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1. Introduction 

 

Since the early times of human history, mankind has been fascinated by the beauty of 

minerals. This curiosity has not changed since, but besides their attribute of pure beauty, 

crystals and minerals provide the resources without which the cultural and social 

evolution of the modern ages would not have been possible. 

 

Minerals, crystals and stones in general are used among many other applications as 

building stones, fertilizers, cleaning agents, isolators, electric conductors and so on. 

Their field of application is manifold as they satisfy many of our daily needs. 

 

In the beginning of the technical application only the most visible attributes of minerals, 

such as hardness and durability or their metal content was of interest. Today, in modern 

technology “secondary” attributes such as conductivity, magnetic properties and the 

reactivity of crystal surfaces play a vital role.  

 

Especially the interest on the reactivity of minerals has increased, as our understanding 

of the interaction of minerals and the environment evolved. This curiosity has lead to 

the development of a new side branch in mineralogy, broadly referred to as Mineral 

Surface Science.  

 

The understanding of the reactivity of crystal surfaces, the growth of crystals, their 

dissolution or inhibited growth, the ability of surfaces to adsorb heavy metals or other 

pollutants and the understanding and control of bio-mineralization, are only some of the 

new aspects research is focused on.  

 

Increasing this knowledge, together with the development of new models, describing 

principal mechanisms and processes influencing the growth and morphology of crystals, 

and hence the reactivity of their surfaces, will have influence on our daily lives, as well 

as it may change our attitude towards our environmental setting. 
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The intent of the research presented is to develop a methodology, which can easily be 

referred to while describing crystal growth processes, as well as mineral surface 

reactions. This model is proposed to be a tool, a method to be applied when approaching 

mineral surface reactions for the first time. It may to some extent be an alternative to 

molecular dynamic simulations, in so far as predictions of crystal morphologies and 

minerals surface reactions are possible and can be obtained in relatively short time 

periods. The strength of this model is its fundamental concept based on the principles of 

the bond-valence theory.  

 

The bond-valence theory has proven to be a valuable tool and is readily applied in order 

to refine internal crystal structures, by surveying for example the number and 

“strengths” of bonds formed between the constituents of a crystal. Diverging bond-

valence sums around an atom within the crystal structure are treated as an indication of 

possible defects in the crystal structure, or even worse, indicate an insufficient crystal 

structure analysis.  

 

On the other hand, missing bond-valences or insufficient bond-valence sums are natural 

to atoms at mineral surfaces, and to a large extent these unsatisfied bonds control the 

readiness of a crystal surface to participate in chemical reactions.  The number and thus 

the “strength” of these bonds can easily be calculated and is addressed as the “bond-

valence deficiency” of an atom, ion, molecule or crystal surface. Obtained bond-valence 

deficiencies of different crystal faces of a mineral are comparable, and can be used as 

indicators to predict the crystal morphology. This new concept of the bond-valence 

theory can be applied to crystal surfaces and solvents alike, and it can be used to 

interpret the processes and interactions occurring at crystal surfaces, the interfaces 

between a solid and a solution. 

 

Chapters 2 and 3 are to be considered as historical overviews about various different 

methods, which have been applied to described crystal growth processes. Chapter 4 is a 

general introduction into the bond-valence theory, while Chapter 5 considers the newly 



 3 

developed bond-valence deficiency model. The usefulness of this approach is tested in 

Chapter 6, concerning morphological surface features of uranium-minerals. 

 

Further developments of the bond-valence deficiency model are stated in Chapter 7, in 

which the synthesis of internal crystal factors and the bond-valence deficiency model is 

demonstrated. This combination is based on different aspects of the theories described 

in Chapter 3 and concludes that internal crystal factors, such as crystal symmetry, lattice 

density and reticular density can be incorporated into the bond-valence deficiency 

model. This combined approach can be applied to predict the “abstract crystal form ” of 

crystals and is discussed for several crystal structure types in Chapter 8. In Chapter 9, 

the bond-valence aspects of liquids and solvents are outlined and some considerations 

about the interaction of aqueous solutions and mineral surfaces are given in Chapter 10, 

while Chapter 11 is dedicated in detail to the influence of impurities on the crystal 

morphology interacting with a crystal surfaces. 
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2. The morphology of polyhedral crystals 

 

All the various morphological features of crystals, such as polyhedral, hopper, dendritic 

and spherulitic can be described as being the results of the interplay of internal 

structural and external factors, involved during crystal growth. 

 

If, for example the physico-chemical conditions of the environment change, growing 

faces may disappear and new faces develop. Such changes lead to variations in the 

Tracht and Habitus of a polyhedral crystal. Therefore it is worth not only to address the 

morphology as a whole, but to distinguish between Tracht and Habitus of a crystal, 

because such changes give hint of differences of the external factors involved during 

crystal growth. While the term Tracht describes the number and combination of the 

faces (e.g. hexahedron, octahedron), the term Habitus relates to the size and 

development of these faces (e.g. prismatic, platy). 

 

Tracht and Habitus may change during growth and it is necessary to mention the “stage 

of growth” concerned. Therefore, terms such as “structural form”, “abstract form”, 

“equilibrium form” and “growth form” have been introduced, to provide a better 

understanding of the origin of polyhedral crystal morphology. 

 

Even though it seems reasonable to distinguish between changes in Tracht and changes 

in Habitus, these terms are mainly used in the German literature. On the international 

level, both terms Tracht and Habitus are compiled within the term “crystal 

morphology”, as a more general approach. 
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2.1 Different “forms” of polyhedral crystals 

 

It is known empirically that the order of morphological importance of crystal faces is 

closely related to the lattice type of the crystal. Historically the habit of polyhedral 

crystals was predicted by neglecting the influences of the growth conditions (BRAVAIS 

1866, NIGGLI 1920, DONNAY & HARKER 1937). The theoretical crystal forms obtained 

were called “structural forms” or “abstract forms”, as they were derived considering 

only the internal crystal factors, such as symmetry and lattice types. 

 

The thermodynamic approach is to analyze the habit of polyhedral crystals when they 

have reached their equilibrium state and the  “forms” obtained by this method are called 

“equilibrium forms”. GIBBS (1906) considered that a crystal, should, at equilibrium, 

take a form in which the product of the total surface area times the surface free energy is 

at a minimum. A crystal in this state has an “equilibrium form”, which is unique for a 

given temperature and pressure condition (SUNAGAWA 2005). 

 

The term “growth form” of a polyhedral crystal is used when the attention is focused on 

external factors controlling the growth. Tracht and Habitus vary greatly depending on 

the growth environments and conditions. Habitus and Tracht may change during the 

growth process of a particular crystal, or they may be different among crystals of the 

same species formed under different conditions. 

 

The growth form of polyhedral crystals appears as a result of different normal growth 

rates termed “R”, of different crystal faces or among different, crystallographically 

equivalent, faces. Crystal faces with large “R” will disappear; only those with small “R” 

will survive. When a crystal reaches an equilibrium state, the crystal will be bound by 

crystal faces with the smallest surface free energy called “γ”, namely with the smallest 

“R”. This is the equilibrium form. However, before reaching such a state, the crystal 

will exhibit different Tracht and Habitus determined by the relative ratio of “R” values 

(Fig.: 2.1). These intermediate “forms” will be called the “growth forms” of a 

polyhedral crystal (SUNAGAWA 2005).  
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The structural and equilibrium forms of crystals can be predicted by assuming that the 

crystal is perfect and that the ambient phase is isotropic. Growth forms, however, 

describe real crystals containing lattice defects growing in a real ambient phase. 

(SUNAGAWA 2005). 

 

 

 

 

Fig.: 2.1 The influence of different growth rates “R” for different crystal faces is given in this 

figure. In this example the growth rate of the face “o”, marked green is higher than the 

growth rate of the face “a”, marked red. Starting at the initial stage (1) the influence of 

the different growth rates can be observed as the crystal grows in size (stages 2 and 3) 

until it reaches the end form stage (4). Stages (2) and (3) may be addressed as the 

“growth forms” of the crystal, while stage (4) represents the “equilibrium form” or 

“final form” 
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2.2 Mineral surface features 

 

As mentioned earlier we have to distinguish between internal and external factors 

controlling the growth and hence the shape or habit of a crystal. In this sense, it is the 

interaction between different external factors and the mineral surface, which controls 

the growth rate “R” of a crystal face. Therefore, the crystal surface can be addressed as 

the interface where both internal and external factors meet, and it is necessary to 

describe this interface exactly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.: 2.2 Diagram illustrating some of mayor topological features of a mineral surface. (1) 

terrace, (2) step, (3) kink-site, (4) vacancy at a step, (5) adatom on a terrace, (6) adatom 

at a step, (7) vacancy on a terrace (modified from LASAGA, 1990). 

 

With the development of new techniques to investigate mineral surfaces in more detail, 

the interest in the microtopography of mineral faces increased. A general model of 

microtopography of a crystal surface was proposed and is shown in Fig. 2.2 (LASAGA, 

1990). This general model, which was introduced first by BURTON et al. (1951), has 
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been developed from growth, dissolution, and other surface studies, and compiles most 

of the common features of crystal faces. 

 

According to this model the surface consists of flat areas, called “terraces”, which are 

separated by “steps”. In their simplest form, steps are one atomic layer high, although 

they can be considerably higher than this. “Kink-sites” appear where there is a corner on 

a step, and the step changes direction. An atomic or molecular-size hole in a terrace is 

called a “vacancy”, which as it grows in size, can develop to an “etch-pit”. The opposite 

of this, that is an atom or molecule sitting on top of a terrace, is called an “adatom” or 

“admolecule”, respectively.  

 

Considering only surface atoms, the atoms that make up the terrace have the greatest 

number of surface neighbors. At the edge of a step, the number of nearest neighbors is 

reduced, and atoms at the outer corners of kink-sites have even fewer neighbors. 

Adatoms generally have the fewest nearest neighbors of all surface sites, and adatoms 

sites are potentially, but not always, the most reactive sites on a surface (LASAGA, 

1990). 

 

The given description relates well to the bond-valence model, mainly with the approach 

of bond-valence deficiencies (Chapter 5). For example, atoms on a terrace of the 

surface, having the greatest number of neighbors, will have a low bond-valence 

deficiency, while edges or steps, having less neighbors, have a higher bond-valence 

deficiency.  

Therefore, flat faces will show different surface reaction mechanism compared to 

stepped faces or kinked steps, and as a result, special attention has to be given to the 

overall topology of the crystal faces concerned. 
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2.3 Changes in “Crystal morphology” 

 

While the internal crystal factors, such as symmetry, reticular density and lattice spacing 

can be applied to describe the “abstract forms” of minerals, the influence of external 

factors needs to be taken into account to describe the “equilibrium” and “growth forms”.  

External factors are numerous (such as pressure, temperature, supersaturation, 

impurities), and their impact on the crystal morphology plays a fundamental role in 

determining the crystal morphology. These external factors either enhance or inhibit the 

growth rate of crystal faces. The use of inhibitors to hinder, the growth of barite crystals 

during offshore oil-explorations, is an example of the technological relevance of the 

research on external factors controlling crystal growth processes (PINA et al., 2004). 

 

When a crystal is bounded by many faces, it can be observed that a face with a lower 

order of morphological importance will show a roughening transition at a lower 

temperature than a face with higher order of morphological importance (SUNAGAWA 

2005).  

 

The roughening transition can be related to changes in the growth mechanism of a 

crystal face. HUMAN et al. (1981) found a correlation between the temperature at which 

a crystal is growing, its growth rate and its driving force (e.g. the concentration of the 

solution). They argued that : 

 

When a face on a crystal is growing at a temperature, having a certain value, the 

so called “roughening temperature” (TR ), the face will be rough on an atomic 

scale. This face will then grow “continuously”, and a linear dependence of the 

growth rate and the driving force will be found. When the face is growing at a 

temperature below TR and below a certain value of the driving force, the face is 

smooth on an atomic scale and a non-linear relation between the growth rate and 

the driving force will be found. 
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Cooling or heating of a solution can therefore change the morphology of a crystal, 

according to whether the solubility and/or the supersaturation is increased or decreased. 

Pressure will also have an effect as well as the degree of impurity concentration 

(SUNAGAWA 2005). Besides temperature and pressure, the composition of the solution 

in contact with the mineral surface is one, if not at the end the mayor key factor 

controlling the relative growth rates of minerals. 

 

 The first step of crystallization is nucleation. Nucleation can only occur when the 

solution is supersaturated with the crystal forming solute. This stage of supersaturation 

can be reached by manipulation of the solution. Common methods to achieve 

supersaturation are cooling or heating of the solution (see above), evaporation, pH 

changes, mixing different solutions containing different soluble species and many 

combinations of these methods. 

 

Such manipulations of the solution in respect of changing the saturation affect not only 

the nucleation, but are as important during the further growth of the crystal. This is due 

to the fact that different crystal faces do not have the same behavior in highly or weakly 

supersaturated solutions. An overview of  crystallization mechanisms in solution 

starting from the point of supersaturation until to the point when habit modifications 

take place, is given  by BOISTELLE & ASTIER (1988) and their references stated. 

 

Each of these external factors leaves a trace in the morphology of the crystal, and each 

new process or coupled process identified helps to interpret the settings of crystal 

growth or dissolution processes. 
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3. Theories of crystal growth (Historical overview) 

 

Historically one of the first theories that gained serious consideration by 

crystallographers was that of CURIE (1885). He proposed that there is a close 

connection between the crystalline form and the surface energy of the solid. This 

assumption was derived from the capillarity theory of GAUSS (1830) elaborated for 

liquids (BUCKLEY, 1951). Wherein GAUSS stated that the virtual work in capillary 

phenomena should be separated into a “volume” function and a “surface” function. 

 

CURIE´s analogy between a liquid and a crystalline solid is far from complete, as a 

liquid can change its shape (e.g., be deformed in a manner incompatible with a crystal). 

He assumes that the equivalent of “deformation” in a crystal is that of transferring a 

quantity of crystalline matter from one type of crystal face, to another. Therefore in 

crystals, since they are practically incompressible, the volume function becomes 

negligible and the virtual work due to capillary forces is proportional to the change of 

the surface alone. This led to the assumption, that the “end form” of a crystal will be 

consistent with its minimum sum of total surface energies (BUCKLEY, 1951). 

 

As an introduction to the bond-valence deficiency model, outlined in this thesis, some 

of the most common crystal growth theories are described in short in the following 

chapters. This introduction is intended to give on overview about some of the basic 

principles of crystal growth theories known today. While most of these profound 

concepts have been incorporated into the bond-valence deficiency model it is necessary 

to refer to their historical background and setting to recognize their impact on the 

development of this new approach to describe crystal growth processes. 
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3.1 Wulff extensions to the theories of Curie and Bravais 

 

In 1901 Wulff published a paper about crystal growth and dissolution of crystal faces, 

which today can be regarded as a summary or extension of different crystal growth 

theories known by that time. 

He recognized that there are two aspects of crystal growth. One being the extension of a 

face sideways (called “extension”), the other being the growth along the face normal 

(called “growth) The former largely depends on the latter. Wulff concluded, for 

example, that the speed of “extension” of a crystal face is larger while its “growth” 

speed is low, or, that crystals will promote such faces having the lowest growth rate. He 

derived these considerations by a graphical assumption given in Figure. 3.1. 

 

Fig.3.1  This figure,  form WULFF (1901), illustrates the correlation between the “extension” of 

a crystal face and the ”growth” velocity parallel to the face normal. Given are two faces 

“a” and “b”, joined at point “o”. After a given time “ti” the faces have advanced to the 

positions a` and b`, now joining at point o´. During time “t”, face “a” has advanced at 

the rate h1 and face “b” at the rate h2 (h1 < h2).  After time “t”, the extension of the slow 

growing face “a” equals the distance m – o` (red), while the extension of face “b”  

equals the distance n – o´ (green).  The length ratio being m-o` > n-o`. This graphic 

clearly indicates the correlation between a slow growing face having a high rate of 

extension compared and a faster growing face having a low rate of extension. 
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From this graphical approach (Fig. 3.1) it is possible to derive the consideration that the 

amount of extension of a face sideways (“εi”), can be considered proportional to the 

vector (“hi”) of its growth rate in the direction of its face normal. This can be formulated 

as: 

 

31 2

1 2 3

.... .const
h h h

εε ε
= = =  [3.1] 

 

WULFF (1901) further showed that it was possible to combine his theory of the relative 

growth rates of crystal faces (WULFF, 1901; WEYBERG, 1901), with the theories of 

CURIE (1887) and BRAVAIS (1866). This application is discussed in detail by LAUE 

(1943) and is summarized below: 

 

In 1878 (GIBBS) and 1885 (CURIE) derived an equation to describe the “equilibrium 

form” of a given crystal:  

 

[ 1]

´
N

i i

i

Fσ
=

Φ =∑  [3.2] 

 

The total free energy Φ of a given crystal, can be described by the total sum of the free 

energies σi of the number (N) of faces Fi.  

Similar to this, CURIE (1987) considered the capillary constants of crystal faces to be 

crucial to decide which faces will determine the morphology of a crystal. Curie argued 

that the capillary constant (ki) is a characteristic energy at the interface of two media, 

such as e.g. the crystal surface (si) and a solution. This energy has to be dissipated 

before the interface can be promoted any further. He concluded that the most “stable 

form”, e.g. for a given body with the faces s1 + s2 + s3 + …, and these faces having the 

capillary constants       k1 + k2 + k3 + …., is such that the sum s1k1 +  s2k2 + s3k3 …tends 

to have a minimum value. 
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WULFF (1901) observed that by measuring the relative growth rates of crystal faces the 

capillary constant of these faces may be determined directly. Therefore, he concluded 

that there is an analogy of his concept of crystal growth rates and the theory of CURIE 

(1887) considering the influence of the capillary constant of a crystal surface. WULFF 

(1901) concluded that the concept of Curie could be simplified by introduction of the 

growth vector (hi), of the length of the face normal. 

 

As these assumptions of Wulff have proven to be crucial for the further development of 

crystal growth theories, the example given by WULFF (1901), correlating the growth 

rate of crystal faces with the capillary constant of crystal faces, and hence with the 

surface energy, is given here as a summary, starting with the assumptions of CURIE 

(1887): 

 

CURIE (1887) argued that:  if one considers the capillary constants A and B of the 

surface of a cube and octahedron of a regular crystal, “x” being the length of the edge 

cut of the hexahedron by the octahedral face, and “b” the residual length of the edge of 

the hexahedron the cube-octahedron would be in equilibrium with the solution if: 

 

3 3

2 2

B
x b

A

 
= −  
 

    [3.3] 

 

From this relation (equation 3.3), CURIE deduced that the cube would stand alone if: 

                                                    
3 3

2 2

x B

b A
= −                                                [3.4] 

     

                                                          
1

3

A

B
<                                                    [3.5] 

 

Analogue, the octahedron would be the equilibrium form if:  

   

         3
A

B
>                  [3.6] 
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WULFF (1901) summarized these observations in a formula to describe the general 

conditions of stability of these two faces present at the cube-octahedron: 

 

    
3 3

2 2

x B

b A
= −       [3.7] 

 

He deduced that equation [3.7] can be simplified by substitution of “x” and “b”, by the 

vectors “ω” and “γ”, representing the values of the faces normal (hi) for the octahedron 

(ω) and the cube (γ), and he defined the equation: 

 

    
B

A

ω

γ
=        [3.8] 

 

leading to the formulation: that the distances of the faces of the octahedron and the cube 

from the center of the crystal (“Wulff-point) are proportional to the capillary constant of 

the respective faces. 

 

Finally, WULFF (1901) interpreted this law graphically. No matter if one considers the 

capillary constant or the total free energy of a crystal (Φ), a “central point” within a 

crystal can be detected referred to as “Wulff´s point”. The distances of the face normals 

(hi) of the faces (Fi ) and this point are proportional to the free surface energies σi, or the 

capillary constants. Considering the free surface energies (σi) this relation can be written 

as: 

 

1 2

1 2

.... N

N
h h h

σσ σ
= = =  [3.9]  

 

In order to construct the “equilibrium shape” or the form of minimum free energy of a 

given polyhedral crystal graphically (Fig. 3.2), one needs to construct from the Wulff-

point the face normal (hi), with the length pσi. At the end of the line pσi , the face Fi 

perpendicular to hi is drawn. If the faces Fi belong to the “equilibrium form” of the 
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polyhedron, the shape of the closed form of the polyhedron is described by these faces. 

If the surface free energies σi of all possible faces turns out to be equivalent to: 

 

1 2

1 2

....const
h h

σ σ
=     [3.10] 

 

the “equilibrium form” constructed resembles a sphere.  

 

In those cases where σi differs, only such faces, leading to the smallest possible closed 

polyhedral form are regarded to be part of the “equilibrium shape” (Fig. 3.2). 

 

 

Fig.: 3.2  Schematic Wulff construction of a polyhedral crystals. Starting from the center of a 

polyhedral crystal (P = Wulff´s point) the face normals to (001) in red and (111) in 

green are plotted. The length of the vectors hi is proportional to the measured velocity 

of growth (see text). Given are three cases with different growth velocities for (111). In 

the first case (1) the growth velocity of the (111) face is much faster than the growth 

velocity of the (001) face. Hence the construction line of the (111)-face is beyond the 

(001)-polygon. The resulting “equilibrium form” is a cube. In case (2) the growth 

velocity of (111) is lower, but the construction line of the (111)-face is just barely out 

off the (001)-polygon. Hence the “equilibrium form” is a  cube. In case (3) the growth 

velocity of (111) is very slow. In this case a cube-octahedron resembled the 

“equilibrium form”. 
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During the decades the Wulff-equation and the graphical Wulff-plot have proven to be 

applicable to fit the needs of different crystal growth theories (TOSCHEV, 1973; 

BENNEMA, 1973). No matter which method has been applied, even up to the extent of 

modern thermodynamic approaches, the results obtained are still cross-checked by 

construction of a Wulff-plot. This is due to the general concept of the Wulff-equation, 

by which it is possible to compare different attributes of crystal surfaces by considering 

the surface properties as a reciprocal functions plotted as the length of a face normal. 

 

 

3.2 The Reticular-Density Theory of Bravais 

 

Developments in crystal-growth theories led to the effort to associate the observed 

crystal habit with prevailing crystal structure theories. BRAVAIS (1866) was the first to 

account for a relation between the unit-cell geometry and the origin of different faces 

exhibited by different crystal species. He connected the habit of crystals with the 

particle density of net planes in a crystal-lattice. This approach can be summarized as 

the Bravais´ laws: 

 

1. Observed crystal faces are parallel to the net planes with the highest 

reticular density. 

 

2. The greater the reticular density the more important the corresponding 

crystal face. 

 

The importance of a crystal face is estimated from its size, frequency of occurrence, and 

the presence as a cleavage face. The reticular density of a net plane (hkl) is defined as 

the number of lattice points per unit surface. It is inversely proportional to the reticular 

area, or area “S” of the smallest mesh in the net, and directly proportional to the 

interplanar distance “d”. 
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This correlation can be written as: 

 

     S x d = V     (3.11) 

 

where V, the volume of the smallest unit cell, is a constant for any lattice (DONNAY & 

HARKER, 1937). 

 

According to Bravais´ laws, planes of maximum density (highest reticular density) are 

those, which during growth move forward (normally to themselves) at the slowest rate. 

Consequently they extend tangentially to exclude more rapidly depositing planes with a 

lower reticular density (3.3).  

 

 

 

Fig.: 3.3 Given are the constructions of  (a) Pm3m, (b) Fm3m and (c) Im3m Bravais-lattices. 

Marked in red are the planes with the highest reticular density of lattice points in the 

given Bravais-lattice. Below, polyhedrons corresponding to these faces with the highest 

reticular density of lattices points are plotted. 
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WULFF (1901) referred to this theory of BRAVAIS (1866), proposing that the surface 

energies, and therefore the rates of crystal growth, are inversely proportional to the 

reticular densities of the planes of the crystal (BUCKLEY, 1951). Those faces 

“surviving” at the end would be those having the greatest density of atoms.  

SOHNKE (1888) deduced that the ions or atoms of faces with a high reticular density are 

not capable of promoting any further work to move closer together, and therefore the 

potential energy of such a face must be at minimum. Further he stated that reducing the 

packing of a face, lowering its reticular density, will increase the surface energy, which 

as well can be described by an increase of the capillary constant of the respective face. 

From these observations WULFF (1901) derived his correlation between the reticular 

density of a crystal face and the respective capillary constant on the one hand and the 

capillary constant and the growth velocities of crystal faces on the other. 

 

The theory of Bravais´ was the first method to consider the particular crystal structure to 

attribute for the morphology of a crystal, but after some time the restrictions of his 

theory came to be noticed and further amendments had to be made. First the influence 

of the planar spacing was considered by NIGGLI (1920). Then DONNAY & HARKER 

(1937) extended the law of Bravais to include not only simple symmetry operations 

such as rotation–axis and mirror-planes, but also screw-axis and glide-planes. Their 

intention was to introduce a new law for crystal morphology, which considered all 

different symmetry operations present in the 230 space groups 

 

 

3.3 Niggli´s extension to the Law of Bravais 

 

NIGGLI (1920) developed a model of crystal growth, which is a logical consequence of 

the view´s of Bravais. Considering Bravais´ approach, and as a result the relation that 

the velocities of growth of various faces are inversely proportional to their reticular 

densities, Niggli regarded  the density of lattice spacing of these faces (net planes), as 

being an additional factor to be considered. 
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The density of planes in a lattice is related to the width of separation (e.g., to the 

“spacing,” δ(hkl) ). From this NIGGLI (1920) concluded that a higher spacing of δ(hkl) will 

correspond with slower rates of normal extension. A narrow spacing implies that, over a 

given distance in a direction normal to (hkl), there will be more planes upon which the 

atoms are strung, so that there will be fewer atoms per plane (Fig. 3.4). 

 

 

 
Fig.: 3.4 View perpendicular to a Primitive cubic lattice. Planes running parallel to (100) have a 

higher reticular density (number of lattice points marked X) as planes running parallel 

(110) or (-210). Further the planes parallel to (100) have a higher spacing δ(hkl)  

compared to the planes parallel to (110) and (-210). The application of the Law of 

Bravais and the extension of Niggli would therefore state, that the order of importance 

of these faces will be (100) < (110) < (-210).  
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3.4 The Donnay and Harker Theory 

 

DONNAY & HARKER (1937) expanded the Bravais´ law based on the geometry of 14 

lattice types to include the symmetry operations defining the 230 space groups. 

Basically the effects of translation symmetry operations such as screw axis and glide 

planes were now taken into consideration (Fig.: 3.5). This method proved to be fertile as 

most of the discrepancies noted between the observed forms and the calculated forms 

based on  Bravais´ law diminished. In addition the theory of DONNAY & HARKER 

(1937) pays attention to the lattice spacing density theory proposed by NIGGLI (1920). 

 

 

Fig.: 3.5 Comparison of a 2-fold rotation axis (a) with a 2-fold screw axis (b) and their influence 

on lattice spacing. Due to the translation vector of ½, additional lattices at a distance d/2 

are formed perpendicular to the 2-fold screw axis, compared to the lattice distance d of 

the 2-fold-rotation axis. 
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Quartz and pyrite are two common examples to show that predicting the morphological 

ordering of crystal faces according to DONNAY & HARKER (1937) correlates better with 

observations of natural samples. 

 

The polyhedral form of quartz, considering its lattice type only (Bravais´-law), should 

be bounded by three equally developed faces {0001} = {1010} = {1011}. However the 

{0001} face appears only exceptionally rarely in real quartz crystals.  This discrepancy 

can be explained by the Donnay & Harker theory due to the presence of a three-fold 

screw axis perpendicular to {0001}. Recalculation of the reticular density of the basal 

pinacoid considering the screw component, transforms {0001} into {0003}, lowering its 

morphological importance drastically. 

 

According to Bravais´ law, the sequence of morphological importance of the faces of 

pyrite should be {100}, {111}, {110}.  In natural samples faces parallel to {110} are 

rarely observed. Instead faces parallel {210} seem to be dominant instead. This 

difference can be explained by the approach of  Donnay & Harker  due to the presence 

of a glide plane, transforming {110} into {220}. 

 

 

3.5 The Periodic Bond Chain Theory (PBC) 

 

One of the most known theories to predict crystal morphologies is the Periodic Bond 

Chain Theory (PBC-Theory) of HARTMAN & PERDOK (1955 a,b,c). Their approach is 

based upon similar ideas as those of Bravais and Donnay-Harker, but instead of paying 

attention to the importance of planes, Hartman-Perdok focused on “zones”. They 

classified the crystal faces into three different types (Fig.3.6), F-faces (flat faces), S-

faces (stepped faces) and K-faces (kinked-faces). This differentiation depends on the 

number of PBC´s (periodic-bond chains) involved in the respective faces (SUNAGAWA, 

1999). 
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The PBC´s are uninterrupted chains of strong bonds between building units (atoms, 

ions) of the crystal and these bonds belong to the primary coordination sphere of an 

atom or molecule. PBC chains that contain only strong bonds between atoms or 

molecules define the direction of major growth of a crystal, and PBC chains containing 

weaker bonds between atoms define directions of minor growth. F-faces contain two or 

more types of PBCs parallel to the face. S-faces have only one type of PBC parallel to 

the face, and K-faces have no PBCs parallel to the face.  

The prediction of morphology from the crystal structure involves (1) determination of 

PBCs, and (2) classification of (hkl) layers as F, S or K faces. The morphology so 

obtained is controlled by the occurrence of F-faces, which tend to grow to large faces. S 

and K faces develop small or do not appear at all.  

 

 

 

 

 

Fig.: 3.6 Hartman-Perdok model of F,S and K-faces defined by PBC´s. The arrows A,B and C 

are PBC vectors in a simple cubic crystal (Kossel-crystal). F-faces: (100),(010),(001); 

S-faces: (110),(011), (101); K-face: (111) (image modofied from SUNAGAWA 1999). 
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There have been a few downsides to the PBC theory: the first is that a certain 

arbitrariness is unavoidable in finding PBC´s in real crystal structures, and the second is 

that PBC analysis is difficult in complicated structures. Both can be overcome by 

application of the net model proposed by BENNEMA (1993). The PBC theory has 

developed since and methods have evolved to calculate attachment energies of PBCs 

(SUNAGAWA , 1999). 

 

 

3.6 The atomistic models of crystal growth 

 

The methods outlined in the previous chapters, starting with Bravais and Niggli, 

followed by Donnay-Harker and Hartman-Perdok, are directed to an ideal crystal form. 

These theories assume that the crystal form can be determined by considering the 

internal structure of a crystal only, entirely neglecting the effect of external growth 

parameters. Such crystal forms are called “structural forms” or “abstract forms”. They 

may be related to thermodynamic parameters such as temperature or pressure as driving 

forces, or the free surface energy or capillary constants as surface properties, but they 

mostly neglect various other growth mechanisms, such as kinetic processes involved 

during the attachment or detachment of crystal building-blocks. 

 

Today, kinetic processes correlated for example to the attachment of inhibitors to crystal 

surfaces play a vital role in Mineral Surface Science. But it was not until VOLMER 

(1926) published his theory of nucleation and crystal growth by the formation of two-

dimensional nuclei, that these processes were recognized and they further obtained 

much attention after KOSSEL (1927) and STRANSKI (1928) developed their atomistic 

model of crystal growth processes.  

 

KOSSEL (1927) and STRANSKI (1928) picked up on the ideas of VOLMER (1926) and 

were the first to introduce an atomistic approach, considering molecular-kinetic 

methods. Their theories are based on a particular crystal model known as the Kossel-



 27 

Crystal (Fig.3.7). A theoretical crystal based on the simple cubic lattice. With this 

Kossel-Crystal it was possible to calculate the separation energy of ions which occupy 

different sites on the crystal surface. 

 

KOSSEL and STRANSKI showed that by following the successive attachment or 

detachment of individual building elements (ions, atoms, molecules), it became possible 

to describe crystal growth and dissolution processes from a more dynamic perspective. 

By application of this semi-quantitative approach, conclusions about the stability of a 

crystal face as well as the equilibrium structure of different crystal face can be obtained 

(SUNAGAWA, 1999).  

 

 

 

 

Fig.: 3.7 Left: Kossel-crystal showing three possible attachment sides (A,B,C) for building 

elements such as ions, atoms or molecules. Right: Atoms attaching to a kink site (A), a 

step (B) and a terrace (C). Bonds forming between the nearest neighbors and the 

attaching ions are marked in red (for further explanation see text). 

 

 

The basic principles of the theories of Kossel and Stranski are schematically given in 

Fig.: 3.7). They are focused upon a model of a homöopolar crystal with a simple cubic 

lattice and the interaction of the first (nearest) neighbors of an atom. The energies 

calculated with this model are derived from the “work of separation” of two atoms. This 
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“work of separation” for a given atom is equal to the number of its first neighbors times 

the work (Φ) needed to break a bond between the two neighboring atoms (SUNAGAWA, 

1999). Figure 3.7 shows that atoms occupying different sites on a crystal surface have 

different binding energies and therefore different values of the work of separation. The 

atom “C” in Figure.3.7 bonds only to one neighbor on the terrace. Its work of separation 

is 1Φ. The atoms at the sites “B” and “A” bond to two and three atoms of the surface. 

Their work of separation is 2Φ and 3Φ respectively. Consequently atoms having a low 

work of separation can be detached from the surface more easily. On the other hand, 

sites such as the kinked site “A” in Figure. 3.7 offering a high number of neighbors are 

preferred sites for atoms to attach themselves. The lattice energy gained by atoms 

attaching to this position, is much higher, compared to the energy gained at the sites”B “ 

or “C”. 

 

The kinked site “A” is one of importance in the molecular-kinetic model of Kossel and 

Stranski and is called “half-crystal position”. The position “A”, having three nearest 

neighbors, and consequently a work of separation of 3Φ, is indeed special. The number 

of full-neighbors in the bulk would be 6 and at site “A” it is half of this value. The work 

of separation at that site is equal to the lattice energy gained  by adsorption of a building 

particle (ion, atom , molecule). In their works Kossel and Stranski showed that if the 

crystal surface is large enough the attachment or detachment of a building unit to the 

half-crystal position is a repeatable step, producing similar positions with the same 

energy of attachment and detachment (SUNAGAWA, 1999). Therefore, a crystal can be 

built or be destroyed merely by attaching or detaching building particles from these 

half-crystal positions. 

 

This basic theory was later applied to various minerals and a list of the numerous works 

of KOSSEL and STRANSKI, as well as some other authors who applied this concept 

(KAISCHEW, HONIGMANN) are listed in the references. 
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3.7 Modern approaches  

 

Molecular modeling models are modern approaches to predict the morphology of 

crystals. These models refer to either empirical or quantum-mechanical models in order 

to calculate surface energies or step energies. In these models, the surface energy is the 

difference in energy between the bulk structure and the surface structure; thus, the lower 

the surface energy, the more stable the face. The step energy is the difference in energy 

between the surface and the corresponding step; thus, the lower the step energy, the 

more stable the step. Using such calculations, one can categorize different faces or 

steps. It is possible, but very time consuming, to calculate the energy of every face or 

step that might occur in a crystallization or dissolution process, but these calculations 

only work well as long as accurate interacting potentials are available for the constituent 

species. 

 

Examples of such computer based ab initio calculations are far too numerous to be 

considered in detail in this short summary. Mostly every month new Monte Carlo 

simulations of many mineral surfaces are published in the various journals, and many of 

them exhibit slight changes in the formulation of equations or potentials used to 

compute these simulations. 

 

As an example of recent computer simulations applied to reproduce experimentally 

observed crystal growth, refer to PIANA et al. (2005). The authors have combined 

several computer based models such as atomistic molecular dynamics simulations and 

kinetic Monte Carlo simulations, to describe the growth of urea crystals observed in situ 

with an atomic force microscope. 
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4. Introduction to the Bond-Valence Theory 

 

The basis of bond-valence theory was established, upon several ideas of PAULING 

(1929).  In his rules about the nature of “coordinated polyhedrons” he had defined that 

the number of bonds formed by a cation are equal to its anion coordination number. The 

length of such bonds are determined by the sum of the cation-anion radii. The 

“electrostatic valence principle” states that the electric charge of each anion 

compensates the strength of electronic valences of bonds reaching to it from the cation 

in the center of the coordination polyhedron. First quantitative bond-valence parameters 

and empirical correlations between bond-strength and bond-length were introduced by 

BROWN & SHANNON (1973). Later, BROWN (1981) introduced bond-valence theory. 

This approach and further investigations cumulated in his work about chemical bonds in 

inorganic chemistry (BROWN, 2002). 

 

 

4.1 Bond-Valences 

 

In mineralogy the term “bond valence” concerns the bonding power (strength and length 

of a bond) between two atoms or ions. Further, we have to distinguish between 

“experimental bond-valences”, “theoretical bond valences” and “effective bond 

valences”. Historically bond valences have been calculated from atomic valences of 

atoms and their coordination numbers. This approach comes from Paulings ´s first rule 

about “the nature of coordinated polyhedrons”: 

 

The nature of coordinated polyhedrons: 

 

A coordination polyhedron of anions is formed around each cation, the cation-

anion distance being determined by the radius sum, and the coordination 

number of the cation by the radius ratio. 
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We can address a crystal as a network of atoms or ions connected to each other by 

bonds. The bond valences obtained correlate well with the model of ionic crystals and 

the concept of Lewis acids and Lewis bases. For example, an ionic crystal can be 

described as a network of bonds, having a Lewis acid (cation) at one end, and a Lewis 

base (anion) at the other end of the bond (BROWN 1981). All such compounds having an 

acid-base network must obey “the rule of stoichiometry”. 

 

The total valence of the Lewis acids is equal to the total valence of the Lewis 

bases. 

 

BROWN (1981) transformed the empirical stoichiometry rule into one of the 

fundamental principles of bond-valence theory, designating it  “equal valence sum-

rule”: 

 

The sum of bond valences at each atom is equal to the atomic valence 

 

It is worth mentioning that the “equal valence sum-rule” is another form of stating 

Pauling´s second rule, “the electrostatic valence principle”: 

 

In a stable coordination structure the electric charge of each anion tends to 

compensate the strength of electrostatic valence bonds reaching to it from the 

cations at the centers of the of the polyhedra of which it forms a corner; that is, 

for each anion: 

/i i i

i i

z sς ν= =∑ ∑     [4.1] 

 

ς  = anion charge, z = cation charge, ν = cation coordination number, 

s =(Pauling) bond strength 

 

The electrostatic valence principle is represented by the equal valence rule (or loop 

rule), equation [4.2], where the summation is over the bond valences around any closed 
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loop in the bond network considering the direction in which the loop is traversed, Sij 

being taken as positive if the bond is traversed from the anion to the cation and negative 

otherwise (BROWN 2002). 

 

0
ij

loop

S=∑      [4.2] 

 

The bond valences approach proved to be useful, when BROWN & SHANNON (1973), 

showed that bond valences correlate very well with bond length. This has been 

determined for many different types of bonds in a large number of crystal structures, 

and is accurate to 0.05 valence units (BROWN, 1981). Bond-valences can be determined 

in many compounds using crystal structure information calculating the bond-length 

between the ions or atoms. Bond valences obtained in this way are called “experimental 

bond-valences”. 

 

Bond valences can be calculated using the following equations if the bond-lengths are 

known: 
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where Rij is the length of the bond between atom i and j, and Sij is its “experimental 

valence” in valence units (vu). R0, B, and N are parameters that are chosen to ensure 

that the sum of the bond valences around all the ions in a large number of well-

determined structures are the same as their atomic valences or formal charges (BROWN 

2002). 
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The experimental error in the measured bond lengths ensures that the sum of 

experimental bond-valences around any particular ion will never exactly equal the 

atomic valence. There are cases where this discrepancy gives important information 

about the crystal chemistry. The valence sum rule, which states that the sum of 

experimental bond valences around each atom is equal to the atomic valence Vi , is 

much better obeyed than Pauling´s second rule (BROWN 2002). Equation [4.5] is the 

mathematical expression of this valence sum rule: 

 

i ijj
V S=∑      [4.5] 

 

Equation [4.2] represents the condition that each atom distributes its valence equally 

among its bonds considering the constraints of equation [4.5]. Both equations are 

known as the network equations and provide sufficient information to determine the 

bond valences, given a knowledge of the bond graph and the valences of the atoms. The 

solutions of the network equations are called theoretical bond valences (BROWN 2002). 

 

Some problems with this simplistic model are stated by BROWN (2002): 

 

For example, the difficulty of determining precise values for atomic or ionic 

radii. The radii are determined from observed bond lengths, but which distance 

is to be used? Different bond lengths are often found between the same pair of 

atoms even in the same coordination polyhedron, and the average bond length 

varies systematically with the coordination number (SHANNON and PREWITT 

1969; SHANNON 1976).  

 

In a hard-sphere model each cation is assumed to be surrounded by the 

maximum possible number of anions in order to form the most densely packed 

structure. The factor that determines the coordination is determined by the ratio 

of the cation radius and the anion radius, as expressed by Pauling´s first rule. 
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The problem with the hard-sphere model is that it predicts a single coordination 

number for each ion pair and is therefore unable to account for the behavior of 

cations such as Cs
+
, which are observed with a wide range of coordination 

numbers (BROWN 2002). 

 

One reason for the failure of the radius ratio rules is that ions do not behave like 

hard spheres. This is clearly seen in the way that bond length varies with the 

bond valence. If cation-anion bonds can be compressed, so can the distance 

between the O
2-

 ions in a first coordination sphere of a cation. The stronger the 

cation-anion bonds, therefore, the closer the anions in the first coordination 

sphere can be pulled together (SHANNON et al. 1975). 

 

As a result of this the angle, α , between two oxygen and a cation ( O – X  – O ) 

can vary depending on the strength of the cation –anion bond. The factor 

therefore that determines how close the two oxygen atoms can approach is the 

effective valence, s´, defined by equation [4.6]. 

 

s`= s cos α     [4.6] 

 

More detailed analyses of these problems, are given by BROWN (2002) and citations 

therein. 

 

 

4.2 Theoretical Bond-Valences (Applications)  
 

As a first approach it is appropriate to consider the theoretical bond-valences that can be 

calculated via the solution of the valence sum rule (eqn. 4.5), if the bond-lengths can be 

measured. They may as well be derived for any cation by dividing its atomic valence by 

its coordination number. The latter approach is more general, and the bond-valences 

obtained can be refined later, after the bond-lengths measurements.  
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Depending on the coordination number, we will obtain a certain valence unit (vu) for 

each individual bond around an atom or ion. For example, the Mg
2+

 ion has an atomic 

valence of 2 and a coordination number CN = 6, forming an octahedral coordination 

polyhedron (Fig. 4.1), resulting in a theoretical bond valence of ~ 0.33 valence units 

(vu). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.: 4.1   The left image shows an octahedral coordination polyhedron around a central Mg
2+

-

cation. The right image is a bond-graph around the Mg
2+

-cation. Bond-valences are 

stated in valence units (vu), obtained by the division of the atomic valence of the Mg
2+

-

cation by its coordination number (CN = 6). 

 

The calculation of the more common ionic-complexes such as (CO3)
2-

, (SO4)
2-

 or 

(SiO4)
4-

 is done going from the central cation outwards. Bond valences are attributed to 

the first anion neighbours, satisfying the atomic valence of the central cation first. But 

these valences are insufficient to satisfy the atomic valence of the anions. Therefore the 

remaining valences are calculated and depending on the coordination number of the 

anions, distributed evenly among the residual anion bonds. This is shown schematically 

in Fig. 4.2 for the complex-ion or (SiO4)
4-

. 
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In the case of (SiO4)
4-

 ,we have to start with the central Si
4+

 cation (Fig.: 4.2). The Si
4+

 

cation is coordinated by 4 O
2- 

ions. Each of the four bonds from the Si
4+

-ion to the 

oxygen will have a bond-valence of 1.0 vu, because the atomic valence of the           

Si
4+

- cation has to be divided by its coordination number ( 4 : 4 = 1.0 ). 

 

Now the atomic valence of the Si
4+

-cation is satisfied and each of the four oxygen atoms 

already receives a theoretical bond-valence of 1.0 vu from the central cation of the 

coordination polyhedron. In order to satisfy the valence of 2
-
 of each of the oxygen, 

some more bonds have to be considered (Fig. 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.: 4.2   This Bond-graph shows the distribution of bonds an their corresponding bond-valence 

(vu) of an (SiO4)
4-

-anion complex. In blue the four bonds with a valence unit of 1.0 vu 

each emitting from the central Si
4+

 - cation to the tetrahedral coordinated polyhedron of 

oxygen. The residual bonds (see text) of the oxygen and their corresponding bond-

valences (vu) are given in red. 

 

Lets consider that each of the oxygen atoms has a coordination number of CN = 4. One 

of these bonds is already taken by the Si
4+

-cation, leaving three more bonds to be 

calculated. 

After calculating the influence of the Si
4+

 -cation, there is only a valence of 1.0 vu left 

which has to be divided among the three residual bonds of each of the four oxygen 
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atoms. Therefore, the residual bond-valence of 1.0 vu must be distributed to these three 

bonds and we will receive a bond-valence of 0.33 vu for each of this bonds                   

(1 : 3 = 0.33). For reasons of simplification the anion-complex of (SiO4)
4-

 will be stated 

to have an average theoretical bond-valence of 0.33 vu. 

 

 

4.3 The valence matching principle 

 

One of the major consequences from the calculation of bond valences is the possibility 

to determine which atoms will form stable compounds. BROWN (2002) stated that the 

cation bonding strength is an estimate of the valence of bonds formed by a cation, and 

the anion bonding strength is an estimate of the valence of the bonds formed by an 

anion. Therefore most stable bonds between the two will occur when the bonding 

strength of the cation is equal to the bonding strength of the anion. This statement is in 

conjunction with the electrostatic valence principle of PAULING (1929) and can be 

summarized as the “valence matching principle”: 

 

The most stable compounds are formed between cations and anions that have 

the same bonding strength. 

 

A number of examples are quoted in BROWN (1981, 2002), but good examples are again 

the Mg
2+

 cation and the SiO4
4- 

complex. Both form bonds with valences of 0.33 vu and 

therefore, having the same bond valences, readily form the mineral Mg2SiO4 (forsterite), 

which is a common mineral of the earth´s upper mantle (Fig. 4.3). 

 

Although stable compounds are formed when the bonding strengths of the cation and 

the anion exactly match, a certain degree of mismatch is allowed. BROWN (2002) states 

that compounds can exist if the ratio of the two bonding strengths does not exceed 2.0. 

While it may be possible to prepare materials that are more poorly matched, it requires 

extreme methods and the resulting compounds are generally unstable (BROWN 2002). 
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Fig 4.3 This bond-graph illustrates the principles of the valence matching principle. The bond-

valences of the Mg
2+

 -cations, given in blue, match the bond-valences of the SiO4
4-

 -

anion complex, given in red. Therefore a stable compound such as forsterite is expected 

to form. 

 

 

4.4 Bond-length, bond strength and bond-valences 

 

BROWN (1981) states that there is a correlation between the length of a bond and its 

strength. Different charged ions can approach each other until their attractive forces 

reach a maximum. Further approach of the ions will lead to a repulsive force because 

the electron shells of the ions will begin to overlap. On the other hand ions can be 

separated from each other and in this case the strength of the bond decreases until the 

ions are separated from each other completely. 

 

A correlation between the length of a bond and its strength can be found (Fig 4.4). Short 

bonds have a higher bond-valence (vu) than longer bonds between the same ions. Bonds 

with a relatively higher bond valence are stronger than equivalent bonds with a lower 

bond-valence, and in turn bonds with a high bond-valence are shorter than equivalent 

bonds with a lower bond-valence. 
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Fig.: 4.4 The correlation between the bond-length and the bond-valence of H-bonds calculated 

by equation. [4.4]., illustrating the decrease in bond-strength as bond-valences (vu), 

while the bond-length increases. The parameters for calculating the bond-valences have 

been taken from BROWN (1981). R0 = 0.87 ; N = 2.2 

 

It has been noted that the bond-valence of a bond depends on the coordination number 

of the ions. This is due to the fact that the central ion within a coordination polyhedron 

distributes its bonds as equally as possible to its surrounding ions (eqn. 4.5), in order to 

satisfy its atomic valence. As a result, the higher the coordination number, the more 

bonds will be formed and the lower the bond valence of each individual bond. 

 

Furthermore, if the surrounding coordination polyhedron should be too large there also 

might be a shift of the central ion out of the centre of the coordination polyhedron. As a 

consequence the central ion will still form bonds to each of the surrounding ions, but 

these bonds will not have equal bond-valences because they differ in bond length. The 

shorter bonds will have a higher bond-valence than the longer ones. The sum of all 

bond-valence will be equal to the atomic valence of the central ion (Valence Sum Rule).  
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The shift of the central ion is described by the “Distortion Theorem” of BROWN (2002): 

 

For any ion, lengthening some of its bonds and shortening others, keeping the 

bond valence sum the same, will always increase the average bond length. 

 

This rule has a certain impact on how we approach crystal structures. The bond-

valences of bonds within a crystal which is built up of highly symmetric polyhedrons, 

having bonds of equivalent length, can be calculated by considering the ratio between 

atomic valence and coordination number only. All the bond-valences calculated will be 

equal. In cases where a distortion of the coordination polyhedron is to be expected or 

observed special care has to be given to the length and the direction of the bonds in the 

coordination polyhedron. In such cases the bond-valences must be calculated via the 

equations [4.3] and [4.4]. 

 

 

4.5 Latest developments of the bond-valence theory 

 

The bond-valences parameters described in the previous chapters (4.1 – 4.4) have been 

determined straight forwardly from the assumption that the bond-valence sum of a 

central atom is determined by the interaction of the atom and its first coordination 

sphere. These assumptions led to the formulation of the equations [4.3] and [4.5], with 

the parameters R0 and B chosen to ensure that the sum of the bond valences around all 

ions is as close as possible to their atomic valences or formal charges. 

 

For many inorganic crystal structures these assumptions are sufficient and the bond 

valence sums calculated deviate by less than 0.1 vu from the atomic valence of the ion. 

Nevertheless examples are known (BURNS et al, 1997), in which deviations from up to 

1.0 vu are reported (LIEBAU & WANG, 2005). In the past, such rather large deviations, 

have been interpreted merely as experimental errors or inaccuracies of the bond valence 

parameters applied.  
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New investigations (WANG & LIEBAU, 1996; MOHRI, 2000; LIEBAU & WANG, 2005; 

ADAMS, 2001; GIBBS et al, 2005; BICKMORE et al 2006), hint that these variations are 

not merely statistical errors, but include additional information about the relationship 

between bond-valences and the properties of the bonds formed between the atoms or 

ions. 

  

One approach to sustain an accurate bond-valence sum, which is in concordance with 

the atomic valence of a central ion, is given by the “distortion theorem” in Chapter 4.4 

(BROWN, 2002). According to this approach a central ion can be shifted from the central 

position within a coordination polyhedron, until the bond-valence sum is close to is 

atomic valence. As a consequence the individual bond-lengths between the central atom 

and its coordinated atoms varies.  

 

Considering the distortion of a polyhedron LIEBAU & WANG (2005) introduced a new 

bond-valence parameter, called the “structural valence” ( 
struct

Vi), a bond-valence which 

is distinct from the classical stoichiometric bond-valence, referred to by the authors as  

stoich
Vi. This new “bond-valence”  

struct
Vi, accounts for a variety of deviations between 

the bond-valence sum expected and the bond-valence sum calculated in distorted 

coordination polyhedrons. The authors argue that the values of the classical bond-

valences (
stoich

Vi) are governed by the group number of the elements and therefore are 

not influenced by the specific structure of the compounds. In contrast to this, the value 

of the structural valence (
struct

Vi) of an atom depends mainly on the eletronegativities of 

its coordination partners and thus does depend on the structure of the coordinated 

polyhedron. As a conclusion LIEBAU & WANG (2005) specify that a distinction needs to 

be made between the classical stoichiometric bond-valences derived from chemical 

analysis and those bond-valences derived from structural analysis. For the bond-

valences so obtained for 
stoich

Vi and 
struct

Vi may be similar for undistorted coordination 

polyhedrons of a central atom but may as well deviate conspicuously in the case of a 

distorted environment. 
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ADAMS (2001) proposed that the bond-valence parameters R0 and B have to be refined 

by considering the hardness and/or softness (Parr & Pearson, 1983) of the bonds formed 

between ions or atoms. He showed that even the weak interactions of a central atom 

with its second coordination sphere may influence the bond-valence sum of the central 

atom significantly. This approach tends to incorporate the effect of electronegativity, 

ionization potential and electron affinity into the bond-valence calculations, as these 

factors definitely influence the bond-length between two atoms, ions or molecules.  

 

These examples are only an extract of many efforts undertaken to render the bond-

valence parameters more precisely, improving the capability of the bond-valence model 

to be used in ab inito calculation of crystal surfaces. Lately, BICKMORE et al. (2006) 

demonstrated how a bond-valence approach together with electrostatic calculations and 

molecular dynamic simulations can be combined to predict pKa values of molecules. 
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5. The Bond-valence deficiency 

 

In Chapter 4.3 it has been stated that stable compounds will form if cations and anions  

have a similar bonding strength, being able to satisfy their bond-valences as much as 

possible. One major consequence of the definition of the valence matching principle is 

its relation to bonds already formed and bonds still unsatisfied. Those bonds not yet 

formed, are the missing bond valences of the compound or its deficiency. 

 

 

5.1 The definition of the bond-valence deficiency (BVD) 

 

The bonding-strength of bonds formed by an ion depends, besides its charge, mainly on 

its coordination number. For example, a cation with an atomic valence of 1 vu and a 

coordination number of 4 will extend 4 bonds, each having a theoretical bond valence of 

0.25 vu. The same cation having a coordination number of CN = 8, will have 8 bonds 

each of which having a bond-valence of 0.125 vu. According to the valence matching 

principle a coordination polyhedron around the cation can form consisting either of four 

anions donating bonds of 0.25 vu, or eight anions donating bonds of 0.125 vu. 

 

Whatever the circumstances may be, it clearly can be stated that each cation has the 

tendency to satisfy its atomic valence as well as possible. This leads to the statement 

that each ion possesses a certain bonding power, which it is able to share and this 

bonding power is in return related to the atomic valence of the ion.  

Before the complete coordination polyhedron around an ion is formed, and all the 

valences are shared, the ion possesses a number of unsatisfied bond-valences (Fig 5.1), 

called the bond-valence deficiency (BVD) of the ion. 

