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1. Summary 
 

During spermatogenesis, spermatogonial stem cells (SSCs) continuously give 

rise to mature male germ cells, which contain the genetic information that is transmit-

ted to the next generation. SSCs, also known as germline stem cells (GSCs), can be 

cultured and maintained in vitro without significant loss of their typical characteristics, 

such as grape-like morphology, expression of specific marker genes including Oct4, 

Tex18, Piwil2, Vasa, Dazl, Utf1, and Fragilis at molecular level and CD9, CD90, in-

tegrin alpha6, integrin beta1, and Vasa at the protein level. In vivo these stem cells are 

unipotent as they normally only give rise to sperm. The possibility to sustain GSCs in 

vitro could provide research models to study the molecular mechanisms involved in 

reprogramming and differentiation of GSCs as well as application of these models in 

different fields e.g.- potential clinical application, drug development, or gene correc-

tion therapy. 

 Recently germline-derived pluripotent stem cells (gPSCs) were generated 

from fetal or adult GSCs. Under specific culture conditions, without activation 

through exogenous transcription factors, pluripotency could be induced in otherwise 

unipotent GSCs. These gPSCs are very similar to other pluripotent stem cells, such as 

embryonic stem cells (ESCs). Pluripotency of gPSCs was confirmed in vitro by their 

ESC-like morphology, gene expression profile, and differentiation ability into three 

germ layers, in vivo by chimera formation, germline contribution, and germline 

transmission. 

 In the present thesis, gPSCs were evaluated as a source for the derivation of 

one kind of somatic cells, namely endothelial (EC)-like cells. The gPSC-derived EC-

like cells showed cobblestone morphology, typical of endothelial cells. They were 

characterized at molecular and cellular level and revealed expression of endothelial 

cell-specific markers including Tie2, CD31, VE-Cadherin, vWF, Flk1, Flt1, and 

Icam2. In addition, in vitro functionality of the EC-like cells was confirmed by Dil-

conjugated acetylated low-density lipoprotein (LDL) uptake and tube formation as-

say, when cultured on matrigel.  

 Another study described in the present thesis is the stepwise generation of dif-

ferent types of spermatogenetic cells from established GSCs. The initial step of in  
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vitro spermatogenesis, namely differentiation of GSCs into meiotic cells is associated 

with changes in c-kit protein expression. The developmental status of GSCs into pre-

meiotic cells was determined by c-kit protein expression in a time course during dif-

ferentiation using flow cytometry analysis. At the beginning of in vitro differentiation, 

nominal levels of c-kit were detected, while c-kit expression was upregulated during 

the period of the first differentiation step. Upregulation was followed by subsequent 

downregulation, indicating that GSCs enter the first wave of spermatogenesis known 

as spermatocytogenesis. The transition of mitosis to meiosis, which is defined by the 

occurrence of DNA recombination, was confirmed by immunofluorescence staining 

for synaptonemal complex protein 3 (Scp3), a specific maker for meiotic cells in the 

first meiotic division. Typical staining of spermatocytes at various stages of meiosis I 

was distinguishable either by their punctuated or elongated form. The derivation of 

primary spermatocyte-like cells from GSCs was further confirmed by gene expression 

analysis of the premeiotic marker Oct4 and the meiotic markers Stra8, Dmc1, and 

Scp3. 

This in vitro system using GSCs will help elucidate the underlying processes 

and mechanisms required for the first wave of spermatogenesis, as well as the study 

of spermatocytogenesis and the onset and progression of meiosis. Further steps will 

be required to develop an in vitro culture system to obtain even later stages of sper-

matogenesis 
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2. Introduction 

2.1 Germ cell development  
 

Primordial germ cells (PGCs) are the precursors of gametes that differentiate 

in gonads. During embryogenesis, PGCs form clusters within the extra-embryonic 

mesoderm and increase in number, when they are in the midline extra-embryonic 

mesoderm posterior to the primitive streak. The specification of germ cells to PGCs is 

induced under the control of pathways of bone morphogenetic proteins (BMP) and 

members of the transforming growth factor beta (TGF-b) super family BMP4 and 8b 

are expressed in the extra-embryonic ectoderm posterior to the primitive streak and 

play a role in the induction of PGCs from the proximal epiblast and formation of PGC 

precursors. BMP signaling is transduced through decapentaplegic homolog proteins 

(SMAD) including SMAD1 and 5, other types of the TGF-b super family, which are 

expressed in the proximal cells of the epiblast. In addition, it has been suggested that 

B-lymphocyte-induced maturation protein 1 (Blimp1, also known as Prdm1) is also 

required to induce PGCs. Blimp1 starts to be expressed in the epiblast, subsequently 

in the proximal layer of the epiblast and eventually its expression is restricted to the 

founder population of PGCs (Ko and Schöler, 2006; Ying et al., 2002). 

 At 6.0 days post coitum (dpc), also termed embryonic day 6.0 (E6.0), PGC 

precursors are set aside from the epiblast and at 7.25 dpc form a cluster of about 40 

founder cells located in the extra-embryonic region of the primitive streak. At 8.0 dpc, 

PGCs are located at the base of the allantois. The cells migrate along the hindgut 

around 9.5 dpc, the dorsal mesentery at 10.5 dpc and enter the genital ridges at 11.5 

dpc. Subsequently, at 12.5 dpc, most cells have reached the gonads, where they con-

tinue to actively proliferate. Until 13.5 dpc, the number of PGCs rises to 25.000 cells. 

Between 13.5 dpc and 14.5 dpc, female PGCs (now called oogonia) enter prophase I 

of meiosis and undergo meiotic arrest at the diplotene stage around birth (Ginsburg et 

al., 1990; McLaren, 2003; Molyneaux et al., 2001; Saitou, 2009; Sasaki and Matsui, 

2008), while male germ cells are arrested until birth and become prospermatogonia 

also known as gonocytes in the postnatal testis. They enter meiosis around postnatal 

day (PND) 3 giving rise to spermatogonia (McLaren, 2003).  
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Figure 1. Germ cell development (figure modified from Sasaki et al, Nature Re-
views Genetics, 2008). At embryonic day 3.5 (E3.5), the inner cell mass is formed, 
afterwards becoming epiblast. PGC precursors appear at around E6.0 and develop into 
PGC founder population  (about 40 cells) at around E7.25, which are located in the 
extra-embryonic region of the primitive streak. PGCs start to migrate from the allan-
tois through hindgut and mesentery, finally reaching the genital ridge and settle at 
E12.5. At E13.5, the number of PGCs increases to about 25.000 cells and in the male, 
PGCs enter mitotic arrest, while in the female, PGCs enter meiosis. 
 

2.1.1 Spermatogonial stem cells 
 

SSCs are male GSCs and localized on the basement membrane of seminifer-

ous tubules in the testis. They can either renew themselves to maintain the stem cell 

pool or differentiate into mature spermatogenetic cells in order to transit the genetic 

information to the next generation. The balance of self-renewal and differentiation in 

vivo is controlled precisely. Mouse testes contain undifferentiated spermatogonial 

population including type Asingle, Apaired, Aaligned-4, Aaligned-8, Aaligned-16, and differentiat-

ing spermatogonial population including type A1, A2, A3, A4, intermediate spermato-

gonia, and type B spermatogonia. In particular, type Asingle spermatogonia can be iden-

tified as self-renewing stem cells. In primates, type Adark and Apale spermatogonia are 

considered to be undifferentiated spermatogonial populations, namely resting (Adark) 

and active (Apale) SSC populations. They divide further into differentiating spermato-

gonial populations including type B1, B2, B3, and B4 spermatogonia (Oatley and 

Brinster, 2012). 
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Two ways of proliferation have been suggested in terms of mitotic division of 

spermatogonial populations: in one case division is symmetric, in the other it is 

asymmetric. In the case of symmetric division, one self-renewing spermatogonium 

results in two identical self-renewing spermatogonia, whereas another spermatogoni-

um produces two committed daughter cells that during spermatogenesis differentiate 

into sperm. In case of an asymmetric division, one self-renewing spermatogonium 

divides into a self-renewing spermatogonium and a committed progenitor spermato-

gonium through the transient amplifying progenitor (de Rooij and Russell, 2000). 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Mitotic division of spermatogonia in mouse and primate (figure modi-
fied from Oatley and Brinster, Physiol Rew, 2012). There are two types of spermat-
ogonia in spermatogonial development-i.e. undifferentiated spermatogonia and differ-
entiating spermatogonia. The number of mitotic cell divisions is species-dependent 
and it has not yet been exactly known in primate, in contrast to other species includ-
ing mouse. 
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2.1.2 Spermatogenesis

Spermatogenesis is a multi-step process and can be distinguished in three major 

phases: spermatocytogenesis, meiosis, and spermiogenesis. 

 

 

 

Figure 3. Schematic description of spermatogenesis (figure modified from 
Wolgemuth, Nature Genetics, 2006). At the beginning of spermatogenesis, the pro-
liferative spermatogonia divide through other subtypes of spermatogonia into prelep-
totene spermatocytes. Subsequently, they undergo two meiotic phases and during the-
se phases, primary and secondary spermatocytes are generated. Finally after comple-
tion of meiosis, spermatids differentiate into spermatozoa, a process known as sper-
miogenesis. Abbreviation: n = ploidy; 2n = diploid; 1n = haploid; C = chromatid. 
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 During spermatocytogenesis, A single (undifferentiated type As) spermatogonia 

are identified as spermatogonial stem cells, which develop through the differentiating 

type A and B spermatogonia into preleptotene primary spermatocytes. The number of 

mitotic spermatogonial divisions from type A spermatogonia to preleptotene primary 

spermatocytes occur for instance nine to eleven times in mice and rat, in human (and 

other primates), although not precisely known, certainly lower than in mice and rat 

(de Rooij, 2001; de Rooij and Russell, 2000). Thereafter, these cells enter meiosis and 

proceed through two meiotic divisions, thus reducing the sets of chromosomes 

(Wolgemuth, 2006). When the preleptotene primary spermatocytes enter the S-phase 

of the cell cycle, their chromosomes will be duplicated and form two sister chroma-

tids. 

 Meiosis differs from mitosis, in which the cells divide twice after a single DNA 

replication, first by separating homologous chromosomes and then by separating sis-

ter chromatids. Meiosis I can be divided into four stages: prophase, metaphase, ana-

phase, and telophase. Prophase I of meiosis is the longest stage in the first meiotic di-

vision and exhibits most of the defining events that are unique to meiosis, in which 

homologous pairs, double stranded break forms, and DNA recombination begins be-

tween homologues chromosomes. DNA recombination also known as crossover is 

defined as the exchange of genetic information between chromosomes of different 

parental origin. It results in generation of genetically different cells and leads to in-

creased genetic variability in offspring. Therefore, DNA recombination is a crucial 

step in meiosis and the elementary purpose of the specialized events of meiotic pro-

phase I.  

 The prophase I is further divided into five developmental stages: leptotene, zy-

gotene, pachytene, diplotene, and diakinesis. A meiosis-specific structure known as 

the synaptonemal complex (SC) is formed during prophase I. It is composed of two 

lateral elements (LE) forming along the entire length of each sister chromatid, and 

one central element (CE) connecting the two lateral elements and thus linking the two 

homologous chromosomes in a process called synapsis. The various stages of pro-

phase I are defined by the degree the SC is formed. This is shown in Figure 4 and can 

be visualized by immunostaining of SC components, including the LE protein, synap-

tonemal complex protein 3, and the CE protein, synaptonemal complex protein 1 (Lee 

and Hirano, 2011). 
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Figure 4. Different stage in prophase I of meiosis (figure modified from Lee et al, 
J Cell Biol, 2011). Synaptonemal complex is formed during prophase I of first meiot-
ic division. In leptotene, lateral elements (synaptonemal complex protein 3; Scp3) as-
sociates with two sister chromatids of each chromosome. As prophase I progresses, in 
zygotene, the lateral elements are linked by central elements (synaptonemal complex 
protein 1; Scp1), the process known as synapsis. In pachytene, the chromosomes are 
completely synapsed, thereafter, central elements are dissociated in diplotene. 
  

 

 After prophase I follow metaphase I, anaphase I, and telophase I. During meta-

phase I, pairs of homologous chromosomes align opposite each other on the meta-

phase plate and then separate into different daughter cells during anaphase I. The se-

cond meiotic division depicts a cell division like mitosis, without DNA replication or 

recombination, in which the sister chromatids are separated, termed anaphase II. Dur-

ing meiosis II, the chromosome number is reduced by half and results in four haploid 

cells containing a single copy of each chromosome. Therefore, cells in the first meiot-

ic division are tetraploid primary spermatocytes, while those after the first meiotic 

division are diploid secondary spermatocytes that have two sets of chromosomes. One 

primary spermatocyte gives rise to two secondary spermatocytes. They divide further 

in the second meiotic division to produce haploid round spermatids with a single set 

of chromosomes, which then undergo a series of complex molecular and morphologi-

cal events known as spermiogenesis. During this process, cell divisions do not occur 

and the haploid cells finally differentiate into sperm.  
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Figure 5. The multiple steps in the mouse spermiogenesis (figure modified from 
Yan et al, Molecular and cellular Endocrinology, 2009). Mouse spermiogenesis is 
composed of 16 steps, which are labeled with 1-16 and stages of the seminiferous epi-
thelial cycles categorized by roman numerals I-XI are demonstrated. 
 

 

 The last phase in spermatogenesis, named spermiogenesis, can be divided into 

three phases; Golgi phase, Cap phase (development of acrosome, nuclear condensa-

tion), and Maturation phase (formation of flagella) (Yan, 2009). The Golgi apparatus 

has an important role in the early steps of spermiogenesis, since the formation of the 

acrosome is dependent on their ability to produce vesicles and granules containing the 

enzymatic components of the acrosomic structure covering the developing sperm nu-

cleus. Thus, in the Golgi phase, the number of Golgi apparatuses increases. They get 

in contact with the nuclear membrane that secretes factors essential for membrane fu-

sion. Step 1 spermatids show a small, perinuclear Golgi region without an acrosomic 

vesicle or granule. They differentiate further into step 2 and step 3 spermatids. Sper-

matids have proacrosomal vesicles and granules within the Golgi apparatus, forming a 

single, large acrosomal granule within a larger vesicle that will indent the nucleus.  

 In the cap phase, the acrosomal cap is formed. As the cap is formed, chromatin 

compaction progresses, thus forming a condensed nucleus. The acrosomic granule of 

step 4 and 5 round spermatids extends to the nuclear envelope and the vesicle begins 

to flatten into a small cap over the nuclear surface. Subsequently, in steps 6 and 7 

round spermatids, the acrosomic vesicle is getting thinner and the granule spreads out.  
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 In step 8 round spermatids, the acrosome covers approximately one third of the 

nuclear surface and the nuclei begin to change their shape. In steps 9 to 14 spermatids, 

the acrosomal structure moves over the ventral surface of the elongating spermatid 

nucleus and the migration of the acrosome is completed approximately by step 14 

spermatids. During these spermatid steps, condensation of the chromatin occurs, as 

the chromosomes are packed more tightly.  

 In the maturation phase, step 15 and 16 spermatids show fewer changes in their 

nuclear shape and acrosomal migration. The nucleus continues to condense and the 

acrosome matures further and flattens almost all the nucleus, apart from that portion 

linked to the tail structure. Excess cytoplasm is displaced, afterwards prominent cyto-

plasmic lobes and residual bodies are formed, which contain mitochondria, ribosome, 

lipids, vesicles, and other cytoplasmic components. Finally, the flagellum is formed 

with the capacity for motility (Eddy, 2002). 

2.2 In vitro culture of spermatogonial stem cells 
 

The two major characteristics, namely self-renewal and differentiation, are dif-

ferently regulated in neonate and adult testis. The neonate or prepubertal testicular 

microenvironment support the self-renewal of SSCs to establish the stem cell popula-

tion, while the adult testes harbors self-renewing SSCs as well as differentiating ones. 

Many studies have been done with respect to interaction between SSCs and somatic 

cells, such as the effect of the niche during development of SSCs upon transplantation 

into different species, impact of colonization activity of SSCs, aging effect of somatic 

cells on SSCs, and correction of defective genes in vitro. The findings from those re-

ports reveal the importance of an appropriate microenvironment during postnatal de-

velopment in male testis. In fact, it has been shown that a reduced SSC activity and 

production of mature spermatogenetic cells is caused primarily by impairment of the 

niche rather than by stem cells themselves (Kubota and Brinster, 2006; Oatley and 

Brinster, 2012; Ryu et al., 2006; Schmidt et al., 2011).  

The self-renewal and differentiation potential of SSCs can be maintained un-

der defined in vitro culture conditions, which make the SSCs an attractive and availa-

ble source for in vitro experiments. SSC populations can be obtained from either neo-

nate or adult mouse testes and are termed germline stem cells once cultured in vitro.  
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In comparison to neonate testicular cells that contain more mitotically dividing 

spermatogonial cells, adult testes contain only 0.01-0.03% of undifferentiated sper-

matogonial cells, which jeopardizes experimental analyses and thus raised interest in 

developing cultivation procedures in vitro. To date, many reports have demonstrated 

the in vitro culture of mouse GSCs under different conditions. Cells were cultured on 

different kinds of feeder cells, among them mouse embryonic fibroblasts (MEFs), 

which turned out to be the most effective supporting cell type for maintenance and 

proliferation of SSCs. Under feeder-free culture conditions, GSCs can be grown on 

various types of proteins including laminin, collagen, and matrigel. The medium 

compositions differ slightly, but commonly contain glial cell line-derived neu-

rotrophic factor (GDNF), basic fibroblast growth factor 2 (FGF2), and leukemia in-

hibitory factor (LIF) under both, serum-containing and serum-free culture conditions 

(Kanatsu-Shinohara et al., 2005; Kanatsu-Shinohara et al., 2003; Ko et al., 2009). 

2.2.1 Role of growth factors in spermatogonial stem cell proliferation 
 

In order to study the biological activity of SSCs, either combinations of cyto-

kines or individual cytokines were added to the culture medium and their effect on 

survival and growth of SSCs was documented. It has been suggested that GDNF, 

FGF2, epidermal growth factor (EGF), insulin-like growth factor 1 (IGF1), and LIF 

are essential factors to support the survival and proliferation of SSCs by blocking dif-

ferentiation and thus maintaining SSC self-renewal potential under defined in vitro 

culture conditions (Kanatsu-Shinohara et al., 2007; Kubota et al., 2004; Nagano et al., 

2003). BMP4 and Neuregulin1 on the other hand influence differentiation of SSCs 

(Nagano et al., 2003; Pellegrini et al., 2003). 

