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Abstract

Evolutionary algorithms (EAs) have found wide application in Artificial Neural Networks

(ANNs) learning due to their ability to outperform gradient descent methods in terms

of adaptability to the dynamic environment defined by a considered task, resistance to

local minima trapping, faster convergence to optima and simplicity of implementation.

Besides, EAs are more robust, as they do not depend on gradient information, which

makes them applicable to problem domains where this information is unavailable. In

addition, EAs along with weights training can be used to evolve other parameters of

ANNs, i.e., architectures, learning rules, etc.

In spite of advantages, not all types of EAs are efficient in ANNs’ learning. Previous

studies showed that crossover-based EAs, i.e., genetic algorithms (GAs), do not perform

well and often are destructive. This is caused by inability of their primary search operator

(crossover) to deal with the permutation problem faced by evolutionary training in

ANNs. In contrast to GAs, the mutation-based EAs, i.e., evolutionary programming

(EP) and evolution strategies (ES) do not utilize crossover and thus, can reduce the

negative impact of the permutation problem.

This thesis is concerned with learning in ANNs and introduces a new mutation-based

evolutionary algorithm for evolving ANN parameters, referred to as the network-weight-

based evolutionary algorithm (NWEA). The main contribution of this thesis is to involve

other mechanisms of nature in computational evolution. The goal of this research is to

develop a learning strategy which incorporates knowledge of an individual’s position in

the search space, its fitness, and ANN topology in the modification mechanism. The

key idea behind NWEA is to perform behavioral adaptation alongside with structural

adaptation. The involvement of behavioral adaptation provides interconnection between

individuals and the environment, which enables to consider information about individ-

ual’s habitat in the evolution process.

The modification mechanism of NWEA utilizes both genotype and phenotype informa-

tion while evolving individuals. Genotype information is represented by an individual’s

error. Phenotype information is included in the component, called the network weight

(NW), which describes an ANN’s internal structure and depends on a total number of

hidden layers and the average number of hidden neurons. The relationship between NW

and a corresponding ANN topology is defined by the Fermi-Dirac-like function.

In order to evaluate the proposed algorithm as well as to investigate its features, NWEA

was applied to evolve ANNs for several benchmark problems. The experimental studies

showed that NWEA produces ANNs of small sizes and good generalization ability, which

generally outperform ANNs constructed with the existing approaches.
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Chapter 1

Introduction

“Begin at the beginning and go on till you come to the end: then stop.”

Lewis Carroll, ‘ ‘Alice’s Adventures in Wonderland.”

Looking around we see populations of life forms that live in symbiosis with each other.

The biological species of these populations live, reproduce offspring, interact with the

environment and adapt themselves to their habitat. Despite the variety of living organ-

isms (genotypic, phenotypic and behavioral), they all change over generations as a result

of the evolution process, called adaptation, that occurs in nature and aims at producing

individuals better suited to the environment.

According to the theory of evolution, individuals with favorable traits determined by

genotype are more likely to survive and reproduce (“survival of the fittest”) [23]. These

traits define individual’s ability to adapt to the environment, i.e., an individual’s fitness.

Adaptation is a continuous process based on the concept that populations of individuals

change over time as a result of natural selection. Generally, biological adaptation is not

evident in everyday life; however, we can observe its result in adaptive traits that can be

structural and behavioral. While structural adaptations are genetically-based physical

features, behavioral adaptations represent the ability of species to learn. In practice,

behavioral adaptations determine a form of adaptation that occurs in everyday life

and represents a process of an individual’s adjustment to its habitat. In this process,

an individual collects knowledge from the environment and involves it while making

decisions and taking actions.

This dissertation is concerned with evolution and learning in evolutionary artificial neu-

ral networks (EANNs) [16, 92, 153, 155]. The essence of EANNs is the combination of

1
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two artificial intelligence (AI) algorithms, inspired by natural processes, i.e., evolution-

ary algorithms (EAs) [5, 8, 92] and artificial neural networks (ANNs) [122, 123], where

EAs are employed to design and/or train an optimal network for a given task.

EAs are inspired by the principles of biological evolution and work with a population of

individuals, where each individual is a candidate solution for a problem. EAs simulate

mechanisms of natural selection to perform an adaptation process and find an optimal

solution. However, adaptations performed in EAs represent a simplified form of bio-

logical structural adaptations, while behavioral adaptations are not considered at all.

This is mainly caused by the lack of clear distinction between genotype and phenotype.

In nature, phenotype is a result of the interaction between genotype and the environ-

ment. In EAs, the environment is determined by a fitness function, and an EA often

does not make any assumption about underlying fitness landscape. Hence, the evolved

adaptive traits in EAs represent structural adaptations, while lack of interconnection be-

tween genotype and the environment makes it impossible (and unnecessary) to perform

behavioral adaptations.

Evolution in EANNs is another fundamental form of adaptation in addition to learning.

The main advantage of EANNs is their adaptability to the dynamic environment, i.e.,

to the environment as well as changes in the environment. Evolution is accomplished

by an EA in order to adjust different ANN parameters, such as connection weights,

architectures, etc. In contrast to EAs, EANNs have clear distinction between these two

notions: a genetic representation of parameters is genotype, and an actual ANN with a

given topology and a full set of connection weights is phenotype. During the evolution

process, some phenotypic characteristics determine the optimization criteria in regard

to evolving parameters. Hence, the adaptation process becomes more complicated, as

the environment is defined not only by the conditions of a solving task, but also by ANN

parameters (either fixed or evolved). For example, evolution of connection weights is

carried out in the environment of a predefined ANN architecture; that means, a given

ANN topology is another optimization criteria in addition to the fitness function. The

distinction between genotype and phenotype in EANNs gives an opportunity to perform

behavioral adaptation. In other words, it becomes possible to involve knowledge of

the environment defined by the phenotypic characteristics of a network in the evolution

process.

In line with this inspiration, this thesis introduces a novel approach for evolving ANNs,

referred to as the network-weight-based evolutionary algorithm (NWEA) [26, 27] that

involves both genotype and phenotype information in the evolution process. NWEA is

a mutation-based EA, i.e., relies on mutation as a main search operator. The mutation

mechanism of NWEA consists of three components: phenotypic, genotypic and random,
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that modify object parameters. The phenotypic and genotypic components represent

individual-level adaptive parameters responsible for adaptation in NWEA. Phenotype

information is encapsulated in the new component, called the network weight (NW),

which describes an internal ANN topology. Another novelty of NWEA is a type of

genotype information represented in the modification mechanism. Genotype information

is introduced by an individual’s error, which shows the worth of the individual regarding

the solving task. Thus, these two components contain informative knowledge about an

individual’s position in the search space and its environment. Their inclusion in the

mutation approach enables the algorithm to consider the most perspective regions of

the search space in order to obtain solutions of good quality.

1.1 Research Question

The objective of this thesis can be formulated in the following research questions:

• What kind of information should be incorporated in the mutation strategy to adapt

mutation strength to the characteristics (e.g., a position regarding an optimum, a

network structure) of a particular individual?

• What is the benefit of performing behavioral adaptation alongside with structural

adaptation? In other words: how does inclusion of phenotype information affect

evolution of ANNs?

The goal of our research is to develop an evolutionary algorithm for ANNs’ design

and training, that uses both phenotype and genotype information in determining the

mutation step size and biasing evolution towards optima. The major challenge we faced

when constructing NWEA was to:

• Define the generalized equation that describes the dependency between the phe-

notypic component and an ANN architecture.

In order to evaluate the efficiency of the proposed algorithm and the quality of NWEA-

developed ANNs, analytical and experimental studies in this thesis are provided to:

• Study the generalization ability of the evolved ANNs, i.e., ability to find good

solutions on both training and testing sets;

• Establish the algorithm’s ability to develop compact architectures;
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• Estimate the average rate of successfully improved individuals, i.e., the rate of

successful mutations;

• Determine convergence speed, i.e., the average generation at which the optimal

ANN is obtained;

• Investigate the role of non-evolved internal ANN parameters, e.g., the type of

activation function, in evolution of ANNs;

• Explore the role of internal NWEA-parameters, e.g., the type of genotype infor-

mation and distribution of random values, in evolution of ANNs;

• Study the effect of parallelization on the generalization in parallel EANNs.

1.2 Scope of the Thesis

Despite the variety of ANNs and their learning paradigms, the research in this dis-

sertation is limited to examining feed-forward ANNs [92] with the proposed NWEA

algorithm, and is concerned with the supervised learning they maintain. Unsupervised

and reinforcement learning techniques are not considered in this thesis.

Evolution of ANNs with NWEA is performed at following levels: evolution of connection

weights in the environment of fixed architectures and, the simultaneous evolution of

connection weights and architectures. The evolution of connection weights is applied

to the simple task, such as XOR, in order to investigate the basic characteristics of

the proposed learning strategy. Although the experiments in this part are made for a

limited number of predefined ANNs, the generalized equation (4.10) enables applying

NWEA to any ANN topology. Generalization of NWEA-evolved ANNs is studied on the

complex benchmark problems, such as classification and prediction tasks [115], through

the evolution of both connection weights and architectures.

In addition to EANNs, this thesis examines parallel EANNs (PEANNs) [28, 120, 154] for

the purpose of observing the effect of the interconnection between parallel populations

on the quality of developed ANNs.

1.3 Contributions

The main contribution of this dissertation is to develop an EANN learning algorithm

that performs behavioral adaptation alongside with structural adaptation, i.e., involves

both phenotype and genotype information in the evolution process to ensure favorable
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adjustments. Natural process of behavioral adaptation is simulated in EANNs through

individuals’ adjustment to their habitat represented by an ANN topology and conditions

of a solving task. The main objective of our research is to investigate the impact of

including phenotype information in the modification mechanism of NWEA on the quality

of the evolved networks. The key ideas that allow us to achieve this goal are:

• Incorporate informative knowledge about an individual in the adjustment mecha-

nism.

• Perform evolution considering both phenotype and genotype information.

The following points present the main components of our solution:

• NWEA: The proposed solution for EANN learning is a novel algorithm, referred to

as the network-weight-based evolutionary algorithm (NWEA) [26, 27]. NWEA rep-

resents a mutation-based approach, which relies on mutation as a primary repro-

duction operator and does not include other genetic operators (such as crossover,

local search operators, etc.). One distinct feature of NWEA is that in addition to

structural adaptation it performs behavioral adaptation, i.e., considers interaction

between an individual and the environment. In contrast to the existing evolu-

tionary learning algorithms, the modification mechanism of NWEA involves both

genotype and phenotype information to improve individuals at each stage of evolu-

tion. Genotype information is represented by an individual’s error, which estimates

an individual’s position in the search space concerning the optimum. Phenotype

information is incorporated in a value, called the network weight (NW), which

implicitly describes an ANN topology. During the evolution, an ANN architecture

not only represents the optimization parameter, but also determines, alongside

with the fitness function, the environment to which an optimal set of connection

weights has to be found. Thus, NWEA comprises information of an individual

and the environment, and exploits this information in the determination of the

mutation strength.

• Phenotypic component: A critical challenge in NWEA is defining the phenotypic

component, i.e., establishing essential parameters it is based on and determining

a function that describes the dependency of NW values on a particular ANN

topology. We tackled this problem by providing numerous tests with different

NW values to train ANNs with different predefined topologies, and then studied

the relation between a particular ANN structure and a corresponding NW value.

Our extensive analysis showed that the phenotypic component NW depends on the

internal ANN architecture, i.e., on a total number of hidden layers and the average
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number of hidden neurons per each layer, and is distributed by the Fermi-Dirac-

like function. The presented generalized equation allows calculating NW values

for ANNs of any complexity.

• Genotypic component: Another component of NWEA is the genotypic component,

which is fitness-based and describes the worth of an individual. In EANNs, fit-

ness is a value inversely proportional to the network’s output error. The error is

defined by the error function between actual and desired outputs over all train-

ing examples. The relationship between fitness and error is obvious: the higher

the error, the lower the fitness and vice versa. The incorporation of the error in

NWEA enables the algorithm to adjust the mutation strength depending on the

individual’s position in the search space regarding the optimum.

• Implementation and analysis: The experimental studies were provided to examine

NWEA on various real-world problems as well as to indicate the features of the

proposed learning strategy. For this reason several sets of experiments at different

evolutionary levels were carried out. The first set of studies was conducted for the

XOR problem considering the evolution of connection weights in the environment

determined by fixed ANN topologies. The goal of the experiments was to study

the internal characteristics of NWEA, such as the average rate of successful mu-

tations, ability to obtain solutions of the high accuracy, as well as to determine

NWEA’s convergence speed [26, 27, 34] in evolving the optimal network. Our

results were compared with those of classical mutation-based approaches. The

second set of experiments was performed on the prediction and classification prob-

lems of different complexity for the purpose of investigating generalization ability of

NWEA-evolved ANNs [33]. The experiments were conducted for the simultaneous

evolution of connection weights and architectures. Further, we extended studies

by examining the role of initially determined parameters on the performance of

NWEA-evolved ANNs. In particular, the impact of ANN activation function type

[30], as well as benefits of using different distribution functions [31, 32] with respect

to EANNs generalization ability was studied. Finally, we examined generalization

in parallel EANNs (PEANNs) [28, 29]. Two parallelization schemes were applied

to parallelize NWEA: the well-known migration parallelization scheme, which en-

ables interconnections between different populations, and a novel parallelization

scheme, called the migration-strangers [25], which in addition to interconnection

maintains diversity of population by extending search space during the evolution.
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1.4 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 discusses fundamental con-

cepts. In particular, it describes evolutionary algorithms (EAs), artificial neural net-

works (ANNs), the application of EAs to evolve ANNs, i.e., evolutionary artificial neu-

ral networks (EANNs) and parallelization of EANNs, i.e., parallel evolutionary artificial

neural networks (PEANNs).

Chapter 3 presents well-known mutation-based EAs that found wide application in ANN

learning, i.e., classical evolutionary programming (CEP) [45, 48] and fast evolutionary

programming (FEP) [161, 166]. Following that, it discusses two combinations of CEP

and FEP, referred to as the improved fast evolutionary programming (IFEP) [157, 164]

and the mixed fast evolutionary programming (MEP) [164].

Chapter 4 introduces NWEA, a novel learning algorithm for evolving ANN weights and

architectures. The chapter starts with motivation for incorporating phenotype informa-

tion in NWEA, discussing the main idea behind NWEA and information necessary to

manage the mutation strength. The solution is based on the assumption that alongside

with genotype information, phenotype information represents another powerful knowl-

edge that allows an additional form of adaptation during the evolution. Further, we

describe the empirical process of estimating the phenotype component called the net-

work weight (NW) and derive the equation that determines the dependence of the NW

values on ANNs’ internal structures.

Chapter 5 examines the proposed NWEA algorithm from different perspectives. The

experimental part consists of several sets of experiments. The first set of experiments

studies the performance of ANNs evolved in the environment of predefined topologies. In

the second set of tests, evolution of EANNs was provided to solve a number of benchmark

problems and observed under simultaneous adjustment of both connection weights and

architectures. The obtained results of NWEA-evolved ANNs were compared with those

of existing evolutionary and non-evolutionary ANN learning algorithms. Further, we

investigate the impact of different activation functions and distributions of random values

on generalization in NWEA-evolved ANNs. Finally, generalization in PEANNs evolved

with the parallelized NWEA is investigated.

Chapter 6 resumes the conclusions of this dissertation and proposes directions for future

work.





Chapter 2

Fundamental Concepts

“If you don’t know where you are going, you will probably end up somewhere else.”

Lawrence J. Peter

This chapter provides a brief overview of fundamental concepts related to this thesis

research. More specifically, it introduces theoretical background of AI methodologies

necessary to understand this thesis, such as evolutionary algorithms (EAs), artificial

neural networks (ANNs) and a special class of ANNs evolved with EAs and referred to

as evolutionary artificial neural networks (EANNs). In addition to that, this chapter

discusses the effect of parallelization in parallel evolutionary algorithms (PEAs) and

parallel evolutionary artificial neural networks (PEANNs).

The rest of this chapter is organized as follows. Section 2.1 presents general concept and

framework of EAs and their main classes, i.e., genetic algorithms (GAs, Section 2.1.1),

evolution strategies (ES, Section 2.1.2), evolutionary programming (EP, Section 2.1.3)

and genetic programming (GP, Section 2.1.4). Section 2.1.6 describes motivation behind

parallelization of serial EAs and provides an overview of parallelization schemes. Section

2.2 is devoted to ANNs. It presents the fundamental concepts of the theory of ANNs and

discusses issues related to learning in ANNs. Sections 2.3 introduces EANNs, encoding

schemes and denotes types of EAs beneficial in evolution of ANNs. The application of

PEAs to evolve PEANNs is described in Section 2.3.5.

2.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) [5, 8, 92] are metaheuristic search methods, which are

inspired by the principles of natural evolution and simulate the biological processes of

9
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organisms in solving computer-based problems. Two prominent features distinguish

them from other search methodologies: population-based search and, interconnections

and information exchange between individuals in the population.

EAs work with a set of individuals, called the population, where each individual rep-

resents a candidate solution for a given instance. The initial population is generated

at random. Each individual or chromosome contains information about parameters of

a solving problem, which is stored into a sequence of genes. By analogy with the na-

ture, information encoded in a chromosome is called genotype, while the individuals’

representation in the environment is referred to as phenotype. EAs use two schemes for

individuals representation, i.e., binary and real-valued representation. All individuals

are evaluated based on their worth by the fitness function and each of them receives a

value, called fitness. Fitness is a measure, that indicates how well a possible candidate

fits a solving problem and affects the ability of an individual to survive and reproduce.

The search for the optimum is accomplished by the evolutionary process that takes

place in the environment defined by the objective function.1 Evolution is provided by

the iterative application of selection, crossover and mutation operators, which simulate

biological processes of selection, inheritance and variability.

The selection operator chooses individuals for reproduction.2 EAs perform fitness-based

selection, where the probability of an individual to be chosen as a parent depends on its

fitness. The main selection mechanism used by EAs is the fitness proportionate selection

or roulette-wheel selection. This method selects individuals using the “roulette”, whose

wheel contains one sector for each individual and the sector’s size is proportional to the

fitness of an individual. The main reason for utilizing fitness proportionate selection is

to allow the genotype of the best individuals to propagate to the next generations. It

is obvious, that the sectors of individuals with higher fitness are larger that those of

individuals with low fitness. Thus, individuals with higher fitness have higher chances

to be selected for reproduction than those with low fitness. As a result, offspring inherit

the favorable traits of best individuals, while the properties of the worst individuals

disappear from the next generations during the evolution process.

In spite of advantages, the fitness proportionate selection often bounds the entire search

space with the local regions, where the current fittest individuals in the population are

located. This may lead to the convergence to a local optimum. Figure 2.1 demonstrates

1Usually, the objective function is the same as the fitness function.
2It is worth noting, that selection is performed at different stages of evolution, depending on the

type of EAs. For instance, in classical EAs, i.e., genetic algorithms (Section 2.1.1), the fitness-based
selection determines individuals for reproduction. The other types of EAs, i.e., evolution strategies and
evolutionary programming, apply selection after reproduction, while choosing individuals for the next
generation (Sections 2.1.2 and 2.1.3, detailed in Section 3.2).
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a problem’s landscape with one global (G) and two local (L1 and L2) optimal solutions.

Apparently, if the current best individuals are located around the point L1, the algorithm

might trap into the local optimum, because individuals with low fitness have less chances

to be selected and reproduce. In order to increase diversity in the next generations, the

rank and the tournament selection methods have found wide application in EAs. The

rank selection assigns a numerical rank to each individual based on its fitness, i.e., the

individual with the lowest fitness in the population has the lowest rank (1) and the

fittest individual has the highest rank. Individuals are chosen according to their rank

rather than to the absolute differences in the fitness. The tournament selection randomly

selects a group of individuals from the population and compares them. The best out of

the group becomes a parent. Although the rank and tournament selections are different

methods, Goldberg and Deb in [60] mentioned that linear ranking and 2-tournament

associate almost the same probabilities with the individuals in the population.

 

Low 

fitness 

L1 G L2 

High 

fitness 

Figure 2.1: An example of problem’s landscape with one global and two local optima.

At the next stage the selected individuals reproduce offspring. Depending on the type of

EAs, selected individuals undergo crossover or mutation procedures to create new indi-

viduals. The crossover operator recombines genetic material of two parental individuals

to create one or two offspring. Generally, the crossover operator divides the parental

chromosomes into two or more segments, swaps them and thus forms new individuals

(n-point crossover [75]). However, the type of crossover strongly depends on the solving

task. For instance, it is impossible to swap genetic information of parents while solving

the traveling salesman problem (TSP) [90], where swapping segments of parental indi-

viduals may generate offspring with duplicate cities.3 In this case alternative crossover

operators, e.g., greedy crossover [61], are used.

3For TSP, EAs traditionally use the real-valued chromosome representation, where each gene in a
chromosome is the number of a city and each chromosome represents one possible tour.
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In contrast to crossover, which produces offspring by exchanging genetic material of

parental individuals, mutation creates new individuals by changing genotype of a partic-

ular parental chromosome. More specifically, the mutation operator randomly modifies

genes in a chromosome and thus, creates new genetic material to be examined at the

next generation. The performance of the mutation operator depends on the individuals’

representation. For binary representation, it is conducted simply by changing the cur-

rent value of a gene to its opposite. For real-valued representation advanced mutation

techniques, such as Gaussian [45] and Cauchy [161] mutations, are applied.

The processes of selection, crossover and mutation are repeated until the offspring popu-

lation of the same size as the parental one is formed. The creation of the new population

indicates one evolutionary cycle or generation. The evolution process iterates until some

stopping criteria, e.g., a predefined number of generations or computational time limit

are reached. Figure 2.2 outlines a typical cycle of an EA.

