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Abstract. Given a group cocycle on a finitely aligned left cancellative small category
(LCSC), we investigate the associated skew product category and its Cuntz–Krieger al-
gebra, which we describe as the crossed product of the Cuntz–Krieger algebra of the original
category by an induced coaction of the group. We use our results to study Cuntz–Krieger
algebras arising from free actions of groups on finitely aligned LCSCs, and to construct coac-
tions of groups on Exel–Pardo algebras. Finally, we discuss the universal group of a small
category and connectedness of skew product categories.

1. Introduction

Let C be a left cancellative small category (abbreviated as LCSC in the
sequel). In a recent work [34], generalizing the previous work of many au-
thors (including himself) dealing with directed graphs, higher ranks graphs,
categories of paths, and left cancellative monoids, Spielberg has shown how
to construct certain groupoids from C and used these to associate a Toeplitz
algebra T (C) and a Cuntz–Krieger algebra O(C) to C. For an alternative way
of constructing these groupoids, see [25]. When C is finitely aligned, T (C) and
O(C) may be described by generators and relations in a more tractable way
than in the general case (see [34, Thm. 9.7 and 10.15]). We will therefore
concentrate our attention on the finitely aligned case in the present paper and
use these descriptions of T (C) and O(C) as their definitions (cp. Section 2.4),
as we did in [3]. Actually, to avoid a lot of unnecessary duplication, we will
only state our results for O(C).

Many interesting LCSCs are not only finitely aligned, but even singly aligned
(i.e., the intersection of two principal right ideals is either empty or a principal
right ideal). For example, a left cancellative singly aligned monoid corresponds
to what is called a right LCM semigroup in some recent articles (e.g., [5, 6]).
Also, the category of finite paths in a directed graph E is singly aligned, and
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so is the Zappa–Szép product category associated with an Exel–Pardo system
(E,G, ϕ), cp. [3]. More generally, a higher rank graph (Λ, d), as defined in
[20], is a LCSC Λ equipped with a degree functor d : Λ → N

k, k ∈ N, satisfying
a certain factorization property, and Λ is then finitely aligned as a LCSC
whenever (Λ, d) is finitely aligned in the sense of [30], so, in particular, when
Λ is row-finite.

Given a group cocycle η : C → G, i.e., a functor from a small category C
into a group G, it is folklore that one may form a new small category C ×η G,
called the skew product category associated to η. At least, such a skew product
has previously been introduced and studied when C is a groupoid [31] or a
higher rank graph [27]. It is not difficult to see that C ×η G is a finitely aligned
LCSC whenever C is (cp. Lemma 3.6), and our main result is then that the
cocycle η induces a (maximal) coaction δ of G on O(C) such that O(C ×η G)
is isomorphic to the crossed product O(C) ⋊δ G, cp. Proposition 3.1 and
Theorem 3.8. Moreover, there is a natural action of G on C ×η G, hence on
O(C ×η G), such that the associated full C∗-crossed product O(C ×η G)⋊G is
isomorphic to O(C)⊗K(ℓ2(G)) (where K(ℓ2(G)) denotes the compact operators
on ℓ2(G)), cp. Corollary 3.9.

These results generalize similar results from [27] in the case of higher rank
graphs. As in [27], one can draw some interesting consequences from these.
For example, we show that if a group G acts freely on a LCSC D in such a way
that the quotient category D/G (which is left cancellative) is finitely aligned,
then D is finitely aligned too, and there is a coaction δ of G on O(D/G) such
that O(D) is isomorphic to O(D/G) ⋊δ G, while O(D) ⋊ G is isomorphic to
O(D/G)⊗K(ℓ2(G)), cp. Corollary 4.5. In another direction, if (E,H,ϕ) is an
Exel–Pardo system [13, 2, 3], then we show that any map from the orbit space
E/H into a group G induces a coaction of G on the Cuntz–Krieger algebra of
the associated Zappa–Szép category, cp. Proposition 5.1.

The last two sections are devoted to some categorical aspects. It is well
known that any small category C has a fundamental groupoid (G(C), i) having
a universal property with respect to groupoid cocycles on C. Less known
is the fact that C also has a universal group (U(C), j) with respect to group
cocycles. If C is a monoid, then G(C) is actually a group, so we have (U(C), j) =
(G(C), i) in this case. In the general case, this fact may be deduced from
[16, Prop. 19, p. 65]. We first provide an elementary proof of this result, cp.
Proposition 6.1. Next, working with G(C), we describe in Corollary 6.9 how
U(C) may be obtained from the fundamental group of C when C is connected.
Finally, we study and characterize connectedness of skew product categories.
Our main tool is the theory of coverings for small categories. For the ease of
the reader, we have included a review of this topic, based mainly on [27].

2. Preliminaries

Throughout, G will be a discrete group and C∗(G) will denote its full group
C∗-algebra. The notation A ⊗ B for C∗-algebras A,B will always denote the
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minimal tensor product, while M(A) will denote the multiplier algebra of A.
By a homomorphism between ∗-algebras, we always mean a ∗-homomorphism.

2.1. Coactions. We refer to [8, 9, 11, 24, 29] for coactions of groups. The
comultiplication on C∗(G) is the homomorphism

δG : C∗(G) → C∗(G) ⊗ C∗(G)

given by the integrated form of the unitary homomorphism

g 7→ g ⊗ g : G → C∗(G)⊗ C∗(G),

where we identify G with its image in the unitary group of C∗(G).
Let δ be a coaction of G on a C∗-algebra A, so that δ : A → A ⊗ C∗(G) is

an injective homomorphism satisfying the coaction identity, i.e., the diagram

(2.1)

A
δ //

δ

��

A⊗ C∗(G)

δ⊗id

��

A⊗ C∗(G)
id⊗δG

// A⊗ C∗(G)⊗ C∗(G)

commutes, and also satisfying the nondegeneracy condition for coactions :

(2.2) span{δ(A)(1⊗ C∗(G))} = A⊗ C∗(G).

Nondegeneracy for coactions implies nondegeneracy as a homomorphism into
the multiplier algebra M(A ⊗ C∗(G)). It is an open problem whether an
injective nondegenerate homomorphism satisfying the coaction identity is au-
tomatically nondegenerate as a coaction, although this has been proven for
normal coactions (see below).

If (A, δ) is a coaction of G and g ∈ G, the g-spectral subspace is

Ag = {a ∈ A : δ(a) = a⊗ g}.

The spectral subspaces are linearly independent, and nondegeneracy of the
coaction is equivalent to the property

A = span{Ag : g ∈ G}.

Moreover, we have

AgAh ⊆ Agh and A∗
g = Ag−1 for g, h ∈ G,

so the disjoint union
⊔

g∈G Ag is a Fell bundle over G with projection map

p :
⊔

g∈G Ag → G given by p(a) = g whenever a ∈ Ag. As is common in

the literature, we sometimes say instead that A = {Ag}g∈G is a Fell bundle
over G, and we let C∗(A) (resp. C∗

r (A)) denote the full (resp. reduced) C∗-
algebra of G. We refer to [12] for a recent exposition of the theory of Fell
bundles over discrete groups.

Given a coaction (A, δ) of G, we give A the structure of a (left) Banach
module over the Fourier–Stieltjes algebra B(G), using slice maps:

(2.3) f · a = (id⊗ f) ◦ δ(a) for f ∈ B(G), a ∈ A.
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The following folklore lemma sometimes aids in the verification that a given
map is a coaction:

Lemma 2.2. Let δ : A → A ⊗ C∗(G) be a nondegenerate homomorphism

satisfying the coaction identity (2.1) and the coaction-nondegeneracy condi-

tion (2.2). Then δ is injective, and hence is a coaction.

Proof. The hypotheses imply that formula (2.3) defines a BanachB(G)-module
structure on A. Letting f = 1 be the constant function on G with value 1, for
all g ∈ G and ag ∈ Ag we have

1 · ag = (id⊗ 1) ◦ δ(ag) = (id⊗ 1)(ag ⊗ g) = ag,

because 1(g) = 1 for all g, and by linearity and density, we get (id ⊗ 1) ◦ δ =
idA. �

If B is a C∗-algebra, a covariant representation of a coaction (A, δ) in M(B)
is a pair (π, µ) of nondegenerate homomorphisms

A
π // M(B) c0(G)

µ
oo

satisfying the covariance condition, i.e., the diagram

A
δ //

π

��

A⊗ C∗(G)

π⊗id

��

M(B)
Ad(µ⊗id)(wG)◦(·⊗1)

// M(B ⊗ C∗(G))

commutes, where wG denotes the unitary element of

M(c0(G)⊗ C∗(G)) = ℓ∞(G,C∗(G))

given by wG(g) = g for g ∈ G.
The following lemma sometimes aids in the verification that a given pair is

a covariant representation:

Lemma 2.3. Let (A, δ) be a coaction of G, let S ⊆ G and Dg ⊆ Ag for

each g ∈ S, and let π : A → M(B) and µ : c0(G) → M(B) be nondegenerate

homomorphisms. Suppose that
⋃

g∈S Dg generates A as a C∗-algebra. Then

(π, µ) is a covariant representation if and only if

(2.4) π(ah)µ(χg) = µ(χhg)π(ah) for all h ∈ S, ah ∈ Dh, g ∈ G,

where χ
g ∈ c0(G) denotes the characteristic function of {g} for g ∈ G.

Proof. One direction is well-known (see, e.g., [10]), so assume (2.4). Since⋃
g∈S Dg generates A, to prove that (π, µ) is a covariant representation, it

suffices to check the identity

(2.5) (π ⊗ id) ◦ δ(ah) = Ad(µ⊗ id)(wG)(π(ah)⊗ 1) for all h ∈ S, ah ∈ Dh.
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Because the group G is discrete, we have

wG =
∑

g∈G

(χg ⊗ g),

where the sum converges strictly in the multiplier algebra M(c0(G)⊗C∗(G)).
Thus, we get

(π ⊗ id) ◦ δ(ah)(µ⊗ id)(wG)

=
∑

g∈G

(π ⊗ id) ◦ δ(ah)(µ(χg)⊗ g) (strictly convergent)

=
∑

g∈G

(π(ah)⊗ h)(µ(χg)⊗ g)

=
∑

g∈G

(π(ah)µ(χg)⊗ hg)

=
∑

g∈G

(µ(χhg)π(ah)⊗ hg)

=
∑

g∈G

(µ(χg)π(ah)⊗ g) (after g 7→ h−1g)

=
∑

g∈G

(µ(χg)⊗ g)(π(ah)⊗ 1)

= (µ⊗ id)(wG)(π(ah)⊗ 1),

and so (2.5) holds. �

Given a coaction (A, δ) of G, we write A ⋊δ G for the crossed product C∗-
algebra, and (jA, jG) for the universal covariant representation of (A, δ) in
M(A⋊δ G), meaning that for every covariant representation (π, µ) of (A, δ) in
M(B), there is a unique nondegenerate homomorphism π×µ : A⋊δG → M(B)
making the diagram

A
jA //

π
$$■

■■
■■

■■
■■

■ M(A⋊δ G)

π×µ!

��
✤

✤

✤
c0(G)

jGoo

µ
xxrr
rr
rr
rr
rr

M(B)

commute. Then we have

A⋊δ G = span
{
jA(ag)jG(χh) : g, h ∈ G, ag ∈ Ag

}
,

and we can describe the crossed product as the closed linear span of pairs

(ag, h) ∈ Ag ×G,

with operations given by

(2.6) (ag, h)(bk, ℓ) =

{
(agbk, ℓ) if h = kℓ,

0 otherwise,
(ag, h)

∗ = (a∗g, gh).
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Indeed, we only need to identify

(ag, h) = jA(ag)jG(χh).

