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Groups with twisted p-periodic cohomology

Guido Mislin and Olympia Talelli

(Communicated by Tadeusz Januszkiewicz)

Abstract. We give a characterization of groups with twisted p-periodic cohomology in terms
of group actions on mod p homology spheres. An equivalent algebraic characterization of
such groups is also presented.

1. INTRODUCTION

We will consider groups with twisted p-periodic cohomology (p a prime) in
the following sense. Write Zp(w) for the group of p-adic integers, equipped
with a G-action via a homomorphis;n w:G— Z; For M a ZG-module, we
write M,, for the ZG-module M ® Z,(w) with diagonal G action.

Definition 1.1. A group G is said to have twisted p-periodic cohomology, if
there are a £ > 0, a homomorphism w : G — Z, and a cohomology class
ew € H"(G, Zp(w)) for some n > 0, such that

ewU—: H(G,M) — H"™(G, M,)

is an isomorphism for all ¢ > k and all p-torsion ZG-modules M of finite
exponent. In case the twisting w can be chosen to be trivial, we say that G
has p-periodic cohomology.

By replacing e,, with e2 we see that for G with twisted p-periodic cohomol-
ogy one can assume, if one wishes to, that the degree n of the periodicity gener-
ator is even. In case of a finite group G, we infer, by replacing e,, by a suitable
cup power, that if G has twisted p-periodic cohomology, it also has p-periodic
cohomology. A classical theorem states that a finite group has p-periodic co-
homology if and only if all its abelian p-subgroups are cyclic. Moreover, the
finite groups with p-periodic cohomology have the following characterization
in terms of actions on Z/pZ-homology spheres.
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Theorem 1.2 (Swan [12]). A finite group G has p-periodic cohomology if and
only if there exists a finite, simply connected free G-CW-complex, which has
the same Z/pZ-homology as some sphere.

Our goal is to find a similar characterization for arbitrary groups with
(twisted) p-periodic cohomology.

Definition 1.3. A CW-complex X is called a Z/pZ-homology n-sphere, if
H.(X,Z/pZ) = H.(S", Z/pZ).

In Section 5 we will prove the following generalization of Theorem 1.2.

Theorem 1.4. A group G has twisted p-periodic cohomology if and only if
there exists a simply connected Z/pZ-homology sphere X, which is a free
G-CW-complex satisfying cdz/,z(X/G) < oc.

For the definition of the cohomological dimension cdz/,z of a space see
Section 2.

As we will see in Section 7, there are groups which have twisted p-periodic
cohomology but which do not have p-periodic cohomology. For groups with
p-periodic cohomology we prove the following characterization.

Theorem 1.5. A group G has p-periodic cohomology if and only if there exists
a free G-CW-complex X with homotopically trivial G-action such that X is a
Z/pZ-homology sphere satisfying cdg,,z(X/G) < co.

We will also consider groups with Z/pZ-periodic cohomology in the following

sense.

Definition 1.6. A group G is said to have Z/pZ-periodic cohomology, if there
is a cohomology class e € H"(G,Z/pZ) for some n > 0 and an integer k > 0,
such that for every Z/pZ[G]-module M the map
eU—: H(G,M)— H*™ (G, M)
is an isomorphism for all 7 > k.
The following is a simple observation.

Lemma 1.7. Suppose that G has twisted p-periodic cohomology. Then G has
Z/pZ-periodic cohomology.

Indeed, if e, € H"(G,Z,(w)) gives rise to twisted periodicity as above
and e, (p) € H"(G, (Z/pZ).,) denotes the mod p reduction of e, then G has
Z/pZ-periodic cohomology with periodicity generator the (p—1)-fold cup prod-
uct e := e, (p)?~! € H"P~V(G, Z/pZ).

If M is a fixed ZG-module which is p-torsion of finite exponent p**1, then
the p*(p — 1)-fold twisted module

M, ey = (- (My)+ )w)w

is naturally isomorphic as a ZG-module to M. Therefore, if G has twisted p-
periodic cohomology of some period n, its cohomology with M coefficients will
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GROUPS WITH TWISTED p-PERIODIC COHOMOLOGY 101

actually be periodic in high dimensions d > do(M), with period n - p*(p — 1).
In general, it is not possible to choose the dimensions do(M) so that they
are bounded by a number independent of M. This observation leads to an
example of a group with twisted p-periodic cohomology but not having p-
periodic cohomology (cp. Example 7.3).

It is this example together with the fundamental paper [1] by Adem and
Smith which inspired our work. For background on groups acting freely on
finite-dimensional homology spheres, see [10] and [13].

2. Z/pZ-DIMENSION FOR SPACES AND Z/pZ-LOCALIZATION

Similarly to the definition of the Z/pZ-cohomological dimension of groups,
one defines the Z/pZ-cohomological dimension for spaces as follows.

Definition 2.1. Let X be a connected CW-complex and k& > 0. The Z/pZ-
cohomological dimension cdz/,z(X) of X is the smallest integer n such that
HY(X,M) = 0 for all Z/pZ[m1(X)]-modules M and all i > n; if there is no
such n, we write cdz/,z(X) = oco.

A simple induction on k shows that if cdy/,; X < oo, then there exists an
i > 0 such that for all k and all Z/p*Z[r;(X)]-modules M, H? (X, M) = 0 for
all j > i.

In [3], Bousfield constructed, on the homotopy category of CW-complexes,
the localization with respect to H.(—, Z/pZ), which we call the Z/pZ-localiza-
tion and which consists of a functorial H.(—,Z/pZ)-isomorphism

C(X) X — XZ/pZa
which is characterized by the following universal property.

