Groups with twisted *p*-periodic cohomology

Guido Mislin and Olympia Talelli

(Communicated by Tadeusz Januszkiewicz)

Abstract. We give a characterization of groups with twisted p-periodic cohomology in terms of group actions on mod p homology spheres. An equivalent algebraic characterization of such groups is also presented.

1. INTRODUCTION

We will consider groups with twisted *p*-periodic cohomology (*p* a prime) in the following sense. Write $\hat{Z}_p(\omega)$ for the group of *p*-adic integers, equipped with a *G*-action via a homomorphism $\omega : G \to \hat{Z}_p^{\times}$. For *M* a $\mathbb{Z}G$ -module, we write M_{ω} for the $\mathbb{Z}G$ -module $M \otimes \hat{Z}_p(\omega)$ with diagonal *G* action.

Definition 1.1. A group G is said to have twisted p-periodic cohomology, if there are a k > 0, a homomorphism $\omega : G \to \hat{Z}_p^{\times}$ and a cohomology class $e_{\omega} \in H^n(G, \hat{Z}_p(\omega))$ for some n > 0, such that

$$e_{\omega} \cup -: H^i(G, M) \to H^{i+n}(G, M_{\omega})$$

is an isomorphism for all $i \geq k$ and all *p*-torsion $\mathbb{Z}G$ -modules M of finite exponent. In case the twisting ω can be chosen to be trivial, we say that G has *p*-periodic cohomology.

By replacing e_{ω} with e_{ω}^2 we see that for G with twisted p-periodic cohomology one can assume, if one wishes to, that the degree n of the periodicity generator is even. In case of a finite group G, we infer, by replacing e_{ω} by a suitable cup power, that if G has twisted p-periodic cohomology, it also has p-periodic cohomology. A classical theorem states that a finite group has p-periodic cohomology if and only if all its abelian p-subgroups are cyclic. Moreover, the finite groups with p-periodic cohomology have the following characterization in terms of actions on $\mathbb{Z}/p\mathbb{Z}$ -homology spheres.

The second author was supported by a GSRT/Greece excellence grant, cofounded by the ESF/EV and Natural Resources.

Theorem 1.2 (Swan [12]). A finite group G has p-periodic cohomology if and only if there exists a finite, simply connected free G-CW-complex, which has the same $\mathbb{Z}/p\mathbb{Z}$ -homology as some sphere.

Our goal is to find a similar characterization for arbitrary groups with (twisted) *p*-periodic cohomology.

Definition 1.3. A *CW*-complex X is called a $\mathbb{Z}/p\mathbb{Z}$ -homology *n*-sphere, if $H_*(X, \mathbb{Z}/p\mathbb{Z}) \cong H_*(S^n, \mathbb{Z}/p\mathbb{Z})$.

In Section 5 we will prove the following generalization of Theorem 1.2.

Theorem 1.4. A group G has twisted p-periodic cohomology if and only if there exists a simply connected $\mathbb{Z}/p\mathbb{Z}$ -homology sphere X, which is a free G-CW-complex satisfying $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}}(X/G) < \infty$.

For the definition of the cohomological dimension $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}}$ of a space see Section 2.

As we will see in Section 7, there are groups which have twisted p-periodic cohomology but which do not have p-periodic cohomology. For groups with p-periodic cohomology we prove the following characterization.

Theorem 1.5. A group G has p-periodic cohomology if and only if there exists a free G-CW-complex X with homotopically trivial G-action such that X is a $\mathbb{Z}/p\mathbb{Z}$ -homology sphere satisfying $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}}(X/G) < \infty$.

We will also consider groups with $\mathbb{Z}/p\mathbb{Z}\text{-}\mathrm{periodic}$ cohomology in the following sense.

Definition 1.6. A group G is said to have $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology, if there is a cohomology class $e \in H^n(G, \mathbb{Z}/p\mathbb{Z})$ for some n > 0 and an integer k > 0, such that for every $\mathbb{Z}/p\mathbb{Z}[G]$ -module M the map

$$e \cup -: H^i(G, M) \to H^{i+n}(G, M)$$

is an isomorphism for all $i \ge k$.

The following is a simple observation.

Lemma 1.7. Suppose that G has twisted p-periodic cohomology. Then G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology.

Indeed, if $e_{\omega} \in H^n(G, \hat{Z}_p(\omega))$ gives rise to twisted periodicity as above and $e_{\omega}(p) \in H^n(G, (\mathbb{Z}/p\mathbb{Z})_{\omega})$ denotes the mod p reduction of e_{ω} , then G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology with periodicity generator the (p-1)-fold cup product $e := e_{\omega}(p)^{p-1} \in H^{n(p-1)}(G, \mathbb{Z}/p\mathbb{Z}).$

If M is a fixed $\mathbb{Z}G$ -module which is p-torsion of finite exponent p^{k+1} , then the $p^k(p-1)$ -fold twisted module

$$M_{\omega^{p^k(p-1)}} := ((\cdots (M_{\omega}) \cdots)_{\omega})_{\omega}$$

is naturally isomorphic as a $\mathbb{Z}G$ -module to M. Therefore, if G has twisted p-periodic cohomology of some period n, its cohomology with M coefficients will

actually be periodic in high dimensions $d \ge d_0(M)$, with period $n \cdot p^k(p-1)$. In general, it is not possible to choose the dimensions $d_0(M)$ so that they are bounded by a number independent of M. This observation leads to an example of a group with twisted *p*-periodic cohomology but not having *p*periodic cohomology (cp. Example 7.3).

It is this example together with the fundamental paper [1] by Adem and Smith which inspired our work. For background on groups acting freely on finite-dimensional homology spheres, see [10] and [13].

2. $\mathbb{Z}/p\mathbb{Z}$ -dimension for spaces and $\mathbb{Z}/p\mathbb{Z}$ -localization

Similarly to the definition of the $\mathbb{Z}/p\mathbb{Z}$ -cohomological dimension of groups, one defines the $\mathbb{Z}/p\mathbb{Z}$ -cohomological dimension for spaces as follows.

Definition 2.1. Let X be a connected CW-complex and k > 0. The $\mathbb{Z}/p\mathbb{Z}$ cohomological dimension $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}}(X)$ of X is the smallest integer n such that $H^i(X, M) = 0$ for all $\mathbb{Z}/p\mathbb{Z}[\pi_1(X)]$ -modules M and all i > n; if there is no
such n, we write $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}}(X) = \infty$.

A simple induction on k shows that if $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} X < \infty$, then there exists an i > 0 such that for all k and all $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(X)]$ -modules $M, H^j(X, M) = 0$ for all j > i.

In [3], Bousfield constructed, on the homotopy category of CW-complexes, the localization with respect to $H_*(-, \mathbb{Z}/p\mathbb{Z})$, which we call the $\mathbb{Z}/p\mathbb{Z}$ -localization and which consists of a functorial $H_*(-, \mathbb{Z}/p\mathbb{Z})$ -isomorphism

$$c(X): X \to X_{\mathbb{Z}/p\mathbb{Z}},$$

which is characterized by the following universal property.

For every $H_*(-, \mathbb{Z}/p\mathbb{Z})$ -isomorphism $f: X \to Z$ there is a unique map (up to homotopy) $g: Z \to X_{\mathbb{Z}/p\mathbb{Z}}$ such that $g \circ f \simeq c(X)$:

If X is simply connected (or nilpotent) and of finite type, then $X_{\mathbb{Z}/p\mathbb{Z}}$ agrees with Sullivan's *p*-completion \hat{X}_p (cp. [11]), and $X \to \hat{X}_p$ is profinite *p*-completion on the level of homotopy groups.

Note that if X is simply connected, then one has $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} X = \operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} X_{\mathbb{Z}/p\mathbb{Z}}$, but for instance

$$\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} S^1 = 1 < \operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} S^1_{\mathbb{Z}/p\mathbb{Z}} = \infty$$

(because $\pi_1(S^1_{\mathbb{Z}/p\mathbb{Z}})$ contains a free abelian subgroup of infinite rank).

By the standard $\mathbb{Z}/p\mathbb{Z}$ -homology *n*-sphere we mean $S^n_{\mathbb{Z}/p\mathbb{Z}}$.

