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Zusammenfassung

We study K-theory of the twisted group C*-algebras of discrete groups of the

kind Zn and Zn o F , where F is a finite cyclic group. Twisted group C*- al-

gebras can be thought of as deformations of classical group C*-algebras where

the deformation parameter is an element of the second group cohomology of

the given group. For Zn and Zn o F , we show how some K-theory elements

(projective modules) behave under the deformation. Also we study homo-

logical invariants of smooth twisted algebras (holomorphically closed, dense

sub-algebras of twisted group C*-algebras) of the groups Zn and Zn o F .
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2.4.2 The Künneth formula . . . . . . . . . . . . . . . . . . . . 16

2.4.3 An easy computation . . . . . . . . . . . . . . . . . . . . 16

2.5 Some application of the twisted Baum-Connes conjecture . . . . 17

2.6 K-theory of twisted crystallographic group algebras . . . . . . . 22

2.7 Locally convex algebras and m-algebras . . . . . . . . . . . . . . 24

2.7.1 m-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.2 Smooth compacts . . . . . . . . . . . . . . . . . . . . . . 25

2.7.3 Smooth Group Algebras . . . . . . . . . . . . . . . . . . 25

2.7.4 Smooth (twisted) group algebras of Zn and crystallo-

graphic groups . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.5 K-theory and cyclic (co-)homology of m-algebras . . . . 27

3 Noncommutative tori and K-theory 31

3.1 Twisted groupoid algebras and their K-theory . . . . . . . . . . 31



Contents

3.2 Projective modules over bundles of noncommutative tori . . . . 32

3.3 Generators of K0 groups of noncommutative tori . . . . . . . . . 36

3.3.1 The 3-dimensional case . . . . . . . . . . . . . . . . . . . 39

3.3.2 The 4 dimensional case . . . . . . . . . . . . . . . . . . . 40

4 Projective modules over some noncommutative orbifolds 41

4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 A quick look into noncommutative orbifolds . . . . . . . . . . . 41

4.3 Projective modules over noncommutative tori . . . . . . . . . . 42

4.4 Projective modules over noncommutative orbifolds . . . . . . . . 44

4.5 The 2-dimensional case - revisited . . . . . . . . . . . . . . . . . 52

5 Equivariant Connes-Thom isomorphism for C*-algebras 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Some basic definitions and notations . . . . . . . . . . . . . . . 55

5.2.1 Equivariant KK-theory . . . . . . . . . . . . . . . . . . . 55

5.2.2 The setup . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.3 The equivariant Takesaki-Takai duality theorem . . . . . 56

5.3 Connes’ pseudo-differential calculus . . . . . . . . . . . . . . . . 58

5.4 Equivariant Connes–Thom isomorphism for equivariant KK the-

ory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Proof of equivariant Connes-Thom isomorphism . . . . . 65

5.5 Application: K-theory of equivariant quantization . . . . . . . . 67

6 Traces on some crystallographic group algebras 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Some basic definitions . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Noncommutative calculus . . . . . . . . . . . . . . . . . 73

6.2.2 Standard complex for group cohomology . . . . . . . . . 74

6.2.3 Hochschild cocycles on group algebra . . . . . . . . . . . 75

6.3 Inducing traces on twisted algebras . . . . . . . . . . . . . . . . 77

6.4 Zeroth cyclic cocycles of twisted crystallographic group algebras 79

6.4.1 The case Z2 oZ3 . . . . . . . . . . . . . . . . . . . . . . 82

6.4.2 The case Z2 oZ2 . . . . . . . . . . . . . . . . . . . . . . 83

7 Some non-commutative orbifolds: the flip-case 87

7.0.1 Continuous field of projective modules over Aθ oZ2 . . . 91

7.0.2 Main computations with K-theory . . . . . . . . . . . . . 92



1 Introduction

This thesis in a nutshell

In noncommutative geometry one studies noncommutative algebras which are

motivated from geometry. Important example are noncommutative tori. Let

us recall that, given a skew-symmetric real n × n matrix θ = (θij), the n-

dimensional noncommutative torus, Aθ, is defined as the universal C*-algebra

generated by unitaries U1, . . . , Un subject to the relations

UkUj = e2πiθjk UjUk for j, k = 1, · · · , n.

For 2-dimensional noncommutative tori, since θ is determined by only one real

number, we will write the matrix θ just as a real number θ.

Noncommutative tori are model examples of so called “deformation quanti-

sations” or twisted group C*-algebras. Twisted group C*-algebras are in some

sense deformations of group C*-algebras while the deformation parameter is

an element of the second group cohomology of the group. “Deformation quan-

tisations” and twisted group C*-algebras give us a huge list of examples to

study in noncommutative geometry. These can be thought of noncommuta-

tive versions of quantised Poisson manifolds where the deformation parameter

is a Poisson bivector.

One studies vector bundles over classical manifolds. This comes naturally

when one talks about notions of curvature or differential operators on mani-

folds. A well known theorem of Serre–Swan suggests that the natural analog

of vector bundles over noncommutative algebras is projective modules.

Rieffel ([54]) constructed projective modules (which are known as Heisen-

berg modules) over all noncommutative tori. These constitute the framework

to study geometry of noncommutative tori such as connections, curvature and

Dirac operators on noncommutative tori. While the 2-dimensional noncom-

mutative tori are analysed quite well, there remains quite a large number of

open questions for higher dimensional noncommutative tori.

We call a skew-symmetric matrix totally irrational if the off-diagonal entries

are rationally linearly independent and not rational.

While Rieffel constructed projective modules over n-dimensional noncom-

mutative tori, Elliott in [24] computed the K-theory of these algebras. Elliott
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1 Introduction

showed that the K-theory of n-dimensional noncommutative tori is indepen-

dent of the parameter θ and he also computed the image of the canonical trace

of Aθ. It follows from Elliott’s computations that for totally irrational θ the

canonical trace on Aθ is injective as a map from K0(Aθ) to R. So using the

description of the image of the trace and Rieffel’s ([54]) computations of traces

of projective modules, we can compute a basis of K0 for Aθ in the case where

θ is totally irrational.

Based on the results of Rieffel and Elliott, Echterhoff et al.([22]) constructed

a continuous field of projective modules over the parameter space of 2-dimensional

noncommutative tori. Along with other results, the authors gave a basis of

K0(Aθ) using the range of the trace of 2-dimensional noncommutative tori.

They also showed how this basis could be extended to provide elements of the

basis of K-theory of some crossed products Aθ o F , where F is a finite cyclic

group which is compatible with θ.

We take a similar approach to [22] to provide bases for K0(Aθ) for any higher

dimensional noncommutative tori.

Theorem 1.0.1. Rieffel’s projective modules over n-dimensional noncommu-

tative tori can be chosen in a continuous way over the parameter space.

Theorem 1.0.1 can be used to give explicit bases of K-theory of n-dimen-

sional noncommutative tori, which we describe in Chapter 3.

One can also consider crossed product algebras for group actions on noncom-

mutative tori. Crossed product algebras of finite group actions on noncommu-

tative tori go back to the work of Bratteli, Elliott, Evans and Kishimoto. They

considered ([10]) the flip action of Z2 on two dimensional noncommutative tori

and the associated crossed products. Recall that the flip action of Z2 on a 2-

dimensional noncommutative torus is given by mapping the generators Ui to

U−1
i for i = 1, 2. Walters ([59]) computed the K-theory of the crossed product

AθoZ2 for two dimensional noncommutative tori Aθ for some irrational θ. For

these special θs, Walters also wrote down generators of K-theory of AθoZ2 by

showing that generators of the K0 group of Aθ can be made “flip equivariant”.

(A result of Green and Julg shows that equivariant K-theory elements pro-

vide elements of the K-theory of the crossed product.) Later in [60] and [62],

Walters considered Z4- and Z6- actions on two dimensional noncommutative

tori. Recall that the following defines Z4- and Z6- actions on two dimensional

noncommutative tori:

U1 → U2, U2 → U−1
1 (for Z4),

U1 → U2, U2 → e−πiθU−1
1 U2 (for Z6).
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For these actions Walters showed that for irrational θ, the generators (as pro-

jective modules) of the K0 group of Aθ are Z2- and Z4- equivariant to construct

projective modules over Aθ oZ4 and Aθ oZ6. These constitute generators of

the corresponding K0 groups.

Later, in [22], Echterhoff, Lück, Phillips and Walters studied 2-dimensional

Aθ with actions of finite cyclic subgroups (we denote these subgroups by F ) of

SL2(Z) . Note that SL2(Z) has a canonical action on Z2, which can be lifted

to actions on Aθ. The previous actions of Z2, Z4 and Z6 are implemented by

matrices in SL2(Z). It is demonstrated that the standard canonical projective

module over Aθ, aka the Bott class (which is a completion of S (R), Schwartz

functions on R), can be made equivariant by the action of F yielding a pro-

jective module over the crossed product algebra AθoF . It can be shown that

the Bott class along with the identity element generate the K0-group of the

noncommutative torus.

Recently, actions of finite groups on higher-dimensional noncommutative

tori have been considered in the article [32]. Let W ∈ GLn(Z) be the genera-

tor of the finite cyclic group F acting on Zn such that W T θW = θ. Then the

authors in [32] showed that there exists an action of F on the n-dimensional

Aθ. Let us assume that n is an even number, n = 2m. To analyse projec-

tive modules over the corresponding crossed product algebras, we restrict our

analysis to the class of Heisenberg modules which are some completions E of

S (Rm). We show that the classes of these projective modules (which may be

thought of as higher dimensional versions of the Bott class) over the higher

dimensional noncommutative tori can be made F -equivariant. The metaplec-

tic action (action of the symplectic group on a suitable Hilbert space) is the

key tool in this problem. This generalises the previous results of Walters and

Echterhoff et al..

Theorem 1.0.2. The metaplectic action ofW on S (Rm) extends to an action

of E such that E becomes an F -equivariantly finitely generated projective Aθ
module and thus a finitely generated projective module over Aθ o F .

Coming back to the flip case, note that this action can be defined for general

n-dimensional tori Aθ. It is not hard to see that all the Heisenberg modules

can be extended as modules over the crossed product Aθ o Z2. Though, in

[27], the authors have computed the K-theory of AθoZ2, some computations

in [27] are not clear to us. They used an exact sequence by Natsume ([45]) to

compute the K-thoery of Aθ o Z2. For crossed products like Ao (Z2 ∗ Z2),

Natsume’s exact sequence looks like

3



1 Introduction

K0(A) −−−→ K0(Ao Z2)⊕K0(Ao Z2) −−−→ K0(Ao Z2 ∗ Z2)x
ye1

K1(Ao Z2 ∗ Z2) ←−−− K1(Ao Z2)⊕K1(Ao Z2) ←−−− K1(A).

In the final chapter we study this exact sequence, especially the connecting

map e1. We find its connection to the classical Pimsner-Voiculescu exact se-

quence. Recall that for crossed products like Ao Z, the Pimsner-Voiculescu

sequence looks like

K0(A) −−−→ K0(A) −−−→ K0(AoZ)x
ye2

K1(AoZ) ←−−− K1(A) ←−−− K1(A).

The result can be stated as follows:

Theorem 1.0.3. For unital A, the connecting maps of the above two sequences

commute in the following sense:

K0(AoZ2 ∗ Z2)
e1 //

p

&&

K1(A)

K0(AoZ),

e2

OO

where p is the map induced by the natural map from AoZ2∗Z2 = (AoZ)oZ2

to M2(AoZ).

Using this result, we discuss the K-theory of crossed products of 3-dimensional

noncommutative tori with respect to the flip action and describe the genera-

tors of K-theory (see Corollary 7.0.4). This explains the computations of [27]

for the three dimensional case. Presumably this can be done for the whole

K-theory computations for the n-dimensional case, that we plan to write down

elsewhere.

Though, till now, mostly we talked about C*-algebras, we can also define

smooth sub-algebras of noncommutative tori. For the noncommutative torus

Aθ, we denote the smooth sub-algebra by A∞
θ , which is a locally convex Fréchet

algebra. Then it can be shown that the action of F on Aθ restricts to an action

of A∞
θ . As the algebras A

∞
θ or A∞

θ oF can be thought of smooth functions on

4



noncommutative spaces (in this case tori or quotients of tori by finite groups),

it is also interesting to consider (co)-homology theory of these algebras. Indeed,

one can define K-theory or periodic cyclic theory (HP) on the category of these

locally convex algebras. HP can be thought of as a noncommutative version of

de-Rham theory. Connes showed that for a locally convex algebra A, there is a

morphism ch : K(A)→ HP(A), which resembles the classical Chern character.

Though there is a good number of tools to compute K-theory, computation

of HP even for well known algebras is an active area of research. The com-

putation of K-theory or HP for A∞
θ or A∞

θ o F is somewhat reasonable since

these algebras are in a sense not too far from commutative algebras. HP for

A∞
θ is computed by Nest using his version of the Pimsner-Voiculescu exact

sequence for cyclic cohomology. Also one can use Connes’ version of the Thom

isomorphism (in K-theory or HP setting) to compute K-theory or HP of A∞
θ .

Connes’ version of the Thom isomorphism also holds in the category of C*-

algebras, which we prove and show how it can be made F equivariant for

suitable F action on Rn and A.

Let F be a compact group. Then the theorem is as follows.

Theorem 1.0.4. Let Rn act on a C*-algebra A and F also acts on Rn and

on A in a compatible way. Then

KF
∗ (AoRn) = KF

∗+n(A),

where KF is the F -equivariant K-theory on the category of C*-algebras.

The algebras AθoF are examples of “F -equivariant version” of Rieffel’s de-

formation quantisation. Using some ideas of Neshveyev ([46]) on deformation

quantisation, the above theorem leads to the K-theory computations for AθoF
(see Corollary 5.5.7). The methods implemented to prove the above theorem

involve Kasparov’s KK-theory and explicit construction of Thom and Dirac

element. One of the merit of this method is that the proof can be modified to

prove a similar theorem for smooth algebras also.

For the algebras A∞
θ oF, we also describe some zeroth cyclic cocycles which

are coming from the conjugacy classes of Zn o F (see Chapter 6). This leads

to some explicit K-theory computations of some Aθ o F (Corollary 7.0.4).

• Theorem 1.0.2 and Theorem 1.0.3 have been obtained in a joint work with

Luef ([14]).
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• The results regarding zeroth cyclic cocycles have been obtained in a joint

work with Yamashita ([15]).

• I am indebted to Xiang Tang for some ideas regarding Theorem 1.0.4.
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2 Preliminaries

We assume that the reader is familiar with basics of group C*-algebras, crossed

products of C*-algebras by locally compact groups and KK-theory of graded

C*-algebras. To fix notations we will give a brief overview of twisted group C*-

algebras and equivariant KK-theory. Since we will work mostly with discrete

or abelian groups, we assume that all our groups are unimodular.

In what follows, we use the following notations (unless otherwise specified):

1. H : a separable Hilbert space or Hilbert module over some separable

C*-algebra.

2. B(H): bounded operators on the separable Hilbert space H.

3. T: the circle group.

4. U(H): the group of unitary operators on the Hilbert space H.

5. K: the C*-algebra of compact operators.

6. L(H) : C*-algebra of adjointable operators on a Hilbert module H.

7. C[0, 1]: the C*-algebra of complex valued continuous functions on the

interval [0, 1].

8. C([0, 1], A): the C*-algebra of A-valued continuous functions on the in-

terval [0, 1], for C*-algebra A.

9. L2(G): the Hilbert space of complex valued square integrable functions

on a the locally compact group G.

2.1 Twisted group algebras

2.1.1 2-cocycles on a group and twisted group C*-algebras

Let G be a locally compact unimodular group. A Borel map ω : G × G → T
is called a 2-cocycle (sometimes just cocycle) if

ω(x, y)ω(xy, z) = ω(x, yz)ω(y, z)

7



2 Preliminaries

whenever x, y, z ∈ G, and if

ω(x, 1) = 1 = ω(1, x)

for any x ∈ G.

If ω is a 2-cocycle on G, we can define the twisted convolution algebra

L1(G,ω) as the vector space of all integrable complex functions on G with

convolution and involution given by

(f ∗ω g)(x) =

∫

G

f(y)g(y−1x)ω(y, y−1x) dy,

and

f∗(x) = ω(x, x−1)f(x−1).

An ω-representation of G on a Hilbert space H is a Borel map V : G→ U(H),

the unitary group of H, such that

V (x)V (y) = ω(x, y)V (xy)

far all x, y ∈ G.One example of such representation is the regular ω-representation,

which is by definition the representation Lω : G→ U(L
2(G)) given by

(Lω(x)ξ)(y) = ω(x, x−1y)ξ(x−1y)

for ξ ∈ L2(G).

From an ω-representation V : G → U(H) one defines a representation of

L1(G,ω) to B(H) also denoted V, via the formula

V (f) =

∫

G

f(x)V (x) dx

for f ∈ L1(G,ω). The reduced twisted group algebra C∗(G,ω) is defined to be

the closure (under norm topology) of the image of L1(G,ω) under the regular

ω-representation Lω.

Remark 2.1.1. One can also define the full twisted group C*-algebra in the

same sprit as the usual full group C*-algebra, but since the groups we will be

working with are amenable, it coincides (like in the untwisted case) with the

reduced twisted group C*-algebra.

Remark 2.1.2. When ω is trivial, obviously C∗(G,ω) is isomorphic to C∗(G),

the usual reduced group C*-algebra of G.

8



2.1 Twisted group algebras

2.1.2 The group H2(G,T)

Let us denote the set of all 2-cocycles of the group G by Z2(G,T).

Definition 2.1.3. Two cocycles ω, ω′ ∈ Z2(G,T) are called cohomologous if

there exists a Borel function u : G → T such that ω′ = ∂u · ω, where ∂u is

defined as

∂u(x, y) = u(xy)u(x)u(y).

Remark 2.1.4. Let ω, ω′ be cohomologous 2-cocycles. Then it is easy to check

that the corresponding reduced twisted group C*-algebras are isomorphic. The

isomorphism is given by f 7→ u · f, from L1(G,ω′)→ L1(G,ω), which extends

to an isomorphism of the corresponding C*-algebras.

Define H2(G,T) to be the set Z2(G,T) modulo cohomologous 2-cocycles. It

is easily checked to be an abelian group with obvious multiplication.

Remark 2.1.5. If one is familiar with group (co)homology of discrete groups

(see [11] for an account of that), then there is a universal coefficient theorem

saying that

H2(G,T) = Hom(H2(G,Z),T).

Remark 2.1.6. Let G be finitely generated abelian. A map σ : G×G→ T is

said to be a bicharacter if σ(g, ·) and σ(·, g) are homomorphisms from G to T
for each g ∈ G. It is easy to see that every bicharacter is a 2-cocycle.

Sometimes it is easy to determine the bicharacters. Also there is a theorem

[36, Theorem 7.1] saying that every 2-cocycle on a torsion free finitely generated

abelian group is cohomologous to a bicharacter.

2.1.3 Some basic examples

Example 2.1.7. Let F be a finite cyclic group. Then any 2-cocycle is coho-

mologus to the trivial one. One might use Remark 2.1.5 to show this (using

the fact that H2(F,Z) is trivial).

Example 2.1.8. Let G be the group Zn. For each n × n real antisymmetric

matrix θ, we can construct a 2-cocycle on this group by defining ωθ(x, y) =

eπi(〈−θx,y〉). The corresponding twisted group C*-algebra C∗(G,ωθ) is called

noncommutative torus (also denoted by Aθ). It is true that any 2-coycle on Zn

is cohomologous to ωθ for some n×n real antisymmetric matrix θ. By Remark

2.1.6, it is enough to look at bicharacters. It is not difficult to see that any

bicharacter of Zn can be written in the form σθ′(x, y) = eπi(〈−θ
′x,y〉), for some

n× n real matrix θ′. Set θ = θ′− (θ′)T . Then σθ′ and ωθ are cohomologous by

the function u(x) = eπi(〈−θ
′x,x〉).

9



2 Preliminaries

2.1.4 Group actions on K

In this subsection we will see how twisted group C*-algebras of a group G are

naturally associated to crossed product-C*-algebras of K by some action of G.

Let P(U) = U/T1 denote the projective unitary group. Note that Aut(K) =

P(U). Any ω-representation V : G→ U gives rise to an action α : G→ Aut(K)

in the following way. Define αx = Ad(V (x)) for x ∈ G (one might take

the regular ω-representation as V ). Set ω(x, y) = ω(x, y). Then the reduced

crossed product Koα G is isomorphic to C∗(G,ω)⊗K

The isomorphism is given by the map φ : L1(G,ω)�K→ L1(G,K)

φ(f ⊗ L)(x) = f(x)LV (x)∗ (2.1.1)

for f ∈ L1(G,ω), L ∈ K.

On the other hand if G acts on K by α, one has the following diagram

G Aut(K) = P(U)

U ,

α

V
s

where s is a Borel section. It is easy to check that the Borel map V satisfies

V (x)V (y) = ωα(x, y)V (xy)

for some 2-cocycle ωα ∈ Z
2(G,T) and also αx = Ad(V (x)).

The connection between twisted group C*-algebras and crossed products as

discussed above is a manifestation of so-called Packer-Raeburn stabilisation

trick [49].

2.2 Equivariant KK-theory

We recall the basic definitions of Kasparov’s KK group. For details we refer

to the wonderful book of Blackadar [8]. KK-theory is a bivariant theory on

the category of C*-algebras. This turns out to be a useful tool to compute

K-theory of C*-algebras.

Let G be a locally compact group. Let A,B be separable Z2-graded (often

we say just graded) G-C*-algebras. Define EG(A,B) = {(H, ψ, T )}, where H

is a G-Hilbert B-module (countably generated and graded), ψ : A→ L(B) is

a graded *-homomorphism with

ψ(ga) = gψ(a), g ∈ G, a ∈ A,
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2.2 Equivariant KK-theory

and T ∈ L(H) is such that

(T − T ∗)ψ(a) ∈ K(H)

(gT − T )ψ(a) ∈ K(H)

[ψ(a), T ] ∈ K(H)

ψ(a)(I − T 2) ∈ K(H)

for all g ∈ G, a ∈ A. Here [x, y] denotes the graded commutator of x, y ∈ A

in the graded algebra A.

Definition 2.2.1. • Let (H, ψ, T ) ∈ EG(A,B). Let C be another graded

G-C*-algebra. Also let φ : B → C be a grading preserving morphism.

Then there is a natural element φ∗(H, ψ, T ) in E
G(A,C) given by (φ∗(H), ψ⊗

1, T⊗1), φ∗(H)) denotes the tensor product of the graded Hilbert modules

H (over B) and C (viewed as Hilbert module over B via the map φ).

• Let (H, ψ, T ) ∈ EG(B,C). Let A be another graded G-C*-algebra. Let

φ : A → B be a grading preserving morphism. Then we get an element

φ∗(H, ψ, T ) in EG(A,C) given by (H, ψ ◦ φ, T ).

We call (H1, ψ1, T1) ∼= (H2, ψ2, T2) if there exists a unitary element in

L(H1,H2) (adjointable operators between H1 and H2) which intertwines ψi
and Ti for i = 1, 2. Now we define an equivalence relation ∼h on E

G(A,B). Let

(H1, ψ1, T1), (H2, ψ2, T2) be in EG(A,B). We say (H1, ψ1, T1) ∼h (H2, ψ2, T2)

if there exists (Ĥ, ψ̂, T̂ ) in EG(A,C([0, 1], B)) such that ev0,∗(Ĥ, ψ̂, T̂ ) ∼=

(H1, ψ1, T1) and ev1,∗(Ĥ, ψ̂, T̂ ) ∼= (H2, ψ2, T2), where

evx : C([0, 1], B)→ B, f 7→ f(x).

Definition 2.2.2. We define the equivariant KK-theory of A,B as

KKG(A,B) := E(A,B)/ ∼h

KKG(A,B) is an abelian group with addition and additive inverse given by

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′)

−(H, ψ, T ) = (−H,−ψ,−T ).

(−H,−ψ,−T ) denotes (H, ψ, T ) with opposite grading (see [8, Chapter VIII]

for details).

