumination with a laser pulse which leads to a shortly increased temperature
at the tip. This latter approach has the same promoting effect on the desorption
rate but leaves the field constant (eqn. 2.11). If species with different evaporation
fields are present, denoted by A and B in figure 2.10, the magnitude of the applied
pulses must be chosen with care so that preferential evaporation does not appear.
The actual desorption rate in the measurement (i.e. atoms per pulse) is adjusted
by increasing or decreasing the standing voltage insofar it is necessary.

Besides the sophisticated measurement control, pulsed field evaporation enables
mass-spectrometry on the detected ions. Simultaneous with each trigger pulse
submitted to the emitter, a clock is started and it is stopped once a detector event
is registered. From the measured time-of-flight and the accelerating voltage, the
respective mass-to-charge ratio is calculated from which in turn the chemical nature
can be deduced.

Each APT measurement results in a unique data set. For each detected evapo-

ration event,
e the 2D detector position,
e the measured time-of-flight, and
e the actual measurement voltage

are recorded. The stored sequence of such data records notably matches the se-
quence in which the atoms have been evaporated from the analysed emitter struc-

ture. Hence, first records depict information on atoms which have been located at
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Figure 2.11.: APT analysis of a Cu(In, Ga)Ses (CIGS) thinfilm solar cell (Courtesy
of R. Schlesiger, University of Miinster [Sch+10]). (a) 3D impurity distribution of Fe
and Na. Segregation of Fe clearly reveals a grain boundary. In contrast, Na appears
equally distributed. (b) Determined atom concentration in the marked cylinder.

co™ .
5000 Ni
2 400 Al
A Q N }
2
g 30004 Fe? Co'
c
g | 2+
S 2000 AP 2 W
g o ‘ FeO'
o) | + | e
10001 daotll| AT e
Al | | Fe ‘\N'H' o
O L] | I | WUNH, | CoO" 2+
L A Ly WG \, Ll |
0 10 20 30 40 50 60 70 80 90
mass [u]
A5
D

concentration [1]

0,0 - 5 s
0 2 4 6 8 10 12 14 16 18 20 22 24

depth [nm]

(a) (c)

Figure 2.12.: APT analysis of the emitter sample depicted before in figure 2.5b
[Sch+10]. (a) 3D reconstruction. At the bottom part, lattice planes in W are revealed
(dry = 2.23 A). (b) Mass spectrum. Atomic and molecular species with different
charge state are identified. (c) 1D concentration analysis. Stoichiometry of Al oxide
almost matches the nominal value for AlsOg.



2.2. Basic principles of atom probe tomography

the surface of the sample structure, whereas the following records depict informa-
tion on the volume underneath. Thanks to the continuously progressing erosion
of the emitter, the depth information is preserved in the obtained sequence. We
will describe in the next section how the collected information can be used to re-
construct the original 3D atomic positions within the analysed volume. Examples
of reconstructed sample volumes from such data sets are presented in figures 2.11
and 2.12.

2.2.4. Constitution of the 3D reconstruction

The standard approach for reconstruction has been introduced by Bas et al. at
a time when the first instruments equipped with position-sensitive detectors were
available [Bas+95]. Although APT instrumentation has seen a vast progress since
then, the original reconstruction approach still almost represents the state of the
art. Most of the conducted 3D atom probe analyses conceptually still rely on this
early work.

As a general premise, the measured emitter apex is assumed to maintain an
approximately uniform spherical surface at any time. A suited description of the
geometry is therefore enabled by deliberately accounting for the curvature radius,
denoted by r, and the emitter height zApex. Both parameters are subject of continu-
ous changes during measurement and different approaches exist in order to account
for the variation. Another premise is that a central projection holds which gets
only slightly modified by the image compression factor &.

Provided that the sample emitter is not tilted and coincides with the instrument
axis, the procedure for reconstructing the sample volumes can be conveniently di-
vided into two parts. In a first step, the 2D coordinate at the detector (z/,y’) is
considered (fig. 2.13). From the distance [ between the detector and the sample the

respective imaging angle

[ !2 12
¥ = arctan (HU) (2.18)

l
is computed. — Here and in the following, primed symbols refer to the situation at
the detector, whereas the plain symbols are valid for the emitter. — The extension

to 3D takes the presumed emitter curvature into account. The launch angle 9 of

the detected ions amounts to ¥'/£, whereas the azimuth within the image plane

/

¢ = arctan (i,) (2.19)
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2. Background: Atom Probe Microscopy

Figure 2.13.: Geometrical relations which become considered for the 3D reconstruc-
tion

remains the same both at the detector plane and at the emitter due to rotational
symmetry. The image transfer relation is best expressed by using spherical coor-

dinates (r,¢’,19), so that the 3D launch position at the emitter may be written

as
x 0 sin(¥'/€) cos(y)
= 0 +r- | sin(9'/€) sin(y) (2.20)
z ZApex 1- Cos(ﬁl/g)

The z-axis is directed along the tip-shaft. As a consequence of the curvature,
the reconstructed z-coordinates are larger for events located at the center of the
detector than for those located more outwards. Particularly for ¥/ = 0°, one directly
receives 2 = Zapex, Which is the actual height of the apex. By the described inverse
projection, we are basically able to trace back the 3D launch positions of each
single event. But that is not enough. In order to reconstruct the full volume with
several millions of atoms, further effort is necessary to appropriately account for the
shrinkage of the tip. This change is addressed by a separate, second reconstruction

step.

Emitter shrinkage

The usual approach is to distribute the shrinkage due to the discontinuous erosion
of atomic terraces as it is usually observed in FIM continuously to all events in the

APT measurement sequence. Thus, once the 3D atom position of the ith event has
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2.2. Basic principles of atom probe tomography

been computed, the actual emitter height changes by a small decrement Az which

is then used for the reconstruction of the (i+1)th event:
nggrelx) = Zg‘gex - Az (221)

The value for the applied decrement can be estimated by considering the volume
of a thin shell of the apex which is delimited by the aperture angle ¥nax. If the
thickness of this shell is Ar and a fixed atom volume €2 applies, the respective

number of atoms located in the shell becomes
N = A(Wmay) - Q- Ar (2.22)

A(¥) is derived from the detector area with regard to the magnification of the

projection (eqn. 2.17):
ADet

M2

The limited detection efficiency of the detector must also be considered. In order

N = Q7L Ar (2.23)

to correct for missed events, a factor 1/ppet is additionally introduced. At the end,

the desired emitter shrinkage attributed with each single atom is then given by

AN \7' QM2
Az ~ = . 2.24
(d(Ar)) bt Apes (2.24)

Tip blunting

Owing to the cone-shape, erosion of the tip also leads to an increase of apex curva-
ture. In order to track this tip blunting, basically two approaches are established
[JS02]. The obvious way is to determine the curvature changes directly from the ap-
plied voltage which is recorded together with each measurement event (eqn. 2.15).
Clearly, this is only possible if preset values for the field factor and the evaporation
field, which appear in equation (2.15), are provided. Although this approach offers
a high reliability, it practically suffers from the requirement of uniform evaporation
properties of the analysed materials. However, most of the analysed samples usu-
ally exhibit complex composite structures with decisively different field evaporation
properties. The commonly applied approach is therefore to predict the curvature
changes by considering a conical emitter geometry. Then, the provided values are
an initial apex curvature and the taper angle . Straight forward geometry leads
to the relation )

sin 7y

Ar =

=—— A 2.2
1 —sin~y ‘ (2.25)
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2. Background: Atom Probe Microscopy

for the curvature change as a function of the shrinkage. Because both of the de-
scribed reconstruction steps are applied one after the other, a unique set of 3D
coordinates results for each event. Together with the continuously progressing z-

coordinate the curvature radius advances as well.

2.2.5. Enhanced reconstruction approach dedicated to wide angle
instruments

In the evaluation of data collected by instruments with limited field of view (~ 5°),
the approach by Bas et al. has proven sufficient quality in terms of atom positioning
and spatial calibration of the reconstructed 3D volume. A famous example in
this regard is the analysis of the Cotrell atmosphere of Boron close to an edge
dislocation in FeAl by Blavette et al. [Bla+99]. Exhibiting a dopant concentration
of 400 ppm, enrichment of the Boron atoms could be clearly resolved in addition to
the simultaneous imaging of the Burgers circuit in the host lattice.

Anyhow, facing the extended aperture offered by modern instruments — up to
40° are state of the art — the highest possible resolution of the 3D reconstructions
remains limited to volumes located close to or at the center of the emitter apex
parallel to the specimen axis. The origin for this lies to some part in the applied back
projection procedure and the assumption of a unique apex curvature. Improved
results after the reconstruction are therefore generally enabled by treating a not
so ideally formed apex shape. For example, this can be achieved by an image
compression factor which is a function of the imaging angle [Lar+10]. As the main
drawback here, the evolving emitter shape depends on parameters which are not
a-priori known for a conducted measurement, e.g. faceting in dependence on the
crystal lattice and/or composition is important but complicated to predict. This
uncertainty prevents the general application for reconstruction.

In addition, the lateral resolution is known to be degraded by aberrations in
the trajectories of emitted ions [WCS98; Gau+09]. Moreover, these aberrations
do eventually combine with directed diffusion prior to launching from the surface
under the presence of the acting field (“rolling up motion”) [Gau+12c]. Because
off-axis trajectories are necessarily curved, degrading effects on the resolution get
worse with an increasing imaging angle. Clearly, by their statistic nature such
effects cannot be really corrected for.

In contrast, a fundamental improvement is achieved by an enhanced approach to
account more precisely for the overall emitter shrinkage (eqn. 2.24). Starting point

for this attempt is an emitter geometry with a simple cylindric shaft (fig. 2.14).
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2.2. Basic principles of atom probe tomography

Figure 2.14.: Eroded volume at the emitter
apex related to a small shrinkage of Az. The
angular desorption flux ¥(¥) dd is linked to
the hatched volume denoted by dV.

The curvature radius at the apex remains constant independent of the measurement
progress (dr(¥,z) = 0). Therefore, the loss in volume associated with a shrinkage

of Az directly compares to a disc with
AV = mr? Az (2.26)

Since only a fraction of this volume can be accessed due to a limited measurement

aperture, we need to take particular care for the angular distribution for which

19Inax

v

AV = — 2.2

% /deﬂ (2.27)
0

holds. From the hatched region in figure 2.14, it is clear that the linked volume
segment dV (1) severely changes with the desorption angle. With regard to the
depicted geometry we get

dV(9) = Az- RdRdy
= Az - r?sin(d) cos(9) di dy (2.28)

such that the angular desorption flux yields

dN _ av 22 Az

- sin(¥) cos(¥) dv (2.29)

at the apex. Alternatively, this becomes

2 / / /
Upet (V') d9' = 27TTQAZ -sin (i) cos (i) d;? (2.30)
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2. Background: Atom Probe Microscopy

if detector coordinates are used instead. Then, 9 refers to the imaging instead of
the launching angle. Therefore, image compression, again denoted by &, must be

considered.

/
max

If a limited aperture with ¢ < 90° is regarded, the relation between emitter

shrinkage and the number of measured atoms AN at the detector equates as

VLI AN (2.31)

/
pDet 7"'7"2 . Sin2 (19111%)

which is not at all the same as it is commonly assumed in the frame of the Bas et
al. approach (eqn. 2.24).

The expression for the shrinkage in the special case of a cylindric shaft is con-
sistent with a result of Geiser et al. which has been published in [Gau+12a] but
without giving any further description or proof. The impact of the here presented

formulation on the computed reconstructions will be further examined in chapter 6.

2.3. Present challenges

Enabled by the computed 3D reconstructions, APT offers materials analysis at the
ultimate limit as at the same time a high chemical resolution combined with a
high spatial resolution is delivered. For sure, facing the progress in instrumenta-
tion and utilizing sample preparation by FIB, there exists nowadays practically no
limitation on the type of possible samples: metals, semiconductors, ceramics or
even solidified biologic materials, and complex compound structures can in princi-
ple be successively applied. But as much as the collection of measurement data has
been facilitated, e.g. in particular by utilizing laser assisted field evaporation, the
need for more sophisticated data processing techniques and for a better physical
understanding of the basic processes has also increased. The demand to under-
stand the involved physics has even increased with the now possible investigations
of electrically more “exotic” materials than metals. For instance, in the case of
semiconductors, such effects like band bending with at least partial field penetra-
tion into the bulk probably alters field evaporation [Tso79]. Also, it is well known
that in samples which exhibit heterogeneous evaporation properties for different
species severe artifacts in the computed reconstructions are encountered [VBB0O0;
Vur+04b; MV08; Mar+10].

In order to illustrate the effect, a TEM tomography footage of a SiGe superlattice

structure before and after performing the APT measurement is shown in figure 2.15.

30



2.3. Present challenges

Figure 2.15.: TEM tomography capture of a SiGe superlattice before and after the
field evaporation experiment (Courtesy of S.S. A. Gerstl & E. Mueller, EMEZ — Elec-
tron Microscopy Center at ETH Ziirich).

The expected evaporation fields from the literature are 33 Vnm~! and 29 Vnm™!
for Si and Ge, respectively [MS89]. As it is clearly depicted by the magnified view
of the partially measured sample apex, a clearly heterogeneous surface morphol-
ogy evolves. Deviations in the local curvature, as they are here encountered, are
responsible for different imaging conditions of the ion trajectories which are finally
also responsible for artifacts in the computed 3D reconstruction. Local density
fluctuations in the reconstruction and unexpected sharp or intermixed interfaces
are typical if a 1D concentration plot is evaluated. If lattice planes are recognized,
they may appear bent close to such interfaces.

Currently, there exists no satisfactory solution for dealing with such type of arti-
facts. In the long term, it would therefore be desirable if the applied reconstruction
procedure would be improved in such a way that it can correct artifacts. But this
seems not feasible at the moment.

In this situation, simulations of APT measurements can play an important role.
Provided they reflect the important physical mechanisms to a sufficient extent, pos-
sible evaporation artifacts in real measurements might get more easily revealed by
comparison with simulations. If, in addition, also the magnitude of the present dis-
tortions could be quantified, the general reliability of the conducted APT analyses
can be improved despite the artifacts. Besides, the simulation of APT measure-
ments may play a key role in testing, improving and correcting present and newly

developed analysis techniques which are applied to the 3D reconstructed data. Also
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the ultimate goal to overcome the limitations of the present reconstructions may

be finally reached on this path.
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APT simulation models are based on two assumptions: First, if an atom evap-
orates, it almost loses instantly an electron during the process. Thereafter, it is
accelerated off the apex. Second, realistic field conditions both at the emitter sur-
face and for the trajectories are enabled if the rigid atom structure of the vacuum-
emitter interface is treated as the decisive electrostatic interface, like it is visible in
the high resolution TEM image of the Al emitter apex in the previous chapter (see
fig. 2.8).

The implementation of the simulation model takes account to these assumptions
by making use of a discrete mesh. The topology of the mesh permits a suited
geometric and electric description of the emitter structure. In the following, foun-
dations for the numeric treatment of meshes are addressed and related algorithms
are explained. In a second part, discrete equations for the treatment of classical

electrostatics on the meshes are derived.

3.1. Foundations of mesh generation

The topological description of a particular mesh is closely related to the notion
of tessellations. A tessellation is the filling of space with well-defined geometric
objects in which the single elements seamlessly fit together. In a different view,
a tessellation represents a certain kind of partition of space into subspaces with a
distinguished centroid and an implicit connectivity. For this reason, tessellations
serve well as the foundation for computing meshes in numeric simulations.

The simplest kind of tessellation is the regular one which directly results from
equidistant distributed points along the basis axes of a given coordinate system. In
2D, the obtained geometric objects are equally shaped squares or parallelograms
(fig. 3.1a). If used as a computing mesh, the periodicity supports algorithmic and

numeric treatment. However, not every problem is suited to be handled by this
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Figure 3.1.: Examples of fundamentally different tessellations
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3.1. Foundations of mesh generation

regularity. For instance, it is not practical to make use of a fine equidistant mesh in
an application which covers different length scales. Inefficient use of resources, in
computing power, or available memory put constraints on this approach. In such
a situation, switching to irregular tessellations (fig. 3.1b) is beneficial, despite their
increased complexity. Regular meshes are not explicitly addressed here furthermore,
because each regular mesh can be considered as the specialization of an irregular

one.

The Delaunay and the Voronoi tessellation, which are described in the following,
represent two kinds of familiar irregular tessellations. Both rely on fundamental
geometric considerations which are valid in any dimension of space. First, we intro-
duce the tessellations by giving their general definition. Thereafter, we specialize to
fixed dimensions (2D, 3D) and describe the algorithms and data-structures which
have been applied in this work. This approach increases the level of abstraction,

but it has been chosen in the hope that it will be more instructive.

3.1.1. Geometric convexity

As preparation, we introduce the concept of convexity. We identify a geometric
object in R with the bounded sub-domain €2 C R™. The object is termed convex,
if — visually speaking — any two points p;, p, € {2 can be joined by a line segment
which does not intersect the boundary of 9 (fig. 3.2a). More formally, the line
segment is defined by the point set

Lpy,py) ={x eR" |z =Ap; + (1 = A)py, A€ R: 0 < A< 1}

IR

o0Q

(a) Q represents a (b) The convex hull
Figure 3.2.: Illus- plain convex domain. CH(Q) = QU ¥y U ¥y U P35 de-
tration of two simple notes the smallest convex extension
convex sets to Q.
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and we call Q a convex set if

L(p1,ps) C QY py,py €0 (3.1)

In particular, every line segment is by definition convex. This property turns out
to be useful if we examine the intersection of two arbitrary convex sets €27 and .
Let py,py € Q1 N Qs. In this case holds L(p;, py) C 21 as well as L(p;,py) C Qo,
and we conclude that the intersection {2; N 22 is a convex set because the finding
holds in general for all included points.

What can we do about non-convex sets? — Suppose ) to be non-convex and
simply connected as it is shown in figure 3.2b. We look at the union of the line
segments | JL(py,py) with p;,py € Q. The result is called the convex hull (CH).
The hatched regions in figure 3.2b depict the part of CH(Q2) \ Q. In this view,
CH(2) describes the smallest convex extension. In a general definition, the convex

hull is obtained by considering the intersection of all possible convex supersets X:

CH(Q):= (] X (3.2)
QCX

X convex

3.1.2. Properties of simplices

A special class of geometric objects which are identically equal to their convex hull
are simplices. They are the geometric core elements by which the Delaunay tessel-
lation is constructed. As we will see, they have some really interesting properties.

Consider a set of n 4+ 1 points in n-dimensional space:

P:={pg, ..., Py | P; €ER" N p; #p;Vi#j}.

0-simplex: 1-simplex: 2-simplex: 3-simplex:
point line segment triangle tetrahedron

Figure 3.3.: Assorted types of simplices
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3.1. Foundations of mesh generation

If the points are affinely independent, a regular basis of the R™ may be derived.
But here, we use P and define the n-simplex A" as the domain which is spanned

by the linear combinations

A™(P) := {wER”]a::Z)\ipi,OS)\igl/\Z)\izl} (3.3)

i=0 i=0
A simplex represents the most simple kind of polytope (a generalization of a polygon

to arbitrary space). The points p; € P define the vertices of the polytope. In

figure 3.3 exemplary shapes of simplices in ordinary space are presented.

The boundary of the general n-simplex is composed of (n — 1)-simplices. Their
boundaries in turn are composed from (n— 2)-simplices. Thus, any simplex consists
of all 0— to (n — 1)-dimensional types in a hierarchical order. This way, properties
are inherited and also extend to higher dimensions in space. Particularly, the
(n — 1)-simplices are called facets and the (n — 2)-simplices are called sub-facets or

ridges.

Signed volume

The first presented property of simplices is an equation for the volume V" € R.
It may be easily computed by evaluating the determinant of the following matrix
[Ste66]:

. Pni—DPo1 -t P11 — Dol . poi -+ Pon 1
n _ . : - : — . - : :
VP = S = S A R I C XY
Pnn —Pon  *° Plnm — Pon Pn1  Pnn 1
nxn (n+1)‘><r(n+1)
The sign of the determinant indicates a sense of direction. If the vertices py,...,p,

are given in counter-clockwise order, it is positive, it is negative for clockwise order,
and, if the vertices are affinely dependent, V" equals zero.

As an application, equation (3.4) can be used to determine orientation relation-
ships in space. For example, the points p, and p, in figure 3.4 depict the vertices
of a 1-simplex (a line segment). In combination with a third point, denoted by x, a
triangle is formed. With respect to the direction of the line segment, the position of

x may be either left or right of the line depending on the sign of the determinant.

In general, the orientation test for any points py,...,p,,_; € R™ given in counter-
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X. P
p1 p1
) x
0,
Po
Po Po
“left” of the line (> 0) degenerated (= 0) “right” of the line (< 0)

Figure 3.4.: Illustration of the orientation test considering a line segment and a point
in 2D.

clockwise order with respect to a separate point € R™ is declared as follows:

po1 Pom 1
) . ) ) <0
Orient(pg, ..., Pp_1,X) = ’ ' ' =4 =0 (3.5)
Pn—-1,1 " Pn—-1n >0
xl PEEEEY J’;n

Circum-Hypersphere

A second property of simplices is the existence of the so called circum-hypersphere.
Each simplex possesses a unique hypersphere (fig. 3.5). In 2D, this is the circum-
circle of a triangle (fig. 3.5b). The centre ¢ € R™ of the hypersphere is computed
from the requirement that the euclidian distances |p; — ¢| to each of the vertices

must be necessarily equal. This approach results in a system of n linear equations:

n 2 2
P11 —Pon - Pln — POn C1 Ei:l (pl,i - po,¢>
. . . . . (3.6)

N

Pn1 —Pnn " Pnn —POn Cn Z?:l (pgz,i - p%,i)
With the solution for the center, the circum-radius » € R directly becomes
r=4/(pj—c3? (0<j<n)

Again, we can apply this finding and define a geometric test. In this case, the
position of x € R™ in terms of inside or outside shall be determined. This so called
in-sphere-test is an essential subroutine in algorithms for computing the Delaunay
tessellation. In an easy implementation, the test is enabled by the comparison of

the distance | — ¢| with the circum-radius. However, therefore equation (3.6) must
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(a) 1D

P,

P

Po

(b) 2D (c) 3D

Figure 3.5.: Example of the circum-hypersphere about a simplex in one, two, and
three dimensions.

be solved, which is expensive to compute. In contrast, an efficient alternative is
enabled by treating the problem in R™*!. For this purpose, we make use of the

following so called “lift-up”-transformation:

-
n

p*:peR"— p*(p) = (pl,...,pn,Zp?> c R (3.7)
i=1

The transformation is convex. All points of the R™ are mapped into a hyper-
paraboloidal sub-domain of the R**1.

For the sake of simplicity, we demonstrate the effect for the 1D case in the
following. The 1-simplex is the line segment with the endpoints pi,p2 € R. The
domain of the circum-hypersphere is simply the interval [p1, p2] with the centre at
(p1 + p2)/2. The circum-radius is |(p2 — p1)/2|. As a prerequisite, we demand the
vertices to be given in clockwise orientation. In 1D this is equivalent to the condition
p1 < p2. The mapping (eqn. 3.7) describes a parabola in 2D: p*(p) = (p,p?)".
Now, we introduce the test point € R. Without limiting the generality, we
shift coordinates so that the position is fixed at the minimum of the parabola (see

fig. 3.6). We see that the three points p*(p1), p*(p2), and p*(z) form a 2-simplex
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N\ Y/ A

A
£ \ / i
—0 ——0——0

Ps x=0  p,
P <z <Py

Figure 3.6.: Example of the application of the lift-up transformation to 1D points.
Mapped points are located on a parabola in 2D.

