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1 INTRODUCTION 

1.1 Gene therapy  

Gene therapy is a treatment method based on nucleic acid delivery into the cell aiming 

to correct a variety of disorders including hereditary diseases. Unlike standard therapeutic 

methods dealing mainly with symptoms and consequences of gene-based disease, this 

approach is characterised by it’s directivity towards the correction of the reason of the disease, 

e.g. the gene failure or deficiency (179).  

To date several strategies for compensation of gene failure are developed. Absence of 

a functional gene caused by mutation may be compensated by introducing the wild type allele 

into cell. Gene vectors based on bacterial plasmids provide the delivery of functional gene 

into the cell, where it is transcribed thus restoring the missing protein. Besides, functional 

gene may be cloned into a viral vector (146). Gene delivery with viral vectors can provide not 

only DNA delivery into the nucleus but also insertion of  a therapeutic gene copy into the host 

chromosome via random integration. This provides long term transgene expression also in 

subsequent cell population Besides, lots of efforts are devoted to development of viral vectors 

for site-specific integration (215). A separate branch in gene therapy research is represented 

by antisense therapy, where nucleic acid sequences (either RNA or gene constructs bearing 

corresponding DNA) are introduced into the cell to bind to certain mRNA molecules thus 

silencing them and preventing the expression of the protein (152). Apart from in vivo gene 

delivery methods described above, ex vivo gene transfer may be used for correction of a wide 

range of hereditary diseases. The main principle of this approach includes transformation of 

the cells outside the host with the following reimplantaion to the patient. Both high 

transformation efficiency and selection and multiplication of sucsessfully transformed cells 

may be achieved via ex vivo gene transfection (102). A certain number of gene delivery 

approaches developed to date have proved their efficiency on animal studies, while several 

have been accepted for clinical trials.  

 

1.2 Clinical progress in gene therapy  

Successful treatment of a patient with hereditary immunodeficiency (SCID), 

performed in 1990 by W.F. Anderson and his colleagues in U.S. National Institute of Health 

is considered to be the first milestone in gene therapy (32). Ex vivo gene transfer was 

performed using retroviral vectors, which still remain one of the basic trends in gene delivery.  

Nowadays almost half of all gene therapy clinical trial test viral vectors, mainly 

adenoviruses and retroviruses. These vectors are tested intensively for different kinds of 
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cancers as well as for monogenic diseases like SCID and showed relative success in the USA, 

Britain, Italy and Japan (82). A clinical study for treatment of retinal disease using adeno 

associated virus (AAV) carrying RPE65 gene was started in 2007 in London, showing certain 

positive results and no side effects for the patient (125). Besides, viruses are applied 

successfully to treat pulmonary cancers. Fischer et al. showed that aerosol delivery of viral 

particles bearing reporter gene can provide high transgene expression with minimal associated 

inflammatory response (62). Adenoviral delivery of IL-12 gene via instillation could inhibit 

osteosarcoma metastases growth in the lung (95). Several combinations of inhalation 

therapies appear to be mostly promising. 

Clinical trials with nonviral gene delivery systems involve mainly lipid-based GTAs 

(lipofection). Gene carriers of this group underwent first phase of clinical trial in USA, 

devoted to targeted delivery of HLA-B7/Beta 2-Microglobulin gene into the tumors for 

treatment of malignant melanoma. Besides, a clinical study for treatment of chronic renal 

insufficiency is carried through phase I (167). Phase-I immunotherapy study of IL-2-

expressing allogeneic tumor cells as a vaccine in patients with progressive renal-cell 

carcinoma takes place in Germany (205).  

Great attention is paid to delivery of naked plasmid DNA via physical methods like 

gene gun or electroporation. Hydrodynamic delivery combined with artificial ischemia was 

shown to deliver efficiently gene construct containing dystrophin gene into the muscles of 

Duchene muscular dystrophy patients (16).  

 

Figure 1. Phases of gene therapy clinical trials in 2008 worldwide  
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Antisense therapy approach is intensively investigated for treatment of cancers (including 

lung cancer, colorectal carcinoma, pancreatic carcinoma, etc.) malignant glioma and 

melanoma, diabetes, ALS, Duchene-Becker muscular dystrophy, as well as for diseases with 

inflammatory component, such as asthma and arthritis. Also short interfering RNAs (siRNAs) 

appear to be very promising.  In 2003 this concept was proved to be perspective for treatment 

of Huntington's disease (109).  

Most potential therapies have not yet produced significant clinical results, though one 

antisense drug, fomivirsen (marketed as Vitravene), has been approved by the US Food and 

Drug Administration (FDA) as a treatment for cytomegalovirus retinitis (189). 

The majority of clinical studies are devoted to different cancers and cardiovascular 

diseases, while less attention is devoted to infectious and monogenic illnesses (Fig. 1). In 

total, almost 1500 gene therapy clinic trials now take place worldwide.  

 

1.4 Gene delivery to the lung  

Depending on the disease, gene delivery has to be performed to specific organs or 

tissues of the patient. Gene transfer to the lung is required for treatment of a wide variety of 

respiratory diseases. Not only hereditary disorders like cystic fibrosis or surfactant protein B 

deficiency may be treated via gene delivery, but also illnesses with genetic component like 

asthma and emphysema, as well as other somatic respiratory disorders, e.g. acute lung disease 

or SARS (acute lung respiratory syndrome)(4, 159). Besides, gene vaccination against certain 

infections may be performed via respiratory route (2).  

Approximately twenty different cell types may be found in adult mammalian lung. 

The nature of an illness defines the target cell types for gene delivery. For treatment of SP-B 

deficiency gene delivery to the alveolar type II cells is required, which produce and excrete 

surfactant proteins. Transfection of airway epithelial cells is needed for treatment of cystic 

fibrosis patients to normalize the water-salt balance within the lung. Several populations of 

stem cells are to be found within the lung, e.g. BASC cells, located on broncho-alveolar 

junctions, or NEBs-the stem cells of sub mucosal glands (99). Depending on the cell type, 

involved into a certain disease, transfection of different stem cell populations of the lung 

would be favorable. Successful gene transfer to these cells would provide gene correction of 

all subsequent cell pollutions and could provide long-term therapeutic effect (98).   

Efficiency of a certain gene transfer method is defined by the target cell type.  

Effective transfection of endothelial cells may be achieved through intravenous delivery, 

http://en.wikipedia.org/wiki/Lung_cancer
http://en.wikipedia.org/wiki/Colorectal_carcinoma
http://en.wikipedia.org/wiki/Pancreatic_carcinoma
http://en.wikipedia.org/wiki/Glioma
http://en.wikipedia.org/wiki/Melanoma
http://en.wikipedia.org/wiki/Diabetes
http://en.wikipedia.org/wiki/Amyotrophic_lateral_sclerosis
http://en.wikipedia.org/wiki/Duchenne_muscular_dystrophy
http://en.wikipedia.org/wiki/Asthma
http://en.wikipedia.org/wiki/Fomivirsen
http://en.wikipedia.org/wiki/Cytomegalovirus_retinitis
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while for lung epithelial cell types topical administration was proved to be most effective 

(227).  

Administration route influences not only the toxic effects and immune response but 

also the clearance pattern of administered gene vectors and thus is extremely important for 

gene transfer efficiency. Intravenous administration encounters many physiological and 

mechanical barriers (107), which may be bypassed by direct administration into the lungs. 

Aerosol delivery, as well as intranasal instillation is also applied successfully to transport 

gene constructs into the lung (168). Gene transfer via aerosol was proved to be highly 

efficient in delivering certain therapeutic substances as well as gene constructs into the 

pulmonary area (70, 99, 219). Intratracheal instillation is a widely known method of 

pulmonary administration of therapeutic agents. This route was also shown suitable for 

delivery of gene vectors in high amounts, which provided higher gene transfer efficiency than 

aerosol but caused severe inflammation (34, 50). Still, despite its efficiency instillation is 

reported to cause swelling and cell damage within the lung along with neutrophils infiltration 

and strong immune response.  

 

1.5 Thresholds to successful gene delivery into the lung  

To deliver vectors into the lung cells successfully gene transfer agents have to 

overcome certain limitations. Apart from penetration into the cell and escape from the 

endosomes, which comprise a certain bottleneck for every GTA, pulmonary gene vectors 

have to withstand shear forces arising during aerosol gene delivery. In case of instillation 

uneven distribution of the liquid within the lung is a serious hindrance to successful gene 

delivery. Besides, DNA-containing particles have to escape lung resident phagocytes – 

macrophages and neutrophils. To enter the target cells gene constructs have to bypass the 

mucus layer covering the conducting airways. Afterwards, delivery of the particles into the 

target cell type gene has to be carried out.  

Shear forces arising during aerosolization depend on the nebulization device and 

method, as well as on breathing depth and frequency. Besides, physical characteristics of lung 

functioning, like lung size and architecture, number of branching orders and the diameter of 

the airways also influence the efficiency of DNA delivery (140). Mechanical influence of the 

shear forces may destroy or damage the particles, thus decreasing the gene transfer efficiency. 

Dames et al. showed that application of magnetic field during aerosol transfection with 

paramagnetic particles allows obtaining equal distribution of GTAs within the desired lung 

region and provides high levels of transgene expression (33). 
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The mucus layer represents a serious barrier for GTAs. Its thickness varies between 

different regions of the lung and comprises in healthy individuals 10-30µm in trachea and 2-

5µm in bronchi (216). Respiratory mucus contains 90-95% of water and approximately 5% of 

protein component, consisting of negatively charged mucins and other proteins, e.g. albumin, 

proteases, antiproteases (30, 120). Experiments involving particles of different origin and 

diameter showed that pulmonary mucus forms within the lung a three dimensional network 

with a mesh size of approximately 150 nm (177). Mucus layer not only prevents further 

movement of GTAs mechanically, but also changes the surface characters of the particles via 

binding of non-cross-linked macromolecules (174). The surfactant layer in alveolar region 

may as well retain incoming particles. Beating of alveolar type II cells microvilli cause 

constant movement of the surfactant layer towards esophagus providing its renewal, so that 

entrapped particles are removed form the lung (6). Certain increase in gene delivery 

efficiency may be obtained using mucolytics and mucus liquidising agents (18, 36). Besides, 

PEGilation of gene delivery vehicles decreases their binding to the mucus layer (115). 

Alveolar fluid covers the alveolar region and may prevent gene transfer particles from 

penetration into the cell. Thickness of this layer of liquid may vary from 0.2 to 0.9 µm (76). It 

was shown that lipids and proteins of BALF interact with the incoming complexes. 

Negatively charged lipids may cause disintegration of lipoplexes thus making plasmid DNA 

accessible to nucleases (53). Nevertheless, synthetic gene delivery dendrimers PEI and 

PAMAM were proved to be resistant to pulmonary surfactant components (170). Intensive 

interaction with BALF proteins was showed for lipoplexes, leading to significant increase in 

their diameter, as well as to certain decrease in surface charge and transfection efficiency 

(169).  

Alveolar macrophages (AM) represent a population of actively phagocyting lung 

resident cells. Incoming GTAs may be opsonised with surfactant proteins and 

immunoglobulins and than taken up macrophages. Nevertheless, AM were proved to be a 

highly specialized cell group which can actively take up both opsonised and naive particles 

(72). It was shown that the rapidity of particle clearance depends not only on their number and 

distribution within the lung, but also on their size. In particular, size threshold between micro- 

(> 100 nm) and nano- (<100 nm) particles plays an important role defining the dynamics and 

intensity of particle clearance (139).  
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1.6 Advances in gene delivery to the lung 

Many efficient methods of pulmonary gene delivery exist today, involving different 

carriers and administration strategies.  

Among existing non-invasive DNA transfer strategies, aerosol delivery is considered 

to be mostly safe; a lot of efforts are applied to raise the efficiency of this procedure. Already 

in 1994, nebulisation of plasmid DNA compelxed with lipoplexs like DC-cholesterol or 

DOTMA/DOPE was shown to result in prolonged transgene expression in mice (3, 23). 

Recently, a promising agent was developed, bis-guanidinum-tren-cholesterol (BGTC), able to 

transfect the lung efficiently via both instillation and aerosol application (41). The toxicity 

arising because of aerosol administration can be reduced by modifying the applied device. 

Deshpande et al. demonstrated that pDNA administered using AERx delivery system can 

withstand shear forces and provide transgene expression with minimal toxicity (42). Polymer 

Polyethylenimine (PEI), which will be described in detail below, can bind DNA efficiently 

and shows low toxicity when inhaled. Considerable advances were achieved with this 

polymer in the field of anti-cancer pulmonary gene therapy. Injections of its complexes with 

pDNA coding for p53 gene reduced tumor growth significantly. Also aerosolization of such 

complexes was beneficial for treatment of lung tumors (40). Aerosol delivery of DLPC 

liposomes with DNA coding for topoisomerase 1 inhibitor,  prevents metastases in the lung 

and growth of subcutaneous tumors. This approach had recently entered the phase I clinical 

trial (108).  

 

1.7 Gene constructs for gene delivery  

Gene construct (or gene vector) is a molecule of DNA or RNA containing a selection 

marker or therapeutic gene. A gene of interest is connected to a 5'-regulatory area (promotor), 

which is supposed to control the intensity of transgene expression within eukaryotic cells. 

Besides, gene vectors usually contain regulatory elements and selection regions, which allow 

multiplication of plasmids in bacterial cells. In the last decade gene transfer systems were 

optimized via introduction of viral promoters as regulatory elements for therapeutic genes. 

Promotors from cytomegalovirus or Simian virus were shown to increase significantly the 

transgene expression (160).  

For gene delivery with viral vectors 5'-regulatory area and the gene of interest are 

inserted into the viral genome. Retroviral and AAV-based vectors bear the integration 

elements within their genomes, which can provide specific or random integration into the 

eukaryotic chromosome (185).  
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For non-viral gene delivery non-integrating (transitive) vectors are used, based on 

bacterial plasmids. These vectors do not possess structures required for integration into the 

host genome, so that this genetic material remains exogenous within the nucleus. In nonviral 

vectors a gene of interest is cloned downstream of a suitable promoter. Besides, the construct 

may contain additional regulatory elements. Different reporter genes, e.g. fire-fly luciferase of 

beta-galactosidase are used in experimental work instead of therapeutic genes to analyze the 

efficiency of gene delivery and distribution of transgene product. It was shown that 

incorporation of introns into the coding DNA sequence may increase the transfection 

efficiency (89). Usefulness of polyadenilation signals (polyA)  insertion was proved to 

enhance transgene expression by numerous studies (223).  

 

1.8 Non-viral gene delivery systems 

The main aim of a gene delivery system is to provide, firstly, efficient transportation 

of gene vector into the target cells and, secondly, penetration of exogenous DNA into the 

nucleus and expression of transgene. Wide variety of gene delivery strategies was exists 

nowadays.  Gene transfer agents differ in their efficiency and safety, each possessing its 

unique combination of advantageous and negative features. 

 

1.8.1. Delivery of naked DNA  

Administration of naked DNA is considered to be the oldest gene delivery approach. 

Fazio et al. showed in 1995 that intraperitoneal and intravenous injections of plasmid DNA 

result in transcription and synthesis of transgene product (58). First significant result after 

intramuscular injection of naked plasmid DNA bearing beta-galactosidase gene was achieved 

by Wolf et al. They showed that pDNA may remain within the muscle several months after 

administration, being transcribed and providing synthesis of the reporter product (217). In 

1996 a method of gene vaccination was developed, suitable to obtain anti-viral immune 

response after administration of pDNA coding for viral capsid protein.  

Delivery of naked plasmid DNA would be favorable not only for therapeutic purposes 

like correction of gene deficiency, but also for development of systemic immune response 

required for gene vaccination. Lowest possible immune response should be provoked in the 

first case, while for the latter an efficient balance between safety and efficiency is required 

(202). Successful gene vaccination was shown via intradermal delivery on mice (203).  

The main disadvantage of naked DNA delivery in therapeutic purposes is the low 

transfect ion efficiency, which in 1997 enhanced the search for agents which could protect 
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DNA form intracellular degradation (71). To improve the efficiency of naked pDNA delivery 

many invasive (e.g., gene gun) and noninvasive methods  (liquid jet injectors, electroporation, 

sonoporation, magnetofection) were developed. 

 
1.8.2 Mechanical gene delivery strategies 
 

Gene gun is a promising method for both gene delivery and DNA vaccination. A load 

of gold colloid particles is involved, which is covered with naked or complexed DNA and 

may be activated with compressed helium (92). This method provides effective DNA delivery 

into epidermal and intradermal layers of the skin. Gold particles under pressure penetrate into 

the cells, so that DNA is delivered directly into the cytoplasm. Although slight tissue necrosis 

and damage are observed after this procedure, gene gun method is considered to be less 

invasive than subcutaneous injections. Besides, non-severe tissue damage may act as 

maturation signal for dendritic cells, thus increasing the effectiveness of DNA immunization 

(81). Gene gun was applied successfully for gene delivery into skin and muscles of rodents, 

dogs and cattle (104). Successful immunization of cows was reported, resulting in high 

antibody titters and INF-gamma secretion by peripheral lymphocytes. One of the main 

disadvantages of this method is that only limited amounts of DNA can be precipitated on gold 

particles. Besides, sensitive and vitally important muscles like heart and diaphragm may not 

be transfected with gene gun because of inflicting tissue damage.  

 

Liquid Jet Injection implicates fine high-pressure stream, which is created by forcing 

the liquid though a syringe orifice by gas under high pressure. Depending on the device, 

pressure and orifice diameter, DNA may be delivered subcutaneously, intramuscularly or 

intradermally. Reports about liquid jet efficiency for DNA vaccination are contradictory; still, 

this method provides antibody responses compared to those after needle injections (204). This 

method is regarded to be perspective for transfection of vast tissue areas, for example, skin 

and skeletal muscles. Application of liquid jet injectors allows penetration into the deep 

dermal layer without causing severe tissue necrosis (31). In a clinical study devoted to DNA 

vaccination a group of volunteers preferred liquid jet injection to syringe, as it was less 

harmful and caused milder adverse reactions (51).  

As the cell membrane is negatively charged, penetration of naked DNA or complexes 

with negative zeta-potentials into the cell is complicated and may be overcame via 

modification of complexes (e.g., with ligands to cell surface receptors) or using physical 

methods. Electroporation is among the most intensively investigated techniques for DNA 
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delivery for both in vitro and in vivo applications. Utilization of electric pulses with 

controlled duration, polarity and frequency permits penetration of plasmid DNA into the cells 

and, seemingly, forwards it towards the nucleus (86). Different configurations of electrodes 

have been designed for application on tissues with certain structure and location. This method 

was proved to achieve high cellular infiltration being perspective for both gene delivery and 

DNA vaccination. Babiuk et al. showed that electric impulses applied on swine muscle after 

plasmid injection enhance the expression of transgene protein (7). High efficiency of 

electroporation was shown on sheep model, where increased levels of transgene GFP protein 

were observed after using a syringe electrode device (180). Safety issues proved the method 

to be less invasive and causing only short time irritation. Still, configuration of electrodes and 

the pattern of electric impulses have to bee optimized for every application.  

Although physical gene delivery strategies can provide transportation of plasmid DNA 

into the target tissue and certain transgene expression, their efficiency on the background of 

invasiveness and safety appears to be rather low. An alternative, highly effective trend in gene 

delivery is represented by viral gene delivery systems, which can efficiently modify the 

genetic status of the target cell.  

 

1.8.3 Viral gene delivery vectors 

Natural and highly effective mechanisms of penetration into the cells comprise the 

main privilege of viruses for gene delivery. Besides, certain viruses can provide integration of 

their genetic material into the host genome, meaning long term expression of transgene in 

subsequent cell populations. The most important characters of viruses used for gene delivery 

are the capability to transduce both proliferating cell lines and non-proliferating cells in 

culture, as well as targeted delivery into certain cell types. High immunogenicity is considered 

to be the main disadvantage of viral vectors. Absence of with site-specific integration 

capabilities in viral vectors reduces their applicability in vivo because of high risk of 

insertional mutagenesis. 

The majority of viral gene delivery vectors for gene delivery in to the lung developed 

to date were created on the base of retro-, adeno- and adeno-assosiated viruses (200). 

 

The genetic material of retroviruses is represented in form of RNA molecule, which 

DNA copy is supposed to be introduced into the host genome via reverse transcription. These 

vehicles represent the greatest success of gene delivery achieved to date, namely correction of 

X-linked severe combined immunodeficiency (X-SCID) (28). The successful integration of 

http://en.wikipedia.org/wiki/Severe_combined_immunodeficiency
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retroviral genetic material into host chromosome provides stable transgene expression in all 

descendants of the cell. Nevertheless, random integration may lead to insertional mutagenesis 

and provoke cancer. This risk represents the main hindrance to utilization of these vehicles for 

therapeutic purposes. Attempts are being made to control the integration site. Introduction of 

certain sequences such as beta-globin control region into the retroviral genome is reported to 

direct the site of integration towards specific chromosomal sites (19).  

Lentiviruses (for example, HIV virus) belong to a family of retroviruses. They can 

successfully transfect both proliferating and non-proliferating cells. Vectors based on these 

viruses may provide persistent (up to 6 month) transgene expression in slowly renewing cell 

populations (hepatocytes, myofibers). High rates of immune system recovery were observed 

in more than twenty patients, treated in France and Great Britain. Unfortunately, the main risk 

of insertional mutagenesis developed in four children provoking leukemia. Nevertheless, 

several clinical trials are being carries out in USA, Britain, Italy and Japan. Latest 

achievements in controlling of DNA integration sites should increase the safety of these 

effective gene delivery vehicles (176).  

 

Application of zinc finger nucleases (ZFNs) is considered to be very promising. Viral 

genome encoding for combination of custom-designed zinc fingers with endonuclease offers 

an opportunity to induce site specific double strand breaks in genomic DNA, thus enhancing 

local homologous recombination by several orders of magnitude (78). Also ZFN-encoded 

plasmid-based approach was proved to have certain advantages.  

 

Adenoviral vectors represent their genetic material in form of double-stranded DNA. 

Entering the host cell, they introduce their DNA into the nucleus without incorporation into 

the host genome (Fig. 2). As a result, viral genetic information may become damaged and 

destroyed with time, causing the necessity for repeated administrating of the vector. Although 

there vehicles do not represent insertional mutagenesis risk, their immunogenicity may cause 

complications during repeated administrations (45).. Besides, low efficiency of penetration 

into proliferating cells reduce their applicability for gene therapy treatment (188). 

Nevertheless, despite the disadvantages described above these vehicles are reported to be a 

powerful gene delivery tool. Certain progress was observed in clinical trial devoted to cancer 

 treatment (239,163).  
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Adeno-associated viruses (AAV) belong to a parvovirus family and are well known 

for their ability to transfect non-proliferation cells efficiently. Their genome is represented as 

single-stranded DNA molecule. Although viruses of this group can introduce their genetic 

material into the specific site on chromosome 19. Nevertheless,   preparation of viral vectors 

requires removal of all viral genes including Rep gene which is mandatory for this ability and 

thus leads to loss of this function.   

