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(Communicated by Tadeusz Januszkiewicz)

Abstract. We give a characterization of groups with twisted p-periodic cohomology in terms
of group actions on mod p homology spheres. An equivalent algebraic characterization of
such groups is also presented.

1. Introduction

We will consider groups with twisted p-periodic cohomology (p a prime) in
the following sense. Write Ẑp(ω) for the group of p-adic integers, equipped
with a G-action via a homomorphism ω : G → Ẑ×

p . For M a ZG-module, we
write Mω for the ZG-module M ⊗ Ẑp(ω) with diagonal G action.

Definition 1.1. A group G is said to have twisted p-periodic cohomology, if
there are a k > 0, a homomorphism ω : G → Ẑ×

p and a cohomology class
eω ∈ Hn(G, Ẑp(ω)) for some n > 0, such that

eω ∪ − : Hi(G,M) → Hi+n(G,Mω)

is an isomorphism for all i ≥ k and all p-torsion ZG-modules M of finite
exponent. In case the twisting ω can be chosen to be trivial, we say that G
has p-periodic cohomology.

By replacing eω with e2ω we see that for G with twisted p-periodic cohomol-
ogy one can assume, if one wishes to, that the degree n of the periodicity gener-
ator is even. In case of a finite group G, we infer, by replacing eω by a suitable
cup power, that if G has twisted p-periodic cohomology, it also has p-periodic
cohomology. A classical theorem states that a finite group has p-periodic co-
homology if and only if all its abelian p-subgroups are cyclic. Moreover, the
finite groups with p-periodic cohomology have the following characterization
in terms of actions on Z/pZ-homology spheres.

The second author was supported by a GSRT/Greece excellence grant, cofounded by the

ESF/EV and Natural Resources.



100 Guido Mislin and Olympia Talelli

Theorem 1.2 (Swan [12]). A finite group G has p-periodic cohomology if and
only if there exists a finite, simply connected free G-CW-complex, which has
the same Z/pZ-homology as some sphere.

Our goal is to find a similar characterization for arbitrary groups with
(twisted) p-periodic cohomology.

Definition 1.3. A CW-complex X is called a Z/pZ-homology n-sphere, if
H∗(X,Z/pZ) ∼= H∗(S

n,Z/pZ).

In Section 5 we will prove the following generalization of Theorem 1.2.

Theorem 1.4. A group G has twisted p-periodic cohomology if and only if
there exists a simply connected Z/pZ-homology sphere X, which is a free
G-CW-complex satisfying cdZ/pZ(X/G) < ∞.

For the definition of the cohomological dimension cdZ/pZ of a space see
Section 2.

As we will see in Section 7, there are groups which have twisted p-periodic
cohomology but which do not have p-periodic cohomology. For groups with
p-periodic cohomology we prove the following characterization.

Theorem 1.5. A group G has p-periodic cohomology if and only if there exists
a free G-CW-complex X with homotopically trivial G-action such that X is a
Z/pZ-homology sphere satisfying cdZ/pZ(X/G) < ∞.

We will also consider groups with Z/pZ-periodic cohomology in the following
sense.

Definition 1.6. A group G is said to have Z/pZ-periodic cohomology, if there
is a cohomology class e ∈ Hn(G,Z/pZ) for some n > 0 and an integer k > 0,
such that for every Z/pZ[G]-module M the map

e ∪ − : Hi(G,M) → Hi+n(G,M)

is an isomorphism for all i ≥ k.

The following is a simple observation.

Lemma 1.7. Suppose that G has twisted p-periodic cohomology. Then G has
Z/pZ-periodic cohomology.

Indeed, if eω ∈ Hn(G, Ẑp(ω)) gives rise to twisted periodicity as above
and eω(p) ∈ Hn(G, (Z/pZ)ω) denotes the mod p reduction of eω, then G has
Z/pZ-periodic cohomology with periodicity generator the (p−1)-fold cup prod-
uct e := eω(p)

p−1 ∈ Hn(p−1)(G,Z/pZ).
If M is a fixed ZG-module which is p-torsion of finite exponent pk+1, then

the pk(p− 1)-fold twisted module

Mωpk(p−1) := ((· · · (Mω) · · · )ω)ω

is naturally isomorphic as a ZG-module to M . Therefore, if G has twisted p-
periodic cohomology of some period n, its cohomology with M coefficients will
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Groups with twisted p-periodic cohomology 101

actually be periodic in high dimensions d ≥ d0(M), with period n · pk(p− 1).
In general, it is not possible to choose the dimensions d0(M) so that they
are bounded by a number independent of M . This observation leads to an
example of a group with twisted p-periodic cohomology but not having p-
periodic cohomology (cp. Example 7.3).

It is this example together with the fundamental paper [1] by Adem and
Smith which inspired our work. For background on groups acting freely on
finite-dimensional homology spheres, see [10] and [13].

2. Z/pZ-dimension for spaces and Z/pZ-localization

Similarly to the definition of the Z/pZ-cohomological dimension of groups,
one defines the Z/pZ-cohomological dimension for spaces as follows.

Definition 2.1. Let X be a connected CW-complex and k > 0. The Z/pZ-
cohomological dimension cdZ/pZ(X) of X is the smallest integer n such that

Hi(X,M) = 0 for all Z/pZ[π1(X)]-modules M and all i > n; if there is no
such n, we write cdZ/pZ(X) = ∞.

A simple induction on k shows that if cdZ/pZX < ∞, then there exists an

i > 0 such that for all k and all Z/pkZ[π1(X)]-modules M , Hj(X,M) = 0 for
all j > i.

In [3], Bousfield constructed, on the homotopy category of CW-complexes,
the localization with respect to H∗(−,Z/pZ), which we call the Z/pZ-localiza-
tion and which consists of a functorial H∗(−,Z/pZ)-isomorphism

c(X) : X → XZ/pZ,

which is characterized by the following universal property.
For every H∗(−,Z/pZ)-isomorphism f : X → Z there is a unique map (up

to homotopy) g : Z → XZ/pZ such that g ◦ f ≃ c(X):

X
H∗(−,Z/pZ)-isomorphism f

//

c(X)

��

Z

∃! g
tt✐✐✐

✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐

XZ/pZ.

