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Deutschsprachige Zusammenfassung

Über Darstellungen, die semistabilen Vektorbündeln auf

Mumfordkurven zugeordnet sind

In vorliegender Arbeit werden die beiden folgenden Konstruktionen von
Darstellungen miteinander verglichen.
Sei X eine Mumfordkurve über einer endlichen Körpererweiterung von Qp.
Gerd Faltings konstruiert zu jedem semistabilen Vektorbündel vom Grade
0 über X eine Darstellung der Schottkygruppe von X. Marius van der Put
und Marc Reversat können diese Konstruktion auf Mumfordkurven über
nicht notwendigerweise diskret bewerteten nicht-Archimedischen Körpern
verallgemeinern.
Sei X eine glatte und projektive algebraische Kurve über einer endlichen
Erweiterung von Qp. In einer kürzlich erschienenen Arbeit definieren An-
nette Werner und Christopher Deninger einen étalen Paralleltransport für
eine gewisse Klasse von Vektorbündeln auf XCp . Diese Konstruktion führt
unmittelbar zu einem Funktor von dieser Klasse in die Kategorie der steti-
gen Cp-Vektorraumdarstellungen der algebraischen Fundamentalgruppe von
XCp .

Im Falle, daß X eine Mumfordkurve über einer endlichen Erweiterung
von Qp ist, beweisen wir, daß die genannten Konstruktionen für eine spezielle
Klasse von semistabilen Vektorbündeln vom Grade 0 über XCp isomorphe
Darstellungen definieren.
Wichtige Hilfsmittel zum Beweis dieser Aussage sind GAGA-Resultate zwis-
chen rigider, formeller und algebraischer Geometrie sowie die Fundamental-
gruppe der endlichen topologischen Überlagerungen, welche in vorliegender
Arbeit definiert und untersucht wird.
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Introduction

A classical result by André Weil, proved in 1938, asserts that a holo-
morphic vector bundle on a Riemann surface is given by a representation
of the fundamental group if and only if each indecomposable component is
of degree zero (cf. [Wei38]). Furthermore it is known that unitary rep-
resentations of the fundamental group are in one-to-one correspondance to
polystable vector bundles of degree 0 (cf. [NS65]).

In 1983 Gerd Faltings introduced the notion of φ-bounded representa-
tions and proved a corresponding result in p-adic analysis for vector bundles
on a Mumford curve over a discrete non-Archimedean field. He proved an
equivalence of categories between semistable vector bundles of degree zero
on a Mumford curve and φ-bounded representations of its Schottky group.
In his proof he used the theory of formal schemes and was therefore limited
to discrete fields. In 1986 Marius van der Put and Marc Reversat generalised
Faltings’ result to arbitrary non-Archimedean fields by using methods from
rigid geometry. Unfortunately the functor they constructed does not com-
mute with duals or tensor products. In the case of line bundles it is easy to
see that this is inherently caused by the definiton of φ-boundedness. In the
sequel we will call their representations PR-representations.
Let X be a projective, smooth and geometrically connected algebraic curve
over a finite field extension of Qp. In 2004 Annette Werner and Christopher
Deninger constructed an étale parallel transport for vector bundles of a cer-
tain subcategory of all semistable vector bundles of degree zero on XCp (cf.
[DWc]). Restricted to the algebraic fundamental group this is a functor
that associates a continuous Cp-vector space representation (in the follow-
ing called DW-representation) of the algebraic fundamental group of XCp

to every vector bundle of this class. This functor is Cp-linear, exact and
commutes with duals, tensor products, internal homs and exterior powers.

Let X be a Mumford curve over a finite field extension of Qp. In this
thesis we compare the DW-representations attached to a class of semistable
vector bundles of degree zero on XCp to the PR-representations defined for
this class of vector bundles. Performing this, obvious problems occur:
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10 INTRODUCTION

(1) it is not known whether the DW-representation does exist for all
semistable vector bundles of degree zero.

(2) Different groups are represented.
(3) The functors of Deninger–Werner and van der Put–Reversat have

different properties. For example the DW-functor commutes with
duals and tensor products, the PR-functor in general does not.

The solution of all of these problems is

(1) to consider only the subcategory of semistable vector bundles of
degree 0 that have a vector bundle model on the extension of the
minimal regular model of X to the ring of integers o of Cp,

(2) to introduce the notion of finite topological coverings and the finite
topological fundamental group of X

(3) and at last to prove that the DW-representation factorises through
this fundamental group.

Having done this, we can prove that the DW-representation and the pro-
finitely completed PR-representation attached to vector bundles in the afore-
said class are isomorphic. The PR-representations attached to vector bun-
dles in this class are isomorphic to representations which have image in
GLrk(o) if rk is the rank of the vector bundle considered.
At least for line bundles the aforesaid class is the best possible on which both
representations agree, since for line bundles whose PR-representation is not
represented by numbers of norm equal to one, the PR-representation does
not commute with tensor products and duals, but the DW-functor does.
Introducing the fundamental group of finite topological coverings suggests
itself, since we have to compare representations of the topological funda-
mental group (that is the Schottky group) with representations of the finite
étale fundamental group. The coverings which are topological and finite
étale are exactly the finite topological coverings.
We prove our result by extensive use of GAGA theorems between rigid, for-
mal and algebraic geometry. Because we have some GAGA results only in
the case of discrete valuation we reduce the case that the vector bundle is
only defined after extension to Cp to the case that it is already defined over
a discrete valuation field by an argument from non-abelian cohomology.
As an application we will have a closer look at Mumford curves of genus 1
and 2 and at vector bundles on them.

This thesis is organised as follows. In the first chapter we remind the
reader of some notions of rigid and analytic spaces which are important for
us. We cite some GAGA results and prove slight extensions of them. Es-
pecially quotients of schemes by finite groups are considered more closely.
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We state the basic notions of Galois theory, introduce the finite topological
fundamental group and prove that it satisfies the six axioms of Grothendieck
for a Galois theory. At the end of the first chapter we introduce Mumford
curves and discuss their stable and minimal regular model.
In the second chapter we describe the constructions of van der Put and
Reversat, Faltings and Deninger–Werner. We characterise the semistable
vector bundles of degree zero which have a vector bundle model on the
minimal reguar model of the Mumford curve by their PR-representation
and we compare the construction of Faltings with the one of van der Put–
Reversat. In the next section we compare the DW-representation with the
PR-representation. We deduce the case that the vector bundle is only de-
fined after base change to Cp from the case that it is already defined over a
discrete valuation field and prove this case first.
In the last chapter we give some applications. We study the various Galois
groups of a Tate curve and investigate vector bundles on Tate curves and
on Mumford curves of genus 2 in more detail.
I would like to thank my supervisior Prof. Christopher Deninger and Prof.
Annette Werner for introducing my to this interesting topic. The final
version benefited from discussions with Jan Kohlhaase, Sylvain Maugeais,
Roland Olbricht, Matthias Strauch and Stefan Wiech. I am grateful that
Sylvain Maugeais and Stefan Wiech read a preliminary version.
This thesis was partially supported by the Deutsche Forschungsgemeinschaft
at the SFB 478 Geometrische Strukturen in der Mathematik.





CHAPTER 1

Preliminaries

1. Notations and conventions

We use the theories of schemes, formal schemes, rigid spaces and Ber-
kovich spaces and assume that the reader is familiar with these theories. In
particular for the theory of rigid spaces the reader might consult [BGR84],
for Berkovich spaces [Ber90] and [Ber93], for formal schemes the reader
might refer to [EGAn].
A field endowed with a non-Archimedean valuation which is complete with
respect to this valuation is called non-Archimedean field. A discrete non-
Archimedean field is a non-Archimedean field whose valuation is discrete.
We will assume all non-Archimedean fields to have non-trivial valuation
and to be of characteristic zero.
The following notations will often be used.
The term M(A) denotes the Berkovich spectrum of a commutative Banach
ring A with unit; that is it denotes the set of all bounded multiplicative
semi-norms on A provided with the weakest topology with respect to which
all real-valued functions of the form | · | 7→ |f | (f ∈ A) are continuous. Let
K be a non-Archimedean field. The terms K-analytic space and strictly
K-analytic space denote the Berkovich analytic spaces that are defined in
[Ber93, page 22]. A K-analytic space is called good if every point has an
affinoid neighbourhood. The term analytic space always means Berkovich
analytic space.
A Hausdorff topological space is called paracompact if every open covering
has a locally finite refinment. A rigid space is called quasiseperated if the
intersection of two open affinoid domains is the finite union of open affinoid
domains.
If f is an element of a K-affinoid algebra A, then we denote by ‖f‖sp the
spectral norm of f , which is defined as the supremum of all ‖f(x)‖, where
x runs through the set of all maximal ideals of A.
We denote the formal spectrum of an adic ring by Spf(·), the maximal spec-
trum of an affinoid algebra by Sp(·), the spectrum of maximal ideals of a
scheme by Spm(·) and the ordinary spectrum of a scheme by Spec(·).
If k is a field, then the term algebraic k-variety denotes a geometrically in-
tegral and seperated scheme of finite type over k. The term k-curve denotes
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14 1. PRELIMINARIES

an algebraic k-variety of dimension 1.
Let K be a non-Archimedean field, K◦ its ring of integers and K◦◦ its unique
maximal ideal. If in particular K = Cp, then we also denote K◦ by o. Let
L be a non-Archimedean field, too. In the following, when we write K is a
subfield of L resp. K ⊂ L we assume that the norm of K is induced by the
norm of L. We call a finite extension field of Qp a local number field. Local
number fields are complete with respect to the norm which is induced by
Qp.
Let R be a valuation ring with quotient field Q and X a Q-curve. A proper
and flat R-scheme X with the property X ⊗R Q = X is called R-model of
X. If R is a Dedekind domain, then we call an integral, projective and flat
R-scheme of dimension 2 a projective flat R-curve.
Following Mumford [Mum63], a vector bundle E on an algebraic K-curve
is stable, if for all subbundles F ,

degF
degE

<
rkF
rkE

.

The vector bundle E is called semistable, if for all subbundles F ,
degF
degE

≤ rkF
rkE

.

2. Reduction and formal rigid spaces

In this section we explain reduction of rigid spaces and define the no-
tion of a formal rigid space. Then we compare formal rigid spaces to for-
mal schemes and models of algebraic curves to their associated formal rigid
spaces.

2.1. Reduction of rigid spaces.
Let K be a non-Archimedean field. To define the reduction of rigid spaces
we have to define the reduction of affinoids first.
Let A be an affinoid K-algebra and denote by || · ||sp the spectral norm; then

A◦ := {a ∈ A | ‖a‖sp ≤ 1}

is a ring, and
A◦◦ := {a ∈ A | ‖a‖sp < 1}

is an ideal in A. The residue ring A◦/A◦◦ is denoted by Ã. Let Sp(A)
denote the maximal spectrum of A. For every point x ∈ Sp(A) there is a
map φx : A→ A/mx, where mx is the maximal ideal associated to x. If we
denote A/mx by Lx, then the field Lx is a finite extension of K, and hence
carries a unique extension of the norm on K. Therefore there is an induced
map φ̃x : Ã→ L̃x. The set Kerφ̃x is a maximal ideal of Ã. So we get a map

π : Sp(A)→ Spm(Ã), x 7→ Ker(φ̃x).
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Definition 1.1. For X := SpA and X̃c := Spm(Ã) this map is called
the canonical reduction map

RedcX : X → X̃c.

Remark 1.2. Let X be a K-scheme of finite type and denote its topo-
logical subspace of closed points by i : X◦ ↪→ X. The scheme (X◦, i−1OX)
is dense in (X,OX). Therefore it is no drawback to have the reduction map
only to the maximal spectrum of A, since SpmA = (SpecA)◦.

It is always the case that the reduction preimage of a Zariski open sub-
set of X is admissible in the weak Grothendieck topology. But one can
strengthen this by some conditions as in the following lemma.

Lemma 1.3 ([FvdP04], Lemma 4.8.1). Suppose X := SpA is reduced
and ‖A‖sp ⊂ ‖K‖. If U is an open affine subset of X̃c, then

(1) (RedcX)−1(U) is affinoid,
(2) the ring O((RedcX)−1(U)) is reduced and its spectral norm takes

values in ‖K‖, and

(3) its reduction ˜O((RedcX)−1(U)) is canonically isomorphic to the affine
K̃-algebra of the regular functions on U .

