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Classifying spaces for proper actions

of mapping class groups

Guido Mislin

(Communicated by Wolfgang Lück)

Abstract. We describe a construction of cocompact models for the classifying spaces EΓs
g,r

,
where Γs

g,r
stands for the mapping class group of an oriented surface of genus g with r

boundary components and s punctures. Our construction uses a cocompact model for EΓ0

g,0

as an input, a case which has been dealt with in [3]. We then proceed by induction on
r and s.

1. Introduction

The mapping class group Γg of a closed, connected and oriented surface Sg

of genus g is defined as the group of connected components of the group of
orientation preserving homeomorphisms of Sg. This group has been the object
of many recent studies. Of particular interest are its finite subgroups; these
are for g > 1 precisely the finite groups which occur as groups of symmetries
of the surface Sg equipped with a complex structure (a Riemann surface). The
interplay of algebra, topology and analysis in the study of Γg make it one of the
most fascinating groups. For a discrete group Γ we denote by EΓ its classifying

space for proper actions; EΓ is a proper Γ-CW-complex characterized by the
property that for every finite subgroup F < Γ, the fixed point subcomplex
EΓF is contractible. The goal of this note is to provide a uniform construction
of cocompact models for the classifying spaces for proper actions for all the
mapping class groups Γs

g,r of oriented surfaces of genus g, with r boundary
components and s punctures. The proof uses an induction on r and s and
relies on [3] where the case of Γg := Γ0

g,0 is presented. For the case of Γs
g,0

with s ≥ 0, cocompact models have also been constructed in a recent note by
Ji and Wolpert [13].

The author would like to thank the referee for helpful suggestions.

These are the notes based on a lecture presented by the author at the Workshop on

Classifying Spaces for Families in Münster, June 21–26, 2004.
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2. The Definition of the Mapping Class Group

2.1. The undecorated case Let Sg denote a closed, connected and oriented
topological surface of genus g. It is well-known that Sg admits a unique smooth
structure; we shall also write Sg for the corresponding smooth oriented mani-
fold. There are four basic ways of viewing the mapping class group Γg of the
surface Sg, one being purely topological, the second more geometric, the third
homotopical and the fourth algebraic, involving the fundamental group of the
surface only. The definitions we have in mind have the following form:

Γg = Homeo+(Sg)/ Homeo0(Sg)(I)

Γg = Diffeo+(Sg)/ Diffeo0(Sg)(II)

Γg = Hoequ+(Sg)(III)

Γg = Out+(π1(Sg, s0))(IV)

We shall first give some background information and comments concerning
these equivalent definitions. Let s0 ∈ Sg denote a base point. The fundamental
group π1(Sg, s0) of Sg has a presentation

〈a1, b1, . . . , ag, bg |
∏

[ai, bi]〉 =: Πg

and thus π1(Sg, s0)ab
∼= H1(Sg; Z) ∼= Z

2g. Since Sg is assumed to be oriented
one has H2(Sg; Z) ∼= Z. A homotopy equivalence f : Sg → Sg is said to be
orientation preserving, if the induced map

H2(f) : H2(Sg; Z) → H2(Sg; Z)

is the identity map. It is useful to notice that in case g > 0 this is equivalent
to the requirement that the induced isomorphism

H1(f) : H1(Sg; Z) → H1(Sg; Z)

preserves the intersection pairing. We shall denote by Hoequ(Sg) the group
of homotopy classes of homotopy equivalences of Sg and by Hoequ+(Sg) its
subgroup consisting of those classes, which are orientation preserving.

Let Homeo(Sg) denote the topological group of homeomorphisms of Sg, with
the compact-open topology. We shall write Homeo+(Sg) for the subgroup of

orientation preserving homeomorphisms, and Homeo0(Sg) for the connected
component of the identity. The mapping class group Γg of the surface Sg is
then defined as the discrete group of connected components

(I) Γg = Homeo+(Sg)/ Homeo0(Sg) = π0(Homeo+(Sg)).