 
 

Generate an initial population at random;  

t = 0; // Iteration number 

REPEAT { 

Evaluate fitness of each individual in the population; 

Select individuals for reproduction; 

Modify selected individuals by means of evolutionary 

operators; 

 Create new (offspring) population; 

t = t + 1; 

} 

UNTIL Stopping criteria are satisfied 

 

Figure 2.2: A typical cycle of an evolutionary algorithm.

Despite being simplified models of natural processes, EAs are effective search methods

because they do not make any assumption about the fitness landscape and are able to

explore perspective regions of the search space. However, they do not guarantee the

global optimum finding but instead obtain potentially good solutions. There exist four

main methodologies of EAs: genetic algorithms, evolution strategies, evolutionary pro-

gramming, and genetic programming. Each methodology has numerous modifications,

which employ different genetic operators and parameter settings. These modifications

are problem dependent, as there exists no universal algorithm that can solve all prob-

lems.
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2.1.1 Genetic Algorithms

Genetic algorithms (GAs), developed by John Holland [75, 76], represent the most pop-

ular type of EAs. Similar to the other evolutionary methods, they maintain basic mech-

anisms of nature, i.e., inheritance and variability, and follow the principle “survival of

the fittest”, described by Charles Darwin in his work On the Origin of Species [23].

GAs are distinguished from other classes of EAs by emphasizing genetic evolution and

considering recombination as the primary reproduction operator and mutation as a back-

ground operator [57–59]. More correctly, mutation is used not as a searching operator,

but rather as a mechanism adding a small randomness. Analogously to nature, mutation

in GAs occurs with low probability.4

Traditional GAs use binary stings to represent individuals and apply classical crossover

and mutation operators. However, modern GAs tend to utilize real-valued represen-

tations, since it reduces the length of the genetic string, which is especially important

for solving complex problems with many parameters. In contrast to the other EAs,

GAs apply all genetic operators in the classical order: first, they select individuals for

reproduction, then produce new individuals by applying crossover and finally, modify

offspring by means of the mutation operator. After these steps offspring individuals are

included in the new population. A typical cycle is similar to that shown in Figure 2.2.

Although GAs ensure the finding of appropriate solutions, they are less resistant from

the local optimum trapping, compared to the other types of EAs, particularly when an

optimization problem has a complex landscape. To cope with this shortcoming, multiple

runs of GAs are executed and then the best solution over all runs is accepted as a solving

solution. An alternative method is to parallelize GAs (see Section 2.1.6), and then select

the best individual over all parallel populations.

2.1.2 Evolution Strategies

Evolution strategies (ES), introduced by Ingo Rechenberg [118, 119], belong to a class of

evolutionary algorithms, where mutation is considered as the key search operator. They

traditionally use the real-valued representation scheme and evolve new populations by

iterative application of the selection and mutation operators.

Initially, ES worked with a population of size one, i.e., population of one individual.

The individual was modified by adding a Gaussian random value to each component

of a real-valued vector. Further, offspring was competed with the parent and the best

4 The ratio of mutation is usually not higher than 5%.
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one was selected as a winner to continue the evolution. Later, Hans-Paul Schwefel

[133–135] proposed using populations with more than one individual, as well as utilize

recombination as a secondary operator.

At present, all existing ES methods can be classified on two main types: not elitist and

elitist [7, 14]. To the first group belong (µ, λ)-ES, where µ is the population size and λ

is a number of the produced offspring, λ ≥ µ. This strategy selects µ best individuals

from λ offspring for the next generation. The elitist ES, referred to as (µ + λ)-ES, allow

the best µ individuals from both parental and offspring populations to survive.

2.1.3 Evolutionary Programming

Evolutionary Programming (EP) was developed by Lawrence J. Fogel et al. [51, 53]

as an optimization method for artificial intelligence generation, and later completed by

David B. Fogel [45, 48]. In comparison to GAs, EP puts emphasis on the phenotypic

likeness between parental and offspring individuals rather than focuses on the genotype

exchange between them. Therefore, EP does not differentiate between genotype and

phenotype [47].

Initially, EP represented individuals in form of the universal finite-state machines [51,

53], which changed their state depending on incoming from the environment signals. New

individuals were created by random changes in the state transition table. Nowadays EP

is a method of evolutionary computation, which utilizes different types of representation,

tailored to the problem domain [46–49, 52]. The mutation operator depends on the

representation type and is generally self-adaptive (see Section 3.1). EP for the real-

valued representation, referred to as the classical evolutionary programming (CEP), is

discussed in Section 3.2.

Alike ES, EP considers mutation as the primary reproduction operator. After initial-

ization, all individuals in the population are mutated in order to produce offspring.

New offspring solutions are evaluated and the best individuals are selected from both

parents and offspring by means of the fitness-based selection function. The solutions

with low fitness are eliminated from the population. Such an approach makes EP an

elitist method, because only individuals with high fitness are likely to survive for next

generations. Similar to the classical ES, EP does not perform recombination, as the ad-

vanced mutation strategies are able to produce perturbations similar to recombination

[139, 140].
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2.1.4 Genetic Programming

Genetic Programming (GP), proposed by John Koza [84–87], is a machine learning

method, used to qualify a computer to solve problems autonomously. The goal of GP

is to generate on the basis of the training data a computer program that solves a given

task.

As common with EAs, GP works with the population of individuals, where each individ-

ual represents a possible program for the solving task. The fitness of a chromosome is

evaluated by a program’s ability to perform a given task. Unlike other EAs, GP uses tree

structures for individuals’ representation. The crossover operator generates new solu-

tions by swapping nodes (nodes with whole branch) between two parental ones. Similar

to GAs, mutation is performed with the low probability; it replaces a node in offspring

with a new randomly generated one. After evaluation, best offspring are selected for the

next generation.

2.1.5 Global Convergence and Computational Complexity of EAs

The global convergence of EAs can be described as

lim
n→∞

P{Xn ∈ S∗} = 1

S∗ = {X|X ∈ S, FX ≤ FY ∀Y ∈ S},

where P is the probability, Xn is the solution at time n, FX is the fitness of X, S is the

whole search space, and S* is the set of global optima [154].

Previous studies showed that the global convergence of EAs can be established under

some conditions [24, 38, 125, 126, 142]. As cited by [154], the global convergence depends

on whether an EA is elitist or not. For elitist algorithms, it can be analyzed using

Markov chains [125, 126]. The analysis of non-elitist EAs is more complicated. It

has been shown that non-elitist EAs, e.g., the classical GAs (also called the canonical

GAs) without elitism, “cannot converge to global optima regardless of the objective

function and crossover operators used” [125, 154]. However, non-elitist algorithms may

still converge to the global optima under certain conditions [126].

Although the global convergence is an important issue for EAs, it has less significance in

practice, especially in designing of new EAs. From this point of view, more interesting is

the computational complexity of EAs for a particular problem [111, 154]. Computational

complexity is one of the most important issues in the analysis of algorithms. Unfortu-

nately, there exist few studies devoted to this topic. The theoretical and experimental

studies on the computational complexity of a GA in [70] indicated, that “GA which does
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not specify the class of functions being optimized can make few claims regarding the

efficiency of the genetic algorithm for an arbitrary fitness function”.5 In other words,

it does not make sense to discuss computational complexity of an EA without pointing

out the problem the algorithm is applied for.

2.1.6 Parallelization of EAs: Parallel Evolutionary Algorithms

As stated in Section 2.1, although EAs provide global search, they do not always guar-

antee global optima finding, mainly in complex problems. This issue is mainly caused

by the homogeneity of populations at the latest stages of evolution. In other words, if

all individuals in the population surround the local optimum, EAs face difficulties to

produce offspring located in the region of the global optimum. Less resistent in this case

are GAs; however, the elitist ES and EP also poorly maintain the diversity of individ-

uals. One way to overcome this shortcoming is to execute EAs repetitively, and then

select the best result out of the obtained solutions [20, 141]. Another way to cope with

this problem is to evolve multiple initial populations simultaneously or, parallelize EAs.

The parallelism is the key aspect of the parallel evolutionary algorithms (PEAs) [20].

The idea of evolving many populations at the same time gives a number of benefits. The

main advantage of PEAs is their ability to consider different portions of search space,

which makes the algorithm resistant to premature convergence to the local optimum

and increases the probability of finding the global optimum. Additionally, PEAs enable

to perform interconnections between evolved populations, i.e., exchange of genetic ma-

terial and thus, maintain diversity of individuals in the populations. Finally, PEAs are

advantageous in terms of computational speed, as they often requires less time to obtain

good solutions than serial EAs.

The simplest parallelization method is to start several random populations at the same

time, and consequently, execute multiple copies of the same EA. Each parallel process

works with its own initial population, evolves it independently from the others and

terminates optimization process when certain criteria are reached. The best solution is

selected from the final populations of all concurrent processes. This method is called

the independent parallelization scheme [20, 25, 141].

The independent approach does not perform any interconnection between parallel pop-

ulations and is equal to choosing the best solution after multiple executions of the serial

EA with different initial populations. However, later studies indicated that the intercon-

nection between parallel populations is a decisive factor in increasing search space and

5 In [70], an algorithm is considered to be efficient if it converges in polynomial time.
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thus, probability of the global optimum finding [20, 108, 113, 147]. For this reason al-

ternative parallelization strategies that enable exchange of the genetic material between

concurrent populations have been proposed [20, 25, 108, 113, 141, 147].

In order to evolve parallel ANNs (PEANNs), in this thesis we apply two parallelization

schemes with interconnections between parallel populations, which were shown to be

efficient [25]: the migration strategy [147] and the new technique, referred to as the

migration-strangers strategy [25]. Both schemes are described in detail in Section 5.3.1.

2.2 Artificial Neural Networks

An artificial neural network (ANN), first described by Warren McCulloch and Walter

Pitts [99], is a mathematical model that consists of a set of interconnected processing

elements, called neurons or nodes. ANNs were inspired by biological nervous systems,

which propagate information through many nerve cells connected to each other with

nerve fibres. Analogously to natural nervous systems, neurons in ANNs are connected to

each other into a processing network, where each neuron receives, modifies and transfers

signals. The links between neurons are called connections. Each connection has a

corresponding value, called a connection weight, which is used to modify an incoming

signal. Connection weights play the same role as synapses in biological systems and

determine the strength of outgoing signals. In mathematical terms, an ANN is a directed

graph with N number of neurons and C number of connections that link the neurons.

The outgoing signal of each neuron is calculated by means of the activation function

(also referred to as the transfer function) expressed by the following equation:

yi = fi

 n∑
j=1

xjwij − θi

 , (2.1)

where yi is the output of a neuron i, xj is the j-th input signal to a neuron i, wij

is the connection weight between neurons i and j, θi is an internal threshold value6

of a neuron i, i.e., value, which weighted sum of incoming signals needs to achieve to

activate a neuron. Mathematically, the threshold value shows the position of the highest

increment of the monotony increasing activation function.

The function fi is usually chosen such that it adds nonlinearity in the work of a net-

work, but does not change the result significantly. Most popular are S-shape (sigmoid)

functions, such as logistic, hyperbolic tangent, Heaviside, etc. However, some linear

functions, e.g., piecewise linear function, are also applicable to ANNs with non-gradient

6 Threshold values (or biases) are usually implemented as connection weights with fixed input -1.
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learning methods [30]. Figure 2.3 shows the simplified model of neuron, where x̄ =

(x1, x2, . . . , xn) is a vector of incoming signals, w̄ = (w1, w2, . . . , wn) is a vector of con-

nection weights, and fact is the activation function, which calculates the outgoing signal

yi according to Eq. (2.1).
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Figure 2.3: A model of an artificial neuron.

Neurons in an ANN are located in layers, which are classified into input, hidden and

output. The input layer contains neurons that process input parameters of a solving

problem. Neurons located in the output layer summarize the work of an ANN and output

the results. The number of input and output neurons is determined by the considering

task. The hidden layer contains neurons, which modify and process information from

the input layer towards the output layer. An ANN can contain one or more hidden layers

with various numbers of neurons in them. Hidden layers with hidden neurons build an

ANN’s internal structure, which is usually user-defined. Figure 2.4 shows an example of

an ANN with one hidden layer. The network contains two input, three hidden and one

output neurons.

Input layer Hidden layer Output layer

Output

Input 1

Input 2

Figure 2.4: An ANN with two input neurons, one hidden layer with three neurons in
it, and one output neuron.
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All connections, directed to a particular neuron in an ANN have corresponding connec-

tion weights. The connectivity structure of the ANN, or its topology, can be schematically

presented in form of the connectivity matrix M = (wij)N×N , where rows and columns

are identified by N neurons, and the matrix elements denote the connection weight

values (see Section 2.3.4).

2.2.1 Classification of ANNs

Despite the variety of neural network models, they are generally classified by the type

of neuron interconnections and learning methods [92]. According to their connectivity,

ANNs are divided into the feed-forward and recurrent. An ANN is feed-forward, if it

transfers signals in one direction, i.e., all connections in the network are directed from

input neurons towards output neurons and there is no connection between neurons lo-

cated in the same layer. To this class of ANNs belong single- and multi-layer perceptrons

[122, 123]. An ANN is recurrent, if it allows information propagation in both directions.

That means, recurrent ANNs enable information propagation to the previous layers as

well as connections between neurons located in the same layer. An example for a recur-

rent ANN is the Hopfield network [77]. An alternative definition for feed-forward and

recurrent networks is given in [155]: “An ANN is feed-forward, if there exists a method

which numbers all the nodes in the network such that there is no connection from a node

with a large number to a node with a smaller number. All the connections are from

nodes with small numbers to nodes with larger numbers. An ANN is recurrent if such

a numbering method does not exist.” Figure 2.5 shows examples of the feed-forward

and recurrent ANNs; red colored connections in Figure 2.5(b) are recurrent connections.

The classification of ANNs by learning methods is described in the next section.

2.2.2 Learning in ANNs

The central issue in the theory of ANNs is learning [71], also known as training, which

is accomplished using examples, or the training data. Learning is a process of finding

an optimal set of connection weights according to specific optimality criteria. It is

performed by the iterative adjustment of the connection weights in an ANN so that

a trained network can solve a given task. The essence of a learning algorithm is the

learning rule, which determines how connection weights are changed.

Learning in ANNs is classified into supervised, unsupervised and reinforcement learning.

All learning paradigms aim at optimizing the objective function,7 which characterizes

7The objective function is also referred in literature to as the cost function.
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(a) Feed-forward ANN: connections are directed towards the output neuron.

(b) Recurrent ANN: connections are directed in both directions.

Figure 2.5: Classification of ANNs: feed-forward and recurrent networks.

how well an ANN with a given set of connection weights performs a solving problem.

Supervised learning [127] is provided by the direct comparison between the actual output

of ANN and the expected correct output. Obtained training error is calculated by the

error function.8 Generally, supervised learning is formulated as a minimization of the

error function, such as the mean squared error (MSE) or the root mean squared error

(RMSE) between the expected and the actual outputs over all training examples.

Reinforcement learning [148] represents a special case of supervised learning, where the

exact desired output is unknown. The network’ actual output is evaluated based on the

external information of whether it is correct or incorrect.

In contrast to supervised and reinforcement learning methods, the unsupervised learning

(also referred to as self-organized learning [83]) does not have any information about the

correct output. In this case learning is provided based on the correlations among input

8The error function is a type of the objective function, usually referred to a supervised learning.
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data. The learning algorithm tries to derive likely features in the training examples and

classify input data according to those features.

2.2.3 Overview of Supervised Learning Algorithms

The most popular ANN training algorithm is back-propagation (BP) [73, 127, 149]. It

is a gradient descent method, that aims at minimizing the total MSE between actual

and desired outputs of a network by employing gradient information. BP imposes lim-

itations on a type of the ANN activation function; it requires the activation function

to be differentiable. The BP algorithm works as follows: it calculates MSE and then,

propagates the obtained error backwards in order to calculate weights’ updates adjusted

to a gradient-descent direction, i.e., backwards to gradient. The error calculation and

weights’ update processes are provided iteratively for all training examples.

Although BP has been successfully applied to various problems (as cited in [153, 155]), it

has a number of drawbacks due to its gradient descent nature. Among shortcomings of

BP are slow learning process, tendency to converge to the local minimum, and difficulties

in training large ANNs, i.e., ANNs with large number of layers and neurons.

In order to overcome the drawbacks of gradient descent methods, EAs have been pro-

posed for ANNs’ training, which resulted in the development of a special class of ANNs,

referred to as evolutionary artificial neural networks (EANNs, see Section 2.3). Besides

their ability to perform the global search in complex surface, EAs are more robust, as

they do not depend on gradient information of the error function, which makes them

applicable to the problem domains where this information is unavailable or very costly

to obtain. Unlike gradient descent algorithms, EAs do not need to calculate derivatives

of the error function and thus, can work with non-differentiable or even non-continuous

functions. EAs can be applied to train networks regardless of whether they are feed-

forward, recurrent, etc. Moreover, EAs can be used not only to obtain the optimal set

of connection weights, but also to optimize other ANN parameters, such as topology,

learning rules, etc. The research in the field indicated that learning performed by EAs

can be significantly faster than gradient training [65, 114, 137]. In addition to that,

the evolutionary learning is proven to have better scalability in comparison to the BP

training.

Alongside with evolutionary learning, hybrid learning algorithms that combine EAs and

BP found wide application. The main idea of hybrid approaches is to apply an EA

first for the purpose of finding the most efficient surface in the search space and then

a gradient descent method in order find an optimum within that surface. The studies
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on hybrid learning algorithms indicated high efficiency of hybrid learning in terms of

generalization [9, 81, 91, 143, 153, 155].

2.2.4 Generalization in ANNs

The main goal of learning is generalization, i.e., ability of a network to report correct

results on data that are not used in the training process. These data are called the

testing data. When an ANN shows high accuracy on the training data, but performs

poor on the testing data, it is said that a network is overtrained or overfitted. Thus,

the aim of learning is not to learn the training data, i.e., achieve a minimal error on

the training data, but instead to generalize training examples and discover underlined

trends behind them. In other words, learning should avoid overfitting on a training data

set.

2.3 Evolutionary Artificial Neural Networks

As described above, evolutionary artificial neural networks (EANNs) refer to a class of

ANNs, where evolutionary search procedures, such as EAs, are used to evolve parameters

of ANNs [15, 16, 79, 103, 153, 155, 160]. The key feature that distinguishes EAs from

other learning methodologies is their adaptability to the dynamic environment as well

as to changes in that environment.

Evolution of ANNs with EAs can be performed at three different levels: evolution of con-

nection weights, evolution of ANNs topologies (architectures), and evolution of learning

rules. We review the first two types of evolution; the evolution of learning rules is not

discussed, since it is out of scope of this thesis.

2.3.1 Genotype and Phenotype

This section introduces the central notions of biology, such as genotype and phenotype,

necessary to understand evolution in ANNs. Natural organisms possess genetic infor-

mation stored at the molecular-genetic level in DNA. This information, called genotype,

determines an individual’s characteristics and features, as well as its manifestation in

the environment i.e., phenotype. The distinction between genotype and phenotype is

that only genotype can be inherited, while phenotype is a result of interaction between

genotype and the environment. In analogy to biology, the theory of EANN operates

with the same terminology. In biological organisms the nervous system is a part of

phenotype; similarly, an EANN with a given topology and a set of weights is considered
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as phenotype. Information specified in a chromosome and evolved by means of EAs

represents an EANN’s genotype.

Evolution in EANNs strongly depends on distinctions and relations between genotype

and phenotype, i.e., genotype-to-phenotype mapping. Indeed, the genetic information

located in the chromosomes is modified through the evolution process and inherited from

parents to offspring. At the same time, the phenotype affects the selective reproduction,

as it plays a decisive role in the estimation of the individual’s worth, i.e., in the fitness

evaluation.

2.3.2 Evolution of Connection Weights in EANNs

Evolution of connection weights [107, 109, 110, 155, 156] in ANNs is a learning process

performed by an EA, which aims at obtaining an optimal set of weights so that a

trained ANN can perform a given task. It takes place in the environment determined by

a fixed ANN topology and conditions of a solving problem. The evolutionary approach

to connection weights’ training consists of two major stages. At the first stage, the

form of connection weights’ representation, i.e., binary or real-valued, is decided. At

the second stage, the evolution process is conducted, where the type of search operators

(crossover and mutation) depends on the individuals’ representation. It is worth noting

that different representation schemes and search operators can lead to different training

performance [154, 155].

The evolution process starts with the generation of an initial population of individuals,

where each individual represents a possible set of connection weights for a given ANN

topology. After initialization, each individual is evaluated according to its worth regard-

ing to the solving problem. The role of the fitness function in EANNs plays the error

function, i.e., MSE or RMSE; thus, the lower the error of an individual the higher its

fitness. Following that, typical steps of the classical EA (see Figure 2.2) are performed:

first, individuals are selected for reproduction based on their fitness; then new individ-

uals are formed by means of genetic operators; and finally, new population is created.

The evolution process continues until some termination criteria are reached. A typical

cycle of the evolution of connection weights is as follows:

• Generate a population of size k, where each individual represents a set of n con-

nection weights;

• Evaluate fitness of each individual in the population according to the error between

actual and desired outputs over the training data;

• Select parents for reproduction based on their fitness;
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• Create offspring by applying genetic operators to the parents;

• Form the next generation of k offspring individuals.

In the binary representation scheme, each connection weight is represented by a certain

number of bits, where the number of bits used to encode a weight depends on the

maximal numerical value a connection weight might receive. Each individual (a set

of weights for a given ANN) is encoded by concatenation of all connection weights of

a network, whereby the connection weights to the same hidden/output node are put

together. Considering that hidden nodes in ANNs are in essence feature detectors,

“Separating inputs to the same hidden node far apart in the binary representation

would increase the difficulty of constructing useful feature detectors because they might

be destroyed by crossover operators” [155]. Figure 2.6 (left) demonstrates an example

of an ANN with the predefined topology and its binary representation. Each weight is

represented by three bits, which means that the maximal numerical value of a connection

weight is 7. The ANN has six connection weights; thus, the given ANN is represented

by 18 bits in a chromosome.