Definition 1.4 ([FvdP04], Definitions 4.8.3 ). Let X be a reduced
rigid space.

(1) An admissible affinoid covering (Ui)i∈I of X is called formal cover-
ing or pure covering if the following holds:
(a) the set ‖O(Ui)‖sp is a subset of ‖K‖,
(b) for all i ∈ I there are only finitely many j ∈ I such that

Ui ∩ Uj 6= ∅,
(c) if Ui ∩ Uj 6= ∅, then Ui ∩ Uj is the preimage of an open affine

subset of X̃i
c

under the reduction map RedcXi : Xi → X̃i
c
, and

(d) the natural map O(Ui)◦⊗̂K◦O(Uj)◦ → O(Ui ∩ Uj)◦ is surjec-
tive.

(2) By glueing affine varieties one obtains a global reduction map

Red := RedX,(Ui)i∈I : X → ˜(X, (Ui)i∈I).

A pair (X, (Ui)i∈I) is called formal rigid K-space.
(3) A formal open subset U of (X, (Ui)i∈I) is an admissible subset such

that there is an open set V in ˜(X, (Ui)i∈I) that has the property
U = Red−1(V ).

(4) A morphism of formal rigid spaces φ : (X, (Ui)i∈I)→ (Y, (Vj)j∈J) is
a morphism of rigid spaces φ : X → Y with the additional property,
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that for every formal open subset U of (Y, (Vj)j∈J) the preimage
φ−1(U) is formal open, too.

We want to prove an equivalence of categories between formal rigid
spaces and a certain class of admissible formal schemes.

Definition 1.5.

(1) Let R be an I-adic ring. A topological R-algebra A is called admis-
sible if it has no I-torsion and if there is a finitely generated ideal J
in the ring of restricted power series R{T1, . . . , Tn} such that A is
isomorphic to an R-algebra of type R{T1, . . . , Tn}/J endowed with
the I-adic topology.

(2) A formal R-scheme is admissible if and only if there is an open affine
covering (SpfAi)i∈I such that each Ai is an admissible R-algebra.

The following lemma shows that every morphism between affinoid K-
algebras is contractive. Its proof is a slight variation of a proof given in a
lecture by S. Bosch.

Lemma 1.6. If φ : A → B is a morphism between affinoid K-algebras,
then ‖φ(a)‖sp ≤ ‖a‖sp for all a ∈ A. By definiton, that means φ is contrac-
tive.

Proof. Assume the contrary; that is there is a function a in A and a
maximal ideal mB in B such that for all maximal ideals mA in A it is true
that ‖a(mA)‖ < ‖φ(a)(mB)‖. We prove that this assertion is false. Define
m := φ−1(mB), this is a maximal ideal. Thus for all a ∈ A it is true that
‖a(m)‖ = ‖a(φ−1(mB))‖ = ‖φ(a)(mB)‖. �

Now we can state and prove the announced equivalence.

Lemma 1.7. Let K be a non-Archimedean field and K◦ its ring of inte-
gers. There is an equivalence between the category of formal rigid K-spaces
(X, (Ui)i∈I) and the category of separated and admissible formal K◦-schemes
X which admit a locally finite covering. The underlying topological spaces
of ˜(X, (Ui)i∈I) and X coincide.

Proof. The existence of the functor ·rig from formal spaces to rigid
spaces is well known. On affine spaces the functor maps

Spf(A) 7→ Spm(A⊗K)

for an admissible K◦-algebra A. It is known that ·rig is essentially surjective.
For these facts confer [Ray74].
Let (X, (Ui)i∈I) be a formal rigid space, in particular there are affinoid K-
algebras Ai such that Ui := Sp(Ai). Define Xi := Spf(A◦i ), the family (Xi)i∈I
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is a locally finite cover of the formal scheme X . The formal scheme X is
separated by properties c) and d) of a formal rigid cover and it is admissible.
Let X be a separated and admissible formal K◦-scheme, and let (Spf(Ai))i∈I
be a locally finite cover of X . The family (Sp(Ai ⊗K))i∈I is a formal cover

of X := X rig. The coincidence of ˜(X, (Ui)i∈I) and X as topological spaces
follows by lemma 1.3.
Let f : (X, (Ui)i∈I) → (Y, (Vj)j∈J) be a morphism between formal rigid K-
spaces. We have to construct a morphism between the formal K◦-schemes
f̃ : X → Y. It is enough to construct f̃ locally. By definition of a morphism
between formal rigid spaces, the preimage of a formal open set is formal
open. Because Y is covered by formal open sets, and formal open sets are
affinoid (lemma 1.3), it is enough to construct f̃ if f is a morphism between
affinoids.
Given affinoids U and V , the existence of the morphism f : U → V is
equivalent to the existence of O(V )→ O(U), equivalent to the existence of
the morphism O(V )◦ → O(U)◦, because O(V ) → O(U) is contractive by
lemma 1.6, equivalent to the existence of Spf(O(U)◦)→ Spf(O(V )◦).
If on the other hand f : X → Y is a morphism between separated and
admissible formal schemes, then we can choose locally finite coverings (U ′i)i∈I
of X and (V ′j )j∈J of Y such that for every i ∈ I there is a j ∈ J with the
property f−1(V ′j ) = U ′i . This is equivalent to the existence of a morphism
OV ′j → OU ′i . The existence of that morphism is equivalent to the existence
of OV ′j ⊗K→ OU ′i ⊗K, which is equivalent to the existence of a morphism
Sp(OU ′i ⊗K) → Sp(OV ′j ⊗K). This defines a morphism between the rigid
spaces that are associated to X and Y. �

Projective models of algebraic curves can be classified by formal rigid
structures.

Theorem 1.8 ([FvdP04], Theorem 4.10.7). Let K be a discrete non-
Archimedean field and X a regular and projective curve over K. Then there
is a bijection between

(1) formal rigid structures (Xrig, (Ui)i∈I) on the rigidification of X,
and

(2) projective K◦-models of X whose reduced special fiber is equal to
˜(Xrig, (Ui)i∈I).

For every analytic reduction ˜(Xrig, (Ui)∈I) of Xrig the genus of X is equal

to the arithmetic genus of ˜(Xrig, (Ui)∈I). Moreover, the formal scheme as-
sociated to (Ui)i∈I coincides with the formal completion of the corresponding
K◦-scheme X at its closed fibre.
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2.2. Formal analytic vector bundles.
Instead of writing (X, (Ui)i∈I) for a formal K-rigid space one may also write
(X, r, X̃), where X̃ is the specific reduction associated to (Ui)i∈I and r de-
notes the reduction map r : X → X̃.

Definition 1.9 ([FvdP04], page 186).

(1) A formal vector bundle E of rank rk on (X, r, X̃) is a sheaf of
r∗O◦X -modules on X̃ which is locally isomorphic to (r∗O◦X)rk.

(2) On X̃ the vector bundle E ⊗ K̃ is defined by

(E ⊗ K̃)(U) := E(U)⊗K◦ K̃.

(3) We write E ⊗ K for the unique rigid vector bundle on Y which
satisfies

(E ⊗K)(r−1(U)) = E(U)⊗K◦ K

for every open affine U ⊂ X̃.

Remark 1.10. Denote by X̂ the formal completion of X . It is true that
r∗O◦X = O bX , and the underlying topological spaces of X̂ and X̃ are equal;
therefore every formal rigid vector bundle is an O bX -vector bundle, hence a
formal vector bundle and vice versa. By the identification

r∗O◦X = O bX

the category of formal rigid vector bundles is equivalent to the category of
formal (algebraic) vector bundles.

3. GAGA-results

In this section we collect various results of GAGA type. We compare
sheaves and vector bundles on different sites and investigate the GAGA of
quotients by finite groups. For the sake of completeness we cite the relevant
theorems in the first subsection.

3.1. Rigidification, analytification and algebraisation.
Let K be a non-Archimedean field. Rigidification of algebraic varieties is pre-
sented in [FvdP04]: let AlgK be the category of algebraic K-varieties. Let
RigidK be the category of rigid K-spaces provided with the weak Grothendieck
topology. There is a functor

rig : AlgK → RigidK, X 7→ Xrig.

It commutes with fibre products and Xrig is separated. For this statement
see for example [FvdP04, Example 4.3.3].
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The analogous result for Berkovich spaces is the following. Let X be a K-
scheme of locally finite type and Hom(·, ·) be the set of homomorphisms in
the category of K-ringed spaces. Define the functor

Φ : Y 7→ HomK(Y,X)

from the category of good K-analytic spaces to the category of sets.

Theorem 1.11 ([Ber90], Theorem 3.4.1, Corollaries 3.4.14, 3.4.12, 3.4.13).
The functor Φ is represented by a closed K-analytic space Xan with a mor-
phism π : Xan → X. They have the following properties:

(1) There is a bijection Xan(L)→ X(L) for any non-Archimedean field
L/K. Furthermore, the map π is surjective and induces a bijection
Xan
◦ → X◦. Here Xan

◦ resp. X◦ denotes the set of closed points
{x ∈ X|[H(x) : K] <∞}.

(2) On proper K-schemes the functor ·an is a fully faithful functor.
(3) Given a reduced proper K-scheme X, the functor ·an gives an equiv-

alence of categories between the finite (resp. finite étale) schemes
over X and the finite (resp. finite étale) good K-analytic spaces
over Xan.

(4) Every reduced proper good K-analytic space X of dimension 1 is
algebraic; i.e. there is a projective algebraic K-curve Y such that
X ∼= Y an.

The following theorem by Berkovich gives a GAGA result for rigid and
analytic spaces.

Theorem 1.12 ([Ber93],Theorem 1.6.1). The map

X 7→ X◦ := {x ∈ X|[H(x) : K] <∞}

is a fully faithful functor from the category of Hausdorff strictly K-analytic
spaces to the category of quasiseparated rigid K-spaces. It induces an equiva-
lence between the category of paracompact strictly K-analytic spaces and the
category of quasiseparated rigid K-analytic spaces, which allow an admissible
affinoid cover of finite type.

3.2. GAGA results for coherent sheaves and vector bundles.
In this subsection we review some GAGA results for coherent sheaves and
vector bundles. In detail we are concerned with projective schemes and their
formal completions (1.13 — 1.15), projective schemes and their rigidifica-
tions (1.16 and 1.17) and analytic spaces and their associated rigid spaces
(1.18). In the last part we introduce the notion of a model of a vector bundle
and prove that a vector bundle has an algebraic model if and only if it has
a formal rigid model (1.21).
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Theorem 1.13 ([EGA] III Corollaire 5.1.6). Let A be a Noetherian
I-adic ring, X a projective A-scheme and X̂ its formal completion along
X/IOX . Then the following holds: a sheaf on X̂ is coherent if and only if
it is the formal completion of a coherent sheaf on X .

Corollary 1.14. Let K be a local number field, K◦ its ring of integers
and X a projective K◦-scheme. Let L be a complete subfield of Cp which
is an algebraic extension of K. Denote its ring of integers by L◦. Define
XL◦ := X ⊗L◦ and denote by X̂L◦ its formal completion along XL◦/pOXL◦ .
Then the following holds: A sheaf on X̂L◦ is coherent if and only if it is the
formal completion of a coherent sheaf on XL◦.

Proof. Note that X̂A = ̂X × SpecA = X̂ × SpfA = X̂A for every con-
tinuous morphism K◦ → A of adic rings. Let E be a coherent sheaf on X̂L◦ .
There are finitely many elements w1, ..., wn ∈ L◦ such that E comes from
a coherent sheaf E ′ on X̂A (which is equal to X̂A), where A is the ring of
restricted power series K◦{w1, . . . , wn}. Define X ′ := XA. We are going to
show that in the diagram

X ′L◦
f
//

b·
��

X ′

b·
��

X̂ ′L◦
bf
//___ X̂ ′

the morphism f̂ exists and that f̂∗F̂ = f̂∗F is true. The claim follows by
Paragraph [EGAn, 10.9.1] if one notes that:

(1) X ′ is an A-scheme of topological finite presentation, and XL◦ is an
L◦-scheme of topological finite presentation.

(2) Therefore the defining ideals of the special fibres pOX ′ and pOX ′
L◦

are coherent, since they are of finite presentation.
(3) It is true that f∗(pOX ′)OX ′

L◦
= pOX ′

L◦
.

