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1 Introduction

Given a map f : M → B between closed manifolds, is f homotopic to the pro-
jection map of a fiber bundle of closed manifolds? Can the different ways of
fibering f be classified? These questions have a long tradition in geometric
topology. In the research on high-dimensional manifolds, the investigation
of these questions has accompanied the development of the subject since its
beginnings: The fibering theorem of Browder-Levine [BL66] was an early ap-
plication of surgery techniques and the h-cobordism theorem. Further results
have been obtained by Farrell [Far72] and Siebenmann [Sie70] for B = S1,
using the s-cobordism theorem and computations of the Whitehead group of
semi-direct products Goα Z.

Casson [Cas67] pioneered the study of fibering questions for higher-di-
mensional base manifolds by considering B = Sn by applying techniques of
surgery theory. Quinn’s thesis [Qui69] was the first to systematically describe
block structure spaces using the L-theoretic assembly map and to develop a
general obstruction theory to “block fibering” a given map.

In the Q-manifold world, Chapman-Ferry [CF78] obtained the most gen-
eral results available so far. Most recently, in the finite-dimensional case, joint
work of the author with Farrell and Lück [FLS09] shows how the obstructions
defined by Farrell and Siebenmann over S1 can be generalized to arbitrary
base spaces (where they stop being a complete set of obstructions).

In the light of the development of parametrized h-cobordism theory since
the 1970s, this work re-focuses on the role of algebraic K-theory in fiber-
ing questions. As we will see, higher algebraic K-theory of spaces provides
obstructions for both questions of existence and uniqueness. Moreover, the
vanishing of these obstructions has a concrete geometric meaning: The ob-
structions constructed in this work form a complete set of obstructions to
stably fibering manifolds. Here stabilization refers to crossing the total space
with disks of sufficiently high dimension, thus leaving the category of closed
manifolds. In fact, the theory of stably fibering manifolds is best formulated
and proved entirely in the world of compact manifolds with boundary (which
we call compact manifolds for short).
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6 1 Introduction

More concretely, let f : M → B be a map between compact topological
manifolds. Then, by definition, f stably fibers if, for some n ∈ N, the composite

f ◦ Proj: M × Dn→ M → B

is homotopic to the projection map of a fiber bundle whose fibers are compact
topological manifolds. The following questions will be dealt with:

• When does f stably fiber?
• How many different ways are there for f to stably fiber? Denote by

C the set of all bundle maps g : M × Dn → B for some n which are
homotopic to f ◦ Proj. We define two elements to be equivalent, and
write g ∼ g ′, if after further stabilizing the two bundle maps g and
g ′ are isomorphic through a homeomorphism i : M × DN → M × DN

(i.e. i ◦ g = g ′), such that i is homotopic to the identity map. The
precise question is then: How can C/∼ be described?

Factor f into a homotopy equivalence λ followed by a fibration p. Under
a finiteness assumption on the fibers Fb of p, two obstructions will be defined:

(i) Wall(p) ∈ H0(B; Wh(Fb)), which is an obstruction to reducing p to a
fiber bundle of compact manifolds. Here the term Wh is used to de-
note the (connective topological) Whitehead spectrum as defined by
Waldhausen. It is defined in terms of higher algebraic K-theory of
spaces and is closely connected to the classification of parametrized
h-cobordisms. The term H0(B; Wh(Fb)) denotes a specific generalized
cohomology group of B with respect to the Whitehead spectrum of the
fibers, where the coefficients are twisted according to the data of the
fibration p.

(ii) If Wall(p) vanishes, then there is a second obstruction o( f ) lying in a
quotient of the Whitehead group Wh(π1M).

See section 5.1 for the precise explanation of terms.

Theorem 1.1 (Existence). The map f stably fibers if and only if the fibers of p
are homotopy finitely dominated, and Wall(p) and o( f ) both vanish.

Theorem 1.2 (Classification). If f stably fibers, then the set C/∼ is in bijection
with a specific subgroup of H0(B;ΩWh(Fb)).

Again, see section 5.1 for formal statements and proofs. All the results
are proved in the category of topological manifolds, while fibering of com-
pact Q-manifolds is also treated. See Remark 5.5 for some comments on the
differentiable case.
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Outline of the proof

The above results on the stable fibering problem are formal consequences of
corresponding results on certain structure spaces, together with a theorem
by Dwyer-Weiss-Williams [DWW03]. We will be particularly interested in the
structure space Sn(p) of n-dimensional compact manifold structures on a fi-
bration p : E→ B. A point x ∈ Sn(p) corresponds to a fiber bundle q : M → B
whose fibers are compact topological manifolds, and that comes equipped
with a fiber homotopy equivalence p→ q. If B is a point, this is just the usual
definition of the (“honest”) structure space on a space E. However, notice that
there are no extra conditions on the boundary, in contrast to surgery theory.

Structure spaces on fibrations are more interesting than usual structure
spaces in that they allow pairings: For fibrations p : E → B and q : B → B′,
there is an obvious map

Sn(p)×Sk(q)→Sn+k(q ◦ p).

For example, if we take B′ to be a point, then the map relates the structure
spaces of B and p with the structure space of E. In this situation, whenever
p is provided with a canonical structure we obtain a transfer map from the
structure space of B to the one of E.

More interesting for us however will be the case where the space B is
equipped with a canonical structure. In this case we get a map

α: Sn(p)→Sn+k(E)

which geometrically assembles the structures of all the fibers to get one big
structure on the total space. Therefore we are going to call α the geomet-
ric assembly map. (This notion should not be confused with the homotopy-
theoretically defined assembly maps in K- and L-theory.)

The connection of this notion to the fibering problem is given by the fol-
lowing observation: Given f : M n+k → Bk, again factor f into a homotopy
equivalence λ: M → E followed by a fibration p. Then f fibers if and only if
the element in π0Sn+k(E) given by the class of λ “disassembles”, i.e. is in the
image of π0(α).

Thus it is desirable to find a more accessible description of the map α from
a computational point of view. One of the main results of this work is to give
such a description after stabilization. To achieve this, we will make use of two
invariants of the structure space of a compact manifold M . On the one hand,
higher algebraic K-theory can be used to define a “parametrized Whitehead
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torsion” map
τ: Sn(M)→ ΩWh(M),

which factors through the stabilization process given by crossing with unit
intervals. On the other hand the tangent bundle defines a map

T : Sn(M)→map(M , BTOP(n))

which factors through stabilization if we allow ourselves to stabilize the right-
hand side as well.

Combining these two invariants produces a map

τ× T : S (p) := colim
n
Sn(p)→ ΩWh(M)×map(M , BTOP).

It follows from a result of Hoehn [Hoe09] (which in turn builds on the param-
etrized h-cobordism theorem of Waldhausen-Jahren-Rognes [WJR08]) that
this map is a weak homotopy equivalence.

Now if p : E → B is a bundle of compact topological manifolds, then
parametrized versions of the torsion and the tangent bundle maps can be
defined. Similarly to above, there results a weak homotopy equivalence

τ× Tfib : S (p) '−→ Γ
� ΩWhB(E)

↓
B

�

×map(E, BTOP).

(See section 3 for notation. The range of the map τ is, roughly, the space of
sections of the fibration obtained from p by applying the functor ΩWh fiber-
wise. The map Tfib is given by the fiberwise tangent bundle.)

Now that we have an algebraic (or better homotopy-theoretic) description
of the geometrically defined stable structure spaces, we would like to alge-
braically describe the geometric assembly map. Suppose for simplicity that B
is connected. Choose b ∈ B, and consider the composite

α: Γ
� ΩWhB(E)

↓
E

�

Restr.−−→ ΩWh(Fb)
χe(B)·i∗−−−→ ΩWh(E)

where χe(B) is the Euler characteristic of B and i∗ the map induced by the
inclusion from the fiber into the total space. Furthermore, from the H-space
structure on BTOP we get a map

+p∗T B : map(E, BTOP)→map(E, BTOP).
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Theorem 1.3. The following diagram commutes up to homotopy:

S (p) α
//

Tfib×τ
��

S (E)

T×τ

��

map(E, BTOP)×Γ
� ΩWhB(E)

↓
B

�

(+p∗T B)×α
// map(E, BTOP)×ΩWh(E)

In summary, the lower horizontal map in the diagram can be thought of
as an algebraic description of the geometric assembly map appearing in the
upper line. The proof of Theorem 1.3 uses properties of the parametrized
Whitehead torsion with respect to composition, glueing, and taking cartesian
product with contractible manifolds. These properties are proved in section 3.
Building on these results, one can verify the commutativity of the diagram
inductively on a handlebody decomposition of B. This is done in section 4.

Returning to the fibering questions, recall the factorization f = p◦λ of our
map into a homotopy equivalence and a fibration. If the fibers of p are homo-
topy finitely dominated, the work of Dwyer-Weiss-Williams gives a criterion
in terms of the algebraic K-theory of spaces whether p admits a reduction to
a fiber bundle of compact manifolds. This leads to the definition of the first
obstruction in a straightforward way.

Hence if this obstruction is zero, then we may assume that p is actually
a fiber bundle of compact manifolds. In this case, the total space of p is a
compact manifold, so the Whitehead torsion τ(λ) is defined. Its class in the
cokernel of π0(α) is independent of the choice of the bundle p and defines the
second obstruction o( f ). Now it follows from Theorem 1.3 that f stably fibers
if and only if o( f ) = 0. The proof of Theorem 1.2 runs along the same lines,
showing that the different possible ways of stably fibering f is in bijection
with the kernel of π0(α).

It should be mentioned that there is a slightly different, more geometric
way to prove Theorem 1.1 that does not make use of Hoehn’s result. Instead
one can directly conclude from the parametrized h-cobordism theorem that
H0(B;ΩWh(Fb)) may be identified with the isomorphism classes of “stable
fiberwise h-cobordisms on p”. Then the idea of proof is the following: Sup-
posing Wall(p) = 0, we may factor f = p ◦ λ where p is a fiber bundle and λ
is a stably tangential homotopy equivalence. The fact that o( f ) is zero means
that, by definition, the Whitehead torsion of λ is in the image of π0(α); hence
we may glue a parametrized h-cobordism onto p to obtain yet another factor-
ization f = p′ ◦ λ′ where λ′ is a simple homotopy equivalence in addition to
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being stably tangential (this uses Theorem 1.3). Thinking of λ as a “thicken-
ing” in the sense of Wall [Wal66] and using the stable classification of these
thickenings, it follows that λ is stably homotopic to a homeomorphism. The
virtue of this approach is that it produces an upper bound on the number of
stabilizations needed whenever a concordance stable range for the fibers is
known. See Theorem 5.10 for more details.

Organization of the work

The results concerning fibering questions are contained in section 5. The
reader who is only interested in these can start reading there, jumping back
when necessary. The section begins by stating and proving the main fiber-
ing theorems before giving several applications. Of special interest here is
the “change of total space” problem, which avoids the more complicated Wall
obstruction yet still allows interesting examples. Under smoothability assump-
tions, an upper bound on the number of stabilizations needed in the change
of total space problem will be given. After that, a spectral sequence analysis of
the Wall obstruction will lead to a re-interpretation of the results of Chapman-
Ferry in terms of our general obstruction theory. Finally the obstruction de-
fined here will be related to the ones defined by Farrell-Lück-Steimle.

The first two sections of this text are devoted to the definition and proper-
ties of the parametrized Whitehead torsion map. It is built upon the works of
Dwyer-Weiss-Williams on the parametrized A-theory characteristic [DWW03].
However, this characteristic is defined for a single bundle, whereas we want
to get a map on the structure space. Therefore it will be necessary to consider
a universal situation and use the parametrized characteristic there.

Therefore, in section 2, as well as defining structure spaces and giving ele-
mentary properties, a general method by Hughes-Taylor-Williams [HTW90]
will be presented and slightly simplified, which interprets these structure
spaces as spaces of lifts of certain classifying spaces.

The third section starts with the definition of the parametrized Whitehead
torsion map. Afterwards some properties will be proved, including a com-
position rule, additivity (using results of Badzioch-Dorabiała [BD07]), and a
theorem which can be interpreted as a product formula in a special case.

In section 4 the geometric assembly map is defined and Theorem 1.3 is
proved. Similar results will be shown to hold on the level of Q-manifolds as
well.

Finally, the appendix collects some technical results on fibrations, which
are needed to make the classifying-space machinery work.
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2 Structure spaces on fibrations

Given a space X , a manifold structure on X is a homotopy equivalence h: M →
X from a compact manifold M (possibly with boundary) to X . The structure
space Sn(X ) describes all the n-dimensional manifold structures on X . Instead
of defining a topology on Sn(X ), the standard procedure is to use a kind
of “singular construction” to define Sn(X ) as the geometric realization of a
certain simplicial set.

Notice that (i) the object of interest are “honest” fibered structures (and
not block structures), and that (ii) in contrast to surgery theory, there are
no extra conditions on the boundary. For convenience all manifolds will be
assumed to be topological, although all the constructions actually work in
either of the categories of topological, differentiable, or Hilbert Q-manifolds.

The definition of Sn(X ) has a straightforward generalization to the struc-
ture set of a fibration p, which will be defined in the first section. This is also
the place where the homotopy invariance properties will be proved. In the
second section, Corollary 2.8 will show that the structure space on a fibra-
tion p with fiber F is weakly homotopy equivalent to the space of lifts in the
diagram

∐

[M] BTOP(M)

��

B
p

//

66

BG(F)

where the coproduct ranges over the isomorphism classes of compact n-man-
ifolds homotopy equivalent to F . This result is well-known; however this
section will present (and slightly simplify) the machinery of [HTW90] which
can be used for a proof, as analogous results will be needed in a variety of
similar situations later on.

We will always work in the category CGHaus of compactly generated
Hausdorff spaces, and all constructions are to be taken in that category.

13



14 2 Structure spaces on fibrations

2.1 Definition of the structure space on a fibration

Let p : E→ B be a fibration over a paracompact space B. By an n-dimensional
compact manifold structure on p, we mean a commutative diagram

E′

p′ ��
@@@@@@@
ϕ

// E

p
���������

B,

where

• p′ is a bundle of n-dimensional compact (not necessary closed) man-
ifolds (i.e. p′ is the projection map of a fiber bundle with fibers n-
dimensional compact topological manifolds), and

• ϕ is a homotopy equivalence.

For set-theoretic reasons and to obtain good naturality properties, let us
fix a set U of cardinality at least 2|R|, and assume that E′, as a set, is a subset
of B×U , such that the inclusion E′→ B×U is a map over B (with B×U → B
being the projection onto the first factor). For future applications let us also
fix a bijection U ×U →U .

With this proviso all n-dimensional compact manifold structures on p form
a set Sn(p)0. Given a pull-back square of fibrations

E0
//

p0

��

E
p

��

B0
f

// B

(1)

a compact manifold structure on p induces a compact manifold structure on
p0 of the same dimension by restricting with f . More precisely, there is a
unique topology on the set

f ∗E0 := {(b, e) ∈ B0×U ; ( f (b), e) ∈ E0}

such that the obvious square becomes a topological pull-back diagram. Since
the map ϕ is actually a fiber homotopy equivalence, its restriction along f still
is a homotopy equivalence and thus defines a compact manifold structure on
E0.

This allows us to define a simplicial set Sn(p)· by

Sn(p)k := Sn(p× id∆k)0,
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such that the simplicial operations are induced by the restriction operation on
the level of standard simplices.

Definition 2.1. The space of n-dimensional compact manifold structures on p
is the geometric realization

Sn(p) := |Sn(p)·|.

If B is a point, we simply write Sn(E) for Sn(p).

Functoriality. Given a fiber homotopy equivalence ψ: p′ → p of fibrations
over B, we clearly obtain obtain a simplicial map ψ∗ : Sn(p′)· → Sn(p)· by
composition, inducing a map on the structure spaces. On the other hand,
given a pull-back square (1) of fibrations, the restriction operation leads to a
map f ∗ : Sn(p)→Sn(p0).

Both the covariant and the contravariant operation are clearly functorial.
Moreover they are homotopy invariant by the following two lemmas.

Lemma 2.2. If ψ,ϕ : p′ → p are fiber homotopy equivalences that are fiber
homotopic, then ψ∗ ' ϕ∗ : Sn(p′)→Sn(p).

Proof. Denote by p′′ : E′× I → E′→ B the composite of the projection with p′.
The fiber homotopy between ψ and ϕ induces a fiber homotopy equivalence
H : p′′ → p restricting to ψq ϕ along E′ × ∂ I . So it is enough to show that
there is a homotopy

H : Sn(p
′)× I →Sn(p

′′)

between the two maps induced by the front and the back inclusion.
H is the geometric realization of a simplicial map, which on k-simplices is

defined as follows: The pair (y, x), with y : E′→ E ×∆k a homotopy equiva-
lence over B×∆k, and x : ∆k

· →∆
1
· , is mapped to i ◦ y , with

i : E ×∆k
idE × id∆k ×|x |
−−−−−−−→ E ×∆k × I .

Lemma 2.3. (i) Let i0, i1 : B → B × I be the inclusions at 0 and 1. Then
i∗0, i∗1 : Sn(p× idI)→Sn(p) are homotopic.

(ii) Let f : B′→ B be a homotopy equivalence. Then so is f ∗ : Sn(p)→Sn(p′).

Proof. (i) For all simplicial sets X ·, with geometric realization X , there is an
“evaluation map”

Sn(p× idX )× X →Sn(p),
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defined on k-simplices as follows: The pair (y, x), with y a homotopy equiv-
alence E′→ E × X ×∆k over B× X ×∆k, and x : ∆k

· → X ·, is sent to r∗ y , the
pull-back of y via

r : B×∆k
idB× id∆k ×|x |
−−−−−−−→ B×∆k × X .

Now the evaluation map with X · = ∆1
· shows that the maps i∗0, i∗1 : B → B × I

induced by the front and back inclusions are homotopic.
(ii) Let us first show that if f ∗ is a homotopy equivalence and g ' f , then

g∗ is also a homotopy equivalence. In fact, if H : B′ × I → B is a homotopy
between f and g, choose a fiber homotopy equivalence

ϕ : f ∗p× idI → H∗p

over B′× I which is the identity over 0 ∈ I . By (i) we have

g∗ = i∗1H∗ ' (ϕ|1)∗i∗1(ϕ∗)
−1H∗ ' (ϕ|1)∗i∗0(ϕ∗)

−1H∗ ' (ϕ|1)∗i∗0H∗

= (ϕ|1)∗ f ∗ : SN(p)→Sn(g
∗p)

So, if f ∗ is a homotopy equivalence, then so is g∗ since (ϕ|1)∗ a homotopy
equivalence by Lemma 2.2.

Therefore, if f is a homotopy equivalence, and h is a fiber homotopy in-
verse for f , then both f ∗h∗ and h∗ f ∗ are homotopy equivalences, say with
homotopy inverses α and β . Then βh∗ is a left homotopy inverse for f ∗, and
also a right homotopy inverse, since

f ∗βh∗ ' (α f ∗h∗)( f ∗βh∗) = α f ∗(h∗ f ∗β)h∗ ' α f ∗h∗ ' id .

So f ∗ is a homotopy equivalence.

2.2 Structure spaces as spaces of lifts

For two spaces F and B, with B paracompact, let Bunn(B; F) be the category
where an object is a bundle E → B with fibers compact n-dimensional topo-
logical manifolds homotopy equivalent to F . Again we assume that E, as a
set, is a subset of B ×U and the inclusion map E → B ×U is a map over B.
Morphisms in this category are to be isomorphisms of such bundles.

Denote by cpCW the category of compact CW spaces, with continuous
maps. Then the rule X 7→ Bunn(B× X ; F) defines a functor

Bunn(B; F): cpCWop→ cat,
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to the category of small categories. By giving an explicit system of simplices
in cpCW (i.e. an embedding of categories ∆ → cpCW such that [n] maps
to an n-simplex and a morphism [m]→ [n] maps to the corresponding face
or degeneracy map), we can precompose to get a simplicial small category
(i.e. simplicial object in the category of small categories)

Bunn(B; F)· : ∆→ cpCW→ cat.

It is obvious that different choices of systems of simplices leads to naturally
isomorphic simplicial small categories.

Similarly define Fib(B; F) to be the category where an object is a (Hure-
wicz) fibration over B with fibers homotopy equivalent to F . We also require
that the total space of the fibration is a subset of B×U such that the inclusion
map is fiberwise over B. A morphism in Fib(B; F) is to be a fiber homotopy
equivalence. Again this gives rise to a functor cpCWop→ cat by the rule X 7→
Fib(B × X ; F) and therefore to a simplicial category, by precomposing with
the system of simplices. Denote by Bunn(B; F)· resp. Fib(B; F)· the simplicial
sets which are given by the zero-nerves of the respective simplicial categories.
Since B is supposed to be paracompact, any bundle over B×∆n is a fibration,
such that we obtain a natural transformation Bunn(B; F)·→ Fib(B; F)·.

The following construction will finally lead to a description of Sn(p) as a
space of lifts.

Consider a functor C: cpCWop → cat. Here are three properties that such
a functor may have. In fact all our examples of such functors will satisfy all of
these properties. It is useful to think of an object of C(X ) as an object “over”
X and the functoriality operation as a restriction.

Amalgamation property. For any push-out square

X0
� � //

_�

��

X2

��

X1
// X

of compact CW spaces such that for i = 1,2, the map X0 → X i is the
inclusion of a subcomplex, the square

C(X ) //

��

C(X2)

��

C(X1) // C(X0)

with inclusion-induced maps is a pull-back.
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Remark 2.4. (i) In comparison to [HTW90] this condition is slightly dif-
ferent. This difference does not affect the conclusions we are going to
draw.

(ii) To verify that a commutative square

A //

��

B

��

C // D

of categories is a pull-back, it is enough to verify the following two as-
sertions:

(a) Given any two objects b ∈ B and c ∈ C projecting to the same
element d ∈ D, there exists a unique a ∈ A projecting to b and c.

(b) Given any two morphisms β in B and γ in C projecting to the same
morphism δ in D, there exists a unique morphism α in A projecting
to β and γ.

Straightening Property. Denote by p : ∆k × I → ∆k the projection and by
i : ∆k → ∆k × I the inclusion at 0. For any object E ∈ C(∆k × I), there
are to be morphisms

F : E→ p∗i∗E and G : p∗i∗E→ E

in C(∆k× I) which are both the identity map i∗E→ i∗E upon restriction
with i.

Fill-in property. Again denote by p : ∆k × I → ∆k the projection. For any
three objects E0, E1, E ∈ C(∆k) and any two morphisms ϕi : Ei → E,
i = 0,1, the following holds: There is an object Ē over ∆k × I and a
morphism Φ: Ē→ p∗E which restricts to ϕ0 over 0 and to ϕ1 over 1.

Moreover, given two more objects F0, F1 over ∆k together with mor-
phisms ψi : Fi → E, i = 0, 1, which agree with the data (E0, E1,ϕ0,ϕ1)
when restricted to a collection of faces of∆k, there are extensions (Ē,Φ)
and (F̄ ,Ψ) of (E0, E1,ϕ0,ϕ1) and (F0, F1,ψ0,ψ1) that agree when re-
stricted to the same collection ×I .

We again restrict our functor C: cpCWop → cat to a simplicial category
C· : ∆op → cat. Any simplicial small category C· gives rise to three simplicial
sets:
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• The 0-nerve C· := N0C·,
• The (diagonal of the) bisimplicial set N·C·, and
• For each object c ∈ C0, the (diagonal of the) nerve N· End(c)· of the

simplicial monoid End(c)·. The k-simplices of End(c)· are just the endo-
morphisms of c ∈ Ck. (The object c is understood to be lifted to Ck via
the degeneracy operation.)

If the original functor C satisfies the Amalgamation, Straightening, and
Fill-in properties, then the following holds (see [HTW90, §§ 7 and 8]):

(i) All simplicial sets NkC· are Kan.
(ii) The natural inclusion C· = N0C·→ N·C· is a homotopy equivalence.