If (A, δ) is a coaction of G, there is a dual action δ̂ of G on A ⋊δ G given
on generators by

δ̂g(ah, k) = (ah, kg
−1).

Note that this is obtained from the usual dual action, which is trivial on jA(A)
and for which the homomorphism jG : c0(G) → M(A ⋊δ G) is equivariant for
right translation on c0(G):

δ̂g(ah, k) = δ̂g(jA(ah)jG(χk)) = jA(ah)jG(χkg−1 ) = (ah, kg
−1).

There is a canonical surjective homomorphism

Φ: A⋊δ G⋊
δ̂
G → A⊗K(ℓ2(G)),

and δ is maximal if Φ is an isomorphism, and normal if Φ factors through an
isomorphism on the reduced crossed product:

A⋊δ G⋊
δ̂
G

Φ //

Λ

��

A⊗K

A⋊δ G⋊
δ̂,r

G,

≃

88♣
♣

♣
♣

♣
♣

where Λ is the regular representation onto the reduced crossed product by the
dual action. However, since G is discrete, to test for maximality, we can use the
following characterization: letting A = {Ag}g∈G be the Fell bundle associated
to the coaction δ, the inclusion maps Ag →֒ A extend to a surjection

C∗(A) → A,

and δ is maximal if and only if this surjection is injective [8].

2.4. LCSC. We refer to [3, 34] for left cancellative small categories and the
C∗-algebras that may be associated to these. For the special case of “categories
of paths”, which includes higher-rank graphs, see [33]. If C is a small category,
we refer to an object as a vertex, and denote by C0 the set of vertices in C.
We identify the objects with the identity morphisms. A small category can
be defined as a set C, a subset C0, two maps r, s : C → C0 (called the range
map and the source map, respectively), and a partially-defined multiplication
(α, β) 7→ αβ, defined if and only if s(α) = r(β), such that for all α, β, γ ∈ C
with s(α) = r(β) and s(β) = r(γ),
(i) r(αβ) = r(α) and s(αβ) = s(β),
(ii) α(βγ) = (αβ)γ,
(iii) r(v) = s(v) = v for all v ∈ C0,
(iv) r(α)α = αs(α) = α.
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When writing αβ for α, β ∈ C, we often tacitly assume that the product αβ is
defined. If E,F ⊆ C, we write EF = {αβ : α ∈ E, β ∈ F}.

A left-cancellative small category (LCSC) is a small category C such that
for α, β, γ ∈ C, if αβ = αγ, then β = γ. From now on, C will denote a LCSC.

The equivalence relation ∼ on C is defined by α ∼ β if there is an invertible
γ ∈ C such that α = βγ.

C is finitely aligned if for all α, β ∈ C, there is a (possibly empty) finite
subset F ⊆ C such that

αC ∩ βC = FC
(
=

⋃

γ∈F

γC
)
.

A subset F ⊆ C is independent if for all α, β ∈ F with α ∈ βC, we have
α = β. If C is finitely aligned and F ⊆ C is finite, we write

∨
F for any finite

independent subset L ⊆ C such that
⋂

α∈F

αC = LC.

Note that
∨
F is only unique up to equivalence: if L′ is another set with the

same properties as L, then for all β ∈ L, there exists γ ∈ L′ such that β ∼ γ,
and, symmetrically, for all γ ∈ L′, there exists β ∈ L such that γ ∼ β. When
F = {α, β}, we write α ∨ β instead of

∨
F .

If v ∈ C0 and F ⊆ vC, then F is exhaustive at v if for all α ∈ vC, there
exists β ∈ F such that αC ∩ βC 6= ∅.

A representation of C in a C∗-algebra B is a map T : C → B such that for
all α, β ∈ C,
(i) T ∗

αTα = Ts(α),
(ii) TαTβ = Tαβ if s(α) = r(β),
(iii) TαT

∗
αTβT

∗
β =

∨
γ∈α∨β TγT

∗
γ ,

and a representation T is covariant if
(iv) Tv =

∨
α∈F TαT

∗
α for all v ∈ C0 and every finite exhaustive set F at v.

We recall that if T is a representation, then Tv is a projection in B for every
v ∈ C0, and Tα is a partial isometry in B for every α ∈ C, so TαT

∗
α is a

projection in B for every α ∈ C. We also recall that the joins
∨

γ∈α∨β TγT
∗
γ and∨

α∈F TαT
∗
α are a priori defined as projections in B∗∗, and that, by convention,

the join over an empty index set is defined to be zero. Thus, if v, w ∈ C0 and
v 6= w, then TvTw = 0, i.e., the projections Tv and Tw are orthogonal to each
other.

Moreover, if T is a representation, then:
• T ∗

αTβ = 0 if s(α) 6= s(β),
• if α is invertible, then Tα−1 = T ∗

α and TαT
∗
α = Tr(α),

• if β ∼ γ, then TβT
∗
β = TγT

∗
γ .

The Toeplitz algebra T (C) is generated by a universal representation of C, and
the Cuntz–Krieger algebra O(C) is generated by a universal covariant repre-
sentation of C. We are more interested in O(C) than T (C), and we write
t : C → O(C) for the universal covariant representation. The universal property
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means that for every covariant representation T : C → B, there is unique homo-
morphism φ : O(C) → B, called the integrated form of T , such that φ ◦ t = T .

As the reader will easily realize, all our results concerning Cuntz–Krieger
algebras of finitely aligned LCSCs in the present paper carry over to the asso-
ciated Toeplitz algebras, with simpler proofs.

3. Cocycles and skew products

In this section we let C be a LCSC and G a discrete group. We consider a
G-valued cocycle η on C, that is, a functor η : C → G.

Proposition 3.1. Assume that C is finitely aligned. Let t : C → O(C) be the

universal representation, and define T : C → O(C)⊗ C∗(G) by

Tα = tα ⊗ η(α).

Then T is a covariant representation of C, and its integrated form δ : O(C) →
O(C)⊗ C∗(G) is a coaction.

Proof. We first check the axioms for a covariant representation:
(1) For all α ∈ C,

T ∗
αTα = (tα ⊗ η(α))∗(tα ⊗ η(α))

= (t∗α ⊗ η(α)−1)(tα ⊗ η(α))

= t∗αtα ⊗ 1

= ts(α) ⊗ 1 = Ts(α),

(2) if s(α) = r(β), then

TαTβ = (tα ⊗ η(α))(tβ ⊗ η(β))

= tαtβ ⊗ η(α)η(β)

= tαβ ⊗ η(αβ) = Tαβ,

(3) for all α, β ∈ C,

TαT
∗
αTβT

∗
β = (tα ⊗ η(α))(tα ⊗ η(α))∗(tβ ⊗ η(β))(tβ ⊗ η(β))∗

= (tα ⊗ η(α))(t∗α ⊗ η(α)−1)(tβ ⊗ η(β))(t∗β ⊗ η(β)−1)

= tαt
∗
αtβt

∗
β ⊗ 1

=
( ∨

γ∈α∨β

tγt
∗
γ

)
⊗ 1

=
∨

γ∈α∨β

(tγt
∗
γ ⊗ 1)

=
∨

γ∈α∨β

(
tγt

∗
γ ⊗ η(γ)η(γ)−1

)
=

∨

γ∈α∨β

TγT
∗
γ ,
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(4) for any finite exhaustive set F at v ∈ C0,

Tv = tv ⊗ η(v) = tv ⊗ 1

=
( ∨

α∈F

tαt
∗
α

)
⊗ 1 =

∨

α∈F

(
tαt

∗
α ⊗ 1

)

=
∨

α∈F

(
tαt

∗
α ⊗ η(α)η(α)−1

)
=

∨

α∈F

TαT
∗
α.

Thus, we have a homomorphism δ : O(C) → O(C)⊗C∗(G) that is the inte-
grated form of T .

The coaction identity is easily checked on generators:

(δ ⊗ id) ◦ δ(tα) = tα ⊗ η(α) ⊗ η(α)

= (id⊗ δG)(tα ⊗ η(α))

= (id⊗ δG) ◦ δ(tα).

This homomorphism δ satisfies the coaction-nondegeneracy condition (2.2)
because every elementary tensor a⊗ c ∈ O(C)⊗C∗(G) is in the C∗-subalgebra
generated by elementary tensors of the form tα ⊗ η(α)g for α ∈ C and g ∈ G.
It now follows from Lemma 2.2 that δ is faithful, and hence is a coaction of G
on O(C). �

Theorem 7.1 of [27] proves that, given a G-valued cocycle on a k-graph, the
associated coaction δ is both maximal and normal. In the context of cocycles
on finitely aligned LCSCs, it is natural to ask whether these properties of δ
continue to hold, and we answer this in the following theorem.

In preparation, recall the notation P0 = {tαt
∗
α : α ∈ C} and P = {p1 · · · pn :

n ∈ N, p1, . . . , pn ∈ P0} from [33, Section 6], and note that the proof of [33,
Prop. 6.7] implies that

O(C) = span{tαt
∗
β q : α, β ∈ C, q ∈ P}.

Theorem 3.2. Assume that C is finitely aligned. Let δ be the coaction of G
on O(C) from Proposition 3.1, and let A be the associated Fell bundle. Then

the associated surjection π : C∗(A) → O(C) is an isomorphism. In particular,

δ is maximal. However, δ may fail to be normal. Finally, the fibres of the Fell

bundle A are given by

(3.1) Ag = span{tαt
∗
β q : η(α)η(β)−1 = g, q ∈ P}.

Proof. For the first assertion, we must show that π is injective. Define a map
T : C → C∗(A) by

Tα = tα (regarded now as an element of C∗(A)).

This definition of T might appear confusing at first, but most of the point of
this proof is to avoid conflating things that are really in different places. We
are accustomed to regarding the generators tα as elements of O(C), and now
we need to think of them alternatively as elements of C∗(A). The algebraic
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68 Eric Bédos, S. Kaliszewski, and John Quigg

structure of C∗(A) guarantees that T is a covariant representation. Thus, its
integrated form is a homomorphism ρ : O(C) → C∗(A).

Note that

π(Tα) = tα for all α ∈ C.

Thus, ρ ◦ π is an endomorphism of C∗(A) that agrees with the identity auto-
morphism id on the (image in C∗(A) of the) Fell bundle A, and hence ρ◦π = id.
Therefore π is also injective, and hence is an isomorphism.

To see the possible failure of normality, just note that the group G itself
is a finitely aligned LCSC, and we can take the cocycle η : G → G to be the
identity map, in which case the associated coaction is δG. As is well-known,
δG is normal if and only if G is amenable.

Finally, for the equality (3.1), fix g ∈ G, and let R denote the right-hand
side. Note first of all that, by definition,

Ag = {a ∈ O(C) : δ(a) = a⊗ g},

so because δ(q) = q ⊗ 1 for all q ∈ P , we have R ⊆ Ag.
For the opposite containment, we argue as in the proof of [27, Lemma 7.9]:

let χg ∈ B(G) be the characteristic function of {g}. Then, by the basic theory
of coactions, there is an idempotent bounded linear surjection

Eg = (id⊗ χ
g) ◦ δ : O(C) → Ag.

