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Abstract. We study descent properties of Jacob Lurie’s topological chiral homology. We
prove that this homology theory satisfies descent for a factorizing cover, as defined by Kevin

Costello and Owen Gwilliam. We also obtain a generalization of Lurie’s approach to this
homology theory, which leads to a product formula for the infinity 1-category of factorization
algebras, and its twisted generalization.

1. Introduction

1.1. Factorization algebra and the topological chiral homology. Lurie
has introduced and studied the topological chiral homology [16, Chap. 5]. The
construction has several other names; in particular, ‘factorization homology’
(without necessarily requiring ‘topological’ invariance of the ‘coefficients’) in
[3, 9], or ‘higher order Hochschild homology’ (at least for coefficients in a
commutative algebra) in [19], in which the work of Anderson [1] is mentioned
for an earlier appearance of the notion.

Developing on Lurie’s work, we study interesting counterparts on manifolds
of factorization algebras defined by Beilinson and Drinfeld [5] on algebraic
curves (which were shown by them to be equivalent to chiral algebras, intro-
duced in the same work). Following some of the pioneers of the research of
these objects on manifolds, we call them factorization algebras.

One motivation for studying factorization algebras on manifolds comes from
the central role which they play in quantum field theory, generalizing the role
of chiral algebras for conformal field theory. Namely, observables of a quantum
(or a classical) field theory having locality form a factorization algebra, and this
is the structure in terms of which one can rigorously understand quantization
of a physical theory (in perturbative sense) [9], analogously to the deformation
quantization of the classical mechanics [13].

Factorization algebras are closely related to field theories as functors on a
cobordism category, as introduced by Atiyah [2] and Segal [20]. We study
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locally constant factorization algebras, which correspond to topological field
theories.

A locally constant factorization algebra on the manifold R
n is equivalent

to what is known as an En-algebra, first introduced in iterated loop space
theory [6]. An E1-algebra is an associative algebra, and an En-algebra can
be inductively defined as an En−1-algebra with an additional structure of an
associative algebra commuting with the En−1-structure. A locally constant
factorization algebra can be considered as a global version of an En-algebra
in a way which is analogous to the way in which a chiral algebra is a global
version of a vertex operator algebra. In particular, from any locally constant
factorization algebra on an n-dimensional manifold, one obtains an En-algebra
around any point by restricting the algebra to an open ball around the point.
This En-algebra is canonical up to a change of framing at the point, and can
be thought of as a local form of the factorization algebra.

There is an issue that the notion of an En-algebra degenerates (unless n ≤ 1)
to that of a commutative algebra in a category whose higher homotopical struc-
ture is degenerate. Moreover, some further developments such as the theory of
the Koszul duality for factorization algebras [18] require a nice higher homo-
topical structure in order to lead to fruitful results, even on the manifold R

1.
These issues force us to work in a homotopical setting. In order to work in
such a setting, we use the convenient language of higher category theory. (For
the main body, note our conventions stated in Section 2, which do not apply
in this introduction.) We just remark here that associativity of an algebra
in such a setting means a data for homotopy coherent associativity (which in
particular is a structure rather than a property).

In this work, we study various problems from the point of view that a
factorization algebra is a generalization of a sheaf on a manifold (the term
‘locally constant’ comes from this point of view). A factorization algebra takes
values in a symmetric monoidal infinity 1-category. A prealgebra on a manifold
M is a covariant functor A on the poset of open subsets of M , for which we
have A(U ⊔ V ) ≃ A(U) ⊗ A(V ) for disjoint open subsets U, V ⊂ M , in a
coherent way. (Covariance is chosen for consistency of the terminology with the
intuition.) A is a factorization algebra if it satisfies a suitable gluing condition
generalizing that for a sheaf. Indeed, a locally constant cosheaf is a locally
constant factorization algebra with respect to the monoidal structure given by
the coproduct.

The gluing condition of the factorization algebra of observables of a physical
theory reflects locality of the theory. In the Atiyah–Segal framework, the same
property corresponds to the possibility of extending the functor on cobordisms
to higher codimensional manifolds. A theory is fully extended if it is extended
to highest codimensional manifolds, namely, to points. The cobordism hypoth-
esis of Baez and Dolan [4], proved in a much strengthened form by Hopkins
and Lurie (unpublished) and Lurie [15], states that a fully extended topological
field theory (on framed manifolds) is completely determined by its value for a
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point. Analogously, but in a simpler way, a factorization algebra which is sys-
tematically defined on all (framed) manifolds is determined by the En-algebra
which appear as its local form [3].

A sheaf is defined by its sections. One is often more interested in the
derived sections or the cohomology. Since we work in a homotopical setting
for factorization algebras, the sections we consider for an algebra are always
the ‘derived’ ones. Thus, study of factorization algebras can be considered as
study of a kind of homology theory. This homology theory, for locally constant
algebras, was defined by Lurie [16] and was called topological chiral homology.
Following Francis and Costello, we also call it factorization homology, although
this term is also used for not necessarily locally constant factorization algebras.

Let us give some ideas for our main results in Sections 1.2 and 1.4.
In the following, we assume that the target category A of prealgebras is

a symmetric monoidal infinity 1-category which is closed under sifted homo-
topy colimits, and that the monoidal multiplication functors preserve sifted
homotopy colimits variable-wise.

1.2. Descent properties of factorization algebras. We have developed
descent properties of locally constant factorization algebras for covers and for
bases of the topology. Our first result (Theorem 3.15, note the conventions
stated in Section 2) proves (as a particular case, see Example 3.14) that the
topological chiral homology satisfies descent for a factorizing cover in the sense
of Costello and Gwilliam [9]. Therefore, this connects two approaches to fac-
torization homology, namely, the ‘Čech’ approach of Costello and Gwilliam
and Lurie’s approach, which is analogous to the singular approach to the local
coefficient (co)homology. (Costello and Gwilliam in fact considered not neces-
sarily locally constant algebras.) This, combined with ideas of Francis, leads to
a proof of a version of Ayala and Francis’ theorem [3]. This will be contained
in the sequel [18] of this paper. This theorem can be considered as giving an
Eilenberg–Steenrod approach to factorization homology. One concludes from
these theorems that all three approaches are equivalent.

Moreover, we generalize Lurie’s approach to factorization homology in the
following way. His definition of topological chiral homology uses the basis
Disk(M) for the topology of a manifold M , consisting of open subdisks. He
also uses disjoint unions of disks, which give another basis Disj(M) ofM . This
latter basis has a nice property in the spirit of Costello and Gwilliam, which
we might call here factorizingness. Lurie’s definition is stated in terms of the
pair Disk(M)→ Disj(M).

In Theorem 3.34, we have given a sufficient condition for a pair E1 → E of
bases to define the same notion of a locally constant factorization algebra, when
it replaces the pair Disk(M)→ Disj(M) in Lurie’s definition. Even though the
theorem is slightly technical, the sufficient condition we have found is easy to
check in practice. For example, it is quite easy to check whether we can find a
suitable E1 if E is a factorizing basis of M , closed under disjoint union in M ,
and consists of open submanifolds homeomorphic to disjoint unions of disks.
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Thus, Theorem 3.34 is useful and it in particular leads to the following
theorem, as well as to applications we discuss in Section 1.4. Let us denote by
AlgM (A) the infinity 1-category of locally constant factorization algebras on a
manifold M .

Theorem 1.3 (Theorem 3.47). The association M 7→ AlgM (A) (which is con-
travariantly functorial in open embeddings) is a sheaf of infinity 1-categories.

It follows that there is a reasonable notion of locally constant factorization
algebras on an orbifold.

1.4. Twisted product formula. As an application of our investigation of the
descent properties of factorization algebras, we have obtained the following
basic theorem. In the special case where the manifolds are the Euclidean
spaces, we recover a classical theorem of Dunn [10]. See Remark 1.7 below for
the precise relation to his theorem.

The theorem relies on the relatively simple fact that the infinity 1-category
AlgF (A) of locally constant factorization algebras on a manifold F taking
values in A (see the last paragraph of Section 1.1) is symmetric monoidal by
the value-wise multiplication in A. In particular, we can consider, on any
manifold, locally constant factorization algebras taking values in AlgF (A).

Theorem 1.5 (Theorem 4.17). Let B, F be manifolds. Then, the restriction
functor

AlgF×B(A)→ AlgB(AlgF (A))

is an equivalence of symmetric monoidal infinity 1-categories.

Remark 1.6. If one swaps the factors of B ×F , then on the side of algebras,
one recovers the canonical equivalence AlgB(AlgF ) ≃ AlgF (AlgB).

Remark 1.7. Dunn [10] in fact obtains an equivalence at the level of oper-
ads. In particular, in his case, the equivalence of algebras holds without any
assumption on the target category. Even though our theorem applies to any
manifold, the equivalence in this generality is proved only at the level of the
category of algebras in this paper, since our proof depends on the property of
the target category for the algebras.

Another slight difference between Theorem 1.5 and Dunn’s result is that he
considers Boardman and Vogt’s little cubes operad [6] instead of factorization
algebras on a Euclidean space. We can use Theorem 3.34 once again to show
that the difference is not essential; see Remark 4.18 for the details.

Remark 1.8. A different proof of Theorem 1.5 is obtained by Ginot by re-
lying on Dunn’s theorem [11]. A version of Theorem 1.5 for general (i.e., not
assumed locally constant) factorization algebras is described by Calaque in [8]
with a (sketch of) proof by a strategy similar to ours (see Section 1.11). We
remark that the theorem for locally constant algebras may not be a corollary
of this since comparison of the ‘locally constant’ objects through Calaque’s
equivalence would perhaps not be straight-forward.
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We have also obtained a natural generalization of Theorem 1.5, where the
product is replaced by a fiber bundle (i.e., a ‘twisted’ product). In this case,
the algebras on the target of the restriction functor need to be twisted. Namely,
they should take values in an algebra of categories on B. Once we allow this
twisting, it is natural to consider further twisting for algebras. Namely, we
consider algebras on the total space E of a fiber bundle taking values in a
locally constant factorization algebra A of categories on E. For such A, we
have defined an algebra AlgE/B(A) of categories on the base manifold B, which
is a twisted version of AlgF in Theorem 1.5.

The next theorem is a generalization following from (the infinity 2-categor-
ical generalizations of) Theorem 1.5 and the descent results.

Theorem 1.9 (Theorem 4.22). Let B be a manifold, and let E → B be a
smooth fiber bundle over B. For a locally constant factorization algebra A on
E of infinity 1-categories, there is a natural equivalence

AlgE(A)
∼
−→ AlgB(AlgE/B(A))

of infinity 1-categories, given by a suitable ‘restriction’ functor.