(iii) The natural inclusion End(c)k → Ck, for all objects c ∈ C0, gives rise to
a homotopy equivalence

∐

[c]∈π0C·

N· End(c)·→ N·C·.

(iv) Suppose that D: cpCWop → cat is another functor and that f· : D· → C·
is a natural transformation between the associated simplicial categories.
For c ∈ C0, the comma categories fk/c define a simplicial small category
f·/c whose zero-nerve fits into a homotopy fibration sequence

N0f·/c→ D·
f·→ C·

(homotopy fiber over the point c ∈ C0).

The following has been proven in a slightly different form in [HTW90, §7].

Lemma 2.5. Both functors Bunn(B; F) and Fib(B; F) satisfy the Amalgamation,
Straightening, and Fill-in properties provided B is metrizable and ULC.

Recall that a space B is ULC (or locally equiconnected) if there is a neigh-
borhood U ⊂ B× B of the diagonal and a homotopy

H : U × I → B

between the first and the second projection which is relative to the diagonal.
For example, if B is a metrizable ANR (e.g., a locally finite CW complex), then
it is also ULC.

Proof. For bundles, the Amalgamation property is classical, and so is the
Straightening property. Fill-ins are given by mapping cylinders. (Strictly
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speaking, given a map ϕ : E → E′ over B, think of its mapping cylinder as
a subset E × [0, 1)∪ E′ × {1} of B × I ×U , endowed with the suitable topol-
ogy.)

As for fibrations, see A.12 for the Amalgamation property. Straightening
for fibrations follows from homotopy lifting. The existence of fill-ins for fibra-
tions is proven in Proposition A.18.

Corollary 2.6. (i) For any fibration p : E→ B which is an object of Fib(B; F)
over a metrizable ULC base space, there is a simplicial homotopy equiva-
lence

Sn(p)·→ hofibp(Bunn(B; F)·→ Fib(B; F)·)

which is natural in B.

(ii) We have

Bunn(∗; F)· '
∐

[M]

BTOP(M)·, Fib(∗; F)· ' BG(F)·,

where TOP(M)· resp. G(F)· denotes the simplicial monoid of self-homeo-
morphisms resp. self-homotopy equivalences, and the coproduct ranges
over all isomorphism classes of compact n-manifolds homotopy equivalent
to F.

Now we are going to show that we have obtained suitable models for
classifying spaces.

Lemma 2.7. Let X · be a locally finite simplicial set.

(i) There are natural simplicial isomorphisms

Bunn(|X ·|; F)· ∼=map·(X ·, Bunn(∗; F)·)
Fib(|X ·|; F)· ∼=map·(X ·, Fib(∗; F)·)

(ii) For any fibration p : E → B, with B the geometric realization of a locally
finite simplicial set B·, there is a natural simplicial isomorphism

hofibp(Bunn(B; F)·→ Fib(B; F)·)→ Lift

 

Bunn(∗; F)·
↓

B·
p
−→ Fib(∗; F)·

!

.
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Notation. Here and in the following, when referring to a space of lifts, we
will always implicitly assume that the vertical map has been converted into a
fibration (Kan fibration for simplicial sets or Hurewicz fibration for topological
spaces).

Proof. (i) We only treat the case of bundles; the other case is completely anal-
ogous. We only need to give a natural bijection

D : Bunn(|X ·| × Y ; F)0→map0(X ·, Bunn(Y ; F)·)

on the level of 0-simplices.
Let q : E → |X ·| × Y be a 0-simplex in the left hand side. We need to asso-

ciate to it a simplicial map X ·→ Bunn(Y ; F)·. Therefore let σ be an l-simplex
of X ·, represented by a simplicial map σ : ∆l

· → X ·. The pull-back (|σ|× idY )∗q
is then a bundle over ∆l × Y which defines an l-simplex in Bunn(Y ; F)·.

Here is a description of the inverse D′ of D. Let φ· : X · → Bunn(Y ; F)· be
a simplicial map. For a nondegenerate k-simplex τ of Bunn(Y ; F)·, denote by
E(τ) the total space of the corresponding bundle over B(τ) = Y ×∆k.

Now define E→ |X ·| × Y to be the bundle
⋃

σ

E(φ(σ))→
⋃

σ

B(φ(σ)),

with σ ranging over the nondegenerate simplices of X ·. If X · is finite, then this
is a bundle by the Amalgamation property. Otherwise use the fact that there
is an open cover of |X ·| such that each element of the cover is contained in a
finite simplicial subset.

The total space is canonically a subset of |X ·| × Y ×U , so the bundle is
really a zero simplex in Bunn(|X ·| × Y ; F)· and the map D′ is a strict inverse of
D.

(ii) follows from (i).

Denote by Fib(B; F) the geometric realization of Fib(B; F)·, and define
Bunn(B; F) similarly.

Corollary 2.8. If B is a locally finite ordered simplicial complex, then there is a
natural weak homotopy equivalence

Sn(p)→ Lift

 

Bunn(∗; F)
↓

B
p
−→ Fib(∗; F)

!

.



22 2 Structure spaces on fibrations

Remark 2.9. There is still a weak homotopy equivalence, well-defined up to
homotopy, if B is homotopy equivalent to a locally finite ordered simplicial
complex, as both domain and target are homotopy invariant.

Proof of Corollary. This follows from our simplicial results obtained so far af-
ter passage to geometric realization. Therefore we are left to show that the
map induced by geometric realization

hofibp(map·(B·, Bunn(∗; F)·)→map·(B·, Fib(∗; F)·))
→ hofibp(map(B, Bunn(∗; F))→map(B, Fib(∗; F)))

is a weak equivalence.
For any Kan complex Y·, the geometric realization map map·(X ·, Y·) →

map(X , Y ) is a weak homotopy equivalence. Moreover, since we assumed
Bunn(∗; F)·→ Fib(∗; F)· to be converted to a Kan fibration, its geometric real-
ization is a Serre fibration, by a well-known theorem of Quillen, and the inclu-
sion of its fiber into the Hurewicz fiber is a weak homotopy equivalence.

2.3 Universal “bundles”

Using the construction in the proof of Lemma 2.7, we can associate to the
identity map Bunn(∗; F)·→ Bunn(∗; F)· a map

Ẽn→ B̃ := |Bunn(∗; F)·|,

which, by Lemma 2.7, is a bundle over every locally finite subcomplex of B̃ .
Similarly, we obtain a map

E →B := |Fib(∗; F)·|

which is a fibration over every locally finite subcomplex ofB .
We will speak of both maps as the universal “bundles”, although we didn’t

prove any result that they are actually bundles or fibrations. In fact we will
see that the stated property is just good enough for our purposes.



3 The parametrized Whitehead torsion

The classical Whitehead torsion defines a map

τ: π0Sn(M)→Wh(π1M), [ f : N → M] 7→ τ( f )

for a compact topological manifold M , using the extension of classical simple
homotopy theory to compact ANRs (or using Chapman’s theorem of homeo-
morphism invariance of the Whitehead torsion together with results of Kirby-
Siebenmann on topological manifolds).

In this section we will define a “parametrized Whitehead torsion”

τ: Sn(p)→ Γ
� ΩWhB(E)

↓
B

�

whenever p : E → B is a bundle of compact topological manifolds. Here the
right-hand side is the space of sections of a fibration over B which is obtained
from p by applying ΩWh fiberwise, as defined by [DWW03] (see below). The
symbol Wh denotes the connective topological Whitehead functor as defined
by Waldhausen. In the case where B is a point, the parametrized Whitehead
torsion reduces to

τ: Sn(E)→ ΩWh(E)

whose induced map on path components will be identified to the classical
Whitehead torsion (Section 3.8).

The definition of the parametrized torsion can be outlined as follows:
Given a fibration p : E → B satisfying a finiteness condition on the fibers,
Dwyer-Weiss-Williams define a “parametrized A-theory characteristic”

χ(p) ∈ Γ
� AB(E)

↓
B

�

.

If p is actually a fiber bundle of compact topological manifolds, then it has a
canonical refinement over the fiberwise assembly map

Γ
� A%

B (E)
↓
B

�

→ Γ
� AB(E)

↓
B

�

.

23
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LettingB be the base space of the universal fibration with fiber F and B̃ the
base space of the universal bundle with fibers compact n-manifolds homotopy
equivalent to F , the results of Dwyer-Weiss-Williams therefore yield a diagram

B̃ //

��

A%
B(E )

��

B
χ(P )

// AB(E )

Hoehn [Hoe09] used this diagram to produce a map

χ% : Sn(p)→ Lift







A%
B(E )
↓

B
χ(p)
−→ AB(E )






,

by thinking ofSn(p) as a space of lifts. The map χ% will be called parametrized
excisive characteristic by us.

The transition from the parametrized excisive characteristic to the param-
etrized torsion requires an analysis of the loop space structure on the range of
χ%. In fact, up to weak homotopy equivalence, there is an “addition” map

Lift







A%
B(E )
↓

B
χ
−→ AB(E )






×Lift







A%
B(E )
↓

B
χ ′

−→ AB(E )






→ Lift







A%
B(E )
↓

B
χ+χ ′
−→ AB(E )






.

So, if p is a bundle of compact n-manifolds, we can consider the the difference
between χ% and the constant map χ%(p). Using that

Lift







A%
B(E )
↓

B
0−→ AB(E )






' Γ
� ΩWhB(E)

↓
B

�

we obtain the parametrized torsion map
Just as the classical torsion is invariant under stabilization M 7→ M× I , the

same is true for the parametrized version. The stabilized torsion map, defined
on the stable structure space, will be important for us since we will see in
section 4 that its homotopy fiber can be explicitly described.

The first subsection reviews the construction of the parametrized A-theory
characteristic as defined by Dwyer-Weiss-Williams [DWW03]. After defining
the parametrized torsion and its stabilized version, we will establish certain
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properties of the parametrized torsion map, such as additivity, composition
rule, and a particular case of a product formula. They will be of central im-
portance in the following sections.

Finally, in section 3.7, we relate the parametrized torsion to Waldhausen’s
map, which is a homotopy equivalence from a space of stable h-cobordisms
on M to ΩWh(M) (section 3.7). This allows to identify π0 of the section space
appearing in the map τ with isomorphism classes of “stable parametrized h-
cobordisms over p”.

3.1 The parametrized A-theory characteristic

Let p : E→ B be a fibration over a space which is the geometric realization of
a simplicial set B·, such that the fibers are homotopy finitely dominated. Given
such a fibration, one can associate the parametrized A-theory characteristic

χ(p) ∈ holim
σ∈simp B·

A(Eσ).

Here simp B is the category of simplices of the simplicial set B· and Eσ = |σ|∗E,
the pull-back of E to a bundle over the simplex |σ|. See the first remark below
for a review of the definition of χ(p).

The homotopy limit can be understood, up to homotopy, as a space of
sections of a fibration over B which is obtained from p by applying the A-
theory functor fiberwise:

holim
σ∈simp B·

A(Eσ)' Γ
� AB(E)

↓
B

�

.

See the second remark below for this identification.

Background on characteristics. Denote by cat the category of small categories.
Given a small category C and a functor F : C → cat, a characteristic for F is a
natural transformation

χ : C /?→ F

where C /c is the over category where an object is a morphism d → c in C
and a morphism is a commutative triangle.

Unraveling the definitions, we see that χ is given by the following data:

(i) For each object c of C , a “characteristic object” c! ∈ F(c), which cor-
responds to the image of the identity morphism on c under the functor
χ(c), and
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(ii) For each morphism ϕ : c → d in C , a morphism ϕ! : ϕ∗(c!)→ d !, satis-
fying the cocycle condition (e f )! = e! ◦ e∗( f !).

For us, there are basically two ways how such characteristics occur:

(i) Let f be a space-valued functor on C such that all objects are mapped
to homotopy finitely dominated spaces, and all morphisms are mapped
to homotopy equivalences. If we denote by R f d(X ) the Waldhausen
category of homotopy finitely dominated spaces over X , we obtain a
characteristic for the functor R f d ◦ f , with characteristic object c! =
f (c)× S0, considered as a retractive space over f (c).

(ii) If f maps all objects even to compact ENRs, and maps all morphisms
to cell-like maps between these, then we obtain a characteristic for a
specific functor R% ◦ f , with R%(X ) defined below. It has the feature
that |R%(X )| maps to A%(X ).

To get back to the A-theory characteristic, let C = simp B· be the cate-
gory of simplices of the simplicial set B·, and let f (σ) = Eσ := |σ|∗E. The
prodedure just described yields a characteristic on F =R f d ◦ f .

Now let G : C → CGHaus be a functor. Then a characteristic for G is
defined to be a natural transformation

χ : |C /?| → G.

Obviously the geometric realization of a characteristic on F as above defines a
characteristic on |F |. In our example above, notice that there is a natural map

|R f d(Eσ)| → K(R f d(Eσ)) = A(Eσ)

reminiscent of the group completion. Hence, by composition of natural trans-
formations, we also obtain a characteristic for the functor

σ 7→ A(Eσ).

The space of all characteristics for G, endowed with its canonical topology,
is by definition the homotopy limit holim G. In summary, the characteristic on
the functor F : simp B·→ cat defined above produces an element

χ(p) ∈ holim
σ∈simp B·

A(Eσ).

Background on homotopy limits and section spaces. For a functor F from a small
category C to spaces, working with the standard model for the homotopy
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limit, a point χ ∈ holim F is just a natural transformation |C /?| → F . Such a
natural transformation induces a lift

hocolim F

��

hocolim |C /?| α
//

χ∗
44

hocolim∗= |C |

of the canonical projection α. The homotopy equivalence α induces a homo-
topy equivalence

α∗ : Γ
� hocolim F

↓
|C |

�

'−→ Lift

�

hocolim F
↓

hocolim |C /?| −→ |C |

�

.

(Recall that in our notation, all vertical maps have been converted into fibra-
tions.)

If F sends all morphisms to homotopy equivalences, we obtain a zigzag of
weak homotopy equivalences

holim F ' Γ
� hocolim F

↓
|C |

�

.

In our case, C = simp B·, so |C | ' B by Kan’s last vertex map. The functor
F sends a simplex σ ∈ simp B· to the space Eσ := |σ|∗E, the total space of
the pull-back of E over σ. By definition, the map AB(E)→ B is the fibration
associated with the composite hocolim F → |C | → B.

If the fibration p happens to be a bundle with fibers compact (not nec-
essarily closed) topological manifolds, Dwyer-Weiss-Williams also define an
excisive characteristic. Informally, it can be understood as a refinement of
χ(p) in the sense that it defines, up to homotopy, and element in

χ%(p) ∈ Lift







A%
B (E)
↓

B
χ(p)
−→ AB(E)







where the vertical map is the fiberwise assembly map α. Thus it defines a
section of the fibration over B obtained by applying the functor A% fiberwise,
together with a path from αχ%(p) to χ(p). In the homotopy limit language
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we obtain (up to homotopy) an element in the homotopy fiber over χ(p) of
the map

holim
σ∈simp B·

A%(Eσ)→ holim
σ∈simp B·

A(Eσ)

Formally, the excisive characteristic is an element in another homotopy
limit space whose definition we will not repeat at this place. For more details,
consult subsection 3.4.

Naturality. If f· : B′· → B· is a simplicial map, then we have the following nat-
urality properties:

Lemma 3.1. (i) If p : E→ B is a fibration as above, then under the restriction
map

holim
σ∈simp B·

A(Eσ)→ holim
σ∈simp B′·

A(Eσ)

the A-theory characteristic χ(p) maps to the A-theory characteristic of the
retriction p′ of p along f .

(ii) If p is a bundle of compact topological manifolds, then there is a canonical
homotopy class of paths between χ%(p′) and the image of χ%(p) under
the restriction map

hofibχ(p)

� holimσ∈simp B· A
%(Eσ)

↓
holimσ∈simp B· A(Eσ)

�

→ hofibχ(p′)

� holimσ∈simp B′·
A%(Eσ)

↓
holimσ∈simp B′·

A(Eσ)

�

Remark 3.2. The models for the A-theory spaces that we are going to use are
the following:

A(X ) = K(R f d(X )),

thus the K-theory of the Waldhausen category of homotopy finitely dominated
spaces over X , and

A%(X ) = holim
�

K(V (X ))→ K(R ld(JX ))← K(R f d(X ))
�

as in [DWW03, section 8]. See p. 58 for the definition of the excisive charac-
teristic in this model. It does not have the best possible naturality properties
in that it is not natural under localizations, but it has the advantage that the
assembly map is easily defined as the projection from the homotopy limit to
K(R f d(X )).

Following [BD07], we denote by R%(X ) the pull-back of

V (X )→R ld(JX )←R f d(X ),
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thus obtaining a canonical map K(R%(X ))→ A%(X ). Hence any characteristic
for the functor X 7→ R%(X ) produces an A%-valued characteristic. The excisive
characteristic that we will use is defined this way.

3.2 Definition

The parametrized excisive characteristic

Recall from section 2 that B := |Fib(∗; F)·| and B̃ := |Bunn(∗; F)·| carry uni-
versal “bundles”. They have the property that the restriction of the “bundles”
over every locally finite subcomplex are fibrations resp. bundles. This is good
enough to define parametrized characteristics, which only make use of the
restrictions over simplices.

Choose a representative

χ(P ) ∈ Γ
� AB(E )

↓
B

�

of the parametrized A-theory characteristic of the universal “bundle” over B .
We obtain a commutative diagram as follows

B̃
χ%(P̃ )

//

f

��

A%
B̃(Ẽ ) // A%

B(E )

��

B
χ(P )

// AB(E )

(1)

by the following lemma, applied to the forgetful map f : B̃ → B which con-
siders a bundle as a fibration.

Lemma 3.3. Given a simplicial map f· : B· →B· together with an element χ ∈
holimσ∈simp B· A(Eσ), there is a zigzag of weak homotopy equivalences

hofibχ
�

holim
σ∈simp B·

A%(Eσ)→ holim
σ∈simp B·

A(Eσ)
�

' Lift







A%
B(E )
↓

B
χ◦ f
−→ AB(E )







which is natural in B·.
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Proof. The square

Γ
� A%

B (E)
↓
B

�

//

��

Γ
� AB(E)

↓
B

�

��

map(B, A%
B(E )) // map(B, AB(E ))

is a weak homotopy pull-back. Now recall that the section spaces in the upper
line are weakly homotopy equivalent to the corresponding homotopy limits.

Composition with diagram (1) induces a map

Lift

 

B̃
↓

B
p
−→ B

!

→ Lift







A%
B(E )
↓

B
χ(P )◦p
−→ AB(E )






.

Notation. From now on, suppose that one choice for χ(P ) and for the dia-
gram (1) has been made. The notation χ(p) will, by abuse of notation, also
denote the map χ(P ) ◦ p.

Definition 3.4. Let p : E → B be a fibration which is an object of Fib(B; F)
with a fiber F that is homotopy finitely dominated. Suppose that the B is
homotopy equivalent to a locally finite simplicial complex. The parametrized
excisive characteristic of p is the composite

χ% : Sn(p)
'−→ Lift

 

Bunn(∗; F)
↓

B
p
−→ Fib(∗; F)

!

→ Lift







A%
B(E )
↓

B
χ(p)
−→ AB(E )






.

Loop space structure and the parametrized torsion

Notice that in Lemma 3.3, in the right-hand side the loop space structure is
not visible any more, while it is present in the left-hand side. Hence, also the
range of the parametrized excisive characteristic carries such a structure. For
example, up to weak homotopy equivalence, there is a “difference map”

Lift







A%
B(E )
↓

B
χ(p)
−→ AB(E )






×Lift







A%
B(E )
↓

B
χ(p)
−→ AB(E )







−−→ Lift







A%
B(E )
↓

B
0−→ AB(E )
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where we may identify the target with holimσ∈simp B· ΩWh(Eσ) and hence with
a section space.

Definition 3.5. (i) The parametrized Whitehead torsion map

τ: Sn(p)×Sn(p)→ Γ
� ΩWhB(E)

↓
B

�

is given by τ(?, ??) = χ%(?)−χ%(??).

(ii) If p is itself an object of Bunn(B; F), it defines a canonical element id ∈
Sn(p). In this case, we simply write

τ= τ(·, id): Sn(p)→ Γ
� ΩWhB(E)

↓
B

�

and also refer to it as the parametrized Whitehead torsion map.

Just as the excisive characteristic, the torsion is well-defined up to homo-
topy.

Naturality properties

The excisive characteristic is natural with respect to fiber homotopy equiv-
alences in the following sense: Let p : E → B and p′ : E′ → B be fibrations
for which the excisive characteristic is defined, and let ϕ : p → p′ be a fiber
homotopy equivalence. Define a map

ϕ∗ : Lift







A%
B(E )
↓

B
χ(p)
−→ AB(E )






→ Lift







A%
B(E

′)
↓

B
χ(p′)
−→ AB(E ′)







as follows: The fiber homotopy equivalence ϕ induces a homotopy between
the maps p, p′ : B →B and therefore a homotopy between χ(p),χ(p′): B →
AB(E ). The map ϕ∗ is induced by standard fiber transport along this homo-
topy.

Then we have ϕ∗ ◦χ% ' χ% ◦ϕ∗. This follows from the definitions.
Moreover, the parametrized torsion is compatible with pullbacks. More

precisely:
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Remark 3.6. For f : B′→ B, the following square with obvious maps is com-
mutative up to homotopy:

Sn(p)
f ∗

//

τ
��

Sn( f ∗p)

τ
��

Γ
� ΩWhB(E)

↓
B

�

f ∗
// Γ
� ΩWhB′( f ∗E)

↓
B′

�

A compatibility result

To formulate our next result, let us rewrite the first construction in more for-
mal terms. As we pointed out, composition defines a map

Sn(p)× Lift







A%
B(E )
↓

B̃
χ(P )◦ f
−→ AB(E )






→ Lift







A%
B(E )
↓

B
χ(p)
−→ AB(E )






(2)

(using the description of the structure space as a space of lifts). It is adjoint to

π0 Lift







A%
B(E )
↓

B̃
χ(P )◦ f
−→ AB(E )






→






Sn(p), Lift







A%
B(E )
↓

B
χ(p)
−→ AB(E )












. (3)

Now the constructions of Dwyer-Weiss-Williams produce an element in the
left hand side of this adjoint, by Lemma 3.3. The image of this element in the
right-hand side is the parametrized excisive characteristic as defined above.

Lemma 3.7. The map (3) preserves the loop space structure induced by Lemma
3.3.

This result shows that whenever the Dwyer-Weiss-Williams characteristics
of certain bundles decompose as a sum of other characteristics, the same is
true for the parametrized excisive characteristic (and hence for the param-
etrized Whitehead torsion). This will be important in the proof of the Addi-
tivity theorem down below.

The remainder of this subsection will be devoted to the proof of this
Lemma. While the idea of proof is simple – define the map directly on the
level of homotopy limits using precomposition alias restriction – the proof is
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technically more difficult due to the replacement of the simplicial set B· by its
category of simplices.

For example, we would like to define a map

holim
σ∈simpB̃·

A(Eσ)× Lift





B̃·
↓

B·
p
−→ B·



→ holim
σ∈simp B·

A(Eσ) (4)

by the following rule: Given a simplicial map q· : B· → B̃· lifting p, then q·
induces a functor q∗ : simp B· → simpB̃·. Restriction along q∗ defines a map
from the homotopy limit space appearing in the left-hand side to the one in
the right-hand side.

The commutative diagram

Lift
�

AB (E )
↓

B̃
f
−→ B

�

//

'
��

Lift
�

AB (E )
↓

B
p
−→ B

�

'
��

Lift
�

AB (E )
↓

hocolim | simpB̃·/?| −→ B

�

// Lift
� AB (E )

↓
hocolim | simp B·/?| −→ B

�

holimσ∈simp B̃· A(Eσ) //

'
OO

holimσ∈simp B· A(Eσ)

'
OO

(5)

would then show that under the passage to section spaces, this map corre-
sponds to the restriction operation in (2).

