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Introduction

With Newton’s Laws of Motion, the world seemed an understand-
able and predictable place to be in. It is easily explained why an apple
falls downwards, eventually hitting the ground when being separated
from the tree’s limb. Why horses have a hard time pulling a carriage
up to a castle’s hilltop while they do not seem to mind pulling the
same carriage on a path alongside a river seems an easy question to
answer. Knowing these answers, it seems obvious to say why a steam-
driven locomotive takes so much more coal and water when riding up-
hill, compared to riding on a flat plane. But then again, going a fixed
distance with the train has the crankshaft rotate a defined amount of
times. This does not depend on the steepness of the tracks. The ex-
pansion chamber has a fixed size. So why should the water and coal
consumption increase, just because the train is tilted slightly?

Thinking about this more thoroughly it seems that Newton could
give an answer to this too. Newton’s third law, the Action-Reaction
Law, says it needs more force to rotate the crankshaft if the train
increases its altitude. A combination of the laws now demands that
there must either be more molecules in the expansion chamber that
hit the piston in a given time interval, the molecules need to have a
higher momentum, thereby increasing the force acting on the piston on
impact, or a combination of both. In order to answer the question of
water and coal usage all we have to do is to solve the dynamics of this
simple looking model. We have to take the molecules and start solving
the equations given by Newton.

As it turns out, this leads to a vast system of ∼ 1023 coupled dif-
ferential equations, which seems impossible to explicitly solve with the
worlds current processing power. To address this problem, we come to
the idea of classical thermodynamics. This theory states that the ob-
servable state of a system does not depend on the mechanics of a single
molecule, but on quantities of vastly reduced information: tempera-
ture, pressure and volume of the system. This theory coupled with the
knowledge of the classical mechanics introduced by Newton gives us
just what we experience in real life. Riding uphill takes more pressure
on the piston, which takes a higher pressure in the expansion cham-
ber, which means, the steam needs to be thicker and thereby implicitly
hotter. So more water needs to be brought to a higher temperature

3



4 INTRODUCTION

in the pressure chamber, which takes more energy. This excess energy
can only be brought in by using more coal.

Even though the classical theory of thermodynamics is very suc-
cessful in explaining real world behavior, it lacks a foundation in a
more global theory like for instance the theory of mechanics. A con-
nection between mechanics and thermodynamics has been introduced
through the works of Maxwell and Boltzmann by inventing the theory
of statistical mechanics. The fundamental difference of this approach
to the approach stated earlier involving solving these coupled differen-
tial equations is that we do not need to know the exact behavior of
every single molecule, but it suffices to know the mean behavior of the
molecules under consideration in order to understand the macroscopic
properties of the system. The huge amount of molecules guarantees
that a small atypically behaving mass of molecules cannot change the
observable behavior. The real world behavior is solemnly determined
by the broad masses. This argument is founded on the equal a priori
probability postulate, which is the fundamental assumption of statisti-
cal mechanics.

As the name suggests, statistical mechanics involves some ideas of
probability theory. A fundamental concept being used is the idea of a
probability measure on all possible microscopic states of a thermody-
namical system. A realistic system is – in theory – drawn out of all
possible systems with regard to this probability measure. Now, even
though it is easy to write down this measure, it turns out to be difficult
to actually calculate probabilities with this definition.

As these probability measures cannot be rigorously calculated in
acceptable time, one has to settle for approximations of these quanti-
ties. There are several ways to gain such approximations, some of them
involving methods of numerical mathematics, some involving the use of
stochastic techniques. This thesis deals with two closely related meth-
ods, called Swapping and Simulated Tempering and with a derivative
thereof called Equi-Energy sampling.

We will first introduce statistical mechanics and give definitions
for the models which are of interest for this thesis. In Chapter 2 the
Markov-Chain-Monte-Carlo method for sampling from certain distri-
butions is being introduced and afterwards a short example is given,
showing that this technique does not always yield favorable results.
In Chapter 3 the previously named methods of Swapping and Simu-
lated Tempering are defined and its usefulness is being justified by an
overview of what is known in literature so far. Chapters 4 through 6
deal with the behavior of these Markov chains on some of the mod-
els introduced in Chapter 1. Chapter 7 introduces the Equi-Energy
sampler and gives a lower bound for the speed of convergence of this
algorithm for the Potts model.



CHAPTER 1

Statistical Mechanics

The statistical mechanics in physics is an approximation of the real
world through probabilistic methods. The idea is to look at a real
world piece of matter (1 liter of air, a 1 kg iron bar, ...) as a set
of N individual pieces (atoms, molecules,...) and to realize that it
suffices to know the probabilities of certain states one single atom can
be in to understand the macroscopic behavior of the model. This is
granted by the usually high number of atoms to be considered in a real
world probe, which makes solving the classical mechanics or quantum
mechanics coupled differential equations practically impossible in the
first place. Consider a system which is in the physical state x. The
Hamilton functionH(x) has proven to be the correct function to look at
in classical mechanics in order to describe the evolution of the model
over time. By reading H(x) one can think of a certain energy-level
the system is in while being in state x. Understanding this much,
we can think of two disjoint systems which touch each other on the
bordering line. Looking at Figure 1, each system’s dynamics is given

System 1

System 2
H1 = H1(q

(1)
1 , ..., p

(1)
f1

)

H2 = H2(q
(2)
1 , ..., p

(2)
f2

)

Figure 1. Two disjoint but touching systems. The
Hamilton functions of each system are given by H1 and
H2.

by independent Hamiltonians. Now, looking at the dynamics of both
systems considered as an union, it is physically reasonable to write the
Hamiltonian as

(1) H = H1

(
q

(1)
1 , ..., p

(1)
f1

)
+H2

(
q

(2)
1 , ..., p

(2)
f2

)
+H1,2

(
q

(1)
1 , ..., p

(1)
f1
, q

(2)
1 , ..., p

(2)
f2

)
with H1,2 describing the interaction between the two systems. Looking
at the picture, the interaction area is small compared to the mass of

5



6 1. STATISTICAL MECHANICS

the system, which physically speaking leads to very small interaction
energies H1,2 � H1 +H2 and therefore to

H = H1 +H2.

Now consider Figure 1 from the probabilist’s point of view. The proba-
bility of finding System 1 in a state x should only depend on x through
the Hamilton function, thus it should read πH1(x). Due to the small
interaction area, we can again argue that the two systems are evolving,
up to a small degree of inaccuracy, interdependent of each other, thus
yielding

πH = πH1πH2 .

Combining these two points, we gain

πH1+H2 = πH = πH1πH2

which gives us the Boltzmann distribution

(2) π =
eβH

Z(β)

as the probability measure to consider. The parameter β = 1
T
is called

the inverse temperature and describes how agitated the system is. Low
temperature T , thus high β, is a cold system with little thermal energy,
while high temperature, thus small β, describes a system with high
thermal energy. The constant Z(β) is the normalization factor, which
makes π be a probability measure. For this, the assumption is that

Z(β) :=

∫
eβH dµ <∞

for a reference measure µ. This will most usually be the counting
measure or the Lebesgue measure.

Most realistic models are, mathematically speaking, difficult to
study therefore, this thesis will deal with the following, compared to
real world physical models, simplified models.

1. The Curie-Weiss model

This is one of the simplest models of statistical mechanics which
still yields some interesting behavior for varying β. Define the set
Λ = {1, ..., N} for some N ∈ N and think of it as a set of N atoms.
Each such atom xi can either have spin up (σi = 1) or spin down
(σi = −1). Thus the state space we consider is

(3) Ω = {−1, 1}Λ.

To keep every calculation as simple as possible the Curie-Weiss model
is the mean field model derived from the Ising model (see [3]). “Mean



1. THE CURIE-WEISS MODEL 7

field” means that every atom interacts in the same way and in the same
strength with any other atom. The Hamiltonian is therefore given by

(4) H(σ) =
1

2N

(
N∑
i=1

σi

)2

=
1

2N

N∑
i,j=1

σiσj

This model is of great theoretical interest as, despite being mathe-
matically simple, the model undergoes a phase transition as β passes
through βc = 1. Above the critical temperature the system has just
one macrostate which has zero total magnetization

(5) m(σ) :=
N∑
i=1

σi.

Below the critical temperature the system has two distinct macrostates,
one of which has positive total magnetization while the other has nega-
tive total magnetization. See [3] for an extensive analysis of the model.

1.1. The Generalized-Curie-Weiss model. The Generalized-
Curie-Weiss model is an extension of the classical Curie-Weiss model
considered by Eisele and Ellis [13]. Looking at (4) we can write

H(σ) =
1

2N

(
N∑
i=1

σi

)2

=
1

2N

(
m(σ)

)2

thus in the Curie-Weiss model the energy of the current state is only
dependent on the reduced information of the total magnetization of the
current state, given by m(σ). Eisele and Ellis suggest to look at the
model induced through the Hamiltonian

(6) H(σ) := N g

(
m(σ)

N

)
on the state space Ω = AΛ ⊆ [−L,L]Λ and for an arbitrary function g
on [−L,L]. In order to give a reasonable physical model, the following
restrictions are applied to this construction:

(1) g is an even, real analytic function on R and is strictly increas-
ing on [0, L] with g(0) = 0.

(2) ρ is a symmetric non-degenerate (i.e., ρ 6= δ0) Borel measure
on R.
Note: We will henceforth take ρ to be the normalized counting
measure on a finite symmetric subset A ⊆ [−L,L] in order to
make Ω technically a finite state space. The reason we only
allow this single measure is that only in this case has equation
(7) the desired Boltzmann-shape of having the probability of
a state only determined by the product of the Hamiltonian H
and β, as only in this case the factor

exp
(∑

log(ρ(σi))
)
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cancels out.
(3) There exists a symmetric, non-constant and convex function

h on [−L,L] such that

g(x) ≤ h(x) for x ∈ [−L,L]

and ∫
[−L,L]

eβh(x)ρ(dx) <∞ for all β > 0.

Define the sequence of probability measures for the Generalized-Curie-
Weiss model by

(7) PN,β(σ) =
eNβg(

m(σ)
N )∏N

i=1 ρ(σi)

ZN(β)
=
eNβg(

m(σ)
N )+

∑N
i=1 log(ρ(σi))

ZN(β)
.

Eisele and Ellis give a detailed analysis of the phase behavior encoun-
tered in the model, depending on the choice of g, in [13]. The last
restriction guarantees a finite normalization constant of the model for
arbitrary ρ. In our setting of a finite set A this is not needed, thus re-
striction (3) is only given for a thorough definition of the Generalized-
Curie-Weiss model.

2. The Potts model

The model we will consider in Chapter 7 is the mean field Potts
model. Just as the Generalized-Curie-Weiss model, the Potts model
is a generalization of the Curie-Weiss model. This time the difference
does not lie in the Hamilton function but in the state space. While
the Curie-Weiss model and the Generalized-Curie-Weiss model both
have two types of spin values, positive and negative, the Potts model
generalizes this to an arbitrary number q of colors. So here Ω = EN

where E = {1, . . . , q} with q ≥ 3. The energy function H of the mean
field Potts model is then defined as

(8) HN(σ) =
1

2N

N∑
i,j=1

δσi=σj , σ ∈ Ω

and the Gibbs measures are defined accordingly. Obviously, HN can
be written as a function of the vector

mN(σ) =

(
1

N

N∑
i=1

δσi=1,
1

N

N∑
i=1

δσi=2, . . . ,
1

N

N∑
i=1

δσi=q

)
,

the order parameter of the Potts model.
As the Curie-Weiss model the mean field Potts model undergoes a

phase transition. There is a critical temperature βc, such that in the
high temperature phase β < βc the distribution of mN converges to the
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Dirac measure in (1
q
, . . . , 1

q
). For β ≥ βc there is 1 > m∗(β) > 1

q
such

that at βc the distribution of mN converges to

1

q + 1

(
δ( 1
q
,..., 1

q
) +

q∑
i=1

δvi(βc)

)
where vi(β) is the vector that has m∗(β) in its i’th component and all
other components equal such that they sum up to one. For β > βc the
distribution of mN converges to

1

q

q∑
i=1

δvi(β).

This phase transition is of first order, since m∗(βc) > 1/q, i.e. the jump
is discontinuous. Moreover the vector (1

q
, . . . , 1

q
) remains to be a local

maximum of the distribution of mN for all temperatures. This fact will
be of utmost importance for our calculations. All these results can be
found in the article by Ellis and Wang [16].

3. The BEG model

The mean field Blume-Emery-Griffiths (BEG) model is also closely
related to the Curie-Weiss model. For a given K > 0 the Hamilton
function on Ω = {−1, 0, 1}N is given by

(9) H(σ) = HK(σ) := −
N∑
j=1

σ2
j +

K

N

(
N∑
j=1

σj

)2

for σ ∈ Ω. A third spin direction is added in this model, which has a
neutral role to the spins +1 and −1. The first summand puts weight
into those configurations in which many spins have value 0, while the
second summand puts emphasis on those states which have a non-zero
total magnetization. Here, the parameter K gives a reference of how
close this model should be to a Curie-Weiss model. Large K will give
the second summand large weight while the first summand only plays
a minor role. Choosing K small will give a totally different model,
namely one whose macrostate has zero total magnetization for any
β ≥ 0. To gain a thorough understanding of the macroscopic behavior
of the mean field BEG model, see [14].

4. Spin glasses

So far, we considered very simple models in which neighboring spins
interact in a deterministic way. More realistic models would model
interaction strengths depending not only on the geometry (we so far
only considered mean field models, thus models with no geometry at
all) but also on chance. Thinking of quantum mechanics it is inevitable



10 1. STATISTICAL MECHANICS

to think of interaction strength between two atoms as being random
variables satisfying some sanity properties.

The following models are inspired by the so−called Sherrington-
Kirkpatrick model (SK model) of a spin glass. In that model the
Hamiltonian is given by

HN(σ) =
1√
2N

∑
1≤i<j≤N

σiσjJij.

Here σ is an element of the hypercube {0, 1}N and the Jij are indepen-
dent N (0, 1) Gaussian random variables. Hence for fixed σ,HN(σ) also
is a Gaussian random variable with expectation 0. For σ, σ′ ∈ {0, 1}N
we can compute the covariance

cov(HN(σ), HN(σ′)) = NRN(σ, σ′)

where RN(σ, σ′) := 1
N

∑N
i=1 σiσj is the so−called overlap between the

configurations σ and σ′. Moreover, it is conjectured that the energy
function of the SK model has an ultrametric structure (see e.g. [30])
which has been one of the key inspirations for the Parisi solution. These
observations led Derrida to the introduction of the following toy models
of a spin glass (see [7], [8], also see [3]).

4.1. The Random Energy Model. The Random Energy Model
(REM) is defined on the state space Ω = ΩN = {−1, 1}N . From the
SK model one merely wants to keep the properties that for each σ
the Hamiltonian is a Gaussian random variable with expectation 0 and
variance N . This is easily accomplished by choosing

(10) HN(σ) = −Yσ
with Yσ ∼ N (0, N) i.i.d.. Choosing HN such that V(HN(σ)) = N we
obtain, as seen in Theorem 1.2, a model with a free energy of order N .
An alternative notation we could use is taking

HN(σ) = −
√
NXσ

for our Hamiltonian, with 2N many i.i.d. standard normal random
variables Xσ. In favor of a standardized notation we will prefer the
second choice. This implies that the Gibbs measure of the REM, which
we want to simulate, is given by

(11) π(σ) =
eβH(σ)

Z(β)
=
e−β

√
NXσ

Z(β)
.

Here, of course,
Z(β) =

∑
σ′∈{0,1}N

eβH(σ′)

is the partition function that makes π a probability measure. For results
on the REM the reader is referred to [3] or [6]. Here, among others, one
can find the following estimate on the maximum energy in the REM:
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Lemma 1.1 ([3] Lemma 9.1.1). The family Xσ of random variables
satisfies

(12) lim
N→∞

max
σ∈ΩN

N−
1
2Xσ =

√
2 ln(2)

both almost surely and in mean.

As a consequence one obtains that the REM has a third order phase
transition:

Theorem 1.2 ([3] Theorem 9.1.2). In the REM, with P-probability
1

lim
N→∞

[
1

N
ln

(
2−N

∑
σ

eβH(σ)

)]
=

{
β2

2
for β ≤ βc

β2
c

2
+ (β − βc)βc for β ≥ βc

holds with βc =
√

2 ln 2.

4.2. The Generalized Random Energy Model. Of course, we
cannot really hope to find a good approximation to the SK model by
just keeping one of its characteristics. The idea of the Generalized
Random Energy Model (GREM) (also invented by Derrida [8]) is to
alter the REM in such a way that the energy of a configuration σ bears
at least some information about the energy of neighboring configura-
tions σ′. The way this is implemented is inspired by the ultrametricity
conjecture in the SK model.

So again our state space is Ω := ΩN := {−1, 1}N . To measure
distance between two states we introduce

(13) dN(σ, σ′) =
1

N
(min{i|σi 6= σ′i} − 1)

and note that exp(dN(σ, σ′)) is an ultra-metric on Ω. As was noted
by Bovier [3] this choice of the distance function is basically the only
difference between the GREM and the much challenging SK model.

We want the covariance between two states to be given by a non-
decreasing function of dN while assuming that EXσ = 0 for all σ ∈ Ω.
We therefore set

(14) cov(Xσ, Xσ′) = EXσXσ′ = A(dN(σ, σ′))

with A(x) being a probability distribution function on [0, 1].
For the standard GREM let A denote the distribution function of

a measure µA supported in n ∈ N many points (xi)0≤i≤n with x0 = 0,
xn = 1 and xi ∈ (0, 1). Further assume that

xi < xj for i < j.

Set ai := µA(xi) and assume that ai > 0 for all i ∈ {1, ..., n− 1}. Then
we define

(15) αi := 2xi−xi−1 for i = 1, ..., n

so we get
∑
ai = 1 and

∏
αi = 2.
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Now we can decompose Ω as an n-fold product

(16) Ω = ΩN = {−1, 1}N =
n⊗
i=1

{−1, 1}N
lnαi
ln 2 =

n⊗
i=1

Ω
N

lnαi
ln 2

.

Hence each σ ∈ Ω can be written as an n-tuple
σ = σ1σ2...σn with σi ∈ Ω

N
lnαi
ln 2

.

Now the (Gaussian) Hamiltonian – which is indeed a Gaussian process
Xσ in σ – can be constructed such that there is a contribution from
each of the factors that build Ω. To this end, take αN1 + (α1α2)N +
... + (α1...αn)N many independent N (0, 1)-distributed random vari-
ables enumerated in the following way: The first αN1 many Xσ1 are
indexed by σ1 ∈ Ω

N
lnα1
ln 2

. The next (α1α2)N many Xσ1σ2 are indexed by
σ1 ∈ Ω

N
lnα1
ln 2

and σ2 ∈ Ω
N

lnα2
ln 2

, and so forth, so that (with σ = σ1σ2...σn)

(17) Xσ :=
√
a1Xσ1 +

√
a2Xσ1σ2 + ...+

√
anXσ1...σn

is a N (0, 1)-distributed random variable as well and obviously cov(Xσ,
Xσ′) depends on dN in the desired way. Analogously to the REM we
define
(18) H(σ) := −

√
NXσ

which gives us

(19) π(σ) =
eβH(σ)

Z(β)
=
e−β

√
NXσ

Z(β)

as our Gibbs measure. Here again

Z(β) =
∑

σ′∈{0,1}N
eβH(σ′)

is the partition function of the model. For further results on the GREM
the reader is referred to Bovier’s book [3].



CHAPTER 2

Markov-Chain-Monte-Carlo Method

Having introduced the ideas of statistical mechanics in Chapter
1 we can now come to introducing the probability part of statistical
mechanics. Given the Boltzmann distribution π for a given finite model
at a given inverse temperature β, a physically realistic realization of
the model can be obtained by drawing out of all realizations according
to π. Even though this might sound easy, most models require an
extensive amount of calculations in order to do so. We need to know the
probability of any possible state in order to simulate this distribution
with a uniform-random-number-generator on [0, 1]. Here, the idea of
the Markov-Chain-Monte-Carlo Method (MCMC) comes to mind in
a rather natural way. Thinking of the dynamics of a thermodynamic
system, we could imagine that at some point in time, a single atom is
being selected and its spin value is being changed in some way. At some
later point in time, another atom is selected and its spin is changed
as well. Waiting long enough the system will equilibrate, while this
dynamics keeps on going, keeping the system in equilibrium henceforth.
This idea carries over to Markov chains as we will see in Section 3. We
will first introduce the MCMC-Method in a more general setting.

1. Definition of the MCMC Method

We first give two definitions:

Definition 2.1. Let S = {s1, ..., sk} be a finite state space and let
P be a (k × k) matrix. A stochastic process (Xi)i∈N on Ω is called a
homogeneous Markov chain with the transition matrix P , if for all n
and all i0, i1, ..., in+1 ∈ {1, ..., k}
P(Xn+1 = sin+1 |X0 = si0 , ..., Xn = sin) = P(Xn+1 = sin+1 |Xn = sin)

= Pin,in+1

holds.

Definition 2.2. Let (X0, X1, ...) be a Markov chain with finite state
space S = {s1, ..., sk} and transition matrix P . A probability measure
π on S is said to be a stationary distribution for the Markov chain, if
it satisfies

k∑
i=1

πiPi,j = πj for j = 1, ..., k.

13



14 2. MARKOV-CHAIN-MONTE-CARLO METHOD

Definition 2.3. Let A be a sigma-field on a set Ω. The total
variation distance between two probability measures π and τ on (Ω,A)
is defined by

d(π, τ)TV := sup
{
|π(A)− τ(A)|

∣∣A ∈ A}.
The fundamental result for all that follows is

Theorem 2.4 (Ergodic Theorem for Markov chains). Let (X0, X1,
X2, ...) be an irreducible aperiodic Markov chain with state space S =
{s1, ..., sk}, transition matrix P and arbitrary initial distribution µ(0).
Then there exists a unique distribution π which is stationary for the
transition matrix P . If µ(n) denotes the distribution of Xn then

µ(n) TV−−→ π.

See [22] for the proof, to gain an elementary understanding of Mar-
kov chains and to find all definitions needed for formulating Theorem
2.4.

In general, the definition of stationarity proves complicated to con-
struct or to verify for a given transition matrix P or for a given proba-
bility distribution π. There is the tighter concept of reversibility which,
in most cases, is much easier to construct.