Remark 1.10. For this theorem, no assumptions on sifted colimits are needed
for A. If A is instead a single fixed symmetric monoidal category, there is
actually a slight difference between an algebra in A (for which Theorem 1.5
may fail without assumption on sifted colimits) and an algebra taking values
in the ‘constant’ algebra at A (to which Theorem 1.9 always applies). The
assumption on sifted colimits simply ensures equivalence of these two notions
of an algebra.

1.11. Notes on related works. The descent property of the topological chi-
ral homology for a factorizing cover (as follows from Theorem 3.15, see Sec-
tion 1.2) was proved earlier by Ginot, Tradler and Zeinalian [12]. Their proof
uses a theorem on the descent of the infinity 1-category of factorization al-
gebras, similar to our Theorem 1.3 but in non-locally constant setting. The
theorem is due to Costello and Gwilliam [9]. Note that we prove Theorem 1.3
using Theorems 3.34 and 3.15. We do not know how to deduce Theorem 1.3
directly from the theorem of Costello and Gwilliam. The question is whether
local constancy of a factorization algebra is a ‘local’ property in some useful
manner, to which Theorem 3.34 gives one answer.

We learned about Calaque’s work [8] after our work was completed. He
considers the notion of ‘factorizing basis’ based on a similar idea to our Defi-
nition 3.28. Using this, he considers a theorem [8, Thm. 2.1.9] which is similar
in spirit to our Theorem 3.34, for not necessarily locally constant factorization
algebras. Theorem 3.34 is more involved than this theorem, since it addi-
tionally answers a question on the localness of local constancy as mentioned.
Calaque’s proof of the product formula mentioned in Remark 1.8 above uses
[8, Thm. 2.1.9], similarly to our use of Theorem 3.34 for Theorem 1.5.
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1.12. Outline. In Section 2, we introduce conventions which are used through-
out the article. In Section 3, we review Lurie’s definitions and results, and
discuss descent properties of factorization algebras. In Section 4, we discuss
further results including the twisted product formula.

2. Terminology and notations

By a 1-category, we always mean an infinity 1-category. We often call a
1-category (namely an infinity 1-category) simply a category. A category with
discrete sets of morphisms (namely, a ‘category’ in the more traditional sense)
will be called a discrete category.

In fact, all categorical and algebraic terms will be used in infinity (1-)cate-
gorical sense without further notice. Namely, categorical terms are used in
the sense enriched in the infinity 1-category of spaces, or equivalently, of in-
finity groupoids, and algebraic terms are used freely in the sense generalized
in accordance with the enriched categorical structures.

For example, for an integer n ≥ 1, by an n-category, we mean an infinity
n-category. We also consider multicategories. By default, multimaps in our
multicategories will form a space with all higher homotopies allowed. Namely,
our multicategories are ‘infinity operads’ in the terminology of Lurie’s book
[16].

Remark 2.1. We usually treat a space relatively to the structure of the stan-
dard (infinity) 1-category of spaces. Namely, a space for us is usually no more
than an object of this category. Without loss of information, we shall freely
identify a space in this sense with its fundamental infinity groupoid, and call
it also a groupoid. Exceptions in which the term ‘space’ means not necessarily
this include the Euclidean space, the total space of a fiber bundle, etc., in
accordance with the common customs.

If C is a category and x is an object of C, then we denote by C/x the over-
category of objects of C lying over x, i.e., equipped with a map to x. We denote
by Cx/ the under-category for x, in other words ((Cop)/x)

op.
More generally, if a category D is equipped with a functor to C, then we

define D/x := D×C C/x, and similarly for Dx/. Note that we have used here the
functor C/x → C which forgets the structure map to x. Note that the notation
is abusive in that the name of the functor D → C is dropped from it. In order
to avoid any confusion, we shall use this notation only when the functor D → C
we consider is clear from the context.

By the lax colimit of a diagram in the category Cat of categories (of a limited
size), indexed by a category C, we mean the Grothendieck construction. We
choose the variance of the laxness so the lax colimit projects to C, to make it an
op-fibration over C, rather than a fibration over Cop. (In particular, if C = Dop,
so the functor is contravariant on D, then the familiar fibered category over D
is the op-lax colimit over C for us.) Of course, we can choose the variance for
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lax limits compatibly with this, so our lax colimit generalizes to that in any
2-category.

3. Descent properties of factorization algebras

In this section, we introduce the notion of a locally constant factorization
algebra following Lurie (although he did not use this particular term), and
then investigate its descent properties. This will be a study of the descent
properties of Lurie’s ‘topological chiral homology’.

Many notions and notations we introduce in this section are from Lurie’s
book [16], which has an index and an index for notations.

3.1. Locally constant factorization algebra. Given a manifold M , let us
denote by Open(M) the poset of open submanifolds of M . It (considered as
a category where a map is an inclusion) has a partially defined symmetric
monoidal structure given by the disjoint union in M ,

⊔

S

: Open(M)(S) → Open(M),

where the domain here is the full subposet of Open(M)S consisting of pairwise
disjoint families of open submanifolds of M indexed by the finite set S.

Definition 3.2. Let A be a symmetric monoidal category. Then a prefactor-
ization algebra (or just a prealgebra) on M (valued) in A is a symmetric
monoidal functor Open(M)→ A.

We say that a prealgebraA is locally constant if it takes every inclusionD →֒
D′ between disks in M (namely, open submanifolds which are homeomorphic
to an open disk) to an equivalence A(D)

∼
−→ A(D′).

The category of locally constant prealgebras on M in A will be denoted by
PreAlgM (A).

LetM be a manifold. Let n denote its dimension. Then, following Lurie, we
denote by Disk(M) the poset consisting of open submanifolds U ⊂M homeo-
morphic to an open disk of dimension n (by an unspecified homeomorphism).
This poset has a structure of a symmetric multicategory where a multimap is
a disjoint inclusion in M , so for every fixed source and target, the space of
multimaps is either empty or contractible.

Given symmetric multicategories A, B, recall that an algebra on B in A is
a morphism B → A of symmetric multicategories.

The following is a notion equivalent to an algebra over Lurie’s multicategory
EM ; see [16, Thm. 5.2.4.9], also restated here as Theorem 3.17. Another
equivalent notion has a natural name, and we use that name. All notions and
the equivalence between them will be reviewed below.

Definition 3.3. Let A be a symmetric monoidal category. Then a locally
constant factorization algebra (or just a ‘(locally constant) algebra’, often in
this work) on M valued in A is an algebra on Disk(M) in A whose underlying
functor (of ‘colors’) inverts any map in Disk(M) (which is an inclusion of a
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single disk into another). The category of locally constant algebras on M in
A will be denoted by AlgM (A).

Remark 3.4. This definition makes sense for A just a symmetric multicate-
gory, but for comparison with other notions, it is convenient to have A to be
symmetric monoidal.

Following Lurie, let us denote by Disj(M) the poset of open submanifolds
U ⊂ M homeomorphic (by an unspecified homeomorphism) to the disjoint
union of a finite number of disks. It has a partially defined monoidal structure
given by the disjoint union in M . There is a functor Disk(M) → Disj(M)
of multicategories, so a symmetric monoidal functor A : Disj(M) → A to a
symmetric monoidal category A restricts to a morphism Disk(M) → A of
symmetric multicategories. Moreover, any morphism Disk(M) → A extends
uniquely to a symmetric monoidal functor Disj(M)→ A. Namely, an algebra
on M can also be described as a symmetric monoidal functor Disj(M)→ A.

Remark 3.5. Again, this is still true if the monoidal structure of A is only
partially defined, but this is not an important point for us.

Note that there is a (necessarily symmetric) monoidal full embedding
Disj(M) →֒ Open(M). Given a functor Disj(M) → A, one has its left Kan
extension Open(M)→ A at least if A has colimits.

If the monoidal multiplication in A distributes over colimits, then the Kan
extension Open(M) → A of a symmetric monoidal functor Disj(M) → A
becomes symmetric monoidal in a unique way, so its restriction to Disj(M)
becomes the original symmetric monoidal functor. In fact, Lurie proves that
relevant colimits here can be described as sifted colimits (see Section 3.16
below). Therefore, it suffices to consider just sifted colimits.

To summarize, if the target categoryA has sifted colimits, and the monoidal
multiplication in A distributes over sifted colimits (equivalently, sifted co-
limits are preserved by the monoidal multiplication), then we have a functor
AlgM (A) → PreAlgM (A) given by left Kan extension. This functor is clearly
fully faithful, and it is left adjoint to the functor given by restriction through
the functor Disk(M) → Open(M) of symmetric multicategories. In this way,
AlgM (A) is a right localization of the category of locally constant prealgebras.

Within the category of locally constant prealgebras, an algebra can be char-
acterized as a prealgebra which, as a functor, is the left Kan extension of its
restriction to Disj(M). We often identify AlgM with this right localized full
subcategory of PreAlgM .

The following example is basic; see [3].

Example 3.6. Let A be a category closed under small colimits, and let us
consider it as a symmetric monoidal category under the Cartesian coproduct.
This symmetric monoidal multiplication A ×A → A takes colimits in A ×A
to colimits in the target, so sifted colimits are preserved variable-wise, so the
arguments above applies to this symmetric monoidal structure.
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In this case, any functor Disj(M)→ A has a unique lax symmetric monoidal
structure, and this structure is strong monoidal if and only if the functor is
the left Kan extension (in the canonical way) from its restriction to Disk(M).

It follows that a locally constant algebra in A with respect to the Cartesian
coproduct is the same thing as a locally constant cosheaf in A.

Dually, if A is closed under limits, then a locally constant algebra in Aop

with respect to the Cartesian product of A is the same thing as a locally
constant sheaf valued in A.

3.7. Assumption on the target category. From now on, in this paper, we
assume that the target category A of prealgebras has sifted colimits, and the
monoidal multiplication functor on A preserves sifted colimits variable-wise.
Equivalently, the monoidal multiplication should preserve sifted colimits for all
the variables at the same time.

3.8. Descent for factorizing covers. For a prealgebra onM , being the Kan
extension of its restriction to disjoint union of disks is a kind of descent prop-
erty. We shall observe a more general descent satisfied by a locally constant
algebra.

