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Abstract: The topological structure of such a bubble reguiveo necessary conditions.

Firstly, Euler’s relation between the numbers sf(gurface) areas, its (Plateau) borders, and
its nodal points (vertices) must be fulfilled. Sedly, always three borders on its surface meet
at each nodal point. These conditions allow ceats of areas with different numbers of
borders. However, only when those areas can focorr@ct net of borders connected by
nodal points at a sphere then a bubble topologguoh a set has been realized. With forced
T1 and inverse T2 processes and byube of computer programs real topologies have been
obtained for bubbles with area numbers up to 1@irldonstruction out of the computer data
is illustrated. A special classification scheme ambubbles of equal area number as well as
the appearance of topological isomers are discussed

PACS: 82.70 Rr Foams; 02.40 Pc Topology.

1.Introduction

Foam appears in various formations. Always # liquid or solid component
that is homogeneously mixed with gas bubbles déght shapes and seizes.
Everybody knows the foam of beer or of a soaptswluA recent presentation
of the physics of foams is given in the book of \WWeeand Hutzler [1]. They
also report about topological changes in a freaimfcaused by so called T1
processes that aspire to a minimum of its freeggnatr unaltered number of
bubbles. In a later phase of aging so called T2qm®es also cause topological
changes. Smaller bubbles have higher pressurdhlibameighbors. So they
loose their gas by diffusion through their skirthhe neighbors until they
disappear. This article deals with a quasi statialie ©f the foam before onset of
T2 processes and the still later following ruptafsingle soap films.
1.1 A bubblein dry foam

The liquid content of foam can be so high, teath bubble is shaped like a
sphere without contacting other bubbles. By witkading more and more soap
solution the bubbles touch each other and finalpsfilms form the borders
between neighboring bubbles. Following Plateauss{?] there are always
three films that meet under equal angles of 120e=galong a line, named
Plateau border. And always exactly four Plateaué® meet at one nodal point
and form a tetrahedral vertex with mutual angleabaiut 109 degrees. We
speak of dry foam, if the nodal points can be g@ats mathematical points, the
Plateau borders as lines, and the soap films as arespace. Let us exclude
external forces (gravitation etc.). Then the maanature of such an area is
constant and proportional to the pressure diffexeid¢he neighbor bubbles of
that area (Laplace-Young equation [3, 4]). Theaefof a stable bubble in dry
foam consists of a certain number of such areaseaoh of these areas is
bordered by a certain number of lines and the sam&er of nodal points.



1.2 Topology of a bubble

We presume, that a stable bubble is only siraplynected to each of its
neighbor bubbles. Otherwise both bubbles wouldhr@amore stable state by
performing T1 processes. The same would hold fark#ble that touches itself.

For the topological structure of the bubble thepshof its areas is irrelevant.
The single elements of the bubble may be bentetlrstretched, or shifted, as
long as a continuous one-to-one correlation atsajboints to those of the
original positions is conserved. So, the volume twedpressure of the bubble, as
well as the temperature do not matter. Also théeBlaangles may be changed.
1.3 Topological equivalence of 3D foam bubblesand 2D bubble clusters

In 3D foam each (nodal) point connects fouediiPlateau borders). On a
bubble three of these lines run at its surfacethedorth line is directed
outwards. In order to describe the topology of thdible, we do not need this
forth line. This net of lines knotted by pointsealdy represents the topology of
this bubble. It remains unchanged, if this net cetiee surface of a sphere.
Another representation of the topology is obtaivaten the net is spread across
a plane (according to a sphere of infinite radiMghen no line goes to infinity,
then one of the areas covers the infinitely fanpof the plane. It quasi
surrounds the other areas of the bubble. This 2B8gmtation of the topology of
a bubble shall be called its graph.

Often one studies a 2D foam instead of the@idnf, because it is easier to
collect the data. A dry foam between parallel glalates provides a network of
soap films normal to the two plates when theiratse is sufficiently small. In
the limit of a true 2D foam there remain linest&agl of the films, and nodal
points, instead of the Plateau borders. Each kasetihe shape of a circular
segment (Laplace-Young equation). Exactly threesliand in each nodal point.
By this way the whole plane is divided into areaslehaving a certain number
of sides and the same number of nodal points. We &&D bubble cluster,
when the 2D foam covers a finite range of the pléiseopological structure
can easily be seen. We complete the 2D bubbleeclbgtthe external part of the
plane, to recognize the equivalence we have lotkedtach 2D bubble cluster
Is equivalent to a 3D foam bubble with the samelkogy.

2. Definitions
2.1 Graphsand dual Graphs

In Fig.1(above) the graphs for the topologiethe simplest bubbles are
shown. These are all the possible topologies otsefgebubbles with four to six
areas. For later usage the areas of each grapluenteered. With more areas the
amount of different topologies will rise very fast.

Besides the graphs a dual presentation obih@dgy can be useful (Fig.1
below). Instead of a nodal point in the graph thal draph has a dual area.
Instead of an area in the graph the dual graplaltasl nodal point (here
extended to a circle). The line between neighboairggs in the graph
corresponds to the connecting line between duadlnmaints. As a consequence



the dual plane is divided into triangular areayoAldual nodal point joins as
many lines as the respective area has sides. Rewaéa numbers in the circles
cover the dual nodal points. The infinite nodalnbas marked by the external
arms, all having the same number.
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Fig.1 Above: Graphs for the topology of simple bubbles.
Below: Dual graphs for the topolagjythese bubbles.

2.2 Gross formulas

To subdivide bubbles having the same numbareds let us sort these areas
according to the number of their sides. For eadibleuthe number of areas
havingn sides is name Nz(n). (Index 2 means the dimension of the areas).
Then we define a gross formula (Gf), similar to ghess formulas used for
organic molecules, here in form of a list ordergdh® numben :
(N2(3)’ N2(4) ----- Nz(Ng _1)) (1)
All gross formulas begin a&=3 and end at am, that is by 1 less than the total
numberN; of the areas of a bubble. The reasons for thagiges in section
4.1. In Fig.1 the gross formulas are added to thphs. As we know from
organic chemistry also foam bubbles with the samegformula can have
Isomer topologies. To construct the graph fromgitess formula alone is
difficult at largerN;. Then more specifications are required.
2.3 Relations between the number s of areas, lines, and nodal points

The total number of areas of a bubbINJs We defineN,; as the number of
its lines ancN; the number of its points. Then Euler’s relatiohdays:
NS - N2+ N) =2 (2)
With those parts of Plateau’s rules being alsadviar the topology, we have:
3Ng =2N; (3)



The reason for that is: When 3 lines end at eadalnmint, then witt3N; each
line is counted twice. With eq.(2) we extend eqt(3)

3NS = 2N? = 6(N? - 2) (4)
N; results from the gross formula by summing upradl area numbers:

Ng =" N,(n) (5)
Multiply each item of the sum of eq.(5) hybefore summing up and you get

N; =Y nN,(n) (6)

This, however, is two times the number of siN,; because each border
belongs to two areas and is counted twice. So matlyiwe get:
3NS =2N? = N} =6(N? - 2) (7)

3. Listsof gross formulas

By definition the gross formula (Gf) of a buelith N, areas consists of
(N;’ —3) integers between null aiN; . Egs.(5) to (7) provide necessary
conditions, that must be fulfilled for each Gf. \&all see that the number of
these Gf grows nearly exponentially wN;. Therefore, a search for all Gf that
fulfill the above conditions requires computer hédi computer programs used
in this paper have been written with Mathemati€a 2.