Lemma 2.2. Let X be a $\mathbb{Z}/p\mathbb{Z}$ -homology n-sphere. Then $X_{\mathbb{Z}/p\mathbb{Z}}$ is homotopy equivalent to $S^n_{\mathbb{Z}/p\mathbb{Z}}$.

Proof. Assume that $H_*(X, \mathbb{Z}/p\mathbb{Z}) \cong H_*(S^n, \mathbb{Z}/p\mathbb{Z})$. We first consider the case of n = 1. It follows that $\pi_1(X)_{ab} \otimes \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z}$. Choose an $f : S^1 \to X$ mapping to a generator of $\pi_1(X)_{ab} \otimes \mathbb{Z}/p\mathbb{Z}$. Then f induces an isomorphism in homology with $\mathbb{Z}/p\mathbb{Z}$ -coefficients. It follows that f induces a homotopy equivalence $S^1_{\mathbb{Z}/p\mathbb{Z}} \to X_{\mathbb{Z}/p\mathbb{Z}}$. Now assume that n > 1. Since

$$H_1(X, \mathbb{Z}/p\mathbb{Z}) \cong H_1(X_{\mathbb{Z}/p\mathbb{Z}}, \mathbb{Z}/p\mathbb{Z}) = 0,$$

we also have $H_1(\pi_1(X_{\mathbb{Z}/p\mathbb{Z}}), \mathbb{Z}/p\mathbb{Z}) = 0$. But $\pi_1(X_{\mathbb{Z}/p\mathbb{Z}})$ is an $H\mathbb{Z}/p\mathbb{Z}$ -local group, thus $\pi_1(X_{\mathbb{Z}/pZ}) = 0$ (see [3, Thm. 5.5]). We proceed by showing that $X_{\mathbb{Z}/p\mathbb{Z}}$ is (n-1)-connected. Let $\pi_i(X_{\mathbb{Z}/p\mathbb{Z}})$ be the first non-vanishing homotopy group of $X_{\mathbb{Z}/p\mathbb{Z}}$, i > 1. Because an $H_*(-, \mathbb{Z}_{(p)})$ -isomorphism is also an $H_*(-, \mathbb{Z}/p\mathbb{Z})$ -isomorphism, $X_{\mathbb{Z}/p\mathbb{Z}}$ is $H\mathbb{Z}_{(p)}$ -local and therefore its homology groups with \mathbb{Z} -coefficients are uniquely q-divisible for q prime to p. Moreover, for n > i > 1, multiplication by p is bijective on $H_i(X_{\mathbb{Z}/p\mathbb{Z}}, \mathbb{Z})$, because $H_j(X_{\mathbb{Z}/p\mathbb{Z}}, \mathbb{Z}/p\mathbb{Z}) = 0$ for j = i - 1, i. Thus $H_i(X_{\mathbb{Z}/p\mathbb{Z}}, \mathbb{Z})$ is a \mathbb{Q} -vector space for 1 < i < n. Since the only \mathbb{Q} -vector space, which is $H\mathbb{Z}/p\mathbb{Z}$ -local as an abelian group, is the trivial one, and because the homotopy groups of $X_{\mathbb{Z}/p\mathbb{Z}}$ are $H\mathbb{Z}/p\mathbb{Z}$ -local, we conclude from the Hurewicz Theorem that $X_{\mathbb{Z}/p\mathbb{Z}}$ must be (n-1)-connected. It follows that the natural maps

$$\pi_n(X_{\mathbb{Z}/p\mathbb{Z}}) \to H_n(X_{\mathbb{Z}/p\mathbb{Z}},\mathbb{Z}) \to H_n(X_{\mathbb{Z}/p\mathbb{Z}},\mathbb{Z},p\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$$

are both surjective. Choose an $f: S^n \to X_{\mathbb{Z}/p\mathbb{Z}}$ which maps to a generator of $H_n(X_{\mathbb{Z}/p\mathbb{Z}}, \mathbb{Z}/p\mathbb{Z})$ and it follows that f induces a homotopy equivalence

$$S^n_{\mathbb{Z}/p\mathbb{Z}} \to X_{\mathbb{Z}/p\mathbb{Z}}.$$

There is also a fiberwise version of $\mathbb{Z}/p\mathbb{Z}$ -localization (see [8] for details). If

$$X \to E \to B$$

is a fibration of connected CW-complexes, one can construct a new fibration

$$X_{\mathbb{Z}/p\mathbb{Z}} \to E^f_{\mathbb{Z}/p\mathbb{Z}} \to B,$$

together with a map $E \to E_{\mathbb{Z}/p\mathbb{Z}}^f$ over B, which restricts on the fibers to $\mathbb{Z}/p\mathbb{Z}$ localization $X \to X_{\mathbb{Z}/p\mathbb{Z}}$. Using the Serre spectral sequence, we conclude the following. If $F \to E \to B$ is a fibration of connected *CW*-complexes with Fsimply connected, then

$$\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E = \operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E^f_{\mathbb{Z}/p\mathbb{Z}}.$$

Also, if the fiber F is a $\mathbb{Z}/p\mathbb{Z}$ -homology sphere, then fiberwise $\mathbb{Z}/p\mathbb{Z}$ -localization yields a fibration with fiber a standard $\mathbb{Z}/p\mathbb{Z}$ -homology sphere

$$S^n_{\mathbb{Z}/p\mathbb{Z}} \to E^f_{\mathbb{Z}/p\mathbb{Z}} \to B.$$

3. FIBRATIONS, ORIENTATIONS AND EULER CLASSES

If $F \to E \to B$ is a fibration of connected *CW*-complexes, then $\pi_1(E) \to \pi_1(B)$ is surjective and lifting of loops defines a natural map $\theta : \pi_1(B) \to [F, F]$, a homotopy action of $\pi_1(B)$ on *F*.

Definition 3.1. Let $F \to E \to B$ be a fibration of connected *CW*-complexes. The fibration is called orientable, if the associated homotopy action $\pi_1(B) \to [F, F]$ is trivial. We call the fibration $H\mathbb{Z}/p^k\mathbb{Z}$ -orientable, if $\pi_1(B)$ acts trivially on $H_*(F, \mathbb{Z}/p^k\mathbb{Z})$.

Clearly, if a fibration is orientable, it is $H\mathbb{Z}/p^k\mathbb{Z}$ -orientable for all k.

Definition 3.2. Let $F \to E \to B$ be a fibration of connected *CW*-complexes. We call such a fibration $\mathbb{Z}/p\mathbb{Z}$ -spherical in case F is a $\mathbb{Z}/p\mathbb{Z}$ -homology sphere (or, equivalently, if $F_{\mathbb{Z}/p\mathbb{Z}} \simeq S_{\mathbb{Z}/p\mathbb{Z}}^n$ for some n > 0).

We will make use of the following observation.

Lemma 3.3. For a group G the following conditions are equivalent.

- (a) There exists a simply connected free G-CW-complex X which is a Z/pZhomology sphere satisfying cd_{Z/pZ} X/G < ∞.</p>
- (b) There exists a $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration $F \to E \to K(G,1)$ with F simply connected and $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E < \infty$.

Proof. Let X be as in (a) and $f : X/G \to K(G, 1)$ the classifying map for the universal cover X of X/G. Then the homotopy fiber of f is G-homotopy equivalent to X, thus (b) holds. If $F \to E \to K(G, 1)$ is as in (b), the universal cover of E is G-homotopy equivalent to F, thus (a) holds. \Box