(a triangle). Also we notice that the orientation of the simplex is counter-clockwise
if x ¢ [p1,p2], else it is clockwise. The degenerate case with = = p; or = ps is not
addressed. However, we already came across the analog relations when we discussed
the orientation test (eqn. 3.5). Here, we will adapt the same consideration.

For the general case of the in-sphere-test, we demand the points py, ..., p,, to be
in counter-clockwise order. Then, we declare the test condition for the location of

the extra point x with regard to the circum-hypersphere in the following way:

Poi t Pon i Ppg 1
. ) ) . <0
InSphere(py, ..., p,, ) :==| o - ) =1 =0 (3.8)
Pn1 - Pnn Zi:l pnﬂ' >0
T o my yorgad 1
(n+2)x (n+2)

Thus, instead of solving a linear system of equations and conducting a compari-
son for the distance |x — ¢|, it is sufficient to compute the sign of the respective

determinant.

Local coordinates

When we introduced the simplices, it was mentioned that a regular basis of the R"
may be derived from their vertices. A particularly useful representation is thereby
enabled by barycentric coordinates. They are addressed here shortly as they will
be used in a later part of this work as means for interpolation.

Consider a point ¢ € R™ and a simplex A™(P). The barycentric coordinates of
q with respect to the vertices in P are obtained like this: At first, n new simplices

A™(P;) are constructed from the vertices in P by consecutively replacing one vertex
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p; € P after the other with g. In a second step, the new coordinates are determined
straight forward from the volume ratio:
V' (P)

A= Vn(P) (1<i<n) (3.9)

The case with ¢ € A™(P) is of special interest, because then the newly assembled

simplices represent a disjoint partition
n
A™P) = | JA™B)
i=1

with
[A"(P) \ OA™(B)] N[A"(P) \OA™(P)] =0 Vi#j

Accordingly, the components of the transformed coordinates form a partition of

unity, > A\; = 1, and are constrained to the interval [0, 1].

3.1.3. Delaunay tessellation

For a preset distribution of M non-coinciding points
G::{pl,...,pM|pl-7£iji#j/\Mzn+1}CR” (3.10)

a set of n-simplices

A(G) :={A™Gy), ..., A*(GN) | G; C G}

Pe empty cirumcircle

/
N
\,
\
\

Figure 3.7.: Example of the
Delaunay  tessellation  which
has been constructed from simplex y
G={py,...,ps} CR% with G,cG > o
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with pairwise disjoint interior
[A™(Gi) \ OA™(G)] N [A™(G) \OA™(G))] =0 Vi# ]

is constructed (fig. 3.7). Such a set is called the Delaunay tessellation DT (G)! if it

meets the following two requirements:

e For any simplex A™(G;) € A(G) no additional points of G'\ G; are included

in the circum-hypersphere.

e The spanned space is convex such that CH(G) = |JA(G).

The first property is called the empty circum-hypersphere criterion. A simplex
A™(G;) is called to be “Delaunay” if it has an empty circum-hypersphere. In the
degenerate case of the Delaunay tessellation, more than n+ 1 points are located ex-
actly on a single circum-hypersphere which makes the partition ambiguous (fig. 3.8).
But apart from this exception, the Delaunay tessellation represents a unique parti-
tion of CH(G). The points in G are called the generator points. From the inversion
of the second property follows that the boundary of the convex hull can always be

decomposed into (n — 1)-simplices.

In this regard, an interesting connection exists between D7 (G) and the facets of
the convex hull CH(G*) of the lifted set of generators. Figure 3.9 shows the Delau-
nay tessellation and the associated lift-up transformation of a point set in 2D. All
points G*(G) are located on the boundary of the paraboloid with z > 0 (eqn. 3.7).
Due to the downward convex property of G*, the mapped points constitute the
convex hull in 3D. The orthographic projection of the facets of CH(G*) to the basic
x — y plane results in DT (G).

Figure 3.8.: Ambiguous
case of the Delaunay tri-
angulation with four points
located on a circum-circle.
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Figure 3.9.: Example of the lift-
up transformation in 2D. The projec-
tion of CH(G*) to the z — y base
plane depicts the Delaunay tessella-
tion DT (G).

(a) edge flip in 2D (b) example for a bistellar flip in 3D
(type 2 < 3)

Figure 3.10.: Modification of the Delaunay tessellation by flipping: (a) Triangles on
the left-hand-side are Delaunay whereas those on the right hand site are not. (b) The
analogous transformation in 3D changes in addition the number of tetrahedra.

Construction

Special algorithms for the construction of the Delaunay tessellation have been de-
veloped [For86; GKS92; Ber+08]. The brute-force approach is based on the obser-
vation that the boundary OCH(G) is necessarily equivalent to 9D T (G) and that the
number of possible partitions is limited. Therefore, any partition A(G) # DT(G)
can be switched by a finite sequence of simple transformations until it becomes a
Delaunay tessellation. In 2D, this is enabled by the application of edge flips to the
triangles. The analogous transformations in 3D are bistellar flips (fig. 3.10). Clearly,

the brute-force approach is only feasible for small generator sets as otherwise the

In 2D, the tessellation represents a triangulation. For this reason, the synonymous naming
“Delaunay triangulation” is more popular in this context. Accordingly, the naming “Delaunay
tetrahedralization” is used for the 3D case.
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number of possible combinations, which must be tested, gets too large.

A sophisticated algorithm, which elegantly circumvents this problem, has been
introduced by Bowyer and Watson [Bow81; Wat81]. In this approach, the gen-
erator points are consecutively inserted into an already pre-existing tessellation
DT(@ C G). Subsequent to the insertion step, the tessellation gets refined until
the “delaunayness” has been recovered. In detail, the following sequence of tasks
is processed (fig. 3.11) [Shel2]:

e An additional point is added to the tessellation. A search for the simplex
which contains the new point is conducted. Due to the additional point, this

simplex is marked as invalid (fig. 3.11a).

e A breadth-first search” on adjacent simplices is performed and the InSphere-
test is applied to each candidate. Additional invalid simplices are collected
(fig. 3.11b).

e All invalid simplices are removed from the tessellation and a cavity is created
(fig. 3.11c).

e For any facet of the cavity, a new simplex is constructed by joining the re-
spective vertices with the newly inserted point. In this way, the cavity is filled

with new simplices (fig. 3.11d).
e Continue with the first step until all points have been inserted ...

If no initial tessellation is present, a super-simplex is initially constructed which
completely encloses all points in G. It acts as seed for the algorithm and will be
removed in a clean-up step after finishing the insertion.

The Bowyer-Watson algorithm effectively takes advantage of the only locally
confined changes to the tessellation which are processed. This way, an optimal
run-time complexity of O(nlogn) is enabled. In this work on APT simulation, an
implementation of the Bowyer-Watson algorithm provided by Hang Si’s TetGen-
package [Sill] applies for the mesh generation.

In practice, hard to fight difficulties emerge in computational geometry from the
inaccuracies of the floating point arithmetic in modern computer systems. In the
context of the Delaunay tessellation, the sign of the determinants in the Orient-
and InSphere-tests becomes highly sensitive to implicit rounding errors. Such er-

rors occur, when for almost coplanar vertices the absolute value approaches zero.

2 Adjacent neighbours will be recursively inspected.
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(a) Find enclosing simplex for the (b) Breadth-first search for invalid
new point. simplices.

(c) Formation of a cavity. (d) Triangulation of the cavity.

Figure 3.11.: Description of the Bowyer-Watson algorithm

For this reason, a numerically robust implementation of these tests, provided by
Shewchuck [She97] has been applied.

Data structure

As we have seen before, the tessellation can be incrementally constructed based
on the Bowyer-Watson algorithm. But besides an efficient assembly, the use of
an appropriate data structure for storing and accessing the tessellation is at least
equally important. Before we describe the storage concept, let us briefly consider
possible data requests of more elaborated algorithms operating on the Delaunay
tessellation. This will help to get an impression of the requirements in effective

data organization:

o FEffective look-up routines for generator points are required.
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For a given generator point, we want to find its next neighbour points and
any incident simplices efficiently. With “neighbour points” we mean neigh-
bourhood in the sense of the Delaunay tessellation, which is different from
spatial neighbourhood: Any generator which is joined by a common edge
with another point is termed a “natural” neighbour. E.g. all vertices in a
simplex are mutually natural neighbours. The task to find the full set of nat-
ural neighbours of a selected generator is therefore equivalent to the problem
of finding all simplices with that generator as common vertex. Higher order
neighbourhoods are analog. They can be accessed by examining respective

simplices recursively.

e Routines for obtaining adjacent simplices are required.

The spatial alignment of simplices is a basic characteristic of the tessellation.
Adjacent simplices should be easily obtained. At the same time, shared facets,

edges, and vertices should be easily recognized.
e Information on the boundary (of the convex hull) must be supplied.

e Runtime complexity of the algorithms and memory consumption of the data

structures should be within acceptable limits.

Because we intend to deal with tessellations which are constructed from mil-
lions of points and which in turn form simplices, facets and edges, the ad-
ministrative overhead (e.g. by internal references, pointers, index tables etc.)

should be kept to a minimum.

Keeping this requirements in mind, the Delaunay tessellation may be managed
based on an astonishingly minimalist approach. All needed information is stored
using two kinds of lists: The first one contains the set of generators (fig. 3.12a),
the second one is for administrative information regarding the simplices and their
contiguity (fig. 3.12b). In the following description, we will specialize to 3D, but
there is no reason why the same approach should not be equally efficient in any
other dimension; e.g. figure 3.12 shows the application to 2D.

In 3D, the Delaunay tessellation becomes a tetrahedralization. The data records
in the first list are termed node data and records of the latter tetrahedron data.
The node data record consists of the (z,y, z)-coordinates of the generator points.
In addition, we supply a boundary marker indicating if the generator is part of the
convex hull or not. Furthermore, a reference, which links the generator to an arbi-

trary tetrahedron that contains this generator as a vertex, is used. This reference
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(a) node data list (b) triangle data list
# coordinates boundary triangle # vertices neighbours

0 (.CL‘(), y(]) v C A (47372) (BaG7®)

[\)

($27?J2) U

E (2,9,6) (J,F,D)
3 (x3,v3) v ) ) .

L (91100  (0,KD)

10 (210, Y10) v L

Figure 3.12.: Data structure used
for representing Delaunay tessella-
tions. The numeric administration
is based on two plain lists (a,b).
Depicted data refers to the exem-

plary Delaunay triangulation plot-
ted in (c).

(c) related 2D topology

is not strictly mandatory but helps to speed-up respective look-ups. Alternatively,
the point location routine, which is described in the subsequent section, might be
applied instead. This way, an increase in runtime costs would be balanced by lower

memory consumption.

Remarkably, all the essential information about the tetrahedra can be stored
in the tetrahedron data records by using two quadruples of references. The first
quadruple depicts the vertices of a tetrahedron. It consists of four links to node
data elements. Implicitly, we demand the vertices to be given in counter-clockwise
order (see sec. 3.1.2). The second quadruple points to those four tetrahedron data
elements of the adjacent tetrahedra. As before for the node data, a fixed order
is established: We take advantage of the condition that two adjacent tetrahedra
share a common facet which is defined by three common vertices. Vice versa, one
vertex in both tetrahedra is not part of the common facet. This relation mutually
exists for all vertices. Therefore, we can make use of the position of the respective
“unbound” vertex in the first quadruple (of vertices) and use the same position in

the second quadruple (of adjacent tetrahedra) for the reference to the respective
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adjacent tetrahedron.® If a facet is part of the boundary of the convex hull, there
is no adjacent tetrahedron. We indicate this condition by assigning an invalid
reference value (“0” in tab. 3.12Db).

The complete data structure reflects a direct approach for an efficient treatment of
all the required information. The topology of the Delaunay tessellation is essentially
maintained by making use of implicit rules which have been derived from the basic
orientation test (eqn. 3.5). This reduces computing effort and saves memory.

Finally, we come back to the initially declared requirements and give a short

outline how to retrieve the requested information:

e The set of natural neighbours of a given generator is obtained by applying a
breadth-first search on the simplices: all the neighbours of an initial simplex
containing the depicted generator are successively inspected for having the
same generator as a vertex. The search is extended to the next neighbouring
simplices as long as they still contain the demanded generator. In a second
step, the vertices are extracted from the obtained simplices. Duplicates will

be ignored.

e Adjacent simplices are directly referenced in the data structure. Therefore,

they are easily accessible.

e Boundary points are labeled using a positive boundary marker. Facets of the
convex hull are obtained by looking for simplices with an invalid neighbour

reference entry.

e Memory consumption is comparably low and grows proportionally with the

number of generators and simplices.

Delaunay walk algorithm

The proposed storage structure is also beneficial when we encounter the need to
locate a specific simplex in the Delaunay tessellation. Initially, only the position of
a query point € R™ is known and we want to obtain the distinguished simplex
which includes this point. The problem can be solved efficiently by performing a
directed walk on the simplices of the tessellation [GS78; DMZ98].

3The triangle labeled E in table 3.12b and figure 3.12¢ is adjacent to the three triangles J, F,
and D. The common facet between E and J is the line segment 9,6. The “unbound” vertex
is 2. This vertex is placed first in the triplet of vertices. Therefore, the reference to J becomes
placed first in the triplet of adjacent triangles etc.
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(a) A point is located inside the (b) Application: location of the enclosing trian-
triangle only if the position is on gle by a series of directed jumps in the triangle
the same side of all edges. mesh for two different query points.

Figure 3.13.: Operation of the Delaunay walk algorithm in 2D

In order to illustrate the basic idea, we first consider the most simple situation
with only one single simplex. Clearly, only two results for the position are possible:
either x is located inside or it is located outside the simplex. — So, where is it? The
answer is determined straight-forward from a series of orientation tests (eqn. 3.5)
applied to the present facets of the simplex and the query point. If it happens that
the position of @ is located on different sides of the facets, the query point is located
outside; otherwise, it must be inside the simplex (fig. 3.13a depicts an example in
2D).

This finding extends to a network of Delaunay simplices. Whenever the location-
test for « indicates that the position is not inside the examined simplex, we continue
by selecting the adjacent simplex opposite to the actually fail tested facet. Because
every facet divides the space into two bisectors — one which is containing  and one
which does not — the newly selected simplex will be in any case a better candidate.

In this way, a directed walk in the network of simplices is conducted until, finally,
the only simplex which includes « is found. If the query point is not included in
the convex hull of the Delaunay tessellation, the walk will leave the tessellation.
An example of the detailed approach is illustrated in figure 3.13b. The needed
information about the next adjacent simplices is directly supplied by the simplex
data structure which facilitates a fast traversal with a minimum of computational
costs.

Basically, the origin for the walk can be arbitrarily chosen. However, significant
time may be saved if the walk distance is shortened by providing a suitable guess

for a starting simplex. If no particular information is available, an effective guess
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is obtained from a random sample of the present simplices. For this, the vertex
distances of the sampled simplices to the query points are evaluated. In 3D, this
combined approach runs with (’)(nl/ 4) expected time for the search, where n denotes

the number of generators in the tessellation [MSZ99].

3.1.4. Voronoi tessellation

Based on the same set of generator points, the Voronoi tessellation is closely related
to the Delaunay tessellation. But contrary to the construction of simplices with
several generators as vertices, well-defined sub-domains of the underlying space are
assigned to each generator point. For any p, € G the domain is termed the Voronoi
cell denoted by V(p;). Formally, such a cell may be constructed by the successive
intersection of half-spaces which are determined by p; in combination with each of
the remaining points p; € G\ {p;}. Vividly, V(p;) includes all those points in space
which are closer to p, than to any other generator point:

Vip) = (e eR":le—p, <|e—p}
J#i
— {@eR": |z —p,| < |v—py| Vi + i} (3.11)

Having in mind what we have said about the intersection of convex domains, it is
clear that every Voronoi cell is always a convex polytope. However, a Voronoi cell

is not necessarily constrained. It may be infinite in space. In particular holds

V(p) \ 0V(p)] N [V(p;) \ OV(p;)] =0

e e W gy
=S UVAE ™ "o
: 4'!5;‘

(a) Microscopic grains (and twins) in (b) Detailed wing structure of a dragon
polycrystalline brass fly (Courtesy of S. Begin [Begl3])

Figure 3.14.: Examples for the occurrence of Voronoi patterns in nature
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for the interior of any disparate cells V(p;) and V(p;) so that the set of unbounded
Voronoi cells forms a partition. This leads us to define the Voronoi tessellation

VT (G) analogously to the Delaunay tessellation by

VT(G):= ] V(p,) =R" (3.12)
p;€G

Reviewing the literature, it seems that the Voronoi tessellation has been reinvented
independently several times in the past because there exist so many synonyms.
In physics, the tessellation is known as Wigner-Seitz cell partition, other terms
are Dirichlet tessellation or, constrained to 2D and with application in metrology,
Thiessen polygons. Generally, the specialization to 2D is called “Voronoi diagram”.
Whatever name is used, the partition obviously reflects common principles for pat-
tern formation. For this reason, we face Voronoi tessellations in many different
contexts in everyday life. Particularly, structures, which are the result of self-
organized growth processes in nature, show often a (microscopic) texture similar to

Voronoi patterns (fig. 3.14).

Geometric dual relation to the Delaunay tessellation

An important property of the Voronoi tessellation is its close relationship to the
Delaunay tessellation: The Delaunay tessellation is the geometric dual graph of
the Voronoi tessellation. Geometric properties of one tessellation are opposite or
related to similar properties in the other one. For instance, if we look at a vertex of
a Voronoi cell, we recognize that it represents the centre of a circum-hypersphere

which is associated to a simplex of the Delaunay tessellation. A not fully exhaustive

Table 3.1.: Interrelation of geometric elements in the Delaunay tessellation
DT(G) with their analogons in the Voronoi tessellation VT (G). It is assumed
that both are constructed from the same set of generators G C R”.

category DT(G) VT(G)
covered domain convex hull infinite space
basic objects simplices convex polytopes

n-simplex Voronoi vertex (0-polytope)
hierarchic order of (n — 1)-simplex Voronoi edge (1-polytope)
geometric related (n — 2)-simplex Voronoi facet (2-polytope)
objects

0-simplex Voronoi cell (n-polytope)
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overview of the existing relations is presented in table 3.1.%

The duality extends to surprising details of the present geometry, although this
is not obvious at first glance: As we already have explained in section 3.1.3, the
Delaunay tessellation is ambiguous if there are more than n coincident points on a
circum-hypersphere. If this happens, we expect this should have some effect to the
Voronoi tessellation. But astonishingly, the Voronoi tessellation remains a unique
partition in any case. Instead, the ambiguity of the Delaunay tessellation effects the
Voronoi tessellation in the way that degenerate n-polytopes are constructed, e.g.
the polygonal facet of a cell becomes an edge or even a point. An illustration for this
case is shown in figure 3.15. Depicted are the Voronoi and Delaunay tessellations
for a set of four generator points. Generators are denoted by circles, Voronoi
vertices are squares, respectively. The downright point is moving from inside the
inscribed circum-circle to the outside: in frame (1), we have a Voronoi edge aligned
perpendicular to the dashed auxiliary line. In frames (2) and (3), the downright
generator crosses the circle. The Delaunay tessellation becomes ambiguous in this
situation. The considered Voronoi edge degenerates to a point. Finally, in frame
(4) the edge appears again, but this time, the orientation changed and it is aligned
parallel to the auxiliary line. Accordingly, the triangles in the Delaunay tessellation

have flipped their edges.

Recipe for the construction of Voronoi cells in 3D space

A practical benefit of the dual relation is that it may be utilized to construct the

Delaunay from the Voronoi tessellation and vice versa. As we have seen, effective

4An annotated example of the 2D Voronoi tessellation is shown in fig. 3.16, p. 53. In 2D, Voronoi
cells are 2-polytopes (polygons) and the related dual elements are 2-simplices (triangles).

Figure 3.15.: Degeneration of a Voronoi
edge. Disc symbols depict generator
points (vertices) of the Delaunay tessellation,
square symbols vertices of the Voronoi tessel-
lation, respectively. In (1), the bottom right
vertex of the Delaunay tessellation is inside
the inscribed circum-circle. (2)-(4) show the
changes in both tessellations if the vertex
moves outward and crosses the circum-circle
(see text for details).
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data structures and algorithms already exist for dealing with the Delaunay tessel-
lation. Therefore, we expect only little extra effort if these can be reused for the

construction of the Voronoi tessellation as well.

Subsequently, we will describe an algorithm which is able to obtain a Voronoi
cell from the Delaunay tessellation in 3D. But first, we take a step backwards in
order to describe the basic idea in 2D. Here, Voronoi cells have simply the shape
of convex polygons (fig. 3.16). We can distinguish two different cases: either the
polygon is bounded and has a finite area or it is unbounded with infinite area. The
latter is always the case if the generator point of the Voronoi cell is located on
the convex hull. In the algorithmic approach, each polygon represents itself by an
ordered list of Voronoi vertices (as indicated by the arabic numbering in fig. 3.16).
If the polygon is bounded, the start and end vertex in the list coincide. In the
opposite case that they differ, we know that we are dealing with an unbounded
polygon and additional information about the direction of the infinite edges of the
respective Voronoi cell is needed. Now, we apply a trick: instead of the Voronoi
vertices, the geometric dual elements of the Delaunay tessellation, references to
simplices (tab. 3.1), will be stored in the list (labeled by latin numbers in fig. 3.16).

Thus, the problem of finding the Voronoi vertices reduces to conduct a circular

perpendicular alignment of associated

edge of the Delaunay
L~ tessellation

generator point

/ (vertex of a simplex)

| ___— Voronoi vertex

[~~~ convex hull

bounded Voronoi cell unbounded Voronoi cell

Figure 3.16.: Example of a 2D Voronoi tessellation: The polygonal domain of each
bounded Voronoi cell is completely determined by the ordered sequence of Voronoi
vertices (arabic numbering). Due to the geometric dual relation, equivalent use can be
made of the corresponding simplices of the Delaunay tessellation (latin numbering).
Infinite edges of unbounded Voronoi cells, as indicated by the arrows, are regarded by
considering their orientation perpendicular on a line segment of the convex hull.
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walk in the Delaunay triangulation about a single generator point. The complete

functional algorithm writes as follows:

e We start at an arbitrary triangle which contains the given generator point.

The respective reference will be the first entry in our list.

e Next, all adjacent triangles which also contain the generator point are exam-
ined counter-clockwise and the respective references are enqueued to the end
of the list.

e The operation is stopped if we encounter again the triangle which is the first

in the list. Then, we know that the Voronoi cell is bounded and we finish.

e If we detect that there is no further triangle present in counter-clockwise
orientation (because the algorithm arrived at the boundary of the convex
hull), we switch the search direction and look for adjacent triangles clockwise.
Therefore, we start again at the first triangle, but this time, any additionally
collected triangle is enqueued, each to the beginning of the list. Again, this

process stops if a boundary facet has been reached.

e In the case that a simplex of an unbounded cell has been traced, the normal

vector of the unbounded facets is computed and is additionally recorded.

Later, the actual coordinates of the Voronoi vertices are calculated at runtime by
evaluating the circum-center of the respective simplices (eqn. 3.6).

For 3D, we can adopt almost the same prescription using the same trick: The 3D
Voronoi facets are convex polygons in a plane. From the dual relation (tab. 3.1) we
know that the corresponding elements of the Delaunay tessellation are tetrahedra
edges (line segments). Hence, we can construct each facet by selecting all those
tetrahedra which have the same edge in common. Analog to 2D, an ordered se-
quence of the polygon vertices is obtained by conducting a circular walk about this
common edge (fig. 3.17a). Coordinates of the Voronoi vertices are computed as the
center of the circum-sphere about each tetrahedron. The Voronoi cell completely
assembles from its facets if all incident edges to the generator point in the center
are considered (fig. 3.17b). The necessary edges and by this the Voronoi facets are
determined by the natural neighbour points of the generator (see p. 46).

