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Abstract: The topological structure of such a bubble requires two necessary conditions. 
Firstly, Euler’s relation between the numbers of its (surface) areas, its (Plateau) borders, and 
its nodal points (vertices) must be fulfilled. Secondly, always three borders on its surface meet 
at each nodal point. These conditions allow certain sets of areas with different numbers of 
borders. However, only when those areas can form a correct net of  borders connected by 
nodal points at a sphere then a bubble topology for such a set has been realized. With forced 
T1 and inverse T2 processes and by the use of computer programs real topologies have been 
obtained for bubbles with area numbers up to 16. Their construction out of the computer data 
is illustrated. A special classification scheme among bubbles of equal area number as well as 
the appearance of topological isomers are discussed. 
 
PACS: 82.70 Rr Foams; 02.40 Pc Topology. 
 

1.Introduction 
    Foam appears in various formations. Always it is a liquid or solid component 
that is homogeneously mixed with gas bubbles of different shapes and seizes. 
Everybody knows the foam of  beer or of a soap solution. A recent presentation 
of the physics of foams is given in the book of Weaire and Hutzler [1]. They 
also report about topological changes in a fresh foam caused by so called T1 
processes that aspire to a minimum of its free energy at unaltered number of 
bubbles. In a later phase of aging so called T2 processes also cause topological 
changes. Smaller bubbles have higher pressure than their neighbors. So they 
loose their gas by diffusion through their skin to the neighbors until they 
disappear. This article deals with a quasi stable state of the foam before onset of 
T2 processes and the still later following rupture of single soap films. 
1.1 A bubble in dry foam 
    The liquid content of foam can be so high, that each bubble is shaped like a 
sphere without contacting other bubbles. By withdrawing more and more soap 
solution the bubbles touch each other and finally soap films form the borders 
between neighboring bubbles. Following Plateau’s rules [2] there are always 
three films that meet under equal angles of 120 degrees along a line, named 
Plateau border. And always exactly four Plateau borders meet at one nodal point 
and form a tetrahedral vertex with mutual angles of about 109 degrees. We 
speak of dry foam, if the nodal points can be treated as mathematical points, the 
Plateau borders as lines, and the soap films as areas in space. Let us exclude 
external forces (gravitation etc.). Then the mean curvature of such an area is 
constant and proportional to the pressure difference of the neighbor bubbles of 
that area (Laplace-Young equation [3, 4]). The surface of a stable bubble in dry 
foam consists of a certain number of such areas, and each of these areas is 
bordered by a certain number of lines and the same number of nodal points. 
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1.2 Topology of a bubble 
    We presume, that a stable bubble is only simply-connected to each of its 
neighbor bubbles. Otherwise both bubbles would reach a more stable state by 
performing T1 processes. The same would hold for a bubble that touches itself.  
 For the topological structure of the bubble the shape of its areas is irrelevant. 
The single elements of the bubble may be bent, turned, stretched, or shifted, as 
long as a continuous one-to-one correlation of all its points to those of the 
original positions is conserved. So, the volume and the pressure of the bubble, as 
well as the temperature do not matter. Also the Plateau angles may be changed. 
1.3 Topological equivalence of 3D foam bubbles and 2D bubble clusters 
    In 3D foam each (nodal) point connects four lines (Plateau borders). On a 
bubble three of these lines run at its surface and the forth line is directed 
outwards. In order to describe the topology of that bubble, we do not need this 
forth line. This net of lines knotted by points already represents the topology of 
this bubble. It remains unchanged, if this net covers the surface of a sphere. 
Another representation of the topology is obtained, when the net is spread across 
a plane (according to a sphere of infinite radius). When no line goes to infinity, 
then one of the areas covers the infinitely far point of the plane. It quasi 
surrounds the other areas of the bubble. This 2D presentation of the topology of 
a bubble shall be called its graph. 
    Often one studies a 2D foam instead of the 3D foam, because it is easier to 
collect the data. A dry foam between parallel glass plates provides a network of 
soap films normal to the two plates when their distance is sufficiently small. In 
the limit of a true 2D foam there remain lines, instead of the films, and nodal 
points, instead of the Plateau borders. Each line has the shape of a circular 
segment (Laplace-Young equation). Exactly three lines end in each nodal point. 
By this way the whole plane is divided into areas each having a certain number 
of sides and the same number of nodal points. We have a 2D bubble cluster, 
when the 2D foam covers a finite range of the plane. Its topological structure 
can easily be seen. We complete the 2D bubble cluster by the external part of the 
plane, to recognize the equivalence we have looked for: Each 2D bubble cluster 
is equivalent to a 3D foam bubble with the same topology.  
 

2. Definitions 
2.1 Graphs and dual Graphs 
    In Fig.1(above) the graphs for the topologies of the simplest bubbles are 
shown. These are all the possible topologies one gets for bubbles with four to six 
areas. For later usage the areas of each graph are numbered. With more areas the 
amount of different topologies will rise very fast. 
    Besides the graphs a dual presentation of the topology can be useful (Fig.1 
below). Instead of a nodal point in the graph the dual graph has a dual area. 
Instead of an area in the graph the dual graph has a dual nodal point (here 
extended to a circle). The line between neighboring areas in the graph 
corresponds to the connecting line between dual nodal points. As a consequence 
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the dual plane is divided into triangular areas only. A dual nodal point joins as 
many lines as the respective area has sides. Here the area numbers in the circles 
cover the dual nodal points. The infinite nodal point is marked by the external 
arms, all having the same number. 
 

 
Fig.1 Above: Graphs for the topology of simple bubbles. 

               Below: Dual graphs for the topology of these bubbles. 
 
