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Danksagung

Summary

This thesis is dedicated to the promotion of the use of renewal theory in especially two fields
in (applied) probability theory: The analysis of random strings and related structures, such as
digital trees, and the study of (random) iterated function systems. In both areas, we are going
to study models involving Markov modulation by some positive recurrent driving Markov chain
on a (at most) countable state space S. Discrete Markov modulation allows for an elegant usage
of cyclic decomposition to lead the Markov model back to a corresponding independent model.

In Part I, we examine tree structures that appear in the analysis of algorithms and which are
constructed from a set of random strings. These strings are assumed to form a Markov chain.
As a consequence, an auxiliary process, that was introduced by Janson in an easier setting, is a
Markov-modulated sequence, and thus admits the use of Markov renewal theory. We employ
this model as an example of how the use of Markov renewal theory may provide an intuitive
approach to problems in which it has been sparsely used so far. Therefore, in the first half of this
part, we re-derive several limit theorems for characteristic trie parameters such as the depth, but
also find new results, e.g. for the imbalance factor. In the second half, we develop a device for
the average-case analysis of further characteristic parameters and provide a probabilistic proof.

In Part II, we investigate iterated function systems of Markov-modulated Lipschitz maps. We
explain how our model fits in the stationary model of Elton and use our extra structural knowledge
to prove polynomial and geometric convergence rates of the system in two regimes of moment
conditions. Again, we apply Markov renewal theory. In particular, we use cyclic decomposition
and controlling of the error that we make, when considering the occurring subsequences instead
of the original process.
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Part I.

Renewal theory in the analysis of
random digital trees
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1. Introduction

Renewal theory and the use of regenerative processes have by now become standard tools in
probability theory. But especially in the probabilistic analysis of digital trees, it is underrepre-
sented, at least in our opinion, as it allows for easy, intuitive and wholly probabilistic approaches
to problems which are usually treated with combinatorial and analytical methods.

Analysis of digital trees. Digital trees play an important role in the analysis of algorithms
especially on words in theoretical computer science. They bear complexity characteristics of
the corresponding algorithms which use them. Hence, the study of these trees enables us to
compare the performance of different algorithms, designed for the same purpose, via the chosen
characteristic, when we have a large amount of underlying data. In the beginnings of the study
of algorithms, a lot of work was done to analyze the worst-case performance. However, this often
leads to dealing with atypical inputs, that in a realistic setting would rarely appear. This nuisance
motivated the so-called probabilistic analysis (including average-case analysis or distributional
analysis) of algorithms, in which the input is randomized and modeled according to some suitable
(typical) probabilistic model, and the (random) characteristic parameter is sought to be described
as precisely as possible, e.g. its expectation is studied, of course accompanied by classical limit
theorems such as central limit theorems (CLTs). The Quicksort algorithm, which sorts n numbers,
is one famous example in which the worst-case number of comparisons needed is of order n2 but
this rarely appears, whereas the average-case number is of order n logn. Presumably the first to
conduct early instances of a structured probabilistic analysis of algorithms was Donald Knuth in
[Knu63].

Digital trees. The most commonly known digital trees are tries (from retrieval), Patricia-tries
(Pat-tries, short for Practical Algorithm to Retrieve Information Coded in Alphanumeric), digital
search trees (DST) and suffix trees. All of the previously mentioned are recursively built tree
structures, that store a set of strings which can be thought of as words or sequences of words.
Examples of these trees are shown in Figure 1.1. As already mentioned, tries and the related
structures form a visualization of algorithms, in particular searching algorithms and sorting
algorithms. E.g. the non-comparative sorting algorithm Radix Sort is also called Triesort, since
its mechanism is similar to the construction of a corresponding trie. Thus, the performance of
Radix Sort is in total correspondence to certain characteristic parameters of the trie. Digital
trees also appear in data compression as parsing trees for codes, such as Tunstall or Khodak
codes, and in the analysis of the well-known Lempel-Ziv Parsing Scheme among others.

Sources/Input models. There are several input models which aim at describing a typical input
string. The easiest and best understood, yet not always sensible, is the memoryless source,
emitting letters independently. Further dependency was allowed and, among others, Markov
sources, mixing sources, stationary ergodic sources, sources with density and the very general
so-called dynamical sources were studied.
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1. Introduction

∅
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0 1

0 1

(a) Trie
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(b) Pat-trie

0011· · ·

0010· · ·

0000· · ·

1000· · ·

0 1

0

(c) DST

Figure 1.1.: Trie, Pat-trie and DST constructed from strings 0011· · · , 1000· · · , 0010· · · and
0000· · · .

Usually, an algorithm processes a set of strings from some set M. Frequently, two models
appear in literature: In both models, different strings are produced independently and identically
distributed (i.i.d.) by the chosen source. Yet, in the standard model (sometimes called Bernoulli
model), the number of strings is some fixed integer number n, whereas in the second, the Poisson
model, this number is random, viz. Poisson distributed. Often, asymptotics are derived for the
Poisson model, which can be easier due to the various helpful properties of Poisson processes,
and the corresponding results for the standard model are deduced from these afterwards. In
the first chapter, we will not need the Poisson model, however the main device in the second
chapter is built for the use in the Poisson model. Of course, there are other models allowing for
dependence between the input strings such as in the suffix tree, where a trie is built from the
successive prefixes of a given string. We will not deal with those models in this thesis.

Characteristic parameters. There are plenty of interesting characteristic parameters in digital
trees. We take a selection from [Szp01] with minor supplements:

• The depth of a given string, i.e. the length of the path from the root to the (external) node
containing that string.

• The insertion depth, i.e. the depth of the last inserted string.

• The typical depth, i.e. the depth of a randomly selected string.

• The average depth, i.e. the arithmetic mean of all depths.

• The external path length, i.e. the sum of the depths of all strings.

• The height, i.e. the largest depth.

• The size, i.e. the number of (internal) nodes.

• The profile, i.e. the number of nodes at each level.

• The imbalance factor of a given binary string, i.e. the number of steps to the right minus
the number of steps to the left in the path from the root to the (external) node containing
that string.
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1.1. What has been done?

Obviously, most of the stated parameters measure complexity of the corresponding tree or the
underlying algorithm in some way. E.g. the depth of a given string can be seen as the searching
cost for that string, the external path length is the construction cost of the structure, in particular,
the external path length of a trie is the number of so-called bucket operations that are performed
by the corresponding Radix Sort algorithm.

Main goal. We will not deal with all of these digital trees, input models and parameters in
this thesis, indeed in the spirit of Janson in [Jan12a], we will try to give a consistent collection
of applications of Markov renewal theory to random strings and tries (and trie-like structures),
and to convey the possibility of easily obtaining Markov model analogues for results (not only
concerning digital trees) that have been established by standard renewal theory.

In his great survey, Janson showed how standard renewal theory can be used in a variety of
applications, e.g. to derive asymptotics for parameters of random strings or tries while restricting
himself to the basic situation that only strings in the alphabet {0, 1} are considered, where the
letters or bits ξi in the strings are i.i.d. or so-called memoryless sources.

One purpose of this part is to follow that approach in the analysis of tries and to broaden it in
an intuitive way by dealing with essentially the same (but not all) applications and additionally
allowing the ξi to form a Markov chain, i.e. being generated by a Markov source. This requires
an upgrade of the methods in use from standard renewal theory to Markov renewal theory.
Nevertheless, it has long been known, cf. [Als14] for a survey of important results, that Markov
renewal theory with a driving Markov chain on a discrete state space can be nicely related
to standard renewal theory by cyclic decomposition. Hence, the analysis of tries, where we
usually deal with a finite alphabet, appears to be an ideal playground for illustrating once
more a generalization of results involving renewal theory for i.i.d. variables to those allowing
for some dependence. Moreover, the transfer to Markov renewal theory conserves the relevance
of arithmeticity in the average-case analysis for possible oscillatory terms and a probabilistic
explanation for them.

Furthermore, we want to show that Markov renewal theory may provide intuitive probabilistic
approaches to fields in which the usual methods are analytical. The analysis of algorithms is such
a field. In the next section, we mention earlier publications and the methods that are commonly
used in these.

1.1. What has been done?

Renewal theory. In fact, there are a few examples, where some instances of Markov renewal
theory have already been used in the analysis of digital trees. In [SG97], [Sav99] and [Sav00]
Savari and Gallager studied generalized variable-to-fixed length codes such as a generalized
version of the Tunstall code for so-called unifilar Markov sources with the use of renewal theory.
The simple forms of those variable-to-fixed length codes such as the Khodak and Tunstall codes
have been studied by Janson as an illustration in [Jan12a] for the case of memoryless sources.

Generally, the use of renewal theory in this area is seldom found outside of [Jan12a]. Janson
himself gives a list of examples that use standard renewal theory: [BH12], [DG07], [DJ11], [Hol12],
[Jan04], [MR10] and [MR05]. There is also the unfinished work [Jan12b] extending [Jan12a].

Due to our extensive use of Markov renewal theory, we state the main sources of our methodol-
ogy: The papers [AMN78] and [Kes74] by Athreya, McDonald and Ney and Kesten are classical
for driving chains with a general state space, for the discrete driving chain setting we also suggest
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1. Introduction

[Çin69] by Çinlar, [Asm03] by Asmussen and, e.g. [Als14] by Alsmeyer. Of course, this list is by
no means a complete list of important results in Markov renewal theory.

We also refer to the powerful [MT93] for the comprehensive treatment of Markov chains and
to [Gut09] for a range of helpful results on stopped random walks.

Methods in the literature. With our renewal-theoretic approach we will derive results, most of
them have already been found (sometimes more precisely) by other techniques. Most frequently
used techniques are analytic because they “are extremely powerful and when they apply, they often
yield estimates of unparalleled precision”, as Szpankowski cites Andrew Odlyzko in the preface
of his book [Szp01]. Therein, he gives an overview of both some probabilistic and combinatorial
techniques such as Inclusion-Exclusion Principle and Moment Methods, and various analytic
techniques such as Generating Functions, Singularity Analysis, Saddle Point Method, Mellin
Transforms and Poissonization and Depoissonization. A huge treatment of most of the latter
methods and lots more from Analytical Combinatorics is done by Flajolet and Sedgewick in the
eponymous book [FS09], a technique which the authors specifically developed for the analysis of
algorithms.

There are more probabilistic methods to add here. One that was frequently used, is the
Contraction Method, which was developed by Rösler in [Rös91] to characterize the limit distribution
of the standardized complexity of Quicksort. There have been numerous extensions e.g. by Rösler
[Rös92], Neininger and Rüschendorf [NR04] and Neininger and Sulzbach [NS15] just to name
a few. More references can be found in the PhD thesis of Leckey [Lec15], which itself uses a
generalized Contraction Method. Also, as already mentioned, renewal theory belongs to the list
of probabilistic methods but has not been used as extensively as the others.

Results on random digital trees. Here we give a short (and almost surely incomplete) overview
of some results for parameters that will appear in the following chapters. We focus on results
concerning tries, Pat-tries and b-tries, which are tries with a storage capacity of b ≥ 1 strings in
a node (b = 1 matches normal trie). We cover the four models that have been studied most.

The easiest scheme for modeling sources is the memoryless source model. The so-called
unbiased model, where the letters are equiprobable, is the first that was investigated, in fact a
precise asymptotic expansion of the expected depth is already found in [Knu73]. An asymptotic
expansion of the variance in this setting can first be found in [KP88]. The authors also deal with
the expected depth in Pat-tries and DSTs as well as with the variances. In [KP86], the same is
done for the external path length. For general memoryless sources, results on the asymptotic
distribution of the depth and the height were first developed independently by Pittel [Pit86] and
Jacquet and Régnier [JR86b]. At that time, Pittel had already derived weak and strong laws of
large numbers for depth and height, respectively, in the fairly more general setup of a stationary
ergodic source in [Pit85]. In [JR86a], Jacquet and Régnier added a limit law for the size to
[JR86b] and in [JR88] they extended their results towards a limit law for the size and path length
of b-tries. To derive an asymptotic expansion of the variance of the depth, Szpankowski provided
a formula for all factorial moments of the depth in [Szp88]. These results include b-tries. Precise
asymptotics of the variance of the size of tries and b-tries was given by Régnier and Jacquet in
[RJ89]. The depth of Pat-tries is studied by Szpankowski in [Szp90] and by Rais, Jacquet and
Szpankowski in [RJS93]. The former provides, in particular, an asymptotic expansion for the
variance, the latter establishes a limit law.

Of course (as it initiated our work), several parameters such as the depth and the size of a
trie and Pat-trie, as well as the size of a b-trie and the path length of a trie, were re-derived by

6



1.1. What has been done?

Janson in [Jan12a] and [Jan12b] to motivate the usage of renewal theory in this kind of analysis.
Therein, he also gave an asymptotic expansion for the number of external nodes in a b-trie, in
which exactly 1 ≤ l ≤ b strings are stored, and a limit law for the imbalance factor in a binary
trie. The imbalance factor was first analyzed by Mahmoud [Mah08], and he already derived
an asymptotic expansion of the mean and the limit law. There are several other interesting
parameters concerning tries, so we briefly state two more and some corresponding references:
The profile is studied in [Par+08] or [Par+09], and protected nodes are considered in [Jan12b],
[Gai+12], [GW13] and [FLY16]. We refer to [Knu98], [Mah92], [Szp01] and [Drm09] for a survey
of these and other parameters and corresponding results.

The Markov source model appears to be studied to a much lesser extent than the memoryless
model. Probably the first was Régnier [Rég88] with her result about asymptotical linearity
of the expected size in a trie and b-trie. Mainly aiming at a corresponding result for suffix
trees, Jacquet and Szpankowski [JS16] sketched a re-derivation (and improvement) of Régnier’s
result. Concerning the depth, Jacquet and Szpankowski [JS91] derived precise asymptotics for
expectation and variance such as a limit law. They require the source to be stationary and
base their analysis on the inclusion-exclusion rule. In the same setting, Szpankowski [Szp91]
derived a weak law of large numbers (WLLN) for the height. Finally, Leckey, Neininger and
Szpankowski [LNS15] provided a CLT for the external path length in a binary trie using a
generalized Contraction Method and moment transfer techniques. The proof also applies to the
external path length in binary Pat-tries and DSTs, cf. [Lec15].

Results for the density model are due to Devroye. He studied random tries (and also
Pat-tries and DST in [Dev92]) built from the binary expansion of i.i.d. numbers in [0, 1] with
density f . In [Dev82], he derives the first order asymptotics for the expectation of depth and
average depth (and thus of the external path length), which is complemented by the first order
asymptotics of the expected height, the asymptotic distribution of the height and an asymptotic
upper bound for the expected size in [Dev84]. In [Dev92], he improves his results once more by
providing limit laws for both the depth and the height, as well as a strong convergence result for
both. He also gives a large deviation result and several laws of the iterated logarithm for the
height, and he investigates the improvement when using a Pat-trie instead of trie. There are
some notes concerning DSTs, too.

The most general model containing all of those focused upon here is the dynamical source
model. The model was introduced in [Val01] and [Clé00] by Vallée and her PhD student
Clément. Together with Flajolet [CFV01], they analyzed the expected size and path length
and performed a distributional analysis of the height. The average-case analysis of size and
path length was complemented by Bourdon [Bou01] with corresponding results for Pat-tries.
However, as Cesaratto and Vallée stated in [CV15], the former results and analyses in [Bou01]
and [CFV01] have not been done entirely precisely and needed supplementary results, e.g. from
[FRV10] for completion. Cesaratto and Vallée, among others, developed the notion of tameness,
re-derived asymptotic expansions for expectation and variance of the depth for simple sources
(i.e. memoryless, and irreducible and aperiodic Markov) in their tameness setup, and derived
a CLT for a class of dynamical sources notably not containing any simple source. This was
complemented by Hun and Vallée in [HV14] and [Hun14], where they proved a CLT for all tame
sources not too similar to the unbiased memoryless source. Besides, it should be mentioned that
not every (irreducible) Markov source is simple, and not every simple source is tame in the sense
of the above-mentioned paper.

We ignored almost all results for one of the close relatives of the trie, the DST. Although there
exist corresponding results, their discussion would go beyond the scope of this thesis.

7



1. Introduction

1.2. Structure
We start with some preliminaries in Chapter 2 to set up the general situation and to provide the
usual notation and basic results from Markov renewal theory that are used throughout the work.
In addition, we introduce the depth Dn and the imbalance factor ∆n of a random string in a trie
which, as in [Jan12a], will be in the center of our analysis up to (and excluding) Chapter 4. We
prove a central distributional identity in Section 2.7, that connects the depth and the imbalance
factor with renewal-theoretic objects. A recurring issue will be the lattice type of the considered
processes, to which we dedicate Section 2.8. Section 2.9 gives a short overview of null-homology
of Markov random walks and how it enters in our results.

In Chapter 3, we state the main results concerning the asymptotics of the depth and imbalance
factor and give the proofs in Section 3.3. The results cover laws of large numbers, CLTs and
asymptotic expansions of the expectation (especially for the depth). At the end of Section 3.1,
we provide references and comparisons to existing results concerning the depth.

In Chapter 4, we derive a general device for the average-case analysis of several further trie
(and b-trie and Pat-trie) parameters, to subsequently give multiple applications including the
size and the external path length in Section 4.5. We also provide references there.

Some auxiliary results are collected in Appendix A.

8



2. Preliminaries

Throughout this first part, we examine random infinite strings

Ξ = ξ1ξ2 · · · = (ξn)n≥1 ,

i.e. random variables on (Ω,A,P) taking values in SN, where S is a finite set with #S = m ≥ 2
called alphabet. Sometimes we use S = {0, 1} for simplicity. Denote by S∗ the complete infinite
tree

S∗ =
⋃
n≥0
Sn = {∅} ∪

⋃
n≥1
Sn

with nodes labeled by finite strings.

2.1. Tries and trie-like structures
We give a brief definition of tries, Pat-tries and b-tries, the most prevalent in this part. Our
definition is basically adopted from [Jan12a]. For futher details see [Knu98, Section 6.3], [Mah92,
Chapter 5] or [Szp01, Section 1.1]. The notion of a trie makes sense in the non-random situation,
so it is defined ω-wise for ω ∈ Ω.

Definition 2.1. Let M be a finite set of (almost surely (a.s.)) pairwise distinct random infinite
strings. Then the trie is constructed ω-wise recursively:

(1) If M = ∅, then the trie is empty.

(2) If #M = 1, then the trie only consists of the root and the string is saved at that place.

(3) If #M > 1, then the trie starts with the root and all strings starting with i ∈ S are given
to the i-th position on the next level (and create a connection to the root). They form the
basis for (4). In this way we obtain m (possibly empty) subtrees.

(4) The subtrees from (3) are treated by cases (1)-(3) recursively, comparing the strings at the
next spot next.

(5) The procedure stops as M is finite.

The resulting tree structure is denoted by Trie(M)(ω) for ω ∈ Ω. It can be regarded as a
finite subtree of S∗. We call the nodes which have no children leaves or external nodes and the
remaining nodes internal nodes.

At this place, we give some observations concerning the trie’s structure. Following [Jan12b], we
write β � α for two strings (which may be finite) if β starts with α. Given strings Ξ(1),Ξ(2), . . .,
we write Mn := {Ξ(1), . . . ,Ξ(n)}.

9



2. Preliminaries

Observation 2.2. The following holds for Trie(Mn), n ≥ 0:

(a) Every external node stores exactly one string.

(b) There are exactly n external nodes.

(c) The internal nodes do not store any string.

(d) Each internal node has one to m children.

(e) A node α ∈ S∗ is an internal node iff there exist at least two strings starting with α.

(f) Let k ≥ 1. Then α1 · · ·αk ∈ S∗ is an external node iff there is precisely one string starting
with α1 · · ·αk and at least one more string starting with α1 · · ·αk−1.

Although, we primarily deal with the ordinary trie in the first chapter, we introduce two easy
variations, that have already been mentioned before. An obvious generalization of the trie from
Definition 2.1, which only stores one string in each leaf, is a similar tree which stores up to b ≥ 1,
b ∈ N, strings in each leaf (and no strings in the internal nodes). It is called b-trie.

Definition 2.3. Let M be a finite set of (a.s.) pairwise distinct random infinite strings. Then
the b-trie is constructed ω-wise recursively:

(1) If M = ∅, then the b-trie is empty.

(2) If #M≤ b, then the b-trie only consists of the root and all strings are saved at this place.

(3) If #M > b, then the b-trie starts with the root and all strings starting with i ∈ S are given
to the i-th position on the next level (and create a connection to the root). They form the
basis for (4). In this way we obtain m (possibly empty) subtrees.

(4) The subtrees from (3) are treated by cases (1)-(3) recursively, comparing the strings at the
next spot next.

(5) The procedure stops as M is finite.

The resulting tree structure is denoted by Trie(b)(M)(ω) for ω ∈ Ω. It can also be regarded as a
finite subtree of S∗ with nodes labeled by finite strings.

Both, the original trie from Definition 2.1 as well as the b-trie from Definition 2.3 can contain
long chains of internal nodes if two or more (b+ 1 or more) strings differ late for the first time.
This makes the trie unnecessarily large. Pat-tries eliminate such nodes to compress data, see
Figure 1.1 for a realisation of a Pat-trie.

Definition 2.4. Given Trie(M) from Definition 2.1. Then TrieP (M) is the random tree resulting
from Trie(M) after eliminating all nodes with exactly one child.

Remark 2.5. Note that there can be a node α whose parent node has a length not equal to the
length of α minus 1. Obviously, the external nodes in TrieP (M) and Trie(M) coincide and only
the internal nodes differ.

2.2. Input models
We briefly assemble the predominant input sources, just to give an impression of how the input
sources relate. We will later on focus on the Markov source, but we want to compare our results
to the more general dynamical source model.

10
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Memoryless source. This source emits i.i.d. letters ξi with

P(ξ1 = j) = pj ∈ (0, 1),

for j ∈ S. Letters j with pj = 0 could otherwise be excluded from S and in case of pj = 1 the
source is not worth studying. Memoryless sources are called symmetric or unbiased if pj = 1/m
for all j ∈ S, and asymmetric or biased otherwise. To built a trie and study its asymptotics, a
sequence of i.i.d. copies of Ξ is considered. We have seen, that the construction of a trie requires
the strings to be distinct, in this model they obviously are P-a.s. The Markov analogue of the
following parameter runs like a common thread through the first part of this work: The entropy

H = −
∑
j∈S

pj log pj

of the letters is a measure of balance for the corresponding trie and in fact, H = EX1, if we
define X1 = − log pξ1 , cf. [Jan12a], a finding that we will generalize and apply later on.

Markov source. In the Markov setting, we need an initial distribution so we introduce ξ0 as the
initial random variable for the Markov chain Ξ0 := (ξn)n≥0 with transition matrix P = (pi,j)i,j∈S .
We assume that Ξ0 is time-homogeneous, irreducible (and thus positive recurrent since S is finite)
and has no atoms. In particular, Ξ0 has a unique stationary distribution π. We also exclude the
case that pi,j = 1/|S| for all i, j ∈ S, which is contained in the i.i.d. setup and already extensively
studied. Besides, we will see in Remark 2.11 (and also in Section 2.9), that a central object of
our study is trivial in this case.
Remark 2.6. Every positive recurrent discrete Markov chain satisfies πi > 0 for all i ∈ S.
Remark 2.7. Throughout the text, pi,j = 0 and pi,j = 1 will be allowed, unless irreducibility is
violated or the chain has atoms, which in particular excludes absorbing states (i.e. pi,i = 1 for
some i ∈ S) and purely deterministic chains. These requirements ensure that two or more i.i.d.
copies of the same string are distinguishable (cf. Remark 2.8) and hence the construction of a
trie is possible. Thus, there is at least one i ∈ S such that pi,j < 1 for all j ∈ S.

We set Pi := P (· | ξ0 = i) for all i ∈ S and

Pλ :=
∑
i∈S

λiPi

for an arbitrary distribution λ on S. Then Pξ0λ = λ. We further define

Pi (α1 · · ·αn) := pi,α1pα1,α2 · · · pαn−1,αn = Pi (ξ1 = α1, . . . , ξn = αn)

as a function on S∗ :=
⋃∞
k=0 Sk with Pi(∅) := 1 for all i ∈ S. Note that Pi(α) = 0 for a finite

string α is allowed. Throughout the work, Ξ0 or Ξ serves as the generic random infinite string.
If not stated otherwise, Ξ0 = (ξn)n≥0 and Ξ = (ξn)n≥1 behave in the above manner.

In the next step, we consider a sequence Ξ(= Ξ(1)),Ξ(2), . . . of i.i.d. (w.r.t. every Pi) random
infinite strings which means that under each Pi the Markov chains Ξ(2),Ξ(3), . . . are distributed
like the generic string Ξ, have the same initial state ξ0 = i and all strings or chains are independent.
This model will be in force starting from Section 2.3.
Remark 2.8. Let n ∈ N, then Ξ(1), . . . ,Ξ(n) are a.s. pairwise distinct since Ξ(1) has no atoms
w.r.t. every Pi.
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Dynamical source. The rather abstract dynamical source model essentially consists of two
defining components, cf. [CFV01] for further details: A density f on [0, 1] and a mechanism M
that assigns x ∈ [0, 1] to a string (ξn)n≥0 ∈ SN. E.g. if this mechanism is the binary expansion of
x, then this is the density model, where the value x and thus the corresponding binary string
is drawn according to the density f . The name dynamical source originates from the underlying
dynamical system

M(x) = (σx, σTx, σT 2x, . . .),

where T is a shift map and σ decodes a real value to a symbol. Every Markov source (and thus
every memoryless source) can be associated to such a dynamical source, cf. [CFV01, Section 1.2]
or [CV15, Section 4.2]. The input strings are then i.i.d. copies of M(X) where X has density f .

2.3. Parameters
There are two of the above-mentioned parameters, that we focus on in the first chapter: The
depth and the imbalance factor. Both will be formally introduced below. The reason why we
choose these two is that, as in [Jan12a], the depth is, roughly speaking, distributionally equal to
the first passage time of some underlying (Markov) renewal process. Furthermore, the imbalance
factor is connected to the depth in a very easy way. Hence, all kinds of distributional limit
theorems and asymptotics can be derived directly from Markov renewal theory. We will give a
more precise version of the stated distributional identity in Section 2.7.

(Insertion) Depth. We now introduce the depth Dn of the generic string Ξ = Ξ(1) in Trie(Mn)
as the depth of the node which stores Ξ, i.e. the path length from the root to that node. In
other words Dn is the index where the chosen string differs from all other n− 1 strings for the
first time:

Dn := min{k ≥ 0 | (ξ1, . . . ξk) 6= (ξ(j)
1 , . . . ξ

(j)
k ) for j = 2, . . . , n}.

This definition is only interesting for n ≥ 2, and trivially D1 = 0. Obviously, Dn is increasing.
Remark 2.9. The definition of Dn as the depth of the first string is not arbitrary as, due to the
formerly mentioned independence and identical distribution properties, every string has a depth
with the same distribution (w.r.t. Pi). However, the depths of two or more strings in the same
trie are dependent. Concerning distributional properties, the depth of the first string, say, the
insertion depth and the typical depth coincide, since for k ≥ 0

Pi(Dn = k) = Pi(Dn,n = k) = 1
n

n∑
l=1

Pi(Dn,l = k),

where Dn,l is the depth of the l-th string in Trie(Mn).

Imbalance factor. Considering a binary Trie(Mn), we define the imbalance factor ∆n of the
string Ξ = Ξ(1) which quantifies how much the trie hangs to the left or right. Formally, define
for n ∈ N

Yn := 2ξn − 1 =
{
−1, if ξn = 0,
+1, if ξn = 1,

12
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and Vk :=
∑k
n=1 Yn with V0 := 0. Then obviously, ∆n := VDn is the right definition. Set

µY := EπY1 = Eπ(2ξ1 − 1) = 2π1 − 1

with
π0 = p1,0

p1,0 + p0,1
and π1 = p0,1

p1,0 + p0,1

denoting the weights of the binary stationary distribution. In 2004, Donald Knuth proposed the
study of imbalance measures for random binary trees, which was then performed by [Mah08] in
the i.i.d. setting with the use of poissonization and Mellin transform techniques.

Further parameters. For the sake of completeness, we denote by Ln :=
∑n
i=1Dn,i the external

path length and by Hn := max1≤i≤nDn,i the height. The size Wn is simply the number of internal
nodes which will be further specified in Chapter 4.

2.4. Type of main results
As already mentioned before, we will provide an extensive distributional asymptotic analysis
for Dn and ∆n, and an average-case analysis of further trie-related parameters such as the
size and the external path length. We only deal with Markov chains of order 1, but similar
results should also easily be verifiable for chains depending on the last k symbols, e.g. as then
(ξn, ξn+1, . . . , ξn+k−1)n≥0 is still a (rather artificial) finite state Markov chain of order 1. We
utilize the finiteness of S a lot in our investigation. Also, many results should carry over to
a countable S, as Markov-renewal-theoretic results also exist in this setting. However, some
annoying technical issues will almost surely appear in the analysis which is why we restrict
ourselves to the yet relevant finite state case.

Arithmeticity plays a big role in the asymptotic expansion of the mean of all parameters under
investigation in this part. We learn that, on the one hand, an arithmetic case appears, and on
the other hand the non-arithmetic case is not at all nice, since the underlying random walk
structure can never be spread-out (cf. Section 2.8). Thus, the analysis of tries constitutes an
application example where the usual restriction to the spread-out case is never possible.

2.5. Markov renewal theory and notation
Markov renewal theory generalizes standard renewal theory. The objects of investigation in
standard renewal theory are random walks (with i.i.d. increments). As a usual step, one tries to
allow dependence. One way to achieve this is via a modulating Markov chain that influences
the additive component, i.e. the random walk, in a sensible way. This leads to the notion of a
Markov-modulated sequence (MMS):

Let (S,S) be measurable with countably generated σ-field S and let further (ξn, Xn)n≥0 be a
time-homogeneous Markov chain on (S × R,S⊗ B(R)). Then (ξn, Xn)n≥0 is called MMS if it
admits a transition kernel Q : S × (S⊗ B(R))→ [0, 1], i.e. for all n ≥ 0

P((ξn+1, Xn+1) ∈ ·|ξn, Xn) = P((ξn+1, Xn+1) ∈ ·|ξn) = Q(ξn, ·) P-a.s.

Equivalently, Ξ0 = (ξn)n≥0 is time-homogeneous, X0, X1, . . . are conditionally independent given
Ξ0 with P(X0 ∈ ·|Ξ0) = P(X0 ∈ ·|ξ0) P-a.s. and

P(Xn ∈ ·|Ξ0) = P(Xn ∈ ·|ξn−1, ξn) = K(ξn−1, ξn, ·) P-a.s.
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for n ≥ 1 and some stochastic kernel K : S2 ⊗ B(R)→ [0, 1]. We call Ξ0 the driving chain. The
corresponding Markov random walk (MRW) is (ξn, Sn) with Sn :=

∑n
i=0Xi. It constitutes a

natural generalization of an ordinary random walk.

Basic methods and results. In particular, if the driving chain is positive recurrent and discrete
(as it will be in our analysis, cf. Section 2.2), then one key method in Markov renewal theory is
the cyclic decomposition of the MRW. For that reason, let (σn(i))n≥0, σ0(i) := 0, be the sequence
of successive recurrence times (of the driving chain Ξ0) of state i, i.e.

σn(i) := inf{k > σn−1(i) : ξk = i},

and let (τn(i))n≥1 be the corresponding cycle lengths, i.e. τn(i) := σn(i) − σn−1(i). Then
(ξn, Xn+1)n≥0 decomposes into i.i.d.

Zn := (τn+1(i), (ξk, Xk+1)σn(i)≤k<σn+1(i)), n ≥ 0,

with distribution Pi(Z0 ∈ ·) for n ≥ 1 under every Pλ and for n ≥ 0 under Pi. Furthermore,
mii := Eiσ1(i) <∞ for all i ∈ S due to positive recurrence. As a consequence, (σn(i))n≥0 forms
a standard renewal process (SRP) under Pi and (σn(i))n≥1 forms a (delayed) renewal process
(RP) under Pj , j 6= i. Equivalently, the (τn(i))n≥1 are independent under all Pj , but identically
distributed only for n ≥ 2, unless j = i. In the latter case, all τn(i) are i.i.d.

We will usually work under the assumption S0 := 0 =: X0. Then we can make a similar
statement concerning the additive component: (Sσn(i))n≥0 is a standard random walk (SRW)
under Pi and, for i 6= j, (Sσn(j))n≥1 is a (delayed) random walk (RW) under Pi.

As the driving chain is positive recurrent, its stationary distribution π is unique and has an
occupation measure representation: For j ∈ S

πj := π
(i)
j = 1

mii
Ei

σ1(i)−1∑
n=0

1{ξn=j}

 = 1
mii

Ei

σ1(i)∑
n=1

1{ξn=j}

 .
If for some function f the stationary expectation Eπf(ξ1, X1) exists, then by the kernel structure
of the MMS, we can infer

Eπf(ξ1, X1) = 1
mii

Ei

σ1(i)∑
n=1

f(ξn, Xn)

 , (2.1)

cf. [Als14] or [NN87]. For f(x, y) = y, we obtain the Wald-type formula for MRWs

EiSσ1(i) = miiEπX1 = miiµ,

where we set µ := EπX1 as the stationary mean or drift of X1. Thus, the knowledge of µ > 0 (as
will be the case in the first part of this work) yields EiSσ1(i) > 0. Then (Sσn(i))n≥0 is a SRW
under Pi with positive mean, a structure that is well-investigated in standard renewal theory.

We denote by Uii the ordinary renewal measure of (Sσn(i))n≥0 under Pi as well as by Uij , i 6= j,
the ordinary renewal measure of (Sσn(j))n≥1 under Pi, i.e.

Uii =
∑
n≥0

F
∗(n)
ii and Uij = Fij ∗ Ujj , i 6= j,
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for Fii := PiSσ1(i) and Fij := PiSσ1(j) . The corresponding renewal function is, say, Uii(t) :=
Uii((−∞, t]), t ∈ R. Let further

Ui(·) = Ei

∑
n≥0

1·(ξn, Sn)

 =
∑
n≥0

Pi ((ξn, Sn) ∈ ·)

denote the Markov renewal measure of the MRW (ξn, Sn)n≥0 and U(i, ·) := Ui(·) the corresponding
Markov renewal kernel. A key identity is

Uij = Ui({j} × ·)

for all i, j ∈ S. It connects the Markov renewal measure with the ordinary renewal measure of
the embedded RW. With these definitions we set

U ∗ g(i, t) :=
∫
S×R

g(s, t− x)Ui(ds, dx) = Ei
(∑
n≥0

g(ξn, t− Sn)
)

for the convolution of some measurable function g : S × R → R with the kernel U. It is the
starting point for the use of the key renewal theorem in the Markov case.

First passage times. First passage times ν(t) := inf{n ≥ 0 : Sn > t} are key objects in renewal
theory: To give one hint of why this is the case, consider a SRW (Sn)n≥0 with non-negative
increments Xk. Then the renewal function is

U(t) =
∑
n≥0

P(Sn ≤ t) =
∑
n≥0

P(ν(t) > n) = Eν(t)

and knowledge about ν induces knowledge about U.
We can adopt the same definition of ν(t) for a MRW (Sn)n≥0. We use the following notation

throughout the first two chapters: For t ≥ 0, the first passage time is ν(t) := inf{n ≥ 0 : Sn > t}
and allowing an initial value or random variable we set ν(x, t) := inf{n ≥ 0 : x + Sn > t} for
x ∈ R. Thus, we have ν(t) = ν(0, t) and ν(x, t) = ν(t− x)1{t−x≥0}, whenever S0 = 0. Finally,
denote by νi(t) = inf{n ≥ 0 : Sσn(i) > t} the first passage time of (Sσn(i))n≥0 (or (Sσn(i))n≥1).

2.6. Central Markov-modulated sequence
The following structure serves as the main auxiliary process in the renewal-theoretic study of
trie parameters and is strongly inspired by [Jan12a]. Again, we consider the generic string
Ξ0 = ξ0ξ1 · · · and introduce the sequence (Xn)n≥1 of real-valued random variables via

Xn := − log pξn−1,ξn .

With Hi := EiX1 = −
∑
j∈S pi,j log pi,j , the conditional entropy of ξ1 given ξ0 = i, we can

calculate the drift

µ = EπX1 =
∑
i∈S

πi

−∑
j∈S

pi,j log pi,j

 =
∑
i∈S

πiHi (2.2)

which is positive since all πj > 0 and at least one Hi > 0 (corresponding to the row with pi,j < 1
for all j ∈ S). We set X0 := 0 =: S0, then the sequences (Xn)n≥0, (ξn, Xn)n≥0 and (ξn, Sn)n≥0,
respectively, with Sn :=

∑n
i=1Xi, form the basis for all further applications. These sequences

involve Markov modulation by the driving chain Ξ0 = (ξn)n≥0, more precisely:
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Lemma 2.10. (ξn, Xn)n≥0 is a MMS and (ξn, Sn)n≥0 is a MRW with non-negative and a.s.
bounded increments.

Proof. The first assertion is obvious. Since pi,j ≤ 1 for all i, j ∈ S, Xn = − log pξn−1,ξn ≥ 0. Let
0i := {j ∈ S : pi,j = 0} and C := min{pi,j : i ∈ S, j 6∈ 0i} ∈ (0, 1). Then − logC ∈ (0,∞). In
this notation

Pi(Xn ≤ − logC) = Pi(− log pξn−1,ξn ≤ − logC) = Pi(pξn−1,ξn ≥ C) = 1

for every i ∈ S, n ≥ 1.

Analogously to the definition of 0i from the previous proof, we introduce

1 := {j ∈ S : ∃k ∈ S s.t. pj,k = 1}.

Note that |1| < |S| because we forbid the chain to be purely deterministic and |0i| < |S| since
(pi,j)j∈S is a probability distribution. With the Pi defined in Section 2.2, we can now build a
connection between the string and the additive process Sn by

Pi(ξ1 · · · ξn) = pi,ξ1pξ1,ξ2 · · · pξn−1,ξn = elog pi,ξ1+log pξ1,ξ2+···+log pξn−1,ξn

= e−
∑n

i=1Xi = e−Sn Pi-a.s.

This forms the starting point of our analysis as it does in [Jan12a].
Remark 2.11. If pi,j = 1/|S| for all i, j ∈ S, then Xn ≡ log |S| for all n ≥ 1. As mentioned before,
we exclude this case from our consideration (see Section 2.9 for a further discussion).

2.7. Distributional identity
Essentially, all results for Dn and ∆n follow from the fact that Dn distributionally equals a
first passage time of the formerly mentioned MRW, and the subsequent application of results
concerning first passage times from Markov renewal theory. In order to establish this relation,
we need to introduce a family (X(n)

0 )n≥2 of initial variables or delay variables with distribution

P
(
X

(n)
0 > x

)
=
(

1− ex

n

)n−1

+
=
(
1− ex−logn

)n−1

+
(2.3)

and which is independent of ξ0,Ξ,Ξ(2),Ξ(3), . . . Here and whenever X(n)
0 is involved, P means Pi

for arbitrary i ∈ S. We will use this notation to indicate, that the considered probability does
not depend on i. With this definition we can show:

Lemma 2.12. Dn
d= ν(X(n)

0 , logn) for n ≥ 2 under every Pi.

Proof. Cf. [Jan12a, pp. 4, 5]. To give the basic steps, we first state that Dn ≤ k, k ≥ 1, iff none
of the other strings starts with the same k letters as Ξ. Thus, we have

Pi(Dn ≤ k | ξ1, . . . , ξk) = (1− Pi(ξ1 · · · ξk))n−1 =
(
1− e−Sk

)n−1
=
(
1− e(logn−Sk)−logn

)n−1

+

= Pi(X(n)
0 > logn− Sk | ξ1, . . . , ξk) Pi-a.s.

as Sk ≥ 0 a.s. This implies

Pi(Dn ≤ k) = Pi(X(n)
0 > logn− Sk) = Pi(X(n)

0 + Sk > logn) = Pi(ν(X(n)
0 , logn) ≤ k).

Also, Pi(Dn = 0) = 0 = Pi(X(n)
0 > logn) = Pi(ν(X(n)

0 , logn) = 0) for n ≥ 2.
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This leaves us with the study of the asymptotics of ν(X(n)
0 , logn) which should be somehow

similar to results for ν(0, logn). Both will be derived in Section 3.3.
For simplicity the results are formulated for functionals of the form ν(X(logn)

0 , logn), but this
is just a notational issue which we can ignore by identifying X(logn)

0 with X
(n)
0 .

Remark 2.13. Let D(b)
n be the depth of the first string in Trie(b)(Mn). Then D(2)

n ≤ k, k ≥ 1, iff
either none of the other n− 1 strings starts with the same k letters as Ξ, or one string starts
with the same k letters and the other n− 2 do not. So

Pi(D(2)
n ≤ k | ξ1, . . . , ξk) = (1− Pi(ξ1 · · · ξk))n−1 + (n− 1) (1− Pi(ξ1 · · · ξk))n−2 Pi(ξ1 · · · ξk)

= (1− Pi(ξ1 · · · ξk))n−2 (1 + (n− 2)Pi(ξ1 · · · ξk))

=
(
1− e−Sk

)n−2 (
1 + (n− 2)e−Sk

)
=
(
1− e(logn−Sk)−logn

)n−2 (
1 + (n− 2)e(logn−Sk)−logn

)
= Pi(Y (n)

0 > logn− Sk | ξ1, . . . , ξk) Pi-a.s.

if we define
P
(
Y

(n)
0 > x

)
=
(

1− ex

n

)n−2 (
1 + (n− 2)e

x

n

)
1{x≤logn}

for n ≥ 3. Hence, D(2)
n

d= ν(Y (n)
0 , logn) for n ≥ 3, and we can start a similar analysis as that for

Dn. The same is possible for arbitrary b ≥ 1 with respective

P
(
Y

(n)
0 > x

)
=
(

1− ex

n

)n−b( b−1∑
m=0

(
n− b+m− 1

m

)(
ex

n

)m)
1{x≤logn} (2.4)

for n ≥ b+ 1.
We remark at this point that the families (X(n)

0 )n≥2 and (Y (n)
0 )n≥b+1 have nice properties. We

will return to this point, when deriving the limiting results.
Considering Lemma 2.12 and ∆n = VDn , we expect the following identity to hold in the binary

setting of the imbalance factor:

Lemma 2.14. W.r.t. every Pi,

(Dn,∆n) d=
(
ν(X(n)

0 , logn), V
ν(X(n)

0 ,logn)

)
,

in particular,
∆n

d= V
ν(X(n)

0 ,logn).

Proof. The proof is essentially the same as in [Jan12a, Section 4], using ∆n = VDn , σ(Vk) ⊂
σ(Ξ) = σ(Y1, Y2, . . .) for every k and Lemma 2.12. We omit the details.

2.8. Lattice
In [Jan12a], Janson used renewal theory to derive his results, so in combination with Lemma 2.10
it seems promising to use Markov renewal theory in this slightly more complicated setting. In
standard renewal theory, one has to consider (at least) two different lattice cases where the Xn

are supported on dZ for some d > 0 (arithmetic) or where they are not (non-arithmetic).
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This concept does not carry over to Markov renewal theory without an adjustment. It goes
back to Shurenkov [Shu85] that we need to introduce a shift function which accounts for the
change of states of the driving chain Ξ0. We call a MRW (ξn, Sn)n≥0 with recurrent discrete
driving chain Ξ0 d-arithmetic with shift function β if

Pj(X1 ∈ β(ξ1)− β(ξ0) + dZ) = 1 (2.5)

for all j ∈ S and

d = sup{c > 0 : ∃β′ : S → [0, c) : ∀j ∈ S : Pj(X1 ∈ β′(ξ1)− β′(ξ0) + cZ) = 1} (2.6)

hold for d > 0 and a function β : S → [0, d). Otherwise, if d = 0 in (2.6), then (ξn, Sn)n≥0
is called non-arithmetic. Note that (2.5) implies that Sn is concentrated on the affine lattice
β(ξn)− β(i) + dZ w.r.t. every Pj .

To give more details we recall that (Sσn(i))n≥0 is a SRW w.r.t. Pi so we can talk about its
standard lattice span d(i). It is known that in case of a MRW (ξn, Sn)n≥0 this d(i) does not
depend on i which means that the span of Pi(Sσ1(i) ∈ ·) is a universal d for every i ∈ S.

If Sσ1(i) is d-arithmetic, then Shurenkov showed that there indeed exists β : S → [0, d),
such that the MRW (ξn, Sn)n≥0 is d-arithmetic with shift function β. Also if Sσ1(i) is non-
arithmetic, then (2.6) holds and (ξn, Sn)n≥0 is non-arithmetic. It is obvious that d-arithmeticity
or non-arithmeticity of MRWs implies the corresponding property for Sσ1(i).

For more details see e.g. [Als94], [Als97], [Als14] or [Shu85].

Necessity of lattice examination. Since it is not obvious whether the d-arithmetic occurs in
our model, we briefly discuss the situation in the binary case S = {0, 1} with pi,j ∈ (0, 1), i, j ∈ S.
As explained above we want to find the lattice span of Sσ1(0) under P0 with

σ1(0) = min{n ≥ 1 | ξn = 0}.

Obviously, Sσ1(0) is discrete and positive. Let a > 0. Then

P0
(
Sσ1(0) = a

)
=
∞∑
k=1

P0(σ1(0) = k, Sk = a)

= P0(ξ1 = 0,− log p0,0 = a) +
∞∑
k=2

P0(σ1(0) = k, Sk−1 − log pξk−1,0 = a)

= p0,0 · δ− log p0,0(a) +
∞∑
k=2

P0(ξ1 = . . . = ξk−1 = 1, ξk = 0, Sk−1 − log pξk−1,0 = a)

= p0,0 · δ− log p0,0(a) +
∞∑
k=2

p0,1p
k−2
1,1 p1,0 · δ− log p0,1−(k−2) log p1,1−log p1,0(a).

As p0,0 und p0,1p
k−2
1,1 p1,0 are positive for every k ≥ 2, Sσ1(0) has support

T bin
0 = {− log p0,0} ∪ {− log p0,1 − log p1,0 − k log p1,1 | k ≥ 0}

= {− log p0,0} ∪
[
{− log(p0,1p1,0)} − log p1,1 · N0

]
.

For T bin
0 to be a subset of some d(0)Z, it can be easily shown (by considering k = 0 and k = 1)

that
log(p0,1p1,0)

log p1,1
∈ Q and log(p0,1p1,0)

log p0,0
∈ Q (2.7)
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2.8. Lattice

must hold. Conversely, (2.7) implies (via Euclidean algorithm) that T bin
0 ⊂ d(0)Z for d(0) defined

as d(0) = gcd(log(p0,1p1,0), log p0,0, log p1,1) in the sense that d(0) is the greatest positive real such
that log(p0,1p1,0), log p0,0 and log p1,1 are integer multiples of d(0). This d := d(0) = d(1) > 0
does not depend on 0 or 1 as was stated above. This can also be seen directly in (2.7) which is
symmetric in 0 and 1.

Considering this condition, the question arises whether, with pi,j being transition probabilities,
this can be non-trivially solved. The trivial case is pi,j = 1

2 for all i, j ∈ {0, 1} with both ratios
equal to 2, but we already excluded this case.

In order to give a positive answer to this question, we reformulate (2.7) under direct considera-
tion of the pi,j being transition probabilities:

log(1− p0,0)
log p1,1

+ log(1− p1,1)
log p1,1

∈ Q and log(1− p0,0)
log p0,0

+ log(1− p1,1)
log p0,0

∈ Q. (2.8)

Proposition 2.15. (2.8) can be solved non-trivially.

Proof. Define the function f : (0, 1)2 → R2 by

f(x, y) =
( log(1− x)

log y + log(1− y)
log y ,

log(1− x)
log x + log(1− y)

log x

)
.

We show that f is a local diffeomorphism by computing the Jacobi matrix

Df (x, y) =

 − 1
(1−x) log y − log(1−y)+log(1−x)

y log2 y
− 1

(1−y) log y

− log(1−x)+log(1−y)
x log2 x

− 1
(1−x) log x − 1

(1−y) log x


and noting that |Df (1/2, 1/2)| = −32 log−2 2 6= 0. Thus, the inverse function theorem gives
us open neighborhoods U ⊂ (0, 1)2 of (1/2, 1/2) and V ∈ R2 of f (1/2, 1/2) = (2, 2), such that
f : U → V is a diffeomorphism and as Q2 is dense in R2, we can find a rational (q1, q2) 6= (2, 2)
in V .

Shift function. In our binary example one can directly compute a shift function in the following
way. Since X1 = − log pξ0,ξ1 is fully determined by ξ0 and ξ1 and all pi,j are positive, (2.5) is
equivalent to the existence of kij ∈ Z with

− log p0,0 = k00d,

− log p1,1 = k11d,

− log p0,1 = β(1)− β(0) + k01d =: β01 + k01d,

− log p1,0 = β(0)− β(1) + k10d =: −β01 + k10d.

(2.9)

We remark that we likewise obtain the first two equations with (2.7) and the definition of d.
Now we know that β01 ∈ (−d, d), so

(
− log p0,1

d

)
− k01 ∈ (−1, 1) and

k01 ∈
{⌊
− log p0,1

d

⌋
,

⌈
− log p0,1

d

⌉}
.

