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C*-algebras associated to
topological Ore semigroups

S. Sundar

(Communicated by Joachim Cuntz)

Abstract. Let G be a locally compact group and let P C G be a closed Ore semigroup
containing the identity element. Let V : P — B(H) be an anti-homomorphism such that
for every a € P, V, is an isometry and the final projections of {V, | a € P} commute. We
study the C*-algebra generated by {[ f(a)Vada | f € L*(P)}. We show that there exists a
groupoid C*-algebra which is universal for isometric representations with commuting range
projections.

1. INTRODUCTION

It is fair to say that C*-algebras of groups and their crossed products are the
most studied C*-algebras in the theory of operator algebras. Several authors
have tried to study C*-algebras associated to semigroups. For example, the
Toeplitz algebra is the C*-algebra associated to the additive semigroup N.
Recently, the theory of semigroup C*-algebras has received renewed attention;
see for example [2, 5, 6] and the references therein. The notion of crossed
product by semigroups has also been studied by several authors most notably
by Murphy in [8, 9, 11] and by Exel in [3]. However much of the literature
focusses on discrete semigroups. In the topological direction, up to the author’s
knowledge, the only example studied is the Wiener—Hopf C*-algebra. This was
studied from the groupoid point of view first in [7] and then successively by
Nica in [12, 13] and Hilgert and Neeb in [4].

Let G be a second countable locally compact group and P C G a closed
semigroup containing the identity element. We assume that Int(P) is dense
in P and PP~! = G. Let V : P — B(H) be an isometric representation on
a Hilbert space H, i.e., for a € P, V, is an isometry and V,V;, = V,,. For
feLY(P), let

Wy = /aepf(a)Va da.
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The semigroup C*-algebra or the Wiener—Hopf algebra, denoted Wy (P, G),
associated to the representation V is the C*-algebra generated by the oper-
ators {Wy | f € L'(P)}. If we consider the compression of the right reg-
ular representation of G on L?(G) onto L?(P), then one obtains the usual
Wiener—Hopf algebra studied in [7]. In general, it is very difficult to understand
the structure of Wy (P, G). However if we assume that the final projections
{Ey :=V,V} | a € P} form a commuting family of projections, then one can
do better. Without this commutative assumption, the situation becomes com-
plicated even for the simplest case of P := N x N as is illustrated by Murphy
in [10]. The results obtained and the organization of the paper are described
below.

From now on, we assume that the range projections commute. For g =
ab—! € G, let W, :=V;*V, and let E, be the final space of W,. It is shown in
Section 3, that Wy is well-defined and {E, | g € G} forms a commuting family
of projections. For f € L'(G), let Wy := [ f(g)W,dg. It is not difficult to
show that Wy (P, G) is generated by {W; | f € L'(G)}. Let Q be the spectrum
of the commutative C*-algebra generated by { [ f(9)E,dg | f € L'(G)}. The
map C(Q) x P> (T,a) —» VTV, € C(R2) provides an action of P on . In
Sections 4 and 5, we show that this action is injective. Let

G:=QxP:={(z,ab™',y) € Qx G xQ|za=yb}
be the Deaconu-Renault groupoid where the groupoid operations are given by

(z,9,9)(y, h, z) = (x, gh, 2),
(maga y)_l = (yvg_lvx)'

For f € C.(G), let fe C.(G) be defined by f(x,g,y) = f(g). We apply the
results of [14] to show that Q x P has a Haar system. We also show that
there exists a surjective representation A : C*(G) — Wy (P, G) such that for

f € CC(G)7
() = / F(9)A(g) " W,-1 dg.

Here A denotes the modular function of the group. This is achieved in Sections
4-6. For the Wiener—Hopf representation, the groupoid 2 x P is the groupoid
considered in [7].

We show in Section 7, that there exists a universal space {2, on which P
acts such that if V : P — B(H) is an isometric representation with commuting
range projections, then there exists a representation A : C*(£2, x P) — B(H)
such that for f € C.(G),

M) = / F(9)A(g)" E W, dg.

We end the paper by proving a version of Coburn’s theorem for the semigroup
[0, 00)™.
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2. PRELIMINARIES

For the convenience of the reader, we recall the essential facts from [14] that
we need in this paper. The proofs can be found in [14]. Throughout this paper,
G stands for a second countable, locally compact topological group and P C G
for a closed subsemigroup containing the identity element e. We also assume
the following:

(C1) G = PP~ 1,
(C2) The interior of P in G, denoted Int(P), is dense in P.

Semigroups for which (C1) is satisfied are called Ore semigroups. In this paper,
we consider only semigroups with identity for which (C1) and (C2) are satisfied.

Let X be a compact Hausdorff space. A right action of P on X is a con-
tinuous map X x P 3 (z,a) — za € X such that ze = x and (za)b = x(ab)
for x € X and a,b € P. Moreover, we assume that the action is injective, i.e.,
for every a € P, the map X > x — za € X is injective. Let X be a compact
Hausdorff space on which P acts on the right injectively. Then the semi-direct
product groupoid X x P is defined as follows:

X xP:={(x,9,y) € X x G x X | there exist a,b € P such that
g=ab~! and za = yb}.

The groupoid multiplication and the inversion are given by

(z,9,9)(y, h, z) = (x, gh, 2),
(xvgvy)il = (yagila 3:)

The map X x P 3 (x,9,y) — (x,9) € X x G is injective. Thus X x P can
be considered as a subset of X x G which we do from now. Moreover, X x P
is a closed subset of X x G and when X x P is given the subspace topology,
the groupoid X x P becomes a topological groupoid. We denote the range and
source maps by r and s, respectively.

Forx € X, let Q. :=={g € G| (z,9) € G}. Then r—1(z) = {z} x Q. Note
that for z € X, we have Q,.P C @, and @, is closed. By [14, Lem. 4.1], for
z € X, Int(Q) is dense in @, and the boundary of @), has measure zero.

For z € X, let A* be the measure on G defined as follows: For f € C.(G),

[rax = [ f@ote ) ds

Here dg denotes the left Haar measure on G. In [14], it is shown that the
groupoid G := X x P admits a Haar system if and only if the map X xInt(P) >
(x,a) — xa € X is open. In this case, the measures (A\*)zcx form a Haar
system. We will use only this Haar system if X x P admits one.

Suppose that G := X x P admits a Haar system. Then the action of P
on X can be dilated to an action of G. That is there exists a locally compact
Hausdorff space Y on which G acts on the right and a continuous P-equivariant
injection ¢ : X — Y such that
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(i) the set X :=¢(X)Int(P) is open in Y, and

(i) ¥ =Upepi(X)a Uaelnt( )XOCL—1
Moreover, the space Y is unique up to a G-equivariant homeomorphism. We
will identify X as a subspace of Y via the injection ¢ and will suppress the
notation 4. Also the groupoid G is isomorphic to the reduction (Y x G)|x.
With this notation, note that for z € X, 1g,(9) = 1x(zg). Also we leave it to
the reader to check that 1r,(g,)(9) = 1x,(zg).

For f € C.(Q), let f € C.(G) be defined by f(z,9) = f(g). We also need
the following proposition. The proof is a line by line imitation of that of
[7, Prop. 3.5]. Hence we omit the proof. See also [14] for some remarks
concerning the proof.

Let G := X x P and assume that it has a Haar system.

Proposition 2.1. For f € C.(Q), let f € C(X) be defined by the equation

= [ f(9)1x(zg)dg. Suppose that the family {f | f e C@)} separates
pomts of X. Then the x-algebra generated by {f | f € C.(GQ)} is dense in
C.(G) where C.(G) is given the inductive limit topology. As a consequence,

C*(G) is generated by {f | f € C.(G)}.

3. ISOMETRIC REPRESENTATIONS WITH COMMUTING RANGE PROJECTIONS

Definition 3.1. A map V : P — B(H) is called an isometric representation
of P on the Hilbert space H if

(i) the maps P> a— V, and P 5 a — V* are strongly continuous,
(i) for a € P, V, is an isometry, and
(iii) for a,b € P, V,V}, = V.

For a € P, let E, := V, V. If {E, | a € P} is a commuting family of pro-
jections, we say that V has commuting range projections.

In the next example, we recall the Wiener—Hopf representation or the regular
representation. The C*-algebra associated to the Wiener—Hopf representation
has been studied by several authors. See the papers [7, 4] and the references
therein.

Example 3.2. Consider the Hilbert space L?(G) and consider L?(P) as a
closed subspace of L2(G). For ¢ € L?(P) and a € P, let V,(£) be defined as
follows:

f(ma‘l)A(a)_Tl if z € Pa,

Val8)(@) := {0 if z ¢ Pa.

Here A denotes the modular function of the group G. Then the map a €
P — V, € B(L*(P)) is an isometric representation with commuting range
projections. For a € P, the range of V, is L?(Pa). The C*-algebra generated
by {[ f(a)Vada | f € L*(P)} is called the Wiener—Hopf algebra associated to
(P, G) and is denoted W(P,G).
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The above example can be generalized as follows.