Definition 3.9. Let C be a category and let χ : C → Open(M) be a functor.
For i ∈ C, denote χ(i) also by Ui within this definition. We shall call this datum
a factorizing cover ofM which is nice in Lurie’s sense, or briefly, a factorizing
l-nice cover, if for any nonempty finite subset x ⊂ M , the full subcategory
Cx := {i ∈ C | x ⊂ Ui} of C has contractible classifying space.

Remark 3.10. The definition is inspired by the definition of a factorizing
cover by Costello and Gwilliam [9] and a condition introduced by Lurie for
his generalized Seifert–van Kampen theorem [16, Appendix]. ‘Nice’ is Lurie’s
description of a cover satisfying his conditions, where he does not intend this
to be a part of his terminology. However, we borrow the word ‘nice’ and make
it our term for the notion above.

Example 3.11. IfM is empty, then any cover ofM , including the one indexed
by the empty category, is factorizing l-nice.

Example 3.12. The inclusion Disj(M)→ Open(M) determines a factorizing
l-nice cover.

Example 3.13. Consider a cover of M by a filtered (or ‘directed’) inductive
system of open submanifolds of M . Then this cover is factorizing l-nice.

Example 3.14. Suppose U = {Us}s∈S is an open cover of M indexed by
a set S. For simplicity, assume that this cover is closed under taking finite
disjoint union. If this is not satisfied, replace S by the set of finite subsets T of
S for which Ut are pairwise disjoint for t ∈ T . (For example, if M = ∅, then
the assumption excludes the empty cover indexed by S = ∅.)

Denote by ∆/S the category of combinatorial simplices whose vertices are
labeled by elements of S. Namely, its objects are finite nonempty ordinal I
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equipped with a set map s : I → S. Then the cover determines a functor
χ : (∆/S)

op → Open(M) by

(I, s : I → S) 7→ Us :=
⋂

i∈I

Us(i).

In Costello–Gwilliam’s terminology, the cover U is factorizing if for this χ,
the category (∆/S)

op
x is nonempty for every finite subset x ⊂M (equivalently

if there is i ∈ S for which x ⊂ Ui).
It is immediate to see that χ determines a factorizing l-nice cover if (and

only if) the cover is factorizing in Costello–Gwilliam’s sense.
Given a prealgebra A on M , the descent complex for U of Costello and

Gwilliam is equivalent to colim(∆/S)op A.

The following generalizes the Kan extension property from the values for
the disjoint unions of disks.

Theorem 3.15. Let A be a locally constant algebra on M (in a symmetric
monoidal category A satisfying our conditions stated in Section 3.7). Then
for any factorizing l-nice cover determined by χ : C → Open(M), the canonical
map A(M)← colimC Aχ is an equivalence.

For the proof, we need another description of locally constant algebras, due
to Lurie. The proof begins right after Corollary 3.20.

3.16. Isotopy invariance. LetM be a manifold and n its dimension. Let EM
be the multicategory (i.e., an ‘infinity operad’) introduced by Lurie. Its objects
are the open submanifolds of M homeomorphic to a disk of dimension n. The
space of multimaps {Ui}i∈S → V is that formed by an embedding

f :
∐

i

Ui →֒ V

together with an isotopy on each Ui from the defining inclusion Ui →֒ M to
f : Ui →֒M .

It is immediate from this description that the underlying category (the cat-
egory of ‘colors’) of EM is a groupoid equivalent to (the fundamental infinity
groupoid of) the space naturally formed by its objects.

Consider the obvious morphism Disk(M)→ EM of multicategories.

Theorem 3.17 (Lurie [16, Thm. 5.2.4.9]). Restriction through the morphism
Disk(M) → EM induces a fully faithful functor between the categories of al-
gebras on these multicategories. The essential image of the functor consists
precisely of the locally constant algebras on M .

In particular, a locally constant algebra on M extends uniquely (up to a
contractible space) to an algebra on EM .

The property of an algebra on disks that the algebra extends to EM can
be understood as isotopy invariance (where the way to be invariant can be
specified functorially) of the functor. By the above theorem, this property is
equivalent to being locally constant.
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Let D(M) be as defined by Lurie [16, Def. 5.3.2.11]. Its objects are open
submanifolds of M which are homeomorphic to a finite disjoint union of disks.
The space of maps U → V is the space formed by embeddings f : U →֒ V
together with an isotopy from the defining inclusion U →֒M to f : U →֒M .

Disjoint union in M cannot be made into a partial monoidal structure on
D(M) since the isotopies we used in defining a morphism in D(M) were re-
quired to be isotopies on the whole U , not just on each of its components.
However, D(M) can be extended to a symmetric partial monoidal category
which has the same objects but where the mentioned restriction on the maps is
discarded. Let us denote this partial monoidal category by EM . The composite
EM → D(M)→ EM then has a canonical structure as a map of multicategories,
and we can try to extend A to a symmetric monoidal functor on EM .

To see that this is possible, let us further try discarding the restriction on
the objects. Namely, an object of EM is an object of D(M), which can be
considered as a disjoint family of disks in M , but we can instead include any
family of disks (and define morphisms in the same way as in EM ). The result
is the symmetric monoidal category freely generated from EM . Therefore, an
algebra A on EM can be extended to a symmetric monoidal functor on the
free symmetric monoidal category, and then be restricted to EM through the
symmetric monoidal inclusion. This symmetric monoidal functor on EM , as
an algebra on a multicategory, extends the algebra A on EM .

Moreover, there is a commutative square

Disk(M)

��

// EM

��

Disj(M) // D(M)

which, with the functor D(M)→ EM , factorizes a square

Disk(M) //

��

EM

��

Disj(M) // EM ,

where the bottom functor underlies a symmetric monoidal functor. It follows
that, by restricting to D(M) (the underlying functor of) the described symmet-
ric monoidal functor on EM extending A, one gets a functor on D(M) which
extends both

• (the underlying functor of) A on EM , and
• (the underlying functor of) the symmetric monoidal functor on Disj(M)
uniquely extended from the algebra A|Disk(M) on Disk(M).

Proposition 3.18 (Lurie [16, Prop. 5.3.2.13 (1)]). The functor Disj(M) →
D(M) is cofinal.
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That is, for a functor defined on D(M), its colimit over D(M) gives the
colimit of the restriction of the same functor to Disj(M).

Proposition 3.19 (Lurie [16, Prop. 5.3.2.15]). The category D(M) is sifted.

Corollary 3.20. Let A be a locally constant algebra on M . Consider it as
an algebra on EM , and then extend its underlying functor to D(M) in the
explained way. Denote the resulting functor on D(M) still by A. Then the
canonical map

A(M)← colim
D(M)

A

is an equivalence.

We can now prove Theorem 3.15. Recall that a functor C → D is cofinal if
for every functor f with domain D, colim f (if it exists) is a colimit of f over C
(in the canonical way); see [14, Def. 4.1.1.1 and Prop. 4.1.1.8].

Definition 3.21. Let U be a cover of a manifold M , given by a functor
χ : C → Open(M), i 7→ Ui. Then U is said to be effectively factorizing l-nice if
the canonical functor colimiD(Ui)→ D(M) is cofinal.

Remark 3.22. By Proposition 3.18, the condition of being an effectively fac-
torizing l-nice cover is equivalent to that the functor colimiDisj(Ui)→ D(M)
is cofinal.

Theorem 3.17 immediately implies the following.

Lemma 3.23. Let A be a locally constant algebra on M . Then for any effec-
tively factorizing l-nice cover determined by χ : C → Open(M), the canonical
map A(M)← colimC Aχ is an equivalence.

Theorem 3.15 is an immediate consequence of this and the following, ‘factor-
izing’ version of Lurie’s higher homotopical generalization of the Seifert–van
Kampen theorem. The factorizing version is actually a consequence of the
original theorem. Our proof will be similar to the proof of [7, Thm. 5.1] by
Boavida de Brito and Weiss, and will also use some arguments similar to those
from the proofs of the theorems above of Lurie.

Proposition 3.24. Let M be a manifold. Then every factorizing l-nice cover
of M is effectively factorizing l-nice.

In the proof, we shall use the following standard fact from basic homotopy
theory. Its proof is included for completeness.

Lemma 3.25. Let G be a groupoid. Then a functor C → G from a 1-category
is cofinal if (and only if) the induced map BC → G is an equivalence.

Proof. Assuming that G = BC, we want to prove that the colimit of any functor
L defined over G is a colimit of L over C. (The ‘only if’ part is trivial since BC
is a colimit of the final diagram over C in the 1-category of groupoids.)

Note that it suffices to consider the case where L takes values in the opposite
of the category of spaces, since whether an object is a colimit is tested by
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homming into another object. Let us conveniently change the variance of C
and G, and consider the limits of a covariant functor L defined on G. Thus, we
want to prove that for G = BC = colimC ∗, where the colimit is taken in the
category of groupoids, the induced map limG L→ limC L is an equivalence.

The crucial fact here is that for any object i of G, L(i) is the homotopy fiber
of the projection colimG L → G. Namely, L(i) is the space of sections of this
map over the point i.

It follows that limC L is the space of global sections if G = colimC ∗. Thus,
we have proved that limC L is functorially equivalent to a space which is inde-
pendent of C as long as the map BC → G is an equivalence. (In particular, this
independent space is identified with limG L through the equivalence obtained
in the case where the functor C → G is an equivalence.) This completes the
proof of Lemma 3.25.

Alternatively, one can apply Joyal’s generalization of Quillen’s Theorem A
[14], although, as we have shown, this is not necessary. Again, assuming G =
BC, we want to show that, for any object x of G, the under-category Cx/ has
contractible classifying space.

The point is that, since G is a groupoid, Cx/ coincides with the fiber of the
functor C → G over x. The result follows since the classifying space functor
preserves fiber products over a groupoid (see Lemma 3.26 below). �

Lemma 3.26. Let Cat denote the category of categories (with a fixed limit for
the size), and Gpd its full subcategory consisting of groupoids. Then the clas-
sifying space functor B : Cat→ Gpd preserves fiber products over a groupoid.

Proof. The claim is that for G ∈ Gpd ⊂ Cat, the functor

B : Cat/G → Gpd/BG = Gpd/G

preserves direct products. However, the functor

B∗ : Fun(G,Cat)→ Fun(G,Gpd)

can be identified with this functor since B : Cat→ Gpd preserves colimits, and
this concludes the proof. Indeed, B∗ preserves direct products since B : Cat→
Gpd does.