Thus E = f̂∗E ′. By [EGA, 0 Proposition 7.5.4 (iii)] A is adic and Noether-
ian. The ring A is a subring of L◦ and the embedding is continuous. Hence
by theorem 1.13 there is a coherent sheaf F on XA whose formal completion
is E ′. Therefore there is a coherent sheaf f∗F which satisfies f̂∗F = E �

Corollary 1.15. In the situation of the above theorem and the corol-
lary: a sheaf F on X̂ is locally free if and only if it is the formal completion
of a locally free sheaf E on X .

Proof. By [EGAn, Proposition 10.10.2.9] locally on X̂ we have

F|Spf(A) = ̂̃
M = Ê|Spf(A) = ̂̃

N
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if E|Spec(A) = Ñ . Since ̂̃· is an equivalence of categories between A-modules of
finite type and coherent OSpf(A)-modules by [EGAn, I Théorème 10.10.2],
the isomorphism M ∼= N follows. The sheaf E is locally free if and only if
N is a projective A-module according to [EGAn, I Corollaire 1.4.4]. But
by [EGAn, I Proposition 10.10.8.6] this is equivalent to F being locally
free. �

Now we come to sheaves on rigid spaces.

Theorem 1.16 ([Köp74], 3. Gaga-Satz 5.1). Let X be a projective
variety over K. Then the category of coherent algebraic sheaves on X is
equivalent to the category of rigid coherent sheaves on Xrig.

Corollary 1.17. The category of algebraic vector bundles on X is
equivalent to the category of rigid vector bundles on Xrig.

Proof. Let E be a coherent sheaf on an algebraic K-variety X. Locally
on an affine subscheme U of X the rigidification of E is the coherent rigid
sheaf associated to the module E(U); that is for every Sp(B) admissible
open in U rig it is

Erig(SpB) = E(U)⊗OX(U) B

as proved in [Köp74, Bemerkung 3.2]. E is locally free if and only if for
every point in X there is an affine neighbourhood U such that E(U) is a
free OX(U)-module. This is equivalent to the assertion E(U) ⊗ B is a free
B-module. �

Proposition 1.18 ([Ber93], Page 37, Proposition 1.3.4). With the no-
tations in the theorem 1.12 the following statement is true: if X is a good
strictly K-analytic space, then the categories of coherent sheaves resp. the
categories of vector bundles on X and on X◦ are equivalent.

Remark 1.19. Let E be a vector bundle on a projective K-curve. Its
rank and its degree are equal to the rank and degree of the rigidification of E
and of the analytification of E. The invariance of the degree is due to the fact
that the cohomology group Hn(X,E) is isomorphic to Hn(Xrig, Erig) and
Hn(Xan, Ean). In particular E is semistable if and only if its rigidification
resp. its analytification is semistable.

Let K be a complete subfield of Cp and K◦ its ring of integers. Let
X be a projective and smooth curve over K, X a K◦-model of X with the
embedding i : X ↪→ X and X̂ its formal completion along X/pOX . For a
vector bundle E on X the term Ê denotes the formal completion of E along
the closed fibre defined be the ideal pOX .
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Definition 1.20. Let E be a vector bundle on X. If there is a vector
bundle E on X satisfying E ∼= i∗E , then E is called (algebraic X -)model of
E.
Let (X, r, X̃) be a formal rigid space. If there is a formal rigid vector bundle
E on (X, r, X̃), such that

E(r−1(U)) ∼= E(U)⊗K

for every open affine U ⊂ X, then E is called formal ((X, r, X̃)-)model of E.

Lemma 1.21. Let E be a vector bundle on X and E ′ a vector bundle on
X . The following statements are equivalent

(1) E ∼= i∗E ′

(2) r∗Erig ∼= Ê ′ ⊗K.

Proof. To prove (1)⇒ (2) choose a covering of X by open affines which
trivialises E . Assume for an open affine U = SpecA of the covering that we
have E ′|U = ⊕nj=1fjOU . It follows

Ê ′|U ⊗K = ̂⊕nj=1fjOU ⊗K = ⊕nj=1fjÔU ⊗K

= ⊕nj=1fjr∗O
rig
Spec(A⊗K) = r∗(⊕nj=1fji

∗OU )rig = r∗(i∗E ′|U )rig

∼= r∗E
rig
|U .

The last isomorphism comes from E ∼= i∗E ′, hence the local isomorphisms
can be glued to a global isomorphism.
To prove (2)⇒ (1) we define E′ := i∗E ′ and note that by assumption

r∗E
rig ∼= Ê ′ ⊗K ∼= r∗E

′rig.

Hence we only have to prove, that for any two vector bundles E1 and E2

which satisfy r∗E
rig
1 = r∗E

rig
2 , the assertion E1

∼= E2 is true. This follows
by 1c in definiton 1.4 and theorem 1.16. �

3.3. Quotients by finite groups.

Remark 1.22. Let G be a finite group acting on a separated scheme X.
Suppose that every point x ∈ X has an affine neighbourhood that is stable
under G. Then the quotient X/G in the category of schemes exists. For
instance this is the case if X is quasi-projective. In the following, when we
write the quotient X/G exists we mean that every point x ∈ X has an affine
neighbourhood that is stable under G.

Remark 1.23. As stated in [Liu02, Ex 4.3.18], schematic quotients
commute with flat base change.
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Lemma 1.24. Let A be a Noetherian commutative ring that is flat over
a discrete valuation ring R with uniformising parameter π, and let I := πA

be the ideal of A that is generated by π. Denote by Â the completion of A
in the the I-adic topology. If a finite group G acts R-linearly on A, then by
functoriality of ·̂ it also acts on Â, and the fixed rings satisfy

ÂG = ÂG,

where ÂG denotes the completion in the (I ∩AG)-adic topology.

Proof. First we have to prove, that on AG the induced topology and
the (I ∩ AG)-adic topology coincide. It is true that In = πnA and we have
(πA) ∩ AG = πAG, because A has no π-torsion, since it is R-flat. The
equality ((πA) ∩ AG)n = (πAG)n = πnAG follows. Hence both topologies
coincide.
In the category of topological rings it is true that AG ⊂ A and ÂG ⊂ ÂG as
well, since the morphism of topological rings

φ̂ : Â→
∏
g∈G

Â, a 7→ (ga− a)g∈G

is continuous. Therefore it is enough to show that ÂG and ÂG coincide as
abelian groups.
Let φ be the morphism φ(a) := (ga−a)g∈G and consider the exact sequence

0 // AG // A
φ
//
∏
g∈GA

of abelian groups, where the group A in the middle induces the topologies
of the right and left term. By [AM69, Corollary 10.3] formal completion is
an exact functor; it follows that the sequence

0 //
ÂG

// Â
bφ
// ∏

g∈G Â

is exact. Therefore ÂG is the kernel of φ̂. By what we have proved above, on
the left term the induced topology and the I ∩ AG-adic topology coincide.
The claim follows. �

Lemma 1.25. Let G be a finite group and R a discrete valuation ring
with uniformising element π. Let Y be a flat, separated and Noetherian
R-scheme endowed with an R-linear action of G, such that the schematic
quotient X := Y/G exists, and denote formal completion along the closed
fibre by ·̂. Then G acts on Ŷ by functoriality and it is true that

X̂ = Ŷ /G

holds.
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Proof. Assume Y to be affine. Then there is a ring A that is flat over
R, such that Y = Spec(A) and X = Spec(AG). Denote by Ys the special
fibre of Y . If we define I := πA, then Ys = Spec(A/I) = Spec(A/πA). It
follows

Xs = Spec(AG/(I ∩AG)).

To prove that Ŷ /G and Ŷ/G coincide, we have to show that ÂG (completed
in the I-adic topology) coincides with ÂG (completed in the I ∩ AG-adic
topology). This was proved in the lemma above.
For the general case choose an affine cover of Y by G-invariant affine sub-
schemes such that all intersections of the covering sets are also affine (such
a covering exists because Y is separated and the quotient exists). Then
the formal quotient can be glued from the local pieces. Since X̂ and Ŷ /G

coincide locally, they coincide globally. �

Lemma 1.26. Let R be a discrete valuation ring and Y a separated and
admissible formal R-scheme endowed with an R-linear action by a finite
group G such that the quotient X = Y/G of formal R-schemes exists. Then
G acts on Yrig by functoriality and

X rig = Yrig/G.

Proof. If Y is affine, then there is an admissible R-algebra A such
that Y = Spf(A) and X = Spf(AG). Let Q be the quotient field of R. By
application of the functor ·rig from formal to rigid spaces we obtain

Yrig = Spm(A⊗Q) and X rig = Spm(AG ⊗Q).

By [EGA, 0 Proposition 7.6.13] the morphism A → A ⊗ Q is flat; taking
fixed points commutes with flat base change. Thus AG ⊗ Q = (A ⊗ Q)G,
and we have

X rig = Spm((A⊗Q)G).

Therefore X rig = Yrig/G in the affine case.
In the general case there is a G-invariant affine covering of Y which has
affine intersections. Then one glues the local pieces and obtains a global
quotient. �

4. Fundamental groups of analytic manifolds

In this section we quickly review the general theory of fundamental
groups. We introduce some fundamental groups of importance for our work
and gather their relations. We define the fundamental group of finite topo-
logical coverings which is best suited for our purpose. We prove that this
group satisfies Grothendieck’s six axioms of a Galois theory. The presenta-
tion refers to Yves André’s book [And03b].
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In the following let K be a subfield of Cp that is complete with respect to
the induced norm.

4.1. Fundamental groups.
We give a brief review of the theory of fiber functors and fundamental
groupoids and define some interesting fundamental groups.

Definition 1.27 ([And03a], Paragraph 4.1). A smooth paracompact
strictly K-analytic space S is called analytic K-manifold.

Remark 1.28. Note that every analytic K-manifold is a good analytic
space, since it is smooth over M(K) which is a good analytic space.

Theorem 1.29 ([Ber99], Theorem 9.1). Analytic manifolds are locally
contractible. Therefore every analytic manifold has a universal covering.

Definition 1.30.

(1) A morphism of analytic manifolds f : S′ → S is called a covering
of S if
(a) S is covered by a family of open sets (Ui)i∈I =: U ,
(b) for all sets U in U it is true that

f−1(U) =
∐
j∈J

Vj ,

(c) and for all j ∈ J the restriction f|Vj : Vj → U is finite.
The family U will be called covering collection. A morphism of
coverings S′ → S to S′′ → S is a commutative diagram

S′ //

!!BBBBBBBB S′′

}}{{{{{{{{

S .

The thereby defined category of coverings of S is called CovS .

(2) By CovetS we denote the étale coverings: a covering f : S′ → S is
étale if there is a covering collection U of S such that the restric-
tions f|Vj : Vj → U are étale for all U ∈ U .

Definition 1.31. Let S′ → S be an étale covering and R ⊂ S′×S S′ an
equivalence relation on S′ over S which is a union of connected components.
The quotient S′/R, viewed as an étale sheaf as in [SGA1, Exposé V 1 ], is
representable by an étale covering S′′ → S as proved in [dJ95, Lemma 2.4].
It is called étale quotient covering or just S-quotient.
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Definition 1.32. There are the following interesting full subcategories
of CovetS which are stable under connected components, S-fibre products and
S-quotients.

(1) CovalgS : a finite morphism f : S′ → S which is an étale covering
is called finite étale covering. Finite étale coverings are also called
algebraic coverings because of the Riemann existence theorem (see
below and theorem 1.11).

(2) CovtopS : a covering f : S′ → S is topologic if there is a covering
collection U of S such that the restrictions f|Vj : Vj → U are iso-
morphisms for all U in U .

(3) CovftopS : a finite morphism f : S′ → S which is a topological cov-
ering is called finite topological covering.

(4) CovtempS : a covering f : S′ → S is called temperated if it is an S-
quotient of a composite étale covering T ′ → T → S where T ′ → T

is a topological covering and T → S an algebraic covering.

We use Cov•S if we mean any of these categories.

Definition 1.33. A geometric point of S is a morphism s :M(Cp)→ S.
If s is a geomteric point, then we denote the unique point in its image in S

by s.

Definition 1.34.

(1) Let s be a geometric point of S. The set

f−1(s) := {s′ :M(Cp)→ S′|f ◦ s′ = s}

is called geometric fibre of s in the covering f : S′ → S. The
covariant functor

F •S,s : Cov•S → Ens, (f : S′ → S) 7→ f−1(s)

is called fibre functor.