11



2 Preliminaries

2.2.1 Some formal properties of KK-theory

• KKG is a bivariant functor on the category ofG-C*-algebras with KKG(A,C)

and KKG(C, A) are equivariant K-homology and equivariant K-theory,

respectively.

• KKG is homotopy invariant and stable in both variables.

• Write KKG
0 (A,B) = KKG(A,B). If one sets KKG

1 (A,B) = KKG(A,B⊗

C1), C1 being the one dimensional Clifford algebra (with canonical grad-

ing), one has the formal Bott periodicity : KKG
1 (A,B⊗C1) ∼= KKG(A,B).

2.2.2 Kasparov product

Theorem 2.2.3 (Kasparov). Let A,B,C be separable G-C*-algebras. Then

there is a product

KKG(A,B)×KKG(B,C)→ KKG(A,C)

and a descent homomorphism

jG : KKG(A,B)→ KK(AoG,B oG).

Remark 2.2.4. Though we talk about KK-theory of C*-algebras in general,

one should really understand KK(X, Y ) purely in terms of topology for nice

topological spaces X and Y . We refer to the article [9] for an account of that.

2.3 Baum-Connes conjecture for twisted group

algebras

2.3.1 The Baum-Connes conjecture with coefficients

Let G be a locally compact group and let A be a G-C*-algebra. Then we can

consider the reduced crossed product A o G. The Baum–Connes conjecture

is about understanding the C*-algebra K-theory of A o G. The conjecture

relates its K-theory to equivariant K-homology (with coefficient A) of some

space.

Let EG be the universal space for proper action of G. We refer to the article

[6, section 1] for an overview of EG. The important thing is that the space

always exists and unique upto G-homotopy.

12



2.3 Baum-Connes conjecture for twisted group algebras

Let KKG
j (EG,A) denote the equivariant K-homology of EG with G-compact

supports and coefficients A, that is

KKG
j (EG,A) := lim

X⊂EG, Xis G−compact
KKG

j (C0(X), A) j = 0, 1.

KKG
j (EG,A) is sometimes also called the topological K-theory of G with

coefficient in A, we sometimes denote this by KTop
j (G;A).

Conjecture 2.3.1 ([5]). Let G be a locally compact Hausdorff second countable

topological group, and let A be any separable G-C*-algebra. Then there is a

group homomorphism

µ : KKG
j (EG,A)→ Kj(AoG), j = 0, 1

which is an isomorphism.

The above conjecture is the Baum-Connes conjecture with coefficients.

Remark 2.3.2. The conjecture was not formulated originally (in [5]) in the

form above. It was later modified in the form. We will see how the conjecture

with coefficient is useful for some K-theory computations.

Let us say a bit about the map µ. As we have seen in the definition of KKG,

an element of KKj
G(C0(X), A) consists of an adjointable operator on some

Hilbert module over A. This adjointable operator has some good properties,

specifically there is a Kj(A o G) valued “index”. When A = C, G is trivial

(so X is a point), this “index” is exactly the Fredholm index of some operator

on a Hilbert space. And the map µ is assigning the operator to its index.

Technically this is achieved by the Kasparov product and the descent map. We

will see a geometric interpretation of this map in the next remark (subsection).

The conjecture in this form is not true in general. There is a counter example

due to Higson, Lafforgue and Skandalis (see [29]). Although for a vast number

of groups, the conjecture is shown to be true, for example amenable groups

(see [30]).

2.3.2 A brief remark on topological K-theory of G

Let G be a (countable) discrete group. We describe a geometric picture for

the above conjecture with coefficient C. We refer to [7] for more details on

this part.

Consider pairs (M,E) such that M is a manifold without boundary, with a

given smooth proper co-compact action of G and a given G-equivariant Spinc-

structure, and E is a G-equivariant vector bundle on M . Two such pairs

are equivalent via an equivalence relation ∼ generated by the following three

relations (see [7] for details):

13
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• Bordism,

• Direct sum - disjoint union,

• Vector bundle modification.

Then we define the geometric K-theory of G as

KGeo
j (G) = {(M,E)}/ ∼

for j=0,1, according to the following condition (respectively) onM : all of whose

components have either even or odd dimension. Addition will be disjoint union

(M,E) + (M ′, E′) = (M ∪M ′, E ∪ E′).

and inverse is given by reversing the Spinc-structure of M . The main result

of this section is:

Theorem 2.3.3 (Baum, Higson, Schick [7]).

KGeo
j (G) ∼= KTop

j (G;C),

via a natural isomorphism.

Remark 2.3.4. If G is a discrete group and if one considers the Baum-Connes

conjecture without coefficients, one gets the LHS of the conjecture as KGeo
j (G).

In this picture µ sends (M,E) to the G-index of the Dirac operator on the

Spinc manifold M which is an operator on the Hilbert space L2(M,E), the

space of square integrable sections of the vector bundle E.

2.3.3 The conjecture for twisted group algebras

Let G be as before and let ω ∈ H2(G,T). Then, as we have seen we get an

action of G on K corresponding to ω. Let us denote K to be Kω when K is

equipped with the action of G corresponding to regular ω-representation as in

Section 2.1.4.

Recall from Section 2.1.4 that C∗(G,ω) ⊗ K ∼= Kω o G. Since K-theory

is stable we have K∗(Kω o G) ∼= K∗(C
∗(G,ω)). So using 2.3, we have the

following conjecture

Conjecture 2.3.5. Let [ω] ∈ H2(G,T). Then we define ω-twisted topological

K-theory KTop
j (G;ω) := KTop

j (G;Kω). The twisted assembly map for G is then

defined to be

µω : K
Top
j (G;ω)→ Kj(Kω oG) ∼= Kj(C

∗(G,ω)).

14



2.4 Some tools to compute K-theory

It is obvious that the definition does not depend on the choice of the repre-

sentative ω of the class [ω] ∈ H2(G,T). For more details of this map we refer

to [22, Section 1].

If G satisfies the Baum-Connes conjecture with coefficients (for example

amenable groups) as in 2.3.1, then obviously for G, µω is an isomorphism for

all ω ∈ H2(G,T). It might be possible that there are groups for which the

Baum-Connes conjecture with coefficients is true for K as coefficient but not

in general.

2.4 Some tools to compute K-theory

2.4.1 Crossed products by by Z and by R

Let us talk about two particular cases of the Baum-Connes conjecture. We

start with Connes’ version of the Thom isomorphism.

Theorem 2.4.1. (Connes) For a strongly continuous action α : R→ Aut(A),

we have

Kj(A) ∼= K1+j(Aoα R). (2.4.1)

Though it is called the Connes-Thom isomorphism theorem, this is not a

generalisation of the classical Thom isomorphism theorem which deals with

vector bundles over manifolds and their K-theory. Though the Connes-Thom

isomorphism and the classical Thom isomorphism are generalisations of Bott

periodicity. In (2.4.1), when the action of R is trivial, we have Kj(A) ∼=

K1+j(A⊗ C0(R)) which is exactly the Bott periodicity.

Theorem 2.4.2. (Pimsner–Voiculescu) If α ∈ Aut(A), one has the following

exact sequence

K0(A)
id−K0(α

−1)
// K0(A)

i0 // K0(Aoα Z)

��

K1(Aoα Z)

OO

K1(A)i1
oo K1(A)

id−K1(α
−1)

oo

(2.4.2)

where i0, i1 are induced from inclusions.

Remark 2.4.3. The above two theorems can be derived from one another.

See [18, 10.2.2] for the proof of the Connes-Thom isomorphism theorem from

the Pimsner-Voiculescu. As mentioned, These two theorems can also be de-

rived from the Baum-Connes conjecture for the groups R and Z (though the

computations are not straight forward).
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2.4.2 The Künneth formula

This is a generalisation of the classical Künneth formula to the K-theory of

C*-algebra setting. Classically this formula says that the cohomology of a

product of two spaces is the tensor product of the cohomologies of the two

factors. One special case of the C*-algebrais version of this, is the following:

Theorem 2.4.4. ([8, Section 23]) Let A,B be C*-algebras. Assume Kj(B) is

torsion-free and A is separable and type I (hence nuclear). Then

K0(A⊗ B) ∼= (K0(A)⊗K0(B))⊕ (K1(A)⊗K1(B)),

K1(A⊗ B) ∼= (K0(A)⊗K1(B))⊕ (K1(A)⊗K0(B)).

.

2.4.3 An easy computation

Let us recall that for an n × n real antisymmetric matrix θ, we defined the

noncommutative torus Aθ as the twisted group C*-algebra C∗(Zn, ωθ). Let
us give another picture of the noncommutative torus. Aθ is defined as the

universal C*-algebra generated by unitaries U1, . . . , Un subject to the relations

UkUj = e2πiθjk UjUk for j, k = 1, · · · , n,

where θ = (θij) is a skew-symmetric real n × n matrix. Both pictures can be

easily checked to be compatible. The isomorphism (of C∗(Zn, ωθ) and Aθ as

defined just now) sends δxi ∈ C
∗(Zn, ωθ) to Ui where xi = (0, · · · , 1, · · · , 0),

1 being in the i-th coordinate. Denote by θ′ the (n − 1) × (n − 1) upper left

corner of θ. So the generators of Aθ′ are given by U1, . . . , Un−1.

Let ϕ be the automorphism on Aθ′ given by ϕ(Uj) = e2πiθj,nUj for j =

1, . . . , (n− 1) which is homotopic to the identity automorphism.

Proposition 2.4.5. Aθ′ oϕ Z ∼= Aθ

Proof. Follows from generators and relations of both algebra.

For the crossed product algebra Aθ′ oϕZ, the Pimsner–Voiculescu sequence

is

K0(Aθ′)
id−K0(ϕ

−1)
−−−−−−−→ K0(Aθ′)

i0
−−−→ K0(Aθ)x

y
K1(Aθ) ←−−−

i1
K1(Aθ′) ←−−−−−−−

id−K1(ϕ−1)
K1(Aθ′).
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2.5 Some application of the twisted Baum-Connes conjecture

Since ϕ is homotopic to the identity, id − Ki(α
−1
θ ) is the zero map. Hence

we have reduced the computation of K0(Aθ) to K0(Aθ′), and Aθ′ is an n − 1

dimensional noncommutative torus. Since K0(C(T)) = K1(C(T)) = Z, by
induction on n we get

K0(Aθ) ∼= Z2n−1 ∼= K1(Aθ). (2.4.3)

Remark 2.4.6. Notice that K0(Aθ) is independent of the parameter θ. We

will investigate this phenomenon more conceptually later.

Remark 2.4.7. When θ = 0, one can also use the Künneth formula and the

fact K0(C(T)) = K1(C(T)) = Z to compute the K-theory of Aθ = A0 which is

just C(Tn) by Pontryagin duality.

2.5 Some application of the twisted

Baum-Connes conjecture

We have just seen that the K-theory of Aθ = C∗(Zn, ωθ) is independent of

θ. In other words, K-theory is rigid under deformation of the group Zn. As

the Baum-Connes conjecture is an incarnation of Pimsner–Voiculescu exact

sequence, this phenomenon can be explained for more general groups using the

Baum-Connes conjecture. The main idea used in this explanation is homotopy

invariance of KKG.

Let us denote the set of all 2-cocycles of a group G with values in R (defined

in the same way as if taking values in T) by Z2(G,R). If we have an element

c ∈ Z2(G,R), we can define the element ωc ∈ Z
2(G,T) by ωc(x, y) = eπic(x,y).

Definition 2.5.1. An element [ω] ∈ H2(G,T) is called real if there exists a

cocycle c ∈ Z2(G,R) such that ω is cohomologous to ωc.

The main theorem ([22, Corollary 1.13]) of this section is the following:

Theorem 2.5.2. Let G be a group which satisfies the twisted version of the

Baum-Connes conjecture for all 2-cocycles of G, and let ω ∈ Z2(G,T) be a

cocycle such that [ω] is real. Then Kj(C
∗(G,ω)) ∼= Kj(C

∗(G)).

Idea of the proof. Using that [ω] is real, one defines a homotopy (a continuous

path of 2-cocycles in Z2(G,T)) between [ω] and the trivial cocycle. Since G

satisfies the twisted version of the Baum-Connes conjecture for all 2-cocycles

of G (in particular for the 2-cocycles lying at the continuous path), using the

left hand side of the Baum–Connes conjecture and homotopy invariance one

can prove the theorem. For details we refer to [22, Corollary 1.13].
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Problem 2.5.3. One can also define a twisted version of Geometric K-homology

as in 2.3.2. The author in [4] describes how equivariant geometric K-homology

of a discrete group can be twisted by a 2-cocycle. It would be interesting to

see how the above theorem makes sense using the geometric LHS of the twisted

Baum-Connes conjecture ([4]).

Coming back to the example considered in 2.4.3, let θ be any skew symmetric

real n× n matrix. Then we have defined Aθ = C∗(Zn, ωθ).
Since [ωθ] is a real cocycle (by definition of the 2-cocycle), Theorem 2.5.2

immediately gives the computation of the K-theory of a higher dimensional

noncommutative torus, as in 2.4.3. The K-theory in the untwisted case is

computed using the Künneth formula.

We want to describe one more example, which shows the power of the above

theorem.

Example 2.5.4. Suppose W ∈ GLn(Z) is a matrix of finite order. Let F :=

〈W 〉 be the finite group (generated byW ) acting on Zn by matrix multiplication

and let θ be an n × n real skew-symmetric matrix such that W T θW = θ. Let

G := Zn oW F . We call such group G a crystallographic group. Then we can

define a 2-cocycle ω′
θ on G by

ω′
θ((x, s), (y, t)) = ωθ(x, s · y). (2.5.1)

It is easy to check that ω′
θ satisfies the 2-cocycle conditions. Similar to the

previous case, [ω′
θ] is also real. So the K-theory of C∗(G,ω′

θ) is same as the

K-theory of C∗(G).

One might say that 2.5.1 is not the only way to define 2-cocycle on G.

Indeed, there are other ways of defining cocycles on G. We will shortly see

that K-theory changes when we define 2-cocycle on G in a slightly different

way.

Let us consider the action of Z2 on Z3 by the matrix

A =




1 0 0

0 −1 0

0 0 −1


 .

Also consider the cocycle ωθ on Z3 where

θ =




0 0 0

0 0 θ1
0 −θ1 0


 .
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2.5 Some application of the twisted Baum-Connes conjecture

Let us construct the following cocycle ω onG = Z3oAZ2. Write (x1, x2, x3) =

x ∈ Z3 and (y1, y2, y3) = y ∈ Z3. Define

ω((x, s), (y, t)) =

{
−ω′

θ((x, s), (y, t)) when s = −1, y1 is odd,

ω′
θ((x, s), (y, t)) otherwise,

where ω′
θ is as before. It is checked that C∗(G,ω) is isomorphic to Aθ oω Z2

where the Z2 action on Aθ is given by

U1 → −U1, U2 → U−1
2 , U3 → U−1

3 .

One can also use [49, Theorem 4.1] to see the above. On the other hand

C∗(G,ω′
θ) is isomorphic to Aθ oω′

θ
Z2 where the Z2 action on Aθ is given by

U1 → U1, U2 → U−1
2 , U3 → U−1

3 .

And also Aθ oω′
θ
Z2
∼= C(T) ⊗ (Aθ1 o Z2) (Aθ1 being the two dimensional

noncommutative torus which has the flip action of Z2). Now if we compute the

K-theory of C∗(G,ω), one sees that there is a torsion in K1 (see the compu-

tation [48, Proposition 3.9]). On the other hand using the Künneth formula,

there is no torsion in the K-theory of C(T) ⊗ (Aθ1 oZ2), using the fact that

K0(Aθ1 oZ2) = Z6,K1(Aθ1 oZ2) = 0 (see [27]).

If one assumes that the action of F on Zn is “nice” and free away from the

origin, the counterexamples like above do not work. We shall discuss this in

detail.

Let us consider the matrix

W =




a11 a12 · · · · · · a1n

a21
. . . . . . a21

...
. . .

. . .
...

a(n−1)1
. . . . . . a(n−1)n

an1 · · · · · · an(n−1) ann




∈ GLn(Z).

Suppose there is a well defined action φ = (α, λ, η) of F = 〈W 〉 on the

n-dimensional noncommutative torus Aθ by:

Ui → λiηiU
a1i
1 · · ·U

ani

n
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for 1 ≤ i ≤ n, λ = (λi)1≤i≤n ∈ T, η = (ηi)1≤i≤n ∈ T.

Also let there is an action (α, η) of F given by

Ui → ηiU
a1i
1 · · ·U

ani
n

for 1 ≤ i ≤ n.

We have the following theorem.

Theorem 2.5.5. IfW acts on Zn freely (away from the origin), then Aθoα,λ,η

F is isomorphic to Aθ oα,η F.

Proof. Let

α =




α11 α12 · · · · · · α1n

α21
. . . . . . α21

...
. . .

. . .
...

α(n−1)1
. . . . . . α(n−1)n

αn1 · · · · · · αn(n−1) αnn




∈Mn(Q).

For each i, 1 ≤ i ≤ n, let us define the following unitaries

U ′
i = λα1i

1 λα2i

2 · · ·λ
αni

n Ui.

Clearly U ′
i , 1 ≤ i ≤ n generate Aθ.

Now

φ(U ′
i) = λα1i

1 λα2i

2 · · ·λ
αni

n λiηiU
a1i
1 · · ·U

ani

n .

A simple computation shows that

φ(U ′
i) = µiηiU

′a1i
1 · · ·U ′ani

n

where

µi =λ
α1i−α11a1i−α12a2i···−α1nani

1

λα2i−α21a1i−α22a2i···−α2nani

2 · · ·

λ
(αii+1)−αi1a1i−αi2a2i···−αinani

i · · ·

λαni−αn1a1i−αn2a2i···−αnnani

n .

Now
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2.5 Some application of the twisted Baum-Connes conjecture

µi =λ
−α11a1i−α12a2i···+α1i(1−aii)···−α1nani

1

λ
−α21a1i−α22a2i···+α2i(1−aii)···−α2nani

2 · · ·

λ
1−αi1a1i−αi2a2i···+αii(1−aii)···−αinani

i · · ·

λ
−αn1a1i−αn2a2i···+αni(1−aii)···−αnnani

n .

If we want µi = 1 for all i, we can put exponents of λm to be zero for

1 ≤ m ≤ n, for each µi. This boils down to a system of equation given by the

matrix equation αtW ′ = Id, where

W ′ =




a11 − 1 a12 · · · · · · a1n

a21 a22 − 1
. . . a21

...
. . .

. . .
...

a(n−1)1
. . . . . . a(n−1)n

an1 · · · · · · an(n−1) ann − 1




.

By Cramer’s rule, we have a solution for µi = 1, for all i, of the variable

(αij) under the condition

det(W ′) 6= 0.

Note that, since the matrix W ′ has integer entries, and as we use elementary

row operations to get a solution, we always get a rational solution. Since W

acts freely (away from zero) on Zn, the above condition is satisfied. So for the

variables U ′
i , the action φ corresponds to the action α. Hence Aθ oα,λ,η F is

isomorphic to Aθ oα,η F.

LetW be as above. For the following corollaries, we describe H2(ZnoWF,T)
first. Borrowing notations from above, any cocycle in H2(Zn oW F,T) is

cohomologus to a cocycle ω given by

ω((x, s), (y, t)) = ωθ(x, s · y)f(s, s · y),

where f is a function from F × Zn to T satisfying

f(st, x) = f(t, x)f(s, t−1 · x),
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ωθ(s · x, s · y) = ωθ(x, y)f(s, s · (x+ y))(f(s, s · x)f(s, s · y))−1.

See [50, Page 715] for the proof of above fact. Since the above ω is dependent

on θ and f , we denote it by ωθ,f . Note that when f ≡ 1, then ωθ,f is exactly

ω′
θ which was discussed earlier. Note that f(s, 0) = 1 and f(1, x) = 1, which

imply ωθ,f is ωθ and trivial when restricted to Zn and F , respectively.

For the following corollaries assume that ωθ(s · x, s · y) = ωθ(x, y), i.e.

f(s, s · (x+ y))(f(s, s · x)f(s, s · y))−1 = 1.

Corollary 2.5.6. C∗(Zn oW F, ωθ,f ) ∼= C∗(Zn oW F, ω′
θ).

Proof. From [49, Theorem 4.1], C∗(Zn oW F, ω′
θ) is isomorphic to Aθ oα,η

F , and C∗(Zn oW F, ωθ,f ) is isomorphic to Aθ oα,λ,η F , for set of scalars

λ = (λi)1≤i≤n ∈ T, η = (ηi)1≤i≤n ∈ T. By the above theorem they are

isomorphic.

Corollary 2.5.7. K∗(C
∗(Zn oW F, ωθ,f )) ∼= K∗(C

∗(Zn oW F )).

Remark 2.5.8. Though in the above corollaries we assumed that ωθ(s·x, s·y) =

ωθ(x, y), the actions in Example 2.5.4 satisfy this property with respect to the

2-cocycles of Zn (Example 2.1.8).

2.6 K-theory of twisted crystallographic group

algebras

Let us continue the discussion on crystallographic group algebras. Recall from

Example 2.5.4 that a crystallographic group G is of the form ZnoF , for some

finite cyclic group group F = Zm acting on Zn. So G fits the following exact

sequence

1→ Zn → G→ F → 1.

Let us assume that the action of F on Zn is free away from the origin. Then

Lück and Langer, in [37], computed the K-theory of group C*-algebras of these

groups using the Baum–Connes conjecture. Let us recall their construction.

One may take Rn as a model of EG (universal space of the proper G-actions),

hence G\Rn as a one for BG = G\EG (note that Rn has a canonical action

of Zn o F ). Let M denote the set of conjugacy classes of maximal finite

subgroups of G. Let us write C∗(P ) as C[P ] for P ∈ M. In the following

theorem, K̃0(C[P ]) denotes the reduced K0-group, that is, the kernel of the

map K0(C[P ])→ K0(C) induced by the trivial representation. We then have

the following theorem
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2.6 K-theory of twisted crystallographic group algebras

Theorem 2.6.1 ([37]). In the even degree, there exists an exact sequence

0
⊕

P∈M

K̃0(C[P ]) K0(C
∗(G)) K0(BG) 0,

(2.6.1)

and in the odd degree, we have K1(C
∗(G)) ' K1(BG).

Let us further assume that p = m is prime. Then any non-trivial finite

subgroup P of G must be isomorphic to Zp via the restriction of the projection

map G→ Zp. Thus any nontrivial finite subgroup of G represents an element

ofM. We have the following precise description of the K-groups.

Theorem 2.6.2 ([37]). The number n′ = n/(p− 1) is an integer, and |M| =

pn
′

. The rank of the K-homology groups of BG are given by

rk K0(BG) =
2n + p− 1

2p
+

(p− 1)pn
′−1

2
,

rk K1(BG) =
2n + p− 1

2p
−

(p− 1)pn
′−1

2
.

Theorem 2.6.3 ([37]). Ki(C
∗(G)) is torsion free and

rk K0(C
∗(G)) =

2n + p− 1

2p
+

(p− 1)pn
′−1

2
+ (p− 1)pn

′

,

rk K1(C
∗(G)) =

2n + p− 1

2p
−

(p− 1)pn
′−1

2
.

Thus we know the dimensions of the K-theory groups of the group algebras

of G = ZnoZp. As we have noticed in Example 2.5.4, real cocycles of G do not

give different K-theory of twisted group algebra of G, we get the understanding

of Ki(C
∗(G,ω)), for exponential cocycle ω. Though it is very important to get

the explicit description (description of the generators) of Ki(C
∗(G,ω)), which

is, in general, very difficult question. We will see, to which extent we can get

an explicit description of Ki(C
∗(G,ω)), in terms of explicit K-theory elements.

First we want to explain how projections in K̃0(C[P ]) contribute to K0(C
∗(G)

and K0(C
∗(G,ω′

θ)). Since C[P ] is isomorphic to the algebra C(P̂ ) ' Cp,

K0(C[P ]) is the free abelian group of rank p. Now suppose g is a generator of

P . The minimal projections of C[P ] are given by

Qj,g =
1

p

p−1∑

k=0

exp

(
i
π

p
jk

)
λgk
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2 Preliminaries

for j = 0, · · · , p − 1, which also represent a basis of K0(C[P ]). Since the

projections sum up to one in K0(C[P ]), a basis of K̃0(C[P ]) is given by

Q0,g, · · · , Qp−2,g.