3.1 Program for lists of Gf that fulfill egs.(5) to (7)

A program, deposited in Appendix A, will hetpftnd all those Gf oN;, that
satisfy egs.(5) to (7). F(N; =4 andN; =5 one gets only one Gf (see Fig.1). For
N; =6 you find four Gf, forN; =7 they are ten. FcN; =13 there are already
1498 different Gf.

Increasin(N; beyond 13 provided problems concerning storagaagpand
computing time. However, in Appendix B an othergyeom is presented, that
allowed to go up tN; =18, Here you have already 33.327 different Gf. Bubble
with 18 surface areas are very rare in bulk dryrfoAfter Matzke [6] the
experimental average Nj; is 13.70.

Fig.2 Two examples for
imaginary gross formulas (iGf):
The dual graphs show forbidden
crossing lines for the
neighborhood of areas of a 2D
cluster. Area No.6 contains the
infinitely distant point of the
plane.




3.2 Real and imaginary gross formulas

Our main goal are those Gf, for which a plarapl provides the topology of
a bubble. Then we call it a real Gf (rGf). The atiods in egs.(5) to (7) are
necessary, but not sufficient for that. Let us abeisthe simple examples of
N; = 6. In addition to the two cases in Fig.1 there dse é1,4,1) and (3,0,3). For
them it is impossible to gain a plane graph. Tintetéve dual graphs presented
in Fig.2 always have inadmissible crossings ofcivenecting lines. We call
those cases imaginary Gf (iGf). FN; =8 in Tab.1 you get a list of all iGf and
of all real gross formulas (rGf). Moreover the \edwfN; are given (see
eq.(B1) in Appendix B). For the following we mairdgnsider the rGf.

iGE N2 rGf N2 | Tab.l. List of all imaginary gross formulas
(5,0,0,0,3) 192 (4,0,0,4,0) | 180 (iGf) and real gross formulas (rGf) of bubbles
(4,1,0,1,2)|186((3,1,2,1,1)]| 178 | having 8 areasN, =8) with data forn? (see
(4,0,2,0,2)1184((3,1,1,3,0)|176 | text).
(4,0,1,2,1)|182{(2,4,0,0,2)|180
(3,2,1,0,2)|182{(2,3,1,1,1)|176
(3,2,0,2,1)|180((2,2,3,0,1) (174
(3,0,4,0,1)|176{(2,2,2,2,0)| 172
(3,0,3,2,0)1174(2,1,4,1,0)[170
(2,3,0,3,0)|174{(2,0,6,0,0)| 168
(1,5,0,1,1)[174](1,4,1,2,0)|17
(1,4,2,0,1){1721(1,3,3,1,0)| 168
(1,2,5,0,0);166{(0,6,0,2,0)| 168
(0,6,1,0,1)|170{(C,4,4,0,0)|164
(0,5,2,1,0)]|166

4. Construktive waysto real grossformulas

In order to sort out the rGf together with trggiaph, we have two
constructive ways. Either we add a new area t@plgalready known. This is
the inverse of a 2-dimensional (2D) T2 processw®perform a 2D T1 process

on a plane graph and gain new rGf with the samebeuf areas. Both ways
shall now be used.

Fig.3 The inverse T2 process, performed o @ @ @@ @
a simple 2D cluster, increases the number

areas by 1. (2.3)
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4.1 Inverse T2 processin 2D

In the inverse T2 process one increases théauaof areas by one. Fig.3
shows different variants on the graph N; =5 . You place a simply closed line
(loop) around one, two, or more nodal points (maatiN, /2). Hereby no area



of the graph must be entered more than once. Otb&two areas would have
contact at more than one side afterwards. Alsontimber of intersection points
with the borders must be two more than the numbeodal points within the
loop (maximalN;). Otherwise at least one area of the existinglyvapuld be
within the loop. If now all the internal part ofetthoop is erased, we get a new
area with nodal points at the former intersectiom{s. Again the maximum
number of sides of the resulting graph remainsr®yless than the neN,.

When N; increases by 1 theN; increases by 3 arNg by 2 (see eq.(7)). Tab.2
collects the variants for including a new n-cordeseca. Each list contains (in a
cyclic way) by how much the neighbors increasentin@mber of their corners.

Their sum always equa(6-n).

n|loop around (n-Z) nodes | (..A,..]

3 & [1,1.1)
4 H (1,0,1.0)

5 @, (1,0,0,1.-1)
é @ [1,0.-1,1,0,-1)

® (1.-1,1,-1,1,-1)
@_ (1,0,0,0,1,-2)
7 @ 1,0,-1.0,1,-1,-1)
@ [1,-1,0,1,-2,1,-1]

@ | (1.0,-2,1.0,0,-1]

(1,0,0,0,0,1,-3)

Tab.2. Variants for including a new area by applying
the inverse (2D) T2 process.

Why are two areas not allowed to have contactare than one side? This
guestion concerns the stability of a bubble respegtof an equivalent 2D
cluster. In Fig. 4 (above) two areas (No.1 and Nwithin a 2D cluster have
contact at two borders. Both are circular segmefitsequal curvature and
equal center because of the same pressure difeebateeen both areas. This
also holds when more than two areas are in thelenmlttt. A simple proof can
be found by using the relations in [Fjg. 4 is drawn for equal pressure on No.1



and No.2. In any case we only get an indifferentldaium: Without changing
the free energy the whole middle part may be shiftetil one of the two
borders between No.1 and No.2 disappears. Theniypaocess (see Section
4.2) the free energy is reduced. When this moldesttate is reached then the
two areas have contact at only one border.
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Therefore, after the 2D cluster has reacheda minimum of its free
energy, also two-sided areas have disappearedowstucle that a stable 2D
cluster must not have areas with less than thoss s(The only exception would
be a 2D two-bubble “cluster” with three 2-corneegdas N; =3)). We may
further conclude: A stable 2D cluster must not haneas with more theN; -1
sides. An area witN; sides needN; different neighbors. That gives an
Inconsistancy.

For 3D foam bubbles it is not so easy, to galheexclude the existence of
areas with only two sides. One could think of alldalzonsisting of three 2-
cornered areas, that is shifted along a PlatealebdWhether without change of
energy, that is the question. Because of the exastef non-spherical soap skins
in 3D foam a proof is here more difficult. It wouddteady be helpful to know if
all Plateau borders are of circular shape. Un# offers a concrete example for
a 2-cornered area in stable 3D foam we will excliine possibility for now.

