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Introduction

Queueing theory is one of the important domains in applied probability. The basic
idea has been borrowed from every-day experience of queues, for example, at the check-
out counters in a supermarket, but a number of stochastic models may be formulated
in queueing terms or are closely related. The great diversity of queueing problems gives
rise to an enormous variety of queueing models.

The simplest and the most basic model in queueing theory is the single server
queue, where customers arrive at one service station, are served one at a time on
the first come first server basis and leave the system when service is completed. If
arrival times form a renewal process and service times are distributed identically and
independently, and if arrival times and service times are independent, then the queue is
denoted by GI/GI/1, which is an old theme in the queueing theory. A specific feature
of stable GI/GI/1 queues is the regeneration of the system, which means that the
system reaches an empty state infinitely often and restarts from scratch at the empty
state. The regeneration of a stable GI/GI/1 queue can be described in the framework
of the theory of random walks. Let Tn be the interarrival time between customers
n− 1 and n, and Un the service time of customer n. Denote by (Sn)n≥0 the associated
random walk given as

Sn :=
n∑

k=0

Xk, n ≥ 0,

where Xk = Uk−1 − Tk, k ≥ 1 and X0 = 0. Then the waiting time process forms the
reflected random walk (Wn)n≥0, i.e.,

W0 = 0 and Wn+1 = (Wn + Xn+1)
+, n ≥ 0.

Moreover, the weak descending ladder epochs are regeneration epochs of the waiting
time process.

GI/GI/1 queues have been extensively studied, because of their tractability. Yet
the i.i.d. condition, on which a GI/GI/1 queue is based, is somewhat unnatural. In
fact, almost everything in the world is occurred in a mutual interaction or under influ-
ence by some other things. Many efforts are made to generalize GI/GI/1 queues. A
generalization can be obtained replacing the i.i.d. assumption by conditional indepen-
dence given a temporally homogenous Markov chain M .

A semi-Markove queue denoted by SM/SM/1 is a generalization of GI/GI/1
queue, in which the sequence (Mn, Sn)n≥0 forms a Markov random walk (MRW). A

iii



iv INTRODUCTION

MRW is a generalization of a random walk, in which the additive part is distribu-
tionally governed by a temporally homogenous Markov chain (see Chapter 2 for the
precise definition). Markov modulation offers more flexibility in the modeling of the
real world, but in general it is not easy to explicitly compute queueing quantities like
stationary distributions of various queueing processes. In the case of finite modulation,
some special types of queues known as M/GI/1 type and GI/M/1 type are extensively
studied by various authors like Neuts, Ramaswami, etc. They have developed matrix-
analytic methods for the computation of queueing characteristics such as stationary
distributions, which becomes nowadays a popular tool in the applied probabilities.
Some comprehensive treatments of matrix-analytic methods can be found in Neuts
[43, 44] and Latouche and Ramaswami [34]. For a brief survey see Ramaswami [51].
On the contrary, the theory of queues with general modulation chains was not well
developed to the same extent.
A study on semi-Markov queues with general modulation chains can be found in Num-
melin [45]. He showed that, if the modulation chain M is positive Harris recurrent,
then under the stability condition the waiting time process is one-dependent as well as
wide-sense regenerative. Alsmeyer [4] showed that a unique stationary distribution for
the waiting time process can be written as an occupation measure with respect to the
weak descending ladder epoch.

This dissertation deals with MRW’s driven by general Markov chains and semi-
Markov queues. The first weak descending ladder epoch is one of the basic quantities
in the theory of MRW’s. In a semi-Markov queue it is interpreted as the index of the
customers in the first busy cycle. Making use of some corollaries of Dynkin’s formula
(Corollary I.1.1, I.1.2 in Kalashnikov [33]), we first find moment conditions for the first
weak descending ladder epochs of MRW’s with negative drift. It should be pointed out
that a similar method was used by Sharma [55] for the analysis of R/R/1 queues, in
which interarrival times and service times form a classical sense regenerative process.
In the same manner, we get moment conditions for regeneration epochs of reflected
MRW’s. These results can be directly applied to the queueing theory with the cor-
responding queueing interpretations. In particular, for a semi-Markov queue we find
rates of convergence to the staionary distribution and conditions for the finiteness of
moments of the stationary waiting time and workload processes.

This dissertation is organized as follows:

Chapter 1 contains basic definitions and some preliminary results from the theory
of general Markov chains. Harris recurrence and ergodicity are reviewed briefly.

Chapter 2 deals with the basic theory of MRW’s and reflected MRW’s driven by
general Markov chains. First we review some basic facts on the theory of MRW’s.
Most of the concepts and results can be found in Arjas [6, 7] and Arjas and Speed
[8]. Next we are concerned with reflected MRW’s and, following Nummelin [45] and
Alsmeyer [4], we get a stationary distribution of a reflected MRW with negative drift
as an occupation measure with respect to the first weak descending ladder epoch. The
remainder of Chapter 2 deals with MRW’s with lattice-type increments. In this case
we obtain the joint stationary distributions of reflected MRW’s in simpler forms.
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Chapter 3 and Chapter 4 are the main parts of this dissertation. In chapter 3 we
find moment conditions for the first weak descending ladder epochs of MRW’s and
for the regeneration epochs of reflected MRW’s with negative drift. Moments of the
first weak descending ladder epoch are of particular interest in the theory of MRW’s.
Moment conditions for the first weak descending ladder epoch of an ordinary random
walk are known (see Theorem I.5.1 in Gut [30]). For a Markov random walk, some
results on the finiteness of moments of the first weak descending ladder epoch can be
found in Fuh and Lai [28] and Alsmeyer [5]. In particular, the results of Fuh and Lai
can be regarded as special cases of our results.
In Chapter 4 we are concerned with semi-Markov queues. Throughout this chapter
we assume that the stability conditions are satisfied. We first consider single server
queues with general modulation chains and find rates of convergence to the stationary
distribution and conditions for the finiteness of moments of stationary waiting time
and workload processes. For GI/GI/1 queues, rates of convergence are available
in Kalashnikov [33] (Chapter 5.3) and conditions for the finiteness of moments of
stationary waiting time and workload processes in Asmussen [13] (Theorem X.2.1).
Sharma [55] obtained the same results for a R/R/1 queue, which can be regarded
as the special case of countable modulation. Finally, we point out that for a G/G/1
queue, in which interarrival times and service times form a stationary process, Daley,
Foley and Rolski [26] obtained some conditions for finite moments of the stationary
waiting time. In the remainder of this Chapter we examine multiserver semi-Markov
queues. In particular, for 2-server queues with countable modulation chains, we show
that under some additional conditions the workload process is regenerative.

Acknowledgements. I am grateful to my supervisor Prof. Dr. Gerold Alsmeyer
for suggesting the topic of the thesis and for his many valuable comments during the
work.
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Chapter 1

Introduction to the theory of
general Markov chains

A Markov process is one of successful stochastic processes. Its success is due to
the relative simplicity of its theory and to the fact that Markov models can exhibit
extremely varied and complex behavior. In this chapter we provide an introduction to
the theory of Markov chains with general state space. The theory of general Markov
chains forms a basis of this thesis. Although the analysis of general Markov chains
requires more elaborate techniques than in the discrete case, nowadays the general
theory has been developed to a matured state. There are plenty of literature on gen-
eral Markov chains. For the comprehensive treatments see Meyn and Tweedie [37],
Nummelin [46] and references therein. We are mainly interested in Harris recurrence
and stationary distribution of general Markov chains. After introducing some funda-
mental notions on kernels and Markov chains, we deal with Harris recurrence. The
analysis of Markov chains with countable state space is based on the recurrence of
individual states. However, if the state space is uncountable, one can not expect the
existence of such states in general. The Harris recurrence is an extension of the notion
of recurrence from individual states to sets. A Harris chain possesses a regenerative
scheme based on the splitting technique, which is suggested by Athreya and Ney. From
the existence of regeneration epochs one can construct a stationary measure, which is
unique up to constant multiples.

1.1 Definitions and elementary properties

Let (E, E) be a measurable space. A function K : E × E → [0,∞) is called a
kernel on (E, E), if K(s, · ) is a measure on (E, E) for all s ∈ E and if K( ·, A) is a
E-measurable function for all A ∈ E . If K(s, E) ≤ 1 for any s ∈ E, then the kernel K
is called a transition kernel. It is known that such functions are well defined on Polish

1



2CHAPTER 1. INTRODUCTION TO THE THEORY OF GENERAL MARKOV CHAINS

spaces1. Any kernel K can be interpreted as a nonnegative linear operator on the set
of nonnegative measurable functions F+(E) on E by defining

K f(s) :=

∫

E

f(s′)K(s, ds′) = 〈K(s, · ), f〉, s ∈ E

for any f ∈ F+(E). In particular, we have

K(s, A) = K1A(s), s ∈ E, A ∈ E .

By defining Kf = Kf+ −Kf−, we may extend this to every measurable function on
(E, E) such that Kf+ and Kf− are not both infinite. Similarly K acts on the class of
positive measures M+(E) on E by

λK(·) =

∫

E

K(s, · ) λ(ds)

for any λ ∈M+(E). For any fixed A ∈ E , one defines a kernel IA by

IA(s, A′) := 1A∩A′(s), s ∈ E, A′ ∈ E .

If K1 and K2 are two kernels, their composition K1K2 is defined as

K1K2(s, A) =

∫

E

K2(s
′, A)K1(s, ds′), s ∈ E, A ∈ E .

The n-step iterates Kn, n ≥ 0, of a (transition) kernel K are defined iteratively,

K0 = IE and Kn = KKn−1, n ≥ 1.

Two kernels K and K̃ on (E, E) are said to be adjoint with respect to a positive σ-finite
measure ν on E, if for any f, g ∈ F+(E)

∫

E

(Kf) g dν =

∫

E

f (K̃g) dν,

which will also be written as

〈Kf, g〉ν = 〈f, K̃g〉ν .

Assume that a measure space (Ω,S, IP) is given, which is called the sample space.
Let (Fn)n≥0 be a filtration and denote by F∞ = σ(∪∞n=0Fn) the smallest σ-algebra

1A Polish space is a complete, separable metric space. Any locally compact space with a countable
dense subset, any countable product of Polish spaces and function spaces with values in Polish space
are examples of Polish spaces.
There are examples in probability theory, where non-Polish state spaces are required, but in general
a state space is assumed to be Polish. There is a powerful and complete theory for probability on
Polish spaces. For details see Appendix A1 in Asmussen [12] and references therein.
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generated by U∞
n=0Fn. A sequence M = (Mn)n≥0 of (E, E)-valued random variables on

(Ω,S, IP) is said to be (Fn)n≥0-adapted, if Mn is Fn-measurable for any n ≥ 0. Letting

FM
n = σ(Mk : k ≤ n), n ≥ 0,

M is (FM
n )n≥0 - adapted. The filtration (FM

n )n≥0 is called the canonical filtration of M .
An (Fn)n≥0-adapted chain (Mn)n≥0 is called a Markov chain with respect to (Fn)n≥0,
if for any n ≥ 0

IP [Mn+1 ∈ · |Fn] = IP [Mn+1 ∈ · |Mn] IP-a.s..

If, in addition, for a transition kernel P : E × E → [0, 1]

IP [Mn+1 ∈ · |Fn] = P(Mn, · ) IP-a.s.,

then M is called a temporally homogeneous Markov chain with transition kernel P.
The space (E, E) or E is called the state space and the points of E are called states.
Throughout this dissertation a state space E is assumed to be Polish, unless stated
otherwise.

The distribution λ defined by

λ(·) = IP(M0 ∈ · )

is called an initial distribution. For any initial distribution λ on (E, E), we define a
distribution IPλ by the requirements

IPλ (M0 ∈ · ) = λ(·) and IPλ [Mn+1 ∈ · |Fn] = P(Mn, · ), n ≥ 0.

Obviously

IPλ (M0 ∈ A0, · · · ,Mn ∈ An) =

∫

A0

∫

A1

· · ·
∫

An

P(sn−1, dsn) · · ·P(s0, ds1) λ(ds0)

for any n ∈ IN0 and A0, · · · , An ∈ E . If M starts at a point s ∈ E, then we write IPs

instead of IPδs . A σ-finite measure ξ 6= 0 is called a stationary measure or an invariant
measure for (Mn)n≥0 or P, if for any n ≥ 1

ξ Pn(A) =

∫

E

Pn(s, A) ξ(ds) = ξ(A), A ∈ E .

If ξ is a probability measure satisfying the above equality, then it is called a stationary
distribution or an invariant distribution. If ξ is a stationary distribution, then by the
Markov property we have

IPξ ((Mn)n≥m ∈ · ) = IPξ ((Mn)n≥0 ∈ · )

for any m ≥ 0. Two Markov chains M and M̃ are said to be in duality relative to ν,
if their transition kernels are adjoint with respect to ν. One of the two chains is said
to be the dual or time-reversed chain of the other one. If each of the two transition
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kernels P̃ and P̃′ is adjoint to a transition kernel P with respect to ν, then there is an
ν-null set N such that P̃(s, · ) = P̃′(s, · ) for all s ∈ N c. If E is countable, then the
empty set is the only set of ν-measure zero and thus the duality condition is equivalent
to the requirement

P̃ = ∆−1
ν PT ∆ν ,

where P and P̃ are the transition matrices of M and M̃ , respectively, and ∆ν is the
diagonal matrix of ν.

A IN0∪{∞}-valued random variable τ is called a stopping time w.r.t. the filtration
(Fn)n≥0, if

{τ = n} ∈ Fn for all n ≥ 0.

If τ is a stopping time w.r.t. the canonical filtration (FM
n )n≥0 of a Markov chain M ,

then it is called a stopping time for the Markov chain (Mn)n≥0. Important examples
of stopping times for the Markov chain (Mn)n≥0 are the first hitting time κ(A) and the
first return time τ(A) to a set A ∈ E defined as

κ(A) := inf{n ≥ 0 : Mn ∈ A} and τ(A) := inf{n ≥ 1 : Mn ∈ A}.
A random time τ is called a randomized stopping time for the Markov chain (Mn)n≥0,
if for every n ≥ 0 the event {τ = n} and the post n-chain (Mn+1,Mn+2, · · ·) are
conditionally independent given the pre-n-chain (M0, · · · ,Mn), or equivalently,

IP [τ = n|FM
∞ ] = IP [τ = n|FM

n ] IP-a.s.

If τ is a stopping time w.r.t. a filtration (Fn)n≥0 and if a Markov chain M is (Fn)n≥0-
adapted, then τ is a randomized stopping time for M . Conversely, if τ is a randomized
stopping time for (Mn)n≥0, then (Mn)n≥0 is adapted and τ is a stopping time w.r.t.
the filtration (F τ

n)n≥0 defined as

F τ
n := σ((Mk)k≤n, {τ = k : k ≤ n}), n ≥ 0.

By Pitman and Speed [47], the following are equivalent:

(i) τ is a randomized stopping time w.r.t. (Fn)n≥0;

(ii) for each n ∈ IN0, F τ
n and F∞ are conditionally independent given Fn;

(iii) for each n ∈ IN0, IE[X|F τ
n ] = IE[X|Fn] a.s. for each integrable F∞-measurable

random variable X.

Let (Mn)n≥0 be a (Fn)n≥0-adapted Markov chain and τ a randomized stopping time
w.r.t. (Fn)n≥0. It is known that (Mn)n≥0 possesses the strong Markov property w.r.t.
a randomized stopping time τ , i.e., on {τ < ∞}

IP [Mτ+n ∈ · |Mτ ] = Pn(Mτ , · ) IP-a.s.

for any n ≥ 0. We denote by Fτ the σ-algebra of events which are observed up to time
τ , i.e.,

Fτ = {A ∈ F∞ : A ∩ {τ = n} ∈ Fn for all n ≥ 0}.
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1.2 Recurrence

A set < ∈ E is called a recurrent set, if for any s ∈ E

IPs(Mn ∈ < i.o. ) = IPs(τ(<) < ∞) = 1.

Let (τn)n≥0 be the sequence of stopping times defined as

τ0 = τ(<) and τn+1 = inf{k > τn : Mk ∈ <}, n ≥ 0.

If < is a recurrent set, then by the strong Markov property the sequence (M τ
n)n≥0 :=

(Mτn)n≥0 forms a temporally homogeneous Markov chain. The following assertions are
well known (see Theorem I.2.3 in Borovkov [19] for example):

Proposition 1.1 Suppose that a Markov chain M has a stationary distribution ξ
and that there exists a recurrent set < with ξ(<) > 0. Then the chain (M τ

n)n≥0 has a
stationary distribution ξ< defined as

ξ<(·) =
ξ( · ∩ <)

ξ(<)
.

If, in addition, ξ is the unique stationary distribution for M , then

ξ(·) =
1

IEξ<τ(<)
IEξ<




τ(<)−1∑
n=0

1(Mn ∈ · )



= ξ(<) IEξ<




τ(<)−1∑
n=0

1(Mn ∈ · )



=

∫

<

( ∞∑
n=0

IPs(Mn ∈ · , τ(<) > n)

)
ξ(ds).

For fixed < ∈ E , n ≥ 1, let <Pn be the kernel defined as

<Pn(s, A) = IP [Mn ∈ A, τ(<) ≥ n|M0 = s], s ∈ E, A ∈ E ,

which is known as n-step taboo kernel with taboo set <. Obviously we have

<Pn(s,<) = IP(τ(<) = n), n ≥ 1, and IEs τ(<) =
∞∑

n=1

n <Pn(s,<)

for any s ∈ E. Moreover, the transition kernel P< for (M τ
n)n≥0 is given as

P<(s,< ∩ A) =
∞∑

n=1

<Pn(s,< ∩ A), s ∈ <, A ∈ E .
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Note that for any A ∈ E

IEξ<




τ(<)−1∑
n=0

1(Mn ∈ A)


 = IEξ<




τ(<)∑
n=1

1(Mn ∈ A)


 =

∫

E

( ∞∑
n=1

<Pn(s, A)

)
ξ<(ds).

Thus if ξ is the unique stationary distribution for M , then ξ can be also written as

ξ(A) = ξ(<)

∫

E

( ∞∑
n=1

<Pn(s, A)

)
ξ<(ds) =

∫

<

( ∞∑
n=1

<Pn(s, A)

)
ξ(ds)

for any A ∈ E .

Remark 1.2 In the situation of Proposition 1.1, the cycles

Zn :=
(
τn+1 − τ1, (Mk)τn≤k<τn+1

)
, n ≥ 0,

are stationary under IPξ< . Let (τ ′n)n≥0 be a sequence of a.s. finite stopping times, such
that there exists a distribution ζ with ζ(·) = IPλ(Mτ ′n ∈ · ) for any n ≥ 0 and for any
initial distribution λ. Then the cycles

Z ′
n :=

(
τ ′n+1 − τ ′n, (Mk)τ ′n≤k<τ ′n+1

)
, n ≥ 0,

are also stationary under IPζ . If, in addition, IEζ τ ′1 < ∞, then it can be shown that
the measure defined as

1

IEζ τ ′1
IEζ




τ ′1−1∑
n=0

1(Mn ∈ · )



is a stationary distribution for M . For details see Alsmeyer [3].

The following proposition is a consequence of Dynkin’s formula and gives a criterion
for a set to be positive recurrent.

Proposition 1.3 For a set < ∈ E , the expectation IEsτ(<) is finite for any s ∈ E
if and only if there exists a nonnegative measurable function V : E → [0,∞), and a
constant ∆ > 0, such that

(i) sups/∈<
∫

E

(
V (s′)− V (s)

)
IPs(ds′) ≤ −∆ ;

(ii)
∫

E

(
V (s′)− V (s)

)
IPs(ds′) < ∞ for all s ∈ <.

In this case, we have

IEs τ(<) ≤
{

V (s)
∆

: s /∈ <
1 + 1

∆

{
V (s) +

∫
E

(
V (s′)− V (s)

)
IPs(ds′)

}
: s ∈ <.

Proof. See Corollary 5.2.1 in Kalashnikov [33]. QED
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Moreover, we have the following criteria for the first return time to a set to have
finite moments.

Proposition 1.4 Let < be a measurable set.

(i) Suppose that there exist a nonnegative function V : E → [0,∞), positive numbers
∆, b and α > 1, and a random variable Λ defined on E, such that the following relations
are fulfilled:

(a) v< := sups∈< V (s) < ∞;

(b) IP
(
V (M1)− V (s) ≤ Λ(s)

)
= 1 for all s ∈ E;

(c) sups/∈< IE Λ(s) ≤ −∆;

(d) sups∈E IE |Λ(s)|α ≤ b < ∞.

Then

IEs (τ(<))α ≤
{ (

a(∆, b, α) + 2V (s)
δ

)α

: s /∈ <
c(∆, b, α, v<) : s ∈ <,

for some constants a(∆, b, α) and c(∆, b, α, v<).

(ii) For some γ > 0, the expectation IEs exp(γτ(<)) is finite for any s ∈ E if and
only if there exists a nonnegative function V : E → [1,∞), such that

(a)
∫

E

(
V (s′)− V (s)

)
IPs(ds′) ≤ −(

1− exp(−γ)
)
V (s) for all s /∈ <;

(b)
∫

E

(
V (s′)− V (s)

)
IPs(ds′) < ∞ for all s ∈ <.

In this case, we have

IEs exp(γτ(<)) ≤
{

V (s) : s /∈ <
eγ ·

{
V (s) +

∫
E

(
V (s′)− V (s)

)
IPs(ds′)

}
: s ∈ <.

Proof. See Theorem 5.2.2 and Corollary 5.2.2 in Kalashnikov [33]. QED

1.3 Harris recurrence

Let ϕ be a nontrivial σ-finite measure on (E, E).

Definition 1.5 (i) A Markov chain (Mn)n≥0 with transition kernel P is called
ϕ-irreducible, if for any s ∈ E and A ∈ E with ϕ(A) > 0 there exists n ≥ 1 with
IPs (Mn ∈ A) > 0.

(ii) A Markov chain M is called (d-) periodic, if there exists a finite sequence of
sets Ei ⊂ E, i = 1, · · · , d, such that

IPs (M1 ∈ Ei+1) = 1, if s ∈ Ei,
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where we set Ed+1 = E1. If d = 1, then it is called aperiodic.