A class of recombinant viruses has been developed, which genomes fuse at the ends 

via the ITR (inverted terminal repeats) recombination to form circular, episomal forms which 

are predicted to be the primary cause of the long term gene expression (163). The main 

disadvantages of these vehicles are the small amount of DNA they can transport and 

production technology, rather complicated and demanding. Because of their ability to 

transfect non-dividing cells these vectors are supposed to be especially favorable for gene 

delivery into the muscle and brain (into the neurons). Several clinical trials are being carried 

out in the moment, mainly in USA (21). 

Aiming to unite positive qualities of different viruses, artificial gene delivery systems 

based on viruses are created. Artificial viral vectors are supposed to be able to enter a wider  

Figure 2. Gene delivery using an adenoviral vector. The figure represents packing of DNA 
material into the viral aprticle, penetration of the virus into the cell and transmission of 
DNA into the nucleus. 
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(or a restricted) range of cells compared to their natural predecessors. To achieve that, surface 

proteins are modified with those from other viruses or chimeric ones, so called 

“pseudotyping”. Among such “pseudotyped viruses” a lentivirus “Simian immunodeficiency 

virus” is mostly well known, which is able to infect a wide range of cell types. The restriction 

of possible target cell types may be achieved by modification of viral envelopes with 

antibodies fragments. This so called „magic bullet“concept has already showed it’s 

effectiveness in several studies (138).  

Despite certain disadvantages as immunogenicity and risk of insertional mutagenesis, 

viral vectors remain one the most perspective groups of gene delivery vehicles. To date the 

majority of clinical trials are devoted to testing of different viral vectors. Still, in case of a 

wide variety of genetic diseases for which suitable therapies are already developed safety 

issues dominate irrevocably over the efficiency and effect continuance matters. Consequently, 

alternative gene therapy approaches including mechanical gene delivery methods and a 

plethora of nonviral gene transfer vehicles are being constantly developed.  

 

1.8.4 Non-viral gene delivery systems  

Development of effective gene delivery methods into the cell is one of the major 

trends in modern gene therapy research. Rapid progress in development of nonviral gene 

delivery vehicles observed within the last decades lead to the establishment of many effective 

carriers which possess certain advantages compared to mechanic or viral DNA delivery 

systems. Being able to provide targeted gene delivery and high levels of transgene expression, 

nonviral vectors are less immunogenic and possess lower toxicity (178), allowing their 

repeated administration (68, 122). Non-viral gene delivery was proved to have therapeutic 

effect on mouse model (69, 99, 219). Also several clinical trials devoted to non-viral gene 

delivery are undertaken at the moment (82, 168).  

An effective nonviral gene delivery vehicle is supposed to possess certain characters, 

like the ability to bind DNA and protect it form enzymatic degradation; it should provide 

effective targeted delivery and intracellular penetration, as well as escape from the endosomes 

and effective transport of genetic construct into the nucleus (56, 152).  

 

1.8.5 Polypeptide-based vehicles  

Natural and synthetic polypeptide-based vehicles comprised the first generation of 

gene delivery systems among numerous polymers used for gene transfer (200). Although 

many proteins of natural origin like histones (179) or histatin5 (130) have shown high gene 

http://en.wikipedia.org/wiki/Lentivirus
http://en.wikipedia.org/wiki/Simian_immunodeficiency_virus
http://en.wikipedia.org/wiki/Simian_immunodeficiency_virus
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transfer efficiency, synthetic amionacid –based vectors possess significant advantages over 

them. Structure and chemical composition of synthetic polypeptides may be modified easily, 

thus allowing to coordinate the features of different aminoacids (54). Vehicles based on lysine 

(poly-L-lysines, PLLs) were among the first synthetic GTAs and represent nowadays the most 

thoroughly investigated group of gene transfer agents (210). These polymers are 

biodegradable and possess low immunogenicity and toxicity which makes them perspective 

vehicles for in vivo delivery of nucleic acids. Free ε-amino groups of lysine within the 

polymer become protonated at physiological pH thus binding DNA via electrostatic 

interactions. PLLs may form with DNA, particles of different size and surface characteristics, 

depending on the polymer structure, in particular on the number and availability of e-amino-

groups for interactions with DNA (112, 124). Polylysines not only can bind DNA under 

physiological conditions, but also release it within the cell thus opening it for transcription 

(12, 126, 127). Unfortunately, pKa values of lysine are too low to provide endosomal escape 

of gene constructs. That is considered to be one of the main reasons of relatively low 

transfection efficiency of PLLs compared to other synthetic cationic polymers like PEI (26, 

197). That is why poly-L-lysines are often modified with imidazole-containing amino acids or 

endosomolytic agents, which can provide disruption of lysosomes and thus secure DNA form 

enzymatic degradation (211). Polyhistidines may also form particles with DNA under acidic 

pH, which enter the cells successfully, and release DNA form the endosomes (26, 

119).Gluconylated poly-histidine was shown not only to deliver plasmid DNA into the cells 

but also to release it from the endosomes successfully (151). Nevertheless, efficiency of gene 

delivery using polyhystidines is low compared to that of polylysines mainly because of the 

unfavorable size of the conglomerates that these polymers form with plasmid DNA (9). 

Besides, electrostatic repulsion occurring at physiological pH complicates their application for 

in vivo gene transfer (83, 184). Covering with PEG is another type of modification described 

for PLL complexes with plasmid DNA. PEGilation prolongs the half-life of complexes within 

the blood stream and significantly reduces their toxicity (105). Modification of PLL/DNA 

complexes with ligands to cell surface receptors may provide cell-type-specific gene transfer 

(149). Estimation of gene delivery abilities of many PLLs showed that combination of these 

polymers with specific agents like chloroquine or JTS-1 peptide, as well as development of 

chimeric structures with other cationic polymers like PEI may significantly increase their 

gene transfer efficiency, providing high levels of transgene expression both in vitro and in 

vivo (143, 212). Successful clinical trials prove PLLs to be perspective candidates for future 

therapeutic applications (105).  
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1.8.6 Peptide-based dendrimers 

Dendrimers (“branching molecules”) are used in many areas of pharmacology and may be 

easily modified in their structure and surface properties. Because of their structural similarity 

to many globular proteins they were often called “artificial proteins” (11). 

 

Polypeptide-based dendrimers as well as linear aminoacid-based polymers are 

biodegradable gene transfection vehicles with low toxicity which have proved their efficiency 

on cell cultures and animal models (183). Besides, secondary modification with fatty acids 

residues (60), ligands for receptor-meditated gene delivery (175) or PEGilation (210, 222) 

enable the establishment of tailor-made gene delivery systems, highly specific for certain 

purposes (192). Tertiary structure of a globular protein is sensitive for denaturizing effects 

and unpredictable in location of hydrophobic and hydrophilic surface areas; while polypeptide 

based dendrimers possess stable flexible structure, inner space and dense homogenous surface 

(54). Such gene delivery agents as polylysine-based dendrimers became recently one of the 

main trends in development of biodegradable gene therapy vehicles (146, 181). Poly-L-lysine 

dendrimers were shown to deliver DNA efficiently into the cells providing long term 

transgene expression (142). Because of their ability to form spherical monodisperse structures 

these polymers possess unique capacities. Branching orders and thus the size may be 

controlled by stage synthesis. Because of their flexible structure polylysine dendrimers may 

bind DNA into dense structure which may be released within the cell, providing DNA with 

the access to transcription complexes. These vehicles may be easily modified with short 

polysaccarides, cytoplasm translocation signals, ligands for cell surface receptors and 

endosomolithic agents. Besides, polylysines can be easily combined with other polymers. For 

example, it was shown that co-polymers of polylysine dendrimers with polyethylenglicol bind 

DNA forming complexes of 15-100 nm and deliver it successfully (116). PEGilation of 

complexes of branching polylysines with plasmid DNA prolonged their circulation in 

bloodstream (116, 212). 

 

1.8.7 Modification of peptides with histidine and arginine  

Aiming to provide escape of plasmid DNA from the lysosomes the aminoacid 

composition of the polypeptide vehicle may be modified with endosomolytic agents of 

different origin (97). Modification of branching polylysines with histidine was proved to 

enhance DNA escape form endosomes, resulting in significant improvement of gene delivery. 
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It was shown that introducing histidine into polylysine core leads to higher transgene 

expression than that after cotransfection of standard polylysine dendrimer with endosome 

disrupting agent cloroquine (132). Presence of histidines within a polypeptide may provide so 

called “proton sponge” effect, which effectively disrupts the endosomes thus releasing 

plasmid DNA (201, 209). Under physiological pH histidine remains uncharged and thus does 

not participate in DNA binding (13, 35). As far as pH within the primary lysosomes drops, 

histidines become protonated and develop the proton sponge effect, resulting in overflow of 

ions into the endosome which leads to it’s disruption (147, 214). Thus presence of histidines 

within the vehicle may enhance the efficiency of gene delivery by protecting plasmid DNA 

form enzymatic degradation. Proton sponge effect is widely known not only for synthetic but 

for many natural proteins (152, 209, 215). For example, viruses possess many effective 

membrane active proteins capable of endosome disruption (214, 215). Also certain synthetic 

polymers like polyethylene amine and polyamidoamine exhibit proton sponge effect (79, 

195).The toxicity of polylysine-based branching vehicles may be reduced by amphiphilic 

modification (20, 119) or by creating copolymers with PEG (61, 149, 197). Promising results 

obtained during in vivo studies prove this group of GTAs to be perspective for targeted 

delivery of therapeutic genes (5, 192).  

Introduction of arginine residues into the polylysin-based vehicles is widely reported 

to improve the gene delivery capacities of the complexes. Effective targeted intracellular 

delivery of DNA complexes with polypeptides depends on many factors like the size and 

structure of the complexes, its surface charge, and presence of ligands to surface receptors or 

specific aminoacids (142). Many natural peptides, for example TAT-peptide of HIV-1 virus 

possess arginin-rich moieties, which enable them to enter the cells effectively via both 

endocytosis and endocytosis-independent pathways (66). The data about the mechanism of 

arginine-rich moieties penetration into the cell are rather contradictive. While early works 

reported it to be independent from endocytosis pathways (64, 65), more recent studies showed 

a significant influence of endocytosis blockaders on penetration of arginine-rich peptides into 

the cell (17, 133). Nevertheless, many arginine-rich peptides were proved to enter the cells 

successfully thus improving gene transfer. It was shown that presence of arginine within 

linear or branching polypeptides enhances the efficiency of complexes penetration into the 

cell (67). 
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1.8.8 A series of SPLL branching polypeptides 

Based on our previous results obtained with a branching poly-L-lysine of five 

branching orders D2, (83, 206), a series of novel vehicles was synthesized, where additional 

aminoacids were introduced into the basic branching polylysine core.  

Two dendrimers were modified with arginine residues which were supposed not only 

to enhance DNA binding but also to improve penetration of the complex into the cell. Other 

two vehicles were modified with histidin to provide endosome disruption and thus to prevent 

enzymatic degradation of DNA.  

We have shown that both modifications have improved the DNA-binding and gene 

delivery  capacities of the dendrimers and the transcfection efficiency was higher than that 

observed for basic D2 dendrimer. Arginin-modified polylysines demonstrated higher levels of 

transgene expression in vitro, showing that penetration into the cell plays a crucial role in 

gene delivery with modified branching polylysines. To date this group of polymers was tested 

only on cell cultures, meaning that extensive animals experiments are required to estimate 

their potential for gene delivery. Future extensive study of these polymers is planned. 

 

 

 

 

To date, a wide variety of synthetic gene delivery vectors exist, which can efficiently 

deliver plasmid DNA to different organs and tissues of animals. A well known representative 

of this group is polyethylenimine (PEI), a highly efficient nonviral gene delivery vector.  
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1.8.9 Polyethylenimine 

Polyethylenimine (PEI) is a synthetic cationic polymer which is widely reported to 

provide effective delivery of DNA and long term transgene expression (34, 69, 107). Gene 

transfer capacities were first described for a group of PEIs by Boussif in 1995, who had 

shown their efficiency in vitro and in vivo (14). Different variations involving CH2-CH2-NH 

ethylenimine core molecule result in a variety of linear and branching polymers with unique 

characteristic features. The molecules most oftenly used for gene transfer purposes are 22kDa 

linear PEI and branched PEI of 25kDa (Fig. 3). Recently, gene delivery capacities were 

demonstrated for both branching and linear PEIs (70, 126). Linear PEI possesses mostly 

secondary amines, while primary, secondary and tertiary amines are known for branching 

polyethylenimines. It is the combination of amino groups of different orders that enables the 

branched PEI with its buffering capacity observed over a wide pH range (191). The osmotic 

swelling within the endosome combined with polymer swelling leads to endosome disruption 

(186). Because of it’s ability to form small stable particles with plasmid DNA and to provide 

the proton sponge effect PEI may be applied as a single multifunctional gene delivery vehicle 

(48). Nevertheless, compared to many natural polymers used for gene delivery like histones or 

chitosan, PEI is not biodegradable and thus more toxic (164). Toxicity of PEI originates 

mostly form the high concentration of positive charges, and diminishes applicability of this 

polymer for in vivo gene transfer (75). Not only the amount of applied polymer, but also the 

A

B

Figure 3. Structure of linear (A) and branching (B) polyethilenimine (PEI).  



INTRODUCTION  18 

surface characteristics of it’s particles with plasmid DNA, such as particle size, density and 

surface charge, as well as the solvent influence the development of toxic effects (173, 195). 

Administration procedure is also important for preventing toxicity. 

While severe inflammatory reaction was shown for intravenous application (157), 

aerosol delivery was proved to be relatively safe for mice (70, 157). Apart from application 

route, toxicity of PEI may be reduced by different modifications like PEGilation (68). Being 

able to transfect a variety of cell types, PEI is used intensively to deliver gene constructs into 

the lung to alveolar and bronchial cells (107, 171), where it provides higher gene expression 

than liposomes (39). The recent success of PEI-pDNA gene delivery in bladder cancer clinical 

trial (145) proved that this vehicle is a perspective polymer for gene delivery.  

For in vivo application of a certain gene delivery technique safety issues are mostly 

important. Many methods have been developed to analyze the safety of certain particles. 

Investigation of lung mechanics is nowadays considered to be one of the most reliable 

methods for estimation of the impact on the lung. 

 

1.9 Estimation of lung mechanics 

Measurement of lung mechanics represents a sensitive tool to observe the reaction of 

the lung on certain influences. As far as mice are nowdays considered to be the predominant 

laboratory species, development of suitable instruments for estimation of murine lung 

functioning parameters became an important milestone in lung physiology research (73). For 

adequate assessment of mouse lung functioning sensitive methods are needed, which allow 

quantitive evaluation of lung parameters. Measurement of pulmonary function in mice is 

challenging due to the small size of their airways (91). Several invasive and non-invasive 

techniques are developed to date, each possessing its advantages and limitations (46). 

Although non-invasive methods are quick, easy to handle and do not need anaesthesia or 

tracheal administration, their low sensitivity and tendency to form artefacts make them 

unsuitable for measuring fine alterations within the lung. On the other hand, invasive methods 

are rather demanding and time-consuming. Besides, anaesthesia and surgical preparation of 

the animals are required. Nevertheless, sensitivity and specificity of these methods, as well as 

the possibility to carry out long-term measurements in intubated mice make them a valid tool 

in estimation of lung functioning alterations (123, 162). Pulmonary mechanics is traditionally 

determined with such parameters as pulmonary resistance (RL), describing the sum of airway 

and tissue resistance, and dynamic compliance (Cdyn). Already in 1988 the feasibility of these 

parameters was demonstrated for mechanically ventilated mice (128). Basing on these, other 
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functional parameters may be calculated such as tissue damping (GTiss), tissue elastance 

(HTiss) or hysteresivity (Eta). For example, tidal volume of the lung is usually not measured 

directly by transpulmoanry pressure but calculated according to the differentiation of the 

volume signal (91). Determination of RL and Cdyn not only provides the classical 

determination of airway responsiveness, but also enables a more detailed insight into 

pulmonary mechanics. RL reflects both narrowing of the conducting airways and parenchymal 

viscosity. In contrast, Cdyn is considered to primarily reflect the elasticity of the lung 

parenchyma, but is also influenced by surface tension, smooth muscle contraction and 

peripheral airway inhomogeneity (73). 

While severe inflammatory reaction was shown for intravenous application (157), 

aerosol delivery was proved to be relatively safe for mice (70, 157). Apart form application 

route, toxicity of PEI may be reduced by different modifications like PEGilation (68). Being 

able to transfect a variety of cell types, PEI is used intensively to deliver gene constructs into 

the lung to alveolar and bronchial cells (107, 171), where it provides higher gene expression 

than liposomes (39). The recent success of PEI-pDNA gene delivery in bladder cancer clinical 

trial (145) proved that this vehicle is a perspective polymer for gene delivery.  

For in vivo application of a certain gene delivery technique safety issues are mostly 

important. Many methods have been developed to analyze the safety of certain particles. 

Investigation of lung mechanics is nowadays considered to be one of the most reliable 

methods for estimation of the impact on the lung. 

 

1.10 Inflammation in the lung  

Gene delivery into the lung is reported to cause high toxicity either because of the 

administration route or because of the plasmid DNA used in the experiment. Especially the 

presence of CpG motifs in plasmid DNA is widely reported to influence the transfection 

dramatically provoking immune response via its adjuvant-like functioning (225). Yew et al. 

investigated the contribution of plasmid DNA to the toxic effects observed after transfection. 

They demonstrated that pulmonary administration of DNA with unmethylated CpG motifs 

induces highly elevated levels of the cytokines TNF-alpha, IFN-gamma, IL-6, and IL-12 in 

the bronchoalveolar lavage fluids (222). Resident alveolar macrophages are proved to be the 

major cell type reacting on the presence of unmethylated CpG-containing (=bacterial-like) 

DNA (103, 140). Internalization of complexes with CpG-containing DNA leads not only to 

their activation and cytokine excretion but also to active recruitment of fresh monocytes form 

the bloodstream (87).It was shown that even one CpG motif present within a plasmid may 
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induce lung immune response (90). Besides, presence of unmethylated CpG-motifs in the 

plasmid DNA is known to activate B-cells and natural killer cells (193, 222). Co-delivery of 

inflammation suppressors allows reducing the immune response caused by the vectors (122). 

Nevertheless, repeated application of strong anti-inflammatory substances may cause risk for 

the patient. That is why the reduction of immunostimulatory effects of both plasmid DNA and 

the vector is a crucial point for successful gene delivery (90, 122, 196). 

Aiming to decrease the negative effects of gene delivery procedure, we have analysed 

the effect of plasmid DNA structure on safety and efficiency of gene transfer. We have shown 

that after instillation of standard DNA complexes with PEI significant increase in number of 

macrophages and neutrophils was observed within the lung. Activated macrophages also 

increased in number. Aerosol administration of the same complexes resulted in a much less 

pronounced and transient alteration in number an character of phagocyting cells. Besides, we 

have delivered via aerosol PEI particles formed with two CpG-motif-free plasmids, one of 

coding for luciferase and another representing only the plasmid backbone. Aerosol 

distribution of CpG-motif free DNA did not cause any alterations in number and type of lung 

resident cells. 

 

 

1.11 Clearance of particles form the lung 

Analysis of particles clearance from the pulmonary area clarifies not only their 

distribution within the lung but also the duration of their persistence indifferent areas of this 

organ.  

Clearance of particles from the lung is a complicated process reflecting their 

metabolism within this organ. Intensity of particle clearance depends on their size, structure 

and toxic effects, as well as on the administration route (69, 188). Being constantly exposed to 

every kind of endogenous material like dust, bacteria, etc. lung has developed powerful 

mechanisms to eliminate incoming materials (15). The lipidic and protein components of the 

layer are constantly renewed, while beating of alveolar type II cells chilia forms a stream of 

surfactant in the airways towards oesophagus, the speed of which in human lung comprises 

3,6 mm/min (221). Resident alveolar macrophages represent a population of actively 

wandering cells which bind effectively both opsonised and non-opsonised particles (15, 44). 

Incoming macroparticles are usually quickly opsonised and afterwards consumed by alveolar 

phagocytes (140). 
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Plasmid clearance from the lung tissue is one of the mostly important issues regarding 

effective gene transfection of lung epithelial cells. While titanium dioxide particles may 

penetrate through the alveolar wall into the blood stream, many gene transfer complexes are 

reported to be trapped into the surfactant or to become opsonised and cleared up by 

phagocytes (39, 153, 171). Also pDNA clearance from the lung cells has to be taken into 

account. In case of non integrating gene constructs half life of plasmid DNA within the cell 

defines the duration and intensity of transgene expression. After efficient penetration into the 

cell and than into the nucleus, subsequent damaging and degradation of plasmid DNA is a 

serious bottleneck for prolonged gene expression (56, 152). Degradation of plasmid DNA 

within the cell depends on its size and structure, as well as from presence of specific 

sequences (164, 173). 

Analysis of particle clearance form lung resident cells is important for understanding 

of the pulmonary response to the gene transfer procedure. Lung resident cells represent the 

first row of lung defence against foreign materials and react intensively on very kind of 

incoming particles. Alterations in number of resident macrophages and neutrophils, as well as 

macrophage activation level represent the primary inflammatory response of the lung and thus 

may be used to characterise the safety of a certain administration procedure. Alveolar 

macropahge (AM) is able to take up particles as big in diameter as the cell itself and either 

destroy it or bring it to the oesophagus (196). While alveolar macrophages can clear up 

significant amount of macroparticles from the lung, for example coal dust, they react 

differently being challenged with nanoparticles (144, 148). PEI/DNA complexes which were 

used in our study for aerosol or intranasal delivery comprise around 100 nm in diameter and 

thus may be referred to the class of nanoparticles. Rosenecker et al. showed that within the 

lung PEI/DNA particles are rapidly coated with surfactant proteins, thus enhancing their 

uptake by resident PMNs (169) . Nanoparticles may block phagocytosis of resident 

macrophages and also the influx of fresh monocytes into the lung. Renwick et al. 

demonstrated that ultrafine particles cause not only epithelial damage and macrophage 

recruitment into the pulmonary area, but also alter the sensitivity of polymorphonuclear cells 

to chemoattractants (44, 165). Interestingly, significant differences in pulmonary response 

were found between different rodents both in clearance pattern and involvement of different 

resident cells (10). It was shown that AMs bind nanoparticles intensively to their surface, 

while duration of the internalization process depends on the size and number of the particles 

(154). Being exposed to nanoparticles, macrophages quickly reach the overload condition (90, 

196). It is assumed that the ratio of mass to the surface area which is much higher in case of 
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nanoparticles than for bigger ones is the main disturbing factor for lung macrophages (24, 

150). Thus AMs take up nanoparticles inefficiently, changing the clearance pattern from the 

lung.  

 

Efficient DNA delivery and prolonged transgene expression was the main topis of 

investigation of the current thesis. Clearance of plasmid DNA from lung tissue, BALF liquid 

and lung resident cells was analyzed. Comparison of intranasal instillation and aerosol 

delivery of PEI/DNA particles showed significant differences in patterns of DNA release 

from PEI and its clearance. Clearance of CpG-free plasmid DNA delivered via aerosol was 

proved to depend on the structure of the plasmid.  