Example 3.3. Let A be a closed subset of G such that e € A and A.P C A.
Following [15], such subsets of G are called P-modules. Note that by [14,
Lem. 4.1], it follows that Int(A) is dense in A and the boundary of A has
measure zero. Consider the Hilbert space L?(A) as a closed subspace of L(G).
For £ € L?(A) and a € P, let V,(£) be defined as

-1 -1 .
Val€)(a) = {g(m JAlay = itwe Ao
if x ¢ Aa.

Then the map P 3 a — V, € B(L?*(A)) is an isometric representation with
commuting range projections. We call the representation P 3 a — V, €
B(L?(A)) the Wiener—Hopf representation associated to the P-module A, and
the C*-algebra generated by {[ f(a)Vada | f € L'(P)}, denoted Wa(P,G),
the Wiener—Hopf algebra associated to the P-module A.

The C*-algebras Wa(P,G) when G = Z* and P = NF were analyzed by
Salas in great detail in [15].

Throughout the paper, we fix an isometric representation V' : P — B(H)
with commuting range projections. For ¢ = ab™!, let Wy == V'V, and let
Ey :=W,W,. First we show that W, is well-defined and is a partial isometry.

Proposition 3.4. Let V : P — B(H) be an isometric representation with
commuting range projections.
(i) For g € G, Wy is well-defined and is a partial isometry.
(ii) The family {Eq | g € G} forms a commuting family of projections.
(iii) If g1g5 " € P, then Ey, < Eg,.
(iv) The map G € g = W, € B(H) is strongly continuous.
v) Forg,h € G, WW), = E;Wh,.

Proof. Suppose g = albfl = agbgl. Then aflag = bflbg. Since PP~ = G,
there exist oy, as € P such that aflag = alagl = bflbg. Then a101 = asas
and bloq = bQO[Q.

Now observe that

V; Val = VE;; VOZ Va1 Va1
= ‘/btal Va1 oy
= Vbz o Vasas
= VE;; Voz Vaz Vaz

= Vi V.

This proves that W, is well-defined. Let E, := W,Wy. If g = ab™', then
E, = V" E,V, which is selfadjoint.
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Now note that
E2 = Vy E.ViVy EVs

=V, EoEvE Vs

=V} EyE?V, (since E, and E, commute)
=V, EVs

= E,.

Thus Ey is a projection. This proves (i).

Let g1,92 € G be given. Write g; = albl_1 and go = agbz_1 with a;, b; € P.
Choose a1, a2 € P such that bya; = baas. Let a) = a;oy and b, = b for
i=1,2. Then g; = al(b})~! for i = 1,2. But now b} = b). Thus

Eg, Eg, = Vyi Ea; Vi Vi, Eay Vi,
= Vi, By Vi Vi, Bay Vi
= Egz E91 .
This proves (ii).
Suppose g1g,* = a for some a € P. Write go = be™'. Then g; = (ab)c™!.
Then
Eg, = VIV Vay Ve
= VeV (Va VOV Ve
S VIV Ve
S Egz'
This proves (iii).

Note that the map Int(P) x Int(P) > (a,b) — ab~! € G is surjective and
open. Thus G is the quotient of Int(P) x Int(P). Since multiplication is
strongly continuous on the unit ball of B(#), it follows that the map Int(P) x
Int(P) > (a,b) — V'V, € B(H) is strongly continuous. Consequently, the
map G 3 g - W, € B(H) is strongly continuous. This proves (iv).

Let g,h € G be given. Write ¢ = ab™! and h = cd~! with a,b € P.
Choose a, 3 € P such that dB = aa. Now note that g = (aa)(ba)~! and
h = (cf)(dB)~". Thus we can write g and h as g = a;b; " and h = c1a; . Now
calculate as follows:

WgWh = V;; Vlh Va*l VvC1
=Vy Ea, Vo, Vii Ve, (since E,, and Ej, commute)
= B, Wiy O

For f € L'(G), the Wiener-Hopf operator with symbol f is defined as

Wy :Z/f(g)Wg dg.
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We want to describe the C*-algebra, denoted Wy (P, G), generated by the
operators {Wy | f € LY(G)}.

Remark 3.5. One can show that the C*-algebra Wy (P, G) is generated by
{[ f(@)Voda | f € L*(P)}. The proof is similar to that of [14, Prop. 2.2].
Hence we omit the proof.

First we consider a related commutative C*-algebra. Note that by definition,
for g € G, Wy—» = W;. Moreover, the map G > g — E; = W, W is strongly
continuous. For f € LY(G), let

By = / 1(9)E, dg.

Let
A:=C"{Es | f € LY (@)}

Since {E, | g € G} forms a commuting family of projections, it follows that
A is a commutative C*-subalgebra of B(H). Note that B, =1if g € P71 If
f € LY(P™1), then Ef = [ f(g)dg. Thus, it follows that A is a commutative
unital C*-subalgebra of B(H). Denote the spectrum of A by €.

Let

G, =GxGEx---xG.
—_——
n times

For f € C(Gh), let
By = /f(gl,gz, e 90)Egy Egy -~ By, dg1 dga -~ dgn.

Let A := U, {Ef | f € C(Gy)}. Then A forms a dense unital -subalgebra
of A. Also note that for every n, the map C.(G,) > f — Ey € Ais continuous
when C.(G,) is given the inductive limit topology and A is given the norm
topology.

For T € B(H) and a € P, let ao(T) = VTV,. Clearly a. = id and
Qg Op = Qgp-

Observe that aq(V;*E:Vy) = VEViIE VWV, = V3 EVay. Thus aq(Ey) =
Eg,— for g € G. Since the final projection V,V,;" commutes with E; for every
g € G, it follows that aq(Eg Eg,) = aq(Eyg, )aa(Eg,)-

Proposition 3.6. Fora € P, a, leaves A invariant and the map ag : A — A
is a unital x-homomorphism. For T € A, the map P > a — «q(T) € A is
norm continuous.

Proof. For a € P and f € C.(Gy,), let fa € C.(G,) be defined by

fa(glag% v 7g7’b) = A(a‘)nf(glaagQCLa s 7gna’)'

Then for f € C.(G,), the map P > a — fa € C.(G,) is continuous if C.(G,,)
is given the inductive limit topology.
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Let a € P and f € C.(G,) be given. Then

aq(Ey) =/f(gl,gz,---,gn)aa(EglEgg-'-Egn)dgl dgz - -+ dgn
:/f(g]_,gg,...,gn)Egla—lEgza—l By o1 dgrdgs - dgn

= /f(gla,gga,...,gna)A(a)"EglEgz - By, dgidgs -+ dgn
-, i
Thus o leaves A invariant. Since A is dense in A and «, is bounded, it follows
that o, leaves A invariant.

Observe that if E, = V,V* commutes with 7,5 € B(#H) then a,(TS) =
aq(T)ae(S). By Proposition 3.4, it follows that E, commutes with Ey for
f € C.(Gy). Thus E, commutes with every element of 4. Hence g : A — A
is multiplicative. Clearly a, is unital and *-preserving.

For a € P, oy : A — A is contractive. Thus it is enough to show that for
T € A, the map P 3 a — a4(T) € A is continuous. Let T' = E; for some
f € Ce(Gy). Then ao(T) = Ej,. Hence the map P 5 a — aq(T) = Ef, is
continuous as it is the composite of the continuous maps P 3 a — f, € Co(Gy)
and C.(G,) > h — Ej, where C.(G,,) is given the inductive limit topology. O

Since A = C(Q), it follows that for every a € P, there exists ¢q : Q2 — Q
such that F o ¢, = aq(F) for F € C(2). The condition ag,ap = ayyp translates
t0 Padp = e for a,b € P. Also ¢. = id. Thus the map Q x P > (z,a) —
¢a(x) € Q defines a right action of P on 2. We henceforth write ¢,(x) as xza
forx € Qand a € P.

We claim that the map Q X P 3 (x,a) — xa €  is continuous. Suppose
() — z and (an) — a. Let F € C(Q). By Proposition 3.6, it follows
that oy, (F') converges uniformly to o, (F"). Since the convergence is uniform,
it follows that a,, (F')(z,) converges to aq(F)(z). In other words, for every
F e C(Q), F(znay,) converges to F(za). Hence x,a, converges to za.

The goal of this paper is to prove the following statements.

(i) The right action of P on €2 is injective.

(ii) The semi-direct product groupoid G := €2 x P has a Haar system.

(iii) For f € C.(@), let f € C.(G) be defined by f(z,g) = f(g) for (z,9) € G.
There exists a surjective *-homomorphism 7 : C*(G) — W(P,G) such
that w(f) = [ A(g)~% f(g)W,-1 dg for f € Ce(G).

To prove the above statements, we need a better description of €2, which
forms the content of the next section. We end this section with a lemma which
is useful in showing that 2 x P has a Haar system.

