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Chapter 1

Introduction

Let G be a parahoric Bruhat-Tits group scheme over a smooth projective
curve C over Fq, see [PR3]. A global G-shtuka G over S in Sch/Fq is a tuple
(G, s1, . . . , sn, ϕ) consisting of a G-bundle G over CS := C ×Fq S, an n-tuple
of (characteristic) sections (s1, . . . , sn) ∈ Cn(S) and a Frobenius connec-
tion ϕ defined outside the graph of the sections si’s (i.e. an isomorphism
σ∗G|CSr∪iΓsi

→̃G|CSr∪iΓsi
where σ∗ = (idC × Frobq)

∗).
Spelling out the Riemann-Hilbert correspondence for “function fields”, to-
gether with the tannakian philosophy, one sees that the stack ∇nH

1(C,G)
of global G-shtukas, after imposing suitable boundedness conditions and
level structures (as we will explain in chapter 5 and section 6.2), may play
the same role that Shimura varieties play in the mixed characteristic set up.
More specifically one can hope that the Langlands correspondence for func-
tion fields is realized on its cohomology. Note that in particular this moduli
stack generalizes the space of F -sheaves FShD,r which was considered by
L. Lafforgue (and previously V. Drinfeld) in his proof of the Langlands cor-
respondence for the case that G = Glr (resp. G = Gl2). On the other
hand “this analogy” can be viewed as an attempt to build a bridge between
the geometric Langlands program and the arithmetic Langlands program,
where the role of global shtukas is played by the abelian varieties (together
with additional structures) and D-modules respectively.

In this thesis our approach to study the moduli stack of global G-shtukas
is to relate this stack to certain moduli spaces for local objects, called lo-
cal P-shtukas, where P is a parahoric group scheme. More precisely let Aν

be the completion of the local ring OC,ν at a closed point ν ∈ C, and let
P = Pν := G ×C SpecAν . We develop the theory of local P-shtukas partly
independently of global G-shtukas. For this purpose we replace SpecAν

7



8 CHAPTER 1. INTRODUCTION

by D := Spec k[[z]] for a finite field k. In [H-V] Hartl and Viehmann have
introduced local G-shtukas for a connected reductive group G, as the func-
tion field analogs of p-divisible groups. This category has as objects pairs
L = (L+, ϕ) consisting of an L+G-torsor L+ on S ∈ N ilpFq [[ζ]] and an iso-
morphism of the loop torsors ϕ : σ̂∗L → L as its objects. Here LG (resp.
L+G) denotes the group of loops (resp. positive loops) of G (see 2.3), L
denotes the LG-torsor associated with L+ and σ̂∗L the pullback of L under
the q-Frobenius morphism Frobq : S → S. For a parahoric group scheme
P one can define local P-shtukas in a similar way, replacing the L+G-torsor
over S by L+P-torsors. We denote the resulting category by ŜhtP(S).

Consider the formal stack ∇nH
1(C,G)ν , which is obtained by taking

the formal completion of the stack ∇nH
1(C,G) at an n-tuple of character-

istic places ν = (νi) (see section 2.1). One can extend the morphisms in the
category ∇nH

1(C,G)ν(S) to quasi-isogenies (see Def 3.1.1) between global
G-shtukas and form a category which we denote by Shtν

G
(S).

Recall that to an abelian variety A over Fp one can associate a p-divisible
group A[p∞]. In the analogous situation (see section 3.2) one can associate

a tuple (Ĝ
νi
) of local Pνi-shtuka Ĝ

ν
to a global G-shtuka G in Shtν

G
(S)

Γ̂ : Shtν
G
(S) →

∏

νi

ŜhtPνi
(S).

We construct this functor in section 3.2.

In analogy with the Grothendieck-Messing theory we prove (see section
4.2.1) that the infinitesimal deformations of a global G-shtuka G are the
same as the infinitesimal deformations of the associated local P-shtukas via
the global-local functor Γ̂. Note that as we mentioned above, unlike abelian
varieties, G-shtukas may posses more than one characteristic and we must
keep track of the deformations of the local P-shtukas at each of these char-
acteristic places. This theorem for abelian τ -sheaves (corresponding to the
case G = Gln) and their associated z-divisible groups was first stated and
proved by Hartl in [Ha1].

The knowledge that the deformations of a global G-shtuka are ruled by
the deformations of the associated local shtukas at the characteristic places
looks enough enlightening to seek a similar uniformization procedure as that
of Rapoport and Zink (and previously Cerednik and Drinfeld) for Shimura
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variety of PEL-type.

Let k̄ denote an algebraic closure of the residue fields of νi for i =
1, . . . , n. Let us set

∇nH
1(C,G)ν̄ := ∇nH

1(C,G)×Cn Spf k̄[[ζ]]

where Spf k̄[[ζ]] := Spf k̄[[ζ1 . . . , ζn]] and ζi is a uniformizer of OC,νi .
As Hartl and Viehmann pointed out in [H-V] the true analogs of p-

divisible groups are “bounded” local G-shtukas. Nevertheless in section 4.1
we prove that the product

∏
ν F̂ℓPνi

can be regarded as a uniformization
space for ∇nH

1(C,G)ν̄ already in the unbounded situation, see theorem
4.1.12. Here

F̂ℓPνi
:= FℓPνi

× Spf k̄[[ζi]],

where FℓPνi
is the local affine flag varieties corresponding to the para-

horic group Pνi := G ×C SpecOC,νi , which is constructed by Papas and

Rapoport, see [PR2]. Note that the ind-scheme F̂ℓP can be viewed as a
moduli space for local P-shtukas L together with a quasi-isogeny f : L → L0

from L to a fixed trivialized local P-shtuka L0.
The analogs of the Rapoport-Zink space for local G-shtukas, when G is a

split reductive group was constructed and studied by Hartl and Viehmann in
[H-V]. In chapter 6, we generalize their construction to the case of P-shtukas
where P is a parahoric Bruhat-Tits group. For this purpose we introduce
the notion of boundedness condition on the quasi-isogenies between local
(resp. global) P-shtukas (resp. G-shtukas). These bounds are essentially

given by closed subschemes Ẑ of F̂ℓP which satisfy certain conditions, see
section 6.2. Finally in this chapter we prove that the Rapoport-Zink space

for local P-shtukas MẐ
L0

is a formal scheme locally formally of finite type
over k[[ζ]], see 6.3.1 (also see [RZ, Thm 2.16] and [H-V, Thm 5.6]).

After the construction of the Rapoport-Zink space MẐ
L0

(for local P-
shtukas) in chapter 6 the next chapter is devoted to the construction of the
uniformization map. Using the tannakian theory, we introduce the notion
of the level H-structure (for a compact open subgroup H ⊂ G(Aν

Q)) on a

global G-shtuka G. This is done in chapter 5. We denote by ∇H
n H 1(C,G)

the moduli stack parametrizingG-shtukas together with a levelH-structure.
Let Ẑ := (Ẑν) be an n-tuple of bounds Ẑν in F̂ℓPν . The associated bound-
edness conditions on the local Pν-shtukas, induce a bound on the moduli
stack ∇H

n H 1(C,G)ν̄ . We denote the corresponding formal substack given

by imposing the boundness condition Ẑ by ∇
H,Ẑν
n H 1(C,G)ν . We show in
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Proposition 6.2.18 that it is a formal algebraic stack over
∏

i Spf Aνi locally

of finite type. Let G
0
be a fixed global G-shtuka in ∇

H,Ẑν
n H 1(C,G)ν̄(k̄) and

set (Lν) := Γ̂(G0). Let I(Q) denote the group of the self quasi-isogenies of
G
0
. We construct the uniformization morphism

Θ : I(Q)
∖∏

ν

MẐν
Lν

×G(Aν
Q)
/
H → ∇H,Ẑν

n H
1(C,G)ν̄ ,

and in addition we prove that the uniformization map induces an iso-
morphism after passing to the completion along its image, see theorem 7.1.4.
Note that the reduced subscheme of the Rapoport-Zink space for local P-
shtukas is an affine Deligne-Lusztig variety. Thus as a consequence of the
uniformization theorem one can relate the rational points (of the Newton
stratum) of the moduli stack of global G-shtukas to the rational points of
certain affine Deligne-Lusztig varieties.

In the mixed characteristic set up the Schubert varieties in a twisted
affine flag variety have appeared in the theory of local models for Shimura
varieties. Also this anticipation is worked out for function field analogs of
Shimura varieties, see [Var, Thm. 2.20] and [Dr1, Prop. 3.3]. In the last
chapter we study the theory of local models for the moduli of global G-
shtukas and briefly mention how this may counterpart with the theory of
uniformzation of the moduli stack of global G-shtukas.

1.1 Notation and Conventions

N0 the set of non-negative integers,
n ∈ N0 a positive number,
Fq the finite field with q elements of characteristic p,
C smooth projective geometrically irreducible curve over Fq,
ν a closed point of C,
ν := (νi) an n-tuple of closed points of C,
k residue field of a place ν on C,
k̄ an algebraic closure of k,
σ̂ the ♯k-Frobenius.

Aν the completion of the stalk OC,ν at ν,
A the ring of integral adeles of C, i.e. lim

←−
I

OC/I where the limit is taken

over all non-zero sheaves of ideals of OC ,
Aν the adelic ring lim

←−
I,V(I)∩{νi}=∅

OC/I where the limit is taken over all non-
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zero sheaves of ideals of OC whose support is disjoint from {νi},
AQ = A⊗OC

Fq(C) the ring of adeles of C,
Aν

Q := Aν ⊗OC
Fq(C),

DR := SpecR[[z]] spectrum of the ring of formal power series in z with co-
efficients in a commutative ring R,
ḊR := SpecR((z)), where R((z)) := R[[z]][1

z
],

Dn,R := SpecR[[z]]/zn, where n ∈ N0,

D̂R := Spf R[[z]] formal spectrum of R[[z]]
When R = k we drop the subscript R from the notation of DR, ḊR, Dn,R

and D̂R.

ζ an indeterminate over Fq,

G a smooth affine group scheme over C,
G a reductive group over Ḋ,
P a smooth affine group scheme of finite type over D,
Pη generic fibre of P,
Pν the group scheme Gν := G×C OC,ν over SpecOC,ν ,

P̂ν pull-back of Pν under the map Spf Aν → SpecOC,ν .

Let S be a scheme. We denote by σS : S → S its Frobenius endomor-
phism which acts as the q-power map on the structure sheaf,

CS = C ×Fq S, when S = SpecR we also denote CR := C ×Fq S,
σ = idC × σS.

For any facet a in the Bruhat- Tits building of G over Ḋ, Pa, denotes
the unique smooth group scheme , with connected fibers, over D, such that
Pa(k[[z]]) is equal to the parahoric subgroup of G(K) attached to a, cf. [BT2,
1.7].

Let Ŝ be a formal scheme. We denote by NilpŜ the category of schemes

over Ŝ on which an ideal of definition of Ŝ is locally nilpotent, equiped with
the étale topology.

Let H be a sheaf of groups over X, we let H 1(X,H) denote the cate-
gory fibered in groupoids over the category of schemes Sch, such that the
objects over S, H 1(X,H)(S), are H-torsors over X ×Z S and morphisms
are isomorphisms of H-torsors.
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Chapter 2

Glob. and Loc. Shtukas, Def.

and Their Moduli Stacks

2.1 Formal Algebraic Stacks

Recall that a formal space X̂ over a formal scheme Ŝ is a sheaf of sets on the
site NilpŜ. In addition it is called a formal algebraic space if the diagonal

morphism X̂ → X̂ ×Ŝ X̂ is representable by a quasicompact morphism of

formal schemes and there is a formal scheme X̂ ′ over Ŝ and a morphism
of formal Ŝ-spaces X̂ ′ → X̂ which is representable by an étale surjective
morphism of formal schemes.

Let X be a stack over a scheme S. Let S0 be a locally closed subscheme of
S. Let Ŝ denote the formal completion of S along S0. Restricting the fibered
functor X to the category NilpŜ gives a category X̂ fibred in groupoids over
NilpŜ which inherits the following properties from X

i) for every V in NilpŜ and x, y in X̂ (V ) the presheaf

Isom : Sch/V → Sets

U → V 7−→ HomX̂ (U)(xU , yU),

is a sheaf on Sch/V .

ii) for every covering Vi → V in NilpŜ all descent data for this covering
are effective.

Further more if X is an algebraic stack (resp. of DM-type) we have

13
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(a) the diagonal 1-morphism X̂ → X̂ ×Ŝ X̂ over Ŝ is representable (i.e.
the fiber over any U -valued point, U ∈ NilpŜ is representable by a

formal algebraic Ŝ-space), separated, and quasi-compact,

(b) there exists a formal algebraic Ŝ-space X̂ and a presentation

P : X̂ → X̂

of formal Ŝ-stacks which is representable by a smooth (étale) and

surjective morphism of formal algebraic Ŝ-spaces.

Abstractifying the above easy observation, we phrase that in the follow-
ing way

Definition 2.1.1. A category X̂ fibered in groupoids over NilpŜ is called a
formal stack if it has the properties i) and ii) indicated above. Also we say

X̂ is formal algebraic stack if in addition it is subject to a) and b) above.

A formal algebraic stack X̂ is called Deligne-Mumford (or of DM-type) if
the presentation P can be chosen étale.

Example 2.1.2. Again mimicking the idea behind the construction of quo-
tient stacks one can define the quotient of a formal space by a formal group
scheme.
Let T̂ be a formal Ŝ-scheme and let Ĝ be a formal T̂ -group space (i.e. a

group object in the category of formal T̂ -spaces). A (right) Ĝ-torsor is a

formal T̂ -space P̂ with an action of Ĝ (from the right) such that there is a

covering T̂ ′ → T̂ over Ŝ for which P̂ ×T̂ T̂
′ is Ĝ×T̂ T̂

′-isomorph to Ĝ×T̂ T̂
′

which acts on itself by right translation.
Let X̂ be a formal Ŝ-space, Ŷ an X̂-space (i.e. a formal Ŝ-space equipped

with a morphism Ŷ → X̂) and Ĝ an X̂-group space which acts on Ŷ from

the right. We define the quotient stack [Ŷ /Ĝ] as the following category

fibered in groupoids over the category of formal Ŝ-schemes:
For every formal Ŝ-scheme T̂ the category [Ŷ /Ĝ](T̂ ) consists of all triples

(x, P̂ , α) where x ∈ X̂(T̂ ), P̂ is a Ĝ ×X̂,x T̂ -torsor and α : P̂ → Ŷ ×X̂,x T̂

is a Ĝ×X̂,x T̂ -equivariant morphism of formal T̂ -spaces. One easily verifies

that the quotient [Ŷ /Ĝ] is a formal Ŝ-stack.

Note that when Ĝ is smooth, the natural morphism Ŷ → [Ŷ /Ĝ] is a

smooth presentation and therefore [Ŷ /Ĝ] is a formal algebraic stack. More-

over if Ĝ is étale over X̂ then [Ŷ /Ĝ] is a formal Deligne-Mumford stack.
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Let Sred denote the underlying reduced subscheme of Ŝ. In a similar
way, as that of formal schemes, one has a functor

−red : Ŝta/Ŝ → Sta/Sred,

where Sta (resp. Ŝta) denotes the 2-category of algebraic stacks (resp.

formal algebraic stacks) over Sred (resp. Ŝ). Namely, let X̂ be a formal

algebraic Ŝ-stack and let P : X̂ → X̂ be a presentation. We define the
underlying reduced stack X = X̂red as follows:
For every U in NilpŜ, X (U) is the full subcategory of X̂ (U) whose objects
are the x ∈ X (U) such that there is a covering U ′ → U in NilpŜ, an element

x′ ∈ X̂red(U
′), and an isomorphism in X̂ (U ′) between xU ′ and P (x′). The

above functor restricts to a functor from the category of formal algebraic
stacks of DM-type to algebraic stacks of DM-type.

Similarly one can define the notion of quasi-coherent sheaves on a formal
algebraic stack X̂ . We say that a sheaf of ideals I of OX̂ is an ideal of

definition of X̂ if for any presentation P : X̂ → X̂ the ideal sheaf P ∗I is an
ideal of definition for X̂.

We say that X̂ is locally noetherian if the presentation X̂ is locally
noetherian. If X̂ is locally noetherian then it posses a unique largest ideal
of definition, namely the ideal defining the closed sub-stack Xred. We denote
this ideal by IX̂ .

From now on we assume that all formal algebraic stacks are locally
noetherian.

Definition 2.1.3. Let Ŝ be the completion of a scheme S along a closed
sub-scheme S0. Let X be an algebraic S-stack and Z a locally closed sub-
stack of X , contained in X ×S S0. We define the formal completion X̂/Z as
the full sub-category of X consisting of those points p of X (U) such that
the Ured-point associated to p be a Ured-point of Z.

Proposition 2.1.4. The formal completion X̂/Z of X̂ along Z is a formal

algebraic Ŝ-stack. Moreover if X is an algebraic S-stack of DM-type then
X̂/Z is a formal algebraic Ŝ-stack of DM-type. If I is the ideal sheaf on X

defining Z then X̂/Z is I.OX̂/Z
-adic.

Proof. cf. [Ha1, Appendix Prop A.14].

Definition 2.1.5. A 1-morphism f : Ŷ → X̂ of formal algebraic stacks is
called adic if f ∗IX̂ is an ideal of definition for Ŷ
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Remark 2.1.6. If X̂ is an adic formal algebraic Ŝ-space and H a finite
étale Ŝ-group scheme then the quotient [X̂/H] is an adic formal algebraic

Ŝ-stack of DM-type. In this case, the canonical projection X̂ → [X̂/H] is

an étale presentation for [X̂/H].

2.2 Global G-Shtukas

Let G be a smooth affine group scheme on the curve C over k.

We denote by H 1(C,G) the moduli stack of G-bundles on C. The fol-
lowing is well-known:

Remark 2.2.1. The stack H 1(X,G) is a smooth algebraic k-stack, which
is locally of finite type, see theorem 6.2.12.

For c in the set of the connected components π0(H
1(X,G)), we denote

by H 1(X,G)c the corresponding open substack.

Definition 2.2.2. Let G be a smooth affine group scheme on a curve C
over k. We say that G is a parahoric group scheme over C if

(a) all geometric fibers of G are connected and the generic fiber Gη of G
is reductive over k(C),

(b) for any ramification point ν of G (i.e. those points ν of C, such that
the fiber above ν is not reductive) the group scheme Pν := Gν is
a parahoric group scheme over OC,ν , as defined by Bruhat-Tits (cf.
[BT1, Définition 5.2.6]).