If the considered generator point is located on the boundary of the convex hull,
additional effort is needed to cope with the present infinite facets. The circular

walk about the common edge is not closed in this case. The orientation of infinite
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@ Voronoi vertex @ Delaunay vertex

(a) Construction of the facets (b) Completely assembled Voronoi cell and
its defining tetrahedra.

Figure 3.17.: Construction of a Voronoi cell in 3D: (a) Each facet is a polygon and
is constructed by inspecting all adjacent tetrahedra of the Delaunay tessellation which
have an edge in common, e.g. like the edge 1,2 here. The vertices of the polygon are
computed from the circum-center of the obtained tetrahedra. (b) The complete cell is
assembled by taking account of all incident edges to the generator point in the center.

Voronoi edges is then defined by the normal vector of the respective tetrahedra

facets (triangles) which constitute the convex hull.

Computing properties of the Voronoi cell in 3D space

Enabled by equation 3.4, we have seen that the volume of any n-simplex is easily
computed from a determinant. For the application in the context of the numeric
treatment of differential equations on the Voronoi mesh, we wish to have the equal
ability for determining the volume and the surface area of Voronoi cells. Although
the shape in 3D appears comparably complex, this task turns out to be easier than
one might think because of the convex properties of the Voronoi tessellation.

The volume can be easily computed if we subdivide the Voronoi cell into a set
of pyramids. Each pyramid is constructed from one facet of the Voronoi cell at the
base and shares the tip with the remaining pyramids. The number of pyramids
is equal to the number of Voronoi facets. In the case that the common tip is in
the interior of the Voronoi cell, the set of pyramids represents a disjunct partition.
Accounting to classic geometry, the volume of a pyramid amounts to one third
the base area times the height of the pyramid. A particular easy access to the

cell volume is therefore enabled if we choose the generator point of the Voronoi
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cell, denoted by p,, as common tip for the pyramids, because, in this case, the

height of the pyramids coincides with half the length of the Delaunay edges. The

edges as well as the Voronoi facets are determined by the natural neighbour points

Pi,...,py of the generator. Due to the dual relation, each Delaunay edge pg, p;

is necessarily perpendicular to its associated Voronoi facet. Both intersect at the

midpoint of the Delaunay edge. Thus, the volume of a single pyramid is given by:
lPo — Pl

1
V(pg, p;) = 3 A(pg, ;) - =

Accordingly, the complete volume of the Voronoi cell yields
1N
V(py) = 6 ZA(pOapi) “ [Py — pil (3.13)
i=1
and it only remains to retrieve the value of the facet area A(py,p;). That is again
not too complicated because the Voronoi facets are convex as well. We simply adopt
the same approach once more, except this time, the facets become subdivided into

triangles. For each edge (py,p;), we denote the respective Voronoi vertices of the

associated facet with {vy,...,vx} € R? and use
1 N

Cp = N . Zl v;
1=

as common center. The area then writes as®
1 N
A(pg; p;) = 3 Z |(V(imod Ny+1 — €F) X (v — cp)| (3.14)
i=1

For Voronoi cells at the boundary, we set the volume directly to infinity. We do the

same when we encounter an infinite facet.

3.2. Discrete solution of the Poisson equation in
electrostatics
On the basis of the described geometric relations, two approaches for computing

the numeric solution of the Poisson equation will be introduced. The first approach

particularly applies to regular meshes, whereas the second approach depicts the

®By the modulo operator, the first Voronoi vertex is selected again if i = N.
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general case with application to an irregular mesh.

Under a mesh we understand here a preset distribution of non coincident points
in space. We call each of these locations a node. In particular, we resume with
the subject of the previous chapter and identify the set of nodes as the basis of
a tessellation. To each node, a well-defined part of space is attributed which we
term a cell. With regard to the Poisson equation, the mesh represents the necessary
support on which the discrete approximation is obtained. The electric potential,
different values for dielectricity, and charges become explicitly related to the nodes

and cells in the considered types of meshes.

Although it is true that in general a regular mesh represents a specialization of the
irregular one, we will soon see which subtle differences exist in the way the respective
solution depicts the details of the considered geometry. E.g. electric interfaces are
not equally considered in both meshes. For this reason, the derivations for both

approaches are treated independently in two different sections.

In any case, the basic idea is to rewrite the continuous form of the governing
equations into an analogous discrete form which remains valid if it is applied to an
arbitrary network of nodes. The result is an implicit equation for the potential and
a corresponding system of equations which accounts for all nodes in the mesh. The
solution may be obtained either directly in the frame of the finite-element method
(FEM) or asymptotically in the frame of the finite-difference method (FDM). De-
tails of the latter method will be treated by the description of the implemented

simulation models in the next chapter.

3.2.1. Basic electrostatics

Let us begin with a quick reminder to the macroscopic Maxwell equations which
apply for the electrostatic condition and introduce the necessary basic definitions.
Different material properties are explicitly taken into account. We express the

electric field E by the electric displacement field D. The respective relation is
D = ¢ye,. E (3.15)

Permittivity of free space is denoted by ¢y and relative dielectricity by €.. If we

further denote the charge density with p, the first Maxwell equation becomes

divD =p (3.16)
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as the charge is the source of the field. The electrical field is conservative. This

statement is expressed by the second Maxwell equation:
rot E =0 (3.17)

This latter equation implies the existence of the electric potential, which is defined
by

o(r) = —/E(r’) dr' < E(r) = —grad o(r) (3.18)

To

The Poisson equation expresses the dependence of the potential on the respec-
tive charge distribution. The equation results directly from the basic relations if
we replace the field in equation (3.16) with the derivative of equation (3.18). As
we want to keep the possibility of dealing with different charges and anisotropic

dielectricity, we explicitly write here the general expression:

div (e, grad ¢) + L (3.19)
€0
Accordingly, we can apply the Gaussian law and integrate over the surface of a
given volume in 3D. If we assume an isotropic charge density, the Poisson equation
yields
/ coergradp dA+p-V =0 (3.20)
oV

Equation (3.20) is the basis for all the numeric treatment which will be described

next. Apart from the inverted sign, the first term denotes the electric flux

U= DdA (3.21)
ov
and the second term the interior charge. We see that the Poisson equation is just

a valuable expression for flux conservation.

We complete this part reminding to the contiguity conditions for the electric field
and the displacement field at a dielectric interface. If we consider the general situ-
ation with arbitrary orientation of the fields with respect to the interface, it can be
compiled of the two special cases of the field either aligned parallel or perpendicu-
lar. As it is illustrated in figure 3.18, the interface is described by different values

for dielectricity on either side, denoted by €4 and by €|, respectively.

We first consider the inscribed Gaussian box and make use of equation (3.16).
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(a) perpendicular field (b) parallel field

Figure 3.18.: Contiguity conditions for the electric field E and displacement field D
at a dielectric interface (er # €))

Integration over the box volume yields the surface integral

DdA=0
ov

which we can easily evaluate (fig. 3.18a) to the requirement
il 1L 1L L

for the contiguity conditions of the normal components of the fields. Similarly, we
apply equation (3.17) to the second case depicted in figure 3.18b. Regarding Stokes’

theorem then yields the line integral

Eds=0
A

from which we obtain the additional contiguity conditions

Dle,=Dl ¢ A E|=E| (3.23)

for the parallel components.

3.2.2. Regular mesh

Prepared in this way, we now address an approach for the numeric solution of the
Poisson equation on a regular mesh. As a basis we use the regular tessellation with

isotropic spacing Aa € R (p. 34). Coordinates of the nodes in the mesh are given
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(a) material nodes adjacent to (i, j, k) (b) potential nodes adjacent to (4, j, k)

Figure 3.19.: Sketch of the computation mesh for the regular case. (a) Cubic domains
denoted by coordinates (I, m,n) are attributed with different values for dielectricity
and charge density. Potential nodes are located at the corners of the cubes for which
shifted coordinates (i, j, k) apply. (b) The sphere of influence about each potential node
depicts a nested cube within the basic mesh. For the six fluxes ¥y, , .y ¢4 |} through
the facets, electrical properties in each four different octants must be considered.

by

(i,j,k) € Z® > r(i,j,k) :==DAa-| j |, reR3 (3.24)
k
The value of the unknown potential ¢(i, j, k) shall be determined at each node. For

this, an additional mesh is constructed from a shifted set of coordinates

l 1
A
(I,m,n) €eZ3—r(l,m,n):=Aa-| m |+ 7@ 1|, rer? (3.25)
n 1

to which different material properties are assigned. Values for dielectricity and
charge density are denoted by €,.(l, m,n) and p(l,m,n), respectively. The combi-
nation of the nested meshes is shown in figure 3.19. In both depicted meshes, the
associated cell volume centred about a node is the cube with V = (Aa)3. This
cube represents a sphere of influence. From the perspective of the mesh carrying
the material properties, the potential is evaluated at the corner sites of the cells
(fig. 3.19a). This allows for both well-defined equipotential surfaces and sharp in-
terfaces at the respective cell boundaries. In contrast, the sphere of influence for
any single potential node intersects with eight adjacent cells which may possess
different dielectricity €,(l, m,n) and charge density p(l,m,n) (fig. 3.19b). All these
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cells do contribute to the evaluated potential.
In the following, we refer to the notation given in the figures. Adopting equa-
tion (3.20) with equation (3.21) yields

Z \P{I7y7z}7{/rhlr} - q(’L?j? k) = 0 (326)
AV (i,5,k)

for the balanced flux through the cube about ¢(i,j,k). The sum extends to six

(3 x 2) terms according to the cube facets. The flux at each facet writes as

2
Uipyay iy = coet@® 20 plagsd i) (Aa>

2

Due to the setup with the nested meshes, every facet consists of four quadrants
with different dielectricity. Fortunately, we can assume that the field across the
quadrants remains approximately the same (arrows in fig. 3.19b). For the lat-
eral components of the field vector, this is concluded from the contiguity relation
(eqn. 3.23) and for the normal component no different dielectricity applies at all.
If we consider the marked stencil of the six adjacent potential nodes in figure 3.19,

an approximation of the effective field is enabled using standard first-order finite

differences:
(Zvjvk) j— ~ (p(/l/ - 1’j’ k) - ()0(7’7.77 k:) ~
E, 7= —grad ¢ rteg, — Aa e
(3.27)
(la]7k) —_— ~Y 80(7/7]7 k + ]') - QO(Z?]? k) ~
Ez,T = —grad ¢ riae,, ~ Aa - é,

Whereas for the effective dielectricity, the summed value for each facet is appropri-

ate:

k) _ (igk) | (igk) | (k) | (i5k)
€, =611 Tem  TEi1 T e

(3.28)

(Z7J7k) — (i7]7k) (1/7 7k) (Z7J7k:) (Z7]7k)
i Tqn Tan tan  Tan

It remains to compute the included charge. Therefore, the different charge densities

in each of the contributing cells are considered:

N o Aa\? i i
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Finally, we are able to derive the discrete approximation for the potential. The
potential at (i, 7, k) only depends on the values at adjacent nodes in the mesh and

on the respective electric properties [OS11]:

*

GaR) o 1,4, k) + B9 i, 5 £1,k) + B3 i, j k1) + =

R (N g y {13 ? {1} P .
p(i,j, k) = (g k) - (i) - k)
Co il TSl TSl

(3.30)
Besides the charge, it is notably independent from the imposed mesh spacing. The
contribution of the potential at the adjacent nodes gets weighted by the effective
dielectricity. The effect of the different values for the dielectricity appears equivalent

to the picture of the multiple conductances in a parallel electric circuit.

3.2.3. Irregular mesh

For the analogous treatment of an irregular mesh, we account here for the combina-
tion of the Delaunay and the Voronoi tessellation in 3D. Despite the more complex
effort accompanied with the construction of these tessellations, the introduced ap-

proach remains astonishingly simple.

associated domain
of a single conduit

circumcircle

(a) Voronoi tessellation and De- (b) Alternative view of the Delaunay tessella-
launay tessellation about a single tion as a conduit network
Voronoi cell

Figure 3.20.: Irregular computing mesh compiled from the Voronoi and the Delaunay
tessellation. The potential is computed at the generator points of the tessellations.
Different values for dielectricity and charge density are assigned to each Voronoi cell
[OES13].
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We examine a single Voronoi cell (fig. 3.20a). It is determined by the generator
p; and its associated set of natural neighbour points, denoted by p; 4, ..., p; n-
As before in the regular case, we wish to evaluate the flux through the boundary
formed by the cell facets — or, in an alternative view, we may consider the dual
representation by the Delaunay tessellation: Then the facets correspond to edges
of the tetrahedra which are incident to p;. Mathematically speaking, the Delaunay
edges represent a directed graph. Hence, we may treat the Delaunay tessellation
as a conduit network for the electric flux. Consequently, the driving force for the
fluxes is in this picture due to different potentials at the end of both sides of a
conduit (fig. 3.20b) and we yield

N N

DW= Dij-Aij=ua (3.31)

Jj=1 Jj=1
for the balanced flux through p; [SB03]. The displacement fields hold for the
direction of the respective Delaunay edges. The capacity of each such conduit is
proportional to the area of the depicted Voronoi facet in the dual Voronoi mesh
denoted by A; ;.

Different values of the potential, dielectricity, and charge density exist at each
node of the Delaunay tessellation. Hence, we immediately recognize at this point a
notable difference to the geometry in the regular mesh: the spheres of influence for
the unknown potential and the electric properties coincide in the chosen represen-
tation. As a consequence, any boundary conditions which apply for the potential
have a different effect. They do not explicitly hold for the boundary of the cells
with different properties as it was the case before. For this reason, the present

approach is termed cell-centered, whereas the former is termed wvertez-centered.

However, in order to obtain the solution for the potential at the given generator

node, we firstly evaluate the charge in equation (3.31). It directly amounts to
¢ =piVi (3.32)

if we take into account the volume of the Voronoi cell denoted by V; (eqn. 3.13).

Next, we consider the displacement fields D; ; which are responsible for the fluxes.
In the picture of the conduits, the situation corresponds to a plate capacitor in 1D
with a dielectric interface at half the distance between the two electrodes at p, and
pj. Due to the contiguity equation (3.22) we know that the electric field is not

contiguous across the interface. For this reason, we cannot directly apply the first
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order finite differences approximation as before. But by means of equations (3.18)
and (3.15), a suitable expression for the potentials at the ends of the conduit may

be obtained, if we consider that the displacement field remains unchanged:

s = 8T dr=—"L .2 | — 4 — 3.33
©i 90] ET(T) r + ( )

€0 €ri €r g

Here, d; j denotes the distance between the nodes p; and p;, according to the length
of the conduit.

If we rearrange equation (3.33) for D; ; and insert the result in equation (3.31),

N ) N
pi = (Z%J'%‘ + :)/(Z%a> (3.34)
=1 i=1

as the expression for the potential at a given node of the irregular mesh. Weighting

we finally obtain

factors are defined as

1 1\' A
Vig =2 ( + ) L (3.35)
di,;

€ri €r.j

Interestingly, the reciprocal values for dielectricity reveal their effect on the flux. It

is equivalent to multiple conductances of an in series-connected resistor network.

3.3. lon trajectories and the electric field

The electric field in the simulation mesh can be derived by virtue of the known
potential. In the application to the simulation, the field enables the analysis of
charged particle trajectories. Since the maximum velocity of the ions will be mod-
erate in the studied cases (vien < 2kms~!@20kV), trajectories are sufficiently

described by classical physics based on Newton’s equation of motion:

o%*r

gz =ne E(r) (3.36)

m -

Here, m denotes the mass, n the charge state, and e the unit charge, respectively. If

we explicitly introduce the ion momentum denoted by p, the second order ordinary
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3.3. Ion trajectories and the electric field

differential equation can be replaced by two coupled first order differential equations

8p(r7 t) _ E
2 —ne- (T‘)
ot
ot m ’

from which the trajectory is computed by simultaneous numeric integration. At
each integration step, respective values for the position r(¢) and momentum p(t)
are recorded according to the progressing time t(t1) = ¢; + At. Therefore, the
final result represents a time dependent path in the phase space. The stepwise
integration algorithm continues until a preset abortion criterion, e.g. the ion passes

the boundary of the mesh, has been reached.

For the numeric integration of equation (3.37), an embedded fourth order Runge-
Kutta method [CK90] has been employed, which allows for an economic processing
as the time steps are determined adaptively with respect to a preset limit of the
numeric error. Of course, other standard integration approaches are equally ap-
propriate, but whatever method applies, the prerequisite of providing a value for
the field at arbitrary position remains. In fact, computing the electric field from
the discrete potential nodes turns out to be the major obstacle for the trajectory

computation.

Computing the electrical field

The easy case is the regular mesh. As the field is the derivative of the potential
(eqn. 3.18), it can be directly computed by reversing equation (3.27). The (negated)

standard symmetric numeric derivative writes as

(p(Z B 17j7k) — (P(Z—i_ 17j7k)
2 Aa

E(i,j, k) = clpt ... (3.38)
For each component of the field vector, the potential differences are equated at a
discrete node. Subsequently, the field at an arbitrary position within the mesh is
obtained by linear interpolation considering the field vectors at the next neighbour
nodes.

Unfortunately, obtaining the field in the irregular mesh is more complicated. Due
to the arbitrary distribution of the potential nodes, a clear basis for establishing
the derivative is missing. Therefore, a fitting approach based on the least squares

method applies. The potential in the vicinity of a given node at pg is expressed by
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3. Numeric and algorithmic prerequisites

Figure 3.21.: Graphical repre-
sentation of the approach which
applies for the field computa-
tion on an irregular mesh. A
linear fit to the potential land-
scape with regard to the next
., IN neighbour potentials is
conducted. By the fitting, the
normal vector of a hyperplane (a
plane in 3D) at the offset p, is
obtained. The result is identic
Po position to the field except for the sign.

potential

v

the Taylor expansion

(p) = ¢(po) —grad ¢|,_, - (p—py) +O(2)

%A..( ~ py) (3.39)

The unknown electric field appears in the form of the gradient term denoted by A.
Graphically, A depicts an approximation to the tangent plane for the potential at
the node g. This is illustrated in figure 3.21. For the fitting function ¢(p) the
potential values ¢, at the 1,..., N local neighbour nodes of the mesh are considered.

In the case of the Delaunay tessellation, the natural neighbours apply.

Next, we demand the least square error defined by

= i (wn - sO(pn))2

(33 sgn_iv E 2 (340
. Z < pO =+ Z Ai Apn z)
n=1 i=1

to be minimal. An equal statement is to set the differential dx? to zero. As A is

arbitrary, the result are three equations for the partial derivatives

2
dx? 728x cd\i =0 g’;' =0V (3.41)
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3.3. Ion trajectories and the electric field

which form a system of linear equations:

o2 3 N N
o Z ( Apy - Apn,i) Ak = Z (c,o(po) - gpn) -Ap,,; (3.42)

k=1 \n=1 n=1

Dy, B;

By making use of the given abbreviations it writes as

Dy ... Dis A B
: oo Ao | = | B2 (3.43)
D31 Ce. D33 )\3 B3

Hence, solving for (A1, A2, A3) yields the field E(p,).

A numerically stable approach involves to obtain first the LU decomposition of
the matrix D;; which then leads to the solution by forward-backward substitution
line-by-line applied to both the triangular matrices [Pre+07]. Due to the symme-
try (Dijx = Dy;), only six matrix elements need to be computed. Therefore, the
described approach turns out to be astonishingly efficient.

For the field at arbitrary positions r within the irregular mesh, linear interpo-
lation applies: In a first step, the tetrahedron with r in the interior is located by
conducting a Delaunay walk (sec. 3.1.3, p. 48) in the mesh. Second, the discrete
fields at the vertices of the tetrahedron are computed based on equation (3.43). Fi-
nally, the interpolated field results by using the barycentric coordinates (sec. 3.1.2,
p. 40) of r with respect to the tetrahedron vertices as weights.

The described approach for the field computation may be further refined by using
the extended Taylor series for the least squares fitting (appendix, chap. B). Besides
an improved accuracy, an additional second order term — the trace of the Hesse
matrix — enables information about the (free) local charge density according to the
Poisson equation VZp = —% which is a nice supplement. Of course, this additional
information is not for free because the numeric effort increases at the same time

considerably.
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4. Implemented simulation approaches

In this chapter, the method of operation of two distinguished approaches for
modelling the field evaporation and ion trajectories in APT will be described. Both
approaches have been implemented for this work.

Although recently, research in this field has raised considerable interest, investi-
gating the properties of field emitted ions by means of electrostatic modelling is not
a new attempt at all. Starting point for the modelling is a common simplification.
The electrostatic condition of a real measurement setup becomes reduced to consist

of three main parts (see fig. 2.3, p. 15):
e the emitter structure, which represents the sample to be analysed,

e the counter electrode, as electrostatic representation of a sensitive detector or

imaging system, and
e the enclosing measurement chamber.

Even if, the influence of the measurement chamber is almost negligible in the exper-
iment, it is indeed mandatory in order to establish appropriate boundary conditions
in the numeric treatment.

A crucial point of this general setup is the large difference in the covered length
scales. The field emitter has a diameter of usually less than 100 nm, whereas the
counter electrode and the measurement chamber have macroscopic extents of several
centimeters.

Here, we want to restrict ourselves to classical physics and therefore do not
intend to account for the quantum mechanical origins of field evaporation or field
ionization. Nevertheless, it is clear that the local electric field in the (sub)nanometer
range close to the field emitter surface, does effect the trajectories of emitted ions
decisively. Therefore, the solution for the potential may demand to bridge six orders
of magnitude in order to address all important properties.

In the generality, this is only possible by accepting a considerable level of numeric
complexity. On the other hand, such a general approach is not always required.
Depending on the respective focus of interest, it can be beneficial to make use of
some natural simplifications. For example, if only the part in a small distance to
the tip apex is taken into account, e.g. about two times the curvature radius of
the emitter apex, a small simulation box with adapted boundary conditions can
be used. Similarly, rotational symmetry may be assumed for the emitter structure
and its surroundings. This reduces the effective dimensionality of the problem
from 3D to 2D. If, in addition, the atomically rough nature of the emitter surface is

neglected, even an analytic solution for the potential becomes possible (e.g. like the
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paraboloidal model, see p. 16). Of course, this is at the expense of a considerable

loss in generality.

Besides these geometrical considerations linked to the scaling problem, a funda-
mental classification of APT modelling approaches into static and kinetic ones must
be mentioned. In the static approach, the solution of the potential for a preset setup
of the emitter-electrode combination will be computed only once. This is sufficient
to explore ion trajectories originating from the modelled emitter. Details of the sur-
face morphology are neglected. Hence, if one is mainly interested in exploring the
general projective properties, this approach represents a good choice. The derived
imaging characteristics may then later be used for conducting APT reconstructions
which operate on real measurement data. Several authors have published studies
which are based on this background [SW78; Gau+11; Loi+12] and some of the

results presented in the next chapter have been derived in this way.

The disadvantage of the static approach is at least twofold. First, there is the
question whether the considered shape of the evaluated field emitters is realistic.
Usually, the applied shapes represent only an approximation to a supposed steady
state shape (e.g. a cylinder with hemispherical cap). Irregular shapes evolving from
inhomogeneous evaporation thresholds as well as trajectory aberrations originating
from the atomic rough nature of the emitter surface are possibly not appropriately

considered.

The second disadvantage addresses the fundamental difference between ion tra-
jectories originating either from field ionization or field evaporation. In this view,
the static approach is in principle not suited to predict the imaging properties.
Field evaporation exclusively takes place at very well-defined surface sites with
well-defined field conditions. In contrast, field ionization takes place at arbitrary
locations somewhat above the emitter surface. Hence, respective ion trajectories

are hardly comparable. Again, this point will be demonstrated in a later part.