Similarly, we get a more detailed description of k10 ∈
{⌊
− log p1,0

d

⌋
,
⌈
− log p1,0

d

⌉}
. So equations

three and four imply the connection

β(1) = log p1,0 − log p0,1 + (k10 − k01)d
2 + β(0),
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2. Preliminaries

so one possible choice if k01 and k10 each are the bigger alternative is

β(0) = log p0,1 + k01d

2 ∈ [0, d) and β(1) = log p1,0 + k10d

2 ∈ [0, d),

and if they each are the smaller alternative, we may choose

β(0) = − log p1,0 − k10d

2 ∈ [0, d) and β(1) = − log p0,1 − k01d

2 ∈ [0, d).

If k10 =
⌈
− log p1,0

d

⌉
and k01 =

⌊
− log p0,1

d

⌋
, then

0 ≤ a := − log p0,1 −
⌊
− log p0,1

d

⌋
d < − log p0,1 −

(
− log p0,1

d
− 1

)
d = d

and
0 ≤ b :=

⌈
− log p1,0

d

⌉
d+ log p1,0 <

(
− log p1,0

d
+ 1

)
d+ log p1,0 = d.

Hence, we may choose

β(0) = 0 ∈ [0, d) and β(1) = a+ b

2 ∈ [0, d).

The case k10 =
⌊
− log p1,0

d

⌋
and k01 =

⌈
− log p0,1

d

⌉
is similar.

General condition. Concerning a general condition for the Markov source to be arithmetic, the
procedure from the binary case suggests a condition similar to (2.7) to hold here. By a cycle
(i, i1, . . . , ik) we mean an element in Sk+1 with pairwise distinct components i, i1, . . . , ik depicting
a path from i ∈ S back to i that does not contain any other state twice. The probability of this
cycle (w.r.t. the underlying Markov chain) is thus Pi(i1 · · · iki), and we call the cycle possible if
this probability is positive. Now the condition may be stated as follows:

logPi(i1 · · · iki)
logPj(j1 · · · jlj)

∈ Q for all 0 ≤ k, l < |S| and possible cycles (i, i1, . . . , ik), (j, j1, . . . , jl).

(2.10)
Numerator and denominator are the values of the additive component (up to a −) conditioned
on the driving chain returning to its starting point along the cycles (i, i1 . . . ik) and (j, j1 . . . jl),
respectively.

We now give a hint at why this is a characterizing condition and, for simplicity, restrict
ourselves to the case pi,j ∈ (0, 1) for all i, j ∈ S: In the same way as in the binary setting,
we can determine the support Ti of Sσ1(i) under Pi (with i being a reference point of S). One
representation of Ti is

Ti =
∞⋃
k=0

⋃
i1...,ik 6=i

{− logPi(i1 · · · iki)}.

This suggests a condition like

logPi(i1 · · · iki)
logPi(j1 · · · jli)

∈ Q for all k, l ≥ 0 and i1, . . . , ik, j1, . . . , jl 6= i (2.11)

to be sufficient for Ti ⊂ dZ with some d > 0. However, this is not clear since (2.11) is made up of
infinitely many subconditions. Also, at first glance, this condition does not seem to be equivalent
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2.8. Lattice

to the same condition with i replaced by some j 6= i, as it should be. For an easier reasoning, we
thus introduce the symmetrized condition

logPi(i1 · · · iki)
logPj(j1 · · · jlj)

∈ Q for all k, l ≥ 0, i, j ∈ S and i1, . . . , ik 6= i, j1, . . . , jl 6= j. (2.12)

Using the scheme
Ti ⊂ dZ⇒ (2.11)⇒ (2.12)⇒ (2.10)⇒ Ti ⊂ dZ

we can now show that (2.10) is indeed a characterizing condition for the MRW to be d-arithmetic
with some shift function β, d being the gcd of all appearing numerators (or denominators). The
first and third implication are of course trivial. It is also not hard to see that (2.11) implies
(2.12), e.g., for j 6= i,

logPj(j)
logPi(ji)

= logPi(jji)
logPi(ji)

− logPi(ji)
logPi(ji)

∈ Q

and thus logPj(j) has rational ratios w.r.t. all logPi(i1 · · · iki). Similarly, one can show that the
other ratios are also rational. It is crucial for the fourth implication to note that the corresponding
conditions for cycles longer than |S| can be composed of the conditions of two or more cycles
with length smaller or equal to |S|. Thus, we have overcome the problem of too many conditions
in (2.11) and narrowed the number of conditions down to a finite number of essential ones. Also,
the numerators (or denominators) in (2.10) span the support Ti (up to a −).

Note that (2.10) also applies if certain transitions are impossible or deterministic. In case of
deterministic transitions, the problem is reduced to a |S|− |1|-dimensional problem. For instance,
in the binary model with p0,0, p0,1 ∈ (0, 1) and p1,0 = 1 = 1− p1,1, there are only two possible
ways for the driving chain to return to 0, and therefore only one condition, namely

log p0,0
log p0,1p1,0

= log p0,0
log p0,1

∈ Q

remains. This can also be easily checked in the way of the beginning of this section. This is the
same condition as in the i.i.d. case with p = p0,0 and q = p0,1, so the problem was reduced by
one dimension.

Condition (2.10) appears in [JST01] and [CV15, Section 3.3.] where it characterizes the set of
poles to the vertical line Re s = 1 of the Dirichlet series (cf. [CV15, Section 1.3.]) corresponding
to the source. One of the few thorough discussions of periodicity in connection with the source
probabilities was done in [FRV10] for the i.i.d. setting, where, for the first time, the error bounds
in the average-case analysis were made explicit subject to the source probabilities. This paved
the way for the analysis in [CV15], [HV14] or [Hun14]. Just like arithmeticity is the source of
oscillations and periodicity in our analysis, it is in the afore-mentioned articles, too, while being
justified by different methodology.

Although the problem appears to be a very discrete one with, e.g., the finite alphabet and
the finite range of Xi, for most choices of P the conditions (2.7) (or (2.8)) and (2.10) are
violated. So most of the time we are in the non-arithmetic case which is not as controllable as
the arithmetic case, since generally it can contain all kinds of mass concentration from shifted
lattices to λλ-continuity. Hence, frequently in the non-arithmetic case one requires the process to
be spread-out which means in our situation, that some convolution power of Pπ(X1 ∈ ·) has a
λλ-continuous component. This is often a sensible condition, however our problem is still discrete
enough to make it impossible for our MRW to be spread-out (and thus to refuse us some powerful
techniques): No convolution power of Pπ(X1 ∈ ·) can have a λλ-continuous component, because
X1 has only a finite range under Pπ.
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Tameness. Although we will not go into detail, it seems necessary for the classification of
existing results to give a short survey about tameness of dynamical sources as it is first introduced
in [Val+09] and e.g. used in [CV15], [HV14] and [Hun14]. We follow the brief overview in [CV15]:
If the Dirichlet series associated to the source admits a pole on {Re s = 1, s 6= 1}, then it already
admits (periodically spaced) infinitely many poles. The source is therefore called periodic. Its
tameness region, i.e. the region strictly containing {Re s ≥ 1} where the series is analytic and of
polynomial growth for |s| → ∞, can thus shown to be {Re s > 1− α, s 6= poles} for some α > 0,
and the source is also called P-tame. This property corresponds to arithmeticity in our context
(it has the same characteristic condition, cf. [CV15, Section 3.3.]).

Otherwise, the only pole on {Re s = 1} is s = 1 and the source is called aperiodic. We will
not use this denotation again as it might confuse with aperiodicity of Markov chains. When
| Im(s)| → ∞, then the poles may approach {Re s = 1} from the left and thus the source is called
tame if that does not happen too fast: If the tameness region has a hyperbolic shape, then it is
called H-tame, and if it is even a vertical strip, then it is called S-tame.

Moreover, [CV15] defines a Good Class of dynamical sources whose elements have certain good
techniqual properties similar to those of irreducible and aperiodic Markov sources (and including
these sources). A subclass is called the UNI Class, its elements, as said in [CV15], “strongly
differ from sources with affine branches”, i.e. are very different from simple sources, and can be
shown to be S-tame. A different subclass is the DIOP Class (more precisely the DIOP2 Class
and the DIOP3 Class) of diophantine dynamical sources, where (in our Markov case setting)
ratios as in (2.10) are not only irrational but even diophantine, i.e. “not to well approximable by
rational numbers” (cf. [CV15] and [Hun14]). Those sources can be shown to be H-tame.

It has to be noted that not all sources are either P-, H- or S-tame. Furthermore, memoryless
sources and Markov sources are never S-tame. In particular, not all memoryless sources and
Markov sources are P- or H-tame, and notably the notion of tameness only encompasses aperiodic
Markov chains.

2.9. Null-homology
To classify RWs concerning their divergence type, one has to exclude the trivial case where the
increments are 0 a.s. The corresponding trivial subclass of MRWs is the class of null-homologous
MRWs, the definition of which goes back to [Lal86]. The following definition and lemma are
taken from [AB17b, Section 5]. For further details, we refer the reader to the afore-mentioned
publications.

A MRW (ξn, Sn)n≥0 is called null-homologous if there exists a function g : S → R such that

Xn = g(ξn)− g(ξn−1) Pπ-a.s. (2.13)

or, equivalently,
Sn = g(ξn)− g(ξ0) Pπ-a.s. (2.14)

for all n ≥ 1.

Lemma 2.16. Given a MRW (ξn, Sn)n≥0, the following assertions are equivalent:

(a) (ξn, Sn)n≥0 is null-homologous.

(b) (Sσn(i))n≥0 has zero increments under Pi for some i ∈ S.

(c) (Sσn(i))n≥0 has zero increments under Pi for all i ∈ S.
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2.9. Null-homology

Null-homology concerning the depth. In the formulation of Theorem 3.6 and in its proof in
Subsection 3.3.4, we will encounter the condition Vari(Sσ1(i) − µσ1(i)) > 0. With regard to
Remark 2.11, the question arises whether this condition is violated for all i ∈ S, i.e. (ξn, Sn −
µn)n≥0 is null-homologous, if and only if pi,j = 1/|S| for all i, j ∈ S. In the binary case, we can
give an answer to this question:

Proposition 2.17. In the binary setting,(
1/2 1/2
1/2 1/2

)
,

(
2(1 +

√
5)−1 4(1 +

√
5)−2

1 0

)
and

(
0 1

4(1 +
√

5)−2 2(1 +
√

5)−1

)

are the only irreducible transition matrices without atoms such that (ξn, Sn − µn)n≥0 is null-
homologous.

Proof. Note that either pi,j ∈ (0, 1) for all i, j ∈ {0, 1} or p0,0 = p = 1 − p0,1 = 1 − q ∈ (0, 1),
p1,0 = 1 = 1− p1,1 (or p0,0 = 0 = 1− p0,1, p1,0 = p = 1− p1,1 = 1− q ∈ (0, 1)) in order to form
an irreducible transition matrix that does not allow atoms. In the first case, it can be extracted
from (2.13) and (2.14) w.r.t. (ξn, Sn − µn)n≥0 that

− log pi,i = µ for all i, j ∈ {0, 1} and − log(pi,jpj,i) = µ for all i 6= j ∈ {0, 1}

which together with p0,0 + p0,1 = 1 and p1,0 + p1,1 = 1 easily yields

µ = − log(1− e−µ).

The latter equation is uniquely solved by µ = log 2, thus (p0,1, p0,1, p1,0, p1,1, µ) = (1
2 ,

1
2 ,

1
2 ,

1
2 , log 2)

actually is the unique solution to the above system of equations and we obtain the asserted
equivalence in the case pi,j ∈ (0, 1) for all i, j ∈ {0, 1}.

Suppose now, that p0,0 = p = 1 − p0,1 = 1 − q ∈ (0, 1), p1,0 = 1 = 1 − p1,1. Then we obtain
similarly that

− log p = µ and − log q = 2µ

which together with p+ q = 1 yields µ = log(1
2(1 +

√
5)). This agrees with

p = e−µ = 2
1 +
√

5
and q = 4

(1 +
√

5)2

as can be checked with (2.2). Conversely, this choice of the transition matrix easily yields
that Sσ1(0) − µσ1(0) = 0 Pi-a.s. using the relations between p, q and µ from above. The case
p0,0 = 0 = 1− p0,1, p1,0 = p = 1− p1,1 = 1− q ∈ (0, 1) is similar to the latter.

For |S| = 3, the analogous system of equations is already quite complex. With the help of
a computer algebra system, it can be verified that pi,j = 1

3 = 1/|S| is indeed equivalent to
Vari(Sσ1(i) − µσ1(i)) = 0, provided that pi,j ∈ (0, 1) for all i, j ∈ S. Under this condition, we
expect equivalence of null-homology of (ξn, Sn − µn)n≥0 and pi,j = 1/|S| for all i, j ∈ S to hold
for arbitrary finite S. Without this condition, Proposition 2.17 gives reason to believe that the
trivial case is generally not the only case in which null-homology occurs. However, we refrain
from a further investigation.

23



2. Preliminaries

Null-homology concerning the imbalance factor. In Theorem 3.11 and in Subsection 3.3.7, we
will encounter a condition similar to Vari(Sσ1(i)−µσ1(i)) > 0, namely Vari(µVσ1(i)−µY Sσ1(i)) > 0.
Again, this conditions is related to null-homology, more precisely to that of (ξn, µVn − µY Sn)n≥0.
Since we only consider the imbalance factor in the binary setting, we can entirely characterize
null-homology for the related random walk:

Proposition 2.18. There is no irreducible transition matrix without atoms such that (ξn, µVn−
µY Sn)n≥0 is null-homologous.

Proof. First we show that p0,0 = p = 1 − p0,1 = 1 − q ∈ (0, 1), p1,0 = 1 = 1 − p1,1 can never
entail null-homology of (ξn, µVn − µY Sn)n≥0. Then this is also true for p0,0 = 0 = 1 − p0,1,
p1,0 = p = 1− p1,1 = 1− q ∈ (0, 1). First of all, we calculate

µY = 2π1 − 1 = 2p0,1
p1,0 + p0,1

− 1 = p0,1 − p1,0
p1,0 + p0,1

= q − 1
1 + q

.

Hence, (2.14) yields
q − 1
1 + q

log(q · 1) = 0

which has the unique solution q = 1 and thus contradicts q ∈ (0, 1).
Let pi,j ∈ (0, 1) for all i, j ∈ {0, 1} from now on. Suppose that µY = 0. Then (2.13) yields

µ = 0 which obviously is false. Thus, null-homology implies µY 6= 0. Now, (2.13) gives

−µ+ µY log p0,0 = 0 and µ+ µY log p1,1 = 0,

hence
µY log(p0,0p1,1) = 0 or equivalently p0,0p1,1 = 1. (2.15)

Similarly, (2.14) gives

µY log(p0,1p1,0) = 0 or equivalently p0,1p1,0 = 1. (2.16)

Together, (2.15) and (2.16) easily yield p0,0 = p1,0 = 1− p0,1 = 1− p1,1. In other words, the ξn
have to be independent. Set p0,0 =: p. We finally show that µ = −p log p − (1 − p) log(1 − p)
does not agree with the only possible shape of the transition matrix that was derived before:
Equation (2.13) yields

0 = −µ+(1−2p) log p = p log p+(1−p) log(1−p)+(1−2p) log p = (1−p) log p+(1−p) log(1−p),

and this equation has no solution p ∈ (0, 1). This proves the assertion.
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3. Asymptotic analysis of depth and imbalance
factor

In this chapter, we will present many asymptotic results for Dn and ∆n and prove them afterwards
in Section 3.3. All results can also be formulated w.r.t. Pλ (sometimes with slight modifications)
for a distribution λ on S. As always, i ∈ S is an arbitrary starting state.

Let us mention at the outset that some of the results have been obtained earlier by different
methods, and we give a more specific account when they are stated. However, we are not aware
of any results concerning the imbalance factor in the Markov model.

3.1. Results for Dn

Theorem 3.1. As n→∞, it holds that

Dn

logn
Pi−−→ 1

µ
. (3.1)

Theorem 3.2. Let p > 0. Then, as n→∞,

Dn

logn
Lp−−→ 1

µ
(3.2)

under Pi, thus in particular, as n→∞,

Ei
(
Dn

logn

)p
→ 1

µp
. (3.3)

Theorem 3.3. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

EiDn = logn
µ

+ 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ
+ o(1), (3.4)

with the Euler constant γ = 0.5772 . . .

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function 0, then, as n→∞,

EiDn = logn
µ

+ 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ

+ 1
µ
ψ1(logn) + o(1),

(3.5)

where ψ1(t) is a continuous d-periodic function given by

ψ1(t) := −
∑
k 6=0

Γ(−2π i k/d)e2π i kt/d. (3.6)
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(c) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

EiDn = logn
µ

+ 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ

+ 1
µ

∑
j∈S

πjψ1(logn− βij) + o(1)
(3.7)

with βij := β(j)− β(i) ∈ (−d, d).

Remark 3.4. In the d-arithmetic case, it could be possible to derive a better error term of the
order O(n−r) with some r ∈ (0, 1], cf. Remark 3.22 and the proof of Theorem 3.3. The bottleneck
seems to be the verification of a corresponding convergence rate in (3.28). As opposed to the
d-arithmetic case, the non-arithmetic case does not allow for a more precise version in general:
The error term in (3.4) can be arbitrarily bad, cf. Remark 3.23.
Remark 3.5. As it turns out in the proof of the Poisson version of Theorem 4.28, ψ1 from
(3.6) also has a series representation of type (4.19) with f(x) = fL(x) = x − xe−x, a = 1 and
g(t) = etf(e−t). See also Remark 4.34.

Theorem 3.6. Let σ(2) := 1
mii

Vari
(
Sσ1(i) − µσ1(i)

)
. Then σ(2) <∞ does not depend on i, and

if σ(2) > 0, then

Dn − logn
µ√

logn
d−−→ N

(
0, σ

(2)

µ3

)
, (3.8)

as n→∞, w.r.t. Pi. Furthermore, as n→∞,

VariDn = σ(2)

µ3 logn+ o(logn) and Ei

∣∣∣∣∣∣
Dn − logn

µ√
logn

∣∣∣∣∣∣
p

→ Ei|N |p (3.9)

for every p > 0, with N having the distribution of the limit in (3.8). The convergence also holds
without absolute value for p ∈ N. If σ(2) = 0, i.e. Sσ1(j) = µσ1(j) Pj-a.s. for some (and thus all)
j ∈ S, then, as n→∞,

Dn − logn
µ

log1/p n

Pi−−→ 0, (3.10)

and
VariDn = o(logn) and Ei

∣∣∣∣Dn −
logn
µ

∣∣∣∣p = o(logn) (3.11)

for all p > 0.

Remark 3.7. Cf. Remark 3.32 for further details on σ(2). Also cf. Section 2.9 for a discussion
about when σ(2) = 0 actually occurs.
Remark 3.8. The above theorems in Section 3.1 and the following ones in Section 3.2 are
formulated for tries. However, we can also derive corresponding results for b-tries. In fact, all
theorems remain true replacing Dn by D(b)

n (also in VDn) except for Theorem 3.3, which describes
a finer structure. More precisely (cf. Remark 3.14), there we need to replace γ by γ − Hb−1,
where Hb−1 =

∑b−1
k=1 1/k is the (b − 1)-st harmonic number, in the non-arithmetic case. If it
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3.2. Results for ∆n

is possible to show (3.28) with Y
(n)

0 and Y ∗0 instead of X(n)
0 and X∗0 , then we also obtain an

expansion in the d-arithmetic case with coefficients

− 1
(b− 1)!

b−1∏
l=1

(l − 2π i k/d)Γ(−2π i k/d)

in ψ1 instead of −Γ(−2π i k/d).

We remark that Pittel obtained a similar result as Theorem 3.1 in [Pit85] for stationary ergodic
sources. Jacquet and Szpankowski [JS91] obtained Theorems 3.3 and 3.6 for stationary Markov
sources, at first glance with better precision. However, there is no distinction between a periodic
and non-periodic case in their analysis, and the actual shape of the fluctuating functions appearing
in their expansions is unclear. In fact, Cesaratto and Vallée [CV15, Theorem 3.5] give a precise
expansion of expectation and variance with asymptotical upper bounds for remainder terms in
different cases. They use analytic methods and obtain a slightly more precise expansion of the
mean in the periodic (or d-arithmetic) case and the H-tame case (contained in the non-arithmetic
case). Indeed, they point out (and we can also justify this with our methods, cf. Remarks 3.4
and 3.23) that there are sources with arbitrarily bad remainder terms within o(1) in Theorem 3.3,
when the source is neither P- nor H-tame. Nevertheless, our probabilistic approach allows us
to provide a rather explicit form of the periodic oscillatory term and also to deal with Markov
sources where the chain is not aperiodic.

Moreover, Hun proves a CLT for tame sources in [Hun14], excluding only sources conjugated
to an unbiased memoryless source, i.e. parts of the P-tame sources. Again, we remark that our
result also applies to a more general class of Markov sources, namely those that are not tame, in
particular those which are driven by a periodic chain.

3.2. Results for ∆n

In the binary setting, we get the following results. Recall that

π0 = p1,0
p1,0 + p0,1

and π1 = p0,1
p1,0 + p0,1

and µY = EπY1 = 2π1 − 1.

Theorem 3.9. As n→∞,
∆n

logn
Pi−−→ µY

µ
. (3.12)

Theorem 3.10. Let p > 0. Then, as n→∞,

∆n

logn
Lp−−→ µY

µ
(3.13)

under Pi, thus in particular, as n→∞,

Ei
( |∆n|

logn

)p
→
∣∣∣∣µYµ

∣∣∣∣p . (3.14)

The convergence also holds without absolute value for p ∈ N.
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3. Asymptotic analysis of depth and imbalance factor

Theorem 3.11. Let γ(2) := 1
mii

Vari(µVσ1(i) − µY Sσ1(i)). γ(2) < ∞ does not depend on i and
γ(2) > 0. It holds that

∆n − µY
µ logn

√
logn

d−−→ N
(

0, γ
(2)

µ3

)
, (3.15)

as n→∞, w.r.t. Pi. Furthermore, as n→∞,

Vari ∆n = γ(2)

µ3 logn+ o(logn) and Ei

∣∣∣∣∣∆n − µY
µ logn

√
logn

∣∣∣∣∣
p

→ Ei|N |p (3.16)

for every p > 0, with N having the distribution of the limit in (3.15). The convergence also holds
without absolute value for p ∈ N. For all p > 0

Ei∆n = µY
µ

logn+ o(log1/p n). (3.17)

Remark 3.12. Cf. Remark 3.39 for further details on γ(2).

3.3. Proofs
In the view of Section 2.7, the results follow very quickly from Lemma 2.12 and the corresponding
result from Markov renewal theory. Therefore, we derive several asymptotic results for ν(X(t)

0 , t)
by using results for ν(t). Hence, the delay family needs to be controlled. In our auxiliary results,
we usually do not specify the index set and only write (X(t)

0 )t for some family of starting values,
independent of the MRW. A priori, t can vary in a general index set I ⊂ R unbounded to the
right, but typically (as in ν(X(t)

0 , t) with X
(t)
0 and t coupled) we implicitly assume t ≥ 0, which

is only a notational issue. For simplicity, we sometimes assume t to be a sequence, since in our
application we only need t = logn. Certainly, when we do such a simplification, the more general
result should also hold.

The fact that the family (X(n)
0 )n≥2 from (2.3) is well-behaved is recorded in the following

lemma.

Lemma 3.13. Let (X(n)
0 )n≥2 be the family of real-valued random variables with laws defined by

(2.3). Then

(a) X
(n)
0

d→ X∗0 , as n→∞, with −X∗0 ∼ Gumbel(0, 1). In particular, (X(n)
0 )n≥2 is tight, −X∗0

has Fourier transform φ(t) = Γ(1− i t) and EX∗0 = −γ, where γ is the Euler constant.

(b) There exists an s > 0 such that (es|X
(n)
0 |)n≥2 is uniformly integrable. In particular, (X(n)

0 )n≥2

and (|X(n)
0 |p)n≥2 are uniformly integrable for all p > 0.

(c) (X(n)
0 )n≥2

d= (logn−max{Z1, . . . , Zn−1})n≥2, where Z1, Z2, . . . are i.i.d. Exp(1) distributed
random variables.

Proof. For (a), let logn > x for some x ∈ R. Then, as n→∞,

P(X(n)
0 > x) =

(
1− ex

n

)n−1
→ e−e

x
.

For (b), it is easy to show that the tail probabilities of X(n)
0 uniformly (in n) decrease exponentially

(cf. Section A.1). It is certainly reasonable since the variables are close to Gumbel. (c) is easy.
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3.3. Proofs

Remark 3.14. The family (Y (n)
0 )n≥b+1 from (2.4) has corresponding properties to those in

Lemma 3.13: The sequence converges in distribution to some Y ∗0 with tail function

P(Y ∗0 > x) = e−e
x
b−1∑
m=0

1
m! (e

x)m, x ∈ R,

in particular, −Y ∗0 has λλ-density

f−Y ∗0 (x) = e−e
−x 1

(b− 1)!e
−bx,

Fourier transform
φ−Y ∗0 (t) = 1

(b− 1)!Γ(b− i t),

and thus, E(−Y ∗0 ) = −Γ′(b)/Γ(b) = −Ψ(b) = −(Hb−1 − γ), where Ψ is the digamma function.
The family obeys the same integrability conditions as (X(n)

0 )n≥2, but we will restrict ourselves to
(X(n)

0 )n≥2 below.

Lemma 3.15. σ1(i) has an exponential moment under all Pi, thus it has polynomial moments
of every order.

Proof. Note that S is finite. Thus, the result is well-known.

For the rest of this part, we call a MRW (ξn, Sn)n≥0 zero-delayed if S0 = 0 Pi-a.s. for all i ∈ S.
For the investigation of the imbalance factor ∆n, we will add a further additive component
to our MRW (ξn, Sn)n≥0, more precisely let (ξn, Xn, Yn)n≥0 be a MMS (on S × (R × R)) and
denote by (ξn, Sn, Vn)n≥0 the corresponding MRW. Then (ξn, Sn, Vn)n≥0 is called zero-delayed
if S0 = V0 = 0 Pi-a.s. for all i ∈ S. We also agree on µ = EπX1 and µY = EπY1 being the
stationary drifts of (Sn)n≥0 and (Vn)n≥0, respectively. Obviously, we think of (Xn)n≥0 from
Section 2.6 and (Yn)n≥0 from Section 2.3.

We will now proceed as follows: We first derive a limit result for ν(t) (and Vν(t) later on), and
after choosing appropriate conditions for (X(t)

0 )t, the corresponding result for ν(X(t)
0 , t) comes

almost for free: The proof of [Jan12a, Theorem A.4] applies since (X(t)
0 )t is independent of the

MRW. For a better understanding, we provide a full derivation for all of our results. In the
results below, S may a priori be countable.

3.3.1. Weak law of large numbers for Dn

We provide a strong law of large numbers (SLLN) for ν(X(t)
0 , t) that translates into a WLLN for

Dn. The following is a well-known result and is not restricted to a discrete state space S.

Theorem 3.16 (SLLN). Let (ξn, Xn)n≥0 be a MMS with positive recurrent discrete driving chain
Ξ0 which has a stationary distribution π. Suppose further that µ exists. Then, for all i ∈ S,

lim
n→∞

Sn
n

= µ Pi-a.s.

Proof. Follows easily from Birkhoff’s ergodic theorem, see e.g. [AB17b, Theorem 10.1].

The idea of the proof of the following result goes back to Doob in [Doo48] who used it in the
i.i.d. setting.
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3. Asymptotic analysis of depth and imbalance factor

Lemma 3.17. Let (ξn, Sn)n≥0 be a zero-delayed MRW with positive recurrent and discrete driving
chain Ξ0 which has stationary distribution π. Let µ be positive. Then, for all i ∈ S, as t→∞,

ν(t)
t
→ 1

µ
Pi-a.s.

Proof. We use Theorem 3.16 to infer ν(t) ↑ ∞, as t→∞ Pi-a.s. and

Sν(t)
ν(t) → µ and

Sν(t)−1
ν(t) → µ Pi-a.s.,

as t→∞. Then the definition of ν(t) together with a sandwiching argument gives

Sν(t)−1
ν(t) ≤ t

ν(t) ≤
Sν(t)
ν(t)

and t/ν(t)→ µ Pi-a.s., as t→∞.

We recalled the previous proof mainly to convey the feeling that the statement of the next
result is natural, even with initial variables varying over time (but of course obeying some
regularity assumptions). In fact, as we require the family of initial variables to be independent
of the MRW, the proof of the following result uses the same ideas as [Jan12a, Theorem A.4].

Lemma 3.18. Given the situation of Lemma 3.17, let (X(t)
0 )t be a tight family of real-valued

random variables independent of (ξn, Sn)n≥0. Then, for all i ∈ S, as t→∞,

ν(X(t)
0 , t)
t

Pi−−→ 1
µ
.

Proof. The tightness of (X(t)
0 )t implies

X
(t)
0
t

Pi−−→ 0 and t−X(t)
0

Pi−−→∞,

as t→∞. Now, use ν(X(t)
0 , t) = ν(t−X(t)

0 )1{t−X(t)
0 ≥0} and the asymptotics for ν(t). Due to the

independence assumption, we can use Skorokhod’s representation theorem to find independent
copies of (X(t)

0 )t and (ν(t))t (for simplicity with the same names) such that, on the one hand, the
above convergence even holds Pi-a.s. and, on the other hand, we still have ν(t)/t→ 1/µ Pi-a.s.
Then the result is immediate for the copies via

ν(X(t)
0 , t)
t

= ν(t−X(t)
0 )

t
1{t−X(t)

0 ≥0} = ν(0)
t

1{t−X(t)
0 =0} + t−X(t)

0
t

ν(t−X(t)
0 )

t−X(t)
0

1{t−X(t)
0 >0},

and because of distributional equality it also holds in distribution for the original variables. Since
the limit is constant, the convergence also holds in probability.

Proof of Theorem 3.1. (ξn, Sn)n≥0 is a MRW fulfilling all conditions required in Lemma 3.18.
Moreover, Lemma 3.13 ensures that (X(n)

0 )n≥2 is tight. Hence,

ν(X(n)
0 , logn)
logn

Pi−−→ 1
µ
,

and with Lemma 2.12 we obtain the assertion.
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3.3. Proofs

3.3.2. Lp-law of large numbers for Dn

The procedure is again the same. We derive the result for ν(t) and then for ν(X(t)
0 , t).

Lemma 3.19. Let (ξn, Sn)n≥0 be a zero-delayed MRW with positive recurrent and discrete driving
chain Ξ0 which has stationary distribution π. Let µ be positive. Assume further that Eiσ1(i)p <∞
and Ei(S−σ1(i))

p < ∞ for some p ≥ 1. Then {(ν(t)/t)p, t ≥ 1} is uniformly integrable w.r.t. Pi
and thus

ν(t)
t

Lp−−→ 1
µ

under Pi, as t→∞, in particular,

Ei
(
ν(t)
t

)q
→ 1

µq
.

for 0 < q ≤ p.

Proof. We try to reduce the situation to standard renewal theory. Recall the notation for
recurrence times from Section 2.5. Obviously, νi(t) is a stopping time w.r.t.

Fn := σ((σj(i), Sσj(i)) : j = 0, . . . , n),

and
∑n
k=1 τk(i) has i.i.d. increments, is adapted to Fn, and τn(i) is independent of Fn−1. By

[Gut09, Theorem 3.7.1], we have that{(
νi(t)
t

)p
, t ≥ 1

}

is uniformly integrable w.r.t. Pi since Ei(S−σ1(i))
p < ∞ and the SRW Sσn(i) has positive drift.

Hence, [Gut09, Theorem 1.6.1] yields the uniform integrability of
∑νi(t)

k=1 τk(i)
t

p , t ≥ 1


since Ei|τ1(i)|p = Eiσ1(i)p <∞. Finally, the estimate

ν(t) ≤
νi(t)∑
k=1

τk(i)

yields the desired result.

Lemma 3.20. Given the situation of Lemma 3.19, let (X(t)
0 )t be a tight and Lp-bounded family

of real-valued random variables independent of (ξn, Sn)n≥0. Then (along sequences)

ν(X(t)
0 , t)
t

Lp−−→ 1
µ

under Pi, as t→∞, in particular,

Ei

(
ν(X(t)

0 , t)
t

)q
→ 1

µq
(3.18)

for 0 < q ≤ p.
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3. Asymptotic analysis of depth and imbalance factor

Proof. Since Lemma 3.19 provides the same kind of result as [Jan12a, Theorem 3.2] does,
[Jan12a, Theorem A.4] applies again. Nevertheless, we recall the proof, since we will use the
same procedure again. By Lemma 3.19, Eiν(t)p = O(tp), t→∞. Hence, we can find C > 0 large
enough such that for t ≥ 0

Eiν(X(t)
0 , t)p = Eiν(t−X(t)

0 )p1{t−X(t)
0 ≥0} =

∫
(−∞,t]

Eiν(t− s)p PX
(t)
0 (ds)

≤ C
∫

(−∞,t]
1 + (t− s)p PX

(t)
0 (ds) ≤ C + CE(t+ |X(t)

0 |)p <∞

since X(t)
0 is in Lp. For some 0 < q ≤ p, let

gi(t) := Ei
(
ν(t)
t ∨ 1

)q
.

We know that gi(t)→ 1/µq, as t→∞, by Lemma 3.19. Since ν(t) is monotone, sup0≤t<1 gi(t) =
sup0≤t≤1 Eiν(t)q = Eiν(1)q <∞. Furthermore, {(ν(t)/t)p, t ≥ 1} is uniformly integrable, hence
also supt≥1 gi(t) <∞. Now, let t ≥ 1 and consider Yt defined by

Yt := Ei

(ν(X(t)
0 , t)
t

)q∣∣∣∣∣∣X(t)
0

 = Ei

(ν(t−X(t)
0 )

t

)q
1{t−X(t)

0 ≥0}

∣∣∣∣∣∣X(t)
0


= Ei

( ν(t−X(t)
0 )

(t−X(t)
0 ) ∨ 1

)q∣∣∣∣∣∣X(t)
0

((t−X(t)
0 ) ∨ 1
t

)q
1{t−X(t)

0 ≥0}

= gi(t−X(t)
0 )

(
(t−X(t)

0 ) ∨ 1
t

)q
1{t−X(t)

0 ≥0},

where we used independence of the MRW and X
(t)
0 in the last step. We aim to show

Ei

(
ν(X(t)

0 , t)
t

)q
= EiYt →

1
µq
,

as t→∞. W.l.o.g. (cf. the proof of Lemma 3.18), we assume that, as t→∞, X(t)
0 /t→ 0 and

thus t−X(t)
0 →∞ Pi-a.s. As a consequence, we obtain

Yt1{|X(t)
0 |≤t}

= gi(t−X(t)
0 )

(
(t−X(t)

0 ) ∨ 1
t

)q
1{|X(t)

0 |≤t}
→ 1

µq
Pi-a.s.,

as t→∞, and it remains to find a majorant to apply the dominated convergence theorem. We
find

Yt1{|X(t)
0 |≤t}

1{t−X(t)
0 ≥1} = gi(t−X(t)

0 )
(
t−X(t)

0
t

)q
1{−t≤X(t)

0 ≤t−1}

≤ sup
s≥1

gi(s) ·
(
t−X(t)

0
t

)q
1{−t≤X(t)

0 ≤t−1} ≤ C ·
(2t
t

)q
1{−t≤X(t)

0 ≤t−1} ≤ 2qC <∞,

and since t ≥ 1,

Yt1{|X(t)
0 |≤t}

1{1>t−X(t)
0 ≥0} = gi(t−X(t)

0 )
(1
t

)q
1{1>t−X(t)

0 ≥0} ≤ gi(t−X
(t)
0 )1{1>t−X(t)

0 ≥0}
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3.3. Proofs

≤ sup
0≤s<1

gi(s)1{1>t−X(t)
0 ≥0} ≤ sup

0≤s<1
gi(s) <∞.

Hence, the dominated convergence theorem yields

Ei
(
Yt1{|X(t)

0 |≤t}

)
→ 1

µq

and it suffices to remark

Ei
(
Yt1{|X(t)

0 |>t}

)
= Ei

gi(t−X(t)
0 )

(
(t−X(t)

0 ) ∨ 1
t

)q
1{X(t)

0 <−t}


≤ C

tq
E
((

2|X(t)
0 | ∨ 1

)q
1{X(t)

0 <−t}

)
≤ 2qC

tq
sup
t

E|X(t)
0 |

q → 0,

as t→∞. So (3.18) follows and yields the Lpi convergence at least along sequences.

Proof of Theorem 3.2. We know from Lemma 3.13 that (X(n)
0 )n≥2 is tight and that it is also

Lp-bounded for every p ≥ 1. By Lemma 3.15, we also have Eiσ1(i)p < ∞. Since Sσ1(i) is
non-negative, Lemma 3.20 implies

ν(X(n)
0 , logn)
logn

Lq−−→ 1
µ

under Pi for every 0 < q ≤ p, and with Lemma 2.12, we infer

Ei
∣∣∣∣ Dn

logn −
1
µ

∣∣∣∣p = Ei

∣∣∣∣∣ν(X(n)
0 , logn)
logn − 1

µ

∣∣∣∣∣
p

for all n ≥ 2, which completes the proof.

3.3.3. Asymptotic expansion of the mean of Dn

In the following, the lattice type of the MRW matters. In Markov renewal theory, the important
results in the d-arithmetic case are commonly stated in the easier case of a vanishing shift
function, a case that we mostly cannot guarantee. Whenever the shift function does not vanish
everywhere, we can consider the MRW

(ξn, Sn − β(ξn) + β(ξ0))n≥0 = (ξn, S̃n)n≥0

instead of (ξn, Sn)n≥0. This process is again d-arithmetic and its shift function is 0. It actually
has the same stationary drift as (ξn, Sn)n≥0, which follows easily from stationarity. However, if we
start with a MRW (ξn, Sn)n≥0 with non-negative increments, then the transition to (ξn, S̃n)n≥0
may be at the cost of the non-negativity, so in general the latter is only a MRW. We set
βij := β(j)− β(i) ∈ (−d, d) and define {x} := x− bxc to be the fractional part of x ∈ R.

In Section 2.5, we already mentioned that the mean of a first passage time connects in a
nice way with renewal functions. We will show that the asymptotic behavior of certain renewal
functions forms the basis for an asymptotic expansion of the mean of Dn.
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3. Asymptotic analysis of depth and imbalance factor

Theorem 3.21. Let (ξn, Sn)n≥0 be a non-arithmetic (d = 0) or d-arithmetic zero-delayed MRW
with positive recurrent and discrete driving chain Ξ0 which has stationary distribution π. Let
µ be positive and let EπX2

1 <∞. Then Uij(t) <∞ for all i, j ∈ S and t ∈ R. Furthermore, as
t→∞,

Uij(t) = πjt

µ
+
π2
jEjS2

σ1(j)
2µ2 −

πjEiSσ1(j)
µ

1{j 6=i} + o(1) (3.19)

in the non-arithmetic case. In the d-arithmetic case with shift function 0,

Uij(t) = πjt

µ
+ πjd

µ

(1
2 −

{
t

d

})
+
π2
jEjS2

σ1(j)
2µ2 −

πjEiSσ1(j)
µ

1{j 6=i} + o(1). (3.20)

If the shift function β : S → [0, d) does not vanish, then, as t→∞,

Uij(t) = πjt

µ
+ πjd

µ

(1
2 −

{
t− βij
d

})
+
π2
jEjS2

σ1(j)
2µ2 −

πjEiSσ1(j)
µ

1{j 6=i} + o(1). (3.21)

Remark 3.22. If the MRW is d-arithmetic and we further suppose that S+
σ1(j) has an exponential

moment w.r.t. Pi and Pj , then it can even be shown that there is an r > 0 such that the error
terms in (3.20) and (3.21) are of order o(e−rt) instead of o(1). This follows from [Sto65] and the
fact that every Sσ1(j) is d-arithmetic under Pj .
Remark 3.23. We stated in Remark 3.4 that the error term in (3.4) can be arbitrarily bad. The
reason for this is that the error term in (3.19) can be arbitrarily bad, cf. [Car83, Section 5].
There are more precise expansions of the renewal function, e.g. if the corresponding inter-arrival
times are strictly nonlattice or nonlattice of type p, cf. [Car83]. Nevertheless, employing these
results requires a more detailed investigation of issues like lattice type universality (as we deal
with a MRW) from which we refrain.

Proof. The proof draws on results from standard renewal theory: We cite from [Als15b,
Lemma 9.28, in Ger.] that EπX2

1 < ∞ ensures EiS2
σ1(j) < ∞ for all i, j ∈ S and in partic-

ular, EiS2
σ1(i) < ∞ for all i ∈ S. Recall that Uii is the ordinary renewal measure of the SRW

(Sσn(i))n≥0 w.r.t. Pi. Thus, EiS2
σ1(i) <∞ is a sufficient condition for Uii(t) <∞ for all t ∈ R and

likewise, the i = j-versions of (3.19) and (3.20) follow immediately from i.i.d. renewal theory
noting that EiSσ1(i) = miiµ = µ

πi
. If i 6= j, then we use

Uij(t) =
∫
R
Ujj(t− x)Fij(dx).

Together with supt≥1 t
−1Uii(t) < ∞ and EiSσ1(j) < ∞ this easily implies Uij(t) < ∞ for all

t ∈ R. Concerning the asymptotic expansion, we denote by ε(t) = o(1), t→∞, the error term in
the i = j-version of (3.19) and (3.20), respectively. Since Ujj(t) <∞ for all t ∈ R, we also have
|ε(t)| <∞ for all t ∈ R and w.l.o.g. we can assume ε to be continuous. In the non-arithmetic
case for t ≥ 0 ∣∣∣∣∣Uij(t)−

(
πjt

µ
+
π2
jEjS2

σ1(j)
2µ2 −

πjEiSσ1(j)
µ

)∣∣∣∣∣
=
∣∣∣∣∣
∫
R
Ujj(t− x)− πj(t− x)

µ
−
π2
jEjS2

σ1(j)
2µ2 Fij(dx)

∣∣∣∣∣
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3.3. Proofs

≤
∫

(−∞,t]

∣∣∣∣∣Ujj(t− x)− πj(t− x)
µ

−
π2
jEjS2

σ1(j)
2µ2

∣∣∣∣∣Fij(dx)

+
∫

(t,∞)

(
Ujj(0) + πj(t+ x)

µ
+
π2
jEjS2

σ1(j)
2µ2

)
Fij(dx).

The first term equals
∫

(−∞,t] |ε(t − x)|Fij(dx) and vanishes, as t → ∞, by the dominated
convergence theorem, and the second term tends to zero since EiSσ1(j) <∞ (and Ujj(0) <∞ as
EjSσ1(j) > 0).

We now consider the d-arithmetic case with shift function 0. By definition of d as the lattice
span of all Fii, the measure Uii is concentrated on dZ. Since the shift is 0, X1 and thus Sσ1(j) is
also concentrated on dZ Pi-a.s. Hence, as t→∞,∣∣∣∣∣Uij(t)−

(
πjt

µ
+ πjd

µ

(1
2 −

{
t

d

})
+
π2
jEjS2

σ1(j)
2µ2 −

πjEiSσ1(j)
µ

)∣∣∣∣∣
=
∣∣∣∣∣
∫
R
Ujj(t− x)− πj(t− x)

µ
− πjd

µ

(1
2 −

{
t− x
d

})
−
π2
jEjS2

σ1(j)
2µ2 Fij(dx)

∣∣∣∣∣
≤
∫

(−∞,t]
|ε(t− x)|Fij(dx) +

∫
(t,∞)

(
Ujj(0) + πj(t+ x)

µ
+ πjd

µ

(1
2 + 1

)
+
π2
jEjS2

σ1(j)
2µ2

)
Fij(dx).

Both terms vanish, as t → ∞. If β is not 0, then we consider the corresponding MRW with
vanishing shift function via the connection

Uij(t) = Ei

( ∞∑
n=0

1{j}×(−∞,t](ξn, Sn)
)

= Ei

( ∞∑
n=0

1{j}×(−∞,t](ξn, S̃n + (β(ξn)− β(i)))
)

= Ei

( ∞∑
n=0

1{j}×(−∞,t](ξn, S̃n + βij)
)

= Ei

( ∞∑
n=0

1{j}×(−∞,t−βij ](ξn, S̃n)
)

= Ũij (t− βij) ,

where Ũij is the Uij-analogue corresponding to (ξn, S̃n)n≥0. Of course, π is also the stationary
distribution of this driving chain, the transformed MRW has the same lattice span d, the
stationary drift remains unchanged and

EπX̃2
1 = Eπ (X1 − β(ξ1) + β(ξ0))2 = EπX2

1 − 2EπX1(β(ξ1)− β(ξ0)) + Eπ(β(ξ1)− β(ξ0))2

≤ EπX2
1 + 2dµ+ d2 <∞.

Altogether, (3.21) follows from (3.20) and from the observations

S̃2
σ1(j) =

(
Sσ1(j) − β(ξσ1(j)) + β(ξ0)

)2 =
(
Sσ1(j) − β(j) + β(j)

)2 = S2
σ1(j) Pj-a.s.

and

S̃σ1(j) = Sσ1(j) − β(ξσ1(j)) + β(ξ0) = Sσ1(j) − β(j) + β(i) = Sσ1(j) − βij Pi-a.s.

Certainly, σ1(j) = min{n > 0 : ξn = j} does not change during the transformation. That
Uij(t) <∞ also holds in this last case, follows from the afore-mentioned.

Lemma 3.24. Let S be finite and let (ξn, Sn)n≥0 be a zero-delayed MRW with a.s. non-negative
increments and positive recurrent and discrete driving chain Ξ0 which has stationary distribution
π. Let µ be positive and EπX2

1 <∞. Then Eiν(t) <∞ for all i ∈ S and t ∈ R and furthermore:
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3. Asymptotic analysis of depth and imbalance factor

(a) If (ξn, Sn)n≥0 is non-arithmetic, then, as t→∞,

Eiν(t) = t

µ
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + o(1). (3.22)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β ≡ 0, then, as t→∞,

Eiν(t) = t

µ
+ d

µ

(1
2 −

{
t

d

})
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + o(1). (3.23)

(c) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as t→∞,

Eiν(t) = t

µ
− d

µ

∑
j∈S

πj

{
t− βij
d

}
+ d

2µ + 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j)

− 1
µ

∑
j 6=i

πjEiSσ1(j) + o(1).
(3.24)

Remark 3.25. In view of Remark 3.22, we remark that there exists r > 0 such that (3.23) and
(3.24) hold with error term o(e−rt) instead of o(1) if the MRW is in the d-arithmetic case and
Sσ1(j) has an exponential moment w.r.t. Pi and every Pj .

Proof. Since Sn increases in n,

Eiν(t) =
∞∑
n=0

Pi(ν(t) > n) =
∞∑
n=0

Pi(Sn ≤ t) =
∑
j∈S

∞∑
n=0

Pi(ξn = j, Sn ≤ t)

=
∑
j∈S

Ei

( ∞∑
n=0

1{j}×(−∞,t](ξn, Sn)
)

=
∑
j∈S

Ui ({j} × (−∞, t]) =
∑
j∈S

Uij(t),

which allows us to apply Theorem 3.21. Thus, Eiν(t) <∞ for all i ∈ S and t ∈ R in every case.
In the non-arithmetic case we have, as t→∞,

Eiν(t) =
∑
j∈S

Uij(t) = t

µ

∑
j∈S

πj + 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) + 1
µ

∑
j 6=i

πjEiSσ1(j) + o(1)

= t

µ
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) + 1
µ

∑
j 6=i

πjEiSσ1(j) + o(1).

Analogously, in the d-arithmetic case with shift 0 we obtain

Eiν(t) = t

µ
+ d

µ

(1
2 −

{
t

d

})
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + o(1)

and with general shift function β

Eiν(t) = t

µ
− d

µ

∑
j∈S

πj

{
t− βij
d

}
+ d

2µ + 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + o(1).
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Lemma 3.26. Given the situation of Lemma 3.24, let (X(t)
0 )t be a uniformly integrable family

of real-valued random variables, independent of (ξn, Sn)n≥0. Then Eiν(X(t)
0 , t) <∞ for all i ∈ S

and t ≥ 0 and furthermore:

(a) If (ξn, Sn)n≥0 is non-arithmetic, then, as t→∞,

Eiν(X(t)
0 , t) = t

µ
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) −
EX(t)

0
µ

+ o(1). (3.25)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function 0, then, as t→∞,

Eiν(X(t)
0 , t) = t

µ
+ d

µ

(
1
2 − E

{
t−X(t)

0
d

})
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j)

− 1
µ

∑
j 6=i

πjEiSσ1(j) −
EX(t)

0
µ

+ o(1).
(3.26)

(c) If (ξn, Sn)n≥0 is d-arithmetisch with shift function β, then, as t→∞,

Eiν(X(t)
0 , t) = t

µ
− d

µ

∑
j∈S

πjE
{
t−X(t)

0 − βij
d

}
+ d

2µ

+ 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) −
EX(t)

0
µ

+ o(1).
(3.27)

In (3.25), (3.26) and (3.27) we can replace EX(t)
0 by EX∗0 (with error o(1)) if the family is

distributionally convergent with limit X∗0 w.r.t. P.

Remark 3.27. In view of Remarks 3.22 and 3.25, we remark that there exists r > 0 such that
(3.26) and (3.27) hold with error term o(e−rt) instead of o(1) if the MRW is in the d-arithmetic
case, Sσ1(j) has an exponential moment w.r.t. Pi and every Pj , and (exp(s|X(t)

0 |))t is uniformly
integrable for some s > 0.