Definition 2.5. Let (X0, X1, ...) be a Markov chain with state space
S = {s1, ..., sk} and transition matrix P . A probability distribution π
on S is said to be reversible for the chain if for all i, j ∈ {1, ..., k} we
have

πiPi,j = πjPj,i.

The Markov chain is said to be reversible if there exists a reversible
distribution for it.

It is common knowledge that a reversible distribution π to a tran-
sition matrix P is also stationary to P .

2. Technical preparation: Gap and Conductance

The key question for all kind of MCMC algorithms is how fast they
mix, i.e. how rapidly they converge to the desired invariant measure. So
in general, let Xn be a homogeneous, irreducible and aperiodic Markov
chain on a finite state space Ω, reversible with respect to a probability
measure π (on Ω, that necessarily charges every point). The speed of
convergence is determined in terms of

τ(ε) = min{n : dTV(PXn , π) ≤ ε}.
Here, of course, PXn is the distribution at time n of the Markov chain
corresponding to the algorithm and dTV(PXn , π) is the total variation
distance between this distribution at time n and the invariant measure
π of the chain. Rapid convergence of such a MCMC algorithm means
that one can bound τ(ε) by a polynomial in ε−1 and the problem size.
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There is an intrinsic relationship between τ(ε) and the spectral gap of
the chain defined by

Gap((Xn)) := Gap(P ) := 1−max{|λi|, λi 6= 1} =: 1− |λ1|,
where we write λi for the eigenvalues of the transition matrix P =
(P (i, j))i,j of the chain (Xn) and have λ1 denote the second largest
eigenvalue. As a matter of fact, for an irreducible and aperiodic chain
the following estimates hold true (see e.g. [31]): Let π := minx π(x)
(which is non-zero by the ergodic theorem for Markov chains), then

τ(ε) ≤ 1

Gap(PXn)
log(

1

πε
)

as well as
τ(ε) ≥ |λ1|

2Gap(PXn)
log(

1

2ε
).

We can thus control the speed of convergence of the Markov chain
(or the MCMC algorithm, respectively), if we control the size of the
spectral gap of P . There is, of course, a variety of methods to obtain
such a control. In this chapter we will only need

Theorem 2.6 (Jerrum and Sinclair [23]). Let P be a Markov chain
on a finite set Ω reversible with respect to π. For all S ⊂ Ω, define

ΦS =

∑
x∈S,y /∈S π(x)P (x, y)

π(S)
,

to have the conductance Φ given by

Φ = min
S:π(S)≤1/2

ΦS .

Then the following holds true:
Φ2

2
≤ Gap(P ) ≤ 2Φ.

3. Metropolis-Hastings Algorithm

With these ingredients we can catch up on the idea stated earlier
in order to gain a realization of a model. We have got the Boltzmann
distribution π we want to sample from. All that has to be done is
to find an appropriate Markov chain which has stationary distribution
π, start this chain at an arbitrary distribution µ(0) (which could be a
Dirac measure) and wait long enough to get a sample which is drawn
according to a good approximation of π.

Remembering the definition of the Boltzmann-Distribution given in
(2) we note that even though it is easy to calculate the enumerator, in
general, calculating the denominator takes exponentially many steps.
So in order to give an algorithm for sampling from the Boltzmann
distribution efficiently we need to find a Markov chain with a transition
kernel which does not depend on the normalization constant Z(β).
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Let Ω be a finite state space and π be a probability distribution on
Ω with π(x) > 0 for all x ∈ Ω. Further let K be the transition matrix
of a symmetric and irreducible Markov chain on Ω. Defining

T (x, y) :=


K(x, y) if π(y) ≥ π(x) and x 6= y

K(x, y)π(y)
π(x)

if π(y) < π(x)

1−
∑

z 6=x T (x, z) if x = y

yields an irreducible Markov transition matrix T on Ω which is re-
versible with respect to π. The constructed Markov chain is called
Metropolis-Hastings chain. Note that there are several different Me-
tropolis−Hasting chains for the same distribution π, as T depends heav-
ily on the choice of the proposal chain K. If K(x, x) > 0 for all x ∈ Ω
so is T (x, x) > 0 for all x ∈ Ω. Thus T is aperiodic in this case. Also
note that K(x, x) ≥ 1

2
implies T (x, x) ≥ 1

2
, which will be of interest in

conjunction with Lemma 3.3.
Coming back to the Boltzmann distribution

π(σ) =
eβH(σ)

Z(β)

and the need for an algorithm that gives good samples from π we will
use our previously stated physical intuition in order to construct a
Metropolis-Hastings chain for a statistical mechanics model. Say we
have N atoms and any atom can be in one of finitely many spins.
Consider as proposal chain a Markov chain, that suggests to select one
atom and to change this atom’s spin to one of the possible spins. We
can do both according to the uniform distribution which in the models
given in Chapter 1 is an easy task (linearly in the model size N and in
the amount of spins an atom can be in). This fulfills K(σ, σ) > 0 for
any state σ ∈ Ω and thus the constructed Metropolis chain satisfies the
Ergodic Theorem for Markov chains with stationary distribution π. It
is important that T does not depend on the constant Z(β), as in the
fraction

π(τ)

π(σ)
=
eβH(σ)

eβH(τ)

the normalization constant Z(β) cancels out, the comparisons can be
done without knowing Z(β) and everything else is independent of π as
long as K does not depend on π. Now there is good hope that using
the Metropolis algorithm can reduce computational cost compared to
drawing from π directly. This hope however proves to be not necessarily
true as can be seen in the easy case of the Curie-Weiss model in Section
4 of this chapter.
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4. Torpid mixing of Metropolis in the Curie-Weiss-Model

Consider the Curie-Weiss model given in Section 1 of Chapter 1.
The Hamiltonian is given through

H(σ) =
1

2N
m(σ)2

for σ ∈ Ω = {−1, 1}Λ with Λ = {1, ..., N} and m(σ) =
∑N

i=1 σi. The
distribution of interest is

πβ(σ) =
eβH(σ)

Z(β)

which we want to give an intuitive proposal chain K for. Define

K(σ, τ) :=


1

2N
if ‖σ − τ‖1 = 2

1−
∑

τ ′ 6=σK(σ, τ ′) if σ = τ

0 otherwise

to be the transition matrix of the Markov chain which inverts a ran-
domly selected coordinate, thus changing a 1 to a −1 or the other way
around. With probability 1

2
the chain does not change its state, which

guarantees K(σ, σ) ≥ 1
2
for every σ ∈ Ω, thus K is a positive operator.

Defining

T (σ, τ) :=


K(σ, τ) if πβ(τ) ≥ πβ(σ) and σ 6= τ

K(σ, τ)
πβ(τ)

πβ(σ)
if πβ(τ) < πβ(σ)

1−
∑

τ ′ 6=σ T (σ, τ ′) if σ = τ

gives an irreducible, aperiodic and, with respect to πβ, reversible Mar-
kov chain with transition matrix T .

We are going to see that this Metropolis chain is actually torpidly
mixing for any β > βc. The main idea here is as follows: It is well known
that the Curie-Weiss model exhibits a phase transition at βc = 1. For
β < βc the system has only one macrostate, while for β > βc the system
has two distinct macrostates. At finite N this can be expressed in the
term of modes. For β < βc the system consists of only one mode, while
for β > βc the system has two distinct modes. One mode has all states
with negative total magnetization, while the other mode consists of the
states with positive total magnetization. A Metropolis chain started
in one of these modes will actually explore this mode very fast and
will therefore equilibrate rapidly in this mode. Due to the symmetry
of the model both modes have the same probability, thus the chain
should be seeing both modes equally often in order for the chain to
rapidly mix on the whole state space. Now going from one mode to
the other requires the chain to pass through a region of the state space
in which the total magnetization is close to zero. For β > βc this
region has only exponential little mass and the chain started in one
mode will take exponentially long to pass this region. In order to give
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a short proof which does not rely too much on tedious calculations this
intuition is adapted a little bit in order to show

Theorem 2.7. For every β > βc = 1 there exists a c > 0 such that

Gap(T ) ≤ e−cN .

Therefore the Metropolis chain induced by the proposal chain K for the
Curie-Weiss model in the two mode region is torpidly mixing.

Proof. Assume N to be even. The idea of the proof will also work
for N odd, but this will rid us of non-instructive case differentiations.
Define Ai := {σ ∈ Ω|m(σ) = i} ⊆ Ω to contain all the states with the
given total magnetization i. Obviously πβ(Ai) = 0 for i odd. So let
henceforth only consider i as being even. The Hamilton function does
not differentiate between different states in one of these sets. Using
Stirling’s approximation and a1 := i+N

2N
as the relative amount of +1

spins we calculate

πβ(Ai) =

(
N

Na1

)
Z(β)−1e2βN(2a1−1)2

= Z(β)−1N−
1
2 eN(β2 (2a1−1)2−a1 log(a1)−(1−a1) log(1−a1)))+∆(a1)(20)

with ∆(ai) = O(1) if there exists ε > 0 with ε < a1 < 1− ε. Consider

f(a1) :=
β

2
(2a1 − 1)2 − a1 log(a1)− (1− a1) log(1− a1))

as a smooth function f : (0, 1)→ R. For β > 1 it is easy to verify, that
f has a local minimum at a1 = 1

2
. We further see that f is symmetric

to the 1
2
-axis and

lim
a1→1

f(a1) = lim
a1→0

f(a1) = 0.

Therefore we can find 1
2
< am < 1 with f(am) ≥ f(a1) for all a1 ≥ 1

2
.

Note that it is possible to find ε > 0 such that f is strictly concave on
(am − 2ε, am + 2ε).

Define the sets

N :=
{
σ ∈ Ω

∣∣∣ ∣∣∣∣m(σ)

N
− am

∣∣∣∣ < 2ε
}

and
Nedge := N \

{
σ ∈ Ω

∣∣∣ ∣∣∣∣m(σ)

N
− am

∣∣∣∣ < ε
}

and choose N at least big enough, such that both sets are nonempty.
Obviously there are only N many non empty sets Ai. Due to the
exponential structure of (20) in N we therefore gain

πβ(Nedge)

πβ(N )
≤ e−cN

for a constant c > 0.
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We have now everything set up for proofing that Nedge constitutes
a bad cut in the state space by using a conductance argument. As
πβ(N ) ≤ 1

2
using Theorem 2.6 with

ΦN =

∑
σ∈N ,τ /∈N π(σ)T (σ, τ)

π(N )

=

∑
σ∈Nedge

π(σ)
∑

τ /∈N T (σ, τ)

π(N )

≤
∑

σ∈Nedge
π(σ)

π(N )

≤ e−cN .

concludes the proof. �





CHAPTER 3

Simulated Tempering and Swapping

We introduce two variants of the Metropolis−Hastings Algorithm
in this section. These algorithms include an additional change of tem-
perature with the idea to speed up the Metropolis chain when it is slow.
They are specifically tailored for situations where the invariant mea-
sure is a Gibbs measure with respect to some energy function and the
Metropolis Algorithm mixes slowly at low temperatures but quickly at
high temperatures. We start with the Simulated Tempering Algorithm
proposed by Geyer and Thompson [20].

1. Simulated Tempering

From now on and for the rest of the chapter let us assume that the
target distribution is a Gibbs measure on a finite set Ω. Let H(·) be
the corresponding energy function or Hamiltonian of the system. For
every inverse temperature β > 0 a probability function on Ω is given
by

(21) πβ(σ) :=
eβH(σ)∑

σ′∈Ω e
βH(σ′)

=
eβH(σ)

Z(β)

We have seen that, despite being natural, the metropolis algorithm is
sometimes slow in natural situations, e.g. when sampling from the low
temperature distribution of the Curie-Weiss model. To speed up its
convergence, we consider Ω × {0, 1, ...,M} for some M ∈ N as state
space, which is typically chosen asM := c1N for some constant c1 > 0.
The second component of the new state space refers to the current
temperature of the model (or the chain, resp.). Define βi := i

M
β and

the probability measures πi := πβi . On Ω× {0, ...,M} we take π(x) =
π((σ, i)) = 1

M+1
πi(σ) as probability measure. We construct a Markov

chain that starts in (σ, i) ∈ Ω × {0, 1, ...,M} and chooses a new state
(σ′, i) according to the metropolis chain Tβi introduced in Section 3 of
Chapter 2. In a second step the temperature is changed according to a
similar Metropolis chain. The idea is that in case of the chain being in
an energy-valley, it can increase its temperature (reduce β) and thereby
reduce the cost of switching to another energy-valley. Explicitly, this
works as follows:

In the first step let i ∈ {0, ...,M} be fixed. Then a transition from
(σ, i) to (σ′, i) has probability Pst((σ, i), (σ

′, i)) := Tβi(σ, σ
′). In the

21
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second step let σ ∈ Ω be fixed. Then the chain moves from (σ, i) to
(σ, j) according to the transition probabilities

Q((σ, i), (σ, j)) :=


Ktm(i, j) if πj(σ) ≥ πi(σ)

and i 6= j

Ktm(i, j)
πj(σ)

πi(σ)
if πj(σ) < πi(σ)

1−
∑
k 6=i

Q((σ, i), (σ, k)) if i = j

with

Ktm(i, j) :=


1

2(M+1)
if j = i± 1 and j ∈ {0, . . . ,M}

0 if |i− j| > 1
1−

∑
k 6=i

Ktm(i, k) if i = j.

The actual Simulated Tempering algorithm now consists of any rea-
sonable combination of these two chains. Usually one first applies a
temperature move Q, then a Metropolis move at the present temper-
ature (the transition matrix of which is denoted by Pst), and finally
another temperature move. The precedence for this combination is be-
cause it can easily be verified that this combination yields a Markov
chain which is reversible with respect to π if Q and Pst themselves
are. Hence, in terms of transition matrices the Simulated Tempering
algorithm is given by QPstQ.

Notice that the computation of πj(σ)

πi(σ)
in the matrix Q needs knowl-

edge of the normalizing constants Z(βi) and Z(βj) which in most cases
is hard to get by. This is the reason for introducing the now following
Swapping Algorithm.

2. Swapping

The so called Swapping Algorithm was suggested by Geyer in [19].
The basic idea of changing the temperature is maintained. As state
space for the Swapping chain we choose:

Ωsw := ΩM+1

A natural choice for a probability measure on Ωsw is:

(22) π(x) :=
M∏
i=0

πi(xi) =

M∏
i=0

e
iβ
M
H(xi)

M∏
i=0

Z(βi)

with x = (x0, ..., xM) ∈ Ωsw. As in the Simulated Tempering Algorithm
the Swapping Algorithm consists of two steps. In the first step, we
choose an i ∈ {0, ...,M} uniformly and update the i-th component of
the current state x = (x0, ..., xM) according to the usual Metropolis
chain Tβi at inverse temperature βi. In the second step, we choose an
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i ∈ {0, ...,M − 1} uniformly at random and swap the components xi
and xi+1 of x with probability

min

(
1,
π(x0, ..., xi+1, xi, ..., xM)

π(x0, ..., xi, xi+1, ..., xM)

)
.

So explicitly the first step works as follows: The transition proba-
bilities from

x = (x0, ..., xi−1, xi, xi+1, ..., xM) ∈ Ωsw

to
x′ = (x0, ..., xi−1, x

′
i, xi+1, ..., xM) ∈ Ωsw

are Ti(x, x′) := Tβi(xi, x
′
i). Note that the product chain

(23)

P (x, y) =
1

2
δ(x, y) +

1

2(M + 1)

M∑
i=0

δ(x0, y0) · ... · δ(xi−1, yi−1)Ti(xi, yi)

× δ(xi+1, yi+1) · ... · δ(xM , yM)

gives us a Markov chain on Ωsw. Also note that we never change more
than one component at a time. The second step is the temperature
swap. Here the transition probabilities from x = (x0, ..., xi, xi+1, ..., xM)
to x′ = (x0, ..., xi+1, xi, ..., xM) are

Q(x, x′) :=


Ksw(x, x′) if π(x′) ≥ π(x) and x 6= x′

Ksw(x, x′)π(x′)
π(x)

if π(x′) < π(x)

1−
∑
z 6=x

Q(x, z) if x = x′.

Ksw is defined by

Ksw(x, x′) :=



1
2M

if ∃i with xj = x′j ∀j /∈ {i, i+ 1}
and xi = x′i+1, xi+1 = x′i, x 6= x′

0 if @i with xj = x′j ∀j /∈ {i, i+ 1}
and xi = x′i+1, xi+1 = x′i, x 6= x′

1−
∑
k 6=i

Ksw(i, k) if x = x′.

Note that the factor 1
2
in the definition of Ksw and P guarantees that

both transition kernels, P and Q, are aperiodic and that the corre-
sponding operators are positive as seen in Lemma 3.3. Notice that
all the normalizing constants in Q and P cancel out, such that the
transition probabilities can be effectively computed.

The Swapping algorithm is now any reasonable combinations of P
and Q, usually one takes QPQ as it is reversible with respect to π if Q
and P are reversible (which in our situation is the case). The following
sections will give an idea of what is known about these algorithms so
far.
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3. Known results

3.1. Madras and Zheng. In their paper [29] Madras and Zheng
are the first to consider the swapping algorithm for a model of statis-
tical mechanics. As we have seen in Section 4 of Chapter 2 a natural
realization of the Metropolis algorithm for the Curie-Weiss model with
no external field is torpidly mixing. By using techniques invented by
Madras, Piccioni [27] and Madras, Randall [28] Madras and Zheng
were able to show that the swapping algorithm with the same natural
Metropolis sampler as an underlying updating chain is rapidly mix-
ing. That way they were able to show that at least in some cases the
swapping algorithm is provably better than the standard metropolis
sampler. This has actually previously been claimed by some physicists
who were only able to give simulations as evidence.

The proof Madras and Zheng give relies heavily on the decomposi-
tion theorem, in this thesis Theorem 3.9. Consider a state with total
magnetizationm(σ). By inverting each spin the new state −σ has total
magnetization m(−σ) = −m(σ), thus there is a one to one correspon-
dence of the set of all states with positive magnetization and the set
with states of negative total magnetization. Using a smart aggregation
of states they restrict the chain to only switch sign in m(σ) at inverse
temperature β = 0. They can then use the fact that the sets described
previously fulfill a unimodality condition in some sense, thus using the
well known Poincaré inequality given in Theorem 3.4 gives rapid mixing
on each subset in any temperature. Putting this together guarantees
rapid convergence of the chain after some tedious calculations.

Apart from looking at the Curie-Weiss model the paper also con-
tains the proof of rapid convergence to equilibrium of the exponential
valley distribution. This paper seems to have come out of Zheng’s PhD-
Thesis in which Zheng also considers the relationship between the two
algorithms of simulated tempering and swapping introduced in section
1 and section 2. With

Theorem 3.1 (Zheng [35]). If there exists a δ > 0 such that∑
x∈Ω

min{πi(x), πi+1(x)} ≥ δ for all 1 ≤ i ≤M

holds then if the Swapping algorithm converges in polynomial time, so
does the Simulated Tempering algorithm.

he was able to show (under moderate regularity conditions) that
rapid convergence to equilibrium of the swapping algorithm implies
rapid convergence of the tempering algorithm. This is readily used to
show rapid convergence to equilibrium of the tempering chain for the
Curie-Weiss model.

3.2. Bhatnagar and Randall. Bhatnagar and Randall picked up
on the idea of tempering and swapping in [2]. A natural extension of
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the Curie-Weiss model would be to consider the Potts model. This
model has {1, ..., q}N as its state space, thus every atom can have one
of q many spin values, which, in this model are usually called colors.
The Hamiltonian is then given by

H(σ) =
1

N

N∑
i,j=1

δσi,σj

which makes the Potts model an extension of the Curie-Weiss model
in the sense that it has more than two colors. Looking at the idea of
Theorem 2.7 it is not difficult to think of a proof which grands torpid
mixing of the metropolis algorithm which would be the natural adap-
tion of the one used for the Curie-Weiss model. The maybe surprising
result is that this slight modification of the Curie-Weiss model already
warrants for torpid mixing of the tempering and thus swapping algo-
rithm as well. Bhatnagar and Randall use the fact that even though
below the critical temperature the Potts model with three colors has
three macrostates, in this respect extending the Curie-Weiss model in
the anticipated way, it actually has a fourth, local, mode in the center
of the state space which does not yield a macrostate. This persists
at all temperatures below the critical one. At β = 0 the Potts model
has only one mode which yields the macrostate of all colors appearing
equally often. A tempering chain started at this temperature in one
of the center states will stay in the center of the state space, as this
area is separated from any other mode by an exponentially deep energy
barrier. Even though the position of the barrier is shifted by changing
the inverse temperature β, the property itself exists at any tempera-
ture. The proof relies on a conductance argument involving the bad
cut described and Lemma 2.6.

In the second part of their paper Bhatnagar and Randall suggest a
slightly different technique compared to the one introduced by Madras
and Zheng in order to show rapid convergence of the swapping al-
gorithm to equilibrium. It is a minor modification which might make
proving rapid convergence to equilibrium of the swapping chain in many
interesting situations easier. Chapter 5 of this Thesis gives a detailed
use of their technique, extending it in those parts where Bhatnagar and
Randall only gave a slightly fragmentary idea.

3.3. Huber, Schmidler and Woodard. Huber, Schmidler and
Woodard extend the techniques given by Madras, Zheng and Bhatna-
gar, Randall to a slightly more general setting.

3.3.1. Rapid mixing results. In [32] they give general properties for
which a model satisfying these will have a rapidly mixing swapping
chain based on a reasonable underlying metropolis chain. The condi-
tions they give are seemingly the outer most possible conditions which
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still make the general proof given by Madras and Zheng for the Curie-
Weiss model go through unharmed. Using their result they show rapid
convergence to equilibrium of the swapping algorithm for two models.
The first one is the Curie-Weiss model. Even though the proof given fits
on only one page, it relies heavily on calculations done by Madras and
Zheng in their much longer paper. The second model is the Symmetric
Mixture of Normals in RM .

