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Introduction

Queueing theory is one of the important domains in applied probability. The basic
idea has been borrowed from every-day experience of queues, for example, at the check-
out counters in a supermarket, but a number of stochastic models may be formulated
in queueing terms or are closely related. The great diversity of queueing problems gives
rise to an enormous variety of queueing models.

The simplest and the most basic model in queueing theory is the single server
queue, where customers arrive at one service station, are served one at a time on
the first come first server basis and leave the system when service is completed. If
arrival times form a renewal process and service times are distributed identically and
independently, and if arrival times and service times are independent, then the queue is
denoted by GI/GI/1, which is an old theme in the queueing theory. A specific feature
of stable GI/GI/1 queues is the regeneration of the system, which means that the
system reaches an empty state infinitely often and restarts from scratch at the empty
state. The regeneration of a stable GI/GI/1 queue can be described in the framework
of the theory of random walks. Let T;, be the interarrival time between customers
n — 1 and n, and U, the service time of customer n. Denote by (S,,),>0 the associated
random walk given as

S, = iXk’ n >0,
k=0

where X = Up_1 — T,k > 1 and Xy = 0. Then the waiting time process forms the
reflected random walk (W),),>0, i.e.,

Wo=0 and W, =W, +X,1)", n>0.

Moreover, the weak descending ladder epochs are regeneration epochs of the waiting
time process.

GI/GI/1 queues have been extensively studied, because of their tractability. Yet
the i.i.d. condition, on which a GI/GI/1 queue is based, is somewhat unnatural. In
fact, almost everything in the world is occurred in a mutual interaction or under influ-
ence by some other things. Many efforts are made to generalize GI/GI/1 queues. A
generalization can be obtained replacing the i.i.d. assumption by conditional indepen-
dence given a temporally homogenous Markov chain M.

A semi-Markove queue denoted by SM/SM/1 is a generalization of GI/GI/1
queue, in which the sequence (M,, S,)n>0 forms a Markov random walk (MRW). A
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iv INTRODUCTION

MRW is a generalization of a random walk, in which the additive part is distribu-
tionally governed by a temporally homogenous Markov chain (see Chapter 2 for the
precise definition). Markov modulation offers more flexibility in the modeling of the
real world, but in general it is not easy to explicitly compute queueing quantities like
stationary distributions of various queueing processes. In the case of finite modulation,
some special types of queues known as M/GI/1 type and GI/M/1 type are extensively
studied by various authors like Neuts, Ramaswami, etc. They have developed matrix-
analytic methods for the computation of queueing characteristics such as stationary
distributions, which becomes nowadays a popular tool in the applied probabilities.
Some comprehensive treatments of matrix-analytic methods can be found in Neuts
[43, 44] and Latouche and Ramaswami [34]. For a brief survey see Ramaswami [51].
On the contrary, the theory of queues with general modulation chains was not well
developed to the same extent.

A study on semi-Markov queues with general modulation chains can be found in Num-
melin [45]. He showed that, if the modulation chain M is positive Harris recurrent,
then under the stability condition the waiting time process is one-dependent as well as
wide-sense regenerative. Alsmeyer [4] showed that a unique stationary distribution for
the waiting time process can be written as an occupation measure with respect to the
weak descending ladder epoch.

This dissertation deals with MRW’s driven by general Markov chains and semi-
Markov queues. The first weak descending ladder epoch is one of the basic quantities
in the theory of MRW’s. In a semi-Markov queue it is interpreted as the index of the
customers in the first busy cycle. Making use of some corollaries of Dynkin’s formula
(Corollary I.1.1, I.1.2 in Kalashnikov [33]), we first find moment conditions for the first
weak descending ladder epochs of MRW’s with negative drift. It should be pointed out
that a similar method was used by Sharma [55] for the analysis of R/R/1 queues, in
which interarrival times and service times form a classical sense regenerative process.
In the same manner, we get moment conditions for regeneration epochs of reflected
MRW?’s. These results can be directly applied to the queueing theory with the cor-
responding queueing interpretations. In particular, for a semi-Markov queue we find
rates of convergence to the staionary distribution and conditions for the finiteness of
moments of the stationary waiting time and workload processes.

This dissertation is organized as follows:

Chapter 1 contains basic definitions and some preliminary results from the theory
of general Markov chains. Harris recurrence and ergodicity are reviewed briefly.

Chapter 2 deals with the basic theory of MRW’s and reflected MRW'’s driven by
general Markov chains. First we review some basic facts on the theory of MRW’s.
Most of the concepts and results can be found in Arjas [6, 7] and Arjas and Speed
[8]. Next we are concerned with reflected MRW’s and, following Nummelin [45] and
Alsmeyer [4], we get a stationary distribution of a reflected MRW with negative drift
as an occupation measure with respect to the first weak descending ladder epoch. The
remainder of Chapter 2 deals with MRW’s with lattice-type increments. In this case
we obtain the joint stationary distributions of reflected MRW’s in simpler forms.



Chapter 3 and Chapter 4 are the main parts of this dissertation. In chapter 3 we

find moment conditions for the first weak descending ladder epochs of MRW’s and
for the regeneration epochs of reflected MRW’s with negative drift. Moments of the
first weak descending ladder epoch are of particular interest in the theory of MRW's.
Moment conditions for the first weak descending ladder epoch of an ordinary random
walk are known (see Theorem 1.5.1 in Gut [30]). For a Markov random walk, some
results on the finiteness of moments of the first weak descending ladder epoch can be
found in Fuh and Lai [28] and Alsmeyer [5]. In particular, the results of Fuh and Lai
can be regarded as special cases of our results.
In Chapter 4 we are concerned with semi-Markov queues. Throughout this chapter
we assume that the stability conditions are satisfied. We first consider single server
queues with general modulation chains and find rates of convergence to the stationary
distribution and conditions for the finiteness of moments of stationary waiting time
and workload processes. For GI/GI/1 queues, rates of convergence are available
in Kalashnikov [33] (Chapter 5.3) and conditions for the finiteness of moments of
stationary waiting time and workload processes in Asmussen [13] (Theorem X.2.1).
Sharma [55] obtained the same results for a R/R/1 queue, which can be regarded
as the special case of countable modulation. Finally, we point out that for a G/G/1
queue, in which interarrival times and service times form a stationary process, Daley,
Foley and Rolski [26] obtained some conditions for finite moments of the stationary
waiting time. In the remainder of this Chapter we examine multiserver semi-Markov
queues. In particular, for 2-server queues with countable modulation chains, we show
that under some additional conditions the workload process is regenerative.

Acknowledgements. I am grateful to my supervisor Prof. Dr. Gerold Alsmeyer
for suggesting the topic of the thesis and for his many valuable comments during the
work.



vi

INTRODUCTION



Chapter 1

Introduction to the theory of
general Markov chains

A Markov process is one of successful stochastic processes. Its success is due to
the relative simplicity of its theory and to the fact that Markov models can exhibit
extremely varied and complex behavior. In this chapter we provide an introduction to
the theory of Markov chains with general state space. The theory of general Markov
chains forms a basis of this thesis. Although the analysis of general Markov chains
requires more elaborate techniques than in the discrete case, nowadays the general
theory has been developed to a matured state. There are plenty of literature on gen-
eral Markov chains. For the comprehensive treatments see Meyn and Tweedie [37],
Nummelin [46] and references therein. We are mainly interested in Harris recurrence
and stationary distribution of general Markov chains. After introducing some funda-
mental notions on kernels and Markov chains, we deal with Harris recurrence. The
analysis of Markov chains with countable state space is based on the recurrence of
individual states. However, if the state space is uncountable, one can not expect the
existence of such states in general. The Harris recurrence is an extension of the notion
of recurrence from individual states to sets. A Harris chain possesses a regenerative
scheme based on the splitting technique, which is suggested by Athreya and Ney. From
the existence of regeneration epochs one can construct a stationary measure, which is
unique up to constant multiples.

1.1 Definitions and elementary properties

Let (E,&) be a measurable space. A function K : F x & — [0,00) is called a
kernel on (E,E), if K(s,-) is a measure on (E,&) for all s € F and if K(-,A4) is a
E-measurable function for all A € £. If K(s, E) <1 for any s € E, then the kernel K
is called a transition kernel. It is known that such functions are well defined on Polish
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spaces'. Any kernel K can be interpreted as a nonnegative linear operator on the set
of nonnegative measurable functions F, (E) on E by defining

K f(s) = / f(sK(s,ds') = (K(s,-),f), s€EFE
E
for any f € F,(F). In particular, we have
K(s,A) =Kl1u(s), se€E,Acé.
By defining Kf = Kf* — Kf~, we may extend this to every measurable function on

(E,€) such that KfT and Kf~ are not both infinite. Similarly K acts on the class of
positive measures M, (E) on E by

AK() = [ K(s) Ay
E
for any A € M, (FE). For any fixed A € £, one defines a kernel I4 by
IA(S,A/) = ]-AﬂA/(S)a SGE,AIGg.

If K; and K5 are two kernels, their composition KK, is defined as
KlKg(S,A) = / KQ(SI,A) Kl(S,dS/), S € E,A eé.
E
The n-step iterates K", n > 0, of a (transition) kernel K are defined iteratively,

K'=I; and K'=KK"!' n>1.

Two kernels K and K on (E, ) are said to be adjoint with respect to a positive o-finite
measure v on B, if for any f,g € F,(F)

/(Kf)gdv = / f (Kg) dv,
E E
which will also be written as

(Kf,9), = (£, Kg)y.

Assume that a measure space (2, S,P) is given, which is called the sample space.
Let (Fn)n>0 be a filtration and denote by F = (U2 F,) the smallest o-algebra

LA Polish space is a complete, separable metric space. Any locally compact space with a countable
dense subset, any countable product of Polish spaces and function spaces with values in Polish space
are examples of Polish spaces.

There are examples in probability theory, where non-Polish state spaces are required, but in general
a state space is assumed to be Polish. There is a powerful and complete theory for probability on
Polish spaces. For details see Appendix Al in Asmussen [12] and references therein.
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generated by U F,. A sequence M = (M,),>o of (E,&)-valued random variables on
(Q,S,P) is said to be (F,)n>0-adapted, if M, is F,-measurable for any n > 0. Letting

FM = o(M :k<n), n>0,

n

M is (FM), 5o - adapted. The filtration (F),>¢ is called the canonical filtration of M.

n n

An (F,)n>0-adapted chain (M,),>¢ is called a Markov chain with respect to (F,)n>o0,
if for any n > 0
P [Mn+1 c - |fn] =P [Mn—‘,-l c - |Mn] P-a.s..

If, in addition, for a transition kernel P : £ x & — [0, 1]
P [M,; € -|F.] =P(M,,-) P-as.,

then M is called a temporally homogeneous Markov chain with transition kernel P.
The space (F,€) or E is called the state space and the points of E are called states.
Throughout this dissertation a state space E is assumed to be Polish, unless stated
otherwise.

The distribution A defined by
M) =P(M € )

is called an initial distribution. For any initial distribution A on (E,E&), we define a
distribution P, by the requirements

IP)\ (Mg € ) = )\() and IP)\ [Mn+1 € - ’Fn] = P(Mn, : ), n 2 0.

Obviously

P, (M06A0,~-~,MneAn):/ / / P(s, 1, dsy) - Plso, ds1) Adso)
Ao J Ay n

for any n € Ng and Ag,---, A, € £&. If M starts at a point s € E, then we write P,
instead of Ps,. A o-finite measure £ # 0 is called a stationary measure or an invariant
measure for (M,),>o or P, if for any n > 1

£P"(A) = /EP"(S,A)g(ds) _f(A), Acé.

If € is a probability measure satisfying the above equality, then it is called a stationary
distribution or an tnvariant distribution. If £ is a stationary distribution, then by the
Markov property we have

]PE ((Mn)nzm S ) = ]PE ((Mn)nzo € )

for any m > 0. Two Markov chains M and M are said to be in duality relative to v,
if their transition kernels are adjoint with respect to . One of the two chains is said
to be the dual or time-reversed chain of the other one. If each of the two transition
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kernels P and P’ is adjoint to a transition kernel P with respect to v, then there is an
v-null set N such that P(s,-) = P/(s,-) for all s € N¢. If E is countable, then the
empty set is the only set of v-measure zero and thus the duality condition is equivalent
to the requirement

P =A'PTA,,
where P and P are the transition matrices of M and M, respectively, and A, is the
diagonal matrix of v.

A INg U {oo}-valued random variable 7 is called a stopping time w.r.t. the filtration
(fn)nzm if
{r=n}eF, forall n>0.

If 7 is a stopping time w.r.t. the canonical filtration (F),>q of a Markov chain M,

then it is called a stopping time for the Markov chain (M,),>o. Important examples
of stopping times for the Markov chain (M,,),>¢ are the first hitting time x(A) and the
first return time T7(A) to a set A € £ defined as

k(A) :=inf{n >0: M, € A} and 7(A):=inf{n>1:M, € A}

A random time 7 is called a randomized stopping time for the Markov chain (M,,),>o,
if for every n > 0 the event {r = n} and the post n-chain (M, 1, M2, --) are
conditionally independent given the pre-n-chain (My, -- -, M,), or equivalently,

P[r=n|FM =P[r =n|FM] P-as.

If 7 is a stopping time w.r.t. a filtration (F,),>¢ and if a Markov chain M is (F},)n>0-
adapted, then 7 is a randomized stopping time for M. Conversely, if 7 is a randomized
stopping time for (M, ),>0, then (M,),>o is adapted and 7 is a stopping time w.r.t.
the filtration (F),>o defined as

Fri=0((Mg)k<n, {T =k :k<n}), n>0.
By Pitman and Speed [47], the following are equivalent:
(i) 7 is a randomized stopping time w.r.t. (F,)n>0;

(ii) for each n € Ny, F7 and F,, are conditionally independent given F,;

(iii) for each n € Ny, E[X|F] = E[X|F,] a.s. for each integrable F,,-measurable
random variable X.

Let (M,,)n>0 be a (F,)n>0-adapted Markov chain and 7 a randomized stopping time
w.r.t. (Fp)n>o. It is known that (M,,),>¢ possesses the strong Markov property w.r.t.
a randomized stopping time 7, i.e., on {7 < oo}

P[M,, €-|M]=P"(M,,-) P-as.

for any n > 0. We denote by F, the o-algebra of events which are observed up to time
T, e,

F.={AeFo: An{r=n} e F, forall n > 0}.
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1.2 Recurrence

A set R € £ is called a recurrent set, if for any s € FE
Py(M, € R i0.) =Py(t(R) < o0) = 1.
Let (7,,)n>0 be the sequence of stopping times defined as
=7R) and 7,1 =inf{k>r7,: M, €R}, n>0.

If R is a recurrent set, then by the strong Markov property the sequence (M ),>o :=
(M., )n>o forms a temporally homogeneous Markov chain. The following assertions are
well known (see Theorem 1.2.3 in Borovkov [19] for example):

Proposition 1.1 Suppose that a Markov chain M has a stationary distribution &
and that there exists a recurrent set R with &(R) > 0. Then the chain (M]),>o has a
stationary distribution * defined as

woy_ SCNR)
If, in addition, & is the unique stationary distribution for M, then
1 T(R)—1
n=0
T(R)—-1
= R Ee | > 1M, €-)
n=0

_ /§R (Z P,(M, €-,7(R) > n)) £(ds).

For fixed ® € £,n > 1, let s P"™ be the kernel defined as
2P"(s,A) =P [M, € A, 7(R) >n|My=s|, se€E Acf&,

which is known as n-step taboo kernel with taboo set . Obviously we have
#P"(s,R) =P(r(R) =n), n>1, and E;7(R)= anRP"(s, R)
n=1
for any s € E. Moreover, the transition kernel Py for (M]),>0 is given as

Pp(s,RNA)=> sP"(s,RNA), scRAcE.
n=1
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Note that for any A € €

T(R)—1 T(R) 0o
Ee ([ > 1M, €A)| =Ee | Y 1M, €A)| = / (Z gQPH(S,A)) e%(ds).
n=0 n=1 E n=1

Thus if ¢ is the unique stationary distribution for M, then £ can be also written as

E(A) = ¢&( /(Z@%A)g%ds /(ZmPnSA> (ds)

for any A € £.
Remark 1.2 In the situation of Proposition 1.1, the cycles
Zy = (Tps1 — 71, (M) r<harniy) » 1 >0,

are stationary under P¢r. Let (77 ),>0 be a sequence of a.s. finite stopping times, such
that there exists a distribution ¢ with ((-) = Px(M, € -) for any n > 0 and for any
initial distribution A\. Then the cycles

o / /
Zn T (Tn—i—l - Tn’ (Mk)T»;LSk<T;L+1> ) n Z 07

are also stationary under P.. If, in addition, IE. 7{ < oo, then it can be shown that
the measure defined as

]Erl ZlMe

is a stationary distribution for M. For details see Alsmeyer [3].

The following proposition is a consequence of Dynkin’s formula and gives a criterion
for a set to be positive recurrent.

Proposition 1.3 For a set R € &, the expectation IE,7(R) is finite for any s € E
if and only if there exists a nonnegative measurable function V : E — [0,00), and a
constant A > 0, such that

(i) SUD,¢n fE (V(s’) — V(s)) Py(ds') < —A ;
(it) [, (V(s') =V (s)) Py(ds') < oo for all s € R.

In this case, we have

VLS)  s¢ER
]Es T(éR> < { 14+ % {V(S) + fE (V(S/) — V(s)) ]Ps(dsl>} . sER.

Proof. See Corollary 5.2.1 in Kalashnikov [33]. QED
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Moreover, we have the following criteria for the first return time to a set to have
finite moments.

Proposition 1.4 Let R be a measurable set.

(1) Suppose that there ezist a nonnegative functionV : E — [0,00), positive numbers
Ab and o > 1, and a random variable A defined on E, such that the following relations
are fulfilled:

(a) vy = sup,eq V(s) < 0o;
(b) P(V(M;) = V(s) < A(s)) =1 forall s € E;
(c) supger EA(s) < —A;
(d) sup,cp E|A(s)|* < b < 0.
Then
A,b,a)+%(s>)a L sdR
c(A, b, a, vg) ;. seER,

for some constants a(A, b, «) and c¢(A, b, a, vg).

I, (7(R))” < { (a

(i1) For some v > 0, the expectation IEsexp(yT(R)) is finite for any s € E if and
only if there exists a nonnegative function V : E — [1,00), such that

(a) [, (V(s') =V (s)) Py(ds') < —(1 —exp(—7))V(s) forall s¢%R;
(b) [, (V(s') = V(s)) Py(ds') < oo forall seR.
In this case, we have
B R < V(s) . s¢ER
sexp(TR) <9 . (V) + [, (V) = V() Py(ds) |+ sen

Proof. See Theorem 5.2.2 and Corollary 5.2.2 in Kalashnikov [33]. QED

1.3 Harris recurrence

Let ¢ be a nontrivial o-finite measure on (E, E).

Definition 1.5 (i) A Markov chain (M,),>o with transition kernel P is called
p-irreducible, if for any s € E and A € & with ¢(A) > 0 there exists n > 1 with
P, (M, € A) > 0.

(ii)) A Markov chain M is called (d-) periodic, if there exists a finite sequence of
sets B; C E,i=1,---,d, such that

]Ps (Ml S Ei+1) = 1, if se Eia
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where we set Fy.y = Fy. If d =1, then it is called aperiodic.

If a Markov chain is @-irreducible, then the set E \ UL, E; is a @-null set. It is
known (see Theorem 3.11 in Asmussen [12]) that, if M is p-irreducible and ¢(A) > 0,
then there exist a measurable set R C A, r > 1 and p > 0 such that

P, (M, € A) > pp(Rn A

for all s € R, A" € €. If M is g-irreducible, then ¢ is called an irreducibility measure
for M. A @-irreducible Markov chain has many different irreducibility measures. The
measure 1 defined as

=) 27" pP"
n=1

is a maximal irreducibility measure, in the sense that all other irreducibility measures
are absolutely continuous w.r.t. ¢). The maximal irreducibility measures are equivalent.
It is known that, if a ¢-irreducible Markov chain (M,,),>o has a stationary measure &,
then it is unique up to constant multiples and is equivalent to maximal irreducibility
measures.

Definition 1.6 A temporally homogeneous Markov chain (M,,),>¢ with transition
kernel P is called Harris recurrent or Harris chain, if there exists a recurrent set R,
such that for some p € (0,1],7 > 1, and a distribution ¢ on £ with p(R) =1

P"(s,A) > pp(A) forany seR Aecf. (1.1)

The set R is called a regeneration set, and we say that (M, ),>o satisfies the minorization
condition M(R,p,r,¢). If r = 1, then M is called strong aperiodic.

A Markov chain (M,,),>o is called p-recurrent, if any A € € with ¢(A) > 0 is a
recurrent set. Obviously a ¢-recurrent Markov chain is ¢-irreducible. Furthermore,
a Markov chain is Harris recurrent if and only if it is p-recurrent. In this case, any
recurrent set of M contains a regeneration set of M.

Remark 1.7 A discrete Markov chain (M,,),>o is Harris recurrent if, and only if, it
contains a communication class I of recurrent states such that IP; (7(K) < o) = 1 for
alli € E. Thus (M,),>0 can also possess transient states, from which /C can be reached

with probability 1. In this case, every set &t = {j} with j € K is a regeneration set, since

M satisfies the minorization condition M(R, p,r, @) with r € {n : pg?) > 0},p = )

JJ
and ¢ = 9;.