By the above theorem, these projections are still linearly independent in

K0(C
∗(G)). To get elements of K0(C

∗(G,ω′
θ)) (notations from 2.5.1), we need

to modify this presentation a bit. Continuing to denote a generator of P by

g, the unitary λg has order p in C∗(G). But since we modified the product in

C∗(G,ω′
θ), the unitary λ

(ω′
θ)

g need not be so. Still, since ω′
θ is cohomologically

trivial on the finite group P and hence C∗(P, ω′
θ) ' C[P ], we can always

multiply suitable z ∈ T so that the order of the unitary zλ
(ω′

θ)
g is p. Then a

similar formula

Q
(θ)
j,g =

1

p

p−1∑

k=0

exp

(
i
π

p
jk

)
zkλ

(ω′
θ)

gk

for j = 1, · · · , p− 1 will give projections which are elements of K0(C
∗(G,ω′

θ)).

Now how K0(BG) contributes to the K0(C
∗(G,ω′

θ)), is very hard to under-

stand and is not known in general. Echterhoff et al in [22] started studying

this question. For n = 2, they showed how Equation 6.4.3 can be understood

in a C*-algebraic way. We shall try to understand this question in the later

part of this thesis: as it is beyond the scope of this introductory chapter.

2.7 Locally convex algebras and m-algebras

In noncommutative geometry, as we also study geometry of noncommutative

space, one must not stick to only continuous functions on noncommutative

space but one should also study smooth functions. This gives much more

geometric information. In this section we will introduce smooth group alge-

bras which are in a way more nicely behaved compared to the twisted group

C*-algebra. These smooth algebras are locally multiplicatively closed convex

algebras, orm-algebras, which form a subclass in the category of locally convex

algebras. We start by recalling the basic definitions.

2.7.1 m-algebras

Recall that a locally convex algebra is a complete locally convex space A en-

dowed with a continuous multiplication A×A→ A. A locally multiplicatively

convex algebra, or an m-algebra A is a locally convex algebra whose topology

is determined by a family of seminorms {qα}α∈I , such that each qi is submul-

tiplicative, i.e. :

qα(ab) 6 qα(a)qα(b) for all a, b ∈ A, α ∈ I.
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2.7 Locally convex algebras and m-algebras

The m-algebras form a full subcategory mAlg in the category of locally convex

algebras.

A sequence 0 → A
p
−→ B

π
−→ C → 0 in mAlg is exact if it is exact in the

algebraic sense and the image p(A) is closed in B. It is weakly split if there

exists a continuous linear splitting map σ : C → B such that π ◦ σ = idC and

split exact if there exists a splitting map which is a homomorphism.

The projective tensor product A ⊗̂B = A ⊗̂π B of m-algebras has a natural

structure of an m-algebra, thus turning mAlg into a monoidal category.

To spare the notation, we shall from now on denote the seminorms by ‖·‖α.

Also, in this paper we often shall, for the sake of simplicity, restrict our at-

tention to Fréchet m-algebras, i.e. those on which the topology is given by a

countable system of seminorms. In this case we may always have the semi-

norms being indexed by Z>0 and assume ‖a‖m ≤ ‖a‖n, for m ≤ n, as we may

iteratively replace them by ‖a‖′m+1 := max{‖a‖m , ‖a‖m+1}.

The algebra C∞([0, 1]) of smooth functions on the unit interval is an m-

algebra with respect to the system of (semi)norms

‖f‖m = ‖f‖+
∥∥f ′
∥∥+

∥∥∥∥
f ′′

2

∥∥∥∥+ · · ·+
∥∥∥∥
f (m)

m!

∥∥∥∥ .

The cylinder algebra is the subalgebra Z A ⊆ C∞([0, 1], A) consisting of A-

valued functions whose derivatives of order ≥ 1 vanish at the endpoints.

Definition 2.7.1. Two morphisms φ0, φ1 : A → B of m algebras are called

diffeotopic if there exists a morphism φ : A→ Z B called diffotopy, such that

ev0 ◦ φ = φ0, ev1 ◦ φ = φ1.

We will now discuss some relevant examples of m-algebras.

2.7.2 Smooth compacts

Definition 2.7.2. We define the algebra K ∞ of smooth compacts by taking

the completion of the algebra M(Z>0)(algebra of Z>0 × Z>0 matrices) in the

system of seminorms given by:

‖(aij)‖m :=
∑

i,j

|1 + i|m|1 + j|m|aij |, m ∈ Z≥0.

It is straightforward to verify that the algebra K ∞ is an m-algebra.

2.7.3 Smooth Group Algebras

Definition 2.7.3. A length function, or simply length on a discrete group G

is a function L : G→ R+, such that for all g, g′ ∈ G
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2 Preliminaries

• L(gg′) ≤ L(g) + L(g′),

• L(g−1) = L(g),

• L(e) = 0 where e is the identity of G.

Two length functions L,L′ : G → R+ are equivalent if there exist positive

constants c1, c2, C1, C2 such that for all g ∈ G

−c1 + c2L(g) ≤ L′(g) ≤ C1 + C2L(g).

It is convenient to assume length functions on groups to be integer-valued.

Note that for any length function L there exists an equivalent integer-valued

length L′, e.g. L′(g) = dL(g)e.

Definition 2.7.4. Let G be a discrete group and let L be a length function on

G. We denote by S(G) = SL(G) the space of functions γ =
∑

g∈G cgδg on G

such that for all m ∈ Z>0 the following holds:

‖γ‖m = ‖γ‖m,G,L :=
∑

g∈G

|cg|(1 + L(g))m <∞.

Remark 2.7.5. For equivalent length functions we get isomorphic algebras.

Remark 2.7.6. The algebra S(G) coincides with H1,∞
L (G) introduced in [33,

Defn. 2.1]. It is verified directly ([33]) that S(G) is an m-algebra with respect

to the norms ‖·‖m,L and the convolution product.

The algebra S(G) is a dense subalgebra of `1(G). Moreover, according to

[33, Prp. 2.3, Cor. 2.4] it is stable under holomorphic functional calculus on

`1(G) and thus has the same K-theory. In [33], Jolissaint also defined another

smooth algebra H∞
L (G), with respect to a length L on the group G, which is

presently widely used in operator theory. A group G is said to have property

(RD) if the reduced group C*-algebra C∗(G) contains H∞
L (G). If the group has

(RD), then H∞
L (G) is dense and stable under holomorphic functional calculus

in C∗(G), which in some cases may simplify the calculations of K-theory for

the latter algebra. However, in general there seems to be no natural m-algebra

structure on H∞
L (G), therefore we choose H1,∞

L (G) as an example.

The algebra H1,∞
L (G) is a dense subalgebra of H∞

L (G), yet not necessarily

stable under holomorphic functional calculus in the latter. In the case when G

is finitely generated and has polynomial growth, both algebras coincide.
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2.7 Locally convex algebras and m-algebras

2.7.4 Smooth (twisted) group algebras of Zn and

crystallographic groups

For G = Zn or G = ZnoF (for the choice of natural length function) we know

that various classes of rapid decay functions coincide [33]. S(Zn) turns out to
be isomorphic to C∞(Tn), the algebra of smooth functions on the torus.

Motivated by twisted group C*-algebras, one can also define a twisted ver-

sion of S(G) which is denoted by S(G,ω), ω ∈ H2(G,T). See [44] for an

account of that. Also the author in [44] proved that for a nice class of groups

(which includes Zn,Zn o F ), S(G,ω) is holomorphically closed in C∗(G,ω).

2.7.5 K-theory and cyclic (co-)homology of m-algebras

The K-theory of m-algebras was first defined by Phillips [51]. Cuntz in [17]

defined a bivariant kk-theory on mAlg, which is a variant of Kasparov’s KK-

theory on the category of m-algebras. The K-theory satisfies the usual prop-

erties (smooth version) which are satisfied by K-theory in the category of

C*-algebras :

1. Stability: Ki(A⊗K ∞) ∼= Ki(A)

2. Bott periodicity: Ki+2(A) ∼= Ki(A)

3. Diffeotopy-invariance: if φ is a diffeotopy of twom-algebras, then Ki(φ0) =

Ki(φ1)

4. Excision: if I is a closed ideal of A then there exists a six term exact

sequence

K0(I) // K0(A) // K0(A/I)

��

K1(A/I)

OO

K1(A)oo K1(I)oo

(2.7.1)

5. Morita stability: we will discuss this point later.

In the category mAlg, or more generally in the category of locally convex

algebras one can define another functor HP, periodic cyclic cohomology, which

has similar properties as K-theory (at least in mAlg). Periodic cyclic (co-

)homology was first defined by Connes for locally convex algebras. He showed
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that it is a noncommutative generalisation of the classical de-Rham theory.

The explicit theorem that connects HP to the de-Rham theory is so-called

Hoschild-Konstant-Rosenberg theorem. Similar to the classical Chern charac-

ter, Connes constructed the Chern character from HP to K-theory. Cuntz later

defined a bivariant version of HP∗ (which we denote by HP∗ again) and proved

that there exists a (unique in some sense) Chern character on the category of

m-algebras

ch : kk∗ → HP∗

In mAlg, Cuntz also proved excision for bivariant HP, in both variables.

Theorem 2.7.7. Let 0 → A → B → C → 0 be a short exact sequence of

m-algebras. Then excision holds for HP∗.

HP0(I) // HP0(A) // HP0(A/I)

��

HP1(A/I)

OO

HP1(A)oo HP1(I),oo

(2.7.2)

where the maps (except vertical ones) are induced from the maps in the short

exact sequence.

Now we recall the versions of the Connes–Thom isomorphism and the Pimsner–

Voiculescu exact sequence form-algebras (and also for locally convex algebras).

By an automorphism of a locally convex algebra we mean an automorphism

which is isometric in each seminorm. For Z- and R-action on m-algebras A,

one can also define smooth versions of the crossed products AoZ and AoR,
which are again m-algebras.

Theorem 2.7.8. [23] [Elliot-Natsume-Nest] For an action α : R → Aut(A),

we have

HPj(A) ∼= HP1+j(Aoα R). (2.7.3)

In 2.7.3, when the R-action is trivial, we have HPj(A) ∼= HP1+j(A⊗S(R)),

which is the Bott periodicity for HP .

Theorem 2.7.9. [47][Nest] If α ∈ Aut(A), one has the following exact se-

quence (in the homology level)

HP0(A)
id−HP0(α

−1)
// HP0(A)

i0 // HP0(Aoα Z)

��

HP1(Aoα Z)

OO

HP1(A)i1
oo HP1(A)

id−HP1(α
−1)

oo

(2.7.4)
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2.7 Locally convex algebras and m-algebras

And in the cohomology, we have

HP0(A)

��

HP0(A)
id−HP0(α)
oo HP0(Aoα Z)i0

oo

HP1(Aoα Z)
i1 // HP1(A)

id−HP1(α)
// HP1(A)

OO
(2.7.5)

where i0, i1 are induced from inclusions.

Example 2.7.10. Using the above exact sequence one can easily compute the
periodic cyclic (co)-homology groups for smooth noncommutative tori. Re-
call that a smooth noncommutative torus is the smooth group algebra A∞

θ :=
S(Zn+1, ωθ), which also can be written as the smooth crossed product S(Zn, ωθ′)o
Z, where the action is smoothly homotopic to the trivial action (just like the
C*-case). Using the computations similar to K-theory computations of non-
commutative tori, one gets the following two short exact sequences:

0 −−−→ HP0(S(Z
n, ωθ′)) −−−→ HP0(S(Z

n, ωθ′)o Z) −−−→ HP1(S(Z
n, ωθ′)) −−−→ 0

0 −−−→ HP1(S(Zn, ωθ′)) −−−→ HP1(S(Zn, ωθ′)oZ) −−−→ HP0(S(Zn, ωθ′)) −−−→ 0

Using induction on n, and knowing that

HP0(C
∞(T)) = C, HP1(C

∞(T)) = C,

we get

HP0(A
∞
θ ) = C2(n−1)

, HP1(A
∞
θ ) = C2(n−1)

.

Remark 2.7.11. Since the Chern character from K∗(C
∞(T2))⊗C to HP∗(C

∞(T2))

is an isomorphism (by a result of Baum and Connes, see [58, Page 279-80,

equation 11 and 13]), we also know HP∗(C
∞(T2)) from the K∗(C

∞(T2)),

which was discussed earlier. Using this one can compute the HP∗(C∞(T2),

which results to the same result as in the above example for the case θ = 0.
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3 Noncommutative tori and

K-theory

This chapter is organised as follows:

In the first section of this chapter we recall some basics of groupoids, twisted

groupoid C*-algebras and their K-theory. In the second section we construct

the continuous field of projective modules and prove our main theorem. In the

third section we show how our theorem could be used to give explicit generators

of the K0 groups of the noncommutative tori: we work out the three and four

dimensional cases in detail.

Notation: e(x) denotes the number e2πix .

3.1 Twisted groupoid algebras and their K-theory

We assume that the reader is familiar with basic notions of locally compact

Hausdorff groupoids. We refer to the book of Renault [53] for a basic course on

groupoids and representations of those. To introduce the notations we recall

the definition of 2-cocycle on a groupoid.

Definition 3.1.1. Let G be a locally compact Hausdorff groupoid. A continu-

ous map ω : G(2) → T is called a 2-cocycle if

ω(x, y)ω(xy, z) = ω(x, yz)ω(y, z),

whenever (x, y), (y, z) ∈ G(2) and

ω(x, d(x)) = 1 = ω(t(x), x),

for any x ∈ G, where G(2) denotes the composable pairs of G and d, t denote

the domain and the range map, respectively.

Definition 3.1.2. The C*-algebra C∗(G,ω) is defined to be the enveloping C*-

algebra of the ω-twisted left regular representation of the groupoid G (which is

assumed to have a Haar system).
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3 Noncommutative tori and K-theory

Example 3.1.3. Let G be the group (hence groupoid) Zn. Then for G, the

above definition coincides with the definition of 2-cocycle of G. So for an

antisymmetric matrix θ, we have noncommutative torus C∗(Zn, ωθ) = Aθ. It

is well known that H2(Zn,T) ∼= T
n(n−1)

2 .

Let [a, b] be a closed interval. Let us consider the transformation groupoid

Zn × [a, b] for trivial Zn action on [a, b]. Suppose ωr be a continuous family

(with respect to r ∈ [a, b] and in the topology of T
n(n−1)

2 ) of 2-cocycles on the

group Zn. We define the following 2-cocycle ω on the groupoid Zn × [a, b]:

ω(x, y, r) = ωr(x, y), when x, y belong to the r-fiber, and when x, y do not

belong to same r-fiber, then ω(x, y, r) is defined to be zero. Then we have the

following evaluation map

evr : C
∗(Zn × [a, b], ω)→ C∗(Zn, ωr), r ∈ [a, b].

The following theorem is due to Echterhoff et al. [22].

Theorem 3.1.4. Let [p1], [p2], · · · , [pm] ∈ K0(C
∗(Zn × [a, b], ω)). Then the

following are equivalent:

1. [p1], [p2], · · · , [pm] form a basis of K0(C
∗(Zn × [a, b], ω)).

2. For some r ∈ [a, b], the evaluated classes [evr(p1)], [evr(p2)], · · · , [evr(pm)]

form a basis of K0(C
∗(Zn, ωr)).

3. For every r ∈ [a, b], the evaluated classes [evr(p1)], [evr(p2)], · · · , [evr(pm)]

form a basis of K0(C
∗(Zn, ωr)).

Proof. See remark 2.3 of [22].

3.2 Projective modules over bundles of

noncommutative tori

As the pfaffian of an even dimensional skew symmetric matrix will play a

central role in the construction of our continuous field, we recall the definition

of the pfaffian.

Definition 3.2.1. The pfaffian of a 2p×2p skew symmetric matrix A := (aij)

is a polynomial, denoted by pf(A), in the entries aij (i < j) such that pf(A)2 =

detA and pf(J ′′
0 ) = 1, where J ′′

0 is the block diagonal matrix constructed from

p identical 2× 2 blocks of the form
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3.2 Projective modules over bundles of noncommutative tori

J ′
0 =

(
0 1

−1 0

)
.

So

J ′′
0 =




J ′
0

J ′
0

. . .

J ′
0


 .

It can be shown that pf(A) always exists and is unique. To give some

examples,

pf

(
0 θ12
−θ12 0

)
= θ12,

pf




0 θ12 θ13 θ14
−θ12 0 θ23 θ24
−θ13 −θ23 0 θ34
−θ14 −θ24 −θ34 0


 = θ12θ34 − θ13θ24 + θ14θ23.

More generally, if n = 2m, for

θ :=




0 θ12 · · · · · · θ1n

−θ12
. . . . . . θ2n

...
. . .

. . .
...

−θ1(n−1)
. . . . . . θ(n−1)n

−θ1n · · · · · · −θ(n−1)n 0




,

pfaffian of θ is given by
∑

ξ(−1)
|ξ|
∏m

s=1 θξ(2s−1)ξ(2s), where the sum is taken

over all elements ξ of the permutation group Sn such that ξ(2s − 1) < ξ(2s)

for all 1 ≤ s ≤ m and ξ(1) < ξ(3) < · · · < ξ(2m − 1). Define SP (p,R) :=

{W ∈ GL2p(R) : W tJ ′′
0W = J ′′

0 }. Let us fix a number n. Let n = 2p + q

for some p ∈ Z and q ∈ Z>0. Recall that a skew-symmetric matrix is totally

irrational if the off diagonal entries are rationally linearly independent and

not rational. Let us fix any totally irrational n × n skew symmetric matrix

ψ :=

(
ψ11 ψ12

ψ21 ψ22

)
with the top upper 2p× 2p left corner ψ11 having positive

pfaffian. Also let θ :=

(
θ11 θ12
θ21 θ22

)
be any n×n skew-symmetric matrix such

that it has similar properties as ψ, i.e θ11, the left 2p× 2p corner, has positive

pfaffian.
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Let I := [0, 1] and choose a path γ parametrised by I from ψ to θ in the set

of n×n antisymmetric matrices, where ψ11 and θ11 are connected by a path γ11
in the space of 2p × 2p antisymmetric matrices with positive pfaffian. Since

the latter is path connected (being isomorphic to GL+
2p(R)/SP (p,R)1), the

choice is always possible. The matrices ψ12 and θ12, ψ21 and θ21, ψ22 and θ22
are connected by straight line homotopies, which will be denoted by γ12, γ21
and γ22, respectively.

For r ∈ I, we have

γ(r) =

(
γ(r)11 γ(r)12
γ(r)21 γ(r)22

)

(notice that γ(r)11 is the 2p × 2p block). Let Zn × I be the transformation

groupoid with the action of Zn on I being trivial. We will construct a 2-cocycle

on this groupoid. Fibre-wise, the C*-algebra of this twisted groupoid algebra

will be just the n-dimensional noncommutative torus with parameter γ(r).

Define Ω(x, y, r) = e((x · γ(r)y)/2), when x, y are in the r-fibre (r ∈ I), and

Ω(x, y, r) = 0 if x, y belong to different fibres. We will use the same approach

of Rieffel [54] to construct finitely generated projective C∗(Zn×I,Ω)-modules,

which represent a suitable class (Er) of projective modules over C∗(Zn,Ωr) :=
C∗(Zn, γ(r)), for each r ∈ I. To do this, we recall some constructions by Rieffel

and Schwartz from [40]. Define a new cocycle Ω−1 (not to be confused with

the inverse of Ω) on the groupoid by setting Ω−1(x, y, r) = e((γ(r)′x · y)/2),

where

γ(r)′ =

(
γ(r)−1

11 −γ(r)−1
11 γ(r)12

γ(r)21γ(r)
−1
11 γ(r)22 − γ(r)21γ(r)

−1
11 γ(r)12

)
,

when x, y are in the r-fibre, otherwise we define Ω−1(x, y, r) = 0. Set A =

C∗(Zn × I,Ω) and B = C∗(Zn × I,Ω−1). Then the fibre Br of B, at r ∈ I,

is the noncommutative torus C∗(Zn,−γ(r)′). Let M be the space Rp × Zq,
G :=M × M̂ and 〈·, ·〉 the natural T-valued pairing between M and M̂, where

M̂ denotes the Pontryagin dual of M . Consider the space E∞ := S (M, I)

consisting of all complex functions on M × I which are smooth and rapidly

decreasing in the first variable and continuous in the second variable in each

derivative of the first variable. Denote the set of rapidly decreasing C(I)-valued

functions on Zn by A∞ = S (Zn × I,Ω), viewed as a (dense) subalgebra of

C∗(Zn× I,Ω), and let B∞ = S (Zn× I,Ω−1), viewed as a (dense) subalgebra

of C∗(Zn × P,Ω−1), which is constructed similarly.

Following Li [40], we have the following theorem:

1For any 2p× 2p antisymmetric matrix θ, there exists an invertible matrix T such
that TJ ′′

0T
t = θ. T is unique upto right multiplication by elements of SP (p,R).

Now pf(θ) = det(T ) gives the isomorphism.
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3.2 Projective modules over bundles of noncommutative tori

Theorem 3.2.2. E∞ may be given an A∞-B∞ Morita equivalence bimodule

structure, which can be extended to a strong Morita equivalence between A and

B.

Proof. Following [40], let

T (r) =




T (r)11 0

0 Iq
T (r)31 T (r)32


 ,

where T (r)11 is a continuous family (with respect to r) of invertible matrices

such that T (r)t11J0T (r)11 = γ(r)11, J0 :=

(
0 Ip
−Ip 0

)
, T (r)31 = γ(r)21 and

T (r)32 is the matrix obtained from γ(r)22 by replacing the lower diagonal

entries by zero.

We also define

S(r) =




J0(T (r)
t
11)

−1 −J0(T (r)
t
11)

−1T (r)t31
0 Iq
0 T (r)t32


 .

Let

J =




J0 0 0

0 0 Iq
0 −Iq 0




and J ′ be the matrix obtained from J by replacing each negative entry of it

by zero. Let us now denote the matrix T (r) by Tr and S(r) by Sr. Note that

Tr can be thought as map from R̂n to Rp× R̂p×Rq× R̂q and when restricted

to Zn, it lands in Rp × R̂p × Zq × R̂q. So Tr maps Zn to G. This is an

example of an embedding map discussed in [40, 2.1]. Let P ′ and P ′′ be the

canonical projections of G to M and M̂ respectively and T ′
r , T

′′
r be the maps

P ′ ◦Tr and P
′′ ◦Tr, respectively. Similarly we define S′

r and S
′′
r as P ′ ◦Sr and

P ′′ ◦Sr, respectively. Then the following formulas define an A∞-B∞ bimodule

structure on E∞:

(fUθl )(x, r) = e(−Tr(l) · J
′Tr(l)/2)〈x, T

′′
r (l)〉f(x− T

′
r(l), r), (3.2.1)

〈f, g〉A∞(l) = e(−Tr(l) · J
′Tr(l)/2)

∫

G

〈x,−T ′′
r (l)〉g(x+ T ′

r(l), r)f̄(x, r)dx,

(3.2.2)
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3 Noncommutative tori and K-theory

(V θ
l f)(x, r) = e(−Sr(l) · J

′Sr(l)/2)〈x,−S
′′
r (l)〉f(x+ S′

r(l), r), (3.2.3)

B∞〈f, g〉(l) = e(Sr(l) · J
′Sr(l)/2)

∫

G

〈x, S′′
r (l)〉ḡ(x+ S′

r(l), r)f(x, r)dx, (3.2.4)

where l ∈ Zn.

Using the proposition 2.2 of [40] and the continuity of the families Tr and

Sr, the result follows. Completing the space E∞ with respect to the defined

inner products, we get an A-B Morita equivalence bimodule.