If a Markov chain is ϕ-irreducible, then the set E \ ∪d
i=1Ei is a ϕ-null set. It is

known (see Theorem 3.11 in Asmussen [12]) that, if M is ϕ-irreducible and ϕ(A) > 0,
then there exist a measurable set < ⊂ A, r ≥ 1 and p > 0 such that

IPs (Mr ∈ A′) ≥ p ϕ(< ∩ A′)

for all s ∈ <, A′ ∈ E . If M is ϕ-irreducible, then ϕ is called an irreducibility measure
for M . A ϕ-irreducible Markov chain has many different irreducibility measures. The
measure ψ defined as

ψ =
∞∑

n=1

2−n ϕPn

is a maximal irreducibility measure, in the sense that all other irreducibility measures
are absolutely continuous w.r.t. ψ. The maximal irreducibility measures are equivalent.
It is known that, if a ϕ-irreducible Markov chain (Mn)n≥0 has a stationary measure ξ,
then it is unique up to constant multiples and is equivalent to maximal irreducibility
measures.

Definition 1.6 A temporally homogeneous Markov chain (Mn)n≥0 with transition
kernel P is called Harris recurrent or Harris chain, if there exists a recurrent set <,
such that for some p ∈ (0, 1], r ≥ 1, and a distribution ϕ on E with ϕ(<) = 1

Pr(s, A) ≥ pϕ(A) for any s ∈ <, A ∈ E . (1.1)

The set < is called a regeneration set, and we say that (Mn)n≥0 satisfies the minorization
condition M(<, p, r, ϕ). If r = 1, then M is called strong aperiodic.

A Markov chain (Mn)n≥0 is called ϕ-recurrent, if any A ∈ E with ϕ(A) > 0 is a
recurrent set. Obviously a ϕ-recurrent Markov chain is ϕ-irreducible. Furthermore,
a Markov chain is Harris recurrent if and only if it is ϕ-recurrent. In this case, any
recurrent set of M contains a regeneration set of M .

Remark 1.7 A discrete Markov chain (Mn)n≥0 is Harris recurrent if, and only if, it
contains a communication class K of recurrent states such that IPi (τ(K) < ∞) = 1 for
all i ∈ E. Thus (Mn)n≥0 can also possess transient states, from which K can be reached
with probability 1. In this case, every set < = {j} with j ∈ K is a regeneration set, since

M satisfies the minorization condition M(<, p, r, ϕ) with r ∈ {n : p
(n)
jj > 0}, p = p

(r)
jj

and ϕ = δj.

If M is a discrete, irreducible Markov chain, then the successive return times to a
recurrent state form an identically and independently distributed (i.i.d.) sequence. At
each time the chain enters the state, it starts a new tour with the same distribution,
regardless of the preceding sample path. This leads to a decomposition of the chain
into cycles with i.i.d. distribution. Unfortunately this is not true in general, if the state
space is uncountable. But any Harris chain has or can be modified to have regeneration
epochs in some generalized sense. We introduce some definitions, which are known for
general stochastic processes.
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Definition 1.8 Let X = (Xt)t∈Γ be a discrete- or continuous-time stochastic pro-
cess with state space E (Γ = IN0 or IR+

0 ). Assume that there are random times
0 = τ0 < τ1 < τ2 < · · · < ∞ a.s. Consider cycles Zn := (τn+1−τn, (Xt)τn≤t<τn+1), n ≥ 0.

(i) We call X or the pair (τ, X) wide-sense regenerative, if the cycles Zn, n ≥ 1, are
identically distributed and the sequence (Zk)k≥n does not depend on (τ0, τ1, · · · , τn) for
n ≥ 1:

(ii) A wide-sense regenerative process X or (τ, X) is called classical-sense regener-
ative, if the cycles Zn, n ≥ 0, are independent:

(iii) X or (τ, X) is called l-dependent regenerative, if the cycles Zn, n ≥ 0, are
l-dependent and identically distributed for n ≥ 1.

In each case of (i)-(iii), the random times τn, n ≥ 0, are called regeneration epochs.
If further the cycles Zn, n ≥ 0, are identically distributed, then we say that X is
zero-delayed. A (wide-sense or l-dependent) regenerative process X with regeneration
epochs τn, n ≥ 0, is called positive recurrent, if IE (τ2 − τ1) < ∞, and null recurrent,
otherwise.

Note that a l-dependent regenerative process X is always one-dependent regenera-
tive, since to a given l-dependent cycles Zn with regeneration epochs τn, n ≥ 0, one can
associate new cycles Ẑn := (Zk)τln≤k<τl(n+1)

, n ≥ 0, which are one-dependent. If (τ, X)
is wide-sense regenerative, then the sequence of regeneration epochs (τn)n≥0 forms a
renewal process, which is called the embedded renewal process.

Remark 1.9 A wide-sense regenerative process with one-dependent cycles is often
called weak regenerative.

Suppose that (τ,X) is positive recurrent, wide-sense regenerative and that there
exists a distribution IP0 such that

IP0

((
(τn)n≥0, (Xt)t∈Γ

) ∈ ·
)

= IP
((

(τn − τ1)n≥0, (Xτ1+t)t∈Γ

) ∈ ·
)
.

Denote by θt, t ∈ Γ, shift-operators defined as θtX = (Xt+u)u≥0. Let IP∗ be the distri-
bution defined as

IP∗(·) =
1

IE0 τ1

IE0

(∫ τ1

0

1(θtX ∈ · ) dt

)
,

if Γ = IR+
0 , and

IP∗(·) =
1

IE0 τ1

IE0

(
τ1−1∑
n=0

1(θnX ∈ · )
)

,

if Γ = IN0, where IE0 means the expectation under the distribution IP0. It is known (
see Kalashnikov [32] or Thorisson [63]) that, if Γ = IR+

0 and the distribution IP0(τ1 ∈ · )
is spread out, then

lim
t→∞

‖IP(θtX ∈ · )− IP∗‖ = lim
t→∞

‖IP0(θtX ∈ · )− IP∗‖ = 0.



10CHAPTER 1. INTRODUCTION TO THE THEORY OF GENERAL MARKOV CHAINS

If Γ = IN0 and the span of τ1 under IP0 is 1, then

lim
n→∞

‖IP(θnX ∈ · )− IP∗‖ = lim
n→∞

‖IP0(θnX ∈ · )− IP∗‖ = 0.

Regenerative processes play an important role in applied probability. There are
plenty of literature on regenerative processes. A standard reference for regenerative
processes is Thorisson [63]. Sigman and Wolf [60] give an expository survey including
applications to the queueing theory.

We now return to Harris chains. The following proposition says that a Harris chain
is wide-sense as well as one-dependent regenerative.

Proposition 1.10 (Regeneration lemma) Given a Harris chain (Mn)n≥0, there
exist a filtration (Fn)n≥0 and a sequence (τn)n≥0 of random times, which have the
following properties:

(i) 0 = τ0 < τ1 < τ2 < · · · < ∞ a.s. under IPλ for any distribution λ on E;

(ii) (Mn)n≥0 is Markov-adapted and each τk a stopping time with respect to (Fn)n≥0;

(iii) under each IPs, s ∈ E, the Mτn are independent for n ≥ 0 and further identi-
cally distributed with common distribution ζ(·) = IPλ(Mτ1 ∈ ·) for any initial distribu-
tion λ and for n ≥ 1;

(iv) for each n ≥ 0 and s ∈ E

IP [(τn+j − τn,Mτn+j)j≥0 ∈ · |Fτn ] = IPMτn
((τj,Mj)j≥0 ∈ · ) IPs-a.s.;

(v) (τn+j − τn, Mτn+j)j≥0 is independent of τ0, · · · , τn for each n ≥ 0.

Proof. The sequence of random times (τn)n≥0 can be obtained by the splitting
technique, which was suggested by Athreya and Ney [15]. The construction requires in
general enlarging the probability space to support the new Bernoulli random variables.
Suppose that M satisfies the minorization condition M(<, p, r, ϕ). Starting at any
state, the chain M hits < eventually. Conditional on doing so, the distribution of the
transition r steps later can be written as

Pr(s, · ) = pϕ(·) + (1− p)P̄r(s, · ),
where

P̄r(s, · ) = (1− p)−1(Pr(s, · )− pϕ(·)).
Let ηn, n ≥ 0, be i.i.d. {0, 1}-valued random variables with IPs(ηn = 1) = p. Thus if
Mn ∈ <, then Mn+r is generated according to ϕ if ηn = 1 and according to P̄r(s, · ),
otherwise. The missing values of Mn+1, · · · ,Mn+r−1 are generated according to the
conditional distribution given Mn and Mn+r, which exists on a Polish state space.
If Mn 6= <, then Mn+1 is generated according to P(Mn, · ). Random times τn, n ≥ 0,
are defined recursively:

τ0 = 0 and τn := inf{k ≥ τn−1 + r : Mk−r ∈ <, ηk−r = 1}, n ≥ 1.
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Then the properties (i)-(v) are fulfilled with ζ(·) := ϕ(·) = IPλ(Mτ1 ∈ · ) for any initial
distribution λ. For details we refer to Alsmeyer [1], Kalashnikov [32] or Lindvall [35].

QED

We say that a sequence (τn)n≥0 forms a sequence of regeneration epochs for (Mn)n≥0,
if it satisfies properties (i) through (iv) in Proposition 1.10. In Alsmeyer [1] , it is shown
that a Markov chain M is Harris recurrent, if (thus if and only if) it possesses a sequence
of regeneration epochs. Note that a Harris chain M is d-periodic, if the span of τ1 is d
under IPζ , where τ1 is a regeneration epoch constructed by the splitting technique (see
Proposition 3.10 in Asmussen [12]).

Remark 1.11 In the proof of Proposition 1.10, we have considered the bivariate
Markov chain M̃ := (Mn, ηn)n≥0 with state space (E × {0, 1}, E ⊗ P({0, 1})) to get
regeneration epochs. If M is strong aperiodic, then transition kernel P̃ of M̃ can be
given through

P̃((s, 0), A× {θ}) =

{
(pθ + (1− p)(1− θ))P(s, A) : s /∈ <
(pθ + (1− p)(1− θ))P̄(s, A) : s ∈ <

P̃((s, 1), A× {θ}) =

{
(pθ + (1− p)(1− θ))P(s, A) : s /∈ <
(pθ + (1− p)(1− θ))ϕ(A) : s ∈ <,

for any A ∈ E , θ ∈ {0, 1}, where P̄ is defined in Proposition 1.10. In this case M is
classical-sense regenerative. For the construction of P̃ in the general case, see Kalash-
nikov [32].

Remark 1.12 Borovkov introduced renovative processes (see Chapter 3 in
Borovkov [19] or Foss and Kalashnikov [27]). Let (Yn)n≥0 be a sequence of random
variables on E defined by the recursive relation

Yn+1 = f(Yn, Xn), n ≥ 0,

where (Xn)n≥0 is a sequence of i.i.d. random variables taking values from a Polish
space E ′ and the mapping f : E × E ′ → E is supposed to be measurable. Note that
the sequence (Yn)n≥0 forms a temporally homogeneous Markov chain on E. Denote by
fk the kth iteration of f : For any y ∈ E, (x0, · · · , xk) ∈ (E ′)k+1,

f1(y, x0) = f(y, x0);

fk+1(y, x0, · · ·xk) = f(fk(y, x0, · · · , xk−1), xk), k ≥ 1.

Suppose that there exist an integer r > 0 and measurable sets Br ⊂ E ′, C ∈ E such
that for any y, y′ ∈ C and (x1, · · · , xr) ∈ Br

fr(y, x0, · · · , xr−1) = fr(y
′, x0, · · · , xr−1).

Define events

Cn = {Yn ∈ C}, Bn = {(Xn−r, · · · , Xn−1) ∈ Br}, n ≥ r, An = Cn−r ∩Bn.
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The events An, n ≥ 0, are called renovative and their occurrence times the reno-
vation times. Suppose that IP(Br) > 0. Let further ηr be the common value of
fr(y, x0, · · · , xr−1) for y ∈ C, and ζ a distribution defined as

ζ(·) = IP [ηr ∈ · |Br].

Then the chain (Yn)n≥0 satisfies the minorization condition

IPs(Yr ∈ A) ≥ IP(Br) ζ(A) for all s ∈ C, A ∈ E .

Thus if C is a recurrent set of (Yn)n≥0, then (Yn)n≥0 is Harris recurrent and the sequence
of random variables (τn)n≥0 given as

τ0 = 0 and τn = inf{k ≥ τn−1 + r : 1(Ak) = 1}, n ≥ 1,

forms a sequence of regeneration epochs.

From the existence of regeneration epochs for Harris chains one can construct a
stationary measure, which is unique up to constant multiples.

Proposition 1.13 With the same notations as in Proposition 1.10, the measure

ξ(·) := IEζ

(
τ1−1∑
n=0

1(Mn ∈ ·)
)

, (1.2)

defines a stationary measure for P, which is unique up to constant multiples.
If IEζ τ1 < ∞, then ξ∗ := (IEζ τ1)

−1 ξ is the unique stationary distribution for P.

Proof. See Satz 8.3.1, Satz 8.3.2 in Alsmeyer [1]. QED

A Harris chain (Mn)n≥0 is called positive Harris recurrent, if M has a stationary
distribution.

Remark 1.14 A continuous-time Markov process (Mt)t≥0 is called a Harris process,
if it is ϕ-recurrent for some σ-finite measure ϕ, i.e., for any A ∈ E with ϕ(A) > 0,

IPs

(∫ ∞

0

1(Mt ∈ A) dt = ∞
)

= 1, s ∈ E.

Sigman [57] showed that, if a Markov process is one-dependent regenerative, it is a
Harris process. It is also known that a Harris process has a unique (up to a multiplica-
tive constant) stationary measure ξ. A Harris process with a finite stationary measure
ξ is called positive Harris recurrent.

In Proposition 1.10 we have constructed regeneration epochs for a Harris chain
from a minorization condition and the first return time to the regeneration set. It is
thus reasonable, to expect some relations between moments of the regeneration epochs
constructed by the splitting technique from a regeneration set and the first return time
to the regeneration set. We need the following lemma.
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Lemma 1.15 Let (Xn)n≥0 be a sequence of real valued random variables adapted
to a filtration (Fn)n≥0 and τ an a.s. finite stopping time w.r.t. (Fn)n≥0.

(i) Let α ≥ 1. If there exist l1 > 0 and l2 > 0 such that

IE[|Xn|α|Fn−1] ≤ l1 < ∞ and IE[τα|F0] ≤ l2 < ∞

for all n ≥ 1, then

IE
[( τ∑

n=1

|Xn|
)α

|F0

]
≤ c l1l2 < ∞

for some constant c.

(ii) Let γ > 0. If there exists l > 0 such that

IE
[
exp(γXn)|Fn−1

]
≤ l < ∞

for all n ≥ 1, then

IE
[
exp

(γ

2

τ∑
n=1

Xn

)∣∣F0

]
≤ {

IE[lτ |F0]
}1/2

.

Proof. (i) See Theorem 1 in Borovkov and Utev [20].

(ii) The assertion can be deduced from Theorem 2 in Borovkov and Utev [20], but
we give a simple proof. Let

Rn = l−n exp
(
γ

n∑

k=1

Xk

)
.

Then the sequence (Rn)n≥1 forms a positive supermartingale, and by the optional sam-
pling theorem the sequence (Rn∧τ )n≥1 also a positive supermartingale with IE [Rn|F0] ≤
1 for any n ≥ 1, which implies IE [Rn∧τ |F0] ≤ 1 for any n ≥ 1. Thus, by Fatou’s lemma,
IE [Rτ |F0] ≤ 1, since limn→∞ Rn∧τ = Rτ a.s. Using Hölder’s inequality, we have

IE
[
exp

(γ

2

τ∑
n=1

Xn

)∣∣F0

]
= IE

[
R1/2

τ lτ/2|F0

] ≤ {
IE [lτ |F0]

}1/2
.

QED

The following assertions may be known, but we give full proofs, because we find no
adequate proofs in literature.

Proposition 1.16 Let M be a Harris chain satisfying the minorization condition
M(<, p, r, ϕ) and (τn)n≥0 a sequence of regeneration epochs constructed by the splitting
technique from the minorization condition.
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(i) Let α ≥ 1. If sups∈< IEs (τ(<))α < ∞, then sups∈< IEs τα
1 < ∞.

(ii) Let γ > 0. If sups∈< IEs exp(γτ(<)) < ∞, then sups∈< IEs exp(γ′τ1) < ∞ for
some γ′ > 0.

(iii) If < = E, then sups∈E IEs τα
1 < ∞ for any α ≥ 1 and sups∈E IEs exp(γτ1) < ∞

for some γ > 0.

Proof. (i) A proof for the case r = 1, α = 1 can be found in Borovkov [20], for
example. To show the assertion for r ≥ 2, α ≥ 1, let M̃ = (Mn, ηn)n≥0 be the Markov
chain constructed in Proposition 1.10 (see also Remark 1.11). The transition kernel P̃
of M̃ satisfies

P̃r
(
(s, θ), A× {0, 1}) =

{
(1− p)−1

(
Pr(s, A)− pϕ(A)

)
: s ∈ <, θ = 0

ϕ(A) : s ∈ <, θ = 1,

Furthermore, if s /∈ <, then P̃
(
(s, θ), A × {0, 1}) = IP(s, A) for any θ ∈ {0, 1}. Let

τ̃n, n ≥ 1, be the random variables defined as

τ̃1 = τ(<) and τ̃n = inf{k ≥ r + τ̃n−1 : M̃k ∈ < × {0, 1}}, n ≥ 2.

We set τ̃0(<) = 0. Let further ν be a random variable defined as

ν := inf{k : M̃τ̃k
∈ < × {1}}.

By the geometric trial argument

IP (ν = k) = p(1− p)k−1, k ≥ 1.

From the construction of τ1, it is easy to see that for any s ∈ <
IEs τα

1 ≤ sup
(s,θ)∈<×{0,1}

IE(s,θ)

(
τ̃ν + r

)α

= sup
s∈<

IE(s,0)

(
τ̃ν + r

)α

≤ sup
s∈<

IE(s,0)

(
ν∑

n=1

(
τ̃n − τ̃n−1

)
+ r

)α

,

since IE(s,1) τα
1 = rα for any s ∈ <. Let Gn := σ

(
M̃k : k ≤ τ̃n

)
for n ≥ 1. Then, for

each n ≥ 1,

IE
[(

τ̃n+1 − τ̃n

)α∣∣Gn

]

≤ sup
s∈<

{
rαP̃r

(
(s, 0),<× {0, 1}) +

∫

<c

IEs′
(
r + τ(<)

)α
P̃r

(
(s, 0), ds′ × {0, 1})

}

≤ 1

1− p
sup
s∈<

{
rαPr(s,<) +

∫

<c

IEs′
(
r + τ(<)

)α
Pr(s, ds′)

}

≤ 1

1− p
sup
s∈<

IEs

(
r + τ(<)

)α
< ∞.
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Since IE να < ∞ for any α ≥ 1, we have sups∈< IEs τα
1 < ∞ by Lemma 1.15 (i).

(ii) For any s ∈ <
IEs exp(γτ1) ≤ sup

(s,θ)∈<×{0,1}
IE(s,θ) exp

(
γ(r + τ̃ν)

)

≤ sup
s∈<

IE(s,0) exp

(
γ
(
r +

ν∑
n=1

(
τ̃n − τ̃n−1

))
)

.

As in (i), for each n ≥ 1

IE
[
exp

(
γ
(
τ̃n+1 − τ̃n

))∣∣Gn

]
≤ 1

1− p

{
sup
s∈<

IEs exp
(
γ(r + τ)

)− p

}
.

Moreover, by assumption, there exists a γ′′, 0 < γ′′ ≤ γ, such that

sup
s∈<

IEs exp
(
γ′′

(
2r + τ(<)

))
< 1 +

p

2
.

Letting

L :=
1

1− p

{
sup
s∈<

IEs exp
(
γ′′

(
2r + τ(<)

))− p

}
,

for any s ∈ <
IEs Lν ≤

∞∑
n=1

Ln p(1− p)n−1 < ∞.

Put γ′ = γ′′/2. Then, by Lemma 1.15 (ii), for any s ∈ <

IEs exp(γ′τ1) ≤ IE(s,0) exp

(
γ′

(
r +

ν∑
n=1

(
τ̃n − τ̃n−1

))
)

≤
{

sup
s∈<

IEs

( 1

1− p

(
sup
s∈<

IEs exp
(
γ′′(2r + τ(<))

)− p
))ν

}1/2

≤
{

sup
s∈<

IEs Lν

}1/2

< ∞.

(iii) Clear from the proofs of (i) and (ii), since τ(<) = 1. QED

The following proposition states the strong law of large numbers (SLLN) for real
functions of Harris chains.

Proposition 1.17 Let M be a positive Harris chain with a stationary distribution
ξ. Consider a sequence of random variables (Yn)n≥0 with Yn := f(Mn), n ≥ 0, for a
measurable, nonnegative real-valued function f . Then

lim
n→∞

1

n

n∑

k=0

Yk = IEξY1 IPλ-a.s.

for any initial distribution λ on E.

Proof. See Theorem 4.3.6 in Revuz [53]. QED
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1.4 Ergodicity

Definition 1.18 Let M be a Markov chain with transition kernel P and denote by
Mλ a Markov chain with transition kernel P and initial distribution λ.

(i) We say that M admits coupling, if for any two initial distributions µ and λ there
exist Markov chains Mµ and Mλ on a common probability space such that

Mµ
n = Mλ

n , n ≥ T,

where T is a finite random time.

(ii) We say that M admits shift-coupling, if for any two initial distributions µ and
λ there exist Markov chains Mµ and Mλ on a common probability space such that

Mµ
T+n = Mλ

T ′+n, n ≥ 0,

where T and T ′ are finite random times.

The following two propositions give characterizations of Harris chains.

Proposition 1.19 Let M be a general Markov chain with a stationary distribution
ξ. Then the following assertions are equivalent:

(i) M admits shift-coupling;

(ii) for any initial distribution λ the distribution of M converges to ξ in Cesaro
total variation, i.e.,

lim
n→∞

∥∥∥∥∥
1

n + 1

n∑

k=0

IPλ (Mk ∈ · )− ξ

∥∥∥∥∥ = 0;

(iii) M is positive Harris recurrent.