If X is simply connected (or nilpotent) and of finite type, then XZ/pZ agrees
with Sullivan’s p-completion X̂p (cp. [11]), and X → X̂p is profinite p-com-
pletion on the level of homotopy groups.

Note that if X is simply connected, then one has cdZ/pZ X = cdZ/pZ XZ/pZ,
but for instance

cdZ/pZ S
1 = 1 < cdZ/pZ S

1
Z/pZ = ∞

(because π1(S
1
Z/pZ) contains a free abelian subgroup of infinite rank).

By the standard Z/pZ-homology n-sphere we mean Sn
Z/pZ.

Lemma 2.2. Let X be a Z/pZ-homology n-sphere. Then XZ/pZ is homotopy
equivalent to Sn

Z/pZ.
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Proof. Assume that H∗(X,Z/pZ) ∼= H∗(S
n,Z/pZ). We first consider the case

of n = 1. It follows that π1(X)ab ⊗ Z/pZ ∼= Z/pZ. Choose an f : S1 → X
mapping to a generator of π1(X)ab ⊗ Z/pZ. Then f induces an isomorphism
in homology with Z/pZ-coefficients. It follows that f induces a homotopy
equivalence S1

Z/pZ → XZ/pZ. Now assume that n > 1. Since

H1(X,Z/pZ) ∼= H1(XZ/pZ,Z/pZ) = 0,

we also have H1(π1(XZ/pZ),Z/pZ) = 0. But π1(XZ/pZ) is an HZ/pZ-local
group, thus π1(XZ/pZ) = 0 (see [3, Thm. 5.5]). We proceed by showing that
XZ/pZ is (n − 1)-connected. Let πi(XZ/pZ) be the first non-vanishing homo-
topy group of XZ/pZ, i > 1. Because an H∗(−,Z(p))-isomorphism is also an
H∗(−,Z/pZ)-isomorphism, XZ/pZ is HZ(p)-local and therefore its homology
groups with Z-coefficients are uniquely q-divisible for q prime to p. More-
over, for n > i > 1, multiplication by p is bijective on Hi(XZ/pZ,Z), because
Hj(XZ/pZ,Z/pZ) = 0 for j = i − 1, i. Thus Hi(XZ/pZ,Z) is a Q-vector space
for 1 < i < n. Since the only Q-vector space, which is HZ/pZ-local as an
abelian group, is the trivial one, and because the homotopy groups of XZ/pZ

are HZ/pZ-local, we conclude from the Hurewicz Theorem that XZ/pZ must
be (n− 1)-connected. It follows that the natural maps

πn(XZ/pZ) → Hn(XZ/pZ,Z) → Hn(XZ/pZ,Z, pZ) ∼= Z/pZ

are both surjective. Choose an f : Sn → XZ/pZ which maps to a generator of
Hn(XZ/pZ,Z/pZ) and it follows that f induces a homotopy equivalence

Sn
Z/pZ → XZ/pZ. �

There is also a fiberwise version of Z/pZ-localization (see [8] for details). If

X → E → B

is a fibration of connected CW-complexes, one can construct a new fibration

XZ/pZ → Ef
Z/pZ → B,

together with a map E → Ef
Z/pZ over B, which restricts on the fibers to Z/pZ-

localization X → XZ/pZ. Using the Serre spectral sequence, we conclude the
following. If F → E → B is a fibration of connected CW-complexes with F
simply connected, then

cdZ/pZ E = cdZ/pZE
f
Z/pZ.

Also, if the fiber F is a Z/pZ-homology sphere, then fiberwise Z/pZ-localization
yields a fibration with fiber a standard Z/pZ-homology sphere

Sn
Z/pZ → Ef

Z/pZ → B.
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3. Fibrations, orientations and Euler classes

If F → E → B is a fibration of connected CW-complexes, then π1(E) →
π1(B) is surjective and lifting of loops defines a natural map θ : π1(B) → [F, F ],
a homotopy action of π1(B) on F .

Definition 3.1. Let F → E → B be a fibration of connected CW-complexes.
The fibration is called orientable, if the associated homotopy action π1(B) →
[F, F ] is trivial. We call the fibrationHZ/pkZ-orientable, if π1(B) acts trivially
on H∗(F,Z/p

kZ).

Clearly, if a fibration is orientable, it is HZ/pkZ-orientable for all k.

Definition 3.2. Let F → E → B be a fibration of connected CW-complexes.
We call such a fibration Z/pZ-spherical in case F is a Z/pZ-homology sphere
(or, equivalently, if FZ/pZ ≃ Sn

Z/pZ for some n > 0).

We will make use of the following observation.

Lemma 3.3. For a group G the following conditions are equivalent.

(a) There exists a simply connected free G-CW-complex X which is a Z/pZ-
homology sphere satisfying cdZ/pZ X/G < ∞.

(b) There exists a Z/pZ-spherical fibration F → E → K(G, 1) with F simply
connected and cdZ/pZE < ∞.

Proof. Let X be as in (a) and f : X/G → K(G, 1) the classifying map for
the universal cover X of X/G. Then the homotopy fiber of f is G-homotopy
equivalent to X , thus (b) holds. If F → E → K(G, 1) is as in (b), the universal
cover of E is G-homotopy equivalent to F , thus (a) holds. �

Note that if X is any Z/pZ-homology sphere, it is also a Z/pkZ-homology
sphere for k > 1 as one easily sees by induction on k. Thus, for a Z/pZ-spherical
fibration F → E → B as in Definition 3.2, the π1(B)-module Hn(F,Z/p

kZ) is
isomorphic to a twisted module (Z/pkZ)ω , where ω : π1(B) → (Z/pkZ)× corre-
sponds to the action of π1(B) on Hn(F,Z/p

kZ). (If we need to emphasize the
dependence of ω on k, we write ω(k) in place of ω). We call the twisted module
(Z/pkZ)ω the k-orientation module. The fibration is HZ/pkZ-orientable in the
sense of Definition 3.1, if the k-orientation module is the trivial Z/pkZ[π1(B)]-
module Z/pkZ. We write ω̄ for the map π1(B) → (Z/pkZ)× given by ω̄(x) =
ω(x−1), and more generally ωn for the map with ωn(x) = ω(xn), n ∈ Z. For
any Z/pkZ[π1(B)]-module M we write Mω for M ⊗ (Z/pkZ)ω with diagonal
π1(B)-action x · (m ⊗ z) = xm ⊗ ω(x)z. Similarly, we consider the diagonal
action on HomZ/pkZ((Z/p

kZ)ω,M) given by

(xf)(z) = x · f(ω̄(x)z).