For every H,(—,Z/pZ)-isomorphism [ : X — Z there is a unique map (up
to homotopy) g : Z — Xz,pz such that go f ~ c¢(X):

X H,.(—,Z/pZ)-isomorphism f 7

c(X)l 3,

XZ/pZ-

If X is simply connected (or nilpotent) and of finite type, then X7/, agrees
with Sullivan’s p-completion X, (cp. [11]), and X — X, is profinite p-com-
pletion on the level of homotopy groups.
Note that if X is simply connected, then one has cdzpz X = cdz/pz Xz/pz,
but for instance
Cdz/pz Sl =1< Cdz/pz S%/pZ = 00

(because (S5 /pZ) contains a free abelian subgroup of infinite rank).
By the standard Z/pZ-homology n-sphere we mean S7 o

Lemma 2.2. Let X be a Z/pZ-homology n-sphere. Then Xz, is homotopy
equivalent to Sg/pz,
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Proof. Assume that H.(X,Z/pZ) = H,.(S™,Z/pZ). We first consider the case
of n = 1. It follows that m1(X)e ® Z/pZ = 7Z/pZ. Choose an f : St — X
mapping to a generator of w1 (X )ap @ Z/pZ. Then f induces an isomorphism
in homology with Z/pZ-coefficients. It follows that f induces a homotopy
equivalence 5’% e X7/pz- Now assume that n > 1. Since

Hy(X,Z/pZ) = H\(Xz,)pz, Z/PZ) = 0,

we also have Hy(m(Xz/pz),Z/pZ) = 0. But m(Xz/,z) is an HZ/pZ-local
group, thus m1(Xz,,z) = 0 (see [3, Thm. 5.5]). We proceed by showing that
Xz)pz is (n — 1)-connected. Let 7;(Xz/,z) be the first non-vanishing homo-
topy group of Xz /.7, i > 1. Because an H.(—,Z,))-isomorphism is also an
H,(—,Z/pZ)-isomorphism, Xz, is HZ)-local and therefore its homology
groups with Z-coefficients are uniquely g¢-divisible for ¢ prime to p. More-
over, for n > i > 1, multiplication by p is bijective on H;(Xz/,z,7%), because
Hj(Xz/pz,Z/pZ) = 0 for j =i —1,i. Thus H;(Xz,,z,Z) is a Q-vector space
for 1 < i < mn. Since the only Q-vector space, which is HZ/pZ-local as an
abelian group, is the trivial one, and because the homotopy groups of Xz/,7
are HZ/pZ-local, we conclude from the Hurewicz Theorem that X7,; must
be (n — 1)-connected. It follows that the natural maps

71—n(AXPZ/pZ) — HTL(XZ/pZ7Z) — Hn(XZ/p27 ZapZ) = Z/pZ

are both surjective. Choose an f : S"™ — Xz, which maps to a generator of
H,.(X7)pz, Z/pZ) and it follows that f induces a homotopy equivalence

S%/pZ — XZ/pZ- U

There is also a fiberwise version of Z/pZ-localization (see [8] for details). If
X—-E—=B
is a fibration of connected CW-complexes, one can construct a new fibration
Xz/pz — Eg/pz - B,

together with a map £ — Eé /pz, OVer B, which restricts on the fibers to Z/pZ-
localization X — Xz/,7. Using the Serre spectral sequence, we conclude the
following. If FF — FE — B is a fibration of connected CW-complexes with F
simply connected, then

Cdz/pz E = Cdz/pz E%/pZ'

Also, if the fiber F is a Z/pZ-homology sphere, then fiberwise Z/pZ-localization
yields a fibration with fiber a standard Z/pZ-homology sphere

Stz = Eg — B.

/PZ
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3. FIBRATIONS, ORIENTATIONS AND EULER CLASSES

If F — FE — B is a fibration of connected CW-complexes, then 71 (F) —
m1(B) is surjective and lifting of loops defines a natural map 6 : 71 (B) — [F, F],
a homotopy action of m (B) on F.

Definition 3.1. Let F' — E — B be a fibration of connected CW-complexes.
The fibration is called orientable, if the associated homotopy action 7 (B) —
[F, F] is trivial. We call the fibration HZ/p*Z-orientable, if 1 (B) acts trivially
on H,(F,Z/p"Z).

Clearly, if a fibration is orientable, it is HZ/p*Z-orientable for all k.

Definition 3.2. Let F — FE — B be a fibration of connected CW-complexes.
We call such a fibration Z/pZ-spherical in case F is a Z/pZ-homology sphere
(or, equivalently, if Fy /.7 ~ Sy o, for some n > 0).

We will make use of the following observation.

Lemma 3.3. For a group G the following conditions are equivalent.

(a) There exists a simply connected free G-CW-complex X which is a Z/pZ-
homology sphere satisfying cdz, 7z X/G < oc.

(b) There exists a Z/pZ-spherical fibration F — E — K(G,1) with F simply
connected and cdz,z B < oo.