 

Apart form safety matters which define the applicability of a certain procedure for 

therapeutical applications, the efficiency of transfection comprise the main issue of interest 

for gene delivery.  

 

1.12 Efficiency of gene transfer  

The efficiency of gene delivery depends on many factors, which include not only the 

structure of the complexes and plasmid DNA properties, but also physical parameters of 

particles and the administration route (56, 200). PEI is applied in gene delivery since 1985 

and developed into the golden standard of gene deliver within the last decades. From many 

commercially available PEI forms both for linear (178) and branched PEI (186, 191) high 

gene transfer efficiency was demonstrated. In particular branched PEI was proved to provide 

high transgene expression in the lung (107, 168). It was shown that PEI stabilizes DNA within 

the complexes during nebulisation (171). Within the lung PEI/DNA particles interact with the 

surfactant layer and bind to cell surface proteoglycans (106). From all lung cell types the 

bronchial epithelial cells obtain the majority of administered particles (69, 69, 173, 173).  

This work shows that delivery of CpG-free plasmid DNA provided much higher 

transgene expression that administration of standard plasmid. Nevertheless, in both cases 

luciferase expression decreased dramatically seen days after transfection.  

 

Thus, we have shown that aerosol delivery of CpG-motif-free plasmid DNA 

complexes with branched PEI results in high levels of luciferase expression and causes no 

significant alteration in lung functioning or inflammation.  
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1.12 Aims of the research study 
 

 The main aims of investigating a group of branched modified polylysines were: 

- to find out how different modifications of the basic peptide influence it’s DNA –

binding and protective capacities, as well physical characteristics of it’s complexes 

with plasmid DNA  

- to analyze the levels of transgene expression which these polymers could provide 

under different conditions.  

- to elicit mostly promising representatives of the group, which could provide high 

levels of reporter gene expression on cell cultures.  

Our final aim was to reveal the mostly promising candidates for further experiments on in 

vivo gene delivery on animals. 

 

 

 Comparing different strategies of pulmonary gene delivery, we aimed:  

- to analyse the response of the lung to different gene delivery procedures depending on 

structure of plasmid DNA and administration route 

- to determine the administration strategy with the lowest negative impact on the lung. 

- to educe the influence of CpG-motifs within the plasmid on it’s immunogenity and 

applicability for gene transfer.  

 

 



MATERIALS AND METHODS  24 

2 MATERIALS AND METHODS 

 

2.1 Materials 

2.1.1 Branching polypeptides SPLLs 

A series of branching polypeptides based on lysine with different Lysine:Arginine or 

Lysine:Histidine ratios was kindly provided by Prof.Dr.Vlasov (Laboratory for 

Physiologically Active Polymers, High Molecular Compounds Institute, St. Petersburg, 

Russia). The following polymers were taken into the study:  

 

Polymer  Weight ratio of lysin to 

an additional aminoacid 

Molecular weight 

SP-KR  1:1  Lys:Arg   1:1  690 kDa 

SP-KR 10:1 Lys:Arg   10 :1  450 kDa 

SP-KH  1:1 Lys:His   1:1  425 kDa 

SP-KH  10:1 Lys:His   10:1  525 kDa 

Table 1. A series of modified poly-L-lysines with different w:w ratios of lysine to additional 
aminoacids (arginine or histidine )  

 

2.1.2 Branched PEI  

Branched PEI (average MW = 25 kDa) was obtained from Aldrich (Deisenhofen, Germany), 

dialyzed in water (12-14 kDa MW cutoff), and adjusted to pH=7. Double distilled endotoxin 

free water for injection was purchased from Delta Pharma (Boehringer Ingelheim, Germany). 

 

2.1.3 Plasmid DNA  

pCMV-Luc containing the firefly luciferase cDNA driven by the CMV promoter was 

generously provided by Dr. E. Wagner (Department of Pharmacy, University of Munich, 

Germany). pCpGLuc was constructed by Manfred Ogris (Department of Pharmacy, Ludwig 

Maximilians University, Munich, Germany). Briefly, CpG-free plasmids pCpG-mcs and 

pMOD-LucSh were obtained from Invivogen (Toulouse, France). Luciferase cDNA was 

excised from pMOD-LucSh by BgllI-NheI digestion and cloned into respective sites of 

pCpG-mcs to generate pCpGLuc. pCpG-mcs was used as backbone plasmid. Both plasmids 

were propagated in E.coli and provided in a highly purified form (LPS content ≤ 0.1 E.U./µg 
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DNA) by PlasmidFactory (PlasmidFactory GmbH, Bielefeld, Germany). The amount of 

supercoiled pDNA was ≥ 98% ccc (covalently closed circular, ccc grade).  

 

2.1.4 Cell cultures 

For our experiments we used the following cells: epithelial cell line of a human 

alveolar carcinoma A549, human bronchial epithelial cell line 16 HBE, human hepatocellular 

liver carcinoma cell line HepG2 and  human cervical carcinoma cell line Hela.  

The cell lines were received from German Cell Culture Collection (DSMZ, 

Braunschweig, Germany). All the cell lines were cultivated in 100ml tissue culture flasks 

(Sarstedt, Hamilton, USA) at 37°C in an incubator with 100% air humidity and with 5% CO2 

supply. The cells lines A549 and 16HBE were supplied with Dulbecco’s modified Eagle’s 

medium (D-MEM) (Invitrogen, Karlsruhe) with 10 % of fetal calf serum (FCS) (PAA, 

Pasching, Austria). Cell lines HepG2 and HeLa were cultivated in standard Eagle’s minimal 

essential medium (MEM) with 10 % of foetal calf serum. After reaching 80% confluence the 

cellular medium was removed from the tissue culture flasks, the cell monolayer was rinsed 

with prewarmed PBS (Gibco, Karlsruhe, Germany) and detatched from the surface by 

incubation with 5 ml of Trypsin-EDTA (Invitrogen, Karlsruhe, Germany) for 10 minutes. The 

detatched cells were resuspended carefully, counted on haemocytometer and diluted with 

culture medium up to desired ratio. For gene delivery experiments the cells of not more than 

20 passages were used.  

 

2.1.5 Animals  

Female Balb/c mice of 10-12 weeks old were obtained from Elevage Janvier, Le 

Genest St. Isle, France. After arrival the animals spent minimum two weeks in quarantine. 

Afterwards approximately 5 animals he animals were housed in Individually ventilated cages 

(IVC) and fed ad libitum.  

 

2.2 Methods 

 

2.2.1 DNA-binding assay for SPLLs  

All peptides of the group were first of all tested for their DNA binding capacity. The 

predefined charge ratios, corresponding to negative charges of DNA molecules and positive 

charges of the lysine (and arginin) residues of the polypeptides were transformed into the 

weight-to-weight ratios according to their molecular weight and purity coefficients.  
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Basing on previous experiments with lysine-based dendrimers of the similar structure, 

a certain range of charge ratios was chosen for DNA binding experiments. For every charge 

ratio 5 µg of plasmid DNA were used for every experiment in a final volume of 100µl. DNA 

dissolved in 50µl was added drop wise into the 50µl of polymer solution and mixed gently by 

pipeting. Distilled water or 0,15 mM NaCl were used as solvents. After 20 minutes of 

incubation 30 µl of complexes suspension were mixed with 10 µl of standard loading buffer 

and electrophoresed in a 0,8% (w/v) agarose gel for 40 minutes at 100V. TBE (90mM Tirs-

borate and 2mM EDTA, pH 8) buffer was used as electrophoresis buffer. The gel was stained 

with ethidium bromide (0,5 µg/ml) for 30 minutes and illuminated with UV illuminator for 

DNA location. One microgram of plasmid DNA was used as negative control in these 

experiments. Presence of smears or plasmid bands corresponding to a certain well meant that 

DNA was not fully bound by the polypeptide, while absence of DNA traces on the gel 

symbolised complete DNA binding.  

 

2.2.2 “DNAse-protection” assay  

The charge ratios of DNA to polypeptide, providing complete binding of plasmid, 

were used for the DNAse protection assay. The aim of this assay was to find out the charge 

ratios which provided stable and dense complexes, where plasmid would be well protected 

from intracellular enzymes.  

Plasmid DNA was compelexed by a tested vehicle as described above. From a 100 µl 

of complexes solution, prepared for every charge ratio 10 µl of complexes were loaded on a 

gel to control the compactization efficiency, while 90 µl were mixed with bovine  

deoxyribonuclease 1 (DNase 1) (from Sigma Aldrich, Munich, Germany)  according to 

manufacturers instructions (10 Units per 1µg DNA).  After mixing the complexes were 

incubated for 3 hours at 37°C. The action of DNAseI was inhibited by 10 min incubation of a 

probe in a water bath by 70°C. After incubation DNA was extracted from the complexes 

according to the standard phenol-chloroform DNA-extraction procedure. Briefly, an equal 

amount of 0,5M Tris-HCl (pH=8) was added to a precooled solution,  mixed gently by 

swirling and centrifuged 15 minutes at 5000g. The viscous phase was separated by 

centrifugation (5 minutes, 5000 rpm)  and phenol extraction was repeated another two times. 

Afterwards two volumes of ethanol and 0,2 volume of 0,12 M ammonium acetate were added 

to a probe and mixed thoroughly. The DNA containing precipitate was washed twice with 

ethanol and dried. After drying DNA samples were resuspended in 20 µl of distilled water and 

loaded on a gel. In these series of experiments samples of uncompelxed plasmid DNA were 
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used as positive control. DNA degraded by DNAseI was used as negative control. A presence 

of characteristic bands on a gel, corresponding to the intact plasmid DNA, meant that DNA 

was well protected by the polypeptide and was not available to the DNAse during the 

incubation. The charge ratios, which provided not only compactization but also protection of 

DNA molecules, were used for further studies including gene delivery experiments in vitro.  

 

2.2.3 “TOTO-displacement” assays  

To analyse not only the dynamics of complexes formation but also the density of 

pDNA/SPLL complexes a “TOTO-excision“ assay was performed. A florescent dye TOTO-1  

iodide was purchased form Molecular Probed (Leiden, Netherlands). The dye was complexed 

with plasmid DNA acoording to manufacturer’s instructions. An amount of TOTO-iodide 

corresponding to 1 molecule per 20 DNA base pairs was mixed with DNA (0,0025µg/µl in 

distilled water) and incubated for 10 minutes at 45°C. The TOTO-1 dye belongs to a family of 

intercalating dyes, which are symmetric dimers of cyanine dyes with exceptional sensitivity 

for nucleic acids. TOTO-1 posesses a very low fluorescence when not complexed to DNA. 

After binding to DNA it increases more that 1000-fold. In regard of double stranded DNA the 

dye acts as intercalator (25) and thus becomes replaced with molecules of polymer during 

DNA compactization. During the formation of DNA/SPLL complexes the TOTOdye became 

replaced by the moleculas of polymers. Thus the light excitation of DNA/SPLL complexes 

was at least 1000 fold lower than that of free plasmid DNA. Comparing the fluorescence 

intensity of plasmid DNA with that of the complexes formed at different conditions one could 

judge about the density of complexes as well as about the dynamics of DNA bunding.  

To prove that the binding capacities of DNA did not change after compelxation with 

TOTO-1 a series of experiments devoted to electrophoretic mobility of TOTO-DNA/SPLL 

complexes was performed as described above. The DNA with integrated TOTO dye showed 

the same pattern of complexes formation as the standard plasmid. For the “TOTO-excision 

assay” a series of probed was prepared containing TOTO-labelled-pDNA compelxed with 

polymers at certain charge ratios. The complexes of 1µg pDNA in a final volume of 100 µl 

were prepared as described above. Distilled water and 0,15 mM NaCl were taken as solevents. 

TOTO-labelled DNA without polymer was used as positive control. After 20 of incubation 

the complexes were transported into the wells of 96well measuring plate and measured for 

light emission on Walloc-Victor 2 device (1420 multilabel counter, Perkin-Elmer Waltham, 

USA). The light emission was measured for 10 seconds, afterwards the values obtained form 

the control well were extracted. Every probe was taken in duplicate, prepared separately. The 
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experiments were repeated twice. Positive control probes, containing uncompelxed TOTO1-

labelled DNA, were used to establish a 100% value. Every probe was measured in triplicate at 

5 min, 15 min and 30 min time points.According to the positive control value light emission 

intensity of other probes was calculated as the per cent form positive control. The decrease of 

fluorescence was observed corresponding to different polymers, charge ratios and 

compactization conditions.  

 

2.2.4 Analysis of Size and Zeta-potentials of complexes 

The size of complexes of plasmid DNA with polymers was measured with the help of 

photon correlation spectroskopie (PCS). Zeta-potentials of the complexes were measured 

electrophretically. Both types of measurements were carried on a Zetasizer 3000HS 

(Zetasizer, Brookhaven Instrument Corporation) and analysed with ZetaPALS Particle 

Software (Version 3.42). For determination of the particle size 600µl of suspension of 

complexes were pipetted in a plastic cuvette (Greiner, Frickenhausen, Germany) and 

measured 10 minutes by dynamic light scattering. The principle of the measurement was 

based on Brown’s law of particles movements, describing the smallest particles as the fastest. 

The scattered light was detected with the help of photomultiplier. The size of the particles was 

measured as a function of light intensity changing speed. Each variation of complexes was 

measured in triplicate. The compelxes were prepared freshly for every measurement.  

Zeta-potentials of the complexes dissolved in distilled water were measured according 

to their electrophoretical mobility. The complexes in liquid move between positive and 

negative electrodes according to their surface charge. Measuring of electrophretical 

movement speed of particles is used for calculation of the “netto surface charge” (zeta-

potential), which describes the summarized surface charge of a particle. For the measurement 

of zeta-potentials 1,6 ml of complexes solution were placed in a plastic cuvette and a 

palladium electrode was immersed into the liquid. Ten measurements for 30 sec long were 

performed for every probe. The viscosity of the distilled water or PBS solution (pH=7,4) 

comprised 0,0089P (Poise) and 0,14P, respectively. All measurements were performed at 

room temperature. A Henry’s correction factor (Fka), reflecting the ratio between particle 

radius and width of the diffusion layer was set as 1.5. Zeta-potentials were calculated 

according to Debye-Hückel equation. Each variation of complexes was measured in duplicate. 

The complexes were prepared fresh for every measurement.  
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2.2.5 Transfection of the cells in culture using SPLL polymers  

In our experiments we used branched PEI as positive control. This polymer has proved 

it’s efficiency as a vehicle able to provide stable gene expression in vitro with a   relatively 

low toxicity. Transfection with naked plasmid DNA was used as negative control. It is widely 

reported that addition of free plasmid DNA into the cell culture medium results in a certain 

value of transgene expression, which is significantly lower than that provided by effective 

gene delivery agents.  

Twenty four hours prior to transfection the cells cultivated as described above (2.1.4) 

were seeded on cell culture 96 well plates (TPP, Peske) in amount of approximately 15 000 

cells pro well and supplied with standard cell culture medium. The condition of cells in every 

well was controlled visually 1 hour before transfection. Ten minutes before transfection cell 

culture medium was removed and replaced with 150 µl serum free MEM. For transfection 

experiments 5 µg pCMV-Luc plasmid per well were complexed with a polypeptide 

corresponding to desired charge ratio. The experiments were preformed in triplicate. A single 

batch of SPLL/pDNA complexes was produced for every triplicate under sterilel conditions in 

final volume of 100 µl of PBS. Five mg of pDNA, dilutedin 25 µl PBS, were added drop wise 

to a 25µl of a polypeptide solution and mixed gently by pipeting. The solution was incubated 

15 minutes at room temperature for formation of the complexes. The solution of complexes 

was added to the wells and mixed gently by rocking the cell culture plate. The pCMVLuc 

plasmid, compelxed with branched PEI was used as positive control in these experiments. 

Five microgram of DNA were diluted in 25 µl of distilled water and afterwards added drop 

wise to 25µl of brPEI solution in distilled water. The N/P ratio of 10 was used in all cases. 

After 15 minutes of incubation the complexes were added to the cell culture. As negative 

control free plasmid DNA was used. Half a microgram of pDNA was added to the serum-free 

culture medium into the wells and mixed with the culture medium by gentle rocking of the 

plate. After incubation for 4 hours in an incubator with standard conditions the medium was 

removed and replaced with MEM with 10% FCS and antibiotics (penicillin 10U/ml, 

sttreptomycin 10U/ml, gentamycin 50µg/ml). Afterwards the cells were incubated for another 

24 or 48 hours. After incubation the cell medium was removed, cells were rinsed with PBS 

and incubated with a 100 µl of a lysis buffer (250 mM Tris, 0,1% Triton, pH=7,8) pro well 10 

minutes at 37°C. The liquid was resuspended and 50µl were taken for luciferase measurment. 

Aliqutes from every well were placed on a measurment 96well plate and measured in a 

Wallac–Victor2 device (1420 multilabel counter, Perkin-Elmer Waltham, USA). During the 

measurement 50µl of luciferin solution (D-luciferin 100mg, coenzymeA 159,1mg, DTT 3894 
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mg, ATP 221mg, (MgCO3)4Mg(OH)2x5H2O 394mg, MgSo4x7H2O 498mg, Tricine 

2715mg, EDTA 28,2mg, distilled water 757ml) ) was added to every well individually and 

mixed by shaking. Light exitation was measured for 10 seconds once before and once after 

the addition of the luciferin. Ten µl of the cell lysate were used for protein concentration 

assay by Bradford performed in a Wallac-Victor device according to a standatd protocol. An 

aliquote from every well was mixed with 190µl of Bradford solution (Bio-Rad, München, 

Germany). Addtiotionally a correlation curve was established for every measurement using 

duplicates of BSA protein standard (Sigma Aldrich, Schnelldorf, Germany) serial dilutions. 

After data analysis the efficiency of the transfection was expressed as relative light units per 

10 seconds per mg of protein (RLU/10sec/mg prot). Every set of transfections was performed 

in duplicate.  

 

2.2.6 Aerosol and intranasal delivery of PEI/pCMVLuc, PEI/pCpG-free-mcs and 

PEI/pCpG-free-Luc comlexes 

For this series of experiments the following plasmids were used: pCMVLuc, pCpG-

Luc and pCpG-mcs. 

 

2.2.6.1 Aerosol application of brPEI-pCMV-Luc complexes  

Branched polyethileneimine (brPEI) with molecular weight of 25 kDa was purchased 

from Sigma Aldrich (Deisenhofen, Germany). The pH=7,4 was standardised with HCl. The 

complexes for aerosol transfection were produced as previously  described (172). Two 

miligrams of plasmid DNA were diluted in 4 ml distilled water up to final concentration of 

0.5 mg/ml. The N/P ratio of 10 was used for all gene delivery experiments. Branched PEI was 

also diluted in 4 ml of distilled water till the final concentration of 0.66 mg/ml. The prepared 

solutions were mixed carefully by addition of the DNA solution into the PEI solution and 

pipeting. The complexes were incubating for 20 minutes. Afterwards a control measurement 

of complexes size was performed by dynamic light scattering (Zetasizer, Brookhaven 

Instrument corporation, ZetaPals Particle Software Ver. 3.42). The size of complexes 

comprised approximately 150 nm.  
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Time point 

of the 

mesurment 

brPEI-pCMV-

Luc 

aerosol 

brPEI-pCMV-

Luc 

instillation 

brPEI-pCpG-Luc 

aerosol 

brPEI-pCpG-mcs 

aerosol 

1h  n = 5  n = 5 n = 5 n = 5 

24h  n = 5 +1  n = 5 +1 n = 5 +1 n = 5 +1 

72h  n = 5  ----------- n = 5 n = 5 

7 days n = 5 +1 n = 5 +1 n = 5 +1 n = 5 +1 

14 days ----------- ----------- n = 5 n = 5 

Table2. The number of mice used for different time points in this series of experiments. 
A lung functioning parameters of all mice were measured, as well as transgene expression 
efficiency, cellular and histological markers for inflammation were analysed. At 24h and 7 
days time points an additional animal in every group was used for histological analysis of the 
lungs.  

Female BALB-C mice of 10-12 weeks old (Elevage Janvier, Le Genest St. Isle, 

France) were used for aerosol delivery experiments. Groups of mice, comprising 

approximately 20 animals, were placed into an inhalation chamber (9,8 x 13,2 x 21,5 

Plexiglas box). The box was connected to a spacer (a Plexiglas pipe of 30 cm long and 6, 5 

cm in diameter). Within the spacer 150 g of silica gel were deposited and distributed evenly 

on the lower part. The spacer was connected to a nebulizer (PARY BOY Jet Nebulizer, PARI 

GmBH, Germany). Silica gel placed into the spacer provided the drying of the aerosol 

droplets up to approximately 0,4µm in diameter. The solution of complexes was aerosolized 

with the help of synthetic air , containing 5% of CO2 under pressure of 3-6ml/min. That was 

performed to stimulate animals for deeper breath and thus to provide higher gene expression 

Two groups of mice containing 22 or 27 animals were inhaling 8 ml of aqueous aerosol 

containing PEI/pDNA complexes. Afterwards animals were analysed at certain time points 

(Table 2).  Another group of 22 mice inhaled distilled water. These animals were used as 

control group. Animals were analysed 1h, 24hrs, and 72hrs and 7days after aerosol 

administration of PEI-pCMVLuc comlexes, while and additional time point (14 days after 

administration) was introduced in experiments with CpG-free pDNA. No alteration in animal 

condition or behaviour was observed. 

 

2.2.6.2 Intranasal instillation of bePEI/DNA complexes  

For intranasal instillation 50 µg of plasmid DNA pro mouse were delivered. The N/P 

ratio of 10 was used in these experiments. For the formation of complexes plasmid DNA was 

dissolved in 25 µl of distilled water to final concentration of 1 mg/ml and mixed with an equal 
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volume of PEI with the concentration of 2.6 mg/ml. To avoid precipitation of highly 

concentrated DNA the pH of the solution was decreased to pH=6, which provided higher 

concentrations of NR2H2 cations. After mixing the solution was incubated for 20 minutes by 

room temperature. Before the application the size of the complexes was controlled by 

dynamic light scattering as described above and comprised approximately 90nm.  

Before instillation of brPEI/pCMVLuc compelxes (experimental group) or distilled 

water (contorl group) 17 mice were intraperitoneally inejcted with a mixture of Medetomidine 

(11, 5µg/kg), Midazolam (115µg/kg) and Fentanyl (1,15 µg/kg). Fifty µl of liquid (either 

suspension of complexes or water) were applied dropwise on the nostrils of anesthezised 

animals. Breathing frequency as ell as general conditions of animals were controlled visually 

during the procedure. After the whole volume applied mice were injected inraperitoneally 

with an antidote solution, containing Atipamezol (50 µg/kg), Flumazenil (10 µg/kg) and 

Naloxon(24µg/kg). Within 25 minutes all the animals woke up from the narcosis. Animals 

were analysed 1h, 24hrs and 7days after intranasal  administration of PEI-pCMVLuc 

comlexes.    