The above rule works fine if we are given a single simplicial map q· : B·→
B·, i.e. a 0-simplex in the corresponding simplicial set of lifts. However al-
ready a 1-simplex in the space of lifts is given by a simplicial map q· : B·×∆1

· →
B̃·, and there is no canonical way to obtain a path in the right-hand side
joining the images of the two faces of q. Instead we get an element in
holimσ∈simp(B·×∆1

· )
A(Eσ).

The remedy is to define a simplicial space X · by

Xn := holim
σ∈simp(B·×∆n

· )
A(Eσ).

The simplicial structure is given by restriction along the correspdonding func-
tors between categories of simplices. Since the inclusion

c· holim
σ∈simp B·

A(Eσ) = c·X0→ X ·
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of the constant simplicial object is an objectwise weak homotopy equivalence,
we obtain a weak homotopy equivalence after thick realization in the sense of
Segal [Seg74] (i.e. geometric realization of the underlying ∆-space).

The thick realization of X · has a loop space structure compatible with the
one on X0. Indeed, let Xn → ΩYn be a simplicial homotopy equivalence. It
induces

‖X ·‖
'
// ‖ΩY·‖ // Ω‖Y·‖

‖Ωc·Y0‖

'

OO

'
// Ω‖c·Y0‖

'

OO

Now our rule from above defines a simplicial map

c· holim
σ∈simpB̃·

A(Eσ)× Lift





B̃·
↓

B·
p
−→ B·



→ X ·

whose thick realization is compatible with the loop space structures. This will
be our model for the map (4). (Notice that there is a homeomorphism

‖c·A× B·‖ ∼= A×‖B·‖

for any simplicial space B· and any space A.)
The suitably adapted version of diagram (5) shows that under passage to

section spaces, this map still corresponds to restriction.
Now the same arguments work for the functor A% instead of A, and since

everything is natural, we obtain a map on homotopy fibers.

3.3 Composition rule and homeomorphism invariance

Here and in the following, we suppose that all bundles p : E → B are such
that the parametrized Whitehead torsion map is defined, i.e. we suppose that
p ∈ Bunn(B; F) with a base space B which is homotopy equivalent to a locally
finite simplicial complex.

The essential properties of the classical Whitehead torsion generalize to
the parametrized version. The behaviour under composition is a formal con-
sequence of the naturality properties of the excisive characteristic:
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Proposition 3.8 (Composition rule). Let ϕ : p→ p′ is a fiber homotopy equiv-
alence. Then, the following diagram commutes up to homotopy:

Sn(p)
ϕ∗

//

τ
��

Sn(p′)

τ−τ(ϕ)
��

Γ
� ΩWhB(E)

↓
B

�

ϕ∗
// Γ
� ΩWhB(E′)

↓
B

�

Proof. To be precise, the left hand vertical map is the map τ(·, idp) whereas
the right hand vertical map is the map

τ(·, idp′)−τ(ϕ, idp′) = (χ
%−χ%(idp′))− (χ%(ϕ)−χ%(idp′)) = χ

%−χ%(ϕ)

up to homotopy. Now the commutativity of the diagram follows from the
naturality of the excisive characteristic.

The homeomorphism invariance of the parametrized torsion is built in the
definitions:

Remark 3.9. If ϕ : E′→ E is a fiber homeomorphism of bundles, then τ(ϕ) =
0. In fact, the fiber homeomorphism provides ϕ ∈ Sn(p) with a canonical
nullhomotopy.

3.4 The torsion on the stable structure space

So far we defined for each space Sn(p), n ∈ N, a parametrized torsion map
τ =: τn. This map is well-defined only up to homotopy since it involved a
choice of a representative for χ%(P̃n) =: χ%

n and χ(P ) =: χ for the universal
“bundles” P̃n (over B̃n := Bunn(∗; F)) and P (overB := Fib(∗; F)).

Now consider the stabilization map

S : Sn(p)→Sn+1(p)

which on k-simplices is defined by the rule

(E′→ E) 7→ (E′× I → E′→ E)

where E′ is a bundle of n-manifolds over B×∆k.
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(Strictly speaking, the unit interval is here a fixed subset of our universe
U . We then can make use of the fixed bijection U ×U → U to consider
E′× I as a subset of B×∆k ×U .)

Under the weak homotopy equivalence

Sn(p)
'−→ Lift

 

Bunn(∗; F)
↓

B
p
−→ Fib(∗; F)

!

the stabilization looks as follows: Given p′ : B → Bunn(∗; F) and a homotopy
H from projection of p′ to p, we have

S(p′, H) = (S(p′), H ∗ K)

where S : Bunn(∗; F) → Bunn+1(∗; F) is the obvious stabilization map and K
is the canonical homotopy coming from the fiber homotopy equivalence be-
tween the bundle p′ and its stabilization S(p′).

The stabilization map is a special case of a map

×X : Sn(p)→Sn+k(p)

defined for any contractible compact k-manifold X , given as a subset of U .
The goal of this section is to extend the individual maps τn to a stabilized

torsion

τ: S (p) := hocolim
n

Sn(p)→ Γ
� ΩWhB(E)

↓
B

�

.

The main ingredient for this will be a lax naturality of the excisive character-
istic:

Theorem 3.10. (i) Let X be a contractible compact manifold, p : E → B a
bundle of compact topological manifolds, and consider the bundle p′ =
p ◦π: E′ = E × X → E→ B. The canonical path

π∗χ(p
′)  χ(p)

between the Dwyer-Weiss-Williams homotopy invariant characteristics, in-
duced by π, lifts along the fiberwise assembly map α, up to homotopy
relative endpoints, to a path

π∗χ
%(p′)  χ%(p)

between the Dwyer-Weiss-Williams excisive characteristics.
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(ii) If Y is another contractible compact manifold, let p′′ : E × X × Y → B be
the corresponding bundle. If π′ : E×X ×Y → E×X is the projection, then
the two possible ways of lifting the path

π′∗π∗χ(p
′′)  χ(p)

are homotopic relative endpoints.

(See the proof below for the formal definition of the excisive characteristic
and of the map π∗.)

Now, to be able to define the stabilized torsion, we have to relate the
choices we made for the different representatives χ%

n . To do that, denote by

B̃ := hocolim
n

B̃n

the homotopy colimit over the stabilization maps. There is an induced map-
ping f : B̃ →B and we have

S (p)' Lift

 

B̃
↓

B
p
−→ B

!

.

Hence, to obtain a parametrized Whitehead torsion in the same way as in
section 3.2, we need to produce a homotopy class of lifts in the diagram

A%
B(E )

��

B̃
χ(P )◦ f

//

77

AB(E )

(6)

Now there is a commutative diagram

map(B̃ , A%
B(E ))

'
//

��

holimn map(B̃n, A%
B(E ))

��

map(B̃ , AB(E ))
'

// holimn map(B̃n, AB(E ))

(7)

where the horizontal maps are homotopy equivalences. Notice that in the
right-hand side, for each n the vertical homotopy fiber over χ(Pn) ◦ f is a
space of lifts which can be interpreted completely in terms of homotopy limits,
by Lemma 3.3.
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Remark 3.11. If
. . .

f3−→ X2
f2−→ X1

f1−→ X0

is a diagram indexed by the naturals, then a map g : A→ holimi X i into the
homotopy limit is given by a sequence of maps gi : A → X i together with a
sequence of homotopies between gi and fi+1 ◦ gi+1.

Using this remark, we may now apply of Theorem 3.10, together with the
naturality properties of the Dwyer-Weiss-Williams characteristics in Lemma
3.1 to obtain an element in the upper right-hand side of diagram (7). Its
projection in the lower right-hand side will agree with the image of χ(P ) ◦ f
under the lower horizontal map. Hence we obtain up to homotopy an element
in the upper left-hand side projecting to χ(P ) ◦ f , i.e. a lift in the diagram
(6).

Excisive characteristics and cell-like projections

This section deals with the proof of Theorem 3.10. We will prove this Theorem
using the formal definition of the excisive characteristic, which we recall here.

For a simplicial set B· with geometric realization B, and a fiber bundle
p : E → B of compact manifolds, let tB· be the simplicial set where an n-
simplex is an n-simplex σ of B·, together with an equivalence relation θ on
Eσ := |σ|∗E, with quotient space Eθσ, such that the projections induce a home-
omorphism Eσ → ∆n × Eθσ over |σ| ∼= ∆n. Then, the functor from simp tB·
to spaces, sending (σ,θ) to Eθ

σ
, maps all objects to compact ENRs and all

morphisms to homeomorphisms (which are cell-like maps). Thus we obtain a
characteristic for the functor

σ 7→ R%(X ).

By geometric realization and the map |R%(X )| → K(R%(X )) → A%(X ) we
therefore get an excisive characteristic

χe(p) ∈ holim
(σ,θ)

A%(Eθσ).

The projection holimσ A%(Eσ)→ holim(σ,θ) A
%(Eθσ) is a homotopy equiva-

lence. Hence up to homotopy, the excisive characteristic defines a section in a
suitable fibration:

χe(p) ∈ Γ
� A%

B (E)
↓
B

�

.
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Moreover the images of χ(p) and χe(p) in holim(σ,θ) A(Eθσ) are connected by
a canonical path. We obtain therefore an element in

χ%(p) ∈ holim
�

holim
σ

A(Eσ)
'−→ holim

(σ,θ)
A(Eθσ)← holim

(σ,θ)
A%(Eθσ)

�

' holim
�

holim
σ

A%(Eσ)→ holim
σ

A(Eσ)
�

which projects to χ(p).
Let us denote by tB· and t ′B· the simplicial sets obtained by applying the

above construction to the bundles p resp. p′. We now introduce a third sim-
plicial set t t ′B·, where an n-simplex consists of a triple (σ,θ ,θ ′) such that
(σ,θ) and (σ,θ ′) are n-simplices of tB· and t ′B·, respectively, and the respec-
tive homeomorphisms fit into a commutative diagram of the form

E′σ
π

//

∼=
��

Eσ
∼=
��

∆n× (E′)θ ′σ
id×g

// ∆n× Eθ
σ

(8)

There are forgetful simplicial maps t t ′B·→ tB· and t t ′B·→ t ′B·; the first map
has a section: it maps (σ,θ) to (σ,θ ,θ ′), with θ ′ the equivalence relation on
E′σ
∼= Eσ × X such that (e, x)θ ′(e′, x ′) if and only if x = x ′ and eθ e′. These

maps induce pull-back maps

holim
(σ,θ)

A%(Eθσ)
f
�

s
holim
(σ,θ ,θ ′)

A%(Eθσ)

holim
(σ,θ ′)

A%�(E′)θ
′

σ

� g
→ holim
(σ,θ ,θ ′)

A%�(E′)θ
′

σ

�

Denote by χ̄e(p) ∈ holim(σ,θ ,θ ′) A
%(Eθσ) the corresponding characteristic for the

functor (σ,θ ,θ ′) 7→ A%(Eθσ), and define χ̄e(p′) similarly.
The category simp t t ′B· is defined such that π induces a cell-like natural

transformation π̄: (E′)θ
′

σ → Eθσ.

Claim. There is a canonical path from π̄∗χ̄
%(p′) to χ̄%(p).

Proof of claim. The transformation π̄ can be regarded as a functor F from
simp t t ′B·×1 to spaces which takes all morphisms to cell-like maps, and there-
fore comes with a characteristic

χ̄e ∈ holim
simp t t ′B·×1

F ∼= holim
x∈1

holim
simp t t ′B·×x

F.

Spelled out, χ̄e consists of
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(i) the characteristic χ̄e(p′) ∈ holim(σ,θ ,θ ′) A
%((E′)θ

′

σ ),
(ii) the characteristic χ̄e(p) ∈ holim(σ,θ ,θ ′) A

%(Eθσ), and
(iii) a path from π̄∗χ̄e(p′) to χ̄e(p).

This proves the claim.

Therefore, since g(χe(p′)) = χ̄e(p′), and f (χe(p)) = χ̄e(p), we can apply s
to the canonical path from the claim, to obtain a canonical path

s ◦ π̄∗ ◦ g(χe(p
′))  s ◦ f (χe(p)) = χe(p).

Defining π∗ to be the composite s ◦ π∗ ◦ g, we have found the path we were
looking for.

To see that the path obtained in this way is a lifting of the canonical path
on the level of homotopy invariant characteristics, recall that our path was
constructed as an excisive characteristic χ̄e for a functor on simp t t ′B· × 1.
The canonical path on the level of homotopy invariant characteristics comes
similarly from a characteristic χ of a functor with domain simp B· × 1. The
argument that gives a canonical path from α(χe(p)) to χ(p) now applies to
give a canonical path from α(χ̄e) to χ̄.

Now notice that under the projections

holim
σ

A(Eσ)→ holim
(σ,θ)

A(Eθσ) and holim
σ

A(E′σ)→ holim
(σ,θ ′)

A((E′)θσ)

the map s ◦π∗ ◦ g corresponds to the map induced by the projection E′
σ
→ Eσ.

This completes the proof of part (i) of the Theorem. Part (ii) can be proven
similarly by constructing a category simp t t ′ t ′′B· and considering the excisive
characteristic

χ̄% ∈ holim
simp t t ′ t ′′B·×2

F.

3.5 A product formula

In this section we formulate a particular case of a product formula, which is
adapted to our needs. It is also a consequence of Theorem 3.10.

Recall the map

×X : Sn(p)→Sn+k(p)
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defined in subsection 3.4 for a contractible compact manifold X k. The for two
such manifolds X k, Y l , the diagram

Sn(p)
×X

//

×Y
��

Sn+k(p)

×Y
��

Sn+l(p)
×X

// Sn+k+l(p)

commutes up to a canonical homotopy, which comes from the bijection

(U ×U )×U ∼=U × (U ×U ).

Applying this to Y := I , we therefore obtain a stabilized version

×X : S (p)→S (p).

Theorem 3.12. The following diagram commutes up to homotopy

S (p) ×X
//

τ
$$

JJJJJJJJJ
S (p)

τ
zzuuuuuuuuu

Γ
� ΩWhB(E)

↓
B

�

Proof. The maps (×X ): B̃n→ B̃n+k assemble to a map

(×X ): B̃ → B̃ .

We have to show that the lift

A%
B(E )

��

B̃
χ(P )◦ f

//

77

AB(E )

used in the definition of the stable parametrized torsion does not change un-
der restriction with the map (×X ). Again we use the translation (7) together
with Lemma 3.3. Hence we need to give:

(i) For each n, a path γn between χ%(P̃n×X ) and χ%(P̃n). This is given by
part (i) of Theorem 3.10.

(ii) For each n, a homotopy between the path γn and the restriction of the
path γn+1 under the stabilization map. This is given by part (ii) of The-
orem 3.10.
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3.6 Additivity

One of the major properties of classical Whitehead torsion is additivity; we
now proceed to formulate a parametrized version. Let B be homotopy equiv-
alent to locally finite simplicial complex, and let us form a category where an
object is an object of Fib(B; F) for some homotopy finitely dominated space F ,
and a morphism p → p′ is a fiberwise map from p to p′. With this language,
let � denote the following commutative diagram in this category

p0 //

��

j0

  
AAAAAAAA
p1

j1
��

p2
j2
// p3

(9)

where we assume that all maps on the level of total spaces are cofibrations
and that the total space E(p3) is the push-out of the total spaces E(p1) and
E(p2) over E(p0).

By an n-dimensional structure on�, we mean an extension of this diagram
to a commutative cube

q0 //

��

!!
BBB

q1

��

!!
BBB

p0 //

��

p1

��

q2 //

!!
BBB

q3
!!

BBB

p2 // p3

such that qi are objects of the categories Bunn(B; Fi) for i = 1,2, 3 respec-
tively, q0 is an object of Bunn−1(B; F0), all the maps qi → pi are fiber homotopy
equivalences, and the q-square is a codimension 1 splitting of q3. By this we
mean that all bundles qi are locally flat subbundles of q3, of codimension 0 for
i = 1, 2 and of codimension 1 of i = 0, and that the total space of q0 is the in-
tersection of the total spaces of q1 and q2. The n-dimensional structures on �
form the zeroth term of a simplicial setSn(�)·, with k-simplices such diagrams
parametrized over ∆k. Let Sn(�) be its geometric realization. It comes with
forgetful maps αi : Sn(�)→Sn(pi) for i = 1, 2,3, and α0 : Sn(�)→Sn−1(p0).
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Theorem 3.13 (Additivity). The following diagram commutes up to homotopy:

Sn(�)
α3

//

∏2
i=0 τ◦αi

��

Sn(p3)

τ
��

∏2
i=0Γ

� ΩWhB(Ei)
↓
B

�

j1∗+ j2∗− j0∗
// Γ
� ΩWhB(E)

↓
B

�

Explanation. As pointed out in section 3.2, the loop space structure used to
define the addition operation in the lower line of the diagram is defined be-
tween spaces which are weakly homotopy equivalent to the given ones. So
the precise statement of Theorem 3.13 is

j1∗ ◦τ ◦α1+ j2∗ ◦τ ◦α2− j0∗ ◦τ ◦α0 ' τ ◦α3.

We will prove the proposition more generally for the excisive characteristic
χ% instead of the torsion τ. The proof consists first by describing Sn(�) as
a suitable space of lifts, by considering universal bundles and fibrations with
splittings. This will follow from the machinery presented in section 2 if we can
establish certain formal properties of the “bundle theories” involved. Then we
will make use of additivity results for the Dwyer-Weiss-Williams homotopy
invariant and excisive characteristics, obtained by [Dor02] and [BD07], re-
spectively.

The fibers of each of the fibrations in � fit into a diagram

F0
//

��

F1

��

F2
// F3

which we are going to abbreviate (Fi). Now consider, for a space B, the cat-
egory Fib(B; (Fi)) of all diagrams (9) satisfying the conditions stated there,
such that pi is an object of Fib(B; Fi) for all i. Morphisms are commuting di-
agrams of fiber homotopy equivalences. Pulling back with f : B′ → B defines
an object in Fib(B′; (Fi)). In fact, the cofibration condition still holds on the
induced fibrations by Corollary A.10.

As a result, we obtain a functor

Fib(B; (Fi)): cpCWop→ cat
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and therefore a simplicial category. Finally we obtain a simplicial set

Fib(B; (Fi))· := N0Fib(B; (Fi))·.

Similarly consider the category Bunn(X ; (Fi)), which is the category of dia-
grams (9) of fibrations over X , such that p0 is an object of Bunn−1(B; F0), pi

are elements in Bunn(B; Fi) for i = 1,2, 3, and the square is a codimension
1 splitting of p. A morphism in this category is to be a commuting diagram
of fiberwise homeomorphisms. This category gives rise to a simplicial set
Bunn(B; (Fi))·.

Lemma 3.14. The functors Bunn(B; (Fi)) and Fib(B; (Fi)) satisfy the Amal-
gamation property, the Straightening property, and the Fill-in property if B is
metrizable and ULC.

Proof. The case of bundles being similar to the case in section 2, we focus on
fibrations. For the Amalgamation property, we have to check that the cofibra-
tion condition still holds after glueing. This is verified in Proposition A.14. For
the Straightening property, first use homotopy lifting to straighten each of the
fibrations, and then use cofibration arguments to make the diagrams strictly
commutative. Finally, the Fill-in property is proved in Proposition A.19.

Therefore, whenever B is homotopy equivalent to a locally finite ordered
simplicial complex, there is a weak homotopy equivalence

Sn(�)
'−→ Lift

 

Bunn(∗; (Fi))
↓

B
�−→ Fib(∗; (Fi))

!

.

Denote, for by Q the universal “bundle” over Fib(∗; (Fi)), with induced “bun-
dles” Qi over Fib(∗; Fi) for i = 0, . . . , 3. The symbols Q̃ and Q̃i (i = 0, . . . , 3)
will denote the universal “bundles” over Bunn(∗; (Fi)) and their induced “bun-
dles”.

Theorem 3.15 ([Dor02, BD07]). (i) On the level of Dwyer-Weiss-Williams
A-theory characteristics, there is a canonical path

j1∗χ(Q1) + j2∗χ(Q2)− j0∗χ(Q0)  χ(Q3).

(ii) The path from (i) lifts, up to homotopy relative endpoints, to a path

j1∗χ
%(Q1) + j2∗χ

%(Q2)− j0∗χ
%(Q0)  χ%(Q3)

between the Dwyer-Weiss-Williams excisive characteristics.
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Now Lemma 3.7 (with B̃ replaced by B̃3) shows that this kind of addi-
tivity for the Dwyer-Weiss-Williams excisive characteristic produces the same
kind of additivity for the parametrized excisive characteristic that we defined.
This completes the proof of Theorem 3.13.

Sketch of proof of Theorem 3.15. Let us first focus on a bundle over a point,
i.e. a single manifold, M , with a codimension 1 splitting M = M1 ∪M0

M2. Let

M̄ := M1× 0∪M0×I M2× I

which comes with inclusions i0 : M0× I → M̄ , i1 : M1→ M̄ , i2 : M2→ M̄ .
There are obvious cell-like projections M̄ → M and M0× I → M0, inducing

path χ%(M̄)  χ%(M) and χ%(M0× I)  χ%(M0) by the lax naturality of the
characteristic. Next, the cofibration sequences

M1

∐

M2 ,→ M̄ � ΣM0

M1 ,→ M1

∐

M2� M2

M0 ,→ cone M0� ΣM0

produce, using the additivity theorem, the desired path

i1∗χ
%(M1) + i2∗χ

%(M2)− i0∗χ
%(M0× I)  χ%(M̄).

This completes the proof of the unparametrized statement. All the con-
structions are sufficiently natural to generalize to the G-equivariant case, if
G is a discrete group acting on M in a way that respects the codimension 1
splitting.

Finally the theorem of Mather-Thurston-Segal-McDuff about the homology
of classifying spaces of diffeomorphisms allows the passage from the discrete
group of all homeomorphisms of M that respect the codimension 1 splitting
to the corresponding continuous group.

Remark. In [BD07], the statement is only formulated for closed manifolds.
However the proof actually shows the more general case of compact mani-
folds.

This proof of Theorem 3.15 can easily be generalized to a stabilized ver-
sion. It results that Theorem 3.13 has a stable version, too:
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Theorem 3.16. The following diagram commutes up to homotopy:

S (�)
α3

//

∏2
i=0 τ◦αi

��

S (p3)

τ
��

∏2
i=0Γ

� ΩWhB(Ei)
↓
B

�

j1∗+ j2∗− j0∗
// Γ
� ΩWhB(E)

↓
B

�

3.7 Relation to h-cobordisms

The relation between the structure space and higher algebraic K-theory via
the torsion suggests that there is a link to parametrized h-cobordism theory.
In fact, given a parametrized h-cobordism on a manifold M , the choice of a
retraction of the cobordism onto M can be understood as parametrized struc-
ture on M . So we may apply the torsion to obtain a map

H (M)→ ΩWh(M).

On the other hand, Waldhausen [Wal82] gave another description of a map
relating the space of h-cobordisms on M to higher algebraic K-theory. We
prove in Theorem 3.18 that both maps agree. This builds on the reformu-
lation of Waldhausen’s map in the language of characteristics, performed in
[DWW03, §§ 9 and 10]

It follows that for a fiber bundle p : E → B of compact topological mani-
folds, the section space

Γ
� ΩWhB(E)

↓
B

�

can be identified with a stable space of fiberwise h-cobordisms on p. A precise
statement using concordance stable ranges will be given in Corollary 3.19.

Let p : E → B be a fiber bundle of compact topological manifolds. Define
H (p)0 to be the set of commutative diagrams

E′
� � //

q
��

@@@@@@@ E × I

p◦Proj
||yyyyyyyyy

B
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where q is a bundle of compact topological manifolds over B (as a subset of
B×U ) such that E′ contains a neighborhood of E ×{0}, and the inclusion of
the fibers of p into the fibers of q is a homotopy equivalence. We will think of
E′ as a fiberwise h-cobordism over E.

Definition 3.17. The space of h-cobordisms on p is the geometric realization
H (p) of the simplicial set with k-simplicesH (p)k :=H (p× id∆k)0

Suppose that the fiberwise dimension of p is k. The retraction of E′ to
E × 0 is a homotopy equivalence, so there is a canonical map

H (p)→Sk+1(p).