Lemma 3.7. Let f € C.(G) be such that supp(f) C Int(P). Then for T € A,
the integral [, _p f(a)V, TV, da € A.

Proof. Tt is enough to prove the statement for T' € A Let T = Ey4 for some
¢ € C(Gy). For a € P and g € G, we have V}Ey,V, = E;. Hence V,E, V. =
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E4.E,. Now calculate as follows to find that
/ f(@)V,EgV da
/ F(@)p(g1, 92, - - gn)VaEg, Eg, -+ By, V; dadgy dgs -+ - dgn,
= /aep F(a)p(g1,92, - 9n)EaEgiaFgpa - Eg,adadgy dgs - - dgn

= / PA(a)_nf(a’)¢(gla_1792a_la' "7gna_1)
ac
x BBy Ey, -+ Eg, dadg dgs--- dgn

= E¢ S ./zlv,
where 1 € C.(Gp41) is given by
V(g, 91,9252 9n) = D) " f(9)d(g19 929 - gng ™). O

4. WHAT 18 Q7

We first discuss the case when G is discrete. The discrete semigroup C*-
algebras are analyzed in great detail in the papers [5, 6]. Nevertheless, we
discuss this case in the form that we need. This also motivates the topological
case.

Let G be a discrete group and let P C G be a semigroup such that e € P
and PP~! = G. In this case, the Wiener—Hopf C*-algebra Wy (P, G) is simply
the C*-algebra generated by {W, | ¢ € G} and the commutative C*-algebra
A is the C*-algebra generated by {E, | g € G}.

Let x be a character of A. Let us define the support of x, denoted A,, as

x =19 €G|x(E,) =1}
Condition (iii) of Proposition 3.4 implies that P='A, C A,. Since E, = 1 if
g € P71, it follows that P~ C A,.

Let P(G) be the power set of G. Identify P(G) with {0,1}, via the map
P(G) 3 A — 14 € {0,1}9, and endow it with the product topology. The
group G acts on P(G). The right action is given, for g € G and A € P(G), by
Ag := {ag | a € A}. Clearly the map Q > x — A, € {0,1}¢ is continuous,
injective and hence an embedding. We leave it to the reader to check that the
above map is P-equivariant. From now, we view ) as a subset of {0, 1}.

Proposition 4.1. We have the following.

(i) For Ac Q and a € P, Aa=' € Q if and only if a € A.
(ii) For AcQ and g € G, Ag € Q if and only if g~ € A.
(iii) The action Q x P — § is open.

Proof. Let A € Q and a € P be given. Suppose B := Aa~! € Q. Since
e € B, it follows that a € A. Now suppose a € A. Let x be the character
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corresponding to A. Since VE,,V, = E, it follows that V,E, V) = E,Eyq.
Thus the homomorphism B(H) > T — V, TV} € B(H) leaves A invariant.

Let x be the character on A defined by x(T") = x(V,TV,S). Since x(E,) = 1,
it follows that X is nonzero. Observe that for T € A,

(Xa)(T) = x(V,;'TVa)
= x(VaV, TVLV,)
= X(Eo)X(T)x(Ea)
= la(a)x(T)1a(a)
= x(T).

Thus yYa = x. Let B be the support of Y. Then A = Ba. Thus Aa~! € Q.
This proves (i).

Now let A € Q and g = ab~! € G. Suppose g~! = ba=! € A. Then
b€ Aa € Q. By (i), it follows that Ag = Aab~! € Q. Now suppose Ag € €.
Then A = (Ag)g~!. Since e € Ag, it follows that g=! € A. This proves (ii).

When G is discrete, Int(P) = P and QP = Q. Thus, by [14, Thm. 4.3], to
prove that the action 2 x P — ) is open, it is enough to show that Qa is open in
Q for every a € P. But note that by (i), for a € P, Qa = {4 € Q| 14(a) =1}
which is clearly open in 2, as 2 has the subspace topology of {0, 1}%. g

A consequence of Proposition 4.1 is that the semi-direct product groupoid
Q x P has a Haar system. For g € G, let 6, € C.(2 x P) be defined by
dg(z,h) = 1if h = g and d4(x,h) = 0 if h # g. Then it is not difficult to
show that there exists a representation 7 : C.(Q x P) — B(H) such that
m(dg) = Wy-1 for every g € G. We will prove this in the topological case.

Now let us turn our attention to the topological case. Let x be a character
of the commutative C*-algebra A. The support of x, denoted A,, is defined
as follows: For g € G, g ¢ A, if and only if there exists an open set U of
G containing ¢ such that x([ f(9)E,dg) = 0 for every f € C.(U). Here
C.(U) :={f € C.(G) | supp(f) C U}. Note that A, is closed.

Remark 4.2. Let x be a character of A and let A be its support. Then for
g € G, g € Aif and only if for every open set U containing g, there exists
f € C.(U) such that f >0 and x([ f(9)E,dg) > 0.

Proposition 4.3. Let x be a character of A and let A be its support. We have
the following.

(i) PP'Cc Aand P7'AC A.

(i1) The interior Int(A) is dense in A.

(iii) The boundary J(A) has measure zero.

Proof. Let a € Int(P) and U an open set containing a~!. Then UNInt(P)~? is
a nonempty open set containing a~!. Choose f € C.(G) such that supp(f) C
UnInt(P)~', f >0and [ f(g)dg = 1. Since E; =1 for g € P71, it follows
that [ f(g9)Eqdg = [ f(g)dg =1. Thus x([ f(9)Egdg) = 1. This proves that
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a~! € A. As a consequence, Int(P)~! C A. But Int(P)~! is dense in P~! and
A is closed. Hence P~1 C A.

For f € C.(G) and g € G, let Ly(f) € Cc(G) be defined by Ly(f)(z) =
flg~ o).

Let g € A be given and a € P. Let U be an open set containing a~'g. Then
aU is open and contains g. Thus there exists f € C.(alU) such that f > 0 and

x([ f(9)E,dg) > 0. Let f = L,—1f. Then f > 0 and supp(f) C U. Now

[ F0)£,ds = [ fag)E, dg
— [ £@)Eu sy dg

z/f(g)Eg dg (by Proposition 3.4).

Hence x( [ f(9)Ey dg) > 0. This implies that a—'g € A. Thus P~'A C A. This
proves (i). Statements (ii) and (iii) follow immediately from [14, Lem. 4.1]. O

Before proceeding further, let us review the Vietoris topology. Let X be
a locally compact second countable Hausdorff space and let d be a metric on
X inducing the topology. Let C(X) be the collection of closed subsets of X.
Then C(X), endowed with the Vietoris topology, is compact and metrizable.
We recall here the convergence of sequences of elements in C(X).

Let (A,) be a sequence of closed subsets of X. Define

liminf A, = {z € X | limsupd(z, A,,) = 0},
limsup 4,, = {x € X | liminf d(x, A,,) = 0}.

Then (A,) converges in C(X) if and only if liminf A, = limsup 4,,. If
liminf A,, = limsup A4,, = A, then A,, converges to A. Observe that if U C X
is closed, then the subset {A € C(X) | ANU # @} is open in C(X).

Consider C(G), the space of closed subsets of G, with the Vietoris topology.
The group G acts on C(G) on the right. For A € C(G) and g € G, define
Ag={ag|a€ A}. Let

Q,:={A€CG)|P'CcAand P'A C A}
We leave it to the reader to verify that €, is a closed, and hence a compact,

subset of C(G). Clearly Q,, is P-invariant. The space ,, was first considered
in [4].

Proposition 4.4. The action Q,, x Int(P) — Q, is open.

Proof. Let a € Int(P). It is enough to show that Q,, Int(P)a is open in €, (see
[14, Thm. 4.3]). We claim that

Oy, Int(P)a={A€Q, | ANInt(P)a # @}

which will imply that ©,, Int(P)a is open.
Let A € Q, Int(P)a. Then A = Bba for some B € Q,, and b € Int(P). Since
e € B, it follows that ba € A. Hence A N Int(P)a is nonempty. Now suppose
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A € Q, and AN Int(P)a is nonempty. Choose b € Int(P) such that ba € A.
Since P7'A C A, it follows that P~'ba C A, equivalently P~! C Aa='b71!,
and P~'Aa='b~! C Aa—'b~'. This proves that B = Aa"'b"! € Q,. Then
A = Bba € Q,, Int(P)a. O

We summarize a few facts regarding the space €2, in the following remark.

Remark 4.5. Note the following.

(i) QuInt(P)a = {A € Q| a € Int(A)}. If AnInt(P)a # &, then a €
Int(P)~1A which is open and contained in A. Thus a € Int(A4). Now
suppose a € Int(A); then Int(A) N Pa is nonempty. Since Int(P)a is
dense in Pa, it follows that Int(A) N Int(P)a is nonempty and hence
ANInt(P)a is nonempty.

(i) If A € Q, then Int(A) is dense in A and the boundary J(A) has measure
zero. This follows from [14, Lem. 4.1].

