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Chapter 1

Introduction

Let & be a parahoric Bruhat-Tits group scheme over a smooth projective
curve C over F,, see [PR3]. A global &-shtuka G over S in Sch/F, is a tuple
(G, 51,...,5n, ) consisting of a &-bundle G over Cs := C xp, S, an n-tuple
of (characteristic) sections (si,...,s,) € C™(S) and a Frobenius connec-
tion ¢ defined outside the graph of the sections s;’s (i.e. an isomorphism
0*Glogwuir., —Gloswur,, Where o* = (ido x Frob,)*).

Spelling out the Riemann-Hilbert correspondence for “function fields”, to-
gether with the tannakian philosophy, one sees that the stack V, 1 (C, &)
of global &-shtukas, after imposing suitable boundedness conditions and
level structures (as we will explain in chapter 5 and section 6.2), may play
the same role that Shimura varieties play in the mixed characteristic set up.
More specifically one can hope that the Langlands correspondence for func-
tion fields is realized on its cohomology. Note that in particular this moduli
stack generalizes the space of F'-sheaves F'Shp, which was considered by
L. Lafforgue (and previously V. Drinfeld) in his proof of the Langlands cor-
respondence for the case that & = GI,. (resp. & = Gly). On the other
hand “this analogy” can be viewed as an attempt to build a bridge between
the geometric Langlands program and the arithmetic Langlands program,
where the role of global shtukas is played by the abelian varieties (together
with additional structures) and D-modules respectively.

In this thesis our approach to study the moduli stack of global &-shtukas
is to relate this stack to certain moduli spaces for local objects, called lo-
cal P-shtukas, where PP is a parahoric group scheme. More precisely let A,
be the completion of the local ring O¢, at a closed point v € C, and let
P =P, :=& x¢ Spec A,. We develop the theory of local P-shtukas partly
independently of global &-shtukas. For this purpose we replace Spec A,
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8 CHAPTER 1. INTRODUCTION

by D := Speck[z] for a finite field k. In [H-V] Hartl and Viehmann have
introduced local G-shtukas for a connected reductive group G, as the func-
tion field analogs of p-divisible groups. This category has as objects pairs
L = (L4, p) consisting of an LTG-torsor L, on S € Nilpg, ] and an iso-
morphism of the loop torsors ¢ : 6*L — L as its objects. Here LG (resp.
L*@G) denotes the group of loops (resp. positive loops) of G (see 2.3), L
denotes the LG-torsor associated with £, and 6*L£ the pullback of £ under
the g-Frobenius morphism F'rob, : S — S. For a parahoric group scheme
PP one can define local P-shtukas in a similar way, replacing the L*G-torsor
over S by LTP-torsors. We denote the resulting category by Shtp(S).

Consider the formal stack V,.#!(C, ®)%, which is obtained by taking
the formal completion of the stack V,,2#1(C, &) at an n-tuple of character-
istic places v = (1;) (see section 2.1). One can extend the morphisms in the
category V,1(C, 8)%(S) to quasi-isogenies (see Def 3.1.1) between global
®-shtukas and form a category which we denote by Shtg(S).

Recall that to an abelian variety A over I, one can associate a p-divisible
group A[p>°]. In the analogous situation (see section 3.2) one can associate

a tuple (G, ) of local P,,-shtuka QU to a global ®-shtuka G in Ghtg(S)

L:6nty(S) — []Ghts,(S).

v;
We construct this functor in section 3.2.

In analogy with the Grothendieck-Messing theory we prove (see section
4.2.1) that the infinitesimal deformations of a global &-shtuka G are the
same as the infinitesimal deformations of the associated local P-shtukas via
the global-local functor I'. Note that as we mentioned above, unlike abelian
varieties, &-shtukas may posses more than one characteristic and we must
keep track of the deformations of the local P-shtukas at each of these char-
acteristic places. This theorem for abelian 7-sheaves (corresponding to the
case & = (l,,) and their associated z-divisible groups was first stated and
proved by Hartl in [Hal].

The knowledge that the deformations of a global &-shtuka are ruled by
the deformations of the associated local shtukas at the characteristic places
looks enough enlightening to seek a similar uniformization procedure as that
of Rapoport and Zink (and previously Cerednik and Drinfeld) for Shimura



variety of PEL-type.

Let k denote an algebraic closure of the residue fields of v; for i =
1,...,n. Let us set

Vo (C,8) =V, " (C, &) xcn Spfk[(]

where Spf k[(] := Spf &[G ..., ] and ¢ is a uniformizer of Oc,y,.

As Hartl and Viehmann pointed out in [H-V] the true analogs of p-
divisible groups are “bounded” local G-shtukas. Nevertheless in section 4.1
we prove that the product [], Flp, can be regarded as a uniformization
space for V, ! (C,®)% already in the unbounded situation, see theorem
4.1.12. Here

Fls, = Fls, x SpE[C],

where Flp, is the local affine flag varieties corresponding to the para-
horic group P,, := & X Spec O¢,,, which is constructed by Papas and
Rapoport, see [PR2]. Note that the ind-scheme ﬁp can be viewed as a
moduli space for local P-shtukas £ together with a quasi-isogeny f : £L — L,
from £ to a fixed trivialized local P-shtuka L.

The analogs of the Rapoport-Zink space for local G-shtukas, when G is a
split reductive group was constructed and studied by Hartl and Viehmann in
[H-V]. In chapter 6, we generalize their construction to the case of P-shtukas
where P is a parahoric Bruhat-Tits group. For this purpose we introduce
the notion of boundedness condition on the quasi-isogenies between local
(resp. global) P-shtukas (resp ®-shtukas). These bounds are essentially
given by closed subschemes Z of ]-"Ep which satisfy certain conditions, see
section 6.2. Finally in this chapter we prove that the Rapoport-Zink space
for local P-shtukas /\/l]L is a formal scheme locally formally of finite type
over k[(], see 6.3.1 (also see [RZ, Thm 2.16] and [H-V, Thm 5.6]).

After the construction of the Rapoport-Zink space MLO (for local P-
shtukas) in chapter 6 the next chapter is devoted to the construction of the
uniformization map. Using the tannakian theory, we introduce the notion
of the level H-structure (for a compact open subgroup H C &(Ag)) on a
global &-shtuka G. This is done in chapter 5. We denote by VZ 21 (C, &)
the moduli stack parametrizing &-shtukas together with a level H-structure.
Let Z := (Z ) be an n-tuple of bounds Z, in Ffp The associated bound-
edness conditions on the local P,-shtukas, induce a bound on the moduli
stack VZ71(C, &)2. We denote the corresponding formal substack given

by imposing the boundness condition Z by Vi 12 L(C, &)~ We show in
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Proposition 6.2.18 that it is a formal algebraic stack over [[, Spf A,, locally

of finite type. Let G, be a fixed global &-shtuka in Vf’ZA%%”l(C, &)%(k) and

set (£,) := L(Gy). Let I(Q) denote the group of the self quasi-isogenies of
G,- We construct the uniformization morphism

0: QN[ MZ x 8(A%)/H — V22 (C, 6,

and in addition we prove that the uniformization map induces an iso-
morphism after passing to the completion along its image, see theorem 7.1.4.
Note that the reduced subscheme of the Rapoport-Zink space for local IP-
shtukas is an affine Deligne-Lusztig variety. Thus as a consequence of the
uniformization theorem one can relate the rational points (of the Newton
stratum) of the moduli stack of global &-shtukas to the rational points of
certain affine Deligne-Lusztig varieties.

In the mixed characteristic set up the Schubert varieties in a twisted
affine flag variety have appeared in the theory of local models for Shimura
varieties. Also this anticipation is worked out for function field analogs of
Shimura varieties, see [Var, Thm. 2.20] and [Drl, Prop. 3.3]. In the last
chapter we study the theory of local models for the moduli of global &-
shtukas and briefly mention how this may counterpart with the theory of
uniformzation of the moduli stack of global &-shtukas.

1.1 Notation and Conventions

Z

the set of non-negative integers,
a positive number,
the finite field with ¢ elements of characteristic p,
smooth projective geometrically irreducible curve over I,
a closed point of C,
an n-tuple of closed points of C,
residue field of a place v on C,
an algebraic closure of k,
the fk-Frobenius.

N
m
2
S

Q

QO TR O Q=
I
—
S

A, the completion of the stalk O¢, at v,

A the ring of integral adeles of C| i.e. lim O¢ /7 where the limit is taken
p—
v

over all non-zero sheaves of ideals of O¢,

A% the adelic ring  lim  O¢/7 where the limit is taken over all non-
—
TV()N{v;}=0
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zero sheaves of ideals of O¢ whose support is disjoint from {v;},

Ag = A®p,. F,(C) the ring of adeles of C,

Aé = AZ ®OC FQ(C),

Dg := Spec R[z] spectrum of the ring of formal power series in z with co-
efficients in a commutative ring R,

Dy := Spec R((2)), where R((2)) := R[=][2],

Dy, g := Spec R[z] /2", where n € Ny,

Dy, := Spf R[z] formal spectrum of R[z]

When R = k we drop the subscript R from the notation of Dg, DR, D, r
and DR.

an indeterminate over F,

a smooth affine group scheme over C,

a reductive group over D,

a smooth affine group scheme of finite type over D,
generic fibre of P,

the group scheme &, := & x¢ O¢,, over Spec O¢,,
pull-back of P, under the map Spf A, — Spec O¢,.

QG

CAas,
N

AN

Let S be a scheme. We denote by og : S — S its Frobenius endomor-
phism which acts as the g-power map on the structure sheaf,

Cs = C xp, S, when S = Spec R we also denote Cg := C xp, 9,
o = ’Ld() X 0g.

For any facet a in the Bruhat- Tits building of G over D, P,, denotes
the unique smooth group scheme , with connected fibers, over D, such that
P, (k[z]) is equal to the parahoric subgroup of G(K) attached to a, cf. [BT2,
1.7].

Let S be a formal scheme. We denote by Nilpg the category of schemes

over S on which an ideal of definition of S is locally nilpotent, equiped with
the étale topology.

Let H be a sheaf of groups over X, we let (X, H) denote the cate-
gory fibered in groupoids over the category of schemes Sch, such that the
objects over S, (X, H)(S), are H-torsors over X xz S and morphisms
are isomorphisms of H-torsors.
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Chapter 2

Glob. and Loc. Shtukas, Def.
and Their Moduli Stacks

2.1 Formal Algebraic Stacks

Recall that a formal space X over a formal scheme S is a sheaf of sets on the
site Nilpg. In addition it is called a formal algebraic space if the diagonal

morphism XX Xg X is representable by a quasmompact morphism of

formal schemes and there is a formal scheme X’ over S and a morphism
of formal S- spaces X’ — X which is representable by an étale surjective
morphism of formal schemes.

Let X' be a stack over a scheme S. Let Sy be a locally closed subscheme of
S. Let S denote the formal completion of S along Sp. Restricting the fibered
functor X' to the category Milpg gives a category X fibred in groupoids over
Nilpg which inherits the following properties from X

i) for every V in Nilpg and z,y in X (V) the presheaf

Isom : Sch/V ——  Sets
U—=V — Homgq(zv,yv),

is a sheaf on Sch/V.

ii) for every covering V; — V in Nilpg all descent data for this covering
are effective.

Further more if X" is an algebraic stack (resp. of DM-type) we have

13
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(a) the diagonal 1-morphism X — X x g X over S is representable (i.e.
the fiber over any U-valued point, U € MNilpg is representable by a
formal algebraic S-space), separated, and quasi-compact,

(b) there exists a formal algebraic §-space X and a presentation
P XX

of formal S-stacks which is representable by a smooth (étale) and
surjective morphism of formal algebraic S-spaces.

Abstractifying the above easy observation, we phrase that in the follow-
ing way

Definition 2.1.1. A category X fibered in groupoids over Nilpg is called a
formal stack if it has the properties i) and ii) indicated above. Also we say
X is formal algebraic stack if in addition it is subject to a) and b) above.
A formal algebraic stack X is called Deligne-Mumford (or of DM-type) if
the presentation P can be chosen étale.

Example 2.1.2. Again mimicking the idea behind the construction of quo-
tient stacks one can define the quotient of a formal space by a formal group
scheme.

Let T be a formal S-scheme and let G be a formal T -group space (i.e. a
group object in the category of formal T- spaces). A (right) G-torsor is a
formal T—space P with an action of G (from the right) such that there is a
covering T' — T over S for which P X5 T'is G X5 T isomorph to G X5 T
which acts on itself by right translatlon

Let X be a formal S- space, Y an X- space (i.e. a formal S—space equlpped
with a morphism Y 5 X ) and G an X- -group space which acts on Y from
the right. We define the quotient stack [Y/ G] as the following category
fibered in groupoids over the category of formal S schemes:

For every formal S- scheme T the category | [Y/ G]( ) consists of all triples
(z,P, ) where z € X( ) ’PlS&GXAy T-torsor and o 73—>}A/><;(’x7q

isa G x S T—equwarlant morphism of formal f—spaces. One easily verifies
that the quotient [Y/G] is a formal S-stack.

Note that when G is smooth, the natural morphism Y — [}/}/ @] is a
smooth presentation and therefore [Y'/G] is a formal algebraic stack. More-
over if G is étale over X then [Y/G] is a formal Deligne-Mumford stack.
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Let S,.q denote the underlying reduced subscheme of S. In a similar
way, as that of formal schemes, one has a functor

—red : Gta/S — Gta/S,eq,

where Gta (resp. 65) denotes the 2-category of algebraic stacks (resp.
formal algebraic stacks) over Syeq (resp. S) Namely, let X be a formal
algebraic S-stack and let P : )A( — X be a presentation. We define the
underlying reduced stack X = A,..4 as follows: R
For every U in Nilpg, X(U) is the full subcategory of X'(U) whose objects
are the x € X(U) such that there is a covering U" — U in Milpg, an element
2’ € X,eq(U"), and an isomorphism in X' (U’) between 2y and P(z'). The
above functor restricts to a functor from the category of formal algebraic
stacks of DM-type to algebraic stacks of DM-type.

Similarly one can define the notion of quasi-coherent sheaves on a formal
algebraic stack X'. We say that a sheaf of ideals Z of O3 is an ideal of
definition of X if for any presentation P : X — X the ideal sheaf P*T is an
ideal of definition for X. R

We say that &X' is locally noetherian if the presentation X is locally
noetherian. If X is locally noetherian then it posses a unique largest ideal
of definition, namely the ideal defining the closed sub-stack X,..;. We denote
this ideal by Z5.

From now on we assume that all formal algebraic stacks are locally
noetherian.

Definition 2.1.3. Let S be the completion of a scheme S along a closed
sub-scheme Sy. Let X be an algebraic S-stack and Z a locally closed sub-
stack of X, contained in X xg.5). We define the formal completion X,z as
the full sub-category of X consisting of those points p of X(U) such that
the U,¢q-point associated to p be a U,..4-point of Z.