The main advantage of the binary representation for connection weights is the possibility

to apply simple genetic operators, such as n-point or uniform crossover and bit-switching

mutation. The weakness of such a representation lies in the chromosome length, which

depends on the number of bits used to represent a connection weight, and thus is defined

by the complexity of an ANN topology. It is obvious that if too many bits represent each

connection weight and an ANN is large, the chromosomes’ length becomes extremely

long. This negatively affects the evolution and makes it inefficient.
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Figure 2.6: ANN encoding: binary (left) and real-valued (right) representations of
ANN connection weights.

In order to overcome drawbacks faced by the binary representation of connection weights,

real-valued representation has been proposed. The individuals with the real-valued

representation are encoded directly, i.e., one real number for each connection; thus each
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individual is represented by a real vector and the number of genes in the chromosome

is equal to the total number of connections between neurons. Figure 2.6 (right) shows

the real-valued encoding of connection weights for the given ANN.

The real-valued representation makes impossible to use traditional crossover and mu-

tation operators, associated with the binary chromosome representation. Instead, the

evolution of individuals is provided by EP and ES, since they work with the populations

of real vectors and are “particularly well-suited for treating continuous optimization”

[155].

2.3.3 Difficulties by Evolutionary Learning

The main problem that appears by evolutionary training is the permutation problem,

also called competing convention problem. It refers to the case when different genotypic

representations encode ANNs of the same functionality. The permutation problem is

caused by many-to-one mapping from the encoded ANN representation to the decoded

actual network, when many genotypes have different order of hidden nodes in the rep-

resentation, i.e., have different chromosomes, but are functionally equivalent. Figure

2.7 illustrates the permutation problem; two chromosomes contain different genotype

information, but represent ANNs of the same functionality.

The permutation problem makes the recombination operator, i.e., crossover, less efficient,

as it produces new individuals by exchanging the blocks of genotype information between

parents. Generally, in the evolution of ANNs any permutation of hidden nodes creates

ANNs of the same functionality with different genotypic representations. In order to

reduce the negative impact of the permutation problem in EANNs, it is beneficial to

evolve ANN by means of mutation-based EAs, i.e., EP and ES, which rely on mutation

and do not utilize crossover.

2.3.4 Evolution of Architectures in EANNs

The weights training described in the previous section assumed that an ANN architecture

remains invariable and fixed during the evolution process. However, as indicated in

[155], “architecture design is crucial in the successful application of ANN’s because the

architecture has significant impact on a network’s information processing capabilities”.

Indeed, if an ANN has a simple topology with few connections it might perform task

poorly due to its limited capabilities, while an ANN with a large structure and too many

connections might overfit noise in the training data. Generally, designing ANNs is an

expert job and depends on his experience, as there is no systematic way to determine
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Figure 2.7: The permutation problem: two ANNs are functionally equal but have
different chromosome representations, since they order hidden neurons differently.

the optimal architecture automatically. Nevertheless, there are some attempts to design

ANN topologies automatically by means of constructive and destructive algorithms [40,

54, 74, 124, 138]. A constructive algorithm starts with minimal topology, i.e., topology

with a minimal number of hidden layers, nodes and connections, and then adds new

hidden layers, nodes and connection if necessary during the training process. In opposite

to constructive algorithms, a destructive algorithm starts with a maximal architecture

and removes unnecessary hidden layers, nodes and connections during training. However,

as indicated in [4], “Such structural hill climbing methods are susceptible to becoming

trapped at structural local optima” and “only investigate restricted topological subsets

rather than the complete class of network architectures”.

An alternative way to design an optimal ANN architecture is to evolve it by EAs, i.e.,

formulate an optimization process as a problem of finding the optimal ANN topology

in the space, where each point represents an architecture. The performance level of all

architectures forms a discrete surface in the space, where evolution process satisfies op-

timality criteria, e.g., the lowest training error, the lowest ANN complexity, etc. [155].

Miller et al. in [105] determined characteristics of such a surface that make applica-

tion of EAs for the optimum searching advantageous over constructive and destructive

algorithms:

• The surface is infinitely large since the number of possible nodes and connections

is unbounded;
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• The surface is non-differentiable since changes in the number of nodes or connec-

tions are discrete and can have a discontinuous effect on EANNs performance;

• The surface is complex and noisy since the mapping from an architecture to its per-

formance is indirect, strongly epistatic, and dependent on the evaluation method

used;

• The surface is deceptive since similar architectures may have quite different per-

formance;

• The surface is multimodal since different architectures may have similar perfor-

mance.

Similar to the evolution of connection weights, the evolution of architectures consists of

two major phases in which the representation scheme and the type of EA that provides

the optimization process must be specified. At the first stage, the key point is to decide

how much information about an ANN architecture should be presented in the chro-

mosome. Depending on the information amount represented in the chromosome, two

approaches to encode topologies are distinguished. One of them is the direct encoding

scheme [1, 105, 128, 150, 152], which specifies all the details about an ANN topology, i.e.,

all nodes and connections, in the chromosome. Another approach, termed the indirect

encoding scheme [63, 64, 68, 69, 82, 106, 145, 146] represents only the most important

characteristics of an ANN structure, such as the number of hidden layers and hidden

neurons in each layer. After deciding the representation scheme and the type of EA,

evolution of architectures is performed as follows:

• Generate a population of size k, where each individual represents a possible ANN

architecture;

• Train each ANN with the decoded architecture by a predefined learning rule. For

each ANN, the initial set of connection weights is generated randomly;

• Evaluate fitness of each individual in the population according to the training

result and other performance criteria, such as the complexity of the network;

• Select parents for reproduction based on their fitness;

• Create offspring by applying genetic operators to the parents;

• Form the next generation of k offspring individuals.

The direct encoding scheme uses the binary representation to specify connections of an

ANN in the connectivity matrix M = (wij)N×N , where N is a number of nodes, wij =
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1 indicates a connection between nodes i and j, and wij = 0 indicates no connection.

The connectivity matrix M has a direct one-to-one mapping to the corresponding ANN

topology. Each chromosome representing an architecture is a binary string obtained by

the concatenation of rows (or columns) of the connectivity matrix. In fact, connections

wij in the matrix M can also be represented by their real-valued connection weights,

which enables evolution of both architectures and connection weights at the same time

[4, 94, 97, 100, 116, 120, 159]. The simultaneous evolution of both ANN architectures

and weights is advantageous in avoiding noisy fitness evaluation. The evolution of archi-

tectures uses phenotype’s fitness, i.e., fitness of a given ANN with a full set of weights, to

evaluate genotype’s fitness, i.e., fitness of an ANN without weights. This makes fitness

evaluation noisy and inaccurate, and can deceive evolution. In contrast to evolution

of architectures, the simultaneous evolution of topologies and weights represents both

architectures and connection weights in the chromosome and therefore, makes no differ-

ence between phenotype’s and genotype’s fitness. The fitness evaluation becomes more

accurate, since such a representation reduces noise in evaluation of individuals. Figure

2.8 shows an example of an ANN and two corresponding connectivity matrices that

encode an architecture and both an architecture and weights.
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Figure 2.8: The connectivity matrices of an ANN architecture (left) and an ANN
architecture and weights (right).

The direct encoding scheme is suitable for representing both feed-forward and recurrent

ANNs, as it can specify constraints on architectures in the connectivity matrix. However,

a connectivity matrix of a feed-forward ANN has non-zero elements only in the upper-

right triangle, while a recurrent ANN has non-zero elements in the whole matrix. These

characteristics lead to the different chromosome representation depending on a type of

an ANN. Obviously, it is possible to reduce the length of a chromosome that represents

a feed-forward ANN, since we need to encode information located only in the upper-

right triangle of a connectivity matrix. For the representation of a recurrent ANN, the
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concatenation of complete rows (or columns) must be done. Figure 2.9 demonstrates

the chromosome representation with the direct encoding scheme for feed-forward and

recurrent ANNs. The ANN given in Figure 2.9 has no recurrent connections; however,

it is assumed, that such connections are permitted for the chromosome that represents

a recurrent ANN and can appear during the evolution.
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Figure 2.9: The direct encoding of an ANN architecture: the chromosome represen-
tation for feed-forward and recurrent ANNs.

Apparently, the length of the chromosome augments as a number of neurons in ANN

increases. In order to reduce the length of the genotypical representation of ANN ar-

chitectures, the indirect encoding scheme has been proposed. In contrast to the direct

encoding scheme, it represents only partially an ANN. The details of each connection in

an ANN are either predefined according to prior knowledge or incorporated in a set of de-

terministic developmental rules [155]. There are two main methods for indirect encoding,

referred to as parametric representation and developmental rule representation.9 The

parametric representation incorporates information about some important parameters

of ANN structure, e.g., the total number of hidden layers, the total number of neurons

in hidden layers, the total number of connections between two layers, etc. in the chro-

mosome [64, 68, 69]. Although this method enables compact genotypic representation

of ANN architectures, EAs can not provide the global search due to limited information

represented in the chromosome and may fail at finding a compact ANN topology with

good generalization ability. The developmental rule representation encodes developmen-

tal rules used to assemble an ANN topology in the chromosome [63, 82, 106, 145, 146].

The developmental rule is determined by a recursive equation [106] or a generation rule

“similar to a production rule in a production system with a left-hand side (LHS) and

9This paragraph provides a brief overview of the indirect encoding methods, since they are out of
scope of this thesis. Detailed information about the indirect encoding methods is presented in [153, 155].
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a right-hand side (RHS)” [155]. Similar to the parametric representation, the develop-

mental rule representation also reduces the length of the chromosome. However, this

representation method has a number of limitations and shortcomings, e.g., might de-

velop large ANN topologies (as the compact genotypic representation does not guarantee

the compact phenotypic representation), has issues with evolving detailed connectivity

patterns among individual nodes, does not evolve architectures and connection weights

at the same time, etc.

2.3.5 Modification of EANNs: Parallel Evolutionary Artificial Neural

Networks

Alongside with EAs, PEAs have found wide application in ANNs evolution due to their

advantages, described in Section 2.1.6, i.e., resistance to premature convergence to the

local optimum and ability to consider different portions of the search space. Recent

work in this field showed that PEAs often outperform EAs in terms of the quality

of the obtained networks, as well as reduce convergence speed [28, 29, 55, 56, 120].

Several tests on different parallel EANNs (PEANNs) indicated their higher accuracy in

comparison to EANNs. In addition, due to the global search PEAs are likely to evolve

more compact ANN architectures with good generalization ability. However, PEAs

require large computational resources; therefore their application is suggested for tasks,

where accuracy of the evolved ANNs is of the highest importance [28, 120].
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Mutation-based Evolutionary

Algorithms

“It is not the strongest of the species that survives, nor the most intelligent that

survives. It is the one that is the most adaptable to change.”

Charles Darwin

Among variety of the learning methodologies used to train ANNs, EAs stand out from

the rest, as they enable not only to find an optimal set of connection weights, but also

to develop an optimal ANN topology during the evolution [153, 155]. Moreover, EAs

often outperform the originally proposed gradient-descent learning approaches in terms

of computational speed, simplicity and the quality of the obtained ANNs. However,

not all types of EA are beneficial in ANNs training. The studies in the field showed

that mutation-based EAs, i.e., EP and ES, are more efficient in ANNs learning than

GAs, which due to their primary search operator (crossover) often face the permutation

problem [153, 155].

The key aspects that EP and ES concentrate on are the self-adaptive methods for chang-

ing the object parameters and the distribution used in mutation. The classical EP and

ES algorithms use the standard normal distribution and similar self-adaptation strategy.

Both algorithms adjust the mutation strength by means of strategy parameters; such

an approach allows not deviating much in the search space from already existing in the

population good solutions. However, trying to be close to the current good solution,

the classical EP (CEP) performs small step sizes, and thus, insignificantly improves

individuals at each stage of evolution, which leads to the slow convergence to optima.

31
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Later works established that the distribution in the mutation strategy is crucial in the

determination of the mutation step size [157]. Yao et al. proposed an alternative muta-

tion approach, referred to as the fast evolutionary programming (FEP) [161, 166], which

adopts the self-adaptation strategy of CEP, but uses the Cauchy distribution instead of

the Gaussian one. The main motivation for applying the Cauchy distribution is that it

allows the mutation strategy to perform long step sizes.

As CEP and FEP are self-adaptive methods, this chapter starts with an overview of

adaptation and self-adaptation in EP and ES [6, 8, 11–14, 101, 140]. Following that,

two classical mutation-based algorithms, i.e., CEP and FEP, applicable to evolve ANNs

are described in Sections 3.2 and 3.3. Additionally, combined techniques based on CEP

and FEP approaches, i.e., improved fast evolutionary programming (IFEP) and mixed

evolutionary programming (MEP) are presented in Sections 3.4.2 and 3.4.1, respectively.

3.1 Adaptation and Self-Adaptation in EP and ES

The idea of self-adaptation is widely used in ES [117, 131] and EP [50, 51, 53] and

rarely used in GA [35–37, 72, 104]. According to the definition, given in [101], “self-

adaptation in its purest meaning is a state-of-the-art method to adjust the setting of

control parameters”,1 where the algorithm manages a set of control parameters itself,

by incorporating them in an individual’s genotype and evolving them alongside with the

object parameters. Self-adaptation aims at biasing the population’s distribution towards

perspective regions of the search space, keeping up the diversity in the population in

order to enable its further evolvability [2, 3, 11, 101].

The principle of self-adaptation was originally introduced by Rechenberg [118] and

Schwefel [132–134] for ES and by Fogel [45] for meta-EP. Concerning ES, Rechenberg

[118, 119] proposed the idea of adapting the mutation strength during the evolutionary

process. He provided analysis in order to study relationship between the rate of suc-

cessful mutations (i.e., offspring chromosomes with better fitness than parental ones)

and the convergence rate, investigating (1+1)-ES on two simple models. As a result,

Rechenberg proposed heuristic for controlling the mutation step size, known as the 1/5-

success rule. It can be formulated as follows: the ratio of successful mutations to all

mutations should be 1/5; if it is greater than 1/5 the variance of the mutation operator

should be increased, otherwise the variance should be decreased [118]. In other words,

the optimal convergence rate can be obtained when the 1/5 of all offspring are superior

to their parents. However, as shown in [18], the 1/5-success rule may perform less than

optimal on many benchmark functions that are non-liner or convex.

1Control parameters are also referred to as strategy parameters.
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In addition to the 1/5-success rule, Rechenberg proposed the idea of explicit self-

adaptation, i.e., embedding the evolution of the strategy parameters with that of the

object parameters. During the optimization process the strategy parameters were ran-

domly changed. Compared to ES using the 1/5-success rule, ES with self-adaptation is

more universally usable technique, as it leads to faster convergence and is applicable to

problems where it is improper to use the 1/5-success rule [101].

Schwefel [132–134] introduced a technique for changing the strategy parameters in ES,

which is nowadays associated with the term self-adaptation. According to this approach,

each individual in the population is mapped with a corresponding strategy parameter,

responsible for the adaptation of the mutation step size. This value corresponds to

the standard deviation σ in the mutation operator used to create a new individual.

The main step in the self-adaptation consists of a mutation of the mutation strategy

parameters themselves. The resulting mutation parameters are then applied in the

variation of the object parameters. More specifically, each time an individual undergoes

mutation, first, the strategy parameter is slightly changed, and then it is applied to

modify the corresponding object parameter. It is assumed, that the strategy parameter

shifts mutation step size towards a favorable value. The mutation is performed by the

following scheme:

σi
′ = σi exp(τ ′N(0, 1) + τNi(0, 1))

xi
′ = xi + σi

′N(0, 1),

where xi and xi
′ are values of the object parameters before and after mutation, re-

spectively, σi and σ′i are values of the strategy parameters before and after mutation,

respectively, N(0, 1) and Ni(0, 1) are normally distributed random values, τ and τ ′ are

the learning rates, τ ∝ 1/
√

2N , τ ′ ∝ 1/
√

2
√
N . A similar self-adaptation technique was

proposed by Fogel for meta-EP [45, 46]:

σi
′ = σi(1 + α ·N(0, 1))

xi
′ = xi + σ′N(0, 1).

Both operators lead to similar results, provided that τ and α are sufficiently small.

Adaptive evolutionary computations can be distinguished by the type of adaptation, i.e.,

how parameters are changed, and by the level of adaptation, i.e., where changes occur

[2, 101].2 Considering the type of adaptation, adaptive evolutionary computations are

divided into two distinct types, i.e., algorithms with absolute and empirical update

2The classification of adaptive evolutionary algorithms is defined as by Angeline [2]. Angeline’s
classification was later broadened in [39].
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rules. Absolute update rules compute a statistic over a number of generations and use

the obtained result to decide when and how to modify the adaptive parameters. A

well-known example of the class of absolute update rules is the 1/5-success rule.

In contrast to the absolute update rules, algorithms with the empirical update rules

control the strategy parameters themselves by allowing the evolution process to deter-

mine their appropriate values. The strategy parameters are embedded into individuals’

genome, i.e., represent a part of genome, and are modified by a separate mutation func-

tion. If the strategy parameter leads to an individual with a sufficiently good fitness,

it is considered as appropriate. Individuals with the appropriate strategy parameters

have usually higher chances to survive than those with badly tunes parameters and,

correspondingly, lower fitness. Examples of this class of algorithms are ES and EP with

Schwefel’s and Fogel’s self-adaptation strategies.

Concerning the representational level the adaptive parameters operate on, adaptive evo-

lutionary computations can be divided into algorithms with population-, individual-

and component-level adaptive parameters [2]. Population-level adaptive parameters dy-

namically tune parameters that are global to the whole population. Examples are the

mutation strength and the covariance matrix adaptation in certain evolution strategies

[66, 67, 112]. Individual-level adaptive methods use separate strategy parameters for

each individual that determine which of an individual’s representational components is

to be modified. For instance, the probability of crossover in [129] is adapted at the level

of individuals. Component-level techniques perform modification in each component

of an individual. Similarly to the individual-level methods, component-level adaptive

methods also associate strategy parameters with each individual in the population, but

instead determine how each representational component of the individual is changed. To

this type of adaptation belongs self-adaptations in ES and EP.

3.2 Classical Evolutionary Programming

The classical evolutionary algorithm based on the idea of adaptive mutation is the clas-

sical evolutionary programming (CEP) [8, 45, 48, 52]. CEP is a modern approach de-

veloped from the Fogel’s standard-EP [44, 51, 53], which is distinguished by the type of

individuals representation and complemented by the self-adaptation strategy. In con-

trast to the Fogel’s EP, which evolves population of finite-state machines to generate

AI (see Section 2.1.3), CEP evolves real-valued n-dimensional vectors and thus, can be

regarded as a population-based variation of the classical generate-and-test algorithm.

The self-adaptation strategy of CEP is similar to that of ES [7, 8, 132, 133].
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A cornerstone of CEP is a self-adaptive mutation based on the Gaussian distribution,

often referred to as Gaussian mutation. Previous studies on CEP with and without

adaptive mutation indicated benefits of self-adaptation in the algorithm’s performance

[6, 8, 45, 48]. The Gaussian mutation operator is applied to all individuals in the

population to produce offspring.

Optimization by CEP is stated as a global minimization problem which can be formalized

as a pair of (S, f), where S ⊆ Rn is a bounded set on Rn and f : S 7→ R is an

n-dimensional real-valued function. The goal is to find a point xmin ∈ S such that

f(xmin) is a global minimum on S:

∀x ∈ S : f(xmin) ≤ f(x),

where f does not need to be continuous but it must be bounded. The evolution with

CEP is implemented as follows:

1. Generate an initial population of µ chromosomes randomly. Each chromosome is

represented by a pair of real-valued vectors (xi, ηi), ∀i ∈ 1, . . . , µ, where xi is a

vector of object parameters, and ηi is vector of standard deviations (often referred

to as vector of strategy parameters).

2. Evaluate the fitness value of each individual (xi, ηi), ∀i ∈ {1,. . . , µ} in the parental

population based on the objective function.

3. Create new individuals by applying the self-adaptive Gaussian mutation to each

parental individual. Each parent (xi, ηi) produces a single offspring (xi
′, ηi

′) by

the following scheme: for j = 1, . . . , n,

ηi
′(j) = ηi(j) exp(τ ′N(0, 1) + τNj(0, 1)) (3.1)

xi
′(j) = xi(j) + ηi

′(j)N(0, 1), (3.2)

where xi(j), xi
′(j), ηi(j), ηi

′(j) denote the j-th component of the vectors xi, xi
′,

ηi and ηi
′, respectively. N(0, 1) is a normally distributed random value with mean

0 and variance 1 and is generated once for every population member. Nj(0, 1) is a

similar random number, but is generated anew for each value of j. The operator-set

parameters τ and τ ′ [46, 48] are commonly set to:

τ ∝
(√

2
√
n

)−1

τ ′ ∝
(√

2n
)−1

.
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The variance vector ηi is a self-adaptive parameter, which is used to control the

mutation step size and adapt it to each mutated individual. More specifically, it

decides how much the new value of the mutated gene must be deviated from the

current value. Such scheme enables significant improvement of individuals with

low fitness, while well contributing individuals are not changed much.

4. Evaluate the fitness of each offspring individual (xi
′, ηi

′), ∀i ∈ {1,. . . , µ}.

5. Provide pairwise comparison over the union of parents (xi, ηi) and offspring (xi
′,

ηi
′), ∀i ∈ {1,. . . , µ}. Each individual of this union is compared with a fixed

number of other individuals, randomly selected from both parental and offspring

populations. For each comparison the individual with the highest fitness is marked

as a “winner”.

6. Form new population by selecting µ individuals out of (xi, ηi) and (xi
′, ηi

′), ∀i
∈ {1,. . . , µ}, that have the most “winners” marks for the next generation. The

creation of new population completes one evolution cycle, called iteration or epoch.