The construction of a graph of certain topoldggs not require that the way
used takes place in reality. That opens an altemptocedure to form graphs
with one more area. Consider the graph of a bubltle N; areas and choose
one area with sides. From one of its sides you draw a line ® afthe(n—1)
other sides. That cuts this area into two partsydaohave formed a new graph.
The number of its nodal points increases by 2ntimaber of its sides by 3.
From the n-cornered area we get (vk =1,...,n—1) a(k+2)-cornered and a
(n+2-Kk)-cornered area. And two neighboring areas get cre modal point.
The number of different cu s(n) on this area is(n) =n(n-1)/2,

The total number S of possible cuts made oaraks of the bubble is

S= NilNz(n)s(n):%(Nf ~N2), 8)



where (as defined in (B.1)) we have
N9-1

NZ= 3 n'N,(n) . ©)

4.2 T1 processin 2D

In Fig. 5 we present this topological changthiwia graph and its dual graph.
Hereby the number of areas of the bubble remainkamged. Two neighboring
nodal points are forced to come into a transientax and then separate again
into an other direction. Thereafter the areas Mo@4 have one side more. That
excludes areas wi1(N§ —1) corners before. The areas No.1 and 3 loose oee sid
That excludes 3-cornered areas before.

a
3

Fig.5 The T1 process: Local
o topological change within a graph
¥ (above) and its dual graph (below).
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4.3 Isomer topologies of the same gross formula

Topological isomers exist, when for a cert&sh the areas allow different
connections. In Fig. 6 we bring three examples. filseexample shows for
N; =7 two graphs forming a topological mirror symmettyremains a question
of definition, whether they can be seen as topokigsomers. We will deny this
here. The second example belongN; =8. The same rGf allows two true
(structural) isomers. The last example providesdtstructural isomers of the
same rGf. We start from the graph of a bubble ¢oimg twelve 5-cornered
areas with the rGf (0,0,12,0,0,0,0,0,0), presetitegk times in Fig.6. Then we
include by the inverse T2 process two 3-corneredsaat separate places
(marked by larger nodal points) having differergtainces. The rGf for all three
isomers is (2,0,6,6,0,0,0,0,0,0,0). Only when tistadce of both triangles is too

SRR S small, then another rGf results.
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4.4 Homologeous seriesfor 3D-bubbles

Similar to the usage in the organic chemistrg bnds a whole series of
graphs by repeatedly adding the same area (or groagas). So one easily
reaches graphs with largN;. We choose two examples, that may help us when
starting computer programs. Their graphs showngtvKabove and below)
follow from a repeated inverse T2-process that sssively adds a 4-cornered
area. Two areas increase threbry 1. ForN? >6 the singleN,(n) are
N,(4)= N2 -2 andN,(N? -2)=2; respectively N,(3)=2 N,(4)=N?-4; and
N,(N¢ -1)=2. All other N,(n) are zero. From here T1 processes lead to other
graphs with equeN;.

(2,3) (0.6,0) 0520 (06020

= ", I % 4
\ f, ,f ‘\& /J £ . 4
\‘Mw-’é/ «M}J M._é_,-’y

(2,3) (2.2.2) (2302 (24002

Fig.7 Two series of graphs with their gross formulas.

5. Programsfor real gross formulasand their nodal lists

The numbering of the areas for a graph haa@reeen proved true in
describing the figures. They now render indispelestdy developing the
computer programs, that change a bubble or itshgiteway wanted. The rGf
of the bubble alone will not disclose its topologie information required for it
shall be found in the so called nodal list.
5.1 Thenodal list of the bubble

The nodal list (Noli) provides a straightfondaway for constructing the
graph of the bubble. The Noli informs about thee&éhneighbor areas of each of
the N =2(N¢ -2) nodal points. All areas of the bubble are numbé@u 1 to
N;. Hereby the succession is unimportant. Then foh emdal point you form a
sub list of the numbers of its three neighborirgpar Here the succession of the
three numbers defines a sense of rotation. It imeisiniform for all nodal
points, whereas a cyclic rotation of these threalmrs does not matter. As an
example we choose the Noli of the simple rGf (2,852e Fig.1). It could look
like that: {{1,6,2},{2,6,3},{3,6,4},{4,6,5},{5,6,1} ,{1,2,3},{1,3,4},{1,4,5}}.
Each number in it appears as often as its areadrasrs. With this knowledge
we easily construct the graph. Favorable, but rastdatory, is an external area
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with the highest number of corners. This has imfageon the image of the
graph, but not on the topology of the bubble. Itgrthe sense of rotation of
all sub lists leads to the mirror image of the ¢rdmut does not change the
(structural) topology.

5.2 Programsfor inverse T2 processesin 2D

You may systematically try by hand (quasi vadper and pencil) to detect all
rGf having one more area out of the complete s#tofGf forN,. However,
soon there are limits. FroN; =8 to N; =9 was the last step done by this way.
Then computer programs may help. In Appendix Cfymaitwo such programs.
They both need a list of Noli belongingN;)we start with.

The first program generates a 3-cornered araaysallowed nodal point of
each Noli. So one gains new rGf with one more d&eaah new rGf is added to a
list, together with its Noli, in form of a (rGf,Nidlpair. By adding 3-cornered
areas, however, we do not obtain the completefgé&fdiaving 1 more area.
Certainly we miss any new rGf wiN,(3)=0.

Therefore, we need at least one other progvéenmay include a 4-cornered
area at two neighboring nodal points (see Tabl2¢.Second program in
Appendix C can do this task. From each Noli it nsa&dist of pairs of
neighboring nodal points. They characterizeB(NS —2) lines of the graph.
Then each side is replaced by a 4-cornered arethantew (rGf,Noli) pair has
conserved th N,(3)=0 in all rGf. However we now miss any rGf wiN,(4)=0.
The inclusion of an area with more than 4 corneraa@l as the alternative way
of cutting an area into two pieces, as depictedreefequires larger programs
that are not needed, when we also apply T1 progsesse
5.3 Programsfor T1 processes