Proposition 2.1.4. The formal completion .)?/g of/i’\ along Z is a formal

algebraic S-stack. Moreover if X is an algebraic S-stack of DM-type then
X,z is a formal algebraic S-stack of DM-type. If T is the ideal sheaf on X

defining Z then 2?/3 is I.O)?/Z-adic.
Proof. cf. [Hal, Appendix Prop A.14]. ]

Definition 2.1.5. A 1-morphism f : Yy X of formal algebraic stacks is
called adic if f*Z3 is an ideal of definition for )
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Remark 2.1.6. If X is an adic formal algebraic §—space and H a finite
¢tale S-group scheme then the quotient [X /H] is an adic formal algebraic
S-stack of DM-type. In this case, the canonical projection X - [)? /H] is
an étale presentation for [X /H].

2.2 Global &-Shtukas

Let & be a smooth affine group scheme on the curve C' over k.

We denote by 5#1(C, ®) the moduli stack of &-bundles on C. The fol-

lowing is well-known:

Remark 2.2.1. The stack ' (X, &) is a smooth algebraic k-stack, which
is locally of finite type, see theorem 6.2.12.

For ¢ in the set of the connected components 7y (1 (X, &)), we denote
by 1 (X, ®). the corresponding open substack.

Definition 2.2.2. Let & be a smooth affine group scheme on a curve C
over k. We say that & is a parahoric group scheme over C' if

(a) all geometric fibers of & are connected and the generic fiber &, of &
is reductive over k(C'),

(b) for any ramification point v of & (i.e. those points v of C, such that
the fiber above v is not reductive) the group scheme P, := &, is
a parahoric group scheme over O¢,, as defined by Bruhat-Tits (cf.
[BT1, Définition 5.2.6]).

Let us mention that when & is parahoric over C', Pappas and Rapoport
[PR3] conjectured that there is a canonical isomorphism

Wo(%l(c, Qj)) = 7T1(®n>r.

Where 71(®,,) denotes the fundamental group of &, and the right hand
side are the co-invariants under I' := Gal(k(C)*? /k(C)).

The following proposition of J. Heinloth [He, Thm. 6] affirms their
anticipation to some extent.
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Proposition 2.2.3. Let & be a parahoric Bruhat-Tits group scheme over
C' with semi-simple generic fiber, then

71'()(%1(0, @)) = 7T1(Q577)F.

For a divisor D on C let J5(C,®) denote the stack classifying &-
bundles with D-level structure (i.e. a section of the &-bundle over D xg, S),
or equivalently define J#7(C,®) as a category fibred in groupoids, which
assigns to a scheme S over k the category whose objects are

ObA;(C,8)(S) = {(G.¥);G € H(C,8),¢: G,y == & xc D xx, S},

and its morphisms are those isomorphisms of &-bundles that preserve the
D-level structure.

Definition-Remark 2.2.4. Consider the following functor
S — (G515 9) G € OWNC,B)(S), 5 € C(S)
QY g|CS\UiFsi — & x¢o Cs N\ U;I,is a trivializaition }

This functor is representable by an ind-scheme Grg,, over C", locally of
finite type, see [Ga, Proposition 2.2.3]. The ind-scheme Grg,, is called the
global affine grassmannian.

Definition 2.2.5. For each natural number n, let Heckeg p, be the stack
whose S valued points are triples

i) (G,v) and (G',¢") in A5 (C, &)(S),
ii) sections ¢, ...c, € (C' ~ D)(S)

-~ !/

iii) isomorphism 7 : Q‘st\rqumur%% | 5Ty Unr,, * PTESETVING the D-

level structures. Here I'., denotes the graph of the section c;.

Note that forgetting the isomorphism 7 defines a morphism
Heckeg pn, — #5(C,®) x H5(C,8) x (C~ D).

We denote by pr; and pry the projections, respectively to the first and
second factor.

Remark 2.2.6. We will show in proposition 6.2.16 that for a parahoric
group & the stack Heckeg p, can be viewed as a locally closed substack of
a Grg, -fibration over /1 (C, ).
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Definition 2.2.7. Assume that we have two morphisms f,g : X — Y of
schemes (stacks), we denote by ker(f,g : X = Y') the pull back of the
diagonal under the morphism (f,g): X - Y x Y.

Definition 2.2.8. We define the moduli stack V,53(C,®) to be the
preimage in Heckeg p, of the graph of the Frobenius morphism. In other
words

V75 (C, &) = ker(pry, Owice) 0 Pra: Heckes pn = HA(C,B)).

We call this the moduli stack of global &-shtukas.

Each object G in Ob(V,, 5 (C, 8)(S)) is called a global &-shtuka over S and
the corresponding sections (cq, ..., c,) are called the characteristic sections
(or simply characteristics) of G.

More explicitly a global &-shtuka G over S in Sch/F is a tuple (G, s1, ..., Sy, @)
consisting of a &-bundle G over Cg, an n-tuple of (characteristic) sections
(81,--+,5,) € C"(S) and an isomorphism ¢ : 0*Glcgu,r,, ~Glosuir,,-

We will drop the subscript n from the notation of V,, 7 (C, &), Gre ,,
Heckeg pn, etc. when it is obvious from its context.

2.3 Loop groups and Local P-Shtukas

Let X be a scheme over D. Consider the following functor

Lt—:Sch/D —  PreShv/k
X —— L*X:SpecR— X(Dg),

from the category of schemes over I to the category of pre-sheaves on
Sch/k. After restrict the above functor to the category of affine schemes
of finite type over DD, one can easily see that the resulting functor factors
through the full subcategory of schemes over k. We denote the scheme
representing the functor L*X by LTX and we call it the space of positive
loops on X.

Similarly we define the following functor

L—:Sch/D —  PreShu/k
X +— LX :SpecR— X(Dp).
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When we restrict the above functor to the category of affine D-schemes
of finite type, then this functor factors through the full sub category of ind-
schemes over k. We call the ind-scheme LX (which represents the functor
LX) the loop space of X.

Remark 2.3.1. Let X be a scheme of finite type over D. If X is formally
smooth (resp. reduced, connected), then so is L*X.

Remark 2.3.2. Let X be a scheme of finite type over D. If X is smooth,
then LX is also formally smooth. However the functor X — LX may no
longer preserve connectedness and reducedness. For instance one can verify
that for X := G,, the space of loops LG,, is neither connected nor reduced.

For the details and functorial properties of these constructions see [PR2].

Let G (resp. P) be a linear algebraic group over D (resp. flat affine
group scheme of finite type over D). The group of loops (resp. positive
loops) associated to G (resp. P) is the ind-group scheme (resp. affine group
scheme) LG (resp. LTPP) over Speck.

Let n be the generic point of D and P, be the generic fibre of P. Let
HC'(Speck, LTP) (resp.#'(Speck, LP,)) denote the classifying space of
L*P-torsors (resp. LP,-torsors) [Speck/LTP| (resp [Speck/LP,]).
Consider the natural 1-morphism

A (Speck, L™ P) — " (Speck, LP,), L, +— L

of categories fibred in groupoids.

Let us denote the restriction of J#*(Speck, L™P) (resp. ' (Speck, LP,))
to the site N ilppe still with the same notation. We define the space of local
shtukas with P-structure as follows.

Definition 2.3.3. Let C be the fiber product
A1 (Speck, LYP) X 1 (speck,zp,) H " (Speck, LP)

of groupoids. Let pr; denote the projections to the i-th factor. We define
the groupoid of local P-shtukas Shtp to be

ker (pri,6 o pry : C = S (Speck, L™P)) .

We call an object of the category Sht% (S) a local shtuka with P-structure
over S (or simply local P-shtuka over S).
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More explicitly the category S ht%(S ) has as objects pairs £ = (L, ¢)
consisting of an LTP-torsor £; on S € Nilps and an isomorphism of the
loop torsors ¢ : 6*L — L as its objects.

Definition 2.3.4. A local P-shtuka (L, ) is called étale if ¢ comes from
an isomorphism of LTP-torsors 6*L, — L.



Chapter 3

A starting point of the analogy

3.1 Rigidity of quasi-isogenies

Recall that (for a prime number p) a (p-)quasi-isogeny between abelian
varieties &7 and % can be defined as a roof

o
7N
) Ay

of isogenies of abelian varieties (such that a power of p kills the kernel
of f and g).

This inspires to establish the following analogous definition for a quasi-
isogeny between global &-shtukas.

Definition 3.1.1. A quasi-isogeny between global &-shtukas
g = (g’ 7_) - Ql = (gla T/)

with the same characteristics, is an isomorphism Glog ps — G'|cs-Dgs
where D is an effective divisor on C, such that 7/c*(f) = fr. We denote the
category of global B-shtukas over S (with exactly n characteristic sections),
with quasi-isogenies as its morphisms, by Ght(S) (when the number of the
characteristic sections is clear from the context we drop the superscript n).

Spelling out the observation we recalled above for “p-divisible groups”,
we analogously define

21
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Definition 3.1.2. A quasi-isogeny between local P-shtukas
L= (Ly,p) = L= (L, ¢)

over S is an isomorphism of the associated LP,-torsors f : £ — L' such
that the following diagram

oL —2— L

wl ]
5L —— L

commutes.

We denote by QIsogg(L, L") the set of quasi-isogenies between £ and £ over
S. We denote the category of local P-shtukas over S, with quasi-isogenies
as its morphisms, by Shtp(S).

Let S be a closed subscheme of S, defined by a locally nilpotent sheaf
of ideals. Let X and Y be p-divisible groups over S. Further assume
that p is locally nilpotent on S. Then a quasi-isogeny between Xg and Yg
lifts uniquely over S. This phenomenon was first observed by Drinfeld, see
[Dr2].

The analogy between p-divisible groups and local shtukas, we mentioned
above, develops further, and in particular, the following proposition states
that quasi-isogenies between local P-shtukas enjoy the mentioned rigidity
property, namely a quasi-isogeny between local P-shtukas lifts over infinites-
imal thickenings, thanks to the Frobenius connections.

This interesting feature of shtukas first mentioned in [Hal| for abelian
sheaves and z-divisible groups and later in [H-V] for G-shtukas, where G is a
constant reductive group over F,. Their observation and proof is obviously
valid replacing G-shtukas by P-shtukas.

Proposition 3.1.3. (Rigidity of quasi-isogenies) Let S be a scheme in
Nilpkm and leti:S — S be a closed immersion defined by a sheaf of ideals
T which is locally nilpotent. Let L = (Li,¢) and L = (L, ¢') be two

shtukas in @P(S). Then
QIsogs(L, L) —— QIsogs(i*L,i*L"), f > i* f
1s a bijection of sets.

Proof. Arguing by induction over Og/Z?" it suffices to treat the case where
79 = (0). In this case the g-Frobenius factors as S % S <% S where j is the



3.2. THE GLOBAL-LOCAL FUNCTOR 23

identity on the underlying topological space |S| = |S| and on the structure
sheaf this factorization is given by

0s 0 L 0
b — bmodZ +— b7,

Therefore o* f = j*(i* f) for any f € Qlsogg(L, L). We obtain the diagram

J S (3.1.1)
X 7 @rf) e

from which the bijectivity is obvious.

]

Remark 3.1.4. By similar arguments as above one may see that quasi-
isogenies between global &-shtukas also enjoy similar rigidity property.

3.2 The Global-Local Functor

Denote by o7 ¥ 5 the category whose objects are abelian schemes over some
base S over a field of characteristic p, with quasi-isogenies as its morphisms.
Let 8.7 s denote the category whose objects are p-divisible groups and mor-
phisms are the quasi-isogenies between them.

Recall that assigning the p-divisible group A[p™] (i.e. the inductive
system formed by the p"-torsion subgroup schemes A[p"]) to an abelian
scheme A in &7V g defines a functor

E:ﬂ%g%%gs.

In the sequel of this section we investigate the analogous functor which
goes from the category of global &-shtukas to the category of local P-
shtukas.

Definition 3.2.1. Let P be the formal group scheme over Hj), obtained by the
formal completion of P along V'(2). A formal P-torsor over a k-scheme S is a
z-adic formal scheme P over D Xspf kS together with an action P x 73 — P

of P on P such that there is a covering ]DS/ =D Xgpfk S — Dy := D Xspf kS
where S — S is an fppf-covering and a P—equlvarlant isomorphism
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P;(DSDS/ — P;(DDS/
Here P acts on itself by right multiplication.

Let 27 1(ID> IP’) be the category fibered in groupoids that assigns to each
k-scheme S the groupoid consisting of all formal P-torsors over Dy.

In [H-V, Proposition 2.2.a)] Hartl and Viehmann prove that for a split
reductive group G, there is a bijection of (pointed) sets between the Cech
cohomology ﬁl(Squc,L+G) and the set of isomorphism classes of z-adic

formal schemes over D X g, S. Following their arguments one can even see
that there is a natural isomorphism between the corresponding categories.

Proposition 3.2.2. There is a natural isomorphism
A1 (D, P)=." (Spec k, LTP)

of groupoids.

~

Proof. To a given element P of 7 (D, P)(S) one can associate the following
sheaf

K:(fpopf/S) — Sets
T — HomDS(DT,ﬁ),

where (fppf/S) denotes the big fppf-site on S. This sheaf is precisely a
principal homogeneous space under the action of LTP(T) = HomD(DT,P).
Since the group of positive loops of P is affine this functor can be represented
by a LTP-torsor K.

Let K be a L*TP-torsor. Let S” — S be a covering that trivialises K and
fix Lo LTPx S’. This gives a 1-cocycle g € LTP(S”), where S” = 5" xg5".
Now g = g(mod z™) can be viewed as descent data on I@’XDD%S/ =PxpD, s .
Since D,, s» — D, ¢ is an fppf-cover and P is affine, the descent data is
effective by [BLR, §6.1, Theorem 6] and gives an affine finitely presented
smooth scheme G, over D,.s by [EGA, IV,, Proposition 2.7.1 and IVy,
Corollaire 17.7.3]. These schemes form an inductive system {,C’;n}neN. Now
set G 1= li_n} Gn, the existence of this limit (in the category of z-adic formal

schemes over DS) follows from [EGA, Iy, Corollary 10.6.4]. This shows
that the functor is essentially surjective. By the above construction we see
that the functor is also fully faithful. m
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Let v be a place on C'. Let PP, denote the formal group scheme obtained
by restricting & to the formal spectrum Spf A,, note that Spf A, = ]D@m(y)
Assume that we have a section s : S — C' and furthermore we know that
this section factors through Spf A,. In this case we have

Spf A,®S = Hv(au,i) = H Ds,

1€Z/ [k (v):K]

where V(a,;) denotes the component identified by the ideal
a,=@®l-1® s*(a)qi; acA,).

Remark 3.2.3. Note that o cyclically permutes these components and thus
09°8" Jeaves each of the components V(a, ;) stable.

Let (C x £1(C, @))ﬁ be the formal stack given by taking completion of
C x A (C,®) along v € C, see chapter 2.1. Consider the following functor

(C x A#(C, )" (S) = A (Speck, L' P)(S), (3.2.2)

which sends (s,G) to the LTP,-torsor associated to the P,-torsor P,
given by the connected component of G x ¢, s Spf O, &S lying over V(a, ),
according to proposition 3.2.2.