Any a ∈ O(C) can be approximated by a linear combination

n∑

i=1

citαit
∗
βi
qi,

with αi, βi ∈ C and qi ∈ P , and hence, if a ∈ Ag, then

a = Eg(a)

≈ Eg

( n∑

i=1

citαit
∗
βi
qi

)
=

n∑

i=1

ciEg(tαit
∗
βi
qi)

=
∑

i=1,...,n,
η(αi)η(βi)

−1=g

citαit
∗
βi
qi ∈ R. �

Combined with the existing theory for Fell bundles over discrete groups,
Theorem 3.2 provides a useful tool for investigating certain properties of O(C).
We illustrate this by giving a set of conditions ensuring that O(C) is nuclear.
We first recall from [12, Definition 20.4] that a Fell bundle B = {Bg}g∈G over
G is said to have the approximation property if there exists a net {ai}i∈I of
finitely supported functions from G into Be satisfying

sup
i∈I

∥∥∥
∑

g∈G

ai(g)
∗ai(g)

∥∥∥ < ∞
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and

lim
i

∑

h∈G

ai(gh)
∗bai(h) = b for all b in each Bg.

We also recall that this property is satisfied whenever G is amenable (cp. [12,
Thm. 2.7]).

Proposition 3.3. Assume that C is finitely aligned, and let A be the Fell

bundle over G as in Theorem 3.2, so that

Ae = span{tαt
∗
β q : η(α) = η(β), q ∈ P},

where e denotes the unit of G. Assume that A has the approximation property

and that Ae is nuclear. Then O(C) is nuclear.

Proof. This follows by combining Theorem 3.2 with [12, Prop. 25.10]. �

Remark 3.4. Kwaśniewski and Meyer have shown in [21, Thm. 5.8] how
strong pure infiniteness of the reduced C∗-algebra of a Fell bundle over a
group can be deduced from certain properties of the Fell bundle. Thus, if
G is amenable, one may use this result in combination with Theorem 3.2 to
obtain conditions on the Fell bundle A associated to η ensuring that O(C)
will be strongly purely infinite. Similarly, in the case where η : C → Z, one
may invoke [21, Thm. 9.7] to state conditions on A sufficient for O(C) to be
simple. It should here be noted that Ortega and Pardo [25] have recently given
sufficient conditions for O(C) to be simple, and even have a result explicitly
for Zappa–Szép products.

We next introduce the skew product category associated to a cocycle on a
LCSC. This construction is well-known, at least in the case of groupoids and
higher-rank graphs, although some authors use different conventions than ours.

Definition 3.5. The skew product C ×η G of C by a cocycle η : C → G is the
set C ×G with partially-defined multiplication

(α, g)(β, h) = (αβ, h) if s(α) = r(β) and g = η(β)h.

Lemma 3.6. With the above multiplication, C ×η G is a LCSC, with range

and source maps given by

s(α, g) = (s(α), g),

r(α, g) = (r(α), η(α)g),

and vertex set given by (C×ηG)0 = C0×G. Moreover, C×ηG is finitely aligned

if C is.

Proof. For this proof, let D = C×ηG. We first check that D is a small category.
By construction, D is a set. We have maps s, r : D → D0 such that (α, g)(β, h)
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is defined if and only if s(α, g) = r(β, h). We check the axioms:
(1) if s(α, g) = r(β, h), then

r
(
(α, g)(β, h)

)
= r(αβ, h)

= (r(αβ), η(αβ)h)

= (r(α), η(α)η(β)h)

= (r(α), η(α)g) (since η(α)h = g)

= r(α, g)

and

s
(
(α, g)(β, h)

)
= s(αβ, h) = (s(αβ), h)

= (s(β), h) = s(β, h),

(2) if s(α, g) = r(β, h) and s(β, h) = r(γ, k), then

(α, g)
(
(β, h)(γ, k)

)
= (α, g)(βγ, k)

= (αβγ, k) (since g = η(β)h = η(β)η(γ)k = η(βγ)k)

= (αβ, h)(γ, k)

=
(
(α, g)(β, h)

)
(γ, k),

(3) for all v ∈ C0, g ∈ G, we have

r(v, g) = (r(v), η(v)g)

= (v, g) (since η(v) = 1)

= (s(v), g)

= s(v, g),

(4) for all (α, g) ∈ D, we have

r(α, g)(α, g) = (r(α), η(α)g)(α, g)

= (r(α)α, g)

= (α, g)

= (αs(α), g)

= (α, g)(s(α), g) (since η(s(α))g = 1g = g)

= (α, g)s(α, g).

Now we check left cancellation: let (α, g), (β, h), (γ, k) ∈ D with s(α, g) =
r(β, h) = r(γ, k), and assume that

(α, g)(β, h) = (α, g)(γ, k).

Then
g = η(β)h = η(γ)k

and
αβ = αγ,

so β = γ since C is left cancellative, and h = η(β)−1g = η(γ)−1g = k.
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For the last part, suppose that C is finitely aligned and consider (α, g),
(β, h) ∈ D.

We first show that (α, g)D ∩ (β, h)D is equal to
{(

γ, η(γ)−1η(α)g
)
: γ ∈ αC ∩ βC)

}

if αC ∩ βC 6= ∅ and η(α)g = η(β)h, and empty otherwise.
If (γ, k) ∈ (α, g)D ∩ (β, h)D, then we have

(γ, k) = (α, g)(µ, p) = (β, h)(ν, q)

for some (µ, p), (ν, q) ∈ D. Then

g = η(µ)p and h = η(ν)q,

and

(γ, k) = (αµ, p) = (βν, q).

This forces k = p = q, and

γ = αµ = βν ∈ αC ∩ βC,

hence

η(α)g = η(α)η(µ)p = η(αµ)p = η(βν)q = η(β)η(ν)q = η(β)h.

Thus, no such (γ, k) exists if αC ∩ βC = ∅ or η(α)g 6= η(β)h. Moreover, if
αC ∩ βC 6= ∅ and η(α)g = η(β)h, then γ ∈ αC ∩ βC and

η(γ)−1η(α)g = η(µ)−1η(α)−1η(α)g = p = k.

On the other hand, if η(α)g = η(β)h, γ ∈ αC ∩ βC and k = η(γ)−1η(α)g, then

γ = αµ = βν

for some µ, ν ∈ C, so that

(γ, k) = (αµ, η(γ)−1η(α)g)

= (αµ, η(µ)−1g)

= (α, g)(µ, η(µ)−1g)

and

(γ, k) = (βν, η(γ)−1η(β)h)

= (βν, η(ν)−1h)

= (β, h)(ν, η(ν)−1h),

hence (γ, k) ∈ (α, g)D ∩ (β, g)D.
Now assume that αC ∩ βC 6= ∅ and η(α)g = η(β)h. Let F be a nonempty

finite subset of C such that αC ∩ βC = ∪δ∈F δC. We will show that

(α, g)D ∩ (β, g)D =
⋃

δ∈F

(
δ, η(δ)−1η(α)g

)
D,

which will prove that D is finitely aligned.
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Consider first (γ, k) ∈ (α, g)D ∩ (β, g)D. Then, as we have shown above,
γ ∈ αC ∩ βC and k = η(γ)−1η(α)g. We can now pick δ ∈ F such that γ ∈ δC,
i.e., γ = δx for some x ∈ C. This gives that k = η(x)−1η(δ)−1η(α)g, hence
η(δ)−1η(α)g = η(x)k, so we get

(γ, k) = (δx, k) =
(
δ, η(δ)−1η(α)g

)
(x, k) ∈

(
δ, η(δ)−1η(α)g

)
D.

Conversely, assume that (γ, k) ∈ (δ, η(δ)−1η(α)g)D for some δ ∈ F . There-
fore we have (γ, k) = (δ, η(δ)−1η(α)g)(x, a) for some (x, a) ∈ D such that
η(δ)−1η(α)g = η(x)a. This implies that

γ = δx ∈ δC ⊆ αC ∩ βC

and

k = a = η(x)−1η(δ)−1η(α)g = η(γ)−1η(α)g.

It follows that (γ, k) ∈ (α, g)D ∩ (β, g)D, as wanted.
As a bonus, we remark that one easily proves that

⋃
δ∈F (δ, η(δ)

−1η(α)g) is
independent if F is independent, so one gets that

(3.2) (α, g) ∨ (β, h) =
⋃

δ∈α∨β

(
δ, η(δ)−1η(α)g

)

whenever η(α)g = η(β)h. �

Lemma 3.7. For each g ∈ G and (β, h) ∈ C ×η G, set

g · (β, h) = (β, hg−1) ∈ C ×η G.

This gives an action of G on C ×η G by category automorphisms.

Proof. This is straight-forward. For example, let g ∈ G, and assume that
((β, h), (γ, k)) is a composable pair in C ×η G. Then we have

g ·
(
(β, h)(γ, k)

)
= g · (βγ, k) = (βγ, kg−1).

Moreover, since hg = η(γ)kg, the pair ((β, hg), (γ, kg)) is also composable in
C ×η G, and we get

(
g · (β, h)

)(
g · (γ, k)

)
= (β, hg−1)(γ, kg−1) = (βγ, kg−1).

Thus, it follows that g · ((β, h)(γ, k)) = (g · (β, h))(g · (γ, k)). �

Now suppose that C is finitely aligned. Using the universal property of
O(C ×η G) we get that the action of G on C ×η G induces an action γ : G y

O(C ×η G) determined by

γg(t(β,h)) = tg·(β,h) = t(β,hg−1)

for all g, h ∈ G and β ∈ C.
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On the other hand, we have the dual action δ̂ : G y O(C)⋊δG characterized
by

δ̂g(ah, k) = (ah, kg
−1)

for all g, h, k ∈ G and ah ∈ Ah.

Theorem 3.8. Assume that C is finitely aligned. Define T : C×ηG→O(C)⋊δG
by

T(α,g) = (tα, g).

Then T is a covariant representation of the skew product C ×η G, and its

integrated form θ is an isomorphism

O(C ×η G)
≃
−→ O(C)⋊δ G.

Moreover, this isomorphism is γ − δ̂ equivariant.

Proof. For this proof let D = C ×η G. We check the axioms for T to be a
covariant representation:

(1) For all (α, g) ∈ D,

T ∗
(α,g)T(α,g) = (tα, g)

∗(tα, g)

= (t∗α, η(α)g)(tα, g)

= (t∗αtα, g)

= (ts(α), g)

= T(s(α),g)

= Ts(α,g).

(2) If s(α, g) = r(β, h), then

T(α,g)T(β,h) = (tα, g)(tβ , h)

= (tαtβ , h)

= (tαβ , h)

= T(αβ,h)

= T(α,g)(β,h).

(3) For all (α, g), (β, h) ∈ D,

T(α,g)T
∗
(α,g)T(β,h)T

∗
(β,h) = (tα, g)(t

∗
α, η(α)g)(tβ , h)(t

∗
β , η(β)h)

= (tαt
∗
α, η(α)g)(tβt

∗
β , η(β)h)

=

{
(tαt

∗
αtβt

∗
β , η(α)g) if η(α)g = η(β)h,

0 otherwise.