If M is a discrete, irreducible Markov chain, then the successive return times to a
recurrent state form an identically and independently distributed (i.i.d.) sequence. At
each time the chain enters the state, it starts a new tour with the same distribution,
regardless of the preceding sample path. This leads to a decomposition of the chain
into cycles with i.i.d. distribution. Unfortunately this is not true in general, if the state
space is uncountable. But any Harris chain has or can be modified to have regeneration
epochs in some generalized sense. We introduce some definitions, which are known for
general stochastic processes.
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Definition 1.8 Let X = (X;)er be a discrete- or continuous-time stochastic pro-
cess with state space E (I' = INg or RS). Assume that there are random times
0=7) <7 <7y <--- <ooa.s. Consider cycles Z, := (Tn41—Tn, (Xt)ru<tarni )1 > 0.

(i) We call X or the pair (7, X) wide-sense regenerative, if the cycles Z,,,n > 1, are
identically distributed and the sequence (Zj)x>, does not depend on (7, 71, -+, 7,) for
n>1:

(ii) A wide-sense regenerative process X or (7, X) is called classical-sense regener-
ative, if the cycles Z,,n > 0, are independent:

(iii) X or (1,X) is called I-dependent regenerative, if the cycles Z,,n > 0, are
[-dependent and identically distributed for n > 1.

In each case of (i)-(iii), the random times 7,,n > 0, are called regeneration epochs.
If further the cycles Z,,n > 0, are identically distributed, then we say that X is
zero-delayed. A (wide-sense or [-dependent) regenerative process X with regeneration
epochs 7,,n > 0, is called positive recurrent, if IE (19 — 71) < o0, and null recurrent,
otherwise.

Note that a [-dependent regenerative process X is always one-dependent regenera-
tive, since to a given [-dependent cycles Z,, with regeneration epochs 7,,, n > 0, one can
associate new cycles Zn = (Zk)-,—lngk<7-l(n+1>,n > 0, which are one-dependent. If (7, X)
is wide-sense regenerative, then the sequence of regeneration epochs (7,),>0 forms a
renewal process, which is called the embedded renewal process.

Remark 1.9 A wide-sense regenerative process with one-dependent cycles is often
called weak regenerative.

Suppose that (7, X) is positive recurrent, wide-sense regenerative and that there
exists a distribution Py such that

PO(((Tn)nzm (Xt)teF) € ) = P(((Tn — T1)n>0, (Xnth)teF) € )

Denote by 6;,t € T, shift-operators defined as 6;X = (X¢yy)u>0. Let IP* be the distri-

bution defined as
1 71
P*(-) = E 1(0,X € -)dt
=g ([ 16X ).

if I'=R{, and

P'() = g - Eo (Z 10,X € ->> ,

n=0

if I' = INp, where IEy means the expectation under the distribution Py. It is known (
see Kalashnikov [32] or Thorisson [63]) that, if ' = RJ and the distribution Py(7; € )
is spread out, then

lim [|P(8,X € ) — P*|| = lim [|Py(6,X € -) = P*|| = 0.
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If I' = INy and the span of 71 under Py is 1, then

lim [P(6,X € -) — P*| = lim |Po(6,X € -) — P*|| = 0.

n—oo

Regenerative processes play an important role in applied probability. There are
plenty of literature on regenerative processes. A standard reference for regenerative
processes is Thorisson [63]. Sigman and Wolf [60] give an expository survey including
applications to the queueing theory.

We now return to Harris chains. The following proposition says that a Harris chain
is wide-sense as well as one-dependent regenerative.

Proposition 1.10 (Regeneration lemma) Given a Harris chain (M,),>o, there
exist a filtration (F,)n>o0 and a sequence (T,)n>0 of random times, which have the
following properties:

(1))0=Tg <71 <Tp <+ <00 as. under Py for any distribution \ on E;
(i1) (M,,)n>0 is Markov-adapted and each Ty, a stopping time with respect to (Fp)n>o0;

(111) under each Py, s € E, the M,, are independent for n > 0 and further identi-
cally distributed with common distribution ((-) = Py(M,, € ) for any initial distribu-
tion \ and for n > 1;

(i) for eachn >0 and s € £

P [(Torj = 7o, Mr4j)j20 € - [Fr] = Par,, (7, Mj)jz0 € ) Py-a.s;

(V) (Tntj — Tny My, 45) >0 is independent of 1o, -+ -, T, for each n > 0.

Proof. The sequence of random times (7,),>0 can be obtained by the splitting
technique, which was suggested by Athreya and Ney [15]. The construction requires in
general enlarging the probability space to support the new Bernoulli random variables.
Suppose that M satisfies the minorization condition M(R,p,r,¢). Starting at any
state, the chain M hits R eventually. Conditional on doing so, the distribution of the
transition r steps later can be written as

PT(Sv ) = p(p(') + (1 _p)PT(Sv ) )7

where B

P’(s,-) = (1—=p) ' (P"(s,-) = pp(-)).
Let 7,,n > 0, be i.i.d. {0,1}-valued random variables with Ps(n, = 1) = p. Thus if
M, € R, then M, , is generated according to ¢ if 1, = 1 and according to P"(s, ),
otherwise. The missing values of M, 1, -+, M,., 1 are generated according to the
conditional distribution given M, and M, .., which exists on a Polish state space.
If M, # R, then M, is generated according to P(M,, ). Random times 7,,,n > 0,
are defined recursively:

=0 and 7,:=inf{k>7_1+7r: My, €Rmp_r=1}, n>1
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Then the properties (i)-(v) are fulfilled with ((-) := ¢(-) = P, (M, € -) for any initial
distribution A. For details we refer to Alsmeyer [1], Kalashnikov [32] or Lindvall [35].

QED

We say that a sequence (7,,),>0 forms a sequence of regeneration epochs for (M,,),>o,
if it satisfies properties (i) through (iv) in Proposition 1.10. In Alsmeyer [1] , it is shown
that a Markov chain M is Harris recurrent, if (thus if and only if) it possesses a sequence
of regeneration epochs. Note that a Harris chain M is d-periodic, if the span of 7 is d
under P., where 7 is a regeneration epoch constructed by the splitting technique (see
Proposition 3.10 in Asmussen [12]).

Remark 1.11 In the proof of Proposition 1.10, we have considered the bivariate
Markov chain M := (M, n,)n>0 with state space (E x {0,1},€ @ P({0,1})) to get

regeneration epochs. If M is strong aperiodic, then transition kernel P of M can be
given through

~ 0+ (1—p)(1—-0)P(s,A) : s¢R
P((s,0),Ax{0}) = {Egg+(1_§gg1_e§§13§s,flg : si%
. PO+ (1—p)(1—0)P(s,4) : s¢R
P((s,1),Ax {0}) = {(§e+<1—§><1—6>w<A> LosER,

for any A € £,0 € {0,1}, where P is defined in Proposition 1.10. In this case M is
classical-sense regenerative. For the construction of P in the general case, see Kalash-
nikov [32].

Remark 1.12 Borovkov introduced renovative processes (see Chapter 3 in
Borovkov [19] or Foss and Kalashnikov [27]). Let (Y,)n>0 be a sequence of random
variables on F defined by the recursive relation

Yn+1 = f(Yna Xn)a n 2 07

where (X,,)n>0 is a sequence of i.i.d. random variables taking values from a Polish
space E' and the mapping f : £ x £/ — FE is supposed to be measurable. Note that
the sequence (Y;,),>o forms a temporally homogeneous Markov chain on E. Denote by
fx the kth iteration of f: For any y € E, (zg,---,xx) € (E")F,

fl(y7x0) = f(ywa))
Jerni(y, o, -x) = f(fuly,mo, -, 20-1),7), k2> 1

Suppose that there exist an integer r > 0 and measurable sets B, C E’,C € E such
that for any y,y’ € C and (z4,---,2,) € B,

fr(yvxm e 7'777"71) = fr(y/vxm e 7xr71)-
Define events

C,={Y,e€C}, B,={Xp—, -, Xpn1)€B}, n>r, A,=C,_.NB,.
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The events A,,n > 0, are called renovative and their occurrence times the reno-
vation times. Suppose that P(B,) > 0. Let further 7, be the common value of
fry, o, -, x.—q) for y € C, and (¢ a distribution defined as

C() =P [777“ S |Br]
Then the chain (Y},),>0 satisfies the minorization condition
P,(Y, € A) >P(B,)((A) forall seC,Aec€&.

Thus if C'is a recurrent set of (Y},),>0, then (Y},),>0 is Harris recurrent and the sequence
of random variables (7,,),>0 given as

=0 and 7, =nf{k>7,_1+7r:1(4) =1}, n>1,

forms a sequence of regeneration epochs.

From the existence of regeneration epochs for Harris chains one can construct a
stationary measure, which is unique up to constant multiples.

Proposition 1.13 With the same notations as in Proposition 1.10, the measure

§() =T <Z_ (M, € ')) ; (1.2)

n=0

defines a stationary measure for P, which is unique up to constant multiples.
If B¢ 1y < 0o, then & := (IE; 7)€ is the unique stationary distribution for P.

Proof. See Satz 8.3.1, Satz 8.3.2 in Alsmeyer [1]. QED

A Harris chain (M,,),>o is called positive Harris recurrent, if M has a stationary
distribution.

Remark 1.14 A continuous-time Markov process (M;):>¢ is called a Harris process,
if it is p-recurrent for some o-finite measure ¢, i.e., for any A € £ with p(A) > 0,

IPS(/ 1(Mt€A)dt:oo):1, se k.
0

Sigman [57] showed that, if a Markov process is one-dependent regenerative, it is a
Harris process. It is also known that a Harris process has a unique (up to a multiplica-
tive constant) stationary measure £. A Harris process with a finite stationary measure
¢ is called positive Harris recurrent.

In Proposition 1.10 we have constructed regeneration epochs for a Harris chain
from a minorization condition and the first return time to the regeneration set. It is
thus reasonable, to expect some relations between moments of the regeneration epochs
constructed by the splitting technique from a regeneration set and the first return time
to the regeneration set. We need the following lemma.
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Lemma 1.15 Let (X,,)n>0 be a sequence of real valued random variables adapted
to a filtration (F,)n>0 and T an a.s. finite stopping time w.r.t. (Fp)n>o-

(i) Let a > 1. If there exist Iy > 0 and ly > 0 such that
E[| X, Foa] <l <00 and E[T%F <ly <

for alln > 1, then

]E[(Z |Xn|>a|j’-"0] < chly < o0

n=1

for some constant c.

(i1) Let v > 0. If there exists | > 0 such that
]E[exp(anN]:n_l] <l< oo

for allmn > 1, then

T

]E[exp (% Z Xn> |5’:0] < {E[l7|f0]}1/2.
n=1
Proof. (i) See Theorem 1 in Borovkov and Utev [20].

(ii) The assertion can be deduced from Theorem 2 in Borovkov and Utev [20], but
we give a simple proof. Let

R, =101""exp <7iXk>.
k=1

Then the sequence (R,,),>1 forms a positive supermartingale, and by the optional sam-
pling theorem the sequence (R, x;)n>1 also a positive supermartingale with IE [R,|Fo] <
1 for any n > 1, which implies IE [R, x| Fo] < 1 for any n > 1. Thus, by Fatou’s lemma,
E [R,|Fo] <1, since lim,, .o, Rynr = R, a.s. Using Holder’s inequality, we have

Blew (33 %) 7] ~ B [R5 < (w117
n=1
QED

The following assertions may be known, but we give full proofs, because we find no
adequate proofs in literature.

Proposition 1.16 Let M be a Harris chain satisfying the minorization condition
MR, p, 7, @) and (7,)n>0 a Sequence of regeneration epochs constructed by the splitting
technique from the minorization condition.
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(1) Let « > 1. If sup . Es (T(R))* < 00, then sup,eq Es 7 < o0o.

(it) Let v > 0. If supyeq Es exp(77(R)) < oo, then sup,eq Esexp(y/m) < oo for
some ~' > 0.

(111) If R = E, then sup,cp Es 70 < 00 for any o > 1 and sup,p E; exp(ym) < 0o
for some v > 0.

Proof. (i) A proof for the case r = 1, = 1 can be found in Borovkov [20], for
example. To show the assertion for r > 2, a > 1, let M = (M., M )n>0 be the Markov
chain constructed in Proposition 1.10 (see also Remark 1.11). The transition kernel P
of M satisfies

raoasion = (G ey

Furthermore, if s ¢ R, then f’((s,@),A x {0,1}) = P(s, A) for any § € {0,1}. Let
Tn,n > 1, be the random variables defined as

H=7(R) and 7, = nf{k>7r+7,_: My eRx{0,1}}, n>2.
We set 75(R) = 0. Let further v be a random variable defined as
v =inf{k: M; € R x {1}}.
By the geometric trial argument
Pv=k=p1l-p**t k>1
From the construction of 71, it is easy to see that for any s € R

E, < sup  Eg (7 +7)°
(5,0)ERx{0,1}

= suplE (73, + r)a
sef

< sup ) (Z (Fo = Fu-1) + 7’) ’
sef

n=1

since B )" = r* for any s € #. Let G, := 0o (Mk k< %n> for n > 1. Then, for
each n > 1,

E [(Far1 = 7)"[G]

< sup {ralsr((s, 0),R x {0,1}) + [ Eg(r+7(R))*P"((s,0),ds" x {0, 1})}

seR e

< sup {raPT(s, R) + / E, (r+7(R))"P"(s, ds')}
1 — D seR c

< sup Ey (r + 7(R))" < oc.

1—]3 sER
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Since Ev® < oo for any a > 1, we have sup, Es 71" < 0o by Lemma 1.15 (i).
(ii) For any s € R

E;exp(ym) < sup  IE ) exp (fy(?“ + %V))
(5,0)ERx{0,1}

< sup]E(So exp( (r—i—z  — Trn—1 ))

As in (i), for each n > 1

E [exp <’y(7’n+1 >|Qn} < ﬁ {sup]E exp (v(r+71)) — p} .

Moreover, by assumption, there exists a 7”,0 < 4" < ~, such that

sup IE, exp (7”(27“ + T(iR))) <142
SER 2
Letting
1
L:=——<{suplE, ex ("27“—1—7?}% )— },
o L e (7 ot o())
for any s € R

E,L" < ZL”p(l —p)" ! < 0.
n=1

Put v/ = ~+”/2. Then, by Lemma 1.15 (ii), for any s € R
]Es eXp(’)/Tl) < ]E(s 0) €XP (’Y (7" + Z - Tn 1 ))

< {ope (5t w0 ) ) }

1/2

1/2
< {sup]ES L”} < 00.
seR

(iii) Clear from the proofs of (i) and (ii), since 7(®) = 1. QED

The following proposition states the strong law of large numbers (SLLN) for real
functions of Harris chains.

Proposition 1.17 Let M be a positive Harris chain with a statz’onary distribution
¢. Consider a sequence of random variables (Yy,)n>0 with Y, = f(M,),n > 0, for a
measurable, nonnegative real-valued function f. Then

lim — ZYk—]Eng P,-a.s.

n—oo M

for any nitial distribution \ on E.

Proof. See Theorem 4.3.6 in Revuz [53]. QED
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1.4 Ergodicity

Definition 1.18 Let M be a Markov chain with transition kernel P and denote by
M?* a Markov chain with transition kernel P and initial distribution M.

(i) We say that M admits coupling, if for any two initial distributions p and X there
exist Markov chains M* and M* on a common probability space such that

M!" =M n>T,

where T is a finite random time.

(ii) We say that M admits shift-coupling, if for any two initial distributions p and
A there exist Markov chains M* and M* on a common probability space such that

o _ A
MTJrn - MT’+n7 n Z 07

where T and T are finite random times.
The following two propositions give characterizations of Harris chains.

Proposition 1.19 Let M be a general Markov chain with a stationary distribution
&. Then the following assertions are equivalent:

(i) M admits shift-coupling;

(i1) for any initial distribution X the distribution of M converges to & in Cesaro
total variation, i.e.,

1
n+1

lim

n—oo

ZB(Mke-)—&H:o;

(i1i) M is positive Harris recurrent.

Proof. For the equivalence of (i) and (ii) see Theorem 5.5.4 in Thorisson [63]. The
equivalence of (i) and (iii) follows from Theorem 10.4.6 in Thorisson [63]. QED

If M is positive Harris recurrent and aperiodic, then it is called Harris ergodic.

Proposition 1.20 Let M be a general Markov chain with a stationary distribution
&. Then the following assertions are equivalent:

(i) M admits coupling;

(i1) for any initial distribution X the distribution of M converges to & in total vari-
ation, i.e.,

Tim [P, (M, € ) €] =0

(111) M is Harris ergodic.
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Proof. For the equivalence of (i) and (ii) see Theorem 6.4.1 in Thorisson [63]. The
equivalence of (i) and (iii) follows from Proposition VII 3.13 in Asmussen [12]. QED

It is known that rates of convergence of regenerative processes are closely related
to moments of regeneration epoch. For details see Lindvall [35], Kalashnikov [32] and
Thorisson [63].

The following assertions are known.

Proposition 1.21 Let M be a Harris ergodic Markov chain with a stationary dis-
tribution & and T the first regeneration epoch constructed by the splitting technique.
Let further ¢ be the distribution defined as ¢(-) = P\(M,, € -).

(i) If B, 1" < oo for some a > 0, then for some constant c

[Po(M, €)= &]l < en™™

(it) If E, exp(y71) < oo for some v > 0, then for some constants ¢ and v € (0,7]

[Py (M, € -) =&l < cexp(—'n).

(i1i) Let X and p be initial distributions on E. If for some a > 1
E\m' <oo, E,7" and E,7m" < oo,
then
lim n®||Px(M, € -) — P, (M, € -)|| = 0.

n—oo

Proof. See Corollary 5.1.1 in Kalashnikov [32] for the proof of (i) and (ii), and
Theorem 10.7.5 in Thorisson [63] for (iii). QED

Corollary 1.22 Let M be a Harris ergodic Markov chain with a stationary distri-
bution & and R a regeneration set.

(i) Let a > 0. If sup,cq Es(7(R))*™ < 00, then for some constant ¢

1P, (M, € ) — €] < en,

(11) Let v > 0. If sup,eqn Es exp(y7(R)) < oo, then for some constants ¢ and v' > 0
1P, (M, € ) = ¢l < cexp(=7'n).

Proof. All assertions follow directly from Proposition 1.16 and Proposition 1.21.

QED
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A Markov chain M is called uniformly p-recurrent, if it satisfies the condition

supPg (7(A) >n) -0 as n—
seER

for any A € £ with ¢(A) > 0.
Proposition 1.23 The following conditions are equivalent:
(i) M is uniformly @-recurrent and aperiodic;

(i) M is aperiodic and E is a regeneration set, i.e., there exist an integer ng > 1,
a constant o > 0 and a distribution ¥ such that

sup Py (M, € -) > a)(+);

sek

(iii) there exist positive constants ¢ < oo and p < 1 such that
[Py (M, € -) = &]| < cp”

foranyn >0 and s € E.
Proof. See Theorem 6.15 in Nummelin [46]. QED

If one of the conditions (i) through (iii) of Proposition 1.23 holds true, M is called
uniformly (Harris) ergodic.



Chapter 2

Markov random walks

A Markov random walk (MRW) is a bivariate sequence (M, S, ),>0 consisting of
a temporally homogeneous Markov chain M = (M,),>¢ with arbitrary state space
(E, ) and a sequence (S,,)n>0 of real random variables, whose increments Xg, X, - - -,
say, are distributionally governed by M. The latter means that X, Xi,---, are con-
ditionally independent given M and that the conditional distribution of X, given M
depends only on M,,_; and M, for n > 1 (on M, alone, if n = 0). The special case,
where M is constant, leads back to ordinary random walks having i.i.d. increments.
Since Markov modulation, as opposed to the i.i.d. case, offers greater flexibility in
the modeling of fluctuations of additive random sequences without losing too much
structural homogeneity, it is not surprising that MRW’s have become a popular tool to
provide more flexible and thus realistic models in areas like risk theory and queueing
theory. The special case of finite modulation (E finite) has been extensively studied by
various authors like Pyke, Cinlar and Arjas, and there is now a well developed theory
for this case as to renewal and fluctuation theoretic aspects. Roughly speaking, if M
has finite state space, then much of the theory can be obtained in an elegant manner
via regenerative decomposition and subsequently resort to classical results for ordinary
random walks. Unfortunately, this is not true to the same extent, when M has infinite,
possibly uncountable state space, whence the theory in this case has not yet reached
comparable maturity. This chapter deals with MRW’s driven by general state space
Markov chains including reflected MRW’s. Throughout this chapter, the driving chain
M is always assumed to be positive Harris recurrent with general state space (E, &)
and a unique stationary distribution &, unless stated otherwise.

2.1 Markov random walks

In this section we review the fundamental aspects of MRW’s driven by general
Markov chains. Our discussion is based on Arjas [6, 7], Arjas and Speed [8, 9].

19
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2.1.1 Definitions

A mapping K : E x (£ x B) — [0,1] is called a semi-Markov transition kernel, if
(i) s — K(s, A x B) is bounded, £ x B-measurable for any A x B € £ ® B;
(ii)) A x B +— K(s, A x B) is a probability measure on £ x B for any s € E.

We define the composition K; K, of semi-Markov transition kernels K; and K, as
(KiKs)(s,Ax B) := / / Ky(s',Ax (B—x))Ki(s,ds'xdx), s€ E,AxBe€ERB.
EJR

The n-step iterates of a semi-Markov transition kernel K, n > 0, are defined recursively

K'=I and K'=K"'K, n>1

where the kernel I is defined as
I(s,Ax B) =0,(A)d(B), s€e E,AxBe&®B.

A Markov random walk (MRW) or Markov additive process (MAP)! is a bivariate
Markov chain (M, S, )n>0 with transition kernel Q of the form

Q((s,2),Ax B)=K(s,Ax (B—1x)), (s,1)e ExXR,AxBe€ERB,

for some semi-Markov transition kernel K.
For any B € B, define the operator Q(B) on the set of nonnegative measurable func-
tions F (E) as

(Q(B)f)(s) := /Ef(s’)K(s,ds’ x B), seE feF. (F).