 

The incomplete polyhedron is an unstable state of high energy. When it is overcome and 

all the possible bonds are satisfied the compound reaches equilibrium with its 
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surrounding and has reached a state of low energy. In a mineral the state of equilibrium 

is accomplished within the bulk, where all the bonds are satisfied and cations are 

surrounded by anions. The state of imbalance can be found on the surface where only 

the bonds reaching to the interior are satisfied, while those extending out of the bulk 

into the environment are incomplete. 

 

 

Fig.: 5.1 (a) The cation marked X has an atomic-valence of 1, and a coordination number of CN 

= 4. Therefore each bond (marked in red) has a bond-valence of 0.25 vu. If none of the 

bonds is taken by a coordinating anion, the bond-valence deficiency (BVD) is 1.0 vu. 

(b) Considering the same cation as in (a) it is now coordinated by three anions (marked 

O), and each of the bonds formed has a bond-valence of 0.25 vu (marked blue). The 

residual bond-valence or bond-valence deficiency (BVD) is therefore 0.25 vu, (red 

arrow), respectively. 

 

This concept allows to calculate “surface energies” in terms of bond-valence 

deficiencies (Chapter 5.3). Researchers using thermodynamic based computer-models to 

calculate surface energies yield excellent results, that can be used to predict mineral 

growth and dissolution processes anticipating the reactivity of mineral surfaces. 

However, these calculations are very time consuming. 

 



 47 

To look at a mineral surface from the perspective of the bond-valence deficiency is 

another way to assess relative surface energies. Different from computational-modeling, 

the calculation of missing bond-valences can be achieved very quickly, as it is only 

necessary to calculate the number of bond-valences still to be satisfied. 

 

If the BVD approach is transferred to mineral surfaces, e.g. to an edge of a terrace from 

an atomistic point of view, we notice that the edge of a terrace is built from of a “chain” 

of atoms, that is exposed along the edge (Fig. 5.2). Not all possible bonds along this 

chain are satisfied, when compared to an equivalent “chain” within the bulk. Calculating 

the number of unsatisfied bonds (dangling bonds) along this chain and normalizing 

them to a certain chain length will give the bond-valence deficiency of the edge.  

 

 

 

Fig.: 5.2 Atomistic representation of an edge terminating a terrace. For two of the atoms (yellow 

cricles) terminating the edge, the number of missing bonds (two each) is marked with 

red arrows. 
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5.2 The bond-valence deficiency of crystal faces 

 

SCHINDLER et al. (2004 a, b) have shown that polyhedral-chains in sheet-like minerals 

can be compared by calculating the bond-valence deficiency of anions terminating these 

chains. They deduced that edges having a lower bond-valence deficiency than others 

will be more stable than edges with a higher bond valence deficiency. As a consequence 

they concluded that it is possible to predict the relative morphology of sheet like 

uranium-minerals by comparing the bond-valence deficiencies of different anion 

terminations, only. 

 

The investigations of SCHINDLER et al. (2004 a, b) focussed on “two-dimensional” 

structures, of crystal surfaces, such as edges and terraces. We now apply this approach 

to predict the morphology of crystals more generally. The aim is to describe the “three-

dimensional” morphology of a polyhedral crystal, because at the end of a reaction or in 

the state of equilibrium only faces with a low bond-valence deficiency will terminate 

the crystal.  

 

SCHINDLER et al. (2004 a, b) defined the bond-valence deficiency for chains of 

polyhedrons. We now define the BVD more generally:   

 

The bond-valence deficiency of an ion, chain of polyhedrons or crystal face is 

the difference between the amount of bond-valences reaching to the ion, chain 

or face and the amount of bond-valence still needed to satisfy the atomic valence 

of the ion, chain or face. 

 

5.2.1 The BVDF-approach 

 

Atoms terminating a surface are bonded to atoms within the bulk, as well as to 

neighbouring atoms within the same layer. In addition, unsatisfied bonds, called 

“dangling bonds”, are extending out of the surface and are directed towards the 

surrounding liquid or gas phase. “Dangling bonds” can be described as broken bonds 
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and occur when an atom is missing a neighbour. They can be “found” on mineral 

surfaces due to the absence of lattice atoms above them, or at defect sides of a crystal. 

The sum of such extending bonds over a specific area will be called the bond-valence 

deficiency of the face (BVDF), and is expressed as valence unit per area (vu/Å2). 

As an example of calculating the BVDF of a face we will treat a double-layer-lattice 

(Fig. 5.3) as a theoretical crystal. The lattice points are occupied by atoms, their 

coordination number is CN = 6. 

 
Fig.: 5.3 A double-layer of a theoretical crystal, with the space group symmetry Pm3m. The 

(001) surface is marked in red. The coordination number of the atoms is CN = 6. The 

atoms of this crystal are placed at the positions of the lattice points (blue spheres). 

Marked with arrows are atoms at the corner, edge and within the (001) face. These 

atoms bond to fewer atoms, compared to atoms within the bulk of a larger crystal. E.g. 

atoms at the corner of the (001) face bond to 3 neighbours having satisfied only 3 from 

6 possible bonds. 

 

The main objective of this approach is to define a crystal faces as a two-dimensional 

lattice and the atoms occupy the positions of lattice points of the given lattice type. 

Implications of symmetry factors concerning these “special” atom positions will be 

discussed in Chapter 7. 
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In our example (Fig.: 5.3), atoms at the corner of the (001)-face have three “dangling 

bonds”; three bonds are to atoms along the edges of the crystal and three are extending 

to the surrounding, later are the so-called “dangling bonds”. Atoms along an edges, 

have two “dangling bonds”, atoms within the face have only one “dangling bond”, 

respectively. 

 

Calculation of the number of “dangling bonds” over a specific area will give us the 

BVDF-value of this face, and the comparison of the BVDF-values of different faces 

will result in the prediction of the morphology of a polyhedral crystal (Chapter 5.4). 

 

 

5.3 Correlations between BVDF and surface energy 

 

The ability to compare the BVDF-values of different faces in a short period of time by 

calculating the number of dangling-bonds, seems to be compensated by the disability to 

obtain thermodynamic data about the crystal surface. 

 

Solving even one of the basic thermodynamic equations (eqn. 5.1), in order to calculate 

the energy gained during nucleation, is not possible if the BVD-theory is applied. 

 

 

∆G  = - ∆GV  +  ∆GS     (5.1) 

 

∆G  = nucleation energy; ∆GV = energy required to attain volume; ∆GS = surface free energy 

 

The nucleation energy ∆G is the sum of energy spent in forming a particle by 

coagulating atoms. -∆GV reflects the cohesive forces between close-packed ions or 

atoms in the interior and is proportional to r3. + ∆GS, refers to the reactivity of 

unsatisfied bonding potential on the surface and is proportional to r². The factors r² and 

r³ correspond the surface area and the volume of the particle. In Figure 5.4 changes in 

nucleation energy ∆G are given as the size of crystal nucleus changes. The energy 
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required for nucleation to occur, increases as “r” increases, reaches a maximum and 

decreases thereafter. 

 

Among clusters that form, those exceeding the critical size do not dissociate and can 

grow larger. This is caused by the density of dangling bonds per unit area of the surface. 

The relative number of “dangling bonds” decreases as the size increases   (SUNAGAWA 

2005). 

 

Fig.: 5.4  Changes in nucleation energy ∆G (dashed lines) depending on changes in  ∆GS and 

∆GV (Figure changed after SUNAGAWA, 2005). 

 

Taking a closer look at equation (5.1) some similarities between the BVD-theory and 

thermodynamic models can be obtained. As an example we refer to a theoretical crystals 

(Fig. 5.5) having the space group symmetry Pm3m. The atoms occupy the positions of 

lattice-points and have a coordination number CN = 6,  and a0 = 5 Å.  
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Calculating the total number of dangling-bonds of the different growth steps of the 

(001)-faces in (Fig. 5.5), we notice that the total number of dangling-bonds increases as 

the size of the face becomes larger (Tab. 5.1). This observation can be compared to 

changes of ∆GS in the thermodynamic approach. Calculating the BVDF of the (001) 

surface of the growing crystals (Fig. 5.5, Tab.5.1) shows the opposite trend. As the 

crystal size increases the BVDF of the face decreases.  

 

 

Fig.: 5.5 Shown is a growth sequence of a cube, represented in “growth steps” a - c. The space 

group of this theoretical crystal is Pm3m a0 = 5.0 Å. The coordination number of the 

atoms is CN = 6. Below the images of the hexahedrons the corresponding (001)-surface 

termination is given. The blue balls represent atoms on the crystal surface and the 

numbers given indicate the amount of dangling bonds. 

 

The results obtained are not surprising as they represent some fundamental coherences 

known in crystal growth theories. But they are worth to be mentioned, as they prove the 

applicability of the BVD-approach to describe crystal growth processes. 
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Tab.: 5.1 This table corresponds to Fig. 5.5. Given are the number of dangling-bonds (DB), the 

size of the surface area (001) and the BVDF-values of a theoretical crystal with space 

group symmetry Pm3m, a0 = 5 Å , atoms having a coordination number CN = 6. Two 

trends are visible. First the increase in the number of dangling bonds as the crystal 

grows in size, second the decrease of the BVDF-value while the surface area increases.  

 

Concluding we can say, even though the BVD-theory is not able to provide specific 

thermodynamic data for calculating crystal surface energies, the BVD-approach yields 

to some extent results, which are comparable to known thermodynamic properties of 

crystals. 

 

5.4 Application of the BVDF-model for primitive cubic lattices 

 

As an example how the BVDF-model can be applied, the “abstract form” of a 

theoretical crystal having a primitive cubic lattice will be calculated. The space group 

symmetry is Pm3m, the coordination number of the atoms CN = 6, the number of lattice 

points Z = 1, and a0 = 5 Å. 

 

The results obtained by calculating the BVDF-values for the faces (100),(110) and (111) 

are quoted in Table (5.2) and visualized in the diagrams of Figure (5.6). 

 

(DB) Surface area (Å2) BVDF (vu/Å2) 

12 25 0,480 

21 100 0,210 

32 225 0,142 

45 400 0,113 

60 625 0,096 

77 900 0,086 

96 1225 0,078 
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Face (100) (DB) Surface area (Å2) BVDF (vu/Å²) 
 12 25 0,180 
 21 100 0,210 
 32 225 0,142 
 45 400 0,113 
 60 625 0,096 
    

Face (110) (DB) Surface area (Å2) BVDF (vu/Å²) 
 18 70,71 0,255 
 38 282,84 0,134 
 66 636,39 0,104 
 102 1131,36 0,090 
 146 1767,75 0,083 
    

Face (110) (DB) Surface area (Å2) BVDF (vu/Å²) 
 15 21,65 0,693 
 27 86,6 0,312 
 42 194,85 0,216 
 60 346,4 0,173 
 81 541,27 0,150 

 

 

Tab.: 5.2 Summary of the results obtained for a Pm3m-lattice by application of the BVDF-

method. First column states the face (hkl) considered. Column 2 states the number of 

dangling bonds. Column 3 represents the size of the two-dimensional face (hkl) 

concerned and column 4 gives the BFDF-value obtained by dividing the number of 

dangling bonds by the surface area. The list has been cut off after five “growth steps” 

 

 

The diagram in Figure (5.6 a) gives the correlation between the increase of the total 

number of dangling bonds and the increase of the crystal size, given as growth steps. 

The “growth steps” resemble the increase (extension) of the surface area of a given face 

(hkl). The gradient of the graphs shows differences in the increase of the number of 

dangling bonds as the faces advance, indicating changes in the relative surface energies 

of the faces as they grow in size. 
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Fig.: 5.6 Plotted in these diagrams are the results from Tab.5.2. Fig. (a) shows the increase of the 

total amount of dangling bonds vs. the number of growth steps. The “growth steps” 

represent the extension of the crystal surface. Fig. (b) shows the correlation between the 

total number of dangling bonds and the increasing size of the growing faces. Fig. (c) 

shows the decrease of dangling bonds per area as the size of the faces increases. 

(Details see in text). Fig. (d) represents the predicted “abstract form” of a crystal having 

a space-group symmetry Pm3m. 

 

Figure.(5.6b) is similar to Figure. (5.6a), showing the increase in the total number of 

dangling bonds. Here the total number of dangling bonds is plotted against the actual 

size of the corresponding faces. Comparing both diagrams (Fig. 5.6a and 5.6b), it is 

possible to deduce that the increase in the total number of dangling bonds, and thus the 

“surface energy”, is compensated by the size of the crystal faces. This correlation is 

more obvious in Figure (5.c).  
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The gradients of the graphs as well as their progression indicate a close relation between 

free energy of a face (BVDF-value) and its actual size. The (110)-face having a high 

number of dangling bonds (5.6a) now proves to have a lower “surface energy” (BVDF-

value) than the (111)-face. 

 

The graphs in the diagram (Fig. 5.6b) are cut off after the faces have reached a size of 

approximately 600 Å² (see Tab.5.2). The (100)-face needs 5 “translations” steps to 

reach a size of 625 Å². Only 3 translations are needed by the (110)-face to reach a size 

of 636 Å². The (111)-face increased to 541 Å² after 5 translations. The different number 

of translations needed to reach a similar size hint to the approaches of NIGGLI (1920) 

and DONNAY-HARKER (1937) considering the lattice density as a factor to be 

recognized while predicting the morphology of a crystal (Chapters 3 and 7). 

 

The diagram of Figure (5.6c) shows a negative gradient of the graphs. Here the “surface 

energy” of the faces, calculated as the total number of dangling bonds, is normalized to 

the size of the faces, namely the BVDF-value of the face given as vu/ Å². This BVDF-

value is plotted against the increase in surface area. This diagram indicates that the 

relative surface energy of a crystal face decreases as the size of the face increases, due 

to the decrease in the BVDF-values. 

 

Having reached a certain size, the BVDF-values of all crystal surfaces tends to reach a 

minimum. This is due to the decreasing influence of the bond-valence deficiencies of 

the edges on the overall BVDF-value of the surfaces, as the surfaces size increases. For 

each surface this minimum is expected to be equivalent to the number of “dangling 

bonds” present in the respective unit-cell. In our example the minimum BVDF-value of 

the (100) surface is 0.04 vu / Å². The unit-cell of the (100)-face has a size of 25 Å², and 

the number of dangling bonds is one, therefore: 1 / 25 = 0.04. 
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This minimum, being characteristic for each face, can be used to establish a relative 

ordering of morphological importance of these faces (see Chapter 8). In this example 

the (100)-face, showing the lowest BVDF-value, would dominate the morphology of the 

macro-crystal, followed by the (110) and (111) faces. 

  

It is worth to be mentioned that at the start of nucleation, at the time when the surface 

areas of the crystal faces are still small, a “cross-over” of the BVDF-values of the (100) 

and (110) faces occurs. It is not until the crystal, and therefore the surfaces, have 

reached a certain size that the (100) faces turn out to having the lowest BVDF-value.  

 

As a result from these observations we can deduce that at the early stages of nucleation, 

before the nucleus of the crystal has reached a critical value, faces later being only of 

minor importance to the morphology of the macroscopic crystal, have a larger influence 

on the habit and therefore on the reactivity of the crystal surfaces at nano-scales. 
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6. First applications of the BVD-theory 
 
The following chapters are a selection of results obtained by application of the bond-

valence deficiency approach, concerning the morphology of uranyl-sheet minerals. 

These results have been obtained in the progress of this study and have been published 

(Appendix V). The results obtained had a major impact on the further development of 

the BVD-theory, as they have been the first attempts to describe mineral surface 

reactions via the calculation of bond-valence deficiencies. 

 

6.1 Bond valence deficiency calculations on steps and edges 

 

Uranyl-sheet minerals are very useful when approaching the BVD-theory for the first 

time. These minerals have been described in terms of bond-valence models, since the 

1980´s by different authors FINCH (1996), HAWTHORNE (1985, 1986). Even though the 

mineral structure of uranium minerals seems to be very complex, and the atomic 

interactions are numerous; the structures of uranyl-sheet like minerals can be simplified 

as described by HAWTHORNE (1985,1986,1990) and SCHINDLER & HAWTHORNE 

(2001a). 

 

The basic idea of SCINDLER & HAWTHORNE (2001 a) was to factor the crystal structure 

into two components (Fig.6.1): the structural unit (an array of uranyl polyhedrons with 

high-bond-valences, which are usually anionic in character) and the interstitial complex 

(an array of cations, simple anions and (H2O) groups, with low bond-valences, which 

are usually cationic in character. 

 

It can be noticed that the structural unit, in the example given for becquerelite (Fig. 6.1), 

consists of a layer of uranyl-polyhedrons. This structural unit dominates the crystal 

morphology and edges terminating the structural unit define the morphology of the 

minerals, respectively. 
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Fig.: 6.1 The crystal structure of becquerelite Ca[(UO2)3O2(OH)3]2(H2O)8. This structure can be 

separated into a structural complex [(UO2)3O2(OH)3]
2- as well as an interstitial complex 

[Ca(H2O)8]
2+. 

 

The edges of the basal faces and the basal surfaces (structural unit) themselves vary in 

reactivity owing to differences in the local stereochemistry of their constituent uranyl-

polyhedrons. In general, uranyl-sheet minerals contain layers of polymerized uranyl-

polyhedrons with uranium in [6], [7] and [8]-coordination as tetragonal, pentagonal and 

hexagonal bipyramids, respectively (Fig 6.2). In these polyhedrons, the strong U–O 

uranyl bonds (Uur) are not involved in linkage between uranyl polyhedrons. They extend 

orthogonal to the sheet, whereas weaker equatorial U–φ bonds [φ = O2–, (OH)–, (H2O)] 

link the polyhedrons in the plane of the sheet.  

 

The reactivity of the basal surface is determined primarily by the reactivity of the apical 

oxygen atoms of the uranyl-group (Uur). These oxygen atoms receive an average of 1.6–

1.7 valence units (vu) from the U–O bond, and hence they cannot be protonated (by H+), 

as each O–H bond has an average bond-valence of 0.80 vu, and the aggregate incident 

bond-valence at the uranyl O-atom would be 1.6 + 0.8 = 2.4 vu, which is in conflict with 

the valence-sum rule (Brown 1981, Hawthorne 1994, 1997). Apical oxygen atoms of 

the uranyl group are therefore not involved directly in any acid–base reactions at the 

surface. 
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Fig.: 6.2 Three different uranyl-polyhedron (above) and their atomic representation (below). The 

uranium atoms (yellow) are coordinated by oxygen atoms (red and green) in either [6], 

[7] or [8]-coordination. The oxygen atoms of the strong uranyl-group (Uur) are marked 

red. The equatorial oxygen atoms (U–φ) are marked in green. The notation concerning 

only the equatorial oxygen atoms (U–φ) can be given as [4]U–φ for the polyhedron-type 

“A” , or as [5]U–φ and [6]U–φ for the polyhedron “B” and “C”. 

 

In contrast to the uranyl-bonds (Uur), equatorial U–O bond lengths vary over a larger 

range, with average bond valences between 0.2 and 0.8 vu. Thus, equatorial O-atoms 

(U–φ) at basal and edge surfaces can participate in acid–base reactions through 

protonation and deprotonation. Hence, edged surfaces are much more reactive than 

basal surfaces because equatorial O-atoms on the edged surface almost always bond to 

fewer atoms of U6+ than O-atoms in the sheet, and hence must satisfy their individual 

bond-valence requirements through a higher degree of protonation. Equatorial oxygen 

atoms in the sheet of polyhedrons commonly bond to two or three U6+-atoms. 

 

One of the basic uranyl-sheet minerals is schoepite. The interstitial complex consists 

only of H2O- molecules and the structural sheet is made out of uranyl-polyhedra which 

all have [5]U–φ bonds. One approach to the structural unit of schoepite would be the 



 62 

Periodic Bond-Chain theory (Hartman & Perdok 1955a, b, c), by which the basal face 

can be defined as an F face, because the sheet contains more than one periodic bond-

chain of strong bonds. In our approach, however, we consider polyhedrons instead of 

bonds, a linear periodic bond-chain is therefore part of a linear periodic chain of 

polyhedrons. Such a chain of polyhedrons we call a  polyhedron chain or chain, (Fig. 

6.3). 

 

 

Fig.: 6.3 (a) Shows the structural-sheet of schoepite parallel to the  (001)-face, consisting of 

uranyl-polyhedrons. This view is parallel to the c-axis of the mineral. The unit-cell 

dimension is framed. (b) and (c) show that the unit-cell, as well as the whole structural-

sheet of schoepite, can be thought of being composed of chains of polyhedrons 

(polyhedron chain). 

 

Even though we will later arrange polyhedron chains parallel to distinct crystallographic 

directions, the idea to subdivide a structural sheet in “chains” was first mentioned by 

Miller et al. (1996) and Burns et al. (1996). Their intention was to reconstruct and 

predict sheet anion topologies of sheet minerals, in order to develop a method to 

compare and classify the numerous uranyl-mineral structures which are based upon 

sheets of polyhedrons of higher bond valence (BURNS, 1999). 
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As the structural sheet dominates the morphology of uranyl-sheet minerals and 

polyhedron chains can be determined terminating the edges along the structural sheet, 

our interest will be focused on how to compare these different terminations and how 

they influence the final morphology of the crystal. 

 

A polyhedron chain in schoepite, terminating a structural-sheet contains ligands that 

bond either to U6+ cations and/or ligands which bond to U6+ cations and to species in the 

adjacent gas phase or aqueous solution. The linearity of the chain of polyhedrons 

requires that the polyhedrons should have a small number of U– φ terminations. Figure 

6.4 shows chains of polyhedra parallel to [100], [010], [120], [210] and [110] in the 

structural unit of schoepite, [(UO2)8O2 (OH)12](H2O)12, after Finch et al. (1996).  

 

Figure 6.4 refers to the following question: which periodic bond-chains in uranyl-sheets 

define the morphology of the corresponding F-faces? Application of PBC theory 

requires categorization of different types of bonds in these bond chains. Bonds between 

U6+ and O2- or (OH)- can have similar strengths in all these chains, and therefore one 

must consider the distances to the central U6+ cations. PBC theory does not consider the 

type of equatorial ligands in the chain [O2- or (OH)-], the arrangement of interstitial 

cations, the change in morphology with pH or the degree of supersaturation. Further the 

PBC-theory can not distinguish between a left and a right termination of a polyhedron 

chain, which is important if parallel edges show an anisotropic behaviour. Those are the 

reasons why we use chains of polyhedra instead of chains of bonds, as required by the 

PBC-theory. 

 

To predict the occurrence of different edges, we must consider the different types of 

linear periodic chains of polyhedra parallel to an edge. Figure 6.5 shows linear periodic 

chains of polyhedra parallel to [100] in schoepite. Depending on whether one considers 

the surface on the right or left side of the figure, one can construct (linear periodic) 

chains of polyhedra with different types of terminations (Fig 6.6). Terminations of 

linear periodic chains that terminate the layer to the right or left side are called right 

terminations or left terminations, respectively. 
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Fig.: 6.4 Structural sheet of schoepite. Marked in different colors are edges of terraces running 

parallel to distinct crystallographic directions. Brown [100], red [010], pink [110], 

green [210] and blue [120]. (Figure modified from SCHINDLER et al. 2004 a). Red balls 

indicate the position of equatorial O2—anions. 

 

Fig.: 6.5 Shown on the left is the advancement of a stepped terrace. The step is oriented parallel 

to the [100] direction. On the right the different termination of this step R1 and R2 are 

shown. The advancement of the step occurs due to adding an additional chain of 

polyhedrons (marked in green). 
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Fig.: 6.6 This figure shows the differences in the bond-valence deficiency of [100]-edges of the 

structural-unit of schoepite. Above the advancement of the step is shown schematically. 

Fig. 6.6a demonstrates the step advancement from right to left (left termination). In 

Fig.: 6.6b the steps advance from left to right (right termination). The diagrams apply to 

the changes in the BVD-value as the steps advance (modified from SCHINDLER et al. 

2004a). 

 

The linear periodic chain of polyhedra parallel to [100] in schoepite has a repeat 

distance of 14.377 Å. Let us designate the right termination of this chain as R1: there 

are two [7]U–OH terminations and four [7]U–OH– [7]U terminations (Fig. 6.7). The 

average bond-valence of [7]U6+–O in schoepite is 0.47 vu, and the average O–H bond-

valence is 0.80 vu (Brown 1981). The oxygen atoms of the two [1]-coordinated and the 

four [2]-coordinated (OH) groups receive (2 x 1 x 0.47 + 2 x 0.8) = 2.54 vu, and (4 x 2 x 

0.47 + 4 x 0.8) = 6.96 vu, respectively. The resulting bond-valence deficiency at the 

oxygen atoms in the chain is the difference between their formal valence and their 

incident bond-valence sum. 
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For example, the oxygen atoms of the two [1]-coordinated (OH) groups in the 

repeatunit of the chain have a formal sum charge of 4–, and they accept 2 x 0.47 vu from 

equatorial U–O bonds and 2 x 0.80 vu from O–H bonds. The sum of the incident bond-

valence is 2.54 vu, resulting in an aggregate bond-valence deficiency of 4 – 2.54 = 1.46 

vu. The bond-valence deficiency of the four [2]- coordinated oxygen atoms is 1.04 vu. 

The bond-valence deficiency of the oxygen atoms in the repeat distance of the chain of 

polyhedrons is 1.46 + 1.04 = 2.50 vu, and normalized to the length of the chain: 2.50 / 

14.337 = 0.1744 vu / Å. The bond-valence deficiency of such a chain depends on the 

type and number of anion terminations. 

 

A high bond-valence deficiency occurs where the chain contains a high number of 

negatively charged terminations, such as U–OH, U–O–U or U–O, and a low bond-

valence deficiency occurs if the chain contains a high number of the formally neutral U–

OH–U terminations. Here, the number of kink sites along the chain controls the number 

of U– φ and U– φ –U terminations. 

 

 

 

Fig.: 6.7 This image shows a chain of polyhedrons parallel to the [100] direstion. The repeat unit 

“a”  is 14.377 Å. On the right side the same chain is given in an atomistic construction 

and the coordinated environment of the terminating oxygen atoms is given. 
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6.2 Prediction of the morphology of dehydrated schoepite 

 
The previous Chapter (6.1) has outlined how the BVD-model can be applied to 

calculate bond-valence deficiencies of polyhedral chains terminating a stepped terrace. 

This method will now be applied to predict the morphology of synthetic dehydrated 

schoepite crystals. 

 

Dehydrated schoepite has been chosen as an example because of its simple 

crystallographic structure.  The structural unit of dehydrated schoepite consists of [7]U- 

and [8]U- uranyl polyhedrons and there are no  H2O-molecules present in the interstial-

complex (FINCH et al. (1998). Therefore, dehydrated schoepite is a good example to test 

the BVD-model and its capability to predict crystal morphologies of sheet-like minerals. 

Focusing on the bond-valence deficiencies of different polyhedral chains terminating 

the structural-unit of dehydrated schoepite, predictions about the morphology of the 

crystals and predictions about certain crystal surface features, such as the shape of etch-

pits for example, are possible. 

 

FINCH et al. (1997) reported that dehydrated schoepite, with the general formula             

[(UO2) O0.25 – 2x (OH)1.5 + 2x] , occurs in natural samples as a corrosion ring around 

schoepite crystals [(UO2)8 O2 (OH)12](H2O)12. But, dehydrated schoepite has not been 

observed as larger single crystals in nature so far. Nevertheless, single crystals of 

dehydrated schoepite can be synthesized under laboratory conditions.  

 

In our experimental setting dehydrated schoepite was synthesized under hydrothermal 

conditions in Teflon-vessels at 120°C for 3 days, with a molar ratio of 1 : 2.5 uranyl-

acetate and (H2O). Besides microcrystalline powder, the residual contained idiomorphic 

crystals of up to 60 µm in size (Fig.6.8). This solid phase was characterized by X-ray 

powder diffraction, SEM, EDX and DTA analysis and the crystals have been identified 

as dehydrated schoepite having a  [(UO2) O 0.2(OH) 1.6] composition. 
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6.2.1 The “theoretical” structural sheet of dehydrated schoepite UO3 
. 
0.8 H2O 

 

Despite the knowledge of the chemical composition of our sample [(UO2) O 0.2(OH) 1.6] 

and the lattice parameters derived by singly-crystal diffraction [ a = 4.2799, b = 6.8971, 

c = 10.1946, α = 90.0496, β = 09.0279, γ = 89.9991), the topology of the structural sheet 

of the dehydrated schoepite phase synthesized [(UO2) O 0.2(OH) 1.6] is not known in 

detail so far. 

 

Based on the observations that schoepite [(UO2) O2 (OH)12](H2O)12 transforms slowly 

in air at ambient temperatures to metaschoepite UO2 
.
 n H2O (n = 2), and metaschoepite 

can be further altered to “dehydrated schoepite” [(UO2) O0.25 – 2x (OH)1.5 + 2x], FINCH et 

al. (1998) proposed a model about the structural relation ship of these phases. 

 

 

Fig.: 6.8 SEM-image of a synthesized dehydrated schoepite crystal. 

 

According to this model (FINCH et al., 1998), the alteration of schoepite to dehydrated 

schoepite occurs in three steps: (a) loss of all interlayer H2O from schoepite, causing a 

collapse of the layers, (b) atomic rearrangement within the structural sheet to a 
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configuration that may be similar to metaschoepite, and (c) further re-arrangement to a 

defect α-UO2(OH)2-type sheet.  

 

These structural rearrangements can be described by two equations. The first resembles 

the loss of all interlayer H2O-goups, equation 6.1 (FINCH et al., 1998): 

 

  [(UO2)8 O2 (OH)12](H2O)12  ⇒ [(UO2)8 O2 (OH)12] + (H2O)12   (6.1) 

 

the second equation (eqn. 6.2) refers to the relaxation of the structural sheet and can be 

formulated as proposed by  FINCH et al.(1998) as: 

 

  [(UO2)8 O2 (OH)12]          ⇒8 [(UO2) O0.25  (OH)1.5]  (6.2) 

 

The right-hand side reaction of equation 6.2 represents a structural-derivate of α-

UO2(OH)2 in which anion vacancies are disordered with a composition similar to 

“dehydrated schoepite”  (UO3 
. 0.75 H2O) . The structural relationship between 

schoepite, dehydrated schoepite and   α-UO2(OH)2  obtained by (FINCH et al., 1998) is 

illustrated in Figure (6.9). 

 

The ball-and- stick model (Fig.: 6.9b) is a theoretical structural sheet with a 

stoichiometric schoepite composition on the left, “dehydrated schoepite” composition in 

the middle and α-UO2(OH)2 – composition on the right.  

 

According to MILLER et al. (1996), uranyl-sheet minerals can be classified by their 

sheet anion topologies, which can be separated into different chains of polyhedrons 

(Fig. 9.6 d,f). The structural sheet of schoepite, contains three types of such chains, all 

of which consist of uranyl-pentagons. The P-chain is composed of edge-sharing 

pentagons, the D- and U-chains are composed of arrowhead chains of pentagons with 

opposite orientation. The structural sheet of  α-UO2(OH) is composed of H-chains, 

which contain edge-sharing hexagons.  
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Fig.:6.9  (a) Polyhedral representation of the structural sheet of schoepite [(UO2) O2 (OH)12]. (c) 

Polyhedral representation of the structural sheet of α-UO2(OH)2. (b) Ball-and stick 

model of a structural sheet of “schoepite”, showing the structural relationship between 

schoepite (left), dehydrated schoepite (middle, with open circles) and α-UO2(OH)2 on 

the right (FINCH et al., 1998). Yellow spheres are uranyl ions ( uranyl O atoms not 

shown). Blue and green spheres are O atoms of the structural sheet (O2- and OH). The 

open black spheres represent possible vacancies of O positions in the α-UO2(OH)2 

structure, representative for a sheet with a dehydrated schoepite composition. (d) Anion 

chains in of schoepite (e) Additional anion chain in dehydrated schoepite (F) Anion 

chains in of α-UO2(OH)2. 

 

The structural sheet of dehydrated schoepite is similar to the structural sheet of α-

UO2(OH) but contains anion vacancies. This gives rise to a new theoretical chain (Q) 

shown in Figure (9.e), composed of edge sharing pentagons and hexagons.  
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Acknowledging the circumstance that the anion vacancies in dehydrated schoepite are 

disordered, this chain represents a theoretical chain of short-range order and is an 

additional chain implemented to reconstruct the theoretical structural sheet of the 

synthetic dehydrated schoepite crystals (Fig. 6.10). 

 

Fig.: 6.10 (a) Theoretical anion sheet topology of dehydrated schoepite with the composition     

UO3 
. 0.8 H2O. (b) Stacking sequence of anion chains present in the dehydrated  

schoepite structure. 

 

The lattice parameters of dehydrated schoepite [ a = 6.86, b = 4.26, c = 10.20] given by 

FINCH et al.(1997),  are similar to the lattice parameters of the dehydrated schoepite 

phase synthesized in our experiments [ a = 4.2799, b = 6.8971, c = 10.1946]. Further, 

the chemical composition of the schoepite phase [(UO2) O 0.2(OH) 1.6] = UO3 
. 0.8 H2O, 

is similar the composition given by DAWSON et al. (1956).  

 

 



 72 

Therefore, a correlation between the structural sheet of schoepite, α-schoepite and 

dehydrated schoepite, similar to the approach of  FINCH et al. (1998) is considered, and 

a theoretical structural sheet for the synthesized schoepite crystals  is established 

(Fig.6.10). The reconstruction of the theoretical structural sheet of the synthetic 

dehydrated schoepite crystals, was accomplished by application of the chain stacking 

sequence method of MILLER et al. (1996) as shown in Figure 6.10. 

 

 

6.2.2 Bond-valence calculation of  polyhedron-chains of dehydrated schoepite 

  

Having established a theoretical structural sheet topology (Chapter 6.2.1), it is possible 

to predict the morphology of the dehydrated schoepite crystals synthesized. Based on 

the bond-valence approach in Chapter (6.1), those polyhedron chains composed of 

U6+
φ8 and U6+

φ7 polyhedrons, having the lowest bond-valence deficiency will form the 

most stable edges terminating the structural sheet and will dominate the final 

morphology of the crystals (Fig. 6.11). 

 

In Figure (6.11) the theoretical structural sheet and the results of the bond-valence 

deficiency calculations of different anions terminations are compared to the morphology 

of the crystals synthesized. The obtained results indicate that chains of polyhedrons 

parallel to the [100] and [130] directions have the lowest bond-valence deficiencies. 

These results are in agreement with the morphology of the dehydrated crystals 

synthesized (Fig. 6.11b), indicating that it is possible to determine the crystal 

morphology of sheet-like minerals by application of the bond-valence deficiency model 

while comparing the deficiencies of different polyhedron chains (edges) terminating the 

structural sheet. 
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Fig.: 6.11 (a) Theoretical structural sheet of dehydrated schoepite. Blue: polyhedron chain running 

parallel to the [130] direction, red:  polyhedron chain running parallel to the [100] 

direction. (b) SEM-image of dehydrated schoepite crystal synthesized. (c) and (d) 

Bond-valence deficiency diagrams of advancing polyhedron chains of different 

crystallographic orientation. According to the cluster-model (see text) only two 

terminations 1 and 2 need to be considered for each chain. The terminations parallel to 

the [100] and [130] direction having, the lowest bond-valence deficiency,  dominate the 

sheet morphology of the crystals synthesized (b). 

 

The diagrams (c) and (d) given in Figure (6.11), are simplifications of the bond-valence 

deficiency diagrams given in Chapter (6.1). Instead of calculating each individual 

polyhedral chain, only such polyhedron chains have been considered, which are 

terminated by polyhedron clusters. The results of both methods are comparable, but the 

later method has proven to be more efficient. Both methods are illustrated in Figures 

(6.13) and (6.14).  
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The comparison of both approaches shows that the polyhedron chains with the lowest 

bond-valence deficiencies can be detected. The advantage of calculating polyhedron 

chains, terminated by polyhedron clusters only, is the fewer number of different 

terminations to be calculated. 

 

The bond-valence deficiencies of the different terminations have been calculated as 

described in Chapter 6.1, and are normalized to their respective unit-length. The average 

bond-valence for [7]U6+- O is 0.47 vu and 0.42 vu [8]U6+- O (FINCH et al.,1996; TAYLOR, 

1971). The average O – H bond is 0.8 vu (BROWN, 1981). As an example the bond-

valence deficiency of an oxygen atom having a [7]U – OH – [8]U6+ coordination is:  2 – 

(0.47 + 0.42 + 0.8) = 0.31 vu (Fig. 6.12). 

 

Fig.: 6.12 (a)-(c) Different representations of a [7]U6+-polyhedron. (a) Polyhedron representation 

(b) Ball-and-stick model, red: oxygen atoms, black: uranium arom. (c) Schematic 

representation used in the examples given for the structural unit of dehydrated 

schoepite. (d) Section of a polyhedron chain parallel to [100]. Oxygen atoms (red) 

terminating the polyhedron chain  receive bonds (blue) form the bulk-uranium atoms 

and bonds from the attached H+- ions. (e) Schematic representation of the polyhedron 

section (d). Given in numbers are the different bond-valence deficiencies of the oxygen 

atoms terminating the polyhedron chain. 
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Fig.: 6.13 Schematic representation of an advancing polyhedron chain. The chain is oriented 

parallel to the [010] direction ( b = 6,12 Å) and proceeds to advance in [100] direction 

(a`= 21.45 Å). The example given demonstrates how polyhedron chains can be 

calculated while attaching rows of single polyhedrons only. For each new termination 

the newly attached polyhedrons are marked in the same colour. The bond-valence 

deficiencies are stated below the images and are normalized to the lattice parameter b. 

The individual steps are labels I-XI. Starting with termination I the full translation 

parallel the [100] direction is reached at termination XI after 21.45  Å  (a`). The 

terminations IV and IX having the lowest bond-valence deficiencies (0.28 vu/ Å). 

 

Considering polyhedron clusters, instead of single polyhedrons, terminating a 

polyhedron chain is based on the work of BURNS et al. (1995), who classified the 

structure of borate minerals based on the topological character of fundamental building 

blocks (FBB). The general structure of borate minerals is based on BΦ3 and BΦ4 

polyhedrons. These polyhedrons form finite clusters, chains, sheets and frameworks. 

BURNS et al. (1995) concluded that the polyhedrons can be combined to form finite 

clusters [BnΦm], which can readily be recognized to occur as FBB´s in the structure of 
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borate minerals. The authors summarize:  “nature seems to produce structural diversity 

by using only small numbers of FBB´s and then polymerizing them in many different 

ways.” 

 

Fig.: 6.14 Advancing [010] termination. The number of terminations calculated is reduced, if the 

step advancement is considered to proceed due to the attachment of polyhedron clusters 

(see text). Only two different termination occur. Either the polyhedron chain is 

terminated by polyhedron-dimers (I, III) or polyhedron-trimers (II, IV). The later 

having the lowest bond-valence deficiency  is equivalent to the terminations IV and XI 

in Figure 6.13. 

 

Polyhedron clusters (FBB´s) can be identified in the theoretical structural sheet of 

dehydrated schoepite (Fig. 6.4 and 6.14). These fundamental building units are, a    

U6+
φ8 – dimmer and a U6+

φ7 – trimer. Only these two polymers are needed to construct 

the theoretical structural sheet of dehydrated schoepite.  

 



 77 

An additional indication that polyhedron clusters have to be recognized, is there 

abundance as aqueous complexes in solutions ( BAILEY  et al., 2004; SUZUKI & 

BANFIELD, 1999). Depending on the pH of the solution different U6+-complexes can be 

found in aqueous solutions. 

 

As an example, the solubility of schoepite is at minimum around pH 6, at 25 C° and            

PCO2 = 10-3.5 (SUZUKI & BANFIELD, 1999). This is about the same pH range at which 

schoepite is expected to crystallize from a saturated solution. The most dominante 

aqueous species present at pH 5-6 (1mM ionic strength for 100 ppm U6+ and             

PCO2 = 10-3.5 ) is (UO2)3OH+
5, a U6+-trimer (SUZUKI & BANFIELD, 1999) and such U6+- 

trimer clusters are very common in the structural sheet of schoepite (Fig. 6.4). 

 

 

6.2.3  Dissolution features of dehydrated schoepite 

 

In the previous Chapter (6.2.1) it has been outlined that  polyhedron chains having a low 

bond-valence deficiency affect the morphology of dehydrated schoepite crystals.  

 

The subsequent question that arises is, if the same polyhedron chains prove to be stable 

during leaching experiments. Due to the low solubility of the crystals synthesized the 

dissolution of the crystals could not have been observed in situ. Therefore, the leaching 

experiments have been carried out ex situ in sealed test tubes. In order to monitor the 

proceeding dissolution processes the samples have been scanned by an AFM-

microscope (Dimension 3000), before and after the leaching experiments. 

 

Each test tube contained 0.1g of the synthesized dehydrated schoepite sample and 1.5 

ml solution (pH 6-7) of different composition (H2O, KCl, CaCl2 and BaCl2). The 

concentration of the salts varied from 0.1 M to 1.0 M. The samples were recovered from 

the test tubes after time periods of 6, 12, 24 and 36 hours. Afterwards the residual was 

separated from the solution, washed and than dried at room temperature.  
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Finally the samples have been scanned by an AFM-microscope in air. The results of the 

experiments are compared in Table 6.1. 

 

The  solutions  KCl,  CaCl2  and  BaCl2  have  been  chosen  because  they  can  be 

related to uranium-minerals, such as compreignacite K2[UO2)3O2(OH)3]2(H2O)7, 

becquerelite Ca[UO2)3O2(OH)3]2(H2O)8, billietite Ba[UO2)3O2(OH)3]2(H2O)4 and 

protasite Ba[UO2)3O3(OH)2]2(H2O)3. All these minerals have a similar or equivalent 

structural-sheet topology (Fig.: 15. b), but vary in the composition of their interstitial-

complexes. The pure H2O-solution was chosen as a reference experiment. 

 

Fig.: 6.15 (a) Schematic representation of the theoretical structural sheet of dehydrated schoepite. 

(b) Schematic representation of the theoretical structural sheet of compreignacite, 

becquerelite and billietite (protasite). (c) Polyhedron chains (stacking sequence of anion 

chains) in the structural sheet of dehydrated schoepite. (d) FBB´s of the structural sheet 

of dehydrated schoepite. (e) Polyhedron chains (stacking sequence of anion chains) 

present in the structural sheets of compreignacite, becquerelite, billietite and protasite 

(BURNS, 1999). (d) FBB of the structural sheet of compreignacite, becquerelite, 

billietite and protasite. 
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Previous page: 

 

Tab.: 6.1 All images are deflection images of  (001) crystal surfaces of dehydrated 

schoepite obtained with an AFM-microscope Dimension 3000. Shown are 

etch-pits formed during leaching experiments with different solutions. The 

orientations [100] and [010] have been obtained from the orientation of the 

crystals on the sample holder. 

 

(a) and (b) Leaching experiment with H2O. The edges are oriented parallel to 

the [010] and [130] directions. (a) after 3 hours, the [130] directions are 

dominante (b) after 24 hours. The depth of the etch-pits increased and more 

edges are oriented parallel to [010]. 

(c) and (d) Leaching experiment with KCl (1 M). The edges of the etch-pits are 

oriented parallel to the [010] and [130] directions. (a) after 6 hours (b) after 

24 hours. The depth of the etch-pits increased during this time-periode. 

(e) and (f) Leaching experiment with CaCl2 (1 M). The edges of the etch-pits 

are oriented parallel to the [010] and [130] directions. (a) after 6 hours (b) 

after 36 hours. The depth of the etch-pits increased less compared to the 

former experiments (H2O and KCl). 

(g) and (h) Leaching experiment with BaCl2 (1 M). The edges of the etch-pits 

are oriented parallel to the [010] and [100] directions. (a) after 3 hours (b) 

after 36 hours. 

 

The results pictured in Table 6.1 can be explained by the different composition of the 

solutions chosen and as a result of the interaction of the ions present with the crystal 

surface. The results obtained are compared to the predictions made from the bond-

valence deficiency calculations. The calculations given in Chapter 6.2.1 state that the 

most stable edges (polyhedron chains) of the structural-unit of dehydrated schoepite are 

oriented parallel to the directions [010] and [130].  
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As a preliminary prediction to our experiments, the edges of etch pits obtained during 

the leaching of the samples should be oriented parallel to polyhedron chains having a 

low bond-valence deficiency. 

 

The AFM- deflection image (Tab.6.1 a, b), obtained after 3 and 24 hours of leaching 

with a pure H2O-solution shows that the edges of the etch-pits obtained are oriented 

parallel to the [010] and [130] directions of the theoretical structural sheet of dehydrated 

schoepite. This result is in concordance with our predictions that at a neutral pH-range, 

and the absence of adsorbing ions, only those polyhedron chains with the lowest bond-

valence deficiency, calculated from the  structural-sheet only, are expected to be stable. 

The results obtained from the leaching experiments, in presence of foreign ions at        

pH 6-7, are also in concordance with our predictions, even to the extent that the shape of 

the edge-pits changes in the presence of Ba2+-ions (Tab. 6.1 g, h, Fig. 6.16). 

 

The leaching experiments with KCl, showed no major difference in the shape of the 

etch-pits compared to those etch-pit shapes obtained in the H2O-reference experiments. 

In all the experiments undertaken, the edges of the etch-pits are dominated by the 

polyhedron chains [130] and [010]. Only a minor change in the relative relationship of 

these two directions was detected after the dehydrated schoepite samples have been 

treated with a 1.0 M KCl solutions for 24 hours. 

 

The result of the KCl-leaching experiments can be explained by the low bond-valence 

distribution of K+-ions adsorbing to the different possible polyhedron chains. The 

average bond-valence of K+ is 0.126 vu (BROWN, 2002). This value is in good 

agreement with the bond-valences of K+ calculated form the compreignacite-structure 

(BURNS, 1998). There the average K- O distance is given as  K-Φ = 2.85 Å, and the 

resulting bond-valence value is 0.136 vu. Comparing this value to the average bond-

valence of a weak hydrogen-bond of 0.2 vu (BROWN, 2002), indicates that no major 

changes in the relationship between the bond-valence deficiencies of different 

polyhedron chains are to be expected.  
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The influence of K+ ions, temporarily adsorbing to the polyhedron chains, is minor 

compared the possible formation of weak hydrogen bonds, and thus no major change in 

the shape of the etch-pits could be observed compared to the reference H2O experiment. 

 

Fig.: 6.16 Differently shaped etch-pits on top of the (001) crystal surface of dehydrated schoepite. 

(a) The image and the drawings illustrate the shape of etch-pits formed during leaching 

experiments with a pure H2O solution. (b) During the leaching with a 1 M BaCl2-

solution edges parallel to the [010] direction evolved. 

 

In contrast the presence of divalent cations such as Ca2+ and Ba2+ should to some extent 

influence the shape of etch-pits formed. While such changes could well be observed in 

the Ba2+-leaching experiments no differences occurred while the dehydrated schoepite 

samples where treated with Ca2+-solutions. These results obtained (Tab. 6.1) seem to be 
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to some extent arbitrary to the results expected. The presence of higher charged ions in 

the solution should have an influence on the shape of etch-pits observed, but only the 

experiments in the presence of Ba2+ ions showed such changes (Tab. 6.1, Fig. 6.16 ). 

 

The comparison of the average bond-valences given by BROWN (2002), Ba2+ = 0.195 vu 

and Ca2+ = 0.274 vu might be a first explanation of the different influences of these 

cations present. These different bond-valence values result from differences in the ideal 

coordination number of these two ions. But they can be counterbalanced when 

compared to the bond-valences calculated from the protasite, and becquerelite structures 

(PAGOAGA et al., 1987). The average bond-length of Ca – O in becquerelite is 2.51 Å, 

which is equivalent to 0.23 vu. The average bond-length Ba – O in protasite is 2.84 Å, 

equivalent to 0.223 vu. These results show that both ions Ba2+ and Ca2+ contribute a 

similar amount of bond-valences to their respective structural-units. Consequently the 

slight differences in the bond-valences contributed to the structural-unit cannot be 

responsible for the differences observed in etch-pit morphology.  

 

The bond-length of Ba-O in billietite given by PAGOAGA et al. (1987), is not precise 

enough to be considered, as they only locate one Ba2+ in their structural analyses, 

concluding that their sample was not crystallized well enough. The average bond-length 

given is Ba - O is 3.03 Å which is equivalent to 0.1335 vu. For the detected 

coordination number of Ba (CN = 7), these values are too low, because the bond-

valence sum is 7 x 0.1335 vu = 0.9345 vu, and significantly does not match the atomic 

valence of Ba2+.  

 

Neglecting the minor bond-valence differences of Ca2+ and Ba2+ as possible factors, 

structural factors might be responsible for the differently shaped etch-pits observed. A 

comparison of the structural units of becquerelite and billietite together with the 

distribution of the interstitial cations (Fig. 6.17 a, b), shows that the Ca2+ ions are 

oriented parallel to the [010] direction, while the Ba2+-ions are oriented parallel to the 

[100] direction. These different orientations can be related to the theoretical structural 

sheet of dehydrated schoepite  (Fig. 6.17 c,d). The structural sheets of becquerelite, 
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billietite and dehydrated schoepite can be compared by adjustment of the polyhedron 

chains. While the crystallographic orientations [010] and [100] for each individual 

structural-sheet remain unchanged, the polyhedron chains are aligned in parallel 

orientation (Fig. 6.17).  

 

 

Fig.: 6.17 Comparison of the structural sheets of becquerellite, billietite and dehydrated schoepite. 

The polyhedron chains are oriented in the same direction, in order to compare the 

orientation of the structural-units of  becquerellite and  billietite to a similar oriented 

theoretical structural-unit of dehydrated schoepite. (a) Schematic representation of the 

structural sheet of becquerelite. The Ca-ions (green) are oriented parallel to the [010] 

direction. (b) Schematic representation of the structural sheet of billietite. The Ba-ions 

(blue) are oriented parallel to the [100] direction. (c) Schemetic representation of the 

structural sheet of dehydrated schoepite. The Ca-ions (green) are oriented parallel to the 

[100] direction. (d) Schematic representation of the structural sheet of dehydrated 

schoepite. The Ba-ions-ions (blue) are oriented parallel to the [010] direction. 
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Considering our leaching experiments of dehydrated schoepite in the presence of Ca- 

and Ba- bearing solutions we can deduce, that the Ca2+ - ions are predominately aligned 

parallel to the  [100] direction of the theoretical structural sheet of dehydrated schoepite, 

while the  Ba2+ ions are predominately oriented parallel to the [010] direction. 

 

 

 

Fig.: 6.18 Comparison between the bond-valence deficiencies of  different polyhedron chains in 

the structural sheet of dehydrated schoepite. (a) and (c) Deficiencies calculated for 

hydrated polyhedron chains. (b) and (d) Bond-valence deficiency diagrams after Ba-

ions have selectively adsorbed to polyhedron chains parallel to the [001] and [010] 

directions. The diagrams show that due to the adsorption the bond-valence deficiencies 

of the polyhedron chains are lowered. Chains (edges) parallel to the [010] direction now 

have a lower bond-valence deficiency than polyhedron chains parallel to the [130] 

direction. (e) and (f) Possible attachment site of Ba-ions at a polyhedron chain parallel 

to the [010] direction. 
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This observation suggests that ions selectively adsorb to special positions relative to the 

structural sheet. Consequently, the ions can only add bond-valences to certain 

polyhedron chains, which in return lower their bond-valence deficiency more 

effectively. The Ca2+ ions are temporarily adsorbing to polyhedron chains parallel to the 

[100] direction of the structural sheet of dehydrated schoepite, and only contribute to an 

already low bond-valence deficiency. As a result no changes in the shape of etch-pits 

formed, compared to the reference experiment (pure H2O- solution), are observed. 

 

The Ba2+ ions predominately adsorb to polyhedron chains parallel to the [010] direction 

of the structural sheet of dehydrated schoepite. As a consequence the bond-valence 

deficiency of these polyhedron chains is lowered, and the etch-pit edges parallel to the 

[010] direction will be stabilised (Fig. 6.18). 

 

 

6.3 Morphology changes due to interstitial cations 

 

As a consequence of the results obtained in the previous chapter (6.2.3), the 

arrangement of interstitial complexes in minerals with identical structural units, may 

influence not only the shape of etch-pits observed, but may also influence the crystal 

morphology as a whole. 

 

This can be well documented for becquerelite, Ca(H2O)4[(UO2)3O2(OH)3]2(H2O)4, and 

billietite, Ba(H2O)4[(UO2)3O2(OH)3]2(H2O)3. Figure 6.19. show the arrangements of the 

interstitial cations Ca2+ and Ba2+ in becquerelite and billietite, respectively. The 

interstitial Ca2+ atoms in becquerelite are arranged in rows parallel to [010], whereas the 

interstitial Ba2+ atoms in billietite are arranged in rows parallel to [100]. Evaluation of 

the bond-valence deficiencies of the structural units of becquerelite and billitite indicate, 

that the [100] and [110] are the most stable edges, whereas edges such as [010], [210], 

[130] and [310] are less stable (see Papers attached in Appendix V, SCHINDLER et al. 

2004 a,b). 
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Fig.: 6.19 Left: structural sheets of becquerelite and billietite showing the different arrangements 

of interstitial cations. The Ca-ions (green) in becquerelite (a) are oriented parallel to the 

[010] direction. The Ba-ions (blue) in billietite (b) are oriented parallel to the [100] 

direction. Right: examples corresponding to the (001)-face morphology of becquerelite 

and billietite (image modified from SCHINDLER et al. 2004a). 

 

Depending on the distributions of the interstitial cations the morphological importance 

of edge directions may be changed, giving rise to differently shaped crystals. 

 

The edges [100] and [110] invariably occur on the (001) face of becquerelite and 

billietite alike and are therefore in good agreement with our predictions. Only 

becquerelite crystals are reported to be elongate parallel to [010], whereas billietite 

crystals can be elongate parallel to [100]. This readily implies that the occurrence of 

edges and their dominance on the final morphology is additionally controlled by the 

arrangement of the interstitial complexes (Fig. 6.19).  
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7.     Application of the BVD-model to predict the morphology of 

polyhedral crystals (Internal factors) 

 
The main reason for developing the BVD-model is to find a suitable method to predict 

crystal morphologies by combination of internal and external factors controlling the 

shape of polyhedral crystals. Internal factors such as the reticular density, lattice spacing 

(see Chapter 3) and face symmetry (this Chapter), will be incorporated into the BVD-

model to describe a mineral surface by its bond-valence deficiency. Later, the bond-

valence model is applied to external factors, such as ions present in a solution            

(Chapter 9). Finally, in Chapter 11 both factors (internal and external), having influence 

on the morphology of a crystal will be combined, because by then, both can be 

expressed via their respective bond-valences.  