We will give a brief summary of their result as it will be used in the
case of the Generalized-Curie-Weiss model in Chapter 4. Let Ω be a
finite state space with the desired probability distribution πβ. Further
let Tβ denote the transition kernel of a Metropolis chain corresponding
to πβ. Let A = {Aj, j = 1, ..., J} be a partition of Ω. (For further
details on the construction see Theorem 3.9.) Let T0 denote the aggre-
gated transition chain of T0 with respect to the partition A. Further
define the overlap of {πk : k = 0, ...,M} with respect to A by

(24) δ(A) = min
|k−l|=1
j∈{1,...,J}

[∑
x∈Aj min{πβk(x), πβl(x)}

πβk(Aj)

]

and have

(25) γ(A) = min
j∈{1,...,J}

M∏
k=1

min

{
1,
πβk−1

(Aj)

πβk(Aj)

}
denote a quantity that measures the relative loss of mass in one of the
Aj. With these definitions in place Huber, Schmidler and Woodard
show

Theorem 3.2 (Theorem 3.1 in [32]). For any partition A = {Aj,
j = 1, ..., J} of Ω let Psc denote the swapping chain induced by the
Metropolis chain Tβ. The spectral gap of Psc satisfies

Gap(Psc) ≥
(
γ(A)J+3δ(A)2

211(N + 1)4J3

)
Gap(T0) ·min

k,j
Gap(Tk|Aj).

3.3.2. Torpid mixing results. In [33], Huber, Schmidler and Wood-
ard once again extend the proof given by Bhatnagar and Randall to
the outer most possible conditions a general model needs to satisfy in
order for the proof given by Bhatnagar and Randall for the Potts model
to work unscratched. They are able to apply their result to the Curie-
Weiss model’s tempering chain if one fixes the amount of temperatures
in the algorithm. The generalization of the model “Symmetric Mixture
of Normals in RM ” to a Mixture of Normals with Unequal Variance in
RM yields a torpidly mixing tempering chain. The third model they
are able to consider is again the Potts model with q ≥ 3 colors.
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4. Technical preparations

For the proofs of the results in the following chapters, we need
several well known results on Markov chains. The proofs of these results
can be found in the citation given. A slightly longer introduction with
some simple proofs can also be found in [12].

Lemma 3.3 (Lemma 3 of [29]). Let P be a Markov chain that is
reversible with respect to a probability measure π on the finite state
space S. Also assume that P (x, x) ≥ 1

2
for every x ∈ S. Then P is a

positive operator.

Lemma 3.4 (Poincaré inequality, Proposition 1’ of [11]). Let P be
an irreducible and reversible Markov chain on a finite state space S.
We associate to P the graph with vertex set S and edges 〈x, y〉 if and
only if P (x, y) > 0. For each pair of distinct points x, y ∈ S, we choose
a path γxy from x to y, such that a given edge appears at most once in
a given path. Then the second largest eigenvalue λ1 of P satisfies

λ1 = 1−Gap(P ) ≤ 1− 1

A

where

A := max
〈x,y〉

1

π(x)P (x, y)

∑
γz1z23〈x,y〉

|γz1z2|π(z1)π(z2)

and |γz1z2| denotes the number of edges in the path γz1z2.

Lemma 3.5 (Comparison of Dirichlet forms, Theorem 2.1 of [9]).
Let P, π and P̃ , π̃ be reversible Markov chains on a finite state space
S, with respective Dirichlet forms E and Ẽ. For each pair x 6= y, with
P̃ (x, y) > 0, we fix a path γxy = (x0 = x, x1, x2, . . . , xk = y), such
that P (xi, xi+1) > 0, of length |γxy| = k. Set E = {(x, y) : P (x, y) >

0}, Ẽ = {(x, y) : P̃ (x, y) > 0} and Ẽ(e) = {(x, y) ∈ Ẽ : e ∈ γxy}, where
e ∈ E. Then

Ẽ ≤ AE ,
where

A := max
(z,w)∈E

1

π(z)P (z, w)

∑
Ẽ(z,w)

|γxy|π̃(x)P̃ (x, y).

Lemma 3.6 (Lemma 5 of [29]). Let (K, π) and (K ′, π′) be two Mar-
kov chains on the same finite state space S, with respective Dirichlet
forms E and E ′. Assume that there exists constants A, a > 0 such that

E ′ ≤ AE and aπ ≤ π′.

Then

Gap(K ′) ≤ A

a
Gap(K).
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Remark A sufficient condition for E ′ ≤ AE is that
π′(x)K ′(x, y) ≤ Aπ(x)K(x, y) for all x, y ∈ S such that x 6= y.

Lemma 3.7 (Lemma 6 of [29]). For any reversible finite Markov
chain P ,

Gap(P ) ≥ 1

m
Gap(Pm) ∀m ∈ N∗.

Lemma 3.8 (Lemma 7 of [29]). Let A and B be Markov kernels.
The following holds for A and B and also for A substituted by A’s
positive square root A

1
2 :

Gap(ABA) ≥ Gap(B).

Theorem 3.9 (Caracciolo-Pelissetto-Sokal [29]). Let µ be a prob-
ability distribution on a finite state space S, and let P be a transition
matrix reversible with respect to µ. Suppose that we partition the set S
as

S =
m⋃
i=1

Si,with Si ∩ Sj = ∅, if i 6= j.

For each i = 1, . . . ,m, let Pi be the restriction of P to Si. Let Q be
a positive operator, that is also reversible with respect to µ, and Q the
aggregated chain associated to the partition (Si)i=1,...,m : more precisely,
for i, j = 1, . . . ,m,

Q(i, j) =
1

µ(Si)
∑
x∈Si

∑
y∈Sj

µ(x)Q(x, y).

Let Q 1
2 be the positive square root of Q. Then

(26) Gap(Q
1
2PQ

1
2 ) ≥ Gap(Q) · min

1≤i≤m
Gap(Pi).

Theorem 3.10 (Diaconis and Saloff-Coste [9]). For i = 1, ...,M ,
let Pi be a reversible Markov chain on a finite state space Ωi. Consider
the product Markov chain P on the product space Ω0× ...×ΩM , defined
by

(27) P =
1

M + 1

M∑
i=0

I ⊗ ...⊗ I ⊗ Pi ⊗ I ⊗ ...⊗ I,

where (in a slight abuse of notation) I denotes the identity on the space
it is defined. Then Gap(P ) = 1

M+1
mini∈{0,...,M}{Gap(Pi)}.



CHAPTER 4

The Generalized-Curie-Weiss model

This chapter will deal with the swapping algorithm on the Gener-
alized−Curie−Weiss model. As we have seen in Section 2.4 the Curie-
Weiss model’s canonical Metropolis chain exhibits a bad cut in the state
space at temperatures in the two macrostate region. Thus in general
we can only expect torpid mixing of the Metropolis algorithm in a
Generalized-Curie-Weiss setting. This chapter is organized as follows:
In Section 1 we will define the Metropolis chain for the Generalized-
Curie-Weiss setting. After this it is straightforward to define the swap-
ping chain. Section 3 contains the result of this chapter while the proof
is given in Section 4.

1. Defining the Metropolis chain

We will stay very close the the definition of the Metropolis chain
in the Curie-Weiss setting given in 2.4. Note that we regain the Curie-
Weiss model by taking A := {−1, 1},

ρ =
1

2
(δ−1 + δ−1)

as probability measure on [−1, 1] and

g : [−1, 1] → [0, 1]
x 7→ x2

as symmetric function which is strictly increasing on [0, 1] and satisfies
g(0) = 0. For the proposal chain we can take the almost identical
proposal chain as in the Curie-Weiss case. The only difference we have
to pay attention to is that the size |A| of the set A is not necessarily 2.
Define the proposal chain

K(σ, τ) :=


1

2|A|N if ‖σ − τ‖1 = 1

1−
∑

τ ′ 6=σK(σ, τ ′) if σ = τ

0 otherwise

and verify that K is positive, irreducible and aperiodic on Ω = AΛ.
Let T then denote the transition matrix of the Metropolis chain for the
desired Gibbs measure

πβ(σ) =
eβNg(

m(σ)
N )∑

τ e
βNg(m(τ)

N )

29
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of the Generalized-Curie-Weiss model.

2. Preparations

In this section, we will give a rapidly mixing Markov chain (Xi)i
which has the uniform distribution of all states with a given total mag-
netization as its stationary distribution. This will be of use as we intend
to compare the Metropolis algorithm on Ai (see equation (38)) of the
Generalized-Curie-Weiss model with this chain in order to show rapid
mixing.

Let Λ = {1, ..., N},
A :=

{
iα
∣∣i ∈ {−n, .., n}} for an α > 0 and some n ∈ N

and define the state space to be Ω = AΛ. Now let

(28) C =
{
x ∈ Ω

∣∣∣m(x) = j
}

be the set of all states with total magnetization j and let ν be the
uniform distribution on C. Our aim is to give a Markov chain (Xi)i
which compares well to the chain we consider later in Section 4.3 and
which also samples efficiently from ν.

2.1. Rapid mixing of (Xi). Fix C as in (28). Consider the
Markov chain (Xi) on C with the following transition kernel. Take
(R1(i))i∈N and (R2(i))i∈N independent and uniformly distributed on
{1, ..., N} and (U(i))i∈N independent and uniformly distributed on

{1α, . . . , (2n+ 1)α}
such that (R1(i)), (R2(i)) and (U(i)) are independent. Define

Move : C × {1, ..., N}2 × {1α, ..., 2nα} → C
by

(29) Move(x, r1, r2, u) :=



x if xr1 − u < −n
or xr2 + u > n

(x1, ..., xr1 − u, if r1 ≤ r2

..., xr2 + u, ..., xN) and not first case
(x1, ..., xr2 + u, if r1 ≥ r2

..., xr1 − u, ..., xN) and not first case

and using this define

X1 := X ∈ C

Xi+1 :=

{
Xi R1(i) = R2(i)

Move(Xi, R1(i), R2(i), U(i)) R1(i) 6= R2(i)
(30)

(where X is any admissible starting point). Verify that (Xi) is irre-
ducible, aperiodic and has reversible distribution ν on C. We will use a
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coupling argument in order to show rapid convergence to equilibrium
of (Xi). To this end define

(31) X ′1 := X ′ ∈ C

with X ′ drawn according to ν and

X ′i+1 :=


X ′i R1(i) = R2(i)

X ′i Xi(R1(i)) 6= X ′i(R1(i))∧
Xi(R2(i)) 6= X ′i(R2(i))

Move(X ′i, R1(i), R2(i), U(i)) else.

Again verify that (X ′i) is an irreducible and aperiodic Markov chain
which is reversible with respect to ν on C. Thus (X ′i) is in equilibrium
in every step.

Lemma 4.1. The expected coupling time TC of the Markov chains
(Xi) and (X ′i) is bounded from above by

ETC ≤ (2n+ 1)N3.

Proof. Define

(32) C(i) :=
{
k ∈ {1, ..., N}

∣∣Xi(k) 6= X ′i(k)
}

such that Ψ(i) := |C(i)| denotes the amount of components which have
not coupled so far. Once Ψ(i) = 0, the two chains have coupled. Due
to the construction, Ψ is monotonically decreasing. We now argue why

(33) P
(
Ψ(i+ 1) ≤ j − 1

∣∣Ψ(i) = j > 0
)
≥ 1

(2n+ 1)N2

holds.
First, assume there are exactly two components k1 and k2 satisfying

Xi(k1) 6= X ′i(k1) and Xi(k2) 6= X ′i(k2). Without loss of generality
assume further thatXi(k1) > X ′i(k1) and Xi(k2) < X ′i(k2). AsXi, X

′
i ∈

C there exists a u ∈ {1α, ..., (2n+ 1)α} such that

Xi(k1)− u = X ′i(k1) and Xi(k2) + u = X ′i(k2).

All that needs to happen is drawing

P
(
R1(i) = k1, R2(i) = k2, U(i) = u

)
=

1

(2n+ 1)N2
.

Second, assume there are three or more components which have not
coupled yet. There are either components k1 and k2 satisfying

Xi(k1)− u = X ′i(k1), X ′i(k2) 6= Xi(k2) and Xi(k2) + u ≤ 2nα

or satisfying

Xi(k2) + u = X ′i(k2), X ′i(k1) 6= Xi(k1) and Xi(k1)− u ≥ −2nα
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for a suitable u ∈ {1α, ..., 2nα}. Again we know

P
(
R1(i) = k1, R2(i) = k2, U(i) = u

)
=

1

(2n+ 1)N2

which proofs (33).
Using [1, Chapter 4-3, Lemma 1] we get an upper bound of

ETC ≤
N∑
i=1

(2n+ 1)N2 = (2n+ 1)N3

for the coupling time. �

3. Result

Note the restrictions to g and ρ given in the definition for the
Generalized-Curie-Weiss model in Section 1.1. Further assume that
the finite set A is of the form

(34) A ∩ (0,∞) =
{
iα
∣∣i ∈ {1, .., n}} for an α > 0 and some n ∈ N.

Define

(35) Ai := {σ ∈ A+|m(σ) = iα} for i ∈ {0, ..., 2nN}

to be the set of all states with total magnetization iα respectively. Here
A+ as defined in (36) consists of all the states we want to call positive.
The main result of this chapter is

Theorem 4.2. Let g satisfy

πβ′(Ai) is unimodal in i ∈ {0, ..., 2nN}

for any β′ > 0. Then, the swapping chain with transition kernel QPQ
is rapidly mixing for the Generalized-Curie-Weiss model with parame-
ters g and the normalized counting measure ρ on the finite and sym-
metric set A ⊂ [−L,L] satisfying (34).

Remark This implies rapid convergence of the simulated tempering
chain to equilibrium as the calculations given in Section 4.1 imply the
condition necessary for using Theorem 3.1.

4. Proof

Fix β > 0. We will be using Theorem 3.2 as a means of showing
rapid convergence to equilibrium in the situation of Theorem 4.2. We
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start by partitioning

Ω = A+ ∪ A−

A+ =
{
σ ∈ Ω

∣∣∣ N∑
i=1

σi > 0
}
∪
{
σ ∈ Ω

∣∣∣ N∑
i=1

σi = 0, σargmink{σk 6=0} > 0
}

∪
({

(0, ..., 0)
}
∩ AΛ

)
A− =

{
σ ∈ Ω

∣∣∣ N∑
i=1

σi < 0
}
∪
{
σ ∈ Ω

∣∣∣ N∑
i=1

σi = 0, σargmink{σk 6=0} < 0
}

(36)

such that A+ ∩ A− = ∅. Thus take A := {A+, A−}. It is obviously
clear, that for any β′ ∈ [0, β] there exists c1 > 0 only dependent on β
not on β′ such that Zβ′(N) ≥ ec1N . This leads to

πβ′
(
(0, ..., 0)

)
≤ e−c1N

uniformly in β′ such that the symmetry of g and ρ implies

πβ(Ai)→
1

2
uniformly in β′ ∈ [0, β] and for i ∈ {+,−}.

This implies γ(A) to be bounded by a constant which can be chosen
arbitrarily close to 1.

4.1. Bounding the overlap δ(A). Remember the definition of
δ(A) given through equation (24). We first calculate

Zk(N)

Zk+1(N)
=

∑
τ∈Ω e

βN k
M
g
(
m(τ)
N

)
∑

τ∈Ω e
βN k+1

M
g
(
m(τ)
N

)
=

∑
τ∈Ω e

βN k
M
g
(
m(τ)
M

)
∑

τ∈Ω e
βN k

M
g
(
m(τ)
N

)
eβ

N
M
g
(
m(τ)
N

)
≤ Zk(N)

Zk(N)

= 1
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and

Zk(N)

Zk+1(N)
=

∑
τ∈Ω e

βN k
M
g
(
m(τ)
N

)
∑

τ∈Ω e
βN k+1

M
g
(
m(τ)
N

)
=

∑
τ∈Ω e

βN k
M
g
(
m(τ)
M

)
∑

τ∈Ω e
βN k

M
g
(
m(τ)
N

)
eβg
(
m(τ)
N

)
≥
∑

τ∈Ω e
βN k

M
g
(
m(τ)
M

)
∑

τ∈Ω e
βN k

M
g
(
m(τ)
N

) e−β NM ‖g‖∞
= e−β

N
M
‖g‖∞ .

We can use this to gain a two-sided bound on
πk+1(σ)

πk(σ)
= eβN

(
k+1
M
− k
M

)
g
(
m(σ)
N

)
Zk(N)

Zk+1(N)

= eβN
N
M
g
(
m(σ)
N

)
Zk(N)

Zk+1(N)

∈ [1, eβ
N
M
‖g‖∞ ]

Zk(N)

Zk+1(N)

⊆ [e−β
N
M
‖g‖∞ , eβ

N
M
‖g‖∞ ].

This leads to δ(A) being upper and lower bounded by constants. Note
that we only need the lower bound on δ(A) for using Theorem 3.2.

4.2. Bounding Gap(T0). Again take Ai = {σ ∈ A+|m(σ) = iα}
to be the set of all states with given total magnetization iα in Ω. We
want to show that a transition from A−1 (or A0∩A−) to A1 is probable.
To achieve this, we first need to know that being in a state in A−1 is
probable. To this end define

c2(σ) := min
{
k′
∣∣∣ k′∑
k=1

σk < 0
}

to be the first component where the partial sum of all prior spins turns
negative. Note that c2 is well defined for any x ∈ A−. Define

h(σ) = σ′

to be the function which increases this component by 1α, such that
σc1(σ) + 1α = σ′σ1(σ) and σ′k = σk for all other components. Note that
h(Ai) ⊆ Ai+1 is an injective mapping for all i < 0. This implies

(37) either π0(A1) ≥ 1

(2n+ 1)N
or π0(A0 ∩ A−) ≥ 1

(2n+ 1)N
.

Proposition 4.3. T0 is rapidly mixing.
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Proof. Take B to denote either A−1 or A0 ∩ A− depending of
which one fulfills the inequality in (37). Each σ ∈ B has at least one
component of which the spin value can be increased far enough, such
that the resulting σ′ has m(σ′) > 0. Thus σ′ ∈ A+. Using this short
notation and the definition of T0 we calculate

T0(−,+) =
1

π0(A−)

∑
σ∈A−

∑
τ∈A+

π0(σ)T0(σ, τ)

≥ 2
∑
σ∈B

∑
τ∈A+

π0(σ)T0(σ, τ)

≥ 2
∑
σ∈B

π0(σ)T0(σ, σ′)

≥ 1

|A|N
π0(B)

≥ 1

2|A|(n+ 1)N2

=
1

(2n+ 1)2N2

where we use that T0(σ, σ′) = K(σ, σ′) = (2|A|N)−1. Note that
T0(+,−) can be bounded by the same technique and therefore by the
same bound. Comparing this with the Markov chain which tosses a
coin independently in every step, taking the displayed value, by using
Lemma 3.6 yields the desired result. �

4.3. Bounding mink,j Gap(Tk|Aj). We will focus on

min
k

Gap(Tk|A+)

as πβ is symmetric and A+ and A− differ only insignificantly. All
bounds shown work for both cases. Fix an arbitrary k ∈ {1, ...,M}.
We will see that Tk|A+ is rapidly mixing, thus giving a polynomial lower
bound for mink Gap(Tk|A+). This bound is independent of βk. For an
easier notation denote

P := Tk|A+ .

Partition

(38) A+ =
2nN⋃
i=0

Ai

with Ai = {σ ∈ A+|m(σ) = iα} according to the total magnetization.
Using Lemma 3.7 on P we gain

Gap(P ) ≥ 1

3
Gap(P 3) =

1

3
Gap(P

1
2P 2P

1
2 ).
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This, on first sight counterproductive, step makes sure that the chains
induced on the decomposition state space are nontrivial. Only consid-
ering P |Ai would lead to a constant chain, as the chain cannot leave
any state. The chain P 2|Ai does not have this disadvantage as P 2 can
increase/decrease the total magnetization by some amount in the first
step and reverse this change in magnetization by the second step. Using
Theorem 3.9 we get

Gap(P 3) = Gap(P
1
2P 2P

1
2 ) ≥ Gap(P ) min

1≤i≤N |A+|
Gap(P 2

i )

with P 2
i := P 2|Ai .

Proposition 4.4. P is rapidly mixing.

Proof. Note the condition in Theorem 4.2 of πβ′(Ai) being uni-
modal in i for any β′ > 0. We will be using this in conjunction with
the Poincaré-Inequality of Lemma 3.4 in order to see that Gap(P ) can
be bounded below by the inverse of a polynomial. First note for any
i ∈ {0, .., nN − 1} we get

P (i, i+ 1) =
1

πβ′(Ai)

∑
σ∈Ai

∑
τ∈Ai+1

πβ′(σ)P (σ, τ)

≥ 1

πβ′(Ai)

∑
σ∈Ai

πβ′(σ)
1

2|A|N

=
1

2|A|N

and using reversibility in (39)

P (i+ 1, i) =
1

πβ′(Ai+1)

∑
σ∈Ai+1

∑
τ∈Ai

πβ′(σ)P (σ, τ)

=
1

πβ′(Ai+1)

∑
σ∈Ai+1

∑
τ∈Ai

πβ′(τ)P (τ, σ)(39)

≥ 1

πβ′(Ai+1)

∑
τ∈Ai

πβ′(τ)
1

2|A|N

=
1

2|A|N
πβ′(Ai)

πβ′(Ai+1)
.
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Assume the worst case scenario of πβ′ (Ai)

πβ′ (Ai+1)
< 1. We will use this for

bounding K in Lemma 3.4 by

K = max
i,j∈{0,...,nN}:
|i−j|=1

1

πβ′(Ai)P (i, j)

∑
γz1,z23〈i,j〉

|γz1,z2|πβ′(z1)πβ′(z2)

≤ nN max
i,j∈{0,...,nN}:
|i−j|=1

∑
γz1,z23〈i,j〉

πβ′(z1)πβ′(z2)

πβ′(Ai)P (i, j)

≤ nN max
i∈{0,...,2n−1}

∑
γz1,z23〈i+1,i〉

πβ′(z1)πβ′(z2)

πβ′(Ai+1)P (i+ 1, i)

≤ nN max
i∈{0,...,2n−1}

∑
γz1,z23〈i+1,i〉

πβ′(z1)

πβ′(Ai+1)

πβ′(z2)

πβ′(Ai)
πβ′(Ai+1)

≤ (nN)3

as every factor in the last product is bounded by 1 due to the uni-
modality condition. �

Proposition 4.5. There exists a polynomial p(N) such that

Gap(P 2
i ) ≥ p(N)−1

thus P 2
i is rapidly mixing for any i ∈ {1, ..., nN}.

Remark Note that the technique used in the proof of Lemma 4.1 also
works for the case of restricting the state space to A0 ∩ A+. We re-
frain from showing this explicitly to prevent unnecessarily complicated
notation.

Proof. It is necessary to consider two cases. The first is P 2
nN in

which AnN only contains one state. Thus P 2
nN is the constant chain

and therefore rapidly mixing.
The second case is the case of P 2

i with i < nN . We will compare
P 2
i with the Markov chain given in Section 2 which has been shown

to be rapidly mixing in Lemma 4.1. Consider two states σ 6= τ with
m(σ) = m(τ) = iα and

P(Xj+1 = τ |Xj = σ) = 0.