Alternatively, one may note that B is left adjoint to the inclusion Gpd/G →֒
Cat/G , and for C,D ∈ Cat/G and H ∈ Gpd/G , may equate

MapCat/G
(C ×G D,H) = MapCat/G

(C,FunG(D,H))

naturally with

MapGpd/G
(BC,MapG(BD,H)) = MapCat/G

(C,MapG(BD,H)),

where FunG and MapG denote the internal hom functors in the Cartesian closed
category Cat/G ≃ Fun(G,Cat) and in Gpd/G respectively. Indeed, the map

MapG(BD,H) → FunG(D,H) induced from the canonical map D → BD can
be seen to be an equivalence using the fact that B : Cat → Gpd preserves
direct products. �
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Proof of Proposition 3.24. Suppose that a factorizing l-nice cover U of M is
given by a functor χ : C → Open(M), i 7→ Ui. We want to show that the
functor

colim
i

D(Ui)→ D(M)

is cofinal.
Recall that for open U ⊂ M , the category D(U) was a comma category in

the category Man of manifolds, in which the space of morphisms is the space of
open embeddings. Namely, let D be the full subcategory of Man whose objects
are equivalent to the disjoint union of a finite number of disks of dimension n,
where n = dimM . Then D(U) was the comma category whose object was a
morphism from an object of D to U .

In other words, D(U) = lax colimD∈D Emb(D,U), where Emb(D,U), the
infinity groupoid of embeddings, is the space of morphisms in Man, and the
lax colimit is taken in the 2-category of categories.

It follows that it suffices to prove that, for every D ∈ D, the map

lax colim
i∈C

Emb(D,Ui)→ Emb(D,M)

is cofinal for every D ∈ D.
In view of Lemma 3.25, it suffices to prove that the map

colim
i∈C

Emb(D,Ui)→ Emb(D,M)

is an equivalence.
Choose a homeomorphism D ≃ S × R

n for a finite set S. In particular, we
have picked a point in each component of D, corresponding to the origin in R

n,
together with a germ of chart at the chosen points. Then, given an embedding
D →֒ U , restriction of it to the germs of charts at the chosen points gives us
an injection S →֒ U together with germs of charts in U at the image of S.
This defines a homotopy equivalence of Emb(D,U) with the space of germs of
charts around distinct points in U , labeled by S.

Furthermore, for any U , this space is fibered over the configuration space
Conf(S,U) := Emb(S,U)/Aut(S), with fibers equivalent to Germ0(R

n)S ×
Aut(S), where Germ0(R

n) is from [16, Not. 5.2.1.9], or to the underlying space
of the wreath product Germ0(R

n) ≀ Aut(S) of groups, in a more explanatory
expression.

Thus it suffices to show that the map

colim
i∈C

Conf(S,Ui)→ Conf(S,M)

is an equivalence of spaces.
In order to prove this, Lurie’s generalized Seifert–van Kampen theorem

implies that it suffices to prove that for every x ∈ Conf(S,M), the category
{i ∈ C | x ∈ Conf(S,Ui)} has contractible classifying space. However, x ∈
Conf(S,Ui) is equivalent to suppx ⊂ Ui, where suppx is the subset of M
corresponding to the configuration x, so the required condition is exactly our
assumption that the cover is factorizing l-nice. �
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3.27. Basic descent. We continue with the assumptions introduced in Sec-
tion 3.7. Namely, we assume that the target category A of prealgebras has
sifted colimits, and the monoidal multiplication functors on A preserve sifted
colimits (variable-wise).

Definition 3.28. LetM be a manifold, and let U be an effectively factorizing
l-nice cover of M , given by a functor χ : C → Open(M), i 7→ Ui. We say that
U is an (effectively) factorizing l-nice basis for the topology of M , if for every
open V ⊂ M , the functor χ : C/V → Open(M)/V = Open(V ) determines an
(effectively) factorizing l-nice cover of V .

Remark 3.29. There is an obvious non-factorizing version of these notions.

It is immediate to see that a factorizing l-nice basis is effectively so as well.

Example 3.30. Disjoint open disks ofM form a factorizing l-nice basis ofM .

The following proposition is a corollary of Lemma 3.23, in view of the defi-
nition of an effectively factorizing l-nice basis.

Proposition 3.31. Let M be a manifold with an effectively factorizing l-nice
basis U . Then any factorization algebra A, as a functor, is a left Kan ex-
tension of its restriction to U , namely, if the basis is given by a functor
χ : C → Open(M), then A is a Kan extension along χ of Aχ.

In fact, the converse to this is true in the following sense.

Proposition 3.32. Let M be a manifold with an effectively factorizing l-nice
basis U . Suppose A is a prealgebra on M , then it is a locally constant factor-
ization algebra if (and only if) the following conditions hold:

(i) For any basic (in the basis) open U , the conditions
(a) A is locally constant when restricted to U ,
(b) the map colimDisj(U)A→ A(U) is an equivalence
are satisfied.

(ii) The underlying functor of A is a left Kan extension of its restriction to
the basis.

Theorem 3.33. The association M 7→ AlgM (A) (which is contravariantly
functorial in open embeddings of codimension 0) satisfies descent for any ef-
fectively factorizing l-nice basis.

Proof assuming Proposition 3.32. If A is a locally constant factorization al-
gebra on a manifold U , then conditions (a) and (b) of the proposition are
satisfied. �

Let us seek for a proof of Proposition 3.32. Having Proposition 3.31, the
only nontrivial point is to show that A is locally constant. Although Proposi-
tion 3.32 can be proved in a direct manner, we shall deduce it from a similar
theorem in a more specific situation, with weaker looking local constancy as-
sumption. The weaker assumption is more flexible, and the theorem will turn
out to be useful.
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The theorem is as follows. (We shall use its Corollary 3.45 for our proof of
Proposition 3.32.)

Theorem 3.34. Let M be a manifold, and V an effectively factorizing l-nice
basis of M , given by a (necessarily symmetric) monoidal functor

ψ : E → Open(M), i 7→ Vi,

from a symmetric partial monoidal category E, landing in fact in Disj(M).
Let E1 be a category mapping to (the underlying category of) E, for which
Hypothesis 3.38 below is satisfied. Then a prealgebra A in A on M is a locally
constant factorization algebra on M if and only if it satisfies the following:

(i) Aψ sends every morphism in E1 to an equivalence.
(ii) The underlying functor of A is a left Kan extension of its restriction Aψ

to the factorizing basis.

In other words, any pair E1 → E satisfying the hypotheses can replace the
pair Disk(M) → Disj(M) in the definition of a locally constant factorization
algebra.

Remark 3.35. For every U ⊂M , the section E/U → lax colimi∈E/U
Disj(Vi) to

the canonical functor lax colimi∈E/U
Disj(Vi)→ lax colimi∈E/U

∗ = E/U , sending

i to the image of the (existing!) terminal object of Disj(Vi) in the colimit, is
cofinal.

In particular, the assumption that the basis is effectively factorizing l-nice
is equivalent to that the composite

E/U
ψ
−→ Disj(U)→ D(U)

is cofinal for every U , since this can be written as the composite

E/U → colim
i∈E/U

Disj(Vi)→ D(U);

see Remark 3.22.

We need to introduce some notation to state the hypotheses. Note that
a map f : D → E in D(M) is an equivalence if and only if the embedding
D →֒ E (call it g) contained as a part of data determining f is the disjoint
union of embeddings of a single disk into another. That is, if and only if there
is a one-to-one correspondence between the connected components of D and
those of E, such that g embeds each component of D into the corresponding
component of E.

Given a finite set S, we denote by D′
S(M) the groupoid whose objects are

families D = (Ds)s∈S of disks labeled by elements of S, and pairwise disjointly
embedded in M . A morphism D → E = (Es)s∈S is a map

⊔

S D →
⊔

S E in
D(M) which preserves the labels, and is necessarily an equivalence. (Note the
difference of this map from just a map Ds → Es for every s ∈ S, in the case
where S has more than one point. We denote our category by D′

S(M) instead
of DS(M) to emphasize this difference.)
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Analogously, let DisjS(M) denote the poset whose objects are families D =
(Ds)s∈S of disks labeled by elements of S, and pairwise disjointly embedded
in M . A morphism D → E = (Es)s∈S is an inclusion in M such that Ds ⊂ Es
for every s ∈ S. (This is the same as a family of inclusions labeled by s ∈ S.)
For example, if S consists of one element, then DisjS = Disk.

Lemma 3.36. The functor DisjS(M)→ D′
S(M) is cofinal.

Proof. By Lemma 3.25, it suffices to prove that this functor identifies the
groupoid D′

S(M) with the classifying space of DisjS(M). The argument for
this will be similar to the proof of Proposition 3.24.

Namely, let D = (Ds)s∈S be a family of free (i.e., not embedded) disks
indexed by the elements of S. Then we deduce as before that it suffices to
prove that the map

colim
U∈DisjS(M)

∏

s∈S

Emb(Ds, Us)→ Emb(
∐

S D,M)

is an equivalence.
It further follows in a similar manner as before, that it suffices to prove that

the map

colim
U∈DisjS(M)

∏

S

U → Conf(S,M)

is an equivalence.
The equivalence follows from applying the generalized Seifert–van Kampen

theorem to the following open cover of Conf(S,M). The cover is indexed
by the category DisjS(M), and is given by the functor which associates to
U ∈ DisjS(M) the open subset

∏

S U of Conf(S,M). It is immediate to see
that this cover satisfies the assumption for the generalized Seifert–van Kampen
theorem. �

Remark 3.37. Note that the last step of the proof of Lemma 3.36 implies
that the classifying space of DisjS(M) is equivalent to the labeled configuration
space of M . Namely, the groupoid D′

S(M) models this space.

The hypotheses on the factorizing basis are the following. For a finite set S,
denote by ES the category of S-labeled families of objects of E1 for which the
tensor product over S is defined in E .

Hypothesis 3.38. We claim the following:

(i) ψ1 := ψ|E1 lands in Disk(M).
(ii) ψ1 defines a (non-factorizing) effectively l-nice basis. (This is equivalent

here to that ψ1 : (E1)/U → Disk(U) is an equivalence on the classifying
spaces for every open U ⊂ M ; see Remark 3.35. BDisk(U) is equivalent
to U .)

(iii) If a finite set S consists of one element, then ES is the whole of E1.
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(iv) For every finite set S, the square

ES //

⊗
S

��

DisjS(M)

⊔
S

��

E
ψ

// Disj(M)

is Cartesian.

Remark 3.39. Considering the case where the finite set S consists of one
element, we have a Cartesian square

E1

��

ψ1
// Disk(M)

��

E
ψ

// Disj(M).