Let us mention that when G is parahoric over C, Pappas and Rapoport
[PR3] conjectured that there is a canonical isomorphism

π0(H
1(C,G)) ∼= π1(Gη)Γ.

Where π1(Gη) denotes the fundamental group of Gη and the right hand
side are the co-invariants under Γ := Gal(k(C)sep/k(C)).

The following proposition of J. Heinloth [He, Thm. 6] affirms their
anticipation to some extent.
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Proposition 2.2.3. Let G be a parahoric Bruhat-Tits group scheme over
C with semi-simple generic fiber, then

π0(H
1(C,G)) = π1(Gη)Γ.

For a divisor D on C let H 1
D(C,G) denote the stack classifying G-

bundles with D-level structure (i.e. a section of the G-bundle over D×Fq S),
or equivalently define H 1

D(C,G) as a category fibred in groupoids, which
assigns to a scheme S over k the category whose objects are

ObH 1
D(C,G)(S) :=

{
(G, ψ);G ∈ H

1(C,G), ψ : G|D×S
∼−→ G×C D ×Fq S

}
,

and its morphisms are those isomorphisms of G-bundles that preserve the
D-level structure.

Definition-Remark 2.2.4. Consider the following functor

S 7−→
{
(G, s1 . . . , sn, ϕ); G ∈ ObH 1(C,G)(S), si ∈ C(S)

ϕ : G|CSr∪iΓsi
→ G×C CS r ∪iΓsi is a trivializaition

}
.

This functor is representable by an ind-scheme GrG,n over Cn, locally of
finite type, see [Ga, Proposition 2.2.3]. The ind-scheme GrG,n is called the
global affine grassmannian.

Definition 2.2.5. For each natural number n, let HeckeG,D,n be the stack
whose S valued points are triples

i) (G, ψ) and (G ′, ψ′) in H 1
D(C,G)(S),

ii) sections c1, . . . cn ∈ (C rD)(S)

iii) isomorphism τ : G|C×SrΓc1∪···∪Γcn
→̃G ′|C×SrΓc1∪···∪Γcn

, preserving the D-

level structures. Here Γci denotes the graph of the section ci.

Note that forgetting the isomorphism τ defines a morphism

HeckeG,D,n → H
1
D(C,G)× H

1
D(C,G)× (C rD)n.

We denote by pr1 and pr2 the projections, respectively to the first and
second factor.

Remark 2.2.6. We will show in proposition 6.2.16 that for a parahoric
group G the stack HeckeG,D,n can be viewed as a locally closed substack of
a GrGlr -fibration over H 1(C,G).
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Definition 2.2.7. Assume that we have two morphisms f, g : X → Y of
schemes (stacks), we denote by ker(f, g : X ⇒ Y ) the pull back of the
diagonal under the morphism (f, g) : X → Y × Y .

Definition 2.2.8. We define the moduli stack ∇nH
1
D(C,G) to be the

preimage in HeckeG,D,n of the graph of the Frobenius morphism. In other
words

∇nH
1
D(C,G) = ker(pr1, σH 1

D(C,G) ◦ pr2 : HeckeG,D,n ⇒ H
1
D(C,G)).

We call this the moduli stack of global G-shtukas.
Each object G in Ob(∇nH

1
D(C,G)(S)) is called a global G-shtuka over S and

the corresponding sections (c1, . . . , cn) are called the characteristic sections
(or simply characteristics) of G.

More explicitly a globalG-shtuka G over S in Sch/Fq is a tuple (G, s1, . . . , sn, ϕ)
consisting of a G-bundle G over CS, an n-tuple of (characteristic) sections
(s1, . . . , sn) ∈ Cn(S) and an isomorphism ϕ : σ∗G|CSr∪iΓsi

→̃G|CSr∪iΓsi
.

We will drop the subscript n from the notation of ∇nH
1(C,G), GrG,n,

HeckeG,D,n, etc. when it is obvious from its context.

2.3 Loop groups and Local P-Shtukas

Let X be a scheme over D. Consider the following functor

L+− : Sch/D → PreShv/k

X 7−→ L+X : SpecR 7→ X(DR),

from the category of schemes over D to the category of pre-sheaves on
Sch/k. After restrict the above functor to the category of affine schemes
of finite type over D, one can easily see that the resulting functor factors
through the full subcategory of schemes over k. We denote the scheme
representing the functor L+X by L+X and we call it the space of positive
loops on X.

Similarly we define the following functor

L− : Sch/Ḋ → PreShv/k

X 7−→ LX : SpecR 7→ X(ḊR).
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When we restrict the above functor to the category of affine Ḋ-schemes
of finite type, then this functor factors through the full sub category of ind-
schemes over k. We call the ind-scheme LX (which represents the functor
LX) the loop space of X.

Remark 2.3.1. Let X be a scheme of finite type over D. If X is formally
smooth (resp. reduced, connected), then so is L+X.

Remark 2.3.2. Let X be a scheme of finite type over Ḋ. If X is smooth,
then LX is also formally smooth. However the functor X 7→ LX may no
longer preserve connectedness and reducedness. For instance one can verify
that for X := Gm the space of loops LGm is neither connected nor reduced.

For the details and functorial properties of these constructions see [PR2].

Let G (resp. P) be a linear algebraic group over Ḋ (resp. flat affine
group scheme of finite type over D). The group of loops (resp. positive
loops) associated to G (resp. P) is the ind-group scheme (resp. affine group
scheme) LG (resp. L+P) over Spec k.
Let η be the generic point of D and Pη be the generic fibre of P. Let
H 1(Spec k, L+P) (resp.H 1(Spec k, LPη)) denote the classifying space of
L+P-torsors (resp. LPη-torsors) [Spec k/L

+P] (resp [Spec k/LPη]).
Consider the natural 1-morphism

H
1(Spec k, L+P) → H

1(Spec k, LPη), L+ 7→ L

of categories fibred in groupoids.
Let us denote the restriction of H 1(Spec k, L+P) (resp. H 1(Spec k, LPη))
to the site Nilpk[[ζ]] still with the same notation. We define the space of local
shtukas with P-structure as follows.

Definition 2.3.3. Let C be the fiber product

H
1(Spec k, L+P)×H 1(Spec k,LPη) H

1(Spec k, L+P)

of groupoids. Let pri denote the projections to the i-th factor. We define
the groupoid of local P-shtukas ShtD̂P to be

ker
(
pr1, σ̂ ◦ pr2 : C ⇒ H

1(Spec k, L+P)
)
.

We call an object of the category ShtD̂P (S) a local shtuka with P-structure
over S (or simply local P-shtuka over S).
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More explicitly the category ShtD̂P (S) has as objects pairs L = (L+, ϕ)
consisting of an L+P-torsor L+ on S ∈ N ilpD̂ and an isomorphism of the
loop torsors ϕ : σ̂∗L → L as its objects.

Definition 2.3.4. A local P-shtuka (L+, ϕ) is called étale if ϕ comes from
an isomorphism of L+P-torsors σ̂∗L+ → L+.



Chapter 3

A starting point of the analogy

3.1 Rigidity of quasi-isogenies

Recall that (for a prime number p) a (p-)quasi-isogeny between abelian
varieties A1 and A2 can be defined as a roof

Ã

A1 A2

f

����
��

��
�� g

��?
??

??
??

?

of isogenies of abelian varieties (such that a power of p kills the kernel
of f and g).

This inspires to establish the following analogous definition for a quasi-
isogeny between global G-shtukas.

Definition 3.1.1. A quasi-isogeny between global G-shtukas

G := (G, τ) → G ′ := (G ′, τ ′)

with the same characteristics, is an isomorphism G|CSrDS
→ G ′|CSrDS

,
where D is an effective divisor on C, such that τ ′σ∗(f) = fτ . We denote the
category of global G-shtukas over S (with exactly n characteristic sections),
with quasi-isogenies as its morphisms, by ShtnG(S) (when the number of the
characteristic sections is clear from the context we drop the superscript n).

Spelling out the observation we recalled above for “p-divisible groups”,
we analogously define

21
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Definition 3.1.2. A quasi-isogeny between local P-shtukas

L := (L+, ϕ) → L′ := (L′+, ϕ
′)

over S is an isomorphism of the associated LPη-torsors f : L → L′ such
that the following diagram

σ̂∗SL
ϕ

−−−→ L

σ̂∗
Sf

y f

y

σ̂∗SL
′ ϕ′

−−−→ L′

commutes.
We denote by QIsogS(L,L

′) the set of quasi-isogenies between L and L′ over
S. We denote the category of local P-shtukas over S, with quasi-isogenies
as its morphisms, by ŜhtP(S).

Let S be a closed subscheme of S, defined by a locally nilpotent sheaf
of ideals. Let X and Y be p-divisible groups over S. Further assume
that p is locally nilpotent on S. Then a quasi-isogeny between XS and YS
lifts uniquely over S. This phenomenon was first observed by Drinfeld, see
[Dr2].
The analogy between p-divisible groups and local shtukas, we mentioned
above, develops further, and in particular, the following proposition states
that quasi-isogenies between local P-shtukas enjoy the mentioned rigidity
property, namely a quasi-isogeny between local P-shtukas lifts over infinites-
imal thickenings, thanks to the Frobenius connections.
This interesting feature of shtukas first mentioned in [Ha1] for abelian
sheaves and z-divisible groups and later in [H-V] for G-shtukas, where G is a
constant reductive group over Fq. Their observation and proof is obviously
valid replacing G-shtukas by P-shtukas.

Proposition 3.1.3. (Rigidity of quasi-isogenies) Let S be a scheme in
Nilpk[[ζ]] and let i : S̄ → S be a closed immersion defined by a sheaf of ideals
I which is locally nilpotent. Let L = (L+, ϕ) and L′ = (L′+, ϕ

′) be two

shtukas in ŜhtP(S). Then

QIsogS(L,L
′) −−−→ QIsogS(i

∗L, i∗L′), f 7→ i∗f

is a bijection of sets.

Proof. Arguing by induction over OS/I
qn it suffices to treat the case where

Iq = (0). In this case the q-Frobenius factors as S
j
−→ S

i
−→ S where j is the
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identity on the underlying topological space |S| = |S| and on the structure
sheaf this factorization is given by

OS
i∗

−−→ OS

j∗

−−→ OS

b 7→ bmod I 7→ bq .

Therefore σ∗f = j∗(i∗f) for any f ∈ QIsogS(L,L
′). We obtain the diagram

L ∼=

f
// L

σ∗L

∼=ϕ

OO

∼=

j∗(i∗f)
// σ∗L

∼= ϕ′
OO (3.1.1)

from which the bijectivity is obvious.

Remark 3.1.4. By similar arguments as above one may see that quasi-
isogenies between global G-shtukas also enjoy similar rigidity property.

3.2 The Global-Local Functor

Denote by A V S the category whose objects are abelian schemes over some
base S over a field of characteristic p, with quasi-isogenies as its morphisms.
Let BT S denote the category whose objects are p-divisible groups and mor-
phisms are the quasi-isogenies between them.

Recall that assigning the p-divisible group A[p∞] (i.e. the inductive
system formed by the pn-torsion subgroup schemes A[pn]) to an abelian
scheme A in A V S defines a functor

Γ : A V S → BT S.

In the sequel of this section we investigate the analogous functor which
goes from the category of global G-shtukas to the category of local P-
shtukas.

Definition 3.2.1. Let P̂ be the formal group scheme over D̂, obtained by the
formal completion of P along V (z). A formal P̂-torsor over a k-scheme S is a
z-adic formal scheme P̂ over D̂×Spf k S together with an action P̂×D̂ P̂ → P̂

of P̂ on P̂ such that there is a covering D̂S′ := D̂×Spf kS
′ → D̂S := D̂×Spf kS

where S ′ → S is an fppf -covering and a P̂-equivariant isomorphism
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P̂×̂D̂S
D̂S′ → P̂×̂D̂D̂S′ .

Here P̂ acts on itself by right multiplication.
Let H 1(D̂, P̂) be the category fibered in groupoids that assigns to each

k-scheme S the groupoid consisting of all formal P̂-torsors over D̂S.

In [H-V, Proposition 2.2.a)] Hartl and Viehmann prove that for a split
reductive group G, there is a bijection of (pointed) sets between the Čech

cohomology Ȟ
1
(Sfpqc, L

+G) and the set of isomorphism classes of z-adic

formal schemes over D̂×Spf k S. Following their arguments one can even see
that there is a natural isomorphism between the corresponding categories.

Proposition 3.2.2. There is a natural isomorphism

H
1(D̂, P̂)→̃H

1(Spec k, L+P)

of groupoids.

Proof. To a given element P̂ of H 1(D̂, P̂)(S) one can associate the following
sheaf

K : (fppf/S) → Sets

T 7→ HomD̂S
(D̂T , P̂),

where (fppf/S) denotes the big fppf -site on S. This sheaf is precisely a
principal homogeneous space under the action of L+P(T ) = HomD̂(D̂T , P̂).
Since the group of positive loops of P is affine this functor can be represented
by a L+P-torsor K.

Let K be a L+P-torsor. Let S ′ → S be a covering that trivialises K and
fix KS′→̃L+P×S ′. This gives a 1-cocycle g ∈ L+P(S ′′), where S ′′ = S ′×SS

′.
Now ḡ = g(mod zn) can be viewed as descent data on P̂×DDn,S′ = P×DDn,S′ .
Since Dn,S′ → Dn,S is an fppf -cover and P is affine, the descent data is
effective by [BLR, ➜6.1, Theorem 6] and gives an affine finitely presented
smooth scheme Ĝn over Dn,S by [EGA, IV2, Proposition 2.7.1 and IV4,

Corollaire 17.7.3]. These schemes form an inductive system {Ĝn}n∈N. Now
set Ĝ := lim

−→
n

Ĝn, the existence of this limit (in the category of z-adic formal

schemes over D̂S) follows from [EGA, Inew, Corollary 10.6.4]. This shows
that the functor is essentially surjective. By the above construction we see
that the functor is also fully faithful.
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Let ν be a place on C. Let P̂ν denote the formal group scheme obtained
by restricting G to the formal spectrum Spf Aν , note that Spf Aν

∼= D̂⊗̂κ(ν).
Assume that we have a section s : S → C and furthermore we know that
this section factors through Spf Aν . In this case we have

Spf Aν⊗̂S ∼=
∐

i

V(aν,i) ∼=
∐

i∈Z/[κ(ν):k]

D̂S,

where V(aν,i) denotes the component identified by the ideal

aν,i = 〈a⊗ 1− 1⊗ s∗(a)q
i

; a ∈ Aν〉.

Remark 3.2.3. Note that σ cyclically permutes these components and thus
σdeg ν leaves each of the components V(aν,i) stable.

Let (C × H 1(C,G))
ν̂
be the formal stack given by taking completion of

C×H 1(C,G) along ν ∈ C, see chapter 2.1. Consider the following functor

(
C × H

1(C,G)
)ν̂

(S) → H
1(Spec k, L+P)(S), (3.2.2)

which sends (s,G) to the L+Pν-torsor associated to the P̂ν-torsor P̂ν

given by the connected component of G×CS ,sSpfOC,v⊗̂S lying over V(aν,0),
according to proposition 3.2.2.

Fix a tuple ν := (νi)i=1...n of places on C. Let the formal stack∇H 1(C,G)ν

be the completion of the algebraic stack ∇H 1(C,G) along ν ∈ Cn.
We define the category Shtν

G
(S) to be the category whose objects are the

same as ∇H 1(C,G)ν(S), and the morphisms are the quasi-isogenies be-
tween them. The functor 3.2.2 induces the following functor

Γ̂ : Shtν
G
(S) →

∏

νi

ŜhtPνi
(S), (3.2.3)

which sends (G, τ) to
(
(P̂νi , τ̂

deg(νi)
νi )

)
i
, see also remark 3.2.3. We call

this functor the global-local functor.

Remark 3.2.4. Note that in a similar way one can associate a local Pν-
shtuka Ĝ

ν
to a global G-shtuka G at a place ν outside the characteristic

places νi. Note that the main difference is that there is no distinguished
component given by the characteristic section, see [BH, Prop 2.5].
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Chapter 4

Unbounded Uniformization

and The Deformation Theory

4.1 Construction of the Uniformization map

Let us first recall a well-known theorem, proved by A. Beauville and Y.
Laszlo, that enables one to glue quasi-coherent sheaves along infinitesimal
neighbourhoods.
Let X be a scheme and D be an effective Cartier divisor on X. We let
QCoh(X)(resp. QCohD(X)) denote the category of quasi-coherent OX-
modules ( resp. quasi-coherent OX-modules that have no nonzero sections
supported on D).

Theorem 4.1.1. Let π : X ′ → X be a morphism of schemes. Consider the
following diagram

U ′ −−−→ Uy
y

X ′ −−−→ Xx
x

D′ −−−→ D,

where D is an effective Cartier divisor on X and D′ its pull back under π,
U and U ′ are respectively the complement of D and D′. Now if D′ ∼= D
under π, then the induced diagram

27
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QCohD(X) −−−→ QCohD′(X ′)y
y

QCoh(U) −−−→ QCoh(U ′)

is a Cartesian diagram of categories.

Proof. This is a reformulation of the well-known patching theorem of Beauville
and Laszlo, cf. [BL]. Note however that they consider the case that X ′ is
the completion of X along D, but what they actually need for the proof is
that D′ maps isomorphically to D under π.

Definition 4.1.2. Let P be a flat affine group scheme of finite type over D
and Pη be the generic fibre as before. Let FℓP be the fpqc-sheaf, associated
to the presheaf

R 7→ P (R((z))) /P (R[[z]]) ,

on the category of k-algebras.

Proposition 4.1.3. Let P be as in the above definition. Then

a) there is a faithful representation P → GLn over D, for some n.

b) There exists a closed immersion of group schemes P → GLn × Gm

such that the quotient fppf -sheaf is representable by a quasi-affine
scheme over D.

Proof. cf. [PR2, Proposition 1.3].

Remark 4.1.4. When P = GLn, the fpqc-sheaf FℓP is called the affine
Grassmanian. The R-valued points of the affine Grassmanian parametrize
lattices L in R((z))n , i.e. R[[z]]-submodules which are locally free of rank
n on SpecR and L ⊗ R((z)) = R((z))n. It is well-known that the affine
Grassmannian is representable by an ind-k-scheme which is ind-proper over
k and the quotient morphism LGLn → LGLn /L

+GLn = FℓGLn admits a
section locally for the étale topology, see proposition 2.3 and theorem 2.5
of [BL1].