2.2 Gross formulas 
    To subdivide bubbles having the same number of areas let us sort these areas 
according to the number of their sides. For each bubble the number of areas 
having n sides is named ( )nN2 . (Index 2 means the dimension of the areas). 
Then we define a gross formula (Gf), similar to the gross formulas used for 
organic molecules, here in form of a list ordered by the number n : 

( ) ( ) ( )( )1,...,4,3 0
2222 −NNNN                                                                                    (1) 

All gross formulas begin at n=3 and end at an n, that is by 1 less than the total 
number N2

0 of the areas of a bubble. The reasons for that are given in section 
4.1. In Fig.1 the gross formulas are added to the graphs. As we know from 
organic chemistry also foam bubbles with the same gross formula can have 
isomer topologies. To construct the graph from the gross formula alone is 
difficult at larger N2

0. Then more specifications are required.  
2.3 Relations between the numbers of areas, lines, and nodal points 
    The total number of areas of a bubble is N2

0. We define N1
0 as the number of 

its lines and N0
0 the number of its points. Then Euler’s relation [5] says: 

N N N0
0

1
0

2
0 2− + =                                                                                                    (2) 

With those parts of Plateau’s rules being also valid for the topology, we have: 
3 20

0
1
0N N=                                                                                                             (3) 
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The reason for that is: When 3 lines end at each nodal point, then with 3 0
0N  each 

line is counted twice. With eq.(2) we extend eq.(3) to  
( )2623 0

2
0
1

0
0 −== NNN                                                                                            (4) 

N2
0 results from the gross formula by summing up all the area numbers:  

( )∑=
n

nNN 2
0
2                                                                                                        (5) 

Multiply each item of the sum of eq.(5) by n before summing up and you get 
( )∑=

n

nnNN 2
1
2                                                                                                       (6) 

This, however, is two times the number of sides N1
0, because each border 

belongs to two areas and is counted twice. So we finally we get: 
( )2623 0

2
1
2

0
1

0
0 −=== NNNN                                                                                    (7) 

 

3. Lists of gross formulas 
    By definition the gross formula (Gf) of a bubble with N2

0 areas consists of 
( )30

2 −N  integers between null and N2
0 . Eqs.(5) to (7) provide necessary 

conditions, that must be fulfilled for each Gf. We shall see that the number of 
these Gf grows nearly exponentially with N2

0. Therefore, a search for all Gf that 
fulfill the above conditions requires computer help. All computer programs used 
in this paper have been written with Mathematica 2.0.  
3.1 Program for lists of Gf that fulfill eqs.(5) to (7) 
    A program, deposited in Appendix A, will help to find all those Gf of N2

0, that 
satisfy eqs.(5) to (7). For N2

0 4=  and N2
0 5=  one gets only one Gf (see Fig.1). For 

N2
0 6=  you find four Gf, for N2

0 7=  they are ten. For N2
0 13=  there are already 

1498 different Gf.  
    Increasing N2

0 beyond 13 provided problems concerning storage capacity and 
computing time. However, in Appendix B an other program is presented, that 
allowed to go up to N2

0 18= . Here you have already 33.327 different Gf. Bubbles 
with 18 surface areas are very rare in bulk dry foam. After Matzke [6] the 
experimental average of N2

0 is 13.70. 
 

 
Fig.2 Two examples for 
imaginary gross formulas (iGf): 
The dual graphs show forbidden 
crossing lines for the 
neighborhood of areas of a 2D 
cluster. Area No.6 contains the 
infinitely distant point of the 
plane. 
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3.2 Real and imaginary gross formulas 
    Our main goal are those Gf, for which a plane graph provides the topology of 
a bubble. Then we call it a real Gf (rGf). The conditions in eqs.(5) to (7) are 
necessary, but not sufficient for that. Let us consider the simple examples of 
N2

0 6= . In addition to the two cases in Fig.1 there are also (1,4,1) and (3,0,3). For 
them it is impossible to gain a plane graph. The tentative dual graphs presented 
in Fig.2 always have inadmissible crossings of the connecting lines. We call 
those cases imaginary Gf (iGf). For N2

0 8=  in Tab.1 you get a list of all iGf and 
of all real gross formulas (rGf). Moreover the values of N2

2 are given (see 
eq.(B1) in Appendix B). For the following we mainly consider the rGf. 
 

Tab.1. List of all imaginary gross formulas 
(iGf) and real gross formulas (rGf) of bubbles 
having 8 areas ( 80

2 =N ) with data for 2
2N  (see 

text). 
 
 
 
 
 
 
 
 
 
 

 
 

4. Construktive ways to real gross formulas 
    In order to sort out the rGf together with their graph, we have two 
constructive ways. Either we add a new area to a graph already known. This is 
the inverse of a 2-dimensional (2D) T2 process. Or we perform a 2D T1 process 
on a plane graph and gain new rGf with the same number of areas. Both ways 
shall now be used. 
 
 
Fig.3 The inverse T2 process, performed on 
a simple 2D cluster, increases the number of 
areas by 1. 
 
 
 
 
 
 
4.1 Inverse T2 process in 2D 
    In the inverse T2 process one increases the number of areas by one. Fig.3 
shows different variants on the graph for N2

0 5=  . You place a simply closed line 
(loop) around one, two, or more nodal points (maximal N0

0 2/ ). Hereby no area 
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of the graph must be entered more than once. Otherwise two areas would have 
contact at more than one side afterwards. Also, the number of intersection points 
with the borders must be two more than the number of nodal points within the 
loop (maximal N2

0). Otherwise at least one area of the existing graph would be 
within the loop. If now all the internal part of the loop is erased, we get a new 
area with nodal points at the former intersection points. Again the maximum 
number of sides of the resulting graph remains by one less than the new N2

0. 
When N2

0 increases by 1 then N1
0 increases by 3 and N0

0 by 2 (see eq.(7)). Tab.2 
collects the variants for including a new n-cornered area. Each list contains (in a 
cyclic way) by how much the neighbors increase the number of their corners. 
Their sum always equals ( )n−6 .  
 

 
Tab.2. Variants for including a new area by applying 

the inverse (2D) T2 process. 
 
    Why are two areas not allowed to have contact at more than one side? This 
question concerns the stability of a bubble respectively of an equivalent 2D 
cluster. In Fig. 4 (above) two areas (No.1 and No.2) within a 2D cluster have 
contact at two borders. Both are circular segments with equal curvature and 
equal center because of the same pressure difference between both areas. This 
also holds when more than two areas are in the middle part. A simple proof can 
be found by using the relations in [7]. Fig. 4 is drawn for equal pressure on No.1 



 7

and No.2. In any case we only get an indifferent equilibrium: Without changing 
the free energy the whole middle part may be shifted until one of the two  
borders between No.1 and No.2 disappears. Then by a T1 process (see Section 
4.2) the free energy is reduced. When this more stable state is reached then the 
two areas have contact at only one border. 
 

 
 
Fig.4 In a stable 2D cluster two areas 
must not have more than one common 
border. The position of areas 3 and 4 
is energetically indifferent (above). It 
will become stable after the T1 
process (below).  
 