In particular, the functor E1 → E is a full embedding.
Other ES are (non-full) subcategories of E .

Remark 3.40. The consequence of the last condition of Hypothesis 3.38,
which will be actually used in the proof, will be that for any objectD ∈ D′

S(M),
the square

(1) (ES)D/ //

⊔
S

��

DisjS(M)D/

⊔
S

��

E⊔
S D/

ψ
// Disj(M)⊔

S D/

is Cartesian. This follows from the assumption since the assumption implies
that the square

(ES)E/ //

⊔
S

��

DisjS(M)E/

⊔
S

��

EE/
ψ

// Disj(M)E/

is Cartesian for every E ∈ D(M), while the square

(ES)D/ //

⊔
S

��

DisjS(M)D/

⊔
S

��

(ES)⊔
S D/

ψ
// DisjS(M)⊔

S D/

is always Cartesian for every D ∈ D′
S(M).

In order to have that the square (1) is Cartesian for every D ∈ D′
S(M),

we do need the full force of the assumption, since if we have that the map
(ES)D/ → [E ×Disj(M) DisjS(M)]D/ is an equivalence for every D ∈ D′

S(M),
then the colimit of this over all D will be the original assumption.
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The following is a situation where the hypotheses are satisfied.

Example 3.41. Suppose we have a (non-factorizing) effectively l-nice basis
given by a functor ψ1 : E1 → Open(M), i 7→ Vi. Then we can freely generate a
symmetric, partially monoidal category from E1 by using the partial monoidal
structure of Open(M). Namely, we consider a category E whose objects are
pairs consisting of a finite set S and a family (is)s∈S of objects of E1 for which
the open submanifolds Vis ⊂ M are pairwise disjoint. The symmetric partial
monoidal structure on E is defined in the obvious way, and ψ1 extends to a
symmetric monoidal functor E → Open(M), which we shall denote by ψ.

In this case, the underlying functor of ψ defines an effectively factorizing
l-nice basis of M at least if ψ1 (and so ψ as well) is the inclusion of a full
subposet.

If ψ1 lands in Disk(M), then ψ lands in Disj(M), and the square given in
Hypothesis 3.38 (iv) is Cartesian by our construction of the partial monoidal
category E .

Example 3.42. As a special case of Example 3.41 we can take E1 to be the full
subposet of Open(M) consisting of open submanifolds diffeomorphic (rather
than homeomorphic) to a disk. In this case, E is the full subposet of Open(M)
consisting of open submanifolds diffeomorphic to the disjoint union of a finite
number of disks.

Remark 3.43. E1 has a structure of a multicategory where for a finite set S,
the space of multimaps i → j for i = (is)s∈S , is, j ∈ E1, is nonempty only if
i ∈ ES , and, in the case i ∈ ES , we have

MultimapE1
(i, j) = MapE(

⊗

S i, j).

A symmetric monoidal functor on E restricts to an algebra on E1, and this
gives an equivalence of categories. We may say that an algebra A on E1 (or
equivalently, on E) is locally constant if A inverts all unary maps of E1. We may

denote the category of locally constant algebras by AlglocE1
(A) = AlglocE (A).

Our assumptions give a functor E1 → Disk1(M) of multicategories, and
Theorem 3.34 may be stated as that the induced functor

AlgM (A)→ AlglocE1
(A)

is an equivalence.

Proof of Theorem 3.34. Necessity follows from the definition of local constancy
and Proposition 3.31.

For sufficiency, it suffices to prove that the given conditions on A imply that
the underlying functor of the restriction of A to Disj(M) extends to D(M). In-
deed, once we have this, then Proposition 3.18 and the effective l-niceness of the
basis imply that, for every open U ⊂M , the map colimE/U

Aψ → colimDisj(U)A
is an equivalence, so A, which is assumed to be a left Kan extension from E ,
will in fact be a Kan extension from Disj(M).

In order to extend the underlying functor of A|Disj(M) to D(M), let us show
that the right Kan extension A of A|Disj(M) to D(M) coincides with A on
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Disj(M). (For the solution for an issue here, see the remark after the proof.)
It actually suffices to show that the map A(jV ) → A(V ) is an equivalence
for every V in the factorizing basis, where j : Disj(M)→ D(M) is the functor
through which we compare the two categories. Indeed, if D is an arbitrary
object of Disj(M), and if we have equivalences

colim
D(D)

A
∼
←− colim

E/D

Ajψ
∼
−→ colim

E/D

Aψ,

then by the Kan extension assumption on A, we have that the map A(D) →
A(D) is an equivalence.

In order to prove that the map

A(jV ) = lim
Disj(M)jV/

A→ A(V )

is an equivalence, we shall first replace the shape of the diagram over which
this limit is taken, by a coinitial one. Decompose V into a disjoint union
⊔

s∈S ψ(is), S a finite set, where is ∈ E1, so Us := ψ(is) = ψ1(is) is a disk.
Then we shall prove that the following functors are coinitial:

(ES)jU/
ψ
−→ DisjS(M)jU/ →֒ Disj(M)jV/,

where U = (Us)s∈S ∈ DisjS(M) (so jV =
⊔

S jU). The inclusion

DisjS(M)jU/ →֒ Disj(M)jV/

is coinitial since it is obviously a left adjoint.
In order to prove that the functor

ψ : (ES)jU/ → DisjS(M)jU/

is coinitial, let us consider an object of DisjS(M)jU/ which, as an object
of Disj(M)jV/, is given by the pair consisting of an object D of Disj(M)
and a map f : jV → jD in D(M). We would like to prove that the over-
category [(ES)jU/]/(D,f) has contractible classifying space, where (D, f) is
considered as an object of DisjS(M)jU/. Then, since f is required to be
a map in D′

S(M), D can be written as a disjoint union
⊔

s∈S Ds of disks,
where the embedding part g : V →֒ D of the data determining f embeds Us
into Ds. With this notation, it follows from definitions that the over-category
[(ES)jU/]/(D,f) is equivalent to

∏

s∈S(E1)/Ds,gUs/, where we consider Ds as
an object of Disk(M) = Disj1(M), and gUs as an object of D′

1(Ds), the full
subcategory of D(Ds) consisting of disks.

However, the functor jψ1 : (E1)/Ds
→ D′

1(Ds) is cofinal by the assumption
of effective l-niceness, so we conclude that (E1)/Ds,gUs/ has contractible clas-
sifying space, which implies that [(ES)jU/]/(D,f) ≃

∏

s∈S(E1)/Ds,gUs/ also has
contractible classifying space. This proves coinitiality of the functor

ψ : (ES)jU/ → DisjS(M)jU/.

It follows that the map A(jV )→ lim(ES)jU/
Aψ is an equivalence, so in order

to conclude the proof, it suffices to show that the map from this limit to A(V )
is an equivalence.
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To analyze this limit, all the maps which appear in the diagram for this
limit are equivalences since they are induced from (a finite family of) maps
of E1, which Aψ is assumed to invert.

It therefore suffices to show that the indexing category (ES)jU/ of the limit
has contractible classifying space. However, this follows from Lemma 3.36
since we have proved above that the functor ψ : (ES)jU/ → DisjS(M)jU/ is
coinitial. �

Remark 3.44. In the above proof, we have used the right Kan extension of
a functor taking values in A. However, we do not need to assume existence of
limits in A for the validity of Theorem 3.34. Indeed, our purpose for taking
the Kan extension was to show that the prealgebra A was locally constant. In
order to prove this in the described method, A could be fully embedded into
a category which has all small limits (e.g., by the Yoneda embedding), and
the right Kan extension could be taken in this larger category. Note that the
monoidal structure of A was not used in this step of the proof.

Corollary 3.45. Let M be a manifold and let V be an effectively factorizing
l-nice basis of M considered in Theorem 3.34, equipped with all the data, and
satisfying all the assumptions. Let U be another effectively factorizing l-nice
basis of M , given by a functor χ : C → Open(M), i 7→ Ui. Let ψ = χι be a
factorization, where ι : E → C. Then a prealgebra A (not assumed to be locally
constant) on M is a locally constant factorization algebra if (and only if) the
following are satisfied.

(i) Aψ inverts all morphisms of E1.
(ii) The functor Aχ on C is a left Kan extension of its restriction Aψ to E

through ι.
(iii) The underlying functor of A is a left Kan extension of its restriction Aχ

to the basis U .

Proof. A is a left Kan extension of its restriction to the basis V , so Theo-
rem 3.34 applies. �

Example 3.46. Consider the following discrete category Manδc. An object
is a compact smooth manifold with boundary. A map U → V is a smooth
immersion of codimension 0 which restricts to an embedding U →֒ V , where U
and V are the interior of U and V respectively. (In the notation, the superscript
δ is to remind that the spaces of morphisms are discrete, and the subscript c
is to remind that the objects are compact manifolds with boundary.) Manδc is
a symmetric monoidal category under disjoint union.

LetM be an object of this category, and let M denote its interior. Then, in
the corollary, we can take U to be given by the map χ : (Manδc)/M → Open(M)
of partial monoidal posets sending U →M to its restriction U →֒M while tak-
ing E1 to be the full subposet of (Manδc)/M consisting of objects whose source
has the diffeomorphism type of the closed disk, and E to be the symmetric
partial monoidal category freely generated by E1. Here, we consider (Manδc)/M
as a partial monoidal category under unions which is disjoint in interiors, and
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we induce a structure of symmetric multicategory on E1 from this. E is the full
subposet of (Manδc)/M generated from E1 by the partial monoidal product.

In other words, a locally constant factorization algebra on this M could
be defined as a symmetric monoidal functor on (Manδc)/M whose underlying
functor satisfies the first two conditions of Corollary 3.45. The original notion
is recovered by taking the left Kan extension of the underlying functor to
Open(M), which acquires a canonical symmetric monoidal structure.

Proof of Proposition 3.32. Define

E := lax colim
i∈C

Disj(Ui).

Let ι : E → C be the canonical projection, ψ := χι, and

E1 := lax colim
i∈C

Disk(Ui) ⊂ E .

It suffices to check that Corollary 3.45 applies. Firstly, ψ : E → Open(M)
defines an effectively factorizing l-nice basis of M since for every open U ⊂M ,
the functors Disj(Ui)→ E/i for i ∈ C/U , the functor colimi∈C/U

E/i → E/U , and
so the composite

colim
i∈C/U

Disj(Ui)→ colim
i∈C/U

E/i → E/U ,

as well as the composite

colim
i∈C/U

Disj(Ui)→ E/U → D(U)

are cofinal. Similarly, ψ1 defines an effectively l-nice basis. Moreover, for a
finite set S, we have ES = lax colimi∈C/U

DisjS(Ui), and the rest of Hypothe-
sis 3.38 is satisfied. �

Finally, we prove the following result using Theorem 3.34. Let Manδ denote
the discrete category of manifolds and open embeddings.