LA continuous-time Markov additive process can be defined in a similar manner. Let {K; : ¢ > 0}
be a family of semi-transition kernels such that

K(s,Ax B) = K; (s, Ax (B—1x))Ky(s,ds' x dx)
ExR

for any t' < t,t,t' € RY,s,s’ € E,x € R,A € £, B € B. A Markov additive process (M, S;)i>0 is a
bivariate Markov process with transition semigroup (Qq):>o defined as

Qi(s,2;Ax B) =K¢(s,Ax (B—1x)), (s,2)e ExXR,AXxBe&@B,t>0

for a family of semi-transition kernels {K; : t > 0}. It is clear that (M;);>¢ is a Markov process with
the transition semigroup (QM);>¢ defined as

QM(s,A) =Qi(s,AxR), scEAcEt>0.

Furthermore, it is known that, given the process (M;);>0, the process (S;);>0 has independent incre-
ments, that is,

E[Hyzlhl(stl - Sti—1)|f} = H?:llE[hZ(Sh - Sti*1)|~7:]a

forany n > 1,0 < tg < t; < --- < t, and bounded measurable functions hy ---, h, on E, where F
denotes the canonical filtration for (M});>o.



2.1. MARKOV RANDOM WALKS 21

In particular, we have for any A € £
(Q(B)14)(s) =K(s,Ax B), secFE.

A MRW (M, Sy)n>0 is called a Markov renewal process, if the increments Sy, 41 —S,,n >
0, of its additive part are a.s. positive, i.e., if Q((s,0), E x (0,00)) =1 for all s € E.
The Markov chain (M,),>o is called the driving chain or underlying Markov chain.
Obviously a renewal process is equivalent to the special case of a Markov renewal
process with a one-state driving chain. If (N (¢));>0 denotes the counting process for a
Markov renewal process (M, Sp)n>o0, i€,

N(t):=sup{n>0:5, <t}, t>0,

then the process (Mts)tzo defined by Mts = Mpy),t > 0, is called a semi-Markov
Process.

The sequence of increments X,, := 5, — S,_1,n > 1, of the additive part plays an
important role in the theory of MRW’s. Putting X, = Sy, the process (M,, X,)n>0
forms a temporally homogeneous Markov chain with transition kernel P : Ex(£®B) —
[0, 1] satisfying

P(s,AxB)=P[M, € A, X, € B{My=3s], sc E,AxBec&®B.
One can easily see that (M, 1, X,+1) depends on the past only through M, for each

n > 0 and that (M,),>o forms a Markov chain with state space E and the transition
kernel P, defined as

Puy(s,A) =P(s,AxR), se€E Acf.
Given (M,,)n>0, the X,,,n > 0, are conditionally independent with
P [X, € B|(M,);50] = F(M,_1,M,,B) P —as.,

foralln > 1, B € B and a kernel F : E? x B — [0, 1]. The process (M,,, X,,)n>0 is called
a Markov modulated sequence with the driving chain (M,),>o.

Let throughout a canonical model be given with probability measures P ., (s,z) €
E x R, on (2,S) such that P, (My = s,Xo = z) = 1. For any distribution A on
E x R, define

Py ()= [E P () A(ds. da),

in which case (M, Xy) has the initial distribution A. The expectation under P, is
denoted by IE). For s € E and an initial distribution A on E, we write [E; and E,
instead of IE; o and IE)gs,, respectively.

For any C' € B, o(C) denotes the first return time of (M, W,)n>o to E x C. For
each fixed C' € B and n > 1, we define the probability distributions H(Cn )(s, A; B) and
G(C”)(S,A; B) as

H"(s,A:B) = P,(M, € A,S, € B,o(C) >n)
G (s,A;B) = P (M, €A, S, €B,o(C)=n)

’
Y

se B,Ae& Beb.
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One can easily see that
/ / Q(s', Ax (B—a')HY (s,ds'; dz’) = HE (s, A; B) + GU (s, A B).
EJR
Define the corresponding transforms fI(CO‘ ) and Gg“ﬁ ) as
H(aﬁ (s, A) Z / BIH(n (s, A;dx)

= I, ZQ”BS”MEA;

G(Ca’ﬁ)(s,A) = Za"/o P G(Cn)(s,A;dx)
n=0
= [, (oz"(c)eﬁsﬂm; My € A,0(C) < )

for any s € E, A € £. Further, define

c(s, A; B) ZH (s,A;B) and Ge¢(s, A;B) = ZG (s, A; B).

In particular, if B = R, then we write Ho(s, A) and Gg(s, A) instead of He(s, A;R)
and Gg(s, A; R), respectively. Obviously, we have

A

Ho(s, A) = HO%(s,A) and Ge(s,A) = GUY(s,4), se E,Ac&.

2.1.2 The Harris recurrence of Markov modulated sequences

Nummelin [45] has shown that a Markov modulated sequence (M, X, ),>0 is posi-
tive Harris recurrent and that the measure v defined as

V(A x B) = / P(s,Ax B)¢(ds), AxBeEaB,
E
is a unique stationary distribution for (M,, X, ),>0. Furthermore, a coupling argument

shows that (M, X,,),>0 is also Harris ergodic, provided that M is Harris ergodic.

Sometimes one needs to consider the sequence (M, X,,11)n>0. In this case, it turns
out that regeneration epochs for M are also regeneration epochs for (M, X, 11)n>0.

Proposition 2.1 Let (7,)n,>0 be a sequence of regeneration epochs for (M, )n>o.
Then the sequence (M, Xp11)n>0 i one-dependent as well as wide-sense regenerative
with regeneration epochs 1,,,n > 0, and for any initial distribution A

P (M, Xp1)rz0 € +) = Pa (Mr 40, Xrpprp k20 € 1), 1> 1,
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where ((-) = Py(M,, € -).
If the state space E is countable, then (M,, X, 11)n>0 S classical-sense regenerative.

Proof. Consider the cycles Z,, defined as

Zn = (Tn+1 — Tn, (Mku Xk+1>7n§k<7n+1) ’ n Z 0.

Obviously the sequence (Zj)g>n does not depend on (1, 7y,---,7,) for any n > 1.
Moreover, by conditional independence of (X,,),>0 given (M, ),>0, one can easily see
that for any n > 1 and any initial distribution A

P\(Z,€-)= / Py (Zy € - )PA(M,, € ds) =P (2, € ),

E

thus (M, X,41)n>0 i wide-sense regenerative. On the other hand, for any initial
distribution A and for any n > 0

]PA [Zn+2 SIS |an+1} = P [(Tn-i-?) — Tn+2, (Mka Xk+1)7n+2§k<7—n+3) € |M7—n+1j|
= ]PC(ZO € - ),

where (F,)n>0 is the canonical filtration for the sequence (M, X,,)n>0. Since Z, is
F...-measurable, the cycles Z,,n > 0, are one-dependent. In particular, if M is
discrete, then there exists a recurrent state ig. Thus for any i € E

P; [Zn-‘rl S |‘7:Tn+1] = IP[(TH+2 — Tn+1, (Mk7Xk+1)7’n+1§k<Tn+2) S |M7—n+1:|
= ]Pio(ZO S )7
which means that the cycles are independent. QED

Note that for any sequence of regeneration epochs (7,)n>0 for (M,)n>0
1 T1—1 1 1
E: X, = E X, = E X, |,

where ((-) = Py(M,, € -) for any initial distribution A.

The SLLN for a MRW (M,,, S,,)n>0 is a direct consequence of the Harris recurrence
of (M, X,,)n>0 and Proposition 1.16. But we give a full proof, in which the structure
of one-dependence in MRW's is exploited.

Proposition 2.2 (SLLN for MRW’s) Given a Markov modulated sequence
(M., X0)n>0, it holds that

for any initial distribution A on E x RR.



24 CHAPTER 2. MARKOV RANDOM WALKS

Proof. Let (7,,)n>0 be a sequence of regeneration epochs of (M, ),>o and let {(-) =
Py (M., € ). We note first that for any initial distribution A

S Sr4n — Sy .S

P, (lim L ]E5X1> =P, (lim i U ]ngl) = (hm L ]E5X1> :

n—oo M n—oo n n—oo N

Therefore it is sufficient to show the assertion only for IP,.

By assumption, the sequence (S%),>1 = (5., )n>1 has stationary increments X} =
Z":Tnfl 41 Xk,n > 1, which is one-dependent under P; and in turn, by Birkhoff’s

ergodic theorem, we have as n — oo

* 1

S
L B X = B (Z Xk) =E.m-EX, P;—as.
n
k=1
Let T'(n) :=inf{k > 0 : 74, > n}. Then as n — oo
T(n) . 1
n IEC T

P —as.,

whence

S; S; S;
tw) _ T(n) 1w Fe X, and 107!
n n  T(n)

The assertion follows from the inequality

STmy-1 Sn STn)
n n n

QED

Let p := IE¢X;, which is called drift of the MRW (M,,, S;,)n>0. As a direct conse-

quence of Proposition 2.2, we get for any initial distribution A

w<0 = lim S,=—-o00 P,—as; (2.1)
w>0 = lim S, =400 P, —as. (2.2)

2.1.3 Maximum of MRW'’s

Suppose that Sy = 0 hereafter and put
07 = 0((0,00)), 07 :=0([0,00)), 0% :=0((—00,0)) and o= :=0((—o00,0]),

which are called the first strict ascending ladder epoch, the first weak ascending ladder
epoch, the first strict descending ladder epoch and the first weak descending ladder
epoch, respectively. If o* is a.s. finite for * € {>,>, <, <}, one can also define, in an
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obvious manner, the nth ladder epochs o), n > 1, with o] = o™.
Clearly o;,n > 1, are stopping times. For notational convenience, we write H(>n), H(Zn),

H"” and H(S") instead of HES)OO), HESL 2)0), Hgﬁ)oo o and Hgﬁ)oo o Tespectively. The same
notational conventions are used also for Ggg)oo), Gfg 10)7 Ggi)oo o) and Ggi)oo o and their

transforms.

Consider the maximum of the partial sums

S, := max S.
0<k<n

Noting that, for 0 < m <n, S, is maximal among the first n partial sums if and only
if S,, is the last strict ascending ladder height before n, it can be easily seen that for
all [al, |3] < 1

Za” / PP, (M, € A, S, €dr)
n=0 E

:Zanz/eﬂﬂp[meA,smH—smgo,---,sn—smgowm:s']
n=0 m=0 E
‘P, (M, €ds',S,, € dx,S, >0,S, >S1, -+, Sn > Sm_1).

Thus we get the following equality, which was obtained by Arjas [7]:
Z a" B (eﬁgn; M, € A) = Z/ I:I(f’o)(s’,A) (Gfﬁ))n (s,ds’).  (2.3)
n=0 n=0"E

Now consider B B
S :=sups,.

n>0
For any s € E, A € £ and x € R, we define
GL(s,A;(—00,2)) = d,(A)do((—00,2));
GL(s,A;(—o0,2)) = / / G- (8, 4; (—o0,z —y)) G (s,ds’; dy), n > 1.
EJo

Proposition 2.3 If u < 0, then S is a.s. finite. Let 7 := inf{n : S, = S}. Then
foranyse E;A e & and x € R

P, (M, € A S, <x)= Z/A(l — G. (5, F)) GL(s,ds"; (—00,x)) (2.4)

and

E, % = f:/ (1-G.(s, E)) (GS%" (s,ds"). (2.5)
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Proof. Obviously S; = sup{S,> : 0, < oo}. Furthermore, by (2.1), S; is P, ,-a.s.
finite for any (s,z) € E x R. Thus the probability that S is obtained in precisely n
ladder steps and at state in A and does not exceed x is given by

/A (1-G.(s',E)) GL(s,ds"; (=00, )).

Summing over all n, we get the equality (2.4), and multiplying by 4" and summing
over all n, the equality (2.5) follows. QED

2.1.4 Time-reversal

Definition 2.4 A Markov chain (Mn, gn)nz() with transition kernel Q is called the
time-reversal of (M,, S,), if, for any B € B, Q(B) and Q(B) are adjoint with respect
to &, i.e., for any f,g € F.(FE)

(,Q(B)g)e = (Q(B) [, 9)e-

Obviously (Mn, gn)nzo forms a MRW with driving chain (Mn)nZO'
Let Ggf‘(f; be the kernel defined as

GS‘(’Q(S,A) = E a&>eﬁ§5>;f\~4&>EA,<~T><OO|M0=S,§0=0}, seb,A€l,

where 6~ is the first strict descending ladder epoch for the MRW (Mn, gn)nZO- The
following assertion is due to Arjas and Speed [9)].

Proposition 2.5 The kernels ﬂg’"ﬁ) and ">, (Ggg;) are mutually adjoint with

respect to &, i.e.,
o

(A g)e = (3 (G50) F.o)e

n=0
for any f,g € F.(F).
Proof. Let

GM(s,Ax B) = IP[MneA,Sn—gk>0,k<n,5‘neB]M0:s,50:0].
Then for any f,g € F,.(EF)

(FLHD (L B)g)e = Be (F(Mo)g(Mo)15(S0)118,50,-5,20})
= B (FOL)g()Lp(S0)1(5, 5,0, 5,501
= (GM(-,-x B)f.g)e,
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because for any n > 0

(My., Sk)o<ken ~ (Mp_g, S — S )o<k<n-

Note that for any s € £, A € &

Za”/eﬁz(}(")(s,fl X dx)
n=0

:ian/emp (¥, € 4,8, — S > 0.k < ., € Bl = 5.5 = 0]

n=0

:Za”/ TP [Z\an € A,n =g, for some m > 1,85, de|]\;[0:s,§0:0}
0

where 5> denotes the mth strict ascending ladder epoch of the MRW (M,,, S,)n>0-
The assertion follows from

e [ RO o)
Soat [ HD (L dag)e
n=0
Za"/eﬁ (G(")( e xdx) f, g>§
n=0
= O (G52) fae

n=0

QED

If the state space E is countable, then the time-reversal (Mn, gn)nZO is defined by
the transition kernel matrix Q = (G;;); jep with

Gi;(B) = P [M, =35, € B|My=1,5,=0]
= P[Mlzi,S1EB|M0:j,SQZO], B e B.
In this case, Proposition 2.5 can be written in the matrix form:
R(>)

<I Gof ) — AJ'HEPA,,

where I denotes the identity matrix.
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2.2 Reflected Markov random walks

A reflected MRW appears naturally as the waiting time process in a Markov mod-
ulated queueing system. As known a reflected random walk (W,,),>o with negative
drift is classical-sense regenerative, where the weak descending ladder epochs of the
associated random walk are regeneration epochs. In that case many problems on re-
flected random walks can be attacked by the analysis of the weak descending ladder
epoch. In the Markov modulated case, it is not true to the same extent in general. But
Alsmeyer [4] showed that a reflected MRW with negative drift possesses a sequence
of regeneration epochs, which are expressed in terms of the weak descending ladder
epochs g,,n > 0, and regeneration epochs for (M, ),>o.

In this section we review some elementary properties of reflected MRW’s and exam-
ine their regeneration. Throughout this section we assume that a Markov modulated
sequence (M, X, )n>o is given, and (M,, S, )n>0 denotes the associated MRW, where
S, =X+ -+ X, for each n > 0.

2.2.1 Reflected MRW’s and their basic properties

A process (M, Wy,)n>0 is called the reflected Markov random walk (reflected MRW)
associated to (M,, X, )n>0, if it satisfies the recursive equation

W() = S(T and Wn+1 = (Wn + Xn+1)+, n Z 0,

where Xt = max(X,0). Obviously it is a Markov chain with transition kernel ®
defined as

®((s,2),Ax B) =15(0)Ps(A x (—o0, —z)) + P4s(A x (B — 1))
for (s,2) € ExRY, Ax Be&®B".
Let 0,,n > 0, be the weak descending ladder epochs defined as
op:=inf{n >0:5, <0} and o,:=inf{k>0,1:5%<S,,_,}, n>1

The definition is slightly different from the definition in ordinary zero delayed random
walks, in which oy is defined to be 0. Obviously o,,n > 0, are a.s. finite stopping
times, if the drift of the MRW (M,,, S,.)n>0 is negative. In the rest of this chapter we
suppose that pu < 0, unless stated otherwise.

Proposition 2.6 Let (M,,, W,,),>0 be the reflected MRW associated to (M, X,)n>0-
Then the following assertions hold true:

(i) For any n >0

W, = r]£1<ax(W0 + S — S0, Sp — Sk) = kr?axl(Wo — Xo+5,,8, — Sp)t, n>o0.
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(ii)) E x {0} is a recurrent set of (M, Wy,)n>0. Furthermore, it holds that
oo=inf{k>0:W, =0} and o,=inf{k >0, 1: W, =0}, n>1

Proof. For (i) see Proposition I11.6.3 in Asmussen [13]. (ii) is obvious. QED

By Proposition 2.6, for any n > 0

P, (M, € A, W, <z

—ZZ/ MlEdS Uk—l)IP[M GAS —Sl<33' ak+1—ak>n—l]Ml—s].
1=0 k=0

Multiplying the above equation by a" and summing over all n,

Za I, (¢™"; M, € A) Z/H“ﬁ) s A) (G(S ) (s, ds'). (2.6)

for any s € E.

Given a bivariate Markov chain (M,T) = (M,,T,)n>0 on E x [0,00), define the

transform AE Mﬂ ) 88

:ZOMES ("™ M, €A), seE,A€E.

Two bivariate processes (M T) and (M,T) on E x [0,00) are said to be mutually
adjoint, if A 7 and A  are adjoint w.r.t. £&. If two MRW’s (M, S) and (M, S) are
in time- reversal then they are mutually adjoint.

The following assertions are due to Arjas and Speed [8, 9].

Corollary 2.7 Let (M,, W,)n>0 be a reflected MRW associated to (M, Xy )n>0
with Wy = 0. If (Mmsn)nzo is the time-reversal of (M., Sp)n>0, then the processes
(M, W) >0 and (M, maXo<g<n Sk)n>0 are mutually adjoint.

Proof. Let I:Igg(fg be a kernel defined as
5~ —1
i) (s, A) = Za" ﬂSnMeAMO_sso_()]

where - is the first strictly ascending ladder epoch of (Mn, gn)nzo- Then in a similar
manner as in Proposition 2.5 one can show that the kernels > >, <G(Sa’0)> and
IZIS‘(’S)) are mutually adjoint w.r.t. £. Thus the assertion follows from (2.3),(2.6) and

Proposition 2.5. QED
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The following proposition is due to Nummelin.

Proposition 2.8 The reflected MRW (M,,, W,)n>0 associated to (M, X,)n>0 1S
positive Harris recurrent. It is further Harris ergodic, if the same holds true for M.

Proof. See Nummelin [45]. For a simple proof using a coupling argument, see
Asmussen [12]. Though the driving chain (M,,),>¢ is there assumed to be finite, the
same arguments work also for the Markov chain with general state space. QED

Note that Ex{0} is a recurrent set for (M,,, W,,),>o and thus contains a regeneration
set B x {0} for a measurable set K. In this case the set R is also a regeneration set of

M.
Remark 2.9 If i > 0, then for any initial distribution A

. n
lim — =p Py —as,
n—oo M

since

L >0 Py—as as n-— oo
n
and thus there exists the smallest L such that W, > 0 for n > L. Further,

W, S,—5S
lim —2 =2~ =L =u P),—as.
n—oo N n
In particular, we have

lim W,, =00 PP, —a.s.

n—oo

2.2.2 Regeneration

Let (M, W,)n>0 be the reflected MRW associated to (M,,X,),>0. Then
(M., Wy)n>o is positive Harris recurrent, and so there exists a sequence of regener-
ation epochs. Consider the subchain M7 := (MZ),>¢ := (My, )n>0, where o,,n > 0,
are weak descending ladder epochs defined in 2.2.1. Obviously the sequence M? forms
a temporally homogeneous Markov chain with transition kernel G<, where G< is the

kernel defined as R
G(5,4) = GU"(5,4), se B Acé.

Let 3 x {0} be a regeneration set of (M, W,,)n>0 and (7,)n>0 a sequence of regen-
eration epochs for it constructed by the splitting technique from # x {0}. Then each
7, has the form o~ , where 7, is a stopping time w.r.t. the filtration (F,, ),>0, where
(Fn)n>o is a filtration such that (M,),>o is Markov-adapted and each 7, a stopping
time with respect to (F,)n>0. One can easily check that (7,),>¢ forms a sequence of
regeneration epochs for the Markov chain (MY),>o, which is thus Harris recurrent.
Clearly, IE, 7y < IE; 71 < oo, and thus (M7),>0 is positive Harris recurrent. In fact, we
have:
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Proposition 2.10 A sequence of random times (T,)n>0 is a Sequence of regener-
ation epochs for M7 if, and only if, (0=, )n>0 1S a sequence of regeneration epochs for
(Mm Wn)nZO-

Furthermore, we get moment conditions for regeneration epoch of (M,,, W,,),>¢ in
terms of moments of the weak descending ladder epochs and of the first return time to
a regeneration set of M7:

Proposition 2.11 Let ® x {0} be a regeneration set of (M, Wy,)nzo. Let further
T(R) denote the return time of (MZ)n>o0 to R, i.e.,

7(R) :=inf {n >0: M] € R}.

(i) Let a > 1. Suppose that E[o|Fy,] is bounded. If

supE,0f <oo and supkE, (7(R))" < o0,
seR seR
then there exists a sequence of regeneration epochs (Ty)n>0 0f (Mp, Wy)n>0 such that
Sup,eq Es 710 < oo. If in addition M s Harris ergodic and o > 1, then for some
constant c
[P¢ (M, Wy) € -) = 7| < en'™?,

where m is a unique stationary distribution of (M, Wy)n>o0 and ((-) = Px(M;, € -) for
each \ on E.