If we denote the completion of E∞ with respect to the inner product by E ,

the fibre-wise Morita equivalence Er is just the Morita equivalence between

Aγ(r) and A−γ(r)′ which Rieffel [54] had considered. Since both B and A are

unital, E is a finitely generated projective A-module with respect to the given

action of A on E (see the argument before proposition 4.6 in [22]). The trace

of this module Er, which was originally computed by Rieffel [54, proposition

4.3, page 289] , can be shown to be exactly the absolute value of the pfaffian

of the upper left 2p× 2p corner of the matrix γ(r). Indeed, as [54, proposition

4.3, page 289] says that trace of Er is |detT̃ (r)|, where

T̃ (r) =

(
T (r)11 0

0 Iq

)
,

the relation T (r)t11J0T (r)11 = γ(r)11 and the fact det(J0) = 1 give the claim.

3.3 Generators of K0 groups of noncommutative

tori

From Elliott’s computation of the image of the traces for noncommutative tori

and the fact that the trace Tr : K0(Aθ) → R is injective for totally irrational

θ, we can use the main theorem and 3.1.4 to compute explicit generators of

K0(Aθ) for all θ. We will explain the 3-dimensional and 4-dimensional cases

in details and the n ≥ 5 case will be just simple extrapolation of these two

examples.

We recall the following facts which will play the key role. These facts are

due to Elliott (taken from [25, beginning of page 836]):
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3.3 Generators of K0 groups of noncommutative tori

Lemma 3.3.1. Tr(K0(Aθ)) is the subgroup of R generated by 1 and the num-

bers
∑

ξ(−1)
|ξ|
∏m

s=1 θjξ(2s−1)jξ(2s) for 1 ≤ j1 < j2 < · · · < j2m ≤ n, where

the sum is taken over all elements ξ of the permutation group S2m such that

ξ(2s− 1) < ξ(2s) for all 1 ≤ s ≤ m and ξ(1) < ξ(3) < · · · < ξ(2m− 1).

Lemma 3.3.2. Tr is injective for totally irrational θ.

Before going to explicit computations, we shall say some words about the

pfaffian of an n× n skew symmetric matrix A := (aij). Let 1 ≤ l ≤ [n2 ].

Definition 3.3.3. A 2l-pfaffian minor (or just pfaffian minor) MA
2l of a skew

symmetric matrix A is the pfaffian of a submatrix of A consisting of rows and

columns indexed by i1, i2, ..., i2l for some i1 < i2 < ... < i2l.

Note that the number of 2l-pfaffian minors is
(
n
2l

)
and the number of all

pfaffian minors is 2n−1 − 1.

Let us consider the n× n antisymmetric matrix Z whose entries above the

diagonal are all 1:

Z =




0 1 · · · · · · 1

−1
. . . . . .

...
...

. . .

. . .
...

...
. . . . . . 1

−1 · · · · · · −1 0




.

Proposition 3.3.4. For any skew symmetric n × n matrix A := (aij), there

exists some positive integer t, such that all pfaffian minors of A + tZ are

positive.

Proof. For fixed l with 1 ≤ l ≤ [n2 ], M
A+tZ
2l is a polynomial in t and

MA+tZ
2l = tl + tl−1Al−1 + tl−2Al−2 + · · ·+ t1A1 + A0,

for polynomials Al−1, Al−2, · · ·A0 in entries of A := (aij). Now we can choose

such integer t such that tl dominates the other entries of MA+tZ
2l .

Since we have only a finite number of pfaffian minors, we can also choose

such integer t such that MA+tZ
2l > 0 for all l.

With the above results in hand, we can describe the generators of the K0-

group of general n-dimensional non-commutative tori. Let us start with the
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3 Noncommutative tori and K-theory

general n× n matrix θ.

θ =




0 θ12 · · · · · · θ1n

−θ12
. . . . . . θ2n

...
. . .

. . .
...

−θ1(n−1)
. . . . . . θ(n−1)n

−θ1n · · · · · · −θ(n−1)n 0




.

Using the above proposition, we can assume that all pfaffian minors of θ are

positive (since in the above proposition, A and A + tZ define the same non-

commutative torus). Fix 1 ≤ l ≤ [n2 ]. For i1 < i2 < ... < i2l, let us denote

the corresponding pfaffian minor also by Mθ
i1,i2,...,i2l

. Choose a permutation

σ ∈ Sn such that σ(1) = i1, σ(2) = i2, · · · , σ(2l) = i2l. If U1, U2, · · · , Un are

generators of Aθ, there exists an n × n skew symmetric matrix, denoted by

σ(θ), such that Uσ(1), Uσ(2), · · · , Uσ(n) are generators of Aσ(θ) and Aσ(θ) ∼= Aθ.

Note that since i1 < i2 < ... < i2l, the upper left 2l×2l block has the following

form

σ(θ)|2l :=




0 θi1i2 · · · · · · θi1i2l

−θi1i2
. . . . . . θi2i2l

...
. . .

. . .
...

−θi1i(2l−1)

. . . . . . θi(2l−1)i2l

−θi1i2l · · · · · · −θi(2l−1)i2l 0




.

Now consider the projective module constructed as completion of S (Rl ×

Zn−2l) over Aσ(θ) and denote it by Eσ(θ)|2l . The trace of this module is the

pfaffian of σ(θ)|2l, which is exactly
∑

ξ(−1)
|ξ|
∏m

s=1 θiξ(2s−1)iξ(2s) where the sum

is taken over all elements ξ of the permutation group S2l such that ξ(2s−1) <

ξ(2s) for all 1 ≤ s ≤ l and ξ(1) < ξ(3) < · · · < ξ(2l − 1).

Varying l, we get 2n−1− 1 projective modules whose traces are given by ex-

actly the numbers which appeared in Proposition 3.3.1. If θ is totally irrational

(so that Tr is injective), these modules along with the trivial class [1] generate

the K0-group of Aθ. For general θ, since all pfaffian minors are positive, for any

pfaffian minor we find a path between the corresponding σ(θ) to σ(θ′) for a

fixed totally irrational skew-symmetric matrix θ′, whose pfaffian minors are all
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3.3 Generators of K0 groups of noncommutative tori

positive. Using our main theorem and Theorem 3.1.4, Eσ(θ′)|2l , for different l’s,

along with the trivial element generate K0 of A′
θ. Hence Eσ(θ)|2l , for different

l’s, along with trivial element generate K0 of Aθ.

3.3.1 The 3-dimensional case

Let

θ =




0 θ12 θ13
−θ12 0 θ23
−θ13 −θ23 0


 .

Using the above proposition, assume that the 2-pfaffian minors of Aθ, pf(M
θ
ij),

are positive (indeed, Aθ+tZ is isomorphic to Aθ for any integer t) , where

Mθ
ij =

(
0 θij
−θij 0

)
, j > i ≥ 1 .

From Lemma 3.3.1, one has

Tr(K0(Aθ)) = Z+ θ12Z+ θ13Z+ θ23Z.

When θ is totally irrational (so that the trace is injective), we consider the

projective Aθ module Eθ12 := S (R× Z)12 constructed as in the main theorem

at r = 0 fibre for the choice of M = R × Z. The trace of this module is θ12
(see the discussion at the end of section 3.2).

Consider the following matrices

θ1 =




0 θ23 −θ12
−θ23 0 −θ13
θ12 θ13 0


 ,

θ2 =




0 θ13 θ12
−θ13 0 −θ23
−θ12 θ23 0


 .

Note that Aθ, Aθ1 and Aθ2 are just “rotations” of each other and represent

the same noncommutative tori. Let Eθ13 := S (R× Z)13 and Eθ23 := S (R× Z)23
be the projective modules over Aθ2 and Aθ1 , respectively, as discussed above.

Now, similarly to the previous case, we see that Tr(Eθ13) = θ13 and Tr(Eθ23) =

θ23. Since Tr is injective for θ (as it is totally irrational), we conclude that

Eθ12, E
θ
13, E

θ
23 along with the trivial element generate K0(Aθ). Using our descrip-

tion of the continuous field and 3.1.4, we conclude that Eθ12, E
θ
13, E

θ
23 along with

the trivial element generate K0(Aθ) for all θ.
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3 Noncommutative tori and K-theory

3.3.2 The 4 dimensional case

Let

θ =




0 θ12 θ13 θ14
−θ12 0 θ23 θ24
−θ13 −θ23 0 θ34
−θ14 −θ24 −θ34 0


 .

Without loss of generality (again using 3.3.4), we can assume that the pfaffians

pf(θ) and pf(Mθ
ij) are positive, where

Mθ
ij =

(
0 θij
−θij 0

)
, j > i ≥ 1 .

Let θ be totally irrational again. Then, similarly to the previous case, we get

the six modules Eθ12, E
θ
13, E

θ
14, E

θ
23, E

θ
24, E

θ
34. These modules are completions of

S (R × Z2) for different actions of Aθ. Since K0(Aθ) = Z8, we need to find

another projective module which has trace θ12θ34 − θ13θ24 + θ14θ23 (according

to Lemma 3.3.1). This module turns out to be the Bott class given by the

completion of S (R2) (as in the main theorem for M = R2). Denote this

module by Eθ1234. Now the pfaffian of θ is Tr(Eθ1234) which is θ12θ34 − θ13θ24 +

θ14θ23. So again using Theorem 3.2.2 and 3.1.4 we conclude that Eθ12, E
θ
13, E

θ
14,

Eθ23, E
θ
24, E

θ
34 and Eθ1234 along with the trivial element generate K0(Aθ) for each

θ.
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4 Projective modules over some

noncommutative orbifolds

4.1 Notation

Notation: e(x) will always denote the number e2πix; the standard symplectic

matrix on R2m is defined by J =

(
0 Im
−Im 0

)
, where Im is the m×m unit

matrix, and S (Rm) will denote the space of rapidly decreasing functions on

Rm.

4.2 A quick look into noncommutative orbifolds

Let W := (aij) be an n × n matrix of finite order with integer entries acting

on Zn and let F be the cyclic group generated by W . In addition, we assume

that W is a θ-symplectic matrix i.e W T θW = θ. Hence F is a finite subgroup

of SP (n,Z, θ) := {A ∈ GL(n,Z) : AT θA = θ}. By Lemma 2.1 of [22] we have

C∗(Zn o F, ω′
θ) = Aθ oα F with respect to the action ([32, Equation 2.6]) :

α(Ui) = e(

n∑

k=2

k−1∑

j=1

akiajiθjk)U
a1i
1 · · ·U

ani

n , (4.2.1)

where U1, ..., Un are the generators of Aθ.

Let us look into the case where n = 2. Note that SP (2,Z, θ) = SL(2,Z).
Finite cyclic subgroups of SL(2,Z) are up to conjugacy generated by the fol-

lowing 4 matrices:

W2 :=

(
−1 0

0 −1

)
, W3 :=

(
−1 −1

1 0

)
,

W4 :=

(
0 −1

1 0

)
, W6 :=

(
0 −1

1 1

)
,
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4 Projective modules over some noncommutative orbifolds

where the notation Wr indicates that it is a matrix of order r. The above fact

can be derived using the fact that SL(2,Z) = Z6 ∗Z2
Z4, i.e SL(2,Z) can be

written as amalgamated free product of Z6 and Z4, over Z2.

The actions of these matrices are considered already in [22], where the au-

thors constructed projective modules over the corresponding crossed products

and used these projective modules to prove some classification results for these

crossed products.

For n ≥ 3 finding such a matrix W is a non-trivial question. For n = 3,

there is only one such matrix (−I3) acting on all Aθ’s (see [32, Theorem 5.2]).

In [32] the authors found some W ’s and associated actions for n ≥ 4 such that

the crossed products are well defined.

4.3 Projective modules over noncommutative tori

In the last chapter we already discussed the construction of projective modules

over noncommutative tori. Since, in this section, we use a simpler version of

the construction, we recall it again (which will be suitable for this chapter).

We fix n = 2p+ q for p, q ∈ Z>0. Let us choose θ :=

(
θ11 θ12
θ21 θ22

)
any n× n

skew-symmetric matrix partitioned into an invertible 2p × 2p matrix θ11 and

q × q matrix θ22. We recall the approach of Rieffel [54] to the construction of

finitely generated projective C∗(Zn, ωθ)-modules and follow the presentation

in [40]. Denote ωθ by ω and define a new cocycle ω1 on Zn

by ω1(x, y) = e(〈θ′x, y〉/2), where

θ′ =

(
θ−1
11 −θ−1

11 θ12
θ21θ

−1
11 θ22 − θ21θ

−1
11 θ12

)
.

Set A = C∗(Zn, ω) and B = C∗(Zn, ω1). Let M be the group Rp × Zq,
G :=M×M̂ and 〈·, ·〉 be the natural pairing betweenM and its dual group M̂

(we do not distinguish between the notations of pairing and usual inner product

of linear spaces). Consider the Schwartz space E∞ := S(M) consisting of all

complex functions on M which are smooth and rapidly decreasing. Denote by

A∞ = S(Zn, ω) and B∞ = S(Zn, ω1) the sub-algebras ofA and B, respectively.

Let us consider the following (2p+ 2q)× (2p+ q) real valued matrix:

T =




T11 0

0 Iq
T31 T32


 ,

where T11 is an invertible matrix such that T t11J0T11 = θ11, J0 :=

(
0 Ip
−Ip 0

)
,
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4.3 Projective modules over noncommutative tori

T31 = θ21 and T32 is the matrix obtained from θ22 replacing the lower diagonal

entries by zero.

We also define the following (2p+ 2q)× (2p+ q) real valued matrix:

S =




J0(T
t
11)

−1 −J0(T
t
11)

−1T t31
0 Iq
0 T t32


 .

Let

J =




J0 0 0

0 0 Iq
0 −Iq 0




and J ′ be the matrix obtained from J by replacing the negative entries of it

by 0. Note that T and S can be thought as maps Rp×R∗p×Zq → G. Let P ′

and P ′′ be the canonical projections of G to M and M̂ respectively and T ′ ,

T ′′ be the maps P ′ ◦T and P ′′ ◦T respectively. Similarly denote S′ and S′′ for

the maps P ′ ◦ S and P ′′ ◦ S respectively. Then the following formulas define

an A∞-B∞ bimodule structure on E∞:

(fUθl )(x) = e(〈−T (l), J ′T (l)/2〉)〈x, T ′′(l)〉f(x− T ′(l)), (4.3.1)

〈f, g〉A∞(l) = e(〈−T (l), J ′T (l)/2〉)

∫

G

〈x,−T ′′(l)〉g(x+ T ′(l))f̄(x)dx, (4.3.2)

(V θ
l f)(x) = e(〈−S(l), J ′S(l)/2〉)〈x,−S′′(l)〉f(x+ S′(l)), (4.3.3)

B∞〈f, g〉(l) = e(〈S(l), J ′S(l)/2〉)

∫

G

〈x, S′′(l)〉ḡ(x+ S′(l))f(x)dx, (4.3.4)

where l ∈ Zn and Uθl , V
θ
l denotes the canonical unitaries with respect to the

group element l ∈ Zn in A∞ and B∞, respectively.

See Proposition 2.2 in [40] for the following well-known result.

Theorem 4.3.1 (Rieffel). E∞, with the above structures, is an A∞-B∞ Morita

equivalence bimodule which can be extended to a strong Morita equivalence

between A and B.

Let E be the completion of E∞ with respect to the inner products given

above. Now E becomes a right projective A-module which is also finitely

generated (see the discussion above proposition 4.6 of [22]). When q = 0,

we call the corresponding projective module Bott class. Note that this class

appears only for even dimensional tori.
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4 Projective modules over some noncommutative orbifolds

4.4 Projective modules over noncommutative

orbifolds

One natural question is how does one extend the projective modules over non-

commutative tori to the aforementioned crossed product? Our main theorem

addresses this question for the Bott classes.

In the following sections (except Section 7) we consider n to be an even

number, n = 2m. Suppose F = 〈W 〉 is a finite cyclic group acting on Zn.
We want to build some projective modules over C∗(ZnoF, ω′

θ). Note that W

needs to be a θ-symplectic matrix, i.e W T θW = θ, as noted earlier.

In order to construct projective modules over C∗(Zn o F, ω′
θ), we will use

the so-called metaplectic representation of the symplectic matrix W . When θ

is the standard skew-symmetric matrix J thenW is also a standard symplectic

matrix.

We denote the group of all J-symplectic matrices (also known as standard

symplectic matrices) by SP(n), which is known as the symplectic group. We

refer to chapter 2 of the book [20] for preliminaries on symplectic groups and

their metaplectic representations. We recall the metaplectic action associated

to the symplectic matrixW . Any symplectic matrix can be written as product

of two free symplectic matrices (see page 38, [20]) which are by definition

symplectic matrices

(
A B

C D

)
, A,B, C,D ∈Mn(R)

such that det(B) 6= 0. Let W be a free symplectic matrix. We now associate

to W the generating function:

W (x, x′) =
1

2
〈DB−1x, x〉 − 〈B−1x, x′〉+

1

2
〈B−1Ax′, x′〉, (4.4.1)

when x, x′ ∈ Rm.

Definition 4.4.1. The metaplectic operator (metaplectic transformation) as-

sociated to W on S (Rm) is given by

FW f(x) = e(
1

4
(s−

m

2
))
√
| det(B−1)|

∫

Rm

e(W (x, x′))f(x′)dx′;

the integer s (sometimes called Maslov index) corresponds to a choice of the

argument arg of detB−1:

sπ ≡ Arg (detB−1) mod 2π.
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These operators can be extended to L2(Rm) giving unitary operators on

L2(Rm) (see page 81, [20]). We denote by MP(n) the group of metaplectic

operators which is a subgroup of the group of unitary operators of L2(Rm).

Theorem 4.4.2. There exists an exact sequence:

0 Z2 MP(n) SP(n) 0,

where the mapMP(n)→ SP(n) is uniquely determined by the map FW → W .

Proof. See page 84, [20].

One also defines the circle extension of SP(n),MPc(n). This is defined to

be the groupMP(n)×Z2
S1 : (MP(n)×S1)/∆(Z2), ∆(Z2) being the diagonal

Z2 × Z2 sitting insideMP(n)× S1. This gives rise to the exact sequence

0 S1 MPc(n) SP(n) 0,

where S1 denotes the circle group.

In the following, we shall often write fW for FW (f).

Following [20, Section 3.2.2] the following matrices generate all symplectic

matrices:

J :=

(
0 I

−I 0

)
, ML :=

(
L 0

0 (LT )−1

)
, VP :=

(
I 0

P I

)
, (4.4.2)

for a symmetric m×m matrix P and an invertible m×m matrix L.

Following [20, Section 7.1.2], we write down the metaplectic operators (up

to some constant which will not matter in the proof) corresponding to J , ML

and VP :

(f J)(x) =

∫

Rm

e(〈−x, x′〉)f(x′)dx′ (4.4.3)

(f ML)(x) =
√
|det(L)|f(L(x)) (4.4.4)

(f VP )(x) = e(
1

2
〈Px, x〉)f(x), (4.4.5)

Hence it suffices to check statements of multiplicative type about metaplectic

transformations for these transformations and the Schwartz space is invariant

under metaplectic transformations, see [20, Corollary 63]. Now we are in the

position to formulate our main theorem. For our result we always assume θ to

be a non-degenerate matrix.

We recall the following proposition from [22, Proposition 4.5].
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4 Projective modules over some noncommutative orbifolds

Proposition 4.4.3. Suppose F is a finite group acting on a C*-algebra A by

the action α. Also suppose that E is a finitely generated projective (right) A-

module with a right action T : F → Aut(E), written (ξ, g) � ξWg, such that

ξ(Wg)a = (ξαg(a))Wg for all ξ ∈ E , a ∈ A, and g ∈ F . Then E becomes a

finitely generated projective Ao F module with action defined by

ξ · (
∑

g∈F

agδg) =
∑

g∈F

(ξag)Wg.

Also, if we restrict this AoF module to A, we get the original A-module E ,

with the action of F forgotten.

Proof. See the proof of Proposition 4.5 [22].

Theorem 4.4.4. Let W be a θ-symplectic matrix of finite order and let F =

〈W 〉 be the finite cyclic group generated by W . Let α : F → Aut(C∗(Zn, ωθ))
denote the corresponding action on C∗(Zn, ωθ). Then the metaplectic action

of W on S (Rm) extends to an action on E such that E becomes an F -

equivariantly finitely generated projective C∗(Zn, ωθ) module and thus a finitely

generated projective module over C∗(Zn, ωθ)o F .

Proof. We divide the proof in two parts.

First part: (the case θ = −J): Recall from (4.3.1) that for the choice of

T :=

(
−I 0

0 I

)
the action of S (Zn, ω−J) = C∞(Tn) on S (Rm) is given by

the following:

f(Ui)
p(y1, y2, . . . , ym) = f(y1, y2, . . . , yi + p, . . . , ym), if i ≤ m, (4.4.6)

f(Ui)
p(y1, y2, . . . , ym) = e(pyi−m)f(y1, y2, . . . , ym), if i > m, (4.4.7)

where the Ui’s are the generators of the n-dimensional smooth torus C∞(Tn).
[Note that θ = −J is chosen instead of θ = J to keep the formulas some-

what similar to [22]]. Let αW denote the action of the matrix W on S (Zn):
αW (φ)(x) = φ(W−1x). According to 4.4.3, we still have to check the following

equation to complete the proof:

f(W )φ = (fαW (φ))W, (4.4.8)

for all f ∈ S (Rm) and φ ∈ S (Zn, ω−J), which will then imply that E becomes

F -equivariant. Also, since S (Zn, ω−J) is generated by U1, U2, . . . , Un, it is

enough to check (4.4.8) for φ = U1, U2, . . . , Un.
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4.4 Projective modules over noncommutative orbifolds

So we are left with checking the following equations:

fJUi = (fαJ(Ui))J, (4.4.9)

fMLUi = (fαML
(Ui))ML, (4.4.10)

fVPUi = (fαVP
(Ui))VP , (4.4.11)

for all 1 ≤ i ≤ n, with J,ML, VP as in 4.4.2.

First we check the equations (4.4.9), (4.4.10) and (4.4.11) for 1 ≤ i ≤ m.

The left hand side (LHS) of (4.4.9) is

(fJUi)(x1, x2, . . . , xm) = (fJ)(x1, x2, . . . , xi + 1, . . . , xm)

=

∫

Rm

e(−〈(x1, x2, . . . , xi + 1, . . . , xm), (x
′
1, x

′
2, . . . , x

′
m)〉)f(x

′)dx′

=

∫

Rm

e(−〈(x1, x2, . . . , xm), (x
′
1, x

′
2, . . . , x

′
m)〉).e(−x

′
i)f(x

′)dx′;

and the right hand side (RHS):

(fαJ(Ui))J(x1, x2, . . . , xm) =

∫

Rm

e(−〈(x1, x2, . . . , xm)(x
′
1, x

′
2, . . . , x

′
m)〉)fαJ(Ui)(x

′)dx′

=

∫

Rm

e(−〈(x1, x2, . . . , xm), (x
′
1, x

′
2, . . . , x

′
m)〉)(fU

−1
i+m)(x

′)dx′

=

∫

Rm

e(−〈(x1, x2, . . . , xm), (x
′
1, x

′
2, . . . , x

′
m)〉).e(−x

′
i)f(x

′)dx′.

Hence we proved that in (4.4.9), LHS = RHS. The LHS of (4.4.10) equals

(fMLUi)(x1, x2, . . . , xm) = (fML)(x1, x2, . . . , xi + 1, . . . , xm)

=
√
det(L)f(L(x1, x2, . . . , xi + 1, . . . , xn));

and the RHS is

(fαML
(Ui))ML(x1, x2, . . . , xm) =

√
det(L)(fαML

(Ui))L(x1, x2, . . . , xm)

=
√
det(L)f(L(x1, x2, . . . , xm) + L(xi))

=
√
det(L)f(L(x1, x2, . . . , xi + 1, . . . , xm)).