 

In the previous chapter it was demonstrated how the BVD-model can be applied to 

describe “two-dimensional” crystal surface features. A similar approach will be used in 

this Chapter to predict the morphology of “three-dimensional” polyhedral crystals. In 

Chapter (5) it is demonstrated how calculated BVDF-values can be applied to compare 

different crystal faces of a crystal having a simple cubic lattice type structure. In the 

example given, only faces with low (hkl)-indices have been compared. The application 

of the BVD-model, for the example given, obtained good results, but it must be stated 

that this approach will reach its limits when being applied to more complex crystal 

lattices or if faces with higher (hkl)-indices are compared. Therefore, additional internal 

factors, besides the number of dangling bonds emitted by the crystal surface, must be 

regarded to be involved in controlling the morphology of a crystal. Internal factors such 

as the reticular density and lattice density need to be considered when predicting the 

morphology of a polyhedral crystal. It has been demonstrated by BRAVAIS (1866), 

NIGGLI (1920) and DONNAY-HARKER (1937) that these factors have strong influences 

on the “equilibrium” or “abstract form” of crystals. Hence it is necessary to establish a 

correlation between the BVDF-values of a crystal surface and the internal structure of 

the crystal. 
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7.1 The BVD-model and reticular density  

 
Incorporation of the reticular density model from BRAVAIS (1866) into the BVD-model 

is a first step to consider internal factors. Therefore the results obtained (Chapter 5) 

need to be reconsidered. In Fig.7.1 the BVDF-values of the (001)-faces, present in the 

three cubic Bravais-lattices types (Pm3m, Fm3m, Im3m), are compared.  

 

 

Fig.: 7.1 Comparison of the (001)-BVDF-values obtained in the Pm3m, Fm3m and Im3m 

Bravais-lattice type (a). All graphs in the diagram shown a negative gradient, tending 

towards a minimum (see text). Fig. (b-d) show the (001)-surfaces of the Pm3m, Fm3m, 

Im3m lattices corresponding to the starting point of the graphs at 25 Å² . The yellow 

circles show the atoms terminating these surfaces and the sketches indicate the number 

of dangling-bonds per surface atom. 

 

The BVDF-values of each of the three faces compared in Figure (7.1), decreases as the 

size of the face increases. The slopes of the negative gradient of the graphs show that 

the BVDF-values tend towards a minimum. This minimum is characteristic for each 

face and is equal to the BVD-value of the corresponding two-dimensional unit-cell of 
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the face. This value will be called the “BVDU-value”, referring to the bond-valence 

deficiency of an area of unit-cell dimension. Special attention has to be given to the 

number of lattice points present within the unit cell. The number of atoms or ions 

considered must be equivalent to the number of lattice points “Z” of the lattice-type. 

This approach is in concordance with the models of  BRAVAIS (1866) and DONNAY-

HARKER (1937) considering the reticular densities of the faces. 

The reticular density (g²) is calculated by considering the (hkl)-values of the face: 

 

    g² = h² + l² + k² 

 

The ranking so obtained for different (hkl)-values gives the order of morphological 

importance of these faces (Tab. 7.1). 

 

 

Tab. 7.1 Given is the sequence of morphological importance for (hkl)-faces in the cubic 

primitive Bravais-lattice. Based on the increase of the reticular density value (g²). Faces 

having a low  g²-value have a higher order of importance than faces with a high g²-

value. 

 

Order of morphological importance of faces in the cubic primitive Bravais-lattice type: 

 

(100) < (110) < (111) < (210) < (211) < (310) < (311) < (320) < (321) < (410)(322) < (411) 

 

To obtain comparable values for different faces the number of lattice points in a unit-

cell of a face (Z*) must be equalized to the number of lattice points “Z” of the Bravais-

lattice type. The number of lattice points “Z” in the Fm3m-Bravais lattice is Z = 4.  

Calculating the number of lattice-points present in the unit-cells (Z*) for the (001), 

hkl g² hkl g² hkl g² 

(100) 1 (211) 6 (321) 14 

(110) 2 (310) 10 (410) 17 

(111) 3 (311) 11 (322) 17 

(210) 5 (320) 13 (411) 18 
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(110) and (111)-faces (Fig. 7.2), yields, that only the unit-cell of the (111)-face has an 

equivalent number of lattice point  (Z* = 4). The faces (001) and (110) only have         

Z* = 2. According to the approach of Bravais, the g²-value of such faces must be 

doubled to receive comparable results. The values so obtained will give the right 

sequence of morphological importance of these faces. The Tables (7.2) and (7.3) show 

the results for the Fm3m- and Im3m-Bravais lattice. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.: 7.2 Given are the Z*-values for the (001), (110) and (111) lattice planes of a face-centered 

cubic lattice type. Top: atomistic graphic perpendicular to the lattice planes. Marked 

with yellow circles are the lattice points present at the surface. The diagrams below 

indicate the calculation of the number of lattice points ( Z*) for the given unit-cells of 

the corresponding lattice planes (001), (110) and (111). 
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hkl g² hkl g² hkl g² 

(200) 4 (422) 24 (640) 52 

(220) 8 (442) 36 (642) 56 

(111) 3 (620) 40 (331) 19 

(420) 20 (311) 11 (511) 27 

 

(111) < (100) < (110) < (311) < (331) < (420) < (422) < (511) < (442) < (620) < (640) < (642) 

 

Tab.: 7.2  g²-values calculated for the cubic face-centered lattice, normalized to Z = Z*. Given 

below is the ranking of the morphological importance of the different faces. 

 

 

hkl g² hkl g² hkl g² 

(200) 4 (211) 6 (640) 52 

(110) 2 (442) 36 (321) 14 

(222) 12 (310) 10 (411) 18 

(420) 20 (622) 44 (332) 22 

 

(110) < (100) < (211) < (310) < (111) < (321) < (411) < (420) < (332) < (442) < (622) < (640) 

 

Tab.:7.3  g²-values calculated for the cubic body-centered lattice, normalized to Z = Z*. Given 

below is the ranking of the morphological importance of the different faces. 

 

Calculating the reticular density of lattice points is an integral part in the models of 

BRAVAIS and DONNAY-HARKER and can easily be recognized while calculating the 

BVDU-value of a crystal face. The factor applied to even the number of lattice points of 

the unit-cell of the crystal plane (Z*), to the number of lattice points of the crystal lattice 

(Z) will be called “RD-factor” (reticular density factor) and is listed in Table (7.4) for 

the Pm3m, Fm3m and Im3m cubic Bravais-lattices. 
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Face (hkl) RD-factor 

Pm3m-Bravais 

lattice 

RD-factor 

Fm3m-Bravais 

lattice 

RD-factor 

Im3m-Bravais 

lattice 

(100) 1 2 2 

(110) 1 2 1 

(111) 1 1 2 

(210) 1 2 2 

(211) 1 2 1 

(221) 1 2 2 

(311) 1 1 2 

(331) 1 1 2 

 

Tab.: 7.4 Comparison of the different RD-factors of the Pm3m, Fm3m and Im3m Bravais-

lattices. 

 

There appears to be one major problem if this method is applied directly to the BVD-

model. In the models of BRAVAIS and DONNAY-HARKER the faces are compared 

considering their Miller-indices (hkl). The Miller-indices are used to describe the 

orientation of crystal planes within a three-dimensional lattice. In the BVD-model this 

terminology is applied in the same manner, namely to describe and distinguish between 

crystal-surfaces, oriented parallel to certain crystal planes. While calculating the 

BVDU-values of a crystal face we have to distinguish precisely between crystal planes 

and crystal faces.  

 

In the calculations of BRAVAIS and DONNAY-HARKER the faces of a crystal are treated 

merely as crystal-planes, and these crystal-planes contain only lattice points having an 

identical environment. The two-dimensional unit-cells for such planes, for which the 

reticular density (g²) is calculated, likewise contain only lattice points of identical 

environment (Fig. 7.3).  
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Fig.: 7.3 Given on the left is a (001)-lattice plane of a primitive cubic Bravais-lattice. The traces 

of the planes (100), (110) and (-210) are given in red, green and black respectively. 

Lattice points passed by these lattice planes are marked “X”. Given on the right are the 

two-dimensional unit-cells of the corresponding lattice planes; given as polygons 

having lattice points at their corners. 

 

Considering a crystal face from an atomistic point of view, gives some significant 

differences. The surface topology of many crystal faces is not a flat surface, rather they 

exhibit a stepped topography (Fig. 7.4). Consequently these surfaces contain “extra 

lattice points” not having an identical environment. Crystallographically these “extra 

lattice points” are still equivalent because they belong to an equivalent set of parallel 

planes (hkl), but from the atomistic approach of a crystal surface these “lattice points” 

are “non-equivalent”, because in the atomistic approach applied in the BVD-model, the 

positions of “lattice points” are taken by atoms. As a consequence, these atoms can 

occupy geometrical equivalent positions, comparable to “lattice points”, but as real 

atoms they share bonds with their neighbours, and the number of these bonds shared can 

diver, transferring “equivalent atoms” into non-equivalent” atoms (Fig. 7.5). 
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Fig.: 7.4 Comparison between a flat crystal lattice (210) marked black, and the stepped 

morphology of a (210) crystal surface (atomistic approach), oriented parallel to a (210) 

crystal plane, marked in red (a). The dashed red line indicates the (210) crystal lattice. 

The solid red line indicates the stepped (210) crystal surface, occupied by atoms. 

“Equal lattice points”, (equal atoms) are positioned at the edges of terraces while 

additional “non-equivalent lattice points” (non-equivalent atoms), occupy the flat 

terraces of the stepped (210) crystal surface. Fig. (b) shows the stepped topology of the 

(210)-crystal lattice in a three-dimensional perspective (Pm3m-lattice type). Atoms 

exposed at the surface, contributing dangling bonds to the environment are marked as 

red balls. The “equivalent atoms” in the middle of the step have two dangling bonds, 

while the “non-equivalent atoms” in the middle of the terrace have only one 

danglingbond. 

 

The “non-equivalent” lattice points (atoms) must be considered in the BVD-model, 

because these atoms also emit a certain number of dangling bonds to the environment 

and cannot be neglected, as they also contribute towards the surface energy of the face 

considered. Hence, the calculation of the reticular density of a unit-cell of unit-

dimension for a given (hkl)-face must include both “equivalent” and “non-equivalent” 

atoms (lattice points). 
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In Figure (7.5) and Table (7.5) examples are given on how neglecting and including 

additional “non-equivalent” lattice points (atoms) influences BVDU-values calculated. 

The examples given are calculated  for a primitive cubic lattice type(CN = 6, a0 = 5 Å). 

 

 

Fig. 7.5 (a) Three-dimensional perspective of the stepped (210) crystal surface of a primitive 

cubic Bravais-lattice. Marked in color are atoms exposed on the surface corresponding 

to the surface area of the (210) unit-cell. (b) View perpendicular to the (210) surface. 

Marked in red are atoms representing “equivalent lattice points”, marked green are 

atoms representing “non-equivalent lattice points”. Marked yellow are atoms not being 

“exposed” at the surface (at the bottom of the step, Fig .a), without contributing any 

dangling bonds to the environment, having a coordination number of  CN=6. Fig. (d)  

detailed view of the (210) surface unit cell. Fig. (c). indicated by numbers are the 

numbers of dangling bonds (2), contributed to the environment by the “equal lattice 

points” (atoms) marked red (Fig.d). Fig. (e), similar to Fig (c), but in addition the 

number of dangling bonds emitted by the “non-equivalent lattice points” (atoms), are 

shown. 
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The morphology of the “abstract form” predicted, neglecting the “non-equivalent” atom 

positions would be misleading (Tab 7.5). Instead of resulting in a cube, the “abstract 

form” of a crystal having a Pm3m lattice type, would be terminated in our example, by 

crystal faces parallel to (331)-crystal planes. In contrast the calculation including “non-

equivalent” atoms (Tab 7.5) results in an “abstract form” with the shape of a cube, 

because the (001)-faces are having the lowest BVDU-value. 

 

(hkl) Number of DB of 

“equivalent” 

atoms 

BVDU of 

“equivalent” atoms  

Number  of 

“equivalent” and 

“non equivalent” 

atoms 

BVDU of equivalent 

and “non equivalent” 

atoms 

(100) 1 0,0400 1 0,0400 

(110) 2 0,0566 2 0,0566 

(111) 3 0,0693 3 0,0693 

(210) 2 0,0358 3 0,0537 

(211) 3 0,0490 4 0,0653 

(221) 3 0,0200 10 0,0667 

(311) 3 0,0181 10 0,0603 

(331) 3 0,0138 14 0,0642 

 

Tab.: 7.5 Comparison between the BVDU-values of atomic planes of unit-cell dimension 

considering only “equivalent” atom positions (“lattice points”) and the BVDU-values of 

crystal surfaces considering both, ”equivalent” and “non-equivalent atom positions. 

 

Calculating the reticular density of a (hkl)-face, by application of the BVD-model, must 

therefore consider all atoms (lattice points) belonging to the same set of (hkl)-planes 

truncated by the crystal surface (hkl). As a further addition, the number of lattice points 

(Z and Z*) need to be reconsidered. Stated above: the number of lattice points (Z*) 

present in the two-dimensional unit cell of a (hkl)-face, must be equivalent to the 

number of lattice points (Z) of the corresponding crystal lattice. This rule must just as 

well be followed by the number of “non-equivalent lattice points” (atoms) present in the 

respective unit-cell.  
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Again we need to bear in mind that the term “lattice point” later must be substituted by 

the term atom or ion, when considering real crystal structures. 

 

 

Fig.: 7.6 Column (a): Ball- and stick models of the crystal surfaces (001), (211) and (311) of a 

primitive cubic lattice type. Atoms exposed on the crystal surface are marked yellow. 

Column (b) Diagram quoting equal lattice points and the number of free dangling bonds 

of the representative atoms. “A” position of “equivalent atom positions”, B-F different 

“non-equivalent” atom positions. Column (c): Diagrams and equations giving the total 

number of lattice points (Z*) for the given face unit-cell. The equations and the diagram 

on the right show that for each “equivalent lattice point” and for each “non-equivalent 

lattice points” the number (Z*) is equal to the number of lattice points (Z) present in a 

primitive cubic Bravais-lattice. 

 

Following the above mentioned amendments, the reticular density of unit-cell 

dimension, and the “abstract form” of a polyhedral crystal can be calculated. The results 

obtained by considering the reticular density only for the Pm3m, Fm3m and Im3m 

lattice type are given in Table 7.6. The examples calculated are corrected with the     
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RD-factor to account for the number of lattice points (Z), including both “equivalent” 

and “non-equivalent” atom positions. A graphic example of the morphological ranking 

of different faces for the face-centered cubic lattice type is plotted in Figure (7.7). 

 

 

Pm3m 
Face (hkl) 

DB Surface 
area (Å²) 

BVDU/Area 
(vu / Å²) 

RD-
factor 

BVDU*/Area 

(100) 1 25,00 0,0400 1 0,0400 
(110) 2 35,35 0,0566 1 0,0566 

(111) 3 43,29 0,0693 1 0,0693 

(210) 3 55,90 0,0537 1 0,0537 
(211) 4 61,23 0,0653 1 0,0653 

(221) 10 149,99 0,0667 1 0,0667 
(311) 10 165,82 0,0603 1 0,0603 

(331) 14 217,94 0,0642 1 0,0642 
      

Fm3m 
Face (hkl) 

DB Surface 
area (Å²) 

BVDU/Area 
(vu / Å²) 

RD-
factor 

BVDU*/Area 

(100) 8 25,00 0,3200 2 0,6400 

(110) 12 35,35 0,3394 2 0,6788 
(111) 12 43,29 0,2771 1 0,2771 

(210) 20 55,90 0,3578 2 0,7156 

(211) 40 122,46 0,3266 2 0,6532 
(221) 24 74,99 0,3200 2 0,6400 

(311) 84 249,00 0,3373 1 0,3373 
(331) 36 108,96 0,3304 1 0,3304 

      
Im3m 

Face (hkl) 
DB Surface 

area (Å²) 
BVDU/Area 

(vu / Å²) 
RD-

factor 
BVDU*/Area 

(100) 4 25,00 0,1600 2 0,3200 
(110) 4 35,35 0,1131 1 0,1131 

(111) 6 43,29 0,1386 2 0,2771 

(210) 8 55,90 0,1431 2 0,2862 
(211) 16 122,46 0,1306 1 0,1306 

(221) 10 74,99 0,1333 2 0,2667 
(311) 36 249,00 0,1446 2 0,2892 

(331) 14 108,96 0,1285 2 0,2570 

 

Tab.: 7.6  Given as BVDU* are the bond-valence deficiencies of different crystal faces of unit-

cell dimension in the Pm3m, Fm3m and Im3m Bravais-lattice type structures. The 

asterix (*), implies that these bond-valence deficiency values calculated have been 

corrected by the RD-factor. The DB-value correlates to the total amount of dangling 

bonds of the atoms (“equivalent” and “non-equivalent”) terminating the respective 

crystal surfaces. 
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Fig.: 7.7 Image (A) shows the ranking of the morphological importance for the crystal faces 

parallel to (111), (001) and (110) for a face-centered cubic Bravais-lattice. In image (B)  

additional crystal faces having higher (hkl) values are added. Crystal faces having a low 

BVDU-value appear at the bottom of the images. In return, these faces should have a 

higher order of morphological importance. 

 

The results of the diagram in Figure. (7.7 a) are similar to the ones expected by 

application of the Bravais-method. The ranking obtained is:   

 

(111) < (001) < (110). 

 

Problems occur when faces of higher indices are added (Fig.7.7b). The ranking of the 

morphological importance of the crystal faces is: 

  

(111) < (331) < (311) < (001) < (110) < (210) 

 

This ranking is totally inconsistent with the ranking obtained by application of the 

Bravais-model: 

 

(111) < (001) < (110) < (311) < (331) < (210)  
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Even though it seems necessary to consider the reticular density of crystal planes while 

calculating the bond-valence deficiency of faces, the results obtained so far are 

disappointing. Therefore some additional amendments (Chapter 7.2) have to be 

considered, similar to the revisions made by DONNAY-HARKER (1937). 

 

 

7.2 The BVD-model and lattice spacing 

 
Lattice type is the basis for calculating the reticular density according to Bravais - 

empirical law. In lattice types, only symmetry elements with no translation, i.e. the 

center of symmetry, the symmetry plane, and the symmetry axes, are included. 

Consequently the geometry of the fourteen types of Bravais lattices and thirty-two 

crystal groups are the basis for calculating the reticular density (SUNAGAWA 2005). 

According to DONNAY-HARKER (1937) this approach can be extended to the 230 space 

groups when translational symmetry elements such as glide planes and screw axes are 

included in the calculations. Their results turned out to match the observed morphology 

of natural minerals much better than those obtained by application of the Bravais - 

empirical law only. 

 

The considerations of DONNAY-HARKER (1937) to implement the influence of screw-

axis and glide-planes to predict the morphology crystals, is similar to the considerations 

of NIGGLI (1920). In both approaches the density of the lattice spacing in a crystal 

structure is considered to be relevant when predicting the ranking of the morphological 

importance of crystal faces.   

 

Any attempt to combine the bond-valence deficiency of crystal surfaces with internal 

factors controlling the morphology of a crystal has to recognize the influence of the 

lattice spacing. This may have been a reason why the combination of the BVD-model 

and the reticular density model failed in the first approach. Similar to the amendments 

made by DONNAY-HARKER (1937), only the combination between reticular density, 
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lattice spacing and the BVD-model will bring forward a suitable prediction of the 

“abstract form” of a crystal. 

 

Before starting to introduce an additional factor into the BVD-model, the term “lattice 

plane” must be reconsidered in this context. In our theoretical approach to deduce a 

factor considering the density of crystal lattice planes, similar to the approach of NIGGLI 

(1920), it is applicable if we refer to the term lattice as a periodic sequence of points, 

which have an identical environment. Later this terminology will be applied in a more 

broader sense, in so far, as atoms will substitute for the lattice points, and thus we 

actually consider the density of atoms or the density of atomic layers within a crystal. 

 

 

7.2.1 Calculation of the lattice spacing (LD-factor) 

 

According to NIGGLI (1920), a high lattice spacing (low density of lattices planes) 

corresponds to a slower growth rate of the corresponding crystal faces. Hence the 

number of parallel crystal lattices (hkl) is a criterion by which the morphological 

importance of a face can be measured. Thus the number of crystal lattices of a given 

crystal plane will be implemented in the BVD-model as the “LD-factor” (lattice density 

factor). This LD-factor is introduced into our calculations as the second internal factor 

controlling the morphological importance of a crystal face.  

 

Depending on the crystal structure there are two methods applicable to calculate the 

density of crystal lattices. One is a mathematical approach suitable for simple structures 

such as the primitive cubic lattice. The second method is a graphical approach suitable 

for more complex crystal structures and crystals containing different building units 

(ions, atoms). 
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7.2.1.1 Calculation of the lattice density of a homöopolar primitive cubic crystal 

lattice (mathematical approach) 

 

Considered as homöopolar are crystals not bonded via ionic bonds (heteropolar). 

 

First, the distance “d[uvw]” between equivalent lattice points perpendicular to the crystal 

lattice must be calculated. This distance is given by the equation: 

 
2 2 2

[ ] 0uvwd a u v w= • + +     [7.1] 

 

In the next step the d-spacing “d(hkl)” of the lattice is calculated by the equation:  

 

0
( )

2 2 2
hkl

a
d

h k l

=
+ +

     [7.2] 

 

By combination of these two equations [eqn. 7.3] the number of parallel lattice planes 

present in a three-dimensional crystal lattice of unit-dimension can be calculated. The 

result obtained is the LD-factor and is the quotient between the distance of two 

equivalent lattice points given as d[uvw] and the d-spacing “d(hkl)” of the related crystal 

planes: 

                                            [ ]

( )

uvw

hkl

d
LD

d
=                                                          [7.3] 

 
As an example the LD-factor of the (001) and (211) crystal planes in the Pm3m-Bravais 

lattice are calculated: 
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Example 1 :  Calculation of the LD-factor for the (001) lattice planes in a                            

Pm3m-Bravais lattice, a0 = 5 Å. 

 

 

  2 2 2
( ) 0uvwd a u v w= • + +      →  2 2 2

( ) 5 0 0 1 5uvwd = • + + =  

 
 

0
( )

2 2 2
hkl

a
d

h k l

=
+ +

      →  ( ) 2 2 2

5
5

0 0 1
hkl

d = =
+ +

 

 
 

( )

( )

uvw

hkl

d
LD

d
=       →  ( )

( )

5
1

5
uvw

hkl

d
LD

d
= = =  

 
 
Result of Example 1: The LD-factor is 1. The lattice plane (001) is repeated only once 

within unit-cell of the three-dimensional Pm3m-Bravais lattice. 

 

 
Example 2:  Calculation of the LD-factor for the (211) lattice planes in a                         

Pm3m-Bravais lattice, a0 = 5 Å.   

 
2 2 2

( ) 5 2 1 1 12.247uvwd = • + + =  

 

( ) 2 2 2

5
2.041

2 1 1
hkl

d = =
+ +

 

 

( )

( )

12.247
6.00

2.041
uvw

hkl

d
LD

d
= = =  

 

Result of Example 2: The LD-factor is 6. The lattice plane (211) is repeated 6-times 

until an “equivalent” position is reached in the three-dimensional Pm3m-Bravais lattice. 
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7.2.1.2 Calculation of the lattice density of a homöopolar primitive cubic crystal 

lattice (graphic  approach) 

 

First the positions of translation equivalent lattice points at the distance d[uvw] are 

marked in the crystal lattice. Then the lattice planes (hkl) corresponding to the two 

lattice points are drawn and the number of “lattice plane translations” between the two 

equivalent lattice points are calculated. Additional sets of parallel lattices are added if 

additional equivalent lattice points appear at distances d(hkl). The number of lattices 

present (number of translations) is equal to the LD-factor (Fig. 7.8). Both methods, the 

mathematical approach and graphic approach lead to the same results. 

 

Fig.: 7.8 (a)-(c) Unit-cells of a Pm3m Bravais-lattice, a0 = 5 Å . Equal lattice points at the 

translation distance d[uvw] are marked by black arrows. The corresponding distances 

d[uvw] are given below the images. Fig. (d)-(f) Crystal lattices parallel to (001), (110) 

and (111) are marked by red lines. Given by green arrows is the translational distance 

d(hkl) of these lattice planes. The number of green arrows represents the number of 

translations needed to return to an “equivalent” lattice plane. The number of arrows 

calculated is equivalent to the LD-factor of the corresponding lattices planes (stated 

below the image). 



 107 

Later, as this approach will be applied to real crystals consisting of atoms rather than 

lattice points the term “lattice plane” must be substituted by the term “atomic layer” or 

“atomic lattice”. This is only a change in terminology, and the relevance of considering 

the density of “lattices” and therefore the LD-factor remains unchanged. 

 

 

7.2.1.3 Calculation of the LD-factor for more complex crystal structures 

 

The difference between the three cubic Bravais-lattices is their different number of 

lattice points Z. The additional lattice points in the Fm3m- or Im3m Bravais-lattice, 

compared to the Pm3m-Bravais lattice, occupy certain crystallographic sites. These 

“extra” lattice points not only influence the reticular density of certain crystal planes, 

they also are responsible for additional lattice planes within the crystal lattices         

(Fig. 7.9). The results for all three cubic Bravais-lattices are summarized in Table (7.7).  

 

Face (hkl) LD-Factor 

Pm3m-Bravais 

lattice 

LD-Factor 

Fm3m-Bravais 

lattice 

LD-Factor 

Im3m-Bravais 

lattice 

(100) 1 2 2 

(110) 2 4 2 

(111) 3 3 6 

(210) 5 10 10 

(211) 6 12 6 

(221) 9 18 12 

(311) 11 11 22 

(331) 19 19 38 

 

Tab.: 7.7 Comparison of the different LD-factors of the three cubic Bravais-lattice types. 
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Fig.:  7.9 Ball and stick models of primitive cubic lattices (a) – (c) and face-centered lattices (d) – 

(f). This images illustrate the different number of LD-factors appearing for similar 

crystal planes in a primitive and face-centered cubic crystal lattice. The differences 

occur because of additional lattice points present in the face-centered lattice, compared 

to the primitive cubic lattice. The additional lattice points (face-centered lattice) 

introduce e.g. additional lattice planes in the example of the (001)-lattice plane (a) and 

(d) and (110)-lattice planes (b) and (e). This is due to the special position of  ½ d (hkl)  of 

these additional lattice points in the face-centered cubic lattice type. No changes in the 

LD-factor appear in the case of the (111)-lattice plane (c) and (f), as the additional 

lattice points (f) settle on the same lattice planes as the lattice points part of the (111)-

lattice planes in the primitive cubic lattice type structure (c). 

 

The graphical approach to calculate the number of crystal lattices proves to be most 

effective because the LD-factor can be derived directly from the crystal structure. This 

is especially useful in the case of crystals with different building units. As an example 

the LD-factors for different crystal faces of a crystal having a sodium-chloride structure 

will be calculated employing the graphical method (Fig. 7.10). The LD-factors for NaCl  

are to some extent different from the LD-factors of a face-centered cubic             
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Bravais-lattice, even though they have the same space group symmetry (Fm3m). The 

reason is the differences in the number of different building units. The lattice-points in 

the face-centered cubic Bravais-lattice are occupied by equivalent building units (lattice 

points). Comparable sides in a real crystal structure, for example in the sodium-chloride 

structure are occupied by different ions. This difference gives rise to additional atomic 

layers (lattice planes) in the sodium-chloride structure as the (111)-lattice planes 

(atomic layers) are now alternatively occupied by either cations or anions (Fig 7.10).  

 

Fig.: 7.10 (a)-(c) Ball- and stick representation of a face-centered cubic Bravais-lattice type 

structure. (d)-(c) Ball- and stick representation of the NaCl-crystal structure. Sodium-

ions are given in yellow, chlorine-ions are given in green. Comparing both structural 

representations shows that the number of “lattice planes” parallel to (111) is doubled in 

the NaCl-crystal structure. This is due to the alternation of atomic layers occupied only 

by either cations or anions in the NaCl-structure type, thus doubling the number of  

planes (atomic layers) compared to the number of “lattice planes” of a face-centered 

Bravais-lattice structure type. 
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After the introduction of internal factors into our calculations (RD- and LD-factors) we 

have to reconsider the results of our calculations. From this stage on it is obvious that 

the calculated bond-valence deficiency values such as (BVDU**) no longer refer to 

“real” bond-valence values (vu) for a given ion, but represent relative values by which 

different faces can be compared (Tab. 7.8). 

 

As an example, the bond-valence (vu) of a Na+ ion, being coordinated by six Cl- ions in 

the halite-structure, is on average 0.166 (vu) for each individual Na – Cl bond. 

Therefore, as a first approach the bond-valence deficiency of a Na-ion exposed at the 

(001) crystal surface can be correlated to the number of dangling bonds times the bond-

valence of a Na-Cl bond, which is 1 x 0.166 = 0.166 (vu). Consequently the bond-

valence deficiency of a sodium-ion exposed at a (111)-surface is 3 x 0.166 ~ 0.5 (vu).  

 

By multiplication of the number of dangling bonds per unit-cell dimension with the 

bond-valence deficiencies of each atom present at the surface the BVDU-value can be 

calculated (Tab. 7.8). In our example the unit-cell of the (001)-crystal lattice of halite 

will emit 4 dangling bonds. Normalized to the number of lattice-points (atoms) in the 

unit-cell there will be two dangling bonds for the sodium-ions and two for the chlorine-

ions present. The BVDU-value is 4 x 0.166 vu = 0.664 vu. Considering the dimension 

of the unit-cells, the BVDU-value per A² can be deduced. This value needs to be 

corrected by the RD-factor and the LD-factor.  

 

Considering the LD-factor in our calculations, the meaning of the BVDU-values will be 

changed. The LD-factor counts for the lattice density of crystal lattices in a mineral, and 

consequently has no direct correlation to bond-valences of bonds formed between two 

ions. In the broader sense, the LD-factor factorizes the influence of the lattice density 

(density of atomic layers) on the final crystal morphology. The “real” bond-valence 

values are now changed to become “apparent” bond-valence values, such as the 

BVDU**-value. These “apparent” bond-valence values can now be used to compare 

different crystal faces to each other, by considering internal crystal structure data linked 

to unsatisfied bonds present at the mineral surface. 



 111 

 
 BVDU Unit-cell 

dimension 
(A²) 

BVDU/(A²) RD-
factor 

BVDU* LD-
factor 

BVDU** 

(001) 
 

0,664 
 

31,69 
 

0,0209 
 

2 
 

0,041 
 

2 
 

0,083 
 

(110) 
 

1,328 
 

44,82 
 

0,0296 
 

2 
 

0,059 
 

4 
 

0,237 
 

(111) 
 

1,992 
 

54,90 
 

0,0363 
 

1 
 

0,036 
 

6 
 

0,217 
 

(210) 
 

1,992 
 

70,87 
 

0,0281 
 

2 
 

0,056 
 

10 
 

0,562 
 

 
 
Tab.: 7.8 Calculated bond-valence deficiencies of different crystal faces of halite. The bond-

valence of each individual Na-Cl bond have been considered to be 0.166 vu on average. 

(Further explanation see text). 

 

 

7.3 The BVD-model and the face symmetry of crystals 

 

The major feature of crystalline minerals is their three-dimensional periodicity, which 

can be described by one of the 230 space groups. Having regard to the components in 

the mineral and the symmetry elements present, a crystal can be fully described.  

 

The major factor controlling the crystal shape is the growth-velocity of its faces.  This 

growth-velocity can be influenced by external factors, such as temperature, pressure and 

the concentration of solutes. Additionally the growth velocity of a crystal plane is 

controlled by the crystal surface itself. Building-units of a crystal (ions, atoms, 

molecules) present at the crystal surface form a so-called “matrix” which interacts with 

the external factors mentioned above. This “matrix” can be described as a combination 

between the topology of the crystal surface and the distribution of building units 

exposed on the crystal surface. The aspect of the matrix depends on internal factors such 

as the reticular density (Chapter 7.1), lattice spacing (7.2) and the symmetry elements of 

the crystal structure. 
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Crystallographic symmetry of a crystal lattice type has already played an important role 

in the investigations made so far. Symmetry was taken into account when the unit-cell 

dimension of a two-dimensional crystal lattice was determined in order to calculate the 

reticular density of a crystal plane. Translational symmetry elements have been 

considered while calculating the lattice spacing of crystal planes. 

 

The influence of crystallographic symmetry for crystal surfaces is “visible” almost at 

any mineral surface, e.g. the shape of etch-pits can be used to determine the presence 

and kind of symmetry elements in a crystal. Further, crystallographic symmetry seems 

to be important for the advancement of growth layers on the crystal surface 

(ENCKEVORT & BENNEMA, 2004). 

 

As a consequence, the face symmetry of a crystal surface must be implemented into the 

BVD-model as another internal factor controlling the habit of a polyhedral crystal. 

While crystals consist of a symmetric periodic three-dimensional network of building-

units, new building units adding to the growing crystal, neglecting any possible defects 

must, among other criteria, fit to the overall crystal symmetry. 

 

Atoms, ions or molecules adsorbing to a crystal surface having a low symmetry can 

more easily find a place to fit, as they will possess more degrees of freedom where to 

adsorb. Building units adsorbing to faces having a high symmetry must fit not only the 

requirements of their direct bonding partner, they must as well fit the requirements of 

their next neighbors.  

 

An example is given in Fig. 7.11, illustrating the dependence of a chlorine-ion on the 

face-symmetry while adsorbing to the  (001),  and (111)-faces of a sodium-chloride 

crystal. This example shows how the crystal symmetry influences the crystal surface 

(matrix), defining only certain adsorption site for the chlorine-ion to attach. 

 

The image in Fig. 7.11(e) illustrates that a chlorine-ion adsorbing to a (001) crystal 

surface of halite, can best be adsorbed directly above a sodium ion, forming one bond 
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only. This position is in concordance with the given (001)-face symmetry (m3m) and 

the adsorbing position is equivalent to a Wyckoff position having the highest side 

symmetry (4mm) possible for the given crystal lattice (Chapter 7.4). Additionally the 

chlorine-ion adsorbing to this position will be at equal distance from any further 

chlorine-ions adsorbing to this surface. 

 

In the Figure 7.11(f), the chlorine ion adsorbing to the (111)-crystal lattice forms three 

bonds of equal length to the sodium-ions in the crystal lattice below. This position is 

again in concordance with the face symmetry and it is the only possible adsorption point 

possible to distribute three equally long bonds between the chlorine-ion and the sodium-

ions present at the crystal surface. 

 

 

Fig.: 7.11  The figures (a) and (b) schematically illustrate the matrix of a (001) and a (111)-crystal 

plane of halite. The Sodium-ions are marked yellow, the chlorine-ions are marked 

green.  Figures (c) and (d) give the face symmetry of the (001) and (111)-crystal 

lattices. The figures (e) and (f) show the adsorption positions of one additional chlorine-

ion on the next adjacent layer parallel to the (001) and (111) crystal surface (matrix) 

illustrated.  
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Due to the number of bonds that will be formed, chlorine-ions most likely will adsorb to 

the (111)-crystal lattice and as a result will lower their own bond-valence deficiency 

more effectively than adsorbing to the (001)-crystal lattice. Consequently the growth 

rate of the (111)-crystal face has to be regarded higher than the growth rate of the (001)-

crystal surface. 

 

From this we can deduce:   

 

The more complex the symmetry of a face the slower the periodicity of adsorption, 

lowering the growth rate of the crystal surface and giving the crystal-face a higher 

ranking of morphological importance. 

 

Considering the effect of face symmetry, it is necessary to factorize this influence in our 

calculations. In the previous calculations it was stated that a low bond-valence 

deficiency accounts for a low reactivity and consequently this is a method to express a 

slow growth rate of a crystal surface. Considering face-symmetry as an additional factor 

to lower the growth rates of crystal faces this factor needs to be implemented in our 

calculations, and as this factor is directly related to the face symmetry of a crystal lattice 

it is called the “face symmetry factor” (FS). The FS-factor has to be considered as a 

division-factor in our calculations as a high face symmetry factor will lower the “bond-

valence deficiency” of the crystal surface, giving the surface a higher ranking of 

morphological importance.  

 

The application of a division-factor concerning the face symmetry of crystal surface 

seems to be to some extent arbitrary. Commonly, face symmetry is related to two-

dimensional “flat” crystal lattices and is used to determine the corresponding two-

dimensional space group. Though naturally, crystal surfaces are rarely flat and more 

frequently they are stepped three-dimensional bodies. Nevertheless, as described in 

Chapter 7.1, crystal surfaces can be treated as flat planes, similar to a crystal lattice in 

the BVD-model. 
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The differentiation between a crystal lattice and a crystal surface (Chapter 7.1) was 

necessary to implement the effect of “non-equivalent” atom positions on the bond-

valence deficiency of a crystal surface. This discrimination is still fundamental, but has 

little effect on the face symmetry factor of a crystal surface. Comparing a stepped 

crystal surface (hkl) with a similar crystal lattice (hkl), shows that “equivalent lattice 

points” as well as “non-equivalent lattice” points, as well as the atoms terminating the 

crystal surface, obey the constraints given by the space group symmetry of the lattice 

(hkl) considered (Fig. 7.12). Consequently the face symmetry can be implemented into 

the BVD-model as the third internal factor controlling the morphology of the “abstract 

forms” of polyhedral crystals. 

 

Fig.: 7.12 (a) Ball and stick model of the (311)-crystal surface of a primitive cubic lattice. Marked 

in yellow are the lattice points exposed to the surface. The images (b) and (c) 

demonstrate the influence of the face symmetry “m” (mirror plane). (b) The number of 

of “equal lattice points” (yellow) is doubled. (c) The different “non-equivalent lattice 

points” are doubled (dark blue and green), or reflected to themselves (light blue, orange 

and pink). (d) Face-symmetry is given graphically as (Cs). (e) Given by ciphers is the 

number of dangling bonds emitted by the different lattice points (A-F).  
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The face symmetry, also referred to as the “Eigensymmetry”, is the full symmetry of a 

face, and can be derived from the symmetry elements perpendicular to that face. NIGGLI 

(1941) established a nomenclature for ten independent subgroups of face symmetries 

(Fig. 7.13), and found that only rotation-axis and mirror planes perpendicular to a face 

need to be considered to describe the full symmetry of a crystal lattice of a given crystal 

class.  

 

C2

Cs

C3 C4 C6

C2V C3V C4V C6V

C1

 
Fig.: 7.13  Illustrated are the ten different face symmetries considered by NIGGLI (1941). 

C1 = assymetrisch, C2 = digyrisch , C3 = trigyrisch , C4 = tetragyrisch , C6 = hexagyrisch,           

Cs = monosymmetrisch , C2v = disymmetrisch , C3v = trisymmetrisch,                             

C4v = tetrasymmetrisch, and C6v = hexasymmetrisch. 

 

 

In order to deduce a symmetry factor for our calculations, NIGGLI´s approach from 

(1941), proved to be useful and therefore a derivation of his statements on the 

independent face-symmetry-groups needs to be summarized in more detail. 
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NIGGLI´s approach (1941): 

 

The total symmetry of a crystal class can be addressed as a “full symmetry 

group”, which can be further subdivided into subgroups. These subgroups, in 

return, can be split up into “isometric subgroups” and “non-isometric 

subgroups”. “Isomorphic subgroups” include certain symmetry equivalent 

directions which are the so called “symmetry operators” of these directions. 

 

If symmetry operations of a certain subgroup are coupled with some other 

symmetry operations, and therefore these symmetry operations do not correlate 

to a distinct direction within the full symmetry group, they are called “non-

isomorphic subgroups”.  

 

As an example NIGGLI (1941) states, that only the subgroups D6v, C2v, Cs and C1 

are “isomorphic subgroups” of the “full symmetry group” D6h (Tab 7.9). If for 

example, the six-fold axis of the D6h is running through a point, this point is also 

at the intersection of (3 + 3) mirror planes and the symmetry of this point is 

therefore C6v (Fig. 7.14). 

 

The distinction between “isomorphic” and “non-isomorphic subgroups” is of 

special interest, as only the symmetry operations of  “isomorphic subgroups” 

perpendicular to a face are able to restore lattice point to their original position. 

 

All subgroups of the crystallographic symmetry classes (crystal classes) may 

form crystallographic symmetry groups themselves. According to the symmetry 

operator of the “isomorphic subgroup”, the face-normal will be restored to its 

original position two,-three-, four-, six-, eight-  or twelve-, in general ω-times. 

 

The term ω is called the “Wertigkeit” of an element (direction, face normal, 

face, or point) possessing a certain symmetry constraint. In the end ω is 

equivalent to the symmetry operator, characteristic for that certain subgroup. 
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Fig.: 7.14 (a) Lattice point (green) having the full face symmetry of the crystal class D6h. Through 

this lattice point a six-fold rotation axis can be drawn (b) and in addition 3+3 mirror 

planes intersect at this lattice points (c). Consequently the figures (b) and (c) are non-

isomorphic subgroups from which the isomorphic subgroup C6V (d) is derived. For 

further explanation see text. 

 

Instead of referring to the symmetry parameters or “Eigensymmetry” of a face 

normal, one can equally address the dedicated face itself. The “Eigensymmetry” 

of a face is in general addressed as the face- or site symmetry. Hence, the 

symmetry of a face is determined by the symmetry operator perpendicular to this 

face. As isomorphic subgroups and therefore as the “Eigensymmetry” of a face, 

only such symmetry operators present as mirror planes and rotation axis can be 

considered (NIGGLI 1941). These are for all crystal classes next to C1 (general 

position without symmetry operator) only the symmetries  C2 , C3 , C4 , C6 , Cs , 

C2v , C3v , C4v , and C6v, receiving the “Wertigkeit” 1 ,2 ,3 ,4 ,6 , 8 and 12, 

respectively. At this point NIGGLI (1941) proposed the nomenclature by which 

the “Eigensymmtrien” of the isomorphic subgroups for a given crystal face can 

be distinguished (Fig.: 7.13).  
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In the BVD-model the term “Wertigkeit” ( ω ) of a crystal face is considered to be 

relevant  to distinguishing between different site symmetries and is treated as a division 

factor in our calculations. This is the FS-factor referred to above. The purpose of this 

factor is to consider the different face symmetries present for different faces possible at 

a polyhedral crystal. This factor refers to the statement that faces with a high order of 

symmetry have a higher morphological importance than faces with a low order of 

symmetry. The value of the term ω (Wertigkeit), of each of the independent subgroups, 

stated in Table 7.9, can be transferred directly into the BVD-approach as it corresponds 

to the “Eigensymetrie” of the crystal face. 

 

In addition to the term ω (“Wertigkeit”) of a certain symmetry element, NIGGLI (1941) 

refers to another important factor called ξ (“Zähligkeit”). The term ξ describes the 

number of equivalent faces or points received if a certain symmetry element operates, 

and hence is an indicator for the multiplicity of certain faces, points or positions. For 

example, depending on the symmetry operator and the position of a face or lattice point 

in the Pm3m (Oh) space group, the multiplicity ( ξ ) of the faces can be 6, 8, 12, 24 or 

48, respectively. 

 

In their original use (NIGGLI, 1941), the face symmetry and the terms Zähligkeit and 

Wertigkeit have been employed to determine the “Formenzähligkeit” of a crystal, in 

such a sense, that it is possible to determine number of possible crystal faces (cube, 

octahedron, prism …) appearing on a polyhedral crystal.  

 

The number of equivalent faces present can be calculated by the following equation: 

 

     
ς

ξ
ω

=       [7.4] 

 

ς = “Zähligkeit” of the general position; ω = “Wertigkeit” of the independent subgroup; 

ξ  = gives the number of equivalent faces of special forms. 
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This can be demonstrated for the crystal class D6h (NIGGLI, 1941). The crystal class D6h 

contains the independent subgroups C6v, C2v, Cs. According to Table 7.9, the ω-values 

of these subgroups are 12, 4 and 2 respectively. The value of “ς” of the general form is 

24. By application of equation [7.4] the resulting number of faces of special forms is: 

 

C6v =  
24

2
12

=  (special form: pinacoid) 

 

C2v =  
24

6
4

=   (special form: hexagonal prism) 

 

Cs   = 
24

12
2

=  (special form: hexagonal dipyramid or dihexagonal prism) 

 

Within the crystal class D6h, polyhedrons having 24-faces (general form), 12-, 6- or 2- 

faces (special forms), can be observed. The later faces (pinacoids) can only appear in 

combination with some other faces.  

 

The term ς and ξ corresponding to the “Zähligkeit” of the general and special forms of 

crystal faces and can not be incorporated into the BVD-model, as these values describe 

the number of equivalent faces present for a given crystal polyhedron having a certain 

space group symmetry. Nevertheless, this information can be applied as an indicator to 

limit the number of faces to be considered and therefore indicating towards faces which 

should be considered as the first choice when starting BVD-calculations. Crystal faces 

of high symmetry should be considered prior to faces of low order of symmetry. 

 

This chapter has shown that face-symmetry is one major internal factor that needs to be 

considered while calculating the “abstract forms” of crystals. But this derivation is only 

partly satisfactory as the impact of symmetry-factors to crystal morphology is even 

more profound as will be demonstrated in Chapter 7.4 regarding the influence of site 

symmetry factors in respect to the extension and growth of a crystal surface. 
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Table: 7.9 List of independent subgroups given for the 32 crystal classes (NIGGLI, 1941). 

 

 “Zähligkeit”ς  

generell position 

“Zähligkeit”ξ 

spezial position 

Independend subgroups, „Wertigkeit“ ω 

   ω=2 ω=3 ω=4 ω=6 ω= ω=12 

C1 1 -- -- -- -- -- -- -- 

Ci 2 -- -- -- -- -- -- -- 

C2 2 1 C2 

ξ= 1 

-- -- -- -- -- 

CS 2 1 CS 

ξ= 1 

-- -- -- -- -- 

C2h 4 2 C2 und CS 

ξ = 2 

-- -- -- -- -- 

D2 4 2 CS 

ξ= 2 

-- -- -- -- -- 

C2V 4 2, 1 CS 

ξ= 2 

-- C2V 

ξ= 1 

-- -- -- 

D2h 8 4, 2 CS 

ξ= 4 

-- C2V 

ξ= 2 

-- -- -- 

C3 3 1 -- C3 

ξ= 1 

-- -- -- -- 

C3i 6 2 -- C3 

ξ= 2 

-- -- -- -- 

D3 6 3, 2 C2 

ξ= 3 

C3 

ξ= 2 

-- -- -- -- 

C3V 6 3, 1 CS 

ξ= 3 

-- -- C3V 

ξ= 1 

-- -- 

D3d 12 6, 2 C2 und CS 

ξ = 6 

-- -- C3V 

ξ= 2 

-- -- 

C4 4 1 -- -- C4 

ξ= 1 

-- -- -- 

S4 4 2 C2 

ξ= 2 

-- -- -- -- -- 

C4h 8 4, 2 CS 

ξ= 4 

-- C4 

ξ= 2 

-- -- -- 

D4 8 4, 2 C2 

ξ= 4 

-- C4 

ξ= 2 

-- -- -- 
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Continuation of  Table.: 7.9 

 

 “Zähligkeit”ς generell 

position 

“Zähligkeit”ξ 

spezial position 

Independend subgroups, „Wertigkeit“ ω 

   ω=2 ω=3 ω=4 ω=6 ω=8 ω=12 

C4V 8 4, 1 CS 

ξ= 4 

-- -- -- C4V 

ξ= 1 

-- 

D2d 8 4, 2 C2 und 

Cs 

ξ= 4 

-- C2V 

ξ= 2 

-- -- -- 

D4h 16 8, 4, 2 CS 

ξ= 8 

-- C2V 

ξ= 4 

-- C4V 

ξ= 2 

-- 

C6 6 1 -- -- -- C6 

ξ= 1 

-- -- 

C3h 6 3, 2 CS 

ξ= 3 

C3 

ξ= 2 

-- -- -- -- 

C6h 12 6, 2 CS 

ξ= 6 

-- -- C6 

ξ= 2 

-- -- 

D6 12 6, 2 C2 

ξ= 6 

-- -- C6 

ξ= 2 

-- -- 

C6V 12 6, 1 CS 

ξ= 6 

-- -- -- -- C6V 

ξ= 1 

D3h 12 6, 3, 2 CS 

ξ= 6 

-- C2V 

ξ= 3 

C3V 

ξ= 2 

-- -- 

D6h 24 12, 6, 2 CS 

ξ= 12 

-- C2V 

ξ= 6 

-- -- C6V 

ξ= 2 

T 12 6, 4 C2 

ξ= 6 

C3 

ξ= 4 

-- -- -- -- 

Th 24 12, 8, 6 CS 

ξ= 12 

C3 

ξ= 8 

C2V 

ξ= 6 

-- -- -- 

O 24 12, 8, 6 CS 

ξ= 12 

C3 

ξ= 8 

C4 

ξ= 6 

-- -- -- 

Td 24 12, 6, 4 CS 

ξ= 12 

-- C2V 

ξ= 6 

C3V 

ξ= 4 

-- -- 

Oh 48 24, 12, 8, 6 CS 

ξ= 24 

-- C2V 

ξ= 12 

C3V 

ξ= 8 

C4V 

ξ= 6 

-- 
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7.4 Site symmetry of crystal surfaces 

 
Even though this chapter deals with the last internal factor to be implemented into the 

BVD-model it also refers back to the principles introduced by Pauling (1929) about 

coordinated polyhedrons (Chapter 4).  

 

Pauling´s first principle states, that for a coordinated polyhedron of anions formed 

around a cation, the cation-anion distance is determined by the radius sum of the ions, 

and additionally the coordination number of the central-cation is determined by the 

radius ratio of the ions. In his second rule Pauling states, that in a stable coordination 

structure the electric charge of each anion tends to compensate the strength of the 

electrostatic valence bonds reaching to it from the cation in the center of the 

polyhedron. 

 

BROWN (2002) referred to these principles, correlating the kind of coordinated 

polyhedron to the symmetry of the bonded neighbours in the polyhedron. He deduced 

that Paulings rules, about the nature of a coordinated polyhedron, are best matched 

when the coordination polyhedron of anions around a central cation  is one of high 

symmetry, which is able to lower the repulsion of the ligands to a minimum. Examples 

given by BROWN (2002) are, in the case of six coordination, the octahedron with the 

highest crystallographic site symmetry (m3m). For four coordination it is the 

tetrahedron with site symmetry ( 4
−

3m). Other high –symmetry arrangements are the 12-

coordinated cubo-octahedron (m3m), the three-coordinated triangle (62m), and the 

eight-coordinated cube (m3m). Although the cube is the eight-coordinated environment 

with the highest symmetry, the square anti-prism (4mm) minimizes the repulsion 

between the ligands at the cost of lowering the symmetry. Other coordination numbers 

such as 5, 7, and 9 are encountered less frequently. Such coordination can only be 

accommodated by low-symmetry environments, in which the ligands cannot all be 

crystallographically equivalent (BROWN, 2002). 
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Based on these observations BROWN (2002) introduced his Principle of maximum 

symmetry: 

 

As far as allowed by the chemical and geometric constraints, all atoms in a 

compound will be chemically and geometrically indistinguishable. 

 

Additionally BROWN (2002) extended this principle by two rules: 

 

Rule 1 : In a given space group, all Wyckoff positions with the same multiplicity ,mW, 

have site symmetry of the same order, mS. 

(mw is the multiplicity of the Wyckoff position in the non-translational unit, ms is the 

number of times the operation “S” transforms an atom into itself). 

 

Rule 2 : The order of the site symmetry of any Wyckoff position is in inverse 

proportion to its multiplicity. 

 

As an example BROWN (2002) refers to a cation occupying a special position having 

site symmetry m3m, for which mS = 48. This ion would have 48 neighbours, if these 

neighbours would occupy general position, each having a multiplicity factor of 1. This 

high coordination number is impossible as only a few cations have coordination 

numbers higher than 12. Therefore, neighbours of a coordinated cation must occupy 

certain Wyckoff positions having a higher order of multiplicity. As an example, the 

neighbours of an octahedrally coordinated cation, having the site symmetry m3m, are 

required to have at least a site symmetry of the order 48/6 = 8. In this example 48 is the 

multiplicity factor of the general position (mS), 6 equals the number of coordinated 

anions, and 8 is the multiplicity factor (mW) of the Wyckoff position of the coordinated 

anions.  As a result the six coordinating anions must be placed on the three four-fold 

axes, which pass through the cation, and their site symmetry must at least be equivalent 

to 4 mm (BROWN, 2002). The site symmetry of the ions may be higher, if they lie on a 

mirror plane not intersecting with the cation, but their symmetry cannot be lower (Fig. 

7.15 a).  
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BROWN (2002) summarized his investigations on the relationship between a coordinated 

cation and the symmetry of his bonded ligands as: 

 

The principle of maximum symmetry requires that the crystal structure adopted by a 

given compound be the most symmetric that can satisfy the chemical constraints. We 

therefore expect to find high-symmetry environments around atoms wherever possible, 

but such environments are subject to constraints such as the relationship between site 

symmetry and multiplicity and the constraints that each atom will inherit certain 

symmetries from its bonded neighbours. 

 

Fig.: 7.15  (a) Octahedral coordinated cation (red) with site symmetry m3m. Anions coordinating 

the cation are marked blue. Mirror-planes are marked green, yellow and pink. Four-fold 

rotation axes are indicated by a black square. The anions coordinating the central cation 

are placed along the four-fold axis and at the intersection of two mirror-planes. The site 

symmetry of the anions is 4mm. (b) NaCl-crystal structure. Cations are marked red, 

anions are green. Mirror-planes are yellow and pink and the four-fold axis is indicated 

by a black square. The coordination polyhedron around the central cation is given by 

blue lines. The  anion (X), marked blue, adsorbing to the surface has a minimum site-

symmetry of 4mm. 

 

This approach can be applied to mineral surfaces in such a way, that the central cation 

of the coordinated polyhedron is considered to be part of the crystal lattice terminating a 

crystal surface (Fig. 7.15 b). In the BVD-mode such ions terminating a crystal surface 
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occupy special positions with a given Wyckoff symmetry. This is equivalent to the 

assumption of BROWN (2002) that cations in a coordinated polyhedron occupying a 

special position with a certain site symmetry.  