(ii) Let v > 0. Suppose that E [exp(yo1)|Fs,] is bounded. If

sup [E; exp(yo1) < 0o and suplEg exp(y7(R)) < oo,
sER seR

there exists a sequence of regeneration epochs (7,)n>0 of (Mu, Wy)n>o0 such that
supseq Es exp(y/71) < 0o for some ~' > 0. If in addition M is Harris ergodic, then for
some constants ¢ and v" € (0,7/]

H]PQ ((Mna Wy)€-)— 7TH < CeXp(_’Y”n)'

Proof. Let 7#(R x {0}) denote the return time of (M,,, W,,),>0 to & x {0}. Then

[0}

F(R)-1
sup IEs (7A—(§}?E X {0}))04 S sup ]ES (0n+1 - Un) )
seR seR n—0
F(R)-1
sup Es exp (77:@_% X {O})) S sup ]ES exp | ¥ (Un+1 - Un)
seR seR n=0

Thus by Lemma 1.15 (i) sup,cq E; (7(R x_{O}))a < oo under the conditions of (i),
and by Lemma 1.15 (i) sup,c IE; exp (y7(R % {0})) under the conditions of (ii). All
assertons follow from Proposition 1.16 and Corollary 1.22. QED
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2.2.3 Stationary distribution

From the existence of a sequence of regeneration epochs (7,,),>0 for (M, W,)n>0
with W; = 0, we get a stationary distribution 7 of (M,,, W,,),>0 given as

() = ]Eclﬂ IE, (Z 1((M,, W,) € -)) :

n=0

where ((-) = P\(M;, € -) for any initial distribution A. Moreover, since E x {0} is
a recurrent set with (£ x {0}) > 0, by Proposition 1.1 7 can be also written as an
occupation measure

m(Ax B) = Eglm IE¢ (CHZ_ 1((M,,S,) € A x B))

1 _
= o ) Bl A B

_ / H(s, A: B)n(ds x {0}), Acé& Bec B,
E
where ¢ is a stationary distribution for G<. Note that, for any a > 0, E x [0, a] is also
a recurrent set with 7(E x [0,a]) > 0. Let
o(a) :=inf{k > 0: Wy <a} and 7,(a):=inf{k > 7,_1(a): Wy <a}, n>1

Then the random variables 7,,(a), n > 0, are a.s. finite stopping times and the chain
(M;(a),W;(“))nzo = (M:,(a), Wr,(a))n>0 forms a Harris chain with transition kernel
G0 = Ggl_gi o Denote by 7(® the stationary distribution.

Proposition 2.12 Let a > 0. Then for any A € € and y > 0

1
A = H (_sc.a—a)(s, A; [0,y — 2]) 7 (ds x d
71'( X [O,y]) ]Eﬂ,(a)O' . a /Oa / (—o0,a :c}(su 7[an ZL’])?T ( s X .T)
= m(Ex[0,q]) / / H( woaa(s, 4;[0,y — 2]) 79 (ds x dx)
[0,a] JE
= / / H(foo,afx](sa A7 [07 Y- ZE]) 7T(d8 X d(L’)
[0,a] JE

Proof. By Proposition 1.1,

71(a)—1
1
T(Ax[0y) = — E. 1((M,,S,) € A x [0,
(A x[0,9]) o mi(a) o 7; [0,9])
71(a)—1

= (E >< 0 CL 7r(a) Z 1 Mn,S 6 A X [an])

n=0
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Thus the assertions follow from

71(a)—1

]E,n.(a) Z 1((Mm Sn) € Ax [O, y])

o

Z (@) Mn,Sn)GAX[O,y]7T1(CL)>n)

n=0
// s (My, Sn) € A x[0,y], Sk>ak<n) Y(ds x dx)
// (M., S,) EAX[O,y—x},Sk>a—x,k§n)7r(“)(ds><dx)

= / / H( oo a(s, Ay — 2) 79 (ds x dz).
EJo
QED
As a corollary we get the following assertion, which is a generalization of a result
of Arjas [7]:
Corollary 2.13 For any A € £

B, (MM, € A) = — / HU (s, A) E(ds) = / HUY (s, A) 7(ds x {0}).
]Egal E E

Proof. The assertion follows from

X 1 &
E;o; Z Pe (M, € A, S, € dr,01 >n)
n=0

1 * o -
= P, (M, € A, S, € dx,o1 >n ds
ngn/E(/o >R > n) | &ds)

1 p(1,8) 3
= H.o" (s, A)&(ds

/E HU (5, A) n(ds x {0}).

IEW(eﬁwl;MIEA) = / P
0

QED

2.3 MRW’s with lattice-type increments

MRW’s with lattice-type increments are of particular interest in the applied proba-
bility. In particular, reflected MRW’s driven by finite Markov chains and with upward



34 CHAPTER 2. MARKOV RANDOM WALKS

or downward skip-free increments have received a considerable attention in the queue-
ing theory, and were extensively studied by Neuts and his school. They have developed
matrix-analytic methods to algorithmically compute characteristics like stationary dis-
tribution. A comprehensive treatment can be found in Neuts [43, 44] and Latouche
and Ramaswami [34] and some generalizations in Miyazawa [38], Sengupta [54] and
Tweedie [65]. This section examines MRW’s with lattice-type increments driven by
general Markov chains. In this case we can not expect to find computational algo-
rithms, but get stationary distributions in simpler forms.

2.3.1 MRW’s with lattice-type increments

Consider a Markov modulated sequence (M,,, X,)n>o defined on E x Z with tran-
sition kernel P. Denote by (M,, S,)n>0 the associated MRW with transition kernel Q
and by (M,,, W,,)n>o the associated reflected MRW.

For B C Z, o(B) denotes the first return time to £ x B. For each | € Z we define
the kernels Ijl[g’l] and G[g’l] as

H (5, 4) = Za (M, € A, S, =1,0(B) > n);
Gg’l](s,A) = Za (M, € A, S, =1,0(B) =n).

If @« = 1, then we write H[ and GEB instead of HI B U and GEB ], respectively. Further-

more, we put
:ZHQ and GB:ZGBQ.

leZ IEZ

If 0(B) = o* for some * € {>,>, < <}, we write IA{[S’”, ﬂ[g’l], ﬂ[;l’l] and IA{[SO"” instead

2 [a,l} orlol] [o]]
ot H! Hl) H and HOL

are used also for G{? ”) G%,i,), chii]o,—l]

respectively. The same notational conventions

and Gﬁﬂo o- Note that

« = el ! ,ds").
Z "P, (M, € A, W, = 1) /H[alk] )(G[f‘k]> (s, ds')

Denote by (Mn, Sn)nzo the time-reversal of (M,,, S,)n>0 and for each | € Z define the
kernel Ggg(ﬂ) as

G[gl] (s,A) = ia"]P [MnGA,gn:l,6>:n‘Mo:s,S’0:0],

n=0

where < is the first return time of (M, S, )ns0 to E x (—o0, —1].
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In the similar manner as in Proposition 2.5, we get the following assertions:

Proposition 2.14 For each | > 1 the kernels
l
H[Sa’l] and Z (Ggg(i )
n=1

are mutually adjoint with respect to &. In particular, }AI[SO"I] and (A}E;‘(E) are mutually
adjoint with respect to &.

Proof. Note that
P[40, € 4,5, = 1,8, — S > 0.k < n|Al = 5,5, = 0]
=P, [MneA,S'n:l,n:6; for some m, 1 gmgl’MOZS’SOZO .

The first assertion follows in the same manner as in the proof of Proposition 2.5. The
second assertion is clear. QED

For each k > 0, 7®) denotes the stationary distribution for G (_o,k]- The following
assertion is a direct consequence of Proposition 2.12.

Proposition 2.15 For any k > 0, a unique stationary distribution m can be written

wAx{l) = F 0( /H” (s A)ads x (1))
= 7(Ex{0,1,- l/m%Mmsm \(ds x {m})
= Z/ HEI:Q}k m(8; A)m(ds x {m}), A€&1=0.

In particular, for any A€ & and 1 >0

(A x{1}) = /E HY(s, A) 70 (ds) = /E HY (s, A) m(ds x {0}).

E o o1

Proof. Denote by H _, 11(s,m; A, [) the expectation that starting from (s, m), the
process visits A x {l} avoiding levels 0, - - -, k. Since the process is independent of level,
we have

l-m
H o py(s.mi A1) = BT (s, 4)
for any m,0 < m < k. Noting that
0 0((—00,k]) = 7(E x {0,1,+ -, k}),

™
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the assertions follow from

1
]Eﬂ(k) 0'((

A(Ax {1} ) 22 L Hntooms 4,070 x ().

QED

2.3.2 MRW’s with upward skip-free increments

Consider a Markov modulated sequence (M, X,)n,>0 defined on FE X
{--+,—2,-1,0,1} with transition kernel P and let

Ai(s,A) = P(s,Ax {~l+1}), seE AcE,Il>0.

The associated MRW (M,,, S, )n>0 possesses upward skip-free increments and the tran-
sition kernel Q can be written as

Ap_41(s,4) + I>k+1
Q((s,fo,Ax{l}):{ ’”%( ) otherwise

forany s € £, A € £.

The following proposition is originally due to Neuts for the case of finite driving
chain, and was extended by Tweedie [65] to the general case.

Proposition 2.16 For all [ > 1 it holds that

ﬂ[gml](saA) = (ﬂ[ga’l])l(S,A), se B,Aeck&.

Al . . ‘
Moreover, H[g ] satisfies the nonlinear operator equation

HO(s, A)=a ) / A (s, A) (HE N (s,ds')  for all o] < 1. (2.7)

Proof. Decomposing over the time of the last entrance to level [, we have
Hn) (s, A;1+1 Z/ H(n s, A l)Hg)(s,ds/;l),

where H(Sn)(s,A;l) = H(STL)(S,A; {l}) (see 2.1.1 for the definition). Multiplying the
above equation by a” and summing over all n, we get easily

(s, 4) = /E A (s, A) O (s, d),
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which yields the first assertion.
For the second assertion note that H(Sl)( ;1) = Ag(+,-). By conditioning on the state
entered in step n — 1, we get

n—1
HY (s, A1) =) / Ar(s' AYHY V(s ds k), > 2,
k=1"F
from which we obtain the equation (2.7). QED

Remark 2.17 Tweedie [65] showed that H[gl] is the minimal solution of nonlinear
operator equation

H (s, 4) = > /EAn<s',A> (HY)"(s,ds'), s€E, A€,
n=0

in the sense that, if R is another kernel satisfying above operator equation, then

HU(s,A) <R(s,4), seE,Ac€.

Now consider the reflected MRW (M,,, W,,),>0 associated to (M, X,,)n>o-
For k,1 > 0, let
®y(s,A)=P[M, € AW, =1|My=5Wy=k], scE,AcE.

Then one can easily see that the transition matrix kernel ® = (®y;);;>0 is given as

Bo(s, A) Ag(s, A) 0 0 0
Bi(s,A) Ai(s,A) Ay(s, A) 0 0
Ba(s, A) As(s,A) Ai(s,A) Aou(s,A) 0

where By, [ > 0, are kernels defined as

Bi(s,A) = Y Au(s,A), 1>0.

k=l+1

If F is finite, then the Markov chain with this transition kernel ® is referred to as
M/GI/1 type. A specific feature of M/G1/1-type processes is the existence of matrix-
geometric stationary distributions (see Neuts [42, 43]).

The following proposition is due to Tweedie [65], which is a generalization of a
result of Neuts [42].
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Proposition 2.18 For any | > 0, the stationary distribution © of ® satisfies the
relation

(A x {1}) = —

() 01

/E ®Y)! (s, A) 7O (ds) = /E ®Y) (s, A) m(ds x {0}) (2.9)

for any a € £ and the recursive equation

(A x {I+1}) /H (5, A) 7O (ds x {1}) /H“sA r(ds x {I}),
where

= (B x{0,1,-,1}).

Proof. The first equality in (2.9) follows from
T(Ax {1}) = co - / Ho(s, A:1) 7O (ds), Acé,
E

and
H (s, A;1) = HY(s, A) = (H“)

for any s,€ E, A € £,1 > 0. The second equality in (2.9) is the assertion of Proposition
1.1. For the last assertion, note that for any [,0 <[ —1,

H(_oojl_k](s, A, l +1-— ]{3) = 0,

since the process is upward skip-free. Therefore, from Proposition 2.15, for any A € £

TAx{l+1}) = cl~2/ Hooii(s, A1+ 1 — k) 7O (ds x {k})

QED

2.3.3 MRW’s with downward skip-free increments

Next consider a Markov modulated sequence (M, X,,),>o defined on Ex{—1,0,---}
with transition kernel P and let

Di(s,A) =P(s,Ax{l—1}), seE Acg,
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for each [ > 0. The associated MRW (M,,, S,,)n>0 possesses downward skip-free incre-
ments and the transition kernel Q can be written as

_ A) —
Q((s, k), A x{l}) = { b HS(S’ ) f)tie]j"wisle.

The kernel G[<a U can be represented in terms of the minimal solution satisfying a
nonlinear operator equation.

Proposition 2.19 The kernel G[f’fl] satisfies the nonlinear operator equation
Gl s A)=aY) / Dy(s', A) (G (s, ds'), seE,Ack,
1=0 Y F

for all |oo| < 1. Furthermore, for0 < a <1, G[j"_”

of the nonlinear operator equation.

1s the minimal nonnegative solution

Proof. A proof for the finite modulation case can be found in Theorem 2.2.1 and
Theorem 2.2.2 in Neuts [44]. The general case can be proved in the same manner.

QED
Consider the reflected MRW (M,,, W,,),.>0 associated to (M,,, X,,)n>0-
For k,1 > 0, let
@kl(S,A):P[MlEA,lel’MOZS,WOZk], SEE,AES.

Then the transition matrix kernel ® = (®y;);;>0 is given as

CO(SaA) C1(87A) C2(SaA) C3(S7A)

Dy(s, A) Di(s, A) Da(s, A) Ds(s, A)

0 Dy(s,A) Di(s,A) Da(s, A)

where
Co(S,A) = D()(S,A) —|—D1<S,A), Cl(S,A) = Dl+1<S,A), l > 1.

If E is finite, then the Markov chain with this transition kernel ® is referred to as
M/GI/1 type. A specific feature of M/GI/1-type precesses is the existence of sta-
tionary distributions satisfying a certain recursive equation, which is obtained by Ra-
maswami [49].
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A stationary distribution 7 of (M,,, W,,),>0 satisfies the relation

m(Ax{l}) = / Ci(s,A)w(ds x {0}) + Z/EDl_k+1(s,A)7r(ds x {k}). (2.11)

E

For any [ > 1 define kernels ®P and ®F as
®P(s4) = 3 [ Duls ) (G (s
k=1

2(s4) = 3 [ G A (@) s,
k=1 Y E
Note that m(- x {0}) satisfies the equation
74 (0)) = [ S (s Ayn(ds x (o))
B

since ®§ = G<.
The following assertion is a generalization of a result of Ramaswami [49].

Proposition 2.20 For any | > 1 the stationary distribution 7 satisfies the relation

(A x {l}) = /E<I>ZC(3,A) m(ds x {0}) + Z/E@Brl_k(s,/l)w(ds x {k}) (2.12)

forany 1l >0, A € &, or recursively,

T(Ax {l+1}) = /EKO(S,A) r(ds x {0}) + Z/;{,@,A) (ds x {k}), (2.13)
where kernels K, k > 0, given as

Koo d) = 3 [ (@P)"(/,4) 88 (5,0

Ki(s,A) = Z/E@?)m(s’,A) D, (s,ds'), k>1.
m=0

Conversely, if a distribution ©' satisfies the equation (2.12), then it is the stationary
distribution.

Proof. For a fixed & > 1, consider the Markov renewal process at the
epochs of visits to the set E x {0,---,k}. The Markov chain (MT(Lk),WT(Lk))nZO =
(Mo, (=00, Won(—oo,k]>n20 is positive Harris recurrent. Moreover, the transition ker-

nel P*) of (M,Sk), W,gk))nzo is given by the matrix form
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Co(s,A) Cy(s,4) -+ Ciri(s,A) (s, A)

Do(s, A) Di(s, A) Dy _i(s,A) ®P(s, A)

P(k) . 0 Do(S,A) . Dk_g(S,A) q)kD_l(S,A)
N 0 0 - Dy_s(s,4) ®P (s, A)

0 0 Do(s,A)  ®P(s, A)

Thus we obtain

T {k)) = [ 8L, A) O (0)+Y [ R s A)rOdsx (1)), k20,

from which (2.12) follows.
On the other hand, by Proposition 2.15, we have

k
T(Ax{k+1}) =c- Z / H oo pm (s, Ak +1—m)7®)(ds x {m}), A€E&,
m=0"E

where ¢, = m(E x {0,1,2,---,k}). However, H(_ (s, A;m + 1) is the expectation
that, starting in (s, 0), the process visits A x {m + 1} avoiding levels 0, 1, -+, n. Since
®P (s, A) = G<(s, A), we obtain the relations

H (s, Aik+1) = Y /E (D)™ (s, A) @, (s,ds’)  and
m=0
H(—oo,k—l}(sv AJ E+1-— l) = Z / (q)ll:))m(8/7 A) (ﬁkD+27l<S7 dSI> for 1 < k—1.
m=0 E

Letting Ko(s,A) = H_x(s, A;k + 1) and K;(s,A) = H_opy(s, Ak +1 = 1),
(2.13) follows.

The converse is stated in Miyazawa [38] for the case of countable driving chain. The
general case can be proved in the same manner. QED

Remark 2.21 Ramaswami [49] showed that, if (M, ),>0 is a finite Markov chain,
the stationary distribution m of (M, W,,),>0 is given by the recursive formula

-1
m = <7r0<1>lc + Zwkfﬁﬂl_k) (I—-®P)' 1>1, (2.14)

k=1

where 7,1 > 0, are measures on E defined as

m({i}) =7({(i,1)}), i€k,
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If the state space has only one element, then the stochastic matrix G[<_ 1

the scalar 1, and (2.14) yields

reduces to

-1
m = (Wocz + ZWkDH-l—k) (1-Dy)7 ', 1>1

k=1
for M/GI/1 queue.

Remark 2.22 For fixed s € F and A € &, G[gl](s,A) can be interpreted as the
probability that starting in (s, 1), the MRW (M, S,)n>0 makes the first passage into
level 0 and the state in A.

For [ > 1 let G be the probability that starting in (s,[), the MRW (M, S,)n>0
makes the first passage into level 0 and the state in A at step n. Define the correspond-
ing transform Gl ag

Gll(s, A) = Za seE,Acé.

Then it can be easily shown that for any [ > 1

- o - a,—l ¢
Glodl — (GE1)

2.3.4 A duality

A MRW (M],S!),>o with transition kernel Q' is called the dual of (M,,Sy)n>0

with transition kernel Q, if Q({k}) and Q'({—k}) are adjoint w.r.t. £ for each k € Z.
Consider two MRW’s (M,,, Sy,)n>0 and (M), S!)n>0 governed by

P[Myy1€ A Spr=1—k+1M,=s,5,=1] = Ax(s, A)
and

P [M’ L EAS, L =1l+k—-1|M,=5s,S, = l] = Dy(s, A),
where Ay, Dy, k € Z, are kernels on E x £ with A, = D, =0 for k£ < —1. It is clear
that (M, Sn)n>0 and (M), S ),>o are in duality if, and only if, for each k > 0, Ay and

n? n

D, are mutually adjoint w.r.t. .

Now we get a generalization of the duality theorem, which is obtained by Asmussen
and Ramaswami [13] for the case of finite modulation.

Proposition 2.23 If for each k > 0 the kernels Ay and Dy, are mutually adjoint
with respect to &, then for each | > 1 the kernels H[Sa’l] and (G%&;;])l are mutually
adjoint with respect to &, where

IQI[SQ’Z](S,A) = Za (M, € A,S,=1,5,>0,k<mn), [>1,;

GE‘;&;;](S,A) _ ZO‘ (M) € A, S =—1,5, >0,k <n).
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Proof. Noting that for any n > 0

(M, Skoskzn ~ (My_i, Sk = S )ozkn,
as in Proposition 2.14 one can show that the kernels ﬂ[g A and G[g(’;” are mutually
adjoint with respect to £&. Therefore, the assertion follows from Proposition 2.16. QED

If the state space F is finite, then Proposition 2.23 can be written as a matrix form

~

R T
Ao = A (GE‘"”) A,

where A¢ denotes the diagonal matrix of stationary distribution &.
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Chapter 3

Moment conditions

The first weak descending ladder epoch is a basic quantity in the analysis of MRW’s,
but also plays an important role in the study of semi-Markov queues. The first weak
descending ladder epoch of a MRW is interpreted as the index of customers served in
the first busy period of the corresponding semi-Markov queue. This chapter investi-
gates moments of the first weak descending ladder epochs of MRW’s and regeneration
epochs of reflected MRW’s. Throughout the driving chain M is assumed to be positive
Harris recurrent with a stationary distribution & and to satisfy the minorization con-
dition M(R,p,r,»). We denote by (7,)n>0 a sequence of regeneration epochs for M
constructed by the splitting technique from the minorization condition. Throughout
this chapter (M,,, X, )n>0 denotes a Markov modulated sequence with transition kernel
P, (M,, Sn)n>0 the associated MRW and (M,,, W,,),>0 the associated reflected MRW.
We assume that —oo < p = EX; < 0. Further, we denote by o,,n > 0, the weak
descending ladder epochs defined in 2.1.3, i.e.,

op=inf{n >1:5, <0} and o, =inf{k >0,:5.<S,,}, n>1

Let throughout a canonical model be given with probability measures P ,,s €
E,z € R on (2,S) such that P, (M,, =s, X, =1x) = 1.