This directly implies P 2
i (σ, τ) = 0, as all P 2

i can do is select two compo-
nents and transfer magnetization between these two, just as the Markov
chain (Xj) does too. Now consider the other case of two states σ 6= τ
with m(σ) = m(τ) = iα and

P(Xj+1 = τ |Xj = σ) =
1

2nN2
=

1

|A|N2
> 0.

Think of the transition ofXi toXi+1 as consisting of two steps. First in-
creasing one component’s amount, thus reaching state τ ′ with m(τ ′) >
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iα and then decreasing another component and therefore reaching τ .
We know

P 2
i (σ, τ) ≥ P (σ, τ ′)P (τ ′, τ)

and due to the definition of the Metropolis sampler it is either P (σ, τ) =
1

2|A|N or P (τ, σ) = 1
2|A|N . Assume the first equality to hold true. Then

we gain

P (τ ′, τ) =
1

2|A|N
min

{
1, e

βkN
(
g(m(τ)

N )−g
(
m(τ ′)
N

))}
=

1

2|A|N
min

{
1, e

β N
M

(
g(m(τ)

N )−g
(
m(τ ′)
N

))}
≥ 1

2|A|N
e−β

N
M
‖g‖.

This argument would work for bounding P (σ, τ ′) just as well, so alto-
gether we get

(40) P 2
i (σ, τ) ≥

(
1

2|A|N

)2

e−β
N
M
‖g‖.

From Lemma 4.1 we can deduce Gap((Xi)) ≥ 1
6|A|N3 such that Lemma

3.6 yields the claim. Note that this bound does not depend on i. �



CHAPTER 5

The Blume-Emery-Grifiths model

In this chapter we will analyze the Swapping algorithm on the
mean-field version of the Blume-Emery-Griffiths model which is given
in Chapter 1 Section 3. This model has two parameters and depending
on their choice, the model exhibits either a first or a second order phase
transition. In agreement with a conjecture by Bhatnagar and Randall
we find that the Swapping algorithm mixes rapidly in presence of a
second order phase transition, while becoming slow when the phase
transition is first order.

As mentioned in Chapter 3 Section 3.3, Woodard, Schmidler and
Huber are able to give the first known result on rapid mixing of the
Swapping algorithm in a general, non model-specific, setting. It is no-
ticeable that their result cannot be used in the case of rapid mixing
in the BEG model. The technique used by Woodard, Schmidler and
Huber relies heavily on a static, non temperature-dependent, partition-
ing of the state space. The underlying Metropolis chain needs to mix
rapidly in each part and for any temperature in order for their tech-
nique to work. Furthermore, the probability of each part must not get
too small, as the temperature is decreased. In the rapid mixing case of
the BEG model, this partitioning cannot be achieved. Our proof relies
on a dynamic, temperature dependent, partitioning in which one part
gets very unlikely as the temperature is decreased.

This chapter is organized as follows: Section 1 contains some tech-
nical results which we need in order to prove our theorems. More
precisely, we will propose a way to rewrite the BEG model and we will
prove a result on the speed of convergence of a coloring algorithm on
a graph. This will be useful in the proofs of our results in Section 3.
Section 2 is devoted to our results – a characterization of the parame-
ter regimes where the Swapping algorithm converges rapidly or slowly,
respectively. These results will be proofed in Section 3. Next to the
mentioned free energy bounds, the proofs use methods to bound the
spectral gaps of Markov chains such as coupling methods or Poincaré
inequalities. In the appendix a collection of results on the free energy
in the BEG model is given, which contains refinements of some results
given in [14].

39
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1. Technical preparations

We will first do some system specific preparations, in order to get
more familiar with the model and as evidence why swapping and tem-
pering should be considered for this model.

1.1. BEG-specific preparations. In favor of an easy notation
define the functions

SN(σ) =
N∑
i=1

σi(41)

RN(σ) =
N∑
i=1

σ2
i(42)

where SN gives the total magnetization, and RN the total amount of
non-zero spins of the state σ. Using this, it is easy to define

(43) As,r :=
{
σ ∈ Ω

∣∣SN(σ) = s, RN(σ) = r
}

as the set of states with fixed amount of 0s and fixed magnetization. As
we consider the mean field BEG model, all states in As,r are basically
indistinguishable in the system. We will later (Theorem 5.12) see,
that the Metropolis chain T 2 restricted to As,r mixes rapidly for any
combination of s and r.

In order to be able to better address non-negligible differences in
the state space consider

(44) Υ = ΥN :=
{
a = (a−1, a0, a1) ∈ R3

∣∣ai ≥ 0 ∀i,∑
i

ai = 1, Nai ∈ N ∀i = −1, 0, 1
}

such that

(45) Ω =
⋃
a∈Υ

{
σ ∈ Ω

∣∣∣ N∑
j=1

δσj ,i = Nai ∀i ∈ {−1, 0, 1}
}

is a disjoint union. This is inspired by Gore’s and Jerrum’s work on
the Potts Model [21] as the following calculation makes the state space
easier to handle.

Considering

πβ(σ has type Na) =

(
N

Na−1, Na0, Na1

)
Z(β)−1

× e−β
(
Na−1+Na1−KN (Na1−Na−1)2

)
=

(
N

Na−1, Na0, Na1

)
Z(β)−1

× e−Nβ
(
a−1+a1−K(a1−a−1)2

)
(46)
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and using Stirling’s approximation one obtains

πβ(σ has type Na) = Z(β)−1N−1e−N
(∑

i ai log ai

)
+∆(a)

× e−Nβ
(
a−1+a1−K(a1−a−1)2

)
= Z(β)−1N−1

× eN
(
β
(
−a−1−a1+K(a1−a−1)2

)
−
∑
i ai log ai

)
+∆(a)(47)

with |∆(a)| = O(1) if there exists an ε > 0 with ai ≥ ε for all i ∈
{−1, 0, 1}. So understanding

(48) fβ(a) := β
(
− a−1 − a1 +K(a1 − a−1)2

)
−
∑
i

ai log ai

will give us better intelligence of how the BEG model behaves depend-
ing on β. See the appendix for the details. The rough description (that
is, of course, in agreement with the findings of Ellis et al. in [14]) is,
that for small K and small β > 0 the free energy is unimodal, while for
small enough K and large β there are three minima. For large enough
K, fβ is bimodal.

1.1.1. Why Metropolis is torpidly mixing for BEG. We know, as
seen in Section 1.1, that πβ(σ has type Na) has exponential structure
for any a which is a local maximum. We also know, due to the analysis
sketched above, that fβ has three local modes for suitable K and suffi-
ciently (depending on K) large β. Take a to represent the lowest local
maximum point. This leads to Bε(a) having exponential little conduc-
tance, therefore representing a bad cut in the state space. Here and in
the following Bε(a) will always denote a ball of radius ε centered in a
in the appropriate metric space. For more details see Section 3.4 where
this technique is used in the more complicated setup of swapping.

1.2. Random 3-coloring of the complete graph. In this sub-
section, we will give a rapidly mixing Markov chain (Xi)i which has the
uniform distribution on the set of of all 3-Colorings with given amounts
of vertices of a certain color as its stationary distribution. This will be
of use, as we intend to compare the Metropolis algorithm on As,r (see
(43)) of the BEG model with this chain in order to show rapid mixing.

Let Λ = {1, ..., N} and define Ω = {−1, 0, 1}Λ to be the set of all
possible 3-colorings of Λ. Note, that we do not restrict ourselves to
3-colorings in the graph theoretic sense, where adjacent vertices are
required to have different colors. Further consider a tuple (a1, a2, a3) ∈
Υ. Nai represents the amount of vertexes, which have color i. Now let

(49) C =
{
σ ∈ Ω

∣∣∣ 1

N

∑
j

δi,σj = ai

}
be the set of appropriate 3-colorings and ρ the uniform distribution on
C. Our aim is to give a Markov chain (Xi)i which compares well to the



42 5. THE BLUME-EMERY-GRIFITHS MODEL

chain we will consider later in Section 3.3.2 for the BEG model and
which also samples efficiently from ρ.

1.2.1. Rapid mixing of (Xi). Fix C as in (49). Consider the Markov
chain (Xi) on C with the following transition kernel. Take (R1(i))i∈N
and (R2(i))i∈N independently and uniformly distributed on {1, ..., N}.
Define

X1 := X ∈ C

Xi+1 :=

{
Xi R1(i) = R2(i)(
R1(i), R2(i)

)(
Xi

)
R1(i) 6= R2(i)

(50)

(where X is any admissible starting point and for a vector x := (x1,
. . . , xN) and i 6= j ∈ {1, . . . , N} we write (i, j)(x1, . . . xN) for the vector
x with the components i and j interchanged) and verify, that (Xi) has
reversible distribution π on C. We will use a coupling argument in
order to show rapid convergence to equilibrium of (Xi). To this end
define

(51) X ′1 := X ′ ∈ C
with X ′ drawn according to ρ and iteratively

(52) C(i) :=
{
j ∈ {1, ..., N}

∣∣Xi(j) 6= X ′i(j)
}

with

X ′i+1 :=



X ′i R1(i) = R2(i)(
R1(i), R2(i)

)(
X ′i
)

Xi(R1(i)) = X ′i(R1(i)) ∧Xi(R2(i))

6= X ′i(R2(i))(
R1(i), R2(i)

)(
X ′i
)

Xi(R1(i)) 6= X ′i(R1(i)) ∧Xi(R2(i))

= X ′i(R2(i))(
R1(i), R2(i)

)(
X ′i
)

Xi(R1(i)) = X ′i(R1(i)) ∧Xi(R2(i))

= X ′i(R2(i))(
R1(i), R3(i)

)(
X ′i
)

otherwise

and R3 being uniformly drawn out of C(i) and independent of (R1(i))
and (R2(i)). Again verify that (X ′i) is a Markov chain which is re-
versible with respect to ρ on C. Thus (X ′i) is in equilibrium in every
step.

Lemma 5.1. The expected coupling time TC of the Markov chains
(Xi) and (X ′i) is bounded from above by

ETC ≤ N4.

Proof. Define Ψ(i) := |C(i)|. Once Ψ(i) = 0 the two chains have
coupled. Due to the construction Ψ is monotonically decreasing. In-
deed, if Xi(k) = X ′i(k) holds for one i and a k ∈ {1, . . . , N}, we will
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have Xj = X ′j for the position k is permuted to. We further know

P
(
Ψ(i+ 1) ≤ j − 1

∣∣Ψ(i) = j > 0
)
≥ 1

N3

as all that needs to happen is, find two components k1 and k2 with

Xi(k1) = X ′i(k2) 6= Xi(k2) = X ′i(k1)

and choose these with R1 and R2 which happens with probability 1
N2 .

In this case R3 would be drawn out of all components in which Xi and
X ′i differ. There are at most N of those. Using [1, Chapter 4-3, Lemma
1] we get an upper bound of

ETC ≤
N∑
i=1

N3 = N4

for the coupling time. �

2. Results

In this section we will summarize our results which will be proved
in Section 3. We will first define what chain exactly we want to look
at.

The Simulated Tempering algorithm and the Swapping algorithm
are defined in Chapter 3 Section 1 and 2 respectively. In the two cases,
for the BEG model, the corresponding Metropolis-Hastings chain for
the measure πβ, defined through (9), is given by (3), with the proposal
chain

Kgen(x, y) =
1

4N
,

if x, y ∈ {−1, 0, 1}N and differ in exactly one spin xi 6= yi, for some
i ∈ {1, ..., N}, and Kgen(x, x) = 1

2
. In all other cases define

Kgen(x, y) = 0.

The BEG Model, as Ellis et al. [14] show, exhibits different phase
behavior depending on K. For small K < Klow there is, for every
temperature, only one macro state, which implies that there is no phase
transition. Ellis et al. conjecture Klow to be 1, but they do not give a
proof for this.

The first regime we want to look at is Klow < K < Kc with
Kc = K(log 4) as in [14, Eq. (3.19)]. The model exhibits a discon-
tinuous phase transition at a βc(K) depending on K. We will use this
discontinuity in the phase to show

Theorem 5.2. Consider the BEG model with Klow < K < Kc. The
Simulated Tempering algorithm is torpidly mixing, since

Gap(QPstQ) ≤ e−cN

holds for c > 0 as constructed in Theorem 5.13.
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Corollary 5.3. This implies torpid mixing of the Swapping algo-
rithm in this regime.

For K > Kc the model shows a continuous phase transition at
βc(K) which will lead to a Swapping chain which behaves very much
like a Curie-Weiß model’s Swapping chain which Madras and Zheng
already considered in [29]. This leads to

Theorem 5.4. For K > Kc the Swapping chain with its transition
kernel QPQ for the BEG model satisfies

Gap(QPQ) ≥ 1

p(N)

for some polynomial p of N .

Remark Giving an explicit bound would need a longer argument in
the end of the proof of Theorem 5.10 which does not give a better
insight of the situation. As we do not believe our technique to give a
sharp bound anyway, we refrain from doing this extra step and do not
give a suitable polynomial explicitly.

Corollary 5.5. This implies rapid mixing of the Simulated Tem-
pering chain QPstQ in this regime.

3. Proofs

In this section we will first prove Theorem 5.4 to conclude this paper
by showing Theorem 5.2.

3.1. General partitioning of the state space in the case of
K > Kc. We will begin to show Theorem 5.4 by partitioning the state
space

(53) Ω = Ω+ ∪ Ω−

into two disjoint almost equally large parts

Ω+ =
{
x ∈ Ω

∣∣∣∑
i

x(i) > 0
}
∪ {(0, ..., 0)}

∪
{
x 6= (0, ..., 0)

∣∣∣∑
i

xi = 0, with the first non-zero coordinate =+1
}

Ω− = {x ∈ Ω|
∑

x(i) < 0}

∪
{
x 6= (0, ..., 0)

∣∣∣∑
i

xi = 0, with the first non-zero coordinate =-1
}
.

Using this partitioning we will decompose Ωsw = ΩM+1 in the same
way as Madras and Zheng in [29, Section 4, Step two].
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Let Ω̃sw := {+,−}M and take x ∈ Ωsw. Define the signature of x
by

(54) sgn : Ωsw → Ω̃sw

x 7→ v

with

(55) vi =

{
+ if xi+1 ∈ Ω+

− if xi+1 ∈ Ω−,

such that sgn(x) contains the sign, of the total magnetization of each
component of x except of the component for β = 0. The first compo-
nent of x will have a special role, which will become apparent within
the next paragraphs.

We will decompose the state space using the amount of +-signs in
sgn(x). For fixed k ∈ {0, ...,M} define

(56) Ω̃k := {v ∈ Ω̃sw|v has exactly k + -signs}.
and note, that

Ωsw =
M⋃
k=0

Ωk

is a disjoint union of

(57) Ωk := {x ∈ Ωsw| sgn(x) ∈ Ω̃k}.

Define Q to be the aggregated transition matrix as described in Theo-
rem 3.9 for this decomposition. Using Lemma 3.8 and Theorem 3.9 we
get

Gap(QPQ) ≥ Gap(Q
1
2 (QPQ)Q

1
2 )(58)

≥ Gap(Q) · min
k∈{0,...,M}

Gap((QPQ)|Ωk).(59)

Citing [29, Sec. 4, step three], we can do all displayed calculations in
our setting as well, which eventually leads to

(60) Gap(Q
1
2 (QPQ)Q

1
2 ) ≥ 1

8
Gap(Q) · min

k∈{0,...,M}
Gap((QkPkQk))

with Pk and Qk being the restrictions of P and Q to Ωk, respectively.
The transition kernel Q is, in this setting, responsible for changing

the amount of components in x ∈ Ωsw which are in Ω+ and Ω− re-
spectively. Q is essentially a one dimensional nearest neighbor random
walk on {0, ...,M} whose spectral gap is well understood. Due to the
symmetry in the model it does not (noticeably) matter for the chain,
whether we restrict a given component k of x to be in Ω+ or Ω−. This
leads to

(61) Gap((QkPkQk)) ≈ Gap((Qk′Pk′Qk′)) ∀k, k′ ∈ {0, ...,M}



46 5. THE BLUME-EMERY-GRIFITHS MODEL

where ≈ means that both spectral gaps are of the same (polynomial or
exponential) order. This in turn implies

min
k∈{0,...,M}

Gap((QkPkQk)) ≈ Gap((QMPMQM)).

We will, by abuse of notation, write this as

(62) min
k∈{0,...,M}

Gap((QkPkQk)) ≈ Gap((QMPMQM)) = Gap((QP+Q))

and note, that all arguments of the proof work in exactly the same way
for any k ∈ {0, ...,M}. The only difference is, at what part of the state
space we look at, for a given temperature βi. Gap(Q) and Gap(QP+Q)
will be bounded below in the following subsections.

3.2. Speed of convergence of Q. Following in principle the
proof given in [29, Section 5] (also see [34, Section 2.5] for more details)
we gain

Lemma 5.6. The spectral gap of the aggregated chain Q satisfies

Gap(Q) ≥ 1

4M2
e−β(K+1) N

M .

Remark Note the notation: The notation for the amount of spins N
and the amount of temperatures M considered are interchanged be-
tween this paper and the reference given above. On the other hand,
the notation now agrees with the standard notation in statistical me-
chanics.

Proof. We first verify that the probability for an accepted swap-
ping move is bounded below by a constant. Using the notation given
in [29] let us define

ρi,i+1 := min

(
1,
πi(xi+1)πi+1(xi)

πi(xi)πi+1(xi+1)

)
.

Then

ρi,i+1 = min

(
1,
eβi+1H(xi)eβiH(xi+1)

eβiH(xi)eβi+1H(xi+1)

)
= min

(
1, eβi+1H(xi)+βiH(xi+1)−βiH(xi)−βi+1H(xi+1)

)
= min

(
1, eβ

i+1
M
H(xi)+β

i
M
H(xi+1)−β i

M
H(xi)−β i+1

M
H(xi+1)

)
= min

(
1, eβ

H(xi)

M
−βH(xi+1)

M

)
≥ e−β

H(xi+1)

M

≥ e−β
N(K+1)

M(63)

as H ≤ (K + 1)N implies (63) to be true.
Due to the definition of Ω+ and Ω− it is clear, that πβ(Ω+) =

1
2
(1 + 1/Zβ) for any β ≥ 0. Recalling equations (46) and (48) and
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Theorem .9 given in the appendix it is possible to find for any β > 0
constants 0 < c1 < c2 such that Zβ′ ∈ [ec1N , ec2N ] for all β′ ∈ [0, β].
Using

(64) 1 ≤
(
1 + e−cN

)M ≤ ee
−cNM −→ 1

as N →∞, we gain a constant a > 1 such that for all sufficiently large
N and any σ ∈ {−,+}M

π(Ω× Ωσ1 × · · · × ΩσM ) ∈ 2−M [a−1, a1]

holds. Recalling the definition of Ωk in (57) we conclude

(65) π(Ωk) =
∑
σ∈Ω̃k

π(Ω× Ωσ1 × · · · × ΩσM ) ∈
(
M

k

)(
1

2

)M
[a−1, a].

As we want to use Lemma 3.6 later on, in order to compare Q to an
easier Markov chain, it is of interest to study the quantity

(66) π(Ωi)Q(i, i+ 1).

Consider an x ∈ Ωi and y ∈ Ωj. In case |j − i| > 1 it is obviously
impossible for the pure swapping chain Q to accept a step from x to y,
thus:

Q(x, y) = 0, if x ∈ Ωi, y ∈ Ωj with |i− j| > 1.

Hence,

Q(i, j) = 0, if |i− j| > 1.
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The only way that i can change is by interchanging the first two coor-
dinates x0 and x1 of x. For 0 ≤ i < N , we obtain

π(Ωi)Q(i, i+ 1) =
∑
x∈Ωi

∑
y∈Ωi+1

π(x)Q(x, y)

=
∑
x0∈Ω+

∑
x1∈Ω−

∑
x′∈Ωi

x′0=x0,x′1=x1

π(x′)Q(x′, (0, 1)x′)

=
∑
x0∈Ω+

∑
x1∈Ω−

∑
x′∈Ωi

x′0=x0,x′1=x1

π(x′)
1

2M
ρ0,1(x0, x1)

=
1

2M

∑
x0∈Ω+

∑
x1∈Ω−

π0(x0)π1(x1)ρ0,1(x0, x1)

×
∑
x′∈Ωi

x′0=x0,x′1=x1

M∏
j=2

πj(x
′
j)

∈ 1

2M

∑
x0∈Ω+

∑
x1∈Ω−

π0(x0)π1(x1)

×
∑
x′∈Ωi

x′0=x0,x′1=x1

M∏
j=2

πj(x
′
j)
[
e−β

N(K+1)
M , 1

]

⊆ 1

2M

(
M − 1

i

)
1

2M+1

[
e−β

N(K+1)
M a−1, a

]
with the natural definitions of the sets in the last tow lines.

We will now give another, much simpler, Markov chain whose spec-
tral gap has been intensively studied. Consider the symmetric random
walk S on {0, ...,M}, i.e.

S(0, 1) = S(0, 0) = S(M,M − 1) = S(M,M)

= S(i, i− 1) = S(i, i+ 1) =
1

2
for 0 < i < N.

Let r(i) =
(
M
i

)
2−M be the binomial distribution on {0, ...,M}, and let

R denote the Metropolis chain with proposal chain S and reversible
distribution r(i). As has been shown by Diaconis and Saloff-Coste [10,
pp 698 and 719] R satisfies

(67)
1

M
≤ Gap(R) ≤ 2

M
.

In order to use Lemma 3.6 first note that

(68) π(Ωi) ∈
1

2M

(
M

i

)
[a−1, a] = r(i)[a−1, a]
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implies r(i) ≥ 1
a
π(Ωi) for all 0 ≤ i ≤ M . Second we conclude for

0 ≤ i ≤ N ,

r(i)R(i, i+ 1) = r(i)S(i, i+ 1) min

{
1,
r(i+ 1)

r(i)

}
= r(i)

1

2
min

{
1,

(
M
i+1

)(
M
i

) }

=

{
r(i)1

2
· M−i
i+1

if i ≥ M−1
2

r(i)1
2

otherwise

=

{
1

2M+1

(
M
i

)
· M−i
i+1

if i ≥ M−1
2

1
2M+1

(
M
i

)
otherwise

Fixing A := 4aMeβ
N(K+1)

M it is now straightforward to check that

(69) r(i)R(i, i+ 1) ≤ Aπ(Ωi)Q(i, i+ 1)

holds, for any i. It is now possible to use Lemma 3.6 which yields the
desired inequality

(70)
1

4M2
e−β

N(K+1)
M =

a

A
· 1

M
≤ a

A
Gap(R) ≤ Gap(Q).