The following theorem of Pappas and Rapoport states a partial gener-
alization of the mentioned properties of affine Grassmannian, excluding the
properness of the twisted affine flag variety FℓP. Note however that propo-
sition 6.2.7 establishes the ind-properness of the twisted affine flag varieties
in certain cases.
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Proposition 4.1.5. Assume that P is smooth over D. Then the fpqc-sheaf
FℓP is represented by an ind-k-scheme FℓP of ind-finite type over k. The
quotient morphism LPη → FℓP admits sections locally for the étale topology,
i.e. L+P-equivariant isomorphisms

Spec(R)×FℓP LPη
∼= Spec(R)×Spec(k) L

+P,

for each point of FℓP with values in a strictly henselian ring R.

Proof. cf. [PR2, thm 1.4].

Let k′ be a finite extension of k. For S in Nilpk′[[ζ]] let S̄ denote the
closed subscheme V(ζ) ⊆ S.

Definition 4.1.6. To a given local P-shtuka L0 over S̄ ∈ Sch/Fq we asso-
ciate the following functor

ML0
: NilpS̄×FqSpf Fq [[ζ]] → Sets

T 7→
{
(L, δ̄);L is a local P-shtuka over T and

δ̄ : LT̄ → L0,T̄ is a quasi-isogeny over T̄
}/

∼ .

Here (L, δ̄) ∼ (L′, δ̄′) if δ̄−1 ◦ δ̄′ lifts to an isomorphism L′ → L.

Remark 4.1.7. Note that by rigidity of quasi-isogenies the functor ML0
is

naturally isomorphic to the functor

T 7→
{
Isomorphy class of (L, δ); L is a local P-shtuka

over T and δ : LT → L0,T is a quasi-isogeny
}
.

Now let us view the formal scheme Spf k[[ζ]] as an ind-scheme

lim
−→
n

Spec k[ζ]/(ζn).

We may form the fiber product FℓP ×k Spf k[[ζ]] in the category of ind-
schemes (see [BD, 7.11.1]). Note that this fiber product can be either viewed
as the restriction of the sheaf FℓP to the fppf -site of schemes in Nilpk[[ζ]]

or also as the formal completion of Fℓ×k Spec k[[ζ]] along the special fiber
V(ζ) ⊂ FℓP ×k Spec k[[ζ]].
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Consider a local P-shtuka L over k[[ζ]]. Since L+P is smooth (see re-
mark 2.3.1), L admits a trivialization over a separable extension k′/k. So
we trivialize L ⊗k[[ζ]] k

′[[ζ]] ∼= (L+P, bσ̂∗), for some b ∈ LPη(k
′[[ζ]]) and set

L0 := (L+P, bσ̂∗). Let b̄ ∈ LPη(k
′) denote the reduction of b modulo ζ.

The following observation was first recorded in [H-V] for G-shtukas,
where G is a (constant) split reductive group over Fq. Their proof (with
a small modification, thanks to proposition 4.1.5 above of Pappas and
Rapoport) works for the general case.

Proposition 4.1.8. The ind-scheme FℓP ×k Spf k′[[ζ]] pro-represents the
functor

ML0
: Nilpk[[ζ]] −→ Sets .

Proof. Let us fix the notation M := ML0
and F̂ℓk′ = FℓP ×k Spf k′[[ζ]].

Note that we may regard M as the equivalent form mentioned in remark
4.1.7.
Consider a pair (L, δ) = ((L+, ϕ), δ) ∈ M(S). Choose an étale covering
S ′ → S which trivializes L, so the quasi isogeny δ is given by an element g′ ∈

LPη(S
′). The image of the element g′ ∈ LPη(S

′) in F̂ℓk′(S
′) is independent

of the choice of trivialization, and since L is defined over S, it descends to

a point x ∈ F̂ℓk′(S).
Note in particular that ϕS′ is determined by b and g′

σ̂∗LPη,S′
ϕS′

−−−→ LPη,S′

σ̂∗g′

y
yg′

σ̂∗LPη,S′
b

−−−→ LPη,S′ .

Conversely let x ∈ F̂ℓk′(S) for a scheme S in Nilpk′[[ζ]]. The projection
morphism LPη → Fℓ admits local sections for the étale topology by propo-
sition 4.1.5. Consequently there is an étale covering S ′ → S such that x is
represented by an element g′ ∈ LG(S ′). Define (L′+, ϕ

′, δ′) over S ′ as fol-
lows. Let L′ = L+PS′ , let the quasi-isogeny δ′ : (L′+, ϕ

′) → L0,S′ be given by
y 7→ g′y, and the Frobenius by ϕ′ = (g′)−1bσ∗(g′)σ∗. We descend (L′+, ϕ

′, δ′)
to S. For an S-scheme Y let Y ′ = Y ×S S

′ and Y ′′ = Y ′ ×Y Y
′, and let

pi : Y
′′ → Y ′ be the projection onto the i-th factor. Since g′ comes from

an element x ∈ F̂ℓk′(S) there is an h ∈ L+P(S ′′) with p∗1(g
′) = p∗2(g

′) · h.
Consider the fpqc-sheaf L+ on S whose sections over an S-scheme Y are
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given by

L+(Y ) :=
{
y′ ∈ L+P(Y ′) : p∗1(y

′) = h−1 · p∗2(y
′) in L+P(Y ′′)

}

on which L+P(Y ) acts by right multiplication. Then L is a L+P-torsor on
S because over Y = S ′ there is a trivialization

L+PS′
∼−→ L+S′ , f 7→ h p∗1(f) ∈ L+P(S ′′)

due to the cocycle condition on h. Moreover, ϕ′ descends to an isomorphism

ϕ : σ∗L(Y ) ∼−→ L(Y ) , σ∗(y′) 7→ (g′)−1bσ∗(g′)σ∗(y′)

making (L+, ϕ) a local P-shtuka over S. Also δ′ descends to a quasi-isogeny
of local P-shtukas

δ : L(Y ) ∼−→ LPη(Y ) =
{
f ′ ∈ LPη(Y

′) : p∗1(f
′) = p∗2(f

′) in LG(Y ′′)
}
,

y′ 7→ g′y′ .

Note that this is well defined. Namely, if g′ is replaced by g̃′ with u′ =
(g̃′)−1g′ ∈ L+P(S ′) then left multiplication with u′ defines an isomorphism

(
L+PS′ , (g′)−1bσ∗(g′)σ∗, g′

)
∼−→

(
L+PS′ , (g̃′)−1bσ∗(g̃′)σ∗, g̃′

)
.

Also h̃ = p∗2(u
′)h p∗1(u

′)−1 and hence left multiplication with u′ descends

to an isomorphism L ∼−→ L̃ over S.

Remark 4.1.9. For any P̂ in H 1(D̂, P̂)(R) one can find an étale covering

R → R′ such that P̂ maps to an object in the isomorphy class of the trivial
element in H 1(D̂, P̂)(R′). Indeed, we may assume that the restriction of P̂
to V (z) ⊆ D̂R has a section and then by smoothness this section extends
over D̂R.

Remark 4.1.10. Let S = SpecR be an affine scheme and s : S → C an
S-valued point of C. We denote by ˙( ) the restriction morphism

H
1(CR,G) → H

1(CR r Γs,G).

Now suppose that the morphism s : S → C factors through Spf Aν → C.

The completion (̂CS)Γs
of the relative curve CS along the graph Γs of

the characteristic section s equals the formal spectrum of the completion
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of Aν,R := Aν ⊗ R with respect to the ideal IΓs of Γs. Let us denote the

corresponding ring by B̂. We have

B̂ :=
∏

ϑ∈Gal(κ(ν)/Fq)

R[[zϑ − ζϑ]] ∼=
∏

ϑ∈Gal(κ(ν)/Fq)

R[[zϑ]],

see the discussion before constructing the morphism 3.2.2.
We denote by D(Γs) (resp. D̂(Γs)) the component of Spec B̂ (resp. Spf B̂)
given by the section s. Define Ḋ(Γs) := D(Γs)⊗Aν,R

D(Γs), where D(Γs) :=

SpecAν,R r Γs. Note that there is a (non canonic) isomorphism Ḋ(Γs) ∼=
SpecR((z)). So we fix an isomorphism Ḋ(Γs) ∼= ḊR. Assigning the following
LPη-torsor

R′ 7→ Ġ(R′⊗̂RD(Γs)⊗OCR
Ḋ(Γs))=̂Ġ(ḊR′)

to a G-bundle Ġ over CR r Γs, defines the following 1-morphism

( )η : H
1(CR r Γs,G) → H

1(R,LPη)

of groupoids.

Recall that to a section s as in the above, one can also associate the
following 1-morphism

(̂ )s : H
1(CR,G) → H

1(R,L+Pν),

see morphism 3.2.2.

Definition 4.1.11. For a local P-shtuka L0 over S̄ we denote by JL the
group of self quasi-isogenies QIsogS̄(L0,L0) of L0.

Note that by the definition of the space ML0
, there is a natural action

of the group JL0 on ML0
.

In the mixed characteristic set up the Schubert varieties in affine Grass-
maniann has appeared as the local model for the integral models of Shimura
varieties with parahoric level structure. The similar fact is also worked out
for function field analogs for Shimura varieties, see [Var] (and also chapter
8 of this thesis). We will return to this interesting discussion in the last
chapter, nevertheless, as we shall see in the next theorem, the local affine
flag varieties can also appear as the uniformization space for the function
field analogs for Shimura varieties with parahoric level structure.
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Consider the tuple ν = (ν1, . . . , νn), where νi is a place on C. Let ζi
denote a uniformizer of C at the place νi and define

∇nH
1(C,G)ν̄ := ∇nH

1(C, FG)×Cn Spf k̄[[ζ]],

where k̄[[ζ]] := k̄[[ζ1, . . . , ζn]]. Note that we may view the formal stack

∇nH
1(C,G)ν̄ as an ind-algebraic stack over k̄[[ζ]] := k̄[[ζ1, . . . , ζn]] (see

proposition 6.2.18).
The following theorem can be regarded as unbounded uniformization

of the completion ∇nH
1(C,G)ν̄ of the moduli stack of global G-shtukas

∇nH
1(C,G) at ν = (ν1, . . . , νn).

Theorem 4.1.12. Let G
0
be a global G-shtuka in Shtν

G
(S) for S ∈ Sch/Fq.

Let (Lνi
)i := Γ̂(G

0
) (recall that the functor Γ̂ was defined in 3.2.3). Then

there is a natural transformation

Ψ(G
0
) :
∏

νi

MLνi
→ ∇nH

1(C,G)ν̄ ×Fq S.

In particular when S = Spec k this gives the following morphism of
formal stacks

Ψ := Ψ(G
0
) :
∏

νi

F̂ℓPνi
→ ∇nH

1(C,G)ν̄ ,

where F̂ℓPνi
:= FℓPνi

×κ(νi) Spf Aνi. In addition the last morphism is
ind-proper and formally étale over its image.

Proof. Let ν be a place of C. Let R be an object of NilpAν
and let s :

SpecR → C be the induced map. Let G := Pη denote the generic fiber of
Pν .
As a consequence of the theorem 4.1.1, applied to the situation that X ′ =
D(Γs), D = Γs and π is the obvious morphism D(Γs) → CS, we have the
following Cartesian diagram

H 1(C,G)(R)
˙( )

−−−→ H 1
e (CR r Γs, Ġ)(R)

−|D(Γs)

y
y−|Ḋ(Γs)

H 1(D(Γs),Pν)(R) −−−→ H 1(Ḋ(Γs), G)(R).

of groupoids. Here H 1
e (CRrΓs, Ġ)(R) is the full subcategory of H 1(CRr

Γs,G|Ċ)(R) consisting of those G-torsors over CSrΓs that can be extended
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to a G-torsor over the whole relative curve CS. The above diagram induces
the following diagram of groupoids

H 1(C,G)(R)
˙( )

−−−→ H 1
e (CR r Γs, Ġ)(R)

(̂ )ν

y
y( )η

H 1(Fν , L
+Pν)(R) −−−→ H 1(Fν , LPη)(R),

see remark 4.1.10 for the morphisms in this diagram. We claim that this
diagram is cartesian. Note that by remark 2.2.1 and remark 4.1.9 we may
reduce to the case that R is noetherian. In this case one can easily check
that the functor

H
1(D(Γs),Pν)(R) → H

1(D̂(Γs), P̂ν)(R) ∼= H
1(Spec k, L+P)(R)

(resp. H 1(D(Γs),Pν)(R) → H 1(Fν , LG)(R)) is an equivalence of cate-
gories (resp. fully faithful) and thus we may conclude that the above dia-
gram is cartesian.

We may equivalently view the functor MLνi
as the functor mentioned

in remark 4.1.7.
Let T

ι
−→ S be an S-scheme and take an element

(
(L′νi), f̂i

)
i
of
∏

νi
MLνi

(T )

(in the sense of remark 4.1.7). Let us set G
0
:= (G0, τ0). Let (Ġ0, Ĝ, ϕ) be

the triple associated with the G-bundle G0, regarding the above cartesian
diagram for the section ν1. Now the triple (Ġ0,T ,L

′
ν1
, f̂−1ϕT ) defines a G-

bundle over CT which by construction inherits a Frobenius automorphism
τ1 over CT r Γs ×S T from ι∗G

0,T
. This defines a T -point of ∇H 1(C,G)ν̄

which we denote f̂ ∗1G0,T
. Iterating this procedure for i = 2 . . . n we obtain

a global G-shtuka f̂ ∗n ◦ · · · ◦ f̂
∗
1G0,T

in ∇H 1(C,G)ν̄(T ). This establishes the
desired 1-morphism.
When S = Spec k then the functor MLν

is represented by F̂ℓPν , see propo-
sition 4.1.8.
The étaleness of the morphism over its image is just another way of phras-
ing the rigidity of quasi-isogenies (proposition 3.1.3). Lets explain this more
explicitly. Let G be a T -valued point of ∇nH

1(C,G)ν̄ . Let T be a closed
subscheme of T defined by a locally nilpotent sheaf of ideals. Further as-

sume that G
T
= ˆ̄f ∗n ◦ · · · ◦

ˆ̄f ∗1G0,T
for the quasi-isogenies ˆ̄fi (as in the above)

defined over T . Now these quasi-isogenies lift to quasi-isogenies f̂i over
T by rigidity of quasi-isogenies. The T -valued point f̂ ∗n ◦ · · · ◦ f̂ ∗1G0,T

of

∇nH
1(C,G)ν̄ precisely lifts G

T
to T and thus is identical to G.
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It only remains to verify that Ψ is ind-proper. Since F̂ℓPνi
is of ind-finite

type, to test the ind-properness of Ψ we can use the valuative criterion of
properness, see [L-M, Theorem 7.3].
Let R be a strictly henselian valuation ring with fraction field L. Let G be

an R valued point of ∇nH
1(C,GL(V))ν̄ and set Γ̂(G) = (Lν)ν . Since R is

strictly henselian, for each local Pν-shtuka Lν we may take a trivialization
Lν

∼= ((L+P)R, b′νσ
∗) over R.

Consider an L-valued point x of
∏

νi
F̂ℓPνi

which maps to G
L
under the

morphism Ψ and represent it as tuple (((L+P)L, b′νσ
∗), gν)ν , where gν lie in

LG(L), see proposition 4.1.8.
We may take a faithful representation ρ : G → GL(V), where V is a vector
bundle over C of rank r, see proposition 4.1.3. Note that this proposition
ensures the existence of such representation only locally, but one can patch
the local data to obtain the representation globally on C by fppf -descent.
Let ρ∗G0

be the induced global GL(V)-shtuka over S. Note that we want
to show that there is a unique morphism α̃ which fits into the following

SpecL

��

x //
∏

νi
F̂ℓPνi

Ψ(G
0
)

��

//
∏

νi
F̂ℓGLn,νi

Ψ(ρ∗G0)

��
SpecR

α̃
55kkkkkkkk

α

22ddddddddddddddddddddddddddddddddddddddddddddd // ∇nH
1(C,G)ν̄ //// ∇nH

1(C,GL(V))ν̄ .

commutative diagram. Here SpecL → SpecR is the generic point and
the horizontal arrows in the right commutative diagram are induced by
the representation ρ, in addition the existence and uniqueness of the mor-
phism α follows from the fact that F̂ℓGLr,νi

is ind-proper over Spf Aνi and
that ∇nH

1(C,GL(V))ν̄ is ind-separated, see remark 4.1.4 and proposition
6.2.18. The R-valued point α is given by a tuple ((ρ∗(L

+P)R, ρ(b′ν)σ
∗) , g̃ν)ν ,

where g̃ν lies in LGLn(R), see proposition 4.1.5. Note that the element g̃ν
lies in fact in LG(R) (for this notice that LG is closed in LGLn and g̃ν
extends gν over R) and thus produces a lift of ((L+P, b′νσ

∗), gν)ν over R.
This gives the desired morphism α̃. Note that the commutativity of the
diagram

∏
νi
F̂ℓPνi

��
SpecR //

α̃
55kkkkkkkkkkkkkkkk

∇nH
1(C,G)ν̄
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follows from the separatedness of the stack ∇nH
1(C,G)ν̄ , see proposi-

tion 6.2.18.

Remark 4.1.13. One can observe that the image of Ψ(G
0
) lies inside the

quasi-isogeny locus of G
0
in ∇nH

1(C,G)ν̄ . Indeed, by the above construc-

tion, starting with an S-valued point x =
(
(L′νi), f̂i

)
i
of
∏

νi
MLνi

(S) there

is a unique quasi-isogeny ̺x : Ψ(x) = f̂ ∗n ◦ · · · ◦ f̂ ∗1G0
→ G

0,S
which is an

isomorphism outside the graphs of the νi with
(
Γ̂(Ψ(x)), Γ̂(̺x)

)
= x.

4.2 The Analogue of the Serre-Tate Theo-

rem

The Serre-Tate Theorem relates the deformation theory of an abelian variety
in characteristic p to the deformation theory of the associated p-divisible
group. In this section we introduce the analogous situation over function
fields and prove the analogous theorem relating the deformation theory of a
global G-shtuka to the deformation theory of the associated local Pν-shtukas
via the global-local functor.