Therefore, there is a natural isomorphism of Z/pkZ[π1(B)]-modules

Hn(F,M) ∼= Hom(Hn(F,Z/p
kZ),M) ∼= Hom((Z/pkZ)ω ,M) ∼= Mω̄.
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In the case of a Z/pZ-spherical fibration F → E → B, the only possi-
bly nonzero differential in the Serre spectral sequence with coefficients in a
Z/pkZ[π1(E)]-module K,

Ei,ℓ
2 = Hi(B,Hℓ(F,K)) =⇒ Hi+ℓ(E,K),

is the transgression differential

dn+1 : Ei,n
2 = Ei,n

n+1 → Ei+n+1,0
n+1 = Ei+n+1,0

2 .

Taking for K the k-orientation module (Z/pkZ)ω and choosing i = 0, this
yields

dn+1 : Z/pkZ = H0(B,Z/pkZ) → Hn+1(B, (Z/pkZ)ω),

and the image of 1 ∈ Z/pkZ,

dn+1(1) =: e(k)ω ∈ Hn+1(B, (Z/pkZ)ω),

is called the twisted Z/pkZ-Euler class of the given Z/pZ-spherical fibration.
Let now M be an arbitrary Z/pkZ[π1(B)]-module and choose K = Mω. Thus
Hn(F,Mω) = M and

dn+1 : Ei,n
2 = Hi(B,M) → Hi+n+1(B,Mω) = Ei+n+1,0

2

is given by the cup product with e(k)ω. The kernel and image of dn+1 are
determined as

Ei,n
∞ = ker dn+1 ⊂ Ei,n

2 = Hi(B,M)
dn+1
−−−→ Hi+n+1(B,Mω)

and

Hi(B,M)
dn+1
−−−→ Hi+n+1(B,Mω) = Ei+n+1,0

2 ։ coker dn+1 = Ei+n+1,0
∞ ,

respectively. The natural surjection σ : Hi+n(E,M) → Ei,n
∞ has as kernel the

subgroup Ei+n,0
∞ and, by splicing things together, one gets the Gysin-sequence

→ Hi+n(E,M)
σ
−→ Hi(B,M)

e(k)ω∪−
−−−−−→ Hi+n+1(B,Mω)

→ Hi+n+1(E,Mω) → .

One concludes that for large values of i and all Z/pkZ[π1(B)]-modules M , the
cup product with e(k)ω induces for all k isomorphisms

e(k)ω ∪ − : Hi(B,M)
∼=
−→ Hi+n+1(B,Mω)

if and only if there exists a j0 such that for all j > j0, H
j(E,M) = 0 for all

Z/pkZ[π1(B)]-modules M and all k (here M is viewed as π1(E)-module via
π1(E) → π1(B)). In case F is simply connected, this amounts to cdZ/pZ E < ∞.

Corollary 3.4. Let F → E → B be a Z/pZ-spherical fibration of CW-
complexes with B connected and F simply connected, with twisted Z/pkZ-Euler
classes e(k)ω(k) ∈ Hn(B, (Z/pkZ)ω(k)), k ≥ 1. Then the following conditions
are equivalent.
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(1) cdZ/pZ E < ∞.
(2) There exists i0 such that, for all i > i0 and all k ≥ 1,

e(k)ω(k) ∪− : Hi(B,M) → Hi+n(B,Mω(k))

is an isomorphism for all Z/pkZ[π1(B)]-modules M .

In the situation of Corollary 3.4, it follows from the naturality of the Serre
spectral sequence that the twisted Z/pkZ-Euler classes e(k)ω(k) are the re-

duction mod pk of a class eω ∈ Hn(B, Ẑp(ω)), where Ẑp(ω) is isomorphic to
πn−1(FZ/pZ) ∼= πn−1(S

n−1
Z/pZ) as a π1(B)-module. Therefore, the following holds.

Corollary 3.5. If there exists a Z/pZ-spherical fibration of CW-complexes
F → E → K(G, 1) with F simply connected and cdZ/pZE < ∞, then G has
twisted p-periodic cohomology.

The following lemma permits us to pass from Z/pZ-spherical fibrations to
HZ/pZ-orientable ones.

Lemma 3.6. Let F1 → E1 → B be a Z/pZ-spherical fibration of CW-com-
plexes with B connected and F1 simply connected, such that cdZ/pZ E1 < ∞.
Then the (p−1)-fold fiberwise join yields an HZ/pZ-orientable Z/pZ-spherical
fibration F2 → E2 → B over the same base, with cdZ/pZ E2 < ∞.

Proof. Let eω ∈ Hn(B, (Z/pZ)ω) be the twisted Euler class of the fibration
F1 → E1 → B. Because cdZ/pZ E1 < ∞, we infer from Corollary 3.4 that there
exists i0 such that

eω ∪ − : Hi(B,M) → Hi+n(B,Mω)

is an isomorphism for all i > i0 and all Z/pZ[π1(B)]-modules M . We then
perform a fiberwise (p− 1)-fold join to obtain a new Z/pZ-spherical fibration
F2 → E2 → B with Euler class e = ep−1

ω . This new fibration is HZ/pZ-
orientable, because the (p − 1)-fold tensor product of (Z/pZ)ω with diagonal
action is the trivial Z/pZ[π1(B)]-module Z/pZ. Moreover,

e ∪ − : Hi(B,M) → Hi+(p−1)n(B,M)

is an isomorphism for i > i0 and all Z/pZ[π1(B)]-modules M . Note that e is
the reduction mod p of the twisted Z/pkZ-Euler class

e(k)ω(k) ∈ Hn(B, (Z/pkZ)ω(k))

of the Z/pZ-spherical fibration F2 → E2 → B. Induction on k then shows that

e(k)ω(k) ∪ − : Hi(B,L) → Hi(B,Lω(k))

is an isomorphism for all Z/pkZ[π1(B)]-modules L. We infer from Corollary 3.4
that cdZ/pZ E2 < ∞. �
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4. Partial Euler classes

For a connected CW-complexX we write PqX for its q-th Postnikov section,
with canonical map X → PqX such that

(1) πi(Pq(X)) = 0 for i > q,

(2) πj(X)
∼=
−→ πj(PqX) for j ≤ q.