We will consider (I) as our basic definition for Γg and want to compare it
with (II), (III) and (IV). Consider now Sg as a smooth oriented manifold. In
accordance to the notation used above, we write Diffeo+(Sg) for the group
of orientation preserving diffeomorphisms of Sg with the C∞-topology, and

Diffeo0(Sg) for the connected component of the identity. It was proved by

Dehn [4] that Homeo+(Sg)/ Homeo0(Sg) is generated by “Dehn twists”, which
are diffeomorphisms obtained by splitting Sg along a simple closed smooth
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curve, rotating one part by 2π, and gluing the surface back together. It follows
that the natural map

Diffeo+(Sg) → Homeo+(Sg)/ Homeo0(Sg)

is surjective. The kernel is precisely Diffeo0(Sg); namely, if f : Sg → Sg is

a diffeomorphism isotopic to the identity (i.e. f ∈ Homeo0(Sg)), then f is a
fortiori homotopic to the identity, and therefore, according to Earle and Eells
[5], the map f can be connected by a path in Diffeo+(Sg) to the identity map.
We have thus established that

(II) Γg = Diffeo+(Sg)/ Diffeo0(Sg) = π0(Diffeo+(Sg)).

In case g = 0, that is S0 = S2 the 2-sphere, Diffeo+(S2) is connected; the in-
clusion of SO(3) in Diffeo+(S2) is actually a homotopy equivalence by Smale’s
result [20]. Thus Γ0 = {e}. For g > 0 however, the mapping class groups Γg

turn out to be nontrivial. The group Γ1 can be most easily understood using
the definitions (III) and (IV) respectively, which we shall discuss now.

By a result due to Nielsen [19], the natural map Homeo+(Sg) → Hoequ+(Sg)
is surjective, and Baer proved [1] that any homeomorphism which is homotopic
to the identity, is actually isotopic to the identity, showing that the kernel is
precisely Homeo0(Sg), (compare also Mangler [17]). Therefore, we conclude

(III) Γg = Hoequ+(Sg).

Because for g > 0 the surface Sg is an Eilenberg-Mac Lane space K(Πg, 1),
where Πg = π1(Sg, s0), the pointed homotopy set [(Sg, s0), (Sg, s0)]• maps via
the induced map on the fundamental group bijectively onto Hom(Πg, Πg). The
set of free homotopy classes [Sg, Sg] may be identified with the set of orbits of
the usual Πg-action on the pointed homotopy set [(Sg, s0), (Sg, s0)]• and this
action is well-known to correspond to the conjugation action on the fundamen-
tal group Πg. Passing to orbit spaces with respect to the Πg-action, we obtain
therefore a natural bijection [Sg, Sg] ∼= Rep(Πg, Πg), where Rep(Πg , Πg) stands
for the set of conjugacy class of homomorphisms Πg → Πg. Homotopy equiva-
lences correspond under this identification to automorphisms modulo inner au-
tomorphisms of Πg. If we denote by Out(Πg) the group of outer automorphisms
of Πg, we can view this group as a subset of Rep(Πg , Πg), and the map defined
above yields a bijective homomorphism Hoequ(Sg) → Out(Πg) ⊂ Rep(Πg, Πg),
where as earlier, Hoequ(Sg) stands for the group of homotopy classes of ho-
motopy equivalences of Sg. If we write Out+ for the “orientation preserving”
outer automorphisms, that is, the subgroup of Out(Πg) consisting of those el-
ements which when acting on H1(Sg; Z) preserve the intersection pairing, we
infer that Hoequ+(Sg) ∼= Out+(Πg). Note that the formula is also correct in
case g = 0. From (III) we conclude then that

(IV) Γg = Out+(π1(Sg, s0)).

Thus Γ1 = Out+(Z⊕Z) ∼= Sp(2, Z) = SL(2, Z) and Γ0 = {e}. Since the action
of Γg on H1(Sg; Z) preserves the symplectic intersection pairing, one can define
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a natural map Γg → Sp(2g, Z), which is known to be surjective, with torsion-
free kernel (the Torelli group). Therefore, by choosing a torsion-free subgroup
of finite index in Sp(2g, Z), the pre-image in Γg is a torsion-free subgroup of
finite index: Γg is virtually torsion-free; as a matter of fact, Γg is a virtual
duality group, cp. [9].