Let S be in NilpFq [[ζ]] and i : S̄ → S be a closed subscheme defined by

a locally nilpotent sheaf of ideals. Let Ḡ be a global G-shtuka in Shtν
G
(S̄).

The category DefoS(Ḡ) of lifts of Ḡ to S consists of all pairs (G, α : i∗G →
Ḡ) where G belongs to Shtν

G
(S) and α is an isomorphism of global G-

shtukas over S̄, and morphisms are isomorphisms between the G’s that are
compatible with the α’s.

Similarly for a local P-shtuka ̂̄G in ŜhtP(S̄) we define the category of

lifts DefoS(
̂̄G) of ̂̄G to S.

Notice that according to the rigidity of quasi-isogenies all Hom-sets in these
categories contain at most one element.

Theorem 4.2.1. Let Ḡ := (Ḡ, τ̄) be a global G-shtuka in Shtν
G
(S̄). Let

(̂̄G
ν
) = Γ̂(Ḡ). Then the functor

DefoS(Ḡ) →
∏

ν

DefoS(
̂̄G
ν
)

induced by the global-local functor, is an equivalence of categories.
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Proof. We proceed by constructing the inverse of the above functor. It
suffices to treat the case where Iq = (0). In this case the morphism σ̂S
factors through i : S̄ → S

σ̂S = i ◦ σ′ : S → S̄ → S

.
Let (Ĝ

ν
, α̂ν : i∗Ĝ

ν
→ ̂̄G

ν
)ν be an object of

∏
ν DefoS(

̂̄G
ν
).

Consider the globalG-shtuka G̃ := σ′∗Ḡ over S. The morphisms τ̄ defines

an isogeny τ̄ : i∗G̃ → Ḡ which is an isomorphism outside the graphs of the
characteristic sections

σ̂∗Si
∗G̃ (σ̂2

S)
∗
Ḡ

σ̂∗
S τ̄−−−→ σ̂∗SḠy σ̂∗

S τ̄

y τ̄

y
i∗G̃ σ̂∗SḠ

τ̄
−−−→ Ḡ.

Composing ˆ̄τν
−1

with α̂ν we obtain ˆ̄γν := ˆ̄τν
−1

◦ α̂ν : i∗Ĝ
ν
→ i∗

̂̃
G
ν
. By

rigidity of quasi-isogenies (proposition 3.1.3), the resulting quasi-isogeny of

local Pν-shtukas lifts to a quasi-isogeny γ̂ν : Ĝ
ν
→
̂̃
G
ν
.

We put G := Ψ(G̃)
(
(Ĝ

ν
, γ̂ν)

)
(see theorem 4.1.12) and recall that there

is a quasi-isogeny γ : G → G̃ of global G-shtukas, see remark 4.1.13.
We may now define the functor

∏

ν

DefoS(
̂̄G
ν
) → Defo(Ḡ)

by sending
(
(Ĝ

ν
, α̂ : i∗Ĝ

ν
→ ̂̄G

ν
)
)
ν
to (G, τ̄ ◦ i∗γ). The quasi-isogeny α :=

τ̄ ◦ i∗γ is an isomorphism outside the graphs of the νi by remark 4.1.13 and
at these graphs by construction. It can be seen by the above construction
that these functors are actually inverse to each other.
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Chapter 5

Galois Representations and

Shtukas

5.1 The Tate Functor

Definition 5.1.1. Let V ectD (resp. V ectḊ) be the groupoid on Nilpk[[ζ]]

whose S-valued points is the category of locally free sheaves of OS[[z]]-
modules (resp. OS((z))-modules) of finite rank on S. Consider the natural
1-morphism V ectD → V ectḊ of groupoids. Let ShtD denote the groupoid

ker(pr1, σ̂ ◦ pr2 : V ectD ×V ect
Ḋ
V ectD ⇒ V ectD),

(see Def 2.2.7)where pri denotes the projections to the i-th factor.

We represent an object (σ∗M,M,ϕ) of the category ShtD(S) by the pair
(M,ϕ).

Definition 5.1.2. A quasi-isogeny (M,ϕ) → (M ′, ϕ′) is an isomorphism of
OS((z))-modules

f :M ⊗OS [[z]] OS((z)) ∼−→M ′ ⊗OS [[z]] OS((z))

with ϕ′σ∗(f) = fϕ. The category of local shtukas over S, ŜhtD(S), is the
category which has Ob(ShtD(S)) as its objects and quasi-isogenies as its
morphisms. Any object in this category is called a local shtuka over S.

Remark 5.1.3. Note that there is an equivalence of categories between
the category of local Gln-shtukas over S and the category of rank n local
shtukas over S, see section 4 of [H-V].

39
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In analogy with p-divisible groups and abelian varieties, one can also
assign a Galois representation to a given local or global shtuka. Let us ex-
plain this more explicitly.

Assume that S is connected. Let s̄ be a geometric point of S and let
π1(S, s̄) denote the algebraic fundamental group of S at s̄. We define the

Tate functor from the category of local shtukas ŜhtD(S) over S to the
category of Fq[[z]][π(S, s̄)]-modules ModFq [[z]][π(S,s̄)] as follows

T− : ShtD(S) → ModFq [[z]][π(S,s̄)],

M := (M, τ) 7→ TM := (M ⊗ κ(s̄))τ .

Here the superscript τ represents the τ -invariants.

Remark 5.1.4. Like in p-adic Hodge theory, the restriction of the above
functor to the category of étale local shtukas is in fact an equivalence of
categories, see [Kat, Prop 4.1.1] also [Ha2, Prop 1.3.7]. This can be thought
as a positive characteristic analogue of the Riemann-Hilbert correspondence.

Let V be a free k[[z]]-module of finite rank. A representation ρ : P →
Gl(V ) gives a functor

ρ∗ : H
1(Spec k, L+P) → V ectD

which sends an L+P-torsor L+ to the sheaf associated with the following
presheaf

Y 7−→
(
L+(Y )×

(
V ⊗k OS[[z]](Y )

))/
L+P

(
Y ) .

The functor ρ∗ : H 1(Spec k, L+P) → V ectD induces a morphism from

the category of local P-shtukas ŜhtP to the category ŜhtD of local shtukas.
We still use the same notation ρ∗ : ŜhtP → ŜhtD.
Let Funct⊗(Repk[[z]] P,ModFq [[z]][π(S,s̄)]) denote the category of tensor func-
tors from the category of representations of P in finite free k[[z]]-modules,
Repk[[z]] P, to ModFq [[z]][π(S,s̄)].
We proceed by defining, the Tate functor as the following tensor functor

T̂− : ŜhtP(S) → Funct⊗(Repk[[z]] P,ModFq [[z]][π(S,s̄)])

L 7→ TL : ρ 7→ Tρ∗L.
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5.2 The Level Structure

Fix a tuple ν = (ν1, . . . , νn) of places on C. Let the affine curve C ′ be the
complement in C of the characteristic places νi. Let G be a global G-shtuka
in Shtν

G
(S). For a finite subscheme D of C let G|D denote the pullback of

G to D × S.
Let Funct⊗(RepAν G,ModAν [π(S,s)]) denote the category of tensor functors
from the category RepAν G of finite dimentional representations of G over
the adelic ring Aν of C, to the category of Aν [π(S, s̄)]-modules ModAν [π(S,s̄)].
We define the Tate functor as follows

T− : ∇H
1(C,G)ν(S) → Funct⊗(RepAνG,ModAν [π1(S,s̄)])

G 7→ TG : ρ := (ρν) 7→ lim
←−

D⊂C′

(ρ∗G|D×s̄)
τ .

Remark 5.2.1. Note that there is an isomorphism

lim
←−

D⊂C′

(ρ∗G|D×s̄)
τ ≃

∏

ν∈C′

Tρν∗ Ĝν
,

see remark 3.2.4.

Recall that as a consequence of Tannakian theory, there is a duality be-
tween affine group schemes over arbitrary field and the neutral tannakian
categories. More precisely one may recover such groups from the associated
category of representations. In [Wed] T. Wedhorn establishes a general-
ization of the theory to the case where the base is a Prüfer ring (e.g. a
Dedekind ring).

Let ω◦Aν : RepAνG → ModAν denote the forgetful functor. Let us con-
sider the set of isomorphisms of tensor functors Isom⊗(TG, ω

◦
Aν ) (note that

this set is non-empty, see lemma 5.2.2 below). By the generalized tannakian
formalism and the definition of the Tate functor, this set admits a biaction
of G(Aν)× π1(S, s̄).

Lemma 5.2.2. Let P̂ be as in the definition 3.2.1. Then for any b ∈ P̂(k̄[[z]])
there exist some c ∈ P̂(k̄[[z]]) such that bσ∗c = c.

Proof. Let us view P̂ as the direct limit lim
−→
n

Pn, where Pn = P ⊗D Dn. Let

G̃n denote the linear algebraic group over k̄ given by the Weil restriction
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ResDn/ Spec k(Pn). The reduction of b mod zn gives an element bn ∈ G̃n(k̄).

By Lang’s theorem [Lan] there exist cn ∈ G̃n(k̄) such that bnσ̂
∗cn = cn,

where σ̂ ∈ Gal(k̄/k) is the Frobenius element. Now consider the reduction

map αn : G̃n+1(k̄) → G̃n(k̄). Consider the element d̄n := αn(cn+1)
−1cn

which satisfies σ̂∗d̄n = d̄n and hence lies in G̃n(k) = P(Dn+1). Since P is

smooth d̄n lifts to an element dn ∈ P(Dn+1) = G̃n+1(k). Replacing cn+1 by
cn+1dn we may assume that αn(cn+1) = cn and then take c := lim

←−
n

cn.

Definition 5.2.3. Let H ⊆ G(Aν) be a compact open subgoup. An H-level
structure on a global G-shtuka G over S is a π1(S, s̄)-invariant H-orbit in
Isom⊗(TG, ω

◦
Aν ).

Now we want to establish the notion of rational level structure H ⊆
G(AQ) on a global G-shtuka G in Shtν

G
(S).

A given quasi-isogeny ̺ : G → G ′ in Shtν
G
(S) induces a morphism

lim
←−

D⊂C′

(ρ∗G|D×s̄)
τ ⊗Aν Aν

Q → lim
←−

D⊂C′

(ρ∗G
′|D×s̄)

τ ⊗Aν Aν
Q,

thus the Tate functor we defined above extends to the following functor

V− : Shtν
G
(S) → Funct⊗(RepAν

Q
G,ModAν

Q[π1(S,s̄)])

G 7→ VG : ρ := (ρν) 7→ lim
←−

D⊂C′

(ρ∗G|D×s̄)
τ ⊗Aν Aν

Q.

Note that lim
←−

D⊂C′

(ρ∗G|D×s̄)
τ ⊗Aν Aν

Q ≃
∏

ν∈C′

Tρν∗ Ĝν
⊗Aν Aν

Q.

Let ω◦ : RepAν
Q
G → ModAν

Q
denote the forgetful functor. Let us consider

the set of isomorphisms of tensor functors Isom⊗(VG, ω
◦). Again by the

tannakian formalism and the definition of the Tate functor this set admits
a biaction of G(Aν

Q)× π1(S, s̄).
Now for a compact open subgroup H ⊆ G(Aν

Q) one can define an H-
level structure on a global G-shtuka G over S as a π1(S, s̄)-invariant H-
orbit in Isom⊗(VG, ω

◦). We denote by ∇H
n H 1(C,G) the category fibered in

groupoids who’s S-valued points are tuples (G, γ), consisting of a G-shtuka
G ∈ Ob(Shtν

G
) together with a rational level H-structure γ as its objects,

and has quasi-isogenies that are isomorphisms at characteristic places νi
and are compatible with the level H-structures as its morphisms.
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Remark 5.2.4. Let D denote a finite subscheme of C. Then one can define
a D-level structure on the objects of HeckeG,n(S). Namely, for an object
G := (G,G ′, ϕ) ∈ Ob(HeckeG,n(S)) we require that the G-bundles G and G ′

lie in H 1
D(C,G)(S) and in addition ϕ preserves the D-level structures on

them. This induces a D-level structure on the objects of the moduli stack
of global G-shtukas, we denote the corresponding stack by ∇nH

1
D(C,G)ν .

Note that a D-level structure on G can give rise to a level structure of the
above form which we denote by HD.

Theorem 5.2.5. There is an isomorphism

∇nH
1
D(C,G)ν→̃∇HD

n H
1(C,G)ν

of formal stacks.

Proof. Let (G, ψ) be an object in ∇nH
1
D(C,G)ν(S). For any representation

ρ in RepAν
Q
G the isomorphism ψ : G|D×S → G×C D×S induces an isomor-

phism ρ∗G|DS
→̃Gldim ρ(ODS

) and consequently we obtain a transformation
γ̄ : TG ⊗Aν OD → ω◦⊗Aν OD. Let γ be a lift of γ̄ to Aν . Then we define the
morphism

∇nH
1
D(C,G)ν(S)→̃∇HD

n H
1(C,G)ν(S) (5.2.1)

by sending (G, ψ) to (G, HDγQ).
Let us show that this functor is essentially surjective. Let (G, ψ,HDγQ) be

an object of the category ∇HD
n H 1(C,G)ν . Choose β : TG

∼
−→ ω◦Aν . Note

that this exist by lemma 5.2.2.

The automorphism γQβ
−1
Q ∈ Aut⊗(ω◦Q) corresponds to an element g ∈

G(Aν
Q). Write g := (gx1 , . . . , gxr , g

x) ∈ G(Qx1) × · · · × G(Qxr) × G(Aν,x)
and set g′ = g(1, . . . , 1, gx)−1 = (gx1 , . . . , gxr , 1) and β

′ = (1, . . . , 1, gx) · β ∈
G(Aν).

Now since the local Pxi
-shtuka Ĝ

xi
is étale, the automorphism δi :=

(β′Q)
−1g−1xi

β′Q ∈ Aut⊗(VG) gives a quasi-isogeny δi : Ĝ
x1

→ Ĝ
x1
. Let us

explain this more precisely. Consider the following functor

M̂− : H
1(Spec k, L+P)(S) → Funct⊗(Repk[[z]]P,ModOS [[z]]),

which sends L+ to the functor which sends the representation ρ to the
OS[[z]]-module ρ∗L+.

Assume that Ĝ = (L+, ϕ̂) is an étale local P-shtuka. An automorphism α of
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VĜ induces an automorphism of M̂Ĝ ⊗OS [[z]] OS[[z]][1/z]. Take a trivializing

étale cover S ′ → S. Then we have

Aut⊗(M̂L+S′ ) = Aut⊗(ω◦)(OS′[[z]][1/z]) = LPη(S
′).

Hence the automorphism α gives an isomorphism hS′ : LPη,S′ → LPη,S′ .
The morphism hS′ inherits the descent data coming from the fact that
α is defined over S, and hence it defines an isomorphism h : L → L,
where L denotes the associated LPη-torsor. One can check that h satisfies
σ̂∗h = ϕ̂−1 ◦ h ◦ ϕ̂ and gives the claimed quasi-isogeny.
Let G ′ = δ∗G, where δ := δr ◦ · · · ◦ δ1, then

V(δ) = (β′Q)
−1(g′)−1β′Q.

Consider the pair (G ′, HDβ
′
Q) consisting of the global G-shtuka G ′ =

(G ′, τ ′) together with the level structure β′ : TG′ → ω◦ defined over Aν .
Note that this is quasi-isogenous to (G, HDγQ) under δ.
We now want to show that (G ′, HDβ

′
Q) = ((G ′, ϕ′), HDβ

′
Q) actually comes

from a pair (G ′, ψD) in ∇nH
1
D(C,G)ν .

Consider the following functor

M− : H
1(C,G)(S) → Funct⊗(RepAνG,ModAν⊗FqOS

).

The HD orbit of β′ in Funct⊗(RepAνG,ModAν [π1(S,s̄)]) induces a well
defined isomorphism

(
MG′ ⊗OCS

OD×s̄

)τ ′
→ ω◦ ⊗Aν ODS

.

Tensoring up with OS and observing
(
MG′ ⊗OCS

OD×s̄

)τ ′
⊗OD

ODS
∼= MG′DS

we get an isomorphism MG′DS
→̃ω◦ ⊗Aν ODS

of tensor functors. Now we

claim that this trivialization induces a trivialization ψD : G ′DS
→̃G ×C DS

of the torsor G ′DS
. Note that since the trivialization of the functor MG′DS

is

compatible with the Frobenius automorphism τ̄ ′, i.e. the following diagram

σ∗MG′DS

σ∗(β̄′⊗idS)
−−−−−−→ ω◦ ⊗Aν ODS

Mτ ′

y
yid⊗id

MG′DS

β̄′⊗idS−−−−→ ω◦ ⊗Aν ODS

commutes, we may argue that the trivialization MG′DS
→̃ω◦ ⊗Aν ODS

of the

functor MG′DS
even induces a level structure ψD : (G ′

DS
, τ̄ ′)→̃(G⊗C DS, id).
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So it remains to verify the above claim. To see this take a trivialization
ϕ′ : G ′DS′

→̃G ×C DS′ over an étale covering S ′ → S. By the Tannakian
formalism we obtain an element ψ′ ∈ G(DS′) corresponding to the following
automorphism

ω◦ ⊗ODS′ = MG×CDS′

ϕ′−1

−−→ MG′DS′

β̄′

−→ ω◦ ⊗ODS′ .

of the tensor functor ω◦⊗Aν ODS′ . Then since MG′DS
→̃ω◦⊗Aν ODS

is defined

over S, the morphism ψ′ : G ×C DS′ → G ×C DS′ carries the descent data
and therefore it descends to an isomorphism ψD : G ′DS

→ G ×C DS. This
gives the desired level structure (G ′

DS
, τ̄ ′)→̃(G⊗C DS, id).

Analyzing this construction further also shows that the functor (5.2.1)
is fully faithful. This proves the theorem.

Proposition 5.2.6. Let G be a parahoric Bruhat-Tits group scheme over
C. Let H̃,H ⊆ G(Aν) be compact open subgroups and assume that H̃ is

a normal subgroup of H. Then the stack ∇H̃
n H 1(C,G) is an H/H̃-torsor

over ∇H
n H 1(C,G) under the projection map.