Hence we have demonstrated that in (4.4.10) the LHS = RHS. We have for

the LHS of (4.4.11):
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4 Projective modules over some noncommutative orbifolds

(fVPUi)(x1, x2, . . . , xm) = (fVP )(x1, x2, . . . , xi + 1, . . . , xm)

= e(
1

2
〈P (x1, x2, . . . , xi + 1, . . . , xm), · · ·

(x1, x2, . . . , xi + 1, . . . , xm)〉) · · ·

f(x1, x2, . . . , xi + 1, . . . , xm);

and the RHS is

(fαVP
(Ui))VP (x1, x2, . . . , xm) = e(

1

2
(Px · x))(fαVP

(Ui))(x)

= e(
1

2
〈P (x1, x2, . . . , xi + 1, . . . , xm), · · ·

(x1, x2, . . . , xi + 1, . . . , xm)〉) · · ·

f(x1, x2, . . . , xi + 1, . . . , xm).

Hence we have shown that LHS = RHS for (4.4.11).

Now, let m < i ≤ n. We check the equations (4.4.9), (4.4.10) and (4.4.11)

for these values of i .

For (4.4.9) the LHS is

(fJUi)(x1, x2, . . . , xm) = e(ixi−m)(fJ)(x1, x2, . . . , xm)

= e(xi−m)

∫

Rm

e(−〈x, x′〉)f(x′)dx′;

and the RHS

(fαJ(Ui))J(x1, x2, . . . , xm) =

∫

Rm

e(−〈x, x′〉)(fαJ(Ui))(x
′)dx′

=

∫

Rm

e(−〈x, x′〉)(f(Ui−m))(x
′)dx′

=

∫

Rm

e(−〈x, x′〉)f(x′1, x
′
2, . . . , x

′
i−m + 1, . . . , x′m)dx

′

= e(xi−m)

∫

Rm

e(−〈x, x′〉)f(x′1, x
′
2, . . . , x

′
i−m, . . . , x

′
m)dx

′

= e(xi−m)

∫

Rm

e(−〈x, x′〉)f(x′)dx′.

Hence we have proved that for (4.4.9), LHS = RHS.

For (4.4.10), the LHS

(fMLUi)(x1, x2, . . . , xm) = e(xi−m)(fML)(x1, x2, . . . , xm)

=
√
det(L)e(xi−m)f(L(x1, x2, . . . , xm));
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and the RHS

(fαML
(Ui))ML(x1, x2, . . . , xm) =

√
det(L)(fαML

(Ui))(L(x1, x2, . . . , xm))

=
√
det(L)e(〈(L−1)T (ei−m), L(x1, x2, . . . , xm)〉) · · ·

f(L(x1, x2, . . . , xm))

=
√
det(L)e(〈ei−m, (L

−1L)(x1, x2, . . . , xm)〉) · · ·

f(L(x1, x2, . . . , xm))

=
√
det(L)e(xi−m)f(L(x1, x2, . . . , xm)).

Thus in (4.4.10) the LHS is equal to the RHS.

For (4.4.11), the LHS

(fVPUi)(x1, x2, . . . , xm) = e(xi−m)(fVP )(x1, x2, . . . , xm)

= e(xi−m)e(
1

2
〈Px, x〉)f(x);

which equals to the RHS:

(fαVP
(Ui))VP (x1, x2, . . . , xm) = e(

1

2
〈Px, x〉)(fα(Ui)(x)

= e(
1

2
〈Px, x〉)(fUi)(x)

= e(xi−m)e(
1

2
〈Px, x〉)f(x).

Now we have the following diagram:

F

0 Z2 MP(n) SP(n) 0.

In the above diagram it is not assured that the inclusion F ↪→ SP(n) lifts

to an inclusion F ↪→ MP(n). Since F is cyclic the following lift is always

possible:

F

0 S1 MPc(n) SP(n) 0,
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where MPc(n) is the circle extension of SP(n). Indeed, for the generator

W ∈ F , we can choose z ∈ T to make sure that the order of the operator

z ·FW ∈MP
c(n) is same as the order of the element W ∈ F . So the inclusion

F ↪→MPc(n) gives the required action of W on S (Rm).

Second part (the general case):

Let θ be a general non-degenerate anti-symmetric matrix. In this case

W T
θ θWθ = θ. We recall how the projective modules are constructed in this

case. Since θ is non-degenerate, there exists an invertible matrix T such that

T TJT = θ. Recall that the action of Uθl (for l ∈ Zn) on S (Rm) is defined by

(fUθl )(x) = e((−T (l) · J ′T (l)/2))e(〈x, T ′′(l)〉)f(x− T ′(l)). (4.4.12)

First note that W := TWθT
−1 is a J-symplectic matrix (a matrix A is J-

symplectic if ATJA = J). So we can define fW = f(TWθT
−1) := FTWθT−1(f)

for f ∈ S (Rm) and fWθ to be the function fW . So in this case we need to

check the following equation:

(fWθ)U
θ
l (x) = (fαWθ

(Uθl ))Wθ(x), x ∈ Rm. (4.4.13)

This follows from:

(fWθ)U
θ
l (x) = e(〈−T (l), J ′T (l)/2〉)e(〈x, T ′′(l)〉)(fWθ)(x− T

′(l))

= e(〈−T (l), J ′T (l)/2〉)e(〈x, T ′′(l)〉)(fW )(x− T ′(l))

= e(〈−T (l), J ′Id(T l)/2〉)e(〈x, Id′′(T l)〉)(fW )(x− Id′(T l))

= (fW )UJT l(x)

= (fαW (UJT l))W (x) (using (4.4.11))

= c

∫

Rm

e(W (x, x′))(fαW (UJT l))(x
′)dx′; (for a constant c)
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and the RHS

(fαWθ
(Uθl ))Wθ(x) = (fαWθ

(Uθl ))W (x)

= c

∫

Rm

e(W (x, x′))(fαWθ
(Uθl ))(x

′)dx′

= c

∫

Rm

e(W (x, x′))(f(UθWθ(l)
))(x′)dx′

= c

∫

Rm

e(W (x, x′))(f(UJW (T l)))(x
′)dx′ (using (4.4.14))

= c

∫

Rm

e(W (x, x′))(fαW (UJT l))(x
′)dx′,

where

(f(UθWθ(l)
))(x′) = (f(UJW (T l)))(x

′), x′ ∈ Rm (4.4.14)

follows from:

(f(U θ
Wθ(l)

))(x′) = e(〈−T (Wθ(l)), J
′T (Wθ(l))/2〉)e(〈x

′, T ′′(Wθ(l))〉)f(x
′−T ′(Wθ(l))),

which is equal to

e(〈−T (Wθ(T
−1T l)), J ′T (Wθ(T

−1T l))/2〉)e(〈x′, T ′′(Wθ(T
−1T l))〉)f(x′ − T ′(Wθ(T

−1T l)))

= e(〈−(TWθT
−1)(T l), J ′(TWθT

−1)(T l)/2〉)e(〈x′, (TWθT
−1)′′(T l)〉)f(x′ − (TWθT

−1)′(T l))

= e(〈−W (T l), J ′W (T l)/2〉)e(〈x′, Id′′(W (T l))〉)f(x′ − Id′(W (T l)))

= (f(UJ
W (T l)))(x

′).

We finish the proof with the compatibility of the action with the inner

product 〈., .〉A∞ as defined in (4.3.2):

〈fWθ, gWθ〉A∞ = αW−1
θ
(〈f, g〉A∞).

Replacing f by fWθ, it suffices to check:

〈f, gWθ〉A∞ = αW−1
θ
(〈fW−1

θ , g〉A∞). (4.4.15)

The argument is based on some observations: (i) the explicit description of

〈., .〉A∞ in terms of the right action of A∞ on S (Rm):

〈f, g〉A∞(l) = 〈gUθ−l, f〉L2 ,

for 〈f, g〉L2 =
∫
Rm f(x)g(x)dx, and (ii) the relations:

αW−1
θ
(〈f, g〉A∞)(l) = 〈gαWθ

(Uθ−l), f〉L2 .
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The realization of 〈., .〉A∞ in terms of the right action allows us to use equa-

tion (4.4.13):

(fWθ)U
θ
l (x) = (fαWθ

(Uθl ))Wθ(x), x ∈ Rm

in the proof of (4.4.15):

〈f, gWθ〉A∞(l) = 〈(gWθ)U
θ
−l, f〉L2 ,

=

∫

Rm

(gαWθ
(Uθ−l)Wθ(x))f(x)dx,

=

∫

Rm

(gαWθ
(Uθ−l))(x)(fW

−1
θ )(x))dx,

= αW−1
θ
(

∫

Rm

(gUθ−l)(x)(fW
−1
θ )(x))dx)

= αW−1
θ
(〈fW−1

θ , g〉A∞),

which is the desired identity.

4.5 The 2-dimensional case - revisited

The results for the 2-dimensional case [22] are revisited from the perspective

of metaplectic transformations. As mentioned before, there are up to conjuga-

tion four matrices of finite order in SL2(Z) generating Z2,Z3,Z4,Z6. For the

Z2 action on S (R), given by f → f̃ , where f̃(x) = f(−x), the corresponding

module, called the flip module, over Aθ oZ2 is quite well studied by Walters

[61]. In the next section we discuss flip modules in the higher-dimensional

setting in detail. The Z4 action is given by the Fourier automorphism f → f̃

where f̃(x) =
∫
R
e(〈x, x′〉)f(x′)dx′. Walters has studied these modules exten-

sively and among other things he computed the Chern character for the flip

modules and Fourier modules. The Z3 and Z6 actions are similar so we only

treat the Z6 action.

The cyclic group Z6 is generated by the matrix W6 :=

(
1 −1

1 0

)
that

we denote by W . Note that this W6 slightly differs from W6 from section

4. We choose this W6 to keep the final formula similar to the formula for

W6 :=

(
0 −1

1 1

)
in [22]. One should note that the action of the finite group

on the module as in Proposition 4.4.3 is not unique.

The generating function associated to W = W6 is given by

W (x, x′) = xx′ −
1

2
x′2,
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4.5 The 2-dimensional case - revisited

which follows from (4.4.1). The corresponding metaplectic transformation (for

the choice s = 1) is

FW (f)(x) = e(
1

8
)

∫

R

e(xx′ −
1

2
x′2)f(x′)dx′, f ∈ S (R).

The following proposition is due to Walters:

Proposition 4.5.1.

(FW )6 = −Id.

We modify the operator FW to e( 1
24)FW , which amounts to including the

Maslov index of the transformation. Then F6
W = Id. The corresponding mod-

ule over AJoZ6 is called the hexic module by Walters, where J =

(
0 1

−1 0

)

is the standard symplectic form on R2. For a general Aθ, choosing T :=(
−θ 0

0 1

)
, we get from the main theorem:

FWθ
(f)(x) = e(

1

24
)θ−

1
2

∫

R

e(
1

2θ
(2xx′ − x′2))f(x′)dx′, f ∈ S (R);

which is the exactly the formula for the Z6 action considered in [22].
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5 Equivariant Connes-Thom

isomorphism for C*-algebras

5.1 Introduction

This chapter is organised as follows. In the second section we recall some ba-

sics of equivariant KK-theory for compact group actions on C*-algebras. After

introducing setups and notation, in the third section we introduce Connes’

pseudo-differential calculus which will play an important role in the main the-

orem. In the fourth section we finally prove the main theorem of this chapter.

In the last section we describe deformation quantization of C*-algebras due to

Rieffel and give a computation of the K-theory of deformation quantization of

C*-algebras with a compact group action, which leads to the computations of

K-theory for twisted crystallographic group algebras.

5.2 Some basic definitions and notations

5.2.1 Equivariant KK-theory

In this subsection we recall equivariant KK-theory for compact group actions

on C*-algebras.

Let G be a compact group. Let A,B be separable graded G-C*-algebras.

Recall that EG(A,B) consists of triples{(H, ψ, T )}, where H is a G-Hilbert

B-module (countably generated and graded), ψ : A → L(H) is a graded *-

homomorphism with

ψ(ga) = gψ(a), g ∈ G, a ∈ A,

and T ∈ L(H) is such that

(T − T ∗)ψ(a) ∈ K(H),

(gT − T )ψ(a) ∈ K(H),

[ψ(a), T ] ∈ K(H),

ψ(a)(I − T 2) ∈ K(H),
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for all g ∈ G, a ∈ A. The group KKG(A,B) is defined to be EG(A,B) modulo

the equivalence relations which were introduced in 2.2. Since G is compact,

we can actually choose T to be G-equivariant (since H is G-space (by action

κ, say) and T ∈ L(H), we can replace T by
∫
G
Adκg(T )dg).

5.2.2 The setup

LetRn act strongly continuously on a C*-algebra A by the action α. Also letG,

a compact group, act on A by the action β. Define GLn(J) to be the group of

invertible matrices g such that gtJg = J , where J is any real, skew-symmetric

matrix, and SLn(R, J) := SLn(R)
⋂
GLn(J). Let ρ : G → SLn(R, J) be a

group homomorphism such that

βgαx = αρg(x)βg, for any g ∈ G, x ∈ Rn. (5.2.1)

When ρ is a trivial group homomorphism, the actions α and β commute. The

above condition really means that there is an action of the semi-direct product

RnoG on A. Here G acts on Rn by the map ρ, i.e g ·x = ρg(x), g ∈ G, x ∈ Rn

and Rn oG acts on A by (x, g) · a = αxβg(a), g ∈ G, x ∈ Rn, a ∈ A.

Let ρ′ : G → GLn(J) be defined by ρ′(g) = ((ρ(g))−1)t. If we denote the

dual group of Rn by Rn, G also acts on Rn by g · x = ρ′g(x), g ∈ G, x ∈ Rn.

Note that the image of ρ′ consists of invertible matrices g satisfying gJgt = J.

As G is compact, there is always a G-invariant metric on Rn. Without loss

of generality, we will assume in what follows that G preserves the standard

metric on Rn.

5.2.3 The equivariant Takesaki-Takai duality theorem

There is a dual action α̂ of Rn on Aoα Rn given by

α̂x(f)(s) = e(〈x, s〉)f(s)

The action of G on a compact operator (viewed as an operator on L2(Rn))

is g(T ′)(f)(x) = T ′(g−1 · (f))(g−1x). If we realise a compact operator by a

kernel function k(r, s) on Rn×Rn then the G action is the diagonal action i.e

g · k(x, y) = k(g−1x, g−1y)

Following [63, Page 190], we prove a G-equivariant version of the Takesaki-

Takai duality theorem

Theorem 5.2.1. Aoα Rn oα̂ Rn is isomorphic to A⊗K(L2(Rn)). And the

isomorphism can be made G-equivariant.

56



5.2 Some basic definitions and notations

Proof. Let γ be the action of Rn on C0(Rn, A) given by

(γtf)(s) = f(s− t),

From the proof of Theorem 7.1 ([63]), we have the isomorphism of AoαRnoα̂

Rn and C0(Rn, A)oγ Rn given by Φ, where

Φ(F )(s, r) =

∫

Rn

α−1
r (F (t, s))e(〈r − s, t〉)dt, F ∈ Cc(Rn ×Rn, A).

The isomorphism ([63, Lemma 7.6]) between C0(Rn, A)oγRn andA⊗K(L2(Rn))

is easily checked to be G-equivariant. Let us now show that Φ is G-equivariant

i.e g · Φ(F ) = Φ(g · F ).

Φ(g · F )(s, r) =

∫

Rn

α−1
r (g · F (x, s))e(〈r − s, x〉)dx

=

∫

Rn

α−1
r (βg(F (g

tx, g−1s)))e(〈r − s, x〉)dx

Φ(g · F )(gs, r) =

∫

Rn

α−1
r (βg(F (g

tx, s)))e(〈r − gs, x〉)dx

=

∫

Rn

α−1
r (βg(F (x, s)))e(〈r − gs, (g

t)−1x〉)dx

=

∫

Rn

α−1
r (βg(F (x, s)))e(〈r − gs, (g

t)−1x〉)dx

=

∫

Rn

α−1
r (βg(F (x, s)))e(〈g

−1r − s, x〉)dx

Φ(g · F )(gs, gr) =

∫

Rn

α−1
gr (βg(F (x, s)))e(〈r − s, x〉)dx

=

∫

Rn

βg(α
−1
r (F (x, s)))e(〈r − s, x〉)dx

Φ(g · F )(s, r) =

∫

Rn

βg(α
−1
g−1r(F (x, g

−1s)))e(〈g−1r − g−1s, x〉)dx

= βg(Φ(F )(g
−1s, g−1r))

= (g · Φ(F ))(s, r).

57



5 Equivariant Connes-Thom isomorphism for C*-algebras

5.3 Connes’ pseudo-differential calculus

We assume that the reader is familiar with the definition of classical pseudo-

differential calculus of Rn i.e Hörmander classes of symbols. We refer to [31]

for a throughout discussion of that. Connes in [16] introduced an anisotropic

version of Hörmander classes of symbols. Later it was studied in [2,3] in detail.

Suppose Rn acting (with an action α) on a unital (adjoining unit if neces-

sary) C*-algebra A and A∞ be the smooth algebra of A of smooth vectors for

the action. It is well known that A∞ is a locally convex algebra with respect

to a system of seminorms (pi), which is induced from the norm of A. For the

C∗-dynamical system (A,Rn, α), let x 7→ Vx be the canonical representation

of Rn in M(Aoα Rn), the multiplier algebra, with VxaV
∗
x = αx(a) (a ∈ A).

Let Rn be the Fourier dual of Rn as before. We shall say that ρ, a C∞ map

from Rn to A∞, is a symbol of order m, ρ ∈ Sm(Rn, A
∞) iff :

1. for all multi-indices i, j, there exists Cij <∞ such that

pi

((
∂

∂ ξ

)j
ρ(ξ)

)
≤ Cij(1 + |ξ|)

m−|j| ;

2. there exists s ∈ C∞(Rn \ {0}, A
∞) such that when λ → +∞ one has

λ−m ρ(λ ξ)→ s(ξ) [for the topology of C∞(Rn \ {0}, A
∞)].

When A is C0(Rn) and Rn is acting on A by the translation action, we

may think ρ as a two variable function. In this case we get back the classical

symbols ([38, Lemma 2.7]).

Then Connes proved that an order zero symbol gives rise to an element of

the multiplier algebra of the crossed product AoαRn. Indeed, if ρ is a symbol

of order zero then we can take the Fourier transform (in sense of distribution):

ρ̂(x) =

∫

Rn

ρ(ξ)e(−〈x, ξ〉)dξ,

which is a well-defined distribution on Rn with values in A∞ (it will be clear

later what a distribution means). Following [16, Prop. 8], we define the

multiplier Dρ ∈M(B oRn) by

Dρ :=

∫

Rn

ρ̂(x)Vxdx.

Following [2, Definition 3.1], Dρ acts on the smooth sub-algebra S(Rn, A∞)

of Aoα Rn by the oscillatory integral (see [1, Section 3.3])

Dρ(u)(t) :=

∫

Rn

∫

Rn

α−t(ρ(ξ))u(s)e(−〈(t− s), ξ〉)dsdξ.
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5.3 Connes’ pseudo-differential calculus

To motivate the above equation, let us take ρ ∈ S(Rn, A∞). Then

Dρ(u)(t) = (

∫

Rn

ρ̂(s)Vsuds)(t)

=

∫

Rn

α−t(ρ̂(s))Vs(u(t))ds

=

∫

Rn

α−t(ρ̂(s))u(t− s)ds

=

∫

Rn

α−t(ρ̂(t− s))u(s)ds

=

∫

Rn

∫

Rn

α−t(ρ(ξ))u(s)e(−〈(t− s), ξ〉)dsdξ.

Note that the above integrals exist in the usual sense.

The set (norm closure) of all multipliers, which are coming from order zero

symbols, we denote by D(AoRn). From [16, Prop. 8] and [2] there is an exact

sequence

0 −−−→ Aoα Rn ϕ
−−−→ D(Aoα Rn)

ψ
−−−→ A⊗ C(Sn−1) −−−→ 0,

This exact sequence is often called the pseudo-differential extension. It is well

known that there is a non-degenerate morphism C∗(Rn) to M(Aoα Rn). So

this morphism extends to the multiplier algebra of C∗(Rn) and in particular

to the sub-algebra D(C∗(Rn)). So if we say D ∈ D(C∗(Rn)), we view D inside

M(Aoα Rn).

Theorem 5.3.1. For a ∈ A ↪→ M(Ao Rn) and D ∈ D(C∗(Rn)) , we have

[D, a] ∈ Aoα Rn.

Proof. See [2, Section 4], also [21, Proposition 4.3] for a more general version

of this property.

Let us recall the definition of asymptotic expansion of a symbol. For a

decreasing divergent sequence (mj)j∈{0,1,2,··· }, and ρj ∈ S
mj(Rn, A

∞), we say

ρ ∈ Sm0(Rn, A
∞) admits an asymptotic expansion

∑
ρj (written as ρ ∼∑

ρj), if for all integers k ≥ 1,

ρ−
∑

j≤k

ρj ∈ S
mk(Rn, A

∞).

For a multi-index k, and a ∈ A∞, let us denote the k-th derivative of a (with

respect to the action of Rn) by δk(a).
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5 Equivariant Connes-Thom isomorphism for C*-algebras

Theorem 5.3.2. For ρ1 ∈ S
m1(Rn, A

∞) and ρ2 ∈ S
m2(Rn, A

∞), there exists

a unique ρ ∈ Sm1+m2(Rn, A
∞) such that Dρ = Dρ1Dρ2 . Also ρ admits an

asymptotic expansion:

ρ(ξ) ∼
∑

k

i|k|

k!
ρ
(k)
1 (ξ)δk(ρ2(ξ)).

Proof. See [2, Proposition 3.2]. Also [39, Theorem 2.2], for twisted dynamical

systems.

Theorem 5.3.3. For ρ ∈ S0(Rn, A
∞) the the adjoint of Dρ, (Dρ)

∗ exists and

(Dρ)
∗ = D′

ρ, where ρ
′ admits an asymptotic expansion:

ρ′(ξ) ∼
∑

k

i|k|

k!
δk((ρ′)(k)(ξ)∗).

Proof. See [2, Proposition 3.3]. Also [39, Theorem 2.2], for twisted dynamical

systems.

Remark 5.3.4. Since the unitisation of A, A′, sits insideM(A) non-degenerately,

we get ([21, Proposition 3.2]) a non-degenerate morphism from A′ o Rn to

M(A o Rn) giving a morphism from D(A′ oα Rn) to M(A o Rn). Hence,

though we adjoin a unit for the non-unital A, ultimately we end up getting an

element in M(AoRn).

5.4 Equivariant Connes–Thom isomorphism for

equivariant KK theory

Let Cn be the complexified Clifford algebra associated with Rn. It is a graded

C*-algebra with its natural grading. For the following theorem, assume Rn

acts on Cn trivially and G has induced action on Cn coming from its action

on Rn.

Theorem 5.4.1. Let Rn and a compact Lie group G act on an ungraded C*-

algebra A, as previously. Let ρ : G → SLn(R, J) be a homomorphism. If the

actions α and β satisfy equation (5.2.1), then

KG
(
(A⊗Cn)oα R

n
)
∼= KG(A),

Let B∞ := A∞ ⊗ Cn, with an extended action of α by Rn, which acts

trivially on the second component.
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5.4 Equivariant Connes–Thom isomorphism for equivariant KK theory

We first construct Kasparov’s Dirac and dual-Dirac elements for the G-

equivariant Rn action on the C*-algebra A. We write the standard Hodge-de

Rham operator as d + d∗ on Rn which is acting on H = L2(Rn,∧•Cn). Let

∆ = dd∗+d∗d be the Laplace-Beltrami operator, and Σ be the principal symbol

of (d+ d∗)(1 + ∆)−1/2, then

Σ(x, ξ) =
c(ξ)

(1 + ‖ξ‖2)
1
2

, x ∈ Rn, ξ ∈ Rn,

where c(ξ) is the Clifford multiplication of ξ on ∧•Cn∗. The key point is that

the symbol is independent of x. Furthermore, we also observe that (d+d∗)(1+

∆)−1/2 is G-invariant, as G is assumed to preserve the metric. Let us point

out that we are working with Clifford algebra valued symbols and we have the

pseudo-differential extension

0 −−−→ Cn ⊗Rn ϕ
−−−→ D(Cn ⊗Rn)

ψ
−−−→ C(Sn−1,Cn) −−−→ 0.