(iii) Let A € 2, and g € G. Then (A4, g) € Q, x P if and only if Ag € Q,, if
and only if g~! € A. We leave this verification to the reader.

(iv) The map 2, 3 A — 14 € L*°(G) is continuous and injective and hence an
embedding. Here L*°(G) is given the weak* topology. Let G, := Q,, x P.
Then Proposition 4.4 implies that G, has a Haar system. Moreover, a
Haar system on G, is given by (1g,(g) dg)acq,. For A € Q,, observe
that Qa :={g € G| (A,g) € G,} is A7L.

By the definition of a Haar system, it follows that for f € C.(G,), Q4
A — [ f(x,9)1a(g™")dg is continuous. In particular, for f € C.(G), the
function Q, > A — [ f(g)1a(g~")dg is continuous. As a consequence,
the map Q, 3 A — 14 € L*°(G) is continuous.

Suppose A, B € , such that 14 = 1p in L*>°(G). Then A\ B and
B\ A has measure zero. If A\ B is nonemtpy then Int(A)\ B is nonempty
since Int(A) is dense in A. But Int(A)\ B is open and hence cannot have
measure zero. Thus A\ B = @. Similarly B\ A = @. Hence A = B.
This proves that the map Q, > A — 14 € L*°(G) is injective. Thus we
can consider €, as a compact subset of L>(G).

Let V : P — B(H) be an isometric representation with commuting range
projections. Denote the commutative C*-algebra generated by { [ f(g9)E, dg |
f € LYG)} by A and let Q be the spectrum of A. For f € LY(G), let

Ey = f f(9)E, dg.

Proposition 4.6. Let x be a character of A and let A be its support. For
f € C.(G) the following equalities hold.

(i) x(f f(9)1ac(9)E,dg) = 0.
(ii) If supp(f) C Int(A), then x([ f(9)Eqdg) = [ f(g) dg.
(itt) x(f f(9)Eydg) = [ f(9)1a(9)dg.
Proof. First observe that if supp(f) C A€, where A¢ denotes the complement

of A, then x(E;) = 0. This follows from the definition of A and by a partition
of unity argument.

Miinster Journal of Mathematics VoL. 9 (2016), 155-185



C*-ALGEBRAS ASSOCIATED TO TOPOLOGICAL ORE SEMIGROUPS 167

Now write A¢ = U;;o:l K, with K,, compact and K, increasing. This is
possible as A€ is open. Choose ¢, € C.(G) such that 0 < ¢, < 1, ¢, = 1
on K, and supp(¢,) C A°. Note that ¢, — 1ac pointwise. Hence f¢,
converges to f14c in L'(G). This implies that Eyg4, converges to Ef,.. Since
X(Etg,) =0, it follows that x(Efi,.) = 0. This proves (i).

Let f € C.(G) be such that supp(f) C Int(A). Let g € supp(f). Then
Int(A) N Pg is nonempty. Since Int(P) is dense in P, it follows that Int(A) N
Int(P)g is nonempty. Let s € Int(P) be such that sg € Int(A). Then (sg)g~! €
Int(P). Since Int(P) is open, we can choose open sets U and V contained in
Int(A), with compact closures, such that (g,sg) € U x V' C Int(A) x Int(A)
and VU1 C Int(P). Then by Proposition 3.4, it follows that for g; € V' and
g2 €U, Eg By, = Eg, .

Since supp( f) is compact, it follows that there exist finitely many nonempty
open sets (U;)"; and (V;), with compact closures, contained in Int(A), such
that supp(f) ¢ U}, U; and ViUfl C Int(P). A partition of unity argument
allows us to write fas f =31, fl with supp(f;) C U;. Thus to prove (ii), it
is enough to show x(Ey,) = [ fi(g

Since V; is a nonempty open bet contained in A, by Remark 4.2, it follows
that there exists ¢; € C.(G) such that supp(¢;) C V; and x(Ey,) # 0. Observe
the following:

Ey, Ey, :/v , ®i(91)fi(g2) Eg, Eg, dg1 dgo
i XUj
= / ®i(91) fi(g2) Eg, dg1 dgo
VLXUi

— (/fi(gz)dQQ) /¢¢(91)Eg1 dgi

= (/fi(g2)d92)E¢’i'

Since x is multiplicative, it follows that
X(Es)x(Ef,) = /fz dg (Ep.)-

Now x(Ey,;) # 0. Hence x(Ey,) = [ fi(9) dg. This proves (ii).

Now let f € C.(G) be given. By (i), it follows that x(Ef) = x(Ef1,). But
since the boundary of A has measure zero, it follows that 1p,;4) = 14 a.e.
Thus X(Ef) = X(Ef11ya,)- Write Int(A) = |J,, K, with K, compact and K,
increasing. Choose ¢,, € C.(G) such that ¢, = 1 on K, and supp(¢,) C
Int(A). Then ¢, — I (a) pointwise and hence fé, converges to fliya) in
LY(G). Note that supp(f¢,) C Int(A). Now calculate, as follows, to find that

X(Ef) = X(Efllm(A))
= lim x(Efs,)

Minster Journal of Mathematics VoL. 9 (2016), 155-185



168 S. SUNDAR

—tim [ f(g)on(9)dg (b (i)

- / F(9) L (9) dg

- / F(9)1ag)dg  (since 14 = L) in L(G)).
)

This proves (iii). O
Proposition 4.7. For x € €, let A, be its support. Then the map Q> x —
A, € Q, is one-one, continuous and P-equivariant. Consequently, the action
of P on ) is injective.

Proof. By Proposition 4.3, it follows that A, € Q,if x € Q. For f e C(G),
by Proposition 4.6, x(Ef) = [ f(g dg Hence the map 2 5 x — A, €
L>°(G) is one-one and continuous where L>°(G) is given the weak* topology
By part (iv) of Remark 4.5, it follows that Q 5 x — A, € Q,, is one-one and

continuous.
Let f € C.(G), a € P and x € Q2 and A be the support of x. Observe that

Hence the support of x.a is Aa. Thus the map Q@ > x — A, € Q, is a
continuous P-equivariant embedding. U

Thus we can and will consider €2 as a subset of , with the subspace
topology.

5. HAAR SYSTEM ON ) X P

In this section, we show that the semi-direct product €2 x P admits a Haar
system. We prove that the action  x Int(P) — Q is open. To prove this, we
need an analog of Proposition 4.1 in the topological setting.

Proposition 5.1. Let a € Int(P) and let A € Q. Then a € A if and only if
Aa=1 € Q.
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Proof. Let a € Int(P) and A € § be given. Suppose B := Aa~! € Q. Since
e € B, it follows that a € A. Now suppose a € A. In addition, assume that
a € Int(A). Let x be the character defining A. Then for f € C.(G),

([ 108, dg) = [ 1a11a(0)dg

Choose a decreasing sequence of open sets (Uy,) in G such that

(i) the intersection (2, U, = {a},
(ii) if U is open in G and a € U, then there exists N such that U,, C U for
n > N, and
(iii) for every m, we have U, C Int(P)NInt(A).

This is possible, for we can choose a metric and let (U,) be the open balls
containing a¢ with diam(U,) — 0. For every n € N, choose f, € C.(G) such
that f, >0, [ fn(g)dg =1 and supp(f,) C U,. Note that

X(Ey,) = / Fulg)Lalg)dg = 1

since supp(f,) C Int(A).
Let ¢, be the linear functional on the commutative C*-algebra A defined
by

(M) =x( | Fa0)VTV; db).

beP

Note that ¢,, is well-defined by Lemma 3.7 and is clearly positive. Note that

o =x([  nomnw)

(b)1.a(b) db

besupp(fr)

J
/ b)db (since supp(f,) C Int(A))
1.

€supp(fr)

Thus ¢, is a state for every n. But the set of states on a unital C*-algebra
is weak® compact. By choosing a subsequence if necessary, we can assume
without loss of generality that (¢,,) converges in the weak* topology and let ¢
be its limit.

Recall that for ¢ € P, aq : A = A is given by o.(T) = VTV,. By
Proposition 4.7, it follows that for every a € A, «4 is surjective.

Claim: ¢ o a, = . B
It is enough to show that (¢ o ao)(T) = x(T') for T € A. Let T = Ey for
some ¢ € Co(G).
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Observe that for n € N,
bn(aa (Ew))

=x( [ fa)Vsaa(Ey)Vy db)
beP

FaO0(g1. 92.- o 9m)VoVi Egy -+ By, VaVy' dbdg, -+ dg )

A(b_la)mfn(b)w(glb_la7 gbta,. .., gmb_la)

x EyEg By - B, dbdgy dgs - dgm>.

(
- x( - Fa®)¥(g1,92,- -, gm)EvEg a1+ By, a-1p,dbdgy - - dgm>
(

Let € > 0 be given. Since % is continuous and compactly supported, it fol-
lows that there exists an open set U such that a € U and for b € U and

91,92, -,9m € G7

/|A(b71a)m¢(glb71a, gbla,. .. ,gmbfla)
— (91,92, 9m)| dg1 dgz - - dgp < e.