7. Repeat this process until some termination criteria are satisfied; each new cycle

begins from the Step 3.

3.3 Fast Evolutionary Programming

The analysis of CEP on high-dimensional functions indicated slow convergence to op-

timum caused by small step sizes performed by the Gaussian mutation [161, 166]. In

order to investigate the impact of the Cauchy mutation operator on EP, an alternative

mutation approach, referred to as the fast evolutionary programming (FEP), has been

proposed by Yao et al. [161, 163]. The main idea behind FEP is to utilize random val-

ues based on the Cauchy instead of Gaussian distribution in the mutation of the object

parameters. The one-dimensional Cauchy density function is defined as follows:

f(x) =
γ

π (γ2 + x2)
, −∞ < x <∞,

where γ > 0 is a scale parameter. The corresponding distribution function is

F (x) =
1

π
arctan

(
x

γ

)
+

1

2
.

The use of random numbers which follow the Cauchy distribution instead of Gaussian

one is motivated by several advantages. As shown in Figure 3.1, the shape of Cauchy

density function resembles that of the Gaussian one but approaches the axis so slowly
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that an expectation does not exist. As a result, the variance of the Cauchy distribution

is infinite. The analysis provided in [43] indicated the benefit of increasing the variance.

Specifically, the increased variance improves the efficiency of the global search due to

the increased probability of escaping from a local optimum.
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Figure 3.1: Gaussian and Cauchy density functions.

Moreover, Figure 3.1 demonstrates that due to long fat tails, the Cauchy mutation is

more likely to perform long jumps and to produce offspring that is further away from

its parent than Gaussian mutation. Besides, it has higher probability of escaping from a

local optimum or moving away from the plateau [166]. However, the smaller hill around

the center in Figure 3.1 “indicates that Cauchy mutation spends less time in exploiting

the local neighborhood and thus has a weaker fine tuning ability than Gaussian mutation

small to mid-range regions”[157].

The FEP algorithm was developed in such a way to keep the modifications of CEP to a

minimum. The evolution with FEP repeats all steps of CEP as described in the previous

section and adopts the self-adaptation strategy (Eq. 3.1). The object parameters in FEP

are modified the same way as in CEP with the only difference that the mutation operator

in Eq. (3.2) uses the Cauchy random numbers instead of Gaussian ones:

xi
′(j) = xi(j) + ηi

′(j)δj , (3.3)

where δj is a Cauchy random variable with the scale parameter γ = 1, which is generated

anew for each value of j. The vector η in FEP plays the role of the scale parameter γ

not the variance in the Cauchy distribution.
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As stated in [161], there are two reasons for leaving Eq. (3.1) unchanged. Firstly,

this self-adaptation mechanism was constructed for Gaussian and not Cauchy mutation

operator. And secondly, the main goal of FEP was to investigate the impact of Cauchy

random values on the performance of EP.

3.4 Combined Approaches

The following section presents two mutation-based approaches designed by combining

CEP and FEP algorithms. It is assumed that mixing different search biases of Gaussian

and Cauchy mutations at the individual and component levels show their beneficial traits

and thus, increase the algorithms’ functionality.

3.4.1 Improved Fast Evolutionary Programming

The comparative study of CEP and FEP algorithms [161, 163] provided for function

optimization problems showed that FEP performs better in solving multimodal functions

with many local minima, while CEP is superior in solving multimodal functions with

only a few local minima. For other testing functions the results of FEP were comparable

to those of CEP.

In order to achieve higher efficiency of an optimization algorithm, Yao et al. proposed

the modification of FEP, called the improved fast evolutionary programming (IFEP)

[157, 164], which mixes search biases of Gaussian and Cauchy mutations at the individual

level. The main idea of IFEP is to form two offspring chromosomes from the same parent,

applying CEP and FEP mutation operators to the first and second offspring’s creation,

respectively:

xi
′(j) = xi(j) + ηi

′(j)N(0, 1)

xi
′(j) = xi(j) + ηi

′(j)δj .

After comparing their fitness, an individual with the least error is chosen as offspring.

3.4.2 Mixed Evolutionary Programming

As mentioned, the Gaussian and Cauchy mutations are combined in IFEP at the indi-

vidual (chromosome) level. This means that both mutations are applied to all genes of

a mutated individual. An alternative mutation approach, called the mixed evolutionary

programming (MEP) [164], combines Gaussian and Cauchy mutations at the component

(gene) level. That means, some genes of each parental individual are mutated based on
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CEP, while others are modifies by FEP. Given that the probability of Gaussian mutation

is PG and the probability of Cauchy mutation is PC = 1 – PG, each offspring is created

by the following equation:

xi
′(j) =

{
xi(j) + ηi

′(j)N(0, 1), with PG

xi(j) + ηi
′(j)δj , with PC

,

where δj is a Cauchy random variable with the scale parameter γ = 1 and N(0, 1) is a

normally distributed random value with mean 0 and standard deviation 1. Both γ and

N(0, 1) are generated anew for each value of j. The values PG and PC are suggested to

be set to 0.75 and 0.25, respectively [164].

3.5 Conclusions

This chapter discussed two mutation-based evolutionary methodologies widely used to

evolve EANNs. Both CEP and FEP employ the classical component-level self-adaptation

mechanism [132, 133] and are differentiated only by a type of distribution used to gen-

erate random values, i.e., CEP is based on the Gaussian distribution, while FEP relies

on Cauchy random values.

The main variation operator in CEP and FEP is mutation, whose primary searching

mechanism is self-adaptation. Self-adaptation guides optimization towards the most

perspective regions of the search space by adjusting mutation strength during evolution.

Nevertheless, it is hard to underestimate the role of distribution. As shown in [166], the

distribution type determines the step size performed by an algorithm. The analysis in

[161, 166] showed, that CEP is characterized by small jumps, while FEP performs long

step sizes.

Concerning the evolution in ANNs, CEP and FEP evolve population of real-valued

vectors, where each vector represents ANN parameters, i.e., either connection weights

for a given topology or both connection weights and an ANN architecture. All parental

individuals undergo mutation and produce offspring; then, the best individuals from

both parental an offspring population form next generation.

CEP and FEP modify parental individuals by involving basically genotype information,

and only partially phenotype information. Besides the object parameters (connection

weights) that can be considered as both genotype and phenotype information, Eq. 3.1

and 3.3 utilize a total number of the evolving parameters in the components τ and τ ′,

i.e., information of ANN connectivity, which can be regarded as phenotype information.

Detailed information about an ANN structure, such as a number of hidden layers and
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hidden nodes, is not represented in a modification mechanism. This is explained by

the fact that CEP and FEP as EAs methods do not distinguish between genotype and

phenotype. Moreover, CEP and FEP are developed as independent search algorithms

rather than techniques for ANNs construction and learning.



Chapter 4

Including Phenotype Information

in Mutation

“Nam et Ipsa Scientia Potestas Est.” (“Knowledge is power.”)

Sir Francis Bacon

The objective of this dissertation is to explore alternative mutation mechanisms for ANN

design and training, which increase adaptability in the adjustment approach and thus,

enable a more efficient improvement of object parameters during evolution. The research

in this field was resulted in the development of a novel ANN learning strategy called

the network weight-based evolutionary algorithm (NWEA). Similar to CEP and FEP,

NWEA considers mutation as a primary search operator and does not utilize crossover

at all.

The key idea behind NWEA is to involve additional mechanisms of natural evolution in

computational evolution in order to improve adaptability of individuals. The goal is to

incorporate informative knowledge of an individual and its environment in the mutation

mechanism. The question that arises here is: what kind of information is important and

should be employed to control the mutation step size?

The central object of evolution is an individual’s genotype, which determines its char-

acteristics and manifestation in the environment. However, the information encoded

in a chromosome does not show an individual’s worth regarding the solving problem.

The worth of an individual is estimated by its fitness, which is inversely proportional to

the output error. Obviously, the error represents informative knowledge as it shows the

individual’s position in the search space with respect to the optimum (the higher the

41
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error, the farther the individual is located from the optimum and vice versa, the lower

the error the closer is the individual’s position to the optimum).

The goal of evolution in EANNs is to minimize an error of an individual. This pro-

cess takes place in the environment determined by the fitness function as well as some

phenotypic characteristics, e.g., an ANN topology. In other words, an ANN topology

is another optimization criterion alongside with the conditions of a solving task. Let

us examine the learning process in detail. Learning in EANNs is introduced by the

evolution of connection weights or by the evolution of both connection weights and ar-

chitectures. In case of evolution of connection weights, evolution aims at finding the

optimal set of weights for a predefined architecture. Hence, a topology represents not

only phenotype information, but also a criterion that bounds the search space. The

evolution of both connection weights and architectures evolves architectures together

with the connection weights. In this case, an ANN topology is an optimization parame-

ter that can be modified; however, the mutation of architectures is performed when the

mutation of connection weights of a current topology fails at producing an offspring with

the higher fitness. That means, an ANN topology is an implicit optimization criterion

and determines the environment.

It is clear that the learning algorithm based on genotype information performs structural

adaptations, as it evolves “physical” features of individuals, such as connection weights

and architectures. We have assumed that an efficient improvement of individuals may

depend not only on genotype, but also on phenotype information. The incorporation of

phenotype information allows another form of adaptation, i.e., behavioral adaptation,

which enables adjustment of individuals to their habitat. The motivation of includ-

ing phenotype information is straightforward and has its origin in nature: according

to the theory of evolution, individuals with favorable traits are likely to survive and

reproduce, and the fitness of individuals is determined by their ability to adapt to the

environment. Abstracting from nature, where species have different abilities to learn

and adapt to the habitat, we introduce the mutation approach that defines the same

behavioral adaptations for all individuals in the population. The adaptation mechanism

of NWEA is controlled by two components that represent genotype and phenotype infor-

mation: the error that shows the worth and position of the individual in the search space

(genotype information), and the component, referred to as the network weight, which

involves knowledge of the individual’s habitat represented by information about its ANN

topology (phenotype information). The NW component represents an ANN’s internal

structure, i.e., contains information about the number of hidden layers and neurons lo-

cated in them. Thus, the adaptation in NWEA is carried out at the individual’s level,

as both the error and the ANN architecture describe a particular individual. In addition
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to genotype and phenotype information, NWEA incorporates random values based on

the uniform distribution. Figure 4.1 illustrates information represented in NWEA.

PHENOTYPE 
INFORMATION

GENOTYPE 
INFORMATION

RANDOM 
VALUES

NWEA STRATEGY

Figure 4.1: Information represented in NWEA.

The modification of individuals with NWEA is performed according to the following

equation:

xi
′(j) = xi(j)

(
1 +N i

W (l, n̄) ·N i
E ·N

DU
Rand

)
, (4.1)

where xi(j) is a mutated gene (connection weight) of an individual xi, N
i
W (l, n̄) is a NW

value, that describes an internal ANN structure of an individual xi, N
i
E is an error of

an individual xi, and NDU
Rand is a uniformly distributed random value, which is generated

anew for each mutated gene.

The structure of gene modification in the chromosome expressed by the Eq. (4.1) differs

from that of CEP (see Eq. (3.2)) in terms of the main operation performed over the

previous value of the connection weight: while CEP adds the step size to the mutated

gene, NWEA multiplies it with the previous value of the connection weight.

By controlling the mutation step size according to information derived from genotype

and phenotype, NWEA enables adaptation of mutation strength to the characteristics

of individuals and carries out suitable adjustments. This might increase the average

percentage of successful mutations and accelerate the evolution process, and also improve

the quality of the obtained solutions. Furthermore, NWEA does not contain a priori

knowledge of ANN topology, i.e., the number of input and output neurons, which makes

the algorithm widely applicable.

4.1 Genotype Information in NWEA

The optimization with EAs assumes periodical increment of the average fitness of a

population in each new generation. This is achieved by searching the effective regions

in the search space by means of systematic selection of the best individuals from both
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parental and offspring individuals. In evolution of EANNs, the worth of each potential

solution is estimated by its error between the actual and the desired outputs. Thus, the

error is a measure that explicitly describes how well or bad the genetic material stored

in a chromosome is.

Unlike the vector of strategy parameters in CEP, which controls mutation strength by

standard deviations corresponding to the step sizes of a zero mean multivariate Gaus-

sian random variable, NWEA uses the error of a particular individual in determining

mutation step size. In contrast to CEP and FEP, which modify object parameters by

applying the strategy parameter corresponding to a particular gene of each individual,

NWEA improves genes by considering a position of a particular individual in the search

space.

Obviously, the mutation step size is proportional to the individual’s error, i.e., NWEA

performs long jumps for individuals placed far from the optimum and small step sizes for

those in the optimum’s neighborhood. Thus, NWEA regulates the mutation strength

according to the location of an individual in the search space rather than relies on the

length of jumps defined by the distribution a mutation approach is based on.

4.2 Deriving Phenotype Information

The innovation of the genotypic component N i
E is the idea of using the error of an

individual in the mutation mechanism to determine the mutation strength (the existing

approaches consider the error only to determine the worth of an individual). In contrast

to the genotypic component, the phenotypic component N i
W (l, n̄) is entirely new and

thus, its distribution is undefined. In order to investigate the dependency of NW values

on ANN architectures, we provided empirical and analytical studies. At the empirical

stage, we derived the NW (l, n̄) values for a number of predefined ANN architectures.

Following that, at the analytical stage, we explored the distribution of NW values and

obtained the generalized equation that describes the dependency of the NW component

on the internal structure of any ANN topology.

4.2.1 Empirical Study

The key hypothesis of our approach is that each ANN topology is associated with a value,

referred to as the network weight, which characterizes its properties. The properties of a

topology are determined by its internal structure, i.e., hidden layers and hidden neurons,

as the number of input and output neurons is defined by a solving task. Assuming that
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each ANN has a particular network weight, our goal at this stage was to find the NW

values in the trial-and-error way, that generally improve the evolution process and quality

of the obtained solutions.

The evolution process was observed in the environment determined by a number of ANNs

with predefined fixed topologies. We examined ANN architectures with 1 to 5 hidden

layers and 2 to 6 hidden neurons in each layer, and the minimal allowable number of

hidden neurons in each layer was 2. The values in range [0.01..100] were assigned to the

component NW in Eq. (4.1) and remained unchanged during the optimization process.

In order to reduce stochastic nature of random initial populations, a set of 50 different

initial populations of size 100 were considered for each of the studied architectures.

That means, each value in range [0.01..100] was used in NWEA and tested on 50 initial

populations. The worth of individuals was estimated by MSE between the actual and

the desired outputs over all testing examples.

The NWEA algorithm with different values ofNW was applied to train ANNs with regard

to constructing meta-models [17, 80, 88, 167] for function approximation. Eight global

optimization functions were used as test problems [8, 44, 135, 144]: high-dimensional

unimodal f1, f2 and multimodal f3, f4 functions (dimension 30); and low-dimensional

functions f5 (dimension 4), f6, f7 and f8 (dimension 2) with only a few local minima.

The functions are listed in Table 4.1. The reason for considering eight functions of

different complexity (the most difficult are multimodal functions where the number of

local minima increases exponentially with the problem dimension) was to obtain the

generalized NW values which increase the average improvement and do not contain any

a priori information about a solving problem. Besides, if a number of test problems is

small, it is difficult to make a generalized conclusion.

Function n S fmin
f1(x)=

∑n
i=1 x

2
i 30 [−100, 100]n 0

f2(x)=
∑n
i=1 |xi|+

∏n
i=1 |xi| 30 [−10, 10]n 0

f3(x)=
∑n
i=1

[
x2i − 10 cos (2πxi) + 10

]
30 [−5.12, 5.12]n 0

f4(x)=−20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos 2πxi

)
+ 30 [−32, 32]n 0

+20 + e

f5(x)=
∑11
i=1

[
ai −

x1(b2i+bix2)
b2i+bix3+x4

]2
4 [−5, 5]n 0.0003075

f6(x)=4x21 − 2.1x41 + 1
3x

6
1 + x1x2 − 4x22 + 4x42 2 [−5, 5]n -1.0316285

f7(x)=
(
x2 − 5.1

4π2x
2
1 + 5

πx1 − 6
)2

+ 10
(
1− 1

8π

)
cosx1 + 10 2 [-5, 10]×[0, 15] 0.398

f8(x)=[1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2+ 2 [−2, 2]n 3
+3x22)]× [30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2−
−36x1x2 + 27x32)]

Table 4.1: Test functions used to obtain the NW-values. n is the dimension of the
function, fmin is the minimum value of the function, and S ⊆ Rn.
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While constructing meta-models, off-line learning was used [39, 151], i.e., ANNs were

trained on data generated before optimization. The data sets consisted of 1000 data

points for high-dimensional functions and 500 points for low-dimensional functions were

divided into two subsets: a half of data was used as the training data; the remaining part

was used as the validation data. For each NW value of a particular ANN architecture,

the best NWEA-evolved ANN over 50 runs, i.e., the ANN with the smallest error on the

validation set, was selected as a meta-model.

The constructed meta-models supported FEP in finding optima for the test functions.

The evolved ANNs were used together with the original function in the fitness evaluation

according to the generation-based evolution control [151]. Specifically, for a given num-

ber of consecutive generations c, called a “cycle”, offspring individuals of g generations,

g < c, are evaluated by the original fitness function, and individuals of the remaining

c − g generations are evaluated by the meta-model. For the optimization with FEP,

we used c = 20, g = 10, i.e., the original objective function and the meta-model were

applied periodically for 10 generations each. The initial setup for FEP was similar to

that described in [161]. For each test function 30 runs of FEP were performed.

The experiments at the empirical stage included preliminary and primary studies, which

are differentiated by the complexity of the examined ANN topologies. In the preliminary

step, simple ANN topologies with varying number of hidden layers and the same number

of neurons in each hidden layer were examined. For a given number of hidden layers,

the total number of ANNs tested at the preliminary stage was 5; respectively, the total

number of the studied topologies was 25. In the primary step, tests were carried out for

complex ANN topologies with varying number of hidden layers and varying number of

neurons in them. Obviously, primary studies are the extension of preliminary analysis,

since ANN architectures considered in the former case were also examined in the latter

analysis. This gave an opportunity to verify results on the simple architectures from the

preliminary step with those obtained in the primary step. For a given number of hidden

layers, the total number of ANN topologies Q̂(l, nmax) tested in the primary stage was:

Q̂(l, nmax) = (nmax − 1)l,

where nmax is the maximal possible number of neurons in each hidden layer, and l

is a given number of hidden layers. For instance, an ANN with 3 hidden layers was

represented with (6 − 1)3 = 125 different topologies in the primary step, while in the

preliminary analysis the number of examined topologies was 5. The total number of ANN

architectures studied in the primary step was
∑5

l=1 Q̂(l, nmax) =
∑5

l=1(nmax − 1)l =

3905.
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4.2.1.1 Results

As a result of the empirical analysis, we selected the best NW values which directed the

learning process optimally in terms of convergence speed and the quality of the obtained

ANNs. The convergence speed was measured by the average number of generations

needed to train ANNs, and the quality of evolved ANNs was estimated by the approx-

imation accuracy in the testing phase (i.e., while calculating the fitness of individuals

in FEP). The number of selected values was equal to the total number of studied ANN

topologies, i.e., 3905.

The obtained results maintained the hypothesis of phenotypic information influence on

the evolution process. For a given ANN topology, NWEA with the NW values within

very small range (minimal ±0.02, maximal ±0.08) obtained the best generalization re-

sults for all test functions over 50 runs. For those architectures considered in both

preliminary and primary steps (simple topologies) the maximal difference between NW

values in the preliminary and primary stages was ±0.04. Thus, the results empirically

proved that for a given ANN architecture, there exists a corresponding to it the NW value

that depends on the architecture’s internal properties, i.e., the number of hidden layers

and the number of neurons located in them. This value is not related with genotype

information nor with a priori knowledge of a solving task.

An interesting observation was made from the results. The best NW values for ANNs

with the same number of hidden layers and the same total number of hidden neurons

were in the same range and had insignificant distinctions. For example, for ANNs

with the hidden structures 2-3 and 3-2, i.e., ANNs with 2 hidden layers and 5 total

hidden neurons, the best NW values were 4.856 and 4.862, respectively. This led to an

assumption that for the fixed number of hidden layers it is not the number of neurons

located in each hidden layer, but instead the total (or average) number of hidden neurons

that characterizes the phenotypic component. This assumption was verified in the next

step.

4.2.2 Analytical Study

The ultimate goal of the analytical study was to investigate the dependency of the

obtained NW values on the ANN architectures and deduce the corresponding function.

The main challenge here was to define the approximation function which is close to

the function of NW values. The key point of our approximation is that we consider

ANNs as physical particles in statistical mechanics [62]. Assuming that ANN-particles

are identical, we studied a set of ANN architectures as a system of particles in quantum

statistics.



Chapter 4. Network Weight-based Evolutionary Algorithm 48

Quantum statistics is a branch of statistical mechanics that describes the behavior of

n-particle quantum systems, i.e., systems of identical (indistinguishable) particles of a

particular type that follow the rules of quantum mechanics. The state of an n-particle

system is determined by a set of quantum numbers.

Let us consider an ANN topology as a particle and a set of ANN-particles as a system of

m1 identical particles that have negligible mutual interactions. This allows a system to

be described in terms of single-particle energy states. A state of a system is determined

by a set of quantum numbers (l, n1, n2, . . . , nl, 0, . . . , 0), where l is the number of

hidden layers, ni is the number of neurons in i-th hidden layer, i = 1, . . . , l, and 0 defines

the empty hidden layers, i.e., hypothetical hidden layers with 0 neurons. Assume εk is

the energy of a single-particle state k, which corresponds to the functionality of an ANN

with a given quantum numbers, and mk is the number of particles in this state (the

occupancy number). Hence, the state of a system is defined by specifying occupancy

numbers mk of different quantum states. In other words, the statistical distribution of

particles over quantum states describes the many-particle system.