 

2.2.7 Measurment of lung parameters on mice 

Measurement of pulmonary function of mice was performed in collaboration with   Dr. 

Andreas Flemmer and Dr. Kerstin Hajek.  At certain time points (table 2) mice were 

sacrificed by intraperetoneal injection of 50 mg/kg pentobarbital, weighed and subsequently 

intubated through a trachestomy. Lung functioning was measured with  piston-ventilator 

(SAV-Flexivent, SCIREQ Inc, Montreal, Canada) as previously described (63). Prior to the 

measurements The flexiVent® software allowed continuous monitoring of tidal volumes and 

airway pressure. During tidal ventilation the respirator was set to a volume controlled, 

pressure limited ventilation mode (Vt= 10 µl/g; Pmax=30 cmH2O, PEEP 4 cmH2O) at 2 Hz 

and 100% oxygen. Measurements were taken in 5-minute intervals for 25 minutes at indicated 

times after whole body aerosol application of PEI-pDNA complexes or instillation. We also 

determined lung function parameters of mice at indicated time points after aerosol application 

of distilled water or intranasal instillation of 50 µl PEI-pCMVLuc (50 µg) complexes and 

distilled water, respectively. Additionally, lung function of 5 untreated mice was measured. In 

all animals lung mechanics reached a plateau after 15 to 20 minutes after the initiation of 

mechanical ventilation. Thus, data at 25 minutes were taken for comparison between groups. 

Pressure transducers were calibrated by two point calibration and ventilator tubing and 

cannula were accounted for by open and closed calibration of the system for all perturbations, 
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prior to each experiment. Dynamic mechanics of the respiratory system, compliance (Crs) and 

resistance (Rrs), and lung input impedance were measured following a recruitment manoeuvre 

(two inflations to 15 µL/g over 1 second) to provide a standard volume history. For oscillatory 

measurement ventilation was halted at PEEP-level. At each time point after treatment a group 

of 5 mice was examined. To determine impedance of the respiratory system (Zrs) by forced 

oscillation technique (FOT), a forcing signal, consisting of an 8 second pseudorandom 

oscillatory signal, was applied with an amplitude of 3 ml/kg. The forcing signal contained 

frequencies between 0.5 to 19.6 Hz (110). Data were collected at 256 Hz and analysed within 

4s windows with 66% overlap. Lung impedance data were displayed as resistance (real part, 

Rrs) and reactance (imaginary part, Xrs) of the respiratory system within the frequency 

domain.  

Lung impedance data (Zrs) were partitioned, applying the constant phase model of the 

lung, suggested by Hantos et al. (84). 

In this model Zrs consist of an airway resistance (Raw), airway inertia (Iaw), tissue 

elastance (HL), and tissue damping (GL) according to the equation:  

  

Zrs = Raw + jω Iaw + (GL – jHL) / ωα 

 

with  ω  being the angular frequency and α  the frequency dependence of Zrs (α  = (2/ π) tan–1 

(1/ η)). In this model lung hysteresivity (eta) = GL / HL, is a measure for lung tissue 

composition taking into account both tissue damping and tissue elastance (47,226). 

For each measurement the fitting of the constant phase model is automatically tested. 

Fitting quality is displayed as coherence of determination (COD), Data were rejected when 

COD was below 0.85.  

 

2.2.8 Preparation of Animals after Aerosol and Intranasal Applications  

At certain time points after the application of PEI/DNA complexes or distilled water 

firstly the lung functioning parameters were measured. After the measurements were 

completed the peritoneum was opened. Perfusion was performed, for which the Vena Cava 

was cut and 3-5 ml of Koch’s NaCl solution was injected with an 20-Gauge needle into the 

right ventricle. This procedure was performed to diminish the amount of blood in lung 

capillaries and vessels. Blood component haemoglobin may disturb the luciferase 

measurement (29). Besides, the presence of lung blood cells and monocytes in broncho-

alveolar lavage would disturb the estimation of type and number of lung resident cells. Before 
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perfusion the ribcage was removed carefully to avoid the piercing of the lung by sharp rib 

edges. The trachea was released from surrounding connective tissues. Afterwards the 20-

Gauge catheter (BD Venflon Pro, Beckton Dickinson, Franklin Lakes, NJ USA) was gently 

installed into the trachea approximately 1 cm deep. Afterwards the metallic needle was 

removed and the flexible plastic catheter was fixed on the trachea with the help of 2-0 

polyester surgical thread. Broncheo-alveolar lavage was performed, for which 1 ml of PBS 

was instilled slowly into the trachea with an insulin syringe (BD MicroFinePlus, Beckton 

Dickinson, Franklin Lakes, NJ USA) and after 1 minute slowly removed. This procedure was 

repeated 10-12 times till the final volume of the obtained fluid had reached 10 ml. Afterwards 

the catheter was removed from the trachea. The lung-heart unit was dissected carefully. The 

heart was removed, the trachea and big bronchi were teased carefully form the lung lobes. 

Immediately after preparation lungs were frozen in liquid nitrogen and stored at -80 degrees. 

For further procedures the weight of the whole lung was measured. Afterwards the frozen 

lung was placed in a mortar cooled with liquid nitrogen and homogenized with a cooled 

pestle. An aliquot of approximately 30 mg was taken off further DNA isolation. The rest of 

the homogenized lung was used for measurement of luciferase expression.  

 

2.2.9 Estimation of luciferase expression levels in probes from mice  

For the measurement of the luciferase expression in the lung the homogenate of 

murine lungs was mixed with Lysis buffer and incubated on ice for 15 minutes. The lysis 

buffer was prepared as a ten fold solution and contained 15, 1 g Tris of pH=7,8; 0,5 g Triton 

X-100 and, diluted with distilled water to the final volume of 50 ml. A tablet of Complete 

Protease Inhibitor Mix (Roche Molecular Biochemicals, Basel, Switzerland) was added per 50 

ml of buffer to avoid the degradation of luciferase by cellular enzymes during preparation of 

the probes. After incubation with the lysis buffer the probes were centrifugated at 10.000 g-

force by 4°C for 10 minutes. Two aliquots 100 µl fo the supernatant were taken for the 

duplicate measurement placed in luminometer measurement tubes and placed into a Lumat 

LB9507device (Berthold, Bad Wildbach, Germany). To every probe 100 µl of luciferin 

substrate mix (60 mM DTT, 10 mM Mg2SO4, 10mM ATP, 30µM Luciferin in 25 mM 

Glycyl-Glycin buffer, pH=7,8) was added during the measurement. After the substrate mix 

was added to the probe the photon emission (relative light units, RLU) was measured for 10 

seconds. The background value (photon emission of the probe before addition of the substrate 

mix) was automatically subtracted from the final value. An average mean between two 

measurements was calculated for every probe.  
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2.2.10 Quantification of cell type composition of BALF cells 

The liquid obtained from broncheo-alveolar lavage was centrifugated for 10 minutes at 

1000rpm to spin the cells down. The supernatant was removed and stored at -80°C t for 

further analysis. The cells were resuspended in 600 µl of prewarmed PBS and counted on 

haemocytomoter according to a two-field scheme. An aliquot of 200 µl was taken for DNA 

isolation. Four hundred µl were used for production of cytospin slides. A hundred µl of cell 

suspension were applied on a cytofunnel (ThermoScientific, Helsinki, Finland) and placed 

into a Shandon Cytospin 2 centrifuge for centrifugation (10 min, 1000 rpm). Four slides were 

produced for every mouse. After centrifugation the slides were dried and stored at 4°C.  

For detection of cell type ratio the slides were stained with May-Grünwald (Sigma Aldrich 

Schnelldorf, Germany) and counterstained with ten fold diluted Giemsa stain (Sigma Aldrich 

Schnelldorf, Germany) according to a standard procedure described elsewhere (128). The 

following cell types were taken into consideration: macrophages, lymphocytes and 

neutrophils.  For estimation of cell type ratio 500 recognizable cells were counted and percent 

ratios were calculated individually for every experimental animal. Microscopic observations 

were carried out on a Dialux light microscope (Leica, Solms, Germany) with x40 and x100 

objectives.  

 

2.2.11 Estimation of macrophage activation level 

Cytospin slides prepared as described above were fixed with 3,7% Paraformaldehyde 

in 96% ethanol. After fixation the slides were stained with a benzidine-hydrochloride 

containing stain according to the method of Kaplow (94). Afterward the slides were 

counterstained with Giemsa and dried. After staining dark blue dots, representing the 

myeloperoxidase activity are to be seen on the surface of activated macrophages and allow to 

distinguish them from not activated. Five hundred macrophages in different filed of view 

were counted for every mouse and a percent level of activated macrophages was calculated.  
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2.2.12 Histological examination of the lungs 

At certain time points the mice were sacrificed and dissected as described above. The 

perfusion was performed using 5 ml of Koch’s solution with heparin (25000 I.E per 1000 ml). 

Afterwards the catheter was installed and the lungs were filled with 2 ml of 4% 

paraformaldehyde (PFA) solution. The trachea was tied tightly with the surgical thread and 

the whole unit of trachea, bronchi and lungs was dissected and placed into a tube with 4% 

PFA. The lungs were incubated overnight and then embedded in paraffin. The histological 

sections as well as their staining and analysis were performed by Dr. Charel , Institute for 

Pathology. The sections of 6 nm were fixed on glass slides by snap-freezing technique and 

than a standard haematoxylin-eosin staining was performed as described elsewhere (76). The 

microscopic analysis was performed according to a double blind system. Special attention was 

given to the signs of inflammation or swelling, influx of inflammatory cells, alterations in 

tissue structure and condition. Microscopic analysis was performed on an Axioplan 2 

microskope with 20x and 40x objectives, supplied with Programm AxioVision software 

(Zeiss, Jena, Germany).  

 

2.2.13 Isolation of DNA from the probes of mice  

Approximately 30 mg of lung homogenate obtained as described in above were used 

for DNA isolation wit the help of DNeasy Tissue Kit (Qiagen GmbH, Hilden, Germany). 

With the kit both genomic and plasmid DNA was extracted. The Tessie homogenate was 

mixed with Proteinase K and the digestion buffer and incubated overnight at 55°C. The 

following DNA isolation procedure was carried out according to the manufacturer’s 

instructions. In case of cells of BALF a 200 µl aliquot of cell suspension was mixed with the 

20µl of ten fold digestion buffer and Proteinase K solution. The following extraction was 

performed the same way as for lung tissue. For DNA isolation from the BALF supernatant a 

portion (either 1300µl or 1000 µl) was concentrated on Micropore YM3 Spin Columns 

(Millipore GmbH, Schwalbach, Germany) up to approximately 300 µl. The Proteinase K 

incubation step was omitted. The following isolation was carried out according to 

manufacturer’s instructions. In case of experiments devoted to aerosol application and 

instillation of pCMV.Luc plasmid the samples of isolated DNA were digested for 3h with 

restriction endonuclease XbaI (Fermentas GmbH, St.Leon-Rot, Germany) at 37°C according 

to manufactirer’s recommendations. After digestion the probes were purified from the 



MATERIALS AND METHODS  37 

residual nucleotides with the help of QIAquick Nucleotide Removal Kit (Qiagen GmbH, 

Hilden, Germany) following manufacturer’s instructions.  

 

2.2.14 Quantitative Real-Time PCR 

The quantitative Real-Time PCR analysis was carried out on iCycler IQ Real-Time 

PCR Detection System (Bio-Rad GmbH, München, Germany). The exact calculation of DNA 

molecules between amplification cycles was performed through continuous estimation of 

SYBR Green I emission (asymmetrical cyanine dye [2-[N-(3-dimethylaminopropyl)- 

N-propylamino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-

quinolinium]+°).  

Primers were designed for the luciferse-coding region of the pCMVLuc plasmid. The 

sequenses of the primers were the following: the forward primer 5’-

TCCATCTTCCAGGGATACG-3’ 5’and the reverse primer -

ATCCAGATCCACAACCTTGG-3’, corresponding to the 1872-1891 nucleotides of the 

plasmid.  

The real time polymerase chain reaction (RT-PCR) was carried out in triplicates, for 

which 80ng of extracted DNA were mixed with iQ Sybr Green Supermix (Bio-Rad) in a final 

volume of 50µl. For the creation of a standatd curve certain amounts of plasmid pCMVLuc 

were digested with DNAse 1  as described above (2.2.2). The concentrations of 1ng, 0,1 ng, 

0,001 ng and 0,0001 ng/µl were used, from which 2.5 µl were taken for a real time PCR 

reaction. The PCR condiitons were the following: 95°C for 4min, 40 cycles including 95°C 

for 15 sec and 60°C for 1 min. The melting curve analysis was preformed immediately after 

the amplification. For that the temperature starting from 55°C was increased in 80 10sec-long 

steps for 0.5°C per step. The obtained data were analysed Potical System Software Version 

3.1 (Bio-Rad).  

For the real-time detection of CpG-motif free plasmids a set of primers was used, 

corresponding to a zeomycin-resistance area, which was present on both plasmids. Thus, for 

analysis of CpG-Luc and CpG-mcs plasmids the following primers were synthesised by 

MetaBion (Martinsread, Germany): the forward primer :  

5’-GCCAAGTTGAYYAGTGCTGTC-3’ and the reverse primer 

5’-CCTCAGTCCTGCTCCTCTGCC-3’.  

The real-time PCR was carried out in duplicated and repeated at least  twice. For the 

reaction 2 µl of DNA-contatinig extraction buffer was taken and mixed with Sybr-green 

SuperMix (BioRad) in a final volume of 20 µl. The correlation curve was developed 



MATERIALS AND METHODS  38 

individually for every plasmid. For establishment of the curve certain amounts of the plasmid 

DNA were taken, corresponding to a final concentration of 2ng, 0,2 ng, 0,02 ng, 0,002ng, 

0,0002 ng and 0,00002ng. The experiment was carried out three times in duplicate. The RT  

PCR conditions  were the following: 95°C for 3min,  than 40 cycles including 95°C for 1 min,  

67°C for 20sec and 72°C for 2min.   The melting curve analysis was performed as described 

above.  

 

2.2.15 Statistical methods 

Results are reported as means±standard deviation. The statistical analyses between 

different groups of animals or cell cultures was carried out using Mann-Whitney-U-test. 

Probability (p)≤0.05 was considered significant. 
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3 RESULTS 

 

 A series of branching polypeptides SPLL 

A series of branching polylysines, modified with histidine and arginine at different 

proportions, was analyzed for their gene delivery capacities. This series represented 

modifications of a primary peptide D5 which was investigated by Dr. Vlasov et. al (62, 63). 

Two peptides of the group  (SPKR1:1 and SPKR10:1)  were modified with arginine residues 

in weight-to weight ratio of 1:1 and 10:1, respectively. The arginine residues were introduced 

into the branching polypeptide not only to enhance DNA binding, but also to provide effective 

penetration of the complexes into the cell which is widely reported for arginine-containing 

polymers (23,31). Two another polypeptides – SPKH1:1 and SPKH 10:1 – represent the 

modifications of a basic polycation with histidine in a weight-to-weight proportion of 1:1 and 

10:1, respectively. Histidine is widely used in development of polyaminoacid gene carriers 

because of it’s capacity to become protonated under low pH (12, 19). The function of 

histidine residues within the vehicle was do increase the buffer capacity of the polymer and 

thus to provide an effective endosomal escape of plasmid DNA.  

First of all the ability of a vehicle to bind and to protect plasmid DNA was 

investigated using gel-retardation assays and DNase protection assay. The structure of 

complexes of SPLLs with pCMVLuc plasmid was investigated using TOTO-displacement 

test. Besides, the size and zeta-potentials of the complexes were measured. The gene delivery 

capacities of the series of synthetic polymers were analyzed in a series of experiments in 

vitro, using different cell types and transfection conditions.  

 

3.1 Estimation of DNA-binding capacity of SPLL polypeptides  

For investigation of DNA binding properties of the polypeptides plasmid DNA 

pCMVLuc was complexed by the polymers at different charge ratios. The charge ratios of 

plasmid DNA to polypeptide from 1:0,1 up to 1:2 were used. Distilled water and 0,15 mM 

NaCl (physiological solution) were utilized as solvents. In these experiment naked 

(uncomplexed) DNA was used as negative control.  Free plasmid DNA is presented on a gel 

as a double strand, where the upper band contains open circular DNA and the lower is 

composed of super coiled plasmid.  Typical double strands under the certain  well represented 

the unbound DNA, thus meaning that under chosen conditions nearly all plasmid DNA 

remained uncomplexed. A smear under the well symbolized  DNA degradation or partial  
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Figure 4. Estimation of DNA-binding capacities of branching polypeptides SPLL. The 
following polymers: SPKR10:1 (A), SPKR1:1 (B), SPKH10:1 (C), SPKH 1:1 (D) were mixed 
with plasmid DNA under marked DNA/polypeptide charge ratios.  Naked DNA (Ctrl) was 
used as control. 
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DNA binding. Absence on any DNA traces on a gel, sometimes combined with a pronounced 

light signal within the well corresponded to complete binding of DNA. These charge ratios 

were proven to provide complete binding of the plasmid.  

For all four polypeptides taken into the study similar results were shown for 

compactization in distilled water and in NaCl solution.  

It was shown that the lowest charge ratio needed to bind DNA completely with 

SPKR10:1 polypeptide was 1:0,6 (Fig. 4). Under lower charge ratios DNA was either bound 

only partially (1:0,3) or remained mostly unbound (1:0,1). DNA compactization experiments 

with SPKR1:1 peptide showed, that using charge ratios from 1:0,1 to 1:0,6 a significant part 

of DNA was seen unbound on a gel. From the charge ratio of 1:1 all DNA remained in the 

well of a gel meaning it’s complete binding.  Experiments with SPKH10:1 showed that 

already at the charge ratio of 1:0,6 complete binding of plasmid DNA was observed, while 

complete DNA binding only at the charge ratio 1:1 was observed for  SPKH1:1 polypeptide.  

 

3.2 DNAse protection assays 

DNase protection test was performed to investigate how efficiently the polypeptides 

can protect plasmid DNA from intracellular enzymes. Completely destroyed plasmid was 

present on a gel as a smear. For production of positive control DNA was complexed with 

polypeptides and extracted afterwards without DNAse digestion. These samples are present as 

clear double bands on a gel. Presence of a smear on a gel corresponding to an experimental 

well symbolized complete or partial DNA degradation, meaning that complexes formed at 

these charge ratios could not protect plasmid DNA form enzymatic degradation. Clear 

plasmid DNA double bands representing intact plasmid DNA meant that the corresponding 

DNA: polypeptide charge ratio could provide DNA protection within the complex and resist 

the action of intracellular enzymes. DNase protection assays showed that complexes formed 

under similar charge ratios in distilled water and saline differed significantly in their ability to 

provide DNA protection. Though SPKR 10:1 polypeptide could form stable complexes with 

pDNA with the charge ratio of 1:0,6 and higher, only starting from charge ratio 1:2 the 

complexes made in distilled water could provide DNA protection (Fig. 5). One may see that 

the smear symbolizing the digested plasmid reduces with the increasing DNA/polymer ratio.    

At the same time the complexes formed in saline showed higher protective ability (Fig.6). 

Starting from the charge ratio 1:1 clear pDNA double bands were observed on a gel. A 

polypeptide with a higher arginine ratio (SPKR1:1) could protect plasmid DNA starting from  
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B 

1/0,1    1/0.3  1/0.6   1/1    1/1.5    1/2    C-       C+   

                           

 

C

1/0,1    1/0.3  1/0.6   1/1     1/1.5    1/2     C-       C+   

                          

 

D 

1/0,1   1/0.3    1/0.6   1/1      1/1.5    1/2     C-        C+   

 

Figure 5. DNAse protection assays with SPLL polypeptides. The following polymers: 
SPKR10:1 (A), SPKR1:1 (B), SPKH10:1 (C), SPKH 1:1 (D) were mixed with plasmid DNA 
under marked DNA/polypeptide charge ratios. Distilled water was used as solvent. Digested 
uncomplexed DNA (C-) and naive DNA probe (C+) were used as controls.  
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 1/0,1   1/0.3    1/0.6   1/1    1/1.5    1/2      C-       C+   

                            

B 

 1/0,1   1/0.3    1/0.6    1/1   1/1.5   1/2     C-        C+   

                                        

C

 1/0,1    1/0.3    1/0.6    1/1    1/1.5    1/2     C-       C+   

      

D

 1/0,1    1/0.3     1/0.6   1/1     1/1.5   1/2     C-       C+   

Figure 6. DNAse protection assays with SPLL polypeptides. The following polymers: 
SPKR10:1 (A), SPKR1:1 (B), SPKH10:1 (C), SPKH 1:1 (D) were mixed with plasmid DNA 
under marked DNA/polypeptide charge ratios. NaCl was used as solvent. Digested 
uncomplexed DNA (C-) and naive DNA probe (C+) were used as contorls.used as solvent.  
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the charge ratio 1:1 for the complexes made in water (Fig.5) and  from 1:0,6 for the 

complexes made in NaCl solution (Fig.6). 

The differences between complexes formed in distilled water and those made in 

0,15mM NaCl were even more pronounced in case of polypeptides modified with histidine 

(Fig. 6). For SPKH10:1 polymer it was shown that pDNA was protected starting from the 

charge ratio 1:2 in complexes made in water, while in case of complexes formed in saline 

clear pDNA bands were seen in a gel starting from the charge ratio 1/0,6. For SPKH1:1 

polymer from all complexes formed in dH2O only highest charge ratios (1:1,5 and 1:2) could 

protect plasmid DNA form degradation by DNase 1, while for the complexes formed in NaCl 

already from the charge ratio 1:0,6 pronounced DNA double bands were observed meaning 

DNA was well protected form DNaseI.  

 

3.4 Size measurement of SPLL complexes with DNA   

The size of complexes formed by SPLL polymers with plasmid DNA was measured 

for different charge ratios and binding conditions. The ratios were used form 1:0,1 up to 1:7. 

The measurements were performed in duplicate.  

We have shown that in case of  SPKR10:1 polymer the complexes preformed in saline 

did not differ significantly form those formed in distilled water. The aggregation of plasmid 

DNA with the polymer observed at the charge ratio of 1:1 reached almost 300 nm in size for 

both compactization conditions (Fig. 7). The smallest complexes of approximately 70nm in 

size were observed for 1:2 charge ratio. With the increase of the charge ratio the formation of 

more compact complexes was observed, reaching the size of 250 nm at the charge ratio of 1:7. 

The differences between compactization conditions were insignificant in this case. For 

SPKR1:1 polylysine a vivid increase in the size of complexes was observed when the distilled 

water was substituted with NaCl solution. The complexes at the charge ration 1:2 in water had 

a size of around 95 nm, while those produced in saline comprised approximately 400nm. The 

differences between two solvents decreased with the following charge ratios and were 

completely diminished at 1:4.  
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Figure 7. Sizes of SPLL compexes with DNA formed in distilled water (filled dots) or 
NaCl solution (blank dots). The following polymers: SPKR10:1 (A), SPKR1:1 (B), 
SPKH10:1 (C), SPKH 1:1 (D) were mixed with plasmid DNA under certain  charge ratios and 
incubated 20min before measurments. Experiments were repeated in triplicate. Data are 
presented as average mean with standard deviation.  
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The size of complexes with all other charge ratios both in water and saline differed 

insignificantly from one another and comprised approximately 80nm. In case of histidine-

enriched polymers the observed differences in size of complexes between water and saline 

were much more pronounced. For SPKH10:1 polymer charge ratio had no significant effect 

on the size of complexes formed in distilled water. The size of complexes stabilized at 78nm 

at 1:1 charge ratio and did not alter with the increase of polymer concentration. 