Proof. One can easily check that the morphism

∇H̃
n H

1(C,G)×H/H̃ → ∇H̃
n H

1(C,G)×∇H
n H 1(C,G) ∇

H̃
n H

1(C,G)

(G, H̃δ)× gH̃ 7→ (G, H̃δ)× (G, H̃g−1δ)

is an isomorphism of algebraic stacks. The inverse morphism is given by
sending (G, H̃δ)× (G, H̃ε) to (G, H̃δ)× δε−1H̃.
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Chapter 6

The Rapoport-Zink Space for

Local P-Shtukas

Rapoport and Zink construct a moduli space for p-divisible groups together
with a quasi-isogeny to a fixed one (together with some extra structure
such as a polarization, endomorphisms, or a level structure). They investi-
gate that this moduli space is pro-representable by a formal scheme locally
formally of finite type over Zp.

Previously, in the analogy between mixed and equicharacteristics, we
mentioned a sort of resemblance between p-divisible groups and local P-
shtukas. It turns out that this analogy is not perfect, unless we restrict to
the “bounded” local P-shtukas as the analogous objects corresponding to p-
divisible groups, for example see 6.3.4. The boundedness condition controls
the relative position of two loop torsors (resp. G-bundles).

Taking bounded local P-shtukas into account, as the right analogs of
p-divisible groups, one may naturally seek that the analogous phenomenon,
as what we mentioned above for the Rapoport-Zink space for p-divisible
groups, also occurs for them. When P is constant, i.e. P := G0 × D where
G0 is a reductive group over Fq, it turns out to be the case. This has been
proven by Hartl and Viehmann, see [H-V]. Following their approach (af-
ter giving an axiomatic definition of boundedness condition), we generalize
their result to the non-constant case, i.e. for a parahoric (Bruhat-Tits)
group P over D.

Let us briefly go through the content of this chapter. We first recall
some functorial properties of Bruhat-Tits buildings. Then we state a result
of Rapoport and Zink (see 6.1.3) which in some sense illustrates the uniform
distribution of rational points on the moduli of local P-shtukas. Then we

47
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discuss the notion of bounds on the quasi-isogenies for both local P-shtukas
and global G-shtukas.
Finally we prove that the Rapoport-Zink space for bounded local P-shtukas
is representable by a formal scheme locally formally of finite type, see the-
orem 6.3.1.

6.1 Some discussion about Bruhat-Tits build-

ing

Let G be a reductive group over F , for a complete discretely valued field
F with perfect residue field. Let B(G) denote the Bruhat-Tits building
associated to G, recall that this is a complete metric space with respect to
the metric dB. The Bruhat-Tits buildings enjoy certain functorial properties

– Functoriality with respect to field extensions, the following easy facts
follow from the construction of the Bruhat-Tits building

1) For unramified extension L/F we have a natural metric embed-
ding B(GF ) →֒ B(GL) of associated Bruhat-Tits buildings, see
[BT1, 9.1.19].

2) L/F be a finite Galois extension, then G(L)×Gal(L/F ) acts on
B(GL), see [BT1, 9.1.19].

3) By the Bruhat-Tits fixed point theorem, one may realise B(G,F )
as the set of fixed points of B(G,L) under the relative Frobenius
automorphism σ̃ ∈ Gal(L/F ).

– Functoriality of buildings with respect to group homomorphisms, this
has been worked out by Landvogt, see [La1]. Landvogt proved that
a given injective morphism G → G′ of connected reductive groups
over K gives rise to a set of G(k)-equivariant and isometric maps
f ∗ : B(G) → B(G′). These maps send the apartment associated to a
maximal split torus S of G to the apartment associated to a maximal
split torus of G′ containing the image of S. This may, in particular,
apply to a faithful representation ρ : G → Gln. This enables us to
view B(G) as a metric subspace of B(Gln). For the details and proofs
we refer the reader to [La2].



6.1. SOME DISCUSSION ABOUT BRUHAT-TITS BUILDING 49

Set F := k((z)) and L := k̄((z)). Let σ̃ ∈ Gal(L/F ) be the relative
Frobenius automorphism. Let G be a connected reductive algebraic group
over F (later we assume that G is the generic fiber Pη of the parahoric group
scheme P over D).
To an element b ∈ G(L) Kottwitz associates a slope homomorphism

νb : DL → GL,

called Newton polygon of b, see [Ko1, 4.2]. Here D is the diagonalizable pro-
algebraic group over L with character group Q. The slope homomorphism
is characterized by assigning the slope filtration of (V ⊗F L, ρ(b).(id⊗ σ̃)) to
any F -rational representation (V, ρ) of G, see [Ko1, Section 3]. We assume
that b ∈ G(L) satisfies a decency equation, i.e. the following identity

(bσ̃)s = sνb(z).σ̃
s,

in G(L)⋉ 〈σ̃〉 for some sufficiently large integer s > 0.

Remark 6.1.1. Note that any σ̃-conjugacy class in G(L) contains an ele-
ment satisfying a decency equation, see [Ko1, Section 4].

Remark 6.1.2. To the element b ∈ G(L) one can associate a connected
algebraic group Jb which is defined by its functor of points that assigns to
an F -algebra R

Jb(R) :=
{
g ∈ G(R⊗F L); g

−1bσ̃(g) = b
}
.

Let Fs be the fixed field of σ̃s in L. Then νb is defined over Fs and JFs

is the centralizer of the 1-parameter subgroup sνb of G and hence a Levi
subgroup of GFs , see [RZ, Corollary 1.9]. Thus there is a canonical Jb(L)⋊
〈σ̃s〉-equivariant isometric embedding B(J, L) → B(G,L) by functoriality
of buildings with respect to group homomorphisms.
By the theorem of Bruhat and Tits we have

B(J, L) −−−→ B(G,L)x
x

B(J, L)〈σ̃
s〉 −−−→ B(G,L)〈σ̃

s〉

∥∥∥
∥∥∥

B(J, Fs) −−−→ B(G,Fs).



50CHAPTER 6. THE RAPOPORT-ZINK SPACE FOR LOCAL P-SHTUKAS

For a given integer r we let Br(x) denote the open ball of radius r centred
at x ∈ B(G,L).

As we will see in section 6.3, the following theorem of Rapoport and
Zink is one of the key ingredients for the proof of the representably of
the Rapoport-Zink functor for local P-shtukas by a formal scheme locally
formally of finite type.

Theorem 6.1.3. (Rapoport-Zink) Let b be an element of G(L) which sat-
isfies a decency equation relative to s > 0. Then for any positive integer r
we have the following inclusion

{
x ∈ B(G,L); d(x, bσ̃(x)) < r

}
⊆

⋃

x0∈B(J,Fs)

Bc(x0).

for some integer c≫ 0.

Proof. See [RZ2, theorem 1.4].

Remark 6.1.4. Note that the metric dB on the Bruhat-Tits building of
G induces a metric on the k-valued points of F̂ℓP, which we denote by d.
Recall that by proposition 4.1.8, F̂ℓP can be viewed as a parameter space
for local P-shtukas together with a quasi isogeny to a fixed one. For two
such pairs x = (L, δ) and x′ = (L′, δ

′
) over k, let d(x, x′) denote the distance

between corresponding points of the affine flag variety FℓP(k).

6.2 The boundedness conditions

In this section we first recall the notion of bounds on the isomorphisms of
LG-torsors, introduced in [H-V], where G is a split reductive group over Fq.
Then we give an axiomatic definition of the boundedness condition for non-
constant case, namely for P-shtukas. Consequently we introduce bounds on
the moduli of local P−shtukas and global G−shtukas.

6.2.1 Bounds on the modui of local objects

Let G be a constant reductive group over D, i.e. G = G0 ×Fq D where G0 is

a split reductive group over Fq. Set G := G×D Ḋ.
Fix a borel subgroup B ⊂ G0. Let B ⊂ G0 be the Borel subgroup opposite
to our fixed B. For a dominant weight λ of G0 we let

V (λ) :=
(
IndG0

B
(−λ)dom

)∨
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be the Weyl module of G0 with highest weight λ. It is a cyclic G0-module
generated by a B-stable line on which B acts through λ. Any other such G0-
module is a quotient of V (λ), see for example [Ja, II.2.13]. For a L+G-torsor
L+ on a scheme S we denote by (L+)λ the fpqc-sheaf of OS[[z]]-modules on
S associated with the presheaf

Y 7−→
(
L+(Y )×

(
V (λ)⊗Fq OS[[z]](Y )

))/
L+G(Y ) .

This means in particular that if S ′ → S is an étale covering trivializing
L+ and if α : L+S′

∼−→ L+GS′ is an isomorphism of L+G-torsors with
p∗2α ◦ (p∗1α)

−1 = g ∈ L+G(S ′′) on S ′′ = S ′×S S
′ (with pi the projection onto

the i-th factor) then

(L+)λ(Y ) ∼=
{
v′ ∈ V (λ)⊗FqOS[[z]](Y ×SS

′) : p∗2v
′ = g ·p∗1v

′ on Y ×SS
′′
}
.

Note that the sheaf (L+)λ is locally free in the Zariski-topology on S.
Furthermore, if L+ and L′+ are L+G-torsors on S and δ : L ∼−→ L′ is an

isomorphism of the associated LG-torsors then δ induces an isomorphism
of sheaves of OS((z))-modules

δ : (L+)λ ⊗OS [[z]] OS((z)) ∼−→ (L′+)λ ⊗OS [[z]] OS((z)) .

Definition 6.2.1. Let S be a connected scheme in NilpFq [[ζ]] and let µ be a
dominant coweight of G0. Let either z̃ = z − ζ or z̃ = z.

(a) Let L+ and L′+ be L+G-torsors on S and let δ : L ∼−→ L′ be an isomor-
phism of the associated LG-torsors. The isomorphism δ is bounded by
(µ, z̃) if for each dominant weight λ of G0

δ((L+)λ) ⊂ z̃ −〈 (−λ)dom,µ〉 (L′+)λ ⊂ (L′+)λ ⊗OS [[z]] OS((z))(6.2.1)

[µ] = [µδ(s)] in π1(G0) for all s ∈ S. (6.2.2)

(b) A local G−shtuka (L+, ϕ) over S is bounded by µ if the isomorphism

ϕ : σ∗L ∼−→ L

is bounded by (µ, z − ζ).

Proposition 6.2.2. Let G be as above. Let L+ and L′+ be L+G-torsors on
S for a connected scheme S ∈ NilpFq [[ζ]]. Let either z̃ = z − ζ or z̃ = z and

let δ : L ∼−→ L′ be an isomorphism of the associated LG-torsors. Let µ be a
dominant coweight of G0 satisfying (6.2.2).
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(a) Then the condition that δ is bounded by (µ, z̃) is representable by a
finitely presented closed immersion into S.

(b) If S is reduced then δ is bounded by (µ, z̃) if and only if this holds for
the pullback to every geometric point of S. By (a) it is even enough
to consider the pullback to the generic points of S.

Proof. cf. [H-V, Lemma 3.10].

Proposition 6.2.3. Let G be as above. Let L = (L+, ϕ) and L′ = (L′+, ϕ
′)

be two bounded local G-shtukas over a quasi-compact scheme S ∈ NilpFq [[ζ]]

and let i : S →֒ S be a closed immersion defined by a sheaf of ideals I which
is locally nilpotent. Then a quasi-isogeny f̄ : LS̄ → L′S̄ is bounded by (µ, z)
for some µ if and only if its lift over S (see proposition 3.1.3 ) is bounded
by (µ̃, z) for some µ̃.

Proof. cf. [H-V, Proposition 3.9].

Now we want to consider the general case. Suppose that G is a reductive
group over Ḋ.
Let us begin by recalling some facts about affine Weyl groups (cf. [H-R]).
Let S be a maximal split torus in G and let T be its centralizer. Since k
is algebraically closed, G is quasi-split and so T is a maximal torus in G.
Let N = N(T ) be the normalizer of T . Consider the following short exact
sequence

0 → T (L)1 → T (L)
κT−−−→ X∗(T )I → 0,

where T (L)1 denotes the kernel of the Kottwitz homomorphism κT , see
[Ko2, Section 7]. It turns out that T (L)1 equals T 0(D) where T 0 is the
identity component of the Néron model of T .

The Iwahori-Weyl group associated to S is the quotient group W̃ =
N(L)/T 0(D). The Iwahori-Weyl group W̃ is an extension of the relative
Weyl group W0 = N(L)/T (L) by X∗(T )I :

0 → X∗(T )I → W̃ → W0 → 1. (6.2.3)

Note that the group W̃ is endowed with the structure of a quasi Coxeter-
system, which may thus be equipped with a Bruhat-Chevalley (partial)
order � and a length function ℓ.
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Proposition 6.2.4. Let I be the Iwahori subgroup of G(L) associated to
an alcove contained in the apartment associated to the maximal split torus
S. Then we have the Cartan decomposition for the loop group

LG(k̄) = I(k̄).N(L).I(k̄)

and the map I.n.I 7→ n ∈ W̃ induces a bijection

I\G(K)/I→̃W̃ .

If P and Q are two parahoric subgroups of G(L) then we have a bijection

Q\G(L)/P→̃W̃Q\W̃/W̃ P

where W̃ P := (N(L) ∩ P )/T (L)1.

Proof. Cf. [H-R, Prop 8].

Let K be a maximal parahoric subgroup of G(L). The subgroup W̃K

projects isomorphically to the factor group W0, and the exact sequence
presents W̃ as a semi-direct product

W̃ = X∗(T )I ⋊W0.

The Schubert variety S(ω) associated to ω ∈ W̃ P\W̃/W̃ P is the ind-
scheme theoretic closure of the L+P-orbit of ω in FℓP. It is a projective
variety over k. For further details see [PR1] and [Ri].

Proposition 6.2.5. Assume that the group G is absolutely simple, simply
connected and splits over a tamely ramified extension of L, then the ind-
scheme F̃ := lim

−→
(S(ω)) (the direct limit is taken with respect to the Bruhat

order on W̃ ), coincides with the ind-scheme FℓP.

Proof. cf. [PR1, Proposition 9.8].

Definition 6.2.6. A closed ind-subscheme Ẑ of F̂ℓP which is stable under
the left L+P-action, such that Z := Ẑ ×Spf k[[ζ]] Spec k is a quasi-compact
subscheme of FℓP is called a bound.

Let L+ and L′+ be L+P-torsors on S ∈ N ilpk[[ζ]] and let δ : L ∼−→ L′ be
an isomorphism of the associated LPη-torsors. We say that δ is bounded

by Ẑ if for any trivialization S ′ → S of L+ and L′+ the induced morphism

S ′ → LPη → F̂ℓP factors through Ẑ. When Ẑ = S(ω) ×k Spf k[[ζ]] for

a Schubert variety S(ω) (with ω ∈ W̃ ) we say that δ is bounded by ω.
Furthermore we say that a local P-shtuka (L+, ϕ) is bounded by Ẑ if the
isomorphism ϕ is bounded by Ẑ.
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The closedness of the above boundedness condition is almost tautological
(compare proposition 6.2.2).
The following crucial observation enables one to pull back bounds regarding
certain embeddings of the group P1 into P2, see also proposition 4.1.3.

Proposition 6.2.7. Let P1 ⊆ P2 be a closed embedding of smooth group
schemes of finite type over D such that P1\P2 is quasi-affine. Assume that
LP2,η → FℓP2 admits sections locally in the Zariski topology. Then FℓP1 →
FℓP2 is a locally closed embedding, and LP1,η → FℓP1 admits sections locally
in the étale topology. In addition, if P1\P2 is affine, then FℓP1 → FℓP2 is a
closed embedding.

Proof. cf. [BD, Section 4.5].

Example 6.2.8. Assume that charFq 6= 2. Set K := Fq((z)). Let E :=
K(y) be a quadratic field extension, say y2 = z. Let T be the one dimen-
sional torus ker(NE/K : ResE/KGm → Gm). Explicitly T = SpecK[a, b]/(a2−
b2z − 1), with the multiplication (a, b) ∗ (c, d) = (ac + bdz, ad + bc). Send-
ing a 7→ 1

2
(t + t−1) and b 7→ 1

2y
(t−1 − t) defines an isomorphism Gm,E =

SpecE[t, t−1] ∼= TE which we will use in the sequel to identify X∗(TE) with
Z. The inertia group I = Gal(E/K) = {1, γ} acts on X∗(T ) = Z via
γ(λ) = −λ and hence X∗(T )I = Z/2Z.

With each element of X∗(T )I the inverse of the Kottwitz map associates
a σ̂-conjugacy class in LT (Fsep

q ). For example for µ̄ = 1 ∈ X∗(T )I = Z/2Z
one has to choose a lift µ ∈ X∗(TE). If we choose µ = 1 then with µ̄ = 1 it
associates

NE/K(µ(y)) = µ(y) · γ(µ(y))

=
(1
2
(y + y−1),

1

2y
(y−1 − y)

)
·
(1
2
(−y − y−1),

1

−2y
(−y−1 − (−y))

)

= (−1, 0) ∈ T (Fsep
q ((z))).

This is independent of the choice of µ and of the uniformizer y (and of E).
Consider the Néron-model T = ker(NOE/OK

: ResOE/OK
Gm → Gm), as

a scheme it is isomorphic to Spec
Fq[[z]][a, b]

a2 − b2z − 1
. Its special fiber has two

connected components distinguished by a ≡ 1 or −1 (mod z). Therefore
the connected component of identity of T is T 0 := SpecFq[[z]][a

′, b]/(2a′ +
z(a′)2 − b2), where a = 1 + za′. In particular (−1, 0) /∈ T 0

(
Fq((z))

)
.

Now consider the local L+T 0-shtuka
(
(L+T 0)Fq , (−1, 0)

)
over Fq which

is bounded by 1 ∈ W̃ = X∗(T )I . We want to lift it to a local L+T 0-shtuka
over Fq[[ζ]][η]/(η

2 − ζ)
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Consider the isomorphism K = Fq((z)) → Fq((ζ)), z 7→ ζ. Fix an
embedding i : E →֒ Fq((ζ))

alg and let µ = 1 ∈ Z = X∗(TE). Set η := i(y)
and lift NE/K(µ(y)) to g(E, µ, i) := NE/K(µ(y − i(y))). We compute

(α, β) := µ(y − η).γ(µ(y − η)) =
(

1
2
((y − η) + (y − η)−1) , 1

2y
((y − η)−1 − (y − η))

)

·γ

(
1

2

(
(y − η) + (y − η)−1

)
,
1

2y

(
(y − η)−1 − (y − η)

))
,

then

α = 1
4
((y − η) + (y − η)−1) ((−y − η) + (−y − η)−1)

−1
4
((y − η)−1 − (y − η)) ((−y − η)−1 − (−y − η))

= 1
2

(
(y − η)2 + (−y − η)2

(−y − η)(y − η)

)

= ζ+z
ζ−z

,

and
β = −1

4y
((y − η) + (y − η)−1) ((−y − η)−1 − (−y − η))

+ 1
4y
((y − η)−1 − (y − η)) ((−y − η) + (−y − η)−1)

= 2η
ζ−z

.