An implementation of a kinetic approach accounts in contrast for the detailed
atomic surface of the field emitter and its evolution in time. In consequence, shape
changes, which evolve from the consecutive field evaporation of distinct surface
sites, can be reproduced. Although this is at the cost of repetitively computing the
solution for the potential, realistic fields and realistic trajectories may be considered

by this approach. Both simulation models described next belong to this latter class.
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4. Implemented simulation approaches

4.1. Basic model according to Vurpillot’s approach

The foundation of the kinetic approaches is made by the early work of Vurpillot
et al. at the turn of the last century [Vur+99; VBB00; Vur+00]. By today, their
approach still represents the standard on which other groups developed their own
simulation packages. For this reason, details of Vurpillot’s original framework are
described here first and existing extensions will be addressed thereafter. Among
one of these extensions is notably the ability to account for dielectricity which has
been added by this work. Related results are summarized in section 4.1.4.

Vurpillot’s basic model accounts for metallic sample structures. It is founded
on the solution of the Laplace equation on the basis of a regular grid in 3D. The
general setup of the simulation system is sketched in figure 4.1a, whereas figure 4.1b
depicts a fully elaborated example. The emitter consists of a cylinder stub which
is capped by a half-spherical apex. The size of the curvature radius is in the range
between 10nm to 30nm. The resolution of the basic grid spacing matches the
typical lattice spacing of metals (e.g. dy ~ 5A). Each cubic cell of the emitter is
identified with a single atom. By this treatment the potential is evaluated at the
cube facets. In combination with fixed boundary conditions, the facets appear as
contiguous equipotential surfaces.

Due to the limitation by the regular grid, only a small region within a short
distance to the emitter sample is practically considered. More than two mil-

lion nodes are needed already for a simulation box with the moderate size of

o
<

cell spacing = | L l

=0.5nm * ]
] 1'i,i' L [ |
I *ﬁtrutlraﬂk }
] [

template layer
equipotential lines

Neumann boundary condition [ ———
0.0 kV

I
3 1 5

12 90 3

(a) 2D sketch highlighting the basic con- (b) 3D view of a real setup used for compu-
struction of the simulation grid com- tation. At the bottom, equipotential lines
posed of cubic cells. are plotted. [OS11].

Figure 4.1.: Setup of the regular computational mesh which is the basis for Vurpillot’s
simulation approach
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4.1. Basic model according to Vurpillot’s approach

80nm x 80nm x 40 nm . Thereof only a minor fraction (~ 15 %) is allocated to the
emitter structure. Facing this limitation by the grid, realistic field conditions com-
parable to experiments must be artificially imposed by means of a curved counter
electrode opposite to the emitter. The alignment is such that both the emitter
apex and the counter electrode are congruent to each other. The potential of the
second electrode is grounded. At the bottom of the simulation mesh, the Neumann
boundary condition with g—ﬁén = 0 is enforced. This choice mimics an infinitely

continued emitter base with cylindric shape.

For this settings of the mesh, the Laplace equation will be solved. The Laplace
equation derives from the Poisson equation if charge and dielectricity become ne-
glected. Therefore, we set q(i,7,k) = 0 and ¢@ik) =1 V4, 4,k in equation (3.30)

and receive

plit1,5,k)+¢(i,j £1,k) + ¢(i,j, k £ 1)
6

12

o(i, J, k) (4.1)
for the potential at one distinct node. The solution throughout the mesh is enabled
by iterative application of equation (4.1) to all nodes. Let ¢! denote the potential

at node (i, j, k) in the tth cycle, then the newly calculated value becomes
= (e 5, k) —¢'] at ¢l ae ;2] CR (4.2)

in the subsequent cycle. In the case with @ > 1 in equation (4.2), an “overre-
laxation” for the newly assigned potential is introduced which leads to improved

convergence [Hum93|.

The asymptotic convergence rate of the scheme makes need for an exit condition
of the relaxation process. For this, we track the maximum change of the recomputed

potential within one iteration step by
1t
Ayt = max <M> Vi, ik (4.3)
Q

If the change drops below a certain threshold, further computation stops. In ad-
dition, the convergence rate, d (Agpt) /dt < 0, may be considered for an automatic
exit condition. This ensures termination even if the preset error threshold turns
out to be unreachable due to numeric constraints. In this case, the best possible

approximation is reached if the slope approaches zero.

Once the potential has been derived for the first time, the kinetic part of the

simulation gets invoked. It consists in the management of all the necessary tasks
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which allow the field evaporation of atoms from the emitter structure at a given
stage. Essential for this venture is a maintained list with the surface atoms of
the emitter. By definition, an atom cell is considered to be part of the surface, if
it shares at least one of its facets with the vacuum. With this, the kinetic cycle

proceeds as follows:

1) A surface atom is selected for evaporation. In the most simple approach, the
average field at the eight corner sites of the cubic cell is evaluated according
to equation (3.38). The cell exposed to the maximum field strength will be
selected for evaporation. This choice resembles the experimental situation of
APT measurements in which the voltage is adjusted for maintaining a critical

evaporation field at the apex.

2) The selected atom is removed from the emitter structure. The selected cell
at the surface changes its properties and becomes a vacuum cell. Thereafter,

the list of surface atoms is updated.

3) The potential is recomputed. This is necessary in order to adopt for the al-
tered field conditions. Accuracy of the relaxation is adjusted by the same

termination condition which already controlled the initial relaxation step.

4) The ion trajectory is computed. Starting at the former surface site, a cation is
injected and is accelerated by the actual field. The computed trajectory stops,
if either the electrode or the boundary of the simulation mesh is reached. The

respective end position is recorded.

This sequence of tasks is repeated for all successive atoms. If it happens that the
atom at the topmost emitter site has been removed, the whole emitter structure
is shifted upwards by one atomic layer in order to prevent a shrinkage. For this
purpose a special “template layer” at the bottom of the emitter structure (fig. 4.1a)
will be reproduced. In this way, an infinite proceeding is enabled.

An example of the obtained ion hit positions at a 2D detector plane placed di-
rectly beyond the counter electrode is shown in figure 4.2. The non-uniform distri-
bution already reveals features which are qualitatively known from field desorption

experiments.

4.1.1. Increasing numeric resolution

The basic model is entirely limited to the use of field emitters with the same sc (100)

structure. This is a consequence of the underlying grid on which the potential is
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4.1. Basic model according to Vurpillot’s approach

Figure 4.2.: Computed detector hits which
have been obtained using an own implemen-
tation of Vurpillot’s basic model [OS11].
The pattern reflects a sc (100) emitter struc-
ture with fourfold symmetry. If only a sub-
set of those positions with elevated field of
evaporation at the apex is shown, the pat- , . .
tern in the inset reveals. detector x-position [a.u.]

detector y-position [a.u.]

solved. However, for practical purposes, this structure is only of limited interest.
Almost all samples in the conducted APT experiments consist of bee, fee, and more
complex lattices and are only in exceptional cases oriented in (100). In consequence,
an one-to-one comparison of simulated and experimental results is not feasible.

A slightly more flexible representation of the emitter structure is enabled if a finer
resolved mesh applies for the electrostatic solution. Instead of using eight potential
nodes for one atomic cell, atoms will be constructed from n® (n > 2) cubic cells
with (n + 1)® grid points for the potential [Grul2]. This leads to an increased
accuracy of the calculated potential and somewhat extends the range of possible
lattice structures. In the implementation, the simulation code manages two grids
at the same time: one for the atom cells and one for the mapping to the grid on
which the potential is solved. Because of this complex treatment, the approach is

in the generality difficult to apply.

4.1.2. Distinguished evaporation thresholds

Imaging artifacts in experiments may arise from heterogeneous evaporation prop-
erties of the analysed samples. Thus, there should be the possibility to account for
distinguished evaporation thresholds of chemical species in simulated samples.

The critical threshold for evaporation is considered as the field which completely
reduces the activation energy Q(FE) for field evaporation of a surface atom (eqn. 2.9,
p. 12). For the field dependency, we see an approximately linear relationship close
to the critical field strength Fcyit (eqn. 2.10):

E
QE) = % - (1 _ ECM)
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where Qg denotes the activation energy without any field.

In terms of a probability for field evaporation, the probability becomes equal to
one, once the critical field Fcyj; is reached. Therefore, this material-specific constant
is especially considered in the following to derive a general standard. In contrast
to the experimental procedure, the supplied voltage to the emitter structure is not
adjusted in the simulation. Instead, different evaporation probabilities for each

surface atom
wi ~ Enod/ Ecrit i (4.4)

are introduced which depend on the calculated field strengths Fyjoq in the simula-
tion relative to the required field strength to evaporate the given atom. The surface
atom with the highest probability will be selected for removal in each evaporation
cycle. The consequence of this setting is immediately clear: Under comparable
fields Ehjoq, atoms of elevated evaporation threshold Eq,t are retained on the sur-

face while atoms of lower threshold evaporate preferentially.

Although the setting by equation (4.4) seems to be an arbitrary choice, in this
way derived probabilities for field evaporation appear justified if the process is

considered as thermally activated. In this view, the probability is controlled by

Qo,i E
i~ — 20 (- 4.5
Wi exb { 2kp1 Ecuit,i (45)

and the field dependence becomes

Boltzmann'’s factor

dwi

dE

o Qoi 1
2kT  Ecrit,i

(4.6)

Ecrit,i

which is the same relation which would be derived from equation (4.4) if the first
coefficient on the right-hand side of equation (4.6) keeps constant. As the activation
energies (Qp; of different species are expected to have roughly the same value, the

approach represents an acceptable approximation.

However, on the background of a geometric model for APT simulation which
does not make explicitly use of an electric field, Boll et al. demonstrated that
the calculation of activation energies (Qp; based on local next neighbour relations
allows for an alternative treatment of distinguished evaporation thresholds [Bol+12;
BA13|.
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4.1. Basic model according to Vurpillot’s approach

4.1.3. Statistic evaporation

Up to this point, field evaporation has been modelled in a deterministic picture:
Either the surface atom exposed to the highest field or the atom exposed to the
highest specific field, Eyjoq/Ecrit, is selected for evaporation. Clearly, this is hardly
the case in reality. A more realistic treatment of the evaporation process should
fully account for different evaporation probabilities in the framework of a Monte
Carlo approach. In the former section such probabilities have been introduced in
order to address different material properties of the emitter atoms. Here, we further
elaborate on this approach as it is presumed that the kinetics of field evaporation

is indeed appropriately described by the Boltzmann relation.

The main problem, which prevents a straight forward application of equation (4.5)
with this objective, is the inherent scaling invariance of the potential in the model.
The absolute magnitude of the calculated fields is arbitrary. It depends on the
preset emitter voltage. But more severely, the field changes slightly during the
simulation. This change is caused by the continuous erosion of the apex. In con-
sequence, deduced probabilities from the field are inconsistent unless a fixed scale

can be established.

In experiments, the usual procedure is to adjust the voltage in order to maintain
a preset event rate at the detector. This corresponds in the microscopic picture
to field strengths at the emitter surface which are very close to the threshold for
evaporation. Thus, the adjusted field almost suffices for completely reducing the
activation barrier (eqn. 2.10). In order to establish an analogue situation in the

simulation, we consider the field Fyjoq linked to this distinct experimental field by
EEXp = 7* : EMod (47)

The factor v* accounts for the scaling invariance.

Any ambiguity in the choice of v* is now resolved by the requirement that at
least one surface atom in the simulation should always get exposed to such a high
field that its evaporation probability becomes maximized. This is just the case if

the activation energy vanishes:

Q(Bixp) = Qo | <1 N VEMd) 1y
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In this way, consistent probabilities

Qo,i ( (ECrit j) EMod > } .
Wi ~ expq — — . | 1 — max = - , Vv 4.9
P { 2kpT Eriod ) Ecrics / (4.9)

may be derived as input for a Monte Carlo approach. Free parameters for the

simulation are temperature, the respective activation energies, and the critical field

strengths at each surface site.

4.1.4. Extension to include dielectricity

Atom probe experiments were for a long time restricted to the analysis of metal-
lic samples, because poorly conducting materials prevent successful measurements
under application of nano-second high-voltage pulses. This limitation seemed to
be rather fundamental, but with the introduction of the new class of laser-assisted
instruments, the full range of materials has been enabled for analysis regardless
of their electrical properties. The analysis of dielectric samples brings up particu-
larly new challenges. In this regard, theoretical investigations by APT simulation
represent a promising approach and may enable new insights. For this purpose an
extension of Vurpillot’s model is introduced. A detailed description of the approach
and of results which are not presented here has been published in an related article
[OS11]. Only minor, but nevertheless decisive modifications to the basic model are

made:

e Dielectric properties for the emitter structure are enforced by additionally

attributing each atomic cell with a different value for dielectricity.

e Consequently, instead by the Laplace equation (4.1), the solution is deter-
mined by the Poisson equation (3.30). Even though this increases the numeric
complexity, the additional numeric effort turns out to be almost negligible if

multi-core processors are used.

e Instead by the application of a fixed potential, metallic properties of an
atomic cell are mimicked by assigning extraordinary high values of dielectricity
(€ ~ 10%). Attenuation of the field inside the metal is thereby appropriately

ensured.

e The Dirichlet boundary condition only holds at the bottom layer of the emit-

ter, which acts as electric contact.
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1.00\
= N
= S
= 0.95- N
3>
< 0.904 ™
= ~a_
g 0.85- S o
© A ~
0.80+ ~ ~A
0.75 T T T T T T T T
] ] 0 2 4 6 8 10 12 14 16
contact electrode: 1kV thickness d_.,, [nm]
(a) (b)

1207 +g": i - Figure 4.3.: Results of the
= —v— [ . . .
2100- i 16nnm : 5 simulation approach using the
= 801 <« g extended ability to account for
g Buik | o : dielectricity: (a) 2D sketch of
g 60 ! T the simulation grid. Emitter
z ! samples with different width d.
° 401 —_ of the dielectric layer are anal-

204 vacuum ysed. (b) Relative voltage drop
at the apex. (c) Computed
0 -------

0 5 10 15 20 25 30 35 40 field strength/ potential (inset)
for different layer widths in the

distance [nm]
range between Onm to 16 nm.

(c)

Figure 4.3a depicts the simplified setup for a dielectric sample structure. The
emitter consists of a metallic core with a dielectric surface layer. In this example,
a dielectricity of €, = 10 applies, which corresponds to the typical value for oxide
compounds, glasses or ceramics etc. Derived solutions of the field and the potential
are shown in figure 4.3c. Different cases with a layer thicknesses d. in the range
between Onm to 16 nm are considered. In all computations, the position of the
emitter surface remained fixed at 20 nm. Clearly, field penetration into the dielectric
bulk is visible. The result becomes confirmed by the presented voltage distributions
in the inset. An analysis of the determined potential drop (%)(de) at the dielectric-
vacuum surface shows an almost linear decrease as a function of the layer thickness
(fig. 4.3b). If we assume that such an effect similarly takes part in experiments, an
energy deficit of the detected ions would be expected. This deficit should decrease
with progressing erosion of the dielectric layer until the voltage drop completely
vanishes when the metal interface is finally reached. However, such an energy

deficit has not yet been reported. Facing the extraordinary high field conditions
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in APT, it is anyway questionable to which extent dielectricity is maintained. At
least, effects like band bending will degrade the maximum penetration to a few
nanometers [Tso79].

However, assuming a non-negligible field penetration takes nevertheless place,
simulations as well as analytic calculations predict severe effects at the metal-
dielectric-vacuum junction [OS11; Chu+13]. As an example the computed field
distribution for a dielectric particle in a metallic matrix is presented in figure 4.4a.
The approximate direction of field lines is indicated by the arrows. Because of the
spherical shape, the field concentrates towards the particle core. In consequence,
preferential evaporation is induced and a locally confined indention into the surface
develops. The concave curvature causes significant aberrations of the ion trajecto-
ries. Since the reconstruction algorithm is not able to anticipate this change, we
recognize an inhomogeneous atom density in the vicinity of the particle (fig. 4.4b).
In addition, the originally spherical shape appears elongated.

Such a depressed evaporation threshold of the dielectric is a general effect. Fig-
ure 4.4c¢ depicts another example which consists of several vertical layers with alter-
nating dielectric and metallic properties. The steady state surface at the dielectric
becomes again concave. In this case, even a crossing of trajectories is observed.
The result are overlapping events at the detector and severe artifacts in the 3D
reconstruction. A careful analysis for the concentration wrongly shows an enrich-
ment of atoms from the dielectric in the metal bulk. Hence, we can learn from this
example that artifacts in APT may be significant and hardly distinguishable from

“proper” analysis results.

4.1.5. Discussion

Vurpillot’s approach enables a numeric framework for accessing electric fields in
the vicinity of modelled APT emitter structures. The dual use of a basic regular
mesh for describing both the atomic structure and for computing the electrostatic
solution turns out to be a pioneering concept.

The distinguished field acting on each surface atom of the emitter is considered.
The surface exhibits an atomic rough morphology which originates from the ar-
rangement of single cubic cells. This is in contrast to a static approach, in which a
conventional finite-element solution of the potential is derived from an analytically
prescribed emitter shape. In correspondence with the experimental observation,
the roughness at the surface naturally leads to enhanced fields at protruding kinks

and edges. As a result, these sites are more likely evaporated. Additionally, not
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Figure 4.4.: Effect of field penetration at APT emitter structures with dielectric-
metallic interfaces [OS11]: (a) The simulated evaporation of a dielectric particle reveals

Trajectory overlaps take part due to locally concave surface shapes.

density appears in the computed reconstruction. The particle
systematically displaced atoms in the 3D reconstruction.

an enhancement of the surface field.



4. Implemented simulation approaches

only the field but also distinguished materials properties may be taken into regard.
Thus, the obtained evaporation sequence of surface atoms becomes quite realistic.

The simulated trajectories are severely affected by the surface morphology. The
ions initially start at rest. This makes them particularly sensitive for the field close
to the emitter. Additionally, the magnitude of the field drops rapidly with increas-
ing distance from the surface (~ 1/r). For this reason, the trajectories compare quite
well to experimental ones, although the possible size of the actual simulation box is
way to small. However, in order to receive realistic impact positions at the detector,
additional and possibly error-prone extrapolation is required. Anyway, at least for
a qualitative analysis, the computed trajectories provide sufficient information, e.g.
for the investigation of imaging artifacts.

Noteworthy, if the counter electrode necessarily moves to such close distances, a
concentric curved electrode turns out to be mandatory. Otherwise, realistic fields
in the free space around the emitter, corresponding to a regular flat electrode in the
far distance, are not ensured because the shape of the applied electrode imprints
to a noticeable degree the curvature at the emitter apex. Caution is needed about
this point.

In summary, the approach along with the established extensions already addresses
an important part of the physics which is expected to affect APT measurements.
In fact, the main disadvantage of Vurpillot’s extended model arises from its inflexi-
bility which prevents the investigation of realistic emitter structures. Only simple,
basically cubic lattice geometries are suited for simulation. Even with more compu-
tational effort or additional tricks, there is no way to carry out simulations of close
to realistic emitter structures, since atoms are forced to be localized on a regular ar-
ray. Ideally, possible input samples should not only reflect chemical inhomogeneity
but should allow for arbitrary lattice defects as well. The use of the basic regular

mesh clearly renders this latter feature impossible.

4.2. New generalized approach

In view of this limitation, a new simulation approach has been derived. Firstly,
it overcomes the constraints by the grid of Vurpillot’s model and enables simula-
tions which truly reflect experimental conditions. Secondly, it permits a different
description of the physics of field evaporation. Instead of the field, field induced
polarization forces pulling at the surface atoms are considered for the simulated

desorption. Details of this new treatment will be described in section 4.2.4.
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4.2. New generalized approach

4.2.1. Foundation by an irregular mesh

In order to overcome the restrictions by the regular grid, an irregular grid is used. In
chapter 3 we have already seen how the potential (eqn. 3.34) and the field (eqn. 3.43)
can be determined on this basis. In the new approach, the potential is accessible

at arbitrary points in space (fig. 4.5a):

e In a dual view, nodes of the Delaunay tessellation represent at the same time
the centre points of Wigner-Seitz (Voronoi) cells. This enables the nodes to
directly correspond to atomic lattice sites inside the emitter structure. Dif-
ferent electrostatic properties such as dielectricity and charge density assign
to individual nodes. In the linked Voronoi tessellation, attributed parameters

hold for the domain of each Voronoi cell or atom.

e At the same time, the simulation environment is constructed from additional
arbitrary distributed nodes in space. A network is established by the Delaunay
tetrahedralization. At each node, a potential value will be computed. The
nodes in this network do naturally act as support for the discrete electrostatic

solution in the simulation domain.

Figure 4.5d depicts a sketch of the 3D simulation mesh which has the shape
of a flat disc. The top face represents the APT detector. The emitter sample
becomes embedded into the disc at the bottom center. In comparison, its size is
considerably smaller. It amounts only to about 200nm in diameter and 150 nm
in height. Because there is no particular restriction for the placement of support
points in the vacuum space, necessary nodes for computing the potential can be
distributed randomly. Carefully computed trajectories with sufficient accuracy are
possible if the node density decreases proportional to the field strength of the electric
solution. By this choice, approximately the same number of nodes as in the case
of the regular mesh is sufficient to cover a much larger length scale (1nm — 1cm,
~ 0.5 - 105 nodes). In this way, realistic extents equal to experimental conditions
are easily enabled. Thus, there is no need to apply a curved counter electrode as
before in Vurpillot’s original approach.

In figure 4.5b a highly magnified view of an exemplary emitter structure is pre-
sented. The height and diameter both amount to about 100nm. Here, the whole
emitter structure and not just the apex part is completely considered for the simu-
lation. Hence, in this case, there is no need for compensating the shrinkage of the

apex by shifting atoms from bottom to top.
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Figure 4.5.: Foundation of the generalized approach [OES13]: (a) Basis is an irregular
distribution of nodes with one node at each lattice site of the field emitter and less dense
nodes in the surroundings. (b) 3D model of an exemplary emitter structure. (c¢) Each
atomic cell naturally represents as a Wigner-Seitz cell. Arbitrary lattice structures are
possible. (d) The adaptive layout permits extents of the simulation box comparable
with experiments.

10 cm

Despite the changes, which originate from the used irregular mesh, the general
procedure for simulating the field evaporation is preserved: Once the simulation
environment has been constructed and the potential has been computed, the same
evaporation cycle as before on the regular mesh (see p. 74) is processed. For in-
stance, the color coding of the surface atoms in figure 4.5b resembles the desorption
probability which has been derived in straight forward manner from the computed
field at the centred generator point of each Wigner-Seitz cell. Inhomogeneous evap-
oration thresholds of atomic species (eqn. 4.4) are considered by rescaling calculated
fields to evaporation probabilities. In the same way, different values for dielectricity

may apply for the domain of the Wigner-Seitz cell and affect the potential of the
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4.2. New generalized approach

solution (eqn 3.34).

4.2.2. Assisted mesh generation

The simulation mesh on the basis of the regular grid could be easily established,
since only the grid spacing must be set. In contrast, the application of the irreg-
ular mesh requires extra effort. Particularly, the adaptive distribution of nodes
with a changing density makes the assembly difficult. Fortunately, tailored mesh
generation is a common task in the field of computational geometry and we can
make use of already available techniques. A ready-to-use solution suited for tetra-
hedral meshes is provided by the TetGen package [Sill]. Besides control of the
density, the applied algorithm also ensures an appropriate numeric quality of the
produced mesh. The construction of badly shaped tetrahedrons (e.g. slivers) is
thereby mostly avoided.

An example of the realized mesh generation procedure is illustrated in figure 4.6.
In order to bridge the scaling from microscopic to macroscopic dimensions, a set of
four nested cylindric meshes is constructed, denoted by the roman numbers I to IV,
respectively. The innermost basis of the constructed meshes is fixed by the user.
The position of any atom in the field emitter must be provided as input. Arbitrary
geometries are possible as long as the emitter geometry is of convex shape.