At the same time complexes formed in saline showed greater variation in size and 

tendency for aggregation. 

The complexes observed with SPKH10:1 polymer  for charge ratio 1:1 and 1:2 

comprised 650nm and 1300 nm respectively. High deviations were observed between several 

measurements. Increase of polypeptide concentration lead not only to a slight decrease in size 

of complexes but also to stabilization within the group between separate measurements. At 

charge ratio of 1:7 the size of complexes reached 500nm. Similar tendency was observed for 

SPKH1:1 polymer. While the size of complexes formed in distilled water was stable between 

the charge ratios from 1:1 and 1:7 and comprised approximately 70 nm, the size of complexes 

performed in saline increased dramatically for charge ratios 1:2 – 1:4 and comprised 

approximately 1400 nm with high deviations between measurements. Escalations of polymer 

concentration lead to slight decrease in size of complexes. Differences within the group also 

decreased. At the charge ratio 1:7 the size of complexes comprised 1170nm.  

 

3.5 Zeta-potentials of SPLL complexes with plasmid DNA 

Zeta potentials of the complexes were measured in order to understand better their 

structure and surface charge of the particles depending on the DNA/polypeptide charge ratio. 

The preceding analysis showed the complexes performed in distilled water to be better 

applicable for gene delivery than those performed in saline only the first one were taken for 

these demanding measurements. Only those charge ratios were studied which could provide 

complete DNA binding. The zeta-potential analysis was performed in duplicate for every 

charge ratio. It was shown that the complexes of SPKR10:1 peptide with plasmid DNA under 

all taken charge ratios were strongly positive with a tendency to increase the positive charge 

with the incensement of polypeptide concentration. The surface charge of complexes at 1:1 

charge ratio comprised 18mV, slightly increasing with the next charge  ratio3   from 1:2 to 1:6 

to approximately 20 mV were shown (Fig.8A). For the charge ratio 1:7 a surface charge of 32 

mV was measured.  
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Figure 8. Zeta-potentials of  SPLL compexes with DNA.  The following polymers: 
SPKR10:1 (A), SPKR1:1 (B), SPKH10:1 (C), SPKH 1:1 (D) were mixed with plasmid DNA 
under certain  charge ratios and incubated 20min before measurments. Experiments were 
repeated in duplicate. Data are presented as average mean with standard deviation. 
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In case of a more arginine-enriched polymer SPKR1:1 complexes produced at the 

charge ratio 1:0,1 had a negative charge which comprised -20 mV. Following the increase of 

polypeptide in complexes a tendency for rising was showed for the surface charges. The 

complexes at 1:1 charge ratio were already positive (12 mV) and for the 1:4 charge ratio a 

zeta-potential of approximately 30mV was shown (Fig. 8B). In case of polymers modified 

with histidine similar tendency was observed. The polymer SHKH10:1 bound to pDNA at the 

charge ratio of 1:0,1 showed negative zeta-potential of -40mV, while all higher charge ratios 

used in the test showed relatively similar surface charges. For all other charge ratio tested 

(from 1:2 to 1:7) surface charges of approximately 13mV were observed with insignificant 

differences between different ratios.  Complexes of plasmid DNA with SPKH1:1 polymer 

showed a slightly negative surface charge of -10mV at the 1:1 charge ratio, while the 

complexes wt 1:1 were almost neutral. Further increase in polymer concentration led to 

establishment of strongly positive zeta-potentials, which reached approximately 20mV for 

charge ratios 1:4 and 1:6. For charge ratios 1:5 and 1:7 zeta-potential of around 10mV were 

shown.  

 

3.6 Analysis of the dynamics of complexes formation 

Aiming to analyze the dynamics of complexes formation and to observe the changes in 

complexes density TOTO1-excision assays were performed for each of four polymers. DNA 

labeled with TOTO-1 fluorescent dye was complexed with polymers at different charge ratios 

and residual fluorescence was measured. As for all preceding g experiments, complexes were 

formed in distilled water and in saline. To study the dynamics of DNA binding the charge 

ratios were taken which provided only partial DNA binding as well as those which were 

shown to bind DNA  completely and  to protect it from degradation.  

Remarkably similar schemes of increasing of complexes density were shown for all 

four polymers when complexes were formed in in 0,15mM NaCl. Fluorescence intensity 

measured with SPKR10:1 at 1:0,1 charge ratio was close to 100% showing slight binding of a 

polymer to DNA. At the next charge ratio 1:1 DNA was proved to be bound completely as the 

fluorescent of TOTO-labeled molecules went down to the  level of approximately 40%. All 

following charge ratios tested, namely from 1:2 to 1:7 showed similar levels of residual 

fluorescence. In case of higher arginine-enriched polymer SPKR1:1 complexes at the charge 

ratio of 1:1 were characterized with DNA fluorescence of approximately 80% from control 

(Fig. 9). All higher charge ratios showed significant reduction in TOTO-DNA fluorescence. 

In case of histidine-modified polymers SPKH10:1 and SPKH1:1 no incubation time effect 
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Figure 9. Analysis of complexes formation dynamics using TOTO-quenching tests. 

The following polymers: SPKR10:1 (A), SPKR1:1 (B), SPKH10:1 (C), SPKH 1:1 (D) were 
mixed with TOTO-labelled plasmid DNA under  certain charge ratios. Distilled water was 
used as solvent. Light emission was measured 5 min(blue), 15min (purple) and 30min 
(yellow) after DNA was mixed with the polymer. Experiments wre repeated in triplicate. Data 
are presented as average mean with standard deviation.  
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was observed for any of the charge ratios applied. Both polymers showed high DNA 

fluorescence at the smallest charge ratio of 1/0,1 symbolizing the presence of only immature 

conglomerates of DNA with a polymer in solution. At the charge ratio of 1:1 TOTO-DNA 

fluorescence was eliminated completely and no fluctuations were observed between other 

charge ratios applied.  

Different dynamics was shown for DNA/polypeptide complexes formed in distilled 

water. For the SPKR10:1 polypeptide a graduate decrease in fluorescence was shown with 

charge ratios 1:0,1 1:1 and 1:2, insignificantly changing with time (Fig. 9). Fluctuations 

observed after 5 minutes of incubation were shown to diminish with time, reaching minimal 

standard deviation at 30 min time point. At 1:2 charge ratio DNA fluorescence was reduced 

up to approximately 30%. The following increase of polymer concentration did not influence 

the fluorescence levels significantly. Even at the charge ratio 1:7, which corresponded to 

saturation with the polymer fluorescence remained on the same 30% level. Similar dynamics 

was shown for SPKR1:1 polymer. Charge ratio escalation caused decrease in fluorescence, 

which reduced to approximately 40% of control level in a range from unbound DNA to the 

charge ratio of 1:3. Further increase of the charge ratio did not cause significant alterations in 

fluorescence. Different dynamics of complexes formation was observed for histidine-

containing polymers. In case of SPKH10:1 a decrease in fluorescence was shown reaching the 

lowest level of 30% at the charge ratio 1:2. Further charge ratio increase showed a slight 

effect of an incubation time on the complexes density. Fluorescence level after 5 minutes of 

incubation, which comprised approximately 40% for 1:3, 1:4, 1:5, 1:6 and 1:7 charge ratios, 

showed  a tendency to decrease with time and reached the level of 30% to the 30min time 

point. In case of charge ratio 1:5 an increase of fluorescence was observed with high 

deviation. For SHKP1:1 polymer a rapid decrease in DNA fluorescence was observed 

between charge ratios 1:0,1 and 1:3, followed by an insignificant decrease tendency observed 

for other charge ratios (form 1:4 to 1:7).  

 

3.7 Transfection of A549and 16HBE cells with a series of branching polypeptides 

The most important characteristic feature of the polymers taken into the study was 

their ability to deliver plasmid DNA into the cells in culture thus providing the expression of 

reporter protein. The gene delivery capacities of four branching modified polylysines were 

tested on different cell cultures. Taking into consideration the results obtained with the 

primary branching polymer D5 (62), two incubation tome point were chosen for transfection 

experiments: 24hours and 48 hours. The data obtained from the polymers were compared with 
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the negative control values (naked DNA delivery) as well as with the positive control 

(complexes of pDNA with branched PEI). Based on  our own data about capacities of SPLL  

polypeptides, preceding studies of other polymers of this group (63) and published data (7, 25, 

42) three charge ratios were chosen for gene delivery experiments: 1:3, 1:5 and 1:7.  

Complexes produced at every of the named charge ratios could provide not only 

complete DNA binding but also protection of the plasmid from enzymatic degradation. 

According to the results of performed analysis the complexes formed in distilled water 

appeared to be more favorable candidates for gene delivery experiments (3.1-3.6).  

It was shown that after 24 hours of incubation SPRK1:1 polymer could provide 

significantly higher expression of the luciferase gene at the charge ratio 1:3 that the delivery 

of uncomplexed DNA (Fig. 10). Other two charge ratios did not showed significant difference 

from the negative control. Also for SPKR10:1 polymer charge ratio 1:3 was shown to be the 

most effective, while charge ratios 1:7 was proved to possess significantly lower  efficiency 

and  was comparable to that of naked pDNA.  
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Figure 10. Transfection of A549 (dark) and 16HBE (light) cell lines with a series of 

branching polymers. Polypeptides were mixed with plasmid DNA under certain charge ratios 
(CR) and transferred to the cells. After 24 hours incubation cells were analysed for transgene 
(luciferase) expression. The data are scaled as relative light units (RLU) per mg of protein per 
10 sec. Experiments were performed in triplicate. Data are presented as average mean with 
standard deviation. Significant differences (p<0.05) between values are marked with an 
asterisk.  
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Generally higher transfection efficiency was obtained with histidine-modified polymers. For 

16HBE cells 1:3 charge ratio of DNA with SPKH1:1 was mostly effective, while for A549 

cells comparable results were obtained with 1:3 and 1:5 charge ratios. For SPKH10:1 polymer 

1:3 charge ratio was significantly more effective than 1:5 and 1:7. The highest values of 

luciferase expression were obtained with charge ratio 1:3 for SPKH10:1 polymer and 1:3 and 

1:5 for SPKH1:1 polypeptide. Still the levels of luciferase expression obtained with all four 

SPLL polymers were significantly lower than the efficiency of  brPEI polymer which was 

used as positive control. 

For incubation time of 48 hours a significant increase in transgene expression was 

observed for both arginine-modified polymers. Nevertheless, the tendency of luciferase 

expression to decrease with the increment of charge ratio was observed for both arginine-

modified polypeptides on 16HBE cells. The highest levels of luciferase expression were 

observed for SPKR1:1 with 1:5 charge ratio  and for  SPKR 10:1  with 1:3 and were as high 

as after transfection with branched PEI, used as positive control (Fig.11). For both histidine-

modified polymers and increase in transgene expression was shown was shown for certain  

Figure 11. Transfection of A549 (blue) and 16HBE (purple) cell lines with a series of 
branching polymers. Polypeptides were mixed with plasmid DNA under certain charge ratios 
(CR) and delivered to the cells. After 48 hours incubation cells were analysed for transgene 
(luciferase) expression. Experiments were performed in triplicate. The data are scaled as 
relative light units (RLU) per mg of protein per 10 sec with standard deviation. Results 
statistically undistinguishable from positive control are denoted with an asterisk. 
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charge ratios compared with the 24 hours time point, while the effect of charge ratio on 

transfection efficiency remained the same for SPKH1:1 polypeptide . 

For arginine-modified peptides significant differences between two cell cultures were 

shown. Transfection efficiency obtained woth SPKR1:1 polymer on 16HBE cells was at all 

used charge ratios significantly lower than that on A549 cell line, while with SPKR10:1 

polymer only 1:3 charge ratio showed difference between two cell lines.  

The highest transgene expression values were obtained for SHKR1:1 polymer with 1:5 

and for SHKR10:1 with 1:3  charge ratios. These values were  not only significantly higher 

than  those obtained with histidine-modified polymers but also did not differ prom positive 

control (branched PEI).  

 

 

3.8 Optimization of  pulmonary gene delivery in mice 

3.8.1 Preparation of PEI -pDNA polyplexes 

A certain limitation for application of PEI/pDNA complexes for gene delivery is the 

amount of liquid which can be administered to an animal either by instillation or aerosol 

application. The necessity to use highly concentrated DNA requires special conditions which 

would allow concentrating plasmid DNA in a small volume avoiding precipitation. Stability 

of PEI/pDNA complexes was investigated under different pH levels. We have found that the 

threshold concentration of pDNA was 1 mg/ml while the highest possible pH level was 6. 

Precipitation of pDNA was observed at higher pH or higher DNA concentrations. We have 

shown that DNA concentration  influences the size of complexes.  

 Size (nm) 

[pCMVLuc] mg/ml pH=5 pH=6 pH=7.4 

0.25  90±1 97±2 98±1 

0.5  121±1 127±2 105±1 

0.75  172±1 148±2 161±2 

1.0  197±3 196±2 precipitation 

 

Table 3. Size of pCMVLuc plasmid with branched PEI formed under different pH and DNA 
concentration.   
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Complexes formed at DNA concentration of 0,25mg/ml had a diameter of around 

100nm, while those produced at 0,75 mg/ml and 1,0 mg/ml had a diameter of 150nm and 

200nm respectively (Table 3). The size of complexes was stable at least 50 min in all tested 

variations.  

The particles for aerosol delivery of CpG-free plasmid DNA were made according to 

the same strategy as for aerosol delivery of pCMVLuc/brPEI complexes. The NP ratio was 10 

and complexes were performed in distilled water. Final DNA concentration of 0,5 mg/ml was 

reached by mixing of 4ml brPEI solution with the same volume of DNA distilled water. The 

size of complexes was measured before every application and comprised approximately 

100nm. The differences between CpGLuc- and CpGmcs-plasmids containing complexes were 

insignificant.  

Complexes for intranasal  instillation experiments were performed in final volume of 

100µl of distilled water per animal as described above (2.2.6.2).  The size of complexes was 

controlled prior to application.  

 

3.8.2 Lung function measurements in mice after intranasal instillation and aerosol 

application of PEI-pDNA gene vectors comprising a first generation plasmid pCMVLuc 

Dynamic lung mechanics were measured 1 hrs, 24 hrs, 3 days, and 7 days, both after 

nasal instillation and aerosol application of PEI-pDNA complexes. Mice treated with vehicle 

only, i.e. distilled water, and untreated mice were used as controls.  

Compliance of the respiratory system (Crs/ bodyweight) was significantly decreased 

by 60%, one hour after instillation of PEI-pDNA complexes compared to untreated mice (1.6 

± 0.2 ml/cmH2O/kg BW vs. 2.8 ± 0.4 ml/cmH2O/kg BW, p<0.001) and stayed low for the 

remaining observation period (Fig. 12A). At one hour similar values were observed for mice 

treated with instilled vehicle only. In contrast to instillation, one hour after PEI-pDNA aerosol 

treatment, Crs was reduced only by 25% (p=0.01), recovered to values of untreated controls 

24 hrs after application, but then declined to low values comparable to instillation. As 

observed for PEI-pDNA complexes, aerosol application of distilled water resulted in a 

significant decrease of Crs one hour after application but returned to normal values of 

untreated controls at later time-points. In untreated animals the level of lung compliance 

remain stable  on 2.8 ± 0.4 ml/cmH2O/kg BW.  

Resistance of respiratory system (Rrs) transiently increased after intranasal instillation 

of PEI-pDNA complexes or distilled water but returned to values which were not significantly 

different from untreated controls after seven days (Fig. 12B). Comparable Rrs values were 
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observed for mice treated with nebulized water. Aerosol application of PEI-pDNA did not 

alter Rrs compared to untreated controls. 

Results from lung impedance measurements are outlined in figures 12C-12F. Tissue 

damping (GTiss), reflecting resistive forces of lung tissue, was not significantly different from 

control values after PEI-pDNA aerosol application, whereas after aerosol application of 

distilled water and intranasal instillation of PEI-pDNA complexes or vehicle only, GTiss 

significantly increased  (p<0.005) compared to untreated controls 24 hrs after treatment (Fig 

12C). After 7 days values returned to control after aerosol application of distilled water but 

not after intranasal instillation of PEI-pDNA complexes and distilled water. Tissue elastance 

(HTiss) was significantly affected by all treatments. However, the effect of inhaled PEI-

pDNA was markedly delayed and only reached significance 7 days after treatment (Fig. 12D). 

The hysteresivity (Eta), which is the ratio of GTiss to HTiss, did not show any significant 

changes in treatment groups compared to untreated lungs (Fig 12E). Newtonian resistance 

(Rn), reflecting central airway resistance, was not significantly affected by any treatment (Fig 

12F). A
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Figure 12. Lung function of mice measured at indicated time points after 
nebulization and nasal instillation of PEI-pCMVLuc particle and distilled water. (A) 
Compliance of mice lungs (ΔV/Δp) is given as [ml/cm H2O]. (B) The respiratory system 
resistance is shown [cm H2O*s/ml]. Tissue damping (GTiss, C), elasticity of collateral lung 
(HTiss, D), hysteresivity (Eta, E), and Rn (F) were detected. Results are reported as means ± 
standard deviation (n=5).  
 

 

 

 

3.8.3 Lung function measurements in mice after aerosol application of PEI-pDNA gene 

vectors comprising CpG-free plasmid DNA 

In order to investigate if the decline in lung function after aerosol treatment was a 

result of an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response or 

due to immune reactions against PEI-pCMVLuc compelxes or the luciferase transgene, 

respectively, analogue experiments were performed with a CpG-free luciferase reporter 

plasmid and its backbone. For each of the analyzed lung function parameters, values were not 

significantly different from untreated controls at time-points later than 24 hours (Fig. 13). 

Lung function abnormalities were only observed one hour after application, which may have 

resulted from transient airway epithelial swelling caused by distilled water inhalation (129). 

Thus, presence of CpG motifs in plasmid DNA had a dramatic influence on functioning of 

murine lung.  
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Figure 13. Lung function of mice after nebulization of PEI-pCpG-Luc and PEI-pCpG-
mcs particles and distilled water. At indicated time-points after aerosol application 
pulmonary function of each mouse was measured. Compliance of mice lungs (ΔV/Δp) is 
given as [ml/cm H2O] (A). The respiratory system resistance is shown in figure B [cm 
H2O*s/ml]. Tissue damping (GTiss, C), elasticity of collateral lung (HTiss, D) and 
hysteresivity (Eta, E), and Rn (F) were detected. Results are reported as means ± standard 
deviation (n=5).  
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3.8.4 Histological examination of lung tissue after intranasal instillation and aerosol 

delivery of PEI-pDNA complexes.  

Mice which received PEI-pDNA complexes by intranasal instillation showed a 

moderate inflammatory response which was associated with local immune cell infiltration. 

Twenty-four hours after treatment, restricted central parenchymal foci with strong capillary 

thrombus formation were observed (Fig. 14C-D). Seven days after treatment, newly formed 

foci of haemorrhage including fibrinthrombus were observed (Fig. 14E-F). 

After aerosol delivery of PEI-pDNA complexes to the mice lung, a similar 

inflammatory response was observed which was  less pronounced compared to intranasal 

instillation. Lungs showed subpleural focal haemorrhage associated with congestions and 

small capillary and pre-capillary fibrin thrombus after 24 hrs (Fig. 14G-H). Small subplural 

haemorrhage and congestions were still observed seven days after treatment (Fig 14I-J).  

Mice which received distilled water or PEI-pDNA complexes with CpG-free plasmid 

DNA by aerosol application did not show differences to untreated controls (Fig 14K-L).  
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Figure 14. Histological examination of lung tissue after aerosol application and 
instillation of PEI-pDNA particles and distilled water. Histological examinations were 
performed using haematoxylin-eosin stain. A-B. Lung tissue of control mouse 24 hrs after 
distilled water aerosol treatment (10- and 20-fold magnification). C-D. Lung tissue from 
mouse 24 hrs after PEI-pCMVLuc instillation (10-and 20-fold magnification, respectively). 
E-F. Lung tissue from mouse  7 days after PEI-pCMVLuc instillation (10- and 20-fold 
magnification). G-H. Lung tissue from mouse 24 hrs after PEI-pCMVLuc aerosol treatment 
(10- and 20-fold magnification). I-J. Lung tissue from mouse 7 days after PEI-pCMVLuc 
aerosol treatment (10- and 20-fold magnification). K-L. Lung tissue from mice 24 hrs after 
PEI-pCpG-Luc aerosol treatment (10- and 20-fold magnification). 
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3.9 Pulmonary pharmacokinetics of PEI-pDNA complexes after aerosol application 

and intranasal instillation 

At certain time points lung tissue as well as BALF cells and liquid were analyzed for 

presence of plasmid DNA with the help of real time polymerase chain reaction (RT PCR).  

analysis. The obtained data were used for calculation of such clearance parameters as 

maximal concentration, area under the curve AUC, half-clearance time T ½.  We have found 

similar amounts of plasmid DNA in the lungs 1 hour after administration, which comprised 

257ng and 293ng after aerosol application and instillation respectively (Table 4). After 24 

hours of gene delivery the amount of DNA after aerosol application decreased to 180ng and 

remained on practically the same level up to 72hours, while that after instillation decreased 

dramatically after 24 hours up to approximately 30ng.  

Significant differences (p>0.001) in DNA concentrations between instillation and 

aerosol delivery were found in BAL liquid already 1 hour after application. Whereas 740pg of 

plasmid DNA was present in BALF liquid after instillation, only around 1,3pg were found 

after aerosol delivery. The same tendency was observed for resident cells of lung (BALF 

cells).   

 

Delivery route Compartment AUC# Cmax
§ Clearance$ Ke

* T1/2 

Aerosol Lung tissue 72,997 257,759 2.92 0.0092 75.4 

 BALF cells 0.12 188 1,551 0.015 46.4 

 BALF 12.0 1.3 0.11 0.016 44.2 

Instillation Lung tissue 28,861 293,519 10.17 0.0448 15.4 

 BALF cells 4.55 9,772 2,149 0.0098 70.6 

 BALF 5,212 740        0.14 0.020 34.0 

 

Table 4. Comparison of pulmonary pharmacokinetic parameters for PEI-pCMVLuc after 
aerosol application and intranasal instillation. #AUC for 7-day period was calculated by 
trapezoidal rule and is presented as pg pCMVLuc per mg lung tissue [pg pCMVLuc*h/mg 
lung tissue], pg pCMVLuc per BALF cell [pg pCMVLuc*h/single cell], or pg pCMVLuc per 
ml supernatant [pg pCMVLuc*h/ml supernatant]. §Cmax was measured after 1 hour and is 
presented as pg pCMVLuc per lung tissue, per total BALF cells, or total supernatant (7 ml). 
$CL is presented as mg lung tissue cleared per hour,  BALF cell cleared per hour, or ml 
supernatant cleared per hour and was calculated Cmax(dose)/AUC. *Ke is CL/mg total lung 
tissue, CL/amount of total BALF cells, or CL/7 ml supernatant of BALF [1/h]. T1/2 is ln 2/Ke 
and is presented in hours.  