 

Let us consider e.g. the crystal structure of a NaCl-crystal. Each ion Na+ is octahedrally 

coordinated by six Cl - -ions, and vice versa. In return, ions terminating a crystal surface 

do not possess a full coordination sphere, a fact already considered for the calculation of 

the bond-valence deficiency of a given crystal surface. During growth this 

“incompleteness” is overcome due to the adsorption of new ions onto the crystal lattice, 

completing the coordinated polyhedron of the surface ions. According to BROWN 

(2002) the new ions adsorbing to the crystal lattice, filling the vacant positions of a 

coordinated polyhedron must have a minimum site symmetry of a given order (Fig. 7.15 

b). The values of this symmetry factor are compatible with the 32 site symmetries of the 

three-dimensional point groups (Tab.: 7.10). 

 

Depending on the face symmetry of a given crystal lattice (e.g.: 4mm, 3m or 2mm), the 

order of minimum site symmetry of an ion adsorbing to the crystal surface differs, and 

therefore needs to be considered. This factor, equivalent to the ω-factor in Chapter 7.3, 

is a measurement for the growth rate of a crystal planes parallel to its face normal, 

namely the “growth rate” mentioned in Chapter 3.1, implying that crystal faces, having 

a higher face symmetry will advance at a slower growth rate, compared to crystal faces 

having a lower order of face symmetry. 

 

To simplify this approach, which in principle is based on the face symmetry of a crystal 

lattice terminating a crystal surface, it is applicable to reconsider the approach of 

NIGGLI (1941). He considered only 10 non-translational face symmetries to be of 

importance to describe the full symmetry of a crystal lattice (Chapter 7.3). By arranging 

these two-dimensional point groups in a similar fashion as the three-dimensional points 

groups (Tab. 7.11) the value of the ω-factor can be derived  after having determined the 

face symmetry of the crystal surface.  
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Group 
order 

      

48 
4 2

3
m m

−

      

24 432  
43m
−

 
2

3
m

−

 
6 2 2
m m m

   

16 
4 2 2
m m m

      

12 23  622  62m
−

 6mm  
6
m

 
2

3
m

−

 

8 422  4 2m
−

 4mm  
4
m

 
2 2 2
m m m

  

6 6  6
−

 32  3m  3
−

  

4 4  4
−

 222  2mm  
2
m

  

3 3       

2 2  m  1
−

    

1 1      

 

Tab.: 7.10 Table adopted from the International Tables for Crystallography (Vol. A). Given are the 

32 three-dimensional point groups with their corresponding group order. 

 

 

 

 

 

 

 

 

 

Tab.: 7.11 Table adopted from the International Tables for crystallography (Vol. A). Given are the 

ten two-dimensional point groups after (NIGGLI 1941). From this table, the ω-factor 

(former Group order) can be deduced for each ion occupying a certain Wyckoff 

position.  

“Group order” 
(ω)-factor 

  

12 6mm   
8 4mm   
6 6  3m  
4 4  2mm  
3 3   
2 2  m  
1 1  
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The conformity of the ω-factors, either from the three-dimensional approach of BROWN 

(2002) and the “two-dimensional” approach of NIGGLI (1941), can be deduced by 

comparing the values of the site-symmetry given in Table 7.10 and 7.11. 

 

Regarding the site-symmetry of an adsorbing ion to be relevant while considering the 

“growth rate” of a crystal plane parallel to its face normal, the influence of the “site-

symmetry” on the extension of a crystal plane sideways needs to be considered as well. 

WULFF (1901) mentioned that the growth of a crystal has two aspects, one being the 

extension of a face sideways, the other aspect being its growth along the face normal 

(Chapter 3.1). A similar conclusion can be drawn considering the different attachment 

sites of an ion to the surface of a Kossel-crystal (Chapter 3.6). Kink-sites or stepped-

edges of lattices offer more and better attachment sides than terraces. Consequently ions 

adsorbing to a crystal surface show the tendency to attach themselves more freely along 

the edges of a terrace instead of simply attaching themselves to the top of a terrace. 

 

Therefore, reconsidering the approach of BROWN (2002), it must be stated that: 

 

Ions attaching themselves to an edge of a terrace, must occupy a position of minimum 

site symmetry in relation to the ions of the edge of a crystal terrace. 

 

Consequently an additional face-symmetry factor called Z-factor, considering the 

extension of a crystal lattice in two-dimensions, needs to be introduced into the BVD-

model.  

 

Let us consider a primitive crystal lattice with a 4 mm point-group symmetry           

(Fig.: 7.16). The Atoms occupy special positions having the full site symmetry 4mm. 

According to the principle of maximum symmetry, an ion (X) adsorbing to the lattice, 

extending it sideways, has to be placed on special positions of minimum site symmetry, 

and the “value” of this position gives the value of the Z-factor.  
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In our example the position taken by the ion is a Wyckoff position with the site 

symmetry (m) (Fig. 7.16). During further extension, by adding more ions to the lattice, 

the site symmetry of the ion (X) will increase until it is equally surrounded by 

neighbours receiving the full site-symmetry 4 mm. 

 

The Z-factor derived from this approach is equivalent to the multiplicity factor of the 

Wyckoff position of minimum site symmetry, given in the Table 7.12, adapted from 

the International Tables for crystallography (Vol. A). 

 

 

 

Fig.: 7.16 (a) NaCl-crystal structure type with face symmetry 4mm, cations are marked red, 

anions green. The mirror-plane is marked pink. (a)  An anion (X) adsorbing to the edge 

of a crystal lattice has the minimum site symmetry m and must be placed onto the 

mirror plane. (b) Face-symmetry of the (001) crystal surface (c) Top view of the (001)-

crystal plane with the anion (X) adsorbing to an edge. (d) Face symmetry of the (001)-

crystal plane indicating that the anion (x) has a minimum site symmetry of m. 
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Tab.: 7.12 Given in the middle are the ten two-dimensional point groups from NIGGLI (1941), and 

the corresponding values of the Z- and  (ω)—factors (left and right). 

 

Taking a look at the results obtained (Tab.7.12), differences can be noticed while 

comparing both symmetry factors (ω-factor and Z-factor). The ω-factors of a (001)-

crystal plane, with the point-group symmetry 4mm is ω =  8, but the same crystal plane 

has a Z-factor of Z = 4. This difference is an indication for the two different “growth 

processes” already mentioned by WULFF (1901), “extension” and “growth”. 

Consequently both values have to be treated differently while calculating the abstract 

form of a crystal by application of the BVD-model. 

 

Both symmetry factors express the dependence of adsorbing ions on the face symmetry 

of a given crystal surface. Having introduced the ω-factors as a division factor, 

characterizing the growth rate of a crystal face in orthogonal direction, the Z-factor will 

be treated as a multiplication factor. This is to some extent a correction to the former ω-

factor, considering the circumstance that a crystal surface having a high face symmetry 

may not advance as fast in an orthogonal direction, while at the same time a faster 

extension sideways is possible.  

 

This might as well be related to growth processes observed on mineral surfaces. 

Depending on the environmental conditions, many minerals tend to complete an 

existing growth layer before an additional crystal layer on top of the former one is 

established.  

 

Z-factor   (ω)-factor 
6 6mm   12 
4 4mm   8 
3 6  3m  6 
2 4  2mm  4 
1 3   3 
1 2  m  2 
1 1  1 
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Adding the symmetry factors (ω-factor and Z-factor) to our previous calculations, e.g. 

for a primitive cubic lattice, the final ranking of the crystal faces, considering all 

internal factors implemented into the BVD-model, is given in Table 7.13. 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
1 25,00 0,040 1 0,040 1 0,040 8 0,005 4 0,020 

 
(110) 

 
2 35,35 0,056 1 0,056 2 0,113 4 0,028 2 0,056 

 
(111) 

 
3 43,29 0,069 1 0,069 3 0,207 6 0,034 3 0,103 

 
(210) 

 
3 55,90 0,053 1 0,053 5 0,268 2 0,134 1 0,134 

 
(211) 

 
4 61,23 0,063 1 0,065 6 0,391 2 0,196 1 0,196 

 
(221) 

 
10 149,99 0,066 1 0,066 9 0,600 2 0,300 1 0,300 

 
(311) 

 
10 165,82 0,060 1 0,060 11 0,663 2 0,331 1 0,331 

 
(331) 

 
14 217,94 0,064 1 0,064 19 1,220 2 0,610 1 0,610 

 

Tab.: 7.13  Complete set of calculation needed to describe the morphological ranking of crystal 

faces in a primitive cubic Bravais-lattice structure with a0 = 5.0 Å. The BVDU-values 

marked with an asterix refer to different steps of refinement. BVDU* = RD-factor; 

BVDU** (RD- and LD-factor); BVDU*** (RD-, LD- and ω -factor); ∆ BVDU = final 

result including RD-, LP-, ω - and Z-factors). All bond-valence deficiency values are 

given as valence-units (vu) and refer to a two-dimensional unit-cell of the 

corresponding crystal faces calculated from the number of dangling bonds (DB). 

 

Comparing the ranking of the faces given in Table. 7.13 before and after the 

introduction of the face symmetry factors, no change in the ordering of morphological 

importance can be noticed. This does not imply that the symmetry factors can be 

neglected. It is only the consequence of the symmetry group chosen.  
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The primitive cubic lattice contains the full symmetry of the crystal class m3m (Oh), and 

the differences in the morphological ranking of the crystal faces are singled out by the 

influence of the RD- and LD-factors, only. 

 

Morphological ranking ending with BVDU** / (Å²): 

 

(100) < (110) < (111) < (210) < (211) < (221) < (311) < (331) 

 

Morphological ranking ending with all symmetry factors: 

 

  (100) < (110) < (111) < (210) < (211) < (221) < (311) < (331) 

 

The impact of the symmetry factors is emphasized by application to minerals 

crystallizing having a lower space group symmetry, for example the mineral pyrite with 

a space group symmetry Pa3, which is a subgroup of the crystal class m3m (Tab. 7.14). 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
2 29,34 0,07 2 0,14 2 0,27 1 0,27 1 0,27 

 
(110) 

 
4 41,50 0,10 2 0,19 4 0,77 1 0,77 1 0,77 

 
(111) 

 
12 50,83 0,24 1 0,24 3 0,71 3 0,24 1 0,24 

 
(210) 

 
2 65,62 0,03 2 0,06 10 0,61 1 0,61 1 0,61 

 

Tab.: 7.14 Calculation of the ∆ BVDU-values for different crystal faces appearing on pyrite 

crystals (Pa3). The BVD-value gives the amount of dangling-bonds (DB) calculated for 

the iron-ions, a0 = 5,417 Å². 
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The example of pyrite (Pa3) given in Table (7.14) exemplifies the importance of the 

face symmetry factors (ω-factor and Z-factor). Considering only the RD- and LD-

factors (BVDU **) the morphological ranking of the crystal faces is:  

 

BVD-Model (with out symmetry factors): (100) < (210) < (111) < (110)  

 

This ranking reflects the minor importance of the (110) crystal face. The high ranking of 

the (210) crystal face is close to the one expected, giving the (210)-crystal face on pyrite 

a higher order of morphological importance than the one compared to the (210)-crystal 

face in the super group of the Pm3m-crystal structure type.  

 

However, this ranking does not correspond to the ordering given by DONNAY-HARKER 

(1937): 

 

Donnay-Harker (1937):   (111) < (100) < (210)< (110) 

 

This discrepancy between the Donnay-Harker approach and the BVD-approach is 

solved, by considering the face-symmetry factors (∆BVDU). The ranking of the 

morphological order of the crystal faces changes to: 

 

BVD-Model (with symmetry factors): (111) < (100) < (210) < (110) 

 

Concluding, it can be stated that by implementation of internal crystal structure factors, 

the BVD-model is capable of determining the “abstract form” of a polyhedral crystal, 

even to the extent that the influence of space group symmetries can be distinguished.  
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7.5 Application of the Wulff -plot to the BVD-model 

 

While changing the equations of CURIE (1885), and correlating the capillary constants 

of crystal faces to the growth rates of these faces, WULFF (1901) was the first to apply 

this general concept and compared different crystal surface features as a function of 

their proportional effect on the central distance of crystal faces to the “Wulff-point” 

(Chapter 3). Therefore it seems applicable to write the Wulff-equation in a even more 

general term: 

 

                                                      1 2

1 2

.... .const
h h

γ γ
= =                                        [7.5] 

 

here γi describes the value of the surface attribute obtained and hi corresponds to the 

face normal of the face Fi. 

 

In terms of the BVD-model this general assumption (eqn. 7.5) proves to be useful, 

giving the opportunity to compare and calculate the influence of the bond-valence 

deficiencies of different faces on the final morphology of a polyhedron crystal. The 

equation therefore is transformed to: 

 

                                                  1 2

1 2

..... .
vu vu

const
h h

∆ ∆
= =                                  [7.6] 

 

Here the term ∆vu(i), is the bond-valence deficiency of the face (Fi) of unit cell 

dimension. 

 

If the bond-valence deficiency approach leads to reliable results while predicting the 

morphology of crystals, the substitution of the term γi, in Eqn.7.6, by the term ∆vui, 

should lead to Wulff-constructions, which are comparable to Wulff-constructions given 

in the  literature. Such a comparison is given in Figure. 7.17. Here the Wulff-

construction of a homöopolar Fm3m-lattice obtained by application of the methods of 
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Stranski-Kaischew ( in LACMANN, 1974) is compared to the Wulff-constructions 

obtained by application of the BVD-model. The different polyhedrons shown in Figure 

7.17 correspond to the successive steps in the BVD-calculation (Tab. 7.15). 

 

The polyhedrons given in (Fig. 7.17), have been obtained by use of the JCRYSTAL-

computer program, as this computer-software constructs crystal shapes depending on 

the relative length of the central distances of different crystal faces. 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 

8 25,00 0,32 2 0,64 2 1,28 8 0,16 4 0,64 

 
(110) 

 

12 35,35 0,33 2 0,67 4 2,71 4 0,67 2 1,35 

 
(111) 

 

12 43,299 0,27 1 0,27 3 0,83 6 0,13 3 0,41 

 

Tab.: 7.15 Bond-valence deficiency calculation of a homöopolar crystal having the space group 

symmetry Fm3m. The BVDU values calculated correspond to the number of dangling 

bonds (DB) and a0 = 5,0 Å². 

 

 
The different polyhedrons obtained in Figure (7.17) represent different possible 

“abstract forms” of a homöopolar crystal (Fm3m), considering the influence of the 

intermediate steps in the calculation (BVDU, BVDU*, …). The outset for the 

calculation is the number of dangling-bonds, as no real crystal is concerned and all 

bonds are considered to be equivalent. In the case of a real mineral, the number of 

dangling bonds must be multiplied by the bond-valence value of these bonds.  

 

While Figure (7.17 a) represents an abstract form considering only the number of 

dangling-bonds per unit cell area, the image of Figure (7.17 e)  is the final “abstract 

form”, after having considered all internal factors, influencing the final morphology of 

the crystal. The figures (7.17 b-c) show the influence of the individual intermediate 
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factors (RD, LD, ω-factor and Z-factor). The difference between the final “abstract form” 

of the BVD-model and the “form” given by LACKMANN (1974), is due the fact that the 

faces (100) and (111) in his calculation are considered to be equivalent, both being faces 

with an similar φ-value. Consequently his “abstract form” is a cube-octahedron.  

 

 

Fig.:7.17 The results of Tab. 7.15, for a homöopolar crystal (Fm3m), have been plotted  as Wulff-

constructions, using the computer software JCRYSTAL. Given is a sequence of 

polyhedral crystals forms obtained by application of the BVD-model (a-e, see text).  

Fig. (f) corresponds to an “abstract form” of a homöopolar crystal (Fm3m), calculated 

by the method of Stranski-Kaischew (LACKMANN, 1974). 
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8. Calculation of “abstract forms” of crystal structure types 

 
The previous chapters have outlined the basic principles of the BVD-model. It has been 

demonstrated that internal factors such as reticular density, lattice density and crystal 

symmetry can be connected to the BVD-model. By comparing the bond-valence 

deficiencies of different crystal faces of a given mineral it is possible to predict an 

“ideal crystal morphology”. The forms so obtained, considering only internal factors 

taking control on the crystal morphology and are addresses as the “abstract forms” of 

the minerals. These theoretical crystal forms must be regarded as  “matrix forms” of a 

crystal as they may be modified by external factors during the further growth process of 

the crystals (Chapter 11). 

 

Minerals can systematically be grouped in different ways. The most prominent 

classification in mineralogy is the chemical classification. Due to their chemical 

composition inorganic minerals are divided into 12 different classes ( I Elements; II 

Sulphides and Sulphosalts; III Halides; IV Oxides and Hydroxides; V Silicates, VI 

Borates, VII Phosphates, Arsenates and Vanadates; VIII Tungstates  and  Molybdates;  

IX Suphates; X Chromates;   XI Carbonates; XII Nitrates and Iodates). 

 

Another possible classification of minerals is the ordering by their structure types. This 

classification is more preferable for our concerns compared to the chemical 

classification, as for example more than 200 different minerals, including many halides, 

oxides, sulfides and others, crystallize having a NaCl-crystal structure type. These 

structure-types are characterized by their empirical formula and their space-group, 

which can be addressed as being expressions of the internal structures of the crystals. 

 

In the following chapters some of the most prominent structure-types will be discussed 

and some exemplary mineral species will be described in detail. In some of the 

examples given, minor variations between the predicted “abstract form” and the most 

frequently observed morphologies of natural minerals might occur because natural 
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minerals almost never crystallize from pure solution and therefore morphological 

variations are due to external factors, for example the presence of foreign atoms, ions or 

molecules. Depending on the geological setting of the location, not only differences in 

the chemical composition of the solution occur, but also difference in the 

supersaturation, temperature and pressure will influence the morphology of natural 

samples. Nevertheless it can be observed that the most dominant “abstract forms” 

predicted by the BVD-model correspond very well with the most frequent habits of 

natural single crystals and the following chapters will give a general overview of 

different “abstract forms” applicable to various mineral structure-types. 

 

Before the “abstract forms” are discussed in the following chapters, a short general 

introduction taken form literature is quoted for each structure type presented 

(KLOCKMANN, 1978; SCHRÖCK & WEINER, 1981, RÖSSLER, 1983, DANA´s NEW 

MINERALOGY, 1997).  

 

 

8.1 Structure-Types of Elements ( A – Type) 

 

Depending on the bonding-type (metallic or covalent), several different structure types 

for native elements are possible. The most dominant are the Copper-Type ( 5
h

O - Fm3m), 

the Iron-Type (α-Fe, 9
h

O  - Im3m) and the α-Polonium-Type ( 1
h

O  - Pm3m) for metals 

and the Diamond-Type( 7
h

O - Fd3m), the Graphite-Type ( 4
6h

D - P63/mmc) and the α-

Sulfur-Type ( 24
2h

D - Fddd) for elements having covalent bonding. 

 

Single polyhedral crystals of the elements e.g. gold, silver and copper are rare, although 

it is known that many of these single crystals have either an octahedral, cubic or 

dodecahedral habit.  
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Ignoring the influence of external factors to some extent, assuming “pure” solution with 

no foreign ions/atoms present, the most common crystal morphologies observed should 

be similar to the predicted “abstract forms” of the BVD-model. 

 

Dealing with native elements we only need to consider one type of building unit (one 

sort of atom) and only one type of bond, either metallic or covalent. Additionally the 

bond-valences are distributed equally based on the coordination number of the atoms.  

 

 

Fig.: 8.1 The figures illustrate the unit-cells of the three most common structure types of metals. 

(a) Copper-Type ( 5
h

O - Fm3m). (b) Iron-Type (α-Fe, 9
h

O  - Im3m). (c) α-Polonium-

Type ( 1
h

O  - Pm3m). 

 
 

8.1.1 Copper-Type (Fm3m) 

 
Many of the native elements, predominantly metals, crystallize having a Copper-type 

structure (Fig.: 8.1a). The space group symmetry is ( 5
h

O - Fm3m), Z = 4 and the 

coordinates of the atoms are 0 0 0, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , giving rise to a face-centered 

cubic lattice, equivalent to the cubic closed-packing. The coordination number of the 

atoms is CN = 12 and the coordination polyhedron around the atom is a dodecahedron. 
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The morphological ranking of the crystal faces obtained by application of the BVD-

model are given in Table (8.1). Note that this table is a general table for elements 

crystallizing in the copper-type structure ( 5
h

O - Fm3m). The values given correspond 

therefore to a “theoretical native element”. In order to receive the actual bond-valence 

deficiency of a crystal surface, the bond-valences of the bonds of the respective element 

and their lattice-spacing (a0) have to substituted the corresponding values given in the 

Table (8.1).  Graphic examples of the surfaces calculated are given in Appendix II.  

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 

8 25,00 0,32 2 0,64 2 1,28 8 0,16 4 0,64 

 
(110) 

 

12 35,36 0,34 2 0,68 4 2,72 4 0,68 2 1,36 

 
(111) 

 

12 43,30 0,28 1 0,28 3 0,83 6 0,14 3 0,42 

 
(311) 

 
56 165,83 0,34 1 0,34 11 3,71 2 1,86 1 1,86 

 

Tab. 8.1: General calculation for an A-type crystal having a Copper-type crystal structure. The 

∆BVDU-value given, corresponds to the bond-valence deficiencies of the respective 

faces after having considered the internal factors (RD = reticular density, LD = lattice 

density, ω = face symmetry and Z = site-symmetry). The values obtained have been 

calculated for a given  number of dangling-bonds (DB), in this general example 

substituting the actual bond-valences. 

 

The morphological ranking of the four most dominant faces, starting with the crystal 

faces having the lowest bond-valence deficiency (∆BVDU) is: 

 

   (111) < (100) < (110) < (311)  
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According to the results obtained the most favorable “abstract form” predicted is a 

truncated octahedron (Fig. 8.2a). A change in the fluid composition (see later chapters) 

may promote a better development of some of the other faces. Generally, crystal 

surfaces having a low bond-valence deficiency will be more favored than  faces having 

a higher bond-valence deficiency. Some possible combinations of the three dominant 

faces having low bond-valence deficiency are given in Fig 8 b-d. The examples given 

correspond to cases where the {111} surfaces are preferred (b), the development of 

{001} is substituted (c), or the bond-valence deficiency of the (110) crystal surface is 

lowered to the extend that it will start to become visible at the crystal (d). For a more 

detailed discussion of habit changes due to adsorption see Chapter 11. 

 

 

 

Fig.: 8.2 (a) “Abstract form” calculated from the ∆BVDU-values given in Table (8.1). The 

figures b-d show possible variations of this “theoretical form”, referring to different 

growth conditions (see text). 
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The predicted “abstract form” (Fig. 8.2a) is now correlated with the most frequent 

morphology of single crystals of copper, gold, silver and lead as given in Dana´s New 

Mineralogy (1997). 

 

Copper (Cu) : octahedral and dodecahedral 

Gold  (Au) :   cubic and dodecahedral 

Silver (Ag) : cubic and octahedral 

Lead  (Pb) : rarely as octahedral, cubic and dodecahedral 

  

A comparison of this list with the predicted morphological ranking, on favor for the 

octahedron and cube correlate well. No additional faces, except of the three crystal faces 

(111), (100) and (110) having the lowest bond-valence deficiencies, are dominant in 

natural samples. The preferences of one of these faces over the other, in contrast to the 

predicted “abstract form” might be due to differences in the external conditions during 

crystal growth (see Chapter 11). 

 

 

8.1.2 Iron-Type (α-Fe, Im3m) and α-Polonium-Type ( Pm3m)  

 
Minerals crystallizing with the Iron-Type (α-Fe, 9

h
O  - Im3m) and the α-Polonium-Type  

( 1
h

O  - Pm3m) structure types are rare. Many of the elements more likely form bonds to 

other  elements of the periodic table  and do not appear as simple native elements, 

forming single crystals. The native elements such as Li, Na, Rb, Cs have an Iron-Type 

structure. Polonium as a short time living decay product within the uranium decay 

series, will never form single crystal species. The theoretical ranking of the 

morphological importance of the crystal faces are listed in Tab.8.2 and Tab 8.3. Graphic 

examples of the surfaces calculated are given in Appendix II. 

 
The mineral wairauite (FeCo;  Im3m, Z = 1) forms microscopic grains showing cubes 

and octahedrons. This morphology corresponds to the second and third ranked crystal 

faces predicted by the BVD-model (Tab. 8.2). The dodecahedral form predicted as the 
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most favorable by the BVDF-model, has not been observed so far. This may be 

explained by the fact that wairauite contains two different elements (Fe and Co) and 

therefore does not match exactly the composition for an A –type mineral having an 

Im3m-crystal structure type.  

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 

4 25,00 0,16 2 0,32 2 0,64 8 0,08 4 0,32 

 
(110) 

 

4 35,36 0,11 1 0,11 2 0,23 4 0,06 2 0,11 

 
(111) 

 

6 43,30 0,14 2 0,28 6 1,66 6 0,28 3 0,83 

 
(210) 

 

8 55,90 0,14 2 0,29 10 2,86 2 1,43 1 1,43 

 
(211) 

 
8 61,23 0,13 1 0,13 6 0,78 2 0,39 1 0,39 

 
Tab.: 8.2  General bond-valence deficiency table of an A-type mineral, having an Im3m-crystal 

type structure and a0 = 5,0 Å², calculated for a given number of dangling bonds (DB). 

 
Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 

1 25,00 0,04 1 0,04 1 0,04 8 0,01 4 0,02 

 
(110) 

 

2 35,36 0,06 1 0,06 2 0,11 4 0,03 2 0,06 

 
(111) 

 

3 43,30 0,07 1 0,07 3 0,21 6 0,03 3 0,10 

 
(210) 

 

3 55,90 0,05 1 0,05 5 0,27 2 0,13 1 0,13 

 
(211) 

 

4 61,23 0,07 1 0,07 6 0,39 2 0,20 1 0,20 

 

Tab. 8.3 General bond-valence deficiency table of an A-type mineral, having a Pm3m-crystal 

type structure and a0 = 5,0 Å², calculated for a given number of dangling bonds (DB). 
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8.1.3 Diamond-Type (Fd3m) 

 

The diamond-type structure has the space-group symmetry 7
h

O - Fd3m, Z = 8, a0 = 3.567 

(diamond). The coordinates of the atoms are (0 0 0), (0 ½ ½) , (½ ½ 0), (½  0 ½) ,          

( ¼ ¾ ¼),   ( ¾ ¼ ¼), ( ¼  ¼ ¾), ( ¾ ¾ ¾). The other four ¼ - positions are not 

occupied and the structure is not close-packed. Every C-atom has a coordination of CN 

= 4 and the coordination polyhedron is a tetrahedron (Fig.8.3a). Compared to the former 

A-type structures the bonding in diamond is covalent. Isotype to diamond are the 

elements Si, Ge and Sn (gray). 

 

The morphological ranking of the diamond-structure is given for diamond itself, having 

a lattice constant of a0 = 3.567, the bonds formed are equivalent and are considered to 

have a valence of 1,0 vu each, calculated from the atomic valence of the C-atom (4+) 

and its tetrahedral coordination. The results obtained are given in Tab. 8.4. The unit-cell 

and the predicted “abstract forms” are shown in Fig. 8.3. Graphic examples of the 

surfaces calculated are given in Appendix II. 

 

  

 
Fig.: 8.3 (a) Unit-cell of a diamond-crystal. (b) Predicted “abstract form” of diamond according 

to the values obtained from Tab. 8.3. 
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In Table (8.4) two different values for the (111) crystal surfaces are given. Both 

termination (111a) and (111b) are theoretically possible (Fig. 8.4), but only one of these 

terminations, (111a) having the lowest bond-valence deficiency, is the one expected to 

terminate octahedron shaped diamond crystals. The coordination-tetrahedrons are 

arranged in layers “a” and “b” (Fig. 8.4a). These layers are oriented in opposite 

direction and the vertices of the tetrahedrons, for example of layer-A meet, at almost the 

same level, the basis of the tetrahedrons of layer-B.  

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
4 12,72 0,31 4 1,26 4 5,03 4 1,26 2 2,52 

 
(110) 

 
4 17,99 0,22 4 0,89 4 3,56 2 1,78 1 1,78 

 
(111)

a 
4 22,04 0,18 2 0,36 3 1,09 6 0,18 3 0,54 

 
(111)

b 
12 22,04 0,54 2 1,09 3 3,27 6 0,54 3 1,63 

 
(210) 

 
8 28,45 0,28 4 1,12 20 22,50 1 22,50 1 22,50 

 

 

Tab.: 8.4 Bond-valence deficiency table of diamond, calculated for a given number of dangling 

bonds (DB) and a0 = 3.56 Å². Two different surface terminations of the {111} crystal 

surfaces have to be considered (see text). 

 

But instead of having two different (111) terminations (Fig 8.4c and d), only one 

termination of the {111}-crystal faces must be recognized and this is the termination 

parallel to (111a). This termination can be found in any direction crossing the diamond 

crystal perpendicular to the (111) crystal plane (Fig. 8.5). As a consequence, despite the 

fact that two different layers of coordination tetrahedron can be distinguished, no 

anisotropy-effect for the morphological ranking of the {111} faces must be considered, 

as is the case in the Sphalerite-structure type (Chapter 8.2.2). 
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Fig.: 8.4 (a) Polyhedron model of diamond; view direction parallel to (111). Marked with arrows 

are planes of polyhedrons oriented in opposite directions (U = up,D = down). (b) Ball-

and-stick model of diamond. The two possible (111) terminations are marked by 

arrows. (c) marked yellow are three-fold coordinated C-atoms, terminating the plane 

(111a). (d) marked red are the three-fold coordinated C-atoms terminating plane (111b). 

 

Reconsidering Table 8.4, Fig. 8.4 and Fig. 8.5, additional conclusions about some major 

attributes of diamond minerals can be deduced. While the differences in the surface 

terminations (111a) and (111b) can be neglected in favor for the (111a)-termination, the 

anisotropies observed between the bond-valence deficiencies of these terminations 

correspond well to the perfect cleavage plane of diamond parallel to {111}. The C-

atoms termination the (111b)-layer are coordinated only to one other C-atom of the bulk 

structure below, corresponding to another (111a)-layer. The “weak” bond of the C-atom 

terminating the (111b)-lattice plane, can easily be broken by mechanical forces, as a 

result diamond crystals can be cleaved along this plane. The crystal surfaces obtained 

have C-atoms in a three-fold coordination (111a), which correlate well with an other 

attribute of diamond, its Mohs scale value of H = 10. 
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Fig.8.5 (a) Ball-and-stick model of diamond, view parallel to (111);C-atoms are marked blue. 

(b) single (111) layer of C-atoms. (b) and (d) top and bottom view of (111)-layer 

illustrating an equivalent surface topology of the {111}crystal planes, terminated by the 

(111a)-layer type. 

 

 

8.2 AX-Structure Type 

 

The AX-type structure is the most common mineral-structure. Many hundreds of natural 

minerals crystallize with either a NaCl-, CsCl, Sphalerite- (α-ZnS), Wurzite- (β-ZnS) or 

NiAs-type of crystal structure. 

 

Similar to the previous chapter, the different components A and X occupy special 

positions, which when compared to crystal lattices are to be taken as equivalents to the 

positions of lattice–points of the respective the crystal-structure type. In addition, the 

presence of two different charged ions A and X will change some of the internal factors 

to be considered while others remain unchanged.  
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In both structure-types, A-structure and AX-structure type, crystals with the space group 

symmetry Fm3m are represented, for example the copper-structure type of the A-type 

minerals and the NaCl-structure of the AX-type minerals. While in the copper-structure 

the atoms can be placed to occupy all position similar to the position taken by lattice-

points in a Fm3m Bravais lattice-type structure, the same positions are occupied by 

either cations or anions in the NaCl-structure. As either the cations or the anions can be 

placed to be a substitute for equivalent lattice points, the other ions (cations or anions) 

are located at half the distance between these special atomic positions. This arrangement 

will have no major influence on the face symmetry-factors to be considered, but it has 

an influence on the LD-factor (Chapter 7.2), as additional atomic layers must be 

considered in the NaCl-structure type compared to the copper-structure type. 

 

The presence of two different ions also influences the coordination number of the 

coordination polyhedron around these ions. While the coordination number of a copper 

atom in the copper-structure is CN = [12] and the coordination polyhedron resembles a 

dodecahedron, the coordination number of the Na- and Cl- ions in the NaCl-structure 

type is CN = [6], and the coordination polyhedron is an octahedron. 

 

 

8.2.1 NaCl-structure type (Fm3m) 

 

The NaCl-structure type (Fig. 8.6), named after the most prominent mineral sodium 

chloride, has the space group symmetry 5
h

O -Fm3m, Z = 4. The coordinates of the atoms 

are A+ at (0 0 0), (0 ½ ½), (½ 0 ½), (½ ½ 0), and B- at (0 0 ½), (0 ½ 0), (½ 0 0),             

(½ ½ ½). The coordination number of the ions is CN = 6 and the resulting coordination 

polyhedron around the ions is an octahedron.  
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There are more than 200 hundred minerals crystallizing having a NaCl- type structure 

type. Among these minerals are many halogenides, oxides, sulfides, selenides, tellurides 

and others. Some of the most common are: halite (NaCl), sylvite (KCl), chlorargyrite 

(AgCl), periclas (MgO), alabandin (MnS) and galena (PbS). 

 

Fig.: 8.6 (a) Ball and stick model of the NaCl-crystal structure. Cations are represented by 

yellow balls, anions as green balls. (b) and (c) “abstract forms” of the two most 

dominant crystal faces of minerals having a NaCl-crystal structure (Table. 8.5). The 

truncated hexahedron (d) and the cubo-octahdron (e) are examples of some possible 

combinations of these most favorable crystal faces {001} and {111}. 

 

The bond-valence deficiency calculated for a theoretical crystal having the NaCl-

structure type and a theoretical lattice-spacing of a0 = 5.0 Å2 is given in Table (8.5). 

Examples of the natural minerals sodium chloride, considering its actual bond-valences 

and lattice-spacing are given in Appendix III and a graphical overview of some of the 

faces calculated is given in Appendix II.  
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Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVD

U (Å²) 

RD BVDU

* (Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 

4 25,00 0,16 2 0,32 2 0,64 8 0,08 4 0,32 

 
(110) 

 

8 35,36 0,23 2 0,45 4 1,81 4 0,45 2 0,90 

 
(111) 

 

12 43,30 0,28 1 0,28 6 1,66 6 0,28 3 0,84 

 
(210) 

 

12 55,90 0,21 2 0,43 10 4,29 2 2,15 1 2,15 

 

Tab. 8.5 General calculation for a crystal having a NaCl-struture type with  a theoretical lattice-

spacing of a0 = 5.0 Å2. The ∆BVDU-value given, corresponds to the bond-valence 

deficiencies of the respective faces after having considered the internal factors (RD = 

reticular density, LD = lattice density, ω = face symmetry and Z = site-symmetry). The 

values obtained have been calculated for a given number of dangling-bonds (DB), 

substituting the actual bond-valences in this general example 

 

Referring to Table (8.5), starting with the crystal surface having the lowest ∆BVDU-

value, the morphological ranking calculated is: 

 

    (100) < (111) < (110) < (210)  

 

According to the results obtained, the most favorable “abstract form” is the cube         

(Fig 8.6). Next are octahedral and dodecahedral faces. The cub-octahedron or cubes 

modified by octahedrons are possible combinations.  

 

The listing of minerals given below demonstrates that the dominant habits of crystals, 

having a NaCl-structure type, are the cube and the octahedron. This is in good 

agreement with the BVD-predictions of Table 8.5.  

 

 



 151 

The predicted “abstract forms” are correlated with the most frequent forms of single 

crystals of some exemplary minerals taken from Dana´s New Mineralogy (1997): 

 

Villiaumite (NaF) : crystals rare; cubes sometimes modified by octahedron 

Carobbiite (KF) : small cubes 

Halite  (NaCl) : usually cubes, rarely with {111} 

Sylvite  (KCl) : commonly in cubes or modified by octahedrons 

Chlorargyrite (AgCl) : usually cubes, often modified by {111} and {011} 

Bromargyrite Ag(Br,Cl): cubes, sometimes with {111} 

Periklas (MgO) : rarely as octahedrons, cubes, or cubo-octahedrons 

Bunsenite (NiO) : octahedral, sometimes modified by{110} or {011} 

Monteponite (CdO) : octahedral 

Wüstite (FeO) : octahedral 

Galenite (PbS) : cubes and cubo-octahedral 

Altaite  (PbTe) : rare cubic crystals 

Osbornite (TiN) : minute octahedral 

 

Ranking the {111} crystal faces on the second position in the morphological ranking is 

a major difference compared to the rankings received by other models such as the 

Bravais empirical law, the methods of Donnay-Harker or Hartman-Perdok (Tab. 8.6). 

Only the models of Stranski and Kaischew give the {111}-faces, calculated for sodium 

chloride (STRANSKI 1932), a second ranking. 

 

Sodium chloride (NaCl) is one of the most intensively investigated minerals. It 

crystallizes easily, its structure appears to be simple and its symmetry seems to be 

“perfect. Nevertheless, sodium chloride has proven to be a challenging mineral  for 

morphology predictions. 
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Ranking of 

morphological 

importance 

Bravais 
approach 

 
(P-lattice) 

Bravais 

approach 

(F-lattice) 

Donnay-

Harker 

(1937) 

Hartman 

 

(1953) 

Stranski 

 

(1932) 

BVD-

model 

 
I 
 

(001) (111) (111) (001) (001) (001) 

 
II 
 

(011) (001) (001) (011) (111) (111) 

 
III 
 

(111) (011) (011) (111) (011) (011) 

 
IV 

 
(012) (133) (012) X X (012) 

 

Tab.: 8.6 Comparison of the morphological ranking of crystals having a NaCl-structure type 

(explanations see text). 

 

DONNAY & HARKER (1937) admit that by application of their model it is not possible to 

predict the “correct” morphological ranking of halite (Tab. 8.6). Their calculation would 

predict the octahedron to be the most favorable crystal shape of halite. Therefore they 

referred back to Bravais-empirical law, which at least stated the cube as the most stable 

form, but calculated as a P-lattice type structure (DONNAY & HARKER, 1937), instead of 

the “normal” Fm3m-lattice type structure of AX-compounds. 

 

Hartman (1959), in his work about the “Gleichgewichtsformen einiger Ionenkristalle”, 

states that as a consequence of the PBC-theory, the (111)-faces, ranked as K-faces 

should not be present, or at most they would blunt the corners of the cube. In contrast 

Stranski (1932) experimentally proved the presence of (111)-faces for sodium-chloride 

crystals and gave them the second place in the ranking of morphological importance, 

similar to the ranking obtained by application of the BVD-model. 

 

Comparing the results from Table 8.5 (BVD-model), with the list given for natural 

minerals, it becomes obvious that the (111)-face plays an important role for the general 

habit of minerals crystallizing having a NaCl-crystal structure type.  
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The list further implies that the type of chemical bonding, which is another internal 

factor not incorporated in the BVD-model so far, may influence the favored habit of the 

crystals. Halides (ionic-bonding) tend to form cubes, sometimes modified by 

octahedrons, covalent bonded minerals such as the oxides tend to prefer the octahedral 

shape and sulfides such as galena, often appear as cube-octahedrons.  

 

Another explanation might be different interaction mechanisms of the crystal surface 

with the surrounding solutions. The ionic-bonds in halite, having a bond valences of 

approximately 0.16 vu (BROWN, 2002), can readily match the average bond valences 

of water ( ~ 0.2 vu). Therefore, the overall bond-valence deficiency of the faces and the 

availability of ions on the surface, forming bonds to the solution have to be considered. 

Crystal faces having a higher bond-valence deficiency, such as the (111)-face interact 

more freely with the solute (water) and will be less stable than faces having a lower 

bond-valence deficiency such as the (001)-crystal surface. The calculated bond-valence 

deficiencies for sodium chloride are stated in Appendix II. 

 

Galena, forming covalent bonds, having an average bond-valences of 0.33 vu (atomic 

valence/ coordination number), may not as freely interact with water (0.2 vu), giving 

rise to the appearance of crystal faces having a higher bond-valence deficiency as well. 

Further factors stabilizing crystal surfaces, such as foreign ions adsorbing to the 

surfaces are discussed in Chapter 11.  

 

Recent computer simulations support the assumptions that the sort of bonding, ionic or 

covalent, may play an important role as an additional internal factor. BENNEMA et al. 

(2001) state that the most stable faces of crystals having a NaCl-type structure are the 

{100} and {111} faces. They quote that the appearance of {111} faces on silver halide 

crystals is promoted, if the dipole moment of the surface can be removed by 

reconstruction, or due to the interaction with a solvent. 
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A question still to be answered is: why does the method of Donnay-Harker fail to 

predict the {100}-crystal face of sodium chloride to be the one of highest morphological 

importance?  

 

An answer can be deduced from the revision of the Donnay-Harker approach by 

HARTMAN & PERDOK (1956). Amongst other reasons Hartman-Perdok state, that the 

appearance of  “pseudo-lattices”, not considered by Donnay-Harker, lead to different 

estimations of the ranking of morphological importance of crystal faces. 

Instead of treating either one of the charged {111}-crystal lattices of sodium chloride, as 

the structural lattice and the other as an additional “pseudo-lattice” (Fig. 7.10, Chapter 

7.2), and consequently doubling the multiplication factors, Donnay-Harker did not 

consider these additional lattice -planes in their calculations. Thus the ranking they 

obtained is similar to the ranking of an A-type (Fm3m) structure, ranking the {111}-

crystal faces as the ones of highest morphological importance. 

 
Calculating the number of repeating lattices from a graphic representation (Chapter 7.2), 

seems to be trivial, but the importance of determining the number of parallel crystal-

lattices present (LD-factor) is of vital importance, as this example demonstrates. The 

appearance of “pseudo-lattices, better referred to as “additional lattices”, is one of the 

major differences to be observed while comparing space-group equivalent crystal 

structures, such as A-type, AX- or AX2-type structures. 
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8.2.2 Sphalerite-structure type (F 4 3m) 

 

The sphalerite, or α-ZnS structure type (Fig.8.6) has the space group symmetry         

2
d

T -F 4 3m and  Z = 4. The cations have the coordination (0 0 0), (½  ½ 0), (½ 0  ½),           

(0  ½  ½), and the anions  (¼ ¾ ¼) , (¾ ¼ ¼), (¼ ¼ ¾), (¾ ¾ ¾). The structure is 

similar to the diamond structure, but  the ZnS-tetrahedrons are polar oriented to the 

[111] direction. The favored growth forms are the tetrahedron or the rhomb-

dodecahedron (Fig 8.6). Besides sphalerite, other minerals crystallizing having the 

sphalerite-sturture type are rare. The calculated bond-valence deficiencies of the crystal 

faces for sphalerite are given in Table. 8.6 and some graphic examples of crystal 

surfaces calculated are given in Appendix II. 

 

 

 

 

Fig. 8.6: (a) Ball-and-stick model a the sphalerite unit-cell. (b) The calculated abstract- form of 

sphalerite is a truncated tetrahedron. (c) Truncated tetrahedron calculated for a lower 

bond-valence deficiency of the {-1-1-1}-crystal faces. (d) truncated rhomb-

dodecahedron and (e) truncated tetrahedron with (001)-crystal faces. (d) and (e) 

represent two different “growth forms” of sphalerite. Changes in the fluid composition 

may give rise to the appearance of crystal faces having higher bond-valence 

deficiencies (Chapter 11) 
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Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
4 29,38 0,14 2 0,27 4 1,09 4 0,27 2 0,54 

 
(110) 

 
4 41,54 0,10 2 0,19 4 0,77 2 0,39 1 0,39 

 
(111) 

a 
4 50,89 0,08 1 0,08 3 0,24 6 0,04 3 0,12 

 
(111) 

b 
12 50,89 0,24 1 0,24 3 0,71 6 0,12 3 0,35 

 
Tab.: 8.6 Bond-valence deficiency table of sphalerite. Two different {111}-terminations have to 

be considered (see text). The bond-valence deficiencies are calculated for the number of 

dangling bonds (DB) exposed at the surface and a0 = 5,4 Å². 

 
 
According to Table 8.6 the morphological ranking of the calculated surfaces of 

sphalerite stating with the surface having the lowest bond-valence deficiency is:  

 

   (111a) < (111b) < (110) < (100)  

 

From these results obtained the most favorable abstract form is a truncated tetrahedron 

(Fig.:8.6), which correlates well with the most dominant habits of sphalerite observed in 

nature. A list of minerals crystallizing having a sphalerite-structure type, together with 

their favorite crystal habits, is given below (form Dana´s New Mineralogy , 1997): 

 

Sphalerite  (ZnS) : tetrahedral or dodecahedral 

Metacinnabar (HgS) : rarely as small tetrahedral crystals 

Tiemannite (HgSe) : tetrahedral crystals 

Miersite        (Ag,Cl)I : tetrahedral crystals 

Marshite (CuI) : tetrahedral crystals 

 

 

 



 157 

Two different, but “corrolate forms” of the {111}-terminations, the positive (111) and 

the negative (-1-1-1), are expected from the F 4 3m symmetry of this crystal structure. 

These terminations can be differentiated crystallographically by their geometric 

positioning (positive or negative), but differences in the physical or chemical behaviour  

are not detectable by such investigations. The application of the BVD model gives 

similar results, both terminations are detected as the terminations (111a) and (111b). In 

addition the differences in the physical and chemical behaviour are visualized by the 

different bond-valence deficiencies of these two terminations (Tab. 8.6). As a 

consequence of these results obtained, it can be proposed that the tetrahedral or 

truncated tetrahedral crystals are dominated by (111) crystals surfaces having a (111a) 

termination (Fig.: 8.7). 

 

Fig.: 8.7 (a) Perspective ball-and-stick model of sphalerite parallel to the (111)-cyrstal lattice. 

Zn2+-ions dark blue, S2--ions red. Marked by an arrow is a (111)-crystal lattice 

terminated by S2--ions. (b) Perspective model of sphalerite showing the polar oriented 

ZnS-tetrahedrons. (c) Ball-and-stick model of the (111b) termination. Marked in green 

are S2—ions terminating this crystal surface. (d) Ball-and-stick model of the (111a) 

termination viewed from bottom up. The calculated bond-valence deficiencies for this 

crystal surface (Tab. 8.6) are calculated for the S2- -ions marked red. 
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8.3 AX2-Structure Type 

 

Many minerals crystallize having an AX2-structure type have a ionic bonding type. As a 

result the structures are determined by the relative size ratio of the cation and anion 

radius. In general the anions have a larger ionic radius than the cations, and 

consequently the coordination of the cations around the anions determines which AX2-

structure type will be present. Similar to the AX-structure type the coordination number 

of the ions can ranges between 8, 6 and 4, and the coordination number of the anion is 

always half of that of the cation. This relation-ship is reversed in the anti-fluoride 

structure A2X.  

 

Especially fluorides with large divalent cations and oxides with four-valent cations 

crystallize having a fluorite-structure type. The anti-fluoride-structure type is also 

common in oxides, sulfides and tellurides having alkali-metal cations. 

 

Because there is a greater number of different AX2-structure types, compared to the 

number of AX-structure types, only the most common AX2-structures will be described 

in detail. 

 

 

8.3.1 CaF2 –structure type (Fm3m) 

 

The fluorite structure type has the space group symmetry 5
h

O - Fm3m and Z = 4. The 

coordinates of the ions are Ca (0 0 0), ( ½ ½ 0), (½ 0 ½), ( 0 ½ ½), and F ( ¼ ¼  ¼ ),    

(¼ ¼ ¾), (¼ ¾ ¼ ), (¾ ¼ ¼), (¼ ¾ ¾ ), ( ¾ ¼ ¾), (¾ ¾ ¼), (¾ ¾ ¾ ). The Ca-ion is 

coordinated by 8 F-ions and the coordination polyhedron is a cube. The F-ions are 

coordinated by four Ca-ions and the coordination polyhedron of around the F-ions is a 

tetrahedron. The calculated bond-valence deficiencies of different fluorite-crystal faces 

are given in Tab.8.7 and the corresponding graphic examples are listed in Appendix II 
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Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
8 29,81 0,27 2 0,54 4 2,15 8 0,27 4 1,07 

 
(110) 

 
8 42,15 0,19 2 0,38 4 1,52 4 0,38 2 0,76 

 
(111) 

F 
8 51,63 0,15 1 0,15 3 0,46 6 0,08 3 0,23 

 
(111) 
Ca 

16 51,63 0,31 1 0,31 3 0,93 6 0,15 3 0,46 

 
(210) 

 
16 66,66 0,24 2 0,48 10 4,80 2 2,40 1 2,40 

 

Tab.: 8.7 Bond-valence deficiency table of fluorite. Two different terminations parallel to the 

(111)- crystal layer can be distinguished (details see text). The bond-valence 

deficiencies are calculated from the number of dangling bonds (DB) exposed at the 

crystal surfaces and a0 = 5,46 Å². 

 

The order or morphological importance obtained from Table 8.7, starting with the 

crystal face having the lowest bond-valence deficiency is: 

 

   (111 F) < (111 Ca) < (110) < (100) < (210) 

 

Comparing the obtained ranking with the frequency of appearance of these faces on 

natural samples taken from Dana´s New Mineraology: usually cubes {100}, less often 

octahedrons {111} and rarely {110} faces; no match between the predicted abstract 

form and the occurrence in nature can be found. A graphical ranking of the calculated 

Abstract forms is given in Figure. (8.8). 

 

This controversial observation is surprising but expected, for other undertakings 

concerning the prediction of the “abstract forms” of fluorite, have shown the same 

discrepancy. BRADISTILOV & STRANSKI (1941) have analyzed this “problem” in  detail 

and concluded that the (100)-faces of fluorite have a high tendency to adsorb impurities. 

Consequently the growth rate of the (100)-faces is lowered, giving rise to a higher 
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morphological ranking observed in nature (see Chapter 11). BRADISTILOV & STRANSKI 

(1941) further argued that in addition a high degree of supersaturation will also lower 

the growth velocity of the cubic-faces. 

 

 

Fig.: 8.8 (a) Ball-and-stick model of the fluorite unit-cell. Ca-ions are given as blue balls, F-ions 

as green balls. (b) Common growth from of fluorite. In contrast to the predicted ranking 

of morphological importance the {001}-crystal faces are commonly observed in nature. 

(c) Morphological ranking calculated. (d) Morphological ranking observed in nature   

(Dana´s New Mineraology,1997). 

 

As a result we can state that the (111)-faces are the most “stable” surfaces of the 

abstract forms, considering the internal crystal structure factors only. The influence of 

these factors on the final morphology can be outweighed by the influence of external 

factors such as impurities present in the solution. Therefore fluorite is a good example 

to demonstrate that both internal- and external factors must be combined to predict a 

reasonable crystal growth-morphology (see Chapter 11). 

 



 161 

 

Fig.: 8.9 (a) and (b) perspective side views parallel to the (111) direction of a fluorite crystal. Ca-

ions are marked blue, F-ions are marked green. (a) This perspective view shows that the 

Ca- and F- ions are arranged in “triple-layers”. (b) The “triple-layers” are connected to 

each other only by one bond per ion, e.g. the Ca-ions of the F-Ca-F “triple layer” bond 

to four F-ions within the layers and only one F-ion in the adjacent layers above and 

below. (c) Single “triple-layer” parallel to the (111) crystal lattice. Both F-terminations 

have the same topology (d). (d) Topology of the (111)-F crystal lattice. Outlined by 

black lines is the shape of the (111) unit-cell. F-ions and Ca-ions terminating the crystal 

lattice are marked yellow (fluorine) and red (calcium). This termination has the lowest 

∆BVDU-value of the (111)-terminations. (d) Ca-termination parallel to (111) crystal 

lattice. The surface is only terminated by Ca-ions (red) having a higher bond-valence 

deficiency compared to the F-terminations. 

 

A detailed analysis of the (111)-crystal surface is given by Figure (8.9). There the 

crystal lattices (atomic layers) parallel to the (111)-crystal face are considered as a triple 

F-Ca-F-layer (Fig. 8.9c). Crossing this layer perpendicular to [111]-direction, yields up 
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to three possible terminations. Two of these (Fig. 8.9d) are terminated by F- and Ca-

ions (F-termination), one layer (Fig. 8.9e) is terminated by Ca-ions only (Ca-

termination). The respective bond-valence deficiencies are given in Table. (8.7). From 

the results obtained, it can be concluded that the most stable {111}-termination 

corresponds to the F-termination type. As an additional indication of the importance of 

this (111)-termination one can regard the almost perfect (111)-cleavage plane of 

fluorite. The cleavage plane separates the adjacent F-Ca-F triple-layers, and each of the 

cleavage planes is terminated by a F-termination. 

 

These results obtained correlate well with results given in literature. As an example, 

PUCHIN et al. (2001) calculated the surface energies of CaF2 (111), CaF2 (110) and CaF2 

(100) surfaces using an ab initio Hartree-Fock method. According to their results the         

CaF2 (111) surfaces have the lowest surface energies, followed by CaF2 (110) and CaF2 

(100) surfaces. A similar calculation is given by TASKER (1979), considering the surface 

properties of uranium dioxide. He concluded that the lowest energy faces of a crystal 

having a fluorite structure type are the (111) surfaces followed by the (110) 

terminations. These results are comparable to the morphological ranking obtained by 

application of the BVD-model (Tab. 8.7). 

 

 

8.3.2 Pyrite-structure type (Pa3) 

 
The pyrite-structure type has the space group symmetry 6

h
T - Pa3 and Z = 4. The Fe-ions 

form a cubic-face centered lattice. Every Fe-ion is coordinated by 6 S-ions in octahedral 

coordination. The pyrite structure may be compared to the NaCl-structure type. 

Compared to NaCl the positions of the Na-ions are occupied by the Fe-ions and the 

positions of Cl-ions by S2-dumbele-like pairs, parallel to the four cube diagonals. 

All mirror-planes of the NaCl-structure type disappear and only the glide-planes parallel 

to (100) are restored. On the final morphology of the crystals these glide planes 

resemble in their appearance mirror-planes. 
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The calculated bond-valence deficiencies of pyrite are given in Table (8.8) and are 

calculated for the Fe-ions only. The corresponding graphical examples are listed in 

Appendix II. The crystal structure and some calculated “abstract forms” are shown in 

Figure 8.10. 