�

3.3. The Case K > Kc. Ellis et al. [14] show a continuous phase
transition in the state space for these values of K. All but exponential
little mass is located around

(71) amax(0) :=

(
e−β

1 + 2e−β
,

1

1 + 2e−β
,

e−β

1 + 2e−β

)
∈ Υ∞

for β < βc(K) and for β > βc all but exponential little mass is located
around the points

amax(−1) :=

(
e2βKzα−β

C(β,K)
,

1

C(β,K)
,
e−2βKzα−β

C(β,K)

)
∈ Υ∞(72)

amax(1) :=

(
e−2βKzα−β

C(β,K)
,

1

C(β,K)
,
e2βKzα−β

C(β,K)

)
∈ Υ∞(73)

with C(β,K) = 1 + e−2βKzα−β + e2βKzα−β being the normalization
constant and zα(β,K) ≥ 0 as constructed but not computed in [14],
also see the appendix for an insight in the technical problems one faces.
The standard Metropolis chain would get stuck in either of the regions
around amax(1) or amax(−1) as it is exponentially unlikely for the chain
to leave either of these local states. The swapping chain circumvents
this bottleneck by swapping a component located close to amax(−1)
up to β < βc at which temperature the Metropolis chain is rapidly
mixing on the whole state space. It will find a state close to amax(0)
and, if suggested to increase β, it will choose either of the two paths
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leading to amax(−1) or amax(1) with equal probability. The bottleneck
encountered in the intermediate regime Klow < K < Kc, which is
described and used in Section 3.4, will not pose a problem, as

(74) β 7→

{
amax(0) if β ≤ βc
amax(1) if β > βc

is continuous.
To formalize this, a technique introduced by Bhatnagar and Randall

[2, Sec. 4.1] will prove to be a powerful tool for showing rapid mixing
of QP+Q. We need to recall the notation of As,r introduced in (43).
Assume β is big enough, such that the function fβ introduced in (48)
on the field A = (As,r)s,r has two local maxima, such that it has two
local modes. Inspired by (47) we define a probability measure Pfβ on
B := {(a−1, a1) ∈ [0, 1]2|a−1 + a1 ≤ 1 and a−1 ≤ a1} by

(75)
dPfβ ,N

dλ
(a−1, a1) :=

1

Zfβ(N)
eNfβ(a−1,1−a−1−a1,a1)

where λ denotes the Lebesgue-Measure restricted to the subset B.
Zfβ(N) denotes the normalization constant. Let ag(βic) denote the
unique local maximum point of fβic on B at the next to critical tem-
perature

ic := max{i|βi ≤ βc(K)}.

Further define the set

V := {amax(1)|β ≥ βc}

which defines a continuous path from amax(0)(βc) to (0, 0, 1) in B. Take
V to be an ordered set with the previously implied ordering. The path V
separates B into two disjoint parts Bg∪Bl = B with V ⊆ Bg. Obviously

Pβc,N(Bg) = 1− Pβc,N(Bl)→ c ∈ (0, 1)

for some K-specific constant c as N → ∞. Remembering the models
phase behavior we will define Bg and Bl by (1

2
, 1

2
) ∈ Bg while (0, 0) ∈ Bl

as this notation reflects where the global and local maxima appear.
With the definition of

Ag(βic) :=
(
Bg ∩Υ

)
and Al(βic) :=

(
Bl ∩Υ

)
we know by continuity of πβ in β that πβic (Ag(βic)) −→ c and conse-
quentially πβic (Al(βic)) −→ 1 − c. For any i ∈ {ic + 1, ...,M} there
exist two local maxima, the global one denoted by ag(βi) and the local
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(non-global) one denoted by al(βi). We define Ag(βi) and Al(βi) by

there is no nondecreasing path from a to al =⇒ a ∈ Ag(βi)

(76)

there is no nondecreasing path from a to ag =⇒ a ∈ Al(βi)
(77)

there exist nondecreasing paths
from a to ag and from a to al

=⇒


a ∈ Ag(βi)
if a ∈ Ag(βi−1)

a ∈ Al(βi)
if a ∈ Al(βi−1)

(78)

Note that for each i the sets Ag(βi) and Al(βi) form a partition of B,
since otherwise fβ would need to have more than two maxima on B, in
contradiction to Theorem A.2. It will prove convenient to have

Lemma 5.7. (πi(Ag(βi))i∈{ic,...,M} is monotonically increasing, while
(πi(Al(βi))i∈{ic,...,M} is monotonically decreasing.

Proof. This proof consists of multiple parts. We will first establish
that for β ≥ βc

fβ(amax(0)) is monotonically decreasing, while(79)
fβ(amax(1)) is monotonically increasing.(80)

This is a straightforward calculation. Inserting amax(0)(β) into fβ yields

dfβ(amax(0))

dβ
= − 2e−β

1 + 2e−β
< 0

thus (79). Defining the canonical free energy of a thermodynamical
system by

(81) φ(β) := lim
N→∞

1

N
log
(
Zβ(N)

)
it follows from (47) that in the interesting phase of β ≥ βc

(82) φ(β) = fβ(amax(1)),
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as

φ(β) = lim
N→∞

1

N
log
(
Zβ(N)

)
= lim

N→∞

1

N
log
( ∑

a∈ΥN

eNfβ(a)
)

≤ lim
N→∞

1

N
log
(
N2eNfβ(amax(1))

)
= lim

N→∞

( 2

N
log(N) + fβ(amax(1))

)
= fβ(amax(1))

φ(β) = lim
N→∞

1

N
log
(
Zβ(N)

)
= lim

N→∞

1

N
log
( ∑

a∈ΥN

eNfβ(a)
)

≥ lim
N→∞

1

N
log
(
eNfβ(amax(1))

)
= fβ(amax(1)).

Differentiating for a fixed state x = (x−1, x0, x+1) in the domain of fβ
gives us

(83)
dfβ
dβ

(x) = x0 − 1 +K(x1 − x−1)2

which implies
dfβ
dβ

(x)
x→(0,0,1)−−−−−→ K − 1 > 0.

This guarantees fβ(amax(1)) to be strictly increasing for sufficiently
large β. Together with the general fact (see for instance [17] or, for a
non-rigorous overview, [15]) that φ(β) is concave for β > βc we gain
(80).

In the second step we will confirm, that there is no point-movement
from Ag to Al by going from βi to βi+1 for all ic ≤ i ≤ M − 1. For
this, first note, that any point x, which has a nondecreasing path to
any point y ∈ V also has a nondecreasing path to ag. Assume, this to
be wrong:

First note, that f0 is monotonically decreasing on V . Assume it
would not be, then there are two points, z1, z2 ∈ V with f0(z1) = f0(z2).
As amax(1) is continuously moving from amax(0)(βc) to (0, 0, 1) there
needs to be a β′ > βc such that fβ′(z1) > fβ′(z2). Of course, there also
needs to be a β′′ > β′ such that fβ′′(z1) < fβ′′(z2). This contradicts
(83).

Coming back to the original contradiction argument: By assump-
tion, there exists a β > βc such that fβ, if restricted to V , has at least



3. PROOFS 53

two modes – where, without loss of generality, the highest one is in the
one containing amax(0)(βc). Take z ∈ V to be a local minimum. The
points z′ just further away from amax(0)(βc) than z must thus satisfy

dfβ
dβ

(z) <
dfβ
dβ

(z′),

as f0 is monotonically decreasing on V and the derivative of fβ with
respect to β does not depend on β. This warrants for fβ(z) < fβ′(z

′)
for all β′ > β (again for the same reason), which in turn implies either
amax(1) stays left of z for all β or that amax(1) exhibits a discontinuous
behavior close to z. Both contradict a combination of Theorem .9 and
the continuity of amax(1).

This directly implies, that every point x ∈ Ag(βic) stays in Ag for
all i, as any (nondecreasing) path leading from x to al(βi) will need to
cross the set V . A point x ∈ Ag(βi) which does not lie in Ag(βic) must
have been forced to switch from Al to Ag at some index ic < j ≤ i.
This means x is being separated from al by some path. Due to an
argument close to the one given before, this path will block the way
from x to al for any i ≥ j, such that again, x ∈ Ag(βi+1).

Now, for any β > βc it follows from a similar calculations as for
equation (82), that

lim
N→∞

1

N
log
(
πβi(Ag)

)
= 0(84)

lim
N→∞

1

N
log
(
πβi(Al)

)
= fβi(amax(0))− fβi(amax(1))(85)

which together with the first and second argument yields the claim. �

In preparation to use the decomposition theorem later on we need
the following partitioning of the state space.

Definition 5.8 (Definition 4.1 of [2]). For x ∈ Ω+
M define the

trace

Tr(x) = t ∈ {0, 1}M

with ti = 0 ⇐⇒ xi ∈ Al and ti = 1 ⇐⇒ xi ∈ Ag to indicate which
part of the state space which component is in.

The 2M−ic+1 possible values of Tr(x) characterize the partitioning

(86) Ω+
M =

⋃
t∈{0,1}M

Ω+t
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we will use. First using Lemma 3.7 for (87), Lemma 3.8 for (88) and
afterwards Theorem 3.9 we gain

Gap(QP+Q) ≥ 1

3
Gap(QP+QQP+QQP+Q)(87)

≥ 1

3
Gap((QP+Q)

1
2QP+Q(QP+Q)

1
2 )(88)

≥ 1

3
Gap(Q̂) ·min

t

{
Gap

(
(QP+Q)|Tr−1(t)

)}
(89)

where Q̂ is an abbreviation for the aggregated chain QP+Q. We can
argue as in (60) to get

Gap(QP+Q) ≥ 1

3
Gap(Q̂) ·min

t

{
Gap

(
(QP+Q)|Tr−1(t)

)}
≥ 1

24
Gap(Q̂) ·min

t

{
Gap(Q|Tr−1(t)P+|Tr−1(t)Q|Tr−1(t))

}
≥ 1

24
Gap(Q̂) ·min

t

{
Gap(P+|Tr−1(t))

}
(90)

where the last inequality uses Lemma 3.8 again. This looks promising,
as P+|Tr−1(t) is unimodal in each component as constructed, and thus
the chain should be fast on this subset. Q̂ will be comparable to a very
simple random walk, which is known to be rapidly mixing, thus leading
to a polynomial lower bound for Gap(QP+Q).

3.3.1. Speed of convergence of the aggregated chain Q̂. We will fol-
low in the wake of Bhatnagar and Randall [2, Theorem 4.4] and define
the probability measure

(91) π̂(t) :=
M∏
i=1

πi

(
Tr−1

i (t)
)

on the state space

(92) Ω̂ =
ic−1∏
i=1

{1} ×
M∏
i=ic

{0, 1}.

A simple reversible random walk R̂W1 with respect to π̂ to compare
Q̂ on Ω̂ to would be the following. Start at some t ∈ Ω̂ and either
switch the component tic from 0 to 1 or vice versa with the Metropolis
probabilities induced by π̂, or choose an i ∈ {ic, ...,M − 1} at random
and interchange components i and i + 1 according to a Metropolis
update with regard to π̂ as well, such that t → (i, i + 1)t. Again, for
technical reasons R̂W1 does not act on t at all with probability 1

2
. In

order to analyze R̂W1 we will compare it with an even simpler random
walk R̂W2 on Ω̂ which picks an i ∈ {ic, ...,M} at random and updates ti
by choosing t′i exactly according to the stationary distribution π̂i. It is
apparent, that after this move, the ith component of t is in equilibrium.
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Using the coupon collector’s theorem (see for instance (2.7), (5.10) and
(12.12) in [25]), we get easily

Lemma 5.9. Let R̂ denote the transition kernel of R̂W2 . Then

Gap(R̂) ≥ 1

4M logM
.

This leads directly to

Theorem 5.10. The aggregated chain Q̂ of the Swapping Markov
chain is rapidly mixing on Ω̂ for K < Klow.

Remark For why there is no explicit bound given, we would like to
call the remark given for Theorem 5.4 to mind.

Proof. The main idea is, to give a canonical path in R̂W1 in which
every step compares well to the rapidly mixing chain R̂. Consider a
single transition (t, t′) in R̂, thus t′ = (t1, ..., ti−1, 1− ti, ti+1, ..., tM) for
one i ≥ ic. Now consider the concatenation p1 ◦ p2 ◦ p3 of the three
paths

• p1 consists of the i− ic swap moves from t to

t(1) = (t1, ..., tic−1, ti, tic , ..., ti−1, ti+1, ..., tM)

• p2 is the one step from t(1) to

t(2) = (t1, ..., tic−1, 1− ti, tic , ..., tM)

• p3 consists of the i−ic steps needed to swap the ith component
back up, thus p2 is the path from t(2) to

t(3) = (t1, ..., tic , ..., ti−1, 1− ti, ..., tM).

In order to use Lemma 3.5, we will establish, that

(93) π̂(z)R̂W1(z, z′) ≥ 1

2
π̂(t)R̂(t, t′)

holds for any transition (z, z′) in the canonical path p1 ◦ p2 ◦ p3.
Transition along p1: Let z = (t0, ..., tic , ..., tj−1, ti, tj, ..., tM) for a

j ∈ {ic + 1, ...,M} and z′ = (j − 1, j)z. It is easy to verify

π̂(z)R̂W1(z, z′) =
π̂(z)

2(M − ic + 1)
min

(
1,
π̂(z′)

π̂(z)

)
=

1

2(M − ic + 1)
min(π̂(z), π̂(z′))(94)

and for t, t′ = (t1, ..., ti−1, 1− ti, ti+1, ..., tM) for one i ≥ ic,

π̂(t)R̂(t, t′) =
π̂(t)

(M − ic + 1)
π̂i(t

′
i)

≤ 1

(M − ic + 1)
π̂(t∗)(95)
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with t∗ = (t1, ..., ti−1, 0, ti+1, ..., tM). Thus it suffices to show π̂(t∗) ≤
π̂(z) and π̂(t∗) ≤ π̂(z′). We will show this for z only, as the argument
works exactly the same for both z and z′. It is useful to partition t∗

into blocks of bits tl that equal 1, separated by one or more zeros. Let
ic ≤ k < i be the largest value that satisfies tk = 0. Using Lemma 5.7,
it is straightforward to verify

i∏
l=k+1

π̂l(zl) ≥
i∏

l=k+1

π̂l(t
∗
l ).

Similarly , consider the next block of 1s in t∗, until the first index k′
such that t′k = 0,

k∏
l=k′+1

π̂l(zl) ≥
k∏

l=k′+1

π̂l(t
∗
l ).

Continuing in this way we find
i∏
l=j

π̂l(zl) ≥
i∏
l=j

π̂l(t
∗
l )

and thus
π̂(z) ≥ π̂(t∗).

In an analogous fashion one can also show

π̂(z′) ≥ π̂(t∗)

such that (93) holds on all transitions in p1.

Transition along p2: The same argument as before yields

min(π̂(z), π̂(z′)) ≥ π̂(t∗)

for (z, z′) ∈ p2.

Transition along p3: This is exactly as the case of p1.

We find, that for any edge (z, z′) in the canonical path equation (93) is
satisfied, so what needs to be done in order to show rapid convergence of
R̂W1 to equilibrium is to ensure that not too many paths use the same
transition (z, z′). With the notation of Lemma 3.5, we can obviously
bound the number of paths in Ẽ(z, z′) by M and as any path γt,t′ has
at most 2M + 1 many transitions, we can guarantee
(96)

A = max
(z,z′)

 1

π̂(z)R̂W1(z, z′)

∑
Ẽ(z,z′)

|γt,t′ |π̂(t)R̂(t, t′)

 ≤ 4M2 + 2M

which leads to Gap(R̂W1) ≥
(
2(2M3 +M2) log(M)

)−1.
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It remains to compare R̂W1 with Q̂. We will do so by means of case
differentiation. First consider the case of z′ = (i, i + 1)z with zi = 1,
zi+1 = 0 in which we will show

(97) Q̂(z, z′) ≥ 1

8M
R̂W1(z, z′).

So taking z′ = (i, i+ 1)z with zi = 1, zi+1 = 0 leads to

(98) R̂W1(z, z′) =
1

2(M − ic + 1)
min

(
1,
π̂(z′)

π̂(z)

)
=

1

2(M − ic + 1)

as π̂i(1) ≤ π̂i+1(1) and π̂i(0) ≥ π̂i+1(0). The equivalent for Q̂ yields
with B :=

{
x ∈ Ω+z

∣∣xi ∈ Bε(ag) ∩ Ag, xi+1 ∈ Bε(al) ∩ Al
}

1

π̂(z)

∑
x∈Ω+z

∑
y∈Ω+z′

π(x)
(
QP+Q

)
(x, y)

≥ 1
4π̂(z)

∑
x∈Ω+z

∑
y∈Ω+z′

π(x)Q(x, y)

= 1
4π̂(z)

∑
x∈Ω+z

π(x)Q(x, (i, i+ 1)x)

=
1

4π̂(z)

∑
x∈B

π(x)Q(x, (i, i+ 1)x) +
∑

x∈Ω+z\B

π(x)Q(x, (i, i+ 1)x)


≥ 1

4π̂(z)

∑
x∈B

π(x)Q(x, (i, i+ 1)x)

=
1

4π̂(z)

1

2(M + 1)
π(B)

(99)

≥ 1

8(M + 1)
− 1

8(M + 1)
e−cN .

(100)

To get (99) is analogous to (98) for the not aggregated states. For
(100), we use Theorem .9, which implies that

πi(Bε(ag) ∩ Ag)
πi(Ag)

πi+1(Bε(al) ∩ Al)
πi+1(Al)

≥ 1− e−cN ,

for some c > 0. Second consider z′ = (i, i + 1)z with zi = 0, zi+1 = 1
which leads to
(101)

R̂W1(z, z′) =
1

2(M − ic + 1)
min

(
1,
π̂(z′)

π̂(z)

)
=

1

2(M − ic + 1)

π̂(z′)

π̂(z)
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and with B′ :=
{
x ∈ Ω+z

∣∣xi ∈ Bε(al) ∩ Al, xi+1 ∈ Bε(ag) ∩ Ag
}

1

π̂(z)

∑
x∈Ω+z

∑
y∈Ω+z′

π(x)
(
QP+Q

)
(x, y)

≥ 1

4π̂(z)

∑
x∈Ω+z

∑
y∈Ω+z′

π(x)Q(x, y)

=
1

4π̂(z)

∑
x∈Ω+z

π(x)Q(x, (i, i+ 1)x)

≥ 1

4π̂(z)

∑
x∈B′

π(x)Q(x, (i, i+ 1)x)

=
1

4π̂(z)

∑
x∈B′

1

2(M + 1)
π
(
(i, i+ 1)x

)
(102)

=
1

4π̂(z)

1

2(M + 1)
π̂(z′)

≥ 1

8(M + 1)

π̂(z′)

π̂(z)
− 1

8(M + 1)

π̂(z′)

π̂(z)
e−cN .(103)

The arguments for (102) and (103) are the same as above. The two
remaining cases of z′ = (z0, ..., 1− zic , ..., zM) with zic ∈ {0, 1} is dealt
with automatically, as by showing rapid mixing of Pic on Ag = A. The
claim follows by using Lemma 3.6. �

3.3.2. Rapid Mixing in Ag and Al. It remains to show rapid con-
vergence to equilibrium of P+|Tr−1(t) as constructed in (90). In favor of
a shorter notation and by using Theorem 3.10 we can stick to the case
of

T := Pi|Tr−1
i (t)

for fixed t and i. Using Lemma 3.7 with m = 3 gives us

Gap(T ) ≥ 1

3
Gap(T 3)

which will prove to be simpler to handle than T itself. We will only
deal with the case of Ag as the case of Al works technically the same.
Consider the disjoint union

(104) Ag =
⋃

As,r⊆Ag

As,r

and decompose the state space accordingly. This leads to

(105) Gap(T 3) = Gap(T
1
2T 2T

1
2 ) ≥ Gap(T ) ·min

s,r
Gap(T 2

s,r)

which may now make apparent, why choosing to deal with T 3 is an
advantage over dealing with T . Here T is the aggregated chain defined
asQ in Theorem 3.9. Restricting T 2 toAs,r will still give us a nontrivial
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chain, whilst the restriction of T to As,r would deterministically stay
in the originally occupied state.

Theorem 5.11. Gap(T ) ≥ 1
4
N−5

Proof. This is already well prepared. As constructed earlier, fβ
fulfills an unimodality condition on Ag. Thus we can easily choose one
path γxy for any given set x and y that is unimodal. Each such path has
at most length N2, such that the Poincaré inequality given in Lemma
3.4 simplifies to

A = max
〈As,r,As′,r′ 〉

1

πi(As,r)T (As,r,As′,r′)

∑
γz1z23〈As,r,As′,r′ 〉

|γz1z2|πi(z1)πi(z2)

≤ N2 max
〈As,r,As′,r′ 〉

1

πi(As,r)T (As,r,As′,r′)

∑
γz1z23〈As,r,As′,r′ 〉

πi(z1)πi(z2)

= N2 max
〈As,r,As′,r′ 〉

∑
γz1z23〈As,r,As′,r′ 〉

πi(z1)πi(z2)

πi(As,r)T (As,r,As′,r′)

(106)

It is now of interest, how T behaves. Given As,r 6= As′,r′ with T (As,r,
As′,r′) > 0, we first consider the case πi(σ) ≤ πi(σ

′) for σ ∈ As,r and
σ′ ∈ As′,r′ . Note that πi(σ) is independent of the choice of σ ∈ As,r.

T (As,r,As′,r′) =
1

πi(As,r)
∑
σ∈As,r

∑
σ′∈As′,r′

πi(σ)T (σ, σ′)

=
1

πi(As,r)
∑
σ∈As,r

∑
σ′∈As′,r′

πi(σ)
1

4N

≥ 1

4N

1

πi(As,r)
∑
σ∈As,r

πi(σ)

=
1

4N



60 5. THE BLUME-EMERY-GRIFITHS MODEL

The second case πi(σ) > πi(σ
′) uses T ’s reversibility with

T (As,r,As′,r′) =
1

πi(As,r)
∑
σ∈As,r

∑
σ′∈As′,r′

πi(σ)T (σ, σ′)

=
1

πi(As,r)
∑
σ∈As,r

∑
σ′∈As′,r′

πi(σ
′)T (σ′, σ)

=
1

4N

1

πi(As,r)
∑

σ′∈As′,r′

∑
σ∈As,r

πi(σ
′)

≥ 1

4N

πi(As′,r′)
πi(As,r)

.