Proof. We use the identity

ν(X(t)
0 , t) = ν(t−X(t)

0 )1{t−X(t)
0 ≥0}

and recall Eiν(X(t)
0 , t) <∞ for all t ≥ 0 from the proof of Lemma 3.20, which can also be inferred

from Lemma 3.24. We start with the non-arithmetic case. Let t ≥ 0. Independence yields∣∣∣∣∣∣Eiν(X(t)
0 , t)−

 t

µ
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) −
EX(t)

0
µ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

(−∞,t]
Eiν(t− s)PX

(t)
0 (ds)− t

µ
− 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) + 1
µ

∑
j 6=i

πjEiSσ1(j) + EX(t)
0
µ

∣∣∣∣∣∣
≤
∫

(−∞,t]

∣∣∣∣∣∣Eiν(t− s)− t− s
µ
− 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) + 1
µ

∑
j 6=i

πjEiSσ1(j)

∣∣∣∣∣∣PX(t)
0 (ds)
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3. Asymptotic analysis of depth and imbalance factor

+

 t

µ
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) + 1
µ

∑
j 6=i

πjEiSσ1(j)

P(X(t)
0 > t) + EX(t)

0 1(t,∞)(X
(t)
0 ).

In this estimation, the first term vanishes, as t→∞, because of (3.22), the tightness of (X(t)
0 )t

and the dominated convergence theorem, whereas the second and the third term tend to 0 since
(X(t)

0 )t is uniformly integrable. We treat the d-arithmetic case with shift 0 similarly:∣∣∣∣∣∣Eiν(X(t)
0 , t)−

(
t

µ
+ d

µ

(
1
2 − E

{
t−X(t)

0
d

})
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) −
EX(t)

0
µ

)∣∣∣∣∣∣
≤
∫

(−∞,t]

∣∣∣∣Eiν(t− s)− t− s
µ
− d

µ

(1
2 −

{
t− s
d

})

− 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) + 1
µ

∑
j 6=i

πjEiSσ1(j)

∣∣∣∣∣∣PX(t)
0 (ds)

+

 t

µ
+ d

2µ + 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) + 1
µ

∑
j 6=i

πjEiSσ1(j)

P(X(t)
0 > t)

+ EX(t)
0 1(t,∞)(X

(t)
0 ) + d

µ
E
{
t−X(t)

0
d

}
1(t,∞)(X

(t)
0 ).

Again, the upper bound converges to 0 as t→∞. Note that

E
{
t−X(t)

0
d

}
≤ 1

for every t. The case when β does not vanish is similar.
If the family is distributionally convergent with limit X∗0 , then we can replace EX(t)

0 by EX∗0
in all three cases since (X(t)

0 )t is uniformly integrable.

The next lemma from [Jan06] gives a series representation for the expectation of the fractional
part in (3.26) and (3.27).

Lemma 3.28. Suppose that X has a continuous distribution, E|X| < ∞, and the Fourier
transform φ(t) := Eei tX satisfies φ(t) = O(|t|−δ) for some δ > 0. Then for all u ∈ R

E{X + u} = 1
2 −

∑
n6=0

φ(2πn)
2π in e2π inu.

Proof. Cf. [Jan06, Theorem 2.3].

Proof of Theorem 3.3. (ξn, Sn)n≥0 is a MRW satisfying the requirements for Lemma 3.26. Since
X1 = − log pξ0,ξ1 is bounded, we have EπX2

1 < ∞. From Lemma 3.13 we extract that X(n)
0

converges to X∗0 in distribution with −X∗0 having a Gumbel(0, 1) distribution and that (X(n)
0 )n≥2

is uniformly integrable and tight. Thus, we apply Lemmas 3.26 and 2.12 which yield, as n→∞,

EiDn = Eiν(X(n)
0 , logn) = logn

µ
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
EX(n)

0
µ
− 1
µ

∑
j 6=i

πjEiSσ1(j) + o(1)
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3.3. Proofs

in the non-arithmetic case. Here we can substitute EX(n)
0 by EX∗0 , and −X∗0 is integrable with

Fourier transform φ(t) = Γ(1− i t) and

E(−X∗0 ) = (− i)φ′−X∗0 (0) = (−i)2Γ′(1) = −(−γ) = γ.

The error that emerges when considering EX∗0 instead of EX(n)
0 can even be given more precisely

than o(1). With an appeal to Lemma 3.13(c) and a well-known asymptotic expansion of the
harmonic sum, we obtain

EX(n)
0 = logn− Emax{Z1, . . . , Zn−1} = logn−

n−1∑
k=1

1
k

= logn− log(n− 1)− γ − 1
2(n− 1) +O(n−2)

= −γ + log
(

1 + 1
n− 1

)
+O(n−1) = −γ +O(n−1),

as n→∞, where Z1, Z2, . . . are i.i.d. Exp(1) distributed random variables. In the d-arithmetic
case with shift function 0, this reasoning leads to

EiDn = logn
µ

+ d

µ

(
1
2 − E

{
logn−X(n)

0
d

})
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j)

− 1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ
+ o(1),

as n→∞ (we could replace o(1) by O(n−(r∧1)) since our situation meets all conditions required
in Remark 3.27, cf. Lemmas 3.13 and 3.15). We would like to have X∗0 instead of X(n)

0 in the
expectation of the fractional part, so we need to estimate their asymptotical distance. First, as
in [Jan12a], we use Lemma 3.28 (|Γ(1− i s)| ∼

√
2π|s|1/2e−π|s|/2) to compute

E
{
t−X∗0
d

}
= 1

2 −
∑
k 6=0

Γ(1− 2π i k/d)
2π i k e2π i kt/d

and
d

(1
2 − E

{
t−X∗0
d

})
= −

∑
k 6=0

Γ(−2π i k/d)e2π i kt/d = ψ1(t).

The latter series converges uniformly and is therefore continuous (as a function of t).
To compute the distance between the two expected fractional parts, let Mn := max{Z1, . . . , Zn}

and fn(x) = ne−x(1 − e−x)n−1 its λλ[0,∞)-density. Furthermore, let g(x) = ne−xe−ne
−x be the

density of logn−X∗0 . We will now show that∣∣∣∣∣E
{ logn−X∗0

d

}
− E

{
logn−X(n)

0
d

}∣∣∣∣∣ =
∣∣∣∣E{ logn−X∗0

d

}
− E

{
Mn−1
d

}∣∣∣∣
≤
∫ ∞
−∞
|g(t)− fn−1(t)|

{
t

d

}
dt =

∫ ∞
−∞

ne−t
∣∣∣∣e−ne−t − n− 1

n
(1− e−t)n−2

1{t>0}

∣∣∣∣ { td
}

dt

=
∫ ∞
−∞

e−s
∣∣∣∣∣e−e−s − n− 1

n

(
1− e−s

n

)n−2
1{s>− logn}

∣∣∣∣∣
{
s− logn

d

}
ds = o(1),

(3.28)
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3. Asymptotic analysis of depth and imbalance factor

as n→∞, with the dominated convergence theorem. Note that the occurring fraction part is
bounded by 1, thus we have to find an appropriate bound for the expression inside the absolute
value. Obviously, it converges to 0 pointwise for all s ∈ R. Indeed, we will show that∣∣∣∣∣e−e−s − n− 1

n

(
1− e−s

n

)n−2
1{s>− logn}

∣∣∣∣∣ ≤ Ce−e−s (3.29)

for all n ≥ 2, s ∈ R and a positive constant C > 0, and thus∫ ∞
−∞

e−s
∣∣∣∣∣e−e−s − n− 1

n

(
1− e−s

n

)n−2
1{s>− logn}

∣∣∣∣∣
{
s− logn

d

}
ds ≤ C

∫ ∞
−∞

e−se−e
−sds = C <∞

since the integrand is the density of the Gumbel distribution. In order to achieve the remaining
estimate (3.29), let x = e−s > 0 and note that

e−x − n− 1
n

(
1− x

n

)n−2
1{x<n} ≤ e−x

for all n ≥ 2. This leaves us with the verification of the lower bound

e−x − n− 1
n

(
1− x

n

)n−2
1{x<n} ≥ −Ce−x or n− 1

n

(
1− x

n

)n−2
1{x<n} ≤ (1 + C)e−x

for some C > 0. Obviously, it is enough to show (1− x
n)n−2

1{x<n} ≤ (1 + C)e−x for all n ≥ 2
and x > 0 (note that it is trivial for x ≥ n) or equivalently (n− 2) log(1− x

n) ≤ −x+ log(1 + C)
for all n ≥ 2 and x ∈ (0, n). Using the series expansion of the logarithm, this amounts to

−(n− 2)
∞∑
k=1

(xn)k

k
≤ −x

n
· n+ log(1 + C) or 2x

n
− log(1 + C) ≤ (n− 2)

∞∑
k=2

(xn)k

k

which is true for C = e2 − 1 and all n ≥ 2 and x ∈ (0, n) since the left-hand side then is
2x
n − log(1 + C) < 2− log(e2) = 0 and the right-hand side is non-negative. This proves (3.28).

In the case of a general β, we similarly get

EiDn = Eiν(X(n)
0 , logn) = logn

µ
+ 1

2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
EX∗0
µ

− 1
µ

∑
j 6=i

πjEiSσ1(j) + 1
µ

∑
j∈S

πjd

(1
2 − E

{ logn− βij −X∗0
d

})
+ o(1)

= logn
µ

+ 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ
+ 1
µ

∑
j∈S

πjψ1(logn− βij) + o(1).

3.3.4. Central limit theorem for Dn

We now prove a CLT for Dn by deriving results for ν(t) and then for ν(X(t)
0 , t).

Lemma 3.29. Let (ξn, Sn)n≥0 be a zero-delayed MRW with a.s. non-negative increments and
positive recurrent and discrete driving chain Ξ0 which has stationary distribution π. Let µ <∞
be positive. Assume further that Eiσ1(i)2 <∞, EπX2

1 <∞ and

σ(2) := 1
mii

Vari(Sσ1(i) − µσ1(i)) > 0.
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Then σ(2) <∞ does not depend on i, and, as t→∞,

ν(t)− t
µ√

t

d−−→ N
(

0, σ
(2)

µ3

)
(3.30)

w.r.t. Pi. If σ(2) = 0, i.e. Sσ1(j) = µσ1(j) Pj-a.s. for some (and thus all) j ∈ S, then the limit is
0 and the convergence holds Pi-a.s. Assuming further Eiσ1(i)p <∞ and EiSpσ1(i) <∞ for some
p ≥ 2, the family {|(ν(t)− t

µ)/
√
t|p, t ≥ 1} is uniformly integrable w.r.t. Pi and

Ei

∣∣∣∣∣ν(t)− t
µ√

t

∣∣∣∣∣
q

→ Ei|N |q

for 0 < q ≤ p in the case σ(2) > 0. N has the distribution of the limit in (3.30). The convergence
also holds without absolute value for q ∈ N. If σ(2) = 0, then

ν(t)− t
µ

t1/p
→ 0 Pi-a.s.,

{|ν(t)− t
µ |
p/t, t ≥ 1} is uniformly integrable w.r.t. Pi and, in particular,

Ei
∣∣∣∣ν(t)− t

µ

∣∣∣∣p = o(t).

In both cases (σ(2) > 0,= 0), as t→∞,

Vari(ν(t)) = σ(2)

µ3 t+ o(t) and Ei
(
ν(t)− t

µ

)2
= σ(2)

µ3 t+ o(t). (3.31)

Remark 3.30. σ(2) from Lemma 3.29 does not depend on i. In fact, Meyn and Tweedie derive limit
theorems for (in our terms) Sn(g) :=

∑n
k=1 g(ξk, Xk) for some function g, cf. [MT93, Chapter 17].

With g = p2 being the projection on the second component, [MT93, Theorem 17.2.2] is a CLT
for our auxiliary MRW Sn. The limiting variance there is σ(2), so by [MT93, Proposition 17.1.6]
it is the limiting variance under every Pj , and thus cannot depend on i.
Remark 3.31. If Vari(Sσ1(i)−µσ1(i)) = 0 for some i ∈ S, then the MRW (ξn, Sn−µn)n≥0 is null-
homologous, cf. Section 2.9. Thus, Lemma 2.16 is another way of seeing that Vari(Sσ1(i)−µσ1(i)) =
0 for all i ∈ S if it holds for some i ∈ S.
Remark 3.32. Although one might expect σ(2) to be the stationary variance of X1, it is not
(except for the i.i.d. case), cf. [MT93, Sections 17.2.2 and 17.4.3]. We have the alternative form

σ(2) = 1
mii

Vari(Sσ1(i) − µσ1(i)) = 1
mii

Ei(Sσ1(i) − µσ1(i))2 = 1
mii

Ei

σ1(i)∑
k=1

(Xk − µ)

2

,

whereas the stationary variance is

1
mii

Ei

σ1(i)∑
k=1

(Xk − µ)2

 .
We refer the read to [MT93, Section 17.4.3] for further details.
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3. Asymptotic analysis of depth and imbalance factor

For the proof of Lemma 3.29, we use similar decomposition techniques as Meyn and Tweedie
[MT93, e.g. Theorem 17.2.2] who established limit theorems for functions of Harris recurrent
Markov chains in great generality. Our result and proof are very similar to those obtained
by Alsmeyer and Gut [AG99], who derived limit theorems for stopped MRWs (with positive
increments) with a Harris recurrent driving chain.

Proof of Lemma 3.29. The idea of the proof is a sandwiching argument together with the i.i.d.
version of Anscombe’s Theorem applied to the cyclically decomposed MRW along (σn(i))n≥0.

First, with the definition of ν(t), we have

−µ√
t

+
Sν(t)−1 − (ν(t)− 1)µ

√
t

≤ t− ν(t)µ√
t

≤
Sν(t) − ν(t)µ

√
t

. (3.32)

We want to show that, as t→∞, the left- and the right-hand side tend to N
(
0, σ(2)

µ

)
under Pi.

Then by symmetry, as t→∞,

ν(t)µ− t√
t

d−−→ N
(

0, σ
(2)

µ

)

w.r.t. Pi, or equivalently (3.30). So our main goal will be to verify that the left- and the right-hand
side have the desired limit. We start with

Sν(t) − ν(t)µ
√
t

=
Sν(t) − Sσνi(t)(i)√

t
+
Sσνi(t)(i) − µσνi(t)(i)√

t
+ µ

σνi(t)(i)− ν(t)
√
t

(3.33)

and will show that the middle term tends to the right limit, whereas the first and last expression
vanish Pi-a.s. At first, we deal with the middle term. Since (σn+1(i)−σn(i), Sσn+1(i)−Sσn(i))n≥0
is a sequence of i.i.d. random variables under Pi, we see that Sσn(i)−µσn(i) is a centered SRW, its
increments having variance σ2

i := σ(2)mii. We consider the case σ(2) > 0 first. This, in particular,
means σ2

j > 0 for all j ∈ S, as σ(2) does not depend on i and mjj > 0 for all j ∈ S. The variance
is also finite, since Eiσ1(i)2 <∞ and EiS2

σ1(i) <∞, the latter being ensured by EπX2
1 <∞. Now,

νi(t)/t → 1/µmii ∈ (0,∞) Pi-a.s. allows us to apply the i.i.d. version of Anscombe’s theorem
[Gut09, Theorem 1.3.1] to obtain

Sσνi(t)(i) − µσνi(t)(i)

σi
√
νi(t)

d−−−→
t→∞

N(0, 1)

w.r.t. Pi and thus

Sσνi(t)(i) − µσνi(t)(i)√
t

d−−−→
t→∞

N
(

0, σ
(2)

µ

)

as desired. If σ2
j = 0 for some (and thus for all) j ∈ S, then we know that

Sσn(j) − µσn(j) =
n−1∑
k=0

(Sσk+1(j) − Sσk(j))− µ(σk+1(j)− σk(j)) = 0 Pj-a.s.

or equivalently Sσn(j) = µσn(j) Pj-a.s. for every n ≥ 1. It follows that the middle term in (3.33)
is 0 Pj-a.s.
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3.3. Proofs

To prove the vanishing of the remaining expressions in both cases σ2
i > 0 and = 0, we impose

the stronger moment conditions Eiσ1(i)p <∞ and EiSpσ1(i) <∞ for p ≥ 2 and start with

0 ≤
σνi(t)(i)− ν(t)

νi(t)1/p ≤
σνi(t)(i)− σνi(t)−1(i)

νi(t)1/p

by definition. The right-hand side converges to 0 by Lemma A.5 since νi(t) → ∞ Pi-a.s.,
Eiσ1(i)p <∞ and σn(i) is a SRW under Pi. In particular, we get

µ
σνi(t)(i)− ν(t)

t1/p
→ 0 Pi-a.s. (3.34)

as desired. This always covers the case p = 2. Similarly, as we require non-negative increments,

0 ≤
Sσνi(t)(i) − Sν(t)

νi(t)1/p ≤
Sσνi(t)(i) − Sσνi(t)−1(i)

νi(t)1/p

and again the right-hand side tends to 0 since EiSpσ1(i) <∞ and thus

Sν(t) − Sσνi(t)(i)
t1/p

→ 0 Pi-a.s. (3.35)

This shows that the right-hand side in (3.32) converges to the right limit.
It remains to show that the left-hand side tends to the same limit. More precisely, we need to

deal with
Sν(t)−1 − (ν(t)− 1)µ

√
t

=
Sν(t)−1 − Sσνi(t)−1(i)

√
t

+
Sσνi(t)−1(i) − µσνi(t)−1(i)

√
t

+ µ
σνi(t)−1(i)− (ν(t)− 1)

√
t

.

(3.36)

Now, since νi(t)− 1 and νi(t) are asymptotically equivalent, as t→∞, the middle term tends to
the right limit with the arguments from above, so that again we need to verify that the left and
right expression vanish in the limit. To this end, we remark that

0 ≤ (ν(t)− 1)− σνi(t)−1(i) ≤ σνi(t)(i)− σνi(t)−1(i)

and

0 ≤ Sν(t)−1 − Sσνi(t)−1(i) ≤ Sσνi(t)(i) − Sσνi(t)−1(i),

and the left and right expression in (3.36) vanish as in (3.34) and (3.35). This completes the
proof of the convergence in both cases.

To extend this result to moment convergence and an expansion of the variance in the case
σ2
i > 0, we show that {∣∣∣∣∣ν(t)− t

µ√
t

∣∣∣∣∣
p

, t ≥ 1
}

is uniformly integrable w.r.t. Pi. For the first assertion in (3.31), we remark that

Vari ν(t) = Vari
(
ν(t)− t

µ

)
= Ei

(
ν(t)− t

µ

)2
−
(
Eiν(t)− t

µ

)2
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3. Asymptotic analysis of depth and imbalance factor

= Ei
(
ν(t)− t

µ

)2
+O(1) = σ2

i

miiµ3 t+ o(t),

where we used Lemma 3.24. Hence, it remains to verify the previously asserted uniform
integrability. To this end, we extract from (3.32) that

|t− ν(t)µ| ≤ |Sν(t) − ν(t)µ|+ µ+ |Sν(t)−1 − (ν(t)− 1)µ| =: At + µ+Bt,

and we show that {(At/
√
t)p, t ≥ 1} and {(Bt/

√
t)p, t ≥ 1} are uniformly integrable w.r.t. Pi.

We know that

At ≤ |Sν(t) − Sσνi(t)(i)|+ |Sσνi(t)(i) − µσνi(t)(i)|+ µ(σνi(t)(i)− ν(t))

and apply the same procedure as before: The first expression satisfies

0 ≤ |Sν(t) − Sσνi(t)(i)| ≤ Sν(t) − t+ Sσνi(t)(i) − t ≤ 2(Sσνi(t)(i) − t)

which we recognize (up to a multiplicative constant) as the overshoot of the SRP (Sσn(i))n≥0.
Since Ei(S+

σ1(i))
p = EiSpσ1(i) <∞, [Gut09, Theorem 3.10.2] yields the uniform integrability of{(Sσνi(t)(i) − t)

p

t
, t ≥ 1

}
and

{ |Sν(t) − Sσνi(t)(i)|
p

t
, t ≥ 1

}
,

and particularly (recall p ≥ 2) that of{∣∣∣∣∣Sν(t) − Sσνi(t)(i)√
t

∣∣∣∣∣
p

, t ≥ 1
}
.

To deal with the middle term, we notice that the SRW (Sσn(i) − µσn(i))n≥0 is centered and
adapted to the filtration

Fn := σ
(
(σk(i), Sσk(i)) : 0 ≤ k ≤ n

)
, n ≥ 0,

and that νi(t) is a stopping time w.r.t. this filtration. Furthermore, Ei|Sσ1(i) − µσ1(i)|p < ∞
and since

{
(νi(t)/t)p/2, t ≥ 1

}
is uniformly integrable w.r.t. Pi by [Gut09, Theorem 3.7.1], the

uniform integrability of {∣∣∣∣∣Sσνi(t)(i) − µσνi(t)(i)√
t

∣∣∣∣∣
p

, t ≥ 1
}

follows from [Gut09, Theorem 1.6.3]. The third and last expression satisfies

0 ≤ σνi(t)(i)− ν(t) ≤ σνi(t)(i)− σνi(t)−1(i)

which is the stopping summand of the i.i.d. sequence (σn(i)− σn−1(i))n≥1 at the stopping time
νi(t). Since Eiσ1(i)p <∞, we can apply [Gut09, Theorem 1.8.1] to conclude that{

(σνi(t)(i)− σνi(t)−1(i))p

t
, t ≥ 1

}
and

{(
σνi(t)(i)− ν(t)

√
t

)p
, t ≥ 1

}

are uniformly integrable. This in particular, shows the uniform integrability of {(At/
√
t)p, t ≥ 1}.
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3.3. Proofs

It remains to show that {(Bt/
√
t)p, t ≥ 1} is uniformly integrable. Note, that

|Sν(t)−1 − (ν(t)− 1)µ| ≤ |Sν(t)−1 − Sν(t)|+ |Sν(t) − ν(t)µ|+ µ

= (Sν(t) − Sν(t)−1) +At + µ,

which is why we only care about the first summand which satisfies

0 ≤ Sν(t) − Sν(t)−1 ≤ Sσνi(t)(i) − Sσνi(t)−1(i).

This again is a stopping summand, now of (Sσn(i) − Sσn−1(i))n≥1, at time νi(t), so by [Gut09,
Theorem 1.8.1] the uniform integrability of{(Sσνi(t)(i) − Sσνi(t)−1(i))p

t
, t ≥ 1

}
and

{(
Sν(t) − Sν(t)−1√

t

)p
, t ≥ 1

}

follows from EiSpσ1(i) <∞.
Concerning the case σ2

i = 0, we have shown a stronger uniform integrability statement in
passing, namely that {

|ν(t)− t
µ |
p

t
, t ≥ 1

}
is uniformly integrable under Pi. Together with the already proven convergence, this completes
the proof.

Lemma 3.33. Given the situation of Lemma 3.29, let (X(t)
0 )t be a tight family of real-valued

random variables independent of (ξn, Sn)n≥0. If σ(2) > 0, then

ν(X(t)
0 , t)− t

µ√
t

d−−→ N
(

0, σ
(2)

µ3

)
, (3.37)

as t → ∞, w.r.t. Pi. If σ(2) = 0, then the limit is 0 and the convergence holds in probability
w.r.t. Pi. Assuming further the stronger moment conditions from Lemma 3.29 and that (X(t)

0 )t
is Lp-bounded for the same p ≥ 2,

Ei

∣∣∣∣∣∣
ν(X(t)

0 , t)− t
µ√

t

∣∣∣∣∣∣
q

→ Ei|N |q, (3.38)

as t→∞, for 0 < q ≤ p and N from Lemma 3.29 in the case σ(2) > 0. The convergence also
holds without absolute value (along sequences) for q ∈ N. If σ(2) = 0, then

ν(X(t)
0 , t)− t

µ

t1/p
→ 0 Pi-a.s.

and
Ei
∣∣∣∣ν(X(t)

0 , t)− t

µ

∣∣∣∣p = o(t). (3.39)

In both cases (σ(2) > 0,= 0), as t→∞,

Vari ν(X(t)
0 , t) = σ(2)

µ3 t+ o(t) and Ei
(
ν(X(t)

0 , t)− t

µ

)2
= σ(2)

µ3 t+ o(t).
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3. Asymptotic analysis of depth and imbalance factor

Proof. Let f : R→ R be a bounded and continuous function. We must show that

Eif

ν(t−X(t)
0 )1{t−X(t)

0 ≥0} −
t
µ

√
t

→ Eif(N),

as t→∞, for a random variable N following the distribution of the desired limit. W.l.o.g. (cf.
the proof of Lemma 3.18) we assume that, as t→∞, both X(t)

0 /
√
t→ 0 (and thus t−X(t)

0 →∞)
and (ν(t)− t

µ)/
√
t→ N Pi-a.s. This is possible due to the tightness of (X(t)

0 ), Lemma 3.29 and
independence. We partition

ν(t−X(t)
0 )1{t−X(t)

0 ≥0} −
t
µ

√
t

=
ν(t−X(t)

0 )1{t−X(t)
0 ≥0} −

t−X(t)
0

µ
√
t

− X
(t)
0

µ
√
t

= 1{t−X(t)
0 ≥0}

ν(t−X(t)
0 )− t−X(t)

0
µ√

t
− t−X(t)

0
µ
√
t

1{t−X(t)
0 <0} − at

= 1{t−X(t)
0 >0}

ν(t−X(t)
0 )− t−X(t)

0
µ√

t−X(t)
0

√
t−X(t)

0
t

+ ν(0)√
t
1{t−X(t)

0 =0} − at − bt

= 1{t−X(t)
0 >0}

ν(t−X(t)
0 )− t−X(t)

0
µ√

t−X(t)
0

· dt − at − bt + ct

where, as t→∞, Pi-a.s.

at := X
(t)
0

µ
√
t
→ 0, bt := t−X(t)

0
µ
√
t

1{t−X(t)
0 <0} → 0,

ct := ν(0)√
t
1{t−X(t)

0 =0} → 0 dt :=

√
t−X(t)

0
t

→ 1.

The remaining expression converges to N a.s., so we can conclude with the dominated convergence
theorem (f is bounded and continuous) that

Eif

ν(t−X(t)
0 )1{t−X(t)

0 ≥0} −
t
µ

√
t

→ Eif(N).

The simple proof of the assertion when σ(2) = 0 (both, with additional moment conditions and
without) is similar to the proof of Lemma 3.18.

It remains to prove the moment convergence (3.38) and (3.39), which entails the two asymptotic
expansions. For the variance, we note that

Vari ν(X(t)
0 , t) = Vari

(
ν(X(t)

0 , t)− t

µ

)
= Ei

(
ν(X(t)

0 , t)− t

µ

)2
−
(
Eiν(X(t)

0 , t)− t

µ

)2

= Ei
(
ν(X(t)

0 , t)− t

µ

)2
+O(1),
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3.3. Proofs

where we have used Lemma 3.26 (EπX2
1 <∞ and (X(t)

0 )t is uniformly integrable). Furthermore,
if we prove (3.38), then (3.39) follows along the same lines, and due to the already proven
distributional convergence (3.37), we obtain uniform integrability of

ν(X(t)
0 , t)− t

µ√
t

q , t ∈ T


for a countable index set T unbounded to the right, and hence moment convergence without
absolute value follows (at least along sequences).

To prove (3.38) we proceed as in the proof of Lemma 3.20. It is obvious from this lemma that
Ei
∣∣(ν(X(t)

0 , t)− t
µ)/
√
t
∣∣p <∞ for t ≥ 1. For some 0 < q ≤ p, let

gi(t) := Ei

∣∣∣∣∣ν(t)− t
µ√

t ∨ 1

∣∣∣∣∣
q

which satisfies gi(t) → Ei|N |q, as t → ∞, by Lemma 3.29. By the uniform integrability,
supt≥1 gi(t) <∞, and by the monotonicity of ν,

sup
0≤t≤1

gi(t) ≤ sup
0≤t≤1

Ei
(
ν(t) + t

µ

)q
= Ei

(
ν(1) + 1

µ

)q
<∞.

Our main techniques are again conditioning on X
(t)
0 and using independence. Let t ≥ 1 and

Yt :=Ei


∣∣∣∣∣∣∣∣
ν(X(t)

0 , t)− t−X(t)
0

µ 1{t−X(t)
0 ≥0}√

t

∣∣∣∣∣∣∣∣
q ∣∣∣∣∣∣∣∣X

(t)
0


= Ei


∣∣∣∣∣∣∣
ν(t−X(t)

0 )− t−X(t)
0

µ√
(t−X(t)

0 ) ∨ 1

∣∣∣∣∣∣∣
q ∣∣∣∣∣∣∣X(t)

0

((t−X(t)
0 ) ∨ 1
t

)q/2
1{t−X(t)

0 ≥0}

= gi(t−X(t)
0 )

(
(t−X(t)

0 ) ∨ 1
t

)q/2
1{t−X(t)

0 ≥0}.

Then

Ei

∣∣∣∣∣∣∣∣
ν(X(t)

0 , t)− t−X(t)
0

µ 1{t−X(t)
0 ≥0}√

t

∣∣∣∣∣∣∣∣
q

= EiYt → Ei|N |q

similar to the end of the proof of Lemma 3.20 with q/2 instead of q, and it suffices to verify∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ν(X(t)

0 , t)− t−X(t)
0

µ 1{t−X(t)
0 ≥0}√

t

∣∣∣∣∣∣∣∣
q

−
∣∣∣∣∣∣∣∣ν(X(t)

0 , t)− t
µ√

t

∣∣∣∣∣∣∣∣
q

∣∣∣∣∣∣∣∣→ 0,

as t→∞. Here ||X||q := E|X|q for 0 < q < 1. We use the reverse triangle inequality that holds
for all 0 < q <∞:∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ν(X(t)
0 , t)− t−X(t)

0
µ 1{t−X(t)

0 ≥0}√
t

∣∣∣∣∣∣∣∣
q

−
∣∣∣∣∣∣∣∣ν(X(t)

0 , t)− t
µ√

t

∣∣∣∣∣∣∣∣
q

∣∣∣∣∣∣∣∣
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≤
∣∣∣∣∣∣∣∣
t−X(t)

0
µ 1{t−X(t)

0 ≥0} −
t
µ

√
t

∣∣∣∣∣∣∣∣
q

=
∣∣∣∣∣∣∣∣
−X(t)

0
µ 1{t−X(t)

0 ≥0} −
t
µ1{t−X(t)

0 <0}√
t

∣∣∣∣∣∣∣∣
q

≤ 1
(µ
√
t)q∧1

∣∣∣∣∣∣∣∣X(t)
0 1{t−X(t)

0 ≥0}

∣∣∣∣∣∣∣∣
q

+
(√

t

µ

)q∧1 ∣∣∣∣∣∣∣∣1{t−X(t)
0 <0}

∣∣∣∣∣∣∣∣
q
.

If q ≥ 1, then the latter equals
√
t

µ
P(X(t)

0 > t)1/q ≤ 1
µ

(
tp/2P(X(t)

0 > t)
)1/q

≤ 1
µ

(
E|X(t)

0 |
p/2

1{X(t)
0 >t}

)1/q

since t ≥ 1, and it vanishes, as t→∞, due to the uniform integrability of {|X(t)
0 |p/2, t ≥ 1}. The

first term is
1
µ
√
t

(
E|X(t)

0 |
q
1{t−X(t)

0 ≥0}

)1/q
≤ 1
µ
√
t

(
sup
s

E|X(s)
0 |

q
)1/q

and vanishes, as t→∞, due to the Lq-boundedness of the family. The case 0 < q < 1 is similar
for both terms. This completes the proof.

Proof of Theorem 3.6. (ξn, Sn)n≥0 is a MRW with non-negative increments satisfying the as-
sumptions of Lemma 3.33 since again the increments are bounded and Eiσ1(i)p <∞ for every
p ≥ 2 (and thus also EiSpσ1(i) <∞). Applying Lemma 2.12 and Lemma 3.33 yields the desired
result.

3.3.5. Weak law of large numbers for ∆n

For the investigation of the imbalance factor ∆n, we recall that (ξn, Sn, Vn)n≥0 is the MRW
corresponding to the MMS (ξn, Xn, Yn)n≥0, and that µ = EπX1 and µY = EπY1.

Lemma 3.34. Let (ξn, Sn, Vn)n≥0 be a zero-delayed MRW with positive recurrent discrete driving
chain Ξ0 which has stationary distribution π. Let µ <∞ be positive and let µY exist. Then, for
all i ∈ S, as t→∞,

Vν(t)
t
→ µY

µ
Pi-a.s.

Proof. Since Vν(t)
t = Vν(t)

ν(t) ·
ν(t)
t 1{ν(t)>0}, we can handle the factors separately. By Lemma 3.17,

we have ν(t)/t→ 1/µ Pi-a.s. so we need to show that the left-hand factor converges to µY Pi-a.s.
This is guaranteed by Theorem 3.16.

Lemma 3.35. Given the situation of Lemma 3.34, let further (X(t)
0 )t be a tight family of

real-valued random variables independent of (ξn, Xn, Yn)n≥0. Then, for all i ∈ S, as t→∞,

V
ν(X(t)

0 ,t)

t

Pi−−→ µY
µ
.

Proof. We apply the usual method with ν(X(t)
0 , t) = ν(t−X(t)

0 )1{t−X(t)
0 ≥0} and use Lemma 3.34

in the same way as the corresponding result was used in the proof of Lemma 3.18. We omit the
details.
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Proof of Theorem 3.9. By Lemma 3.35 we know that

V
ν(X(n)

0 ,logn)

logn
Pi−−→ µY

µ
,

as n → ∞. The integrability condition for Y1 is trivial because it is bounded. Obviously,
(ξn, Sn, Vn)n≥0 forms a MRW. The limit is constant, so with Lemma 2.14 the same convergence
holds for ∆n

logn .

3.3.6. Lp-law of large numbers for ∆n

Lemma 3.36. Let (ξn, Sn, Vn)n≥0 be a zero-delayed MRW with a.s. non-negative increments in
the second component, and with positive recurrent discrete driving chain Ξ0 which has stationary
distribution π. Let µ <∞ be positive and let Ei

(∑σ1(i)
k=1 |Yk|

)p
<∞ for some p ≥ 1 (and hence

µY <∞). Then
{∣∣Vν(t)/t

∣∣p, t ≥ 1
}

is uniformly integrable w.r.t. Pi and thus

Vν(t)
t

Lp−−→ µY
µ

under Pi, as t→∞, in particular,

Ei
∣∣∣∣Vν(t)
t

∣∣∣∣q → ∣∣∣∣µYµ
∣∣∣∣q

for 0 < q ≤ p. The convergence also holds without absolute value for q ∈ N.

Proof. We only need to show the first assertion, then the rest follows by Lemma 3.34. We set
Zn :=

∑σn(i)
k=σn−1(i)+1 |Yk| for n ≥ 1, Z0 := 0, and consider the filtration

Fn = σ
(
(σk(i), Sσk(i)), Zk : 0 ≤ k ≤ n

)
, n ≥ 0.

Note that νi(t) is a stopping time w.r.t. this filtration. We proceed with the estimate

0 ≤
(
|Vν(t)|
t

)p
≤
(∑ν(t)

k=1 |Yk|
t

)p
≤

∑σνi(t)(i)
k=1 |Yk|

t

p =

∑νi(t)
k=1 Zk
t

p

and since EiZp1 <∞ and
{(
νi(t)/t

)p
, t ≥ 1

}
is uniformly integrable (still trivial by non-negativity),

[Gut09, Theorem 1.6.1] guarantees that
∑νi(t)

k=1 Zk
t

p , t ≥ 1


is uniformly integrable. This completes the proof.

Lemma 3.37. Given the situation of Lemma 3.36, let (X(t)
0 )t be a tight and Lp-bounded family

of real-valued random variables independent of (ξn, Sn, Vn)n≥0. Then (along sequences)

V
ν(X(t)

0 ,t)

t

Lp−−→ µY
µ
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3. Asymptotic analysis of depth and imbalance factor

under Pi, as t→∞, in particular,

Ei

(∣∣V
ν(X(t)

0 ,t)
∣∣

t

)q
→
∣∣∣∣µYµ

∣∣∣∣q
for 0 < q ≤ p. The convergence also holds without absolute value for q ∈ N.

Proof. Similar to the proof of Lemma 3.20, we get Ei|Vν(X(t)
0 ,t)|

p <∞ for all t ≥ 0. We proceed
in the same way and define

gi(t) := Ei

(
|Vν(t)|
t ∨ 1

)q
for some 0 < q ≤ p. Then by Lemma 3.36 we have gi(t)→ |µY /µ|q, as t→∞. Note that gi(t) is
bounded since, on the one hand, supt≥1 gi(t) < ∞ by uniform integrability and, on the other
hand,

sup
0≤t≤1

gi(t) = sup
0≤t≤1

Ei|Vν(t)|q ≤ sup
0≤t≤1

Ei

ν(t)∑
k=1
|Yk|

q ≤ Ei

ν(1)∑
k=1
|Yk|

q

≤ Ei

σνi(1)(i)∑
k=1

|Yk|


q

= Ei

νi(1)∑
k=1

Zk

q ≤ B′q · EiZq1 · Eiνi(1)q <∞

by [Gut09, Theorem 1.5.2]. Here B′q is a constant only depending on q and the Zk are defined in
the proof of the previous lemma. If we now define

Yt = Ei

∣∣Vν(X(t)
0 ,t)

∣∣
t

q ∣∣∣∣∣∣X(t)
0

 = gi(t−X(t)
0 )

(
(t−X(t)

0 ) ∨ 1
t

)q
1{t−X(t)

0 ≥0}

as in Lemma 3.20, then the rest follows exactly as in this lemma together with our preparations
from above.

Proof of Theorem 3.10. Applying Lemma 2.14, we see that for all n

Ei
( |∆n|

logn

)p
= Ei

 |Vν(X(n)
0 ,logn)|

logn

p .
Lemma 3.37 completes the proof using the tightness and Lp-boundedness of (X(n)

0 )n as well as
the fact that Ei

(∑σ1(i)
k=1 |Yk|

)p = Eiσ1(i)p <∞ for every p ≥ 1.

3.3.7. Central limit theorem for ∆n

The CLT for ∆n is derived very similarly to the CLT for Dn. Again we can relate an auxiliary
MRW to the situation of Meyn and Tweedie by setting Sn(g) :=

∑n
k=1 g(ξk, Xk, Yk) = µVn−µY Sn

with g = µp3 − µY p2 . Then [MT93, Theorem 17.2.2] is a CLT comprising our situation and the
limiting variance is γ(2) (from Lemma 3.38), so γ(2) does not depend on i by the same reasoning
as in Remark 3.30.
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Lemma 3.38. Let (ξn, Sn, Vn)n≥0 be a zero-delayed MRW with a.s. non-negative increments in
the second component, and with positive recurrent discrete driving chain Ξ0 which has stationary
distribution π. Let µ < ∞ be positive. Assume further that EπX2

1 < ∞, Ei
(∑σ1(i)

k=1 |Yk|
)2
< ∞

(and hence µY <∞) and

γ(2) := 1
mii

γ2
i := 1

mii
Vari(µVσ1(i) − µY Sσ1(i)) > 0.

Then γ(2) <∞ does not depend on i and, as t→∞,

Vν(t) − µY
µ t√

t

d−−→ N
(

0, γ
(2)

µ3

)
(3.40)

w.r.t. Pi. Assuming further that EiSpσ1(i) < ∞ and Ei
(∑σ1(i)

k=1 |Yk|
)p
< ∞ for some p ≥ 2, the

family {|(Vν(t) − µY
µ t)/

√
t|p, t ≥ 1} is uniformly integrable w.r.t. Pi and

Ei

∣∣∣∣∣Vν(t) − µY
µ t√

t

∣∣∣∣∣
q

→ Ei|N |q

for 0 < q ≤ p. N has the distribution of the limit in (3.40). The convergence also holds without
absolute value for q ∈ N. Furthermore, as t→∞,

EiVν(t) = µY
µ
t+ o(t1/p) and Vari Vν(t) = γ(2)

µ3 t+ o(t).

Remark 3.39. Remark 3.32 also applies to this modified setting in the sense that, in general, γ(2)

is not equal to the stationary variance of µY1 − µYX1.
Remark 3.40. There is of course a version of this lemma (and the following Lemma 3.41) in the
case γ(2) = 0, which is comparable to the corresponding case in Lemma 3.29. However, in the
special situation of Theorem 3.11, γ(2) = 0 never occurs, cf. Proposition 2.18. Thus, we refrain
from a discussion of this case.

Proof. We are guided by the proof of Lemma 3.29 and [Gut09, Theorem 4.2.3], and thus we start
by decomposing

Vν(t) − µY
µ t√

t
=
Vν(t) − Vσνi(t)(i)√

t
+
Vσνi(t)(i) −

µY
µ Sσνi(t)(i)√
t

+ µY
µ

Sσνi(t)(i) − t√
t

. (3.41)

Again, we show that the middle term has the desired limit and that the remaining expressions
vanish. Considering the middle term first, we notice that (Vσn(i) − µY

µ Sσn(i))n≥0 is a SRW w.r.t.
Pi. It is centered since Ei

(
Vσ1(i) − µY

µ Sσ1(i)
)

= miiµY − µY
µ miiµ = 0, so following the standard

CLT we find that, as n→∞,

Vσn(i) − µY
µ Sσn(i)√
n

d−−→ N
(

0,Vari(Vσ1(i) −
µY
µ
Sσ1(i))

)
= N

(
0, γ

2
i

µ2

)

whenever γ(2) > 0. Using the i.i.d. version of Anscombe’s theorem [Gut09, Theorem 1.3.1], we
easily conclude that

Vσνi(t)(i) −
µY
µ Sσνi(t)(i)√
t

d−−→ N
(

0, γ
(2)

µ3

)
.
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3. Asymptotic analysis of depth and imbalance factor

Concerning the last term in (3.41), we remark that the numerator is the overshoot Sσνi(t)(i) − t
of the SRP Sσn(i). Since Ei(S+

σ1(i))
p = EiSpσ1(i) < ∞ for some p ≥ 2, [Gut09, Theorem 3.10.2]

yields that

Sσνi(t)(i) − t
t1/p

→ 0 Pi-a.s.

To deal with the first term in (3.41), we establish the upper bound

|Vν(t) − Vσνi(t)(i)| =

∣∣∣∣∣∣∣
σνi(t)(i)∑
k=ν(t)+1

Yk

∣∣∣∣∣∣∣ ≤
σνi(t)(i)∑
k=ν(t)+1

|Yk| ≤
σνi(t)(i)∑

k=σνi(t)−1(i)+1
|Yk|

and as (
∑σn(i)
k=1 |Yk|)n≥0 is a SRW with Lp-increments under Pi, we infer by Lemma A.5 that, as

n→∞ or t→∞,

∑σn(i)
k=σn−1(i)+1 |Yk|

n1/p → 0 and

∑σνi(t)(i)
k=σνi(t)−1(i)+1 |Yk|

t1/p
→ 0 Pi-a.s.

This completes the proof of the convergence. It remains to prove the uniform integrability. We
have seen that

|Vν(t) −
µY
µ
t| ≤ |Vν(t) − Vσνi(t)(i)|+ |Vσνi(t)(i) −

µY
µ
Sσνi(t)(i)|+

|µY |
µ

(Sσνi(t)(i) − t)

=: At +Bt + µY
µ
Ct

and again it suffices to show that {(At/
√
t)p, t ≥ 1}, {(Bt/

√
t)p, t ≥ 1} and {(Ct/

√
t)p, t ≥ 1}

are uniformly integrable. For the first term, we use the Zn, n ≥ 1, from the proof of Lemma 3.36.
They are non-negative i.i.d. random variables w.r.t. Pi and EiZp1 <∞ by assumption. We know
that νi(t) is a stopping time w.r.t. the filtration from the proof of Lemma 3.36 and

At ≤
σνi(t)(i)∑

k=σνi(t)−1(i)+1
|Yk| = Zνi(t)

is bounded by a stopping summand. Therefore, the uniform integrability of
{
νi(t)/t, t ≥ 1

}
together with [Gut09, Theorem 1.8.1] yields the uniform integrability of{

Zp
νi(t)
t

, t ≥ 1
}
,

{
Apt
t
, t ≥ 1

}
and

{(
At√
t

)p
, t ≥ 1

}
.

For Bt, we remark again that we deal with a centered SRW which lets us apply [Gut09,
Theorem 1.6.3]. All required conditions are satisfied which was shown before or is very easy to
show. Hence, the theorem yields the uniform integrability of

( |Vσνi(t)(i) − µY
µ Sσνi(t)(i)|√
t

)p
, t ≥ 1

 .
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3.3. Proofs

To complete the proof, we remark that Ct is the overshoot of (Sσn(i))n≥0 and, as all required
conditions are satisfied, [Gut09, Theorem 3.10.2] yields that{(Sσνi(t)(i) − t)

p

t
, t ≥ 1

}
and

{(
Sσνi(t)(i) − t√

t

)p
, t ≥ 1

}

are uniformly integrable.
It is now easy to obtain asymptotic expansions from the moment convergence, but we only

obtain EiVν(t)− µY
µ t = o(

√
t) directly. Nevertheless, the i.i.d. case theorem [Gut09, Theorem 4.2.4]

enables us to improve the error by direct computation: The decomposition

EiVν(t) = Ei(Vν(t) − Vσνi(t)(i)) + EiVσνi(t)(i) (3.42)

lets us apply [Gut09, Theorem 4.2.4] to the second term which then is, as t→∞,

EiVσνi(t)(i) =
EiVσ1(i)
EiSσ1(i)

t+O(1) = miiµY
miiµ

t+O(1) = µY
µ
t+O(1)

if µY 6= 0, and even equal to 0 otherwise. The first term in (3.42) can again be bounded by a
stopping summand via

|Ei(Vν(t) − Vσνi(t)(i))| ≤ Ei

 σνi(t)(i)∑
k=ν(t)+1

|Yk|

 ≤ Ei

 σνi(t)(i)∑
k=σνi(t)−1(i)+1

|Yk|

 = o(t1/p)

by [Gut09, Theorem 1.8.1]. Concerning the variance, uniform integrability yields Ei
(
Vν(t) −

µY
µ t
)2 = γ(2)

µ3 t+ o(t), so

Vari Vν(t) = Vari
(
Vν(t) −

µY
µ
t
)

= Ei
(
Vν(t) −

µY
µ
t
)2
−
(
EiVν(t) −

µY
µ
t
)2

= γ(2)

miiµ3 t+ o(t)− o(t2/p) = γ(2)

miiµ3 t+ o(t).

Lemma 3.41. Given the situation of Lemma 3.38, let (X(t)
0 )t be a tight family of real-valued

random variables independent of (ξn, Sn, Vn)n≥0. If γ(2) > 0, then

V
ν(X(t)

0 ,t) −
µY
µ t

√
t

d−−→ N
(

0, γ
(2)

µ3

)
,

as t→∞, w.r.t. Pi. Assuming further the stronger moment conditions from Lemma 3.38 and
that (X(t)

0 )t is Lp-bounded for the same p ≥ 2,

Ei

∣∣∣∣∣∣
V
ν(X(t)

0 ,t) −
µY
µ t

√
t

∣∣∣∣∣∣
q

→ Ei|N |q,

as t→∞, for 0 < q ≤ p and N from Lemma 3.38 Furthermore, as t→∞,

EiVν(X(t)
0 ,t) = µY

µ
t+ o(t1/p) and Vari Vν(X(t)

0 ,t) = γ(2)

µ3 t+ o(t).
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Proof. We only remark that

V
ν(t−X(t)

0 )1
{t−X(t)

0 ≥0}
= 1{t−X(t)

0 ≥0}Vν(t−X(t)
0 ).

Then the proof is the same as for Lemma 3.33, except for the expansion of the expectation which
can be proved as Lemma 3.26.

Proof of Theorem 3.11. It is obvious that (ξn, Sn, Vn)n≥0 forms a MRW, and that the integrability
conditions for Lemma 3.41 are met, has already been argued in the proof of Theorem 3.10. Also,
γ(2) > 0 by Proposition 2.18. The result then follows from Lemma 3.41 and Lemma 2.14.

54



4. Average-case analysis of further
characteristic parameters

The power of Markov renewal theory has been demonstrated in the first part of this work. Based
on the treatment of so-called harmonic sums (from Mellin transform theory, cf. [FGD95] or [FS09])
in the i.i.d. setting in [Jan12a], the following chapter is designated to a generalization of Janson’s
techniques so as to provide a simple device for finding asymptotics of various characteristic
parameters of tries. As already mentioned, the asymptotic expansions in the applications are
mostly not new. Nevertheless, our device enables us to immediately obtain at least the leading
term in the asymptotic expansions of trie parameters whenever they have additive form which is
described in the paragraph below. We provide comparisons with existing results in Section 4.5.

One of the most accessible parameters to motivate the following theorems with, is the expected
size of a trie. It is easy to characterize and shows our device in the plainest form. We consider
Trie(Mn) which has a deterministic number of n leaves and contains a random number Wn of
internal nodes. Wn is called the size of Trie(Mn). By Observation 2.2, we have

Wn = #{α ∈ S∗ : α is an internal node of Trie(Mn)}

= #
{
α ∈ S∗ :

n∑
k=1

1{Ξ(k)�α} ≥ 2
}

=
∑
α∈S∗

1{∑n

k=1 1{Ξ(k)�α}≥2
}.

We define W̃λ := WΠ(λ) for a Poi(λ) distributed variable Π(λ) and define Nn(α) :=
∑n
k=1 1{Ξ(k)�α}

as in [Jan12b], which counts the number of strings starting with α. The properties of a Poisson
point process yield Ñλ(α) = NΠ(λ)(α) ∼ Π(λPi(α)) under Pi (cf. Section 4.2), and we obtain

EiW̃λ =
∑
α∈S∗

Pi
(
Ñλ(α) ≥ 2

)
1{Pi(α)>0} =

∑
α∈S∗

P (Π(λPi(α)) ≥ 2)1{Pi(α)>0}

=
∑
α∈S∗

f(λPi(α))1{Pi(α)>0}
(4.1)

for f : (0,∞)→ R≥0 defined by f(x) := P (Π(x) ≥ 2) = 1− (1 + x)e−x. This is the same f as in
[Jan12a, Section 5]. Hence, we need an analogue of [Jan12a, Theorem 5.1] to deal with sums of
the form (4.1).