 
 
 
 

    Therefore, after the 2D cluster has reached a local minimum of its free 
energy, also two-sided areas have disappeared. We conclude that a stable 2D 
cluster must not have areas with less than three sides. (The only exception would 
be a 2D two-bubble “cluster“ with three 2-cornered areas (N2

0 3= )). We may 
further conclude: A stable 2D cluster must not have areas with more than N2

0 1−  
sides. An area with N2

0 sides needs N2
0 different neighbors. That gives an 

inconsistancy. 
    For 3D foam bubbles it is not so easy, to generally exclude the existence of 
areas with only two sides. One could think of a bubble consisting of three 2-
cornered areas, that is shifted along a Plateau border. Whether without change of 
energy, that is the question. Because of the existence of non-spherical soap skins 
in 3D foam a proof is here more difficult. It would already be helpful to know if 
all Plateau borders are of circular shape. Until one offers a concrete example for 
a 2-cornered area in stable 3D foam we will exclude this possibility for now. 
    The construction of a graph of certain topology does not require that the way 
used takes place in reality. That opens an alternative procedure to form graphs 
with one more area. Consider the graph of a bubble with N2

0 areas and choose 
one area with n sides. From one of its sides you draw a line to one of the ( )n − 1  
other sides. That cuts this area into two parts. So you have formed a new graph. 
The number of its nodal points increases by 2, the number of its sides by 3. 
From the n-cornered area we get (with k n= −1 1,..., ) a ( )k + 2 -cornered and a 
( )n k+ −2 -cornered area. And two neighboring areas get one more nodal point. 
The number of different cuts ( )ns  on this area is s n n n( ) ( ) /= −1 2. 
    The total number S of possible cuts made on all areas of the bubble is 

( ) ( ) ( )1
2

2
22

1
1

3
2

0
2

NNnsnNS
N

n

−== ∑
−

=
 ,                                                                  (8) 
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where (as defined in (B.1)) we have 

( )∑
−

=

=
1

3
2

22
2

0
2N

n

nNnN   .                                                                                           (9) 

 
4.2 T1 process in 2D 
    In Fig. 5 we present this topological change within a graph and its dual graph. 
Hereby the number of areas of the bubble remains unchanged. Two neighboring 
nodal points are forced to come into a transient contact and then separate again 
into an other direction. Thereafter the areas No.2 and 4 have one side more. That 
excludes areas with ( )10

2 −N  corners before. The areas No.1 and 3 loose one side. 
That excludes 3-cornered areas before.  
 

 
Fig.5 The T1 process: Local 
topological change within a graph 
(above) and its dual graph (below). 
 
 
 
 
 
 
 
 
 

4.3 Isomer topologies of the same gross formula 
    Topological isomers exist, when for a certain rGf the areas allow different 
connections. In Fig. 6 we bring three examples. The first example shows for 
N2

0 7=  two graphs forming a topological mirror symmetry. It remains a question 
of definition, whether they can be seen as topological isomers. We will deny this 
here. The second example belongs to N2

0 8= . The same rGf allows two true 
(structural) isomers. The last example provides three structural isomers of the 
same rGf. We start from the graph of a bubble containing twelve 5-cornered 
areas with the rGf (0,0,12,0,0,0,0,0,0), presented three times in Fig.6. Then we 
include by the inverse T2 process two 3-cornered areas at separate places 
(marked by larger nodal points) having different distances. The rGf for all three 
isomers is (2,0,6,6,0,0,0,0,0,0,0). Only when the distance of both triangles is too 

small, then another rGf results. 
 
 
Fig.6 Examples of isomer graphs. Middle: Typical 
(structure) isomer. Above: Mirror symmetry, no 
(structure) isomer. Below: Three isomer graphs 
derived from the dodecahedron by adding two 
triangular via T2 process at the two marked nodal 
points. 
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4.4 Homologeous series for 3D-bubbles 
    Similar to the usage in the organic chemistry one finds a whole series of 
graphs by repeatedly adding the same area (or group of areas). So one easily 
reaches graphs with larger N2

0. We choose two examples, that may help us when 
starting computer programs. Their graphs shown in Fig.7 (above and below) 
follow from a repeated inverse T2-process that successively adds a 4-cornered 
area. Two areas  increase their n by 1. For N2

0 6>  the single ( )nN2  are 
( ) ;24 0

22 −= NN  and ( ) ;220
22 =−NN  respectively, ( ) ;232 =N  ( ) ;44 0

22 −= NN  and 
( ) 210

22 =−NN . All other ( )nN2  are zero. From here T1 processes lead to other 
graphs with equal N2

0. 
 

 
Fig.7 Two series of graphs with their gross formulas. 

 

5. Programs for real gross formulas and their nodal lists 
    The numbering of the areas for a graph has already been proved true in 
describing the figures. They now render indispensable for developing the 
computer programs, that change a bubble or its graph the way wanted. The rGf 
of the bubble alone will not disclose its topology. The information required for it 
shall be found in the so called nodal list. 
5.1 The nodal list of the bubble 
    The nodal list (Noli) provides a straightforward way for constructing the 
graph of the bubble. The Noli informs about the three neighbor areas of each of 
the ( )22 0

2
0
0 −= NN  nodal points. All areas of the bubble are numbered from 1 to 

N2
0. Hereby the succession is unimportant. Then for each nodal point you form a 

sub list of the numbers of its three neighboring areas. Here the succession of the 
three numbers defines a sense of rotation. It must be uniform for all nodal 
points, whereas a cyclic rotation of these three numbers does not matter. As an 
example we choose the Noli of the simple rGf (2,2,2) (see Fig.1). It could look 
like that: {{1,6,2},{2,6,3},{3,6,4},{4,6,5},{5,6,1} ,{1,2,3},{1,3,4},{1,4,5}}. 
Each number in it appears as often as its area has corners. With this knowledge 
we easily construct the graph. Favorable, but not mandatory, is an external area 
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with the highest number of corners. This has influence on the image of the 
graph, but not on the topology of the bubble. Inverting the sense of rotation of 
all sub lists leads to the mirror image of the graph, but does not change the 
(structural) topology. 
5.2 Programs for inverse T2 processes in 2D 
    You may systematically try by hand (quasi with paper and pencil) to detect all 
rGf having one more area out of the complete set of the rGf for N2

0. However, 
soon there are limits. From N2

0 8=  to N2
0 9=  was the last step done by this way. 