If η(α)g 6= η(β)h, then (α, g) ∨ (β, h) is empty, so we get

T(α,g)T
∗
(α,g)T(β,h)T

∗
(β,h) = 0 =

∨

(γ,k)∈(α,g)∨(β,h)

T(γ,k)T
∗
(γ,k).
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On the other hand, if η(α)g = η(β)h, then, using (3.2), we get

T(α,g)T
∗
(α,g)T(β,h)T

∗
(β,h) = (tαt

∗
αtβt

∗
β , η(α)g)

=
( ∨

δ∈α∨β

tδt
∗
δ , η(α)g

)

=
∨

δ∈α∨β

(
tδt

∗
δ , η(α)g

)

=
∨

δ∈α∨β

(
tδ, η(δ)

−1η(α)g
)(
t∗δ , η(α)g

)

=
∨

δ∈α∨β

T(δ,η(δ)−1η(α)g)T
∗
(δ,η(δ)−1η(α)g)

=
∨

(γ,k)∈(α,g)∨(β,h)

T(γ,k)T
∗
(γ,k).

(4) If F ′ ⊆ (v, g)D is a finite exhaustive set at (v, g) ∈ D0, then one checks
without too much trouble that F ′ = ∪α∈F (α, η(α)

−1g), where F ⊆ vC is a
finite exhaustive set at v ∈ C0, so we get that

T(v,g) = (tv, g)

=
( ∨

α∈F

tαt
∗
α, g

)

=
∨

α∈F

(tαt
∗
α, g)

=
∨

α∈F

(tα, η(α)
−1g)(t∗α, g)

=
∨

α∈F

T(α,η(α)−1g)T
∗
(α,η(α)−1g)

=
∨

(α,k)∈F ′

T(α,k)T
∗
(α,k),

as desired.
We will show that θ is an isomorphism by constructing an inverse homo-

morphism

Θ: O(C)⋊δ G → O(D),

and we will get Θ as the integrated form π × φ for a covariant representation
(π, φ) of the coaction (O(C), δ). Define Q : C → M(O(D)) by

Q(α) =
∑

g∈G

t(α,g).

We must check that the above sum converges strictly in the multiplier algebra
M(O(D)) to a partial isometry, and this follows since if g 6= h, the partial
isometries t(α,g) and t(α,h) have orthogonal range projections and orthogonal
domain projections. We will verify that Q is a covariant representation of C.
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(1) For all α ∈ C,

Q∗
αQα =

∑

g,h∈G

t∗(α,g)t(α,h)

=
∑

g∈G

t∗(α,g)t(α,g)

=
∑

g∈G

ts(α,g)

=
∑

g∈G

t(s(α),g)

= Qs(α).

(2) If s(α) = r(β),

QαQβ =
∑

g,h∈G

t(α,g)t(β,h)

=
∑

h∈G

t(α,η(β)h)(β,h)

=
∑

h∈G

t(αβ,h)

= Qαβ.

(3) For all α, β ∈ C,

QαQ
∗
αQβQ

∗
β =

∑

g,h,ℓ,m∈G

t(α,g)t
∗
(α,h)t(β,ℓ)t

∗
(β,m)

=
∑

g,ℓ∈G

t(α,g)t
∗
(α,g)t(β,ℓ)t

∗
(β,ℓ)

=
∑

g,ℓ∈G

∨

(γ,k)∈(α,g)∨(β,ℓ)

t(γ,k)t
∗
(γ,k)

=
∑

g∈G

∨

δ∈α∨β

t(δ,η(δ)−1η(α)g)t
∗
(δ,η(δ)−1η(α)g)

∗
=

∨

δ∈α∨β

∑

g∈G

t(δ,η(δ)−1η(α)g)t
∗
(δ,η(δ)−1η(α)g)

=
∨

δ∈α∨β

∑

a∈G

t(δ,a)t
∗
(δ,a)

∗∗
=

∨

δ∈α∨β

∑

a,b∈G

t(δ,a)t
∗
(δ,b)

=
∨

δ∈α∨β

QδQ
∗
δ ,

where the equality at * holds because the range projections of t(δ,η(δ)−1η(α)g)

and t(δ′,η(δ′)−1η(α)g) are orthogonal for all δ, δ′ ∈ α ∨ β, δ 6= δ′, and all the
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projections commute, while the equality at ** holds because if a 6= b then the
partial isometries t(δ, a) and t(δ, b) have orthogonal domain projections.

(4) For every finite exhaustive set F ⊆ vC at v ∈ C0, and for each g ∈ G,
the set F ′

g = ∪α∈F (α, η(α)
−1g) ⊆ (v, g)D is finite exhaustive at (v, g) ∈ D0, so

we get that

Qv =
∑

g∈G

t(v,g)

=
∑

g∈G

∨

(γ,k)∈F ′
g

t(γ,k)t
∗
(γ,k)

=
∑

g∈G

∨

α∈F

t(α,η(α)−1g)t
∗
(α,η(α)−1g)

∗
=

∨

α∈F

∑

g∈G

t(α,η(α)−1g)t
∗
(α,η(α)−1g)

=
∨

α∈F

∑

a∈G

t(α,a)t
∗
(α,a)

=
∨

α∈F

∑

a,b∈G

t(α,a)t
∗
(α,b)

=
∨

α∈F

QαQ
∗
α,

where the equality at * holds for the same reason as in the preceding verification
of property (3).

Thus, we can define a homomorphism π : O(C) → O(D) as the integrated
form of Q. Moreover, π is nondegenerate because π(O(C))O(D) includes all
the projections t(v,g) for (v, g) ∈ C0 ×G = D0.

Next we show that there is a unique homomorphism φ : c0(G) → M(O(D))
such that

(3.3) φ(χg) =
∑

v∈C0

t(v,g) for g ∈ G.

Since the projections t(v,g) for g ∈ G are mutually orthogonal, the above sum
converges in the strict topology to a projection in M(O(D)). Since c0(G)
is generated by the pairwise orthogonal projections χ

g for g ∈ G, and since
for g 6= h, the projections φ(χg) and φ(χh) are orthogonal, formula (3.3)
uniquely determines a homomorphism φ : c0(G) → M(O(D)). Moreover, φ
is nondegenerate because φ(c0(G))O(D) includes all the projections t(v,g) for

(v, g) ∈ C0 ×G = D0.
We verify that the pair (π, φ) is a covariant representation of the coaction

(O(C), δ). For α ∈ C and g ∈ G, we have

π(tα)φ(χg) =
∑

h∈G
v∈C

0

t(α,h)t(v,g).
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In the sum, all terms are 0 except when h = η(v)g = g and v = s(α), and the
sum gives

π(tα)φ(χg) = t(α,g).

On the other hand,

φ(χη(α)g)π(tα) =
∑

v∈C
0

h∈G

t(v,η(α)g)t(α,h),

in which all terms are 0 except when η(α)g = η(α)h, i.e., h = g and v = r(α),
and the sum gives

φ(χη(α)g)π(tα) = t(α,g).

Thus,

π(tα)φ(χg) = φ(χη(α)g)π(tα).

Since the set {tα : α ∈ C} is a set of elements of the spectral subspaces of the
coaction δ that generates the C∗-algebra O(C), it now follows from Lemma 2.3
that the pair (π, φ) is a covariant representation of (O(C), δ).

Now we check that the integrated form Θ = π × φ is an inverse of θ. First,
for all (α, g) ∈ D,

Θ ◦ θ(t(α,g)) = Θ(tα, g)

= (π × φ)(jO(C)(tα)jG(χg))

= π(tα)φ(χg)

= t(α,g),

so Θ ◦ θ = idO(D).
On the other hand, for all α ∈ C,

θ ◦Θ(jO(C)(tα)) = θ(π(tα))

=
∑

g∈G

θ(t(α,g))

=
∑

g∈G

T(α,g)

=
∑

g∈G

(tα, g)

=
∑

g∈G

jO(C)(tα)jG(χg)

= jO(C)(tα)
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(since
∑

g∈G
χ
g = 1 strictly in M(c0(G))), and for all g ∈ G,

θ ◦Θ(jG(χg)) = θ(φ(χg))

=
∑

v∈C0

θ(t(v,g))

=
∑

v∈C0

T(v,g)

=
∑

v∈C0

(tv, g)

=
∑

v∈C0

jO(C)(tv)jG(χg)

= jG(χg)

(since
∑

v∈C0 tv = 1 strictly in M(O(C))), so θ ◦Θ = idO(C)⋊δG.

Finally, we check the γ − δ̂ equivariance. For g ∈ G, we must show that

θ ◦ γg = δ̂g ◦ θ, and it suffices to check this on a generator t(α,h):

(θ ◦ γg)(t(α,h)) = θ(t(α,hg−1))

= (tα, hg
−1)

= δ̂g(tα, h)

= (δ̂g ◦ θ)(t(α,h)). �

When G y D is an action of G on a small category D by category auto-
morphisms, one can form the semi-direct product D ⋊ G, which is a finitely
aligned LCSC if D is. This is not difficult to show directly, but we note that
this follows from [3, Prop. 4.6 and 4.13] by regarding D⋊G as the Zappa–Szép
product of D by G with respect to the trivial category cocycle ϕ0 : D×G → G,
given by ϕ0(α, g) = g for all (α, g) ∈ D ×G.

Corollary 3.9. Assume that C is finitely aligned and let (C ×η G)⋊G denote

the finitely aligned LCSC associated with the canonical action G y (C ×η G).
Then

O((C ×η G)⋊G) ≃ O(C)⊗K(ℓ2(G)).

Proof. It follows from [3, Rem. 5.6 (c)] that O((C×ηG)⋊G) ≃ O(C×ηG)⋊γG.
Thus, using Theorem 3.2, Theorem 3.8, and Katayama crossed-product duality,
we get

O((C ×η G)⋊G) ≃ (O(C)⋊δ G)⋊
δ̂
G ≃ O(C)⊗K(ℓ2(G)). �

Corollary 3.10. Assume that D is a finitely aligned LCSC and G acts by

category automorphisms on D. Then there is a cocycle η0 on the semi-direct-

product D ⋊G given by

η0(α, g) = g,

and

O
(
(D ⋊G)×η0

G
)
≃ O(D) ⊗K(ℓ2(G)).
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Proof. The first statement can be verified using routine computations. Let δ0
be the coaction of G on O(D ⋊ G) associated with η0, according to Proposi-
tion 3.1. Also let β be the action of G on O(D) arising from the action G y D.
Then it is easy to check that the isomorphism O(D ⋊ G) ≃ O(D) ⋊β G from

[3, Rem. 5.6 (c)] is δ0 − β̂ equivariant. Thus, Theorem 3.8 and Imai–Takai
crossed-product duality give

O
(
(D ⋊G)×η0

G
)
≃ O(D ⋊G)⋊δ0 G

≃
(
O(D) ⋊β G

)
⋊

β̂
G

≃ O(D) ⊗K(ℓ2(G)). �

We also include the following result about gauge actions on O(C), which is
an immediate consequence of Theorem 3.8 combined with [9, Appendix A].

Corollary 3.11. Assume that C is finitely aligned and G is abelian. Let Ĝ

denote the dual group and let α denote the action of Ĝ on O(C) corresponding

to δ, which is determined by αγ(tα) = γ(η(α))tα for γ ∈ Ĝ and α ∈ C. Then

O(C ×η G) ≃ O(C)⋊α Ĝ.