Proof. Let X be as in (a) and f : X/G — K(G,1) the classifying map for
the universal cover X of X/G. Then the homotopy fiber of f is G-homotopy
equivalent to X, thus (b) holds. If ' - E — K(G, 1) is as in (b), the universal
cover of E is G-homotopy equivalent to F, thus (a) holds. O

Note that if X is any Z/pZ-homology sphere, it is also a Z/p*Z-homology
sphere for k£ > 1 as one easily sees by induction on k. Thus, for a Z/pZ-spherical
fibration F — E — B as in Definition 3.2, the 71 (B)-module H, (F,Z/p*Z) is
isomorphic to a twisted module (Z/p*Z),,, where w : 71 (B) — (Z/p*Z)* corre-
sponds to the action of my(B) on H,(F,Z/p*Z). (If we need to emphasize the
dependence of w on k, we write w(k) in place of w). We call the twisted module
(Z/p*Z)., the k-orientation module. The fibration is HZ/p*Z-orientable in the
sense of Definition 3.1, if the k-orientation module is the trivial Z/p*Z[m (B)]-
module Z/p¥Z. We write @ for the map 1 (B) — (Z/p*Z)* given by w(z) =
w(z~1), and more generally w™ for the map with w"(z) = w(z™), n € Z. For
any Z/p*Z[m1(B)]-module M we write M,, for M ® (Z/p*Z),, with diagonal
mi(B)-action z - (m ® z) = xm @ w(x)z. Similarly, we consider the diagonal
action on Homyg, k7 ((Z/p*Z).,, M) given by

(@f)(z) = - f(@(x)2).
Therefore, there is a natural isomorphism of Z/p*Z[r; (B)]-modules

H"(F,M) = Hom(H, (F,Z/p*Z), M) = Hom((Z/p"*Z).,, M) = M,,.
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In the case of a Z/pZ-spherical fibration F' — E — B, the only possi-
bly nonzero differential in the Serre spectral sequence with coefficients in a
Z/p*Z[ri(E)]-module K,

By’ = H'(B,H'(F.K)) = H'""(B, K),
is the transgression differential

. ino_ i,n i+n+1,0 _ i+n-+1,0
dny1t By" = B, = B = By :

Taking for K the k-orientation module (Z/p*Z),, and choosing i = 0, this
yields

dny1 : Z/p*7 = H(B,Z/p*Z) — H" (B, (Z/p*7).,),
and the image of 1 € Z/p*Z,
dns1(1) =t e(k), € H"'(B,(Z/p"Z).,),

is called the twisted Z/p*Z-Euler class of the given Z/pZ-spherical fibration.
Let now M be an arbitrary Z/p*Z[r; (B)]-module and choose K = M,,. Thus
H™(F,M,) =M and

dn+1 : E;n — Hl(B,M) N Hi+n+1(B’Mw) _ E;'+n+1,0

is given by the cup product with e(k),. The kernel and image of d, 1 are
determined as

B = kerdyy, C BV = Hi(B, M) 2% H+1(B, M)

and

H(B, M) 2% Him (B, M) = E5FH0 o coker dyyy = EEH0,

respectively. The natural surjection o : H*"(E, M) — E%" has as kernel the
subgroup E:f™0 and, by splicing things together, one gets the Gysin-sequence

= BB, M) % BB, M) S, gt )

— H* Y E, M) — .
One concludes that for large values of i and all Z/p*Z[m; (B)]-modules M, the
cup product with e(k),, induces for all k isomorphisms
e(k)y U—: H(B,M) = H*" (B, M,)

if and only if there exists a jo such that for all j > jo, H?(E, M) = 0 for all
Z/p*Z[n1(B)]-modules M and all k (here M is viewed as 7 (E)-module via
71 (E) — m1(B)). In case F is simply connected, this amounts to cdz,z E < oo.

Corollary 3.4. Let F — E — B be a Z/pZ-spherical fibration of CW-
complexes with B connected and F simply connected, with twisted 7 /p*Z-Euler
classes e(k)yy € H"(B, (Z/p*Z)w)), k > 1. Then the following conditions
are equivalent.
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(1) Cdz/sz < 00.
(2) There exists ig such that, for all i > ig and all k > 1,

e(k)wry U—: H(B, M) — H"(B, My,1))
is an isomorphism for all Z/p*Z[m1(B)]-modules M.

In the situation of Corollary 3.4, it follows from the naturality of the Serre
spectral sequence that the twisted Z/p*Z-Euler classes e(k)wk) are the re-
duction mod p* of a class e, € H"(B, Z,(w)), where Z,(w) is isomorphic to

Tn—1(Fz/pz) = Tno1 (Sg/;lz) as a 71 (B)-module. Therefore, the following holds.

Corollary 3.5. If there exists a Z/pZ-spherical fibration of CW-complezes
F — E — K(G,1) with ' simply connected and cdz,z E < oo, then G has
twisted p-periodic cohomology.

The following lemma permits us to pass from Z/pZ-spherical fibrations to
HZ/pZ-orientable ones.

Lemma 3.6. Let Iy — E1 — B be a Z/pZ-spherical fibration of CW-com-
plexes with B connected and Fy simply connected, such that cdz,z E1 < oo.
Then the (p—1)-fold fiberwise join yields an HZ/pZ-orientable Z/pZ-spherical
fibration Fy — Es — B over the same base, with ch/pZ FEy < 0.