Then computer programs may help. In Appendix C you find two such programs. 
They both need a list of Noli belonging toN2

0 we start with.  
    The first program generates a 3-cornered area at any allowed nodal point of 
each Noli. So one gains new rGf with one more area. Each new rGf is added to a 
list, together with its Noli, in form of a (rGf,Noli) pair. By adding 3-cornered 
areas, however, we do not obtain the complete set of rGf having 1 more area. 
Certainly we miss any new rGf with ( ) 032 =N .  
    Therefore, we need at least one other program. We may include a 4-cornered 
area at two neighboring nodal points (see Tab.2). The second program in 
Appendix C can do this task. From each Noli it makes a list of pairs of 
neighboring nodal points. They characterize the ( )23 0

2 −N  lines of the graph. 
Then each side is replaced by a 4-cornered area and the new (rGf,Noli) pair has 
conserved the ( ) 032 =N  in all rGf. However we now miss any rGf with ( ) 042 =N . 
The inclusion of an area with more than 4 corners as well as the alternative way 
of cutting an area into two pieces, as depicted before, requires larger programs 
that are not needed, when we also apply T1 processes.  
5.3 Programs for T1 processes 
    Such a program requires, like the second program in Appendix C, a list of 
pairs of neighboring nodal points. The programs laid down in Appendix D for 
the T1 process again deliver for each new rGf a Noli from which its graph can 
be formed. Two versions are presented. The first version allows to gain new 
(rGf,Noli) pairs from a single (rGf,Noli) pair and by repeated applying the same 
program to all new pairs one continues until new pairs are no more found. The 
second version is used, when a larger number of (rGf,Noli) pairs is already 
available and one wants to detect the missing rest. To give an example, you find 
in Tab.3 the list of (rGf,Noli) pairs belonging to N2

0 8= . It contains all 13 
possible rGf, but only one of the two isomer Noli with the same rGf (2,2,2,2), 
that we know from Fig.6. The search for all isomers of a certain rGf shall be 
postponed to a later task.  
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Tab.3. List of the 13 (rGf, Noli) pairs of 80

2 =N  (see text). 
 
5.4 The construction of the graph out of its nodal list 
    You will learn how to construct the graph, if its Noli is known. In Fig.8 nodal 
lists (Noli) of two selected examples together with their rGf are shown. They 
belong to N2

0 11=  and N2
0 13= . By counting how often the number of a certain 

area number appears in the Noli we get its number n of borders. In the table 
below you find the numbers of all areas sorted after n. For a control, the rGf tells 
us how many areas must belong to each n. As outer area of the graphs we 
choose No.3 (or No.8); both have maximum n. So we have 6 nodal points at the 
external border of the graph. Each such point delivers a line going inward to an 
other nodal point. From the Noli we collect all 6 nodal triplets containing No.3 
(or No.8) and sort them in a consecutive order to be transferred into the graph. 
To each nodal point in the graph for which two area numbers are known the 
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third area number is found in the Noli. Hereby we always have to observe the 
right sense of rotation.  

 
Fig.8 Construction of the graph out of the nodal list of  rGf 

(2 examples). 
 
 

6. Results and discussions 
    We begin with Tab.4 by comparing the number ZGf  of all Gf and its part ZrGf  
of all rGf, that have been found for N2

0 4 16= ,..., . For N2
0 13>  we still may miss 

a few rGf. In the right column you find the ratio Z ZrGf Gf . With increasing N2
0 

it runs through a minimum and reaches 0.67 at N2
0 16= . Where will it converge 

with growing N2
0? We only know for sure, that it cannot be larger than 1. 
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Tab.4. Z(rGf) is the number of all 
rGf. Z(Gf) = Z(rGf) + Z(iGf) is 
the number of all Gf. 0

2N  runs 
from 4 to 16. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

    For N2
0 4 16= ,...,  we have collected the sorted lists containing the ZrGf  sub 

lists of (rGf,Noli) pairs, the same way as presented for N2
0 8=  in Tab.3. The vast 

extent of all data excludes their presentation here. They are useful for various 
statistical analyses. An example is given in Tab.5. For N2

0 12=  we have plotted 

the frequency ( )znH , , with which ( ) znN =2  appears in the ZrGf = 445 (Tab.4) 

rGf. For a check-up: ( ) 445, =∑z
znH  must hold for each  n=3,...,11. Above the 

step-like envelope all ( )znH ,  are zero. At ( ) 112,5 =H  the envelope looks like a 
resonant peak that we do not find for other N2

0
. This stems from the rGf of the 

dodecahedron. The ( ) 12,11 =H  points to (2,8,0,0,0,0,0,0,2), described in section 

4.4 and Fig.7 (below). It is the only one with ( ) 2112 =N .  
 
 
 
Tab.5. Table of  the rate 

H(n,z) for 120
2 =N  . H(n,z) is 

the numberof times you find z 
= ( )nN2  in all the 445 rGf of 

120
2 =N  (see eq.1 and 

capt.3.2).  
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    All N2
1
 are divisible by 6, what we know from eq.(7). Together with eq.(6) we 

derive two tests for all rGf: 
    1) The sum of all ( )nN2  with n= (2 mod 1) is divisible by two:  

          ( ) int;2122 ==+∑ NNkN
k                                                               (10) 

    2) The sum of all ( )nN2  with n=(3 mod 1) plus two times  
          the sum of all ( )nN2  with n=(3 mod 2) is divisible by three: 

           ( ) ( ) int;323213 22 ==+++ ∑∑ NNkNkN
kk                          (11) 

These tests also hold for iGf because they fulfill the same eqs.(6) and (7).  
    An other relation that uses N2

1
 defines the average number nav of corners (or 

sides) among the areas of a certain bubble. One gets 
( ) 0

2
0
2

0
2

0
2

1
2 12626 NNNNNnav −=−==          .                                          (12) 

This formula shows that nav only depends on N2
0
. It runs from 3 at N2

0 4= , over 4 
at N2

0 6= , over 5 at N2
0 12= , up to 6 at N2

0 = inf . 
    Now we shall discuss the properties of N2

2. While N2
1 is constant for all Gf of a 

certain N2
0, this does not hold for theN2

2. They cover a whole range of values, 
and they all are even. A proof for that is easily done, if we remember the ( )1,1−+ -
shift, by which all Gf have been found (see Appendix B). Hereby N2

2 is reduced 
by ( )12 −u , with 4,...,2 0

2 −= Nu , depending on the distance u between the places 
to be shifted. For the starting Gf with ( ) 33 0

22 −= NN  and ( ) 310
22 =−NN  (with all 

other ( ) 02 =nN ) we get ( )( )813 0
2

0
2

2
2 −+= NNN . That is an even number for all N2

0. 
The starting Gf does not have a predecessor for a ( )1,1−+ -shift. Therefore, all N2

2 
are even. Also we may conclude that the odd terms in each Gf always appear in 
pairs.  
    As for all Gf with N2