Proof. For the equivalence of (i) and (ii) see Theorem 5.5.4 in Thorisson [63]. The
equivalence of (i) and (iii) follows from Theorem 10.4.6 in Thorisson [63]. QED

If M is positive Harris recurrent and aperiodic, then it is called Harris ergodic.

Proposition 1.20 Let M be a general Markov chain with a stationary distribution
ξ. Then the following assertions are equivalent:

(i) M admits coupling;

(ii) for any initial distribution λ the distribution of M converges to ξ in total vari-
ation, i.e.,

lim
n→∞

‖IPλ (Mn ∈ · )− ξ‖ = 0;

(iii) M is Harris ergodic.
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Proof. For the equivalence of (i) and (ii) see Theorem 6.4.1 in Thorisson [63]. The
equivalence of (i) and (iii) follows from Proposition VII 3.13 in Asmussen [12]. QED

It is known that rates of convergence of regenerative processes are closely related
to moments of regeneration epoch. For details see Lindvall [35], Kalashnikov [32] and
Thorisson [63].

The following assertions are known.

Proposition 1.21 Let M be a Harris ergodic Markov chain with a stationary dis-
tribution ξ and τ1 the first regeneration epoch constructed by the splitting technique.
Let further ϕ be the distribution defined as ϕ(·) = IPλ(Mτ1 ∈ · ).

(i) If IEϕ τα+1
1 < ∞ for some α > 0, then for some constant c

‖IPϕ(Mn ∈ · )− ξ‖ ≤ cn−α.

(ii) If IEϕ exp(γτ1) < ∞ for some γ > 0, then for some constants c and γ′ ∈ (0, γ]

‖IPϕ(Mn ∈ · )− ξ‖ ≤ c exp(−γ′n).

(iii) Let λ and µ be initial distributions on E. If for some α ≥ 1

IEλ τα
1 < ∞, IEµ τα

1 and IEϕ τα
1 < ∞,

then
lim

n→∞
nα‖IPλ(Mn ∈ · )− IPµ(Mn ∈ · )‖ = 0.

Proof. See Corollary 5.1.1 in Kalashnikov [32] for the proof of (i) and (ii), and
Theorem 10.7.5 in Thorisson [63] for (iii). QED

Corollary 1.22 Let M be a Harris ergodic Markov chain with a stationary distri-
bution ξ and < a regeneration set.

(i) Let α > 0. If sups∈< IEs(τ(<))α+1 < ∞, then for some constant c

‖IPϕ (Mn ∈ · )− ξ‖ ≤ cn−α.

(ii) Let γ > 0. If sups∈< IEs exp(γτ(<)) < ∞, then for some constants c and γ′ > 0

‖IPϕ (Mn ∈ · )− ξ‖ ≤ c exp(−γ′n).

Proof. All assertions follow directly from Proposition 1.16 and Proposition 1.21.

QED
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A Markov chain M is called uniformly ϕ-recurrent, if it satisfies the condition

sup
s∈E

IPs (τ(A) > n) → 0 as n →∞

for any A ∈ E with ϕ(A) > 0.

Proposition 1.23 The following conditions are equivalent:

(i) M is uniformly ϕ-recurrent and aperiodic;

(ii) M is aperiodic and E is a regeneration set, i.e., there exist an integer n0 ≥ 1,
a constant α > 0 and a distribution ψ such that

sup
s∈E

IPs (Mn0 ∈ · ) ≥ αψ(·);

(iii) there exist positive constants c < ∞ and ρ < 1 such that

‖IPs (Mn ∈ · )− ξ‖ < cρn

for any n ≥ 0 and s ∈ E.

Proof. See Theorem 6.15 in Nummelin [46]. QED

If one of the conditions (i) through (iii) of Proposition 1.23 holds true, M is called
uniformly (Harris) ergodic.



Chapter 2

Markov random walks

A Markov random walk (MRW) is a bivariate sequence (Mn, Sn)n≥0 consisting of
a temporally homogeneous Markov chain M = (Mn)n≥0 with arbitrary state space
(E, E) and a sequence (Sn)n≥0 of real random variables, whose increments X0, X1, · · · ,
say, are distributionally governed by M . The latter means that X0, X1, · · ·, are con-
ditionally independent given M and that the conditional distribution of Xn given M
depends only on Mn−1 and Mn for n ≥ 1 (on M0 alone, if n = 0). The special case,
where M is constant, leads back to ordinary random walks having i.i.d. increments.
Since Markov modulation, as opposed to the i.i.d. case, offers greater flexibility in
the modeling of fluctuations of additive random sequences without losing too much
structural homogeneity, it is not surprising that MRW’s have become a popular tool to
provide more flexible and thus realistic models in areas like risk theory and queueing
theory. The special case of finite modulation (E finite) has been extensively studied by
various authors like Pyke, Cinlar and Arjas, and there is now a well developed theory
for this case as to renewal and fluctuation theoretic aspects. Roughly speaking, if M
has finite state space, then much of the theory can be obtained in an elegant manner
via regenerative decomposition and subsequently resort to classical results for ordinary
random walks. Unfortunately, this is not true to the same extent, when M has infinite,
possibly uncountable state space, whence the theory in this case has not yet reached
comparable maturity. This chapter deals with MRW’s driven by general state space
Markov chains including reflected MRW’s. Throughout this chapter, the driving chain
M is always assumed to be positive Harris recurrent with general state space (E, E)
and a unique stationary distribution ξ, unless stated otherwise.

2.1 Markov random walks

In this section we review the fundamental aspects of MRW’s driven by general
Markov chains. Our discussion is based on Arjas [6, 7], Arjas and Speed [8, 9].

19
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2.1.1 Definitions

A mapping K : E × (E × B) → [0, 1] is called a semi-Markov transition kernel, if

(i) s 7→ K(s, A×B) is bounded, E × B-measurable for any A×B ∈ E ⊗ B;

(ii) A×B 7→ K(s, A×B) is a probability measure on E × B for any s ∈ E.

We define the composition K1K2 of semi-Markov transition kernels K1 and K2 as

(K1K2)(s, A×B) :=

∫

E

∫

IR

K2(s
′, A×(B−x))K1(s, ds′×dx), s ∈ E, A×B ∈ E⊗B.

The n-step iterates of a semi-Markov transition kernel K, n ≥ 0, are defined recursively

K0 = I and Kn = Kn−1K, n ≥ 1,

where the kernel I is defined as

I(s, A×B) = δs(A) δ0(B), s ∈ E, A×B ∈ E ⊗ B.

A Markov random walk (MRW) or Markov additive process (MAP)1 is a bivariate
Markov chain (Mn, Sn)n≥0 with transition kernel Q of the form

Q((s, x), A×B) = K(s, A× (B − x)), (s, x) ∈ E × IR, A×B ∈ E ⊗ B,

for some semi-Markov transition kernel K.
For any B ∈ B, define the operator Q(B) on the set of nonnegative measurable func-
tions F+(E) as

(Q(B)f)(s) :=

∫

E

f(s′)K(s, ds′ ×B), s ∈ E, f ∈ F+(E).

1A continuous-time Markov additive process can be defined in a similar manner. Let {Kt : t ≥ 0}
be a family of semi-transition kernels such that

Kt(s,A×B) =
∫

E×IR

Kt−t′(s′, A× (B − x))Kt′(s, ds′ × dx)

for any t′ < t, t, t′ ∈ IR+
0 , s, s′ ∈ E, x ∈ IR, A ∈ E , B ∈ B. A Markov additive process (Mt, St)t≥0 is a

bivariate Markov process with transition semigroup (Qt)t≥0 defined as

Qt(s, x; A×B) = Kt(s,A× (B − x)), (s, x) ∈ E × IR, A×B ∈ E ⊗ B, t ≥ 0

for a family of semi-transition kernels {Kt : t ≥ 0}. It is clear that (Mt)t≥0 is a Markov process with
the transition semigroup (QM

t )t≥0 defined as

QM
t (s, A) = Qt(s,A× IR), s ∈ E, A ∈ E , t ≥ 0.

Furthermore, it is known that, given the process (Mt)t≥0, the process (St)t≥0 has independent incre-
ments, that is,

IE
[
Πn

i=1hi(Sti − Sti−1)|F
]

= Πn
i=1IE

[
hi(Sti − Sti−1)|F

]
,

for any n ≥ 1, 0 ≤ t0 < t1 < · · · < tn and bounded measurable functions h1 · · · , hn on E, where F
denotes the canonical filtration for (Mt)t≥0.
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In particular, we have for any A ∈ E
(Q(B)1A)(s) = K(s, A×B), s ∈ E.

A MRW (Mn, Sn)n≥0 is called a Markov renewal process, if the increments Sn+1−Sn, n ≥
0, of its additive part are a.s. positive, i.e., if Q((s, 0), E × (0,∞)) = 1 for all s ∈ E.
The Markov chain (Mn)n≥0 is called the driving chain or underlying Markov chain.
Obviously a renewal process is equivalent to the special case of a Markov renewal
process with a one-state driving chain. If (N(t))t≥0 denotes the counting process for a
Markov renewal process (Mn, Sn)n≥0, i.e.,

N(t) := sup{n ≥ 0 : Sn ≤ t}, t ≥ 0,

then the process (MS
t )t≥0 defined by MS

t = MN(t), t ≥ 0, is called a semi-Markov
process.

The sequence of increments Xn := Sn − Sn−1, n ≥ 1, of the additive part plays an
important role in the theory of MRW’s. Putting X0 = S0, the process (Mn, Xn)n≥0

forms a temporally homogeneous Markov chain with transition kernel P : E×(E⊗B) →
[0, 1] satisfying

P(s, A×B) = IP [M1 ∈ A, X1 ∈ B|M0 = s], s ∈ E, A×B ∈ E ⊗ B.

One can easily see that (Mn+1, Xn+1) depends on the past only through Mn for each
n ≥ 0 and that (Mn)n≥0 forms a Markov chain with state space E and the transition
kernel PM defined as

PM(s, A) := P(s, A× IR), s ∈ E, A ∈ E .

Given (Mn)n≥0, the Xn, n ≥ 0, are conditionally independent with

IP [Xn ∈ B|(Mj)j≥0] = F(Mn−1,Mn, B) IP− a.s.,

for all n ≥ 1, B ∈ B and a kernel F : E2×B → [0, 1]. The process (Mn, Xn)n≥0 is called
a Markov modulated sequence with the driving chain (Mn)n≥0.

Let throughout a canonical model be given with probability measures IPs,x, (s, x) ∈
E × IR, on (Ω,S) such that IPs,x (M0 = s,X0 = x) = 1. For any distribution λ on
E × IR, define

IPλ (·) :=

∫

E×IR

IPs,x (·) λ(ds, dx),

in which case (M0, X0) has the initial distribution λ. The expectation under IPλ is
denoted by IEλ. For s ∈ E and an initial distribution λ on E, we write IEs and IEλ

instead of IEs,0 and IEλ⊗δ0 , respectively.

For any C ∈ B, σ(C) denotes the first return time of (Mn,Wn)n≥0 to E × C. For

each fixed C ∈ B and n ≥ 1, we define the probability distributions H
(n)
C (s, A; B) and

G
(n)
C (s, A; B) as

H
(n)
C (s, A; B) = IPs (Mn ∈ A, Sn ∈ B, σ(C) > n);

G
(n)
C (s, A; B) = IPs (Mn ∈ A, Sn ∈ B, σ(C) = n), s ∈ E, A ∈ E , B ∈ B.
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One can easily see that

∫

E

∫

IR

Q(s′, A× (B − x′))H(n)
C (s, ds′; dx′) = H

(n+1)
C (s, A; B) + G

(n+1)
C (s, A; B).

Define the corresponding transforms Ĥ
(α,β)
C and Ĝ

(α,β)
C as

Ĥ
(α,β)
C (s, A) =

∞∑
n=0

αn

∫ ∞

0

eβx H
(n)
C (s, A; dx)

= IEs




σ(C)−1∑
n=0

αn eβSn ; Mn ∈ A


 ;

Ĝ
(α,β)
C (s, A) =

∞∑
n=0

αn

∫ ∞

0

eβx G
(n)
C (s, A; dx)

= IEs

(
ασ(C)eβSσ(C) ; Mσ(C) ∈ A, σ(C) < ∞)

for any s ∈ E, A ∈ E . Further, define

HC(s, A; B) =
∞∑

n=0

H
(n)
C (s, A; B) and GC(s, A; B) =

∞∑
n=0

G
(n)
C (s, A; B).

In particular, if B = IR, then we write HC(s, A) and GC(s, A) instead of HC(s, A; IR)
and GC(s, A; IR), respectively. Obviously, we have

HC(s, A) = Ĥ
(1,0)
C (s, A) and GC(s, A) = Ĝ

(1,0)
C (s, A), s ∈ E,A ∈ E .

2.1.2 The Harris recurrence of Markov modulated sequences

Nummelin [45] has shown that a Markov modulated sequence (Mn, Xn)n≥0 is posi-
tive Harris recurrent and that the measure ν defined as

ν(A×B) :=

∫

E

IP(s, A×B) ξ(ds), A×B ∈ E ⊗ B,

is a unique stationary distribution for (Mn, Xn)n≥0. Furthermore, a coupling argument
shows that (Mn, Xn)n≥0 is also Harris ergodic, provided that M is Harris ergodic.

Sometimes one needs to consider the sequence (Mn, Xn+1)n≥0. In this case, it turns
out that regeneration epochs for M are also regeneration epochs for (Mn, Xn+1)n≥0.

Proposition 2.1 Let (τn)n≥0 be a sequence of regeneration epochs for (Mn)n≥0.
Then the sequence (Mn, Xn+1)n≥0 is one-dependent as well as wide-sense regenerative
with regeneration epochs τn, n ≥ 0, and for any initial distribution λ

IPζ ((Mk, Xk+1)k≥0 ∈ · ) = IPλ ((Mτn+k, Xτn+k+1)k≥0 ∈ · ) , n ≥ 1,
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where ζ(·) = IPλ(Mτ1 ∈ · ).
If the state space E is countable, then (Mn, Xn+1)n≥0 is classical-sense regenerative.

Proof. Consider the cycles Zn defined as

Zn :=
(
τn+1 − τn, (Mk, Xk+1)τn≤k<τn+1

)
, n ≥ 0.

Obviously the sequence (Zk)k≥n does not depend on (τ0, τ1, · · · , τn) for any n ≥ 1.
Moreover, by conditional independence of (Xn)n≥0 given (Mn)n≥0, one can easily see
that for any n ≥ 1 and any initial distribution λ

IPλ(Zn ∈ · ) =

∫

E

IPs(Z0 ∈ · ) IPλ(Mτn ∈ ds) = IPζ(Z0 ∈ ·),

thus (Mn, Xn+1)n≥0 is wide-sense regenerative. On the other hand, for any initial
distribution λ and for any n ≥ 0

IPλ [Zn+2 ∈ · |Fτn+1 ] = IP
[
(τn+3 − τn+2, (Mk, Xk+1)τn+2≤k<τn+3) ∈ · |Mτn+1

]

= IPζ(Z0 ∈ · ),

where (Fn)n≥0 is the canonical filtration for the sequence (Mn, Xn)n≥0. Since Zn is
Fτn+1-measurable, the cycles Zn, n ≥ 0, are one-dependent. In particular, if M is
discrete, then there exists a recurrent state i0. Thus for any i ∈ E

IPi [Zn+1 ∈ · |Fτn+1 ] = IP
[
(τn+2 − τn+1, (Mk, Xk+1)τn+1≤k<τn+2) ∈ · |Mτn+1

]

= IPi0(Z0 ∈ · ),

which means that the cycles are independent. QED

Note that for any sequence of regeneration epochs (τn)n≥0 for (Mn)n≥0

IEξX1 =
1

IEζ τ1

IEζ

(
τ1−1∑
n=0

Xn+1

)
=

1

IEζ τ1

IEζ

(
τ1∑

n=1

Xn

)
,

where ζ(·) = IPλ(Mτ1 ∈ · ) for any initial distribution λ.

The SLLN for a MRW (Mn, Sn)n≥0 is a direct consequence of the Harris recurrence
of (Mn, Xn)n≥0 and Proposition 1.16. But we give a full proof, in which the structure
of one-dependence in MRW’s is exploited.

Proposition 2.2 (SLLN for MRW’s) Given a Markov modulated sequence
(Mn, Xn)n≥0, it holds that

lim
n→∞

Sn

n
= IEξ X1 IPλ − a.s.

for any initial distribution λ on E × IR.
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Proof. Let (τn)n≥0 be a sequence of regeneration epochs of (Mn)n≥0 and let ζ(·) =
IPλ (Mτ1 ∈ · ). We note first that for any initial distribution λ

IPλ

(
lim

n→∞
Sn

n
= IEξX1

)
= IPλ

(
lim

n→∞
Sτ1+n − Sτ1

n
= IEξX1

)
= IPζ

(
lim

n→∞
Sn

n
= IEξX1

)
.

Therefore it is sufficient to show the assertion only for IPζ .
By assumption, the sequence (S∗n)n≥1 := (Sτn)n≥1 has stationary increments X∗

n =∑τn

k=τn−1+1 Xk, n ≥ 1, which is one-dependent under IPζ and in turn, by Birkhoff’s
ergodic theorem, we have as n →∞

S∗n
n
→ IEζX

∗
1 = IEζ

(
τ1∑

k=1

Xk

)
= IEζ τ1 · IEξX1 IPζ − a.s.

Let T (n) := inf{k ≥ 0 : τk > n}. Then as n →∞
T (n)

n
→ 1

IEζ τ1

IPζ − a.s.,

whence

S∗T (n)

n
=

T (n)

n
·
S∗T (n)

T (n)
→ IEξ X1 and

S∗T (n)−1

n
→ IEξX1 IPζ − a.s.

The assertion follows from the inequality

S∗T (n)−1

n
≤ Sn

n
≤

S∗T (n)

n
.

QED

Let µ := IEξX1, which is called drift of the MRW (Mn, Sn)n≥0. As a direct conse-
quence of Proposition 2.2, we get for any initial distribution λ

µ < 0 ⇒ lim
n→∞

Sn = −∞ IPλ − a.s.; (2.1)

µ > 0 ⇒ lim
n→∞

Sn = +∞ IPλ − a.s. (2.2)

2.1.3 Maximum of MRW’s

Suppose that S0 = 0 hereafter and put

σ> := σ((0,∞)), σ≥ := σ([0,∞)), σ< := σ((−∞, 0)) and σ≤ := σ((−∞, 0]),

which are called the first strict ascending ladder epoch, the first weak ascending ladder
epoch, the first strict descending ladder epoch and the first weak descending ladder
epoch, respectively. If σ∗ is a.s. finite for ∗ ∈ {≥, >,≤, <}, one can also define, in an
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obvious manner, the nth ladder epochs σ∗n, n ≥ 1, with σ∗1 = σ∗.
Clearly σ∗n, n ≥ 1, are stopping times. For notational convenience, we write H

(n)
> , H

(n)
≥ ,

H
(n)
< and H

(n)
≤ instead of H

(n)
(0,∞), H

(n)
[0,∞), H

(n)
(−∞,0) and H

(n)
(−∞,0], respectively. The same

notational conventions are used also for G
(n)
(0,∞), G

(n)
[0,∞), G

(n)
(−∞,0) and G

(n)
(−∞,0] and their

transforms.

Consider the maximum of the partial sums

Sn := max
0≤k≤n

Sk.

Noting that, for 0 ≤ m ≤ n, Sm is maximal among the first n partial sums if and only
if Sm is the last strict ascending ladder height before n, it can be easily seen that for
all |α|, |β| < 1

∞∑
n=0

αn

∫

E

eβxIPs (Mn ∈ A, Sn ∈ dx)

=
∞∑

n=0

αn

n∑
m=0

∫

E

eβx IP [Mn ∈ A, Sm+1 − Sm ≤ 0, · · · , Sn − Sm ≤ 0|Mm = s′]

·IPs (Mm ∈ ds′, Sm ∈ dx, Sm ≥ 0, Sm > S1, · · · , Sm > Sm−1).

Thus we get the following equality, which was obtained by Arjas [7]:

∞∑
n=0

αn IEs

(
eβSn ; Mn ∈ A

)
=

∞∑
n=0

∫

E

Ĥ
(α,0)
> (s′, A)

(
Ĝ

(α,β)
>

)n

(s, ds′). (2.3)

Now consider
S := sup

n≥0
Sn.

For any s ∈ E,A ∈ E and x ∈ IR, we define

G0
>(s, A; (−∞, x)) = δs(A)δ0((−∞, x));

Gn
>(s, A; (−∞, x)) =

∫

E

∫ ∞

0

G>(s′, A; (−∞, x− y))Gn−1
> (s, ds′; dy), n ≥ 1.

Proposition 2.3 If µ < 0, then S is a.s. finite. Let τ := inf{n : Sn = S}. Then
for any s ∈ E, A ∈ E and x ∈ IR

IPs (Mτ ∈ A, Sτ < x) =
∞∑

n=0

∫

A

(1−G>(s′, E)) Gn
>(s, ds′; (−∞, x)) (2.4)

and

IEs eβS =
∞∑

n=0

∫

E

(
1−G>(s′, E)

) (
Ĝ

(1,β)
>

)n

(s, ds′). (2.5)
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Proof. Obviously Sτ = sup{Sσ>
n

: σ>
n < ∞}. Furthermore, by (2.1), Sτ is IPs,x-a.s.

finite for any (s, x) ∈ E × IR. Thus the probability that S is obtained in precisely n
ladder steps and at state in A and does not exceed x is given by

∫

A

(
1−G>(s′, E)

)
Gn

>(s, ds′; (−∞, x)).

Summing over all n, we get the equality (2.4), and multiplying by βn and summing
over all n, the equality (2.5) follows. QED

2.1.4 Time-reversal

Definition 2.4 A Markov chain (M̃n, S̃n)n≥0 with transition kernel Q̃ is called the
time-reversal of (Mn, Sn), if, for any B ∈ B, Q(B) and Q̃(B) are adjoint with respect
to ξ, i.e., for any f, g ∈ F+(E)

〈f,Q(B)g〉ξ = 〈Q̃(B)f, g〉ξ.