Thus we get

g(E, i) := g(E, 1, i) = NE/K(µ(y − η)) =

(
ζ + z

ζ − z
,

2η

ζ − z

)
.

This shows that we can lift the local shtuka to a local shtuka over Fq[[η]].
However the lift depends on the choice of µ and of the embedding i.

We first compute how g(E, i) := NE/K(µ(y− i(y))) depends on the cho-

sen embedding i and compute
NE/K(µ(y − i(y)))

NE/K(µ(y − i ◦ γ(y))
. Changing i replaces

η by −η and we have

g(E, i ◦ γ) = NE/K(µ(y − γ(η)) =

(
ζ + z

ζ − z
,
−2η

ζ − z

)
.

Note that g(E, i) = g(E, i ◦ γ)−1. Hence
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g(E, i)

g(E, i ◦ γ)
= g(E, i)2 =

(
(z + ζ)2 + 4ζz

(ζ − z)2
,
4η(z + ζ)

(ζ − z)2

)
.

This also shows that what happens if we replace µ ∈ X∗(TE) = Z by another
lift of µ̄ ∈ Z/2Z, i.e.

g(E, µ+ 2, i)

g(E, µ, i)
= g(E, 2, i) = g(E, 1, i)2.

Observe that g(E,i)
g(E,i◦γ)

∈ T 0(Fq[[z,
η
z
]]) r T 0(Fq[[η, z]]). So g(E, γ ◦ i) does

not lie in the closure of the subscheme L+T 0g(E, i)L+T 0 ⊂ LT 0 ×SpecFq

Spf Fq[[η]].

6.2.2 Bounds on the moduli of global objects

The following theorem and lemma generalize [Beh, theorem 4.4.1].

Theorem 6.2.9. Let X be a projective scheme over the field k. Let V be
a vector bundle over X and G →֒ Gl(V) a closed subgroup with quasi-affine
quotient Gl(V)/G. Then the natural morphism of k-stacks

ρ∗ : H
1(X,G) → H

1(X,Gl(V))

is representable, quasi-affine and of finite presentation.

Proof. Let pS : XS → S be the projection map and view this as a morphism
Et(XS) → Et(S) of big étale sites. For any scheme Y over XS let pS∗(Y )
denote the sheaf which sends a scheme T to HomXS

(XT , Y ). Let G be
a GL(V)-bundle in H 1(X,GL(V))(S). We have the following 2-cartesian
diagram of stacks

pS∗ (G/GS) −−−→ Sy G

y
H 1(X,G) −−−→ H 1(X,GL(V)).

(Note that this follows from a more general fact that for a given monomor-

phism G1 → G2 of group schemes over a base scheme X̃, the category of
reductions of a G2-bundle G̃ to G1 (which is indeed a set, since G1 → G2 is

is mono) equals the set of global sections of G̃/G1, see [Beh, Prop. 4.2.3].)
Let Guniv be the universal GL(V)-bundle over X × H 1(X,GL(V)). By

the assumption Guniv/G is quasi-affine over H 1(X,G). Thus the theorem
follows from the lemma below.
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Lemma 6.2.10. Let X be a projective scheme over the field k. Let p denote
the structure morphism p : X → Spec k. Let S be a k-scheme and X̃ → XS

a quasi-affine XS-scheme of finite presentation. Then pS∗X̃ is a quasi-affine
S-scheme of finite presentation.

Remark 6.2.11. In [Beh, Prop 4.4.1 and 4.4.4], K. Behrend considers the
case that X̃ → XS is affine and then proves that pS∗X̃ is an affine S-scheme
of finite presentation. We prove bellow that the above lemma reduces to
the case studied by K. Behrend.

Proof. Let i : X̃ → Y be an open immersion of X̃ into an affine XS-scheme
Y . Set A := p∗Y . Consider the universal morphism XA → Y corresponding
to the id ∈ A(A). Let Z →֒ XA be the complement of XA ×Y X̃ in XA.
By properness of X, Z maps to a closed subscheme of A. Let U denote the
complement of p(Z) in A. We claim that U represents p∗X̃. To see this
first observe that the open immersion XU →֒ XA ×Y X̃ gives a morphism
XU → X̃ which induces a U−point in p∗X̃(U). Hence it is enough to check
that for any scheme T we have the inclusion p∗(X̃)(T ) ⊆ U(T ). Any point
of p∗X̃(T ) is a morphism XT → X̃, composing with i : X̃ → Y induces a T
valued point α of A. We have to show that α : T → A factors through the
open subscheme U . One can easily check this in the level of the topological
spaces. Namely, if T ×A p(Z) is non-empty then so is XT ×XA

Z, which is
a contradiction, since Z is defined as the complement of XA ×Y X̃ in XA.
Thus the proof of the theorem reduces to the case that X̃ is affine over XS.
This then follows from remark 6.2.11.

Theorem 6.2.12. The stack H 1(C,G) is a smooth algebraic k-stack, which
is locally of finite type.

Proof. This is well-known for G = Gln. Thus H 1(X,G) is locally of finite
type by 4.1.3 and 6.2.9. The smoothness follows from the vanishing of the
second cohomology of coherent sheaves on a curve.

Remark 6.2.13. Consider the following functor

S 7−→
{
(G, s1 . . . , sn, ϕ);G is a G-bundle over CS, si ∈ C(S)

ϕ : G|CSr∪iΓsi
→ G×C CS r ∪iΓsi is a trivializaition

}
.

This functor is representable by an ind-scheme GrG,n over C
n locally of finite

type, see [Ga]. The ind-scheme GrG,n is called global affine grassmannian.
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Remark 6.2.14. In order to obtain an algebraic substack (of finite type) of
HeckeG one has to control the relative position of ϕ : G→̃G ′ in the moduli
stack HeckeG. Here we recall the boundedness condition introduced in
[Var], when the group G is constant, i.e. it comes from a split connected
reductive group G0 over Fq by base change. For a dominant weight λ of
G0, consider the representation ρλ : G0 → Gl(Vλ), where Vλ denote the
Weyl module of G0 with the highest weight λ. This representation induces
a 1-morphsim ρλ∗ : H 1(C,G) → H 1(C,Gl(Vλ)). For a G-bundle G we
let Gλ denote the vector bundle associated to the Gl(Vλ)-bundle ρλ∗G. Let
ϕ : G|CSr

⋃
Γsi

→ G ′|CSr
⋃

Γsi
be an isomorphism between G-torsors over CS

outside (the graphs of) the characteristic sections. Then ϕ is said to be
bounded by an n-tuple of dominant coweights ω = (ω1, . . . , ωn) of G0 if

i) ϕ(Gλ) ⊆ G ′λ
(∑

λ〈λ, ωi〉Γsi

)
for each dominant weight λ of G0;

ii) π0(Gs)− π0(G
′
s) =

∑
i[ωi] for each geometric point s ∈ S.

Let Heckeω
G,D,n denote the closed substack of HeckeG,D,n defined by impos-

ing the above conditions on the universal isomorphism ϕuniv on HeckeG,D,n.

Fix a faithful representation ρ : G → Gl(V0), for some vector bundle V0

of rank r, with quasi-affine quotient Gl(V0)/G (see proposition 4.1.3) and
consider the induced morphism

ρ∗ : H
1(C,G) → H

1(C,Gl(V0)) ≃ V ectrC

of stacks. Here V ectrC is the stack whose S-valued points parametrizes rank
r vector bundles over CS = C ×k S.

Let ω := (ωi) be an n-tuple of dominant coweights of Gln. Consider the
relative affine grassmanninan GrG,n over Cn×H 1(C,G) which parametrizes
tuples (G,V ′, s1, . . . sn, ϕ), where

(G,V ′, s1, . . . sn) ∈ H
1(C,G)× H

1(C,Gl(V0))× Cn

and ϕ is an isomorphism between the vector bundle associated to ρ∗G
and V ′ outside the graphs ∪iΓsi . Note that the morphism ρ∗ yields a mor-
phism HeckeG,n → GrG,n, which sends (G,G ′, (si)i) to (G, ρ∗G

′, (si)i).
Now let Grω

G,n denote the substack of GrG,n defined by the condition that
the universal isomorphism ϕuniv is bounded by ω.

Remark 6.2.15. Note that the relative affine Grassmannian Grω
G,n is pro-

jective over H 1(C,G). To see this (since C is projective) we may look at
the fiber of Grω

G,n → H 1(C,G)×Fq C
n over (G, s1, . . . , sn) ∈ H 1(C,G)×Fq

Cn(S), and further notice that bounding ϕ by ω is equivalent to bounding
ϕ−1 by (−ω)dom which is representable by a projective variety.
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The stack Heckeω
G,n is defined by the following pull-back diagram

Heckeω
G,n −−−→ Grω

G,ny
y

HeckeG,n −−−→ GrG,n.

Proposition 6.2.16. Let ρ : G → Gl(V0) be a faithful representation
as above with quasi-affine (resp. affine) quotient Gl(V0)/G. The stack
HeckeG is represented by a locally closed (resp. closed) substack of GrG,n.
In particular the stack Heckeω

G,D,n is quasi-projective (resp. projective) over
H 1(C,G).

Proof. The restriction of the triple (Guniv,V
′
univ, ϕuniv) to U , the complement

of the graphs Γsi in C×GrG, defines a section s ∈ (Guniv/G) (U), see theorem
6.2.9. Then since Guniv/G is quasi-affine over C×GrG, thus by the following
lemma, there exists a locally closed substack H of GrG such that s extends
over H × C and by definition this substack represents HeckeG,n. Finally
the last statement of the proposition follows from the fact that Grω

G,n is
projective over H 1(C,G).

Lemma 6.2.17. Let Y be a quasi-affine scheme over X × S. Let U be the
complement of the graph of the section s ∈ X(S). Let t : U → Y be a
section. Then the question whether t extends to X×S → Y is representable
by a locally closed subscheme of S.

Proof. cf. [Ga, A.5].

We denote by ∇ω
nH 1

D(C,G) the pull back of Heckeω
G,D,n under the closed

immersion ∇nH
1(C,G) →֒ HeckeG,D,n. Similarly we define

∇H,ω
n H

1
D(C,G) := ∇H

n H
1(C,G)×∇H 1(C,G) ∇

ω
nH

1
D(C,G).

Proposition 6.2.18. Let D be a finite subscheme of C and let HD denote
the associated level structure, see remark 5.2.4. The stack ∇ω

nH 1
D(C,G)

is an Artin stack over (C r D)n locally of finite type. Furthermore, let
ν = (νi) be an n-tuple of places of C, for a compact open subgroup H ⊆
G(Aν

Q) the stack ∇
H,ω
n H 1(C,G)ν is a formal algebraic stack over

∏
i Spf Aνi

locally of finite type. In particular ∇nH
1
D(C,G) (resp. ∇H

n H 1(C,G)ν)
is an ind-algebraic stack ind-quasi-projective over Cn ×Fq H 1(C,G) (resp.∏

i Spf Aνi ×Fq H 1(C,G)).
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Proof. By Lang’s theorem the stack∇H 1(SuppD,GD) is isomorphic to the
classifying stack H 1(Fq,GD). Thus one obtains the following 2-cartesian
diagram

∇ω
nH 1

D(C,G) −−−→ SpecFqy
y

∇ω
nH 1(C,G) −−−→ H 1(Fq,GD).

We observe that∇ω
nH 1

D(C,G) → ∇ω
nH 1(C,G) is a principalGD bundle.

The stack ∇HD
n H 1(C,G) is a closed substack of HeckeG,D,n. Recall that

by proposition 6.2.16 the stack Heckeω
G,n is quasi projective over H 1(C,G).

Hence the statement follows from the corresponding fact about H 1(C,G).
For the second part of the theorem, first observe that conjugating the level
structure H with g ∈ G(Aν

Q) induces an isomorphism

∇H,ω
n H

1(C,G)ν→̃∇gHg−1,ω
n H

1(C,G)ν

and hence (after conjugating the level structure with a sutable g) we may
assume that H ⊆ G(Aν). Since H is open we may take a closed subscheme
D ⊆ C r {νi} such that

H ⊇ HD := ker(G(Aν) → G(OD)),

and thus reduce to the case that the level structure H is of the form HD,
where D is supported outside the places νi by proposition 5.2.6.

The last statement follows from remark 6.2.15 and proposition 6.2.16.

Remark 6.2.19. One can observe that H 1(C,G) admits a covering {Uα}α
by connected open substacks of finite presentation over k. This is well known
when G is a constant split reductive group over Fq. In this case the index
set is {(µ, c)} where µ runs over the cocharacters of G and c ∈ π1(G). To
see this for the general G one may use theorem 6.2.9.
For sufficiently small H = HD ⊆ G(Aν) the restriction ∇H

n H 1
α (C,G) of the

stack ∇H
n H 1(C,G) to Uα is a quotient of a quasi-projective scheme Xα,H,ω

over (C rD)n by a finite group GHD
, see [Var, Prop 2.16].

One can also bound the moduli stack of global G-shtukas by more in-
trinsic bounds, namely by those coming from local objects, i.e.
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Definition 6.2.20. Let Pν denote the completion of G at the place ν on
C. Fix an n-tuple ν = (νi) of places on the curve C. Let Ẑν := (Ẑνi)i be a

tuple of closed subschemes Ẑνi of F̂ℓPνi
subject to conditions a), b)and c) of

definition 6.2.6. Let G be a global G-shtuka in ∇nH
1(C,G)ν̄(S). We say

that G is bounded by Ẑν := (Ẑνi)i if for any i the associated local Pνi−shtuka

Ĝ
νi

is bounded by Ẑνi . We denote by ∇
Ẑν
n H 1(C,G)ν̄(S) the substack of

∇nH
1(C,G)ν̄(S) consisting of global G-shtukas bounded by Ẑν .

6.3 Representablity of The Rapoport-Zink

Functor

Let G denote the generic fiber of P and let b be an element of LG(k).

Let Ẑ ⊂ F̂ℓP be a bound, see definition 6.2.6, and set Z = Ẑ ×Spf Fq [[ζ]]

SpecFq. We define the associated affine Deligne-Lusztig variety

XZ(b) =
{
g ∈ Fℓ(k); g−1bσ∗g ∈ Z(k)

}
.

For ω ∈ W̃ we set Xω(b) := XS(ω)(b).

In the remaining part of the chapter we show the pro-representablity
of the Rapoport-Zink space for local P-shtukas. Let L0 be as before (see
proposition 4.1.8).

Consider the functor

MẐ
L0

: (Nilpk[[ζ]])
o → Sets

S 7−→
{
(L, δ̄);L ∈ Ob(ML0

(S)) is bounded by Ẑ and

δ̄ : LS̄ → L0,S̄ is a quasi-isogeny
}
/ ∼ .

Here (L, δ̄) and (L′, δ̄′) are called isomorphic if δ̄−1◦δ̄′ lifts to an isomorphism
L′ → L.

We prove that the above functor is pro-represtentable by a formal scheme
locally formally of finite type. Notice that by remark 6.1.1 one may assume
that b satisfies a decency equation for some s.
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Theorem 6.3.1. The functor MẐ
L0

: (Nilpk[[ζ]])
o → Sets is pro-representable

by a formal scheme over Spf k[[ζ]] which is locally formally of finite type. Its
underlying reduced subscheme equals XZ(b).

Recall that a formal scheme over k[[ζ]] in the sense of [EGA, Inew, 10] is
called locally formally of finite type if it is locally noetherian and adic and
its reduced subscheme is locally of finite type over k. It is called formally
of finite type if in addition it is quasi-compact.

Proof. Consider the universal local P-shtuka Luniv over F̂ℓP (see proposition

4.1.8). Let MẐ
L0

be the closed ind-subscheme of F̂ℓP over which Luniv is

bounded by Ẑ. By construction MẐ
L0

pro-represents the functor MẐ
L0
. It is

clear that the reduced ind-subscheme equals XZ(b).

By rigidity of quasi-isogeny the functor MẐ
L0

is equivalent to the follow-
ing functor

(Nilpk[[ζ]])
o → Sets

S 7−→
{
(L, δ̄);L ∈ Ob(ML0

(S))is bounded by Ẑ and

δ : L → L0S is a quasi-isogeny
}
/ ∼ .

We may take a representation ι : P → GLN,D, for some integer N , which
factors through H := SLN,D with quasi-affine quotient H/P, see proposition
4.1.3. The representation ι induces the following 1-morphism

H
1(ι) : H

1(S, LP) → H
1(S, LH).

Now let Mn be the closed ind-subschem of MẐ
L0

defined by the following

sub functor of MẐ
L0

Mn : (Nilpk[[ζ]])
o → Sets

S 7−→
{
(L, δ̄); (L, δ̄) is in MẐ

L0
(S) and

H
1(ι)(δ) is bounded by 2nρ∨

}
/ ∼ .

Where ρ∨ is the halfsum of all positive coroots of H. Note that here the
boundedness condition is the one defined in definition 6.2.1.
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Lemma 6.3.2. The ind-scheme Mn representing the above functor is a
ζ-adic noetherian formal closed subscheme of M over k[[ζ]].

Proof. Since H/P is quasi-affine, the induced morphism f : F̂ℓP → F̂ℓH is
a locally closed embedding by proposition 6.2.7.
The representation ι induces the following functor

ι∗ : ŜhtP → ŜhtH .

Let H0 := ι∗L0 and view F̂ℓH as a moduli space representing the functor
MH0

, parametrizing H-shtukas together with an isogeny δH to H0, see 4.1.8.

Let F̂ℓ
�n

P be the closed ind-subscheme of F̂ℓP defined by the Cartesian
diagram

F̂ℓ
�n

P −−−→ F̂ℓPy
yf

F̂ℓ
�n

H −−−→ F̂ℓH ,

here F̂ℓ
�n

P is defined by bounding δH by 2nρ∨. Note that F̂ℓ
�n

P is a ζ-
adic noetherian formal scheme over k[[ζ]]. Indeed since f is a locally closed
embedding thus

F̂ℓ
�n

P ×Spf k[[ζ]] k[[ζ]]/〈ζ
i〉 = F̂ℓP ×F̂ℓH F̂ℓ

�n

H ×Spf k[[ζ]] V(ζ
i)

is a scheme locally of finite type with underlying topological space f−1(Fℓ�nH ),
then our claim follows from [EGA, Inew, Cor 10.6.4].