In case that X is a Z/pZ-homology n-sphere, we have XZ/pZ ≃ Sn
Z/pZ.

Therefore, Pq(XZ/pZ) = {∗} for q < n and Pn(XZ/pZ) ≃ K(Ẑp, n). Adapting
the terminology of [1], we define k-partial Z/pZ-Euler classes as follows.

Definition 4.1. Let B be a connected CW-complex and k ≥ 0. Then ǫ ∈
Hn(B,Z/pZ) is a k-partial Z/pZ-Euler class if there exists a fibration

(Φ) : Pn−1+k(S
n−1
Z/pZ) → E → B

such that π1(B) acts trivially on Hn−1(Pn−1+k(S
n−1
Z/pZ),Z/pZ)

∼= Z/pZ and
there is a generator of that group which transgresses to ǫ in the Serre spectral
sequence with Z/pZ-coefficients for the fibration (Φ). The k-partial Z/pZ-Euler
class ǫ is called orientable, if the fibration (Φ) can be chosen to be orientable
in the sense of Definition 3.1.

Lemma 4.2. Let B be a connected CW-complex and ǫ ∈ Hn(B,Z/pZ) a k-
partial Z/pZ-Euler class. Then for all ℓ > 0, ǫℓ is a k-partial Z/pZ-Euler
class. If ǫ is orientable in the sense of Definition 4.1, then so is ǫℓ.

Proof. Let
P := Pn−1+k(S

n−1
Z/pZ) → E → B

be a fibration such that π1(B) acts trivially on Hn−1(P,Z/pZ) and let α ∈
Hn−1(P,Z/pZ) be an element which transgresses to ǫ. By forming fiberwise
the ℓ-fold join and applying Z/pZ-localization, we obtain a fibration

(∗ℓP )Z/pZ → E(ℓ) → B.

In the Serre spectral sequence with Z/pZ-coefficients for this new fibration,
(α ∗ · · · ∗ α)Z/pZ transgresses to ǫℓ. Since ∗ℓSn−1 ≃ Snℓ−1, we have

Pnℓ−1+k((∗
ℓP )Z/pZ) = Pnℓ−1+k(S

nℓ−1
Z/pZ )

and we obtain, by taking fiberwise Postnikov sections, a fibration

Pnℓ−1+k(S
nℓ−1
Z/pZ ) → Ef (ℓ) → B

for which the image of (∗ℓα)Z/pZ under the natural map

Hnℓ−1((∗ℓP )Z/pZ,Z/pZ)
∼=
−→ Hnℓ−1(Pnℓ−1+k(S

nℓ−1
Z/pZ ),Z/pZ)

transgresses to ǫℓ. It is obvious that ǫℓ is orientable if ǫ is. �

Lemma 4.3. Let (Φ0) : S
n
Z/pZ → E → B be a fibration with B connected and

n > 0. By taking fiberwise Postnikov sections, we obtain fibrations

(Φk) : Pn+kS
n
Z/pZ → Ek → B, k ≥ 0.
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The fibrations (Φk), k ≥ 0, are all orientable if and only if π1(B) acts trivially
on πn(S

n
Z/pZ)

∼= Ẑp.

Proof. This follows from the functoriality of Pn+k and the fact that homotopy
classes Sn

Z/pZ → Sn
Z/pZ correspond naturally to elements of πn(S

n
Z/pZ). �

Definition 4.4. Let X be a connected CW-complex with fundamental group
G. An element x ∈ Hn(X,Z/pZ) is called ω-p-integral, if there exists an
action ω : G → Ẑp

× such that G acts trivially on Ẑp(ω)/pẐp(ω) ∼= Z/pZ and
x lies in the image of the natural coefficient homomorphism Hn(X, Ẑp(ω)) →
Hn(X,Z/pZ). In case the action ω can be chosen to be trivial, x is called
p-integral.

To deal with non-orientable fibrations, we recall the following fact. Let

(F ) : K(M,m) → E → B

be a fibration with connected base B, m > 0 and induced action of π1(B) = G
on M corresponding to the homomorphism φ : G → Aut(M). Such fibrations
are classified by cohomology elements with local coefficients as follows. There
is a universal fibration

K(M,m+ 1) → Lφ(M,m+ 1) → K(G, 1)

such that fibrations of type (F ) correspond to homotopy classes of maps
f : B → Lφ(M,m + 1) over K(G, 1). The homotopy class over K(G, 1) of
such an f corresponds to an element in the cohomology with local coefficients
Hm+1(B,M), see [2] or [6].

The following lemma is a variation of [1, Lem. 2.5].

Lemma 4.5. Let x ∈ H2n(X,Z/pZ) be an ω-p-integral element. Then some
cup power of x is a k-partial Z/pZ-Euler class and this k-partial Z/pZ-Euler
class is orientable (in the sense of Definition 4.1) in case x is p-integral.