Theorem 3.18. For a compact k-manifold M, the composite

H (M)→Sk+1(M)
τ−→ ΩWh(M)

is homotopic to Waldhausen’s map.

Corollary 3.19. The composite

H (p)→Sk+1(p)
τ−→ Γ
� ΩWhB(E)

↓
B

�

is (K − dim(B) + 1)-connected, if K is in the concordance stable range for the
fibers of p.

Proof. If B is a point, then the infinite stabilization H (M)→H∞(M) if (K +
1)-connected by the definition of the concordance stable range, andH∞(M)'
ΩWh(M). In the case of a general B, use the fact that both the left-hand and
the right-hand side are “co-excisive” in B, i.e. given a homotopy push-out
B3 = B1 ∪B0

B2 of spaces over B, the diagram

H (p|B3
) //

��

H (p|B2
)

��

H (p|B1
) //H (p|B0

)

is a homotopy pull-back. It follows (see e.g. [DWW03, p. 62]) that the co-
assembly map

H (p)→ holim
σ∈simp B·

H (p|σ)
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is a homotopy equivalence. Thus it is enough to prove the statement for

holim
σ∈simp B·

H (p|σ|)→ holim
σ∈simp B

Γ
� ΩWh|σ|(Eσ)

↓
|σ|

�

Now it follows from the Bousfield-Kan spectral sequence that this map is
(N − dim B)-connected whenever all the maps for the individual σ are N -
connected.

Corollary 3.20. If dim(B)− 1 is less than the concordance stable range for the
fibers, there is a one-to-one corresponcence between isomorphism classes of h-
cobordisms on p and elements of

π0Γ
� ΩWhB(E)

↓
B

�

.

Proof of Theorem 3.18. Let us first describe the idea of the proof: Suppose we
are given an h-cobordism E over M , and denote by i : M → E the inclusion.
In the description of [DWW03], Waldhausen’s map basically considers E as a
retractive space over M , thus giving a point in A(M), together with the refine-
ment W (E) ∈ A%(M) coming from the fact that E is an ENR. The cofibration
sequence of retractive spaces over E

M q E ,→ E q E� E ∪M E (10)

together with Waldhausen’s Additivity theorem show that

i∗W (E) + i∗χ
%(M)' χ%(E) ∈ hofibχ(E)

�

A%(E)→ A(E)
�

. (11)

Now apply the projection π: M → E (coming from the inclusion E ⊂ M ×
I). Letting τ(i) denote the image of the h-cobordism, viewed as a manifold
structure on M , under the Whitehead torsion, we obtain

τ(i) = π∗χ
%(E)−χ%(M)'W (E).

This argument works fine for a single h-cobordism. To obtain a param-
etrized version, one produces characteristics on certain functors, as in the
definition of the A- and A%-theory characteristics.

Firstly, consider the category simpH (M)· of simplices in the simplicial set
H (M)·. An object of this category is mainly is a fiber bundle E over |σ|=∆n
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which is an h-cobordism over M × ∆n. We may consider E as a retractive
space over M × ∆n and use the functoriality with respect to the inclusion
M ×∆n ⊂ E to obtain a retractive space over E. It is the characteristic object
of a characteristic for the functor

F : simpH (M)→ cat, E 7→ R f d(E).

As in subsection 3.1, this characteristic yields an element

Wh ∈ holim
E∈simpH (M)·

A(E).

To define the refinement of this to a characteristic forR%(M×∆n), define
a simplicial set tH (M) where an n-simplex is a bundle E over ∆n which is an
h-cobordism over M ×∆n as above, together with an equivalence relation θ
on E such that

• the projections induce a homeomorphism E→∆n× E/θ , and
• in a neighborhood of M×∆n×0, the equivalence relation θ agrees with

the one induced by the projection M ×∆n× I →∆n× I .

This bigger simplicial set allows, similarly to the definition of the excisive
characteristic, to define a characteristic for the functor

simp tH (M)→ cat, (E,θ) 7→ R%(E/θ)

which we call “Waldhausen characteristic”. By geometric realization, we ob-
tain a characteristic

We ∈ holim
(E,θ)∈simp tH (M)·

A%(Eθσ)

which refines Wh in the sense of subsection 3.4.
Now there is a canonical projection tH (M) → tBunk+1(∗; M) (see the

proof of Theorem 3.10 for notation). Recall that we used a characteristic
on simp tBunk+1(∗; M) to define the excisive characteristic, which we may
therefore pull back to simp tH (M) to compare it with the Waldhausen char-
acteristic. We obtain, for each object of simp tH (M), a cofibration sequence
(10). These sequences fit together (see e.g. [BD07, Lemma 4.3]) to define a
parametrized version of (11).
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3.8 Comparison with the unparametrized case

The aim of this section is to give an elementary argument that the param-
etrized Whitehead torsion reduces to the classical Whitehead torsion in the
unparametrized setting. It is the linking part between classical simple homo-
topy theory and higher algebraic K-theory.

Of course, this is also implied by Theorem 3.18 from the last section, which
however implicitly used all the machinery from Waldhausen’s manifold mod-
els for algebraic K-theory, which actually are not needed in our argument.

This section expands on the sketch that appeared in [FLS09, section 11].

Proposition 3.21. Let M be a compact topological n-manifold. Then, the map

τ: π0Sn(M)→ π0ΩWh(M)∼=Wh(πM)

sends f : N → M to the Whitehead torsion of f .

The first thing to notice is that π0Sn(M) is the structure set of compact
n-manifolds in the usual sense, i.e. the set of homotopy equivalences N → M
from compact n-manifolds, where such a homotopy equivalence is identified
with N ′ → M if and only if there is a homeomorphism N → N ′ making the
obvious diagram homotopy commutative. Notice also that π0 of the codomain
of the excisive characteristic map is

π0 Lift







A%
B(E )
↓

∗
χ(M)
−→ AB(E )







∼= π0hofibχ(M)(A
%(M)→ A(M)).

Consider a homotopy equivalence φ : N → M of compact n-manifolds. The
proof of the proposition will consist in identifying the path component of τ(φ)
with a concrete element of π0hofibχ(M)(A%(M) → A(M)), given using Wald-
hausen’s description of the A-theoretic assembly map as in [Wal85, chapter
3]. This will allow to make use of Waldhausen’s model of the homotopy fiber
of the assembly map. The path components of this model provide a geomet-
ric description of the Whitehead group, which is isomorphic to the standard
algebraic one.

We will make use of Waldhausen’s notation from [Wal85] without further
remarks. The models we will use are

A%(X ) = Ω|sS·R f (X
∆·)|,

A(X ) = Ω|wS·R f (X
∆·)|,

ΩWh(X ) = |sC h
f (X )|
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The assembly map A%(X ) → A(X ) is induced by the inclusion of categories
sR f (X )→ wR f (X ).

Remarks. (i) This model for A(X ) has π0A(X ) = Z, whereas the one used by
Dwyer-Weiss-Williams has K0(Z[π(X )]) as path components. But since
here all spaces are homotopy finite, the path component of their char-
acteristic, which is the Euler characteristic, lies in Z, so the homotopy
fiber is the same.

(ii) Waldhausen’s models presented here are functors from simplicial sets
and not from spaces. So we assume all manifolds to be triangulated.
Thus, strictly speaking, we have to replace the manifold M by a triangu-
lated closed disc bundle A over M , which is always possible by [KS77,
Essay 3].

Consider the composites

|sR f (X )| → Ω|sS·R f (X )| → Ω|sS·R f (X
∆·)|= A%(X )

|wR f (X )| → Ω|wS·R f (X )| → Ω|wS·R f (X
∆·)|= A(X )

The first maps in both composites are the maps reminiscent of the group com-
pletion, whereas the second maps come from the inclusion A0→ A· which exist
for any simplicial space A·. For any manifold M , the object M qm of R f (M)
(with obvious section and retraction) defines an element χ%(M) ∈ A%(M) and
an element χ(φ) ∈ A(M). Since αχ%(M) = χ(M), we even obtain an element

χ%(φ) ∈ π0hofibχ(M)(A
%(M)→ A(M)).

We are going to call this element Waldhausen’s excisive characteristic. (This
characteristic is not excisive in the sense of [DWW03], but this difference
is not important here. See the introduction of [Wei02] for a more detailed
discussion.)

Notice that the homotopy invariant characteristic χ defined here is the
same as the one of Dwyer-Weiss-Williams, modulo the homotopy equivalence
Ω|wS·R f (X )| → Ω|wS·R f (X∆

·
)|. Not surprisingly, the excisive characteristics

agree as well. This is a consequence of the following three observations:

(i) Both definitions of the excisive characteristic agree certainly if M is con-
tractible, since in this case the assembly map is a homotopy equivalence.

(ii) Moreover both definitions are additive in the sense of Proposition 3.13
(in the unparametrized setting on π0 level). The proof in the Wald-
hausen setting is basically identical to the proof for the homotopy in-
variant characteristic.
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Now, given a homotopy equivalence φ : N → M between compact mani-
folds, the path component of the element

τ(φ) = χ%(M)−φ∗χ%(N) ∈ π0hofib∗(A
%(M)→ A(M))

is represented by the object cone(φ), considered as a retractive space over M
in the obvious way. This is seen using the cofibration sequence in R f (M)

M qM � cone(φ)� Σ(M q N).

Now we only need to observe that the space cone(φ), as a space relative
to M , also defines an object of the category C h

f (M) and therefore an ele-
ment in ΩWh(M) = |sC h

f (M)|. It represents τ(φ) under the isomorphism
π0ΩWh(M)∼= π0hofib∗(A%(M)→ A(M)).

To complete the proof, observe that π0ΩWh(M) is just the geometric def-
inition of the Whitehead group, so under the isomorphism π0ΩWh(M) ∼=
Wh(πM) (see e.g. [Coh73]), the element τ(φ) corresponds to the Whitehead
torsion of φ.



4 The geometric assembly map

This section is devoted to the definition and study of the “geometric assembly
map” on structure spaces. The first result will be Theorem 4.2 which asserts
that the geometric assembly map on the level of stable structure spaces has
an “algebraic” counterpart on the level of algebraic K-theory. Using Hoehn’s
theorem and some microbundle theory, we deduce in section 4.3 that the
square appearing in Theorem 4.2 is actually a weak homotopy pull-back. This
result will be used for the treatment of fibering questions.

The last two sections are devoted to show that these two results also hold
on the level of Q-manifolds. This will allow to treat fibering questions on
Q-manifolds using the same techniques.

4.1 Definition of the geometric assembly map

The total space of a bundle of n-dimensional compact manifolds over a k-
dimensional compact manifold is itself an (n+ k)-dimensional compact man-
ifold. Therefore, given a fibration p : E→ B, there is a product map

Sk(B)×Sn(p)→Sn+k(E),

which on m-simplices is defined as follows: If x ∈ Sk(B)m and y ∈ Sn(p)m are
given by

B′

!!
BBBBBBBB

ϕ
// B×∆m

zzuuuuuuuuu
E′

##
HHHHHHHHH

ψ
// E ×∆m

xxqqqqqqqqqq

∆m B×∆m

then the image of (x , y) is given by ϕ∗E′, considered as a bundle over ∆m,
together with its canonical map to E ×∆m.

Again, strictly speaking, we have to care about the universes: the bun-
dle given by the image of (x , y) must be a subset of ∆m ×U , whereas it is
canonically a subset of ∆n×U ×U . Make therefore use of the fixed bijection
U ×U →U .

53
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In particular, if B is itself a k-dimensional compact manifold, the identity
map on B defines a point in Sk(B); hence we can evaluate the product map to
obtain a map

α: Sn(p)→Sn+k(E).

Again, strictly speaking, we must embed B as a subset of U . However, the
homotopy class of α does not depend on this choice.

Geometrically α takes all the structures on the fibers of p and assembles
them into one big structure. Therefore we are going to call α the geometric
assembly map. It should not be confused with the abstract notion of assembly
map as defined by [WW95].

Remark 4.1. If B is a point, then the map α: Sn(E) → Sn(E) is canonically
homotopic to the identity map.

In fact, α(x) and x are canonically homeomorphic. This homeomorphism
provides a homotopy.

4.2 Geometric assembly and torsion I

The aim of this section is to give an “algebraic” description of α in the fol-
lowing sense: We defined parametrized Whitehead torsion maps, going from
geometrically defined structure spaces to “algebraically” (or more precisely
homotopy theoretically) defined section spaces involving algebraic K-theory
of spaces. It is natural to ask whether in the diagram

Sn(p)
α

//

τ
��

Sn+k(E)

τ

��

Γ
� ΩWhB(E)

↓
B

�

// ΩWh(E)

a dotted arrow exists which makes the diagram commutative.
Therefore suppose for simplicity that B is path-connected, and define an-

other map α as the following composition (after choosing a point b ∈ B):

α: Γ
� ΩWhB(E)

↓
B

�

Restriction−−−−→ ΩWh(Fb)
χe(B)· j∗−−−→ ΩWh(E).
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Here j∗ is induced by the inclusion of the fiber Fb into E and χe denotes the
Euler characteristic. Notice that a different choice of base point b leads to the
same map α, up to homotopy.

Theorem 4.2. If p is a bundle of compact topological manifolds over a compact
connected topological manifold, the following diagram commutes up to homo-
topy:

Sn(p)
α

//

τ
��

Sn+k(E)

τ

��

Γ
� ΩWhB(E)

↓
B

�

α
// ΩWh(E)

(1)

Before giving a proof, let us first formulate a stabilized version of this
theorem. It is the stable version which will be important for our treatment of
fibering questions. Recall the definition

S (p) = hocolim
n

Sn(p)

from section 3.4. Recall also that the torsion induces a map

τ: S (p)→ Γ
� ΩWhB(E)

↓
B

�

whenever p : E→ B is a bundle of compact topological manifolds.
On the other hand, if B is a compact topological manifold, the geometric

assembly map induces a map

α: S (p)→S (E)

since α commutes with stabilization up to a canonical homotopy.

Theorem 4.3. If p is a bundle of compact topological manifolds over a compact
connected topological manifold, the following diagram commutes up to homo-
topy:

S (p) α
//

τ
��

S (E)

τ

��

Γ
� ΩWhB(E)

↓
B

�

α
// ΩWh(E)
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The proof of the two theorems will occupy the rest of this section. The
main part of the proof consists of the following two statements.

(i) If X is a compact contractible manifold, then the claim holds for p if and
only if the claim holds for the bundle p× idX .

(ii) If B = B1 ∪B0
B2 is a codimension 1 splitting of the base manifold, then

the claim holds for p whenever it holds for the restrictions of p onto
B0, B1, and B2.

Proof of Theorem 4.2, using statements (i) and (ii). We first consider the case
where the base space is a contractible manifold. In this case p is fiber homeo-
morphic to a product bundle p′× idB : F ×B→ ∗×B. By the homeomorphism
invariance of the torsion, we may thus suppose that p is a product bundle.
Thus, using the statement (i), we are left to show that the claim holds when
the base space of the bundle is the one-point space. But then both maps α (on
the level of structure spaces and on the A-theoretic side) are just (homotopic
to) the identity.

The next step is to give a proof for B = Sn. The case n = 0 is trivial
using remark 4.1 (with suitably adjusted statement, as S0 is not connected).
Otherwise, Sn = Dn ∪Sn−1 Dn has a codimension 1 splitting along the equator,
and inductively the claim holds by statement (ii) and what we already proved.

Suppose now that p is an arbitrary fibration. By statement (i), we can
prove the claim for p by proving the claim for the fibration p×idDn . Therefore,
we can assume that the dimension of B is greater than 6, such that B has a
handlebody decomposition, by [KS77, Essay III, thm. 2.1].

Now we proceed by induction on the number k of handles of the handle-
body decomposition. We already dealt with the case k = 1, since then B = Dn

is contractible. Suppose now that B is obtained from B′ by attaching a handle,
such that B = B′ ∪Sm×Dn−m−1 Dm+1 × Dn−m−1, and suppose that the claim is es-
tablished for the fibration restricted to B′. Then, by (ii) and what we already
proved, the claim holds for B as well.

Proof of statement (i). Denote by p′ : E′ → B′ the fibration p × idX and let
f : B′ → B be the projection. Suppose that dim B = k and dim X = l. The
proof consists in considering the following diagram (in the homotopy cate-
gory):
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Sn(p)
α

//

f ∗

��

τ
%%KKKKKKKKK

Sn+k(E)
τ

))SSSSSSSSSSSSSSSSSSSSSSSS
×X
// Sn+k+l(E)

τ

##
GGGGGGGGGGGGGG

Γ
� ΩWhB(E)

↓
B

�

f ∗

��

α
// ΩWh(E)

Sn(p′)
α

//

τ
%%KKKKKKKKK

Sn+k+l(E′)

f̄∗

OO

τ

##
GGGGGGGGGGGGGG

Γ
� ΩWhB′(E′)

↓
B′

�

α
// ΩWh(E)

f̄∗

OO

To show that the square on the top (resp. bottom) of the diagram commutes,
it is enough to show that all the other squares and the triangle commute.

The left-hand square commutes by naturality. The front square commutes
by the definition of α. It is elementary to see that the back square also com-
mutes.

The two remaining cases are the non-trivial ones: The right-hand square
is commutative by the composition rule, since f̄ is cell-like and therefore has
torsion zero. The triangle commutes by our product formula, Theorem 3.12.

Proof of statement (ii). Denote by ji : Bi → B for i = 0,1, 2 the inclusion. No-
tice that the codimension 1 splitting of B induces a codimension 1 splitting of
E as follows:

E0
//

��

j̄0

��
@@@@@@@@
E2

j̄2
��

E1
j̄1
// E

since p is a bundle. Denote by � this diagram, thought of as a diagram of
bundles over the one-point space. Recall the notation Sn(�) from the additiv-
ity theorem of the parametrized torsion, and denote by γi : Sn(�) → Sn(Ei)
(i = 1, 2), γ0 : Sn(�)→Sn−1(E0) and γ: Sn(�)→Sn(E) the forgetful maps.

The claim follows by considering the following diagram in the homotopy
category:
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Sn(p)
α

//

τ
&&MMMMMMMMMM

Sn+k(E)

τ

$$
JJJJJJJJJJJJJJJ

Γ
� ΩWhB(E)

↓
B

�

∏2
i=0 j∗i

��

α
// ΩWh(E)

Sn(p)
α̂

//

∏2
i=0 j∗i ◦τ &&MMMMMMMMMM

Sn+k(�)

γ

OO

∏2
i=0 τ◦γi

$$
JJJJJJJJJJJJJJ

∏2
i=0Γ

� ΩWhBi
(Ei)
↓
Bi

�

α
//
∏2

i=0ΩWh(Ei)

j̄1∗+ j̄2∗− j̄0∗

OO

Here α̂ is to denote the obvious map which forgets the base space but remem-
bers the codimension 1 splitting.

To show that the top square commutes, it is enough to check that all the
other squares are commutative.

The commutativity of the left-hand square is purely formal, and the bot-
tom square commutes by naturality of the torsion. The back square is evi-
dently commutative. The commutativity of the front square follows from the
definition of α and the additivity of the Euler characteristic,

χe(B) = χe(B1) +χe(B2)−χe(B0).

Finally, the Additivity theorem 3.13 guarantees that the right-hand square is
commutative.

The proof of the “stable” Theorem 4.3 is identical to the proof of the un-
stable version 4.2 – one only needs to quote the stable versions of additivity
and product rule instead of the unstable ones.

4.3 Geometric assembly and torsion II

One may wonder how much information gets lost under the parametrized tor-
sion map. We already saw that τ stays invariant under stabilization (i.e. cross-
ing with the unit interval). In this section we will see that it also stays in-
variant under change of tangential structure, and that this is all the ambi-
guity introduced by applying the torsion. This follows from the description
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of the structure space (Theorem 4.6) as given by Stacy Hoehn’s PhD thesis
[Hoe09], building on the parametrized A-theory characteristic and the stable
parametrized h-cobordism theorem by Jahren-Rognes-Waldhausen [WJR08].

Applying some microbundle theory [Mil64], we obtain the following.

Theorem 4.4. The square

S (p) α
//

τ
��

S (E)

τ

��

Γ
� ΩWhB(E)

↓
B

�

α
// ΩWh(E)

is a weak homotopy pull-back.

We start by recalling the tangent (micro-)bundle of a topological manifold
E, which is represented by the diagram

E
∆−→ E × E

Proj1−−→ E,

∆ denoting the diagonal inclusion and Proj1 the projection onto the first factor.
If E is the total space of a fiber bundle of topological manifolds over B, then
the fiberwise tangent bundle is the microbundle over E defined by

E
∆−→ E ×B E

Proj1−−→ E.

We would like to define a classifying space for microbundles. Therefore
denote by MBn(B) the category of all n-dimensional microbundles over B,
considered as a subset of B × U , where the morphisms are isomorphism-
germs between those in the sense of Milnor [Mil64, §6]. Pull-back gives rise
to a functor

cpCWop→ cat, X 7→MBn(B× X ).

Lemma 4.5. This functor has the Amalgamation, Straightening, and Fill-in
properties as defined in section 2.

Hence, a microbundle over a locally finite ordered simplicial complex B is,
up to homotopy, the same thing as a map from B to some classifying space.
By results of Kister [Kis64] and Mazur [Maz64], every microbundle contains
a pointed euclidean bundle as an open sub-bundle; this bundle is unique up
to isomorphism. It follows that the classifying space for n-dimensional mi-
crobundles is homotopy equivalent to BTOP(n).
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Proof of Lemma. We begin with the Amalgamation property. Therefore let

B0
� � //

_�

��

B1_�

��

B2
� � // B

be a push-out of compact CW complexes, and let Ei, i = 0,1, 2, be microbun-
dles over Bi whose restrictions to B0 agree. We have to show that the push-out
of the Ei defines a microbundle over B. Therefore we check local triviality
which is clear for all b ∈ B unless b ∈ B0. So let b ∈ B0.

Since any open neighborhood of the zero-section of a microbundle defines
still a microbundle, we may suppose by Kister and Mazur that both E0 and E2

are in fact pointed euclidean bundles. Let U1 be a neighborhood of b in B1

and E0
1 be a neighborhood of b in E1 such that E0

1
∼= U1×Rn is in fact a trivial

microbundle over U . In particular, the restriction E0
0 of E0

1 over U0 := U1 ∩ B0

is also trivial.
Now, since the inclusion of B0 into B2 is a cofibration, U0 extends to a

neighborhood U2 of b which retracts to U0 by a map r : U2→ U0 such that the
following holds: there is an isomorphism of euclidean bundles

E2|U2
∼= r∗E0|U0

which is the identity on E0|U0
.

Consider the open neighborhood E0
2 of b inside E2|U2

which corresponds
to r∗E0

0 under this isomorphism. Then we have E0
2
∼= r∗E0

∼= U2×Rn, and the
isomorphisms fit together to define an isomorphism E0

1 ∪ E0
2 → (U1∪U2)×Rn.

This proves amalgamation.
The straightening property is proved in [Mil64, §6]. To obtain a fill-in,

take mapping cylinders whenever we are given actual isomorphisms rather
than just isomorphism-germs. In the general case observe that if E0 ⊂ E is
an open neighborhood of the zero-section in a microbundle over B, then the
open subspace

E × [0, 1)∪ E0× {1} ⊂ E × [0, 1]

is a microbundle over B× [0, 1] which is a fill-in between E and E0.

Hoehn indicates [Hoe09, section 1.2] how to define a map

Tfib : S (p)→map(E, BTOP)
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which, informally, sends a diagram

E′
ϕ

'
//

p′
��

@@@@@@@ E

p
���������

B

(2)

to (ϕ−1)∗Tfibp′, the (stabilized) fiberwise tangent bundle of p′, pulled back to
E by some homotopy inverse of ϕ.