2 = max, we also have a homologous series for rGf with 
N2

2 = max. It has been formulated in section 4.4 and shown in Fig.7 (below). In 
Tab.6 these rGf with N2

2 = max are listed for N2
0 4 16= ,..., , together with their 

value of N2
2. Except of N2

0 equal to 4 and 5 the maximal N2
2 of the rGf is always 

smaller than that of the Gf. And except of N2
0 equal to 7 and 8 (**) there is only 

one rGf with maximum value. To construct the exceptional graphs may be a 
good exercise.  
    The right side of Tab.6 contains the rGf with N2

2 = min  and their values of N2
2 

in the row to the right. Except of N2
0 equal to 11 and 13 (***) the rGf and Gf for 

N2
2 = min are the same. The examples chosen in Fig.8 show the graphs of these 

exceptions. Neither a T1 step performed on these graphs nor a (normal or 
inverse) T2 step performed on the graph of the dodecahedron yields a rGf of the 
form (0,1,10,0,...) for N2

0 11=  or (0,0,12,1,0,...) for N2
0 13= . The reason for these 

exceptions is the high symmetry of the dodecahedron of N2
0 12= . Only two other 

rGf have also areas with unique corner numbers (*). Their topology is equal to 
that of a cube and a tetrahedron. This list could be completed by a plane 
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honeycomb lattice presenting the graph of a bubble with infinite number of 
hexagons.  
    New Noli gained in the programs for T1 and T2 processes cannot be 
discerned right off as belonging to a graph already known or to an isomer graph. 
That comes mainly from the freedom of numbering the N2

0 areas. Therefore, a 
future program has to find a way to distinguish topological isomerism more 
easily.  
    What can we say already now about the occurrence of (structural) isomers? 
The first example was shown in Fig.6 for N2

0 8= . Certainly, the more areas with 
differing numbers n of their corners a bubble has, the more alternative graphs 
are thinkable.  

 
Tab.6. Left: rGf for max2

2 =N  . Right: rGf for min2
2 =N . Both with their 

respective 2
2N  . The number of bubble areas runs from 4 to 16 (see text). 

 

    So let us now confine to the search for graphs that have the limiting N2
2 given 

in Tab.6, extended to N2
0 16> . All graphs of rGf with N2

2 = max are devoid of 
isomers. This also holds for sure with N2

2 = min up to N2
0 15= . With each 

additional area the number of hexagons steps up by 1, while the number of 
pentagons remains twelve. You easily find graphs having a symmetrical 
arrangement of few hexagons. For N2

0 14=  to N2
0 16=  they have, in a topological 

sense, maximum distance from each other. From N2
0 17=  upwards at least 2 

hexagons touch each other. For N2
0 18=  they form two compact groups of three 

with maximum distance. For N2
0 19=  you may get one group of three and one of 

four, both with a threefold symmetry. N2
0 20=  possesses an equatorial ring out of 

six hexagons and one hexagon at each pole, separated by two rings of six 
pentagons. A graph with the topology of a soccer ball (or a Fullerene molecule 
out of 60 carbon atoms) also has minimum N2

2 with 12 pentagons and 20 
hexagons. Here the pentagons are already in the minority. Each pentagon is 
surrounded by five hexagons, while each hexagon is connected to three 
pentagons. The same dodecahedral symmetry is found in two other series of 
graphs. With z=0,1,2,... the one has ( ) ))2(32(1062 zzN ++= , the other has 

( ) ( )( )zzN ++= 431062 .  
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    For N2
0 16=  we have the first case of isomerism among those with N2

2 = min. 
Alternatively to the case given above, the 4 hexagons form two clusters of two 
hexagons in maximum distance. With larger N2

0 and appropriate distribution of 
the 12 pentagons among the many hexagons more isomers are obtained. In Fig.9 
(above) you see the arrangement of two pentagons and two hexagons. With the 
T1 process you obtain an isomer graph. When finally the pentagons unite into 
compact clusters these T1 steps come to an end.  
 

 

Fig.9 Search for graphs at the limit min2
2 =N . 

Above: rGf-invariant T1 step. Below: T2 step 
and inverse T2 step. 
 

 
 
 
 
 
 
 
 
 
 

    Not all isomers of a rGf with N2
2 = min can be reached by such rGf-invariant 

T1 steps. For instance in the two series of ( )62N above, when z>0, all pentagons 
are too far apart. Other examples may be described. We divide the (regular 
spherical 3D) graph of the dodecahedron into two semi-spheres. Then we add 
two (or more) rings, each consisting of 5 hexagons, between the semi-spheres 
and close the whole. For large N2

0 you get long tube-like bubbles that hardly 
exist in real foams. But certain single wall nanotubes with closed ends, each 
containing five pentagons, may have such topologies. One can build other tube-
like bubbles with more than five hexagons around the tube circuit. Let the tubes 
consist of two (or more) rings, each containing 6 hexagons. Then the closure is 
formed by 6 pentagons with one hexagon at each end. Again, the special 
arrangement, as required in Fig. 9, cannot be found in the given examples. 
Therefore, no rGf-invariant T1 process can reach these isomers. 
    Fig.9(below) shows how a T2 step increases (or decreases) the areas by one 
hexagon under the condition that N2

2 = min is conserved. This enables us to 
construct such graphs with higher N2

0. We suppose that with T1 and T2 steps, 
that conserve N2

2 = min, you can form a graph of any N2
0 you want.  

    Finally we formulate the following conjecture: ( )0
2NG  be the set of all 

possible (rGf,Noli) pairs for N2
0
 >5 including each isomer by one (rGf,Noli) pair. 

Then all (allowed) T1 steps form a unique net connecting all elements of ( )0
2NG . 

This conjecture lives from the fact, that each T1 step is reversible. We know that 
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each element of ( )0
2NG  allows at least one T1 step. It remains to proof that there 

are no two or more separate nets of T1 steps. Then we could derive all elements 
of ( )0

2NG  out of only one graph or its Noli, presumed the isomers of a rGf can 
easily be distinguished.  
    Concluding the discussions let me remark that obviously the topology of a 
bubble tells nothing about its shape, size, or frequency of appearance in a dry 
foam. However, the results of this study offer some help in the statistical 
analysis of dry foams. One next could study the various topological forms of a 
3D cluster. How many topologies exist for a 3D cluster out of a given number of 
bubbles? The goal is to solve that puzzle in a systematic way. 
 