Proof. Let G be the fundamental group of X . Since x is ω-p-integral, there
exist ω : G → Ẑ×

p and x̃ ∈ H2n(X, Ẑp(ω)) mapping to x under reduction
mod p. Let µ : X → Lω(Ẑp, 2n) correspond to x̃. It classifies a fibration

K(Ẑp(ω), 2n− 1) → E → X

with

H2n−1(K(Ẑp(ω), 2n− 1),Z/pZ) ∼= H2n−1(K(Ẑp/pẐp, 2n− 1),Z/pZ)

∼= Z/pZ

having trivial G-action. This shows that x is a 0-partial Z/pZ-Euler class.
Suppose now that k > 0 is given and that xm is a (k − 1)-partial Z/pZ-Euler
class. Thus there is a fibration

P2nm−1+k−1(S
2nm−1
Z/pZ ) =: P (k − 1) → E(k − 1) → X
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with a generator of H2nm−1(P (k − 1),Z/pZ)G = Z/pZ transgressing to y :=
xm. By Lemma 4.2, for all j, the power yj is a (k−1)-partial Z/pZ-Euler class
too. Thus there are fibrations

P2nmj−1+k−1(S
2nmj−1
Z/pZ ) =: Q(k − 1) → F (k − 1) → X

with a generator of H2nmj−1(Q(k − 1),Z/pZ)G = Z/pZ transgressing to yj =
xmj . To show that for a suitable j, the power yj gives rise to a k-partial
Z/pZ-Euler class, we need to check that the classifying map

θ : Q(k − 1) → K(π, 2nmj + k)

for the fibration Q(k) → Q(k − 1) factors through F (k − 1). Note that

π := π2nmj+k−1(Q(k)) = π2nmj+k−1(S
2nmj−1
Z/pZ )

is a finite p-group on which π1(X) = G acts via

ωmj : G → Ẑ×
p = HoAut(S2nmj−1

Z/pZ ).

We write π for π with that action. Because of the naturality of the Postnikov
section functor, the homotopy fibration

Q(k) → Q(k − 1)
θ
−→ K(π, 2nmj + k)

is compatible with the homotopy G-action via ωmj on these spaces. Therefore,

[θ] ∈ H2nmj+k(Q(k − 1), π)

is G-invariant with respect to the diagonal G-action on this cohomology group.
In the Serre spectral sequence for Q(k−1) → F (k−1) → X with π coefficients,

Hs(X,Ht(Q(k − 1), π)) ⇒ Hs+t(F (k − 1), π),

the cohomology class [θ] lies thus in

E0,2nmj+k
2 = H2nmj+k(Q(k − 1), π)G.

To show that [θ] is the restriction of a class in the cohomology of F (k−1) with
π-coefficients amounts to showing that [θ] is a permanent cycle. The same
argument as in [1, Lem. 2.5] shows that this is the case for j a large enough
p-power. It follows that some power of x is a k-partial Z/pZ-Euler class. In
case x is p-integral, the argument shows that the k-partial Z/pZ-Euler class
we obtained is orientable. �

5. Proof of Theorems 1.4 and 1.5

We will give the proof of Theorem 1.4. The proof of Theorem 1.5 is analo-
gous but simpler.

Suppose that G has twisted p-periodic cohomology. Then there exist for
some n > 0 an ω-p-integral class ǫ ∈ H2n(G,Z/pZ) and ǫω ∈ H2n(G, Ẑp(ω)),
whose reduction mod p is ǫ, such that there is an ℓ0 > 0 with the property that
the cup product with ǫω induces isomorphisms Hi(G,M) → Hi+2n(G,Mω) for
all i ≥ ℓ0 and all p-torsion ZG-modules M of finite exponent. By Lemma 4.5
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we can find a cup power ǫm which is an ℓo-partial Z/pZ-Euler class. Therefore,
we have a fibration

F (ℓ0) : P2nm−1+ℓ0(S
2nm−1
Z/pZ ) → E(ℓ0) → K(G, 1),

with the property that a generator of

H2nm−1(P2nm−1+ℓ0(S
2nm−1
Z/pZ ),Z/pZ) ∼= Z/pZ

transgresses to ǫm in the Serre spectral sequence for F (ℓ0). We want to show
inductively that ǫm is a k-partial Euler class for all k ≥ ℓ0. Write P (j) for
P2nm−1+j(S

2nm−1
Z/pZ ). We will inductively construct fibrations

F (k) : P (k) → E(k) → K(G, 1)

for k > ℓ0 with the property that a generator of H2nm−1(P (k),Z/pZ) trans-
gresses to ǫm. To pass from F (k − 1) to F (k) we argue as follows. We have a
diagram

F (k − 1) : P (k − 1) // E(k − 1) // K(G, 1)

F (k) : P (k)

OO

// E(k) //

OO

K(G, 1)

=

OO

in which the fibration P (k) → P (k− 1) has fiber K(π(ω), 2nm− 1+ k) and is
classified by a map

θ : P (k − 1) → K(π(ω), 2nm+ k),

where π(ω) stands for the finite p-group π := π2nm−1+k(S
2nm−1) ⊗ Ẑp with

G-action induced by

ωm : G → Ẑ×
p
∼= Aut(π2nm−1(S

2nm−1
Z/pZ )).

To construct the fibration F (k) and the dotted arrows depicted above, we need
to show that θ factors through E(k − 1). This amounts to showing that [θ],
which lies in H2nm+k(P (k − 1), π(ω)), is in the image of the restriction map

H2nm+k(E(k − 1), π(ω)) → H2nm+k(P (k − 1), π(ω)).

As argued in the proof of Lemma 4.5, [θ] ∈ H2nm+k(P (k − 1), π(ω)) is G-
invariant with respect to the diagonal G-action via ωm on this cohomology
group. The restriction map in question corresponds to an edge homomorphism
in the Serre spectral sequence with π(ω)-coefficients for the fibration P (k−1) →
E(k − 1) → K(G, 1):

H2nm+k(E(k − 1), π(ω)) ։ E0,2nm+k
∞

⊂ E0,2nm+k
2 = H2nm+k(P (k − 1), π(ω))G.

We need therefore to check that [θ] is a permanent cycle in the Serre spec-
tral sequence. The only differentials on [θ] which could be nonzero are, for
dimension reasons, the differential

dk+2 : E0,2nm+k
2 = E0,2nm+k

k+2 → Ek+2,2nm−1
k+2
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which takes values in

ker
(

ǫmω ∪ − : Hk+2(G, π(ω)ω̄m ) → Hk+2+2nm(G, π(ω))
)

,

respectively the differential

d2nm+k+1 : E0,2nm+k
2nm+k+1 → E2nm+k+1,0

2nm+k+1 ,

which takes values in

coker
(

ǫmω ∪ − : Hk+1(G, π(ω)) → H2nm+k+1(G, π(ω)ωm)
)

.