Theorem 3.47. The presheaf M 7→ AlgM (A) on Manδ of categories is a
sheaf.

Proof. Let a cover of a manifold M be given by U = (Us)s∈S where S is an
indexing set. Let C := (∆/S)

op be as in Example 3.14, and define χ : C →
Open(M) in the way described there. We would like to prove that the restric-
tion functor

(2) AlgM (A)→ lim
i∈C

Algχ(i)(A)

is an equivalence. We shall construct an inverse.
For an open disk D ∈ Disk(M), define

CD := {i ∈ C | D ⊂ χ(i)}.

Then this is either empty or has contractible classifying space. Indeed, we have
CD = (∆/SD

)op, where SD := {s ∈ S | D ∈ Us}.
We plan to apply Theorem 3.34 to the following pair of bases. Namely,

define E1 to be the full subposet of Disk(M) consisting of disks D such that
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CD is nonempty. This gives an l-nice basis of M . Then define a factorizing
l-nice basis E as in Example 3.41. The full inclusion ψ : E →֒ Disj(M) is a map
of (symmetric) partial monoidal posets, and the pair E1 →֒ E of bases for the
topology of M satisfies Hypothesis 3.38.

Let (Ai)i∈C ∈ limi∈C Algχ(i) be given. Then define B : E1 → A by

D 7→ lim
i∈CD

Ai(D).

So B(D) is canonically equivalent to Ai(D) for any i ∈ CD. Extend this
uniquely to a symmetric monoidal functor B : E → A. Then the left Kan
extension of the underlying functor E → A through ψ : E → Open(M) of B has
a symmetric monoidal structure which makes it a locally constant factorization
algebra by Theorem 3.34.

It is immediate that this construction of a locally constant factorization
algebra gives an inverse to the restriction functor (2). �

Let us drop the name ‘A’ of the target symmetric monoidal category from
the notation, and denote by Alg the sheaf M 7→ AlgM of Theorem 3.47. Then
by general (and undoubtedly standard) constructions and arguments, Alg ex-
tends uniquely to a sheaf on the category Orb of orbifolds and local diffeo-
morphisms between them. Indeed, one finds equivalence of the categories of
sheaves (of categories) on Manδ, and on Orb, through restriction of sheaves.

The construction of the functor f∗ : AlgN → AlgM for a local diffeomor-
phism f : M → N of manifolds for instance is as described (for not necessarily
locally constant factorization algebras) in [9]. Namely, we obtain a cover Uf of
M by open submanifolds U of M on which f restricts to an open embedding
U →֒ N , and f∗ is defined as the restriction

AlgN → lim
i∈C

Algχ(i) = AlgM ,

where C and χ are as in the proof of Theorem 3.47 for the cover U = Uf . Note
that this description of f∗ is in fact forced since the construction is required
to commute with composition of local diffeomorphisms.

The sheaf on Orb to extend Alg is (as it in fact needs to be) obtained by
right Kan extension from the category of manifolds and local diffeomorphisms.
For an orbifold X , it would perhaps make sense to refer to the value associated
to X by this sheaf as the category ‘of locally constant factorization algebras
on X ’. This defines a notion of the locally constant factorization algebra on X .

4. Generalizations and applications

4.1. Push-forward. We continue with the assumption stated in Section 3.7.
Push-forward for factorization algebras has been extensively studied in, e.g.,
[3, 8, 9, 11]. We shall show in this section that Lurie’s results and the analysis
in the previous section allow for easy constructions and proofs for the push-
forward for locally constant factorization algebras.
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Let us first show that we can obtain a locally constant factorization algebra
by pushing forward a locally constant factorization algebra along a ‘locally
constant’ map.

Given any map p : X →M of manifolds, the map

p−1 : Open(M)→ Open(X)

is symmetric monoidal. It follows that any prealgebra on X can be precom-
posed with p−1 to give a prealgebra p∗A on M . Namely, we define

p∗A := A ◦ p−1.

We may ask when p∗A is locally constant, whenever A is a locally constant
factorization algebra. It follows from Theorem 3.17 that a sufficient condition
is that p is locally trivial in the sense that over every component of M , it is
the projection of a fiber bundle. (Note that in this case, p can be regarded as
giving a locally constant family of manifolds parametrized by points of M .)

Proposition 4.2. If p : X → M is locally trivial, then for every locally con-
stant factorization algebra on A, the prealgebra p∗A is a locally constant fac-
torization algebra.

Proof. We have seen that the prealgebra p∗A is locally constant, so it suffices
to verify the gluing property. Given any open submanifold U of M , p−1 maps
the factorizing l-nice cover Disj(U) of U to a factorizing l-nice cover of p−1U .
Therefore, the result follows from Theorem 3.15 applied to A|p−1U . �

Let us next provide the push-forward with functoriality on the groupoid of
locally trivial maps. By definition, this groupoid is modeled by a Kan complex
K• whose k-simplex is a locally constant family over the standard k-simplex of
locally trivial maps. In other words, a k-simplex is a map p : X×∆k →M×∆k

over ∆k which is locally trivial.
It follows from Theorem 3.17 and Corollary 3.20 that a locally constant

algebra A on X is functorial on the groupoid of open submanifolds of X ,
which can be modeled by a Kan complex whose k-simplex is a locally constant
family of open submanifolds parametrized over the standard k-simplex.

Now let p be a k-simplex of K•. Then for every open submanifold U of M ,
the projection p−1(U × ∆k) → ∆k gives a k-simplex of the space of open
submanifolds of X . We obtain the desired functoriality of the push-forward
immediately.

4.3. Case of a higher target category. A natural notion of a twisted fac-
torization algebra would be the notion of an algebra taking values in a factor-
ization algebra of categories (rather than in a symmetric monoidal category).
A twisted algebra in this sense will turn out to be just a map between certain
algebras taking values in the Cartesian symmetric monoidal category Cat of
categories (of some limited size). In particular, the space of twisted algebras
is a part of the structure of a category of AlgM (Cat). However, in order to
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capture the structure of a category (rather than just a space) of twisted alge-
bras, we need to take into account the structure of a 2-category of AlgM (Cat),
coming from the 2-category structure of Cat. We can consider algebras in a
symmetric monoidal 2-category in general, and it is in fact natural to consider
a symmetric monoidal n-category for any integer n ≥ 2.

Definition 4.4. Let n ≥ 2 be an integer, and A be a symmetric monoidal
n-category. LetM be a manifold. Then a locally constant factorization algebra
on M in A is an algebra in A over EM .

If A is an n-category, then algebras in A form an n-category.
The first thing to note is that the underlying 1-category of the n-category

of factorization algebras in A is just the category of algebras in the underlying
1-category of A.

In order to understand the structure of the n-category of factorization al-
gebras, we would like to see that Theorem 3.17 holds in this context, for the
n-categories of algebras.

Theorem 4.5. Let n ≥ 1 be an integer. Then restriction through the mor-
phism Disk(M)→ EM induces a fully faithful functor between the n-categories
of algebras on these multicategories, valued in a symmetric monoidal n-category
A. The essential image of the functor consists precisely of the locally constant
algebras on Disk(M).

In order to explain the proof of this theorem, let us first review the proof of
Theorem 3.17. It follows from Theorem 4.6 (undefined terms will be explained
below) and Lemma 4.7.

Theorem 4.6 (A special case of [16, Thm. 2.3.3.23]). Let C and O be multi-
categories, and assume that the category of colors of O is a groupoid. Let
f : C → O be a morphism, and assume that it is a weak approximation and
induces a homotopy equivalence on the classifying spaces of the categories of
colors. Then, for every multicategory A, the functor

f∗ : AlgO(A)→ AlgC(A)

induces an equivalence AlgO(A)
∼
−→ AlglocC (A), where Algloc denotes the cate-

gory of locally constant algebras, and Alg the category of not necessarily locally
constant algebras.

Local constancy here means that the underlying functor of the algebra in-
verts all (unary) morphisms between colors. We do not need to explain the
term weak approximation, since we just quote the following.

Lemma 4.7 ([16, Lem. 5.2.4.10, Lem. 5.2.4.11]). The assumptions on f of
Theorem 4.6 are satisfied by the map Disk(M)→ EM .

Thus, Theorem 3.17 extends to Theorem 4.5 once we prove the following.
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Proposition 4.8. Let C and O be multicategories, and let f : C → O be a mor-
phism. Assume that f satisfies the conclusion of Theorem 4.6 (for example,
by satisfying its assumptions). Then for every integer n ≥ 1, the same con-
clusion is true also for any multicategory A enriched in n-categories, instead
of just 1-dimensional A (so an equivalence of (n+1)-categories is the claimed
conclusion).

Proof. The proof will be by induction on n. Since we know that the conclusion
is true at the level of the underlying 1-categories, it suffices to prove that the
functor f∗ is fully faithful.

Thus, suppose n ≥ 1, and let A,B ∈ AlgO(A). We need to recall the Day
convolution. Namely, we construct a multicategory enriched in n-categories,
which we shall denote by Map(A,B), equipped with a morphism to O, so that
the n-dimensional category MapAlgO(A)(A,B) is by definition the fiber over the

universal O-algebra id : O → O of the induced functor AlgO(Map(A,B)) →
AlgO(O). (This is actually a slight modification of Day’s original construction,
which captures lax, rather than genuine, morphisms of algebras.)

An object of Map(A,B) is a pair (x, φ), where x is an object (or a ‘color’)
in O (x ∈ O), and φ : A(x)→ B(x) in A. Given a family (x, φ) = ((xs, φs))s∈S
of objects indexed by a finite set S, and an object (y, ψ), we define the (n−1)-
category of multimaps by the equalizer diagram

Map((x, φ), (y, ψ))→ MapO(x, y)
→
→ MapA(A(x), B(y)),

where the two maps equalized are the composites

MapO(x, y)
B
−→ MapA(B(x), B(y))

φ∗

−→ MapA(A(x), B(y))

and

MapO(x, y)
A
−→ MapA(A(x), A(y))

ψ∗

−−→ MapA(A(x), B(y)).