Remark 3.12. In the setting of Corollary 3.11, one may introduce a time evo-
lution ω : R → Aut(O(C)) whenever there exists a continuous homomorphism

x 7→ γx from R into Ĝ by defining ωx = αγx for each x ∈ R. In this case, we
have

ωx(tα) = γx(η(α))tα

for all x ∈ R and α ∈ C. Starting with the seminal paper of Laca and Raeburn
on the Toeplitz algebra of the affine semigroup [22], KMS-states for similar time
evolutions on Toeplitz algebras and Cuntz–Krieger algebras of some particular
LCSCs have been investigated during the last decade (see, e.g., [17, 18], where
C is a higher-rank graph, and [1], where C is a right LCM). Thus, a study of
KMS-states for time evolutions of the type described above for other LCSCs
would be natural in the future.

4. Free actions of groups on LCSCs

Assume that a discrete group G acts on a small category D by automor-
phisms, and that this action is free in the sense that for all g ∈ G and λ ∈ D,
g · λ = λ implies g = e (the unit of G).

We may then define the quotient small category D/G as follows. Setting
[λ] = {g · λ : g ∈ G} for λ ∈ D, we define D/G as a set by D/G = {[λ] : λ ∈
D}. Put (D/G)0 = {[v] : v ∈ D0}, and let the range and the source maps
r, s : D/G → (D/G)0 be given by r([λ]) = [r(λ)] and s([λ]) = [s(λ)].

Let λ, µ ∈ D be such that ([λ], [µ]) is composable in D/G. Then

[s(λ)] = s([λ]) = r([µ]) = [r(µ)],

so there exists g ∈ G such that s(λ) = g · r(µ) = r(g · µ), and g is uniquely
determined since the action G y D is free. Moreover, if λ′ = h ·λ and µ′ = k ·µ
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for h, k ∈ G, then we have

h · (λ(g · µ)) = (h · λ)((hg) · µ) = λ′((hgk−1) · µ′) = λ′(g′ · µ′),

with g′ = hgk−1. It follows that the product

[λ][µ] = [λ(g · µ)]

is well defined whenever s([λ]) = r([µ]), where g ∈ G is determined as above.
It is then routine to check that the remaining properties necessary for D/G to
become a small category hold.

We note that the quotient map q : D → D/G sending λ to [λ] is a functor.
For if (λ, µ) is a composable pair in D, then we have

s([λ]) = [s(λ)] = [r(µ)] = r([µ]),

so ([λ], [µ]) is a composable pair in D/G; as s(λ) = e · r(µ), we get

q(λµ) = [λµ] = [λ(1 · µ)] = [λ][µ].

We record this in the following:

Proposition 4.1. Assume that D is a small category and G y D is a free

action by automorphisms. Then D/G is a small category and the quotient map

is a functor. Moreover, if D is a LCSC, then D/G is too.

Proof. It only remains to check the last assertion. Let ([λ], [µ]), ([λ], [µ′]) be
composable pairs in D/G and assume that [λ][µ] = [λ][µ′]. Then [λ(g · µ)] =
[λ(g′ · µ′)] for some g, g′ ∈ G, and this implies that

λ(g · µ) = h ·
(
λ(g′ · µ′)

)
= (h · λ)((hg′) · µ′)

for some h ∈ G. Thus, we have r(λ) = r(h ·λ) = h · r(λ), so h = e (by freeness
of the G-action). This gives that

λ(g · µ) = λ(g′ · µ′),

hence that g ·µ = g′ ·µ′ (by left cancellativity of D). This implies that [µ] = [µ′],
as desired. �

We will see in Corollary 4.5 that if D/G is finitely aligned, then D is too.
One may wonder whether the converse holds. Here are some observations
concerning this problem.

Lemma 4.2. Assume that D is a LCSC and G y D is a free action by

automorphisms, and let q : D → D/G denote the quotient map.

Let [λ], [µ] ∈ D/G. Then we have [λ](D/G) ∩ [µ](D/G) 6= ∅ if and only if

there exists some k ∈ G such that λD ∩ (k · µ)D 6= ∅, in which case we have

[λ](D/G) ∩ [µ](D/G) =
⋃

t∈G

q
(
λD ∩ (t · µ)D

)
.
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Proof. Assume first that [λ](D/G) ∩ [µ](D/G) 6= ∅ and let [ν] ∈ [λ](D/G) ∩
[µ](D/G). Then we have

[ν] = [λ(g · γ)] = [µ(h · δ)]

for some λ, γ, µ, δ ∈ D and some g, h ∈ G such that s(λ) = r(g · γ) and
s(µ) = r(h · δ). This implies that there exists k ∈ G such that

λ(g · γ) = k · (µ(h · δ)) = (k · µ)(k · (h · δ)).

Thus, λD ∩ (k · µ)D 6= ∅, and [ν] ∈ q(λD ∩ (k · µ)D). This also shows that
[λ](D/G) ∩ [µ](D/G) ⊆

⋃
t∈G q(λD ∩ (t · µ)D).

Conversely, assume that λD ∩ (k · µ)D 6= ∅ for some k ∈ G, and let α =
q(ν) = [ν], where ν ∈ λD ∩ (k · µ)D. Then there exist γ′, δ′ ∈ D such that
s(λ) = r(γ′), s(k · µ) = r(δ′) and

ν = λγ′ = (k · µ)δ′.

Thus, we get that

α = [λγ′] = [λ][γ′] = [(k · µ)δ′] = [k · µ][δ′] = [µ][δ′].

Hence, α ∈ [λ](D/G)∩[µ](D/G), so [λ](D/G)∩[µ](D/G) 6= ∅. This also shows
that

⋃
t∈G q(λD∩ (t ·µ)D) ⊆ [λ](D/G)∩ [µ](D/G). Altogether, this proves the

lemma. �

Now, let D and G y D be as in Lemma 4.2. Assume that D is finitely
aligned and [λ](D/G) ∩ [µ](D/G) 6= ∅. Set

K = {k ∈ G : λD ∩ (k · µ)D 6= ∅}

and note that K is nonempty. Moreover, for each k ∈ K, we can find a
nonempty finite subset Fk of D such that

λD ∩ (k · µ)D =
⋃

ω∈Fk

ωD.

Set F =
⋃

k∈K Fk. Then we get that

[λ](D/G) ∩ [µ](D/G) =
⋃

k∈K

q
(
λD ∩ (k · µ)D

)

=
⋃

k∈K

q
( ⋃

ω∈Fk

ωD
)

=
⋃

ω∈F

[ω](D/G).

To be able to conclude that D/G is finitely aligned, we would like to show
that

⋃
ω∈F [ω](D/G) =

⋃
[ω]∈A[ω](D/G) for some finite subset A of D/G. It is

not clear to us that this is true in general. Anyhow, if G is finite, then F is
finite, so the desired equality is obviously true. So we can at least record the
following:

Proposition 4.3. Assume D is a finitely aligned LCSC, and G y D is a free

action of a finite group G. Then D/G is also a finitely aligned LCSC.
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Let now C be a small category and let η : C → G be a cocycle into a discrete
group G. Recall from Lemma 3.7 that G acts on the skew product category
C ×η G by

g · (β, h) = (β, hg−1).

It is immediate that this action of G on C ×η G is free, and that the resulting
quotient category (C ×η G)/G is isomorphic to C, via the (well-defined) map
[(β, h)] 7→ β.

Conversely, the following analog of the Gross–Tucker theorem for free ac-
tions of groups on directed graphs (cp. [15]) holds:

Theorem 4.4 (Gross–Tucker). Assume D is a small category and G y D is

a free action by automorphisms. Then there exists a cocycle η : D/G → G such

that D is equivariantly isomorphic to (D/G)×η G.

Proof. We expand the proof briefly sketched by Kumjian and Pask in the case
where D is a higher rank graph (cp. [20, Rem. 5.6]).

First, for each w ∈ (D/G)0, choose vw ∈ D0 such that [vw] = w. Next, let
α ∈ D/G, so α = [λ] = {g · λ : g ∈ G} for some λ ∈ D. Since G acts freely
on D, the map g 7→ g · λ is a bijection from G onto α. Moreover, since

[vr(α)] = r(α) = r([λ]) = [r(λ)],

there is a unique g ∈ G such that vr(α) = g ·r(λ), i.e., such that vr(α) = r(g ·λ).
Thus, we get that λα := g · λ is the unique element of D such that

[λα] = α and r(λα) = vr(α).

Since [s(λα)] = s(α) = [vs(α)], we also have that there is a unique element
η(α) ∈ G such that

s(λα) = η(α) · vs(α).

Assume now that β ∈ D/G, and r(β) = s(α). Note that

r(η(α) · λβ) = η(α) · r(λβ) = η(α) · vr(β) = η(α) · vs(α) = s(λα).

Thus, the pair (λα, η(α) · λβ) is composable in D. Since

[λα(η(α) · λβ)] = [λα][η(α) · λβ ] = α[λβ ] = αβ

and

r
(
λα(η(α) · λβ)

)
= r(λα) = vr(α) = vr(αβ) = r(λαβ),

we get that

λαβ = λα(η(α) · λβ).
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This gives that

η(αβ) · vs(β) = η(αβ) · vs(αβ)

= s(λαβ)

= s(λα(η(α) · λβ))

= s(η(α) · λβ)

= η(α) · s(λβ)

= η(α) · (η(β) · vs(β))

= (η(α)η(β)) · vs(β),

hence that η(αβ) = η(α)η(β), by freeness of the G-action. This shows that
the map η : D/G → G is a cocycle.

We may then define ρ : (D/G) ×η G → D by ρ(α, g) = (η(α)g)−1 · λα. It is
routine to check that ρ is an equivariant isomorphism. As a sample, we show
that ρ is a functor. Let ((α, g), (β, h)) be a composable pair in (D/G) ×η G.
Then we have that g = η(β)h, so we get

ρ
(
(α, g)(β, h)

)
= ρ(αβ, h)

= (η(αβ)h)−1 · λαβ

= (η(α)g)−1 ·
(
λα(η(α) · λβ)

)

=
(
(η(α)g)−1 · λα

)(
((η(α)g)−1η(α)) · λβ

)

=
(
(η(α)g)−1 · λα

)(
(η(β)h)−1 · λβ

)

= ρ(α, g)ρ(β, h). �

Corollary 4.5. Assume D is a LCSC, G y D is a free action by automor-

phisms, and D/G is finitely aligned. Then D is finitely aligned. Moreover,

there exists a coaction δ of G on O(D/G) such that

O(D) ≃ O(D/G) ⋊δ G.

Also, letting β denote the natural action of G on O(D) arising from the action

G y D, we have that

O(D) ⋊β G ≃ O(D/G) ⊗K(ℓ2(G)).

Proof. The first assertion follows from Theorem 4.4 and Lemma 3.6. Next,
Theorem 4.4 gives us a cocycle η : D/G → G such that, letting δ denote the
associated coaction of G on O(D/G), and using Theorem 3.8, we get

O(D) ≃ O((D/G) ×η G) ≃ O(D/G) ⋊δ G.

Also, letting γ denote the induced action of G on O((D/G) ×η G), and using
Corollary 3.9, we get

O(D) ⋊β G ≃ O((D/G) ×η G)⋊γ G ≃ O(D/G) ⊗K(ℓ2(G)). �
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5. Invariant cocycles and Zappa–Szép products

Let (C, H, ϕ) be a category system in the sense of [3, Definition 4.1]. Thus,
C is a small category, H is a group acting on the set C by permutations in such
way that

r(hα) = hr(α) and s(hα) = hs(α) for all h ∈ H,α ∈ C,

and ϕ : H × C → H is a category cocycle for this action. Further, let C ⋊
ϕ H

denote the Zappa–Szép product of (C, H, ϕ).
Assume that C is a finitely aligned LCSC. Then C ⋊

ϕ H is also a finitely
aligned LCSC, cp. [3, Prop. 4.6 and 4.13]. Moreover, assume that ψ : C → G
is a cocycle into a group G that is H-invariant in the sense that ψ(hα) = ψ(α)
for all h ∈ H,α ∈ C.