(2) A •-path (étale path, finite étale path, and so on) from a geometric
point s to a geometric point t is an isomorphism of fibre functors
F •S,s

∼= F •
S,t

. The set of •-paths can by topologised by taking as the
fundamental open neighbourhoods of a path α the sets StabS′,s′ ◦α
where StabS′,s′ runs among the stabilisers in Aut(F •S,s) of arbitrary
geometric points s′ above s in arbitrary •-coverings S′ → S in Cov•S .
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(3) If f : S → T is a morphism of K-manifolds and α a •-path from s

to t, then f ◦ α is a •-path from f ◦ s to f ◦ t. This is compatible
with composition of paths.

Comparison to algebraic theory: let X be a smooth K-Variety, its ana-
lytification Xan is a K-manifold by [And03b, III Remark 1.1.2 e)]. Via the
analytification functor the category of algebraic coverings – which has been
defined by Grothendieck in [SGA1] – is equivalent to the category CovalgXan .
This is a consequence of the Riemann existence theorem proved in [Lüt93].
Therefore algebraic paths exist on Xan. Due to de Jong ([dJ95, Theorem
2.0]) étale paths exist as well. Every topological path between s and t lifts
to an étale paths between s and t.

Definition 1.35.

(1) The category whose objects are the geometric points of S and whose
homomorphisms are

Hom•(s, t) := Iso(F •S,s, F
•
S,t)

is called the •-fundamental groupoid and is denoted by Π•1(S).
(2) The group π•1(S, s) := Aut(F •S,s) is called •-fundamental group of

S with basepoint s.

Remark 1.36 ([dJ95], Lemma 2.6). The category of topological cover-
ings of S is equivalent to the category of covering spaces of the underlying
topological space |S| of S. The topological fundamental group πtop1 (S, s)
does only depend on |S| and on the unique point s in the image of the
geometric point s in S.

4.2. The finite topological fundamental group.
In [SGA1, V.4] Grothendieck defined six axioms for a Galois theory; we
state them and prove that for a connected base S the category of finite
topological coverings CovftopS together with the fibre functor F ftop satisfies
these axioms.

Definition 1.37. Let C be a category and F a covariant functor

F : C→ Ens.

The category C together with the functor F is called a Galois theory if the
following six axioms are satisfied:

(G1) The category C has a final object, and the fibre product of two
objects over a third object exists in C.

(G2) Finite sums exist in C. The quotient of an object by a finite group
of automorphisms exists.
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(G3) Let u : S′ → S′′ be a morphism in C, then u factorises in a compo-
sition

S′
u′ // S′′1

u′′ // S′′ ,

where u′ is a strict epimorphism and u′′ is a monomorphism. Fur-
thermore u′′ is an isomorphism onto a direct summand of S′′.

(G4) The functor F is left exact; that is F maps monomorphisms to
monomorphisms and commutes with fibre products.

(G5) The functor F commutes with finite direct sums, maps strict epi-
morphisms to epimorphisms and commutes with quotients by finite
groups of automorphisms.

(G6) Assume u : S′ → S′′ is a morphism in C such that F (u) is an
isomorphism, then u itself is an isomorphism.

In order to prove the property (G1) for F ftop we need the following
lemma.

Lemma 1.38. Let S be a connected K-manifold and f : S′ → S and
g : S′′ → S be two topological coverings. Every S-morphism φ : S′ → S′′ is
a topological covering.

Proof. Let π : S̃ → S be the universal covering space of S. Thus there
is a covering (Ui)i∈I of S such that for every Ui exists a family (Vij)j∈J in
S̃ such that

π−1(Ui) =
∐
j

Vij , and π|Vij : Vij → Ui is an isomorphism.

Since S̃ is the universal covering space of S, there are morphisms of analytic
spaces

π : S̃
π′ // S′ // S ,

where S′ = S̃/H and H is the fundamental group of S′. Thus there is a
decomposition

π|π−1(Ui) :
∐
j Vij // (

∐
Vij)/H

f|f−1(Ui) // Ui .

Up to isomorphism the quotient
∐
Vij/H identifies some of the Vij . We

denote the images of Vij in the quotient S̃/H by V ′ij . Hence we have the
decomposition

π|π−1(Ui) :
∐
j Vij //

∐
k V
′
ijk

f|f−1(Ui) // Ui ,

where f|V ′ijk
: V ′ijk → Ui are isomorphisms.

With the analogous labeling the analogous statement is true for S′′; that is
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the morphisms g|V ′′ijm : V ′′ijm → Ui are isomorphisms.
Therefore we have the following diagram

V ′ij
φ

//

f|V ′
ij   AAAAAAAA

V ′′ik

g|V ′′
ik~~}}}}}}}}

Ui.

The morphism φ is an isomorphism, because f|V ′ij and g|V ′′ik are isomorphisms.
Since S′′ is covered by the sets V ′′ik, the morphism φ is a topological covering.

�

Proposition 1.39. Let S be a connected and proper K-manifold the
category of finite topological coverings CovftopS together with the fibre functor
F ftop satisfies the axioms of a Galois theory as defined in 1.37.

Proof.

(G1) The category CovftopS admits S-fibre products. By the lemma above
a general fibre product S′ ×S′′′ S′′ in CovftopS is just the S′′′-fibre
product in CovftopS′′′ . The final object exists.

(G2) This is true for topological coverings. Finite coverings are closed
under finite sums and quotients by finite groups. Therefore the
assertion is true for finite topological coverings.

(G3) To prove this property we use the notations of Lemma 1.38. Since
f : S′ → S and g : S′′ → S are étale coverings, they are étale
morphisms. The reason for this is that there is a covering (Ui)i∈I
of S such that for all Ui there is a covering (V ′ij)j∈J of S′ with the
property

f−1(Ui) =
∐
j

V ′ij

and

f|V ′ij : V ′ij → Ui

is étale. It follows that

f|f−1(Ui) :
∐
j

V ′ij → Ui

is étale. Étaleness is a local condition, therefore the morphism
f : S′ → S is étale. For the morphism g it is the same proof.
Let u : S′ → S′′ be a morphism in CovftopS . We use the equivalence
between categories of finite étale (analytic) coverings and algebraic
coverings (1.11) and conclude, that the morphism falg is étale.
Hence the image ualg(S′alg) is open and closed in S′′alg; therefore
it is a connected component of S′′alg, and falg factorises in a strict
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epimorphism u′alg and a monomorphism u′′alg as proved in [SGA1,
V Proposition 3.5]. By equivalence of categories this also holds for
f itself. Hence we get the following diagram.

S′

u

&&u′ //

f ""DDDDDDDDD f(S′)
u′′ //

h

��

S′′

g
||yyyyyyyyy

S.

The space S′′ has a decomposition f(S′)
∐
S′′1 , where f(S′) is a

connected component of S′′. Notice here, that a equivalence of cat-
egories maps monomorphisms to monomorphisms, epimorphisms
to epimorphisms and strict epimorphisms to strict epimorphisms.
This is due to the fact, that these notions are defined by universal
properties.
The morphism h is finite. We have to show that it is a topological
morphism. As in the proof of the above lemma we find a covering
(Ui)i∈I of S such that

f−1(Ui) =
∐
j

V ′ij and

g−1(Ui) =
∐
k

V ′′ik.

Thus we have the equation

g−1(Ui) ∼=
∐
k Vik

∼= (f(S′)
∐
S′′1 ) ∩ g−1(Ui)

= (f(S′) ∩ g−1(Ui))
∐

(S′′1 ∩ g−1(Ui)).

Here remember that V ′ij ∼= Vij ∼= V ′′ij . The Vij are connected (since
S is connected) therefore

h−1(Ui) = f(S′) ∩ g−1(Ui) ∼=
∐
k

Vijk .

Thus h : f(S′)→ S is a finite topological covering.
(G4) The algebraic coverings satisfy this axiom, there is a equivalence of

categories between finite étale and algebraic coverings, a bijection
between geometric points, and the fibre functor is defined in the
same way. Hence this axiom is also satisfied for the (finite étale
and therefore for the) finite topological coverings.

(G5) The same reason as for G4.
(G6) The same reason as for G4.

�
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Corollary 1.40. Every finite topological covering is dominated by a
(finite) Galois covering, and πftop1 (S, s) is a pro-finite group.

Proof. This follows by the general Galois theory of Grothendieck (cf.
[SGA1, page 123]). �

Remark 1.41.

(1) The fundamentel group πftop(S, s) only depends on the underlying
topological space |S| of S and on the unique point s in the image
of s.

(2) The fully faithful embedding functor H : Covftop ↪→ Covalg verifies
F ftop = F alg ◦H. Because H is fully faithful, the morphism

πalg1 (S, s)→ πftop1 (S, s)

is surjective by [SGA1, V Proposition 6.9].
(3) Furthermore F algXCp ,x

and F ftopXCp ,x
are strictly pro-representable by

(Yi, yi, φij) and (Y ′i , y
′
i, φ
′
ij) respectively. If Z → X is a finite topo-

logical covering and z ∈ Z(Cp) is a geometric point, then the fol-
lowing diagram is commutative:

πalg(XCp , x)
φyi //

����

GalXCp
Yi

φz //

φy′
i

��

GalXCp
ZCp

πftop(XCp , x)
φy′
i // GalXCp

Y ′i

φz

88qqqqqqqqqqq

.

(4) Because of the Riemann existence theorem, Πalg
1 (S) and πalg1 (S, s)

respectively agree with their counterparts of [SGA1] and therefore
with those in [DWc].

(5) The inclusion CovtopS ↪→ CovtempS gives rise to a surjective homo-
morphism

πtemp1 (S, s)� πtop1 (S, s).

The surjectivity follows by [And03b, III Corollary 1.4.8] (that
is πtemp1 (S, s) → πtop1 (S, s) has dense image) and the fact, that
πtop1 (S, s) is discrete.

(6) By a remark by Yves André in [And03b, Page 128] the groups
πalg1 (S, s) and ̂πtemp(S, s) can be identified.

(7) Since CovftopS is a full subcategory of CovtopS and πftop1 (S, s) is pro-
finite, we have by [And03b, III Corollary 1.4.8] that

πftop1 (S, s) = ̂πtop1 (S, s).
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5. Mumford curves

In this section we review the definition and some facts about Mumford
curves and present two examples.

5.1. Definition and facts.
Let K be a complete subfield of Cp.

Definition 1.42. Let P be the rigid projective line over K, and let Γ
be a subgroup of PGL2(K). The group Γ acts on P.

(1) A point x ∈ P is called a limit point of Γ if there is a sequence
(γn ∈ Γ)n∈N of pairwise different elements of Γ and a point y ∈ P
such that limn→∞ γn(y) = x. The set of all limit points of Γ will
be called ΣΓ.

(2) The group Γ is called discontinuous if ΣΓ is not equal to P and if
for every point x ∈ P the closure of the orbit Γx is compact. If K
is locally compact, then the last condition is trivially satisfied.

(3) The group Γ is called Schottky group if it is finitely generated,
discontinuous and has no elements of finite order different from 1.

Definition 1.43. Let Γ be a Schottky group. Then Γ acts freely on
the open set ΩΓ := P− ΣΓ. The quotient ΩΓ/Γ is compact. Endowed with
the obvious K-rigid structure it becomes a rigid K-curve. By [GvdP80, III
Theorem 2.2] it is the rigidification of a projective and smooth K-curve XΓ.
The curve XΓ is called the Mumford curve associated to Γ.

In this thesis we will solely deal with Mumford curves that can be defined
over a local number field. We will also investigate Mumford curves over Cp,
but only those that come from a local number field by base extension. For
examples of Mumford curves see subsection 5.2.

Definition 1.44 ([Mum72], pages 160 and 164).

(1) A stable curve over a discrete valuation ring R is a proper and flat
R-scheme, whose geometric fibres are reduced, connected and 1-
dimensional, have at most ordinary double points, and such that
their non-singular rational components, if any, meet the remaining
components in at least 3 points.

(2) Denote by k the residue field of R. A stable curve X will be called
degenerated if the normalisations of all components of X ⊗R k are
rational curves. Here k denotes the algebraic closure of the residue
field of R.

(3) A stable curve X is called k-split degenerated if the normalisations
of all the components of X are isomorphic to P1

k, and if all the
double points are k-rational with two k-rational branches.
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(4) A semistable curve is a flat and proper R-scheme, whose geome-
tric fibres are reduced, connected and 1-dimensional with at most
ordinary double points.