Consider B := A⊗Cn with an extended action α by Rn, which acts trivially

on the component Cn. The smooth subalgebra B∞ of α is identified with

A∞ ⊗Cn. Let us define Σ ∈ S0(Rn, B
∞) as

Σ(ξ) = 1⊗
ξ

(1 + ‖ξ‖2)
1
2

, ξ ∈ Rn ⊂ Cn

It is now a well-defined distribution on Rn with values in B∞. We have

Dα ∈M(B oRn) by

Dα :=

∫

Rn

Σ̂(x)Vxdx.

As (d + d∗)(1 + ∆)−1/2 defines an element in KKG(B,C), it is natural to

expect that (BoRn, ι, Dα) defines an element (also called the Thom element

or Thom class) yGn,α in KKG(A,BoαRn). Here ι denotes the inclusion of A in

the multiplier algebra M(B o Rn). The following series of results prove that

(B oRn, ι, Dα) is indeed a Kasparov module.

Lemma 5.4.2. The Fourier transform map which sends Σ to Σ̂ is G-equivariant,

i.e ĝ · Σ = g · Σ̂.
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5 Equivariant Connes-Thom isomorphism for C*-algebras

Proof.

ĝ · Σ(x) =

∫

Rn

(g · Σ)(ξ)e(−〈x, ξ〉)dξ

=

∫

Rn

βg(Σ(g
tξ))e(−〈x, ξ〉)dξ

=

∫

Rn

βg(Σ(ξ))e(−〈x, (g
t)−1ξ〉)dξ

=

∫

Rn

βg(Σ(ξ))e(−〈g
−1x, ξ〉)dξ

= βg(Σ̂(g
−1x))

= (g · Σ̂)(x).

Warning 5.4.3. The integrands of the above give rise to divergent integrals:

we took the Fourier transformation of order zero symbol (as tempered distri-

bution). To regularise divergent oscillatory integrals, one does the following.

Since we realise Σ̂ as a distribution, for u ∈ S(Rn, A∞), 〈Σ̂, u〉 is given by

lim
ε→0

∫

Rn

∫

Rn

Σ(ξ)u(x)e

(
−
ε ‖ξ‖2

2

)
e(−〈x, ξ〉)dξdx.

Now since the expression e
(
−
ε‖ξ‖2

2

)
is G-invariant, the change of variable

in the above proof makes sense. From now on we will use change of variables

in oscillatory integrals for the action of G without any further explanation.

Lemma 5.4.4. Dα is G equivariant.

Proof. First note that the symbol is independent of A and the Rn-action on
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5.4 Equivariant Connes–Thom isomorphism for equivariant KK theory

Cn is trivial. So α−t(Σ(ξ)) = Σ(ξ). Then, for u ∈ S(Rn, A∞),

(g ·Dαu)(t) =

∫

Rn

∫

Rn

βg(α−t(Σ(ξ)))βg(u(s))e(−〈(g
−1t− s), ξ〉)dsdξ

=

∫

Rn

∫

Rn

βg(Σ(ξ))βg(u(s))e(−〈(g
−1t− s), ξ〉)dsdξ

=

∫

Rn

∫

Rn

βg(Σ(ξ))βg(u(g
−1s))e(−〈(g−1t− g−1s), ξ〉)dsdξ

=

∫

Rn

∫

Rn

1⊗
(gt)−1ξ

(1 + ‖ξ‖2)
1
2

βg(u(g
−1s))e(−〈(t− s), (gt)−1ξ〉)dsdξ

=

∫

Rn

∫

Rn

1⊗
ξ

(1 + ‖ξ‖2)
1
2

βg(u(g
−1s))e(−〈(t− s), ξ〉)dsdξ

=

∫

Rn

∫

Rn

Σ(ξ)βg(u(g
−1s))e(−〈(t− s), ξ〉)dsdξ

= Dα(g · u)(t).

Lemma 5.4.5. Dα is self adjoint.

Proof. By definition (Dα)
∗ = (DΣ)

∗. From 5.3.3, we have (DΣ)
∗ = Dρ and

from the asymptotic expansion of ρ, ρ(ξ) = Σ(ξ)∗ as all higher derivatives in

the expression vanish (since the Rn action on the Clifford algebra is trivial).

Now the result follows as Σ is self-adjoint being a real valued map.

Lemma 5.4.6. [a,Dα] ∈ B oα Rn for a ∈ A ↪→M(B oα Rn).

Proof. First note that we have the pseudo-differential extension:

0 −−−→ B oα Rn ϕ
−−−→ D(B oα Rn)

ψ
−−−→ A⊗ C(Sn−1,Cn) −−−→ 0.

Now for a ∈ A∞, let us compute the asymptotic expansions of aDα and Dαa.

From 5.3.2, we have symbol of aD is aΣ and symbol of Da is

Σa+ negative order symbol.

The above negative order symbol involvs higher order derivatives of Σ and

higher order derivatives of a. Since ψ in the above exact sequence is principal

symbol map, ψ(aDα − Dαa) vanishes which proves our claim, for a ∈ A∞.

Since A∞ is dense in A, the same is true for a ∈ A, too.

63



5 Equivariant Connes-Thom isomorphism for C*-algebras

Lemma 5.4.7. a(1−D2
α) ∈ B oα Rn for a ∈ A ↪→M(B oα Rn)

Proof. Let us first compute the symbol of D2
α. From 5.3.2, we have D2

α = Fρ,

where ρ(ξ) = (Σ(ξ))2 (as the Rn action on the Clifford algebra is trivial, the

higher order derivatives in the asymptotic expansion of σ vanishes). Now

(1−D2
α) =

∫

Rn

1̂(z)Vzdz −

∫

Rn

ρ̂(z)Vzdz

=

∫

Rn

1̂(z)Vzdz −

∫

Rn

Σ̂2(z)Vzdz

=

∫

Rn

(1̂− Σ2(z))Vzdz.

Now

1− Σ2 = 1⊗
1

(1 + ‖ξ‖2)
ξ ∈ Rn

is a negative order symbol. So
∫
Rn(1̂− Σ2(z))Vzdz is in BoαRn (follows from

the pseudo-differential extension) which proves our claim.

Lemma 5.4.8. g ·Dα = Dα.

Proof.

g ·Dα =

∫

Rn

g · Σ̂(x)Vgxdx

=

∫

Rn

Σ̂(gx)Vgxdx

=

∫

Rn

Σ̂(x)Vxdx

= Dα.

Where we used that

Σ̂(gx) = g · Σ̂(x),
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5.4 Equivariant Connes–Thom isomorphism for equivariant KK theory

which is in fact easy. Indeed

Σ̂(gx) =

∫

Rn

Σ(ξ)e(−〈gx, ξ〉)dξ

=

∫

Rn

Σ(ξ)e(−〈x, gtξ〉)dξ

=

∫

Rn

Σ((gt)−1ξ)e(−〈x, ξ〉)dξ

=

∫

Rn

Σ(g · ξ)e(−〈x, ξ〉)dξ

=

∫

Rn

βg(Σ(ξ))e(−〈x, ξ〉)dξ

= g · Σ̂(x).

Now let α̂ be the dual action of Rn on Aoα Rn and also on B oα Rn, and

xGn,α be the element defined by Dα̂ in KKG(BoRn, (BoRn⊗Cn)oα̂R
n). Via

the G-equivariant Morita equivalence B ⊗Cn = A⊗Cn ⊗Cn ∼M A and the

G-equivariant Takai duality, we have KKG(BoRn, (BoRn⊗Cn)oα̂R
n) =

KKG(B oRn, A).

Theorem 5.4.9 (Equivariant Connes-Thom). xGn,α and yGn,α are inverses to

one another in KKG-theory.

Of course, this theorem will imply the Theorem 5.4.1.

5.4.1 Proof of equivariant Connes-Thom isomorphism

We prove the theorem showing that the elements yGn,α and xGn,α are inverses to

each other (following closely the Fack–Skandalis proof).

When A = C, α is also trivial, we call the elements yGn,α and xGn,α by yGn and

xGn respectively. We claim that these are the usual G-equivariant Kasparov

Dirac-dual dirac elements, which Kasparov constructed to prove Bott period-

icity (see [35]). This is in fact easy: as when A = C, yGn is clearly given by the

module (C0(Rn,Cn), ι, f), where f is the function

f(ξ) =
ξ

(1 + ‖ξ‖2)
1
2

, ξ ∈ Rn = Rn.

Also as we mentioned before that, in pseudo-differential calculus when one

takes A = C0(Rn) equipped with the standard Rn-translation action α̂, one

65



5 Equivariant Connes-Thom isomorphism for C*-algebras

get the classical pseudo-differential calculus back. Since here we started with

the symbol of the operator (d+ d∗)(1+∆)−1/2, taking the symbol with values

in C0(Rn) ⊗ Cn ⊗ Cn , xGn,α is identified with the Dirac element of Kasparov

in KKG(C0(Rn)⊗Cn,C) which is nothing but (d+ d∗)(1 + ∆)−1/2 acting on

H = L2(Rn,∧•Cn). Note that we identified the class KKG(C0(Rn) ⊗ Cn,K)

with KKG(C0(Rn)⊗Cn,C) by the Morita equivalence of K and C. But this

does not change the Dirac operator as the operator appears in the Morita class

KKG(K,C) is zero and the identification is made by taking Kasparov product

with this Morita class. So in the case A = C, yGn,α and xGn,α are inverses of

each other (using Kasparov’s Bott periodicity).

Suppose A and A′ be such that Rn (by α and α′) and G (by β and β′) act

on them like the way as discussed in 5.2.2. Let ρ : A → A′ be an Rn o G

equivariant homomorphism of C∗ algebras. Also assume that ρ(A) contains an

approximate unit of A′. Then ρ induces a G-morphism ρ̂ : A ⊗ Cn oα Rn →

A′ ⊗Cn oα′ Rn. Then naturality of the Thom class means

ρ̂∗(x
G
n,α) = ρ∗(xGn,α′).

Now ρ∗(xGn,α′) by definition is (A′⊗CnoRn, ι◦ρ,Dα′) ∈ KKG(A,A′⊗CnoRn).

And ρ̂∗(x
G
n,α) is (ρ∗(A ⊗ Cn oRn), ι ⊗ 1, Dα ⊗ 1) ∈ KKG(A,A′ ⊗ Cn oRn).

Now using [8, Example 13.5.2], ρ∗(A⊗Cn oRn) becomes A′ ⊗Cn oRn and

ι ⊗ 1 becomes ι ◦ ρ. Since Dα ∈ D(C
∗(Rn) ⊗ Cn) ↪→ M(A ⊗ Cn oRn), it is

natural in the sense that, under the map ρ̂ : A⊗CnoαRn → A′⊗Cnoα′ Rn,

we get Dα ⊗ 1 is same as Dα′ which proves the naturality of the Thom class.

Thus having these properties of the elements, the rest of the proof goes

exactly like [26, Theorem 2]. The main idea is follows: define a deformation

αs of the action α for s ∈ [0, 1]. Define αs : Rn × A→ A by

αsx(a) := αsx(a), a ∈ A, x ∈ Rn.

So we get the elements ys := yGn,αs and xs := xGn,αs .

Let us consider the algebra D = C([0, 1], A) and let Rn act on this algebra

by γt(f)(x) = αtx(f(x)). Now the map evs : D → A defined by evs(f) = f(s)

is an RnoG equivariant map, where the G action on C([0, 1], A) = C[0, 1]⊗A

is given by the diagonal action (G-action on C[0, 1] being trivial). Now we get

a G-map êvs : DoRn → AoRn which is also a RnoG equivariant map with

respect to the dual action. Now by the definition of the Kasparov product and

naturality of Thom elements, we have the following elements:

[evs] ∈ KKG(D,A)

[êvs] ∈ KKG(D ⊗Cn oRn, A⊗Cn oRn)
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5.5 Application: K-theory of equivariant quantization

[̂̂evs] = [evs] ∈ KKG(D,A) (using Takesaki-Takai)

yγ := yGn,γ ∈ KKG(D,D ⊗Cn oγ R
n)

xγ := xGn,γ ∈ KKG(D ⊗Cn oγ R
n, D)

which satisfy (by naturality of the Thom class)

[evs]× ys = yγ × [êvs]

and

xγ × [evs] = [êvs]× xs.

Now

(yγ × xγ)× [evs] = yγ × (xγ × [evs])

= yγ × [êvs]× xs

= (yγ × [êvs])× xs

= [evs]× ys × xs.

But using homotopy invariance of KKG-theory, [evs] = [ev0]. And [ev0] has

homotopy inverse (class of the map f which sends a to a⊗ 1). So

ys × xs = [f ]× (yγ × xγ)× [ev0]

shows that ys×xs is independent of s. Similarly starting with (xγ×yγ)× [êvs],

we conclude that ys × xs is independent of s. Since we know that y0 × x0 = 1

(using Kasparov’s Bott periodicity), we get y1×x1 = 1. Similarly x1×y1 = 1.

5.5 Application: K-theory of equivariant

quantization

Recall that if α is a strongly continuous action of Rn on a C∗-algebra A,

and J is a skew-symmetric form on Rn, Rieffel [55] constructed a deformation

quantization AJ of A via oscillatory integrals

a×J b :=

∫

Rn×Rn

αJx(a)αy(b)e(x · y)dxdy, (5.5.1)

for x, y ∈ Rn, and a, b ∈ A∞. The first copy of Rn in Rn×Rn is basically Rn

after identification of Rn and Rn (see the discussion at Page 11 of [55].) Rn

acts on AJ by the same action α ([55, Proposition 2.5]), and we denote the

smooth vectors for this action to be A∞
J .

We recall the following results about Rieffel deformation from [46]:

67



5 Equivariant Connes-Thom isomorphism for C*-algebras

Theorem 5.5.1. The map ΘJ from A∞
J oRn to A∞ oRn defined by

ΘJ(f)(x) =

∫

Rn

αJy(f̂(y))e(x · y)dy

is an isomorphism, where f̂ is the Fourier transformation of f ∈ S(Rn, A)

and e(t) := e2πit.

Proof. See [46, Theorem 1.1].

Theorem 5.5.2. The map ΘJ extends to isomorphism of AJoRn to AoRn.

Proof. See [46, Theorem 2.1].

Now let G as in 5.2.2. That means G acts on A by β and we have

βgαx = αρg(x)βg, for any g ∈ G, x ∈ Rn. (5.5.2)

Now

βg(a)×J βg(b) =

∫

Rn×Rn

αJx(βg(a))αy(βg(b))e(x · y)dxdy

=

∫

Rn×Rn

α(gt)−1Jg−1xβg(a)αgyβg(b)e(x · gy)dxdy,

=

∫

Rn×Rn

α(gt)−1Jxβg(a)αgyβg(b)e(gx · gy)dxdy,

=

∫

Rn×Rn

βgαJx(a)βgαy(b)e(x · y)dxdy,

= βg(a×J b)

shows that the action of G on AJ by β is well defined. So we get G action on

A∞
J oRn and A∞ oRn. Abusively we call both actions by β again.

The following theorem ensures that we can make the isomorphism of 5.5.1

G-equivariant.

Theorem 5.5.3. With the notations introduced in the beginning of the previous

section,

βg(θJ(f)) = θJ(βg(f))
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5.5 Application: K-theory of equivariant quantization

Proof.

θJ(βg(f))(x) =

∫

Rn

αJy(β̂gf(y))e(x · y)dy

=

∫

Rn

αJy(

∫

Rn

βgf(t)e(−y · t)dt))e(x · y)dy

=

∫

Rn

∫

Rn

αJyβg(f(g
−1t))e(−y · t)e(x · y)dtdy

=

∫

Rn

∫

Rn

βgαg−1Jy(f(g
−1t))e(−y · t)e(x · y)dtdy

=

∫

Rn

∫

Rn

βgαg−1Jy(f(t))e(−y · gt)e(x · y)dtdy

=

∫

Rn

∫

Rn

βgαg−1J(gt)−1y(f(t))e(−y · t)e(g
−1x · y)dtdy

=

∫

Rn

∫

Rn

βgαJy(f(t))e(−y · t)e(g
−1x · y)dtdy

= βg(θJ(f))(x).

Warning 5.5.4. In the above, since y ∈ Rn, abusively we have written gy for

(gt)−1y and we used the fact that g−1J(gt)−1 = J. In general one should be

careful about Rn and Rn.

Example 5.5.5. Recall that an n-dimensional noncommutative torus Aθ is

the universal C*-algebra generated by unitaries U1, U2, U3, · · · , Un subject to

the relations

UkUj = exp(2πiθjk)UjUk

for j, k = 1, 2, 3, · · · , n and θ =: (θjk) being a skew symmetric real n × n

matrix. If we look at the smooth holomorphically closed subalgebra A∞
θ of

Aθ. The algebra A∞
θ can also be viewed as Rieffel deformation of C∞(Tn) by

translation action of Rn and θ is the skew symmetric form.

Example 5.5.6. Let G be Z2 or Z3 or Z4 or Z6 as finite cyclic groups (can be

viewed as matrices in SL2(Z)) acting on R2. Since the action is Z2 preserving,

the 2-torus T2 = R2/Z2 inherits an action of G from the G action on R2. Let

A be the C∗-algebra of continuous functions on T2. The group R2 acts on

T2 by translation. For θ ∈ R, we consider the symplectic form θdx1 ∧ dx2,

also denoted by θ. So Aθ is just like the previous example of a 2 dimensional

noncommutative torus. The action α (and β) of R2 (and G) on A satisfy Eq.

(5.2.1). Now the G action on Aθ is well defined.
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5 Equivariant Connes-Thom isomorphism for C*-algebras

Also recall that we considered the twisted group algebra (as defined in Chapter

2) C∗(Z2oG,ωθ), where ωθ is a 2-cocycle of Z2 (ωθ(x, y) := e2πi〈θx,y〉, θ being

a real number) which was extended trivially to the semi-direct product. These

actions are considered in [22]. Now it is not hard to see that C∗(Z2oG,ωθ) =

Aθ o G, where the latter is defined as in the previous paragraph. In general,

with the above 2-cocycles, the twisted group algebras of groups like ZnoG are

basically coming from equivariant (in the sense discussed in the section 5.2.2)

deformation quantization of Rn action on A = C(Tn).

Corollary 5.5.7. K∗(Aθ oG) is independent of θ parameter.

Proof. Here we have A = C(T2) and J = θ. From the above theorem and from

Theorem 5.5.2 we get,

Aθ oR2 oG ' AoR2 oG

.

Now applying the K functor on the both sides we get,

K∗(Aθ oR2 oG) = K∗(AoR2 oG).

Now since in this particular case G is a finite cyclic group, hence spinc

preserving. Indeed, the diagram

G

0 S1 Spinc(n) SO(n) 0.

determines a group 2-cocycle on SO(n), and since the restriction of this cocycle

to G is trivial (as G is cyclic), the lift

G

0 S1 Spinc(n) SO(n) 0,
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is always possible. Hence

K∗(Aθ oR2 oG) = KG
∗ (Aθ oR2),

= KG
∗ (Aθ ⊗C2 oR2)

= KG
∗ (Aθ)

= K∗(Aθ oG)

and similarly K∗((AoR2)oG) = K∗(AoG). So the claim follows from the

second isomorphism.
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6 Traces on the twisted group

algebras of crystallographic

groups

6.1 Introduction

Let us recall that we have introduced the smooth sub-algebras A∞
θ oF of the

C*-algebras Aθ o F arising from actions of the finite group F on Aθ. In this

chapter we look at some of the zeroth cyclic cocycles of the smooth algebras

A∞
θ oF , which will be helpful for computing explicit generators of K0(AθoF ),

at least in some cases. Like in the C*-algebra case, we shall view the algebras

A∞
θ o F as twisted smooth group algebras of the groups like Zn o F . Zeroth

cyclic cocycles are basically the traces of the algebra. In the untwisted case,

each conjugacy class of the group ZnoF gives a trace of the smooth algebra.

But it is not clear that how these traces can be twisted to give traces of the

twisted smooth algebra. We will see that an appropriate twisting of these

traces is always possible for the group Zn o F . A general result for more

general groups has been obtained in a joint work with Yamashita (see [15]).

The results in this chapter involve careful study of group cocycles, Hochschild

cocycles and their interaction.

6.2 Some basic definitions

6.2.1 Noncommutative calculus

Let us first review the fundamental concepts in Hochschild homology theory

(see [19] for details).

Let A be a unital C-algebra, and put Cn(A) = A⊗n+1. Recall that the

Hochschild differential Cn(A)→ Cn−1(A) is given by

b(a0⊗· · ·⊗an) =

n−1∑

i=0

(−1)ia0⊗· · ·⊗aiai+1⊗· · ·⊗an+(−1)nana0⊗a1⊗· · ·⊗an−1.

(6.2.1)
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6 Traces on some crystallographic group algebras

Then the Hochschild homology groups of A are given by

H∗(A) := H∗(C(A), b)

Its dual theory we denote by H∗, and the corresponding complex by C(A)′. It

is easily checked that the zeroth Hochschild cohomology group H0(A) consists

of traces of A i.e.

H0(A) = {f : A→ C|f(ab) = f(ba), ∀a, b ∈ A}.

We also define the zeroth cyclic cohomology group of A, HC0(A), to be

the group H0(A). Since we won’t use higher cyclic cohomology groups, we

won’t discuss much of that here. It is good to know that the the higher

cyclic cohomology groups are different from the higher Hochschild cohomology

groups.

6.2.2 Standard complex for group cohomology

Let G be a discrete group andM be a trivial G-module. The group cohomology

H∗(G;M) is equal to the cohomology of the standard complex (C∗(G;M), d),

where Cn(G;M) = Map(Gn,M) and d : Cn(G;M)→ Cn+1(G;M) is given by

dφ(g1, . . . , gn+1) = φ(g2, . . . , gn+1)

+

n∑

i=1

(−1)iφ(g1, . . . , gigi+1, . . . , gn+1) + (−1)n+1φ(g1, . . . , gn). (6.2.2)

We formally put C0(G;M) = Map(∗,M) =M and d to be the zero map from

C0(G;M) to C1(G;M). Consequently, H0(G;M) = M and the 2-cocycles are

the 2-point functions satisfying

φ(h, k) + φ(g, hk) = φ(g, h) + φ(gh, k).

Obviously, C∗(G) = C∗(G;C) is the dual complex of C∗(G) = (C[Gn])∞n=0,

endowed with differential d : Cn+1(G)→ Cn(G) analogous to that of C∗(G).1

A group cochain φ ∈ Cn(G;M) is normalized if

φ(g1, . . . , gi, e, gi+1, . . . , gn−1) = 0 (0 ≤ i ≤ n− 1)

and φ(g1, . . . , gn) = 0 whenever g1 · · · gn = e.

Proposition 6.2.1 ([34; 41, Section 4]). When K is a field of characteristic

zero and n > 0, any K-valued n-cocycle is cohomologous to a normalized one.

1not to be confused with group C*-algebra.
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6.2 Some basic definitions

6.2.3 Hochschild cocycles on group algebra

Let us now describe the Hochschild theory for group algebra C[G], which is

essentially from [13]. For determining zeroth cyclic cocycles of twisted algebras

of G, this general discussion will be useful as we shall see later.

For each x ∈ G, let us denote the centraliser of x in G by CG(x), and the

conjugacy class of x by AdG(x). Let C
x
n(C[G]) be the subspace of Cn(C[G]) =

C[G]⊗n+1 spanned by those g0 ⊗ · · · ⊗ gn such that g0 · · · gn ∈ AdG(x). Let

G\AdG denote the conjugacy classes of G. The spaces (Cxn(C[G]))∞n=0 give a

subcomplex for b, which leads to the direct sum decomposition (see [13])

H∗(C[G]) =
⊕

x∈G\AdG

H∗(C
x
∗ (C[G]), b).

where CC(Cx∗ (C[G])) is the direct summand of CC(C[G]) formed by the spaces

Cxn(C[G]). Dualizing this, we also obtain the direct product decomposition

H∗(C[G]) =
∏

x∈G\AdG

H∗(Cx∗ (C[G])′, b).