Note that if X is any $\mathbb{Z}/p\mathbb{Z}$ -homology sphere, it is also a $\mathbb{Z}/p^k\mathbb{Z}$ -homology sphere for k > 1 as one easily sees by induction on k. Thus, for a $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration $F \to E \to B$ as in Definition 3.2, the $\pi_1(B)$ -module $H_n(F, \mathbb{Z}/p^k\mathbb{Z})$ is isomorphic to a twisted module $(\mathbb{Z}/p^k\mathbb{Z})_{\omega}$, where $\omega : \pi_1(B) \to (\mathbb{Z}/p^k\mathbb{Z})^{\times}$ corresponds to the action of $\pi_1(B)$ on $H_n(F, \mathbb{Z}/p^k\mathbb{Z})$. (If we need to emphasize the dependence of ω on k, we write $\omega(k)$ in place of ω). We call the twisted module $(\mathbb{Z}/p^k\mathbb{Z})_{\omega}$ the k-orientation module. The fibration is $H\mathbb{Z}/p^k\mathbb{Z}$ -orientable in the sense of Definition 3.1, if the k-orientation module is the trivial $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ module $\mathbb{Z}/p^k\mathbb{Z}$. We write $\bar{\omega}$ for the map $\pi_1(B) \to (\mathbb{Z}/p^k\mathbb{Z})^{\times}$ given by $\bar{\omega}(x) =$ $\omega(x^{-1})$, and more generally ω^n for the map with $\omega^n(x) = \omega(x^n), n \in \mathbb{Z}$. For any $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ -module M we write M_{ω} for $M \otimes (\mathbb{Z}/p^k\mathbb{Z})_{\omega}$ with diagonal $\pi_1(B)$ -action $x \cdot (m \otimes z) = xm \otimes \omega(x)z$. Similarly, we consider the diagonal action on $\operatorname{Hom}_{\mathbb{Z}/p^k\mathbb{Z}}(\mathbb{Z}/p^k\mathbb{Z})_{\omega}, M)$ given by

$$(xf)(z) = x \cdot f(\bar{\omega}(x)z).$$

Therefore, there is a natural isomorphism of $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ -modules

$$H^n(F,M) \cong \operatorname{Hom}(H_n(F,\mathbb{Z}/p^k\mathbb{Z}),M) \cong \operatorname{Hom}((\mathbb{Z}/p^k\mathbb{Z})_\omega,M) \cong M_{\bar{\omega}}.$$

In the case of a $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration $F \to E \to B$, the only possibly nonzero differential in the Serre spectral sequence with coefficients in a $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(E)]$ -module K,

$$E_2^{i,\ell} = H^i(B, H^\ell(F, K)) \Longrightarrow H^{i+\ell}(E, K),$$

is the transgression differential

$$d_{n+1}: E_2^{i,n} = E_{n+1}^{i,n} \to E_{n+1}^{i+n+1,0} = E_2^{i+n+1,0}$$

Taking for K the k-orientation module $(\mathbb{Z}/p^k\mathbb{Z})_{\omega}$ and choosing i = 0, this yields

$$d_{n+1}: \mathbb{Z}/p^k \mathbb{Z} = H^0(B, \mathbb{Z}/p^k \mathbb{Z}) \to H^{n+1}(B, (\mathbb{Z}/p^k \mathbb{Z})_\omega).$$

and the image of $1 \in \mathbb{Z}/p^k\mathbb{Z}$,

$$d_{n+1}(1) =: e(k)_{\omega} \in H^{n+1}(B, (\mathbb{Z}/p^k \mathbb{Z})_{\omega}),$$

is called the *twisted* $\mathbb{Z}/p^k\mathbb{Z}$ -Euler class of the given $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration. Let now M be an arbitrary $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ -module and choose $K = M_\omega$. Thus $H^n(F, M_\omega) = M$ and

$$d_{n+1}: E_2^{i,n} = H^i(B,M) \to H^{i+n+1}(B,M_\omega) = E_2^{i+n+1,0}$$

is given by the cup product with $e(k)_{\omega}$. The kernel and image of d_{n+1} are determined as

$$E_{\infty}^{i,n} = \ker d_{n+1} \subset E_2^{i,n} = H^i(B,M) \xrightarrow{d_{n+1}} H^{i+n+1}(B,M_{\omega})$$

and

$$H^{i}(B,M) \xrightarrow{d_{n+1}} H^{i+n+1}(B,M_{\omega}) = E_{2}^{i+n+1,0} \twoheadrightarrow \operatorname{coker} d_{n+1} = E_{\infty}^{i+n+1,0},$$

respectively. The natural surjection $\sigma: H^{i+n}(E, M) \to E_{\infty}^{i,n}$ has as kernel the subgroup $E_{\infty}^{i+n,0}$ and, by splicing things together, one gets the *Gysin-sequence*

$$\rightarrow H^{i+n}(E,M) \xrightarrow{\sigma} H^{i}(B,M) \xrightarrow{e(k)_{\omega} \cup -} H^{i+n+1}(B,M_{\omega})$$
$$\rightarrow H^{i+n+1}(E,M_{\omega}) \rightarrow .$$

One concludes that for large values of i and all $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ -modules M, the cup product with $e(k)_{\omega}$ induces for all k isomorphisms

$$e(k)_{\omega} \cup -: H^{i}(B, M) \xrightarrow{\cong} H^{i+n+1}(B, M_{\omega})$$

if and only if there exists a j_0 such that for all $j > j_0$, $H^j(E, M) = 0$ for all $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ -modules M and all k (here M is viewed as $\pi_1(E)$ -module via $\pi_1(E) \to \pi_1(B)$). In case F is simply connected, this amounts to $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E < \infty$.

Corollary 3.4. Let $F \to E \to B$ be a $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration of CWcomplexes with B connected and F simply connected, with twisted $\mathbb{Z}/p^k\mathbb{Z}$ -Euler classes $e(k)_{\omega(k)} \in H^n(B, (\mathbb{Z}/p^k\mathbb{Z})_{\omega(k)}), k \geq 1$. Then the following conditions are equivalent.

- (1) $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E < \infty$.
- (2) There exists i_0 such that, for all $i > i_0$ and all $k \ge 1$,

$$e(k)_{\omega(k)} \cup -: H^i(B, M) \to H^{i+n}(B, M_{\omega(k)})$$

is an isomorphism for all $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ -modules M.

In the situation of Corollary 3.4, it follows from the naturality of the Serre spectral sequence that the twisted $\mathbb{Z}/p^k\mathbb{Z}$ -Euler classes $e(k)_{\omega(k)}$ are the reduction mod p^k of a class $e_{\omega} \in H^n(B, \hat{Z}_p(\omega))$, where $\hat{Z}_p(\omega)$ is isomorphic to $\pi_{n-1}(F_{\mathbb{Z}/p\mathbb{Z}}) \cong \pi_{n-1}(S_{\mathbb{Z}/p\mathbb{Z}}^{n-1})$ as a $\pi_1(B)$ -module. Therefore, the following holds.

Corollary 3.5. If there exists a $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration of CW-complexes $F \to E \to K(G, 1)$ with F simply connected and $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E < \infty$, then G has twisted p-periodic cohomology.

The following lemma permits us to pass from $\mathbb{Z}/p\mathbb{Z}$ -spherical fibrations to $H\mathbb{Z}/p\mathbb{Z}$ -orientable ones.

Lemma 3.6. Let $F_1 \to E_1 \to B$ be a $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration of CW-complexes with B connected and F_1 simply connected, such that $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E_1 < \infty$. Then the (p-1)-fold fiberwise join yields an $H\mathbb{Z}/p\mathbb{Z}$ -orientable $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration $F_2 \to E_2 \to B$ over the same base, with $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E_2 < \infty$.

Proof. Let $e_{\omega} \in H^n(B, (\mathbb{Z}/p\mathbb{Z})_{\omega})$ be the twisted Euler class of the fibration $F_1 \to E_1 \to B$. Because $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E_1 < \infty$, we infer from Corollary 3.4 that there exists i_0 such that

$$e_{\omega} \cup -: H^i(B, M) \to H^{i+n}(B, M_{\omega})$$

is an isomorphism for all $i > i_0$ and all $\mathbb{Z}/p\mathbb{Z}[\pi_1(B)]$ -modules M. We then perform a fiberwise (p-1)-fold join to obtain a new $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration $F_2 \to E_2 \to B$ with Euler class $e = e_{\omega}^{p-1}$. This new fibration is $H\mathbb{Z}/p\mathbb{Z}$ orientable, because the (p-1)-fold tensor product of $(\mathbb{Z}/p\mathbb{Z})_{\omega}$ with diagonal action is the trivial $\mathbb{Z}/p\mathbb{Z}[\pi_1(B)]$ -module $\mathbb{Z}/p\mathbb{Z}$. Moreover,

$$e \cup -: H^i(B, M) \to H^{i+(p-1)n}(B, M)$$

is an isomorphism for $i > i_0$ and all $\mathbb{Z}/p\mathbb{Z}[\pi_1(B)]$ -modules M. Note that e is the reduction mod p of the twisted $\mathbb{Z}/p^k\mathbb{Z}$ -Euler class

$$e(k)_{\omega(k)} \in H^n(B, (\mathbb{Z}/p^k\mathbb{Z})_{\omega(k)})$$

of the $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration $F_2 \to E_2 \to B$. Induction on k then shows that

$$e(k)_{\omega(k)} \cup -: H^i(B, L) \to H^i(B, L_{\omega(k)})$$

is an isomorphism for all $\mathbb{Z}/p^k\mathbb{Z}[\pi_1(B)]$ -modules L. We infer from Corollary 3.4 that $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}}E_2 < \infty$.