In particular, GDNF has been shown to be a crucial regulator to sustain the 

function of SSCs-i.e. self-renewal capability in vivo. Supplementation of GDNF ena-

bles the long-term survival and maintenance of undifferentiated spermatogonia popu-

lations in vitro; however, it is unclear whether GDNF has an effect on proliferation of 

SSCs (Meng et al., 2000; Yomogida et al., 2003). Nevertheless, the combinations of 

growth factors like FGF2 or EGF together with GDNF support the expansion of SSCs.  
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Figure 6. Signaling pathway in spermatogonial stem cells (figure from Oatley et 
al, Annu. Rev. Cell Dev. Biol, 2008).  Schematic presentation of signaling cascades, 
which play a role in the regulation of survival, proliferation, and self-renewal of SSCs. 

 

As shown in Figure 6, the binding of GDNF to its receptor complex, c-Ret and 

the glycosylphosphatidylinositol (GPI)-anchored binding molecule GDNF family re-

ceptor alpha 1 (Gfrα1), initiates the signaling cascade of phosphoinositide 3-kinase 

(PI3K) and Src family kinase (SFK). This initiation leads to the downstream activa-

tion of the serine-threonine kinase AKT (also known as protein kinase-B) signaling, 

which has an influence on the survival and proliferation of SSCs in vivo. SSCs ac-

cordingly express c-Src (Rous sarcoma oncogene), Yes (Yamaguchi sarcoma viral on-

cogene), Fyn (fyn proto-oncogene), Lyn (Lyn tyrosinase kinase), and Hck (hemato-

poietic cell kinase). In addition, SFK signaling regulates bcl6b (B cell 

CLL/lymphoma 6, member B; also known as bazf), etv5 (Ets variant gene 5; also 

known as erm), and lhx1 (Lim homeobox protein 1 or lim1), which are known to be 

crucial to sustain the self-renewal potential of SSC in in vitro culture. Although the 

important role of Plzf and Taf4b in the self-renewal of SSCs in vivo has been suggest-

ed, an essential role of these genes in the self-renewal of in vitro cultured SSCs 

through supplementation of the growth factor GDNF has not been demonstrated yet. 

Furthermore, the role of the cytokines EGF and FGF2 in survival and self-renewal has 

not yet been documented (Braydich-Stolle et al., 2007; Lee et al., 2007; Oatley et al., 

2007). 
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2.2.2 Restoration of spermatogenesis by spermatogonial stem cell transplantation 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Testicular transplantation (figure modified from Kubota et al, Nat Clin 
Pract Endocrino Metabol, 2006). Testicular cells can be obtained from donor testes 
that express LacZ or GFP. SSCs can be cultured in vitro and restore spermatogenesis 
upon injection into endogenous germ cell-depleted recipient mice. Donor genes get 
transmitted to the next generation, thereby confirming the functionality of the injected 
donor spermatogonial stem cell populations. 
 

To identify the spermatogonial stem cells and examine their biological activi-

ty or functionality, transplantation techniques were developed utilizing different spe-

cies (Brinster et al., 2003; Kubota and Brinster, 2006; Ogawa et al., 1997). Among 

them, the mouse model depicts the most studied animal model. The donor cells are 

collected from fertile mice and are microinjected into seminiferous tubules of recipi-

ent infertile mice. To reduce or destroy the endogenous spermatogenesis in recipient 

male, several methods are used including radiation, chemotherapeutic drugs, and pro-

duction of transgenic mice like homozygous W mice carrying a c-kit point mutation 

in the white spotting locus or vitamin A deficient mice. The commonly used method 

is busulfan treatment of males, which leads to the disappearance of endogenous germ 

cells from the tubule lumen of recipient mice. The donor cells express reporter 

transgenes e.g.- LacZ or GFP that enable identification of donor cells after transplan-

tation.  
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 There are three methods to introduce donor cells into the seminiferous tubules 

of recipients. The first method is a direct injection of donor cell suspensions into the 

seminiferous tubules. The cells flow through the rete testis and fill each tubule indi-

vidually. Various site injections can be required to fill a large number of tubules. The 

second method is injection of cells directly into the rete testis, to which all tubules are 

connected. Injection via one site will therefore fill all tubules. The third method is in-

jection of donor cells into the fine efferent ducts running from the rete testis to the 

head of the epididymis, thereby filling the rete testis and subsequently the tubules. 

After transplantation, the donor-derived cells are located on the basement membrane 

of the seminiferous tubules and start to proliferate, subsequently differentiating into 

other types of germ cells and filling the tubules from the basement membrane towards 

the lumen. Collectively, all these methods result in a similar donor cell-derived colo-

ny formation rate in recipient infertile males, thereby restoring the spermatogenesis 

throughout the life of the recipient males. 

2.3 Reprogramming of germline stem cells 
 

 To date, several pluripotent stem cell types, including induced pluripotent stem 

cells (iPSCs), embryonic germ cells (EGCs), and gPSCs have been generated using 

different strategies. The best-studied pluripotent stem cell population is ESCs, which 

are derived from the inner cell mass (ICM) of the blastocyst. Recently, reprogram-

ming of fibroblast somatic cells into iPSCs was accomplished through ectopic expres-

sion of defined transcription factors-e.g. Oct4, Sox2, Klf4, and c-Myc (Takahashi et al., 

2007; Takahashi and Yamanaka, 2006). Thereafter, many independent experiments 

were performed to introduce selected sets of reprogramming factors into different 

kinds of somatic cells using various delivery methods to generate pluripotent stem 

cells (Eminli et al., 2009; Hanna et al., 2008; Heng et al., 2010; Kim et al., 2009a; 

Kim et al., 2009b; Kim et al., 2008; Okita et al., 2007). Moreover, other types of plu-

ripotent stem cells such as EGCs and ESC-like cells have been generated from unipo-

tent germline cells-i.e. PGCs and GSCs, respectively (Kanatsu-Shinohara et al., 2004; 

Matsui et al., 1992; Resnick et al., 1992). Compared to iPSCs, the conversion of 

GSCs occurs under defined culture conditions without delivery methods. These ESC-

like cells were termed gPSCs and were first generated from GSCs isolated from neo-
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natal mouse testis and subsequently also from testis of adult Oct4-GFP transgenic 

mice (Ko et al., 2010; Ko et al., 2009; Ko et al., 2011). gPSCs depict a valuable tool 

to study the mechanisms underlying the induction of certain states of pluripotency in 

GSCs.  

 iPSCs, EGCs, and gPSCs are morphologically similar to ESCs and express 

transcription factors regulating pluripotency of ESCs including Oct4, Sox2, Klf4, c-

Myc, Nanog, or Lin 28. Once the cells are converted to pluripotent stem cells, they 

demonstrate the unlimited self-renewal potential and differentiation ability to cell 

types of the three germ layers ectoderm, mesoderm, endoderm, and the germline. 

These converted cells are proven to be pluripotent by teratoma formation, generation 

of chimeras, and germline transmission.  

2.4 Differentiation of germline stem cells 
 

 The important feature of GSCs is their capability to produce the mature sperma-

tozoa, the process called spermatogenesis, which occurs in seminiferous tubules of 

testis. The testis is composed of two major parts, seminiferous tubules and interstitial 

tissues. The seminiferous tubules contain Sertoli cells that provide the physical sup-

port and nutrient for different types of spermatogenetic cells. The interstitial tissues 

contain other somatic cells, like myoid cells, that provide physical support and con-

tractile motion. Leydig cells secret the androgen hormone testosterone for the matura-

tion process in spermatogenesis (Cooke and Saunders, 2002; Maekawa et al., 1996; 

Mendis-Handagama, 1997; Oatley and Brinster, 2012).  

  



Introduction

 16

 

 

Figure 8. Schematic illustration of seminiferous tubules in testis (figure modified 
from Cooke et al, Nature Reviews Genetics, 2002). The testis consists of seminifer-
ous tubules and interstitial tissues. Within seminiferous tubules, germ cells are direct-
ly associated with Sertoli cells that secret various cytokines to support germ cell mat-
uration. Maturation begins with spermatogonia at the basal lamina and continues to-
ward the lumen over primary spermatocytes, secondary spermatocytes, round sperma-
tids, elongated spermatids, and to spermatozoa. The interstitial tissues lie between 
seminiferous tubules and contain clusters of Leydig cells and blood vessels. 
 

 To understand how each step of spermatogenesis is regulated, studies 

(Aflatoonian et al., 2009; Feng et al., 2002; Geijsen et al., 2004; Marh et al., 2003; 

Zhu et al., 2012) focused on either mutant animal models or on the establishment of in 

vitro culture systems to generate meiotic germ cells or haploid cells from different 

cell types, such as testicular cells or embryonic stem cells. More recently, functional 

sperm have been produced using organ culture methods, round spermatid injection 
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(ROSI), and intracytoplasmic sperm injection (ICSI) (Sato et al., 2011). However, in 

spite of intense efforts and different approaches at generating different types of sper-

matogenetic cells including functional spermatozoa, to date how each step of sper-

matogenesis is actually regulated still remains elusive. 

 In the present study, in vitro spermatogenesis from GSCs in a stepwise culture 

system has been demonstrated (Ko et al., 2010; Ko et al., 2009; Ko et al., 2011). Mor-

phological analysis, gene expression profiling, immunofluorescence staining, and 

flow cytometry revealed the characteristic properties of GSCs. Moreover, when trans-

planted into infertile mouse testis, GSCs were able to restore spermatogenesis, there-

by confirming their identity and full functional capacity.  

 For in vitro differentiation, GSCs were co-cultured with Sertoli cells in the 

presence of defined factors. The potential of GSCs to differentiate into meiotic cells 

was determined by assessing the pattern of c-kit protein expression in a time-course 

analysis by flow cytometry. It is known that expression of c-kit is not found in undif-

ferentiated spermatogonia type As, but onset of expression occurs in differentiating 

spermatogonia and c-kit downregulation is seen upon entry into meiosis (Yoshinaga 

et al., 1991). In accordance with this finding, in our study, c-kit expression was 

strongly upregulated and subsequently downregulated during culture in a subset of 

cells, suggesting that these cells had initiated differentiation and then entered meiosis.  
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Figure 9. c-kit expression in different types of spermatogenetic cells (figure mod-
ified from Yoshinaga et al, Development, 1991). The type As spermatogonia classify 
as stem cells and do not express of c-kit. The mitotic proliferation phase from differ-
ent subtypes of A spermatogonia to intermediate spermatogonia is categorized as c-kit 
dependent phase. The following phase during spermatogenesis, including meiosis and 
spermiogenesis, categorizes as c-kit independent phase. Arrows in orange indicate the 
c-kit dependent pathway and the dotted arrows in green indicate the c-kit independent 
pathway. 
 

To confirm meiotic entry and to determine the stage of the first meiotic divi-

sion, where DNA recombination occurs, immunocytochemistry was performed using 

an antibody against Scp3, a marker widely used for meiotic prophase I. Additionally, 

gene expression analysis was performed using the premeiotic cell marker Oct4 and 

meiotic cell markers c-kit, Stra8, Dmc1, and Scp3. 

 Finally, transmission electron microscopy was conducted of in vitro-generated 

germ cells and compared with in vivo-isolated testicular cells. Even though differ-

ences in the cell structure-i.e. nucleus, cytoplasmic components, and membranes-were 

observed between in vivo and in vitro cells, synaptonemal complexes were detected in 

the culture-derived germ cells. Synaptonemal complexes are exclusively formed in 

meiotic germ cells and unequivoqually mark prophase I of meiosis. 

Taken together, the observations described above clearly demonstrate that 

GSCs differentiated in vitro into meiotic cells of different stages of meiosis 
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3. Aim 

GSCs are the only adult tissue-specific stem cells that can be maintained as 

self-renewing population in vitro for long periods of time. Their biological activity 

can be proven by ability of reestablishment of spermatogenesis in infertile males after 

transplantation of donor cells. This capability or availability allows studies to find 

crucial extrinsic factors influencing GSC function and to understand how processes 

involved in self-renewal, differentiation of GSCs, and conversion of GSCs into gPSCs 

are regulated. A large number of animal models, especially the mouse model, have 

been established to study the control of spermatogenesis by ablation or over-

expression of related genes. Spermatogenetic failures have been observed, such as 

loss of SSCs, arrest during meiosis, or inadequate spermiogenesis. In addition, previ-

ous in vitro studies have identified the role of specific genes in the regulation of pro-

liferation and differentiation of GSCs into various stage-specific cells during sper-

matogenesis such as bcl6b, Oct4, c-kit, LDH-C4, and Acr3.  (Feng et al., 2002; Oatley 

et al., 2006). 

  In the present thesis, GSC lines were used as a starting source to study pro-

cesses involved in reprogramming and differentiation as summarized in Figure 10. 

Although the developmental ability of GSCs towards mature germ cells under the cur-

rent in vitro differentiation procedure is limited, this system can be utilized to study 

the first steps of spermatogenesis and how they are regulated. Furthermore, the find-

ings from this study provide hints for future studies of how to overcome obstacles 

during in vitro differentiation through establishment of optimized culture conditions 

or the necessity of a supporting microenvironment for the successful in vitro spermat-

ogenesis. 

 Additionally, it has been shown that reprogrammed gPSCs are able to differ-

entiate into somatic cells-e.g. endothelial cell-like cells. gPSCs are therefore a valua-

ble new source of pluripotent cells for drug development and toxicity testing for clini-

cal applications in the future.  
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Figure 10. Schematic presentation of studies performed on GSCs in this thesis. 
GSCs were derived from mouse testis and maintained in vitro for long-term culture. 
The GSCs were used for the generation of gPSCs, as well as for differentiation exper-
iments into meiotic germ cells. Furthermore, endothelia-like cells (EC-like cells) were 
generated from gPSCs 
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4. Material and methods 

4.1 Animals 
 

The transgenic mice including Oct4-GFP (OG2), Oct4-GFP-Rosa26, and 

Acrosin-EGFP were raised in a temperature and humidity controlled animal facility 

with a 12 h light-dark cycle controlled environment at a temperature of 22±1 °C and 

35±5% humidity. All animal procedures and experiments were conducted under pro-

tocols approved by the committee on animal care and use of the Max-Planck-Institute 

for Molecular Biomedicine. 

4.2 Generation and culture of different cells 

4.2.1 Derivation of mouse germline stem cells 
 

Testes were taken from different adult (5-7 weeks) Oct4-GFP transgenic 

mice (OG2 or OG2Rosa26) or pubertal (PND 6-7), OG2AcrosinEGFP, or Acrosin-

EGFP transgenic mice. For the derivation of GSCs, testes from 5-7 weeks old Oct4-

GFP transgenic mice (OG2 or OG2Rosa26) were used. The seminiferous tubules 

were digested either by a one-step digestion or a two-step digestion. The digestion 

solution consisted of 1 mg/ml of collagenase IV, 0.5 mg/ml of DNase I, and 0.5 

mg/ml of hyaluronidase in DMEM/F12 medium, in which dulbecco’s minimal eagle’s 

medium (DMEM) and Ham’s F12 medium are mixed at a ratio of 1:1. For the one-

step digestion, all three enzymes were used at the same time, while for the two-step 

digestion, the tubules were first digested with 1 mg/ml of collagenase IV, 0.5 mg/ml 

of DNase I, washed once with fetal bovine serum (FBS) containing medium, then fur-

ther digested with 1 mg/ml of collagenase IV, 0.5 mg/ml of DNase I, and 0.5 mg/ml 

of hyaluronidase. The tubules were incubated in a 37 °C water bath for 15-30 min and 

gently tapped every 2-3 min to facilitate the digestion. To stop the digest, FBS con-

taining medium was added and the testicular cells were gently triturated to generate a 

single-cell suspension. After washing twice with FBS containing medium, the cell 

suspension isolated from testes of pubertal mice (PND 6-7) was plated at a density of 
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120.000 cells/cm2 onto 0.1% gelatin-coated tissue culture dishes to remove somatic 

cells (2 h minimum). Depending on the amount of somatic cells still present in the 

supernatant, this procedure was repeated two to three more times until no spindle-

shaped cells were found on the plate anymore. Subsequently, the cell supernatant was 

transferred onto mouse MEFs and cultured in GSC medium described in section 3.2.4 

at 37 °C in 5% CO2 in a humidified incubator. After 8-10 days, GSC colonies could 

be observed.  

4.2.2 Derivation of mouse embryo fibroblasts 
 

MEFs were generated from E12.5 dpc embryos of C57BL/6, C3H, or CF1 

mice. The pregnant female mice were sacrificed by cervical dislocation and extra-

embryonic membranes and placentas were removed and placed in PBS. The uteri 

were isolated and the embryos were removed and immersed in PBS. After decapita-

tion of the embryos, heart, and liver as well as the extremities were removed and the 

remaining embryos were placed in DMEM medium (4.5 g/l glucose) supplemented 

with 10% (v/v) heat-inactivated FBS, L-glutamine/penicillin/streptomycin (1x), 10 

µM β-mercaptoethanol, and 1% (v/v) non-essential amino acids (NEAA) stock solu-

tion (1x). The embryos were cut into small pieces with scissors and digested with 

0.05% Trypsin/EDTA for 4 min at 37 °C. The tissue was further digested with a 4 to 

1 dilution of 0.05% Trypsin/EDTA with MEF medium. Subsequently, the digests 

were filtered through a 100-µm cell strainer and the cell suspension was centrifuged 

at 200 xg for 5 min and then plated onto gelatinized plates at a density of two to three 

embryos per 15-cm tissue culture dish. The cells were incubated at 37 °C in 5% CO2 

in a humidified incubator.  

4.2.3 Culture of mouse embryo fibroblasts 
 

MEFs were cultivated on 0.1% gelatin-coated tissue culture dishes at a densi-

ty of 12.000 cells/cm2 in MEF medium described in section in 3.2.2. For passaging, a 

sub-confluent cell layer was rinsed with PBS and then digested with Accutase for 5 

min at room temperature (RT). Fifteen percentage FBS containing medium was added 

to stop the digestion. After centrifugation at 200 xg for 5 min at RT, cells were ex-
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panded at a dilution of 1:3 to 1:5 every other day, when the cell layer had reached 

confluency. Medium was changed every 2 days. Before use of MEFs for stem cell 

cultures, cells were mitotically inactivated by γ-irradiation or mitomycin C treatment. 

