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Chapter 1

Introduction

Many different methods of solving and estimating DSGE models
have been developed and used in order to obtain a detailed analysis
and thorough estimation of dynamic macroeconomic relationships.
Recently, the question of identifying DSGE models has proven to be
of major importance, especially since the identification of a model
precedes estimation and inference. Identification problems arise if
distinct parameter values do not lead to distinct probability distri-
butions of data. Even with an infinite sample it is not possible to pin
down some (sets of) parameters, no matter what estimation proce-
dure one uses. In a full-information setting this often evokes a badly
shaped likelihood function, which modern Bayesian estimation can
conveniently circumvent by using tight priors. However, in the case
of prior dependence the comparison of prior and posterior for non-
identified parameters can be misleading (Poirier, 1998). Moreover,
calibrating unidentified parameters can lead to wrong conclusions,
since other parameters might depend on the calibrated ones (Canova
and Sala, 2009). Lack of identification leads thus to wrong conclu-
sions from calibration, estimation and inference, whereas the source
of identification influences empirical findings (Ríos-Rull et al., 2012).

1



2 CHAPTER 1. INTRODUCTION

Identification has a long history in econometrics. Research into the
parameter identification problem dates back to the beginnings of the
Cowles Comission, see e.g. Monographs No. 10 and No. 14 (Koop-
mans, 1950; Koopmans and Hood, 1953). In fact, the problem of
identification is often associated with the birth of econometrics ow-
ing to major contributions from Frisch (1934, Ch. 11), Haavelmo
(1944, Ch. V) and Koopmans (1949). Since then it has gained im-
portance in almost all fields of econometrics.1 The first known ap-
proach to analyze the identification problem focused on “the extent
to which statistically determined demand curves may be identified
with theoretical demand curves” (Working, 1925, p. 526). The basic
problem is that the demand as well as the supply curve are sub-
ject to shifts and it is in general not possible to determine the true
demand curve from observational evidence.

From this, it would seem that, whether we obtain a demand
curve or a supply curve, by fitting a curve to a series of points
which represent the quantities of an article sold at various
prices, depends upon the fundamental nature of the supply and
demand conditions. It implies the need of some term in ad-
dition to that of elasticity in order to describe the nature of
supply and demand. The term “variability” may be used for
this purpose. (Working, 1927, p. 224)

Thus, a consistent estimation of the demand curve requires either (i)
the inclusion of truly exogenous variables or (ii) the relative shift of
the supply curve to be greater than the shift of the demand curve.
Wright (1928) gives a rigorous analysis of the first condition and
basically formulates methods known later as indirect inference and
instrumental variables estimation.2 Moreover, the second point em-
phasizes the need for additional restrictions in order to identify the
true structure of the demand curve from observational data.
1 For a good textbook overview of the early contributions see Fisher (1966),

Hsiao (1983) and the references therein.
2 See also Stock and Trebbi (2003) for a historical classification.
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Figure 1.1: ARMA(1,1) example
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θ0 = (0.4, 0.4, 1)′ θ1 = (0, 0, 1)′

Identifiability is a model property and it can be analyzed without
actually estimating the model. I will demonstrate this by means of
a simple ARMA(1,1) model

xt = φ1xt−1 + εt − φ2εt−1

with εt ∼ N(0, σ2) and parameter vector θ = (φ1, φ2, σ)′. Figure
1.1 simulates data for two different parameterizations with θ0 =
(0.4, 0.4, 1)′ and θ1 = (0, 0, 1)′. Note that in both cases φ1 = φ2.
Obviously, both parametrizations generate the same data (as long
as the shocks εt and starting value are the same). The underlying
structure, i.e. whether θ0 or θ1 are the true parameters, cannot be
identified from observed data no matter which estimation method
one uses. Since xt is normally distributed and covariance-stationary,
all time series properties are completely characterized by its uncon-
ditional first two moments (or equivalently by the mean and power
spectrum). Let γh := E(xtxt−h) denote the autocovariance func-
tion, that is

γ0 = (1 + φ2
2 − 2φ1φ2)σ2

1− φ2
1

, γ1 = (φ1 − φ2)(1− φ1φ2)σ2

1− φ2
1

, γh = φ1γh−1
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For φ1 = φ2 this simplifies to γ0 = σ2, γk = 0, k ≥ 1, which is
identical to the white-noise process given by θ1. In other words, θ0
and θ1 are observational equivalent structures if and only if φ1 = φ2.
More formally, consider the mapping from θ to Γ := (γ0, γ1, γ2, . . . ).
This mapping is unique if and only if the Jacobian of Γ, denoted with
DΓ, has full column rank when evaluated at θ0 or θ1. Specifically,
for φ1 = φ2 = φ DΓ is equal to

DΓ =



−2φσ2 0 −2σ(φ2 − 1)
σ2 −σ2 0
φσ2 −φσ2 0
φ2σ2 −φ2σ2 0
φ3σ2 −φ3σ2 0
...

...
...


Obviously, there are only two linearly independent rows, the rank
is equal to two. Analyzing the nullspace one can then pinpoint the
problematic parameters, i.e. the set (θ1, θ2) is indistinguishable,
whereas σ is partially identifiable. This example demonstrates the
basic idea behind the rank conditions in the classical literature. In-
tuitively, one asks, if and how theoretical moments change, if the
vector of deep parameters changes. To this end, one defines map-
pings and derives a rank condition for the corresponding Jacobian.

Accordingly, identification criteria in the DSGE literature are
concerned with two mappings: one from the deep parameters to the
reduced-form parameters, i.e. the uniqueness of the solution, and
one from the solution to observable data, i.e. the uniqueness of the
probability distribution. An adaption of classical concepts is not
as straightforward, since the reduced-form parameters are nonlinear
functions of the deep parameters. Moreover, there might be com-
plicated cross-equation restrictions, which can often only be evalu-
ated numerically, a point emphasized by Komunjer and Ng (2011).
Recently, several formal methods have been proposed to check lo-
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cal identification in linearized DSGE models via (i) observational
equivalent first and second moments (Iskrev, 2010a), (ii) observa-
tional equivalent spectral densities (Qu and Tkachenko, 2012), (iii)
implications from control theory for observational equivalent mini-
mal systems (Komunjer and Ng, 2011) and (iv) Bayesian indicators
(Koop et al., 2013). The first three approaches derive rank con-
ditions similar to the classical literature on identification, whereas
the fourth approach uses insights from Bayesian asymptotic theory.
The rank criteria all stem essentially from Rothenberg (1971), who
proposes identifiability conditions based on injectivity of functions.
The mappings to consider are the unconditional mean, autocovar-
iogram and corresponding spectral density. Therefore, the funda-
mental idea is to determine whether these mappings are unique for
the deep parameters. Basic mathematical results for systems of
equations can then be applied. This set of criteria is the most ba-
sic and the closest to ideas from the early work on identification
in systems of linear equations, since it is based on the uniqueness
of a solution (Koopmans and Reiersøl, 1950; Fisher, 1966; Hannan,
1976). Consequently, rank and order conditions are derived, and it
is also possible to pinpoint the (sets of) parameters that are indistin-
guishable from one another. Even though all methods seem similar,
there has been – to my knowledge – no study of the advantages and
drawbacks of implementing the different methods. Furthermore,
whereas there is a growing literature on the estimation of nonlinear
DSGE models (Andreasen, 2011, 2013; Fernández-Villaverde and
Rubio-Ramírez, 2007; Herbst and Schorfheide, 2014; Ivashchenko,
2014; Kollmann, 2015), all identification methods focus on the lin-
earized DSGE model with Gaussian innovations. Accordingly, the
proposed criteria are based on first and second moments only. If,
however, one relaxes the assumption of linearity or Gaussianity, it
is natural to analyze whether it is possible to exploit information
from higher-order moments for the calibration, estimation and iden-



6 CHAPTER 1. INTRODUCTION

tification of parameters. Researchers in mathematics, statistics and
signal processing have developed tools, called higher-order statistics
(HOS), to solve detection, estimation and identification problems
when the noise source is non-Gaussian or one is faced with nonlin-
earities. The basic tools of HOS are cumulants, which are defined as
the coefficients in the Taylor expansion of the log moment generating
function in the time domain; and polyspectra, which are defined as
Fourier transformations of the cumulants in the frequency domain.
Applications in the macroeconometric literature are rather sparse,
in the DSGE literature they are – so far – nonexistent.

In this thesis, I therefore relax the assumptions of linearity and
Gaussianity and show how to check rank criteria for nonlinear DSGE
models solved by higher-order approximations of the policy func-
tions and by considering higher-order statistics for non-Gaussian
innovations. However, there is a caveat, since higher-order approx-
imations may yield explosive or non-stationary processes. There-
fore, I use the pruning scheme proposed by Kim et al. (2008) and
operationalized by Andreasen et al. (2014). They show that the
pruned state-space is a linear, stationary and ergodic system, but
with non-Gaussian innovations. Similar to the identification of de-
mand curves, this may yield additional restrictions on unconditional
moments and polyspectra of the observables that can be used to
identify (sets of) parameters which are not identifiable in the lin-
earized DSGE model with Gaussian innovations.

The thesis is structured as follows. Chapter 2 sets up the general
DSGE framework, discusses linear and nonlinear solution methods
and derives the (pruned) state-space system. In the derivations, I
limit myself to Taylor approximations and pruning up to second-
order, since an extension beyond second-order is – apart from te-
dious notation – straightforward. To make the exposition of the
thesis illustrative, Chapter 3 outlines two example models, namely
those of Kim (2003) and An and Schorfheide (2007), which are
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known to have a lack of identification in their linearized Gaussian
versions. I derive both models theoretically and show how to squeeze
them into the general DSGE framework considered in this thesis.
In the following chapters, extensive use of both models is made to
demonstrate the theoretical results and procedures. In Chapter 4,
I derive closed-form expressions for unconditional moments, cumu-
lants and polyspectra of order higher than two for linear and nonlin-
ear (pruned) DSGE models. Third-order cumulants and the bispec-
trum capture nonlinearities (or non-Gaussianity) for a skewed pro-
cess, whereas the fourth-order cumulants and the trispectrum can
be used in the case of a non-Gaussian symmetric probability distri-
bution. Therefore, I limit myself to these higher-order statistics in
the theoretical derivations. The procedures are then demonstrated
by means of the An and Schorfheide (2007) model. To this end, I
compare the theoretical expressions for skewness and excess kurtosis
with their empirical counterparts within a Monte-Carlo framework,
since these are typical measures an applied researcher would like
to match in a calibration exercise. On the other hand, auto- and
cross-skewness as well as kurtosis may contain valuable information
in an estimation exercise. Both, the Gaussian as well as Student’s
t-distribution are considered as the underlying stochastic process.
Useful matrix tools and computational aspects are also discussed.
In the following Chapter 5, I then show how to analytically calcu-
late the Jacobians of unconditional second-, third- and fourth-order
moments, cumulants and corresponding polyspectra with respect
to the deep parameters of the DSGE model. In this manner, I
am able to derive formal identification criteria based on theoreti-
cal higher-order moments for linearized DSGE models in Chapter
7 and for nonlinear DSGE models in Chapter 8. But first, the
underlying assumptions and definitions of local identifiability are
stated formally in Chapter 6. Chapter 7 then reviews and com-
pares the formal rank criteria for linearized DSGE models as well
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as the Bayesian indicator. Furthermore, I extend ideas from Iskrev
(2010a) and Qu and Tkachenko (2012) to establish rank criteria for
higher-order statistics, both in the time and in the frequency do-
mains. This approach is then adapted to nonlinear DSGE models
in Chapter 8. All methods are demonstrated by means of the two ex-
ample models. In particular, I show that the parameters governing
the investment adjustment costs in Kim (2003) are not separately
identifiable in the linearized DSGE model. However, they can be
identified from the mean and second moments or power spectrum as
well as from higher-order statistics of the pruned state-space given a
second-order approximation. A similar finding holds for the An and
Schorfheide (2007) model. In the linearized model, the elasticity of
demand, price stickiness and steady state of government spending
are not identifiable. Moreover, using an output-gap specification
for the monetary policy rule makes the parameters of the Taylor
rule jointly unidentified. However, in case of an output-growth rule
these parameters can be identified. A second-order approximation
yields even more restrictions. All parameters of the model can be
identified from the mean and second moments or power spectrum,
as well as from higher-order statistics, no matter which specifica-
tion one uses for the Taylor rule. Lastly, Chapter 9 summarizes the
contributions of the thesis. A nonlinear approach enriches model
dynamics, estimability and identifiability.



Chapter 2

DSGE framework

2.1 General model and solution

Let Et be the expectation operator conditional on information avail-
able at time t, then

Etf (xt+1, ut+1, yt+1, xt, ut, yt|θ) = 0 (2.1)
xt+1 = h(xt, ut+1, σ|θ) (2.2)
yt+1 = g(xt, ut+1, σ|θ) (2.3)

is called the general DSGE model with deep parameters θ, states
xt, controls yt, stochastic innovations ut, and perturbation param-
eter σ, which can be converted into a nonlinear first-order system
of expectational difference equations f . For the sake of notation,
it is assumed that all control variables are observable. The vec-
tor of innovations ut has E(ut) = 0 and finite covariance matrix
E(utu′t) =: Σ = σ2ηη′. Thus, σ is set to be dependent on the
standard deviation of one of the shocks, while scaling all other vari-
ances and cross-correlations through η accordingly. Furthermore, ut
is nth-order white noise with finite higher-order moments, where n

9
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depends on the order of approximation.3 Apart from the existence
of moments and temporal independence no distributional assump-
tions are needed.4 See Chapter 3 on how to squeeze the example
models into this framework.5

The solution of such rational expectation models is characterized
by policy functions, g and h, that solve (at least approximately) the
system of equations f . Following Schmitt-Grohé and Uribe (2004)
I use perturbation techniques to solve the model around the non-
stochastic steady state given by x̄ = h(x̄, 0, 0|θ), ȳ = g(x̄, 0, 0|θ),
ū = 0 and f̄ = f(x̄, ū, ȳ|θ) = 0. Moreover, I exploit ideas of Gomme
and Klein (2011) to approximate the policy functions, using the
Magnus and Neudecker (1999) definition of the Hessian. Denote the
Jacobian of f evaluated at the steady state as

Df̄ :=
(

∂f̄

∂x′t+1
,

∂f̄

∂u′t+1
,

∂f̄

∂y′t+1
,
∂f̄

∂x′t
,
∂f̄

∂u′t
,
∂f̄

∂y′t

)
, (2.4)

3 Because the proposed identification criteria in Chapters 7 and 8 are based
on the first four moments of observables, the stochastic innovations are re-
quired to have at least finite fourth moments for a first-order approximation,
finite eighth moments for a second-order approximation and finite twelfth
moments for a third-order approximation. In other words, ut is at least
an fourth-, eighth- or twelfth-order white noise process, which implies yt
being stationary of order four, see Priestley (1983, p. 105) for a definition
of stationary up to order n.

4 The MATLAB code can handle both the Gaussian, as well as Student’s
t-distribution provided the moments exist.

5 This is basically a mixture of the DYNARE framework (innovations enter
nonlinearly, no distinction between states and controls) and the framework
of Schmitt-Grohé and Uribe (2004) (innovations enter linearly, distinction
between states and controls). It can be shown that both frameworks are
equivalent, given an extended state vector, see the technical appendix in
Andreasen et al. (2014). In the same fashion, it is possible to add measure-
ment equations and measurement errors by simply extending the model
equations, state and control variables accordingly. A selection matrix can
be premultiplied to consider only a subset of controls as observables, see
the An and Schorfheide (2007) model in Chapter 3.2 for an example.
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then Hf̄ := Dvec([Df̄ ]′) is defined as the Magnus-Neudecker Hes-
sian of f , evaluated at the nonstochastic steady state. This defi-
nition simplifies the computations, as well as the analytical deriva-
tives, since no tensor notation is needed and basic matrix algebra
can be used.6

The approximations of the policy functions are a straightforward
application of Taylor series expansions in the state variables:

x̂t+1 = hxx̂t + huut+1

+ 1
2 [Hxx (x̂t ⊗ x̂t) +Huu (ut+1 ⊗ ut+1)]

+ 1
2
[
Hux (ut+1 ⊗ x̂t) +Hxu (x̂t ⊗ ut+1) + hσσσ

2
] (2.5)

ŷt+1 = gxx̂t + guut+1

+ 1
2 [Gxx (x̂t ⊗ x̂t) +Guu (ut+1 ⊗ ut+1)]

+ 1
2
[
Gux (ut+1 ⊗ x̂t) +Gxu (x̂t ⊗ ut+1) + gσσσ

2
] (2.6)

x̂t = xt − x̄ and ŷt = yt − ȳ denote deviations from steady state.
hx, hu, gx and gu denote the solution matrices of the first-order ap-
proximation. Hxx is a nx × n2

x matrix containing all second-order
terms for the ith state variable in the ith row, whereas Gxx is a
ny ×n2

x matrix containing all second-order terms for the ith control
variable in the ith row. Hxu, Hux, Gxu and Gux are accordingly
shaped for the cross terms of states and shocks, and Huu and Guu
contain the second-order terms for the product of shocks. Lastly,
hσσ and gσσ are the Hessians of h and g with respect to the per-
turbation parameter σ. Note that all matrices are evaluated at the
nonstochastic steady state.
6 For recent literature in favor of this definition, see Magnus (2010) and Pol-

lock (2013). See Appendix A for additional material which clarifies the
concept and notation.
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There are several methods and algorithms for calculating the first-
order solution matrices, since these are the coefficients of a first-
order linearization or log-linearization of the model. I follow Klein
(2000) to obtain the first-order solution using the generalized Schur
decomposition.7 The second-order solution matrices can be calcu-
lated by inserting the policy functions (2.2) and (2.3) into the model
equations (2.1) and noting that the expression is known at the non-
stochastic steady state. Therefore, all derivatives of f must be 0
when evaluated at the nonstochastic steady state. Differentiating f
twice using the chain rule of Magnus and Neudecker (1999, p. 110),
evaluating the Jacobian Df̄ and Hessian Hf̄ of f at the nonstochas-
tic steady state, and setting it to zero yields (after some algebraic
calculations, see Gomme and Klein (2011)):[

vec(gvv)
vec(hvv)

]
= −Q−1vec(R),

(
hσσ
gσσ

)
= −S−1U. (2.7)

gvv and hvv are the Magnus-Neudecker Hessians of g and h with
respect to the vector vt|t+1 = (x′t, u′t+1)′, gσσ and hσσ are the corre-
sponding terms with respect to the perturbation parameter. Note
that all terms are evaluated at the nonstochastic steady state. See
Appendix B for the exact expressions of the auxiliary matrices Q,
R, S and U. Furthermore, hvv contains all second-order terms re-
quired for the transition equation of states and gvv for the tran-
sition equation of controls. I separate these using index matrices
to set up equations (2.5) and (2.6), see Appendix C for an exam-
ple that clarifies the procedure. A third-order approximation using
Magnus-Neudecker Hessians is given in Binning (2013). For the sake

7 Anderson (2008) provides a comparison of algorithms, which are basically all
equivalent and differ only (slightly) in computational burden. Furthermore,
all check the Blanchard and Kahn (1980) conditions that are necessary in
order to have a stable saddle-path solution, i.e. a unique mapping between
state and control variables.
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of argument, it is sufficient to note that there are closed-form solu-
tions that I will differentiate in Chapter 5 with respect to the deep
parameters.

2.2 Pruned state-space system

Various simulation studies show that Taylor approximations of an
order higher than one may generate explosive time paths, even
though the first-order approximation is stable. This is due to artifi-
cial fixed points of the approximation. Kim et al. (2008) provide an
example using the simple univariate model: yt = ρyt−1 +αy2

t−1 + εt
with |ρ| < 1 and α > 0. This model has two steady states: a unique
and locally stable one at ȳ = 0 and a second one at ȳ = (1 − ρ)/α
due to the higher-order approximation. If a shock sets y above the
second steady state it will tend to diverge.

This is likely to be a generic problem with quadratic expansions
– they will have extra steady states not present in the origi-
nal model, and some of these steady states are likely to mark
transitions to unstable behavior (Kim et al., 2008, p. 3408).

Thus, the model may be neither stationary nor imply an ergodic
probability distribution, yet these two assumptions are essential for
identification and estimation. Thus, Kim et al. (2008) propose the
pruning scheme, in which one omits terms from the policy functions
that have higher-order effects than the approximation order.8 For
instance, given a second-order approximation, the state vector is
decomposed into first-order (x̂ft ) and second-order (x̂st ) effects (x̂t =
x̂ft + x̂st ). The law of motions for these variables then only preserve

8 This may seem ad hoc, but pruning can also be founded theoretically as
a Taylor expansion in the perturbation parameter (Johnston et al., 2014;
Lombardo and Uhlig, 2014) or on an infinite moving average representa-
tion (Lan and Meyer-Gohde, 2013). Schmitt-Grohé and Uribe (2004) also
implicitly use pruning in their code to compute unconditional moments.
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effects up to the second-order9:

x̂ft+1 = hxx̂
f
t + huut+1, (2.8)

x̂st+1 = hxx̂
s
t + 1

2hσσσ
2

+ 1
2
[
Hxx

(
x̂ft ⊗ x̂

f
t

)
+Huu (ut+1 ⊗ ut+1)

]
+ 1

2
[
Hxu

(
x̂ft ⊗ ut+1

)
+Hux

(
ut+1 ⊗ x̂ft

)], (2.9)

x̂ft+1 ⊗ x̂
f
t+1 = (hx ⊗ hx)

(
x̂ft ⊗ x̂

f
t

)
+ (hu ⊗ hu) (ut+1 ⊗ ut+1)

+ (hx ⊗ hu)
(
x̂ft ⊗ ut+1

)
+ (hu ⊗ hx)

(
ut+1 ⊗ x̂ft

)
, (2.10)

ŷt+1 = gx(x̂ft + x̂st ) + guut+1 + 1
2gσσσ

2

+ 1
2
[
Gxx

(
x̂ft ⊗ x̂

f
t

)
+Guu (ut+1 ⊗ ut+1)

]
+ 1

2
[
Gxu

(
x̂ft ⊗ ut+1

)
+Gux

(
ut+1 ⊗ x̂ft

)]. (2.11)

Thus, terms containing x̂ft ⊗ x̂st and x̂st ⊗ x̂st are omitted, since they
reflect third-order and fourth-order effects which are higher than the
approximation order. Also, there are no second-order effects in ut+1.
It is convenient to extend the state vector to zt := [(x̂ft )′, (x̂st )′, (x̂ft⊗
x̂ft )′]′: equations (2.8), (2.9), (2.10) and (2.11) can then be rewritten
as a linear system of equations called the pruned state-space:

zt+1 = c+Azt +Bξt+1

ŷt+1 = d+ Czt +Dξt+1

9 See the technical appendix of Andreasen et al. (2014) for details.
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with ξt+1 :=


ut+1

ut+1 ⊗ ut+1 − vec(Σ)
ut+1 ⊗ x̂ft
x̂ft ⊗ ut+1

 and system matrices

A :=

hx 0 0
0 hx

1
2Hxx

0 0 hx ⊗ hx

 , B :=

hu 0 0 0
0 1

2Huu
1
2Hux

1
2Hxu

0 hu ⊗ hu hu ⊗ hx hx ⊗ hu

 ,
C :=

[
gx gx

1
2Gxx

]
, D :=

[
gu

1
2Guu

1
2Gux

1
2Gxu

]
,

c :=

 0
1
2hσσσ

2 + 1
2Huuvec(Σ)

(hu ⊗ hu)vec(Σ)

 , d :=
[

1
2gσσσ

2 + 1
2Guuvec(Σ)

]
.