4. Partial Euler classes

For a connected CW-complex X we write P_qX for its q-th Postnikov section, with canonical map $X \to P_qX$ such that

(1) $\pi_i(P_q(X)) = 0$ for i > q,

(2) $\pi_j(X) \xrightarrow{\cong} \pi_j(P_qX)$ for $j \leq q$.

In case that X is a $\mathbb{Z}/p\mathbb{Z}$ -homology *n*-sphere, we have $X_{\mathbb{Z}/p\mathbb{Z}} \simeq S_{\mathbb{Z}/p\mathbb{Z}}^n$. Therefore, $P_q(X_{\mathbb{Z}/p\mathbb{Z}}) = \{*\}$ for q < n and $P_n(X_{\mathbb{Z}/p\mathbb{Z}}) \simeq K(\hat{Z}_p, n)$. Adapting the terminology of [1], we define *k*-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler classes as follows.

Definition 4.1. Let *B* be a connected *CW*-complex and $k \ge 0$. Then $\epsilon \in H^n(B, \mathbb{Z}/p\mathbb{Z})$ is a *k*-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class if there exists a fibration

$$(\Phi): P_{n-1+k}(S^{n-1}_{\mathbb{Z}/p\mathbb{Z}}) \to E \to B$$

such that $\pi_1(B)$ acts trivially on $H^{n-1}(P_{n-1+k}(S^{n-1}_{\mathbb{Z}/p\mathbb{Z}}), \mathbb{Z}/p\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$ and there is a generator of that group which transgresses to ϵ in the Serre spectral sequence with $\mathbb{Z}/p\mathbb{Z}$ -coefficients for the fibration (Φ). The *k*-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class ϵ is called *orientable*, if the fibration (Φ) can be chosen to be orientable in the sense of Definition 3.1.

Lemma 4.2. Let B be a connected CW-complex and $\epsilon \in H^n(B, \mathbb{Z}/p\mathbb{Z})$ a kpartial $\mathbb{Z}/p\mathbb{Z}$ -Euler class. Then for all $\ell > 0$, ϵ^{ℓ} is a k-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class. If ϵ is orientable in the sense of Definition 4.1, then so is ϵ^{ℓ} .

Proof. Let

$$P := P_{n-1+k}(S^{n-1}_{\mathbb{Z}/p\mathbb{Z}}) \to E \to B$$

be a fibration such that $\pi_1(B)$ acts trivially on $H^{n-1}(P, \mathbb{Z}/p\mathbb{Z})$ and let $\alpha \in H^{n-1}(P, \mathbb{Z}/p\mathbb{Z})$ be an element which transgresses to ϵ . By forming fiberwise the ℓ -fold join and applying $\mathbb{Z}/p\mathbb{Z}$ -localization, we obtain a fibration

$$(*^{\ell}P)_{\mathbb{Z}/p\mathbb{Z}} \to E(\ell) \to B$$

In the Serre spectral sequence with $\mathbb{Z}/p\mathbb{Z}$ -coefficients for this new fibration, $(\alpha * \cdots * \alpha)_{\mathbb{Z}/p\mathbb{Z}}$ transgresses to ϵ^{ℓ} . Since $*^{\ell}S^{n-1} \simeq S^{n\ell-1}$, we have

$$P_{n\ell-1+k}((*^{\ell}P)_{\mathbb{Z}/p\mathbb{Z}}) = P_{n\ell-1+k}(S^{n\ell-1}_{\mathbb{Z}/p\mathbb{Z}})$$

and we obtain, by taking fiberwise Postnikov sections, a fibration

$$P_{n\ell-1+k}(S^{n\ell-1}_{\mathbb{Z}/p\mathbb{Z}}) \to E^f(\ell) \to B$$

for which the image of $(*^{\ell}\alpha)_{\mathbb{Z}/p\mathbb{Z}}$ under the natural map

$$H^{n\ell-1}((*^{\ell}P)_{\mathbb{Z}/p\mathbb{Z}}, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{\cong} H^{n\ell-1}(P_{n\ell-1+k}(S^{n\ell-1}_{\mathbb{Z}/p\mathbb{Z}}), \mathbb{Z}/p\mathbb{Z})$$

transgresses to ϵ^{ℓ} . It is obvious that ϵ^{ℓ} is orientable if ϵ is.

Lemma 4.3. Let $(\Phi_0) : S^n_{\mathbb{Z}/p\mathbb{Z}} \to E \to B$ be a fibration with B connected and n > 0. By taking fiberwise Postnikov sections, we obtain fibrations

$$(\Phi_k): P_{n+k}S^n_{\mathbb{Z}/p\mathbb{Z}} \to E_k \to B, \quad k \ge 0.$$

Münster Journal of Mathematics Vol. 8 (2015), 99-117

The fibrations (Φ_k) , $k \ge 0$, are all orientable if and only if $\pi_1(B)$ acts trivially on $\pi_n(S^n_{\mathbb{Z}/p\mathbb{Z}}) \cong \hat{Z}_p$.

Proof. This follows from the functoriality of P_{n+k} and the fact that homotopy classes $S^n_{\mathbb{Z}/p\mathbb{Z}} \to S^n_{\mathbb{Z}/p\mathbb{Z}}$ correspond naturally to elements of $\pi_n(S^n_{\mathbb{Z}/p\mathbb{Z}})$.

Definition 4.4. Let X be a connected CW-complex with fundamental group G. An element $x \in H^n(X, \mathbb{Z}/p\mathbb{Z})$ is called ω -p-integral, if there exists an action $\omega : G \to \hat{Z}_p^{\times}$ such that G acts trivially on $\hat{Z}_p(\omega)/p\hat{Z}_p(\omega) \cong \mathbb{Z}/p\mathbb{Z}$ and x lies in the image of the natural coefficient homomorphism $H^n(X, \hat{Z}_p(\omega)) \to H^n(X, \mathbb{Z}/p\mathbb{Z})$. In case the action ω can be chosen to be trivial, x is called p-integral.

To deal with non-orientable fibrations, we recall the following fact. Let

$$(F): K(M,m) \to E \to B$$

be a fibration with connected base B, m > 0 and induced action of $\pi_1(B) = G$ on M corresponding to the homomorphism $\phi: G \to \operatorname{Aut}(M)$. Such fibrations are classified by cohomology elements with local coefficients as follows. There is a universal fibration

$$K(M, m+1) \rightarrow L_{\phi}(M, m+1) \rightarrow K(G, 1)$$

such that fibrations of type (F) correspond to homotopy classes of maps $f: B \to L_{\phi}(M, m+1)$ over K(G, 1). The homotopy class over K(G, 1) of such an f corresponds to an element in the cohomology with local coefficients $H^{m+1}(B, M)$, see [2] or [6].

The following lemma is a variation of [1, Lem. 2.5].

Lemma 4.5. Let $x \in H^{2n}(X, \mathbb{Z}/p\mathbb{Z})$ be an ω -p-integral element. Then some cup power of x is a k-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class and this k-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class is orientable (in the sense of Definition 4.1) in case x is p-integral.