The cell were irradiated for 35-45 min at 1 gy/min at RT or incubated with 10 µg/ml 

of mitomycin C for 2-3 h at 37 °C in 5% CO2 in a humidified incubator followed by 

three times washing in PBS. MEFs were cultured at 37 °C in 5% CO2 in a humidified 

incubator. 

4.2.4 Culture of mouse germline stem cells 

 
GSCs were cultivated on inactivated MEFs at a density of 12.000 cells/cm2 in 

Stem Pro-34 SFM medium supplemented with 2% (v/v) heat-inactivated FBS (56 °C 

for 30 min), 5 mg/ml of BSA fraction V solution, L-glutamine/penicillin/streptomycin 

(1x), 10 µM β-mercaptoethanol, 6 mg/ml of D-(+)-glucose, 0.085 % (w/v) DL-lactic 

acids, minimum essential medium (MEM) vitamins (1x), 1% (v/v) NEAA stock solu-

tion (1x), 1 mM sodium pyruvic acid stock solution, N2 supplement (1x), 20 ng/ml of 

mouse recombinant EGF, 10 ng/ml of human FGF2, 10 ng/ml of human GDNF, 30 

ng/ml of β-estradiol, 60 ng/ml of progesterone, and 20 ng/ml of LIF. To passage 

GSCs, cells were mechanically dislodged by tapping the culture dish and transferred 

to a conical tube. After centrifugation at 200 xg for 5 min, cells were digested with 

Accutase for 1-5 min at RT. Subsequently, 15% FBS containing medium was added 

to stop the digest. After centrifugation at 200 xg for 5 min, cells were plated onto 

MEFs. Cultures were expanded every 4-7 days at a dilution of 1:2 to 1:10, depending 

on confluency and colony size of the GSCs. The medium was changed every 3-4 

days. GSCs were cultured at 37 °C in 5% CO2 in a humidified incubator. 

4.2.5 Culture of mouse embryonic stem cells 
 

ESCs were maintained on inactivated MEFs at a density of 4.000 cells/cm2 in 

DMEM medium (4.5 g/l glucose) supplemented with 15% (v/v) heat-inactivated FBS, 

L-glutamine/penicillin/streptomycin (1x), 10 µM β-mercaptoethanol, 1% (v/v) NEAA 

stock solution (1x), and 20 ng/ml of LIF. For passaging, cells were washed once with 

PBS and incubated with Accutase for 2-5 min at RT. After centrifugation at 200 xg 
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for 5 min, cells were plated onto MEFs at a dilution of 1:2 to 1:5 every 2-7 days, de-

pending on confluency and colony size. The medium was changed every 2-3 days. 

ESCs were incubated at 37 °C in 5% CO2 in a humidified incubator. 

 

4.2.6 Culture of mouse germline-derived pluripotent stem cells 
 

gPSCs were cultivated on inactivated MEFs at a density of 4.000 cells/cm2 in  

DMEM (4.5 g/l glucose) medium supplemented with 15% (v/v) heat-inactivated FBS, 

L-glutamine/penicillin/streptomycin (1x), 10 µM mercaptoethanol, 1% (v/v) NEAA 

stock solution (1x), and 20 ng/ml of LIF. For passaging, cells were washed once with 

PBS, digested with Accutase for 2-5 min at RT. After adding FBS containing medium 

and centrifugation at 200 xg for 5 min, the cell suspension was replated at a density of 

4.000 cells/cm2 onto inactivated MEFs. gPSCs were replated every 2-3 days, depend-

ing on confluency and colony size. The medium was changed every 2 days. gPSCs 

were incubated at 37 °C in 5% CO2 in a humidified incubator. 

4.2.7 Culture of OP9 cells 
 

OP9 cells were cultivated on 0.1% gelatin-coated tissue culture dishes at a 

density of 12.000 cells/cm2 in alpha-minimum essential medium (MEM) supplement-

ed with 20% (v/v) heat-inactivated FBS and L-glutamine/penicillin/streptomycin (1x). 

For passaging, OP9 cells were washed once with PBS, incubated with 0.05% Tryp-

sin/EDTA for 2-5 min, inactivated with 15% FBS containing medium and centrifuged 

at 200 xg for 5 min. The cell suspension was replated and expanded at a dilution of 

1:2 to 1:4 every 4-7 days, depending on confluency of cells. The medium was 

changed every 2-3 days. OP9 cells were incubated at 37 °C in 5% CO2 in a humidified 

incubator.  
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4.2.8 Culture of human embryonic stem cells 
 

Human embryonic stem cells (hESCs) were cultivated on inactivated MEFs at 

a density of 17.000 cells/cm2 in Knockout (KO) DMEM/Ham’s medium, in which 

KO DMEM medium and Ham’s F12 medium are mixed at a ratio of 1:1, supplement-

ed with 20% (v/v) KO serum replacement (KOSR), L-

glutamine/penicillin/streptomycin (1x), 10 µM β-mercaptoethanol, 1% (v/v) NEAA 

stock solution (1x), 1% (v/v) GlutaMax-I, and 4 ng/ml of human FGF2. For passaging 

of hESCs, the cells were incubated with 1 mg/ml of collagenase IV for 10-15 min at 

37 °C and colonies were mechanically dissected using a 23-gauge needle. The cells 

were collected in a conical tube and centrifuged at 200 xg for 5 min. The cells were 

replated depending on confluency and colony size at a dilution of 1:2 to 1:5 every 5-7 

days. The medium was changed everyday. To prepare human embryonic stem cell 

conditioned medium (hCM), mouse CF1 MEFs were cultured 24 h in the presence of 

hESC medium. The medium was filtered through a 0.2-µm filter and 4 ng/ml of FGF2 

was added prior to use of the medium. hESCs were incubated at 37 °C in 5% CO2 in a 

humidified incubator. 

4.2.9 Culture of Sertoli cells  
 

Sertoli cells were cultured on 0.1% gelatin-coated tissue culture dishes at a 

density of 12.000 cells/cm2 in DMEM/F12 medium supplemented with 2.5% (v/v) 

heat-inactivated FBS, 5% (v/v) horse serum, 1.2 g/l of sodium bicarbonate, 15 mM 

HEPES, L-glutamine/penicillin/streptomycin (1x), and 1 mM sodium pyruvic acid 

stock solution. For expansion, cells were washed once with PBS, incubated with 

0.05% Trypsin/EDTA for 2-5 min at RT and inactivated with 15% FBS containing 

medium. After centrifugation at 200 xg for 5 min, the cells were replated at a dilution 

of 1:2 to 1:5 every 2-7 days depending on confluency. The medium was changed eve-

ry 2-3 days. Sertoli cells were incubated at 37 °C in 5% CO2 in a humidified incuba-

tor. 
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4.2.10 Differentiation of mouse germline-derived pluripotent stem cells into en-
dothelial cell-like cells 
 

To induce differentiation, embryoid bodies (EBs) were generated by suspen-

sion culture. On day 0 of differentiation, gPSCs were seeded at a density of 30.000 

cells/cm2 in 10-cm bacteriological dishes for the generation of EBs in differentiation 

medium consisting of iscove’s modified dulbecco’s medium (IMDM) supplemented 

with 15% (v/v) heat-inactivated FBS, L-glutamine/penicillin/streptomycin (1x), 10 

µM β-mercaptoethanol, and 1% (v/v) NEAA stock solution (1x). On day 2 of differ-

entiation, EBs were transferred at a 1:3 ratio in 10-cm bacteriological dishes for fur-

ther culture. On day 5 of differentiation, EBs were digested with Accutase to create a 

single-cell suspension. CD31-positive cells were isolated from the cell suspension by 

fluorescence-activated cell sorting (FACS) using a phycoerythrin (PE)-conjugated 

anti-CD31 antibody. Subsequently, CD31-positive cells were plated at a density of 

1.200-2.500 cells/cm2 onto OP9 cells and maintained in alpha-MEM medium sup-

plemented with 10%(v/v) heat-inactivated FBS, L-glutamine/penicillin/streptomycin 

(1x), 10 µM β-mercaptoethanol, and 50 ng/ml of recombinant mouse vascular endo-

thelial growth factor (VEGF). EC-like colonies were then plated onto 5 µg/ml of col-

lagen IV-coated tissue culture dishes and maintained in the above-mentioned medium. 

To passage the cells, cells were washed with PBS and incubated with Accutase for 2-

5 min at RT. Subsequently, the cells were collected by pipetting or using cell scrapers. 

After centrifugation at 200 xg for 5 min, cells were plated onto collagen IV-coated 

tissue culture dishes and passaged every 2-5 days, depending on their confluency at a 

dilution of 1:2 to 1:10. The medium was changed every 2-4 days. Differentiation cul-

tures were maintained at 37 °C in 5% CO2 in a humidified incubator. 

4.2.11 In vitro differentiation of germline stem cells into meiotic germ cells 

For in vitro differentiation, GSCs were cultured on inactivated Sertoli cells at 

a density of 1.200-2.500 cells/cm2 in differentiation medium consisting of 

DMEM/F12 medium supplemented with 2% (v/v) heat-inactivated FBS, 5 mg/ml of 

BSA fraction V solution, L-glutamine/penicillin/streptomycin (1x), 10 µM β-

mercaptoethanol, 6 mg/ml of D-(+)-glucose, 0.085% (w/v) DL-lactic acids, insulin-

transferrin-selenium-A solution (1x), MEM vitamins (1x), 1% (v/v) NEAA stock so-
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lution (1x), and 1mM sodium pyruvic acid stock solution. Cultures were monitored 

for c-kit expression by FACS and qPCR and were supplemented with 100 ng/ml of 

recombinant mouse stem cell factor (SCF), when high c-kit expression could be de-

tected and the Oct4-GFP signal declined. Cultures were treated with 10-6 M retinoic 

acid (RA) in differentiation medium at day 8 for 2-3 days when c-kit expression de-

clined. Subsequently, 10 ng/ml of mouse recombinant EGF, 10 ng/ml of mouse re-

combinant IGF1, and 45 ng/ml of human growth hormone (hGH) were added for an-

other 10-12 days in differentiation medium. Media was changed every 2-3 days. To 

promote further differentiation, 100 ng/µl of follicle-stimulating hormone (FSH) and 

10-7 M testosterone (T) were added to a 3:7 mixture of conditioned medium and dif-

ferentiation medium. The cells were cultivated for 3-5 days before analysis. Condi-

tioned medium was prepared from adult mouse testes of C57BL6, CD1, or C57BL6 x 

CD1 as described previously (Aflatoonian et al., 2009). Briefly, seminiferous tubules 

were isolated from mouse testes and digested in 1 mg/ml of collagenase IV in 

DMEM/F12 to remove the basement membrane. Tubules were then embedded in 6 

mg/ml of agarose in DMEM/F12 medium and placed in differentiation medium. 

Twenty-four to fourty-eight hours later the medium was collected and filtered through 

a 0.2-µm filter. Media was stored at -20 °C until use. Differentiation cultures, as well 

as cultures for conditioned medium were maintained at 32 °C in 5% CO2 in a humidi-

fied incubator. 

4.3 Characterization of mouse germline-derived pluripotent stem cells 

4.3.1 Alkaline phosphatase staining 
 

 The cells were washed with PBS and fixed with 4% paraformaldehyde (PFA) 

for 1 min at RT, washed three times with PBS and incubated with staining solution 

(0.4 mg/ml of naphthol phosphate and 1 mg/ml of Fast Red TR salt in 25 mM Tris-

maleate buffer, pH 9) for 15-30 min at RT in the dark. Cells were washed twice with 

PBS. Colonies expressing alkaline phosphatase (AP) turn red and are indicative of 

pluripotent cells.  
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4.3.2 In vitro differentiation of germline-derived pluripotent stem cells 
 

As shown in previous reports (Ko et al., 2009; Ko et al., 2011), gPSCs can dif-

ferentiate in vitro and in vivo into derivatives of the three germ layers ectoderm, mes-

oderm, and endoderm. In this thesis, we demonstrate that gPSCs can differentiate in 

vitro into the ectodermal lineage via spontaneous EB formation. For this, gPSCs were 

plated at a density of 30.000 cells/cm2 in DMEM/F12 medium supplemented with L-

glutamine/penicillin/streptomycin (1x), 1% (v/v) NEAA stock solution (1x), N2 sup-

plement (1x), 30 ng/µl of 3,3,5-tri-iodothyronine, and 100 µM ascorbic acid. Cultures 

were analyzed by immunocytochemistry for the neuron specific marker TuJ1. The 

mouse monoclonal anti-TuJ1 primary antibody and Alexa 568-conjugated anti-mouse 

IgG secondary antibody (1:1000 dilution) were used for immunfluorescence detection 

of positive-stained cells. 

4.3.3 Teratoma formation 
 

 For teratoma formation analysis, 1-2 million gPSCs were subcutaneously inject-

ed into severe immunodeficient disorder (SCID) mice. About 4-5 weeks later, mice 

were sacrificed through cervical dislocation and the teratomas were dissected and 

fixed in Bouin's Solution overnight. The tumors were dehydrated in an ascending eth-

anol series and then embedded into paraffin. Samples were sectioned into 5-10 µm 

serial slices and stained with hematoxylin and eosin before evaluation. 

4.3.4 Chimera formation 

Aggregation of gPSCs with zona-free embryos was performed according to a 

previously described method (Wu et al., 2011). Briefly, clumps of loosely connected 

ten to twenty gPSCs were collected from briefly trypsin-treated day-2 cultures and 

transferred into microdrops of potassium simplex optimized medium (KSOM) medi-

um containing 10% FBS under mineral oil in microplates with a depression. In the 

meantime, batches of thirty to forty eight-cell morula stage embryos were incubated 

in acidified Tyrode's solution until the zona pellucida had disintegrated. Subsequently, 

a single embryo was placed on top of the cell clump in a microdrop. All aggregates 
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were gathered in the above-mentioned way and cultured overnight at 37 °C in 5% 

CO2 in a humidified incubator. After 24 h of culture, most of the aggregates had 

formed blastocysts. Eleven to fourteen aggregated embryos were transferred into the 

uterine horn of each pseudo-pregnant mouse.   

4.3.5 Analysis for potency and functionality of mouse germline stem cells 

4.3.5.1 Testicular transplantation  
 

 To analyze the functionality of the derived cell populations from testes, a testic-

ular transplantation approach was used with slight modifications (Brinster et al., 2003; 

Kubota and Brinster, 2006; Ogawa et al., 1997). Briefly, to deplete the testes of en-

dogenous germ cells, male mice were intraperitoneally injected with 40 mg/kg of 

busulfan. Intratesticular transplantation was performed through the efferent duct, 28 

days after busulfan treatment with 0.3 million GSCs/testis (100-150 µl). Three 

months after transplantation, the seminiferous tubules of recipient mice were analyzed 

for restored spermatogenesis by dissociation with collagenase and microscopic exam-

ination for Oct4-GFP expression or by LacZ staining. 

4.4 Analyses 

4.4.1 Messenger RNA expression 

4.4.1.1 RNA isolation 
 

Total RNA was isolated with a RNeasy mini or micro Kit depending on the 

cell number, according to the manufacturer's recommendations. Briefly, cells were 

lysed in 350 µl of lysis buffer containing 1% ß-mercaptoethanol and homogenized 

using a shredder spin column. After centrifugation for 2 min at 16.000 xg, 350 µl of 

70% ethanol was added to the lysate and mixed without centrifugation. This mixture 

was transferred onto the RNeasy column for binding of total RNA and washed once 

with 350 µl of wash buffer. The silica gel membrane of the column was treated with 

70 µl of DNase solution containing 10 µl of DNase I for 15 min at RT to digest the 

DNA. The column was washed with 350 µl of wash buffer and then with 500 µl of 
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wash buffer. Subsequently, 500 µl of 80% ethanol was added to the column and cen-

trifuged for 5 min at 16.000 xg to dry the column. Finally to elute the RNA, at least 

14 µl of RNase-free water was added to the column and centrifuged for 1 min at 

16.000 xg for elution. 

4.4.1.2 Complementary DNA synthesis 
 

The high capacity cDNA Reverse Transcription Kit was used to synthesize 

cDNA in a 20-µl reaction volume containing 50-100 ng of total RNA. The reaction 

mix consisted of 2 µl of 10x RT buffer, 2 µl of 10x Random hexamer, 0.8 µl of 25x 

dNTP (100 mM), 1 µl of MultiScribe RT (50 U/µl), 1 µl of mRNA, and 3.2 µl of wa-

ter. The mixture was incubated at 25 °C for 10 min, 37 °C for 2 h, and kept at 4 °C. 

4.4.1.3 RT-PCR analysis 
 

Total RNA was extracted using the RNeasy Mini or Micro Kit and reverse 

transcribed using the high capacity cDNA Reverse Transcription Kit as described in 

the above sections 3.4.1.1 and 3.4.1.2. For a 25-µl PCR reaction, 2.5 µl of 10x PCR 

buffer, 0.2 µl of dNTP (25 mM), 0.5 µl of forward primer (final concentration 0.2 

µM), 0.5 µl of reverse primer (final concentration 0.2 µM), 0.2 µl of Taq polymerase 

(5 U/µl), 1 µl of cDNA, and 20.7 µl of water were used. PCR was performed as fol-

lows: 94 °C for 2 min (1 cycle), 94 °C for 30 s, 55 °C for 30 s (annealing), 72 °C for 

30 s (extension) (35 cycles), 72 °C for 5 min (final extension), and 4 °C incubation. 