Formally, one first defines a larger structure space S n(p) where a 0-sim-
plex is a diagram (2) together with a choice of fiber homotopy inverseψ of ϕ.
The forgetful map S n(p) → Sn(p) is a homotopy equivalence; on the other
hand the explicit choice of homotopy equivalence in S n(p) allows to define a
map to the space of n-dimensional microbundles. Stabilizing yields a map to
map(E, BTOP).

If B is a point, we denote the map Tfib simply by T . The fiberwise tangent
bundle is of interest for us due to the following theorem [Hoe09, Theorem
3.3.2].

Theorem 4.6. If p is a bundle of compact topological manifolds over a compact
topological manifold, then the map

S (p)
Tfib×τ−−−→map(E, BTOP)×Γ

� ΩWhB(E)
↓
B

�

is a weak homotopy equivalence.

Remark 4.7. Hoehn states the theorem with the assumption that B is a fi-
nite CW complex. Using the naturality and homotopy invariance in B of do-
main and target, one sees that the statement holds more generally for all base
spaces that are homotopy equivalent to finite CW complexes. Recall that this
is the way we defined the parametrized torsion for this class of base spaces.

Remark 4.8. Technically speaking, our definition of the tangent microbun-
dle does not allow the manifolds to have boundaries. This problem can be
dealt with by adding to all manifolds a collar at the boundary. Existence and
uniqueness [KS77, Essay I, App. A] of collars shows that the corresponding
structure spaces are homotopy equivalent. On the other hand, the collar al-
lows to extend the tangent bundle of the interior of M over the boundary.
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In the following theorem we make use of the H-group structure on the
space map(E, BTOP) to obtain a homotopy equivalence

+p∗T B : map(E, BTOP)→map(E, BTOP)

given by adding the pulled-back tangent bundle p∗T B.

Theorem 4.9. The diagram

S (p) α
//

Tfib×τ
��

S (E)

T×τ

��

map(E, BTOP)×Γ
� ΩWhB(E)

↓
B

�

(+p∗T B)×α
// map(E, BTOP)×ΩWh(E)

commutes up to homotopy.

Theorem 4.4 now clearly follows by combining the last two theorems, re-
calling that the map (+p∗T B) is a homotopy equivalence.

To prove Theorem 4.9, one has to prove two separate statements: one
involving only the maps Tfib and T , and one involving only the maps τ. The
statement for τ has been proven in Theorem 4.3.

Let us first proof the non-parametrized version of the statement involving
the tangent bundles.

Lemma 4.10. Let p : E → B be a bundle of compact topological manifolds over
a compact topological manifold B. Let q : U → B be a pointed Rn-bundle rep-
resenting the tangent microbundle T B (as an open subbundle of the projection
B× B→ B onto the first coordinate), with zero-section s.

Then any choice of fiber homotopy idU ' s ◦ q over B defines a microbundle
X over E × I which restricts to T E over E × 0 and to TfibE ⊕ p∗T B over E × 1.

Thus, in particular, we have

T E ∼= TfibE ⊕ p∗T B.

Proof. Denote by p′ : V := p∗U → E the pointedRn-bundle pulled back from U
using the bundle map p. The space V is open in E×B, and the fiber homotopy
idU ' s ◦ q induces a fiber homotopy

H : V × [
1

2
,1]→ E × B



4.3 Geometric assembly and torsion II 63

between the inclusion from V into E × B and the composite V
p′
−→ E

∆
,→ E × B.

Now consider the bundle

id×p : E × E→ E × B.

Pulling it back using H, we obtain a bundle over V × [1
2
, 1] which restricts to

E × E|V over V × 1
2
; over V × 1, it restricts to (p′)∗(E ×B E).

We may consider the bundle over V × [1
2
, 1] as a microbundle over E ×

[1
2
, 1]. As such, its restriction over V × 1 is precisely the direct sum TfibE ⊕

p∗T B, and its restriction over V × 1
2

is an open subbundle of T E (which there-
fore is germ-isomorphic to T E). Using the fill-in property of microbundles, we
get a microbundle over V × [0, 1

2
] which connects the open subbundle of T E

with T E.

Proof of Theorem 4.9. As observed above, it is enough to show that T ◦ α is
homotopic to Tfib + p∗T B. Let us first consider the unstable case. To obtain a
homotopy, it is enough to construct a map

S n(p)→map(E × I , BTOP)

which sends a structure x to a bundle that “interpolates” between Tfib(x) +
p∗T B and T (αx). This is achieved simplicially using the construction in the
proof of Lemma 4.10.

For the stable case, observe that stabilization of structures induces stabi-
lization of the corresponding bundles. So the compatibility is automatic.

Remark 4.11 (The smooth case). There is little doubt that the DIFF ana-
logue of Theorem 4.4 is also true. Here are the main issues which arise if one
tries to generalize the Theorem in this direction:

As we have seen, two main ingredients of the proof are the parametrized
additivity and product rules. While it is easy to define a DIFF parametrized
torsion using the approach we have taken, it seems difficult to prove the ad-
ditivity and product rules this way, due to the fact the “unit transformation”
Q(X+)→ A%(X ) is defined only up to contractible choice. A better approach
to the DIFF case seems to redefine the Dwyer-Weiss-Williams characteristics
using Waldhausen’s manifold models for A-theory [Wal82] in the spirit of
[BDW09].

A further essential ingredient to the proof of Theorem 4.4 is Hoehn’s The-
orem 4.6. Here the problem is similar: the manifold model approach seems
to be necessary for the DIFF case.
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Notice however that the mere commutativity of the square in Theorem
4.4 on the π0-level does not depend on the parametrized additivity and prod-
uct rule (but only on the non-parametrized one, which is classical), nor on
Hoehn’s theorem. It follows that if an element f : M → E in S (E) disassem-
bles up to homotopy, the same will be true for its Whitehead torsion τ( f ).
In our appliations to fibering questions, this implies that the vanishing of the
DIFF analogues of our obstructions is at least a necessary condition to fibering
– so differences between the DIFF and the TOP case may be seen already at
this stage.

4.4 Geometric assembly on bundles of Q-manifolds

Denote, as usual, by Q the Hilbert cube, which is a countable product of unit
intervals. A Q-manifold is a separable metric space which is locally homeo-
morphic to open subsets of Q. The theory of Q-manifolds provides the follow-
ing results:

• If X is a locally compact ANR, then X ×Q is a Q-manifold (Edwards, see
[Cha76, Theorem 44.1]).

• Every compact Q-manifold is of the form X ×Q, where X is a compact
polyhedron (Chapman, see [Cha76, Theorem 36.2]).

• Any cell-like map [Lac69] between Q-manifolds is a near-homeomor-
phism, i.e. is arbitrarily close to a homeomorphism (Chapman, see
[Cha76, Corollary 43.2]). In particular, if there is a cell-like map M → N
between Q-manifolds, then M ∼= N . For example, M ×Q ∼= M , the so-
called “stability” of Q-manifolds.

• If M and N are compact Q-manifolds, then the space Homeo(M , N) of
homeomorphisms from M to N (with the compact-open topology) is an
ANR, in particular locally contractible (Ferry [Fer77]).

Let p : E → B be a fibration over a paracompact base space. By a Q-
manifold structure on p we mean a commutative diagram

E′
ϕ

//

p′
��

@@@@@@@ E

p
���������

B

where p′ is a bundle of compact Q-manifolds, and ϕ is a homotopy equiva-
lence. As with finite-dimensional structures, we assume E′ to be a subset of
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B×U , with the inclusion map being a map over B. This gives rise to S Q(p),
the space of Q-manifold structures, which is (just as the space of compact n-
dimensional manifolds) the geometric realization of a suitable simplicial set,
with zero-simplices now the set of Q-manifold structures. If B is a point, we
write S Q(E) for S Q(p). Notice that the simplicial set S Q(p)· is Kan.

Lemma 4.12. If p : E → B is a bundle of Q-manifolds over a locally compact
ANR, then E is also a Q-manifold.

Proof. Let e ∈ E, and let U ⊂ B be an open neighborhood of p(e) over which
the bundle is trivial. An open subset of an ANR is itself an ANR [Han51,
Lemma 3.1], so E|U ∼= U × F is a locally compact ANR. Hence, E|U ×Q is a
Q-manifold. On the other hand, E|U ×Q ∼= U × F ×Q ∼= U × F ∼= E|U by the
stability of Q-manifolds.

Therefore, in analogy with the finite-dimensional case, we have a geomet-
rically defined assembly map

α: S Q(p)→S Q(E)

whenever B is a compact ANR. Strictly speaking, as in the finite-dimensional
case, this map is defined if B is a subset of U , which we shall tacitly assume
from now on.

We would like to compare the space of Q-manifold structures with the
space of n-dimensional compact manifold structures. To do that, consider
again the stabilization map

×I : Sn(p)→Sn+1(p).

On the other hand, there is a similarly defined map

×Q : Sn(p)→S Q(p)

by taking fiberwise the product with Q.

Lemma 4.13. (i) If B is a compact n-manifold then the following diagram
commutes up to homotopy:

Sn(p)
α

//

×Q
��

Sn+k(E)

×Q
��

S Q(p) α
// S Q(E)
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(ii) The collection of maps (×Q), for n ∈ N, extend canonically to a map,
well-defined up to homotopy,

×Q : S (p) := hocolim
n∈N

Sn(p)→S Q(p)

of the infinite mapping telescope of the maps (×I).

Proof. (i) Use the canonical isomorphism α(x)×Q ∼= α(x ×Q), compare the
proof of Remark 4.1.

(ii) We first show that any homeomorphism f : Q×I →Q gives a homotopy
in the following diagram:

Sn(p)
×Q

//

×I
%%

JJJJJJJJJ S Q(p)

Sn+1(p)
×Q

99sssssssss

Let p : E → B, and suppose we are given a bundle q : E → B of compact
n-manifolds together with a fiber homotopy equivalence E′→ E, determining
an element in Sn(p). Use f to get a bundle isomorphism E ×Q× I → E ×Q.
Using the Fill-in property, there results a bundle of compact Q-manifolds over
B × I which comes with a canonical homotopy equivalence to the fibration
p× idI . This procedure also works for families and produces a map Sn(p)→
S Q(p× idI). Compose with the “evaluation map”

S Q(p× idI)→map(I ,S Q(E))

to obtain the desired homotopy.
Therefore a homeomorphism f : Q × I → Q really produces the desired

homotopy. If f is isotopic to another homeomorphism g, we can use the
isotopy to construct a map Sn(p) → S Q(p × idI × idI); composing with the
evaluation map then yields a homotopy between H f and Hg . In this case the
two resulting maps hocolimn∈NSn(p)→S Q(p) will be homotopic.

Thus, if we want our map S (p)→S Q(p) to be well-defined up to homo-
topy, we need to give canonical isotopy class of homeomorphisms Q× I → Q.
There exists such a canonical isotopy class, for the following reason: The pro-
jection Q×I →Q is cell-like, hence a near homeomorphism; on the other hand
the space Homeo(M ×Q, M) is locally contractible. Notice that any choice of
homeomorphism M×Q→ M induces a group structure on Homeo(M×Q, M).
It follows that Homeo(M ×Q, M) is even uniformly locally contractible. So
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there is an ε > 0 such that any two homeomorphisms are isotopic provided
they have distance smaller than ε. Thus we can define the canonical isotopy
class of homeomorphisms Q × I → Q to be represented by any homeomor-
phism which is within an ε

2
-ball of the projection.

4.5 Whitehead torsion on Q-manifolds

The works of Chapman and West show that Q-manifold theory is a natural
and satisfactory setting for simple homotopy theory: If f : X → Y is a map of
finite CW complexes, then it is a simple homotopy equivalence if and only if
the map f ×Q : X ×Q→ Y ×Q is homotopic to a homeomorphism ([Cha76,
Theorem 38.1]). This allows to define the Whitehead torsion of a homotopy
equivalence of Q-manifolds f : M → N as the torsion of the corresponding
map X → Y , where X and Y are finite CW complexes such that X ×Q ∼= M ,
and Y ×Q ∼= N .

We show in this section that Q-manifolds are equally well adapted for
higher simple homotopy theory: The parametrized Whitehead torsion map
has a version on the level of Q-manifolds, which is even a weak homotopy
equivalence (contrarily to the finite-dimensional case where tangent bundle
data is relevant).

To see this, we need to say more about the proof of Theorem 4.6. The first
step in the proof is to define, for an n-dimensional euclidean bundle γ over E,
a structure space of n-dimensional framed fiber bundle structures S f r

n (p,γ)
[Hoe09, section 1.2], and to define a corresponding stable version S f r(p,γ).

The homotopy type of this space is independent of γ, so let us work with
ε, the trivial euclidean bundle over E. The forgetful map S f r(p,ε)→ S (p)
is split injective up to homotopy, and [Hoe09, Corollary 1.2.5]

S (p)' S f r(p,ε)×map(E, BTOP).

Theorem 4.6 now follows by showing that the parametrized Whitehead tor-
sion, restricted to framed bundle structures, induces a homotopy equivalence

τ: S f r(p,ε)
'−→ Γ

� ΩWhB(E)
↓
B

�

.

The following result allows to extend the parametrized torsion map to Q-
manifolds.
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Lemma 4.14. (i) The composite

S f r(p,ε)→S (p)
×Q
−→S Q(p)

is a homotopy equivalence.

(ii) The triangle
S (p)

r
yyssssssssss

×Q

$$
IIIIIIIII

S f r(p,ε) '
// S Q(p)

commutes up to homotopy

Before proving this Lemma, let us deduce our main result of this section.

Theorem 4.15. Let p : E → B be a bundle of compact Q-manifolds over a com-
pact ANR. There is a diagram, commutative up to homotopy:

S Q(p) α
//

τ'
��

S Q(E)

τ'

��

Γ
� ΩWhB(E)

↓
B

�

α
// ΩWh(E)

Proof. The map τ is defined by choosing a homotopy inverse of the map
S f r(p,ε) → S Q(p) and composing with the characteristic for finite-dimen-
sional manifolds. The the diagram commutes at least if B is a compact topo-
logical manifold. To obtain the general case, use the fact that any compact
ANR is simple homotopy equivalent to a finite-dimensional compact manifold
together with the following Lemma 4.16.

Lemma 4.16. Let ϕ : B′ → B be a simple homotopy equivalence between com-
pact ANRs. Let p : E → B be a fibration, denote by p′ : E′ → B′ the fibration
pulled back by ϕ and by ϕ̄ : E′→ E the structure map. Then the diagram

S Q(p) α
//

ϕ∗

��

S Q(E)

S Q(p′) α
// S Q(E′)

ϕ̄∗

OO

commutes up to homotopy.
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Recall that a homotopy equivalence ϕ : B′ → B between compact ANRs is
called a simple homotopy equivalence if the map ϕ × idQ : B′ ×Q→ B ×Q is
homotopic to a homeomorphism. – The proof of the lemma depends on the
following result.

Lemma 4.17. For M and N homeomorphic compact Q-manifolds, denote by
Homeo(M , N) resp. C(M , N) the space of homeomorphisms resp. continuous
maps from M to N, with the compact-open topology. If Homeo(M , N) denotes
the closure of Homeo(M , N) in C(M , N), then the inclusion Homeo(M , N) →
Homeo(M , N) is a weak homotopy equivalence.

Proof. As shown in the proof of Lemma 4.13, the space Homeo(M , N) is
uniformly locally contractible. It follows from [EW42] that the inclusion
Homeo(M , N)→ Homeo(M , N) is a weak homotopy equivalence.

Proof of Lemma 4.16. Suppose we can establish the Lemma in the special case
B′ = B× I , and ϕ the projection map, for an arbitrary B. Then it is easy to see
that, given any ϕ : B′→ B, the statement holds for ϕ if and only if it holds for
any map homotopic to ϕ.

Suppose that, moreover, we can establish the Lemma in the special case
B′ = B×Q, withϕ again the projection map. Then we conclude that, given any
ϕ : B′→ B, the statement holds for ϕ if and only if it holds for ϕ×idQ, which is
homotopic to a homeomorphism. But the statement for ϕ a homeomorphism
is obviously correct.

So we only need to prove the statement for the cases B′ = B ×Q (and ϕ
the projection map), and B′ = B× I (and ϕ the projection map). The proof for
both cases is identical and uses the fact that the corresponding map on total
spaces is a near homeomorphism. We will give a prove for B′ = B×Q.

Denote by q : E× I → I the projection. It is enough to construct a simplicial
map

H· : S Q(p)·→S Q(q)·

such that H followed by the restriction onto {0} ⊂ I is α, whereas H followed
by the restriction onto {1} ⊂ I is given by ϕ̄∗ ◦α ◦ϕ∗.

We are going to assign inductively over n to each element x ∈ S Q(p)n,
represented by a bundle E′→∆n× B, the following data:

(i) A homeomorphism f (x): E′×Q→ E′ over ∆n, and
(ii) a homotopy K(x) between f (x) and the projection p : E′×Q→ E′ over
∆n. The homotopy is to go through maps in Homeo(E′×Q, E′) and is to
be stationary on [1− 2−n−1, 1].
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Both the assignments x 7→ f (x) and x 7→ K(x) need to be compatible with
the boundary and degeneracy maps. Then H(x) will be given by the bundle
E′×Q× I∪E′×Q×{1} E

′ over I×∆n, together with the map to E× I×∆n induced
by the homotopy K(x) and the map E′→ E ×∆n given from x .

The induction beginning n = −1 is trivial. Suppose that the assignments
have been made for k ≤ n− 1. If x ∈ S Q(p)n is a degeneracy, then both f (x)
and K(x) are the obvious ones. Otherwise, we show that

(i) The homeomorphism

∂ f (x): E′|∂∆n ×Q→ E′|∂∆n

over ∂∆n, assembled from the f (∂i x), extends to a homeomorphism

f (x): E′×Q→ E′

over ∆n.
(ii) The homotopy ∂ K(x) between ∂ f (x) and the projection p|∂∆n : E′|∂∆n×

Q → E′|∂∆n over ∂∆n, assembled from the K(∂i x), extends to a homo-
topy K(x) between f (x) and p. The homotopy is to go through maps in
Homeo(E′×Q, E′) and is to be stationary on [1− 2−n−1, 1].

Notice that the bundle E′, considered as a bundle over∆n, is trivial with a fiber
we call M . Therefore we can reformulate (i) and (ii) in homotopy-theoretic
terms as follows: Suppose we are given the solid diagram (cp denoting the
constant map with value p):

∂∆n ∂ f (x)
//

_�

i
��

Homeo(M ×Q,Q)
_�

j
��

∆n
cp

//

f (x)

55

Homeo(M ×Q,Q)

and a homotopy ∂ K(x): ∂∆n× I → Homeo(M×Q,Q) between j ◦∂ f (x) and
cp ◦ i, which is stationary on [1− 2−n, 1]. Then there is a dotted arrow f (x)
such that

(i) f (x) ◦ i = ∂ f (x), and
(ii) ∂ K(x) extends to a homotopy K(x): ∆n × I → Homeo(M ×Q,Q) be-

tween cp and j ◦ f (x), which is stationary on [1− 2−n−1, 1].

This homotopy-theoretic problem can always be solved since the inclusion
Homeo(M × Q, M) → Homeo(M × Q, M) is a weak homotopy equivalence.
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Indeed, first extend the homotopy ∂ K(x) to K ′ : ∆n× I → Homeo(M ×Q, M),
stationary on [1− 2−n, 1], and let c′ := K ′1. Then, the solid diagram with cp

replaced by c′ commutes strictly, and there is a map f (x) satisfying (i), such
that c′ is homotopic to j ◦ f (x) via a homotopy K ′′ stationary on ∂∆n. The
homotopy K(x) from cp to j ◦ f (x) is then given by K ′ on [0,1− 2−n], by K ′′

on [1− 2−n, 1− 2−n−1], and by the stationary homotopy on [1− 2−n−1, 1].
This concludes the induction step and therefore the proof.

Now we give a proof of Lemma 4.14.

Proof of Lemma 4.14. (i) Recall from chapter 2 that Sn(p) is homotopy equiv-
alent to a space of lifts. Similarly,

S (p)' Lift

 

Bun(∗; F)
↓

B
p
−→ Fib(∗; F)

!

, S Q(p)' Lift

 

BunQ(∗; F)
↓

B
p
−→ Fib(∗; F)

!

,

with Bun(B; F) = hocolimn∈N Bunn(B; F), and BunQ(B; F) defined similarly as
Bunn(B; F) but in terms of Q-manifolds.

Denote by Fib f r(B; F) the category where an object is a fibration E → B,
with fiber Fb over b, together with a stable euclidean bundle γ over E. (More-
over, we assume that the fibration defines an element in Fib(B; F) and the bun-
dle is represented by an element of Bunn(E;∗).) A morphism from (E→ B,γ)
to (E′ → B,γ′) is a stable bundle map γ → γ′ such that the underlying map
E → E′ is a fiber homotopy equivalence over B. The corresponding functor
satisfies the Amalgamation, Straightening, and Fill-in property (see section 2)
as both bundles and fibrations do. By the same procedure as in section 2, we
obtain a simplicial set Fib f r(B; F)· whose geometric realization we denote by
Fib f r(B; F), and there is a homotopy equivalence

S f r(p,γ)→ Lift





Bun(∗; F)
↓

B
(p,γ)
−→ Fib f r(∗; F)



 .

Consider the diagram

Bun(∗; F) //

��

BunQ(∗; F)

��

Fib f r(∗; F) // Fib(∗; F)

(3)
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where all the maps are forgetful. (The forgetful map Bun(∗; F)→ Fib f r(∗; F)
maps E to (E, T E).)

Notice that proving (i) amounts to proving that the square (3) is homotopy
cartesian. Notice as well that π0 of both vertical fibers is the Whitehead group
Wh(πF), on the left-hand side by Hoehn’s result and on the right-hand side
by simple-homotopy theory on Q-manifolds.

So, to conclude the proof, we need to show that, given any basepoint M
in Bun(∗; F), the diagram (3) is homotopy cartesian after applying the loop
functor Ω (based at the point given by M).

In section 2 we showed that the spaces in diagram 3 are disjoint unions of
suitable classifying spaces of automorphism monoids. So, applying Ω yields
the left-hand square of the following diagram, whose lines are homotopy fi-
bration sequences (see [WW01, p. 171] for the first line):

TOP(M)

��

// TOPQ(M)

��

// map(M , BTOP)

G f r(M , T M) // G(M) // map(M , BTOP)

So the horizontal homotopy fibers in diagram (3) agree.
(ii) The retraction r replaces a bundle E′→ B by the composition with an

associated disk bundle b : E′′ → E′. As the map b × idQ : E′′ × Q → E′ × Q
is cell-like and therefore a near homeomorphism [Cha76, Theorem 43.1], it
induces a path between the bundles E′′×Q→ B and E′×Q→ B in the space
of all bundles. In fact, we may copy the proof of Lemma 4.16, replacing E′×Q
by E′′×Q, and E′ by E′×Q.
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The goal of this section is to apply the results obtained so far in the context
of fibering questions. We obtain a complete obstruction theory (Theorems
5.1 and Theorems 5.2) in algebraic K-theory for existence and uniqueness of
the stable fibering problem: Is a map f : M → B between compact topological
manifolds homotopic to a fiber bundle, with compact manifolds as fibers, if
we allow to stabilize M by crossing with disks of sufficiently high dimension?

In some sense, these results are purely formal consequences of Theorem
4.4, together with the results of [DWW03]. However, for an important special
case, namely the “change of total space problem”, we also offer a slightly more
geometric perspective (see Theorem 5.10), using families of h-cobordisms,
and the consideration of “thickenings” in the sense of Wall [Wal66], where
a stable calculation and a stable range are known. It follows that, whenever
a concordance stable range is known for the fibers, we can give an upper
estimate on the number of stabilizations needed.

We also give several examples and use a spectral sequence to further ana-
lyze our obstructions. This will lead to a comparison with the fibering obstruc-
tions of [FLS09] in section 5.8. We are also able to deduce from our general
machinery the fibering theorems that Chapman-Ferry proved in the setting of
Q-manifolds [CF78] (see section 5.7).