Proof. Let G be the fundamental group of X. Since x is ω -p-integral, there exist $\omega : G \to \hat{Z}_p^{\times}$ and $\tilde{x} \in H^{2n}(X, \hat{Z}_p(\omega))$ mapping to x under reduction mod p. Let $\mu : X \to L_{\omega}(\hat{Z}_p, 2n)$ correspond to \tilde{x} . It classifies a fibration

$$K(\hat{Z}_p(\omega), 2n-1) \to E \to X$$

with

$$\begin{aligned} H^{2n-1}(K(\hat{Z}_p(\omega), 2n-1), \mathbb{Z}/p\mathbb{Z}) &\cong H^{2n-1}(K(\hat{Z}_p/p\hat{Z}_p, 2n-1), \mathbb{Z}/p\mathbb{Z}) \\ &\cong \mathbb{Z}/p\mathbb{Z} \end{aligned}$$

having trivial *G*-action. This shows that x is a 0-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class. Suppose now that k > 0 is given and that x^m is a (k - 1)-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class. Thus there is a fibration

$$P_{2nm-1+k-1}(S^{2nm-1}_{\mathbb{Z}/p\mathbb{Z}}) =: P(k-1) \to E(k-1) \to X$$

with a generator of $H^{2nm-1}(P(k-1), \mathbb{Z}/p\mathbb{Z})^G = \mathbb{Z}/p\mathbb{Z}$ transgressing to $y := x^m$. By Lemma 4.2, for all j, the power y^j is a (k-1)-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class too. Thus there are fibrations

$$P_{2nmj-1+k-1}(S^{2nmj-1}_{\mathbb{Z}/p\mathbb{Z}}) =: Q(k-1) \to F(k-1) \to X$$

with a generator of $H^{2nmj-1}(Q(k-1), \mathbb{Z}/p\mathbb{Z})^G = \mathbb{Z}/p\mathbb{Z}$ transgressing to $y^j = x^{mj}$. To show that for a suitable j, the power y^j gives rise to a k-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class, we need to check that the classifying map

$$\theta: Q(k-1) \to K(\pi, 2nmj+k)$$

for the fibration $Q(k) \to Q(k-1)$ factors through F(k-1). Note that

$$\pi := \pi_{2nmj+k-1}(Q(k)) = \pi_{2nmj+k-1}(S^{2nmj-1}_{\mathbb{Z}/p\mathbb{Z}})$$

is a finite p-group on which $\pi_1(X) = G$ acts via

$$\omega^{mj}: G \to \hat{Z}_p^{\times} = \operatorname{HoAut}(S^{2nmj-1}_{\mathbb{Z}/p\mathbb{Z}}).$$

We write $\underline{\pi}$ for π with that action. Because of the naturality of the Postnikov section functor, the homotopy fibration

$$Q(k) \to Q(k-1) \xrightarrow{\theta} K(\underline{\pi}, 2nmj+k)$$

is compatible with the homotopy G-action via ω^{mj} on these spaces. Therefore,

$$[\theta] \in H^{2nmj+k}(Q(k-1), \underline{\pi})$$

is G-invariant with respect to the diagonal G-action on this cohomology group. In the Serre spectral sequence for $Q(k-1) \to F(k-1) \to X$ with $\underline{\pi}$ coefficients,

$$H^{s}(X, H^{t}(Q(k-1), \underline{\pi})) \Rightarrow H^{s+t}(F(k-1), \underline{\pi}),$$

the cohomology class $[\theta]$ lies thus in

$$E_2^{0,2nmj+k} = H^{2nmj+k} (Q(k-1), \underline{\pi})^G$$

To show that $[\theta]$ is the restriction of a class in the cohomology of F(k-1) with $\underline{\pi}$ -coefficients amounts to showing that $[\theta]$ is a permanent cycle. The same argument as in [1, Lem. 2.5] shows that this is the case for j a large enough p-power. It follows that some power of x is a k-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class. In case x is p-integral, the argument shows that the k-partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class we obtained is orientable.

5. Proof of Theorems 1.4 and 1.5

We will give the proof of Theorem 1.4. The proof of Theorem 1.5 is analogous but simpler.

Suppose that G has twisted p-periodic cohomology. Then there exist for some n > 0 an ω -p-integral class $\epsilon \in H^{2n}(G, \mathbb{Z}/p\mathbb{Z})$ and $\epsilon_{\omega} \in H^{2n}(G, \hat{Z}_p(\omega))$, whose reduction mod p is ϵ , such that there is an $\ell_0 > 0$ with the property that the cup product with ϵ_{ω} induces isomorphisms $H^i(G, M) \to H^{i+2n}(G, M_{\omega})$ for all $i \geq \ell_0$ and all p-torsion $\mathbb{Z}G$ -modules M of finite exponent. By Lemma 4.5 we can find a cup power ϵ^m which is an ℓ_o -partial $\mathbb{Z}/p\mathbb{Z}$ -Euler class. Therefore, we have a fibration

$$F(\ell_0): P_{2nm-1+\ell_0}(S^{2nm-1}_{\mathbb{Z}/p\mathbb{Z}}) \to E(\ell_0) \to K(G, 1),$$

with the property that a generator of

$$H^{2nm-1}(P_{2nm-1+\ell_0}(S^{2nm-1}_{\mathbb{Z}/p\mathbb{Z}}),\mathbb{Z}/p\mathbb{Z})\cong\mathbb{Z}/p\mathbb{Z}$$

transgresses to ϵ^m in the Serre spectral sequence for $F(\ell_0)$. We want to show inductively that ϵ^m is a k-partial Euler class for all $k \ge \ell_0$. Write P(j) for $P_{2nm-1+j}(S^{2nm-1}_{\mathbb{Z}/p\mathbb{Z}})$. We will inductively construct fibrations

 $F(k): P(k) \to E(k) \to K(G, 1)$

for $k > \ell_0$ with the property that a generator of $H^{2nm-1}(P(k), \mathbb{Z}/p\mathbb{Z})$ transgresses to ϵ^m . To pass from F(k-1) to F(k) we argue as follows. We have a diagram

in which the fibration $P(k) \rightarrow P(k-1)$ has fiber $K(\pi(\omega), 2nm-1+k)$ and is classified by a map

$$\theta: P(k-1) \to K(\pi(\omega), 2nm+k),$$

where $\pi(\omega)$ stands for the finite *p*-group $\pi := \pi_{2nm-1+k}(S^{2nm-1}) \otimes \hat{Z}_p$ with *G*-action induced by

$$\omega^m: G \to \hat{Z}_p^{\times} \cong \operatorname{Aut}(\pi_{2nm-1}(S^{2nm-1}_{\mathbb{Z}/p\mathbb{Z}})).$$

To construct the fibration F(k) and the dotted arrows depicted above, we need to show that θ factors through E(k-1). This amounts to showing that $[\theta]$, which lies in $H^{2nm+k}(P(k-1), \pi(\omega))$, is in the image of the restriction map

$$H^{2nm+k}(E(k-1),\pi(\omega)) \to H^{2nm+k}(P(k-1),\pi(\omega)).$$

As argued in the proof of Lemma 4.5, $[\theta] \in H^{2nm+k}(P(k-1), \pi(\omega))$ is *G*invariant with respect to the diagonal *G*-action via ω^m on this cohomology group. The restriction map in question corresponds to an edge homomorphism in the Serre spectral sequence with $\pi(\omega)$ -coefficients for the fibration $P(k-1) \rightarrow E(k-1) \rightarrow K(G, 1)$:

$$\begin{aligned} H^{2nm+k}(E(k-1),\pi(\omega)) &\twoheadrightarrow E_{\infty}^{0,2nm+k} \\ &\subset E_2^{0,2nm+k} = H^{2nm+k}(P(k-1),\pi(\omega))^G. \end{aligned}$$

We need therefore to check that $[\theta]$ is a permanent cycle in the Serre spectral sequence. The only differentials on $[\theta]$ which could be nonzero are, for dimension reasons, the differential

$$d_{k+2}: E_2^{0,2nm+k} = E_{k+2}^{0,2nm+k} \to E_{k+2}^{k+2,2nm-1}$$

which takes values in

$$\ker \big(\epsilon^m_\omega \cup -: H^{k+2}(G, \pi(\omega)_{\bar{\omega}^m}) \to H^{k+2+2nm}(G, \pi(\omega))\big),$$

respectively the differential

$$d_{2nm+k+1}: E^{0,2nm+k}_{2nm+k+1} \to E^{2nm+k+1,0}_{2nm+k+1},$$

which takes values in

$$\operatorname{coker}(\epsilon^m_{\omega} \cup -: H^{k+1}(G, \pi(\omega)) \to H^{2nm+k+1}(G, \pi(\omega)_{\omega^m})).$$

Because $k > \ell_0$, we know that for any *p*-torsion module *M* of bounded exponent,

$$\epsilon^m_\omega \cup -: H^s(G, M) \to H^{s+2nm}(G, M_{\omega^m})$$

is an isomorphism for s = k + 1, respectively s = k + 2. The differentials d_{k+2} , respectively $d_{2nm+k+1}$ depicted above are therefore equal to 0. We conclude that the fibrations in the diagram above can be constructed as displayed. Passing to homotopy limits in the towers $\{F(k)\}_{k\geq 0}$ of that diagram, one obtains a fibration

$$F(\infty): S^{2n-1}_{\mathbb{Z}/p\mathbb{Z}} \to E \to K(G,1),$$

as desired. To check that $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}}(E) < \infty$, one considers the Serre spectral sequence of the fibration $F(\infty)$ with coefficients in a $\mathbb{Z}/p\mathbb{Z}[G]$ -module L and finds that $H^{j}(E, L) = 0$ for j large enough, independent of L, finishing the first part of the proof.