2.2. Mapping Class Groups with decorations If Ss
g,r denotes an oriented

surface of genus g with r boundary components and s punctures, the associated
mapping class group Γs

g,r is π0(Diffeo+(Ss
g,r; rel)), where the diffeomorphisms

are supposed to be the identity on the boundary of Ss
g,r and fixing the punc-

tures (we treat here the punctures as distinguished points on the surface).
Choosing a base point in Ss

g,r different from the distinguished points, one has
an evaluation map Diffeo+(Ss

g,r; rel) → Ss
g,r, which is a fibration with fiber

Diffeo+(Ss+1
g,r ; rel). The associated long exact homotopy sequence has the form

· · · → π1(Diffeo0(Ss
g,r; rel))

α
−→ π1(S

s
g,r) → Γs+1

g,r → Γs
g,r → 1.

The image of α is known to be a central subgroup. For 2g + r + s > 2 , the
fundamental group π1(S

s
g,r) is a nonabelian surface group or a nonabelian free

group and is therefore centerless. As a result, we have for 2g + r + s > 2 the
following Birman short exact sequence

(B) 1 → π1(S
s
g,r) → Γs+1

g,r → Γs
g,r → 1.

Moreover, by replacing a boundary component by a punctured disc, on has for
s > 0 and 2g + 2r + s > 2 a central extension (Dehn twist sequences)

(D) 1 → Z → Γs−1
g,r+1 → Γs

g,r → 1

with central subgroup Z generated by a Dehn twist. (Relevant information on
these exact sequences can be found in [2, 6, 8, 10, 18]). The group Γs

0,1 can be
identified with the pure braid group on s strands; for r > 0, the groups Γs

g,r

are torsion-free.

We will see that once one has constructed a cocompact EΓg, one can use
these exact sequences to construct a cocompact model for the more general
groups Γs

g,r. For the groups Γs
g,0 with s > 0 and g > 1, there is a construction

of a spine of dimension 4g−4+s in Teichmüller space, admitting a proper and
cocompact action of Γs

g,0, cp. Harer [9]. Harer also shows that for 2g+s+r > 2,
the groups Γs

g,r are virtual duality groups and he shows that for g > 1 the vcd

of Γg is 4g−5, and for g > 0 and r+s > 0, the vcd of Γs
g,r equals 4g+2r+s−4

[9, Thm. 4.1]. This shows that Harer’s spine is of optimal dimension, but Harer
does not prove that the spine is a EΓs

g,0; what is missing is a proof that finite
subgroups of Γs

g,0 have contractible fixed point sets.

Remark 2.3. In a recent preprint, Ji and Wolpert [13] gave a proof that,
in our notation, Γs

g,0 admits for all s ≥ 0 a cocompact classifying space for
proper actions. Their classifying space is defined intrinsically, in terms of
the geometry of Riemann surfaces, whereas ours, obtained via Theorem 3.5,
depends on choosing an equivariant triangulation of Teichmüller space.
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3. The construction of a cocompact EΓg

A G-subspace Y of a G-space X is called a strong G-deformation retract,
if there is a homotopy H : X × I → X such that for (g, x, t) ∈ G × X × I,
H(gx, t) = gH(x, t), and for (y, t) ∈ Y × I, H(y, t) = y, and H(x, 0) = x,
H(x, 1) ∈ Y . Thus, if X = EG and Y ⊂ X is a strong G-deformation retract,
then Y is G-homotopy equivalent to X and therefore Y is a model for EG too.

We first show that Teichmüller space Tg is a model for EΓg, and then we use
a theorem due to Broughton [3] to get a Γg-subspace of Tg which is a strong
Γg-deformation retract and which is a cocompact Γg-space.

The following are some basic facts on Teichmüller spaces. Let SC
g denote a

Riemann surface of genus g ≥ 2. The universal cover of SC
g can be identified

with the upper half plane U , with holomorphic covering projection U → SC
g .