 

 

Fig.: 8.10 (a) and (b) Ball-and-stick models of pyrite. Fe-ions are given as blue spheres, S-ions as 

red spheres. (a) Perspective view of a pyrite unit-cell. The unit cell is outlined by 

dashed lines. (b) Perspective view along the z-axis. The orientation of S2-dumbel-like 

pairs parallel to the cube diagonals is visualized. (c) Calculated “abstract form” of 

pyrite. (d) Calclated “abstract form” without the {001}-faces, showing the distribution 

of the {210}-faces. (e) Calculted “growth form” the bond-valence deficiencies of the 

{210}-faces is lowered. (f) - (h) Examples of  pyrite morphology-types observed in 

nature. 
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Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
2 29,34 0,07 2 0,14 2 0,27 1 0,27 1 0,27 

 
(110) 

 
4 41,50 0,10 2 0,19 4 0,77 1 0,77 1 0,77 

 
(111) 

 
12 50,83 0,24 1 0,24 3 0,71 3 0,24 1 0,24 

 
(210 

 
2 65,62 0,03 2 0,06 10 0,61 1 0,61 1 0,61 

 
Tab.: 8.8 Bond-valence deficiency table of pyrite, a0 = 5.41 Å². The BVD-values correspond to 

the number of dangling bonds (DB) of the respective Fe-ions terminating the crystal 

lattice. 

 
The order or morphological importance obtained from Table (8.8), starting with the 

crystal face having the lowest bond-valence deficiency is: 

 

  (111) < (100) < (210) < (110) 

 

The morphological ranking calculated for pyrite (Tab. 8.8), does well in matching the 

dominant morphologies of the minerals given in the list below and it coincides well 

with the results obtained by DONNAY & HARKER (1937). 

 

Some minerals crystallizing having the space group symmetry Pa3 (Dana´s New 

Mineraology, 1997) are: 

 

Vaesite  (NiS2):  small octahedral and cubic crystals 

Cattierite (CoS2): cubic crystals 

Villamaninite (CuS2): cubic and octahedral crystals 

Hauerite (MnS2): octahedral crystals 

Laurite  (RuSs):  cubic, octahedral and pyritohedral 

Dzarkenite (FeSe2): octahedral 
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8.4 AmBnX- Compounds 

 
There is a vast number of compounds crystallizing having an AmBnX- composition, 

some of which include organic salts. Therefore we will restrict out investigations purely 

to inorganic minerals for which the components A and B are cations, and X is a non-

metal, preliminary oxygen, sulfur or a halogen. As an example the spinel-structure type 

will be discussed in detail.  

 

 

8.4.1 Spinel-structure type (Fd3m) 

 
 
The spinel-structure type has the space group symmetry ( 7

h
O -Fd3m) and Z = 8. The 

general formula of minerals of the spinel-group is A2+ 3
2B

+ O4. The oxygen atoms are 

arranged almost similar to a cubic-closed packed structure. The metal ions occupy the 

octahedral or tetrahedral vacancies. Consequently, within the general spinel-structure,  

8-metal ions (A2+) have an octahedral coordination, 16 (B3+) -ions have tetrahedral 

coordination. In the “inverse spinel-structure”, B[4]A[6]B[6]O4, 8 B-atoms have a 

tetrahedral coordination, and 8 A-atoms and 8 B-atoms have a octahedral coordination. 

Every oxygen-atom is part of one tetrahedron and 3 octahedrons (KLOCKMANN, 1978). 

 

The calculated bond-valence deficiencies of different spinel-faces are given in Table 

8.9, the corresponding graphical examples are listed in Appendix II. The crystal 

structure and some calculated “abstract forms” are shown in Figure (8.11). 
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Face 

(hkl) 

BVD Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

O 
20 65,36 0,31 2 0,61 4 2,45 4 0,61 2 1,22 

 
(100 
OT 

28 65,34 0,43 2 0,86 4 3,43 4 0,86 2 1,71 

 
(110 
OT 

28 92,40 0,30 2 0,61 4 2,42 2 1,21 1 1,21 

 
(110) 

O 
36 92,40 0,39 2 0,78 4 3,12 2 1,56 1 1,56 

 
(111) 

O 
28 113,16 0,25 1 0,25 6 1,48 6 0,25 3 0,74 

 
(111) 

Ot 
36 113,16 0,32 1 0,32 6 1,91 6 0,32 3 0,95 

 

Tab.: 8.9  Bond-valence deficiency table of spinel calculated for dangling-bonds (DB) terminating 

the surfaces, a0 = 8,08 Å². The letters O and T correspond to the coordination 

polyhedrons around the cations. The Mg-ions have a tetrahedral coordination, the Al-

ions an octahedral coordination. Only such surfaces have been calculated which are 

terminated by a layer of polyhedrons. O indicating a layer of octahedrons, OT a mixed 

layer of octahedrons and tetrahedrons (further explanations see text.)   

 

The order or morphological importance of the spinel-faces calculated (Table 8.9), 

starting with the crystal face having the lowest bond-valence deficiency is: 

 

    (111) < (110) ≤ (100) 
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Fig.: 8.11  (a) Ball-and-stick model of spinel, perspective view. Yellow spheres: Mg-ions, blue-

spheres: Al-ions, red-spheres: O-ions. (b) Polyhedral model of the (001) crystal surface 

of spinel, view along the c-axis, the unit-cells are marked by dashed lines. This figure 

shows the 2mm face-symmetry of the (001)-crystal layer. (c) The calculated “abstract 

form” of spinel is dominated by {111}-crystal faces (Tab. 8.9). (d) Calculated “abstract 

form” of spinel without the {111}-data sets. This “truncated” cubic form shows that the 

{100} and {110} faces are almost equally represented as faces of secondary 

morphological importance, which corresponds well to their less frequent appearance in 

nature (see list below). 

 

This ranking obtained from Table (8.9), is in good agreement with the common crystal 

habits of spinel as well as with the morphologies of many crystals crystallizing having a 

spinel-type crystal structure.  
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Some examples, obtained from Dana´s New Mineralogy (1997), are: 

 

Spinel  (MgAl2O4): usually octahedrons, rarely modified by {110} and {100} 

Gahnite (ZnAl2O4): octahedral crystals 

Magnetite ( 2 3
2 4Fe Fe O

+ + ): usually octahedral, sometimes dodecahedral 

Franklinite (ZnFe2O4): octahedrons, rarely modified by dodecahedrons 

Chromite (FeCr2O4): octahedral 

 

 

Calculating surface topologies for more complex minerals such as minerals of the 

spinel-group with a general formula of A2+ 3
2B

+ O4 have to be handled with more care 

compared to the more simple AX- or AX2-crystal structures types. In the case of AX- 

and AX2-structure types only two components A and X have to be considered, forming 

bonds of similar length. A2+ 3
2B

+ O4 – structure types have three different components, 

with different coordination environments and different bond-length between the 

components A-O or B-O. Therefore the bond-lengths and thus the bond-valences of 

each individual bond have to be considered  in more detail. 

 

In the case of more complex, covalent bonded structures the coordination environment 

of the individual components is of higher importance, compared to e.g. ionic-bonded 

AX-compounds. The single ions of NaCl are not considered to form stable coordination 

polyhedrons in a solution, no stable NaCl6-complexes expected to be present in the 

aqueous solution. Rather each of the ions is surrounded by a very unstable hydration 

spheres and Na+ - and Cl- -ions are considered to form bonds to each other at the 

beginning of nucleation. This process is to some extent different for components 

forming covalent bonds. Ions such as Si4+ and O2- are considered to form bonds early 

during crystallization, forming anion-complexes such as [SiO4]
4-. During crystallization 

such polyhedral complexes start to accumulate, building more complex structures 

(BURNS 1995, BROWN 2002). 
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Similar processes need to be considered in the case of A2+ 3
2B

+ O4-components. If the 

bond-valence deficiencies of different crystal surfaces terminating a spinel-crystal are 

calculated, only such surfaces need to be taken into account, which consist of layers of 

polyhedrons (Fig. 8.12). In the given example (Table. 8.9), only surfaces terminated by 

Mg-tetrahedrons and/or Al-octahedrons are compared while calculating the “abstract 

form” of spinel. 

 

 

Fig.: 8.12 Polyhedron presentation of spinel. Al-octahedrons are blue, Mg-tetrahedrons are 

yellow. (a) Perspective view parallel to the (110)- face. (b) Perspective view parallel to 

the (111)-crystal surface. (c) and (d) Two different polyhedron-layers terminate the 

crystal lattices parallel to the (110). (c) Octahedral and tetrahedral termination of the 

(110)-lattice. (d) Octahedral termination of the (110)-lattice. (e) and (f) Two different 

polyhedron-layers terminate the crystal lattices parallel to the (111). (c) Octahedral 

termination of the (111)-lattice. (d) Octahedral and tetrahedral termination of the (111)-

lattice. 
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8.4.1.1 Magnetite (An example) 

 

Magnetite is a member of the spinel-group, but in contrast to normal spinels, magnetite 

crystallizes having an inverse spinel-structure type. “Normal spinels” with the general 

formula A2+B2
3+O4  have divalent cations in the tetrahedral A-position and trivalent 

cations in the octahedral B-position. Inverse-spinels, such as magnetite (Fe3O4) have all 

divalent Fe2+ and half of the trivalent Fe3+ in the octahedral position and the other half 

of the trivalent Fe3+ occupy tetrahedral positions.  

 

Face 

(hkl) 

BVD Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

O 
11,3 70,49 0,16 2 0,32 4 1,28 4 0,32 2 0,64 

 
(100) 
OT 

13,3 70,49 0,19 2 0,38 4 1,51 4 0,38 2 0,75 

 
(110) 
OT 

19,3 99,70 0,19 2 0,39 4 1,55 2 0,77 1 0,77 

 
(110) 

O 
13,6 99,70 0,14 2 0,27 4 1,09 2 0,55 1 0,55 

 
(111) 

O 
17,3 122,09 0,14 1 0,14 6 0,85 6 0,14 3 0,43 

 
(111) 

Ot 
15,5 122,09 0,13 1 0,13 6 0,76 6 0,13 3 0,38 

 

Tab.: 8.10 Bond-valence deficiency table of magnetite. The bond-valence deficiencies (BVD) have 

been calculated for Fe3+ - O (1.88 Å) in tetrahedral coordination as 0.721 vu, and 

Fe2+/Fe3+ in octahedral coordination as 0.406 vu (BARBIERI et al., 1994). The letters O 

and T correspond to the coordination polyhedrons around the cations. O indicates a 

layer of octahedrons, OT a mixed layer of octahedrons and tetrahedrons terminating the 

crystal surface. In contrast to the results obtained for the “normal Spinel” structure, the 

(111) crystal surfaces terminated by octahedrons and tetrahedrons has a lower bond-

valence deficiency in the “inverse magnetite” structure and thus has a higher ranking of 

morphological importance.   
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This “inverse” arrangement of divalent and trivalent ions in the magnetite crystal 

structure has some influence on ranking of the morphological importance of surfaces 

terminating the crystals (Tab.: 8.10). 

 

 

 

Fig.: 8.13 (a) Ball-and-stick model of the magnetite (unit-cell). Red balls: oxygen atoms, green 

balls: Fe atoms at tetrahedral position, brown balls: Fe atoms in octahedral position.(b) 

Polyhedron representation of magnetite. (c) Ball-and-stick model of a (111) crystal 

surface. The unit-cell is outlined by dashed lines. Oxygen atoms terminating the (111) 

crystal surface within the calculated area of unit-cell dimension are marked yellow. 

 

From Table (8.10) we can deduce that the {111} crystal surfaces still dominate the 

crystal morphology of magnetite, which is in concordance with the morphological 

ranking obtained for the “normal”- spinel structure. The major difference to be noticed 

is, that the {111}- crystal surfaces with the lowest bond-valence deficiency now are 

those, which are terminated with Fe-ions in tetrahedral and octahedral coordination 

(Fig: 8.13). These results have been obtained by considering only such crystal surfaces, 

which are terminated by oxygen atoms assuming a polyhedral growth mechanism. 
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In technical applications mineral surfaces are treated by chemical or physical 

applications, giving rise to the possibility that other surface terminations will be 

stabilized than the ones calculated in the Table (8.10). The question that arises is, if 

such terminations can as well be predicted by the BVD-model. In order to test our 

model, different {111}-crystal surface of magnetite terminated by Fe-ions have been 

calculated (Fig. 8.14), and the results are compared to results obtained by BARBIERI et 

al. (1994) and LENNIE et al. (1996). 

 

 

Fig.: 8.14 (a) Perspective view parallel to the (111) crystal planes of magnetite (ball –and stick 

model). The different Fe atom layers are labeled on the left. The corresponding Fe-

terminations (A, A´, B and C) are labeled on the right together with the two different 

polyhedron layers O and OT. (b)-(e) Detailed ball-and-stick models of the different Fe-

terminations (A, A´, B and C). 

 

BARBIERI et al. (1994) determined the atomic structure of Fe3O4 (111) by means of 

dynamical low-energy  electron diffraction (LEED). LENNIE et al. (1996), in addition 

applied a Scanning Tunneling Microscope (STM). In both of these investigations the 

magnetite crystal surfaces were treated by various methods, for example by argon-ion 
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bombardment and further annealing in O2 (LENNIE et al., (1996). These investigations 

indicate the existence of two different iron-terminations called A and B, terminations 

which are identical with two out of four possible iron-terminations obtained by 

application of the bond-valence approach (Fig. 8.14). 

 

If we compare the results obtained in Table (8.11) it is obvious that termination B  

(Feoct2 – O), and C (Fetet 2 – Feoct 1- Fe tet 1 - O), having high bond-valence deficiencies 

will less likely or not at all form stable (111) iron-terminated crystal surfaces. In 

contrast the terminations A and A´, having almost similar low bond-valence 

deficiencies, may equally be considered to terminate a (111)-crystal surface. The 

terminations A and A´ can be obtained by cleaving the bulk structure between Fetet 2 and 

Feoct 1 (Fig. 8.14) and thus behave like an up or down termination of the same             

(111) crystal surface. According to these bond-valence calculations, stepped   (111) 

surfaces of magnetite are terminated most likely by either if the A-terminations            

(either A or A´) and the B-terminations.  

These result are in concordance with the results given by BARBIERI et al. (1994) and 

LENNIE et al. (1996), for both studies indicate the A-terminations to be more stable than 

the B-terminations, which is in concordance with the ranking obtained in Table (8.11). 

 

The difference of both studies, is the preference for either one of the two possible A 

terminations, and can be explained by differences in the substrates used or the surface 

preparation techniques (LENNIE et al. 1996). Furthermore the methods given by 

BARBIERI et al. (1994) and (LENNIE et al. 1996) to interpret their results and further 

lower the surface energy differ. BARBIERI et al. (1994) prefers surface relaxations 

processes to be relevant, as these processes,  minimize both the number of dangling 

bonds and the electrostatic energy of the polar metal oxide surface. LENNIE et al. (1996) 

consider the occurrence of vacancies or the capping of Fe atoms by O atoms as a 

possible process to stabilize the surfaces. 
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Face 

(hkl) 

BVD Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(111) 

A 
12,0 

 
122,09 

 
0,099 

 
1 
 

0,099 
 

3 
 

0,297 
 

6 
 

0,049 
 

3 
 

0,148 
 

 
(111) 

A´ 
11,6 

 
122,09 

 
0,095 

 
1 
 

0,095 
 

3 
 

0,285 
 

6 
 

0,048 
 

3 
 

0,143 
 

 
(111) 

B 
15,3 

 
122,09 

 
0,126 

 
1 
 

0,126 
 

3 
 

0,378 
 

6 
 

0,063 
 

3 
 

0,189 
 

 
(111 

C 
17,5 

 
122,09 

 
0,144 

 
1 
 

0,144 
 

3 
 

0,432 
 

6 
 

0,072 
 

3 
 

0,216 
 

 

Tab.: 8.11 Bond-valence deficiency table of magnetite (111) crystal surfaces terminated 

predominately by Fe-ions (Fig. 8.14). The bond-valence deficiencies (BVD) have been 

calculated for Fe3+ - O (1.88 Å) in tetrahedral coordination as 0.721 vu, and Fe2+/Fe3+ in 

octahedral coordination as 0.406 vu (BARBIERI et al., 1994). The letters A, A´, B and 

C account for the different  Fe-terminations (Fig. 8.14). The differences in the bond-

valence deficiencies of the terminations A and A´ are minor, and the results obtained 

are not in favour of either termination. The A-termination preferred  by  BARBIERI et 

al. (1994), or the A´- termination preferred by LENNIE et al. (1996). But both  

terminations must be considered to be more stable than termination B and especially 

termination C. 

 

Despite a little uncertainty which of the two possible A-terminations might be more 

favorable, after further annealing or relaxation, the given example demonstrates the 

capability of the bond-valence model to detect the most favorable (111)-iron 

termination to be either A or A´ instead of the terminations B or C.  
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9. Bond valences for liquids (External factors) 
 

In the previous chapters the morphologies of crystals were predicted by considering the 

internal factors, such as reticular density, lattice spacing and symmetry, only. The 

crystal morphologies obtained correlated to ideal “abstract forms”, neglecting the 

influence of external factors (temperature, pressure, pH and adsorption of foreign atoms, 

ions or molecules). While temperature and pressure have an influence on the bond-

length of compounds, their influence on the crystal morphology can not be determined 

by the BVD-model, so far. However, external factors such as pH-changes, due to 

variations in the concentration of acids and bases present in the solution can be 

incorporated into the bond-valence model (Chapter 10). Each acid or base present in a 

solution can be given a certain bond-valence value, correlating to either its Lewis acid- 

or Lewis base- strength (BROWN, 1981). The same principle can be applied to any atom, 

ion or molecule adsorbing to a crystal surface. In general this has been outlined in 

Chapter 4 while discussing the bond-valence theory.  

 

In the following chapters this principle will be discussed briefly, and it is shown that it 

is possible to assign bond-valences to the solute and the solvent of a solution in equal 

measure. A more detailed analysis is outlined by BROWN (2002). 

 

By application of this approach we will be able to describe a solution via the bond-

valence distributions of its compounds. Thus, having assigned bond-valences to each of 

these compounds in a solution, and having determined the bond-valences of a crystal 

surface (previous Chapters), we are able to consider the influence of these compounds 

on the morphology of polyhedral crystals via the application of the “valence matching 

principle” (Chapter 4.3). 
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9. 1 Bond-valences for “water” 

 

In a first approach water is considered as a single molecule (Fig. 9.1). Its chemistry is 

determined by the basicity of the O-atom and the acidity of the H-atom. Together they 

permit the association of water molecules via hydrogen bonds (BROWN 1981). The 

chemistry of water is complex and depends mainly on the length of the O-H bond (Fig. 

4.3). The length of the O-H bond can vary over a wide range depending on temperature 

and pressure as well as the bonding partner. BROWN (1976) found that bond valences of 

0.8 vu for the internal O-H bonds and 0.2 vu for the weaker intermolecular hydrogen-

bonds (H
…

), are the “normal” average bond valences found in water, considering a 

valence sum of 1.0 vu for the H- atom. 

 

Fig.:9.1 Given are four different “water”-molecules. (a) Single H2O-molecule showing the 

theoretical bond-valences of (O-H)-bonds. (b) Bond-valence distribution of an        

H3O
+
-molecule. (c) Average bond-valence distribution of H2O-molecules as liquid 

water. (e) Bond-valence distribution of a OH
-
-molecule. 

 

For the intermolecular bonds in liquid water, the H-atom is treated as a Lewis-acid, 

having an acid-strength of 0.2 vu. The O-atom can be addressed as a Lewis-base having 

a base-strength of 0.2 vu, respectively. This is assuming a coordination of CN = 4 for 
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the O-atom (BROWN, 1981). Therefore, water can be addressed as an acid-base network 

(Fig. 9.2), capable to react with other acid-base compounds present in the solution or 

with a mineral surfaces.  

 

Fig.:9.2 Theoretical representation of the acid-base-network in water. The weak hydrogen bonds 

are considered to be labile and a high fluctuation of bonding partners is expected due to 

the fluid character of liquid water. 

 

While the acid strength of the H-atom in water varies around 0,2 vu on the average, the 

base-strength of the O-atom can exhibit a wider variation of bond-vaelnces, depending 

e.g. on the number of H-atoms attached (Fig. 9.1). The base strength of the O-atom, e.g 

in the case of the OH
-
 anion, can range from 0.24 vu to 1.20 vu corresponding to its 

coordination-number which can range between 2 and 6 (BROWN, 1981). 

 

According to this approach solids in a solution can react with water in many ways. 

Compounds for which the acid and base strengths are well matched and having 

strengths higher than 0.2 vu will, according to the valence-matching principle, tend to 

be “insoluble” since they form better bonds to each other than they do to surrounding 

water molecules (BROWN, 1981). Compounds matching the bonding strength of water 

will in contrast be more soluble. 
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As an example we can compare the solubility of galena with the solubility of sodium-

chloride. The bonds formed between Pb
2+

 and S
2-

 in galena have an average bond-

valence of 0.33 vu. Neither of the two ions will find a good match to surrounding water 

molecules, and this relates well to the low solubility of galena in water. In contrast the 

Na-Cl bonds of sodium-chloride have an average bond-valences of 0.16 vu. Therefore 

both ions will have a good match to the bond-valence of water (0.2 vu), and sodium-

chloride is easily dissolved in water (Chapter 9.3).
 

 

9.2 Reactions of cations and anions with water 

 

Any cation or anion present in liquid water will be surrounded by water molecules, and 

a coordinated hydration sphere will be formed. The number of coordinated water 

molecules around the cation or anion depends strongly on the bonding strengths of the 

ions. Additionally the bonding strength of the cations and anions will determine the 

stability of the hydrated complex formed.  

 

The fluctuations of water molecules, attaching to or detaching form the hydration sphere 

around an ion, will be high if the bonds between the ion and the water molecules are 

weak. Sodium (Na
+
), having an ideal coordination number of 6.4, and a bond-strength 

of 0.16 vu (BROWN, 2002) is expected to form a +

2 6Na(H O)  complex. Since the Na-OH2 

bonds formed have a bond-valence of 0.16 vu, which is slightly lower than the bond 

valences of hydrogen bonds (0.2 vu), the complex is expected to be labile. The water 

molecules may as well be bound to the Na
+
-cation, as well as to other water molecules, 

and as a consequence the water-molecules will attach and detach to the Na
+
-ions in a 

short timescale.  

 

The fluctuation of these bonds being attached or detached, compared to the fluctuations 

of the bonds between the water molecules themselves, might even be higher, for the 

bonds between the water molecules are slightly stronger than the bonds formed to the 

Na
+
-ions.  
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Cations, as for example Cs
+
, forming even weaker bonds of 0.109 vu (BROWN 2002), 

are expected to form very loose hydration-spheres. The bonds formed by Cs
+
 are not 

strong enough to satisfy the anion bonding strength of water. The water molecules in 

contact with Cs
+
-ions are forced to form weak hydrogen bonds to the Cs

+
-ions, weaker 

compared to those they form to other water molecules. 

 

Highly charged cations, e.g. Cr
3+

, having an ideal coordination number of 6 and a bond-

strength of 0.5 vu will form strong bonds to their hydration sphere (Fig. 9.3). The 

hydrogen bonds formed to the surrounding water molecules Cr-OH2 (0.5 vu) will 

weaken the internal O-H bonds down to 0.75 vu. This is compensated by the H-atoms 

by the formation of higher hydrogen bonds (0.25 vu), leading to the establishment of a 

second hydration sphere (BROWN, 2002). 

 

Fig.: 9.3 Depending on the bonding-strength of the central ion of a hydrated complex, more than 

one hydration sphere can be present. (a) Only one hydration-sphere around Mg 
2+

 is 

formed. The hydrogen bonds of the first hydration sphere extending out, are not strong 

enough to sustain a permanent second hydration sphere. (b) The hydrogen-bonds 

emitted from the first hydration sphere around the central Cr
3+

-cation, having bond-

strength of  0.25 vu, form stronger bonds to the surrounding water molecules and 

consequently a second hydration-sphere can be established. 
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The ability of ions to form labile or stable hydration spheres was described by BROWN 

(2002) and referred to as the capability of these compounds to disorder the structure of 

bulk water. Ions having low bond-strength are considered as “structure breaking”. Ions 

having a high bond-strength, and especially those which are able to form a second or 

third hydration sphere, are called “structure making”. BROWN (2002) summarized these 

observations and found a correlation between the standard molar entropy of a solution 

as a function its bonding strength. These results are given in Figure. 9.4. 

 

Fig.: 9.4 Correlation between the standard molar entropy of a solution (J K
-1

 mol
-1

) and the 

cation bonding strength (vu). The values of the standard molar entropy are taken from 

BINNEWIES et al.(2000). The cation bond-strength corresponds to the ideal coordination 

number of the cation (Figure changed ; BROWN, 2002) 
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The ability of high charged ions to form more than one hydration-sphere can be related 

to a special ability of water molecules. This attribute is the capability of the O-atoms to 

form bonds having different bond-strength (Fig. 9.1) and was addressed by 

HAWTHORNE (1992, 1994, 1997) and SCHINDLER & HAWTHORNE (2001a), as the 

ability of water molecules to act as “bond-valence transformers” causing stronger bonds 

to be split into weaker bonds (Fig.: 9.5). In the example given in Figure. 9.3 the strong 

Cr
3+

- O bond ( 0.5 vu) is transformed down to two weaker hydrogen bonds ( 0.25 vu). 

This transformation increased the strength of the hydrogen bonds, which in return can 

form stable bonds to water molecules out-side of the first hydration-sphere, giving rise 

to the establishment of a second hydration sphere. 

 

 

 

 
Fig.: 9.5 (a) Single bond of valence “v” between the cation A and the anion B. (b) Between the 

cation A and the anions C, the water molecule is acting as bond-valence transformer 

and splits the bond  A-O into two weaker bonds v/2 between H-C. The O-H bond in this 

example is reduced to the value 1- v/2. (Figure modified from, HAWTHORNE, 1992). 
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9.3 Bond-valences and the solubility of solids 

 

By application of the bond-valence method BROWN (2002) describes, what happens 

when water interacts with a solid. This approach on how solids dissolve in water, is vital 

to the BVD-method as it is a first approach to describe the interaction between a 

solution and a solid in terms of bond-valences. These ideas have been the fundamental 

motivations to develop the BVD-model for crystal surfaces. Being able to describe both 

the mineral surface and the surrounding solution from the bond-valence perspective 

gives the possibility of establishing a new model to calculate the “abstract” as well as 

the “growth forms” of polyhedral crystals. Therefore the descriptions of BROWN (2002) 

about the “aqueous solubility” will be outlined in the following chapter for two 

examples. For more detail refer to BROWN (2002). 

 

BROWN (2002): 

 

Dissolving a solid in water is a chemical reaction typically represented by: 

  

  AB + (n +1)H2O  = +

nA(H2O)  + HB + OH
- 

 

Depending on the relative bonding strength of A
+
 and B

- 
several situations can 

be distinguished. The first occurs if the cation and anion are well matched and 

both have large bonding strengths, e.g Mg
2+

 and 4-

4SiO  ( 2 4
4

0.33
Mg SiO

s s vu
+ −

= = ). 

In this case there is no reaction with water, since the match between the two ions 

is better than the match between either of them individually and water. The solid 

is insoluble and, if the ions find themselves in solution together, they precipitate 

out as Mg2SiO4, the insoluble mineral forsterite. Such compounds have positive 

free energies of solution. 
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A second situation occurs when the two ions are well matched but have bonding 

strengths that are relatively small so that each ion is also well matched with 

water, e.g. Na
+ 

and Cl
-
 ( 2 0.16 , 0.14

Na Cl
s vu s vu

+ −
= = ). In this case both the 

solution and the solid will be equally stable. The solid, in this case common salt, 

readily dissolves in water, but as readily recrystallizes when the water is 

removed. Its free energy of solution is close to zero. 

 

These are only two examples, given by BROWN (2002), but they show how the bond-

valence theory can be applied to link between a solid and a solution. The consequences 

and the possible applications for the BVD-model are outlined in the following chapters 

(10 and 11). 
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10.  Bond valences at the boundary layer between solid and 

solution: Mineral surface reactions 
 

In Chapter 8 the “abstract forms” of different crystal structure types have been outlined 

in detail and in Chapter 9 it has been demonstrated how the bond-valence approach can 

be applied to aqueous solutions. The focus of the following chapters is the boundary 

layer between a solid and a solution, the mineral surface itself. Some principal 

considerations about the acidity or basicity of mineral surfaces, their Zero-point of 

charge and net-proton charge are discussed briefly. A more detailed discussion is given 

in the papers attached in Appendix V (SCHINDLER et al. 2004 a, b). 

 

 

10.1  The interaction of crystal surfaces with  aqueous solutions 

 

As noted above, the bond-valence sum incident at any cation or anion, forming a 

coordination polyhedron, must be as close as possible to its formal valence. In the bulk 

structure, the bond valences contributing to such a sum involve simple ions at the 

vertices of the associated coordination-polyhedron. With regard to a surface, we may 

identify two distinct situations:  

 

(1) the surface of the crystal is adjacent to a vacuum;  

 

(2) the surface of the crystal is adjacent to a liquid (or a gas).  

 

In the first situation, the ions at the surface of a crystal by definition must have a 

coordination different from those in the bulk crystal, and these differences will exist 

over long time-scales. The surface structure responds to these differences by 

lengthening or shortening specific bonds; such differences in bond lengths (and bond 

angles) are commonly called the relaxation of the surface. As a result of these 

differences, the pattern of bond valences at and near the surface in a vacuum must differ 
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significantly from that in the bulk crystal, even to the extent that there may be a 

reorganization of the topology of the chemical bonds at the surface, termed 

reconstruction. 

 

In the second situation, although the atoms at the surface must have a coordination 

different from that in the bulk crystal, the bond-valence requirements of these surface 

atoms are also partly met by neighboring atoms in the coexisting liquid (or gas). Hence 

surface relaxation will be much less than if the surface is exposed to a vacuum. Indeed, 

the atoms of the liquid will tend to arrange themselves such that relaxation at the surface 

of the solid is minimized, and one may well be able to consider local interactions among 

atoms as the average of what occurs at the surface over a longer time-scale. This 

discussion suggests that we may be able to use an “unrelaxed” surface model in which 

one treats bond valences of near-surface bonds as equal to the bond valences of the 

analogous bonds in the bulk structure. 

 
 

10.2 Intrinsic acidity constants of anion terminations in oxide minerals 
 

Consider a crystal in equilibrium with an aqueous solution. Depending on the pH of the 

solution, the surface is partly or fully hydrated, and aqueous species in the solution bond 

to anions or cations on the surface (chemisorption). The degree of hydration and type of 

chemisorption depend on the type of anion or cation on the surface and on the 

conditions in the coexisting solution. The degree of hydration can be predicted with the 

acidity constants of the different anion-terminations and the pH of the solution. Van 

Riemsdijk and co-workers (HIEMSTRA et al. 1996) developed a “multisite 

complexation model” (MUSIC), which can be used to predict anion acidities using a 

modified form of the following equation: 

 

     pKa = –A (Σ sj + V)      [10.1] 
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 where pKa is the intrinsic acidity constant [a constant valid for an uncharged surface 

(STUMM 1992)], A equals 19.8, V is the valence of the oxygen atom at the surface (–2), 

and Σ sj is the bond-valence sum at the surface oxygen atom and is defined by 

 

     Σ s j = {sM + msH + n(1 – sH)}    [10.2] 

 

where sM is the bond valence of the M–O bond, sH is the bond valence of the H–O bond 

to the surface oxygen if the base is a hydroxyl group (assumed to be 0.80 vu), (1– sH) is 

the valence of weak hydrogen bonds from aqueous species to surface anions, and m and 

n are the numbers of stronger O–H and weaker O...H bonds, respectively.  

 

HIEMSTRA et al. (1996) used fixed M–O bond-valences from unrelaxed bulk-structures 

to predict intrinsic acidity constants for surface groups. BICKMORE et al. (2003) used ab 

initio calculations for the average of M–O bond-valences of protonated and 

deprotonated relaxed surface-structures in 2:1 phyllosilicates; their average bond-

valence values for Fe–O, Al–O and Si–O bonds are similar to the corresponding values 

used by HIEMSTRA et al. (1996). The key issue in the prediction of appropriate intrinsic 

acidity-constants is use of the correct average coordination number of O on the surface. 

Here, HIEMSTRA et al. (1996) used an average coordination of oxygen of [3] for the 

more compact surfaces of gibbsite and goethite, and an average coordination number of 

[4] for the more open surface of quartz.  

 

 

10.2.1  Calculation of intrinsic acidity-constants for different U–O anion- 

terminations on edges of the basal face of uranyl-sheet minerals  

 

For tetragonal, pentagonal and hexagonal bipyramidal uranyl polyhedrons, the 

characteristic equatorial U–φ bond-valences are 0.64, 0.54 and 0.45 vu, respectively 

(BURNS, 1999). However, individual equatorial [a]U–φ bond-lengths vary over a larger 

range than the corresponding Al–O, Fe–O and Si–O bond-lengths (HIEMSTRA et al., 

1996). For example, the [7]U–φ bond-lengths in schoepite, [(UO2)8O2(OH)12](H2O)12, 
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vary between 2.2 and 2.7 Å (FINCH et al. 1996), which correspond to bond valences of 

0.73 vu and 0.27 vu, respectively. These high variations in individual bond-valences in 

uranyl-minerals may give rise to a range of intrinsic acidity-constants for one type of 

anion termination.  

 

The type of anion termination on edges in uranyl-minerals is limited by the occurrence 

of [6]-, [7]- and [8]-coordinated U6+: e.g., [6]- and [8]-coordinated U6+ never occur 

together, and always occur with [7]-coordinated U6+. The type of anion termination can 

be indicated by the code [a]U– φ –n
[b]U, where the φ is an unspecified anion that bonds 

to one U atom in [a] coordination and n x U atoms in [b] coordination. If we do not 

consider other oxyanions [e.g., (VO4)
3–, (PO4)

3–, (SiO4)
4–], the following combinations 

of anion terminations can occur on edges in uranyl-oxide sheet minerals:  

 
[8]U–φ,  [7]U–φ,  [6]U–φ,  

 
[8]U–φ–[8]U,  [8]U–φ–[7]U,  [7]U–φ–[7]U,  [7]U–φ–[6]U,  

 
[8]U– φ –2[7]U,   7]U– φ –2[7]U    [6]U– φ –2[7]U.  

 

The wide variation in type of anion termination (Chapter 6) makes it difficult to 

determine an exact pHpzc for a uranyl-mineral. However, an exact pHpzc is required to 

scale the average coordination-number of the oxygen atoms on the edge surface . 

 
As an example the intrinsic acidity-constants of anion terminations on the (001) face of 

schoepite will be calculated theoretically, and the results will be compared to titration 

experiments with dehydrated schoepite. 

 

 

 

 

 



 189 

Schoepite, [(UO2)8O2(OH)12](H2O)12, has a prominent (001) basal face that dominates 

the morphology of its crystal habit (Fig 6.3). The corresponding uranyl-sheet contain 

U6+ in     [7]-coordination (Finch et al. 1996). There are three different types of 

equatorial anion-terminations on the (001) face:  

 
[7]U–OH–2[7]U   [7]U–OH–[7]U    [7]U– O–2[7]U  

 

In order to calculate the corresponding intrinsic pKa values for these terminations, we 

can use the overall characteristic bond-valence for [7]U– φ (0.54 vu), the average [7]U– φ 

bond-valence of the equatorial bonds in schoepite (0.47 vu), or the average [7]U– φ 

bond-valence for each of the three anion-terminations. Here, we use the average bond-

valence of the equatorial bonds (0.47 vu) because this value is more appropriate than the 

characteristic [7]U– φ bond-valence, and it simplifies the calculation (relative to the use 

of individual average bond-valences). In many uranyl-hydroxy-hydrate minerals, the 

coordination number of equatorial O-atoms in the structural unit is close to [4]; oxygen 

bonds either to three U and one H, or to two U, one H and accepts one additional 

hydrogen bond. The acid–base reactions and the corresponding values of pKa 

(assuming [4]O) are as follows: 

 
[7]U–O–2[7]U + H+ ↔ [7]U–OH–2[7]U   pKa = 7.7 [R1] 

 
[7]U–O–[7]U + H+ ↔ [7]U–OH–[7]U   pKa = 13.1 [R2] 

 
[7]U–OH–[7]U + H+ ↔[7]U–OH2–

[7]U   pKa = 1.2 [R3] 

 

The intrinsic pKa is calculated using the average bond-valence sum at O in the anion 

termination of the base (i.e., for the termination on the left side of each equation).  
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In reaction [R1], the oxygen atom in [7]U–O–2[7]U receives 3 x 0.47 vu (from the [7]U 

atoms) + 0.20 vu (from a hydrogen bond) = 1.61 vu. This results in  

 

     pKa[1] =  –19.8(1.61 – 2) = 7.7  [R1] 

 

In reaction [R2], the oxygen atom in [7]U–O–[7]U accepts 2 x 0.47 vu from [7]U, and 2 x 

0.20 vu from two additional hydrogen bonds; i.e., its bond-valence sum is 1.34 vu, 

which corresponds to 

 

pKa[2] =  -19.8 ( 1.43 - 2) = 13.1 [R2] 

 

In reaction [R3], the oxygen atom in the [7]U–OH–[7]U termination receives 2 x 0.47 vu 

plus 0.80 vu from the O–H bond and 0.20 vu from an additional hydrogen bond; its 

bond-valence sum is 1.94 vu, which corresponds to  

 

pKa[3] =  - 19.8 ( 1.92 – 2) =  1.2  [R3] 

 

In order to compare calculated pKa values with observed values, one can determine the 

pKa values of the anion-terminations via titration of a fine suspension of schoepite with 

an NaOH solution. However, schoepite samples with a non-dehydrated surface are 

difficult to obtain from mineral samples or from synthesis. We decided therefore to use 

the structurally related phase dehydrated schoepite, which can be easily obtained by 

hydrothermal synthesis. 

 

The titration experiments have been carried out using a fine suspension of 100 mg of 

dehydrated schoepite [(UO2)O0.2(OH)1.6].  in 20 mL 0.1 and  1.0 mol L–1 NaCl 

solutions. These solutions then were titrated with 0.01 mol L–1 NaOH. Figure(10.1) 

shows the corresponding titration-curves with initial pH-values of 6.2 and 5.9, 

respectively.  
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The shift in the initial pH-values with change in concentration of the NaCl solution 

indicates adsorption of Na+ cations at specific sites on the (001) face (Stumm 1992). 

This adsorption results in an overall positive charge of the surface, which must be 

balanced by deprotonation of the U–OH–2U terminations. In this way, the (001) face of 

dehydrated schoepite functions as a weak acid, which explains the slightly acidic pH at 

the beginning of the titration. 

Because a NaCl solution is required to maintain a constant ionic medium, we modeled a 

curve for a titration in a 0.0 mol L–1 NaCl solution (Fig. 10.1). The initial pH of the 

dehydrated schoepite solution in the modeled curve is around 6.5, and the pKa value is 

around 7.0 ±  0.2. This pKa value corresponds to the acid–base reaction U–(OH)–2U ↔ 

U– O – 2U on the (001) face of dehydrated schoepite. [Note that in the anion-

termination U–(OH)–2U of dehydrated schoepite, U occurs in [7]- and [8]-coordination. 

The [8]-coordination of U in dehydrated schoepite results from dehydration of schoepite 

and structural changes inside the uranyl sheet. The theoretical structural sheet of 

dehydrated schoepite is given in Chapter (6.2.1). 

 

At the beginning and at the end of the titration, the (001) face of dehydrated schoepite 

most likely had the compositions [(UO2)O0.2+x(OH)1.6–2x]
2x+ and [(UO2)O2]

2–
,
 

respectively. The calculations of the pKa value of schoepite and the experimentally 

determined pKa value of dehydrated schoepite are reasonably close, and suggest that the 

average coordination-number of [4] is an appropriate value in the case of the uranyl-

oxide minerals schoepite and dehydrated schoepite.  

 

For example, if one uses an average coordination-number of [3], the intrinsic pKa value 

of the acid–base reaction [7]U–O–2[7]U + H+ ↔ [7]U– OH–2[7]U would be 11.7, 

significantly different from the observed value of 7.0 ±  0.2. The parameter A (-19.8) of 

the MUSIC model was fitted on the basis of experimental results on simple oxide 

minerals such as hematite, rutile and quartz. Hence, the equation in this form is not 

necessarily applicable to all uranyl-oxide minerals, and needs to be measured in the 

future on uranyl-oxide minerals. However, we will use this equation here in order to 

show how the intrinsic acidity constant is related to two other parameters that express 
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the strength of a base and an acid: Lewis basicity and Lewis acidity. For this purpose, 

we calculated intrinsic acidity-constants for all kinds of anion terminations using the 

above-listed average [n]U–φ bond-valences in uranyl-polyhedrons (Table 10.1). 

 

 

 

 

Fig.: 10.1 Titration curves with added 0.001 mol L-1 NaOH versus pH for a fine suspension of 

100 mg of dehydrated schoepite in 20 mL 0.1 mol L-1 (green) and1 mol L-1 (red) NaCl 

solutions. Added is a modeled titration-curve (blue) in a hypothetical 0.0 mol L-1 

solution (Figure. from SCHINDLER et al. (2004a), see Appendix V). 
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10.3 Lewis basicity and “acidity” of anion terminations  

 

The intrinsic acidity-constant pKa is a measure of the strength of the acid in an acid–

base equation:  

 

The higher the pKa, the weaker its acid strength or the stronger the base strength 

of the corresponding base.  

 

Using the acid–base definition of LEWIS (1916), pKa expresses the ability of the base 

(Lewis base) to donate electrons to the acid (Lewis acid). HAWTHORNE (1997) and 

SCHINDLER & HAWTHORNE (2001a) defined the Lewis-base strength of a complex 

structural unit as the bond valence required by the (negatively charged) structural unit 

divided by the number of (weak) bonds accepted by the structural unit from the 

interstitial complex. Using this definition, we may calculate the Lewis-base strength (or 

Lewis-acid strength) of an anion termination by assuming again an average O-

coordination number of [4]. 

 

For example: 

  

The Lewis base strength of the anion-termination [7]U–OH is the required bond-

valence [(2 – (0.54 + 0.80) = 0.66 vu] divided by the number of bonds accepted 

(two): 0.66 / 2 = 0.33 vu.  

 

For the anion termination [a]U–OH2, it is more useful to calculate its Lewis 

acidity because the constituent O-atom has an incident bond-valence sum greater 

than or equal to 2 vu.  
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The Lewis acidity of the [a]U–OH2 group is the characteristic bond-valence of each 

constituent hydrogen bond. Hence, the (H2O) group transforms the bond-valence (v vu) 

of the [a]U–O bond into two weaker hydrogen bonds of bond-valence v /2 (Chapter 9.2). 

The Lewis acidity of the termination  [7]U–OH2 is 0.54 / 2 = 0.27 vu. The Lewis 

acidities and Lewis basicities of all anion terminations are listed in Table 10.1 (end of 

this Chapter ). 

 

 

10.3.1  Lewis basicity and acidity constants 

 

From Table 10.1 a correlation between the type of anion termination and its 

functionality as a Lewis acid or Lewis base can be derived and the different anion 

terminations can be merged together in groups. 

 

Let us consider the anion terminations [7]U–OH and [7]U–O in the acid–base reactions 

[2] and [3] given in Table 10.1. The corresponding pKa2 and pKa3 values express the 

ability of the bases [7]U–OH and [7]U–O to donate electrons to the acid H+. The Lewis 

basicities (0.33 and 0.49 vu) correspond to the pKa2 and pKa3 values of 5.1 and 17, 

respectively. For the general anion termination [a]U–OH2, with [a] = [8], [7] and [6], we 

assign a negative Lewis acidity and correlate it with the corresponding pKa values (-5, -

6.7,- 8.7).  

 

All the anion terminations listed in Table 10.1 can be subdivided into five groups 

correlating with either Lewis bases or Lewis acids:  

(1) [a]U–OH2,  

(2) [a]U–OH,  

(3) [a]U–O,  

(4) [a]U–OH–2[b]U  

(5) [a]U–O–2[b]U.  
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For each group, there is a linear correlation between the Lewis basicity (acidity) and the 

corresponding pKa value (Fig. 10.2).  

This correlation can be understood if we compare the corresponding equations for the 

acidity constant and the Lewis basicity:  

 

pKa = -19.8 [∆s – 0.20 (4 – a(U–O) – b(O–H))]    [10.3] 

 

(LB) = ∆s / [4 – a(U–O) – b(O–H)]      [10.4] 

 

where ∆s is the bond-valence deficiency of the O-atom at the anion termination without 

considering any accepted hydrogen bonds. The term 0.20 [4 – a(U–O) – b(O–H)] is the 

bond-valence contribution of weak hydrogen bonds, where a and b are the numbers of 

U–O and O–H bonds, respectively; (LB) is the Lewis basicity.  

Writing [4 –  a(U–O) – b(O–H)] as x and solving for pKa gives the following relation:  

 

pKa = -19.8 (∆sx – 0.2 x)       [10.5] 

 

The parameter x is constant for one group of anion terminations, but varies from group 

to group (e.g., from 1 in [a]U–OH2 to 3 in [a]U–O with a = 6, 7, 8). The correlation 

between Lewis basicity and pKa for all five groups of anion terminations is shown by 

the curved line in Figure 10.2. 

 

Calculation of the intrinsic acidity-constant and the Lewis basicity of an anion 

termination requires the knowledge of the bond-valence deficiency at an oxygen atom. 

The average coordination-number of the oxygen atom at an anion termination scales the 

absolute values of the intrinsic acidity-constant and the Lewis basicity. The bond-

valence deficiency at an oxygen atom is independent of the coordination number of the 

oxygen, and is a better parameter to characterize the basicity of an anion termination.  
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The bond-valence deficiency at an oxygen atom can be related to the free energy of the 

acid–base reactions [R1], [R2] or [R3] (Chapter 10.2) as follows (Faure 1998):  

 

∆RGAT = –2.303 RT pKa     [10.6] 

 

where ∆RGAT is the free energy of the acid–base reaction at one anion-termination. 

Combination of equations (10.5) and (10.6) results in: 

 

∆RGAT = –2.303 RT [-19.8 (∆sx – 0.20 x)]    [10.7] 

 

Equations (10.5) and (10.7) indicate that the higher the bond-valence deficiency at an 

oxygen atom, the stronger the basicity of the anion termination, the stronger its affinity 

to hydrogen bonds or O–H bonds, and the more negative the free energy ∆RGAT of the 

corresponding acid–base reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.: 10.2 Lewis acidity and Lewis basicity versus intrinsic acidity constant, pKa, of anion 

terminations on the edges of uranyl sheets (SCHINDLER et al., 2004a, Appendix V). 
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10.3.2  Bond-valence deficiency, pKa, and free energy of a chain of polyhedrons 

(uranyl-sheet minerals)  

 

The bond-valence deficiency of an edge may be defined as the sum of bond-valence 

deficiencies on anion terminations, normalized to its translation length. A chain of 

polyhedrons in the sheet ideally represents an edge on an F face, considering the PBC-

theory termination. (Fig. 10.3). Each type of chain contains different types of anion 

terminations, and each type of anion termination corresponds to a specific pKa, Lewis 

basicity, and ∆RGAT value of a corresponding acid–base reaction. 

 

Fig.: 10.3 Ball-and-stick model of a possible protonated edge of uranyl-polyhedrons, parallel to 

the [010]-direction of the basal-sheet of schoepite. The outgoing bonds from the chain 

to the aqueous species in the solution are marked in blue lines. Incoming bonds, 

accepted by equatorial oxygen, are marked by green lines. The corresponding bond-

valences (vu) are given as numbers besides the lines (modified from, SCHINDLER et al., 

2004a; see Appendix V). 

 

Let us consider a chain of polyhedron of translation a, with b x [7]U–O and                           

c x [7]U–O–[7]U terminations. The pKa value of an acid–base reaction involving this 

chain of polyhedrons is designated ∆pKPC, and depends on the numbers and types of 

different anion-terminations. The pKa value of an acid–base reaction involving any 

chain of polyhedrons may be written as ΣpKs, and may be defined as the sum of the 

pKa values of acid–base reactions at the corresponding anion-terminations per Å. For 
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the anion terminations considered ([7]U–O and [7]U–O–[7]U) the following equation can 

be written: 

 

ΣpKPC = [b x pKa ([7]U–O) + c x pKa ([7]U–O–[7]U)] / a   [10.8] 

 

This equation  can be rewritten as:  

 

ΣpKPC = [b x ∆s ([7]U–O) + a x  ∆s ([7]U–O–[7]U)] / a   [10.9] 

 

The term [b x ∆s ([7]U–O) + a x  ∆s ([7]U–O–[7]U)] / a] is the O-atom bond-valence 

deficiency per Å for a chain of polyhedrons, considering the anion terminations ([7]U–O 

and [7]U–O–[7]U). It correlates with the average value of pKa and the free energy of 

acid–base reactions along a chain, and indicates the affinity of the constituent O-atoms 

for hydrogen bonds or O–H bonds. The bond-valence deficiency per Å can be 

calculated from crystal-structure data. Further examples are given by SCHINDLER et al. 

(2004a), attached in Appendix V. 

 

 

10.4 Further implications of the bond-valence approach to mineral 

surface reactions: pHpzc, net proton-charge, inner- and outer-

sphere complexes 

 

The pHpzc is also called the isoelectric point. STUMM (1992) defined the pHpzc as the 

point where the total net surface-charge is zero (this is the condition where particles do 

not move in an applied electric field). The total net surface-charge is the sum of: 

  

(1) the permanent structural charge caused by isomorphic substitutions, 

(2) the net proton-charge (i.e., the charge due to the binding of protons or                      

OH-  anions), 

(3)   the charge of the inner-sphere complex,  

(4)   and the charge of the outer-sphere complex. 
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The distribution of surface charge can be idealized as an electric double- or triple-layer. 

In the case of a double layer, the first layer is the solid surface with a localized negative 

surface-charge, whereas the second layer is in contact with the first layer and is a 

solution containing dispersed ions of positive charge (the Gouy–Chapman diffuse 

model: STUMM, 1992).  

This model cannot be applied to surfaces of high potential because the local 

concentrations of counter ions near the surface becomes too large. In the Stern–mode 

(STUMM, 1992), an additional compact layer of cations exists immediately adjacent to 

the mineral surface in order to balance the high charge of the surface. The ions in this 

layer are held tightly by “electrostatic forces” and are not free to move like the ions in 

the diffuse layer of the Gouy–Chapman model.  

 

DZOMBAK & MOREL (1990) developed a surface-complexation model in which ions are 

attached by chemical bonding to the surface and not via “electrostatic effects”, as 

assumed in the Gouy–Chapman and Stern–Grahame models. Therefore, cations of the 

inner-sphere complexes are treated in the surface-complexation model as part of the 

solid (STUMM 1992). 

 

An inner-sphere complex and an outer-sphere complex occur if a cation or anion in the 

solution bonds directly or via (H2O) groups to terminations on the surface. Hence, the 

presence of inner-sphere and outer-sphere complexes changes the net proton-charge of 

the surface. If the net proton-charge is zero, the total net surface-charge is not 

necessarily zero. However, charge and number of inner- and outer-sphere complexes 

depend on many factors, such as the size and number of specific sites for complexation 

on the surface, and on the charge, size and activities of cations and anions in solution. 

We can again simplify this problem if we factor surface, inner- and outer-sphere 

complexes and other aqueous species into three components:  

 

(1) surface,  

(2) chemisorbed species, 

(3) and aqueous solution.  



 200 

To be considered part of the surface, an atom has to conform to the space-group 

symmetry of the crystal, with the exception of H-atoms that strongly bond to O-atoms at 

the surface. Any other atom or group of atoms chemically bonded to the surface and not 

conforming to the space-group symmetry of the crystal will not be incorporated into the 

structure (to any significant degree), and although atoms chemically bonded to the 

surface, will have a short residence-time in this state. (For the impact of the face 

symmetry on e.g. the morphology of crystal polyhedron refer to Chapter 7). 

 

In some chemical systems, such chemisorbed impurities can significantly modify habit 

development (Chapter 11), presumably depending on the residence lifetime of the 

species on the surface and the activity of that species in solution. In this way, we 

consider here only the change in interaction between an edge with different net proton-

charges and the aqueous solution. 

 

From a bond-valence perspective, the net proton-charge is the difference between the 

sums of the accepted and donated bond-valences between the termination on the surface 

and the species in aqueous solution. A termination that accepts bond valences is a Lewis 

base, and a termination that donates bond-valence is a Lewis acid. At zero net proton-

charge, the strength and number of Lewis bases and Lewis acids are identical. The pH 

of a solution in which a surface has zero net proton-charge is called the point of zero net 

proton-charge, pHpzc (STUMM, 1992, p. 18). Depending on the intrinsic acidity-

constant of the acid–base reaction, strong Lewis bases and acids occur only at low or 

high pH. Hence, weaker Lewis bases and acids occur mainly on a surface at the pHpzc. 

This approach emphasizes that at the pHpzc, the bond-valence transfer between Lewis 

bases and acids on the surface and the aqueous solution is at a minimum. 

 

A surface may be positive, negative or neutral. The bond-valence deficiency at a face in 

this respect is therefore a measure of the bond valence required to achieve electron-

neutrality at that face. If there is a low bond-valence deficiency at a face and the pH of 

the solution is identical to the pHpzc, there is a low interaction between the face and the 
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solution. This results in the formation of only a small number of activated sites, and 

hence the dissolution rate perpendicular to the face is small. 

 

As a summary of this short excursion, we can define the pHpzc of a surface from a 

bond-valence perspective (not considering attached inner- or outer-sphere complexes):  

 

At the pHpzc of a surface, there is a minimum in the number of highly charged 

terminations (i.e., strong Lewis acids and Lewis bases) on the surface, which results in 

low bond-valence transfer between surface acceptors and donors and the aqueous 

species.  