Suppose now conversely that X is a simply connected free G-CW-complex which is a $\mathbb{Z}/p\mathbb{Z}$ -homology sphere satisfying $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} X/G < \infty$. By Lemma 3.3 there exists a $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration $F \to E \to K(G, 1)$ with F simply connected and $\operatorname{cd}_{\mathbb{Z}/p\mathbb{Z}} E < \infty$. Corollary 3.5 then implies that G has twisted p-periodic cohomology, completing the proof of Theorem 1.4.

6. Algebraic characterization

Let $x \in H^n(G, \mathbb{Z}/p\mathbb{Z})$ and consider a $\mathbb{Z}/p\mathbb{Z}[G]$ -projective resolution

$$\mathcal{P}_*: \dots \to P_n \xrightarrow{\partial_n} P_{n-1} \xrightarrow{\partial_{n-1}} \dots \to P_0 \to \mathbb{Z}/p\mathbb{Z} \to 0.$$

Denote for i > 0 the image $\partial_i P_i$ by K_i and let $\iota_i : K_i \to P_{i-1}$ be the natural injection. A cocycle representative of x corresponds to a map $\theta : K_n \to \mathbb{Z}/p\mathbb{Z}$. Form the diagram

where the square on the left is a push-out square. Then the class of the *n*-fold extension \tilde{x} , $[\tilde{x}] \in \operatorname{Ext}_{\mathbb{Z}/p\mathbb{Z}G}^{n}(\mathbb{Z}/p\mathbb{Z},\mathbb{Z}/p\mathbb{Z})$, corresponds to $x \in H^{n}(G,\mathbb{Z}/p\mathbb{Z})$.

Lemma 6.1. Let $e \in H^n(G, \mathbb{Z}/p\mathbb{Z})$ and consider the associated n-extension

$$\tilde{e}: 0 \to \mathbb{Z}/p\mathbb{Z} \to A \to P_{n-2} \to \dots \to P_0 \to \mathbb{Z}/p\mathbb{Z} \to 0$$

as above. Then the following conditions are equivalent.

- (1) G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology via the cup product with e.
- (2) The $\mathbb{Z}/p\mathbb{Z}[G]$ -projective dimension of A, proj. dim $_{\mathbb{Z}/p\mathbb{Z}[G]}A$, is finite.

Proof. Let \mathcal{P}_* be a $\mathbb{Z}/p\mathbb{Z}[G]$ -projective resolution of $\mathbb{Z}/p\mathbb{Z}$ and choose a map $\theta(e): K_n \to \mathbb{Z}/p\mathbb{Z}$ to represent e as above, giving rise to the *n*-extension \tilde{e} . It is known that the cup product with e is induced by a chain map $\Theta: \mathcal{P}_* \to \mathcal{P}_*$ of degree -n which extends $\theta(e)$. Consider the following commutative diagram with exact rows:

From the corresponding commutative diagram of long exact Ext-sequences

follows that $\operatorname{Ext}^{i}_{\mathbb{Z}/p\mathbb{Z}[G]}(\theta(e), -)$ is an isomorphism for large *i* if and only if *A* satisfies proj. dim_{\mathbb{Z}/p\mathbb{Z}[G]} A < \infty.

Corollary 6.2. Let G be a group with $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology. There exists k > 0 such that for all $i \ge k$ and all projective $\mathbb{Z}/p\mathbb{Z}[G]$ -modules P, $H^i(G, P) = 0$.

Proof. By Lemma 6.1, there is a monomorphism $\iota : \mathbb{Z}/p\mathbb{Z} \to A$ with A a $\mathbb{Z}/p\mathbb{Z}[G]$ -module of finite projective dimension d over $\mathbb{Z}/p\mathbb{Z}[G]$. Let I be an injective $\mathbb{Z}/p\mathbb{Z}[G]$ -module. I injects into $A \otimes_{\mathbb{Z}/p\mathbb{Z}} I$ via $x \mapsto \iota(1) \otimes x$ and, as I is injective, I is a retract of $A \otimes_{\mathbb{Z}/p\mathbb{Z}} I$. For any projective $\mathbb{Z}/p\mathbb{Z}[G]$ -module P, $P \otimes_{\mathbb{Z}/p\mathbb{Z}} I$ (with diagonal G-action) is projective too. It follows that

proj.
$$\dim_{\mathbb{Z}/p\mathbb{Z}[G]} A \otimes_{\mathbb{Z}/p\mathbb{Z}} I \leq d$$

and, because I is a retract of that module,

proj.
$$\dim_{\mathbb{Z}/p\mathbb{Z}[G]} I \leq d.$$

We conclude that the supremum of the projective length of injective $\mathbb{Z}/p\mathbb{Z}[G]$ modules is at most d, i.e.,

$$\operatorname{spli} \mathbb{Z}/p\mathbb{Z}[G] \le d.$$

This implies that the supremum of the injective length of projective $\mathbb{Z}/p\mathbb{Z}[G]$ modules is also no greater than d, i.e.,

$$\operatorname{silp} \mathbb{Z}/p\mathbb{Z}[G] \le d,$$

see [5, Thm. 2.4]. We infer that $H^i(G, P) = 0$ for i > d and all projective $\mathbb{Z}/p\mathbb{Z}[G]$ -modules P.

The following is an algebraic characterization of groups with twisted p-periodic cohomology.

Lemma 6.3. A group G has twisted p-periodic cohomology if and only if there exist an n > 1 and an exact sequence of $\mathbb{Z}/p\mathbb{Z}[G]$ -modules

$$\epsilon: 0 \to \mathbb{Z}/p\mathbb{Z} \to A \to P_{n-2} \to \dots \to P_0 \to \mathbb{Z}/p\mathbb{Z} \to 0$$

with P_i projective for $0 \leq i \leq n-2$ and proj. $\dim_{\mathbb{Z}/p\mathbb{Z}[G]} A < \infty$, such that $[\epsilon] \in \operatorname{Ext}_{\mathbb{Z}/p\mathbb{Z}[G]}^n(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p\mathbb{Z}) = H^n(G, \mathbb{Z}/p\mathbb{Z})$ is ω -p-integral. G has p-periodic cohomology if and only if there is an ϵ as above with $[\epsilon]$ being p-integral (for the definition of ω -p-integral and p-integral elements see Definition 4.4).

Proof. Suppose G has twisted p-periodic cohomology. By definition, there exist k > 0 and m > 0 and $\sigma : G \to \hat{Z}_p^{\times}$ and $e_{\sigma} \in H^m(G, \hat{Z}_p(\sigma))$ such that the cup product with e_{σ} induces isomorphisms $H^i(G, M) \to H^{i+m}(G, M_{\sigma})$ for all p-torsion $\mathbb{Z}[G]$ -modules M of finite exponent and all $i \geq k$. It follows from the proof of Lemma 1.7 that G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology via the cup product with $e := e_{\sigma}(p)^{p-1}$, where $e_{\sigma}(p)$ denotes the mod p reduction of e_{σ} . Putting n = m(p-1), it follows that $e \in H^n(G, \mathbb{Z}/p\mathbb{Z})$ is ω -p-integral with respect to $\omega = \sigma^{p-1}$ and can be represented (cp. Lemma 6.1) by an n-extension

$$\tilde{e}: 0 \to \mathbb{Z}/p\mathbb{Z} \to A \to P_{n-2} \to \dots \to P_0 \to \mathbb{Z}/p\mathbb{Z} \to 0$$

with P_i projective for $0 \le i \le n-2$ and proj. $\dim_{\mathbb{Z}/pZ[G]} A < \infty$. Conversely, if we are given an *n*-extension

$$\epsilon: 0 \to \mathbb{Z}/p\mathbb{Z} \to A \to P_{n-2} \to \dots \to P_0 \to \mathbb{Z}/p\mathbb{Z} \to 0$$

with P_i projective for $0 \leq i \leq n-2$ and proj. $\dim_{\mathbb{Z}/p\mathbb{Z}[G]} A < \infty$ representing an ω -*p*-integral class $[\epsilon] = e \in H^n(G, \mathbb{Z}/p\mathbb{Z})$, then we choose $\tilde{e} \in H^n(G, \hat{Z}_p(\omega))$, an element with mod p reduction equal to e. Let M be a p-torsion $\mathbb{Z}/p\mathbb{Z}[G]$ -module of finite exponent. Induction with respect to the exponent of M shows that the cup product

$$\tilde{e} \cup -: H^i(G, M) \to H^{i+n}(G, M_\omega)$$

is an isomorphism for *i* large and all such *M*. It follows that *G* is twisted *p*-periodic. The untwisted version of the lemma corresponds to the case where we can choose for ω the trivial homomorphism.