Fix a tuple v := (v;)i=1..., of places on C'. Let the formal stack V#1(C, &)~
be the completion of the algebraic stack V.1 (C, ®) along v € C".
We define the category Shtg(S) to be the category whose objects are the
same as V#1(C,G)%(S), and the morphisms are the quasi-isogenies be-
tween them. The functor 3.2.2 induces the following functor

L:6hty(S) — []Shts, (S), (3.2.3)

which sends (G, 7) to ((75%,%,169("")» , see also remark 3.2.3. We call
this functor the global-local functor. '
Remark 3.2.4. Note that in a similar way one can associate a local P,-
shtuka G  to a global &-shtuka G at a place v outside the characteristic

places v;. Note that the main difference is that there is no distinguished
component given by the characteristic section, see [BH, Prop 2.5].
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Chapter 4

Unbounded Uniformization
and The Deformation Theory

4.1 Construction of the Uniformization map

Let us first recall a well-known theorem, proved by A. Beauville and Y.
Laszlo, that enables one to glue quasi-coherent sheaves along infinitesimal
neighbourhoods.

Let X be a scheme and D be an effective Cartier divisor on X. We let
QCoh(X)(resp. QCohp(X)) denote the category of quasi-coherent Ox-
modules ( resp. quasi-coherent Ox-modules that have no nonzero sections
supported on D).

Theorem 4.1.1. Let 7 : X' — X be a morphism of schemes. Consider the
following diagram

U — U

L

X — X

[

D' —— D,

where D is an effective Cartier divisor on X and D' its pull back under ,
U and U’ are respectively the complement of D and D'. Now if D' = D
under m, then the induced diagram

27
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QQ:OhD(X) — Q@OhD/ (X/)

| |
QCoh(U) —— QCoh(U’)

1s a Cartesian diagram of categories.

Proof. This is a reformulation of the well-known patching theorem of Beauville
and Laszlo, cf. [BL]. Note however that they consider the case that X’ is
the completion of X along D, but what they actually need for the proof is
that D" maps isomorphically to D under 7. O

Definition 4.1.2. Let P be a flat affine group scheme of finite type over D
and P, be the generic fibre as before. Let 4 be the fpgc-sheaf, associated
to the presheaf

R—P(R(2)) /P (R[z]),

on the category of k-algebras.
Proposition 4.1.3. Let P be as in the above definition. Then
a) there is a faithful representation P — GL,, over D, for some n.

b) There ezists a closed immersion of group schemes P — GL, x G,,
such that the quotient fppf-sheaf is representable by a quasi-affine
scheme over D.

Proof. cf. [PR2, Proposition 1.3]. O

Remark 4.1.4. When P = GL,, the fpgc-sheaf F/lp is called the affine
Grassmanian. The R-valued points of the affine Grassmanian parametrize
lattices £ in R((2))" , i.e. R[z]-submodules which are locally free of rank
n on Spec R and £ ® R((z)) = R((2))". It is well-known that the affine
Grassmannian is representable by an ind-k-scheme which is ind-proper over
k and the quotient morphism L GL, — LGL, /LTGL, = Flg, admits a
section locally for the étale topology, see proposition 2.3 and theorem 2.5
of [BL1].

The following theorem of Pappas and Rapoport states a partial gener-
alization of the mentioned properties of affine Grassmannian, excluding the
properness of the twisted affine flag variety F/p. Note however that propo-
sition 6.2.7 establishes the ind-properness of the twisted affine flag varieties
in certain cases.
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Proposition 4.1.5. Assume that P is smooth over D. Then the fpqc-sheaf
Flp is represented by an ind-k-scheme Flp of ind-finite type over k. The
quotient morphism LP,, — Flp admits sections locally for the étale topology,
i.e. LTP-equivariant isomorphisms

Spec(R) X 74, LP, = Spec(R) Xspec(r) LTP,
for each point of Flp with values in a strictly henselian ring R.

Proof. cf. [PR2, thm 1.4]. O

Let k' be a finite extension of k. For S in /\/’z’lpk/[[g]] let S denote the
closed subscheme V({) C S.

Definition 4.1.6. To a given local P-shtuka £, over S € Sch/F, we asso-
ciate the following functor

M L, Nilp Sxn,SpEFglc] Sets
T — {(L,0); L is alocal P-shtuka over T and
§: Ly — Ly 7 1s a quasi-isogeny over T}/ ~ .

Here (£,0) ~ (£',6") if 7% o &' lifts to an isomorphism £ — L.

Remark 4.1.7. Note that by rigidity of quasi-isogenies the functor M £, 18
naturally isomorphic to the functor

T+~ {Isomorphy class of (£,d); L is a local P-shtuka
over T'and ¢ : Ly — Ly is a quasi—isogeny}.

Now let us view the formal scheme Spf k[(] as an ind-scheme

tim Spec K{C) /().

We may form the fiber product Flp x; Spfk[(] in the category of ind-
schemes (see [BD, 7.11.1]). Note that this fiber product can be either viewed
as the restriction of the sheaf F/p to the fppf-site of schemes in ./\/'ilpk[[gﬂ
or also as the formal completion of F¢ x; Spec k[(] along the special fiber
V(¢) C Flp xy Spec k[(].
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Consider a local P-shtuka L over k[(]. Since LTP is smooth (see re-
mark 2.3.1), L admits a trivialization over a separable extension k'/k. So
we trivialize L ®ypqp K'[¢] = (LTP,b6*), for some b € LP,(K'[(]) and set
L, := (L*P,b6*). Let b € LP,(k') denote the reduction of b modulo (.

The following observation was first recorded in [H-V] for G-shtukas,
where G is a (constant) split reductive group over F,. Their proof (with
a small modification, thanks to proposition 4.1.5 above of Pappas and
Rapoport) works for the general case.

Proposition 4.1.8. The ind-scheme Flp xj Spf k'[(] pro-represents the
functor

My Nilpyep — Sets..

Proof. Let us fix the notation M := MLO and }/'\fk/ = Flp xi SpfK'[(].
Note that we may regard M as the equivalent form mentioned in remark
4.1.7.

Consider a pair (£,0) = ((L4,¢),0) € M(S). Choose an étale covering
S’ — S which trivializes £, so the quasi isogeny 9 is given by an element ¢’ €
LP,(S"). The image of the element ¢’ € LP,(5’) in ]/-"\ék/(S’) is independent
of the choice of trivialization, and since £ is defined over S, it descends to
a point = € ]-/"\Ek/(S).

Note in particular that pg is determined by b and ¢

~ ¥Ps!
O'*LPmS/ E— LPmS’

OA.*g/J/ J/g/

~ b
O'*LPmS/ — LP,%S/.

Conversely let x € j-"\ﬂk/(S ) for a scheme S in Nilpk'ﬂq]- The projection
morphism LFP, — F{ admits local sections for the étale topology by propo-
sition 4.1.5. Consequently there is an étale covering S’ — S such that x is
represented by an element ¢' € LG(S'). Define (L, ,¢',§') over S as fol-
lows. Let £' = L™Pg, let the quasi-isogeny ¢ : (L', ¢') — L g be given by
y — ¢'y, and the Frobenius by ¢’ = (¢')"'bo*(¢')o*. We descend (L', ,¢', ")
to S. For an S-scheme Y let Y/ =Y xg 5" and Y =Y’ xy Y’, and let
pi + Y — Y’ be the projection onto the i-th factor. Since g’ comes from
an element x € Fl(S) there is an h € LTP(S”) with pi(¢') = p5(g) - h.
Consider the fpgc-sheaf £, on S whose sections over an S-scheme Y are
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given by
L.V) = {y € L'BOY): pily) = b~ - p3(y) in LYB(Y") }

on which LTP(Y") acts by right multiplication. Then £ is a LTP-torsor on
S because over Y = 5’ there is a trivialization

due to the cocycle condition on h. Moreover, ¢’ descends to an isomorphism
p o L(Y) == LY), o™ (y) = (¢)"'bo"(g)o" (/)

making (L, ¢) a local P-shtuka over S. Also ¢’ descends to a quasi-isogeny
of local P-shtukas

6:LY) = LPY)={feLP,Y"): pi(f)=p3(f)in LGY")},
y o o= gy

Note that this is well defined. Namely, if ¢’ is replaced by ¢ with v’ =

(¢')'g' € LTP(S’) then left multiplication with «’ defines an isomorphism

(L*Pg, (¢')'bo*(g')o*, ¢') == (L Ps, (§')"bo™ ()", §').

Also h = pi(u) hpt(u)~ and hence left multiplication with «’ descends
to an isomorphism £ = £ over S. O]

Remark 4.1.9. For any P in (D, P)(R) one can find an étale covering
R — R’ such that P maps to an object in the isomorphy class of the trivial
element in 7 (D, P)(R'). Indeed, we may assume that the restriction of P
to V(z) C Dy has a section and then by smoothness this section extends

~

over Dg.

Remark 4.1.10. Let S = Spec R be an affine scheme and s : S — C an
S-valued point of C. We denote by () the restriction morphism

%1(03,6) — %1<CR NI, @)

Now suppose that the morphism s : .S — C factors through Spf A, — C.

—

The completion (Cg). of the relative curve Cg along the graph I'y of
the characteristic section s equals the formal spectrum of the completion
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of A, r := A, ® R with respect to the ideal Zr_ of I's. Let us denote the
corresponding ring by B. We have

B = H Rlzy — (9] = H R[],

YeGal(k(v)/Fq) YeGal(k(v)/Fq)

see the discussion before constructing the morphism 3.2.2.
We denote by D(T'y) (resp. D(T'y)) the component of Spec B (resp. Spf B)
given by the section s. Define D(I,) := D(T',) ®4, 5 D(I's), where D(T') :=
Spec A,z ~ I's. Note that there is a (non canonic) isomorphism D(T'y)
Spec R((z)). So we fix an isomorphism D(T'y) = Dg. Assigning the following

L P,-torsor

R = G(R&rD(T,) ®og, D(T,))26 (D)

to a &-bundle G over Cr ~ 'y, defines the following 1-morphism

()y: HN(Cr T4, &) — H#' (R, LP,)

of groupoids.

Recall that to a section s as in the above, one can also associate the
following 1-morphism

—

(),: " (Cr,8) = (R, LTP,),

see morphism 3.2.2.

Definition 4.1.11. For a local P-shtuka £, over S we denote by J. the
group of self quasi-isogenies QIsogs(Ly, L,) of L.

Note that by the definition of the space M Lo there is a natural action
of the group J., on Méo‘

In the mixed characteristic set up the Schubert varieties in affine Grass-
maniann has appeared as the local model for the integral models of Shimura
varieties with parahoric level structure. The similar fact is also worked out
for function field analogs for Shimura varieties, see [Var| (and also chapter
8 of this thesis). We will return to this interesting discussion in the last
chapter, nevertheless, as we shall see in the next theorem, the local affine
flag varieties can also appear as the uniformization space for the function
field analogs for Shimura varieties with parahoric level structure.
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Consider the tuple v = (v4,...,1,), where v; is a place on C. Let (;
denote a uniformizer of C' at the place v; and define

Vo' (C,8)F := YV, " (C, FG) xcn SpfE[C],

where k[¢] := k[¢1,...,¢]. Note that we may view the formal stack
V7 (C,B) as an ind-algebraic stack over k[(] := k[Ci,...,¢] (see
proposition 6.2.18). -

The following theorem can be regarded as unbounded uniformization
of the completion V,1(C,®)Z of the moduli stack of global &-shtukas
V2N C, &) at v = (v1,...,v,).

Theorem 4.1.12. Let G, be a global &-shtuka in Shtg(S) for S € Sch/F,.

Let (L)) == E(QO) (recall that the functor T was defined in 3.2.3). Then
there is a natural transformation
U(G,) : [[Me, = Vit (C, &) xz, S.
In particular when S = Speck this gives the following morphism of
formal stacks

= \Il(g(]) : Hﬁ]}"ui - vnﬁl(ca 6)27

where ﬁpyi = ]:E[Pyi X () SPE Ay,. In addition the last morphism is
ind-proper and formally étale over its image.

Proof. Let v be a place of C. Let R be an object of Nilp, and let s :
Spec R — C' be the induced map. Let G := P, denote the generic fiber of
P,.

As a consequence of the theorem 4.1.1, applied to the situation that X' =
D(T), D =T’y and 7 is the obvious morphism D(I'y) — Cg, we have the
following Cartesian diagram

HNCB)R)  — s A (Cr T B)(R)
*\D(Fs)l l_‘ﬂ')(l“s)
AN D). B)(R) — A DT, G)(R).

of groupoids. Here 21 (Cr~T',, &)(R) is the full subcategory of S (Cr~
I's, ®|s)(R) consisting of those G-torsors over Cs \. I'y that can be extended
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to a B-torsor over the whole relative curve Cs. The above diagram induces
the following diagram of groupoids

HNC,B)R)  —s AN (Cp T 6)(R)

Ul l( )
S (F,, L*P,)(R) —— H'(F,, LP,)(R),

see remark 4.1.10 for the morphisms in this diagram. We claim that this
diagram is cartesian. Note that by remark 2.2.1 and remark 4.1.9 we may
reduce to the case that R is noetherian. In this case one can easily check
that the functor

AN D(T,),P,)(R) — A (D(T,), B,)(R) = #* (Spec k, L P)(R)

(resp. 1 (D(T,),P,)(R) — #*(F,,LG)(R)) is an equivalence of cate-
gories (resp. fully faithful) and thus we may conclude that the above dia-
gram is cartesian.

We may equivalently view the functor M e, as the functor mentioned

in remark 4.1.7. R
Let T = S be an S-scheme and take an element ((£, ), fl)’L of [T,, M, (T)

(in the sense of remark 4.1.7). Let us set G, := (Go, 70). Let (Go, G, ) be
the triple associated with the &-bundle Gy, regarding the above cartesian
diagram for the section 4. Now the triple (Gor, L}, , [~ ¢r) defines a &-

bundle over C7 which by construction inherits a Frobenius automorphism
71 over Cp I’y xg T from L*QovT. This defines a T-point of V1 (C, &)?
which we denote fl*go,T. Iterating this procedure for ¢+ = 2...n we obtain
a global -shtuka f*o---o ffgo,T in V1(C,8)2(T). This establishes the
desired 1-morphism. .

When S = Speck then the functor M is represented by F/p,, see propo-
sition 4.1.8. -

The étaleness of the morphism over its image is just another way of phras-
ing the rigidity of quasi-isogenies (proposition 3.1.3). Lets explain this more
explicitly. Let G be a T-valued point of V,,5#*(C, ®)%. Let T be a closed
subscheme of T" defined by a locally nilpotent sheaf of ideals. Further as-
sume that G = fro-o0 fl*goj for the quasi-isogenies f; (as in the above)
defined over T. Now these quasi-isogenies lift to quasi-isogenies ﬁ over
T by rigidity of quasi-isogenies. The T-valued point f;{ 0---0 fl*go,T of
V.71 (C, &)% precisely lifts G= to T and thus is identical to G.



4.1. CONSTRUCTION OF THE UNIFORMIZATION MAP 35

It only remains to verify that W is ind-proper. Since ﬁpyi is of ind-finite
type, to test the ind-properness of ¥ we can use the valuative criterion of
properness, see [L-M, Theorem 7.3].

Let R be a strictly henselian valuation ring with fraction field L. Let G be
an R valued point of V, ' (C, GL(V))% and set i(g) = (L,),. Since R is
strictly henselian, for each local P,-shtuka £, we may take a trivialization
L, = (LTP)g,b,0*) over R.