 

A higher number of strong bonds between terminations and aqueous species enhances 

attachment and detachment of building units, and growth or dissolution rates should 

correlate with the type and number of activated sites, later defined by their respective 

bond-valence deficiency. 
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2  

[6]U– φ –2[7] 

[7]U– φ –2[7]U 

[8]U– φ –2[7]U 

[7]U–φ–[6]U 

[7]U–φ–[7]U 

[8]U–φ–[7]U 

[8]U–φ–[8]U  

[6]U–φ 

[7]U–φ 

8]U–φ 

Code 

[6]U–OH– [7]U    ↔      [6]U–O– 2[7]U        

[7]U–OH– 2[7]U    ↔    [7]U–O– 2[7]U    

[8]U–OH– 2[7]U    ↔     [8]U–O– 2[7]U           

[7]U–OH2– [6]U    ↔      [7]U–OH– [6]U   ↔     [7]U–O– [6]U    

[7]U–OH2– [7]U    ↔      [7]U–OH– [7]U   ↔     [7]U–O– [7]U    

[8]U–OH2– [7]U    ↔      [8]U–OH– [7]U   ↔     [8]U–O– [7]U    

[8]U–OH2– [8]U    ↔      [8]U–OH– [8]U   ↔      [8]U–O– [8]U              

[6]U–OH3             ↔      [6]U–OH2                ↔      [6]U–OH             ↔      [6]U–O 

[7]U–OH3             ↔      [7]U–OH2               ↔      [7]U–OH              ↔      [7]U–
O 

[8]U–OH3             ↔      [8]U–OH2               ↔      [8]U–OH              ↔      [8]U–

O 

Acids and bases of the anion-termination 
 
                                        PKa1                                          PKa2                                                PKa3 

2,5 

3,5 

5,3 

-3,5 

-1,6 

0,2 

2,0 

-8,7 

-6,7 

-5,0 

PKa1 

 
 

 

8,3 

10,3 

12 

13,8 

3,1 

5,1 

6,9 

PKa2 

 
 

 
 

 
 

 

15 

17 

18,8 

PKa3 

0,28 

0,38 

0,47 

0,02 

0,12 

0,21 

0,30 

0,32 

0,27 

0,22

5 

 
 

 

0,41 

0,46 

0,51 

0,55 

0,27 

0,33 

0,37

5 
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11  Predicting the morphology of crystals 
 
There are a number of external factors such as temperature, pressure and pH having 

influence on the morphology of a crystal specimen, but their influence to change the 

morphology of a crystal is in most cases minor compared to the influence of impurities 

on the crystal habit. Many minerals have not crystallized from a pure solution, but have 

been formed in the presence of one, two or more impurities and the results of such 

interactions are many fold, as one only needs to consider the variations in the crystal 

habits exposed by calcite crystals. 

 

From this point of view it seems almost impossible to find an effective method to 

predict the morphology of a crystal. Even today, and only for the most simple systems, 

is it scarcely possible to calculate and consider the influence of all chemical and 

physical forces involved during the growth of crystal specimen. Still uncertainties 

persist, for in a solution having more than one solvent present, it may not be possible to 

determine which solvent adsorbs to the crystal surface and might lead to a different 

habit (BUCKLEY, 1951). 

 

One suggestion to approach this problem is to separate the factors involved into an 

internal and external part. The internal part has been outlined in detail in the previous 

chapters, as the different internal factors from which “abstract forms” of a crystal can be 

calculated. As an example to specify external factors the bond-valence model was 

applied to solvents in Chapter 9. 

 

The goal of the following chapters is two combine both aspects and predict the 

morphology of crystal by application of the bond-valence model. 
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11.1  Habit modification due to adsorption (A theoretical bond-

valence approach) 

 
In the introduction to this chapter it has been stated that adsorption of impurities is one 

of the most common processes to change the morphological appearance of a mineral. 

The question to be considered, is to which extent the BVD-model is able to describe 

changes in morphology due to the adsorption of impurities. 

 

As described in previous chapters, the final morphology is a result of both internal 

(crystallographic) factors and external (fluid composition) factors. In Chapter 7 this was 

outlined in detail how internal factors (reticular density, lattice spacing and symmetry) 

influence the “structural” or “abstract form” of a crystal. It was shown that the internal 

factors can be incorporated in the BVD-model and different crystal faces can be 

compared in terms of the differences in their bond-valence deficiencies. Further, in 

Chapter 9 it is outlined how the bond-valence model can be applied to ions in aqueous 

solutions. 

 

A combination of both approaches, connected by their bond-valence parameters, should 

lead to an applicable method to predict morphology changes induced by the adsorption 

of impurities. In a theoretical example we will discuss the influences of different ions 

adsorbing to different crystal surfaces. The crystal structure choosen is the NaCl-crystal 

type structure and the crystal faces of interest are (001), (110) and (111). The crystal 

consists of two theoretical components, A ( the cation) and B an anion. The 

coordination number is CN = 6, a0 = 5.0 Å and Z = 4.  

 

 

In this theoretical example each bond is assigned a “theoretical” bond-valence of 0.5 vu, 

giving the “theoretical” ions an “atomic valence” of 3. In the first step the “structural 

form” of this crystal is predicted (Fig.: 11.1). This form will act as the matrix, which 

will interact with the different adsorbing ions. Changes in the bond-valence deficiencies 

due to adsorption will influence this matrix and an “abstract form” (actually a “growth 

form” ) for a certain state of adsorption will be obtained. 
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Fig.: 11.1 (a) Ball-and-stick representation of NaCl-crystal type structure. The cations (A) are 

represented by yellow balls, the anions (B) are represented by green balls. (b) general 

calculated “structural form” for the given crystal. The data set for the (100),(110) and 

(111) crystal faces can be taken from Fm3m-data set in Appendix III. 

 

Having chosen an AX-crystal type, with a NaCl-structure, some special features of the 

faces have to be considered (Fig. 11.2 and 11.3). The (001) faces consists of an 

alternation of positively charges cations (A) and the negatively charged anions (B), 

representing a neutral surface in itself. Ions present in the solution therefore can only 

bond selectively to ions on the surface having an opposite charge. A similar 

consideration has to be taken into account for the (110) face. The (111) crystal faces 

consist of an alteration of positive or negative charged crystal lattices and therefore the 

surface holds only one sort of ion, either A (positive) or B (negative). Ions in the 

solution can only adsorb to this surface if they are negative (adsorption to A-layers) or 

positive (adsorption to B-layers). 

 

Next the number of bonds emitted from the surfaces are different. Since ions in the 

(001)-face have 5 neighbors, only one bond of 0.5 vu can be donated to the surrounding 

solution. Ions on the (110)-crystal surface, only have 4 neighbors and can emit either 

two bonds (2 x 0.5 vu) or one stronger bond with a maximum valence of 1.0 vu. 

The ions on the (111)-face are only bonded to three ions in the crystal and can emit 

three bonds (3 x 0.5 vu) to the ions in the solution. Two bonds having ( 2 x 0.75 vu) are 

as well possible as one bond with a maximum bond-valence of (1.5 vu).  



 206 

 

Fig.: 11.2 Shown are different views of a NaCl cyrstal structure. The cations “A” are given as 

yellow balls, the anions “B” as green balls. (a) Ball-and-stick model of a (001)-crystal 

lattice (Top view), showing the alteration of positive and negative charged ions. The 

contour of the corresponding unit-cell is marked red. (b) Side view of  the (001) crystal 

lattice. The number of bonds (dangling bonds) emitted by the surface ions are marked 

with arrows (red = negative; blue = positive). (c) View perpendicular to a (110) crystal 

lattice. (d) Side view of a (110) crystal lattice. The number of bonds emitted by the ions 

present in the unit-cell are given by arrows. The actual number of bonds emitted by the 

surfaces of unit-cell dimension has to be corrected to the number of ions present in the 

unit-cell. 

 

Having regard to the unit-cell dimension of the corresponding crystal faces, calculated 

differences in the number and sort of ions adsorbing to the surface, until all bonds are 

satisfied, must be considered. The (001) unit-cell can at maximum form 4 bonds, two of 

which are positive and two being negative. Therefore cations and anions as well are able 

to adsorb to the surface. Presumably the bond-valences of the bonds that formed match 

the bond-valences of the bonds emitted by the surface. 
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The (110)-unit cell can extend up to 8 bonds to the solvents in the solution, half of them 

being positive, the others negative. This is equivalent to two positive and two negative 

bonds   (2 x 0.75), for each ion present on the surface forming only one bond. Similar to 

the (001)-face, cations and anions alike can be adsorbed to the (110)-crystal surface. 

 

 

Fig.: 11.3 Ball-and-stick model of a (111) crystal lattice having a NaCl-crystal type structure. 

Cations “A” are given as yellow balls, the anions “B” as green balls. (a) Given is a 

(111)-crystal lattice terminated only by anions “B”, the contour of the unit-cell is 

marked by red lines. (b) Side view of the (111)-crystal lattice showing the stepped 

topology of the surface. (c) Marked with red arrows are the dangling bonds emitted by 

the ions of the unit-cell given. The number of bonds calculated for the (111)-surface of 

unit-cell size has to be corrected to the number of the four ions present in the unit cell. 

The unit-cell will at maximum emit 4 x 3 = 12 bonds. 
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The unit-cell of the (111) surface, having Z = 4, can emit 12 bonds at maximum, three 

for each of the four ions present, and at minimum only 4 bonds can be emitted to the 

solvents in the solution. All bonds from the surface to the solution are charged equally , 

either positive or negative, and therefore the surface will only accept ions from the 

solution having an opposite charge. 

Now we need to consider the ions (impurities) that will adsorb to the crystal faces. In 

nature the variations that will occur are numerous, as the ions can vary in their charge, 

the strength and number of the bonds they form (Fig. 11.4), their concentration and in 

the number of  different sorts of ions or molecules present. As a consequence we have 

to be selective and only six case studies, covering a few of the possible variations will 

be given in detail. 

 

Fig.: 11.4 Ball-and stick representation of the topology of a (001), (110) and (111) crystal lattice 

having a NaCl-crystal type structure. Cations “A” are given as yellow balls, the anions 

“B” as green balls. In pink an anion attaching to these surfaces is shown. The number of 

bonds formed is marked with red arrows. (a) (001) crystal surface, the adsorbing anion 

attaches by forming one bond to a cation of the surface. (b) (110) crystal surface, an 

anion adsorbing to this crystal lattice can form up to two bonds to two different cations 

of the surface. (c) An anion absorbing to the (111) crystal lattice may form up to three 

bonds to three different cations of the surface. 
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Last we have to consider the adsorption of the impurities. The adsorption is assumed to 

be temporary. While adsorbed, the foreign ion, atom or molecule influences the growth 

of the corresponding surface, but the impurity is not considered to be incorporated into 

the crystal structure during the further growth of the crystal. Ions adsorbing to the 

surface will lower the bond-valence deficiency and therefore inhibit to some extent the 

growth process, giving rise to possible changes of the crystal morphology. 

An increase in the concentration of the impurity is illustrated by increasing amounts of 

ions adsorbing to the surface, up to the extent that all bonds that are emitted by the 

crystal surface are connected to the ions adsorbing to the surface. 

 

The examples considered are listed below as different case studies. In the first example    

(Case 1) the whole BVD-calculation will be given in detail (Tab.: 11.1), while for the 

other examples only the results and the predicted “growth forms” will be given. The 

calculations for the case-studies 2-6 are given in Appendix III. 

 

Case 1.:  Only one sort of ion, charged positive (or negative) present in the mother 

liquid will interact with the surface of the crystal (Fig.11.4), adsorbing 

only to ions of opposite charge. The valence value of the bonds to be 

formed to the crystal surfaces is 0.25 vu, being therefore lower than the 

bonds of the crystal (0.5 vu) itself. The number of bonds that can be 

formed by the ion is taken to be independent from its coordination 

number and can range in our examples from one bond to up to three 

bonds, each of which has a bond-valence of 0.25 vu. 

 

In Table 11.1 the bond-valence deficiencies of the crystal faces (001),(110) and (111) of 

the theoretical crystal having a NaCl-crystal type structure,a0 = 5.0 Å, CN = 6 and          

Z = 4 are given. The first data-set represents the calculation of the abstract form, 

regarding the internal factors, reticular density (RD), lattice density (LD), face 

symmetry (ω) and the site-symmetry (Z), only. The intermediate results of the bond-

valence deficiency calculations are given as BVDU*,BVDU** and BVDU***. The 

final bond-valence deficiency including all internal factors is given as ∆BVDU.  
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The hexahedron shape of the calculated “abstract form” is given in Figure (11.1). 

Labeled I-IV are different adsorption steps, indicating an increasing amount of ions (1-

4) adsorbed to the crystal lattice. In the case of the faces (001) and (110) no further 

adsorption is to be calculated after step II. All corresponding positions for a charged ion 

to adsorb are occupied. In the case of the charged (111) surface two more ions (III-IV) 

of opposite charge to the surface, may adsorb, and the bond-valence deficiency of this 

face is further lowered. The calculated “abstract forms”, now to be addressed as 

“growth forms” are given in Fig. 11.5. 

 

 

Tab.: 11.1  Calculation of the bond-valence deficiencies for the (001), (110) and (111) crystal 

surfaces of case study 1 (explanations see text). The first data-set represents the 

calculated “abstract form”. Labeled I-IV are the different adsorption steps. The bond-

valence values  (BVD) have been calculated by multiplication of the number of 

dangling bonds and the theoretical bond-valences (0.5 vu) for one single bond. (further 

explanation see text). 

 

Face BVD Area (Å²) BvD/ Å² RD BVD* LD BVD** ω BVD*** Z ∆BVD 
x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 4 35,35 0,11 2 0,23 4 0,91 4 0,23 2 0,45 
x(111) 6 43,30 0,14 1 0,14 6 0,83 6 0,14 3 0,42 

            
I.            

x(001) 1,75 25,00 0,07 2 0,14 2 0,28 8 0,04 4 0,14 
x(110) 3,5 35,35 0,10 2 0,20 4 0,79 4 0,20 2 0,40 
x(111) 5,25 43,30 0,12 1 0,12 6 0,73 6 0,12 3 0,36 

            
II.            

x(001) 1,5 25,00 0,06 2 0,12 2 0,24 8 0,03 4 0,12 
x(110) 3 35,35 0,08 2 0,17 4 0,68 4 0,17 2 0,34 
x(111) 4,5 43,30 0,10 1 0,10 6 0,62 6 0,10 3 0,31 

            
IIII.            

x(001) 1,5 25,00 0,06 2 0,12 2 0,24 8 0,03 4 0,12 
x(110) 3 35,35 0,08 2 0,17 4 0,68 4 0,17 2 0,34 
x(111) 3,75 43,30 0,09 1 0,09 6 0,52 6 0,09 3 0,26 

            
IV.            

x(001) 1,5 25,00 0,06 2 0,12 2 0,24 8 0,03 4 0,12 
x(110) 3 35,35 0,08 2 0,17 4 0,68 4 0,17 2 0,34 
x(111) 3 43,30 0,07 1 0,07 6 0,42 6 0,07 3 0,21 
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Fig.:11.5 Sequence of “growth forms” of a crystal having a NaCl.-type crystal structure. The 

labels I-IV correspond to the different amount of ions adsorbed to these surfaces in 

reference to the maximum number of ions adsorbed to the (111) crystal surface (see 

text). The surfaces (100), (110) and (111) are indicated by different colors (red, blue 

green) and the ratios of the bond-valence deficiencies are given in numbers below the 

images. 

 
Figure (11.5) and Table (11.1) illustrate that due to the adsorption of ions to the crystal 

surfaces the bond-valence deficiencies of the faces is lowered. But the impact to the 

“growth form” is only minor. This is due to the low bond-valence contribution of the 

ion (0.25 vu/per bond) to the crystal surface. The bond-valence deficiency of the crystal 

faces (110) and especially (111) is lowered, as well as is the bond-valence deficiency of 

the (100) crystal surface. In this example the decrease in the bond-valence deficiency, 

corresponding to a slow-down of the relative growth rate of the crystal faces has no 

effect on the final shape of the “growth form”. The decrease in the “growth rate” (bond-

valence deficiency) of the (111) crystal face is not enough compared to the decrease of 

the “growth rate” of the (001) crystals lattice and has no visual effect on the final shape 

of the calculated “growth form”. As a result we can state that the adsorption of only one 

sort of charged ion, contributing weak bonds to a crystal surfaces of a crystal having a 

NaCl-type crystal structure, does influence the relative growth rate of the crystal, but 

does not change the overall morphology of the abstract form” predicted for this crystal 

type. 
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Case 2.:  Two sorts of ions are present in the solution. One being a cation, the 

other being an anion. The bond-valences of one bond formed by these 

ions to the crystal surfaces is 0.25 vu and the number of bonds that can 

be donated can vary between one and three. In this case all ions (cations 

and anions) present on the crystal surfaces can form bonds to the ions of 

opposite charge in the solution 

 

 

Fig.: 11.6 Sequence of “growth forms” of a crystal having a NaCl.-type crystal structure. The 

labels I-IV correspond to an increasing amount of ions adsorbed to these surfaces (see 

text). The surfaces (100), (110) and (111) are indicated by different colors (red, blue 

green) and the ratios of the bond-valence deficiencies are given in numbers below the 

images  

 

In this example (Fig. 11.6) cations and anions present in the solution can adsorb to an 

maximum extent to the crystal surfaces. As a consequence the bond-valence 

deficiencies of the faces (100), (110) and (111) are lowered to a similar extent. The 

relative ratios of the bond-valence deficiencies of these faces, given in Fig. 11.6  does 

not change. As a result we can state that that the adsorption of cations and anions both 

contributing weak bonds to the crystal surfaces alike will not change the morphology of 
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the “growth forms” compared to the abstract form” predicted. Still a decrease in the 

relative growth rate can be observed (compare Tables given in Appendix III). 

 

 

 

Case 3.:  Similar to case 1, only one sort of charged ion  present in the solution, 

either being charged positive or negative, will interact with the crystal 

surface. It may form one, two or three bonds to the crystal surface, but 

each of the bonds has a bond-valence value of 0.6 vu, therefore being 

stronger than the bonds formed by the crystal itself. 

 

 

Fig.: 11.7  Sequence of “growth forms” of a crystal having a NaCl.-type crystal structure. The 

labels I-IV correspond to an increasing amount of ions adsorbed to these surfaces (see 

text). The surfaces (100), (110) and (111) are indicated by different colors (red, blue 

green) and the ratios of the bond-valence deficiencies are given in numbers below the 

images. 

 

In this example illustrated in Fig. 11.7 the influence of ion adsorbing to the different 

crystal faces is evident, compared to the examples 1 and 2. The major difference is the 

different amount of bonds formed between the ion and the crystal surfaces. As the ion in 

the solution contributes at least a bond-valence of 0.6 vu to the ions of the surface, no 

bonds will be formed between the ions terminating the (100) surface and the ions of the 

solution, because the surface ions accept only bonds of 0.5 vu. The (110) crystal surface 

will  accept bonds from ions of the solution, having an opposite charge. But, instead of 
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forming two bonds, as in the examples 1 and 2 only one bond of 0.6 vu is formed. This 

is due to the bond-valence deficiency of the ions termination the (110)-crystal surface. 

These ions, will at maximum accept a bond valence of 1.0 vu, as a result only one bond 

of a bond-strength of 0.6 vu can be accepted. A similar situation has to be taken into 

account for the charged (111) crystal surface. Instead of three bonds only two bonds can 

be formed between the surface and an ion of opposite charge in the solution. 

 

The influence of ions contributing bonds of a higher bond-valence to the crystal surface 

can be clearly estimated from Figure. 11.7. As the “concentration”(amount of adsorbing 

ions) of these ions in the solution increases, their selective adsorption to the different 

crystal faces leads to a change in the habit of the crystal growing in such an 

environment. 

 

 

Case 4.:  In this case again two sorts of ions, a cation and an anion, are present in 

the solution. They may form up to three bonds to the crystal surface each 

of which has a bond-valence of 0.6 vu and therefore being stronger than 

the single bonds formed by the ions in the crystal themselves. 

 

 

Fig.: 11.8 Sequence of “growth forms” of a crystal having a NaCl.-type crystal structure. The 

labels I-IV correspond to an increasing amount of ions adsorbed to these surfaces (see 

text). The surfaces (100), (110) and (111) are indicated by different colors (red, blue 

green) and the ratios of the bond-valence deficiencies are given in numbers below the 

images. 
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The sequence of “growth form” has not changed much compared to example 3. The 

amount of possible bonds formed is similar. Only the bond-valence deficiency of the 

(110)-cyrstal surface can be lowered further as now both sort of ions of the surface, 

cations and anions alike will form one bond to ions of opposite charge in the solution. 

Even the bond-valence can be lowered further (see ratios given in Figure 11.8, or the 

Table given in Appendix III), the influence is not strong enough to have an effect on the 

changing morphology of the “growth form” compared to the low growth rate exhibited 

by the (111) crystal surface. 

 

 

Case 5.:  This case resembles the adsorption of a highly charged ion, again either 

being positive or negative charged. The bonds donated by this ion to the 

crystal surface are much stronger, having a bond-valence of 0.9 vu. 

Again, up to three bonds will be assumed to be possible.  

 

 

Fig.: 11.9 Sequence of “growth forms” of a crystal having a NaCl.-type crystal structure. The 

labels I-IV correspond to an increasing amount of ions adsorbed to these surfaces (see 

text). The surfaces (100), (110) and (111) are indicated by different colors (red, blue 

green) and the ratios of the bond-valence deficiencies are given in numbers below the 

images. 
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Increasing the bond-valence contribution of one sort of ion to the crystal surfaces still 

changes the morphology of the “growth forms” compared to the “abstract form”, but the 

tendency to favor the (110) and (111) crystal lattice compared to the (100) as indicated 

in example 4 is not to be continued (see Appendix III). This is due to the strong bonds 

formed. Even though one individual bond having a bond-strength of 0.9 vu lowers the 

bond-valence deficiency to a much greater extent than one single bond having a bond-

strength of 0.6 vu, the influence is compensated by the decreasing number of bonds that 

can be formed between the crystal surfaces and the ions in the solution. No bonds are 

formed between the ion and the (001) and crystal surfaces because there is no match 

between the maximum bond-strength of the individual ions of the surface and the bond-

strength contributed by the ion of the solution. Only one bond for each ion of opposite 

charge is formed by the ions of the  (110) and (111) crystal surface, as they can accept 

bond-valences of up to 1.0 vu (110) and 1.5 vu (111). 

 

This example indicates clearly the influence of the internal crystal structure to the final 

morphology of the crystal. By increasing the strength of the bonds formed from ions in 

solution to the crystal surface, the decrease in the bond valence deficiency of the surface 

is limited by the number of bonds (and their respective bond valences) that can be 

accepted by the ions of the crystal surface. 

 

This example further demonstrates the competition between the influence of internal 

factors and external factors. The internal factors are responsible of the surface topology 

of the different faces, controlling the number and strength of bonds that can be formed 

by the surface terminating ions, at the same time setting the limits to which extent the 

external factors (in this case a foreign ion) can interact with the different crystal surface.  

 

 

Case 6.:  This last example considers the adsorption of two differently charged 

ions (positive and negative). Similar to case 5, each of these ions can 

form up to three bonds each of which has a bond strength of 0.9 vu. 
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The growth sequence given in Figure 11.10, illustrates the influence of ions adsorbing 

to the crystal surface, changing the habit of the crystal exhibited during growth. The 

interaction between the surface ions and the ions in solution is similar to example 5, but 

the presence of positive and negative charged ions in the solution compensates for the 

selective adsorption onto the (111) crystal surface. Now the growth rate of the (110) 

crystal surface is lowered to a far greater extent, due to the acceptance of bonds from 

both sorts of ions present in the solution. 

 

 

 

Fig.: 11.10 Sequence of “growth forms” of a crystal having a NaCl.-type crystal structure. The 

labels I-IV correspond to an increasing amount of ions adsorbed to these surfaces (see 

text). The surfaces (100), (110) and (111) are indicated by different colors (red, blue 

green) and the ratios of the bond-valence deficiencies are given in numbers below the 

images. 

 

As a final remark to this chapter we can state, that in the examples given, it was shown 

that the BVD-model is capable not only to predict the “abstract forms” of crystal, but is 

also capable of being applied to account for the influence of external factors (ions/atoms 

or molecules) on the morphology of crystals. This result has been obtained by 

expressing the influence of internal factors and external factors via their respective 

bond-valence parameters. The combination of both contributions, the internal factors 

controlling the “matrix” of the crystal, and the external factors “shaping” this matrix , 

finally leads to a crystal growth model which is capable of considering both aspects 

present during crystal growth . 
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11.2 Habit changes of sylvite in the presence of Pb
2+

 ions (An example) 

 
Similar to the investigation of magnetite (Chapter 8.4.1.1), the applicability of the 

BVD-model to predict habit changes, and thus the morphology of crystals during 

growth, in presence of foreign ions can be tested by comparing the obtained bond-

valence data to experimental results given in literature.  

 

 

Tab.: 11.2 Bond-valence deficieny calculation of sylvite in the presence of Pb2+ impurities. The 

top lines represent the bond-valence deficiency values of the abstract form. Labeled I – 

IV are different adsorption stages. At stage I, one Pb2+ ions is adsorbed to all surfaces 

calculated. At stage II, two Pb2+ ions are adsorbed. At stage III and IV all possible 

adsorption positions are occupied for the (100) and (110) surface and additional Pb2+ 

are adsorbing only to the (111) crystal surfaces. Three Pb2+ ions at stage III and four 

Face BVD 
Area 
(Å²) 

BvD/ 
Å² RD BVD* LD BVD** ω BVD*** Z ∆BVD 

x(001) 0,7400 40,70 0,02 2 0,04 2 0,07 8 0,009 4 0,0364 

x(110) 1,3920 57,56 0,02 2 0,05 4 0,19 4 0,048 2 0,0967 

x(111) 2,0440 70,52 0,03 1 0,03 6 0,17 6 0,029 3 0,0870 

            

I.            

x(001) 0,572 40,70 0,01 2 0,03 2 0,06 8 0,007 4 0,0281 

x(110) 1,056 57,56 0,02 2 0,04 4 0,15 4 0,037 2 0,0734 

x(111) 1,54 70,52 0,02 1 0,02 6 0,13 6 0,022 3 0,0655 

            

II.            

x(001) 0,404 40,70 0,01 2 0,02 2 0,04 8 0,005 4 0,0199 

x(110) 0,72 57,56 0,01 2 0,03 4 0,10 4 0,025 2 0,0500 

x(111) 1,036 70,52 0,01 1 0,01 6 0,09 6 0,015 3 0,0441 

            

III.            

x(001) 0,404 40,70 0,01 2 0,02 2 0,04 8 0,005 4 0,0199 

x(110) 0,72 57,56 0,01 2 0,03 4 0,10 4 0,025 2 0,0500 

x(111) 0,532 70,52 0,01 1 0,01 6 0,05 6 0,008 3 0,0226 

            

IV.            

x(001) 0,404 40,70 0,01 2 0,02 2 0,04 8 0,005 4 0,0199 

x(110) 0,72 57,56 0,01 2 0,03 4 0,10 4 0,025 2 0,0500 

x(111) 0,028 70,52 0,00 1 0,00 6 0,00 6 0,00 3 0,0012 
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Pb2+ ions at stage IV, further decreasing the bond-valence deficiency of this respective 

crystal surface. 

 

LIAN et al. (1990) investigated habit changes of growing KCl-crystals in aqueous 

solutions in the presence of Pb2+ impurities. The authors observed a change from the 

cubic to the cube-octahedral and finally to the octahedral from exhibited by the KCl-

crystals, as the concentration of the Pb2+ ions in the solution was increased. 

 

A similar ab initio experiment can be calculated by application of the Bond-valence 

deficiency model. Based on the ionic radius of K+ and Cl- reported by SHANNON 

(1979), the bonds valences of the K-Cl bond have been calculated as 0.163 vu for a K-

Cl bond-length of 3.19 Å. According to these values a0 value to calculate the surface 

area of unit size increase slightly to a0 = 6.38 Å. The bond-valence value of the Pb2+ - 

Cl- bonds, was taken to be 0.168 vu, assuming that the Pb2+ ions will be at similar equal 

distance apart from the Cl- ions as the K+ ions. The values so obtained are summarized 

in Table (11.2) and the development of the crystal faces is shown in Figure (11.11). The 

bond-valences calculated have been obtained by application of the “Bond-Valence 

calculator” provided on the internet-page:  kristall.uni-mki.gwdg.de/softbv . 

 

Fig.:  Calculated development of different habits of sylvite crystals in the presence of 

increasing amounts Pb2+ impurities. The roman letters correspond to the different 

adsorption stages listed in Table 11.2.  
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The results obtained can be compared to the results stated by LIAN et al. (1990) and a 

similar habit change from a cube to an octahedral morphology can be noticed. Similar to 

the theory described in Chapter (11.1), only certain stages are monitored by the given 

bond-valence approach and are representative for the given bond-lengths. Different 

results will be obtained, if for example, the bond-length between the adsorbing Pb2+ 

ions and the Cl- ions will be decreased and thus the bond-valence values will be 

increased. For this case it can be assumed that the growth rate of the {111}- crystal 

surfaces will be lowered and at the same time their morphological importance will be 

increased. 
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12 Concluding Remarks  
 

The previous Chapters have outlined in detail the capability of the Bond-valence 

deficiency model (BVD-model) to be a useful method ready to be applied in Mineral 

Surface Science.  

 

It was demonstrated that the contribution of internal and external factors, both having 

influence on the crystal morphology of a mineral, can be described by the relative bond-

valence deficiencies of a crystal surfaces before and after a reaction between the crystal 

and a solution has occurred. 

 

One of the major advantages of the BVD-model is its ease of use. Bond-valences can 

easily be assigned to atoms or ions, no matter if they are located in the crystal bulk 

structure, the crystal surface or the solution interacting with the mineral surface. Any 

changes in the crystal structure, at the crystal surface or the solution will change the 

respective bond-valence values, and these changes can be monitored by the changing 

bond-valence deficiencies calculated. 

 

However, this approach cannot substitute for modern thermodynamic computer 

simulations, which are able to consider even minute changes in the potential energies of 

two or more interacting atoms. The BVD-model has proven to be applicable if such 

changes can be detected as variations in the lengths of bonds formed, as these changes 

will have an influence on the bond-valence values to be considered.  

 

Therefore it seems practicable to consult the BVD-model as a method to be used prior 

to computer simulations, as the BVD-model can well distinguish and differentiate 

between the most common attributes of a crystal surface. In this sense the BVD-model 

can be applied as a first obstacle to be mastered before the decisions about more time 

and money consuming investigations is taken.  
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As more and more research is done to refine bond-valence values (Chapter 4.5), such as 

to incorporate the influences of the electronegativity of bonding partners, the 

effectiveness of the BVD-model to describe mineral surface reactions will increase. 

These advancements will definitely increase the accuracy of the bond-valence model, 

but the calculations necessary to describe mineral surface reactions are kept at the same 

manageable level, as all refinements will find their expression in values expressed in 

bond-valence values, readily to be incorporated into the Bond-valence deficiency model 

outlined in this script. 
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Appendix I 

 
Graphical approach to calculate a Pm3m-lattice 

 

Appendix I is an overview on how the bond-valence deficiency of a crystal surface can 

be determined. As an example crystal surfaces terminating a theoretical crystal with 

space-group symmetry 1

h
O  (P 4/m 3

−

 2/m) have been chosen. For each individual surface 

(hkl) a ball-and-stick model is presented with atoms terminating a surface area of unit-

cell dimension (Fig.A Ia). These atoms occupy the position of lattice-points. Marked in 

the same color are atoms at equivalent positions.  

 

Fig.:A I (a) Ball-and stick model of a (001) crystal surface. (b) Schematic representation of the 

face symmetry of the crystal surface. (c) This graphic indicates the number of 

equivalent atoms and their respective number of dangling bonds (DB). 

 

The next figure (Fig A.: I b) is a graphic representation of the corresponding face-

symmetry. Rotation axis are indicated by their respective symbols, mirror-plane are 

indicated by solid lines, the unit-cell is outlined by dashed lines. The individual figures 

are labeled according to the nomenclature applied by NIGGLI (1941) 

 

The third image (Fig.A I c) shows the number of atoms present at the crystal surface of 

unit-cell dimension (dashed lines). Equivalent atoms are labeled by the same letter and 

colour. The number following the letter states the amount of dangling bonds (DB). 
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Appendix II 
 

Graphical calculations of different mineral faces 

 

Appendix II gives a graphical overview of the crystal surfaces described in Chapter 8. 

For all the surfaces described in this Appendix the calculated Tables are given in 

Appendix III. 

 

Similar to Appendix I, a ball-and-stick model is presented fro each individual surface 

(hkl). Atoms terminating the surface and contributing “dangling bonds” to the 

environment are marked in different colours. Next, a graphic representation of the 

corresponding face-symmetry is given. Rotation axis are indicated by their respective 

symbols, mirror-planes are indicated by solid lines, the unit-cell is outlined by dashed 

lines, and the individual figures are labeled according to the nomenclature applied by 

NIGGLI (1941). The third image shows the different atoms terminating the surface. 

Equivalent atoms are labeled by the same letter and marked by the same colour. The 

number following the letter states the amount of dangling bonds (DB) emitted by these 

atoms. 

 

In such cases where several terminations parallel to a given (hkl)-plane exist, but no 

differences in the bond-valence deficiency of the crystal surfaces occur (e.g. Fm3m-

structure type parallel to the (001)-termination), only one surface is given as an 

example. In cases where several terminations parallel to a given (hkl)-plane exist, and 

differences in the bond-valence deficiencies of these terminations occur (e.g. spinel-

structure type, parallel to the (111)-terminations), only the surfaces with the lowest 

bond-valence deficiencies are given. 
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Appendix III 
 

Bond-valence deficiency tables 
 
This Appendix summarizes the calculated Bond-valence deficiency Tables of the 

graphic examples in Appendix I and II , additionally  the Tables for the different “Case-

studies” given in Chapter 11 are added at the end of this Appendix. 

 

All surfaces of the graphical examples of Appendix II have been calculated for a given 

theoretical crystals having a0 = 5,0 Å². The number of bond-emitted by atoms 

terminating the different surfaces of unit-dimension are given by the number of 

“dangling bonds” (DB).  

 
Pm3m Structure Type 
 
Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
1 25,00 0,04 1 0,04 1 0,04 8 0,01 4 0,02 

 
(110) 

 
2 35,36 0,06 1 0,06 2 0,11 4 0,03 2 0,06 

 
(111) 

 
3 43,30 0,07 1 0,07 3 0,21 6 0,03 3 0,10 

 
(210) 

 
3 55,90 0,05 1 0,05 5 0,27 2 0,13 1 0,13 

 
(211) 

 
4 61,23 0,07 1 0,07 6 0,39 2 0,20 1 0,20 

 
(221) 

 
10 150,00 0,07 1 0,07 9 0,60 2 0,30 1 0,30 

 
(311) 

 
10 165,83 0,06 1 0,06 11 0,66 2 0,33 1 0,33 

 
(331) 

 
14 217,94 0,06 1 0,06 19 1,22 2 0,61 1 0,61 

 



 256 

Fm3m Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
8 25,00 0,32 2 0,64 2 1,28 8 0,16 4 0,64 

 
(110) 

 
12 35,36 0,34 2 0,68 4 2,72 4 0,68 2 1,36 

 
(111) 

 
12 43,30 0,28 1 0,28 3 0,83 6 0,14 3 0,42 

 
(311) 

 
56 165,83 0,34 1 0,34 11 3,71 2 1,86 1 1,86 

 

Im3m Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
4 25,00 0,16 2 0,32 2 0,64 8 0,08 4 0,32 

 
(110) 

 
4 35,36 0,11 1 0,11 2 0,23 4 0,06 2 0,11 

 
(111) 

 
6 43,30 0,14 2 0,28 6 1,66 6 0,28 3 0,83 

 
(211) 

 
8 61,23 0,13 1 0,13 6 0,78 2 0,39 1 0,39 
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Diamond Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
4 25,00 0,16 4 0,64 4 2,56 4 0,64 2 1,28 

 
(110) 

 
4 35,36 0,11 4 0,45 4 1,81 2 0,91 1 0,91 

 
(111) 

 
4 43,30 0,09 2 0,18 3 0,55 6 0,09 3 0,28 

 
(210) 

 
8 55,90 0,14 4 0,57 20 11,45 1 11,45 1 11,45 

 

NaCl Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
4 25,00 0,16 2 0,32 2 0,64 8 0,08 4 0,32 

 
(110) 

 
8 35,36 0,23 2 0,45 4 1,81 4 0,45 2 0,91 

 
(111) 

 
12 43,30 0,28 1 0,28 6 1,66 6 0,28 3 0,83 

 
(210) 

 
12 55,90 0,21 2 0,43 10 4,29 2 2,15 1 2,15 
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Sphalerite Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
4 25,00 0,16 2 0,32 4 1,28 4 0,32 2 0,64 

 
(110) 

 
4 35,36 0,11 2 0,23 4 0,91 2 0,45 1 0,45 

 
(111) 

 
4 43,30 0,09 1 0,09 3 0,28 6 0,05 3 0,14 

 
(311) 

 
24 165,83 0,14 1 0,14 11 1,59 2 0,80 1 0,80 

 

Fluorite Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
8 25,00 0,32 2 0,64 2 1,28 8 0,16 4 0,64 

 
(110) 

 
8 35,36 0,23 2 0,45 4 1,81 4 0,45 2 0,91 

 
(111) 

 
8 43,30 0,18 1 0,18 6 1,11 6 0,18 3 0,55 

 
(210) 

 
16 55,90 0,29 2 0,57 10 5,72 2 2,86 1 2,86 
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Pyrite Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
2 25,00 0,08 2 0,16 2 0,32 1 0,32 1 0,32 

 
(110) 

 
4 35,36 0,11 2 0,23 4 0,91 1 0,91 1 0,91 

 
(111) 

 
12 43,30 0,28 1 0,28 3 0,83 3 0,28 1 0,28 

 
(210) 

 
2 55,90 0,04 2 0,07 10 0,72 1 0,72 1 0,72 

 

Spinel Structure Type 

 

Face 

(hkl) 

DB Unit-cell 

(Å²) 

BVDU 

(Å²) 

RD BVDU* 

(Å²) 

LD BVDU** 

(Å²) 

ω BVDU*** 

(Å²) 

Z ∆BVDU 

(Å²) 

 
(100) 

 
20 25,00 0,80 4 3,20 4 12,80 4 3,20 2 6,40 

 
(110) 

 
28 35,36 0,79 4 3,17 4 12,67 2 6,34 1 6,34 

 
(111) 

 
28 43,30 0,65 2 1,29 6 7,76 6 1,29 3 3,88 
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Case 1 (Figure 11.5, pp. 211) 

 
Case 2 (Figure 11.6, pp. 212) 

Face 
 

BVDU 
 

Area 
(Å²) 

BVDU 
(Å²) 

RD 
 

BVDU* 
(Å²) 

LD 
 

BVDU** 
(Å²) 

ω 
 

BVDU*** 
(Å²) 

Z 
 
∆BVDU 

(Å²) 
x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 4 35,35 0,11 2 0,23 4 0,91 4 0,23 2 0,45 
x(111) 6 43,30 0,14 1 0,14 6 0,83 6 0,14 3 0,42 

            
I.            

x(001) 1,75 25,00 0,07 2 0,14 2 0,28 8 0,04 4 0,14 
x(110) 3,5 35,35 0,10 2 0,20 4 0,79 4 0,20 2 0,40 
x(111) 5,25 43,30 0,12 1 0,12 6 0,73 6 0,12 3 0,36 

            
II.            

x(001) 1,5 25,00 0,06 2 0,12 2 0,24 8 0,03 4 0,12 
x(110) 3 35,35 0,08 2 0,17 4 0,68 4 0,17 2 0,34 
x(111) 4,5 43,30 0,10 1 0,10 6 0,62 6 0,10 3 0,31 

            
IIII.            

x(001) 1,5 25,00 0,06 2 0,12 2 0,24 8 0,03 4 0,12 
x(110) 3 35,35 0,08 2 0,17 4 0,68 4 0,17 2 0,34 
x(111) 3,75 43,30 0,09 1 0,09 6 0,52 6 0,09 3 0,26 

            
IV.            

x(001) 1,5 25,00 0,06 2 0,12 2 0,24 8 0,03 4 0,12 
x(110) 3 35,35 0,08 2 0,17 4 0,68 4 0,17 2 0,34 
x(111) 3 43,30 0,07 1 0,07 6 0,42 6 0,07 3 0,21 

Face 
 

BVDU 
 

Area 
(Å²) 

BVDU 
(Å²) 

RD 
 

BVDU* 
(Å²) 

LD 
 

BVDU** 
(Å²) 

ω 
 

BVDU*** 
(Å²) 

Z 
 
∆BVDU 

(Å²) 
x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 4 35,35 0,11 2 0,23 4 0,91 4 0,23 2 0,45 
x(111) 6 43,30 0,14 1 0,14 6 0,83 6 0,14 3 0,42 

            
I.            

x(001) 1,75 25,00 0,07 2 0,14 2 0,28 8 0,04 4 0,14 
x(110) 3,5 35,35 0,10 2 0,20 4 0,79 4 0,20 2 0,40 
x(111) 5,25 43,30 0,12 1 0,12 6 0,73 6 0,12 3 0,36 

            
II.            

x(001) 1,5 25,00 0,06 2 0,12 2 0,24 8 0,03 4 0,12 
x(110) 3 35,35 0,08 2 0,17 4 0,68 4 0,17 2 0,34 
x(111) 4,5 43,30 0,10 1 0,10 6 0,62 6 0,10 3 0,31 

            
IIII.            

x(001) 1,25 25,00 0,05 2 0,10 2 0,20 8 0,03 4 0,10 
x(110) 2,5 35,35 0,07 2 0,14 4 0,57 4 0,14 2 0,28 
x(111) 3,75 43,30 0,09 1 0,09 6 0,52 6 0,09 3 0,26 

            
IV.            

x(001) 1 25,00 0,04 2 0,08 2 0,16 8 0,02 4 0,08 
x(110) 2 35,35 0,06 2 0,11 4 0,45 4 0,11 2 0,23 
x(111) 3 43,30 0,07 1 0,07 6 0,42 6 0,07 3 0,21 
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Case 3 (Figure 11.7, pp. 213) 

 
Case 4 (Figure 11.8, pp. 214) 

Face 
 

BVDU 
 

Area 
(Å²) 

BVDU 
(Å²) 

RD 
 

BVDU* 
(Å²) 

LD 
 

BVDU** 
(Å²) 

ω 
 

BVDU*** 
(Å²) 

Z 
 
∆BVDU 

(Å²) 
x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 4 35,35 0,11 2 0,23 4 0,91 4 0,23 2 0,45 
x(111) 6 43,30 0,14 1 0,14 6 0,83 6 0,14 3 0,42 

            
I.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 3,4 35,35 0,10 2 0,19 4 0,77 4 0,19 2 0,38 
x(111) 4,8 43,30 0,11 1 0,11 6 0,67 6 0,11 3 0,33 

            
II.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,8 35,35 0,08 2 0,16 4 0,63 4 0,16 2 0,32 
x(111) 3,6 43,30 0,08 1 0,08 6 0,50 6 0,08 3 0,25 

            
IIII.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,8 35,35 0,08 2 0,16 4 0,63 4 0,16 2 0,32 
x(111) 2,4 43,30 0,06 1 0,06 6 0,33 6 0,06 3 0,17 

            
IV.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,8 35,35 0,08 2 0,16 4 0,63 4 0,16 2 0,32 
x(111) 1,2 43,30 0,03 1 0,03 6 0,17 6 0,03 3 0,08 

Face 
 

BVDU 
 

Area 
(Å²) 

BVDU 
(Å²) 

RD 
 

BVDU* 
(Å²) 

LD 
 

BVDU** 
(Å²) 

ω 
 

BVDU*** 
(Å²) 

Z 
 
∆BVDU 

(Å²) 
x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 4 35,35 0,11 2 0,23 4 0,91 4 0,23 2 0,45 
x(111) 6 43,30 0,14 1 0,14 6 0,83 6 0,14 3 0,42 

            
I.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 3,4 35,35 0,10 2 0,19 4 0,77 4 0,19 2 0,38 
x(111) 4,8 43,30 0,11 1 0,11 6 0,67 6 0,11 3 0,33 

            
II.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,8 35,35 0,08 2 0,16 4 0,63 4 0,16 2 0,32 
x(111) 3,6 43,30 0,08 1 0,08 6 0,50 6 0,08 3 0,25 

            
IIII.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,2 35,35 0,06 2 0,12 4 0,50 4 0,12 2 0,25 
x(111) 2,4 43,30 0,06 1 0,06 6 0,33 6 0,06 3 0,17 

            
IV.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 1,6 35,35 0,05 2 0,09 4 0,36 4 0,09 2 0,18 
x(111) 1,2 43,30 0,03 1 0,03 6 0,1663 6 0,03 3 0,08 
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Case 5 (Figure 11.9, pp. 215) 

 
Case 6 (Figure 11.10, pp. 217) 

Face 
 

BVDU 
 

Area 
(Å²) 

BVDU 
(Å²) 

RD 
 

BVDU* 
(Å²) 

LD 
 

BVDU** 
(Å²) 

ω 
 

BVDU*** 
(Å²) 

Z 
 
∆BVDU 

(Å²) 
x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 4 35,35 0,11 2 0,23 4 0,91 4 0,23 2 0,45 
x(111) 6 43,30 0,14 1 0,14 6 0,83 6 0,14 3 0,42 

            
I.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 3,1 35,35 0,09 2 0,18 4 0,70 4 0,18 2 0,35 
x(111) 5,1 43,30 0,12 1 0,12 6 0,71 6 0,12 3 0,35 

            
II.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,2 35,35 0,06 2 0,12 4 0,50 4 0,12 2 0,25 
x(111) 4,2 43,30 0,10 1 0,10 6 0,58 6 0,10 3 0,29 

            
IIII.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,2 35,35 0,06 2 0,12 4 0,50 4 0,12 2 0,25 
x(111) 3,3 43,30 0,08 1 0,08 6 0,46 6 0,08 3 0,23 

            
IV.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 2,2 35,35 0,06 2 0,12 4 0,50 4 0,12 2 0,25 
x(111) 2,4 43,30 0,06 1 0,06 6 0,33 6 0,06 3 0,17 

Face 
 

BVDU 
 

Area 
(Å²) 

BVDU 
(Å²) 

RD 
 

BVDU* 
(Å²) 

LD 
 

BVDU** 
(Å²) 

ω 
 

BVDU*** 
(Å²) 

Z 
 

Face 
 

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 4 35,35 0,11 2 0,23 4 0,91 4 0,23 2 0,45 
x(111) 6 43,30 0,14 1 0,14 6 0,83 6 0,14 3 0,42 

            
I.            

x(001) 2 25,00 0,08 2 0,16 2 0,32 8 0,04 4 0,16 
x(110) 3,1 35,35 0,09 2 0,18 4 0,70 4 0,18 2 0,35 
x(111) 5,1 43,30 0,12 1 0,12 6 0,71 6 0,12 3 0,35 

 

x
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Appendix IV 
 

Abbrevations for the Bond-valence deficiency model  

 

 

BVD  : Bond-valence Deficiency 

 

BVDF  : Bond-valence deficiency of a face. 

 

BVDU  : Bond-valence deficiency of a crystal surface of unit-cell dimension 

 

BVDU* : BVDU-value corrected by RD-factor 

 

BVDU** : BVDU-value corrected by RD-factor and LD-factor 

 

BVDU*** : BVDU-value corrected by RD-factor, Ld-factor and ω-factor 

 

∆BVDU : BVDU-value corrected by RD-factor, Ld-factor, ω-factor and Z-factor 

 

DB  : Dangling-bond 

 

FS-factor : Face symmetry factor. 

 

ω-factor : Symmetry factor considering the “Eigensymmetry” of the crystal face 

 

LD-factor : Lattice density factor 

 

RD-factor : Reticular density factor 

 

Z-factor : Symmetry factor considering the site symmetry of a crystal face 
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ABSTRACT

Edges on the basal face of uranyl-sheet minerals control dissolution and crystal-growth processes because of their higher
interaction with the aqueous solution than the less reactive basal face. A basal face is parallel to the structural unit of a uranyl-
sheet mineral and dominates its crystal morphology. Edges terminate a structural unit and define the morphology of the prominent
basal face. Edges are parallel to linear periodic chains of polyhedra in the structural unit, at which anion terminations interact with
a coexisting aqueous solution through acid–base reactions and acceptance of weaker bonds from cationic aqueous species. The
bond-valence deficiency of an anion at an anion termination correlates with the intrinsic acidity constant, pKa, and the free
energy, �Gat, of the corresponding protonation-type reaction. The degree of interaction of an edge with the coexisting aqueous
solution can be described by the bond-valence deficiency per unit length of the anion terminations on the corresponding chain of
polyhedra, i.e., an edge at which each site is activated by interaction with aqueous species. The type and number of activated sites
on an edge correlate with the bond-valence deficiency of the corresponding chain of polyhedra. Growth and dissolution at an edge
are promoted by interaction between activated sites and aqueous solution. The interaction has its minimum at the point of zero-
charge (pHpzc) of the edge and at saturation with respect to the mineral, and increases with the difference between pH and pHpzc,
and with the degree of saturation. Edges containing a small number of activated sites are stable, grow and dissolve slowly, and
invariably occur on the final morphology of the basal face. Edges containing an average number of activated sites are less stable,
grow and dissolve faster, and will occur on the final morphology only if crystal growth occurs in solutions with a pH close to
pHpzc, and close to saturation with respect to the mineral. Edges with the highest number of activated sites have the lowest
stability and may never occur on the final morphology. Interaction of an edge with the aqueous solution depends also on the shift
between the layers and the arrangement of the interstitial complexes between the layers.

Keywords: uranyl minerals, morphology, surface structure, crystal growth, dissolution, bond valence.

SOMMAIRE

La bordure de la face parallèle à la base du feuillet des minéraux à uranyle régit la dissolution et les processus de croissance
cristalline à cause de sa plus grande interaction avec la solution aqueuse que la face elle-même, moins réactive. Une telle face est
parallèle aux unités structurales des feuillets contenant les groupes d’uranyle, et elle est déterminante du point de vue
morphologique. Les bordures représentent la terminaison des unités structurales, et définissent la morphologie de la face de base,
proéminente. Ces bordures sont parallèles aux chaînes linéaires périodiques de polyèdres de l’unité structurale, là où il y a
interaction des terminaisons d’anions avec la solution aqueuse coexistante grâce à des réactions acide–base, et où des liaisons plus
faibles provenant d’espèces aqueuses cationiques sont acceptées. Le déficit en valences de liaison d’un anion à la terminaison
d’une chaîne d’anions dépend de la constante intrinsèque de l’acidité, pKa, et de l’énergie libre, �Gat, de la réaction correspondante
de protonation. On peut décrire le degré d’interaction d’une bordure avec la solution aqueuse coexistante en évaluant le déficit en
valences de liaison par unité de longueur des terminaisons des anions dans la chaîne de polyèdres correspondante, c’est-à-dire,
une bordure à laquelle chaque site est rendu actif par interaction avec des espèces aqueuses. Le type et le nombre de sites ainsi

§ Current address: Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
E-mail address: mschindl@lakeheadu.ca
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tion process. These calculations work well as long as
accurate interaction potentials are available for the con-
stituent species. This is not usually the case for com-
plex hydroxy-hydrated oxysalt minerals, which contain
unusual coordination geometries and both (OH) and
(H2O) groups, e.g., althupite, Al Th [(UO2) {(UO2)3

(PO4)2 (OH) O}2] (OH)3 (H2O)15. This situation is un-
satisfactory, as hydroxy-hydrated oxysalts constitute the
bulk of the mineral kingdom and are by far the most
important phases from an environmental perspective.
Moreover, we know far less about the factors that con-
trol their atomic arrangements, chemical compositions,
morphology, dissolution and stabilities than for the (usu-
ally) more simple rock-forming minerals. Here, we de-
velop a more mechanistic approach to crystallization,
dissolution and crystal morphology, and apply it to ura-
nyl-sheet minerals. In addition, we measure the pKa
value for dehydrated schoepite in order to compare it
with the pKa value calculated with the MUSIC model
of multisite complexation.

SURFACE FEATURES ON BASAL FACES

Chemical reactions on the surfaces of uranyl-sheet
minerals are an important issue, as they result in the
release of (UO2)

2+ to natural waters. Therefore, a de-
tailed atomic-scale understanding of the surface chem-
istry of uranyl-sheet minerals is desirable. Uranyl-sheet
minerals contain layers of polymerized uranyl-polyhe-
dra with uranium in [6], [7] and [8]-coordination as tet-
ragonal, pentagonal and hexagonal bipyramids,
respectively. In these polyhedra, strong U–O uranyl
bonds are not involved in linkage between uranyl poly-
hedra; they extend orthogonal to the sheet, whereas
weaker equatorial U–� bonds [� = O2–, (OH)–, (H2O)]
link the polyhedra in the plane of the sheet (Fig. 1).

Periodic Bond-Chain theory (Hartman & Perdok
1955a, b, c) defines the basal face parallel to the sheets
of uranyl polyhedra as an F face because the sheet con-
tains more than one periodic bond-chain. If one consid-
ers polyhedra instead of bonds, a linear periodic
bond-chain is part of a linear periodic chain of polyhe-

INTRODUCTION

The morphology of a crystal, the geometry of an etch
pit and the characteristics of two-dimensional growth
islands on a crystal surface are presumably related to
the structural arrangement of atoms in the crystal. This
connection was explored by Hartman & Perdok (1955a,
b, c), who developed the PBC (Periodic Bond-Chain)
theory. The basic idea is as follows: when an atom or
complex attaches to a growing surface of a crystal dur-
ing crystallization, the probability of subsequent detach-
ment is inversely proportional to the number of strong
bonds between the atom or complex and the crystal sur-
face. Thus, in PBC theory, the focus is on uninterrupted
chains of strong bonds between building units, called
PBCs, in which the strong bonds belong to the primary
coordination of an atom or molecule. PBC chains that
contain only strong bonds between atoms or molecules
define the direction of major growth of a crystal, and
PBC chains containing weaker bonds between atoms
define directions of minor growth. PBC theory distin-
guishes three different types of faces: F (or flat) faces
with two or more types of PBCs (periodic bond-chains)
parallel to the face; S (or stepped) faces with one type
of PBC parallel to the face, and K (or kinked) faces with
no PBCs parallel to the face. In PBC theory, the mor-
phology of a crystal is controlled by the occurrence of F
faces. The prediction of morphology from the crystal
structure involves (1) determination of PBCs, and (2)
classification of (hkl) layers as F, S or K faces.