RESULTS  64 

While almost 10ng of pCMVLuc were found in BALF cells one hour after instillation, 

only 180pg were present in BALF cells after aerosol application at the same time point. The 

amount of plasmid DNA after instillation remained on the level of around 10ng for the next 

24 hours and than decreased drastically to the seven days time point.  

 

3.10 Comparing pDNA clearance after instillation and aerosol delivery of pCMVLuc 

plasmid 

For comparison of DNA clearance patterns samples of 5 animals from each groups 

were tested for plasmid content. RT PCR experiments were repeated at least in triplicates with 

three probes pro set .  

Patterns of plasmid DNA clearance from different lung compartments showed 

significant differences between instillation and aerosol application. Clearance coefficient from 

lung tissue after instillation was  10,17, which is 3,5-fold higher than after aerosol application. 

Significant differences were observed in clearance patterns between all lung compartments.  
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Figure 15. Plasmid DNA clearance from the lungs after nebulization and intranasal 
instillation of PEI-pDNA complexes. PEI-pDNA complexes were either nebulized or instilled 
to the lungs of mice. At indicated time points pDNA was analyzed in mouse lung tissue (A), 
BALF cells (B), and BALF fluid (C) by real time PCR. Results are reported as means ± 
standard deviation (n=5).  
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The resulting half clearance time form the lung tissue calculated for aerosol application and 

instillation comprised 75,4 and 15,4 hours,  respectively (Fig. 15). Thus elimination from the 

lung after instillation was 4,9-fold higher after instillation than after aerosol distribution.  

Seven days after PEI-pDNA aerosol application still 47% of initially deposited pDNA could 

be detected in lung tissue resulting in a pDNA half-life (T1/2) of 75.4 hrs of inhaled pDNA in 

lung tissue In contrast, 90% of pCMVLuc was cleared from murine lung tissue within 24 hrs 

after intranasal instillation.  

Clearance patterns form BALF and BALF cells also differed greatly between two 

delivery methods. Only small amounts of plasmid DNA were found in BALF and BALF cells 

after aerosol application, while maximal concentrations after instillation were 540-fold and 

52-fold higher respectively. Half clearance time form the BALF cells after instillation was 

approximately twice higher than after aerosol, indicating that the pharmacokinetic profile of 

PEI-pDNA complexes in the lungs was dependent on the route of application. 

 

Plasmid DNA  Compartment AUC# Cmax
§ Clearance$ Ke

* T1/2 

pCpG-free-Luc Lung tissue 3824,9 13499 3,53 0,01587752 43,7 

 BALF cells 11,8 124206 10482,05 0,03253273 21,3 

 BALF 133294,5 113423 0,85 0,0850917 8,1 

pCpG-free-mcs  Lung tissue 8285,8 66101 7,98 0,03513819 19,7 

 BALF cells 28,2 168959 5983,81 0,01332697 52,0 

 BALF 70744,0 60646 0,86 0,08572587 8,1 
 

Table 5. Comparison of pulmonary pharmacokinetic parameters after aerosol application of 
pCpG-free-Luc and pCpG-free-backbone plasmids. #AUC for 7-day period was calculated by 
trapezoidal rule and is presented as pg pCMVLuc per mg lung tissue [pg pCMVLuc*h/mg 
lung tissue], pg pCMVLuc per BALF cell [pg pCMVLuc*h/single cell], or pg pCMVLuc per 
ml supernatant [pg pCMVLuc*h/ml supernatant]. §Cmax was measured after 1 hour and is 
presented as pg pCMVLuc per lung tissue, per total BALF cells, or total supernatant (7 ml). 
$CL is presented as mg lung tissue cleared per hour,  BALF cell cleared per hour, or ml 
supernatant cleared per hour and was calculated Cmax(dose)/AUC. *Ke is CL/mg total lung 
tissue, CL/amount of total BALF cells, or CL/7 ml supernatant of BALF [1/h]. T1/2 is ln 2/Ke 
and is presented in hours.  
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3.11 Pulmonary pharmacokinetics of PEI-pDNA complexes after aerosol application 

of CpG-free-plasmid containing complexes 

In a series of experiments devoted to aerosol delivery of CpG-free plasmids,  analysis 

of plasmid DNA concentrations was performed and the clearance coefficients were 

calculated.  

One hour after aerosol application of pCpG-Luc- and pCpG-mcs–containing 

complexes 13ng and 66ng of plasmid DNA, respectively, were found per whole lung tissue. 

Twenty four hours after transfection the amount of pCpG-Luc had slightly decreased to 

proximately 11ng and after a week only residual amount of 1,5ng were found in the lung 

tissue (Fig. 16). Much more rapid clearance was observed for pCpG-mcs plasmid: after 

24hours the amount of pDNA decreased 3-fold and reached the level of approximately 3,5 ng 

per lung already after 72 hours of incubation. In resident BAL cells relatively similar amounts 

of DNA were found: 125ng of pCpG-Luc and 168ng for pCpG-mcs. Clearance of pDNA from 

BALF cells and BALF liquid also showed great similarity between two plasmids. Around 

30ng of pCpG-Luc were found 24 hours after administration and only residual amount of 

3,7ng per all cells of BALF was observed after 72 hours. Almost 100ng of pCpG-mcs were 

found in resident lung cells after 24 hours of incubation, which decreased to 35ng after 

72hours. In BALF liquid 113ng and 60ng of plasmid DNA were found for pCpG-Luc and 

pCpG-mcs respectively after 1 hour of incubation. A dramatic decrease in DNA concentration 

was observed in both cases in the next 24 hours and comprised 180-fold for pCpG-Luc and 

273.fold for pCpG-mcs. Plasmid DNA concentrations after 7 days if incubation did not differ 

form the levels of negative control.  
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Figure 16.  Plasmid DNA clearance from the lungs after aerosol administration of PEI 
complexes with pCpG-free-Luc and pCpG-free-mcs plasmids.  
At indicated time points pDNA was analyzed in mouse lung tissue (A), BALF cells (B), and 
BALF fluid (C) by real time PCR.  
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3.12 Comparing pDNA clearance of pCpG-Luc and pCpG-mcs plasmids after aerosol 

delivery of complexes 

Pharmacokinetics coefficients calculated for pCpG-Luc and pCpG-mcs plasmids in 

the lung tissue showed significant differences in clearance patterns between too plasmids. The 

clearance coefficients for pCpG-Luc and pCpG-mcs plasmids comprised 43,7 and 19,7 

respectively, resulting in approximately two fold difference in clearance half time (Table 5). 

Approximately 50% of pCpG-mcs were cleared from the lung tissue within 24 hours after 

application, while only slight decrease in pCpG-Luc concentration in lung tissue was 

observed for this time point.  Even more pronounced differences in clearance patter were 

observed for BALF cells. Though maximal concentrations of plasmid DNA observed 1 hour 

after application were relatively close, for CpG-mcs two-fold higher clearance was observed 

than for pCpG-Luc. The calculated half clearance times for pCpG-Luc and pCpG-mcs 

comprised 21,3 and 52 respectively. For the pDNA clearance from BALF liquid no significant 

differences were observed between two plasmids.  

 

3.13 Analysis of the number of BALF cells and activated AMs after aerosol and 

intranasal PEI-pCMVLuc application 

Analysis of cellular composition of BALF as well as estimation of activated 

macrophages ratio were performed on every time point (3.8 – 3.12).  

The analysis of cell types ratio showed that macrophages represented the   major cell 

population and comprised around 90% of the resident cells. The majority of the rest cell 

population consisted of lymphocytes, neutrophiles represented ~0.3 % of BALF cells. The 

total numbers of BALF cells after aerosol application of PEI-pDNA particles was not 

significantly different from untreated controls. After intranasal instillation a significant 4-fold 

increase in cell number was observed compared to untreated controls (Fig. 17). Treatment of 

mice with vehicle only, i.e. distilled water, resulted in a significant increase in number of 

BALF cells after intranasal application. Whereas distilled water instillation resulted in an 

immediate 4-fold increase of BALF cells number compared with untreated controls which 

decreased to 3-fold after 24 hours and remained constant until day 7, aerosol application of 

distilled water did not lead to any significant changes one hour after treatment. Similar results 

were found for the numbers of AMs in BALF. 
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Figure 17. Number of BALF cells after nebulization and intranasal instillation of PEI-
pDNA complexes. Total numbers of BALF cells (A) and alveolar macrophages (B) were 
counted at indicated time points. The number of activated alveolar macrophages was 
examined by benzidine staining (C). Results are reported as means±standard deviation of the 
mean (n=5). Statistically significant differences from cell numbers of untreated control mice 
to bars of treated mice are denoted with an asterisk. 
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To estimate AM activation, we performed benzidine-staining for myeloperoxidase 

activity according to method of Kaplow. Number of activated MACs increased 6-fold 

compared to untreated control 24 hours after aerosol application of PEI-DNA complexes and 

reached normal level to the seven days time point. After intranasal instillation of PEI/DNA 

complexes number of activated MACs increased 15-fold already 24 hours after administration 

and did not decrease significantly through the whole observation period. Aerosol application 

of distilled water did not alter the number of activated MACs, while intranasal delivery of 100 

µl of dh2O induced 3-fold increase in number of activated MACs.  

 

3.14 Analysis of BALF cells number and macrophage activation level after aerosol 

application of CpG-free plasmids 

After aerosol application of PEI complexes with pCpG-Luc and pCpG-mcs plasmids 

estimation of cell number in BALF as well as alveolar macrophage activation analysis was 

performed (Table 6).  

 We have observed slight decrease in number of alveolar macrophages directly after 

aerosol application of PEI complexes with both plasmids, which restored to normal values 

within 72 hours.  A significant increase in number of activated macrophages was observed 72 

hours after PEI-pCPG- free-Luc complexes application, which returned to the normal values 

on 7 days time point. Also nebulization of PEI-pCpG-free-backbone complexes caused 

escalation in number of activated phagocytes 72 hours after administration (p<0.005). 

Nevertheless, the levels of macrophage activation observed on 7days time point did not differ 

from control level (p<0.005). 
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) Total 
number of 

cells 
AMs Lymphocytes Neutrophils Activated 

MACs 

Blank 
control  - 

526,250± 
198,893 

519,303± 
2,423 

6,104± 
2,512 

830± 
470 

4,847± 
1,412 

1 
176,500± 

23,658 
171,911± 

2,058 
4,024± 
1,844 

550± 
473 

3,574± 
938 

24 
314,250± 

72,783 
304,696± 

3,594 
10,918± 

8,854 
975± 
562 

4,818± 
1,308 

72 
510,750± 
143,977 

493,767± 
19,396 

14,301± 
17,834 

1,782± 
2,265 

10,087± 
1,972 

168 
 

246,500± 
65,110 

240,781± 
1,285 

5,225± 
1,332 

481± 
348 

2,958± 
1,207 

PEI-pCPG- 
free-Luc 

                        
aerosol 

336 
363,300± 
161,278 

356,756± 
18,930 

5,082± 
1,358 

998± 
649 

3,775± 
1,192 

1 
200,000± 

74,582 
194,720± 

1,110 
4,240± 
1,252 

1,012± 
536 

3,000± 
1,243 

24 
505,500± 

47,480 
492,357± 

9,293 
10,918± 

8,854 
2,166± 
1,318 

10,514± 
4,081 

72 
559,750± 
322,479 

549,674± 
3,450 

8,508± 
3,504 

1,539± 
1,276 

13,769± 
6,986 

168 
 

246,500± 
65,110 

536,716± 
3151 

8,752± 
2,046 

1,502± 
1,247 

7,220± 
1,467 

PEI-pCPG- 
free-mcs 
backbone  

aerosol 

336 
432,750± 
180,983 

424,095± 
2,448 

7,789± 
2,870 

848± 
865 

5,366± 
1,664 

 

 

Table 6. Numbers of different cell types in complete BALF after aerosol  application of 
CpG-motif-free plasmids. On the certain time points mice were sacrificed and broncheo 
alveolar lavage was performed. Cell types and numbers were estimated using 
myelopwroxidase and May-Grünwald staining.  
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3.15 Time-course of luciferase gene expression after nebulization and intranasal 

instillation of PEI-pCVMLuc particles  

One hour after application very low levels of luciferase gene expression were observed 

in the lungs after aerosol but not after intranasal delivery. Whereas highest luciferase 

expression levels after aerosol delivery were found after 72 hrs, which remained at 

comparable levels until day seven, highest transgene expression after intranasal instillation as 

observed after 24 hrs (Fig. 18). After intranasal delivery the expression values were highly 

variable. One hour after administration no transgene expression was observed.  Whereas two 

out of five treated mice expressed luciferase at high levels, three mice did not express any 

luciferase at 7days time point..We could not detect any gene expression in BALF cells either 

(data not shown). 
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Figure 18. Time-course of luciferase gene expression after aerosol delivery and 
intranasal instillation of PEI-pDNA complexes. PEI-pDNA complexes were either 
nebulized (A) or instilled (B) to the lungs of mice. At indicated time points luciferase gene 
expression was examined in the lung tissue.  Results are reported as absolute values (dots) 
with an average mean of the group (lines)(n=5).  
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3.16 Time-course of luciferase gene expression after aerosol application of PEI/pCpG-

free-Luc complexes 

The expression of luciferase reporter gene observed after transfection with CpG-motif 

free plasmid was significantly higher than that after delivery of standard plasmid DNA (Fig. 

19). Already one hour after administration the level of luciferase reached approximately 8 pg 

luciferase  per mg tissue, while 24 hours after nebulization around 10 pg  were observed. 

However, on the third day of incubation the luciferase expression declined significantly. 

Further decrease was observed on 7days time points, where only 0,1-1 pg luciferase per mg 

tissue  were registered.  On 14 days time point the transgene expression level did not differ 

significantly form untreated control.  No transgene expression was found in resident lung 

cells.   
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Figure 19. Time-course of luciferase gene expression after aerosol delivery of PEI 
complexes with pCpG-free-Luc plasmid.  
PEI-pDNA complexes were either nebulized to the lungs of mice. At indicated luciferase gene 
expression was examined in the lung tissue. Every dot represents a single animal, a bold line 
represents the average mean.  
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4 DISCUSSION 

 

4.1 A series of modified branching polylysines  

Development of cationic polymers capable of DNA binding, protection and delivery 

into the living cell comprises nowadays one of the major trends in establishment of novel 

synthetic gene delivery systems. An ideal vehicle is supposed to: i) bind DNA molecules 

larger than 1kB, ii)  transfect both proliferating and non-proliferating cells, iii) to provide 

tissue– or organ-specific gene delivery, iv) high transfection efficiency in vivo, and v) possess 

low toxicity and immunogenicity (56).  

Compared to other gene delivery systems, for example viral, synthetic polymers 

possess several significant advantages. They can be modified easily and thus represent a class 

of flexible systems which can be adjusted for particular needs. Besides, with synthetic 

polymers the size of genetic construction is not restricted as it is in case of many viral vectors 

(152).  

Ability of many natural proteins and peptides such as histones, nucleosome proteins, 

etc. to form particles with DNA molecules induced the investigation of their possible gene 

delivery capacities (200). In 1987 targeted delivery of plasmid DNA with polylysine and 

oligolisine was reported for the first time by Wu and Wu (218). Since than plenty of polymers 

have been used for gene delivery, like poly-L-lysine, poly-arginine, spermidin, spermin, 

polyamidamine dendrimers, protamin, polyethilenimine, poly-αγ-butanic acid and many 

others (117, 192). Depending on structure and aminoacid composition they are capable not 

only of binding DNA, but also of it’s protection, and can enhance lysosome disruption thus 

providing DNA release form lysosomes, as well as to deliver DNA to the nucleus (38). At the 

same time, chemical composition, charge and length of a peptide may become the reason for 

cytotoxicity, immunogenicity of DNA/peptide complexes, as well as may cause the 

insolubility of peptide in water (47, 226). The structure may define not only  the transfection 

efficiency of a peptide but also type of modifications it can bear (85). Nowadays many 

different modifications are applied which enhance gene transfer ability of the polypeptides (5, 

158, 210). Although cationic peptide-based gene delivery vehicles can influence the 

permeability of cellular membrane, cell cycle, cause local toxicity and activate certain 

phospholipases (137), their main advantages – biodegradability and efficiency - make them to 

one of the most promising classes among gene delivery systems.  
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4.2 Development of SP-LL dendrimers series 

A wide variety of linear (1, 65) and branching (93, 183) polypeptides, based on three 

basic aminoacids –lysine, histidine and arginine - have been developed and tested to date for 

their gene delivery capabilities. Polylysines are widely used in pharmacy to deliver 

therapeutic molecules (126). Epsilon-amino-group of lysine becomes positively charged at 

physiological pH, thus enabling the molecule to bind not only to polyanions like DNA, but 

also to ligands for cell surface receptors (121, 197). Many published data (146, 147, 155, 156) 

as well as our own previous results (83, 206) showed that a branching polylysine with five 

branching orders can provide efficient gene transfer. It was also shown, that the main problem 

of this vehicle was poor escape of complexes from endosomes and agglomeration of 

complexes. Basing on these data, a series of novel carriers was synthesized, where a 

branching polylysine with five branching orders was modified with histidine and arginine 

residues.   

All four polymers were synthesized using “one-step” synthesis method developed by 

Dr. Vlasov (83, 206), providing equal distribution of hisitdine or arginine residues along the 

branching polylysine core, which was supposed to reveal fully the capacities of these 

aminoacids. 

 Introduction of arginine residues into the polylysine core aimed to increase the 

binding capacity of the polymer and to enhance its penetration into the cell; while 

modification of branching polylysine core with histidin residues was performed to enable the 

polymer to develop the “proton sponge” effect (147, 214, 220), thus providing escape of 

plasmid DNA form the endosomes (9, 147).  

 

4.3 Analysis of DNA-binding capacity  

A common method of gel retardation (26, 96, 127, 155) was utilized to estimate the 

ability of polymers to form complexes with plasmid DNA. We have observed significant 

differences  in DNA- binding capacities between polypeptides of this group.  At the same 

time, no influence of compactization conditions was observed in our experiments.  

Both arginine-containing polymers showed high DNA-binding capacity which may be 

ascribed to positive charges of lysine and agrinine. The guanidine groups of arginine are 

strongly basic and thus positive in wide range of pH conditions. The pH levels of the solvents 

in our experiments comprised 7,0 for distilled water and 7,4 for physiological solution. As far 

as both alfa- and epsilon -amino groups of lysine and guanidine groups of arginine were 
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cationic (positively charged) under these conditions, we can assume that both aminoacids took 

part in DNA binding. That could explain the similarity observed between two applied pH 

values. Many factors can influence the efficiency of DNA binding by a polymer. It was shown 

that addition of tryptophan as well as of hydrophobic groups improves DNA binding, and in 

case of alpha-helix peptides the structure of the molecule is the main factor provodeing the 

possibility for effective binding (37). The differences observed between two polymers may be 

explained by their different dynamics of binding to DNA, depending on their chemical 

composition. The mechanism of polymer interactions with DNA depends greatly on the 

polymer structure. Indeed, the ratio of arginine residues within a polylysine core is reported to 

influence the DNA-binding behavior of the polymer (67, 133). On the electrophoresis image 

(Fig 4) one may see conglomerates of complexes forming at 1/0,6 charge ratio, while part of 

DNA remains uncompelxed. An excess of polypeptide molecules may have lead to formation 

of huge spongy conglomerates at this charge ratio, which are reported for many branching 

polypeptides as a stage preceding the formation of compact particles (127, 156).  

 In case of histidin-enriched polypeptides no differences in DNA-binding capacities 

were observed within the group. Presence of histidin residues within the polypeptide core is 

widely reported to have a dramatic influence on polymer’s capacity to form complexes with 

DNA (79, 155). Yet, nearly all these observation were made at low pH (around 5), when 

histidin becomes protonated exhibiting negative charges and undergoes dramatic 

conformational change (194). Histidin-rich polylysine has two kinds of cationic groups on it’s 

surface, namely, alfa-amino group of the lysine and the imidasole nitrogen of histidin, whose 

original pKa values comprise 9.33 and 6.04 respectively (35). This explains why at acidic pH 

polyhistidines possess either very low (147) or no (220) DNA- binding capacity, while at pH 

7,4 histidin residues within a lysine-histidin polymer are mostly neutral and DNA is bound 

predominantly by positive charges of lysine. Consequently, under conditions we used for both 

polymers DNA was bound by lysine residues, which for both polymers were similar in 

number according to the similar charge ratio. The fact that complete binding of DNA was 

observed at a similar charge ratio for both polymers means that in both cases the structure of 

molecules provided the effective interactions of negatively charged DNA with positive 

charges of lysine, which were not significantly influenced by presence of varying amounts of 

histidin. Indeed, even low amounts of lysine within a polycation were noticed to provide 

effective compactization of plasmid DNA (79). The differences in structure of the complexes 

formed with these two polymers were revealed with the following tests.  
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DNA-binding capacity was proved for all four vehicles and no significant influence of 

solvent was observed on this stage. Presence of Na+ and Cl- ions in solvent is reported to 

influence the structure of complexes formed by polypeptides with DNA and thus has a 

dramatic impact on their transfection efficiency. In our following experiments we observed 

significant influence of the solvent on complexes size, structure and dynamics of their 

formation.  

 

4.4 DNA-protecting capacities of the dendrimers  

DNAse protection assay is a common method to estimate the ability of a polymer to 

protect plasmid DNA form enzymatic degradation. In particular, this method tests the 

structure of a complex formed under certain condition as it’s permeability for DNA-disrupting 

agents. In the present study,  have shown that complexes, formed at the same charge ratio but 

in different solvents exhibit different protective capacities.  

Many authors report that presence of NaCl in solvent influences the dynamics of 

particles formation and thus the size and structure of DNA/polymer complexes (9, 166). 

Polymers composed of lysine and histidines were shown to form conglomerates in saline (13). 

It is widely reported that during complexes formation the dynamics of polymer attachment to 

the DNA defines both density and structure of the complex, thus making plasmid DNA more 

or less accessible for enzymatic degradation (79, 93, 127). Indeed, for SPKR 10:1 we have 

shown that presence of NaCl decreased the amount of digested DNA in case of  smaller 

charge ratios, meaning improvement of protective capacities of the polymer.  Similar 

dynamics was observed for the polymer with higher arginine ratio SPKR1:1. The described 

tendency was even more pronounced in case of histidine-enriched polymers. Many authors 

utilized stable (26, 147) or dynamic (119) NaCl concentrations in solvent to obtain compact 

and small complexes with histidin-rich polymers. It is widely reported that polyhistidines may 

change their interactions with DNA dramatically in physiological solution compared to 

distilled water (9, 156, 184). In our case, both histidine-enriched polymers exhibited a 

significant shift in DNA-protecting capacities towards smaller charge ratios in NaCl solution 

compared to distilled water. Further analysis of complexes formation dynamics revealed the 

reasons of these changes in polymers behavior.  