Consider an L-valued point z of [],, .ﬁﬂbyi which maps to G, under the
morphism ¥ and represent it as tuple (((LTP).,b,0*), g,),, where g, lie in
LG(L), see proposition 4.1.8.

We may take a faithful representation p : & — GL(V), where V is a vector
bundle over C' of rank r, see proposition 4.1.3. Note that this proposition
ensures the existence of such representation only locally, but one can patch
the local data to obtain the representation globally on C' by fppf-descent.
Let p.G, be the induced global GL(V)-shtuka over S. Note that we want
to show that there is a unique morphism & which fits into the following

Spec L = HW ﬁ]}"yi Hl/i ﬁGL"M
\Ij(p*go)l
V2 (C, GL(V)).

Spec R V. (C, B)2

commutative diagram. Here Spec L — Spec R is the generic point and
the horizontal arrows in the right commutative diagram are induced by
the representation p, in addition the existence and uniqueness of the mor-
phism « follows from the fact that F{qy,, is ind-proper over Spf A,, and
that V. (C,GL(V))? is ind-separated, see remark 4.1.4 and proposition
6.2.18. The R-valued point « is given by a tuple ((p.(LTP)g, p(b,)0*), Gv),,,
where g, lies in L GL,(R), see proposition 4.1.5. Note that the element g,
lies in fact in LG(R) (for this notice that LG is closed in L GL,, and g,
extends g, over R) and thus produces a lift of ((L*P,b/,0*),g,), over R.
This gives the desired morphism &. Note that the commutativity of the
diagram

Hw ﬁ]}”w

Spec R V. (C, B)2
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follows from the separatedness of the stack V,, 7' (C, ®)%, see proposi-
tion 6.2.18.
O

Remark 4.1.13. One can observe that the image of U(G,) lies inside the
quasi-isogeny locus of G in V,, 1(C, ®)2. Indeed, by the above construc-
tion, starting with an S-valued point z = ((£},), ﬁ)z of [[,, M, (S) there
is a unique quasi-isogeny o, : ¥(z) = f;: 0---0 fl*go — G, ¢ Which is an

isomorphism outside the graphs of the v; with <E(\IJ(§)), i(gl)) =z.

4.2 The Analogue of the Serre-Tate Theo-
rem

The Serre-Tate Theorem relates the deformation theory of an abelian variety
in characteristic p to the deformation theory of the associated p-divisible
group. In this section we introduce the analogous situation over function
fields and prove the analogous theorem relating the deformation theory of a
global &-shtuka to the deformation theory of the associated local PP,-shtukas
via the global-local functor.

Let S be in Nilpﬂ“q[[d] and i : S — S be a closed subscheme defined by
a locally nilpotent sheaf of ideals. Let G be a global &-shtuka in Ghté(g ).
The category Defog(G) of lifts of G to S consists of all pairs (G, a : i*G —
G) where G belongs to Shtg(S) and « is an isomorphism of global &-
shtukas over S, and morphisms are isomorphisms between the G’s that are
compatible with the a’s.

Similarly for a local P-shtuka Q in @F(S ) we define the category of

lifts Defog(G) of G to S.
Notice that according to the rigidity of quasi-isogenies all Hom-sets in these
categories contain at most one element.

Theorem 4.2.1. Let G := (G,7) be a global &-shtuka in Shtg(S). Let
G, = f(g) Then the functor

Defos(G) — [ Defos(G,)

induced by the global-local functor, is an equivalence of categories.
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Proof. We proceed by constructing the inverse of the above functor. It
suffices to treat the case where Z9 = (0). In this case the morphism &5
factors through i : S — S

Gg=1io0 : S —>S—8

Let @V, Q, : i*gy — Q/)V be an object of ], Defos(éy).

Consider the global &-shtuka g := ¢’*G over S. The morphisms 7 defines
an isogeny T : z*g — G which is an isomorphism outside the graphs of the
characteristic sections

e S N = OiT e S
051G —= (63)'G —— 65§
I

. ~ —1 . N . S ~ —1 N S . =
Composing 7, = with &, we obtain %, := 7, oa, :1"G — "G . By

rigidity of quasi-isogenies (proposition 3.1.3), the resulting quasi-isogeny of

local IP,-shtukas lifts to a quasi-isogeny %4, : G, — Qy.
We put G := ¥(G) ((QV, ’y,,)) (see theorem 4.1.12) and recall that there

is a quasi-isogeny v : G — g of global &-shtukas, see remark 4.1.13.
We may now define the functor

by sending (@w a: i*gu — Qz/>) to (G, T oi*y). The quasi-isogeny « :=
T 01*y is an isomorphism outside the graphs of the v; by remark 4.1.13 and
at these graphs by construction. It can be seen by the above construction

that these functors are actually inverse to each other.
O
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Chapter 5

Galois Representations and
Shtukas

5.1 The Tate Functor

Definition 5.1.1. Let Vectp (resp. Vecty) be the groupoid on /\/'Z'lpk[[q]
whose S-valued points is the category of locally free sheaves of Og[z]-
modules (resp. Og((z))-modules) of finite rank on S. Consider the natural
1-morphism Vectp — Vecty of groupoids. Let Ship denote the groupoid

ker(pry, 6 o pry : Vectp X Veet; Vectp = Vectp),
(see Def 2.2.7)where pr; denotes the projections to the i-th factor.

We represent an object ("M, M, ¢) of the category Ship(S) by the pair
(M, ).

Definition 5.1.2. A quasi-isogeny (M, @) — (M’,¢') is an isomorphism of
Os((z))-modules

[ M @01 Os((2)) == M’ @041 Os((2))

with ¢'0*(f) = fe. The category of local shtukas over S, @D(S), is the
category which has Ob(Shtp(S)) as its objects and quasi-isogenies as its
morphisms. Any object in this category is called a local shtuka over S.

Remark 5.1.3. Note that there is an equivalence of categories between
the category of local Gl,-shtukas over S and the category of rank n local
shtukas over S, see section 4 of [H-V].
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In analogy with p-divisible groups and abelian varieties, one can also
assign a Galois representation to a given local or global shtuka. Let us ex-
plain this more explicitly.

Assume that S is connected. Let § be a geometric point of S and let
m1(5, 5) denote the algebraic fundamental group of S at 5. We define the

Tate functor from the category of local shtukas Shtp(S) over S to the
category of F,[z][m (S, 5)]-modules Modp, [.1ix(s,5) as follows

T_: Shtp(S) —  Modr, []x(5,5)
M:=(M,7) — Ty:=(M®ek(s)).

Here the superscript 7 represents the T-invariants.

Remark 5.1.4. Like in p-adic Hodge theory, the restriction of the above
functor to the category of étale local shtukas is in fact an equivalence of
categories, see [Kat, Prop 4.1.1] also [Ha2, Prop 1.3.7]. This can be thought
as a positive characteristic analogue of the Riemann-Hilbert correspondence.

Let V' be a free k[z]-module of finite rank. A representation p : P —
GI(V) gives a functor

ps : S (Speck, LTP) — Vectp

which sends an L*P-torsor £, to the sheaf associated with the following
presheaf

Y (@(Y) x (V &4 OS[[z]](Y))> JLYP(Y).

The functor p, : S (Speck, LYP) — Vectp induces a morphism from
the category of local P-shtukas @p/t\o the category @D of local shtukas.
We still use the same notation p, : Ghtp — Ship.

Let F unct®(Repkuzﬂ P, mOd[Fq[[z]][ﬂ(&g)]) denote the category of tensor func-
tors from the category of representations of P in finite free k[z]-modules,
RepkM P, to Modr, [.](x(s,3))-

We proceed by defining, the Tate functor as the following tensor functor

7\: : @p(S) — Funct@’(Repk[[zﬂ P, mOquHZH[ﬂ-(S’g)])
L — Teip—T, .
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5.2 The Level Structure

Fix a tuple v = (v4,...,1,) of places on C. Let the affine curve C’ be the
complement in C' of the characteristic places v;. Let G be a global &-shtuka
in Shtg(S). For a finite subscheme D of C' let G|p denote the pullback of
GtoD xS,

Let Funct®(Repy. &, Modavix(s,s)) denote the category of tensor functors
from the category Rep,., ® of finite dimentional representations of & over
the adelic ring A” of C', to the category of A¥[r(S, 5)]-modules Modyv(x(s.3)-
We define the Tate functor as follows

T_:VAC,&)(S) —  Funct®(Repar®, Modpvir,(s,5))
Q = ’TQ P (Pu) = @(P*begﬁ

Dcc!

Remark 5.2.1. Note that there is an isomorphism

lim (p.G|pxs)" = 1172

Y
=V
Dcc! veC’

see remark 3.2.4.

Recall that as a consequence of Tannakian theory, there is a duality be-
tween affine group schemes over arbitrary field and the neutral tannakian
categories. More precisely one may recover such groups from the associated
category of representations. In [Wed] T. Wedhorn establishes a general-
ization of the theory to the case where the base is a Priifer ring (e.g. a
Dedekind ring).

Let wi, @ Repyr® — Modyr denote the forgetful functor. Let us con-
sider the set of isomorphisms of tensor functors Isom®(7g,w$,) (note that
this set is non-empty, see lemma 5.2.2 below). By the generalized tannakian
formalism and the definition of the Tate functor, this set admits a biaction
of &(AZ) x m(S, 3).

Lemma 5.2.2. Let ]@’Abe_ as in the definition 8.2.1. Then for any b € P(k[z])
there exist some ¢ € P(k[z]) such that bo*c = c.

Proof. Let us view P as the direct limit lim P,, where P, = P®p D,,. Let
—

n

G, denote the linear algebraic group over k given by the Weil restriction
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Resp, /speck(Pr). The reduction of b mod 2" gives an element b, € én(l%)
By Lang’s theorem [Lan| there exist ¢, € én(l%) such that b,6%c, = c,,
where 6 € Gal(k/k) is the Frobenius element. Now consider the reduction
map o, : énﬂ(l%) — én(l%) Consider the element d,, := a,(c,41) tcn
which satisfies 6*d,, = d,, and hence lies in én(k) = P(D,,41). Since P is
smooth d,, lifts to an element d,, € P(D,,;) = én+1(l€). Replacing ¢,41 by
Cni1d, we may assume that a,(c,+1) = ¢, and then take ¢ := li;ncn. O

n

Definition 5.2.3. Let H C B(A%) be a compact open subgoup. An H-level
structure on a global &-shtuka G over S is a m (9, 5)-invariant H-orbit in
Isom®(7g, wi.).

Now we want to establish the notion of rational level structure H C
®(Ag) on a global G-shtuka G in Ghtg(S).
A given quasi-isogeny ¢ : G — G’ in Ghtg(S) induces a morphism

lim (p*Q|D><§)T Oav Aé — lim (P*Q/|Dx§>T Oar Aév
— —

Dcc! Dcco’

thus the Tate functor we defined above extends to the following functor

V_: Ghtg(S) — Funct®(RepAé®,MOdAé[m(Sﬁg)])
G = Vg:p:=(p) lim(p.Glpxs) Oar AG.
—

Dcc!

Note that l(iin (p+G|pxs)" Rav Aé ~ TMQV Qv Aé.
Dcc’ velC’

Let w° : RepAé B — imodAé denote the forgetful functor. Let us consider
the set of isomorphisms of tensor functors Isom®(Vg,w®). Again by the
tannakian formalism and the definition of the Tate functor this set admits
a biaction of B(Ag) x (S, 5).

Now for a compact open subgroup H C @(Aé) one can define an H -
level structure on a global &-shtuka G over S as a m(S,s)-invariant H-
orbit in Isom®(Vg, w®). We denote by V7 #1(C, &) the category fibered in
groupoids who’s S-valued points are tuples (G,7), consisting of a &-shtuka
G € Ob(Shtg) together with a rational level H-structure + as its objects,
and has quasi-isogenies that are isomorphisms at characteristic places v;
and are compatible with the level H-structures as its morphisms.
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Remark 5.2.4. Let D denote a finite subscheme of C'. Then one can define
a D-level structure on the objects of Heckeg,,(S). Namely, for an object
G :=(G,G,¢) € Ob(Heckeg ,(S)) we require that the &-bundles G and G’
lie in #5(C,G)(S) and in addition ¢ preserves the D-level structures on
them. This induces a D-level structure on the objects of the moduli stack
of global ®-shtukas, we denote the corresponding stack by V., 75 (C, &)%.
Note that a D-level structure on G can give rise to a level structure of the
above form which we denote by Hp.

Theorem 5.2.5. There is an isomorphism
VoI5 (C, &L VED 71 (C )2
of formal stacks.

Proof. Let (G,1) be an object in V,, 5 (C, &)%(S). For any representation
pin RepAzQﬁ the isomorphism 9 : G|pxs — & X D x S induces an isomor-
phism p.G|p,—Glaim »(Op,) and consequently we obtain a transformation
¥ :Tg®@ar Op — w° @uv Op. Let v be a lift of 4 to A Then we define the
morphism

Vo5 (C,B)4(S)SVHEP 771 (O, &)4(S) (5.2.1)

by sending (G, ) to (G, Hpvg)-

Let us show that this functor is essentially surjective. Let (G, v, Hpyg) be
an object of the category VEp#1(C &)~ Choose 8 : T¢ — wj.. Note
that this exist by lemma 5.2.2. -

T;he autc?morphism 7@5(51 € Aut®(w§2) corresponds to an element g €
®<Aé) Write g = (grla' .- ?gx'r7g£) € 6(@:{:1) Koo X ®(Q$r) X Qj(Az&)
and set ¢ = g(1,...,1,¢6%) ' = (goy, -+ e, 1) and 8/ = (1,...,1,¢%) - B €
B(AY).

Now since the local P,,-shtuka G_ is étale, the automorphism d; :=
(Bo)'9: 6 € Aut®(Vg) gives a quasi-isogeny 0 : Qm — le. Let us
explain this more precisely. Consider the following functor

M_ : A#(Speck, LTP)(S) — Funct®(RepygP, Modog.]),
which sends £, to the functor which sends the representation p to the

Os[z]-module p, L.
Assume that G = (L, ¢) is an étale local P-shtuka. An automorphism « of
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Vg induces an automorphism of M\g ®og[:] Oslz][1/2]. Take a trivializing
étale cover S’ — S. Then we have

Aut®(My, ) = Aut®(w°)(Ogp[1/2]) = LP,(S").

Hence the automorphism « gives an isomorphism hg : LP, s — LP, g
The morphism hg inherits the descent data coming from the fact that
« is defined over S, and hence it defines an isomorphism h : £L — L,
where £ denotes the associated LFP,-torsor. One can check that h satisfies
6*h = ¢~t o h o ¢ and gives the claimed quasi-isogeny.

Let ' = §*G, where ¢ := 4, 0--- 04y, then

V(8) = (8p)'(g") "By

Consider the pair (G, Hpf},) consisting of the global &-shtuka G' =
(G',7") together with the level structure ' : Ty — w°® defined over A%
Note that this is quasi-isogenous to (G, Hpyg) under 4.

We now want to show that (G', Hpfp) = (G, ¢'), Hpf,) actually comes
from a pair (G',¢p) in V,,75(C, &)~
Consider the following functor

M_ O, 6)(S) — Funct®(Reppe®, Modprg, 0s)-

The Hp orbit of f" in Funct®(Repae®, Modav(r, (s,5) induces a well
defined isomorphism

!