 
 

Appendix A 
    The following program (C:\math\asolu08)  provides all 27 solutions of real 
and imaginary gross formulas (Gf) of a 2D cluster having N2

0 8=  areas. 
C:\math\asolu08 
allsol8={sol={}; 
m8={{1,1,1,1,1},{3,4,5,6,7},{0,0,1,0,0},{0,0,0,1,0}, 
{0,0,0,0,1}}; 
t8=Table[LinearSolve[m8,{8,36,x,y,z}], 
{x,0,8},{y,0,8},{z,0,8}];sol={}; 
For[a=1,a<=8,a++,For[b=1,b<=8,b++,For[c=1,c<=8,c++, 
For[k=1;en=0,k<=8-3,k++, 
If[t8[[a,b,c,k]]>=0,en++; 
If[en==8-3,AppendTo[sol,t8[[a,b,c]]]]]]]]]; 
sol8=Sort[sol]} 

    In chapter 2 the eqs.(5) and (6) are two linear equations for the ( )30
2 −N  

unknown ( )nN2 . The square matrix m8 contains additional rows for ( ) xN =52 , 
( ) yN =62  and ( ) zN =72 , where the parameters x, y, z are integers. The remaining 

lines are needed, to reject all solutions, that contain negative ( )nN2 . 
    The following program for N2

0 9=  ( C:\math\asolu09)  shows what has to be 
changed if we increase (or decrease) the number of areas by 1. So we easily get 
programs for 7, 6, and for more than 9 areas. The number 36 or 42 within the 
LinearSolve-command is N2

1, obtained from eqn.(7). 
C:\math\asolu09 
allsol9={sol={}; 
m9={{1,1,1,1,1,1},{3,4,5,6,7,8},{0,0,1,0,0,0}, 
{0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,0,1}}; 
t9=Table[LinearSolve[m9,{9,42,w,x,y,z}], 
{w,0,9},{x,0,9},{y,0,9},{z,0,9}]; 
For[a=1,a<=9,a++,For[b=1,b<=9,b++, 
For[c=1,c<=9,c++,For[d=1,d<=9,d++, 
For[k=1;en=0,k<=9-3,k++, 
If[t9[[a,b,c,d,k]]>=0,en++; 
If[en==9-3,AppendTo[sol,t9[[a,b,c,d]]]]]]]]]]; 
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sol9=Sort[sol]} 

 

Appendix B 
    There is a faster path to the complete list of all (real and imaginary) gross 
formulas (Gf). One can show, that from each of these Gf you reach a new one, if 
you increase the number of corners of one area by 1 and decrease the number of 
corners of a second area by 1. When the second area had only one corner more 
than the first, then the Gf remains the same. So it suffices to demand, that the 
second area has at least two corners more than the first. Such a process shall be 
called a ( )1,1−+  shift. Let us begin with a Gf, for which only ( )32N  and ( )10

22 −NN  
are larger than zero. Then with each allowed ( )1,1−+  shift we reach a new Gf.  
    The ( )1,1−+  shift program is  
C:\math\bf 
bru=b;brx={}; 
For[k=1,k<=Dimensions[b][[1]],k++,a=b[[k]];  
                                        (*k-th gross formula*) 
For[j=1,j<=z-2,j++, 
For[i=j+2,i<=z,i++, 
If[a[[j]]>0&&a[[i]]>0,c=a; 
c[[j]]=c[[j]]-1;c[[j+1]]=c[[j+1]]+1;            (* +1 shift *) 
c[[i]]=c[[i]]-1;c[[i-1]]=c[[i-1]]+1;            (* -1 shift *) 
If[c!=a, 
AppendTo[brx,c]]]]];br=Union[brx]]; 
bri=Union[bru,br]; 
b=Complement[bri,bru]; 
bru=bri;all=Union[all,b];          (* all collects all Gf *) 
Print["b=",b];                         (* b contains new Gf *) 
Print[Dimensions[all]]; 
                        (* Repeat "<<bf", til printout b={} *) 

    With eqs.(5) to (7) we derive the starting Gf: ( ) 33 0
22 −= NN  and ( ) 310

22 =−NN .  
The program is started (depending on ( )32Nz = ) with the following input data: 
         z=4;b={{4,0,0,3}};all=b;<<bf    
 (*or    z=5;b={{5,0,0,0,3}};all=b;<<bf   , 
   or    z=6;b={{6,0,0,0,0,3}};all=b;<<bf   , etc.*) 

For each N2
0 the program ends with a Gf, that doesn’t allow another ( )1,1−+  shift. 

Then either only one of the ( )nN2  is different from zero. That holds for N2
0 4=  

with ( ) 432 =N  , for N2
0 6=  with ( ) 642 =N  and for N2

0 12=  with ( ) 1252 =N  . Or 
only two ( )nN2  are different from zero and their area number n must differ by 
just 1. For N2

0 5= , and N2
0 4= , start- and goal-Gf are the same. For 6 122

0< <N  we 
get: ( ) 0

22 124 NN −=  and ( ) 1225 0
22 −= NN  . For 12 2

0< N  we get: ( ) 1252 =N  and 
( ) 126 0

22 −= NN  .  
    All Gf of a certain N2

0 can be classified by another number. We define it as: 
 

( )nNnN
n
∑= 2

22
2                                                                                                  (B1) 
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We can show, that with each ( )1,1−+  shift N2
2 will decrease. From that we 

conclude: For each N2
0 5>  there is exact one Gf with maximum N2

2 and exact one 
Gf with minimum N2

2 . If you exchange start and stop of the search for Gf, such 
( )1,1+−  shifts form the same set of Gf, that also is identical to the set of Gf 
obtained from appendix A. That means, our program bf delivers all Gf that 
fulfill the necessary conditions in Gl.(5) to (7). 
 