For example, a multimap (x, φ) → (y, ψ) is a pair (θ, α), where θ : x → y

in O and α : B(θ)φ
∼
−→ ψA(θ) in Map(A(x), B(y)), filling the square

A(x)
φ

//

A(θ)

��

B(x)

B(θ)

��

A(y)
ψ

// B(y).

Note that Map((x, φ), (y, ψ)) is indeed an (n− 1)-category since every fiber
of the functor Map((x, φ), (y, ψ)) → Map(x, y) is (n − 1)-dimensional, where
the base is 0-dimensional.

The functor Map(A,B) → O is given on objects by (x, φ) 7→ x, and on
multimaps by the projection Map((x, φ), (y, ψ))→ Map(x, y).

We shall denote Map(f∗A, f∗B) by MapC(A,B). The next lemma is imme-
diate from the definitions.
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Lemma 4.9. The following canonical square of multicategories is Cartesian:

MapC(A,B) //

��

C

f

��

Map(A,B) // O.

We shall continue with the proof of Proposition 4.8. We have already seen
that it suffices to prove that the functor

f∗ : MapAlgO(A)(A,B)→ MapAlgC(A)(A,B)

is an equivalence. Lemma 4.9 implies that the following square is Cartesian:

AlgC(MapC(A,B)) //

��

AlgC(C)

f∗

��

AlgC(Map(A,B)) // AlgC(O).

From this and the definition of MapAlgC(A)(A,B), we obtain a Cartesian square

MapAlgC(A)(A,B)

��

// AlgC(Map(A,B))×AlgC(O) Alg
loc
C (O)

��

∗
at f

// AlglocC (O).

From the inductive hypothesis or the hypothesis of Proposition 4.8 in the case
n = 1, we also obtain a Cartesian square

MapAlgO(A)(A,B)

��

// AlglocC (Map(A,B))

��

∗
at f

// AlglocC (O).

Therefore, the following square is Cartesian:

MapAlgO(A)(A,B)

f∗

��

// AlglocC (Map(A,B))

��

MapAlgC(A)(A,B) // AlgC(Map(A,B)) ×AlgC(O) Alg
loc
C (O).

Since in this square, the vertical map on the right is an inclusion between full
subcategories of AlgC(Map(A,B)), it follows that the vertical map on the left
identifies its source with the full subcategory of its target consisting of those
maps of algebras which, as an algebra in Map(A,B), are locally constant.

The desired result now follows since the definition of a map of algebras
implies that every map of locally constant C-algebras is indeed locally constant
in this sense. �

Münster Journal of Mathematics Vol. 10 (2017), 83–118



110 Takuo Matsuoka

Definition 4.10. Let n ≥ 2 be an integer, and A a symmetric monoidal n-
category. A prealgebra on a manifold M in A is an algebra over Open(M)
in A. We say that a prealgebra A is locally constant if the restriction of A to
a functor on Disk(M) is locally constant.

Our descent results in the case the target category was a 1-category de-
scribed a locally constant factorization algebra as a prealgebra satisfying var-
ious local constancy and descent properties relative to a factorizing cover or
basis satisfying certain hypotheses. Recall that these results depended on co-
finality of functors to D(M). Now we would like to see if same proofs work in
the case where the target category is now a symmetric monoidal n-category for
n ≥ 2. For example, we have proved that Theorem 3.17 holds in this context.

However, only this is a nontrivial result actually, and all of our other proofs
work without any change. Namely, all of our descent results hold if our target
is a symmetric monoidal n-category which (or equivalently, whose underlying
symmetric monoidal 1-category) satisfies the assumptions of Section 3.7.

Finally, let us generalize Theorem 3.34 to twisted algebras. Thus, let M be
a manifold, and let a basis for the topology of M be given as in Theorem 3.34,
by a symmetric monoidal functor ψ : E → Open(M), i 7→ Vi, equipped with all
the data and satisfying all the assumptions. In particular, Vi ∈ Disj(M) for
every i ∈ E .

Lemma 4.11. For i ∈ E, if the composite

(3) E/i → E/Vi

ψ
−→ Disj(Vi)→ D(Vi)

is cofinal, then the functor E/i → D(Vi) is universal among the functors from
E/i which invert maps which are inverted in D(Vi). Namely, for any category C,
the restriction through (3),

Fun(D(Vi), C)→ Fun(E/i, C),

is fully faithful with image consisting of functors E/i → C which invert maps
in E/i inverted in D(Vi).

Remark 4.12. From Remark 3.35, the assumption of the cofinality follows if
the first map E/i → E/Vi

of the composition (3) is cofinal, e.g., by being an
equivalence.

Proof of Lemma 4.11. In order to show that the restriction functor is fully
faithful, we may first embed C by a fully faithful functor (e.g. the Yoneda
embedding) into a category which has all small limits in it, and show that the
restriction functor is fully faithful for this larger target category, in place of C.
Therefore, we do not lose generality by assuming that C has all small limits in
it, as we shall do.

In this case, an argument similar to the proof of Theorem 3.34 implies that
the restriction functor is the inclusion of a right localization of Fun(E/i, C).
Namely, if U ∈ D(Vi) is of the form

⊔

s∈S Ds for a family D = (Ds)s∈S
of disjoint disks indexed by a finite set S, so D ∈ DisjS(Vi), then we have
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ψS : (ES)/i → DisjS(Vi), and the resulting functor ((ES)/i)D/ → (E/i)U/ is
coinitial since it has a right adjoint. It follows that the right Kan extension of a
functor F ∈ Fun(E/i, C) to D(Vi) associates to U the limit lim((ES)/i)D/

F . The
claim follows immediately from this, so we have proved the fully faithfulness
of the restriction functor.

The identification of the image of the embedding is then also immediate. �

LetM be a manifold, and let DisjM denote Disj considered as an algebra of
categories on Disk(M). Then in the 2-category AlgDisk(M)(Cat) of (not neces-

sarily locally constant) algebras of categories on Disk(M), DisjM corepresents
the functor A 7→ AlgDisk(M)(A).

Similarly, let DM denote D as a (locally constant) algebra on Disk(M).
The obvious functor Disj → D is a map of algebras. We obtain the following
corollary by applying Lemma 4.11 to the basis Disj(M) for the topology ofM .

Corollary 4.13. Let M be a manifold, and A an algebra of categories on
Disk(M). Then the restriction functor

MapAlgDisk(M)
(DM ,A)→ MapAlgDisk(M)

(DisjM ,A) = AlgDisk(M)(A)

through the map Disj→ D is fully faithful, and the image consists precisely of
the locally constant algebras in A.

More generally, in our current situation as in Theorem 3.34, let DE1 denote
the restriction of DM through the functor ψ : E1 → Disk(M) of multicategories;
see Remark 3.43. Then Lemma 4.11 implies that if the functor (3) is cofinal for

every i ∈ E1, then DE1 corepresents the functor A 7→ AlglocE1
(A) on AlgE1

(Cat).
As a consequence, we obtain the following twisted version of Theorem 3.34,
from the 2-categorical generalization of Theorem 3.34 (in the case of the target
2-category Cat).

Theorem 4.14. Let M be a manifold, and A a locally constant factorization
algebra of categories on M . Then for a basis for the topology of M as in
Theorem 3.34, if the functor (3) is cofinal for every i ∈ E1, then the following
restriction functor is an equivalence:

AlgM (A)→ AlglocE1
(A).

Remark 4.15. See Remark 4.12 for a sufficient condition for the assumption
here to be satisfied.

4.16. (Twisted) algebras on a (twisted) product. We shall illustrate ap-
plications of Theorem 3.34 and its generalization Theorem 4.14.

Fix a target symmetric monoidal category A satisfying the assumptions of
Section 3.7, and drop the name A from the notation. Note that, in this case,
the category AlgM = AlgM (A) for a manifold M is symmetric monoidal by
the value-wise multiplication in A.
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Theorem 4.17. Let B, F be manifolds. Then, the restriction functor

AlgF×B → AlgB(AlgF )

is an equivalence of symmetric monoidal categories.

Proof. Note that the category AlgF has sifted colimits, and they are preserved
by the tensor product (since these are the same colimits and tensor product
on the underlying objects).

The restriction functor is symmetric monoidal since the symmetric monoidal
structures on the categories of algebras are value-wise, so it suffices to prove
that it is an equivalence of categories. For this, we would like to use Theo-
rem 3.34 on M := F ×B. For this purpose, we consider the following basis for
the topology of M .

The basis will be indexed by the symmetric partially monoidal category E
to be defined as follows. The objects of the underlying category of E are any
objects D of Disj(M) for which there exist objects D′ of Disj(B) and D′′ of
Disj(F ), such that any component of D is a component of D′ ×D′′ ⊂M .

Morphisms in E shall be just inclusions, so it is a full subposet of Disj(M).
We denote the inclusion by ψ : E →֒ Disj(M). Note that this determines a
factorizing l-nice (and hence effectively factorizing l-nice by Proposition 3.24)
basis of M .

The partial monoidal structure on E will be defined as follows. For any
finite set S, let Disj(M)(S) denote the full subposet of the Cartesian product
Disj(M)S on which the disjoint union operation to Disj(M) is defined. Then
we define the poset E(S) by the Cartesian square

(4) E(S)

��

�

�

// Disj(M)(S)

⊔
S

��

E
�

� ψ
// Disj(M).

It is canonically a full subposet of ES , and we let it be the domain of definition
of the S-fold monoidal operation of E , where the operation is defined to be
the left vertical map on the square (4). Since E is a poset, this determines a
partial monoidal structure on E .

We define the full subposet E1 of E to be the intersection E ∩Disk(M) taken
in Disj(M). (As a full subposet of Disk(M), E1 is Disk(F )×Disk(B).)

For this factorizing l-nice basis ofM , equipped with auxiliary data required
for Theorem 3.34, we would like to verify that Hypothesis 3.38 is satisfied. All
but the hypothesis that ψ1 := ψ|E1 : E1 → Open(M) determines an effectively
l-nice basis are easily verified from the construction. This remaining hypoth-
esis follows from Lurie’s generalized Seifert–van Kampen theorem, since it is
immediate to see that ψ1 determines an l-nice basis.

Now Theorem 3.34 implies that the restriction functor AlgM → AlglocE is an
equivalence, where the target is the category of algebras on E which is locally
constant with respect to E1 in the sense that the maps in E1 are all inverted.
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However, the restriction functor AlglocE → AlgB(AlgF ) is nearly tautologi-
cally (namely, up to introduction and elimination of the unit objects and the
unit operations as necessary) an equivalence. This completes the proof. �

For example, a locally constant factorization algebra on R
2 is the same as

an associative algebra in the category of associative algebras since a locally
constant factorization algebra on R

1 can be directly seen to be the same as an
associative algebra.