Obviously (M̃n, S̃n)n≥0 forms a MRW with driving chain (M̃n)n≥0.

Let Ĝ
(α,β)
R(>) be the kernel defined as

Ĝ
(α,β)
R(>)(s, A) = IE

[
ασ̃>

eβS̃σ̃> ; M̃σ̃> ∈ A, σ̃> < ∞|M̃0 = s, S̃0 = 0
]
, s ∈ E, A ∈ E ,

where σ̃> is the first strict descending ladder epoch for the MRW (M̃n, S̃n)n≥0. The
following assertion is due to Arjas and Speed [9].

Proposition 2.5 The kernels Ĥ
(α,β)
≤ and

∑∞
n=0

(
Ĝ

(α,β)
R(>)

)n

are mutually adjoint with

respect to ξ, i.e.,

〈f, Ĥ
(α,β)
≤ g〉ξ = 〈

∞∑
n=0

(
Ĝ

(α,β)
R(>)

)n

f, g〉ξ

for any f, g ∈ F+(E).

Proof. Let

G̃(n)(s, A×B) = IP
[
M̃n ∈ A, S̃n − S̃k > 0, k < n, S̃n ∈ B|M̃0 = s, S̃0 = 0

]
.

Then for any f, g ∈ F+(E)

〈f,H
(n)
≤ (· , · ; B)g〉ξ = IEξ

(
f(M0)g(Mn)1B(Sn)1{S1>0,···,Sn>0}

)

= IEξ

(
f(M̃n)g(M̃0)1B(S̃n)1{S̃n−S̃k>0,··· ,S̃n>0}

)

= 〈G̃(n)(· , · ×B)f, g〉ξ,
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because for any n ≥ 0

(Mk, Sk)0≤k≤n ∼ (M̃n−k, S̃n − S̃n−k)0≤k≤n.

Note that for any s ∈ E, A ∈ E
∞∑

n=0

αn

∫
eβxG̃(n)(s, A× dx)

=
∞∑

n=0

αn

∫
eβxIP

[
M̃n ∈ A, S̃n − S̃k > 0, k < n, S̃n ∈ B|M̃0 = s, S̃0 = 0

]

=
∞∑

n=0

αn

∫ ∞

0

eβxIP
[
M̃n ∈ A, n = σ̃>

m for some m ≥ 1, S̃n ∈ dx|M̃0 = s, S̃0 = 0
]

=
∞∑

n=0

(
Ĝ

(α,β)
R(>)

)n

(s, A),

where σ̃>
m denotes the mth strict ascending ladder epoch of the MRW (M̃n, S̃n)n≥0.

The assertion follows from

〈f, Ĥ
(α,β)
≤ g〉ξ = 〈f,

∞∑
n=0

αn

∫
eβxH

(n)
≤ ( · , · ; dx)g〉ξ

=
∞∑

n=0

αn

∫
eβx〈f,H

(n)
≤ ( · , · ; dx)g〉ξ

=
∞∑

n=0

αn

∫
eβx〈G̃(n)( · , · × dx)f, g〉ξ

= 〈
∞∑

n=0

(
Ĝ

(α,β)
R(>)

)n

f, g〉ξ.

QED

If the state space E is countable, then the time-reversal (M̃n, S̃n)n≥0 is defined by
the transition kernel matrix Q̃ = (q̃ij)i,j∈E with

q̃ij(B) = IP [M̃1 = j, S̃1 ∈ B|M̃0 = i, S̃0 = 0]

= IP [M1 = i, S1 ∈ B|M0 = j, S0 = 0], B ∈ B.

In this case, Proposition 2.5 can be written in the matrix form:

(
I − Ĝ

(α,β)
R(>)

)−1

= ∆−1
ξ Ĥ

(α,β)
≤ ∆ξ,

where I denotes the identity matrix.
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2.2 Reflected Markov random walks

A reflected MRW appears naturally as the waiting time process in a Markov mod-
ulated queueing system. As known a reflected random walk (Wn)n≥0 with negative
drift is classical-sense regenerative, where the weak descending ladder epochs of the
associated random walk are regeneration epochs. In that case many problems on re-
flected random walks can be attacked by the analysis of the weak descending ladder
epoch. In the Markov modulated case, it is not true to the same extent in general. But
Alsmeyer [4] showed that a reflected MRW with negative drift possesses a sequence
of regeneration epochs, which are expressed in terms of the weak descending ladder
epochs σn, n ≥ 0, and regeneration epochs for (Mσn)n≥0.

In this section we review some elementary properties of reflected MRW’s and exam-
ine their regeneration. Throughout this section we assume that a Markov modulated
sequence (Mn, Xn)n≥0 is given, and (Mn, Sn)n≥0 denotes the associated MRW, where
Sn = X0 + · · ·+ Xn for each n ≥ 0.

2.2.1 Reflected MRW’s and their basic properties

A process (Mn,Wn)n≥0 is called the reflected Markov random walk (reflected MRW)
associated to (Mn, Xn)n≥0, if it satisfies the recursive equation

W0 = S+
0 and Wn+1 = (Wn + Xn+1)

+, n ≥ 0,

where X+ = max(X, 0). Obviously it is a Markov chain with transition kernel Φ
defined as

Φ((s, x), A×B) = 1B(0) IPs(A× (−∞,−x)) + IPs(A× (B − x))

for (s, x) ∈ E × IR+, A×B ∈ E ⊗ B+.

Let σn, n ≥ 0, be the weak descending ladder epochs defined as

σ0 := inf{n ≥ 0 : Sn ≤ 0} and σn := inf{k > σn−1 : Sk ≤ Sσn−1}, n ≥ 1.

The definition is slightly different from the definition in ordinary zero delayed random
walks, in which σ0 is defined to be 0. Obviously σn, n ≥ 0, are a.s. finite stopping
times, if the drift of the MRW (Mn, Sn)n≥0 is negative. In the rest of this chapter we
suppose that µ < 0, unless stated otherwise.

Proposition 2.6 Let (Mn,Wn)n≥0 be the reflected MRW associated to (Mn, Xn)n≥0.
Then the following assertions hold true:

(i) For any n ≥ 0

Wn = max
k≤n

(W0 + Sn − S0, Sn − Sk) = max
k≤n−1

(W0 −X0 + Sn, Sn − Sk)
+, n ≥ 0.
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(ii) E × {0} is a recurrent set of (Mn,Wn)n≥0. Furthermore, it holds that

σ0 = inf{k ≥ 0 : Wk = 0} and σn = inf{k > σn−1 : Wk = 0}, n ≥ 1.

Proof. For (i) see Proposition III.6.3 in Asmussen [13]. (ii) is obvious. QED

By Proposition 2.6, for any n ≥ 0

IPs (Mn ∈ A,Wn ≤ x)

=
n∑

l=0

l∑

k=0

∫

E

IPs(Ml ∈ ds′, σk = l)IP [Mn ∈ A, Sn − Sl ≤ x, σk+1 − σk > n− l|Ml = s′].

Multiplying the above equation by αn and summing over all n,

∞∑
n=0

αn IEs

(
eβWn ; Mn ∈ A

)
=

∞∑
n=0

∫

E

Ĥ
(α,β)
≤ (s′, A)

(
Ĝ

(α,0)
≤

)n

(s, ds′). (2.6)

for any s ∈ E.

Given a bivariate Markov chain (M,T ) = (Mn, Tn)n≥0 on E × [0,∞), define the

transform Λ
(α,β)
(M,T ) as

Λ
(α,β)
(M,T )(s, A) =

∞∑
n=0

αn IEs

(
eβTn ; Mn ∈ A

)
, s ∈ E, A ∈ E .

Two bivariate processes (M, T ) and (M̃, T̃ ) on E × [0,∞) are said to be mutually

adjoint, if Λ
(α,β)
(M,T ) and Λ

(α,β)

(M̃,T̃ )
are adjoint w.r.t. ξ. If two MRW’s (M,S) and (M̃, S̃) are

in time-reversal, then they are mutually adjoint.

The following assertions are due to Arjas and Speed [8, 9].

Corollary 2.7 Let (Mn,Wn)n≥0 be a reflected MRW associated to (Mn, Xn)n≥0

with W0 = 0. If (M̃n, S̃n)n≥0 is the time-reversal of (Mn, Sn)n≥0, then the processes
(Mn,Wn)n≥0 and (M̃n, max0≤k≤n S̃k)n≥0 are mutually adjoint.

Proof. Let Ĥ
(α,β)
R(>) be a kernel defined as

Ĥ
(α,β)
R(>)(s, A) = IE

[
σ̃>−1∑
n=0

αn eβS̃n ; M̃n ∈ A
∣∣∣M̃0 = s, S̃0 = 0

]
,

where σ̃> is the first strictly ascending ladder epoch of (M̃n, S̃n)n≥0. Then in a similar

manner as in Proposition 2.5 one can show that the kernels
∑∞

n=0

(
Ĝ

(α,0)
≤

)n

and

Ĥ
(α,0)
R(>) are mutually adjoint w.r.t. ξ. Thus the assertion follows from (2.3),(2.6) and

Proposition 2.5. QED
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The following proposition is due to Nummelin.

Proposition 2.8 The reflected MRW (Mn,Wn)n≥0 associated to (Mn, Xn)n≥0 is
positive Harris recurrent. It is further Harris ergodic, if the same holds true for M .

Proof. See Nummelin [45]. For a simple proof using a coupling argument, see
Asmussen [12]. Though the driving chain (Mn)n≥0 is there assumed to be finite, the
same arguments work also for the Markov chain with general state space. QED

Note that E×{0} is a recurrent set for (Mn,Wn)n≥0 and thus contains a regeneration
set <× {0} for a measurable set <. In this case the set < is also a regeneration set of
M .

Remark 2.9 If µ > 0, then for any initial distribution λ

lim
n→∞

Wn

n
= µ IPλ − a.s.,

since
Sn

n
→ µ > 0 IPλ − a.s. as n →∞

and thus there exists the smallest L such that Wn > 0 for n > L. Further,

lim
n→∞

Wn

n
=

Sn − SL

n
= µ IPλ − a.s.

In particular, we have
lim

n→∞
Wn = ∞ IPλ − a.s.

2.2.2 Regeneration

Let (Mn, Wn)n≥0 be the reflected MRW associated to (Mn, Xn)n≥0. Then
(Mn,Wn)n≥0 is positive Harris recurrent, and so there exists a sequence of regener-
ation epochs. Consider the subchain Mσ := (Mσ

n )n≥0 := (Mσn)n≥0, where σn, n ≥ 0,
are weak descending ladder epochs defined in 2.2.1. Obviously the sequence Mσ forms
a temporally homogeneous Markov chain with transition kernel G≤, where G≤ is the
kernel defined as

G≤(s, A) = Ĝ
(1,0)
≤ (s, A), s ∈ E, A ∈ E .

Let <× {0} be a regeneration set of (Mn,Wn)n≥0 and (τ̂n)n≥0 a sequence of regen-
eration epochs for it constructed by the splitting technique from < × {0}. Then each
τ̂n has the form στ̄n , where τ̄n is a stopping time w.r.t. the filtration (Fσn)n≥0, where
(Fn)n≥0 is a filtration such that (Mn)n≥0 is Markov-adapted and each τ̂n a stopping
time with respect to (Fn)n≥0. One can easily check that (τ̄n)n≥0 forms a sequence of
regeneration epochs for the Markov chain (Mσ

n )n≥0, which is thus Harris recurrent.
Clearly, IEζ τ̄1 ≤ IEζ τ̂1 < ∞, and thus (Mσ

n )n≥0 is positive Harris recurrent. In fact, we
have:
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Proposition 2.10 A sequence of random times (τ̄n)n≥0 is a sequence of regener-
ation epochs for Mσ if, and only if, (στ̄n)n≥0 is a sequence of regeneration epochs for
(Mn,Wn)n≥0.

Furthermore, we get moment conditions for regeneration epoch of (Mn,Wn)n≥0 in
terms of moments of the weak descending ladder epochs and of the first return time to
a regeneration set of Mσ:

Proposition 2.11 Let <̄ × {0} be a regeneration set of (Mn,Wn)n≥0. Let further
τ̄(<̄) denote the return time of (Mσ

n )n≥0 to <̄, i.e.,

τ̄(<̄) := inf
{
n > 0 : Mσ

n ∈ <̄
}

.

(i) Let α ≥ 1. Suppose that IE[σα
1 |Fσ0 ] is bounded. If

sup
s∈<̄

IEs σα
1 < ∞ and sup

s∈<̄
IEs

(
τ(<̄)

)α
< ∞,

then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
sups∈<̄ IEs τ̂α

1 < ∞. If in addition M is Harris ergodic and α > 1, then for some
constant c

‖IPζ ((Mn,Wn) ∈ · )− π‖ ≤ cn1−α,

where π is a unique stationary distribution of (Mn,Wn)n≥0 and ζ(·) = IPλ(Mτ̂1 ∈ · ) for
each λ on E.

(ii) Let γ > 0. Suppose that IE [exp(γσ1)|Fσ0 ] is bounded. If

sup
s∈<̄

IEs exp(γσ1) < ∞ and sup
s∈<̄

IEs exp(γτ̄(<̄)) < ∞,

there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
sups∈<̄ IEs exp(γ′τ̂1) < ∞ for some γ′ > 0. If in addition M is Harris ergodic, then for
some constants c and γ′′ ∈ (0, γ′]

‖IPζ ((Mn,Wn) ∈ · )− π‖ ≤ c exp(−γ′′n).

Proof. Let τ̂(<̄ × {0}) denote the return time of (Mn,Wn)n≥0 to <̄ × {0}. Then

sup
s∈<̄

IEs

(
τ̂(<̄ × {0}))α ≤ sup

s∈<̄
IEs




τ̄(<̄)−1∑
n=0

(σn+1 − σn)




α

;

sup
s∈<̄

IEs exp
(
γτ̂(<̄ × {0})) ≤ sup

s∈<̄
IEs exp


γ

τ̄(<̄)−1∑
n=0

(σn+1 − σn)


 .

Thus by Lemma 1.15 (i) sups∈<̄ IEs

(
τ̂(<̄ × {0}))α

< ∞ under the conditions of (i),
and by Lemma 1.15 (ii) sups∈<̄ IEs exp

(
γτ̂(<̄ × {0})) under the conditions of (ii). All

assertons follow from Proposition 1.16 and Corollary 1.22. QED
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2.2.3 Stationary distribution

From the existence of a sequence of regeneration epochs (τ̂n)n≥0 for (Mn,Wn)n≥0

with Wτ̂1 = 0, we get a stationary distribution π of (Mn,Wn)n≥0 given as

π(·) =
1

IEζ τ̂1

IEζ

(
τ̂1−1∑
n=0

1
(
(Mn,Wn) ∈ · )

)
,

where ζ(·) = IPλ(Mτ̂1 ∈ · ) for any initial distribution λ. Moreover, since E × {0} is
a recurrent set with π(E × {0}) > 0, by Proposition 1.1 π can be also written as an
occupation measure

π(A×B) =
1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1
(
(Mn, Sn) ∈ A×B

)
)

=
1

IEξ̄ σ1

∫

E

H≤(s, A; B) ξ̄(ds)

=

∫

E

H≤(s, A; B) π(ds× {0}), A ∈ E , B ∈ B+,

where ξ̄ is a stationary distribution for G≤. Note that, for any a ≥ 0, E × [0, a] is also
a recurrent set with π(E × [0, a]) > 0. Let

τ0(a) := inf{k ≥ 0 : Wk ≤ a} and τn(a) := inf{k > τn−1(a) : Wk ≤ a}, n ≥ 1.

Then the random variables τn(a), n ≥ 0, are a.s. finite stopping times and the chain

(M
τ(a)
n , W

τ(a)
n )n≥0 = (Mτn(a), Wτn(a))n≥0 forms a Harris chain with transition kernel

G(−∞,a] = Ĝ
(1,0)
(−∞,a]. Denote by π(a) the stationary distribution.

Proposition 2.12 Let a ≥ 0. Then for any A ∈ E and y ≥ 0

π(A× [0, y]) =
1

IEπ(a) σ((−∞, a])

∫

[0,a]

∫

E

H(−∞,a−x](s, A; [0, y − x]) π(a)(ds× dx)

= π(E × [0, a])

∫

[0,a]

∫

E

H(−∞,a−x](s, A; [0, y − x]) π(a)(ds× dx)

=

∫

[0,a]

∫

E

H(−∞,a−x](s, A; [0, y − x]) π(ds× dx).

Proof. By Proposition 1.1,

π(A× [0, y]) =
1

IEπ(a) τ1(a)
IEπ(a)




τ1(a)−1∑
n=0

1
(
(Mn, Sn) ∈ A× [0, y]

)



= π(E × [0, a]) · IEπ(a)




τ1(a)−1∑
n=0

1
(
(Mn, Sn) ∈ A× [0, y]

)

 .
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Thus the assertions follow from

IEπ(a)




τ1(a)−1∑
n=0

1
(
(Mn, Sn) ∈ A× [0, y]

)



=
∞∑

n=0

IPπ(a)

(
(Mn, Sn) ∈ A× [0, y], τ1(a) > n

)

=
∞∑

n=0

∫

E

∫ a

0

IPs,x

(
(Mn, Sn) ∈ A× [0, y], Sk > a, k ≤ n

)
π(a)(ds× dx)

=
∞∑

n=0

∫

E

∫ a

0

IPs

(
(Mn, Sn) ∈ A× [0, y − x], Sk > a− x, k ≤ n

)
π(a)(ds× dx)

=

∫

E

∫ a

0

H(−∞,a−x](s, A; y − x) π(a)(ds× dx).

QED

As a corollary we get the following assertion, which is a generalization of a result
of Arjas [7]:

Corollary 2.13 For any A ∈ E

IEπ

(
eβW1 ; M1 ∈ A

)
=

1

IEξ̄ σ1

∫

E

Ĥ
(1,β)
≤ (s, A) ξ̄(ds) =

∫

E

Ĥ
(1,β)
≤ (s, A) π(ds× {0}).

Proof. The assertion follows from

IEπ

(
eβW1 ; M1 ∈ A

)
=

∫ ∞

0

eβx 1

IEξ̄ σ1

∞∑
n=0

IPξ̄ (Mn ∈ A, Sn ∈ dx, σ1 > n)

=
1

IEξ̄ σ1

∫

E

(∫ ∞

0

∞∑
n=0

eβx IPs (Mn ∈ A, Sn ∈ dx, σ1 > n)

)
ξ̄(ds)

=
1

IEξ̄ σ1

∫

E

Ĥ
(1,β)
≤ (s, A) ξ̄(ds)

=

∫

E

Ĥ
(1,β)
≤ (s, A) π(ds× {0}).

QED

2.3 MRW’s with lattice-type increments

MRW’s with lattice-type increments are of particular interest in the applied proba-
bility. In particular, reflected MRW’s driven by finite Markov chains and with upward



34 CHAPTER 2. MARKOV RANDOM WALKS

or downward skip-free increments have received a considerable attention in the queue-
ing theory, and were extensively studied by Neuts and his school. They have developed
matrix-analytic methods to algorithmically compute characteristics like stationary dis-
tribution. A comprehensive treatment can be found in Neuts [43, 44] and Latouche
and Ramaswami [34] and some generalizations in Miyazawa [38], Sengupta [54] and
Tweedie [65]. This section examines MRW’s with lattice-type increments driven by
general Markov chains. In this case we can not expect to find computational algo-
rithms, but get stationary distributions in simpler forms.

2.3.1 MRW’s with lattice-type increments

Consider a Markov modulated sequence (Mn, Xn)n≥0 defined on E × ZZ with tran-
sition kernel P. Denote by (Mn, Sn)n≥0 the associated MRW with transition kernel Q
and by (Mn,Wn)n≥0 the associated reflected MRW.

For B ⊂ ZZ, σ(B) denotes the first return time to E ×B. For each l ∈ ZZ we define

the kernels Ĥ
[α,l]
B and Ĝ

[α,l]
B as

Ĥ
[α,l]
B (s, A) =

∞∑
n=0

αnIPs (Mn ∈ A, Sn = l, σ(B) > n);

Ĝ
[α,l]
B (s, A) =

∞∑
n=0

αnIPs (Mn ∈ A, Sn = l, σ(B) = n).

If α = 1, then we write H
[l]
B and G

[l]
B instead of Ĥ

[1,l]
B and Ĝ

[1,l]
B , respectively. Further-

more, we put

HB =
∑

l∈ZZ

H
[l]
B and GB =

∑

l∈ZZ

G
[l]
B .

If σ(B) = σ∗ for some ∗ ∈ {≥, >,≤, <}, we write Ĥ
[α,l]
> , Ĥ

[α,l]
≥ , Ĥ

[α,l]
< and Ĥ

[α,l]
≤ instead

of Ĥ
[α,l]
[1,∞), Ĥ

[α,l]
[0,∞), Ĥ

[α,l]
(−∞,−1] and Ĥ

[α,l]
(−∞,0], respectively. The same notational conventions

are used also for Ĝ
[α,l]
[1,∞), Ĝ

[α,l]
[0,∞), Ĝ

[α,l]
(−∞,−1] and Ĝ

[α,l]
(−∞,0]. Note that

∞∑
n=0

αn IPs (Mn ∈ A,Wn = l) =
∞∑

n=0

∫

E

Ĥ
[α,l−k]
≤ (s′, A)

(
Ĝ

[α,k]
≤

)n

(s, ds′).

Denote by (M̃n, S̃n)n≥0 the time-reversal of (Mn, Sn)n≥0 and for each l ∈ ZZ define the

kernel Ĝ
[α,l]
R(>) as

Ĝ
[α,l]
R(>)(s, A) =

∞∑
n=0

αnIP
[
M̃n ∈ A, S̃n = l, σ̃> = n

∣∣M̃0 = s, S̃0 = 0
]
,

where σ̃< is the first return time of (M̃n, S̃n)n≥0 to E × (−∞,−1].
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In the similar manner as in Proposition 2.5, we get the following assertions:

Proposition 2.14 For each l ≥ 1 the kernels

Ĥ
[α,l]
≤ and

l∑
n=1

(
Ĝ

[α,l]
R(>)

)n

are mutually adjoint with respect to ξ. In particular, Ĥ
[α,1]
≤ and Ĝ

[α,1]
R(>) are mutually

adjoint with respect to ξ.