Appendix C 
C.1 Insertion of a 3-cornered area by the inverse T2 process 
    For an area number N z2

0 =  we start with a ready list of (rGf,Noli) pairs. The 
program inserts at one of the 2(z-2) nodes of a Noli a 3-cornered area by the 
inverse T2-process. The same is done in turn for all nodes of the Noli and for all 
Noli of the list. The T2 program is  
C:\math\t2_3prg  
ac3p[z_, t_] := {albrutt={}; alknoli={}; rbfknoli={}; 
For[h = 1, h <= hm, h++,                   (*all hm clusters*)  
For[i = 1, i <= 2*(z - 2), i++,  
                             (*all 2(z-2) nodes of a cluster*)  
ap = Append[t[[h,i]],t[[h,i,1]]]; 
pa = Partition[ap, 2, 1]; fla = Flatten[pa]; 
in = Insert[fla, z + 1, {{3}, {5}, {7}}];  
j2 = Partition[in, 3];  
j1 = Delete[t[[h]], i]; tp = Join[j1, j2]; fl = Flatten[tp]; 
ze = Table[Count[fl, k], {k, z + 1}]; 
n2 = Table[Count[ze, k], {k, 3, z}]; 
AppendTo[albrutt,n2]; 
AppendTo[alknoli,tp]; 
AppendTo[rbfknoli,{n2,tp}]]]}; 

To search (rGf,Noli) pairs for N2
0 9=  use the following command group: 

z=08; bk=(*include list of (rGf,Noli) pairs of N2
0 8= *);  

hm=Length[bk];t=Table[bk[[i,2]],{i,hm}]; 
<<t2_3prg  
ac3p[z,t]; 

    The files albrutt and rbfknoli are still unsorted. A sorted list of rGf is built 
with the command brutto=Union[albrutt]. To each rGf you find in rbfknoli a 
(rGf,Noli) pair. 
C.2 Insertion of a 4-cornered area by the inverse T2 process 
    The following program consists of two parts. They are laid down under 
C:\math\t2_4prg and \t2q. In the first part we use one of the known (rGf,Noli) 
pairs belonging to N z2

0 = . The inverse T2 process inserts a 4-cornered area in 
turn at each of the 3(z-2) sides. In the second part the same procedure is repeated 
in turn on each cluster of a list bk of already known (rGf,Noli) pairs.  
C:\math\t2_4prg 
t2a4[z_,t_]:={np={};t1np={};mtt1={};mnt1={}; 
flat=Flatten[t];tc=Table[Count[flat,k],{k,z}]; 
For[i=1,i<=2z-5,i++,For[j=i+1,j<=2z-4,j++,         (*start ForFor*) 
alpa={t[[i]],t[[j]]};fl=Flatten[alpa];uno=Union[fl]; 
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If[Dimensions[uno]=={4},AppendTo[np,alpa],Null]]];   (*end ForFor*) 
For[k=1,k<=3(z-2),k++,paar=np[[k]];                   (*start For*) 
in=Intersection[paar[[1]],paar[[2]]]; 
un=Union[Flatten[paar]];c=Complement[un,in]; 
AppendTo[t1np,np[[k]]]];                                (*end For*) 
For[h=1,h<=Dimensions[t1np][[1]],h++,par=t1np[[h]];   (*start For*) 
int=Intersection[par[[1]],par[[2]]];po1=Position[t,par[[1]]][[1]]; 
po2=Position[t,par[[2]]][[1]];j1=Delete[t,{po1,po2}]; 
c1=Complement[par[[1]],int][[1]];c2=Complement[par[[2]],int][[1]]; 
p1=Position[par[[1]],c1][[1,1]];p2=Position[par[[2]],c2][[1,1]]; 
wh={p1,p2};sw=Switch[wh, 
{1,1},{1,2,3,5,6,4},{1,2},{1,2,3,6,4,5},{1,3},{1,2,3,4,5,6}, 
{2,1},{2,3,1,5,6,4},{2,2},{2,3,1,6,4,5},{2,3},{2,3,1,4,5,6}, 
{3,1},{3,1,2,5,6,4},{3,2},{3,1,2,6,4,5},{3,3},{3,1,2,4,5,6}]; 
flp=Flatten[par];nt1=Part[flp,sw];pa=Part[nt1,{1,2,2,6,6,3,3,1}]; 
pati=Partition[pa,2];dpati=Dimensions[pati][[1]]; 
For[i=1,i<=dpati,i++,f[i]=Join[pati[[i]],{z+1}]]; 
j2=Table[f[i],{i,dpati}];t0=Join[j1,j2];vec=0; 
For[es=1,es<=2z-3,es++,For[te=es+1,te<=2z-2,te++,  (*start ForFor*) 
If[Union[t0[[es]]]==Union[t0[[te]]],vec++]]];        (*end ForFor*) 
If[vec==0,seli={}; 
For[r=1,r<=2z-2,r++,                                  (*start For*) 
ta={{t0[[r,1]],t0[[r,2]]}, 
{t0[[r,2]],t0[[r,3]]},{t0[[r,3]],t0[[r,1]]}}; 
seli=Union[seli,ta]];                                   (*end For*) 
If[Dimensions[seli][[1]]==6z-6,tt1=t0; 
fla=Flatten[tt1]; 
zt1=Table[Count[fla,k],{k,z+1}];n2t1=Table[Count[zt1,k],{k,3,z}]; 
AppendTo[mtt1,tt1];AppendTo[mnt1,n2t1]]]]}                     (*end For*) 

C:\math\t2q 
t2real[x_,xmin_,xmax_]:= 
{Do[{t=bk[[x,2]]; 
t2a4[z,t]; 
bralt=brutto;brutto=Union[mnt1,bralt]; 
If[Dimensions[brutto][[1]]>Dimensions[bralt][[1]], 
cobra=Complement[brutto,bralt]; 
For[i=1,i<=Dimensions[cobra][[1]],i++, 
poco=Position[mnt1,cobra[[i]]][[1,1]]; 
AppendTo[mt1,{cobra[[i]],mtt1[[poco]]}]]]},{x,xmin,xmax}]; 
Print[Dimensions[brutto]]} 

    To start the search for (rGf,Noli) pairs of N2
0 9=  use the following command 

group: 
z=08; bk=(*include list of (rGf,Noli) pairs for N2

0 8= *); 
dbk=Length[bk] 
xmin=1; xmax=dbk; brutto={}; mt1={}; 
<<t2_4prg 
<<t2q 
t2real[x,xmin,xmax];          (*delivers Dimensions[brutto]*) 

    In the list brutto you find the new rGf. The list mt1 contains sorted (rGf,Noli) 
pairs for all rGf of brutto. These (rGf,Noli) pairs with N2

0 9=  can be used as 
starting list for getting (rGf,Noli) pairs of N2

0 10= :  
z=09; bk=mt1; dbk=Length[bk] 
xmin=1; xmax=dbk; brutto={}; mt1={}; 
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t2real[x,xmin,xmax];          (*delivers Dimensions[brutto]*) 

    And by that way we could go on and gain a first list of (rGf,Noli) pairs for 
higher and higher N2

0 . 
 