Using the input as a template, the first constructed mesh (I) fills the space
between the provided geometry and a somewhat larger cylinder. The density of
nodes is homogeneous. The remaining meshes (II to IV) each increase in size such
that they perfectly nest inside each other. Despite some geometric restrictions for
the tetrahedra, the density of nodes is set to drop exponentially. In order to avoid a
too low density, a lower limit applies for the nodes in the most outward mesh (IV).

The complete simulation environment consists of the field emitter structure and
the support mesh in the surroundings. It results from the combination of all con-
structed partial meshes. In a last step, distinct boundary conditions are set. The
Neumann boundary condition holds for the bottom nodes, whereas the Dirichlet
boundary condition holds for nodes at the sides and at the top.

Notably, only about half of the total required nodes are used for the support. The
other half is used for the emitter structure. This emphasizes the enhanced efficiency
compared to the former construction approach based on the regular mesh. FEven
if larger emitter structures are considered, the number of required nodes for the
support mesh would remain almost unchanged.

From the viewpoint of a user, the automatic mesh generation completely re-
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Figure 4.6.: Construction of the simulation mesh from an adaptive layout of four
nested sub-meshes. Each dot represents a generator point of the Voronoi tessellation
or a vertex in the Delaunay tessellation, respectively.

lieves from considering the support mesh. A tailored simulation environment is

constructed only based on the provided input.

4.2.3. Properties of the electrostatic solution

The iterative numeric solution scheme for the potential turns out to be astonishingly
stable. Convergence is achieved reliably for all provided input structures.

The accuracy of the numeric solution is limited by the machine precision [Suk03].
However, as the distinct potential in between two nodes of the mesh is accessed by

linear interpolation, the density of nodes certainly affects the interpolation error.
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In order to characterize the derived solution two questions are addressed in the

following.

Of which quality are the solutions for the potential and the field close to the
emitter structure?

The answer determines the possible quality of the predicted trajectories. Figure 4.7a
depicts the potential in the vicinity of a field emitter (cylinder with 20 nm radius
and 50nm height). In this example, the simulation environment was set to be
considerably smaller than usual (cylinder with 2 um radius and 1 pm height). Two
kinds of solutions have been calculated: Both the coloured potential in the back-
ground and the inscribed black equipotential lines refer to the solution of the new
approach. A second solution has been derived by making use a commercial finite
element software package'. This result is depicted by the white equipotential lines.
The obtained solutions almost perfectly match each other. Little differences at the
bottom boundary are visible which trace back to the particular implementation of

the Neumann boundary condition.

However, for the trajectories, the field is decisive. In the case of the generalized
approach, two distinct solutions are presented: The field in figure 4.7b depicts the
derivative of the potential which is computed in first order accuracy (see sec. 3.3),
while figure 4.7c shows the more accurate computation in second order (see ap. B).
The enhanced accuracy of the latter approach is clearly revealed by the inscribed
equi-field lines which appear more smooth. Directly at the bottom, the field is
not computed. Instead, a fixed zero field applies. Although this artificial choice
severely disturbs the equi-field lines, it is of almost no significance for any computed
trajectories starting at the emitter apex. Apart from this, the computed fields do
compare well with the reference field from the FEM solution presented in figure 4.7d.
Quantitatively, this is demonstrated by the graphs along the z-direction (fig. 4.7e
and fig. 4.7f).

Notably, the numeric effort for computing the second order field is about ten
times higher. For this reason trajectories are by default computed with first order
accuracy in this work. The introduced error is considered to be acceptable. This
choice finds its confirmation in the detailed pattern of obtained field desorption

maps which are presented in the next chapter (see p. 104).

L«Comsol Multiphysics”, version 3.5
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Figure 4.7.: Comparison of the numeric solutions derived from a standard finite-
element approach with the solution derived from the irregular Voronoi mesh.
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What are the general dependencies of the potential and the field on a larger

length-scale?

For investigation in this regard, a simulation box with an emitter to detector dis-
tance of 10cm is considered. Figure 4.8 presents the change of both the potential
and the field along the centre axis. From the almost straight curve of the field, a

general dependency according to

Ez)= A-2P A/ BeR (4.10)
is assumed which leads to
A B+
e(x) = ¢(wo) + Brl T (4.11)

for the potential. Here, A is a constant in units of Vnm™! and B denotes a dimen-
sionless parameter. The applied fits match quite well, whereas the analytic solution
on the basis of the paraboloidal model neither compares to the potential nor to the
field.

The field directly at the detector at 10 cm shows a distinguished curvature. It
smoothly approaches the outward boundary. Although this behaviour appears quite
symmetric to the field change at the emitter surface at 100 nm, the reason for this

feature is unclear. It may possibly be an artifact of the numeric approach.

1000 10'°
— 800 10°
Z analytic solution — 5
< 600+ ‘\ (paraboloidal) g 10
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Figure 4.8.: Change of potential and field in far distance of the emitter structure:
comparison of the paraboloidal with the numeric solution.
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4.2.4. Consideration of the polarization force for evaporation

The representation of the field emitter structure by an arrangement of Wigner-Seitz
cells is a main characteristic of the new generalized approach. We will now fully
adopt this concept and show how the description of the atoms by different Voronoi
cells enables us to directly evaluate field-induced forces for the desorption from the
emitter surface.

Although the idea of an acting force seems to be straight forward, this picture has
not yet at all been followed in the APT community. Instead, the field magnitude
is usually considered as the important parameter. This particularly results from
the historic development of APT as the successor of the FIM technique. The often
used terms “best image field” or “best image voltage” probably originate from the
very early experiments and have determined the way of thinking since that early
time.

In fact, a description on the basis of the field is not completely wrong. In the
case of homogeneous materials, a uniform effect of the field on the charges may be
assumed. Therefore, no special care must be taken and the force becomes propor-
tional to the field. But in the case of inhomogeneous materials, a different effect of
the field on the charges can no longer be neglected. In order to account for non-
uniform polarizability, the force is considered as dependent on both a field induced
charge ¢(E) and the field:

F(E)=q(E)-E (4.12)

Then, already for the case of a linear polarization (¢(E) ~ E), this results in a

parabolic dependency which enhances forces at an elevated field strength.

Eul oy EUT FO
. o FO.6 p FO,3 ;
o E 9 :
I ‘s
2\

(a) (b)

Figure 4.9.: Sketch depicting the calculation of the exerted force on a Voronoi cell
[OES13]. (a) Facets of the Voronoi cell are considered as electrostatic interfaces
(eris # €rj) at which the fields E; ; induce polarization charges o; ;. (b) The force,
which pulls at the Voronoi cell, equates to the vector sum over all facets.
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This idea is now applied to the simulation approach. In figure 4.9, the Voronoi
cell of a single atom is depicted. Each of its six facets is linked to a pair of generator
points in the Delaunay tessellation at which the potential has been calculated. On
either side of the facets, different values of dielectricity are present, which give
rise to the formation of a surface charge at the respective interfaces. Taking into
account this surface charge and the constant field along the surface enables us to
calculate the force. The actual situation for a single facet is shown in the magnified
view. Based on equation (3.33), the displacement field in direction normal to the
interface reads

Dy = PP 2 ity (4.13)

‘Pi - pj‘ €ri + €
In correspondence to the contiguity equation (3.22), D;; remains constant across
the interface whereas the effective electric field strengths EZJ’ ; and Ej ; are different

on either side of the interface according to the respective values for dielectricity:

pro_Dii [ pime; 2 e
g - .
2,] €0€r,i ‘pi — pj‘ €ri + €rj J

EZT]. Y B N N & i (4.14)
I o D —p;| i terng

This finding is consistent with the field strength which derives directly from the

potential difference between the nodes p; and p;:
pi—pi 1 ( ! T)
E .= — =_.(EY. +E'. 4.15
9T e T TR )

The discontinuity in the field corresponds to the formation of an excess charge at
the interface. The respective charge density o; ; is obtained from the application of

the Gaussian law and yields

Gis 0 — 0 €ri — €rj
= (B =Bl o= T 2 (4.16)
‘pz p]‘ 67‘71 + ET:j

We see, the charge decisively depends on the values of dielectricity at the interface.
Combination of the results from equation (4.15) and (4.16) leads to the force in

normal direction to the facet

b; —D;

(p; — Pi)2

Fij=o0ijl|Aijll- Eij- (4.17)
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The total force on the Voronoi cell is then expressed by the vector sum

2
Fizz (%‘—%’> ‘260‘69@]'—673@" P; —DP; (4.18)

7 ‘pj - Pi} €rj T €r |Pj - pi‘

over all present facets (fig. 4.9b).

For the final application to the simulation, we have to consider that the likelihood
for a surface atom to become field evaporated should not depend on different vol-
umes of the Voronoi cells in the model. This prevents a direct use of equation (4.18).
In contrast, a measure, which is independent of the geometry, is obtained if the force
gets divided by the surface area of the Voronoi cell A; =) ||A4; ;||. With this, the

J

evaporation probability is effectively computed by the deduced stress 7; := A% on

the cell. Distinguished evaporation thresholds of different atomic species are nor-

malized with the squared critical field values
Wi ~ T /E(zjrit7i (4.19)

in analogy to the standard approach (eqn. 4.4). In the experiments, any field
induced forces are counter-balanced by the solid bonding. If it gets too weak,
field evaporation takes place. Related bonding forces may be derived from pair
interaction potentials between the respective next neighbour atoms. Such a more
realistic treatment of the physics may be introduced in a further development stage
of the simulation approach but is not considered here. Like it was explained in
section 4.1.2, equation (4.19) appears equally justified if an sufficiently homogeneous

binding of different atoms can be assumed.
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5. Imaging characteristics of detector events

Essential for the imaging characteristics in APT is the electric field. The micro-
scopic field at the emitter surface triggers the desorption of atoms and is responsible
for the detailed pattern in the ion projection at the detector. On the other hand,
the mesoscopic field in between the emitter and the detector is comparably weak.
Nevertheless, in little distance to the surface (< 1pm), the field is sufficiently
strong and can affect the ion trajectories. For this field, the shape of the emitter
shaft is important.

In this chapter, we address the effects of both the mesoscopic and the microscopic

field conditions, and further demonstrate the impact of statistical desorption.

5.1. Field properties and trajectories

Reliable information on the ion projection constitutes the basis of the 3D recon-
struction. Commonly, image formation is understood by considering a simple point
projection (ch. 2). In this way, positions at the emitter apex become linked to dis-
tinct positions at the detector. The deviation from a radial projection is expressed
by the image compression factor £ (eqn. 2.16). Determination of this parameter
together with the field factor S (eqn. 2.15) enables the inverse projection in the
reconstruction.

Initially, both parameters were considered as independent constants which either
depend on the instrumental setup or on the emitter geometry. But recent work of
Loi et al. [Loi+12] and Vurpillot et al. [Vur+11] suggests that this is probably not
the case. Ion trajectories for different emitter, electrode, and detector configurations
have been tested. Results indicate that both parameters are coupled to each other
by a cubic dependency with § ~ &3. The detailed analysis of experimental wide
angle atom probe data additionally reveals a clear dependency of both parameters
on the estimated specimen shape [Gau+11].

In face of this existing work, a similar study is presented in the following. Besides
the confirmation of the published results, the main objective is to characterize
the imaging conditions with the new simulation approach and to demonstrate the
comparability with experiments. Therefore, the basic geometry of a truncated cone
with spherical apex is investigated (fig. 5.1). Different geometries with the taper
half angle ~y;, in the range between 0° to 30° and the curvature radius of the apex
Ttip between 5nm to 40 nm are considered. All samples have a fixed length of 100 nm
in order to minimize boundary effects in the simulation.

The detailed procedure is as follows: First, each sample is placed in a simulation

box with extents of 40 cm x 40 cm x 10 cm. Subsequently, the electrostatic solution

94



5.1. Field properties and trajectories

taper angle

Figure 5.1.: Sketch
of the sample geome-
try which applies for

investigations of  the ' shaft " tip radius Z
emitter field and imaging (5nm ... 40 nm)
properties of trajectories. ' total height: 100 nm (fixed) '

is computed and ion trajectories originating from the surface sites of the sample
are calculated. The applied voltage is in all cases the same (Ag = 1kV) such that

an effect of the different geometries on the field can be studied.

In order to get an impression of the obtained trajectory courses, the example of
the emitter with ry, = 20nm and ~p = 15° is presented in figure 5.2. Initially
at rest, the velocity of the ions reaches 50kms™! already in a distance of about
100 nm from the emitter. This amounts to about two thirds of the maximum speed.
The magnified part in figure 5.2 reveals the sensitivity on the location at the apex
surface. The distinct launch position at a kink site or the edge of a low indexed
terrace leads to severe deflections. Some trajectories do even intersect with each
other. This view at the microscopic scale suggests that the assumption of a radial
projection law is probably error-prone and may not be best suited as basis of any

reconstruction. However, in order to describe the formed image at the detector

0° [7.5° [15°  j22.5° /30° 37.5°

450

52.5°

[001]

Figure 5.2.: Cross-section through the simulation space highlighting the course of
computed trajectories. The colouring depicts different velocities. In the magnified
view, a clear deviation from a straight line can be seen. For example, this is indicated
by the dotted marker line at the [011] direction.
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such a general projection law appears nevertheless justified.

In the experiments, the active imaging area of the emitter is constrained by the
demand of a sufficient field strength. This condition approximately coincides with
the presence of a sufficiently curved apex and cancels out the outer part of the
trajectories plotted in figure 5.2. If the conical shaft is excluded, the imaged apex

area depends on the taper angle and the tip radius as equated by
Agip = 27”"t21p (1 — sinytip) (5.1)

5.1.1. Field factor

With regard to this restriction, the surface field at the apex is analysed for dif-
ferent tip radii and taper angles. Figure 5.3a shows data of the microscopic field
distribution. From the histogram, a single “macroscopic” field is derived based on
the statistic measure of the percentile, e.g. pgge;. This choice facilitates the com-
parison of the field for different geometries. It is preferred to the maximum field
because the percentile is more robust against fluctuations originating from not so
ideally equilibrated emitter shapes. In figure 5.3b and figure 5.3c this way extracted
“macroscopic” fields are plotted against the inverse curvature radius and the taper
angle, respectively.

In general, the field is expected to be inversely proportional to the curvature
radius. This relation is reasonably confirmed although only four different radii for
one taper angle are evaluated. The best match is seen for an taper angle of 0°
whereas for 30° increased deviations from the linear relation occur. For the change
with respect to the taper angle, we see a linear decrease. It seems that the taper
angle has a particularly strong effect on the apex field for a small curvature radius.

In summary, both observations, the dependence of the apex curvature as well as
on the taper angle of the shaft, may be taken into account by an extension to the
standard field factor:

B(vip) = B1/(1 = B2 - Yip) (5.2)

Accordingly, the classic equation (2.15) for the surface field is modified to

Agp Ap 1 — B2 %ip
(Ttlp’ ’Ytlp) B(P}Itip) Ttip Ttip 61

(5.3)

Here, (1 refers to the classic definition equal to B(7ip = 0). For quantitative values,
s Yep 1

the expression (%&f’)m’) is plotted against the taper angle (fig. 5.3d). The

slope of the plot reveals 82. Each point represents the mean value from the data
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Figure 5.3.: Dependence of the surface field on the emitter geometry

with ¢, = const., error bars result from the standard deviation. As one can see,
the field factor increases with the taper angle. The determined variation of the
field factor in the range between 3 to 8 appears realistic and is comparable to

experiments [Vur+11].
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5.1.2. Image compression

Besides the field factor, the image compression represents the second ingredient for

the 3D reconstruction. For quantitative values, the imaging angle

[ 2 2
TDet + YDet

Yimg = arctan 7
flight

of each ion trajectory is compared with the corresponding launch angle

(ptip - pctr) ' éz)

Maunch = arccos <
‘ptip - pctr|

of the initial surface site. The launch angle is derived by considering the centre of

the constructed sphere about the apex at

A~

Dety = (Zmax - rtip) "€z

Figure 5.4a depicts again the case with 74, = 20nm and ~p, = 15°. About
5,000 trajectories are evaluated. The line fit indicates a proportionality between
the imaging and the launch angle. It holds almost over the whole value range.
Visible oscillations for Jj,unen < 20° trace back to atomic terraces at the apex (e.g.
compare with fig. 5.2). In contrast, deviations for ¥j,unen > 70° are probably caused

by the transition from the apex to the shaft.
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(a) Imaging angle versus launch angle for (b) Image compression versus taper angle.
the emitter with » = 20nm and v = 15°. The gray encircled data point represents the
slope from the line fit in (a).

Figure 5.4.: Dependence of the image compression on the emitter geometry
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5.1. Field properties and trajectories

The fitted slope directly corresponds to the image compression. Results for dif-
ferent taper angles are shown in figure 5.4b. The image compression decreases lin-
early with increasing taper angle. Interestingly, the estimated maximum amounts
approximately to about 0.9 in the case of the cylindric geometry (v, = 0°). Here,

it appears to depend only weakly on the curvature radius.

5.1.3. Interdependence of surface field and image compression

Finally, the recently revealed connection of the emitter field to the image compres-
sion is shortly addressed as both parameters have already been evaluated. Although
it is already clear from basic considerations that the field strength at the apex and
the image projection properties are linked with each other, it is nevertheless aston-
ishing that a simple cubic relation Egyt ~ &2 holds. Indeed, the data in figure 5.5
show this particular dependence clearly. The linear fits almost perfectly match.
An exception is the case with 40 nm curvature radius where half of the data points
barely fit to the line. In addition, it shows a negligible dependency of the image
compression on the field. For this discrepancy, inaccuracies in the determined image
compression (see fig. 5.4b) may be responsible. Regardless of this, overall results
match reasonably well to those from the literature.

However, in this work as well as in the study of Vurpillot et al. [Vur+11], the
Neumann boundary condition applies at the bottom of the simulation box. Since
this choice seems appropriate if a cylindric emitter geometry is analysed, it appears
questionable whether it is suited to approximate the field of an infinitely extended

cone in a realistic manner.

In contrast, this conceptional weakness does not hold for the results by Loi et

60
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] ] e 10nm
50+ A 20nm
1 v 40 nm
— 404
g 30- >
>
T 20 /‘
Q
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] - i 4
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Figure 5.5.: Cubic rela- o
tion of the field factor to 03 04 05 06 07 08 09
the image compression. image compression (%3 [1]
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5. Imaging characteristics of detector events

al. [Loi+12]. In their work, the solution for the potential is founded on a full-scale
boundary element method (BEM). In this way, they are able to consider the field
for a quite realistic geometry. Investigated emitter samples were of up to 5mm in
length. This approach resulted in the same cubic dependence. Therefore, it appears
unlikely that boundary conditions in the simulation are responsible for this finding.

Anyway, in future simulations, a possible effect of the boundary conditions can
be avoided if an enlarged emitter shaft, e.g. with a length of hundred times the

curvature radius, is considered.

5.2. Detector event maps

We will now change the focus of interest and take a look at the distribution of the
hit events at the detector. Results from two different approaches are presented. In
the static surface imaging mode, ion trajectories originating from all surface sites
of the emitter sample are considered simultaneously. In contrast, in the kinetic
desorption mode, trajectories of surface atoms field evaporating atom by atom are
considered. The first approach mimics the imaging conditions in FIM experiments,

the latter one accounts for APT experiments.

5.2.1. Surface imaging mode

Figure 5.6 depicts in detail the spherical curved apex of two distinguished bcc
emitter structures. The preset lattice constant is 5A. The depicted diameter of
50nm almost resembles the size of an experimental tip. In the illustration, more
than 15,000 surface sites can be distinguished. Each surface atom of the emitter is
represented by its Voronoi cell. Depending on how the lattice is oriented, different
surface morphologies appear. The colour coding of single Voronoi facets denotes the
surface field. Different colour contrast clearly emphasizes the location of prominent
lattice planes which are revealed in the form of concentric rings. A close inspection
of the morphology is enabled by the magnified insets. The shape of individual
Wigner-Seitz cells becomes clearly visible. Even the specific orientation of the cells
in correspondence to the lattice orientation, (011) or (111), is visible.

Very similar to this view at the plain apex is the 2D projection, which results
from the computed trajectory hits in the detector plane. Data for the sc, bee and fee
cubic lattices and for ordinary orientations are presented in figure 5.7. The imaging
distance is 10 cm. For all emitter samples, the same lattice spacing as before, 5 A,

applies. An imaging contrast similar to the FIM is mimicked by plotting spheres
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Shape of Wigner-Seitz cells:
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Figure 5.6.: Top view of the apex structures of a bec (011) and bee (111) emitter
sample. The detailed structure consists of about 15,000 Voronoi cells. In this way, a
distinct surface morphology depending on the lattice orientation is established.
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5. Imaging characteristics of detector events

<001> <011> <111>

bcc

fcc

Figure 5.7.: Detector hit maps of calculated surface trajectories for various emitter
structures. Results mimic those obtained from FIM experiments.

of different size and setting the colour intensity corresponding to the field strength.
This way, terrace edges in the vicinity of poles appear pronounced by a strong
bright contrast. But also single protruding surface atoms (e.g. in the centre of the
fce (111) projection) are particularly striking. Somehow astonishing is the darker

appearance of the zone lines in between low indexed poles.

Apart from the visible contrast, the pattern of the poles exhibits the expected
two-, three- and fourfold symmetry according to the respective (011), (111) and
(001) orientations. The sizes of equivalent poles in the sc, bee, and fee lattices do
not directly compare. In the microscopic picture, the apex region about the poles is

flattened. The observed pole pattern resembles this kind of facetting. The apparent
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5.2. Detector event maps

size of the poles corresponds to the extents of the facets.

5.2.2. Desorption mode

Another situation emerges if trajectories in the desorption mode are analysed. In
this case, the detector positions originate from simulated field evaporation at the
emitter surface. According to the iterative procedure described in chapter 4.1,
detector events are obtained one after the other. The sequence is controlled by the
respective surface field. Results are therefore in clear contrast to that in the surface
imaging mode.

For the analysis, the same set of emitter samples applies. More than 200,000
evaporation events from each emitter are simulated and the detector positions are
recorded. Figure 5.8 presents the results in the form of 2D histograms. The colour
scale denotes the hit intensity. As before, patterns which clearly relate to the
lattice structure and the respective lattice orientation are observed. Distinct crys-

tallographic features like poles and zone lines are immediately visible.

Distribution of the hit intensity

At first glance, the general distribution of the detector hits is particularly striking.
The maximum intensity is located at the center with a strong outward decrease.
Indeed, if the histogram of the detector hits is plotted against the imaging angle, the
obtained distribution reveals excellently the expected relationship for the desorption
flux described before in section 2.2.5 (eqn. 2.30).

As an example, the case of the fcc (110) emitter structure is shown in figure 5.9.
The curve shows a dip at about 30° which is due to the visible depletion at the
(111) pole in the field desorption map (see fig. 5.8).