Such a program requires, like the second progmaAppendix C, a list of
pairs of neighboring nodal points. The programsg ¢own in Appendix D for
the T1 process again deliver for each new rGf a flain which its graph can
be formed. Two versions are presented. The finstior allows to gain new
(rGf,Noli) pairs from a single (rGf,Noli) pair arimy repeated applying the same
program to all new pairs one continues until newspare no more found. The
second version is used, when a larger number ¢fNaB) pairs is already
available and one wants to detect the missing Tesgjive an example, you find
in Tab.3 the list of (rGf,Noli) pairs belonging N; = 8. It contains all 13
possible rGf, but only one of the two isomer Noiihathe same rGf (2,2,2,2),
that we know from Fig.6. The search for all isonara certain rGf shall be
postponed to a later task.
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{{{0,4,4,0,0},
{{1,5,6},.{1,6,2},17,4,3},(7,5,4},17,6,5),(7. 2.6},
[4,5,8),(5,1,8},{(4,8,3},(3,8,1},{7,3,2},1(2,3,11}},
{{0,6,0,2,.0},
[1‘1.-Er3f|-15.--2.rl]r{3.-5|-q:|r[6—3-?:';'{T.r-|-r E}!1Gfli:‘!]f
{3,8,7},(7,98,1},{5,1,4).1(4,1,8},(5,3,2},(2,3,6}1},
11,3, 3,1,0},
l!lvarq}r{1!'5“E]r{lrﬁiz:':{_":'qpa}#';-'liE'!d}rF-T-'E.'E}]r
E?.E,E}, ':lr'lliE]r{'qrE'!a.:'r{E‘:liS}i {7,3,2},{2:3,111}1}),
{{1,4,1,2,0}),
{{1,5,6},11,6,2},17,4,3},{7,5,4},17,6,5},17,2,6},
{2,7,1},{1.7,3},14,5,8},1{5,1,8},{4,8,3},1{3,8,11}},
({2,0:8,0,0},
{{4,.8,3),1{6,2,5)},15,2,1},(3,5,4},1{5,3,6},1{6,3,7},
{7.1.68k.{6,1,2}, 13,8, T}, {3,1,4},18,4,7},{7,4,1}}},
{{2,1,.4,1,40},
1{7,6,5},1{7,2,6},12,7,1),4{1,7,3},1{4,5,8},14,8,3},
{3,8,1},{6,2,5},17,5,3},13,5,4),(5,2,8},{8,2,1}}1},
{12,2,2,2,0},
111,3,4}, (1,6, 2}, 07, 4,3}, {7,5,4),{7,6,5},{7.,2,6},
{2,7,1},41,7,3},1(1,4,8),{4,5,8},{1.8,6},{6,8,5)}},
{{2,2,3,0,1},
({1,5,6},{1,6,2),{7,5,4},(7,6,5},{7,2,6},{2,7,1},
{4,5,8},15,1,8),(4,8,3},1(3,8,1},13,1,4},.1{4.1,7}}},
{{2,3,1,1,1},
({1,3,4},11,5,6},11,6,2},17,6,5},1(7,2,6),12,7,1},
{1,7,3},11,4,8},(4,5,8},(5,1,8},{7,5,3},{3,5,4}}},
1{2,4,0,0,2},
[{1.- 3‘:41’; iliErE]p [].rﬁ'.-zi':{_":d!!}:lx{'?;ﬁrs}ﬂ [-lr.f?.-..ﬁ]'.'
(2,7,1},11,7,3},11,4,8),{5,1,8},{5,8,7},{7.,8,4}1},
{13,1,1,3,0},
{11,3,4},17,4,3},1(7,5,4},17,8,5},17,2,6},(2,7,1},
{1,7,3},{1,4,8},1{4,5,8},{5,1,8},{6,2,5},13,2,1} }1},
{{3,1,2,1,1),
{11,3,4},11,5,6},(1,6,2},(7,4,3},(7,2,6},{2,7,1),
{r.v,3,{1,4,8},14,5,8},45,1,8},1{7,6,4),{4,6,3}}},
{{4,0,0,4,0},
{{6, 2,3}, 1{3,2.1}, [5,3;5:‘:[TJI,E:IJ{E.';.IEE'.P{?.'EI:LJ'.'
{5,1,4}),{4,1,8},1{3,5,8},{8,5,4},1{3,8,6},1{6,8,71}1}}

Tab.3. List of the 13 (rGf, Noli) pairs ¢ N2 =8 (see text).

5.4 The construction of the graph out of its nodal list

You will learn how to construct the graph,te Noli is known. In Fig.8 nodal
lists (Noli) of two selected examples together wiitgir rGf are shown. They
belong tcNz =11 andN; =13, By counting how often the number of a certain
area number appears in the Noli we get its numladrborders. In the table
below you find the numbers of all areas sortedr afté&or a control, the rGf tells
us how many areas must belong to eachs outer area of the graphs we
choose No.3 (or No.8); both have maximonso we have 6 nodal points at the
external border of the graph. Each such point dedia line going inward to an
other nodal point. From the Noli we collect all @dal triplets containing No.3
(or No.8) and sort them in a consecutive orderttrénsferred into the graph.
To each nodal point in the graph for which two arembers are known the



third area number is found in the Noli. Hereby Weags have to observe the
right sense of rotation.

nodal list:
{16,9,5,(7,11,4)(2.11,7).14,1,7),(1.8,3),(10.3,6).(5,10,6).{1 1.9,4),
(1.4.8).(8,4,9),(9.11,5),[5.11,2),[9.4,8),(8,4,3),[5.2.10).(10,2.3),
[2,7.3).(2.7. 1)}

3
gross formula: -
(0,2,8,1,0,0,0,0) '

n | number
4 11,10
8] 245678%.1

HE e )
nodal list:

{[1.10E)01.3,2)02.3,6).(3.7.4).[12,9,5).(5,9,1).(7.8.4%(13.8,7),11.4,10),
4,8,10),(3.11.7).{7.11,13),[10,6.4).(4,6,3).(8,13,12).(12,13.9),(2.9,11),
(11.2.13)06.0.2)02.1.9).110,8,5).15,8,12)}

gross formula:
(0,1,10,2,0,0,0,0,0,0)

n | number
4112
1,2,3,4,5,6,7,
10:11.13

6| 8,9

Fig.8 Construction of the graph out of the nodal listrff
(2 examples).

6. Results and discussions

We begin with Tab.4 by comparing the numZe: of all Gf and its parZ.es
of all rGf, that have been found fNJ =4,...,16. For NJ > 13 we still may miss
a few rGf. In the right column you find the raZ.er /Zer . With increasingNy
it runs through a minimum and reaches 0.€N. = 16. Where will it converge
with growing NJ? We only know for sure, that it cannot be lardpant1.
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0 4
N2 ZrGf ZGf <
Gf
4 1 1 1.00
) 1 1 1.00
6 2 4 0.50
7 5 10 0.50
8 13 27 0.48
9 33 66 0.50
10 85 157 0.54
11 199 346 0.58
12 445 738 0.60
13 947 1498 0.63
14 1909 2951 0.65
15 3711 5615 0.66
16 6934 10419 0.67

Tab.4. Z(rGf) is the number of all
rGf. Z(Gf) = Z(rGf) + Z(iGf)is
the number of all GIN? runs
from 4 to 16.

ForN; =4,...,16 we have collected the sorted lists containingZer: sub

lists of (rGf,Noli) pairs, the same way as preserite N; =8 in Tab.3. The vast
extent of all data excludes their presentation.liEney are useful for various

statistical analyses. An example is given in TaBd.N; =12 we have plotted
the frequenc'H (n, Z), with which N,(n) =z appears in ther = 445 (Tab.4)

rGF. For a check-up 2.1 (1:2) = 445 st hold for eacn=3,...,11 Above the
step-like envelope aH (n.2) are zero. AH(512)=1 the envelope looks like a
resonant peak that we do not find for ot N;- This stems from the rGf of the
dodecahedron. THH(11,2)=1 points to (2,8,0,0,0,0,0,0,2), described in sectio
4.4 and Fig.7 (below). It is the only one wN,(11)=2

>
12

11

==
L O I = o L LY = ]

)

T o-d P o on o e
L= T T Y - T = T =T ]

60

Lo 1 T e B e R R

96
an

1
1
!
12
29
=1

240

H(n, z)

2
13 3
in 113

T4 49 31 A 1

120 128 129 110 85 449
134 197 251 304 352 395

5

&

7 B 2 10 11

Tab.5. Table of the rate
H(n,z)for NJ =12 . H(n,z)is
the numberof times you find z
= N,(n) in all the 445 rGf of
NJ =12 (see eq.1 and
capt.3.2).
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All N are divisible by 6, what we know from eq.(7). Tthggr with eq.(6) we
derive two tests for all rGf:

1) The sum of aN2(n) with n= (2 mod 1) is divisible by two:
> N,(2k+1)=2N; N =int (10)

2) The sum of a N (n) with n=(3 mod 1) plus two times
the sum of aN2(") with n=(3 mod 2) is divisible by three:

> N,(3k+1)+2>" N,(3k+2)=3N;N =int (11)
These tests also hold for iGf because they fuliti same eqs.(6) and (7).