Consider the closed immersion

Mn(i) := Mn ×
F̂ℓ

�n

P

V(ζ i) →֒ F̂ℓ
�n

P ×Spf k[[ζ]] Spec k[[ζ]]/(ζ
i).

Clearly we have Mn(i)(k) = Mn(k). We may thus argue, as above, that
Mn = lim

−→
Mn(i) is a ζ-adic noetherian formal scheme .

Now for each number n ∈ N we define the following sub functor of MẐ
L0

Mn : (Nilpk[[ζ]])
o → Sets

S 7−→
{
(L, δ̄); (L, δ̄) is in MẐ

L0
(S)

and for any closed point

s in S, H (ι)(δs)is bounded by 2nρ∨

}
/ ∼ .
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This functor is represented by an ind-scheme Mn which is the formal

completion of MẐ
L0

along (Mn)red.
Claim: Mn is formally of finite type over Spf k[[ζ]].
We break the proof of this claim into several lemmas, however some may

look interesting by their own. We need the following definition

Definition 6.3.3. Let R be a linearly topologized Fq[[ζ]]-algebra lim
←−

Rα for

a projective system (Rα, uαβ) of discrete rings indexed by N0. Suppose that
all maps R → Rα are surjective, and the kernels Iα := ker uα,0 ⊂ Rα are
nilpotent. A local P-shtuka over Spf R is a projective system (Lα)α∈N0 of
local P-shtukas Lα over Rα with Lα−1

∼= Lα ⊗Rα Rα−1.

Lemma 6.3.4. Let R in N ilpk[[ζ]] be as in the above definition. The pull
back functor defines a bijection between the category of local P-shtukas over
SpecR bounded by Ẑ and the category of formal P-shtukas over Spf R bounded
by Ẑ.

Proof. Since R is in N ilpk[[ζ]] there is an integer e ∈ N such that ζe = 0

on R. Let L̂ := (L̂n)n∈N0 be a local P-shtuka over Spf R. There is an étale
cover R′0 → R0 which trivializes L̂0 and hence a unique étale R-algebra
R′ with R′ ⊗R R0

∼= R′0 by [SGA, Théorème I.8.3]. This gives rise to
the trivializations L̂n ⊗ R′n

∼= (L+PR′
n
, bnσ̂

∗) over R′n := R′ ⊗R Rn. Here
bn ∈ LPη(R

′
n) = Pη(R

′
n[[z]][

1
z−ζ

]) and bn ⊗R′
n
R′n−1 = bn−1.

Take a faithful representation P →֒ H as before. This induces a locally
closed immersion ι : F̂ℓP → F̂ℓH and also an ind-scheme structure on

F̂ℓP := lim
−→
n

F̂ℓ
(n)

P . Since Ze := Ẑ ×Spf k[[ζ]] Spec k[[ζ]]/(ζ
e) has the same

underlying topological space than Z, it is quasi-compact. Hence there

is N ∈ N such that Ze ⊆ F̂ℓ
(N)

P . Thus for any n ∈ N, the morphism

bn : SpecR′n → F̂ℓP factors through F̂ℓ
(N)

P , i.e. we have the diagram

Ze
//

((PPPPPPPPPPPPPPPPPP F̂ℓ
(N)

P

��

// F̂ℓ
(N)

H

��
SpecR′n

OO

bn // F̂ℓP
ι // F̂ℓH

.

Thus we obtain b′∞ := limn→∞ bn ∈ LP
(N)
η (R′), where LP

(N)
η = LPη×F̂ℓP

F̂ℓ
(N)

P . This gives the local P-shtuka (LP, b′∞σ̂
∗) over SpecR′ which carries

descent data from the L̂n and hence induces a local P-shtuka over SpecR.
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Let us come back to the proof of the claim. For each m ≥ n let Mm
n be

the formal completion of Mm along (Mn)red. It is an adic formal scheme
over k[[ζ]]. Let U be an affine open subscheme of (Mn)red. This defines an
affine open formal subscheme Spf Rm of Mm

n with underlying set U . Let R
be the inverse limit of the projective system Rm+1 → Rm and let am denote
the ideal such that Rm = R/am. Let J be the inverse image in R of the
largest ideal of definition in Rn. We want to show that R is J-adic.

As we will see below, the rigidity of quasi isogenies (proposition 3.1.3)
together with lemma 6.3.4 and proposition 6.2.5 imply the above claim.

Lemma 6.3.5. For any integer c > 0 there is an integer m0 such that
for any m ≥ m0 there exist an oblique arrow which fits into the following
commutative diagram

0 // J cRm0
// Rm0

))RRRRRRRR
// Rm0/J

cRm0
// 0

0 // J cRm

OO

// Rm

OO

//

OO

// Rm/J
cRm

OO

// 0.

Proof. Let Lm be the universal local P-shtuka over Spf Rm. Consider the
local P-shtuka L̂ = lim

−→
Lm over Spf R. This lifts to a local P-shtuka L

over SpecR by lemma 6.3.4. Consider the closed immersion i : SpecR/
J c → SpecR and the pull-back local P-shtuka i∗L. By rigidity of quasi-
isogenies the quasi-isogeny δn over R/J = Rn/J lifts to a quasi-isogeny
δ over R/J c. In addition the isogeny H 1(ι)(δ) is bounded by 2m0ρ

∨ for
some m0, by proposition 6.2.5 . Now the tuple (i∗L, δ) induces the desired
morphism by the universal property of Mm0

n .

By the above lemma we see that for all m ≥ m0 the morphism

Rm/J
cRm → Rm0/J

cRm0

is an isomorphism. Thus the chain

a1 + J c ⊇ a2 + J c ⊇ · · · ⊇ ai + J c ⊇ . . . (6.3.4)

stabilizes. Now consider the chain

J1 ⊇ J2 ⊇ · · · ⊇ Ji . . . , (6.3.5)
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where Jc is the intersection of the ideals in the chain (6.3.4) and therefore
equals am + J c for m≫ 0. Note that J1 = J and Jm+1 + Jm

1 = Jm. Since
J1/J2 is a finite type R-module the claim follows from [EGA, OI 7.2.2].

For two closed points x1 := (L1, δ1) and x2 := (L2, δ2) define

d̃(x1, x2) := min
{
n ∈ N0;H

1(ι)(δ1)
−1

H
1(ι)(δ2) ≤ 2nρ∨

}
. (6.3.6)

Lemma 6.3.6. There is an integer d0 ∈ N0 such that

max
{
d̃(x,MẐ

L0
(Fqs)); x ∈ MẐ

L0
(k̄)
}
≤ d0.

Proof. Let x := (L+, δ) be a closed point of MẐ
L0
. Take a trivialization

(L+, δ) ∼= ((L+G, hσ∗), g) for the pair associated to the point x. Since the
local P-shtuka (L+G, hσ∗) is bounded by Ẑ and by the definition of the
boundedness condition (see definition 6.2.6) Z is quasi-compact, we have
d(g, b̄σ̂∗g) < c, for some natural number c. Since b̄ satisfies the decency
condition, therefore according to theorem 6.1.3 there is an integer d0 which is
independent of the chosen point x, and g′ ∈ LG(Fqs), such that the distance
of g and g′ in the Bruhat-Tits building of G := Pη is less than d0. Now

we consider the associated point ((L+P, g′−1b̄σ∗g′), g′) of MẐ
L0
(Fqs). Notice

that by functorial properties of Bruhat-Tits buildings (see [La1]), ι induces
an injective isometric map of Bruhat-Tits buildings B(Pη) → B(H), and
hence the lemma follows.

Set B(y) = B(y, d0) :=
{
x ∈ MẐ

L0
(k); d̃(x, y) ≤ d0

}
and Bn(y) =

B(y, d0) ∩Mn(k). Note that these are closed subsets.
For each integer r let

Zr
n =

⋃

y∈M(Fqs ),d̃((L0,id),y)≥r

Bn(y)

If y /∈ Mn+d0(k), i.e. d̃((L0, id), y) > n+ d0 and x ∈ Mn(k) then

d̃(x, y) ≥ [d̃((L0, id), x)− n] + d̃(x, y) ≥ d̃((L0, id), y)− n > d0

and thus Bn(y) = ∅. We get

Zr
n =

⋃

y∈Mn+d0
(Fqs ),d̃((L0,id),y)≥r

Bn(y).
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Since
(
Mn+d0

)
red

=
(
Mn+d0

)
red

and
(
Mn+d0

)
red

is of finite type (see proof
of lemma 6.3.2) hence this union is finite.
Let U r

n be the open formal sub-scheme of Mn whose underlying reduced set
is Mn r Zr

n. We claim that the following chain of formal sub-schemes of
Mn

U r
n →֒ U r

n+1 · · · ⊂ MẐ
L0

stabilizes. By the definition ofMn it is enough to verify this on the underly-
ing set of points. Suppose that there is some element x ∈ U r

n+1(k)rMn(k).

By lemma 6.3.6 there exist a y ∈ MẐ
L0
(Fqs) such that d̃(x, y) ≤ d0. Then

d̃((L0, id), x) ≤ d̃((L0, id), y) + d̃(x, y) < r + d0,

therefore if n ≥ r + d0 then d̃((L0, id), x) ≤ n which is a contradiction and
consequently there is no such x.

Let U r =
⋃

n U
r
n (which equals U r

n for n ≥ r + d0). Note that every

geometric point of MẐ
L0

lies in the union of U rs. Now consider the chain

U r →֒ U r+1 . . . →֒ MẐ
L0

of open immersions of formal schemes formally of finite type, note that U r

is open in MẐ
L0
. Indeed the underlying topological space of U r is open in

Mn for every n and the ind-scheme MẐ
L0

carries the limit topology of the
limit over the Mn. This shows that the formal scheme U r equals the formal

completion of the open ind-scheme MẐ
L0
||Ur| of M

Ẑ
L0

supported on |U r| along

the whole set |U r| and thus MẐ
L0
||Ur| = U r. Since U r is locally of finite type

so is MẐ
L0
||Ur|. This implies that M =

⋃
r U

r is locally formally of finite
type as well.
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Chapter 7

The Uniformization Theorem

7.1 The Uniformization Theorem

For a global G-shtuka G
0
over k we let I(Q) = IG

0
(Q) denote the group

QIsogk(G0
) of quasi-isogenies of G

0
. Let (Lν)ν denote the associated tuple

of local Pν-shtukas under the global-local functor Γ̂, see section 3.2. Let
JLν (Qν) denote the group QIsogk(Lν) of quasi-isogenies of Lν . Recall that
the group of quasi-isogenies of a local P-shtuka L acts naturally on the

ind-scheme F̂ℓPν and also on the Rapoport-Zink space for P-shtukas MẐ
Lν
,

see proposition 4.1.8 and theorem 6.3.1. This in particular illustrates that
JLν (Qν) may appear as a sort of symmetries of the associated affine Deligne-
Lusztig variety.

Especially we see that the group I(Q) acts on the product
∏

ν M
Ẑν
Lν of the

associated Rapoport-Zink spaces (resp.
∏

ν F̂ℓPν ) via the natural morphism

I(Q) →
∏

ν

JLν (Qν).

Let S be an finite subset of the characteristic places ν of G
0
and Γ ⊆∏

ν∈S JLν (Qν) be a discrete subgroup. We say that Γ is separated if it is
separated in the profinite topology, i.e. for every g ∈ Γ there is a normal
subgroup of finite index that does not contain g.

Proposition 7.1.1. Let Γ ⊆
∏

ν JLν (Qν) be a separated discrete subgroup.

Then the quotient Γ\
∏

ν M
Ẑ
Lν

is a locally noetherian, adic formal algebraic
Spf k[[ζ]]-stack locally formally of finite type over Spf k. Moreover, the 1-

morphism
∏

ν M
Ẑ
Lν

→ Γ\
∏

ν M
Ẑ
Lν

is adic and (formally) étale.

Before proving the above proposition let us state the following lemma.

69
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Lemma 7.1.2. Let Γν ⊆ JLν (Qν) be a separated discrete subgroup. Con-

sider F̂ℓPν as a moduli space for MLν
, see proposition 4.1.8. Let Uν ⊂ FℓPν

be a quasi-compact subscheme. Then the set

{γ ∈ Γ; γUν ∩ Uν 6= ∅}

is finite.

Proof. Any point x ∈ Uν(k̄) can be represented by a tuple (L, g), where
L := (L+Pν , bσ

∗) is a trivialized local Pν-shtuka over k̄ and g ∈ LG(k̄).

By proposition 4.1.5 the preimage Ũ ⊆ LPν of Uν under the projection
LPν → FℓPν is quasi-compact. Consider the morphism

Ũ(k̄)× Ũ(k̄) → FℓPν (k̄)

g × g′ 7→ g′g−1 · L+Pν/L
+Pν .

Since FℓPν (k̄) is an ind-scheme, this morphism factors through some V ⊂
FℓPν of finite type. We may assume that b is decent, so the group of quasi-
isogenies JLν (Qν) ⊂ LG(k̄) is defined over some finite extension L/Fq, see
remark 6.1.2. Let γ ∈ Γ, if x ∈ Uν and γx ∈ Uν then the image of γ
under the projection map π : LG(k̄) → FℓPν maps to V (L). Thus γ lies
in S = π−1(V (L)) ∩ J(Qν). On the other hand Γν is discrete and thus has
finite intersection with the compact set S.

Remark 7.1.3. One can state a variant of the above lemma for a separated
discrete subgroup Γ of

∏
ν JLν (Qν). Namely, let Uν be as above and set

U =
∏

ν Uν , then one can show, in a similar way as in the above proof, that

{γ ∈ Γ; γU ∩ U 6= ∅}

is finite.

Proof. of proposition 7.1.1 By theorem 6.3.6 we may choose a constant dν
such that any ball in MẐ

Lν
(k̄) with radius dν contains a rational point in

MẐ
Lν
(Lν) for the finite extension Lν/Fq (see proof of the above lemma).

Let d be the maximum of the integers dν and L be the compositum of the
fields Lν . Let x := (xν) be a closed point of

∏
ν M

Ẑ
Lν
. Note that since the

underlying reduced subscheme of MẐ
Lν

is of finite type and therefore has
finitely many rational points over L, the union

⋃
y∈MẐ

Lν
(L),d̃(y,xν)>2d

B(y, d)

defines a closed subscheme Zν . Define the open neighborhood Uν = MẐ
Lν

r
Zν of xν . Set Ux :=

∏
ν Uν . One may easily see that γ.Ux = Uγ.x and that
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the open neighborhoods Ux are bounded and cover
∏

ν M
Ẑ
Lν
, for varying

x ∈
∏

ν M
Ẑ
Lν
(L). Let I ⊂

∏
ν M

Ẑ
Lν

be a set of representatives of the Γ-

orbits in
∏

ν M
Ẑ
Lν
(L).

For a fixed i ∈ I, since Γ is separated by the remark 7.1.3 we may choose
a normal subgroup Γ′ ⊂ Γ of finite index in Γ such that Ui ∩ γ′Ui = ∅
for all γ′ 6= 1 in Γ′. Note that it is enough to show that Γ′\

∏
ν M

Ẑ
Lν

is
Deligne-Mumford and the projection

∏

ν

MẐ
Lν

→ Γ′\
∏

ν

MẐ
Lν

is adic, see remark 2.1.6. Let Vi denote the union of the image in Γ′\
∏

ν M
Ẑ
Lν

of all translations γ′Ui, for γ′ ∈ Γ′. Then the composition of the open
immersion

⊔

i∈I

Vi → Γ′\
∏

ν

MẐ
Lν

followed by the projection Γ′\
∏

ν M
Ẑ
Lν

→ Γ\
∏

ν M
Ẑ
Lν

gives the desired
étale presentation.

Let (G
0
, γ0) be a global G-shtuka, bounded by Ẑν := (Ẑν)ν , with level

H-structure γ0, in ∇H
n H 1(C,G)ν̄(k), where H ⊂ G(Aν

Q) is a compact open
subgroup supported outside the characteristic sections of G

0
. Let (Lν)ν be

the tuple of local shtukas associated with G
0
via the global-local functor

as before. Let MẐν
Lν

denote the associated Rapoport-Zink spaces. Let {Ti}

be a set of representatives of I(Q)-orbits of the irreducible components of∏
ν M

Ẑ
Lν
.

Theorem 7.1.4. Keep the above notation, we have the following statements

(a) the morphism Ψ induces a I(Q)×G(Aν
Q)-equivariant morphism

Θ′ :
∏

ν

MẐν
Lν

×G(Aν
Q)
/
H → ∇H,Ẑν

n H
1(C,G)ν̄ .

Further more this morphism factors through a G(Aν
Q)-equivariant mor-

phism

Θ : I(Q)
∖∏

ν

MẐν
Lν

×G(Aν
Q)
/
H → ∇H,Ẑν

n H
1(C,G)ν̄ .

of formal algebraic stacks.
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(b) Let Z denote the union of the images of the Tis under the uniformiza-
tion morphism. Then Θ induces the following isomorphism

ΘZ : I(Q)
∖∏

ν

MẐν
Lν

×G(Aν
Q)
/
H → ∇H,Ẑν

n ,H 1(C,G)ν̄/Z

of formal algebraic stacks.

Notice that in part (b) of the above theorem, the Θ(Ti) are closed (see
theorem 4.1.12), and each Θ(Ti) intersects finitely many others, thus we
may form the completion along their image, see [RZ, paragraph 6.22].

Proof. The map Ψ introduced in theorem 4.1.12 restricts to the following
map

Ψ|Ẑ :
∏

ν

MẐν
Lν

→ ∇Ẑν
n H

1(C,G)ν̄

of formal algebraic stacks.
By the Tannakian formalism, a given element g ∈ G(Aν

Q) defines an auto-
morphism of the neutral tensor functor ω◦ (defined outside ν). Now consider

an S valued point (L′ν , ϕν)ν of
∏

ν M
Ẑν
Lν

and let G ′ denote its image under

Ψ. Note that there is a unique quai-isogeny ̺ : G ′ → G
0
, see remark 4.1.13.