Thus, conceptually, the solution of the pruned nonlinear DSGE
model is a state-space system with a linear law of motion in zt
that is very similar to the canonical ABCD representation of a log-
linearized DSGE model; hence, many concepts carry over. First, it
is trivial to show that ξt is zero mean white noise with finite mo-
ments, since it is a function of x̂ft , ut+1 and ut+1 ⊗ ut+1. Regarding
the computation of product moments up to the fourth order of ξt,
see also Appendix D.10 There, it is shown that even if the under-
lying shock process ut is Gaussian, ξt is not normally distributed,
since its higher-order cumulants are not equal to zero, therefore
leaving scope for higher-order moments to contain additional infor-
mation. Furthermore, if ut has finite fourth moments, the pruned
10 The product moments can be partitioned into several submatrices, which

can be computed symbolically element-by-element, and contain many du-
plicate entries. For instance, note that E[ξt ⊗ ξt ⊗ ξt] is of dimension
n3
ξ, but the number of distinct elements is nξ(nξ + 1)(nξ + 2)/6, because
ξi,tξj,tξk,t = ξj,tξi,tξk,t = ξi,tξk,tξj,t and so forth. One can use special ma-
trix algebra analogous to the duplication matrix, called triplication and
quadruplication matrix (Meijer, 2005), to ease the computations for higher-
order product-moments of ξt.
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state-space system then has finite second moments (see Andreasen
et al. (2014) for closed-form expressions). Below, it is shown that
if ut has finite eighth moments, the pruned state-space system then
has finite fourth moments. Note that apart from the existence of
moments and temporal independence no distributional assumptions
on ut have to be imposed. Moreover, it can be shown that if the
first-order approximation is stable, i.e. all Eigenvalues of hx have
modulus less than one, the pruned state-space is then also stable. In
other words, all higher-order terms are unique and all Eigenvalues
of A have modulus less than one. In fact, this approach works for
any order of approximation, therefore:

Proposition 1 (Pruned state-space). Given an extended state
vector zt and an extended vector of innovations ξt, the pruned
solution of a DSGE model can be rewritten as a linear time-
invariant state-space system:

zt+1 = c+Azt +Bξt+1 (2.12)
yt+1 = ȳ + d+ Czt +Dξt+1 (2.13)

Proof. See Andreasen et al. (2014) for the general algorithm.
Mutschler (2015a) provides the corresponding vectors and ma-
trices up to a third-order approximation.

For the derivation of moments, cumulants and polyspectra, it is
advisable to work with zero mean variables to simplify notation and
the expressions in the following chapters. Accordingly, the mean of
the extended state vector is equal to:

µz := E(zt) = (Inz −A)−1c (2.14)

with nz = 2nx + n2
x. Intuitively, the mean of the second-order ap-

proximation consists of two effects: The first-order effect (E(x̂ft ) =
E(xft )− x̄ = 0) simply states certainty equivalence, i.e. the mean of
xt is equal to the steady state in a first-order approximation. Using
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a second-order approximation, the mean is adjusted for risk, given
a constant 1

2hσσσ
2 and the variance of the states Σx:

vec(Σx) = (In2
x
− hx)−1(hu ⊗ hu)vec(Σ). (2.15)

Since there is a linear relationship between yt and zt−1 in (2.13), the
mean of yt is equal to

µy := E(yt) = ȳ + Cµz + d. (2.16)

In summary, the pruned state-space representation is a stable
system and has well-defined statistical properties. In particular, an
approximation to higher orders yields non-Gaussian innovations. In-
tuitively, this yields additional restrictions on moments and polyspec-
tra, which may tighten the identifiability of model parameters. Also,
since higher-order cumulants and polyspectra measure the departure
from Gaussianity, additional information may also be gained by con-
sidering higher-order statistics. In Chapters 7 and 8, I show how to
incorporate these additional restrictions into formal identifiability
criteria.





Chapter 3

Example models

3.1 The Kim (2003) model

The Kim (2003) model builds upon the canonical neoclassical growth
model (see for example Schmitt-Grohé and Uribe (2004)), however,
extending it for two kinds of investment adjustment costs. First,
intertemporal adjustment costs in the fashion of Lucas and Prescott
(1971) are introduced into the capital accumulation equation gov-
erned by a parameter φ, which involve a nonlinear substitution be-
tween capital kt and investment it:

kt =
[
δ

(
it
δ

)1−φ
+ (1− δ) (kt−1)1−φ

] 1
1−φ

(3.1)

with δ denoting the depreciation rate. Note that φ = 0 implies the
usual linear capital accumulation specification.

Second, multisectoral adjustment costs in the fashion of Sims
(1989) and Valles (1997) enter the national budget constraint given
a parameter θ, which are captured by a nonlinear transformation

19
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between consumption ct and investment it:

at−1k
α
t−1 =

[
(1− s)

(
ct

1− s

)1+θ
+ s

(
it
s

)1+θ
] 1

1+θ

(3.2)

with at denoting the level of technology. The composite parameter
s = βδα

1−β+δβ consists of the depreciation rate δ, the discount factor
β and the share of capital in production α. Note that for θ = 0 the
transformation is linear.

The representative agent maximizes

E0

∞∑
t=0

βt ln ct

subject to the national income identity and the capital accumulation
equation. The corresponding Euler equation is

λt(1 + θ)
(
it
s

)θ ( it
δkt

)φ
= βEtλt+1

[
α(1 + θ)a1+θ

t k
α(1+θ)−1
t

+ (1− δ)(1 + θ)
(
Etit+1
δkt

)φ (Etit+1
s

)θ]
(3.3)

with auxiliary variable λt = (1−s)θ

(1+θ)c1+θ
t

. Note that for φ = θ = 0 this
simplifies to the canonical Euler equation.

To close the model, technology evolves according to

log(at) = ρalog(at−1) + εa,t (3.4)

with ρa measuring persistence and εa,t ∼ iid(0, σ2
a). Lastly, an aux-

iliary equation for the expectation of future technology shocks is
added to the model equations:

Etεa,t+1 = 0 (3.5)
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In summary, the model equations f are given by (3.1), (3.2), (3.3),
(3.4) and (3.5). There are two exogenous (kt and at) and no en-
dogenous states. The controls are ct and it and are both assumed
to be observable. There is one shock on technology εa,t with stan-
dard deviation σa, which I set equal to the perturbation parameter.
Thus, the definitions and ordering of variables is given by

ut = εa,t, xt = (kt, at)′, yt = (ct, it)′, σ = σA, η = (0 1)′.

The steady state of the model is given by

εa = 0, a = 1, k =
(
δ

sa

) 1
α−1

, i = δk,

c = (1− s)

(αkα)1+θ − s
(
i
s

)1+θ

1− s


1

1+θ

.

I will consider identification of the parameter vector θ at local point
θ0 and prior specification given in Table 3.1. The code contains
three model specifications:

1. The shock on technology is Gaussian.
2. The shock on technology is Gaussian and Gaussian measure-

ment errors are added to the model (Etuc,t+1 = Etui,t+1 = 0).
3. The shock on technology is t-distributed with df = 10 degrees

of freedom and the prior for df is uniform with lower bound 8
and upper bound 20.
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Table 3.1: Parameters, priors and bounds for Kim (2003)

Parameters Prior specification Bounds
θ θ0 Density Para (1) Para (2) Lower Upper
α 0.60 Gamma 0.60 0.30 1e-5 1
β 0.99 Uniform 0.95 0.9999 0.9 0.99999
δ 0.0125 Uniform 0.01 0.02 0.01 0.02
θ 1 Normal 1.00 0.50 -5 5
ρa 0.7 Beta 0.50 0.20 1e-5 0.99999
φ 2 Normal 2.00 0.50 -5 5
σa 0.5 InvGamma 0.50 4.00 1e-8 5

Notes: Para (1) and (2) list the means and the standard deviations for Beta,
Gamma, and Normal distributions; the upper and lower bound of the support
for the Uniform distribution; s and v for the Inverse Gamma distribution, where
℘IG(σ|v, s) ∝ σ−v−1e−vs

2/2σ2
. The effective prior is truncated at the boundary

of the determinacy region.

3.2 The An and Schorfheide (2007) model
The An and Schorfheide (2007) model is a prototypical DSGEmodel,
representative of the class of models used in the analysis of monetary
policy. The model economy consists of a representative household, a
continuum of intermediate goods producing firms, a final good pro-
ducing firm, a fiscal authority and a monetary authority. A domestic
bond market is assumed where the household has access to bonds
issued by the government. By assumption, a firm j ∈ [0, 1] of the
intermediate goods sector produces exactly one intermediate good
Y j
t . Then all intermediate goods are used in the production of the

final good Yt. There is perfect competition in the final good sector,
while the producers of intermediate goods are in monopolistic com-
petition to each other and set their price subject to quadratic price
adjustment costs in the fashion of Rotemberg (1982). In the follow-
ing, I will outline the optimality conditions of all agents, the law of
motions of the exogenous processes and the mapping into the gen-
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eral framework of Chapter 2. The section is concluded by a short
comparison of the model to the widely-cited Smets and Wouters
(2007) model.

Household sector

The representative household optimizes present as well as expected
future utility

Et

∞∑
s=0

βsUt+s. (3.6)

with β < 1 denoting the discount factor. The contemporaneous
utility function

Ut = (Ct/At)1−τ − 1
1− τ + ln

(
Mt

Pt

)
−Ht+s

has three arguments: consumption Ct, hours worked Ht and real
money holdingsMt/Pt. The marginal utility of additional consump-
tion and money is positive, whereas more labor reduces utility. The
utility function is additively separable such that the linearly approx-
imate Euler equation can be readily interpreted as a New-Keynesian
IS curve (see Driscool (2000) or Ireland (2004) for a discussion). τ
measures the relative risk aversion of the household.11 Furthermore,
consumption is considered with respect to a habit stock represented
by the level of technology At. This improves the reaction of output
and consumption to various shocks in so far as the impulse-responses
exhibit a hump-shaped pattern. The dynamic behavior of the model
in the short term is both qualitatively and statistically more realis-
tic (see Fuhrer (2000) or McCallum and Nelson (1999) for further
discussion). Productivity At is the driving force of the economy and
11 1/τ = d[ln(Ct+1/Ct)]/d[ln(−dCt+1/dCt)] is the intertemporal elasticity of

substitution.
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evolves according to a unit root process, lnAt−lnAt−1 = ln γ+ln zt.
On average, aggregate productivity grows with ln γ, while zt are in-
novations to this rate:

ln zt = ρz ln zt−1 + εz,t (3.7)

with εz,t ∼ iid(0, σ2
z). In each period the household’s assets are given

by money holdings of the previous period Mt−1 and the returns of
the risk-free government bond Bt−1. Formally, these are one-period
securities which pay gross interest Rt−1 in the following period. The
household takes the real wage Wt as given and supplies perfectly
elastic labor service to the intermediate goods firms. In return, she
receives real labor income in the amount of WtHt and, additionally,
aggregated residual profits Dt from the firms, since it is assumed
that the firms are owned by the household. Income and wealth
are used to finance (i) consumption Ct given its price Pt, (ii) new
domestic bonds Bt and (iii) new money holdings Mt. Lastly, the
household pays a lump-sum tax to the government. In total, this
defines the (real) budget constraint

Ct + Mt

Pt
+ Bt
Pt

+ Tt
Pt

= WtHt +Dt + Mt−1
Pt

+ Rt−1Bt−1
Pt

. (3.8)

Maximizing the objective function (3.6) subject to the budget con-
straint (3.8) yields

(
Ct
At

)−τ 1
At︸ ︷︷ ︸

Uct

= βEt

 Rt
πt+1

(
Ct+1
At+1

)−τ 1
At+1︸ ︷︷ ︸

Uct+1

 , (3.9)

Wt =
(
Ct
At

)τ
At, (3.10)(

Mt

Pt

)−1
= (Ct/At)−τ

At

(
Rt − 1
PtRt

)
. (3.11)
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Equation (3.9) is the Euler equation of intertemporal optimality.
It reflects the trade-off between consumption and savings. If the
household saves a (marginal) unit of consumption, she can con-
sume Rt/πt+1 units in the following period. The marginal utility
of consuming today is equal to U ct , whereas consuming tomorrow
has expected marginal utility of Et

[
U ct+1

]
. Discounting expected

marginal utility with β, the household must be indifferent between
both choices in the optimum. Equations (3.10) and (3.11) reflect in-
tratemporal optimality. On the one hand, the optimal choice for the
labor supply: the real wage must be equal to the marginal rate of
substitution between labor and consumption. On the other hand, a
New-Keynesian LM curve: real money demand depends positively
on consumption (relative to habit) and negatively on the interest
rate. Due to preferences being additively separable in the utility
function, money holding will not enter in any of the other structural
equations. Equation (3.11) then becomes completely recursive to
the rest of the system of equations and can be omitted.

Final good sector

A representative firm aggregates all intermediate goods into a final
consumption good using a Dixit and Stiglitz (1977) aggregator:

Yt =

 1∫
0

(Y j
t )1−v dj


1

1−v

. (3.12)

Let P jt denote the price of intermediate good Y j
t , then the demand

function for good Y j
t can be derived from the cost minimization as

Y j
t =

(
P jt
Pt

)−1
v

Yt. (3.13)
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Obviously, 1
v is the elasticity of demand for each intermediate good

Y j
t . Inserting this into (3.12) yields

Pt =

 1∫
0

(P jt )
v−1
v dj


v
v−1

. (3.14)

Pt is a composite index of all intermediate goods prices and can thus
be interpreted as the price for final good Yt.

Intermediate goods sector

Each firm has market power for its produced good Y j
t and maximizes

expected profits given a linear production function:

Y j
t = AtN

j
t . (3.15)

At is the common exogenous parameter of productivity and N j
t is

the input of hours worked compensated by the real wage Wt. Fur-
thermore, to introduce nominal price rigidities into the model, the
firms face quadratic price adjustment costs as in Rotemberg (1982):

ACjt = φ

2

(
P jt

P jt−1
− π

)2

Y j
t .

π ≥ 1 denotes the rate of inflation in equilibrium, which is targeted
by the monetary authority. If the firm links its price to inflation,
there are no adjustment costs. φ ≥ 0 is, therefore, a measure of
nominal price rigidity in the economy. It is taken into consideration
that the firms are owned by the household. Accordingly, βsQt+s|t is
the present value of a unit of consumption in period t+s or, respec-
tively, the marginal utility of an additional unit of profit; therefore

Qt+s|t ≡
UCt+s
UCt

=
(
Ct+s
Ct

)−τ ( At
At+s

)1−τ
. (3.16)
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and in particular Qt|t = 1. UCt+s is the value of an additional unit
of profits in period t + s, while UCt is the marginal utility of an
additional unit of consumption. In other words, UCt are the costs
of transforming a unit of consumption into additional profits. The
factor Qt+s|t defines this as a ratio, which is known as the (marginal)
Tobin-Q (Tobin, 1969). Each firm chooses the required amount of
labor N j

t and the price P jt to maximize the present value of expected
future profits. It takes into consideration the production function
(3.15), the supply of labor given in equation (3.10), and the demand
for its good given in equation (3.13). In summary, real profit Dj

t+s
of an intermediate goods producer is given by:

Dj
t+s = βsQt+s|t︸ ︷︷ ︸

discount factor

P
j
t+s
Pt+s

Y j
t+s︸ ︷︷ ︸

revenues

−Wt+sN
j
t+s︸ ︷︷ ︸

labor costs

− φ2

(
P jt+s

P jt+s−1
− π

)2

Y j
t+s︸ ︷︷ ︸

price adjustment costs


(3.17)

The condition of optimality is then equal to

(1− 1
v

)
Y j
t

1
Pt

+ 1
v

(
Ct
At

)τ
Y j
t

(
P jt
Pt

)−1 1
Pt

−φ
(
P jt

P jt−1
− π

)
1

P jt−1
Y j
t + φ

2v

(
P jt

P jt−1
− π

)2

Y j
t

(
P jt
Pt

)−1 1
Pt


+ φβEtQt+1|t

[(
P jt+1

P jt
− π

)
P jt+1

(P jt )2
Y j
t+1

]
= 0. (3.18)
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Assuming flexible prices (φ = 0) this simplifies to:

P jt = 1
1− vPt

(
Ct
At

)τ (3.10)= 1
1− vPt

Wt

At
. (3.19)

Without adjustment costs, each firm sets its price P jt as a mark-
up 1/(1− v) over marginal costs WtPt/At. Introducing adjustment
costs, however, the price will be set as a mark-up on an average of
future expected marginal costs.

Government sector

The government consists of two institutions, a monetary and a fiscal
authority. The monetary authority sets the nominal interest rate Rt
using an interest rate feedback rule in the fashion of Taylor (1993):

Rt = R∗
1−ρR
t RρRt−1e

εR,t (3.20)

Two specifications for R∗t are considered:

R∗t =

rπ
∗ ( πt

π∗
)ψ1

(
Yt
Y ∗t

)ψ2 (output-gap rule)

rπ∗
( πt
π∗
)ψ1

(
Yt

γYt−1

)ψ2 (output-growth rule)

The first specification assumes that the monetary authority responds
to inflation deviations as well as deviations of output Yt from po-
tential output Y ∗t , which is the output level in absence of nominal
rigidities (φ = 0). In the second specification, the central bank does
not react to the output gap, but to deviations of output growth
from its equilibrium steady state γ. ψ1 and ψ2 are the correspond-
ing weights, while ρR measures the persistence of the interest rate.
εR,t ∼ iid(0, σ2

R) is a monetary policy shock.
The revenue side of fiscal policy is characterized by lump-sum

taxes, issuance of new government bonds and seignorage on money
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holdings. These are used to finance public expenditures PtGt. The
government budget is therefore equal to

PtGt︸ ︷︷ ︸
expenditures

= Tt︸︷︷︸
taxes

+Bt −Rt−1Bt−1︸ ︷︷ ︸
new bonds

+Mt −Mt−1︸ ︷︷ ︸
seignorage

.

Real government spending are assumed to evolve stochastically as a
ratio ζt ∈ [0; 1] of output, Gt = ζtYt, such that

Yt
Yt −Gt

= 1
1− ζt

=: gt. (3.21)

By assumption, the log of gt follows an AR(1)-process:

ln(gt) = (1− ρg) ln(g) + ρg ln(gt−1) + εg,t (3.22)

with εg,t ∼ iid(0, σ2
g) and ρg measuring persistence.

Measurement equations

Lastly, the model needs to be linked to data. It is assumed that
quarterly data is available for the (i) quarter-on-quarter growth rate
of per capita GDP (Y GRt), (ii) annualized inflation rate (INFLt)
and (iii) annualized nominal interest rate (INTt). These observable
variables are linked to the model equations:

Y GRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt),
INFLt = π(A) + 400π̂t,
INTt = π(A) + r(A) + 4γ(Q) + 400R̂t.

The parameters γ(Q), r(A) and π(A) are accordingly linked to γ, β
and π:

γ = e
γ(Q)
100 , β = e−

r(A)
400 , π = e

π(A)
400 (3.23)

Additionally, it is assumed that the target rate for inflation corre-
sponds to the inflation rate in equilibrium: π = π∗.
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Symmetric equilibrium

All intermediate goods producing firms make identical choices with
respect to prices and labor inputs. Hence, one can omit the index
j, i.e. Y j

t = Yt, N j
t = Nt, P jt = Pt and πt = Pt/Pt−1. Furthermore,

the market clearing conditions have to hold for all periods. That
is, Ht = Nt, Bt = 0 and Mt −Mt−1 = 0. Given these conditions,
equation (3.17) can be simplified to Dt = Yt−WtHt− φ

2 (πt − π)2 Yt.
The budget of the fiscal authority in equilibrium is equal to Gt = Tt

Pt
,

while the budget (3.8) of the household is then given by

Yt = Ct +Gt + φ

2 (πt − π)2 Yt. (3.24)

Potential output Y ∗t is obtained under the assumption of flexible
prices, i.e. setting φ = 0. Inserting (3.19) and (3.21) in (3.24)
yields:

Y ∗t = (1− v)
1
τAtgt. (3.25)

The optimality condition (3.18) of the intermediate goods producers
simplifies to

1 = 1
v

[
1−

(
Ct
At

)τ]
+ φ(πt − π)

[(
1− 1

2v

)
πt + π

2v

]

− φβEt

 Ct+1
At+1
Ct
At

−τ Yt+1
At+1
Yt
At

(πt+1 − π)πt+1

 . (3.26)

Structural form

Equations (3.7), (3.9), (3.20), (3.22), (3.24) and (3.26) characterize
the optimal dynamics of the four endogenous variables Yt, Ct, πt, Rt
and the two exogenous processes gt and zt. The functional form
implies that Yt and Ct follow a unit root process due to the unit root
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in At. Since the following analysis focuses on stationary variables,
all variables are detrended relative to aggregate productivity, i.e.
yt = Yt

At
and ct = Ct

At
. Now, in the absence of shocks, the economy

converges to a constant steady state which is given by:

γ
(3.7)= At+1

At
, r

(3.9)= γ

β
, c

(3.19)= (1− v)
1
τ , R

(3.20)= rπ, y
(3.25)= c · g. (3.27)

Let ĉt = ln(ct/c), ŷt = ln(yt/y), ĝt = ln(gt/g), π̂t = ln(πt/π), R̂t =
ln(Rt/R) and ẑt = ln(zt/1) denote log deviations of a variable from
steady state, then the structural equations can be reformulated to:

0 = 1− v
vφπ2

(
eτĉt − 1

)
−
(
eπ̂t − 1

) [(
1− 1

2v

)
eπ̂t + 1

2v

]
+ βEt

(
eπ̂t+1 − 1

)
e−τĉt+1+τĉt+ŷt+1−ŷt+π̂t+1

(3.28)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t

+ (1− ρR)ψ2

{
(ŷt − ĝt) + εR,t

(ŷt − ŷt−1 + ẑt) + εR,t

(3.29)

1 = Et
[
e−τ ĉt+1+τ ĉt+R̂t−ρz ẑt−π̂t+1

]
(3.30)

eĉt−ŷt = e−ĝt − φπ2g

2
(
eπ̂t − 1

)2
(3.31)

ĝt = ρg ĝt−1 + εg,t (3.32)
ẑt = ρz ẑt−1 + εz,t (3.33)

Y GRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt), (3.34)
INFLt = π(A) + 400π̂t, (3.35)
INTt = π(A) + r(A) + 4γ(Q) + 400R̂t (3.36)

EtεR,t+1 = 0 (3.37)
Etεg,t+1 = 0 (3.38)
Etεz,t+1 = 0. (3.39)

Use is made of the fact that for any variable xt = xex̂t .
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Mapping into DSGE framework

In summary, equations (3.28) to (3.39) represent a system of twelve
nonlinear expectational equations. There are three exogenous states
R̂t, ĝt and ẑt, and one endogenous state variable ŷt. The controls
are ĉt, π̂t, Y GRt, INFLt and INTt. Note that only Y GRt, INFLt
and INTt are assumed to be observable. There are three stochas-
tic innovations: a monetary εR,t, a fiscal εg,t and a technologi-
cal shock εz,t with standard deviations σR, σg and σz. Further-
more, I set the perturbation parameter equal to the standard devi-
ation of the shock on technology. Thus, the definition and ordering
of variables is given by ut = (εR,t, εg,t, εz,t)′, xt = (ŷt, R̂t, ĝt, ẑt)′,
yt = (ĉt, π̂t, Y GRt, INFLt, INTt)′, σ = σz and

η =

σR/σz 0 0
0 σg/σz 0
0 0 1

 , Sobs =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


with observables equal to Sobs · yt. The steady state of this model is
given by ŷ = R̂ = ĝ = ẑ = ĉ = π̂ = 0, Y GR = γ(Q), INFL = π(A),
INT = π(A) + r(A) + 4γ(Q). I will consider identification of the
parameter vector θ at the local point θ0 and prior specification given
in Table 3.2. The code contains three model specifications:

1. All structural shocks are Gaussian.
2. All structural shocks are Gaussian and Gaussian measurement

errors are added to the model (EtεY GR,t+1 = 0, EtεINFL,t+1 =
0 and EtεINT,t+1 = 0).