Our main interest is the category of topological manifolds – unless stated
otherwise, all manifolds will be assumed to be topological manifolds, and the
results apply to the topological fibering problem. However the results also
apply to the setting of Q-manifolds, see section 5.2. For a discussion of the
DIFF case, see Remark 5.5.

5.1 Stably fibering manifolds

Let f : M → B a map between compact topological manifolds. We say that f
stably fibers if, for some n ∈ N, the composite

f ◦ Proj: M × Dn→ M → B

is homotopic to the projection map of a fiber bundle whose fibers are compact
topological manifolds. In this section we are going to apply our results to the

73
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following questions:

(i) When does f stably fiber?
(ii) How many different ways do there exist for f to stably fiber? More

precisely, denote by C the set of all bundles maps g : M × Dn → B for
some n which are homotopic to f ◦ Proj. We define two elements to be
equivalent, g ∼ g ′, if, after possibly further stabilization, the two bundles
g and g ′ are isomorphic through a homeomorphism i : M × DN → M ×
DN (i.e. i ◦ g = g ′), such that i is homotopic to the identity map. The
precise question is then: How can C/∼ be described?

See Remark 5.5 for some comments on the smooth case.
Factor our map f : M → B as p ◦ λ, where p : E → B is a fibration and

λ: M → E is a homotopy equivalence.
Here are the main results of this section. For more details and explana-

tions, see the remark below.

Theorem 5.1 (Existence). A map f : M → B between compact topological
manifolds stably fibers if and only if

(i) the fibers of p are homotopy finitely dominated,

(ii) the Wall obstruction Wall(p) ∈ H0(B;Wh(Fb)) vanishes, and

(iii) the torsion obstruction o( f ) in the cokernel of

π0(α): H0(B;ΩWh(Fb))→Wh(πM)

is zero.

Theorem 5.2 (Classification). There is a bijection from C/∼ to the kernel of
the map α: H0(B;ΩWh(Fb))→Wh(πM).

Remarks. (i) Recall that a space X is homotopy finitely dominated if there
is a finite CW complex Y together with maps i : X → Y and r : Y → X
such that r ◦ i ' idX .

(ii) The group Wh(πX ) is the direct sum of the Whitehead groups of π1(C)
for all path components C of X .

(iii) Wh(X ) denotes the connective topological Whitehead spectrum. By def-
inition,

H•(B;Wh(Fb)) = Γ
� WhB(E)

↓
B

�

,



5.1 Stably fibering manifolds 75

which is weakly homotopy equivalent to the homotopy limit of the func-
tor from the category of simplices of B to spaces, sending a simplex σ
to Wh(|σ|∗E) (see section 3). Also by definition,

H i(B;Wh(Fb)) = π−iH•(B; Wh(Fb)).

We think of it as the i-th cohomology of B with twisted coefficients in
the Whitehead spectrum of the fibers.

(iv) Wall(p) is the image of the parametrized A-theory characteristic

χ(p) ∈ Γ
� AB(E)

↓
B

�

under the map induced by the natural transformation A(X ) → Wh(X ).
It can be understood as a parametrized version of the Wall obstruction,
and is defined when condition (i) of Theorem 5.1 holds.

(v) As defined in section 4, if B is path-connected, the map α is given by the
composition

H•(B;ΩWh(Fb))→H•({b};ΩWh(Fb))' ΩWh(Fb)
χe(B)·i∗−−−→ ΩWh(E)' ΩWh(M),

the first map being the restriction to some b ∈ B, the labeled map in-
duced by the inclusion, followed by multiplication with the Euler char-
acteristic of B. If B is not path-connected, α is defined component-wise.

(vi) We will see that if the first two conditions of Theorem 5.1 are satisfied,
then p is fiber homotopy equivalent to a bundle of compact manifolds.
Under these hypotheses, the torsion obstruction is defined as follows:

Choose a factorization f = q ◦ λ′ such that q : E′ → B is a bundle of
compact manifolds and λ′ is a homotopy equivalence. Calculate the
Whitehead torsion of the homotopy equivalence λ′ : M → E′, and trans-
port it back to Wh(πM) using λ′. Its class in the cokernel of π0(α) is, by
definition, the torsion obstruction o( f ). It is independent of the choice
of the bundle q′.



76 5 Applications to fibering questions

Recall from section 4 the geometric assembly map

α: Sk(p)→Sn+k(E).

A point in its domain can be understood as a fiber homotopy equivalence
q→ p, where q is a bundle of compact topological k-manifolds. The image of
this point under α is basically the induced homotopy equivalence on the level
of total spaces.

Here is the key observation that connects the fibering question with the
geometric assembly map.

Lemma 5.3. (i) The fibration p is fiber homotopy equivalent to a bundle of
compact topological k-manifolds if and only if Sk(p) is non empty.

(ii) A map f : M n+k → Bn is homotopic to a bundle of k-manifolds if and
only if the element defined by λ: M → E is in the image of the map
π0(α): π0Sk(p)→ π0Sn+k(E).

(iii) There is a bijection from C/∼ to the preimage of [λ] under the map
α: π0Sk(p)→ π0Sn+k(E).

Proof. (i) is true by definition, and (ii) follows from (iii). Statement (iii) is
basically a close examination of the definition.

Indeed, as Sk(p)· is Kan, an element in the preimage of [λ] under π0(α)
is given by a commutative diagram

N

q
��

@@@@@@@
ϕ

'
// E

p
���������

B

(1)

with q a bundle of compact k-manifolds, such that N is homeomorphic to M
via a map under which ϕ corresponds to λ up to homotopy. It defines the
same element as the diagram

N ′

q′
  

@@@@@@@@
ϕ′

'
// E

p
���������

B
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if and only if both elements form are the boundaries of a similar diagram over
B× I . This means that both diagrams extend to a diagram

N ′

q′
&&NNNNNNNNNNNNN

i
∼=

//

ϕ′

%%

N
q
��

ϕ
// E

p
xxqqqqqqqqqqqqq

B

with i a homeomorphism of bundles over B, such that the lower triangles
commute strictly and the upper triangle commutes up to a homotopy over B.

Suppose that f is homotopic to a bundle g of k-manifolds, via a homotopy
H. Then H induces a fiber homotopy equivalence ϕ : M → E from g to p
together with a homotopy from ϕ to λ. Setting in the diagram (1) N := M
and q := g we obtain a corresponding element in the preimage of [λ] under
α. Letting C ′ := {(g, H)} the set of all homotopies H from f to a bundle g,
we therefore have constructed a map

c : C ′→ π0(α)
−1([λ]).

Suppose now that the images of (g, H) and (g ′, H ′) under c are the same.
This means that we obtain a diagram

M

g ′
''NNNNNNNNNNNNN

i
∼=

//

ϕ′

'
%%

M
g
��

ϕ

'
// E

p
xxppppppppppppp

B

together with a homotopy over B making the upper triangle commute. There-
fore

• g ◦ i = g ′ (since the triangle formed by these maps commutes strictly),
and

• i is homotopic to the identity map (since ϕ and ϕ′ are both homotopic
to λ).

But this means exactly that g ∼ g ′ as elements of C . Therefore c induces an
injection C/∼→ π0(α)−1([λ]).
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Finally we need to see that the map c is surjective. Therefore consider an
element x ∈ π0Sk(p), represented by a diagram (1). If π0(α)(x) = [λ], we
can extend it to a diagram

M

q◦i
&&NNNNNNNNNNNNN

i
∼=

//

λ
'

%%

N
q
��

ϕ

'
// E

p
xxqqqqqqqqqqqqq

B

such that the upper triangle commutes up to a homotopy (not necessarily
over B). Without the curved arrow, and with the middle column deleted, this
diagram represents c(q ◦ i, H) for some homotopy H. This shows that our
original element is in the same path component as c(q ◦ i, H).

Here is a stabilized version of Lemma 5.4. It follows from Lemma 5.4
together with the fact that

colim
n
π0Sn(p)

∼=−→ π0 hocolim
n

Sn(p).

Lemma 5.4. (i) The fibration p is fiber homotopy equivalent to a bundle of
compact topological manifolds if and only if S (p) is non empty.

(ii) A map f : M → B stably fibers if and only if the element defined by λ: M →
E is in the image of the map π0(α): π0S (p)→ π0S (E).

(iii) There is a bijection from C/∼ to the preimage of [λ] under the map
α: π0S (p)→ π0S (E).

Proof of Theorem 5.1. We first show that assumptions (i) and (ii) are neces-
sary. In fact, if f is homotopic to a bundle g of compact topological manifolds,
then assumptions (i) clearly holds.

Moreover, there is a weak homotopy fibration sequence

Γ
� A%

B (E)
↓
B

�

→ Γ
� AB(E)

↓
B

�

→ Γ
� WhB(E)

↓
B

�

.

So Wall(p) is zero if and only if χ(p) lifts over the fiberwise assembly map,
up to homotopy. By [DWW03] this is equivalent to saying that the fibration
p is fiber homotopy equivalent to a bundle of compact topological manifolds.
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Now the homotopy from f to g induces a fiber homotopy equivalence from p
to g, so Wall(p) = 0. So assumption (ii) is also necessary.

Now suppose that assumption (i) and (ii) hold, such that we can factor
f = q ◦ λ′ where q is a fiber bundle of compact topological manifolds and λ′

a homotopy equivalence. Denote by F ′b the fiber of q over b and consider the
following commutative diagram

π0S (q)

π0(α)
��

τ
// H0(B; Wh(F ′b))

π0(α′)
��

π0S (E′)
τ

//Wh(πE′)

(2)

which is π0 of the pull-back square from Theorem 4.4.
By Lemma 5.4, f is homotopic to a bundle of compact manifolds if and

only if the element defined by λ′ in the lower left-hand corner comes from
an element in the upper left-hand corner. Using the pull-back property, this
is equivalent to saying that the corresponding element τ([λ′]) in the lower
right-hand corner comes from an element in the upper right-hand corner.
Thus, if we define o( f ) as the class of τ([λ′]) in the cokernel of α′, f fibers
stably if and only if o( f ) = 0. As the fibrations p and q are fiber homotopy
equivalent, λ′ induces a bijection between the cokernels of π0(α) and π0(α′).
So we may think of o( f ) as an element in the cokernel of π0(α).

Finally we have to show that o( f ) is well-defined. Indeed suppose that
we choose another factorization f = q̄ ◦ λ̄′ with q̄ : Ē′ → B a fiber bundle
of compact manifolds. Then by the composition rule the resulting torsion
changes by the torsion of λ′ ◦ λ̄′−1 : Ē′→ E′, which is in the image of α since it
comes from a fiber homotopy equivalence. Thus, when passing to the cokernel
of π0(α), the element o( f ) is not affected.

Proof of Theorem 5.2. We saw in Lemma 5.4 that C/∼ is in bijection with
π0(α)−1([λ]), which by square (2) is in bijection to π0(α′)[τ(λ)] and thus
to the kernel of π0(α′) as α′ is an infinite loop map. Now use that λ′ induces
a bijection from the kernel of π0(α) to π0(α′).

Remark 5.5. As discussed in Remark 4.11, a proof of the DIFF analogues of
our results seems to require a different approach to the Dwyer-Weiss-Williams
characteristics. However the mere π0-commutativity of the square in Theorem
4.4 only uses additivity and product rule for the classical Whitehead torsion
and therefore clearly holds for the corresponding DIFF square. The methods
of this work therefore show: The DIFF analogues of our fibering obstructions
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Wall(p) and o( f ) (using the DIFF Whitehead space throughout) are defined,
and their vanishing is a necessary condition to stably DIFF fibering.

5.2 Fibering Q-manifolds over compact ANRs

Let M be a compact Q-manifold, B a compact ANR, and f : M → B a map.
This section deals with fibering M over B:

(i) When is f homotopic to a bundle of compact Q-manifolds? (By a bundle
of Q-manifolds, we mean a fiber bundle whose fibers are compact Q-
manifolds.)

(ii) What is the classification of bundles g : M → B sucht that g ' f ? More
precisely, denote by C the set of all such bundles g. We define two
elements to be equivalent, g ∼ g ′, if the two bundles g and g ′ are iso-
morphic through a homeomorphism i : M → M (i.e. i ◦ g = g ′), such
that i is homotopic to the identity map. How can C/∼ be described?

The main result of this section is that the obstruction theory for stably
fibering finite-dimensional manifolds applies to fibering Q-manifolds. As in
the last section, factor our map f into a homotopy equivalence λ and a fibra-
tion p.

Theorem 5.6 (Existence). Let M be a compact Q-manifold, B a compact ANR.
A map f : M → B is homotopic to a bundle of compact Q-manifolds if and only
if

(i) the fibers of p are homotopy finitely dominated,

(ii) the Wall obstruction Wall(p) ∈ H0(B;Wh(Fb)) vanishes, and

(iii) the torsion obstruction o( f ) in the cokernel of

α: H0(B;ΩWh(Fb))→Wh(πM)

is zero.

Theorem 5.7 (Classification). There is a bijection from C/∼ to the kernel of
the map α: H0(B;ΩWh(Fb))→Wh(πM).

The proof of Theorem 5.6 and 5.7 are similar to the finite-dimensional
versions. Use the fact that Lemma 5.3 works for any kind of bundles, and
replace Theorem 4.4 by Corollary 4.15.
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5.3 Change of base and total space

The two problems of “change of base” and “change of total space” are inter-
esting special cases where the parametrized Wall obstruction does not play a
role. We first consider them in the light of the general theory. After that we of-
fer a second, more geometric perspective using families of h-cobordisms. This
second perspective makes it easier to find an estimate for a stable range.

The following two theorems also apply in the setting of Q-manifolds.

Theorem 5.8 (Change of total space). Let p : M → B be a fiber bundle of
compact topological manifolds over a compact topological manifold, and let N
be another compact topological manifold, equipped with a homotopy equivalence
f : N → M:

N
f
'

//

p f
&&NNNNNNNNNNNNN M

p
��

B

Then p f stably fibers if and only if the Whitehead torsion τ( f ) lies in the image
of

π0(α): H0(B;ΩWh(Fb))→Wh(πM)

for p.

Theorem 5.9 (Change of base). Let p : M → B be a fiber bundle of compact
topological manifolds over a compact topological manifold, and let C be another
compact topological manifold, equipped with a homotopy equivalence f : B→ C:

M
p
��

f p

&&NNNNNNNNNNNNN

B
f
'

// C

Then f p stably fibers if and only if the image of the Whitehead torsion f −1
∗ τ( f ) ∈

Wh(πB) under the transfer homomorphism

p∗ : Wh(πB)→Wh(πM)

lies in the image of π0(α).
In particular, if the fiber F of p is connected, π1(B) acts trivially on F, and

f p stably fibers, then

χe(F) ·τ( f ) = 0 ∈Wh(πC).
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Proof of Theorem 5.8. Notice that p f is already a factorization into a homo-
topy equivalence followed by a fiber bundle. So, conditions (i) and (ii) of
Theorem 5.1 are satisfied, and the torsion obstruction o( f ◦ g) is just the im-
age of the Whitehead torsion of f in the cokernel.

Proof of Theorem 5.9. Denote by k : C → B a homotopy inverse of f , and con-
sider the pull-back

k∗M //

k∗p
��

M
p
��

C k
// B

Now f induces a map f̄ : M → k∗M such that f ◦ p = k∗p ◦ f̄ is a factorization
of f ◦p into a homotopy equivalence followed by a fiber bundle. Thus o( f ◦p)
is given by the class of f̄ −1

∗ τ( f̄ ), which satisfies

f̄ −1
∗ τ( f̄ ) = p∗ f −1

∗ τ( f )

by the geometric definition of the transfer map [And74].
Now suppose that F is connected and π1(B) acts trivially. In this case

the composite p∗ ◦ p∗ is just multiplication with the Euler characteristic of F
[Lüc87]. We saw that if f ◦ p stably fibers, then p∗ f −1

∗ τ( f ) comes from some
element κ ∈ Wh(πF) under the map induced by the inclusion i : F → M . As
the composite p ◦ i is nullhomotopic, we have

0= p∗i∗κ= p∗p
∗ f −1
∗ τ( f ) = χe(F) · f −1

∗ τ( f ) ∈Wh(πB).

Using the relation between the parametrized torsion and higher h-cobor-
dism theory, we now give a second perspective on the change of total space
problem. Under smoothability conditions, this approach allows to estimate a
stable range using the stability results of Igusa [Igu88].

In the change of total space problem as in Theorem 5.8 (i), suppose for
simplicity that B is connected. Denote by k the smallest dimension of a CW
complex homotopy equivalent to B, and by n the the smallest dimension of a
CW complex homotopy equivalent to the fibers.
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Theorem 5.10. In the situation of Theorem 5.8, suppose that M, N, and the
fibers of f are smoothable. If τ( f ) is in the image of π0(α), then the composite

N̄ := N × I l Proj
−→ N

f
−→ M

p
−→ B

fibers as soon as

dim N̄ ≥max{2(n+ k) + 1,dim M + n+ k, dim M + k+ 2,

dim B+ 2k+ 6,dim B+ 3k+ 2, dim N + 3}.

Proof. The first step is to replace f : N → M by f̄ : N → M̄ which is a stably
tangential homotopy equivalence, i.e. f̄ ∗T M̄ ∼= T N stably.

Therefore recall that M and N are supposed to be smoothable, so we may
consider a vector bundle reduction

( f −1)∗T N − T M : M → BO

of the corresponding TOP bundle. It actually has a further reduction to a
O(n+k)-bundle, the inclusion BO(N)→ BO being N -connected. Let therefore
q : M̄ → M be a disk bundle of this (n+ k)-dimensional vector bundle. We
obtain

T M̄ |M ∼= T M ⊕ Tfibq|M ∼= T M ⊕ q ∼= ( f −1)∗T N

stably, so if we let f̄ : N → M̄ be f followed by the zero-section, then f̄ is a
stable tangential homotopy equivalence.

Notice that the map p̄ = p ◦ q still is a fiber bundle of compact smoothable
manifolds (with a fiber we denote by F̄b), and that

dim M̄ = dim M + (n+ k).

Now suppose that τ( f̄ ) = τ( f ) disassembles, i.e. that there is a τ ∈
H0(B;ΩWh(F̄b)) such that that π0(α)(τ) = τ( f ). In fact, we would like to
further go back to H0(B;ΩWh(∂ F̄b)). As a first step, the following lemma
shows that the inclusion ∂ F̄b ⊂ F̄b is (n+ k− 1)-connected.

Lemma 5.11. If F̄ → F is a K-disk bundle over a compact manifold, and the
pair (F,∂ F) is N-connected, then (F̄ ,∂ F̄) is (N + K)-connected.

As K-theory preserves connectivity, we have that ΩWh(∂ F̄b) → ΩWh(F̄b)
is (n+k−2)-connected. Using a spectral sequence argument (see section 5.6),
we see that the inclusion-induced map

i : H0(B;ΩWh(∂ F̄b))→ H0(B;ΩWh(F̄b))
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is (n−2)-connected. Hence, stabilizing twice if necessary, we find an element
τ′ in the left-hand side which maps to τ under i. Let ∂fib p̄ be the restriction
of p̄ along the fiberwise boundary. Using our generalization of Waldhausen’s
map

W : π0H (∂fib p̄)→ H0(B;ΩWh(∂fib F̄b))

from section 3.7 together with the connectivity result Corollary 3.19, we see
that this map is surjective provided k − 1 is in the concordance stable range
for ∂ F̄b.

By our assumptions the manifold ∂ F̄b is smoothable, so Igusa’s stability
result [Igu88] (see [WW01, Theorem 1.3.4] for the topological range) says
that k− 1 is in the concordance stable range for ∂ F̄b whenever

dim∂ F̄b ≥max{(2(k− 1) + 7,3(k− 1) + 4}.

Thus, stabilizing further if necessary, we obtain a parametrized h-cobordism
E over ∂fib p̄ whose torsion equals −τ′. Now M̄ has dimension

max{dim M + n+ k, dim M + k+ 2,dim B+ 2k+ 6, dim B+ 3k+ 2}.

Form the bundle ¯̄M := M̄∪∂fib p̄ E over B. Using additivity for the Whitehead

torsion, we see that the inclusion M̄ → ¯̄M has has Whitehead torsion −τ( f ).
By the composition rule, the composite

¯̄f : N → M̄ → ¯̄M

has torsion zero (and is still stably tangential).
Now stabilize N to obtain N̄ := N×I l such that l ≥ 3 (so that N̄ is π-π) and

dim N̄ ≥ 2(n+k)+1, and stabilize either N̄ or ¯̄M further so that the dimensions
agree. Letting K be a finite (n+k)-dimensional CW complex simple homotopy
equivalent to N̄ , it follows that both N̄ and ¯̄M define thickenings of K in
the sense of Wall [Wal66]. It is known that stably, thickenings are classified
by their tangent bundle. Now the dimension of the thickenings we consider
exceeds 2(n + k), so we are in the stable range. But ¯̄g is stably tangential,
hence the thickenings agree. Thus ¯̄g is homotopic to a homeomorphism.

Summarizing all the necessary stabilizations, we see that p f fibers as soon
as

dim N̄ ≥max{2(n+ k) + 1,dim N + 3,dim M + n+ k,

dim M + k+ 2,dim B+ 2k+ 6, dim B+ 3k+ 2}.
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Finally we give a proof of Lemma 5.11.

Proof of Lemma 5.11. There is a push-out diagram

∂fib F̄ |∂ F
� � (N)

//

_�

(K−1)
��

∂fib F̄
_�

��

F̄ |∂ F
� � // ∂ F̄

where the labels on the arrows denote the connectivity of the maps. (The
left-hand vertical map is (K − 1)-connected as

SK−1
_�

��

� � // ∂fib F̄ |∂ F_�

��

DK � � // F̄ |∂ F

is a homotopy pull-back, with horizontal fibers Ω∂ F .)
We obtain a diagram of pairs

(∂fib F̄ ,∂fib F̄ |∂ F)
(N+K−1)

//

'

**TTTTTTTTTTTTTTTT
(∂ F̄ , F̄ |∂ F)

��

// (F̄ , F̄ |∂ F)
'

xxppppppppppp

(F,∂ F)

where the left-hand horizontal map is (N + K − 1)-connected by the theo-
rem of Blakers-Massey, and the left-hand and right-hand diagonal maps are
weak equivalences of pairs. Hence the vertical map in the middle is (N + K)-
connected. Therefore the right-hand horizontal map is (N + K)-connected,
too.

This implies that the inclusion ∂ F̄ → F̄ is also (N + K)-connected.

5.4 Examples I: Elementary applications

In this section we give some immediate applications of our results on the
stable fibering problem. The first one characterizes simple homotopy equiva-
lences between compact manifolds as the homotopy equivalences that stably
fiber. After that we give some implications for closed manifolds.
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Proposition 5.12. A homotopy equivalence f : M → N between compact mani-
folds stably fibers if and only if τ( f ) = 0.

If M and N are closed smoothable of dimension k and τ( f ) = 0, then f fibers
after at most max{2k+ 6,3k+ 2} stabilizations.

Proof of Proposition 5.12. This is a simple application of our results in the fol-
lowing change of total space problem:

M
f
'

//

f
&&NNNNNNNNNNNNN N

id
��

N

As the fibers of the identity are contractible, their Whitehead group vanishes.
So π0(α) is the zero map and its cokernel is just Wh(πM). Hence o( f ) =
f −1
∗ τ( f ) ∈Wh(πM).

Now we turn to closed manifolds and consider the change of total space
problem

M
f
'

//

g
&&NNNNNNNNNNNNN N

p
��

B

If g stably fibers, i.e. for some n � 0, M × Dn+1 → B fibers, then we may
restrict to the boundary to see that

ḡ : M × Sn→ M
g
−→ B

fibers for large enough n. So our theory gives sufficient conditions for M × Sn

to fiber over B.
On the other hand, if ḡ fibers, then it certainly stably fibers. It follows:

Proposition 5.13. (i) A necessary condition for M × S2N → B to fiber for
large N is that

2o(g) = 0.