Choose N > 1 such that for n > N, U,, C U and thus supp(f,) C U. Note
that for n > N,

On(aa(Eyp)) = X(Ep)| = |pn(aa(Ey)) — x(Er, Ey)|

S/ /‘A b ta)™p(g1b ta, . .., gmb ta)

— (91,92, gm)| dgr - - dgm) db

< E/beUn fn(b)

<e.

Thus it follows that ¢n, (e (Ey)) = x(Ey) and hence ¢ o oy = x. This proves
the claim.

Since «, is surjective on A, it follows that ¢ is a character of A. Let B € §)
be the support of ¢. Then ¢oa, = x translates to the equation Ba = A. Thus
Aa~' € Q. Now suppose a € A. Let (s,) be a sequence in Int(P) converging
to the identity element e. Then s, 'a € Int(P) eventually, for s, 'a — a and
a € Int(P). But Int(P)"'A C Int(A). Hence s,'a € Int(A4). By what we
have proved, it follows that Aa~'s, € € eventually. However Q2 is a compact
subset of Q, and (Aa~'s,) converges to Aa~!. From this we conclude that
Aa~t e Q. O

Just like in the discrete case, we have the following theorem.
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Proposition 5.2. Let A € Q and g € G. Then Ag € Q if and only if g~ € A.
Also the semi-direct product groupoid §2 x P has a Haar system.

Proof. Let g € G and A € ) be given. Suppose Ag € . Since e € Ag, it
follows that ¢g=' € A. Now suppose g~' € A. As G = (Int(P))(Int(P))~ 1,
write ¢ = ab~! with a,b € Int(P). Then ba=! € A or b € Aa € Q. By
Proposition 5.1, it follows that Aab~! € Q. Hence Ag € .

To prove that 2 x P has a Haar system, it is enough to show that the action
Q x P — Qis open. By [14, Thm. 4.3], it is enough to show that QInt(P)a is
open in € for every a € P. Let a € P be given.

Claim: QInt(P)a={A € Q| AnInt(P)a # @}.

Suppose A N Int(P)a is nonempty. Then there exists s € Int(P) such that
sa € A. By Proposition 5.1, B := Aa~'s™! € Q. Thus A = Bsa € QInt(P)a.
Suppose A € QInt(P)a. Then A = Bsa for some B € Q and s € Int(P). Since
e € B, it follows that sa € A. Thus AN Int(P)a is nonempty. This proves the
claim.

The set {A € C(G) | ANInt(P)a # @} is open in C(G), when C(G) is given
the Vietoris topology. This implies that Q Int(P)a is open in €. O

Remark 5.3. Consider the groupoid €, x P. Then by Proposition 5.2 and
statement (iii) of Remark 4.5, it follows that € is an invariant subset of ,,.
Moreover, the groupoid  x P is just the restriction €, x Plq.

We end this section by describing 2 in the case of the Wiener—Hopf repre-
sentation associated to a P-module A. Let A be a closed subset of G such
that e € A and A.P C A. Recall that the Wiener—Hopf representation
V : P — B(L?*(A)) is given, for a € P and £ € L%*(A), by

za~ ! )7 ifx a
wiea) = ST e e

Here A denotes the modular function of the group G. Note that for g € G and
& € L*(A), W, is given by

Ezg )A(g) T ifxg e A,
0 if zg=! ¢ A.

Let M : L>=(A) — B(L*(A)) be the multiplication representation. Observe
that for g € G, B, = W,W; = M(1a4) where A.g := {zg | z € A} N A.
Denote the algebra of bounded continuous functions on A by Cj(A4). Since
Int(A) = A, it follows that M is a faithful representation of Cy(A). For
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f € C.(G), let 14 % f € Cy(A) be defined by
Las £ = [ La(ts)(s7)ds
= [1alts A0 ds

— [ o)A s

Observe that given a € A, there exists f € C.(G) such that (14 * f)(a) = 1.
In order to see this, choose f € C.(G) such that supp(f) C Int(A) ta and
[ f(s)A(s)"'ds = 1. For such an f, we have (14  f)(a) = 1.

Now let fel(G ) and ¢ € L?(A) be given. Calculate as below to find that

([ 1B, da)e.€) = [ 1) Esg )
= [1@( [ ts@lewp az) dg

= /IGA (/f(g)lAg(a:) dg) 1€ (2)[? do
- /xeA (/f(g)lA(xg_l)dg)|§(x)|2 di
- /meA (/1A(xg)f(g‘1)A(g)‘1 dg)|§(x)|2 d

- / (L * H)(@)[E)P da
€A

= (M(1ax f),€),

where f(g) = f(9)A(g)-

Thus the C*-algebra A generated by { [ f(g)Esdg | f € Cc(G)} is isomor-
phic to the C*-subalgebra of Cj,(A) generated by {14 * f | f € C.(G)}. Thus
for a € A, there exists a character x, of A such that

o [ 1B, dg) = (1p < Hla)
- / Lara(s) F(5)A(s)1ds
- / Lacra(5)f(s)ds.

This implies that the support of x, is A71a. Also {x, | @ € P} separates the
elements of Cp,(A) and hence those of A. This implies that {A™'a | a € A} is
dense in Q. As a consequence, it follows that € is the closure of {A™ta | a € A}
in the space of closed subsets of G with respect to the Vietoris topology.

Remark 5.4. For a P-module A, let us denote the closure {A7'a | a € A} in
the space of closed subsets by 2 4. By Remark 4.5, observe that B € 4 if and
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only if there exists a sequence a,, € A such that 14-1,, — 1p in L>°(G) where
L>(G) is endowed with the weak* topology. The “compactification” Qp of P
is called the Wiener—Hopf compactification of P and is considered in [7, 14].

For explicit models of Qp, when P is a polyhedral cone of R™ or when P
is the cone of positive elements in a Jordan algebra, we refer the reader to [7].
When P is the cone of positive matrices, Qp is described as a closed subset of
unitary matrices in [16].

Remark 5.5. For a P-module A, the C*-algebra W4 (P, G) is isomorphic to
the reduced C*-algebra of the groupoid 24 x P. For A = P, this is proved in
[7, Thm. 3.7]. Since the proof is exactly the same as that of [7, Thm. 3.7], we
omit the proof.

It is beyond the scope of the present paper to give a detailed description of
Q4 for various P-modules A even when P = [0,00) x [0,0) and G = R%. We
present a few simple examples below. Let P = [0,00) x [0,00) and G = R? in
the following examples.

Example 5.6. Let A =[0,00) x [0,00). For (z,y) € [0,00] x [0, 00], let
Ay ={(a,b) eR? |a < z,b < y}.

Then the map [0,00] x [0,00] 3 (x,y) = A(z,) € Qa is a homeomorphism.
Moreover, the groupoid 24 x P is isomorphic to the reduction of the transfor-
mation groupoid (—o0,00]? x R? onto the closed subset [0, 0] x [0, 00]. Here
R? acts by translation with the usual convention that co + a = oo if a € R.

Example 5.7. Let A = [0,00) x R. Then Q4 := {A(; ) | z € [0,00]}. The
groupoid 4 x P is isomorphic to the reduction of the transformation groupoid
(—00,00]? x R? onto the closed subset [0, 0] x {co}. Clearly this groupoid is
nonisomorphic to the one in Example 5.6. For the equivalence relation on the
unit space partitions the unit space into two classes in this example whereas
one obtains four equivalence classes for the groupoid in the previous example.

Example 5.8. Let A = ([0, 00) x [0,00)) U ([1,00) X [-1,00)). For (z,y) € A4,
let Agyyy = —A+4(2,y). Fory € [~1,00), let A(,,) = (—00,00) x (—00,y+1].
For z € [0,00), let A(; o) = (—00,2] X (—00,00) and let A ) = R% We
claim that

QA = {A(zy) | ({E,y) € A} U {A(zoo) | YIS [0700)}
U {A(OOW) | Yy e [_la OO)} U {RQ}

Let B € Q4 and (2,y,) € A such that 1_44(,, ,.) — 1 in L>=(R?). This
implies that for f € C.(R) and g € C.(R),

/ F@)90)1 s oy (@2 y) e dy — / F@)9 ()1 5(z,y) do dy
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or in other words

o [ ([T wa)as [T e[ )

5 / F@)gw)15(z,y) do dy.

By passing to a subsequence, if necessary, we can assume that (z,,y,) is
convergent in (—oo, 0] X (—o0, 00].

Case 1: Suppose (z,) — = and (y,) — y with (z,y) € A. Then B =
—A+ (z,y).

Case 2: Suppose (z,) — oo and y, — y with y > —1. Then (1) implies
that B = A(oo,y)-

Case 8: Suppose (z,) — z and y, — oo. Then again (1) implies that
B = (—o0,z] X R.