 

4.5 Fluorescence assay  

Different fluorescence assays are widely used to observe the dynamics of complexes 

formation. These methods are based on intercalating dyes like ethidium bromide (147), 
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propidium iodide (156), while we have utilized TOTO-1, another representative of the group 

of cyanine dyes. Gradual replacement of the intercalating dye with molecules of DNA-

condensing polymer reflects the speed and the dynamics of complexes formation.  

For both arginine-rich and histidine-rich polymers remarkably similar dynamics of 

complexes density incensement was observed. At small charge ratios used in distilled water, 

which were previously proved not to be able to provide complete DNA binding, no 

differences were found between measurements on three different time points. These results 

indicate that at small charge ratios polymer binds roomily to DNA without further 

compactization. These observations correspond to the major theory of complexes formation, 

which describes polymers to attach freely to DNA without interfering with one another during 

the first stage of DNA compactization (12, 13, 198). For our series of polymers only slight 

time-dependent shift in fluorescence efficiency was observed at small charge ratios for 

complexes formed in NaCl solution. Indeed, polylysins binding to DNA were proved to form 

toroids into which additional polycations incorporate during the second compactization phase 

(194). To these structures formed by histidin-enriched polylysines small size was 

demonstrated along with strongly positive charge (155, 166). With further increase of the 

charge ratio DNA fluorescence declined dramatically up to approximately 30% of initial 

intensity. It corresponds to the data of Yamagate et al., who showed a reduction of initial 

fluorescence up to 40% for histidin-enriched polylysine already at the charge ratio of 1:2, 

which remained on that level up to charge ratio 1:16 (220). For those charge ratios which 

were shown to provide complete DNA binding, time-dependent decrease in DNA 

fluorescence was observed. These changes may correspond to redistribution of polymer 

molecules within the preformed conglomerates. Such behavior was demonstrated for many 

other polymers (96, 156). This process may lead to formation of more compact particles and 

represents  the second phase of DNA/polypeptide complexes formation (175, 184). No time 

dynamics was observed for complexes formed in NaCl solvent, where DNA fluorescence was 

completely quenched at 1/1 charge ratio within the first 5 minutes of incubation. These 

observations correspond well to the published data where rapid formation of big 

conglomerates of DNA and polypeptide in NaCl solution was reported (9, 155). For histidin-

rich polymers the reduction of initial fluorescence up to 20%, at acidic pH and to around 60% 

at pH 7, 4 (147, 155) was demonstrated by several authors, which corresponds fully to our 

results.  
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4.6 Measurement of Size and Zeta-potential of the complexes  

Aiming to select the vehicles mostly suitable for gene delivery, we have measured 

surface charges and size of the complexes formed by different polymers with plasmid DNA 

under certain charge ratios and compactisation conditions.  

Heterogeneity of DNA complexes with polylysines is supposed to be one of the main 

reasons for their relatively low transfection efficiency. The efficiency of gene delivery 

depends greatly on the size of DNA/polymer particles. Several methods have been described 

to date to control the size of polymer/DNA complexes and thus to improve transfection 

efficiency (141, 142). Successful gene delivery with complexes of more than 300 nm in 

diameter was shown presumably for in vitro transfection on cell cultures, where precipitating 

conglomerates may be effectively taken up by the cells (131, 146, 179). It is assumed that the 

size of approximately 100nm is mostly favorable for gene transfer involving unspecific and 

receptor-mediated endocytosis (178). Such complexes are able not only to withstand better 

intravenous administration (96), but also to provide efficient targeted gene delivery when 

bound to certain ligands (79). It was shown that DNA condensation with polylysines may lead 

to a significant reduction of a plasmid of several thousands base pairs in a toroid or rod of 

around 100nm in diameter (13). Branching polymers tend to form bigger complexes with 

plasmid DNA than linear polypeptides (192, 220). The size and structure of particles formed 

by branching polypeptides with plasmid DNA are known to depend on molecular mass, 

number of branching orders and chemical composition of the polymer, as well as on 

compactization conditions (12, 13, 127, 175).  

We have also observed a significant influence of polymer structure and DNA-binding 

conditions on the size and surface charge of the complexes. We have shown that arginine-rich 

polymers form relatively small particles the size of which was more influenced by charge 

ratio than by presence of NaCl in solvent. Under low charge ratios both polymers formed 

conglomerates with DNA which more varied in size when formed in saline and did not exceed 

300nm. Basing on the results of fluorescence and DNAse protection assays, we can assume 

that these spongy structures represent the initial binding of the polymer to DNA molecules 

and may be characterized as relatively incoherent structures. Further increase in polymer 

concentration lead to formation of smaller and denser complexes, which were proved by our 

previous measurements to provide complete DNA binding and protection from DNAse. These 

results correspond to published data, which report the incensement of polymer local 

concentration to enhance formation of small and compact complexes with DNA (93, 127, 

149).  
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For histidin-rich peptides significant influence of NaCl on the size of complexes was 

shown. Both polypeptides tended to form huge aggregates when compactization was 

performed in saline, while complexes performed in distilled water were characterized by 

relatively small sizes favorable for gene transfer. Our data correspond to the results of Pichon 

et al., who had observed histidin-rich polylysines forming strongly positive rods with DNA of 

approximately 130nm length (12). It was shown for histidin-containing polylysines, as well as 

for polyhistidines that presence of NaCl in solvent leads to aggregation of the complexes and 

thus to strong decrease in transfection efficiency (9, 93). Our measurements clearly showed 

that complexes of the hisitidin-rich polypeptides with DNA for gene delivery should be 

formed in distilled water.  

 

Since the results of our previous measurements showed that complexes formed in 

distilled water should have been be more favorable for gene transfer, only these were taken 

for such a demanding analysis as zeta-potential measurement. We have shown that at charge 

ratios providing complete DNA binding all polymers formed positively charged complexes, 

with zeta-potential values varying between different charge ratios. The lowest positive 

charges were observed for SPKH10:1 polymer. These results correspond to the data of Okuda 

et al., where polylysines with low hystidine number were shown to be slightly positive at 

neutral pH (147). The unique capacity of histidine to become protonated under acidic pH 

allows at the same time to obtain positively charged complexes with this polymer, which 

show high transfection efficiency (57, 178). 

Interestingly, branching polylysines usually form more positive complexes with DNA 

than linear polylysines of similar molecular mass (220). According to numerous published 

data positively charged complexes have better chances to enter the cells because of the 

absence of charge repulsion with negatively charged surface membrane. Thus we have shown 

that complexes formed under conditions described above may enter the cell successfully. 

 

4.7 Transfection efficiency of modified branching polylysines 

Branching peptide-based polymers are widely reported for their ability to  deliver 

plasmids efficiently into the cell (143), providing transport of DNA into the nucleus (141, 

142) and expression of the transgene (146-147). Nevertheless, relatively low gene transfer 

efficiency, accompanied by certain toxicity and unclear delivery mechanisms comprise the 

bottlenecks for synthetic polypeptide-based gene vehicles (179). 
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We have tested a series of branching polylysines bearing different modifications for 

their gene transfer efficiency. Taking into consideration the results of preceding analysis we 

thoroughly selected the complexes which were used for gene transfer experiments. We used 

those charge ratios and compactization conditions which could provide complete DNA 

binding and protection, and formed small compact complexes.  

We have shown that already after 24 hours of incubation certain charge ratios were 

able to provide significant levels of luciferase expression, which are higher than those after 

transfection with naked plasmid DNA. After two days of incubation, which is close to a 

doubling time of A549 and 16HBE cells in culture (93) , increase in transgene expression 

intensity was observed for several charge ratios. Based on this observation, we may suggest  

that in these cases plasmid DNA was entering the nucleus during cell division when nuclear 

membrane disappears. That means that the polymers could not provide an effective 

translocation of plasmid DNA into the nucleus. Transport of plasmid DNA into the nucleus is 

considered to be one of the most significant challenges of gene delivery, along with the 

targeted delivery and escape from the endosomes (17, 65). Therefore, an increase of transgene 

expression after 48 hours might have been mostly due to that the plasmids already delivered 

into the cells could finally contact the transcriptional apparatus. Our additional experiments 

devoted to  transfection of two other cell lines, HeLa and HepG2, with the same complexes 

showed significantly lower gene transfer efficiency, which may be partly explained by 

characteristic features of these cells. Apart form metabolic characters, with which the 

differences in gene transfer efficiency between cell cultures are usually explained (184), the 

cells of these two cultures have higher doubling time than A549 and 16HBE cells, meaning 

that within 48 hours plasmid DNA had lower chances to be transcribed.  

A tend to decline in transfection efficiency with the increase of the charge ratios was 

observed for all four polymers either on one or both cells cultures after 24 and 48 hours of 

incubation. Our measurements performed for the complexes with different charge ratios 

showed that within three of those chosen for gene delivery experiments DNA/polypeptide 

particles possessed relatively similar surface charge and size. With respect to these data we 

can assume, that formation of complexes with the excess of polypeptide leads to aggregation 

of molecules to very dense and compact structures, which prevent DNA from being released 

within the cell and thus make transfection inefficient. Indeed, release of plasmid DNA from 

the vehicle is considered to be one of the critical steps for successful gene transfer. Our earlier 

data also showed that polylysine-based dendrimers require certain modifications (e.g., with 

fatty acids residues) to transfect cells in culture sucsessfully (100). Many polylysines and 
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arginine-containing oligopeptides are reported to possess only low transfection efficiency 

despite their ability to form suitable complexes with DNA because of too strong plasmid 

compactization, which prevents the plasmid from being transcribed in the nucleus (9, 79, 

127). Also complexes of DNA with polyhistidines formed with the excess of polymer are 

characterized as dense globular structures which can hardly release baceterial plasmids (57, 

127).  

High values of luciferase expression were observed for histidin-rich peptides 

SHKH10:1 and SHKH1:1. The fact that both peptides showed effective gene transfer may be 

due to the ability of histidines to become protonated under acidic pH and thus provide DNA 

escape from the endodomes via the “proton sponge” effect. Many published data describe 

endosomal escape as the major problem of polypetide-based synthetic gene carriers (79, 93, 

96, 127). Along with well known synthetic (polyethileneimine and polyamidoamine (195)) 

and natural (histatin5 (130), Sea Urchin B18 (74) or LAH4 (208)) polymers, polylysines 

modified with histidin may show proton sponge effect, which helps plasmid DNA to escape 

lysosomes and thus enhances gene delivery  (156, 201). Dendrimers may show buffering 

capacities at lower pH than the original pKa of the alfa-and epsilon-amino groups of lysine 

and the imidasole nitrogen of histidin. That occurs because nitrogen atoms on the surface of 

dendrimers are hard to protonate due to steric hindrance and electrostatic repulsion (155, 156). 

Nevertheless, the proton sponge effect shown by SHKH10:1 and SHKH1:1. peptides was 

high enough to provide the escape of at least part of plasmids from the endosomes. It is 

generally accepted, that for development of endocytosis-based gene delivery systems peptides 

exhibiting an acidic pH-dependent membrane destabilization are good candidates to favour 

DNA transport to cytozol (209). Still, the highest luciferase levels observed for these 

polymers were still lower that those observed for arginine containing polylysines. These 

results may mean that the escape form endodomes must have been not the crucial step in 

transfection.  

Arginin-containing branching polypeptides have demonstrated the highest gene 

transfer abilities. One charge ratio for every of two vehicles had shown transgene expression 

as high as after delivery of PEI/DNA complexes, which were used as positive controls. Based 

on these observations we may speculate that modification of an initial branching polylsine 

with arginine had a more pronounced effect and improved dramatically it’s gene delivery 

capacities. Arginines are reported to provide efficient penetration of complexes into the cells 

when they are integrated into the polypeptide or used in frame of peptides of natural origin 

(64, 66, 67). It is importaint to note, that branching polylysines themselves are able to develop 
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the proton sponge effect because of the reduction of pKa values of terminal amines towards 6, 

which can provide the escape of DNA from the endosomes (52, 220). Though the polylysines 

modified with arginine certainly lack the strong proton sponge effect which was exhibited by 

histidin-enriched polymers, part of the complexes definitely escaped enzymatic degradation. 

Arginine-enriched polymers probably were not able to provide efficient transportation of 

DNA into the nucleus. Nevertheless, higher levels of luciferase expression which exceeded 

those obtained with SPKH polymers shows that at least some of the previous hindrances were 

overcame by SPKR polymers more successfully. Additional studies should be performed to 

understand the action mechanisms of these vehicles. 

The efficiency of both arginine-rich polymers was higher than that of initial branching 

polylysin D2, which was taken as a basis for creation of four modifications investigated in 

this study (206). Our observations showed that from all four modification of the initial 

polymer enrichment with arginine showed to increase transfection efficiency much better than 

integration of histidine residues. Our results demonstrate that arginine-enriched branching 

polylysine can efficiently deliver plasmid DNA into dividing cells in culture. Vectors of these 

family are reported to possess  low  toxicity  and biodegradability (54. 46), thus appearing as a 

safer gene delivery vehicle. Many possible modifications are known which may improve the 

efficiency of a synthetic oligolysine. Modification of polylysine-based vehicles with PEG 

(113) or combination of PEGilation and glycopeptide cross-linking (114) is reported not only 

to reduce toxicity but also to provide their longer circulation in blood. An alternative way to 

enhance the gene delivery efficiency with polylysines is their modification with fatty acids 

residues. It was shown that polylysine complexes with fatty acids (lipophilic polylysin) can 

provide high transgene experession by protecting DNA from lysosomal degradation (141). 

Our previous results also demonstrated the usefullness of polylysines modification with fatty 

acids residues (207). Another possible way to increase transfection efficiency of an oligolysin 

is modification with ligands for cell surface receptors. For example, gene transfer into the 

liver cells was enhanced by galactozilation and mannosilation of polycationic peptide-based 

carriers (142, 222), while the stability of polyplexes may be increased by cross-linking via 

disulfide bonds (198). Amphiphilic peptides of INF family such as INF7 and of the E5 family 

such as E5CA have been shown to increase transfection efficiency of DNA/polylysin 

complexes (132). Many successful modifications of branching poylpeptides are reported 

which have improved their gene transfer abilities.  
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From all four polypepties investigated in this study SPKR10:1 and SPKR1:1 appear to 

be the most promising polymers. Further studies should be performed to select modifications 

which could improve gene delivery using these vehicles.  

Nonviral gene delivery proved to be a promising trend within the last decades. 

Synthetic polypeptide -based vectors were investigated intensively and applied in many fields. 

Along with such advantages as biocompatibility and relatively low toxicity and 

immunogenicity, the transgene expression provided by these vehicles remains inefficient to 

establish a therapeutical effect. A number of other perspective polymers were investigated 

within the last years, which were demonstrated to provide high long-term expression of 

transgene in vitro and in vivo. One of these synthetic gene delivery agents is polyethylenimine 

(PEI), which has shown gene transfer abilities so significant that it is referred as a “golden 

standard” in nonviral gene delivery. Aiming to find a safe and effective way to deliver 

plasmid DNA into the lung, we have compared two methods of complexes administration –

aerosol inhalation and intranasal instillation- for their safety and efficiency, as well for 

clearance parameters and deviations in lung functioning. Knowing that plasmid DNA may 

provoke toxic effects, we have tested the effect of CpG motifs present in plasmid DNA on 

safety of the administration procedure.  

 

4.8 Lung function  

In this study, we have demonstrated for the first time that intranasal instillation of a 

plasmid containing unmethylated CG dinucleotides (CpG) leads to deviations in pulmonary 

functioning in mice, in addition to the previously reported inflammatory lung response. The 

adverse effects that we have observed were markedly reduced at early time-points upon 

aerosol delivery. Nevertheless, comparable deviations were observed as late as one week after 

treatment. Only using CpG-free plasmid DNA was capable of preventing these adverse 

effects. These results therefore suggest that aerosol delivery together with CpG-free plasmid 

DNA is critical to minimize potential inflammatory response upon nonviral gene delivery to 

the lungs. Our findings demonstrate that instillation does not represent a suitable technique for 

gene vector application as evidenced by the inflammatory response and severe deterioration 

of pulmonary function. These observations confirm the previous findings from Davies et al. 

who recently reported a stronger inflammatory response to PEI gene vectors after instillation 

than aerosol application using histology and BALF cell counts (34). Furthermore, these 

results are in agreement with observations made from instillation of cationic lipid gene 

vectors into the sheep lungs which led to a dose-dependent toxicity with severe lesions, 
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whereas after aerosol delivery only mild inflammation with a few scattered areas of moderate 

inflammation were observed (50, 129). It may be suggested that instillation leads to 

inhomogeneous particle distribution with areas of high and low PEI-pDNA particle 

concentrations. The areas of high PEI-pDNA particle concentrations may result in stronger 

lung response than after aerosol delivery, where homogenous particle distribution has been 

observed (69, 173). Alternatively, the total PEI-pDNA complex burden which was higher 

after intranasal instillation than aerosol delivery may explain the different lung response 

together with the relatively large volume of distilled water used as solvent for PEI-pDNA 

particles. Indeed, our results demonstrate that immediately after instillation of distilled water, 

pulmonary function severely declined and did not return to normal even within one week. 

These results therefore suggest that distilled water instillation does not only induce transient 

airway epithelial swelling by a so-called hyposomotic shock, but leads to long-term side-

effects in the lungs. However, associated swelling and permeabilization of lung tissue have 

been proposed to be critical for efficient gene transfer to the lungs (118, 173). Unlike with 

instillation, low amounts of nebulized distilled water have been previously reported to result 

in only transient airway swelling (134, 135). Our results confirm these observations as 

evidenced by returning the pulmonary function to within twenty-four hours after treatment.  

Most of the previous studies addressed inflammatory response after nonviral gene 

transfer to the lungs by means of standard histology, BALF analysis, measurement of 

proinflammatory cytokines (69, 90), and more recently by gene expression profiling (164). 

Although together these methods are appropriate to characterize the pattern of the 

inflammatory response in the lungs as evidenced by infiltrating cells, changes of the lung 

architecture and genes involved in reaction to stress, they are not capable of assessing any 

effects on a relevant functional level. We demonstrate that forced oscillation technique can be 

successfully applied to display changes of pulmonary function after nonviral gene delivery to 

the lungs. Applying the constant phase model as suggested by Hantos et al. (84), our data 

indicate that the inflammatory effect of unmethylated CpG-motifs is located to the peripheral 

lung tissue (GTiss and HTiss) rather than to the central airways. An important finding of our 

study is that the FOT measurements could be well correlated with standard histology and 

BALF cell counts. Interestingly, neither of them correlated with the results from an 

inflammation antibody array of the lung tissue, which covered forty inflammatory markers 

(unpublished data of Dr. Petra Dames). None of the markers was significantly altered at any 

of the measured time-points. A possible explanation for this observation could be the choice 

of inappropriate measurement time-points which did not cover the relevant period of initial 
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tissue response. Indeed, it has been previously shown that the cytokines IL-1β and TNF-α are 

only increased in the lung tissue 5-12 hours after aerosol treatment (69). As a result, this 

observation suggests that any of the inflammatory response which is observed at later time-

points is not associated with significant upregulation of the major inflammation pathways. It 

may therefore be suggested that the observed deterioration of pulmonary function and 

histology are the delayed result of an inflammatory response with an early onset. 

Consequently, our results suggest that potential inflammatory response should not only be 

examined at early time-points but should be additionally considered at late time-points. 

Furthermore, our results demonstrate that not only large amounts of instilled PEI-pDNA gene 

vectors induce an inflammatory response and deterioration of pulmonary function, but similar 

effects were observed for nanogram-amounts of aerosolized PEI-pDNA at later time-points. 

This observation may suggest a potentially high intrinsic toxicity of PEI-pDNA gene vectors. 

The potential toxicity could be caused by either the PEI-pDNA nanoparticles themselves or 

by one of their components, i.e. PEI or pDNA, and the transgene product. In particular, 

unmethylaed CpG motifs have been previously shown to largely contribute to the 

inflammatory response, although PEI itself has also been shown to induce lung inflammation 

(199). We therefore performed identical experiments but instead of a first generation CpG-

rich plasmid, CpG-free plasmid DNA either encoding for luciferase, or only the backbone was 

aerosolized to the lungs of mice. None of the CpG-free pDNA caused impairment of 

pulmonary function or inflammation assessed by histology. We therefore conclude that 

neither the PEI-pDNA nanoparticles themselves nor PEI and the luciferase transgene are the 

reasons for the observed abnormalities of lung function, but that unmethylated CG sequences 

are the major reason for the observed impairment of lung function. These observations 

highlight the importance of using CpG-free pDNA for gene delivery to the lungs. Moreover, 

our resulta demonstrate that the cationic polymer PEI may be used for aerosol gene delivery 

without induction of alteration in lung functioning. We therefore suggest that PEI can be 

safely delivered to the lungs and could become a potential candidate for clinical trials in the 

future. This seems to be important in particular with respect to successful gene expression 

levels previously observed in a large sheep animal model (129). 

 

4.9 Histilogical examination 

The common method of histological analysis is utilized widely to estimate the 

influence of a certain procedure on the lung architecture and tissue condition.  
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We have observed a series of abnormalities in the lung histology, which were 

developing within the week after administration. Twenty four hours after instillation 

inflammatory response was observed together with cellular infiltration. That corresponds to 

our results of cell counting where significant increase in number of resident macrophages in 

the lung was observed at this time point. The overstress of the small blood vessels caused by 

intensive monocyte influx could have caused the strong capillary thrombus formation 

observed at 24 hours time point. Development of hemorrhage seven days after treatment may 

be explained as the remote effect  of  continuous presence of distilled water in alveolar region 

shortly after administration (136, 188). Nevertheless, analysis of lung function parameters on 

later time point after nebulization of water revealed no abnormalities, meaning that despite 

structural changes the function of the organ remained normal. Our analysis of pDNA content 

in lung resident macrophages showed residual amounts of plasmid as late as seven days after 

instillation. The surfactant layer within the lung renews constantly, and lung resident 

macrophages contribute to this process along with the mucocilliary movement (187, 190).  

We can assume that some residual volumes of liquid containing complexes were still present 

within the alveoli, causing the prolonged disturbance of the tissue (22). On the other hand, 

aerosols are widely reported to be a safer delivery route to the lung (140). This method avoids 

disposition of large volumes of water or solvent within the lung, thus omitting one of the main 

inflammation reasons (55). Besides, comparing the histological observations after aerosol 

delivery of standard plasmid DNA with that after CpG-free plasmid delivery one may see 

clearly that plasmid structure influenced the lung tissue response. As far as the size of the 

complexes and nebulization conditions were similar in both cases, we may assume that 

presence of CpG motif in plasmid DNA provokes the inflammatory response which was 

observed 24 hours after aerosol administration of PEI/pCMVLuc complexes. Causing strong 

immune response and macrophage activation (103), unmethylated CpG motifs of plasmid 

DNA stimulate macrophage activation and influx of fresh monocytes into the alveolar region. 