3. All structural shocks are t-distributed with df = 10 degrees of
freedom and the prior for df is uniform with lower bound 8
and upper bound 20.
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Table 3.2: Parameters, priors and bounds for An/Schorfheide (2007)

Parameters Prior specification Bounds
θ θ0 Density Para (1) Para (2) Lower Upper
τ 2.00 Gamma 2.00 0.50 1e-5 10
φ 50 Gamma 50 20 1e-5 100
ψ1 1.50 Gamma 1.50 0.25 1e-5 10
ψ2 0.125 Gamma 0.50 0.25 1e-5 10
ρR 0.75 Beta 0.50 0.20 1e-5 0.99999
ρg 0.95 Beta 0.80 0.10 1e-5 0.99999
ρz 0.90 Beta 0.66 0.15 1e-5 0.99999
r(A) 1.00 Gamma 0.80 0.50 1e-5 10
π(A) 3.20 Gamma 4.00 2.00 1e-5 20
γQ 0.55 Normal 0.40 0.20 -5 5

100σR 0.2 InvGamma 0.30 4.00 1e-8 5
100σg 0.6 InvGamma 0.40 4.00 1e-8 5
100σz 0.3 InvGamma 0.40 4.00 1e-8 5
ν 0.10 Beta 0.10 0.05 1e-5 0.99999
c/y 0.85 Beta 0.85 0.10 1e-5 0.99999

Notes: Para (1) and (2) list the means and the standard deviations for Beta,
Gamma, and Normal distributions; the upper and lower bound of the support
for the Uniform distribution; s and v for the Inverse Gamma distribution, where
℘IG(σ|v, s) ∝ σ−v−1e−vs

2/2σ2
. The effective prior is truncated at the boundary

of the determinacy region.

Comparison to Smets and Wouters (2007)

The An and Schorfheide (2007) model is a simplified version of the
widely-cited Smets and Wouters (2007) model. Since current state-
of-the-art DSGE models like the NAWM model (Christoffel et al.,
2008), the EAGLE model (Gomes et al., 2012) or the GIMF model
(Laxton et al., 2010) build upon Smets and Wouters (2007), it is
worthwhile to outline the differences to An and Schorfheide (2007).

The largest differences apply to the labor and capital market.
In Smets and Wouters (2007)’s model, households perform as mo-
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nopolists for labor service and set wages according to their decision
problem. Furthermore, Smets and Wouters (2007) account for wage
rigidities by using a Calvo (1983) rule, where only a certain pro-
portion of households is able to adjust their wages at each period.
Therefore, a continuum of households is used instead of a represen-
tative household as in the An and Schorfheide (2007) model. In
addition to governmental bonds, Smets and Wouters (2007) imple-
ment the households ability to accumulate capital. For that matter,
households choose between saving in bonds or investing in their cap-
ital stock, which is rented out to the intermediate goods producing
firms. The households receive a return on their investment and the
firm’s output increases according to their production function. The
final good sector is almost identical in both models despite replac-
ing the Dixit and Stiglitz (1977) aggregator by the more general
aggregator developed in Kimball (1995). The intermediate sector
differs in two details. On the one hand, the firm’s production tech-
nology accounts for the capital stock as well as the labor input. A
Cobb-Douglas production function is used lessened by a fix cost.
On the other hand, Smets and Wouters (2007) model price rigidi-
ties by a Calvo (1983) rule similar to the wage instead of quadratic
price adjustment costs. Furthermore, Smets and Wouters (2007)
embed various different shocks in the model equations allowing for
more degrees of freedom in their Bayesian estimation exercise. In
comparison, Smets and Wouters (2007) is more elaborate but also
significantly more complex. An and Schorfheide (2007)’s model en-
compasses many features of modern DSGE models none the less. In
particular, it focuses on the analysis of monetary policy, which is
modelled as a feedback rule in the fashion of Taylor (1993).



Chapter 4

Higher-order statistics for
DSGE models

Since a Gaussian process is completely characterized by its first
two moments, most linear DSGE models focus on Gaussian inno-
vations for simplicity.12 If, however, one relaxes the assumption
of linearity or uses non-Gaussian innovations, it is natural to ana-
lyze whether it is possible to exploit information from higher-order
moments for the calibration, estimation and identification of param-
eters. Researchers in mathematics, statistics and signal processing
have developed tools, called higher-order statistics (HOS), to solve
detection, estimation and identification problems when the noise
source is non-Gaussian or one is faced with nonlinearities; however,

12 Two notable exceptions are Curdia et al. (2014) and Chib and Rama-
murthy (2014) who estimate two standard linear DSGE models with Stu-
dent’s t-distributed errors and conclude that these models outperform their
Gaussian counterparts. The code can handle this case as well, since a
t-distributed random variable can be represented as the product of two in-
dependent random variables, an inverse Gamma distributed variable and a
Gaussian one. See Appendix D for details.

35
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applications in the macroeconometric literature are rather sparse.13

The basic tools of HOS are cumulants, which are defined as the
coefficients in the Taylor expansion of the log moment generating
function in the time domain; and polyspectra, which are defined as
Fourier transformations of the cumulants in the frequency domain.

In this chapter, I derive closed-form expressions for uncondi-
tional third- and fourth-order moments, cumulants and correspond-
ing polyspectra for non-Gaussian and/or nonlinear DSGE mod-
els. I limit the exposition to fourth-order statistics, since third-
order cumulants and the bispectrum capture nonlinearities (or non-
Gaussianity) for a skewed process, whereas the fourth-order cumu-
lants and the trispectrum can be used in the case of a non-Gaussian
symmetric probability distribution. Regarding the approximation
of nonlinear DSGE models I focus on the pruning scheme of section
2.2, since the pruned state-space (PSS from now on) is a linear, sta-
tionary and ergodic state-space system. In the PSS, however, Gaus-
sian innovations do not imply Gaussian likelihood, leaving scope
for higher-order statistics to capture information from nonlinearities
and non-Gaussianity. In the following exposition I focus on Taylor
approximations and pruning up to second-order, since an extension
beyond second-order is – apart from tedious notation – straightfor-
ward. Accordingly, the procedures are demonstrated by means of
the An and Schorfheide (2007) model, see Chapter 3.2 for the model
description. Using both the Gaussian as well as Student’s t distri-
bution as the underlying shock process, I compare the theoretical
results with simulated higher-order moments. I focus particularly
on skewness and excess kurtosis in the simulations, since these are
13 For introductory literature and tutorials on HOS, see the textbooks of

Brillinger (2001), Nikias and Petropulu (1993), Priestley (1983) and the
references therein. Most theoretical and applied econometric literature is
either concerned with tests for normality (e.g. Bao (2013); Rusticelli et al.
(2008)) or method of moments estimation (e.g. Dagenais and Dagenais
(1997); Erickson and Whited (2002)).
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typical measures an applied researcher would like to match in a cal-
ibration exercise. On the other hand auto- and cross-skewness as
well as kurtosis may contain valuable information in an estimation
exercise.14

4.1 Moments, cumulants and polyspectra

Reconsider the model framework of Chapter 2. Proposition 1 ex-
presses the solution of a DSGE model as the linear time-invariant
state-space system. Focusing on mean zero variables the PSS is
given by

z̃t+1 = Az̃t +Bξt+1 (4.1)
ỹt+1 = Cz̃t +Dξt+1 (4.2)

with states zt, controls yt and stochastic innovations ξt. A tilde
denotes deviations from the unconditional mean, e.g. ỹt := yt −
E(yt). For the sake of notation, all control variables are assumed
to be observable. The vector of innovations ξt has E(ξt) = 0 and
finite covariance matrix E(ξtξ′t) =: Σξ. Furthermore, ξt is kth-order
white noise with finite higher-order moments, which implies yt is a
kth-order stationary process.15

Formally, the kth-order (k = 2, 3, 4) cumulants of the kth-order
stationary, mean zero vector process z̃t (t1, t2, t3 ≥ 0) are given by

14 Mutschler (2015a) demonstrates the procedures by means of the Smets
and Wouters (2007) model for a first-order approximation, the An and
Schorfheide (2007) model for a second-order approximation and the neo-
classical growth model for a third-order approximation.

15 This is basically an extension of the usual covariance stationarity assump-
tion. See also Priestley (1983, p. 105) for a formal definition of stationary
up to order k.
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the nkz vectors Ck,z as

C2,z(t1) := E[z̃0 ⊗ z̃t1 ],
C3,z(t1, t2) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ],

C4,z(t1, t2, t3) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ⊗ z̃t3 ]− P ′nz (C2,z(t2)⊗ C2,z(t3 − t1))
− C2,z(t1)⊗ C2,z(t2 − t3)− Pnz (C2,z(t3)⊗ C2,z(t1 − t2)),

where Pnz = Inz ⊗ Un2
z×nz and Un2

z×nz is a (n3
z × n3

z) permutation
matrix with unity entries in elements [(i − 1)nz + j, (j − 1)n2

z], i =
1, . . . , n2

z and j = 1, . . . , nz, and zeros else. Here, I adopt the no-
tation of Swami and Mendel (1990) and store all product-moments
of a mean zero vector-valued process in a vector using Kronecker
products.16 There is an intimate relationship between moments and
cumulants: If two probability distributions have identical moments,
they will have identical cumulants as well. In particular, the second
cumulant is equal to the autocovariance matrix and the third cu-
mulant to the autocoskewness matrix. The fourth-order cumulant,
however, is the fourth-order product-moment (autocokurtosis ma-
trix) less permutations of second-order moments. In general, for cu-
mulants above three, lower-order cumulants need to be known. Nev-
ertheless, using cumulants is preferable for several reasons. For in-
stance, all cumulants of a Gaussian process of order three and above
are zero, whereas the same applies only to odd product-moments.
Furthermore, the cumulant of two statistically independent random
processes equals the sum of the cumulants of the individual pro-
cesses (which is not true for higher-order moments). And lastly,
cumulants of a white noise sequence, such as ξt, are Kronecker delta
functions, so that their polyspectra are flat (Mendel, 1991).17

16 For example, the second moments of z̃t can either be stored in a nz × nz
matrix E(z̃t · z̃′t) =: Σz or in the n2

z × 1 vector E(z̃t ⊗ z̃t) = vec(Σz); this
notion naturally carries over to higher orders.

17 For a mathematical discussion of using cumulants instead of moments in
terms of ergodicity and proper functions, see Brillinger (1965).
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Assuming that Ck,z(t1, . . . , tk−1) is absolutely summable, the kth-
order polyspectrum Sk,z is defined as the (k-1)-dimensional Fourier
transform of the kth-order cumulant

Sk,z(ω1, .., ωk−1) := (2π)1−k
∞∑

t1=−∞

..

∞∑
tk−1=−∞

Ck,z(t1, .., tk−1) · e−i
∑k−1

j=1 ωjtj ,

with ωj ∈ [−π;π] and imaginary i (see Swami et al. (1994) for
further details). The second-, third- and fourth-order polyspectra
are called the power spectrum, bispectrum and trispectrum, respec-
tively. The power spectrum corresponds to the well-studied spectral
density, which is a decomposition of the autocorrelation structure
of the underlying process (Wiener-Khinchin theorem). The bispec-
trum can be viewed as a decomposition of the third moments (auto-
and cross-skewness) over frequency and is useful for considering sys-
tems with asymmetric nonlinearities. In studying symmetric non-
linearities, the trispectrum is a more powerful tool, as it represents
a decomposition of (auto- and cross-) kurtosis over frequency. Fur-
thermore, both the bi- and trispectrum will be equal to zero for
a Gaussian process, such that departures from Gaussianity will be
reflected in these higher-order polyspectra.

Standard results from VAR(1) systems and insights from higher-
order statistics can be used regarding the computation of uncondi-
tional cumulants and polyspectra. The kth-order cumulants of ξt
are

Ck,ξ(t1, . . . , tk−1) =
{

Γk,ξ if t1 = · · · = tk−1 = 0,
0 otherwise,

and corresponding polyspectra

Sk,ξ(ω1, . . . , ωk−1) = (2π)1−kΓk,ξ

are flat.18

18 For the computation of Γk,ξ see also Appendix D.
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Letting [⊗kj=1X(j)] = X(1) ⊗ X(2) ⊗ · · · ⊗ X(k) for objects X(j),
Swami and Mendel (1990) show that the cumulants of the state
vector z̃t

Ck,z(t1, . . . , tk−1) = [⊗k−1
j=0A

tj ] · Ck,z(0, . . . , 0)

are given in terms of their zero-lag cumulants

Ck,z(0, . . . , 0) = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ

which can be computed efficiently using iterative algorithms for gen-
eralized Sylvester equations (see Appendix E). Furthermore, there
is considerable symmetry (by using appropriate permutation matri-
ces); in particular, all second-order cumulants can be computed from
t1 > 0, all third-order cumulants from t1 ≥ t2 > 0 and all fourth-
order cumulants from t1 ≥ t2 ≥ t3 > 0. Since there is a linear
relationship between ỹt and z̃t−1 in (4.2), expressions for the kth-
order cumulants of observables are obtained in closed-form. That
is, for tj > 0

Ck,y(0, .., 0) = [⊗kj=1C]Ck,z(0, .., 0) + [⊗kj=1D]Γk,ξ, (4.3)
Ck,y(t1, .., tk−1) = [⊗kj=1C]Ck,z(t1, .., tk−1). (4.4)

Stacking all theoretical second, third and fourth cumulants into vec-
tors yields

m2(θ, T + 1) =
(
C2,y(0)′, .., C2,y(T )′

)′
, (4.5)

m3(θ, T + 1) =
(
C3,y(0, 0)′, .., C3,y(T, T )′

)′
, (4.6)

m4(θ, T + 1) =
(
C4,y(0, 0, 0)′, .., C4,y(T, T, T )′

)′
. (4.7)

Regarding the computation of polyspectra, consider the vector mov-
ing average representation (VMA) of z̃t =

∑∞
j=0A

jBξt−j . Using
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equation (4.2) and lag operator L, the VMA for the control vari-
ables is given by ỹt =

∑∞
j=0CA

jBξt−j−1 + Dξt = Hξ(L−1)ξt with
transfer function

Hξ(z) = D + C (zInz −A)−1B for z ∈ C. (4.8)

Setting zj = e−iωj , with imaginary i and ωj ∈ [−π;π], the Fourier
transformations of the cumulants of ỹt, i.e. the power spectrum S2,y,
bispectrum S3,y and trispectrum S4,y, are obtained as:

S2,y = (2π)−1 [H(z−1
1 )⊗H(z1)] Γ2,ξ, (4.9)

S3,y = (2π)−2 [H(z−1
1 · z

−1
2 )⊗H(z1)⊗H(z2)] Γ3,ξ, (4.10)

S4,y = (2π)−3 [H(z−1
1 · z

−1
2 · z

−1
3 )⊗H(z1)⊗H(z2)⊗H(z3)] Γ4,ξ. (4.11)

Again, there is considerable symmetry easing the computations. To
approximate the interval [−π;π], I divide it into N subintervals to
obtain N + 1 frequency indices with ωs denoting the sth frequency
in the partition. The bispectrum can be computed from s1 ≤ s2
and the trispectrum from s1 ≤ s2 ≤ s3 (sj=1,. . . ,N + 1; j = 1, 2, 3),
since these determine all other spectra through permutations. The
computations of the bispectrum can be accelerated further by noting
that the sum ωs1 + ωs2 contains many duplicate elements, since
ωsj ∈ [−π;π]. Thus, one does not need to do the computations for
all N(N + 1)/2 runs, but rather for a much smaller set. Similarly,
there is no need to evaluate all N(N+1)(N+2)/6 possible values of
ωs1 + ωs2 + ωs3 for the trispectrum but only the unique values. See
Chandran and Elgar (1994) for a thorough discussion of principal
domains of polyspectra.
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4.2 Monte-Carlo analysis

In this section I demonstrate the formulas by a Monte-Carlo analy-
sis using the DSGE model by An and Schorfheide (2007) for a first-
and a second-order approximation. It is well known that simulating
higher-order moments requires both a large sample size as well as
many simulation runs, since one deals with outliers taken to the pow-
ers of three and above.19 Therefore, I simulate 1 000 trajectories of
the PSS with 10 000 data points each (after discarding 1 000 points)
and using antithetic shocks.20 I focus on the original parametriza-
tion of the model, however, I impose both the Gaussian as well as
Student’s t distribution with 15 degrees of freedom as the underly-
ing shock process. I then compute the sample variance, skewness
and excess kurtosis of the stochastic innovations and observables
of each trajectory and average over all Monte-Carlo runs. Lastly,
these are compared to their theoretical counterparts using the for-
mulas derived in this chapter.21 Table 4.1 summarizes the results of
a first-order approximation. The empirical variance, skewness and
excess kurtosis are very close to their theoretical values no matter
which distribution is imposed on the shocks. Table 4.2 summarizes
the results for a second-order approximation. Here the discrepancies
19 Bai and Ng (2005) derive sampling distributions for the coefficients of skew-

ness and kurtosis for serially correlated data. They also assume stationarity
up to eighth order and show in a simulation exercise of an AR(1) process
that test statistics for skewness have acceptable finite sample size and power,
whereas for kurtosis the size distortions are tremendous. See also Bao (2013)
on finite sample biases.

20 In the code one can change all settings regarding the Monte-Carlo frame-
work in a graphical user-interface, i.e. number of trajectories, sample size,
burn-in phase and use of antithetic shocks.

21 Note that the second-order zero-lag cumulant of yt is equal to the covari-
ance matrix. Skewness can either be computed via standardized product
moments or via the ratio of the third zero-lag cumulant and the 1.5th power
of the second zero-lag cumulant. Furthermore, excess kurtosis is the fourth
zero-lag cumulant normalized by the square of the second-order cumulant.
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in the skewness and in particular excess kurtosis are more evident:
matching higher-order moments in simulation studies can be hard.
Increasing the number of Monte-Carlo runs as well as sample size
would on the one hand increase the precision but on the other hand
also the computational time. For an applied researcher who uses a
trial-and-error approach to match third-order or fourth-order char-
acteristics of an observable variable in a calibration exercise this is
unfeasible. Hence, the expressions derived in this chapter are a con-
venient and fast way to compute higher-order statistics for linear
and nonlinear (pruned) DSGE models.
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Chapter 5

Analytical derivatives

The rank criteria in Chapters 7 and 8 require derivatives of all so-
lution matrices, cumulants and polyspectra with respect to the vec-
tor of deep parameters θ. Following ideas from Iskrev (2008) and
Schmitt-Grohé and Uribe (2012, Suppl. Mat., Sec. A.3), f as well
as the Jacobian of f are functions of θ and of the steady state vector
xuy(θ) := (x(θ)′, u(θ)′, y(θ)′)′, which is also a function of θ. Thus,
implicitly, f(xuy(θ), θ) = 0. Differentiating yields

df := ∂f(xuy(θ), θ)
∂θ′

= ∂f

∂xuy′
∂xuy

∂θ′
+ ∂f

∂θ′
= 0

⇔ ∂xuy

∂θ′
= −

[
∂f

∂xuy′

]−1 ∂f

∂θ′
.

This expression can easily be obtained analytically using, for exam-
ple, MATLAB’s symbolic toolbox. The derivative of the Jacobian
Df̄(xuy(θ), θ) with respect to θ is then given by

dDf := ∂vec(Df(xuy(θ), θ))
∂θ′

= ∂vec(Df)
∂xuy′

∂xuy

∂θ′
+ ∂vec(Df)

∂θ′
.
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Note that dDf can be partitioned

Df̄ :=

 ∂f̄

∂x′t+1
,

∂f̄

∂u′t+1︸ ︷︷ ︸
=:f1

,
∂f̄

∂y′t+1︸ ︷︷ ︸
=:f2

,
∂f̄

∂x′t
,
∂f̄

∂u′t︸ ︷︷ ︸
=:f3

,
∂f̄

∂y′t︸︷︷︸
=:f4


to obtain df1, df2, df3 and df4. This approach can be extended to
calculate the analytical derivative of the Magnus-Neudecker Hessian
with respect to θ, since H := Hf(xuy(θ), θ):22

dH := ∂vec(Hf(xuy(θ), θ))
∂θ′

= ∂vec(Hf)
∂xuy′

∂xuy

∂θ′
+ ∂vec(Hf)

∂θ′
.