We can then promote ψ to a cocycle ηψ : C ⋊
ϕ H → G by setting

ηψ(α, h) = ψ(α) for all h ∈ H,α ∈ C.

Indeed, for any (α, h), (β, h′) ∈ C ⋊
ϕ H with s(α, h) = r(β, h′), that is, such

that h−1s(α) = r(β), we have

ηψ
(
(α, h)(β, h′)

)
= ηψ

(
α(hβ), ϕ(h, β)h′

)

= ψ(α(hβ))

= ψ(α)ψ(β)

= ηψ(α, h)ηψ(β, h
′).

Under the same assumptions, it is easy to check that we can also define a
category system (C ×ψ G,H, ϕ̃) by setting h(α, g) = (hα, g) and ϕ̃(h, (α, g)) =
ϕ(α, g) for all h ∈ H and (α, g) ∈ C ×ψ G. Then it is routine to verify that the
map ((α, h), g) 7→ ((α, g), h) gives an isomorphism from (C ⋊

ϕ H)×ηψ G onto

(C ×ψ G)⋊ϕ̃ H .
As a special case, let us consider an Exel–Pardo system (E,H,ϕ), cp. [13, 2],

and the associated category system (E∗, H, ϕ), cp. [3]. So, E = (E0, E1, r, s)
is a directed graph, ϕ is a graph cocycle for an action of H on E, and E∗ is the
category of finite paths in E. Since E∗ is a finitely aligned LCSC (in fact, it
is singly aligned), this fits within the above setting. Let f : E1 → G be a map
into a group G. Then f induces a cocycle ψf : E

∗ → G in the obvious way.
Assume that f is constant on each orbit of the action of H on E1, so f may be
considered as a function f : E1/H → G. Then ψf is easily seen to be invariant
under the associated action ofH on E∗ (cp. [3, Ex. 4.4]). Thus, in this case, we
obtain a G-valued cocycle ηf := ηψf on E∗

⋊
ϕ H , given by ηf (v, h) = eG (the

unit of G) and ηf (α, h) = f(e1) · · · f(en) for all v ∈ E0, α = e1 · · · en ∈ E∗ \E0

and h ∈ H . If we, for example, choose G = Z and let f : E1 → Z be the
function constantly equal to 1, we get that ηf (α, h) = ψf (α) = ℓ(α) (i.e., the
length of α) for all α ∈ E∗ and h ∈ H .
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Applying our previous work to the above set-up, we get the following result:

Proposition 5.1. Let (E,H,ϕ) be an Exel–Pardo system, G a group, and

f : E1/H → G a map. Then f induces a G-valued cocycle ηf on the Zappa–

Szép product category E∗
⋊

ϕ H, which gives rise to a coaction δf of G on

O(E∗
⋊

ϕ H) such that

O(E∗
⋊

ϕ H)⋊δf G ≃ O((E∗
⋊

ϕ H)×ηf G).

This result makes it possible to write O(E∗
⋊

ϕH) as the C∗-algebra of a Fell
bundle over G for different choices of G and f , which might be useful to study
properties O(E∗

⋊
ϕ H). We remark that if E is row-finite, then [3, Cor. 6.8]

gives that O(E∗
⋊

ϕ H) is isomorphic to the Exel–Pardo algebra associated to
(E,H,ϕ).

Specializing further, let us assume for simplicity that E is a finite graph onN
vertices with no sources (although the last condition is not really necessary).
Ordering the vertices from 1 to N , the edge set E1 is determined by an N ×N
adjacency matrix A = [ai,j ] with entries in N ∪ {0} having no zero columns.
Then any N×N matrix B with entries in Z determines an Exel–Pardo system
(E,Z, ϕB) (where Z fixes all vertices of E), cp. [13, 2], thus giving rise to the
(singly aligned) LCSC

KA,B := E∗
⋊

ϕB Z.

Combining [13], [2] and [3], one deduces that O(KA,B) is isomorphic to the
Katsura algebra OA,B introduced in [19]. Hence the set-up described above
enables one to define G-valued cocycles of the type ηf on KA,B, hence coactions
of G on OA,B, for any group G. As the set E1

i,j of edges in E from j to i,
which consists of ai,j elements, is left invariant by the action of Z, we may,
for example, pick an element gi,j ∈ G for every (i, j) ∈ N ×N satisfying that
ai,j 6= 0 and define f : E1 → G by f(e) = gi,j whenever e ∈ E1

i,j . We note
that, more generally, we could have handled in a similar way any countable
row-finite graph E having no sources, as in [19].

6. On the universal group of a small category

Let C denote a small category. A natural question is whether C has a
universal group (U, j), in the sense that j : C → U is a cocycle into a group
U such that for every cocycle ψ from C into a group H , there exists a unique
group homomorphism ψ′ making the diagram

C
j

//

ψ ��
❅❅

❅❅
❅❅

❅ U

ψ′!
��
✤

✤

✤

H

commute. This question may be answered positively by applying a more gen-
eral construction due to Higgins [16, Prop. 19, p. 65]. We provide here a
self-contained proof of this result.
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Proposition 6.1. Every small category C has a universal group (U, j).

Proof. Let C be a set disjoint from C having the same cardinality as C, and fix
a bijection C → C. We write the image of α ∈ C in C as α. Let F(C) denote
the free group on the set C, and let R ⊆ F(C) be given by

R =
{
αβ (αβ)−1 : α, β ∈ C, s(α) = r(β)

}
.

Let then U be the group with presentation 〈C |R〉, that is,

U = F(C)/N(R),

where N(R) denotes the normal closure of R in F(C). For each f ∈ F(C),
we write [f ] for the coset fN(R) ∈ U , so that f 7→ [f ] gives the canonical
homomorphism from F(C) onto U . We may then define a map j : C → U by
j(α) = [α] for each α ∈ C. For each α, β ∈ C such that s(α) = r(β), we have

j(αβ) = [αβ] = [αβ] = [α] [β] = j(α)j(β),

so j is a cocycle.
Consider now a cocycle ψ from C into a group H . By the universal property

of F(C), there is a unique homomorphism ϕ : F(C) → H satisfying ϕ(α) = ψ(α)
for each α ∈ C. For α, β ∈ C such that s(α) = r(β), we then have

ϕ
(
αβ (αβ)−1

)
= ϕ(α)ϕ(β)ϕ(αβ)−1

= ψ(α)ψ(β)ψ(αβ)−1

= ψ(α)ψ(β)ψ(β)−1ψ(α)−1

= e (the unit of H).

Thus, R is contained in the normal subgroup ker(ϕ), and it follows thatN(R) ⊆
ker(ϕ). Hence, the map ψ′ : U → H given by

ψ′
(
[f ]

)
= ϕ(f) for all f ∈ F(C)

is a well-defined homomorphism. Moreover, we have

(ψ′ ◦ j)(α) = ψ′([α]) = ϕ(α) = ψ(α)

for every α ∈ C, as desired. Finally, assume φ is also a homomorphism from U
into H such that ψ = φ ◦ j. Then for every α ∈ C, we have

φ(j(α)) = ψ([α]) = ψ′(j(α)).

As the range of j generates U as a group, we get that φ = ψ′. �

Remark 6.2. By universality, it follows readily that if (U, j) and (U ′, j′)
are universal groups for C, then they are uniquely isomorphic, in the sense
that there is a unique isomorphism π : U → U ′ making the following diagram
commute:

C
j

//

j′ ��
❅❅

❅❅
❅❅

❅ U

π≃

��

U ′.
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When we want to display the attachment of a universal group U to a small
category C, we write U(C). We also sometimes write jC instead of j for the
canonical cocycle from C into U(C).

Remark 6.3. If D is a small category and Φ: C → D is a functor, then
jD ◦ Φ is a cocycle from C into U(D), so there is a unique homomorphism
Φ∗ : U(C) → U(D) such that Φ∗ ◦ jC = jD ◦Φ.

Remark 6.4. Gould and Kambites [14, Thm. 2.3] have shown that there exists
a faithful functor σC from C into a left cancellative monoid M(C) such that
(M(C), σC) is universal. By considering U(C) as a monoid ,we get that there
exists a unique homomorphism ℓ : M(C) → U(C) such that jC = σC ◦ ℓ.

Remark 6.5. Assume that C is left cancellative. Recall from [3] that we write
ZM(C) for the inverse semigroup with zero consisting of zigzag maps associated
with C. Let τ : C → ZM(C) denote the canonical map, i.e., τα : s(α)C → αC
is given by τα(β) = αβ for each α ∈ C. As observed by Margolis (see [23]),
every inverse semigroup S with zero has a universal group U(S). To state the
universal property of this group, recall that a partial homomorphism from S
to a group G is a map ϕ : S \ {0} → G such that ϕ(st) = ϕ(s)ϕ(t) whenever
st 6= 0. Then the identity map on S induces a partial homomorphism ι from S
to U(S), and any partial homomorphism from S into a group factors through ι
via a group homomorphism. Applying this when S = ZM(C), we get a cocycle
η : C → U(ZM(C)) by setting η = ι ◦ τ . Proposition 6.1 then gives a unique
homomorphism η′ : U(C) → U(ZM(C)) such that η = η′ ◦ jC , i.e., making the
diagram

C
jC

//

τ

��

η

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲ U(C)

η′

��
✤

✤

✤

ZM(C)
ι // U(ZM(C))

commute.

We now discuss the relationships among the universal group of a small
category C, the fundamental groupoid of C, and the fundamental group of C.
We first give a short review of the latter two concepts. Much of this is in [4,
Appendix A] and [27]. The development in the latter paper is for higher-rank
graphs, but carries over to the setting of small categories by deleting everything
to do with the degree functors. The main motivation in [4, Appendix A] and
[27] comes from the theory of coverings.

Let G be a groupoid and i : C → G a functor. The pair (G, i) is called a
fundamental groupoid of C if for every functor φ from C to a groupoid H, there
exists a unique groupoid morphism φ′ making the following diagram commute:

C
i //

φ
��
❄❄

❄❄
❄❄

❄ G

φ′!

��
✤
✤
✤

H.
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The functor i : C → G takes C0 bijectively onto G0, and we identify them, so
that C0 = G0. It follows, as usual, from universality that any two fundamental
groupoids (G, i) and (G′, i′) of C are uniquely isomorphic in the sense that there
is a unique groupoid isomorphism making the diagram

C
i //

i′ ��
❄❄

❄❄
❄❄

❄❄
G

≃

��

G′

commute.
Every small category C has a fundamental groupoid (G(C), iC): a construc-

tion may be found, for example, in [32, Section 19.1], where G(C) = C[C−1] is
the groupoid obtained as the category of fractions associated to C. Alterna-
tively, the reader may consult [4, III. CC.A], or [7, Section II.3.1], where the
fundamental groupoid of C is called the enveloping groupoid. We stress that, in
general, a small category C does not embed in G(C). Of course, C would have
to be cancellative, but this is not enough. It is also not enough for C to be a
higher-rank graph (see [26, Section 7]), although the embedding does hold for
graphs of rank 1, i.e., directed graphs. Some sufficient Ore-type conditions for
this to hold are given in [7, Section II.3.2].