An other relation that us N defines the average numtla of corners (or
sides) among the areas of a certain bubble. Omse get
n,, = N3/N? =6(NS - 2)/NS =6-12/N] . (12)
This formula shows thiM. only depends oN:. It runs from 3 aN; =4 over 4
atN; =6 over5aN; =12 ypto 6 aN; =inf

Now we shall discuss the propertiesN;f While N; is constant for all Gf of a
certainN,, this does not hold for t N;. They cover a whole range of values,
and they all are even. A proof for that is easiye, if we remember tt(+1-1)-
shift, by which all Gf have been found (see Apperli. HerebyN; is reduced
by 2(u-1), with u=2,..,N? -4, depending on the distanadetween the places
to be shifted. For the starting Gf w N,(3)= N¢ -3 and N, (N -1)=3 (with all
other N, (n)=0) we getN? =3(N2 +1)N¢ -8). That is an even number for NZ.
The starting Gf does not have a predecessor (+1-1)-shift. Therefore, alN?
are even. Also we may conclude that the odd temnesich Gf always appear in
pairs.

As for all Gf withN; = max, we also have a homologous series for rGf with
N; = max. It has been formulated in section 4.4 and shawkid.7 (below). In
Tab.6 these rGf wit N; = max are listed foIN; =4,...,16, together with their
value ofN;. Except ofN; equal to 4 and 5 the maxinN; of the rGf is always
smaller than that of the Gf. And excepiN;*equal to 7 and 8 (**) there is only
one rGf with maximum value. To construct the exoel graphs may be a
good exercise.

The right side of Tab.6 contains the rGf vN; = min and their values ¢N;
in the row to the right. Except N; equal to 11 and 13 (***) the rGf and Gf for
N7 =min are the same. The examples chosen in Fig.8 shogréphs of these
exceptions. Neither a T1 step performed on themghgrnor a (normal or
inverse) T2 step performed on the graph of the calaedron yields a rGf of the
form (0,1,10,0,...) foN; =11 0r (0,0,12,1,0,...) fcN; =13, The reason for these
exceptions is the high symmetry of the dodecahedfiN; =12, Only two other
rGf have also areas with unique corner numbersT{feir topology is equal to
that of a cube and a tetrahedron. This list coelddmpleted by a plane
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honeycomb lattice presenting the graph of a bubiileinfinite number of
hexagons.

New Noli gained in the programs for T1 and T@gesses cannot be
discerned right off as belonging to a graph alrdatywn or to an isomer graph.
That comes mainly from the freedom of numberingN;@&reas. Therefore, a
future program has to find a way to distinguishalogical isomerism more
easily.

What can we say already now about the occuereh¢structural) isomers?
The first example was shown in Fig.6 N; =8. Certainly, the more areas with
differing numbers of their corners a bubble has, the more alteraaraphs

are thinkable.

ok rGf with N = max Ny rGf with ¥? = min N2
4 1{4) 36 |[(4) 135
3 S i(23) 66 1(2,3) 66
6 (22.2) : 100 {(0,6,0) 2196
7 12,3.02)(3.0.3.1) ** 1138 |(0,5,2,0) 130
8 [(2:4,0,0,2),(4,0,0,4,0) **| 180 |(0,4,4,0,0) 164
9 1(2,5,0,0,0,2) 226 {(0,3,6,0,0,0) 198
10 1(2,6,0,0,0,0,2) 276 {(0,2,8,0,0,0,0) 232
11 {(2,7,0,0,0,0,0,2) 330 1(0,2,8,1,0,0,0,0) *anm 268
12 1(2,8,0,0,0,0,0,0,2) 388 1(0,0,12,0,0,0,0,0,0) * 1300
13 1(2,9,0,0,0,0,0,0,0,2) 450 1(0,1,10,2,0,0,0,0,0,0) **=* | 338
14 1(2,10,0,0,0,0,0,0,0,0,2) 516 {(0,0,12,2,0,0,0,0,0,0,0) 372
15 1(2,11,0.0,0,0,0,0,0,0,0,2) 586 1(0,0,12,3,0,0,0,0,0,0,0,0) | 408
16 |(2,12,0,0,0,0,0,0,0,0,0,0,2) | 660 |(0,0,12,4,0,0,0,0,0,0,0,0,0) | 444

Tab.6. Left: rGf for N2 = max . Right: rGf for NZ = min . Both with their

respective N2 . The number of bubble areas runs from 4 to 16 (@et).

So let us now confine to the search for graphshave the limitin(NZ given
in Tab.6, extended IN; >16. All graphs of rGf witrN; = max are devoid of
isomers. This also holds for sure wN7 =min up to N; =15, With each
additional area the number of hexagons steps up Wile the number of
pentagons remains twelve. You easily find graphsngga symmetrical
arrangement of few hexagons. IN; =14 to N; =16 they have, in a topological
sense, maximum distance from each other. FN; =17 upwards at least 2
hexagons touch each other. IN; =18 they form two compact groups of three
with maximum distance. F(N; =19 you may get one group of three and one of
four, both with a threefold symmetiN; =20 possesses an equatorial ring out of
six hexagons and one hexagon at each pole, sepésate/o rings of six
pentagons. A graph with the topology of a soccér(baa Fullerene molecule
out of 60 carbon atoms) also has minimN;with 12 pentagons and 20
hexagons. Here the pentagons are already in tharityinEach pentagon is
surrounded by five hexagons, while each hexagoonsected to three
pentagons. The same dodecahedral symmetry is fauma other series of
graphs. With z=0,1,2,... the one IN,(6)=10(2+3z(2+2)) , the other has

N,(6)=10(3+27(4+2)).
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ForN; =16 we have the first case of isomerism among tho#ie N7 = min.,
Alternatively to the case given above, the 4 heragorm two clusters of two
hexagons in maximum distance. With larN;rand appropriate distribution of
the 12 pentagons among the many hexagons morensam@obtained. In Fig.9
(above) you see the arrangement of two pentagahsraamhexagons. With the
T1 process you obtain an isomer graph. When firthlypentagons unite into
compact clusters these T1 steps come to an end.

e i Fig.9 Search for graphs at the linNZ = min.
“ = Tl ! Above: rGf-invariant T1 step. Below: T2 step

| and inverse T2 step.