To further analyze (106) we will take the worst case scenario πi(As′,r′ )
πi(As,r) <

1 and for inequality (107) remember that all paths are unimodal:

A ≤ N2 max
〈As,r,As′,r′ 〉

∑
γz1z23〈As,r,As′,r′ 〉

πi(z1)πi(z2)

πi(As,r)T (As,r,As′,r′)

≤ 4N3 max
〈As,r,As′,r′ 〉

∑
γz1z23〈As,r,As′,r′ 〉

πi(z1)πi(z2)

πi(As,r)
πi(As,r)
πi(As′,r′)

= 4N3 max
〈As,r,As′,r′ 〉

∑
γz1z23〈As,r,As′,r′ 〉

πi(z1)

πi(As,r)
πi(z2)

πi(As′,r′)
πi(As,r)

≤ 4N5.(107)

�

Theorem 5.12. Gap(T 2
s,r) ≥ 1

96N6 e
−β−4Kβ.

Proof. We need to consider two cases. The first is AN,N in which
case |AN,N | = 1, such that T 2

N,N is the constant chain, and therefore
rapidly mixing. The other case is As,r with s ≤ min{r,N − 1}. Let
σ, σ′ ∈ As,r with σ 6= σ′. We will compare T 2

s,r with the Markov
chain (Xi)i given in Section 1.2. Assume (j, k)σ = σ′ for some j, k ∈
{1, ..., N}. Otherwise T 2

s,r(σ, σ
′) = P

(
Xi+1 = σ′

∣∣Xi = σ
)

= 0. We
know

P
(
Xi+1 = σ′

∣∣Xi = σ
)

=
1

N2

and
T 2
s,r(σ, σ

′) ≥ T (σ, τ)T (τ, σ′)

for a fixed τ . It is obvious that either T (σ, τ) = 1
4N

or T (τ, σ′) = 1
4N

.
Due to the symmetry assume

τ := (σ1, ..., σj−1, σk, σj+1, ..., σk, ...σN)
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and conclude

T (σ, τ) =
1

4N
min

{
1,
eβ(N−R(τ))−βK

N
S2(τ)

eβ(N−r)−βK
N
s2

}
=

1

4N
min

{
1, eβ(r−R(τ))+βK

N

(
s2−S2(τ)

)}
=

1

4N
min

{
1, eβ(r−R(τ))+βK

N

(
s−S(τ)

)(
s+S(τ)

)}
≥ 1

4N
e−β−4Kβ

such that taking τ = (σ1, ..., σj−1, σk, σj+1, ...σN), where, without loss
of generality, σk > σj yields

T 2
s,r(σ, σ

′) ≥ 1

16N2
e−β−4Kβ.

And we can easily deduce from Lemma 5.1 that Gap(X) ≥ 1
6N4 (see

[25] for instance). Then Lemma 3.6 proves the claim. �

3.4. The Case Klow < K < Kc. In this section we will prove
Theorem 5.2. This is done in three parts. We first give the general
idea, why slow mixing should be expected. We then support this idea
with the necessary calculations in the remaining parts.

3.4.1. The idea. We will follow Gore and Jerrum [21] in order to
find a bad cut in the state space of BEG for β > βc(K). Using their
technique we can show, that the Metropolis chain has to overcome
an exponential barrier to leave any local maximum. We will show,
that an ε-stripe around the 0-axis contains such a maximum, with
ε independent of βi. Intuitively speaking this leads to the following
behavior of the Tempering chain. At βi close to 0 the chain will find the
unique global maximum on the 0-axis. As of now the tempering chain
is trapped in this ε-stripe, as Ellis et al. [14] show a discontinuous
behavior of the global maximum as βi passes through βc. Thus the
chain will never get the chance to leave this ε stripe within polynomial
time at any temperature, even though, at low temperature, this stripe
has exponential little mass.

3.4.2. One bad cut for BEG’s Metropolis chain. Following the idea
stated earlier, we show the existence of a bad cut within close proximity
to the 0-axis in the two-phase region. It is well known, due to Ellis et
al. [14], that

(108) amax(0) :=

(
e−β

1 + 2e−β
,

1

1 + 2e−β
,

e−β

1 + 2e−β

)
∈ Υ∞

is the unique global maximum for β < βc(K) and a local, non-global,
maximum for β > βc(K). Here

(109) Υ∞ := {(a−1, a0, a1) ∈ R3
+ :
∑
i

ai = 1}
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is the set of all probability measures on three points. They further
show, that the phase transition for fixed K at βc(K) is discontinuous,
thereby granting us, uniformly in β, the existence of an ε > 0 such that

(110) N :=
{
σ
∣∣|SN(σ)| ≤ N · ε

}
contains only this local maximum, and fβ restricted to Bε(amax(0)) is
unimodal for all β > 0. It is even possible to show fβ restricted to N
to be unimodal for all β, see Lemma .8 for details.

Recalling Section 1.1 we have

π(σ has type N · a) =
1

ZN
e
−N
(
β
(
K(a−1−a1)2−a1−a−1

)
−
∑1
i=−1 ai log ai

)
× e∆(a)

=
1

ZN
e−Nfβ(a)+∆(a).(111)

which implies, that every local maximum of fβ yields a locally expo-
nential structure in π. This leads to exponentially low conductance
ΦN for all β > βc(K), thereby implying slow mixing of the Metropolis
algorithm in this regime.

3.4.3. The bad cut for BEG’s Simulated Tempering chain. Having
low conductance ΦN for any β > βc using the Metropolis algorithm it
is easy to generalize this to the Simulated Tempering chain. To this
end define

(112) Nedge :=
{
σ
∣∣Nε− 1 ≤ |SN(σ)| ≤ N · ε

}
and get

Theorem 5.13. Let N and Nedge be defined as in (110) and (112).
There exists an ε > 0 such that for sufficiently large N and any β ≥ 0

(113)
πβ(Nedge)

πβ(N )
≤ e−cN

holds, with c > 0 only depending on K.

Proof. Recall equation (111)

π(σ has type N · a) =
1

ZN
e−Nfβ(a)+∆(a)

and verify that there are only polynomially (in N) many a ∈ Υ which
satisfy N · a ∈ Nedge. Then, considering

fβ(a) = β
(
K(a−1 − a1)2 − a1 − a−1

)
−

1∑
i=−1

ai log ai

and the results presented by Ellis et al. [14] it is clear, that f has a
local maximum at amax(0) (see equation (108)). Due to f being smooth
in amax it is clearly possible to find an ε > 0 such that f is unimodal on
Bε(amax). Due to the discontinuous behavior of the system at βc(K)
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for K ∈ (Klow, Kc) and as fβ(a) is smooth in all variables, including β,
this ε can be chosen uniform in β.

Combining this with the exponential structure of (111) leads to the
desired result

πβ(Nedge)

πβ(N )
≤ e−cN

with c depending only on K and sufficiently large N . �

This is the main ingredient for this section’s main

Theorem 5.14. Define N and Nedge as in Theorem 5.13. The set

S := {(x, i)|x ∈ N , 0 ≤ βi ≤ β}
satisfies ΦS ≤ e−cN with c > 0.

Remark For the definition of the conductance ΦS of a set S, see The-
orem 2.6.

Proof. Using Theorem 5.13 we get

ΦS =

∑
x∈S,y /∈S π(x)QPQ(x, y)

π(S)

=

∑
βi

∑
x∈Nedge

πi(x)
∑

x′∈N c QPQ(x, x′)∑
βi

∑
x∈N πi(x)

≤
∑

βi

∑
x∈Nedge

πi(x)∑
βi

∑
x∈N πi(x)

=

∑
βi
πi(Nedge)∑

βi
πi(Nedge)

πi(N )
πi(Nedge)

≤
∑

βi
πi(Nedge)

ecN
∑

βi
πi(Nedge)

= e−cN

�

This concludes the proof of Theorem 5.2 by using Theorem 2.6.





CHAPTER 6

The Random-Energy-Model and the
Generalized-Random-Energy-Model

The aim of the present chapter is twofold. On the one hand we
want to analyze the Swapping (and Tempering) algorithm for a simple
model of a spin glass. This analysis (together with [26]) is the first of
its kind. On the other hand, we want to show that even for models with
a third order phase transition like the Random Energy Model conver-
gence of the Swapping chain can be slow. The speed of convergence of
the Swapping algorithm in the first place seems to be correlated with
the question, how well the underlying Markov chain is adapted to the
probability distribution we want to simulate.

This chapter is organized in 4 sections. First we will define a nat-
ural Metropolis algorithm for the REM and the GREM in Section 1.
In Section 2 we formulate the results – Both, the Swapping and the
Tempering chain are slowly mixing for the Random Energy Model and
the Generalized Random Energy Model – which are proofed in Section
3 and Section 4.

1. Defining the Metropolis chain

We will be looking at a natural and in the literature usually looked
at (see [18]) realization of the Metropolis algorithm. Two states σ 6= σ′

are said to be neighbors, if they differ in exactly one component, thus
their Hamming distance satisfies

‖σ − σ′‖1 = 1.

To make the transition matrix of the proposal chain be a positive oper-
ator the chain will have a staying probability of at least 1

2
and otherwise

it will suggest any of the neighbors with equal probability:

(114) K(σ, σ′) =


1

2N
if ‖σ − σ′‖1 = 1

1−
∑

τ 6=σK(σ, τ) if σ = σ′

0 otherwise

Verify that K is positive, irreducible and aperiodic on Ω = {−1, 1}N .
Let T denote the transition kernel of the corresponding Metropolis
chain with regard to the desired Boltzmann distribution of either the
REM or the GREM. Again, due to the construction, T is a positive,

65



66 6. THE REM AND THE GREM

irreducible and aperiodic transition kernel, which is reversible with
respect to the desired distribution.

2. Results

In the rest of the chapter we are going to prove the following results,
which state that Simulated Tempering and therefore also Swapping are
slowly mixing for almost all realizations of the REM and the GREM.

Theorem 6.1. For almost all realizations of the (Xσ), σ ∈ {0, 1}N ,
N ∈ N the Simulated Tempering algorithm as well as the Swapping
algorithm are slowly mixing in the REM.

As to the GREM we will first show that the Metropolis-Hastings
algorithm mixes torpidly.

Theorem 6.2. For almost all realizations of the (Xσ), σ ∈ {0, 1}N ,
N ∈ N the Metropolis-Hastings algorithm is slowly mixing for the
GREM.

As a consequence we also obtain torpid mixing for Swapping and
Simulated Tempering in the GREM.

Theorem 6.3. For almost all realizations of the (Xσ), σ ∈ {0, 1}N ,
N ∈ N the Simulated Tempering algorithm as well as the Swapping
algorithm are slowly mixing in the GREM.

Concerning the proofs of Theorems 6.1 and 6.3 notice that the REM
as well as the GREM satisfy the condition in Theorem 3.1. Hence we
just need to show slow mixing for the Simulated Tempering algorithm.

3. Proofs for the REM

In this section we will prove Theorem 6.1. Recall that we want to
simulate from the probability measure

(115) π(σ) =
e−β

√
NXσ

Z(β)

on Ω = ΩN = {−1, 1}N .
Now for the Metropolis algorithm Fontes, Isopi, Kohayakawa, and

Picco show [18] that for any fixed inverse temperature β > 0 it is slowly
mixing. More precisely, they prove for the inverse of the spectral gap

(116)
1

Gap(P )
= τ

the following inequality.
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Theorem 6.4 ([18] Prop. 3.1). There exists a constant c > 0 such
that, for all β, with P-probability 1, for all but a finite number of indices
N we have

(117)
1

N
log(τ) ≥ βcβ − cβ

√
logN

N

with βc =
√

2 log 2.

We will now try to translate this result to the case of the Simulated
Tempering algorithm. Our proof is partially inspired by the techniques
used by Bhatnagar and Randall [2] to show torpid mixing of Simulated
Tempering on the Potts model. We consider subset

S := {σ} × {0, ...,M} ⊂ Ω× {0, ...,M},

where σ := argminσ{Xσ} is the spin with highest energy. We show
that once the chain is in S, leaving it takes an exponentially long time.
This is due fact that S is very narrow in the Ω-direction. Given i big
enough the chain can only leave S by leaving state σ at the inverse
temperature βi−1 > 0, βi > 0 or given i 6= M at βi+1 > 0. This should
take exponential time, according to Theorem 6.4. In case i is smaller
the chain could actually leave to a neighbor state of σ, but given the
chain is in S it is exponentially unlikely for the chain to be in a state of
high temperature, so the chain will actually rarely get the opportunity
to leave σ in the second way.

Define 1S to be the indicator function in S. Using the notation of
Section 2.2 we have

1

τ(1S)
=

∑
x∈S

∑
y∈Sc

π(x)P (x, y)

π(S)(1− π(S))

=

k(M)∑
i=0

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))

+

M∑
i=k(M)+1

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))
(118)

=: Ψl(S) + Ψh(S)

with k(M) defined as in Corollary 6.6, below. Note, that the exact
choice of k(M) is unimportant, as long as its growth is of order N and
k(M) is small enough, such that C2 in Corollary 6.6, below, is positive.

In order to bound Ψl(S) and Ψh(S) we derive the following conse-
quences of Theorem 1.2
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Corollary 6.5. For every ε > 0 there exists with P-probability 1
a N0 ∈ N such that for all i

M
β ≤ βc

(119) Z(βi) ∈
{
e
N ln(2)+ i2β2

2Nc1
2 eδN | δ ∈ (−ε, ε)

}

and for all iβ
c1N

> βc

(120) Z(βi) ∈

{
e
N

(
β2c
2

+( iβ
M
−βc)βc+ln(2)

)
eδN | δ ∈ (−ε, ε)

}

holds for all N ≥ N0.

This leads to the following

Corollary 6.6. For every ε > 0 with P-probability 1 there exists
a N0 such that for all N ≥ N0 and all i ≤ k(M) := i0M

(121)
πi(σ)

πM(σ)
≤ e−C2βN e3εN

with i0 and C2 as in Lemma 6.11.

Proof. The computation will be done in the more general frame-
work of the GREM in the proof of Corollary 6.12 �

For an upper bound on Ψh(S) we bound the transition probabilities
of the Metropolis-Hastings chains Ti := Tβi . Let g denote the indicator
on σ. We then arrive at

Gap(Ti) ≥

1
2

∑
x,y

(g(x)− g(y))2πi(x)Ti(x, y)

1
2

∑
x,y

(g(x)− g(y))2πi(x)πi(y)

≥

∑
〈σ,σ〉

πi(σ)Ti(σ, σ
′)

πi(σ)(1− πi(σ))
(122)

≥ 1

1− πi(σ)

∑
〈σ,σ〉

Ti(σ, σ
′)

On the other hand, we can bound the probabilities that the Simulated
Tempering algorithm leaves S at temperature level i for 1 ≤ i ≤M −1
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by ∑
y∈Sc

P ((σ, i), y) =
∑
〈σ,σ〉

1∑
j1,j2=−1

Qσ(i, i+ j1)Ti+j1(σ, σ)(123)

×Qσ(i+ j1, i+ j1 + j2)

≤
∑
〈σ,σ〉

1∑
j1,j2=−1

Ti+j1(σ, σ)(124)

≤ 9
∑
〈σ,σ〉

Ti−1(σ, σ).

It is easy to see that similarly∑
y∈Sc

P ((σ, 0), y) ≤ 5
∑
〈σ,σ〉

T0(σ, σ)

and ∑
y∈Sc

P ((σ,M), y) ≤ 5
∑
〈σ,σ〉

TM−1(σ, σ).

From this, together with Theorem 6.4, we conclude, that

Ψh(S) =

M∑
i=k(M)+1

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))

≤ 9
M∑

i=k(M)+1

πi(σ)
M∑
j=0

πj(σ)

M + 1
M∑
j=0

(1− πj(σ))

∑
〈σ,σ〉

Ti−1(σ, σ)

≤ 9(M + 1)
M−1∑
i=k(M)

πi+1(σ)
M∑
j=0

πj(σ)

1− πi(σ)
M∑
j=0

(1− πj(σ))

Gap(Ti)(125)

≤ 9(M + 1)
M−1∑
i=k(M)

Gap(Ti)

≤ 9(M + 1)
M−1∑
i=k(M)

e
−Nβc iβ

c1N
+ ciβ
M

√
N log(N)

≤ 9(M + 1)
M−1∑
i=k(M)

e−Ni0βc+cβ
√
N log(N)

= 9(M + 1)(M − k(M))e−Ni0βc+cβ
√
N log(N)
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For small i the technique we just employed for estimating Ψh(s),
namely the exponentially slow mixing of the standard Metropolis algo-
rithm of the REM, this might not be good enough, since, if we substi-
tute iβ

c1N
for β, N cancels out. However, Corollary 6.6 tells us, that –

given we are in σ – the probability of being in a high temperature state
is exponentially smaller than the probability of being at the lowest
possible temperature βM . Therefore,

Ψl(S) =

k(M)∑
i=0

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))

≤ 9

k(M)∑
i=0

πi(σ)
M∑
j=0

πj(σ)

M + 1
M∑
j=0

(1− πj(σ))

∑
〈σ,σ〉

Tmax(i−1,0)(σ, σ)

≤ 9(M + 1)

k(M)∑
i=0

πi(σ)
M∑
j=0

πj(σ)

1− πmax(i−1,0)(σ)
M∑
j=0

(1− πj(σ))

Gap(Tmax(i−1,0))(126)

≤ 9(M + 1)

k(M)∑
i=0

πi(σ)
M∑
j=0

πj(σ)

≤ 9(M + 1)

k(M)∑
i=0

πi(σ)

πM(σ)

≤ 9(M + 1)

k(M)∑
i=0

e−C2βN e3εN

= 9(M + 1)(k(M) + 1)e−C2βN e3εN

for any ε > 0 and all N ≥ N0 with a P-a.s. finite N0. Plugging these
estimates of Ψl(S) and Ψh(S) into (118) gives the desired result.

4. Proofs for the GREM

In this section we will use similar methods as in the case of the
REM to prove Theorems 6.2 and 6.3. To give an idea, why slow
mixing of both, the Metropolis-Hastings chain and Simulated Tem-
pering are plausible, recall, that in the GREM we decompose Ω into
n factors as in (16). For fixed n the size of each factor growth ex-
ponentially in N . If σ = σ1 · · ·σn denotes the maximum H(Xσ)
there are n potentially different ways to leave this state. Lets say
we tried to leave it by changing σi in σi 6= σi for i ∈ {1, ..., n},
then all (αi)

N X ′σi···σn :=
√
aiXσ1...σi−1σi

+ ...+
√
anXσ1...σi...σn

are i.i.d.
N (0, ai + ...+ an) random variables. This is, after proper rescaling, a
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REM situation so taken all i ∈ {1, ..., n} together it suggests slow mix-
ing of the standard Metropolis algorithm for the GREM since n ∈ N
is fixed. Since the standard Metropolis chain is slow in the REM for
every β > 0 this leads to a slow Metropolis algorithm for the GREM
for every β > 0. This should take care of the low temperature part of
the Simulated Tempering algorithm, just as it does for the REM.

Since similar results about Xσ = min{Xσ} are also known for the
GREM, and even Zβ in the GREM behaves a lot like Zβ in the REM
we can hope to be able to apply similar techniques.

We first show that the Metropolis algorithm is slowly mixing in
the GREM, hence Theorem 6.2. To this end we will employ Dirichlet-
forms, as in Section 2.2. Again define σ := argminσ{Xσ} and let
S := {σ} ∈ Ω. We define

Ai := {σ ∈ Ω|σ = σ1 · · · σi−1σiσi+1 · · ·σn} \ {σ}

for i ∈ {1, ..., n}. It is apparent that any neighbor σ of σ is in⋃
Ai ∪ {σ}, and that the Ai are pairwise disjoint. Let T := Tβ de-

note the transition matrix of the Metropolis chain in the GREM and
with Ti := T|Ai∪{σ} the restriction of T to Ai∪{σ}. Note that π induces
a probability measure πi on Ai through restriction, such that

(127) πi(σ) :=
e
−β
√

ln 2
ln(αi)

∑n
j=i aj

√
N

ln(αi)

ln 2
X′σ

ZR(i)(β)

for σ ∈ Ai ∪ {σ} and πi(σ) = 0 otherwise. In this context

ZR(i)(β) :=
∑

σ∈Ai∪{σ}

e
−β
√

ln 2
ln(αi)

∑n
j=i aj

√
N

ln(αi)

ln 2
X′σ

denotes the restricted partition function and, for σ ∈ Ai ∪ {σ},

X ′σ :=
1√∑n
j=i ai

n∑
j=i

√
ajXσ1...σj

are i.i.d. N (0, 1) random variables. With this notation it is apparent,
that on Ai Ti is the standard Metropolis chain for the REM at inverse
temperature β

√
ln 2

ln(αi)

∑n
j=i aj. From this we conclude with the help of

Theorem 6.4

(128) Gap(T ′
i ) ≤ e

−βcβ

√
ln(αi)

∑n
j=i

aj

ln 2
N+cβ
√∑n

j=i aj

√
N log

(
N

ln(αi)

ln 2

)
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where T ′
i denotes the Markov chain equivalent to Ti on Ai∪{σ}. This

leads to the following estimate for the Dirichlet-form.

1

τ(1S)
=

∑
σ∈S

π(σ)
∑
σ′∈Sc

T (σ, σ′)

π(S)(1− π(S))

=
1

1− π(S)

∑
〈σ,σ〉

T (σ, σ)

=
1

1− π(S)

n∑
i=1

∑
σ∈Ai
〈σ,σ〉

T (σ, σ)

≤
n∑
i=1

1− πi(S)

1− π(S)
Gap(T ′

i ) (i)

≤
n∑
i=1

e
−βcβ

√
ln(αi)

∑n
j=i

aj

ln 2
N+cβ
√∑n

j=i aj
√
N log(N) (ii)

≤ n e−βcβ
√
anmini{ln(αi)}

ln 2
N+cβ
√
N log(N)

(i) holds because of (122) and since ZR(i)(β) ≤ Z(β) implies πi(σ) ≥
π(σ). For (ii) note that ln(αi)

ln 2
≤ 1. This proves Theorem 6.2.