The PCR products were mixed with DNA loading dye and loaded on a 1-2% agarose 

gel to separate amplicons at 100 V for 30 min-1 h.  
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Table 1. Sequences of oligonucleotide primers for RT-PCR 

Gene Primer sequence 

beta-actin 
F: 5’-CGT GCG TGA CAT CAA AGA GAA GC-3’  

R: 5’-ATC TGC TGG AAG GTG GAC AGT GAG-3’  

Oct4 
F: 5’-CTG AGG GCC AGG CAG GAG CAC GAG-3’  

R: 5’-CTG TAG GGA GGG CTT CGG GCA CTT-3’ 

Tex18 
F: 5’-GGG GAG GGA GTA GTA CCT GTT T-3’  

R: 5’-CCA CAC CCT GGA TAC TTC ACT-3’ 

Piwil2 
F: 5’-CCT CCT GTA ACT GGG AAC TTG G-3’   

R: 5’-GCA CCA CAA CAC CCT ACT ATG A-3’  

Vasa 
F: 5’-CTT GCA GAG ATG TTC AGC AGA C-3’   

R: 5’-CTC CAA GAG CTT GCT CTC TCT C-3’ 

Dazl 
F: 5’-GCA CTC AGT CTT CAT CAG CAA C-3’   

R: 5’-CTA TCT TCT GCA CAT CCA CGT C-3’   

Fragilis 
F: 5’-GGA AGA ATA TGA GGT GGC TGA G-3’   

R: 5’-GTG CTG ATG TTC AGG CAC TTA G-3’ 

Nanog 
F: 5’-AGG GTC TGC TAC TGA GAT GCT CTG-3’   

R: 5’-CAA CCA CTG GTT TTT CTG CCA CCG-3’ 

Utf1 
F: 5’-CTC AAG GAC AAA CTC CGA GAC T-3’   

R: 5’-AGA CTT CGT CGT GGA AGA ACT G-3’   

Cripto 
F: 5’-ATG GAC GCA ACT GTG AAC ATG ATG TTC GCA-3’   

R: 5’-CTT TGA GGT CCT GGT CCA TCA CGT GAC CAT-3’   

Fgf4 
F: 5’-CAG CGA GGC GTG GTG AGC ATC TTC GGA-3’    

R: 5’-CTT CTT GGT CCG CCC GTT CTT ACT GAG-3’   
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4.4.1.4 Real-time RT-PCR analysis 
 

Total RNA was extracted using the RNeasy Mini or Micro Kit and reverse 

transcribed using a high capacity cDNA Reverse Transcription Kit as described in 

section 3.4.1.1 and 3.4.1.2. Amplification was performed on the ABI prism 7300 Fast 

Sequence Detection System according to the manufacturer’s instructions. Real-time 

RT-PCR was carried out for each sample in triplicates. Gapdh was used as an internal 

control. Relative gene expression values were calculated by normalizing Ct (threshold 

cycle) values of the target genes with the housekeeping gene (Gapdh) value using the 

∆∆Ct method. The primer sequences used for real-time RT-PCR are listed below. For 

a 20-µl reaction, 10 µl of iTaq SYBR Super mix with ROX for SYBR green, 1 µl of 

forward primer (final concentration 0.2 µM), 1 µl of reverse primer (final concentra-

tion 0.2 µM), 1 µl of cDNA, and 9 µl of water were used. Real-time PCR was per-

formed as follows: 50 °C for 2 min (1 cycle), 95 °C for 10 min (1 cycle), 95 °C for 15 

s, 60 °C for 1 min (45 cycles), 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s (1 

cycle). 
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Table 2. Sequences of oligonucleotide primers for Real-time RT-PCR 

Gene Primer sequence 

Gapdh 
F: 5’-TGG TTC CAG TAT GAC TCC ACT CAC-3’ 

R: 5’-GAT GAC AAG CTT CCC ATT CTC G-3’ 

Oct4 
F: 5’-CTG AGG GCC AGG CAG GAG CAC GAG-3’ 

R: 5’-CTG TAG GGA GGG CTT CGG GCA CTT-3’ 

c-kit 
F: 5’-TCA ACG ACC TTC CCG AAG GCA CCA-3’ 

R: 5’-CTG GTG GTT CAG AGT TCC ATA GAC-3’ 

Stra8 
F: 5’-CCA GTC TGA TAT CAC AGC CTC A-3’ 

R: 5’-TTC CTT GAC CTC CTC TAA GCT G-3’ 

Dmc1 
F: 5’-GGG AAT TGG TAC AGA CTG CTT C-3’ 

R: 5’-CCC AAT ACC TAC AGG CAC ATT T-3’ 

Scp3 
F: 5’-ACA TCT AAA GAT GGT GCC TGG T-3’ 

R: 5’-GAT GTC AGC TCC AAA TTT TTC C-3’ 

Tie2 
F: 5’-TTG AAG TGA CGA ATG AGA T-3’ 

R: 5’-ATT TAG AGC TGT CTG GCT T-3’ 

VE-Cadherin 
F: 5’-ACG GGA TGA CCA AGT ACA GC-3’ 

R: 5’-ACA CAC TTT GGG CTG GTA GG-3’ 

CD31 
F: 5’-GTC ATG GCC ATG GTC GAG TA-3’ 

R: 5’-CTC CTC GGC GAT CTT GCT GAA-3’ 

Flt1 
F: 5’-CTC TGA TGG TGA TCG TGG-3’ 

R: 5’-CAT GCG TCT GGC CAC TTG-3’ 

vWF 
F: 5’-AGG GCT GGA GTG TGC TAA GA-3’ 

R: 5’-TAC CAA TGG CAG ATG CAA GTG-3’ 

Icam2 
F: 5’-ACT CCA CAG ACC CCA CAG AC-3’ 

R: 5’-ATG GCA AAA GAA GAC CGT GT-3’ 

Flk1 
F: 5’-CAC CTG GCA CTC TCC ACC TTC-3’ 

R: 5’-GAT TTC ATC CCA CTA CCG AAA G-3’ 
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4.4.1.5 Micro array analysis 

4.4.1.5.1 Whole genome expression analysis 
 

Four hundred nanograms of total RNA (DNA-free) isolated as described in 

section 3.4.1.1 was used per sample as input for a linear amplification protocol from 

Ambion, which involved synthesis of T7-linked double-stranded cDNA and 12 h of in 

vitro transcription incorporating biotin-labeled nucleotides. The hybridization of puri-

fied and labeled cRNA was carried out for 18 h using MouseRef-8 v2 expression 

Bead Chips from Illumina. Chips were stained with streptavidin-Cy3 and scanned us-

ing the iScan reader from Illumina and accompanying software. Samples were hybrid-

ized as biological replicates. 

4.4.1.5.2 Microarray data processing 
 

The bead intensities were mapped to gene information using Bead Studio 3.2 

from Illumina. To correct the background, Affymetrix robust multi-array analysis 

background correction model was conducted (Irizarry et al., 2003). Variance stabiliza-

tion was carried out using the log2 scaling and gene expression normalization was 

calculated with the method implemented in the lumi package of R-Bioconductor. Data 

post-processing and graphics was performed with in-house developed functions in 

Matlab. Hierarchical clustering of genes and samples was performed with one minus 

correlation metric and the unweighted average distance linkage method. 

4.4.2 Protein expression 

4.4.2.1 Flow cytometry 
 

For flow cytometry analysis, at least 0.1 millions cells were stained with anti-

bodies at a final concentration 1-2 µg/ml in 100 µl of FACS buffer (PBS with 3% 

FBS). Cells were incubated with antibody for 20 min on ice, centrifuged at 200 xg for 

5 min, and then washed twice with 500 µl of FACS buffer. Cells were resuspended in 

400 µl of FACS buffer, and analyzed on a FACS Aria cell sorter. The following con-
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jugated antibodies were used: allophycocyanin (APC)-conjugated anti-c-kit, PE-

conjugated anti-SSEA1, PE-conjugated anti-CD31, PE-conjugated anti-Flk1, and PE-

conjugated IgG control. In addition, the following first and secondary antibodies were 

used: anti-TRA1-81 and PE-conjugated anti-mouse IgM antibody; anti-VE-Cadherin, 

anti-Tie2, anti-vWF, rat IgG control, and Alexa 488-conjugated anti-rat IgG antibody. 

4.4.2.2 Immunocytochemistry 
 

Cells were fixed in 4% PFA for 10 min and permeabilized with 0.1% Triton-

X-100 for anti-SSEA1 or 0.5% Triton-X-100 for anti-VE-Cadherin, or anti-vWF, re-

spectively for 5-10 min at RT. The fixed cells were washed three times with PBS and 

incubated with 3% BSA in PBS for 30 min to block non-specific binding. Cells were 

stained with the primary antibodies anti-SSEA1, anti-VE-Cadherin, or anti-vWF at a 

concentration of 1-2 mg/ml for 1 h at RT. After washing the cells three times with 

PBS, bound primary antibodies were visualized using the Alexa 568 conjugated anti-

mouse IgG secondary antibody for SSEA1 (1:1000 dilution) and Alexa 488-

conjugated anti-rat IgG secondary antibody (1:1000 dilution) for VE-Cadherin and 

vWF. Incubations with the secondary antibody were carried out for 1 h at RT. The 

stained cells were mounted with 4’-6-Diamidino-2-phenylindole (DAPI)-containing 

mounting medium and then examined using a Leica DMI6000B fluorescence micro-

scope (Leica, Germany). 

4.4.2.3 Immunocytochemistry of spermatocytes with synaptonemal complex pro-
tein 3 
 

The cells were incubated in hypoextraction buffer composed of 15 mM Tris, 

50 mM sucrose, 20 mM citrate, 5 mM EDTA, 0.1 M DTT, and 10 mg/ml of PMSF 

for 5-15 min at RT, pelleted at 200 xg for 5 min and gently resuspended in 10 mM 

sucrose solution. Fifteen microliters of cell suspension were dropped from ca. 1-m 

height onto a slide with a thin film of freshly prepared fixative solution containing 2% 

PFA and 0.5% Triton X-100 in PBS. Cells were fixed overnight at RT in a humidified 

chamber. For staining, slides were washed twice with PBS and rinsed once in 1:250 

diluted photoflo. After drying in air, slides were incubated with blocking solution 

containing 10% FBS and 0.05% Triton X-100 for 30 min at RT to block non-specific 
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binding. The slides were then stained with anti-Scp3 primary antibody for 1 h at RT. 

Bound antibodies were visualized after incubation with Alexa 488-conjugated goat 

anti-rat IgG secondary antibody (1:1000 dilution) for 1 h at RT. The stained cells 

were mounted with DAPI-containing mounting medium and then examined using a 

Leica DMI6000B fluorescence microscope (Leica, Germany). 

4.4.3 Transmission electron microscopy 
 

For transmission electron microscopy (TEM), the testicular cells were isolat-

ed from testes as described in section 3.2.1. One million testicular cells were incubat-

ed with 4 µg/ml of Hoechst for 20 min in 37 °C water bath and subjected to FACS 

sorting. The cells were sorted for haploid (1C), diploid (2C), and tetraploid (4C) cell 

populations. Thereafter cells were fixed with 2.5% glutaraldehyde in 0.1 M sodium 

cacodylate buffer, pH 7.4, post-fixed in 1% aqueous osmium tetroxide, dehydrated 

stepwise in a graded ethanol series and embedded in Epon 812. Ultrathin (70-nm) sec-

tions were prepared with an ultramicrotome (Leica, Germany), stained first with 1% 

uranyl acetate and then with 3% lead citrate, and subsequently examined under a 

Zeiss EM 109 electron microscope (Zeiss, Germany). Images were taken on 70-mm 

films. 

4.4.4 Round spermatid injection 
 

The female B6C3Fa mice (7-10 weeks) were superovulated by injection of 

7.5 IU of equine chorionic gonadotropin and by injection of 7.5 IU of human chorion-

ic gonadotropin 48 h later. After 15-17 h of hCG injection, mature metaphase II oo-

cytes were collected from the oviducts and cumulus cells were removed by treatment 

with 0.1% hyaluronidase in potassium modified simplex optimization medium 

(KSOM). Subsequently, the oocytes were transferred to fresh KSOM medium and 

incubated at 37 °C in 5% CO2 in a humidified incubator for up to 90 min before 

ROSI.  

 ROSI was carried out using a piezo-driven micromanipulator. The cover of a 

plastic dish was used as a microinjection chamber. Several small drops (~ 4 µl) of 

BSA-free HEPES-buffered KSOM (HEPES-KSOM), with or without 10% polyvi-
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nylpyrrolidone (PVP), were placed on the bottom of the plate and covered with min-

eral oil.  For activation, the oocytes were treated with Ca2+-free KSOM containing 2.5 

mM SrCl2 for 20 min at 37 °C, then washed once to remove Ca2+. Ten minutes later, 

the nuclei of round spermatids were injected into enucleated oocytes (one nucle-

us/oocyte). Injected oocytes were maintained in KSOM at 37 °C in 5% CO2 in a hu-

midified incubator up to morula or blastocyst stage. 

4.4.5 Derivation of embryonic stem cell lines 
 

The mouse embryos generated using ROSI were cultured to obtain embryonic 

day E2.5, eight-cell morula or E3.5 blastocysts. Zonae pellucidae were removed by 

incubation of morula or E3.5 blastocysts in acidic Tyrode’s solution. The zona-free 

embryos were transferred onto inactivated MEFs in ESC medium as described in sec-

tion 3.2.5 and cultured for 4-5 days at 37 °C in 5% CO2 in a humidified incubator. The 

ICM outgrowth was picked with a drawn-out glass pipette and transferred into 30 µl 

of 0.25% Trypsin/EDTA in a 96-well plate. After 5-10 min incubation at RT, 30 µl of 

FBS containing ESC medium was added. To obtain a single cell suspension, cells 

were gently triturated and transferred into a well of a 4-well plate in ESC medium. 

After 4-7 days of culture, cells were passaged and expanded at a ratio of 1:3 to 1:6, 

depending on the colony size. Thereafter, cultures were expanded regularly every 2-3 

days.  

4.4.6 Karyotyping of round spermatid injection-derived embryonic stem cell 
lines 
 

Established ESCs were cultured in a 3-cm tissue culture dish on MEFs for 2 

days. The medium was changed 12-24 h before trypsinization of the cells into single 

cell suspensions. MEFs were removed by preabsorption on a gelatinized tissue culture 

dish for about 40 min. ESCs from the supernatant were collected and cultured in 2 ml 

of DMEM medium containing 0.5 µg/ml of nocodazole for 2 h in a 15-ml conical 

tube, followed by centrifugation at 200 xg for 4 min. One hundred microliters of me-

dium was kept to resuspend the cell pellet by gentle flicking. Subsequently, 3 ml of 

prewarmed 0.56% KCl were added dropwise and the suspension was then incubated 

for 12 min at 37 °C in water bath. After centrifugation at 200 xg for 5 min, the cells 
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were resuspended in 100 µl of KCl and fresh fixative solution (Methanol: acetic acid 

3:1) was added slowly. After fixation at RT for 30 min, cells were washed with 3 ml 

of fixative solution and resuspended in 50-300 µl of fixative solution. After a minute 

to let big aggregates settle, one drop of solution was dropped on a dry slide. The 

slides were stained with DAPI and mounted using mounting medium after the drop 

had dried (minimum 30 min). The slides were examined for metaphase plates; twenty 

to thirty cells were counted for each line. Normal diploid cell should have forty chro-

mosomes. 

4.4.7 Genotyping of round spermatid injection-derived embryonic stem cell lines 

To genotype the ROSI-derived ESC lines, PCR analysis was performed using 

the following primers: 

 

Table 3.  Sequences of oligonucleotide primers for genotyping 

Gene Primer sequence 

GFP 
F: 5’-TGC AGT GCT TCA GCC GCT AC-3’ 

R: 5’-TCG CCC TCG AAC TTC ACC TC-3’ 

Sry 
F: 5’-TGG GAC TGG TGA CAA TTG TC-3’ 

R: 5’-GAG TAC AGG TGT GCA GCT CT-3’ 

Il2 
F: 5’-CTA GGC CAC AGA ATT GAA AGA TCT-3’ 

R: 5’-GTA GGT GGA AAT TCT AGC AGC ATC ATC-3’ 

ROSA L221 5’-CTT GTG ATC CGC CTC GGA GTA TT-3’ 

ROSA L238 5’-CGC GCC GCT GTA AAG TGT TAC GT-3’ 

ROSA R316 5’-GGA GCG GGA GAA ATG GAT ATG-3’ 

 

PCR conditions: 95 °C for 2 min (1 cycle), 94 °C for 30 s, 56 °C for 45 s, 72 °C for 

75 s (35 cycles), and 4 °C incubation.  

4.4.8 DNA methylation analysis 

 Genomic DNA was prepared using the EpiTect Bisulfite Kit from Quiagen ac-

cording to the manufacturer’s protocol. DNA was treated with bisulfite mix in DNA 
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protection buffer. Bisulfite DNA conversion was performed under the following con-

ditions: 99 °C for 5 min, 60 °C for 25 min, 99 °C for 5 min, 60 °C for 85 min, 99 °C 5 

min, 60 °C for 175 min, and 20 °C incubation. Five hundred sixty microliters of BL 

buffer containing 10 µg/ml of carrier RNA was added to the DNA and the reaction 

was loaded onto an EpiTech spin column, then centrifuged at 16.000 xg for 1 min. 

The column was washed with 500 µl of BW wash buffer and then desulfonated with 

500 µl of BD desulfonation buffer. After centrifugation and another wash with BW 

buffer, 20 µl of EB buffer was added to the column and centrifuged for 1 min at 

16.000 xg to elute the purified DNA. The differentially methylated regions of the H19 

and Igf2r genes were amplified with the below listed primer sequences. For subclon-

ing of PCR products, PCR 2.1-TOPO vectors were used and the cloned PCR products 

were sequenced according to the protocol of GATC Biotech AG. 

 

Table 4.  Sequences of oligonucleotide primers for DNA methylation analysis 

Gene Primer sequence 

H19 1st 
F: 5’-TAA GGA GAT TAT GTT TTA TTT TTG GA-3’ 

R: 5’-CCC CCT AAT AAC ATT TAT AAC CCC-3’ 

H19 2nd 
F: 5’-AAG GAG ATT ATG TTT TAT TTT TGG A-3’ 

R: 5’-AAA CTT AAA TAA CCC ACA ACA TTA CC-3’ 

Igf2r 1st 
F: 5’-GTA GAG TTT TTT GAA TTT TTT TGT T-3’ 

R: 5’-TAA ACT ATA ATT CTA ATT ATA CCA AAT TAC-3’ 

Igf2r 2nd 
F: 5’-TGG TAT TTT TAT GTA TAG TTA GGA TAG-3’ 

R: 5’-AAA AAT TCT ATA ATC AAA ACC AAC-3’ 
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5. Results 

5.1 Derivation of germline stem cells 

5.1.1 Derivation of germline stem cells form mouse testes 

GSCs were established from testes of adult Oct4-GFP mice. Seminiferous tu-

bules from OG2 (C57BL/6) or OG2/LacZ Rosa26 (C57BL/6 x129sv) mice were en-

zymatically digested with a mixture of collagenase IV, DNase I, and hyaluronidase. 

After removal of somatic cell populations via preabsorption on gelatinized culture 

plates, cell suspensions were plated onto MEFs to obtain GSC colonies. Once GSC 

colonies appeared, they were maintained under GSC culture conditions as described 

in section 3.2.4. 

Figure 11 illustrates that GSCs form grape-like colonies that grow loosely at-

tached on the supporting MEF layer. Notably, not all of the GSCs expressed Oct4-

GFP, even though Oct4 is a well-known maker for GSCs (Pesce et al., 1998). Oct4-

GFP expression was heterogeneous in in vitro cultures with single cells, all cells or 

only cells at the boundaries of colonies positive for GFP. Flow cytometry analysis for 

Oct4-GFP and c-kit expression confirmed the above observation (Figure 12). 