In statistical mechanics, the statistical distribution of particles over single-particle en-

ergy states is described either by Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein

statistics, depending on the type of particles. Maxwell-Boltzmann statistics describes

the statistical distribution of particles in classical mechanics (where particles are consid-

ered distinguishable) and assumes that the average occupancy numbers are small (�1).

Fermi-Dirac and Bose-Einstein statistics are quantum statistics, which determine the

statistical distribution of fermions and bosons, respectively. However, both Fermi-Dirac

and Bose-Einstein statistics approach Maxwell-Boltzmann statistics at high tempera-

tures or low concentrations.

In our case, to each ANN with the given quantum numbers corresponds one quantum

state, i.e., one schematic ANN topology. Hence, a system of ANN-particles is similar

to a system of fermions which obey the Pauli exclusion principle, that is, no two iden-

tical fermions may occupy the same quantum state simultaneously. Consequently, the

distribution of ANN-particles over quantum states is expected to be Fermi-Dirac-like.

As described above, in a particular case, Fermi-Dirac statistics becomes Maxwell-Boltzmann

statistics; thus, it is possible to use Maxwell-Boltzmann statistics as an approximation to

Fermi-Dirac statistics. Follow that, we approximated the NW values by the Boltzmann

distribution.

The results of the empirical studies showed that the NW values are approximately equal

for ANNs with the same number of hidden layers and the same average number of

1In the literature, a number of particles is denoted by n. We denote this number by m, as the variable
n refers to the neurons in ANNs.
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neurons in them. This means, more than one different ANN-particles can have the same

energy. In terms of quantum mechanics, these quantum states are degenerate, as they

are at the same energy level. The degeneracy of the energy levels explains why ANNs

with different topologies may have the same functionality.

The presence of degenerate states reduces the total number of topologies of different

functionality (P̂ ) for ANNs with a given number of hidden layers; this number depends

on a number of hidden layers l and a maximal allowable number of neurons nmax in each

layer:

P̂ (l, nmax) = l(nmax − 2) + 1. (4.2)

It is easy to notice that for ANN architectures with 1 to 5 hidden layers and 6 maximal

number of neurons in each hidden layer, considered at the empirical stage, P̂ were 5, 9,

13, 17 and 21, respectively.

Further, while deriving the distribution of the NW values, the quantum state of ANN-

particle was described by two quantum numbers (l, n̄), where n̄ is called a effective

quantum number and represents an average number of neurons in l layers. This replace-

ment does not change the theoretical approach and is done for the purpose of simplifying

the analysis model.

4.2.2.1 Results

As a result of the approximation by the average number of neurons n̄ in each layer,

n = 2, . . . , 6, we obtained five functions of the type

Nw(l, n̄) =
C1

exp (C2n̄) + 1
, (4.3)

for each number of hidden layers l, l = 1, . . . , 5, where C1 and C2 are approximation

coefficients, yet to be found.

Having in mind the dependency on the number of hidden layers, this expression can be

rewritten

Nw(l, n̄) = C0
1 +

C1
1

exp (C2n̄) + 1
, (4.4)

where C0
1 and C1

1 represent linear and constant parts of the dependency. Usage of simple

linear regression leads to

C0
1 = 3.0 +

l

2
, (4.5)

C1
1 = 2.0− l

2
. (4.6)
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Using coefficients A1 = 3.0, B1 = 2.0 instead of constants in (4.5) and (4.6), and sub-

stituting them in (4.4), we obtained:

Nw(l, n̄) = A1 +
l

2
+

B1 − l
2

exp (C2n̄) + 1
. (4.7)

The expression (4.7) can be further rewritten while taking into account an analogy with

thermodynamics

Nw(l, n̄) = A1 +
l

2
+

B1 − l
2

exp
(
n̄−C0

2
T1

)
+ 1

, (4.8)

where the constant T1 has the same physical meaning as temperature and the term

C0
2 is similar to the chemical potential in thermodynamics. Although this factorization

does not reveal the analytical dependency of the remaining component C0
2 , it reduced

the function (4.4) to the Fermi-Dirac-like function. Let us also mention that in Fermi-

Dirac statistics the chemical potential µ is determined from the condition that the total

number of particles in gas is equal to a given number N :

∑
k

1

exp
( εk−µ
kT

)
+ 1

= N.

The approximation by the number of hidden layers let us express C0
2 as a function similar

to (4.3)

C0
2 (l) = A2 +

B2

exp
(
l−B2
T2

)
+ 1

, (4.9)

where A2 = 1.2, B2 = 3.2 and T2 = 0.6. C0
2 was further denoted as µ by analogy with

the chemical potential in the Fermi-Dirac statistics.

Thus, the studies showed that the phenotypic component NW in the equation (4.1)

depends on the total number of hidden layers and the average number of neurons in

hidden layers, i.e., is related with the internal structure of ANNs. This relationship is

defined by the Fermi-Dirac-like function:

NW (l, n̄) = A1 +
l

2
+

B1 − l
2

exp
(
n̄−µ
T1

)
+ 1

, (4.10)

where µ is determined by the following equation:

µ = A2 +
B2

exp
(
l−B2
T2

)
+ 1

, (4.11)

and the coefficients A1 = 3.0, B1 = 2.0, T1 = 0.4, A2 = 1.2, B2 = 3.2 and T2 = 0.6.

Figure 4.2 demonstrates the NW values for the considered ANN topologies.
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Figure 4.2: The network weight values.

The value µ has the same physical meaning as the chemical potential in thermodynamics,

i.e., shows the amount by which the energy of a system would change if one particle were

added (other parameters are fixed). As mentioned, we assumed that the energy εk of a

single-particle state k corresponds to the functionality of a topology with a given number

of hidden layers and neurons. At the same time, it was shown that the functionality of

ANNs is defined by a given number of hidden layers, see Eq. (4.2). Obviously, in our

case the energy of the system will change if the number of hidden layers is varied.

Let us study the behavior of the derived functions (4.10) and (4.11). If the average

number of neurons increases, the function (4.10) tends to:

lim
n̄→+∞

Nw(l, n̄) = A1 +
l

2
,

as

lim
n̄→+∞

exp

(
n̄− µ
T1

)
= +∞.

If the number of hidden layers increases, the function (4.11) approaches A2:

lim
l→+∞

µ = A2,

as

lim
l→+∞

exp

(
l −B2

T2

)
= +∞.



Chapter 4. Network Weight-based Evolutionary Algorithm 52

Hence, the function (4.10) tends to infinity as l→ +∞:

lim
l→+∞

Nw(l, n̄) = +∞.

The function (4.10) tends to infinity as both the number of hidden layers and neurons

in them increase:

lim
l→+∞,n̄→+∞

Nw(l, n̄) = +∞.

The right hand fractional expression of the function (4.10) depends on the number of

hidden layers:

B1− l
2

1+exp
(
n̄−µ
T1

)


> 0, if l < 4

= 0, if l = 4

< 0, if l > 4

,

which demonstrates how the network weight is related with the size of an ANN topology

and difficulties in its learning. As known, ANNs with small number of connections may

not be able to learn good due to their small capability, while the large networks may

overfit the noise in the training data and thus, have poor generalization ability. For

small ANNs (l < 4), the network weight decreases as the average number of neurons

increases, which means that NW tends to reduce the mutation strength when the number

of connections is growing. For large ANNs (l > 4), the network weights increases as the

average number of neurons in hidden layers increases. In this case, NW encourages

long mutation step sizes and thus, long jumps in the search space, in order to prevent

overtraining in large networks. The ANN with 4 hidden layers can be considered as

a transitional network between small and large topologies; its functionality does not

depend on a number of hidden neurons and the corresponding network weight value is

5.0.

4.3 Network Weight-based Evolutionary Algorithm

This section describes the evolution of ANNs with the NWEA algorithm. The main

steps of evolution differ depending on whether the evolution of connection weights or

the evolution of both connection weights and architectures is provided. The evolution

of connection weights with NWEA is implemented as follows:

1. Generate an initial population of m randomly generated individuals. Each in-

dividual xi, ∀i ∈ {1, ...,m}, represents one possible set of connection weights,

xi(j) ∈ [−1.0; 1.0], j ∈ {1, ..., k}, where k is the total number of connections be-

tween neurons.
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2. Evaluate the fitness of each individual in the population; the fitness is inversely

proportional to the output error over all training examples.

3. Create p offspring individuals, p = m, by modifying each parental individual ac-

cording to Eq. (4.1):

xi
′(j) = xi(j)

(
1 +N i

W (l, n̄) ·N i
E ·N

DU
Rand

)
,

where xi(j) is a j-th gene of a chromosome xi (connection weight), N i
W (l, n̄) is

a NW value that corresponds to a given ANN topology, N i
E is the error of xi,

determined by some error function (e.g., MSE, RMSE), and NDU
Rand is a uniformly

distributed random value.

The value N i
W (l, n̄) is defined according to the Fermi-Dirac-like function (4.10),

which depends on the number of hidden layers l and the average number of neurons

in hidden layers n̄ in an ANN

Nw(l, n̄) = A1 +
l

2
+

B1 − l
2

exp
(
n̄−µ
T1

)
+ 1

,

where µ depends on the number of hidden layers and is calculated as follows:

µ = A2 +
B2

exp
(
l−B2
T2

)
+ 1

,

and A1 = 3.0, B1 = 2.0, T1 = 0.4, A2 = 1.2, B2 = 3.2, T2 = 0.6. In case of the

evolution of connection weights, the component NW (l, n̄) is calculated once in the

beginning of the optimization process, as the ANN topology is the same for all

individuals and remains fixed during the evolution.

4. Evaluate the fitness of each offspring x
′
i, ∀i ∈ {1, ..., p}.

5. Determine the most perspective individuals by applying (µ+λ)-ES, which considers

both parental and offspring individuals as candidates to be parents in the next

generation. Conduct pairwise comparison over the populations of m parental and p

offspring individuals by performing the tournament selection. For each individual,

a group of q opponents, q = 4, is selected randomly from both parental and

offspring populations with an equal probability; if the individual’s fitness is higher

(the error is lower) than the opponent’s, it is marked as a “winner”.

6. Select the best m individuals from both parental and offspring populations, that

have the most wins for the next generation.

7. Repeat the process from step (3) until some stopping criteria are satisfied.
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The simultaneous evolution of connection weights and architectures with NWEA is im-

plemented as follows:

1. Generate an initial population of m randomly generated individuals, where each

individual represents a feed-forward ANN with the random number of hidden layers

and neurons within a certain range, defined by a user. The initial networks are

fully connected. The initial connection weights are assigned randomly within a

range [-1.0; 1.0].

2. Evaluate the fitness of each individual in the population; the fitness is inversely

proportional to the output error over all training examples.

3. Partially train each network in the population. Select each individual of the popu-

lation one at a time and initialize a sub-population of size m/2 consisting of copies

of that individual. Evolve the sub-population during a given number of generations

in the environment defined by a given ANN topology, i.e., perform the evolution

of connection weights in the environment of the fixed topology (steps (3) - (7) of

the evolution of connection weights). After a certain number of generations the

evolution process is stopped and the best individual in the sub-population replaces

the initial individual in the main population.

4. Create p offspring individuals, p = m. For each parental individual in the popula-

tion:

(a) Create an offspring by modifying a parental individual according to Eq. (4.1)

(see step (3) of the evolution of connection weights). If the fitness of a new

individual is higher than that of a parental one, mark a new individual as an

“offspring”; otherwise, mark it as an “offspring candidate” and move to step

(4b).

(b) Remove a certain number of hidden nodes from the parental individual. The

number of mutated hidden nodes is user-specified. The node deletion process

is described in Section 5.2.2. Partially train a new network performing the

evolution of connection weights as described in step (3). After a given number

of generations stop the training process. If the fitness of a new individual is

higher than that of a parental one, mark a new individual as an “offspring”;

otherwise, mark it as an “offspring candidate” and move to step (4c).

(c) Remove a certain number of hidden connections from the parental individual.

The number of mutated hidden connections is user-specified. The connection

deletion process is described in Section 5.2.2. Connections close to zero are

removed first. Partially train a new network performing the evolution of con-

nection weights as described in step (3). After a given number of generations
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stop the training process. If the fitness of a new individual is higher than

that of a parental one, mark a new individual as an “offspring”; otherwise,

mark it as an “offspring candidate” and move to step (4d).

(d) Add a random number of connections to the parental individual according to

their importance; this process is described in Section 5.2.2. Partially train

a new network performing the evolution of connection weights as described

in step (3). After a given number of generations stop the training process.

Denote the obtained individual as an “offspring 1”. Add a random number

of hidden nodes to the parental individual. The nodes are added by splitting

connections of the already existing node; this process is described in Section

5.2.2. Partially train a new network performing the evolution of connection

weights as described in step (3). After a given number of generations stop

the training process. Denote the obtained individual as an “offspring 2”.

Compare the fitness of the “offspring 1” and “offspring 2” individuals, then

compare the best of two offspring to the parent. If the fitness of a new

individual is higher than that of a parental one, mark a new individual as an

“offspring”; otherwise, mark it as an “offspring candidate” and move to step

(4e).

(e) Compare the fitness of all “offspring candidates”; mark the best individual

as an “offspring”.

5. Determine the most perspective individuals by applying (µ+λ)-ES, which considers

both parental and offspring individuals as candidates to be parents in the next

generation. Conduct pairwise comparison over the populations of m parental and p

offspring individuals by performing the tournament selection. For each individual,

a group of q opponents, q = 4, is selected randomly from both parental and

offspring populations with an equal probability; if the individual’s fitness is higher

(the error is lower) than the opponent’s, it is marked as a “winner”.

6. Select the best m individuals from both parental and offspring populations, that

have the most wins for the next generation.

7. Repeat the process from step (4) until some stopping criteria are satisfied.

4.4 Conclusions

In this chapter the ANN learning algorithm, called NWEA was presented. It is based on

the novel mutation mechanism, which utilizes both phenotype and genotype informa-

tion of individuals to determine the mutation strength and bias the evolution towards
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an optimum. More specifically, NWEA performs not only structural adaptations, i.e.,

evolves the genetic characteristics of individuals, but also behavioral adaptations, i.e.,

conducts interactions between individuals and their habitat, and uses knowledge of the

environment in the evolution process. The presented algorithm can be used to evolve

either the connection weights or both connection weights and topologies.

The main challenge of NWEA was to derive the function of the phenotypic component

NW and establish its dependency on an ANN topology. The empirical studies showed

that the phenotypic component is related to an ANN’s hidden structure, i.e., the total

number of hidden layers and the average number of neurons in them. This dependency

is justified analytically and is determined by the derived Fermi-Dirac-like function.



Chapter 5

Experimental Studies

“However beautiful the strategy, you should occasionally look at the results.”

Sir Winston Churchill

This chapter presents experimental studies provided to investigate features of the pro-

posed approach and examine performance of NWEA-evolved ANNs by comparing the

obtained results with those of other algorithms. The chapter documents three major

parts of empirical studies. The first part analyzes characteristics of NWEA by evolving

connection weights in the environment determined by predefined fixed ANN topologies

(Section 5.1). The second part studies NWEA-evolved ANNs on complex tasks and in-

vestigates their performance from different perspectives: 1) compares the generalization

of NWEA-evolved ANNs with that of the existing approaches; 2) examines the role of

activation function type on the evolution process; 3) examines evolution under different

step sizes determined by different distributions. This part considers simultaneous evo-

lution of both connection weights and architectures (Section 5.2). Finally, the impact

of parallelization on the generalization ability in ANNs is investigated in Section 5.3.

5.1 Evolving Connection Weights

This section examines evolution of connection weights with NWEA, conducted in the

environment determined by the predefined fixed ANN topologies. In particular, the

issues bounded up with the NWEA’s internal characteristics, such as the efficiency of

representing genotype information by an individual’s particular error, the algorithms’s

convergence speed, the quantity of successful mutations, and the precision of the ob-

tained solutions are questioned.

57
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In order to evaluate the performance of NWEA, networks trained with NWEA for the

XOR problem were compared to those trained with CEP [46, 48], FEP [161, 163] and

IFEP [157, 164] algorithms. The choice of XOR as a case application was motivated

by its independence of ANN topologies, i.e., solving XOR does not set limitations on

a ANN structure and does not require finding an optimal topology, as even a simple

ANN with one hidden neuron can successfully solve this function [92]. The evolution

of connection weights was observed under the same initial conditions for all compared

algorithms, which reduced the effect of randomness caused by the stochastic nature of

EAs on the evolution process and enabled fair comparison.

5.1.1 Experimental Setup

All experiments were conducted using the same initial conditions, i.e., the same initial

populations and ANN topologies. The tests were carried out for 25 different feed-forward

ANNs with 1-5 hidden layers and 2-6 numbers of neurons in each hidden layer, so that the

simplest ANN had 1 hidden layer with 2 neurons and the most complex ANN contained

5 hidden layers with 6 neurons in each layer. The initial populations of individuals

was generated at random and consisted of 50 individuals for NWEA, CEP and FEP

algorithms, where each individual represented a real-valued vector of connection weights

for a considered ANN architecture. As suggested in [157], the population for IFEP

consisted of 25 individuals, because each individual in IFEP generates two offspring.

The individuals were evaluated according to their error defined by the mean squared

error (MSE) between the actual and the desired outputs over all training examples.

Each algorithm (with 1000 initial populations) was run 1000 times for each ANN. The

evolution process terminated when a set of connection weights with the output error

1.0e-3.0 was obtained.

5.1.2 Investigating the Impact of a Particular Error in NWEA

The first set of experiments were provided to investigate the efficiency of genotype infor-

mation represented by an individual’s particular error in NWEA. For this purpose, three

types of NWEA with the same phenotype information and different genotype informa-

tion were applied to train ANNs. Following genotype information in the component NE

of Eq. 3 was studied: 1) the minimal error of the current population, i.e., the error of

the best individual in the population; 2) the average error of the current population,

i.e., the average error of all individuals in the population and, 3) the particular error of

each individual in the current population. The algorithms were evaluated by the average

number of iterations required to find the optimal set of connection weights.
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Figure 5.1: Convergence of NWEA with particular, average and minimal errors in
NE : average number of iterations.

Figure 5.1 presents the average results over 1000 runs of each algorithm for each ANN

topology described in Section 5.1.1. As shown, NWEA with the particular error in muta-

tion outperformed those with the minimal and the average errors in terms of convergence.

The results were predictable, as such a performance of algorithms is explained by the

comprehension of the improvement strategies. Since the learning was provided in the

environment of the predefined fixed ANN architectures, the phenotypic component was

the same for all algorithms and remained unchanged during the evolution. That means,

the mutation strength was controlled by the genotypic component. Apparently, the error

describes a position of an individual regarding the optimum. Hence, mutation with the

minimal error performs too small step sizes for the individuals with a greater error, as

it contains partial information about their positions in the search space; mutation with

the average fitness makes near-optimal adaptation for majority of the population, as it

incorporates the average distance of individuals to the optimum. In contrast, mutation

with the particular error contains explicit information about an individual and carries

out appropriate adjustments. This leads the algorithm to fast convergence.

5.1.3 Convergence Speed: Iterations and Time

This and following sections provide a comparative analysis of NWEA, CEP, FEP, and

IFEP algorithms used to train ANNs for the XOR function. The study presented in this

section estimates the algorithms’ convergence speed measured by the average number of
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iterations and the average time needed to obtain the optimal solution. The experimental

setup was the same as described in Section 5.1.1. Figure 5.2 and Table 5.1 provide the

average results over 1000 runs for each of four algorithms.
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Figure 5.2: Convergence of NWEA, CEP, FEP, and IFEP: average number of itera-
tions.

The outcomes indicated better performance of NWEA in comparison to CEP, FEP, and

IFEP. For all considered ANN topologies, the convergence speed of NWEA was at least

two times faster than that of CEP, FEP, and IFEP. Such a performance of NWEA is

conditioned by the efficiency of the mutation mechanism that makes efficient adjustments

depending on the features of a particular individual. In contrast to CEP, FEP, and

IFEP, NWEA improves individuals based not only on their genotypic characteristics,

but also on phenotypic ones. By involving phenotype information, NWEA “knows”

more about the environment and thus, is likely to provide more suitable step sizes and

reach the optimum faster. Besides, as shown in Figure 5.2 NWEA has the ability to find

internal resemblances within different ANN topologies. The curve for NWEA in Figure

5.2 is monotonic, which implies that for varied number of hidden layers and the same

number of neurons in them, the number of average iterations to find the optimum is

almost the same. Hereby the increment of computational time is caused by the length

of chromosomes and thus, by the increment of time needed to modify them. At the

same time we can notice small differences in the performance of CEP, FEP, and IFEP

strategies. These similarities are conditioned by the relationship between Gaussian and

Cauchy distributions and the simplicity of the solving task.
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ANN Architecture Average time, ms

Hidden Hidden Neurons, CEP FEP IFEP NWEA
layers per layer

1 2 8.8 9.0 8.8 1.7
1 3 12.6 12.4 12.3 4.8
1 4 19.4 19.5 18.1 5.9
1 5 29.1 28.4 27.4 8.0
1 6 40.9 39.1 37.0 10.4
2 2 10.3 10.4 10.0 2.6
2 3 17.8 17.3 16.4 6.2
2 4 24.7 23.4 22.4 7.8
2 5 34.3 32.6 31.4 11.0
2 6 39.1 38.4 34.3 13.8
3 2 13.5 12.8 12.7 3.8
3 3 22.0 22.3 21.0 8.1
3 4 28.2 26.6 25.4 9.7
3 5 36.0 34.1 31.4 13.2
3 6 40.6 38.7 36.5 16.7
4 2 15.0 13.9 14.1 5.0
4 3 27.2 25.2 23.6 10.1
4 4 30.8 30.3 30.0 11.7
4 5 40.6 40.1 37.1 15.8
4 6 45.7 43.7 39.0 19.7
5 2 18.5 17.6 17.5 6.6
5 3 33.1 30.8 29.6 12.4
5 4 36.8 35.1 32.4 13.5
5 5 45.7 45.4 40.0 18.3
5 6 50.9 49.1 45.0 22.8

Table 5.1: Convergence of NWEA, CEP, FEP, and IFEP: average convergence time.