<MQ’ ®OCS ODXE) — w’ Qupv ODS-

7_/
Tensoring up with Og and observing (Mg/ R0c, Ong) ®op, Opg = Mgb
S
we get an isomorphism Mgb =w® @uv Opg of tensor functors. Now we
S

claim that this trivialization induces a trivialization ¥p : Gp —® X¢ Dg
of the torsor G, . Note that since the trivialization of the functor Mg, is
S

compatible with the Frobenius automorphism 7/, i.e. the following diagram

o* (B’ ®id
o Mg, TEEE 0@, Op,
MT,l lid@id
B ®idg
Mgbs — = W Qv ODS

commutes, we may argue that the trivialization Mg, —w® ®ax Opg of the
S

functor M%S even induces a level structure ¢p : (Q/Ds’ )= (& ®c Dg, id).
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So it remains to verify the above claim. To see this take a trivialization
o Qby%@ xX¢o Dg/ over an étale covering S — S. By the Tannakian
formalism we obtain an element 1" € &(Dg/) corresponding to the following
automorphism

/—1 ol
¥ B
wW® ® ODS’ = M@XCDS/ — Mg/DS/ SR ODS"

of the tensor functor w®®ur Op,,. Then since /\/lg/DS —w°®av Op, is defined
over S, the morphism ¢/ : & x¢ Dy — & X Dg carries the descent data
and therefore it descends to an isomorphism ¥p : Qbs — & xo Dg. This
gives the desired level structure (G, ,7)=>(& Q¢ Dg, id).

ZDg’
Analyzing this construction further also shows that the functor (5.2.1)
is fully faithful. This proves the theorem. O]

Proposition 5.2.6. Let & be a parahoric Bruhat-Tits group scheme over
C. Let H H C &(A%) be compact open subgroups and assume that H is

a normal subgroup of H. Then the stack Vf%ﬂl(C’, &) is an H/H-torsor
over VE 1 (C, ) under the projection map.

Proof. One can easily check that the morphism

VI C,8) x HIH — VIANC,8) xgnpmce VIA(C,®)
(G, HO) x gH — (G, H6) x (G, Hg™'5)

is an isomorphism of algebraic stacks. The inverse morphism is given by
sending (G, Hd) x (G, He) to (G, HO) x de'H. O
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Chapter 6

The Rapoport-Zink Space for
Local P-Shtukas

Rapoport and Zink construct a moduli space for p-divisible groups together
with a quasi-isogeny to a fixed one (together with some extra structure
such as a polarization, endomorphisms, or a level structure). They investi-
gate that this moduli space is pro-representable by a formal scheme locally
formally of finite type over Z,.

Previously, in the analogy between mixed and equicharacteristics, we
mentioned a sort of resemblance between p-divisible groups and local P-
shtukas. It turns out that this analogy is not perfect, unless we restrict to
the “bounded” local P-shtukas as the analogous objects corresponding to p-
divisible groups, for example see 6.3.4. The boundedness condition controls
the relative position of two loop torsors (resp. &-bundles).

Taking bounded local P-shtukas into account, as the right analogs of
p-divisible groups, one may naturally seek that the analogous phenomenon,
as what we mentioned above for the Rapoport-Zink space for p-divisible
groups, also occurs for them. When P is constant, i.e. P := Gy x D where
Gy is a reductive group over [Fy, it turns out to be the case. This has been
proven by Hartl and Viehmann, see [H-V]. Following their approach (af-
ter giving an axiomatic definition of boundedness condition), we generalize
their result to the non-constant case, i.e. for a parahoric (Bruhat-Tits)
group P over D.

Let us briefly go through the content of this chapter. We first recall
some functorial properties of Bruhat-Tits buildings. Then we state a result
of Rapoport and Zink (see 6.1.3) which in some sense illustrates the uniform
distribution of rational points on the moduli of local P-shtukas. Then we
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discuss the notion of bounds on the quasi-isogenies for both local P-shtukas
and global &-shtukas.

Finally we prove that the Rapoport-Zink space for bounded local P-shtukas
is representable by a formal scheme locally formally of finite type, see the-
orem 6.3.1.

6.1 Some discussion about Bruhat-Tits build-

ing

Let G be a reductive group over F', for a complete discretely valued field
F with perfect residue field. Let #(G) denote the Bruhat-Tits building
associated to GG, recall that this is a complete metric space with respect to
the metric dg. The Bruhat-Tits buildings enjoy certain functorial properties

— Functoriality with respect to field extensions, the following easy facts
follow from the construction of the Bruhat-Tits building

1) For unramified extension L/F we have a natural metric embed-
ding #(Gr) — AB(GL) of associated Bruhat-Tits buildings, see
[BT1, 9.1.19].

2) L/F be a finite Galois extension, then G(L) x Gal(L/F) acts on
PB(GL), see [BT1, 9.1.19].

3) By the Bruhat-Tits fixed point theorem, one may realise Z(G, F')
as the set of fixed points of Z(G, L) under the relative Frobenius
automorphism ¢ € Gal(L/F).

— Functoriality of buildings with respect to group homomorphisms, this
has been worked out by Landvogt, see [Lal|. Landvogt proved that
a given injective morphism G — G’ of connected reductive groups
over K gives rise to a set of G(k)-equivariant and isometric maps
[*: B(G) — B(G"). These maps send the apartment associated to a
maximal split torus S of G to the apartment associated to a maximal
split torus of G’ containing the image of S. This may, in particular,
apply to a faithful representation p : G — Gl,. This enables us to
view A((G) as a metric subspace of Z(Gl,,). For the details and proofs
we refer the reader to [La2].
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Set F' := k((2)) and L := k((z)). Let 6 € Gal(L/F) be the relative
Frobenius automorphism. Let G be a connected reductive algebraic group
over F' (later we assume that G is the generic fiber P, of the parahoric group
scheme P over D).

To an element b € G(L) Kottwitz associates a slope homomorphism

I/b:DL—>GL,

called Newton polygon of b, see [Kol, 4.2]. Here D is the diagonalizable pro-
algebraic group over L with character group Q. The slope homomorphism
is characterized by assigning the slope filtration of (V &g L, p(b).(id® d)) to
any F-rational representation (V) p) of G, see [Kol, Section 3]. We assume
that b € G(L) satisfies a decency equation, i.e. the following identity

(b6)° = sy(2).6°%,
in G(L) x (&) for some sufficiently large integer s > 0.

Remark 6.1.1. Note that any -conjugacy class in G(L) contains an ele-
ment satisfying a decency equation, see [Kol, Section 4].

Remark 6.1.2. To the element b € G(L) one can associate a connected
algebraic group J, which is defined by its functor of points that assigns to
an F-algebra R

Jy(R) == {9 € G(R®p L); g~ 'b3(g) = b}.

Let F§ be the fixed field of 6° in L. Then v, is defined over F, and Jg,
is the centralizer of the 1-parameter subgroup sv, of G and hence a Levi
subgroup of G, see [RZ, Corollary 1.9]. Thus there is a canonical J,(L) %
(6%)-equivariant isometric embedding #A(J, L) — Z(G, L) by functoriality
of buildings with respect to group homomorphisms.

By the theorem of Bruhat and Tits we have

B(J,L) — BG, L)

I I

B(J, L)) —— B(G, L))
H

B(J,F,) — B(G,F,).
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For a given integer r we let B,.(z) denote the open ball of radius r centred
at x € (G, L).

As we will see in section 6.3, the following theorem of Rapoport and
Zink is one of the key ingredients for the proof of the representably of
the Rapoport-Zink functor for local P-shtukas by a formal scheme locally
formally of finite type.

Theorem 6.1.3. (Rapoport-Zink) Let b be an element of G(L) which sat-
isfies a decency equation relative to s > 0. Then for any positive integer r
we have the following inclusion

{z € B(G,L);d(z,b6(x)) <r} C | ] Belao).
xoE€EAB(J,Fs)

for some integer ¢ > 0.
Proof. See [RZ2, theorem 1.4]. O

Remark 6.1.4. Note that the metric dg on the Bruhat-Tits building of
G induces a metric on the k-valued points of F{p, which we denote by d.
Recall that by proposition 4.1.8, F/¢p can be viewed as a parameter space
for local P-shtukas together with a quasi isogeny to a fixed one. For two
such pairs z = (£,9) and 2’ = (£, 8 ) over k, let d(z, z’) denote the distance
between corresponding points of the affine flag variety Fep(k).

6.2 The boundedness conditions

In this section we first recall the notion of bounds on the isomorphisms of
LG-torsors, introduced in [H-V], where G is a split reductive group over F,.
Then we give an axiomatic definition of the boundedness condition for non-
constant case, namely for P-shtukas. Consequently we introduce bounds on
the moduli of local P—shtukas and global &—shtukas.

6.2.1 Bounds on the modui of local objects

Let G be a constant reductive group over D, i.e. G = Gy Xp, D where Gy is

a split reductive group over Fy. Set G := G xp D.
Fix a borel subgroup B C Gy. Let B C G be the Borel subgroup opposite
to our fixed B. For a dominant weight A of Gy we let

V(A) := (Ind%° (= A)dom)”
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be the Weyl module of GGy with highest weight A. It is a cyclic Gg-module
generated by a B-stable line on which B acts through A\. Any other such G-
module is a quotient of V' (\), see for example [Ja, 11.2.13]. For a L*G-torsor
L on a scheme S we denote by (L), the fpge-sheaf of Og[z]-modules on
S associated with the presheaf

Y (£+(Y) x (V(X) @, 05[[2]]@/))) JLYG(Y).

This means in particular that if " — S is an étale covering trivializing
L, and if « : Lig = LTGg is an isomorphism of LTG-torsors with
piao(pia) ™t =g e LTG(S”) on 8" = S’ x5S (with p; the projection onto
the i-th factor) then

(LAY = (o' € V@, Os[)(Y x5S : pin/ = g-piv/ on ¥ xsS" }.

Note that the sheaf (£), is locally free in the Zariski-topology on S.

Furthermore, if £, and £, are L*G-torsors on S and ¢ : £ == L' is an
isomorphism of the associated LG-torsors then 0 induces an isomorphism
of sheaves of Og((z))-modules

0 (L)r®os1 Os((7) == (L) ®ogps Os((2)) -

Definition 6.2.1. Let S be a connected scheme in Nz’lquﬂgﬂ and let  be a
dominant coweight of Gy. Let either 2 =z — ( or Z = 2.

(a) Let £; and £ be L*G-torsors on S and let § : £ == £’ be an isomor-
phism of the associated LG-torsors. The isomorphism ¢ is bounded by
(u, 2) if for each dominant weight A\ of G

0((Ly)n) C© 7~ Naomd (£1)) C (L])x @ogpp Os((2))(6.2.1)
] = [us(s)] in m(Go) for all s € S.

(b) A local G—shtuka (L, ) over S is bounded by p if the isomorphism
w0 L= L
is bounded by (i, z — ().

Proposition 6.2.2. Let G be as above. Let L, and L' be L*G-torsors on
S for a connected scheme S € Nilp]Fq[[g]]- Let either Z =2z — ( or Z =z and

let 0 : L == L' be an isomorphism of the associated LG-torsors. Let i be a
dominant coweight of Gq satisfying (6.2.2).
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(a) Then the condition that 0 is bounded by (u,Z) is representable by a
finitely presented closed immersion into S.

(b) If S is reduced then § is bounded by (u, Z) if and only if this holds for
the pullback to every geometric point of S. By (a) it is even enough
to consider the pullback to the generic points of S.

Proof. cf. [H-V, Lemma 3.10]. O

Proposition 6.2.3. Let G be as above. Let L= (L, ¢) and L' = (L, ,¢')
be two bounded local G-shtukas over a quasi-compact scheme S € Nilqum
and leti: S — S be a closed immersion defined by a sheaf of ideals T which
is locally nilpotent. Then a quasi-isogeny f : Lg — L is bounded by (u, z)
for some p if and only if its lift over S (see proposition 3.1.3 ) is bounded
by (1, z) for some fi.

Proof. cf. [H-V, Proposition 3.9]. O

Now we want to consider the general case. Suppose that G is a reductive
group over D).
Let us begin by recalling some facts about affine Weyl groups (cf. [H-R]).
Let S be a maximal split torus in G and let T" be its centralizer. Since k
is algebraically closed, G is quasi-split and so T' is a maximal torus in G.
Let N = N(T') be the normalizer of 7. Consider the following short exact
sequence

0— T(L), — T(L) = X.(T); — 0,

where T'(L); denotes the kernel of the Kottwitz homomorphism xr, see
[Ko2, Section 7]. It turns out that T(L); equals 7°(D) where 7P is the
identity component of the Néron model of T s

The Twahori-Weyl group associated to S is the quotient group W =
N(L)/T°(D). The Iwahori-Weyl group W is an extension of the relative
Weyl group Wy = N(L)/T(L) by X.(T);:

0= X.(T); — W — Wy — 1. (6.2.3)

Note that the group W is endowed with the structure of a quasi Coxeter-
system, which may thus be equipped with a Bruhat-Chevalley (partial)
order < and a length function ¢.
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Proposition 6.2.4. Let Z be the Iwahori subgroup of G(L) associated to
an alcove contained in the apartment associated to the maximal split torus
S. Then we have the Cartan decomposition for the loop group

LG(k) =Z(k).N(L).Z(k)
and the map I.n.Z — n € W induces a bijection
I\G(K)/IT=W.

If P and Q are two parahoric subgroups of G(L) then we have a bijection

Q\G(L)/PSWW /WF
where WP := (N(L) N P)/T(L);.
Proof. Cf. [H-R, Prop §]. O

Let K be a maximal parahoric subgroup of G(L). The subgroup WK
projects isomorphically to the factor group Wy, and the exact sequence
presents W as a semi-direct product

W = X.(T); x W.

The Schubert variety S(w) associated to w € WP\W /WP is the ind-
scheme theoretic closure of the L*P-orbit of w in Flp. It is a projective
variety over k. For further details see [PR1] and [Ri].

Proposition 6.2.5. Assume that the group G is absolutely simple, simply

connected and splits over a tamely ramified extension of L, then the ind-

scheme F := lim(S(w)) (the direct limit is taken with respect to the Bruhat
—

order on W), coincides with the ind-scheme Fip.

Proof. cf. [PR1, Proposition 9.8]. O

Definition 6.2.6. A closed ind-subscheme Z of j—"\&p which is stable under
the left L*P-action, such that Z := Z Xspfk[¢] OPeck is a quasi-compact
subscheme of F/p is called a bound.

Let £, and £, be L*P-torsors on S € Nilpyp and let 6 : £ == L be
an isomorphism of the associated LP,-torsors. We say that ¢ is bounded
by Z if for any trivialization S’ — S of £, and L', the induced morphism
S" — LP, — Flp factors through Z. When Z = S(w) xi Spfk[¢] for
a Schubert variety S(w) (with w € /I/I7) we say that 0 is bounded by w.
Furthermore we say that a local P-shtuka (£, ) is bounded by Z if the
isomorphism ¢ is bounded by Z.
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The closedness of the above boundedness condition is almost tautological
(compare proposition 6.2.2).
The following crucial observation enables one to pull back bounds regarding
certain embeddings of the group P; into Py, see also proposition 4.1.3.