Not all isomers of a rGf witN7 = min can be reached by such rGf-invariant
T1 steps. For instance in the two serie N, (6) above, whez>0, all pentagons
are too far apart. Other examples may be describedlivide the (regular
spherical 3D) graph of the dodecahedron into twoi-spheres. Then we add
two (or more) rings, each consisting of 5 hexagbesyeen the semi-spheres
and close the whole. For larN; you get long tube-like bubbles that hardly
exist in real foams. But certain single wall nar&tsi with closed ends, each
containing five pentagons, may have such topolo@®ee can build other tube-
like bubbles with more than five hexagons arourattibe circuit. Let the tubes
consist of two (or more) rings, each containinge&dgons. Then the closure is
formed by 6 pentagons with one hexagon at each/fgain, the special
arrangement, as required in Fig. 9, cannot be foautite given examples.
Therefore, no rGf-invariant T1 process can reaelseéhsomers.

Fig.9(below) shows how a T2 step increasesl€oreases) the areas by one
hexagon under the condition ttN7 = min is conserved. This enables us to
construct such graphs with higrN;. We suppose that with T1 and T2 steps,
that conserviN; = min, you can form a graph of aiN; you want.

Finally we formulate the following conjectuwG(Ng) be the set of all
possible (rGf,Noli) pairs foN; >5 including each isomer by one (rGf,Noli) pair.
Then all (allowed) T1 steps form a unique net cating all elements cG(NS).
This conjecture lives from the fact, that each b ss reversible. We know that
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each element cG(NS) allows at least on€1 step. It remains to proof that there
are no two or more separate nets of T1 steps. Weertould derive all elements
of G(NS) out of only one graph or its Noli, presumed tremsrs of a rGf can
easily be distinguished.

Concluding the discussions let me remark thatausly the topology of a
bubble tells nothing about its shape, size, ordeagy of appearance in a dry
foam. However, the results of this study offer sdralp in the statistical
analysis of dry foams. One next could study théowusrtopological forms of a
3D cluster. How many topologies exist for a 3D usut of a given number of
bubbles? The goal is to solve that puzzle in aesyatic way.

Appendix A
The following program (C:\math\asolu08) prasdall 27 solutions of real
and imaginary gross formulas (Gf) of a 2D clustavihg N, =8 areas.

C:\math\asolu08

al | sol 8={sol ={};
nm8={{1,1,1,1,1},{3,4,5,6,7},{0,0,1,0,0},{0,0,0, 1, 0},
{0,0,0,0,1}};

t 8=Tabl e[ Li near Sol ve[ n8B, {8, 36, X, vy, z}],
{x,0,8},{y,0,8},{z,0,8}];sol ={};

For [ a=1, a<=8, a++, For[ b=1, b<=8, b++, For[ c=1, c<=8, c++,
For [ k=1; en=0, k<=8- 3, k++,

If[t8[[a,b,c,k]]>=0, ent++;

| f[ en==8- 3, AppendTo[sol ,t8[[a,b,c]]]1111111;

sol 8=Sort[sol ]}

In chapter 2 the egs.(5) and (6) are two limsearations for th (NS —3)
unknown N, (n). The square matrim8 contains additional rows f(N,(5) = x,
N,(6)=y andN,(7) = z, where the parametexsy, zare integers. The remaining
lines are needed, to reject all solutions, thataiomegativeN,(n).

The following program faN. =9 ( C:\math\asolu09) shows what has to be
changed if we increase (or decrease) the numbemeat by 1. So we easily get
programs for 7, 6, and for more than 9 areas. Tineber 36 or 42 within the
LinearSolvecommand isN;, obtained from eqn.(7).

C:\math\asolu09

al | sol 9={sol ={};
nm={{1,1,1,1,1,1},{3,4,5,6,7,8},{0,0,1, 0,0, 0},
{o0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,0, 1} };

t 9=Tabl e[ Li near Sol ve[ nD, {9, 42, w, X, Y, z}],

{W, 0, 9}1{)(!0’ 9}’{y!0! 9}!{2!0! 9}]1

For [ a=1, a<=9, a++, For [ b=1, b<=9, b++,

For[ c=1, c<=9, c++, For[d=1, d<=9, d++,

For [ k=1; en=0, k<=9- 3, k++,

If[t9[[a,b,c,d k]]>=0, ent++;

| f [ en==9- 3, AppendTo[sol ,t9[[a,b,c,d]]]1]1111111;
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sol 9=Sort[sol ]}

Appendix B

There is a faster path to the complete listlbfreal and imaginary) gross
formulas (Gf). One can show, that from each ofén@Eyou reach a new one, if
you increase the number of corners of one areadndldecrease the number of
corners of a second area by 1. When the secondhadeanly one corner more
than the first, then the Gf remains the same. Soffices to demand, that the
second area has at least two corners more thdindhé&uch a process shall be
called a(+1-1) shift. Let us begin with a Gf, for which or N,(3) and N, (N2 -1)
are larger than zero. Then with each allo\(+1-1) shift we reach a new Gf.

The(+1-1) shift program is
C:\math\bf
br u=b; br x={};
For[ k=1, k<=Di nensions[b][[1] ], k++, a=b[ [K] ];

(*k-th gross fornul a*)

For[] =1, <=z-2,] ++,

For[i=) +2,i <=z, ++,

Ifla[[j]]>0&&a[[i]]>0, c=a;

c[[jl1]1=cl[j]]-1;c[[j+1]]=c[[j+1]]+1; (* +1 shift *)
c[[i]]=c[[i]]l-2;c[[i-1]]=c[[i-1]]+1; (* -1 shift *)
| f[c!=a,

AppendTo[ brx, c]]]11; br=Uni on[ brx]];
bri =Uni on[ bru, br];
b=Conpl enent [ bri, bru];
bru=bri;all=Union[all, b]; (* all collects all & *)
Print["b=",b]; (* b contains new & *)
Print[D nmensions[all]];

(* Repeat "<<bf", til printout b={} *)

With egs.(5) to (7) we derive the starting N,(3)= NS -3 and N,(N? -1)=3.
The program is started (dependingz = N,(3)) with the following input data:

z=4; b={{4,0,0,3}};all =b; <<bf
(*or z=5; b={{5,0,0,0, 3}}; al | =b; <<bf
or z=6; b={{6,0,0,0,0, 3}}; al | =b; <<bf , etc.*)
For eactN? the program ends with a Gf, that doesn't allowtaer (+1-1) shift.
Then either only one of ttN,(n) is different from zero. That holds fNJ =4
with N,(3)=4 , for N2 =6 with N,(4)=6 and forN? =12 with N,(5)=12 . Or
only two N,(n) are different from zero and their area numbertust differ by
just 1. ForN; =5, andN; =4, start- and goal-Gf are the same. 6<N; <12 we
get: N,(4)=12-N? and N, (5)=2N? -12 . For12< N{ we get:N,(5)=12 and
N,(6)= N2 -12 .
All Gf of a certairN; can be classified by another number. We defias:it

N; :Zn:nz'\'z(n) (B1)
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We can show, that with ea(+1-1) shift N2 will decrease. From that we
conclude: For eacN? >5 there is exact one Gf with maximuN;? and exact one
Gf with minimumN; . If you exchange start and stop of the searci&fpsuch
(-1+1) shifts form the same set of Gf, that also is idahto the set of Gf
obtained from appendix A. That means, our progoadelivers all Gf that

fulfill the necessary conditions in GI.(5) to (7).