Proof. Let e, € H"(B,(Z/pZ).,) be the twisted Euler class of the fibration
Fy — Ey — B. Because cdz,z E1 < oo, we infer from Corollary 3.4 that there
exists ig such that

ewU—: H(B,M) — H""(B, M,,)

is an isomorphism for all ¢ > ¢ and all Z/pZ|r1(B)]-modules M. We then
perform a fiberwise (p — 1)-fold join to obtain a new Z/pZ-spherical fibration
Fy, — B, — B with Euler class e = eg_l. This new fibration is HZ/pZ-
orientable, because the (p — 1)-fold tensor product of (Z/pZ)., with diagonal
action is the trivial Z/pZ|m(B)]-module Z/pZ. Moreover,

eU—: H(B,M)— H*P=Y"(B M)

is an isomorphism for ¢ > i¢ and all Z/pZ[m (B)]-modules M. Note that e is
the reduction mod p of the twisted Z/p*Z-Euler class

e(k)wr) € H"(B, (Z/" L)ww))
of the Z/pZ-spherical fibration F» — F5 — B. Induction on k then shows that
e(k)w(k) U—: Hl(Bv L) — Hi(Bv Lw(k))

is an isomorphism for all Z/p*Z[r (B)]-modules L. We infer from Corollary 3.4
that CdZ/pZ FEy < 0. U
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4. PARTIAL EULER CLASSES

For a connected C'W-complex X we write P, X for its g-th Postnikov section,
with canonical map X — P, X such that
(1) m(Py(X)) =0 for i > g,
(2) 7(X) = m5(PX) for j < g.

In case that X is a Z/pZ-homology n-sphere, we have AXZ JpZ = S%/pz-
Therefore, Py(Xz/,z) = {*} for ¢ < n and P,(Xz/pz) ~ K(Zp,n). Adapting
the terminology of [1], we define k-partial Z/pZ-Euler classes as follows.

Definition 4.1. Let B be a connected CW-complex and & > 0. Then € €
H™(B,Z/pZ) is a k-partial Z/pZ-Euler class if there exists a fibration

() : Pao144(S3,,) = E— B

such that m(B) acts trivially on H”fl(Pn,Hk(Sg/*plZ),Z/pZ) >~ 7/pZ and
there is a generator of that group which transgresses to € in the Serre spectral

sequence with Z/pZ-coefficients for the fibration (®). The k-partial Z/pZ-Euler
class € is called orientable, if the fibration (®) can be chosen to be orientable
in the sense of Definition 3.1.

Lemma 4.2. Let B be a connected CW-complex and ¢ € H"(B,Z/pZ) a k-

partial 7.)pZ-Euler class. Then for all £ > 0, €' is a k-partial Z/pZ-Euler

class. If € is orientable in the sense of Definition 4.1, then so is €’.

Proof. Let
Pi=Py14n(S3,,) = E— B

be a fibration such that m (B) acts trivially on H"~Y(P,Z/pZ) and let o €
H"~Y(P,Z/pZ) be an element which transgresses to . By forming fiberwise
the ¢-fold join and applying Z/pZ-localization, we obtain a fibration

(**P)gpz — E({) — B.

In the Serre spectral sequence with Z/pZ-coefficients for this new fibration,
(a*---xa)z/pz transgresses to el Since x¢5™~1 ~ §7~1 we have

Pn[—l—i—k((*eP)Z/pZ) = Pne—1+k(5£fgzl)
and we obtain, by taking fiberwise Postnikov sections, a fibration
Pro-14k(S3),7) = E'(£) — B
for which the image of (x‘@)z,,7 under the natural map

H™ (5 P)zpz, Z/pZ) = H™ N (Pag—14#(S50 ), Z/pZ)

transgresses to €’. It is obvious that €’ is orientable if € is. O
Lemma 4.3. Let (Pp) : 5% pz, = £ — B be a fibration with B connected and

n > 0. By taking fiberwise Postnikov sections, we obtain fibrations

(‘bk) : Pn+kS£/pZ — Ek — B, k > 0.
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The fibrations (@), k > 0, are all orientable if and only if w1 (B) acts trivially
on ﬁn(S%/pZ) = Zp.

Proof. This follows from the functoriality of P, tx and the fact that homotopy
classes 57, — 57,7 correspond naturally to elements of m,,(S7,,7)- O

Definition 4.4. Let X be a connected CW-complex with fundamental group
G. An element x € H"(X,Z/pZ) is called w-p-integral, if there exists an
action w : G — Z,* such that G acts trivially on Z,(w)/pZ,(w) = Z/pZ and
x lies in the image of the natural coefficient homomorphism H™(X, Z,(w)) —
H"(X,Z/pZ). In case the action w can be chosen to be trivial, z is called
p-integral.

To deal with non-orientable fibrations, we recall the following fact. Let
(F): K(M,m)—-E— B

be a fibration with connected base B, m > 0 and induced action of 7 (B) = G
on M corresponding to the homomorphism ¢ : G — Aut(M). Such fibrations
are classified by cohomology elements with local coefficients as follows. There
is a universal fibration

K(M,m+1) = Lg(M,m+1) — K(G,1)

such that fibrations of type (F) correspond to homotopy classes of maps
f: B — Ly(M,m+ 1) over K(G,1). The homotopy class over K(G,1) of
such an f corresponds to an element in the cohomology with local coefficients
H™ (B, M), see [2] or [6].

The following lemma is a variation of [1, Lem. 2.5].

Lemma 4.5. Let x € H*"(X,Z/pZ) be an w-p-integral element. Then some
cup power of x is a k-partial Z/pZ-Euler class and this k-partial Z/pZ-Euler
class is orientable (in the sense of Definition 4.1) in case x is p-integral.