3.1 Moments of the first weak descending ladder
epoch

In this section we find moment conditions for the first weak descending ladder
epoch of a MRW (M,,, S;,)n>0. The main idea is simple. We first show that under some
adequate conditions the associated reflected MRW (M,,, W,,),>¢ possesses a recurrent
set of the form R x [0, x] for some zy > 0. Once (M, W, )n>o visits & x [0, x|, by
the SLLN for MRW’s (see Proposition 2.2) (W},),>0 is reduced to 0 in some steps with
positive probability. This procedure is repeated infinitely often, in order to obtain

45
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a random time v, say, which is stochastically greater than the first weak descending
ladder epoch of (M, Sy,)n>0. Finally we try to find moment conditions for the random
time v. It turns out that moments of v is connected with the regeneration structure of
the sequence (M,,, X;.+1)n>0. A similar method can be found in Sharma [55].

The following lemma is due to Alsmeyer and plays a central role in this chapter.

Lemma 3.1 There exists ¢ > 0 such that for any € > 0 there are measurable
Ce, D. C R satisfying

q = P,(M;_,M,;)eCcxD,)>0;

¢ = inf P[Xy. - X)e€ L) M=s M =s]>0,
(s,8")ECe X D¢

where we put

c=(c1,,¢) €ER" and I(c)=[c1 —€,c1+¢€ X - X[c, —€,¢ + €.

Proof. See Lemma 3.1 in Alsmeyer [2]. QED

From Lemma 3.1 one can develop another regeneration scheme for M. Let (7),)n>0
be a sequence of i.i.d. Bernoulli variables with success probability ¢’, which is also
independent of (M,, 7,,)n>0. Each time 7; when (M, ., M) € Cc X D, we generate
(Xr,—r41, -+, X4,) according to

]P [(XT-—T-i—la Tt 7X7'j) € Ie(c)m'|MTj—ra MT]]/IP [(er—r—‘rh e 7X7'j) S ]6(c)|(MTj—7"7 MTj]

J

if n; = 1, and according to

P [(XT'—T-I-lJ T 7X7'j) S |M’Fj—7’7 MT]']

J

otherwise. Next discard the old values of M, . 1,---, M, _; and regenerate according
to
IP[(MT]-—T—Q—M Ty M’T]‘—l) S |M7']-—ra MTja X’rj—’/‘—l-lu U 7X'rj]'

At all remaining time points n we regenerate X,, according to P[X,, € - |M,_1, M,].
It is easily verified that the new chain (M,, X, ),>o is indeed a Markov chain with
transition kernel P. Let

70=0 and 7, :=inf{r;>7,  +7r: (M, M;,m;) € Ccx D x{1}}, n>1
Then (7] )n>0 is a sequence of regeneration epochs for M with
C() = Pa(My € ) = (- 0 De) /[ p(De).

From the construction of the regeneration epochs one can show that

(i)cj—e< Xy pyj<cjt+eforeachl <j<randn>1.



3.1. MOMENTS OF THE FIRST WEAK DESCENDING LADDER EPOCH 47

(i) (M 45, Xrr4j41)550 and (M;, X;)o<j<r —r are independent for any n > 1 (see
Lemma 3.2 in Alsmeyer [2]).

As direct consequences of (i) and (ii) we have: For any m > 1

/

7—m,+1 T{
B Y XMy =]~ B [3OX, || <re
n=1/,+1 n=1

and for any v > 0 such that E; exp (7 Z:f;{ Xn> < 00

’ ! _
m T1—T

exp(—yre) < IE; exp (’y Xn> Hexp('ycj)IEC exp <’y Z Xn> < exp(yre).
n=1 j=1 n=1

In particular, if for some v > 0

!
T

E exp (72&) <1,

n=1
then one can choose € > 0 so that

7'1 —r

Hexp vei) B¢ exp< ZX )

7j=1

Let v be the random variable defined as

= inf{n: (M, _., M,

n

1) € Ce x D x {1}}.
Then it can be easily seen that

IP<,0 (l/ > k) < (1 - qq/)ka k 2 17

from which
1
]PC (l/ > k) = m/elps(y > k) (,O(dS)
1
= oy
1 Nk
< w(De)(l—qq) :

In particular, for any o > 1 and for some v > 0

E;v* <oo and IE; exp(yr) < oo.
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Note that for any o > 1

Ee ()" < Ty (Zm - >) .

n=1

Since for each n > 1 and any s € R
E[(7 = 701)* Mz, = s] = B, 77"
and by the construction of ¢
E, i <oo = E 7 <o,
by Lemma 1.15 (i)

E, ' <oo = E(r)" < oc;

(0%
!
1

IESD(iX:) <oo = E (Y XF| <oo
n=1 n=1

In the same manner, by Lemma 1.15 (ii), for some 7 > 0

E, exp(yr1) < oo = IE¢ exp(y/7]) < oo for some ~ > 0;

et T
E, exp (72)(;) <oo = [E;exp (7’2)(3) < oo for some ' > 0.

n=1 n=1

In the sequel we assume that | X, _,.;| < ¢ for some ¢ > 0 and any n > 1,
j=1,-r.

Lemma 3.2 Let a > 1. If
T1 «
E, [ Y XF| <o,
n=1
then there exist a nonnegative real number xo and m > 1 such that

e BRCRR e iy

for some constants a,b and d, where the random time 7(xo) is defined as

T(xg) = inf{n > 0: W,

mn—T

<z}
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Proof. Note first that (M, ., W, _,)n>1 forms a temporally homogeneous

Markov chain. Consider the test function V' : R x [0,00) — [0,00) defined as
V(s,w) = w. Then for any (s,w) € R x [0, 00)

- W

Tm(n—1)"T

< E, (rc—l—Ti:rX*)

< 09,

>a | MTm(n—l)_T

=s,W.

Tm(n—1)"T = w]

A(s,w) := IE[(W

Tmn—T

because for any s € ® and k£ > 1

[( ki X+> ’MTk T—s] <E, <2rc+ZX+> < .

n=71r—r+1

On the other hand, by Proposition 2.2 there exists m > 1 such that

E, <Z Xn> < —2rc — 2¢
n=1

for some € > 0. For fixed x > 0 let 7,,(x),n > 0, be random times defined as

To(x) := sup{k: i X, <x}, n>1.

I=Tmm-1)+1
Then for each n > 1
Tn(T) A Tmn Tmn
E, > X TR, X as 2l
k:Tm(nfl)""l k:Tm(n,1)+1

and thus there exists a real number z;, > 0 such that for any n > 1

Tn xo NTmn

Tmn
+ - :
E, g X, — g X, < —2rc—e;
k:Tm(nfl)J'_l k= Tm(n 1)+1
Tmn
1D X} ‘
v > N Y

k=7n(x()) ATmn+1

In turn, for any s € ® and w > g 1= 2rc +

EA(S’ w) = ]E |:W7—"Lm_r - WTm('nfl)_T{MTm(nfl) =5 WTm(nfl)_r = w:|
T”(zé))/\Tmn Tmn—T €
<SE| Y Xt Y XM= +2rc+

k=Tm(n-1)+1 k=7n(2{)ANTmn+1
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T1(T() AT Tm

€
< E, Xp+ Y, Xf +2re+ 5
k=1 k=71 (x()) AT +1
< —27’6—6-1—27’6—1—% < 0.
Thus the assertion follows from Proposition 1.4 (i). QED

Theorem 3.3 Let oo > 1. Suppose that

E, ' <oo and ]E@<ZX;> < 0.

n=1
If for an initial distribution A on E
T1 «a
Eym <oo and E, (ZX;[) < 00,
n=1

then IEy) o < co. Moreover, if

supEs 7 < oo and  supE, (X;)* < oo,
sck sek

then sup,cp IE; , 0f < 00 for any w > 0.
Proof. We keep the notations of the proof of Lemma 3.2.

Note first that for any w < xg
E[(7(20))%| M7, — = 8, Wr,,—» = w| < E[(7(20))%| M, — = 8, Wr,, - = 20| < 00.

W.lo.g. we may assume m = r = 1. By Proposition 2.2, there exist m’ > 1 and ¢ > 0
such that

P, (ZXk < —x0 — 20) > q.

k=1

Thus for any (s, w) € R x [0, o]

P [Wk =0 for some k, 7, < k < T — 1)MTn_1 =s, W, 1= w]

Tn+m/71
>P Z Xn<—z9—cC|M, _1=5
k=7n+1
Tm/
> P, (Z X, < —x9— 2c>
k=1
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Let n,,n > 1, be random times defined as
no=0 and 7, =inf{k>n,14+m :W,_1 <0}, n>1
Let further v be a random time defined as
v :=inf{n : W), = 0 for some 7,,, <k < 7 1 — 1}.
Then by the definition of v
Plv>n)<(1—-¢)", n>1.
Moreover, for any w < x

Nv +m/

B (05| My, 1 = 5, We, = 0] <B[(( Y (ra— Tn_1)>a‘Mﬁ_1 =5, Wy = m].

Note that for any n > 1,

E[(1hn41 = 12)%|Gn] < sup B[(7(z0) +m)*| M, 1 = 5, Wy, 1 = 9] < 00,

sef
where G, is the o-algebra generated by {(M,,_1, W, _1)|k < n,}. Since further

SupIE [VQ|M71—1 =S, Wn—l = l‘() Z n + 1 1 — q)n < 00,
seR —

by Lemma 1.14 (i) we have

v

]E[(nV + m/)a|g1] S SUg]E[(Z(T]n - 77n—1) + m/) |M71—1 =S, W7'1—1 = o
5€ n=1
< L1 <o
for some constant {;. Note that for any n > 2 and (s,w) € R x [0, 00)

E[(7) = 7ae1)| M, 1 =5, Wp 1 =w] = E, 7"

Thus for any initial distribution A on E

nv+m ny+m/ o
]E)\ Z (Tn - Tnfl) < SuglE < Z (Tn - Tnfl)) M‘rlfl =S, Wﬁfl =Ty
n=7(zo) s€ n=2
< (E,m) sugE[(ny +m) ‘Mﬁ 1=8W, 1= 0]
se
< d l IESO 7_101 < 0
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for some constant ¢. Now let w > xy. Then, from Lemma 3.2 and Lemma 1.14 (i),

Bl
—~

z0)

E

™

(T — Tn_l))a

MTl—l = S7W7'1—1 =w

[\

n=

<

" (B, 1) B[ (F(20)) | M1 = 5, Wi, 1 = w]
" (E, 1) (a + bw)®

VANVAN

for some constant ¢”. In turn,

«

7(z0)
IE)\ Z (Tn - Tn—l)
n=2
> sy a M, 1, W
= / / E ( Z(Tn — Tn_1)> M, 1=sW,1=w IPE\ W) (ds, dw)
®JO n=2
< NH{E, '} / (a+bw+d)" Py(Wy_1 € dw)
0
T1 @
< B, 0} E, <a +b Y X+ d)
n=1
< Q.
The first assertion follows from the inequality
7(x0) nu+m’ “
Exof < By (m+ Y (Fo—To))+ Y (Tn—Tu1)
n=2 n=7(xo)

For the second assertion it suffices to note that for any w > 0

[0}

(o) T a
sup E; ., Z (T — Tn—1) < {E, '} SsupEg | a+bw+b ZX: +d ;
scE 2 selR n=1

77u+m, @
sup [Es 4 Z (Th — Tu_1) < dLE,.
s€b n=7(xg)

QED
From the proof of Theorem 3.3, one should notice that if

T1 @
supE; 7 < oo and sup E; Z X < oo,
seR seR n—1
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then sup .y [E; , 0f < oo for any w > 0. Moreover, if for a measurable subset A of E
with R C A

T1 @
supE; 7" < oo and suplE; (Z X,T) < 00,
n=1

s€A s€A
then sup,c 4 E;,, off < oo for any w > 0.

Remark 3.4 Suppose that the condition of Lemma 3.2 holds true. Then, from
Lemma 3.2, it is clear that for any (s,w) € R x [0, c0)

P[(Mp, Wy)ns0 € R x [0,20] i.0.|M,, —=sW, . =w]=1.
Thus for any (s,w) € E x [0, 00)
P (M, Wn)n>0 € R % [0,20] 1.0.)
[ PIOR W R D] Mo W 0P
Tin <00

=P (T < 00)
— 17

which means that R x [0, z¢] is a recurrent set of (M, W,,)n>0-
As a consequence of Theorem 3.3 we obtain moment conditions for |S,, |

Corollary 3.5 (i) Let o > 1. Suppose that
Ee X{ <oco and E¢(X])* < oo

If for an initial distribution A on E
T1 T1
IE, (ZXJ) <oo and T, (Z(Xn)“> < 00,
n=1
then IEy | Sy, |* < 0o. Moreover, if

sup IE (Z X:) < oo and suplEg (Z(X;)“) < 00,
n=1

seE

| < o0

then sup,p E |S,
(i1) Let v > 0. Suppose that
Ee X{ <o and E¢exp(7X,,) < .
If for an initial distribution \ on E

T1 T1
E, (Z X:[) <oo and IE) (Z exp(vXn_)) < 00,

n=1 n=1
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then IEy exp(v]S,,|) < 0o. Moreover, if

T1
sup IE; (ZX+> < oo and suplE; (Zexp(yX,Z)) < 00,

s€E n=1 s€k n=1
then sup,p E; exp(7]S,,]) < oo.
Proof. (i) We keep the notations in the proof of Theorem 3.3.
Note first that

T1
E: X; <00 = E, <ZX+)<OO and TE (X)) < oo = B, (Z(Xn)a><oo.

n=1

Note further that for any n > 1

Tn4+1—1
E [ > (X)) My =

k=7p,

<2c* + E, (i(Xk)a> =: [

k=1
Thus, for any initial distribution A on F,

77V+m/ Tn—1

Ex{ > Y (X))

n=7(zo) k=Tn—1

m+m' -1

Y Y

T(z0) k=Tn—1

My 1 =s,W_ 1=

Tn+1 1
<caEn+m|M,_1=sW, 1=u1x supE [ Z (X)) M1 = s]
sef

k=1,

< iyl
where ¢ is a constant, and from the proof of Theorem 3.3

7(z0)

2 2™

n=2 k=1,_1

[ [EY S oy

n2k7’n1

o1 =8,Wyo_1=w ]PE\M””’W”*I) (ds, dw)

< U'd {IESO 7'1} / (a +bw + Cl) P, (W‘rl—l € dw)
0

<Id{E,} {]E,\ <a+b in[) +d}.
n=1
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Hence the first assertion follows from

o1

Ex[S,,[* < Ey [ Y (X,)°
n=1
T T(xo) Ny +m Tn
< BV D (X)) HE DD D (X)) +E D> D> (X))
n=1 n=2 k=7p_1 n=7(xo) k=Tn—1
< E, Z(Xn—)a + U {E,n} {]E,\ (a +b ZX;) + d} + il
n=1 n=1
The second assertion is obvious.
(ii) Noting that
01
exp(7]Sa, ) < D exp(vX,,),
n=1
one gets all assertions, in the same manner. QED

From the proof of Corollary 3.5 it is clear that

Ee X" <oco and E(X])*<oo = E,|S,|* < o;
Ee X" <oco and E¢exp(vX,) <o = E, exp(7|S,,]) < .

If M is uniformly Harris ergodic, then we get the following assertions, which are
obtained in Fuh and Lai [28].

Corollary 3.6 Let a > 1 and suppose that M is uniformly Harris ergodic.
(i) If sup,ep [Es (X55)™ < 00, then sup,.p E; of < oo.
(i1) If supyep IEs Xi7 < 00 and sup,cp Es (X7 )® < 0o, then sup,cp E; |Sy, |* < 00.

Proof.  If M is uniformly Harris ergodic, then by Proposition 1.15 (iii)
sup,cp IEs 71 < oo for any a > 1, whence

T a
suplEs (X;)* < oo = suplE, (ZX:) < 00.

sek sekE n—1

Thus (i) follows directly from Theorem 3.3. For (ii) it suffices to note that

o1
E; | Sy, |* < IE (Z(Xn)a) <c {sup Ey (Xl)a} {sup Ey 01} , sek,

1 s'ekE s'eE

where ¢; is a suitable constant. QED
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In particular, if E is a one-element set, then we have:

E(X{)* <o forsome a>1 = Eof <oo;
EX<oco and E(X;)*<oo forsome a>1 = E|S,|* < oo,

which are classical results in Gut [30].

As another consequence of Theorem 3.3 we get conditions for the uniform conver-
gence of of', in the sense that

sup E (0 1(07 > 2)) - 0 as z — o0
s€A

for some A € £. Remember that for any nonnegative real-valued random variable Z
and A € &

supE,(Z1(Z > 1)) =0 as z—o00 & suplE;G(Z) <oo forsome G €O,
s€A s€A
where O, is a set of real functions G : [0,00) — [0, 00) having concave derivatives g
with lim, . g(z) = oo.

Corollary 3.7 Let a« > 1 and A € £ with ® C A. If for some € > 0

- a(l+e)
sup IE, Z X <oo and supE, """ < o,
sEA i sEA

then

sup E,(071(0y > 2)) -0 as x — oo.
s€A

Proof. Since xz'™ € O, for 0 < ¢ < 1, the assertion follows from the proof of

Theorem 3.3 and
sup B, 0?(1+6) < 00
sEA

= sup E; (071(01 > ) <supE, (671(0} >2)) -0 as z — oc.
s€A s€A

QED

In particular, if M is uniformly Harris ergodic, then

supE, (X;H)*+) = supE, (0f1(01 > ) -0 as z — oo.
sER sek

Remark 3.8 Let (X,,),>0 be a sequence of nonnegative real-valued random vari-
ables adapted to a filtration (F,,),>0 and 7 an a.s. finite stopping time with respect to
(Fn)n>0. Suppose that for some o > 1

E[r°1(r > 2)|F] < e(z)— 0;
E[X:1(X, > 2)|Fa] < e(z) -0, n>1,
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as * — oo. Borovkov and Utev [20] showed that

]E[(i:Xn>a1<an>x>|}"0]<e3(a:)—>0 as T — 00.

Remark 3.9 It is known ( see Kalashnikov [32, 34]) that if for a real function
G € O, with derivative g there exist a nonnegative function V' : E — [0, 00), positive
numbers A, b and a random variable A defined on FE satisfying Proposition 1.4 (i)
through (iii) and
sup IE G(]A(s)]) < oo,

sek

then sup,cq [E; G(T7(R)) < 0. If s ¢ R, then

A

w=gt (gEG(1+ 25N,

In combination with a result of Borovkov and Utev (see Remark 3.8), one can easily
show that if for some G € O,

E, G(r(R) < G (&s + 2V(S)) ,

where

T1
supE, G (ZX;[) <oo and suplE,G(m) < oo,

seR n—1 seR

then sup, .5 IE; G'(01) < oo for some G’ € O,.

Next we find conditions for the finiteness of exponential moments of the first weak
descending ladder epoch.

Lemma 3.10 Let v > 0. If
T1
IE, exp <72X:> < 00,
n=1

then for a suitable m > 1 there exist real numbers yo > 0 and ' > 0 such that

Eexp(v'7(y0)) | My, —» = 5, Wr,, - = w]
{ { exp(y'w) : (s,w) € R X [yo, 00)

< .
exp(Y'yo) + [E, exp (fy’ > X;;)} c (s,w) € R x [0, y0]

for some ~' > 0, where the random time T(yo) is defined as

T(yo) =inf{n >0: W, . <o}
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Proof. Note that under the condition p < 0
T1 T1
]E¢exp<72X:)<oo = ]Ewexp<W'ZXn><1
n=1 n=1

for some ' > 0. For notational convenience we write 7 instead of 4/. W.l.o.g. we may
even assume that

ﬁ e’ B¢ exp (fynz_an) < 1.
j=1 n=1

and that | X, _, ;| <¢ foranyn>1,j=1,---,rand put r¢’ =c; +---+¢,.

Consider the test function V' : [0,00) — [1,00) defined as V(w) = exp(yw). Then
for any w >0

]E[(V(WTmn—'r'> - V(WTm(n_l)—T’)’MTm(n_l)—T - S? WTm(n—l)_T - w]
< e w=re) ]E[exp (277’0’ + Z X,j) - 1’Mm<n_1)—r = s]
k:Tm(n,1)+1

< WD, exp (2’)/7“6/ + 7 Z X,j) — eY(w=re)
k=1
< Q.

On the other hand, there exists m > 1 such that
IE, exp (7 Z Xn> < e CrdHl) _9c
n=1

for some € > 0, since
Tm r T —T m
IE, exp (VZX") < {H e’ 1B, exp (7 Z Xn>} —0 as m — oo.
n=1 j=1 n=1

Furthermore, there exists a positive real number yq such that for any n > 1

Tm, T1(Y0)ATm
[, exp [’V(Z xi- Y X;)} < e+ _ g
k=1 k=1

Tm—"T

]Esoexp<7 Z X;) < 1+k¢,

k=71(yo)ATm+1

where 7,,(yo),n > 1, are random variables defined in the proof of Lemma 3.2. Thus for
any w > yo + rc

E [V(WTM_T) V(W

Tm(n—1)"T

)| M s, W. =w

Tm(n—1)"" = Tm(n—1)—T
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- ]E |:eXp(7WTmn_T) - eXp(’YWTm(n_l)_T

)| M

Tm(n—1)"T

=8, W (= = w}

< ") g [eXp(’}/(W —w+rd)) — 1|Mrm(n71)—7” = S}

yO NTmn Tmn
SewIE[exp<7 Z X+ Z X++2W‘C>—1|Mm(n e ,,:3]
k= =Tm(n— 1)+1 k= Tn(yO)ATmn+1

T1(Y0) A Tm Tm,
< e’ S IE, exp (7 Z Xi 4+ Z X,j'—f—nyrc’) -1
k=1 k=71 (yo)ATm+1

< e (e_7 — 1).