Theorem 1.45 ([Mum72], Theorem 3.3, Theorem 4.20, Corollary 4.2).
Let K be a local number field. If Γ has g ≥ 1 generators, then XΓ is a
smooth curve of genus g and has a stable K̃-split degenerated model X over
K◦, which is uniquely defined up to canonical isomorphism. Vice versa
every smooth algebraic K-curve X of genus g ≥ 1 which has a stable K̃-
split degenerated model is isomorphic to a Mumford curve XΓ for a unique
Schottky group Γ with g generators.

Remark 1.46. In Berkovich theory one has the analogous definition
and results. Note here that Γ only operates on the points Pan(Cp), where
Pan is the analytic projective line. The quotient is the analytification of an
algebraic curve by theorem 1.11.

Because Berkovich spaces are topological spaces, the following equiva-
lence makes sense where ·an denotes analytification of varieties.

Theorem 1.47 ([Ber90], Theorem 4.4.1). Let X be a smooth and pro-
jective curve over K. The following properties of X are equivalent:

(1) the curve X is a Mumford curve.
(2) There is a subset Σ ⊂ Pan(K) such that the universal covering Ω

of Xan is isomorphic to Pan − Σ.

Corollary 1.48. If X is a K-Mumford curve and L ⊂ Cp a complete
algebraic extension field of K, then

πtop1 (Xan, x) = πtop1 (Xan
L , x) and πftop1 (Xan, x) = πftop1 (Xan

L , x).

Proof. It is enough to prove the assertion for the topological funda-
mental group. Because X is a Mumford curve we have

Xan = Ω/πtop1 (Xan, x).

Thus

Xan
L = ΩL/π

top
1 (X,x)

follows by base change. It is enough to prove that ΩL is the universal
covering space of Xan. It is a covering space by definiton and it is universal
because it is contractible as proved in [Ber90, Theorem 4.2.1]. �

The following lemma shows that every finite topological covering of a
Mumford curve that is induced by a cofinite normal subgroup of Γ is again
a Mumford curve.
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Lemma 1.49. Given a Mumford curve Ω/Γ of genus g over a local num-
ber field K and a cofinite normal subgroup N of Γ, then Ω/N is a Mumford
curve of genus

(g − 1) · |Γ/N |+ 1,

and the map
Ω/N → Ω/Γ

is a finite topological covering of degree |Γ/N |.

Proof. As Γ is a Schottky group it has no elements of finite order
different from 1, it is finitely generated, a free subgroup of PGL2(K) and
operates discontinuously. Since N is a subgroup of Γ, it also has no elements
of finite order different from 1 and operates discontinuously. To prove that N
is a Schottky group we only have to show that it is finitely generated. Since
Γ is a free group and N is cofinite, it is free and generated by (g−1)·|Γ/N |+1
elements. This is proved in [Iha66, §1 Example 1, §2 Theorem 1]. Therefore
N is a Schottky group of rank (g − 1) · |Γ/N |+ 1.
To prove that Ω/N is a Mumford curve, we have to show that N and Γ have
the same limit points. Let q be a limit point of Γ; in formal terms that is:

∃ p ∈ P1, (γi ∈ Γ)i∈I : lim
i→∞

γi(p) = q, (γi = γj ⇒ i = j).

Because of cofiniteness, there is a coset Nγ of N in Γ such that

∃ p ∈ P1, (γi ∈ Nγ)i∈I : lim
i→∞

γi(p) = q, (γi = γj ⇒ i = j)

⇒∃ p ∈ P1, (γi ∈ Nγ)i∈I : lim
i→∞

(γiγ−1)(γ(p)) = q, (γi = γj ⇒ i = j)

⇒∃ p′ ∈ P1, (γi ∈ N)i∈I : lim
i→∞

(γi)(p′) = q, (γi = γj ⇒ i = j).

Thus every limit point of Γ is a limit point of N . The other direction is
obvious. Therefore Ω/N is a Mumford curve.
Its genus is equal to the number of generators of N , hence it is equal to
(g− 1) · |Γ/N |+ 1. In Berkovich’s sense the morphism Ω/N → Ω/Γ is finite
topological, hence it is finite étale. Because Mumford curves are analytifica-
tions of proper schemes, and the analytification functor for proper schemes is
fully faithful by theorem 1.11, the associated morphism of algebraic curves is
finite étale of degree |Γ/N |; this is proved in [Ber93, Proposition 3.3.11]. �

5.2. Examples.
We give examples of elliptic and hyperelliptic Mumford curves.

Definition 1.50. Let q ∈ K with 0 < ‖q‖ < 1, set Σ := {0,∞} and

let Γ be the cyclic group that is generated by

(
q 0
0 1

)
. The group Γ is a

Schottky group and acts freely on P(Cp) − Σ = Gm(Cp). The associated
K-Mumford curve is called Tate curve.
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Remark 1.51. Let K be a local number field and assume that its residue
field does not have characteristic 2. In [GvdP80, page 167] the possible
stable reductions of a K-curve of genus 1 are calculated. It follows that for
an algebraic K-curve X the following properties are equivalent:

(1) it is a Tate curve.
(2) It is an elliptic curve that has a stable K◦-model with bad reduc-

tion.

Let K be a non-Archimedean field.

Definition 1.52. Given a family of elements (si)i=0,...,g of order 2 in
PGL2(K) such that the group Γ := 〈(si)i=0,...,g〉 is discontinuous and iso-
morphic to the free product of the groups {1, si} for i = 0, ..., g. Let W be
the kernel of the group morphism defined by si 7→ −1 for i = 0, ..., g. The
group W is called Whittaker group.

Remark 1.53. The group W is a free group generated by s1s0, ..., sgs0

and it is discontinuous. Thus it is a Schottky group.

Definition 1.54. A proper and smooth algebraic curve X/K is called
hyperelliptic curve if there is a morphism X → P of degree 2.

Proposition 1.55 ([GvdP80], page 282). For an algebraic curve X

over K the following properties are equivalent:

(1) X is a Mumford curve, and there is a Whittaker group W such that
Xan = ΩW /W .

(2) The curve X is hyperelliptic and has a stable K̃-split degenerated
model.

5.3. The Reduction graph of a Mumford curve.
In this subsection the ground field K is assumed to have discrete valuation.
In the articles [Fal83] and [vdPR86] by Faltings and van der Put–Reversat
it is important to consider the graph associated to a specific reduction of
Xrig. This reduction does not correspond to the stable model X stab ofX, but
to the minimal resolution Xmin of X stab. Refering to page 163 of Mumford’s
article [Mum72] we can define a certain reduction on Ω such that it becomes
a formal rigid space and the quotient Ωform/Γ of the associated formal
scheme by the Schottky group Γ is isomorphic to the formal completion of
Xmin.
The minimal resolution of X stab exists, because X stab is an excellent, reduced
and Noetherian scheme of dimension 2 as a result of Lipman’s theorem of
resolution of singularities [Liu02, Theorems 8.2.39 and 8.3.44]. The scheme
Xmin is projective by the result [Liu02, Theorem 8.3.16] of Lichtenbaum. It
is the minimal regular model, because of theorem [Liu02, Theorem 9.3.21]
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and the fact, that the arithmetic genus of the generic fiber is greater than
0, it is unique up to unique isomorphism. The scheme Xmin is not stable
anymore but only semistable. Its special fiber has only rational components,
all its double points are K̃-rational and every non-singular component meets
the other components in at least 2 points. From now on the reductions
attached to Ω and Xrig are those whose associated model X is the minimal
regular model of X.

Definition 1.56. Let X̃ be a semistable K̃-reduction of a rigid space
whose components are rational and its double points are all K̃-rational. De-
fine a graph by one-to-one correspondence between irreducible components
and vertices, and between double points and edges such that a component
contains a double point if and only if the corresponding vertex is an end-
point of the corresponding edge. The graph obtained is called graph of the
reduction. We express it by the term T (X̃).

Remark 1.57. The reduction graph T (Ω̃) of the universal covering of a
Mumford curve Xrig := Ω/Γ is a tree, on which Γ operates freely. It is true
that

T (X̃rig) = T (Ω̃)/Γ,

and the graph T (X̃rig) is finite.



CHAPTER 2

Representations attached to vector bundles

1. The constructions of Faltings, van der Put–Reversat and
Deninger–Werner

In this section we present various constructions of representations of
fundamental groups. The construction by van der Put and Reversat in
[vdPR86] is for Mumford curves over non-Archimedean fields and uses rigid
geometry. For every semistable vector bundle of degree zero a representation
of the topological fundamental group is defined. This work is a generalisa-
tion of the article [Fal83] by Faltings. The most recent contribution in
this direction are the articles [DWb], [DWc] and [DWa] by Deninger and
Werner. Given a projective and smooth curve, for a certain class of vec-
tor bundles on it they construct continuous representations of the curve’s
algebraic fundamental group.

1.1. The construction of van der Put and Reversat.
This subsection refers to the article [vdPR86]. We describe the construction
only in the restricted situation, that the considered Mumford curve comes
from a local number field. Let X ′rig := Ω′/Γ be a Mumford curve over a
local number field K′. Denote the analytic reductions of Ω′ and X ′rig by
R′ : Ω′ → Ω̃′ and r′ : X ′rig →˜X ′rig respectively. We remind the reader that
the reduction r′ : X ′rig → ˜X ′rig is associated to the minimal regular model
of X ′ as explained in chapter 1 in the subsection 5.3 on Mumford curves.
Let K be a complete subfield of Cp, and let X, r and R be the respective
base extension to K. We obtain the following commutative diagram.

Ω
u //

R
��

Xrig

r
��

Ω̃
eu //

X̃rig

Given an orientation on the reduction graph of Xrig, one obtains a Γ-
invariant orientation on the reduction graph of Ω.

If d is a double point of Ω̃, then there is a finite extension field L of K
such that

R−1(d) ∼= {x ∈ A | ‖πd‖ < T (x) < 1} and ‖πd‖ ∈ L∗.

37
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We assume that K equals L. The general theorem follows by finite Galois
descent. The number ‖πd‖ is invariant under the action of Γ, that means
‖πd‖ = ‖πγ(d)‖.

Definition 2.1. Let L1, L2 be irreducible components of Ω̃ and define

d+(L1, L2) :=
∏
+

‖πd‖,

where Π+ denotes the product over those edges on a geodesic between L1

and L2 whose orientation is the same as the orientation of the path from L1

to L2.

Remark 2.2. Let L be an irreducible component of Ω̃. Since the num-
ber of edges on a geodesic between L and γL is at least two, there is an
orientation of the reduction graph of Xrig such that the induced Γ-invariant
orientation of the reduction graph of Ω has the property

d+(L, γL) 6= 1.

This can be achieved by orienting at least one edge between L and γL

positively and at least one edge negatively.
In the following we will always assume such an orientation.

Definition 2.3. Let L0 be an irreducible component of Ω̃ and V a K-
vector space of finite dimension with fixed basis B. Given a matrix σ in
GL(V ) with entries σij with respect to the basis B, we define

‖σ‖ := max
i,j=1,...,n

‖σij‖.

A representation ρ : Γ→ GL(V ) is called φ-bounded if

(1) supγ∈Γ(d+(L0, γL0)‖ρ(γ−1)‖) is finite and
(2) {γ ∈ Γ | d+(L0, γL0)‖ρ(γ−1)‖ ≥ ε} is well-ordered for every ε > 0.

Remark 2.4. The definition does not depend on the choice of B or L0.

Lemma 2.5. Every representation ρ with the property ‖ρ(γ)‖ = 1 for all
γ ∈ Γ is φ-bounded.

Proof. The first condition of φ-boundedness is satisfied because

d+(L0, γL0) < 1.

To prove the second property we first note that there are only finitely many
different values of ‖πd‖ since this number is Γ-invariant and T (Ω̃)/Γ is finite.
Let q < 1 be the biggest of these numbers. If length+(L0, γL0) denotes the
number of positively oriented edges and length(L0, γL0) the number of all
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edges on a geodesic between L0 and γL0, then there is a number C such
that

d+(L0, γL0) ≥ ε⇒ ql+(L0,γL0) ≥ ε⇒ l+(L0, γL0) ≤ C.