Proof. Let G be the fundamental group of X. Since z is w-p-integral, there
exist w : G — ZX and & € H*™(X,Z »(w)) mapping to z under reduction
mod p. Let we X —> L, (Zp, 2n) correspond to . It classifies a fibration

K(Zy(w),2n—1) = E = X
with
H*" "MK (Zy(w),2n = 1), Z/pL) = H* N(K(Zy/pZp, 20 — 1), Z/pZ)
>~ 7/pZ

having trivial G-action. This shows that z is a 0-partial Z/pZ-Euler class.
Suppose now that k > 0 is given and that 2™ is a (k — 1)-partial Z/pZ-Euler
class. Thus there is a fibration

Popm—141-1(53 )75 1) =i P(k—1) = E(k = 1) = X
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with a generator of H*"™~1(P(k — 1),Z/_pZ)G = Z/pZ transgressing to y :=
™. By Lemma 4.2, for all j, the power 4’ is a (k — 1)-partial Z/pZ-Euler class
too. Thus there are fibrations

Popmj-14k-1(S)05 ) = Qk—1) = F(k—1) > X

with a generator of H>""™~Y(Q(k — 1),Z/pZ)% = Z_/pZ transgressing to v/ =
™. To show that for a suitable j, the power 1’ gives rise to a k-partial
Z/pZ-Euler class, we need to check that the classifying map

0:Q(k—-1)— K(m,2nmj + k)

for the fibration Q(k) — Q(k — 1) factors through F'(k — 1). Note that

™ i= 7T2nmj+k71(Q(k)) = 7r2nmj+k71(S§7;%jil)

is a finite p-group on which m (X) = G acts via

W G Z) = HoAut(Sé%%j_l).

We write 7 for m with that action. Because of the naturality of the Postnikov
section functor, the homotopy fibration

Q(k) = Qk —1) L K(x, 2nmj + k)
is compatible with the homotopy G-action via w™ on these spaces. Therefore,
[0] € B> QK — 1), m)

is G-invariant with respect to the diagonal G-action on this cohomology group.
In the Serre spectral sequence for Q(k—1) — F(k—1) — X with 7 coefficients,

HY(X, H'(Q(k —1),m)) = H*"'(F(k — 1),x),
the cohomology class [f] lies thus in
Eg,Qnijrk _ HQ’lej-‘rk(Q(k _ 1),E)G-

To show that [f] is the restriction of a class in the cohomology of F'(k —1) with
m-coefficients amounts to showing that [f] is a permanent cycle. The same
argument as in [1, Lem. 2.5] shows that this is the case for j a large enough
p-power. It follows that some power of z is a k-partial Z/pZ-Euler class. In
case x is p-integral, the argument shows that the k-partial Z/pZ-Euler class
we obtained is orientable. O

5. PROOF OF THEOREMS 1.4 AND 1.5

We will give the proof of Theorem 1.4. The proof of Theorem 1.5 is analo-
gous but simpler.

Suppose that G has twisted p-periodic cohomology. Then there exist for
some 1 > 0 an w-p-integral class € € H>*(G,Z/pZ) and €, € H**(G, Z,(w)),
whose reduction mod p is €, such that there is an £y > 0 with the property that
the cup product with €, induces isomorphisms H*(G, M) — H*?"(G, M,,) for
all ¢ > £y and all p-torsion ZG-modules M of finite exponent. By Lemma 4.5
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we can find a cup power €™ which is an {,-partial Z/pZ-Euler class. Therefore,
we have a fibration

F(lo) : Panm—1+4,(S3775 ") = E(lo) = K(G, 1),

with the property that a generator of

H2"™ Y (Popn—11.40 (S50 1), Z/PZL) = LD

transgresses to €™ in the Serre spectral sequence for F'({y). We want to show
inductively that €™ is a k-partial Euler class for all k > ¢;. Write P(j) for

Pgnm_lﬂ(S;’;g%’l). We will inductively construct fibrations

F(k): P(k) — E(k) — K(G,1)

for k > ¢y with the property that a generator of H?"™~(P(k),Z/pZ) trans-
gresses to €™. To pass from F'(k — 1) to F(k) we argue as follows. We have a
diagram

Fk-1): Pk—1) — E(k—-1)—— K(G,1)

L

F(k):  P(k) b E(k) e » K(G,1)

in which the fibration P(k) — P(k — 1) has fiber K (m(w),2nm — 1+ k) and is
classified by a map

0:Pk—-1)— K(n(w),2nm + k),

where m(w) stands for the finite p-group 7 := mopm_14%(S?"™ 1) ® Zp with
G-action induced by

W™ G = 7 22 Aut(Tanm-1 (S50 1)

To construct the fibration F'(k) and the dotted arrows depicted above, we need

to show that 6 factors through E(k — 1). This amounts to showing that [6],
which lies in H2"™+*(P(k — 1), 7(w)), is in the image of the restriction map

H2nm+k(E(k — 1), 7(w)) = H2nm+k(P(k — 1), m(w)).

As argued in the proof of Lemma 4.5, [§] € H* ™ ¥(P(k — 1),7(w)) is G-
invariant with respect to the diagonal G-action via w™ on this cohomology
group. The restriction map in question corresponds to an edge homomorphism

in the Serre spectral sequence with m(w)-coefficients for the fibration P(k—1) —
E(k-1)— K(G,1):

HAH (B — 1), m(w)) - B2
c Eg,Qnm+k _ H2nm+k(P(k _ 1),7r(w))G.
We need therefore to check that [f] is a permanent cycle in the Serre spec-

tral sequence. The only differentials on [f] which could be nonzero are, for
dimension reasons, the differential

. 0,2nm+k __ 0,2nm+k k+2,2nm—1
. B = Ey2mik L |

dr+2 k42
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which takes values in
ker (e U — : H* (G, m(w)gm ) — HFFP220™(G 1(w))),

respectively the differential

. 0,2nm+k 2nm-+k—+1,0
d2nm+k+1 . E2nm+k+l - E2nm+k+1 ’

which takes values in
coker(ef U — : H*'H(G, mr(w)) — H*" ™G, mr(w)ym)).