(ii) A sufficient condition for M × S2N → B to fiber for large N is that

o(g) = 0.

(iii) The sufficient condition is not necessary in general.
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Proof. (i) We have τ( f × idS2N ) = χ(S2N) · τ( f ) = 2τ( f ), and its class in the
cokernel of π0(α) defines the obstruction o( ḡ) for ḡ to stably fiber.

(ii) Stabilize g and restrict to the boundary.
(iii) Choose a homotopy equivalence f : M → K×S1 between closed man-

ifolds such that τ( f ) 6= 0 and 2τ( f ) = 0, and let p : K × S1 → B denote the
projection. Hence o(p f ) 6= 0; in contrast, if q : M×S2N → M is the projection,
then o(p f q) = 0.

We will show in Theorem 5.25 that for B = S1, the stable fibering obstruc-
tion o(p f q) and the obstructions τfib(p f q) defined in [FLS09] agree. Now
Farrell’s fibering theorem together with the comparison of the different ob-
structions [FLS09, Theorem 8.1] shows that p f q fibers.

Proposition 5.14. If f : M → B is any map between closed manifolds whose
homotopy fiber is finitely dominated, then the composite

M × S1× SN Pro j
−−→ M

f
−→ B

fibers for large enough N.

Proof. The parametrized Wall obstruction becomes zero after crossing with S1

(see e.g. [WW01, Corollary 5.2.5]). The same is true for the fibering obstruc-
tion. Therefore M × S1× DN+1→ B fibers. Now restrict to the boundary.

5.5 Examples II: Stable vs. unstable fibering
and TOP vs. DIFF

In this section we give examples of maps f : M → B that fiber stably but
not unstably. Of course, if the dimension of M and B agree then fibering
f unstably just means deforming the map to a homeomorphism, whereas f
stably fibers if and only if it is a simple homotopy equivalence (Proposition
5.12): This gives obvious examples.

More interestingly, we will produce two types of examples of arbitrarily
high codimension. The first one uses bundle theory and characteristic classes
while the second one applies surgery theory (and actually produces an exam-
ple which does not even block fiber).

At the end we use an example of Klein-Williams to produce maps that fiber
in TOP but do not fiber in DIFF.
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Bundle theory

Let Z be an exotic complex projective space equipped with a homotopy equiv-
alence

h: Z → CP2n+1

such that, for some k 6= 0, the L -genus satisfies

(h∗)−1L (Z) =L (CP2n+1) · (1+ 8ke2n) ∈ H∗(CP2n+1)∼=Q[e]/(e2n+2). (3)

(Take all the cohomology rings with rational coefficients.) We will show below
that such objects exist.

Proposition 5.15. (i) The composite

Z × SN π−→ Z
h−→ CP2n+1

of h with the projection fibers stably. If Z is smoothable then it fibers even
unstably whenever N ≥ 12n+ 7.

(ii) For N ≤ 2n− 1, the map from (ii) does not fiber (unstably).

Proof. (i) This is an application of the change of total space problem.
(ii) Let p : Z × SN → CP2n+1 be a fiber bundle homotopic to the map of

(ii). Then
T (Z × SN)∼= p∗T (CP2n+1)⊕η

for an N -dimensional bundle η. Hence

L (Z × SN) = p∗L (CP2n+1) · L (η).

But L (Z × SN) = π∗L (Z) = p∗(h∗)−1L (Z) as the sphere is stably paral-
lelizable. It follows that

L (η) = p∗
�

L (CP2n+1)−1 · (h∗)−1L (Z)
�

= 1+ 8kp∗(e)2n

using (3) for the last equality. Hence, since p∗ is injective, the L -genus of η
is non-zero in degree 4n. Inductively one concludes

pi(η) = 0 (i < n), pn(η) 6= 0

using the fact that the coefficient of pi in Li is non-zero for all i [Hir78,
I.1.(11)]. So η must be at least 2n-dimensional: N ≥ 2n.
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We now indicate why a homotopy equivalence

h: Z → CP2n+1

with the property (3) exists. This construction is due to Madsen-Milgram
[MM79]. Let f : X → CP2n be a topological degree one normal map corre-
sponding to the composite

CP2n→ CP2n/CP2n−1 ∼= S4n→ G/TOP

where the last map represents k times a generator of π4n(G/TOP) ∼= Z. Let
E → CP2n be the disk bundle of the tautological vector bundle. We may
pull back the normal map f to E. By the π-π-theorem, this pulled-back nor-
mal map is cobordant to a map g : Y → E which is a homotopy equivalence
and restricts to a homotopy equivalence over the boundary ∂ E = S4n+1. The
Poincaré conjecture implies that ∂ Y ∼= S4n+1 homeomorphically. Thus we may
cone off g at the boundaries to obtain a topological manifold Z and a homo-
topy equivalence h: Z → CP2n+1.

We have to show that (3) holds. To do that, we will use the characteristic
classes

K4n ∈ H4n(G/TOP;Q)

given uniquely by the property that if γ: M → G/TOP is a normal invariant on
a closed 4k-manifold, then its simply-connected surgery obstruction is given
by the formula [MM79, Theorem 4.9]

s(M ,γ) =



L (M) ·
�

∑

i≥1

γ∗(K4i)
�

, [M]
�

.

Now the surgery obstructions of h|CP i for i < 2n are zero while the surgery
obstruction of h|CP2n is k, hence inductively one concludes that

γ∗(K4i) = 0 (4i < 2n), γ∗(K4n) = ke2n ∈ H4n(CP2n+1).

Denote by L ∈ H∗(BTOP;Q) the L -class of the universal bundle. By
[MM79, Corollary 4.22], its restriction along G/TOP → BTOP is given by
1+ 8K , where K = K4+ K8+ . . . . Hence

(h∗)−1L (Z) =L (CP2n+1) · γ∗(1+ 8K) =L (CP2n+1) · (1+ 8ke2n),

as claimed.
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Remark 5.16. To the knowledge of the author, it is unknown in general which
of these fake CP2n+1 are smoothable. The following argument shows that
there are infinitely many smoothable examples for even n. This follows from
calculations of Brumfiel’s [Bru71]; I am grateful to Diarmuid Crowley for
drawing my interest to that paper.

For each n there exists a number An such that the normal invariant f is
smoothable if and only if k is a multiple of An. (In fact An is the order of
the generator of π4n(G/TOP) in the torsion group π4n−1(TOP/O).) Hence the
subgroup of all smooth normal invariants of CP2n satisfying (3) is infinite.

Using the π-π-theorem in the smooth setting, we obtain a map

[CP2n, G/O]∼= [E, G/O]∼= S DIFF(E)→S DIFF(∂ E) = Γ4n+1

from the smooth normal invariants of CP2n to the group of homotopy spheres.
By [Bru71, Corollary 6.6], this map is a group homomorphism if n is even.
Hence in this case it has an infinite kernel.

If f : X → CP4n is a smooth normal map of degree one which represents
an element in the kernel, this means the following: The pull-back of f to E
is cobordant to a normal map g : Y → E which restricts to a diffeomorphism
on the boundary. In this case the coning procedure yields a homotopy equiv-
alence h: Z → CP4n+1 where Z is smooth.

Surgery theory

Now we come to the surgery-theoretic example. Let γ: X → G/TOP be a
normal invariant on a closed manifold X , let M be a closed manifold and let
h: M → X × Sk be a simple homotopy equivalence which, considered as a
normal invariant, restricts to γ over X ×{∗}. (See below for an argument that
such a homotopy equivalence always exists provided k ≥ 3 and k+dim X ≥ 6.)

Proposition 5.17. If the surgery obstruction of γ is non-zero, then the composite

f : M
h−→ X × Sk Proj

−→ Sk

does not fiber. It always fibers stably.

Proof. The composite fibers stably by Proposition 5.8. Suppose there exists a
fiber bundle F → M

p
−→ Sk homotopic to f . We then can lift the homotopy to

obtain a homotopy
H : M × I → X × Sk × I
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over Sk which restricts to h at M×0 and which is a fiber homotopy equivalence
F → X × Sk over 1. Taking a transverse preimage over the base point of Sk

yields a degree one normal cobordism

(W ; N , F)→ (X × Sk × I ; X × Sk × 0, X × Sk × 1)

whose restriction over 1 is a homotopy equivalence. The restriction over 0
corresponds to the element γ, which therefore has surgery obstruction 0, con-
tradicting the assumption.

The following argument how to construct such a simple homotopy equiva-
lence h has been communicated to the author by Tibor Macko. Given γ: X →
G/TOP, by homotopy invariance we can think of γ as a normal invariant on
X × Dk (without boundary conditions). By the π-π theorem (here we use the
dimension assumptions), this normal invariant is cobordant to a simple ho-
motopy equivalence Z → X × Dk which restricts to a simple homotopy equiv-
alence h′ : ∂ Z → X ×Sk−1. Let M be the double of Z; then h′ induces a simple
homotopy equivalence h: M → X ×Sk whose normal invariant over X ×{∗} is
γ as desired.

DIFF vs. TOP

The last example in this section deals with a map that stably fibers in TOP but
not in DIFF. It is a slight generalization of an example given by Klein-Williams
[KW09].

Proposition 5.18. Let
S3→ E

p
−→ S3

be the fibration which corresponds to the generator of π3(BG(S3)) ∼= π5(S3) ∼=
Z/2, and let λ: M → E be any homotopy equivalence from a compact smooth
manifold M to E. Then pλ stably fibers in TOP but not in DIFF.

Proof. By [KW09, Theorem G], WallTOP(p) = 0 but WallDIFF(p) 6= 0. As E is
simply-connected, the obstruction group for the fibering obstruction o(pλ) is
zero.

It would be interesting to have an example of a map that fibers in TOP
where the smooth Wall obstruction is zero, but the smooth fibering obstruction
is not. This would probably require a deeper analysis of the higher homotopy
type of WhP L(F) and WhDIFF(F) for a suitable F whose fundamental group has
non-vanishing Whitehead group.
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5.6 A spectral sequence

The goal of this section is to prove the following spectral sequence result,
which will allow, in certain cases, to analyze the Wall obstruction further:

Theorem 5.19. (i) Let E → B be a fibration over a CW complex, with fiber
Fb over b. There is a 4th quadrant spectral sequence

Ep,q
2 = H p(B;π−qWh(Fb)) =⇒ H p+q(B;Wh(Fb)),

where the E2-term consists of ordinary cohomology with twisted coefficients
in the system of abelian groups {b 7→ π−qWh(Fb)}.

(ii) If B is d-dimensional, d <∞, then the corresponding filtration

· · · ⊃ F p,q ⊃F p+1,q−1 ⊃ . . .

of H p+q(B; Wh(Fb)) is finite, and the spectral sequence converges in the
strongest possible sense, i.e. we have

F 0,n = Hn(B;Wh(Fb)) for all n

F d+1,n−d−1 = 0 for all n

F p,q/F p+1,q−1 ∼= Ep,q
∞ for all p, q

(iii) Under the edge homomorphism

H0(B; Wh(Fb))→ H0(B;π0Wh(Fb))⊂
∐

[b]∈π0B

K̃0(Z[π1Fb]),

the image of Wall(p) is the finiteness obstruction of the fiber.

(iv) Suppose that all the fibers are homotopy equivalent to finite CW complexes.
Let γ: S1→ B be a loop. The naturally defined secondary homomorphism

ker
�

H0(B; Wh(Fb))→ H0(B;π0Wh(Fb))
�

→ H1(B;π1Wh(Fb)),

followed by the restriction map

γ∗ : H1(B;π1Wh(Fb))→ H1(S1;π1Wh(Fb))∼=Wh(πFb)π1(S1)

(coinvariants under the π1(S1)-action) sends Wall(p) to the element de-
fined by the torsion of the fiber transport along γ.
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Recall that

H•(B; Wh(Fb) = Γ
� WhB(E)

↓
B

�

' holim
σ∈simp B·

Wh(Eσ).

Setting C := simp B·, the last term may be seen as the C -equivariant coho-
mology [DL98]

H•C (EC ; Wh(Eσ))

of EC with respect to the functor σ 7→Wh(Eσ) (taking values in Ω-spectra).
For such a C -equivariant cohomology theory h∗, the authors also provide

an Atiyah-Hirzebruch type spectral sequence [DL98, Theorem 4.7]. It con-
verges against h∗(X ) for a C -CW complex X (with CW-filtration (X n)n∈N); its
E1-page is given by

Epq
1 = hp+q(X p, X p−1) =: C p

h∗+q(X ),

which by definition is the cellular cochain complex of X associated to the coho-
mology theory h∗+q. The E1-differential is precisely the coboundary operator
of this cellular cochain complex, such that

Epq
2 = H p(C∗h∗+q(X ))

is the associated cellular homology.
To prove part (i), we let h∗(X ) := H∗C (X , Wh(Eσ)) and X = EC . We need to

identify this E2 term with H p
C (B;π−qWh(Fb)). Therefore we use the standard

model EC = |C /?| and the fact that the differentials in the cellular cochain
complex can be computed using incidence numbers. It turns out that the re-
sulting complex is precisely the simplicial cochain complex of |C | = | simp B·|
with coefficients in π−qWh(Eσ), so we have

Epq
2
∼= H p(| simp B·|; Wh(Eσ)).

Now use the fact that the last vertex map defines a homotopy equivalence

|C |= | simp B·| → |B·|= B

under which the corresponding twisted coefficient systems agree.
Part (ii) is proven in [DL98]. To prove parts (iii) and (iv) we need to

look more closely at the spectral sequence to identify the edge and secondary
homomorphisms:
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By definition,

F pq = lim
n

ker(hp+q(X n)→ hp+q(X p−1)),

such that a descending filtration on hp+q(X ) is given by

· · · ⊇ F p,q ⊇F p+1,q−1 ⊇ . . .

with
⋃

p

F p,k−p =F 0,k = lim
n

hk(X n)

and exact sequences

0−→F p+1,q−1 −→F pq −→ Epq
∞ .

As the spectral sequence is limited to the right half-plane, we have E00
1 ⊇

E00
2 ⊇ · · · ⊇ E00

∞ and E1,−1
2 ⊇ E1,−1

3 ⊇ · · · ⊇ E1,−1
∞ . Thus we obtain exact se-

quences

0−→F 1,−1 −→F 00 α0−→ E00
2 ,

0−→F 2,−2 −→F 1,−1 α1−→ E1,−1
2 .

With this notation the edge homomorphism is given by the composite

h0(X )→ lim
n

h0(X n) =F 00 α0−→ E00
2

whereas the secondary homomorphism is given by

α1 : F 1,−1→ E1,−1
2

We now show that the maps αi can be described explicitly using the cel-
lular chain complex. With this knowledge and using the identification of the
parametrized torsion with the classical one in Proposition 3.8, it is not hard
to complete the proof of parts (iii) and (iv).

Lemma 5.20. (i) The restriction map

r0 : F 00 = lim
n

h0(X n)→ E00
1 = h0(X 0) = C0

h∗(X )

takes values only in cocycles Z0 of the cellular cochain complex.
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(ii) The map α0 is the composite F 00 r0−→ Z0→ H0
C (X ;π0E) = E00

2 .

(iii) The restriction map r1 : h0(X , X 0) → h0(X 1, X 0) = C1
h∗−1(X ) takes values

only in the cocycles Z1 of the cochain complex.

(iv) Restriction defines a map h0(X , X 0)→ F 1,−1 such that the following dia-
gram commutes:

h0(X , X 0)
r1

//

��

Z1

��

F 1,−1
α1

// E1,−1
2

Here the vertical map on the right hand side is the projection of the 1-
cocycles to 1-cohomology classes of the cochain complex C∗

h∗−1(X ).

Proof. Assertions (i) and (iii) are clear. For assertions (ii) and (iv), we need
to revisit the construction of the spectral sequence. Define

Z pq
r = im(hp+q(X p+r−1, X p−1)→ hp+q(X p, X p−1)),

Z pq
∞ =

⋂

r

Z pq
r ,

Bpq
r = im(hp+q−1(X p−1, X p−r)→ hp+q(X p, X p−1)),

Bpq
∞ =

⋃

r

Bpq
r .

Then we have

0= Bpq
1 ⊆ Bpq

2 ⊆ · · · ⊆ Bpq
∞ ⊆ Z pq

∞ ⊆ · · · ⊆ Z pq
2 ⊆ Z pq

1 = Epq
1 ,

and, by construction of the spectral sequence, the following is true:

• Epq
r = Z pq

r /B
pq
r and Epq

∞ = Z pq
∞ /B

pq
∞ .

• Under this identification, the map F pq → Epq
∞ is induced by the restric-

tion map hp+q(X n, X p−1)→ hp+q(X p, X p−1).

To see part (ii), observe that, firstly, Z00
2 = Z0 such that the restriction

r0 : F 00→ Z0 amounts to the composite F 00→ Z00
∞ ,→ Z00

2 . Secondly, B00
r = 0

for all r, thus Z00
r = E00

r , and the inclusion E00
∞ → E00

2 is really the inclusion
Z00
∞ → Z00

2 . But the composition F 00 → E00
∞ ,→ E00

2 was the definition of the
map α0.
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For part (iv), we have F 1,−1 = limn ker(h0(X n) → h0(X 0)) and thus the
restriction maps h0(X , X0)→ h0(X n) for all n indeed define a map h0(X , X0)→
F 1,−1. The following diagram with the obvious maps commutes:

h0(X , X0)

��

// Z1,−1
∞

��

� � // Z1,−1
2

��

F 1,−1 // Z1,−1
∞ /B1,−1

2
� � // Z1,−1

2 /B1,−1
2

As B1,−1
2 = B1,−1

∞ , the middle term in the lower row is E1,−1
∞ and the map

from F 1,−1 to it just the usual one. Moreover, we have Z1,−1
2 = Z1, and the

composition of the upper row is the map r1. Now we only need to notice that
the composition in the lower row is the map α1 as defined above.

5.7 Examples III: Results of Chapman-Ferry

The obstruction theory developed in this chapter, together with the spec-
tral sequence description of H0(B;Wh(Fb)), allow us to re-obtain results by
Chapman-Ferry [CF78] on fibering Q-manifolds over compact ANRs. The cal-
culations presented here apply to fibering Q-manifolds and to stably fibering
finite-dimensional topological manifolds.

Lemma 5.21. Let p : E → B be a fibration with homotopy finitely dominated
fibers. If the base space is homotopy equivalent to an n-dimensional CW complex,
and all the fibers Fb are n-connected, then p is fiber homotopy equivalent to a
bundle of compact manifolds.

In the case n= 1, it is enough to suppose Wh(πFb) = 0. In the case n= 2, it
is enough to suppose that Fb is 1-connected.

Proof. Choose an n-dimensional CW complex B′ and a homotopy equivalence
B′→ B. Pull the fibration p back to a fibration p′ : E → B′. If a map X → Y is
n-connected, then the induced map A(X )→ A(Y ) is n-connected by [Wal78]
and so is Wh(X ) → Wh(Y ) by a 5-lemma type argument. As Wh(∗) is con-
tractible, it follows that Wh(X ) is n-connected whenever X is n-connected. If
X is 1-connected, then Wh(X ) is 2-connected (see [Hat78, section 3], with the
correction in [Igu84]). Therefore the spectral sequence for H0(B′;Wh(Fb))
has vanishing E2 page. So Wall(p) = 0.

Here is our formulation of the results by Chapman-Ferry from [CF78]. Let
always f : M → B be a map of a compact Q-manifold to a compact, connected
ANR B.
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Proposition 5.22. Suppose B is homotopy equivalent to a finite n-complex. If
the homotopy fiber F of f is homotopy finitely dominated and n-connected, then
the torsion obstruction o( f ) ∈Wh(πM) is defined and vanishes if and only if f
stably fibers.

If n = 1, we can replace the assumption “F 1-connected” by “Wh(πF) = 0”.
If n= 2, we can replace the assumption “F 2-connected” by “F 1-connected”.

For example, a two-connected map f : M → S2 fibers whenever the ho-
motopy fiber of f has the homotopy type of a CW complex and has finitely
generated homology.

Proof. By the assumptions and Lemma 5.21, conditions (i) and (ii) are satis-
fied. Moreover, the map α: H0(B;Wh(Fb))→Wh(πE) is zero since it factors
through Wh(πFb) = 0.

Proposition 5.23. (i) Suppose that B is homotopy equivalent to a wegde of
n copies of S1 (n ≥ 1), and suppose that the homotopy fiber F of f is
connected and homotopy equivalent to a finite complex. Then, Wall(p) is
an element of

⊕

n Wh(πF)αn
(coinvariants under the action of the fiber

transport along the corresponding copy of S1).

(ii) The torsion obstruction (whenever defined) is an element in the quotient

Wh(πM)/(n− 1) ·Wh(πF)π1B.

In particular, if n= 1, the torsion obstruction lives in Wh(πM).

Proof. (i) By the spectral sequence, there is an exact sequence

0→ H1(B;π1Wh(Fb))→ H0(B; Wh(Fb))
e−→ H0(B;π0Wh(Fb))→ 0,

and the image of Wall(p) under the edge homomorphism e is given by the
finiteness obstruction of the fiber, which is zero by assumption. Therefore,
Wall(p) lifts to

H1(B;π1Wh(Fb))∼=
⊕

n

H1(S1;π1Wh(Fb))∼=
⊕

n

Wh(πFb)αn
.

(ii) The map α factors as

H0(B;ΩWh(Fb))� H0(B;Wh(πFb))∼=Wh(πFb)
π1B χe(B)·i∗−−−→Wh(πM),

and the Euler characteristic of B is n− 1.
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Proposition 5.24. Let f , g : M → B be two homotopic projections of bundles
of compact manifolds. Suppose that B is homotopy equivalent to a wedge of n
copies of S1. Denote by F the homotopy fiber of f , which is homotopy equivalent
to the homotopy fiber of g. The obstruction group A for f and g being equivalent
fits into the following exact sequence:

0→
⊕

n

π2Wh(F)αn
→ A→Wh(πF)π1B (n−1)·i∗−−−→Wh(πM)

Proof. Recall that A is given by the kernel of

α: H0(B;ΩWh(Fb))
β
−→ H0(B;Wh(πF))∼=Wh(πF)π1B (n−1)·i∗−−−→Wh(πM).

By the spectral sequence, we have

0→ H1(B;π2Wh(Fb))→ H0(B;ΩWh(Fb))
β
−→ H0(B;π1Wh(Fb))→ 0.

Thus
kerβ ∼= H1(B;π2Wh(Fb))∼=

⊕

n

π2Wh(F)αn
.

Since β is surjective, there is a short exact sequence

0→ kerβ → A→ ker((n− 1) · i∗)→ 0.

The claim follows.

5.8 Comparison with the obstructions by
Farrell-Lück-Steimle

The content of the author’s Diploma thesis [Ste07] was to define obstructions
to fibering a manifold over another manifold. See [FLS09] for a published and
extended version. The goal of this section is to compare these obstructions.

Given a map f : M → B of topological manifolds, factor as usual as f =
p ◦λ, a homotopy equivalence followed by a fibration. Recall that in [FLS09],
two obstructions for f to be homotopic to a fiber bundle are defined:

(i) An element θ( f ) ∈ H1(B;Wh(πM)) which is defined whenever the ho-
motopy fiber F of f is homotopy finite (an obvious necessary condition).
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It is defined by the rule that whenever γ: S1 → B is a loop in B, then
under the restriction map

H1(B; Wh(πM))
γ∗

−→ H1(S1; Wh(πM))∼=Wh(πM)

θ( f ) maps to i∗(τ), where τ is the Whitehead torsion of the fiber trans-
port on p along γ (choosing an arbitrary simple structure on the fiber
F).

(ii) If θ( f ) = 0, there is defined an element

τfib( f ) ∈ coker(Wh(πF)
χe(B)·i∗−−−→Wh(πM))

where i : F → M is the inclusion of the homotopy fiber, and χe(B) de-
notes the Euler characteristic. It is defined as follows: Choose a simple
structure on the homotopy fiber of f and perform a certain construction
(inductively over the cells of B) to obtain a simple structure on E. Then
τfib( f ) is the image of the Whitehead torsion of λ: M → B, which is
well-defined in the quotient.