Because k > ℓ0, we know that for any p-torsion module M of bounded expo-
nent,

ǫmω ∪ − : Hs(G,M) → Hs+2nm(G,Mωm)

is an isomorphism for s = k+1, respectively s = k+2. The differentials dk+2,
respectively d2nm+k+1 depicted above are therefore equal to 0. We conclude
that the fibrations in the diagram above can be constructed as displayed. Pass-
ing to homotopy limits in the towers {F (k)}k≥0 of that diagram, one obtains
a fibration

F (∞) : S2n−1
Z/pZ → E → K(G, 1),

as desired. To check that cdZ/pZ(E) < ∞, one considers the Serre spectral
sequence of the fibration F (∞) with coefficients in a Z/pZ[G]-module L and
finds that Hj(E,L) = 0 for j large enough, independent of L, finishing the
first part of the proof.

Suppose now conversely that X is a simply connected free G-CW-complex
which is a Z/pZ-homology sphere satisfying cdZ/pZX/G < ∞. By Lemma 3.3
there exists a Z/pZ-spherical fibration F → E → K(G, 1) with F simply
connected and cdZ/pZ E < ∞. Corollary 3.5 then implies that G has twisted
p-periodic cohomology, completing the proof of Theorem 1.4.

6. Algebraic characterization

Let x ∈ Hn(G,Z/pZ) and consider a Z/pZ[G]-projective resolution

P∗ : · · · → Pn
∂n−→ Pn−1

∂n−1
−−−→ · · · → P0 → Z/pZ → 0.

Denote for i > 0 the image ∂iPi by Ki and let ιi : Ki → Pi−1 be the natural
injection. A cocycle representative of x corresponds to a map θ : Kn → Z/pZ.
Form the diagram

Kn
ιn

//

θ

��

Pn−1
//

��

Pn−2
//

=

��

// P0
//

=

��

Z/pZ

=

��

// 0

x̃ : Z/pZ // A // Pn−2
// // P0

// Z/pZ // 0

where the square on the left is a push-out square. Then the class of the n-fold
extension x̃, [x̃] ∈ Extn

Z/pZG(Z/pZ,Z/pZ), corresponds to x ∈ Hn(G,Z/pZ).
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Lemma 6.1. Let e ∈ Hn(G,Z/pZ) and consider the associated n-extension

ẽ : 0 → Z/pZ → A → Pn−2 → · · · → P0 → Z/pZ → 0

as above. Then the following conditions are equivalent.

(1) G has Z/pZ-periodic cohomology via the cup product with e.
(2) The Z/pZ[G]-projective dimension of A, proj. dim

Z/pZ[G]A, is finite.

Proof. Let P∗ be a Z/pZ[G]-projective resolution of Z/pZ and choose a map
θ(e) : Kn → Z/pZ to represent e as above, giving rise to the n-extension ẽ. It
is known that the cup product with e is induced by a chain map Θ : P∗ → P∗

of degree −n which extends θ(e). Consider the following commutative diagram
with exact rows:

0 // Kn(e) //

θ

��

Pn−1
//

µ

��

Kn−1
//

=

��

0

0 // Z/pZ // A // Kn−1
// 0.

From the corresponding commutative diagram of long exact Ext-sequences

// Exti
Z/pZ[G](Kn−1,−) // Exti

Z/pZ[G](Pn−1,−) // Exti
Z/pZ[G](Kn,−) //

/ / Exti
Z/pZ[G](Kn−1,−) //

=

OO

Exti
Z/pZ[G](A,−) //

OO

Exti
Z/pZ[G](Z/pZ,−) //

Exti
Z/pZ[G](θ(e),−)

OO

follows that Exti
Z/pZ[G](θ(e),−) is an isomorphism for large i if and only if A

satisfies proj. dim
Z/pZ[G]A < ∞. �

Corollary 6.2. Let G be a group with Z/pZ-periodic cohomology. There
exists k > 0 such that for all i ≥ k and all projective Z/pZ[G]-modules P ,
Hi(G,P ) = 0.

Proof. By Lemma 6.1, there is a monomorphism ι : Z/pZ → A with A a
Z/pZ[G]-module of finite projective dimension d over Z/pZ[G]. Let I be an
injective Z/pZ[G]-module. I injects into A⊗Z/pZ I via x 7→ ι(1)⊗ x and, as I
is injective, I is a retract of A⊗Z/pZ I. For any projective Z/pZ[G]-module P ,
P ⊗Z/pZ I (with diagonal G-action) is projective too. It follows that

proj. dim
Z/pZ[G]A⊗Z/pZ I ≤ d

and, because I is a retract of that module,

proj. dim
Z/pZ[G] I ≤ d.

We conclude that the supremum of the projective length of injective Z/pZ[G]-
modules is at most d, i.e.,

spliZ/pZ[G] ≤ d.
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This implies that the supremum of the injective length of projective Z/pZ[G]-
modules is also no greater than d, i.e.,

silpZ/pZ[G] ≤ d,

see [5, Thm. 2.4]. We infer that Hi(G,P ) = 0 for i > d and all projective
Z/pZ[G]-modules P . �

The following is an algebraic characterization of groups with twisted p-
periodic cohomology.

Lemma 6.3. A group G has twisted p-periodic cohomology if and only if there
exist an n > 1 and an exact sequence of Z/pZ[G]-modules

ǫ : 0 → Z/pZ → A → Pn−2 → · · · → P0 → Z/pZ → 0

with Pi projective for 0 ≤ i ≤ n − 2 and proj. dim
Z/pZ[G]A < ∞, such that

[ǫ] ∈ Extn
Z/pZ[G](Z/pZ,Z/pZ) = Hn(G,Z/pZ) is ω-p-integral. G has p-periodic

cohomology if and only if there is an ǫ as above with [ǫ] being p-integral (for
the definition of ω-p-integral and p-integral elements see Definition 4.4).