Because k > ¢y, we know that for any p-torsion module M of bounded expo-
nent,

€U~ H(G, M) — H*"™ (G, Mm)

w
is an isomorphism for s = k4 1, respectively s = k + 2. The differentials dg2,
respectively donm+k+1 depicted above are therefore equal to 0. We conclude
that the fibrations in the diagram above can be constructed as displayed. Pass-
ing to homotopy limits in the towers {F(k)}r>0 of that diagram, one obtains
a fibration

F(c0) : S%’;;Zl — E — K(G,1),

as desired. To check that cdy/,z(FE) < oo, one considers the Serre spectral
sequence of the fibration F'(co) with coefficients in a Z/pZ[G]-module L and
finds that H/(E,L) = 0 for j large enough, independent of L, finishing the
first part of the proof.

Suppose now conversely that X is a simply connected free G-C'W-complex
which is a Z/pZ-homology sphere satisfying cdz/,z X/G < co. By Lemma 3.3
there exists a Z/pZ-spherical fibration F — E — K(G,1) with F simply
connected and cdz/,z £ < oo. Corollary 3.5 then implies that G has twisted
p-periodic cohomology, completing the proof of Theorem 1.4.

6. ALGEBRAIC CHARACTERIZATION

Let x € H"(G,Z/pZ) and counsider a Z/pZ|G]-projective resolution

Poioomo Py 2% Py 255 Py /pZ — 0.

Denote for i > 0 the image 0;P; by K; and let ¢; : K; — P;_1 be the natural
injection. A cocycle representative of x corresponds to a map 0 : K,, — Z/pZ.
Form the diagram

L

Kn n Pnfl Pn72 ........... PO Z/pZ 0
Lo F o Ek
7 Z/pZ A Pn72 ........... PO Z/pZ 0

where the square on the left is a push-out square. Then the class of the n-fold
extension ¥, [7] € Exty ;¢ (Z/pZ, Z/pZ), corresponds to x € H" (G, Z/pZ).
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Lemma 6.1. Let e € H"(G,Z/pZ) and consider the associated n-extension
€:0->2/pZ —-A— Py og— - — Py —>7Z/pZ —0

as above. Then the following conditions are equivalent.

(1) G has Z/pZ-periodic cohomology via the cup product with e.
(2) The Z/pZ|G]-projective dimension of A, proj.dimy, i1 A, is finite.

Proof. Let P, be a Z/pZ|G]-projective resolution of Z/pZ and choose a map
O(e) : K,, — Z/pZ to represent e as above, giving rise to the n-extension é. It
is known that the cup product with e is induced by a chain map © : P, — P
of degree —n which extends 6(e). Consider the following commutative diagram
with exact rows:

0 Kn(e) Pn—l Kn—l —0
Lol
0 Z.)pZ A K1 ——0.

From the corresponding commutative diagram of long exact Ext-sequences

— EXtZZ/pZ[G] (Kn_l, —) — EXt/LZ/pZ[G] (PTL—17 —) — Ext%/pz[g] (KTL7 —) —

—T T EXt%/pZ[G](9(€)7)T

— Ext ey (Kn-1, =) — BExty z161(A, =) — Ext} 006 (Z/pZ, —) —

follows that Ext?, /pzic)(0(€), —) is an isomorphism for large i if and only if A
satisfies proj. dimg ;1) A < oc. O

Corollary 6.2. Let G be a group with Z/pZ-periodic cohomology. There
exists k > 0 such that for all i > k and all projective Z/pZ|G]-modules P,
H(G,P)=0.

Proof. By Lemma 6.1, there is a monomorphism ¢ : Z/pZ — A with A a
Z/pZ|G]-module of finite projective dimension d over Z/pZ[G]. Let I be an
injective Z/pZ[G]-module. I injects into A ®z,pz I via x+ (1) ® x and, as [
is injective, I is a retract of A ®z,,z I. For any projective Z/pZ[G]-module P,
P ®z,/p7 I (with diagonal G-action) is projective too. It follows that

proj. dimy 710 A Qzypz I < d
and, because I is a retract of that module,
proj. dimZ/pZ[G] I S d.

We conclude that the supremum of the projective length of injective Z/pZ|G]-
modules is at most d, i.e.,

spliZ/pZ|G] < d.
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This implies that the supremum of the injective length of projective Z/pZ|G]-
modules is also no greater than d, i.e.,

silp Z/pZ[G] < d,

see [5, Thm. 2.4]. We infer that H(G,P) = 0 for i > d and all projective
Z/pZ|G]-modules P. O

The following is an algebraic characterization of groups with twisted p-
periodic cohomology.

Lemma 6.3. A group G has twisted p-periodic cohomology if and only if there
exist an m > 1 and an exact sequence of Z/pZ|G]|-modules

€e:0>Z/pZ - A— Py o— -+ = Py—>7Z/pZ —0

with P; projective for 0 < i < n — 2 and proj.dimg ;g A < 00, such that
le] € BExty),51¢(Z/PZ, Z[pZ) = H"(G,Z/pZ) is w-p-integral. G has p-periodic
cohomology if and only if there is an € as above with [€] being p-integral (for
the definition of w-p-integral and p-integral elements see Definition 4.4).