The accompanying MATLAB code writes all analytical derivatives,
using symbolic expressions, into script files for further evaluation.
For numerical derivatives, a two-sided central difference method is
employed as outlined in Appendix F. Note that from now on I use
the following notation: dX := ∂vec(X)

∂θ′ for the derivative of a matrix.
Furthermore, I repeatedly use the commutation matrix Km,n which
transforms the m×n matrix A, such that Km,nvec(A) = vec(A′)23,
and the following useful results from matrix differential calculus:

Theorem 1 (Derivative of products). Let A be a (m×n) matrix,
B a (n× o) matrix, C a (o× p) matrix and D a (p× q) matrix,
then the derivative of vec(ABCD) with respect to θ is given by

d(ABCD) = (D′C ′B′ ⊗ Im)dA+ (D′C ′ ⊗A)dB
+ (D′ ⊗AB)dC + (Iq ⊗ABC)dD

Proof. Magnus and Neudecker (1999, p. 175).
22 Another (faster) approach is based on generalized Sylvester equations in

the manner of Ratto and Iskrev (2012).
23 See Magnus and Neudecker (1999, p. 46) for the definition and Magnus and

Neudecker (1999, p. 182) for an application regarding derivatives.
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Theorem 2 (Derivative of Kronecker products). Let X be a
(n × q) matrix, Y a (p × r) matrix and Kr,n the commutation
matrix of order (r, n), then the derivative of vec(X ⊗ Y ) with
respect to θ is given by

d(X ⊗ Y ) = (Iq ⊗Kr,n ⊗ Ip) [(Inq ⊗ vec(Y ))dX + (vec(X)⊗ Ipr)dY ]

Proof. Magnus and Neudecker (1999, p. 185).

Moreover, I make use of the following algorithm:
Algorithm 1 (Derivative of partitioned matrix). Let X be a
(m × n) matrix, partitioned such that X =

[
X1 X2

]
, with X1

being (m× n1) and X2 being (m× n2), n = n1 + n2.

1. Derive dX1 and dX2; dX1 is of dimension (mn1×nθ) and
dX2 of dimension (mn2 × nθ).

2. For i = 1, . . . , nθ

(a) Denote the ith column of dX1 and dX2 as dXi
1 and

dXi
2 respectively. dXi

1 is of dimension (mn1× 1) and
dXi

2 of dimension (mn2 × 1).

(b) Reshape dXi
1 into a (m× n1) matrix [dXi

1]
(m×n1)

and dXi
2

into a (m× n2) matrix [dXi
2]

(m×n2)
.

(c) Store vec
(

[dXi
1]

(m×n1)
[dXi

2]
(m×n2)

)
into the ith column of a

matrix dX.

3. dX is the derivative of X with respect to θ and is of di-
mension (mn× nθ).



50 CHAPTER 5. ANALYTICAL DERIVATIVES

Derivatives of first-order solution matrices Let nv = nx+nu,
n = nv + ny, Kn,q be the commutation matrix of order (n, q),

F = −(h′vg′v ⊗ In)df2 − (h′v ⊗ In)df1 − (g′v ⊗ In)df4 − df3,

gv = [gx gu] and hv =
(

hx hu
0

nu×nx
0

nu×nu

)
, then the derivatives of the

first-order solution matrices are given by:[
dgv
dhv

]
=
[
(h′v ⊗ f2) + (Inv ⊗ f4) (Inv ⊗ f2gv) + (Inv ⊗ f1)

]−1
· F,

dg′v = Kny ,nvdgv, dh′v = Knv ,nvdhv,

dhtv = (Inv ⊗ (hv)t−1)dhv + (h′v ⊗ Inv)d(ht−1
v ), t ≥ 2.

See Schmitt-Grohé and Uribe (2012, Suppl. Mat., Sec. A.3) for the
derivation of these results. Since I use indices to keep track of terms
belonging to states and shocks in hv and gv, it is straightforward to
compute dhx, dhu, dgx and dgu by simply selecting the corresponding
rows of dhv and dgv accordingly.

Derivatives of second-order solution matrices Differentiat-
ing (2.7) with respect to θ requires the analytical derivatives of Q−1,
R, S−1 and T . See Appendix B for the derivation of these objects.
Then, the analytical derivatives of the second-order solution matri-
ces with respect to θ can be summarized as

d

[
vec(gvv)
vec(hvv)

]
= −Q−1dR− (vec(R)′ ⊗ Inn2

v
)d(Q−1),

d

[
hss
gss

]
= −(T ′ ⊗ In)d(S−1)− S−1dT.

The Jacobians of Gxx, Gxu, Gux, Guu, Hxx, Hxu, Hux and Huu are
simple permutations of the rows in dgvv and dhvv, see Appendix C
for an example.
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Derivatives of pruned state-space solution matrices Differ-
entiating A, B, C, D, c and d with respect to θ is a straightforward
application of Algorithm 1 for partitioned matrices. This requires
the analytical derivatives of first- and second-order solution matri-
ces (see above), as well as of Σ, which is given analytically by the
model.

Derivatives of means Differentiating the means of zt (2.14) and
yt (2.16) with respect to θ requires the analytical derivatives of the
pruned state-space solution matrices:

dµz =
(
[(Inz −A)′]−1 ⊗ (Inz −A)−1

)
dA+ (Inz −A)−1dc,

dµy = dȳ + Cdµz + (µ′z ⊗ Iny)dC + dd.

Derivatives of cumulants Differentiating the cumulants for yt
of order k, requires dΣξ (given in Appendix B), derivatives of Kro-
necker products of the solution matrices (due to Theorem 2), and
the Jacobians of the zero-lag cumulants, dCk,z(0, . . . , 0), for which I
make use of generalized Sylvester equations as outlined in Appendix
E. The analytical derivatives of the cumulants in equations (4.3) and
(4.4) are then a simple application of Theorem 1.

Derivatives of polyspectra Differentiating Sk,y with respect to
θ in equations (4.9), (4.10) and (4.11) analytically, I divide the in-
terval [−π;π] into N subintervals to obtain N + 1 frequency indices
with ωs denoting the sth frequency in the partition. The following
steps can be conducted simultaneously using parallel computation:
For each zj = e−iωsj (j = 1, . . . , k − 1; sj = 1, . . . N + 1, s1 ≤ · · · ≤
sk−1, imaginary i) I first compute the derivative of Hξ(zj) and its
conjugate transpose, using the expression in Appendix B. The Ja-
cobians dSk,y(ω1, . . . , ωk−1) then follow due to Theorem 1.





Chapter 6

Assumptions and
definitions of local
identifiability

For the identification methods in the following chapters it is im-
portant to first state the underlying assumptions and definitions of
local identifiability.

Assumption 1 (Determinacy). Let Θ be the parameter space
that yields the determinacy region of the DSGE model.
Assumption 2 (Stationary up to order four). The vector yt
(t=1,. . . ,T) is stationary to at least order four.

The first assumption is standard in the DSGE literature due to the
rational expectation hypothesis, see Milani (2012) for a discussion.
The second assumption needs some clarification. It requires ob-
servables to have finite and constant first, second, third and fourth
moments, that only depend on the time difference but not on time
itself. This is basically an extension of the usual covariance sta-
tionarity assumption. The literature on ARCH(∞) discusses some
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practical aspects of fourth-order stationarity (see e.g. Teyssiére and
Kirman (2011, Ch. 1) and the references therein). The HOSA tool-
box for MATLAB provides guidance on the computational aspects
of sample estimates and testing constancy of higher-order moments,
cumulants and polyspectra.

Definition 1 (Identifiability from first four moments). θ0 ∈ Θ
is said to be locally identifiable from the first four moments (or
cumulants) of yt, if there is an open neighborhood of θ0 in which

µy(θ0) = µy(θ1), m3(θ0, T ) = m3(θ1, T ),
m2(θ0, T ) = m2(θ1, T ), m4(θ0, T ) = m4(θ1, T ),

imply θ0 = θ1 for any θ1 ∈ Θ.
Definition 2 (Identifiability from mean and polyspectra). θ0 ∈
Θ is said to be locally identifiable from the mean, power spectrum,
bispectrum and trispectrum of yt, if there is an open neighborhood
of θ0 in which

µy(θ0) = µy(θ1), S3,y(ω1, ω2; θ0) = S3,y(ω1, ω2; θ1),
S2,y(ω1; θ0) = S2,y(ω1; θ1), S4,y(ω1, ω2, ω3; θ0) = S4,y(ω1, ω2, ω3; θ1),

for all ωj ∈ [−π, π] (j=1,2,3) imply θ0 = θ1 for any θ1 ∈ Θ.
I follow Deistler (1976) and define identifiability as a concept in
moments, cumulants and polyspectra, not in probability laws.24 I
call θ0 ∈ Θ and θ1 ∈ Θ observationally equivalent (with respect to
data {yt}), if they generate the same first four moments, cumulants
or polyspectra of yt. Definition 1 states identifiability for a finite
number of moment conditions in the time domain (similar to Iskrev
(2010a)), whereas Definition 2 corresponds to the complete set of
dynamic properties in the frequency domain (similar to Qu and
Tkachenko (2012)).
24 See Deistler and Seifert (1978) for a thorough discussion of identifiability

and estimability.



Chapter 7

Identification of linearized
DSGE models: a review
and departure from
Gaussianity

Reconsider the model framework of Chapter 2 and Proposition 1 for
a first-order approximation:

x̂t+1 = hxx̂t + huut+1, (7.1)
ŷt+1 = gxx̂t + guut+1. (7.2)

I will refer to this model framework as the linearized DSGE model
with states xt, controls yt and stochastic innovations ut. A hat
denotes deviations from steady state, e.g. x̂t+1 = xt+1 − x̄. Note
that in a first-order approximation there is certainty-equivalence,
i.e. the unconditional means are equal to their steady state values.
For the sake of notation, all control variables are assumed to be
observable. The vector of stochastic innovations ut has E(ut) = 0
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and finite covariance matrix E(utu′t) =: Σ. Furthermore, ut is at
least 4th-order white noise with finite moments, which implies yt is
at least a 4th-order stationary process. Γk,u denotes the kth-order
cumulant of ut and Sk,y the kth-order polyspectrum of yt.

Several formal methods have been proposed to check identifica-
tion in linearized DSGE models via (i) observational equivalent first
and second moments (Iskrev, 2010a), (ii) observational equivalent
spectral densities (Qu and Tkachenko, 2012), (iii) implications from
control theory for observational equivalent spectral densities in min-
imal systems (Komunjer and Ng, 2011) and (iv) Bayesian indicators
(Koop et al., 2013). The first three approaches derive rank con-
ditions similar to the classical literature on identification, whereas
the fourth approach uses insights from Bayesian asymptotic theory.
Even though all methods seem similar, there has been – to my knowl-
edge – no study of the advantages and drawbacks of implementing
the different methods. Furthermore, one important limitation is in-
herent to all methods: they focus on first and second moments (or
equivalently the mean and power spectrum) only. This is due to the
fact that the majority of papers which use linearized DSGE mod-
els assume Gaussian innovations, and in linear Gaussian models the
first two moments completely characterize the data. Furthermore,
most estimation methods in the econometric DSGE literature – e.g.
full-information likelihood methods or limited-information methods
like impulse-response matching or GMM – exploit information from
the first two moments of data only. However, Curdia et al. (2014)
and Chib and Ramamurthy (2014) show that using Student’s t-
distributed errors in otherwise standard linearized DSGE models
outperforms the corresponding Gaussian models. From an identi-
fication point of view this implies that higher moments, cumulants
and polyspectra can help with the estimation and identification of
linearized non-Gaussian DSGE models. To this end, the contribu-
tion of this chapter is threefold.
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First, it provides a comprehensive review of all methods. Method-
ically, I first derive all criteria in the same framework and model
representation of Chapter 2. Second, using results from Chapter 4,
I extend the criteria of Iskrev (2010a) and Qu and Tkachenko (2012)
in order to additionally check identification from higher-order mo-
ments in linearized DSGE models with non-Gaussian innovations.
Third, the comparison and extension are demonstrated by means of
two linearized DSGE models that are known to have lack of identi-
fication in their Gaussian version.

Computationally, the methods heavily depend on the accuracy of
computing derivatives and ranks as well as appropriate optimization
and MCMC methods. In particular, while Iskrev (2010a) already
uses analytical derivatives, Komunjer and Ng (2011) and Qu and
Tkachenko (2012) rely on numerical methods. Therefore, for a rig-
orous comparison, I exploit ideas and expressions of Chapter 5 to
discuss the effect of analytical compared to numerical derivatives
for each method based on ranks. For the Bayesian learning rate in-
dicator I address different optimization and MCMC techniques and
how these influence the findings. I argue that in theory the methods
should yield the same results, however, in practice the criteria can
differ due to numerical issues. Therefore, I propose a robust proce-
dure, composed of all methods, to pinpoint (sets of) non-identified
as well as weakly-identified parameters. The suggested approach is
a useful tool for applied researchers to get robust insight into the
identifiability of a linearized DSGE model before taking it to data.

7.1 Rank conditions

All methods based on ranks exploit the dynamic structure of the
linearized DSGE model to define mappings and to establish condi-
tions for local injectivity of the mappings. The point of departure,
however, is different: Iskrev (2010a)’s approach is based in the time



58 CHAPTER 7. IDENTIFICATION OF LINEARIZED DSGE

domain, whereas Qu and Tkachenko (2012) derive conditions in the
frequency domain. Komunjer (2012)’s approach can be considered
to be in between both approaches, since they establish conditions
without actually computing autocovariances or the spectral den-
sity. I will now state the assumptions, objectives and proofs of each
method in the form of propositions. The corresponding remarks
contain additional intuition regarding the derivation and lay out
possible extensions. Lastly, I compare the methods theoretically
and give some guidance on computational aspects.

7.1.1 Time domain

Iskrev (2010a)’s method checks whether the derivatives of the mean
and the predicted autocovariogram of the observables with respect
to the vector of identifiable parameters has a rank equal to the num-
ber of identifiable parameters. The basic idea is to check whether
the mapping from the parameter vector θ to the vector of theoretical
first two moments (2.16) and (4.5) is injective. In Proposition 2 I
state this formally and extend this idea to higher-order cumulants
up to fourth order.

Proposition 2 (Iskrev linearized DSGE). Consider Assump-
tions 1 and 2 for the linearized DSGE model given in equations
(7.1) and (7.2). Let q ≤ T and stack the mean (2.16) and cu-
mulants (4.5), (4.6) and (4.7) into a vector

m(θ, q) :=
(
µ′y m2(θ, q)′ m3(θ, q)′ m4(θ, q)′

)′
.

Assume that m(θ, q) is a continuously differentiable function of
θ ∈ Θ. Let θ0 ∈ Θ be a regular point. Furthermore, assume there
is an open neighborhood of θ0 in which m(θ0, q) has a constant
rank. Then θ is locally identifiable at a point θ0 from the first
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four cumulants (or moments) of yt, if and only if for q ≤ T

M(q) := ∂m(θ0, q)
∂θ′

has a full column rank equal to the number of parameters.

Proof. Follows Theorem 2 in Iskrev (2010a) and Theorem 6 in
Rothenberg (1971).

Proposition 2 checks whether the first four moments of the linearized
DSGE model are uniquely determined by the deep parameters, given
a finite number of lags. It therefore corresponds to Definition 1, i.e.
identifiability from the first four cumulants or moments given a fi-
nite number of moment conditions. This immediately gives rise to
a necessary condition: the number of identifiable parameters does
not exceed the dimension of m(θ, T ). The criteria can also be used
for conditional identification, that is, identification for only a subset
of parameters. It is also possible to check whether the parameters
are identifiable through (i) the mean and second or (ii) the mean
and third or (iii) the mean and fourth moments of observables, sep-
arately. I denote the corresponding matrices as M2(q), M3(q) and
M4(q). Note that, given the Gaussian distribution for ut, the propo-
sition reduces to the original Theorem 2 of Iskrev (2010a), since all
higher-order cumulants are zero in this case. Iskrev (2010a, Corol-
lary 1) also proposes a different necessary condition, that is, checking
injectivity of the mapping from the deep parameters to the solution
matrices. To do so, all elements of the steady state, the solution
matrices as well as all parameters of the stochastic innovations that
depend on θ are stacked into a vector

τ(θ) :=
(
ȳ′ vec(hx)′ vec(hu)′ vec(gx)′ vec(gu)′ Γ′2,u Γ′3,u Γ′4,u

)′.
Consider the factorization M(q) = ∂m(θ,q)

∂τ(θ)′
∂τ(θ)
∂θ′ . An immediate

corollary implies that a point θ0 is locally identifiable, only if the
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rank of J := ∂τ(θ0)
∂θ′ at θ0 is equal to nθ. This condition is, however,

only necessary, because τ may be unidentifiable. Lastly, in the ap-
plications I will also exclude the mean restrictions. Therefore, J ,
M(q), M2(q), M3(q) andM4(q) denote the corresponding Jacobians
without the mean restrictions.

7.1.2 Frequency domain

Similar to Iskrev (2010a)’s approach, Qu and Tkachenko (2012) fo-
cus on the dynamic structure of the DSGE model, but they work
in the frequency domain. Their criteria is therefore based on injec-
tivity of the mapping from θ to the mean (2.16) and to the spectral
density (4.9). Proposition 3 states this formally. I extend their
ideas and check whether the mean, power spectrum, bispectrum
and trispectrum of the observables are uniquely determined by the
deep parameters at all frequencies.

Proposition 3 (Qu & Tkachenko linearized DSGE). Consider
Assumptions 1 and 2 for the linearized DSGE model given in
equations (7.1) and (7.2). Assume that the power spectrum (4.9),
bispectrum (4.10) and trispectrum (4.11) are continuous in ω ∈
[−π;π] and continuous and differentiable in θ ∈ Θ. Let

G(θ) = d (µy(θ))′ d (µy(θ)) +
∫ π

−π
d (S2,y(ω1; θ))∗ d (S2,y(ω1; θ)) dω1

+
∫ π

−π

∫ π

−π
d (S3,y(ω1, ω2; θ))∗ d (S3,y(ω1, ω2; θ)) dω1dω2

+
∫ π

−π

∫ π

−π

∫ π

−π
d (S4,y(ω1, ω2, ω3; θ))∗ d (S4,y(ω1, ω2, ω3; θ)) dω1dω2dω3

and θ0 ∈ Θ be a regular point. Furthermore, assume there is
an open neighborhood of θ0 in which G(θ0) has a constant rank.
Then, θ is locally identifiable at a point θ0 from the mean, power
spectrum, bispectrum and trispectrum of yt, if and only if G(θ0)
is nonsingular, i.e. its rank is equal to the number of parameters.



7.1. RANK CONDITIONS 61

Proof. Follows Theorem 2 in Qu and Tkachenko (2012) and The-
orem 1 in Rothenberg (1971). Note that I use the complex
conjugate ∗, since the polyspectra are in general complex ma-
trices. dS∗k,ydSk,y is a Gram matrix, therefore it is Hermitian
and positive semidefinite. Furthermore, there is an isomorphism
between complex and real matrices such that the (nky × 1) vec-
tor Sk,y can be transformed into a (2nky × 2) real matrix SRk,y
(see Brillinger (2001, p. 71) and Pintelon and Schoukens (2001,
p. 553)). The following equivalence holds: S∗k,ySk,y ⇔ SR

′
k,ySRk,y.

Furthermore 2 · rank(S∗k,ySk,y) = rank(SR′k,ySRk,y). The same
is true if one considers the differential of Sk,y with respect to
θj . The proof requires rank(dSR′k,ydSRk,y) to be nonsingular, i.e.
full rank, for θ0 to be locally identified. This is equivalent to
rank(dS∗k,ydSk,y) = nθ.

This proposition corresponds to Definition 2, i.e. identifiability
from the complete set of dynamic properties. Qu and Tkachenko
(2012) provide several extensions. In particular, identification can
be checked from a subset of frequencies only, conditional on other
parameters being fixed, or including general constraints on the pa-
rameters. Moreover, one can check whether the parameters are
identifiable through the mean and individual spectra. I denote the
corresponding matrices as G2(θ0), G3(θ0) and G4(θ0). Given the
Gaussian distribution for ut, this proposition reduces to the original
Theorem 2 of Qu and Tkachenko (2012), since the bi- and trispec-
trum are zero in this case. Note that Qu and Tkachenko (2012) use
numerical derivatives, whereas I am able to use analytical derivatives
due to the results of Chapter 5. For both cases, however, it is still
necessary to divide the interval [−π;π] into sufficient subintervals to
numerically approximate the integrals. Lastly, in the applications
I will also exclude the mean restrictions. Therefore, G(θ0), G2(θ0),
G3(θ0) and G4(θ0) denote the corresponding Jacobians without the
mean restrictions. The dimension, however, is always nθ × nθ.
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7.1.3 Minimal system

Based upon results from control theory for minimal systems Ko-
munjer and Ng (2011) derive restrictions implied by equivalent spec-
tral densities (or equivalent autocovariances) without actually com-
puting them as in Iskrev (2010a) or Qu and Tkachenko (2012).25

Formally, consider the minimal linearized DSGE model, i.e. the
model which dynamics are entirely driven by the exogenous states
x2,t and the stochastic innovations ut:

x̂2,t = h̃xx̂2,t−1 + h̃uut, (7.3)
ŷt = g̃xx̂2,t−1 + g̃uut. (7.4)

This minimal system has the smallest possible dimension nx2 of the
state vector that is able to capture all dynamics and has the familiar
state-space representation. As DSGE models are based upon mi-
crofoundations, nx2 is not hard to determine for small and medium-
sized DSGE models (e.g. the variables which columns in hx consist
only of zeros are endogenous states).26

Proposition 4 (Komunjer & Ng linearized DSGE). Consider
Assumptions 1 and 2 for the minimal linearized DSGE model
given in equations (7.3) and (7.4). Let θ0 ∈ Θ and θ1 ∈ Θ be reg-
ular points. Set up a nx2 ×nx2 similarity transformation matrix
T and a nu × nu full column rank matrix U = Lu(θ0)VLu(θ1)−1

25 In fact, they have two conditions depending on the relation between the
number of shocks and observables. I will focus on singular and squared
systems (nu ≤ ny) and assume fundamental innovations. For instance, in a
model with anticipated shocks one has to use the innovation representation
of the model and derive a slightly different rank condition by reparametriz-
ing the solution system. Since the innovation representation depends on
the existence of a discrete algebraic Ricatti equation, it is not possible to
derive analytical derivatives. Moreover, in the commonly used squared case
(nu = ny) both conditions coincide.