Appendix C
C.1lInsertion of a 3-cornered area by theinverse T2 process

For an area numbN; = z we start with a ready list of (rGf,Noli) pairs. &h
program inserts at one of the 2(z-2) nodes of a&\8tcornered area by the
inverse T2-process. The same is done in turn faroales of the Noli and for all
Noli of the list. The T2 program is
C:\math\t2_3prg

ac3p[z_, t_] :={albrutt={}; alknoli={}; rbfknoli={};

For[h = 1, h <= hm h++, (*all hmclusters*)
For[i =1, i <= 2*(z - 2), 1|++,

(*all 2(z-2) nodes of a cluster?*)
ap = Append[t[[h,i]],t[[h,i,1]]];
pa = Partition[ap, 2, 1]; fla = Flatten[pa];
in =Insert[fla, z + 1, {{3}, {5}, {7}}];
j2 = Partition[in, 3];
j1 = Delete[t[[Nh]], i]; tp Join[jl, j2]; fl = Flatten[tp];
ze = Table[Count[fl, K], {k, z + 1}];
n2 = Tabl e[ Count[ze, k], {k, 3, z}];

AppendTo[ al brutt, n2];
AppendTo[ al knol i, tp];
AppendTo[ rbfknol i, {n2,tp}]111};

To search (rGf,Noli) pairs fcN, =9 use the following command group:

z=08; bk=(*include list of (rG&,Noli) pairs of Nj=8*);
hmeLengt h bk] ; t =Tabl e[ bk[[i , 2], {i, hr}]:

<<t2 3prg

ac3p[z,t];

The files albrutt and rbfknoli are still unssdt A sorted list of rGf is built
with the command brutto=Union[albrutt]. To each §&l find in rbfknoli a
(rGf,Noli) pair.
C.2 Insertion of a 4-cornered area by theinverse T2 process

The following program consists of two partseylare laid down under
C:\math\t2_4prg and \t2qg. In the first part we ase of the known (rGf,Noli)
pairs belonging tiN; = z. The inverse T2 process inserts a 4-cornerediarea
turn at each of the 3(z-2) sides. In the secontitbarsame procedure is repeated
in turn on each cluster of a list bk of already wnqrGf,Noli) pairs.
C:\math\t2_4prg

t2a4[z_,t _]:={np={};t1np={}; ntt1={}; mt1={};
flat=Flatten[t];tc=Tabl e[ Count[flat, k], {k, z}];

For[i=1,i<=2z-5,i++, For[] =i +1, | <=2z-4,] ++, (*start ForFor*)
alpa={t[[i]].,t[[j]]1};fl=Flatten]alpa];uno=Union[fl];
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| f[ Di mensi ons[ uno] =={4}, AppendTo[ np, al pa] , Nul I ]]1]; (*end For For*)
For [ k=1, k<=3(z-2), k++, paar=np[[ k] ]; (*start For*)
in=lntersection[paar[[1]],paar[[2]]];

un=Uni on[ Fl att en[ paar]]; c=Conpl ement [ un, in];

AppendTo[t1np, np[[k]]]]; (*end For*)
For [ h=1, h<=Di nensi ons[t1np][[1]], h++, par=t1np[[h]]; (*start For*)
int=Intersection[par[[1]],par[[2]]];pol=Position[t,par[[21]]1]1[[1]];
po2=Position[t,par[[2]]1][[1]];]j1=Delete[t,{pol, po2}];
cl=Conplenment[par[[1]],int][[1]];c2=Conplenent[par[[2]],int][[1]];
pl=Position[par[[1]],c1][[1,1]];p2=Position[par[[2]],c2][[1, 1]];

wh={ pl, p2}; sw=Swi t ch[ wh,

{1,1},{1,2,3,5,6,4},{1,2},{1,2,3,6,4,5},{1,3},{1, 2,3,4,5, 6},
{2,1},{2,3,1,5,6,4},{2,2},{2,3,1,6,4,5},{2,3},{2,3,1, 4,5, 6},
{3,1},{3,1,2,5,6,4},{3,2},{3,1,2,6,4,5},{3,3},{3,1,2,4,5,6}];
flp=Flatten[par];nti1=Part[flp,sw;pa=Part[ntl, {1, 2,2,6,6,3,3,1}]

pati=Partition[pa,2];dpati=D nensions[pati][[1]];
For[i=1,i<=dpati,i++ f[i]=Join[pati[[i]],{z+1}]];
j2=Table[f[i],{i,dpati}];t0=Join[j1,]2];vec=0;

For [ es=1, es<=2z- 3, es++, For[te=es+1,te<=2z-2,te++, (*start ForFor*)

IffUnion[tO[[es]]]==Union[tO[[te]]],vec++]]]; (*end For For*)
| f[ vec==0, seli={};
For[r=1,r<=2z-2,r++, (*start For*)

ta={{tO[[r,1]],tO[[r,2]]},
{to[[r,2]],tO[[r,3]]},{tO[[r,3]],tO0[[r,1]]1}};

seli=Union[seli,ta]]; (*end For*)
I f[ Di mensions[seli][[1]]==6z-6,tt1=tO;

fla=Flatten[tt1];

zt 1=Tabl e[ Count [fl a, K], { k, z+1}]; n2t 1=Tabl e[ Count [ zt 1, k], {k, 3, z}];
AppendTo[ ntt1,tt1]; AppendTo[mtl, n2t1]]]1]1} (*end For?*)

C:\math\t2q

t2real [x_,xm n_, xmax_]: =

{Do[{t=bk[[x,2]];

t2a4[z,t];

bral t=brutto; brutto=Union[mt1, bralt];

| f[ Di nensions[brutto][[1]]>D nensions[bralt][[1]],

cobra=Conpl enent [ brutto, bralt];

For[i =1, i <=D nensi ons[cobra] [[1]]
1[[1
[[pO

i ++,
111;

col1}111}, {x,xm n, xmax}];

poco=Posi tion[mt1, cobra[[i]] :
AppendTo[ mt 1, {cobra[[i]],nt1l
Print[ D mensions[brutto]]}

To start the search for (rGf,Noli) pairsN; =9 use the following command
group:
z=08; bk=(*include list of (rG,Noli) pairs for NJ=8*):
dbk=Lengt h[ bk]

xm n=1; xmax=dbk; brutto={}; mt1={};

<<t2 4prg

<<t 2q

t 2real [ x, xm n, xmax] ; (*delivers Dinensions[brutto]*)

In the listbrutto you find the new rGf. The lishtl contains sorted (rGf,Noli)
pairs for all rGf oforutto. These (rGf,Noli) pairs wit N, =9 can be used as
starting list for getting (rGf,Noli) pairs (N; =10:
z=09; bk=nt1; dbk=Lengt h[ bk]

xm n=1; xmax=dbk; brutto={}; mt1={};
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t 2real [ x, xm n, xmax] ; (*delivers D nensions[brutto]*)

And by that way we could go on and gain a fisstof (rGf,Noli) pairs for
higher and higheN; .