We are now armed to also prove Theorem 6.3. We have just seen,
that the standard Metropolis chain for the GREM behaves a lot like
the Metropolis chain of the REM. In this perspective it is not all to
surprising that the same proof for slow mixing of the REM simulated
tempering works for the GREM as well, with just some minor adjust-
ments.

Recall that P denotes the transition matrix of the Simulated Tem-
pering chain in the GREM and σ := argminσ{Xσ}. Define S =
{σ} × {0, ...,M}. Using the notation of Section 2.2 we have

1

τ(1S)
=

∑
x∈S

∑
y∈Sc

π(x)P (x, y)

π(S)(1− π(S))

=

k(M)∑
i=0

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))

+

M∑
i=k(M)+1

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))

=: Ψl(S) + Ψh(S)
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with k(M) defined as in Corollary 6.12. The following theorems enable
us to bound Ψl(S) and Ψh(S) from above.

Theorem 6.7 ([4] Theorem 1.5). Define the sequence J1, ..., Jm by
J0 := 0 and

(129) Jl := min{J > Jl−1|AJl−1+1,J > AJ+1,k ∀k ≥ J + 1}

with Aj,k :=
k∑
i=j

ai
2 ln(

∏k
i=j αi)

. Further define

al :=

Jl∑
i=Jl−1+1

ai

αl :=

Jl∑
i=Jl−1+1

αi

With this notation

(130) max
σ

{
1√
N
Xσ

}
−→

m∑
i=1

√
2ai ln(αi)

holds with P-probability 1.

Remark For all l = 1, ...,m and all k such that Jl−1 + 2 ≤ k ≤ Jl

(131)

Jl∑
i=k

ai

al
≥

Jl∑
i=k

ln(αi)

ln(αl)

holds, which is the condition, for the concave hull as described in Figure
10.3 in [3].

Theorem 6.8 ([3] Theorem 10.1.10). Using the notation from The-
orem 6.7 and defining

(132) γl :=

√
al

2 ln(αl)

we get for l(β) := max{l ≥ 1|βγl > 1} and l(β) := 0 if βγ1 ≤ 1
(133)

lim
N→∞

[
1

N
ln

(
2−N

∑
σ

eβH(σ)

)]
= β

l(β)∑
i=1

√
2ai ln(αi) +

n∑
i=Jl(β)+1

β2ai
2

with P-probability 1.
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Corollary 6.9. For every ε > 0 there exists with P-probability 1
a N0 ∈ N such that
(134)

Z(βi) ∈

e
N ln(2)+Nβ

l(β)∑
i=1

√
2ai ln(αi)+N

n∑
i=Jl(β)+1

β2ai
2

eδN |δ ∈ (−ε, ε)


holds for every N ≥ N0.

Lemma 6.10. For every ε > 0 with P-probability 1 there exists a N0

such that for all N ≥ N0

(135)
πi(σ)

πM(σ)
≤ e

−Nβ
2

m∑
j=l(β)+1

√
2aj ln(αj)− i2β2

c1
2N

+ iβ
c1

m∑
j=1

√
2aj ln(αj)

e3εN

Proof. We compute
πi(σ)

πM(σ)
=
Z(βM)

Z(βi)
e
iβ
M
H(σ)−βH(σ)

≤ e
N ln(2)+Nβ

l(β)∑
j=1

√
2aj ln(αj)+N

n∑
j=Jl(β)+1

β2aj
2
−N ln(2)−N

n∑
j=1

i2β2aj

2M2

× eβH(σ)( i
M
−1) e2εN

≤ e
Nβ

l(β)∑
j=1

√
2aj ln(αj)+N

n∑
j=Jl(β)+1

β2aj
2
− i2β2

2c1
2N

× e

[
m∑
j=1

√
2aj ln(αj)

]
βN( i

M
−1)

e3εN

≤ e
−Nβ

 m∑
j=l(β)+1

√
2aj ln(αj)−β

n∑
j=Jl(β)+1

aj
2

− i2β2

2c1
2N

+ iβ
c1

m∑
j=1

√
2aj ln(αj)

× e3εN

= e
−Nβ

m∑
j=l(β)+1

[√
2aj ln(αj)−β2 aj

]
− i2β2

2c1
2N

+ iβ
c1

m∑
j=1

√
2aj ln(αj)

e3εN

= e
−Nβ

m∑
j=l(β)+1

√
aj

[√
2 ln(αj)−β2

√
aj

]
− i2β2

2c1
2N

+ iβ
c1

m∑
j=1

√
2aj ln(αj)

e3εN

≤ e
−Nβ

m∑
j=l(β)+1

√
aj

[√
2 ln(αj)− 1

2

√
2 ln(αj)

]
− i2β2

2c1
2N

+ iβ
c1

m∑
j=1

√
2aj ln(αj)

× e3εN

= e
−Nβ

2

m∑
j=l(β)+1

√
2aj ln(αj)− i2β2

2c1
2N

+ iβ
c1

m∑
j=1

√
2aj ln(αj)

e3εN

= e
−Nβ

(
1
2

m∑
j=l(β)+1

√
2aj ln(αj)+

i2β

2c1
2N2−

i
c1N

m∑
j=1

√
2aj ln(αj)

)
e3εN
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where the last inequality follows from (132). �

Lemma 6.11. There exists i0 > 0 and C2 > 0 such that for all
i ≤ i0c1N = i0M

(136)
1

2

m∑
j=l(β)+1

√
2aj ln(αj) +

i2β

2c1
2N2

− i

c1N

m∑
j=1

√
2aj ln(αj) ≥ C2

Proof. This is simply a matter of calculus. Define the continuous
function

(137) f(i) :=
1

2

m∑
j=l(β)+1

√
2aj ln(αj) +

i2β

2c1
2N2
− i

c1N

m∑
j=1

√
2aj ln(αj).

Since l(β) ≤ m− 1, we have that f(0) > 0 holds. This yields

(138) f0 :=
c1N

β

(
m∑
j=1

√
2aj ln(αj)

−

√√√√( m∑
j=1

√
2aj ln(αj)

)2

− β
m∑

j=l(β)+1

√
2aj ln(αj)


as the left zero of f . Clearly f0 > 0, since

f ′


c1N

m∑
j=1

√
2aj ln(αj)

β

 = 0

and thus 1
β
c1N

m∑
j=1

√
2aj ln(αj) is the only extremal point (and therefore

the minimum) of f, and
c1N

m∑
j=1

√
2aj ln(αj)

β
> 0. Now, f0 ∈ C \ R would

lead to f > 0, so we can conclude that the pair

i0 :=

{
b
(

f0
2c1N

)
c if f0 ∈ R

1
2

if f0 /∈ R
C2 := f(i0M)

satisfies all conditions. Note that neither i0 nor C2 depend on N . �

Lemma 6.10 and 6.11 lead to

Corollary 6.12. For every ε > 0 with P-probability 1 there exists
a N0 such that for all N ≥ N0 and all i ≤ K(M) := i0M

(139)
πi(σ)

πM(σ)
≤ e−C2βN e3εN

with i0 and C2 as in Lemma 6.11.
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Now we will give an upper bound for Ψh(S). Recall that (122) gives

(1− πi(σ)) Gap(Ti) ≥
∑
〈σ,σ〉

Ti(σ, σ
′).

Moreover, ∑
y∈Sc

P ((σ, i), y) ≤ 9
∑
〈σ,σ〉

Ti−1(σ, σ)

as in (123) is true for the GREM as well. We get

Ψh(S) =

M∑
i=k(M)+1

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))

≤ 9
M∑

i=k(M)+1

πi(σ)
M∑
j=1

πj(σ)

M + 1
M∑
j=0

(1− πj(σ))

∑
〈σ,σ〉

Ti−1(σ, σ)

≤ 9(M + 1)
M−1∑
i=k(M)

πi+1(σ)
M∑
j=1

πj(σ)

1
M∑
j=0

(1− πj(σ))

∑
〈σ,σ〉

Ti(σ, σ)

≤ 9(M + 1)
M−1∑
i=k(M)

πi+1(σ)
M∑
j=1

πj(σ)

1− πi(σ)
M∑
j=0

(1− πj(σ))

Gap(Ti)

≤ 9(M + 1)
M−1∑
i=k(M)

Gap(Ti)

≤ 9(M + 1)
M−1∑
i=k(M)

n e−βc
iβ
M

√
anmax{ln(αj)}

ln 2
N+c iβ

M

√
N log(N)

≤ 9(M + 1)
M−1∑
i=k(M)

n e−βci0β
√
anmax{ln(αj)}

ln 2
N+cβ
√
N log(N)

= 9nM(M + 1)(1− i0)e−βci0β
√
anmax{ln(αj)}

ln 2
N+cβ
√
N log(N)
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The upper bound for Ψl(S) follows similarly to the case of the REM.

Ψl(S) =

k(M)∑
i=0

π((σ, i))
∑
y∈Sc

P ((σ, i), y)

π(S)(1− π(S))

≤ 9

k(M)∑
i=0

πi(σ)
M∑
j=1

πj(σ)

M + 1
M∑
j=0

(1− πj(σ))

∑
〈σ,σ〉

Tmax(i−1,0)(σ, σ)

≤ 9(M + 1)

k(M)∑
i=0

πi(σ)
M∑
j=1

πj(σ)

1− πmax(i−1,0)(σ)
M∑
j=0

(1− πj(σ))

Gap(Tmax(i−1,0))

≤ 9(M + 1)

k(M)∑
i=0

πi(σ)
M∑
j=1

πj(σ)

≤ 9(M + 1)

k(M)∑
i=0

πi(σ)

πM(σ)

≤ 9(M + 1)

k(M)∑
i=0

e−C2βN e3εN

= 9i0Me−C2βN e3εN

for any ε > 0 and all N ≥ N0 with a P-a.s. finite N0. This finishes the
proof of Theorem 6.3.





CHAPTER 7

Equi-Energy sampling as a derivative of the
Swapping algorithm

After having studied the Swapping algorithm for multiple models
in the prior chapters, this chapter will deal with a derived algorithm
suggested by Kou, Zhou andWong in [24] called Equi-Energy sampling.

The principle observation is that a main obstacle to fast mixing is
the presence of a phase transition in the model. This, in turn, may be
characterized by a multimodal distribution of a macroscopic observable.
Usually then the (projected) Metropolis chain enters one of the modes
rapidly and stays there for an exponentially long time. The Equi-
Energy method tries to avoid this behavior by introducing shortcuts
in the state space. These shortcuts are created by the observations of
Metropolis chains at higher temperatures where the above mentioned
modes are less pronounced or possibly not even present. Additionally
to the Metropolis steps one allows also for jumps to points of the same
energy as the present one, given one has observed these points already
at higher temperatures (otherwise, the algorithm would require the
knowledge of the exact structure of the energy function, in which case
simulation would probably be pointless).

Besides defining the algorithm, Kou et al. also address the conver-
gence question and give simulations of interesting examples. The goal
of the present chapter is to shed some more light on the convergence
and, in particular, the speed of convergence of the Equi-Energy algo-
rithm. To this end we will see that even under the best conditions of
knowing the whole energy landscape, Equi-Energy sampling may be
slow in some models. Namely we will see this for the Potts model
given in Chapter 1.2. The phenomenon responsible is the same used
by Bhatnagar and Randall in [2] to show torpid mixing of Tempering
and Swapping and similar to the phenomenon encountered in the BEG
model as seen in Chapter 5.

This chapter is organized in the following way: After defining the
Equi-Energy algorithm in Section 1 we will see in Section 2 that Equi-
Energy sampling is not well suited for the Potts-Model.

79
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1. The Equi-Energy algorithm

In this section we introduce the base chain for the Metropolis-
Hastings algorithm and give a definition of a version of the Equi-Energy
sampler.

Remember the Metropolis-Hastings algorithm to by defined by

(140) Tβ(σ, τ) =


Kgen(σ, τ) if σ 6= τ and H(τ) ≥ H(σ)

Kgen(σ, τ)
πβ(τ)

πβ(σ)
if σ 6= τ and H(τ) < H(σ)

1−
∑

υ 6=σ Tβ(σ, υ) otherwise.

for an aperiodic, symmetric and irreducible Markov chain Kgen on Ω.
As in the Curie-Weiss model the proposal chain for the Potts model se-
lects one coordinate at random and suggests to change the coordinates
color to any other color with equal probability, thus Kgen is given by

Kgen(σ, τ) :=


1
2

if σ = τ
1

2N(q−1)
if ‖σ − τ‖ = 1

0 otherwise.
(141)

As mentioned in Chapter 2.3.2 the induced Metropolis-Hastings sam-
pler is torpidly mixing on the Potts model for β in the multiple-phase
region.

To speed up its convergence, we first introduce a sequence of energy
levels:

(142) inf
σ
H(σ) := h0 < h1 < . . . < hM = supH(σ)

and a sequence of inverse temperature levels

0 = β0 < β1 < . . . < βM = β

where we assume that β is the temperature we want to sample from.
For the same reasons as for the Swapping algorithm it will often be
convenient and necessary to take βi = iβ

M
. Note that M may and will

depend on N , which is not made explicit in [24].
Moreover, we will need a dummy state ι and define

Ω̃ := Ω ∪ {ι}.

LetM be an M × |Ω| matrix over Ω̃, which is initially filled with ι’s,
only.

The Equi-Energy algorithm consists of alternating between two
steps. One is a Metropolis update at a random temperature level βi.
The other one is an Equi-Energy jump again at a randomly selected
temperature βi with i ≥ 1. At temperature 0 there are only Metropolis
moves. We keep record of the results of each single one of the states we
see at temperature βi by entering them into the i’th row of the matrix
M, if it has not been seen before. In this case it replaces one of the
ι’s.
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The Equi-Energy step works as follows: Assume, the chain at tem-
perature βi, i ≥ 1 is in state σ. Then an Equi-Energy jump consists
of determining the energy level k, such that hk−1 < H(σ) ≤ hk and
choosing with equal probability a state τ from all states υ with hk−1 <
H(υ) ≤ hk, which have already been observed at temperature level
βi−1. This new state is accepted with probability min

{
1,

πβi (τ)πβi−1
(σ)

πβi (σ)πβi−1
(τ)

}
.

Otherwise, in particular, if there is no state in the same energy band in
the i−1st row ofM, we stay where we are. We denote the correspond-
ing transition matrix (on Ω) as well as the corresponding operator by
Qi. Of course, we can also consider the process, that describes the
movement of all the particles simultaneously, which is a process on
ΩM+1. The transition matrix on ΩM+1 that moves the i’th coordinate
according to Qi and lets all others rest, i.e. the matrix corresponding
to the operator ⊗

j≤i−1

I ⊗Qi ⊗
M⊗

j=i+1

I

is denoted by Qi (where I is the identity). Similarly, we will denote by
Ti the Metropolis chain Tβi at temperature βi and by Ti the chain on
ΩM+1 corresponding to the operator⊗

j≤i−1

I ⊗ Ti ⊗
M⊗

j=i+1

I.

The Equi-Energy sampler is then defined as

R =
1

(M + 1)3

∑
j,k,l=0

QjTkQl.

Note that even though we are just interested in what happens with
the last coordinate of this process, it might still be worth and easier to
consider the entire process. Also note that R is not a Markov chain.
To consider a Markov chain, will however be useful sometimes. To this
end, we define the natural extension R̃ to the space ΩM+1×Ω̃(M+1)×|Ω|,
which in the first coordinate moves according to R and in the second
coordinate contains the elements ofM. The latter in turn has in the
i’th row all the states visited by Ti−1 up to the present time entered in
some fixed, deterministic order.

The role of this complicated Markov chain becomes apparent, when
we prove the following theorem.

Theorem 7.1. The distribution of the M+1’st coordinate of R con-
verges to πβ.

Proof. By reversibility, for each i, Ti is reversible with respect
to the measure πβi and the entries in M do not play any role for
Ti. Second, note that in the second coordinate of R̃ the state M0
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in which each row of the matrix M is filled with an entry different
from ι is absorbing (since we fill the matrix in some fixed order, M0

in unique. The state M0 is reached in finite time almost surely, for
almost all realizations of R̃ there is n0 = n0(ω), such that the second
coordinate of R̃ at n0 is M0. However, once the second coordinate of
R̃ is M0 all the processes Qi are reversible with respect to πβi . This is
basically since, Qi(σ, τ) > 0, then σ and τ are in the same energy shell
(hk, hk+1], and hence Qi starting from σ draws from the same points
as when starting from τ . The rest of the reversibility assertion follows
from the definition of the transition probabilities.

Hence we are in the following situation: The random walk R̃ even-
tually concentrates on ΩM+1 × {M0}. The restriction R̃|ΩM+1×{M0} is
reversible with respect to the measure π×δM0 . Here for x = (x0, x1, . . . ,
xM) ∈ ΩM+1

π(x) =
M∏
i=0

πβi(xi),

and δM0 is the Dirac measure concentrated in the matrix M0. Hence
by the ergodic theorem for Markov chains R̃ converges in distribution
to π × δM0 , which in particular implies that the M + 1st coordinate of
R converges to πβ.

�

Remark From the above proof one may get the impression, that for
a state space Ω that is exponentially large in some parameter N , to
ask for polynomial convergence is completely hopeless, since we first
have to fill M, before we can apply the ergodic theorem. We will
see an even worse effect for the Potts model. The convergence to the
desired probability measure may still be slow, even if the entire energy
landscape has already been saved to the matrixM.

2. Equi-Energy for the mean-field Potts model

We will see, that the Equi-Energy algorithm is not well suited for
the three-color-mean-field-Potts model, namely we will show

Theorem 7.2. The speed of convergence to equilibrium of the Equi-
Energy sampler is exponentially slow for the mean-field Potts model
with q = 3 colors.

Remark The proof given also works for any number q > 3 of colors.
In favor of an easier notation we will confine ourselves to the case of
q = 3.

Torpid mixing of the Equi-Energy sampler is slow for the same
reasons why the simulated tempering algorithm is slowly mixing for
the mean-field Potts model as shown in [2]. As stated in Section 2 of
Chapter 1, the mean-field Potts model undergoes a discontinuous phase
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transition. As Gore and Jerrum [21] show, the model shows, for any
β > βc, besides the three modes for each color, a fourth mode in which
every color appears almost equally often. This is the main difference
to the Curie-Weiss model which has, for any β > βc, exactly one mode
for each color. Suppose the chain R has all components started in a
center state. Component x0 can only do metropolis updates. It will
very likely stay close to the center, thus only saving center states to the
matrix. Component x1 then could either do metropolis or Equi-Energy
updates. Metropolis alone would prefer the center states as the center
is, for any temperature, a locally likely state. The only chance to leave
the center would thus be an Equi-Energy jump. But as the chain x0

did not save any states distant to the center, it will never get proposals
to jump away from the center.

The proof will follow a slightly different strategy, even though the
idea behind the argument is the one given above.

2.1. System specific preparation. In order to handle the state
space more easily we will follow the approach by Gore and Jerrum [21].
Remember that for any σ ∈ Ω

πβ(σ) =
1

Z(β)
eβH(σ).

As we have a mean-field model we thus get for any a = (a1, a2, a3) with∑
ai = 1 and Nai ∈ N0 for any i ∈ {1, 2, 3}

πβ

({
σ
∣∣mN(σ) = a

})
=

(
N

Na1, Na2, Na3

)
1

Z(β)
eβH(σa).(143)

Here σa is one representative with mN(σa) = a. Using Stirling’s ap-
proximation we get

πβ

({
σ
∣∣mN(σ) = a

})
=
eNf(a)+∆(a)

NZ(β)
.(144)

with

(145) f(a) :=
3∑
i=1

(
β

2
a2
i − ai log ai

)
and ∆(a) ∈ o(N). Define D = {a ∈ [0, 1]3|

∑
ai = 1} to be the domain

of f . Gore and Jerrum were able to show

Lemma 7.3 (Proposition 1 in [21]). Let a = (a1, ..., aq) be a local
maximum point of f . Then a satisfies the following properties:

(1) a lies in the interior of D.
(2) Either ai = q−1 for all i, or there are α and α′ such that

0 < α < β−1 < α′ < 1, and ai ∈ {α, α′} for all i.
(3) If a is such, that the ai are not all equal, then there is a unique

component aj such that aj = α′; the other components satisfy
aj = α for all j 6= i.
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This immediately leads to

Lemma 7.4. Fix β > βc. Then there exists a δ > 0 and a constant
c > 0 such that

πβ

({
σ
∣∣∣ ∥∥∥mN(σ)− a 1

3

∥∥∥ > δ
})
≤ e−cN .(146)

Here a 1
3

:= (1
3
, 1

3
, 1

3
).

Proof. Let aq1 denote the local maximum with dominant color 1
and remember a 1

3
to be the local maximum in the center of the state

space. Either a 1
3
or aq1 is a global maximum point. Assume first, that

f(aq1) > f(a 1
3
). Define the set

M :=
{
a ∈ D

∣∣f(a) > f(a 1
3
), Na ∈ {0, ..., N}3}

and note that there exists a δ > 0 such that{
σ
∣∣∣ ∥∥∥mN(σ)− a 1

3

∥∥∥ > δ
}
∩M = ∅

as a 1
3
is a local maximum point of a smooth function f .

(
Without loss

of generality one could choose δ small enough such that{
σ
∣∣∣ ∥∥∥mN(σ)− a 1

3

∥∥∥ > δ
}

only contains a 1
3
as a local maximum point.

)
As there are at most N2

many different points a with Na ∈ {0, ..., N}3 and
∑
ai = 1 it is easily

checked that

πβ

({
σ
∣∣∣ ∥∥∥mN(σ)− a 1

3

∥∥∥ > δ
})
≤ πβ(Mc)

=

∑
σ/∈M eβH(σ)∑
σ∈Ω e

βH(σ)

≤ N2e
Nf(a 1

3
)

eNf(aq1)

= N2e
−N(f(aq1)−f(a 1

3
))(147)

holds. Using the same argument yields that the case f(a 1
3
) ≥ f(aq1)

contradicts β > βc as the only macrostate would then be the center
state. �

2.2. Proof for Theorem 7.2. We want to use a conductance ar-
gument (see Theorem 2.6) in order to show Theorem 7.2. Assume the
Matrix M to be filled completely, thus M = M0. Then the Equi-
Energy algorithm is reversible to the desired distribution and Theorem
2.6 can be applied. Now assume the last coordinate xM of x is in
the center of the state space, thus close to a 1

3
. For β > βc the chain

would need to see at least one of the modes containing aq1, aq2 or aq3
in reasonable time. To accomplish this the chain has two possibilities,



2. EQUI-ENERGY FOR THE MEAN-FIELD POTTS MODEL 85

either using metropolis steps, or using Equi-Energy steps in order to
leave the center and get drawn to any of the other modes. Metropolis
itself is slow on the Potts model for β > βc as can be seen in a similar
way to the one given in Theorem 2.7 for the Curie-Weiss model, by
using either of the four modes, especially the center mode, as a bad
cut. Thus the only hope to have rapid convergence would be the Equi-
Energy component of the algorithm. The Hamilton function grows as
the distance to the center increases. As the Equi-Energy step can only
get proposals which are in the same energy band as the current state
the chain cannot increase its distance to the center by any consider-
able amount, using an Equi-Energy update. This effectively traps xM
close to the center and thus the center is a bad cut for the Equi-Energy
algorithm. Note that widening the energy bands would not increase
the speed of convergence either, as there are exponentially many more
states in the center then on the outer circle. Having wide energy bands
would lead to many proposals close to the center which the chain could
either accept, if close to the center anyhow, or, in case the chain is
in a distance to the center, reject as the new states energy is expo-
nentially much smaller than the current states energy. Especially the
hope of switching from the mode containing aq1 to any other mode is
disappointed if the energy band is too wide, as too many Equi-Energy
proposals will be flat out rejected if xM is currently close to aq1.