Proposition 6.2.7. Let P C Py be a closed embedding of smooth group
schemes of finite type over D such that P1\IPy is quasi-affine. Assume that
LP,, — Flp, admits sections locally in the Zariski topology. Then Flp, —
Flp, is a locally closed embedding, and LP, , — Flp, admits sections locally
in the étale topology. In addition, if P1\Py is affine, then Flp, — Flp, is a
closed embedding.

Proof. cf. [BD, Section 4.5]. O

Example 6.2.8. Assume that charF, # 2. Set K := F,((z)). Let E :=
K (y) be a quadratic field extension, say y*> = z. Let T be the one dimen-
sional torus ker(Ng,k : Resg/xGn — Gy,). Explicitly T = Spec K|a, b] /(a®—
b*z — 1), with the multiplication (a, b) * (¢, d) = (ac + bdz, ad + bc). Send-
ing a = 3(t+t7") and b = 5 (t7" —t) defines an isomorphism G, 5 =
Spec E[t,t7'] = T which we will use in the sequel to identify X, (T) with
Z. The inertia group I = Gal(E/K) = {1,7} acts on X,.(T) = Z via
v(A) = =X and hence X, (T'); = Z/27.

With each element of X, (T"); the inverse of the Kottwitz map associates
a g-conjugacy class in LT (F;®). For example for i = 1 € X.(T); = Z/27Z
one has to choose a lift u € X,(Tg). If we choose p = 1 then with g =1 it
associates

Ne/((y) = wy) -v(u(y))

- Qe n)- G- -

= (=1,0) e T(F"((2)))-

This is independent of the choice of y and of the uniformizer y (and of E).

Consider the Néron-model T = ker(No, /0, : Re50,/0,Gm — Gr,), as

F,[2llo, b

a?—bz—1
connected components distinguished by @ = 1 or —1 (mod z). Therefore
the connected component of identity of 7 is T := SpecF,[z][d’, b]/(2d" +
z(a')? — b*), where a = 1+ za'. In particular (—1,0) ¢ T°(F,((2))).

Now consider the local L*7%-shtuka ((L*7°)g,, (—1,0)) over F, which
is bounded by 1 € W = X.(T);. We want to lift it to a local LT7-shtuka

over Fy[C][n]/(n* = ¢)

a scheme it is isomorphic to Spec Its special fiber has two
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Consider the isomorphism K = F,((2)) — F,((¢)),z — (. Fix an
embedding i : E < F,((¢))™ and let p =1 € Z = X.(Tg). Set n :=i(y)
and lift Ng/x(u(y)) to g(E, pu,1) := Ng/x(u(y —i(y))). We compute

(c, B) = puly — m)-y(puly —n)) =

(% (= + =" (="~ (y— 77)))
(3 =n+ =) 5 (=07 - ).

then

a=1(y-n+w-n"(=y—n)+Cy—n"
="t =w-0)(—y—n)"t=(-y—n)

o ((y—n)2+ (—y—n)Q)

*\ (~y—my—n)
_ (=
=2
and
B=2, (=) +y-n)")(~y—n"=(-y—n)
oy (=" = =) (—y—n) +(—y—n)")
—
Thus we get

G(E.i) = g(B, 1,1) = Noysc(uly — ) = (“Z 2 )

(=2 (—z
This shows that we can lift the local shtuka to a local shtuka over F,[n].
However the lift depends on the choice of pu and of the embedding i.

We first compute how g(E, %) := Ng/x(11(y —i(y))) depends on the cho-
Ne/k(p(y —i(y)))
Ne/x(p(y —iov(y))

sen embedding ¢ and compute . Changing 7 replaces

1 by —n and we have

G(E,i o) = Nayc(ly — 7)) = (C 2 ) |

(—2"C—=z

Note that g(E,i) = g(FE,i0~)~!. Hence
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g(Ei) e (GO +4C dn(z ()
I g(B, i) = Jz et o),
9(E,io7) (€—2) (€—2)
This also shows that what happens if we replace p € X,(Tr) = Z by another
lift of 1 € Z/27Z, i.e.

g(E, p+2,1)

2~ =g(E,2,1) =g(E,1,i)%
g(E, p,1) ( ) =9 )

Observe that g?éE{ZL) € T°(Fylz,2]) ~ T°(Fy[n, z]). So g(E,~ o) does
not lie in the closure of the subscheme LTT°g(E,i)LTT? C LT Xgpeck,

Spf F, [[77]]

6.2.2 Bounds on the moduli of global objects

The following theorem and lemma generalize [Beh, theorem 4.4.1].

Theorem 6.2.9. Let X be a projective scheme over the field k. Let V be
a vector bundle over X and & — GI(V) a closed subgroup with quasi-affine
quotient GI(V)/&. Then the natural morphism of k-stacks

pe: HHX,8) = (X, GlLV))
1s representable, quasi-affine and of finite presentation.

Proof. Let ps : Xg — S be the projection map and view this as a morphism
Et(Xs) — Et(S) of big étale sites. For any scheme Y over Xg let pg.(Y)
denote the sheaf which sends a scheme T to Homy,(X7,Y). Let G be
a GL(V)-bundle in (X, GL(V))(S). We have the following 2-cartesian
diagram of stacks

P (G/Bg) —— S

| |
HNX,86) —— X, GL(V)).
(Note that this follows from a more general fact that forN a given monomor-

phism G; — Gy of group schemes over a base scheme X, the category of
reductions of a Ge-bundle G to G (which is indeed a set, since G; — G is
is mono) equals the set of global sections of G /G1, see [Beh, Prop. 4.2.3].)

Let Guniv be the universal GL(V)-bundle over X x (X, GL(V)). By
the assumption G,,i,/® is quasi-affine over ##'(X, ®). Thus the theorem
follows from the lemma below. O
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Lemma 6.2.10. Let X be a projective scheme over the field k. Let p denote
the structure morphism p : X — Speck. Let S be a k-scheme and X — Xg
a quasi-affine X g-scheme of finite presentation. Then ps, X is a quasi-affine
S-scheme of finite presentation.

Remark 6.2.11. In [Beh, Prop 4.4.1 and 4.4.4], K. Behrend considers the
case that X — Xg is affine and then proves that pg, X is an affine S-scheme
of finite presentation. We prove bellow that the above lemma reduces to
the case studied by K. Behrend.

Proof. Let i : X — Y be an open immersion of X into an affine X g-scheme
Y. Set A := p,Y. Consider the universal morphism X 4 — Y corresponding
to the id € A(A). Let Z < X4 be the complement of X4 xy X in X 4.
By properness of X, Z maps to a closed subscheme of A. Let U denote the
complement of p(Z) in A. We claim that U represents p,X. To see this
first observe that the open immersion Xy; < X4 Xy X gives a morphism
Xy — X which induces a I/ —point in p, X (U). Hence it is enough to check

that for any scheme 7" we have the inclusion p,.(X)(7) C U(T'). Any point
of p*f((T) is a morphism X7 — X, composing with i : X — Y induces a T
valued point « of A. We have to show that a : T' — A factors through the
open subscheme Y. One can easily check this in the level of the topological
spaces. Namely, if 7' x 4 p(Z) is non-empty then so is Xp xx, Z, which is
a contradiction, since Z is defined as the complement of X 4 Xy X in X 4.
Thus the proof of the theorem reduces to the case that X is affine over Xg.
This then follows from remark 6.2.11.

]

Theorem 6.2.12. The stack 1 (C, ®) is a smooth algebraic k-stack, which
1s locally of finite type.

Proof. This is well-known for & = GI,,. Thus (X, ®) is locally of finite
type by 4.1.3 and 6.2.9. The smoothness follows from the vanishing of the
second cohomology of coherent sheaves on a curve. O]

Remark 6.2.13. Consider the following functor
S — { (G,81...,8n,9);G is a G-bundle over Cg, s; € C(S)
P g‘CS\UiFs,L‘ — & xo Cs N\ ;I is a trivializaition }

This functor is representable by an ind-scheme Grg ,, over C" locally of finite
type, see [Ga]. The ind-scheme Grg,, is called global affine grassmannian.
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Remark 6.2.14. In order to obtain an algebraic substack (of finite type) of
Heckeg one has to control the relative position of ¢ : G=G’ in the moduli
stack Heckeg. Here we recall the boundedness condition introduced in
[Var|, when the group & is constant, i.e. it comes from a split connected
reductive group Gy over F, by base change. For a dominant weight A\ of
Gy, consider the representation py : Gy — GI(V)), where V) denote the
Weyl module of Gy with the highest weight A. This representation induces
a l-morphsim py, : JY(C,8) — #1(C,GI(V,)). For a G-bundle G we
let G, denote the vector bundle associated to the GI(V))-bundle p),G. Let
¢ : Glegwy r,, — G'les U r,, be an isomorphism between &-torsors over Cs
outside (the graphs of) the characteristic sections. Then ¢ is said to be
bounded by an n-tuple of dominant coweights w = (wy, ..., wy,) of Gq if

i) ©(Gr) €G>, (N, wi)Ts,) for each dominant weight A of Go;

i) mo(Gs) — mo(Gl) = > ,[wi] for each geometric point s € S.

Let Heckeg p,,, denote the closed substack of Heckeg p,, defined by impos-
ing the above conditions on the universal isomorphism ¢y, on Heckeg p .

Fix a faithful representation p : & — GI(),), for some vector bundle V,
of rank r, with quasi-affine quotient GI(V,)/® (see proposition 4.1.3) and
consider the induced morphism

pe  HNC,8) — A (C,GI(Vy)) ~ Vecty

of stacks. Here Vecty, is the stack whose S-valued points parametrizes rank
r vector bundles over Cg = C' x; S.

Let w := (w;) be an n-tuple of dominant coweights of Gl,,. Consider the
relative affine grassmanninan Gr ,, over C" x #°!(C, &) which parametrizes
tuples (G, V', s1,... 8, ), where

(G, V., 51,...50) € HNC, &) x AC,GL(Vy)) x C"

and ¢ is an isomorphism between the vector bundle associated to p.G
and V' outside the graphs U;I's,. Note that the morphism p, yields a mor-
phism Heckeg,,, = Gre,n, which sends (G, G’, (s;);) to (G, p.G’, (5:)i)-

Now let grgn denote the substack of Grg,, defined by the condition that
the universal isomorphism ¢,,,,;, is bounded by w.

Remark 6.2.15. Note that the relative affine Grassmannian Qr%ﬁn is pro-
jective over 1 (C, &). To see this (since C is projective) we may look at
the fiber of Grg ,, — 1 (C,8) xg, C" over (G, s1,...,s,) € A (C,8) xp,
C™(S), and further notice that bounding ¢ by w is equivalent to bounding
¢! by (—W)dom Which is representable by a projective variety.
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The stack H eckjeén is defined by the following pull-back diagram

o W
Heckeg, —— Grg,

l !

Heckeg,, —— Gren.

Proposition 6.2.16. Let p : & — GI(Vy) be a faithful representation
as above with quasi-affine (resp. affine) quotient GI(Vy)/&. The stack
Heckeg is represented by a locally closed (resp. closed) substack of Gre .
In particular the stack Hecke§7D7n is quasi-projective (resp. projective) over

HNC,®).

Proof. The restriction of the triple (Guniv, Vi v Puniv) to U, the complement
of the graphs I's, in C'x Grg, defines a section s € (Gunin/®) (U), see theorem
6.2.9. Then since G i, /B is quasi-affine over C' x Grg, thus by the following
lemma, there exists a locally closed substack H of Grg such that s extends
over H x C' and by definition this substack represents Heckeg,. Finally
the last statement of the proposition follows from the fact that Qr%m is
projective over ' (C, &). O

Lemma 6.2.17. Let Y be a quasi-affine scheme over X x S. Let U be the
complement of the graph of the section s € X(S). Lett : U — Y be a
section. Then the question whether t extends to X x S — Y is representable
by a locally closed subscheme of S.

Proof. cf. [Ga, A.5]. O

We denote by V.75 (C, &) the pull back of Heckeg p, ,, under the closed
immersion V,, 71 (C, &) < Heckeg p,. Similarly we define

VI A (C,8) = VIANC,8) Xy (co) Virtp(C, ).

Proposition 6.2.18. Let D be a finite subscheme of C' and let Hp denote
the associated level structure, see remark 5.2.4. The stack Vi3 (C, ®)
is an Artin stack over (C'~ D)™ locally of finite type. Furthermore, let
v = (1) be an n-tuple of places of C, for a compact open subgroup H C
®(Ag) the stack V11 (C, &)¥ is a formal algebraic stack over [ ], Spf A,,
locally of finite type. In particular V,73(C, &) (resp. VEA'(C, &)2)
is an ind-algebraic stack ind-quasi-projective over C™ xg, ' (C,®) (resp.

[1, Spf A, xg, H#(C,8)).
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Proof. By Lang’s theorem the stack V! (Supp D, &p) is isomorphic to the
classifying stack #'(F,,&p). Thus one obtains the following 2-cartesian
diagram

Ve (C,8) ——  SpecF,

| l

Ve C,B) — HVEF,, Gp).

We observe that VL5 (C, &) — VL1 (C, ®) is a principal & p bundle.
The stack VEp 31 (C, ®) is a closed substack of Heckeg p,. Recall that
by proposition 6.2.16 the stack Hecke%vn is quasi projective over 1 (C, &).
Hence the statement follows from the corresponding fact about #!(C, &),
For the second part of the theorem, first observe that conjugating the level
structure H with g € &(Ag) induces an isomorphism

1

VIex (C,8)-5VINT L (C, 6)”

and hence (after conjugating the level structure with a sutable g) we may
assume that H C B(A%). Since H is open we may take a closed subscheme
D C C ~ {v;} such that

H D Hp :=ker(&(A*) — &(0Op)),

and thus reduce to the case that the level structure H is of the form Hp,
where D is supported outside the places v; by proposition 5.2.6.

The last statement follows from remark 6.2.15 and proposition 6.2.16.
m

Remark 6.2.19. One can observe that 7! (C, &) admits a covering {U, },
by connected open substacks of finite presentation over k. This is well known
when & is a constant split reductive group over F,. In this case the index
set is {(u, ¢)} where p runs over the cocharacters of G and ¢ € m(G). To
see this for the general & one may use theorem 6.2.9.

For sufficiently small H = Hp C &(A%) the restriction VZ 21 (C, &) of the
stack VE#1(C, &) to U, is a quotient of a quasi-projective scheme X, 7
over (C' . D)™ by a finite group G, see [Var, Prop 2.16].

One can also bound the moduli stack of global &-shtukas by more in-
trinsic bounds, namely by those coming from local objects, i.e.
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Definition 6.2.20. Let P, denote the completion of & at the place v on
C. Fix an n-tuple v = (v;) of places on the curve C'. Let Z, = (Z,); be a

tuple of closed subschemes Z of F E]p subject to conditions a) b)and c) of
definition 6.2.6. Let G be a global ®-shtuka in V WO B)E(S). We say

that G is bounded by Z (Z ); if for any i the associated local P,, —shtuka
@V_ is bounded by Zl,i. We denote by ng,%”l(C’, ®)¥(S) the substack of

— "

V.72 (C, &)%(S) consisting of global B-shtukas bounded by ZZ.