Proof. Note that

IP
[
M̃n ∈ A, S̃n = l, S̃n − S̃k > 0, k < n

∣∣M̃ = s, S̃0 = 0
]

= IPs

[
M̃n ∈ A, S̃n = l, n = σ̃>

m for some m, 1 ≤ m ≤ l
∣∣M̃0 = s, S̃0 = 0

]
.

The first assertion follows in the same manner as in the proof of Proposition 2.5. The
second assertion is clear. QED

For each k ≥ 0, π(k) denotes the stationary distribution for G(−∞,k]. The following
assertion is a direct consequence of Proposition 2.12.

Proposition 2.15 For any k ≥ 0, a unique stationary distribution π can be written
as

π(A× {l}) =
1

IEπ(k) σ((−∞, k])

k∑
m=0

∫

E

H
[l−m]
(−∞,k−m](s, A) π(k)(ds× {l})

= π(E × {0, 1, · · · , k})
k∑

m=0

∫

E

H
[l−m]
(−∞,k−m](s, A) π(k)(ds× {m})

=
k∑

m=0

∫

E

H
[l−m]
(−∞,k−m](s, A) π(ds× {m}), A ∈ E , l ≥ 0.

In particular, for any A ∈ E and l ≥ 0

π(A× {l}) =
1

IEπ(0) σ1

∫

E

H
[l]
≤(s, A) π(0)(ds) =

∫

E

H
[l]
≤(s, A) π(ds× {0}).

Proof. Denote by H(−∞,k](s,m; A, l) the expectation that starting from (s,m), the
process visits A×{l} avoiding levels 0, · · · , k. Since the process is independent of level,
we have

H(−∞,k](s,m; A, l) = H
[l−m]
(−∞,k−m](s, A)

for any m, 0 ≤ m ≤ k. Noting that

IEπ(k) σ((−∞, k]) = π(E × {0, 1, · · · , k}),
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the assertions follow from

π(A× {l}) =
1

IEπ(k) σ((−∞, k])

k∑
m=0

∫

E

H(−∞,k](s, m; A, l)π(k)(ds× {m}).

QED

2.3.2 MRW’s with upward skip-free increments

Consider a Markov modulated sequence (Mn, Xn)n≥0 defined on E ×
{· · · ,−2,−1, 0, 1} with transition kernel P and let

Al(s, A) := P(s, A× {−l + 1}), s ∈ E, A ∈ E, l ≥ 0.

The associated MRW (Mn, Sn)n≥0 possesses upward skip-free increments and the tran-
sition kernel Q can be written as

Q((s, k), A× {l}) =

{
Ak−l+1(s, A) : l ≥ k + 1

0 : otherwise

for any s ∈ E, A ∈ E .

The following proposition is originally due to Neuts for the case of finite driving
chain, and was extended by Tweedie [65] to the general case.

Proposition 2.16 For all l ≥ 1 it holds that

Ĥ
[α,l]
≤ (s, A) = (Ĥ

[α,1]
≤ )l(s, A), s ∈ E, A ∈ E .

Moreover, Ĥ
[α,1]
≤ satisfies the nonlinear operator equation

Ĥ
[α,1]
≤ (s, A) = α

∞∑
n=0

∫

E

An(s′, A) (Ĥ
[α,1]
≤ )n(s, ds′) for all |α| ≤ 1. (2.7)

Proof. Decomposing over the time of the last entrance to level l, we have

H
(n)
≤ (s, A; l + 1) =

n−1∑
r=1

∫

E

H
(n−r)
≤ (s′, A; 1)H

(r)
≤ (s, ds′; l),

where H
(n)
≤ (s, A; l) := H

(n)
≤ (s, A; {l}) (see 2.1.1 for the definition). Multiplying the

above equation by αn and summing over all n, we get easily

Ĥ
[α,l]
≤ (s, A) =

∫

E

Ĥ
[α,1]
≤ (s′, A) Ĥ

[α,l−1]
≤ (s, ds′),
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which yields the first assertion.
For the second assertion note that H

(1)
≤ ( ·, · ; 1) = A0( ·, · ). By conditioning on the state

entered in step n− 1, we get

H
(n)
≤ (s, A; 1) =

n−1∑

k=1

∫

E

Ak(s
′, A)H

(n−1)
≤ (s, ds′; k), n ≥ 2,

from which we obtain the equation (2.7). QED

Remark 2.17 Tweedie [65] showed that H
[1]
≤ is the minimal solution of nonlinear

operator equation

H
[1]
≤ (s, A) =

∞∑
n=0

∫

E

An(s′, A) (H
[1]
≤ )n(s, ds′), s ∈ E, A ∈ E ,

in the sense that, if R is another kernel satisfying above operator equation, then

H
[1]
≤ (s, A) ≤ R(s, A), s ∈ E, A ∈ E .

Now consider the reflected MRW (Mn,Wn)n≥0 associated to (Mn, Xn)n≥0.
For k, l ≥ 0, let

Φkl(s, A) = IP [M1 ∈ A,W1 = l|M0 = s,W0 = k], s ∈ E, A ∈ E .

Then one can easily see that the transition matrix kernel Φ = (Φkl)k,l≥0 is given as

Φ =




B0(s, A) A0(s, A) 0 0 0 · · ·
B1(s, A) A1(s, A) A0(s, A) 0 0 · · ·
B2(s, A) A2(s, A) A1(s, A) A0(s, A) 0 · · ·

· · · · ·
· · · · ·
· · · · ·
· · · · ·




, (2.8)

where Bl, l ≥ 0, are kernels defined as

Bl(s, A) =
∞∑

k=l+1

Ak(s, A), l ≥ 0.

If E is finite, then the Markov chain with this transition kernel Φ is referred to as
M/GI/1 type. A specific feature of M/GI/1-type processes is the existence of matrix-
geometric stationary distributions (see Neuts [42, 43]).

The following proposition is due to Tweedie [65], which is a generalization of a
result of Neuts [42].
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Proposition 2.18 For any l ≥ 0, the stationary distribution π of Φ satisfies the
relation

π(A× {l}) =
1

IEπ(0) σ1

∫

E

(H
[1]
≤ )l (s, A) π(0)(ds) =

∫

E

(H
[1]
≤ )l (s, A) π(ds× {0}) (2.9)

for any a ∈ E and the recursive equation

π(A× {l + 1}) = cl ·
∫

E

H
[1]
≤ (s, A) π(l)(ds× {l}) =

∫

E

H
[1]
≤ (s, A) π(ds× {l}),

where
cl = π(E × {0, 1, · · · , l}).

Proof. The first equality in (2.9) follows from

π(A× {l}) = c0 ·
∫

E

H≤(s, A; l) π(0)(ds), A ∈ E ,

and

H≤(s, A; l) = H
[l]
≤(s, A) =

(
H

[1]
≤

)l

(s, A)

for any s,∈ E,A ∈ E , l ≥ 0. The second equality in (2.9) is the assertion of Proposition
1.1. For the last assertion, note that for any l, 0 ≤ l − 1,

H(−∞,l−k](s, A; l + 1− k) = 0,

since the process is upward skip-free. Therefore, from Proposition 2.15, for any A ∈ E

π(A× {l + 1}) = cl ·
l∑

k=0

∫

E

H(−∞,l−k](s, A; l + 1− k) π(l)(ds× {k})

= cl ·
∫

E

H≤(s, A; 1) π(l)(ds× {l})

=

∫

E

H
[1]
≤ (s, A) π(ds× {l}).

QED

2.3.3 MRW’s with downward skip-free increments

Next consider a Markov modulated sequence (Mn, Xn)n≥0 defined on E×{−1, 0, · · ·}
with transition kernel P and let

Dl(s, A) = P(s, A× {l − 1}), s ∈ E,A ∈ E ,
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for each l ≥ 0. The associated MRW (Mn, Sn)n≥0 possesses downward skip-free incre-
ments and the transition kernel Q can be written as

Q((s, k), A× {l}) =

{
Dl−k+1(s, A) : l ≥ k − 1

0 : otherwise.

The kernel Ĝ
[α,−1]
< can be represented in terms of the minimal solution satisfying a

nonlinear operator equation.

Proposition 2.19 The kernel Ĝ
[α,−1]
< satisfies the nonlinear operator equation

Ĝ
[α,−1]
< (s, A) = α

∞∑

l=0

∫

E

Dl(s
′, A) (Ĝ

[α,−1]
< )l(s, ds′), s ∈ E, A ∈ E ,

for all |α| ≤ 1. Furthermore, for 0 ≤ α ≤ 1, Ĝ
[α,−1]
< is the minimal nonnegative solution

of the nonlinear operator equation.

Proof. A proof for the finite modulation case can be found in Theorem 2.2.1 and
Theorem 2.2.2 in Neuts [44]. The general case can be proved in the same manner.

QED

Consider the reflected MRW (Mn,Wn)n≥0 associated to (Mn, Xn)n≥0.
For k, l ≥ 0, let

Φkl(s, A) = IP [M1 ∈ A,W1 = l|M0 = s,W0 = k], s ∈ E, A ∈ E .

Then the transition matrix kernel Φ = (Φkl)k,l≥0 is given as

Φ =




C0(s, A) C1(s, A) C2(s, A) C3(s, A) · · ·
D0(s, A) D1(s, A) D2(s, A) D3(s, A) · · ·

0 D0(s, A) D1(s, A) D2(s, A) · · ·
0 0 D0(s, A) D1(s, A) · · ·
· · · ·
· · · ·
· · · ·
· · · ·




, (2.10)

where

C0(s, A) = D0(s, A) + D1(s, A), Cl(s, A) = Dl+1(s, A), l ≥ 1.

If E is finite, then the Markov chain with this transition kernel Φ is referred to as
M/GI/1 type. A specific feature of M/GI/1-type precesses is the existence of sta-
tionary distributions satisfying a certain recursive equation, which is obtained by Ra-
maswami [49].
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A stationary distribution π of (Mn,Wn)n≥0 satisfies the relation

π(A× {l}) =

∫

E

Cl(s, A) π(ds× {0}) +
l∑

k=0

∫

E

Dl−k+1(s, A)π(ds× {k}). (2.11)

For any l ≥ 1 define kernels ΦD
l and ΦC

l as

ΦD
l (s, A) =

∞∑

k=l

∫

E

Dk(s
′, A) (G

[−1]
< )(k−l)(s, ds′);

ΦC
l (s, A) =

∞∑

k=l

∫

E

Ck(s
′, A) (G

[−1]
< )(k−l)(s, ds′).

Note that π(· × {0}) satisfies the equation

π(A× {0}) =

∫

E

ΦC
0 (s, A) π(ds× {0}),

since ΦC
0 = G≤.

The following assertion is a generalization of a result of Ramaswami [49].

Proposition 2.20 For any l ≥ 1 the stationary distribution π satisfies the relation

π(A× {l}) =

∫

E

ΦC
l (s, A) π(ds× {0}) +

l∑

k=1

∫

E

ΦD
l+1−k(s, A) π(ds× {k}) (2.12)

for any l ≥ 0, A ∈ E , or recursively,

π(A× {l + 1}) =

∫

E

K0(s, A) π(ds× {0}) +
l∑

k=1

∫

E

Kk(s, A) π(ds× {k}), (2.13)

where kernels Kk, k ≥ 0, given as

K0(s, A) =
∞∑

m=0

∫

E

(ΦD
1 )m(s′, A)ΦC

l+1(s, ds′);

Kk(s, A) =
∞∑

m=0

∫

E

(ΦD
1 )m(s′, A)ΦD

l+2−k(s, ds′), k ≥ 1.

Conversely, if a distribution π′ satisfies the equation (2.12), then it is the stationary
distribution.

Proof. For a fixed k ≥ 1, consider the Markov renewal process at the
epochs of visits to the set E × {0, · · · , k}. The Markov chain (M

(k)
n ,W

(k)
n )n≥0 =

(Mσn(−∞,k],Wσn(−∞,k])n≥0 is positive Harris recurrent. Moreover, the transition ker-

nel P(k) of (M
(k)
n ,W

(k)
n )n≥0 is given by the matrix form



2.3. MRW’S WITH LATTICE-TYPE INCREMENTS 41

P(k) =




C0(s, A) C1(s, A) · · · Ck−1(s, A) ΦC
k (s, A)

D0(s, A) D1(s, A) · · · Dk−1(s, A) ΦD
k (s, A)

0 D0(s, A) · · · Dk−2(s, A) ΦD
k−1(s, A)

0 0 · · · Dk−3(s, A) ΦD
k−2(s, A)

· · · · · · ·
0 0 · · · D0(s, A) ΦD

1 (s, A)




.

Thus we obtain

π(k)(A×{k}) =

∫

E

ΦC
k (s, A) π(k)(ds×{0})+

k∑

l=1

∫

E

ΦD
k+1−l(s, A) π(k)(ds×{l}), k ≥ 0,

from which (2.12) follows.
On the other hand, by Proposition 2.15, we have

π(A× {k + 1}) = ck ·
k∑

m=0

∫

E

H(−∞,k−m](s, A; k + 1−m) π(k)(ds× {m}), A ∈ E ,

where ck = π(E × {0, 1, 2, · · · , k}). However, H(−∞,m](s, A; m + 1) is the expectation
that, starting in (s, 0), the process visits A×{m + 1} avoiding levels 0, 1, · · · , n. Since
ΦD

1 (s, A) = G≤(s, A), we obtain the relations

H(−∞,k](s, A; k + 1) =
∞∑

m=0

∫

E

(ΦD
1 )m(s′, A)ΦC

k+1(s, ds′) and

H(−∞,k−l](s, A; k + 1− l) =
∞∑

m=0

∫

E

(ΦD
1 )m(s′, A)ΦD

k+2−l(s, ds′) for l ≤ k − 1.

Letting K0(s, A) = H(−∞,k](s, A; k + 1) and Kl(s, A) = H(−∞,k−l](s, A; k + 1 − l),
(2.13) follows.
The converse is stated in Miyazawa [38] for the case of countable driving chain. The
general case can be proved in the same manner. QED

Remark 2.21 Ramaswami [49] showed that, if (Mn)n≥0 is a finite Markov chain,
the stationary distribution π of (Mn,Wn)n≥0 is given by the recursive formula

πl =

(
π0Φ

C
l +

l−1∑

k=1

πkΦ
D
l+1−k

)
(I −ΦD

1 )−1, l ≥ 1, (2.14)

where πl, l ≥ 0, are measures on E defined as

πl({i}) = π({(i, l)}), i ∈ E.
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If the state space has only one element, then the stochastic matrix G
[−1]
< reduces to

the scalar 1, and (2.14) yields

πl =

(
π0Cl +

l−1∑

k=1

πkDl+1−k

)
(1−D1)

−1, l ≥ 1

for M/GI/1 queue.

Remark 2.22 For fixed s ∈ E and A ∈ E , G
[−1]
< (s, A) can be interpreted as the

probability that starting in (s, 1), the MRW (Mn, Sn)n≥0 makes the first passage into
level 0 and the state in A.
For l ≥ 1 let G(n,l) be the probability that starting in (s, l), the MRW (Mn, Sn)n≥0

makes the first passage into level 0 and the state in A at step n. Define the correspond-
ing transform Ĝ[α,l] as

Ĝ[α,l](s, A) =
∞∑

n=0

αnG(n,l)(s, A), s ∈ E, A ∈ E .

Then it can be easily shown that for any l ≥ 1

Ĝ[α,l] =
(
Ĝ

[α,−1]
<

)l

.

2.3.4 A duality

A MRW (M ′
n, S ′n)n≥0 with transition kernel Q′ is called the dual of (Mn, Sn)n≥0

with transition kernel Q, if Q({k}) and Q′({−k}) are adjoint w.r.t. ξ for each k ∈ ZZ.
Consider two MRW’s (Mn, Sn)n≥0 and (M ′

n, S
′
n)n≥0 governed by

IP [Mn+1 ∈ A, Sn+1 = l − k + 1|Mn = s, Sn = l] = Ak(s, A)

and
IP

[
M ′

n+1 ∈ A, S ′n+1 = l + k − 1|M ′
n = s, S ′n = l

]
= Dk(s, A),

where Ak,Dk, k ∈ ZZ, are kernels on E × E with Ak = Dk = 0 for k ≤ −1. It is clear
that (Mn, Sn)n≥0 and (M ′

n, S
′
n)n≥0 are in duality if, and only if, for each k ≥ 0, Ak and

Dk are mutually adjoint w.r.t. ξ.

Now we get a generalization of the duality theorem, which is obtained by Asmussen
and Ramaswami [13] for the case of finite modulation.

Proposition 2.23 If for each k ≥ 0 the kernels Ak and Dk are mutually adjoint
with respect to ξ, then for each l ≥ 1 the kernels Ĥ

[α,l]
≤ and (Ĝ

[α,−1]
D(<) )l are mutually

adjoint with respect to ξ, where

Ĥ
[α,l]
≤ (s, A) =

∞∑
n=0

αnIPs (Mn ∈ A, Sn = l, Sk ≥ 0, k ≤ n), l ≥ 1;

Ĝ
[α,−1]
D(<) (s, A) =

∞∑
n=0

αnIPs (M ′
n ∈ A, S ′n = −1, S ′k ≥ 0, k < n).
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Proof. Noting that for any n ≥ 0

(Mk, Sk)0≤k≤n ∼ (M ′
n−k, S

′
n−k − S ′n)0≤k≤n,

as in Proposition 2.14 one can show that the kernels Ĥ
[α,1]
≤ and Ĝ

[α,−1]
D(<) are mutually

adjoint with respect to ξ. Therefore, the assertion follows from Proposition 2.16. QED

If the state space E is finite, then Proposition 2.23 can be written as a matrix form

Ĥ
[α,1]
≤ = ∆−1

ξ

(
Ĝ

[α,−1]
<

)T

∆ξ,

where ∆ξ denotes the diagonal matrix of stationary distribution ξ.
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Chapter 3

Moment conditions

The first weak descending ladder epoch is a basic quantity in the analysis of MRW’s,
but also plays an important role in the study of semi-Markov queues. The first weak
descending ladder epoch of a MRW is interpreted as the index of customers served in
the first busy period of the corresponding semi-Markov queue. This chapter investi-
gates moments of the first weak descending ladder epochs of MRW’s and regeneration
epochs of reflected MRW’s. Throughout the driving chain M is assumed to be positive
Harris recurrent with a stationary distribution ξ and to satisfy the minorization con-
dition M(<, p, r, ϕ). We denote by (τn)n≥0 a sequence of regeneration epochs for M
constructed by the splitting technique from the minorization condition. Throughout
this chapter (Mn, Xn)n≥0 denotes a Markov modulated sequence with transition kernel
P, (Mn, Sn)n≥0 the associated MRW and (Mn,Wn)n≥0 the associated reflected MRW.
We assume that −∞ < µ = IEξX1 < 0. Further, we denote by σn, n ≥ 0, the weak
descending ladder epochs defined in 2.1.3, i.e.,

σ1 = inf{n ≥ 1 : Sn ≤ 0} and σn+1 = inf{k > σn : Sk ≤ Sσn}, n ≥ 1.

Let throughout a canonical model be given with probability measures IPs,x, s ∈
E, x ∈ IR on (Ω,S) such that IPs,x (Mn = s,X0 = x) = 1.

3.1 Moments of the first weak descending ladder

epoch

In this section we find moment conditions for the first weak descending ladder
epoch of a MRW (Mn, Sn)n≥0. The main idea is simple. We first show that under some
adequate conditions the associated reflected MRW (Mn,Wn)n≥0 possesses a recurrent
set of the form < × [0, x0] for some x0 ≥ 0. Once (Mn,Wn)n≥0 visits < × [0, x0], by
the SLLN for MRW’s (see Proposition 2.2) (Wn)n≥0 is reduced to 0 in some steps with
positive probability. This procedure is repeated infinitely often, in order to obtain

45
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a random time ν, say, which is stochastically greater than the first weak descending
ladder epoch of (Mn, Sn)n≥0. Finally we try to find moment conditions for the random
time ν. It turns out that moments of ν is connected with the regeneration structure of
the sequence (Mn, Xn+1)n≥0. A similar method can be found in Sharma [55].

The following lemma is due to Alsmeyer and plays a central role in this chapter.

Lemma 3.1 There exists c ≥ 0 such that for any ε > 0 there are measurable
Cε, Dε ⊂ < satisfying

q := IPϕ ((Mτ1−r,Mτ1) ∈ Cε ×Dε) > 0;

q′ := inf
(s,s′)∈Cε×Dε

IP [(X1, · · · , Xr) ∈ Iε(c)|M0 = s,Mr = s′] > 0,

where we put

c = (c1, · · · , cr) ∈ IRr and Iε(c) = [c1 − ε, c1 + ε]× · · · × [cr − ε, cr + ε].

Proof. See Lemma 3.1 in Alsmeyer [2]. QED

From Lemma 3.1 one can develop another regeneration scheme for M . Let (η′n)n≥0

be a sequence of i.i.d. Bernoulli variables with success probability q′, which is also
independent of (Mn, τn)n≥0. Each time τj when (Mτj−r, Mτj

) ∈ Cε × Dε we generate
(Xτj−r+1, · · · , Xτj

) according to

IP [(Xτj−r+1, · · · , Xτj
) ∈ Iε(c)∩·|Mτj−r,Mτj

]/IP [(Xτj−r+1, · · · , Xτj
) ∈ Iε(c)|(Mτj−r,Mτj

]

if η′j = 1, and according to

IP [(Xτj−r+1, · · · , Xτj
) ∈ · |Mτj−r,Mτj

]

otherwise. Next discard the old values of Mτj−r+1, · · · ,Mτj−1 and regenerate according
to

IP[(Mτj−r+1, · · · ,Mτj−1) ∈ · |Mτj−r,Mτj
, Xτj−r+1, · · · , Xτj

].

At all remaining time points n we regenerate Xn according to IP[Xn ∈ · |Mn−1, Mn].
It is easily verified that the new chain (Mn, Xn)n≥0 is indeed a Markov chain with
transition kernel P. Let

τ ′0 = 0 and τ ′n := inf{τj ≥ τ ′n−1 + r : (Mτj−r,Mτj
, η′j) ∈ Cε ×Dε × {1}}, n ≥ 1.