Remember (142) and note that we will henceforth only consider
M = cN to be linearly dependent on N and the hi to be equi-distanced
in the domain. Choosing M super-linearly would lead to empty energy
bands and thus effectively lead to an exact-Equi-Energy sampling. On
the other hand, having M fixed leads to almost non-interactive com-
ponents and Equi-Energy sampling stands no chance of increasing the
speed of convergence compared to the standard Metropolis algorithm.

Lemma 7.5. For every ε > 0 and every ε > δ > 0 there exists
a N0 such that for all N > N0 and for all σ, τ ∈ Ω which satisfy
‖mN(σ)− a 1

3
‖ < δ and ‖mN(τ)− a 1

3
‖ > ε

QM(σ, τ) = 0.

Proof. First note that a 1
3
is the (unique) minimum for

a 7→ 1

N
H(a) :=

1

N
H(σa) =

1

2

3∑
i=1

a2
i

on D. Further note that 1
N
H(σa) = 1

2
‖a‖2

2 is basically the square of
the two-norm of the vector a. Now QM(σ, τ) > 0 only if there is an
index i such that hi < H(σ) < hi+1 and hi < H(τ) < hi+1. This leads
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to

|H(σ)−H(τ)| = hM − h0

M

=
N − N

6

2M

=
5

12c
(148)

thus in order for σa and σa′ to be in the same energy band, a and a′
must satisfy

‖a− a′‖2
2 ≤ 5

12cN
.

Using the equivalence of the one norm and the two norm onD concludes
the proof. �

We now define a set S̃ which guarantees for a small conductance.
First define for every ε > 0

(149) Sε :=
{
x ∈ ΩM+1

∣∣∣∥∥mN(xM)− a 1
3

∥∥ < ε
}
.

Fix ε such that
{
a ∈ D

∣∣‖a−a 1
3
‖ < ε} only contains points of the center

mode. Now choose δ′ > 0 and N0 according to Lemma 7.5 and the
remark thereafter. As R̃ consists of possibly two Equi-Energy jumps
we need to iterate this construction once. For this choose 0 < δ′′ < δ′

and afterwards choose δ > 0 – and again N even larger – according to
Lemma 7.5 this time with δ′′ as input.

Lemma 7.6. There exists a c′ > 0 such that

πM(Sε \ Sδ)
πM(Sε)

< e−c
′N .

Proof. The proof works exactly as the proof for Lemma 7.4. �

This directly leads to

Theorem 7.7. Consider R̃ and its state space. The conductance
Φ satisfies for a c′ > 0

Φ ≤ e−c
′N .

Proof. With the notation introduced above, it is clear by Lemma
7.4 that πM(Sε) < 1

2
for N large enough. Remember

ΩEE := ΩM+1 × Ω̃(M+1)×|Ω|
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to be the state space for R̃. Then it is clear that π
(
(ΩM×Sε)×{M0}

)
<

1
2
holds for all N large enough as well.

Φ(ΩM×Sε)×{M0} =

∑
σ̃∈(ΩM×Sε)×{M0}
τ̃ /∈(ΩM×Sε)×{M0}

π(σ̃)R̃(σ̃, τ̃)

π((ΩM × Sε)× {M0})

=

∑
σ̃∈(ΩM×Sε\Sδ)×{M0}
τ̃ /∈(ΩM×Sε)×{M0}

π(σ̃)R̃(σ̃, τ̃)

π((ΩM × Sε)× {M0})

≤
∑

σ̃∈(ΩM×Sε\Sδ)×{M0} π(σ̃)

π((ΩM × Sε)× {M0})
(150)

=
πM(Sε \ Sδ)
πM(Sε)

< e−c
′N

Here (150) holds because of Lemma 7.5: The first Equi-Energy jump
started in the circle Bδ(a 1

3
) will not leave Bδ′′(a 1

3
), the following me-

tropolis update will not leave Bδ′(a 1
3
) thus the second Equi-Energy

jump cannot leave Bε(a 1
3
). �

Using Theorem 7.7 concludes the proof for Theorem 7.2, as the
chain R̃ is reversible once the matrix has been filled.





Appendix

1. Appendix to the BEG Model

1.1. Analysis of fβ. This appendix contains a detailed analysis
of the function fβ given in (111). The first result is needed for the slow
convergence case.

Lemma .8. There exists an ε0 > 0 such that for any 0 < ε ≤ ε0 on
the set

N =
{
σ
∣∣|SN(σ)| ≤ N · ε

}
as defined in (110) the free energy fβ is unimodal for all β.

Proof. The claim is true, if we find an ε0 > 0 such that

fβ((a−1, a0, a1)) is unimodal on |a−1 − a1| < ε0.

Consider

−fβ(a1, a0, a1) = 2βa1 + 2a1 log(a1) + (1− 2a1) log(1− 2a1)(151)

−fβ(a1, a0, a1)′ = 2β − log

(
1

a1

− 2

)
(152)

which tells us, that there is exactly one mode on the a1 = a−1, a0 =
1−2a1 line. As fβ is smooth this generalizes for all lines a1 = a−1 +2ε0

for sufficiently small ε0. This yields the desired result by using Theorem
.9 as all that could happen, are maxima on the boundary. �

Theorem .9. fβ has at most three local maxima on

Υ∞ := {(a−1, a0, a1) ∈ R3
+ :

1∑
i=−1

ai = 1}.

There are no further maxima on the boundary of Υ∞.

Proof. We first change coordinates. Let r = x
x+z

and t = x + z.
Then the mapping is

T : Υ∞ → (0, 1)2 with (a−1, a0, a1) 7→ (r, t)

bijective. Hence, instead of investigating the maxima of fβ, we can
analyze the minima of F (r, t) := Fβ(r, t) := −fβ ◦ T−1(r, t). Here
F : (0, 1)2 → R is given by

F (r, t) = βt(1−Kt(1− 2r)2) + tH(r) +H(t),

with H(r) = r log +(1− r) log(1− r).
89
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Minimums at the boundary: For fixed r ∈ [0, 1] the function F
is the sum of a polynomial in t and the entropy function H(t). Now
H(t) is steep at t = 0 and t = 1, hence there are no local minima in
these points.

If, on the other hand, t ∈ (0, 1) is fixed, the same argument yields
that there are no local minima in r = 0 and r = 1, either.

Global and local Minimums: We take derivatives of F for r, t ∈
(0, 1).

∂rF (r, t) = 4βKt2(1− 2r) + t log r
1−r

∂tF (r, t) = β − 2βKt(1− 2r)2 +H(r) + log t
1−t

∂2
rF (r, t) = −8βKt2 + t

r(1−r)
∂2
rtF (r, t) = 8βKt(1− 2r) + log r

1−r
∂2
t F (r, t) = −2βK(1− 2r)2 + 1

t(1−t)

Hence the equations for potential minima are

(153) 4βKt(2r − 1) = log
r

1− r

(154)
1

t
− 1 = eβ ·

√
r(1− r) ,

where we have used (153) to solve ∂tF = 0 and obtain (154). Taking
the Taylor expansion of F in a critical point (r0, t0) up to second order
we see that

F (r, t) = F (r0, t0) +
1

2
A

where

A = ∂2
rF (r0, t0)(r−r0)2+2∂2

rtF (r0, t0)(r−r0)(t−t0)+∂2
t F (r0, t0)(t−t0)2.

Putting w :=
√
r0(1− r0) we see that t0 = (1 + eβw)−1 and therefore

(155) ∂2
rF (r0, t0) =

t20
w2

(1 + eβw − 8βKw2).

Due to (153) we have in critical points (r0, t0)

∂2
rtF (r0, t0) = 4βKt0(1− 2r0)

and the determinant of the Hessian M in (r0, t0) is given by

detM =
( t0
w2
− 8βKt20

)( 1

t0(1− t0)
− 2βK(1− 4w2)

)
− (4βKt0)2(1− 4w2).

This can be simplified to

detM =
( 1

w2
− 8βKt0

) 1

1− t0
− 2βK

t0
w2

(1− 4w2)

=
1− 2βKt0 + 2βKt20(1− 4w2)

w2(1− t0)
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and by replacing t0 we obtain:

detM =
(1 + eβw)2 − 2βK(1 + eβw) + 2βK(1− 4w2)

w2(1− t0)(1 + eβw)2

=
1 + 2eβw(1− βK) + w2(e2β − 8βK)

w2(1− t0)(1 + eβw)2
.(156)

Note that the sign of detM is determined by the sign of the nominator,
which is important, since M is positive definite in (r0, t0), if ∂2

rF > 0
and detM > 0 in that point.

Investigating which points are critical, we see the following
(1) Obviously, r0 = 1

2
, t0 = 2

2+eβ
is critical. Here ∂2

rF (r0, t0) =

2t20(2 + eβ − 4βK) and hence

A = 2t20(2 + eβ − 4βK)(r − r0)2 +
1

t0(1− t0)
(t− t0)2.

Thus there is a local minimum of F in (r0, t0), if and only if
4βK ≤ 2 + eβ. If 4βK > 2 + eβ, (r0, t0) as defined above is
not an extremal point.

(2) For r 6= 1
2
, we only consider r ∈ I := (1

2
, 1), since F is sym-

metric in r around 1
2
.

Combining (153) and (154) we see that a necessary condi-
tion for (r, t) to be a local minimum is

(157) h(r) := log
r

1− r
=

4βK(2r − 1)

1 + eβ
√
r(1− r)

:= φ(r),

which we will investigate for solutions in I. Let w(r) :=√
r(1− r). We compute

h′(r) =
1

r
+

1

1− r
=

1

w2(r)

h′′(r) = − 1

r2
+

1

(1− r)2
=

2r − 1

w4(r)

and

φ′(r) = 4βK
2 + 2eβw(r)− (2r − 1)eβ (1−2r)

2w(r)

(1 + eβw(r))2
= 2βK

4w(r) + eβ

w(r)(1 + eβw(r))2

and eventually

φ′′(r)= 2βK
4w′(r)w(r)(1 + eβw(r))2 − (4w(r) + eβ)[w(r)(1 + eβw(r))2]′

w2(r)(1 + eβw(r))4

= 2βKw′(r)
4w(r)(1 + eβw(r))− (4w(r) + eβ)[1 + eβw(r) + 2w(r)eβ]

w2(r)(1 + eβw(r))3

= βKeβ
(2r − 1)(8w2(r) + 3eβw(r) + 1)

w3(r)(1 + eβw(r))3
.
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Now h′(r)
<
=
>
φ′(r) implies

(158) (e2β − 8βK)w2(r) + 2eβ(1− βK)w(r) + 1
<
=
>

0.

Hence there are at most two solutions r1, r2 ∈ I with φ′ = h′,
because w is injective on I. Therefore, according to Rolle’s
theorem also the equation φ = h has at most two further
solutions in I (next to r = 1/2). Moreover, we see that the left
hand side of (158) equals the nominator of detM in (156). In
a critical point we thus have h′ < φ′ (or h′ > φ′, respectively)
if and only if in this point it holds detM < 0 (or detM > 0,
respectively).

Again we distinguish different cases:
If 4βK > 2+eβ, then φ′(1/2) > h′(1/2) and thus φ > h on

(1/2, 1/2+δ) for an appropriate δ > 0. Now, close to r = 1 we
always have φ < h, which means, there is at least one solution
φ = h in I. However, there cannot be two such solutions: If
there were 1

2
< r1 < r2 < 1 with φ = h, then φ − h cannot

change sign in both solutions, otherwise we would have φ > h
also in a right neighborhood of r2 and we would need a third
solution r3 to the right of r2, in contradiction to the above
conclusion. If, on the other hand, φ − h cannot change sign
in both solutions, then at least one of r1 and r2 also solves
φ′ = h′. But this again leads to a contradiction. Again using
Rolle’s theorem we see that φ = h for 1

2
< r1 < r2 implies that

there exist ξ1, ξ2 with φ′ = h′ and

1

2
< ξ1 < r1 < ξ2 < r2

and there cannot be more than two solutions of φ′ = h′.
Hence there is exactly one solution r1 ∈ I and from (154)

one obtains the corresponding t1, such that (r1, t1), (1− r1, t1)
and (r0, t0) are the only critical points of F . However, we
already know that here we have 4βK > 2+eβ and hence (r0, t0)
is not a minimum of F . Moreover, minima at the boundary
do not exist. But F is continuous on [0, 1]2, therefore has a
minimum, thus the points (r1, t1) and (1 − r1, t1) are global
minima.

If, on the other hand 4βK = 2 + eβ and eβ > 4, then
φ′(1/2) = h′(1/2) and of course φ′′(1/2) = h′′(1/2) = 0, how-
ever we still have φ′′′(1/2) > h′′′(1/2), hence again φ > h on
(1/2, 1/2 + δ) for an appropriate δ > 0. φ′′′(1/2) > h′′′(1/2)
can be seen as follows: Write

v(u) :=
8u2 + 3eβu+ 1

(u+ eβu2)3
.
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Then φ′′(r) = βKeβ(2r − 1)v ◦ w(r) and hence

(159) φ′′′(r) = βKeβ(2v ◦ w(r)− (2r − 1)2 1

2w(r)
v′ ◦ w(r)).

Thus

φ′′′(1/2) =
1

2
(2 + eβ)eβv(1/2) = 48

eβ

2 + eβ
.

Due to h′′′(1/2) = 32 we have φ′′′(1/2) > h′′′(1/2) if and only
if eβ > 4.

Analogously to our arguments above we see that there is
only one solution r1 ∈ I of φ = h, and again the correspond-
ing t1 can be computed from (154). Indeed there is a local
minimum of F in (r1, t1) and (1− r1, t1). This can be seen by
showing that the Hessian is positive definite. However, as this
is not part of our assertion, we will refrain from doing so.

If, finally 4βK = 2+eβ and eβ ≤ 4, then φ′(1/2) = h′(1/2)
and φ′′′(1/2) ≤ h′′′(1/2) and φ(5)(1/2) < h(5)(1/2), such that
again φ < h on (1/2, 1/2 + δ) for an appropriate δ > 0.

For φ(5)(1/2) < h(5)(1/2) one argues: Because of (159) we
have

φ(5)(1/2) = βKeβ(2(v ◦ w)′′(1/2)− 8v′(1/2))

= 2βKeβ
(

((v′ ◦ w) · w′)′(1/2)− 4v′(1/2)
)

= 2βKeβ
(
− v′ ◦ w

w
(1/2)− 4v′(1/2)

)
= −12βKeβv′(1/2)

and

v′(1/2) =
(8 + 3eβ)1

4
(2 + eβ)− 3(1 + eβ)(3 + 3

2
eβ)

(1
2

+ 1
4
eβ)4

= −320
2 + 3eβ

(2 + eβ)3
,

thus

φ(5)(1/2) = 960eβ
2 + 3eβ

(2 + eβ)2
.

Because of h(5)(1/2) = 4! · 26 one has φ(5)(1/2) < h(5)(1/2) if
and only if 5eβ(2+3eβ) < 8(2+eβ)2, thus 7e2β−22eβ−32 < 0
and this is true for all 0 < eβ ≤ 4.

The same is of course also true, when 4βK < 2 + eβ, since
then we already have φ′(1/2) < h′(1/2).

Summarizing we see that in all possible cases we have at
most three local minima of F and none at the boundary. Of
course, we could discuss how many minima there are exactly
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in certain cases. However, we will refrain from doing so, since
this is not needed.

�



Bibliography

[1] D. J. Aldous and J. A. Fill. Reversible Markov Chains
and Random Walks on Graphs. Book in preparation,
http://www.stat.berkeley.edu/~aldous/book.html, 200X.

[2] N. Bhatnagar and D. Randall. Torpid mixing of simulated tempering on the
Potts model. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 478–487 (electronic), New York, 2004. ACM.

[3] A. Bovier. Statistical Mechanics of Disordered Systems - A Mathematical Per-
spective. Cambridge Series in Statistical and Probabilistic Mathematics, 2006.

[4] A. Bovier and I. Kurkova. Derrida’s generalized random energy models I: Pois-
son cascades and extremal processes. 2004.

[5] A. Bovier and I. Kurkova. Derrida’s generalized random energy models. II:
Gibbs measures and probability cascades. 2004.

[6] A. Bovier, I. Kurkova, and M. Löwe. Fluctuations of the free energy in the
REM and the p-spin SK models. Ann. Probab., 30(2):605–651, 2002.

[7] B. Derrida. Random-energy model: an exactly solvable model of disordered
systems. Phys. Rev. B (3), 24(5):2613–2626, 1981.

[8] B. Derrida. A generalization of the random energy model which includes cor-
relations between energies. J. Physique Lett., 46(9):401–407, 1985.

[9] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov
chains. Ann. Appl. Probab., 3(3):696–730, 1993.

[10] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite
Markov chains. Ann. Appl. Probab., 6(3):695–750, 1996.

[11] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov
chains. Ann. Appl. Probab., 1(1):36–61, 1991.

[12] M. Ebbers. Der Swapping Algorithmus im Curie-Weiss und im Potts Modell.
Master’s thesis, Westfälische Wilhelms-Universität Münster, 2007.

[13] T. Eisele and R. S. Ellis. Multiple phase transitions in the generalized Curie-
Weiss model. J. Statist. Phys., 52(1-2):161–202, 1988.

[14] R. S. Ellis, P. T. Otto, and H. Touchette. Analysis of phase transitions in
the mean-field Blume-Emery-Griffiths model. Ann. Appl. Probab., 15(3):2203–
2254, 2005.

[15] R. S. Ellis, H. Touchette, and B. Turkington. Thermodynamic versus statistical
nonequivalence of ensembles for the mean-field blume-emery-griffiths model.
Physica A: Statistical and Theoretical Physics, 335(3-4):518 – 538, 2004.

[16] R. S. Ellis and K. Wang. Limit theorems for the empirical vector of the Curie-
Weiss-Potts model. Stochastic Process. Appl., 35(1):59–79, 1990.

[17] Ellis, Richard S. and Haven, Kyle and Turkington, Bruce. Large deviation
principles and complete equivalence and nonequivalence results for pure and
mixed ensembles. J. Stat. Phys., 101(5-6):999–1064, 2000.

[18] L. Fontes, M. Isopi, Y. Kohayakawa, and P. Picco. The spectral gap of the
REM under Metropolis dynamics. Ann. Appl. Probab., 8(3):917–943, 1998.

95



96 BIBLIOGRAPHY

[19] C. J. Geyer. Markov chain monte carlo maximum likelihood. In Computing Sci-
ence and Statistics: Proceedings of 23rd Symposium on the Interface Interface
Foundation, pages 156–163. Fairfax Station, 1991.

[20] C. J. Geyer and E. A. Thompson. Annealing Markov chain Monte Carlo with
applications to ancestral inference. J. Am. Stat. Assoc., 90(431):909–920, 1995.

[21] V. K. Gore and M. R. Jerrum. The Swendsen-Wang process does not always
mix rapidly. J. Statist. Phys., 97(1-2):67–86, 1999.

[22] O. Häggström. Finite Markov chains and algorithmic applications. London
Mathematical Society Student Texts. 52. Cambridge: Cambridge University
Press. ix, 114 p. 14.95; $ 21.00/pbk; 40.00; $ 60.00/hbk, 2002.

[23] M. Jerrum and A. Sinclair. Approximate counting, uniform generation and
rapidly mixing Markov chains. Inform. and Comput., 82(1):93–133, 1989.

[24] S. C. Kou, Q. Zhou, and W. H. Wong. Equi-energy sampler with applications in
statistical inference and statistical mechanics. Ann. Statist., 34(4):1581–1652,
2006. With discussions and a rejoinder by the authors.

[25] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times.
American Mathematical Society, Providence, RI, 2009. With a chapter by
James G. Propp and David B. Wilson.

[26] M. Löwe and F. Vermet. The swapping algorithm for the Hopfield model with
two patterns. Stochastic Process. Appl., 119(10):3471–3493, 2009.

[27] N. Madras and M. Piccioni. Importance sampling for families of distributions.
Ann. Appl. Prob., 9(4):1202–1225, 1999.

[28] N. Madras and D. Randall. Markov chain decomposition for convergence rate
analysis. Ann. Appl. Probab., 12(2):581–606, 2002.

[29] N. Madras and Z. Zheng. On the swapping algorithm. Random Struct. Algo-
rithms, 22(1):66–97, 2003.

[30] M. Mézard, G. Parisi, and M. A. Virasoro. Spin glass theory and beyond, vol-
ume 9 of World Scientific Lecture Notes in Physics. World Scientific Publishing
Co. Inc., Teaneck, NJ, 1987.

[31] A. Sinclair. Algorithms for random generation and counting: a Markov chain
approach. Birkhauser Verlag, 1993.

[32] D. B. Woodard, S. C. Schmidler, and M. Huber. Conditions for rapid mixing
of parallel and simulated tempering on multimodal distributions. Ann. Appl.
Probab., 19(2):617–640, 2009.

[33] D. B. Woodard, S. C. Schmidler, and M. Huber. Sufficient conditions for torpid
mixing of parallel and simulated tempering. Electron. J. Probab., 14:no. 29,
780–804, 2009.

[34] Z. Zheng. Analysis of swapping and tempering Monte Carlo algorithms. PhD
thesis, York University Ontario, 1999.

[35] Z. Zheng. On swapping and simulated tempering algorithms. Stochastic Pro-
cess. Appl., 104(1):131–154, 2003.