5.1.4 Percentage of Successful Improvements

Alongside with the optimal step size, the rate of the successful improvements at each

generation accelerates the evolution. The study presented in this section quantifies

the average percentage of successful mutations of the NWEA, CEP, FEP, and IFEP

algorithms, i.e., the percentage of the offspring individuals with higher fitness than that

of their parents. For this purpose, we measured the rate of offspring that had lower

error than their parents and not the offspring that reached the next generation. A fair

comparison between the NWEA, CEP, FEP, and IFEP algorithms was possible as all

they follow the same strategy to select individuals for the next generation, i.e., form the

next generation according to (µ + λ) strategy by choosing best individuals from both

parental and offspring populations.

Figure 5.3 demonstrates the average results of this analysis. The results show, that the

average rate of successful mutations in CEP, FEP, and IFEP varies within the range of 6-

14%, while NWEA improves approximately 17-24% of all individuals undergo mutation.

The high rate of successful mutations increases the probability of offspring to be selected
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Figure 5.3: Average rate of successfully improved individuals.

for the next generation. This is advantageous, as the high rate of offspring in the new

population not only promotes the increment of the average fitness in the next generation,

but also enables examining new genetic material in the next generation.

5.1.5 Increasing Accuracy of the Evolved Solutions

In the experiments, described in Sections 5.1.3 and 5.1.4, the evolution process termi-

nated when an individual with the error 1.0e-3.0 was found, i.e., a set of connection

weights that could solve XOR with a given accuracy was evolved. In order to explore

the ability of NWEA, CEP, FEP, and IFEP to find solutions with higher accuracy,

we provided experiments, where the termination criteria was defined by the machine

accuracy. The rest of the initial setup was the same as described in Section 5.1.1.

Figure 5.4 reports the average results over 1000 runs of each algorithm for each ANN

topology. The results show that NWEA was the only algorithm that found solutions

of higher accuracy, while CEP, FEP, and IFEP were unable to evolve the solution with

the error equal to the machine accuracy. Note that NWEA needed incomparable less

computational time and iterations to reach the maximal possible accuracy of the other

algorithms. From the results can be concluded that NWEA is more resistant to local

optima trapping and can be applied to evolve ANNs for the problems where the accuracy

is of the highest importance.
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Figure 5.4: Convergence of NWEA, CEP, FEP, and IFEP: ability to achieve machine
precision.

5.2 Evolving Connection Weights and Architectures

The evolution of connection weights is attractive in cases when an optimal ANN topology

is known or the ANN size is irrelevant regarding the solving task. However, for the

majority of the real-world problems optimal ANN architectures are unknown. One

possible way is to let an expert choose an appropriate structure; however this is a long

process (usually done by trial-and-error) and does not guarantee the positive outcome.

An alternative way is to incorporate an ANN structure alongside with weights into a

chromosome and thus, evolve both weights and architectures.

This section is concerned with evolving both architectures and connection weights for

solving real-world problems. Four medical diagnosis problems and one forecasting task

have been used to evaluate NWEA-evolved ANNs. The goal of experiments is to inves-

tigate NWEA’s ability to evolve compact ANNs with good generalization ability.

Further, this section continues studies on NWEA properties and explores the effect of

different types of activation function on the generalization in ANNs. Besides that, it

introduces two modification of NWEA which combine Gaussian, Cauchy, and uniform

distributions at the individual and the component levels.
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5.2.1 Encoding Scheme for ANN Topologies and Connection Weigths

In order to represent connection weights (including biases) and architectures, we used

the direct encoding scheme. Similar to the existing algorithms [162], we specified an

ANN into one vector of size N and two matrices of equal size M . The vector is used

to encode hidden nodes, i.e., contains entries that can be either one (a node exists) or

zero (a node does not exist). The size of the hidden node vector is determined by a

user-defied limit N , which is the maximal number of allowable hidden nodes. The first

matrix is the connectivity matrix of an ANN that has entries either one (a connection

exists) or zero (a connection does not exist). The other is the corresponding weight

matrix that contains real-valued entries and specifies weights and biases. The dimension

of matrices is M ×M , M = Nin+N +Nout, where Nin is a number of input nodes, Nout

is a number of output nodes, and N is the maximal number of hidden nodes allowable

in the ANN. Since we consider feed-forward ANNs, information in upper-right triangle

of both matrices is encoded in the chromosome.

The described genotype representation scheme facilitates mutation of architectures. For

instance, node deletion/addition changes a bit in the hidden node vector on its opposite

value. These changes in the hidden node vector affect two matrices, e.g., node deletion

disables all connections from and to the node in the connectivity matrix and sets to zero

all corresponding connection weight values in the weight matrix. Connection deletion

and addition involve changes in the connectivity and weight matrices, e.g., connection

deletion sets to zero the connection in the connectivity matrix and disables a correspond-

ing weight entry in the weights matrix. The mutation of connection weights is provided

according to Eq. 3 as described in Section 4.3.

5.2.2 Architecture Mutation During Evolution

In NWEA, the mutation of architectures is performed only when the algorithm fails

to reduce the error of the network. It is conducted in following ways: hidden node

deletion, connection deletion, connection addition or node addition. Usually, connection

or node addition is attempted only after node or connection deletion fails to produce

good individuals [162]. This order was proposed for the purpose of supporting parsimony

of already evolved ANNs.

Node Deletion

Certain hidden nodes are deleted randomly from a current ANN. The number of hidden

nodes that can be deleted is specified by a user. It can be a predefined fixed number
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or a random number within a given range. When a node is removed, all associated

connections are also removed. Then, in order to reduce the behavioral change caused

by the node deletion, a new ANN is partially trained with NWEA in the environment

determined by a new topology. If the trained ANN is better than the worst ANN in both

parental and offspring populations, it replaces the worst individual; otherwise connection

weight deletion is performed. The minimal number of nodes that must be retained in

the network is user-specified.

Connection Deletion

Certain connections are deleted probabilistically according to their importance. The

number of connections that can be selected for deletion is user-specified. It can be a

predefined fixed number or a random number within a given range. The importance of

connection weight is defined by the significance test for the weight’s deviation from zero

in the weight update process [42]. We employed a nonconvergent method, proposed in

[42], which defines the strength of the significance test as follows:

test(wij) =

∑P
p=1w

′p
ij√∑P

p=1 (w′pij − w̄′ij)2
, (5.1)

where w′pij is the updated value of the connection weight wij , and w̄′ij denotes the average

over the set w′pij , p = 1, 2, ..., P . Higher value of test(wij) indicates higher importance

of a connection weight. The advantage of the non-convergent method is that it does not

need convergence of the training process in order to test weights. Besides, this method

can also be applied for connections with zero weights and when deciding on connections

to be added in the connection addition phase.

Similar to the case of node deletion, the new ANN is partially trained by NWEA. If the

trained ANN is better than the worst ANN in both parental and offspring populations,

it replaces the worst individual; otherwise node/connection addition is performed.

Connection Addition

Certain connections are added into the network probabilistically according to Eq. 5.1.

They are chosen from those connections with zero weights and assigned with small

random weights in range [-0.3; 0.3]. The new ANN is then partially trained by NWEA.
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Node Addition

Node addition is implemented through a process called “cell division”, which splits

an already existing hidden node [110]. The main advantage of this method is that the

splitting of existing nodes maintains behavioral links between parent and offspring better

than the addition of a random node. The nodes are selected to be split uniformly at

random among all hidden nodes. Two nodes obtained in the result of splitting have

identical connections as the original node. The connection weights of the new nodes

have following values:

w1
ij = w2

ij = wij , i ≥ j,
w1
ki = (1 + α)wki, i < k,

w2
ki = −αwki, i < k,

where w is the weight vector of the existing node i, w1 and w2 are the weights vectors

of new nodes, and α is a mutation parameter which is either a fixed or random value.

The new ANN is partially trained by NWEA. As the node splitting implies that behav-

ioral links between parents and their offspring are preserved, the offspring need little

adjustment of inherited weights. Then offspring is compared to that produced by con-

nection addition. As a result, the individual with smaller error (higher fitness) replaces

the worst individual in the population.

5.2.3 Data Sets and Experimental Setup

This section introduces the benchmark problems used to evaluate the performance of

NWEA-evolved ANNs and the experimental setup for these tasks.

5.2.3.1 The Mackey-Glass Chaotic Time Series Problem

The Mackey-Glass times series prediction problem [96] is a task with continuous output,

and is generated by the following differential equation:

dx

dt
= βx(t) +

αx(t− τ)

1 + x10(t− τ)
,

where α= 0.2, β = –0.1, τ= 17 [41, 96]. As mentioned in [98], “x (t) is quasiperiodic and

chaotic with a fractal attraction dimension 2.1 for the above parameters”. The system

shows chaotic behavior when τ > 16.8. The goal is to predict the output x (t + 6) having

four past data points x (t), x (t – 6), x (t – 12) and x (t – 18) as the input. In order to

make multiple step prediction during testing, tests with large time span ∆t = 90 were

provided. Iterative predictions of x (t + 6), x (t + 12), . . . , x (t + 90) were made, where
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the true value of x (t + 6) was used as a target value during the training process. Such

experimental setup is the same as that used by Martinetz et al. [98] and Yao et al. [162].

The fourth-order Runge-Kutta method with initial conditions x(0) = 1.2, x(t− τ) = 0

for 0 ≤ t < τ and the one step at a time was used to generate data for Mackey-Glass

time series. 500 patterns (of point 118 to 617) were considered as the training data, the

following 500 samples were used as the testing data. No validation data were used. The

values of training and testing errors were rescaled linearly to between 0.1 and 0.9.

The normalized root mean squared error (RMSE) was used to evaluate the performance

of NWEA. The RMSE is determined by the absolute prediction error for ∆t = 6 divided

by the standard deviation of x(t) [41, 98]:

E =

〈
[xpred(t,∆t)− x(t+ ∆t)]2

〉 1
2

〈(x− 〈x〉)2〉
1
2

, (5.2)

where xpred(t,∆t) is the prediction of x(t + ∆t) from the current state x(t) and 〈x〉
represents the expectation of x. As stated in [41], the prediction is perfect if E = 0; if

E = 1, the prediction is not better than a constant predictor xpred(t,∆t) = 〈x〉.

The following NWEA parameters were used in Mackey-Glass time series prediction ex-

periments: the population size 30, the maximum number of generations 200, the number

of hidden nodes for each individual in the initial population was generated uniformly at

random between 8 and 16, the number of mutated hidden nodes 1, and the number of

generations for the partial learning of ANNs with the mutated architecture 5.

5.2.3.2 The Breast Cancer Data Set

The breast cancer data set was originally obtained from Dr. William H. Wolberg at the

University of Wisconsin Hospitals, Madison. The data set consists of 699 examples of

which 458 (65.5%) are benign examples and 241 (34.5%) are malignant examples. Each

example contains 9 attributes: clump thickness, uniformity of cell size, uniformity of

cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

normal nucleoli, mitoses. The goal of the data set is to classify a tumor as either benign

or malignant based on cell descriptions gathered by microscopic examination.

In the experiments, the whole data set was divided into three subsets, as suggested by

Prechelt [115]: a training set, a validation set, and a testing set. The first set was used to

train ANNs. The validation set was explored as a pseudo-testing set in order to evaluate

the fitness of networks during evolution. This prevents overtraining of the network

and usually improves its generalization ability. During this process ANN’s learning is
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carried out until the minimal error on the validation set (note, not on the training set)

is achieved. Finally, the testing data were considered to evaluate the performance of

the evolved ANNs. 349 examples of the given breast cancer data set were used as the

training set, the following 175 examples as the validation set, and the final 175 patterns

as the testing set.

The error of each individual was calculated by the equation, proposed by Prechelt [115],1

over a validation set containing P patterns:

E = 100 · omax − omin

N · P

P∑
p=1

N∑
i=1

(opi − tpi)2, (5.3)

where omin and omax are the minimum and maximum values of output coefficients in the

problem representation. N is the number of output nodes, opi and tpi are the actual and

desired outputs of node i for pattern p. The fitness of each individual was determined

by the inverse of the error.

Following parameters were used for the experiments: the population size 30, the max-

imum number of generations 200, the initial node connection density 1.0, the number

of mutated hidden nodes 1, the number of mutated connections 1 to 3, the number of

generations for the partial learning of ANNs with the mutated architecture 5. The num-

ber of initial hidden nodes was generated uniformly at random between 1 and 3. The

output attributes were encoded by 1-of-m output representation for m classes. We used

the winner-takes-all method, where the output with the highest activation designates

the class.

5.2.3.3 The Heart Disease Data Set

The heart disease data set was obtained from Cleveland Clinic Foundation and was

supplied by Robert Detrano of the V.A. Medical Center, Long Beach, CA. The data

set consists of 270 examples. The heart disease data set originally consisted of 303

examples, but 6 of them contained missing class values and were excluded from the

database. Other 27 examples of the remained data were eliminated as they retained in

case of dispute.

Each example in the database contains 13 attributes, which present results of medical

tests provided on patients: age, sex, chest pain type, resting blood pressure, cholesterol,

fasting blood sugar < 120 (true or false), resting electrocardiogram (norm, abnormal

or hyper), max heart rate, exercise induced angina, oldpeak, slope, number of vessels

1The error function was proposed in order to decrease the dependence of the error measure on the
size of the validation set and the number of outputs.
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colored and thal (normal, fixed, rever). These attributes have been extracted from a

larger set of 75. The goal of diagnosis is to recognize the presence or absence of heart

disease given the attributes. Initially, the data set considered four different degrees of

the heart disease to classify the output results. The later modification in the problem

definition suggested reducing the number of predicted values on two and categorizing

results into two classes: presence or absence of illness.

For the heart disease diagnosis, the first 134 examples of the entire data set were used

for the training set, the following 68 examples for the validation set, and the final 68

examples for the testing set. The input attributes were linearly rescaled to between 0.0

and 1.0. The other experimental parameters, as well as the error function were the same

as for the breast cancer diagnosis, except for the initial number of hidden nodes, which

was generated uniformly at random between 3 to 5.

5.2.3.4 The Diabetes Data Set

The diabetes data set was constructed by Vincent Sigillito from Johns Hopkins Univer-

sity. He collected the data set by constrained selection of data from a large database

held by the National University of Diabetes and Digestive and Kidney Disease. The

selected data set represents the test results of female patients of at least 21 years old

and of Pima Indian heritage living near Phoenix, AZ.

Each example contains eight input attributes: number of times pregnant, plasma glucose

concentration in an oral glucose tolerance test, diastolic blood pressure, triceps skin hold

thickness, 2-hour serum insulin, body mass index, diabetes pedigree function and age.

The goal is to predict whether a patient would diagnose positive for diabetes according

to World Health Organization criteria given a number of physiological measurements

and medical test results. The classification to be made between two classes, where the

class value one is considered as “tested positive for diabetes” and class value two as

“tested negative for diabetes”. There are 500 examples of class one and 268 patterns

of class two in the data set. The classification of the diabetes data set is a challenging

problem, as the so-called “class” value is a binarised form of another attribute, which

is itself “highly indicative of certain types of diabetes but does not have a one to one

correspondence with the medical condition of being diabetic” [162].

For the diabetes diagnosis, the first 384 examples of diabetes data set were used for

training set, the following 192 examples for the validation set and the final 192 patterns

for the testing set. The input attributes of the diabetes data set, similar to the heart

disease data set, was rescaled to between 0.0 and 1.0 by a linear function. The other

experimental parameters, as well as the error function were the same as for the breast
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cancer diagnosis, except for the initial number of hidden nodes, which was generated

uniformly at random between 2 to 8.

5.2.3.5 The Thyroid Data Set

The thyroid data set is the “ann” version of the “thyroid disease” data set from the

UCI machine learning repository. This data set consists of two files. The first file, “ann-

train.data” contains 3772 training examples. Another one, “ann-test.data” contains 3428

testing examples. Each example has 21 attributes (15 binary and 6 continuous). The goal

of this data set is to determine whether a patient is hypothyroid. Therefore three classes

are built: normal (not hypothyroid), hyperfunction and subnormal functioning. The

problem is very challenging for any classifier, as 92% of the patients are not hyperthyroid.

This means that a good classifier must be significantly better than 92%.

The data set from “ann-train.data” was divided into two subsets: the first 2514 examples

were used for the training set, the rest 1258 examples for the validation set. The whole

data from “ann-test.data” were used for the testing set. The experimental parameters,

as well as the error function were the same as for the breast cancer diagnosis, except for

the initial number of hidden nodes, which was generated uniformly at random between

6 to 15.

5.2.4 Evolving ANNs with NWEA: Results and Comparative Analysis

This section presents the experimental results on the studied benchmark problems and

compares them to those obtained by other algorithms. Since the direct comparison with

other evolutionary approaches to evolving ANNs is very difficult [162], we compared the

results of NWEA-evolved ANNs to those available in the literature, regardless of a type

of the training algorithm, i.e., whether it was evolutionary, gradient-descent, hybrid, etc.

Mackey-Glass Chaotic Time Series Prediction

Tables 5.2 and 5.3 present the results of the NWEA-evolved ANNs over 30 runs for the

Mackey-Glass chaotic time series problem. Tables 5.4 and 5.5 report the comparative

results of different learning strategies for this benchmark problem.2 The data are taken

from [19, 21, 22, 78, 89, 95, 98, 121, 162]. The symbol “–” in the column “Connections”

refers to the values that are not available.

2As common in the literature, Table 5.5 presents the comparative results for the time span ∆t = 84.
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The following observations can be made from the obtained results. The results for a

small time span ∆t = 6 demonstrated very competitive generalization ability of networks

evolved by NWEA. The best testing error of the NWEA-evolved ANN was 0.01220 and

the average was 0.01426, which means that the evolved ANNs leant very good the

underlined function. This is also corroborated by the insignificant distinctions between

the training and testing errors (0.01356 and 0.01426, respectively). The comparison

to other learning strategies demonstrated very competitive results of NWEA-evolved

ANNs; however, some of the existing strategies showed smaller testing error than NWEA

(see Table 5.4). It is worth noting that some of these algorithms were developed with

respect to the time series prediction problem. For instance, the FNT algorithm [19] uses

adapted to this problem exponential function instead of sigmoid to transform neurons

incoming signals, which increases precision of prediction, but takes long computation

time. The classical RBF method [21] showed the comparable results, but the size of the

evolved ANNs was much larger than of those evolved by NWEA (23 and 10.97 hidden

neurons, respectively). The modified RBF, i.e., PG-RBF [121] showed better results

than NWEA; however, it was achieved by an ANN with 12 neurons.

For a large time span ∆t = 84, NWEA-evolved ANNs also provided favorable results

comparing to those of EPNet [162], BP [89] and CC [22] learning methods (Table 5.5).3

The average prediction error of NWEA-evolved ANNs on 500 training data points over

30 runs was 0.03765, while the average accuracy of EPNet and BP networks was 0.06 and

0.05, respectively. NWEA-evolved ANNs also outperformed the results of the “neural-

gas” networks [98]. The “neural-gas” network needed 1000 training data points to

achieve the error of 0.05, while for the training set of 500 examples its smallest prediction

error was 0.06. However, NCNNs [95] with the average accuracy 0.03 (0.0326) performed

better than NWEA-evolved ANNs, though the best results for both networks were the

same, 0.03 (0.02836 for NWEA-evolved ANNs and 0.0279 for NCNNs).

Besides evolving networks with good generalization ability, NWEA produced more com-

pact networks than other approaches. The average number of connections of NWEA-

based ANNs was 98.21, while the average ANNs evolved by EPNet had 103.33 connec-

tions (the smallest ANNs had 64 and 66 connections, respectively). The ANNs evolved

by BP and CC learning methods were extremely large (540 and 693 connections respec-

tively), the average size of “neural-gas” networks had about 500 connections (using the

training data set of 1000 points) and 1800 connections to achieve the smallest error for

the training data set of 500 examples.

3The other algorithms from Table 5.4 do not provide results for the multiple step prediction.
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min max mean SD
Connections 64 142 98.21 20.3
Hidden nodes 8 14 10.97 1.7
Generations 86 186 122 23.6

Table 5.2: ANN architectures for the Mackey-Glass time series problem.

min max mean SD

Training error 0.01217 0.01682 0.01356 0.00162
Testing error, ∆t = 6 0.01220 0.01874 0.01426 0.00177
Testing error, ∆t = 84 0.02836 0.06832 0.03765 0.00743
Testing error, ∆t = 90 0.03215 0.07373 0.04382 0.00883

Table 5.3: Prediction accuracy for the Mackey-Glass time series problem.

Algorithm Connections Testing error

NWEA 98 0.01 (0.01426)
EPNet 103 0.02 (0.0205)
BP 540 0.02
CC Learning 693 0.06
NCNN - 0.01 (0.100)
FNT model (Case 1) - 0.0069
Autoregressive model - 0.19
Sixth-order polynomial - 0.04
Linear prediction method - 0.55
ANFIS and Fuzzy System - 0.007
Product T-norm - 0.0907
Classical RBF (with 23 neurons) - 0.0114
PG-RBF network (with 12 neurons) - 0.00287
Genetic algorithm and fuzzy system - 0.049

Table 5.4: Comparative results of the prediction accuracy for the Mackey-Glass time
series problem with a time span ∆t = 6.

Algorithm Connections Testing error

NWEA 98 0.04
EPNet 103 0.06
BP 540 0.05
CC Learning 693 0.32
NCNN - 0.03

Table 5.5: Comparative results of the prediction accuracy for the Mackey-Glass time
series problem with a time span ∆t = 84.