Appendix D 
For a given number of areas N z2

0 = , and for a given (rGf,Noli) pair we apply a 
T1 process at each of the 3(z-2) sides of the respective graph to obtain new 
(rGf,Noli) pairs. They are collected in the lists mnt1 and mtt1. The program is 
C:\math\t1n 
napaa[z_,t_]:={np={};t1np={};mtt1={};mnt1={}; 
flat=Flatten[t];tc=Table[Count[flat,k],{k,z}]; 
For[i=1,i<=2z-5,i++,For[j=i+1,j<=2z-4,j++,          (*start ForFor*) 
alpa={t[[i]],t[[j]]};fl=Flatten[alpa];un=Union[fl]; 
If[Dimensions[un]=={4},AppendTo[np,alpa],Null]]];     (*end ForFor*) 
For[k=1,k<=3(z-2),k++,paar=np[[k]];                    (*start For*) 
in=Intersection[paar[[1]],paar[[2]]]; 
un=Union[Flatten[paar]];c=Complement[un,in]; 
If[(tc[[in[[1]]]]>3&&tc[[in[[2]]]]>3&&tc[[c[[1]]]]<(z-1) 
&&tc[[c[[2]]]]<(z-1)),AppendTo[t1np,np[[k]]]]];          (*end For*) 
For[h=1,h<=Dimensions[t1np][[1]],h++,par=t1np[[h]];    (*start For*) 
int=Intersection[par[[1]],par[[2]]];po1=Position[t,par[[1]]][[1]]; 
po2=Position[t,par[[2]]][[1]];j1=Delete[t,{po1,po2}]; 
c1=Complement[par[[1]],int][[1]];c2=Complement[par[[2]],int][[1]]; 
p1=Position[par[[1]],c1][[1,1]];p2=Position[par[[2]],c2][[1,1]]; 
wh={p1,p2};sw=Switch[wh, 
{1,1},{2,4,1,1,4,5},{1,2},{2,5,1,1,5,6},{1,3},{2,6,1,1,6,4}, 
{2,1},{3,4,2,2,4,5},{2,2},{3,5,2,2,5,6},{2,3},{3,6,2,2,6,4}, 
{3,1},{1,4,3,3,4,5},{3,2},{1,5,3,3,5,6},{3,3},{1,6,3,3,6,4}]; 
flp=Flatten[par];nt1=Part[flp,sw];j2=Partition[nt1,3]; 
t0=Join[j1,j2];vec=0;seli={}; 
For[es=1,es<=2z-5,es++,For[te=es+1,te<=2z-4,te++,   (*start ForFor*) 
If[Union[t0[[es]]]==Union[t0[[te]]],vec++]]];         (*end ForFor*) 
If[vec==0,seli={}; 
For[r=1,r<=2z-4,r++,                                   (*start For*) 
ta={{t0[[r,1]],t0[[r,2]]}, 
{t0[[r,2]],t0[[r,3]]},{t0[[r,3]],t0[[r,1]]}}; 
seli=Union[seli,ta]];                                    (*end For*) 
If[Dimensions[seli][[1]]==6z-12,tt1=t0; 
fla=Flatten[tt1]; 
zt1=Table[Count[fla,k],{k,z}];n2t1=Table[Count[zt1,k],{k,3,z-1}]; 
AppendTo[mtt1,tt1];AppendTo[mnt1,n2t1]]]]}               (*end For*) 

    For starting and manifold repeating the program t1n we use the following 
program: 
C:\math\t1k  
t1real[wdh_]:= 
{Do[{ran=Random[Integer,{1,Dimensions[mtt1][[1]]}]; 
t=mtt1[[ran]];napaa[z,t]; 
bralt=brutto;brutto=Union[mnt1,bralt]; 
If[Dimensions[brutto][[1]]>Dimensions[bralt][[1]], 
cobra=Complement[brutto,bralt]; 
For[i=1,i<=Dimensions[cobra][[1]],i++, 
poco=Position[mnt1,cobra[[i]]][[1,1]]; 
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AppendTo[mt1,{cobra[[i]],mtt1[[poco]]}]]]},{wdh}]; 
Print[Dimensions[brutto]]} 

    The simple case of N2
0 8=  is used as an example for getting from a known 

(rGf,Noli) pair more such pairs. To start the program you may use the following 
command group: 
z=8; mt1={{{2,4,0,0,2}, 
          {{1,8,2},{1,2,3},{1,3,4},{1,4,5},{1,5,6},{1,6,7}, 
           {8,1,7},{8,3,2},{8,4,3},{8,5,4},{8,6,5},{8,7,6}}}}; 
brutto={mt1[[1,1]]}; mtt1={mt1[[1,2]]}; t=mtt1[[1]]; 
cobra={1}; 
<<t1n 
<<t1k 
t1real[1] 

    An outprint shows the total number tn of newly found rGf and the number 
5 3= −z . To continue you repeat the command t1real[k] with k=1,2,4,8,16,..., 
until z does not grow any more. In our example that happens, depending on the 
starting data, at the last for tn=13. The same number of rGf resulted with the 
inverse T2 process done with pencil and paper on the 5 graphs of N2

0 7= . All 
(rGf,Noli) pairs are collected in mt1, all rGf in brutto. Other (rGf,Noli) pairs 
chosen for starting the program may yield less. Only when the same maximum 
tn is obtained with different starting pairs, you may be sure to a certain extent, 
that all possible rGf have been found. The reason for that is the following. Only 
one of the isomer graphs belonging to the same rGf will be collected as an 
(rGf,Noli) pair. The missing Noli-isomers however, could open the way to 
further rGf. A first step to remove this problem was the Random command used 
in C:\math\t1k.  
    The following program ( C:\math\t1q) is an alternative to t1k, after we already 
have a file with a larger number of (rGf,Noli) pairs. 
 
 
C:\math\t1q 
t1real[x_,xmin_,xmax_]:= 
{Do[{t=bk[[x,2]]; 
napaa[z,t]; 
bralt=brutto;brutto=Union[mnt1,bralt]; 
If[Dimensions[brutto][[1]]>Dimensions[bralt][[1]], 
cobra=Complement[brutto,bralt]; 
For[i=1,i<=Dimensions[cobra][[1]],i++, 
poco=Position[mnt1,cobra[[i]]][[1,1]]; 
AppendTo[mt1,{cobra[[i]],mtt1[[poco]]}]]]},{x,xmin,xmax}]; 
Print[Dimensions[brutto]]} 

    To start the program in case of N2
0 8=  you may use the list of (rGf,Noli) pairs 

shown in Tab.3. Then apply the following command group: 
z=8; bk=<<(*list of (rGf,Noli) pairs from Tab.3 *); 
dbk=Length[bk]; xmin=1; xmax=dbk; brutto={}; mt1={}; 
<<t1n 
<<t1q 
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t1real[x,xmin,xmax]  
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