26 For the derivation of this model representation, formal conditions and some
practical issues regarding the minimal state vector see Appendix G.
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such that h̃x(θ1) = T h̃x(θ0)T −1, h̃u(θ1) = T h̃u(θ0)U , g̃x(θ1) =
g̃x(θ0)T −1, g̃u(θ1) = g̃u(θ0)U , and Σ(θ1) = U−1Σ(θ0)U−1′ with
Lu being the Cholesky decomposition of Σ = LuL

′
u and V a

constant matrix such that VV ′ = I. Assume that the mapping
δ : Θ×Rn

2
x2 ×Rn2

u → Rn∆ is continuously differentiable in θ ∈ Θ
with n∆ := (nx2 + ny)(nx2 + nu) + nu(nu + 1)/2. Let

∆(θ0) :=

 ∂µy(θ0)
∂θ′ 0ny×nx2

2
0ny×nu

∂δ(θ0,Inx2 ,Inu )
∂θ′

∂δ(θ0,Inx2 ,Inu )
∂vec(T )′

∂δ(θ0,Inx2 ,Inu )
∂vec(U)′



=



∂µy(θ0)
∂θ′ 0ny×nx2

2
0ny×nu

∂vec(̃hx)
∂θ′ h̃′x ⊗ Inx2

− Inx2
⊗ h̃x 0n2

x2×n
2
u

∂vec(̃hu)
∂θ′ h̃′u ⊗ Inx2

Inu ⊗ h̃u
∂vec(g̃x)
∂θ′ −Inx2

⊗ g̃x 0nynx2×n2
u

∂vec(g̃u)
∂θ′ 0nynu×n2

x2
Inu ⊗ g̃u

∂vech(Σ)
∂θ′ 0(nu(nu+1)/2)×n2

x2
−2Ξnu [Σ⊗ Inu ]


=:

 ∂µy(θ0)
∂θ′ 0ny×nx2

2
0ny×nu

∆Λ(θ0) ∆T (θ0) ∆U (θ0)


with Ξnu being the left-inverse of the n2

u+nu(nu+1)/2 duplication
matrix Gnu for vech(Σ). Assume there is an open neighborhood
of θ0 in which ∆(θ0) has a constant rank. Then, θ is locally
identifiable at a point θ0 from the first two moments (or the mean
and power spectrum) of yt, if and only if ∆(θ0) is nonsingular.

Proof. Follows Proposition 3 in Komunjer and Ng (2011). The
proof uses well-established results from control theory for ob-
servational equivalence (e.g. Hannan (1971)). The key insight
behind the proof is that the spectral density can be factorized
and due to left invertibility the matrix V is not a polynomial
matrix of unknown degree, but a constant matrix.
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This proposition corresponds to Definition 2, i.e. identifiability from
the complete set of dynamic properties. Formally, θ is locally iden-
tifiable from the spectral density of yt at a point θ0 if and only if
δ(θ, T, U) is locally injective at (θ0, Inx2

, Inu). A sufficient condition
is thus, that the matrix of partial derivatives of δ(θ, T, U) has full
column rank at (θ0, Inx2

, Inu). The intuition behind this mathemati-
cal result is that the solution matrices have to be sensitive to changes
in parameters. Moreover, equivalent spectral densities (4.9) arise if
either (i) for a given size of shocks each transfer function (4.8) is
potentially obtained from a multitude of quadruples of solution ma-
trices, or (ii) there are many pairs of transfer functions and variances
of shocks that jointly generate the same spectral density. Therefore,
the objective in Proposition 4 contains three blocks:

1. The rank of ∆Λ(θ0) must equal nθ for the reduced-form being
locally invertible at θ or, stated differently, for the solution
matrices being sensitive to changes in parameters.

2. The rank of ∆T (θ0) must equal n2
x2 so that the identity matrix

is the only local similarity transformation. In other words,
there exists a unique quadruple generating the z-Transform
for the spectral density.

3. The rank of ∆U (θ0) must equal n2
u so that the spectral fac-

torization is locally uniquely determined. This indicates that
there exists a unique pair of z-Transform and dynamic struc-
ture that generates the spectral density.

Notice that the mean is incorporated as additional equations for
solving the same number of unknowns; hence, changing the order but
not the rank condition. The same is true for any other (nonlinear)
restrictions, as long as they can be expressed in form of a matrix
that augments the rows of the objective function. Put together,
this yields a necessary order condition nθ + n2

x2 + n2
u ≤ n∆ + ny
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as well as a necessary and sufficient rank condition: rank(∆(θ0)) =
nθ+n2

x2 +n2
u. Lastly, in the applications I will also exclude the mean

restrictions. Therefore, ∆(θ0) denotes the corresponding Jacobian
without the mean restrictions.

7.1.4 Discussion

All propositions derive necessary as well as sufficient conditions for
local identification of linearized DSGE models, based on ranks of
Jacobians. It is well-established that given some regularity condi-
tions there is a one-to-one mapping between the time and frequency
domain, in particular, between the autocovariances and spectral
density due to the Wiener-Khinchin theorem. Thus, in theory, all
criteria should generally yield the same results. However, they re-
quire different settings and leave scope for various numerical er-
rors and imprecisions. Komunjer and Ng (2011)’s assumptions are
the strictest as they rely on minimality and left-invertibility. Even
though as a consequence of Kalman’s decomposition theorem the
minimal representation always exists (see e.g. Antsaklis and Michel
(2007, sec. 6.2.3)), deriving and checking the minimality of the
model can be tedious in practice.27 Iskrev (2010a)’s and Qu and
Tkachenko (2012)’s methods are therefore more straightforward as
they only assume the existence of the VMA representation of the
DSGE model. Moreover, having the expressions of Chapter 4, I
am able to extend their criteria to include restrictions from higher-
order cumulants and polyspectra. Strictly speaking Komunjer and
Ng (2011)’s as well as Qu and Tkachenko (2012)’s criteria are only
valid for an infinite sample and frequencies, since both focus on
the complete dynamic structure. Iskrev (2010a)’s approach, on the
other hand, is also valid for a finite number of restrictions. This
27 In a model with non-fundamental innovations (ny < nu) the solution has

to be reparameterized to get the innovation representation of the model
yielding even more scope for numerical issues.
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gives rise to numerical issues, since choosing the lag order T , as well
as the number of subintervals N for the frequencies, may change the
results. In practice, however, this is not a question of extremely sen-
sitive results, but rather one of speed: the higher T or N , the more
time the calculations need.28 The different interpretations of Iskrev
(2010a)’s and Komunjer and Ng (2011)’s criteria can further be used
as diagnostics for model building. For instance, J as well as ∆Λ
check the mapping from the structural parameters to the solution
matrices. The evaluation yields parameters that do not influence
the reduced-form solution and may thus be obsolete. A researcher
is hence able to reparameterize the model prior to estimation. More-
over, given a known shock a rank deficient ∆ΛT := (∆Λ ∆T ) indi-
cates that two structures (e.g. two different policies) might cause
the same impulse response of the model, so one has to be careful
interpreting the importance of shocks. In contrast, given a rank de-
ficient ∆ΛU := (∆Λ ∆U ) one cannot be sure, whether it is the size
of the shock or a similar propagating mechanism, that yields the
same dynamic structure of the model. Qu and Tkachenko (2012)’s
test does not give such diagnostics, however, their approach can be
used for a quasi maximum likelihood estimation in the frequency
domain. Moreover, using a recursive Euler method it is possible
to depict observationally equivalent parameters using so-called non-
identification curves. These can be used to get insight into the size
of the local neighborhood of the unidentified parameters.

28 In most practical cases, T between 10 and 30 will be sufficient, since the
higher the lag, the less informative the identification restrictions. Further-
more, I experimented with different values for N and find that the results
in the applications hardly change. The reason is, that if θ0 ∈ Θ is identified
using only a subset of frequencies (small N), it is also identified if consid-
ering the full spectrum (N → ∞) (the converse is not true). Therefore, I
recommend starting with N = 10 000 for the power spectrum, N = 1 000
for the bispectrum, N = 100 for the trispectrum and increase N if the
results are unsatisfactory.
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I compute all Jacobians analytically as outlined in Chapter 5 or
numerically as outlined in Appendix F and then rescale the rows by
its largest element in absolute value. For calculating the ranks, I
use the singular value decomposition and count the nonzero entries
on the main diagonal. Obviously, this requires a specification of the
tolerance level, for which I use, on the one hand, a range from 1e-3 to
1e-15, and on the other hand, a robust tolerance level that depends
on the size of the matrix (max(size(X)) × eps(norm(X))), which
is also MATLAB’s default value. Strictly speaking, the criteria are
a yes or no condition. Loosely speaking, however, if a parameter
is identified for very large tolerance levels, then it is most likely
strongly identified. If it is identified only for very low levels, this
may indicate weak identification.29 In the case of rank deficiency,
one is able to pinpoint sets of problematic parameters by analyzing
the nullspace. This will be a vector of zeros, if a parameter does
not affect the objective at hand. Furthermore, the columns that
are linearly dependent indicate that these sets of parameters are
indistinguishable. While this approach, followed by Iskrev (2010a),
is computationally very fast, I found that in some cases, there were
redundancies in the subsets, since larger subsets may include smaller
ones and are not pinpointed separately. Thus, similar to Ratto and
Iskrev (2011) and Qu and Tkachenko (2012, Corollary 4), a more
robust method is to consider the power set and check the criteria
for all possible subsets of parameters in a recursive fashion. In my
experience, this brute-force approach yields more reliable results and
is computationally just slightly slower, because, if one finds a subset
of parameters that are not identified, one can exclude that subset

29 Note that this is not based on the literature on strength of identification, but
provides only a rough indication for subsets of strongly identified param-
eters. Nevertheless, these can be used as an initial guess for the methods
used, for instance, in Koop et al. (2013) and Qu (2014) to detect weak
identification.
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from higher-order subsets.30 In this line of thought, note that all
methods depend heavily on the solution matrices and suffer from
possible numerical instability of the solution algorithm. However,
since I use the same framework and algorithms across methods, this
effect is negligible.

Lastly, all procedures check only local identification.31 Thus,
it is necessary to ensure that the identification analysis is valid for
a sufficient range of parameters. Therefore, in the applications, I
check all criteria, given first a specific point (e.g. calibrated param-
eters or prior mean) and second, given many draws from a prespec-
ified prior domain of θ that yield a determinate solution. In this
way, one has a quasi-global flavor of the rank criteria for linearized
DSGE models. Also, most consistent estimators require only local
identification for their asymptotic properties to hold. Nevertheless,
even if all prior draws are identifiable, the model is still by no means
globally identified.

7.2 Bayesian identification criteria

It is well known that informative marginal priors are sufficient to
get well-defined posteriors even for non-identifiable parameters: “In
passing it might be noted that unidentifiability causes no real diffi-
culty in the Bayesian approach” (Lindley, 1972, p. 46). The usual

30 I implemented both procedures for all criteria in the code.
31 See Komunjer (2012) for issues regarding global identification. She uses re-

sults from unconditional moment restriction models (properness and home-
omorphism) to establish identification conditions in the fashion of GMM
identification conditions. Another attempt at global identification of DSGE
models is made by Qu (2014) who considers a frequency domain expression
for the Kullback-Leibler distance between two DSGE models and shows
that global identification fails if and only if the minimized distance equals
zero. However, both approaches are not very operable especially in terms
of computational costs compared to local identification.
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approach in the Bayesian literature is to compare the prior and pos-
terior distribution of a parameter. If they differ, there is apparent
learning, i.e. data seems to be informative about a parameter. How-
ever, as was shown by Kadane (1974) and Poirier (1998) this can
be misleading, since this is only valid if the priors are independent
and the parameter space is a product space. In other words, if these
conditions are not satisfied, then data-based learning about identi-
fiable parameters can spill over onto unidentified ones. Thus, one
has to be careful judging identification from apparent learning, i.e.
the posterior being different than the prior, a point also emphasized
by Canova and Sala (2009) for DSGE models. Therefore, following
Poirier (1998, Proposition 2) and Koop et al. (2013), in addition
to the usual comparison of posterior and prior, one can exploit the
fact that data is always conditionally uninformative for a subset of
non-identified parameters given a subset of identified parameters.
Let θ = (θ1, θ2) ∈ Θ, ℘(θ1, θ2) = ℘(θ1|θ2)℘(θ2) is the joint prior and
℘(θ1|y) is the posterior of θ1. Suppose θ1 is not identified, such that
the likelihood function depends only on θ2. Then

℘(θ1|y) =
∫

Θ(θ2)
℘(θ1|θ2, y)℘(θ2|y)dθ2

=
∫

Θ(θ2)
℘(θ1|θ2)℘(θ2|y)dθ2 = Eθ2|y [℘(θ1|θ2)] .

This result holds even in the case of prior dependence. In other
words, it is better practice to compare the properties of the poste-
rior of an unidentified parameter θ1 to the prior belief conditional
on some set of identified parameters. Unfortunately, in practice one
first has to find an identified parameter set. Moreover, this indica-
tor is only valid if the reduced-form is identified, which for DSGE
models is in general not true. Therefore, I will not follow up on this
approach in the applications, since either way the rank criteria al-
ready provide sets of non-identified parameters in a non-data driven
fashion.
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Koop et al. (2013) propose a more interesting indicator using im-
plications of Bayesian asymptotics. Naturally, identification should
become better as more data becomes available. With an infinite
sample the role of the prior vanishes and Bayesian asymptotics are
identical to the asymptotic distribution theory of maximum likeli-
hood theory. This insight can be used to derive an indicator, that
is focused on the rate at which learning, interpreted as increasing
posterior precision (defined as the inverse of the variance), occurs.

Proposition 5 (Bayesian learning rate indicator). Consider As-
sumptions 1 and 2 for the linearized DSGE model given in equa-
tions (7.1) and (7.2). Let θ0 = (θ1, θ2) ∈ Θ be a regular point.
Assume there is an open neighborhood of θ0 in which

τ(θ0) :=
(
ȳ′ vec(hx)′ vec(hu)′ vec(gx)′ vec(gu)′ Γ′2,u

)′
has a constant rank. Assume that the prior distribution of θ
is given by the multivariate normal density and the posterior
distribution is approximately normally distributed. Furthermore,
suppose θ2 is identified, whereas θ1 is weakly identified such that
the rank of ∂τ(θ0)

∂θ1
depends on the sample size T. For a fixed T it

can be full rank, but not for T →∞. Then

1. the posterior precision of θ1 divided by the sample size will
go to zero.

2. the posterior precision of θ2 divided by the sample size will
go to a constant.

Proof. See Proposition 2 of Koop et al. (2013). The idea is
that in the case of normal priors and identified parameters the
precision increases at the rate of the data size, whereas for not
or weakly identified parameters the rate is slower.

Intuitively, the more data is used, the more precisely one can esti-
mate a parameter. This implies a shrinking variance or increasing
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precision. According to Koop et al. (2013, Remark 2) Proposition
5 also holds for non-Gaussian priors, however, an exact expression
can only be derived for special cases.32 Implementing this indi-
cator in practice is straightforward: First, one simulates a large
data set (e.g. T = 10 000) and divides it into growing subsamples.
Then an estimator for the precision is calculated. I focus on the
Hessian at the posterior mode to compute the precision, since the
Hessian is equal to the asymptotic precision. Furthermore, when
using gradient-based methods to find the posterior mode, the Hes-
sian is a by-product of the optimization algorithm.33 This naturally
gives a second interpretation of this indicator: it exploits the struc-
ture of the information matrix, since the expectation of the Hessian
is equal to the information matrix.34 Therefore, a singular Hes-
sian indicates that the likelihood (or posterior density) is flat in the
direction of unidentified parameters. A different computational ap-
proach is to run a full-fledged Bayesian MCMC estimation and focus
on the variance of the posterior distribution of the parameters. I fol-
low standard practice and use a Random-Walk Metropolis-Hastings
sampling algorithm to estimate the model in a Bayesian fashion.
The algorithm is outlined in Appendix H. In the empirical appli-
cations, I calculate the indicator based on the Hessian method as
well as on the MCMC method to compare results. In this respect,
I follow closely Caglar et al. (2012) who use the Bayesian learning
rate indicator on the model of Smets and Wouters (2007).

32 For identification issues regarding different priors see also Onatski and
Williams (2010).

33 Andreasen (2010) discusses the use of non-gradient optimization methods
(CMA-ES and Simulated Annealing) for DSGE models and finds that these
often perform better. However, the algorithms have to be reformulated to
get the correct Hessian as the by-product.

34 See also Iskrev (2010b) for a data-independent interpretation of the infor-
mation matrix.
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7.3 Applications

The different methods are now demonstrated by means of two mod-
els that are known to have lack of identification: (i) the Kim (2003)
model and (ii) the An and Schorfheide (2007) model.

7.3.1 The Kim (2003) model

Reconsider the model of Section 3.1. In the original paper, Kim
(2003) log-linearizes this model and shows analytically that there is
observational equivalence between intertemporal and multisectoral
investment adjustment costs:

[W]hen a model already has a free parameter for intertemporal
adjustment costs, adding another parameter for multisectoral
adjustment costs does not enrich the model dynamics (Kim,
2003, p. 534).

Thus, in the linearized model, the set (θ, φ) is observationally equiv-
alent, since both parameters enter as a ratio φ+θ

1+θ into the linearized
solution. Therefore all ranks should be short by one. Table 7.1
confirms this analytical result throughout all identification tests for
the prior mean given in Table 3.1. Analyzing the nullspace of rank
deficient criteria yields unanimously the result that the combination
(θ, φ) is observational equivalent in the linearized model. This result
is robust across tolerance levels, as well as across the choice of deriva-
tives. Nevertheless there are discrepancies due to numerical issues.
For analytical derivatives this holds for tolerance levels as low as
1e-13 for Iskrev (2010a)’s and Komunjer and Ng (2011)’s approach
and even lower for Qu and Tkachenko (2012)’s approach. Regarding
numerical derivatives, there is a dependence on the differentiation
step: the smaller the step, the more likely one erroneously concludes
an identified model. This is not surprising, since the numerical er-
ror of the solution algorithm will be relative large compared to a
very small step size, and therefore loosing precision during the rank
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Table 7.1: Rank analysis: linearized Kim (2003) model

Iskrev Qu/Tkachenko
Tol J M2 M2 G2 G2

1e-03 6 (6,6,6) 6 (6,6,6) 6 (6,6,6) 4 (4,4,4) 4 (4,4,4)
1e-05 6 (7,6,6) 6 (6,6,6) 6 (6,6,7) 6 (6,6,6) 6 (6,6,6)
1e-07 6 (7,7,7) 6 (6,6,7) 6 (6,6,7) 6 (6,6,6) 6 (6,6,6)
1e-09 6 (7,7,7) 6 (6,6,7) 6 (6,7,7) 6 (6,6,6) 6 (6,6,7)
1e-11 6 (7,7,7) 6 (7,7,7) 6 (7,7,7) 6 (6,6,7) 6 (6,6,7)
1e-13 7 (7,7,7) 6 (7,7,7) 6 (7,7,7) 6 (6,6,7) 6 (6,6,7)
1e-15 7 (7,7,7) 6 (7,7,7) 7 (7,7,7) 6 (6,6,7) 6 (6,6,7)
rob 7 (7,7,7) 6 (7,7,7) 6 (7,7,7) 6 (6,6,7) 6 (6,6,7)
full 7 7 7 7 7

Komunjer/Ng
Tol ∆Λ ∆ΛT ∆ΛU ∆ ∆
1e-03 6 (6,6,6) 9 ( 9, 9, 9) 7 (7,7,7) 9 ( 9, 9, 9) 11 (11,11,11)
1e-05 6 (7,6,6) 10 (10,10,11) 7 (7,7,8) 10 (10,10,11) 11 (11,11,12)
1e-07 6 (7,7,7) 10 (10,10,11) 7 (7,7,8) 11 (11,11,12) 11 (11,11,12)
1e-09 6 (7,7,7) 10 (10,10,11) 7 (7,8,8) 11 (11,11,12) 11 (11,11,12)
1e-11 6 (7,7,7) 10 (11,11,11) 7 (8,8,8) 11 (12,12,12) 11 (12,12,12)
1e-13 7 (7,7,7) 10 (11,11,11) 8 (8,8,8) 11 (12,12,12) 11 (12,12,12)
1e-15 7 (7,7,7) 11 (11,11,11) 8 (8,8,8) 12 (12,12,12) 12 (12,12,12)
rob 7 (7,7,7) 10 (11,11,11) 8 (8,8,8) 11 (12,12,12) 12 (12,12,12)
full 7 11 8 12 12

Notes: Ranks with analytical derivatives for different tolerance levels Tol (rob
is robust level), lags in autocovariogram T = 30, subintervals N = 10 000. In
parenthesis are the corresponding ranks computed with numerical derivatives
given differentiation steps 1e-3, 1e-7 and 1e-11, respectively.
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computations. Even though Qu and Tkachenko (2012)’s approach is
in this regard most reliable, I strongly recommend using analytical
derivatives, since this yields numerically better results for all meth-
ods. In Figure 7.1, I repeat the exercise for a 100 random draws
from the prior domain. All criteria indicate that the set (θ, φ) are
not identifiable in a first-order approximation.

Note that I focus on the original propositions of Iskrev (2010a),
Komunjer and Ng (2011) and Qu and Tkachenko (2012), i.e. us-
ing theoretical information from the first two moments of data only.
Naturally, using higher-order statistics with Gaussian innovations
does not change results, since higher-order cumulants and polyspec-
tra are zero under the assumption of normality. On the other hand,
using the t-distribution as the underlying shock process yields the
same ranks as in Table 7.1. This is not surprising, since the rank
deficiency in this model is due to the first-order approximation. In
Chapter 8, I show that an approximation to the second-order yields
additional restrictions to identify θ and φ separately.