Because of the chosen orientation, l+(L0, γL0) ≥ 1
n l(L0, γL0), where n is

the length of a geodesic of maximal length in the graph T (X̃rig). Hence it
follows

d+(L0, γL0) ≥ ε⇒ 1
n
l(L0, γL0) ≤ C ⇒ l(L0, γL0) ≤ C · n.

Only a finite number of group elements γ in Γ can satisfy that, since the
reduction graph of Ω is a locally finite tree.
Thus the set

{γ ∈ Γ | d+(L0, γL0)‖ρ(γ−1)‖ ≥ ε}

is finite and therefore well-ordered. �

Definition 2.6.

(1) Given a K-vector space V with basis e1, ..., er and a representation
ρ : Γ→ GL(V ), define the free OΩ(Ω)-module

W := OΩ(Ω)⊗K V

endowed with the Γ-action

γ(
r∑
i=1

fi ⊗ ei) :=
r∑
i=1

(fi ◦ γ−1)⊗ ρ(γ)ei.

(2) Given an open affinoid domain U ⊂ X, define a vector bundle Eρ
by

Eρ(U) := {f ∈W ⊗OΩ(Ω) OΩ(u−1(U)) | γ(f) = f, for all γ ∈ Γ};

here the Γ-action is defined by

γ(
r∑
i=1

ei ⊗ fi) :=
r∑
i=1

γ(ei)⊗ (fi ◦ γ−1).

Below we use the shorter notation

Eρ = [V ⊗ u∗OΩ]Γ.

Theorem 2.7 ([vdPR86], Théorème principal 5).

(1) Every semistable vector bundle E of rank rk and degree 0 on a
Mumford curve is isomorphic to Eρ for a rk-dimensional φ-bounded
representation ρ : Γ→ GL(V ).

(2) For any φ-bounded rk-dimensional representation ρ : Γ → GL(V )
the vector bundle Eρ is semistable of degree 0 and has rank rk.
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(3) If HomΓ(ρ1, ρ2) denotes homomorphisms of Γ-representations, then
there is a natural isomorphism

HomOX (Eρ1 , Eρ2) ∼= HomΓ(ρ1, ρ2).

Corollary 2.8. The functor ρ 7→ E(ρ) is an equivalence between the
category of φ-bounded representations and the category of semistable vector
bundles of degree zero.

Proof. We have to prove that the functor is fully faithful and essentially
surjective. This follows immediately from the above theorem. �

Remark 2.9.

(1) As an abbreviation we call a van der Put–Reversat representation
a PR-representation.

(2) If E is a semistable vector bundle of degree 0, then the attached
representation is described explicitly by [vdPR86, 5.8, 5.9] as the
natural Γ-action on a sub K-vector space of (ũ∗r∗E)(Ω̃) = u∗E(Ω).
Furthermore with the notations in definition 2.6 it is true that
W ∼= u∗E(Ω).

(3) The above theorem gives an equivalence of categories between semi-
stable vector bundles of degree 0 and φ-bounded representations.
Unfortunately this equivalence does not commute with tensor prod-
ucts and duals (see remark of Faltings in [Fal83]). This is clear even
in the line bundle case, since taking the tensor product of two line
bundles is associated to the multiplication in the Jacobian and tak-
ing the dual is associated to taking the inverse in the Jacobian, but
the φ-bounded representations are not closed under this operations.

We are going to characterise those vector bundles whose representation
has image in GLrk(K◦). First we define two categories of vector bundles.

Definition 2.10. Let K be a complete subfield of Cp. Given a K-
Mumford curve which comes from a Mumford curve X ′ over a local number
field K′, let i′ : X ′ ↪→ X ′ be its uniquely defined minimal regular K′◦-model.
Let X be X ′ ⊗K′◦ K◦ and denote the canonical morphism by i : X ↪→ X.

(1) Define BXX as the full subcategory of all vector bundles on X whose
objects have the following properties: they are semistable of degree
zero, and for every E ∈ BXX there is a vector bundle E on X with
i∗E ∼= E.

(2) Define B
bX
Xrig as the full subcategory of all semistable rigid vec-

tor bundles of degree zero on Xrig whose associated van der Put–
Reversat representation is isomorphic to a representation which has
image in GLrk(K◦).
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Proposition 2.11. Rigidication of vector bundles induces an equiva-
lence of categories between BXX and B

bX
Xrig .

Proof. We have to show that the rigidification functor maps elements of
BXX into B

bX
Xrig and that algebraisation of rigid vector bundles maps elements

of B
bX
Xrig into BXX .

(1) BXX → B
bX
Xrig

If E′ is a vector bundle in BXX , then it is isomorphic to E := i∗E
for a vector bundle E on X . Let ρ : Γ → GL(V ) be the PR-
representation which is associated to Erig. As remarked in 2.9 the
space V is a sub K-vector space of (ũ∗r∗Erig)(Ω̃). The action by
Γ is γf := ρ(γ)(f ◦ γ−1). Denote by uform the morphism

uform : (Ω̃, R∗O◦Ω)→ (X̃rig, r∗O◦Xrig)

between formal schemes. Notice that on the underlying topological
spaces the morphisms uform and ũ coincide.
If Ê denotes the formal completion of E , then it follows

ũ∗r∗E
rig ∼= ũ∗(Ê ⊗ r∗OXrig)
∼= (uform)∗Ê ⊗ ũ∗r∗OXrig .

Therefore up to natural isomorpism the K-vector space V is a sub-
space of

((uform)∗Ê ⊗ ũ∗r∗OXrig)(Ω̃).

The action of Γ on ũ∗r∗OXrig(Ω̃) is trivial. Therefore Γ acts only
on (uform)∗Ê , hence ρ(γ) ∈ GLrk(K◦) for all γ ∈ Γ.

(2) B
bX
Xrig → BXX

Each vector bundle in B
bX
Xrig is the rigidification of an algebraic

vector bundle E which is semistable and of degree zero. Since
Imρ ⊂ GLrk(K◦), the bundle Erig has the formal model E defined
by

E := [V ◦ρ ⊗K◦ r∗u∗O◦Ω]Γ,

where V ◦ is defined as follows. If V = ⊕rk
i=1eiK, then define

V ◦ := ⊕rk
i=1eiK

◦.

By corollary 1.15 the bundle E is the formal completion of an alge-
braic vector bundle E ′ on X . By lemma 1.21 the vector bundle E ′

is an algebraic X -model of E.

�
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Definition 2.12. Let E be a vector bundle in BXX . By the proposition
above there is a vector bundle model E of E on X with the property

Ê = [V ◦ρ ⊗K◦ r∗u∗O◦Ω]Γ.

The bundle E is called the canonical model of E.

1.2. The construction of Faltings.
Let X be a Mumford curve over a discrete non-Archimedean field K. In his
article [Fal83] Faltings introduced the concept of φ-boundedness and proved
for the first time the correspondence between φ-bounded representations of
πtop1 (Xan, x) and semistable vector bundles of degree zero. Because in his
proof he used the theory of formal schemes, he was limited to the case of
discrete valuation. In what follows we will solely deal with the van der Put–
Reversat construction, therefore we are not going to go into the details of
Faltings’ article, but we only remark that in the case of a discrete field both
constructions attach isomorphic r∗u∗OΩ-vector bundles to a φ-bounded re-
presentation in the following sense: since φ-boundedness depends on some
choices (e.g. the orientation of the reduction graph) we assume that in Falt-
ings’ article and in the article of van der Put and Reversat the same choices
are made, such that the same representations are φ-bounded.
Let uform : Ωform → Xform be the quotient morphism between the for-
mal schemes that are associated to the minimal regular model of X (for
details confer chapter 1 subsection 5.3). In Faltings’ article to a φ-bounded
representation ρ the vector bundle

[(K⊗K◦ u
form
∗ OΩform)rk]Γ

is attached. Because of OΩform ⊗K ∼= r∗OΩ this gives the vector bundle

[Krk ⊗K (ũ∗R∗OΩ)]Γ.

It is naturally isomorphic to

r∗[Krk ⊗K (u∗OΩ)]Γ.

This vector bundle defines uniquely the rigid vector bundle

E := [Krk ⊗K (u∗OΩ)]Γ.

E is attached to ρ by the construction of van der Put and Reversat.

1.3. The construction of Deninger and Werner.
In this subsection we review the constructions that are made in [DWc]. Let
R be a valuation ring with quotient field Q of characteristic 0, and let X be
a projective and smooth curve over Q with an R-model X . To begin with,
we define certain categories of coverings of X .



1. VARIOUS CONSTRUCTIONS 43

Definition 2.13.

(1) The category Covfpp(X ) has as objects the finitely presented proper
R-morphisms π : Y → X which satisfy π ⊗ Q ∈ Covalg(X). The
morphisms are commutative triangles

Y1
//

  BBBBBBBB
Y2

~~||||||||

X .

(2) The category Covgood(X ) is the full subcategory of Covfpp(X ) con-
sisting of those morphisms π : Y → X whose structure morphism
λ : Y → SpecR is flat, the equality λ∗OY = OSpecR holds univer-
sally and the morphism YQ → SpecQ is smooth.

Let X be a projective and smooth curve over Qp and X a Zp-model of
X. Let VecXo be the category of all vector bundles on Xo. Denote by ·n
the reduction modulo pn and define the following two categories of vector
bundles.

Definition 2.14.

(1) Define BXo as the full subcategory of VecXo whose objects E have
the property that for every natural number n there is a covering
π : Y → X in Covfpp(X ), such that

π∗nEn ∼= OrkE
Yn .

(2) The category BXCp
is the full subcategory of VecXCp

consisting of
all vector bundles E on XCp , which have the following property: it
exists a Zp-model i : X ↪→ X of X and a vector bundle E in BXo ,
such that E is isomorphic to i∗E .

The construction of Deninger and Werner, as given in [DWc], is as
follows: Let E be a bundle in BXo and x a geometric point in X(Cp), by
properness this gives xo ∈ X (o) and by reduction modulo pn we obtain a
section

xn : Specon // Speco
xo // Xo.

We write Exo for x∗oE viewed as a free o-module of rank rkE , and define

Exn := x∗oE ⊗ on

viewed as a free on-module of rank rkE . The module Exn is a topological
on-module endowed with the discret topology. It is true that

lim←−
n→∞

Exn = Exo

as topological modules.
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Denote by FModo the category of free topological o-modules of finite
rank and define a continuous functor

ρE : Π1(XCp)→ FModo.

On objects it is defined by

ρE(x) := Exo ,

and on homomorphisms the map

ρE : Iso(Fx, Fx′)→ Homo(Exo , Ex′o)

is defined as the projective limit of

ρE,n : Iso(Fx, Fx′)→ Homon(Exn , Ex′n).

For every natural number n the functor ρE,n is defined as follows. By [DWc,
Corollary 3 3)] it is true that there is a covering π : Y → X in Covgood(X ),
such that

π∗nEn ∼= OrkE
Yn .

Set Y := Y ⊗Qp, then Y → X is a finite étale covering. Choose y above x.
A path γ from x to x′ is an isomorphism of fibre functors Fx to Fx′ . Define
y′ := γy; the point y′ lies over x′. Because λ∗OY = OSpecZp

universally, it
follows λn∗OYn = OSpecon

. Therefore

y∗n : Γ(Yn, π∗nEn) // Γ(Specon, y∗nπ
∗
nEn) = Exn

is an isomorphism. This follows, because Γ(Yn,OYn) ∼= on. Define the
morphism

ρE,n(γ) := (γyn)∗ ◦ (y∗n)−1 : Exn → Ex′n .

By construction ρE,n is continuous. Define

ρE := lim←−
n

ρE,n;

it is independent of all choices.
The last step is the definition of the functor

ρ : BXo → RepΠ1(X)(o).

On objects it is defined by

ρ(E) := ρE ,

and if f : E1 → E2 is a morphism of vector bundles, then define

ρ(f) := {E1,xo → E2,xo |x ∈ ObΠ1(X)}.

This set is a natural transformation from ρE1 to ρE2 .
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Remark 2.15. If X is defined over K, then the group Gal(Qp/K) acts
from the left on the categories BXo and RepΠ1(X)(o) resp. on the categories
BXCp

and RepΠ1(X)(Cp). The action is defined on page 39 of [DWc].
Because we do not need the action, we do not give its definition.