An alternative approach to the morphology of a crys-
tal is to use molecular modeling (with either empirical
or quantum-mechanical models) to calculate surface
energies or step energies. The surface energy is the dif-
ference in energy between the bulk structure and the
surface structure; thus, the lower the surface energy, the
more stable the face. The step energy is the difference
in energy between the surface and the corresponding
step; thus, the lower the step energy, the more stable the
step. Using such calculations, one can categorize differ-
ent faces or steps, and calculate the energy of any face
or step that might occur in a crystallization or dissolu-
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dra, which we will designate as a polyhedron chain or
chain. A polyhedron chain that terminates a sheet con-
tains ligands that bond either to U6+ cations or to U6+

cations and to species in the adjacent gas phase or aque-
ous solution. Any anion on a terminating chain, and the
cations to which it is bonded, form a termination. The
linearity of the chain of polyhedra requires that polyhe-
dra should have a small number of U–� terminations.
In the case of uranyl minerals, we consider only those
chains in which each polyhedron has no more than two
terminations of the type U–[1]�. Figure 1 shows chains
of polyhedra parallel to [100], [010], [120], [210] and
[110] in the structural unit of schoepite, [(UO2)8O2

(OH)12](H2O)12 (Finch et al. 1996).
The basal face of a uranyl-sheet mineral is the face

parallel to the layers of uranyl polyhedra. Addition of
one or more of these uranyl layers can form surface fea-
tures such as terraces and steps on the basal face. The
termination of one structural unit orthogonal to the basal
face is called an edge. An array of coplanar edges de-
fines a step or a face non-coplanar with the basal face.
The edge and basal surfaces vary in reactivity owing to
differences in the local stereochemistry of their constitu-

ent uranyl polyhedra. The reactivity of the basal surface
is determined primarily by the reactivity of the apical
atoms of oxygen of the uranyl group, (UO2)

2+. These
oxygen atoms receive an average of 1.6–1.7 valence
units (vu) from the U–O bond, and hence they cannot
be protonated (by H+), as each O–H bond has an aver-
age bond-valence of 0.80 vu, and the aggregate incident
bond-valence at the uranyl O-atom would be 1.6 + 0.8
= 2.4 vu, in conflict with the valence-sum rule (Brown
1981, Hawthorne 1994, 1997). Apical oxygen atoms of
the uranyl group are therefore not involved directly in
any acid–base reactions at the surface.

Equatorial oxygen atoms in the sheet of polyhedra
commonly bond to two or three U6+-atoms (Fig. 1). In
contrast to the uranyl bonds, equatorial U–O bond-
lengths vary over a larger range, with average bond-
valences between 0.2 and 0.8 vu. Thus, equatorial
O-atoms at basal and edge surfaces can participate in
acid–base reactions through protonation and depro-
tonation. Hence, edge surfaces are much more reactive
than basal surfaces because equatorial O-atoms on the
edge surface almost always bond to fewer atoms of U6+

than O-atoms in the sheet, and hence must satisfy their

FIG. 1. Polyhedron representation of the uranyl-oxide hydroxy-hydrate sheet in schoepite, [(UO2)8O2(OH)12](H2O)12; chains of
polyhedra parallel to [100], [010], [120], [110] and [210] are shown in brown, red, blue, pink and green, respectively; equa-
torial O2– anions of the uranyl polyhedra are shown as red octagons, equatorial edges are shown as heavy black lines.
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individual bond-valence requirements through a higher
degree of protonation.

The reactivity of edges is an important factor in the
dissolution of sheet minerals; for example, the dissolu-
tion of phyllosilicates is controlled by acid–base reac-
tions on the corresponding edges (e.g., Rufe & Hochella
1999). Thus in order to understand dissolution and
growth processes for uranyl-sheet minerals, one requires
details of the structures of their edges. Inspection of
Figure 1 suggests the following question: which peri-
odic bond-chains in uranyl sheets define the morphol-
ogy of the corresponding F-faces? Application of PBC
theory requires categorization of different types of
bonds in these bond chains. Bonds between U6+ and O2–

or (OH)– can have similar strengths in all these chains,
and therefore one must consider the distances to the
central U6+ cations. PBC theory does not consider the
type of equatorial ligands in the chain [O2– or (OH)–],
the shift between the uranyl sheets, the arrangement of
interstitial cations, the change in morphology with pH
or the degree of supersaturation (see below). Here, we
introduce an approach to crystal morphology that con-
siders these issues, using characteristic bond-valence
values between U6+ and its equatorial ligands. Further-
more, we will show that change in morphology with pH
depends on the equilibrium constants of the anion ter-
minations on the surface of uranyl-oxide minerals. For
the surface structure of schoepite, [(UO2)8O2(OH)12]
(H2O)12, we calculate the bond-valence deficiencies for
the various types of chains of polyhedra and use the
equation of Hiemstra et al. (1996) to calculate the cor-
responding pKa values of the acid–base reactions on the
anion terminations of the chains. In addition, we mea-
sure the pKa value of the anion terminations on the basal
face of dehydrated schoepite by titration of a fine sus-
pension of synthetic dehydrated schoepite, to compare
with our calculated values.

BOND-VALENCE THEORY

Quantitative bond-valence parameters were intro-
duced by Brown & Shannon (1973), and Brown (1981)
developed the first ideas on bond-valence theory.
Hawthorne (1985, 1990, 1994) applied these ideas to
complex oxysalt minerals and developed the idea of the
structural unit with a characteristic Lewis basicity.
Schindler & Hawthorne (2001a, b, c, 2004) and
Schindler et al. (2000) extended these ideas and showed
how extended bond-valence theory can be used to pre-
dict details of mineral composition and stability that are
not accessible to other approaches. There has been some
application of bond-valence ideas to mineral surfaces
(e.g., Barger et al. 1997a, b, c, Brown & Parks 2001),
but this has focused on adsorption of “foreign” ions
rather than on crystallization of the mineral itself.

Bond valence and the valence-sum rule

If interatomic distances are known, bond valences
can be calculated from the following equations:

s = s0 [R / R0 ]
N, s = [R / R1]

n

or
s = exp [(R / Ro) / B] (1)

where s is in valence units (vu), R is the observed bond-
length, and R0, N, R1, n and B are constants (character-
istic of cation–anion pairs) that are derived by fitting
these equations to a large number of well-refined crys-
tal structures such that the sum of the incident bond-
valences at any atom be as close as possible to the formal
valence of that atom (Brown & Shannon 1973, Brown
& Altermatt 1985). In stable (observed) crystal struc-
tures, the valence-sum rule is obeyed: the sum of the
bond valences at each atom is approximately equal to

the magnitude of the atomic valence.

Characteristic bond-valence

Bond valences around a specific cation in a wide
range of crystal structures lie within ~20% of the mean
value, which is thus characteristic of that particular cat-
ion (Brown 1981). The characteristic bond-valences of
cations correlate strongly with their electronegativity, a
measure of the electrophilic strength (electron-accept-
ing capacity) of the cation. The correlation with charac-
teristic bond-valence indicates that the latter is a
measure of the Lewis-acid strength of the cation (Brown
1981). The Lewis-base strength of an anion is similarly
defined as the characteristic valence of the bonds formed
by the anion. However, variations in bond valence
around anions are much greater than around cations, and
it is not useful to designate Lewis basicities for simple
anions such as O2–.

If we examine the (CO3)2– group as an oxyanion,
each O2– receives 1.33 vu from the central C4+ cation
and needs an additional 0.67 vu from other cations. In
calcite, for example, the oxygen atoms of the (CO3)2–

group are [3]-coordinated, and hence need an additional
two bonds if we consider the (CO3)2– group as an
oxyanion; the additional bond-valence needed is thus
0.33 vu for each of the oxygen atoms of the (CO3)2–

group. If this process is repeated for all (CO3) groups in
minerals, the mean value of the characteristic bond-va-
lence obtained is 0.25 vu with only a small dispersion.
In this way, we can define the Lewis basicity of an
oxyanion (Brown 1981).

The valence-matching principle

The definitions of Lewis-acid and Lewis-base
strengths lead to a specific criterion for chemical bond-
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ing, the valence-matching principle (Brown 1981): The

most stable structures will form where the Lewis-acid
strength of the cation closely matches the Lewis-base
strength of the anion. As a chemical bond contains two
constituents, the properties of the constituents must
match for a stable configuration to form.

BINARY STRUCTURAL REPRESENTATION

One of the problems in dealing with mineral struc-
tures is the complexity of the atomic interactions; there
are a large number of such interactions, and their spatial
characteristics are important. However, we can simplify
this problem in the following way: we factor a crystal
structure into two components: the structural unit (an
array of high-bond-valence polyhedra that is usually
anionic in character) and the interstitial complex [an
array of large low-valence cations, simple anions and
(H2O) groups that is usually cationic in character]. If
we can calculate aggregate properties such as Lewis
basicity and Lewis acidity, we can use the valence-
matching principle to examine the interaction of the
structural unit and the interstitial complex (Hawthorne
1985, 1986, 1990). Schindler & Hawthorne (2001a)
described how to calculate Lewis basicity and Lewis
acidity for a structural unit and an interstitial complex.

INTERACTION OF A SURFACE WITH AN AQUEOUS

SOLUTION: A BOND-VALENCE APPROACH

As noted above, the bond-valence sum incident at
any cation or anion must be equal to its formal valence.
In the bulk structure, the bond valences contributing to
such a sum involve simple ions at the vertices of the
associated coordination-polyhedra. With regard to a sur-
face, we may identify two distinct situations: (1) the
surface of the crystal is adjacent to a vacuum; (2) the
surface of the crystal is adjacent to a liquid (or a gas). In
the first situation, the ions at the surface of a crystal by
definition must have coordinations different from those
in the bulk crystal, and these differences will exist over
long time-scales. The surface structure responds to these
differences by lengthening or shortening specific bonds;
such differences in bond lengths (and bond angles) are
commonly called the relaxation of the surface. As a re-
sult of these differences, the pattern of bond valences at
and near the surface in a vacuum must differ signifi-
cantly from that in the bulk crystal, even to the extent
that there may be a reorganization of the topology of
the chemical bonds at the surface. In the second situa-
tion, although the atoms at the surface must have coor-
dinations different from those in the bulk crystal, the
bond-valence requirements of these surface atoms are
also partly met by neighboring atoms in the coexisting
liquid (or gas). Hence surface relaxation will be much
less than where the surface is exposed to a vacuum. In-
deed, the atoms of the liquid will tend to arrange them-
selves such that relaxation at the surface of the solid is

minimized, and one may well be able to consider local
interactions among atoms as the average of what occurs
at the surface over a longer time-scale. This discussion
suggests that we may be able to use an unrelaxed sur-
face model in which one treats bond valences of near-
surface bonds as equal to the bond valences of the
analogous bonds in the bulk structure.

Intrinsic acidity constants of anion
terminations in oxide minerals

Consider a crystal in equilibrium with an aqueous
solution. Depending on the pH of the solution, the sur-
face is partly or fully hydrated, and aqueous species in
the solution bond to anions or cations on the surface
(chemisorption). The degree of hydration and type of
chemisorption depend on the type of anion or cation on
the surface and on the conditions in the coexisting solu-
tion. The degree of hydration can be predicted with the
acidity constants of the different anion-terminations and
the pH of the solution. Van Riemsdijk and co-workers
(Hiemstra et al. 1996) developed a “multisite complex-
ation model” (MUSIC), which can be used to predict
anion acidities using a modified form of the following
equation:

pKa = –A (�sj + V) (2)

where pKa is the intrinsic acidity constant [a constant
valid for an uncharged surface (Stumm 1992)], A equals
19.8, V is the valence of the oxygen atom at the surface
(–2), and �sj is the bond-valence sum at the surface
oxygen atom and is defined by

�s j = {sM + msH + n(1 – sH)} (3)

where sM is the bond valence of the M–O bond, sH is the
bond valence of the H–O bond to the surface oxygen if
the base is a hydroxyl group (assumed to be 0.80 vu), (1
– sH) is the valence of weak hydrogen bonds from aque-
ous species to surface anions, and m and n are the num-
bers of stronger O–H and weaker O...H bonds,
respectively. Hiemstra et al. (1996) used fixed M–O
bond-valences from unrelaxed bulk-structures to predict
intrinsic acidity constants for surface groups. Bickmore
et al. (2003) used ab initio calculations for the average
of M–O bond-valences of protonated and deprotonated
relaxed surface-structures in 2:1 phyllosilicates; their
average bond-valence values for Fe–O, Al–O and Si–O
bonds are similar to the corresponding values used by
Hiemstra et al. (1996).

The key issue in the prediction of appropriate intrin-
sic acidity-constants is use of the correct average coor-
dination number of O on the surface. Here, Hiemstra et
al. (1996) used an average coordination of oxygen of
[3] for the more compact surfaces of gibbsite and goeth-
ite, and an average coordination number of [4] for the
more open surface of quartz. The resulting intrinsic acid-
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ity-constants were used to calculate the point of zero-
charge (pHpzc, Stumm 1992) for gibbsite, goethite and
quartz, and the results agree with experimental values.

Calculation of intrinsic acidity-constants
for different U–O anion-terminations on edges
of the basal face of uranyl-sheet minerals

The edges on uranyl sheets contain equatorial an-
ions in a coordination different from that in the bulk
structure. For tetragonal, pentagonal and hexagonal
bipyramidal coordination, the characteristic equatorial
U–� bond-valences are 0.64, 0.54 and 0.45 vu, respec-
tively (Burns 1999). However, individual equatorial
[a]U–� bond-lengths vary over a larger range than the
corresponding Al–O, Fe–O and Si–O bond-lengths. For
example, the [7]U–� bond-lengths in schoepite,
[(UO2)8O2(OH)12](H2O)12, vary between 2.2 and 2.7 Å
(Finch et al. 1996), which correspond to bond valences
of 0.73 and 0.27 vu, respectively. These high variations
in individual bond-valences in uranyl minerals may give
rise to a range of intrinsic acidity-constants for one type
of anion termination.

The type of anion termination on edges in uranyl
minerals is limited by the occurrence of [6]-, [7]- and
[8]-coordinated U6+: e.g., [6]- and [8]-coordinated U6+

never occur together, and always occur with [7]-coordi-
nated U6+. The type of anion termination can be indi-
cated by the code [a]U–�–n[b]U, where the � is an
unspecified anion that bonds to one U atom in [a] coor-
dination and n � U atoms in [b] coordination. If we do
not consider other oxyanions [e.g., (VO4)3–, (PO4)3–,
(SiO4)

4–], the following combinations of anion termina-
tions can occur on edges in uranyl-oxide sheet miner-
als: [8]U–�, [7]U–�, [6]U–�, [8]U–�–[8]U, [8]U–�–[7]U,
[7]U–�–[7]U, [7]U–�–[6]U, [8]U–�–2[7]U, [7]U–�–2[7]U
and [6]U–�–2[7]U. The wide variation in type of anion
termination (even for one structure type) makes it diffi-
cult to determine an exact pHpzc for a uranyl mineral.
However, an exact pHpzc is required to scale the aver-
age coordination-number of the oxygen atoms on the
edge surface (see above).

An example: calculation of the intrinsic
acidity-constants of anion terminations
on the (001) face of schoepite

Schoepite, [(UO2)8O2(OH)12](H2O)12, has a promi-
nent (001) basal face that dominates the morphology of
its crystals. The corresponding uranyl-sheet contains
U6+ in [7]-coordination (Finch et al. 1996). There are
three different types of equatorial anion-terminations on
the (001) face: [7]U–OH–2[7]U, [7]U–OH–[7]U and [7]U–
O–2[7]U (Fig. 1). In order to calculate the correspond-
ing intrinsic pKa values for these terminations, we can
use the overall characteristic bond-valence for [7]U–�
(0.54 vu), the average [7]U–� bond-valence of the equa-
torial bonds in schoepite (0.47 vu), or the average [7]U–

� bond-valence for each of the three anion-terminations.
Here, we use the average bond-valence of the equato-
rial bonds (0.47 vu) because this value is more appro-
priate than the characteristic [7]U–� bond-valence, and
it simplifies the calculation (relative to the use of indi-
vidual average bond-valences). In many uranyl-hy-
droxy-hydrate minerals, the coordination number of
equatorial O-atoms in the structural unit is close to [4];
oxygen bonds either to three U and one H, or to two U,
one H and accepts one additional hydrogen bond.

The acid–base reactions and the corresponding val-
ues of pKa (assuming [4]O) are as follows:

[7]U–O–2[7]U + H+
↔ [7]U–OH–2[7]U,

pKa = 7.7 [1]

[7]U–O–[7]U + H+
↔ [7]U–OH–[7]U,

pKa = 13.1 [2]

[7]U–OH–[7]U + H+
↔

[7]U–OH2–
[7]U,

pKa = 1.2 [3]

The intrinsic pKa is calculated using the average bond-
valence sum at O in the anion termination of the base
(i.e., for the termination on the left side of each equa-
tion). In reaction [1], the oxygen atom in [7]U–O–2[7]U
receives 3 � 0.47 (from the [7]U atoms) + 0.20 (from a
hydrogen bond) = 1.61 vu. This results in a pKa1 of
–19.8(1.61 – 2) = 7.7. In reaction [2], the oxygen atom
in [7]U–O–[7]U accepts 2 � 0.47 vu from [7]U, and 2 �
0.20 vu from two additional hydrogen bonds; i.e., its
bond-valence sum is 1.34 vu, which corresponds to a
pKa2 of 13.1. In reaction [3], the oxygen atom in the
[7]U–OH–[7]U termination receives 2 � 0.47 vu plus
0.80 vu from the O–H bond and 0.20 vu from an addi-
tional hydrogen bond; its bond-valence sum is 1.94 vu,
which corresponds to a pKa3 of 1.2.

In order to compare calculated pKa values with ob-
served values, one can determine the pKa values of the
anion-terminations via titration of a fine suspension of
schoepite with an NaOH solution. However, schoepite
samples with a non-dehydrated surface are difficult to
obtain from mineral samples or from synthesis. We de-
cided therefore to use the structurally related phase de-
hydrated schoepite, which can be easily obtained by
hydrothermal synthesis.

Experimental procedure

Dehydrated schoepite, [(UO2)O0.2(OH)1.6], was syn-
thesized under hydrothermal conditions at 120°C for 3
days with a molar ratio of 1:2.5 uranyl acetate and
(H2O). A fine suspension of 100 mg of dehydrated
schoepite in 20 mL 0.1 and 1.0 mol L–1 NaCl solutions
were titrated with 0.01 mol L–1 NaOH. Figure 2 shows
the corresponding titration-curves with initial pH-values
of 6.2 and 5.9, respectively. [Note that titration of the
fine suspension of schoepite with a 0.01 mol L–1 HCl
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solution produced an immediate drop in pH to 3–3.5.]
The shift in the initial pH-values with change in con-
centration of the NaCl solution indicates adsorption of
Na cations at specific sites on the (001) face (Stumm
1992). This adsorption results in an overall positive
charge of the surface, which must be balanced by
deprotonation of the U–OH–2U terminations. In this
way, the (001) face of dehydrated schoepite functions
as a weak acid, which explains the slightly acidic pH at
the beginning of the titration. Because an NaCl solution
is required to maintain a constant ionic medium, we
modeled a curve for a titration in a 0.0 mol L–1 NaCl

solution. The initial pH of the dehydrated schoepite so-
lution in the modeled curve is around 6.5, and the pKa
value is around 7.0 ± 0.2 (Fig. 2). This pKa value corre-
sponds to the acid–base reaction U–(OH)–2U ↔ U–O–
2U on the (001) face of dehydrated schoepite. [Note that
in the anion-termination U–(OH)–2U of dehydrated
schoepite, U occurs in [7]- and [8]-coordination. The
[8]-coordination of U in dehydrated schoepite results
from dehydration of schoepite and structural changes
inside the uranyl sheet.] At the beginning and at the end
of the titration, the (001) face of dehydrated schoepite
most likely had the compositions [(UO2)O0.2+x(OH)1.6–

2x]
2x+ and [(UO2)O2]

2–, respectively.
The calculations of the pKa value of schoepite and

the experimentally determined pKa value of dehydrated
schoepite are reasonably close, and suggest that the av-
erage coordination-number of [4] is an appropriate value
in the case of the uranyl-oxide minerals schoepite and
dehydrated schoepite. For example, if one uses an aver-
age coordination-number of [3], the intrinsic pKa value
of the acid–base reaction [7]U–O–2[7]U + H+ ↔ [7]U–
OH–2[7]U would be 11.7, significantly different from
the observed value of 7.0 ± 0.2.

The parameter 19.8 (equation 2) of the MUSIC
model was fitted on the basis of experimental results on
simple oxide minerals such as hematite, rutile and
quartz. Hence, equation 2 in this form is not necessarily
applicable to all uranyl oxide minerals, and needs to be
measured in the future on uranyl oxide minerals. How-
ever, we will use this equation here in order to show
how the intrinsic acidity constant is related to two other
parameters that express the strength of a base and an
acid: Lewis basicity and Lewis acidity. For this purpose,
we calculated intrinsic acidity-constants for all kinds
of anion terminations using the above-listed average
[n]U–� bond-valences in uranyl polyhedra (Table 1).

FIG. 2. Titration curves with added 0.01 mol L–1 NaOH ver-

sus pH for a fine suspension of 100 mg of dehydrated
schoepite in 20 mL 0.1 mol L–1 (green) and 1 mol L–1 (red)
NaCl solutions. A modeled titration-curve in a hypotheti-
cal 0.0 mol L–1 NaCl solution is indicated in blue (see text
for details).
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Lewis basicity of anion terminations

The intrinsic acidity-constant pKa is a measure of
the strength of the acid in an acid–base equation: the
higher the pKa, the weaker its acid strength or the stron-
ger the base strength of the corresponding base. Using
the acid–base definition of Lewis (1916), pKa expresses
the ability of the base (Lewis base) to donate electrons
to the acid (Lewis acid).

Hawthorne (1997) and Schindler & Hawthorne
(2001a) defined the Lewis-base strength of a complex
structural unit as the bond valence required by the (nega-
tively charged) structural unit divided by the number of
(weak) bonds accepted by the structural unit from the
interstitial complex. Using this definition, we may cal-
culate the Lewis-base strength (or Lewis-acid strength)
of an anion termination by assuming again an average
O-coordination number of [4]. For example, the Lewis-
base strength of the anion-termination [7]U–OH is the
required bond-valence [(2 – (0.54 + 0.80) = 0.66 vu]
divided by the number of bonds accepted (two): 0.66 / 2
= 0.33 vu. For the anion termination [a]U–OH2, it is more
useful to calculate its Lewis acidity because the con-
stituent O-atom has an incident bond-valence sum
greater than or equal to 2 vu. The Lewis acidity of the
[a]U–OH2 group is the characteristic bond-valence of
each constituent hydrogen bond. Hence, the (H2O)
group transforms the bond-valence (v vu) of the [a]U–O
bond into two weaker hydrogen bonds of bond-valence
v /2 (Hawthorne 1992, 1994, 1997, Schindler &
Hawthorne 2001a). For example, the Lewis acidity of
the termination [7]U–OH2 is 0.54 / 2 = 0.27 vu. The

Lewis acidities and Lewis basicities of all anion termi-
nations are listed in Table 1.

Lewis basicity and acidity constants

Let us consider the anion terminations [7]U–OH and
[7]U–O in the acid–base reactions [2] and [3]. The cor-
responding pKa2 and pKa3 values express the ability of
the bases [7]U–OH and [7]U–O to donate electrons to the
acid H+. The Lewis basicities (0.33 and 0.49 vu) corre-
spond to the pKa2 and pKa3 values of 5.1 and 17, re-
spectively. For the anion termination [a]U–OH2, with [a]
= [8], [7] and [6], we assign a negative Lewis acidity
and correlate it with the corresponding pKa value. The
anion terminations listed above can be subdivided into
five groups: [a]U–OH2, 

[a]U–OH, [a]U–O, [a]U–OH–2[b]U
and [a]U–O–2[b]U. For each group, there is a linear cor-
relation between the Lewis basicity (acidity) and the
corresponding pKa value (Fig. 3). This correlation can
be understood if we compare the corresponding equa-
tions for the acidity constant and the Lewis basicity:

pKa = 19.8 [�s – 0.20(4 – a(U–O) – b(O–H))] (4)

(LB) = �s / [4 – a(U–O) – b(O–H)] (5)

where �s is the bond-valence deficiency of the O-atom
at the anion termination without considering any ac-
cepted hydrogen bonds; 0.20 [4 – a(U–O) – b(O–H)] is
the bond-valence contribution of weak hydrogen bonds,
where a and b are the numbers of U–O and O–H bonds,
respectively; (LB) is the Lewis basicity. Writing [4 –

FIG. 3. Lewis basicity versus intrinsic acidity constant, pKa, of anion terminations on the
edges of uranyl sheets (see text).
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a(U–O) – b(O–H)] as x and solving for pKa gives the
following relation:

pKa = 19.8 (�s.x – 0.2 x) (6).

The parameter x is constant for one group of anion ter-
minations, but varies from group to group (e.g., from 1
in [a]U–OH2 to 3 in [a]U–O with a = 6, 7, 8). The corre-
lation between Lewis basicity and pKa for all five
groups of anion terminations is shown by the curved line
in Figure 2.

Bond-valence deficiency at an anion termination

Calculation of the intrinsic acidity-constant and the
Lewis basicity of an anion termination requires know-
ing the bond-valence deficiency at an oxygen atom
[equations (3) and (4)]. The average coordination-num-
ber of the oxygen atom at an anion termination scales
the absolute values of the intrinsic acidity-constant and
the Lewis basicity. The bond-valence deficiency at an
oxygen atom is independent of the coordination num-
ber of the oxygen, and is a better parameter to charac-
terize the basicity of an anion termination. The
bond-valence deficiency at an oxygen atom can be re-
lated to the free energy of the acid–base reactions [1],
[2] or [3] as follows (Faure 1998):

�RGAT = –2.303 RT pKa (7)

where �RGAT is the free energy of the acid–base reac-
tion at one anion-termination. Combination of equations
(3) and (7) results in

�RGAT = –2.303 RT 19.8 (�s – 0.20 x) (8).

Equations (3), (4) and (7) indicate that the higher the
bond-valence deficiency at an oxygen atom, the stron-
ger the basicity of the anion termination, the stronger its
affinity to hydrogen bonds or O–H bonds, and the more
negative the free energy �RGAT of the corresponding
acid–base reaction.

Bond-valence deficiency, pKa, and
free energy of a chain of polyhedra

The bond-valence deficiency of an edge may be de-
fined as the sum of bond-valence deficiencies on anion
terminations, normalized to its translation length. A
chain of polyhedra in the sheet ideally represents an
edge on an F face (Fig. 1). Each type of chain contains
different types of anion terminations, and each type of
anion termination corresponds to a specific pKa, Lewis
basicity, and �RGAT value of a corresponding acid–base
reaction. Let us consider a chain of polyhedra of trans-
lation a, with b � [7]U–O and c � [7]U–O–[7]U termina-
tions. The pKa value of an acid–base reaction involving
this chain of polyhedra is designated �pKPC, and de-

pends on the numbers and types of different anion-ter-
minations. The pKa value of an acid–base reaction in-
volving a chain of polyhedra may be written as ��pKPC,
and may be defined as the sum of the pKa values of
acid–base reactions at the corresponding anion-termi-&'()*&+,-./0

��pKPC = [b � pKa ([7]U–O) + c
� pKa (

[7]U–O–[7]U)] / a (9).

Equation (9) can be rewritten as

��pKPC = [b � �s ([7]U–O) + a
� �s ([7]U–O–[7]U)] / a (10)

The term [b � �s ([7]U–O) + a � �s ([7]U–O–[7]U)] / a)+(1-23'(*45*&637'8-&9-6-:)9)-&9;,-./:*.'91')&
of polyhedra. It correlates with the average value of pKa
and the free energy of acid–base reactions along a chain
of polyhedra, and indicates the affinity of the constitu-
ent O-atoms for hydrogen bonds or O–H bonds. The5*&637'8-&9-6-:)9)-&9;,-./9'&5-9'89<8'(-6:.*4
crystal-structure data.

Dissolution rate and bond-valence deficiency

Sunagawa (1987) compared different crystal-growth
parameters such as growth temperature, solute–solvent
interaction, and roughness factor, �, with the corre-
sponding medium of crystal growth, e.g., melt, high-
temperature solution, low-temperature solutions,
chemical vapor-deposition and physical vapor-deposi-
tion. He showed that in low-temperature solutions, the
solute–solvent interaction is the most important factor
in controlling crystal growth and dissolution rates on
surfaces and edges.

Uranyl-sheet minerals crystallize from low-tempera-
ture solutions, and the solute–solvent interaction at the
edges of the basal faces should be the primary determi-
nant of their stability. The solute–solvent interaction can
be described via surface-controlled dissolution (Stumm
1992), which gives an understanding of how the disso-
lution kinetics of surfaces are controlled by protonation
or by the presence of inner-sphere complexes. Protona-
tion tends to increase dissolution rate because it leads to
weaker bonds proximal to surface cations, and thus fa-
cilitates detachment of a surface group into solution.
Surface-controlled dissolution is based on the idea that
(1) attachment of reactants (H+, OH– or ligands) to sur-
face atoms or groups of atoms is rapid, and (2) subse-
quent detachment of metal species from the surface into
solution is slow (and thus rate-limiting). In the first se-
quence, the dissolution reaction is initiated by bonding
to H+, (OH)– and ligands that weaken and tend to break
M–O–M bonds at the surface. This is schematically in-
dicated in Figure 4 as a model of dissolution and growth
of schoepite via detachment and attachment of clusters.
The structure of a schoepite sheet is built from clusters
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of three and two pentagonal bipyramids, which are
structurally identical to the aqueous species
[(UO2)3(OH)5(H2O)5]+ and [(UO2)2(OH)2 (H2O)6]2+

(e.g., Moll et al. 2000). These clusters involve edge-
sharing pentagonal bipyramids, and link through com-
mon edges and corners (Fig. 4). Ligands on terminations
interact with the aqueous solution via hydrogen bond-
ing or acid–base reactions (Fig. 4a).

If dissolution occurs via detachment of clusters, the
breaking of U–�–U bonds occurs mainly at the linking
O-atoms. This requires weakening of a number of U–�
bonds in the clusters through interaction between the
ligands and the adjacent aqueous solution (Fig. 4b). As

this weakening begins, the environment of a detaching
cluster may be called an activated site. At an activated
site, the interaction between aqueous solution and
ligands provides the necessary weakening of the corre-
sponding U–� bonds, which finally break at the detach-
ment of a cluster or a polyhedron (Fig. 4c). Thus an
activated site involved in dissolution may be defined as
follows: An activated site involves the terminations
around a polyhedron or a cluster of polyhedra where
protonation or strong bonds between ligands and aque-

ous species results in weakening of U–� bonds.
If crystal growth occurs via attachment of clusters,

the activated sites on the cluster and on the kink site of

FIG. 4. (a) Schematic sketch of dissolution and growth processes at an edge of a sheet of schoepite. The sequence of dissolution
is indicated with red arrows, and the sequence of crystal growth, by blue arrows. The sheet is built of clusters of three (red and
green) and two (blue) pentagonal bipyramids that are structurally identical to the principal aqueous species
[(UO2)3(OH)5(H2O)5]

+ and [(UO2)2(OH)2(H2O)6]2+ in weak acidic solutions (e.g., Moll et al. 2000); O2– ligands in the sheet
are indicated as yellow circles, and ligands that have interacted with the aqueous solutions are indicated in light blue; (a), (f):
activated sites occur only at anion terminations, and activated sites in the layer are transformed to normal sites; (b), (e):
formation of activated sites during the dissolution process via detachment of a cluster; ligands adjacent to potential detached
clusters interact with the solution and are highlighted as light blue octagons; attachment of a cluster at a kink site occurs via

release of one (H2O) per common ligand between cluster and kink site; (c), (d): breaking (formation) of the U–�–U bonds and
detachment (or approach) of a cluster from (to) an activated kink-site on a layer of schoepite. Non-activated sites in contact
with aqueous solution are indicated as black circles. Possible hydrogen bonds between uranyl clusters in solution and polyhe-
dra at the kink sites are shown as solid pale-brown lines.
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the surface promote the attachment progress. Attach-
ment produces one additional (H2O) or (OH) group per
common corner between cluster and kink site (Figs. 4d,
e). Thus, an activated site involved in crystal growth
may be defined as follows: An activated site involves
the terminations on a polyhedron or group of polyhe-
dra where there are strong hydrogen bonds to a poly-

hedron or cluster of polyhedra in solution.
The remaining common corners between cluster and

former kink-site remain activated until the correspond-
ing ligands do not require any additional bond-valence
from bonds to aqueous species (Fig. 4f). Bonds between
activated sites and aqueous species promote dissolution
or crystal growth at an edge.

Bond-valence deficiency, kink sites, and O2– ligands

The bond-valence deficiency of an edge increases
with its number of kink sites, because an edge with a
higher number of kink sites contains a higher ratio of
stronger Lewis-bases (e.g., [7]U–�) versus weaker
Lewis-bases (e.g., [7]U–�–[7]U) (see Calculation of

bond-valence deficiency along chains of polyhedra be-
low). The bond-valence deficiency of an edge also in-
creases with its number of O2– ligands, because an edge
with a higher number of O2– ligands also has a higher
ratio of stronger Lewis-bases ([7]U–O and [7]U–O–[7]U)
(versus weaker Lewis-bases, [7]U–OH and [7]U–OH–
[7]U). In contact with aqueous solution, the stronger
Lewis-bases will either be protonated or form stronger
bonds with the species in solution, which results in
weakening of the corresponding U–� bonds. Hence,
edges with a higher number of kink sites or O2– ligands
contain a higher number of sites that can be activated
during dissolution than edges with a lower number of
kink sites or O2– ligands.

A correlation between the growth rate of an edge and
its bond-valence deficiency is not directly apparent be-
cause the edge and the cluster in solution are usually
hydrated. However, a larger number of kink sites on an
edge (i.e., a high bond-valence deficiency) favors attach-
ment of polyhedra because an attached polyhedron or
cluster of polyhedra can share more common ligands
with the corresponding polyhedra than it can on an edge
with a lower number of kink sites. The negative charges
of the O2– ligands in a uranyl sheet closely balance the
positive charge of the interstitial complex between the
sheets. During crystal growth, these ligands occur on a
hydrated edge, at which the ligands may be protonated
differently than in the bulk structure. However, nega-
tive charges must also occur on an edge during crystal
growth in order to balance the positive charge of either
attached or incorporated interstitial cations. Hence, O2–

ligands in a bulk structure are potentially those ligands
that are part of negative terminations on a protonated
edge. A large number of negatively and positively
charged terminations favors attachment of polyhedra or
clusters of polyhedra on an edge (see below), because

these terminations promote hydrogen bonding between
polyhedra on an edge and the cluster in aqueous solu-
tion (i.e., negatively charged terminations promote for-
mation of activated sites during crystal growth).

The number and type of activated sites during crys-
tal growth correlate [via the number of terminations (i.e.,
the number of kink sites) and the number of negatively
charged terminations] with the bond-valence deficiency
of an edge in the bulk structure. The number of acti-
vated sites on an edge during dissolution or crystal
growth correlates also with the difference between the
pH of the solution and the pHpzc of the edge (see be-
low).

Activated sites and edges in schoepite
and fourmarierite

In schoepite, [(UO2)8O2(OH)12](H2O)12, and
fourmarierite, Pb[(UO2)4O3(OH)4](H2O)4, the layers
have the same topology, but a different number of O
and OH groups. Hence chains that terminate the [010]
edge in both structures contain different numbers and
types of ligands (Figs. 5a, b). At a specific pH, the [010]
edge in fourmarierite must have a larger number of
negatively charged terminations than the [010] edge in
schoepite, because these terminations must charge-bal-
ance the incorporated or attached interstitial Pb2+ cat-
ions. However, at a different pH, the same chain on a
[010] edge can have the same number and types of
ligands in schoepite or fourmarierite. Figure 5c shows a
possible model of hydration at such an edge, consider-
ing only the terminations along the edge. To activate
terminations on the [010] edge of fourmarierite requires
more protonation of ligands and more hydrogen bond-
ing from the aqueous species to the ligands than on the
[010] edge in schoepite. Thus the [010] edges in
fourmarierite and schoepite contain different numbers
and types of activated sites, even though they have iden-
tical ligands.

There are two different types of termination along
the chain of polyhedra parallel to the [010] edge in
schoepite and fourmarierite: U–� and U–�–U. Termi-
nations of the same type have similar acid–base proper-
ties. Hence, one can assign identical hydration-models
to each type of termination in schoepite and four-
marierite, e.g., U–OH2 and U–OH–U (along the chain
parallel to the [010] edge). If one were to calculate the
general stability of an edge based on identical models
for each type of termination, one would similarly treat
isostructural uranyl-sheets of different chemical com-
position. In other words, all equivalent edges in
schoepite and fourmarierite would have similar relative
stabilities. Consequently, the morphology of the (001)
face should be identical on schoepite and fourmarierite
crystals. However, this is not the case (see below), and
therefore the different types and numbers of activated
sites on edges in schoepite and fourmarierite cannot be
neglected.
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pHpzc, net proton-charge, inner- and outer-sphere

complexes, and electric double- and triple-layers:
a bond-valence perspective

The pHpzc is also called the isoelectric point. Stumm
(1992) defined pHpzc as the point where the total net
surface-charge is zero (this is the condition where par-
ticles do not move in an applied electric field). The total
net surface-charge is the sum of (1) the permanent struc-
tural charge caused by isomorphic substitutions, (2) the
net proton-charge (i.e., the charge due to the binding of
protons or OH-anions), (3) the charge of the inner-
sphere complex, and (4) the charge of the outer-sphere
complex.

The distribution of surface charge can be idealized
as an electric double- or triple-layer. In the case of a
double layer, the first layer is the solid surface with a
localized negative surface-charge, whereas the second
layer is in contact with the first layer and is a solution
containing dispersed ions of positive charge (the Gouy–

Chapman diffuse model: Stumm 1992). This model can-
not be applied to surfaces of high potential because the
local concentrations of counter ions near the surface
becomes too large. In the Stern–Grahame triple-layer
model, an additional compact layer of cations exists
immediately adjacent to the mineral surface in order to
balance the high charge of the surface. The ions in this
layer are held tightly by “electrostatic forces” and are
not free to move like the ions in the diffuse layer of the
Gouy–Chapman model. Dzombak & Morel (1990) de-
veloped a surface-complexation model in which ions are
attached by chemical bonding to the surface and not via
“electrostatic effects”, as assumed in the Gouy–
Chapman and Stern–Grahame models. Therefore, cat-
ions of the inner-sphere complexes are treated in the
surface-complexation model as part of the solid (Stumm
1992).

An inner-sphere complex and an outer-sphere com-
plex occur if a cation or anion in the solution bonds di-
rectly or via (H2O) groups to terminations on the

FIG. 5. (a), (b) Polyhedron and ball-and-stick representations of a chain of polyhedra parallel to [010] in fourmarierite and
schoepite; in the ball-and-stick models, yellow, red and blue circles indicate U6+, O2– and H+, respectively. In the polyhedron
model, the positions of the O2– equatorial ligands are indicated by green and red circles. (c) Ball-and-stick model of a possible
activated edge parallel to [010]; outgoing bonds from terminations to aqueous species are indicated as blue lines, and incom-
ing bonds accepted by the ligands of the terminations are indicated with green lines; the corresponding bond-valences (in vu)
are given as numbers beside the lines.
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surface. Hence, the presence of inner-sphere and outer-
sphere complexes changes the net proton-charge of the
surface. If the net proton-charge is zero, the total net
surface-charge is not necessarily zero. However, charge
and number of inner- and outer-sphere complexes de-
pend on many factors, such as the size and number of
specific sites for complexation on the surface, and on
the charge, size and activities of cations and anions in
solution. We can again simplify this problem if we fac-
tor surface, inner- and outer-sphere complexes and other
aqueous species into three components: (1) surface, (2)
chemisorbed species, and (3) aqueous solution. To be
considered part of the surface, an atom has to conform
to the space-group symmetry of the crystal, with the
exception of H atoms that strongly bond to O atoms at
the surface. Any other atom or group of atoms chemi-
cally bonded to the surface and not conforming to the
space-group symmetry of the crystal will not be incor-
porated into the structure (to any significant degree), and
although chemically bonded to the surface, will have a
short residence-time in this state. In some chemical sys-
tems, such chemisorbed impurities can significantly
modify habit development, presumably depending on
the residence lifetime of the species on the surface and
the activity of that species in solution. In this way, we
consider here only the change in interaction between an
edge with different net proton-charges and the aqueous
solution.

From a bond-valence perspective, the net proton-
charge is the difference between the sums of the ac-
cepted and donated bond-valences between the
termination on the surface and the species in aqueous
solution. A termination that accepts bond valences is a
Lewis base, and a termination that donates bond-valence
is a Lewis acid. At zero net proton-charge, the strength
and number of Lewis bases and Lewis acids are identi-
cal. The pH of a solution in which a surface has zero net
proton-charge is called the point of zero net proton-
charge, pHpzc (Stumm 1992, p. 18). Depending on the
intrinsic acidity-constant of the acid–base reaction,
strong Lewis bases and acids occur only at low or high
pH (see previous section). Hence, weaker Lewis bases
and acids occur mainly on a surface at the pHpzc. This
approach emphasizes that at the pHpzc, the bond-valence
transfer between Lewis bases and acids on the surface
and the aqueous solution is at a minimum.

An example: bond-valence transfer along a chain
of polyhedra in schoepite and fourmarierite

Consider a chain of polyhedra parallel to the [010]
edge in schoepite or fourmarierite (Fig. 5c). There are
eight terminations (4 � [7]U–� and 4 � [7]U–�–[7]U)
per repeat length of the chain, and these interact with
the aqueous solution. Figure 5c shows a hydration model
for this chain, in which the incoming and outgoing
bonds are shown in green and blue, respectively. In the
repeat period of the chain, there are one U–O–U, one

U–OH2–U, two U–OH, two U–OH2 and two U–OH–U
terminations. In order to simplify the bond-valence cal-
culations involving the incoming and outgoing bonds,
we assign an average bond-valence of 0.50 vu to a [7]U–
� bond. An atom of oxygen of a [7]U–OH2 group re-
ceives 0.50 vu from the [7]U–O bond and requires an
additional 2 � 0.75 vu from the two O–H bonds in or-
der to satisfy its bond-valence requirements. The two
H-atoms require 0.25 vu from hydrogen bonds to an
aqueous species in order to satisfy their own bond-va-
lence requirements. Hence, any [7]U–OH2 group donates
two hydrogen bonds, each with a bond-valence of 0.25
vu, to the aqueous species.

An atom of oxygen of a [7]U–OH group receives 0.50
vu from the [7]U–O bond and requires an additional 1.50
vu. The O–H bond has a bond valence of 0.80 vu, and
the oxygen atom thus requires an additional 0.70 vu
from bonds from the aqueous species (Fig. 5c). In the
same way, an atom of oxygen of an U–OH–U group
receives 2 � 0.50 vu from two [7]U–O bonds and 0.80
vu from the hydrogen atom of the OH-group, and re-
quires an additional 0.20 vu from a bond (or bonds) from
an aqueous species. Hence, an atom of oxygen of a [7]U–
O–[7]U group requires an additional 1.0 vu from bonds
involving the aqueous species. The oxygen atom of a
[7]U–OH2–[7]U group accepts 2 � 0.50 vu from two
[7]U–O bonds and requires an additional 2 � 0.50 vu
from two O–H bonds; therefore, the [7]U–OH2 group
donates two hydrogen bonds with a bond-valence of
0.50 vu. The corresponding acid–base equilibria be-
tween the different Lewis bases and acids are listed in
Table 1. The pKa values indicate that strong Lewis bases
(such as [7]U–O–[7]U and [7]U–OH2–

[7]U) occur only at
high and low pH, respectively. Thus the number of
strong Lewis bases and acids on the [010] edge is very
small in weak acidic, weak basic and neutral solutions.

We can now calculate aggregate bond-valences in-
volving the outgoing and incoming bonds. There are 2
� 0.20 + 4 � 0.25 + 2 � 0.20 + 2 � 0.50 = 2.8 vu
donated from the terminations to the aqueous species,
and there are 4 � 0.35 + 2 � 0.20 + 2 � 0.50 = 2.80 vu
(Fig. 5) accepted from the terminations. The overall
transfer of bond valence from or to the chain is thus 2.8
+ 2.8 = 5.6 vu. Because the accepted and donated bond-
valences are equal, the chain is formally neutral. This is
not surprising, as the number of the formally negatively
charged terminations U–O–U (–1.0 vu) and U–OH
(–0.50 vu) is equal to the number of formally positively
charged terminations U–OH2–U (+1.0 vu) and U–OH2

(+0.5 vu), respectively.
If the pH of the solution is the same as the pHpzc,

there is not only an equal number of positively and nega-
tively charged anion species, but there is also a mini-
mum number of strong Lewis acids or bases such as
U–O–U and U–OH2–U at a given ionic strength of the
solution. If the number of these terminations is infinitely
small, the bond-valence transfer to or from the chain
minimizes at 1.8 vu. If the pH differs from the pHpzc,
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the Lewis acidities or basicities of the terminations vary
sympathetically in both number and strength.

Consider an increase in the number of U–OH and
U–OH2 species. For four U–OH2 and four U–OH–U
terminations, there are 4 � 0.20 + 8 � 0.25 = 2.8 vu
donated by the terminations to the aqueous species, and
there are 4 � 0.20 = 0.80 vu accepted by the termina-
tions. The formal charge of this chain per repeat dis-
tance is 2.8 – 0.8 = 2+. For four U–OH terminations and
four U–OH–U terminations, the terminations accept 8
� 0.35 + 4 � 0.20 = 3.6 vu and donate 4 � 0.2 + 4 �
0.20 = 1.6 vu; the total transfer of bond valence is 3.6 +
1.6 = 5.2 vu, and the net transfer of bond valence is 1.6
– 3.6 = 2.0 vu. These examples illustrate the fact that an
increase in the number of U–OH or U–OH2 termina-
tions increases the total bond-valence transfer to and
from the terminations, but not necessarily the net bond-
valence transfer. The configuration of four U–OH2 and
four U–OH–U terminations results in a total bond-va-
lence transfer of 2.8 + 0.80 = 3.6 vu, which is equal to
the minimum transfer at neutral charge: 1.8 + 1.8 = 3.6
vu. The minimum total bond-valence transfer thus does
not automatically occur at an edge with zero charge.
However, an increase in the number of U–OH2 termi-
nations is normally the result of a decrease in pH, which
also produces a higher ratio of U–OH2–U to U–O–U
terminations. A higher number of U–OH2–U termina-
tions increases the total bond-valence transfer, which
will be higher than the minimum transfer at neutral
charge.

From this discussion, we can define the pHpzc of a
surface from a bond-valence perspective (not consider-
ing inner- or outer-sphere complexes): At the pHpzc of a
surface, there is a minimum in the number of highly

charged terminations (i.e., strong Lewis acids and Lewis
bases) on the surface, which results in low bond-valence
transfer between surface acceptors and donors and the

aqueous species.
A higher number of strong bonds between termina-

tions and aqueous species enhances attachment and de-
tachment of polyhedra or groups of polyhedra, and
growth or dissolution rates should correlate with the type
and number of activated sites.

pHpzc: faces

A surface may be positive, negative or neutral. The
bond-valence deficiency at a face is a measure of the
bond valence required to achieve electroneutrality at that
face. If there is a low bond-valence deficiency at a face
and the pH of the solution is identical to the pHpzc, there
is a low interaction between the face and the solution.
This results in formation of only a small number of ac-
tivated sites, and hence the dissolution rate perpendicu-
lar to the face is small.

Two examples: calculation of the pHpzc of the (001)
face of schoepite and dehydrated schoepite

Schoepite, [(UO2)8O2(OH)12](H2O)12, has a promi-
nent basal (001) face that dominates the morphology of
its crystals. The pHpzc occurs where the average com-
position of the surface is equal to the composition of the
structural unit, [(UO2)8O2(OH)12]. On the basis of the
pKa values in equations [1] to [3], the [7]U–�–[7]U ter-
mination occurs over a wide range of pH as [7]U–OH–
[7]U, and is therefore not involved in acid–base reactions
close to the pHpzc. There are twelve [7]U–�–2[7]U termi-
nations in the asymmetric unit; two of them occur as
[7]U–O–2[7]U, and ten of them as [7]U–OH–2[7]U. In
order to have an average composition of the surface of
[(UO2)8O2(OH)12], there must be five times more [7]U–
OH–2[7]U terminations than the [7]U–O–2[7]U termina-
tion. The pHpzc can be calculated via the
Henderson–Hasselbach equation (Atkins 1996) on the
basis of the pKa value and the ratio of the terminations
in the asymmetric unit:

pHpzc = pH = pKa – log [acid]/[base]
= 7.72 – log [5]/[1] = 7.02 (11).

In the case of dehydrated schoepite, the composition of
the surface at pHpzc must be identical to the composi-
tion of the structural unit, [(UO2)O0.2(OH)1.6]

0. This is
the case, as there are eight times more U–(OH)–2U ter-
minations than U–O–2U terminations. On the basis of
the experimentally determined pKa value of 7.0 (see
above), the pHpzc of dehydrated schoepite is therefore

phpzc = pH = pKa – log [8]/[1]
= 7.0(2) – 0.9 = 6.1 (12).

pHpzc: edges

Because of the prominent basal faces in uranyl minerals,
the formal charges at the different edges may contribute
only a small amount to the overall surface-charge. How-
ever, the individual pHpzc of an (activated) edge and the
pH of the solution will control crystal growth and dis-
solution at this specific edge. Thus accurate prediction
about the occurrence of edges can only be made if one
knows their pHpzc.

Example: calculation of the pHpzc for edges
on the (001) face of schoepite

The following anion-terminations occur on the edges
of the (001) face of schoepite: [7]U–O, [7]U–OH, [7]U–
OH2, 

[7]U–O–[7]U, [7]U–OH–[7]U, [7]U–O–27]U and [7]U–
OH–2[7]U. The [7]U–O, [7]U–OH, [7]U–O–[7]U and
[7]U–O–2[7]U terminations have formal negative charges
of ~1.5, 0.5, 1 and 0.50, respectively. They all have a
bond-valence deficiency and interact with the solution
by accepting bond-valence via protonation or hydrogen
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bonding. The [7]U–OH2, [7]U–OH2–
[7]U and [7]U–OH–

2[7]U terminations have formal positive charges of ~0.5,
1 and 0.5, and interact with the solution by donating
hydrogen bonds to aqueous species. The [7]U–OH–[7]U
anion-termination has a formal charge of zero and may
both accept and donate one hydrogen bond. The charge
on an edge is zero if there is an equal number of [7]U–
OH2 and [7]U–OH terminations, [7]U–OH2–[7]U and
[7]U–O–[7]U terminations, and [7]U–O–27]U and [7]U–
OH–2[7]U terminations. Because [7]U–� and [7]U–�–[7]U
are the dominant terminations on the edges of schoepite,
the pHpzc of the edges is defined primarily by the fol-
lowing acid–base reactions:

[7]U–O–[7]U + H+
↔ [7]U–OH–[7]U,

pKa = 13.07 [5]

[7]U–OH–[7]U+ H+
↔ [7]U–OH2–

[7]U,
pKa = 1.2 [6]

[7]U–OH+ H+
↔ [7]U–OH2,

pKa = 6.53 [7]

There are equal numbers of [7]U–OH2–[7]U and [7]U–O–
[7]U terminations at pH = (13.07 + 1.2) / 2 = 7.135, and
an equal number of [7]U–OH and [7]U–OH2 terminations
at pH = 6.534. Thus, every edge on the (001) face of
schoepite has its pHpzc at ~6.5 < pH < ~7.1. If the pH of
the solution is in this range, there is the lowest interac-
tion between the activated sites on an edge and the spe-
cies in aqueous solution. [Note that as indicated above,
the MUSIC equation in this form might not fit all ura-
nyl-oxide minerals, and the calculated values of pKa
should be seen as approximations rather than exact val-
ues.] This example shows that the pHpzc of an edge can-
not be used to predict its occurrence on a basal face.
However, pHpzc enables us to predict the change in
morphology with a change in pH from the range in pHpzc

of the edges.

Change in morphology with change in pH

The change in morphology with change in pH de-
pends strongly on the degree of supersaturation in the
aqueous fluid. At high supersaturation, a large number
of aqueous species will simultaneously attach to the
surface, resulting in rough surfaces with fast growth-
rates. In this case, the number and type of protonated
anion-terminations will not be relevant for a slow-
growth process in which the attachment of aqueous spe-
cies produce smooth surfaces with a low number of kink
sites. Hence, the following discussion on the effect of
pH on the morphology is restricted to solutions at low
supersaturation.

Figure 6 shows how the occurrence of an edge may
vary with change in pH. Let us consider the edge with
the lowest bond-valence deficiency of all possible edges.
If the edge interacts with a solution of pH close to its

pHpzc, there is a weak interaction between the anion ter-
minations and the aqueous species. The corresponding
edge would contain only a small number of activated
sites (see above), the dissolution or crystallization rate
would be small, and the edge would survive on the final
morphology of the basal face. If the pH of the solution
differs from the pHpzc by an amount �pH, there is a
greater interaction between the terminations and the
aqueous species. The number of activated sites increases
with increasing �pH. However, the corresponding edge
would still occur on the final morphology of the basal
face, and depending on the bond-valence deficiency of
the other edges, it might even dominate the morphol-
ogy of the basal face (Fig. 6).

The explanation of this phenomenon can be found if
we consider next an edge with an average bond-valence
deficiency (i.e., this edge has a higher bond-valence
deficiency than the edge considered previously). At a
pH close to its pHpzc value, its anion terminations would
interact slightly more with the solution than those of the
previously considered edge. The resulting activated
edge would therefore contain a higher number of acti-
vated sites than the previous activated edge. However,
if the interaction between the second edge and a solu-
tion with a pH = pHpzc of the second edge is still small,
the corresponding dissolution or crystallization rates
would be similar to the rates of dissolution or crystalli-
zation of the previous edge, and the edge would occur
on the final basal face. The occurrence of those edges is
therefore strongly controlled by the relation between
dissolution or crystallization kinetics and �pH.

If �pH increases dramatically, the already higher
number of activated sites will increase even more, and
the morphology will change (Fig. 6). In this case, the
higher rates of dissolution or crystallization (in compari-
son to the previous edge) presumably result in disap-
pearance of the edge during growth or dissolution.
Hence at higher �pH, the final morphology of a basal
face is defined by the edges with the lowest bond-va-
lence deficiency.

Finally, let us consider an edge with the highest
bond-valence deficiency. The interaction of its termina-
tions with an aqueous solution of a specific �pH will be
the highest of all previous edges; i.e., there is a high
probability that the corresponding rates of dissolution
or crystallization may be so high that the edge will dis-
appear during these processes. Under normal circum-
stances, edges with the highest bond-valence deficiency
should therefore never occur on the final morphology
of the basal faces.