This induces a functor T̺ : TG′ → TG, see 5.2.1. Now these data suffice to
establish the morphism

Θ′ :
∏

ν

MẐν
Lν

×G(Aν
Q)
/
H → ∇H,Ẑν

n H
1(C,G)ν̄

which sends (Lν , ϕν)ν × hH to (G ′, Hh−1γ0T̺).

The group I(Q) of quasi-isogenies of G
0
acts on the automorphism group

Aut⊗(TG
0
) of the Tate functor, see section 5.2. This induces a morphism

β : I(Q) → Aut⊗(ω◦) ∼= G(Aν
Q)

regarding the level H-structure γ0. Hence we get the following morphism

(ψν , β) : I(Q) →
∏

ν

JLν (Qν)×G(Aν
Q).

Let I ′(Q) denote its image. We claim that this is a discrete subgroup of∏
ν J(Qν)×G(Aν

Q). To show this we take an open subset U ⊂
∏

ν J(Qν)×
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G(A) sufficiently small such that any element in I ′(Q) ∩ U induces iso-
morphisms of local Pν-shtukas Lν , for every ν. Thus these elements give
automorphisms of the global shtuka G

0
:= (G, τ0), see remark 4.1.13. Now

the finiteness of the set I ′(Q) ∩ U follows from remark 6.2.19.
Hence we observe that

I(Q)
∖∏

ν

MẐν
Lν

×G(Aν
Q)
/
H ∼=

∐

Γ

(
Γ
∖∏

ν

MẐν
Lν

)
,

where Γ runs through a countable set of subgroups of
∏

ν JLν (Qν) of the
form

(
∏

ν

JLν (Qν)× gHg−1) ∩ I(Q) ⊆
∏

ν

JLν (Qν).

One can easily check that these groups Γ are separated. Hence I(Q)
∖∏

ν M
Ẑν
Lν
×

G(Aν
Q)
/
H is a formal algebraic stack by proposition 7.1.1. According to this,

the morphism Θ′ factors through the following morphism

Θ : I(Q)
∖∏

ν

MẐν
Lν

×G(Aν
Q)
/
H → ∇H,Ẑν

n H
1(C,G)ν̄ .

of formal algebraic stacks.
Let us prove part (b). By the lemma 7.1.6 ΘZ is representable by a

morphism of schemes. Furthermore by lemma 7.1.5 ΘZ is a monomorphism
of locally noetherian formal algebraic Spf k[[ζ]]-stacks, locally formally of
finite type. In addition the monomorphism ΘZ is surjective by very defini-
tion, étale by lemma 7.1.7, and proper by theorem 4.1.12. Hence ΘZ is an
isomorphism.

Let Y (resp. X ) denote the source (resp. target) of the uniformization
morphism.

Lemma 7.1.5. The 1-morphism Θ : Y → X is a 1-monomorphism of
formal algebraic stacks.

Proof. Consider two S-valued points of Y

x := ((L′ν , τ̂
′
ν)ν , h

′H) and y := ((L′′ν , τ̂
′′
ν )ν , h

′′H)

which get mapped to isogenous global G-shtukas (G ′, γ′) and (G ′′, γ′′) with
level structures, respectively γ′ and γ′′, under Θ. Let ς : G ′ → G ′′ denote
this isogeny. By the construction of the morphism Θ, there are canonical
isogenies α′ : G ′

S
→ G

0,S
and α′′ : G ′′

S
→ G

0,S
see remark 4.1.13. Consider
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the quasi-isogeny g := α′′ςα′−1 in I(Q).
We claim that y = g.x. By rigidity of quasi-isogenies, proposition 3.1.3,
g : G ′

S
→ G ′′

S
lifts to g : G ′ → G ′′ over S. Now we let ϕν be the quasi-isogeny

defined by the following diagram

L′ν
ϕν

−−−→ L′′ν

α′

y
yα′′

Lν −−−→
gν

Lν .

Via the Tannakian duality g operates on the level structure h′ as an
element ε(g) ∈ G(AQ) = Aut⊗(ω◦), this fits in the diagram

TG′
Tα′

−−−→ TG
0

γ0
−−−→ ω◦

h′−1

−−−→ ω◦yTς
yTg ε(g)

y
∥∥∥ .

TG′′
Tα′′

−−−→ TG
0

γ0
−−−→ ω◦

h′′−1

−−−→ ω◦

and hence h′′H = ε(g).h′H. This proves the claim.
Since Θ is J(Q)-invariant this finishes the proof of the first assertion of the
lemma.

Lemma 7.1.6. The 1-morphism Θ : Y → X is adic. In particular it is
representable by a morphism of schemes.

Proof. Let P : X → Xred be a presentation. By theorem 4.1.12 and lemma
7.1.5 we see that Yred×Xred

X → X is a closed immersion. Furthermore since
P is an epimorphism we may argue that this is an isomorphism. Hence
Θ : Yred → Xred is a 1-isomorphism. Finally since X and Y are adic
(see proposition 7.1.1) this suffices to show that Θ is adic. The second
assertion follows from the fact that any 1-monomorphism of algebraic stacks
is representable by a morphism of schemes, see [L-M] Théorème A.2 and
Corollaire 8.1.3.

Lemma 7.1.7. The 1-morphism Θ : Y → X is étale.

Proof. Let Y denote the source of the map Θ′. Let π : Y → Y denote the
projection. Let I be an ideal of definition of X and let X := V(I) be the
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closed substack defined by I. Consider the following 2-cartesian diagram

Y
π

−−−→ Y
Θ

−−−→ Xx
x

x
Y ×X X −−−→ Y ×X X −−−→ X

of algebraic Spec k[[ζ]]-stacks. Now observe that the composition of the
morphisms in the top of the above diagram is formally étale. This indeed
follows from theorem 4.1.12 and proposition 7.1.1. The 1-morphisms in the
bottom row of the diagram are representable by morphisms of finite type
between locally noetherian schemes and consequently are étale. Thus we
argue that Y ×X X → X is étale. Now the lemma follows from the fact
that both Θ and the presentation Y → Y are adic see lemma 7.1.6 and
proposition 7.1.1.
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Chapter 8

Discussion about

Uniformization and Local

Model

8.1 Local model for the moduli of global G-

shtukas

Recall that a Global affine Grassmannian parametrizes the same tuples
of data (G,G ′, c1, . . . , cn, ϕ) as HeckeG together with a trivialization of G ′

outside the characteristic sections. One interesting feature of these objects
is that they can be viewed as a local model for the moduli of global G-
shtukas (in analogy with the theory of local models for Shimura varieties).
Let us state the following theorem

Theorem 8.1.1. For any point y in ∇nH
1(C,G) there exist an étale neigh-

borhood of y and a roof

Uy

∇nH
1(C,G) GrG,n,

ét����
��

��
�

ét ��?
??

??
??

?

of ind-étale morphisms. In other words the global affine Grassmannian
GrG,n is a local model for the moduli stack ∇nH

1(C,G) of global G-shtukas.
Note that this also induces a roof of étale morphisms after imposing bounds
to ∇nH

1(C,G) and GrG,n.

For a constant reductive group G0 over Fq, this observation was first
recorded in [Var]. However there is a mistake in the proof, namely he applies

77
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the following well-known theorem of Drinfeld and Simpson to construct the
étale neighbourhood Uy:

Theorem 8.1.2. Let x be a closed point of C and set Ċ := Cr{x}. Let G0

be a semi-simple group over a perfect field k. Then for any quasi-compact
k-scheme S and any G0-torsor G on C ×k S the restriction of G to Ċ ×k S
is trivial, locally for the fppf -topology on S. In addition if char(k) does
not divide the order of the fundamental group π1(G0), then this is even true
locally for the étale topology on S.

The assumption that G0 is semi-simple is necessary (already for the
case G = Gm). In addition this theorem can only be applied under certain
circumstances for the characteristic of the ground field.
In this section we modify the proof given in [Var] and produce a proof
which is independent of the Drinfeld-Simpson theorem (and can be applied
to general G). Finally we briefly mention a link between the uniformization
of the moduli stack of global G-shtukas, we worked out in the previous
chapters, and the local model for them.

Proposition 8.1.3. Consider the stacks HeckeG,n and GrG,n × H 1(C,G)
as families over Cn × H 1(C,G), via the projections (G,G ′, ci, ϕ) 7→ (ci,G

′)

and (G̃, ci, ϕ̃) × G ′ 7→ (ci,G
′) respectively. They are locally isomorphic with

respect to the étale topology on Cn × H 1(C,G).

Proof. The proof goes in a similar way as [Var, Lem. 4.1], only one has
to replace S by H 1(C,G) and take an étale cover V → C ×Fq H 1(C,G)
trivializing the universal G-bundle over H 1(C,G) rather than a Zariski
trivialization over S. Also one sets U = V ×H 1(C,G) · · · ×H 1(C,G) V , U ′ =
HeckeG,n ×Cn×H 1(C,G) U , U

′′ = GrG,n ×Cn U , V ′ = V ×C×H 1(C,G),G′ C × U ′

and V ′′ = V ×C×H 1(C,G) C × U ′′.

Proof. of theorem 8.1.1:
Since the curve C, the parahoric group G and the index n (which stands

for the number of characteristic sections) are fixed, we drop them from
the notation and simply write Gr = GrG,n H 1 = H 1(C,G), Hecke =
HeckeG,n and ∇H 1 = ∇nH

1(C,G). Pick an open substack H 1
α (C,G)

that contains the image of y under projection to H 1, see remark 6.2.19.
Let y′ be the image of y in Cn × H 1

α (C,G) under the projection sending
(G,G ′, ci, ϕ) to (ci,G

′). Take an étale presentation H1
α → H 1

α (C,G) and let
Heckeα denote the base change of Hecke to H1

α.
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According to proposition 8.1.3, we may pick an étale neighborhood
U → Cn ×H1

α → Cn × H 1
α of y′, such that the restriction U ′ of Hecke to

U and the restriction U ′′ of Gr × H 1 to U become isomorphic.

Now we claim that the neighborhood Uy := U ′×Hecke∇H 1 is the desired
étale neighborhood.
Consider the following diagram

HeckeαU ′

Cn ×H1
αU

Gr ×H1
αU ′′

Cn ×H1
α

Gr

∇H 1
αUy

et //

et //

//

77ooooooo

����

��

id×σ
H1
α

��

77ooooo

77ooooooooo

∼=

����
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%%LLLLLLLLLL

et //

99rrrrrrrrrr

55kkkkkkkkkkkkkkkkkkkkk

))SSSSSSSSSSSSSSSSSSSSS

..

Indeed, the fact that Uy is an étale neighbourhood of Gr follows from
the lemma 8.1.4 applied to the following diagram

GrGrG ×H1
αU ′ U ′′

Uy

H1
α H1

α

��
∼ // // pr2 //

ϕ′

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

f

��

g

��σ
H1
α //

here f is the morphism induced by the projection π : Hecke → H 1

sending (G,G ′, ci, ϕ) to G and g is U ′′ → GrG×H
1
α followed by the projection.
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Lemma 8.1.4. Let Z be a smooth scheme locally of finite type over Fq

and let W , T and Y be locally noetherian schemes. Assume that we have
a morphism f : W → Z, an étale morphism ι : W → Y × T and an
isomorphism ϕ : Y → Z. Let g : W → Z denote the morphism ϕ ◦ pr1 ◦ ι,
where pr1 : Y × T → Y is the projection to the first factor. Consider the
following diagram

TY × TW

V

Z

��
ι // pr2 //

ϕ′

''OOOOOOOOOOOOOOOOOOOOOOO

σZ◦f

��

g

��

here V := ker(σZ ◦ f, g : W ⇒ Z). Then ϕ′ is étale in either of the
following cases

(a) T is smooth over Fq,

(b) Y and T are locally of finite type over Fq.

Proof. Since the question is local we may reduce to the case that Z = Am.
We first show that the proof of case b) reduces to case a).

We may assume that T is affine. Take a closed embedding T →֒ T̃ of T
into a smooth affine scheme T̃ and let I = IT denote the corresponding ideal

identifying T as a closed subscheme of T̃ . Let
̂̃
T denote the spectrum of the

ring obtain by taking the completion of the ring Γ(OT̃ , T̃ ) with respect to

the ideal IT . Note that
̂̃
T is regular, see [EGA, IV, 7.8.3.v. page 215].

Consider the closed immersion Y × T → Y ×
̂̃
T . By [Ra, Chap.V Thm.

1] the étale topology on the closed subscheme T is the induced topology,

Zariski locally on Y ×
̂̃
T . Thus we may assume that there is an étale

morphism
̂̃
W → Y ×

̂̃
T such that W =

̂̃
W ×

Y×
̂̃
T
Y × T . Now since

̂̃
W

is regular the morphism f extends to ˆ̃f :
̂̃
W → Z. Now assuming the

conclusion of the lemma in the case a), we see that the composition

Ṽ := ker(σ ˆ̃f, g :
̂̃
W ⇒ Z) →

̂̃
W → Y ×

̂̃
T →

̂̃
T
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is étale. Therefore its restriction f : V → T is also étale.

(a) Assume that T is smooth. This implies that V is étal over T . Indeed,
V is locally given by m equations with linearly independent differentials
inside the smooth scheme W̃ . Then (a) follows by the Jacobi-criterion
[BLR, Section 2.2, Prop 7].

8.2 Generalized Lang Morphism

Let y := G be a global G-shtuka over S. Let ν := νG denote the character-
istic of G. Passing to the completion along the characteristic sections, we
get the following roof from the local model diagram

U ν
y

∇nH
1(C,G)ν

∏
νi
F̂ℓPνi

,

ét����
��

��
�

ét ��?
??

??
??

see theorem 8.1.1. We bound this by ω = (ωi)i. Then, this together with
the uniformization morphism Θ, see theorem 7.1.4 , induces the following

U ′

∏
i M

ωi
L0

∏
i Ŝ(ωi),

����
��

��
��

ét ��?
??

??
??

where U ′ := U ν
y ×∇H 1,ν

∏
i M

ωi
L0
, and Ŝ(ωi) = S(ωi) × Spf k[[ζi]]. Thus

up to a choice of a section for U ′ →
∏

i M
ωi
L0

we obtain a local morphism

from the product of Rapoport-Zink spaces to
∏

i Ŝ(ωi). Note that
∏

i Ŝ(ωi)
can be viewed as a parameter space for Hodge-Pink structures (see [Ha2]).
Consequently one may naturally pose the question “how the period mor-
phism contributes to this picture?” We leave the interpretation and precise
formulation of this observation unanswered.
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nisse der Mathematik und ihrer Grenzgebiete (3), 21. Springer-Verlag,
Berlin (1990).

[Dr1] V. G. Drinfeld, Moduli varieties of F-sheaves, Func. Anal. and Appl.
21 (1987), 107-122.

[Dr2] V. G. Drinfeld: Coverings of p-adic symmetric domains, Funct. Anal.
Appl. 10 (1976), 107–115.

83



84 BIBLIOGRAPHY

[EGA] A. Grothendieck: Élements de Géométrie Algébrique, Publ. Math.
IHES , Bures-Sur-Yvette, 1960–1967; see also Grundlehren 166,
Springer-Verlag, Berlin etc. 1971.

[SGA] A. Grothendieck: Revêtements étales et groupe fondamental, LNM
224, Springer-Verlag, Berlin-Heidelberg 1971.

[Ga] D. Gaitsgory, Construction of central elements in the affine Hecke al-

gebra via nearby cycles, Invent. Math. 144 (2001), 253280.

[H-R] T. Haines and M. Rapoport: On parahoric subgroups appendix to
[PR1].

[Ha1] U. Hartl: Uniformizing the Stacks of Abelian Sheaves, in Number

Fields and Function fields - Two Parallel Worlds, Papers from the
4th Conference held on Texel Island, April 2004, Progress in Math.
239, Birkhauser-Verlag, Basel 2005, pp. 167222.

[Ha2] U. Hartl: Period Spaces for Hodge Structures in Equal Characteristic,
to appear in Ann. of Math. (2010); see also arXiv:math.NT/0511686.

[H-V] U. Hartl E. Viehmann, The Newton stratification on deformations

of local G-shtukas Journal fr die reine und angewandte Mathematik
(Crelle) (2010),

[He] J. Heinloth: Uniformization of G-bundles, Math. Ann. 347 (2010),
499528.

[L] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands,
Invent. Math. 147 (2002), 1-241.

[La1] E. Landvogt: Some Functorial Properties of Bruhar-Tits Buildings, J.
reine angew. math. 518 (2000), 213?241.

[La2] E. Landvogt: A Compactification of the Bruhat-Tits Building, Lecture
Notes in Mathematics 1619 (1996), Springer-Verlag.

[Lan] S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956),
555-563.

[L-M] G. Laumon, L. Moret-Bailly: Champs algebriques, Ergeb. Math. Gren-
zgebiete 39, Springer, Berlin, 2000.

[Ja] J. C. Jantzen: Representations of algebraic groups, Mathematical Sur-
veys and Monographs 107, AMS, Providence, RI, 2003.



BIBLIOGRAPHY 85

[Kat] N. M. Katz, p-adic properties of modular schemes and modular forms,

in Modular Functions of One Variable, III (Proc. Internat. Sum-
mer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math
350, Springer- Verlag, New York, 1973, pp. 69-190. MR 0447119. Zbl
0271.10033.

[Ko1] R. E. Kottwitz: Isocrystals with additional structure, Compositio
Math. 56 (1985), no. 2, 201–220.

[Ko2] R. E. Kottwitz: Isocrystals with additional structure II, Compositio
Math. 109 (1997), no. 3, 255–339.

[PR1] G. Pappas, M. Rapoport: Local models in the ramified case I, The

EL-case, J. Algebraic Geom. 12 (2003), no. 1, 107–145.

[PR2] G. Pappas, M. Rapoport: Twisted loop groups and their affine flag

varieties, Advances in Mathematics 219 (2008), 118–198.

[PR3] G. Pappas, M. Rapoport Some questions about G-bundles on curves.
Algebraic and Arithmetic Structure of Moduli Spaces, Advanced Stud-
ies in Pure Mathematics 58, (2010), 159-171.

[RZ] M. Rapoport, T. Zink: Period Spaces for p-divisible Groups, Ann.
Math. Stud. 141, Princeton University Press, Princeton 1996.

[RZ2] M. Rapoport, T. Zink: A finiteness theorem in the Bruhat-Tits build-

ing: an application of Landvogt’s embedding theorem, Indag. Mathem.,
N.S. 10, 449–458.

[Ra] M. Raynaud, Anneaux locaux henséliens, Lect. Notes Math. 169,
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