Lastly, Table 7.2 gives insight into the strength of identification
according to Proposition 5. I fix one parameter in the problematic
set, namely φ, in order to estimate posterior precisions for growing
datasets in an identified model. To this end, I generate one artificial
dataset of 10 000 observations and then estimate the model with
Bayesian methods using the first T = 20, 50, 100, 1 000 and 10 000
observations. The posterior precision should increase at a rate of T
for identified parameters, whereas for weakly identified parameters
it increases at a slower rate. In other words, average precision of
strongly identified parameters should tend to a constant, whereas
for weakly identified parameters it is heading towards zero. The
simulation reveals that φ is rather weakly identifiable, since the rate
at which the precision is updated is slower than the sample size.
This is particularly true for the priors specified in Table 3.1. The
other parameters seem to be strongly identified.
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Table

7.2:
Average

posterior
precision:

linearized
K
im

(2003)
m
odel

G
A
U
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N
P
R
IO

R
S

P
R
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B
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3.1
T

α
β

δ
θ
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a

σ
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β
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θ
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a

σ
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H
E
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N
M
E
T
H
O
D

H
E
SSIA

N
M
E
T
H
O
D

20
16.71

28.96
8·10

13
4.992

7.970
6.692

6.080
10.77

8·10
13

0.194
3.731

2.506
50

11.33
26.02

3·10
13

2.004
4.309

3.008
8.295

17.91
3·10

13
0.085

2.904
2.788

100
8.802

29.97
1·10

13
1.005

2.779
1.973

11.71
29.64

1·10
13

0.045
2.316

3.808
1
000

0.295
0.387

146.2
0.107

2.091
0.470

0.103
0.138

54.78
0.009

1.943
0.445

10
000

0.054
0.077

29.13
0.015

1.871
0.302

0.033
0.048

17.96
0.005

1.785
0.311

M
C
M
C

M
E
T
H
O
D

M
C
M
C

M
E
T
H
O
D

20
21.86

40.12
3·10

11
5.152

8.099
6.860

5.576
22.58

5·10
11

0.190
4.007

0.365
50

11.41
25.50

1·10
11

1.987
4.386

3.071
3.108

12.91
6·10

10
0.090

2.822
0.489

100
8.399

29.14
8·10

9
0.988

2.836
1.824

6.913
22.59

1·10
10

0.046
2.140

1.737
1
000

0.614
0.858

307.7
0.106

2.105
0.363

0.557
0.858

302.9
0.008

1.945
0.293

10
000

0.088
0.128

48.94
0.015

1.999
0.278

0.079
0.116

44.86
0.004

1.955
0.263

N
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φ
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m
ode
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H
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m
atrix,
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m
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a
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M
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A
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E
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.
H
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H
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M
C
M
C

m
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variances
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s
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m
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posterior
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A
R
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-W
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M
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M
H
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A
ppendix

H
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M
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20
000
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s,10
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draw
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m
ode
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H
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M
H
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.
T
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distribution’s
covariance

m
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that
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ratios
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20%
-

35%
.
G
aussian

priors
correspond

to
using

truncated
independent

norm
aldistributions

w
ith

m
ean

set
to

the
true

value
and

standard
deviation

equalto
0.1.

Truncation
corresponds

to
the

bounds
specified

in
Table

3.1.
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7.3.2 The An and Schorfheide (2007) model

This model is a prototypical DSGE model often cited in the liter-
ature concerning a lack of identification. The authors show that
(in the version outlined in Chapter 3.2) the set of parameters (ν, φ)
and the steady state ratio 1/g = c/y do not enter the linearized
solution. Komunjer and Ng (2011), Ratto and Iskrev (2011) and
Qu and Tkachenko (2012) also show that the coefficients entering
the Taylor-rule (ψ1, ψ2, ρR, σR) are not separately identifiable in the
linearized DSGE model. However, they all use a slightly different
version of the model (log-linearized model, simplified measurement
equations, different parametrization); hence, their results are not di-
rectly comparable. Therefore, I will focus on the original specifica-
tion in its nonlinearized form (equations (3.28) to (3.39)) and check
the identification criteria across different tolerance levels, expecting
rank deficiencies by three. Furthermore, I will distinguish two mod-
els: T R1 uses the output-gap rule and T R2 the output-growth rule
in the specification of monetary policy in equation (3.29).

Table 7.3 shows the results for model T R1 given analytical and
numerical derivatives with different differentiation steps. First, turn-
ing to analytical derivatives, all criteria yield correctly rank defi-
ciency by three. Looking into the nullspace confirms that c/y, the
set (ν, φ) and the Taylor rule coefficients (ψ1, ψ2, ρR, σR) are not
identifiable. The thresholds are 1e-15 for Iskrev’s and Komunjer
and Ng’s criteria and 1e-17 for Qu and Tkachenko’s test. For very
small, i.e. strict tolerance levels Iskrev’s and Komunjer and Ng’s
methods fail to detect the Taylor-rule coefficients. This issue be-
comes even more severe, when calculating the derivatives numeri-
cally. Now there is a trade-off between setting the differentiation
step too large (e.g. 1e-3), and thus possibly calculating the deriva-
tives imprecisely, or too small (e.g. 1e-11), such that the numerical
error from the solution algorithm possibly outweighs the differenti-
ation error. Both results in false rank calculation, as can be seen
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Table

7.3:
R
ank

analysis:
linearized

A
n/Schorfheide

(2007)
m
odelT

R
1

Iskrev
Q

u/T
kachenko

Tol
J

M
M

G
G

1e-03
13

(13,13,13)
9
(9,9,9)

12
(12,12,12)

7
(7,7,7)

10
(10,10,10)

1e-05
13

(14,13,13)
10

(10,10,12)
12

(12,12,13)
9
(9,9,9)

12
(12,12,12)

1e-07
13

(14,14,14)
10

(11,10,13)
12

(13,12,14)
10

(10,10,10)
12

(12,12,12)
1e-09

13
(14,14,14)

10
(12,12,13)

12
(14,13,14)

10
(10,10,11)

12
(12,12,12)

1e-11
13

(14,14,14)
10

(12,13,13)
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(14,14,14)
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(10,10,12)
12

(12,12,13)
1e-13

13
(14,14,14)
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(13,13,13)

12
(14,14,14)

10
(10,10,13)

12
(12,12,14)

1e-15
13

(14,14,14)
11

(13,13,13)
13

(14,14,14)
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(12,10,13)
12

(14,12,14)
robust

13
(14,14,14)

10
(12,13,13)

12
(14,14,14)

10
(11,10,13)

12
(12,12,14)

full
15

15
15

15
15

K
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g
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∆

Λ
∆

Λ
T

∆
Λ
U

∆
∆

1e-03
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(21,22,21)
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(22,22,22)
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(27,27,27)
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(30,30,30)
1e-05
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(11,11,11)
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(22,22,22)

20
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1e-07
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(13,11,11)
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20
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(29,28,31)
30
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20
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1e-13
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(13,13,13)
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(22,22,22)

20
(22,22,22)

28
(31,31,31)

30
(32,32,32)

1e-15
11

(13,13,13)
20

(22,22,22)
20

(22,22,22)
29

(32,31,31)
31

(32,32,32)
robust

11
(13,13,13)

20
(22,22,22)

20
(22,22,22)

28
(31,31,31)

30
(32,32,32)

full
15

24
24

33
33

N
otes:

R
anks

w
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for
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levels
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lags
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T
=
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subintervals

N
=

10
000.

In
parenthesis

are
the

corresponding
ranks

com
puted

w
ith

num
erical

derivatives
given

differentiation
steps

1e-3,1e-7
and

1e-11,respectively.
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in Table 7.3, where all tests fail to detect lack of identification of
the Taylor-rule coefficients even for mild tolerance levels. Using a
feasible trade-off for the numerical differentiation step (e.g. 1e-7),
the threshold of correctly determining rank-deficiency by three are
now 1e-7 for Iskrev’s and Komunjer and Ng’s criteria. Again Qu and
Tkachenko’s test is most reliable when using numerical derivatives.
So compared to the analytical case, one has to loosen the tolerance
level for the rank calculations or otherwise one gets wrong results.
Therefore, I am strongly in favor of analytical procedures and ad-
vise using them whenever feasible; the results are unanimously more
reliable even for stricter tolerance levels. Furthermore, J and ∆Λ
can be used for diagnostic issues of the model. J is rank-deficient by
two, i.e. clearly indicating that c/y and (ν, φ) do not enter neither
the mean nor the first-order solution matrices. ∆Λ is short by 4,
i.e. γ(Q), π(A), c/y and (φ, ν) do not enter the solution matrices.
Thus, I conclude that π(A) and γ(Q) are only identified via the mean
using the first-order approximation, which is in accordance to the
measurement equations (3.34), (3.35) and (3.36).

Table 7.4 shows the corresponding ranks for model T R2. Chang-
ing the specification of the Taylor rule yields rank shortage by two
across methods. Looking into the nullspace confirms that now only
c/y and the set (ν, φ) are not identifiable. The same result holds
when I repeat the analysis for 100 random draws from the prior
domain. As can be seen in Figure 7.2 for model T R1, the Tay-
lor rule coefficients enter the problematic sets, whereas Figure 7.3
indicates that for model T R2 the Taylor rule parameters are iden-
tified. Non-identification of the Taylor rule crucially depends on its
specification, a feature that will likely prevail in other models.

Note that I focus on the original propositions of Iskrev (2010a),
Komunjer and Ng (2011) and Qu and Tkachenko (2012), i.e. us-
ing theoretical information from the first two moments of data only.
Naturally, using higher-order statistics with Gaussian innovations
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7.4:
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linearized
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∆
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Figure
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does not change results, since higher-order cumulants and polyspec-
tra are zero under the assumption of normality. On the other hand,
using the t-distribution as the underlying shock process yields the
same ranks as in Table 7.1. An and Schorfheide, however, already ar-
gue that “the nonlinear approach is able to extract more information
on the structural parameters from the data” (An and Schorfheide,
2007, p. 164). In Chapter 8, I confirm these alluring results for-
mally. In particular, an approximation to the second-order yields
additional restrictions to identify all parameters of the model no
matter which specification of monetary policy is used.

Lastly, Tables 7.5 and 7.6 give insight into the strength of identi-
fication according to Proposition 5. First, I fix one parameter in each
of the three problematic sets of model T R1, namely c/y, φ and ρR, in
order to estimate posterior precisions for larger and larger datasets
in an identified model. To this end, I generate one artificial dataset
of 10 000 observations and then estimate the model with Bayesian
methods using the first T = 20, 50, 100, 1 000 and 10 000 of the
artificially generated observations. The posterior precision should
increase at a rate of T for identified parameters, whereas for weakly
identified parameters it increases at a slower rate. In other words,
average precision of strongly identified parameters should tend to a
constant, whereas for weakly identified parameters it is heading to-
wards zero. Both the estimation based on the Hessian as well as on
the MCMC algorithm reveal that τ is weakly identified. Moreover,
the MCMC method also indicates weak identification of ψ1 and r(A).
This is true for either using independent normal distributions or the
ones specified in Table 3.2 as priors.
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Table
7.5:
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p
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R
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7.4 Comparison
All criteria based on ranks yield similar results and one is able to
correctly uncover the sources of non-identification. Nevertheless, the
choice of tolerance level for rank computations and the use of ana-
lytical vs. numerical derivatives is a delicate one, changing results
slightly. Similarly, the Bayesian learning rate indicator depends cru-
cially on the ability of the optimizer to find the mode or the conver-
gence of the MCMC estimation. Having non-identifiable parameters
in the algorithms amplifies this problem. Therefore, I recommend
to first check the criteria based on ranks to find unidentifiable pa-
rameters and exclude these from the Bayesian analysis. In other
words, the Bayesian learning rate indicator is best used to check for
weak identification rather than for non-identification. In summary,
a comparative approach is worthwhile to get robust insight into the
model dynamics and dependencies.



Chapter 8

Identification of DSGE
models: the effect of
higher-order
approximation and
pruning35

Whereas there is a growing literature on the estimation of nonlinear
DSGE models (Andreasen, 2011, 2013; Fernández-Villaverde and
Rubio-Ramírez, 2007; Herbst and Schorfheide, 2014; Ivashchenko,
2014; Kollmann, 2015), all identification methods of Chapter 7 fo-
cus on the linear approximation of the DSGE model to the first
order. In this chapter, I show how to check rank criteria for a local
identification of nonlinear DSGE models, given higher-order approx-
imations and pruning. Reconsider the model framework of Chapter

35 The ideas and results of this chapter have been published in Mutschler
(2015b).
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2. Proposition 1 shows that the pruned state-space (PSS) is a linear,
stationary and ergodic state-space system, but with non-Gaussian
innovations (even if the underlying shock process ut is Gaussian).
From an identification point of view, this may yield additional re-
strictions on unconditional moments and polyspectra of the observ-
ables that can be used to identify (sets of) parameters which are not
identifiable in the linearized DSGE model.

Exploiting these insights, the contribution of this chapter is
twofold. First, I extend ideas from Iskrev (2010a) and Qu and
Tkachenko (2012) to establish rank criteria for higher-order approx-
imations, both in the time and in the frequency domains. Chapter
5 provides the analytical derivatives of all solution matrices, cumu-
lants and polyspectra of the PSS with respect to the deep parame-
ters of the model. In this manner, I am able to check identification,
given theoretical higher-order statistics of observables. I limit myself
to fourth-order statistics, since third-order cumulants and the bis-
pectrum capture nonlinearities (or non-Gaussianity) for a skewed
process, whereas the fourth-order cumulants and the trispectrum
can be used in the case of a non-Gaussian symmetric probability
distribution. Throughout the exposition, the focus is on a second-
order approximation, since extending ideas and propositions is –
apart from notation and computational implementation – concep-
tually straightforward for higher-order approximations. Second, to
demonstrate the propositions, all methods are applied to the exam-
ple models. In particular, I show that the parameters governing the
investment adjustment costs in Kim (2003), as well as all parameters
in An and Schorfheide (2007), can be identified from the mean and
second moments or power spectrum, as well as from higher-order
statistics of the PSS given a second-order approximation.

This chapter is also related to Morris (2014), who likewise de-
rives rank criteria for the pruned state-space (PSS) system, yet in
the manner of Komunjer and Ng (2011). The key differences be-
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tween my work and Morris (2014) can be summarized with respect
to three aspects. First, the perspective and system representation
is different, since Komunjer and Ng (2011)’s approach assumes a
minimal system. For the PSS, this requires the innovations repre-
sentation. My approach neither relies on a specific model framework
nor on a minimal system; thus, I do not need to reparametrize the
solution system. Second, the criteria derived in this chapter also
include unconditional third and fourth moments in the time domain
and the bi- and trispectrum in the frequency domain, whereas Mor-
ris (2014) uses only the first two moments. Third, the computations
are different. Since the innovation representation depends on the ex-
istence and computation of a discrete algebraic Ricatti equation, it
is not possible to derive analytical derivatives. Nevertheless, both
approaches come to similar conclusions, which should help build
confidence across potential users of the pruned state-space for esti-
mating nonlinear DSGE models.

8.1 Rank conditions
Since the pruned state-space (PSS) is a linear system with well-
defined statistical properties, the same criteria as for linearized DSGE
models can be checked, in particular for its mean, second-order mo-
ments and spectral density. In fact, I extend Iskrev (2010a)’s cri-
teria for third- and fourth-order cumulants and Qu and Tkachenko
(2012)’s criteria for the bi- and trispectrum of observables.

Proposition 6 (Iskrev PSS). Consider Assumptions 1 and 2
for the pruned state-space of a nonlinear DSGE model given in
equations (2.12) and (2.13). Let q ≤ T and assume that

m(θ, q) :=
(
µ′y m2(θ, q)′ m3(θ, q)′ m4(θ, q)′

)′
is a continuously differentiable function of θ ∈ Θ. Let θ0 ∈ Θ be
a regular point, θ is then locally identifiable at a point θ0 from
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the first four cumulants (or moments) of yt, if and only if

M(q) := ∂m(θ0, q)
∂θ′

has a full column rank equal to the number of parameters.

Proof. Follows Iskrev (2010a, Theorem 2) and Rothenberg (1971,
Theorem 6).

In other words, I extend Iskrev (2010a)’s approach and focus on
the first four moments of the pruned state-space system. The test
checks whether these moments are uniquely determined by the deep
parameters, given a finite number of lags. It therefore corresponds
to Definition 1, i.e. identifiability from the first four cumulants or
moments given a finite number of moment conditions. This immedi-
ately gives rise to a necessary condition: the number of identifiable
parameters does not exceed the dimension of m(θ, T ). The criteria
can also be used for conditional identification, that is, identification
for only a subset of parameters. It is also possible to check whether
the parameters are identifiable through (i) the mean and second
or (ii) the mean and third or (iii) the mean and fourth moments
of observables, separately. I denote the corresponding matrices as
M2(q),M3(q) andM4(q). Note that, given a first-order approxima-
tion and the Gaussian distribution for ut, the proposition reduces
to the original Theorem 2 of Iskrev (2010a), since all higher-order
cumulants are zero in this case. Iskrev (2010a, Corollary 1) also pro-
poses a necessary condition, that is, checking injectivity of the map-
ping from the deep parameters to the solution matrices. To do so,
stack all elements of the steady state, the solution matrices as well
as all parameters of the stochastic innovations into a vector τ(θ) :=(
ȳ′ c′ d′ vec(A)′ vec(B)′ vec(C)′ vec(D)′ Γ′2,ξ Γ′3,ξ Γ′4,ξ

)′
. Consider

the factorization M(q) = ∂m(θ,q)
∂τ(θ)′

∂τ(θ)
∂θ′ . An immediate corollary im-
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plies that a point θ0 is locally identifiable, only if the rank of

J := ∂τ(θ0)
∂θ′

at θ0 is equal to nθ. This condition is, however, only necessary,
because τ may be unidentifiable.

Proposition 7 (Qu & Tkachenko PSS). Consider Assumptions
1 and 2 for the pruned state-space of a nonlinear DSGE model
given in equations (2.12) and (2.13). Assume that the power
spectrum (4.9), bispectrum (4.10) and trispectrum (4.11) are con-
tinuous in ω ∈ [−π;π] and continuous and differentiable in θ ∈
Θ. Let

G(θ) = d (µy(θ))′ d (µy(θ)) +
∫ π

−π
d (S2,y(ω1; θ))∗ d (S2,y(ω1; θ)) dω1

+
∫ π

−π

∫ π

−π
d (S3,y(ω1, ω2; θ))∗ d (S3,y(ω1, ω2; θ)) dω1dω2

+
∫ π

−π

∫ π

−π

∫ π

−π
d (S4,y(ω1, ω2, ω3; θ))∗ d (S4,y(ω1, ω2, ω3; θ)) dω1dω2dω3

and θ0 ∈ Θ be a regular point. Furthermore, assume there is
an open neighborhood of θ0 in which G(θ0) has a constant rank.
Then, θ is locally identifiable at a point θ0 from the mean, power
spectrum, bispectrum and trispectrum of yt, if and only if G(θ0)
is nonsingular, i.e. its rank is equal to the number of parameters.

Proof. Follows Qu and Tkachenko (2012, Theorem 2) and Rothen-
berg (1971, Theorem 1). Note that I use the complex conju-
gate ∗, since the polyspectra are in general complex matrices.
dS∗k,ydSk,y is a Gram matrix, therefore it is Hermitian and pos-
itive semidefinite. Furthermore, there is an isomorphism be-
tween complex and real matrices such that the (nky × 1) vec-
tor Sk,y can be transformed into a (2nky × 2) real matrix SRk,y
(see Brillinger (2001, p. 71) and Pintelon and Schoukens (2001,
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p. 553)). The following equivalence holds: S∗k,ySk,y ⇔ SR
′

k,ySRk,y.
Furthermore 2 · rank(S∗k,ySk,y) = rank(SR′k,ySRk,y). The same
is true if one considers the differential of Sk,y with respect to
θj . The proof requires rank(dSR′k,ydSRk,y) to be nonsingular, i.e.
full rank, for θ0 to be locally identified. This is equivalent to
rank(dS∗k,ydSk,y) = nθ.

This proposition corresponds to Definition 2, i.e. identifiability from
the complete set of dynamic properties. Qu and Tkachenko (2012)
provide several extensions, which also apply in this setting. In par-
ticular, identification can be checked from a subset of frequencies
only, conditional on other parameters being fixed or including gen-
eral constraints on the parameters. Moreover, one can check whether
the parameters are identifiable through the mean and individual
spectra. I denote the corresponding matrices as G2(θ0), G3(θ0) and
G4(θ0). Given a first-order approximation and the Gaussian distri-
bution for ut, this proposition reduces to the original Theorem 2 of
Qu and Tkachenko (2012), since the bi- and trispectrum are zero in
this case. Note that Qu and Tkachenko (2012) use numerical deriva-
tives, whereas I am able to use analytical derivatives due to Chapter
5. For both cases, however, it is still necessary to divide the interval
[−π;π] into sufficient subintervals to numerically approximate the
integrals. Lastly, the dimension of G(θ0) is always nθ × nθ.

8.2 Implementation

Both propositions exploit the dynamic structure of the pruned solu-
tion of a nonlinear DSGE model, in order to define mappings and es-
tablish conditions for local injectivity of the mappings. Necessary as
well as sufficient conditions for local identification, based on ranks of
Jacobians, are derived. For calculating the ranks, I use the singular
value decomposition and count the nonzero entries on the main di-
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agonal. This requires a specification of the tolerance level, for which
I use both a range from 1e-3 to 1e-15 as well as a robust level that
depends on the size of the matrix (max(size(X))×eps(norm(X))),
which is also MATLAB’s default value.

Strictly speaking, the criteria are a yes or no condition. Loosely
speaking, however, if a parameter is identified for very large toler-
ance levels, then it is most likely strongly identified. If it is identified
only for very low levels, this may indicate weak identification.36 In
the case of rank deficiency, one is able to pinpoint sets of problem-
atic parameters by analyzing the nullspace. This will be a vector of
zeros, if a parameter does not affect the objective at hand. Further-
more the columns that are linearly dependent indicate that these
sets of parameters are indistinguishable. While this approach, fol-
lowed by Iskrev (2010a), is computationally very fast, I find that
in some cases, there were redundancies in the subsets, since larger
subsets may include smaller ones and are not pinpointed separately.
Thus, similar to Ratto and Iskrev (2011) and Qu and Tkachenko
(2012, Corollary 4), a more robust method is to consider the power
set and check the criteria for all possible subsets of parameters in a
recursive fashion. In my experience, this brute-force approach yields
more reliable results and is computationally just slightly slower, be-
cause, if one finds a subset of parameters that are not identified, one
can exclude that subset from higher-order subsets.37

There are also some further numerical issues. In particular,
choosing the lag order T , as well as the number of subintervals
N for the frequencies, may change the results. In practice, how-
ever, this is not a question of extremely sensitive results, but rather
36 Note that this is not based on the literature on strength of identification, but

provides only a rough indication for subsets of strongly identified param-
eters. Nevertheless, these can be used as an initial guess for the methods
used, for instance, in Koop et al. (2013) and Qu (2014) to detect weak
identification.

37 I implemented both procedures for both criteria in the code.
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one of speed: the higher T or N , the more time the calculations
need.38 With this line of thought, one can make use of the inherent
symmetry in the computation of cumulants and spectra. That is,
I only need to focus on the plane t1 ≤ t2 ≤ t3 for Proposition 6
and s1 ≤ s2 ≤ s3 (sj = 1, . . . , N + 1; j = 1, 2, 3) for Proposition 7,
since these determine all other cumulants and spectra through per-
mutations. The computations of the bispectrum can be accelerated
further by noting that the sum ωs1 + ωs2 contains many duplicate
elements, since ωsj ∈ [−π;π]. Thus, I do not need to do the compu-
tations for all N(N + 1)/2 runs, but rather for a much smaller set.
Similarly, I do not need to evaluate all N(N + 1)(N + 2)/6 possible
values of ωs1 + ωs2 + ωs3 for the trispectrum, but only the unique
values. See Chandran and Elgar (1994) for a thorough discussion of
principal domains of polyspectra.