Theorem 5.25. (i) The image of Wall(p) under the restriction

H0(B; Wh(Fb))→ H0({b};Wh(Fb))∼= K̃0(Z[πFb])

is the finiteness obstruction of the fiber.

(ii) Suppose that F is homotopy finite. The image of the Wall obstruction
Wall(p) under the secondary homomorphism

ker
�

H0(B;Wh(Fb))→ H0(B;π0Wh(Fb))
�

→ H1(B;Wh(πFb))
i∗−→ H1(B;Wh(πM))

is θ( f ).

(iii) Suppose that Wall(p) = 0. The definition of the map α as a composite

H0(B;ΩWh(Fb))→ ΩWh(Fb)
χe(B)·i∗−−−→ ΩWh(E)

induces a map

coker(π0(α))→ coker
�

Wh(πF)
χe(B)·i∗−−−→Wh(πM)

�

under which o( f ) maps to τfib( f ). In particular, if χe(B) = 0, then

o( f ) = τfib( f ) ∈Wh(πM).
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Proof. (i) and (ii) were proved in Theorem 5.19.
(iii) If Wall(p) = 0, then we may assume that p is a bundle of compact

topological manifolds, and it follows from [FLS09, Lemmas 3.11 and 3.16]
that the simple structure on E is just the canonical simple structure of the
topological manifold E. Therefore both o( f ) and τfib( f ) are given by the
respective classes of the Whitehead torsion of λ.



A Some results on fibrations

This appendix collects the technical results on fibrations needed to make our
classifying machinery work. Again recall that all the spaces are compactly
generated Hausdorff.

A.1 The fibered homotopy extension property

We begin by stating a useful fact.

Lemma A.1 (Fiber homotopy extension property). A map i : A → X is a
cofibration if and only if the fibered homotopy extension property holds:

Given any (solid) commutative diagram

A× I ∪A×0 X × 0
h∪ f

//

_�

��

E
p

��

X × I
Proj

//

H

55

X
p f
// B

with p a fibration, there exists a (dotted) lift.

In fact, the usual HEP for cofibrations amounts to letting B be a point. On
the other hand, if i is a cofibration, the existence of a lift is a standard result.

As a consequence, some well-known results from the theory of cofibrations
also hold in the fibered context. Proofs are identical, replacing the homotopy
extension property by the fibered one.

Proposition A.2 ([May99, Chapter 6]). Let

YO o

~~~~~~~~~ o�

  
@@@@@@@

X1
f

// X2

be a diagram of spaces over B (with fiberwise maps), such that the diagonal maps
are cofibrations and both X1 and X2 are fibrations over B. If f is a fiber homotopy
equivalence, then it is a fiber homotopy equivalence relative to Y (i.e. there is a
fiber homotopy inverse and homotopies that fix Y ).

101
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Notice that any homotopy equivalence between two fibrations is a fiber
homotopy equivalence [May99, chapter 7].

Corollary A.3. Suppose that p : E → B is a fibration, and that i : E′ ,→ E is
a cofibration such that p|E′ : E′ → B is also a fibration. Then, i is a homotopy
equivalence if and only if i is a fiberwise (strong) deformation retract.

Proposition A.4 ([May99, Chapter 6]). Let

Y1
f
'

//

_�

��

Y2_�

��

X1
g
'

// X2

be a diagram of spaces over B, with vertical maps cofibrations and X1 and X2

fibrations over B. If f has a fiber homotopy inverse f ′ over B and g is a homotopy
equivalence, then (g, f ) is a fiber homotopy equivalence of pairs.

More precisely, if H : Y2 × I → Y2 is a homotopy between id and f ′ ◦ f , then
there exists a fiber homotopy inverse g ′ of g that extends f ′ such that H extends
to a homotopy K : X2× I → X2 between id and g ′ ◦ g.

A.2 Associated fibration and connections

For f : X → B, denote by E (X )→ B the functorially associated fibration, with
E (X ) being the following pull-back:

E (X ) //

γ

��

X

f
��

B I
eval0

// B

Lemma A.5. If B is metrizable, and p : E → B is a fibration, then the inclusion
E ⊂ E (E) is a fiberwise (strong) deformation retract.

Proof. The inclusion B → B I of constant functions is a (strong) deformation
retract; so it is a cofibration if there is a map ϕ : B I → I such that B = ϕ−1(0).
If d is a metric on B, then

ϕ(a) = sup
x∈I
(d(a(0), a(x)))

is clearly such a map.
Now, since the inclusion B → B I is a section of the fibration eval0, it in-

duces a section of the fibration E (X )→ X , which then is also a cofibration.
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Corollary A.6 (Hurewicz). Any fibration over a metrizable space is regular,
i.e. homotopy lifting problems can be solved in such a way that constant paths
are lifted to constant paths.

Proof. In fact whenever a map p : X → B is a retract of its associated fibration
E (X )→ B, then it is a regular fibration. This is because any homotopy lifting
problem

Z × 0_�

��

H0
// X

p

��

incl.
// E (X )

wwooooooooooooo

Z × I h
// B

has a regular solution in E (X ) given by

H : Z × I →E (X ), (z, t) 7→ (H0(z),γ) with γ(s) = h(z, s · t).

Now use the retraction to obtain a regular solution in X .

For a map p : E→ B, a connection is a lift in the following diagram

E (E)× 0 //

_�

��

E

p

��

E (E)× I
γ×idI

//

C

55

B I × I
eval

// B

Clearly, if p is a fibration, then a connection always exists. Conversely, the
existence of a connection implies that p is a fibration. Indeed, to give a homo-
topy lifting problem

X × 0_�

��

// E
p
��

X × I // B

is the same thing as to give a map α: X → E (E), and the composite C ◦ (α×
idI): X × I → E is then a solution of the homotopy lifting problem.

A.3 Fiberwise glueing

There are two possible ways of glueing fibrations along cofibrations: Firstly,
glueing the fibers and keeping the base space fixed, and secondly, glueing
fibrations with same fibers over different base spaces. We begin with the first
case.

Here are two lemmas that we will use without further remarks.
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Lemma A.7 ([Lüc89, Lemma 1.26]). Let

A_�
j
��

f
// Y_�

J
��

X F
// Z

be a push-out with j a cofibration, and let p : E → Z be a fibration. Then the
induced square

f ∗J∗E
f̄

//

_�

j̄
��

J∗E_�

J̄
��

F ∗E
F̄

// E

is a push-out with j̄ a cofibration.

Lemma A.8. Let E→ B be a map, and let

E0
//

_�

��

E1_�

��

E2
// E

be a push-out. Then, for f : A→ B, the diagram

f ∗E0
//

��

f ∗E1

��

f ∗E2
// f ∗E

is a push-out, too.

We will see down below that, in the case of fibrations, the vertical maps
are actually cofibrations. All we need to know for the proof is that they are
topological inclusions.

Proof. Consider the push-out P := f ∗E1 ∪ f ∗E0
f ∗E2 in the topological cate-

gory. The map from P to f ∗E is a continuous bijection. To show that it is a
homeomorphism, it is enough to show that P carries the subspace topology of
Q := E1 × A∪E0×A E2 × A (indeed the natural map Q→ E × A is a homeomor-
phism). Therefore we are going to show that the injective continuous map
P →Q is closed.
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It is easy to see that the inclusion of f ∗Ei into Ei×A is a closed embedding
for i = 0, 1,2. Now a subset Z ⊂ P is closed if and only if it is the image of
Z̄ ⊂ f ∗E1

∐

f ∗E2 which is both closed and saturated, i.e. if for x ∈ f ∗E0, we
have x ∈ Z̄ if and only if f (x) ∈ Z̄ .

Now Z̄ considered as a subset of f ∗E1

∐

f ∗E2 is closed and saturated if
and only if it is closed and saturated as a subset of E1 × A

∐

E2 × A. In this
case, the image of Z in Q is closed again.

A particularly simple case of glueing arises when all the maps involved are
cofibrations.

Lemma A.9. Let
E0

� � //

_�

��

E1_�

��

E2
� � // E

(1)

be a push-out square of spaces, with all maps cofibrations, and let p : E → B be
a map. If p|Ei

: Ei → B are fibrations for i = 0,1, 2, then so is p.

Proof. Since E0 → Ei is a cofibration (i = 1,2), so is E (E0) → E (Ei). So we
can find connections Ci for Ei that are compatible with a given connection C0

for E0. We thus obtain a connection

E (E) = E (E1)∪E (E0) E (E2)→ E = E1 ∪E0
E2.

Corollary A.10. Let f : E′→ E be a fiberwise map between fibrations over B. If
f is a cofibration, then

(i) the canonical map from the mapping cylinder to B is a fibration, and

(ii) for any map g : A→ B, the induced map g∗ f : g∗E′→ g∗E is a cofibration.

So, if a fiberwise map between fibratons is a cofibration on the level of
total spaces, then it is also a cofibration on each fiber. The converse statement
does not hold, as can be easily seen using Tulley’s construction (described
below).

Proof. (i) follows directly from Lemma A.9.
(ii) The map f being a cofibration is equivalent to saying the the canon-

ical map Cyl( f ) → E × I is a cofibration and a homotopy equivalence. So,
as Cyl( f ) is a fibration over B, Corollary A.3 implies that the inclusion is a
fiberwise deformation retract. Therefore its restriction, namely the inclusion
Cyl(g∗ f )→ g∗E × I , is still a retract.
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If we relax the cofibration condition somewhat, we have to put stronger
hypotheses on the base space:

Theorem A.11 ([Arn73, Thm. 2.5]). Lemma A.9 still holds if we only assume
that the vertical maps in Diagram (1) are cofibrations, provided that B is metriz-
able ULC.

In particular, the mapping cylinder of a fiberwise map between fibrations over
such spaces B is again a fibration over B.

A.4 Glueing over different base spaces

Proposition A.12 ([Arn72, Thm. 4.2]). Let X be metrizable, let

X0
� � //

_�

��

X1_�

��

X2
� � // X

be a push-out square with all maps cofibrations, and X i ULC (i = 1,2). (This
condition is satisfied if X i are CW spaces.) Then if B is another metrizable space,
and p : E→ B×X is a map such that the restriction of p to p−1(B×X i)→ B×X i

is a fibration (i = 1, 2), then p is a fibration.

Proof of Proposition A.12. We are going to show that for each x ∈ X0 there is
a neighborhood U of x in X such that p, restricted over B× U is a fibration.

The proof uses the observation that any fiberwise retract of a fibration is a
fibration. In our case, write p = (p1, p2), and let, for some U ⊂ X , q = p1 ×
idU : E|B×U ×U → B×U . The map q is a fibration, and there is a commutative
diagram

E|B×U
p

$$
IIIIIIIII

id×p2
// E|B×U × U

q

xxqqqqqqqqqq

B× U

So it is enough to construct a fiberwise map (often called “slicing function”)
ϕ : E|B×U × U → E|B×U such that ϕ ◦ (id×p2) = id.

The hypotheses on the base spaces imply that there is a neighborhood U
of x and a homotopy

σ : U × U × I → X
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between the projection onto the first and the projection onto the second factor,
such that the homotopy is stationary on the diagonal and, for each (x , y) ∈
U × U , the corresponding path α from x to y has the following additional
property:

For each i, j, if α(0) ∈ X i, then α([0, 1
2
]) ⊂ X i, and if α(1) ∈ X j, then

α([1
2
, 1])⊂ X j.

Consider now the following homotopy lifting problem:

E|B×U × U × 0
_�

��

ProjE
// E

p

��

E|B×U × U × I
p×id

//

33

B× U × U × I id×σ
// B× X

This particular problem can be solved at least on E|B×U×U×[0, 1
2
] (first solve

it on E|B0×U×U×[0, 1
2
] and then extend using the fibered homotopy extension

property). Then we can solve the problem similarly on E|B×U×U×[1
2
, 1], thus

obtaining a solution of the whole problem.
As both B and X are metrizable, there is a regular solution by Corollary

A.6. Such a solution of our problem, evaluated at 1, is the map ϕ we need.

Next we deal with the question whether this glueing procedure preserves
the cofibration condition. Here is a preparatory lemma.

Lemma A.13. Let i : A ,→ B be a cofibration, p : X → B a fibration, j : Y ,→ X
a cofibration such that p|Y : Y → B is a fibration. Then the inclusion

X |A∪ Y ,→ X

is a cofibration.

Proof. This is an adapted version of the proof of Strøm [Str68, Theorem 13].
By Strøms version of the NDR property (see [Whi78, I.5.14]), the inclusion of
A into B being a cofibration is equivalent to the existence of H : B× I → B and
ϕ : B→ I such that

(i) A⊂ ϕ−1(0),
(ii) H is stationary on A,

(iii) H0 = idB,
(iv) H(b, t) ∈ A whenever ϕ(b)< t.
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In fact, any retraction r : B× I → A× I ∪ B× 0 gives rise to

H(x , t) := ProjB r(x , t) and ϕ(x) := sup
t∈I
(t − ProjI r(x , t)).

As Y ,→ X is also a cofibration, let D : X × I → X , ψ: X → I such that the
analogues of conditions (i) to (iv) hold. More precisely, as Y × I ∪ X × 0 is a
fiberwise retract of Y × I , we can even assume that D is also a fiber homotopy
over B.

Let

η: X → I , η(x) =min(ψ(x),ϕp(x)),
G : X × I → X , G(x , t) = H̄[D(x , min(t,ϕp(d))),min(t,η(x))],

where H̄ : X × I → X is a lift of H such that H̄(X ′× I)⊂ X ′ and H̄0 = idX .
Then,

(i) X |A∪ Y ⊂ η−1(0),
(ii) G is stationary on X |A∪ Y ,

(iii) G0 = idX ,
(iv) if η(x)< t, then either

(a) ψ(x)< ϕp(x), in which case min(t,ϕp(x))>ψ(x), so

D(x , min(t,ϕp(x))) ∈ Y

and

G(x , t) = H̄[D(x ,min(t,ϕp(x))),min(t,η(x))] ∈ Y,

(b) or ϕp(x) ≤ ψ(x) and ϕp(x) < 1, in which case min(t,η(x)) =
ϕp(x), so

pG(x , t) = pH̄[D(x , min(t,ϕp(x))),ϕp(x)]
= H[pD(x , min(t,ϕp(x))),ϕp(x)]
= H[pD(x , 0),ϕp(x)]
= H[p(x),ϕp(x)] ∈ A.

Proposition A.14. Let p : E → B be a fibration, E′ ⊂ E a subspace such that
p|E′ : E′→ B is a fibration. Suppose that B is a push-out

B0
� � //

_�

��

B1_�

��

B2
� � // B
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with all maps cofibrations. Let Ei := E|Bi
and E′i := E′|Bi

. If the inclusions
ji : E′i → Ei are cofibrations for i = 0,1, 2, then so is the inclusion j : E′→ E.

This proposition follows at once from Lemma A.13 together with the fol-
lowing Lemma whose proof is an exercise using the definitions.

Lemma A.15. Let

X1_�

��

X0_�

��

? _oo � � // X2_�

��

Y1 Y0
? _oo � � // Y2

be a diagram of spaces with all maps cofibrations. If the induced maps

X1 ∪X0
Y0→ Y1 and X2 ∪X0

Y0→ Y2

are cofibrations, then so is

X1 ∪X0
X2→ Y1 ∪Y0

Y2.

A.5 Tulley’s construction

Proposition A.16 ([Tul65]). Let p : E → B be a fibration over a metrizable
space B, and let i : E′→ E a cofibration and fiber homotopy equivalence. Denote

T (i) := E′× {0} ∪ E × (0, 1]⊂ E × I .

Then p|E′ : E′ → B is a fibration, and so is the obvious map q : T (i) → B × I
induced by p and i.

In fact, it is clear that the restriction of p to E′ is a fibration if i is a fiberwise
retract. Notice that the condition on i implies that i is a fiberwise strong
deformation retract by Corollary A.3.

Finally, as Tulley’s proof is somewhat involved, we give here a simpler
proof.

Proof of Proposition A.16. Let K : E × I → E be a fiber homotopy between idE

and a retraction onto E′. Let the left square in the following diagram be a
homotopy lifting problem that we wish to solve. (Here J = I = [0,1].)

X × 0_�

��

f
// T (i)

q

��

Proj
// E

p

��

X × J
h=(h1,h2)

//

H
66

B× I
Proj

// B
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Using the outer square and the fact that p is a fibration, we obtain a lift
L : X × J → E of h1 that extends the projection of f . Now, let H(x , t) :=
(H1(x , t), h2(x , t)) ∈ E × I with

H1(x , t) =

(

K
�

L(x , t),min(1, t
h2(x ,t)

)
�

, if t > 0,

f (x) if t = 0

(letting min(1, t
0
) = 1).

We have to check continuity in t = 0. So let (xα, tα) be a net converging
to (x , 0). The only nontrivial case is when h2(xα, tα) tends to 0, too. In this
case L(xα, tα) converges to f (x) which lies in E′. But if eα converges to some
element e ∈ E′, then K(eα,τα) converges to e for any net (τα) on I , as K is
stationary on E′ and the unit interval is compact.

Now, whenever h2(x , t) = 0, we have H1(x , t) ∈ E′, thus H really defines
a map to T (i). Moreover p ◦H1(x , t) = h1(x , t), as K is a fiber homotopy and
L is a lift of h1, so q ◦H = h.

Lemma A.17. Suppose that we have a square of fibrations

E′0
� � i0
'
//

_�

j′

��

E0_�

j
��

E′1
� � i1
'
// E1

over B, with all maps cofibrations and the horizontal maps fiber homotopy equiv-
alences. If the canonical map E′1 ∪E′0

E0 → E1 is a cofibration, then so is the
inclusion T (i0)→ T (i1).

Proof. Recall that the cofibration condition implies that there are retractions
r : E1 × I → Cyl j and r ′ : E′1 × I → Cyl j′. The additional condition is easily
seen to guarantee that r can be modified in such a way that r and r ′ are
compatible, i.e. r|E′1 = r ′ : E′1→ Cyl j.

Now recall from the proof of Lemma A.13 how to get a NDR pair structure
(ϕ, H) on (E1, E0) from the retraction r.

Since r and r ′ are compatible, this implies that (ϕ, H ′) and the corre-
sponding maps (ϕ′, H ′) for the NDR pair (E′1, E′0) are compatible. Hence we
can define ϕ̄ : T (i1)→ I by applying either ϕ or ϕ′ to the first coordinate of
(x , t) ∈ T (i1) ⊂ E0 × I . Define H̄ : T (i1)× I → T (i1) in a similar way. The
maps ϕ̄ and H̄ satisfy the properties required for (T (i1), T (i0)) to be an NDR
pair.
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A.6 Fill-in for fibrations

The goal of this sections is to show that fill-ins exist for fibrations and for
fibrations with fiberwise splitting (as considered in section 3). We will see
that Tulley’s construction, together with Theorem A.11, will produce fill-ins.
To make sure that we have enough space to deal with homotopies, we redefine
now T (i) := E′ × [0, 1

2
]∪ E × (1

2
, 1]. It can be understood as a glueing of the

original construction with the trivial fibration E′×I . So the essential properties
remain unchanged.

Proposition A.18. The functor Fib(B; F) from section 2 satisfies the Fill-in Con-
dition if B is metrizable ULC.

For the reader’s convenience, and to establish notation, we recall the Fill-in
property for our special case:

For any three fibrations E′, E′′, E over B×∆k and any two fiber homotopy
equivalences ϕ′ : E′→ E and ϕ′′ : E′′→ E, the following holds: There exists a
fibration Ē over ∆k× I and a fiber homotopy equivalence Φ: Ē→ E× I which
restricts to ϕ′ over 0 and to ϕ′′ over 1.

Moreover, given two more fibrations F ′, F ′′ over ∆k and fiber homotopy
equivalences ψ′ : F ′ → E and ψ′′ : F ′′ → E, which agree with (F ′, F ′′,ϕ′,ϕ′′)
when restricted to a collection of faces of ∆k, there are extensions (Ē,Φ) and
(F̄ ,Ψ) of (E′, E′′,ϕ′,ϕ′′) and (F ′, F ′′,ψ′,ψ′′) that agree when restricted to the
same collection ×I .

Proof of Proposition A.18. Let us first consider a special case: Suppose that the
map (ϕ′′)−1 ◦ϕ′ : E′→ E′′ is fiber homotopic to a map α which is a cofibration
and homotopy equivalence. In this case the canonical map T (α) → B is a
fibration by Proposition A.16, and it is easy to construct a map Φ: T (α)→ E×I
as requested, using a fiber homotopy ϕ′′ ◦α' ϕ′.

In the general case, the mapping cylinder Cyl(α) is a fibration over B by
Theorem A.11. It comes with a canonical map ϕ̂ : Cyl(α)→ E′′ → E. In this
case both inclusions of E′ and E′′ into the mapping cylinder are cofibrations
and homotopy equivalences. So, by the previous case, fill-ins exist between
(E′,ϕ′) and (Cyl(α), ϕ̂), and between (Cyl(α), ϕ̂) and (E′′,ϕ′′). Glueing these
(using the Amalgamation property), one now obtains a fill-in between (E′,ϕ′)
and (E′′,ϕ′′).

Proposition A.4 guarantees that this can be chosen to be compatible over
smaller simplices.
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The interested reader may want to compare this proof with the intricate
argument from [HTW90, Lemma 17.3]. — Now we proceed to show:

Proposition A.19. The functor Fib(B; (Fi)) from section 3 satisfies the Fill-in
Condition if B is metrizable ULC.

Recall that the corresponding objects are four fibrations pi : Ei → B ×∆n

for i = 0, . . . , 3, which are objects of Fib(B; Fi) respectively, together with
fiberwise inclusions ji : Ei → E3 for i = 0,1, 2 which are cofibrations.

The situation is thus the following: We are given a fibration E′3 over B×∆k,
which comes equipped with three sub-fibrations E′0, E′1, E′2 such that E′3 is the
push-out of E′1 and E′2 over E′0, and all the inclusions are cofibrations. We are
also given two fibrations E′′3 and E3 with a similar splitting, and we are given
two fiber homotopy equivalences ϕ′3 : E′3→ E3 and ϕ′′3 : E′′3 → E which respect
the splittings.

Given this, we have to produce a fibration Ē3 over ∆k × I with similar
splitting and a fiber homotopy equivalence Φ: Ē3→ E3× I which respects the
splittings and restricts to ϕ′ over 0 and to ϕ′′ over 1.

Proof of Proposition A.19. Notice that a given fill-in problem determines, for
i = 0, . . . , 3 a fill-in problem for Fib(B; Fi) which we are going to call the i-
problem. Obviously Proposition A.18 produces a solution for each i-problem
separately. Notice however that the construction in the proof even provides a
fill-in for the 0-problem which is a subspace of both a fill-in for the 1- and a fill-
in for the 2-problem. (Just choose α3 ' (ϕ′′3 )

−1 ◦ϕ′3 respecting the splittings
and follow the mapping cylinder construction.) We only have to show that
both inclusions of the 0-fill-in into the 1-fill-in and the 2-fill-in are cofibrations.

To do that, it is enough, by Lemma A.17, to verify that the inclusions

E′i ∪E′0
Cylα0→ Cylαi and E′′i ∪E′′0

Cylα0→ Cylαi, i = 1,2

are cofibrations. In fact, the inclusion

E′i ∪E′0
Cylα0→ E′i ∪E′0

Cylα0 ∪E′′0
E′′i

is a cofibration since it is obtained by glueing E′′1 along the cofibration E′′0 →
E′′1 . Similarly,

Cylα0 ∪E′′0
E′′i → E′i ∪E′0

Cylα0 ∪E′′0
E′′i and

E′i ∪E′0
Cylα0 ∪E′′0

E′′i → Cylαi
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are cofibrations.
The compatibility result over smaller simplices again holds by Proposition

A.4.
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