Results

 41 

Figure 11. Morphology of Oct4-GFP GSCs at passage 42. A-D. GSC colonies ex-
hibited a typical grape-like morphology (A, B). GSC colonies from Oct4-GFP testes 
(C, D) demonstrated heterogeneous GFP expression. GFP-positive as well as GFP-
negative subpopulations were detected within the same culture. Scale bar indicates 
100 µm. 
 

 

 

Figure 12. Flow cytometry analysis of in vitro cultured GSCs. GSCs (passage 42) 
were stained for the surface antigen c-kit and sorted for GFP and c-kit. The different 
expression pattern of Oct4-GFP and c-kit protein (upper panel) is shown in compari-
son to unstained GSCs (lower panel). 

Within this study, we were unable to find an explanation for the appearance, 

disappearance and reappearance of Oct4-GFP signal within long-term in vitro cul-

tures of GSCs. According to a previous report, early passages GSCs exhibit high 

Oct4-GFP expression in almost all cells of the GSC colonies (Ko et al., 2010; Ko et 

al., 2009; Ko et al., 2011). Additional studies addressing this phenomenon are needed 

to better understand Oct4 expression during GSC derivation and in vitro culture. 
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5.1.2 Derivation of germline stem cells from human testicular biopsies 
 

To derive human GSCs, each human testicular biopsy was digested with the 

enzyme mixture that was also used for digestion of mouse testes. Single cell suspen-

sions were plated onto differently precoated tissue culture dishes at different cell den-

sities. The culture methods of human testicular cells are summarized in Table 5.

To deplete fibroblast-like cells, human testicular cells were first plated on pro-

tein (gelatin, collagen IV, matrigel, or laminin)-coated wells after digestion and then 

transferred onto either protein coated-wells or MEFs (C3H or CF1) for further culture. 

The cells were maintained either under mouse GSC culture conditions in mouse GSC 

medium (mGSC) or human ESCs culture conditions with conditioned medium pre-

pared from CF1 MEFs (hCM) as described in section 3.2.8. Medium compositions 

were slightly changed in case of biopsy number 7, 8, and 9; mouse GSC medium was 

made without LIF and with KOSR instead of serum. For biopsy number 12, human 

ESC conditioned medium and mouse GSC medium was mixed at a 1:1 ratio. Serial 

dilutions of the cell suspensions were performed before seeding onto protein-coated 

wells or MEFs at a ratio of 1:2 to 1:10 for biopsy number 5 and 6. The cells were 

maintained at 37 °C except biopsy number 11 that was cultured at 34 °C for the first 4 

days to enhance cell survival and then transferred to 37 °C. The biopsy number 12 

was maintained at 34 °C. 
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Table 5. Culture of human testicular biopsies under various conditions 

Biopsy 

 

Coating/Feeder 

 

Medium 

 

Temperature 

(°C) 

1 gelatin hCM & mGSC 37 

2 

 

collagen IV, 

C3H MEF 

hCM & mGSC 

 

37 

 

3 

 

gelatin, 

CF1 MEF 

hCM & mGSC 

 

37 

 

4 

 

gelatin, 

Matrigel 

hCM & mGSC 

 

37 

 

5 

 

gelatin, matrigel, 

CF1 MEF 

hCM & mGSC 

serial dilution 

37 

 

6 

 

gelatin, matrigel, 

CF1 MEF 

hCM, 

serial dilution 
37 

7 

 

gelatin, matrigel 

 

hCM &mGSC  

without LIF 

37 

 

8 

 

gelatin, matrigel 

 

hCM &mGSC  

without LIF  

and with KOSR 

37 

 

9 

 

gelatin, 

collagen IV 

 

hCM &mGSC 

 without LIF 

 and with KOSR 

37 

 

10 gelatin, collagen IV hCM 37 

11 

 

gelatin, laminin, 

C3H MEF 
hCM & mGSC 

34 (4 days) 

→ 37 

 

12 

 

CF1 MEF 

 

Mix of hCM 

 and mGSC  

without LIF  

at a ratio of 1:1 

34 

 

 

Abbreviation: hCM = conditioned medium for culture of human embryonic stem cells; mGSC = medi-
um for culture of mouse germline stem cells; KOSR = knockout serum replacement. 
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Figure 13. Morphology of human testicular cells grown on gelatin- or collagen 
IV-coated well. Cells isolated from human testis biopsies were cultured on gelatin-
coated tissue culture dishes (A) or on collagen IV-coated tissue culture dishes (B). 
Scale bars indicate 100 µm in A and 75 µm in B.  

The attached cells first exhibited a short spindle and irregular morphology and 

upon further cultivation a long spindle morphology resembling fibroblast cells. These 

cells formed different sized compact clumps, distinct from the typical flat morphology 

of human ESC colonies (Figure 15) after cultivation in human ESC conditioned me-

dium at different time intervals. Different sized, round floating cells that did not at-

tach to gelatin- or collagen IV-coated wells disappeared during culture, most probably 

due to medium change or apoptosis. The compact colonies survived up to 1 month in 

culture. 
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Figure 14. Morphology of human testicular cells grown on MEFs. The representa-
tive micrographs show small compact colonies (A) or large colonies (B) within a cul-
ture. These colonies differed morphologically significantly from typical human ESC 
colonies. Scale bars indicate 100 µm in A and 75 µm in B.  

The human testicular cells were cultured on gelatin-coated tissue culture dish-

es with human ESC conditioned medium. Subsequently, the cells were transferred 

onto C3H MEF and incubated at 34 °C for 4 days. After this they were maintained at 

37 °C for the following weeks. The cell supernatants attached to MEF cells and first 

showed short spindle or irregular morphology. Upon further culture they exhibited 

long spindle-like morphology similar to fibroblast cells. These cells were distinguish-

able from MEFs, since inactivated MEFs were plated at a confluent density as shown 

in A and B and survived up to 1 month under above-mentioned culture condition. The 

fibroblast-like cells grew rapidly and formed different sized compact colonies in dif-

ferent time intervals. Once the compact colonies had formed, they survived up to 

about 1 month in culture. The floating cells that did not attach to MEFs disappeared 

during further culture, most likely due to changing medium or apoptosis.  
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Figure 15. Morphology of human embryonic stem cells (WA09/H9) grown on 
MEFs and matrigel-coated well. Human ESCs (WA09/H9) were cultured on CF1 
MEFs with human ESC medium and on matrigel-coated wells in human ESC condi-
tioned medium

Under all conditions tested, fibroblast-like human testicular cells attached to 

the protein-coated dishes. They grew rapidly under mouse GSC culture conditions 

and human ESC culture conditions in the presence or absence of feeder cells. Regard-

less of the culture condition (medium, feeder cells, coating, plated cell density, culture 

temperature, or duration of culture period), we observed formation of compact colo-

nies (Figure 13 and 14), which morphologically differed from typically flat and large 

human ESC colonies (WA09/H9) (Figure 15).  
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Figure 16. Flow cytometry analysis of the TRA1-81 surface antigen. Cell surface 
staining of human ESCs (WA09/H9) (upper row) and human testicular cells (lower 
row) for the human pluripotent cell marker TRA1-81 (first panel: unstained cells; se-
cond panel: secondary antibody only; third panel: TRA1-81 and PE conjugated anti 
mouse IgM). In contrary to the human ESC control that stained positive for TRA1-81 
(upper row, third panel), freshly isolated human testicular cells stained only sporadi-
cally, most probably due to unspecific binding of the secondary antibody (lower row, 
second panel).  

To further characterize the colonies formed from human testicular cells, flow 

cytometry analysis was performed using a TRA1-81 antibody. TRA1-81 is one of the 

widely used surface markers for characterization of human ESCs (Draper et al., 

2002). TRA1-81 was readily detected on human ESCs (WA09/H9) as shown in Fig-

ure 16, while only sporadic expression was detected on human testicular cells. We 

attribute this low TRA1-81 expression to unspecific binding of the secondary anti-

body, since the signal for the PE-conjugated TRA1-81 staining was lower than the 

signal detected in staining with only the secondary antibody. These data suggest the 

absence of human ESC-like cells in the human testicular cell population. To identify 

the cell types in the colonies, the compact colonies (Figure 13 and 14) were collected, 

digested, and replated onto new plates. Neither GSC-like nor ESC-like cells could be 
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detected in these cultures, while the compact colonies outlined above formed again. 

They resembled the initial colonies used for morphological analysis (Figure 13 and 

14) and most likely depict fibroblast-like cells.  

5.2 Conversion of unipotent germline stem cells into pluripotent germline-
derived stem cells 

5.2.1 Conversion of germline stem cells from autologous testicular biopsy into 
germline-derived pluripotent stem cells 

In order to convert unipotent GSCs into a pluripotent state, defined numbers 

of GSCs were plated and maintained 2-6 weeks in GSC medium until ESC-like colo-

nies became obvious. Afterwards, ESC-like colonies were cultured in ESC medium 

and characterized using various methods to proof their pluripotent phenotype. The 

established cell lines were termed germline-derived pluripotent stem cells (Ko et al., 

2010; Ko et al., 2009; Ko et al., 2011). Figure 17 illustrates the derivation procedure 

of autologous GSCs and gPSCs from Oct4-GFP transgenic mice. The cell lines estab-

lished from OG2 mice are referred to as OG2 GSCs and gPSCs, and from OG2Rosa 

26 mice as OG2Rosa GSCs and gPSCs. 

 

 

Figure 17. Derivation of autologous GSC cell lines and their conversion into 
gPSC cell lines. The testicular biopsies were taken from OG2 and OG2Rosa26 mice, 
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which were marked using ear clips to identify each biopsy. The autologous GSCs 
were derived from biopsies and maintained as cell lines, which were in turn converted 
into corresponding autologous gPSC cell lines. Abbreviation: R = right ear clip; L = 
left ear clip; B = both ear clips; none = without ear clips. 

Figure 18. Reprogramming of GSCs into gPSCs (figure from Ko et al, Nature 
Protocols, 2010). The conversion of GSCs into gPSCs occurs within GSCs colonies. 
After about 2 weeks of culture, Oct4-GFP positive colonies appeared (left and middle 
picture) and increased in size by 16 days of culture (right picture). Scale bars indicate 
200 μm. 

As shown in Figure 18, Oct4-GFP was used as a first indicator to monitor the 

conversion process of GSCs into gPSCs. Once the subpopulation of Oct4-GFP posi-

tive GSCs converted into gPSCs, colonies with high levels of GFP were observed. 

These colonies closely resembled ESC colonies.  

5.2.2 Characterization of germline stem cells from autologous testicular biopsy 
into germline-derived pluripotent stem cells 

The morphological analysis of autologous OG2 and OG2Rosa26 GSCs 

shown in Figure 19 and 20 revealed formations of chain- and cluster-like colonies 

during in vitro culture. The Oct4-GFP expression of GSCs and LacZ-positive GSC 

colonies demonstrated in Figure 19 and 20 confirm the identity and origin of GSC 

lines. 
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Figure 19. Morphology and Oct4-GFP expression within GSC colonies (figures
from Ko et al, Stem cells Rev and Rep, 2011). OG2 GSCs show a grape-like struc-
ture (A, B) and express Oct4-GFP (C, D). Scale bars indicate 50 μm. 

Figure 20. LacZ staining of GSCs (figures from Ko et al, Stem cells Rev and Rep, 
2011). OG2Rosa26 form grape-like colonies (A) and stained positive for LacZ (B).
Scale bars indicate 2 mm. 

The established GSC lines were characterized at the RNA level using selected 

GSC-specific markers. Both GSC lines expressed Oct4, Tex18, Piwil2, Vasa, Dazl,

and Fragilis, whereas MEFs did not express these genes indicating the successful 
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generation of autologous GSCs from testicular biopsies of OG2 and OG2Rosa 26 

mice. 

Figure 21. RT-PCR analysis of GSCs (figure from Ko et al, Stem cells Rev and 
Rep, 2011). OG2 and OG2Rosa GSCs were characterized by RT-PCR analysis using 
GSC-specific makers. The cells were generated from mice marked with right, left, and 
both ear clips. Abbreviation: R = right ear clip; L = left ear clip; B = both ear clips. 

Furthermore, to prove cell identity and the unipotency of the in vitro-isolated 

and cultured GSCs, they were transplanted into infertile mouse testis. As expected, 

the transplanted cells restored spermatogenesis in vivo without teratoma formation. 

 

Figure 22. Testicular transplantation with GSCs (figures from Ko et al, Stem 
cells Rev and Rep, 2011). The transplanted GSCs colonized the seminiferous tubules 
of recipient mouse testis and expressed Oct4-GFP (A) and LacZ (B), respectively. 
Scale bars indicate 200 μm. 
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The autologous gPSCs from corresponding GSCs were analysed using GSC- 

and ESC-specific markers. The GSCs showed positive expression for Oct4 and Utf1, 

but negative expression for Nanog, Cripto, and Fgf4, while gPSCs expressed Oct4, 

Nanog, Cripto, and Fgf4 (Figure 23). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. RT-PCR analysis of GSCs and gPSCs (figures from Ko et al, Stem 
cells Rev and Rep, 2011). Analysis of OG2-, OG2Rosa26- GSCs, and gPSCs cells by 
RT-PCR revealed expression of GSC- and ESC-specific markers in GSCs and gPSCs, 
respectively. Abbreviation: R = right ear clip; L = left ear clip; B = both ear clips. 
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Oct4-GFP expression analysis and LacZ staining confirmed the origin of 

gPSCs generated from autologous OG2 and OG2Rosa26 GSC lines and alkaline 

phosphatase and SSEA1 staining confirmed pluripotency. 

 

 

 

Figure 24. Phenotypical analysis of gPSCs (figures from Ko et al, Stem cells Rev 
and Rep, 2011). gPSCs expressed Oct4-GFP (A) and SSEA1 (B). The cells also
stained positive for alkaline phosphatase (C) and LacZ (D). Scale bars indicate 200 
μm. 

Furthermore, micro array analysis was conducted to compare similarities and 

differences between GSCs and gPSCs that were generated from different mouse 

backgrounds and experiments. Figures 25 and 26 show the results of pairwise scatter 

plot analysis between two GSC lines: one with OG2 (C57BL/6) homogeneous genetic 

background (‘GSC’) and the other with OG2/LacZ Rosa 26 (C57BL/6 x129sv) heter-

ogeneous genetic background (‘GSCr’). A similar expression pattern between GSCs 

and the corresponding GSCrs was observed. After reprogramming of GSCs into plu-

ripotent gPSCs, there were more differences found between the gPSCs than before the 

conversion, suggesting a slight difference in the reprogramming process between the 

cell lines. The heat-map and map of distance analyses using correlation metric shown 
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in Figure 28 and 29 supports the notion described above. Collectively, unipotent 

GSCs were clearly distinct from pluripotent ESC and gPSCs, while ESC and gPSCs 

share similar features (Figure 29). 

The hierarchical clustering of samples shown in Figure 28B was performed 

using the correlation metric and the average linkage method. ESCs and gPSCs were 

nearly connected, while GSCs cluster differently. Particularly, gPSCr2 outlying from 

the other gPSCs in the PC1 (Figure 28A) was also remotely linked in the hierarchical 

clustering. 

The heat-map and map of distances analysis of the gene expression data 

shown in Figure 29 confirm the clustering of gPSCs amongst each other and with the 

ESCs and a clustering of GSCs among themselves.  
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Figure 25. Pairwise scatter plot of GSC versus GSCr. A-C. Pairwise scatter plots 
of global gene expression profiles were compared between two different types of 
GSCs; GSC with homogenous genetic background versus GSCr with heterogeneous 
genetic background. In comparison to cell line number 1 (A) and number 2 (B) of 
GSC, cell line number 3 (C) shows more similarity between two different GSCs. In 
Figure 25A and 25B, Sox2 is divergently expressed, which is not seen in Figure 25C. 
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Figure 26. Pairwise scatter plot of gPSCs versus gPSCr. A-C. Pairwise scatter 
plots of global gene expression profiles were compared between two different types 
of gPSCs; gPSC with homogenous genetic background versus gPSCr with heteroge-
neous genetic background. In comparison to cell line number 1 (A) and number 2 (B) 
of gPSC, cell line number 3 (C) shows more similarity between two different gPSCs, 
namely gPSC3 and gPSCr3. Notably, Figure 26B reveals the afar expression of Sox2. 
Abbreviation: gPS = germline-derived pluripotent stem cells. 
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Figure 27. Pairwise scatter plot between GSC, gPSC, and ESC. A-C. gPSC  com-
parison with GSCs (A) revealed some crucial differences between the two cell types, 
whereas comparison with ESCs (B) showed similarity. ESCs were also compared 
with GSCs (C) and demonstrated similar results in comparison to the results shown in 
Figure 27A, indicating the pluripotent feature of gPSCs and ESCs, and the unipotent 
feature of GSCs. Abbreviation: gPS = germline-derived pluripotent stem cells. 
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Figure 28. Micro array data using Principal Component Analysis (PCA) and Hi-
erarchical clustering (figure from Ko et al, Stem cells Rev and Rep, 2011). Figure 
A shows that the first principal component (PC1) captures 59% and the second prin-
cipal component (PC2) captures 7.9% of the gene expression variability. These two 
PCs combined capture 67% of the gene expression variability. Abbreviation: gPS = 
germline-derived pluripotent stem cells. 
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Figure 29. Analysis of heat-map and map of distances. Heap-map of pluripotent 
and germ cell marker gene expression extracted from the micro array analyses, GSCs 
demonstrate a different expression patterns than ESCs and gPSCs (A). Map of dis-
tances of expression of GSCs, gPSCs, and ESCs (B). Abbreviation: gPS = germline-
derived pluripotent stem cells. 
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5.2.3 Differentiation ability of germline-derived pluripotent stem cells 

5.2.3.1 In vitro and in vivo differentiation ability analysis 

The differentiation capacity of gPSCs was examined using various methods 

in vitro and in vivo, including in vitro differentiation into three germ layers (endo-

derm, mesoderm, and ectoderm), teratoma formation, chimera formation, and 

germline contribution.  