Theorem 2.16 ([DWc], Proposition 24). The functor

ρ : BXo → RepΠ1(X)(o): ρ(E) := ρE

is o-linear and exact, commutes with duals, tensors, internal homs and exte-
rior powers of vector bundles. Exact sequences are mapped to exact sequences
of representations. If X is defined over K, then the functor commutes with
the left action of Gal(Qp/K) on the categories BXo and RepΠ1(X)(o).

The construction can be carried over to BXCp
. If E is an object of

BXCp
, then by definition E ∼= j∗Xo

E . Therefore

ψx = x∗ψ : Ex
∼= // (j∗Xo

E)x = Exo ⊗Cp .

Define ρE : Π1(X)→ FModCp as

ρE(x) := x∗E = Ex and ρE(γ) = ψ−1
x (ρE(γ)⊗Cp)ψx.

Theorem 2.17 ([DWc], Theorem 28). The above defined functor ρ is
Cp-linear and exact, commutes with duals, tensors, internal homs and ex-
terior powers of vector bundles. If X is defined over K, then the functor
commutes with the left action of Gal(Qp/K) on the categories BXCp

and
RepΠ1(X)(Cp).

Remark 2.18. We call the Deninger–Werner representation also DW-
representation.

2. Comparison of the constructions

In this section the construction of van der Put and Reversat will be
compared to the one of Deninger and Werner. This will be done separately
for vector bundles that are defined over a local number field (the case of
discrete valuation) and for vector bundles that are only defined over Cp

(the general case).

2.1. Descent of vector bundle reductions.
This subsection serves as a preparation for the general case and shows that
it is possible to perform the construction of the DW-representation modulo
pn over a discrete valuation ring instead of over the ring of integers o of Cp

Let S1 be a scheme and S0 a closed subscheme of S1 which is defined by an
ideal J of square zero. Let G be an S1-group scheme. For every S1-scheme
X write X0 for the base change X×S1 S0. If P0 is a G0-torsor over S0 for the
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étale (resp. Zariski) topology and Lie(G0/S0)′ is the OS0-module obtained
by twisting Lie(G0/S0) by P0, then define

W := Lie(G0/S0)′ ⊗OS0
J.

With this notations the following holds:

Theorem 2.19 ([Gir71], VII Théorème 1.3.1). If G is smooth, then it
exists a class c ∈ H2

Zar(S0,W ) whose vanishing is necessary and sufficient
for the existence of a G-torsor P1 for the Zariski (resp. étale) topology on
S1 which lifts P0. If c = 0 then the set of isomorphism classes of liftings of
P0 is a H1

Zar(S0,W )-torsor.

Lemma 2.20. Let K be a local number field with ring of integers K◦ and
X a projective flat K◦-curve. Let o be the ring of integers of Cp and let E
be a vector bundle on Xo := X ⊗ o, then for every natural number n there is
a local number field L(n)/K and a vector bundle E(n) on XO

L(n)
, such that

E ⊗ o/pn = E(n) ⊗OL(n)/pn.

Proof. We use the notations in the theorem. In our case we consider
only the Zariski topology and the smooth S1-group scheme G := GLrk. Then
P0 is a vector bundle on S0 with respect to the Zariski topology. Because of
o/pn = Zp/pn it follows

H1(X ⊗ o/pn,GLrk) = H1(X ⊗ Zp/pn,GLrk),

and the vector bundle P0 is already defined on XO
L(n)

for a finite extension
field L(n) of K. We use the theorem in the following situation. Define

Si := Xn+i := X ⊗OL(n)/pn+i

J := pn+i−1(OL(n)/pn+i) and G := GLrk.

We proceed by induction. The induction start is i = 1.
Since Lie(G0/S0)′ is a locally free OS0-module (cf. [Gir71, VII 1.3.1.1]),
the sheaf W is a coherent sheaf on S0. The cohomology group H2

Zar(S0,W )
vanishes, since S0 is a curve and W is coherent. Therefore by the theorem
it exists a vector bundle E(n)

1 := P1 on S1 with E(n)
1 ⊗OL(n)/pn = P0.

We have a chain of closed subschemes

S0 ↪→ S1 ↪→ . . . ↪→ Si ↪→ Si+1 ↪→ . . . .

In the induction step we apply the theorem to Si and Si+1 and we get a
projective system (Xn+i, E(n)

i )i≥1. The projective limit

lim←−
i≥1

E(n)
i
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is a formal vector bundle on the formal scheme

lim−→
i≥n+1

Xi = X̂ ⊗ OL.

By Grothendiecks GAGA 1.15 there is an algebraisation E(n) of lim←−E
(n)
i

which is a vector bundle. It follows E(n) ⊗OL(n)/pn = E ⊗ o/pn. �

2.2. The case of discrete valuation.
Let K be a local number field and X a Mumford curve over K. Let X be
its minimal regular model. In the first step we prove that for every rigid
vector bundle Erig ∈ B

bX
Xrig the algebraisation has a model E on X which

satisfies Eo ∈ BX . This is slightly stronger than the statement, that the
algebraisation functor maps elements of the category B

bX
Xrig to elements E

which satisfy ECp ∈ BX , because we specify the relevant model. We remind
of some notations that have been used before.
If Ω/Γ = Xrig is a Mumford curve, then the associated analytic reduction
X̃rig is a quotient Ω̃/Γ, and we have the commutative diagram

Ω
u //

R
��

Xrig

r
��

Ω̃
eu //
X̃rig.

For an algebraic vector bundle E in the category BXX the vector bundle
[V ◦ρ ⊗ r∗u∗O◦Ω]Γ is the formal completion of an algebraic model E of E if ρ is
the representation associated to Erig; this is proved in proposition 2.11. The
lemma 2.22 gives a criterion, whether the reduction modulo pn of a finite
lift of E to another Mumford curve is trivial. As a preparation we prove the
following lemma.
Let N ⊂ Γ be a cofinite normal subgroup,

Ω
v // Ω/N and Ω

u // Ω/Γ

two Mumford curves and let

Ω/N w // Ω/Γ

be the canonical morphism such that u = w ◦ v.

Lemma 2.21. Let Erig := [V ⊗ u∗OΩ]Γ be a semistable vector bundle of
degree 0 on Ω/Γ associated to ρ : Γ→ GLrk(V ). Then w∗Erig is a semistable
bundle of degree 0 on Ω/N , and its associated representation of the Schottky
group ρ′ : N → GLrk(V ′) is isomorphic to ρ|N .
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Proof. Because w is a finite morphism, the vector bundle w∗Erig is
semistable of degree 0 and indeed is isomorphic to

E′rig := [V ′ ⊗ u∗OΩ]N

for some representation ρ′ : N → GLrk(V ′). The K-vector space V is
a subspace of u∗Erig(Ω) and the action of Γ on V is induced from the
natural action of Γ on u∗Erig(Ω). Similarly the action on V ′ ⊂ v∗E′rig(Ω)
is induced by the natural action of N on v∗E′rig(Ω). The vector bundles
v∗E′rig = v∗(w∗Erig) and u∗Erig are naturally isomorphic. Hence for all
γ ∈ N the diagram

v∗E′rig //

��

γ∗v∗E′rig

��

u∗Erig // γ∗u∗Erig

in which all arrows are isomorphisms is commutative. The actions of N on
V and on V ′ coincide. It follows that ρ|N is isomorphic to ρ′. �

Lemma 2.22. Let Erig be the semistable vector bundle of degree 0 on
Ω/Γ associated to the representation ρ : Γ→ GLrk(K◦). Let E be the formal
model [V ◦ρ ⊗K◦ ũ∗R∗O◦Ω]Γ of Erig. If ρ|N ≡ 1 mod pn, then it follows that
w∗nEn ∼=

(
[(ṽ∗R∗O◦Ω)rk]Nn

)
, that is the trivial bundle of rank rk on (Ω/N)formn .

Proof. Let wform be the morphism of formal schemes associated to w.
By the preceding lemma

(wform)∗E = [Vρ|N ⊗ ṽ∗R∗O
◦
Ω]N .

Because of ρ|N ≡ 1 mod pn it is (wform)∗nEn ∼=
(
[(ṽ∗R∗O◦Ω)]Nn

)rk. �

Using this criterion we can prove that every vector bundle E ∈ BXX
has a model E on X such that Eo is in BXo . The trivialising coverings are
constructed explicitly.

Let X be a K-Mumford curve and X its minimal regular K◦-model. Let
ρ : Γ → GL(K◦) be a representation and n a natural number. Let Erig

be the associated semistable vector bundle of degree 0 and rank rk on Xrig

with formal model

Eform := [V ◦ρ ⊗ r∗u∗O◦Ω]Γ.

Proposition 2.23. There is a semistable K◦-curve Y and a proper,
finitely presented K◦-morphism v : Y → X , whose generic fibre vK : Y → X

is a finite and étale Galois covering, such that vanK : Y an → Xan is in
Covftop(Xan) and

v∗nEn = Ork
Yn .
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Proof. The rigidification of the Mumford curve X is Xrig = Ω/Γ. The
formal model E of Erig exists because of Imρ ⊂ GLrk(K◦) (cf. proposition
2.11). By corollary 1.15, the bundle Eform is the formal completion of an
algebraic vector bundle E on X . By lemma 1.21, E is an algebraic X -model
of the algebraisation E of Erig.
It follows

En(U) = Eform(U)n = [V ◦ρ ⊗ r∗u∗O◦Ω]Γn.

Let ρn : Γ → GLrk(K◦/pn) be the reduction of ρ modulo pn. The group
GLrk(K◦/pn) is finite, hence ρn factorises through a finite quotient

ρn : Γ/N → GLrk(K◦/pn).

Here N is a normal cofinite subgroup of Γ; define G := Γ/N . By lemma
1.49 the group N is a Schottky group; and

Y rig := Ω/N

is a Mumford curve of genus (g−1) · |Γ/N |+1. Let Y be the minimal regular
model of the algebraisation of Y rig. The model Y is a semistable curve. The
schematic quotient

X ′ := Y/G

exists because Y is projective. By formal completion along the special fibre
one obtains by lemma 1.25 the identity

X̂ ′ = Ŷ/G = (Ωform/N)/G = Ωform/Γ

as formal schemes. Therefore X̂ ′ is the formal scheme associated to the
Mumford curve X. Because of uniqueness of the K◦-model attached to a
specific reduction (cf. Theorem 1.8) we obtain X ′ = X .
We obtained a semistable projective and flat K◦-curve Y with a morphism

w : Y → X .

Because X is also projective and the base scheme is Noetherian, the mor-
phism w : Y → X is proper and finitely presented. Because K◦ → K is a
flat morphism of rings, the generic fibre wK is again a quotient morphism

wK : Y → Y/G.

The morphism wanK is a finite topological covering, hence Y → Y/G is finite
étale by [Ber93, Proposition 3.3.11]. Alternatively: As Γ acts on Ω without
fixpoints, G acts on Y without fixpoints. So Y → Y/G has a trivial decom-
position group, so it is étale as proved in [SGA1, V Corollaire 2.4].
After formal completion of w along the closed fibre we obtain a morphism
of formal schemes

wform : (Ω/N, rN ,˜Ω/N)→ (Ω/Γ, r, Ω̃/Γ),
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thus the morphism

uform : (Ω, R, Ω̃)
vform // (Ω/N, rN ,˜Ω/N)

wform // (Ω/Γ, r, Ω̃/Γ).

In this situation we can use lemma 2.22 – where we have the same notations
– and conclude w∗nEn = Ork

Yn . �

The modulo pn-trivialising covering Y → X , which has been constructed
in proposition 2.23, is an object in CovfppX , but it is indeed an object of a
smaller category which was used in a previous work by Deninger–Werner
[DWb, section 5] and which will be defined now.