Let us denote the factors labeled by x by H∗(C[G])x and HC∗(C[G])x. We

want to describe them in terms of group cohomology.

From now on let us fix x, and also choose and fix gy = gyx ∈ G such that

(gy)−1xgy = y for each element y in AdG(x).

Let (g0, . . . , gn) ∈ G
n+1 be such that g0 · · · gn ∈ AdG(x). We put

yi = gi · · · gng0 · · · gi−1.

Note that these elements are also in AdG(x).

Lemma 6.2.2. The elements gyigi(g
yi+1)−1 for 0 ≤ i < n, and gyngn(g

y0)−1

are in CG(x).

Proof. This follows from direct calculation using xgy = gyy and yigi = giyi+1.

We next consider the map

Ξ: Cxn(C[G])→ Cn(CG(x)), g0⊗· · ·⊗gn 7→ (gy1g1(g
y2)−1, . . . , gyngn(g

y0)−1).

Proposition 6.2.3. The map Ξ intertwines the Hochschild differential b on

(Cxn(C[G]))∞n=0 and d on C∗(CG(x)).
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6 Traces on some crystallographic group algebras

Proof. We can compare (6.2.1) and (6.2.2) directly term by term.

Consequently, any cocycle on CG(x) induces a Hochschild cocycle on C[G]

which is supported on the conjugacy class of x. For example, the trivial class

represented by 1 ∈ C = C0(CG(x)) corresponds to the trace

τx(f) = δAdG(x)(f) =
∑

g∈AdG(x)

f(g) (6.2.3)

on C[G].

The following proposition is well known.

Proposition 6.2.4. The map Ξ induces an isomorphism H∗(C[G])x ' H∗(CG(x);C).

Proof. This corresponds to the first half of [13, Theorem I’]. More concretely,

consider a map Υ: C∗(CG(x))→ C
x
∗ (C[G]) defined by

Υ(g1, . . . , gn) = (g1 · · · gn)
−1x⊗ g1 ⊗ · · · ⊗ gn.

Then, on the one hand, ΞΥ is equal to the identity map on C∗(CG(x)). On

the other, ΥΞ can be computed as

g0 ⊗ · · · ⊗ gn 7→ gy0g0(g
y1)−1 ⊗ gy1g1(g

y2)−1 ⊗ . . .⊗ gyngn(g
y0)−1.

This map is homotopic to the identity on Cx∗ (C[G]) as follows (cf. [28, Sec-

tion III.2]). Put

θ0(g0 ⊗ · · · ⊗ gn) = gy0g0 ⊗ g1 ⊗ · · · ⊗ gn ⊗ (gy0)−1,

θ1(g0 ⊗ · · · ⊗ gn) = gy0g0 ⊗ g1 ⊗ · · · ⊗ gn−1 ⊗ (gyn)−1 ⊗ gyngn(g
y0)−1, . . .

θn(g0 ⊗ · · · ⊗ gn) = gy0g0 ⊗ (gy1)−1 ⊗ gy1g1(g
y2)−1 ⊗ · · · ⊗ gyngn(g

y0)−1.

Then the alternating sum

hn =

n∑

i=0

(−1)n+i+1θi : C
x
n(C[G])→ Cxn+1(C[G]) (6.2.4)

satisfies bhn + hn−1b = id− ΥΞ. Consequently, Ξ and Υ induce isomorphism

of cohomology between the dual complexes.
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6.3 Inducing traces on twisted algebras

6.3 Inducing traces on twisted algebras

Let ω0(g, h) be a C-valued normalized 2-cocycle on G. We consider the twisted

group algebras for the family of C×-valued 2-cocycles ωt(g, h) = etω0(g,h), so

that the new product is g ∗t h = ωt(g, h)gh.

We want to ‘deform’ the trace τ = δAdG(x) (as in the equation 6.2.3) on C[G]

to a one on Cωt [G]. Note that when gh ∈ AdG(x), we have

δAdG(x)(g ∗t h) = ωt(g, h), δAdG(x)(h ∗t g) = ωt(h, g),

but these factors do not need to be equal. We want to correct this situation

by setting τxωt(g) = etξ(g)δAdG(x)(g) for some function ξ on AdG(x). Then τxωt

becomes a trace if we have

ω0(g, h) + ξ(gh) = ω0(h, g) + ξ(hg) (6.3.1)

This means that the bilinear extension of ω0(g, h)−ω0(h, g) is the Hochschild

coboundary of the linear extension of ξ. Let us put ωa0(g, h) = ω0(g, h) −

ω0(h, g).

Lemma 6.3.1. The bilinear extension of ωa0 represents a 1-cocycle in the com-

plex (Cx∗ (C[G])′, b).

Proof. We need to show

ωa0(gh, k)− ω
a
0(g, hk) + ωa0(kg, h) = 0

whenever ghk ∈ AdG(x). Expanding the definition of ωa0 , this is the same as

ω0(gh, k) + ω0(hk, g) + ω0(kg, h) = ω0(k, gh) + ω0(g, hk) + ω0(h, kg).

Adding ω0(g, h)+ω0(h, k)+ω0(k, g) to both sides and using the cocycle identity,

we indeed obtain the equality.

By Proposition 6.2.4, ωa0 is a Hochschild coboundary if and only if its image

in H1(CG(x);C) is trivial. Since H1(CG(x);C) = Z1(CG(x);C), so ωa0 is a

coboundary if and only if its pullback by Υ vanishes.

Proposition 6.3.2. Suppose x is of finite order. Then the function ωa0Υ(g) =

ωa0(g
−1x, g) on CG(x) is trivial.

Proof. Using g−1x = xg−1 and that ω0 is a normalized 2-cocycle, we have

ωa0(g
−1x, g) = −ωa0(x, g

−1). Note that x and g−1 play the same role in this

expression, and x ∈ CG(g
−1). Thus, ωa0(h, g

−1) as a function in h ∈ CG(g
−1)

is in Z1(CG(g
−1);C) = Hom(CG(g

−1),C). Since x is of finite order, it has to

vanish on x.
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6 Traces on some crystallographic group algebras

It follows that we have a solution for ξ in (6.3.1) when x is of finite order.

Example 6.3.3. Suppose we have G = Z2 oZ3, where the generator 1 of Z3

acts on Z2 by the matrix

A =

[
−1 −1

1 0

]
.

In the following we denote elements of G by triples (a, b, i) for a, b ∈ Z and

i ∈ Z3. This group has the following conjugacy classes that contain elements

of finite order:

{(0, 0, 0)}, {(a, b, 1) | a ≡ b mod 3}, {(a, b, 1) | a ≡ b+ 1 mod 3},

{(a, b, 1) | a ≡ b+ 2,mod3}, {(a, b, 2) | a ≡ b mod 3},

{(a, b, 2) | a ≡ b+ 1,mod3},

{(a, b, 2) | a ≡ b+ 2,mod3}.

Let us consider the 2-cocycle ω0 on Z2 given by ω0((a, b), (c, d)) = ad− bc, and

extend it to G by

ω0((a, b, g), (c, d, h)) = ω0((a, b), g.(c, d)) (a, b, c, d ∈ Z, g, h ∈ Z3).

Writing t as θ, for x = (0, 0, 0), τxωθ
= τxω0

is the usual trace on the twisted

group algebra of G. Let us now consider the case x = (0, 0, 1). Then we have

ωθ((a, b, 0), (c, d, 1)) = ωθ((a, b), (c, d)) = exp

(
−
iθ

2
(ad− bc)

)
,

ωθ((c, d, 1), (a, b, 0)) = ωθ((c, d), (−a− b, a)) = exp

(
−
iθ

2
(ca+ ad+ bd)

)
.

Thus, in the twisted group algebra Cωθ
[G], we have

λ
(ωθ)
(a,b,0)

λ
(ωθ)
(c,d,1)

= exp

(
−
iθ

2
(ad− bc)

)
λ
(ωθ)
(a+c,b+d,1)

, (6.3.2)

λ
(ωθ)
(c,d,1)

λ
(ωθ)
(a,b,0)

= exp

(
−
iθ

2
(ca+ ad+ bd)

)
λ
(ωθ)
(c−a−b,d+a,1)

. (6.3.3)

In particular, δAdG(x) is not a trace, but a correction like

τxωθ
(λ(a,b,1)) = exp

(
−
iθ(a2 + ab+ b2)

6

)
δAdG(x)(a, b, 1) (6.3.4)

is (see Section 6.4.1 for comparison with [12]). Let us relate the extra fac-

tor appearing here to the above general discussion. On the one hand, using

Equation 6.2.4
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6.4 Zeroth cyclic cocycles of twisted crystallographic group algebras

bh1 + h0b = id−ΥΞ,

and ωa0b = 0, ωa0Υ = 0 implies that we can take

ξ = ωa0h0 (6.3.5)

On the other, for y = (a, b, 1) ∈ AdG(x), the element gy = ( b−a3 , −a−2b
3 , 0)

satisfies (gy)−1xgy = y. Thus ξ is given by

ξ(g0) = ωa0h0(g0) = ω0(g
g0g0, (g

g0)−1)− ω0((g
g0)−1, gg0g0) =

a2 + ab+ b2

3

for g0 = (a, b, 1) with a ≡ b mod 3, and ξ(g0) = 0 otherwise. To check that the

functional (6.3.4) agrees on (6.3.2) and (6.3.3), one needs

ad− bc+
1

3

(
(a+ c)2 + (a+ c)(b+ d) + (b+ d)2

)
=

ca+ ad+ bd+
1

3

(
(c− a− b)2 + (c− a− b)(a+ d) + (a+ d)2

)
,

which is indeed the case.

6.4 Zeroth cyclic cocycles of twisted

crystallographic group algebras

In this section we only look at the example G = Zn o F, F = Zm. Since this

is a finitely generated group, it carries a natural length function which will be

called `. Let us again recall the example of following 2-cocyle:

Example 6.4.1. Let F be a finite subgroup of GLn(Z) such that each W ∈ F

leaves θ invariant, i.e., W T θW = θ. Then we can define a 2-cocycle ω′
θ on

G = Zn o F by ω′
θ((x, g), (y, h)) = ωθ(x, g.y) for x, y ∈ Zn and g, h ∈ F . So

by definition ω′
θ((x, g), (y, h)) = ωθ(x, g.y) = eπi〈−θx,g·y〉. Also define the two

cocycles ωtθ((x, g), (y, h)) = eπit〈−θx,g·y〉, for t ∈ [0, 1].

In the context of cyclic cohomology, the natural algebra to consider is the

smooth algebras associated to G and ω′
θ. Let us recall that a Fréchet algebra

is given by a C-algebra A and a sequence of (semi)norms ‖a‖m (a ∈ A) for

m = 1, 2, 3, . . ., such that A is complete with respect to the locally convex

topology defined by the ‖a‖m, and that the product map A×A→ A is (jointly)

continuous. Also if each ‖a‖m is submultiplicative, that is ‖ab‖m ≤ ‖a‖m ‖b‖m,

A is then called an m-algebra.
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6 Traces on some crystallographic group algebras

Let A be a Fréchet m-algebra with seminorms ‖a‖m, and let α : Gy A be

an action of G which is `-tempered [57]:

∀m, ∃ C, k, n : ‖αg(x)‖m ≤ C(`(g) + 1)k ‖x‖n .

We then put

S(G;A) =

{
f : G→ A

∣∣∣∣ ∀k,m :
∑

g

(`(g) + 1)k ‖f(g)‖m <∞

}
. (6.4.1)

The seminorms

‖f‖d,m =
∑

g

(`(g) + 1)d ‖f(g)‖m

topologize S(G;A), and since ‖f‖m is increasing in m, the seminorms ‖f‖′m =

‖f‖m,m also topologize S(G;A), which is an m-algebra [56, Theorem 3.1.7].

S(G;A) is also sometimes written as A o G, a crossed product algebra. As

a Fréchet space this is just the projective tensor product of S(G) = S(G;C)

and A. Let us denote the twistings of S(G) by S(G,ω′
θ), i.e we change the

multiplication in S(G) to twisted convolution. Like in the case of C*-algebra,

S(G) is naturally isomorphic to S(Zn, ωθ) o F , for some action of F on the

Fréchet algebra S(Zn, ωθ).

We also look at the algebra S(G; C∞([0, 1])), where G acting trivially on

C∞([0, 1]). Let f and f ′ be elements of S(G; C∞([0, 1])) ' C∞([0, 1];S(G)).

Their product is represented by the function

(t, g) 7→
∑

h∈G

ωtθ(h, h
−1g)ft(h)f

′
t(h

−1g). (6.4.2)

Also we have natural the evaluation maps evt, t ∈ [0, 1], from S(G; C∞([0, 1])) '

C∞([0, 1];S(G)) to S(G,ωtθ).

For the following theorem, we use K-theory for Fréchet m-algebras (as in

Chapter 2), and continuous version of Hochschild and cyclic (co-)cycles. Let

〈, 〉 denote the Chern–Connes pairing between projections and cyclic cocycles.

Though the following theorem can be more general, we only state it for our

special G.

Theorem 6.4.2 (Theorem 4.8, [15]). Let x be an element of G with finite

centraliser. Then φ(t) = τx
ωt
θ

is well defined zeroth Hochschild (also cyclic)

cocycle on S(G,ωtθ). When P is a projection inside K0(S(G; C
∞([0, 1]))), the

pairing 〈φ(t), evt(P )〉 is independent of t.
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6.4 Zeroth cyclic cocycles of twisted crystallographic group algebras

Proof. The expression 〈−θx′, g ·y′〉 is the ω0((x
′, g), (y′, h), where the notation

ω0 is from previous section. Now the growth of ω0((x
′, g), (y′, h) is bounded

by some polynomial in `(x′, g) and `(y′, h) and so the continuous version of

Lemma 6.3.1 holds. Also the explicit formula of φ(t) (6.2.3, 6.3.5), shows that

it extends to the smooth algebra S(G,ωtθ). For the rest, see [15, Theorem 3.4,

Theorem 4.8].

Remark 6.4.3. The zeroth periodic cyclic cohomology group (HP0), as intro-

duced in Preliminaries (2), is defined to be certain direct limit of cyclic coho-

mology groups. As we have seen in Example 2.7.10 that HP0(S(Z2)) = Z2,

one might ask how this is connected to HC0(S(Z2)). In fact HC0(S(Z2)) is

very big as it contains traces from infinitely many conjugacy classes. But It can

be shown that they all (except the trace coming from the conjugacy class of the

trivial element) disappear in HP0(S(Z2)). The other generator of HP0(S(Z2))

comes from a distinguished cyclic 2-cocycle which is an element of HC2(S(Z2)).

Let us now look at the K-theory of S(G,ω′
θ) and C

∗(G,ω′
θ) . AssumeW ∈ F

acts free away from origin. Again note that when n = 2, any finite subgroup

of SL2(Z) will work. Let M denote the set of conjugacy classes of maximal

finite subgroups of G. In the following theorem, K̃0(C[P ]) denotes the reduced

K0-group, that is, the kernel of the map K0(C[P ]) → K0(C) induced by the

trivial representation. Recall the following theorem from Chapter 2:

Theorem 6.4.4. There exists an exact sequence

0
⊕

P∈M

K̃0(C[P ]) K0(C
∗(G)) K0(BG) 0.

(6.4.3)

Also, we have K1(C
∗(G)) ' K1(BG).

Under the above setting, any nontrivial finite subgroup of G has a finite

normaliser [42, Lemma 6.1]. In particular, any nontrivial torsion element has

a finite centraliser.

Let us further assume that p = m is prime. Then any non-trivial finite

subgroup P of G must be isomorphic to Zp via the restriction of the projection

map G→ Zp. Thus any nontrivial finite subgroup of G represents an element

ofM. In Chapter 2, we explained how projections in K̃0(C[P ]) contribute to

the K0(C
∗(G) and K0(C

∗(G,ω′
θ)). Let us recall that quickly. Since C[P ] is

isomorphic to the algebra C(P̂ ) ' Cp, K0(C[P ]) is the free abelian group of

rank p. Now let g be a generator of P . The minimal projections of C[P ] are

given by

Qj,g =
1

p

p−1∑

k=0

exp

(
i
π

p
jk

)
λgk
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6 Traces on some crystallographic group algebras

for j = 0, · · · , p−1, which also represent a basis of K0(C[P ]). Since Q0,g repre-

sents the trivial representation, a basis of K̃0(C[P ]) is given byQ1,g, · · · , Qp−1,g.

For the generator of P , g, let us denote the canonical element λ
(ω′

θ)
g ∈

C∗(G,ω′
θ). Still, since ω′

θ is cohomologically trivial on P , we can always mul-

tiply a suitable z ∈ T so that order of the unitary zλ
(ω′

θ)
g is p. Then the

formula

Q
(θ)
j,g =

1

p

p−1∑

k=0

exp

(
i
π

p
jk

)
zkλ

(ω′
θ)

gk

for j = 1, · · · , p− 1 will give projections which are elements of K0(C
∗(G,ω′

θ)).

Also note that the projections are in K0(S(G,ω
′
θ)), since they all basically

come from K0(C[P ]). Varying t in [0, 1], we can think Q
(tθ)
j,g as a continu-

ous (smooth) field of projections and we denote the corresponding element in

K0(S(G; C
∞([0, 1]))) by Qj,g. Of course, evt(Qj,g) = Q

(tθ)
j,g .

6.4.1 The case Z2 oZ3

Let us come back to Example 6.3.3, and compare it to [12]. This group Z2oZ3

can be presented as

G =
〈
u, v, w | w3 = e, uv = vu, wuw−1 = u−1v, wvw−1 = u−1

〉
.

Up to conjugation, the finite subgroups of G are generated by one of the

elements w, uw or, u2w all of which are of order 3. Since ω′
θ(w,w) = 1, the first

element still has order 3 in the twisted group algebra, and the corresponding

projections Q
(θ)
1,w and Q

(θ)
2,w give nontrivial classes K0(C

∗(G,ω′
θ)). On the other

hand,

ω′
θ(uw, uw)ω

′
θ(uwuw, uw) = ωθ(u, u

−1v)ωθ(v, v
−1) = exp(−i

θ

2
)

shows that λ
(ω′

θ)
uw is not of order 3. But an adjustment like exp(iθ6)λ

(ω′
θ)

uw gives

the right order.

For simplicity, let us write e(m) instead of exp(imθ). Then as noticed above

e(16)λ
(ω′

θ)
uw is an unitary of order 3. Similarly one can see that e(23)λ

(ω′
θ)

u2w is also

an unitary of order 3. Then we have the projections Q
(θ)
1,w, Q

(θ)
2,w, Q

(θ)
1,uw, Q

(θ)
2,uw,

Q
(θ)
1,u2w, Q

(θ)
2,u2t defining nontrivial classes in K0(C

∗(G,ω′
θ)).

Recall from [12] that if α defines an action of Zp on A, an α-invariant

functional φ on A is said to be an α-trace if

φ(xy) = φ(α(y)x)
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holds for any x, y ∈ A. An αs-trace φ gives rise to a trace Tφ on AoZp defined
by

Tφ(x0 + x1w + · · ·+ xp−1w
p−1) = φ(xp−s)

for xi ∈ A and w being the copy of 1 ∈ Zp.

Coming back to the example, let us consider the induced action of Z3 on

S(Z2, ωθ). From [12, Theorem 3.3], we have following α-traces φ1l on S(Z
2, ωθ):

φ1l (λ
(ωθ)m
u λ

(ωθ)n
v ) = e

(
1

6
((m− n)2 − l2)

)
δ3Z(m− n− l)

for l = 0, 1, 2. Similarly we have following α2-traces φ2l on S(Z2, ωθ):

φ2l (λ
(ωθ)m
u λ

(ωθ)n
v ) = e

(
−mn−

1

6
((m− n)2 − l2)

)
δ3Z(m− n− l)

for l = 0, 1, 2. Each φil then gives the traces T il = Tφi
l
on S(Z2, ωθ) o Z3 =

S(G,ω′
θ). Using λ

(ωθ)m
u λ

(ωθ)n
v = e(−mn2 )λ

(ωθ)
umvn , it is straightforward to check

that the trace τwω′
θ
of Example 6.3.3 is exactly equal to T 2

0 .

The pairing of the above projections and traces are given by the following ta-

ble (cf. [12, Theorem 1.2]), which is independent of θ as suggested by Theorem

6.4.2.

τw
2

ω′
θ
= T 1

0 τuw
2

ω′
θ

= T 1
1 τu

2w2

ω′
θ

= T 1
2 τwω′

θ
= T 2

0 τuwω′
θ
= T 2

1 τu
2w

ω′
θ

= T 2
2

Q
(θ)
1,w

1
3e

4π
3
i 0 0 1

3e
2π
3
i 0 0

Q
(θ)
2,w

1
3e

2π
3
i 0 0 1

3e
4π
3
i 0 0

Q
(θ)
1,uw 0 0 1

3e
4π
3
i 0 1

3e
2π
3
i 0

Q
(θ)
2,uw 0 0 1

3e
2π
3
i 0 1

3e
4π
3
i 0

Q
(θ)
1,u2w 0 1

3e
4π
3
i 0 0 0 1

3e
2π
3
i

Q
(θ)
2,u2w 0 1

3e
2π
3
i 0 0 0 1

3e
4π
3
i

6.4.2 The case Z2 oZ2

Let G = Z2 oZ2, where the generator 1 of Z2 acts on Z2 by the matrix

A =

[
−1 0

0 −1

]
.
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6 Traces on some crystallographic group algebras

We sometimes call this action of Z2 a flip action. This group has following

conjugacy classes that contain finite order elements:

X0 = {(0, 0, 0)},

X1 = {(a, b, 1) | a ≡ 0 mod 2, b ≡ 0 mod 2},

X2 = {(a, b, 1) | a− 1 ≡ 0 mod 2, b ≡ 0 mod 2},

X3 = {(a, b, 1) | a ≡ 0 mod 2, b− 1 ≡ 0 mod 2},

X4 = {(a, b, 1) | a− 1 ≡ 0 mod 2, b− 1 ≡ 0 mod 2}.

X0 does not contain element with finite centraliser. It contains the identity

element of the group giving rise to the usual trace τ on S(G,ω′
θ). Now for the

conjugacy classes Xi, for 1 ≤ i ≤ 4, the function ξ = 0 (with the computations

similar to Example 6.3.3).

Let us compare this computation of Walters [59]. This group Z2 o Z2 has

presentation

G =
〈
u, v, w | w2 = e, uv = vu, wuw−1 = u−1, wvw−1 = v−1

〉
.

Up to conjugation, the finite subgroups of G are generated elements w, uw,

vw, or uvw all of which are of order 2. Let us denote the corresponding projec-

tions by Q
(θ)
w , Q

(θ)
uw, Q

(θ)
vw, Q

(θ)
uvw. These give nontrivial classes K0(C

∗(G,ω′
θ)).

Explicitly these projections are:

Q
(θ)
w =

1

2
(1+w), Q

(θ)
uw =

1

2
(1−uw), Q

(θ)
vw =

1

2
(1−vw), Q

(θ)
uvw =

1

2
(1−e(

1

2
)uvw).

Now using Theorem 6.4.2, the value of τxω′
θ
(Q

(θ)
y ) remains constant, for x ∈

Xi, for 1 ≤ i ≤ 4 and y ∈ {w, uw, vw, uvw}.

Consider the induced action of Z2 on S(Z2, ωθ). From [59, Page 592], we

have following α-traces φij on S(Z2, ωθ):

φij(λ
(ωθ)m
u λ

(ωθ)n
v ) = e

(
−
mn

2

)
δ2Z(m− i)δ2Z(n− j)

for i, j = 0, 1, 2. Each φij then gives the traces Tij = Tφij
on S(Z2, ωθ)oZ2 =

S(G,ω′
θ). Using λ

(ωθ)m
u λ

(ωθ)n
v = e(−mn2 )λ

(ωθ)
umvn , it is straightforward to check

that the trace τwω′
θ
= T00, τ

uw
ω′
θ
= T10, τ

vw
ω′
θ
= T01, τ

uvw
ω′
θ

= T11.