 

 

Figure 30. Differentiation of gPSCs into ectoderm lineage (figures from Ko et al, 
Stem cells Rev and Rep, 2011). gPSCs were differentiated into neurons in vitro, 
which was confirmed by the positive staining for the specific neuronal marker Tuj1. 
Scale bar indicates 200 μm. 
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Figure 31. Teratoma formation after injection of gPSCs (figures from Ko et al, 
Stem cells Rev and Rep, 2011). gPSCs were injected into athymic mice and teratomas 
were formed after several weeks. The teratomas contained cells of the three embryon-
ic germ layers ectoderm (skin, A and neural cells, D), mesoderm (cartilage, B), and 
endoderm (pancreatic cells, C). Scale bars indicate 50 μm. 

Figure 32. Generation of chimeric embryos and germline transmission (figures
from Ko et al, Stem cells Rev and Rep, 2011). Blastocyst stage embryos were gener-
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ated by aggregation of an eight-cell stage embryo with Oct4-GFP-positive gPSCs. 
The inner cell mass of the blastocyst reveals Oct4-GFP expression (A). Moreover, 
Oct4-GFP-positive germ cells were found in female gonads from E13.5 embryos (B). 
The generation of E13.5 chimeric embryos was proven by LacZ staining (C, D). 

5.2.3.2 Differentiation of germline-derived pluripotent stem cells into endothelial 
cell-like cells 

For the differentiation of gPSCs in vitro, suspension cultures were used to 

generate EBs. Five days after EB formation, cells were analyzed for CD31 expression 

by enzymatic digestion using Accutase. Cell suspensions were subjected to FACS 

sorting and the isolated CD31-positive cells were subcultured on OP9 cells in the 

presence of VEGF. Colonies with a uniform cobblestone-like morphology similar to 

that of endothelial cells formed after 35-45 days. Subsequently, these cells were trans-

ferred onto either gelatin- or collagen IV-coated tissue culture dishes for expansion, 

where they formed a monolayer (Figure 33 and 34) (Kevil and Bullard, 2001). These 

cells were termed gPSC-derived endothelial-like cells (gPSC-ECs).
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Figure 33. Derivation of EC-like cells from gPSCs. After generation of embryoid 
bodies, CD31-positive cells were isolated and cultured in the presence of VEGF for 
differentiation of gPSCs into the endothelial lineage (data were obtained in coopera-
tion with Sarah Yoon Hee Eligehausen, WWU Münster, Germany). 
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Figure 34. Morphological analysis of gPSC-derived EC-like cells. The cells were 
grown on collagen IV-coated tissue culture dishes (A, B) and exhibited a cobblestone-
like morphology, one of the characteristics of endothelial cells. Scale bars indicate 
250 µm (Data were obtained in cooperation with Sarah Yoon Hee Eligehausen, 
WWU Münster, Germany). 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. Real-time RT-PCR analysis of gPSC-derived EC-like cells. The cells 
express endothelial cell-specific marker genes including Tie2, VE-Cadherin, CD31, 
Flt1, vWF, Icam2, and Flk1 (Data were obtained in cooperation with Sarah Yoon Hee 
Eligehausen, WWU Münster, Germany).  
 

 

 

Gene expression profiling using real-time RT-PCR was carried out with gPSC, 

2-day-old EBs, 5-day-old EBs, and gPSC-EC. Data were normalized relative to val-
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ues of gene expression in 5-day-old EBs. The markers included angiopoietin and en-

dothelial growth factor receptors (Tie2, Flk1, and Flt1), junctional adhesive molecules 

(VE-Cadherin and CD31), and other endothelial specific antigens (Icam2 and vWF). 

As shown in Figure 35, the endothelial cell-specific markers Tie2, VE-Cadherin, Flt1, 

vWF, Flk1, and Icam2 exhibited a significantly higher expression in gPSC-EC, than in 

undifferentiated gPSCs and EBs. Notably, gPSCs expressed CD31, whereas CD31 

expression was downregulated during differentiation. The level of CD31 expression 

was then restored in gPSC-EC, suggesting the progressive differentiation of gPSCs 

into the endothelial lineage. This CD31 expression pattern is consistent with previous 

studies, which have shown that CD31 protein is expressed on the entire surface of un-

differentiated ESCs. During differentiation, CD31 was found to be transiently down-

regulated and to become restricted to the site of cell-to-cell contacts in differentiated 

cells (Drake and Fleming, 2000; Li et al., 2005). 

Moreover, the similar pattern of vWF expression during differentiation, the 

exclusive expression of Tie2 in gPSC-EC, and the lack of expression in other cell 

types all support the endothelial feature of gPSC-derived cells (Mariappan et al., 

2009). 
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Figure 36.  Flow cytometric analyses of gPSC-derived EC-like cells. Cell surface 
staining of gPSC-derived EC-like cells was performed with antibodies directed to the 
indicated proteins on the x-axis. Overlays compare the expression of IgG control 
(gray) versus the indicated proteins (no fills). The y-axis represents the percentage of 
maximum expression (Data were obtained in cooperation with Sarah Yoon Hee Eli-
gehausen, WWU Münster, Germany). 
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Figure 37. Immunocytochemical analyses of gPSC-derived EC-like cells. The 
cells were stained with VE-Cadherin (B, E) and vWF (D, F), indicating the endotheli-
al characteristic of gPSC-ECs. Figure 37A and 37C show the DAPI-stained cells. 
Figure 37E and 37F show the merged images of VE-Cadherin, vWF staining in green 
and DAPI staining in blue. Scale bars indicate 50 µm (Data were obtained in coopera-
tion with Sarah Yoon Hee Eligehausen, WWU Münster, Germany). 
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The phenotypical analysis of gPSC-derived cells was performed using flow 

cytometry analysis. The gPSC-derived cells expressed endothelial cell-specific mark-

ers including Tie2, Flk1, CD31, VE-Cadherin, and vWF. The ESC marker SSEA1 

was not detected on the cells, excluding the possible existence of undifferentiated 

gPSCs in in vitro culture of gPSC-derived cells (Figure 36).   

Consistent with the FACS data, immunofluorescence staining of the cells 

demonstrated that the endothelial cell-specific marker VE-Cadherin was expressed at 

the cell adherent junctions and vWF (Figure 37), a glycoprotein synthesized by endo-

thelial cells, was expressed on the gPSC-derived cells. 

To examine the functionality of gPSC-derived cells in vitro, LDL uptake, and 

tube formation assays were performed. As shown in Figure 38, the cells incorporated 

Dil-Ac-LDL, which is one of the characteristics of endothelial cells (Voyta et al., 

1984). Moreover, in vitro functionality of the cells was assessed by culture on mat-

rigel in the presence of VEGF, which can promote vascular morphogenesis of endo-

thelial cells (Matsumura et al., 1997; Young et al., 2002). As demonstrated in Figure 

39, they formed tube-like networks on matrigel, which displayed Bandeiraea sim-

plicifolia 1 (BS1)-lectin binding, another characteristic of endothelial cells (Asahara 

et al., 1999)



Results

 69 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. LDL uptake analysis of gPSC-derived EC-like cells. The gPSC derived 
EC-like cells take up Dil-conjugated acetylated low-density lipoprotein (Dil-Ac-LDL), 
thereby confirming their in vitro functionality. The cells were stained with DAPI (A) 
and LDL (B). The merged picture (C) shows DAPI staining in blue and LDL uptake 
in red. Scale bars indicate 50 µm (Data were obtained in cooperation with Sarah Yoon 
Hee Eligehausen, WWU Münster, Germany). 
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Figure 39. In vitro functional analysis of gPSC-derived EC-like cells. Cells form 
tube-like structures on matrigel (A), which stained with BS1-lectin in red and DAPI 
in blue (B). Scale bars indicate 250 µm (Data were obtained in cooperation with Sa-
rah Yoon Hee Eligehausen, WWU Münster, Germany). 
 

 

5.3 In vitro differentiation of germline stem cells 

5.3.1 Differentiation of germline stem cells into meiotic cells 

 

Since GSCs depict the in vitro counterparts of SSC, the established Oct4-GFP 

GSC lines were used to recapitulate spermatogenesis in vitro. For stepwise differenti-

ation, GSCs were co-cultured with Sertoli cells and media containing defined factors, 

which are suggested to promote proliferation and differentiation of GSCs into meiotic 

cells as shown in Figure 40. 
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Figure 40. Stepwise induction of differentiation potential of GSCs. GSCs were 
differentiated to premeiotic cells in response to the addition of steel factor and in vitro 
meiosis was induced by supplementation of retinoic acid. 
 

 

The time course of c-kit expression at the RNA and protein level was uti-

lized as a first indicator of GSC differentiation. In a previous report, it has been 

shown that c-kit is expressed in different subtypes of spermatogonia and required for 

ligand SCF (also known as kit-ligand KL, steel factor) function for the survival and 

proliferation of differentiating type A spermatogonia (Yoshinaga et al., 1991). Thus, 

cells were cultured in the presence of SCF to stimulate the differentiation of GSCs 

into premeiotic cells. Thereafter, cells were treated with RA to induce maturation and 

progression into the more advanced stages of meiosis. RA has been reported to induce 

the initiation and completion of meiosis, and its elimination leads to meiotic arrest in 

RA-mutant mice in vivo. RA is therefore considered a major meiotic regulator of 

spermatogenesis (Anderson et al., 2008; Baltus et al., 2006; Mark et al., 2008).   

5.3.2 Characterization of meiotic cells 

5.3.2.1 Flow cytometry analysis of in vitro-generated cells 
 

The capability of GSCs to differentiate into premeiotic cells was determined 

by assessing the pattern of c-kit protein expression and Oct4-GFP expression in a 

time-course analysis at day 0, day 3, and day 8 of in vitro differentiation. For this, dif-

ferentiation cultures were enzymatically digested and live cells were separated from 

dead cells, aggregates, or debris. Subsequently, single cells were gated for analysis 

(Figure 41). As expected, Oct4-GFP expression declined upon differentiation and c-

kit expression was significantly up regulated by day 3 of in vitro differentiation (Fig-
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ure 41A and 41B). After addition of SCF to the medium, c-kit expression was signifi-

cantly downregulated, suggesting the progressive differentiation of GSCs towards 

spermatocytogenesis, the premeiotic stage of spermatogenesis by day 8 of in vitro dif-

ferentiation (Figure 41C and 41D), suggesting that the cells had initiated differentia-

tion and subsequently entered meiosis. This result is consistent with a previous report 

(Yoshinaga et al., 1991), in which expression of c-kit was not found in undifferentiat-

ed spermatogonia type As, while the onset of expression occurred in differentiating 

spermatogonia and c-kit downregulation took place upon entry into meiosis.  

 

 
Figure 41.  Flow cytometry analysis of in vitro-generated cells on different days 
of culture. Oct4-GFP expression and c-kit protein expression levels were determined 
during in vitro differentiation on day 0 (A), day 3 (B), and day 8 (C) and displayed as 
percentage. Overlays (D) compare the c-kit expression of IgG control (gray) versus 
cells on day 3 (blue line) of differentiation and day 8 of differentiation (red line).  
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5.3.2.2 Immunofluorescence staining 
 

After approximately 8 days of differentiation, RA was added to the in vitro 

culture and progression into the more advanced stages of meiosis was monitored. En-

try into and progression through meiosis was found to be associated with the for-

mation of synaptonemal complexes- a unique feature of meiosis that occurs in differ-

ent stages of the first meiotic division- leading to DNA recombination (Inselman et 

al., 2003). Thus, immunofluorescence staining was performed using an antibody di-

rected to Scp3 (Figure 42). 

Figure 42 demonstrates the efficiency of meiotic entry and progression of 

spermatocyte-like cells on days 8 and 14 of differentiation. Since the majority of mei-

otic cells were detected in the supernatant of the cultures, all floating cells were col-

lected on day 8, 10, and 14 of differentiation and performed Scp3 and DAPI staining. 

The Scp3-stained cells were classified into a punctuated or elongated pattern, resem-

bling leptotenema, or zygotenema, pachytenema, and diplotenema in the mouse testis, 

respectively. Furthermore, semi-quantitative analysis of Scp3-stained cells was car-

ried out to evaluate the time window of meiotic development in the present in vitro 

culture system. The total number of DAPI-stained nuclei and DAPI-positive nuclei 

with punctuate or elongated Scp3 patterns, respectively, were counted and calculated 

as percentages (Table 6). The percentage of punctuate-stained cells decreased, while 

that of elongated-stained cells increased during the time course of differentiation, in-

dicative for meiotic progression of GSCs in the first meiotic division. 
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Figure 42. Scp3 staining of in vitro-differentiated cells. Scp3 staining was per-
formed on day 8 (A, C) and day 14 (B, D) of in vitro differentiation and evaluated as 
either punctuated or elongated pattern. The insert in Figure 42A and 42B depicts a 
Scp3-positive cell at higher magnification.  

Table 6.  Semi-quantitative analysis of in vitro-derived spermatocytes  

Day of  

differentiation 

 

Cells 

 with punctuated  

Scp3-staining 

pattern 

 

Cells  

with elongated 

Scp3-staining 

pattern 

Scp3-negative 

cells 

Total number  

of  

DAPI- positive 

cells 

Day 8 205 (27%) 18 (2.3%) 536 (70.7%) 759 

Day 10 118 (50.8%) 17 (7.3%) 97 (41.9%) 232 

Day 14 130 (49.4%) 104 (39.5%) 29 (11.1%) 263 
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5.3.2.3 Transmission electron microscopy 
 

The ultrastructure of in vitro-generated cells was compared with in vivo coun-

terparts by TEM analysis. For morphological analysis and stage determination of in 

vitro-generated spermatogenetic cells, different in vivo stages of spermatogenesis 

were studied.  

In Figure 43A and 43B, round spermatid and type B spermatogonia are 

shown. Type B spermatogonia have rounded and smaller nuclei, which are filled with 

electron-dense nucleoplasmic material. In contrast, type A spermatogonia have large 

nuclei and are poor in endoplasmatic reticulum (data not shown). The endoplasmic 

reticulum has round and elongated cisterns with free ribosome clusters nearby and lies 

free in the cytoplasm or close to the cell membrane. The elongated cisterns appeared 

to be interrelated, with a predominance of smooth endoplasmic reticulum over the 

granular endoplasmic reticulum.  

In Figure 43C and 43D, in vivo primary spermatocytes are shown. Primary 

spermatocytes are of a similar size as spermatogonia and have a spherical nucleus 

with fine granulated chromatin (Figure 43C). The endoplasmic reticulum is reduced 

in comparison to that of spermatogonia. The size, shape, and internal structure of the 

mitochondria of these cells recall those of spermatid and spermatogonia shown in 

Figure 43A and 43B. A characteristic feature of these cells is the presence of the syn-

aptonemal complex, which appears as three parallel electron-dense lines in longitudi-

nal sections. Frequently this structure extends from the nuclear membrane (Figure 

43C and 43D).  

Furthermore, these cells are characterized by the presence of intercellular 

bridges (Figure 43E) and a dense multivesicular structure of irregular shape between 

the nuclear membrane and the plasma membrane, called chromatoid body (Figure 

43E and 43F). In the pachytene stage of the meiotic prophase I, matured cells show a 

larger and more complex region of the Golgi apparatus and an increased number of 

mitochondria, which have dilated cristae. The mitochondria tend to cluster and elec-

tron dense material appeared between them (Figure 43D). 
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Figure 43. TEM images of different in vivo stages of spermatogenetic cells during 
spermatogenesis. A-F. TEM images showing round spermatid (A), type B spermato-
gonia (B), and primary spermatocytes (C, D, E, and F). Note the synaptonemal com-
plexes, which appear as electron-dense lines and extend from the nuclear membrane 
shown in Figure 43C and 43D. Intercellular bridges (E) and dense multivesicular 
structures of irregular shape between the nuclear membrane and the plasma mem-
brane, called chromatoid body shown in Figure 43E and 43F are characteristic fea-
tures of this cellular stage. Abbreviation: ga = Golgi apparatus, ib = intercellular 
bridge, m = mitochondria, mv = multivesicular body, n = nucleus, sc = synaptonemal 
complex. (A-F: x 6950; insert in C: x 12.210). 

In Figure 44A to 44C, in vivo spermatid cells of different spermiogenetic 

stages are shown. Typically the Golgi apparatus depicts the dominant organelle in ear-

ly spermatids. Figure 44A shows the Golgi phase, the initial phase of spermiogenesis, 

characterized by the spheroidal nucleus and rough endoplasmatic reticulum, located 

preferentially around the nucleus. The Golgi apparatus showed lamellae, saccules, and 

vesicular structures, keeping close to the endoplasmatic reticulum.  

As indicated by the acrosomal granule lining part of the nucleus and the ce-

phalic cap developed in the nucleus cranial pole, the spermatid-like cell in Figure 44B 

mirrors the cephalic cap phase. The characteristic nuclear portion adjacent to the acro-

somal vesicle showed an alteration in its contour and this way forms a marginal fossa-

like structure (Figure 44C). In both phases, a multivesicular body can be detected in 

in vivo spermatids (Figure 44B).  
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Figure 44. Ultrastructure showing in vivo spermiogenetic cells. A: Golgi phase of 
spermiogenesis. Note Golgi apparatus with lamellae and vesicular structures in close 
proximity to the endoplasmatic reticulum. B: Spermatid cell in cephalic cap phase in-
dicated by the acrosomal granule lining part of the nucleus. C: Cephalic cap phase of 
spermatid cells. Note the marginal fossa-like structure. Abbreviation: ag = acrosomal 
granule, av = acrosomal vesicle, ga = Golgi apparatus, m = mitochondria, mf = mar-
ginal fossa, mv = multivesicular body, n = nucleus, (A-C: x 6950). 
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Figure 45. TEM images of in vitro-derived cells, Sertoli cell, and GSC. A-D. TEM 
images showing the ultrastructure of in vitro-derived GSCs. Note the large nucleus 
(A) and Golgi apparatus as a dominant organelle (B). The characteristic acrosomal 
granule-like structure is clearly visible in in vitro-derived cells (C). In Figure 45D, the 
synaptonemal complex-like structures are shown. Note the characteristic lateral and 
central element of the synaptonemal-like structure (insert in D). Control Sertoli cell 
(E) and GSC (F). Abbreviation: a = acrosomal vesicle, CE = central element, LE = 
lateral element, ga = Golgi apparatus, m = mitochondria n = nucleus, sc = synap-
tonemal-like structure. (A, D, E, and F: x 6970; B and C: x 12.210; insert in D: x 
12.210). 
 

In comparison to the above outlined in vivo cells, the presumptive in vitro-

differentiated cells have large and irregular nuclei (Figure 45A). Their Golgi appa-

ratus is dominantly made up of lamellae, sacculations, and vesicular structures (Figure 

45B). The acrosomal granule-like structure shown in Figure 45C is positioned at the 

nucleus as it is found in in vivo cells. The subacrosomal membrane space between the 

nuclear membrane and the acrosomal granule-like structure forms a marginal fossa-

like structure (Figure 45C, arrowhead). 