Then (τ ′n)n≥0 is a sequence of regeneration epochs for M with

ζ(·) = IPλ(Mτ ′1 ∈ ·) = ϕ(· ∩Dε)/ϕ(Dε).

From the construction of the regeneration epochs one can show that

(i) cj − ε ≤ Xτ ′n−r+j ≤ cj + ε for each 1 ≤ j ≤ r and n ≥ 1.
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(ii) (Mτ ′n+j, Xτ ′n+j+1)j≥0 and (Mj, Xj)0≤j≤τ ′n−r are independent for any n ≥ 1 (see
Lemma 3.2 in Alsmeyer [2]).

As direct consequences of (i) and (ii) we have: For any m ≥ 1

∣∣∣IE



τ ′m+1∑

n=τ ′m+1

Xn|Mτ ′m−r = s


− IEζ




τ ′1∑
n=1

Xn




∣∣∣ ≤ rε

and for any γ > 0 such that IEζ exp
(
γ

∑τ ′1−r
n=1 Xn

)
< ∞

exp(−γrε) ≤ IEζ exp
(
γ

τ ′m∑
n=1

Xn

)




r∏
j=1

exp(γcj)IEζ exp
(
γ

τ ′1−r∑
n=1

Xn

)




−m

≤ exp(γrε).

In particular, if for some γ > 0

IEζ exp
(
γ

τ ′1∑
n=1

Xn

)
< 1,

then one can choose ε > 0 so that

r∏
j=1

exp(γcj)IEζ exp
(
γ

τ ′1−r∑
n=1

Xn

)
< 1.

Let ν be the random variable defined as

ν := inf{n : (Mτn−r,Mτn , η′n) ∈ Cε ×Dε × {1}}.

Then it can be easily seen that

IPϕ (ν > k) < (1− qq′)k, k ≥ 1,

from which

IPζ (ν > k) =
1

ϕ(Dε)

∫

Dε

IPs(ν > k) ϕ(ds)

≤ 1

ϕ(Dε)
IPϕ(ν > k)

≤ 1

ϕ(Dε)
(1− qq′)k.

In particular, for any α ≥ 1 and for some γ > 0

IEζ να < ∞ and IEζ exp(γν) < ∞.



48 CHAPTER 3. MOMENT CONDITIONS

Note that for any α ≥ 1

Eζ (τ ′1)
α ≤ IEζ

(
ν∑

n=1

(τn − τn−1)

)α

.

Since for each n ≥ 1 and any s ∈ <

IE[(τn − τn−1)
α|Mτn−1−r = s] = IEϕ τα

1

and by the construction of ζ

IEϕ τα
1 < ∞ ⇒ IEζ τα

1 < ∞,

by Lemma 1.15 (i)

IEϕ τα
1 < ∞ ⇒ IEζ (τ ′1)

α < ∞;

IEϕ

(
τ1∑

n=1

X+
n

)α

< ∞ ⇒ IEζ




τ ′1∑
n=1

X+
n




α

< ∞.

In the same manner, by Lemma 1.15 (ii), for some γ > 0

IEϕ exp(γτ1) < ∞ ⇒ IEζ exp(γ′τ ′1) < ∞ for some γ′ > 0;

IEϕ exp
(
γ

τ1∑
n=1

X+
n

)
< ∞ ⇒ IEζ exp

(
γ′

τ ′1∑
n=1

X+
n

)
< ∞ for some γ′ > 0.

In the sequel we assume that |Xτn−r+j| ≤ c for some c ≥ 0 and any n ≥ 1,
j = 1, · · · , r.

Lemma 3.2 Let α ≥ 1. If

IEϕ

(
τ1∑

n=1

X+
n

)α

< ∞,

then there exist a nonnegative real number x0 and m ≥ 1 such that

IE [(τ̃(x0))
α|Mτm−r = s,Wτm−r = w] ≤

{
(a + bw)α : (s, w) ∈ < × (x0,∞)

d : (s, w) ∈ < × [0, x0]

for some constants a, b and d, where the random time τ̃(x0) is defined as

τ̃(x0) = inf{n > 0 : Wτmn−r ≤ x0}.
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Proof. Note first that (Mτmn−r,Wτmn−r)n≥1 forms a temporally homogeneous
Markov chain. Consider the test function V : < × [0,∞) → [0,∞) defined as
V (s, w) = w. Then for any (s, w) ∈ < × [0,∞)

Λ(s, w) := IE
[
(Wτmn−r −Wτm(n−1)−r)

α|Mτm(n−1)−r = s,Wτm(n−1)−r = w
]

≤ IEϕ

(
rc +

τm−r∑

k=1

X+
k

)α

< ∞,

because for any s ∈ < and k ≥ 1

IE

[(
τk+1−r∑

n=τk−r+1

X+
n

)α ∣∣∣Mτk−r = s

]
≤ IEϕ

(
2rc +

τ1∑
n=1

X+
n

)α

< ∞.

On the other hand, by Proposition 2.2 there exists m ≥ 1 such that

IEϕ

(
τm∑
n=1

Xn

)
< −2rc− 2ε

for some ε > 0. For fixed x ≥ 0 let τn(x), n ≥ 0, be random times defined as

τn(x) := sup
{

k :
k∑

l=τm(n−1)+1

X−
l < x

}
, n ≥ 1.

Then for each n ≥ 1

IEϕ




τn(x)∧τmn∑

k=τm(n−1)+1

X+
k


 ↑ IEϕ




τmn∑

k=τm(n−1)+1

X+
k


 as x ↑ ∞

and thus there exists a real number x′0 ≥ 0 such that for any n ≥ 1

IEϕ




τmn∑

k=τm(n−1)+1

X+
k −

τn(x′0)∧τmn∑

k=τm(n−1)+1

X−
k


 < −2rc− ε;

IEϕ




τmn∑

k=τn(x′0)∧τmn+1

X+
k


 <

ε

2
.

In turn, for any s ∈ < and w > x0 := 2rc + x′0

IEΛ(s, w) = IE
[
Wτnm−r −Wτm(n−1)−r

∣∣Mτm(n−1)
= s,Wτm(n−1)−r = w

]

≤ IE




τn(x′0)∧τmn∑

k=τm(n−1)+1

Xk +
τmn−r∑

k=τn(x′0)∧τmn+1

X+
k

∣∣∣Mτm(n−1)
= s


 + 2rc +

ε

2
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≤ IEϕ




τ1(x′0)∧τm∑

k=1

Xk +
τm∑

k=τ1(x′0)∧τm+1

X+
k


 + 2rc +

ε

2

< −2rc− ε + 2rc +
ε

2
< 0.

Thus the assertion follows from Proposition 1.4 (i). QED

Theorem 3.3 Let α ≥ 1. Suppose that

IEϕ τα
1 < ∞ and IEϕ

(
τ1∑

n=1

X+
n

)α

< ∞.

If for an initial distribution λ on E

IEλ τα
1 < ∞ and IEλ

(
τ1∑

n=1

X+
n

)α

< ∞,

then IEλ σα
1 < ∞. Moreover, if

sup
s∈E

IEs τα
1 < ∞ and sup

s∈E
IEs (X+

1 )α < ∞,

then sups∈E IEs,w σα
1 < ∞ for any w ≥ 0.

Proof. We keep the notations of the proof of Lemma 3.2.

Note first that for any w ≤ x0

IE [(τ̃(x0))
α|Mτm−r = s,Wτm−r = w] ≤ IE [(τ̃(x0))

α|Mτm−r = s,Wτm−r = x0] < ∞.

W.l.o.g. we may assume m = r = 1. By Proposition 2.2, there exist m′ ≥ 1 and q > 0
such that

IPϕ

(
τm′∑

k=1

Xk < −x0 − 2c

)
> q.

Thus for any (s, w) ∈ < × [0, x0]

IP
[
Wk = 0 for some k, τn ≤ k ≤ τn+m′ − 1

∣∣∣Mτn−1 = s,Wτn−1 = w
]

≥ IP




τn+m′−1∑

k=τn+1

Xn < −x0 − c
∣∣∣Mτn−1 = s




≥ IPϕ

(
τm′∑

k=1

Xn < −x0 − 2c

)

> q.
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Let ηn, n ≥ 1, be random times defined as

η0 = 0 and ηn = inf{k ≥ ηn−1 + m′ : Wτk−1 ≤ x0}, n ≥ 1.

Let further ν be a random time defined as

ν := inf{n : Wk = 0 for some τηn ≤ k ≤ τηn+m′ − 1}.

Then by the definition of ν

IP(ν > n) ≤ (1− q)n, n ≥ 1.

Moreover, for any w ≤ x0

IE [σα
1 |Mτ1−1 = s,Wτ1−1 = w] ≤ IE

[( ην+m′∑
n=2

(τn − τn−1)
)α∣∣∣Mτ1−1 = s,Wτ1−1 = x0

]
.

Note that for any n ≥ 1,

IE
[
(ηn+1 − ηn)α|Gn

] ≤ sup
s∈<

IE
[
(τ̃(x0) + m′)α|Mτ1−1 = s,Wτ1−1 = x0

]
< ∞,

where Gn is the σ-algebra generated by {(Mτk−1,Wτk−1)|k ≤ ηn}. Since further

sup
s∈<

IE [να|Mτ1−1 = s,Wτ1−1 = x0] ≤
∞∑

n=0

(n + 1)α(1− q)n < ∞,

by Lemma 1.14 (i) we have

IE
[
(ην + m′)α|G1

] ≤ sup
s∈<

IE
[( ν∑

n=1

(ηn − ηn−1) + m′
)α∣∣Mτ1−1 = s,Wτ1−1 = x0

]

< l1 < ∞

for some constant l1. Note that for any n ≥ 2 and (s, w) ∈ < × [0,∞)

IE [(τn − τn−1)
α|Mτn−1−1 = s,Wτn−1−1 = w] = IEϕ τα

1 .

Thus for any initial distribution λ on E

IEλ




ην+m′∑

n=τ̃(x0)

(τn − τn−1)




α

≤ sup
s∈<

IE

[( ην+m′∑
n=2

(τn − τn−1)
)α∣∣∣Mτ1−1 = s,Wτ1−1 = x0

]

≤ c′ (IEϕτα
1 ) sup

s∈<
IE

[(
ην + m′)α∣∣Mτ1−1 = s,Wτ1−1 = x0

]

≤ c′ l1 IEϕ τα
1 < ∞
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for some constant c′. Now let w > x0. Then, from Lemma 3.2 and Lemma 1.14 (i),

IE




( τ̃(x0)∑
n=2

(τn − τn−1)
)α∣∣∣Mτ1−1 = s,Wτ1−1 = w




≤ c′′ (IEϕ τα
1 ) IE

[(
τ̃(x0)

)α∣∣Mτ1−1 = s,Wτ1−1 = w
]

≤ c′′ (IEϕ τα
1 ) (a + bw)α

for some constant c′′. In turn,

IEλ




τ̃(x0)∑
n=2

(τn − τn−1)




α

=

∫

<

∫ ∞

0

IE




( τ̃(x0)∑
n=2

(τn − τn−1)
)α∣∣∣Mτ1−1 = s,Wτ1−1 = w


 IP

(Mτ1−1,Wτ1−1)

λ (ds, dw)

≤ c′′{IEϕ τα
1 }

∫ ∞

0

(
a + bw + d

)α
IPλ (Wτ1−1 ∈ dw)

≤ c′′{IEϕ τα
1 } IEλ

(
a + b

τ1∑
n=1

X+
n + d

)α

< ∞.

The first assertion follows from the inequality

IEλ σα
1 ≤ IEλ


τ1 +

τ̃(x0)∑
n=2

(τn − τn−1) +

ην+m′∑

n=τ̃(x0)

(τn − τn−1)




α

.

For the second assertion it suffices to note that for any w ≥ 0

sup
s∈E

IEs,w




τ̃(x0)∑
n=2

(τn − τn−1)




α

≤ c′′ {IEϕ τα
1 }

{
sup
s∈E

IEs

(
a + bw + b

τ1∑
n=1

X+
n + d

)α}
;

sup
s∈E

IEs,w




ην+m′∑

n=τ̃(x0)

(τn − τn−1)




α

≤ c′ l1 IEϕ τα
1 .

QED

From the proof of Theorem 3.3, one should notice that if

sup
s∈<

IEs τα
1 < ∞ and sup

s∈<
IEs

(
τ1∑

n=1

X+
n

)α

< ∞,
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then sups∈< IEs,w σα
1 < ∞ for any w ≥ 0. Moreover, if for a measurable subset A of E

with < ⊂ A

sup
s∈A

IEs τα
1 < ∞ and sup

s∈A
IEs

(
τ1∑

n=1

X+
n

)α

< ∞,

then sups∈A IEs,w σα
1 < ∞ for any w ≥ 0.

Remark 3.4 Suppose that the condition of Lemma 3.2 holds true. Then, from
Lemma 3.2, it is clear that for any (s, w) ∈ < × [0,∞)

IP [(Mn,Wn)n≥0 ∈ < × [0, x0] i.o. |Mτm−r = s,Wτm−r = w] = 1.

Thus for any (s, w) ∈ E × [0,∞)

IPs,w ((Mn,Wn)n≥0 ∈ < × [0, x0] i.o. )

=

∫

{τm<∞}
IP [(Mn,Wn)n≥0 ∈ < × [0, x0] i.o. |Mτm−r,Wτm−r] dIPs,w

= IPs,w(τm < ∞)

= 1,

which means that <× [0, x0] is a recurrent set of (Mn,Wn)n≥0.

As a consequence of Theorem 3.3 we obtain moment conditions for |Sσ1|α.

Corollary 3.5 (i) Let α ≥ 1. Suppose that

IEξ X+
1 < ∞ and IEξ (X−

1 )α < ∞.

If for an initial distribution λ on E

IEλ

(
τ1∑

n=1

X+
n

)
< ∞ and IEλ

(
τ1∑

n=1

(X−
n )α

)
< ∞,

then IEλ |Sσ1|α < ∞. Moreover, if

sup
s∈E

IEs

(
τ1∑

n=1

X+
n

)
< ∞ and sup

s∈E
IEs

(
τ1∑

n=1

(X−
n )α

)
< ∞,

then sups∈E IEs |Sσ1|α < ∞.

(ii) Let γ > 0. Suppose that

IEξ X+
1 < ∞ and IEξ exp(γX−

n ) < ∞.

If for an initial distribution λ on E

IEλ

(
τ1∑

n=1

X+
n

)
< ∞ and IEλ

(
τ1∑

n=1

exp(γX−
n )

)
< ∞,
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then IEλ exp(γ|Sσ1|) < ∞. Moreover, if

sup
s∈E

IEs

(
τ1∑

n=1

X+
n

)
< ∞ and sup

s∈E
IEs

(
τ1∑

n=1

exp(γX−
n )

)
< ∞,

then sups∈E IEs exp(γ|Sσ1|) < ∞.

Proof. (i) We keep the notations in the proof of Theorem 3.3.

Note first that

IEξ X+
1 < ∞⇒ IEϕ

(
τ1∑

n=1

X+
n

)
< ∞ and IEξ (X−

1 )α < ∞⇒ IEϕ

(
τ1∑

n=1

(X−
n )α

)
< ∞.

Note further that for any n ≥ 1

IE

[
τn+1−1∑

k=τn

(X−
k )α

∣∣∣Mτn−1 = s

]
≤ 2cα + IEϕ

(
τ1∑

k=1

(X−
k )α

)
=: l′.

Thus, for any initial distribution λ on E,

IEλ




ην+m′∑

n=τ̃(x0)

τn−1∑

k=τn−1

(X−
k )α




≤ IE




ην+m′∑

n=τ̃(x0)

τn−1∑

k=τn−1

(X−
k )α

∣∣∣Mτ1−1 = s,Wτ1−1 = x0




≤ c1 IE [ην + m′|Mτ1−1 = s,Wτ1−1 = x0] · sup
s∈<

IE

[
τn+1−1∑

k=τn

(X−
k )α

∣∣∣Mτn−1 = s

]

≤ c1l1l
′,

where c1 is a constant, and from the proof of Theorem 3.3

IEλ




τ̃(x0)∑
n=2

τn∑

k=τn−1

(X−
k )α




=

∫

<

∫ ∞

0

IE




τ̃(x0)∑
n=2

τn∑

k=τn−1

(X−
k )α

∣∣∣Mτ1−1 = s,Wτ1−1 = w


 IP

(Mτ1−1,Wτ1−1)

λ (ds, dw)

≤ l′c′ {IEϕ τ1}
∫ ∞

0

(
a + bw + d

)
IPλ (Wτ1−1 ∈ dw)

≤ l′c′ {IEϕ τ1}
{

IEλ

(
a + b

τ1∑
n=1

X+
n

)
+ d

}
.
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Hence the first assertion follows from

IEλ |Sσ1|α ≤ IEλ

(
σ1∑

n=1

(X−
n )α

)

≤ IEλ

(
τ1∑

n=1

(X−
n )α

)
+ IEλ




τ̃(x0)∑
n=2

τn∑

k=τn−1

(X−
k )α


 + IEλ




ην+m′∑

n=τ̃(x0)

τn∑

k=τn−1

(X−
k )α




≤ IEλ

(
τ1∑

n=1

(X−
n )α

)
+ l′c′ {IEϕ τ1}

{
IEλ

(
a + b

τ1∑
n=1

X+
n

)
+ d

}
+ c1l1l

′.

The second assertion is obvious.

(ii) Noting that

exp(γ|Sσ1|) ≤
σ1∑

n=1

exp(γX−
n ),

one gets all assertions, in the same manner. QED

From the proof of Corollary 3.5 it is clear that

IEξ X+
1 < ∞ and IEξ (X−

1 )α < ∞ ⇒ IEϕ |Sσ1|α < ∞;

IEξ X+
1 < ∞ and IEξ exp(γX−

n ) < ∞ ⇒ IEϕ exp(γ|Sσ1|) < ∞.

If M is uniformly Harris ergodic, then we get the following assertions, which are
obtained in Fuh and Lai [28].

Corollary 3.6 Let α ≥ 1 and suppose that M is uniformly Harris ergodic.

(i) If sups∈E IEs (X+
1 )α < ∞, then sups∈E IEs σα

1 < ∞.

(ii) If sups∈E IEs X+
1 < ∞ and sups∈E IEs (X−

1 )α < ∞, then sups∈E IEs |Sσ1|α < ∞.

Proof. If M is uniformly Harris ergodic, then by Proposition 1.15 (iii)
sups∈E IEs τα

1 < ∞ for any α ≥ 1, whence

sup
s∈E

IEs (X+
1 )α < ∞ ⇒ sup

s∈E
IEs

(
τ1∑

n=1

X+
n

)α

< ∞.

Thus (i) follows directly from Theorem 3.3. For (ii) it suffices to note that

IEs |Sσ1|α ≤ IEs

(
σ1∑

n=1

(X−
n )α

)
≤ c1

{
sup
s′∈E

IEs′ (X
−
1 )α

} {
sup
s′∈E

IEs′ σ1

}
, s ∈ E,

where c1 is a suitable constant. QED
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In particular, if E is a one-element set, then we have:

IE (X+
1 )α < ∞ for some α ≥ 1 ⇒ IE σα

1 < ∞;

IE X+
1 < ∞ and IE (X−

1 )α < ∞ for some α ≥ 1 ⇒ IE |Sσ1|α < ∞,

which are classical results in Gut [30].

As another consequence of Theorem 3.3 we get conditions for the uniform conver-
gence of σα

1 , in the sense that

sup
s∈A

IEs

(
σα

1 1(σ1 > x)
) → 0 as x →∞

for some A ∈ E . Remember that for any nonnegative real-valued random variable Z
and A ∈ E
sup
s∈A

IEs

(
Z 1(Z > x)

)
= 0 as x →∞ ⇔ sup

s∈A
IEs G(Z) < ∞ for some G ∈ Θc,

where Θc is a set of real functions G : [0,∞) → [0,∞) having concave derivatives g
with limx→∞ g(x) = ∞.

Corollary 3.7 Let α ≥ 1 and A ∈ E with < ⊂ A. If for some ε > 0

sup
s∈A

IEs

(
τ1∑

n=1

X+
n

)α(1+ε)

< ∞ and sup
s∈A

IEs τ
α(1+ε)
1 < ∞,

then
sup
s∈A

IEs

(
σα

1 1(σ1 > x)
) → 0 as x →∞.

Proof. Since x1+ε ∈ Θc for 0 < ε < 1, the assertion follows from the proof of
Theorem 3.3 and

sup
s∈A

IEs σ
α(1+ε)
1 < ∞

⇒ sup
s∈A

IEs

(
σα

1 1(σ1 > x)
) ≤ sup

s∈A
IEs

(
σα

1 1(σα
1 > x)

) → 0 as x →∞.

QED

In particular, if M is uniformly Harris ergodic, then

sup
s∈E

IEs (X+
1 )α(1+ε) ⇒ sup

s∈E
IEs

(
σα

1 1(σ1 > x)
) → 0 as x →∞.

Remark 3.8 Let (Xn)n≥0 be a sequence of nonnegative real-valued random vari-
ables adapted to a filtration (Fn)n≥0 and τ an a.s. finite stopping time with respect to
(Fn)n≥0. Suppose that for some α ≥ 1

IE
[
τα1(τ > x)|F0

]
< ε1(x) → 0;

IE
[
Xα

n1(Xn > x)|Fn−1

]
< ε2(x) → 0, n ≥ 1,
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as x →∞. Borovkov and Utev [20] showed that

IE

[( τ∑
n=1

Xn

)α

1
( τ∑

n=1

Xn > x
)∣∣F0

]
< ε3(x) → 0 as x →∞.

Remark 3.9 It is known ( see Kalashnikov [32, 34]) that if for a real function
G ∈ Θc with derivative g there exist a nonnegative function V : E → [0,∞), positive
numbers ∆, b and a random variable Λ defined on E satisfying Proposition 1.4 (i)
through (iii) and

sup
s∈E

IE G(|∆(s)|) < ∞,

then sups∈< IEs G(τ(<)) < ∞. If s /∈ <, then

IEs G(τ(<)) ≤ G

(
as +

2V (s)

∆

)
,

where

as = g−1

(
1

∆
IEs G

(
1 +

2|∆(s)|
∆

))
.