Lastly, all procedures check only local identification. Thus, it is
necessary to ensure that the analysis is valid for a sufficient range
of parameters. Therefore, in the applications, I check all criteria,
given first a specific point (e.g. calibrated parameters or prior mean)
and second, given many draws from a prespecified prior domain of
θ that yield a determinate solution. In this way, one has a quasi-
global flavor of the rank criteria for the pruned state-space. Also,
most consistent estimators require only local identification for their
asymptotic properties to hold. Nevertheless, even if all prior draws
are identifiable, the model is still by no means globally identified.

38 In most practical cases, T between 10 and 30 will be sufficient, since the
higher the lag, the less informative the identification restrictions. Further-
more, I experienced with different values for N and find that the results for
the applications hardly change. The reason is that, if θ0 ∈ Θ is identified
using only a subset of frequencies (small N), it is also identified if consid-
ering the full spectrum (N → ∞) (the converse is not true). Therefore, I
recommend starting with N = 10 000 for the power spectrum, N = 1 000
for the bispectrum, N = 100 for the trispectrum and increase N if the
results are unsatisfactory.
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Table 8.1: Rank analysis: nonlinear Kim (2003) model

Iskrev Qu and Tkachenko
Tol J M2 M3 M4 M G2 G3 G4 G

1e-03 7 (7) 6 (6) 7 (7) 7 (7) 7 (7) 4 (4) 3 (3) 4 (4) 4 (4)
1e-05 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 6 (6) 5 (5) 6 (6) 6 (6)
1e-07 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e-09 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e-11 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e-13 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
1e-15 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
robust 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)
full 7 7 7 7 7 7 7 7 7

Notes: Ranks of identification tests given local point, different tolerance levels
Tol and analytical derivatives. Numerical derivatives with differentiation step
1e-7 in parenthesis. Lags for Iskrev’s method set to T = 30, and subintervals
for Qu and Tkachenko’s method set to N = 10000 for G2, N = 1000 for G3,
N = 100 for G4 and N = 100 for G.

8.3 Applications

8.3.1 The Kim (2003) model

Reconsider the result of Chapter 7 for the Kim (2003) model. That
is, given a first-order approximation, the set (θ, φ) is observation-
ally equivalent, since both parameters enter as a ratio φ+θ

1+θ into the
solution. However, considering an approximation to the second-
order yields additional restrictions on the first four moments and
corresponding polyspectra, as can be seen in Table 8.1. All criteria
unanimously yield the result that θ and φ are distinguishable using
a second-order approximation. This result is robust across toler-
ance levels, as well as across the choice of derivatives. Note that
Mk checks identification using the mean and kth order cumulants
only, whereas Gk uses the mean and polyspectrum of order k only.
Hence, the model is identifiable using either all information from
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Figure 8.1: Non-identified sets: nonlinear Kim (2003)
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derivatives with robust tolerance level, T = 30 and N = 10 000. Sets by brute-
force method.

moments and cumulants (M) and corresponding polyspectra (G) or
using only individual statistics. Thus, including higher-order statis-
tics may benefit identification and estimation, but it is not necessary
for this model. I demonstrate this by repeating the analysis for 100
random draws from the prior domain and using only the first two
moments and power spectrum in the objective functions (M2 and
G2). For illustrative purposes, similar to Ratto and Iskrev (2011),
a parameter dumpy is added into the analysis, which does not enter
the model. As is evident in Figure 7.1 of Chapter 7, all criteria
indicate that the set (θ, φ) is not identifiable in a first-order approx-
imation. Given a second-order approximation and using the mean,
autocovariogram and power spectrum of the PSS, the situation is
different, see Figure 8.1. Now, in all cases, it is only dumpy that
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is not identifiable. I thus conclude that an approximation to the
second-order yields additional restrictions to identify θ and φ sepa-
rately, using the nonlinear DSGE model. This result is – as far as
I know – new to the literature. Ivashchenko and Mutschler (2015)
estimate this model on the basis of second-order approximation and
confirm that both parameters are separately estimable.

8.3.2 The An and Schorfheide (2007) model

In Chapter 7 it is shown that in the linearized An and Schorfheide
(2007) model, the steady state ratio of government spending 1/g =
c/y does not enter the solution. Moreover, the elasticity of demand
ν and price stickiness parameter φ are not separately identifiable.
The same is true for the coefficients of the Taylor rule when using
the output-gap specification. However, using a second-order approx-
imation and the particle filter, An and Schorfheide (2007) show that
a nonlinear approach enriches dynamics:

[T]he log-likelihood is slightly sloped in 1/g = c/y dimen-
sion. Moreover, (. . . ) the quadratic likelihood (. . . ) suggests
that ν and φ are potentially separately identifiable (An and
Schorfheide, 2007, p. 164).

[T]he nonlinear approach is able to extract more information
on the structural parameters from the data. For instance, it
appears that the monetary policy parameter such as ψ1 can
be more precisely estimated with the quadratic approximation
(An and Schorfheide, 2007, p. 164).

I confirm these alluring results by checking the rank criteria for a lo-
cal point, as well as for the prior domain. Table 8.2 shows that across
criteria, a second-order approximation yields additional restrictions
on moments and polyspectra, so as to identify all parameters of the
model in the vicinity of the local point. This holds for each statistic
individually, as well as for the complete set of dynamic properties.
In other words, breaking with certainty equivalence, one obtains
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Table 8.2: Rank analysis: nonlinear An/Schorfheide (2007) model

Iskrev Qu and Tkachenko
Tol J M2 M3 M4 M G2 G3 G4 G

1e-03 15 12 15 15 15 7 7 6 7
1e-05 15 14 15 15 15 11 11 12 12
1e-07 15 15 15 15 15 13 14 14 14
1e-09 15 15 15 15 15 13 14 15 15
1e-11 15 15 15 15 15 14 15 15 15
1e-13 15 15 15 15 15 15 15 15 15
1e-15 15 15 15 15 15 15 15 15 15
robust 15 15 15 15 15 15 15 15 15
full 15 15 15 15 15 15 15 15 15

Notes: Ranks of identification tests given local point, different tolerance levels
Tol and analytical derivatives. Lags for Iskrev’s method set to T = 30, and
subintervals for Qu and Tkachenko’s method set to N = 10000 for G2, N = 1000
for G3, N = 100 for G4 and N = 100 for G.

additional information, such that one is able to identify previously
non-identifiable parameters. In fact, the first two moments of the
PSS already contain enough departure from linearity and Gaussian-
ity and therefore enough restrictions to identify all parameters. The
same result holds when I repeat the analysis for 100 random draws
from the prior domain, again including a parameter dumpy that
does not enter the model. As can be seen in Figure 7.2 in Chapter 7
for a first-order approximation, (ψ1, ψ2, ρR, σR), (φ, ν) and c/y enter
the problematic sets, whereas in the second-order approximation, in
all cases, all parameters (apart from dumpy) are identifiable, see
Figure 8.2.39

39 Morris (2014) also shows that ν and φ are separately identifiable. As a
robustness check for the Taylor rule coefficients, I compared the spectral
density evaluated at θ0 with the spectral densities evaluated at one hundred
points from the non-identification curve (fixing all parameters except the
Taylor rule coefficients). Non-identification curves are defined in Qu and
Tkachenko (2012). If parameters are not identified, points on this curve
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Figure 8.2: Non-identified sets: nonlinear An/Schorfheide (2007)
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Notes: Identification results for 100 draws from the prior domain using analytical
derivatives with robust tolerance level, T = 30 and N = 10 000. Sets by brute-
force method.

In summary, I confirm An and Schorfheide (2007)’s approach to
estimating the model using a second-order approximation. Breaking
with certainty equivalence yields additional information that can be
used to identify all parameters of the model. The identifiability of
the Taylor rule coefficients through the nonlinear model is – as far
as I know – new to the literature.

yield the same spectral density at all frequencies apart from an approxi-
mation error; whereas if parameters are identified, the spectral densities
differ. I found maximum relative and absolute deviations in the order of
10−4 for the first 100 points away from θ0, which is larger than the implied
approximation error of 10−5 (step size used in the Euler method), and keep
growing. I also used the points reported in Table 1 of Qu and Tkachenko
(2012) and found maximum relative and absolute deviations in the order of
10+4. These findings provide further support for the result.





Chapter 9

Conclusion

It is important to note that the problem is not one of the ap-
propriateness of a particular estimation technique. In the sit-
uation described [without additional restrictions], there clearly
exists no way using any technique whatsoever in which the true
[model] can be estimated (Fisher, 1966, p. 5).

Theoretically, this thesis adds to the literature on the local iden-
tification of nonlinear and non-Gaussian DSGE models. It gives
applied researchers a strategy to detect identification problems and
means to avoid them in practice. Therefore, the ideas and proce-
dures are useful both from theoretical and applied points of view.

To this end, I provide a comprehensive review and comparison
of existing methods for local identification of DSGE models in a
consistent notation and framework. In theory, the methods should
provide the same conclusions, however, the issue of numerical errors
due to nonlinearities and very large matrices can make these meth-
ods tedious in practice and may lead to unreliable or contradictory
conclusions. Therefore, in order to thoroughly analyze identification
of a model, one has to be aware of the drawbacks of the different
methods and check whether the methods come to the same conclu-
sion. The example models show that by evaluating different crite-
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ria, one also gains inside into the dynamic structure of the DSGE
model, in particular sets of parameters that do not enter the mean
or reduced-form restrictions.

Still, it appears that a large class of popular DSGE structures
are only very weakly identified; observational equivalence is
widespread; and reasonable estimates are obtained not because
the model and the data are informative but because auxiliary
restrictions make the likelihood of the data (or a portion of it)
informative (Canova and Sala, 2009, p. 448).

The methods based on ranks can be implemented without using
any data, they are a yes or no condition. Data-based indicators
may give insight into the strength of identification. However, the
Bayesian learning rate indicator crucially depends on the ability of
the optimizer to find the mode or the convergence of the MCMC
sampling algorithm. Having non-identifiable parameters in the al-
gorithms amplifies this problem; hence I advise to exclude these
from the Bayesian analysis by first checking the rank criteria.

In sum, new-Keynesian models specify policy rules that are a
snake pit for econometricians. There is no basis for all the ob-
vious devices, such as excluding variables from the policy rule,
using instruments, assuming that the right-hand variables of
policy rules are orthogonal to the disturbance, or restricting
lag length of disturbances. (...) Not only might these problems
exist, but theory predicts that most of them do exist. Empiri-
cists must throw out important elements of the theory in order
to identify parameters (Cochrane, 2011, p. 568).
One can only begin to get around these central problems by
strong assumptions, in particular that the central bank does
not respond to many variables, and to natural rate shocks in
particular, in ways that would help it to stabilize the economy
(Cochrane, 2011, p. 607).

Identification of the Taylor rule is particularly problematic, as is
shown for the An and Schorfheide (2007) model. This lack of iden-
tification will likely prevail in other DSGE models, since monetary
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authority is almost always modelled as a feedback rule. In this the-
sis, I show that using an output growth rule instead of an output
gap rule can add auxiliary restrictions to the linearized model in
order to identify the Taylor rule.

Another approach, established in this thesis, is to consider higher-
order statistics and higher-order approximations. For this reason,
I derive formal rank criteria for a local identification of the deep
parameters of a nonlinear or non-Gaussian DSGE model, using the
pruned state-space system and higher-order statistics. The proce-
dures can be implemented prior to actually estimating the nonlin-
ear model. In this way, I demonstrate the identifiability of the Kim
(2003) and the An and Schorfheide (2007) model, when solved by
a second-order approximation. For both models, the first four mo-
ments and polyspectra contain, together and individually, additional
restrictions, which can be used to estimate sets of parameters that
are not identified in the first-order approximation. Unfortunately,
the proposed rank conditions do not point towards a specific es-
timation method. An and Schorfheide (2007) show that using a
particle filter weakly enhances identifiability of the parameters of
their model. Ivashchenko and Mutschler (2015) use the Central Dif-
ference Kalman filter and the Quadratic Kalman filter on the pruned
as well as unpruned second-order approximation of the Kim (2003)
model. They also find that the problematic parameters are sepa-
rately estimable. Economically speaking, this means that estimating
the nonlinear model is a way to solve the functional equivalence be-
tween intertemporal and multisectoral investment adjustment costs;
thus enriching model dynamics in the neoclassical growth model.

Even though the exposition is based on the second-order ap-
proximation, an extension to higher-orders is straightforward, since
the pruned state-space always results in a system which is linear
in an extended state vector. The propositions and code can also
be used for linear DSGE models with non-Gaussian innovations. A
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further extension would be to establish rank criteria for other DSGE
model specifications, as long as one is able to calculate moments or
the spectrum of the data-generating process. For instance, Bianchi
(2015) derives analytical moments for Markov switching models,
which can be used in a similar fashion to check identification via
rank criteria for Markov switching DSGE models.

Lastly, another contribution of this thesis is a computational
one. It provides a set of useful matrix concepts and tools for the
fast computation of higher-order statistics given both the Gaussian
as well as Student’s t-distribution as the underlying shock process.
Moreover, procedures for computing analytical derivatives of uncon-
ditional moments, cumulants and polyspectra for higher-order ap-
proximations are provided. The code is written model-independent
and can be used easily to check identification of other models, as
long as they can be represented in the proposed framework.

In summary, I believe that this dissertation provides useful new
tools before actually taking nonlinear or non-Gaussian DSGE mod-
els to data. In particular, an applied researcher can check whether
(sets of) unidentified parameters in the linearized model may be es-
timable for higher-order approximations, prior to actually using (te-
dious) estimation methods for the nonlinear model. Furthermore,
given information from higher-order moments or polyspectra the
procedures may also provide guidance for moment-matching esti-
mation approaches or particle likelihood-type estimators.
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Appendix A

Magnus-Neudecker
definition of Hessian

The nonstochastic steady state is given by x̄ = h(x̄, 0, 0|θ), ȳ =
g(x̄, 0, 0|θ), ū = 0 and f̄ = f(x̄, ū, ȳ|θ) = 0. Define the steady
state vector z̄ := (x′, u′, y′, x′, u′, y′)′, then the Jacobian Df(z̄) and
Hessian Hf(z̄) of f evaluated at the steady state are defined as:

Df(z̄) :=


∂f1(z̄)
∂x′
t+1

∂f1(z̄)
∂u′
t+1

∂f1(z̄)
∂y′
t+1

∂f1(z̄)
∂x′
t

∂f1(z̄)
∂u′
t

∂f1(z̄)
∂y′
t

...
...

...
...

∂fn(z̄)
∂x′
t+1

∂fn(z̄)
∂u′
t+1

∂fn(z̄)
∂y′
t+1

∂fn(z̄)
∂x′
t

∂fn(z̄)
∂u′
t

∂fn(z̄)
∂y′
t

 =:

Df
1(z̄)
...

Dfn(z̄)



Hf(z̄) := Dvec((Df(z̄))′) :=

Hf
1(z̄)
...

Hfn(z̄)


f is of dimension n×1, the Jacobian Df(z̄) of dimension n× (2nx+
2nu+2ny) and the Hessian Hf(z̄) of dimension n(2nx+2nu+2ny)×
(2nx + 2nu + 2ny).
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Appendix B

Auxiliary matrices and
derivatives

Let nv = nx + nu, n = nv + ny, gv =
(
gx gu

)
, and

hv =
(

hx hu
0nu×nx 0nu×nu

)
.

Then the auxiliary solution matrices are given by

Q =
[
h′v ⊗ f2 ⊗ h′v + Inv ⊗ f4 ⊗ Inv Inv ⊗ (f1 ⊗ Inv + f2gv ⊗ Inv)

]
R = (In ⊗M ′)HM, S =

[
f1 + f2gv f2 + f4

]
,

U = f2trm
(
(Iny ⊗ (η̃η̃′))gvv

)
+ trm

(
(In ⊗N ′)HN(η̃η̃′)

)
,

M =


hv
gvhv
Inv
gv

 , N =

 Inv
gv

0n×(nv)

 , η̃ =
(

0nx×nu
η

)

and trm defines the matrix trace of an nm×nmatrix [Y ′1 Y ′2 . . . Y ′m]′
as the m× 1 vector [tr(Y1) tr(Y2) . . . tr(Ym)]′.
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Derivative of Q−1 Notice that Q is partitioned into Q = [Q1 Q2],

Q1 = h′v ⊗ f2 ⊗ h′v + Inv ⊗ f4 ⊗ Inv , Q2 = Inv ⊗ (f1 + f2gv)⊗ Inv .

Deriving d(f2gv) using Theorem 1 and mechanically applying The-
orem 2 repeatedly, I obtain the derivatives dQ1 and dQ2. Now I can
use Algorithm 1 to compute dQ. However, I am interested in dQ−1,
thus in step 2(b) of Algorithm 1 I also compute the derivative of
the inverse using −Q−1 [[dQi1] [dQi2]

]
Q−1 (Magnus and Neudecker,

1999, p. 184) and store it in step 2(c) in the ith column of d(Q−1).

Derivative of R Regarding the derivative of R I first have to
derive dM . This can be done in the same fashion, since M is parti-
tioned intoM = (hv, gvhv, Inv , gv)′. dhv and dgv are known, whereas
d(gvhv) can be derived using Theorem 1. Applying Algorithm 1 I
get dM , whereas for the transpose one has the following relationship
dM ′ = K2(nx+ny),nxdM . Now I am able to compute the derivative
of R using Theorems 1 and 2.

Derivative of S−1 Since S is similarly partitioned as Q, i.e.
S = [S1 S2], the derivative d(S−1) can be calculated analogously
to d(Q−1).

Derivative of T T is the sum of two matrices, for which I will de-
rive the derivatives separately. Consider the first part, f2 ·trm[(Iny⊗
(η̃η̃′))gvv]. Since the derivatives of (η̃η̃′) and gvv are known, it is
straightforward to compute d((Iny ⊗ (η̃η̃′))gvv) applying Theorems
1 and 2. The only slightly difficult part is the matrix trace func-
tion. However, Algorithm 1 can be used to overcome this diffi-
culty. In fact, there is only one partition, for which the derivative
is known. Now taking the trm of the reshaped matrix in step 2(b)
and storing this in step 2(c), I get d(trm[(Iny ⊗ (η̃η̃′))gvv]). Theo-
rem 1 then yields the derivative of f2 · trm[(Iny ⊗ (η̃η̃′))gvv]. The
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same steps can be used to derive the derivative of the second part,
trm[(In ⊗N ′)HN(η̃η̃′)]. However, I first have to derive an expres-
sion for dN and dN ′. Since N is partitioned, I can use Algorithm 1
to compute dN and dN ′ = K2n,nvdN .

Derivative of Hξ(z) Hξ(z) is given by D+C(z ·In2
z
−A)−1B with

z = e−iω ∈ C. Closed form expressions for dA, dB, dC and dD
are given in Chapter 5 using Algorithm 1 for partitioned matrices.
Thus, I only need the derivative of the inverted expression which is
given by

d
(
(zIn2

z
−A)−1

)
=
(
−(zIn2

z
−A)′−1 ⊗ (zIn2

z
−A)−1

)
(−dA)

where I used d(X−1) = (−(X ′)−1 ⊗ X−1)dX, see Magnus and
Neudecker (1999, p. 184). Thus, computing dHξ is a straightforward
application of Theorem 1. The derivative of the conjugate transpose
is given by dH∗ξ (z) = Kny ,nξconj(dHξ(z)), where conj returns the
complex conjugate.





Appendix C

Example for notation and
index matrices

When separating matrices and especially Jacobians into states and
shocks, I use index matrices to keep track of the corresponding posi-
tions of terms. For illustration, consider only the transition of states
with nx = 2 and nu = 1. For i, j = 1, 2 denote hjxi := ∂hj(x̄1,x̄2,0)

∂xi,t−1
,

hjxiu := ∂2hj(x̄1,x̄2,0)
∂xi,t−1∂ut

, where j corresponds to the jth row of hv. Simi-
lar notation applies to hju, hjuxi , h

j
xiu and hjuu. The solution matrices

for states are given by

hv =

h1
x1 h1

x2 h1
u

h2
x1 h2

x2 h2
u

0 0 0

 , hvv =



h1
x1x1 h1

x1x2 h1
x1u

h1
x2x1 h1

x2x2 h1
x2u

h1
ux1 h1

ux2 h1
uu

h2
x1x1 h2

x1x2 h2
x1u

h2
x2x1 h2

x2x2 h2
x2u

h2
ux1 h2

ux2 h2
uu

0 0 0
0 0 0
0 0 0


.
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In order to use notation of Andreasen et al. (2014) I get rid of the
zeros and reshape and permute these matrices to get

Hxx =
[
h1
x1x1 h1

x2x1 h1
x1x2 h1

x2x2
h2
x1x1 h2

x2x1 h2
x1x2 h2

x2x2

]
,

Hxu =
[
h1
x1u h1

x2u

h2
x1u h2

x2u

]
, Hux =

[
h1
ux1 h1

ux2
h2
ux1 h2

ux2

]
, Huu =

[
h1
uu

h2
uu

]
.

This can be accomplished by using the following index matrices:

idxHxx =
[
1 2 10 11
4 5 13 14

]
, idxHuu =

[
21
24

]

idxHxu =
[
19 20
22 23

]
, idxHux =

[
3 12
6 15

]

That is, in order to compute e.g. Hxx I simply select the corre-
sponding terms from hvv using idxHxx . Since I now know the exact
positions, I am further able to select the correct rows of dhvv to
compute dHxx.



Appendix D

Product-moments of
innovations

First-order approximation
Given a first-order approximation, the innovations are defined as the
nξ × 1 vector ξt+1 = ut+1 with nξ = nu elements. I am interested
in product moments M2,ξ := E(ξt ⊗ ξt), M3,ξ := E(ξt ⊗ ξt ⊗ ξt) and
M4,ξ := E(ξt⊗ξt⊗ξt⊗ξt) with n2

ξ , n3
ξ and n4

ξ elements, respectively.
These, however, contain many duplicate elements. Denote with M̃k,ξ

the unique elements of Mk,ξ, one has the following relationships:

M2,ξ = DPnξ · M̃2,ξ, M3,ξ = TPnξ · M̃3,ξ, M4,ξ = QPnξ · M̃4,ξ,

with the duplication matrixDPnξ defined by Magnus and Neudecker
(1999, Ch. 3, Sec. 8), and the triplication matrix TPnξ and quadru-
plication matrix QPnξ similarly defined by Meijer (2005). These ma-
trices are independent of θ and their Moore-Penrose pseudoinverse
always exists, e.g. (QP ′nξQPnξ)

−1QP ′nξ ·M4,ξ = M̃4,ξ. Furthermore,
DPnξ , TPnξ and QPnξ are constructed such that there is a unique
ordering in M̃k,ξ, see Meijer (2005) for an example and more details.
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To compute the product-moments of ξt symbolically I therefore use
the following procedure in MATLAB given the number of shocks nu
and the order of product moments k = 2, 3, 4.