The pairing of the above projections and traces are given by the following

table (cf.[59, Page 592]), which is independent of θ as suggested by Theorem

6.4.2.
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τwω′
θ
= T00 τuwω′

θ
= T10 τvwω′

θ
= T01 τuvwω′

θ
= T11

Q
(θ)
w

1
2 0 0 0

Q
(θ)
uw 0 1

2 0 0

Q
(θ)
vw 0 0 1

2 0

Q
(θ)
uvw 0 0 0 1

2

For irrational θ, in [59, Lemma 2.1], Walters constructed a projection Pθ in

S(Z2, ωθ)oZ2 which is a variant of Power-Rieffel projection. Along with the

other results, he proved the following theorem ([59, Lemma 2.3]:

Theorem 6.4.5. K0(C
∗(Z2oZ2, ω

′
θ) is isomorphic to Z6, which is generated

by the K-theory classes of the elements: 1, Q
(θ)
w , Q

(θ)
uw, Q

(θ)
vw, Q

(θ)
uvw, Pθ.

Also we have the pairing of the traces with Pθ as follows ([59, Page 596]):

for 0 < θ < 1
2

τwω′
θ
= T00 τuwω′

θ
= T10 τvwω′

θ
= T01 τuvwω′

θ
= T11

Pθ 1 -1 1 -1

and for 1
2 < θ < 1

τwω′
θ
= T00 τuwω′

θ
= T10 τvwω′

θ
= T01 τuvwω′

θ
= T11

Pθ 1 1 -1 -1

If we denote the tuple of traces as T := (τ, T00, T10, T01, T11), T is a function

on K0(C
∗(Z2oZ2, ω

′
θ). Then Walters has the following result ([59, Proposition

3.2]:

Theorem 6.4.6. T is injective on K0(C
∗(Z2 oZ2, ω

′
θ).

At the end of the next chapter, we shall use the above theorem to compute

the generators of K0(C
∗(Z3 oZ2, ω), for the flip action of Z2 on Z3 and for a

quite general ω ∈ H2(Z3 oZ2,T).
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7 Some non-commutative

orbifolds: the flip-case

In this chapter we discuss the K-theory of the crossed products of noncommu-

tative tori with flip action. We use the notations from Chapter 4.

We consider the n × n matrix W = −In which generates the two element

group. Suppose this group acts on a n = 2p+ q-dimensional noncommutative

torus with respect to the parameter θ with θ :=

(
θ11 θ12
θ21 θ22

)
, θ11 being the

left 2p× 2p corner, which amounts to the condition W T θW = θ that holds in

this case. We call this action the flip action.

We define the following operator on S (Rp × Zq) with respect to W :

TW (f)(x, t) := f(−x,−t). (7.0.1)

S (Rp × Zq) with respect to this action is a A∞
θ o Z2 module which can be

completed to an Aθ o Z2 module. In Chapter 3, we saw that any generator

of K0(Aθ) can be given by completions of modules of the type S (Rp × Zq).
Now, it directly follows from the previous observation that all the generators

of K0(Aθ) can be extended to provide classes in K0 of Aθ o Z2. We shall

show that K-theory classes of these modules can be extended to a generating

set of K0(Aθ o Z2) for 3-dimensional noncommutative tori. Our results will

show that this should also be the case for the general n-dimensional case, but

at this moment we are unable to compute the generators of K0(Aθ o Z2) for

n-dimensional noncommutative tori Aθ. It should be noted that K1(Aθ oZ2)

is trivial ([22]).

Let θ be a real antisymmetric n × n matrix and let θ′ be the upper left

(n−1)×(n−1) block of θ. In this case, Aθ can be written as a crossed product

Aθ′ o Z, where the action (γ) of Z on Aθ′ given (by the generator of Z ) by

Ui → e(θin)Ui, for i = 1, · · · , n−1. Now AθoZ2 = Aθ′oZoZ2 = Aθ′oZ2∗Z2,

since Z2 ∗ Z2 is isomorphic to Z o Z2 as groups. Note that one copy of Z2

acts on Aθ′ by flip action (β) and the other by α = γ ◦ β. Our next step is to

understand the K-theory of Aθ′ o (Z2 ∗ Z2).

For a general crossed product Aoβ Z2, we first define a map p which goes

from AoZ2 toM2(A) which sends the element a+Wb to

(
a b

WbW WaW

)
,
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7 Some non-commutative orbifolds: the flip-case

where W is the unitary in Aoβ Z2 implementing the action β. We recall the

six term exact sequence by Natsume [45] which was used by Farsi-Watling [27]

to compute the K-theory of Aθ′ o (Z2 ∗Z2). For a free product H1 ∗H2 acting

on a C*-algebra A, Natsume obtained the following exact sequence:

K0(A)
i1∗−i2∗−−−−→ K0(AoH1)⊕K0(AoH2)

j1∗+j2∗
−−−−→ K0(AoH1 ∗H2)x

ye1

K1(AoH1 ∗H2) ←−−−−
j1∗+j2∗

K1(AoH1)⊕K1(AoH2) ←−−−−
i1∗−i2∗

K1(A),

where i1, i2, j1, j2 are the natural inclusion maps. The right vertical map e1,

which we will describe in a while, is constructed in Natsume’s paper. We call

it exponential map since it is based on the exponential map in K-theory. We

want to compare the above sequence with the six-term exact sequence obtained

from the classical Toeplitz exact sequence (with coefficient in A) which is same

as the Pimsner-Voiculescu exact sequence for actions of Z on the C*-algebra

A.

From the definition of the crossed product, any crossed product algebra,

A oα G, for a unital C*-algebra A and a discrete group G, has a natural

representation (also called regular representation) ι on the Hilbert module

l2(G,A) which is given by ι(a)(ξ)(g) = αg−1(a)ξ(g) and ι(h)(ξ)(g) = ξ(h−1g),

for a ∈ A and g, h ∈ G. Let Z act on a unital C*-algebra A by an action α. The

classical Toeplitz algebra T A with coefficients in A is defined as follows: we

restrict the natural representation ι of A from l2(Z, A) to l2(Z≥0, A) (note that

the restriction is well defined). Call this restricted representation ι1. When

there is no confusion, we just call ι(a) and ι1(a) by a. Take the right shift

operator S on l2(Z≥0, A) which is given by S(ξ)(n) = ξ(n − 1), ξ(−1) = 0.

Then T A is generated by the elements a ∈ l2(Z≥0, A) and S ∈ l
2(Z≥0, A). We

have the following exact sequence:

0 −−−→ K(l2(Z≥0, A))
ϕ
−−−→ T A

ψ
−−−→ AoZ −−−→ 0

by defining ψ(a) = a and ψ(S) = U , where U is the unitary in the crossed

product A o Z coming from the generator of Z. It can be easily checked

that ker(ψ) = A⊗K. This is the so-called Pimsner-Voiculescu exact sequence

which gives rise to the Pimsner-Voiculescu six term exact sequence. Now we

define the map e2 to be the exponential map in K-theory for the above exact

sequence. So we have
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K0(K(l
2(Z≥0, A))) −−−→ K0(T

A) −−−→ K0(Ao Z)x
ye2

K1(Ao Z) ←−−− K1(T
A) ←−−− K1(K(l

2(Z≥0, A))).

Pimsner-Voiculescu also proved that T A is KK-equivalent to the algebra A.

The above (short exact) sequence also gives rise to the following exact se-

quence (tensoring with M2)

0 −−−→ M2(K(l
2(Z≥0, A)))

ϕ
−−−→ M2(T

A)
ψ
−−−→ M2(AoZ) −−−→ 0.

We now describe the map e1 using an exact sequence like the one above.

Let the group Z2 ∗ Z2 be generated by g and s, i.e. g and s generate the first

and second copy of Z2 in Z2 ∗ Z2, respectively. Natsume obtained the exact

sequence

0 −−−→ K(l2(P ))
η

−−−→ Tp
π

−−−→ C∗(Z2 ∗ Z2) −−−→ 0,

with P = P ′ ∪ {e}, where P ′ is the the set of all non-empty words in Z2 ∗

Z2, which end in g and Tp is generated by µ(g) and v(s), where µ(g) is the

restriction of the left regular representation to l2(P ) and v(s) = λ(s)q(P ),

where λ(s) is the restriction of the left regular representation to l2(P ′) and q(P )

is the projection onto the subspace generated by the inclusion l2(P ′) ⊂ l2(P ).

When all these are defined, there is a map π sending µ(g) to λ(g) and v(s)

to λ(s). Denoting ker(π) to be I, it can be shown that I is isomorphic to

K(l2(P )). More details may be found in the paper by Natsume [45]. Denote

e1 to be map from K0(C
∗(Z2 ∗Z2)) to K1(K(l

2(P )) coming from the six-term

exact sequence corresponding to the above exact sequence in K-theory.

The above construction can be easily extended to the case of crossed product.

Let Z2 ∗ Z2 acting on a unital A with the action α and β on A from 〈s〉 and

〈g〉, respectively. We denote the crossed product by A oα,β Z2 ∗ Z2. T
A
p

is constructed as follows. We have the natural representation ι′ of A oα,β

Z2 ∗ Z2 on l2(Z2 ∗ Z2, A) which we restrict to the Hilbert module l2(P,A) in

the following sense: if we denote the restriction by ι2, a ∈ A, g, s act by the

operators ι2(a)(ξ)(x) = (α, β)x−1(a)ξ(x), ι2(g)(ξ)(x) = ξ(gx), ι2(s)(ξ)(x) =

ξ(sx)(by setting ξ(s) = 0). Then T Ap is the C*-algebra generated by ι2(a)(a ∈

A), ι2(g) and ι2(s). Now we have the following exact sequence (see Lemma

A.3 [45]):

0 −−−→ K(l2(P,A))
η

−−−→ T Ap
π

−−−→ Ao (ZoZ2) −−−→ 0
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7 Some non-commutative orbifolds: the flip-case

by defining π(ι2(a)) = ι′(a), π(ι2(g)) = ι′(g) and π(ι2(s)) = ι′(s). Note that
for the case A = C, ι2(g) = µ(g)(as a generator of Tp), ι2(s) = v(s), ι′(g) =
µ(g), ι′(s) = µ(s). Denote the exponential map (of K-theory) of the above
exact sequence still by e1. The above exact sequence gives rise to Natsume’s
exact sequence in K-theory. So we have

K0(K(l
2(P,A))) −−−→ K0(T

A
p ) −−−→ K0(Ao (Z o Z2))x

ye1

K1(Ao (Z o Z2)) ←−−− K1(T
A
p )) ←−−− K1(K(l

2(P,A))).

T Ap can be shown to be KK-equivalent to (Aoα Z2) ⊕ (Aoβ Z2) (see [45],

also [52]).

Let S = Z o Z2 with generators a and b i.e a generates Z and b generates

Z2. We saw that S is isomorphic to Z2∗Z2, where the later group is generated

by g and s and the isomorphism identifies a and b with sg and g, respectively.

Now l2(P,A) could be identified with l2(P1, A)⊕ l
2(P2, A), where P2 is the set

{g, gsg, gsgsg, gsgsgsg, . . .} and P1 is the set {e, sg, sgsg, sgsgsg, . . .}. Count-

ing the number of sg’s, P1 and P2 have natural identifications with Z≥0. Un-

der this identification l2(P,A) becomes l2(Z≥0, A)⊕ l
2(Z≥0, A), ι2(s) becomes(

0 S

S∗ 0

)
, ι2(g) becomes

(
0 1

1 0

)
and ι2(a) becomes

(
γ−1(a) 0

0 γ−1β(a)

)
,

where γ is the action α◦β on A and

(
γ−1(a) 0

0 γ−1β(a)

)
acts on l2(P1, A)⊕

l2(P2, A).Now under the above identificationK(l2(P,A)) becomesK(l2(P1, A)⊕

l2(P2, A)) = K(l
2(Z≥0, A)⊕ l

2(Z≥0, A)) =M2(K((l
2(Z≥0, A))).

Summarising we have the inclusions PAK , PAT , PAT as follows:

PAK : K(l2(P,A))→M2(K((l
2(Z≥0, A))),

PAT : T Ap → M2(T
A), (T A denotes the Toeplitz algebra of the Z action

γ on A)

PAT : AoZ2 ∗ Z2 = (Aoγ Z)oZ2 →M2(Aoγ Z) are given by

PA
T (ι2(s)) =

(
0 S
S∗ 0

)
, PA

T (ι2(g)) =

(
0 1
1 0

)
, PA

T (ι2(a)) =

(
a 0
0 β(a)

)
,

PAK is the identification map, PAT is the natural map p which was discussed

before i.e

PA
T (U) =

(
U 0
0 U∗

)
, PA

T (W ) =

(
0 1
1 0

)
, PA

T (ι2(a)) =

(
a 0
0 β(a)

)
.

So by construction we have the following commutative diagram:
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0 −−−→ M2(K(l
2(Z≥0), A))

ϕ
−−−→ M2(T

A)
ψ
−−−→ M2(AoZ) −−−→ 0xPA

K

xPA
T

xPA
T

0 −−−→ K(l2(P ), A)
η

−−−→ T Ap
π

−−−→ Ao (ZoZ2) −−−→ 0

Theorem 7.0.1. For unital A with the above notations, the connecting maps

of the above both sequences commute in the following sense:

K0(AoZ2 ∗ Z2)
e1 //

p

&&

K1(A)

K0(Aoγ Z))

e2

OO
,

where p is the natural map (viewed as a map of K-groups).

Proof. The result follows from the commutative diagram

0 −−−→ M2(K(l
2(Z≥0), A))

ϕ
−−−→ M2(T

A)
ψ
−−−→ M2(AoZ) −−−→ 0xPA

K

xPA
T

xPA
T

0 −−−→ K(l2(P ), A)
η

−−−→ T Ap
π

−−−→ Ao (ZoZ2) −−−→ 0

and the naturality of connecting maps.

7.0.1 Continuous field of projective modules over Aθ oZ2

We recall some results from Chapter 3. Let [a, b] be a closed interval. We

constructed the transformation groupoid Zn × [a, b] for trivial Zn action on

[a, b]. Let ωr be a continuous family of 2-cocycles on the group Zn. We

defined the following 2-cocycle ω on the groupoid Zn × [a, b]: ω(x, y, r) =

ωr(x, y). We can repeat the same construction for the group Zn o Z2. We

define the following 2-cocycle ω′ on the groupoid ZnoZ2× [a, b]: ω(x, y, r) =

ω′
r(x, y) (notations from previous chapters). We have the natural maps evr

from C∗(Zn oZ2 × [a, b], ω′) to C∗(Zn oZ2, ω
′
r) given by f → f ′, f ′(x, y) =

f(x, y, r).

Theorem 7.0.2. Let [p1], [p2], · · · , [pm] ∈ K0(C
∗(Zn oZ2 × [a, b], ω′)). Then

the following are equivalent:
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7 Some non-commutative orbifolds: the flip-case

1. [p1], [p2], · · · , [pm] form a basis of K0(C
∗(Zn oZ2 × [a, b], ω′)).

2. For some r ∈ [a, b], the evaluated classes [evr(p1)], [evr(p2)], · · · , [evr(pm)]

form a basis of K0(C
∗(Zn oZ2, ω

′
r)).

3. For every r ∈ [a, b], the evaluated classes [evr(p1)], [evr(p2)], · · · , [evr(pm)]

form a basis of K0(C
∗(Zn oZ2, ω

′
r)).

Proof. See remark 2.3 of [22].

Now as in the beginning of the section we have seen that every projective

module of Aθ has an action of Z2 making the projective module an AθoZ2 =

C∗(Zn o Z2, ω
′
θ) module. So we have the following immediate corollary of

Theorem 3.2.2.

Corollary 7.0.3. With the notations after Theorem 3.2.2, E is a finitely gen-

erated projective module over C∗(Zn oZ2 × [a, b], ω′)

7.0.2 Main computations with K-theory

Let us consider the 3× 3 antisymmetric matrix:

θ :=




0 θ12 θ13
−θ12 0 θ23
−θ23 −θ23 0


 ,

where θ12 is an irrational number. Let Aθ be the corresponding 3-dimensional

noncommutative torus generated by u1, u2 and u3. Let Z2 = 〈g〉 acting on

Aθ by flipping. We denote by Aθ12 , the two dimensional noncommutative tori,

which is generated by the matrix

(
0 θ12
−θ12 0

)
.

Z2 = 〈g〉 also action on Aθ12 by flip. Let us also define an action of another

copy of Z2 = 〈s〉 on Aθ12 given by u1 → e(θ13)u
−1
1 and u2 → e(θ23)u

−1
2 . So

we have corresponding crossed products which we denote by Aθ12 og Z2 and

Aθ12 os Z2, respectively. So we have, in fact, Z2 ∗ Z2 = 〈g, s〉 acting on Aθ12 .

The corresponding crossed product we denote by Aθ12 oφ (Z2 ∗ Z2). As we

have seen in the beginning of this chapter that Aθ can be written as crossed

product Aθ12 o Z by the action u1 → e(θ13)u1 and u2 → e(θ23)u2. Now we

have the isomorphism Aθ oZ2
∼= (Aθ12 oZ)oZ2

∼= Aθ12 oφ (Z2 ∗Z2), λ(sg)

is identified with u3 and λ(g) is identified with w, where w is the unitary in

Aθ oZ2 coming from the unitary in Z2.
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In this case, Aθ12 oφ (Z2 ∗ Z2), Natsume’s exact sequence looks like

K0(Aθ12)
i1∗−i2∗−−−−→ K0(Aθ12 os Z2)⊕K0(Aθ12 og Z2)

j1∗+j2∗
−−−−→ K0(Aθ12 oφ Z2 ∗ Z2)x

y
K1(Aθ12 oφ Z2 ∗ Z2) ←−−−−

j1∗+j2∗
K1(Aθ12 os Z2)⊕K1(Aθ12 og Z2) ←−−−−

i1∗−i2∗
K1(Aθ12).

From Theorem 2.5.5, Aθ12 os Z2 is isomorphic to the crossed product con-

structed from Z2 = 〈s〉 action on Aθ12 given by the flip. Let Sθ12g , Sθ12s be the

flip invariant Rieffel projections inside Aθ12 og Z2 and Aθ12 os Z2 respectively

as constructed in Walters [59] in the same way as the classical Rieffel projec-

tion Sθ12 ∈ Aθ12 . Also there are projective modules S1,S2, S3 over Aθ which

are completions of S (R × Z) such that [1], [S1], [S2], [S3] generate K0 of Aθ
(as in Chapter 3, which are completions of the space of Schwartz functions on

R× Z). Let us now recall the Pimsner-Voiculescu exact sequence for Aθ.

K0(Aθ12)
0

−−−→ K0(Aθ12)
i∗−−−→ K0(Aθ12 o Z)x

y
K1(Aθ12 o Z) ←−−−

i∗
K1(Aθ12) ←−−−

0
K1(Aθ12).

This gives rise to the short exact sequence:

0 −−−→ K0(Aθ12)
i∗
−−−→ K0(Aθ12 oZ)

e2
−−−→ K1(Aθ12) −−−→ 0.

Among [S1], [S2], [S3], two of these, say S2, S3, map to generators of K1(Aθ12)

via the map e2.

As shown in the beginning of the section, the projective modules S2, S3 can

be extended to projective modules over Aθ12 oZ2 and by abuse of notations,

we still denote the extended modules by S2, S3, as well.

Corollary 7.0.4. K0(Aθ o Z2) is isomorphic to Z12, which is generated by

the K-theory classes of the elements:

1,

P1 =
1
2(1 + w),

P2 =
1
2(1− u1w),

P3 =
1
2(1− u2w),

P4 =
1
2(1− e(

1
2θ12)u1u2w),

P5 =
1
2(1 + u3w),

P6 =
1
2(1− e(

1
2θ13)u1u3w),

P7 =
1
2(1− e(

1
2θ23)u2u3w),

j1∗(S
θ12
g ), j2∗(S

θ12
s ), S2, S3.
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7 Some non-commutative orbifolds: the flip-case

Proof. We have Natsume’s exact sequence:

K0(Aθ12)
i1∗−i2∗−−−−→ K0(Aθ12 os Z2)⊕K0(Aθ12 og Z2)

j1∗+j2∗
−−−−→ K0(Aθ12 oφ Z2 ∗ Z2)x

y
K1(Aθ12 oφ Z2 ∗ Z2) ←−−−−

j1∗+j2∗
K1(Aθ12 os Z2)⊕K1(Aθ12 og Z2) ←−−−−

i1∗−i2∗
K1(Aθ12).

Since the K-theory groups of AθoZ2 are already known as in the Introduc-

tion and in Chapter 5, we know that K1(Aθ o Z2) = 0 and also K1(Aθ12 os

Z2) ⊕ K1(Aθ12 og Z2) = 0. So the upper left i1∗ − i2∗ is injective. So we are

left with

K0(Aθ12)
i1∗−i2∗−−−−→ K0(Aθ12)os Z2)⊕K0(Aθ12 og Z2)

j1∗+j2∗
−−−−→ K0(Aθ12 o Z2 ∗ Z2)x

y
0 ←−−−

0
0. ←−−−

0
K1(Aθ12).

Using [59], the K-theory class of the elements Pi along with P8 = 1
2(1 −

e(12(θ13 − θ12 − θ23))u1u2u3w) and S
θ12
s , Sθ12g form generators of (K0(Aθ12)os

Z2) ⊕ (K0(Aθ12)og Z2). Also it is well known that K0(Aθ12) is generated by

1 and the class of the Bott element [Sθ12 ]. Now for 0 < θ12 <
1
2 , i1∗[S

θ12 ] =

2[Sθ12g ]+ ([P2]+ [P4])− ([P1]+ [P3]). Indeed, these two elements have the same

vector trace as in Theorem 6.4.6. Similarly, i2∗[S
θ12 ] = 2[Sθ12s ]+ ([P6]+ [P8])−

([P5] + [P7]). Also for 1
2 < θ12 < 1, the expression of i1∗[S

θ12 ] is essentially the

same (with some sign modification) and hence gives a similar result.

Now the elements S2 and S3 we lifted from K0(Aθ12 oZ) to K0(Aθ12 oφZ2 ∗

Z2) via the p map. Since S2 and S3 are generators of K0(Aθ12 oZ) and hence

they map to generators of K1(Aθ12) (in the Pimsner-Voiculescu sequence via

the map e2), by Theorem 7.0.1 the claim follows.

Remark 7.0.5. So we have found generators of Aθ oZ2 for quite general θ.

Only assumption was that θ12 is irrational. Also for the assumption that one

of the non-zero entries of θ is irrational, we also have found the generators.

Indeed, if θ23 is irrational consider

θ1 =




0 θ23 −θ12
−θ23 0 −θ13
θ12 θ13 0


 .
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Since Aθ1 is isomorphic to Aθ, we continue working with Aθ1 . Similarly if θ13
is irrational, we work with Aθ2 where

θ2 =




0 θ13 θ12
−θ13 0 −θ23
−θ12 θ23 0


 .

If we want to drop this condition of irrationality of one of the entries, and use

Theorem 7.0.2 (as in the Chapter 3), we have to compute the Chern character

of the Projective module S1 to identify this with Sθ12s and Sθ12g . This is beyond

the scope of this chapter and will appear in future work.

Remark 7.0.6. I have an unpleasant obligation to warn the reader, that the

corresponding result for K-theory of flipped crossed product in [27] contained a

gap: it was claimed that (in the notations of the present paper) i1∗− i2∗ sends

generators to generators. Fortunately, the arguments in the last corollary fill

the gap for the three dimensional case which do not affect the final result of

[27] at least for the three dimensional case.

Question 7.0.7. Our results suggest the following questions:

• Can one extend the Heisenberg modules of the form S (Rp × Zq) over

Aθ to ones over general crossed products A∞
θ oF , where the finite cyclic

group F acts on A∞
θ as in section 4?

• What are the generators of K0(AθoF ), where F acts on Aθ as in section

4?

• Heisenberg modules are also linked with results in signal analysis, con-

cretely with Gabor frames, as shown in [43]. Thus one might wonder

about the consequences of our results for the theory of Gabor frames.
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