Therefore, by Proposition 1.4 (ii), we get for any w > 0

i SRS

where
lyy = sup { exp’y(exp(’yw) + / (exp(fyw') — exp(fyw))
(s,w)E?RX[O,yO] E
Tm(n—1)—"T) WTm(n—l)_T) = (87 w)])}

e”{ exp(yw) + /0 ) (exp(yw') — exp(yyo)) Pyp(Wr,, - € dw’)}

PW,,..

_ € dw'|(M.

IN

IN

{exp(7y0 )+ Egexp ( ZX+ }
QED
Theorem 3.11 Let v > 0. Suppose that
T1
E, exp(ym1) < oo and E, exp <72Xn+> < o0
If for an initial distribution \ on E
T1
[E) exp(ym) < oo and IEyexp <VZX:[> < 00,
then IEy exp(y'01) < 0o for some v > 0. Moreover, if

sup [E;exp(y71) < oo and sup [E,exp(vX{) < oo,
sel sek

then then for any w > 0 there exists v' > 0 such that sup,cp Es ,, exp(y/o1) < o0.
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Proof. By Lemma 3.10 there exist positive real numbers yg and v; > 0 such that

Elexp(717(y0))|Mr,,—» = 8, Wr, . = w] < Ly, exp(nw),

where [, is given in Lemma 3.10. W.l.o.g. we may assume m = r = 1. Note that
there exist m’ > 1 and ¢ > 0 such that

]PSO( iﬂ Xn<—y0—2c> > q
k=Tn+1
for any n > 1. Let n,,n > 0, be random variables defined as
no=0 and 7, =inf{k>n,_14+m :W,_1 <y}, n>1,
and v be a random variable defined as
v :=inf{n : Wy, =0 for some 7,,, <k <7, 4 — 1}

Then for any n > 1
Plv>n)<(1—-¢)", n>1.

Since

SuglE[eXP(’Yl(%(yo) +m'))| M1 =5, Wy 1 = yo] < 00,
se

there exists 72,0 < 75 < 71, such that for any w < ygand n > 1

E[exp (V2(Mns1 — 70))1Gn] < SuglE[eXp (V2(F(yo) +2m)) | My, -1 = 8, Wr,_1 = yo|
se

2
< min( ,eXp%),
2—q

where G, is the o-algebra generated by {(M,, 1, W, _1)|k < n,}. Choose 73 > 0 such
that

IE, exp(2y371) < €xp 7a.
Then,

nu+m/
E[exp(%m)l%] < I |exp (E Z (T”_T"_l))‘gll

n=2
, v

m-+m
<sup]E[exp (73 Z (Tn — Tn_l)) ‘Mﬁ_l =5, W, 1= y0]> ‘Ql

seR

IN
&

n=2

E _(SslelgE[eXp(%(%(yo) +2m)) [ My = 8, Wy = yODV ‘gl]

2 v
sup [E [(—)
seR 2 — q

IN

IN

MTl—l =3, WTI—l = y0:| .
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Note that for any s € R

el(;2,)

Thus for any (s,w) € R x [0, 00)

> 2 n+1
M, 1=sW, 1= yO] §Z<—) (1—¢q)" =1 < .

7]u+m/ T
3
E lexp (5 g (Tn — Tn,1)> ’Mfl,l =s, W, 1=w
[ ’Y 7(¥o) nu+m/
3
<E |exp <5 ( Z(Tn — Tpno1) + Z (Tn — Tn,1)> M, 1=sW, 1=w
i n=2 n=7(yo)
[ #(yo) 1
<E exXp <73 Z(Tn - 7_n—l> ‘Mn—l =S, WT1—1 =w
n=2
77V+ml
E exXp <’73 (Tn - 7-n—1> ‘Mn—l =S, W’T1—1 = ZL'()]
n=2
<U'IE [exp(v27 (Yo)) [ My, -1 = 8, Wy 1 = w]

(
<l exp(nw)
and in turn,

77u+m/

E) exp (% Z (T — T 1))

"71/"!‘
//]E [exp (Tn — Tn_l)) ‘Mn_l =s, W, 1=w ]Pg\MTl*l’W”*l)(ds,dw)

< /l’lyo exp(yiw) Py (W, 1 € dw)

T1
< I, By exp (71 3 X;).

n=1
Letting ' := ~3/4,
n+m’
Ey exp(y'o1) < IEy exp (’}//7'1 + 7 Z (7, — Tn,1)>
n=2 .
< {IEA exp(%n)} {IE,\ exp (% z; (Tn — Tn_1)>}

< {]E)\ exp(’yTl)} l/lyo {E)\ exp (inX:)}
n=1

< 00,
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which proves the first assertion. The second assertion is obvious, since for any s € £

E, exp(7y/'o;) < { sup IEy exp(vﬁ)} U'ly, {Sup Ey exp (7 Z X,f) }
S'€E n=1

s'er
< Q.

QED
From the proof of Theorem 3.11, it is clear that if for some v > 0

T1
sup Egexp(ym) < oo and  sup [E,exp <'y Z X;) < o0,
seER seR n=1

then for any w > 0 there exists 7' > 0 such that sup,.y IE; ., exp(7'o1) < co. Moreover,
if for a measurable subset A of F with 8t C A

T1
sup [E;exp(y1) < oo and  sup Egexp (7 Z X:[) < 00,
SEA sEA n=1

then for any w > 0 there exists 7' > 0 such that sup,c 4 Es,, exp(7/o1) < o0.

If M is uniformly ergodic, then by Proposition 1.16 (iii) sup,cp [Es exp(y/'m) < o0
for some 7/ > 0, and so by Lemma 1.15 (ii)

sup [E; exp(7X;) < oo for some >0
sek

T1
= sup [E; exp <7’ZX;> < oo forsome 4 >0.
sek 1

Thus, from Theorem 3.11, we get:
Corollary 3.12 Let v > 0. Suppose that M is uniformly ergodic.
If supyep [Es exp(7X;") < 0o, then supyep [E; exp(7/oy) < oo for some o' < 0.

In particular, if E is a one-element set, then we have:

E exp(7X;") < oo forsome v >0 = IEexp(y/o;) <oo forsome 5 > 0.

3.2 Rates of convergence

In this section we find rates of convergence of reflected MRW’s. Throughout this
section we assume that M is Harris ergodic. A unique stationary distribution of a
reflected MRW (M,,, W,,),>0 is denoted by m. From Proposition 1.20 it is clear that

for any initial distribution A on £

lim |Py (M, W,) €-)—ml| =0.
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Theorem 3.13 Suppose that R x {0} is a recurrent set of (M, W,)n>0-
(i) Let a > 1. Suppose that

T o
sup Es 77 < 0o and supIE; <ZX§) < 0.

seR seR n—1

If for an initial distribution A on E
T1 «a
Eym' <oo and IE, ZX: < 00,
n=1
then there exists a sequence of regeneration epochs (Tn)n>0 Of (My, Wi)n>o such that

E: 7 < 00 and Ey 7 < 0o, where ((-) = Py (Mz, € ) for each initial distribution N
on E. Moreover, for some constant c

Py (M, W,,) € -) —7|| < en'™@.

(ii) Let v > 0. Suppose that

T1
sup [E; exp(y7m) < oo and supE, exp (fy E X:)
seR seR n—1

Then there exists a sequence of regeneration epochs (T,)n>0 such that . exp(y'71) < oo
for some v > 0. Moreover, for some constants ¢ and ~" € (0,/]

1P (M, Wy) € ) = 7| < coxp(—"n),

Proof. (i) By Lemma 3.2 there exist m > 1 and xy > 0 such that for any w < zq
E[(7(20)*| Mz, = 8, W, - = w] < E[(7(20))*| M7, —r = 5, W, = 2] < 00,

W.lo.g. we may assume m = r = 1. By assumption there exist 7/ > 1, p’ > 0, a
regeneration set $y C R of M and a distribution ¢ on Ry such that

Py (Myr, W) € ) > p'(¢ @ 60) (")

for any s € Ry. We show that there exists a regeneration epoch 7y for (M,, W,)n>0

such that E, 7{* < oo and IE) 7{* < oo, from which the assertion follows (see Corollary
1.20).

By ergodicity of (M, Wy,)n>0
lim ]P(p®5

(M, W) € R x {0}) = (R x {0}) > 0,

zo+tc
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whence there exists ng > 1 such that
q = Pogs,g . (Mg, Way) € Ro x {0}) > 0.
In turn, for any (s,w) € R x [0,20] and n > 1
P[(M., 100 W 4ng) € Ro X {0} M, 1 = s, W, 1 = w]

> P[(M-, n0s Waino) € Ro X {0} Mo, -1 = 8, Wr, 1 = 0]

> ]P<P®5zo+c((Mn07 Wno) € §RO X {0})
Let n,,n > 1, be random times defined as

no=0 and n, =inf{k >n,_1 : W1 <zo, s > 7, , + 10}, n>1
Let further v be a random time defined as
vi=inf {n: (M, tne, Wr,, +ne) € Ro x {0}}.
Then for any n > 1
P(v>n)<(1-¢q)"

and thus for any w < g

Mv +ng

B [(r(Ro x {01) My, 1 = 5,We, g = w] SB[ Y (ra—71))

Mn—l =S, Wn—l =Zo|,

where 7(Ry x {0}) is the return time of (M,, W,,),>o to Ry x {0}. As in the proof of
Theorem 3.3, one can show, on the one hand, that

E[(UV + no)a|M7'1*1 =5, Wr1 = xo] < o9,

from which N

77V+TL0

sup IE, Tn — Tn— < 00,
seR %0)( 1)

on the other hand, that for any (s,w) € R x [0, 00)

7(z0)

E ( Z (o — Tn_l))a

n=2

My_1=8,W,1=w| <(a+bw)*E,,

where ¢’, a and b are suitable constants and thus for any s € R

7’2

—

z0) N
E, (T — Tn_1)> < H{E, '} /c”(a + bw)* Py (W,, 1 € dw)

n—

[\

< {E, "} {sup]Es <a—|—bZX:) }
sef n—1

< 0Q.
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Thus as in the proof of Theorem 3.3

7(x0) Nu+no

sup E, (7(Ro x {0}))* < supE, | 1 + Z(Tn — Tao1) + Z (T — Tn_1)

seER seER ~
n=7(xo)

< 0.

Letting 71 be the first regeneration epoch of (M,,, W,,),>o constructed by the splitting
technique from ¥y x {0}, by Proposition 1.16 (i)

sup [E; 71" < 00
seR

and, in particular, IE; 7{* < oo with ¢ := ¢. Note that ((-) = Py (M7 € -) for each
initial distribution A’ on E. Furthermore,

B, (r(R x {0})* < oo,

since

«

IE, (T — Tne1) | < H{E, 1} Ey (a + bZX:) < 00.

n=1

Noting that

EA(F = 7(Ro x {01)" < sup B [7| Mrmoxion) = 5]
sE€Io
< supE, 7}
sef
< o9,

we have

Bx 7 < By (r(R0 x {0}) + (71 = (% x {0}))) < oc,
The second assertion follows from Proposition 1.21 (i) and (iii), since

[PA((Mp, W) € ) =7|| < PA((My, W) € -)=Pc(M, Wa) € )[[+[[Pe (M, Wn) € -)=].

Applying Proposition 1.21 (ii), (ii) can be proved in the same manner.

QED

In particular, it is clear that

T1 «
suplE; 71" < oo and suplE; <ZXH+) < oo forsome ao>1

seR seR n—1

= P, (M, W,)) € -) — 7| < en' ™.
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If M is uniformly ergodic, then E is a regeneration set of M. In this case we have:
Corollary 3.14 Suppose that M is uniformly ergodic.

(1) Let « > 1. Ifsup,p E (Xf’)a < 00, then there exists a sequence of regeneration
epochs (Tn)n>0 such that IEy 7 < 0o for any initial distribution A\ on E. Moreover, for
any tatial distribution A on E there exists a constant ¢ such that

P (M, W) € ) — | < ent™@.

(i1) Let v > 0. If sup,ep E; exp ('yXfr) < o0, then there exists a sequence of
regeneration epochs (7,,)n>0 such that I exp(y'71) < oo for some v > 0, where ((-) =
Py (M;, € ). Moreover, for some constants ¢ and 7" € (0,']

[Pe (M, Wn) € ) = 7| < cexp(=y"n).

Proof.  Note first that E x {0} is a recurrent set of (M,, W,),>0. Since
sup,ep By (X77)" < oo implies

Ty @
suplE, ) < 0o and suplE, Z XF] <oo
sek sER n—1

(i) follows from Theorem 3.13 (i). (ii) can be proved in the same manner. QED

In particular, if £ is a one-element set, then (0,,),>0 forms a sequence of regeneration
epochs for (W,,),>0, and
E (X;)" <oo for some a > 1
= |P(W, €-)—n|| <en'™™ for some constant ¢;
E exp (vX{) < oo for some 7 >0
= [P (W, € ) —n| < exp(—y'n) for some constants ¢ and ' > 0.

It should be noticed that in the proof of Theorem 3.13 the moments of 7; depend
only on the moments of 7; and 7. Suppose that (M, W,,),>o satisfies the minorization
condition M(R,p’,r’', o ® &y). Let n/;,n > 1, be random times defined as

=0, n,=inf{k>n_+ng+r" W, 1 <ao, % >7p +no+r}, n>1

Note that for any (s,w) € R x [0, x]

P |:<MT77[@+”0+T,’ Tol, +TLO+T'>
> [P (Ot W€ P |
R

ewMﬂﬂzawgﬂzw]
Mn In

/
MT/+710 ed87[[7'/+’n0:O’MT/*1:S7[[T/71:xO
n, n n In

> 9 (6.® 60)() / Poss.. .. (M, € ds', W,y = 0)
Did

> p'q (¢ ® o) ().
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Furthermore, as in the proof of Theorem 3.3, one can easily show that for any n > 1
(0%

T1 «a
E, " <oo and [E, (ZX;{) <oo = I, <T%—Tn;_1) =, 7 < o0,
n=1

Therefore, by the splitting technique, one can construct a sequence of regeneration
epochs (7, )n>0 for (M, W,,)n>0 such that

T1 a
E, 7" < oo and ]E@<ZX”+> <o = E, 7 < .
n=1

If in addition for an initial distribution A on E

1 «a
Ey <oo and I, (ZX;[) < 00,
n=1
then IE) 7{* < co. In the same manner, one can show that

T1
IE, exp(yr1) < oo and IE, exp <VZX;“> < oo forsome v>0

n=1

= E, exp(y'71) < oo for some 5 > 0.

If in addition for an initial distribution A\ on F

[E, exp(y71) < oo and I, exp <72Xﬁ[> < oo for some 7 >0,
n=1

then [Ey exp(y'71) < oo for some 7' > 0.

Corollary 3.15 Suppose that there exist u > 0 and q¢ > 0 such that

P, (M €-,X; <—u)>qp(-), seR

(i) Let a > 1. Suppose that

E, ' <oo and ]ESD(ZX,T) < 0.

n=1
If for an initial distribution A\ on E
T o
E\m'<oo and IEy (ZX:) < 00,
n=1

then for some constant c

[P (M, W) € +) — || < en'™
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(ii) Let v > 0. Suppose that
E, exp(yr1) < oo and IE, exp (’yZX;[)
n=1

Then for some constants ¢ and v > 0

[Py (M, W) € ) = 7|l < cexp(=7'n).

Proof. (i) By Remark 3.4 R x [0,z¢] is a recurrent set of (M, W, )n>o for some

xg > 0. Put
%
" [u] '
Then for any (s, w) € R x [0, x]
P, (My € R, W, =0) > Py, (My € R, Wy =0)>q".

By the geometric trial argument one can easily see that R x {0} is also a recurrent set
of (M,, W,)n>o and thus a regeneration set, since by assumption

P, (M €, W, =0)>qp(), seR

Thus (M,,, W,,)n>o satisfies the minorization condition M(Rx{0}, ¢, 1, p®dy) and there
exists a sequence of regeneration epochs (7,),>0 such that E, 7{* < oo. Furthermore,
under the conditions we have IE, 7{* < oo, from which the assertion follows.

(ii) can be proved in the same manner. QED

In particular, if E is a countable space, then there exists a recurrent state i of M.
Denote by 7 the return time of M to a recurrent state ig. Suppose that

P, (1 =1,X1 <0) =P; (M =ip, X3 <0) > 0.
If for some o > 1

E;, 7' <oco and IE; (ZX:) < 00,

n=1

then for some constant ¢
||]Pio ((an Wn) € ) - 77” < en'™e,

If for some v > 0
[E;, exp(ym) < oo and IE;, exp (’yZXI) < o0,
n=1

then for some constants ¢ and 7' > 0

||]P20 ((MTm Wn) S ) - 7T|| S Cexp(—y’n)'



Chapter 4

Semi-Markov queues

Semi-Markov queues are generalizations of classical queues, which are based on the
i.i.d. assumption of interarrival and service times. In a semi-Markov queue interarrival
times and service times of customers are governed by a Markov chain, which is called the
modulation chain. Semi-Markov queues with finite modulation chains are extensively
studied by Neuts and his school, and there are plenty of literature. However, the theory
of queues with general modulation chains are not well developed to the same extent.

This final chapter studies semi-Markov queues with general modulation chains. As
applications of previous chapters we obtain conditions for the finiteness of moments
for the stationary waiting time and workload processes, and rates of convergence to
the steady state distributions. Throughout a Markov chain M is assumed to be Harris
ergodic with a unique stationary distribution ¢ and to satisfy a minorization condi-
tion M(R,p,r, ¢). Further, we denote by (7,),>0 a sequence of regeneration epochs
constructed by the splitting technique from the minorization condition.

4.1 Single server queues

A single server queue is the simplest and the most basic model in queueing theory,
where customers arrive at one service station, are served one at a time, and leave the
system when the service is completed.

We number the customers 0,1,2,---. Denote by T,, the interarrival time between
customers n — 1 and n, and by U, the service time of customer n. Let T, and U_; be
arbitrary random variables with values in Rg. T,,,n > 1, and U,,n > 0, are assumed
to be positive. In our model the process (M, T}, Un_1)n>0, which is called the input
process, is assumed to be a Markov modulated sequence with driving chain M and
transition kernel

P:E x (£® (Blpe))?) — [0,1].

69
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Let Ty = To+Tv+ -+ Tpn >0, and U, = Uy +Up+ -+ Up, n > —1. 1If
Tp = U-y = 0, which means that customer 0 arrives at time 0, then 7', is the arrival
time of the customer n in the system and U, the total workload up to the nth customer.

The queue discipline is assumed to be FIFO, i.e., the customers are served in the
order of arrival. We say that the system is stable, if there exists a finite stationary
distribution for the waiting time process. If the mean interarrival time IE.7} and the
mean service time IE¢ Uy are finite, we define the traffic intensity p as

_ E Uy

= . 4.1
BT (4.1)

p:
The condition p < 1, or equivalently p = IE(Uy —T1) < 0, is called the stability
condition for the single server queue. Throughout this section we assume the stability
condition.

4.1.1 The actual waiting time

We denote by W, the actual waiting time of the customer n, i.e., the time from
arrival to the system until service starts. Put X, := U,_; — T, for n > 0. Then
(M, X,)n>o forms a Markov modulated sequence with the driving chain (M,,),>0.
Denote by (M, S,)n>0 the associated MRW. One can easily see that the actual wait-
ing time process (M,, W,,),>o is the reflected MRW associated to (M,, X, ),>o with
Wy = Sp. Consequently, the actual waiting time process (M, W,,),>¢ is Harris er-
godic, whence there exists a unique stationary distribution my of (M, W,,)n>0, which
by Proposition 2.14 satisfies the relation

mw (A x [0,y]) = / H (s, A;]0,y]) mw(ds x {0}), Ae&y>0.
B
Moreover, by Corollary 2.15
E., ("M, € A) = / HY (s, A) my(ds x {0})
s

for any A € €£.

Note that the process (M, W,,T,,U,—1)n>0 forms a temporally homogeneous
Markov chin. Throughout this chapter we assume that a canonical model is given
with probability measures P .44, (s, 0, 2,y) € E X [0,00)* on (€, S) such that

]P(vavxvy) (MO =35 WO = w, TO =T, Ufl = ) =1.

For each s € F,w > 0 and initial distribution A on E, we write IE ), [E; and IEy
instead of IE .00y, E(s,0,0,0 and IE,\®5(070’0), respectively.

Theorem 4.1 (i) Suppose that R x {0} is a recurrent set of (M, Wy)n>o0-
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(a) Let o« > 1. Suppose that

el a
suplE; 1" < oo and supE; Z U,_1 < 0.
sER seER

n=1

If for an initial distribution X on E

T1 @
E,m'<oo and E, (Z Un_1> < 00,
n=1

there exists a sequence of regeneration epochs (7y,)n>0 of (My, Wi )n>o such that I 71 <
oo and )7 < oo, where ((-) = Px(Mz, € -) for each initial distribution \' on E.
Moreover, for some constant c

1P (M, W) € +) — || < en'™.

(b) Let v > 0. Suppose that

T1
sup Egexp (y71) < oo and suplEgexp | v Z U,_1] < o0.
seR seR

n=1

Then there exists a sequence of regeneration epochs (Tn)n>0 Of (My, Wy)n>o such that
IE; exp(y'71) < 0o for some v > 0. Moreover, for some constants ¢ and v" € (0,7

[P (M, Wn) € +) = mw|| < cexp(—"n).
(i1) Suppose that for some q > 0

]PS(M1€~,U0—T1<O)>q90(~), s € R.