In combination with a result of Borovkov and Utev (see Remark 3.8), one can easily
show that if for some G ∈ Θc

sup
s∈<

IEs G

(
τ1∑

n=1

X+
n

)
< ∞ and sup

s∈<
IEs G(τ1) < ∞,

then sups∈< IEs G′(σ1) < ∞ for some G′ ∈ Θc.

Next we find conditions for the finiteness of exponential moments of the first weak
descending ladder epoch.

Lemma 3.10 Let γ > 0. If

IEϕ exp
(
γ

τ1∑
n=1

X+
n

)
< ∞,

then for a suitable m ≥ 1 there exist real numbers y0 ≥ 0 and γ′ > 0 such that

IE[exp(γ′τ̃(y0))|Mτm−r = s,Wτm−r = w]

≤
{

exp(γ′w) : (s, w) ∈ < × [y0,∞)

eγ′ ·
{

exp(γ′y0) + IEϕ exp
(
γ′

∑τm

n=1 X+
n

)}
: (s, w) ∈ < × [0, y0]

for some γ′ > 0, where the random time τ̃(y0) is defined as

τ̃(y0) = inf{n > 0 : Wτmn−r ≤ y0}.
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Proof. Note that under the condition µ < 0

IEϕ exp
(
γ

τ1∑
n=1

X+
n

)
< ∞ ⇒ IEϕ exp

(
γ′

τ1∑
n=1

Xn

)
< 1

for some γ′ > 0. For notational convenience we write γ instead of γ′. W.l.o.g. we may
even assume that

r∏
j=1

eγcj IEζ exp
(
γ

τ1−r∑
n=1

Xn

)
< 1.

and that |Xτn−r+j| ≤ cj for any n ≥ 1, j = 1, · · · , r and put rc′ = c1 + · · ·+ cr.

Consider the test function V : [0,∞) → [1,∞) defined as V (w) = exp(γw). Then
for any w ≥ 0

IE
[
(V (Wτmn−r)− V (Wτm(n−1)−r)|Mτm(n−1)−r = s,Wτm(n−1)−r = w

]

≤ eγ(w−rc′) IE
[
exp

(
2γrc′ + γ

τmn∑

k=τm(n−1)+1

X+
k

)
− 1

∣∣Mτm(n−1)−r = s
]

≤ eγ(w−rc′) IEϕ exp
(
2γrc′ + γ

τm∑

k=1

X+
k

)
− eγ(w−rc′)

< ∞.

On the other hand, there exists m ≥ 1 such that

IEϕ exp
(
γ

τm∑
n=1

Xn

)
< e−γ(2rc′+1) − 2ε

for some ε > 0, since

IEϕ exp
(
γ

τm∑
n=1

Xn

)
≤

{
r∏

j=1

eγcj IEϕ exp
(
γ

τ1−r∑
n=1

Xn

)}m

→ 0 as m →∞.

Furthermore, there exists a positive real number y0 such that for any n ≥ 1

IEϕ exp
[
γ
( τm∑

k=1

X+
k −

τ1(y0)∧τm∑

k=1

X−
k

)]
< e−γ(2rc′+1) − ε;

IEϕ exp
(
γ

τm−r∑

k=τ1(y0)∧τm+1

X+
k

)
< 1 + ε,

where τn(y0), n ≥ 1, are random variables defined in the proof of Lemma 3.2. Thus for
any w ≥ y0 + rc′

IE
[
V (Wτmn−r)− V (Wτm(n−1)−r)

∣∣Mτm(n−1)−r = s,Wτm(n−1)−r = w
]
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= IE
[
exp(γWτmn−r)− exp(γWτm(n−1)−r)

∣∣Mτm(n−1)−r = s, Wτm(n−1)−r = w
]

≤ eγ(w−rc′) IE
[
exp(γ(Wτmn−r − w + rc′))− 1

∣∣Mτm(n−1)−r = s
]

≤ eγw IE
[
exp

(
γ

τn(y0)∧τmn∑

k=τm(n−1)+1

Xk + γ

τmn∑

k=τn(y0)∧τmn+1

X+
k + 2γrc′

)
− 1

∣∣Mτm(n−1)−r = s
]

≤ eγw



IEϕ exp

(
γ

τ1(y0)∧τm∑

k=1

Xk + γ

τm∑

k=τ1(y0)∧τm+1

X+
k + 2γrc′

)
− 1





≤ eγw
(
e−γ − 1

)
.

Therefore, by Proposition 1.4 (ii), we get for any w ≥ 0

IE[exp(γτ̃(y0))|Mτm−r = s,Wτm−r = w] ≤
{

exp(γw) : (s, w) ∈ < × [y0,∞)
ly0 : (s, w) ∈ < × [0, y0],

where

ly0 = sup
(s,w)∈<×[0,y0]

{
exp γ

(
exp(γw) +

∫

E

(
exp(γw′)− exp(γw)

)

·IP[
Wτmn−r ∈ dw′|(Mτm(n−1)−r,Wτm(n−1)−r) = (s, w)

])}

≤ eγ
{

exp(γw) +

∫ ∞

0

(
exp(γw′)− exp(γy0)

)
IPϕ(Wτmn−r ∈ dw′)

}

≤ eγ
{

exp(γy0) + IEϕ exp
(
γ

τm∑
n=1

X+
n

)}
.

QED

Theorem 3.11 Let γ > 0. Suppose that

IEϕ exp(γτ1) < ∞ and IEϕ exp
(
γ

τ1∑
n=1

X+
n

)
< ∞.

If for an initial distribution λ on E

IEλ exp(γτ1) < ∞ and IEλ exp
(
γ

τ1∑
n=1

X+
n

)
< ∞,

then IEλ exp(γ′σ1) < ∞ for some γ′ > 0. Moreover, if

sup
s∈E

IEs exp(γτ1) < ∞ and sup
s∈E

IEs exp(γX+
1 ) < ∞,

then then for any w ≥ 0 there exists γ′ > 0 such that sups∈E IEs,w exp(γ′σ1) < ∞.
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Proof. By Lemma 3.10 there exist positive real numbers y0 and γ1 > 0 such that

IE[exp(γ1τ̃(y0))|Mτm−r = s,Wτm−r = w] ≤ ly0 exp(γ1w),

where ly0 is given in Lemma 3.10. W.l.o.g. we may assume m = r = 1. Note that
there exist m′ ≥ 1 and q > 0 such that

IPϕ

( τn+m′∑

k=τn+1

Xn < −y0 − 2c

)
> q

for any n ≥ 1. Let ηn, n ≥ 0, be random variables defined as

η0 = 0 and ηn = inf{k ≥ ηn−1 + m′ : Wτk−1 ≤ y0}, n ≥ 1,

and ν be a random variable defined as

ν := inf{n : Wk = 0 for some τηn ≤ k ≤ τηn+m′ − 1}.

Then for any n ≥ 1

IP(ν > n) ≤ (1− q)n, n ≥ 1.

Since

sup
s∈<

IE[exp(γ1(τ̃(y0) + m′))|Mτ1−1 = s,Wτ1−1 = y0] < ∞,

there exists γ2, 0 < γ2 ≤ γ1, such that for any w ≤ y0 and n ≥ 1

IE
[
exp

(
γ2(ηn+1 − ηn)

)|Gn

] ≤ sup
s∈<

IE
[
exp

(
γ2(τ̃(y0) + 2m′)

)|Mτ1−1 = s,Wτ1−1 = y0

]

< min
( 2

2− q
, exp γ1

)
,

where Gn is the σ-algebra generated by {(Mτk−1,Wτk−1)|k ≤ ηn}. Choose γ3 > 0 such
that

IEϕ exp(2γ3τ1) < exp γ2.

Then,

IE
[
exp(

γ3

2
σ1)|G1

] ≤ IE

[
exp

(γ3

2

ην+m′∑
n=2

(τn − τn−1)
)∣∣∣G1

]

≤ IE




(
sup
s∈<

IE
[
exp

(
γ3

η1+m′∑
n=2

(τn − τn−1)
)∣∣Mτ1−1 = s,Wτ1−1 = y0

])ν ∣∣∣G1




≤ IE

[(
sup
s∈<

IE
[
exp(γ2(τ̃(y0) + 2m′))

∣∣Mτ1−1 = s, Wτ1−1 = y0

])ν ∣∣∣G1

]

≤ sup
s∈<

IE

[( 2

2− q

)ν∣∣∣Mτ1−1 = s,Wτ1−1 = y0

]
.
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Note that for any s ∈ <

IE

[( 2

2− q

)ν∣∣∣Mτ1−1 = s,Wτ1−1 = y0

]
≤

∞∑
n=0

( 2

2− q

)n+1

(1− q)n =: l′ < ∞.

Thus for any (s, w) ∈ < × [0,∞)

IE

[
exp

(γ3

2

ην+m′∑
n=2

(τn − τn−1)
)∣∣∣Mτ1−1 = s,Wτ1−1 = w

]

≤ IE


exp

(γ3

2

( τ̃(y0)∑
n=2

(τn − τn−1) +

ην+m′∑

n=τ̃(y0)

(τn − τn−1

))∣∣∣Mτ1−1 = s, Wτ1−1 = w




≤ IE


exp

(
γ3

τ̃(y0)∑
n=2

(τn − τn−1

)∣∣∣Mτ1−1 = s,Wτ1−1 = w




·IE
[
exp

(
γ3

ην+m′∑
n=2

(τn − τn−1

)∣∣∣Mτ1−1 = s,Wτ1−1 = x0

]

≤ l′ IE [exp(γ2τ̃(y0))|Mτ1−1 = s,Wτ1−1 = w]

≤ l′ly0 exp(γ1w)

and in turn,

IEλ exp
(γ3

2

ην+m′∑
n=2

(τn − τn−1)
)

=

∫ ∫
IE

[
exp

(γ3

2

ην+m′∑
n=2

(τn − τn−1)
)∣∣∣Mτ1−1 = s,Wτ1−1 = w

]
IP

(Mτ1−1,Wτ1−1)

λ (ds, dw)

≤
∫

l′ly0 exp(γ1w) IPλ (Wτ1−1 ∈ dw)

≤ l′ly0 IEλ exp
(
γ1

τ1∑
n=1

X+
n

)
.

Letting γ′ := γ3/4,

IEλ exp(γ′σ1) ≤ IEλ exp
(
γ′τ1 + γ′

ην+m′∑
n=2

(τn − τn−1)
)

≤
{

IEλ exp(
γ3

2
τ1)

}{
IEλ exp

(γ3

2

ην+m′∑
n=2

(τn − τn−1)
)}

≤
{

IEλ exp(γτ1)
}

l′ly0

{
IEλ exp

(
γ

τ1∑
n=1

X+
n

)}

< ∞,
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which proves the first assertion. The second assertion is obvious, since for any s ∈ E

IEs exp(γ′σ1) ≤
{

sup
s′∈E

IEs′ exp(γτ1)
}

l′ly0

{
sup
s′∈E

IEs′ exp
(
γ

τ1∑
n=1

X+
n

)}

< ∞.

QED

From the proof of Theorem 3.11, it is clear that if for some γ > 0

sup
s∈<

IEs exp(γτ1) < ∞ and sup
s∈<

IEs exp
(
γ

τ1∑
n=1

X+
n

)
< ∞,

then for any w ≥ 0 there exists γ′ > 0 such that sups∈< IEs,w exp(γ′σ1) < ∞. Moreover,
if for a measurable subset A of E with < ⊂ A

sup
s∈A

IEs exp(γτ1) < ∞ and sup
s∈A

IEs exp
(
γ

τ1∑
n=1

X+
n

)
< ∞,

then for any w ≥ 0 there exists γ′ > 0 such that sups∈A IEs,w exp(γ′σ1) < ∞.

If M is uniformly ergodic, then by Proposition 1.16 (iii) sups∈E IEs exp(γ′τ1) < ∞
for some γ′ > 0, and so by Lemma 1.15 (ii)

sup
s∈E

IEs exp(γX1) < ∞ for some γ > 0

⇒ sup
s∈E

IEs exp
(
γ′

τ1∑
n=1

X+
n

)
< ∞ for some γ′ > 0.

Thus, from Theorem 3.11, we get:

Corollary 3.12 Let γ > 0. Suppose that M is uniformly ergodic.

If sups∈E IEs exp(γX+
1 ) < ∞, then sups∈E IEs exp(γ′σ1) < ∞ for some γ′ < 0.

In particular, if E is a one-element set, then we have:

IE exp(γX+
1 ) < ∞ for some γ > 0 ⇒ IE exp(γ′σ1) < ∞ for some γ′ > 0.

3.2 Rates of convergence

In this section we find rates of convergence of reflected MRW’s. Throughout this
section we assume that M is Harris ergodic. A unique stationary distribution of a
reflected MRW (Mn,Wn)n≥0 is denoted by π. From Proposition 1.20 it is clear that
for any initial distribution λ on E

lim
n→∞

‖IPλ ((Mn,Wn) ∈ · )− π‖ = 0.
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Theorem 3.13 Suppose that <× {0} is a recurrent set of (Mn,Wn)n≥0.

(i) Let α > 1. Suppose that

sup
s∈<

IEs τα
1 < ∞ and sup

s∈<
IEs

(
τ1∑

n=1

X+
n

)α

< ∞.

If for an initial distribution λ on E

IEλ τα
1 < ∞ and IEλ

(
τ1∑

n=1

X+
n

)α

< ∞,

then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEζ τ̂α

1 < ∞ and IEλ τ̂α
1 < ∞, where ζ(·) = IPλ′(Mτ̂1 ∈ · ) for each initial distribution λ′

on E. Moreover, for some constant c

‖IPλ ((Mn,Wn) ∈ · )− π‖ ≤ cn1−α.

(ii) Let γ > 0. Suppose that

sup
s∈<

IEs exp(γτ1) < ∞ and sup
s∈<

IEs exp
(
γ

τ1∑
n=1

X+
n

)
.

Then there exists a sequence of regeneration epochs (τ̂n)n≥0 such that IEζ exp(γ′τ̂1) < ∞
for some γ′ > 0. Moreover, for some constants c and γ′′ ∈ (0, γ′]

‖IPζ ((Mn,Wn) ∈ · )− π‖ ≤ c exp(−γ′′n).

Proof. (i) By Lemma 3.2 there exist m ≥ 1 and x0 ≥ 0 such that for any w ≤ x0

IE [(τ̃(x0))
α|Mτm−r = s,Wτm−r = w] ≤ IE [(τ̃(x0))

α|Mτm−r = s,Wτm−r = x0] < ∞.

W.l.o.g. we may assume m = r = 1. By assumption there exist r′ ≥ 1, p′ > 0, a
regeneration set <0 ⊂ < of M and a distribution φ on <0 such that

IPs ((Mr′ ,Wr′) ∈ · ) > p′(φ⊗ δ0)(·)

for any s ∈ <0. We show that there exists a regeneration epoch τ̂1 for (Mn, Wn)n≥0

such that IEφ τ̂α
1 < ∞ and IEλ τ̂α

1 < ∞, from which the assertion follows (see Corollary
1.20).

By ergodicity of (Mn,Wn)n≥0

lim
n→∞

IPϕ⊗δx0+c((Mn,Wn) ∈ <0 × {0}) = π(<0 × {0}) > 0,
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whence there exists n0 ≥ 1 such that

q := IPϕ⊗δx0+c((Mn0 ,Wn0) ∈ <0 × {0}) > 0.

In turn, for any (s, w) ∈ < × [0, x0] and n ≥ 1

IP[(Mτn+n0 ,Wτn+n0) ∈ <0 × {0}|Mτn−1 = s, Wτn−1 = w]

≥ IP[(Mτn+n0 , Wτn+n0) ∈ <0 × {0}|Mτn−1 = s,Wτn−1 = x0]

≥ IPϕ⊗δx0+c((Mn0 ,Wn0) ∈ <0 × {0})
= q.

Let ηn, n ≥ 1, be random times defined as

η0 = 0 and ηn = inf{k > ηn−1 : Wτk−1 ≤ x0, τk ≥ τηn−1 + n0}, n ≥ 1.

Let further ν be a random time defined as

ν := inf
{
n : (Mτηn+n0 ,Wτηn+n0) ∈ <0 × {0}

}
.

Then for any n ≥ 1
IP(ν > n) ≤ (1− q)n

and thus for any w ≤ x0

IE [(τ(<0 × {0}))α|Mτ1−1 = s,Wτ1−1 = w] ≤ IE
[( ην+n0∑

n=1

(τn−τn−1)
)α∣∣∣Mτ1−1 = s,Wτ1−1 = x0

]
,

where τ(<0 × {0}) is the return time of (Mn,Wn)n≥0 to <0 × {0}. As in the proof of
Theorem 3.3, one can show, on the one hand, that

IE
[
(ην + n0)

α|Mτ1−1 = s,Wτ1−1 = x0

]
< ∞,

from which

sup
s∈<

IEs




ην+n0∑

n=τ̃(x0)

(τn − τn−1)




α

< ∞,

on the other hand, that for any (s, w) ∈ < × [0,∞)

IE




( τ̃(x0)∑
n=2

(τn − τn−1)
)α∣∣∣Mτ1−1 = s,Wτ1−1 = w


 ≤ c′′(a + bw)α IEϕ τα

1 ,

where c′′, a and b are suitable constants and thus for any s ∈ <

IEs




τ̃(x0)∑
n=2

(τn − τn−1)
)α


 ≤ c′′ {IEϕ τα

1 }
∫

c′′(a + bw)α IPs(Wτ1−1 ∈ dw)

≤ c′′ {IEϕ τα
1 }

{
sup
s∈<

IEs

(
a + b

τ1∑
n=1

X+
n

)α}

< ∞.
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Thus as in the proof of Theorem 3.3

sup
s∈<

IEs (τ(<0 × {0}))α ≤ sup
s∈<

IEs


τ1 +

τ̃(x0)∑
n=2

(τn − τn−1) +

ην+n0∑

n=τ̃(x0)

(τn − τn−1)




α

< ∞.

Letting τ̂1 be the first regeneration epoch of (Mn,Wn)n≥0 constructed by the splitting
technique from <0 × {0}, by Proposition 1.16 (i)

sup
s∈<

IEs τ̂α
1 < ∞

and, in particular, IEζ τ̂α
1 < ∞ with ζ := φ. Note that ζ(·) = IPλ′ (Mτ̂1 ∈ · ) for each

initial distribution λ′ on E. Furthermore,

IEλ (τ(<0 × {0}))α < ∞,

since

IEλ




τ̃(x0)∑
n=2

(τn − τn−1)




α

≤ c′′{IEϕ τα
1 } IEλ

(
a + b

τ1∑
n=1

X+
n

)α

< ∞.

Noting that

IEλ(τ̂1 − τ(<0 × {0}))α ≤ sup
s∈<0

IE
[
τ̂α
1 |Mτ(<0×{0}) = s

]

≤ sup
s∈<

IEs τ̂α
1

< ∞,

we have
IEλ τ̂α

1 ≤ IEλ

(
τ(<0 × {0}) + (τ̂1 − τ(<0 × {0}))

)α

< ∞.

The second assertion follows from Proposition 1.21 (i) and (iii), since

‖IPλ((Mn,Wn) ∈ ·)−π‖ ≤ IPλ((Mn,Wn) ∈ ·)−IPζ((Mn,Wn) ∈ ·)‖+‖IPζ((Mn,Wn) ∈ ·)−π‖.

Applying Proposition 1.21 (ii), (ii) can be proved in the same manner.

QED

In particular, it is clear that

sup
s∈<

IEs τα
1 < ∞ and sup

s∈<
IEs

(
τ1∑

n=1

X+
n

)α

< ∞ for some α ≥ 1

⇒ ‖IPϕ ((Mn, Wn) ∈ · )− π‖ ≤ cn1−α.
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If M is uniformly ergodic, then E is a regeneration set of M . In this case we have:

Corollary 3.14 Suppose that M is uniformly ergodic.

(i) Let α > 1. If sups∈E IEs

(
X+

1

)α
< ∞, then there exists a sequence of regeneration

epochs (τ̂n)n≥0 such that IEλ τ̂α
1 < ∞ for any initial distribution λ on E. Moreover, for

any initial distribution λ on E there exists a constant c such that

‖IPλ ((Mn,Wn) ∈ · )− π‖ ≤ cn1−α.

(ii) Let γ > 0. If sups∈E IEs exp
(
γX+

1

)
< ∞, then there exists a sequence of

regeneration epochs (τ̂n)n≥0 such that IEζ exp(γ′τ̂1) < ∞ for some γ′ > 0, where ζ(·) =
IPλ(Mτ̂1 ∈ · ). Moreover, for some constants c and γ′′ ∈ (0, γ′]

‖IPζ ((Mn,Wn) ∈ · )− π‖ ≤ c exp(−γ′′n).

Proof. Note first that E × {0} is a recurrent set of (Mn,Wn)n≥0. Since
sups∈E IEs

(
X+

1

)α
< ∞ implies

sup
s∈E

IEs τα
1 < ∞ and sup

s∈<
IEs

(
τ1∑

n=1

X+
n

)α

< ∞,

(i) follows from Theorem 3.13 (i). (ii) can be proved in the same manner. QED

In particular, if E is a one-element set, then (σn)n≥0 forms a sequence of regeneration
epochs for (Wn)n≥0, and

IE
(
X+

1

)α
< ∞ for some α > 1

⇒ ‖IP (Wn ∈ · )− π‖ ≤ cn1−α for some constant c;

IE exp
(
γX+

1

)
< ∞ for some γ > 0

⇒ ‖IP (Wn ∈ · )− π‖ ≤ c′ exp(−γ′n) for some constants c and γ′ > 0.

It should be noticed that in the proof of Theorem 3.13 the moments of τ̂1 depend
only on the moments of η1 and τ1. Suppose that (Mn,Wn)n≥0 satisfies the minorization
condition M(<, p′, r′, ϕ⊗ δ0). Let η′n, n ≥ 1, be random times defined as

η′0 = 0, η′n = inf{k > η′n−1 + n0 + r′ : Wτk−1 ≤ x0, τk ≥ τη′n−1
+ n0 + r′}, n ≥ 1.