Fitting of the hit distributions according to equation (2.30) enables an alternative
approach for determining the image compression factor. In the depicted example,
an image compression of £ = 0.83 £ 0.01 is estimated. Respective results for all
combinations of the lattices and orientations are summarized in table 5.1. Aston-
ishingly, results group nicely depending on the lattice type. An increase from 0.83
for bee to 0.92 for sc is seen. A significant difference in the dependence of the lattice
orientation is not recognized. The systematic shift shows that the estimated image
compression depends on the lattice structure. Although, it is worth mentioning
that the values for the image compression in table 5.1 are not far away from the

previous results presented in figure 5.4., they do not coincide within the estimated

103



5. Imaging characteristics of detector events

detector y position [m]

detector y position [m]

-0.05 [

detector y position [m]

-0.1

015 L . g,
. 7 R
f i N
02 i ] 5 D £ b 5 VAR P N TN |
02 -015 01 005 O 005 01 015 02 -02 -015 01 -005 0 005 01 015 02 -02 -0.15 -0.1 -005 0 005 01 015 02
detector x position [m] detector x position [m] detector x position [m]

Figure 5.8.: Event positions in the desorption mode for various emitter structures
[OES13]. The sequential field evaporation from the surface is determined by those
sites which are exposed to the maximum field. Visible patterns of the 2D histograms
are comparable to experimental field desorption maps. Labels (a), (b), and (c¢) in the
centred column denote the [100] zone lines in the case of [011] orientation. The width
for sc, bee, and fce changes by the ratio 4:2:1.
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Figure 5.9.: Angular distribution of the hit in- 110; 0.83 + 0.01
tensity at the detector. The case for the fcc (110) fee (111) 0.83 + 0.01
structure is shown as an example of the general : :

behaviour. mean value 0.87 £0.04

error bounds.!

Particular features of the zone lines

Another striking feature of the desorption maps is the detailed structure of the zone
lines. These are imaged by rows of atoms which are decorated by a depleted stripe
to the left and to the right. As an outcome of the new simulations, the width of the
depletion seems to depend on local neighbour distances in the lattice. E.g. for the
case of the (011) structures, the depleted width at the (001) zone line is assumed
to be given by v/2dy for sc, v/2/2dy for bee, and v/2/4 dy for fec (fig. 5.10). Thus,
the expected ratio amounts to 4:2:1, which exactly matches the observed width in
the corresponding desorption maps (fig. 5.8).

In this regard, another interesting observation is made if the field at desorp-
tion gets considered. For illustration, figure 5.11 depicts the example of a bee (100)

structure. The extents of the plotted apex are extraordinary huge.? Approximately

'The applied conical test structures have been assembled using a bec lattice with 5 A lattice
spacing.

2The simulation was originally intended for testing the efficiency of the simulation code for dealing
with huge data sets. The prepared emitter structure amounted to 150nm in diameter and
125 nm in height. The lattice spacing matched to tungsten (do = 3.16 A). About 450,000 atoms
are at the surface. In total, 28 million atoms are used to establish the complete structure. About
one million of these have been eroded by simulated evaporation (equal to less than 20 surface
layers). About 30 Gb of memory were consumed by the simulation at runtime. In conclusion,
the speed of the simulation turned out to be almost acceptable (about 12 atoms/min). As a
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(b) bee [011] lattice

Figure 5.10.: The different widths of
the [100] zone lines in figure 5.8 may
be explained by considering local neigh-
bour distances in the [011] projection of
the cubic lattices.

(c) fec[011] lattice
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Figure 5.11.: Zone lines at the apex of a bee (100) structure are revealed by their
distinguished field strength during the simulated evaporation [OES13].
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5.2. Detector event maps

20,000 atoms are visible which belong to about one mono-layer. All of these have
been first subjected to the simulated evaporation and the respective fields at des-
orption have been recorded. Subsequent to the simulated evaporation, atoms are
placed back to their initial position at the apex which leads to the presented image.
The color scale denotes the squared evaporation field strength. In this way, slightly
elevated fields are clearly resolved. In detail, subtle differences between the zone
lines become obvious. The field at the poles is highest (+5%), the widest (100)
zone lines reveal an increase of about +3 %, and approximately +1.5 % increase of

the field is obtained for the narrower ones (e.g. (112)).

Desorption pattern of a hexagonal lattice

The last striking feature of the presented desorption maps addresses the visible
details in the pattern. Whereas for the sc structure, desorption maps appear in
general a little blurred and, thus, do not show much crystallographic information,
the bee and fee structures exhibit very detailed patterns. A natural explanation
for the noticed difference would be the packaging density of the bce-/ fec-lattice
on the one hand and of the sc-lattice on the other. However, a counter example

which disproves this consideration is given by the desorption maps of a hcp emitter

major bottleneck, the calculation of the trajectories was identified. This task must be inevitably
processed by a single thread and therefore cannot benefit from parallel computations.

0.2 02

0151 0.156

01 0.1

detector y position [m]
o

detector y position [m]
Q

0.05 0.05
-0.1 -0.1
-0.15 0.15
-0.2 | | {3, 1y ST, -0.2 1 1 1 ] 1 .\ 1
-0.2 -0.15 -0.1 -0.05 0 005 01 0.15 02 -0.2 -0.15 -0.1 -0.05 0 005 01 015 02
detector x position [m] detector x position [m]
(a) (b)

Figure 5.12.: Desorption maps for hcp lattice structures. The orientation of the
visible line pattern in the desorption map of the hep (1010) are in correspondence with
the alignment of the close-packed (0001) lattice planes.
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5. Imaging characteristics of detector events

(fig. 5.12) with the a/c-ratio of the lattice axes set to y/3/s. Although the only
difference between the hcp (0001) and the fcc (111) lattices consists in the stacking
sequence, the respective patterns (fig. 5.12a and 5.8) look clearly different. The
hep desorption maps appear as blurred as in the case of the sc structure. Anyhow,
poles and zone lines are visible as expected and confirm the prepared crystal orien-
tation. In the tilted hep (1010) orientation, a line pattern appears in the computed
desorption map (fig. 5.12b). This feature is probably due to the different effect of
local neighbour sites at the apex on the field. The orientation of the line pattern
parallel to the close-packed (0001) planes is evident and supports this assumption.
Outward at the detector the stripes are frayed and curved. For this observation,
both the increasing error introduced by the projection and the change in the im-
aged surface orientation is responsible. The maximum imaging angle in the plots

already amounts to about 60°.

5.2.3. Atom displacements in the desorption mode

The characteristic crystallographic features in the computed pattern are most likely
a result of the different fields in the desorption mode. In general, the presence of
depleted areas in the desorption pattern raises the question of their origin. In
order to highlight this point, we consider the example of a fcc (100) field emitter
sample. After the simulated evaporation of several mono-layers from the apex,
processing is suspended. Trajectories starting from each of the actual surface atoms
are calculated. The result is a first set of detector events (fig. 5.13a). Thereafter,
processing continues until a second set with event positions, based on the field
evaporation of the same surface atoms as before, completes (fig. 5.13b). By means
of these two data sets, the comparison of event positions in the surface imaging
mode with those in the desorption mode is enabled. The colouring in the event

maps denotes the displacement
AZ(TDes) 1= TFIM — TDes

which is computed for each pair of linked positions xrp and xpes, respectively.
Displacements in the range between 0.4 mm to 40 mm are determined. An alterna-
tive representation by a displacement field is seen in figures 5.13c and 5.13d. The
arrows highlight the direction of the vectors. Due to the projection onto the flat
detector, the absolute shift generally enlarges with increasing distance from the
center (fig. 5.14). Nevertheless, at the center of the poles, a single atom with

almost no shift appears regularly. Similarly, some of the atoms located at terrace
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Figure 5.13.: Considering the same set of surface sites at a fcc (100) apex, simulated
detector events in (a) the surface imaging mode and in (b) the desorption mode are
computed. (c¢) The combination of both results enables the representation by a dis-
placement field. The part inside the inscribed quadratic frame is shown in magnified

view in (d).

As it is seen by the colouring of the logscale, the magnitude of shifts

generally increases with the distance to the center. This is an artifact and caused by

the planar projection.

Figure 5.14.: Observed displace-
ments Az at the detector depend
on the imaging angle. A compari-
son independent of the event posi-
tion is enabled by the radian mea-
sure. For the conversion holds
Az* = Az(f,,) - cos®(If,,) accord-
ingly.
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5. Imaging characteristics of detector events

edges about the poles also show a negligible shift. In general, the zone lines appear
like a watershed which traces back to the crystal symmetry. Interestingly, displace-
ments of neighboured positions do not surpass each other. Significant trajectory
overlaps are not encountered. Instead, it seems as if an continuous shift of the event
positions in analogy to an inflating balloon takes place.

In figure 5.15, a quantitative analysis for the distribution of the displacements is
presented. A correction for the angle dependence of the shift amplitude must be
applied. Therefore, corrected displacements Axz* according to the equation written
in the caption of figure 5.14 are evaluated. Besides, a second histogram based on
the original displacements is shown in figure 5.15 in order to illustrate the effect of
this correction.

The data can be well fitted by the Cauchy distribution?® if the first part with very

small displacements is neglected:

p(Az") =

é w
T

w2 + (Az* — )2 (5-4)

This choice for the fitting function is in so far justified as the Cauchy distribution
generally accounts for processes of random angular emission equal to that observed
here [Mat13]. The function is symmetric about z., A denotes the amplitude, and
w the width of the distribution, respectively. From the fitting we conclude that
a shift of (2.2 £ 1.7)mm is most likely determined. By taking into account the
flight distance (I = 10cm) and the image compression (§ ~ 0.87), this results in
an aiming error for the launch angle at the emitter apex of AY = (1.1 +0.1)°. For

comparison, such a value is already sufficient to introduce an error in the APT

3The alternate naming is Lorentzian distribution.

— - _A w
’é\ 1.04 *A fit: pla) = T w? 4 (x—z)?
] w A= (4.32 +0.07)10°
084, rt w = (1.70 + 0.03) mm
B X, = (2.15 + 0.02) mm

Figure 5.15.: Histogram of
the obtained displacement am-
plitudes. The original and the
corrected distribution accord-
ing to Ax and Az* is shown,
respectively. Fitting by the
- Cauchy distribution is enabled
0 5 10 15 20 25 if events with displacements

displacement [mm] less than 0.5 mm are neglected.
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5.3. Statistic desorption under the influence of temperature

reconstruction of about 5 A for the calculated atom positions if a tip curvature of

25nm is assumed.

5.3. Statistic desorption under the influence of temperature

Similar to the different imaging conditions which are revealed by the direct compar-
ison of surface imaging and desorption mode, elevated emitter temperatures lead
to a variation in the desorption sequence. In a complementary study to the report
published by Gruber et al. [Gru+11], the influence of temperature is here investi-
gated for the special case of a bee (110) and fee (111) sample structure (dg = 5 A).

Like in the section before, the basic geometry of a cylinder with hemispherical
apex (50nm in diameter, 65 nm in height) is prepared. But in contrast to before,
the desorption sequence gets now controlled by equation (4.9) as a Monte Carlo
approach. Thus, besides temperature, an evaporation threshold field and an ac-
tivation energy needs to be provided: for the threshold field a common value of
57.1Vnm™! is preset, whereas for the activation energy different values of 2.0eV
for the bee and 1.0 eV for the fce apply, respectively. These values for the activation
energy are taken from the study of Gruber et al. in order to facilitate comparability.
Unfortunately, it turns out that this choice is (almost) arbitrary. In consequence,
the temperature scale which is investigated in a nominal range between 1K and
320 K is not realistic. This point must be kept in mind for all presented results in
the following.

The immediate application of equation (4.9) enables to assign different evapo-
ration probabilities to the apex sites. Respective histograms with the calculated
probabilities in dependence on temperature are presented in figures 5.16a and 5.16¢.
Irrespective of the lattice type, only very specific lattice sites allow evaporation at
1K. This situation resembles the maximum field condition used before for de-
termining the evaporation sequence. At elevated temperatures, the distributions
decisively broaden. So, at T' = 320 K an increased number of emitter sites show a
significant evaporation probability. Due to the smaller activation energy, the broad-
ening is stronger for the fcc than for the bee sample. In figures 5.16b and 5.16d,
the spatial distribution of the evaporation probability about the apex is shown.
Distinguished emitter sites appear clearly separated. Bright contrast is located at
the edges of terraces and is particularly enhanced at kink sites.

In a next step, such calculated probabilities are fed into the Monte Carlo ap-
proach and the simulated evaporation of some 100,000 events from the emitter is

processed. In this way, data sets for different temperatures are recorded. Fig-

111



5. Imaging characteristics of detector events

000 005 010 015 020 025 030 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 008 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

| ‘°“°°l 160 K | 320K

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.000 0005 0010 0015 0020 0.025 0.000 0.002 0004 0006 0.008 0.010
probabiliy [1] probabilty [1] probability [1]

events [1/0. ou
3 3 3

events [1/5+ 10‘1

events [1/5 10 ]

events [1/2.10 3]
events [1/107]
events [1/5 10‘]

(a) Histogram for the bee (110) emitter type.

. 10 10
10
o] 1K o4 20K ol 40 K
5 B 4 T
8 Sy S 1
g1 & s
5 10° %m’ g 10"
H 2 H
210 g 10" ER
8 10 H 5
10° n 10"
00 01 02 03 04 05 06 0.00 002 004 0.06 008 0.10 orz 014 000 uus 010 0’5 uzu 025
10 10

evems [1/1 o‘

events [1/2¢107]
events [1/2+10%]

oy 80K oy 160 K 320 K
2 10" 2 10"

10' 10!

10° 10° 10"

0.01 0.02 0.03 0.04 0.000 0.002 0.004 0.0068 0.0000 0.0005 0.0010 0.0015 0.0020
probabilty (1] probabilty [1] probability [1]

(c) Histogram for the fcc (111) emitter type.

probability
0.008054
0.008

~0.006
0.004

0.002

1.435e-18

(b) Spatial distribution at the bce
apex at T = 320 K.

probability
0.002264

-0.002

0.001

3.022e-11

(d) Spatial distribution at the fcc
apex at T = 320 K.

Figure 5.16.: Evaporation probabilities of the apex atoms in the simulated temper-

ature range.
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Figure 5.17.: Field strengths at evaporation of evaporating atoms from the apex.
In correspondence with equation (4.9), the distributions show a clear dependence of
temperature. Data in the insets proves a linear increase of the respective widths.
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5.3. Statistic desorption under the influence of temperature

ure 5.17 shows histograms which have been compiled considering the respective
“field at evaporation” for each event.? The determined probabilities follow a Gaus-
sian distribution. In the insets, the fitted width of the curves is plotted against
temperature. As expected from the applied approach, the width depends linearly
on the temperature which confirms the general reliability of the implementation of
the statistic desorption mode.

Besides, the distribution shifts slightly towards increased fields for elevated tem-
peratures. Probably, this shift is the consequence of changes in the general surface
morphology. This assumption is underpinned by figures 5.18a to 5.18e which show
the emitter surface of the fcc sample after the simulated evaporation at various
temperatures. The magnified insets in the figures depict the centred (111) pole. As
indicated by the dashed lines, facetting at the edges of atomic terraces according
to the threefold symmetry of the lattice is present at low temperatures below ap-
proximately 80 K. This faceting decreases at elevated temperatures. The terrace
continuously deforms with temperature and increasingly deviates from a circular
shape. At the highest considered temperature, T = 320K, the edges already ap-
pear decisively frayed. Finally, desorption even from the interior sites within the
terraces can be observed (see circle in fig. 5.18e).

In view of the changing tip morphology, it is not surprising that the computed
field desorption maps also show significant variation with temperature. Predomi-
nantly, we observe a fading of crystallographic details as it can be seen in figures 5.19
and 5.20 for the bce and the fec case, respectively. E.g. depletion at the zone lines
almost vanishes at sufficiently elevated temperatures. The depleted zone around
prominent poles reduces, but remains present even in the case of the fcc (111) at
T = 320K where the effect is generally enhanced because of the lower activation
energy.

In the insets of the desorption maps, displacements of the same atoms with
regard to the obtained position at T' = 1 K are plotted. From the symmetry, one
can conclude that preferential directions for the displacements are a result of local
next neighbour positions in the lattice. The displacement appears predominantly
in between the directions of the low indexed poles of the desorption maps.

The observations are quantitatively confirmed by the more detailed analysis of
the displacements. In figure 5.21a and figure 5.21b histograms of the magnitude
of the calculated shifts are shown. Most displacements are constrained to some

millimeters which corresponds to a change in the launch angle of less than 2°. Solid

4The field at evaporation is the field which is present immediately before the respective surface
atom is going to be field evaporated in the simulation.
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Figure 5.18.: Top view at the fcc (111)
sample emitter after the simulated
evaporation of about 200,000 atoms.
Faceting at the terrace edges reduces
visibly at elevated temperatures. At the
same time, surface roughness increases.
At 320K, even evaporation in the inte-
rior of terraces becomes possible.



5.3. Statistic desorption under the influence of temperature
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Figure 5.19.: Bee (110) desorption maps as a function of on temperature. Insets
depict event displacements at the detector in comparison to the computed positions of

the same atoms at 1 K.
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Figure 5.20.: Fcc (111) desorption maps as a function of temperature. Insets depict
event displacements at the detector in comparison to the computed positions of the
same atoms at 1 K.
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Figure 5.21.: Analysis of the (spatial) displacements at the detector: (a) - (b) His-
tograms of the displacement magnitude for bee and fec, respectively. Fitting by the
Cauchy distribution reveals (c) an increase of the width and (d) a slightly stronger
increase of the shift against temperature. (e) - (f) Histogram of the angular directions
of the displacements. With increasing temperature, predominant angels in correspon-
dence to the two- and threefold symmetry of the bee (011) and fee (111) lattices develop.
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5. Imaging characteristics of detector events

curves in the plots already represent fits using the Cauchy distribution as it has
been applied before (see sec. 5.2.3). Interestingly, the fitted widths for the bcc as
well as for the fcc increase proportional to the temperature. The proportionality
factor reflects the ratio corresponding to the activation energies (fig. 5.21¢c). In
contrast, a slight curvature appears for the fitted shift (fig. 5.21d). The origin for
this may be speculated to lie in the described changing of the surface morphology,
e.g. the combination of increasing field strength with an increasing temperature.
The next two graphs, figures 5.21e and 5.21f, depict the evolution of preferential
directions of the displacements. The symmetry constraints due to the bec and fee
lattices, become particularly clear in this representation.

At last, figure 5.22 depicts particular interesting information which is not already
included in the data of the desorption maps: The increased randomness in the des-
orption sequence causes not only spatial displacements in the imaging position at
the detector, but also preferred or delayed desorption with respect to the computed
sequence at T' = 1K is increasingly pronounced. The insets in the figures depict
the stepwise shrinkage of the emitter apex. About every 9.500 or 12.500 desorbed
atoms, the apex shrinks by one atomic terrace, which is equal to an amount of
di110) = 3.5A and dainy = 2.9 A for the bee and fee, respectively. Thus, with re-
gard to the APT reconstruction, the documented shift in the evaporation sequence
can induce an displacement in the z-coordinate of five to ten mono-layers in depen-

dence on the temperature.
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Figure 5.22.: Analysis of the (temporal) displacements in the detection sequence: The
order, in which atoms become evaporated from the emitter, broadens with temperature.
Insets depict the shrinkage of the apex with the number of evaporated atoms. From
this, we conclude that changes in the evaporation sequence can amount to several
mono-layers in depth in computed reconstructions.
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5.3. Statistic desorption under the influence of temperature

We complete this part with a final remark. We have seen that the consideration of
temperature leads to spatial and temporal displacements of events at the detector.
The effect will be at least responsible for a degraded resolution in derived 3D recon-
structions. But moreover, it turns out that the magnitude of these displacements
follows in particular a Cauchy distribution. By this description, the displacements
appear to be of statistic nature. Notably, this is only true from a macroscopic
point of view when just hit events at the detector are evaluated. In contrast, if the
microscopic condition at the emitter apex close to the launch site of the trajectories
would be taken into regard, a description in a deterministic frame should remain

possible.
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6. Quality of the 3D reconstruction

Access to the stoichiometric information in APT measurement data is achieved
on the basis of produced reconstructions. Just like it is the case with experimental
measurements, the applied procedure is not free from introducing errors into the
compiled 3D maps, since an only presumed emitter geometry is considered.

At the most sophisticated level of development, the reconstruction would enable
full 3D structural information combined with chemical information of analysed sam-
ples (“Atom probe crystallography” [Gau+12b]). Currently, this ultimate goal is
only reached under particular experimental conditions. A well-defined evapora-
tion sequence at a very low temperature is demanded. Almost identic evaporation
thresholds of the analysed samples are beneficial.

Most measurements do not meet these optimal conditions which renders any
application of more advanced analysis techniques for determining crystallographic
features useless. In the common case, already the input to the reconstruction suffers
from artifacts. E.g. in the laser assisted measurement mode, spatial resolution often
degrades to such a degree that lattice planes become hardly visible.

In the following, the quality of the reconstruction as it is obtained from simulated
field evaporation sequences is addressed. Data for the single case of a bee (001)
emitter structure, 65 nm in height and 25 nm in diameter, are presented. The preset

lattice spacing amounts to dy = 5A.

6.1. Geometric consistency

In order to fully explore the information from the experiments, every reconstruction
is calibrated based on a particular set of parameters. Initially, only an appropriate
atom density and the image compression are preset. Provided that lattice planes
are resolved, further parameter values for the curvature radius of the apex and
the shaft angle are adjusted such that the nominal lattice spacing is matched (see
sec. 2.2.4, p. 25).

Usually, the best resolved planes are aligned perpendicular to the z-axis. With a
proper calibration along this direction, the diameter of the reconstruction follows
from the conservation of volume.

Problems with this procedure arise from the simple fact that the in this way ad-
justed parameters are not necessarily linked to the original geometry of the analysed
samples. Appropriate values depend in first instance on the reconstruction model.
It is indeed common practice that the applied parameters differ from those which
would be expected on the basis of the original sample geometry, e.g. like it can be
determined by TEM. At this point, the use of simulated data allows for the first
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6.1. Geometric consistency

time to test the self-consistency of the 3D reconstruction procedure. Therefore, the

input of the simulation is compared with the output of the reconstruction.

Figure 6.1 depicts two different results that have been derived to this end. For
figure 6.1a the standard approach (Bas et al. [Bas+95]) is used, whereas for fig-
ure 6.1b the enhanced approach (sec. 2.2.5) is used. Atoms rendered in blue describe
equidistant marker lines. Horizontal marker have a spacing of A, = 5nm whereas
vertical ones are each separated by A, = 2nm. In the background of the depicted
reconstructions, the original shape of the initially prepared bcc emitter structure
from the simulation is visible. The maximum field of view has been set to an angle
of 64.3° (equal to 15 cm detector radius), which constrains the maximum diameter

in the reconstruction to 22.5 nm.

We see that the first reconstruction following the Bas et al. approach appears
completely distorted. This is the case even though nominal correct parameters for
the curvature radius and the atom density have been applied. The discrepancy in
comparison to the original structure is appalling. In textbooks, the insufficiency of
this approach is referred to be the result of “small angle approximations” without
giving any further explanation [Gau+12a]. Clearly, in the application to measure-
ment data of enlarged field of view, these must severely diminish the usability.

However, facing this example here, it is clear that it is not a problem of angle

65 nm
65 nm

14 nm

i
25 nm

() (b)

Figure 6.1.: Slices through the reconstructions which resulted from (a) the Classic
approach (Bas et al.) and (b) the dedicated wide angle approach (sec. 2.2.5). For
both computations, the same values for atom density, image compression, and curva-
ture radius have been considered. Equidistant vertical and horizontal marker lines at
distances of 2nm and 5nm are depicted in blue color, respectively.

123



6. Quality of the 3D reconstruction

approximation. Instead, it is a wrong estimation of the depth increment. The re-
constructed atom density in figure 6.1a does not at all match the preset values. As
the standard approach does not preserve the conservation of volume, it is simply
incorrect in this regard.

In contrast, correcting for the depth increment, as it is done in the second wide-
angle approach, immediately leads to an almost correctly aligned reconstruction.
Visible misalignments close to the bottom in figure 6.1b are probably a side-effect
of the simulation approach: once the emitter height gets below the curvature radius
of 12.5nm in the progressing simulation, irregular curvature changes take part due
to the geometric constraints at the lower boundary of the simulation box.