Case 4: Suppose (z,) — oo and y,, — oo. Then (1) implies that B = R2.

This proves the C inclusion. We leave the inclusion D to the reader. In
fact, let A be the closure of A in (—00, 0] x (=00, 00]. The map 4 3 (z,y) —
Azy € Q4 is a homeomorphism and the groupoid 24 x P is isomorphic to
the reduction of (—o00,00]? x R? onto A. It is however not clear to the author
at present if this groupoid and the groupoid in Example 5.6 are isomorphic
or not.

6. COVARIANT REPRESENTATIONS

In this section, let X be a compact Hausdorff space and assume that P acts
on X on the right injectively. Let Xy := X Int(P). We also assume that the
semi-direct product G := X x P admits a Haar system. Let Y be a dilation
of X, as explained in Section 1, on which the group G acts. For y € Y, let
Qy:={9€G|ygec X} Recall that fory € Y and g € G, 1g,(9) = 1x(y9)
and 100, (9) = 1x,(yg). Also note that for every y € Y, the set @Q,, is closed
and Q,P C Q. Thus by [14, Lem. 4.1], it follows that for every y € Y, the
boundary of @, has measure zero and Int(Q,) = Q.

To state the next lemma, we need to fix some notations. Let a € P and let
(Uy,) be a decreasing sequence of open subsets of G such that (2, U, = {a},
and if U is open and contains a, then U,, C U eventually. Note that for every n,
U, N Pa is nonempty. Hence U, N Int(P)a is nonempty for every n. Choose
fn € Cc(G) such that f, >0, [ fn(9)dg = 1 and supp(f,) C U, N Int(P)a.
For x € X, let

Fo(x) = / fu(g)1x (zg™Y) dg.

Then F,, € C(X). The continuity of the function F,, follows from the fact that
(1g,(g9) dg)zex is a Haar system on X x P. Observe that (F),) is uniformly
bounded.

Lemma 6.1. The sequence F,, converges pointwise to 1x,q.
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Proof. Since for v € X, 1g, = lin(q,) a-e., it follows that F), is given by the
equation

Fy(x) = / fa(9) 15, (g~ Y)

for z € X. Let x € X. From Q,P C Q,, it is easily verifiable that a=! €
Int(Q,) if and only if Int(Q,) Na~!P~! is nonempty. Suppose a~! € Int(Q,),
ie., za~t € Xo.

Let U := {g € G | zg7! € Xp}. Then U is open and contains a. Thus
there exists N such that n > N implies supp(f,) C U eventually. Then for
n > N, we have F,(z) = [ f.(9) dg = 1. Now suppose za~' ¢ Xy, i.e., a™! ¢
Int(Q,). Then Int(Q.)~! N Pa is empty. Thus for g € Pa, zg~! ¢ X,. Since
supp(fn) C Pa, it follows that F,(z) = 0. This proves that (F,) converges
pointwise to 1x,q- O

Lemma 6.2. There exists a sequence (sy,) in Int(P) such that S;Jlrlsn € Int(P)
and (s,) converges to the identity element e.

Proof. Let (Uy) be a countable base (of open sets) at e. We can assume that
U, is decreasing. Now U; N P contains e and is nonempty. Since Int(P) is
dense in P, it follows that Uy NInt(P) is nonempty. Pick s; € Uy NInt(P). Now
suppose that s1, $2, . .., S, are chosen such that s € Int(P)NUg for 1 <k <n
and s,;ilsk € Int(P) for 1 < k < n—1. Since e € s,(Int(P))"* N U,41,
it follows that s, Int(P)~! N U, N P is nonempty. But Int(P) = P. Thus
sp Int(P)~1 N U, 41 N Int(P) is nonempty; let s, 1 be one of its elements.
Then it is clear that the sequence (s,) constructed as above converges to e
and s, 1,5, € Int(P) for every n. O

Consider a sequence (s, ) as in Lemma 6.2 converging to the identity e. Let
a € Int(P) and set t, := s, 'a. Then observe that ¢, 1t,,* € Int(P). Since
a € Int(P), Int(P) is open and (t,) converges to a, we can assume without
loss of generality that ¢, € Int(P) for every n. With this notation, we have
the following lemma.

Lemma 6.3. The sequence (1x,:,) decreases pointwise to 1x,.

Proof. Since t, 1t € Int(P), it follows that Xot, 1 C Xot, for every n.
Since at,' € Int(P), it follows that Xa C Xot, for every n. Thus Xa C
N~ Xotn. Now suppose y € Xot,, for every n. Then yt,;! C X, for every n.
Note that (yt;;}) — ya~!. Since the closure of Xy in Y is X, it follows that
ya~' € X. Hence y € Xa. This proves that Xa = (72, Xotn. O

Let B(X) be the space of bounded Borel measurable functions on X. For
¢ in B(X) and g € G, let Ry(¢) be defined by

d(z.g) ifzge X,

Ry(9)() = {0 ifx.g ¢ X.

Then Ry(¢) € B(X).
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Definition 6.4. Let 7 : C(X) — B(H) be a unital *-representation and V :
P — B(H) be an isometric representation with commuting range projections.
Denote the extension of m to B(X), obtained via the Riesz representation
theory, by 7 itself (see [1]). For g = ab™ !, let W, := V;*V,. The pair (m, V) is
said to be a covariant representation of (X, P) if for ¢ € B(X),

Wy (@)Wy = m(Ry-1(9))-

Remark 6.5. Since G = (Int(P))(Int(P))~1, it follows that (m, V) is a co-
variant representation if and only if V*n(¢)V, = 7(Re(¢)) and Vom(o)V," =
T(Ry-1(¢)) for ¢ € B(X) and a € Int(P). We leave this verification to the
reader.

We fix a few notations that will be useful for the rest of this section.

Notations. Let Y be the dilation of X, as explained in Section 1, on which
G acts. Then G := X x P is a closed subset of X x GG and also of Y x G. For
¢ € C.(Y), we let ¢ € C(X) be the restriction. Define 7y : C.(Y) — B(H)
by my(¢) = (). For ¢ € Co(Y) and g € G, let Ry(¢) € Ce(Y) be given by
Ry(9)(y) = o(y.g) fory € Y.

For ¢ € C.(Y xG) and g € G, let ¢, € C.(Y) be defined by ¥4 (y) = ¥ (v, g).
For x € C.(G) and g € G, let x4, € B(X) be defined by x4(z) = x(z,g) if
(z,9) € G and x4(x) =0if (z,9) ¢ .

Let 7w : C(X) — B(#) be a unital *-representation. For { € H, let du¢ ¢ be
the probability measure on X such that

/ o(x) dpe e(z) = (m(D)E.E) for ¢ € C(X).

The same equality holds for ¢ € B(X).

Proposition 6.6. Let m: C(X) — B(H) be a unital x-representation and let
V : P — B(H) be an isometric representation with commuting range projec-
tions. Then the following are equivalent.

(i) The pair (m,V) is a covariant representation.
(ii) Fora € Int(P) and ¢ € C(X), Vim(p)Vy = m(Ra(¢)) and m(1x,q) = Eq.-

Proof. For a € P, let 0, : X — X be the map sending x to za.
Suppose (7, V) is a covariant representation. Then the covariance relation
implies that for g € G, By := W W = T(1xgnx)-
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Let f € C.(G). Set F(z) = [ f(g9)1x(xg~')dg. Then F € C(X) and
(r(P)E,€) = / F (o) dyie ¢ ()
~ [ #o)xy(w) dg duc (o)

/f /1Xg )dug,g(ﬂf)) dg

~ [ Ho)rxsnx)6 € do

- [10)Eg 0
Thus 7(F) = [ f(9)E,
Let a € Int(P) be given Choose a sequence (fy) as in Lemma 6.1 and let
= [ fu(g)lxgy(x) for x € X. Note that F,, is uniformly bounded. By
Lemma 6. 1 1t follows that F,, converges pointwise to 1x,,. On the other hand,
we have w(F,) = [ fn(g)Eq dg. Since g — Ey is strongly continuous, it is easily
verifiable that [ fulg E dg converges strongly to E,. Hence 7(1x,4a) = Ea-
Clearly by definition V* (¢)Va = m(Rqa(¢)). This proves that (i) implies (ii).
Now assume condition (ii). The equality V*n(¢)V, = 7(R.(¢)) for a € P
and ¢ € C(X) translates to the fact that for a € P and £ € H, the push-forward
measure (0q)«(te,¢) equals py, e v,e. Hence Vin(¢)V, = m(Rq(¢)) for a € P
and ¢ € B(X). Now by Remark 6.5, it is enough to show that Vom(¢)V,F =
T(Ry-1(¢)) for a € Int(P) and ¢ € B(X). Now let a € Int(P) and ¢ € B(X)
be given. Then by assumption (ii), we have V*7(R,-1¢)V, = 7(¢). Hence
Vam(@)VyF = Eqn(Ry-1(4))E,. By the strong continuity of ¢ — E,, by as-
sumption (ii) and Lemma 6.3, it follows that 7(1x,) = E,. Hence

Vam (V) = m(1xaRe-1(¢)) = m(Rg-1(9)). O
Theorem 6.7. Let X be a compact Hausdorff space on which P acts injec-
twely. Let G := X x P. Assume that G has a Haar system. For ¢ € C(X)
and f € Ce(G), let ¢ @ f € Ce(G) be defined by (¢ @ f)(x,9) = d(x)f(g). We
denote 1 ® f by f.