1. Define ut+1 = (ut+1,1, . . . ut+1,nu)′ and Σ = [Σij ]nu×nu sym-
bolically with i, j = 1, . . . nu.

2. Get all integer permutations of [i1, i2, . . . inξ ] that sum up to k,
with ij = 1, . . . , k and j = 1, . . . , nξ. Sort them in the ordering
of Meijer (2005).

3. For each permutation [i1, i2, . . . inξ ] evaluate symbolically

E
[
(ξ1,t)i1 · (ξ2,t)i2 · . . . (ξnξ,t)

inξ
]

and store it in the vector M̃k,ξ.

The expressions in step 3 contain terms of the form

const. · E[(u1,t+1)iu1 · (u2,t+1)iu2 · . · (unu,t+1)iunu ],

that is joint product moments of the elements of ut+1. Given a func-
tion that evaluates the moment structure of ut+1 either analytically
or numerically, I am able to calculate these terms individually and
save them into script files. Note, that these computations need only
to be done once for a model, after that one simply evaluates the
script files numerically given model parameters θ. The code can
evaluate product moments from the Gaussian distribution as well
as Student’s t-distribution.

Normal distribution In the case that ut is normally distributed,
the joint product moments are functions of the variances and covari-
ances in Σ and can be computed analytically. To this end, I use the
very efficient method and MATLAB function of Kan (2008) to de-
rive these joint product moments symbolically. The cumulants can
then be computed as outlined in Chapter 4.
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Student’s t-distribution In the case that ut is t-distributed with
v degrees of freedom, ut is rewritten in terms of an Inverse-Gamma
distributed variableW = v−1/2 ∼ IGAM(v/2, v/2), and a normally
distributed variable εt ∼ N(0,Σ), ut = v−1/2εt (similar to Kotz
and Nadarajah (2004) or Roth (2013)). W and εt are independent,
i.e. E(utu′t) = E(W )E(εtε′t) = v

v−2Σ. Whereas all odd product
moments of ut are zero, the even product moments (n =

∑nu
j=1 iuj

is an even number) are given by

E[(u1,t)iu1 · (u2,t)iu2 · . · (unu,t)iunu ] =
E[W

n
2 ] · E[(ε1,t)iu1 · (ε2,t)iu2 · . · (εnu,t)iunu ].

The first term is equal to E[Wn] = v/2
(v/2−1)...(v/2−n) and since εt is

multivariate normal, I can use Kan (2008)’s procedure and MAT-
LAB function for the second product. The cumulants can then be
computed as outlined in Chapter 4.

Second-order approximation
Given a second-order approximation40, the innovations are defined
as the nξ × 1 vector

ξt+1=
(
u′t+1 (ut+1 ⊗ ut+1 − vec(Σ))′ (ut+1 ⊗ x̂ft )′ (x̂ft ⊗ ut+1)′

)′
with nξ = nu + n2

u + 2nxnu elements. I am interested in product-
moments M2,ξ := E(ξt ⊗ ξt), M3,ξ := E(ξt ⊗ ξt ⊗ ξt) and M4,ξ :=
E(ξt⊗ξt⊗ξt⊗ξt) with n2

ξ , n3
ξ and n4

ξ elements, respectively. In order
to compute these objects efficiently, I first reduce the dimension of
ξt, since it has some duplicate elements. That is, I compute product-
moments for the nξ̃ = nu + nu(nu + 1)/2 + nunx vector

ξ̃t+1 :=
(
u′t+1 vech(ut+1u

′
t+1 − Σ)′ (ut+1 ⊗ x̂ft )′

)′
40 For a third-order approximation, see Mutschler (2015a).
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since

ξt =


I 0 0
0 DPnu 0
0 0 I
0 0 Knx,nu

 ξ̃t := Fξ · ξ̃t

with DPnu being the duplication matrix and Knx,nu the commu-
tation matrix such that Knx,nu(ut+1 ⊗ x̂ft ) = (x̂ft ⊗ ut+1). Then
Mk,ξ := [⊗kj=1Fξ] ·Mk,ξ̃ with Mk,ξ̃ denoting the kth-order product-
moment of ξ̃t. Since [⊗kj=1Fξ] does not change with θ, I can focus on
Mk,ξ̃. Mk,ξ̃, however, contains also many duplicate elements. De-
note with M̃k,ξ̃ the unique elements of Mk,ξ̃, for which one has the
following relationships:

M2,ξ̃ = DPnξ̃ · M̃2,ξ̃, M3,ξ̃ = TPnξ̃ · M̃3,ξ̃, M4,ξ̃ = QPnξ̃ · M̃4,ξ̃,

with the duplication matrixDPnξ̃ defined by Magnus and Neudecker
(1999, Ch. 3, Sec. 8), and the triplication matrix TPnξ̃ and quadru-
plication matrix QPnξ̃ similarly defined by Meijer (2005).41 These
matrices are independent of θ and their Moore-Penrose pseudoin-
verse always exists, e.g. (QP ′nξ̃QPnξ̃)

−1QP ′nξ̃ ·M4,ξ̃ = M̃4,ξ̃. Fur-
thermore, DPnξ̃ , TPnξ̃ and QPnξ̃ are constructed such that there
is a unique ordering in M̃k,ξ̃, see Meijer (2005) for an example and
more details.

To compute the product-moments of ξ̃t symbolically I therefore
use the following procedure in MATLAB given the number of shocks
nu, the number of state variables nx and the order of product-
moments k = 2, 3, 4. Note that these computations can be used
for any DSGE model with nu shocks and nx states.
41 Actually M̃k,ξ̃ has some further duplicate terms for nu, nx > 1 due to higher-

order cross terms of ut+1 and x̂ft , which I can further reduce using indices
from the unique function of MATLAB.
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1. Define ut+1 = (ut+1,1, . . . ut+1,nu)′, x̂ft = (x̂ft,1, . . . x̂
f
t,nx)′ and

Σ = [Σij ]nu×nu symbolically with i, j = 1, . . . nu. Set up

ξ̃t = (u′t, vech(ut+1u
′
t+1 − Σ)′, (ut+1 ⊗ x̂ft )′)′.

2. Get all integer permutations of [i1, i2, . . . inξ̃ ] that sum up to k,
with ij = 1, . . . , k and j = 1, . . . , nξ̃. Sort them in the ordering
of Meijer (2005).

3. For each permutation [i1, i2, . . . inξ̃ ] evaluate symbolically

E
[
(ξ̃1,t)i1 · (ξ̃2,t)i2 · . . . · (ξ̃nξ̃,t)

in
ξ̃

]
and store it in the vector M̃k,ξ̃.

4. Optionally: Use MATLAB’s unique function to further reduce
the dimension of M̃k,ξ̃.

The expressions in step 3 contain terms of the general form

const. · E[(u1,t+1)iu1 · (u2,t+1)iu2 · . · (unu,t+1)iunu ]·

· E[(x̂f1,t)ix1 · (x̂f2,t)ix2 · . · (x̂fnx,t)
inxx ],

that is joint product-moments of the elements of ut+1 and x̂ft (keep-
ing in mind that x̂ft and ut+1 are independent due to the temporal
independence of ut). For instance, for nu = nx = 1 the third-order
product-moment of ξ̃t is equal to

M̃3,ξ̃=vec

E


u3 u4 − σ2
uu

2

u3x σ4
uu− 2σ2

uu
3 + u5

xu4 − σ2
uxu

2 u3x2

−σ6
u + 3σ4

uu
2 − 3σ2

uu
4 + u6 xσ4

uu− 2xσ2
uu

3 + xu5

u4x2 − σ2
uu

2x2 u3x3



′
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where sub- and superscripts are dropped and Σ = E(u2
t ) = σ2

u.
Given a function that evaluates the moment structure of x̂ft and
ut+1 either analytically or numerically, I am able to calculate these
terms individually and save them into script files. The code can
evaluate product-moments from the Gaussian distribution as well
as Student’s t-distribution analytically. Note, that these computa-
tions need only to be done once for a model, after that one simply
evaluates the script files numerically given model parameters θ.

Normal distribution In the case that ut is normally distributed,
x̂ft is also Gaussian with covariance matrix Σx given in equation
(2.15). Therefore,(

ut+1
x̂ft

)
∼ N

((
0
0

)
,

(
Σ 0
0 Σx

))

is multivariate normal. All joint product-moments are functions of
the variances and covariances in Σ and Σx and can be computed
analytically. To this end, I use the very efficient method and MAT-
LAB function of Kan (2008) to derive these joint product-moments
symbolically before storing them into script files. For the example
with nu = nx = 1 and Gaussian ut, one gets the unique entries

M̃2,ξ =
[
σ2
u, 0, 0, 2σ4

u, 0, σ2
uσ

2
x

]′
M̃3,ξ =

[
0, 2σ4

u, 0, 0, 0, 0, 8σ6
u, 0, 2σ4

uσ
2
x, 0

]′
M̃4,ξ =

[
3σ4

u, 0, 0, 10σ6
u, 0, 3σ4

uσ
2
x, 0, 0, 0, 0, 60σ8

u, 0, 10σ6
uσ

2
x, 0, 9σ4

uσ
4
x

]′
where Σx = E(x̂f2

t ) = σ2
x. The cumulants can then be computed as

outlined in Chapter 4. Since the third-order cumulant of a Gaus-
sian process must be zero, ξt is clearly non-Gaussian, even if the
underlying distribution for ut is Gaussian.
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Student’s t-distribution In the case that ut is t-distributed with
v degrees of freedom and covariance matrix v

v−2Σ, ut is rewritten
in terms of an Inverse-Gamma distributed variable W = v−1/2 ∼
IGAM(v/2, v/2), and a normally distributed variable εt ∼ N(0,Σ),
ut = v−1/2εt (see Kotz and Nadarajah (2004, Ch. 1.7) and Roth
(2013)). W and εt are independent, i.e. E(utu′t) = E(W )E(εtε′t) =
v
v−2Σ. Whereas all odd product-moments of ut are zero, the even
product-moments (n =

∑nu
j=1 iuj is an even number) are given by

E[(u1,t)iu1 · (u2,t)iu2 · . · (unu,t)iunu ] =
E[W

n
2 ] · E[(ε1,t)iu1 · (ε2,t)iu2 · . · (εnu,t)iunu ].

The first term is equal to E[W
n
2 ] = v/2

(v/2−1)· ... ·(v/2−n/2) and since
εt is multivariate normal, one can use Kan (2008)’s procedure and
MATLAB function for the second product. Similar arguments apply
to the product-moments of x̂ft , for instance the variance is given by
vec(Σx) = E[x̂ft ⊗ x̂

f
t ] = E[W ] ·(In2

x
−hx⊗hx)−1(hu⊗hu) ·E[εt⊗εt].

Thus, odd product-moments are also zero, whereas even product-
moments can be computed symbolically by Kan (2008)’s procedure
and MATLAB function, however, adjusted for E[Wn/2].

Analytical derivatives
For analytical derivatives with respect to the model parameters θ, I
first collect all auxiliary parameters for M̃k,ξ̃ symbolically in a vector

θaux and store the symbolic Jacobians ∂M̃k,ξ̃

∂θaux
′ into script files. In the

Gaussian case, θaux = vech(Σ) for a first-order approximation and
θaux = [vech(Σ)′, vech(Σx)]′ for a second-order approximation. In
the Student’s t case, θaux =

[
θaux

′
, v
]′
. Since ∂θaux

∂θ′ is given by the
model, I can evaluate the script files numerically given the identity
∂M̃k,ξ̃

∂θaux
′ · ∂θ

aux

∂θ′ .





Appendix E

Generalized Sylvester
equations for cumulants

The zero-lag cumulants

Ck,z = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ

require the inversion of the matrix
(
Inkz − [⊗kj=1A]

)
. Since Ck,z and

Γk,ξ are vectors, one can use properties of the Kronecker product
and rewrite the equations to

[ C2,z
nz×nz

] = A[ C2,z
nz×nz

]A′ +B[ Γ2,ξ
nξ×nξ

]B′,

[ C3,z
n2
z×nz

] = (A⊗A)[ C3,z
n2
z×nz

]A′ + (B ⊗B)[ Γ3,ξ
n2
ξ
×nξ

]B′,

[ C4,z
n2
z×n2

z

] = (A⊗A)[ C4,z
n2
z×n2

z

](A⊗A)′ + (B ⊗B)[ Γ4,ξ
n2
ξ
×n2

ξ

](B ⊗B)′,

where [
n×m

] reshapes a n ·m vector into a n ×m matrix. In other
words, we reduce the inversion problem to a generalized Sylvester
equation, which can be efficiently solved.
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To compute the analytical derivatives of Ck,z, I also use generalized
Sylvester equations, an idea similar to Ratto and Iskrev (2012).
That is, for each θi one takes the differential

d[ C2,z
nz×nz

]−A · d[ C2,z
nz×nz

] ·A′ =

dA[ C2,z
nz×nz

]A′ +A[ C2,z
nz×nz

](dA′) + d(B[ Γ2,ξ
nξ×nξ

]B′),

d[ C3,z
n2
z×nz

]− (A⊗A) · d[ C2,z
n2
z×nz

] ·A′ =

d(A⊗A) · [ C3,z
n2
z×nz

] ·A′+(A⊗A)[ C3,z
n2
z×nz

] ·(dA′)+d((B⊗B)[ Γ3,ξ
n2
ξ
×nξ

]B′),

d[ C4,z
n2
z×n2

z

]−(A⊗A)·d[ C4,z
n2
z×n2

z

]·(A⊗A)′ = d(A⊗A)·[ C4,z
n2
z×n2

z

]·(A⊗A)′+

(A⊗A)[ C4,z
n2
z×n2

z

] · d(A′ ⊗A′) + d((B ⊗B)[ Γ4,ξ
n2
ξ
×n2

ξ

](B′ ⊗B′)),

which are also generalized Sylvester equations in the differential on
the left hand side. Note that, contrary to the rest of the paper,
here I use as notation dX = ∂X

∂θi
to denote the derivative of X w.r.t.

to a specific θi(i = 1, . . . , nθ) which has the same shape as X. All
terms on the right hand side can be derived using the expressions
of Chapter 5.



Appendix F

Deriving numerical
derivatives

In order to derive the Jacobian of a function or matrix F (θ) at a
point θ0 with respect to θ, I use a two-sided finite difference method
(also known as central differences). That is:
For each j = 1, . . . , nθ

1. Select a step size hj .

2. Solve the DSGE model twice using θ := θ0 + ejhj and θ :=
θ0 − ejhj with ej a vector with the jth element equal to 1.

3. Compute

dF j := ∂vec(F (θ0))
∂θj

≈ vec
(
F (θ0 + ejhj)− F (θ0 − ejhj)

2hj

)

4. Store dF j as the jth column of dF .
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Appendix G

Deriving the minimal
state

Consider the general framework by Schmitt-Grohé and Uribe (2004)
for the linearized DSGE model (see also footnote 5):

x̂t = hxx̂t−1 + huut and ŷt = gxx̂t

The vector of states xt consists of nx2 exogenous states x2,t and nx1

endogenous states x1,t. The solution can be rearranged to get(
x̂1,t
x̂2,t

)
=
(

0 hx1

0 hx2

)(
x̂1,t−1
x̂2,t−1

)
+
(
hu1

hu2

)
ut

For the controls we therefore get

ŷt =
(
gx1 gx2

)(0 hx1

0 hx2

)(
x̂1,t−1
x̂2,t−1

)
+
(
gx1 gx2

)(hu1

hu2

)
ut

=
(
gx1hx1 + gx2hx2

)
x̂2,t−1 +

(
gx1hu1 + gx2hu2

)
ut

Obviously, the driving force of the model is the vector of exoge-
nous states x2,t, which is called the minimal state vector. Together
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with the evolution of the stochastic innovations it determines the
evolution of the endogenous states and the control variables. The
minimal representation is thus given by

x̂2,t =
h̃x︷︸︸︷
hx2 x̂2,t−1 +

h̃u︷︸︸︷
hu2 ut

ŷt = (gx1hx1 + gx2hx2)︸ ︷︷ ︸
g̃x

x̂2,t−1 + (gx1hu1 + gx2hu2)︸ ︷︷ ︸
g̃u

ut.

Formal conditions for minimality require that there exists a con-
trollable and observable system for every θ ∈ Θ. That is, for any
initial state it is always possible to design an input sequence that
puts the system in the desired final state, i.e. the matrix CC =[
h̃u h̃xh̃u . . . h̃

nx2−1
x h̃u

]
has full row rank (controllability). Fur-

thermore, given the evolution of the input sequence it is always pos-
sible to reconstruct the initial state by observing the evolution of the
output sequence, i.e. the matrix OO =

[
g̃′x h̃′xg̃

′
x . . . h̃

nx2−1′
x g̃′x

]′
has full column rank (observability). See e.g. Anderson and Moore
(1979, App. C) for further details about minimality.

For small and medium-sized DSGE models the distinction be-
tween endogenous and exogenous states is given through theory:
some variables are clearly endogenous (like output) and some are
clearly exogenous (like capital or technology). Thus, when setting
up the example models, I already order the state vector accordingly.
Then, I check the rank conditions for minimality and observability
given the full state vector. For big DSGE models the distinction
of endogenous and exogenous states is often not as clear. A fail-
safe approach for deriving the minimal state vector is to consider all
possible subsets of combinations of states and check the rank con-
ditions for minimality and controllability in each case. I follow this
approach in the code, for a different (computational) approach han-
dling the minimal state in big DSGE models see Kim et al. (2008).



Appendix H

Metropolis-Hastings
algorithm

The Bayesian estimation is based on the likelihood, that is a com-
plete characterization of the data generating process. The major
distinction to a frequentist estimation is the assumption that the
parameter vector θ is a random and not a fixed variable. The
Bayesian idea is then to combine information given in the data with
additional believes about the parameters, so-called (priors), to get
an expression for the conditional probability distribution of the pa-
rameters. For this reason, one is able to put more weight on a
certain span of the parameter space. Bayesian methods can hence
be thought of as a bridge between calibration and the Maximum-
Likelihood approach. In the Bayesian context, the likelihood func-
tion L(y|θ) is a conditional density of observed data given the pa-
rameters: ℘(y|θ) = L(y|θ). Let ℘(θ) denote the prior density of the
vector of parameters θ, then according to Bayes-rule

℘(θ|y) = L(y|θ)℘(θ)
℘(y) = L(y|θ)℘(θ)∫

℘(θ)L(y|θ) dθ ∝ L(y|θ)℘(θ),
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with ∝ meaning “proportional to”. ℘(y) is the so-called marginal
likelihood of the data and ultimately just a constant that normal-
izes the integral to unity. It is independent of the vector of pa-
rameters. Removing it, hence, does not change the shape of the
posterior density ℘(θ|y), it merely does not integrate to one. This
non-normalized density is often called posterior-kernel or, in logs,
log-posterior-kernel. The mode is a possible Bayesian estimator θ̂B
for the true vector of parameters:

θ̂B = argmax
θ
{log℘(θ|y)} = argmax

θ
{logL(y|θ) + log℘(θ)}

The procedure is to compute the log-likelihood using filtering meth-
ods. In linear and Gaussian models one uses the Kalman filter,
in nonlinear or non-Gaussian models one uses an extension of the
Kalman filter (Andreasen, 2011, 2013; Ivashchenko, 2014; Kollmann,
2015) or the particle filter (An and Schorfheide, 2007; Fernández-
Villaverde and Rubio-Ramírez, 2007; Herbst and Schorfheide, 2014).
Then the log-posterior-kernel can be simulated through sampling or
MCMC methods. Once draws from the posterior are available, one
can conduct inference on the parameters.

In the literature - and most prominently in DYNARE - the
Random-Walk Metropolis-Hastings (RWMH) approach has become
the workhorse algorithm.42 The algorithm uses the fact that, under
very general regularity conditions, the moments of a distribution are
asymptotically normally distributed:

The algorithm constructs a Gaussian approximation around
the posterior mode and uses a scaled version of the asymptotic
covariance matrix as the covariance matrix for the proposal
distribution. This allows for an efficient exploration of the
posterior distribution at least in the neighborhood of the mode
(An and Schorfheide, 2007, p. 132).

42 The presentation of the algorithm follows Koop (2003, pp. 92–99) and An
and Schorfheide (2007, p. 131).
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The algorithm constructs a sequence of draws, called Markov chains,
from a proposal density. This proposal distribution does not need to
be identical with the posterior density, but it is only required that
the algorithm can draw samples from the whole range of the pos-
terior density. The current candidate draw θ∗ is dependent on the
previous candidate draw θ(s−1). Weights for all candidates are the
same, however, they are accepted only with a certain probability α.
This probability is defined as the ratio of the posterior-kernel of the
current candidate to the posterior-kernel of the previous candidate.
It can be shown that given this structure, the algorithm moves from
areas of low posterior probability to areas of high probability: Is
θ(s−1) in an area with high probability, it is likely that only candi-
dates in the same area are accepted. Is θ(s−1) in an area with low
probability, it is very likely that new candidates are accepted. The
covariance matrix of the proposal distribution plays an important
role such that α is neither to large nor to small. Common practice
is to use the inverse of the Hessian evaluated at the mode θ̂B and to
scale it with a factor c such, that the average acceptance ratio lies
in between 20% and 50% (Koop, 2003, p. 98). The algorithm has
the following structure (An and Schorfheide, 2007, p. 131):

Algorithm 2 (Random-Walk Metropolis-Hastings).

1. Specify c0, c and S.
2. Maximize logL(y|θ) + log℘(θ) using numerical methods.

θ̂B denotes the mode.
3. Calculate the inverse of the Hessian evaluated at the mode,

denoting it as ΣB.
4. Specify an initial value θ(0) or draw it from N (θ̂B, c2

0ΣB).
5. For s = 1, . . . , S:

• Draw θ∗ from the candidate-generating distribution
(proposal density) N (θ(s−1), c2ΣB).
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• Compute the acceptance probability α:

α ≡ α
(
θ(s−1), θ∗

)
= L (θ∗|y) ℘ (θ∗)
L
(
θ(s−1)|y

)
℘
(
θ(s−1))

• With probability min {α, 1} accept the jump to θ∗ from
θ(s−1). In other words, if α ≥ 1, set θ(s) = θ∗.

• Otherwise draw a uniformly distributed variable r be-
tween 0 and 1.
– If r ≤ α set θ(s) = θ∗ (jump).
– If r > α set θ(s) = θ(s−1) (don’t jump).

6. Estimate the posterior expectation of a function ~(θ) with
1
S

∑S
s=1 ~

(
θ(s)

)
.

If the average acceptance probability does not yield a desirable value
(typically between 20% and 50%) or the algorithm does not con-
verge, change c0, c or S.
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