This is the first time that such a self-consistent test of the basic assumptions
for the reconstruction is performed. It has been only possible owing to the unique
capability of the generalized APT simulation approach to consider the realistic
experimental extents for the trajectories appropriately.

Particular distortions appear in the reconstruction which are not due to a mis-
match in the density: In the vicinity to the (011) poles, a bending of the horizon-
tal marker lines similar to an edge is visible (see the lower magnified excerpt in
fig. 6.1b). This bending is clearly an original artifact of the reconstruction. It is
probably caused by a varying onset for the evaporation of the atoms at the poles
which results in a shift of the z-position. This assumption is confirmed by the

otherwise perfect alignment of the vertical marker lines.

6.2. Spatial resolution determined by 3D Fourier analysis

Besides the general proper calibration of the reconstructed volumes, the regularity
with which individual atoms are positioned is of particular interest. The question is:
How good becomes the initial bee lattice structure restored in terms of resolution?

In order to study this question, a Fourier analysis similar as described by Vurpillot
et al. [Vur+01; Vur+04a] may be computed. For this purpose, each atom in the

real space is equated by means of the §-distribution. Thus, we write
R(z)=> d(x— ) (6.1)

for all the atomic positions x; in the reconstruction. With this, the transformation

simply becomes

R(k) = Z e~ 2mi (kai) (6.2)
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Figure 6.2.: 3D Fourier transformation of an APT reconstruction derived from the
simulated data of a bce lattice. (a) The position of reflexes in the reciprocal space
is revealed by iso-intensity surfaces. The transformation has been computed using
a resolution of Ak = 0.05nm~'. Hence, the intensity at about 8 million discrete
frequencies is evaluated. (b) Source showing the considered atoms in real space. The

cubic volume was cut from the reconstruction shown in figure 6.1b. It contains about
3,500 atoms.

in the frequency domain. For the detailed analysis, the reciprocal space is probed

at discrete frequencies
ki =(l,m,n)" - Ak; I,m,ne€Z

using a screen width of Ak (< 1nm™!). The result is a 3D map of (complex)
intensities. Notably, the complete sum of equation (6.2) must be evaluated for
each frequency which implies a severe computational effort. For this reason, only
a representative subsection, 6 nm x 6 nm x 6 nm in size, has been Fourier analysed
(fig. 6.2).

An analysis of the resolution is enabled by a look at different slices through the
reciprocal space (fig. 6.3). Reflexes in the Fourier transformation are expected to

appear only at those positions for which the frequency vector equals a reciprocal
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Figure 6.3.: Detailed analysis of the Fourier transformation: Maps on the left repre-
sent slices through the reciprocal space. Different orientations corresponding to planes
with (a) k; = 0, (b) k, = 0, and (c) k, = 2 are considered. Colouring denotes the
intensity |R\ For comparison, the inset in the top right corner of the map with k, =0
shows reflexes for an ideal bee structure. Further analysis is enabled by the line plots
on the right. Here, intensity peaks are marked with Miller indices corresponding to
the real space. Fitting is enabled by a Gaussian envelope equated with G (k) = e—ak?,
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6.2. Spatial resolution determined by 3D Fourier analysis

lattice position
Emax = (lvmvn)T ’ dalv l,m,n € Z.

In this example, the reciprocal lattice constant amounts to d —2nm!. In addi-
tion, the elimination rule for the bec lattice applies’ such that the 3D “diffraction”
pattern resembles the structure of a fcc lattice. Indeed, analysed slices match well
to these expectations. In particular, the z-direction shows many clear reflexes with
sharp contrast (fig. 6.3a). Corresponding peaks in the intensity up to the sixth
order are recognized. The determined reflex positions prove the proper calibration
of the reconstruction in real space. In contrast, reflexes in the lateral directions
appear less sharp and may be hardly distinguished from noise in the background
(fig. 6.3b and 6.3c). This highlights that the positioning of atoms is by far not as
regular as before. In addition, also exceptional reflexes may be recognized. For
instance, the line plot in figure 6.3c shows an elevated intensity at a position cor-
responding to the Miller indices {0,4,1}. The sum is not even. This should not be
there and it may be evidence for the presence of systematic microscopic shifts in

the reconstruction.

In general, misalignments in the reconstruction prevent the occurrence of long
ranging regularities. The consequence of these positioning errors in the real space
is the degradation of the reflex intensity for elevated frequencies in the reciprocal

space. Assuming a Gaussian blurring

1 2

(A 202

G(z) =

2o .

with o denoting the standard deviation of position, we have to consider the convo-

lution G ® R in the Fourier space which results in another Gaussian envelope:

(G @ R)(k) = G(k) - R(k)
= ek R(k), o :=2n%0? (6.3)

This allows us to specify the resolution, defined by ¢ = |20| or ¢ = |v2a/7]|,
respectively. Dashed curves in the line plots on the right in figure 6.3 represent
fittings of the envelope to the respective reflexes. In this way, different widths
denoted by « are determined.

For the depth resolution, a value of €, = (0.72 + 0.06) A is estimated . This is

about a factor of two better than for the lateral resolution for which a value of

!The sum of the Miller indices [ + m + n must be even.
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6. Quality of the 3D reconstruction

€xy > (1.50 £ 0.04) A results. However, fitting the Gaussian envelope here already
suffers from the poorly resolved reflexes in the Fourier spectrum. The (0,2,0) reflex
may be hardly recognized in figure 6.3b. Therefore, the given lateral estimate
represents a lower limit. The resolution may be even worse. Similar constraints
apply for the fitted curve in figure 6.3c. In this case, only the {0,1, 1} reflexes are
clearly identified. However, the estimated resolution of ex, = (1.96 + 0.32) A) does
confirm the before defined range.

For comparison, the same approach has been used to determine the resolution
of experimental data. In the case of a NiCrAl alloy, analysed by a voltage pulsed
instrument, reported values were ¢, = 0.6 A for the depth and ey, = (24 1) A for
the lateral resolution [Vur+01].

In face of these results, we do conclude:

e Data from experiments and simulations show the same trend. The recon-
structed depth resolution is about twice as good as the lateral resolution.
This is not surprising, since the depth resolution is basically an outcome of
a low counting error. In contrast, disturbed event positions at the detector

essentially affect the lateral resolution.

e The simulation does not account for temperature. Nevertheless, the lateral
resolutions appears quite comparable with the experiment. This implies that
in experiments the temperature effect on the resolution can be negligible as

far as high-voltage pulses and a sufficient low temperature (< 50 K) are used.

e Generally, the estimated resolution coincides fairly well with the reported one

from the experiment.

This latter point is indeed surprising. Naively, a much better resolution would
have been expected. The simulation approach is deterministic and therefore should
not suffer from noisy contributions as they are present in experiments. But even
under such optimum conditions, the lateral resolution does not significantly im-
prove.

On the other hand, limitations due to numeric inaccuracies could be a reason-
able explanation. The argument against this assumption is, however, the observed
pattern in simulated field desorption maps. Particularly because this pattern looks
very detailed for the here tested bec lattice (see fig. 5.8 on p. 104), we exclude this

explanation.
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6.2. Spatial resolution determined by 3D Fourier analysis

Instead, we want to give here another interpretation. By the Fourier analysis,
the reconstruction is explored for regularities. Obviously, lateral regularity of the
bee lattice is barely restored by the reconstruction. Only a degraded resolution is
obtained. We believe that this finding links to a general lack of the geometric back
projection approach for reconstruction. We have indicated before in chapter 5 that
the considered approach may not be best suited to describe the imaging process at a
macroscopic level because important microscopic details are neglected. Significant
improvements of the 3D resolution should therefore indeed be possible if a physically
reconstruction approach based on a microscopic model of the sample apex similar
to that in the simulation applies. Only in this way, the particular field conditions

at the microscopic scale may be appropriately taken into account.
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7. Evaluation of model emitter structures

In the proceeding chapters, the foundation and the basic properties of the new
generalized simulation approach have been elaborated. In this chapter, we change
the focus and demonstrate the new capabilities of the simulation approach. There-
fore, we address three intuitive examples which refer to real APT measurement
problems and show how complementary information to the experiments are en-

abled by simulations.

7.1. Exerted stress on an embedded particle

Already in the early publications about the simulation of field evaporation, coherent
embedded particles have been investigated [VBB00]. If heterogeneous evaporation
properties apply, a severe change of the local emitter curvature is observed which
gives rise to trajectory aberrations. A focusing or de-focusing of the ions is noticed
(“local magnification”) [Mil87; Vur+04b]. In consequence, not only the local atom
density but also the size of features may appear decisively modified in derived APT
reconstructions [OS11].

Let us consider here again a particle but with different focus. The general premise
for successful APT reconstructions is that all collected atoms in a measurement do
originate from a coherent part of the sample. Although this seems rather triv-
ial, this condition is not necessarily ensured in the experiments: In a conventional
atom probe, a standing voltage applies to the sample which is periodically super-
imposed by short high voltage pulses for triggering the field evaporation. Provided
the emitter is metallic, we can expect the respective surface charge density to be

proportional to the acting fields. A rough estimate of the exerted stress is given by
~ 2
TApex ~ €0 ECrit

Here, Ecyit denotes the critical evaporation threshold and ey the vacuum permit-
tivity. From this, a significant tensile stress of about 1 GPa is conceivable in exper-
iments. With regard to the pulsed measurement conditions, an additional dynamic
stress contribution of about two orders in magnitude below, e.g. in the range of
50 MPa affects the sample tip if a typical pulse ratio of about 20 % of the standing
voltage is assumed. Indeed, experimental evidence for the present stress are speci-
men ruptures that are routinely encountered and usually cause the emitter to fail
afterwards.

With particular regard to the particles, the question arises whether there is a

distinguished force which pulls on the particle and, provided this is the case, whether
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7.1. Exerted stress on an embedded particle

the arising stress is sufficient so that a complete loss of particles may happen.

As it is demonstrated in the following, this problem can be directly addressed in
the frame of the new simulation approach by tracking the respective forces at the
sample apex according to equation (4.18). Figure 7.1 depicts the sample geometry
in these considerations. In order to closely match typical experimental samples,
a complex structure is assumed consisting of a substrate tip coated by a matrix
layer in which the particle is embedded. Three different cases with critical evapo-
ration thresholds of the particle are regarded: (a) reduced by 40 %, (b) equal field
strength, and (c) elevated by 40 % in comparison to the matrix. For instance, in
the measurement of Al precipitates in Cu about the same difference is expected
(19 Vnm~1:30 Vam~1).

Snapshots of the field and force distributions at an intermediate stage of the
simulated desorption sequence are shown in figures 7.2a to 7.2¢ for the three cases,
respectively. In (a) and (c), modified curvature radii at the particles are visible.
Consequently, fields become locally reduced or increased. Estimated forces are
in the range between 10pN to 100pN. They are generally enhanced at terrace
edges. Most remarkable, the forces depend decisively on the contrast in evaporation
thresholds. Different stress curves with respect to the number of removed atoms
are shown in figure 7.3. These quantitative values have been derived by considering
the vector sum of induced force at the surface atoms separately for each species.
As effective area on which the force acts, the maximum extents of the desired atom
positions in lateral direction, perpendicular to the specimen axis have been used.
So, the plotted curves represent the mean stress that applies.

The visible increase of the stress in the matrix (“layer” + “substrate”) is due to
an artificial effect of the boundary of the simulation mesh which would not appear
for tips of realistic length. The matrix stress shows in addition a small indent when

the particle atoms are evaporating. This is probably an artifact of the separate

Figure 7.1.: Considered emitter geom-
etry for the investigation of the exerted
force on an embedded particle.
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Figure 7.2.: Distribution of the field (left column) and the force (right column) at
the emitter during the simulated evaporation of a particle. Three cases with different
relative evaporation thresholds in comparison to the matrix are investigated. The
intermediate stage with an already partially field evaporated particle is depicted.

134



7.1. Exerted stress on an embedded particle

1000+ . 1000+ A B
EPanicle =06 EMatrix EParTicIe =10 EMatrix
8004 800+
& 600 & 600
= =3
@ 400 @ 400
o o
® ®
200+ = particle 200+ == particle
=== |ayer === |ayer
0 === substrate 0 == substrate
0 25 50 75 100 125 0 25 50 75 100 125
evaporated atoms [10°] evaporated atoms [103]
1000+ = .
EParﬁcIe =14 EMatrix
800
& 600
2
# 400-
3 Figure 7.3.: Computed curves of the
200+ e particle : : :
e stress highlight the changes during the
0 e Loeuate simulation. The determined maximum
0 25 50 75 100 125 particle stress scales with the square of
evaporated atoms [103] the critical field difference.

calculation of stresses for the particle and the matrix.'

Mostly due to the used estimate for the considered area, the particle stress gets
already elevated in the case of equal evaporation properties. But besides this lim-
itation, the determined absolute values nicely scale with the square of the preset
evaporation thresholds in the three depicted cases, e.g. according to 0.6 and 1.42,
respectively. This is a remarkable finding, because in experiments even stronger
differences in evaporation thresholds are possible, e.g. Al:W= 30%. Hence, a
significant additional load can be present which demands a strong fixture of the
particle to the matrix. If it is too weak, a major part of the particle may elute
and is lost for the analysis. Even worse, such kind of a “nano rupture” cannot be
expected to have a visible effect on the recorded voltage curve and therefore may
even remain undetected at all.

In conclusion, this example not only illustrates the capability of the simulation
in view of the additionally enabled force information. It also emphasizes that
besides imaging artifacts, concerns with regard to the selective loss of atom data are

indeed justified. Cohesion between the precipitate and matrix may get even poor if

!The contribution to the force acting on the particle atoms is not taken into account. The force
at the (interior) particle to matrix interface equates to zero.
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field penetration becomes possible. Under these circumstances, interior forces due
to heterogeneous dielectricity build up in addition. However, this more complex

situation is out of the scope here and may be the subject of future investigation.

7.2. Simulated evaporation of a complex multi-layer

structure

Following the special example with the stresses, the full capabilities of the simu-
lation approach are explored in this section. For this, the simulated evaporation
of a tri-layer structure shall be investigated (fig. 7.4). The bottom layer has a
bee structure equal to that of tungsten. It is covered by an amorphous AB alloy
which consists of two different atom species. The top layer is again crystalline and
represents the fcc lattice of Al

For the construction of the amorphous layer, the model of hard spheres has been
considered: An initially random distribution of atom positions with 50 % A and
50 % B is set up. Subsequently, this structure gets relaxed to a meta-stable equi-
librium configuration by a molecular dynamics (MD) calculation. Lennard-Jones
pair potentials and different equilibrium distances r4 = 2.5A and rg = 5.0A
for both species are applied. For the AB interaction the equilibrium distance
(ra+7B)/2=3.75A is chosen.

By the MD approach, a realistic atom structure is received which possesses ir-
regularly shaped Wigner-Seitz cells (see the inset in fig. 7.4b). The amorphous

structure represents the ultimate test for the implementation of the new simulation

Al<111>

Figure 7.4.: Sketch of the
simulation mesh for the in-
vestigation of the tri-layer
emitter structure [OES13]:
(a) atom distribution, (b)
W<110> geometric dual representa-
tion by Wigner-Seitz cells.
Marked orientations of the
crystalline layers are paral-
(a) (b) lel to the sample axis.

vacuum
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7.2. Simulated evaporation of a complex multi-layer structure

Table 7.1.: Applied parameter values and properties of the layer stack

parameter Al amorphous (A+B) W

lattice constant and equilibrium

distance, respectively (A) 405 2.5,5.0,3.75 3.16
atom mass (u) 27.0 14.0, 32.0 183.9
atomic density (nm~3) 60.2 21.2 (mean) 63.4

approach that allows for arbitrary atom positions. The full set of basic parameters
is listed in table 7.1.

7.2.1. Curvature changes at the apex

Based on this well-defined structure, different simulation runs with different critical
evaporation thresholds for Al; W, and the amorphous species (A,B) are processed.
The computed evaporation probabilities are scaled according to equation (4.19)
which ensures a realistic control of the evaporation sequence. Field induced forces
and differently shaped Wigner-Seitz cells at the emitter structure are appropriately
taken into account by this approach. The successful application is proven by the
series of emitter shapes taken at different stages of the simulation (fig. 7.5). In
this first example, equal critical evaporation thresholds apply for all species. As
expected, a steady apex curvature develops that is independent of the respective
layers.

In clear contrast are the results for the case with inhomogeneous thresholds

field Magnitude

+10
Fle+10

“3e410

2e+10

Elmn
10 nm 8

Figure 7.5.: Series of emitter shapes during the simulated field evaporation of the
tri-layer structure. If equal critical thresholds apply for all species, a steady emitter
curvature develops in consequence.
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Figure 7.6.: Results of the simulation with the critical evaporation fields of the amor-
phous layer set to 20 Vnm ™! and 17 Vnm™? for A and B, respectively [OES13]. By the
latin numerals, different stages presented in (a) are linked to the observed detector hit
events presented in (b). Attributed colours in (b) denote the evaporation probability
in the moment of desorption. Determined curvature changes are shown in (c).

(fig. 7.6). In this second example critical thresholds of the amorphous are set to
20Vnm~! (A) and 17 Vnm~! (B), while for the Aland W 19 Vnm ™! and 57 Vnm !
apply, respectively. As before, figure 7.6a presents different stages of the simulation.

In addition, figure 7.6b shows associated maps of the observed detector hits.

The first stage (I) represents the situation after the first few atomic layers of Al
have been desorbed. An equilibrium surface has evolved and the expected fcc (111)
desorption pattern is visible on the detector. Number (II) depicts the transition
to the amorphous layer. Although the critical thresholds for A and B are almost
comparable to Al, a clear effect is noticed. Due to the different thresholds that

apply, the apex remains no longer spherical. Instead, it becomes a cone with a
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7.2. Simulated evaporation of a complex multi-layer structure

hemispherical Al cap at the top. Accordingly, the Al desorption pattern in fig-
ure 7.6b appears now confined to the centre of the detector while outside a ring of
randomly distributed atoms appears. The next snapshots with labels (III) and (IV)
represent the steady shape within the amorphous phase. Remarkably, no steady
detector image evolves in these stages. Instead, correlated density fluctuations are
moving around on the detector. This simulated behaviour resembles indeed the
experimental observation with atom probe analyses of e.g. glassy structures. At
the transition to tungsten, the hits of the amorphous atoms become more and more
confined to the centre (V). At the same time, the pattern of crystalline tungsten
appears from the outside until the complete area is covered (VI). Because of the
strong difference in the applied evaporation threshold between W and the amor-
phous layer, the change in surface morphology is even more severe than at the
previous interface (compare (II) and (V) of fig. 7.6a).

It is instructive to track the progressive modification of the apex shape in more
detail. We extract quantitative values of the curvature by fitting the apex contour
in 2D. Figure 7.6¢ shows the curvature for each layer plotted versus the number
of evaporated atoms. The computed mean curvature R results from the fitted

principal curvatures and equates as the harmonic average

-1 1/1 1

=35+ w)
A steady curvature appears at all stages when only a single layer is evaporating (1,
ITI+1V, VI). This steady curvature is preset by the radius of the cylindric shaft. In
this example, the value amounts to 25~ nm~! and is marked by the long dashed
line in the plot. At the transition stages (II) and (V), the curvature radius of the
layer with the higher critical threshold for evaporation decreases (E_l 1), whereas
it increases (Ril 1) for the layer with the lower critical evaporation threshold.
Quantitatively, it is not clear how the determined changes do depend on each other.
A fixed ratio in the curvature is hardly seen. For instance, in (II) the curvature
of the amorphous is depressed and it remains the same, while the curvature of the
Al on top increases in time. However, we do notice that the determined increase
in curvature corresponds to a clearly elevated surface field for the Al and W as it
is depicted by the colouring in figure 7.6a. This finding reflects the usual relation
between curvature and field (Ecyiy ~ E_l). During the transition from one layer
to the other, atoms of higher threshold field are retained at the emitter apex.
Curvature increases. The other way around, atoms with the lower critical field show

preferential evaporation during the transition. Therefore, the curvature decreases.
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Figure 7.7.: Results of the simulation with the critical evaporation fields of the amor-
phous layer set to 30 Vnm™! for both A and B, respectively. The latin numerals refer
to the analogue situation depicted in figures 7.6a and 7.6c before. Labels Aaj ap and
Aap w mark the curvature difference at the respective transition stage.

Results of another simulation are presented in figure 7.7. Here, the critical thresh-
old is set to 30 Vnm™! for both of the amorphous species, A and B, respectively.
For Al and W the same values as before apply. The results confirm the already
described tendency. Again an elevated curvature for the material with higher evap-
oration threshold develops at the transition stages, while the curvature for the

material with the lower evaporation threshold decreases at the same time.

In addition, a comparison of the curvature changes is obtained in this case
(fig. 7.7b). The difference approximately amounts to Aﬁgi Ag ~ 5.6-1072nm™!
at the first transition and to ARX];W ~13.3-1072nm~! at the second transition.
The ratio ARXEW : Aﬁgi Ap equates to about 2.4 which is astonishingly close to

the expectation on the basis of the preset evaporation thresholds:

Ecrit,w — Ecrit, AB

=25
Ecrit,aB — Ecrit, A1

Although the fitting approach for determining the curvatures yields presumably a
rough estimate, this good correspondence nevertheless suggests that the predicted

changes at the apex due to heterogeneous evaporation thresholds are indeed realis-
tic.
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7.2. Simulated evaporation of a complex multi-layer structure
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Figure 7.8.: Irregular
surface contour of the
amorphous layer as re-
sult of the considered
approach for controlling
the evaporation sequence (a) controlled by the field, (b) controlled by the force,
[OES13]. equation (4.4) equation (4.19)
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7.2.2. Consistent control of the evaporation sequence

In the introduction to this chapter, it has been mentioned that the investigation of
the amorphous structure provides a critical check for the reliability of the simulation
approach. Indeed, severe differences of the surface morphology are encountered if
the desorption sequence is controlled either by the conventional field approach or the
alternative new approach based on the force (sec. 4.2.4). In figure 7.8, a magnified
view of the different surface morphologies is presented. In the case of purely field
controlled evaporation (fig. 7.8a), chains of atoms stick out from the surface. This
may be seen as a qualitative evidence that the field approach is not appropriate.
In contrast, if the field induced forces are considered to control the evaporation
sequence, a smooth surface is seen.

Such different morphologies only appear if an disordered structure is processed.
For instance, in the case of the regular lattices both approaches turn out to be
equally applicable. Nevertheless, we consider the force approach as more generally

applicable to a broader range of problems.

7.2.3. Additional information required for direct comparison with
experimental data

Besides the detector hit position, data sets from atom probe experiments usually
contain the actual emitter voltage and the determined time-of-flight. Although in
the simulation approach neither the voltage at the emitter nor the interdependence
with the flux of desorbing atoms is particularly regarded, complete data sets resem-
bling real measurements can nevertheless be extracted. In this way, a comparison

of data from the simulations with experimental observations becomes possible.
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The missing information is derived by making use of the general scale invariance
of the electric field and the equation of motion. The field F; determined in the
simulation and the preset evaporation threshold Ec;is; for desorbed specimen ¢ are

regarded as a scaling factor for the voltage

U’ ::< Eq )_1-U (7.1)

Ecyiti

In consequence, the rescaled time-of-flight equates to

E.
th=y [ — ¢ 7.2
Ecrit,i (72)

The graph in figure 7.9c shows the evolution of the rescaled voltage for the already

discussed example of the complex layer structure. Unfortunately, no clear voltage
plateaus are present. This is an effect of the boundary conditions at the bottom

of the simulation box. If the field emitter shrinks in the simulation, the field at
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7.3. Investigation of a grain boundary in copper

the surface of the emitter increases and the computed voltage from equation 7.1
decreases. In particular, this can be seen for the W part, but the decrease is present
already from the beginning. Anyhow, the superimposed distortion of the voltage
curve can be corrected for? and curves almost comparable to the experiments are
obtained.