Let (m,V) be a covariant representation of (X, P) on a Hilbert space H.
Then there exists a Tepresentation A C*(g) — B(H) satisfying the following.

(i) For f € C.(G) = [A(g) Wy-1dg. Here A is the modular
function of the group G. }
(ii) For ¢ € C(X) and f € Ce(G), M9 @ f) = n($)A(f).

Proof. Let ¢ € C.(G). We claim that G 3 g — m(¢g)Wy-1 € B(H) is strongly
continuous. Let ® € C.(Y x G) be an extension of ¢. S/lI\lCG (m, V) is covariant,
it follows that E; = m(1xg¢nx). Now observe that W((I)g)ngl = m(pg)Wy-1.
For we have

7(Dg) W,

g1 = W((I/);)ng1 ngl = W((I/);].ngﬂwgfl = 7T(¢9)ngl.
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But g — 6; € C(X) is continuous. Hence the map G 3 g — W((i);) € B(H) is
strongly continuous and consequently G > g — m(¢y)Wy-1 € B(H) is strongly
continuous.

For ¢ € C.(G), let A(¢) € B(H) be
MNo) == | Alg)2m(dg) Wy dg.
Also we have shown that if ® € C.(Y x G) is an extension of ¢ € C,(G), then
N0 = [ Alg) Ea (@)W, dg

For ¢ € C.(G), calculate as follows to find that

= A(¢").
Thus A preserves the adjoint.

Now let ¢, 9 € C.(G) be given and let &, ¥ € C.(Y x G) be extensions of ¢
and 1, respectively. Consider the function on Y x G defined by the equation

®o¥(y,g) = /‘P(y,h)@(y.h,h‘lg)lx(y.h) dh.

A simple application of the dominated convergence theorem together with the
fact that 1x(y.h) = 1x,(y.h) for almost all y implies that ® o ¥ is continuous.
Clearly ® o U is compactly supported and is an extension of ¢ * 1.

Let g € G and £ € ‘H be given. Then

(v ((©0)g)6.€) = [ 00 W(a.g) (o)
:/(/cb(x,h)@(x.h,h*lgnx(xh) dh) dpie ¢ ()
— [([ 2w o)t (@) duee () di
— [ rv (@n)my (Ra(Wsg )y (L1 )6 €) b

- / (my (B)y (R (W p—1,)) Ens£,€) .
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Thus for g € G,

m (@0 0),) = [ 1y (@u)ry (Bu(¥1)Eyes b
We calculate

= /A(gh)*%w(cbg)wgflWY(xI/h)thl dg dh
= /A(gh)*%wY(cbg)W;wY(xph)WgWg_lWh_ldgdh
= /A(gh)*%w(<I>g)7ry(Rg(szh))Wg_1Wh_1dgdh

= /A (gh) " 2my (®4)7y (Ry(V4)) Eg-1 Wiy -1+ dg dh
(by Proposition 3.4)

= [ (] A9 Em (@) (Ry (W, 1) By 2 Wi ) dg
_/(/W(cp e (Ry(Wy25)Byr dg ) ACK) ™ F Wi dik

— [a® (@ o vws
= X% ).

Hence A preserves the multiplication.

For ¢ € B(X), one has ||7(¢)] < ||@||cc Where ||||co is the sup norm on
B(X). Let K be a compact subset of G. Then for ¢ € C.(G) with supp(¢) C
X x K, observe that

M) < /A(g)_%l\ﬂ(%)l\dg

< Alg)"% byl dg

geEK
< (sup A(g)#) ]l so / 1x(g) dg.
geEK

Thus it is clear that the map A : C.(G) — B(H) is continuous when C.(G)
is given the inductive limit topology and B(#) is given the norm topology.
By Renault’s disintegration theorem, one obtains a bonafide representation
A: C*(G) — B(H) extending A : C.(G) — B(H). Conditions (i) and (ii) follow
just from definitions. |

7. THE MAIN THEOREM

Let V : P — B(H) be an isometric representation with commuting range
projections. Let A and € be as in Sections 3-5. Denote the open set Q Int(P)
by Qo. Let m : C(Q) — B(#) be the representation induced by the inclusion
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A C B(H). Denote the extension to B(€2) by m itself. First let us show that
(m, V) is a covariant representation.

Lemma 7.1. The pair (7,V) is a covariant representation.

Proof. By definition, it follows that for a € P, V*n(¢)V, = 7(R.(9)) for
peC(X ) Now fix a € P. Choose a sequence (f,) € C.(G) as in Lemma 6.1.
Set F,, := [ fn(9)Egdg € C(2). Then by the strong continuity of g — Ey,
it is clear that F converges strongly to E,. Now by definition, for A € Q,
we have F,,(A) = [ fn(9)1a(g) dg. By Proposition 5.2, it follows that F,(A) =

J fn(9)1a Ag Y dg for A 6 Q By Lemma 6.1, it follows that F), converges
pointwise to 1g,.. Hence m(1g,a) = E4. The proof follows now from Proposi-
tion 6.6. g

Proposition 7.2. Let H be a Hilbert space and let V : P — B(H) be an
isometric representation with commuting range projections. Let 2 C €, be the
spectrum of the commutative C*-algebra { [ f(g9)Eqdg | f € Ce(G)} described

as in Sections 3-5. Then there exists a x-homomorphism A : C*(2 x P) —
B(H) such that for f € C.(G),

() = / Alg)™H fg)W,y1 dg.

Moreover, the range of A is generated by { [ f(9)Wydg | f € Ce(G)}.
Proof. For f € C.(G), let f € C(Q) be defined by

:/f(g)1Q(Ag)dg:/f(g)lA(g_l)-

By Remark 4.5 (iv) and the fact that Q C €, it follows that {f| feC.(G)}
separates points of 2. Thus by Proposition 2.1, the x-algebra generated by
{f| f € C.(G)} is dense in C*(Q x P). Now the proof follows directly from
Lemma 7.1 and Proposition 6.7. g

Remark 7.3. The unit space 2 of the groupoid Q2 x P in Theorem 7.2 depends
on the chosen isometric representation V. See the examples considered at the
end of Section 5.

Theorem 7.4. Let H be a Hilbert space and let V : P — B(H) be an isometric
representation with commuting range projections. Let

Q,:={AcCG)|P'CcAand P*AC A}

with the Vietoris topology. Consider the right action of P on €, by right multi-
plication. Then there exists a x-homomorphism X : C*(Q,, x P) — B(H) such

that for f € C.(G),
/A g1t dg

Moreover, the range of A is generated by { [ f(9)Wydg | f € Ce(G)}.
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Proof. By Remark 5.3, it follows that Q x P is isomorphic to the restriction
Q. % Plg and 2 is an invariant subset of Q,. Consider the natural map
res : Co(2y @ P) — C.(Q x P) which on C,(€2, x P) is simply the restriction.
Let A : C*(Q x P) — B(H) be the representation as in Proposition 7.2. Now
one completes the proof by setting A := X o res. O

Remark 7.5. Proposition 7.4 says that the C*-algebra of the groupoid 2, x P
can be interpreted as the “universal” C*-algebra which encodes the isometric
representations with commuting range projections. However, the space €, is
quite large to describe explicitly even for the simple example of the quarter
plane [0, 00) x [0,00) C R2.

The following two results are a part of folklore in operator algebras and we
indicate how our results can be applied to derive them.

Example 7.6. Let P := N and G := Z with the discrete topology. Consider
the one-point compactification N, := N U {oco}. The semigroup N acts on
Ny by translation with the convention that co + n = oo for n € N. It is
easy to verify that the map No 2 n — (—oo,n] € Q, is an N-equivariant
homeomorphism. Here (—o0, 00| is just N. The groupoid Ny x N is amenable
and C} ;(No x N) is just the Toeplitz-algebra. Now Theorem 7.4 is just the
well-known Coburn’s theorem.

Example 7.7. Let Ry = [0,00). Let P := R} and G := R with the usual
Euclidean topology and with addition as the group operation. Consider the
one-point compactification [0, 00] := [0, 00) U {oo}. The semigroup [0, o) acts
on R U {oo} by translation with the convention that co +z = oo for x €
[0,00). It is easily verifiable that the map [0,00] > & — (—o00,2] € Q, is an
R -equivariant homeomorphism. The groupoid [0, oc] x R, is amenable and
* 4([0, 0] % [0, 00)) is the usual Wiener—Hopf algebra W([0, c0), R); see [7].