7. Some remarks and examples

In general, one cannot expect a group G to have $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology even if all its finite subgroups do. For instance, if G contains a free abelian subgroup S of infinite rank, G does not have $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology, because S does not have $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology. We will display below a large class of groups, which do have $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology, if all their finite subgroups do. For the proofs, we will make use of Tate cohomology $\hat{H}^*(G, -)$ for arbitrary groups G, as defined in [9]. In case G admits a finite-dimensional classifying space for proper actions <u>EG</u>, there is a finitely convergent stabilizer spectral sequence

$$E_1^{m,n} = \prod_{\sigma \in \Sigma_m} \hat{H}^n(G_\sigma, M) \Longrightarrow \hat{H}^{m+n}(G, M),$$

where Σ_m is a set of representatives of *m*-cells of <u>*EG*</u> and *M* a Z*G*-module. For *G* a group, *M* a Z*G*-module and *F* the set of finite subgroups of *G*, we write

$$\mathcal{H}^q(G,M) \subset \prod_{H \in \mathcal{F}} \hat{H}^q(H,M)$$

for the set of *compatible* families $(u_H)_{H \in \mathcal{F}}$ with respect to restriction maps of finite subgroups of G, induced by embeddings given by conjugation by elements of G.

There are many results on groups G which imply the existence of a finitedimensional <u>EG</u>. For instance, groups of cohomological dimension 1 over \mathbb{Q} do: they act on a tree with finite stabilizers. Also, if there is a short exact sequence $H \to G \to Q$ of groups and H as well as Q admit a finite-dimensional <u>E</u> and there is a bound on the order of the finite subgroups of Q, then there exists a finite-dimensional model for <u>EG</u> (cp. Lück [7, Thm. 3.1]).

Lemma 7.1. Suppose G admits a finite-dimensional <u>EG</u>. Then the following holds.

(i) The natural map induced by restricting to finite subgroups

 $\rho: \hat{H}^*(G, \mathbb{Z}/p\mathbb{Z}) \to \mathcal{H}^*(G, \mathbb{Z}/p\mathbb{Z})$

has the property that every element in the kernel of ρ is nilpotent, and that for every $u \in \mathcal{H}^*(G, \mathbb{Z}/p\mathbb{Z})$ there is a k such that u^{p^k} lies in the image of ρ .

(ii) If dim <u>EG</u> = t and the order of every finite p-subgroup of G divides p^s , then for every $\mathbb{Z}_{(p)}G$ -module M and all i, we have

$$p^{s(t+1)} \cdot \hat{H}^i(G, M) = 0.$$

(iii) If there is a bound on the order of the finite p-subgroups of G, then the natural map

$$\alpha: \hat{H}^*(G, \mathbb{Z}_{(p)}) \to \hat{H}^*(G, \mathbb{Z}/p\mathbb{Z})$$

has the property that every element in the kernel of α is nilpotent and for any $u \in \hat{H}^*(G, \mathbb{Z}/p\mathbb{Z})$ there exists k such that u^{p^k} lies in the image of α .

Proof. Statement (i) is [10, Cor. 3.3]. For (ii) we observe that for every $\mathbb{Z}_{(p)}G$ module M, the E_1 -term of the stabilizer spectral sequence is annihilated by p^s . Since <u>EG</u> has dimension t, this implies that $p^{s(t+1)}$ annihilates all groups $\hat{H}^*(G, M)$. For (iii) we first use (ii) to conclude that $p^{s(t+1)}$ annihilates the groups $\hat{H}^*(G, \mathbb{Z}_{(p)})$. One then argues as in the proof of [4, Chap. X, Lem. 6.6] that for any $\ell > 0$ and $x \in \hat{H}^*(G, \mathbb{Z}/p\mathbb{Z}), x^{p^{\ell}}$ lies in the image I_{ℓ} of

$$\hat{H}^*(G, \mathbb{Z}/p^{\ell+1}\mathbb{Z}) \to \hat{H}^*(G, \mathbb{Z}/p\mathbb{Z})$$

and that for ℓ large enough, I_{ℓ} equals the image of the natural map

$$\alpha: \hat{H}^*(G, \mathbb{Z}_{(p)}) \to \hat{H}^*(G, \mathbb{Z}/p\mathbb{Z}),$$

implying one part of (iii). If y lies in the kernel of α , the long exact coefficient sequence associated with the short exact sequence

$$\mathbb{Z}_{(p)} \xrightarrow{p} \mathbb{Z}_{(p)} \to \mathbb{Z}/p\mathbb{Z}$$

shows that y = pz for some z and therefore $y^{s(t+1)} = p^{s(t+1)}z^{s(t+1)} = 0$, finishing the proof of (iii).

Theorem 7.2. Let G be a group which admits a finite-dimensional \underline{EG} . Then the following holds.

- (a) G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology if and only if all its finite subgroups do.
- (b) G has p-periodic cohomology if all its finite subgroups do and there is a bound on the order of the finite p-subgroups of G.

Proof. (a): If G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology and $e \in H^n(G, \mathbb{Z}/p\mathbb{Z})$ is a periodicity generator, then every subgroup H < G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology, with periodicity generator the restriction $e_H \in H^n(H, \mathbb{Z}/p\mathbb{Z})$. This follows from the natural isomorphism

$$H^*(H, M) \cong H^*(G, \operatorname{Coind}_H^G M)$$

(Shapiro Lemma). If all finite subgroups of G have $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology, there exists a unit $u \in \hat{H}^n(G, \mathbb{Z}/p\mathbb{Z})$ for some n > 0 (cp. [10, Thm. 4.4]). Since $\dim \underline{EG}$ is finite, there is a k > 0 such that the natural map $\theta : H^j(G, M) \to \hat{H}^j(G, M)$ is an isomorphism for all $j \geq k$ and all $\mathbb{Z}G$ -modules M. Choose ℓ such that the degree of u^{ℓ} is larger than k and choose $e \in H^{n\ell}(G, \mathbb{Z}/p\mathbb{Z})$ such that $\theta(e) = u^{\ell}$. Then G has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology with periodicity generator e, finishing the proof of (a).

(b): We assume that all finite subgroups of G have p-periodic cohomology and that there is a bound on the order of the finite p-subgroups of G. From [10, Thm. 4.4] we conclude that there exists a unit $u \in \hat{H}^n(G, \mathbb{Z}/p\mathbb{Z})$ for some n > 0. Let $v = u^{-1}$. By Lemma 7.1 we can find k > 0 and $\tilde{u}, \tilde{v} \in \hat{H}^*(G, \mathbb{Z}_{(p)})$ such that