The assignment C 7→ iC gives a natural transformation from the identity
functor to the functor C 7→ G(C), in the strong sense that for any functor
φ : C → D between small categories, the map φ∗ is the unique groupoid mor-
phism making the diagram

C

φ

��

iC // G(C)

φ∗

��

D
iD

// G(D)

commute.
We next recall that C is said to be connected if the equivalence relation

generated by {(v, w) ∈ C0 × C0 : vCw 6= ∅} is C0 × C0. This happens if and
only if G(C) is connected, i.e., if vG(C)w 6= ∅ for all v, w ∈ C0.

Assume that C is connected. Then the isotropy group

π(C, v) := vG(C)v

is called the fundamental group of C at v ∈ C0. For any v, w in C0 the groups
π(C, v) and π(C, w) are isomorphic, so any of these groups gives the fundamen-

tal group π(C) of C. Moreover, if v ∈ C0, then there exists a cocycle η from
G(C) into π(C, v). Indeed, for each w ∈ C0, we can pick tw ∈ wG(C)v, and set

η(a) = t−1
r(a)ats(a)

for each a ∈ G(C). The map η ◦ iC : C → π(C, v) is then a cocycle on C. It
can be shown that the canonical projection from the skew product C×η π(C, v)
onto C gives a universal covering of C (cp. [27]).
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Remark 6.6. Since U(C) is a groupoid, there is a unique cocycle k : G(C) →
U(C) such that j = k◦iC . More generally, every cocycle ψ : C → H into a group
H factors uniquely through a cocycle φ : G(C) → H . It follows that U(C) is
isomorphic to U(G(C)). Thus, to study universal groups of small categories we
might as well consider groupoids, as we do in the sequel.

Let G be a groupoid. For each x ∈ G0 let Gx = xGx denote the isotropy
group of G at x. We first assume that G is connected. Then it is well known
that G is isomorphic as a groupoid to the product (G0×G0)×Gx for any x ∈ G0,
where G0 ×G0 denotes the groupoid associated to the full equivalence relation
on G0. Indeed, begin by fixing x ∈ G0, and for each y ∈ G0, fix ty ∈ yGx, with
tx = x. Then the map

θ : G → (G0 × G0)× Gx,

defined for any a ∈ zGy by

θ(a) =
(
(z, y), t−1

z aty
)
,

is an isomorphism, with inverse given by θ−1((z, y), h) = tzht
−1
y .

In the above discussion, we used a convenient type of subset of G that we
will need again, so we pause to give it a name:

Definition 6.7. Let G be a connected groupoid, and pick x ∈ G0. For each
y ∈ G0, choose ty ∈ yGx, with tx = x. We call T = {ty}x∈G0 a maximal tree

in G rooted at x.

Proposition 6.8. Let G be a connected groupoid. Fix x ∈ G0, and let T =
{ty}y∈G0 be a maximal tree in G rooted at x. Let H = Gx be the isotropy group

of G at x. Let S = G0 \ {x}, and define

j : G → F(S) ∗H

by

j(a) = z(t−1
z aty)y

−1 for a ∈ zGy.

Then (F(S) ∗H, j) is a universal group of G.

Proof. First we verify that j is a cocycle: for a ∈ zGy, b ∈ yGu,

j(a)j(b) = z(t−1
z aty)y

−1y(t−1
y btu)u

−1

= z(t−1
z abtu)u

−1

= j(ab).

We now verify the universal property. Let ψ : G → K be any cocycle. To
define a group homomorphism

ψ′ : F(S) ∗H → K,

we need to choose elements {ky}y∈S in K and a homomorphism ρ : H → K.
We choose

ky = ψ(ty) and ρ = ψ|H ,
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and let ψ′ : F(S)∗H → K be the associated homomorphism. Then for a ∈ zGy,
we have

(ψ′ ◦ j)(a) = ψ′
(
z(t−1

z aty)y
−1

)
= kz ρ

(
t−1
z aty

)
k−1
y

= ψ(tz)ψ
(
t−1
z aty

)
ψ(ty)

−1 = ψ
(
tzt

−1
z atyty

−1
)
= ψ(a). �

Corollary 6.9. Assume that C is a connected small category. Pick any v ∈ C0

and set S = C0 \ {v}. Then U(C) ≃ F(S) ∗ π(C).

A maximal connected subgroupoid of a groupoid G is called a component

of G. Clearly, G is then a disjoint union of its components. Letting {Gλ}λ∈Λ

denote a partition of G into its components, we get

U(G) ≃ ⋆λ∈ΛU(Gλ).

The proof of this fact is quite standard, and goes as follows. First, for each λ,
let jλ : Gλ → U(Gλ) denote the canonical functor, and identify U(Gλ) with its
canonical image in the free product G = ⋆λ∈ΛU(Gλ). Then we get a functor
j : G → G by defining j(a) = jλ(a) whenever a ∈ Gλ. Next, assume that φ is a
cocycle from G into some group H . For each λ, let φλ denote the restriction of
φ to Gλ, and let φ′

λ : U(Gλ) → H denote the homomorphism associated to this
cocycle. Using the universal property of G, we get that there exists a unique
homomorphism φ′ : G → H such that φ′ restricts to φ′

λ on U(Gλ) for each λ.
By construction, we have that φ′ ◦ j = φ. Hence, we have shown that (G, j) is
a universal group of G, as desired.

Combining this result with Proposition 6.8, we get the following description
of the universal group of a groupoid.

Theorem 6.10. Let G be a groupoid and let {Gλ}λ∈Λ denote a partition of G
into its components. For each λ ∈ Λ, pick xλ ∈ G0

λ and set Sλ = G0
λ \ {xλ}.

Then U(G) is isomorphic to the free product

⋆λ∈Λ

(
F(Sλ) ∗ π(Gλ)

)
.

It follows that the universal group of a small category C is nontrivial when-
ever the fundamental groupoid of C is nontrivial.

7. Coverings and connectedness of skew products

We will use the theory of coverings of small categories to help decide when
skew products are connected. Much of the following is in [4, Appendix A] and
[27]. The development in the latter paper is for k-graphs, but carries over to
the setting of small categories by deleting everything to do with the degree
functors. Thus, many of the results are just a routine reformulation of the
similar results from [27], and we therefore skip their proofs.

Definition 7.1. A covering of a small category C is a surjective functor
p : D → C, where D is a small category, such that for every v ∈ D0, the restric-
tions

Dv → Cp(v) and vD → p(v)C
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are bijective. If q : E → C is another covering, a morphism from (D, p) to (E , q)
is a functor φ : D → E making the diagram

D
φ

//

p
��
❄❄

❄❄
❄❄

❄❄
E

q
����
��
��
��

C

commute. A covering p : D → C is connected if D (and hence C) is connected.

The class of all coverings of a small category C is a category with the above
morphisms.

Definition 7.2. An action of small category C on a set V is a functor from C
to the category of sets such that
(i) V is the disjoint union of the sets Vx associated to the vertices x of C;
(ii) for every α ∈ yCx, the associated map v 7→ αv from Vx to Vy is bijective.
We write the action as C y V .

The above definition reduces to the familiar notion of groupoid action when
C is a groupoid. Much of the theory of groupoid actions carries over to category
actions. For example:

Proposition 7.3. Let C y V be an action of a small category C. Then the

set

C ∗ V = {(α, v) : α ∈ C, v ∈ Vs(α)}

becomes a small category with vertex set

(C ∗ V )0 = C0 ∗ V ⊆ C ∗ V

and operations

• s(α, v) = (s(α), v),
• r(α, v) = (r(α), αv),
• (α, βw)(β,w) = (αβ,w).

Proof. As mentioned at the start of the proof of [27, Prop. 3.3] in the case of
k-graphs, this is a completely routine adaptation of the special case where C
is a groupoid. �

Note that if C is a groupoid, then so is C ∗ V .

Lemma 7.4. Let C be a small category with fundamental groupoid (G, i). For

every action C y V of C on a set V , there is a unique action G y V such that

i(α)v = αv for all (α, v) ∈ C ∗ V.

Moreover, every action of G arises in this way from a unique action of C.

Proof. An action of C is a functor from C into the groupoid of bijections among
the sets {Vx}x∈C0 . By universality, this functor factors uniquely through the
canonical functor i : C → G, giving an action G y V . In the other direction,
any action of G, when composed with i, trivially gives an action of C, from
which the groupoid action can be recovered by the above argument. �
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The preceding lemma gives a bijection between actions of C and of G(C).

Proposition 7.5 ([27, Thm. 3.7]). Let p : D → C be a covering, and let (H, j)
and (G, i) be the fundamental groupoids of D and C, respectively. Then the

associated groupoid morphism p∗ : H → G is also a covering. Equivalently, the

map

(p∗, s) : H → G ∗ D0

is a groupoid isomorphism.

Proof. The proof of the second statement is a routine modification of the proof
of [27, Thm. 3.7], in which the roles of C and D are played by k-graphs Λ and Ω,
respectively, and the modifications are as follows:
• the “skeletons” E and F of Λ and Ω should now be the underlying graphs

of C and D, and
• the sets of “commuting squares” SΛ and SΩ are to be replaced by the sets

of relations KC and KD determined by the composition operations of C
and D, respectively, e.g.,

KC = {(αβ, γ) : α, β, γ ∈ P(E), αβ = γ in C}.

Then the crux of the argument is a careful analysis of the commuting diagram
(see the proof of [27, Thm. 3.7] for undefined notation)

P(F+)
R //

q∗

��

(q∗,s) ≃

  

H

p∗

��

(p∗,s)

~~

F+

q

��

3 S

ee❑❑❑❑❑❑❑❑❑❑

F

p

��

?
_oo

j

<<②②②②②②②②②

E+
K
k

yyss
ss
ss
ss
ss

E?
_oo

i

""❊
❊❊

❊❊
❊❊

❊❊
❊

P(E+)
Q

// G

P(E+) ∗ D0

Q∗id
//

π1

OO

G ∗ D0.

π1

OO

To see that the second statement implies the first, note that the isomorphism
H ≃ G ∗D0 takes the morphism p∗ to the coordinate projection pG . It follows
that p∗ mapsHv injectively onto Gx, and so is a groupoid covering. Conversely,
the first statement implies the second because if we take H = G ∗ D0, then p∗
is the coordinate projection pG given by

pG(a, v) = a for (a, v) ∈ G ∗ D0. �

A groupoid action G y V on a set V is called transitive if Gv = V for
some—and hence every—v ∈ V .
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Corollary 7.6. Let p : D → C be a covering, and let (H, j) and (G, i) be the

fundamental groupoids of D and C, respectively. Then D is connected if and

only if the corresponding groupoid action G y D0 is transitive.

Proof. The category D is connected if and only if H, equivalently, G ∗ D0, is.
For (a, v) ∈ G ∗ D0, we have s(a, v) = (s(a), v) and r(a, v) = (r(a), av). It
follows that H is connected if and only if for all u, v ∈ D0, there exists a ∈ G
such that u = av, i.e., if and only if G acts transitively on D0. �

Corollary 7.7 ([27, Thm. 2.5]). Let p : D → C be a connected covering, x ∈ C0,

and v ∈ p−1(x). Then the normalizer N of p∗(π(C, v)) in π(C, x) acts on the

covering (D, p) by automorphisms, and in fact

Aut(D, p) ≃ N/p∗π(D, v).