Additive parameters and search costs. Following [CFV01] or [Bou01], the above expression
and the ones following in the applications are so-called additive parameters that can be expressed
by summing over all nodes in the complete tree with weights called search cost. The latter
indicates whether the considered node carries a certain property (e.g. having at least two children
in the trie) or not.

Harmonic sums. As explained in [FGD95] (we follow their notation and sketch here), asymptotic
expansions of harmonic sums

G(x) =
∑
k

λkg(µkx)
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4. Average-case analysis of further characteristic parameters

are usually found by means of Mellin transforms: The Mellin transform of G factorizes into a
generalized Dirichlet series, containing λk and µk, and the Mellin transform of g. Then, roughly
speaking, the Mellin inversion formula (which is similar to Fourier inversion) entails that we can
find the asymptotics of G at 0 or ∞ by calculating residues. Of course, this is all subject to some
regularity and growth conditions for the Dirichlet series and the Mellin transform of g. We will
see that Mellin transforms appear in our statement as well (cf. Remark 4.4).

4.1. Main results
Several parameters of a trie can be expressed as a sum over all nodes α in S∗ of some suitable
function f at points λPi(α) or λPi(αj) as in (4.1). These expressions occur in the Poisson model.
There we consider a random number of strings, from which we construct a trie to subsequently
extract results for the standard model. We use the following theorems which reduce the problem
of finding a limiting behavior of certain functionals to a calculation of integrals. Actually, the
first theorem is a corollary of the second. With results of this kind at hand, the limiting behavior
is clear up to o(λ), as soon as the function f is known. These results provide a closed form for
the periodic oscillatory error function in the d-arithmetic case as well as its Fourier series, which
in all of our cases equals the function itself (cf. Remark 4.3). The theorem below applies to (4.1),
hence we immediately obtain asymptotics for the expected size of a trie in the Poisson model.

Since for some parameters a similar approach as in (4.1) requires knowledge about the last
letter in a string β = αj, say, or about the letter following the considered string α, we prove
Theorem 4.5 as a generalization of Theorem 4.1 first. In our applications we sometimes encounter
a function f that does not satisfy (4.2). Therefore, we also need the generalizations Theorem 4.6
and Theorem 4.7. Theorems 4.1 and 4.7 are generalizations of [Jan12a, Theorem 5.1] and [Jan12b,
Theorem 2.1], so we try to stay close to his notation.

In the formulation of the following theorems, we use the notation f(x) = O(g(x)) for a < x < b,
with positive g, meaning that there exists a positive constant C > 0 such that |f(x)| ≤ Cg(x)
for all a < x < b. Also, we use ∼ here for the equivalence relation “λλ0-almost everywhere (a.e.)
equal”.

Theorem 4.1. Let f : (0,∞)→ R be a non-negative, λλ0-a.e. continuous function satisfying

f(x) = O(x1+δ) for 0 < x < 1 and f(x) = O(x1−δ) for 1 < x <∞ (4.2)

for some δ > 0, and g(t) := etf(e−t). Then

Fi(λ) :=
∑
α∈S∗

f(λPi(α))1{Pi(α)>0} (4.3)

converges for every 0 < λ <∞ and the following cases occur:

(a) If (ξn, Sn)n≥0 is non-arithmetic, then, as λ→∞,

Fi(λ)
λ

= 1
µ

∫ ∞
−∞

g(t) dt+ o(1) = 1
µ

∫ ∞
0
f(x)x−2 dx+ o(1). (4.4)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as λ→∞,

Fi(λ)
λ

= 1
µ

∫ ∞
0
f(x)x−2 dx+ 1

µ

∑
j∈S

πjψ(log λ− βij) + o(1), (4.5)
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where ψ(t) is a bounded d-periodic function given by

ψ(t) := d
∞∑

n=−∞
g(nd− t)− ψ̂(0) (4.6)

with Fourier series

ψ(t) ∼
∑
m6=0

ψ̂(m)e2π imt/d (4.7)

and Fourier coefficients

ψ̂(m) = ĝ(−2πm/d) =
∫ ∞
−∞

g(t)e2π imt/d dt =
∫ ∞

0
f(x)x−2−2π im/d dx, (4.8)

m ∈ Z. Here ĝ denotes the Fourier transform of non-periodic functions. If f is continuous,
then the same holds for ψ. βij is defined just like in Theorem 3.3.

Remark 4.2. In all our applications, the occurring f is continuous. Thus, Condition (4.2) simplifies
to

f(x) = O(x1+δ), as x→ 0, and f(x) = O(x1−δ), as x→∞.

An analogous remark applies to Condition (4.12).
Remark 4.3. We cite [Jan12b, Remark 2.2] since our ψ is his ψ0: Usually (and in all of our
applications) f is continuous and ĝ(s) = O(s−2), |s| → ∞, so the Fourier series in (4.7) converges
absolutely, and thus its sum is continuous. Since ψ is continuous, as f is, the Fourier series
converges to ψ(t) for every t and we may replace ∼ by = in (4.7).
Remark 4.4. As Janson points out in the proof of [Jan12a, Theorem 5.1], ĝ(s) from Theorem 4.1
is the Mellin transform of f at −1 + i s.

The following theorem is a variation of the previous theorem and actually more general:

Theorem 4.5. Let f : (0,∞) → R be a non-negative, λλ0-a.e. continuous function satisfying
(4.2) for some δ > 0, and g(t) := etf(e−t). Then, with j ∈ S,

F ji (λ) :=
∑
α∈S∗

f(λPi(αj))1{Pi(αj)>0} (4.9)

converges for every 0 < λ <∞ and the following cases occur:

(a) If (ξn, Sn)n≥0 is non-arithmetic, then, as λ→∞,

F ji (λ)
λ

= πj
µ

∫ ∞
−∞

g(t) dt+ o(1) = πj
µ

∫ ∞
0
f(x)x−2 dx+ o(1). (4.10)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as λ→∞,

F ji (λ)
λ

= πj
µ

∫ ∞
0
f(x)x−2 dx+ πj

µ
ψ(log λ− βij) + o(1), (4.11)

where ψ(t) is the bounded d-periodic function from Theorem 4.1.
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We can also prove a generalization of Theorem 4.5 which in turn provides a generalization of
Theorem 4.1 as a consequence. The more general results describe the asymptotic behaviour for a
broader range of functions f .

Theorem 4.6. Let f : (0,∞)→ R be a λλ0-a.e. continuous function satisfying

f(x) = O(x1+δ) for 0 < x < 1 and
f(x) = ax+O(x1−δ) for 1 < x <∞

(4.12)

for some δ > 0 and a ∈ R, and g(t) := etf(e−t). Then, with j ∈ S,

F ji (λ) :=
∑
α∈S∗

f(λPi(αj))1{Pi(αj)>0} (4.13)

converges absolutely for every 0 < λ <∞ and the following cases occur:

(a) If (ξn, Sn)n≥0 is non-arithmetic, then, as λ→∞,

F ji (λ) = aπj
µ
λ log λ+ bj

µ
λ− aλ1{j}(i) + o(λ), (4.14)

where

bj := a

2µπ
2
jEjS2

σ1(j) − aπjEiSσ1(j)1{j 6=i} + πj

∫ ∞
0

(f(x)− ax1{x≥1})x−2 dx. (4.15)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as λ→∞,

F ji (λ) = aπj
µ
λ log λ+ bj

µ
λ+ πj

µ
ψ0(log λ− βij)λ− aλ1{j}(i) + o(λ), (4.16)

with bj from above and ψ0(t) is a bounded d-periodic function with Fourier series

ψ0(t) ∼
∑
m6=0

ψ̂0(m)e2π imt/d =
∑
m6=0

ĝ(−2πm/d)e2π imt/d (4.17)

and Fourier coefficients ψ̂0(m) = ĝ(−2πm/d), where

ĝ(u) := lim
ε↘0

∫ ∞
−∞

e− iut+εtg(t) dt = lim
ε↘0

∫ ∞
0
f(x)x−2−ε+iu dx (4.18)

and furthermore

ψ0(t)− ψ0(0) = d
∞∑

n=−∞
(g(nd− t)− g(nd))− at. (4.19)

If f is continuous, then the same holds for ψ0.

Note that g(t)→ a, as t→ −∞, and g(t) = O(e−δt), as t→∞.

This result directly implies the following:
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4.2. Poisson model

Theorem 4.7. Let f : (0,∞)→ R be a λλ0-a.e. continuous function satisfying (4.12) for some
δ > 0 and a ∈ R, and g(t) := etf(e−t). Then

Fi(λ) :=
∑
α∈S∗

f(λPi(α))1{Pi(α)>0} (4.20)

converges absolutely for every 0 < λ <∞ and the following cases occur:

(a) If (ξn, Sn)n≥0 is non-arithmetic, then, as λ→∞,

Fi(λ) = a

µ
λ log λ+ b

µ
λ+ o(λ), (4.21)

where

b :=
∑
j∈S

bj = a

2µ
∑
j∈S

π2
jEjS2

σ1(j) − a
∑
j 6=i

πjEiSσ1(j) +
∫ ∞

0
(f(x)− ax1{x≥1})x−2 dx. (4.22)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as λ→∞,

Fi(λ) = a

µ
λ log λ+ b

µ
λ+ 1

µ

∑
j∈S

πjψ0(log λ− βij)λ+ o(λ), (4.23)

with b from above and ψ0(t) is the bounded d-periodic function from Theorem 4.6.

4.2. Poisson model
To apply these results to functionals of the trie, we consider the Poisson model in the following
sense: Let (Π(λ))λ>0 be a family of independent Poi(λ) distributed variables. Let further
(Π(λ))λ>0, ξ0,Ξ(1),Ξ(2), . . . be independent w.r.t. Pi for each i ∈ S. Again, as with X(n)

0 , we will
sometimes use P instead of Pi if the probability does not depend on i. Usually, we denote the
first string by Ξ(1) = Ξ, but Ξ is considered an additional string in the sequence Ξ,Ξ(1),Ξ(2), . . .
in Subsection 4.5.4. The set from which the trie is constructed is then Mn = {Ξ(1), . . . ,Ξ(n)} or
{Ξ,Ξ(1), . . . ,Ξ(n−1)} for n ∈ N. In the Poisson model, we deal with the first Π(λ) (or 1 + Π(λ))
strings. The definitions of the functionals rely on characterizations of specific nodes in Trie(Mn).
We recall, that with |α| denoting the length of α, the event

{Ξ(k) � α} := {(ξ(k)
1 , . . . , ξ

(k)
|α| ) = α}

is the set on which α is a prefix of Ξ(k) or equivalently Ξ(k) starts with α.
An important tool is the fact that for l ∈ N and under Pi

Π(λ)∑
k=1

1{(ξ(k)
1 ,...,ξ

(k)
l

)∈·} =
Π(λ)∑
k=1

δ(ξ(k)
1 ,...,ξ

(k)
l

)

is a Poisson point process on S l. Its intensity measure is ζ(·) = λPi(·) since the (ξ(k)
1 , . . . , ξ

(k)
l ),

k = 1, 2, . . ., are independent with distribution Pi(·). Hence, for α with length l, we have

Π(λ)∑
k=1

1{Ξ(k)�α} =
Π(λ)∑
k=1

δ(ξ(k)
1 ,...,ξ

(k)
l

)({α})
Pi∼ Π(ζ(α)) = Π(λPi(α)).
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4. Average-case analysis of further characteristic parameters

4.3. Markov renewal theorems
The four main results in Section 4.1 are based on the two so-called Markov renewal theorems.
These are Markov analogues of the well-known renewal theorem by Blackwell and its equivalent
version which is known under the name of key renewal theorem. We state both, the Markov
renewal theorem I and the Markov renewal theorem II as well as a refined version of the latter in
the d-arithmetic case. As usual ∞−1 := 0 and we denote by λλ0 and λλd the Lebesgue measure
on (R,B) and d-times the counting measure on dZ, respectively. For the formulation of the next
theorem, we point out that d-limt→∞ f(t) means the usual limit in the case d = 0, and the limit
limn→∞ f(nd) in the case d > 0.

The Markov renewal theorem I is an analogue of Blackwell’s renewal theorem:

Theorem 4.8 (Markov renewal theorem I). Let (ξn, Sn)n≥0 be a non-arithmetic or d-arithmetic
zero-delayed MRW with positive recurrent and discrete driving chain Ξ0 which has stationary
distribution π. Let µ be positive and let the shift function be 0 if d > 0. Then for all i ∈ S, A ⊂ S
and all bounded intervals I

d-lim
t→∞

Ui(A× (t+ I)) = 1
µ
π(A)λλd(I)

and
d-lim
t→−∞

Ui(A× (t+ I)) = 0.

Proof. Cf. for example [Als14, Theorem 3.1] for the non-arithmetic case.

The central theorems of Section 4.1 rely on the Markov renewal theorem II which is an analogue
of the key renewal theorem:

Theorem 4.9 (Markov renewal theorem II, non-arithmetic or shift 0). Let (ξn, Sn)n≥0 be a
non-arithmetic or d-arithmetic zero-delayed MRW with positive recurrent and discrete driving
chain Ξ0 which has stationary distribution π. Let µ be positive and let the shift function be 0 if
d > 0. Let further g : S × R→ R be a measurable function which satisfies

g(i, ·) is λλ0-a.e. continuous for all i ∈ S

and ∑
j∈S

πj
∑
n∈Z

sup
nε<x≤(n+1)ε

|g(j, x)| <∞ for some ε > 0 (4.24)

in the non-arithmetic case, and ∑
j∈S

πj
∑
n∈dZ

|g(j, n)| <∞ (4.25)

in the d-arithmetic case. Then, for all i ∈ S,

d-lim
t→∞

U ∗ g(i, t) = 1
µ

∑
j∈S

πj

∫
R
g(j, x)λλd(dx)

and
d-lim
t→−∞

U ∗ g(i, t) = 0.
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4.3. Markov renewal theorems

Proof. Cf. for example [Als14, Theorem 3.2] for the non-arithmetic case.

Remark 4.10. If S is finite, then (4.24) is equivalent to the direct Riemann integrability of g(i, ·)
for all i ∈ S, and (4.25) is equivalent to the absolute summability of (g(i, n))n∈dZ, for all i ∈ S.

The following easy lemma helps to verify direct Riemann integrability in the proof of the main
results. It is taken from [Jan12a, Lemma A.6].

Lemma 4.11. Let f : R → R be a non-negative, bounded and a.e. continuous function. Let
further F be an integrable function satisfying 0 ≤ f ≤ F , and let A ≥ 0 such that F is increasing
on (−∞,−A) and decreasing on (A,∞). Then f is direct Riemann integrable.

As mentioned before, the requirement of a vanishing shift function in the d-arithmetic case is a
technical nuisance. Usually we then consider the MRW (ξn, S̃n)n≥0 as defined in Subsection 3.3.3.
If S is finite and we also assume direct Riemann integrability of the g(i, ·) (instead of just
summability), then Theorem 4.9 implies a more precise description of the asymptotics in the
d-arithmetic case.

Theorem 4.12 (Markov renewal theorem II, d-arithmetic). Let S be finite and let (ξn, Sn)n≥0 be
a d-arithmetic zero-delayed MRW with positive recurrent and discrete driving chain Ξ0 which has
stationary distribution π. Suppose that µ is positive and that β : S → [0, d) is the shift function.
Let further g : S × R→ R be a measurable function which satisfies

g(i, ·) is λλ0-a.e. continuous for all i ∈ S (4.26)

and

g(i, ·) is direct Riemann integrable for all i ∈ S. (4.27)

Then, for all i ∈ S, as t→∞,

U ∗ g(i, t) = 1
µ

∑
j∈S

πjψ(j,−t+ βij) + o(1),

where ψ(j, ·) is a bounded and d-periodic function for every j ∈ S defined by

ψ(j, t) := d
∞∑

n=−∞
g(j, nd− t) (4.28)

which has the Fourier series (as a function in t)

ψ(j, t) ∼
∞∑

m=−∞
ψ̂(j,m)e2π imt/d.

The Fourier coefficients satisfy

ψ̂(j,m) = ĝ(j,−2πm/d) =
∫ ∞
−∞

g(j, t)e2π imt/d dt,

where ψ̂ are the ordinary Fourier coefficients of ψ(j, ·). The series in (4.28) converges uniformly
on [0, d], so if g(j, ·) is continuous, then so is ψ(j, ·). Furthermore, for all i ∈ S, as t→ −∞,

U ∗ g(i, t) = o(1).
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4. Average-case analysis of further characteristic parameters

Proof. We need to show that, as t→∞,

U ∗ g(i, t)− 1
µ

∑
j∈S

πjψ(j,−t+ βij) = o(1).

First of all, S̃n ∈ dZ Pi-a.s., since S̃n has shift 0, so for g̃ij(s, x) := 1{j}(s)g(s, x− βij)

U ∗ g(i, t) = Ei

∑
n≥0

g(ξn, t− Sn)

 = Ei

∑
n≥0

g(ξn, t− β(ξn) + β(i)− S̃n)


=
∑
j∈S

Ei

∑
n≥0

1{j}(ξn)g(ξn, t− βij − S̃n)


=
∑
j∈S

Ei

∑
n≥0

g̃ij(ξn, t− S̃n)


=
∑
j∈S

∞∑
k=−∞

∑
n≥0

g̃ij(j, t− kd) · Pi(ξn = j, S̃n = kd)

=
∑
j∈S

∞∑
n=−∞

g̃ij(j, t− nd) · Ũi({j} × {nd})

=
∑
j∈S

∞∑
n=−∞

g̃ij(j, t− nd) · ũij(n)

with ũij(n) := Ũi({j}×{nd}), and as usual Ũi denotes the Markov renewal measure of (ξn, S̃n)n≥0
with Ũij(B) = Ũi({j} ×B) for all Borel sets B. Furthermore,

1
µ

∑
j∈S

πjψ(j,−t+ βij) =
∑
j∈S

d

µ
πj

∞∑
n=−∞

g(j, nd+ t− βij) =
∑
j∈S

d

µ
πj

∞∑
n=−∞

g(j,−nd+ t− βij)

=
∑
j∈S

∞∑
n=−∞

g(j, t− nd− βij) ·
d

µ
πj =

∑
j∈S

∞∑
n=−∞

g̃ij(j, t− nd) · d
µ
πj .

By Theorem 4.8 and the fact that the stationary drifts of (ξn, S̃n)n≥0 and (ξn, Sn)n≥0 coincide,
ũij(n) = Ũi({j} × {nd}) tends to d

µπj for all j ∈ S, as n→∞, and to 0, as n→ −∞.
Now, let ε > 0 and choose n0 ∈ N big enough such that maxj∈S |ũij(n)− d

µπj | < ε for n > n0,
maxj∈S |ũij(n)| < ε for n < −n0 and maxj∈S

∑
n<−n0 |g̃ij(j, t−nd)| < ε for t ≥ 0. The existence

of such an n0 is guaranteed by the afore-mentioned renewal theorem together with the direct
Riemann integrability of g̃ij(j, ·) and the finiteness of S. The direct Riemann integrability of
g̃ij(j, ·) follows from the direct Riemann integrability of g(j, ·). Thus,∣∣∣∣∣∣U ∗ g(i, t)− 1

µ

∑
j∈S

πjψ(j,−t+ βij)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈S

∞∑
n=−∞

g̃ij(j, t− nd)
(
ũij(n)− d

µ
πj

)∣∣∣∣∣∣
≤
∑
j∈S

∑
n<−n0

|g̃ij(j, t− nd)| ·
(
ε+ d

µ
πj
)

+
∑
j∈S

n0∑
n=−n0

|g̃ij(j, t− nd)| · |ũij(n)− d

µ
πj |

+
∑
j∈S

∑
n>n0

|g̃ij(j, t− nd)| · ε
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≤ |S| · ε ·
(
ε+ d

µ

)
+
∑
j∈S

n0∑
n=−n0

|g̃ij(j, t− nd)| · |ũij(n)− d

µ
πj |+ |S| · C · ε

for t ≥ 0 and some constant 0 < C < ∞ whose existence is again guaranteed by the direct
Riemann integrability of g̃ij(j, ·) for every j ∈ S. This property also implies lim|x|→∞ g̃ij(j, x) = 0
for all j ∈ S and hence

lim sup
t→∞

∣∣∣∣∣∣U ∗ g(i, t)− 1
µ

∑
j∈S

πjψ(j,−t+ βij)

∣∣∣∣∣∣ ≤ |S| · ε ·
(
ε+ d

µ

)
+ |S| · C · ε.

As ε > 0 was arbitrary,

lim sup
t→∞

∣∣∣∣∣∣U ∗ g(i, t)− 1
µ

∑
j∈S

πjψ(j,−t+ βij)

∣∣∣∣∣∣ ≤ 0.

It remains to note that ψ(j, ·) is bounded, since g is direct Riemann integrable, and it is d-periodic
by definition. Thus, the convergence in (4.28) is uniform on [0, d] and hence ψ(j, ·) is continuous
if g(j, ·) is continuous. The Fourier coefficients of ψ(j, ·) are easily computed by

ψ̂(j, ·)(m) = 1
d

∫ d

0
ψ(j, t)e−2π imt/d dt =

∫ d

0

∞∑
n=−∞

g(j, nd− t)e−2π imt/d dt

=
∞∑

n=−∞

∫ d

0
g(j, nd− t)e−2π imt/d dt =

∫ ∞
−∞

g(j,−t)e−2π imt/d dt

=
∫ ∞
−∞

g(j, t)e2π imt/d dt

using the uniform convergence on [0, d]. The convergence of the Fourier series holds in L2 since
ψ(j, ·) is bounded, and hence ψ(j, ·) and its Fourier series are equal λλ0-a.e.

For asymptotics at −∞, we proceed in the same way. Choose n0 ∈ N such that maxj∈S |ũij(n)−
d
µπj | < ε for n > n0, maxj∈S |ũij(n)| < ε for n < −n0, as well as

max
j∈S

∑
n>n0

|g̃ij(j, t− nd)| < ε for t ≤ 0,

then, as t→ −∞,

|U ∗ g(i, t)| ≤
∑
j∈S

∞∑
n=−∞

|g̃ij(j, t− nd)| · |ũij(n)|

≤
∑
j∈S

∑
n<−n0

|g̃ij(j, t− nd)| · ε+
∑
j∈S

n0∑
n=−n0

|g̃ij(j, t− nd)| · |ũij(n)|

+
∑
j∈S

∑
n>n0

|g̃ij(j, t− nd)| ·
∣∣∣∣ũij(n)− d

µ
πj

∣∣∣∣+ ∑
j∈S

∑
n>n0

|g̃ij(j, t− nd)| · d
µ
πj

≤ |S| · C · ε+
∑
j∈S

n0∑
n=−n0

|g̃ij(j, t− nd)| · |ũij(n)|+ |S| · ε2 + |S| · ε · d
µ

= o(1)

with an analogous reasoning.
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4.4. Proofs of main results
We prove Theorem 4.5, then Theorem 4.1 follows immediately.

Proof of Theorem 4.5. Let f̄ be a non-negative function on S∗. For arbitrary k ≥ 0, we have
Pi(ξ1 · · · ξk) = e−Sk Pi-a.s. and thus we get

∑
α1,...,αk∈S

f̄(α1 · · ·αkj)1{Pi(α1···αkj)>0} =
∑

α1,...,αk∈S

f̄(α1 · · ·αkj)
Pi(α1 · · ·αkj)

Pi(α1 · · ·αkj)1{Pi(α1···αkj)>0}

=
∑

α1,...,αk∈S

f̄(α1 · · ·αkj)
Pi(α1 · · ·αkj)

1{Pi(α1···αkj)>0}Pi (ξ1 = α1, . . . , ξk = αk, ξk+1 = j)

= Ei

(
f̄(ξ1 · · · ξk+1)
Pi(ξ1 · · · ξk+1)1{Pi(ξ1···ξk+1)>0}1{j}(ξk+1)

)
= Ei

(
eSk+1 f̄(ξ1 · · · ξk+1)1{j}(ξk+1)

)
,

since {Pi(ξ1 · · · ξk+1) = 0} is a Pi-null set. So

∑
α∈S∗

f̄(αj)1{Pi(αj)>0} =
∞∑
k=0

Ei
(
eSk+1 f̄(ξ1 · · · ξk+1)1{j}(ξk+1)

)
=
∞∑
k=1

Ei
(
eSk f̄(ξ1 · · · ξk)1{j}(ξk)

)
.

In particular, if f̄(α) := f(λPi(α)) and thus f̄(ξ1 · · · ξk) = f(λe−Sk), we have

F ji (λ) =
∑
α∈S∗

f(λPi(αj))1{Pi(αj)>0} =
∞∑
k=1

Ei
(
eSkf(λe−Sk)1{j}(ξk)

)
=
∞∑
k=0

Ei
(
eSkf(λe−Sk)1{j}(ξk)

)
− Ei

(
e0f(λe−0)1{j}(ξ0)

)
= Ei

( ∞∑
k=0

eSkf(λe−Sk)1{j}(ξk)
)
− f(λ)1{j}(i).

If we define g(t) := etf(e−t) and f1(x) := f(x)
x so that g(t) = etf(e−t) = f1(e−t), then we get

Ei

( ∞∑
k=0

eSkf(λe−Sk)1{j}(ξk)
)

= λ · Ei

( ∞∑
k=0

f1(λe−Sk)1{j}(ξk)
)

= λ · Ei

( ∞∑
k=0

f1(e−(Sk−log λ))1{j}(ξk)
)

= λ · Ei

( ∞∑
k=0

1{j}(ξk)g(Sk − log λ)
)

= λ · Ei

( ∞∑
k=0

g̃j(ξk, log λ− Sk)
)

= λ ·U ∗ g̃j(i, log λ)

with g̃j(x, y) := 1{j}(x)g(−y). Before applying the Markov renewal theorem II (Theorem 4.12)
we note that F ji (λ) is finite for every 0 < λ <∞. To see this, it suffices to argue, that U ∗ g(i, t)
is finite for every t ∈ R and g satisfying (4.26) and (4.27) (these conditions will be verified for g̃j
below). However, this was shown in the proof of [Als15b, Theorem 9.18].

We want to apply Markov renewal theorem II, so we need to check conditions (4.26) and (4.27)
for g̃j . Condition (4.26) is satisfied since g̃j(j, y) = g(−y) = e−yf(ey) and f is λλ0-a.e. continuous,
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and g̃j(k, y) equals 0 for k 6= j. Also, g̃j(k, ·) is direct Riemann integrable for k ∈ S. This is
trivial for k 6= j and reduces to the verification of direct Riemann integrability g(−·) or g in the
case when k = j. The latter direct Riemann integrability was shown in the proof of [Jan12a,
Theorem 5.1].

Applying Markov renewal theorem II (Theorem 4.9) and limλ→∞ f(λ)/λ = 0 in the non-
arithmetic case, we get

lim
λ→∞

(
U ∗ g̃j(i, log λ)− f(λ)

λ
1{j}(i)

)
= 1
µ

∑
k∈S

πk

∫
R
g̃j(k, y)λλ0(dy)

= 1
µ

∑
k∈S

πk1{j}(k)
∫ ∞
−∞

g(y) dy = πj
µ

∫ ∞
−∞

g(y) dy = πj
µ

∫ ∞
−∞

e−te2tf(e−t) dt = πj
µ

∫ ∞
0
x−2f(x) dx,

where we substituted x := e−t in the last step. This proves the theorem in the non-arithmetic
case.

In the d-arithmetic case with shift function β, the Markov renewal theorem II yields, as λ→∞,

U ∗ g̃j(i, log λ) = 1
µ

∑
k∈S

πkψ̃j(k,− log λ+ βik) + o(1)

= 1
µ

∑
k∈S

πk · d
∞∑

n=−∞
g̃j(k, nd− βik + log λ) + o(1)

= 1
µ

∑
k∈S

πk1{j}(k) · d
∞∑

n=−∞
g(−nd+ βik − log λ) + o(1)

= πj
µ
ψ̂(0) + πj

µ
·
(
d
∞∑

n=−∞
g(nd− (log λ− βij))− ψ̂(0)

)
+ o(1)

= πj
µ
ψ̂(0) + πj

µ
ψ(log λ− βij) + o(1)

with ψ̃j from Theorem 4.12 corresponding to g̃j , and ψ̂(0) :=
∫∞
−∞ g(t)dt. Combining this with

f(λ)
λ 1{j}(i) = o(1) as λ→∞, it gives us the desired result in the d-arithmetic case. All properties

of the function ψ transfer directly from ψ̃j in Theorem 4.12 (which is called ψ there).

Proof of Theorem 4.1. We conclude the assertions of this theorem directly from Theorem 4.5 by
noting that

Fi(λ) =
∑
α∈S∗

f(λPi(α))1{Pi(α)>0} = f(λPi(∅)) +
∑
j∈S

( ∑
α∈S∗j

f(λPi(α))1{Pi(α)>0}

)

with S∗j ⊂ S∗ being the subset of all nodes that end with j. So if we rearrange this expression,
then we obtain the well-known quantity

Fi(λ) = f(λ) +
∑
j∈S

( ∑
α∈S∗

f(λPi(αj))1{Pi(αj)>0}

)
= f(λ) +

∑
j∈S

F ji (λ).

Now f(λ)/λ = o(1), as λ→∞, and thus an appeal to Theorem 4.5 completes the proof. Note that
Fi(λ) converges for every λ > 0 because S is finite and F ji (λ) converges for every 0 < λ <∞.
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Proof of Theorem 4.6. We divide the proof into four steps, starting with non-negative f and
a = 0. The generalization to real f is then straightforward. For the third step, we consider a
special f with a = 1 and subsequently, we combine these results to show the full statement. This
proof relies heavily on the proof of [Jan12b, Theorem 2.1].

Step 1 : Let f ≥ 0 and a = 0. Then the assertion is a reformulation of Theorem 4.5. We
quickly check this below. Since we are in the exact situation of Theorem 4.5, the sum in (4.13)
converges (absolutely) because it does in (4.9). If (ξn, Sn)n≥0 is non-arithmetic, then obviously
we get the same result. If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then we find that
(4.16) is similar to (4.11) with ψ0(t) := ψ(t) and the notation from Theorem 4.5. We simply
need to verify (4.17)-(4.19). First of all, by Theorem 4.5

ψ0(t)− ψ0(0) = ψ(t)− ψ(0) = d
∞∑

n=−∞
g(nd− t)− d

∞∑
n=−∞

g(nd)

= d
∞∑

n=−∞
(g(nd− t)− g(nd))− 0 · t,

so (4.19) follows. Now, ψ(t) has the Fourier series∑
m6=0

ψ̂(m)e2π imt/d

with

ψ̂(m) =
∫ ∞
−∞

g(t)e2π imt/d dt =
∫ ∞
−∞

f(x)x−2−2π im/d dx

which coincides with ψ̂0(m) as Janson points out in [Jan12b, Proof of Theorem 2.1, Step 1]. Note
that ψ̂(0) =

∫∞
0 f(x)x−2 dx. If f is continuous, then so is ψ and consequently ψ0 is, too. This

completes the first step.
Step 2 : Let f be real-valued and a = 0. We decompose f = f+ − f− with non-negative f+

and f−. Since max{·, 0} is a continuous function, the conditions in (4.12) are clearly fulfilled for
f+ and f−, since f obeys them. With this partitioning we get∑
α∈S∗

|f(λPi(αj))|1{Pi(αj)>0} ≤
∑
α∈S∗

f+(λPi(αj))1{Pi(αj)>0} +
∑
α∈S∗

f−(λPi(αj))1{Pi(αj)>0} <∞

for every 0 < λ <∞ since both summands converge absolutely by our previous result. Step 1
also gives us the asymptotic expansions

F j,±i (λ) = πj
µ

∫ ∞
0
f±(x)x−2 dx · λ+ πj

µ
ψ±0 (log λ− βij)λ+ o(λ)

with obviously defined ψ±0 which vanish in the non-arithmetic case. This yields the asymptotics

F ji (λ) = πj
µ

∫ ∞
0
f(x)x−2 dx · λ+ πj

µ
ψ0(log λ− βij)λ+ o(λ),

where ψ0(t) := ψ+
0 (t)−ψ−0 (t) is bounded and d-periodic and satisfies (4.17)-(4.19). This completes

the second step.
Step 3 : Let f(x) := x1{x≥1} be the λλ0-a.e. continuous function that trivially satisfies the

conditions in (4.12) with a = 1 and δ = 1. We calculate

g(t) = etf(e−t) = 1{e−t≥1} = 1{t≤0},
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so g(x− log λ) = 1(−∞,log λ](x). Noting that f ≥ 0, we proceed as in the proof of Theorem 4.5
and find

F ji (λ) = Ei

( ∞∑
k=0

eSkf(λe−Sk)1{j}(ξk)
)
− λ1{λ≥1}1{j}(i)

= λ · Ei

( ∞∑
k=0

1{j}(ξk)g(Sk − log λ)
)
− λ1{λ≥1}1{j}(i)

= λ · Ui({j} × [0, log λ])− λ1{λ≥1}1{j}(i)
= λ · Uij(log λ)− λ1{λ≥1}1{j}(i)

and the (absolute) convergence of F ji (λ) for every 0 < λ < ∞ by Theorem 3.21. In the
non-arithmetic case, this theorem further yields

F ji (λ) = λ ·
(
πj
µ

log λ+
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + o(1)

)
− λ1{λ≥1}1{j}(i)

= πj
µ
λ log λ+

(
π2
j

2µEjS
2
σ1(j) − πjEiSσ1(j)1{j 6=i}

)
1
µ
λ− λ1{j}(i) + o(λ),

as λ → ∞, which is the desired result since the integral in b vanishes trivially. This leaves us
with the study of the d-arithmetic case with shift function β. With ψ0(t) := d

(1
2 −

{
t
d

})
the

theorem gives us

F ji (λ) = λ ·
(
πj
µ

log λ+ πj
µ
ψ0(log λ− βij) +

π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + o(1)

)
− λ1{λ≥1}1{j}(i)

= πj
µ
λ log λ+

(
π2
j

2µEjS
2
σ1(j) − πjEiSσ1(j)1{j 6=i}

)
1
µ
λ+ πj

µ
ψ0(log λ− βij) · λ

− λ1{j}(i) + o(λ)

which is again the desired result provided that ψ0 satisfies the required conditions. From the
definition of the fractional part, it is obvious that ψ0 is bounded and d-periodic. It is easy to
show (cf. [Jan12b, Proof of Theorem 2.1]) that

ψ̂0(0) = 1
d

∫ d

0
ψ0(t) dt = 0

and, for m 6= 0,

ψ̂0(m) = 1
d

∫ d

0
ψ0(t)e−2π imt/d dt = d

2π im.

Additionally, we have for real u 6= 0 that

ĝ(u) = lim
ε↘0

∫ ∞
−∞

e− iut+εtg(t) dt = lim
ε↘0

∫ 0

−∞
e(ε−iu)t dt = 1

− iu

which agrees with ψ̂0(m) = ĝ(−2πm/d) for m 6= 0. Together with
∞∑

n=−∞
(g(nd− t)− g(nd)) =

∞∑
n=−∞

(
1{n≤ t

d
} − 1{n≤0}

)
=
⌊
t

d

⌋
,
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we find that

d
∞∑

n=−∞
(g(nd− t)− g(nd))− 1 · t = d

⌊
t

d

⌋
− t = −d

{
t

d

}
= ψ0(t)− ψ0(0)

which gives us the validity of (4.19).
Step 4 : In the last step, we consider a general f (with the properties from the theorem). We

decompose f as f(x) = f1(x) + af2(x) with

f1(x) := f(x)− ax1{x≥1} and f2(x) := x1{x≥1}.

Now, both parts of f1 are of order O(x1+δ) for 0 < x < 1, hence the same holds for f1. We
extract from Step 3 that

f1(x) = ax+O(x1−δ)− (ax+O(x1−δ)) = O(x1−δ)

for 1 < x <∞, thus our corresponding constant a1 equals 0, and Step 2 applies to f1 (and Step
3 applies to f2 as seen before). Denote the associated functionals by F j,1i (λ) and F j,2i (λ). Then
each of them converges absolutely for every 0 < λ <∞, so for every λ∑

α∈S∗
|f(λPi(αj))|1{Pi(αj)>0} ≤

∑
α∈S∗

|f1(λPi(αj))|1{Pi(αj)>0} + |a|F j,2i (λ) <∞.

By the previous steps, we get

F j,1i (λ) =
b
(1)
j

µ
λ+ πj

µ
ψ

(1)
0 (log λ− βij) · λ+ o(λ),

as λ → ∞, where b
(1)
j = πj

∫∞
0 f1(x)x−2 dx and ψ

(1)
0 = 0 in the non-arithmetic case and

ψ
(1)
0 (t) − ψ(1)

0 (0) = d
∑∞
n=−∞(g1(nd − t) − g1(nd)) for the obvious g1 in the d-arithmetic case

with shift function β. We skip the consideration of the Fourier series at this point. Similarly, we
get

F j,2i (λ) = πj
µ
λ log λ+

(
π2
j

2µEjS
2
σ1(j) − πjEiSσ1(j)1{j 6=i}

)
1
µ
λ+ πj

µ
ψ0(log λ− βij) · λ

− λ1{j}(i) + o(λ)

with the notation from Step 3 (which includes the vanishing of ψ0 in the non-arithmetic case). A
combination of these asymptotics yields

F ji (λ) = aπj
µ
λ log λ+ πj

µ
ψ̄0(log λ− βij) · λ+ 1

µ

(
aπ2

j

2µ EjS2
σ1(j) − aπjEiSσ1(j)1{j 6=i}

+πj
∫ ∞

0
(f(x)− ax1{x≥1})x−2 dx

)
λ− λ1{j}(i) + o(λ)

for ψ̄0(t) := ψ
(1)
0 (t) + aψ0(t). This coincides with the desired asymptotics if we can verify the

conditions that we require for ψ̄0. To begin with, ψ̄0 is bounded and d-periodic. Furthermore,
since g1(t) = g(t)− a1{t≤0},

ψ̄0(t)− ψ̄0(0) = (ψ(1)
0 (t)− ψ(1)

0 (0)) + a(ψ0(t)− ψ0(0)) = d
∞∑

n=−∞
(g1(nd− t)− g1(nd))− ad

{
t

d

}
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= d
∞∑

n=−∞
(g(nd− t)− g(nd))− ad

∞∑
n=−∞

(1{n≤ t
d
} − 1{n≤0})− ad

{
t

d

}

= d
∞∑

n=−∞
(g(nd− t)− g(nd))− ad

(⌊
t

d

⌋
+
{
t

d

})

= d
∞∑

n=−∞
(g(nd− t)− g(nd))− at

as desired. The statement concerning the Fourier series follows from the fact that the Fourier
series of ψ̄0 is the sum of the Fourier series of ψ(1)

0 and aψ0 which we know well. The rest follows
by linearity. If f is continuous, then g is continuous and ψ̄0 converges uniformly on every compact
set, so ψ̄0 is continuous.

Proof of Theorem 4.7. Again, we deduce the assertions of this theorem directly from Theorem 4.6
by noting that

Fi(λ) = f(λ) +
∑
j∈S

F ji (λ)

= f(λ) +
∑
j∈S

(
aπj
µ
λ log λ+ bj

µ
λ+ πj

µ
ψ0(log λ− βij)λ− aλ1{j}(i) + o(λ)

)

= f(λ)− aλ+ a

µ
λ log λ+ b

µ
λ+

∑
j∈S

πj
µ
ψ0(log λ− βij)λ+ o(λ)

= a

µ
λ log λ+ b

µ
λ+ 1

µ

∑
j∈S

πjψ0(log λ− βij)λ+ o(λ)

with vanishing ψ0 in the non-arithmetic case. Note that f(λ)− aλ = O(λ1−δ), as λ→∞. Fi(λ)
converges absolutely for every λ > 0 because S is finite and F ji (λ) converges absolutely for every
0 < λ <∞.

4.5. Applications
We apply our device from Section 4.1 to some selected parameters. The selection of parameters
is taken from [Jan12a]. There are of course others, e.g. in [Jan12b], Janson examines protected
nodes and fringe tries in this way in the i.i.d. model.

Before actually applying the device, we state once again that we intend to showcase a
method. Nevertheless, we briefly compare our (following) results to the respective results from
earlier publications in the Markov case: Part (4.29) of Theorem 4.13 is a replication of [Rég88,
Theorem III.2] (as we understand it as a result for the average size of a trie), however the latter
does not seem to be precise in the d-arithmetic case, as a periodic function should appear in the
leading term. In [CFV01, Theorem 6 and Corollary 2], the authors derive a corresponding result
in the more general setting of dynamical sources (also for the path length) and their corollary for
the Markov case matches our result. However, we provide an explicit formula for the periodic
oscillatory term. Also [JS16, Theorem 2] contains the sketch of a similar result to the one in
[CFV01].

Régnier’s result does also apply to b-tries, and we understand Theorem 4.18 as a more precise
version of her [Rég88, Theorem III.2] in the context of b-tries. We are not aware of results for
external nodes of a b-trie as in Theorem 4.19 in a different model than the memoryless model.
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4. Average-case analysis of further characteristic parameters

Theorem 4.22 contains the same result as [Bou01, Proposition 7] for the size of a Pat-trie.
Bourdon also derived a corresponding result for dynamical sources first and obtained the Markov
case as a corollary. Then again, we provide explicit formulas for the periodic oscillatory terms.

Although they did not formulate their results in terms of the depth but rather in terms of
the external path length, Bourdon [Bou01, Proposition 7] and Leckey [Lec15, Corollary 2.2.2]
(binary case) derived expansions corresponding to Theorem 4.37 for the expected external path
length of a Pat-trie and to Theorem 4.32 for the expected depth in a Pat-trie (implicitly via
EiDP

n = 1
nEi LPn ). Again, Bourdon also derived a corresponding result for dynamical sources first

and obtained the Markov case as a corollary, but we provide explicit formulas for the periodic
oscillatory terms. Leckey’s expansion is not as precise as ours or the formerly mentioned of
Bourdon, however this is owed to the objective to derive a CLT for the path length (and not the
depth).

Regarding the external path length of a trie, Theorem 4.35 is again matched by [CFV01,
Theorem 6 and Corollary 2], and still we provide an explicit formula for the periodic oscillatory
term. Also, as for Pat-tries, [Lec15, Corollary 2.2.1] or [LNS15, Theorem 2.1] contain an
expansion of the mean and the variance and a CLT in the binary case.

4.5.1. Expected size of a trie
We recall from the beginning of Chapter 4 that W̃λ = WΠ(λ) satisfies

EiW̃λ =
∑
α∈S∗

f(λPi(α))1{Pi(α)>0}

for f(x) = 1− (1 + x)e−x. The main theorem is the following:

Theorem 4.13. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

EiWn

n
→ 1

µ
. (4.29)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

EiWn

n
= 1
µ

+ 1
µ

∑
j∈S

πjψ2(logn− βij) + o(1), (4.30)

where βij are from Theorem 3.3 and the continuous and d-periodic function ψ2 is from
Theorem 4.1 with f from above and corresponding g. ψ2 has Fourier series∑

m6=0

Γ(1− 2π im/d)
1 + 2π im/d e2π imt/d =

∑
m6=0

2π im
d

Γ
(
−1− 2π im

d

)
e2π imt/d. (4.31)

Remark 4.14. In the d-arithmetic case of the previous theorem we mention functions ψ2, f and
g. They are connected via (4.6), (4.8) (ψ2 is called ψ there) and g(t) = etf(e−t). Whenever
such a triple of functions is mentioned in the following theorems, their connection is of that type
(considering the right theorem out of Theorems 4.1, 4.5, 4.6 and 4.7).
Remark 4.15. We get asymptotics for the expected number of nodes in Trie(Mn) by EiWn + n.
Remark 4.16. Appealing to Remark 4.3, the current ĝ(s) = − i sΓ(−1 + i s) is of order O(s−2),
|s| → ∞, since

|Γ(−1 + i s)| ∼
√

2π|s|−3/2e−π|s|/2,

as |s| → ∞.
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First, we prove the Poisson version of Theorem 4.13. Now, Theorem 4.1 immediately yields:

Lemma 4.17. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as λ→∞,

EiW̃λ

λ
→ 1

µ
.

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as λ→∞,

EiW̃λ

λ
= 1
µ

+ 1
µ

∑
j∈S

πjψ2(log λ− βij) + o(1)

with βij and ψ2 as in Theorem 4.13.

Proof. It is easily checked that f satisfies all conditions of Theorem 4.1. Therefore, the problem
reduces to a calculation of integrals which was done in the proof of [Jan12a, Theorem 5.3]. Yet,
we briefly recall the basic steps, as this provides a scheme for the further applications.

Note that f is continuous, of orderO(1), as x→∞, and of orderO(x2), as x→ 0 (use l’Hôpital’s
rule), so δ = 1 is a possible choice in Theorem 4.1. This implies

∫∞
0 f(x)x−2 dx =

∫∞
0 f ′(x)x−1 dx,

and as f ′(x) = xe−x, the latter integral can be easily calculated. Most of the time, integration
by parts is indeed enough to calculate the occurring integrals. We obtain

EiW̃λ

λ
= 1
µ

∫ ∞
0
f(x)x−2 dx+ o(1) = 1

µ
+ o(1)

and

EiW̃λ

λ
= 1
µ

+ 1
µ

∑
j∈S

πjψ2(log λ− βij) + o(1)

in the non-arithmetic and the d-arithmetic case, respectively, as λ→∞, where in the latter case
the Fourier transform of the corresponding g is

ĝ(s) =
∫ ∞

0
f(x)x−2+i s dx = Γ(1 + i s)

1− i s = − i sΓ(−1 + i s).

Again, this follows from integration by parts, the definition of the Gamma function and its
functional equation Γ(z + 1) = zΓ(z). Since f is continuous, ψ2 is too.

Proof of Theorem 4.13. We use the depoissonization result Lemma A.1 which essentially is a
sandwiching argument with λ = n± n2/3 and applying the results from the Poisson version of
the theorem together with the fact that EiWn increases in n. The latter is obvious from the
above characterization, in fact, Wn increases even pointwise.

Obviously, (A.2) applies with C1 = 0, C2 = 1/µ and either ψ ≡ 1 in the non-arithmetic case, or
ψ(t) = 1 +

∑
j∈S πjψ2(t− βij) in the d-arithmetic case. ψ is bounded and uniformly continuous

since all ψ2(· − βij) are.
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4.5.2. Expected size of a b-trie

We consider Trie(b)(Mn) which still contains a random number W (b)
n of internal nodes. However,

the number of leaves is not deterministic anymore and 1 to b strings can be stored in each leaf.
At first, we deal with the expected number of internal nodes which basically requires the same
approach as in Subsection 4.5.1.

Internal nodes: Generalizing the characterization of internal nodes in the original trie, a node
α ∈ S∗ is an internal node of Trie(b)(Mn) iff there are at least b+ 1 strings in Mn starting with
α. We write

W (b)
n =

∑
α∈S∗

1{Nn(α)≥b+1}

and, as in the previous subsection, we consider W̃ (b)
λ := W

(b)
Π(λ), so

EiW̃
(b)
λ =

∑
α∈S∗

Pi
(
Ñλ(α) ≥ b+ 1

)
1{Pi(α)>0} =

∑
α∈S∗

P(Π(λPi(α)) ≥ b+ 1)1{Pi(α)>0}

=
∑
α∈S∗

f (b)(λPi(α))1{Pi(α)>0}

for f (b) defined on (0,∞) by

f (b)(x) := P(Π(x) ≥ b+ 1) = 1− P(Π(x) ≤ b) = 1− e−x
b∑

k=0

xk

k! .

This is the same function that is used in [Jan12a, Section 6]. Our main result is:

Theorem 4.18. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

EiW
(b)
n

n
→ 1

µb
. (4.32)

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

EiW
(b)
n

n
= 1
µb

+ 1
µ

∑
j∈S

πjψ
(b)
2 (logn− βij) + o(1), (4.33)

where βij are from Theorem 3.3 and the continuous and d-periodic function ψ
(b)
2 is from

Theorem 4.1 with f (b) from above and corresponding g(b). ψ(b)
2 has Fourier series

1
b!
∑
m6=0

Γ(b− 2π im/d)
1 + 2π im/d e2π imt/d. (4.34)

The same holds in the Poisson model with W̃ (b)
λ and λ instead of W (b)

n and n.

Proof. Again, Theorem 4.1 is the key tool in the Poisson model. f (b) satisfies all conditions
required for Theorem 4.1 with δ = 1. Again following [Jan12a, Section 6], we note that

(
f (b))′(x) = e−x

xb

b! = P(Π(x) = b).
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Integration by parts yields ∫ ∞
0
f (b)(x)x−2 dx = 1

b

and thus the asymptotics in the non-arithmetic case follow. The d-arithmetic case is treated
similarly as in the case b = 1.

Obviously, EiW (b)
n increases in n, so the depoissonization follows from Lemma A.1, where

(A.2) applies with C1 = 0, C2 = 1/µ and either ψ ≡ 1/b (non-arithmetic case), or ψ(t) =
1/b+

∑
j∈S πjψ

(b)
2 (t− βij) (d-arithmetic case).