The group Aut(U) of holomorphic automorphisms of U can be identified with
PSL(2, R), acting by linear fractional transformations on U . A discrete sub-
group Π of PSL(2, R) with compact quotient U/Π is called a cocompact Fuch-
sian group. It has a presentation of the form

Π = 〈α1, β1, · · · , αg, βg; γ1, · · · , γt |
∏g

i=1[αi, βi]
∏t

j=1 γj ; γ
n1

1 ; · · · ; γnt

t 〉

with n1, . . . , nt > 0; σ(Π) := (g; n1, . . . , nt) is called the signature of Π. In case
that t = 0, we write Πg for Π so that Πg is isomorphic to π1(Sg). One then
considers the space of representations

R(Π) = {ρ : Π
mono
−→ PSL(2, R) | ρ(Π) discrete in PSL(2, R)},

which we equip with the subspace topology of PSL(2, R)2g+t (for the dis-
cussion of such representation spaces in a more general context, see Weil
[21]). The group PSL(2, R) acts by conjugation on R(Π) and the orbit space
R(Π)/ PSL(2, R) is known to have two homeomorphic components (extended
Teichmüller space). Pick one and call it Teichmüller space T (Π); in case
Π = Πg is the fundamental group of Sg, we write Tg for T (Πg). Note that a
point x ∈ Tg can be represented by ρx ∈ R(Πg), where ρx : Πg → PSL(2, R)
is unique up to conjugation by an element of PSL(2, R). Thus x ∈ Tg corre-
sponds to a Riemann surface SC

g (x) of the form U/ρx(Πg), and the Riemann
surface corresponding to x is unique up to conformal equivalence. Conversely,
given a Riemann surface SC

g , g ≥ 2, by passing to its universal cover U , one
obtains an injective homomorphism ρ : Πg → PSL(2, R), which is unique up
to an orientation preserving inner automorphism of Πg, thus defining a unique
Out+(Πg) = Γg orbit in Tg. The orbit space Tg/Γg = Mg is called the moduli
space of Riemann surfaces of genus g; it follows that its points are in bijective
correspondence with holomorphic isomorphism classes of Riemann surfaces of
genus g.

We now return to the more general Teichmüller space T (Π) of a cocompact
Fuchsian group Π with presentation as above. According to Greenberg [7] the
space T (Π) is a real-analytic manifold and the following holds.
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Proposition 3.1. Let Π be a cocompact Fuchsian group, with signature
σ(Π) = (r; n1, . . . , nt). Then the analytic manifold T (Π) is diffeomorphic to
R

6(r−1)+2t. If Λ is another cocompact Fuchsian group with signature σ(Λ) =
(s; m1, . . . , mu) and ι : Π → Λ is injective, then the induced map ι∗ : T (Λ) →
T (Π) is a real-analytic diffeomorphism onto its image I ⊂ T (Π), and I is a
closed subset diffeomorphic to R

6(s−1)+2u.

The group of outer automorphism Out(Π) of Π acts on R(Π)/ PSL(2, R) in
an obvious way: γ[ρ] = [ρ ◦ γ̃−1] for γ̃ ∈ Aut(Π) representing γ and ρ ∈ R(Π)
representing [ρ]. Assume now that SC

g is a Riemann surface of genus g > 1. The

Uniformization Theorem asserts that SC
g is the quotient of U by a discrete group

of isometries ρ(Πg) < PSL(2, R), with ρ corresponding to a point [ρ] ∈ Tg. The
group AutC(SC

g ) of holomorphic automorphisms of SC
g gives rise to a group of

lifts to PSL(2, R), which by covering space theory is equal to the normalizer
NPSL(2,R)(ρ(Πg)) of ρ(Πg) in PSL(2, R), so that

AutC(SC

g ) ∼= NPSL(2,R)(ρ(Πg))/ρ(Πg).