Proof. Suppose G has twisted p-periodic cohomology. By definition, there
exist k >0andm >0and o : G — Z; and e, € H™(G, Z,(c)) such that the
cup product with e, induces isomorphisms H*(G, M) — H"*™(G, M,) for all
p-torsion Z[G]-modules M of finite exponent and all ¢ > k. It follows from the
proof of Lemma 1.7 that G has Z/pZ-periodic cohomology via the cup product
with e := e,(p)P~!, where e, (p) denotes the mod p reduction of e,. Putting
n=m(p — 1), it follows that e € H"(G,Z/pZ) is w-p-integral with respect to
w = 0P~ and can be represented (cp. Lemma 6.1) by an n-extension

€:022Z/pZ—-A— Py o— - —Py—=7Z/pZ—0

with P; projective for 0 < ¢ < n — 2 and proj. dimZ/pZ[G] A < oo. Conversely,
if we are given an n-extension

€e:0>Z/pZ - A— Py o— -+ = Py—>Z/pZ—0

with P; projective for 0 < i < n—2 and proj. dimg /719 A < oo representing an
w-p-integral class [¢] = e € H"(G,Z/pZ), then we choose é € H"(G, Z,(w)),
an element with mod p reduction equal to e. Let M be a p-torsion Z/pZ|G]-
module of finite exponent. Induction with respect to the exponent of M shows
that the cup product

EU—: HY(G,M) — H"™(G, M,,)

is an isomorphism for i large and all such M. It follows that G is twisted
p-periodic. The untwisted version of the lemma corresponds to the case where
we can choose for w the trivial homomorphism. O
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7. SOME REMARKS AND EXAMPLES

In general, one cannot expect a group G to have Z/pZ-periodic cohomology
even if all its finite subgroups do. For instance, if G contains a free abelian sub-
group S of infinite rank, G does not have Z/pZ-periodic cohomology, because
S does not have Z/pZ-periodic cohomology. We will display below a large
class of groups, which do have Z/pZ-periodic cohomology, if all their finite
subgroups do. For the proofs, we will make use of Tate cohomology H*(G, —)
for arbitrary groups G, as defined in [9]. In case G admits a finite-dimensional
classifying space for proper actions EG, there is a finitely convergent stabilizer
spectral sequence

B = ] 8%(Goo M) = H™ (G, M),

TEYX .,

where ¥, is a set of representatives of m-cells of EG and M a ZG-module.
For G a group, M a ZG-module and F the set of finite subgroups of G, we
write
HUG, M) c [] A%H,M)
HeF

for the set of compatible families (up)ger with respect to restriction maps of
finite subgroups of GG, induced by embeddings given by conjugation by elements
of G.

There are many results on groups G which imply the existence of a finite-
dimensional EG. For instance, groups of cohomological dimension 1 over Q
do: they act on a tree with finite stabilizers. Also, if there is a short exact
sequence H — G — @ of groups and H as well as () admit a finite-dimensional
E and there is a bound on the order of the finite subgroups of @, then there
exists a finite-dimensional model for EG (cp. Liick [7, Thm. 3.1]).

Lemma 7.1. Suppose G admits a finite-dimensional EG. Then the following
holds.

(i) The natural map induced by restricting to finite subgroups
p: H*(G,Z/pZ) — H*(G,Z/pZ)
has the property that every element in the kernel of p is ml;lpotent, and
that for every w € H*(G,Z/pZ) there is a k such that uP lies in the
image of p.
(ii) If dim EG =t and the order of every finite p-subgroup of G divides p®,
then for every Z,) G-module M and all i, we have
p Y HY(G, M) = 0.

(iii) If there is a bound on the order of the finite p-subgroups of G, then the
natural map
a: (G, Zy,)) — H*(G,Z/pZ)
has the property that every element in the kernel of « is nilpotent and for
any u € FI*(G, Z/pZ) there exists k such that uP" lies in the image of a.
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Proof. Statement (i) is [10, Cor. 3.3]. For (ii) we observe that for every Z,)G-
module M, the F;-term of the stabilizer spectral sequence is annihilated by p®.
Since EG has dimension ¢, this implies that p*(**+1) annihilates all groups
H*(G,M). For (iii) we first use (ii) to conclude that p***1) annihilates the
groups ﬁ*(G, Z(p))- One then argues as in tyhe proof of [4, Chap. X, Lem. 6.6]
that for any ¢ > 0 and x € H*(G,Z/pZ), P lies in the image I, of

H(G,Z/p" "' 2) —~ H*(G, Z/pL),
and that for ¢ large enough, I; equals the image of the natural map
a: H*(G,Zy,)) — H* (G, Z/pL),

implying one part of (iii). If y lies in the kernel of «, the long exact coefficient
sequence associated with the short exact sequence

Zp) = Lp) — /L

shows that y = pz for some z and therefore y*(tt1) = ps(t+1)s(t+l) — o
finishing the proof of (iii). O

Theorem 7.2. Let G be a group which admits a finite-dimensional EG. Then
the following holds.

(a) G has Z/pZ-periodic cohomology if and only if all its finite subgroups do.
(b) G has p-periodic cohomology if all its finite subgroups do and there is a
bound on the order of the finite p-subgroups of G.