Observe that if V' : Ry — B(H) is an isometric representation, then the
range projections {E; := V;V;* | t > 0} commute. For if ¢t = r + s, then
EE, =V, V,VV*V,V* = E;. Hence if t > r, then E}E, = E;. Now the claim
follows from the fact that R is totally ordered. Thus if V : Ry — B(H) is an
isometric representation, then there exists a representation = : W([0, 00),R) —
B(#) such that

o 0
7r(f~):/O f(t)%*dt+[ f)V_ydt

for f € C.(R).

As an application of our results, we end this article by deriving a ver-
sion of Coburn’s theorem for the semigroup [0,00)™ of R™. Let n > 1 be
an integer. Let G := R™ and P = [0,00)" for the rest of the paper. For
t:=(t1,t2,...,tn),s:= (s1,82,...,8n) € R™, let

tVs:= (tl\/817152\/827...,1571\/871)7
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where = V y denotes the maximum of real numbers z,y. For i =1,2,...,n, let
m; : R™ — R be the ith coordinate projection. For i = 1,2,...,n, let ¢, € R”
be the vector with 1 at the ith coordinate and zero elsewhere. For t,s € R",
we write t < s if s —t € P.
For x = (z1,22,...,2y,) € [0,00]", let
Ay i ={y=(y1,-.-,yn) ER" | y; < x;}.

Let Qp be the closure of {—P + a | a € P} in the space of closed subsets
of R™. We leave it to the reader to verify that [0,00]" > ¢ — A, € Qp is a P-
equivariant homeomorphism. Let G := [0, 00]™ x P be the semi-direct product
groupoid. The groupoid G is isomorphic to the reduction of the transformation
groupoid (—o0,00]™ x R™ onto the closed subset [0,00]”. Here R™ acts on

(—00, 00]™ by translation with the usual convention that co 4z = oo for a real
number. For f € C.(R"), let f € C.(G) be defined by f(z,t) = f(t).

Theorem 7.8. Let V : P — B(H) be an isometric representation with com-
muting range projections. Let By := V,V;* fort € P. Suppose that fort,s € P,
E.E; = Eiys. Then there exists a unique x-homomorphism w : C*(G) — B(H)
such that

m(f) = [ FOW_idt
Rn

for every f € C.(R). Here (Wy)iern stands for the partial isometries defined
as in Section 3 corresponding to the representation V : P — B(H).

Proof. Let A be the commutative C*-algebra generated by { [ f(t)E;dt | f €
C.(R™)} and let Q C Q, be the spectrum of A where F; = W, W. First
observe that E,FE, = E,yyvo for z,y € R". To see this, let z,y € R" and
write z = t; — 51 and y = ty — s9 with t1,%9, 51,52 € P. We can assume that
s1 = 89 and let s := s7. We observe

E.E, =V E, ViV E, Vs
=V Et,vsvt, Vs
= B visvs—s
= Lyvyvo-

First we claim that Q C Qp. Let A € Q be given and denote the character
on A corresponding to A by xa. Then for f € C.(R"),

XA(/f(t)Et dt) = /f(t)lA(t) dt.

For i = 1,2,...,n, let a; := supm;(A). We use here the convention that
if m;(A) is not bounded above, then supm;(A) = oco. Note that o; > 0 for
(0,0,...,0) € A.

We claim that A = A, where a := (a1,a2,...,a,) € [0,00]". Clearly
A C A, by the choice of a. First assume that «; > 0 for every i = 1,2,...,n.
We show that the open “rectangle” [];_,(0,q;) is a subset of A. Let z €
[T, (0, ;) be given and write z := (21, 22,...,%y).

Miinster Journal of Mathematics VoL. 9 (2016), 155-185



C*-ALGEBRAS ASSOCIATED TO TOPOLOGICAL ORE SEMIGROUPS 183

Claim: There exist y1,y2, ..., yn € Int(A) (we write y; := (yi1, Yi2, - - - Yin))
such that y;; > x; and m;(y;) > m;(y;) for j # 1.
Since m(A) = q, it follows that for every 4, there exists a sequence (%) € A

such that m;(x¥) > 0 and increases strlctly toa;. Fori=1,2,...,n, write ¥ as
ok = (ak fz,..., zk ). Let 2F = oF Zj#max{m”,()}ej Since A — PCA
it follows that 2¥ € A for every i and k Set y¥ :=2F — (+,%,...,%). Since

A —TInt(P) C Int(A), it follows that y¥ € Int(A) for every i and k. Observe
that y¥ <y if i # j and yj; — o;. Thus for k large, y¥ > ;. This proves the
claim.

Let y1,y2,...,yn € Int(A), with y; = (yi1,¥i2,- - -, Yin), be such that y; >
y;i for j # ¢ and y; > x;. To show that x € A, it is enough to show that
y:=y1Vy2 V-V, = (Y11,%22, - -, Ynn) € A. For observe that y > = and
A—-PCA

Now we claim that y € A. To obtain a contradiction, suppose that y ¢ A.
Then there exist open subsets U; of R™ such that y; € U; and if ¢; € U;
then t; Vta V--- Vi, ¢ A. We can choose, and will choose, the open sets
U; such that U; C Int(A), m;(t) > 0 for ¢t € U; and m;(s) < m;(t) for (s,t) €
U; x U; whenever j # 4. Note then that if t; € U;, then t1 Via V.-V it, =
(mi(t1), ma(t2), ... m(tn)).

Let f; € C. (R”) be such that supp(f;) C Ui, fi > 0 and [ fi(t)dt = 1.
Denote the operator J fi(t)Eydt € Aby E;. Since U; C Int(A), it follows that

= [ fi(t)1a(t)dt =1. Let E := E1E5 -+ E,. Observe that

or ¥ can be written as
E = /G(xl,xg,...,xn)Em,m,...,mn)dm Qs - di,

where G is given by

G($1,$2, e ,Z‘n)
-/ FE (1) f32(s2) - F2 (sn)dsdsz - d.
R 1><Rn 1>< .XRnfl
Here f" is given by

[ (un,ug, oy un—1) = fi(ur,uo, oo Uim1, Ty Ui 1, - - -, Un—1)-

Note that since supp(f;) C Uj, it follows that G vanishes on A. Hence x4 (E) =
0. But this is a contradiction to the fact that x4a(F;) = land E = E1Es - - - E,,.
This proves the claim that y € A.

Consequently, for the open rectangle it follows that []',(0,a;) C A. Since
A is closed, it follows that [];_,[0,a;] C A. Now the fact that A — P C A
implies that A, = []—,[0,a;) — P C A— P C A. Hence A, = A when a; > 0
for every i.
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Now let A € Q and let a; = supm;(A). Then A’ := A+ (1,1,...,1) € Q.
Note that sup m;(A’) = a; + 1. Thus by what we have proved, it follows that

A + (17 1; ey 1) = A(a1+17a2+1,...7an+1) = Aa + (15 17 ceey 1)

Hence A = A,. This completes the proof that Q@ C Qp.

The groupoid Q x P := {(A4,9) | A € Q, g~' € A} is the restriction of the
groupoid Qp x P onto the closed invariant subset 2. Let res : C*(2p x P)
— C*(2 x P) be the “restriction” map which on C.(Qp x P) is simply the
restriction. Let A : C*(Q2 x P) — B(H) be the *-homomorphism as in Propo-
sition 7.2. Then the composition A o res is the desired map. O

Remark 7.9. Let G :=R" and P := [0, 00)".

(i) When V : P — B(L?(P)) is the Wiener—Hopf representation, the x-
homomorphism of Theorem 7.8 is in fact an isomorphism. This follows
from [7, Thm. 3.7] and the fact that the groupoid [0, c0]™ x [0,00)™ is
amenable.

(ii) Now Theorem 7.8 can be restated as follows: Let V : P — B(L?*(P)) be
the Wiener-Hopf representation and let V' : P — B(H) be an isometric
representation such that V ViV V% = V4, V3, for every t,s € P. Then
there exists a unique *-homomorphism 7 : W(P,G) — Wy (P, G) such
that for f € L'(P),

w(/f(t)tht) :/f(t)XN/tdt.

Here W(P,G) denotes the Wiener-Hopf C*-algebra and Wy (P, G) de-
notes the C*-algebra generated by { [ f(t)Vdt | f € L*(P)}.

We end with the following question: Is it possible to formulate an ana-
log of Coburn’s theorem for an arbitrary topological Ore semigroup? More
precisely, let V' : P — B(L*(P)) be the Wiener—Hopf representation and let
V . P — B(H) be an isometric representation with commuting range pro-
jections. Denote the C*-algebra generated by {[ f(a)Vada | f € L'(P)} by
Wy (P, G). What conditions on V force the existence of a *-homomorphism 7 :
W(P,G) — Wy (P,G) such that n([ f(a)V,da) = [ f(a)V,da for f € L*(P)?
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