6.3 Representablity of The Rapoport-Zink
Functor

Let G denote the generic fiber of P and let b be an element of LG (k).

Let Z C ]/-"\Ep be a bound, see definition 6.2.6, and set Z = A X SpfF,[(]
SpecF,. We define the associated affine Deligne-Lusztig variety

Xz(b) = {g € Fl(k);g 'bo*g € Z(k)}.
For w € W we set Xo(b) = X (D).

In the remaining part of the chapter we show the pro-representablity
of the Rapoport-Zink space for local P-shtukas. Let L, be as before (see
proposition 4.1.8).

Consider the functor

MLZO P (Nilpgge)®  —  Sets
S —s { (L,5); £ € Ob(M,_(S)) is bounded by Z and

0: Lg — Ly g is a quasi-isogeny }/ ~ .

Here (£, 6) and (L', §') are called isomorphic if §'od’ lifts to an isomorphism
L — L.

We prove that the above functor is pro-represtentable by a formal scheme
locally formally of finite type. Notice that by remark 6.1.1 one may assume
that b satisfies a decency equation for some s.
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Theorem 6.3.1. The functor ./\/l]L (Nilpype)® — Sets is pro-representable
by a formal scheme over Spf k[(] which is locally formally of finite type. Its
underlying reduced subscheme equals X z(b).

Recall that a formal scheme over k(] in the sense of [EGA, I,cy, 10] is
called locally formally of finite type if it is locally noetherian and adic and
its reduced subscheme is locally of finite type over k. It is called formally
of finite type if in addition it is quasi-compact.

Proof. Consider the universal local P-shtuka L,,,,, over F Flp (see propos1t10n
4.1.8). Let /\/l]L be the closed ind-subscheme of Ffp over which ﬁ

bounded by Z. By construction ./\/lZ pro-represents the functor /\/l It s
clear that the reduced ind-subscheme equals Xz(b).

Zuniv

By rigidity of quasi-isogeny the functor MLO is equivalent to the follow-
ing functor

(Nilpyge)® —  Sets
S — { (L,0);L € Ob(My, (5))is bounded by Z and

0 : L — Lyg is a quasi-isogeny }/ ~

We may take a representation ¢ : P — G'Lyp, for some integer N, which
factors through H := SLyp with quasi-affine quotient H/PP, see proposition
4.1.3. The representation ¢ induces the following 1-morphism

A1) - (S, LP) — A (S, LH).

Now let M" be the closed ind-subschem of Mﬁo defined by the following
sub functor of MLZO

M (Nilpygep)®  — Sets
S — { (L,6);(L,0) is in MLZO(S) and
' (1)(8) is bounded by 2np* }/ ~

Where p" is the halfsum of all positive coroots of H. Note that here the
boundedness condition is the one defined in definition 6.2.1.
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Lemma 6.3.2. The ind-scheme M"™ representing the above functor is a
¢-adic noetherian formal closed subscheme of M over k[C].

Proof. Since H/P is quasi-affine, the induced morphism f : j—"\ﬁp — F¢ s
a locally closed embedding by proposition 6.2.7.
The representation ¢ induces the following functor

Ly @ é-\ht]p%@]{

Let H, := ¢, L, and view Fi g as a moduli space representing the functor
'A—/lﬂo’ parametrizing H-shtukas together with an isogeny oy to H,, see 4.1.8.

Let ﬁ;n be the closed ind-subscheme of j—"\ﬁp defined by the Cartesian
diagram
—~=n —
| I
—~=n —
Fly —— Fly,

here .ﬁ;n is defined by bounding dg by 2np”. Note that ]-/"\E;n is a (-
adic noetherian formal scheme over k[[(]. Indeed since f is a locally closed
embedding thus

—~=n . — —~=n .
Flp Xsprrgey KICI/(C) = Fle X5, Fly Xsprrge V(<)

is a scheme locally of finite type with underlying topological space f~'(F{3"),
then our claim follows from [EGA, I,,c,,, Cor 10.6.4].
Consider the closed immersion

M (@) 1= M* X 520 V() = Fly" xspruga) Speck[C)/(C).

Clearly we have M"(i)(k) = M™(k). We may thus argue, as above, that
M™ = lim M" (i) is a (-adic noetherian formal scheme . O
—

Now for each number n € N we define the following sub functor of Mﬁo

M, : (Nilpyep)®  —  Sets
$ — {(L£.8):(£5) is in ME(8)
and for any closed point
sin S, 7(1)(ds)is bounded by 2np’ }/ ~
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This functor is represented by an ind-scheme M, which is the formal
completion of Mfo along (M"™),cq.

Claim: M,, is formally of finite type over Spf k[(].

We break the proof of this claim into several lemmas, however some may
look interesting by their own. We need the following definition

Definition 6.3.3. Let R be a linearly topologized F,[(]-algebra lim R,, for
(_

a projective system (R, usp) of discrete rings indexed by Ny. Suppose that
all maps R — R, are surjective, and the kernels [, := keru,o C R, are
nilpotent. A local P-shtuka over Spf R is a projective system (L, )aen, of
local P-shtukas £, over R, with £, | = L, ®g, Ra-1-

Lemma 6.3.4. Let R in Nilpy be as in the above definition. The pull

back functor defines a bijection between the category of local P-shtukas over

Spec R bounded by Z and the category of formal P-shtukas over Spt R bounded
by Z.

Proof. Since R is in Nilpge there is an integer e € N such that (¢ = 0

on R. Let £ := (£, )nen, be a local P-shtuka over Spf R. There is an étale
cover R — Ry which trivializes éo and hence a unique étale R-algebra
R with R' ®p Ry = R by [SGA, Théoreme 1.8.3]. This gives rise to
the trivializations £, ® R!, = (L™Pps ,by6*) over R, == R ®p R,,. Here
b, € LP)(R;) = PU(R;I[[Z]][Z%C]) and b, ®r; R}, = by1.

Take a faithful representation P — H as before. This induces a locally
closed immersion ¢ : Flp — Fly and also an ind-scheme structure on

Flp = limﬁ];n). Since Z, = Z Xsp k] Spec k[¢]/(¢¢) has the same
H

underlying topological space than Z, it is quasi-compact. Hence there
~(N
is N € N such that Z, C ]-"K]; ). Thus for any n € N, the morphism
— —~ (N
b, : Spec R), — Flp factors through ]—"E[(p ), i.e. we have the diagram

Z( \ﬁg\[) ﬁg) ’
Spec R, —" Fl L Fly

Thus we obtain b, := lim, e by, € LPy" (), where LPyY) = LP,x 7,

—~(N

.7-"6]5» g This gives the local P-shtuka (LI, V,6*) over Spec ' which carries

descent data from the £, and hence induces a local P-shtuka over Spec R.
O
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Let us come back to the proof of the claim. For each m > n let M be
the formal completion of M™ along (M,,)wq. It is an adic formal scheme
over k[C]. Let U be an affine open subscheme of (M,,);cq. This defines an
affine open formal subscheme Spf R,, of M with underlying set U. Let R
be the inverse limit of the projective system R,,,; — R,, and let a,, denote
the ideal such that R,, = R/a,,. Let J be the inverse image in R of the
largest ideal of definition in R,,. We want to show that R is J-adic.

As we will see below, the rigidity of quasi isogenies (proposition 3.1.3)
together with lemma 6.3.4 and proposition 6.2.5 imply the above claim.

Lemma 6.3.5. For any integer ¢ > 0 there is an integer mgy such that
for any m > myq there exist an oblique arrow which fits into the following
commutative diagram

0 J R Rog - Rng/ J¢ Rung
0 JR,, Ry, R/ J Ry,

Proof. Let L,, be the universal local P-shtuka over Spf R,,. Consider the
local P-shtuka £ = lim £,, over Spf R. This lifts to a local P-shtuka £
—

over Spec R by lemma 6.3.4. Consider the closed immersion ¢ : Spec R/
J¢ — Spec R and the pull-back local P-shtuka *£. By rigidity of quasi-
isogenies the quasi-isogeny 0, over R/J = R,/J lifts to a quasi-isogeny
§ over R/J¢. In addition the isogeny #(¢)(d) is bounded by 2mgp" for
some my, by proposition 6.2.5 . Now the tuple (i*L,d) induces the desired
morphism by the universal property of M. O

By the above lemma we see that for all m > mg the morphism
R/ J Ry, — Ry /J R,
is an isomorphism. Thus the chain

al—l—JCQag—I—JCQ---Qui—l—JCQ... (634)

stabilizes. Now consider the chain

J2F2 DT, (6.3.5)



66CHAPTER 6. THE RAPOPORT-ZINK SPACE FOR LOCALP-SHTUKAS

where 7, is the intersection of the ideals in the chain (6.3.4) and therefore
equals a,, + J¢ for m > 0. Note that J; = J and J1 + J" = T Since
J1/J> is a finite type R-module the claim follows from [EGA, Oy 7.2.2].

For two closed points x; := (£,,01) and z, := (L, d2) define

d(z,, z,) = min{n € No; (1) (61) "1 (1)(02) < 2np"}.  (6.3.6)
Lemma 6.3.6. There is an integer dy € Ny such that
mam{d(x,Mﬁo(Fqs));x € MLZO(I_@)} < dy.

Proof. Let x := (L*,8) be a closed point of Mfo. Take a trivialization
(L, 6) = ((LTG, ha*), g) for the pair associated to the point z. Since the
local P-shtuka (L*G,ho*) is bounded by Z and by the definition of the
boundedness condition (see definition 6.2.6) Z is quasi-compact, we have
d(g,b6*g) < c, for some natural number c. Since b satisfies the decency
condition, therefore according to theorem 6.1.3 there is an integer dy which is
independent of the chosen point z, and ¢’ € LG(FF), such that the distance
of g and ¢’ in the Bruhat-Tits building of G := P, is less than dy. Now
we consider the associated point ((L1TP, ¢ 'bo*g), ') of Mfo (Fys). Notice
that by functorial properties of Bruhat-Tits buildings (see [Lal]), ¢ induces
an injective isometric map of Bruhat-Tits buildings #(P,) — %(H), and
hence the lemma follows. O

Set B(y) = Bly,do) = {z € MZ (k)id(z,y) < do} and Bu(y) =
B(y,dy) N M, (k). Note that these are closed subsets.
For each integer r let

z, = U B (y)

yeM(FqS)vd((Lovid)ay)Zr
If y & Mya,(k), ie. d((Ly,id),y) > n+ dy and 2 € M, (k) then

d(w,y) > d((Lo, id), ) — n] + d(z,y) > d((Lo, id),y) —n > dy

and thus B, (y) = (. We get

Z, = U Bn(ZJ)

yEMTL+d0 (Fqs )7J((L01Zd) 7@/)27‘
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Since (Mn+d0)re 4 (M”+d0) o and (/\/l”+d°)re o Is of finite type (see proof
of lemma 6.3.2) hence this union is finite.
Let U be the open formal sub-scheme of M,, whose underlying reduced set
is M,, \ Z]. We claim that the following chain of formal sub-schemes of
M, A

Uy — Uy - CMfo
stabilizes. By the definition of M,, it is enough to verify this on the underly-
ing set of points. Suppose that there is some element z € U, (k) ~ M, (k).

By lemma 6.3.6 there exist a y € Mﬁo (F,s) such that d(x,y) < dy. Then

d((Ly, id), ) < d((Ly, id),y) + d(z,y) <1+ do,

therefore if n > r + dy then d((Ly, id), ) < n which is a contradiction and
consequently there is no such .
Let U" = U, U, (which equals U] for n > r + dy). Note that every

geometric point of Mﬁo lies in the union of U"s. Now consider the chain

U U = Mf

of open immersions of formal schemes formally of finite type, note that 4"
is open in Mﬁo. Indeed the underlying topological space of U" is open in
M,, for every n and the ind-scheme MZ Z  carries the limit topology of the
limit over the M,,. This shows that the formal scheme U" equals the formal
completion of the open ind-scheme ./\/l]L |er| of ./\/l]L supported on |/"| along

the whole set |/"| and thus MLOMU’"I =U". Since U" is locally of finite type

so is MLZO||W|' This implies that M = |J,.U" is locally formally of finite
type as well. O
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Chapter 7

The Uniformization Theorem

7.1 The Uniformization Theorem

For a global &-shtuka G, over k we let I(Q) = Ig (Q) denote the group
QIso0gi(G,) of quasi-isogenies of G. Let (£,), denote the associated tuple
of local P,-shtukas under the global-local functor i, see section 3.2. Let
Jr, (Q,) denote the group QIsogi(L,) of quasi-isogenies of £,. Recall that
the group of quasi-isogenies of a local P-shtuka £ acts naturally on the
ind-scheme .ﬁpy and also on the Rapoport-Zink space for P-shtukas MZ% |
see proposition 4.1.8 and theorem 6.3.1. This in particular illustrates that
Jr, (Q,) may appear as a sort of symmetries of the associated affine Deligne-
Lusztig variety. R

Especially we see that the group 1(Q) acts on the product [, M7 of the

associated Rapoport-Zink spaces (resp. [], ﬁ[p)y) via the natural morphism
1(Q) = ] e, (@u).

Let S be an finite subset of the characteristic places v of G, and I" C
[lcsJc, (Qv) be a discrete subgroup. We say that I' is separated if it is
separated in the profinite topology, i.e. for every g € I' there is a normal
subgroup of finite index that does not contain g.

Proposition 7.1.1. Let I' C [], J (Q,) be a separated discrete subgroup.

Then the quotient I'\ [], ./\/lz 15 a locally noetherian, adic formal algebraic
Spf k[C]-stack locally formally of finite type over Spfk. Moreover, the 1-

morphism [, Mzu — I\ T, MZV is adic and (formally) étale.

Before proving the above proposition let us state the following lemma.

69
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Lemma 7.1.2. Let I, C J; (Q,) be a separated discrete subgroup. Con-

sider ]-"Ep as a moduli space for M, , see proposition 4.1.8. Let U, C Flp,
be a quasi-compact subscheme. Then the set

{yel;qyU,NU, #0}
18 finite.

Proof. Any point z € U,(k) can be represented by a tuple (L,g), where
L := (L*P,,bo*) is a trivialized local P,-shtuka over k and g € LG(k).
By proposition 4.1.5 the preimage U C LP, of U, under the projection
LP, — Flp, is quasi-compact. Consider the morphism

Uk) x Uk) —  Fip, (k)
gxg w— 4¢g ' L'P,/LTP,.