External nodes: Let Z(b)
n be the (random) number of external nodes of Trie(b)(Mn). Now,

Z
(b)
n =

∑b
l=1 Z

(b)
l,n is composed of the numbers Z(b)

l,n of nodes which store exactly l strings. Let
k ≥ 1. Then ααk := α1 · · ·αk−1αk is an external node which stores exactly l strings iff l strings
start with ααk and at least b− l+ 1 further strings start with α but not with ααk. The last part
of the condition is necessary for the existence of ααk as a node in the b-trie in the first place. As
the root is an external node iff n ≤ b, we shall assume n > b from now on. Then Trie(b)(Mn) is
guaranteed to be bigger than just the root. Our characterization leads to

Z
(b)
l,n =

∑
α∈S∗

(∑
a∈S

1{Nn(αa)=l, Nn({αc,c6=a})≥b−l+1}

)
.

Recall that S∗j is the set of nodes that end with j and set Z̃(b)
l,λ := Z

(b)
l,Π(λ). Due to the independence

properties of Poisson point processes and with l > 0 and b− l + 1 > 0, we get

EiZ̃
(b)
l,λ =

∑
α∈S∗

1{Pi(α)>0}

[∑
a∈S

Pi
(
Ñλ(αa) = l

)
Pi
(
Ñλ({αc, c 6= a}) ≥ b− l + 1

)]

=
∑
j∈S

∑
α∈S∗j

1{Pi(α)>0}

[∑
a∈S

1{pj,a∈(0,1)}P
(

Π(λPi(α)pj,a) = l
)

· P
(

Π(λPi(α)(1− pj,a)) ≥ b− l + 1
)]

+
∑
a∈S

1{pi,a∈(0,1)}P
(

Π(λpi,a) = l
)
· P
(

Π(λ(1− pi,a)) ≥ b− l + 1
)

=
∑
j∈S

( ∑
α∈S∗j

f jl (λPi(α))1{Pi(α)>0}

)
+ f il (λ),

where for x > 0

f jl (x) :=
∑
a∈S

1{pj,a∈(0,1)}P (Π(xpj,a) = l) · P (Π(x(1− pj,a)) ≥ b− l + 1)

=
∑
a6∈0j

1{pj,a<1}P (Π(xpj,a) = l) · P (Π(x(1− pj,a)) ≥ b− l + 1) .

We keep in mind that f jl still depends on b and simplify the above expression to

EiZ̃
(b)
l,λ =

∑
j∈S

( ∑
α∈S∗

f jl (λPi(αj))1{Pi(αj)>0}

)
+ f il (λ).
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4. Average-case analysis of further characteristic parameters

We note substantial differences in the asymptotics of the harmonic sum depending on the
transition probabilities in row j: If j ∈ 1, then f jl ≡ 0 and the corresponding harmonic sum
vanishes. Otherwise, f jl satisfies (4.2) and we can use Theorem 4.5. Note that only summands
with pj,a > 0 contribute.

Theorem 4.19. (a) If (ξn, Sn)n≥0 is non-arithmetic, then for l = 1, . . . , b and n→∞,

EiZ
(b)
l,n

n
→
∑
j 6∈1 πj · c

j
l

µ
=: Π(b)

l

µ
, (4.35)

where the cjl depend on b and are given by

cjl =


∑
a6∈0j pj,a log(1/pj,a)−

∑b−1
k=1

1
k

∑
a6∈0j pj,a(1− pj,a)

k, l = 1
1

l(l−1) −
∑b−l
k=0

(
(l+k−2)!
l!k!

∑
a6∈0j p

l
j,a(1− pj,a)k

)
, 2 ≤ l ≤ b

(4.36)

for j ∈ S and l = 1, . . . , b.

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then for l = 1, . . . , b and n→∞,

EiZ
(b)
l,n

n
= Π(b)

l

µ
+ 1
µ

∑
j 6∈1

πjψ
j
l (logn− βij) + o(1), (4.37)

where βij are from Theorem 3.3 and the continuous and d-periodic functions ψjl are from
Theorem 4.5 with f jl from above and corresponding gjl . The ψjl depend on b and have
Fourier series ∑

m6=0
ĝjl (−2πm/d)e2π imt/d, (4.38)

respectively. ĝjl is defined in (4.39).
The same holds in the Poisson model with Z̃(b)

l,λ and λ instead of Z(b)
l,n and n.

Proof. Here we use Theorem 4.5, for the first time, on each summand of the foregoing expression
of EiZ̃(b)

l,λ .
We only consider j 6∈ 1. It is not hard to show that f jl satisfies the conditions for Theorem 4.5

with δ = 1 for each combination of l and j (note that some summands may even vanish). An
application of this theorem then yields in the non-arithmetic case, as λ→∞,∑

α∈S∗ f
j
l (λPi(αj))1{Pi(αj)>0}

λ
= πj

µ

∫ ∞
0
f jl (x)x−2 dx+ o(1) = πjc

j
l

µ
+ o(1).

The components of the last integral have been calculated in [Jan12a, Section 6] and amount to

cjl =
∑
a6∈0j

∫ ∞
0

P (Π(xpj,a) = l)P (Π(x(1− pj,a)) ≥ b− l + 1)x−2 dx

=


∑
a6∈0j pj,a log(1/pj,a)−

∑b−1
k=1

1
k

∑
a6∈0j pj,a(1− pj,a)

k, l = 1
1

l(l−1) −
∑b−l
k=0

(
(l+k−2)!
l!k!

∑
a6∈0j p

l
j,a(1− pj,a)k

)
, 2 ≤ l ≤ b.
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4.5. Applications

For 2 ≤ l ≤ b, the calculation is straightforward using the explicit form of f jl and the afore-
mentioned standard Gamma integral properties. The case l = 1 is slightly more involved and
requires the knowledge of ∫ ∞

0
(e−ax − e−bx)x−1 dx = log(b/a)

for a, b > 0 which we cite from [Jan13, (25)].
The additional summand f il (λ), which originates from considering the root, is of order o(λ), as

λ→∞, since f il (λ) = O(1), as λ→∞. So in the non-arithmetic case we obtain, as λ→∞,

EiZ̃
(b)
l,n

λ
→
∑
j 6∈1 πj · c

j
l

µ
.

In the d-arithmetic case, Theorem 4.5 yields∑
β∈S∗ f

j
l (λPi(αj))
λ

= πjc
j
l

µ
+ πj
µ
ψjl (log λ− βij) + o(1),

as λ→∞, where as always ψjl (t) has Fourier series∑
m6=0

ĝjl (−2πm/d)e2π imt/d.

The ĝjl (s) have been calculated in [Jan12a, Section 6] as well. For (l, s) 6= (1, 0) they are

ĝjl (s) = Γ(l − 1 + i s)
l!

∑
a6∈0j

p1−i s
j,a −

b−l∑
k=0

Γ(l + k − 1 + i s)
l!k!

∑
a∈0j

plj,a(1− pj,a)k
 . (4.39)

Now, depoissonization is needed for a characteristic parameter which is not increasing. The idea
is to show that

|EiZ(b)
l,n − EiZ̃

(b)
l,n | = O(

√
n),

as n→∞, by showing that

|Z(b)
l,n − Z̃

(b)
l,n | ≤ (#S + 1)|Π(n)− n|.

One can approach this by starting with a trie constructed from min{n,Π(n)} strings and
successively adding

max{n,Π(n)} −min{n,Π(n)} = |Π(n)− n|
further strings and controlling for the changes in the external nodes which are caused by this
addition. The proof is exactly the same as the proof of [Jan12a, Theorem 6.1], so we omit it
here.

Remark 4.20. Since n =
∑b
l=1 l · Z

(b)
l,n is the number of stored strings,

b∑
l=1

l ·Π(b)
l = lim

n→∞
µ

n

b∑
l=1

l · EiZ(b)
l,n = lim

n→∞
µ

n
Ei

(
b∑
l=1

l · Z(b)
l,n

)
= µ.

We conclude for the expected number of nodes in Trie(b)(Mn):
Remark 4.21. The expected number of nodes in Trie(b)(Mn) equals

EiW (b)
n + EiZ(b)

n = EiW (b)
n +

b∑
l=1

EiZ
(b)
l,n

with asymptotics that follow from Theorems 4.18 and 4.19.
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4. Average-case analysis of further characteristic parameters

4.5.3. Expected size of a PATRICIA-trie

In [Jan12a, Section 7], Janson examined whether there is a noticeable asymptotic difference
between the expected sizes of the trie and the Pat-trie in the i.i.d. setting. We proceed similarly
in the Markov model: Since the leaves of both trees coincide, we only need to study the number
of internal nodes of the Pat-trie to answer this question. First, we characterize these nodes:

A node α is an internal node of TrieP (Mn) iff there exist b 6= c ∈ S such that at least one
string starts with αb and at least one string starts with αc. If we denote by WP

n the number of
those nodes, then

WP
n =

∑
α∈S∗

1
⋃
b6=c∈S{Nn(αb)≥1, Nn(αc)≥1}.

In the Poisson model, taking complements yields

EiW̃P
λ =

∑
α∈S∗

1{Pi(α)>0}

1− Pi
(
Ñλ(α) = 0

)
−
∑
b∈S

Pi
(
Ñλ(αb) ≥ 1, Ñλ(αc) = 0, c 6= b

)
=
∑
j∈S

∑
α∈S∗j

1{Pi(α)>0}

[
1− P (Π(λPi(α)) = 0)

−
∑
b∈S

1{pj,b>0}P (Π(λPi(α)pj,b) ≥ 1)
[
1{pj,b<1}P (Π(λPi(α)(1− pj,b)) = 0) + 1{pj,b=1}

]
+ 1− P (Π(λ) = 0)

−
∑
b∈S

1{pi,b>0}P (Π(λpi,b) ≥ 1)
[
1{pi,b<1}P (Π(λ(1− pi,b)) = 0) + 1{pi,b=1}

]

=
∑
j∈S

( ∑
α∈S∗

fPj (λPi(αj))1{Pi(αj)>0}

)
+ fPi (λ)

for fPj defined on (0,∞) by

fPj (x) := 1− e−x −
∑
b∈S

1{pj,b>0}(1− e−xpj,b) ·
(
1{pj,b<1}e

−x(1−pj,b) + 1{pj,b=1}
)

= 1− e−x −
∑
b6∈0j

(e−x(1−pj,b) − e−x).

Again, we observe different asymptotics of the corresponding harmonic sum F ji (λ) (with f = fPj )
depending on whether there is a b′ with pj,b′ = 1 or not: If j ∈ 1, then

fPj (x) = 1− e−x − (1− e−x) = 0.

Those j obviously lead to a vanishing harmonic sum. Otherwise, if all pj,b < 1, then fPj satisfies
(4.2) and we can use Theorem 4.5.

Theorem 4.22. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

EiWP
n

n
= 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b) + o(1). (4.40)
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4.5. Applications

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

EiWP
n

n
= 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b) + 1
µ

∑
j 6∈1

πjψ
P
j (logn− βij) + o(1), (4.41)

where βij are from Theorem 3.3 and the continuous and d-periodic functions ψPj are from
Theorem 4.5 with fPj from above and corresponding gPj . ψPj has Fourier series∑

m6=0
ψ̂Pj (m)e2π imt/d (4.42)

with coefficients

ψ̂Pj (m) = Γ(−1− 2π im/d)
∑
b6∈0j

(
(1− pj,b)− (1− pj,b)1+2π im/d

)
. (4.43)

The same holds in the Poisson model with W̃P
λ and λ instead of WP

n and n.

Proof. It is shown easily that fPj satisfies the conditions for Theorem 4.5 with δ = 1 (and hence
fPj (λ) = o(λ) as λ→∞). We only consider j 6∈ 1. Via integration by parts,∫ ∞

0
fPj (x)x−2 dx =

∫ ∞
0

(fPj )′(x)x−1 dx

with

(fPj )′(x) = e−x +
∑
b6∈0j

(
(1− pj,b)e−x(1−pj,b) − e−x

)
=
∑
b6∈0j

(
(1− pj,b)e−x(1−pj,b) − e−x + pj,be

−x
)

=
∑
b6∈0j

(1− pj,b)(e−x(1−pj,b) − e−x),

such that ∫ ∞
0
fPj (x)x−2 dx =

∑
b6∈0j

(1− pj,b)
∫ ∞

0
(e−x(1−pj,b) − e−x)x−1 dx

=
∑
b6∈0j

−(1− pj,b) log(1− pj,b),

cf. [Jan13, (25)]. In the non-arithmetic case, this yields the asymptotics

EiW̃P
λ

λ
= 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b) + o(1).

In the d-arithmetic case, the Fourier coefficients are calculated via

ĝPj (s) =
∫ ∞

0
fPj (x)x−2+i s dx = 1

1− i s

∫ ∞
0

(fPj )′(x)x−1+i s dx

= 1
i s(i s− 1)

∫ ∞
0

(fPj )′′(x)xi s dx
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4. Average-case analysis of further characteristic parameters

for s 6= 0. Since
(fPj )′′(x) =

∑
b6∈0j

(1− pj,b)e−x − (1− pj,b)2e−x(1−pj,b),

we arrive at

ĝPj (s) = 1
i s(i s− 1)

∑
b6∈0j

(
(1− pj,b)

∫ ∞
0
x(1+i s)−1e−x dx− (1− pj,b)2

∫ ∞
0
x(1+i s)−1e−x(1−pj,b) dx

)

= Γ(1 + i s)
i s(i s− 1)

∑
b6∈0j

(
(1− pj,b)− (1− pj,b)1−i s

)
= Γ(−1 + i s)

∑
b6∈0j

(
(1− pj,b)− (1− pj,b)1−i s

)
with a simple substitution. Altogether, this yields the asymptotics

EiW̃P
λ

λ
= 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b) + 1
µ

∑
j 6∈1

πjψ
P
j (log λ− βij) + o(1),

λ→∞, in the d-arithmetic case. As usual, ψPj is the continuous and d-periodic function from
Theorem 4.5 with fPj from above and corresponding gPj . It has the Fourier series∑

m6=0
ĝPj (−2πm/d)e2π imt/d.

To depoissonize, note that EiWP
n is monotone. The rest follows from Lemma A.1, where (A.2)

applies with C1 = 0, C2 = 1/µ and either

ψ ≡
∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b)

in the non-arithmetic case, or

ψ(t) =
∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b) +
∑
j 6∈1

πjψ
P
j (t− βij)

in the d-arithmetic case.

Remark 4.23. We get asymptotics for the expected number of nodes of TrieP (Mn) by EWP
n + n.

The binary setup allows for an even stronger result on the limiting behavior.

Theorem 4.24. In the binary setup, we have

WP
n = n− 1, (4.44)

so the number of all nodes in TrieP (Mn) is

WP
n + n = 2n− 1. (4.45)

Proof. The internal strings in the Pat-trie are those nodes which have exactly two children
since the nodes with only one child are eliminated. Additionally we know that TrieP (Mn) has n
external nodes, so TrieP (Mn) is a tree with n leaves where every internal node has exactly two
children. Hence, it must have n− 1 internal nodes.
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In [Jan12a, Section 7], Janson derived the latter result up to the first order with his theorem,
by proving that the oscillatory terms cancel out in the arithmetic case. This must remain true in
the Markov setting not to violate Theorem 4.24. Indeed, Expressions (4.40) and (4.41) from the
general-alphabet setting in Theorem 4.22 simplify a lot and the fluctuating function appearing
in the d-arithmetic case vanishes. We prove this in the following result which can be seen as a
corollary of Theorem 4.22 (and is of course weaker than Theorem 4.24).

Corollary 4.25. In the binary setup, as n→∞,

EiWP
n

n
→ 1. (4.46)

Proof. Note that for j 6∈ 1∑
b6∈0j

−(1− pj,b) log(1− pj,b) =
∑

b∈{0,1}
−(1− pj,b) log(1− pj,b) = Hj

and Hj = 0 for j ∈ 1, so

1
µ

∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b) = 1
µ

∑
j∈{0,1}

πjHj = 1
µ
EπX1 = 1.

In the d-arithmetic case, we note for j 6∈ 1 that∑
b6∈0j

(
(1− pj,b)− (1− pj,b)1+2π im/d

)
=

∑
b∈{0,1}

(
pj,b − p

1+2π im/d
j,b

)
= 1− p1+2π im/d

j,0 − p1+2π im/d
j,1 .

It suffices to show that∑
j 6∈1

πj
∑
m6=0

ψ̂Pj (m)e2π im(t−βij)/d =
∑
m6=0

∑
j 6∈1

πjψ̂
P
j (m)e2π im(t−βij)/d = 0

and hence to show that the inner sum vanishes for every i ∈ S. Now, |1| = 1, p1,0 = 1, say, is the
easy case. It is easy to show analogously to Section 2.8 that in this case the MRW is d-arithmetic
iff log p0,0/ log p0,1 ∈ Q, and then both log p0,0 and log p0,1 are integer multiples of d. Hence,

1− p1+2π im/d
0,0 − p1+2π im/d

0,1 = 1− p0,0 − p1,1 = 0.

If all pi,j ∈ (0, 1), then consider i = 0 and recall (2.9). The conclusion from above is no longer
valid, since

1− p1+2π im/d
0,0 − p1+2π im/d

0,1 = 1− p0,0 − p0,1e
−2π imβ01/d = p0,1(1− e−2π imβ01/d)

and
1− p1+2π im/d

1,0 − p1+2π im/d
1,1 = p1,0(1− e2π imβ01/d)

do not vanish alone. However, using π1p1,0 = π0 − π0p0,0 by stationarity,∑
j∈{0,1}

πjψ̂
P
j (m)e2π im(t−β0j)/d

= π0Γ(−1− 2π im/d)p0,1(1− e−2π imβ01/d)e2π imt/d
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+ π1Γ(−1− 2π im/d)p1,0(1− e2π imβ01/d)e2π im(t−β01)/d

= (π0p0,1(1− e−2π imβ01/d) + π0(e−2π imβ01/d − 1)− π0p0,0(e−2π imβ01/d − 1))
· Γ(−1− 2π im/d)e2π imt/d

= (π0(1− e−2π imβ01/d) + π0(e−2π imβ01/d − 1) · Γ(−1− 2π im/d)e2π imt/d = 0.

The case i = 1 is similar.

Remark 4.26. As Janson points out for the binary i.i.d. case, the number of internal nodes in
the Pat-trie compared to the trie is reduced by a factor H which is the (i.i.d.) source entropy
and is at most log 2, so the reduction is ≥ 1 − log 2 ≈ 0.307. In the binary Markov case with
non-vanishing transitions this factor becomes µ = π0H0 + π1H1 which, as a function of p0,1 and
p1,0, is again maximized at (1

2 ,
1
2), so µ ≤ log 2, and this is as specific as we can generally get.

However, if the source is partly degenerate, say p0,0, p0,1 ∈ (0, 1) and p1,0 = 1 = 1− p1,1, then
the reduction is 1− C with

C := 1
1 + p0,1

(−p0,1 log p0,1 − (1− p0,1) log(1− p0,1))

and approximately C ≤ 0.481, maximized by p0,1 = 3
2 −

√
5

2 . So the reduction is at least 0.519.
In general the reduction is 1− C with

C :=
∑
j 6∈1

πj
∑
b6∈0j

−(1− pj,b) log(1− pj,b) ≤
∑
j 6∈1

πj(|0cj | − 1)
(
− log

(
|0cj | − 1
|0cj |

))
,

so it depends on the imbalance within each row j.
Let Trie(b),P (Mn) denote the Pat-b-trie which is formed by elimination of all nodes that have

exactly one child in the b-trie. In the binary setup, it is easy to state an analogue of Theorem 4.24
for Pat-b-Tries.

Theorem 4.27. In the binary setup, we have W (b),P
n =

∑b
l=1 Z

(b)
l,n − 1 with Z

(b)
l,n from Subsec-

tion 4.5.2. Then the following cases occur:

(a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

EiW
(b),P
n

n
→ 1

µ

b∑
l=1

Π(b)
l (4.47)

with Π(b)
l from Theorem 4.19.

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

EiW
(b),P
n

n
= 1
µ

b∑
l=1

Π(b)
l + 1

µ

b∑
l=1

∑
j 6∈1

πjψ
j
l (logn− βij) + o(1), (4.48)

where βij are from Theorem 3.3 and the continuous and d-periodic (and b-dependent)
functions ψjl are from Theorem 4.19.

Proof. It is obvious that the Pat-b-trie and the b-trie have the same leaves, so Z
(b),P
l,n = Z

(b)
l,n

with the obvious definition of Z(b),P
l,n . So Trie(b),P (Mn) has

∑b
l=1 Z

(b)
l,n external nodes and each

internal node has exactly two children. We conclude that W (b),P
n =

∑b
l=1 Z

(b)
l,n − 1. Everything

else follows immediately from Theorem 4.19.
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4.5.4. Expected depth in a PATRICIA-trie

In this subsection, we give an asymptotic expansion of the expected number of nodes eliminated
in the path from the root to the node in which a selected string Ξ is stored and, in analogy to
Theorem 3.3, an asymptotic expansion of the expected depth of this string in the Pat-trie. Here,
too, we wonder whether there is a noticeable asymptotic effect of the compression mechanism.

We select the generic string Ξ as the first of the sequence Ξ,Ξ(1),Ξ(2), . . .. Let Dn be the depth
of Ξ from Section 2.3 (in the trie constructed from Ξ,Ξ(1), . . . ,Ξ(n−1)) and let DP

n be analogously
defined as the path length from the root to the node in which Ξ is stored in the Pat-trie. We set
∆Dn := Dn −DP

n ≥ 0 as the number of nodes on the path to Ξ which are eliminated during the
transition to the Pat-trie.

These nodes are exactly the internal nodes α which have exactly one child (and lie on the path
to Ξ). This occurs iff Ξ starts with αb for a b ∈ S, at least one additional string starts with αb,
too, and no other string starts with αc for c 6= b. Thus, we have

∆Dn =
∑
α∈S∗

(∑
b∈S

1{Ξ�αb, Nn−1(αb)≥1, Nn−1({αc,c6=b})=0}

)
.

Note that still Nn(α) :=
∑n
k=1 1{Ξ(k)�α}, ignoring Ξ. We consider D̃λ := D1+Π(λ), D̃P

λ := DP
1+Π(λ)

and ∆D̃λ := D̃λ − D̃P
λ ≥ 0. This leads to

Ei∆D̃λ =
∑
α∈S∗

1{Pi(α)>0}

∑
b∈S

Pi (Ξ � αb) · Pi
(
Ñλ(αb) ≥ 1

)
· Pi

(
Ñλ({αc, c 6= b}) = 0

)
=
∑
j∈S

∑
α∈S∗j

1{Pi(α)>0}

∑
b∈S

1{pj,b>0}Pi(α)pj,b · P
(

Π(λPi(α)pj,b) ≥ 1
)

·
(
1{pj,b<1}P

(
Π(λPi(α)(1− pj,b)) = 0

)
+ 1{pj,b=1}

)]

+
∑
b∈S

1{pi,b>0}pi,b · P
(

Π(λpi,b) ≥ 1
)
·
(
1{pi,b<1}P

(
Π(λ(1− pi,b)) = 0

)
+ 1{pi,b=1}

)

=
∑
j∈S

(∑
α∈S∗ f

∆
j (λPi(αj))1{Pi(αj)>0}

λ

)
+ f∆

i (λ)
λ

,

for f∆
j defined on (0,∞) by

f∆
j (x) :=

∑
b∈S

1{pj,b>0}xpj,b · P(Π(xpj,b) ≥ 1) ·
(
1{pj,b<1}P(Π(x(1− pj,b) = 0) + 1{pj,b=1}

)
=
∑
b6∈0j

xpj,b · (1− e−xpj,b) · e−x(1−pj,b).

Here, the difference in the asymptotic behaviour of the f∆
j is slightly more involved than before:

If j 6∈ 1, then f∆
j satisfies (4.2) and we can use Theorem 4.5, whereas if j ∈ 1, this condition is

violated. Instead, (4.12) applies and we must use Theorem 4.6. We provide some intuition in
Remark 4.30. The two main results of this subsection are stated below:
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Theorem 4.28. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

Ei∆Dn =
∑
j∈1 πj

µ
logn+

∑
j∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πj

µ
γ

)

+ 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + o(1)
(4.49)

with the Euler constant γ.

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

Ei∆Dn =
∑
j∈1 πj

µ
logn+

∑
j∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πj

µ
γ

)

+ 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + 1
µ

∑
j∈1

πjψ1(logn− βij)

+ 1
µ

∑
j 6∈1

πjψ
∆
j (logn− βij) + o(1)

(4.50)

where βij and ψ1 are from Theorem 3.3 and the continuous and d-periodic functions ψ∆
j

are from Theorem 4.5 with f∆
j from above and corresponding g∆

j . The ψ∆
j have Fourier

series ∑
m6=0

ĝ∆
j (−2πm/d)e2π imt/d (4.51)

with ĝ∆
j given in (4.54).

The same holds in the Poisson model with ∆D̃λ and λ instead of ∆Dn and n.

Remark 4.29. Equations (4.49) and (4.50) (and (4.52) and (4.53)) are unnecessarily complicated
if all pi,j < 1. Then 1 = ∅ and many summands vanish.
Remark 4.30. Theorem 4.28 says that the reduction in depth of a string during transition to
the Pat-trie is asymptotically negligible if no deterministic transitions happen at all, since
Ei∆Dn = O(1) for n→∞ (the ψ∆

j are bounded), whereas EiDn = O(logn). So, as n→∞,

Ei∆Dn

EiDn
→ 0.

Then again, if |1| ≥ 1, we find
Ei∆Dn

EiDn
→
∑
j∈1

πj ,

arising from the fact, that every node following the letter j ∈ 1 is always eliminated. This differs
from the i.i.d. setup, where the reduction in depth is always negligible (unless the source is wholly
trivial), cf. [Jan12a, Section 7].
Remark 4.31. As opposed to the binary i.i.d. setup, where non-arithmetic and d-arithmetic
asymptotic behaviour coincide and we observe no oscillations, this is not always the case in
the binary Markov setup (even if all pi,j ∈ (0, 1)). Calculations similar to those in the proof of
Corollary 4.25 lead to the result that 1

µ

∑
j∈S πjψ

∆
j (t− βij) vanishes iff p1,0 = p0,1.
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Theorem 4.32. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

EiDP
n =

∑
j 6∈1 πj

µ
logn+

∑
j 6∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πjγ

µ

)

− 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + o(1),
(4.52)

with the Euler constant γ.

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

EiDP
n =

∑
j 6∈1 πj

µ
logn+

∑
j 6∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πjγ

µ

)

− 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + 1
µ

∑
j 6∈1

πjψ1(logn− βij)

− 1
µ

∑
j 6∈1

πjψ
∆
j (logn− βij) + o(1),

(4.53)

with continuous and d-periodic ψ1 and ψ∆
j from Theorem 3.3 and Theorem 4.28, respectively

(and βij from Theorem 3.3).
The same holds in the Poisson model with D̃P

λ and λ instead of DP
n and n.

The scheme for proving the two results is the following: We have seen, that it is simplest
to depoissonize monotone parameters. ∆Dn is not monotone, but can be decomposed via
∆Dn := Dn −DP

n into a difference of two monotone parts. Thus we derive results for all three
parameters in the Poisson model, depoissonize the two monotone ones, and thus get the result
for ∆Dn for free.

Proof of the Poisson version of Theorem 4.28. With the above explanation of the two types of
asymptotic behaviour in mind, we assume j 6∈ 1 first. Then each f∆

j satisfies the conditions for
Theorem 4.5 with δ = 1. In the non-arithmetic case, Theorem 4.5 yields, as λ→∞,∑

α∈S∗ f
∆
j (λPi(αj))1{Pi(αj)>0}

λ
= πj

µ

∫ ∞
0
f∆
j (x)x−2 dx+ o(1) = πj

µ

∑
b6∈0j

−pj,b log(1− pj,b) + o(1)

again using integrals of type [Jan13, (25)] as was done in [Jan12a, Section 7]. In the d-arithmetic
case, we find that∑

α∈S∗ f
∆
j (λPi(αj))1{Pi(αj)>0}

λ
= πj

µ

∑
b6∈0j

−pj,b log(1− pj,b) + πj
µ
ψ∆
j (log λ− βij) + o(1),

as λ→∞, where ψ∆
j (t) has Fourier series

∑
m6=0

ĝ∆
j (−2πm/d)e2π imt/d.
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The coefficients ĝ∆
j (s) have been computed in [Jan12a, Section 7] using integrals of type [Jan13,

(24)]:

ĝ∆
j (s) =

∑
b6∈0j

pj,b((1− pj,b)− i s − 1)Γ(i s). (4.54)

It remains to perform an analogous procedure if j ∈ 1. Then f∆
j (x) = fL(x) = x−xe−x = x+O(1),

x → ∞, which will also occur in the analysis of the external path length in Subsection 4.5.5.
This function satisfies (4.12) with a = 1 and δ = 1 such that we have to apply Theorem 4.6 and
not Theorem 4.5. As in [Jan12b, Theorem 3.1], we can show that

bj =
π2
j

2µEjS
2
σ1(j) − πjEiSσ1(j)1{j 6=i} + πjγ

using
∫∞

0 (e−x − 1{x<1})x−1 dx = −γ from [Jan13, (16)], and for real u and 0 < ε < 1∫ ∞
0
fL(x)x−2−ε+iu dx = −Γ(−ε+ iu)

by [Jan13, (2)]. Hence, by (4.18) for u 6= 0 we have ĝL(u) = −Γ(iu). This leads to∑
α∈S∗ f

∆
j (λPi(αj))1{Pi(αj)>0}

λ
= πj

µ
log λ+ bj

µ
− 1{j}(i) + o(1)

in the non-arithmetic case and∑
α∈S∗ f

∆
j (λPi(αj))1{Pi(αj)>0}

λ
= πj

µ
log λ+ bj

µ
+ πj
µ
ψ1(log λ− βij)− 1{j}(i) + o(1)

in the d-arithmetic case, where ψ1(t) is a continuous d-periodic function with Fourier series

−
∑
k 6=0

Γ(−2π i k/d)e2π i kt/d

We remark that ψ1 (or ψ0 as it is called in the theorem) equals its Fourier series and the identically
named ψ1 from Theorem 3.3 (cf. Remark 4.3). It remains to remark that f∆

i (λ)/λ = 1{i∈1}+o(1).
Collecting all ingredients, we obtain, as λ→∞,

Ei∆D̃λ =
∑
j 6∈1

−πj
µ

∑
b6∈0j

pj,b log(1− pj,b) + o(1)


+
∑
j∈1

(
πj
µ

log λ+ bj
µ
− 1{j=i} + o(1)

)
+ 1{i∈1} + o(1)

=
∑
j∈1 πj

µ
log λ+

∑
j∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πj

µ
γ

)

+ 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + o(1)

in the non-arithmetic case and

Ei∆D̃λ =
∑
j∈1 πj

µ
log λ+

∑
j∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πj

µ
γ

)
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+ 1
µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + 1
µ

∑
j∈1

πjψ1(log λ− βij)

+ 1
µ

∑
j 6∈1

πjψ
∆
j (log λ− βij) + o(1)

in the d-arithmetic case.

The next lemma constitutes both a further step towards the proofs of the main theorems of this
subsection and an alternative approach, suggested and demonstrated in [Jan12a, Remark 3.5],
to the results from Chapter 3. In fact, as will be seen in the proof, poissonization spares us
the nuisance of time-dependent starting variables, replacing them with their distributional limit.
Nevertheless, we have to deal with depoissonization instead.

Lemma 4.33. It holds for λ→∞ that

EiD̃λ = log λ
µ

+ 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ
+ 1
µ

∑
j∈S

πjψ
∗
i,j(log λ) + o(1),

where ψ∗i,j ≡ 0 in the non-arithmetic case and

ψ∗i,j(t) = ψ1(t− βij)

in the d-arithmetic case with shift function β, corresponding βij and ψ1 from Theorem 3.3. γ
denotes the Euler constant.

Proof. The proof differs slightly from previous proofs in the Poisson model where we had
characterizations for specific nodes. Here we describe the functional in the same way as in
Chapter 3. However, we do not need a family of initial variables here, their distributional limit
X∗0 suffices. Recall that −X∗0 has a standard Gumbel distribution.

As in the i.i.d. setting of [Jan12a, Remark 3.5], using independence we get

Pi(D̃λ ≤ k | ξ1, . . . , ξk) = Pi
(
Ñλ(ξ1 · · · ξk) = 0 | ξ1, . . . , ξk

)
= e−λPi(ξ1···ξk) = e−λe

−Sk

= e−e
−(Sk−logλ) = Pi(−X∗0 < Sk − log λ | ξ1, . . . , ξk) = Pi(X∗0 + Sk > log λ | ξ1, . . . , ξk) Pi-a.s.

for k ∈ N, so

Pi(D̃λ ≤ k) = Pi(X∗0 + Sk > log λ) = Pi(ν(X∗0 , log λ) ≤ k).

Thus, D̃λ and ν(X∗0 , log λ) have the same distribution w.r.t. Pi and the assertion follows from
Lemma 3.26 (with a constant family (X∗0 )t of initial variables) and the subsequent calculation of
the fractional parts in Theorem 3.3.

Remark 4.34. There is even a further possibility to derive Lemma 4.33 in the spirit of Chapter 4:
With the convention about Ξ,Ξ(1),Ξ(2), . . . from the beginning of this subsection, we write

Dn =
∑
α∈S∗

1{α internal node}1{Ξ�α} =
∑
α∈S∗

1{Nn−1(α)≥1}1{Ξ�α}.

Thus, it is easy to show that

EiD̃λ = 1
λ

∑
α∈S∗

fL(λPi(α))1{Pi(α)>0}

with fL from the proof of the Poisson version of Theorem 4.28 or from Subsection 4.5.5. Theo-
rem 4.7 yields the assertion. Subsection 4.5.5 uses a similar representation of Ln.
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Alternative proof of Theorem 3.3. As EiDn is monotone, we can depoissonize with Lemma A.1,
where (A.1) applies with C1 = 1/µ, C2 = 1/µ and

ψ(t) = 1
2µ
∑
j∈S

π2
jEjS2

σ1(j) −
∑
j 6=i

πjEiSσ1(j) + γ +
∑
j∈S

πjψ
∗
i,j(t).

Proof of the Poisson version of Theorem 4.32. The assertion follows from EiD̃P
λ = EiD̃λ −

Ei∆D̃λ and applying the Poisson version of Theorem 4.28 together with Lemma 4.33.

Proof of Theorem 4.32. Since EiDP
n is monotone, we can depoissonize with Lemma A.1, where

(A.1) applies with C1 =
∑
j 6∈1 πj/µ, C2 = 1/µ and

ψ ≡
∑
j 6∈1

(
π2
j

2µEjS
2
σ1(j) − πjEiSσ1(j)1{j 6=i} + πjγ

)
−
∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b)

in the non-arithmetic case, and the obvious choice of ψ(t) in the d-arithmetic case.

Proof of Theorem 4.28. Note that ∆Dn := Dn −DP
n .

4.5.5. Expected external path length of a trie
We consider Trie(Mn) = Trie(Ξ(1), . . . ,Ξ(n)) and its external path length Ln which is its con-
struction cost. There are (at least) two ways of characterizing the external path length such
that we can work with it. Therefore, let Dn,k be the depth of Ξ(k) in Trie(Mn) as defined in
Section 2.3. Then we can define

Ln :=
n∑
k=1

Dn,k

and apply our results from Chapter 3. On the other hand, we reformulate

Ln =
n∑
k=1

Dn,k =
n∑
k=1

∑
α∈S∗

1{α internal node}1{Ξ(k)�α} =
∑
α∈S∗

1{Nn(α)≥2}Nn(α). (4.55)

If we want to expand the expected external path length asymptotically, then it is easiest to use
the first expression and the linearity of the expectation. We immediately get:

Theorem 4.35. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

Ei Ln = n logn
µ

+ n ·

 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ

+ o(n), (4.56)

with the Euler constant γ.

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

Ei Ln = n logn
µ

+ n ·

 1
2µ2

∑
j∈S

π2
jEjS2

σ1(j) −
1
µ

∑
j 6=i

πjEiSσ1(j) + γ

µ


+ n

µ
·
∑
j∈S

πjψ1(logn− βij) + o(n)
(4.57)

86



4.5. Applications

with βij and continuous and d-periodic function ψ1(t) from Theorem 3.3.
The same holds in the Poisson model with L̃λ and λ instead of Ln and n, where L̃λ is defined

in an obvious way.

Proof. The result is immediate from Theorem 3.3 (and Lemma 4.33).

Remark 4.36. In the same way, we can also obtain the analogous result for the external path
length L(b)

n of a b-trie with the adjustments mentioned in Remark 3.8.
Nevertheless, Theorem 4.7 presents an alternative approach to such an expansion. The standard

method is thus to poissonize and consider L̃λ := LΠ(λ) and

EiL̃λ = Ei

( ∑
α∈S∗

1{Ñλ(α)≥2}Ñλ(α)
)

=
∑
α∈S∗

Ei
(
1{Ñλ(α)≥2}Ñλ(α)

)
=
∑
α∈S∗

fL(λPi(α))1{Pi(α)>0}

for fL : (0,∞)→ R≥0 defined by

fL(x) := Ei
(
Π(x)1{Π(x)≥2}

)
= EΠ(x)− EΠ(x)1{Π(x)=1}

= x− P(Π(x) = 1) = x− xe−x = x(1− e−x).

This is the same function as in [Jan12b, Section 3], and fL = f∆
j from Subsection 4.5.4 if j ∈ 1.

Alternative proof of Theorem 4.35. We have already encountered fL in the proof of the Poisson
version of Theorem 4.28. We recall that fL(x) = x− xe−x = x+O(1), as x→∞, and that this
is the reason why Theorem 4.1 does not apply here and we need to use Theorem 4.7. We find

b = 1
2µ
∑
j∈S

π2
jEjS2

σ1(j) −
∑
j 6=i

πjEiSσ1(j) + γ

and ĝL(u) = −Γ(iu) for u 6= 0. In the d-arithmetic case, ψ1 equals its Fourier series.
It is obvious from the definition of Ln that Ei Ln increases in n, so we can depoissonize with

Lemma A.1, where (A.2) applies with C1 = 1/µ, C2 = 1/µ and

ψ ≡ 1
2µ
∑
j∈S

π2
jEjS2

σ1(j) −
∑
j 6=i

πjEiSσ1(j) + γ

in the non-arithmetic case, and the obvious choice of ψ(t) in the d-arithmetic case.

4.5.6. Expected external path length of a PATRICIA-trie

Just as in Subsection 4.5.5, we consider TrieP (Mn) and its external path length LPn . Again,
we provide two ways of deducing asymptotic expansions of the expected external path length.
Therefore, let DP

n,k be the depth of Ξ(k) in TrieP (Mn) as defined in Subsection 4.5.4 (for
DP
n,1 = DP

n and DP
n,k defined similarly). Note that Remark 2.9 applies to this slightly different

situation as well and all DP
n,k share the same distribution. Then

LPn :=
n∑
k=1

DP
n,k
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and Theorem 4.32 applies. On the other hand

LPn =
n∑
k=1

DP
n,k =

n∑
k=1

∑
α∈S∗

1{α internal node in Pat-trie}1{Ξ(k)�α}

=
∑
α∈S∗

1
⋃
b6=c∈S{Nn(αb)≥1, Nn(αc)≥1}Nn(α)

which requires once more the use of Theorem 4.6. We state the result first:

Theorem 4.37. (a) If (ξn, Sn)n≥0 is non-arithmetic, then, as n→∞,

EiLPn =
∑
j 6∈1 πj

µ
n logn+ n ·

∑
j 6∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πjγ

µ

)

− n

µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + o(n),
(4.58)

with the Euler constant γ.

(b) If (ξn, Sn)n≥0 is d-arithmetic with shift function β, then, as n→∞,

EiLPn =
∑
j 6∈1 πj

µ
n logn+ n ·

∑
j 6∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πjγ

µ

)

− n

µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + n

µ

∑
j 6∈1

πjψ1(logn− βij)

− n

µ

∑
j 6∈1

πjψ
∆
j (logn− βij) + o(n),

(4.59)

with continuous and d-periodic ψ1 and ψ∆
j from Theorem 3.3 and Theorem 4.28, respectively

(and βij from Theorem 3.3).
The same holds in the Poisson model with L̃Pλ and λ instead of LPn and n.

Proof. The result is immediate from Theorem 4.32.

Remark 4.38. This theorem answers the question by Bourdon for the Markov case which he poses
in [Bou01, Section 5.5], whether it is possible that a correcting term appears in the leading term
of the asymptotic expansion. Indeed, in the Markov model, this happens iff 1 6= ∅. Then, the
correcting term is

∑
j∈1 πj .

Now, Theorem 4.6 presents an alternative approach to such an expansion. The standard
method is thus to poissonize and consider L̃Pλ := LPΠ(λ) as well as

EiL̃
P

λ =
∑
α∈S∗

Ei
(
1⋃

b6=c∈S

{
Ñλ(αb)≥1, Ñλ(αc)≥1

}Ñλ(α)
)

=
∑
α∈S∗

1{Pi(α)>0}
(
EiÑλ(α)− EiÑλ(α)1{Ñλ(α)=0} −

∑
b∈S

EiÑλ(α)1{Ñλ(αb)≥1, Ñλ(αc)=0,c6=b}

)
.

On {Pi(α) > 0} the last summand simplifies by independence to∑
b∈S

EiÑλ(α)1{Ñλ(αb)≥1, Ñλ(αc)=0,c6=b} =
∑
b∈S

EiÑλ(αb)1{Ñλ(αb)≥1, Ñλ(αc)=0,c6=b}
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=
∑
b∈S

Ei
[
Ñλ(αb)1{Ñλ(αb)≥1}

]∏
c6=b

Pi
(
Ñλ(αc) = 0

)
and finally,

EiL̃
P

λ =
∑
α∈S∗

1{Pi(α)>0}

EiÑλ(α)−
∑
b∈S

EiÑλ(α)1{Ñλ(αb)≥1, Ñλ(αc)=0,c6=b}


=
∑
j∈S

∑
α∈S∗j

1{Pi(α)>0}

(
E [Π(λPi(α))]

−
∑
b6∈0j

E [Π(λPi(αb))]
(
1{pj,b<1}P(Π(λPi(α)(1− pj,b)) = 0) + 1{pj,b=1}

)
+ E [Π(λ)]−

∑
b6∈0i

E [Π(λpi,b)]
(
1{pi,b<1}P(Π(λ(1− pi,b)) = 0) + 1{pi,b=1}

)

=
∑
j∈S

( ∑
α∈S∗

fLP
j (λPi(αj))1{Pi(αj)>0}

)
+ fLP

i (λ)

for fLP
j : (0,∞)→ R≥0 defined by

fLP
j (x) := E [Π(x)]−

∑
b6∈0j

E [Π(xpj,b)]
(
1{pj,b<1}P(Π(x(1− pj,b)) = 0) + 1{pj,b=1}

)
= x−

∑
b6∈0j

xpj,b
(
1{pj,b<1}e

−x(1−pj,b) + 1{pj,b=1}
)

= x

1−
∑
b6∈0j

pj,be
−x(1−pj,b)

 .
As discussed in Subsection 4.5.3, fLP

j and the corresponding harmonic sum vanish if j ∈ 1.
Otherwise, if all pj,b < 1, then fLP

j satisfies (4.12) and we can use Theorem 4.6.

Alternative proof of Theorem 4.37. Suppose j 6∈ 1. Obviously, fLP
j satisfies (4.12) with a = 1

and δ = 1, use l’Hôpital’s rule once for the first part. Hence, Theorem 4.6 applies and, as λ→∞,

∑
α∈S∗

fLP
j (λPi(αj))1{Pi(αj)>0} = πj

µ
λ log λ+ bj

µ
λ− λ1{j}(i) + o(λ)

with
bj = 1

2µπ
2
jEjS2

σ1(j) − πjEiSσ1(j)1{j 6=i} + πj

∫ ∞
0

(fLP
j (x)− x1{x≥1})x−2 dx.

The integral is

∫ ∞
0

(fLP
j (x)− x1{x≥1})x−2 dx =

∫ ∞
0

1{x<1} −
∑
b6∈0j

pj,be
−x(1−pj,b)

x−1 dx

= −
∑
b6∈0j

pj,b

∫ ∞
0

(e−x(1−pj,b) − 1{x<1})x−1 dx
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= −
∑
b6∈0j

pj,b

∫ ∞
0

(e−x(1−pj,b) − e−x)x−1dx−
∫ ∞

0
(e−x − 1{x<1})x−1dx

=
∑
b6∈0j

pj,b log(1− pj,b) + γ,

cf. [Jan13, (16) and (25)]. Since fLP
i (λ) = (λ+ o(λ))(1− |1i|), as λ→∞, we obtain

EiL̃Pλ =
∑
j 6∈1 πj

µ
λ log λ+ λ ·

∑
j 6∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πjγ

µ

)

− λ

µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b)− λ
∑
j 6∈1

1{j=i} + (λ+ o(λ))(1− |1i|) + o(λ)

=
∑
j 6∈1 πj

µ
λ log λ+ λ ·

∑
j 6∈1

(
π2
j

2µ2EjS
2
σ1(j) −

πj
µ
EiSσ1(j)1{j 6=i} + πjγ

µ

)

− λ

µ

∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b) + o(λ)

in the non-arithmetic case. Additionally, we obtain the summand
λ

µ

∑
j 6∈1

πjψ
LP
j (log λ− βij)

in the d-arithmetic case. As usual, the Fourier coefficients are

ĝLP
j (−2πm/d) = lim

ε↘0

∫ ∞
0
fLP
j (x)x−2−ε−2π im/d dx

and we calculate for u ∈ R and 0 < ε < 1 (and j 6∈ 1) that∫ ∞
0
fLP
j (x)x−2−ε+iu dx =

∫ ∞
0

1−
∑
b6∈0j

pj,be
−x(1−pj,b)

x−1−ε+iu dx

=
∑
b6∈0j

pj,b

∫ ∞
0

(
1− e−x(1−pj,b)

)
x−1−ε+iu dx

= −
∑
b6∈0j

pj,b

(∫ ∞
0

(
e−x − 1

)
x−1−ε+iu dx+

∫ ∞
0

(
e−x(1−pj,b) − e−x

)
x−1−ε+iu dx

)
= −

∑
b6∈0j

pj,b
(
Γ(−ε+ iu) +

(
(1− pj,b)ε−iu − 1

)
Γ(−ε+ iu)

)
,

where we used [Jan13, (2) and (24)]. Hence,

ĝLP
j (u) = −Γ(iu)−

∑
b6∈0j

pj,b
(
(1− pj,b)− iu − 1

)
Γ(iu)

and we find that ψLP
j = ψ1 − ψ∆

j . This completes the proof in the Poisson model.
It is obvious from the definition of LPn that Ei LPn increases in n, so we can depoissonize with

Lemma A.1, where (A.2) applies with C1 =
∑
j 6∈1 πj/µ, C2 = 1/µ and

ψ ≡
∑
j 6∈1

(
π2
j

2µEjS
2
σ1(j) − πjEiSσ1(j)1{j 6=i} + πjγ

)
−
∑
j 6∈1

πj
∑
b6∈0j

−pj,b log(1− pj,b)

in the non-arithmetic case, and the obvious choice of ψ(t) in the d-arithmetic case.
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A.1. Properties of (X(n)
0 )n≥2

We have outsourced the following proof, since it is rather technical and the result seems natural
due to the proximity of X(n)

0 to the Gumbel distribution.

Proof of Lemma 3.13(b). We consider the tails: Let n ≥ 2 and x > 0. Then, as x→∞,

P
(
X

(n)
0 < −x

)
= 1− P

(
X

(n)
0 > −x

)
= 1−

(
1− e−x

n

)n−1

= 1− exp
(

(n− 1) log
(

1− e−x

n

))
= 1− exp

−(n− 1)
∞∑
k=1

1
k

(
e−x

n

)k
= 1− exp

(
−(n− 1)

n

∞∑
k=1

e−kx

knk−1

)
≤ 1− exp

(
−
∞∑
k=1

e−kx

knk−1

)
≤ 1− exp

(
−
∞∑
k=1

(e−x)k
)

= 1− exp
(
− e−x

1− e−x

)
∼ e−x,

where we used the Taylor expansion of log(1− x) for |x| < 1. Consequently,

sup
n≥2

E
(
er(X

(n)
0 )− − 1

)
= sup

n≥2

∫ ∞
0
rerxP

(
(X(n)

0 )− > x
)

dx

= sup
n≥2

∫ ∞
0
rerxP

(
X

(n)
0 < −x

)
dx <∞

for r < 1. Similarly, for n ≥ 2 and x > 0

P
(
X

(n)
0 > x

)
=
(

1− ex

n

)n−1
1(0,logn)(x) = exp

(
(n− 1) log

(
1− ex

n

))
1(0,logn)(x)

= exp
(
−(n− 1)

∞∑
k=1

1
k

(
ex

n

)k)
1(0,logn)(x)

≤ exp
(
−(n− 1)

n
ex
)
1(0,logn)(x)

≤ exp
(
−1

2e
x
)
1(0,logn)(x) ≤ exp

(
−1

2e
x
)
.

Hence, as above

sup
n≥2

E
(
er(X

(n)
0 )+ − 1

)
= sup

n≥2

∫ ∞
0
rerxP

(
(X(n)

0 )+ > x
)

dx = sup
n≥2

∫ ∞
0
rerxP

(
X

(n)
0 > x

)
dx <∞
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for the same r. In particular,

sup
n≥2

Eer|X
(n)
0 | ≤ sup

n≥2
Eer(X

(n)
0 )+ + sup

n≥2
Eer(X

(n)
0 )− <∞,

and (es|X
(n)
0 |)n≥2 is uniformly integrable for s < r.