Breast Cancer Diagnosis

Tables 5.6 and 5.7 report the results of NWEA-evolved ANNs over 30 runs for the

breast cancer diagnosis problem. The error in Table 5.7 is defined by Eq. 5.3 and

the error rate indicates the percentage of wrong classified examples. Table 5.8 presents

the comparative analysis between NWEA-evolved ANNs, EPNet [158, 165], an ANN

constructive algorithm, called FNNCA [136] and the hand-designed ANN (referred to
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as HDANNS) [115] obtained by the trial-and-error method. The average results of

NWEA-evolved ANNs were compared to those of EPNet and the best results produced

by FNNCA (in 50 runs) and HDANNS.

The results showed that NWEA evolved compact ANNs with good generalization ability.

Although the classification accuracy of NWEA-evolved ANNs is comparable to that of

EPNet and the best results of other algorithms (though the minimal testing error rate of

NWEA-evolved ANNs was 0.0%), it is clear from Table 5.8 that NWEA designed more

compact ANNs. The average number of hidden nodes in NWEA-evolved ANNs was 1.3,

which is almost twice as small as the average topology of EPNet and the best network of

FNNCA and more than four times smaller than the best HDANNS. The average number

of connections in NWEA-evolves ANNs was 36, while EPNet had 41 connections (the

number of FNNCA and HDANNS connections is not available). One can argue that the

size of the network is inessential once its generalization accuracy is high; indeed, this

assertion is correct for large or complex problems, where good generalization itself is a

challenge. However, the breast cancer data set, studied in this thesis, is a comparatively

simple problem due to the small number of attributes [162]. From this point of view, the

ability of an algorithm to evolve compact networks that generalize well is advantageous.

min max mean SD
Connections 14 78 36 12.3
Hidden nodes 0 4 1.3 0.8
Generations 101 192 139.1 32.8

Table 5.6: ANN architectures for breast cancer diagnosis.

min max mean SD
Training error 1.418 3.650 2.722 0.464
Training error rate 0.01698 0.04672 0.03921 0.00637
Validation error 0.052 1.018 0.557 0.178
Validation error rate 0.00000 0.01072 0.00547 0.00145
Testing error 0.178 3.546 1.413 0.708
Testing error rate 0.00000 0.03397 0.01384 0.00942

Table 5.7: Classification accuracy for breast cancer diagnosis.

Algorithm Hidden nodes Testing error rate

NWEA 1.3 0.01384
EPNet 2.0 0.01376
FNNCA (best result) 2.0 0.0145
HDANNS (best result) 6.0 0.01149

Table 5.8: Comparative results of the classification accuracy for breast cancer diag-
nosis.
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Heart Disease Diagnosis

The competitive results of NWEA-evolved ANNs on the breast cancer problem encour-

aged further studies of the proposed algorithm on more difficult tasks. In comparison

to the breast cancer problem, the heart disease problem has larger number of attributes

(13 attributes, see Section 5.2.3.3) and thus, is a more complex task [162]. This makes

more difficult to learn the underlined function that specifies dependencies between the

attributes and the output.

The results of NWEA-evolved ANNs over 30 runs for the heart disease diagnosis are

presented in Tables 5.9 and 5.10. Similar to the breast cancer problem, the error rate in

Table 5.10 shows the rate of wrong classifications. Table 5.11 presents the generalization

results comparison among NWEA-evolved ANNs, EPNet [162], GM-constructed ANNs,

MSM1, MSM algorithms, BP-trained ANNs [10] and manually designed HDANNS [115].

The smallest rate of wrong classifications on the testing set was 0.13195 (13.2%), while

the average error rate was 0.15165 (15.17%). The average classification error, reported

by EPNet and MSM1 are 16.77% (0.16765) and 16.53% (0.1653) respectively, which

are worse than the average results of the NWEA-produced ANNs. The RBF networks

constructed with GM algorithm had 18.18% testing error rate, the MSM method -

25.92% and BP reported about 25% of wrong classifications. These results are worse

than the maximal testing error rate of NWEA-evolved ANNs. The best HDANNS

achieved the classification rate of 14.78%, which is worse than that of the NWEA-based

ANN. At the same time smallest ANNs evolved by NWEA had 1 hidden node and 28

connections, while in average ANNs had 4.0 hidden nodes and 88.4 connections. These

results are comparable with those of EPNet (4.1 and 1 hidden nodes, respectively) and

outperform the best result of HDANNS (4 hidden nodes). However, the average number

of connections in NWEA-evolved ANNs was 88.4, while in average EPNet had 92.6

connections.

min max mean SD
Connections 28 202 88.4 37.6
Hidden nodes 1 8 4.0 1.9
Generations 127 200 172.2 53.2

Table 5.9: ANN architectures for heart disease diagnosis.

Diabetes Diagnosis

The diabetes diagnosis is recognized as one of the most challenging problems in ANN

and machine learning due to its relatively small data set and high noise level [162].
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min max mean SD
Training error 7.489 12.166 11.007 0.693
Training error rate 0.07879 0.15184 0.12477 0.01465
Validation error 11.746 14.301 12.450 0.468
Validation error rate 0.12124 0.19706 0.15935 0.01736
Testing error 10.126 13.842 12.266 0.701
Testing error rate 0.13195 0.17997 0.15165 0.01772

Table 5.10: Classification accuracy for heart disease diagnosis.

Algorithm Hidden nodes Testing error rate

NWEA 4.0 0.15165
EPNet 4.1 0.16765
GM - 0.1818
MSM1 - 0.1653
MSM - 0.2592
BP - 0.25
HDANNS (best result) 4.0 0.1478

Table 5.11: Comparative results of the classification accuracy for heart disease diag-
nosis.

Generally, the medical data are very costly to obtain; thus it is inefficient to increase the

training data to improve generalization of a classification approach. This implies that a

good algorithm should not rely on the large training set.

Tables 5.12 and 5.13 report the results of NWEA-evolved ANNs over 30 runs for the

diabetes diagnosis. Similar to the previous classification tasks, the error is defined by

Eq. (5.3) and the error rate shows the rate of incorrect classifications. Table 5.14

compares the results of NWEA-evolved ANNs with those produced by other algorithms

[102, 115, 162]. All considered algorithms except for EPNet [162] and HDANNS [115]

represent the best methods out of 23 techniques tested in [102]. The results of these

algorithms were obtained by 12-fold cross-validation [102].

As shown in Table 5.14, the NWEA-evolved networks outperformed the compared algo-

rithms in terms of generalization. The average rate of wrong classifications of NWEA-

evolved ANNs was 0.18074 (18.07%), while the testing error rate of the other methods

were higher than 22%. The best accuracy reported by EPNet and HDANNS were 19.27%

(0.19271) and 21.35%, respectively, while the best error achieved by NWEA-evolved

ANNs was 16.71% (0.16711).

In terms of the network size, NWEA also showed favorable results. The average ANN,

produced by NWEA had 2.7 hidden nodes, the largest had 5 nodes and the smallest

just 1 node. The smallest NWEA-evolved ANN is comparable to that of EPNet (1

hidden node), the average and the largest ANNs evolved by EPNet had 3.4 and 6 nodes,
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respectively. At the same time the highest classification accuracy of HDANNS was

achieved by the network with 8 hidden neurons.

min max mean SD
Connections 22 69 42.9 12.7
Hidden nodes 1 5 2.7 1.1
Generations 83 173 102.4 42.2

Table 5.12: ANN architectures for diabetes diagnosis.

min max mean SD
Training error 14.723 18.177 16.069 0.272
Training error rate 0.14352 0.23934 0.19827 0.00010
Validation error 12.304 14.129 13.026 0.405
Validation error rate 0.13882 0.19911 0.16288 0.00006
Testing error 13.137 14.625 13.788 0.243
Testing error rate 0.16711 0.23418 0.18074 0.00084

Table 5.13: Classification accuracy for diabetes diagnosis.

Algorithm Hidden nodes Testing error rate

NWEA 2.7 0.18074
EPNet 3.4 0.22379
Logdisc - 0.223
DIPOL92 - 0.224
Discrim - 0.225
SMART - 0.232
RBF - 0.243
ITrule - 0.245
BP - 0.248
Cal5 - 0.250
CART - 0.255
CASTLE - 0.258
Quadisc - 0.262
HDANNS (best result) 8 0.2135

Table 5.14: Comparative results of the classification accuracy for diabetes diagnosis.

Thyroid Diagnosis

Tables 5.15 and 5.16 present the results of NWEA-evolved ANNs over 30 runs for the

thyroid diagnosis. As stated in Section 5.2.3.5, a good classifier for the thyroid problem

must have an accuracy over 92%. The minimal classification error rate achieved by

NWEA-evolved ANNs was 0.01167 (1.17%) and the average error rate was 0.01628

(1.63%), which indicates a superior performance of NWEA in developing networks of

high classification accuracy.

Table 5.17 reports the comparison results between NWEA-evolved ANNs, EPNet [162],

ANNs trained with a modified GA [130] and HDANNS [115]. It is obvious that NWEA-

evolved ANNs performed better than other algorithms. The average classification error
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showed by EPNet and the ANNs trained by the modified GA were 2.12% (0.02115) and

2.5%, respectively. The minimal rate of wrong classification reported by EPNet was

1.634% and 1.278% by HDANNs, which is worse than the best result of NWEA-evolved

ANNs.

The results on ANN architectures evolved by NWEA also compare favorable to those

produced by other algorithms. The NWEA-evolved ANNs had on average 4.9 hidden

nodes and 181.6 connections, while ANNs designed by EPNet had 5.9 hidden nodes and

219.6 connections, and the ANN evolved with the modified GA had 50 hidden nodes

and 278 connections. The highest accuracy of hand-designed HDANNS was shown by

the ANN with 12 hidden neurons.

min max mean SD
Connections 115 378 181.6 64.9
Hidden nodes 3 10 4.9 1.7
Generations 15 92 52.6 16.2

Table 5.15: ANN architectures for thyroid diagnosis.

min max mean SD
Training error 0.178 0.685 0.389 0.073
Training error rate 0.00326 0.01231 0.00719 0.00117
Validation error 0.361 0.893 0.570 0.086
Validation error rate 0.00497 0.01244 0.07341 0.00197
Testing error 0.677 1.162 0.896 0.093
Testing error rate 0.01167 0.01912 0.01628 0.00155

Table 5.16: Classification accuracy for thyroid diagnosis.

Algorithm Hidden nodes Testing error rate

NWEA 4.9 0.01628
EPNet 5.9 0.02115
Modified GA 50 0.025
HDANNS (best result) 12 0.01278

Table 5.17: Comparative results of the classification accuracy for thyroid diagnosis.

5.2.5 Exploring the Impact of Activation Function Type

The following sections investigate the evolution process and the quality of the obtained

networks under different characteristics of a learning algorithm and an ANN architecture.

In this section the impact of a particular type of neuron activation function on the

performance of NWEA-evolved ANNs was studied. More specifically, we investigated

the opportunity of utilizing a linear function as a node transfer function in ANNs evolved

by the evolutionary methodology.
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The node activation function has been shown to be an important part of an architecture,

as it has significant impact on ANNs’ performance [93]. As described in Section 2.2.2, the

essence of a learning algorithm is the learning rule, which determines how connection

weights are changed. The gradient descent methods, e.g., back-propagation, employ

gradient descent to minimize the error function, and put strong limitation on a type

of the neuron activation function, that requires it to be differentiable (the derivative

must be continuous). The perfect choice here are sigmoid functions, such as logistic,

hyperbolic tangent, etc., which besides being differentiable, add small nonlinearity in

the network so that it do not change its result significantly.

In contrast to back-propagation, EAs involve principles and mechanisms of natural evo-

lution in the optimization process and do not require gradient information, which makes

them less dependent on a type of the activation function. On the other hand, the signal

processing is controlled by the threshold values, which are evolved and adapted along-

side with connection weights during the evolution. Thus, the use of sigmoid activation

function is not strongly motivated for EANNs. That means, it is possible to use linear

functions, which besides their simplicity might reduce computational time of each cycle

of evolution (however, this does not guarantee reduction of the total time needed to find

an optimal solution and moreover, better quality of the obtained networks). Addition-

ally, the shape of some linear functions, e.g., piecewise linear function, resembles that

of the sigmoid functions [92], which implies that the outcome of the piecewise linear

function should not deviate much from that of the logistic function.

In order to examine the role of an activation function in EANNs, we compared per-

formances of NWEA-evolved ANNs with the logistic, hyperbolic tangent (both sigmoid

functions), and piecewise linear functions. The piecewise linear function was defined by:

fi

(∑n
j=1 xjwij − θi

)
=


0 :
(∑n

j=1 xjwij − θi
)
< −1(∑n

j=1 xjwij − θi
)

: −1 ≤
(∑n

j=1 xjwij − θi
)
< 1

1 :
(∑n

j=1 xjwij − θi
)
≥ 1

.

The empirical analysis was carried out for the Mackey-Glass chaotic time series (with

the time span ∆t = 6), the breast cancer and the heart disease problems. Since NWEA-

evolved ANNs with the sigmoid transfer function were studied in Section 5.2.4, we

applied NWEA to evolve ANNs with hyperbolic tangent and linear activation functions.

The experimental setup for the considered problems was similar to that in the previous

section, including the same initial populations. For a certain type of ANN, 30 runs of

NWEA were provided. The results were evaluated in terms of size of the evolved ANNs

and their generalization ability.
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tahn(x) piecewise linear

Connections, min 64 64
Connections, max 146 138
Connections, mean 102.1 98.79
Connections, SD 22.1 20.7
Hidden nodes, min 8 8
Hidden nodes, max 16 14
Hidden nodes, mean 11.27 10.73
Hidden nodes, SD 1.9 1.7
Generations, min 94 85
Generations, max 188 181
Generations, mean 148.5 117.2
Generations, SD 20.4 21.8

Table 5.18: Utilizing different activation functions: ANN architectures for the
Mackey-Glass time series problem.

tanh(x) piecewise linear

Training error, min 0.01228 0.01239
Training error, max 0.01816 0.01721
Training error, mean 0.01381 0.01401
Training error, SD 0.00196 0.00185
Testing error, min 0.01230 0.01231
Testing error, max 0.01900 0.01814
Testing error, mean 0.01418 0.01443
Testing error, SD 0.00182 0.00187

Table 5.19: Utilizing different activation functions: prediction accuracy for the
Mackey-Glass time series problem.

logistic tanh(x) piecewise linear

Connections, min 64 64 64
Connections, mean 98.21 102.1 98.79
Hidden nodes, min 8 8 8
Hidden nodes, mean 10.97 11.27 10.73
Testing error, min 0.01220 0.01230 0.01231
Testing error, mean 0.01426 0.01418 0.01443

Table 5.20: Comparative results of ANNs with logistic, hyperbolic tangent and piece-
wise linear activation functions for the Mackey-Glass time series problem.

5.2.5.1 Results and Discussions

Tables 5.18, 5.19, 5.21, 5.22, 5.24, 5.25 report the results of the networks with hyperbolic

tangent and piecewise linear functions for the studied problems. Tables 5.20, 5.23, 5.26

present the comparative results between ANNs with different activation functions.

Statistical analysis of data reported in Tables 5.20, 5.23, 5.26 with t-test indicated no

significant distinctions between the best and the average results of NWEA-evolves ANNs

with the studied activation functions. All networks, independent of an activation func-

tion’s type, demonstrated good generalization ability and high prediction/classification
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tanh(x) piecewise linear

Connections, min 15 15
Connections, max 82 84
Connections, mean 41 38
Connections, SD 13.7 12.7
Hidden nodes, min 1 1
Hidden nodes, max 5 4
Hidden nodes, mean 1.6 1.4
Hidden nodes, SD 1.1 0.9
Generations, min 93 89
Generations, max 187 185
Generations, mean 142.7 126.2
Generations, SD 27.2 34.5

Table 5.21: Utilizing different activation functions: ANN architectures for breast
cancer diagnosis.

tanh(x) piecewise linear

min max mean SD min max mean SD
Training error 1.428 3.769 3.214 0.376 1.422 3.677 2.637 0.411
Training error rate 0.01720 0.04818 0.04212 0.00607 0.01712 0.04823 0.02886 0.00529
Validation error 0.053 1.034 0.691 0.174 0.048 1.026 0.544 0.169
Validation error rate 0.00000 0.01156 0.00602 0.00236 0.00000 0.01069 0.00526 0.00338
Testing error 0.172 3.718 1.502 0.713 0.169 3.550 1.427 0.706
Testing error rate 0.00000 0.03875 0.01363 0.01108 0.00000 0.03617 0.01391 0.01043

Table 5.22: Utilizing different activation functions: classification accuracy for breast
cancer diagnosis.

logistic tanh(x) piecewise linear

Connections, min 14 15 15
Connections, mean 36 41 38
Hidden nodes, min 0 1 1
Hidden nodes, mean 1.3 1.6 1.4
Testing error, min 0.178 0.172 0.169
Testing error, mean 1.413 1.502 1.427
Testing error rate, min 0.00000 0.00000 0.00000
Testing error rate, mean 0.01384 0.01363 0.01391

Table 5.23: Comparative results of ANNs with logistic, hyperbolic tangent and piece-
wise linear activation functions for breast cancer diagnosis.

accuracy in solving the benchmark problems. Besides, for all types of ANNs NWEA

needed approximately the same number of generations to find the optimal solution.

However, NWEA needed in average 4% less time to evolve ANNs with the piecewise

linear function.

Several conclusions can be drawn from the obtained results. Firstly, results demon-

strated that the functionality of an EANN does not strongly depend on the activation

function’s type.4 Indeed, the search for the optimum is provided by the evolutionary

4Although this conclusion is made for NWEA, it is likely to be true for all evolutionary methodologies.
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tanh(x) piecewise linear

Connections, min 20 28
Connections, max 212 196
Connections, mean 92.8 87.6
Connections, SD 42.6 40.7
Hidden nodes, min 1 1
Hidden nodes, max 10 8
Hidden nodes, mean 5.1 3.8
Hidden nodes, SD 2.4 1.6
Generations, min 134 118
Generations, max 235 248
Generations, mean 175.9 191.4
Generations, SD 49.6 57.4

Table 5.24: Utilizing different activation functions: ANN architectures for heart dis-
ease diagnosis.

tanh(x) piecewise linear

min max mean SD min max mean SD
Training error 8.288 12.345 11.282 0.733 7.842 11.967 10.412 0.725
Training error rate 0.09355 0.16192 0.13384 0.01461 0.07936 0.14652 0.11987 0.01478
Validation error 12.326 14.518 12.794 0.524 12.268 15.062 13.456 0.538
Validation error rate 0.13137 0.20403 0.17641 0.01915 0.12711 0.20064 0.16138 0.01847
Testing error 11.014 14.141 12.720 0.725 10.592 13.812 12.488 0.713
Testing error rate 0.13157 0.18246 0.15220 0.01874 0.12793 0.18217 0.15183 0.01819

Table 5.25: Utilizing different activation functions: classification accuracy for heart
disease diagnosis.

logistic tanh(x) piecewise linear

Connections, min 28 20 28
Connections, mean 88.4 92.8 87.6
Hidden nodes, min 1 1 1
Hidden nodes, mean 4.3 5.1 3.8
Testing error, min 10.126 11.014 10.592
Testing error, mean 12.266 12.720 12.488
Testing error rate, min 0.13195 0.13157 0.12793
Testing error rate, mean 0.15165 0.15220 0.15183

Table 5.26: Comparative results of ANNs with logistic, hyperbolic tangent and piece-
wise linear activation functions for heart disease diagnosis.

learning algorithm, which places less emphasis on a type of the activation function.

During evolution, the activation function is a part of the error function, needed to de-

termine the fitness of individuals, and not a part of the improvement mechanism (like

in gradient descent methods). Secondly, although the best and average time needed to

produce the optimal networks is not reported, it is obvious that for the same number of

iterations, an algorithm that evolves networks with piecewise linear function converges

faster than ANNs with the sigmoid function, given that other parameters are the same.

It is conditioned by the fact that the linear function does not require computational

time to modify the signal. Finally, it is reasonable to conclude that the type of the
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node transfer function should be decided depending on the requirements and conditions

of a solving task. For instance, utilization of sigmoid functions might be beneficial for

the problems that require high accuracy of prediction, while the piecewise linear trans-

fer function would be preferred for the problems, which require finding of acceptable

solutions within a short period of time.

5.2.6 Mixing Different Search Biases in NWEA

In this section we investigated the impact of mixing search biases of NWEA modifications

based on three different distributions, on the generalization of the evolved ANNs. The

idea of using different distributions in the evolutionary algorithm was studied by Yao

et al. in [164]. The analysis of the mixed EP algorithms, i.e., IFEP and MEP (see

Section 3.4) indicated their consistent performance, excellent scalability and robustness

in comparison with CEP and FEP.

Inspired by the results of IFEP and MEP, we observed the evolution under different step

sizes determined by mixed distributions. Two modifications of NWEA, which combine

Gaussian, Cauchy and uniform distributions at the chromosome and gene levels have

been examined with respect to the ANNs’ generalization ability. The first modification,

referred to as combined NWEA (CNWEA) produces three offspring from each parent

by applying three mutation mechanisms based on different distributions. CNWEA per-

forms mutation at the chromosome level and modifies all genes in the chromosome by

NWEA with either Gaussian, Cauchy or uniform distribution. The second modifica-

tion of NWEA, called mixed NWEA (MNWEA), applies three mutation operators with

different distributions, each with a certain probability, to generate one offspring, i.e.,

provides mutation at the gene level.