Since F/p, (k) is an ind-scheme, this morphism factors through some V C
Flp, of finite type. We may assume that b is decent, so the group of quasi-
isogenies Jz (Q,) C LG(k) is defined over some finite extension L/F,, see
remark 6.1.2. Let v € I', if z € U, and vz € U, then the image of v
under the projection map 7 : LG(k) — Ffp, maps to V(L). Thus v lies
in S=7n"YV(L))NJ(Q,). On the other hand T, is discrete and thus has

finite intersection with the compact set S. O

Remark 7.1.3. One can state a variant of the above lemma for a separated
discrete subgroup I' of [], Jr (Q,). Namely, let U, be as above and set
U =11, U, then one can show, in a similar way as in the above proof, that

{yeT;hUNU # 0}
is finite.
Proof. of proposition 7.1.1 By theorem 6.3.6 we may choose a constant d,

such that any ball in MZ (k) with radius d, contains a rational point in

./\/lZ (Ly) for the finite extension L, /F, (see proof of the above lemma).
Let d be the maximum of the integers d, and L be the compositum of the
fields L,. Let z := (x,) be a closed point of [], ./\/lﬁ Note that since the

underlying reduced subscheme of ./\/lZ is of finite type and therefore has
finitely many rational points over L, the union |J yerZ (1) dy.e )>2dB(y, d)

defines a closed subscheme Z,,. Define the open ne1ghborhood U, = ./\/lZ
Z, of x,. Set U, :=[], U,. One may easily see that v.U, = U, , and that
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the open neighborhoods U, are bounded and cover [], Mg , for varying
r €[], MZ (L). Let I C [, ./\/lg be a set of representatives of the I'-
orbits in [], MZU(L).

For a fixed 7 € I, since I' is separated by the remark 7.1.3 we may choose
a normal subgroup I C T" of finite index in I' such that U; N ~'U; = 0

for all v/ # 1 in I'. Note that it is enough to show that IT'\ ], MZ is
Deligne-Mumford and the projection

[IMmZ - ]IME

is adic, see remark 2.1.6. Let V; denote the union of the image in I\ [, MZ
of all translations ~'U;, for v/ € I”. Then the composition of the open
immersion

| Vi = I\ MZ
el v

followed by the projection I\ T, Mgﬂ — I\ TI, ng gives the desired
étale presentation. O

Let (G,,7) be a global &-shtuka, bounded by ZZ = (EV),,, with level
H-structure 7o, in V' (C, ®)%(k), where H C &(Ag) is a compact open
subgroup supported outside the characteristic sections of G,. Let (£,), be
the tuple of local shtukas associated with G, via the global-local functor

as before. Let ./\/lg” denote the associated Rapoport-Zink spaces. Let {7;}
be a set of representatives of I(Q)-orbits of the irreducible components of

[T, MZ -
Theorem 7.1.4. Keep the above notation, we have the following statements

(a) the morphism W induces a 1(Q) x B(AS)-equivariant morphism
o [[MZ x 6(A%)/H — V204 (C, 6.

Further more this morphism factors through a G5(Aé)-equivam’ant mor-
phism

0: I(Q\[[MZ x 6(Al)/H — V2 (C, 6).

of formal algebraic stacks.
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(b) Let Z denote the union of the images of the T;s under the uniformiza-
tion morphism. Then © induces the following isomorphism

0z IQ\ [[MZ x &(a%)/H — VI2 1 (C,8),

of formal algebraic stacks.

Notice that in part (b) of the above theorem, the ©(T;) are closed (see
theorem 4.1.12), and each O(7;) intersects finitely many others, thus we
may form the completion along their image, see [RZ, paragraph 6.22].

Proof. The map W introduced in theorem 4.1.12 restricts to the following
map

Uy [[ME = V2 (O, ®)

of formal algebraic stacks.
By the Tannakian formalism, a given element g € (’5(A§2) defines an auto-
morphism of the neutral tensor functor w® (defined outside v). Now consider
an S valued point (L., ¢,), of [], ./\/lfz and let G’ denote its image under
. Note that there is a unique quai-isogeny ¢ : G' — G, see remark 4.1.13.
This induces a functor 7, : Tgr — Tg, see 5.2.1. Now these data suffice to
establish the morphism - a

o [[M% x 6(A%)/H — V21 (C, 6)

which sends (£, ¢,), X hH to (G, Hh ' T,).

The group I(Q) of quasi-isogenies of G, acts on the automorphism group
Aut®(Tg,) of the Tate functor, see section 5.2. This induces a morphism

B:1(Q) — Aut®(w®) = G(AP)

regarding the level H-structure v,. Hence we get the following morphism

(¢, 8) : 1(Q) = [ [ Ve, (Qu) x B(AD).

Let I'(Q)) denote its image. We claim that this is a discrete subgroup of
[1, J(Q.) x &(Ag). To show this we take an open subset U C [[, J(Q,) x
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®(A) sufficiently small such that any element in I'(Q) N U induces iso-
morphisms of local P,-shtukas L,, for every v. Thus these elements give
automorphisms of the global shtuka G := (G, 1), see remark 4.1.13. Now
the finiteness of the set I'(Q)) N U follows from remark 6.2.19.

Hence we observe that

1oLt <ot/ =11 (1 Lt ).

where I' runs through a countable set of subgroups of [], J. (Q,) of the
form

ng V) x gHg )N I(Q CHJL

One can easily check that these groups I' are separated. Hence I (Q)\ I, M é” X

G(Ap) /H is a formal algebraic stack by proposition 7.1.1. According to this,
the morphism ©’ factors through the following morphism

QN[ MZ x 6(Al)/H — V20 (C, ).

of formal algebraic stacks.

Let us prove part (b). By the lemma 7.1.6 ©z is representable by a
morphism of schemes. Furthermore by lemma 7.1.5 ©z is a monomorphism
of locally noetherian formal algebraic Spf k[(]-stacks, locally formally of
finite type. In addition the monomorphism © 3 is surjective by very defini-
tion, étale by lemma 7.1.7, and proper by theorem 4.1.12. Hence ©z is an
isomorphism. O

Let Y (resp. X') denote the source (resp. target) of the uniformization
morphism.

Lemma 7.1.5. The I-morphism © : Y — X is a I-monomorphism of
formal algebraic stacks.

Proof. Consider two S-valued points of )

= (£, 7)), "H) and  y:= (£}, 7))v, h"H)

which get mapped to isogenous global &-shtukas (G',~) and (G",~”) with
level structures, respectively 7/ and 4", under ©. Let ¢ : G" — G” denote
this isogeny. By the construction of the morphism ©, there are canonical
isogenies @ : G5 — G5 and @ : Gg — G ¢ see remark 4.1.13. Consider
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the quasi-isogeny g := @”’sa’~! in I(Q).

We claim that y = g.z. By rigidity of quasi-isogenies, proposition 3.1.3,
g:G5 — Ggliftsto g : G — G” over S. Now we let ¢, be the quasi-isogeny
defined by the following diagram

,C/ Pv ,C”

14

a/l l‘””

L —— L

12 =
gv

Via the Tannakian duality g operates on the level structure h’ as an
element £(g) € (Ag) = Aut®(w°®), this fits in the diagram

7:1 hlfl
Te N 7'90 Ty we > W
l’rg JTQ s(g@ H .
T =1
T// & > 77g0 0 (.Uo h > wo

and hence h"H = ¢(g).h’H. This proves the claim.
Since O is J(Q)-invariant this finishes the proof of the first assertion of the
lemma.

]

Lemma 7.1.6. The 1-morphism © : Y — X s adic. In particular it is
representable by a morphism of schemes.

Proof. Let P : X — AX,q be a presentation. By theorem 4.1.12 and lemma
7.1.5 we see that Vyeq X x,., X — X is a closed immersion. Furthermore since
P is an epimorphism we may argue that this is an isomorphism. Hence
O : Vyea — Xoeq is a l-isomorphism. Finally since X and Y are adic
(see proposition 7.1.1) this suffices to show that © is adic. The second
assertion follows from the fact that any 1-monomorphism of algebraic stacks
is representable by a morphism of schemes, see [L-M] Théoreme A.2 and
Corollaire 8.1.3.

O

Lemma 7.1.7. The 1-morphism © : Y — X is étale.

Proof. Let Y denote the source of the map ©'. Let 7 : Y — J denote the
projection. Let Z be an ideal of definition of X and let X := V(Z) be the
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closed substack defined by Z. Consider the following 2-cartesian diagram

y —» 3y 2.y

T I T

YXXT—>:)}XX?—>?

of algebraic Spec k[(]J-stacks. Now observe that the composition of the
morphisms in the top of the above diagram is formally étale. This indeed
follows from theorem 4.1.12 and proposition 7.1.1. The 1-morphisms in the
bottom row of the diagram are representable by morphisms of finite type
between locally noetherian schemes and consequently are étale. Thus we
argue that ) xy X — X is étale. Now the lemma follows from the fact
that both ©® and the presentation ¥ — ) are adic see lemma 7.1.6 and
proposition 7.1.1. 0
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Chapter 8

Discussion about

Uniformization and Local
Model

8.1 Local model for the moduli of global &-
shtukas

Recall that a Global affine Grassmannian parametrizes the same tuples
of data (G,G’,c1,...,cn, ) as Heckeg together with a trivialization of G’
outside the characteristic sections. One interesting feature of these objects
is that they can be viewed as a local model for the moduli of global &-
shtukas (in analogy with the theory of local models for Shimura varieties).
Let us state the following theorem

Theorem 8.1.1. For any point y in ¥V, (C, ®) there exist an étale neigh-

borhood of y and a roof
Uy
AN

anfl (C, 6) Gr@,n,

of ind-étale morphisms. In other words the global affine Grassmannian
Gre., is a local model for the moduli stack ¥V, 71 (C, &) of global &-shtukas.
Note that this also induces a roof of étale morphisms after imposing bounds

to V, 7 (C,8) and Gre,,.

For a constant reductive group Gy over Iy, this observation was first
recorded in [Var|. However there is a mistake in the proof, namely he applies

7
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the following well-known theorem of Drinfeld and Simpson to construct the
étale neighbourhood U,:

Theorem 8.1.2. Let x be a closed point of C' and set C := C~{x}. Let G
be a semi-simple group over a perfect field k. Then for any quasi-compact
k-scheme S and any Go-torsor G on C xS the restriction of G to C Xp S
is trivial, locally for the fppf-topology on S. In addition if char(k) does
not divide the order of the fundamental group 1 (Gy), then this is even true
locally for the étale topology on S.

The assumption that Gy is semi-simple is necessary (already for the

case G = G,,). In addition this theorem can only be applied under certain
circumstances for the characteristic of the ground field.
In this section we modify the proof given in [Var| and produce a proof
which is independent of the Drinfeld-Simpson theorem (and can be applied
to general &). Finally we briefly mention a link between the uniformization
of the moduli stack of global &-shtukas, we worked out in the previous
chapters, and the local model for them.

Proposition 8.1.3. Consider the stacks Heckeg,, and Gre ., x A1 (C, ®)
as families over C™ x 7 (C, &), via the projections (G,G', i, p) — (¢, G)
and (é, ¢i, P) X G+ (¢;,G") respectively. They are locally isomorphic with
respect to the étale topology on C™ x H#*(C,®).

Proof. The proof goes in a similar way as [Var, Lem. 4.1], only one has

to replace S by #'(C,®) and take an étale cover V — C xp, S (C,®)
trivializing the universal &-bundle over J#'(C,®) rather than a Zariski

trivialization over S. Also one sets U =V X y1c8) - X1 (ce) V, U =
Heckqu,n XCnx #1(C,8) U, U" = G’I"@m X on U, V=V XCx #1(C,8),G' CxU
and V' =V X COx#1(C,®) C xU”. ]

Proof. of theorem 8.1.1:

Since the curve C', the parahoric group & and the index n (which stands
for the number of characteristic sections) are fixed, we drop them from
the notation and simply write Gr = Grg,, ' = #'(C,8), Hecke =
Heckeg,, and V' = V,#'(C,6). Pick an open substack 2! (C,®)
that contains the image of y under projection to !, see remark 6.2.19.
Let 3/ be the image of y in C™ x £!(C,®) under the projection sending
(G,G',ci,0) to (¢;,G'). Take an étale presentation H! — 221 (C, ®) and let
Hecke,, denote the base change of Hecke to H..
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According to proposition 8.1.3, we may pick an étale neighborhood
U— C"x H — C™ x 2} of y, such that the restriction U’ of Hecke to
U and the restriction U” of Gr x s#* to U become isomorphic.

Now we claim that the neighborhood U, := U’ X gecke VI 1is the desired
étale neighborhood.
Consider the following diagram

U’ Hecke,

/

y/
#U O
/ —

Gr x H}

Indeed, the fact that U, is an étale neighbourhood of Gr follows from
the lemma 8.1.4 applied to the following diagram

Uy
.
U’ = U’ Gre x H} Gr
(L)
H — "

here f is the morphism induced by the projection 7 : Hecke — 51
sending (G, G', ¢;, p) to G and g is U” — Grex H] followed by the projection.
O
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Lemma 8.1.4. Let Z be a smooth scheme locally of finite type over F,
and let W, T and Y be locally noetherian schemes. Assume that we have
a morphism f : W — Z, an étale morphism ¢ : W — Y x T and an
isomorphism ¢ 1Y — Z. Let g : W — Z denote the morphism @ o priou,
where pri 'Y x T — Y 1is the projection to the first factor. Consider the
following diagram

ozof g

Z
here V := ker(oz o f,g : W = Z). Then ¢’ is étale in either of the

following cases

(a) T is smooth over IF,,

(b) Y and T are locally of finite type over F,.

Proof. Since the question is local we may reduce to the case that Z = A™.
We first show that the proof of case b) reduces to case a).
We may assume that 7' is affine. Take a closed embedding T" — Tof T
into a smooth affine scheme T" and let I = I d(/e\note the corresponding ideal

identifying T" as a closed subscheme of T. Let T denote the spectrum of the
ring obtain by taking the completion of the ring I'(Oz, T) with respect to

the ideal I7. Note that 7 is regular, see [EGA, IV, 7.8.3.v. page 215].

Consider the closed immersion Y x T — Y x 7. By [Ra, Chap.V Thm.
1] the étale topology on the closed subscheme 7' is the induced topology,

Zariski locally on Y x T. Thus we may assume that there is an étale

morphism W — Y x T such that W = W Xy 5 Y x T. Now since W

is regular the morphism f extends to f : W — Z. Now assuming the
conclusion of the lemma in the case a), we see that the composition

V::ker(af,g:ﬁ//:;Z)%fW%YxT—)T
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is étale. Therefore its restriction f :V — T is also étale.

(a) Assume that 7" is smooth. This implies that V' is étal over 7. Indeed,
V' is locally given by m equations with linearly independent differentials
inside the smooth scheme W. Then (a) follows by the Jacobi-criterion
[BLR, Section 2.2, Prop 7]. ]

8.2 (eneralized Lang Morphism

Let y := G be a global &-shtuka over S. Let v := 15 denote the character-
istic of G. Passing to the completion along the characteristic sections, we
get the following roof from the local model diagram

/\

V. ANC,8) 1, Fls,,,

see theorem 8.1.1. We bound this by w = (w;);. Then, this together with
the uniformization morphism ©, see theorem 7.1.4 , induces the following

/N

L My I1, S(ws),

where U’ := Uy Xy [[; M7, and S(wi) = S(w;) x Spfk[¢;]. Thus
up to a choice of a section for U’ — []; My’ we obtain a local morphism

from the product of Rapoport-Zink spaces to [, S/(c;) Note that [], m
can be viewed as a parameter space for Hodge-Pink structures (see [Ha2]).
Consequently one may naturally pose the question “how the period mor-
phism contributes to this picture?” We leave the interpretation and precise
formulation of this observation unanswered.
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