Appendix D

For a given number of areN; = z, and for a given (rGf,Noli) pair we apply a
T1 process at each of the 3(z-2) sides of the otispegraph to obtain new
(rGf,Noli) pairs. They are collected in the listath and mttl. The program is
C:\math\tln

napaal[z_,t_]:={np={};t1np={}; mt1={}; mt1={};
flat=Flatten[t];tc=Tabl e[ Count[flat, k], {k, z}];

For[i=1,i<=2z-5,i++, For[j =i +1, | <=2z-4,] ++, (*start ForFor*)
alpa={t[[i]],t[[ji]]};fl=Flatten[alpa];un=Union[fl];

| f[ Oi mensi ons[ un] =={ 4}, AppendTo[ np, al pa] ,Nul1]]]; (*end For For*)
For [ k=1, k<=3(z-2), k++, paar=np[[ k] ]; (*start For*)

in=lntersection[paar[[1]],paar[[2]]1];

un=Uni on[ Fl att en[ paar]]; c=Conpl enent [ un,in];
Lf[(te[[in[[1]]]]>3&tc[[in[[2]]]]>3&&tc[[c[[1]]]]<(z-1)
&&tc[[c[[2]]1]]<(z-1)), AppendTo[t1np, np[[K]]]]]; (*end For*)
For [ h=1, h<=Di nensi ons[t1np][[1]], h++, par=t1np[[h]]; (*start For*)
int=Intersection[par[[1]],par[[2]]];pol=Position[t,par[[1]]]1[[1]];
po2=Position[t,par[[2]]][[1]];])1=Delete[t,{pol, po2}];

cl=Conpl erment[par[[1]],int][[1]];c2=Conmplement[par[[2]],int][[1]];
pl=Position[par[[1]],c1][[1,1]];p2=Position[par[[2]],c2][[1,1]];
wh={ pl, p2}; sw=Swi t ch[ wh,
{1,1},{2,4,1,1,4,5},{1,2},{2,5,1,1,5,6},{1,3},{2,6, 1,1, 6, 4},
{2,1},{3,4,2,2,4,5},{2,2},{3,5,2,2,5,6},{2,3},{3,6, 2, 2,6, 4},
{3,1},{1,4,3,3,4,5},{3,2},{1,5,3,3,5,6},{3,3},{1,6, 3, 3,6, 4}1;
flp=Flatten[par];ntl=Part[flp,sw;j2=Partition[ntl, 3];
t0=Join[jl,j2];vec=0;seli={};

For[ es=1, es<=2z-5, es++, For[te=es+1, t e<=2z-4, t e++, (*start ForFor¥*)
If[Union[tO[[es]]]==Union[tO[[te]]],vec++]]]; (*end For For*)
I f[ vec==0, sel i ={};

For[r=1,r<=2z-4,r++, (*start For*)

ta={{tO[[r,1]],tO[[r,2]]},
{to[[r,2]],t0[[r,3]]1},{tO[[r,3]],t0[[r,1]]}};

seli=Union[seli,ta]]; (*end For*)
I f[Di mensions[seli][[1]]==6z-12,tt1=tO0;

fla=Flatten[tt1];

zt 1=Tabl e[ Count [fl a, K], {k, z}]; n2t 1=Tabl e[ Count [ zt 1, k], {k, 3, z- 1} ];

AppendTo[ntt1,tt1]; AppendTo[mt1,n2t1]]]]} (*end For*)
For starting and manifold repeating the progtamwe use the following

program:

C:\math\t1k

tlreal [wdh_]: =

{Do[{ran=Randon{ I nteger, {1, Dinmensions[ntt1][[1]]}];
t=mtl[[ran]];napaalz,t];

bral t =brutto; brutto=Union[mt1, bralt];

| f[ Di nensions[brutto][[1]]>D nensions[bralt][[1]],
cobra=Conpl enent [ brutto, bralt];
For[i=1,i<=D nensions[cobra] [[1]],i ++,
poco=Position[mt1,cobra[[i]]][[1,1]];
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AppendTo[ nt 1, {cobra[[i]],nmt1[[poco]]}]]]}, {wdh}];
Print[D nmensions[brutto]]}

The simple case N; =8 is used as an example for getting from a known
(rGf,Noli) pair more such pairs. To start the pargryou may use the following
command group:

z=8; m1={{{2,4,0,0,2},

{{1,8,2},{1,2,3},{1,3,4},{1,4,5},{1,5,6},{1,6, 7},
{8,1,7},{8,3,2},{8,4,3},{8,5,4},{8,6,5},{8,7,6}}}};
brutto={mt1[[1,1]]}; mttl={nmt1[[1,2]]}; t=mtt1[[1]];
cobra={1};
<<t 1ln
<<t 1k
tlreal [ 1]

An outprint shows the total number tn of newdynd rGf and the number
5=2-3. To continue you repeat the command tlreal[k] With,2,4,8,16,...,
until z does not grow any more. In our example Hagipens, depending on the
starting data, at the last for tn=13. The same rmumabrGf resulted with the
inverse T2 process done with pencil and paper el thraphs cN; =7. All
(rGf,Noli) pairs are collected imt1, all rGf inbrutto. Other (rGf,Noli) pairs
chosen for starting the program may yield lessy@itilen the same maximum
tn is obtained with different starting pairs, yoayrbe sure to a certain extent,
that all possible rGf have been found. The reasothft is the following. Only
one of the isomer graphs belonging to the samewilGbe collected as an
(rGf,Noli) pair. The missing Noli-isomers howeveould open the way to
further rGf. A first step to remove this problemsastaeRandomcommand used
in C:\math\t1k.

The following program ( C:\math\tlq) is an alt&tive to t1k, after we already
have a file with a larger number of (rGf,Noli) mir

C:\math\tlq

tlreal [x_,xmn_, xmax_]: =

{Do[{t=bk[[Xx,2]];

napaal z, t];

bral t =brutto; brutto=Union[mt1, bralt];

| f[ D mensions[brutto][[1]]>D nmensions[bralt][[1]],
cobra=Conpl enent [ brutto, bralt];

For[i =1, i <=D nensi ons[ cobra] [
poco=Position[mt1, cobra[[i]]
AppendTo[ m 1, {cobra[[i]],ntt1l
Print[D nmensions[brutto]]}

[1]], 10 ++,
1001,1]];
[[po

co]1}111}, {x, xm n, xmax}];

To start the program in caseN; =8 you may use the list of (rGf,Noli) pairs
shown in Tab.3. Then apply the following commanalugr.

z=8; bk=<<(*list of (r&,Noli) pairs fromTab.3 *);
dbk=Lengt h[ bk] ; xmi n=1; xmax=dbk; brutto={}; nt1={};
<<t 1n

<<t 1q
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t Ireal [ x, xm n, xmax]
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