These effects were not observed after aerosol administration of CpG-free plasmids, proving 

that combination of a safe delivery rout with a safe plasmid DNA results in a harmless 

administration of the complexes within the lung (128, 129).  

 

4.10 Clearance of pCMVLuc from the lung  after aerosol  delivery and intranasal  

instillation 

Studying the plasmid DNA clearance form the lung we have compared three lung 

compartments, namely lung tissue, BALF cells and BALF liquid.  
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Aerosol application of PEI-pDNA particles resulted in slower and reduced pDNA 

clearance from the lung. This may have been the main reason for prolonged luciferase 

expression after aerosol delivery compared to intranasal instillation. At the same time aerosol 

application did not cause any significant increase in number of phagocytes in the lung 

contrary to intranasal instillation, where not only rapid migration but also higher rates of 

macrophage activation were observed. 

The method of pDNA extraction used in this study was based on charge interactions 

and allowed the extraction of only those pDNA molecules which were released from PEI-

pDNA complexes. According to our observations and also other published studies (187) 

around 50% of the initial dose of PEI-pDNA complexes can be found within the lungs of 

mice after intranasal instillation, which in our case comprised 25µg of DNA complexed with 

PEI. Interestingly, one hour after instillation only 290 ng of free (uncomplexed) DNA per 

mouse was detected by PCR. On the contrary, as it was shown in our previous study (173), 

standard aerosol delivery procedure deposited around 500 ng of complexed DNA to the lungs 

of an exposed animal. Nevertheless, the pDNA values after aerosol delivery were surprisingly 

close to those after intranasal administration and comprised around 213ng of free pDNA per 

mouse, despite the almost 100-fold difference in amount of delivered complexes between 

aerosol and intranasal delivery techniques. Comparing the amount of incoming complexes 

with maximal free pDNA levels, one may easily calculate the efficiency of pDNA release. 

While after instillation of complexes only about 1 % of pDNA was released, this was almost 

50% after aerosol administration. Thus, administration route determines efficiency of pDNA 

release from the complexes. The amount of DNA released form the complexes defines the 

successful transgene transcription. The similarity in amounts  of released pDNA after 

instillation and aerosol delivery - despite  manifold difference in amount of delivered 

complexes –  may explain the comparable luciferase expression levels 24 hours after aerosol 

and intranasal administration. 

 

4.11 Clearance  of pCMVLuc form BALF cells after aerosol delivery and intranasal 

instillation  

We have found, that 3% of pDNA released from the complexes was absorbed by 

BALF cells during the first hour after instillation and only 0.1% after aerosol administration. 

The largest part of pDNA is supposed to have been associated with the cells and surfactant 

layer of the lung. Our observations suggest that both lung resident and tissue cells, as well as 

the extracellular components of the lung were engaged in clearance of PEI-pDNA particles. 
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Although the peculiarities of PEI-pDNA particles uptake by alveolar macrophages are still to 

be discovered, we extracted pDNA from lung resident cells (BALF cells) and tried to estimate 

the amount of corresponding PEI-pDNA complexes.  

Although resident lung neutrophils also possess phagocyting ability (118), their small 

ratio and passiveness towards particles smaller than 1 µm reported by other authors (27) drove 

us to the conclusion, that clearance of the complexes in the lung was carried out mostly by 

lung resident macrophages. Based on our data on size and structure of our PEI/DNA 

complexes, we could calculate roughly the number of complexes corresponding to a certain 

amount of plasmid DNA. Real-Time PCR analysis showed that approximately 6000 and 250 

molecules of free plasmid DNA were associated with each AM after intranasal instillation and 

aerosol delivery, respectively. The complexes of around 100 nm in diameter used for 

inhalation contained approximately 3.5 pDNA molecules per particle which corresponds to 

around 70 PEI-pDNA complexes per macrophage (27). The total volume of this batch of 

complexes comprises 0.036 µm3. We can only speculate that the complexes of 200 nm in 

diameter, which were used for intranasal instillation, could contain 7 molecules of pDNA. 

That would correspond to around 860 complexes of a total volume of 3.6 µm3 per 

phagocyting cell. The uptake capacity of a macrophage can under certain conditions exceed 

10 µm in case of liposomes (154), which corresponds to a volume of ~500 µm3. Taking into 

consideration that the complexes were taken up and destroyed by the cells not at once but 

gradually we can assume that the uptake capacity of AMs was not exceeded. However, in case 

of nanoparticles phagocytes are reported to reach the overload state far below their physical 

uptake limits (10). It is not only the volume but also the surface area of the particles which has 

a crucial influence on the efficiency of their uptake by phagocytes (182). As far as only 

uncomlexed DNA was in our case detectable by RT-PCR analysis, the calculated numbers of 

particles correspond to those destroyed by the phagocyting cells, thus releasing plasmid DNA. 

Efficiency of the gradual uptake of PEI/pDNA complexes by macrophages obviously depends 

on their number and distribution within the lung. Plasmids released form the complexes 

within a macrophage are supposed to be degraded. Uptake and degradation of complexes and 

of plasmid DNA is a dynamic process, influenced by many factors. The number of complexes 

per macrophage, calculated for the 1 hour time point, reflects not only the amount of 

destroyed but also the number of consumed particles during this hour, according to the speed 

of DNA degradation in macrophages. These calculations reflect actually the minimal amount 

of particles, DNA from which was recently released within a macrophage. Thus, our 

calculations describe also the intensity of complexes disruption within the phagocytes, which 
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can only partly correspond to the intensity of complexes uptake. The intensity of DNA 

degradation within phagocyting cells, as well the dependence of this process from the 

administration route of PEI/pDNA particles and physiological condition of the lung are to be 

investigated in future. Our on-line observations of FITC-labeled PEI/pDNA complexes uptake 

by alveolar macrophages showed, that only a small part of complexes is taken up and 

processed in cytoplasm, while the majority are attached to the surface of macrophages for a 

long time (our unpublished data). All that taken together shows that interaction of lung 

resident macrophages with PEI/pDNA compelexes are a complicated process, which can be 

only poorly described by categories of DNA clearance.  

 

4.12 Clearance of CpG-free plasmids after aerosol administration  

In our study we have compared the clearance patterns from the lung for two CpG-

motif-free plasmids, which were compelxed with branched PEI and delivered via aerosol into 

the lungs of mice.  

We have shown, that the half-clearance time (T1/2) observed for CpG-motif-free 

plasmids was not only significantly lower then the T1/2 of the standard pCMVLuc plasmid, 

but also differed significantly from one another. In particular, comparing clearance from the 

lung tissue, we have observed that pCpG-mcs plasmid was cleared twice faster than pCpG-

Luc DNA and four times faster than pCMVLuc plasmid. It is also important to note, that, 

though the maximal concentrations of free plasmid DNA for pCMVLuc (aerosol delivery) 

and pCpG-free-Luc comprised 256pg and 13500pg, respectively, CpG-motif-free plasmid 

DNA was cleared from the lung twice faster than the first  generation plasmid. Regarding all 

three series of experiments devoted to aerosol delivery, the size of complexes were proved to 

be relatively similar, as well as the administration procedure which delivered approximately 

similar amounts of complexes into the murine lungs.  

In our previous study we have shown that standard aerosol delivery procedure 

deposited around 500ng of complexed DNA to the lungs of an exposed animal (173). 

Investigating the amount of free (released) DNA in lung tissue at  24 hour time point, we have 

found  approximately 100ng and 15ng of free pCMVLuc and pCpG-free-Luc, respectively.  

Comparing the amount of incoming complexes with maximal free pDNA levels, one 

may easily calculate the efficiency of pDNA release, which comprised approximately 20% 

and 5% of the initial dose for pCMVLuc and pCpG-free-Luc, respectively.   Thus, our data 

show that  structure of plasmid DNA determines the efficiency of pDNA release from the 

complexes. Interestingly, although at 24 hours time point the efficiency of pDNA release was 
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10-fold  higher for first  generation plasmid than for CpG-free one, the latter provided 

significantly higher levels of transgene expression. We might conclude, that the CpG-free 

plasmid was approximately 100-fold more efficient than pCMVLuc. Despite visual similarity 

of clearance patterns,  pCpG-fre-Luc was cleared form the lung much faster than of  

pCMVLuc. Comparing transgene expression patterns with those of pDNA clearance, we may 

assume that gene silencing played an important role in case of pCMVLuc, while it was mostly 

pDNA degradation that was responsible for transiency of luciferase expression in case of 

CpG-depleted plasmid.  Ummethylated CpG-motifs are widely reported to provoke gene 

silencing of plasmid DNA (229, 230, 231). Artificial methylation of pDNA prior to 

transfection reduces the immune response but also severely inhibits transgene expression and 

thus may not be a valuable solution (229). Reduction of CpG-content in plasmid DNA not 

only suppresses it’s immuno-stimulatory effects (228 , 230), but also contributes to longevity 

of transgene expression. Depletion of CpG content is reported to help overcoming two major 

hindrances of gene transfer, namely acute toxicity and transient expression. Methylation of 

pDNA in the complex substantially decreases cytokine production, indicating that the 

mammalian immune system is recognizing the unmethylated pDNA and is likely triggering 

the cascade of response. Therefore, CpG-reduction should lessen the recognition of pDNA as 

foreign and reduce subsequent deleterious effects (231).   

Comparing clearance of CpG-free-Luc and CpG-free-mcs plasmids we have observed 

that the backbone plasmid was cleared form the lung more rapidly the plasmid coding for 

luciferase. It is known that the clearance rates of plasmid DNA depend on their impact on the 

lung, namely, toxicity and provoked inflammation (87). However, our measurements of 

resident lung cells influx and activation of macrophages did not reveal any differences  

between these two plasmids. The half-clearance time of the backbone plasmid comprised only 

19 hours compared to more than 40 in case of pCpG-free-Luc, which is surprising regarding 

it’ smaller size and absence of encoded reporter gene. One would expect that CpG-free-Luc 

plasmid would be cleared faster because of its size and content. However, it is still little 

known about the clearance mechanisms of CpG-depleted DNA. This relatively new and very 

perspective  trend in gene delivery had already achieved a lot in proving high levels of 

transgene expression, whereas mechanisms of CpG-free-pDNA clearance from the cells 

remain to be discovered(88). While plasmid DNA within the lung is metabolized according to 

it’s structure, we could assume that also plasmid clearance depends on presence of CpG-

motifs within it. Additional studies have to be performed to reveal the clearance mechanisms 

of CpG-rich and CpG-free plasmid DNA.  
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In case of both standard and CpG-free plasmids we have observed a two-phase 

clearance kinetics form the lung. For CpG-motif-free plasmids the first rapid phase took part 

within the first 72 hours after administration, while during the second phase presence of 

plasmid DNA within the lung decreased slowly till the time point of fourteen days. These 

results are close to the clearance pattern of pCVMLuc plasmid after aerosol administration, 

where relatively similar pDNA concentrations were observed within the first three days and 

than decreased significantly towards the last observation time point. Corresponding amounts 

of pCMVLuc observed within 72 hours after the application could be explained by its toxic 

effects which must have been the major hindrance to the clearance. Gradual decrease in 

amount of CpG-free plasmids observed during first three days after aerosol delivery proves 

this assumption. On the other hand, a break point between two clearance phases was observed 

already 24 hours after instillation, separating dramatic decrease in pDNA concentration within 

the first day form gradual decline within the following week. Our data demonstrate, that apart 

from the observed differences in clearance patterns between two plasmids, biophysical 

matters like amount of liquid and it’s distribution within the lung determine the clearance 

pattern.  

Analysis of DNA clearance from BALF resident cells revealed a different pattern. The 

elimination pCMVLuc and pCpG-free-Luc plasmids from the lung occurred with relatively 

similar speed so that the T1/2 comprised approximately two days, while pCpG-free-mcs was 

cleared much more rapidly with the T1/2 of 20 hours. Despite very similar half-clearance 

times observed for pCMVLuc and pCpG-free-mcs plasmids, other important clearance 

parameters like AUC and Cmax were 235-fold and 900-fold higher for CpG-free-Luc 

plasmid, respectively. These significant differences reveal that the CpG-motif free plasmid 

was cleared form the BALF cells much more effectively than the standard pCMVLuc. The 

dramatic influence of CpG-motif on lung resident cells, in particular on macrophages is 

widely reported (87, 103, 140). Murine macrophages were demonstrated to be activated with 

CpG-motifs in a Toll-like-1-receptop-mediated way. Yew et al. showed that addition of 

standard plasmid DNA after transfection with CpG-fre plasmid reduced transfection 

efficiency, revealing a deep influence of macrophage activation on basic biochemical 

processes within the lung (87, 140, 224). We can assume that presence of CpG motifs within 

plasmids plays an important role in pDNA clearance. We also can not exclude the influence 

of plasmid size on it’s clearance, like we did it for the lung tissue. Macrophages are known to 

react differently on plasmid DNA of different size and structure which was shown by 

studying cytokine response (111). The fact that the pCpG-free-Luc DNA was cleared from 
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lung resident cells faster than the backbone-containing plasmid may be due to the presence of 

promoter and transgene sequence within it, which could have been recognized by phagocytic 

cells and thus influnec the clearance process.  

Surprisingly similar T1/2 values were observed for both CpG-free plasmids in BALF 

liquid, which comprised approximately 8 hours and thus were five fold lower than that for 

pCVMLuc plasmid delivered by aerosol. Taking into consideration the influence of pCMV-

Luc containing particles on lung mechanics and functioning we could assume that the lung 

swelling and changes in lung compliance and resistance could influence the metabolism of 

PEI/DNA complexes in the lung, thus preventing them form being rapidly cleared in case of 

pCMVLuc plasmid.  

 

4.13 Analysis of BALF cells  

Analyzing the resident lung cells for their number and type ratios we have found that 

both administration route and the CpG-content of  plasmid DNA are important for provoking 

immune response.  

In our study we have analyzed not only the total amount of phagocytic cells, but also 

activation of macrophages, for which myeloperoxidase revealing staining method by Kaplow 

was utilized (94). Myeloperoxidase (MPO) is a hem-containing enzyme, which is often used 

as an inflammation marker in the lungs (49, 77). Sugiyama et al. showed that granulocyte 

macrophage colony-stimulating factor regulates the ability of macropahges to express MPO 

(190). Stimulated phagocytes secrete this enzyme at inflammatory sites, where it generates a 

powerful reactive oxygen species, hypochlorous acid (HOCl), at physiological chloride 

concentrations (101, 213).  

In our experiments both the amount of resident macrophages and the number of 

activated phagocyting cells increased significantly 24 hours after intranasal instillation of 

PEI/pCMVLuc complexes. These observations suggest that PEI-pDNA particles may induce 

cell infiltration and activation of macrophages when delivered intranasally. Histological 

observations also proved significant influx of neutrophils and monocytes to the alveolar 

region. Interestingly, instillation of distilled water also caused dramatic increase in number of 

activated macrophages, which was, however, less pronounced than in case of brPEI/pDNA 

particles instillation. Administration of high volumes of liquid into the lung is reported to 

provoke active infiltration of monocytes which clear the liquid rapidly, thus reducing the 

swelling and thu enhance lung functioning restoration (134). Therefore, we suggest that apart 

from the influence of PEI-pDNA particles a hypotonic character of the intranasal instilled 
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solution may contribute to cell infiltration and activation of phagocytosis. However, 

hypoosmotic solvents are necessary for PEI-pDNA complex formulation to guarantee high 

expression levels in lungs (118, 173). Regional distribution of PEI-pDNA complexes may be 

different after either instillation or aerosol delivery. This may lead to inhomogeneous particle 

distribution with areas of high and low PEI-pDNA particle concentrations, in particular after 

intranasal instillation. The areas of high PEI-pDNA particle concentrations may result in 

stronger lung response than after aerosol delivery, where homogenous particle distribution has 

been observed (148). Indeed, similar observations have been previously made for titanium 

dioxide particles (144). Histopathological techniques may be useful for studying this issue 

further. ii) Alternatively, the total PEI-pDNA complex burden which was higher after 

intranasal instillation than aerosol delivery may explain the different lung response. iii) The 

size of the PEI-pDNA particles was slightly different (90nm vs. 200 nm), which may result in 

different lung response. Complexes with the diameter of less than 100nm could be ascribed to 

the class of nanoparticles, which are widely reported to block the phagocytosis of lung 

resident macrophages and thus to increase the immune response (150). This mechanism could 

explain intensive influx of monocytes into the lung and activation of macrophages after 

instillation of complexes.  

Comparing the behavior of lung resident cells after aerosol application of standard or 

CpG- free plasmids we have found that presence of CpG motifs plays an important role in 

inducing of immune response. Twenty four hours after aerosol delivery of PEI/pCMVLuc 

complexes a slight increase in amount of resident macrophages was observed which returned 

to it’s normal level towards the next time point, while after aerosol administration of CpG-

free plasmids no alterations in type or number of lung resident cells were observed. Both our 

and many published data prove aerosol delivery to be less immunostimulatory than instillation 

(134, 144, 148). Besides, considering equal characteristics of the particles and equal 

administration conditions, one may assume that it were the CpG motifs which defined the 

immune response in he lung. Indeed, CpG motifs of plasmid DNA are known to be highly 

immunogenic (111, 134), so that presence of even one motif may induce inflammatory 

response (90). Thus, our data show that exclusion of CpG motifs form plasmid DNA may 

provide a gene transfection method with a very low immunogenicity.  



DISCUSSION  97  

4.14 Luciferase expression in the lung after administration of pCVMLuc and pCpG-

free-Luc plasmids 

In our experiments we have observed three different patterns of luciferase expression. 

Twenty four hours after intranasal instillation the transgene expression levels were highly 

variable, while no transgene expression was observed at other time points. After aerosol 

administration of both pCMVLuc and pCpG-free-Luc plasmids a peak of luciferase 

concentration was observed 24 hours after administration followed by decrease in transgene 

levels observed for the next time points. Our observations demosntrate that administration 

route plays an important role for transfection efficiency. Intranasal instillation is repotted to 

be an efficient method of gene delivery (70). Nevertheless, in our case either the presence of 

high amounts of distilled water in lungs or the toxic effects of CpG motifs of the plasmid 

DNA prevented the lung cells from transgene expression. In all three cases the luciferase 

expression intensity corresponded to the clearance pattern of plasmid DNA, showing vividly 

that decrease in number of free pDNA moleucles within the lung cells leads to decrease in 

luciferase expression. Despite similar transgene expression patterns, aerosol administration of 

CpG-free-Luc plasmid resulted in at least 100 fold higher luciferase expression than it was 

observed for pCMVLuc. Other authors also demonstrated that plasmid DNA without CpG 

motifs can provide high levels of transgene expression combined with low toxicity (129). 

Unfortunately, even for CpG-free-Luc plasmid a decline in gene expression was observed, 

caused most probably by degradation of plasmid DNA within the lung cells.  

Basing on our data, we can assume that it is mostly the structure of plasmid DNA that 

defines the levels of transgene expression in the lung cells, while the clearance pattern 

depends greatly on the route of administration.  

In all our experiments we have not observed any transgene expression in lung resident 

macrophages. These cells, representing the primary defense mechanism of the lung, are 

extremely difficult to transfect because of their specialization to terminate the incoming 

bacteria and viruses (153). Vehicles for gene delivery into macrophages are studied 

intensively for gene vaccination (80). CpG-motifs are reported not only to provoke the 

immune response and macrophage activation but also to enhance the transfection of these 

cells. Nevertheless, our complexes of branched PEI with two different plasmids proved to be 

inefficient in transecting this particular cell type. Indeed, cationic liposomes were shown to be 

more effective for that than cationic polymers (43).  
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5 SUMMARY 

 

Gene delivery is supposed to be a promissing strategy for treatment of a variety of 

inherited and somatic deseases. Correction of genetic defect within the cell should  restore or 

improve the functioning of the cell thus eliminating the cause of an illness.  

Development of efficient gene delivery vehicles is one of the basic objectives of 

contemporary gene therapy research. Among many existing synthetic vehicles branching 

polylysines are renouned for their DNA transfer capacities, as well as for biodegradability and 

low toxicity. We have investigated a group of branching polypeptides bearing different 

modifications of the basic polylysine core. The polymers were analysed for their ability to 

bind and protect DNA and to deliver it into the cells in vitro providing transgene expression. 

We have found that although all four modifications have improved the qualities of the 

primary polymer, introducing arginins had increased significantly gene transfer capacities of 

the polypeptides.  

Safe and efficient adminstration route is as indispensable requirement for gene therapy 

treatement. Aiming to optimize the procedure for pulmonary gene delivery we have compared 

two administration strategies and two types of plasmid DNA structure. We have found that 

aerosol delivery is more efficient than intranasal instillation, being at the same time less 

harmful and immunogenic than the latter. We have shown that plasmid DNA without CpG-

motifs did not alter normal lung functioning and was not immunogenic. Besides, particles 

containing CpG-free DNA delivered via aerosol were proved to provide higher levels of 

transgene expression than CpG-motif containing plasmid. 
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6 CONTRIBUTION TO THE WORK 

 

Analysis of four polylysin-based dendrimers  

Synthesis of a series of branching lysin-based dendrimers  as well as the analysis of 

protein purity and aminoacid composition was performed in the laboratory of Dr. Vlasov in 

the institute of high molecular compounds, Laboratory of biologically active polymers, 

St.Petersburg, Russia. Analysis of DNA-binding, protective capacities of the polymers, as 

well as size- and zeta-potential measurements were performed by E. Leisna. Investigation of 

gene transfer abilities of the dendrimers was also performed by E. Lesina.  

 

Intranasal instillation and aerosol administration of pCMVLuc/brPEI compelxes 

Transfection of mice via aerosol nebulization or intranasal instillation, as well as the 

following animal preparation and transgene expression analysis  were carried out in 

collaboration with Dr. Petra Dames. Preparation of animals for lung functioning analysis was 

performed by E. Ledina, while the measurement of lung functioning parameters was carried 

out by Dr. Andreas Flemmer and Dr. Kerstin Hajek. Broncheo-alveolar lavage and 

quantification of the cells, as well as the preparation of the samples for microscopy, 

histological staining and sample analysis were made by E. Lesina. Real-Time PCR was 

performed by Dr. Petra Dames. Histological analysis of the lung samples was made by Iris 

Bittmann.  

 

Aerosol delivery of CpG-motif-free DNA complexed with brPEI 

Aerosol administration was performed in collaboration with Dr. Dames. Analysis of 

lung functioning parameters was carried out in collaboration with Dr. Flemmer and Dr. Hajek. 

Histological analysis of the lung samples was made by Dr. Charel, Institute of Pathology, 

Berlin, Germany. The analysis of mice for luciferase expression and inflammatory 

parameters, animal preparation, broncheo-alveolar lavage and quantification and analysis of 

lung resident cells, as well as Real-Time PCR and clearance analysis were carried out by  

E. Lesina.  
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