A.2. Depoissonization for stochastically monotone parameters
Depoissonization for most of our trie-related parameters is based on the fact that the expected
parameter is monotone in the number of strings the tree is built from. Therefore, we state the
following auxiliary result which applies to most of our depoissonization proofs. The following
Lemma can be found in the proof of [Jan12a, Theorem 5.4] for one parameter, viz. the size Wn,
indeed it does not require specific knowledge about the parameter except for a monotonicity
assumption. It is not special to the Markov model.

Lemma A.1. Let (Wn)n≥0 be a sequence of N0-valued random variables, independent of
(Π(λ))λ>0 under Pi, with EiWn ≤ EiWn+1 for all n ≥ 0. Suppose that W̃λ := WΠ(λ) either
admits an asymptotic expansion of the form (λ→∞)

EiW̃λ = C1 log λ+ C2ψ(log λ) + o(1) (A.1)

or
EiW̃λ = C1λ log λ+ C2λψ(log λ) + o(λ) (A.2)

for non-negative constants C1, C2, with C1 ∨ C2 > 0, and some bounded, uniformly continuous
function ψ. Then, as n→∞,

EiWn = EiW̃n.

The same holds for W̃λ := W1+Π(λ) instead of W̃λ := WΠ(λ) if EiWn ≤ EiWn+1 for all n ≥ 1.

Remark A.2. Lemma A.1 applies to more asymptotic expansions than only to (A.1) and (A.2),
which will be obvious from the proof. However, these are the only ones appearing in this work,
so we restrict ourselves to this setting.

We use the following two lemmas for the proof of Lemma A.1:

Lemma A.3 (Chernoff bound for the Poisson distribution). It holds:

(a) If 0 < λ < x, then

P (Π(λ) ≥ x) ≤ e−λ
(
e · λ
x

)x
.

(b) If 0 < x < λ, then

P (Π(λ) ≤ x) ≤ e−λ
(
e · λ
x

)x
.

Proof. Exponential Markov inequality and minimizing.

Lemma A.4. Let β ∈ (1
2 , 1). Then for α ∈ (0, 1

2), as n→∞,

P
(
Π(n+ nβ) ≤ n− 1

)
≤ P

(
Π(n+ nβ) ≤ n

)
= O

(
exp(−αn−1+2β)

)
as well as

P
(
Π(n− nβ) ≥ n

)
≤ P

(
Π(n− nβ) ≥ n− 1

)
= O

(
exp(−αn−1+2β)

)
.
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Proof. Chernoff bound and Taylor expansion.

Proof of Lemma A.1. We use sandwiching with λ = n±n2/3 to obtain the corresponding results
for EiWn. Let n ≥ 1. As P(Π(2n) ≥ n) ≥ 1

2 , we obtain

EiW̃2n =
∞∑
k=0

EiWkPi(Π(2n) = k) ≥
∞∑
k=n

EiWnPi(Π(2n) = k)

= EiWnPi(Π(2n) ≥ n) ≥ 1
2EiWn

using independence and the monotonicity of EiWn. Thus, EiWn = O(EiW̃2n), as n→∞, which
is at most O(n logn), cf. (A.1) and (A.2) and note that ψ is bounded.

Similarly, with P(Π(n + n2/3) < n) decreasing exponentially by the Chernoff bound from
Lemma A.4, we get

EiWn = EiWn

∞∑
k=n

Pi(Π(n+ n2/3) = k) + EiWnPi(Π(n+ n2/3) < n)

≤
∞∑
k=n

EiWkPi(Π(n+ n2/3) = k) +O(EiW̃2n) · O(e−
1
4n

1/3)

= EiW̃n+n2/31{Π(n+n2/3)≥n} + o(1) ≤ EiW̃n+n2/3 + o(1),

as n→∞. For a lower bound, we obtain in the same way

EiW̃n−n2/3 ≤ EiWn + EiW̃n−n2/31{Π(n−n2/3)≥n},

where the second summand is of order o(1), as n→∞, because for some C,C ′ > 0

EiW̃n−n2/31{Π(n−n2/3)≥n} =
∞∑
k=n

EiWk1{Π(n−n2/3)=k}

≤ C ·
∞∑
k=n

EiW̃2k · P(Π(n− n2/3) = k)

≤ C ′ ·
∞∑
k=n

k log k · P(Π(n− n2/3) = k)

≤ C ′ ·
∞∑
k=n

k2 · P(Π(n− n2/3) = k)

= C · E
(
Π2(n− n2/3)1{Π(n−n2/3)≥n}

)
= O(n2) · O(e−

1
8n

1/3) = o(1)

by the Cauchy–Schwarz inequality. Hence, as n→∞, we have

EiW̃n−n2/3 + o(1) ≤ EiWn ≤ EiW̃n+n2/3 + o(1).

Suppose we are in case (A.1). If we define

bn := C1 logn+ C2ψ(logn),
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then we need to show |EiWn− bn| = o(1), as n→∞. We start with an upper bound: As n→∞,

EiWn − bn ≤ EiW̃n+n2/3 − bn + o(1)

≤ C1
(
log(n+ n2/3)− logn

)
+ C2

(
ψ(log(n+ n2/3))− ψ(logn)

)
= o(1),

since, on the one hand, | log(n+n2/3)− logn| = O(n−1/3) and, on the other hand, ψ is uniformly
continuous. So EiWn − bn ≤ o(1), as n → ∞, and the other inequality follows similarly. This
proves case (A.1).

Suppose now that we are in case (A.2), then with

bn := C1n logn+ C2nψ(logn)

and the use of the previous procedure

EiWn − bn ≤ EiW̃n+n2/3 − bn + o(1)

≤ C1
(
(n+ n2/3) log(n+ n2/3)− n logn

)
+ C2

(
(n+ n2/3)ψ(log(n+ n2/3))− nψ(logn)

)
≤ n · o(1) + C1n

2/3 log(n+ n2/3) + C2n
2/3ψ(log(n+ n2/3))

= o(n).

Again, the other inequality follows similarly. For W̃λ := W1+Π(λ) the same proof applies with
only minor modifications. This completes the proof.

A.3. Auxiliary convergence result
Lemma A.5. Let Sn be a SRW with Lp-increments Xn, p > 0. Then, as n→∞,

Sn − Sn−1
n1/p = Xn

n1/p → 0 P-a.s.

Proof. Well-known, included e.g. in the proof of [Gut09, Theorem 1.2.3(i)].
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Part II.

Convergence rates of iterated function
systems of Markov-modulated Lipschitz

maps by regenerative methods
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5. Introduction

Iterated function systems (IFSs) have long been studied in various fields of applied probability,
e.g. in image encoding and the drawing of fractal images by [BE88] and [Bar93], or the construction
of Markov chains and the simulation of distributions by the Propp-Wilson algorithm (cf. [PW96]
and [PW98]).

5.1. Iterated function systems
An IFS is constructed by an iteration of functions on some space into itself. These functions
are picked by some probability law and every iteration represents the next step of the thus
constructed process. In practice, the random functions are often Lipschitz maps on some complete
separable metric space and the space of Lipschitz maps can be equipped with a measurable
structure. The easiest case of those systems is the IFS of i.i.d. Lipschitz maps, where the random
functions are chosen independently and identically distributed. In the model of [AF01], one is
given a starting state X0, and then the Markov chain (Xn)n≥0 is constructed recursively by

Xn = Ψ(θn, Xn−1)

for n ≥ 1, where Ψ is a jointly measurable function that is Lipschitz continuous in the second
component. Therefore, the i.i.d. (θn)n≥1 (and independent of X0) represent the i.i.d. influence
on the iterations. In fact, setting Ψn(x) := Ψ(θn, x), the (Ψn)n≥1 are i.i.d. Lipschitz maps.

As one purpose of constructing IFSs is to simulate a (stationary) distribution, one key question
is under which condition the chain converges to this stationary distribution (and how fast this
convergence is). These questions have already been addressed by Dubins and Freedman [DF66] in
1966. In the great survey [DF99], the authors give a list of further publications including answers
to these questions (and also several interesting examples): [Hut81], [BE88], [BEH89], [Elt90],
[AC92] and [Duf97] are among these. Most notably, we will often allude to Elton’s article [Elt90]
in which he chose the more general setup of a stationary sequence (Ψn)n≥1 of Lipschitz maps.
Denoting by L(Ψ) the Lipschitz constant of a Lipschitz map Ψ, Elton showed that whenever
E log+ L(Ψ1) <∞ and E log+ d(Ψ1(x), x) <∞ for some x and also the Lyapunov exponent χ is
negative a.s. (cf. Theorem 6.8 for a definition in our setting), then the postulated convergence
holds, i.e. Xn converges in distribution to the stationary distribution, no matter what the initial
value X0 is.

Forward and backward iterations. A key ingredient, that (not only) Elton uses in his proof,
and that is again easiest to be understood in the i.i.d. setting, is the notion of time reversal.
More precisely, consider the backward iterations X̂n := Ψ1 ◦ · · · ◦Ψn(X0), n ≥ 1, and note that
Xn and X̂n have the same law. However, the backward iterations do actually converge a.s. In
Elton’s proof, time reversal enters via a stationary backward extension of the stationary sequence
of Lipschitz maps. Some authors require the stronger but somewhat more intuitive assumption
E logL(Ψ1) < 0 instead of the a.s. negativity of the Lyapunov exponent, which expresses that
the IFS converges if, as [DF99] call it, the functions are “contracting on average”.

97



5. Introduction

Convergence rates and central goal. Concerning convergence rates for the distributional
convergence in the i.i.d. setting, several authors have contributed so far. Diaconis and Freedman
give a condition in [DF99] for convergence at an exponential rate, while Alsmeyer and Fuh
also give a condition for a polynomial rate in [AF01] and [AF02]. Denoting by P and π the
transition kernel of the Markov chain (Xn)n≥0 and the distributional limit of Xn, respectively,
the two main results of the latter can be stated as follows: Suppose E logL(Ψ1) < 0 and
E log+ d(Ψ1(x0), x0) <∞ for some x0, and let dPr denote the Prokhorov metric of probability
measures. Then there are two regimes:

Theorem 5.1 ([AF01], Theorem 2.2 (d)). Let p > 0. If E logp+1(1 + L(Ψ1)) <∞ and for some
x0 we have E logp+1(1 + d(Ψ1(x0), x0)) <∞, then

dPr(Pn(x, ·), π) ≤ Ax(n+ 1)−p

for all n ≥ 0, all x and a positive constant Ax of the form max{A, 2d(x, x0)}, where A does
neither depend on x nor on n.

Theorem 5.2 ([AF01], Theorem 2.3 (c)). Let p > 0. If EL(Ψ1)p <∞ and Ed(Ψ1(x0), x0)p <∞
for some x0, then

dPr(Pn(x, ·), π) ≤ Axrn

for all n ≥ 0, all x, some r ∈ (0, 1) and a positive constant Ax of the form max{A, d(x, x0)},
where r and A do not depend on x nor on n.

A secondary goal of [AF01] was also to convey the effective use of renewal-theoretic/regenerative
methods in the derivation of these convergence rates, an intention that we also pursue in this
work.

In an attempt to generalize results on convergence rates, it seems natural to require (θn,Ψn)n≥0
to be a MMS. One big advantage of this setting is the following: If θ is a discrete Markov chain,
then regeneration techniques, comparable to those used in [AF01], become available. Furthermore,
starting θ stationary makes (Ψn)n≥1 stationary and also makes it fit naturally into the framework
of [Elt90]. Our main goal in this part will thus be, to derive suitable sufficient conditions for
different rates of convergence in the stationary regime of a MMS of Lipschitz maps, making use
of the regeneration techniques provided by the underlying structure.

Throughout this work, we are guided by [AF01] (and the corrigendum [AF02] to this publication)
and [Als15a]. They, most notably, use cyclic decomposition of some RW of Lipschitz constants
along ladder epochs, thereby gaining considerable knowledge about the size of these constants.
We will instead use cyclic decomposition of a MRW along recurrence times and therefore lose
this knowledge, while still maintaining independence at least. This forces us to come up with
further theory at some points. We will address this issue at the beginning of Section 7.2.

Example: Affine functions. A well-studied example of IFSs of i.i.d. Lipschitz maps is the
stochastic process resulting from Ψn(x) := Anx+Bn, x ∈ R, for i.i.d. (An, Bn)n≥1, thus

Xn = AnXn−1 +Bn

for n ≥ 1, which is why this is called random difference equation. These processes often appear,
among others, in time series analysis, e.g. as ARCH(1)-processes. In the case of Markov-modulated
(An, Bn)n≥1, i.e. equipped with a driving chain θ, related work has been done recently on the
stability of these systems by Alsmeyer and Buckmann [AB17a] and by Buckmann [Buc16] in his
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PhD thesis. They generalized results of Vervaat [Ver79] and Goldie and Maller [GM00] concerning
the convergence of the forward and backward iterations. They used regeneration techniques and
further results on fluctuation theory for MRWs from [AB17b]. For further references, including
[Bra86] who examined stationary (An, Bn)n≥1, we refer the reader to those listed in [AB17a].

5.2. Structure
In Chapter 6, we formalize what has been indicated in the introduction, including a definition of
the model, measurability issues and duality as one key concept that we apply. In Section 6.3
we briefly recall Elton’s theorem with a short proof and give a motivation for requiring mean
contractivity in the subsequent Section 6.4. The latter contains a summary of Markov-renewal-
theoretic tools to be used in the analysis, and also states two different sets of conditions for two
different convergence-rate regimes.

After these preparations, Chapter 7 starts with the formulation of the main results of this
part: First, Elton’s theorem is re-derived for our special situation by regeneration techniques.
Afterwards, given the conditions from the previous section, the corresponding convergence-rate
results are established. Sections 7.2, 7.3 and 7.4 contain the respective proofs.

Some auxiliary results are collected in Appendix B.
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Let (X, d) be a complete separable metric space with Borel σ-field B(X). Let Lip(X,X) be the set
of all Lipschitz continuous functions from X to X. It is possible to equip this set with a measurable
structure (cf. [DF99]) but we postpone the short discussion until after the specification of the
central object of this part of the work. Throughout this part, we deal with the following situation:
We define

Xn := Ψn(Xn−1) = Ψn ◦ · · · ◦Ψ1(X0) =: Ψn · · ·Ψ1(X0)

for n ≥ 1 and call (Xn)n≥0 or (θn, Xn)n≥0 iterated function system of Markov-modulated Lipschitz
maps (MIFS) provided that:

(a) (θ,Ψ) := (θn,Ψn)n≥0 is a MMS on (Ω,A,P) with state space S × Lip(X,X) and transition
kernel

P(θn+1,Ψn+1)|θn,Ψn = Q(θn, ·) P-a.s.,

n ≥ 1. It has driving chain θ which is assumed to be positive recurrent (and thus
irreducible), time-homogeneous discrete Markov chain with (at most) countable state
space (S,S). Denote by P = (pi,j)i,j∈S the transition matrix/kernel and by π the unique
stationary distribution of θ, with πi > 0 for all i ∈ S, cf. Remark 2.6.

(b) X0 is some X-valued random variable on (Ω,A,P) which is independent of (θ,Ψ).

Recall, that in Section 2.5 we introduced the concept of a MMS with a second component
taking values in R. This is not necessarily required, but every Borel space suffices. This is
addressed in the next section.

6.1. Measurability and remarks

Measurability. We briefly discuss some measurability issues concerning random Lipschitz maps
that we gather from [DF99, Section 5.1]. We refer the reader to their work for further details.

For a Lipschitz map f in Lip(X,X), the mapping

L(f) := sup
x6=y

d(f(x), f(y))
d(x, y) ≥ 0

emits the corresponding Lipschitz constant. Let further X0 be a countable dense subset of X and
let Map(X0,X) be the set of all maps from X0 to X, endowed with the product topology and
the product σ-field. Then, [DF99, Lemma 5.1] clears the way for our analysis: Lip(X,X) is a
Borel subset of Map(X0,X) with induced σ-field L, the map Ψ 7→ L(Ψ) is a Borel function on
(Lip(X,X),L), and the evaluation map (Ψ, x) 7→ Ψ(x) is a Borel function on (Lip(X,X)×X,L⊗
B(X)). We conclude with an easy finding:

Lemma 6.1. Let Ψ,Ψ′ ∈ Lip(X,X), then L(Ψ ◦Ψ′) ≤ L(Ψ) · L(Ψ′).
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Model remarks. We add some complementary remarks to the model description.
Remark 6.2. A direct consequence of (θ,Ψ) being a MMS is that Ψ0,Ψ1, . . . are conditionally
independent given θ with P(Ψ0 ∈ ·|θ) = P(Ψ0 ∈ ·|θ0) P-a.s. and

P(Ψn ∈ ·|θ) = P(Ψn ∈ ·|θn−1, θn) =: K(θn−1, θn, ·) P-a.s.

for all n ≥ 1 and a stochastic kernel K : S2 × L → [0, 1]. Moreover, we have (cf. [Als15b,
Lemma 8.1, in Ger.])

Q(x,dy × dz) = K(x, y,dz)P (x, dy),

more precisely, for i, j ∈ S and measurable B

Q(i, {j} ×B) = pi,j

∫
X
1B(z)K(i, j, dz) = pi,jK(i, j, B) =: pi,jKi,j(B).

Remark 6.3. If ψ : (S × X,S ⊗ B(X)) → (X,B(X)) is a jointly measurable function which
is Lipschitz continuous in the second component, then Ψn := ψ(θn, ·) is a random element in
Lip(X,X) and we are clearly in the above situation with Ki,j(B) = 1B(ψ(j, ·)) for all i ∈ S.
Since S is countable, this model only allows for countably many different Lipschitz maps.
Remark 6.4. (Xn)n≥0 itself is not a Markov chain since the next value depends on the current
state of θ. However, (θn, Xn)n≥0 is a time-homogeneous Markov chain with state space S × X
and transition kernel

P̄ ((i, x), {j} ×A) = P(θn = j,Xn ∈ A|θn−1 = i,Xn−1 = x)
= P(θn = j,Ψn(x) ∈ A|θn−1 = i,Xn−1 = x)
= P(θn = j,Ψn(x) ∈ A|θn−1 = i)
= pi,jP(Ψn(x) ∈ A|θn = j, θn−1 = i)
= pi,jP(Ψn ∈ p−1

x (A)|θn = j, θn−1 = i) = pi,jKi,j(p−1
x (A))

for i, j ∈ S, x ∈ X and A ∈ B(X). Here px : Ψn(ω) 7→ Ψn(ω)(x) is measurable, because the
evaluation map (Ψ, x) 7→ Ψ(x) from Lip(X,X)× X to X is measurable as seen in Section 6.1.

6.2. Dual chain and distributional identity
Dual chain. For our analysis, we introduce a MMS (#θ,#Ψ) := (#θn,

#Ψn)n≥0 on (Ω,A,P),
with #θ0 := θ0, which is dual to (θ,Ψ), i.e. it has the dual transition kernel

#Q(i, {j} ×B) = πjpj,i
πi

K(j, i, B) =: #pi,j
#K(i, j, B) =: #pi,j

#Ki,j(B) (6.1)

for i, j ∈ S and measurable B, where #P = (#pi,j) = (πjpj,iπi
) denotes the transition matrix/kernel

of #θ. Set Pi := P(·|θ0 = #θ0 = i) and Pλ =
∑
i∈S λiPi for a probability measure λ on S. It is

easy to show that the original and the dual chain are connected by the relations

πj0Pj0(θ1 = j1, . . . , θk = jk) = πjkPjk(#θ1 = jk−1, . . . ,
#θk = j0) (6.2)

and

P((Ψ1, . . . ,Ψk) ∈ ·|θ0 = j0, . . . , θk = jk) = P((#Ψk, . . . ,
#Ψ1) ∈ ·|#θ0 = jk, . . . ,

#θk = j0) (6.3)

for every k ≥ 1 and j0, . . . jk ∈ S.
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Remark 6.5. The dual driving chain #θ inherits all regularity assumptions from θ. It is time-
homogeneous and irreducible, and also positive recurrent with the same stationary distribution
π and mean recurrence time Ei#σ1(i) = Eiσ1(i) =: mii, where σ1(i) := inf{n ≥ 1 : θn = i} and
analogously #σ1(i) := inf{n ≥ 1 : #θn = i}.

We briefly record easy consequences of (6.2) and (6.3) that we will use frequently:

Lemma 6.6. It holds that

(a) #σ1(i) d= σ1(i) w.r.t. Pi for all i ∈ S.

(b) (θ0, . . . , θn,Ψ1, . . . ,Ψn) d= (#θn, . . . ,
#θ0,

#Ψn, . . . ,
#Ψ1) w.r.t. Pπ for all n ≥ 1.

(c) (Ψ1, . . . ,Ψσ1(i))
d= (#Ψ#σ1(i), . . . ,

#Ψ1) w.r.t. Pi for all i ∈ S.

Resulting from the above lemma, we obtain a lot of helpful identities linking the Lipschitz maps
with their duals. In particular, we will make frequent use of the following: Eπf(Ψ1) = Eπf(#Ψ1)
and Eπf(Ψn · · ·Ψ1) = Eπf(#Ψ1 · · ·#Ψn) for measurable f , whenever either expression is well-
defined.

The dual chain accounts for the time-reversal idea in [Elt90]. In the i.i.d. setting, all arrange-
ments of a certain number of Lipschitz maps have the same distribution, so it is not immediately
apparent, that the natural perspective should be, to build not only the backward iteration, but
the backward iteration of the time reversal. Part (b) of the above Lemma and the next paragraph
justify this.

Central distributional identity. We return to the sequence (θn, Xn)n≥0 and additionally intro-
duce the notation

Xx
n := Ψn · · ·Ψ1(x), Xx

0 := x,

according to which (θn, Xx
n)n≥0 is a time-homogeneous Markov chain, too, with the same transition

kernel. From now on, we will focus on the process with deterministic starting value x ∈ X. Also,
the dot (·) will denote the concatenation of functions throughout this work whenever it is the
obvious interpretation. Referring to the approach in the i.i.d. setting, we introduce the four-part
scheme (instead of two-part in the i.i.d. setting)

Xx
n = Ψn · · ·Ψ1(x) X̂x

n := Ψ1 · · ·Ψn(x)
#Xx

n := #Ψn · · ·#Ψ1(x) #X̂x
n := #Ψ1 · · ·#Ψn(x).

Obviously, the hashtag (#) indicates that the dual chain is considered and the hat (̂) denotes
the backward iteration corresponding to the (non-hatted) forward iteration of the respective
chain. Denoting forward and backward iteration in this way is consistent with [AF01].

The following distributional identity is the main reason for introducing the dual chain: To
obtain distributional results for forward iterations of the original MIFS, we can also examine the
backward iterations of the “dual MIFS”, which, as in the i.i.d. case, turn out to be much easier
to analyze. It follows immediately from Lemma 6.6.

Lemma 6.7. For all n ≥ 0 and x ∈ X, (θ0, . . . , θn, X
x
n) d= (#θn, . . . ,

#θ0,
#X̂x

n) w.r.t. Pπ. In
particular, Xx

n
d= #X̂x

n w.r.t. Pπ for all n ≥ 0 and x ∈ X.
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6.3. Elton’s theorem
The next section contains parts of the original theorem by Elton from [Elt90, Theorem 3] in
our setting with the more ore less original proof for completeness. A different proof is prepared
in the next section and accomplished in the next chapter, where the actual work starts. As a
slight motivation for the assumptions that we make, we state a version of the Furstenberg-Kesten
theorem from [FK60], first. In our setting, the result is due to Elton [Elt90].

Theorem 6.8 (Furstenberg-Kesten, Elton). Let Eπ log+ L(Ψ1) <∞. Then

lim
n→∞

1
n

logL(#Ψ1 · · ·#Ψn) = inf
n≥1

n−1Eπ logL(#Ψ1 · · ·#Ψn)

= lim
n→∞

1
n

logL(Ψn · · ·Ψ1) = inf
n≥1

n−1Eπ logL(Ψn · · ·Ψ1) =: χ Pπ-a.s.

with χ ∈ R ∪ {−∞}. If χ ∈ R, then the convergence also holds in L1(Pπ). χ is called Lyapunov
exponent.

Proof. We use a generalized version of Kingman’s subadditive ergodic theorem by [Lig85] in the
form of [Als15a], cf. Theorem B.1 in the appendix. The Theorem applies to the triangular
schemes Yk,n := logL(#Ψk+1 · · ·#Ψn) and Y ′k,n := logL(Ψn · · ·Ψk+1), n ≥ 1 and 0 ≤ k ≤ n. It is
easy to see that both schemes satisfy (SA-1)-(SA-4) and the sequences in (SA-2) are also ergodic
under Pπ. Noting

inf
n≥1

n−1Eπ logL(#Ψ1 · · ·#Ψn) = inf
n≥1

n−1Eπ logL(Ψn · · ·Ψ1)

completes the proof.

The following theorem is part of what was proven by Elton in [Elt90] for general stationary
(Ψn)n≥1 with a.s. negative Lyapunov exponent. At this point we keep this condition, but starting
with the next section, we will slightly strengthen it to Eπ logL(Ψ1) < 0 for our purposes. We
justify why the latter causes the Lyapunov exponent to be a.s. negative at the beginning of
Section 6.4. We recall the proof of Elton’s result in our setting as it illustrates the influence of
the Lyapunov exponent on the convergence of the backward iterations.

Theorem 6.9. Given Eπ log+ L(Ψ1) < ∞ and Eπ log+ d(x0,Ψ1(x0)) < ∞ for some (and thus
all) x0 ∈ X, let χ < 0 Pπ-a.s. Then there exists a #X̂∞ with the following properties:

(a) As n→∞
#X̂x

n → #X̂∞ Pπ-a.s. for every x ∈ X. (6.4)

(b) As n→∞
(θn, Xx

n) d−→ (θ0,
#X̂∞) w.r.t. Pπ for all x ∈ X. (6.5)

In particular, as n→∞,

Xx
n

d−→ #X̂∞ w.r.t. Pπ for all x ∈ X. (6.6)

Remark 6.10. Up to now, many conditions are formulated in terms of log+. However, this
function has not the good properties that one would desire. Hence, we will soon (already in the
next remark) proceed to use log∗(x) := log(1 + x) as a subadditive majorant of log+. It also
satisfies log∗(xy) ≤ log∗(x) + log∗(y) for all x, y ≥ 0 and log∗(x) ≤ 1 + log+(x) for x ≥ 0.
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Remark 6.11. Suppose that Eπ log+ d(x0,Ψ1(x0)) <∞ for some x0 ∈ X. Then for every other
x ∈ X, we have

d(x,Ψ1(x)) ≤ d(x, x0) + d(x0,Ψ1(x0)) + d(Ψ1(x0),Ψ1(x))
≤ (1 + L(Ψ1)) · d(x, x0) + d(x0,Ψ1(x0)).

(6.7)

With the help of Remark 6.10, we get

Eπ log+ d(x,Ψ1(x)) ≤ Eπ log∗ d(x,Ψ1(x))
≤ Eπ log∗(1 + L(Ψ1)) + log∗ d(x, x0) + Eπ log∗ d(x0,Ψ1(x0))
≤ log∗(1) + Eπ log∗ L(Ψ1) + log∗ d(x, x0) + Eπ log∗ d(x0,Ψ1(x0))

which is finite by assumption since log∗ ≤ 1 + log+.

Proof of Theorem 6.9. The Furstenberg-Kesten theorem implies

lim
n→∞

1
n

logL(#Ψ1 · · ·#Ψn) = χ Pπ-a.s. (6.8)

Fix x0 ∈ X. Then

d(#X̂x0
n+1,

#X̂x0
n ) ≤ L(#Ψ1 · · ·#Ψn) · d(x0,

#Ψn+1(x0)).

We show that
∑∞
n=1 d(#X̂x0

n+1(ω),#X̂x0
n (ω)) < ∞ for Pπ-almost all ω. Then (#X̂x0

n (ω))n≥0 is
a Cauchy sequence and thus converges (X is complete) to some #X̂x0

∞ (ω). To this end, fix
ω ∈ Ωj ∩A1, where (6.8) holds on A1 and Pπ(A1) = 1. Then, there clearly is an n0(ω) ∈ N such
that for all n ≥ n0(ω) the Lipschitz constants satisfy

L(#Ψ1 · · ·#Ψn)(ω) < e−
α
2 n

for α = −χ if χ > −∞ and some α > 0 otherwise. Moreover,∑
n≥1

Pπ
(

log+ d(x0,
#Ψn+1(x0)) > α

4 n
)
≤ Eπ

( 4
α

log+ d(x0,
#Ψn+1(x0))

)

= Eπ
( 4
α

log+ d(x0,Ψ1(x0))
)
<∞

by stationarity, so the Borel-Cantelli lemma implies

Pπ(A2) := Pπ
(

log+ d(x0,
#Ψn+1(x0)) ≤ α

4 n for almost all n ≥ 1
)

= 1.

Hence, for ω ∈ A2 there is an n1(ω) such that log+ d(x0,
#Ψn+1(x0))(ω) ≤ α

4n for all n ≥ n1(ω),
and thus d(x0,

#Ψn+1(x0)) ≤ e
α
4 n. For ω ∈ A1 ∩A2 with n2(ω) := max{n0(ω), n1(ω)}, we finally

have that

d(#X̂x0
n+1(ω),#X̂x0

n (ω)) ≤ L(#Ψ1 · · ·#Ψn)(ω) · d(x0,
#Ψn+1(x0))(ω) ≤ e−

α
2 n · e

α
4 n = e−

α
4 n

for all n ≥ n2(ω). This is clearly summable and since Pπ(A1 ∩A2) = 1, this ends the first part
of the proof. Given #X̂x

∞ for each x ∈ X, we still need to verify (6.4) which means to check,
whether #X̂x

∞ = #X̂y
∞ Pπ-a.s. for all x, y. Therefore, we remark that

d(#X̂x
n ,

#X̂y
n) ≤ L(#Ψ1 · · ·#Ψn) · d(x, y)→ 0 Pπ-a.s.,
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as n → ∞. Thus all #X̂x
n converge Pπ-a.s. to the same random variable #X̂∞ := #X̂x0

∞ , say.
This proves (a).

To prove (b), let π̄(B) := Pπ((θ0,
#X̂∞) ∈ B) and f ∈ Cb(S ×X) be a bounded and continuous

function on S × X with values in R. Then∫
f dP(θn,Xx

n)
π =

∫
f(θn,Ψn · · ·Ψ1(x)) dPπ =

∫
f(#θ0,

#Ψ1 · · ·#Ψn(x)) dPπ

=
∫
f(#θ0,

#X̂x
n) dPπ →

∫
f(#θ0,

#X̂∞) dPπ =
∫
f dπ̄,

as n→∞, by duality, the dominated convergence theorem and #θ0 = θ0.

6.4. Markov renewal theory and conditions
One key requirement in Theorem 6.9 is the negative Lyapunov exponent χ. Slightly strengthening
this by requiring the mean contraction condition

Eπ logL(Ψ1) < 0 (MC1)

to hold together with the jump-size condition

Eπ log+ d(x0,Ψ1(x0)) <∞ for some (and thus all) x0 ∈ X, (MC2)

allows us to easily reproduce (6.4) (and thus (6.6)) by cyclic decomposition. On the one hand,
this illustrates a further intuitive approach to Elton’s result in the spirit of [AF01], and on the
other hand, this procedure founds the basis for our main goal, to find rates of convergence for
(6.6) in two different regimes which will be introduced later on. From now on, both conditions
given above are always in force.

It is easy to see that

L(Ψn · · ·Ψ1) ≤
n∏
k=1

L(Ψk) and L(#Ψ1 · · ·#Ψn) ≤
n∏
k=1

L(#Ψk)

for n ≥ 2. Especially the latter inequality provides us with a leverage point for our analysis and
also suggests a set of tools to use: Obviously, the sequence

(
#θn,

n∑
k=1

logL(#Ψk)
)
n≥0

is a MRW. We set Sn :=
∑n
k=1 logL(#Ψk), n ≥ 1, and S0 := 0. Since π is also the unique

stationary distribution of #θ, the MRW has negative stationary drift

µ := Eπ logL(#Ψ1) = Eπ logL(Ψ1) < 0.

Throughout our work, we will replace the increments of the additive component by log∗ L(#Ψk)
or log∗ d(x0,

#Ψk(x0)), say. These processes are also MRWs. Finally, we remark that mean
contractivity does indeed imply an a.s. negative Lyapunov exponent since (MC1) and Theorem 3.16
together yield χ ≤ Eπ logL(Ψ1) Pπ-a.s.
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Xσn(i):
(

#Ψσn(i) · · ·#Ψσn−1(i)+1
)(

#Ψσn−1(i) · · ·#Ψσn−2(i)+1
)
· · ·
(

#Ψσ1(i) · · ·#Ψ1
)

Yn:
(

#Ψσn−1(i)+1 · · ·#Ψσn(i)
)(

#Ψσn−2(i)+1 · · ·#Ψσn−1(i)
)
· · ·
(

#Ψ1 · · ·#Ψσ1(i)
)

Ŷn = X̂σn(i):
(

#Ψ1 · · ·#Ψσ1(i)
)
· · ·
(

#Ψσn−2(i)+1 · · ·#Ψσn−1(i)
)(

#Ψσn−1(i)+1 · · ·#Ψσn(i)
)

Figure 6.1.: Comparison of Xσn(i), Yn and Ŷn = X̂σn(i).

Cyclic decomposition of the MIFS. Let (σn(i))n≥0 and (#σn(i))n≥0 denote the successive
recurrence times of the driving chain θ and #θ, respectively, as defined in Section 2.5. We already
set mii := Ei#σ1(i). Now, (S#σn(i))n≥0 forms a SRW under Pi with negative drift

EiS#σ1(i) = µ · Ei#σ1(i) = µ ·mii < 0.

Whenever we only talk about the dual chain (as will be the case most of the time), we abuse
notation and suppress the # in the name for simplicity. Which chain is used, will be clear from
the context. We refer to Section 2.5 for more details.

The following lemma is essential for our further approach as it relates our MIFS to an embedded
IFS of i.i.d. Lipschitz maps for which we know a lot of results. It most importantly states that
we can identify an i.i.d. IFS (Y x

n ) in our model whose backward iterations equal #X̂x
σn(i). We

illustrate how Y x
n relates to Xσn(i) in Figure 6.1. This figure is analogous to [Als15a, Figure 3.2].

Lemma 6.12 is very similar to [Als15a, Lemma 3.26] except for the fact that we consider recurrence
times instead of ladder epochs. We will frequently have this kind of analogy to [AF01] and
[Als15a] in our lemmas, and still we also need to deal with starting according to the stationary
measure π.

Here and in the rest of this work, we will often use i ∈ S as a reference state.

Lemma 6.12. Given a MIFS satisfying (MC1) and (MC2), the embedded sequence (#Xx
σn(i))n≥0

forms a mean contractive IFS of i.i.d. Lipschitz maps under Pi satisfying the jump-size condition

Ei log+ d(x0,
#Ψi

1(x0)) <∞

for some (and thus all) x0 ∈ X, with corresponding Lipschitz maps

#Ψi
n := #Ψσn(i) · · ·#Ψσn−1(i)+1, n ≥ 1.

The same holds for the sequence (Y x
n )n≥0, defined by Y x

0 := x and

Y x
n := #~Ψi

n · · ·#~Ψi
1(x)

with corresponding Lipschitz maps

#~Ψi
n := #Ψσn−1(i)+1 · · ·#Ψσn(i), n ≥ 1.

Proof. We note that the #Ψi
n are i.i.d. under Pi and also #Xσn(i) = #Ψi

n(#Xσn−1(i)). The same
holds for the #~Ψi

n which are the corresponding Lipschitz maps of (Y x
n )n≥1. First, we verify the

jump-size condition. For simplicity, we put S∗n :=
∑n
k=1 log∗ L(#Ψk) ≥ 0, n ≥ 1, S∗0 := 0. Then

log d(x0,
#~Ψi

1(x0)) = log d(x0,
#Ψ1 · · ·#Ψσ1(i)(x0))
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≤ log

d(x0,
#Ψ1(x0)) +

σ1(i)∑
n=2

d(#Ψ1 · · ·#Ψn−1(x0),#Ψ1 · · ·#Ψn(x0))


≤ log

d(x0,
#Ψ1(x0)) +

σ1(i)∑
n=2

n−1∏
k=1

L(#Ψk) · d(x0,
#Ψn(x0))

 (6.9)

≤ log

d(x0,
#Ψ1(x0)) +

σ1(i)∑
n=2

eS
∗
n−1d(x0,

#Ψn(x0))

 = log

σ1(i)∑
n=1

eS
∗
n−1d(x0,

#Ψn(x0))


≤ log

eS∗σ1(i) ·
σ1(i)∑
n=1

d(x0,
#Ψn(x0))

 ≤ S∗σ1(i) +
σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0))

where the subadditivity of log∗ was used. We infer from (2.1) that

Ei log+ d(x0,
#~Ψi

1(x0)) ≤ EiS∗σ1(i) + Ei

σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0))


= mii ·

(
Eπ log∗ L(#Ψ1) + Eπ log∗ d(x0,

#Ψ1(x0))
)
.

All objects on the right side are finite by assumption. A similar procedure leads to the estimate

log d(x0,
#Ψi

1(x0)) ≤ S∗σ1(i) +
σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0)).

If we replace x0 by some other x ∈ X in both cases, then we conclude in the same way that the
expectation is finite since Eπ log∗ d(x,Ψ1(x)) <∞ for all x ∈ X. The mean contractivity in both
cases follows from Ei logL(#Ψi

1) ≤ EiSσ1(i) and Ei logL(#~Ψi
1) ≤ EiSσ1(i).

Conditions for convergence rates. For the results concerning convergence rates, we will impose
two sets of moment conditions. These are gathered in this paragraph and are influenced by
the previous lemma and the corresponding conditions in the i.i.d. setting, cf. [AF01, (1.8) and
(1.9)]. Essentially, our conditions guarantee the latter two conditions for the embedded i.i.d. IFS
(Y x
n )n≥0 and add a regularity constraint for the driving Markov chain #θ. The main advantage of

the below conditions is that they only involve quantities which are given by the model. However,
we will mostly work with the dual chain and hence need conditions involving only the dual chain.
Indeed, analogous conditions hold for the dual counterpart by duality. We record this fact in
Remark 6.15.

The first set of conditions is tailored to result in polynomial convergence of the MIFS: We say
that a MIFS satisfying (MC1) and (MC2) obeys the polynomial-type moment conditions of order
p > 0 if the following conditions

Eiσ1(i)p+1 <∞, (A1)

Ei

σ1(i)∑
n=1

log∗ L(Ψn)

p+1

<∞, (A2)

and

Ei

σ1(i)∑
n=1

log∗ d(x0,Ψn(x0))

p+1

<∞ (A3)
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hold for some i ∈ S and some (and thus all) x0 ∈ X. Note that σ1(i) is the first recurrence time
of state i of the original chain θ.
Remark 6.13. If (A1), (A2) hold and (A3) holds for some x0 ∈ X, then (A3) holds for all x ∈ X.
This can be seen as follows. Analogously to (6.7), we obtain

d(x,Ψn(x)) ≤ (1 + L(Ψn))d(x, x0) + d(x0,Ψn(x0))

and
log∗ d(x,Ψn(x)) ≤ log∗(1) + log∗ d(x, x0) + log∗ L(Ψn) + log∗ d(x0,Ψn(x0)),

and hence

Ei

σ1(i)∑
n=1

log∗ d(x,Ψn(x))

p+1

≤ Ei

σ1(i)∑
n=1

log∗ d(x0,Ψn(x0)) +
σ1(i)∑
n=1

log∗ L(Ψn) + Cσ1(i)

p+1

≤ C ′Ei

σ1(i)∑
n=1

log∗ d(x0,Ψn(x0))

p+1

+ C ′Ei

σ1(i)∑
n=1

log∗ L(Ψn)

p+1

+ C ′Eiσ1(i)p+1 <∞

with positive constants C and C ′.
Remark 6.14. It is expected that solidarity in i ∈ S holds in (A1)-(A3) but this is not important
for the following analysis. Concerning (A1), this is well-known.
Remark 6.15. Conditions (A1), (A2) and (A3) also hold with σ1(i) and Ψn replaced by #σ1(i)
and #Ψn. This follows easily from Lemma 6.6.

The second set of conditions is tailored to result in geometric convergence of the MIFS. We
say that a MIFS satisfying (MC1) and (MC2) obeys the geometric-type moment conditions if the
following conditions

Eieβ
∗
i σ1(i) <∞ for some β∗i > 0, (B1)

Ei

(
max

1≤n≤σ1(i)
L(Ψn · · ·Ψ1)p + max

1≤n≤σ1(i)
L(Ψσ1(i) · · ·Ψn)p

)
<∞, (B2)

Ei

σ1(i)∑
n=1

L(Ψn)

p <∞, (B3)

and

Ei

σ1(i)∑
n=1

d(x0,Ψn(x0))

p <∞ (B4)

hold for some i ∈ S, some p > 0 and some (and thus all) x0 ∈ X.
Remark 6.16. If (B1), (B3) hold and (B4) holds for some x0, then the latter holds for every
x ∈ X. Again,

d(x,Ψn(x)) ≤ d(x, x0)(1 + L(Ψn)) + d(x0,Ψn(x0))
implies

Ei

σ1(i)∑
n=1

d(x,Ψn(x))

p ≤ CEiσ1(i)p + CEi

σ1(i)∑
n=1

L(Ψn)

p + CEi

σ1(i)∑
n=1

d(x0,Ψn(x0))

p <∞
for a constant C > 0.
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Remark 6.17. See Remark 6.14 for a remark concerning solidarity in (B1)-(B4).
Remark 6.18. Conditions (B1), (B3) and (B4) (and (B2*) below) also hold with σ1(i) and Ψn

replaced by #σ1(i) and #Ψn. This follows easily from Lemma 6.6. The lemma further yields that
(B2) is equivalent to Ei(Gp1 + Ḡp1) <∞, with G1 and Ḡ1 as in (7.12) and (B.2), respectively.
Remark 6.19. Condition (B2) and Remark 6.18 ensure

EiL(#~Ψi
1)p ≤ EiGp1 <∞

and since the embedded IFS (Y x
n ) of i.i.d. Lipschitz maps is mean contractive, we can find a

q ≤ p such that it is even strongly mean contractive of order q, i.e. EiL(#~Ψi
1)q < 1.

Remark 6.20. It is easy to show similarly to (7.19) that

Ei

σ1(i)∏
n=1

(1 + L(Ψn))

p <∞, (B2*)

implies (B2) (and also (B3) which is easily verified using the subadditivity of log∗). However,
(B2*) seems to be a bit to restrictive.
Remark 6.21. For a geometric MIFS, we require the existence of p > 0 such that (B3) and (B4)
hold. Taking p ≤ 1 w.l.o.g. and using subadditivity of x 7→ xp yields that EπL(Ψ1)p <∞ and
Eπd(x0,Ψ1(x0))p <∞ are sufficient for (B3) and (B4), respectively.

Lower bound γ∗i for the rate of exponential convergence. In the following analysis, an object
will frequently appear that was originally used in [AF01, Section 2] as a “lower bound for the rate
of exponential convergence in the results” they proved in the i.i.d. setting. There, it is denoted
by γ∗ and defined by log γ∗ := infγ∈(0,1)

log γ
µ(γ) with µ(γ) := Eσ1(γ) and

σ1(γ) := inf{n ≥ 1 :
n∑
k=1

logLk ≤ log γ}, γ ∈ (0, 1),

where the Lk are the i.i.d. Lipschitz constants in the i.i.d. setting, cf. [AF01] for further details.
Note that this definition of σ1(γ) is only used in this paragraph to avoid confusion with σ1(i).
Lemma B.5 in the appendix gathers useful properties and the two different forms of γ∗ depending
on whether E| logL1| is finite or not.

As a MIFS satisfying (MC1) and (MC2) contains an embedded i.i.d. IFS (Y x
n )n≥0 by Lemma 6.12,

we denote by γ∗i the corresponding γ∗ of (Y x
n )n≥0 (recall that Y x

n depends on i). By Lemma B.5,
either Ei| logL(#~Ψi

1)| = ∞ and then γ∗i = 0 or Ei| logL(#~Ψi
1)| < ∞ which implies γ∗i =

eEi logL(#~Ψi1) and eEi logL(#~Ψi1) ≤ eEiSσ1(i) = eµmii . So eµmii ≥ γ∗i and, in particular,

(eµmii , 1) ⊂ (γ∗i , 1) and (eµ, 1) ⊂ ((γ∗i )
1
mii , 1).

These intervals represent validity ranges in the following theorems. Notably, the range (eµ, 1)
does not depend on i and eµ constitutes the analogue to γ∗ from the i.i.d. setting.
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7.1. Main results
For the formulation of our main result, we introduce the Prokhorov metric of probability measures
which we denote (and already denoted) by dPr. Since X is separable, the Prokhorov metric is a
metrization of the topology of weak convergence on the space of probability measures on X. For
a precise definition and a useful characterization of the Prokhorov metric, we refer the reader to
Section B.2 in the appendix. With these preparations made, we can state our main results.

Theorem 7.1. Given a MIFS (θn, Xn)n≥0 satisfying (MC1) and (MC2), there exists a random
variable #X̂∞ such that the following assertions hold, as n→∞.

(a)
#X̂x

n → #X̂∞ Pπ-a.s. for every x ∈ X. (7.1)

(b) For every γ ∈ (eµ, 1)

γ−nd(#X̂x
n ,

#X̂∞)→ 0 Pπ-a.s. for every x ∈ X. (7.2)

(c) For every γ ∈ (eµ, 1)

Pπ(d(#X̂x
n ,

#X̂∞) > γn)→ 0 for every x ∈ X. (7.3)

Theorem 7.2. Given a MIFS (θn, Xn)n≥0 satisfying the polynomial-type moment conditions of
order p > 0 for i ∈ S.

(a) For every γ ∈ ((γ∗i )
1
mii , 1) ⊇ (eµ, 1)∑

n≥1
np−1Pi(d(#X̂x

n ,
#X̂∞) > γn) ≤ Cγ(1 + logp∗ d(x, x0)) (7.4)

and
lim
n→∞

npPi(d(#X̂x
n ,

#X̂∞) > γn) = 0 (7.5)

for every x ∈ X and some constant Cγ ∈ (0,∞).

(b) Assertion (a) holds with Pπ instead of Pi (and possibly different Cγ).

(c) For all n ≥ 0 and x ∈ X

dPr(PX
x
n

π ,P
#X̂∞
π ) ≤ Ax(n+ 1)−p, (7.6)

where Ax = A1 +A2 logp∗ d(x, x0), and A1 and A2 are a positive constants not depending
on n. A1 and A2 do moreover not depend on x.
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(d) For every x0 ∈ X
Ei logp∗ d(x0,

#X̂∞) <∞. (7.7)

(e) Assertion (d) also holds with Eπ instead of Ei.

Theorem 7.3. Given a MIFS (θn, Xn)n≥0 satisfying the geometric-type moment conditions for
i ∈ S.

(a) For every γ ∈ ((γ∗i )
1
mii , 1) ⊃ (eµ, 1) there exists an αi,γ > 1 such that

lim
n→∞

αni,γPi(d(#X̂x
n ,

#X̂∞) > γn) = 0 (7.8)

for every x ∈ X.

(b) Assertion (a) holds with Pπ instead of Pi (and possibly different αi,γ).

(c) There exists an r ∈ (0, 1) such that

dPr(PX
x
n

π ,P
#X̂∞
π ) ≤ Axrn, (7.9)

for all n ≥ 0, x ∈ X, where Ax = A1 + d(x, x0)A2, and A1 and A2 are positive constants
not depending on n. Moreover, r, A1 and A2 do not depend on x (and n).

(d) There exists an η > 0 such that for every x0 ∈ X

Eid(x0,
#X̂∞)η <∞. (7.10)

(e) If additionally (B2*) holds, then Assertion (d) also holds with Eπ instead of Ei.

Remark 7.4. Condition (B2*) in (e) is certainly not optimal but required for technical reasons.

7.2. Proof of Theorem 7.1 by cyclic decomposition
We recall that the considered MIFS satisfies (MC1) and (MC2) throughout the rest of this work.
This feature will therefore not be mentioned in the requirements of the following lemmas. Our
first step towards a regenerative proof of Elton’s theorem in the Markov setting is the following
easy observation.

Lemma 7.5. For every i ∈ S, there exists a #X̂
(i)
∞ such that for n→∞ and for each x ∈ X

#X̂x
σn(i) →

#X̂(i)
∞ Pi-a.s.