The natural composite map AutC(SC
g ) → Diffeo+(Sg) → Γg is injective, be-

cause AutC(SC
g ) is known to act faithfully on the space of holomorphic dif-

ferentials of SC
g (the details for this argument are easy, but not relevant for

what follows). Note that AutC(SC
g ) is classically known to be a finite group, of

order bounded by 84(g−1), the Hurwitz bound. The action of Out(Πg) on the
extended Teichmüller space restricts to an action of Γg = Out+(Πg) on Tg. We
can smoothly triangulate Tg so that this action is simplicial, cp. [12]. The sta-
bilizer Fx of a point x ∈ Tg can by our discussion above be identified with the
group of complex automorphisms AutC(U/ρ(Πg)), where the representation ρ
corresponds to x ∈ Tg. It follows that the stabilizers Fx are finite groups. To
prove that Tg is actually an EΓg, it remains to show that for F < Γg the fixed
point space T F

g is contractible. That it is not empty follows from Kerckhoff’s
solution of the Nielsen Realization Problem [15]:

Theorem 3.2. Let g > 1 and F < Γg a finite subgroup. Then there exists a
Riemann surface SC

g = U/ρ(Πg) and a subgroup F C of the group of holomorphic

automorphisms AutC(SC
g ) such that the natural map AutC(SC

g ) → Γg maps F C

isomorphically onto F .

In the situation above, the point x = [ρ] of Tg corresponding to ρ then lies in
T F

g . Moreover, the group of lifts Λ := {φ : U → U} < PSL(2, R) of the maps

SC
g (x) → SC

g (x) in F C, can be identified with a cocompact Fuchsian group,
contained in the normalizer NPSL(2,R)(ρ(Πg)) in PSL(2, R). Thus there is an
exact sequence

1 → Πg → Λ → F → 1,

giving rise to a real-analytic restriction map T (Λ) → T (Πg) = Tg. The fol-
lowing is proved in Harvey’s paper [11, Cor. 3]; Harvey’s proof is worked out
under the assumption that T F

g is nonempty (Kerckhoff’s Theorem [15]), which
was not known at the time.
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Proposition 3.3. Let g ≥ 2 and F a finite subgroup of Γg. Then there is a
cocompact Fuchsian group Λ < PSL(2, R) containing Πg as a normal subgroup
of finite index, with Λ/Πg

∼= F such that the natural inclusion T (Λ) → Tg has
image T F

g . In particular, T F
g is contractible and thus Tg is a model EΓg for

Γg.

Remark 3.4. There are other ways to show that T F
g is contractible. In [13,

Prop. 2.3] this is deduced using properties of the Weil-Petersson metric on Tg

(it is geodesically convex and nonpositively curved so that Tg is a CAT(0) space
[22]). The result can also be proved using “earthquake paths”, in conjunction
with Kerckhoff’s Theorem [15], see [13, Rem. 2.4] for more details.

If the genus g equals one, T1 can be identified with the upper half plane, on
which Γ1 = SL(2, Z) acts by linear fractional transformations. It is well-known
that T1 contains a tree T as a strong Γ1-deformation retract, on which SL(2, Z)
acts cocompactly (the orbit space T/ SL(2, Z) is an interval, corresponding to
the decomposition of SL(2, Z) as Z/4Z∗Z/2Z Z/6Z). This tree T is a cocompact
model for Γ1.

More generally, the following theorem has been proved by Broughton [3,
Thm 2.7]:

Theorem 3.5. For any genus g ≥ 1, Teichmüller space Tg contains a (sim-
plicial) Γg-subspace which is a strong Γg-deformation retract, and which is a
cocompact EΓg.

4. Cocompact models for EΓs
g,r

The following result of Lück [16, Thm 3.2] is very useful for the construction
of cocompact models EG for a group G given by an extension.

Proposition 4.1. Let 1 → H → G → Q → 1 be an exact sequence of groups
and assume that

(1) for every finite subgroup F < Q and every extension 1 → H → Γ →
F → 1 there exists a cocompact model EΓ,

(2) Q admits a cocompact model EQ.

Then G admits a cocompact model EG too.

We want to apply this Proposition to prove our main theorem:

Theorem 4.2. For all g, r, s ≥ 0, the mapping class group Γs
g,r possesses a

cocompact model EΓs
g,r.

For its proof, we will need the following two Lemmas.

Lemma 4.3. Let 1 → Z
n → Γ → F → 1 be an exact sequence of groups with

F finite. Then Γ admits an n-dimensional cocompact EΓ homeomorphic to
R

n, with Γ acting by affine maps.
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Proof. The F -action on Z
n extends, via the standard inclusion ι : Z

n → R
n,

to a representation
φ : F → Aut(Z) → GL(n, R).