The utilization of combined search strategies in the ANNs training implies that different

step sizes determined by mixed distributions will efficiently direct the evolution towards

good solutions. In order to examine it, the generalization ability of CNWEA- and

MNWEA-evolved ANNs has been tested on the breast cancer and heart disease diagnosis

problems. For each problem 30 runs of each of studied algorithms were provided. The

experimental setup was the same as described in Sections 5.2.3.2 and 5.2.3.3, except the

population size of 10 for CNWEA (since CNWEA produces three offspring from each

parent). The results were compared with those produced by NWEA (see Section 5.2.4).
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5.2.6.1 Length of Gaussian and Cauchy Jumps

As discussed in Chapter 3, differences between the performances of CEP and FEP on

various function optimization problems with dimension 30 are conditioned by different

step sizes determined by Gaussian and Cauchy distributions. The expected length of

Gaussian (with µ = 0 and σ2 = 1) and Cauchy (with γ = 1) jumps can be calculated by

integrating their probability density functions:

EG(x) = 2

∫ +∞

0
x

1√
2π
e−

x2

2 dx =
2√
2π

= 0.80

EC(x) = 2

∫ +∞

0
x

1

π (1 + x2)
dx = +∞.

Apparently, the Cauchy distribution enables longer jumps than the Gaussian one. At

first sight it seems that longer jumps in the search space induce faster convergence,

and so the Cauchy distribution is preferable in the searching strategy. However, this

assumption is wrong. The analytical studies in [157] concluded that long jumps are

beneficial only when the global optimum is far away from the current search point. In

other words, long jumps are effective when the distance between the global optimum and

the current point is larger than the mutation’s step size. On the other side, the Cauchy

distribution is no longer advantageous when the distance between the neighborhood of

the global optimum and the current point is smaller than the step size of the mutation.

This implies that the use of small jumps is more effective near the neighborhood of the

global optimum. Hence, the Gaussian distribution increases the probability of finding

the optimum when the distance between the current point and the neighborhood of the

global optimum is small.

5.2.6.2 Combined NWEA

The main idea behind combined NWEA (CNWEA) is to mix different search biases of

mutations that utilize Gaussian, Cauchy and uniform random numbers at the individ-

ual level. The implementation of CNWEA is simple and differs from NWEA only in

point 3 of the algorithm described in Section 4.3. Each parental individual is modified

three times and thus, produces three offspring by applying differently distributed ran-

dom values ND
Rand in Eq. 3. The improving mechanisms described by equations below

are combined at the chromosome level, as each of mutations is applied to all genes

(components) of an individual.
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The first offspring is created by using normally distributed values NDG
Rand with mean

µ = 0 and variance σ2 = 1, i.e.,

x
(j)′

i = x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDG

Rand

)
, (5.4)

the second offspring is defined by using Cauchy random numbers NDC
Rand with a scale

parameter γ = 1, i.e.,

x
(j)′

i = x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDC

Rand

)
, (5.5)

and the third offspring is created by utilizing uniformly distributed random values,

NDU
Rand∈ [-1.0, 1.0]:

x
(j)′

i = x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDU

Rand

)
. (5.6)

The rest of the algorithm is exactly the same as NWEA (see Section 4.3 from point 4).

5.2.6.3 Mixed NWEA

An alternative way of combining different biases is to apply mutation operators based on

Gaussian, Cauchy and uniform distributions in order to create one offspring individual,

i.e., to mix them at the component level. In this modification of NWEA, called mixed

NWEA (MNWEA) certain probabilities PG, PC and PU are defined to apply mutation

with Gaussian, Cauchy or uniform random numbers to change a particular gene in the

parental individual. The genes in the chromosome are modified as follows:

x
(j)′

i =


x

(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDG
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)
, with PG

x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDC

Rand

)
, with PC

x
(j)
i

(
1.0 +NW (l, n̄) ·NF ·NDU

Rand

)
, with PU

.

Evidently that PG +PC +PU = 1. The probabilities PG, PC and PU were set to 0.4, 0.4

and 0.2, respectively. The lowest probability was given to the mutation based on the

uniform distribution, as the goal of the experiments was to explore the impact of small

and large jumps provided by Gaussian and Cauchy distributions on the evolution.

5.2.6.4 Results and Discussion

Tables 5.27, 5.28, 5.30 and 5.31 present the results of ANNs evolved with the com-

bined approaches for the breast cancer and the heart disease problems. Tables 5.29 and
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5.32 report the comparative results among NWEA-, CNWEA- and MNWEA-evolved

ANNs. The results show that the differences in evolved ANN architectures with CN-

WEA and MNWEA are insignificant compared to NWEA-evolved topologies, though

the smallest CNWEA- and MNWEA-evolved ANNs had lower number of connections

for the heart disease problem (26 connections) and the average topologies were gener-

ally more compact than those evolved by NWEA (see Tables 5.27 and 5.30). However,

both CNWEA- and MNWEA-evolved ANNs demonstrated higher classification accu-

racy compared to NWEA-evolved ANNs. Statistical analysis with the t-test between

NWEA-, CNWEA- and MNWEA-evolved ANNs indicated excellent performance of the

combined algorithms. The results for the breast cancer diagnosis showed that the dif-

ferences in the classification accuracy are statistically significant for ANNs evolved with

CNWEA and not significant for ANNs evolved with MNWEA (Table 5.28), and for the

heart disease problem showed extremely significance for both CNWEA- and MNWEA-

evolved ANNs (Table 5.31). Besides, the combined approaches demonstrated higher

convergence speed compared to NWEA as measured by the number of iterations before

an optimal network is obtained.

As can be seen from the obtained results, CNWEA that mixed different distributions

at the individual level performed favourable than MNWEA that combines the search

biases at the component level. However, we do not attribute the differences in the

performance to the method of biasing distributions, but instead credit the multiple

offspring generation from one parent in CNWEA. In contrast to NWEA and MNWEA,

CNWEA creates three offspring from each parent and marks the best individual out of

them as a “child”, while the mutation mechanism of NWEA and MNWEA produces

only one offspring from each parent.

CNWEA MNWEA

Connections, min 14 14
Connections, max 82 86
Connections, mean 29 36
Connections, SD 14.2 12.7
Hidden nodes, min 0 0
Hidden nodes, max 4 4
Hidden nodes, mean 1.3 1.4
Hidden nodes, SD 0.6 0.7
Generations, min 87 104
Generations, max 177 185
Generations, mean 118 123.7
Generations, SD 38.1 31.9

Table 5.27: Mixing search biases in NWEA: ANN architectures for breast cancer
diagnosis.
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CNWEA MNWEA
min max mean SD min max mean SD

Training error 1.183 2.659 2.329 0.238 1.377 3.247 2.798 0.523
Training error rate 0.00744 0.02451 0.02246 0.00422 0.00954 0.03134 0.03422 0.00741
Validation error 0.037 0.637 0.349 0.122 0.034 0.924 0.503 0.135
Validation error rate 0.00000 0.00902 0.00562 0.00141 0.00000 0.01091 0.00536 0.00152
Testing error 0.054 2.899 1.217 0.455 0.117 3.487 1.406 0.812
Testing error rate 0.00000 0.02687 0.00867 0.00465 0.00000 0.03455 0.01457 0.00748

Table 5.28: Mixing search biases in NWEA: classification accuracy for breast cancer
diagnosis.

NWEA CNWEA MNWEA

Connections, min 14 14 14
Connections, mean 36 29 36
Hidden nodes, min 0 0 0
Hidden nodes, mean 1.3 1.3 1.4
Testing error, min 0.178 0.054 0.117
Testing error, mean 1.413 1.217 1.406
Testing error rate, min 0.00000 0.00000 0.00000
Testing error rate, mean 0.01384 0.00867 0.01457

Table 5.29: Comparative results of NWEA-, CNWEA- and MNWEA-evolved ANNs
for breast cancer diagnosis.

CNWEA MNWEA
Connections, min 26 26
Connections, max 192 200
Connections, mean 78.3 82,6
Connections, SD 35.2 38.4
Hidden nodes, min 1 1
Hidden nodes, max 8 8
Hidden nodes, mean 3.7 4.1
Hidden nodes, SD 1.7 2.1
Generations, min 106 113
Generations, max 194 188
Generations, mean 157.9 169.6
Generations, SD 41.7 37.5

Table 5.30: Mixing search biases in NWEA: ANN architectures for heart disease
diagnosis.

5.3 Parallelizing NWEA: Investigating Generalization in

PEANNs

As pointed in Section 2.3.5, parallel EAs (PEAs) have found increasing consideration in

evolution of ANNs due to advantages derived from both parallelization and interconnec-

tion. Several works on PEANNs indicated very promising results in solving optimization

problems [28, 29, 55, 56, 120]. They often outperform EANNs in terms of generalization

and the size of the evolved architectures.
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CNWEA MNWEA
min max mean SD min max mean SD

Training error 5.763 12.005 8.963 0.443 5.893 12.137 7.774 0.561
Training error rate 0.04831 0.12069 0.09446 0.01127 0.05271 0.15040 0.10645 0.01042
Validation error 9.271 12.158 9.677 0.237 9.814 12.816 10.240 0.311
Validation error rate 0.08113 0.13812 0.10543 0.01053 0.09276 0.13762 0.12418 0.01433
Testing error 7.009 12.932 10.633 0.674 7.112 13.004 10.458 0.694
Testing error rate 0.09385 0.14889 0.11676 0.01474 0.11243 0.17002 0.12276 0.01651

Table 5.31: Mixing search biases in NWEA: classification accuracy for heart disease
diagnosis.

NWEA CNWEA MNWEA

Connections, min 28 26 26
Connections, mean 88.4 78.3 82,6
Hidden nodes, min 1 1 1
Hidden nodes, mean 4.0 3.7 4.1
Testing error, min 10.126 7.009 7.112
Testing error, mean 12.266 10.633 10.458
Testing error rate, min 0.13195 0.09385 0.11243
Testing error rate, mean 0.15165 0.11676 0.12276

Table 5.32: Comparative results of NWEA-, CNWEA- and MNWEA-evolved ANNs
for heart disease diagnosis.

This section addresses the question of examining generalization in PEANNs evolved

by the parallelized NWEA (PNWEA). Two efficient parallelization schemes that per-

form genetic information exchange between parallel populations, have been exploited

to parallelize NWEA. The PNWEA approaches were applied to evolve ANNs for the

Mackey-Glass chaotic time series.

5.3.1 Parallelization strategies

The simplest parallelization approach, i.e., independent parallelization strategy, de-

scribed in Section 2.1.6 was found not effective, as it is similar to multiple runs of a

serial EA and does not carry out any interconnection between simultaneously evolved

populations. The benefit of interconnection lies in the exchange of genetic material be-

tween populations, which enables to maintain diversity of individuals. As a result, the

populations become more resistant to local minima trapping, since they contain genetic

material from different portions of search space.

In order to add interconnection in the evolution process, an alternative parallelization

scheme, called migration [147], has been proposed. The migration approach augments

the independent approach with the periodic individuals exchange between different pop-

ulations. A PEA with the migration strategy starts the evolution similarly to a PEA

with the independent strategy. After each evolution stage or a predefined number of
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evolution stages each concurrent process sends some number of the best offspring indi-

viduals to a shared storage and gets the same number of individuals from other parallel

populations.

The parallelization approach, proposed in this thesis, is the following improvement of the

migration scheme: after migration, some individuals with the low fitness in each parallel

population are replaced by randomly generated individuals called strangers [25, 28]. The

main goal of inserting strangers is to extend the search space. It is likely that after a

number of generations the best individuals in the parallel populations might have the

same fitness; thus, the exchange of the best individuals between the concurrent processes

will not introduce new genotype. By involving strangers in the population we maintain

diversity of individuals and allow the process considering the earlier unexplored areas of

the search space. As a result, the probability of an algorithm to find the global minimum

increases. The experiments made in [25] showed, that the utilization of 4-6% of strangers

is optimal. The low rate of strangers enables the algorithm to explore different portion

of the search space but does not change the average fitness of a population considerably,

while the high rate reduces the average fitness of a population and slows down the

evolution process.

5.3.2 Experimental Setup

The PEANNs have been evolved for the Mackey-Glass chaotic time series in order to

predict the output for small ∆t = 6 and large ∆t = 90 time spans. Following initial

conditions have been used in experiments: the population size 120, which was divided

into 4 parallel processes (30 individuals for each parallel approach), the migration rate

10%, the strangers rate 4%, the maximum number of generations 150. The migration and

the strangers’ insertion were carried out every 10th generation. Both PNWEAs started

their evolution with the same initial populations; each algorithm with 30 randomly

generated populations was run 30 times. Parallel processes were implemented on one

machine (Intel Core 2 Duo Processor T7100, 1.80 GHz, 2.00 GB/Go DDR2 SDRAM)

using multiple threads. The other parameters as well as error function were the same

as determined in Section 5.2.3.1.

5.3.3 Results and Discussions

Tables 5.33 and 5.34 report the results of PEANNs over 30 runs for the Mackey-Glass

chaotic time series. Figure 5.5 shows the evolution of PEANNs’ performance. The results

in Table 5.34 indicated better generalization of PNWEA-evolved ANNs in comparison

to that of NWEA-designed ANNs. For a small time span (∆t = 6), the minimal errors
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(b) PNWEA with migration-strangers strategy

Figure 5.5: PNWEAs’ convergence: evolution of PEANNs’ performance.
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Migration Mig.-Strangers

Connections, min 64 60
Connections, max 126 118
Connections, mean 90.0 84.9
Connections, SD 21.1 19.7
Hidden nodes, min 8 8
Hidden nodes, max 13 12
Hidden nodes, mean 10.1 9.6
Hidden nodes, SD 1.72 1.68
Generations, min 67 46
Generations, max 98 90
Generations, mean 73.4 68.1
Generations, SD 17.6 18.4

Table 5.33: PEANN architectures for the Mackey-Glass time series problem.

Migration Mig.-Strangers

min max mean SD min max mean SD
Training error 0.0067 0.0139 0.0078 0.0017 0.0064 0.0126 0.0068 0.0016
Testing error, ∆t = 6 0.0068 0.0163 0.0103 0.0015 0.0065 0.0145 0.0087 0.0015
Testing error, ∆t = 90 0.0121 0.0615 0.0362 0.0057 0.0118 0.0517 0.0227 0.0051

Table 5.34: Prediction accuracy of PEANNs for the Mackey-Glass time series prob-
lem.

of the PNWEA-evolved ANNs with migration and migration-strangers strategies were

0.0068 and 0.0065, respectively. These results are almost twice lower than the best

result of EANNs evolved with the serial NWEA (0.0122, see Table 5.3). The average

prediction accuracy of PEANNs also compare favorable to that of EANNs; the average

testing errors of the PNWEA-evolved ANNs with migration and migration-strangers

strategies were 0.0103 and 0.0087, while the corresponding result of NWEA-evolved

ANNs was 0.0123. Note, that there are no huge differences between the lowest and the

average results, which means that parallelized algorithm often evolves good generalized

ANNs.

Similar results can be observed for the multiple step prediction. The minimal errors

indicated for a large time span (∆t = 90) were 0.0121 for PEANNs evolved with mi-

gration and 0.0118 for PEANNs produced with migration-strangers, while the average

results were 0.0362 and 0.0227, respectively. The best and the average results of the

NWEA-evolved ANN are 0.0395 and 0.0538, respectively.

Table 5.33 demonstrates that PNWEAs evolved more compact architectures. The

smallest networks produced by PNWEA with migration and PNWEA with migration-

strangers schemes had 64 for and 60 connections, respectively, while the smallest EANN

had 64 connections. The average number of connections in ANNs evolved by PNWEA

with the migration strategy was 90.0 and in ANNs produced by PNWEA with the
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migration-strangers approach was 84.9 (NWEA-evolved ANNs had in average 98.21

connections).

The prediction results of PEANNs evolved with the migration-strangers strategy were

better than those of PEANNs developed with the migration scheme (the t-test analy-

sis indicated significant distinctions between them). Specifically, starting the evolution

process with the same initial populations, PNWEA with migration-strangers strategy

produced more compact networks with smaller testing errors. The results clearly demon-

strated the advantage of the strangers’ insertion. In contrast to the migration approach,

which evolved individuals in the environment restricted with the genotype of parallel

populations and strongly relied on quality of the improvement mechanism, the migration-

strangers strategy periodically inserted new solutions in the populations. This extended

the search space and allowed the algorithm to consider early unexplored areas, i.e., led

to the global searching and improved the quality of the evolved solutions.





Chapter 6

Conclusions

“Each problem that I solved became a rule, which served afterwards to solve other

problems.”

Rene Descartes

This chapter concludes the dissertation by summarizing its contribution and discussing

potential directions for future research.

6.1 Summary

Learning is a central issue in the theory of ANNs. The choice of a learning algorithm

is crucial, as it affects the functionality and performance of the network. This thesis

proposed a new mutation-based evolutionary learning algorithm, called the network-

weight-based evolutionary algorithm (NWEA) for evolving ANNs. The main contribu-

tion of this dissertation is the development of the algorithm which extends computa-

tional evolution by involving other mechanisms of nature. The key idea behind NWEA

is to perform behavioral adaptation alongside with structural adaptation, that means,

to provide interaction between a population and the environment, collect knowledge of

the environment and use it in the optimization process. The modification strategy of

NWEA consists of two individual-level adaptive components, which represent genotype

and phenotype information, derived from the genetic characteristics of an individual

and its local environment. Genotype information is introduced by an individual’s error,

that determines the worth of an individual with respect to a given problem. Phenotype

information is included in the novel component, called the network weight (NW), which

describes an ANN’s internal structure. NWEA does not perform any probabilistic se-

lection for reproduction; all individuals in the population undergo mutation in order to
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create offspring. The new generation is formed according to (µ+λ)-ES, which selects the

best individuals from both parental and offspring populations for the next generation.

The critical challenge of our research was to determine the relationship between NW

values and ANN architectures. In order to obtain the function that describes the depen-

dency of NW values on ANN topologies, we provided extensive empirical and analytical

studies, where NWEA-evolved ANNs were used as meta-models for fitness approxima-

tion. The results showed that the NW component is related to the ANN’s internal

structure and depends on the total number of hidden layers and the average number of

neurons in hidden layers. This dependency is defined by the Fermi-Dirac-like function.

The NWEA-evolved ANNs were tested on a number of benchmark problems of different

complexity. The experiments were divided into three parts. In the first part, we inves-

tigated the internal features of NWEA, such as convergence speed, the average rate of

successful improvements per generation and ability to find solutions of high accuracy.

For this purpose, NWEA was applied to evolve connection weights in the environment

of 25 fixed ANN architectures for the XOR problem. The results of these experiments

were compared with those, obtained by CEP, FEP, IFEP and MEP algorithms. The

results showed that NWEA outperformed classical approaches in terms of the average

rate of successfully improved individuals per generation, which led to faster convergence

to optima. Additionally, NWEA was able to find solutions of higher accuracy. Several

tests were also provided to examine the efficiency of the genotypic component repre-

sented by an individual’s error. These experiments compared the performance of three

NWEA variations, which utilized the particular error of each individual, the average

error of the population, and the error of the best individual in the population in the

evolution process.

The second part of experiments was devoted to examining generalization in ANNs

evolved for real-world classification and prediction problems. In order to reduce noise

in fitness evaluation and to study the ability of NWEA to evolve compact and good

generalized ANNs, the evolution of both connection weights and architectures has been

performed. Four benchmark classification problems from the UCI repository (breast

cancer, heart disease, diabetes and thyroid problems) and the Mackey-Glass chaotic

time series prediction problem were used to evaluate the performance of NWEA-evolved

ANNs. The results indicated the NWEA algorithm as a very promising methodology

for ANNs design and training; for all five tasks NWEA evolved good generalized ANNs,

whose classification/prediction accuracy outperformed many existing approaches. Simi-

lar results were obtained regarding the complexity of ANN topology; in contrast to the

existing algorithms, NWEA evolved more compact ANN architectures.
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Further, the evolution process was investigated under different internal parameters of

NWEA and ANNs. In order to study the impact of the activation function type (the

internal ANN parameter) on the generalization in ANNs, we compared NWEA-evolved

ANNs that utilized logistic, hyperbolic tangent and piecewise linear activation functions

while proceeding signals. The results detected no significant differences in performances

of the evolved networks. Such a behavior is explained by the fact that evolutionary

learning methodologies are less dependent the type of the activation function than non-

evolutionary approaches.

Experiments were also provided for the purpose of examining the role of the distribution

function’s type (the internal NWEA parameter) on the quality of the obtained networks.

We studied two modifications of NWEA that combined Gaussian, Cauchy and uniform

distributions at the individual- and component-levels. The evolution process was ob-

served under different step sizes determined by mixed distributions. Both modifications

outperformed NWEA in terms of the algorithm convergence speed and generalization

ability of the evolved networks; the statistical analysis of the obtained results indicated

significantly higher accuracy of the combined NWEA approaches (CNWEA and MN-

WEA) over the standard NWEA.

In the final part of experiments, generalization of PEANNs were studied. Two par-

allelization schemes, i.e., widely known migration scheme and our migration-strangers

scheme, were used to evolve PEANNs. As anticipated, parallel NWEA evolved bet-

ter ANNs in terms of generalization than the serial NWEA. In addition, the results

indicated that the migration-strangers scheme is more effective in comparison to the

migration approach, as it in addition to migration also uses replacement strategy to

maintain population diversity and thus, explores different portions of the search space.

6.2 Future Work

This thesis provided a starting point for investigating the impact of the phenotype

information inclusion in the evolution process. Although the research in this dissertation

analyzed NWEA algorithm from different perspectives and examined NWEA-evolved

ANNs by considering different parameters, there are some potential directions for future

work:

• Investigate the combination of NWEA with local search/replacement procedures

in order to maintain the global search while solving problems with many local

optima. In particular, the application of the replacement mechanisms might be
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advantageous in retaining the population’s diversity, when the majority of indi-

viduals is located around the local optimum.

• A lot more research can be done to investigate the application of NWEA to other

types of ANNs, e.g., recurrent neural networks (RNNs).
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[7] T. Bäck, F. Hoffmeister, and H. P. Schwefel. A survey of evolution strategies. In

Proceedings of the 4th International Conference on Genetic Algorithms, pages 2–9.

Morgan Kaufmann, 1991.
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