(a) Let o« > 1. Suppose that

1 «
E, " <oo and E, (Z Unl) < 00.
n=1

If for an initial distribution A on E
T1 @
E\m'<oo and IEy (Z Un_1> < 00,
n=1

then there exists a sequence of regeneration epochs (Tn)n>0 0f (My, Win)n>o such that
E, 71" < oo and IE) 7{* < 00. Moreover, for some constant c

[Py (M, W) € -) = mw || < en' ™.
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(b) Let v > 0. Suppose that

IE, exp(ym) < oo and IE, exp (72 Un_1> < 00.
n=1

Then there exists a sequence of regeneration epochs (7,)n>0 of (M, Wh)n>o such that
IE, exp(y/71) < oo for some v > 0. Moreover, for some constants ¢ and " € (0,7/]

[Py (M, Wy) € ) = 7w || < cexp(—y"n).

Proof. All assertions follow directly from Theorem 3.13 and Corollary 3.15.
QED

If E is countable and if the condition
P, (M =19, Uy—T1 <0) >0
is satisfied for a recurrent state iqg € E, then

7(io)
E;, (7(ip))* < oo and [E; Z Up-1] <oo forsome a>1

n=1

= [|P;, (M, W,) € -) — mw|| < en'™®  for some constant  c;
T(i())
E;, exp(y7(ip)) < oo and IE; exp (7 Z Un_l) < oo forsome >0
n=1

= [Py, (M, W,,) € ) — mw|| < cexp(—7'n) for some constants +' > 0 and c,

which are obtained in Sharma [55].

If M is uniformly ergodic, then by Corollary 3.14 for any initial distribution A on
E

sup E; Uy < oo for some o >1
sek

= [Py ((M,,W,) € -) — my| < en'™® for some constant c.
If E is a one-element set, then

EUf < oo for some o >1
= [[P(W, €-)—mw| <en'™™ for some ¢;
IE exp (7Up) < oo for some >0
= [P (W, € ) —mwl| < cexp(—y'n) for some constants ¢ and ~' >0,
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which is obtained in Kalashnikov [33].

Let W be a random variable having the steady state distribution of W,,, i.e.,

PW<z)= Ejal Eg (UIZ_ 1(W, < x)) .

n=0

Theorem 4.2 (i) Let o > 1. If

o1 a+1
IEEO'?—H <oo and IEg <Z Un_l) < 00,

n=1

then EW® < 0.
(i1) Let v > 0. If for some € >0

g1
]Eg(f%Jre < oo and ]Eg exp (72(]”—1) < 00,

n=1
then IE exp(y'W) < oo for some v > 0.
Proof. (i) Since W, < >°7' | U, for all k < oy, it holds that

1 71 1 71 “
EW® = IE: we < E- U, _
E¢ oy §<Z ) T Eo E[m (Z )]

1 1/p - aa e
< mlme) " {m(Loa) |
n=1

where p > 1 and 1/p+ 1/¢ = 1. Taking p = a + 1, the assertion follows.

(ii) In the similar manner as in (i), we have

1/q
1 1/ o
Eexp(yW) < 5= {]Eéff’f} ’ {Eg exp (7’qz Un_1>} :
:

n=1

Taking v < 7' < y(1 — 1/a) and ¢ = 7/+/, the assertion follows. QED

Corollary 4.3 Suppose that M is uniformly Harris ergodic. Then the following
assertions hold true:

(i) Let a > 1. If sup,ep B, US™ < 00, then EW® < .

i1) Let v > 0. If sup,. g Es exp(7Uy) < oo, then IE exp(v'W) for some v > 0.
sek
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Proof. (i) By Lemma 1.14 (i) and Theorem 3.3

- a+1
sup IE; Ug‘“ <oo = suplE; 7'10‘+1 < oo and suplE; (Z Un_1> < 00
n=1

seE selR seR

o1 a+1
= supE,0{"™ <oo and suplE, (Z Un_1> < 00

seE seE n—1

o1 a+1
= IEg o)t < oo and Eg (Z Un1> < 00.

n=1
Thus the assertion follows from Theorem 4.3 (i).

(ii) Using Lemma 1.14 (ii) and Theorem 3.11, the assertion follows in the same
manner. QED

In particular, if F is a one-element space, then we obtain the classical result by
Kiefer and Wolfowitz (see Theorem X.2.1. in Asmussen [12])

EUY <~ forsome a>1 = EW*< .
Moreover, we get

E exp(WU) < oo for some ~+>0 = IE exp(yW)<oo forsome ~ >0.

Remark 4.4 Suppose that ® x {0} is a recurrent set of (M, W, ),>o. Then from
Theorem 3.13 (i)

T a+1
sup B, 7! < 00 and  sup IE, (Z Un_1> < 00
n=1

seER sER

# a-+1
= E, 7" <oo and E, (Z Un1> < 00
n=1

1 71—1
EW* = E . :
=EW BT (nzzo Wn> < o0

In the same manner,

T1
sup [E; exp(ym) < oo and sup E; exp (fy E Un,1> < 00
seR seR —1

= E exp(yYW) < oo for some +' > 0.

The same results are obtained in Sharma [55] for the countable modulation case.
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Remark 4.5 Let (Y,,),>0 be a sequence of random variables on the probability
space (2,S,P). Let FI" := o(Yy : n < k < m). Define

B(m) := sup [P(AN B) — P(A)P(B)],

where the supremum is taken over all A € F§ and B € F.5,.. (Y,)n>0 is called strongly
mizing, if f(m) tends to 0 as m increases to co. Daley, Foley and Rolski [26] studied
moment conditions for the waiting time of G/G/1 queue, in which the input process
forms a stationary process. They have shown that if the sequence of interarrival times

(T})n>0 is strongly mixing with mixing coefficients (5(n)),>1 satisfying
> n71B(n) < oo (4.2)
n=1

and EUS™ < oo, then EW®™! < oco. Their result can be also applied to SM/G/1
queue. It is known (see Athreya and Pantula [16]) that a Harris ergodic Markov chain
is strongly mixing for any initial distribution with G(m) < 2sup,. E K,,_1(s), where

Ko (s) = [[Ps (M € -) =€, m=>1.

If M is uniformly Harris ergodic, then the Markov modulated sequence (M, T},)n>0 is
also uniformly Harris ergodic, and consequently the mixing coefficients of (M, T,,)n>0
satisfy the condition (4.2). Thus in the SM/G/1 queue with uniformly Harris ergodic
modulation chain M we obtain

EUM <00 forsome a>1 = EW* < oco.

4.1.2 The busy cycle

Denote by IZ and Il the nth busy period and the nth idle period, respectively.
Then the nth busy cycle can be written as I, = IZ + IL. Let n? and nl be the
beginning time of the nth busy period and the beginning time of the nth idle period,
respectively. Obviously, for any n > 1,

?77? = Ta'nfl and 7]’5 = To'n,1 + Z Uk*l

k=on_1+1
Denoting
On On
Té:j)l = E T, and Uéif)l = E U1, n>1,
k=op-1+1 k=op-1+1
we have

[P=pt—pP=vl) Il = pP —nt=19 —U) and I,=T"")

n On—1 1°
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The following assertions are direct consequences of Corollary 3.5.

Proposition 4.6 (i) Let o > 1. Suppose that
E Uy <oo and ETV < oo.

If for an initial distribution A on E
T1 T1
E, (Z Un_l) <o and E, (Z T,f‘) < o0,
n=1 n=1

then IEy (IF)* < oo. Moreover, if

71 T1
ilelg E, (; Un_1> < oo and ilelIE) E, <; Tﬁ) < 00,
then sup,cp B, (I7)* < oo.
(ii) Let v > 0. Suppose that
E:Uy <oo and IE¢ exp(yT) < oo.

If for an initial distribution A on E

E, (Z Un_1> < oo and IE, (Zexp(’yTn)) < 0,
n=1 n=1

then By exp(yI{) < co. Moreover, if

sup IE, (Z Un_1> < oo and suplE; (Z exp('yTn)> < 00,
n=1 n=1

seE selR

then sup,. By exp(yI¥) < oo.
Proof. All assertions are direct consequences of Corollary 3.5, since I = |S,,].

QED

Moreover, we obtain moments of the busy cycle as in the proof of Theorem 3.3 and
Theorem 3.11.

Proposition 4.7 (i) Let o > 0. Suppose that

el @ T @
E, (Z Un_1> <oo and IE, ( Tn> < 0.
n=1

n=1

If for an initial distribution X on E

E, (iUn_1> <oo and IE, (iTn> < 00,
n=1
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then IE) I < co. Moreover, if

sup [E, (ZUn 1) < oo and suplEg (ZT”) < 00

seE seE o

then sup,.p By (IP)* < oo.
(ii) Let v > 0. Suppose that

T1

T1
E, exp (fyz Un,1> <oo and IE, exp (fyZTn> < 00.
n=1

n=1
If for an initial distribution A on E

71

T1
IE, exp (fyz Un,1> < oo and IE, exp (VZTTJ < 00,
n=1

n=1
then IEy exp(y'l;) < oo for some v > 0. Moreover, if

sup IEg exp( ZUn 1) < oo and suplE; exp( ZTn> < 00
=1

seEE seElR

then sup, . IE; exp(y';) < oo for some 7' > 0.

Proof. (i) Noting that from the proof of Theorem 3.3

a

o1 nu+m/ n
E\ ¢ =, (ZTk> < E, ZTk+Z ZTk+ > T .
k=1 n=2 k=7,_1 n=7(zo) k=Tn—1

all assertions follows in the same manner as in the proof of Theorem 3.3.

(ii) All assertions follow in the same manner as in the proof of Theorem 3.11. QED

From the inequality

7(zo) T, nu+m’ Tn
[f-ZUk 1<ZUk 1+Z ZUk 1+ Z ZUk 1,
n=2 k=7,_1 n=7(zo) k=Tn—1

one can also obtain the corresponding assertions for I7.

Remark 4.8 Denote by £ the stationary distribution of M?. Using the strong
Markov property, it can be easily seen that

E: L =E: 1 Eeo, Egl{ =E:UyE:;o; and Egl] = —EgS,, = —puEzo.
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4.1.3 Continuous-time processes

The workload V; at time ¢ is the total time the server has to work to clear the system
at time t. Under FIFO discipline, it is the same as the waiting time a customer would
have if he arrived at time ¢. Thus the workload in a single server queue with FIFO
discipline is also called the virtual waiting time. It can be easily seen that

Vi= > (To+ W+ Uy = ) - U(To. Tosn))(£), ¢ 2 0.
n>0

Obviously

th W = th (Tn,1 + anl + Un,1 - t)Jr = (Wn,1 + Un,1 - Tn)+ = Wn, n Z 0.
tTTy tTTn

The queue length (Q; at time t is the number in system at time ¢ and can be written as

Q=) LT, <t,T,+W,+U,>t), t>0.

n>0

By definitions it is clear that
lim V; = lim @Q; =0, n>0.

tTTO'n tTTUn

Proposition 4.9 Let (7,,)n>0 be a sequence of regeneration epochs for (M, Wy)n>0
with Wz = 0 for n > 0. Then the process (%,QQQO 15 one-dependent, positive

recurrent regenerative under each Py, i.e., the cycles Z, defined as

Zy = (T%nﬂ - Tﬁu (Vz, Qt)T%n <t<T

are one-dependent for n > 0 and identically distributed for n > 1 with common distri-
bution Py (Z, € -) under each Py, where ((-) =Py (M;, € -).

If E is countable, then the process (Vi, Qi)i>o is classical-sense regenerative.

Proof. Note first that the cycles Z,, defined as

:(Mk)%n§k<i—n+1> , n>0,

Tn41

Z = (Tt — Tny (Mo, Wi, Tiog1, U)o <hcin ), 1> 0

are one-dependent for n > 0 and identically distributed for n > 1 with common
distribution P20 = P21 where () = PA(Ms, € -) for any initial distribution
A. From the definition of the workload process,

oo

Vi = D (Th+ Wit Uy —Ts, = )" - 1T%, Tier)(T5, + 1)

Tttt
k=0

= > (To+ Wi+ Us—Ts, = )" - 1T, Tiy1) (T, +1)
k=7
o0

- T% 4, =T
k=0

tns Tkt — T2,) (@) - F (Tt Un ), )
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for any n > 0,t > 0, and some measurable function F. Similarly we get

1(Tk ST{—n +t7Tk+Wk+Uk >T?n +t)

|
]2

QT;-H +t T

iy
o

VWTs ok <Ts, +t,Ta i+ Weih+Usn, > T, + 1)

[
]2

il
o

k k
1(2 Trpvm < ¢, Z Trpm +We i+ Us i > 1).

[
[M]#

£
Il

Thus the cycles Z,,n > 0, can be written as images of Z, under some measurable
function. In particular, the cycles Z, are one-dependent for n > 0 and identically
distributed for n > 1 with common distribution P (Z, € -).

If E is countable, then the cycles Z,,n > 0, are independent, since the cycles
Zn,n > 0, are independent. QED

Let us point out that the process (Vi, Q:)i>o forms a semi-regenerative process,
which means that we can find a Markov renewal process (M7, T, )n>o such that

P [(‘/t+Tan_1 ) Qt-i—Tgn_l )tZO S ’Tooa e 7T0'n717 M07 T Mnflv Mn == S:|

=P, ((Vi,Qt)>0 € -)

for any n > 1,5 € E. Consequently, a steady state distribution myq of (Vi, Q)0 is
given as

= 7 (/ (00 € i)

1

- &7 /E]ES (/0] (Vi Q) € -)dt) mw(ds x {0}),

where £ is the stationary distribution for M7 = (M, ),>o.

In particular, denoting by my a steady state distribution of (V;):>o,

1 h
Pr, (Vo =0) = m]Eg‘(/o 1(Vt=0)dt)
EgO’l(IEng—IEgUo)_l_]EgUQ

]EéallEng Eng.

Remark 4.10 A steady state distribution of the workload process can be written
by more general relations. Let (7,(a))n>0 ba a sequence of random variables defined as

o(a) :=inf{k > 0: Wy <a} and m7,(a):=inf{k>7,1(a): Wy <a}, n>1
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and denote by 7TI(;) the stationary distribution of the positive Harris chain

(M, (@), Wr,.(a))n>0- Then, for any fixed a > 0, a steady state distribution 7y of (V;)i>0

given as
) L g /TW 1V € - )dt
v = —— (a) t € -
E wTr@ ™ \Jo

i LB U
= | D 1(V, € -)dt | mw (ds x dw),
]EE T Ex[0,a] ( 0 ( ' ) W( )

where I(a) = S T,

n—

As in the actual waiting time process we get moments of regeneration epochs:
Proposition 4.11 (i) Suppose that R x {0} is a recurrent set of (M, W, )n>0-
(a) Let o« > 1. Suppose that

(sl a et a
sup IE, (Z Un_1> < oo and suplE; (Z Tn) < 0.
n=1

seR seR n—1
If for an initial distribution A on E
E, (Z Un_1> <oo and IE, (Z Tn> < 00,
n=1 n=1

then there exists a sequence of regeneration epochs (Tn)n>0 of (M, Wy)n>o such that
E.T: < oo and E\T;, < oo, where ((-) = Py(M;, € -) for each initial distribution
XN on E.

(b) Let v > 0. Suppose that

sup IE; exp (72Un_1> < oo and suplE;exp (72Tn> < 00.

sER n—1 seR n=1

Then there exists a sequence of regeneration epochs (Tn)n>0 Of (My, Wy)n>o such that
E; exp(y'T5,) < oo for some v > 0.

(i1) Suppose that there exists ¢ > 0 such that

Py(M, €-,Uy—T1 <0) > qo(-).

(a) Let o« > 1. Suppose that

E, (i Un_1> <oo and IE, (i Tn) < Q.
n=1 n=1
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If for an initial distribution A on E
el @ 1 @
E, (Z Un1> <o and IE, (Z Tn> < 00,
n=1 n=1

then there exists a sequence of regeneration epochs (Tn)ns0 of (M, Wy)n>o such that
E, T?l < oo and [E) T?fl < 00.

(b) Let v > 0. Suppose that

IE, exp <72Un_1> <oo and IE, exp ('yZTn) < Q.
n=1 n=1

Then there exists a sequence of regeneration epochs (Tn)n>0 0f (My, Wy)n>o such that

IE, exp(y'T%) < oo for some v > 0.

Proof. All assertions are obvious from Theorem 4.1 and Proposition 4.9. QED

One should note that the process (V;, Q)0 is not wide-sense regenerative in gen-
eral, but one-dependent regenerative, and thus from the theory of point processes (see
Sigman [59]) we get

t—o0

R
lim ”Z/ PA((Va, Q) € ) du— 7y = 0
0

for any initial distribution A on F.

However, if E is countable, then (V;, Q¢)¢>0 is classical-sense regenerative and we
get rates of convergence, which are obtained in Sharma [55].

Corollary 4.12 Suppose that E is countable and that for a recurrent state iy of M
]Pio(Ml = io,Uo T < O) > 0.

Suppose further that the distribution P;,(T,, € ) is spread out, where 1y is the first
return time to iq of M.

(i) Let a > 1. Suppose that
T1 a T1 a
E;, (Z Un1> <oo and IE; (Z Tn> < 0.
n=1
If for an initial state i € E

IE; (i Un_1> <oo and IE; (i Tn) < 00,
n=1 n=1
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then for some constant c

1P; (V, Q1) € ) — mvgll < ct .

(i1) Let v > 0. Suppose that

T1

[E;, exp <72 Un_1> < oo and IE; exp <72Tn> < 00.
n=1

n=1

Then for some constants ¢ and " € (0,7']

1Pi (Vi Q1) € ) — vl < cexp(—=y"1).

Proof. As in the proof of Corollary 3.15, one can easily see that there exists a
sequence of a.s. finite random times (v,),>0 such that (7,)n>0 = (7, )n>0 forms a
sequence of regeneration epochs of (M,,, W,,),>o. Furthermore, one can easily see that
P, (T; € -) is spread out if and only if P; (T, € -) is so (cf. Proposition X.3.2
in Asmussen [12]). Thus all assertions follow from Corollary of Theorem 3.4.2 in
Kalashnikov [32] and Theorem 10.7.5 in Thorisson [63]. QED

Denote by V' a random variable having the steady state distribution of (V;):>0, i.e.,
1 h
PV <z)=—-F; 1(V, <az)dt).
<o) = ([ 1< o)

Theorem 4.13 (i) Let a > 1. If E; I} < oo, then EV® < .
(ii) Let v > 0. If IEg exp(v11) < oo, then IE exp(y'V) < oo for some v > 0.
Proof. (i) Since V; < >°7 U,—1 < I for all k < oy, it holds that

1 I 1
EV® = E: vVedt) < E: oM <
[ é(/o ' ) = Eeo, 0 T

which proves (i). (ii) can be proved in the same manner. QED

If M is uniformly Harris ergodic, then from Corollary 4.3

supE, 70" < 0o and supE,Uf™ < oo forsome a>0 = EV®<oco.
sek sel

Moreover,

sup E; exp(771) < oo and sup E; exp(yUp) < oo for some v >0
sek seEE

= [E exp(7y'V) < oo for some ~ > 0.
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Remark 4.14 Suppose that R x {0} is a recurrent set of (M,,, W,,)n>o. Then as in
Remark 4.4

T a+1 m a+1
sup IE; <Z Tn> < oo and suplE; (Z Un_1> < 0
n=1

sER n—1 SER
# a+1
a1
= sup IE; T?l < oo and suplE; Z U,-1 < 00
seR seR n—1

#1 a+1
= E, T?fl <oo and IE; (Z Un1> < 00

n=1

1 s
=EV*= —1I / Vel < oc.
]ECT'%I 0

Similarly,

T1

T1
sup [Eg exp <7 E Tn> < oo and suplE; exp ('y E Un_1> < oo for some >0
seR n—1 seR

n=1

= E exp(7'V) < oo for some ~' > 0.

The same results are obtained in Sharma [55] for the countable modulation case.

Sometimes it is of interest to look at the queue length at certain random times.
Denote by Q2 and QP the queue length just prior to the nth arrival and just after the
nth departure, respectively.

Proposition 4.15 Let (7,,)n>0 be a sequence of regeneration epochs for (M, Wy )n>0
with Wz =0 for n > 0. Consider the cycles Z, defined as

Zn = (%nJrl - 7A_n7 (Q£7 QkD)i—ngk<7ﬁn+1), n Z 0.

Then Z,, are one-dependent forn > 0 and identically distributed for n > 1 with common
distribution ]Pg\Z")"21 = ]PEZ")"ZO, where ¢ = Py (M;, € -) for any initial distribution
A. Furthermore, (Zy,)n>k is independent of (7o, -, Tx)-

If the state space is countable, then the cycles are independent.

Proof. Note first that for any k,n > 0

e}

4 . = lim Q= lim Zl(i <t, T, +W,+U, >t
UT 2, 4k N4 +k oy
= lim > 1Ts 4 <t,Tspr + Wepr + Usip > 1)
LA
— 1ir{}€> Z 1(T+(:) <t, Tg) + Wipir + Usir > 1)
T =0

= fk((Mra Wra Ar+1a Ur)rzf'n)a
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where f; is a measurable function. Similarly one can show that for any k,n >0

7Pn+k - = lim Qt = gk((Mra Wra TT’+17 UT)T’Z’fn)
T4, 4kt Usy 4k
for some measurable function g. QED

In view of the previous result there exists a steady state distribution 7’ of
(Q4,QP),>0, which is given as

") = Eg(nm-(i 1(( ﬁ,@,?)e-))

n=0

- /EIE]S (i 1((Q1, QP e -)) mw (ds x {(0,0)}).

n=0

A

n?

The rates of convergence of the sequence (Q7, QF),>¢ to the stationary distribution 7/

are available from Theorem 4.1.