Definition 2.24. Let R be a valuation ring with quotient field Q of
characteristic 0 and X an R-scheme. Let TX be the category whose objects
are finitely presented and proper G-equivariant R-morphisms π : Y → X ,
where G is a finite abstract group which operates by left action R-linearly
on Y and trivially on X , such that the generic fibre πQ is an étale G-torsor.
Let G′ be a finite abstract group and the G′-invariant morphism π′ : Y ′ → X
an element of TX . A morphism from π : Y → X to π′ : Y ′ → X is a
commutative triangle

Y
φ

//

��???????? Y ′

~~~~~~~~~~

X

together with a group morphism γ : G→ G′ such that φ ◦ g = γ(g) ◦ φ, for
g ∈ G.

Definition 2.25. There is an obvious forgetful functor TX → CovX .
The objects of the full subcategory T goodX are the objects of TX which are
mapped to CovgoodX by the forgetful functor.

Remark 2.26. The covering π : Y → Y/G (which was constructed in
proposition 2.23) is an object of T goodX .

Remark 2.27. Up to isomorphism the DW-representation ρE of a vector
bundle E ∈ BXCp

does not depend on the chosen model E of E. Therefore
it is enough to calculate the representation for the canonical model E of E,
that was defined in 2.12.

Lemma 2.28. Let n be a natural number, X a Mumford curve over K
with minimal regular model X/K◦ and let x ∈ X(K) be a geometric point
of X. Let E be a vector bundle in BXX and denote its canonical model by E.
Then Erig is in B

bX
Xrig . The reduction modulo pn of the DW-representation

attached to E factorises through πftop(Xan, x) and is isomorphic to the re-
duction modulo pn of the PR-representation attached to Erig.
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Proof. The fact that Erig is in B
bX
Xrig is proved in proposition 2.11. We

constructed a covering π : Y → X in T goodX forcing π∗nEn to be trivial. Since
we have a T goodX -covering here, we construct the DW-representation as it is
done on page 37 of [DWc]. Because of properness, the geometric point
x ∈ X(Cp) defines an unique point xo in X (o). Choose a point y ∈ X(Cp)
above x. It defines a point yo ∈ X (o). It determines a morphism which
factorises over πftop1 (XCp , x) by remark 1.41 as in the following diagram:

πalg(XCp , x)
φyi //

����

GalXYi
φy //

φy′
i

��

GalXCp
Y = // AutopXY

= // Gop

πftop(Xan
Cp
, x)

φy′
i // GalXCp

Y ′i

φ
y′

99rrrrrrrrrr

By remark 1.48 we have the equation

πftop1 (Xan
Cp
, x) = πftop1 (Xan, x).

The reduction ρDWn is the morphism

ρDWn : Gop // AutExn , σ 7→ (y∗n)−1σ∗y∗n

as in the following diagram where we abbreviated

Γ(Yn, (wform)∗n[(V ◦ρ ⊗ r∗u∗O◦Ω)]Γn)

by the term H0:

σ � // (Exn
(y∗n)−1

// H0
σ∗ // H0

y∗n // Exn)

The morphism σ∗ is defined as follows:

H0 3 f � // f ◦ σ = ρPRn (σ)f ∈ H0 .

Therefore
ρDWn (σ) = (y∗n)−1(ρPRn )(σ)(y∗n).

Hence ρDWn and ρPRn are isomorphic representations. Note that ρPRn is an
element of GL(K◦/pn). �

2.3. The general case.
In this section we compare the two representations for vector bundles which
are only defined over Cp.

Lemma 2.29. Let K be a local number field and n a natural number.
Let X be a Mumford curve over K with minimal regular model X/K◦. If E
is a vector bundle in BXo

XCp
with canonical model E, then Erig is in B

cXo

Xrig
Cp

.

The reduction modulo pn of the DW-representation attached to E factorises
through πftop(Xan, x) and is isomorphic to the reduction modulo pn of the
PR-representation attached to Erig.
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Proof. The first assertion has been proved in proposition 2.11. By
lemma 2.20 there is a finite extension L(n) of K and a vector bundle E(n) on
XO

L(n)
such that

E(n) ⊗OL(n)/pn = E ⊗ o/pn.

Now we can apply lemma 2.28 to see that there is an automorphism An in
GLrk(OL(n)) such that

A−1
n ρPRn (Erig)An = ρDWn (E).

�

Definition 2.30. With the above notations define

ρcPR(Erig) := lim
n
ρPRn (Erig) : πftop1 (Xan, x)→ GLrk(K◦)

and calle it completed van der Put–Reversat representation. By construction,
it is continuous.

Theorem 2.31. Let K be local number field and let L be a complete
subfield of Cp which is an algebraic extension of K. Let X be a Mumford
curve over K with minimal regular model X/K◦, and E a vector bundle in
B
XL◦
XL

. Then the completed PR-representation extended to Cp-vector spaces
is isomorphic to the DW -representation.

Proof. Let E be the canonical model of E. By the lemmas 2.28 and
2.29 there are projective systems (An)n≥1, (ρPRn )n≥1 and (ρDWn )n≥1 such
that

A−1
n ρPRn (Erig)An = ρDWn (E).

By functoriality of lim←− it is

lim←− ρ
DW
n (Erig) = lim←−(A−1

n ρPRn (E)An) = lim←−(An)−1 lim←− ρ
PR
n (E) lim←−An.

Furthermore with the notations before the theorem 2.17 it is

ρDW (E) = ψ−1
x (ρE(γ)⊗Cp)ψx

Therefore the representation ρDW (E) is isomorphic to the completed PR-
representation ρcPR(E)⊗Cp. �

Corollary 2.32. With the notations above, the representation ρDWE is
isomorphic to a representation in the vector space Lrk.
Restricted to bundles in B

bX
Xrig the completed PR-representation commutes

with duals and tensor products, and the (original) RP-representation com-
mutes with duals and tensor products as well.

The following lemma shows that representations of πtop1 (Xan, x) and con-
tinuous representations of πftop1 (Xan, x) are the same.
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Lemma 2.33.

Hom(Zg,GLrk(K◦)) ∼= Homcont(Ẑg,GLrk(K◦))

Proof. Every morphism φ in Hom(Zg,GLrk(K◦)) is continuous if Z
is endowed with the pro-finite topology and K◦ carries the usual p-adic
topology. This follows because K◦/pn is torsion and Zg is finitely generated.
The group Ẑg is the pro-finite completion of Zg, and the morphism φ has a
unique completion φ̂ ∈ Homcont(Ẑg,GLrk(K◦)).
Vice versa every ψ ∈ Homcont(Ẑg,GLrk(K◦)) induces a morphism

Zg ↪→ Ẑg → GLrk(K◦).

�

2.4. Conclusion.
In this thesis we proved the following:

(1) The categories BXX and B
bX
Xrig are equivalent. The equivalence is

induced by rigidification of vector bundles (cf. proposition 2.11).
(2) The DW-representation attached to a vector bundle in BXX fac-

torises over the finite topological fundamental group πftop1 (Xan, x)
of X and is isomorphic to the completed PR-representation at-
tached to the rigidification of E (cf. theorem 2.31).

(3) The category BXX is equivalent to the category of continuous K-
vector space-representations of πftop(Xan, x) resp. to the category
of K-vector space-representations of πtop(Xan, x) for which a basis
can be found such that the associated matrices are in GLrk(K◦).
The equivalence commutes with duals, tensor products, extensions
and internal homs.





CHAPTER 3

Applications

In this last chapter we show various applications. In the first section we
have a look on the different fundamental groups of a Tate curve. In the sec-
ond and third section we make the considered categories of representations
more explicit in the cases of Tate curves and Mumford curves of genus 2.

1. Fundamental groups of a Tate curve

Let X be a Tate curve over a local number field K. Its rigidification
Xrig is a quotient Gm,K/Γ where Γ is the cyclic group which is generated

by

(
q 0
0 1

)
for an element q ∈ K which satisfies 0 < ‖q‖ < 1. The algebraic

fundamental group of X is

πalg1 (XCp , 1) = (Ẑ2)ab.

Because elliptic curves are abelian varieties, a cofinite system of its Galois
coverings is the system of N -multiplications. Such a covering is not topo-
logical, but it factorises as

Gm,K/Γ

z 7→zn
��

Gm,K/〈qn〉

��
Gm,K/Γ

.

The second morphism is a topological covering, but not the first one. We
remind the reader that the different fundamental groups were defined in
definitions 1.32 and 1.35. Yves André shows in paragraph [And03b, II
2.3.2] that

πtemp1 (Xan
Cp
, 1) = πalg1 (Gm,Cp , 1)× πtop1 (Xan

Cp
, 1).

The profinite completion of πtemp1 (Xan
Cp
, 1) is πalg1 (Xan

Cp
, 1), therefore we ob-

tain by profinite completion:

πalg1 (XCp , 1) = πalg1 (Gm,Cp , 1)× πftop1 (Xan
Cp
, 1) = Ẑ(1)× Ẑ.

55
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This result was already indicated by the above factorisation of the N -
multiplication.

2. Vector bundles on a Tate curve

Over an algebraically closed field a representation Z→ GLrk(Cp) is, up
to isomorphism, uniquely determined by its Jordan normal form, up to per-
mutation of Jordan blocks. It follows that objects in the skeleton of BXo

XCp

correspond to φ-bounded matrices over Cp in Jordan normal form up to
block permutation.

Example. The representation associated to a vector bundle of rank 2 in
BXo

XCp
is isomorphic to a representation which is represented by one of the

following matrices: (
x 0
0 y

)
,

(
x 0
0 x

)
,

(
x 1
0 x

)
with the conditions x, y ∈ o× and x 6= y.

Because the Jordan normal form is only useful over an algebraically
closed field, we remind here of the so-called rational normal form. Let
Qi(X) =

∑s
j=0 ajX

j be a polynomial in K[X], we associate to Q(X) a
companion matrix

CQi :=


0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

...
...

...
. . .

...
...

0 0 0 · · · 1 −as−1

 .

With this definition it is true that every matrix M ∈Mn,n(K) is conjugate
over K to a matrix in rational canonical form; that is a matrix of the form

CQ1 0 · · · 0
0 CQ2 · · · 0
...

...
. . .

...
0 0 · · · CQr

 ,

where
∏r
i=1Qi is a factorisation of the characteristic polynomial of M in

monic polynomials, such that Qr is the minimal polynomial of M and Qi

divides Qi+1 for i = 1, . . . , r − 1. The rational canonical form is unique.

Lemma 3.1. Let K be subfield of Cp. A matrix M ∈ Mn,n(K) is con-
jugate over K to a matrix M ′ ∈ Mn,n(K◦) if and only if the characteristic
polynomial of M is in K◦[X].
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Proof. Assume M is conjugate to M ′ ∈Mn,n(K◦). Because the char-
acteristic polynomial is invariant under conjugation, it can be calculated
from M ′. In the calculation only multiplication, addition and subtraction is
involved, hence the polynomial is in K◦[X].
Assume that the characteristic polynomial P (X) of M is in K◦[X]. The ring
K[X] is factorial. The prime factors of P (X) are polynomials in K◦[X], since
the algebraic closure of K has an integrally closed ring of integers. There-
fore in the decomposition

∏
iQi(X) of P (X) all the Qi(X) are elements of

K◦[X]. Therefore the companion matrices in the rational canonical form
have integral entries. �

Corollary 3.2. Every semistable vector bundle of degree zero is uniquely
characterised by the canonical rational form of its associated matrix. It is an
object in B

XOL
XL

if and only if this rational form is a matrix with coefficients
in OL.

3. Vector bundles on a Mumford curve of genus 2

Let K be a local number field, and let X be a K-Mumford curve of
genus 2. In this case an isomorphism class of semistable vector bundles
of degree zero on XCp is associated to an isomorphism class of φ-bounded
representations

ρ : Z2 → GLrk(Cp).

An isomorphism class of Cp-vector space-respresentations of the free group
generated by γ1, γ2 is determined by the pair of matrices

(ρ(γ1), ρ(γ2)) ∈ GLrk(Cp)2

up to simultanuous conjugation. It is a very difficult problem to classify all
conjugacy classes of these pairs. As an example we discuss the easiest case,
which is the one of rank 2 matrices over the algebraically closed field Cp.
Let M′2,2 be the set of matrices in M2,2(Cp), which have trace zero. Hence
we have a direct sum decomposition

M2,2 = Cp ⊕M′2,2.

By [KP96, 2.4 Example] there is a Zariski-dense subset U ′ of (M′2,2)2 where
every pair (A′, B′) ∈ U ′ is conjugate to a pair of the form((

t 0
0 −t

)
,

(
s 1
c −s

))
, with t, c 6= 0,

where

t2 =
1
2

trA′2, s2 =
(trA′B′)2

trA′2
and c =

1
2

trB′2 − s2.
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This classifies the pairs (A,B) of a Zariski-dense subset U ∈ M2
2,2 up to

simultaneous conjugation by adding the respective traces. The set

{(A,B) ∈ U | (trA2 − trA)(trB2 − trB) 6= 0}

is Zariski-dense in GL2(Cp)2. Hence we classified a Zariski-dense subset of
GL2(Cp)2 up to conjugation.
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