 As shown in Figure 45D, the cells exhibit synaptonemal complex-like struc-

tures showing the characteristic lateral and central elements. Mitochondria of all cells 

show cisternae formation, which are characteristic for mature vesicular mitochondria.  

In comparison the ultrastructures of Sertoli cells (Figure 45E) and GSCs 

(Figure 45F) were analyzed. As shown in Figure 45E and 45F, neither the nuclear ul-

trastructure, nor the morphology of the Golgi apparatus or mitochondria resemble 

those of the in vitro-derived germ cells.  
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5.3.2.4 Real-time RT-PCR analysis 
 

To confirm the successful differentiation of GSCs into premeiotic and meiot-

ic stage spermatocytes, gene expression analysis of undifferentiated GSCs and differ-

entiating cultures at various time points during differentiation were performed. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 46. Real-time RT-PCR analysis of in vitro-differentiated cells from GSCs. 
The gene expression analysis of Oct4-GFP-GSCs (day 0 of differentiation) and in 
vitro-generated cells on various days of differentiation was performed using the pre-
meiotic marker Oct4 and the meiotic markers, c-kit, Stra8, Dmc1, and Scp3.  

As shown in Figure 46, the GSC-specific marker Oct4 was downregulated 

during differentiation, whereas the meiotic markers c-kit, Stra8, Dmc1, and Scp3 were 

unregulated in in vitro-differentiated cells compared with undifferentiated GSCs. The 

obtained Oct4 expression pattern is similar to that described in a previous report by 

(Pesce et al., 1998), in which Oct4 was detected during postnatal mouse development 

in type A spermatogonia, but not in type B spermatogonia and primary spermatocytes. 

Consistent with previous studies (Prabhu et al., 2006; Schrans-Stassen et al., 

1999), which demonstrated that c-kit mRNA was detected until late pachytene sper-

matocytes, whereas the protein was not detected from leptotene spermatocytes on-

ward, in this study the expression of the c-kit gene was maintained in the elongated 
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stage of meiosis I. These observations suggest that GSCs have entered prophase I of 

meiosis and have undergone meiotic maturation in vitro. 

5.3.2.5 Round spermatid injection, embryo transfer, and derivation of embryonic 
stem cells 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 47. Schematic procedure of ROSI followed by embryo transfer and deri-
vation of ESCs. After injection of in vitro-generated cells into oocytes isolated from 
wild type mice, the two-cell stage embryos were used for either embryo transfer or 
derivation of ESCs. 
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Figure 48. Embryonic development after round spermatid injection. Morphology 
of mouse embryos followed by ROSI was determined at E3.5. The embryos have dif-
ferent developmental potential determined by GFP expression (A, C) and bright field 
picture (B, D).   
 

 

Figure 48 shows various mouse embryos after ROSI. Most embryos arrested 

at early stage, whereas some developed to the morula or blastocyst stages. Table 7 

summarizes the results of embryonic development after ROSI with in vitro-

differentiated cells.  
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Table 7. Summarized results of round spermatid injection   

 
Abbreviation: Injected = Total number of oocytes injected; Survived = Total number of oocytes sur-
vived; Two-cell = Number of two-cell stage embryos; Morula+Blastocysts = Number of morula and 
blastocyst stage embryos; ET embryos = Number of transferred two-cell, morula, and blastocyst stage 
embryos; ET females = Number of recipients 

Ratio: 0.434482759 = two-cell stage embryos/survived oocytes after ROSI, 0.204787234 = embryos 
developed to morula to blastocyst stage/survived oocytes after ROSI. 
  

 

Trial 

 

Injected 

 

 

Survived 

 

 

Two-cell 

 

 

Morula 

+Blastocysts 

 

 

ET embryos 

 

 

ET females 

 

1 140 48   27 2 

2 

120 44  8 

ESC deriva-

tion 

 

3 95 84 59 21 82 4 

4 73 63   38 2 

5 75 61 45 12 51 3 

6 92 87 31 19 80 3 

7 72 43 12 4 15 1 

8 68 55 6  55 3 

9 61 57 36 13 36 2 

Total 796 542 189 77 384 20 

   435 376   

Ratio   0.434482759 0.204787234   

     Outgrowth 

Poor out-

growth 

ESC deri-

vation    8 4 

 

1 (green) 
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To examine the in vivo developmental potential of mouse embryos after 

ROSI, two-cell, morula, and blastocyst stage embryos were transferred to recipient 

female mice. However, there was neither full-term development of embryos nor off-

spring production achieved. Finally, four ESC lines were established from eight-

morula stage embryos and termed ROSI-derived ESC lines. These lines were main-

tained under ESC culture conditions described in section 3.2.5.   

5.3.2.6 Flow cytometry analysis 

To characterize the ROSI-derived ESC lines, FACS analysis was performed 

using SSEA1 antibody- one of the makers used for ESC characterization. As shown in 

Figure 49, ROSI-derived ESC lines stained positive for SSEA1 (upper row). SSEA1-

positive-stained cells were sorted and subjected to imprinting analysis. 

 

Figure 49. Flow cytometry analysis of SSEA1-stained ROSI-derived ESCs. The 
ROSI-derived ESCs were stained with ESC marker SSEA1 and flow cytometry anal-
ysis showed the positive expression of SSEA1 on the cells (upper raw) in comparison 
to unstained cells (lower raw). 
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5.3.2.7 Karyotyping 

Karyotype analysis was performed to examine the number of chromosomes 

in the ROSI-derived ESCs. As demonstrated in Figure 50, chromosome numbers were 

thirty-nine to forty for all ROSI-derived ESC lines analyzed. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 50. Karyotyping analysis of ROSI-derived ESC line numbers 1 to 4. Rep-
resentative pictures demonstrate the chromosome spread of ROSI-derived ESC line 
number 1 (A), 2 (B), 3 (C), and 4 (D).  
 

5.3.2.8 Methylation analysis 

Methylation analysis was performed with ROSI-derived ESC lines (Figure 

51). The ROSI-derived ESCs show a somatic imprinting pattern for the H19 gene and 

show a parthenogenetic imprinting pattern for the Igf2r gene. 
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Figure 51. DNA methylation analysis of ROSI-derived ESCs. The imprinting sta-
tus of ROSI-derived ESC lines numbers 1 to 4 was examined using the bisulfate se-
quencing method. An open circle represents an unmethylated status; a close circle 
represents a methylated status. Abbreviation: ROSI-ESC = ROSI-derived ESC line. 
 

5.3.2.9 Characterization of round spermatid injection-derived Acrosin embryon-
ic stem cells 

 

In order to examine the ROSI technique, ESCs were derived from ROSI em-

bryos using round spermatids isolated from Acrosin-EGFP mice [B6C3-Tg (Acro3-

EGFP)] (Nakanishi et al., 1999). This ESC line is termed ROSI-derived Acrosin ESC 

line. As shown in Figure 52, the karyotyping analysis demonstrated a normal karyo-

type containing forty chromosomes, while PCR genotyping analysis detected the GFP 

transgene, confirming that this ESC line has indeed originated from ROSI with the 

round spermatids from the Acrosin-EGFP mouse. The detection of the Sry gene indi-

cated the presence of the Y chromosome, which denotes this line as male line. Unfor-

tunately, the four ROSI-derived ESC lines using the in vitro-derived round spermatids 

did not carry the Oct4-GFP and LacZ transgenes, indicating their parthenogenetic 

origin. 
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Figure 52. Genotyping analysis and karyotyping analysis of ROSI-derived 
Acrosin ESCs. The ROSI-derived Acrosin ESCs have the GFP and Sry genes with 
duplicates (A). They have normal number of chromosomes (forty chromosomes) (B). 
Abbreviation: Ctrl: control. 
 

5.4 Derivation of germline stem cells from OG2 x Acrosin EGFP mouse testes 
 

The GSCs were derived from Acrosin-EGFP mice and OG2 x Acrosin-EGFP 

mice.  

 

 



Results

 89 

Figure 53. Morphology of Acrosin GSCs. GSC colonies derived from Acrosin-
EGFP mice show a grape-like morphology, typical for GSCs, when they form colo-
nies. The left picture (A) shows GSCs at passage 1 derived from PND 6 mouse testes 
and the right picture (B) shows GSCs at passage 1 derived from PND 6 and 7 mouse 
testes. Scale bars indicate 100 µm. 

As shown in Figures 53, the GSC colonies appeared as small clusters and 

formed grape-like colonies, as they grew further. The Oct4-GFP expression within 

GSC colonies was detected (Figure 54). This observation is similar to GSCs derived 

from different mice as shown in Figure 11. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 54. Morphology of OG2 x Acrosin-EGFP GSCs. GSC colonies derived 
from OG2 x Acrosin-EGFP mice show a typical grape-like morphology and hetero-
geneous GFP expression within the colonies. The upper pictures (A, B) demonstrate 
the GSCs at passage 1 derived from PND 7 mouse testes and the lower pictures (C, D) 
show the GSCs at passage 5 derived from PND 6 mouse testes. Scale bars indicate 
100 µm
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6. Discussion 

6.1 Characteristics of germline stem cells 

Several studies have demonstrated the in vitro derivation and culture of mouse 

male GSCs, also called SSCs, under different conditions. The culture conditions var-

ied between the reports in terms of different mouse backgrounds, testis isolation from 

mice of different age, different medium compositions, presence or absence of feeder 

cells, and coating of tissue culture dishes with laminin. Albeit all those differences 

several reports demonstrated the successful in vitro cultivation of GSCs (Kanatsu-

Shinohara et al., 2005; Kanatsu-Shinohara et al., 2003; Kubota et al., 2004). 

In this study, GSCs were generated from adult mouse testes according to pre-

vious reports and established as cell lines that could be maintained in vitro as long-

term cultures without significant loss or alteration of their characteristics at the mo-

lecular and cellular level (Ko et al., 2010; Ko et al., 2009; Ko et al., 2011). As shown 

in Figure 11, the in vitro cultured GSCs showed typical grape-like morphology and 

differential expression of Oct4-GFP within colonies. These observations could be 

correlated by flow cytometry analysis in terms of Oct4-GFP and c-kit expression pat-

terns. Figure 12 demonstrates the existence of different subpopulations of GSCs with-

in in vitro cultures on MEFs in the presence of defined growth factors. These GSCs 

can be categorized in four distinct subpopulations according to different expression 

levels of Oct4-GFP and c-kit protein: Oct4-GFP-positive and c-kit-positive, Oct4-

GFP-positive and c-kit-negative, Oct4-GFP-negative and c-kit-positive as well as 

Oct4-GFP-negative and c-kit-negative populations.  

These cells are not comparable to in vivo Oct4-GFP-positive and c-kit-

negative GSCs that have been identified as self-renewing As cells (single type A 

spermatogonia) in previous reports (de Rooij, 2001; de Rooij and Russell, 2000; 

Yoshinaga et al., 1991). Furthermore, in an in vivo testicular microenvironment, Ser-

toli cells surround spermatogenetic cells, while mouse embryonic fibroblasts are used 

to promote the proliferation of GSCs and to inhibit the differentiation of GSCs in in 

vitro cultures. 

The self-renewing type A spermatogonia is the common initial cell type in 

mouse (As) and human (Apale) testicular cell development that differentiate into vari-



Discussion

 91 

ous cell types including subtype A spermatogonia, B spermatogonia, spermatocytes, 

spermatids, and sperm at later stages depending on the species (de Rooij, 2001; de 

Rooij and Russell, 2000). The present study aimed at generating human GSCs from 

testicular biopsies, however all attempts to generate or isolate GSCs failed, irrespec-

tive of the culture conditions tested. Table 5 summarizes the different culture meth-

ods. We observed overgrowth of human fibroblast-like cells and subsequently for-

mation of very tight colonies, which did not proliferate but rather survived as colonies 

under different culture conditions. They exhibited distinct characteristics in compari-

son to human ESCs (WA09/H9) as demonstrated in Figure 13, 14, and 15. The basic 

problem for establishment of human GSC culture conditions is the lack of markers 

that could be used to identify human GSCs. The use of human biopsies for experi-

mental purposes bears another problem, namely the difference in the genetic back-

grounds of biopsies. Each one might require alternative culture conditions. Similari-

ties and differences between mouse and human GSCs are basically unknown. Mouse 

GSC culture conditions did not support the culture of human testicular GSCs in any of 

the attempts. In addition, replating of human testicular cells on mouse feeder cells ap-

pears not to be suitable for propagation of human GSCs, even though human ESCs 

can be grown on mouse feeder cells. The use of human feeder cells might be more 

supportive. Many open questions remain and have to be addressed to establish suita-

ble in vitro conditions for the isolation, identification, culture, and characterization of 

human GSCs.  

6.1.1 Potency and functional analysis of germline stem cells 

To determine the potency of the generated GSCs, in vitro and in vivo experi-

ments were performed. Expression analysis for specific GSC and ESC markers at 

RNA and protein level confirmed their GSCs identity as shown in Figures 21, 23, and 

24. To determine their differentiation potential, GSCs were injected into testis of en-

dogenous germ cell-depleted mice where they reestablished spermatogenesis as 

demonstrated in Figure 22. In addition, GSCs did not lead to the formation of terato-

mas upon injection into immunodeficient mice and were thus classified unipotent.  
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6.1.2 Self-reprogramming ability of germline stem cells into pluripotent cells 
 

In comparison to human GSCs, many studies have been performed on mouse 

GSCs. One of the most significant features of mouse GSCs is their potential to con-

vert into a pluripotent stage. It has been shown in previous reports, that mouse GSCs 

generated from Oct4-GFP adult mouse testis can be spontaneously converted into 

ESC-like cells under defined in vitro culture conditions (Ko et al., 2010; Ko et al., 

2009; Ko et al., 2011). Oct4 is a known marker for GSCs, but also for pluripotent 

cells. Once Oct4-GFP-poistive GSCs are reprogrammed into pluripotent cells, they 

exhibit a more intense Oct4-GFP signal. Furthermore, as demonstrated by microarray 

analysis, once the individual GSC lines converted into corresponding pluripotent 

gPSC lines, additional differences were found amongst the gPSC lines and GSC lines, 

which might be correlated with the different intensity of Oct4-GFP signal in GSCs 

and gPSCs. The comparative analysis between GSCs of different genetic backgrounds 

of and gPSCs as shown in Figures 25 and 26 revealed distinct expression of Sox2 in 

cells with homogeneous genetic background (GSC, gPSC) and Sox2 and Nanog in 

cells with heterogeneous genetic background (GSCr, gPSCr). Whether this difference 

has a considerable effect on the conversion process needs to be further studied. The 

gPSCr2 revealed a distinct expression pattern between two different types of gPSCs 

that can be observed in various microarray data displays like principal component 

analysis, hierarchical clustering, heat-map, or map of distances between samples. This 

difference might be due to a difference in the sample preparation rather than an exclu-

sive characteristic of the gPSCr2.  

6.1.3 Differentiation ability of germline-derived pluripotent stem cells into endo-
thelial-like cells 
 

The directional differentiation of mouse- and human ESCs into endothelial 

cells has been reported, however, the derivation of endothelial-like cells from gPSCs 

has not been reported to date (Cho et al., 2007; Li et al., 2007). In the present thesis, 

endothelial-like cells were generated from gPSCs and characterized in vitro.  

 For the differentiation of gPSCs into endothelial-like cells, embryoid bodies 

were generated and CD31-positive cells were isolated. CD31 was used in this study as 

a possible marker for gPSC-derived endothelial-like cells, since in previous reports 
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CD31 was used as a marker for endothelial cells and CD31-positive cells generated 

from mouse ESCs could differentiate into endothelial cells in vitro (Mariappan et al., 

2009; Vittet et al., 1996; Watt et al., 1995). 

Figure 34 demonstrates that gPSC-derived cells display a cobblestone-like 

morphology, which resembles the morphology of in vivo-isolated endothelial cells. 

They clearly differ from smooth muscle cells, which have a more spindle-like shape 

(Wang et al., 2006). Gene expression analysis, immunofluorescence staining, and 

FACS analyses revealed that these cells expressed typical endothelial cell markers, 

such as Tie2, CD31, VE-Cadherin, vWF, Flk1, Flt1, and Icam2 (Garlanda and Dejana, 

1997). These cells did not express the smooth muscle cell markers SMA (α-smooth 

muscle actin) or SM22α, neither at the RNA level nor at protein level (Yamashita et 

al., 2000). Taken together, these results indicate that the gPSC-derived cells represent 

cells of the endothelial lineage and not smooth muscle cells, which can also be gener-

ated when ESCs are differentiated into the endothelial lineage (Blancas et al., 2008; 

Yamashita et al., 2000). 

In some studies, CD14, CD34, or CD133 have been used as a marker for the 

identification of endothelial progenitor cells (Asahara et al., 1997; Elsheikh et al., 

2005). CD133 has not been used in this study to identify the progenitors of gPSC-

derived endothelial cells, since expression of CD133 in mouse endothelial progenitor 

cells still has not been confirmed (Rafii and Lyden, 2003). The gPSC-derived endo-

thelial-like cells express neither CD14 nor CD34, which indicates that these cells do 

not exhibit immature endothelial cell features. Moreover, CD34 expression appears to 

be unstable during culture and not all endothelial cells express CD34, e.g.- those of 

large vessels (Delia et al., 1993; Fina et al., 1990). As the expression of CD34 on en-

dothelial cells is still controversial, this antigen was not used in the present study as 

marker for the characterization of gPSC-derived cells.  

 Furthermore, gPSC-derived cells could take up Dil-ac-LDL from endothelial 

tubes on matrigel assays, showing their functionality in vitro. The LDL uptake and 

tube formation are related to important functional properties of endothelial cells and 

some endothelial cells derived from pluripotent cells may lack this functional proper-

ties (McCloskey et al., 2006).  

Based on the results and observations described above, the gPSC-derived cells 

are identified as endothelial cell-like cells, which could be used for basic research in 
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the area of vascular biology and function, as well as for investigations providing proof 

of concept for the use of pluripotent cell-derived endothelial cells in future therapeutic 

applications including ischemic diseases

6.2 In vitro spermatogenesis of germline stem cells 
  

Another important feature of GSCs is their ability to produce mature sperm in 

vivo, the process called spermatogenesis. The identity and biological activity of in 

vitro cultured GSCs were confirmed by transplantation of GSCs into infertile mouse 

testis. GSCs were able to restore spermatogenesis, which showed the full functional 

capacity of GSCs for generating sperm in vivo, suggesting the possibility of genera-

tion of mature spermatogenetic cells from GSCs in vitro. 