Proof. Suppose G has twisted p-periodic cohomology. By definition, there
exist k > 0 and m > 0 and σ : G → Ẑ×

p and eσ ∈ Hm(G, Ẑp(σ)) such that the
cup product with eσ induces isomorphisms Hi(G,M) → Hi+m(G,Mσ) for all
p-torsion Z[G]-modules M of finite exponent and all i ≥ k. It follows from the
proof of Lemma 1.7 that G has Z/pZ-periodic cohomology via the cup product
with e := eσ(p)

p−1, where eσ(p) denotes the mod p reduction of eσ. Putting
n = m(p− 1), it follows that e ∈ Hn(G,Z/pZ) is ω-p-integral with respect to
ω = σp−1 and can be represented (cp. Lemma 6.1) by an n-extension

ẽ : 0 → Z/pZ → A → Pn−2 → · · · → P0 → Z/pZ → 0

with Pi projective for 0 ≤ i ≤ n− 2 and proj. dim
Z/pZ[G] A < ∞. Conversely,

if we are given an n-extension

ǫ : 0 → Z/pZ → A → Pn−2 → · · · → P0 → Z/pZ → 0

with Pi projective for 0 ≤ i ≤ n−2 and proj. dim
Z/pZ[G] A < ∞ representing an

ω-p-integral class [ǫ] = e ∈ Hn(G,Z/pZ), then we choose ẽ ∈ Hn(G, Ẑp(ω)),
an element with mod p reduction equal to e. Let M be a p-torsion Z/pZ[G]-
module of finite exponent. Induction with respect to the exponent of M shows
that the cup product

ẽ ∪ − : Hi(G,M) → Hi+n(G,Mω)

is an isomorphism for i large and all such M . It follows that G is twisted
p-periodic. The untwisted version of the lemma corresponds to the case where
we can choose for ω the trivial homomorphism. �
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7. Some remarks and examples

In general, one cannot expect a group G to have Z/pZ-periodic cohomology
even if all its finite subgroups do. For instance, if G contains a free abelian sub-
group S of infinite rank, G does not have Z/pZ-periodic cohomology, because
S does not have Z/pZ-periodic cohomology. We will display below a large
class of groups, which do have Z/pZ-periodic cohomology, if all their finite
subgroups do. For the proofs, we will make use of Tate cohomology Ĥ∗(G,−)
for arbitrary groups G, as defined in [9]. In case G admits a finite-dimensional
classifying space for proper actions EG, there is a finitely convergent stabilizer
spectral sequence

Em,n
1 =

∏

σ∈Σm

Ĥn(Gσ ,M) =⇒ Ĥm+n(G,M),

where Σm is a set of representatives of m-cells of EG and M a ZG-module.
For G a group, M a ZG-module and F the set of finite subgroups of G, we
write

Hq(G,M) ⊂
∏

H∈F

Ĥq(H,M)

for the set of compatible families (uH)H∈F with respect to restriction maps of
finite subgroups of G, induced by embeddings given by conjugation by elements
of G.

There are many results on groups G which imply the existence of a finite-
dimensional EG. For instance, groups of cohomological dimension 1 over Q

do: they act on a tree with finite stabilizers. Also, if there is a short exact
sequence H → G → Q of groups and H as well as Q admit a finite-dimensional
E and there is a bound on the order of the finite subgroups of Q, then there
exists a finite-dimensional model for EG (cp. Lück [7, Thm. 3.1]).

Lemma 7.1. Suppose G admits a finite-dimensional EG. Then the following
holds.

(i) The natural map induced by restricting to finite subgroups

ρ : Ĥ∗(G,Z/pZ) → H∗(G,Z/pZ)

has the property that every element in the kernel of ρ is nilpotent, and
that for every u ∈ H∗(G,Z/pZ) there is a k such that upk

lies in the
image of ρ.

(ii) If dimEG = t and the order of every finite p-subgroup of G divides ps,
then for every Z(p)G-module M and all i, we have

ps(t+1) · Ĥi(G,M) = 0.

(iii) If there is a bound on the order of the finite p-subgroups of G, then the
natural map

α : Ĥ∗(G,Z(p)) → Ĥ∗(G,Z/pZ)

has the property that every element in the kernel of α is nilpotent and for
any u ∈ Ĥ∗(G,Z/pZ) there exists k such that upk

lies in the image of α.
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Proof. Statement (i) is [10, Cor. 3.3]. For (ii) we observe that for every Z(p)G-
module M , the E1-term of the stabilizer spectral sequence is annihilated by ps.
Since EG has dimension t, this implies that ps(t+1) annihilates all groups
Ĥ∗(G,M). For (iii) we first use (ii) to conclude that ps(t+1) annihilates the
groups Ĥ∗(G,Z(p)). One then argues as in the proof of [4, Chap. X, Lem. 6.6]
that for any ℓ > 0 and x ∈ Ĥ∗(G,Z/pZ), xpℓ

lies in the image Iℓ of

Ĥ∗(G,Z/pℓ+1Z) → Ĥ∗(G,Z/pZ),

and that for ℓ large enough, Iℓ equals the image of the natural map

α : Ĥ∗(G,Z(p)) → Ĥ∗(G,Z/pZ),

implying one part of (iii). If y lies in the kernel of α, the long exact coefficient
sequence associated with the short exact sequence

Z(p)
p
−→ Z(p) → Z/pZ

shows that y = pz for some z and therefore ys(t+1) = ps(t+1)zs(t+1) = 0,
finishing the proof of (iii). �

Theorem 7.2. Let G be a group which admits a finite-dimensional EG. Then
the following holds.

(a) G has Z/pZ-periodic cohomology if and only if all its finite subgroups do.
(b) G has p-periodic cohomology if all its finite subgroups do and there is a

bound on the order of the finite p-subgroups of G.