Proof. We know from Lemma 6.12 that (Y x
n )n≥0 is an IFS of i.i.d. Lipschitz maps under Pi

satisfying the jump-size condition and Ei logL(#~Ψi
1) ≤ EiSσ1(i) < 0, hence Elton’s theorem for

i.i.d. Lipschitz maps (e.g. [AF01, Theorem 2.1]) yields the existence of a #X̂
(i)
∞ (which does not

depend on x) such that
Ŷ x
n → #X̂(i)

∞ Pi-a.s.,

as n → ∞. Noting that Ŷ x
n = #X̂x

σn(i) completes the proof, choosing #X̂
(i)
∞ := #X̂

(i),x0
∞ as the

limit of Ŷ x0
n , where x0 ∈ X is some reference point. The above applies to every i ∈ S.
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7.2. Proof of Theorem 7.1 by cyclic decomposition

Obviously, this #X̂
(i)
∞ is a sensible candidate for a Pi-a.s. limit of #X̂x

n and as we are primarily
interested in a Pπ-a.s. limit, we glue these variables together to get the representation

#X̂∞ =
∑
i∈S

#X̂(i)
∞ 1{#θ0=i}

of the anticipated limit. Certainly, it will turn out to be the right one.
In the following, we want to show that d(#X̂x

n ,
#X̂∞)→ 0 Pπ-a.s., thus we need to get a good

estimate for d(#X̂x
n ,

#X̂∞). Therefore, we introduce

τ(n) := inf{k ≥ 0 | σk(i) ≥ n},

n ≥ 0, the first time that σk(i) is greater than or equal to n, and we keep in mind that τ(n)
depends on i, but drop it here. Of course, τ(n) also makes sense for non-integer n ≥ 0. Then the
triangle inequality provides the estimate

d(#X̂x
n ,

#X̂∞) ≤ d(#X̂x
n ,

#X̂x0
n ) + d(#X̂x0

n ,#X̂x0
στ(n)(i)

) + d(#X̂x0
στ(n)(i)

,#X̂∞),

where the last summand clearly vanishes Pi-a.s. due to the previous lemma, as τ(n)→∞ Pi-a.s.
This estimate extracts the whole influence of x into the first summand, where we compare the
iteration started in x to the iteration started in some fixed reference point x0. Now, our main
goal is to deal with the first and the second term on the right-hand side. To deal with the second
summand, i.e. to control the error in distance when considering the subsequence στ(n)(i) instead
of n, we set for n ≥ 1

Cn := d(x0,
#Ψσn−1(i)+1 · · ·#Ψσn(i)(x0))

∨ max
σn−1(i)<k<σn(i)

{d(#Ψσn−1(i)+1 · · ·#Ψk(x0),#Ψσn−1(i)+1 · · ·#Ψσn(i)(x0))} (7.11)

as the maximal distance of #~Ψi
n(x0) from the set

{x0,
#Ψσn−1(i)+1(x0), . . . ,#Ψσn−1(i)+1 · · ·#Ψσn(i)−1(x0)}.

The Cn are i.i.d. under Pi and Cτ(n) converges in distribution (w.r.t. Pi). For the sake of
completeness, we also introduce for n ≥ 1

Gn := max{L(#Ψσn−1(i)+1), . . . , L(#Ψσn−1(i)+1 · · ·#Ψσn(i))} (7.12)

and for n ≥ 0

Dn :=
∞∑
j=1

n+j−1∏
k=n+1

L(#~Ψi
k) d(#~Ψi

n+j(x0), x0), (7.13)

where the empty product is set to 1. Obviously, the Gn are also i.i.d. We will need the Dn and Gn
at a later point of this work. They are introduced to deal with the third and the first summand
of the above inequality, respectively, and of course the names Cn and Dn are intentional. All
three sequences have counterparts in the i.i.d. setting in [AF01, Section 3]. For instance, Dn is a
generalization of the autoregressive

Dn =
∞∑
j=1

γj−1d(Ψσn+j+1 · · ·Ψσn+j+1(x0), x0), (7.14)
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where the σn are ladder epochs and thus play a comparable role to the σn(i) here, but entail
more knowledge about the Lipschitz constants. In fact, we can bound the latter from above by
γ by definition of σn. The loss of the deterministic part makes our object more complicated,
however, we recognize it as a perpetuity corresponding to the sequence(

L(#~Ψi
n+k), d(#~Ψi

n+k(x0), x0)
)
k≥1

.

Keeping in mind that Dn (as well as Cn and Gn) depends on i ∈ S, the following Lemma ensures
that, under our general assumptions, the expression of Dn makes sense.

Lemma 7.6. The Dn, n ≥ 0, are Pi-a.s. and Pπ-a.s. finite.

Proof. We show that D0 < ∞ Pi-a.s. which yields Dn < ∞ Pi-a.s. for all n ≥ 0 since Dn is a
stationary sequence. Case 1 : If Pi(d(#~Ψi

1(x0), x0) = 0) = 1, then #~Ψi
k(x0) = x0 for every k ≥ 1

and thus D0 = 0 Pi-a.s. Case 2 : If Pi(d(#~Ψi
1(x0), x0) = 0) < 1 and

Ei logL(#~Ψi
1) ∈ (−∞, 0)

(by Lemma 6.12 it is < 0 but we do not allow = −∞ here) and thus Pi(L(#~Ψi
1) = 0) = 0,

then we are in the situation of [AB17a, Theorem 1.1] (which is a slightly stronger version
of the original version [GM00, Theorem 2.1] by Goldie and Maller). Since by Lemma 6.12
Ei log+ d(#~Ψi

1(x0), x0) <∞ (and thus EiJ(log+ d(#~Ψi
1(x0), x0)) <∞ (cf. [AB17a] or [GM00] for

more details on J , which is denoted differently in the latter)), the theorem yields D0 <∞ Pi-a.s.
Case 3 : If Pi(d(#~Ψi

1(x0), x0) = 0) < 1 and Ei logL(#~Ψi
1) = −∞, then we can choose c ∈ (0, 1)

from Lemma B.5 such that
Ei log(L(#~Ψi

1) ∨ c) ∈ (−∞, 0).
Now, the previous case applies and we find that D0 <∞ Pi-a.s. by the estimate

D0 :=
∞∑
j=1

j−1∏
k=1

L(#~Ψi
k) d(#~Ψi

j(x0), x0) ≤
∞∑
j=1

j−1∏
k=1

(L(#~Ψi
k) ∨ c) d(#~Ψi

j(x0), x0).

For the second part of the assertion, note that the distribution of (#~Ψi
n+k)k≥1 under Pπ for

every n ≥ 1 is the same as that of (#~Ψi
k)k≥1 under Pi. Hence, Dn, n ≥ 1, is also Pπ-a.s. finite

and we only need to care about

D0 = d(#~Ψi
1(x0), x0) +

∞∑
j=2

j−1∏
k=1

L(#~Ψi
k)d(#~Ψi

j(x0), x0)

= d(#~Ψi
1(x0), x0) + L(#~Ψi

1)
∞∑
j=1

j−1∏
k=1

L(#~Ψi
k+1)d(#~Ψi

j+1(x0), x0).

The Pπ-a.s. finiteness of the latter perpetuity follows from the Pi-a.s. finiteness of D0, and the
remaining objects d(#~Ψi

1(x0), x0) and L(#~Ψi
1) are obviously Pπ-a.s. finite.

In the following Lemma we collect the crucial estimates for this analysis. It constitutes an
analogue of [AF01, Lemma 3.2].

Lemma 7.7. For every n ≥ 0

d(#X̂x
n ,

#X̂∞) ≤ d(#X̂x
n ,

#X̂x0
n ) + d(#X̂x0

n ,#X̂x0
στ(n)(i)

) + d(#X̂x0
στ(n)(i)

,#X̂∞).

Furthermore, the following estimates hold for n ≥ 0:
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(a) d(#X̂x
n ,

#X̂x0
n ) ≤ L(#Ψ1 · · ·#Ψn) · d(x, x0) ≤

∏n
k=1 L(#Ψk) · d(x, x0).

(b) d(#X̂x
n ,

#X̂x0
n ) ≤

∏τ(n)−1
k=1 L(#~Ψi

k) ·Gτ(n) · d(x, x0) with G0 := 1.

(c) d(#X̂x0
n ,#X̂x0

στ(n)(i)
) ≤

∏τ(n)−1
k=1 L(#~Ψi

k) · Cτ(n) with C0 := 0.

(d) d(#X̂x0
στ(n)(i)

,#X̂∞) ≤
∏τ(n)
k=1 L(#~Ψi

k) ·Dτ(n) Pi-a.s.

Remark 7.8. As (7.13) generalizes (7.14) from the i.i.d. setting of [AF01] and thereby introduces
additional randomness, the same happens in Parts (a)-(d) of the above Lemma 7.7. Here we
obtain L(#Ψ1 · · ·#Ψn),

∏τ(n)−1
k=1 L(#~Ψi

k) and
∏τ(n)
k=1 L(#~Ψi

k) instead of γn, γτ(n)−1 and γτ(n),
respectively.

Proof of Lemma 7.7. The first statement is just a reminder. We use the convention that empty
products equal 1, i.e.

∏0
k=1 := 1 and

∏−1
k=1 := 1. Now, (a) is immediate by definition of the

Lipschitz constants. For (b), we remark that

L(#Ψ1 · · ·#Ψn) ≤
τ(n)−1∏
k=1

L(#~Ψi
k) · L(#Ψστ(n)−1(i)+1 · · ·#Ψn) ≤

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n)

for n ≥ 1 and, with our conventions, equality holds trivially if n = 0. To prove (c), we note that
for n ≥ 1

d(#X̂x0
n ,#X̂x0

στ(n)(i)
) = d(#Ψ1 · · ·#Ψστ(n)−1(i) · · ·#Ψn(x0),

#Ψ1 · · ·#Ψστ(n)−1(i) · · ·#Ψn · · ·#Ψστ(n)(i)(x0))

≤
τ(n)−1∏
k=1

L(#Ψσk−1(i)+1 · · ·#Ψσk(i))

· d(#Ψστ(n)−1(i)+1 · · ·#Ψn(x0),#Ψστ(n)−1(i)+1 · · ·#Ψστ(n)(i)(x0))

≤
τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n)

on {τ(n) > 1} and
d(#X̂x0

n ,#X̂x0
στ(n)(i)

) = d(#X̂x0
n ,#X̂x0

σ1(i)) ≤ C1

on {τ(n) = 1}, hence

d(#X̂x0
n ,#X̂x0

στ(n)(i)
) ≤

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n).

Equality holds for n = 0 if we set C0 := 0. For (d) let n ≥ 0 and m ≥ 1. Then

d(#X̂x0
σn+m(i),

#X̂x0
σn(i)) ≤ L(#~Ψi

1 · · ·#~Ψi
n) · d(#~Ψi

n+1 · · ·#~Ψi
n+m(x0), x0)

≤
n∏
k=1

L(#~Ψi
k) · d(#~Ψi

n+1 · · ·#~Ψi
n+m(x0), x0)

≤
n∏
k=1

L(#~Ψi
k) ·

(
d(#~Ψi

n+1(x0), x0)
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+
m∑
j=2

d(#~Ψi
n+1 · · ·#~Ψi

n+j(x0),#~Ψi
n+1 · · ·#~Ψi

n+j−1(x0))
)

≤
n∏
k=1

L(#~Ψi
k) ·

m∑
j=1

n+j−1∏
k=n+1

L(#~Ψi
k) d(#~Ψi

n+j(x0), x0).

The occurring sum increases to Dn, as m→∞, so

d(#X̂x0
σn+m(i),

#X̂x0
σn(i)) ≤

n∏
k=1

L(#~Ψi
k) ·Dn

for every m ≥ 1, and since #X̂x0
σn+m(i) converges to #X̂∞ Pi-a.s. by Lemma 7.5, as m→∞, the

assertion follows.

We now collect some more properties of Cn which correspond to [Als15a, Lemma 3.27] in the
i.i.d. case. Recall that Cn depends on i ∈ S.

Lemma 7.9. For all i ∈ S, Ei log+C1 <∞, hence 1
n log+Cn → 0 and e−εnCn → 0 Pi-a.s. for

every ε > 0.

Proof. The proof uses the estimate

C1 ≤ d(x0,
#Ψ1(x0)) +

σ1(i)∑
n=2

d(#Ψ1 · · ·#Ψn−1(x0),#Ψ1 · · ·#Ψn(x0)) (7.15)

which holds since every argument in C1 is smaller than or equal to this upper bound. Thus,

log+C1 ≤ log∗

eS∗σ1(i)

σ1(i)∑
n=1

d(x0,
#Ψn(x0))

 ≤ 1 + S∗σ1(i) +
σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0))

as in (6.9). The rest follows using the SLLN. It is the same as the proof of [Als15a, Lemma 3.27]
with recurrence times instead of ladder epochs, so we omit the details.

Lemma 7.10. The following assertions hold, as n→∞:

(a)
τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) → 0 Pi-a.s.

(b) If γ ∈ (γ∗i , 1), then

γ−(τ(n)−1)
τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) → 0 Pi-a.s.

(c) If γ ∈ ((γ∗i )
1
mii , 1), then

γ−(n−1)
τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) → 0 Pi-a.s.
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Proof. The first assertion is a direct consequence of (b). To prove (b), we choose n ≥ 1 and
intend to show

γ−(n−1)
n−1∏
k=1

L(#~Ψi
k) · Cn → 0 Pi-a.s.

because the assertion then follows from τ(n)→∞ Pi-a.s. We write

γ−(n−1)
n−1∏
k=1

L(#~Ψi
k) = exp

(
n−1∑
k=1

logL(#~Ψi
k)− (n− 1) log γ

)
=: exp

(
−
Z ′n−1
n

n

)
,

where Z ′n :=
∑n
k=1[− logL(#~Ψi

k) + log γ] has i.i.d. increments and

EiZ ′1 = −Ei logL(#~Ψi
1) + log γ = − log γ∗i + log γ = log

( γ
γ∗i

)
∈ (0,∞]

by assumption.
If Ei logL(#~Ψi

1) > −∞ and thus EiZ ′1 ∈ (0,∞), then Z′n−1
n → log(γ/γ∗i ) Pi-a.s. Let A be the

intersection of the event that the latter convergence holds and the event that the last convergence
in Lemma 7.9 holds. For ω ∈ A, there exists an n(ω) such that Z′n−1(ω)

n >
log(γ/γ∗i )

2 for all
n ≥ n(ω). Hence, we see

γ−(n−1)
n−1∏
k=1

L(#~Ψi
k)(ω) · Cn(ω) ≤ e−

log(γ/γ∗
i

)
2 nCn(ω)

for n ≥ n(ω), and the right-hand side converges to 0 by the choice of ω. Since Pi(A) = 1,
this proves (b) in this case. If Ei logL(#~Ψi

1) = −∞ and thus EiZ ′1 = ∞, pick ε > 0. Then
Z′n−1(ω)

n > ε holds for almost all ω and all n ≥ n(ω) big enough. The rest of (b) follows as above.
To prove (c) in the case Ei logL(#~Ψi

1) > −∞, we use the fact that

β−(τ(n)−1)
τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) → 0 Pi-a.s., (7.16)

as n→∞, for β ∈ (γ∗i , 1) by (b), and that

τ(n)
n
→ 1

Eiσ1(i) = 1
mii

> 0 Pi-a.s.,

as n→∞. Let γ ∈ ((γ∗i )
1
mii , 1). Then there is a 0 < b < 1

mii
such that γ = (γ∗i )b. Pick ε′ > 0

so small that b + ε′ < 1
mii

which means 0 < b < 1
mii
− ε′ and thus particularly 1

mii
− ε′ > 0.

Now, choose ε ∈ (0,miiε
′( 1
mii
− ε′)−1) and note that the right boundary is indeed positive by

the afore-mentioned. Then there is an n0 (possibly depending on the realization) such that for
n ≥ n0 we have n

τ(n) ≤ mii + ε and hence

γ
n

τ(n) = (γ∗i )b·
n

τ(n) ≥ (γ∗i )b·(mii+ε) = (γ∗i )b·mii+bε

> (γ∗i )1−miiε′+ 1
mii

ε−ε′ε

= (γ∗i )1−miiε′+ε( 1
mii
−ε′)

> (γ∗i )1−miiε′+miiε′ = γ∗i .
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The assertion follows from (7.16) with β := (γ∗i )1−miiε′+ε( 1
mii
−ε′), since

γ−(n−1) = γ
− n
τ(n) (τ(n)−1)

γ
1− n

τ(n) < β−(τ(n)−1)γ
1− n

τ(n)

and n/τ(n) converges to a constant. If Ei logL(#~Ψi
1) = −∞, then the proof is again easier

because we only need to show that, for γ ∈ (0, 1) and large n, γ
n

τ(n) is bounded from below by
some β ∈ (0, 1) in the same manner as before. This is obvious, since n/τ(n) converges to a
positive constant.

Lemma 7.11. If γ ∈ ((γ∗i )
1
mii , 1), then, as n→∞,

γ−nd(#X̂x
στ(n)(i),

#X̂∞)→ 0 Pi-a.s.

Proof. We know from Lemma B.6 that

β−nd(#X̂x
σn(i),

#X̂∞)→ 0 Pi-a.s.

for β ∈ (γ∗i , 1). Proceeding as in the proof of Lemma 7.10(c) yields the assertion. We omit the
details.

Lemma 7.12. If γ ∈ (eµ, 1), then, as n→∞,

γ−n
n∏
k=1

L(#Ψk)→ 0 Pλ-a.s.

for every probability measure λ on S.

Proof. We use the fact that log
∏n
k=1 L(#Ψk) =

∑n
k=1 logL(#Ψk) is a MRW with negative

stationary drift µ. So in particular, as n→∞,

log
∏n
k=1 L(#Ψk)
n

→ µ Pλ-a.s.

and
log

∏n
k=1 L(#Ψk)
n

− log γ → µ− log γ =: a < 0 Pλ-a.s.

by assumption. So with

γ−n
n∏
k=1

L(#Ψk) = exp
(
n

(
log

∏n
k=1 L(#Ψk)
n

− log γ
))

,

we find an n(ω) for every ω from a Pλ-a.s. set such that log
∏n

k=1 L(#Ψk)(ω)
n − log γ < a

2 for all
n ≥ n(ω). This means that for these n

γ−n
n∏
k=1

L(#Ψk)(ω) ≤ en
a
2 → 0.
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7.2. Proof of Theorem 7.1 by cyclic decomposition

Proof of Theorem 7.1(a). As remarked earlier, the third summand in Lemma 7.7 vanishes Pi-a.s.
as does the second summand by Lemma 7.10 and the estimate Lemma 7.7(c). By Lemma 7.12 the
first summand tends to 0 as well. Hence, #X̂x

n → #X̂∞ Pi-a.s. Since in our whole construction
i ∈ S was arbitrary, we obtain the latter assertion for all i ∈ S, which is equivalent to the
convergence Pπ-a.s. since πi > 0 for all i ∈ S.

Proof of Theorem 7.1(b). Let i be an element of S. We combine Lemma 7.7 with Lemmas 7.10,
7.11 and 7.12: The first provides

γ−nd(#X̂x
n ,

#X̂∞) ≤ γ−n
n∏
k=1

L(#Ψk) · d(x, x0) + γ−n
τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n)

+ γ−nd(#X̂x0
στ(n)(i)

,#X̂∞).

Then Lemma 7.10 gives

γ−n
τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) → 0 Pi-a.s.

for all γ ∈ (eµ, 1), as n→∞, while Lemma 7.11 gives

γ−nd(#X̂x0
στ(n)(i)

,#X̂∞)→ 0 Pi-a.s.

for the same γ’s, as n→∞. The last ingredient is provided by Lemma 7.12 which gives

γ−n
n∏
k=1

L(#Ψk)→ 0 Pi-a.s.

We recall that, as mentioned at the end of Section 6.4, (eµ, 1) is always contained in the
i-dependent ranges for γ. We conclude that

lim
n→∞

γ−nd(#X̂x
n ,

#X̂∞) = 0 Pi-a.s.

for γ ∈ (eµ, 1) and all i ∈ S. This is equivalent to our assertion, since x was arbitrary.

Proof of Theorem 7.1(c). This follows immediately from (b): For every γ ∈ (eµ, 1) and as
n→∞,

γ−nd(#X̂x
n ,

#X̂∞)→ 0 Pπ-a.s.

In particular, this convergence holds in probability and

Pπ(d(#X̂x
n ,

#X̂∞) > γn) = Pπ(γ−nd(#X̂x
n ,

#X̂∞) > 1)→ 0.

Theorem 7.1 and the previous lemmas provide us with refined versions of Lemma 7.5 and
Lemma 7.7(d).

Lemma 7.13. The following assertions hold:

(a) #X̂x
σn(i) →

#X̂
(j)
∞ = #X̂∞ Pj-a.s., as n→∞, for all j ∈ S.

(b) d(#X̂x0
στ(n)(i)

,#X̂∞) ≤
∏τ(n)
k=1 L(#~Ψi

k) ·Dτ(n) Pj-a.s. for all j ∈ S.
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7. Convergence rates in Elton’s theorem

Proof. For the first part, we recall that #X̂x
n → #X̂∞ Pj-a.s. and σn(i)→∞ Pj-a.s., as n→∞.

For the second part, we look into the proof of Lemma 7.7(d), where we see

d(#X̂x0
σn+m(i),

#X̂x0
σn(i)) ≤

n∏
k=1

L(#~Ψi
k) ·Dn

for every m ≥ 1. By (a), #X̂x0
σn+m(i) converges to #X̂∞ Pj-a.s., as m→∞.

7.3. Convergence rate under polynomial-type moment conditions
Motivated by Theorem 7.1(c), we are interested in convergence rates. We need a number of
lemmas as preparation and we are guided by the approach of [AF01]. The next result is an
analogue of [AF01, Lemma 3.5].

Lemma 7.14. If (A1) holds, then for all 0 < a < 1
mii∑

n≥1
np−1Pπ(τ(n) ≤ an) <∞ and lim

n→∞
npPπ(τ(n) ≤ an) = 0

and the same holds with Pi instead of Pπ. If (B1) holds, then for all 0 < a < 1
mii

there exists an
α > 1, depending on a and i, such that

lim
n→∞

αnPπ(τ(n) ≤ an) = 0.

The same holds with Pi instead of Pπ with possibly different α.

Proof. We remark that the Pi case for both parts of the lemma is [AF01, Lemma 3.5] with
recurrence times instead of ladder epochs. Nevertheless, we need to adjust their result for the
first part a little bit to prove the assertions under Pπ. By [CL75, Theorem 5] with α = 1, we have

Ei
(

sup
k≥0

(σk(i)− k(mii + ε))
)p
<∞ (7.17)

for all ε > 0 (the latter expression equals m(ε, p+ 1, 1) as defined in [CL75]). As 0 < a < 1
mii

, it
is possible to choose ε > 0 such that a(mii + ε) = 1− ε and thus

Pi(τ(n(1− δ)) ≤ an) = Pi(σbanc(i)− an(mii + ε) ≥ n(1− δ − a(mii + ε)))
≤ Pi(σbanc(i)− banc(mii + ε) ≥ (ε− δ)n)

≤ Pi
(

sup
k≥0

(σk(i)− k(mii + ε)) ≥ (ε− δ)n
)

=: ci,ε((ε− δ)n)

for δ ∈ [0, 1). We know from (7.17) that for every η > 0, as n→∞,

npci,ε(ηn)→ 0,

and with the same means∑
n≥1

np−1ci,ε(ηn) ≤ C · Ei
(

sup
k≥0

(σk(i)− k(mii + ε))
)p
<∞

120



7.3. Convergence rate under polynomial-type moment conditions

for some constant C > 0. Let n ≥ 1. Starting according to the distribution π, we still have

Pπ(τ(n) ≤ an) ≤ Pπ
(

sup
k≥0

(σk(i)− k(mii + ε)) ≥ εn
)
.

The σ1(i), σ2(i)− σ1(i), . . . are still independent w.r.t. Pπ and furthermore, σ2(i)− σ1(i), σ3(i)−
σ2(i), . . . are identically distributed under Pπ with common distribution Pi(σ1(i) ∈ ·). With
δ ∈ (0, 1), we decompose

Pπ(τ(n) ≤ an) ≤ Pπ(σ1(i) ≥ nδ) + Pπ(τ(n) ≤ an, σ1(i) < nδ)

and remark that

τ(n) = inf{k ≥ 2 : σk(i) ≥ n} = 1 + inf{k ≥ 1 : σk+1(i)− σ1(i) ≥ n− σ1(i)}
≥ inf{k ≥ 1 : σk+1(i)− σ1(i) ≥ n(1− δ)}

on {σ1(i) < nδ} to infer

Pπ(τ(n) ≤ an) ≤ Pπ(σ1(i) ≥ nδ) + Pi(τ(n(1− δ)) ≤ an) = Pπ(σ1(i) ≥ nδ) + ci,ε((ε− δ)n).

Choosing δ ∈ (0, ε), the right-hand side vanishes, as n → ∞, when multiplied by np, and is
summable weighted with np−1, both if Eπσ1(i)p <∞. Lemma B.8 and Remark 6.15 show that
this is the case under (A1)-(A3), in fact only Eiσ1(i)p+1 <∞ is needed (cf. the proof).

For the second part, set φ(i)(β) := Eieβσ1(i) and φ
(i)
a (β) := Eieβ(σ1(i)− 1

a
) = e−

β
aφ(i)(β). Then

(φ(i)
a )′(0) = Ei

(
σ1(i)− 1

a

)
= mii −

1
a
< 0

and φ
(i)
a (0) = 1, thus there exists a βa ∈ (0, β∗i ] with φ

(i)
a (t) < 1 for all t ∈ (0, βa]. As in [AF01,

Lemma 3.5], Markov’s inequality yields

Pi(τ(n) ≤ an) ≤ e−βanφ(i)(βa)an =
(
φ(i)
a (βa)a

)n
=: φni,a,

and we can pick every α ∈ (1, φ−1
i,a ). If we start according to π, then, with an adequate condition

in mind, we refine the above procedure to

Pπ(τ(n) ≤ an) ≤ e−tnEπetσbanc(i)

for every t > 0. With the same properties of σn(i) that we stated out in the first part of the
proof, we find

Eπetσbanc(i) = Eπet
∑banc

k=2 σk(i)−σk−1(i)etσ1(i) = φ(i)(t)banc−1Eπetσ1(i) ≤ φ(i)(t)anEπetσ1(i),

so
Pπ(τ(n) ≤ an) ≤ φ(i)

a (t)anEπetσ1(i) =: (φi,a,t)n Eπetσ1(i).

Then α ∈ (1, φ−1
i,a,t) works here if Eπetσ1(i) <∞ and t < βa. Concerning this condition, we refer

to Lemma B.8 again, which tells us that it is possible to find a t′ > 0 with Eπet
′σ1(i) < ∞,

whenever Eieβ
∗
i σ1(i) <∞. Hence, every t smaller or equal to t′ ∧ βa suffices.

The following Lemma is extracted from the proof of [AF01, Lemma 3.3]. We will also develop
an analogue of [AF01, Lemma 3.3] which is split into Lemmas 7.19, 7.22 and 7.17.
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7. Convergence rates in Elton’s theorem

Lemma 7.15. Let Fn := f(#Ψσn−1(i)+1, . . . ,
#Ψσn(i)) for some measurable function f . Then for

every measurable function H : [0,∞)→ [0,∞), t ≥ 0 and n ≥ 1

Pi(H(Fτ(n)) > t) ≤ Eiσ1(i)1{H(F1)>t}

and
Pπ(H(Fτ(n)) > t) ≤ Eiσ1(i)1{H(F1)>t} + Pπ(σ1(i) > n− 1, H(F1) > t).

Remark 7.16. This situation applies to Cn and Gn, n ≥ 1.

Proof. Using
∞∑
k=1

Pπ(σk(i) = l) ≤ 1

for l ≥ 1, a reasoning very similar to [AF01, (3.18)] (with recurrence times instead of ladder
epochs, and under Pπ) yields

Pπ(H(Fτ(n)) > t) =
n−1∑
l=1

(
l+1∑
k=2

Pπ(σk−1(i) = l)
)
Pi(σ1(i) ≥ n− l,H(F1) > t)

+ Pπ(σ1(i) ≥ n,H(F1) > t)

≤
n−2∑
l=0

Pi(σ1(i) > l,H(F1) > t) + Pπ(σ1(i) > n− 1, H(F1) > t)

for every n ≥ 1. Hence, we conclude

Pπ(H(Fτ(n)) > t) ≤
∑
l≥0

Pi(σ1(i) > l,H(F1) > t) + Pπ(σ1(i) > n− 1, H(F1) > t)

= Eiσ1(i)1{H(F1)>t} + Pπ(σ1(i) > n− 1, H(F1) > t).

When replacing π by i, the estimation simplifies to the i.i.d. situation in [AF01, Lemma 3.3]
(with recurrence times instead of ladder epochs) and we obtain

Pi(H(Fτ(n)) > t) ≤
∑
l≥0

Pi(σ1(i) > l,H(F1) > t) = Eiσ1(i)1{H(F1)>t}.

The following lemma is an analogue of the second part of [AF01, Lemma 3.3], and it also
serves as the key tool for dealing with the additional randomness that originates from considering
recurrence times instead of ladder epochs.

Lemma 7.17. If (A1)-(A3) hold, then for all γ ∈ ((γ∗i )
1
mii , 1)

∑
n≥1

np−1Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 <∞ and lim
n→∞

npPπ

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 = 0

and the same holds with Pi instead of Pπ.

Remark 7.18. Obviously, one can replace τ(n)− 1 by τ(n) in the previous statement, the proof
even becomes easier. The same holds for the corresponding Lemma 7.25 under (B1)-(B4).
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7.3. Convergence rate under polynomial-type moment conditions

Proof. Suppose first that Ei| logL(#~Ψi
1)| <∞. Then γ∗i ∈ (0, 1). Define

L∗,ik := L(#~Ψi
k)/γ∗i , k ≥ 1, S∗,in :=

n∑
k=1

logL∗,ik , n ≥ 1, S∗,i0 = 0.

The L∗,ik are i.i.d. under Pi with Ei logL∗,i1 = 0 and independent under Pπ for k ≥ 1, and they
are identically distributed under Pπ with common distribution Pi(L∗,i1 ∈ ·) for k ≥ 2. Fix n ≥ 1.
We start with a γ ∈ ((γ∗i )

1
mii , 1). Thus, there is a b ∈ (0, 1

mii
) with γ = (γ∗i )b. Pick a ∈ (b, 1

mii
)

and decompose

Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 = Pπ

τ(n)−1∏
k=1

L∗,ik > (γ∗i )bn 1
(γ∗i )τ(n)−1


= Pπ

τ(n)−1∏
k=1

L∗,ik > (γ∗i )n
(
b− τ(n)−1

n

) = Pπ

τ(n)−1∑
k=1

logL∗,ik > n log
(

(γ∗i )b−
τ(n)−1
n

)
in the following: On the one hand, we consider

Pπ

τ(n)−1∑
k=1

logL∗,ik > n log
(

(γ∗i )b−
τ(n)−1
n

)
, τ(n) ≤ an+ 1

 ≤ Pπ(τ(n) ≤ an+ 1)

which by Lemma 7.14 is summable weighted with np−1, and converges to 0, as n→∞, when
multiplied by np. On the other hand, with ε := log((γ∗i )b−a) > 0,

Pπ

τ(n)−1∑
k=1

logL∗,ik > n log
(

(γ∗i )b−
τ(n)−1
n

)
, τ(n) > an+ 1


≤ Pπ

τ(n)−1∑
k=1

logL∗,ik > n log
(
(γ∗i )b−a

) ≤ Pπ
(

max
0≤k≤n

S∗,ik > nε

) (7.18)

since τ(n) ∈ {1, . . . , n} for n ≥ 1 and S∗,i0 = 0. Again, we try to relate this expression to
Pi
(
max0≤k≤n S

∗,i
k > nε′

)
(and some arising toll term) for some ε′ > 0. Taking such a relation

for granted, [CL75, Remark on page 57], for p′ := p + 1 and α = r = 1, gives us the desired
one-sided tail estimate for the latter expression, i.e. the latter expression is summable weighted
with np′α−2 = np−1 (recall that Ei| logL∗,i1 | <∞ and Ei(log+ L∗,i1 )p+1 ≤ Ei(log∗ L

∗,i
1 )p+1 <∞ by

assumption). We will show now, that the right-hand side in (7.18) is also of order o(n−p), as
n→∞. With the notation from [CL75], we set

T := T (ε′, 1) := sup{n ≥ 0 : S∗,in ≥ ε′n}

and
T̂ := T̂ (ε′, 1) := sup{n ≥ 0 : max

0≤k≤n
S∗,ik ≥ ε

′n}.

We already know that T is Pi-a.s. finite since by [CL75, Theorem 5] it has a finite p = (p+1) ·1−1-
th moment, and by definition of T it is clear that S∗,iT+l < ε′(T + l) for all l ≥ 1 and in particular
S∗,iT+l < ε′(T + l) ≤ ε′(T +m) for all 1 ≤ l ≤ m. Hence, we find that

T̂ = T + sup{m ≥ 1 : max
1≤k≤T+m

S∗,ik ≥ ε
′(T +m)}
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7. Convergence rates in Elton’s theorem

= T + sup{m ≥ 1 : max
1≤k≤T

S∗,ik ≥ ε
′(T +m)}

= T + sup{m ≥ 1 : 1
ε′

max
1≤k≤T

S∗,ik − T ≥ m}

= T + b 1
ε′

max
1≤k≤T

S∗,ik c − T = b 1
ε′

max
1≤k≤T

S∗,ik c

≤ 1
ε′

max
1≤k≤T

S∗,ik

which has finite p = ((p+ 1) · 1− 1)/1-th moment by [CL75, Theorem 5]. Thus, T̂ has finite p-th
moment and hence, as n→∞,

Pi
(

max
0≤k≤n

S∗,ik > nε′
)
≤ Pi(T̂ ≥ n) = o(n−p).

We still need to establish the suggested relation. In order to do this, we decompose

Pπ
(

max
0≤k≤n

S∗,ik > nε

)
≤ Pπ

(
S∗,i1 > n

ε

2
)

+ Pπ
(

max
2≤k≤n

S∗,ik > nε, S∗,i1 ≤ n
ε

2
)
,

and latter expression is bounded by

Pπ
(

max
2≤k≤n

S∗,ik > nε, S∗,i1 ≤ n
ε

2
)

= Pπ
(

max
2≤k≤n

(S∗,ik − S
∗,i
1 ) > nε− S∗,i1 , S∗,i1 ≤ n

ε

2
)

=
∫

(−∞,n ε2 ]
Pi
(

max
1≤k≤n−1

S∗,ik > nε− x
)
Pπ(S∗,i1 ∈ dx)

≤ Pi
(

max
0≤k≤n

S∗,ik > n
ε

2
)
.

Set ε′ := ε
2 , then we are in the situation that we talked about before, with toll term Pπ(S∗,i1 > ε

2n).
Hence, we require Eπ[(S∗,i1 )+]p < ∞ to obtain the desired result in the first case. Again,
Lemma B.8 guarantees that this holds under (A1)-(A3). When starting w.r.t. Pi instead of Pπ,
then the tracing back procedure from before is not necessary.

Suppose Ei| logL(#~Ψi
1)| =∞. Pick γ ∈ (0, 1) and c such that −∞ < Ei log(L(#~Ψi

1) ∨ c) < 0
and γ ∈ ((γ∗i,c)

1
mii , 1). This is possible by Lemma B.5. If we set L∗,ik,c := (L(#~Ψi

k) ∨ c)/γ∗i,c, then
we are in the situation of the previous case with all necessary conditions fulfilled and we only
need to remark that

Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 ≤ Pπ

τ(n)−1∏
k=1

(L(#~Ψi
k) ∨ c) > γn


and Eπ

(
log+(L(#~Ψi

1) ∨ c)
)p = Eπ

(
log+ L(#~Ψi

1)
)p
<∞.

A question that will arise in the crucial lemmas 7.20 and 7.21 is, when Ei logp+1
∗ C1 <∞ and

Ei logp+1
∗ G1 <∞ hold for p > 0. As expected, this is the case under (A1)-(A3).

Lemma 7.19. The following assertions hold under (A1)-(A3):

(a) Ei logp+1
∗ C1 <∞.

(b) Ei logp+1
∗ G1 <∞.
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7.3. Convergence rate under polynomial-type moment conditions

Proof. We found in Lemma 7.9 that

log∗C1 ≤ 1 +
σ1(i)∑
n=1

log∗ L(#Ψn) +
σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0)),

thus

Ei logp+1
∗ C1 ≤ C + CEi

σ1(i)∑
n=1

log∗ L(#Ψn)

p+1

+ CEi

σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0))

p+1

<∞

for some C > 0 by (A2) and (A3). Using Remark 6.15 proves (a). To show (b), we recall

1 +G1 = max{1 + L(#Ψ1), . . . , 1 + L(#Ψ1 · · ·#Ψσ1(i))}

≤ max{1 + L(#Ψ1), . . . ,
σ1(i)∏
n=1

(1 + L(#Ψn))} =
σ1(i)∏
n=1

(1 + L(#Ψn))
(7.19)

and hence

logp+1
∗ G1 ≤

σ1(i)∑
n=1

log∗ L(#Ψn)

p+1

which has finite expectation by (A2) and Remark 6.15.

The next Lemma forms the first part of the proof of Theorem 7.2(a).

Lemma 7.20. If (A1)-(A3) hold, then for all γ ∈ ((γ∗i )
1
mii , 1) and c > 0

∑
n≥1

np−1Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

c

 <∞,

lim
n→∞

npPπ

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

c

 = 0

and the above statements also hold with Pi instead of Pπ.

Proof. Fix n ≥ 1. We start with γ ∈ ((γ∗i )
1
mii , 1) and β ∈ ((γ∗i )

1
mii , γ). We decompose

Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

c

 = Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

c
, 0 <

τ(n)−1∏
k=1

L(#~Ψi
k) ≤ βn


+ Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

c
,

τ(n)−1∏
k=1

L(#~Ψi
k) > βn


≤ Pπ

(
Cτ(n) >

1
c

(
γ

β

)n)
+ Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) > βn

 .
Set ε := log(γ/β) > 0. From Lemma 7.15 we learn that

Pπ
(
Cτ(n) >

1
c

(
γ

β

)n)
≤ Pπ

(
log∗ cCτ(n) > εn

)
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≤ Eiσ1(i)1{log∗ cC1>εn} + Pπ(σ1(i) ≥ n, log∗ cC1 > εn).

The latter summand is smaller than or equal to Pπ(σ1(i)) ≥ n), so it is obviously summable over
n ≥ 1 weighted with np−1, and vanishes, as n→∞, when multiplied by np, both if Eπσ1(i)p <∞.
Regarding the first summand, we remark that

Eiσ1(i) logp∗ cC1 ≤ (Eiσ1(i)p+1)1/(p+1)(Ei logp+1
∗ cC1)p/(p+1) <∞

and thus npEiσ1(i)1{log∗ cC1>εn} vanishes, as n→∞, as well as∑
n≥1

np−1Eiσ1(i)1{log∗ cC1>εn} ≤ CEiσ1(i) logp∗ cC1 <∞

if Eiσ1(i)p+1 <∞ and Ei logp+1
∗ C1 <∞. The finiteness follows from Lemma 7.19. We still need

to deal with the second summand from our first estimate, but this was done in Lemma 7.17 for
both cases Ei| logL(#~Ψi

1)| <∞ and =∞ (note that β ∈ ((γ∗i )
1
mii , 1)). This completes the proof,

because the Pi-case is easy.

We still need another ingredient to prove the desired convergence-rate results. Therefore,
having Lemma 7.7(b) in mind, we recall

Gn := max{L(#Ψσn−1(i)+1), . . . , L(#Ψσn−1(i)+1 · · ·#Ψσn(i))},

for n ≥ 1.

Lemma 7.21. If (A1)-(A3) hold, then for all γ ∈ ((γ∗i )
1
mii , 1) and c > 0

∑
n≥1

np−1Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

c

 <∞,

lim
n→∞

npPπ

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

c

 = 0

and the above statements also hold with Pi instead of Pπ.

Proof. We omit the proof since it is exactly the same as the proof Lemma 7.20 using Lemma 7.19(b)
instead of (a).

As for the last ingredient, recall that

Dn :=
∞∑
j=1

n+j−1∏
k=n+1

L(#~Ψi
k) d(#~Ψi

n+j(x0), x0)

for n ≥ 0 and that τ(n) is a stopping time w.r.t.

Fn := σ((σk(i),#~Ψi
k) : k = 0, . . . , n), n ≥ 0

and (σn+k(i),#~Ψi
n+k)k≥1 is independent of Fn for each n ≥ 0. The sequence (Dτ(n))n≥0 is

stationary w.r.t. Pi because (#~Ψi
k)k≥1 is stationary and (#~Ψi

τ(n)+k)k≥1 has the same distribution
w.r.t. Pi as (#~Ψi

k)k≥1. Thus, we also get

Dτ(n)
d= D0 w.r.t. Pi
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for all n ≥ 0. Furthermore,

Pπ((#~Ψi
τ(n)+k)k≥1 ∈ ·) = Pπ((#~Ψi

k)k≥2 ∈ ·) = Pi((#~Ψi
k)k≥1 ∈ ·)

for n ≥ 1 and thus
Pπ(Dτ(n) ∈ ·) = Pi(D0 ∈ ·)

for all n ≥ 1, we only have to exclude “n = 0”. The following Lemma is needed in the proof of
Lemma 7.23.

Lemma 7.22. If (A1)-(A3) hold, then

Ei logp∗D0 = Ei logp∗Dτ(n) <∞

and equivalently
Ei(log+D0)p = Ei(log+Dτ(n))p <∞.

Proof. It suffices to show Ei logp∗D0 <∞. We are guided by Lemma 7.6. Case 1 : If

Pi(d(#~Ψi
1(x0), x0) = 0) = 1,

then logp∗D0 = 0 Pi-a.s. Case 2 : If Pi(d(#~Ψi
1(x0), x0) = 0) < 1 and Ei logL(#~Ψi

1) ∈ (−∞, 0)
(Ei log+ d(#~Ψi

1(x0), x0) <∞ holds by assumption), then [Iks06, Theorem 2.1] (or [AI09, Theo-
rem 1.2]) requires

Ei log+ L(#~Ψi
1)(log+ L(#~Ψi

1))p = Ei(log+ L(#~Ψi
1))p+1 <∞

and

Ei log+ d(#~Ψi
1(x0), x0)(log+ d(#~Ψi

1(x0), x0))p = Ei(log+ d(#~Ψi
1(x0), x0))p+1 <∞,

to ensure that
Ei(log+D0)p <∞.

Both requirements are clearly met under (A1)-(A3). Case 3 : If Pi(d(#~Ψi
1(x0), x0) = 0) < 1 and

Ei logL(#~Ψi
1) = −∞. Then, we choose c ∈ (0, 1) such that

Ei log(L(#~Ψi
1) ∨ c) ∈ (−∞, 0).

Due to

(log+D0)p ≤

log+
∞∑
j=1

j−1∏
k=1

(L(#~Ψi
k) ∨ c) d(#~Ψi

j(x0), x0)

p =: (log+Dc
0)p,

where Dc
0 has the obvious meaning, it follows from the previous case that

Ei(log+(L(#~Ψi
1) ∨ c))p+1 <∞

implies Ei(log+D0)p ≤ Ei(log+Dc
0)p <∞. However, c ∈ (0, 1) and thus

Ei(log+(L(#~Ψi
1) ∨ c))p+1 = Ei(log+ L(#~Ψi

1))p+1 <∞.
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The next Lemma forms the last part of the proof of Theorem 7.2(a).

Lemma 7.23. If (A1)-(A3) hold, then for all γ ∈ ((γ∗i )
1
mii , 1) and c > 0

∑
n≥1

np−1Pπ

τ(n)∏
k=1

L(#~Ψi
k) ·Dτ(n) >

γn

c

 <∞,

lim
n→∞

npPπ

τ(n)∏
k=1

L(#~Ψi
k) ·Dτ(n) >

γn

c

 = 0

and the above statements also hold with Pi instead of Pπ.

Proof. Fix n ≥ 1. We start with γ ∈ ((γ∗i )
1
mii , 1) and β ∈ ((γ∗i )

1
mii , γ). We decompose

Pπ

τ(n)∏
k=1

L(#~Ψi
k) ·Dτ(n) >

γn

c

 ≤ Pπ
(
Dτ(n) >

1
c

(
γ

β

)n)
+ Pπ

τ(n)∏
k=1

L(#~Ψi
k) > βn

 . (7.20)

Again, set ε := log(γ/β) > 0. We have

Pπ
(
Dτ(n) >

1
c

(
γ

β

)n)
= Pi

(
D0 >

1
c

(
γ

β

)n)
≤ Pi (log∗ cD0 > εn)

which is obviously summable over n ≥ 1 weighted with np−1, and vanishes, as n → ∞, when
multiplied by np, both if Ei logp∗D0 < ∞. The second summand from (7.20) was treated in
Lemma 7.17 and Remark 7.18 (note that β ∈ ((γ∗i )

1
mii , 1)). This completes the proof.

Collecting everything together, we can prove Theorem 7.2(a) without further ado. The proof
follows that of [AF01, Theorem 2.2(a)].

Proof of Theorem 7.2(a). Fix n ≥ 1. We have

Pi(d(#X̂x
n ,

#X̂∞) > γn)

≤ Pi

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) +

τ(n)∏
k=1

L(#~Ψi
k) ·Dτ(n)

+d(x, x0)
τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) > γn


≤ Pi

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

3

+ Pi

τ(n)∏
k=1

L(#~Ψi
k) ·Dτ(n) >

γn

3


+ Pi

d(x, x0)
τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

3



(7.21)

by Lemma 7.7. Now, Lemma 7.20 deals with the first term and we just examined the second
term in Lemma 7.23. To extract the effect of x in the last term when Ei| logL(#~Ψi

1)| <∞, we
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7.3. Convergence rate under polynomial-type moment conditions

write γ = (γ∗i )b for b ∈ (0, 1
mii

), choose a ∈ (b, 1
mii

) and estimate

Pi

d(x, x0)
τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

3


≤ Pi

d(x, x0)
τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

3 ,

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

((γ∗i )a)n

3


+ Pi

d(x, x0)
τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

3 , 0 <
τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) ≤

((γ∗i )a)n

3


≤ Pi

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

((γ∗i )a)n

3

+ Pi
(
d(x, x0) > (1/γ∗i )(a−b)n

)
.

(7.22)

Lemma 7.21 handles the first term and the last term is deterministic and equals 1 if n <
log d(x,x0)

(a−b) log 1/γ∗i
=: n0 and 0 otherwise. So the limit of the last term multiplied by np is trivially 0,

and we complete the proof by noting

∑
n≥1

np−1Pi
(
d(x, x0) > (1/γ∗i )(a−b)n

)
=
dn0e−1∑
n=1

np−1 ≤ np0 ≤ Cγ · logp∗ d(x, x0)

for some constant Cγ > 0 depending only on γ and not on x. Otherwise, if Ei| logL(#~Ψi
1)| =∞,

then the proof is easier: Choose γ ∈ (0, 1), then also γ2 ∈ (0, 1) and in the same way as above

Pi

d(x, x0)
τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

3


≤ Pi

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

(γ2)n

3

+ Pi
(
d(x, x0) > γ−n

)
,

so n0 changes to log d(x,x0)
log 1/γ , and the subsequent estimation is still valid with different Cγ .

Proof of Theorem 7.2(b). We can copy the proof of Theorem 7.2(a) while replacing Pi by Pπ.
The required lemmas always provide a statement in this setting.

Proof of Theorem 7.2(c). Choose γ ∈ ((γ∗i )
1
mii , 1) and then A big enough such that γn <

A(n+ 1)−p for all n ≥ 0, and such that the first two summands on the right side of (7.21) and
the first summand on the right side of (7.22) are < A

3 (n+ 1)−p for all n ≥ 0 (with Pπ instead of
Pi). The latter is possible due to the lemmas mentioned in the proof of Theorem 7.2(a). With
this choice, we get

Pπ
(
d(#X̂x

n ,
#X̂∞) ≥ A

(n+ 1)p
)
≤ Pπ(d(#X̂x

n ,
#X̂∞) > γn) < A

(n+ 1)p + 1{n<n0(x)}

with n0(x) = n0 from the proof of Theorem 7.2(a). We obtain

A

(n+ 1)p + 1{n<n0(x)} =
A+ (n+ 1)p1{n<n0(x)}

(n+ 1)p ≤
A+

(
n0(x) + 1

)p
(n+ 1)p
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≤ (A+ 2p) + 2pC logp∗ d(x, x0)
(n+ 1)p =: A1 +A2 logp∗ d(x, x0)

(n+ 1)p

with some constant C > 0 only depending on γ. Set Ax := A1 + A2 logp∗ d(x, x0), then we
summarize

Pπ
(
d(#X̂x

n ,
#X̂∞) ≥ Ax

(n+ 1)p
)
≤ Pπ

(
d(#X̂x

n ,
#X̂∞) ≥ A

(n+ 1)p
)
<

Ax
(n+ 1)p

and this yields dPr(P
#X̂x

n
π ,P#X̂∞

π ) ≤ Ax
(n+1)p by Lemma B.4 and

dPr(P
#X̂x

n
π ,P

#X̂∞
π ) = dPr(PX

x
n

π ,P
#X̂∞
π )

because P
#X̂x

n
π = PX

x
n

π .

Proof of Theorem 7.2(d). Denote by π̂i the distribution of #X̂∞ under Pi. We know from
Lemma 7.5 that #X̂∞ is the Pi-a.s. limit of the backward iterations Ŷ x

n = #X̂x
σn(i) of the IFS of

i.i.d. Lipschitz maps (Y x
n ). Hence, we can cite from [AF01] that

Ei logp∗ d(x0,
#X̂∞) =

∫
X

logp∗ d(x0, x) P
#X̂∞
i (dx) =

∫
X

logp∗ d(x0, x) π̂i(dx) <∞

whenever the corresponding Lipschitz maps satisfy

Ei logp+1
∗ L(#~Ψi

1) <∞ and Ei logp+1
∗ d(x0,

#~Ψi
1(x0)) <∞

for some (and thus all) x0 ∈ X. This is clearly the case under (A1)-(A3).

Alternative proof of Theorem 7.2(d). From Lemma 7.7 we know, that

d(x0,
#X̂∞) ≤ D0 Pi-a.s.

which in logp∗ is Pi-integrable by Lemma 7.22.