The time-of-flight information does not suffer from the previous artifact. Instead,
another problem is encountered as in the case of real experiments. Figure 7.9a
shows the relative change of the squared flight length in dependence on the detector
position. Due to the curved trajectories, the actual flight length severely depends on
the detector position. It may become significantly elongated (< 20 %). Therefore,

the classic equation for the mass to charge ratio

n L2

m_QeU.tQ (7.3)
does not offer sufficient precision. Peaks in the computed histograms appear broad-
ened (fig. 7.9b). In the case of experimental data, this problem is addressed by the
introduction of a correction function which accounts for the mass in dependence on
the determined detector position. If the same correction is applied to the simulated
data, sharp mass peaks in the mass spectrum at the expected position become vis-
ible. — Although this is a rather technical point, this example nicely demonstrates

how data from the simulation and experimental approaches combine.

7.3. Investigation of a grain boundary in copper

The last part of this chapter deals with the analysis of a 35[010](102) tilt boundary
in copper. This example is chosen in order to demonstrate the new ability of the
simulation approach to investigate field emitter samples with structural defects.

From the experimental side, the analysis of grain boundary segregation is of
particular interest. In comparison to other methods, the outstanding ability of
APT lies in the native access to true 3D chemical information. This advantage
becomes even more pronounced with the advent of wide-angle instruments. By
the enlarged field of view, the analysis of grain boundaries has been decisively
facilitated.

However, with regard to the investigation of GB segregation, the possible ac-

curacy of determined concentration profiles is limited by the counting statistics.

2E.g. by fitting the general decrease of the voltage if we require the voltage plateaus in the parts
with only Al or W to be flat
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7. Evaluation of model emitter structures

Already half the atoms get lost during the measurement due to the limited detec-
tion efficiency of the instruments. If a nano-sized volume is investigated, this loss
of information may be severe. Particularly, in the case of segregation, the number

of atoms becomes small and limits the accuracy.

In addition, misplacing of atoms in the reconstruction is observed. In the case of
heterogeneous evaporation conditions or exceptional emitter curvatures, this con-
tributes to chemical inaccuracy. Marquis et al. demonstrated by the investigation
of small precipitates that these artifacts are systematic in space but also depend on
chemistry [MV08]. Obviously, such artifacts are particularly fatal for the careful
analysis of segregation. In general, artifacts in APT either originate in the measure-
ment process or they are introduced by the reconstruction. Simulations can help to
reveal such artifacts and can in this way improve the interpretation of experimental

results.

For the example of the grain boundary, investigations are conducted into two
different directions. The next section shows simulation results for different align-
ments of the GB plane in the range from 0° inclination (parallel to the emitter axis)
to 90° inclination (perpendicular to the emitter axis). In all cases, homogeneous
evaporation thresholds are assumed in order to work out the mere effect of the GB
geometry. A varying evaporation threshold for the GB is most likely to appear if
segregation is investigated. Effects of inhomogeneous evaporation properties are
described in a second part. A single orientation of the GB with 0° inclination is

considered therefor.

Atom markers

68 10 N[
GB 09 NN— [
GB 08 NN— [
GB o7 Nn— [
B 06 NN— [N
6B 05 NN— [
6B 04 NN- [
6B 03 N[
B 02 N[
s 01 NN
GB Center— [N
Grain B—

Grain A= Figure 7.10.: Prepared sample structure with

a X5 grain boundary depicting 45° inclination of
[102] the GB plane to the emitter axis. The distance
[010]<

of atoms to the GB core is independently colour
[201] coded .
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7.3. Investigation of a grain boundary in copper

7.3.1. Different inclination angles

The geometric structure of a relaxed 35[010](102) boundary at 0K in copper has
been obtained by using a MD approach. Details of this procedure are outlined in
[SMO03]. However, due to the high symmetry of the X5, relaxed atom positions
from this approach almost match the positions which would be derived from the
coincidence lattice. Figure 7.10 shows an example of the prepared emitter sample
with 45° inclination of the GB plane. The greenish coloured atoms denote atoms
close to the GB core. Different distances up to the tenth nearest neighbour (NN)
are distinguished. Atoms at the GB core are drawn in red. The general geometry
of each emitter sample is the cylinder with half-spherical cap, 70 nm in height and
50 nm in diameter. Simulated samples consist of more than 1.5 million individual

atoms.

Details for 45° inclination

In the following, we focus at the sample with 45° inclination. In figure 7.11, maps of
the detector events at two different stages of the simulation are presented. Events
corresponding to the grain located above the GB (fig. 7.11a) and events correspond-
ing to the grain located below the GB (fig. 7.11b) are shown. Both patterns look
the same except that they are mirrored along the y-axis reflecting the symmetry of
the evaluated X5 GB.

The intermediate stage just when atoms at the grain boundary start field evapo-
rating and just before the GB vanishes is shown in figure 7.12. The grain boundary
reveals itself by the narrowly confined area in between the two different desorption
patterns of the upper and lower grains. According to the projection of the curved
apex onto the detector, the GB is imaged as a curved line.

Once a sufficient volume of the emitter structure with the GB inside has been
evaporated, the 3D reconstruction of the collected data is processed. The result
is plotted in figure 7.13. In the depicted cross section, the GB plane no longer
appears as a straight line. Instead, distinguished distortions are visible. The width
of the GB zone up to the tenth NN appears alternately compressed or expanded.
It changes between 2nm, which almost corresponds to the size of the geometrical
core, and 4nm. In consequence, the atom density is not homogeneous (a detailed
analysis referring to this will be presented subsequently in sec. 7.3.2). Different zone
lines are revealed by the depleted area in the reconstruction. At locations where
the GB crosses a zone line, kink like artifacts are visible. Next to the GB, lattice

planes with different orientation may be recognized within both depicted grains.
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Figure 7.11.: Obtained detector hit map and shape of the emitter structure: (a)
depicts the detector pattern for the first grain at the top, (b) shows the detector
pattern of the second grain. The colouring depicts the evaporation probability of the
atoms in the moment of desorption.

On the basis of the reconstruction, we can consider why the comparably confined
defect of a GB leads to such striking artifacts. In the presented detector maps,
displacements of the trajectories from GB atoms seem to be negligibly small. On the
other hand, the GB in the sample has been set up as a flat plane. The observed kinks
in the reconstruction are interpreted as systematic displacements of the computed
z-coordinates. For this reason the GB plane appears similar to a creased sheet of
paper. So, the seen displacements can only be explained by a significant disturbance
of the evaporation sequence. As an explanation, we consider the zone lines. These
correspond to distinct lattice orientations. In the desorption maps they appear as
poles. The emitter apex in the vicinity of the poles is faceted. If it comes to the

transition from one grain to the other, in the case of a GB, the faceting changes.
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Figure 7.12.: Detector hit map and shape of the emitter structure. Three intermedi-
ate states (a)-(c), when the GB comes to evaporation, are shown.
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Figure 7.13.: Reconstruction of the 35 GB with 45° inclination

From this, we conclude that atoms evaporate preferentially or are retained at the

apex if an existing facet vanishes or a new facet forms, respectively.

Results for additional inclinations: 0° — 90°

Reconstructions computed from inclinations of the GB other than 45° show qual-
itatively the same artifacts (fig. 7.14); namely the reduced atom density and the
kink like distortions at the changing zone lines. Even in the case of a perpendicular
alignment (fig. 7.14d), clear artifacts are present. In this case, marked GB atoms
are reconstructed as curved planes. The only exception is the reconstruction with
the horizontal alignment of the grain boundary (fig. 7.14a), which exhibits almost
no distortions at all. Since there is no lateral transition between distinguished ori-
entations of the grains, kink like artifacts do not develop. Notably, this is the only
set up of the GB which ensures an undisturbed evaporation sequence at the apex.
Therefore, any observed distortions in this example can only be due to displaced
trajectories. Indeed, we will see in the subsequent section that the determined atom
density in the GB core is lower than in the matrix.

Although such small displacements of the trajectories cannot be excluded, they
seem to be of minor importance here. Rather the discussed error in the z-positioning
of the atom is predominant. These deviations in depth explain on the one hand the

curved GB surfaces in figure 7.14d and are also responsible for the varying width
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7. Evaluation of model emitter structures

of the GB in the reconstructions with inclinations from 30° to 90°.

7.3.2. Segregation effects

Up to this point, only simulations with equal evaporation thresholds for all atoms
were presented. Now, we extend the analysis and allow different evaporation thresh-
olds. Two cases either with a reduction in the evaporation threshold by 20 % or with
an elevation by 20 % with respect to the matrix are addressed. Only the vertical
alignment of the GB plane which before turned out to be only weakly affected by
artifacts is studied. Figure 7.15 depicts the steady surface shapes of the respective
field emitter which develop. Clear changes in the local surface curvature can be
seen. If reduced thresholds apply, a ridge like shape evolves. In contrast, a bulge
is formed for elevated ones.

We expect that this emitter shape will cause severe aberrations of the trajectories.
And indeed, computed reconstructions show clear artifacts in (fig. 7.16a and 7.16¢).
The GB zone is either broadened in the case where the bulge develops (elevated
evaporation thresholds) or is slightly compressed if the ridge is present (reduced
thresholds).

A quantitative analysis is enabled by determination of concentration and density
profiles across the GB plane (fig. 7.16b and 7.16d). The additional broadening
of the segregation zone amounts to about 1 nm which means almost doubling the
original width. If reduced thresholds apply, no significant reduction of the width
is seen. But more severe, here atoms of the GB center intermix with atoms of the
neighboured bulk. This mixing is caused by trajectory overlaps between evaporated
atoms of the bulk with segregated atoms close to the GB core. In consequence, the

maximum determined concentration is reduced to about 50 %.3

3Qualitatively, this effect may be seen with the naked eye in the lower half of figure 7.16c.
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Figure 7.15.: Different emitter shapes in dependence on the applied evaporation
threshold for segregated atoms at the GB develop [OES13].
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Figure 7.16.: Analysis of the impact of the simulated GB segregation on the recon-
struction [OES13]: In (a) and (c) cross-sections through the computed reconstructions
in directions parallel and perpendicular to the emitter axis are shown. Results for the
cases both with reduced and elevated evaporation thresholds at the segregation zone
are depicted. Atoms of the grains and of the segregation zone are drawn with different
colours. (b) and (d) show plots of the concentration ¢ = —26 — and of the atom
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density versus the lateral position, perpendicular the GB plane, respectively.

Similarly, an analysis for the reconstructed atom density also shows significant
effects. A depletion in the atom density around 50 % of the nominal value is deter-
mined for already homogeneous evaporation properties. This depletion is further
enhanced in the case of elevated thresholds (~28%) of the segregating element
and is less for the case with reduced thresholds (~66 %). As a consequence of the

described trajectory overlaps, the atom density at the GB core becomes increased.
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8. Conclusion

In the process of this work, a theoretical investigation of APT experiments by
means of a new numeric simulation approach is conducted. The applied approach
has been termed the generalized approach for APT simulation because of its out-
standing capabilities in the way it does reflect the real measurement conditions in
APT.

In contrast to other existing simulation approaches before, this new approach is

in particular characterized by the following features:

e The 3D simulation space is constructed from an adaptive mesh of irregular

shaped Voronoi cells.

e Based on the well-defined partitioning of space by the cells, the Poisson equa-
tion is solved on a large range of length scales. The electric field information
both in the vicinity to an embedded field emitter sample and at the meso-

scopic scale is enabled.

e Trajectories of field emitted ions are computed at full-scale comparable to

experiments.

e In a dual use, the detailed atomic bulk structure of the emitter sample is es-
tablished by adopting the same Voronoi (Wigner-Seitz) cells which are already

considered for the solution of the potential.

e The Voronoi cells in the emitter structure are explicitly attributed with dif-
ferent values of dielectricity. In this way, the sequence of field evaporating
atoms from the emitter surface may be determined by considering field in-
duced forces which directly take effect on the cells and literally pull at the

respective atoms.

The forces are calculated unambiguously based on the Voronoi mesh. Therefore,
they represent a reliable measure for controlling the evaporation sequence. In an
example calculation of reduced size, the computed potential and field by this new
approach is shown to be in accordance with results from an otherwise established
FEM solver. Contrary, the analytic model of two confocal paraboloids does only
poorly compare to the obtained solution of the potential.

The general imaging characteristics of ion trajectories in the new approach are
investigated. Ions start from rest at the simulated emitter surface and are accel-
erated by the present field. The hit position on a detector plane is analysed. For
the evaluation, a distinction is drawn between trajectories analysed in the surface

1maging mode and those analysed in the desorption mode:
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In the surface imaging mode, trajectories from the apex sites are probed all at
the same time using the field which is computed once. Here, different emitter
geometries with different parameters for the taper angle of the emitter shaft and
the curvature radius at the emitter apex are considered. Qualitatively, the same
dependence of the image compression on geometry as it is published in the literature
is seen. Quantitatively, the determined image compression seems to be comparably
weak. Presumably, this is due to the lack of an additional counter electrode in the
conducted calculations. For the field factor, values in the range between 3 to 8 are
determined. The image compression changes in between 0.65 and 0.93 dependent
on the taper angle of the field emitter. The recently discovered cubic dependency
by Vurpillot et al. could be confirmed.

In the desorption mode, detector events result from the consecutive shrinkage of
the emitter apex atom by atom. Respective fields are repetitively updated after
each event. The simulated detector hit positions are collected and subsequently
analysed. The computed desorption maps for different emitter structures are in-
vestigated. For the cubic and hexagonal lattices in different orientations, a typical
pattern with characteristic symmetry similar to experimental results is seen. In
detail, it turns out that for a given atom the imaging position at the detector is
in general not unique and depends on the field conditions at the moment of evap-
oration. Severe displacements may appear. E.g. in the comparison of identical
atoms imaged both in the surface imaging mode and in the desorption mode, these
displacements correspond to a shift in the launch angle of about 1.1° or more. Sim-
ilarly, displacements are determined if a statistic evaporation sequence controlled
by temperature is taken into regard. Due to a shift in the position of the recorded
evaporation sequence, the depth resolution in the 3D reconstructions may then
additionally degrade in the range of a few angstrom.

Astonishing results are furthermore obtained from the spatial analysis of the
computed 3D reconstructions. Based on the data from the simulated evaporation
of an exemplary bcc emitter structure, a test for the geometric consistency of the
common reconstruction approach by Bas et al. clearly failed. It is demonstrated
that this approach in general does not preserve the volume of reconstructions as
it does not correctly account for the hit distribution of the events at the detector.
In contrast, a modified reconstruction approach is proposed which corrects for this
error. By considering such a well-calibrated reconstruction, a 3D Fourier analysis
for the spatial resolution is conducted. The depth resolution is estimated to about
0.8 A. A lateral resolution not better than about 1.5 A is determined. Remark-

ably, these values are close to results of computed reconstructions obtained from
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experimental data. This suggests that the possible resolution may be limited by
the applied reconstruction approach itself. In contrast to present approaches on the
basis of geometric relations, a significant improved resolution can probably only be
achieved if a more extensive physical model of the sample apex is considered.

In order to emphasize the practical benefit of the proposed simulation approach,
three different applications are described.

The first focuses on a spherical precipitate with distinguished evaporation thresh-
old. Simulations with the critical threshold lower, equal, and elevated to that of
the matrix are processed. Accordingly, particular apex shapes with heterogeneous
fields at the surface evolve when the precipitate comes to evaporation. Field in-
duced stresses show a significant load in the range between 200 MPa to 800 MPa.
Interestingly, the different load on the particle in comparison to the matrix scales
like the square of the difference in the preset evaporation thresholds. In the case of
an elevated threshold, the elevated stress may indeed be responsible for a partial
fail out of the precipitate in the analysis.

The second application highlights the new possibility to consider arbitrary emitter
structures for simulation. A cylindric emitter sample with three different layers is
used. Layers at the top and at the bottom are crystalline, the intermediate part
is amorphous. Again simulations with different critical evaporation thresholds are
conducted. It is demonstrated that the emitter curvature changes differently as a
function of the applied thresholds. A physically consistent evaporation sequence is
only achieved if field induced forces at the emitter surface are considered.

The third application depicts the case of a field emitter which contains a X5 grain
boundary. Simulations with different inclinations of the GB show a common result.
The grain boundary is reconstructed with an artificially depleted atom density.
At the transition to zone lines, displaced atoms forming a kink are observed. If
different evaporation thresholds apply for atoms within a segregation zone to the
GB core, the depletion in atom density broadens or narrows but does not vanish.
Similarly, an analysis of the atom concentration shows severe artifacts.

These results demonstrate that the newly introduced simulation approach is well
suited as a decisive tool for the complementary analysis of conducted APT mea-
surements. Practically, simulations may help to reveal artifacts in the 3D recon-
structions and to quantify their possible impact on the extracted results. Simulated
data may also be used to double check other sophisticated analysis methods which
are regularly applied to the APT reconstructions of experimental data (e.g. cluster
search algorithms). By its conception, the simulation approach resembles as closely

as necessary the important physics. This becomes particularly clear by the example
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of the calculated field desorption maps which otherwise would not compare so well
to those seen in the experiments. In regards to the essential physics, the foundation
by Voronoi cells represents a sophisticated and obviously a sufficient approxima-
tion. By the consequent assignment of electrostatic properties to the Voronoi cells
(and consideration of its geometric dual, the Delaunay mesh) not only the numeric
solution for the potential and the electric field is enabled, but furthermore even
electrostatic forces may get considered. In the future, these forces may be used
not only to predict the evaporation sequence in a reliable manner, but also to ac-
count for site specific critical evaporation thresholds of evaporating atoms. It is well
known that finally the local chemistry in terms of a binding force is decisive for the
evaporation. Thus, this description based on the Voronoi partition may lastly also
turn out to be fruitful in light of an improved understanding with regards to basic
field evaporation theory which has not made any significant progress since about

thirty years.
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A. Derivation of the discrete Poisson
equation on the regular mesh

Derived from the Poisson equation, we obtain

Z q]{x,y,z},{ﬂi} - q(q’a ja k) =0 (A]_)
oV (i,3,k)
Z # GT(T) E(’I") d2’r — M =0 (AQ)
€0

V(5K \(z,y,2}, {14}

for the balanced flux over the centred cube about the potential node (i, j, k). The
cube volume amounts to V = (Aa)3. Referring to figure 3.19b, the enclosed charge

writes as
q(ly'];k') - 72 ° iii —"_ tee +p111) . (A3)

From the contiguity equation for the electric field, the surface field may be con-
sidered as constant across each facet. For this reason, we can replace the surface

integral by the respective product of field, dielectricity, and area:

q(i, j, k)

= 0. (A.4)
€0

2
(Aa)*s D oy ts Blogahing —
AV (i,4,k)
An approximation for the field is enabled by first order finite-differences. According
to the six-point-stencil for the regular grid in 3D, six neighboured potential nodes

contribute to the potential node (i, 7, k) in the center of the stencil:

(i,5.k) _— ~ SO(Z — 17j7 k) — ()D(Zuj? k)
Bl = _grad“"‘r_gaez - Aa

) L, 9.k +1) — (i, 4, k)
E(va) = _ d ‘ ~ _()0(7’7.77 ) J )
2 S Iy Aa
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A. Derivation of the discrete Poisson equation on the regular mesh

Since the electric field remains contiguous across the interfacial area, an effective

dielectricity is accessed directly by the sum of the four present values at each facet:

(6.4,k) _ _(i,5,k) (4,4,k) (4,5,k) (4,4,k)
@l Tam Tan Tr Tan
(A.6)
-7 '7k '7 '7k: '7 '7k '7 '7k '7 '7k
i) i) g i) | ) 4 (0
After insertion, the detailed flux becomes
Vo = o 9 BT (Aa)?
=€q - (6%%7 ) + -+ 6({1{ )) . (SO(Z,]: k) - ()D(Z - 17]7k)> -Aa
(A.7)
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=co- (i + +elil?) - (00 k) = eliik +1)) - Aa
From this, we derive finally the discrete approximation of the potential by rear-

ranging after ¢(i, j, k):

N e;,{]ﬂi}go(z +1,5,k)+ e;{JT’j}cp(z,j +1,k)+ e;‘{JT’j}cp(Z,], E+1)+ q( 6{) )
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B. Computing the electric field on the
irregular mesh (2nd order)

Here, a more smooth approximation for determining the electric field in the case of
an irregular mesh is presented. Compared to the approach, which has already been
presented in section 3.3 before, this approach is based on a second order fitting to

the potential. Accordingly, we write

3 3 3
9] 1 0*
»(p) = ¢(po) + > (p, CAp 45> D ,SO , Ap; - Ap; + O(3)
- 8""1 _ 2 N N arzarj _
i=1 T=Po i=1 j=1 T=po
—_—— =
Qi (P—Po)i Bij
~ o~ Ap - Ap,
:S@(PO)+Q‘AP+§ E BZJT
i=1 j=i E

(B.1)

for the fitting function. This ansatz is equal to the second order Taylor expansion
of the potential. For the potential (p) in the vicinity of a given node py € R3,
we see that it depends on the values of the unknown derivatives at pg, abbreviated
by «; and §;;, respectively. The parameters (3;; represent the nine elements of the

3 x 3 Hessian matrix, accordingly.

Next we take into account the N neighbour nodes of py as local support points

for the fitting. Therefore, we demand the least squares error defined by

( )2 (B.2)

to be at minimum. As it has already been demonstrated in section 3.3, this require-

Mz

O‘zv /Bz]
n=1

ment directly translates into a necessary condition for the differential dy? with

dXQ(O‘h B’L]) = Z ZX daz + Z Z 8; dﬁl] (B'3)
=1

=1 j=1
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B. Computing the electric field on the irregular mesh (2nd order)

Obviously, a solution for this equation is only possible if all the partial derivatives

become zero.

A first set of three equations is received by
aXQ N 3 N
1 ] CIEIES) [RVNERT) Sl ) SOy
¢ k=1 n=1
3 3 N
Apn ' Apn ' Apni
P23 g (3 A B

n=1

3
Il
—

(B.4)

which takes into regard the derivatives with respect to da;. If we introduce the

following abbreviations

N
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a clarified form of the same equations yields
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With this, we continue and write
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for the derivatives with respect to 98;;. Again we introduce appropriate abbrevia-
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tions by

N
Ap, ;- Ap,
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This leads us to a second set of nine equations:
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As before, the form appears equally clear here.

(B.7)

Finally, we express the complete result by a system of nine linear equations:
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which may be solved by means of standard numeric algorithms (LU decomposition

for example). Although the solution matrix reveals a high degree of symmetry, e.g.

Aay,00; = Aa; oo, and B, = Bg,,, the computational effort decisively increases

compared to the first order approach presented earlier in section 3.3.

However, as a benefit the solution yields on the one hand the desired field vector

which is essentially equal to a except for the sign:

(63}
E(py) = —Vo =— | a2

r= pO
a3

(B.9)

But additionally, we see that we can gain even more information if we inspect the

initial equation (B.1) for the second time. Here, we split up the matrix elements
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B. Computing the electric field on the irregular mesh (2nd order)

Bi; into two parts:

3 3 3
¢(p) = ¢(po) + Ap+% (Z B) (AP +> . Y Bij-Ap;-Ap; (B.10)
=1

i=1 j=i+1

Written in this alternative form, we immediately recognize that the trace of the
matrix elements (;; reflects the components of the Laplace-operator. Hence, due to

equation (3.19) a local charge value

p(Po) _ o2
€0 =V So}"':po

= — (P11 + B2z + (33) (B.11)

may be obtained from the second order solution. In particular, this charge rep-
resents the present microscopic charges including the polarization charges due to

different dielectricity.
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