Proof. (a): If G has Z/pZ-periodic cohomology and e ∈ Hn(G,Z/pZ) is a peri-
odicity generator, then every subgroup H < G has Z/pZ-periodic cohomology,
with periodicity generator the restriction eH ∈ Hn(H,Z/pZ). This follows
from the natural isomorphism

H∗(H,M) ∼= H∗(G,CoindGH M)

(Shapiro Lemma). If all finite subgroups of G have Z/pZ-periodic cohomology,
there exists a unit u ∈ Ĥn(G,Z/pZ) for some n > 0 (cp. [10, Thm. 4.4]). Since
dimEG is finite, there is a k > 0 such that the natural map θ : Hj(G,M) →
Ĥj(G,M) is an isomorphism for all j ≥ k and all ZG-modules M . Choose
ℓ such that the degree of uℓ is larger than k and choose e ∈ Hnℓ(G,Z/pZ)
such that θ(e) = uℓ. Then G has Z/pZ-periodic cohomology with periodicity
generator e, finishing the proof of (a).

(b): We assume that all finite subgroups of G have p-periodic cohomology
and that there is a bound on the order of the finite p-subgroups of G. From
[10, Thm. 4.4] we conclude that there exists a unit u ∈ Ĥn(G,Z/pZ) for some
n > 0. Let v = u−1. By Lemma 7.1 we can find k > 0 and ũ, ṽ ∈ Ĥ∗(G,Z(p))
such that

α(ũ) = upk

and α(ṽ) = vp
k

,

where α : Ĥ∗(G,Z(p)) → Ĥ∗(G,Z/pZ) is the natural map. From Lemma 7.1
we conclude that 1 − ũṽ is nilpotent, thus ũṽ is invertible, and we conclude
that ũ ∈ Ĥnpk

(G,Z(p)) is a unit. Since G admits a finite-dimensional EG,
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the supremum of the injective length of projective ZG-modules, silpZG, is
finite. Therefore, there is an n0 such that Hn(G,P ) = 0 for all n > n0 and all
projective ZG-modules P . By a basic property of Tate cohomology, this implies
that there exists m > 0 such that the canonical map λ : Hi(G,L) → Ĥi(G,L)
is an isomorphism for all i > m and all ZG-modules L. By choosing an
r > 0 such that ũr has degree larger than m, it follows that there is an

ǫ ∈ Hnpkr(G,Z(p)) with λ(ǫ) = ũr. Let

β : Hnpkr(G,Z(p)) → Hnpkr(G, Ẑp)

be the canonical map and put e = β(ǫ). Then the cup product with e induces
isomorphisms

e ∪ − : Hj(G,M) → Hj+npkr(G, Ẑp ⊗M) = Hj+npkr(G,M)

for all j > m and all p-torsion ZG-modules M of bounded exponent, proving
that G has p-periodic cohomology. �

Note that we made use of the bound condition in (b) of Theorem 7.2 to
prove the result, but that bound is not a necessary condition. For instance,
the Prüfer group Zp∞ := Q/Z(p) has p-periodic cohomology, but no bound
on the order of its finite p-subgroups. On the other hand, the following is an
example of a group G which admits a finite-dimensional EG and with all finite
subgroups having p-periodic cohomology, but with no p-periodic cohomology.
Let α ∈ Ẑ×

p be a p-adic unit and define G(α) to be the semi-direct product

Zp∞ ⋊α Z, where we have identified Aut(Zp∞) with Ẑ×
p .

Example 7.3. Let p be an odd prime and put G(1 + p) = Zp∞ ⋊1+p Z.

(a) G(1 + p) has Z/pZ-periodic cohomology of period 2.
(b) G(1 + p) does not have p-periodic cohomology.
(c) G(1 + p) has twisted p-periodic cohomology.
(d) G(1 + p) acts freely on a simply connected 7-dimensional G(1 + p)-CW-

complex which is a Z/pZ-homology 3-sphere.

Proof. (a): Let Z act on Q via φ : Z → Aut(Q) defined by φ(n)q = (1 + p)nq,
q ∈ Q. Form the semi-direct product H = Q ⋊φ Z. There is a natural
surjective map H → G(1+p) with kernel isomorphic to Z(p). Note that H has
cohomological dimension 3. Choose Y to be a 3-dimensional model for K(H, 1)
and X the covering space corresponding to Z(p) < H . X is a free G(1 + p)-
CW-complex and X ≃ K(Z(p), 1), thus X is a Z/pZ-homology 1-sphere. We
then have homotopy fibration

X → X/G(1 + p) → BG(1 + p), XZ/pZ = S1
Z/pZ

which is HZ/pZ-orientable, because multiplication by 1 + p is the identity on
Z/pZ. It follows that the associated Z/pZ-Euler class e ∈ H2(G(1 + p),Z/pZ)
induces, via the cup product, isomorphisms

Hi(G(1 + p),M)
e∪−
−−−→ Hi+2(G(1 + p),M)

for all i > 3 and all Z/pZ[G]-modules M , which proves (a).
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(b): We consider the subgroups

Gn = Z/pnZ ⋊1+p Z < G(1 + p)

and observe that the minimal p-period for H∗(Gn,Z/p
nZ) is at least 2pn−1,

because multiplication by 1+p on H2(Z/pnZ,Z/pnZ) = Z/pnZ is an automor-
phism of order pn−1 for odd p. Thus, the minimal p-period for Gn goes to ∞
as n tends to ∞. Therefore, G(1 + p) does not have p-periodic cohomology.

(c): We observe that the twisted Ẑp-Euler class ẽ ∈ H2(G(1 + p), Ẑp(ω)) of
the homotopy Z/pZ-spherical fibration constructed in (a), with ω : G(1+p) →
Ẑ×

p given by (x, y) 7→ (1+ p)y for (x, y) ∈ Zp∞ ⋊Z, has reduction mod p equal
to the Z/pZ-Euler class e of (a). It follows that G(1+p) has twisted p-periodic
cohomology of period 2, with twisted p-periodicity induced by the cup product
with ẽ.

(d): We again look at the free G(1 + p)-CW-complex X as constructed
in (a). The join X ∗ X is a simply connected free G(1 + p)-CW-complex of
dimension 7, which is a Z/pZ-homology 3-sphere, completing the proof. �
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