Inductively, a locally constant factorization algebra on R
n is an iterated

associative algebra object.

Remark 4.18. A product manifold M = B × F has another interesting fac-
torizing basis. Namely, there is a factoring basis ofM consisting of the disjoint
unions of disks in M of the form D′ ×D′′ for disks D′ in B and D′′ in F . As
observed in Example 3.41, Theorem 3.34 applies to the factorizing basis freely
generated by this basis. The result we obtain is another description of the
category AlgM , namely as the category of ‘locally constant’ algebras on this
factorizing basis.

Iterating this, one finds a description of the category of locally constant
algebras on R

n which identifies it essentially with the category of algebras
over Boardman and Vogt’s ‘little cubes’ [6]. Therefore, Theorem 4.17 can be
considered as a generalization of a theorem of Dunn [10].

Remark 4.19. Dunn’s theorem actually identifies the En-operad with the
n-fold tensor product of the E1-operad. In particular, unlike our theorem
in the case of R

n, the target category of the algebras need not satisfy our
assumptions on sifted colimits.

Theorem 4.17 identified the algebras on a product manifold. A product of
manifolds has a twisted version, namely, a fiber bundle. Accordingly there is a
generalization of Theorem 4.17 which holds for a fiber bundle. Let us formulate
and prove it.

Let p : E → B be a smooth fiber bundle over a smooth base manifold (i.e.,
a map with ‘locally constant’ fibers). Then we construct a locally constant
algebra AlgE/B of categories on B as follows. Given an open disk D ⊂ B, let

AlgE/B(D) be the category AlgEx
for the unique (up to a contractible space of

choices) point x ∈ D. Note that the manifold Ex is unambiguously specified
by D in the infinity groupoid of manifolds where the spaces of morphisms are
the spaces of diffeomorphisms.

An inclusion D →֒ D′ of disks in B induces an equivalence AlgE/B(D) →

AlgE/B(D
′) of symmetric monoidal categories (specified uniquely up to a con-

tractible space of choices). This association becomes an algebra on Disk(B)
since given a disjoint inclusion

⊔

s∈S Ds →֒ D′ of disks in B, we have a functor

(5)
∏

s∈S

AlgE/B(Ds)→ AlgE/B(D
′)
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defined as (the underlying functor of) the unique symmetric monoidal functor
extending the symmetric monoidal functors AlgE/B(Ds)→ AlgE/B(D

′). This
defines AlgE/B as a locally constant algebra of categories on B.

Alternatively, given a disk D ⊂ B, consider a trivialization of p over D.
If F is the typical fiber in the trivialization, then we define AlgE/B(D) to be

AlgF . A different trivialization with typical fiber F ′ specifies a diffeomorphism

F
∼
−→ F ′ uniquely up to a contractible space of choices (we will have a family

of diffeomorphisms parametrized by D). Moreover, the specified (family of)
diffeomorphisms satisfy the cocycle condition. This eliminates the ambiguity
of AlgE/B(D).

With a trivialization as above fixed, we shall call F the fiber over D of p.
In this approach, the algebra structure of AlgE/B is given by the symmetric

monoidal structure of AlgF . Namely, if a disjoint inclusion
⊔

s∈S Ds →֒ D′

of disks in B is given, then a trivialization of p over D′ restricts to a trivial-
ization over each Ds, and then all AlgE/B(Ds) get canonically identified with

AlgF = AlgE/B(D
′), where F is the fiber over D′ of p with respect to the

chosen trivialization. So the monoidal operation
⊗

S : Alg
S
F → AlgF becomes

the desired operation (5).
This is compatible with the structure of a symmetric multicategory on

Disk(B) since restriction of trivializations clearly is.

The relation of this approach to the previous approach is that a trivialization
of p over a disk D in B gives an identification of Ex, x ∈ D, with the fiber of
p over D.

Next, we shall construct the ‘restriction’ functor

AlgE → AlgB(AlgE/B).

Given an algebra A on E, we shall associate to it an object of AlgB(AlgE/B)
denoted by AE/B as follows.

Given an open disk D ⊂ B, we pick a trivialization of p over D, and denote
by q the projection p−1D → F with respect to the trivialization, where F is
the fiber of p over D (with respect to the trivialization). Then we define

AE/B(D) := q∗i
∗A ∈ AlgF = AlgE/B(D),

where i : p−1D →֒ E is the inclusion.
We need to check the well-definedness of this construction. Recall that

we identified different models of the fiber of p over D by comparing the family
F×D overD, for any one model F , with the family p−1D, by the trivialization
making F be a model for the fiber over D.

Taking this into account, it is easy to see that, in order to eliminate the
ambiguity of the construction, it suffices to give a path between the maps

q ×D : p−1D ×D → F ×D and p−1D ×D
pr
−→ p−1D ≃ F ×D,

through locally trivial maps (maps with locally constant fibers) p−1D ×D →
F × D. Using the trivialization p−1D ≃ F × D again, this is equivalent to
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giving a path between the two projections F ×D×D→ F ×D through locally
trivial maps.

We may instead choose a path between the two projections D2 → D,
through locally trivial maps. We pick an embedding of D into a vector space
as an open convex subdisk, which does not add more information than a choice
of a point from a contractible space. Then we have a path of locally trivial
maps D2 → D:

(x, y) 7→ x+ t(y − x), 0 ≤ t ≤ 1.

This clearly comes as a family over the said contractible space.
Let us now equip this association D 7→ q∗i

∗A with a structure of an algebra
over Disk(B). The construction is similar to the construction of the algebra
structure of AlgE/B, which we have made before. Namely, if we are given

an inclusion D →֒ D′ in B, where D is a disjoint union of disks, then a
trivialization of p over D′ restricts to a trivialization of p over D, and thus we
can try to construct the desired map AE/B(D)→ AE/B(D

′) as

A
[

(q|p−1D)
−1(U) = q−1(U) ∩ p−1D →֒ q−1(U)

]

for disks U ⊂ F , F the fiber over D′.
It remains to check that this construction is compatible with the con-

struction we have made to eliminate the ambiguity for the association D 7→
AE/B(D). Again, assuming that D′ is an open convex subdisk of a vector
space, it does no harm to restrict D to disjoint unions of open convex subdisks
of D′ (convexity in the same vector space).

Then the path of locally constant maps (D′)2 → D′ given above restricts to
a similar path on each component of D. This verifies the compatibility of the
constructions.

Proposition 4.20. Let p : E → B be a smooth fiber bundle as above. Then
the following restriction functor is an equivalence:

AlgE → AlgB(AlgE/B).

Proof. The functor can be written as

lim
D∈Disj(B)

Algp−1D → lim
D∈Disj(B)

AlgD(Algp−1D/D).

Indeed, we can apply Theorem 3.33 to the source, and the target is this limit
essentially by definition.

The given functor is the limit of the restriction functors on D ∈ Disj(B).
However, on each D, the restriction functor can be identified with that

in Theorem 4.17 by using the decomposition p−1D = F × D, where F is
the fiber of p over D. Therefore it is an equivalence by the assertion of the
theorem. It follows that the twisted version of the restriction functor is also
an equivalence. �

Remark 4.21. From the discussions of Section 4.3, Proposition 4.20 holds for
a higher target category by the same proof. If the target is an n-category, then
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the proposition states that we have an equivalence of n-categories of algebras.
In the following, we shall use the 2-category case.

There is a natural further generalization of this. Namely, the algebra AlgE/B
can be constructed when the algebra on E is twisted. That is, let A be a locally
constant (pre-)algebra on E of categories. Then, for a disk D ⊂ B, define the
category

AlgE/B(A)(D) := AlgF (AE/B(D)),

whereAE/B ∈ AlgB(AlgE/B(Cat)) is the restriction ofA as in Proposition 4.20

(Cat denoting the 2-category of categories in which A takes values), and F is
the fiber of p over D, so

AE/B(D) ∈ AlgE/B(Cat)(D) = AlgF (Cat).

Moreover, a restriction functor

(6) AlgE(A)→ AlgB(AlgE/B(A))

can be defined by A 7→ AE/B , where AE/B ∈ AlgB(AlgE/B(A)) associates to
a disk D ⊂ B the object

q∗i
∗A ∈ AlgF (q∗i

∗A) = AlgE/B(A)(D).

The algebra structure is exactly as before.

Theorem 4.22. For a locally constant (pre-)algebra A on E of categories, the
restriction functor (6) is an equivalence.

Let us first establish this in the case where the fiber bundle is trivial. A
global choice of a trivialization leads to simplification of the constructions as
well.

Lemma 4.23. Let B, F be manifolds, and A an object of AlgB(AlgF (Cat)), or
equivalently, a locally constant algebra of categories on F×B, by Theorem 4.17.
Then, the following restriction functor is an equivalence:

AlgF×B(A)→ AlgB(AlgF (A)),

where AlgF (A) is a locally constant algebra of categories on B defined by
AlgF (A)(D) := AlgF (A(D)).

Proof. Similar to the proof of Theorem 4.17. One simply notes that Theo-
rem 4.14 applies here instead of Theorem 3.34; see Remark 4.15. �

Proof of Theorem 4.22. The 2-categorical generalization of Theorem 3.33 im-
plies that the restriction functor AlgE(Cat)→ limD∈Disj(B)Algp−1D(Cat) is an
equivalence of 2-categories. From this, one obtains that the restriction functor

AlgE(A)→ lim
D∈Disj(B)

Algp−1D(A)

is an equivalence.
Similarly, one would like to show that the restriction functor

AlgB(AlgE/B(A))→ lim
D∈Disj(B)

AlgD(Algp−1D/D(A))
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is an equivalence. However, since it is easy to verify from the definitions that
the restriction of AlgE/B(A) to D ⊂ B is Algp−1D/D(A), the equivalence also
follows from Theorem 3.33.

By the naturality of the restriction functor, we have reduced the state-
ment to the case where the base is a disjoint union of disks. In this case
the fiber bundle is trivial on each component, and the statement follows from
Lemma 4.23. �

Remark 4.24. The results of this section depend only on our descent results
from Section 3. Therefore, by what we have seen in the previous section, all
the results of this section have a version in which the target category may be
of any dimension, and we get an equivalence of higher categories of algebras.

Note. This paper, together with [17] and [18], is based on the author’s Ph.D.
thesis (accepted in April 2014). The present article is logically independent of
both [17] and [18].
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