Similar considerations apply to the supersaturation
parameter, �. At equilibrium, the saturation of a solu-
tion is unity (� = 1), and there is a minimum in the in-
teraction between activated sites and species in aqueous
solution. Where supersaturation increases or decreases
by ��, the interaction between aqueous solution and
edge increases. Hence at high ��, one would expect
edges with the lowest bond-valence deficiency, whereas
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at low ��, one would expect edges of low and average
bond-valence deficiency.

Change in morphology with stacking

sequences of layers

An edge terminates one layer and can be character-
ized by a chain of polyhedra in the layer. A face cross-
ing the layers terminates more than one layer, and this
surface is characterized by chains of polyhedra that ter-
minate the different layers. If adjacent layers are shifted
relative to each other, the face can be terminated by dif-
ferent types of chains. Figure 7a shows sequence of lay-
ers with or without a shift between the layers. There are
interstitial cations, (H2O) or (OH) groups between each
layer.

Arrangements (1) to (3) (Fig. 7) show three layers
that are terminated by one type of chain of polyhedra.

The chain indicated by a yellow rectangle has a lower
bond-valence deficiency than the chains indicated by
green rectangles, and hence edges in arrangements (1)
and (3) are more stable than edges in arrangement (2).
In arrangements (4) to (6), the layers contain the same
type of chains of polyhedra. However, the central layer
is shifted by one polyhedron relative to the adjacent lay-
ers. In this case, two chains of high bond-valence defi-
ciency and one chain of low bond-valence deficiency
terminate the edges in arrangement (4). Edges on a face
that are terminated by chains of high and low bond-
valence deficiencies have different growth and dissolu-
tion rates. Hence, in Figure 7a, the upper and lower
layers grow faster than the central layer. This growth
mechanism results in arrangement (5), in which only
chains of lower bond-valence deficiency terminate an
edge. Thus, edges in arrangement (5) are more stable
than edges in arrangement (4). Arrangement (5) con-

FIG. 6. The left column lists the possible types of edges: edges with lowest, average and highest bond-valence deficiencies are
indicated in red, blue and green, respectively. The central column schematically indicates the increase in activated sites with
(a) the initial bond-valence deficiency of the edge, (b) the difference between the pH of the solution and the pHpzc of the edge
(indicated as �pH), and (c) the difference between the supersaturation, �, of a solution and the supersaturation at equilibrium,
with � = 1 (indicated as ��). The increase in �pH and �� is indicated by an arrow. The right column lists the corresponding
rates of dissolution and crystal growth, and the final morphologies of a theoretical (001) face. The colors of the edges indicate
the corresponding bond-valence deficiencies of the edges.
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tains one major kink-site with interstitial complexes
above and below. The rates of growth and dissolution at
this kink-site are therefore not only characterized by the
bond-valence deficiency of the chain; they are also con-
trolled by the acidity of the interstitial complex. This is
in contrast to arrangement (1), in which the rates of
growth and dissolution are determined only by the bond-
valence deficiency of the chains. Thus, edges in arrange-
ment (5) are less stable than edges in arrangement (1).

Figure 7b shows the same type of arrangements as
in Figure 7a, but with chains of average and high bond-
valence deficiency (indicated by pink and green rect-
angles, respectively). The stabilities of edges in the
corresponding arrangements are the same, i.e., edges in

arrangement (7) have a higher stability than edges in
arrangement (11). The difference in bond-valence defi-
ciency can now be used to compare the stability of edges
that have a similar shift between their layers. Edges in
arrangement (1) have a lower bond-valence deficiency
than edges in arrangement (7), and therefore, the former
are more stable and have lower rates of dissolution and
growth than the latter (Fig. 7c). In the same way, edges
in arrangement (5) are more stable than edges in ar-
rangement (11), and therefore the former also have
lower rates of dissolution and growth than the latter
(Fig. 7c).

The kink sites of arrangements (5) and (11) are char-
acterized by the acidity of the adjacent interstitial com-

FIG. 7. Schematic representation of different sequences in the stacking of layers, with chains of different bond-valence deficien-
cies. (a) Chains are indicated as yellow (low bond-valence deficiency) and green (high bond-valence deficiency) rectangles,
and interstitial complexes are indicated with red rectangles and blue circles. Arrangements (1) to (6) display growth se-
quences of edges with identical chains but with different shifts between the layers. (b) Arrangements (7) to (12) are identical
to arrangements (1) to (6) owing to the shift between the layers, but have chains of average and low bond-valence deficiency
(indicated as pink and green rectangles). (c) Growth and dissolution rates among the different arrangements (for details, see
text).
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plexes and by the bond-valence deficiency of the chain
of polyhedra. Hence, there are three components at these
kink sites that interact with the aqueous species. The
corresponding edges thus interact more extensively with
the aqueous solution than edges in arrangements (1) and
(3). Hence, we predict that edges in arrangements (5)
and (11) have lower stability than edges in arrangements
(1) and (7).

Change in morphology with change

in arrangement of interstitial complexes

A change in morphology of the basal face with
change in arrangement of the interstitial complex can
be observed in minerals with identical structural units,
identical shifts between the layers, but different arrange-
ments of their interstitial complexes. This is the case for
becquerelite, [7]Ca(H2O)4[(UO2)3O2(OH)3]2(H2O)4, and
billietite, [10]Ba(H2O)4[(UO2)3O2(OH)3]2 (H2O)3. Fig-
ures 8a and 8b show the arrangements of the interstitial
cations Ca and Ba in becquerelite and billietite, respec-
tively. The interstitial Ca atoms in becquerelite are ar-

ranged in rows parallel to [010], whereas the interstitial
Ba atoms in billietite are arranged in rows parallel to
[100]. Evaluation of the bond-valence deficiencies (tak-
ing into account the shift between the layers in each
structure) indicates that [100] and [110] are the most
stable edges, whereas edges such as [100], [210], [130]
and [310] are less stable. Hence, we predict that the
edges [100] and [110] invariably occur, independent of
pH and saturation, whereas all other edges occur only
close to the pHpzc and at saturation.

Becquerelite and billietite crystals strongly resemble
each other in color and form. The edges [100] and [110]
invariably occur on their (001) face, in good agreement
with our predictions. Only becquerelite crystals are re-
ported as elongate parallel to [010], whereas billietite
crystals can be elongate parallel to [100] [Figs. 8a and
8b; Perloff (1998); http://www.trinityminerals.com/
sm2001/uranium.shtml]. This implies that the occur-
rence of edges and their dominance on the final mor-
phology may be also controlled by the arrangement of
the interstitial complexes. We may summarize the above
discussion as follows: (a) If we consider only the struc-

FIG. 8. Left: polyhedron illustrations of layers in (a) becquerelite, and (b) billietite, showing the positions of the interstitial Ca
(green circles) and Ba (blue circles). Right: examples of the corresponding (001) face morphologies on becquerelite and
billietite crystals (for details, see text).
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tural information of the uranyl sheets, we can predict
the occurrence (or non-occurrence) of edges with the
lowest and highest bond-valence deficiencies. (b) If we
consider also the pHpzc, pH, degree of saturation and
the arrangement of the interstitial complex, we can pre-
dict the occurrence of edges with average bond-valence
deficiency.

Calculation of bond-valence deficiency
along chains of polyhedra

In order to predict the occurrence of different edges,
we must consider the different types of linear periodic
chains of polyhedra parallel to an edge. Figure 9 shows
linear periodic chains of polyhedra parallel to [100] in
schoepite. Depending on whether one considers the sur-
face on the right or left side of the figure, one can con-
struct (linear periodic) chains of polyhedra with
different types of terminations (Figs. 9a, c). Termina-
tions of linear periodic chains that terminate the layer to

the right or left side are called right terminations or left

terminations, respectively.
The linear periodic chain of polyhedra parallel to=>??@ABCBDEFEBGHICGBJKELM>NOPQQROSEGTCHECIUV

nate the left termination of this chain as a1: there are
two [7]U–OH terminations and four [7]U–OH–[7]U ter-
minations (Fig. 9a). The average bond-valence of
[7]U6+–O in schoepite is 0.47 vu, and the average O–H
bond-valence is 0.80 vu (Brown 1981). The oxygen at-
oms of the two [1]-coordinated and the four [2]-coordi-
nated (OH) groups receive (2 � 1 � 0.47 + 2 � 0.8) =
2.54 vu, and (4 � 2 � 0.47 + 4 � 0.8) = 6.96 vu, re-
spectively. The resulting bond-valence deficiency at the
oxygen atoms in the chain is the difference between their
formal valence and their incident bond-valence sum. For
example, the oxygen atoms of the two [1]-coordinated
(OH) groups in the repeat unit of the chain have a for-
mal charge of 4–, and they accept 2 � 0.47 vu from
equatorial U–O bonds and 2 � 0.80 vu from O–H bonds.
The sum of the incident bond-valence is 2.54 vu, result-

FIG. 9. (a) The left form of chain termination for different chains parallel to the [100] edge in the uranyl sheet of schoepite; the
positions of the O2– anions are indicated by red circles. At each chain, the bulk structure continues to the left, and the surface
occurs at the right side. (b) The calculated bond-valence deficiency per unit length (vuWXYZ[\]̂Z]_̀ab̂]\_̂Z]cZ]de\̂]
terminations of the left form. (c) The right form of chain terminations for different chains parallel to the [100] edge. (d) The
corresponding bond-valence deficiency per unit length of the anion terminations on chain terminations of the right form.
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ing in an aggregate bond-valence deficiency of 4 – 2.54
= 1.46 vu. The bond-valence deficiency of the four [2]-
coordinated oxygen atoms is 1.04 vu. The bond-valence
deficiency of the oxygen atoms in the repeat distance of
the chain of polyhedra is 1.46 + 1.04 = 2.50 vu, and
normalized to the length of the chain: 2.50 / 14.337 =
0.1744 vufgh

The bond-valence deficiency of such a chain de-
pends on the type and number of anion terminations. A
high bond-valence deficiency occurs where the chain
contains a high number of negatively charged termina-
tions, such as U–OH (–0.5), U–O–U (–1.0) or U–O
(–1.5 vu), and a low bond-valence deficiency occurs if
the chain contains a high number of the formally neu-
tral U–OH–U terminations. Here, the number of kink
sites along the chain controls the number of U–� and
U–�–U terminations.

SUMMARY

(1) The bond valence of an anion termination on a
terminating chain of polyhedra correlates with the in-
trinsic acidity-constant, pKa, and with the free energy,
�Gat, of the corresponding acid–base reaction.

(2) The bond-valence deficiency of a linear periodic
chain of polyhedra parallel to an edge correlates with
the type and number of activated sites on an edge.

(3) Processes of crystal growth and dissolution on
an edge are catalyzed by the activated sites and increase
with their number and the strength of the bonds between
the corresponding anion terminations and the aqueous
species.

(4) The interaction between activated sites and
aqueous species is minimized where the pH of the solu-
tion is at the pHpzc of the edge and where the solution is
close to saturation with respect to the mineral.

(5) Interaction of an edge with the aqueous solution
during crystal growth and dissolution depends also on
the shift between the layers and the arrangement of the
interstitial complexes between the layers.

(6) One can use the latter parameters and the bond-
valence deficiency of a polyhedron to predict the occur-
rence of edges on the basal face of uranyl-sheet
minerals.
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ABSTRACT

The morphology of basal faces of uranyl-sheet minerals is predicted by considering the bond-valence deficiency of the chains
of polyhedra, the shift between the layers, and the arrangement of the interstitial complexes between the layers. The sheet struc-
tural units of schoepite, [(UO2)8O2(OH)12](H2O)12, and fourmarierite, Pb[(UO2)4O3(OH)4](H2O)4, have the same underlying
anion-topology. The stabilities of their edges differ because adjacent layers in schoepite are shifted by one chain of polyhedra,
whereas adjacent layers are not shifted in fourmarierite. The minerals becquerelite, [7]Ca(H2O)4[(UO2)3O2(OH)3]2 (H2O)4,
compreignacite, [7]K2(H2O)3 [(UO2)3O2(OH)3]2(H2O)4, billietite, [10]Ba(H2O)4[(UO2)3O2(OH)3]2 (H2O)3, protasite,
[10]Ba(H2O)3[(UO2)3O3(OH)2], and masuyite, [10]Pb(H2O)3[(UO2)3O3(OH)2], all have structural units with the same basic anion-
topology. The stabilities of their edges differ because of the different arrangements of interstitial species. In becquerelite, the
interstitial cations are arranged in rows parallel to [010], whereas in billietite and compreignacite, the interstitial cations are
arranged in rows parallel to [100]. For masuyite and protasite, the stability of their edges is defined by large differences in the
bond-valence deficiencies of the chains of polyhedra with left and right terminations. The stabilities of edges in curite,
Pb3[(UO2)8O8(OH)6](H2O)3, are dictated by the low bond-valence deficiencies of the chains of polyhedra parallel to [001] and
[011], and by the arrangement of cations in rows parallel to [001]. Minerals of the carnotite group contain the structural unit
[(UO2)2(V2O8)]2–, and the stability of the edges of their sheets is determined by the low bond-valence deficiency of chains of
polyhedra parallel to [010 and [110]. Minerals of the uranophane group are based on the [(UO2)SiO3(OH)]– sheet, and the
stabilities of their edges are more strongly affected by the bond-valence deficiency of the chains of polyhedra than by the arrange-
ment of the interstitial cations, and by the shift in the sheets. All predictions are compared with the corresponding morphologies
of crystals recorded by Atomic Force Microscopy (AFM), on images of crystals, and on crystal drawings from the (mainly older)
mineralogical literature. All predictions are in good agreement with the observed morphology of the basal faces.

Keywords: uranyl minerals, morphology, surface structure, crystal growth, dissolution, bond valence.

SOMMAIRE

Nous prédisons la morphologie des faces de base des minéraux contenant des feuillets à polyèdres uranylés en considérant le
déficit en valences de liaison des chaînes de polyèdres, le décalage entre les feuillets, et l’agencement des complexes interstitiels
entre les couches. Les unités structurales en feuillets de la schoepite, [(UO2)8O2(OH)12](H2O)12, et de la fourmariérite,
Pb[(UO2)4O3(OH)4](H2O)4, possèdent la même topologie anionique de base. La stabilité de leurs bordures diffère en fonction du
décalage de feuillets adjacents équivalent à une chaîne de polyèdres dans la schoepite, tandis que les feuillets adjacents ne sont
pas décalés dans la fourmariérite. Les minéraux becquerelite, [7]Ca(H2O)4[(UO2)3O2(OH)3]2 (H2O)4, compreignacite, [7]K2(H2O)3

[(UO2)3O2(OH)3]2(H2O)4, billietite, [10]Ba(H2O)4[(UO2)3O2(OH)3]2 (H2O)3, protasite, [10]Ba(H2O)3[(UO2)3O3(OH)2], et masuyite,
[10]Pb(H2O)3[(UO2)3O3(OH)2], possèdent tous des unités structurales ayant la même topologie anionique de base. La stabilité de
la bordure de leurs feuillets diffère à cause des divers arrangements des espèces interstitielles. Dans la becquerelite, les cations
interstitiels sont agencés en rangées parallèles à [010], tandis que dans la billietite et la compreignacite, les cations interstitiels

§ Current address: Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
E-mail address: mschindl@lakeheadu.ca



1652 THE CANADIAN MINERALOGISTijklmnokpqiokrmknqoismrmttutoivwxyyz{|mkitopmi}otm~mi���looltmsrjlmi�lo�tmilm��t�lq}oto�ri�jr}�roi}qsok}rmit des}���qrokpoi~m�o�roi}oi}q��p�liok�mtokpoi}ot�m�ijk}oip�m�koi}osjt�u}roim�mkl}oilor~�km�ijkinm�p�ool}rj�lo{�milm��t�lq}oi�jr}�roi}oi�o��ttoli}otmp�r�lo���3[(UO2)8O8(OH)6](H2O)3�oilrqn�osmrto�m��to}q��p�lok�mtokpoi}ot�m�ijkmiijp�qm��p�m�koi}osjt�u}roismrmttutoivwyyxzolwyxxz�olsmrt�mnokpo~okl}oipml�jkiokrmknqoismrmttutoivwyyxz{�os~�kqrm��}�nrj�so}otmpmrkjl�lopjkl�okkoklt��k�lqilr�pl�rmtow���
2)2(V2O8)]

2–�oltmilm��t�lq}otm�jr}�ro}oto�ri�o��ttoli}qsok}rm�l}��m��to}q��p�lok�mtokpoi}ot�m�ijk}oip�m�koi}osjt�u}roismrmttutoivwyxyzolwxxyz{�oi~�kqrm��}�nrj�se
de l’uranophane contiennent le feuillet [(UO2)SiO3(OH)]–�oltmilm��t�lq}otm�jr}�ro}oto�ri�o��ttolioilst�i�jrlo~oklm��oplqosmrto}q��p�lok�mtokpoi}ot�m�ijk}oip�m�koi}osjt�u}roi��osmrt�mnokpo~okl}oipml�jki�kloril�l�oti�olsmrto}qpmtmge des�o��ttoli{�j�loikjisrq}�pl�jkiijklpj~smrqoim�optm~jrs�jtjn�opjrroisjk}mklo}opr�ilm��ql�}�qismr~�prjipjs�ook�jrpemlj~���o������}oi�~mnoi}opr�ilm��}�isjk��toi�ol}oi}oii�ki}opr�ilm��l�rqii�rlj�l}otmt�llqrml�rost�imkp�okko{�outeskjisrq}�pl�jkii�m�uroklpjkpjr}mkloim�optm~jrs�jtjn�oj�ior�qo}otm�mpo}o�mio}opoi~�kqrm��{
Mots-clés�~�kqrm��}��rmk�to�~jrs�jtjn�o�ilr�pl�ro}oi�r�mpo�prj�iimkpopr�ilmtt�ko�}�iijt�l�jk��mtokpoi}ot�m�ijk{

between building units. The basal face slowly grows,
and therefore dominates the morphology of sheet-struc-
ture uranyl-oxide minerals. The morphology of the basal
face itself is controlled by the faster-growing S faces
(step faces), which contain only one type of periodic
bond-chain.

Schindler et al. (2004a) showed that these periodic
bond-chains can be represented by polyhedron chains
in the sheet structural units of uranyl-oxide minerals.
Parallel chains of polyhedra in the translation unit per-
pendicular to the basal face define the surface of an
edge. The interaction of the surface of an edge with the
aqueous species controls surface processes such as crys-
tal growth and dissolution. These interactions depend
on the surface structure of an edge, the pH value and the
saturation index with respect to the mineral. Schindler
et al. (2004a) also showed that the surface structure of
an edge is characterized by the bond-valence deficiency
of anion terminations along chains of polyhedra paral-
lel to the edge, and by the shift and orientation of adja-
cent layers. Furthermore, they showed that the stability
of edges also depends on the arrangement of the inter-
stitial cations between the layers. In this paper, we will
use this approach to predict the morphology of the basal
faces of uranyl-oxide minerals, and will compare our
predictions with AFM observations on synthetic crys-
tals and morphological observations on natural crystals
of uranyl-oxide minerals.

EXPERIMENTAL

Crystal growth, atomic-force microscopy
and X-ray powder diffraction

In order to increase the database on the morphology
of basal faces of uranyl-oxide crystals, we examined the
crystal growth of uranyl-oxide minerals on the (001)
face of dehydrated schoepite with an atomic-force mi-
croscope. The crystals of dehydrated schoepite were
synthesized according to the procedure of Schindler et

al. (2004a). After synthesis, 0.1 g of crystals were
washed and brought in contact with 0.25 mol L–1 BaCl2,
KCl and PbNO3 salt solutions at 25°C for 24 h. The

INTRODUCTION

Uranyl-oxide minerals are common at many oxi-
dized uranium deposits, and play a key role in the
paragenesis of minerals that form where uraninite has
been exposed to oxidizing meteoric water (Frondel
1958, Deliens 1977, Finch et al. 1992, Finch & Ewing
1992, Finch & Murakami 1999). Uranyl minerals have
also been identified as corrosion products of UO2 and
spent nuclear fuel (Wadsen 1977, Wang & Katayama
1982, Forsyth & Werme 1992, Sunder et al. 1992,
Wronkiewicz et al. 1992, 1996, Buck et al. 1997, 1998).
Recently, the formation of schoepite, [(UO2)8O2(OH)12]
(H2O)12 has been observed on used depleted-uranium
ammunition in Kosovo (United Nations Environmental
Program 2001).

Chemical reactions on the surfaces of uranyl-sheet
minerals are an important issue, as they result in the
release of (UO2)

2+ to natural waters. Therefore, a de-
tailed atomic-scale understanding of the surface chem-
istry of uranyl-sheet minerals is desirable. Uranyl-sheet
minerals contain layers of polymerized uranyl-polyhe-
dra with uranium in [6], [7] and [8] coordination as tet-
ragonal, pentagonal and hexagonal bipyramids,
respectively. In these polyhedra, strong U–O uranyl
bonds are not involved in linkage between uranyl poly-
hedra; they extend orthogonal to the sheet, whereas
weaker equatorial U–� bonds link the polyhedra in the
plane of the sheet [�: O2–, (OH)–, (H2O)]. The equato-
rial O-atoms in the sheet of polyhedra can participate in
acid–base reactions through protonation and depro-
tonation. Hence, edge surfaces on uranyl minerals are
much more reactive than the corresponding basal sur-
faces because equatorial O-atoms on the edge surface
almost always bond to fewer U6+ atoms than oxygen
atoms in the sheet, and hence must satisfy their indi-
vidual bond-valence requirements through a higher de-
gree of protonation.

The Periodic Bond-Chain (PBC) theory (Hartman &
Perdok 1955a, b, c) defines the basal face parallel to the
sheets of uranyl polyhedra as an F face (flat face) be-
cause the sheet contains more than one periodic bond-
chain. A PBC is an uninterrupted chain of strong bonds
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(001) face of the schoepite crystals was examined with
the atomic force microscope (Digital Instruments
Nanoscope III, Dimensional 3000). The surface was
scanned in contact mode, and the images were analyzed
with the Nanoscope Software package. The samples
were subsequently examined by X-ray powder diffrac-
tion (Philips PW3040 powder diffractometer with CuK�
X-radiation) in order to identify the phases grown on
the crystals of dehdyrated schoepite.

Collection of morphology data
of basal faces of uranyl-oxide minerals

In order to determine the occurrence of edges on
schoepite crystals and other uranyl-sheet minerals, we
have examined images of crystals recorded by atomic
force microscopy (AFM), or images (both photographs
and sketches) drawn from the (mainly older) mineral-
ogical literature. For the literature data, the indices of

edges or the corresponding faces were determined by
optical goniometry. In the case of AFM and images from
Perloff (1998) and the internet, we indexed the edges
by measuring the angles between the edges on the image
and comparing them with corresponding angles derived
from structural data.

THE (001) FACE OF SCHOEPITE

In schoepite, [(UO2)8O2(OH)12](H2O)12, there are
eight crystallographically distinct sites occupied by U6+,
two of which are [7]-coordinated by two apical uranyl
O-atoms and five equatorial (OH) groups, and six of
which are [7]-coordinated by two apical uranyl O-at-
oms, one equatorial O-atom and four equatorial (OH)-
groups (Finch et al. 1996). Schoepite has space-group
symmetry P21ca (orthorhombic), with a 14.337, b
16.813, c 14.731 Å. Figure 1 shows part of a (001) layer
in schoepite, in which the pentagonal bipyramidal poly-

FIG. 1. (a) Polyhedron representation of the uranyl-oxide hydroxy-hydrate sheet in schoepite, [(UO2)8O2(OH)12](H2O)12; chains
of polyhedra parallel to [100], [010], [120], [110] and [210] are shown in dark brown, red, blue, violet and blue-green,
respectively. Equatorial O2– anions of the uranyl polyhedra are shown as red-brown octagons, equatorial edges are shown as
heavy black lines. (b), (c) Calculated bond-valence deficiencies for left and right anion-terminations on chains parallel to the
[100], [010], [120], [110] and [210] edges in the uranyl sheet of schoepite. Bond valences were calculated using the curves of
Brown & Altermatt (1985). The colors of the plots correspond to the colors of the different [hk0] directions in the schoepite sheet.
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hedra share edges involving equatorial O- and (OH)-
anions. The additional (H2O) groups occur between the
layers and link them together with weak hydrogen
bonds.

Bond-valence deficiencies of chains
of polyhedra in schoepite

Figure 1a shows selected chains of polyhedra paral-
lel to [100], [010], [110], [120] and [210] in the
schoepite sheet. Figures 1b and c show the change in
bond-valence deficiency for the different chains. It is
apparent that chains parallel to [100], [010], [110] and
[120] have lower bond-valence deficiencies than chains
parallel to [210]. The bond-valence deficiencies of the
chains parallel to [210] are invariably high, whereas
chains parallel to [100], [010], [110] and [120] have both
low and high bond-valence deficiencies. Chains with
low bond-valence deficiencies result in a low concen-
tration of activated sites on the corresponding edges.

Orientation and shift of layers

Finch et al. (1996) showed that the positions of U6+

atoms and equatorial O-atoms in the structure of
schoepite obey space-group symmetry Pbca. Adjacent
layers are therefore related via a pseudo-two-fold screw
axis parallel to [001]. Hence, right and left terminations
of each chain of polyhedra occur on the same edge.

There is a shift between the layers parallel to the
edges [100], [120], [110] and [210]. At those edges,
therefore, chains of polyhedra of low bond-valence de-
ficiency are parallel to chains of polyhedra with high
bond-valence deficiency. For example, the chain of
polyhedra parallel to [100] with the lowest minimum in
bond-valence deficiency, 0.174 vu����������� �¡¢�
chain of polyhedra with a minimum in bond-valence
deficiency of 0.276 vu��£¤¢¡¥¦¥��§�¦¢̈�©© ª�§ �§
edge without an additional kink-site, but the large defi-
ciency of one of the chains of polyhedra will produce a
higher number of activated sites during crystal growth.
This results in a higher growth-rate perpendicular to the
chain of polyhedra, which produces a kink site
(Schindler & Hawthorne 2004) between the adjacent
layers on the [100] edge. Schindler et al. (2004a, Figs.
7a, b, c) predicted that this type of arrangement is less
stable than an arrangement with chains of polyhedra of
similar bond-valence deficiency along an edge. This is
the case for adjacent layers (with no kink site) at the
edge parallel to [010] (Schindler et al. 2004a, Fig. 7b);
each layer is terminated by a chain of polyhedra with a
bond-valence deficiency of 0.236 vu.

We are now able to predict the growth or dissolution
rates of the different edges: they increase in the sequence
[010] << [100] < [120] = [110] << [210], where “<”
indicates a higher rate of growth of the corresponding
edge. We predict that the edges [010] and [100] should
invariably occur, independent of �pH and ��, whereas

the occurrence of the edges [120] and [110] depends on
�pH and ��, and the [210] edge should never occur.

Morphology of schoepite crystals

Figure 2a shows an AFM image of a schoepite crys-
tal grown on the (104) surface of calcite (Schindler &
Putnis 2004, who described in detail the relations be-
tween morphology and conditions of crystallization).
The corresponding indices of the edges in the image are
[120], [110], [100] and [010]. Figure 2b is an AFM
image of schoepite crystals where the (001) face is de-
fined by the [100] and [010] edges. Figure 2c shows a
schoepite crystal from Katanga, Democratic Republic
of Congo, with a prominent (001) face slightly elongate
along [010] (http://www.trinityminerals.com/sm/
uranium.shtml). The edges defining the (001) face have
indices [120], [110], [100] and [010]. Figure 2d shows
a drawing of a prismatic crystal of schoepite from
Katanga on which the [100], [010] and [110] edges de-
fine the (001) face, and [120] edges occur between the
(210) and (211) faces (indicated as m and P, respec-
tively, in Fig. 2d; Walker 1923). Figure 2e shows typi-
cal rectangular crystals of schoepite from Katanga
(http://webmineral.com/data/schoepite.shtml). The mor-
phology of their (001) face is characterized primarily
by [100] and [010] edges and, to a lesser extent, by the
[110] edge (Palache 1934, Palache et al. 1944). These
crystals are nearly identical to crystals grown under
basic conditions (Fig. 2b, Schindler & Putnis 2004).
Hence, they may have grown in a solution at low super-
saturation and large differences between pH and pHpzc

(the pH of a solution in which a surface has zero net
proton-charge: Stumm 1992, p. 18). These examples
show that the morphology of schoepite crystals from
growth experiments and from mineral samples are in
good agreement with our predictions.

THE (001) FACE OF FOURMARIERITE

Fourmarierite, Pb[(UO2)4O3(OH)4](H2O)4, has
space-group symmetry Bb21m (orthorhombic) with a
13.986, b 16.400, c«¬£­®̄�°±�� ¡«®²³́£µ¥ ̈��§¶�
sheet in fourmarierite has the composition [(UO2)4O3

(OH)4]2–, and its topology is identical to the topology of
the uranyl sheet in schoepite (Burns 1999). The Pb2+

cations and (H2O) groups occur between the uranyl
sheets.

Figure 3a shows details of the uranyl sheet in
fourmarierite. The equatorial O2– ions are shown as
black and red circles; the latter circles are identical to
the O2– positions in the schoepite sheet. However, in
contrast to schoepite, there is no shift between the lay-
ers of polymerized uranyl-polyhedra in fourmarierite.
However, adjacent layers are rotated by 180° to each
other, which means that left and right terminations of
the polyhedron chains occur on one edge. The intersti-
tial cations are homogeneously distributed between
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these layers and are not arranged in specific rows paral-
lel an edge, such as in becquerelite and billietite (see
Schindler et al. 2004a). Thus, the stability of edges
should depend only on their individual bond-valence
deficiencies and not on the arrangement of the layers or
the distribution of cations in the interstices. Calculation
of bond-valence deficiencies on chains of polyhedra in
schoepite shows that the deficiency along each chain
strongly depends on the number of O2– anions. Inspec-
tion of the O2– sites in the fourmarierite sheet shows
that O2– anion terminations occur on all chains parallel
to [010], but not on all chains parallel to [100]. As a
result, we expect that chains of polyhedra parallel to
[100] have lower minima of bond-valence deficiency
than chains parallel to [010]. This is indeed the case:

the calculated bond-valence deficiencies for chains of
polyhedra parallel to [100], [010], [120], [120] and [110]
clearly show that the chain parallel to [100] has the low-
est minimum in bond-valence deficiency (Fig. 3, right
and left terminations). There are small differences be-
tween minima in bond-valence deficiency of chains
parallel to [120] and [110]. Thus, we predict the prob-
ability of occurrence of edges to be [100] > [110] = [120]
> [210] > [010]. This means that the (001) face of
fourmarierite crystals grown in a solution close to equi-
librium and at a pH close to the pHpzc of the edges might
be defined by the [100], [110], [120] and [210] edges.
In a solution with a higher supersaturation with respect
to fourmarierite and with a pH very different from the
pHpzc, we would expect elongate crystals parallel to

FIG. 2. (a) AFM image of a schoepite crystal grown in a weak acidic solution on the calcite (104) surface; the (001) face is
defined by the [120], [110], [100] and [010] edges. (b) AFM image of schoepite crystals formed in a weak basic solution on
the (104) surface of a calcite; their morphology is similar to that of crystals from Kasolo, Katanga, Democratic Republic of
Congo (Walker 1923, Palache 1934). (c) Schoepite crystals with a prominent (001) face defined by the [120], [110], [100] and
[010] edges (Perloff 1998). (d) Prismatic crystals of schoepite with a (001) face defined by [100], [010] and [110] edges; [120]
edges occur between the (210) and (211) faces [indicated as (m) and P]. (e) Schoepite crystals from Kasolo, Democratic
republic of Congo (Perloff 1998), together with a sketch of a crystal showing a dominant (001) face with [100], [010] and
minor [110] edges (Palache et al. 1944).
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[100], and with a prominent (001) face that is defined
only by the [100] and [110] or [120] edges.

Morphology of fourmarierite crystals

Figure 3c shows a thick tabular orange crystal of
fourmarierite from the Shinkolobwe mine, Democratic
Republic of Congo (Perloff 1998). Its (001) face is
bounded mainly by the [100], [110] and [120] edges.
Buttgenbach (1924) examined the morphology of
fourmarierite crystals from Katanga, Democratic Re-
public of Congo, and described the crystals as elongate
on [100], with dominant (001), (110) and (111) faces
(based on the orientation of Piret 1985) (Fig. 3d). The
(001) face in fourmarierite is bounded by the [100] and
[110] edges, in good agreement with our predictions.

THE (001) FACE OF MINERALS

OF THE BECQUERELITE GROUP

Minerals of the becquerelite group are becquerelite,
[7]Ca(H2O)4[(UO2)3O2(OH)3]2(H2O)4, compreignacite,
[7]K2(H2O)3 [(UO2)3O2(OH)3]2(H2O)4, billietite,
[10]Ba(H2O)4[(UO2)3O2(OH)3]2 (H2O)3, 

[8]K2(
[9]Ca,Sr)

(H2O)5[(UO2)3O3(OH)2]2, and rameauite, K2Ca[(UO2)6

O4(OH)6] (H2O)6. The chemical composition of their
(sheet) structural unit is [(UO2)3O2(OH)3]

–, in which
U6+ occurs in [7]-coordination (Fig. 4a). The topology
of the sheet differs from that of sheets in fourmarierite
and schoepite. The structures of becquerelite, com-
preignacite and billietite have orthorhombic symmetry,
but the space-group symmetry and unit-cell dimensions
vary with the type of interstitial cation and the number

FIG. 3. (a) The [(UO2)4O3(OH)4]
2– sheet as the structural unit in fourmarierite; the equatorial O2– anions are identical to those in

the analogous positions in the schoepite sheet and are shown as red circles, whereas the anions unique to fourmarierite are
shown as brown circles. (b) Calculated bond-valence deficiencies of the right- and left-form chain-terminations on chains
parallel to the [100], [010], [210], [110] and [120] edges. (c) A thick tabular orange crystal of fourmarierite from the
Shinkolobwe mine, Democratic Republic of Congo (Perloff 1998), with a (001) face defined by the [100], [110] and [120]
edges. (d) Morphology of fourmarierite crystals from Katanga, Democratic Republic of Congo, with a (001) face defined by
[100] and [110] edges.
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of interstitial (H2O) groups. We calculated the bond-
valence deficiencies of the different chain-terminations
of unit length a 13.8378 / 2 = 6.919, b·̧¹º»¼·½¾¿ÀÁ
the crystal-structure data on becquerelite (Pagoaga et al.

1987), and will describe the crystal morphologies of
becquerelite, billietite and compreignacite crystals on
the basis of these cell dimensions and in the orientation
given in Figure 4a.

In becquerelite, billietite and compreignacite, adja-
cent layers are rotated by 180° relative to each other.
Hence, the left and right terminations of the same type
of chain define the corresponding edges of two adjacent
layers.

Interstitial complexes in becquerelite and billietite
are arranged in rows parallel to [010] and [100], respec-
tively. The corresponding crystals of both minerals are
elongate in these directions. In compreignacite, the in-
terstitial complexes are arranged in rows parallel to
[100], and the interstitial K is highly disordered in those
complexes (Burns 1998). Thus, we would expect simi-

lar morphologies for the (001) face in billietite and
compreignacite.

Figure 4b shows the calculated bond-valence defi-
ciencies of the chain terminations of the different chains
of the uranyl sheet. It is apparent that the [110] and [100]
edges contain chains with the lowest minima in bond-
valence deficiency, and that the differences in minima
are very small for chains parallel to [010], [210], [310]
and [130]. Considering only the bond-valence deficien-
cies and not the arrangement of the interstitial species,
we predict that the probability of occurrence of edges
decreases in the sequence [110] = [100] >> [310] = [210]
> [110] = [130].

Morphology of becquerelite, billietite
and compreignacite

Figures 5a and 5b show an image of becquerelite
crystals from Shinkolobwe, Democratic Republic of
Congo (Perloff 1998) and the indices of the correspond-

FIG. 4. (a) The [(UO2)3O2(OH)3]2
2– sheet as the structural unit in minerals of the becquerelite group. (b) Calculated bond-

valence deficiencies of the left and right forms of chain terminations on chains parallel to the edges [100], [010], [310], [110],
[130] and [210]. The positions of the (OH) groups are shown as vertices of a black triangle (Fig. 5a), and the chains parallel
to the edges are indicated in the same colors as in Figure 4b.
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ing edges: [110], [100] and [010]. Figures 5c and 5d
show AFM images of becquerelite crystals grown on
the (104) surface of calcite (Schindler et al. 2004b).
Figure 5c shows an aggregate of small crystals of
becquerelite grown in uranyl acetate + NaCO3 solution
for one month at a pH of 7.5–8.5. Figure 5d shows a
parallel aggregate of larger crystals of becquerelite crys-
tals in uranyl acetate solution at 100°C for 3 days at a
pH of 5–6. In both cases, the indices of the edges are
[110], [100] and [010] (Fig. 5e).

Figures 5f shows a crystal of billietite from
Shinkolobwe, Democratic Republic of Congo (http://
trinityminerals.com/sm2001/uranium.shtml); the indi-
ces of the edges present are [100], [010] and [110] (Fig.

5h). Figure 5g shows an AFM image of billietite crys-
tals on the (001) surface of dehydrated schoepite; these
crystals may be twinned on [110] (Fig. 5i). Twinning of
billietite crystals is common on [111] and [110]; the
latter twinning is particularly common and produces
pseudohexagonal crystals (Schoep & Stradiot 1948;
Fig. 5i).

Compreignacite was described in the same orienta-
tion as billietite. Protas (1964) reported equant crystals
on which the (001) face is bounded by [100], [010],
[110] and [310] edges (Fig. 5j). He also reported
compreignacite crystals twinned on [110], for which the
(001) face is not bounded by the [100] or [110] edges
(Fig. 5k). The [100] and [110] edges, which are defined

FIG. 5. (a, b) Crystals of becquerelite from Shinkolobwe, Democratic Republic of Congo (Perloff 1998) with a (001) face
defined by the [110], [100] and [010] edges. (c, d) AFM images and (e) sketch of becquerelite crystals grown on the calcite
(104) surface with (001) faces defined by the [110], [100] and [010] edges. (f) Crystal of billietite from Shinkolobwe, Demo-
cratic Republic of Congo (Perloff 1998) and (h) the corresponding sketch of the (001) face defined by the [100] and [110]
edges. (g) AFM image of billietite crystals on the (001) surface of dehydrated schoepite. (i) Sketch of a crystal twinned by
reflection on (110), with a (001) face defined by the [100] and [110] edges. (j) Bulky crystals of compreignacite with a (001)
face defined by the [100], [110], [310] and [010] edges. (k) Compreignacite crystals twinned by reflection on [110] with a
(001) face defined by the [010] and [310] edges.
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by chains with the lowest bond-valence deficiencies,
almost always occur on crystals of the becquerelite-
group minerals. Except for twinned billietite and
compreignacite, such crystals are elongate parallel to the
rows of interstitial complexes in the interlayer. Hence,
crystals of the becquerelite-group minerals grow paral-
lel to the arrangement of interstitial complexes (which
are only bonded to each other by weak hydrogen bonds).
This is surprising, as it contradicts the basic ideas of
PBC theory. One possible explanation of this phenom-
enon is illustrated in Figure 6, which shows the possible
attachment of a cluster of three polymerized pentagonal
bipyramids to the [010] and [100] edges in becquerelite
[note that the (001) layer can be entirely constructed of
such clusters]. Growth parallel to [100] corresponds to
attachment of a cluster at the [010] edge. This attached
cluster shares five ligands with the corresponding kink-
site. If there is no layer above or below this layer, ligands
(mainly O-atoms of the uranyl group) of the attached
cluster do not receive bonds from the interstitial com-

plex. If the cluster is attached to the [100] edge, there
would be only four common ligands between cluster and
kink site, but the ligands of the cluster would accept
bonds from the interstitial complex.

THE (001) FACE OF MINERALS

OF THE MASUYITE GROUP

The minerals of the masuyite group are protasite,
[10]Ba(H2O)3[(UO2)3O3(OH)2], and masuyite, [10]Pb
(H2O)3[(UO2)3O3(OH)2]. They both have the (sheet)
structural unit [(UO2)3O3(OH)2]

2–, which has the same
topology as the sheet in minerals of the becquerelite
group (Burns 1999; Figs. 4a, 7a). Both structures have
space-group symmetry Pn (monoclinic), and the bond-
valence deficiency of the chain terminations are calcu-
lated for the masuyite sheet with a 12.241, cÂÃÄÅÆÇ
(Burns & Hanchar 1999). Reorientation of the axes (c =
a, a = b) results in edge indices identical to those in the
minerals of the becquerelite group.

FIG. 6. The layer of polymerized uranyl-bearing polyhedra in becquerelite; this layer can
be constructed of clusters of three polymerized pentagonal bipyramids (indicated in red
and blue). These clusters are structurally identical to the principal aqueous species
[(UO2)3(OH)5(H2O)5]+ in a weakly acidic solution. The position of the interstitial com-
plex is indicated by the Ca atoms in the interlayer (green circles). Clusters attached on
the [100] and [010] edges are indicated in yellow (see text for details).
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The (OH) positions in the masuyite sheet differ from
those in the isochemical sheet of richetite, [6]Mx
<[8.4]> Pb8.57(H2O)24[(UO2)18O18 (OH)12](H2O)17 (Burns
1999). Compared to the sheet in minerals of the
becquerelite group, one of the three (OH) groups is
missing (Figs. 4a, 7a). This results in loss of mirror
planes through the triangles parallel to [110] and [100]
(Fig. 7a). As a result, we expect a high variation in bond-
valence deficiencies on the right and left terminations
of chains parallel to [110] and [100]. This is indeed the
case: the minima in bond-valence deficiencies are lower
on the left termination than on the right termination
(Fig. 7b). This indicates the highly anisotropic charac-
ter of the corresponding edges during dissolution and
crystal growth. There is no shift between the layers ei-
ther in masuyite or protasite, and the interstitial com-
plexes are more or less homogeneously distributed in
the interlayer of both minerals (Burns & Hanchar 1999,
Pagoaga et al. 1987). Thus we have to consider only the

average minima in bond-valence deficiencies for both
terminations. Based on these minima, we predict that
the probability of occurrence of edges decreases in the
sequence [110] > [100] >> [130] > [310] = [010] >
[210].

Morphology of masuyite and protasite

Vaes (1947) and Pagoaga et al. (1987) observed sec-
tor twinning with a 60° rotation of the twin plane around
[001] in masuyite and protasite; the corresponding twin
planes are [100] and [110]. Figure 7c shows a twin on
[110], where the (001) face is bounded by the [100] and
[110] edges (Vaes 1947). These observations indicate
that the twin planes occur parallel to the missing mirror
planes orthogonal to [100] and [110]. Instead of the pre-
dicted anisotropic growth of crystals, masuyite and
protasite crystals show extensive twinning on [100] and
[110]. This extensive twinning may be a result of the

FIG. 7. (a) The [(UO2)3O3(OH)2]2– structural unit in minerals of the masuyite group. (b) Calculated bond-valence deficiencies
of the left and right forms of chain terminations on chains parallel to the edges [100], [010], [310], [110], [130] and [210]. (c)
Twins of masuyite (or protasite) crystals across [110], with the (001) face defined by the [100] and [110] edges.
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large differences in the minima of the bond-valence
deficiencies of the corresponding chains.

THE (100) FACE OF CURITE

Curite, Pb3[(UO2)8O8(OH)6](H2O)3, has space-
group symmetry Pnam, with a 12.551, b 13.003, c 8.390ÈÉÊËÌÍÎÏ

et al. 1981). The (sheet) structural unit is
parallel to (100) and contains pentagonal and tetragonal
biypramids. The arrangement of polyhedra produces
slabs parallel to [001] that are linked via equatorial (OH)
groups (Fig. 8a). In space-group symmetry Pnam, adja-
cent layers are related by a two-fold screw axis, and
therefore are rotated by 180° relative to each other.
Hence, left and right terminations of the chains of poly-
hedra occur together on the corresponding edges. The
interstitial complexes are arranged in rows parallel to
[001]. Similar to the minerals of the becquerelite group,
an attached cluster or polyhedron at the [100] edge will

accept bonds from the interstitial complex above or be-
low the corresponding kink-site. Hence, the arrangement
of interstitial complexes along [001] may promote
growth in this direction. Figure 8b shows the calculated
bond-valence deficiency for chains of polyhedra paral-
lel to the edges [001], [012], [021], [011] and [010],
where the [021] chain is a linear combination of the
[001] and [011] chains, and the [012] chain is a combi-
nation of the [011] and [010] chains. There are many
other possible chains that are a linear combination of
either [001] and [011] or [010] and [011]. In the first
case, we can indicate the chains with the general indi-
ces [0k>l], and in the second case with the general indi-
ces [0k<l]. On the basis of the bond-valence deficiencies
of the chains of polyhedra parallel to [001], [011] and
[010], one would expect that the chains of polyhedra
parallel to [0k>l] have lower deficiencies than chains of
polyhedra parallel to [0k<l]. This is indeed the case;
chains of polyhedra parallel to [021] have a lower mini-

FIG. 8. (a) The [(UO2)8O8(OH)6]
2– structural unit in curite and the chains of polyhedra parallel to [001] (red), [011] (brown),

[010] (dark green), [021] (dark blue) and [012] (light blue). The positions of the Pb atoms are indicated with large green
circles. (b) Calculated bond-valence deficiencies of the left and right forms of chain terminations on chains parallel to the
edges [001], [010], [011], [012] and [021].
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mum in bond-valence deficiency than chains of polyhe-
dra parallel to [012] (Figs. 8b, c).

The minima in bond-valence deficiency of chain ter-
minations in the right and left form indicate that the
probability of occurrence of edges decreases in the se-
quence [001] > [011] = [0k>l] > [0k<l] > [010]. Because
the minima in bond-valence deficiency indicate a high
stability of the [001] edge and because the interstitial
complexes are arranged parallel to this edge, we predict
that the (001) face will be prominent on curite crystals,
which will be dominated by the [001] edge.

Figures 9a, b show curite crystals obtained by syn-
thesis (Schindler et al. in prep.) and from a mineral
sample from the Shinkolobwe mine, Democratic Repub-
lic of Congo. Both crystals are elongate parallel to [001]
(Perloff 1998), but the synthetic crystal is defined by
[011] and [0k>l] edges (with k = 4 and l = 3), whereas
the crystals of the mineral sample are exclusively de-
fined by the [011] and [001] edges (Fig. 9d). Elonga-
tion of the crystals parallel to the [001] edge indicates
the predicted dominance of that edge, and the occur-

rence of the [011] and [0k>l] edges also is in agreement
with our predictions.

THE (001) FACE OF MINERALS

OF THE CARNOTITE GROUP

The minerals of the carnotite group contain the struc-
tural unit [(UO2)2(V2O8)]

2–, a sheet containing (UO7)
pentagonal bipyramids and (V5+O5) square pyramids.
The (V5+O5) square pyramids share common edges and
form a [V2O8] dimer, which shares corners with dimers
of edge-sharing (UO7) pentagonal bipyramids
(Fig. 10a).

Five-coordinated vanadium in (V5+O5) square pyra-
mids is characterized by the occurrence of one or two
strong vanadyl bonds. Schindler et al. (2000) indicated
the number of vanadyl bonds by a three-part coordina-
tion number in which the number of bonds are listed in
the order vanadyl, equatorial and trans. In the minerals
of the carnotite group, V5+ is in [1+ 4] coordination (i.e.,
there is one vanadyl bond, four equatorial bonds and no

FIG. 9. (a) Synthetic crystal of curite, and (b) red crystals of curite from the Shinkolobwe mine, Democratic Republic of Congo
(Perloff 1998), with a (100) face defined by [001], [0k>l] (with k = 4 and l = 3) and [011] edges.
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trans bonds), and the average equatorial V5+–O bond-
valence is 0.79 vu (Schindler et al. 2000).

Depending on the interstitial complex, the minerals
of the carnotite group have orthorhombic or monoclinic
symmetry. Structural data of minerals of the carnotite
group are available for francevillite (Mereiter 1986),ÐÑÒÓÔÕÓÖÔ×ØÙÒÚÕÔÛÜÔÝÞÒÙÕßàáßâãäÕåÝÔÕæÓÔÒÓÖÔ×çÓÒÔÖ
et al. 1980). The structural data show that there are no
shifts between the layers, and that the interstitial com-
plexes are more or less equally distributed between the
layers of these minerals. The bond-valence deficiencies
of the different chain-terminations are calculated with
the cell a 10.419, bèéêßëìÖäíÔÕîÒÙïÖðÔÝÖÒÑÐÖÑÒÔ
refinement of francevillite, [9]Ba(H2O)5[(UO2)2(V2O8)]
(Mereiter 1986). Figure 10b shows the calculated bond-
valence deficiencies of chain terminations parallel to
several edges. Inspection of the corresponding minima

in bond-valence deficiency shows that the probability
of occurrence of edges decreases in the sequence [010]
> [110] >> [100] = [120] > [210].

Morphology of minerals of the carnotite group

Minerals of the carnotite group form large idiomor-
phic crystals. Figure 10c shows green crystals of
sengierite, [6]Cu2(OH)2(H2O)6[(UO2)2(V2O8)], from the
Luiswishi mine, Democratic Republic of Congo (Perloff
1998) and yellow crystals of tyuyamunite, Ca[(UO2)2

(V2O8)](H2O)8, from the Marie mine, Montana (http://
www.dakotamatrix. com/GalleryImages/Rare/tyuy1b.
jpg). Figure 10d shows the general morphology of the
(001) basal face on almost all crystals of minerals of the
carnotite group (Frondel 1958). The (001) face is
bounded primarily by the [010] and [110] edges, with

FIG. 10. (a) The [(UO2)2(V2O8)]
2– structural unit in minerals of the carnotite group. (b) Calculated bond-valence deficiencies of

chain terminations on chains parallel to the edges [100], [010], [110], [120] and [210]. (c) Green crystals of sengierite from
the Luiswishi mine, Democratic Republic of Congo (Perloff 1998) and yellow crystals of tyuyamunite from the Marie mine,
Montana (http://www.dakotamatrix.com/galleryimages/rare/tyuy1b.jpg). (d) Characteristic morphologies of the basal (001)
face, with dominant [010] and [110] and minor [100] edges.
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small [100] edges. These observations are in agreement
with our predictions. The geometrical arrangement of
interstitial cations is similar in all minerals of the carno-
tite group, and hence the different types of interstitial
cations have minor or negligible effect on the stability
of specific edges on the [(UO2)2(V2O8)]

2– sheet.

THE (010) FACE OF MINERALS

OF THE URANOPHANE GROUP

The minerals of the uranophane group are based on
[(UO2)SiO3(OH)]– sheets, which contain (U6+�7) pen-
tagonal bipyramids and acid [SiO3(OH)] groups (Fig.
11a). The pentagonal bipyramids share edges to form
chains connected by (Si�4) tetrahedra. The (OH) groups
are located at the free apices of the (Si�4) tetrahedra and
form hydrogen bonds to interstitial (H2O) groups. The
minerals of the uranophane group are monoclinic and

triclinic. The structural data on these minerals indicate
that between the layers, there is a minimum shift that
does not exceed one chain-width, and this small shift
may not affect the stability of the corresponding edges.
Interstitial complexes are homogeneously distributed
between the layers in minerals with the �-uranophane
structure-type (Burns 1999). For the �-uranophane
structure, the interstitial complexes are arranged in rows
parallel to [100] (Fig. 11a). Each interstitial complex
occurs above and below the uranyl chain parallel to
[001]. An attached pentagonal bipyramid on this chain
will not accept any bonds from the interstitial complex.
Hence, the interstitial complex cannot promote cluster
attachment at the [001] edge, and the arrangement of
interstitial cations in �-uranophane may not signifi-
cantly influence growth of the crystals. The bond-va-
lence deficiency of the chain terminations are calculated
with the cell a 6.632, cñòóôõõö÷ø�-uranophane (re-

FIG. 11. The [(UO2)SiO3(OH)]– structural unit in minerals of the uranophane group, with the interstitial (Ca�8) polyhedra
indicated in light blue. (b) Calculated bond-valence deficiencies of chain terminations on chains parallel to the edges [001],
[100], [201], [504], [101], [102] and [104]. (c) Yellow prisms of �-uranophane from the Rossing mine, Namibia (Perloff
1998). (d) Morphology of �-uranophane crystals with a (010) face defined by the [001] and [100] edges; the “edges” [201]
and [101] occur mainly as growth zones.



PREDICTION OF MORPHOLOGY OF URANYL-SHEET MINERALS 1665

oriented from abc to cba, Viswanathan & Harneit 1986)
and with an average bond-valence of 1.0 vu for the equa-
torial Si–O bond. In [(UO2)SiO3(OH)]–, if one consid-
ers chains of polyhedra that do not contain silicate
tetrahedra with more than one free equatorial ligand, ev-
ery [h0l] edge has only one possible chain-termination.
Figure 11b shows the corresponding bond-valence de-
ficiency of the single chain-termination parallel to each
edge. The minima in deficiency indicate that the prob-
ability of the occurrence of edges decreases in the se-
quence [001] >> [100] >> [201] >> [504] >> [101] >>
[102] >> [104].

Morphology of minerals of the uranophane group

All minerals of the uranophane group form prismatic
to acicular crystals parallel to [001] and with a promi-
nent (010) basal face. Figure 11c shows yellow prisms
of �-uranophane, [8]Ca(H2O)5 [(UO2)(SiO3OH)]2, from
the Rossing mine, Namibia (Perloff 1998). Steinocher
& Novácěk (1939) and Branche et al. (1951) showed
that the termination of �-uranophane crystals is bounded
by the [100], [201] and [101] edges. The latter two edges
occur mainly on growth zones, but almost disappear in
the last stages of crystallization (Fig. 11d). These ob-
servations on �-uranophane show for the first time the
direct relation between growth rate and bond-valence
deficiency on the corresponding chains of polyhedra in
uranyl-oxide minerals: the chain parallel to [100] has a
lower minimum in bond-valence deficiency than the
chains parallel to the faster-growing [201] and [101]
edges. The observed morphology is thus in agreement
with our predictions.

SUMMARY

We can predict the occurrence of edges on the basal
faces of uranyl-oxide minerals using the bond-valence
deficiency of anion-terminations along chains of poly-
hedra, the shift and orientation of adjacent layers, and
the arrangement of interstitial cations (Schindler &
Hawthorne 2004). These predictions are in agreement
with observation on minerals with different interstitial
complexes and with different sheets as structural units.
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