If the service times U, are exponentially distributed with intensity § and in-
dependent of (T},),>0, then the sequence (M,,Q2),>o forms a Markov chain. Let
P = ((pij)i,jzm where

Bi(s, A) = P[Moi1 € A,Qy) = j|M, = 5,Q; = ).
Then ® can be written as the matrix form (2.8), where

00 l
A(s,A) = / e‘ﬁt(ﬁl—f)d]Ps(MleA,erdt), l>0,se E,Ae&,;
0 .
l
Bi(s,A) = P,(MieA)—> A(s,A4), 1>0,s€E Ack.

n=0

If the arrival times T, form a homogeneous Poisson process of rate 3 and independent
of (Upn_1)n>0, then the sequence (M, QY | D, 1),>0 forms a Markov chain, where D,
is the time between the nth and (n + 1)st departures. Let ® = (®;;); j>0 with

®,i(s, A x) =P[M,1 € A, QfL) =4,D, < x|M, = S,Qf_l =1].

Then
Co(s,A;x) Cy(s,A;x) Cofs,A;z) Cs(s, Asx)
Dy(s, A;x) Dy(s,A;z) Dao(s, A;x) Ds(s, A;z)
P — 0 Dy(s, A;x) Di(s, A;z) Dy(s, A;x)
N 0 0 Dy(s, A;z) Diy(s, A;x)
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forse E,Ae€ &, x>0, where

T l
Di(s,A;z) = / e_ﬁt(ﬁl—f)d]PS(Ml € A Uy € dt);
0 .

Ci(s,A;x) = / Be P Dy(s, Az —t) dt.
0

Such queueing systems with finite modulation chains are extensively studied by various
authors. For the comprehensive treatment the readers are referred to Neuts [43, 44].

4.1.4 Identities between steady state distributions

Now we find some relations between steady state distributions of the actual waiting
time process, the workload process and the queue length process. For this purpose, we
introduce random variables 7, and U}, n > 0, defined as

1 xX
P[T; < 2|M,_ = s,M, =5 := / P[T,, > y|My—1 = s, M,, = §'] dy;
]Eg Tl 0
1 xr
]P[Un*—l S x|Mn—1 = S, Mn = 3/] = / IP[Un—l > y|Mn—1 - S7MTL = S/] dy
E:Us Jg

for any so,s1 € E and « > 0. Obviously the sequences (M, T,5),>o and (M, U}_,)n>0
are Markov modulated chains with driving chain M.

Lemma 4.16 For any x > 0, we have

1 (O 1 /e
E501E5—(Z 1<Tn+1§w>> = ]Eng/o P¢(Ty > y) dy;
n=0

o1—1
1 ) 1 e
]Egal Eg ( E 1(Un < $>> = IE{ U /0 ]Pg(Uo > y) dy

n=0

Proof. Letting G, := 0((Mk,Tk, Uk,l)kgn),n > 1, we have
]P[Tn+1|{gl >n}U QN} = P[T41|Gn] = P[T11|M,)].

Thus the events {T,,41 > y} and {0y > n} are independent given M,. In a similar
manner one can check that {77, ; <y} and {01 > n} are independent given M,,. Hence
we have

1 x

BT /0 P[T,.1 > y,01 > n|M, = so, My 1 = 1] dy

= ]P[O'l > TL|Mn = S, Mn+1 = 51)/ P[Tn+1 > y‘Mn = Sy, Mn+1 = 81] dy,
]Eg T1 0

= Ploy > n|M,, = so, Myy1 = s1] P[T,;,, < x|M,, = 8o, My11 = 51
=P[T, , <x,00 > n|M, = sg, Mpy1 = s1].
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Consequently, by making use of the Markov property and Fubini Theorem,

o1—1 0
1 1
E: E 1Ty, <=z = Pe (T, <z,00>n
]Egm 3 (n() ( +1 )) ]Eggl o 5( +1 1 )
! / LS B (T > o > m)d
= & n ,U n
Eng 0 ]ngﬁ prt 3 +1 -~ Y,01 Y
1 x
= P:(T) > y)dy.
In the same manner, one can prove the second equality. QED

For any fixed £ > 0, we set

T(k) = TnJrk — Tn, k Z 0 and Tﬁkl) = To.

n

Then, for any k£ > 0, the sequence (M, W,,, T, U’ _,,U,_1, TT(LIi)1>nZO forms a Markov
modulated chain with the driving chain (M, W,,),>0 and thus is positive Harris re-
current. As a consequence, there exists a stationary distribution for the chain given

as

n=0

o1—1
1
]Egal ]EE <Z 1<<Mﬂ?Wn7T:7U:7Un7Tr(Lk)) € ))

for any k > 0, where & is a stationary distribution of M?. Let W, T*,U*, U and T®
be random variables given by

o1—1

IP(WT vnuT )() = ]Egcﬁ Eg (Z 1((Wn>Tn>Un>Uanék)> € )) :
n=0

The existence of such variables follows from Kolmogorov’s consistency theorem. Fur-
ther, we introduce a random variable x with x ~ B(1, p), which is independent on all
the other random variables and sequences.

Proposition 4.17 It holds that

Vea(l=x)+x(W+U)~(W+U-T%".

Proof. The relations are known for GI/GI/1 queues (see Satz 11.3.2 in Alsmeyer
[1]) and can be proved in the same manner also for SM/SM/1 queues.

Since W11 =W, + U, — Tp11 = Wy + Xpyq for 0 <n < oy and {W,41 —y > z}
can be exchanged by {W,, —y > z},

1 T _
PV>zx = ]EET Eg Z/ 1W,+ U, +T, —y>z)dy
o1 n=0 v4n
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1 o1—1 Trt1
= — [E; 1W,+U, —y>ux)d
EﬂH§§A ( y> o) dy

I = (™
— IEgT Z/o Pe(W,, > 2 —y,U, >y,010 >n)dy
91 n=0
1 = [
= ¢ — ]P7 Wn> - ,Un>, > d
P Egm]EgUonz%/o £ T —y y, o1 >n)dy

However, the events {W,, > z—y, 0, > n} and {U,, > y} are conditionally independent
given M, and M, 1, whence

Pe(W, >2—y,U, >y,00 >n)

— / PW, >z —y,U, >y,01 > n|M,, M,] d]péwn,Mnﬂ
E‘2
N / ]P[Wn Ty = n|Mn’ Mn-i—l] ]P[Un > y|Mna Mn-i—l] d]Pé\—/[n’MnH.
E2
Therefore for any x > 0

IPV — - > > MnaMn
V>z) = p- EgalEgUo /E/ > =y,01>n| +1

P(U, > y| My, Myy] dy dPg"

: P[W,, + U* > z, 01 > n|M,, M,] dPY"+
pmmgw[ $> .01 > nlM,, M| AP

I & §
E;o; Z]Pg(Wn + U > x,00>n)
n=0

= pP(W+U" > z),

from which the first relation follows. Moreover, the events {W,, + U,, > =+ y,01 > n}
and {T,,1 > y} are conditionally independent given M,, M, ;. Thus the second
relation follows from the equality

Tn+1 o
/ 1(Wn+Un_y>x)dy:/ 1(Wn+Un_y>xaTn+1>y>dy‘
0 0

QED

Next we find relations between steady state distributions of the actual waiting time
and queue length process. Let () be a random variable with distribution

P(Q €)= ]EéllllEg(/ohl(Qte-)dt).

The following assertions are known for GI/GI/1 queues.
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Proposition 4.18 The following equalities hold true:
(1)

1
EQ = o IE(W +U) (Little’s Formula);

(1)
PQ>1)=pP(W+U* > T,

Proof. (i) Note first that each of the customers n = 0,1,---,0; — 1, provides a
contribution W,, + U, to f[o o1) Q; dt. Thus we have

IE(;_/) = —1_ E " (;) d
pu— - t
E Tal d 0 !

3
S S o Jf(w LU | = B+ 0
- ETh Eeoy ¢ ") T ET '

n=0

(ii) The assertion is known for GI/GI/1 queues (see Satz 11.4.2 in Alsmeyer [1])
and can be proved in the same manner also for SM/SM/1 queues.

For any 0 <n < oy and t € [T, T\11) let

n n

N UUL>t) =) 1Te+ Wi+ Ui >t) = Q.

k=0 k=0

Since U} < U{ < -+, we have
{Qi>n}y={U,_,,, >t} forall 1>1,
where we set U] := 0 for [ < 0. From
roi1—To <UL =T, <0 for ne{0,--,l—2,00,--,00+1—2}

and
Pe ((MO,WO,UO,TO(”) c ) = P (Mg, W, Uy, TO) € 1)

g1 o1

we get for any [ > 0

]Eﬁ_Tgl n=0 7 Tn
1 o1+1-2 fo%S)
- (1 LT s —1U . —T, >t)dt
P 2 ) (W =Tz 010 =T >
o1—1
1 o
= Z/ (1(Wn+Un—Tgl—1>>t)—1(Wn—T,§l—1>>t)) dt).
n=0 0

els

1
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Since the events {W,,—T, T(Ll_l)} and {U,} are conditionally independent given M, M, 1,
by the same computation as for P(V € -), we have

P(Q >1)=pP(W +U* > TUY).

QED

Notice that Little’s formula holds true for more general queues. It is known (see
Glynn and Whitt [29]), if the limits

1 T, — 1
3= lim — and W := lim —(W,, + U,)

n—oo M n—oo M

exist and are finite, then the limit L := lim;_ % fot Q.du exists, and Little’s formula
is written as L = AWV.

4.2 Multiserver queues

In this section we consider semi-Markov queues with N servers. As in the case of
single server queues we denote by T, the interarrival time between customers n — 1
and n, and by U, the service time of customer n. Let T, and U_; be arbitrary random
variables with values in Ry. T,,,n > 1, and U,,n > 0, are assumed to be positive.
The input process (M, Ty, U,—1)n>0 is assumed to be a Markov modulated chain with
driving chain M and transition kernel

P:E X (E® (Blpe)’) — [0,1].

Let Ty = To+ Ty + -+ Tpn >0, and U, = Uy +Up+ -+ Up, n > —1. If
Ty = U-y = 0, which means that customer 0 arrives at time 0, then 7', is the arrival
time of the customer n in the system and U,, the total workload up to the nth customer.

The queue discipline is assumed to be FCFS, which means that the customers join
service in the order they arrive. In the single server case, it is the same as the FIFO
discipline but not in general for N > 1. We say that the system is stable, if there exists
a finite stationary distribution for the discrete-time workload process. If the mean
interarrival time IE¢ T} and the mean service time IE¢ U, are finite, we define the traffic
intensity py as

_ By
PN = NE T,

(4.3)

The condition py < 1, or equivalently IE; Uy < N IE¢ T, is called the stability condition
for multiserver queue with N servers. Throughout this section we assume the stability
condition.
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4.2.1 Existence of a stationary version

We think of each server as having its own waiting line and the arriving customer
joining the line that has the least residual work. We order the residual work in the
various lines at time ¢ and thus obtain a vector V; = (V(1) --- V;(IV)) satisfying

Vi(1) <Vi(2) <+ < V(N), t=>0.

It is of particular interest to observe V; just before the arrival instants 7', and we
write W, = (Wy(1),---,W,(N)) = V& _. Thus W,(1) is the waiting time of the nth
customer, before he is served. The process (W,,),>0 of ordered vectors is called the
discrete-time workload process and satisfies the Kiefer-Wolfowitz recurrence relation

Wn+1 = R(Wn + Une — Tn+1I)+, n 2 0,

wheree = (1,0,---,0),I=(1,---,1), (z1,--,2n)" = (z],- -+, 2}) and R is the opera-
tor arranging vectors of RY in the increasing order. Obviously the process (M,,, Wi)n>o0
forms a temporally homogeneous Markov chain. The following proposition says that
under the stability condition the queueing system is stable.

Proposition 4.19 There exists a stationary version (M., W) ,>o.

Proof. Let (M}, Tr Ut |)nez be a stationary doubly infinite version of
(M., T,,, Up—1)n>0 and consider a new queue with the input process (M, T, U’ _),>0.
Let Wy, be the ordered workload vector in the new system found by the customer n
if the customer —k finds an empty system. For fixed n > 0, the sequence (W} )r>0

increases coordinately. Now define

Wy = lim Wy, =sup{W;,, : —oo <k <n}.

k—o0

It holds that

Wi = kh_{go Wint = khfolo RWi, +Us_ie = T,1)" =R(W; + Upe = T ).

For the finiteness of W* see Theorem 2.3.1. in Baccelli-Bremaud [17]. Therefore,
(M, Wr),>0 is a stationary version of (M, W,,),>o0. QED

4.2.2 Regeneration of the discrete time workload process

In the rest of this chapter we suppose that E' is countable and N = 2. We find some
conditions that the discrete-time workload process (M, W,,),>o is Harris ergodic. i
denotes a recurrent state of M and 7 the first return time of M to the state 75. Consider
a test function Vjz defined as

Va(w(1),w(2)) = vs(w(1)) + va(w(2)),
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where

vg(x) =2 — %(1 —exp(—fz)), B>0.

Let T and U be positive random variables satisfying
EQ2(uAT)-U) >0 and E(ULU >u)) <e¢

for some positive real numbers € and u. Then it can be shown (see pp.133 of Kalashnikov
[33])that for x < 21 :=u+ u?

E (vs((z + U = T)") — vs()) E (vs((z +U)") — vs(z))

<
< (1 —exp(—=pB(z1 +u))EU + e.

and that for x > x;

E (vs((x +U = T)") —vs(x)) < (1 —exp(—B2))E (U —uAT);
E (vs((z —T)") —vs(z)) < —(1—exp(—pf2)E(unT)+e

Proposition 4.20 There erists a compact subset K of [0,00)* such that {ig} x K
is a recurrent set of (Mp, W) n>0-

Proof. Consider the Markov chain (W, ),>0. We will show that there exists a
compact measurable subset K of [0,00)? such that E, . 7(K) < co forany w €
[0,00)%, where

7(K) :=inf{k >0: W, €K},

from which the assertion follows (see Remark 3.4).

For fixed > 0 denote by 7(z) the random time defined as

T(z) = sup{n ; ZT’“ < 95}

Then there exist g > 0 and A > 0 such that

7(x0)AT1 1

E;, iUn_l—Q 2; T, < —A and [, Y U | <e

n=7(xo)AT1+1

Choose € < min(1, 1%) and let the positive real numbers u, 3 and z; be given as

u = 2xg
1 A w?\ "t 4
= in< ——1In(1— 2 — In =
& mm{ Rl 7A+6l)’(u+266) n3}’
T = llnil U
1 — ﬁ 3 9
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where
T1
1=, (Z Un1> < 0.
n=1
Note that
2 A 1
T Zu+%, 1 —exp(—pfu) < N and 1—exp(—ﬁ(;c1+u)) =1
Let z5 be a positive real number satisfying the equation
1
1 —exp(—fzy) = 5
and let

K= {(w(l),w(2)) : w(l) < w(2) <z}

Then for any w > 0

Thus it suffices to show that

SZE IE i ) (V(Wﬁ) — V(w)) < 0.

We consider three cases:

(1) WQ(l) S Iy -
Since wy(2) > x2 > x1 + u > 2y,

T(:Eo)/\T1

Wr(zo)Amy (2) = w0(2) - Z 1.

Thus

k=1
T(.’L‘Q)/\Tl
<E, v5<w0(1)+ Z Un—1 _Uﬁ(wo(l))
n=1
[ T(x0)AT1 T
+E, | [ vs <w0(2) _ Tn> —us(we(2)) | | + 2¢
n=1
7(z0)AT1
< (1~ exp(— e + )l ~ (1~ exp(—0u) By, | D T | +2e
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1 ol T(z0)ATL
ZEiO (Z Un1> - ( Z T, ) + 2¢
n=1

A

IN

(ii) wo(1) > xy and wp(2) — wp(1l) < w:
For 1 < k,1 < 2 denote by Cy,; the set of events starting at wy(k) and ending at w,, (I).
Obviously C1; = Cy and Cjy = Cy. Define measurable functions f} : (R$)>
(R)>® — R, k,l =1,2, as

T1

i = (wn (D) = wo(k)1(Cr).

Note that
2

2 7(z0)AT1
Z Z IE’lofkl AT ]Eio (Un—l - 2Tn) < —A.

k=1 l=1

For each k,1 < 2, denote fi; = f,zl(xo)/\n. Then

Eio(vﬂ(wﬁ) - Vﬁ(WO)) = ZZEZO{ Uﬁ le (wU(k)>)1(Ckl>}
k=1 I=1
< Z Z {1 — exp(—Pwo(k)) }Ei, (ful(Chr)) + 2e
k=1 I=1

S AN Z Zexp(—ﬁwo(k:))]EiO (fkll((]kl)) + 2e.

k=1 =1
For 1 S k,l S 2, let C,:rl = {fkl 2 0} N Ckl and Ck?l = {fkl < 0} N Ckl' Then

B, (Va(W-, ) VB o))

AYSE,

k=1 l=1

—

exp(—Bz1) ful(Cy) +exp (= Bz1 +w)) frul( kl)}—l—?E

2

=—A—eXP(—ﬁxl)ZZ]Eio{szl(C&)+eXp( pu) frul(C, )}+2€

k=1 l=1

[\

= —A — oxp(—f1)

WE

{ Bl (ful(Cu)) = (1= exp(—u)) B (ful (C) } + 2

k=1 I=1
< —A + exp(—fr1) { + (1 - exp( ﬁu)) }+26

<At (1 £ 2
4 7A+6l 8

< 0,



94 CHAPTER 4. SEMI-MARKOV QUEUES

since

A —1
exp(~fi) = & exp(u) < (1 5 65) |

(iil) wo(1) > x1 and wy(2) — we(1) > w:
In this case

Eio (VB(WH) - VB<WO))

=E {vg (wo(l) + T(%\n(Un 1 Tn)) — vg(wo(1))
+ug (wo IOZATI T, ) — vg( w0(2))} + 2¢

T(x0)AT1
—{1 — exp( HE;, T, | + 2
n=1
7(x0)AT1
< {1 — exp( VE;, Z Up_1 — 2T,

QED

Suppose that the system reaches a state in {ig} x K for a compact subset K C
[0,00) x [0,00). If the workload can be successively reduced, then in a finite step the
system reaches a state with a positive probability, which is independent of the starting
point. The following theorem gives a condition that (M,, W, ),>o is Harris recurrent.
The same argument can be found in Asmussen [12] (Lemma XII.2.3) and Morozov [39].

Theorem 4.21 If there exist n,e,q > 0, such that
P,,(Up<2n—e€Ty >nmn=1)>q, (4.4)

then (M, Wh)n>0 is Harris ergodic.
If the more stronger condition

P,,(Ug<n—e€Ty>nmn=1)>q (4.5)

is satisfied, then (M,, W, )n>0 forms a classical-sense regenerative process.
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Proof. By Proposition 4.20, there exists a bounded set K = {(wy,ws) € [0,00) x
[0,00) : wy, < 9,k = 1,2} for some positive real number x5 such that {ip} x K forms a
recurrent set of (M,, W,,)n>o. Let F, == {U,-1 < 2n—¢,T, >n} and r > 225 /e. Note
that each occurrence of F,, decreases residual work. Let (Mg, Wy) = (ig, w) € {ig} x K.
Then the customer n finds an empty server provided that r — 4 < n < r and that
Ny _of% occurs. Hence the queue length at r — 2 is at most 1. This means that the
customers r — 2, — 1 enter service immediately and W, is independent of initial value
Wy. Furthermore, customers r — N,---,r — 1 enter service immediately. Thus with
gO(A) = ]Pio[W2 € A|F1 N FQ], we have

IP(io,w)(Wr € A) > qTQO(A), w € K.

To show the positivity, note that {io} xC is a regeneration set of (M, W,,),>¢. Denoting
by 7({ip} x K) the first return time of (M, W,,)n>0 to {ig} x K, we have

E;, 7({io} x K) = C - Ei 1 - Eiymy < o0.

The aperiodicity follows, since (4.5) holds true for all sufficiently large r.
The second assertion is obvious, since then the customer n finds an empty system
provided that r —2 < n <r and that N]_,F}, occurs. In this case, we have

]P(io,w)(Wr € A) > qré(iovo), w e K.

QED

By Theorem 4.21 there exists a unique stationary distribution mw of (M, W,,)n>0-
Moreover, by Proposition 1.20 for any initial state i €

lim |P;((M,,W,) € -) —mw]| = 0.

In the rest of this section, we assume that (4.5) holds true. Thus the random times
or,n >0, defined as

oy =inf{k > 0: Wy(2) =0} and o), =inf{k >0} : Wi(2) =0}, n>0

are a.s. finite. Obviously the chain (M, ),>¢ is positive Harris recurrent. Denote by

£* a unique stationary distribution of (Ms:)n>0.
Corollary 4.22 There exists a unique stationary distribution mw for (M, W,)n>o,
which s given by

of—1
1 1
W) = e | X U6 W) € )
or—1

= Y Ei | ) (M, W) €-) | 7w ({(i,0,0)}).

<) n=0
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Let further o > 1 and suppose that

E;, ' <oo and [, <Z Un_l) < 0.

n=1

If for an initial state 50 € E

E; " <oo and IEj (Z Un_1> < 00,

n=1

then for some constant c

”]Pjo (M, Wy) € ) —7w]| < en'™.

Proof. By assumption

«

Eow) (Vs(Wry) — Va(w))" < E; < 00

vﬁ(i Uno1 +w) = Va(w)

for any w > 0. Thus, as in Theorem 3.3, one can show that there exists a sequence
of regeneration epochs (7,),>¢ such that IE;, 77 < oo and IE; 7f* < oo. Thus the
assertion follows from Proposition 1.21. QED

Remark 4.23 Theorem 4.21 is obtained in Morozov [39] for a R/GI/N queue, in
which interarrival times form a regenerative process.

The corresponding assertions for the continuous-time workload process can be ob-
tained in the same manner and are therefore omitted.
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