In the present study, various types of spermatogenetic cells were generated 

from established GSCs in vitro and characterized using different analysis methods. 

For in vitro spermatogenesis, Sertoli cells were utilized as supporting cells as they are 

the only somatic cell type in seminiferous tubules of mouse testis, which are in direct 

contact with spermatogenetic cells of different stages. They provide physical support 

and secrete essential factors or nutrients to maintain SSCs in balance between self-

renewal and differentiation (Oatley and Brinster, 2012).  

There are two considerable advantages, which make the in vitro differentiation 

model from GSCs a suitable system to study the initial step of spermatogenesis. First, 

GSCs are committed to become spermatogenetic cells, not other somatic cell types. 

Second, the monolayer co-culture method only with Sertoli cells facilitates the gener-

ation of spermatogenetic cells and thus the determination of the developmental stage 

of the cells during a time-course differentiation, the timing of the switch from mitosis 

to meiosis, and the progression of meiosis based on morphologic changes subsequent 

to addition of different agents. 

The transition of mitosis to meiosis was verified by differential Oct4-GFP- 

and c-kit protein expression and marker gene expression analysis of undifferentiated 

and differentiated GSCs during the first round of differentiation. Based on the crucial 

role of the isoform of the c-kit ligand SCF in spermatogenesis described in previous 

reports (Mauduit et al., 1999b; Mithraprabhu and Loveland, 2009; Sato et al., 2012), 

the GSCs in vitro differentiation cultures revealed the presence of two c-kit ligand 
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isotypes during the course of the differentiation: the membrane-bound form and the 

soluble form. As demonstrated in Figure 41, elevated c-kit RNA expression levels in 

GSCs demonstrated the presence of the c-kit receptor in differentiating spermatogo-

nia, while reduced c-kit expression levels following the addition of SCF supported the 

stage-specific role of c-kit and c-kit ligand interaction in the first wave of spermato-

genesis called spermatocytogenesis. Furthermore, the high percentage of c-kit-

positive cells with nominal Oct4-GFP expression indicated the robustness of the dif-

ferentiation strategy and the potential of GSC lines to differentiate into premeiotic 

cells in vitro. 

Subsequently, the cells were treated with RA for further development. Previ-

ous studies have described that in the absence of Stra8, which is activated by RA in 

male mice, germ cells undergo meiotic cessation predominantly at the pachytene 

stage, indicating that RA is required for DNA replication before cellular entry into 

and progression through meiosis (Anderson et al., 2008; Baltus et al., 2006; Mark et 

al., 2008). The progression into a more advanced stage of meiosis I was confirmed by 

Scp3 staining. A previous report (Henderson and Keeney, 2005) demonstrated that 

Scp3 protein begins to assemble along each sister chromatid pair at leptotene sper-

matocytes to form the axial component, which is present until the metaphase I stage, 

whereas the central component of the synaptonemal complex Scp1 first appears in 

zygotene spermatocytes. Therefore, Scp3 staining was used as meiotic marker in this 

study to estimate the differentiation status of GSCs in meiotic prophase I in culture. 

As shown in Figure 42, in vitro-differentiated cells display a primary spermatocyte-

like staining pattern, which resembles that of in vivo spermatocytes of different stag-

es. Moreover, an increase in the number of elongated Scp3 staining patterns in cells 

and a decrease in the total number of Scp3-positive cells on later days of differentia-

tion suggests progression of the prophase I of meiosis for a subpopulation of cells. 

The developmental status of GSCs on different days during differentiation and the 

generation of primary spermatocyte-like cells from GSCs were also confirmed at the 

RNA level by additional gene expression analysis for the premeiotic marker Oct4 and 

meiotic markers, c-kit, Stra8, Dmc1, and Scp3. The observed downregulation of Oct4 

and the concomitant up regulation of the tested meiotic genes clearly indicated entry 

into prophase I of meiosis. In addition, the expression of the c-kit gene was main-

tained in cells with an elongated Scp3 staining pattern, which correlates also with 

previous studies (Prabhu et al., 2006; Schrans-Stassen et al., 1999).  
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Presumptive terminally differentiated cells were analyzed using various meth-

ods to determine the appearance of haploid round spermatid-like cells from GSCs (da-

ta not shown). However, there was no clear evidence of completion of meiosis of in 

vitro-derived cells. Although, there was no marker available to isolate haploid round 

spermatid-like cells in the present in vitro differentiation culture system, on day 18-23 

days of in vitro differentiation, the cells were isolated and picked mechanically from 

the culture and ROSI was performed to prove completion of meiosis and generation 

of haploid round spermatid-like cells, and to determine their in vivo functionality by 

either generation of ESCs or live offspring. We failed to produce live offspring, but 

we succeeded in deriving ESC lines. The four ROSI-derived ESC lines were karyo-

typically normal and the imprinting status of the H19 and Igf2r loci was analyzed. 

H19 is a paternally repressed and maternally expressed gene, which is fully methylat-

ed in GSCs. Igf2r is a maternally repressed and paternally expressed gene, which is 

fully unmethylated in GSCs. Both genes showed the androgenetic imprinting pattern 

in GSCs. The imprinting status of terminally differentiated cells was not analyzed, 

since genomic imprinting in male germ cells is accomplished before spermiogenesis, 

according to a previous report (Kimura and Yanagimachi, 1995b). The somatic im-

printing pattern for H19 in ROSI-derived ESCs is typical for ICSI-derived ESCs, but 

the parthenogenetic imprinting pattern at the Igf2r locus is not. This suggests a high 

possibility of parthenogenetic origin, consistent with the lack of Oct4-GFP and LacZ 

transgenes from the in vitro-derived round spermatids. Whether ROSI-derived ESCs 

have a different imprinting pattern in comparison to ICSI-derived ESCs remains un-

known, since the ROSI procedure requires one step more to activate the oocytes 

(Kimura and Yanagimachi, 1995a), which might lead to the different imprinting status 

of ROSI-derived ESCs. 

The ROSI technique was used for the generation of ESC lines from GSCs-

derived presumptive spermatid-like cells and wild type round spermatids isolated 

from Acrosin-EGFP mice. As shown in Figure 52, the ROSI-derived Acrosin-GFP-

ESCs carried the GFP transgene as detected by PCR-analysis and exhibited a normal 

karyotype. However, the Oct4-GFP and LacZ genes were not detected in four ROSI- 

derived ESCs generated from Oct4-GSC-derived spermatid-like cells, suggesting that 

these four ROSI-derived ESC lines originated from parthenogenetic embryos. The 

functionality of in vitro-derived round spermatids could therefore not be demonstrat-

ed. 
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For the detailed analysis and morphological stage determination of in vitro-

derived germ cells, an extensive ultrastructural analysis of different in vivo spermato-

genetic and spermiogenetic stages have been conducted. As shown in Figures 43 and 

44, cells of different spermatogenetic and spermiogenetic stages show distinct mor-

phological details. The most significant organelle of the in vitro-derived cells is the 

Golgi apparatus, which depicts the main organelle of early spermatids (Martins and 

Silva, 2001; Mollenhauer et al., 1976) and a characteristic feature of the Golgi phase 

during spermatid development (Martins and Silva, 2005). The multivesicular body, a 

typical feature for the early Golgi phase in wild type testicular cells (Figure 44B) have 

not been found in in vitro-differentiated cells in this study. Furthermore, the typical 

spheroidal shape of the nucleus (Figure 43F) found in early in vivo spermatid cells 

could also not be detected. The in vitro-derived cells showed the formation of the 

acrosomal granule-like structure, indicative for the entrance in the cephalic cap phase 

as described by Martins and Silva (2005) and which is also detected in in vivo sper-

matid cells (Figure 45C and 44B, 44C). The subacrosomal membrane space between 

the nuclear membrane and the acrosomal granule-like structure forming a marginal 

fossa is visible in in vitro-derived cells. As shown in Figure 45D, the in vitro-

differentiated cell exhibits a synaptonemal complex-like structure, which resembles 

very closely synaptonemal complex structures found in wild type primary spermato-

cytes (Figure 43C), indicative of primary spermatocyte-like cells in vitro.  

According to a previous report (Schramm et al., 2011), meiotic chromosome 

synapsis is an essential step for proper meiotic progression that ensures male and fe-

male fertility. A critical step during this process is the assembly of the central element 

of the synaptonemal complex. Notably, a difference in the diameter of the central el-

ement between in vitro and in vivo cells was observed, whereas the diameter of the 

lateral element was similar in both cells (Figure 45D and 43C, inserts). This could 

indicate an incorrect synaptonemal complex-protein assembly and/or protein interac-

tion of the central element in in vitro-derived cells. The defective assembly of the 

synaptonemal complex has deleterious effects on germ cells and could lead to the 

malformation of acrosomal-like structure, though meiosis has not been completed. 

Collectively, the identified characteristic features at the ultrastructural level support in 

part the successful in vitro generation of primary spermatocytes. 

The mitochondria of in vitro-differentiated cells show cisternae formation, 

which are characteristic for mature vesicular mitochondria (Figure 45B). Mature mi-
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tochondria are typical for type A spermatogonia, which are actively dividing cells 

with high metabolic activity (Martins and Silva, 2001). Meiotic cells to early sperma-

tid cells contain both types of mitochondria, but mature spermatids contain only the 

immature mitochondria, suggesting that in vitro-derived cells need more ATP produc-

tion to survive in in vitro culture, regardless of the cell type during differentiation, 

than in vivo cells. It appears that there is another independent mechanism guiding the 

transition of mature to immature mitochondria in vivo, which cannot occur under in 

vitro conditions. As the major known role of mitochondria is production of energy 

through ATP production in most cell types, particularly spermatids, immature mito-

chondria play an important role in the formation of the tail structure. However, it is 

not yet known, whether they have direct influence on fertility (Rajender et al., 2010). 

It appears that high cAMP production in in vitro-derived cells as a consequence of 

high ATP production through mature mitochondria leads to incorrect completion of 

meiosis, eventually leading to an abnormal arrangement of acrosomal-like structures 

shown in Figure 45C. Indeed, the cAMP level is low in spermatocytes and round 

spermatids, increases with the progression of spermiogenesis, and is highest in sperm, 

supporting the presumption described above (Feinberg et al., 1983).  

Based on the results and observations shown in the present thesis, a number of 

factors can be suggested to improve the in vitro differentiation model of GSCs. 

First, premeiotic, meiotic, and postmeiotic cells differ in cellular and nuclear 

structure, which reflects the different metabolic requirements of cells during devel-

opment. For nuclear condensation and elongation, the direct effects of factors pro-

duced by Sertoli cells on spermatogenetic cells may be less crucial than the indirect 

influence of other testicular and somatic cell types. The three-dimensional milieu may 

provide a microenvironment with individual cell-to-cell contacts, thereby allowing 

cells to access the paracrine signals more efficiently than in a monolayer co-culture 

system. The finding from previous studies (Holdcraft and Braun, 2004) that endocrine 

and paracrine disorders cause impairment in the maintenance of normal spermatogen-

esis in the mouse testis and that spermatogenesis can occur under the kidney capsule 

in vivo point to an indirect influence of paracrine and autocrine factors in spermato-

genesis (Matoba and Ogura, 2011). This concept is also supported by a recent study, 

in which functional sperm were generated in an organ culture (Sato et al., 2011), 

while our approach utilized a monolayer in vitro system, in which testicular condi-

tioned medium was used to compensate for the co-culture condition.  
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In addition, the pH of the culture regulates the formation of acrosomes and is 

affected by metabolites produced during spermatogenesis (Mauduit et al., 1999a; 

Nakanishi et al., 2001; Panneerdoss et al., 2012). Maintaining the pH of the culture 

system within an appropriate range could help the progression of differentiation be-

yond the Golgi phase and lead to the proper formation of the acrosomal cap, which 

contains components important for fertilization. This appears to be associated with 

sperm fertilizing capacity, as mutant mice with an abnormally developed acrosome 

structure are sterile (Xiao et al., 2009; Yao et al., 2002). 

To improve the differentiation efficiency and achieve spermatogenesis, the 

culture conditions might be optimized by prolonging the survival of the initial in 

vitro-derived cells with the help of specific co-culture conditions. Thus, the ultimate 

goal in generating functional gametes under in vitro conditions is the development of 

culture conditions that more closely mimic the in vivo testis environment.  

In conclusion, the observations and findings presented in this study provide 

evidences for the generation of primary spermatocyte-like cells from an established 

mouse GSC line in vitro. However, completion of meiosis and production of proper 

ESCs or live offspring were not achieved. Further optimization of in vitro culture sys-

tems for the differentiation of GSCs are necessary to support the successful stepwise 

generation of various spermatogenetic cells in vitro and to extend our understanding 

of the molecular mechanisms underlying the different stages of spermatogenesis. 
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8. Abbreviations 

AP alkaline phosphatase 

APC allophycocyanin 

BS Bandeiraea simplicifolia 

BSA bovine serum albumin 

BMP bone morphogenetic protein 

° C degree Celsius 

cDNA complementary deoxyribonucleic acid 

CE central element 

CM conditioned medium 

DAPI  4’-6-Diamidino-2-phenylindole 

DMEM dulbecco’s minimal eagle’s medium 

DMEM/F12 dulbecco’s minimal eagle’s medium:  

Nutrient Mixture F-12 

DMSO dimethyl sulfoxide  

DNA deoxyribonucleic acid 

DNase deoxyribonuclease   

dNTP  desoxyribonucleosid triphosphate 

dpc  days post coitum 

DTT dithiothreitol 

E embryonic day 

EB embryoid body 

ECs endothelial cells 
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EDTA ethylenediaminetetraacetate 

EGF epidermal growth factor 

EGCs   embryonic germ cells 

ESCs   embryonic stem cells 

FACS    fluorescence activated cell sorting 

FBS fetal bovine serum 

FGF  fibroblast growth factor 

FSH follicle-stimulating hormone 

GDNF glial cell line-derived neurotrophic factor 

GFP   green fluorescence protein 

Gfrα1 GDNF family receptor alpha 1 

GSCs  germline stem cells 

GPI glycosylphosphatidylinositol 

gPSCs   germline-derived pluripotent stem cells 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

hESCs human embryonic stem cells 

hGH human growth hormone  

min miniute 

h hour 

ICM inner cell mass  

ICSI intracytoplasmic sperm injection 

IGF insulin-like growth factor 

IMDM iscove’s modified dulbecco’s medium  

iPSCs induced pluripotent stem cells 

KO knockout 
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KOSR knockout serum replacement 

KSOM potassium simplex optimized medium 

LDL low-density lipoprotein 

LE lateral element              

LIF leukemia inhibitory factor 

MEFs mouse embryonic fibroblasts 

MEM minimal essential medium 

NEAA non-essential amino acid 

PBS phosphate buffered saline 

PC principal component 

PE phycoerythrin 

PFA paraformaldehyde 

PGCs primordial germ cells 

PI3K phophoinositide 3-kinase 

PMSF phenylmethylsulfonyl fluoride 

PND postnatal day 

PVP polyvinylpyrrolidone  

RA retinoic acid 

ROSI round spermatid injection 

RNA ribonucleic acid 

RT room temperature 

RT-PCR reverse transcriptase polymerase chain reaction 

s second 

SC synaptonemal complex 

Scp synaptonemal complex protein 
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SFK src family kinase 

SSCs spematogonial stem cells 

SCF stem cell factor  

T testosterone 

TEM transmission electron microscopy 

TGF transforming growth factor 

VEGF vascular endothelial growth factor 

w/v weight/volume 

v/v volume/volume 
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Accutase PAA Laboratories 

Alexa 488-conjugated anti-rat IgG antibody  Invitrogen 

Alexa 568-conjugated anti-mouse IgG antibody Invitrogen 

Alkaline phosphatase staining Kit   Chemicon 

APC-conjugated anti-c-kit antibody  BD Bioscience 

Ascorbic acid Sigma-Aldrich 

Bouin's Solution  Sigma-Aldrich 

BSA fraction V solution Invitrogen 

Busulfan Sigma-Aldrich 

Cacodylate Science services 

Collagenase IV                               Sigma-Aldrich 
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DAPI containing mounting medium                  Vector Laboratories 

Dimethyl sulfoxide  Sigma-Aldrich 
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Follicle-stimulating hormone  Sigma-Aldrich 

Gelatin Sigma-Aldrich 

GDNF Peprotech 

D-(+)-glucose solution Sigma-Aldrich 

GlutaMax-I Invitrogen 

glutaraldehyde  Merck 

L-glutamine/penicillin/streptomycin PAA Laboratories 

HEPES Invitrogen 

hGH  Prospec 

high capacity cDNA Reverse Transcription Kit Applied Biosystems 

Horse serum Biochrom 

Hyaluronidase Sigma-Aldrich 

IGF1 Prospec 

Isopropanol  Sigma-Aldrich 

Insulin transferrin selenium-A solution Invitrogen 

KO DMEM/Ham’s Invitrogen 

KO serum replacement Invitrogen 

DL-lactic acid Sigma-Aldrich 

lead citrate Science services 

MEM medium Sigma-Aldrich 

MEM vitamins  Invitrogen 
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Naphthol phosphate  Sigma-Aldrich 

N2 supplement  Invitrogen 

Non-essential amino acid PAA Laboratories 
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PE-conjugated anti-SSEA1 antibody BD Bioscience 
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PE-conjugated anti-CD31 antibody Biozol 

PE-conjugated anti-Flk1 antibody eBioscience 
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PE-conjugated IgG control antibody BD Bioscience 

Penicillin/streptomycin   PAA Laboratories 

Photoflo  Tetenal 

Progesterone  Sigma-Aldrich 

Rat IgG control antibody  BD Bioscience 

Retinoic acid  Sigma-Aldrich 

RNeasy mini and micro Kit Quiagen 

Scp3 antibody  Abcam 

Sodium pyruvic acid stock solution  PAA Laboratories 

SSEA1 antibody Abcam 

StemPro-34 SFM  Invitrogen 

Syringe BD Plastipak 

Testosterone Fluka 

Tissue culture plates and dishes   SARSTEDT 

Triton X-100  Sigma-Aldrich 

TRA1-81 antibody Chemicon 

Trypsin/EDTA PAA Laboratories 

TuJ1 antibody Chemicon 

Uranyl acetate Science services 

VEGF Prospec 

von Willebrand Factor antibody  DAKO 