Proof. (a): If G has Z/pZ-periodic cohomology and e € H"(G,Z/pZ) is a peri-
odicity generator, then every subgroup H < G has Z/pZ-periodic cohomology,
with periodicity generator the restriction ey € H™(H,Z/pZ). This follows
from the natural isomorphism

H*(H, M) =~ H*(G, Coind$§ M)

(Shapiro Lemma). If all finite subgroups of G have Z/pZ-periodic cohomology,
there exists a unit u € H™(G, Z/pZ) for some n > 0 (cp. [10, Thm. 4.4]). Since
dim EG is finite, there is a k > 0 such that the natural map 6 : H/(G, M) —
HI(G, M) is an isomorphism for all j > k and all ZG-modules M. Choose
¢ such that the degree of v’ is larger than k and choose e € H"(G,Z/pZ)
such that 6(e) = u’. Then G has Z/pZ-periodic cohomology with periodicity
generator e, finishing the proof of (a).

(b): We assume that all finite subgroups of G have p-periodic cohomology
and that there is a bound on the order of the finite p-subgroups of G. From
[10, Thm. 4.4] we conclude that there exists a unit v € H"(G, Z/pZ) for some
n>0. Let v =u"'. By Lemma 7.1 we can find k > 0 and 4,7 € ﬁ*(G,Z(p))
such that

a(u) = w?" and a(v) = vpk,
where « : H* (G, Zyy) — H*(G,7Z/pZ) is the natural map. From Lemma 7.1
we conclude tkhat 1 — @v is nilpotent, thus wo is invertible, and we conclude
that @ € H"™ (G, Zy)) is a unit. Since G admits a finite-dimensional EG,
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the supremum of the injective length of projective ZG-modules, silp ZG, is
finite. Therefore, there is an ng such that H"(G, P) = 0 for all n > ng and all
projective ZG-modules P. By a basic property of Tate cohomology, this implies
that there exists 7 > 0 such that the canonical map A : H(G, L) — H'(G, L)
is an isomorphism for all ¢ > m and all ZG-modules L. By choosing an
r > 0 such that 4" has degree larger than m, it follows that there is an
e € H''" (G, Zy)) with A(e) = @". Let

B:H™" (G, Z ) — H™' (G, Z,)

be the canonical map and put e = §(€). Then the cup product with e induces
isomorphisms

eU—: HI(G,M) — HYW'"(GQ, 2, M) = H+7'"(G, M)

for all j > m and all p-torsion ZG-modules M of bounded exponent, proving
that G has p-periodic cohomology. O

Note that we made use of the bound condition in (b) of Theorem 7.2 to
prove the result, but that bound is not a necessary condition. For instance,
the Priifer group Zy~ := Q/Z,) has p-periodic cohomology, but no bound
on the order of its finite p-subgroups. On the other hand, the following is an
example of a group G which admits a finite-dimensional EG and with all finite
subgroups having p-periodic cohomology, but with no p-periodic cohomology.
Let a € Zg be a p-adic unit and define G(a) to be the semi-direct product
Zpoo X g L, where we have identified Aut(Z,e) with Zg

Example 7.3. Let p be an odd prime and put G(1 + p) = Zpe X14p Z.

(a) G(1 + p) has Z/pZ-periodic cohomology of period 2.

(b) G(1+ p) does not have p-periodic cohomology.

(¢) G(1 + p) has twisted p-periodic cohomology.

(d) G(1 + p) acts freely on a simply connected 7-dimensional G(1 + p)-CW-
complex which is a Z/pZ-homology 3-sphere.

Proof. (a): Let Z act on Q via ¢ : Z — Aut(Q) defined by ¢(n)q = (1 + p)"q,
g € Q. Form the semi-direct product H = Q x4 Z. There is a natural
surjective map H — G(1+ p) with kernel isomorphic to Z,). Note that H has
cohomological dimension 3. Choose Y to be a 3-dimensional model for K (H, 1)
and X the covering space corresponding to Z,) < H. X is a free G(1 + p)-
CW-complex and X ~ K(Z),1), thus X is a Z/pZ-homology 1-sphere. We
then have homotopy fibration

X = X/G(1+p) = BG(1+p), Xzpz =Sz

which is HZ/pZ-orientable, because multiplication by 1 + p is the identity on
Z/pZ. Tt follows that the associated Z/pZ-Euler class e € H*(G(1 + p), Z/pZ)
induces, via the cup product, isomorphisms

HY(G(1+p), M) == H**(G(1 +p), M)
for all ¢ > 3 and all Z/pZ[G]-modules M, which proves (a).
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(b): We consider the subgroups
Gn=Z/p"Z 14,7 < G(1 +p)

and observe that the minimal p-period for H*(G,,Z/p"Z) is at least 2p"~!,
because multiplication by 1+p on H?(Z/p"Z,7/p"7) = Z/p"Z is an automor-
phism of order p"~! for odd p. Thus, the minimal p-period for G,, goes to oo
as n tends to co. Therefore, G(1 + p) does not have p-periodic cohomology.

(c): We observe that the twisted Z,-Euler class & € H?(G(1 + p), Z,(w)) of
the homotopy Z/pZ-spherical fibration constructed in (a), with w : G(1+p) —
ZAg given by (z,y) — (1+p)¥ for (z,y) € Zp~ x Z, has reduction mod p equal
to the Z/pZ-Euler class e of (a). It follows that G(1+ p) has twisted p-periodic
cohomology of period 2, with twisted p-periodicity induced by the cup product
with e.

(d): We again look at the free G(1 + p)-CW-complex X as constructed
in (a). The join X % X is a simply connected free G(1 + p)-CW-complex of
dimension 7, which is a Z/pZ-homology 3-sphere, completing the proof. |
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