Proof of Theorem 7.2(e). From Lemma 7.13 we know that even

d(x0,
#X̂∞) ≤ D0 Pπ-a.s.,

hence it suffices to verify Eπ logp∗D0 <∞. To finish the proof, we recall

D0 = d(#~Ψi
1(x0), x0) + L(#~Ψi

1)D1

from Lemma 7.6. This gives us the estimate

Eπ logp∗D0 ≤ Eπ
(
log∗ d(#~Ψi

1(x0), x0) + log∗ L(#~Ψi
1) + log∗D1

)p
≤ C

(
Eπ logp∗ d(#~Ψi

1(x0), x0) + Eπ logp∗ L(#~Ψi
1) + Ei logp∗D0

)
for some C > 0. The last term is finite by Lemma 7.22 and the first two are finite by Lemma B.8.
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7.4. Convergence rate under geometric-type moment conditions

We will now derive distributional convergence rates under (B1)-(B4) along the path from
Section 7.3. In contrast to the polynomial rate there, the rate under (B1)-(B4) turns out
to be geometric, as one would expect from the i.i.d. analogue. In fact, Lemma 7.14 already
incorporates auxiliary results under (B1)-(B4). To obtain an analogue of Lemma 7.17, we first
need to establish an exponential version of (parts of) [CL75, Theorem 5]:

Lemma 7.24. Let (Sn)n≥0, S0 := 0, be a centered SRW on a probability space (Ω,A,P) and
let T := sup{n ≥ 0 : Sn ≥ εn} for some ε > 0. Suppose P(X1 6= 0) > 0 and the moment
generating function ϕ(θ) := EeθX1 exists for at least one θ > 0. Then ZT := max1≤k≤T Sk has
an exponential moment, i.e. EeβZT <∞ for some β > 0.

Proof. We remark that ZT ≥ 0 a.s. by definition of T (ZT = 0 if T = 0). Hence, a well-known
integration formula yields

E(eβZT − 1) =
∫ ∞

0
βeβtP(ZT > t) dt ≤ β

∑
n≥0

eβ(n+1)P(ZT > n) = βeβ
∑
n≥0

eβnP(ZT > n),

which reduces the problem to verifying the finiteness of the latter series. Therefore, we partition

P(ZT > n) = P
(

max
1≤k≤T

Sk > n, T > δn

)
+ P

(
max

1≤k≤T
Sk > n, T ≤ δn

)

≤ P
( ⋃
k>δn

{Sk ≥ εk}
)

+ P
(

max
1≤k≤δn

Sk > n

)

≤
∑

k≥dδne
P (Sk ≥ εk) +

bδnc∑
k=1

P(Sk > n)

with a small δ > 0 that will be appropriately chosen later. Now, Cramér’s theorem from large
deviations theory yields

P (Sk ≥ εk) ≤ e−kI(ε)

for all k and some rate function I(ε) > 0 for all ε > 0. Hence,

∑
n≥0

eβn
∑

k≥dδne
P (Sk ≥ εk) ≤

∑
n≥0

eβn
∑

k≥dδne
e−kI(ε) =

∑
n≥0

eβn
∑
k≥0

(
e−I(ε)

)k+dδne

= 1
1− e−I(ε)

∑
n≥0

eβn
(
e−I(ε)

)dδne
= 1

1− e−I(ε)
∑
n≥0

e−n(I(ε) dδne
n
−β)

≤ 1
1− e−I(ε)

∑
n≥0

e−n(I(ε)δ−β) <∞,

whenever I(ε)δ − β > 0, i.e. β ∈ (0, I(ε)δ). To deal with the second part, we estimate

P(Sk > n) = P(eθSk > eθn) ≤ e−θnϕ(θ)k
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for 1 ≤ k ≤ bδnc and θ > 0 with finite ϕ(θ). Thus,

∑
n≥0

eβn
bδnc∑
k=1

P(Sk > n) ≤
∑
n≥0

e−n(θ−β)
bδnc∑
k=1

ϕ(θ)k ≤ 1
1− ϕ(θ)

∑
n≥0

e−n(θ−β)(1− ϕ(θ)bδnc+1)

since ϕ(θ) = EeθX1 > eθEX1 = 1 for θ > 0 by Jensen’s inequality. Now,∑
n≥0

e−n(θ−β) <∞ iff θ − β > 0,

and∑
n≥0

e−n(θ−β)ϕ(θ)bδnc+1 = ϕ(θ)
∑
n≥0

e−n(θ−β− bδnc
n

logϕ(θ)) ≤ ϕ(θ)
∑
n≥0

e−n(θ−β−δ logϕ(θ)) <∞,

whenever β ∈ (0, θ − δ logϕ(θ)), where we note that logϕ(θ) > 0. Collecting all ingredients, we
select θ > 0 such that ϕ(θ) <∞ and δ > 0 such that θ− δ logϕ(θ) > 0, i.e. δ ∈ (0, θ

logϕ(θ)). Then
β ∈ (0, I(ε)δ ∧ (θ − δϕ(θ))) satisfies the desired properties.

As previously announced, the following result is an analogue of Lemma 7.17.

Lemma 7.25. If (B1)-(B4) hold, then for all γ ∈ ((γ∗i )
1
mii , 1) there exists an α > 1, depending

on γ and on i, such that

lim
n→∞

αnPπ

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 = 0.

The same holds with Pi instead of Pπ with possibly different α.

Proof. We proceed as in the proof of Lemma 7.17 and use its notation. Let Ei| logL(#~Ψi
1)| <∞

and fix n ≥ 1. We start with γ ∈ ((γ∗i )
1
mii , 1), b ∈ (0, 1

mii
) with γ = (γ∗i )b and a ∈ (b, 1

mii
). Again,

we consider

Pπ

τ(n)−1∑
k=1

logL∗,ik > n log
(

(γ∗i )b−
τ(n)−1
n

)
, τ(n) ≤ an+ 1

 ≤ Pπ(τ(n) ≤ an+ 1)

which converges to 0, as n→∞, by Lemma 7.14 when multiplied by some αn1 , α1 > 1. On the
other hand, with ε := log((γ∗i )b−a) > 0,

Pπ

τ(n)−1∑
k=1

logL∗,ik > n log
(

(γ∗i )b−
τ(n)−1
n

)
, τ(n) > an+ 1

 ≤ Pπ
(

max
0≤k≤n

S∗,ik > nε

)

as in (7.18). Again, we relate this expression to Pi
(

max0≤k≤n S
∗,i
k > nε′

)
(and some arising toll

term) for some ε′ > 0. Taking such a relation for granted, we examine the Pi case first: Recall

T := T (ε′, 1) := sup{n ≥ 0 : S∗,in ≥ ε′n}

and
T̂ := T̂ (ε′, 1) := sup{n ≥ 0 : max

0≤k≤n
S∗,ik ≥ ε

′n}.
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Since
Pi
(

max
0≤k≤n

S∗,ik > nε′
)
≤ Pi(T̂ ≥ n)

and
T̂ ≤ 1

ε′
max

1≤k≤T
S∗,ik

as seen in the proof of Lemma 7.17, we aim at verifying the existence of exponential moments of
the latter expression. This then entails the exponential decay of Pi

(
max0≤k≤n S

∗,i
k > nε′

)
. For

this purpose, we use Lemma 7.24 which gives us a criterion for the existence of an exponential
moment of max1≤k≤T S

∗,i
k . The RW is centered and recalling Remark 6.19 we note that

Eieθ logL∗,i1 = e−θ log γ∗i Eieθ logL(#~Ψi1) = e−θ log γ∗i EiL(#~Ψi
1)θ <∞

for θ ∈ (0, p]. If additionally Pi(logL∗,i1 6= 0) > 0 holds, then Lemma 7.24 gives us the existence
of βi > 0 such that Zε′T := 1

ε′ max1≤k≤T S
∗,i
k satisfies Eieβiε

′Zε
′
T <∞. Hence, as n→∞,(

eβiε
′)nPi(T̂ ≥ n) ≤

(
eβiε

′)nPi(Zε′T ≥ n) ≤ Eieβiε
′Zε
′
T 1{Zε′T ≥n}

→ 0.

We set α2 := eβiε
′
> 1 in this case.

If logL∗,i1 = 0 Pi-a.s. and thus L(#~Ψi
k) ≡ γ∗i Pi-a.s. for all k, Lemma 7.24 is not applicable but

the desired conclusion then follows even easier: With the same choices as in the beginning of this
proof, we write

Pi

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 = Pi
(
(γ∗i )τ(n)−1 > γn

)
= Pi

(
(γ∗i )bn−τ(n)+1 < 1

)
= Pi (bn− τ(n) + 1 > 0) ≤ Pi (τ(n) ≤ bn+ 1)

and we obtain an alternative α2 > 1 in this case from Lemma 7.14.
The relation suggested earlier is

Pπ
(

max
0≤k≤n

S∗,ik > nε

)
≤ Pπ(S∗,i1 >

ε

2n) + Pi
(

max
0≤k≤n

S∗,ik >
ε

2n
)

from the proof of Lemma 7.17. Set ε′ := ε
2 . Then we are in the situation that we talked about

before, with toll term Pπ(S∗,i1 > ε
2n). It is decreasing exponentially if there is a β such that

Eπeβ log+ L(#~Ψi1) <∞, because then(
eβ

ε
2
)nPπ (2

ε
(S∗,i1 )+ > n

)
≤ Eπ

(
1{ 2

ε
S∗,i1 >n}e

β(S∗,i1 )+
)
→ 0,

as n→∞, by the dominated convergence theorem. The finiteness of Eπeβ log+ L(#~Ψi1) is guaranteed
by Lemma B.8. Set α3 := eβ

ε
2 > 1. Then any α from (1, α1 ∧ α2 ∧ α3] is valid.

Now, let Ei| logL(#~Ψi
1)| =∞. Pick γ ∈ (0, 1) and c such that −∞ < E log(L(#~Ψi

1) ∨ c) < 0
and γ ∈ ((γ∗i,c)

1
mii , 1) which is possible by Lemma B.5. If we set L∗,ik,c := (L(#~Ψi

k) ∨ c)/γ∗i,c, then
we are in the previous situation with all necessary conditions fulfilled and we only need to remark
that

Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 ≤ Pπ

τ(n)−1∏
k=1

(L(#~Ψi
k) ∨ c) > γn


and Eπeβ log+(L(#~Ψi1)∨c) = Eπeβ log+ L(#~Ψi1) <∞.
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7. Convergence rates in Elton’s theorem

As Lemmas 7.19 and 7.22 contribute to Lemmas 7.20, 7.21 and 7.23, the following lemma
contains moment results that contribute to Lemma 7.27 in a similar way.

Lemma 7.26. The following assertions hold under (B1)-(B4):

(a) Eiσ1(i)Cη1 <∞ for η ≤ p
4 .

(b) There is a q ∈ (0, p] such that EiDη
0 = EiDη

τ(n) <∞ for all η ∈ (0, q ∧ p
2 ].

(c) Eiσ1(i)Gη1 <∞ for η ≤ p
2 .

Proof. Part (a): The Cauchy-Schwarz inequality yields that Eiσ1(i)Cη1 <∞ holds in particular
if EiC2η

1 <∞ (σ1(i) has an exponential moment). We recall that

C2η
1 ≤

d(x0,
#Ψ1(x0)) +

σ1(i)∑
n=2

d(#Ψ1 · · ·#Ψn−1(x0),#Ψ1 · · ·#Ψn(x0))

2η

≤

(1 +G1)
σ1(i)∑
n=1

d(x0,
#Ψn(x0))

2η

by (7.15), and once again we use the Cauchy-Schwarz inequality to get the desired result as long
as η ≤ p

4 (consider (B1)-(B4) and Remark 6.18).
Part (b): We begin with the reminder that EiL(#~Ψi

1)p <∞ implies the existence of a q ∈ (0, p]
such that EiL(#~Ψi

1)η < 1 for all η ∈ (0, q]. This was indicated in Remark 6.19 and is an easy
consequence of the mean contractivity. From the proof of (a), we can further extract that
EiCη1 <∞ for η ≤ p

2 . Now, we consider two cases: If 1 ≤ η ≤ q ∧ p
2 , then

(EiDη
0)

1
η ≤

∑
j≥1

Ei
j−1∏

k=1
L(#~Ψi

k)

Cj
η

1
η

=
∑
j≥1

Ei
j−1∏
k=1

L(#~Ψi
k)

η
1
η (

EiCηj
) 1
η

= (EiCη1 )
1
η ·
∑
j≥1

[(
EiL(#~Ψi

1)η
) 1
η

]j−1
,

where we used the infinite version of the Minkowski inequality and independence. The first factor
is finite and the series is a convergent geometric series, so we get the desired result.

If 0 < η ≤ q ∧ p
2 ∧ 1, then we can use subadditivity and more easily get

EiDη
0 ≤

∑
j≥1

Ei

j−1∏
k=1

L(#~Ψi
k)

Cj
η =

∑
j≥1

Ei

j−1∏
k=1

L(#~Ψi
k)

η EiCηj
= EiCη1 ·

∑
j≥1

[
EiL(#~Ψi

1)η
]j−1

<∞.

In every case, we find that EiDη
0 <∞ for all η ∈ (0, q ∧ p

2 ].
Part (c): Again, Eiσ1(i)Gη1 <∞ holds in particular if EiG2η

1 <∞. This is clearly the case for
η ≤ p

2 , cf. Remark 6.18.

As the last ingredient for the proof of Theorem 7.3 and as the counterpart of Lemmas 7.20,
7.21 and 7.23, we state the following result:
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7.4. Convergence rate under geometric-type moment conditions

Lemma 7.27. If (B1)-(B4) hold, then for all γ ∈ ((γ∗i )
1
mii , 1) there exists an α > 1, depending

on γ and i, such that for all c > 0

lim
n→∞

αnPπ

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

c

 = 0, (7.23)

lim
n→∞

αnPπ

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

γn

c

 = 0, (7.24)

and

lim
n→∞

αnPπ

τ(n)∏
k=1

L(#~Ψi
k) ·Dτ(n) >

γn

c

 = 0. (7.25)

The same holds with Pi instead of Pπ with possibly different α.

Proof. Fix n ≥ 1. We start with γ ∈ ((γ∗i )
1
mii , 1) and β ∈ ((γ∗i )

1
mii , γ) and decompose

Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

c


≤ Pπ

(
Cτ(n) >

1
c

(
γ

β

)n)
+ Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) > βn

 .
(7.26)

Similar estimates hold for Gτ(n) and Dτ(n). Lemma B.8 yields the existence of t > 0 with
Eπetσ1(i) <∞. Choosing η ≤ p

4 ∧
t

log γ
β

, Lemma 7.15 gives

Pπ
(
Cτ(n) >

1
c

(
γ

β

)n)
≤ Pπ

(
cηCητ(n) >

(
γ

β

)ηn)
≤ Eiσ1(i)1{cηCη1>( γ

β
)ηn} + Pπ

(
σ1(i) > n− 1, cηCη1 >

(γ
β

)ηn)
≤ Eiσ1(i)1{cηCη1>( γ

β
)ηn} + Pπ (σ1(i) ≥ n)

and Lemma 7.26 yields[(
γ

β

)η]n
Pπ
(
Cτ(n) >

1
c

(
γ

β

)n)
≤
[(
γ

β

)η]n
Eiσ1(i)1{cηCη1>( γ

β
)ηn} +

[(
γ

β

)η]n
Pπ(σ1(i) ≥ n)

≤ cηEiσ1(i)Cη11{cηCη1>( γ
β

)ηn} + Eπe(η log γ
β

)σ1(i)
1{σ1(i)≥n} → 0,

as n→∞. In particular, we have

αn1Pπ
(
Cτ(n) >

1
c

(
γ

β

)n)
→ 0

for α1 ∈ (1, ( γβ )η]. We still need to deal with the second summand from (7.26) but this was done
in Lemma 7.25 for both cases Ei| logL(#~Ψi

1)| < ∞ and = ∞. More precisely, it provides the
existence of α2 > 1 such that

lim
n→∞

αn2Pπ

τ(n)−1∏
k=1

L(#~Ψi
k) > γn

 = 0.
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7. Convergence rates in Elton’s theorem

If we choose α from (1, α1 ∧ α2], then we arrive at the desired conclusion for Cτ(n).
Concerning (7.24), we simply substitute Cτ(n) with Gτ(n) in the first estimate and use the

corresponding result from Lemma 7.26 in the same way as before (keeping in mind that the
restrictions on η by Lemma 7.26 are different).

We deal with the remaining (7.25) alike, but there it is easiest to use the integrability of Dη
0

by Lemma 7.26 and
Pπ
(
Dτ(n) >

1
c

(
γ

β

)n)
= Pi

(
D0 >

1
c

(
γ

β

)n)
for n ≥ 1. Ultimately, each procedure provides us with a respective α, so we just consider their
minimum which obviously serves as the desired exponential rate for (7.23)-(7.25). Under Pi, the
proof is the same.

Proof of Theorem 7.3(a). With the notation from the proof of Theorem 7.2(a) and in the setting
when Ei| logL(#~Ψi

1)| <∞, we have the estimate

Pi(d(#X̂x
n ,

#X̂∞) > γn)

≤ Pi

τ(n)−1∏
k=1

L(#~Ψi
k) · Cτ(n) >

γn

3

+ Pi

τ(n)∏
k=1

L(#~Ψi
k) ·Dτ(n) >

γn

3


+ Pi

τ(n)−1∏
k=1

L(#~Ψi
k) ·Gτ(n) >

((γ∗i )a)n

3

+ Pi
(
d(x, x0) > (1/γ∗i )(a−b)n)

)
.

(7.27)

Lemma 7.27 deals with the first three terms. The fourth is deterministic and vanishes for n large
enough. If Ei| logL(#~Ψi

1)| =∞, then we proceed as in the proof of Theorem 7.2(a).

Proof of Theorem 7.3(b). We can copy the proof of Theorem 7.3(a) while replacing Pi by Pπ.
The required lemmas always provide a statement in this setting.

Proof of Theorem 7.3(c). Fix n ≥ 1. Choose γ ∈ ((γ∗i )
1
mii , 1) and C big enough for the first

three summands of the right side of (7.27) (with Pπ instead of Pi) to be ≤ C
3 α
−n, α > 1. Let

further ε > 0 be so small that 1
α + ε ∈ (0, 1), and with this define A1 := max{C, 1 + ε} and

r := max{γ, 1
α + ε} ∈ (0, 1). Hence, we get

Pπ(d(#X̂x
n ,

#X̂∞) ≥ A1r
n) ≤ Pπ(d(#X̂x

n ,
#X̂∞) > γn) ≤ C

( 1
α

)n
+ 1{n<n0(x)}

with n0(x) from the proof of Theorem 7.2(a). We estimate

C

( 1
α

)n
+ 1{n<n0(x)} < A1r

n + 1{n<n0(x)} = rn
(
A1 +

(1
r

)n
1n<n0(x)

)
≤ rn

(
A1 +

(1
r

)n0(x)
)

=: rn(A1 + d(x, x0)A2) = Axr
n

for some positive constant A2. This yields dPr(P
#X̂x

n
π ,P#X̂∞

π ) ≤ Axrn by Lemma B.4 and

dPr(P
#X̂x

n
π ,P

#X̂∞
π ) = dPr(PX

x
n

π ,P
#X̂∞
π )

because P
#X̂x

n
π = PX

x
n

π .
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7.4. Convergence rate under geometric-type moment conditions

Proof of Theorem 7.3(d). Denote by π̂i the distribution of #X̂∞ under Pi. We know from
Lemma 7.5 that #X̂∞ is the Pi-a.s. limit of the backward iterations Ŷ x

n = #X̂x
σn(i) of the IFS of

i.i.d. Lipschitz maps (Y x
n ). Hence, we can cite from [AF01] that

Eid(x0,
#X̂∞)η =

∫
X
d(x0, x)η π̂i(dx) <∞

whenever the corresponding Lipschitz maps satisfy EiL(#~Ψi
1)η <∞ and Eid(x0,

#~Ψi
1(x0))η <∞

for some (and thus all) x0 ∈ X. This is clearly the case under (B1)-(B4). Note for the latter that
d(x0,

#~Ψi
1(x0)) ≤ D0 and use Lemma 7.26 as below.

Alternative proof of Theorem 7.3(d). From Lemma 7.7 we know that

d(x0,
#X̂∞) ≤ D0 Pi-a.s.

which to the power of η ∈ (0, q ∧ p
2 ] is Pi-integrable by Lemma 7.26 for some q ∈ (0, p].

Proof of Theorem 7.3(e). We know from Lemma 7.13 that even

d(x0,
#X̂∞) ≤ D0 Pπ-a.s.,

hence it suffices to verify EπDη
0 <∞ for some η > 0. To finish the proof, we recall

D0 = d(#~Ψi
1(x0), x0) + L(#~Ψi

1)D1

from Lemma 7.6. This gives us the estimate

EπDη
0 ≤ C

(
Eπd(#~Ψi

1(x0), x0)η + EπL(#~Ψi
1)ηDη

1

)
= C

(
Eπd(#~Ψi

1(x0), x0)η + EπL(#~Ψi
1)η EiDη

0
)

for some C > 0. As seen in (d), EiDη
0 <∞ for η ∈ (0, q ∧ p

2 ] and some q ∈ (0, p]. The remaining
two terms are finite by Lemma B.8 (choosing η ≤ τ). Actually, (B2*) is required here for technical
reasons.
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B. Appendix

B.1. Kingman’s subadditive ergodic theorem
The following theorem is [Lig85, Theorem 1.10] or [Als15a, Theorem A.5].

Theorem B.1. Let (Yk,n)0≤k≤n
n≥1 be a family of real-valued random variables which satisfies the

following conditions:

(SA-1) Y0,n ≤ Y0,k + Yk,n a.s. for all 0 ≤ k < n.

(SA-2) (Ynk,(n+1)k)n≥1 is a stationary sequence for each k ≥ 1.

(SA-3) The distribution of (Yk,k+n)n≥1 does not depend on k ≥ 0.

(SA-4) EY +
0,1 <∞ and µ := infn≥1 n

−1EY0,n > −∞.

Then

(a) limn→∞ n
−1EY0,n = µ.

(b) n−1Y0,n converges a.s. and in L1 to a random variable χ with mean µ.

(c) If all stationary sequences in (SA-2) are ergodic, then χ = µ a.s.

(d) If µ = −∞ in (SA-4), then n−1Y0,n → −∞ a.s.

B.2. Prokhorov metric
We follow [DF99] and [AF01] for the definition of the Prokhorov metric.

Definition B.2. Let λ1 and λ2 be two probability measures on X and let

Bδ := {x ∈ X : d(x, y) < δ for some y ∈ B}

be the δ-neighborhood of B ∈ B(X). We set

dPr(λ1, λ2) := inf{δ ≥ 0 : λ1(B) < λ2(Bδ) + δ and λ2(B) < λ1(Bδ) + δ for all B ∈ B(X)}.

Then dPr is a metric on the space of probability measures on X.

We state two well-known facts about the Prokhorov metric:

Lemma B.3. If (X, d) is separable, then convergence of probability measures in dPr is equivalent
to distributional convergence of the corresponding random variables.

Lemma B.4. Let X1, X2 be two X-valued random elements with distributions λ1, λ2 w.r.t. P.
Then P(d(X1, X2) ≥ δ) < δ implies dPr(λ1, λ2) ≤ δ.

Proof. Cf. [DF99, Lemma 5.8].
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B. Appendix

B.3. Some results from the i.i.d. case

In this Section, we slightly improve the statement of [AF01, Theorem 2.2 (c)] or [Als15a,
Theorem 3.24 (b)], providing the actual lower bound for the rate of exponential convergence.
Therefore, we mix notation from both works: Let (Xn)n≥0 be an IFS of i.i.d. Lipschitz maps
(Ψn)n≥1 with corresponding Lipschitz constants (Ln)n≥1 satisfying the mean contraction condition
E logL1 < 0 and the jump-size condition E log+ d(Ψ1(x0), x0) <∞ for some x0 ∈ X. Let further
σ1(γ) := inf{n ≥ 1 :

∑n
k=1 logLk ≤ log γ}, γ ∈ (0, 1), be a corresponding first passage time,

µ(γ) := Eσ1(γ) its mean, and log γ∗ := infγ∈(0,1)
log γ
µ(γ) . Lemma B.5 provides some more insight,

and we refer to [AF01, Section 2] for more details.

Lemma B.5. The following assertions hold:

(a) If E| logL1| <∞, then log γ∗ = E logL1 < 0 or γ∗ = eE logL1 ∈ (0, 1), equivalently.

(b) If E| logL1| =∞, then γ∗ = 0.

(c) If E| logL1| =∞, then there exists a c′ ∈ (0, 1) such that −∞ < E log(L1 ∨ c) < 0 for all
c ∈ (0, c′].

(d) If E| logL1| =∞ and γ∗c corresponds to the truncated Lipschitz constants Lk ∨ c, c ∈ (0, 1],
then γ∗c ↓ γ∗ = 0 for c ↓ 0.

Proof. Part (a) was proven in [AF01]. For Part (b), we remark that our mean contraction
assumption implies E logL1 = −∞. By definition of γ∗, we get the estimate

log γ∗ = inf
γ∈(0,1)

log γ
µ(γ) ≤ lim

γ↓0

log γ
µ(γ) = lim

γ↓0

(
µ(γ)
log γ

)−1
= −∞

with an appeal to [Gut09, Theorem 3.6.1 and Remark 3.6.1]. This means γ∗ = 0. For Part (c),
we remark that E logL1 = −∞ as before, and E log+ L1 <∞. It is obvious that E log(L1 ∨ c′) ≥
log c′ > −∞ for every c′ ∈ (0, 1]. It remains to show that

lim
c↓0, c∈(0,1]

E log(L1 ∨ c) = −∞

which is indeed true since log(L1 ∨ c) is decreasing, E log(L1 ∨ 1) = E log+ L1 <∞ and the limit
is E logL1 = −∞. Part (d) follows from the proof of (c) since the truncated Lipschitz constants
satisfy (a) and thus

lim
c↓0

γ∗c = elimc↓0 E log(L1∨c) = 0 = γ∗.

The next lemma constitutes the afore-mentioned slight improvement. As it does in our work,
X̂x
n denotes the backward iteration of Xn with X0 = x. X̂∞ is the a.s. limit of X̂x

n .

Lemma B.6. For every x ∈ X and β ∈ (γ∗, 1), we have

lim
n→∞

β−nd(X̂x
n , X̂∞) = 0 P-a.s.
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B.3. Some results from the i.i.d. case

Proof. First of all, we note that σ1(γ) is an a.s. finite first passage time and its mean µ(γ) is
finite and positive for all γ. Let β ∈ (γ∗, 1). By definition, there exists a γ ∈ (0, 1) such that

log γ∗ < log γ
µ(γ) < log β

and a b ∈ (0, 1
µ(γ)) such that β = γb = eb log γ . Hence, there exists an ε′ > 0 such that

0 < b < 1
µ(γ) − ε

′. In particular, this applies to the case E logL1 = −∞, i.e. γ∗ = 0. The essential
estimate for the proof is the following from [Als15a, Lemma 3.28]:

β−nd(X̂x
n , X̂∞) ≤ β−nelog γ(τ(n)−1)Cxτ(n) + ((β−1)

n
τ(n) )τ(n)d(Ŷ x

τ(n), X̂∞). (B.1)

The occurring (Y x
n ) (dependent on γ) is the strongly contractive IFS of i.i.d. Lipschitz maps with

logL(φ←n ) ≤ log γ from [Als15a, Lemma 3.26] which satisfies the jump-size condition. Also, Cxn
is Cn with X0 = x from [Als15a, (3.25)]. [Als15a, Proposition 3.18 (b)] gives us

lim
n→∞

γ̂τ(n)d(Ŷ x
τ(n), X̂∞) = 0 P-a.s.

for every γ̂ ∈ (1, e− log γ) since τ(n) → ∞ P-a.s. In order to apply this result, we try to find a
valid γ̂ such that for n big enough

(β−1)
n

τ(n) ≤ γ̂ ∈ (1, e− log γ).

It is known that n
τ(n) → ( 1

µ(γ))−1 = µ(γ) > 0 P-a.s., as n→∞. Choose ε ∈ (0, µ(γ)ε′( 1
µ(γ)−ε

′)−1).
Then n

τ(n) ≤ µ(γ) + ε for n big enough, and hence

(β−1)
n

τ(n) = e
−b log γ n

τ(n) ≤ e− log(γ)b(µ(γ)+ε) < e
− log γ(1+ ε

µ(γ)−ε
′µ(γ)−ε′ε)

= e
− log γ(1+ε( 1

µ(γ)−ε
′)−ε′µ(γ)) =: γ̂ < e− log γ

because ε( 1
µ(γ) − ε

′) < ε′µ(γ). Hence, the second term in (B.1) vanishes.
It remains to verify the existence of ε′′ > 0 such that for n big enough

β−nelog γ(τ(n)−1) < e−ε
′′τ(n),

since e−ε′′τ(n)Cxτ(n) → 0 P-a.s., as n→∞, by [Als15a, Lemma 3.27]. Note that

1− 1
τ(n) −

bn

τ(n) → 1− bµ(γ) =: aγ ∈ (0, 1) P-a.s.,

so choosing n0 big enough, such that additionally 1− 1
τ(n) −

bn
τ(n) >

aγ
2 > 0, implies

β−nelog γ(τ(n)−1) = e−bn log γ+log γ(τ(n)−1) = e
log γ(1− 1

τ(n)−
bn
τ(n) )τ(n)

< elog γ aγ2 τ(n) =: e−ε′′τ(n)

since log γ < 0. So the first term in (B.1) vanishes and the proof is complete.
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B. Appendix

B.4. Moment results in Situations (1) and (2)

To deal with conditions like Eπ logp∗ L(#~Ψi
1) <∞ under (A1)-(A3) and with similar conditions

under (B1)-(B4), we give a formula to compute those expressions in terms of expectations w.r.t.
Pi.

Lemma B.7. Let g((#Ψn)n≥1, σ1(i)) be some measurable non-negative function of the dual
Lipschitz maps and of σ1(i). Then

Eπg((#Ψn)n≥1, σ1(i)) = 1
mii

Ei

σ1(i)−1∑
k=0

g((#Ψk+n)n≥1, σ1(i)− k)

 .
Proof. Define σ1(i) ◦ #θk := inf{n ≥ 1 : #θk+n = i}. We use the well-known identity

∫
f dπ = 1

mii
Ei

σ1(i)−1∑
k=0

f(#θk)

 .
With f : j 7→ Ejg((#Ψn)n≥1, σ1(i)), we calculate

Eπg((#Ψn)n≥1, σ1(i)) =
∫
f(j) π(dj) = 1

mii
Ei

σ1(i)−1∑
k=0

f(#θk)


= 1
mii

Ei

σ1(i)−1∑
k=0

E#θkg((#Ψn)n≥1, σ1(i))

 = 1
mii

∑
k≥0

Ei
(
1{σ1(i)>k}E#θkg((#Ψn)n≥1, σ1(i))

)
= 1
mii

∑
k≥0

Ei
(
1{σ1(i)>k}Ei

(
g((#Ψk+n)n≥1, σ1(i) ◦ #θk)|#θ0, . . . ,

#θk,
#Ψ0, . . . ,

#Ψk

))
= 1
mii

∑
k≥0

Ei
(
1{σ1(i)>k}g((#Ψk+n)n≥1, σ1(i) ◦ #θk)

)
= 1
mii

∑
k≥0

Ei
(
1{σ1(i)>k}g((#Ψk+n)n≥1, σ1(i)− k)

)

= 1
mii

Ei

σ1(i)−1∑
k=0

g((#Ψk+n)n≥1, σ1(i)− k)

 .

Lemma B.8. Under (A1)-(A3), the following assertions hold:

(a) Eπσ1(i)p <∞.

(b) Eπ logp∗ L(#~Ψi
1) <∞.

(c) Eπ logp∗ d(#~Ψi
1(x0), x0) <∞.

Under (B1)-(B4), the following assertions hold:

(d) Eπetσ1(i) <∞ for some t > 0.

(e) Eπeα log+ L(#~Ψi1) <∞ for some α > 0 or equivalently EπL(#~Ψi
1)τ <∞ for some τ > 0.
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Under (B1), (B2*) and (B4), the following assertion holds:

(f) Eπd(#~Ψi
1(x0), x0)τ <∞ for some τ > 0.

Proof. We apply Lemma B.7. For (a), we get

Eπσ1(i)p = 1
mii

Ei

σ1(i)−1∑
k=0

(σ1(i)− k)p
 = 1

mii
Ei

σ1(i)∑
k=1

kp

 ≤ 1
mii

Eiσ1(i)p+1 <∞

under (A1). For (d), we estimate

Eπetσ1(i) = 1
mii

Ei

σ1(i)−1∑
k=0

et(σ1(i)−k)

 = 1
mii

Ei

σ1(i)∑
k=1

etk

 ≤ 1
mii

Ei
(
σ1(i)etσ1(i)

)
<∞

for some t < β∗i due to Hölder’s inequality, because Eieβ
∗
i σ1(i) <∞ under (B1). We prepare (b)

and (e) with the definition

Ḡ1 := max{L(#Ψ1 · · ·#Ψσ1(i)), . . . , L(#Ψσ1(i))} (B.2)

which is closely related to G1. We obtain

Eπ logp∗ L(#~Ψi
1) = 1

mii
Ei

σ1(i)−1∑
k=0

logp∗ L(#Ψk+1 · · ·#Ψσ1(i))

 ≤ 1
mii

Ei
(
σ1(i) logp∗ Ḡ1

)
≤ 1
mii

(
Eiσ1(i)p+1

)1/p+1 (
Ei logp+1

∗ Ḡ1
)p/p+1

<∞

since similar to Lemma 7.19 we find that 1 + Ḡ1 ≤
∏σ1(i)
n=1 (1 + L(#Ψn)) and thus

logp+1
∗ Ḡ1 ≤

σ1(i)∑
n=1

log∗ L(#Ψn)

p+1

<∞.

To prove (e), we use the Cauchy-Schwarz inequality to obtain

Eπeα log+ L(#~Ψi1) ≤ 1
mii

Ei

σ1(i)−1∑
k=0

eα log∗ L(#Ψk+1···#Ψσ1(i))

 ≤ 1
mii

Ei
(
σ1(i)eα log∗ Ḡ1

)
= 1
mii

Eiσ1(i)(1 + Ḡ1)α <∞

under (B1)-(B4) for α ≤ p
2 (σ1(i) has an exponential moment w.r.t. Pi). It is easily seen that the

first and the second part of (e) are in fact equivalent with τ = α.
We still need to show (c) and (f). We write

Eπ logp∗ d(#~Ψi
1(x0), x0) = 1

mii
Ei

σ1(i)−1∑
k=0

logp∗ d(x0,
#Ψk+1 · · ·#Ψσ1(i)(x0))

 .
The expression inside the sum is smaller than or equal to

logp∗

d(x0,
#Ψk+1(x0)) +

σ1(i)−k∑
n=2

d(#Ψk+1 · · ·#Ψk+n−1(x0),#Ψk+1 · · ·#Ψk+n(x0))


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≤ logp∗

d(x0,
#Ψk+1(x0)) +

σ1(i)−k∑
n=2

k+n−1∏
l=k+1

L(#Ψl) d(x0,
#Ψk+n(x0))


= logp∗

σ1(i)−k∑
n=1

k+n−1∏
l=k+1

L(#Ψl) d(x0,
#Ψk+n(x0))


≤ logp∗

σ1(i)−k∑
n=1

e
S∗
σ1(i) d(x0,

#Ψk+n(x0))

 ≤ logp∗

eS∗σ1(i)

σ1(i)∑
n=1

d(x0,
#Ψn(x0))

 ,
with S∗n from the proof of Lemma 6.12, hence we conclude

Eπ logp∗ d(#~Ψi
1(x0), x0) ≤ 1

mii
Ei

σ1(i)−1∑
k=0

logp∗

eS∗σ1(i)

σ1(i)∑
n=1

d(x0,
#Ψn(x0))


≤ C

mii
Ei

σ1(i)−1∑
k=0

(1 + log+(eS
∗
σ1(i)))p

+ C

mii
Ei

σ1(i)−1∑
k=0

σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0))

p
with some constant C > 0. All occurring terms are finite under (A1)-(A3):

Ei

σ1(i)−1∑
k=0

(1 + log+(eS
∗
σ1(i)))p

 ≤ CEiσ1(i) + CEiσ1(i)(S∗σ1(i))
p <∞

by Hölder’s inequality. Furthermore, the finiteness of

Ei

σ1(i)−1∑
k=0

σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0))

p = Eiσ1(i)

σ1(i)∑
n=1

log∗ d(x0,
#Ψn(x0))

p

follows from (A1) and (A3) by Hölder’s inequality. The proof of (f) is similar:

Eπd(#~Ψi
1(x0), x0)τ = 1

mii
Ei

σ1(i)−1∑
k=0

d(x0,
#Ψk+1 · · ·#Ψσ1(i)(x0))τ


and, as above, the part inside the sum satisfies

d(x0,
#Ψk+1 · · ·#Ψσ1(i)(x0))τ ≤

eS∗σ1(i)

σ1(i)∑
n=1

d(x0,
#Ψn(x0))

τ

which is why

Ei

σ1(i)−1∑
k=0

d(x0,
#Ψk+1 · · ·#Ψσ1(i)(x0))τ

 ≤ Ei

eτS∗σ1(i)σ1(i)

σ1(i)∑
n=1

d(x0,
#Ψn(x0))

τ <∞

under (B1), (B2*) and (B4). Note that the first and the third factor have finite expectation with
τ ≤ p, and σ1(i) has an exponential moment.
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[NR04] R. Neininger and L. Rüschendorf. “On the contraction method with degenerate limit
equation”. In: The Annals of Probability 32.3B (July 2004), pp. 2838–2856.

[NS15] R. Neininger and H. Sulzbach. “On a functional contraction method”. In: The Annals
of Probability 43.4 (July 2015), pp. 1777–1822.

[NN87] P. Ney and E. Nummelin. “Markov Additive Processes I. Eigenvalue Properties and
Limit Theorems”. In: The Annals of Probability 15.2 (Apr. 1987), pp. 561–592.

[Par+08] G. Park, H.-K. Hwang, P. Nicodème, and W. Szpankowski. “Profile of Tries”. In:
Lecture Notes in Computer Science. Vol. 4957. Lecture Notes in Comput. Sci. Springer
Berlin Heidelberg, 2008, pp. 1–11.

[Par+09] G. Park, H.-K. Hwang, P. Nicodème, and W. Szpankowski. “Profiles of Tries”. In:
SIAM Journal on Computing 38.5 (Jan. 2009), pp. 1821–1880.

[Pit85] B. Pittel. “Asymptotical Growth of a Class of Random Trees”. In: The Annals of
Probability 13.2 (May 1985), pp. 414–427.

[Pit86] B. Pittel. “Paths in a random digital tree: limiting distributions”. In: Advances in
Applied Probability 18.1 (Mar. 1986), pp. 139–155.

149

https://arxiv.org/abs/1505.07321
https://arxiv.org/abs/1505.07321


References

[PW96] J. G. Propp and D. B. Wilson. “Exact sampling with coupled Markov chains and
applications to statistical mechanics”. In: Proceedings of the Seventh International
Conference on Random Structures and Algorithms (Atlanta, GA, 1995). Vol. 9. 1-2.
Wiley, Aug. 1996, pp. 223–252.

[PW98] J. G. Propp and D. B. Wilson. “How to Get a Perfectly Random Sample from a
Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph”.
In: vol. 27. 2. 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta,
GA, 1996). Elsevier BV, May 1998, pp. 170–217.

[RJS93] B. Rais, P. Jacquet, and W. Szpankowski. “Limiting Distribution for the Depth
in PATRICIA Tries”. In: SIAM Journal on Discrete Mathematics 6.2 (May 1993),
pp. 197–213.
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Acronyms

CLT central limit theorem
DST digital search tree
IFS iterated function system (of i.i.d. Lipschitz maps)
MIFS iterated function system of Markov-modulated Lipschitz maps
MMS Markov-modulated sequence
MRW Markov random walk
Pat Patricia(-trie), short for Practical Algorithm to Retrieve Information Coded

in Alphanumeric
RP (delayed) renewal process
RW (delayed) random walk
SLLN strong law of large numbers
SRP standard renewal process
SRW standard random walk
WLLN weak law of large numbers

List of symbols

a ∧ b = min{a, b}
a ∨ b = max{a, b}
x+ = max{0, x}, positive part of x (rarely denoted by x+ for simplicity)
x− = max{0,−x}, negative part of x
{x} = x− bxc, fractional part of x
(Ω,A,P) underlying probability space
PX = P(X ∈ ·), distribution of X w.r.t. the probability measure P
∼ asymptotically equivalent, distributed as, λλ0-almost everywhere equal

Part 1: Renewal theory in the analysis of random digital trees
S finite state space (= alphabet)
S∗ complete infinite tree with nodes labeled by finite strings of letters in S
S∗j ⊂ S∗, subset of all nodes that end with j

Ξ = (ξn)n≥1, random string with random letters ξn ∈ S, Markov chain on S
Ξ0 = (ξn)n≥0, Markov chain on S, includes initial variable ξ0
P = (pi,j)i,j∈S , transition matrix of Ξ and Ξ0
π stationary distribution of Ξ and Ξ0
Pi = P(·|ξ0 = i), Pλ =

∑
i∈S λiPi

Pi(α1 · · ·αn) = Pi(ξ1 = α1, . . . , ξn = αn), function on S∗
(Ξ(k))k sequence of i.i.d. copies of Ξ
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List of symbols

M, Mn set of strings, Mn = {Ξ(1), . . . ,Ξ(n)}
Trie(M) trie constructed from the strings in M, Trie(b)(M), TrieP (M),

Trie(b),P (M) analogously for b-, Pat-, and Pat-b-trie
β � α β starts with α, for two strings (which may be finite)
Dn, D(b)

n , DP
n depth of Ξ in Trie(Mn), Trie(b)(Mn) and TrieP (Mn), resp.

Dn,l, DP
n,l depth of Ξ(l) in Trie(Mn) and TrieP (Mn), resp.

Yk = 2ξk − 1, k ≥ 1, in the binary setting
(Vn)n≥0 Vn =

∑n
k=1 Yk, n ≥ 1, V0 = 0

∆n = VDn , imbalance factor of Ξ = Ξ(1) in Trie(Mn)
(σn(i))n≥0 sequence of successive recurrence times of the state i with underlying

Markov chain Ξ0, σn(i) := inf{k > σn−1(i) : ξk = i}, n ≥ 1, σ0(i) = 0
τn(i) = σn(i)− σn−1(i), n ≥ 1, cycle lengths corresponding to (σn(i))n≥0
mii = Eiσ1(i)
(Xn)n≥1 central Markov-modulated sequence driven by Ξ0, Xn = − log pξn−1,ξn

(Sn)n≥0 Sn =
∑n
k=1Xk, n ≥ 1, S0 = 0

Hi = EiX1 = −
∑
j∈S pi,j log pi,j

µ = EπX1 =
∑
i∈S πiHi, stationary drift of (Sn)n≥0

µY = EπY1, stationary drift of (Vn)n≥0

Fii, Fij = PSσ1(i)
i , = PSσ1(j)

i , resp.
Uii, Uij =

∑
n≥0 F

∗(n)
ii , = Fij ∗ Ujj , resp., corresponding renewal measures w.r.t. Pi

Uij(t) = Uij((−∞, t]), t ∈ R, corresponding renewal function
Ui =

∑
n≥0 Pi((ξn, Sn) ∈ ·), Markov renewal measure of (ξn, Sn)n≥0

U(i, ·) = Ui(·), corresponding Markov renewal kernel
U ∗ g(i, t) =

∫
S×R g(s, t− x)Ui(ds, dx), for measurable g : S × R→ R

ν(t) = inf{n ≥ 0 : Sn > t}, first passage times of (Sn)n≥0
ν(x, t) = inf{n ≥ 0 : x+ Sn > t}
νi(t) = inf{n ≥ 0 : Sn > t}, first passage times of (Sσn(i))n≥0
0i = {j ∈ S : pi,j = 0}
1 = {j ∈ S : ∃k ∈ S s.t. pj,k = 1}
β shift function of the MRW (ξn, Sn)n≥0, β : S → [0, d)
βij = β(j)− β(i)
(S̃n)n≥0 shifted MRW with S̃n = Sn − β(ξn) + β(ξ0), n ≥ 1, S̃0 = 0
d(i) = d lattice span of Sσ1(i) and S̃n w.r.t. Pi
Ũij , Ũi same objects as Uij and Ui but with Sn replaced by S̃n
γ = 0.5772 . . ., Euler constant
(X(n)

0 )n≥2 family of initial variables with laws defined in (2.3)
X∗0 distributional limit of the above sequence
(Y (n)

0 )n≥b+1 family of initial variables with laws defined in (2.4)
Y ∗0 distributional limit of the above sequence
σ(2), γ(2) = 1

mii
Vari(Sσ1(i) − µσ1(i)), = 1

mii
Vari(µVσ1(i) − µY Sσ1(i)), resp.

Fi(λ) =
∑
α∈S∗ f(λPi(α))1{Pi(α)>0}

F ji (λ) =
∑
α∈S∗ f(λPi(αj))1{Pi(αj)>0}

Wn, W (b)
n size of trie and b-trie, resp.

WP
n , W (b),P

n size of Pat-trie and Pat-b-trie, resp.
Nn(α) =

∑n
k=1 1{Ξ(k)�α}, α ∈ S∗
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Z
(b)
n number of external nodes of Trie(b)(Mn)

Z
(b)
l,n number of external nodes of Trie(b)(Mn) containing exactly l strings

Z
(b),P
l,n number of external nodes of Trie(b),P (Mn) containing exactly l strings

∆Dn = Dn −DP
n

Ln =
∑n
l=1Dn,l, external path length of Trie(Mn)

LPn =
∑n
l=1D

P
n,l, external path length of TrieP (Mn)

(Π(λ))λ>0 family of Poi(λ) distributed random variables
W̃λ = WΠ(λ), and similarly W̃ (b)

λ , W̃P
λ , . . . (possibly 1 + Π(λ) instead of Π(λ))

Part 2: Convergence rates of MIFSs by regenerative methods
(X, d) complete separable metric space
S (at most) countable state space
Lip(X,X) set of all Lipschitz continuous functions from X to X
L(f) Lipschitz constant of f
dPr Prokhorov metric on the space of probability measures on X
(θ,Ψ) = (θn,Ψn)n≥0, central MMS with state space S × Lip(X,X)
P , Q transition kernels of θ and (θ,Ψ), resp., P = (pi,j)i,j∈S
Kij = P (Ψn ∈ ·|θn−1 = i, θn = j) for i, j ∈ S, n ≥ 1
π stationary distribution of θ (and #θ)
(Xn)n≥0 central MIFS with Xn = Ψn ◦ · · · ◦Ψ1(X0)
(#θ,#Ψ) = (#θn,

#Ψn)n≥0, dual MMS with #θ0 = θ0
#P , #Q, #Kij corresponding kernels as defined in (6.1)
Pi = P(·|#θ0 = θ0 = i), Pλ =

∑
i∈S λiPi

(σn(i))n≥0 sequence of successive recurrence times of the state i with underlying
Markov chain θ, defined as in Part 1

(#σn(i))n≥0 similar to (σn(i))n≥0 but with #θ instead of θ, often the # is dropped
for simplicity

mii = Eiσ1(i) = Ei#σ1(i)
(Xx

n)n≥0 = (Xn)n≥0 with X0 = x
(#Xx

n)n≥0 = (Xx
n)n≥0 with Lipschitz maps #Ψ instead of Ψ̂ denotes backward iterations of the corresponding MIFS or IFS

#X̂∞ Pπ-a.s. limit of (#X̂x
n)n≥0

χ = limn→∞
1
n logL(#Ψ1 · · ·#Ψn), Lyapunov exponent

log∗(x) = log(1 + x)
(Sn)n≥0 central MRW (with driving chain #θ), Sn =

∑n
k=1 logL(#Ψk), n ≥ 1,

S0 = 0
µ = Eπ logL(Ψ1) = Eπ logL(#Ψ1), stationary drift of (Sn)n≥0
(S∗n)n≥0 similar to (Sn)n≥0 but S∗n =

∑n
k=1 log∗ L(#Ψk), n ≥ 1

(#Ψi
n)n≥1 cyclic concatenation of Lipschitz maps, #Ψi

n = #Ψσn(i) · · ·#Ψσn−1(i)+1
(#~Ψi

n)n≥1 reversed cyclic concatenation of Lipschitz maps,
#~Ψi

n = #Ψσn−1(i)+1 · · ·#Ψσn(i)
(Y x
n )n≥0 IFS of i.i.d. Lipschitz maps (#~Ψi)n≥1 and Y x

0 = x

β∗i parameter with Eieβ
∗
i σ1(i) <∞

γ∗i = eEi logL(#~Ψi1) if Ei logL(#~Ψi
1) > −∞, and = 0 if Ei logL(#~Ψi

1) = −∞,
lower bound for the rate of exponential convergence of (Y x

n )n≥0

γ∗i,c = eEi log(L(#~Ψi1)∨c)
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List of symbols

L∗,ik = L(#~Ψi
k)/γ∗i , k ≥ 1

L∗,ik,c = (L(#~Ψi
k) ∨ c)/γ∗i,c, k ≥ 1

(S∗,in )n≥0 auxiliary SRW, S∗,in =
∑n
k=1 logL∗,ik , n ≥ 1, S∗,i0 = 0

τ(n) = inf{k ≥ 0 | #σk(i) ≥ n}
(Cn)n≥1 as defined in (7.11)
(Gn)n≥1 as defined in (7.12)
(Dn)n≥0 as defined in (7.13)
Ḡ1 as defined in (B.2)
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