Since F is finite, H2(F ; Rn) = 0 so that the induced map

ι∗ : H2(F ; Zn) → H2(F ; Rn)

is trivial. We therefore obtain a commutative diagram of extensions

1 //
Z

n //

ι

��

Γ //

ρ

��

F //

=

��

1

1 // R
n // R

n
⋊ F // F // 1 ,

with ρ an injective homomorphism. The representation φ : F → GL(n, R)
induces a homomorphism Φ : R

n
⋊ F → R

n
⋊ GL(n, R) with finite kernel. It

follows that Φ◦ρ : Γ → R
n

⋊GL(n, R) defines an affine, proper and cocompact
action on R

n, and it follows that for G < Γ, the fixed point set of this action is
empty, if G is infinite, and a nonempty affine subspace, if G is finite, proving
our assertion. �

Lemma 4.4. Let 1 → H → Γ → F → 1 be an exact sequence of groups with
F finite.

(1) If H is finitely generated free, then Γ admits a one-dimensional cocom-
pact EΓ.

(2) If H = π1(Sg) with g > 0, then Γ admits a two-dimensional cocompact
EΓ (for g > 1, one can choose EΓ = U the upper half plane, with Γ
acting by hyperbolic isometries).

Proof. If H is finitely generated and free, then Γ is the fundamental group of a
finite graph of groups, with finite vertex stabilizers, cp. [14]. Thus Γ admits a
one-dimensional cocompact EΓ. In case H = π1(Sg) with g > 0, H is either Z

2

and Γ then admits a two-dimensional cocompact EΓ by the previous lemma,
or H is a nonabelian surface group. Since in that second case the center of
H is trivial, the extension group Γ is uniquely determined up to isomorphism
by the action F → Out(H). In particular, the extension will be split over
the kernel K of the action map F → Out(H). Therefore, Γ contains a finite

normal subgroup K̃ isomorphic to K so that the extension

H → Γ/K̃ → F/K

has a faithful action F/K → OutH . By Kerckhoff’s Theorem [15, Thm. 1],
F/K acts faithfully and isometrically on Sg with respect to some Riemannian
metric with curvature −1 (not necessarily preserving the orientation of Sg).

Thus, the group Λ of lifts to the universal cover U is isomorphic to Γ/K̃ and
acts properly and cocompactly on U (not necessarily preserving the orienta-
tion: it is a discrete subgroup of the group of isometries of U , which contains
PSL(2, R) as a subgroup of index two). Since the action is by hyperbolic
isometries, it follows that U is an EΓ. �
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Proof of Theorem 4.2. We will proceed by induction, using Proposition 4.1 and
Lemma 4.4, in conjunction with the exact sequences (B) and (D) of Section 2.2.
To verify (1) of Proposition 4.1 for our situation, we just need to check that
extensions of the form 1 → H → Γ → F → 1 with F finite and H either a
finitely generated free group or H = π1(Sg) admit a cocompact EΓ. This has
been done in Lemma 4.4. For g ≥ 2 we start our induction with Γ0

g,0 = Γg,
for which the theorem has been proved in Theorem 3.5. The exact sequence
(B) together with Lemma 4.4 then yields the result for Γs

g,0, for all s. Using
the exact sequences (D) and (B), together with Lemma 4.4, permits us then to
pass to Γs

g,r for all (r, s). It remains to deal with the cases of g < 2. The case
of g = 0: it is well-known that Γs

0,0 = {e} for s < 4. We can therefore use (B)
to pass to Γs

0,0, s ≥ 4. Then we can use (D) to pass from Γs
0,0 with s ≥ 3 to

Γs−1
0,1 ; the two groups missed are Γ1

0,1 and Γ0
0,1, which are known to be trivial.

From there on we can pass to all the remaining groups Γs
0,r. The genus 1 case:

we know the result for Γ0
1,0 = Γ1 and Γ1

1,0 is known to be isomorphic to Γ1. We
can thus pass to Γs

1,0 with s > 1 using the exact sequence (B). Finally, we can
apply (D) to get to all the groups Γs

1,r, finishing the proof of the theorem. �
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