Corollary 7.8 ([27, Cor. 3.9]). Let p : D → C be a covering, and let x ∈ C0

and v ∈ p−1(x). Then p∗ maps the fundamental group π(D, v) isomorphically

onto the stability group Sv of the corresponding groupoid action G(C) y D0.

Proof. Since p∗ is a covering, it maps π(D, v) isomorphically onto some sub-
group of π(G, x). For c ∈ Hv and a = p∗(c), we have av = r(c), so c ∈ π(D, v)
if and only if a ∈ Sv. The result follows. �

Classification of transitive groupoid actions. For the ease of the reader,
we collect here some results from [27].

Proposition 7.9 ([27, Prop. 4.1]). Let G y V be a transitive groupoid action

on a set V and x ∈ G0. Then the family {Sv : v ∈ Vx} is a conjugacy class of

subgroups of Gx.

Proposition 7.10 ([27, Prop. 4.2]). Let a groupoid G act transitively on both

V and U , and let x ∈ G0, v ∈ Vx, and u ∈ Ux. Then there is a morphism

(G y V ) → (G y U) taking v to u if and only if Sv ⊆ Su.

Proposition 7.11 ([27, Prop. 4.3]). Let G y V be a transitive groupoid action,

and let x ∈ G0 and v ∈ Vx. Then the normalizer N(Sv) of Sv in Gx acts on

the right of the action G y V by automorphisms, and this gives rise to an

isomorphism

Aut(G y V ) ≃ N(Sv)/Sv.

If η : G → G is a cocycle into a group G, the associated cocycle action

G y (G0 ×G) is given by

a
(
s(a), g

)
=

(
r(a), η(a)g

)
.

We write G0 ×η G to indicate the set G0×G equipped with the cocycle action.

Proposition 7.12 ([27, Prop. 4.5]). Let G be a connected groupoid and x ∈ G0.

There is a cocycle η : G → Gx such that the associated action G y (G0 ×η Gx)
is free and transitive.
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Note that if a group G acts on the right of a groupoid action G y V by
automorphisms, then G acts on the orbit space V/G by

α · (vG) = (α · v)G.

Proposition 7.13 ([27, Prop. 4.6]). Let G y V be a free and transitive

groupoid action, x ∈ G0, v ∈ Vx, and H a subgroup of Gx. Let H y (G y V )
as in Proposition 7.11. Then the associated action G y V/H is transitive, and

H = SvH .

Universal coverings of small categories.

Definition 7.14. A covering q : E → C of small categories is universal if it
is connected and for every connected covering p : D → C, there is a unique
morphism φ : (E , q) → (D, p).

Theorem 7.15 ([27, Thm. 2.7]). Every connected small category C has a

universal covering, any two universal coverings are uniquely isomorphic, and

a connected covering q : E → C is universal if and only if π(E , v) = {v} for

some (and hence every) v ∈ E0.

Theorem 7.16 ([27, Thm. 2.8]). Let q : E → C be a universal covering, x ∈ C0,

v ∈ q−1(x), and H a subgroup of π(C, x). Let H act on the covering (E , q) as

in Theorem 7.7. Then the associated covering p : E/H → C is connected, and

H = p∗(π(E/H, vH).

Moreover, every connected covering of C is isomorphic to one of the above

coverings E/H → C.

Theorem 7.17 ([27, Cor. 5.5]). If p : D → C is a connected covering, then the

following are equivalent:

(i) p : D → C is universal;

(ii) the corresponding action G(C) y D0 is free;

(iii) π(D, v) = {v} for some (and hence every) v ∈ D0.

Theorem 7.18 ([27, Cor. 6.5]). Let C be a connected small category and let

x ∈ C0. Then there is a cocycle η : C → π(C, x) such that the associated skew-

product covering

C ×η π(C, x) → C

is universal.

Proposition 7.19 ([27, Prop. 6.6]). Let C be a small category and η : C → G a

cocycle. Then G acts freely on the right of the skew-product covering C×ηG →
C via

(α, g)h = (α, gh) for α ∈ C, g, h ∈ G.
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Connected skew products. We are interested in when skew products of
cocycles on groupoids or, more generally (in fact, in some sense equivalently),
on small categories, are connected. We will use the following concept.

Definition 7.20. Let G be a groupoid and H ⊆ G a subgroupoid. A retraction

of G on H is a morphism φ : G → H that is the identity map on H.

Lemma 7.21. Let G be a connected groupoid, x ∈ G0, and T = {ty}y∈G0 a

maximal tree rooted at x. Define a cocycle η : G → Gx by

η(a) = t−1
z aty if a ∈ zGy.

Then η is a retraction whose kernel contains T . Moreover, every retraction

G → Gx is of this form for a unique maximal tree rooted at x.

Proof. The first statement is routine. For the second, suppose that η : G → Gx

is a retraction. For each y ∈ G0, choose any a ∈ yGx, and define

ty = aη(a)−1.

Because η is a retraction, ty is independent of the choice of a, and is in ker η.
Moreover, tx = x, so T = {ty}y∈G0 is a maximal tree rooted at x. A trivial
computation shows that η(a) = t−1

z aty for a ∈ zGy. It follows quickly from
the definition of retraction that η maps each set yGx bijectively onto Gx, so
the intersection yGx ∩ ker η contains only ty, proving uniqueness of T . �

Remark 7.22. If ψ : G → G is a cocycle on a groupoid G, one obvious nec-
essary condition for G ×ψ G to be connected is that G be connected, since the
coordinate projection

pG : G ×ψ G → G

is a covering.

Definition 7.23. A cocycle ψ : C → G on a small category C is nondegenerate
if ψ(C) generates G as a group.

Theorem 7.24. Let G be a connected groupoid and ψ : G → G a nondegenerate

cocycle. The following are equivalent:

(i) G ×ψ G is connected;

(ii) ψ(Gx) = G for every x ∈ G0;

(iii) ψ(Gx) = G for some x ∈ G0;

(iv) there is a maximal tree of G contained in kerψ;
(v) for every x ∈ G0 there is a maximal tree of G rooted at x contained in

kerψ;
(vi) ψ factors through a retraction η : G → Gx for every x ∈ G0;

(vii)ψ factors through a retraction η : G → Gx for some x ∈ G0.

Note that when we say “ψ factors through a retraction η : G → Gx”, we
mean that there is a group homomorphism φ : Gx → G such that ψ = φ ◦ η,
but, in fact, this is equivalent to the simpler property ψ = ψ ◦ η since η is a
retraction.
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Proof. Assume (i). Then the associated action G y (G0 × G) is transitive.
Pick x ∈ G0. Then the restricted action Gx y ({x} × G) is transitive, which
implies that

G = ψ(Gx)e = ψ(Gx).

Thus, (ii) holds. Of course (ii) trivially implies (iii).
Assume (iii), and choose x ∈ G0 such that ψ(Gx) = G. We will show how

to define a maximal tree T = {ty}y∈G0 rooted at x and contained in kerψ.
Of course it suffices to consider y 6= x. Since G is connected, we can choose
a ∈ yGx, and then, by assumption, there exists b ∈ Gx such that ψ(a) = ψ(b),
and then ab−1 ∈ yGx and ψ(ab−1) = e, so we can take ty = ab−1. Thus, (iv)
holds.

Now assume (iv), and choose a maximal tree T = {ty}y∈G0 rooted at a
vertex z and contained in kerψ. Then for any x ∈ G0, the set S = {tyt

−1
x }y∈G0

is a maximal tree rooted at x contained in kerψ.
Assume (v), and let x ∈ G0. Choose a maximal tree T = {ty}y∈G0 rooted at

x and contained in kerψ. Let η : G → Gx be the associated retraction. Then
for a ∈ zGx, we have

ψ(a) = ψ(tz)ψ(η(a))ψ(ty) = ψ ◦ η(a).

Thus, (vi) holds, and of course (vi) trivially implies (vii).
Finally, assume (vii), so that ψ factors through a retraction η : G → Gx

with associated maximal tree T = {ty}y∈G0 contained in kerψ. Since ψ is
nondegenerate, G is generated as a group by the image ψ(G) = ψ(Gx), so, in
fact, G = ψ(Gx) because ψ|Gx is a group homomorphism. But then

G = ψ(G)e,

so the associated action G y (G0×G) is transitive, and hence the skew product
G ×ψ G is connected. �

Example 7.25. Note that the image of a groupoid G under a cocycle might
not be a subgroup. For example, let G = {x, y, a, a−1} be the full equivalence
relation on the set {x, y}, with s(a) = x. Then the map ψ : G → Z defined by

ψ(a) = 1 and ψ(a−1) = −1

(and of course ψ(x) = ψ(y) = 0) is a cocycle whose image is the subset
{0, 1,−1} of Z.

Example 7.26. By Theorem 7.24, if we are interested in connected skew
products, we must assume that G is connected and the cocycle ψ : G → G
is surjective. However, this is not enough. Consider the connected groupoid
G = {0, 1}2 × Z, where {0, 1}2 denotes the full equivalence relation on {0, 1}.
For this discussion, it will be convenient to instead describe G as follows: let
G0 = {x, y}, let Gx = 〈k〉 be an infinite cyclic group with generator k, and
choose a ∈ yGx.

Then we can take the universal group (U, j) of G to be given by

U = F1 ∗ Gx = F2 = 〈b, c〉, with j(a) = b and j(k) = c.
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Let G be the infinite dihedral group

〈θ, d : θ2 = 1, θdθ = d−1〉.

We define a cocycle ψ : G → G by giving the associated homomorphism ψ′ :
F2 → G, and, by freeness, it suffices to define ψ′ on the generators b, c:

ψ′(b) = θ, ψ′(c) = d.

Then the image of the cocycle ψ = ψ′ ◦ j contains

{dn : n ∈ Z} ∪ {θdn : n ∈ Z} = G,

so ψ is surjective. On the other hand, ψ(Gx) = 〈d〉 6= G, so, by Theorem 7.24,
the skew-product groupoid G ×ψ G is not connected.

Remark 7.27. This example illustrates how the universal group of a category
may provide valuable information.

Remark 7.28. In Theorem 7.24, the hypothesis that the cocycle ψ be non-
degenerate is necessary for the implication (iv) implies (i). Indeed, if we start
with any connected skew product and then just enlarge the target group G,
(iv) (and hence (v)–(vii) also) will still hold but (i) will not. Of the properties
(iv)–(vii), (vii) seems to us to be the most interesting.

We generalize Theorem 7.24 to connected small categories:

Corollary 7.29. Let C be a connected small category and η : C → G a nonde-

generate cocycle. Let ψ : G(C) → G denote the associated cocycle. The follow-

ing are equivalent:

(i) C ×η G is connected;

(ii) the cocycle ψ maps π(C, x) onto G for every x ∈ C0;

(iii) the cocycle ψ maps π(C, x) onto G for some x ∈ C0.

Proof. This follows from Theorem 7.24, because, by Proposition 7.5, with D =
C ×η G, we have

G(C ×η G) ≃ G(C) ∗ (C ×η G)0 = G(C) ∗ (C0 ×G),

and it is quite easy to check that we have an isomorphism

G(C) ∗ (C0 ×G) ≃ G(C)×ψ G,
(
a, (s(a), g)

)
7→ (a, g),

and C ×η G is connected if and only if its fundamental groupoid is. �

In the above corollary, the equivalence (i)⇔(iii) is a version of [28, Cor. 5.6]
(which deals with the special case where C is the path category of a directed
graph).
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