 $\alpha(\tilde{u}) = u^{p^k} \quad \text{and} \quad \alpha(\tilde{v}) = v^{p^k},$

where $\alpha : \hat{H}^*(G, \mathbb{Z}_{(p)}) \to \hat{H}^*(G, \mathbb{Z}/p\mathbb{Z})$ is the natural map. From Lemma 7.1 we conclude that $1 - \tilde{u}\tilde{v}$ is nilpotent, thus $\tilde{u}\tilde{v}$ is invertible, and we conclude that $\tilde{u} \in \hat{H}^{np^k}(G, \mathbb{Z}_{(p)})$ is a unit. Since G admits a finite-dimensional <u>EG</u>,

the supremum of the injective length of projective $\mathbb{Z}G$ -modules, silp $\mathbb{Z}G$, is finite. Therefore, there is an n_0 such that $H^n(G, P) = 0$ for all $n > n_0$ and all projective $\mathbb{Z}G$ -modules P. By a basic property of Tate cohomology, this implies that there exists m > 0 such that the canonical map $\lambda : H^i(G, L) \to \hat{H}^i(G, L)$ is an isomorphism for all i > m and all $\mathbb{Z}G$ -modules L. By choosing an r > 0 such that \tilde{u}^r has degree larger than m, it follows that there is an $\epsilon \in H^{np^k r}(G, \mathbb{Z}_{(n)})$ with $\lambda(\epsilon) = \tilde{u}^r$. Let

$$\beta: H^{np^kr}(G, \mathbb{Z}_{(p)}) \to H^{np^kr}(G, \hat{\mathbb{Z}}_p)$$

be the canonical map and put $e = \beta(\epsilon)$. Then the cup product with e induces isomorphisms

$$e \cup -: H^{j}(G, M) \to H^{j+np^{k}r}(G, \hat{Z}_{p} \otimes M) = H^{j+np^{k}r}(G, M)$$

for all j > m and all *p*-torsion $\mathbb{Z}G$ -modules M of bounded exponent, proving that G has *p*-periodic cohomology. \Box

Note that we made use of the bound condition in (b) of Theorem 7.2 to prove the result, but that bound is not a necessary condition. For instance, the Prüfer group $\mathbb{Z}_{p^{\infty}} := \mathbb{Q}/\mathbb{Z}_{(p)}$ has *p*-periodic cohomology, but no bound on the order of its finite *p*-subgroups. On the other hand, the following is an example of a group *G* which admits a finite-dimensional <u>*EG*</u> and with all finite subgroups having *p*-periodic cohomology, but with no *p*-periodic cohomology. Let $\alpha \in \hat{Z}_p^{\times}$ be a *p*-adic unit and define $G(\alpha)$ to be the semi-direct product $\mathbb{Z}_{p^{\infty}} \rtimes_{\alpha} \mathbb{Z}$, where we have identified $\operatorname{Aut}(\mathbb{Z}_{p^{\infty}})$ with \hat{Z}_p^{\times} .

Example 7.3. Let p be an odd prime and put $G(1+p) = \mathbb{Z}_{p^{\infty}} \rtimes_{1+p} \mathbb{Z}$.

(a) G(1+p) has $\mathbb{Z}/p\mathbb{Z}$ -periodic cohomology of period 2.

- (b) G(1+p) does not have *p*-periodic cohomology.
- (c) G(1+p) has twisted *p*-periodic cohomology.
- (d) G(1+p) acts freely on a simply connected 7-dimensional G(1+p)-CW-complex which is a $\mathbb{Z}/p\mathbb{Z}$ -homology 3-sphere.

Proof. (a): Let \mathbb{Z} act on \mathbb{Q} via $\phi : \mathbb{Z} \to \operatorname{Aut}(\mathbb{Q})$ defined by $\phi(n)q = (1+p)^n q$, $q \in \mathbb{Q}$. Form the semi-direct product $H = \mathbb{Q} \rtimes_{\phi} \mathbb{Z}$. There is a natural surjective map $H \to G(1+p)$ with kernel isomorphic to $\mathbb{Z}_{(p)}$. Note that H has cohomological dimension 3. Choose Y to be a 3-dimensional model for K(H, 1)and X the covering space corresponding to $\mathbb{Z}_{(p)} < H$. X is a free G(1+p)- CW-complex and $X \simeq K(\mathbb{Z}_{(p)}, 1)$, thus X is a $\mathbb{Z}/p\mathbb{Z}$ -homology 1-sphere. We then have homotopy fibration

$$X \to X/G(1+p) \to BG(1+p), \quad X_{\mathbb{Z}/p\mathbb{Z}} = S^1_{\mathbb{Z}/p\mathbb{Z}}$$

which is $H\mathbb{Z}/p\mathbb{Z}$ -orientable, because multiplication by 1 + p is the identity on $\mathbb{Z}/p\mathbb{Z}$. It follows that the associated $\mathbb{Z}/p\mathbb{Z}$ -Euler class $e \in H^2(G(1+p), \mathbb{Z}/p\mathbb{Z})$ induces, via the cup product, isomorphisms

$$H^{i}(G(1+p), M) \xrightarrow{e \cup -} H^{i+2}(G(1+p), M)$$

for all i > 3 and all $\mathbb{Z}/p\mathbb{Z}[G]$ -modules M, which proves (a).

(b): We consider the subgroups

$$G_n = \mathbb{Z}/p^n \mathbb{Z} \rtimes_{1+p} \mathbb{Z} < G(1+p)$$

and observe that the minimal *p*-period for $H^*(G_n, \mathbb{Z}/p^n\mathbb{Z})$ is at least $2p^{n-1}$, because multiplication by 1+p on $H^2(\mathbb{Z}/p^n\mathbb{Z}, \mathbb{Z}/p^n\mathbb{Z}) = \mathbb{Z}/p^n\mathbb{Z}$ is an automorphism of order p^{n-1} for odd *p*. Thus, the minimal *p*-period for G_n goes to ∞ as *n* tends to ∞ . Therefore, G(1+p) does not have *p*-periodic cohomology.

(c): We observe that the twisted \hat{Z}_p -Euler class $\tilde{e} \in H^2(G(1+p), \hat{Z}_p(\omega))$ of the homotopy $\mathbb{Z}/p\mathbb{Z}$ -spherical fibration constructed in (a), with $\omega : G(1+p) \to \hat{Z}_p^{\times}$ given by $(x, y) \mapsto (1+p)^y$ for $(x, y) \in \mathbb{Z}_{p^{\infty}} \rtimes \mathbb{Z}$, has reduction mod p equal to the $\mathbb{Z}/p\mathbb{Z}$ -Euler class e of (a). It follows that G(1+p) has twisted p-periodic cohomology of period 2, with twisted p-periodicity induced by the cup product with \tilde{e} .

(d): We again look at the free G(1 + p)-CW-complex X as constructed in (a). The join X * X is a simply connected free G(1 + p)-CW-complex of dimension 7, which is a $\mathbb{Z}/p\mathbb{Z}$ -homology 3-sphere, completing the proof. \Box

References

- A. Adem and J. H. Smith, Periodic complexes and group actions, Ann. of Math. (2) 154 (2001), no. 2, 407–435. MR1865976
- H. J. Baues, Algebraic homotopy, Cambridge Studies in Advanced Mathematics, 15, Cambridge Univ. Press, Cambridge, 1989. MR0985099
- [3] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133–150. MR0380779
- [4] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, New York, 1982. MR0672956
- [5] T. V. Gedrich and K. W. Gruenberg, Complete cohomological functors on groups, Topology Appl. 25 (1987), no. 2, 203–223. MR0884544
- [6] S. Gitler, Cohomology operations with local coefficients, Amer. J. Math. 85 (1963), 156–188. MR0158398
- [7] W. Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000), no. 2, 177–203. MR1757730
- [8] J. P. May, Fibrewise localization and completion, Trans. Amer. Math. Soc. 258 (1980), no. 1, 127–146. MR0554323
- [9] G. Mislin, Tate cohomology for arbitrary groups via satellites, Topology Appl. 56 (1994), no. 3, 293–300. MR1269317
- [10] G. Mislin and O. Talelli, On groups which act freely and properly on finite dimensional homotopy spheres, in *Computational and geometric aspects of modern algebra (Edinburgh, 1998)*, 208–228, London Math. Soc. Lecture Note Ser., 275, Cambridge Univ. Press, Cambridge, 2000. MR1776776
- [11] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1–79. MR0442930
- [12] R. G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267–291. MR0124895
- [13] O. Talelli, Periodic cohomology and free and proper actions on ℝⁿ × S^m, in Groups St. Andrews 1997 in Bath, II, 701–717, London Math. Soc. Lecture Note Ser., 261, Cambridge Univ. Press, Cambridge, 1999. MR1676664

Received May 21, 2014; accepted October 20, 2014.

Guido Mislin Department of Mathematics, ETH Zürich, Switzerland

Department of Mathematics, Ohio State University, Columbus, OH, USA E-mail: mislin.1@osu.edu

Olympia Talelli Department of Mathematics, University of Athens, Greece E-mail: otalelli@cc.uoa.gr