Note that for any (s, w) ∈ < × [0, x0]

IP
[(

Mτη′n+n0+r′ ,Wτη′n+n0+r′

)
∈ · |Mτη′n−1 = s,Wτη′n−1 = w

]

≥
∫

<
IPs′ ((Mr′ ,Wr′) ∈ · )IP

[
Mτη′n+n0 ∈ ds′,Wτη′n+n0 = 0|Mτη′n−1 = s,Wτη′n−1 = x0

]

≥ p′ (φ⊗ δ0)(·)
∫

<
IPϕ⊗δx0+c (Mn0 ∈ ds′,Wn0 = 0)

> p′q (φ⊗ δ0)(·).
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Furthermore, as in the proof of Theorem 3.3, one can easily show that for any n ≥ 1

IEϕ τα
1 < ∞ and IEϕ

(
τ1∑

n=1

X+
n

)α

< ∞ ⇒ IEϕ

(
τη′n − τη′n−1

)α

= IEϕ τα
η′1

< ∞,

Therefore, by the splitting technique, one can construct a sequence of regeneration
epochs (τ̂n)n≥0 for (Mn,Wn)n≥0 such that

IEϕ τα
1 < ∞ and IEϕ

(
τ1∑

n=1

X+
n

)α

< ∞ ⇒ IEϕ τ̂α
1 < ∞.

If in addition for an initial distribution λ on E

IEλ τα
1 < ∞ and IEλ

(
τ1∑

n=1

X+
n

)α

< ∞,

then IEλ τ̂α
1 < ∞. In the same manner, one can show that

IEϕ exp(γτ1) < ∞ and IEϕ exp
(
γ

τ1∑
n=1

X+
n

)
< ∞ for some γ > 0

⇒ IEϕ exp(γ′τ̂1) < ∞ for some γ′ > 0.

If in addition for an initial distribution λ on E

IEλ exp(γτ1) < ∞ and IEλ exp
(
γ

τ1∑
n=1

X+
n

)
< ∞ for some γ > 0,

then IEλ exp(γ′τ̂1) < ∞ for some γ′ > 0.

Corollary 3.15 Suppose that there exist u > 0 and q > 0 such that

IPs (M1 ∈ · , X1 ≤ −u) > qϕ(·), s ∈ <.

(i) Let α > 1. Suppose that

IEϕ τα
1 < ∞ and IEϕ

(
τ1∑

n=1

X+
n

)α

< ∞.

If for an initial distribution λ on E

IEλ τα
1 < ∞ and IEλ

(
τ1∑

n=1

X+
n

)α

< ∞,

then for some constant c

‖IPλ ((Mn,Wn) ∈ · )− π‖ ≤ cn1−α.
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(ii) Let γ > 0. Suppose that

IEϕ exp(γτ1) < ∞ and IEϕ exp
(
γ

τ1∑
n=1

X+
n

)
.

Then for some constants c and γ′ > 0

‖IPϕ ((Mn,Wn) ∈ · )− π‖ ≤ c exp(−γ′n).

Proof. (i) By Remark 3.4 < × [0, x0] is a recurrent set of (Mn,Wn)n≥0 for some
x0 ≥ 0. Put

r′ =
[x0

u

]
.

Then for any (s, w) ∈ < × [0, x0]

IPs,w (Mr′ ∈ <,Wr′ = 0) ≥ IPs,x0 (Mr′ ∈ <,Wr′ = 0) > qr′ .

By the geometric trial argument one can easily see that <×{0} is also a recurrent set
of (Mn,Wn)n≥0 and thus a regeneration set, since by assumption

IPs (M1 ∈ · ,W1 = 0) > qϕ(·), s ∈ <.

Thus (Mn,Wn)n≥0 satisfies the minorization conditionM(<×{0}, q, 1, ϕ⊗δ0) and there
exists a sequence of regeneration epochs (τ̂n)n≥0 such that IEϕ τ̂α

1 < ∞. Furthermore,
under the conditions we have IEλ τ̂α

1 < ∞, from which the assertion follows.

(ii) can be proved in the same manner. QED

In particular, if E is a countable space, then there exists a recurrent state i0 of M .
Denote by τ1 the return time of M to a recurrent state i0. Suppose that

IPi0 (τ1 = 1, X1 < 0) = IPi0(M1 = i0, X1 < 0) > 0.

If for some α > 1

IEi0 τα
1 < ∞ and IEi0

(
τ1∑

n=1

X+
n

)α

< ∞,

then for some constant c

‖IPi0 ((Mn,Wn) ∈ · )− π‖ ≤ cn1−α.

If for some γ > 0

IEi0 exp(γτ1) < ∞ and IEi0 exp
(
γ

τ1∑
n=1

X+
n

)
< ∞,

then for some constants c and γ′ > 0

‖IPi0 ((Mn,Wn) ∈ · )− π‖ ≤ c exp(−γ′n).



Chapter 4

Semi-Markov queues

Semi-Markov queues are generalizations of classical queues, which are based on the
i.i.d. assumption of interarrival and service times. In a semi-Markov queue interarrival
times and service times of customers are governed by a Markov chain, which is called the
modulation chain. Semi-Markov queues with finite modulation chains are extensively
studied by Neuts and his school, and there are plenty of literature. However, the theory
of queues with general modulation chains are not well developed to the same extent.

This final chapter studies semi-Markov queues with general modulation chains. As
applications of previous chapters we obtain conditions for the finiteness of moments
for the stationary waiting time and workload processes, and rates of convergence to
the steady state distributions. Throughout a Markov chain M is assumed to be Harris
ergodic with a unique stationary distribution ξ and to satisfy a minorization condi-
tion M(<, p, r, ϕ). Further, we denote by (τn)n≥0 a sequence of regeneration epochs
constructed by the splitting technique from the minorization condition.

4.1 Single server queues

A single server queue is the simplest and the most basic model in queueing theory,
where customers arrive at one service station, are served one at a time, and leave the
system when the service is completed.

We number the customers 0, 1, 2, · · · . Denote by Tn the interarrival time between
customers n− 1 and n, and by Un the service time of customer n. Let T0 and U−1 be
arbitrary random variables with values in IR+

0 . Tn, n ≥ 1, and Un, n ≥ 0, are assumed
to be positive. In our model the process (Mn, Tn, Un−1)n≥0, which is called the input
process, is assumed to be a Markov modulated sequence with driving chain M and
transition kernel

P : E × (E ⊗ (B|[0,∞))
2) → [0, 1].

69
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Let T n = T0 + T1 + · · · + Tn, n ≥ 0, and Un = U−1 + U0 + · · · + Un, n ≥ −1. If
T0 = U−1 = 0, which means that customer 0 arrives at time 0, then T n is the arrival
time of the customer n in the system and Un the total workload up to the nth customer.

The queue discipline is assumed to be FIFO, i.e., the customers are served in the
order of arrival. We say that the system is stable, if there exists a finite stationary
distribution for the waiting time process. If the mean interarrival time IEξT1 and the
mean service time IEξ U0 are finite, we define the traffic intensity ρ as

ρ :=
IEξ U0

IEξ T1

. (4.1)

The condition ρ < 1, or equivalently µ = IEξ(U0 − T1) < 0, is called the stability
condition for the single server queue. Throughout this section we assume the stability
condition.

4.1.1 The actual waiting time

We denote by Wn the actual waiting time of the customer n, i.e., the time from
arrival to the system until service starts. Put Xn := Un−1 − Tn for n ≥ 0. Then
(Mn, Xn)n≥0 forms a Markov modulated sequence with the driving chain (Mn)n≥0.
Denote by (Mn, Sn)n≥0 the associated MRW. One can easily see that the actual wait-
ing time process (Mn,Wn)n≥0 is the reflected MRW associated to (Mn, Xn)n≥0 with
W0 = S0. Consequently, the actual waiting time process (Mn,Wn)n≥0 is Harris er-
godic, whence there exists a unique stationary distribution πW of (Mn,Wn)n≥0, which
by Proposition 2.14 satisfies the relation

πW (A× [0, y]) =

∫

E

H≤(s, A; [0, y]) πW (ds× {0}), A ∈ E , y ≥ 0.

Moreover, by Corollary 2.15

IEπW

(
eβW1 ; M1 ∈ A

)
=

∫

E

Ĥ
(1,β)
≤ (s, A) πW (ds× {0})

for any A ∈ E .

Note that the process (Mn,Wn, Tn, Un−1)n≥0 forms a temporally homogeneous
Markov chin. Throughout this chapter we assume that a canonical model is given
with probability measures IP(s,w,x,y), (s, w, x, y) ∈ E × [0,∞)3 on (Ω,S) such that

IP(s,w,x,y)(M0 = s,W0 = w, T0 = x, U−1 = y) = 1.

For each s ∈ E,w ≥ 0 and initial distribution λ on E, we write IE(s,w), IEs and IEλ

instead of IE(s,w,0,0), IE(s,0,0,0) and IEλ⊗δ(0,0,0)
, respectively.

Theorem 4.1 (i) Suppose that <× {0} is a recurrent set of (Mn,Wn)n≥0.
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(a) Let α > 1. Suppose that

sup
s∈<

IEs τα
1 < ∞ and sup

s∈<
IEs

(
τ1∑

n=1

Un−1

)α

< ∞.

If for an initial distribution λ on E

IEλ τα
1 < ∞ and IEλ

(
τ1∑

n=1

Un−1

)α

< ∞,

there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that IEζ τ̂α
1 <

∞ and IEλ τ̂α
1 < ∞, where ζ(·) = IPλ′(Mτ̂1 ∈ · ) for each initial distribution λ′ on E.

Moreover, for some constant c

‖IPλ ((Mn,Wn) ∈ · )− πW‖ ≤ cn1−α.

(b) Let γ > 0. Suppose that

sup
s∈<

IEs exp (γτ1) < ∞ and sup
s∈<

IEs exp

(
γ

τ1∑
n=1

Un−1

)
< ∞.

Then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEζ exp(γ′τ̂1) < ∞ for some γ′ > 0. Moreover, for some constants c and γ′′ ∈ (0, γ′]

‖IPζ ((Mn,Wn) ∈ · )− πW‖ ≤ c exp(−γ′′n).

(ii) Suppose that for some q > 0

IPs (M1 ∈ · , U0 − T1 < 0) > qϕ(·), s ∈ <.

(a) Let α > 1. Suppose that

IEϕ τα
1 < ∞ and IEϕ

(
τ1∑

n=1

Un−1

)α

< ∞.

If for an initial distribution λ on E

IEλ τα
1 < ∞ and IEλ

(
τ1∑

n=1

Un−1

)α

< ∞,

then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEϕ τ̂α

1 < ∞ and IEλ τ̂α
1 < ∞. Moreover, for some constant c

‖IPϕ ((Mn,Wn) ∈ · )− πW‖ ≤ cn1−α.
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(b) Let γ > 0. Suppose that

IEϕ exp(γτ1) < ∞ and IEϕ exp
(
γ

τ1∑
n=1

Un−1

)
< ∞.

Then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEϕ exp(γ′τ̂1) < ∞ for some γ′ > 0. Moreover, for some constants c and γ′′ ∈ (0, γ′]

‖IPϕ ((Mn,Wn) ∈ · )− πW‖ ≤ c exp(−γ′′n).

Proof. All assertions follow directly from Theorem 3.13 and Corollary 3.15.

QED

If E is countable and if the condition

IPi0(M1 = i0, U0 − T1 < 0) > 0

is satisfied for a recurrent state i0 ∈ E, then

IEi0 (τ(i0))
α < ∞ and IEi0




τ(i0)∑
n=1

Un−1




α

< ∞ for some α > 1

⇒ ‖IPi0 ((Mn,Wn) ∈ · )− πW‖ ≤ cn1−α for some constant c;

IEi0 exp(γτ(i0)) < ∞ and IEi0 exp
(
γ

τ(i0)∑
n=1

Un−1

)
< ∞ for some γ > 0

⇒ ‖IPi0 ((Mn,Wn) ∈ · )− πW‖ ≤ c exp(−γ′n) for some constants γ′ > 0 and c,

which are obtained in Sharma [55].

If M is uniformly ergodic, then by Corollary 3.14 for any initial distribution λ on
E

sup
s∈E

IEs Uα
0 < ∞ for some α > 1

⇒ ‖IPλ ((Mn,Wn) ∈ · )− πW‖ ≤ cn1−α for some constant c.

If E is a one-element set, then

IE Uα
0 < ∞ for some α > 1

⇒ ‖IP (Wn ∈ · )− πW‖ ≤ cn1−α for some c;

IE exp (γU0) < ∞ for some γ > 0

⇒ ‖IP (Wn ∈ · )− πW‖ ≤ c exp(−γ′n) for some constants c and γ′ > 0,
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which is obtained in Kalashnikov [33].

Let W be a random variable having the steady state distribution of Wn, i.e.,

IP(W ≤ x) =
1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1(Wn ≤ x)

)
.

Theorem 4.2 (i) Let α ≥ 1. If

IEξ̄ σα+1
1 < ∞ and IEξ̄

(
σ1∑

n=1

Un−1

)α+1

< ∞,

then IE W α < ∞.

(ii) Let γ > 0. If for some ε > 0

IEξ̄ σ1+ε
1 < ∞ and IEξ̄ exp

(
γ

σ1∑
n=1

Un−1

)
< ∞,

then IE exp(γ′W ) < ∞ for some γ′ > 0.

Proof. (i) Since Wk ≤
∑σ1

n=1 Un−1 for all k ≤ σ1, it holds that

IE Wα =
1

IEξ̄ σ1

IEξ̄

(
σ1∑

n=1

W α
n

)
≤ 1

IEξ̄ σ1

IEξ̄

[
σ1

(
σ1∑

n=1

Un−1

)α]

≤ 1

IEξ̄ σ1

{
IEξ̄ σp

1

}1/p
{

IEξ̄

(
σ1∑

n=1

Un−1

)αq}1/q

,

where p > 1 and 1/p + 1/q = 1. Taking p = α + 1, the assertion follows.

(ii) In the similar manner as in (i), we have

IE exp(γ′W ) ≤ 1

IEξ̄ σ1

{
IEξ̄ σp

1

}1/p
{

IEξ̄ exp
(
γ′q

σ1∑
n=1

Un−1

)}1/q

.

Taking γ < γ′ < γ(1− 1/α) and q = γ/γ′, the assertion follows. QED

Corollary 4.3 Suppose that M is uniformly Harris ergodic. Then the following
assertions hold true:

(i) Let α ≥ 1. If sups∈E IEs Uα+1
0 < ∞, then IE Wα < ∞.

(ii) Let γ > 0. If sups∈E IEs exp(γU0) < ∞, then IE exp(γ′W ) for some γ′ > 0.



74 CHAPTER 4. SEMI-MARKOV QUEUES

Proof. (i) By Lemma 1.14 (i) and Theorem 3.3

sup
s∈E

IEs Uα+1
0 < ∞ ⇒ sup

s∈E
IEs τα+1

1 < ∞ and sup
s∈E

IEs

(
τ1∑

n=1

Un−1

)α+1

< ∞

⇒ sup
s∈E

IEs σα+1
1 < ∞ and sup

s∈E
IEs

(
σ1∑

n=1

Un−1

)α+1

< ∞

⇒ IEξ̄ σα+1
1 < ∞ and IEξ̄

(
σ1∑

n=1

Un−1

)α+1

< ∞.

Thus the assertion follows from Theorem 4.3 (i).

(ii) Using Lemma 1.14 (ii) and Theorem 3.11, the assertion follows in the same
manner. QED

In particular, if E is a one-element space, then we obtain the classical result by
Kiefer and Wolfowitz (see Theorem X.2.1. in Asmussen [12])

IE U1+α < ∞ for some α ≥ 1 ⇒ IE Wα < ∞.

Moreover, we get

IE exp(γU) < ∞ for some γ > 0 ⇒ IE exp(γ′W ) < ∞ for some γ′ > 0.

Remark 4.4 Suppose that < × {0} is a recurrent set of (Mn, Wn)n≥0. Then from
Theorem 3.13 (i)

sup
s∈<

IEs τα+1
1 < ∞ and sup

s∈<
IEs

(
τ1∑

n=1

Un−1

)α+1

< ∞

⇒ IEϕ τ̂α+1
1 < ∞ and IEϕ

(
τ̂1∑

n=1

Un−1

)α+1

< ∞

⇒ IE Wα =
1

IEϕ τ̂1

IEϕ

(
τ̂1−1∑
n=0

Wα
n

)
< ∞.

In the same manner,

sup
s∈<

IEs exp(γτ1) < ∞ and sup
s∈<

IEs exp
(
γ

τ1∑
n=1

Un−1

)
< ∞

⇒ IE exp(γ′W ) < ∞ for some γ′ > 0.

The same results are obtained in Sharma [55] for the countable modulation case.
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Remark 4.5 Let (Yn)n≥0 be a sequence of random variables on the probability
space (Ω,S, IP). Let Fm

n := σ(Yk : n ≤ k ≤ m). Define

β(m) := sup |IP(A ∩B)− IP(A)IP(B)|,

where the supremum is taken over all A ∈ Fn
0 and B ∈ F∞

n+m. (Yn)n≥0 is called strongly
mixing, if β(m) tends to 0 as m increases to ∞. Daley, Foley and Rolski [26] studied
moment conditions for the waiting time of G/G/1 queue, in which the input process
forms a stationary process. They have shown that if the sequence of interarrival times
(Tn)n≥0 is strongly mixing with mixing coefficients (β(n))n≥1 satisfying

∞∑
n=1

nα−1β(n) < ∞ (4.2)

and IE Uα+1
0 < ∞, then IE Wα−1 < ∞. Their result can be also applied to SM/G/1

queue. It is known (see Athreya and Pantula [16]) that a Harris ergodic Markov chain
is strongly mixing for any initial distribution with β(m) ≤ 2 sups∈E IE Km−1(s), where

Km(s) := ‖IPs (Mm ∈ · )− ξ‖, m ≥ 1.

If M is uniformly Harris ergodic, then the Markov modulated sequence (Mn, Tn)n≥0 is
also uniformly Harris ergodic, and consequently the mixing coefficients of (Mn, Tn)n≥0

satisfy the condition (4.2). Thus in the SM/G/1 queue with uniformly Harris ergodic
modulation chain M we obtain

IE Uα+1
0 < ∞ for some α ≥ 1 ⇒ IE Wα < ∞.

4.1.2 The busy cycle

Denote by IB
n and IL

n the nth busy period and the nth idle period, respectively.
Then the nth busy cycle can be written as In = IB

n + IL
n . Let ηB

n and ηL
n be the

beginning time of the nth busy period and the beginning time of the nth idle period,
respectively. Obviously, for any n ≥ 1,

ηB
n = T σn−1 and ηL

n = T σn−1 +
σn∑

k=σn−1+1

Uk−1.

Denoting

T (σn)
σn−1

:=
σn∑

k=σn−1+1

Tk and U (σn)
σn−1

:=
σn∑

k=σn−1+1

Uk−1, n ≥ 1,

we have

IB
n = ηL

n − ηB
n = U (σn)

σn−1
, IL

n = ηB
n+1 − ηL

n = T (σ)
σn−1

− U (σn)
σn−1

and In = T (σn)
σn−1

.



76 CHAPTER 4. SEMI-MARKOV QUEUES

The following assertions are direct consequences of Corollary 3.5.

Proposition 4.6 (i) Let α ≥ 1. Suppose that

IEξ Uα
0 < ∞ and IEξ Tα

1 < ∞.

If for an initial distribution λ on E

IEλ

(
τ1∑

n=1

Un−1

)
< ∞ and IEλ

(
τ1∑

n=1

Tα
n

)
< ∞,

then IEλ (IL
1 )α < ∞. Moreover, if

sup
s∈E

IEs

(
τ1∑

n=1

Un−1

)
< ∞ and sup

s∈E
IEs

(
τ1∑

n=1

Tα
n

)
< ∞,

then sups∈E IEs (IL
1 )α < ∞.

(ii) Let γ > 0. Suppose that

IEξ U0 < ∞ and IEξ exp(γT1) < ∞.

If for an initial distribution λ on E

IEλ

(
τ1∑

n=1

Un−1

)
< ∞ and IEλ

(
τ1∑

n=1

exp(γTn)

)
< ∞,

then IEλ exp(γIL
1 ) < ∞. Moreover, if

sup
s∈E

IEs

(
τ1∑

n=1

Un−1

)
< ∞ and sup

s∈E
IEs

(
τ1∑

n=1

exp(γTn)

)
< ∞,

then sups∈E IEs exp(γIL
1 ) < ∞.

Proof. All assertions are direct consequences of Corollary 3.5, since IL
1 = |Sσ1|.

QED

Moreover, we obtain moments of the busy cycle as in the proof of Theorem 3.3 and
Theorem 3.11.

Proposition 4.7 (i) Let α > 0. Suppose that

IEϕ

(
τ1∑

n=1

Un−1

)α

< ∞ and IEϕ

(
τ1∑

n=1

Tn

)α

< ∞.

If for an initial distribution λ on E

IEλ

(
τ1∑

n=1

Un−1

)α

< ∞ and IEλ

(
τ1∑

n=1

Tn

)α

< ∞,
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then IEλ Iα
1 < ∞. Moreover, if

sup
s∈E

IEs

(
τ1∑

n=1

Un−1

)α

< ∞ and sup
s∈E

IEs

(
τ1∑

n=1

Tn

)α

< ∞

then sups∈E IEs (IB
1 )α < ∞.

(ii) Let γ > 0. Suppose that

IEϕ exp
(
γ

τ1∑
n=1

Un−1

)
< ∞ and IEϕ exp

(
γ

τ1∑
n=1

Tn

)
< ∞.

If for an initial distribution λ on E

IEλ exp
(
γ

τ1∑
n=1

Un−1

)
< ∞ and IEλ exp

(
γ

τ1∑
n=1

Tn

)
< ∞,

then IEλ exp(γ′I1) < ∞ for some γ′ > 0. Moreover, if

sup
s∈E

IEs exp
(
γ

τ1∑
n=1

Un−1

)
< ∞ and sup

s∈E
IEs exp

(
γ

τ1∑
n=1

Tn

)
< ∞

then sups∈E IEs exp(γ′I1) < ∞ for some γ′ > 0.

Proof. (i) Noting that from the proof of Theorem 3.3

IEλI
α
1 = IEλ

(
σ1∑

k=1

Tk

)α

≤ IEλ




τ1∑

k=1

Tk +

τ̃(x0)∑
n=2

τn∑

k=τn−1

Tk +

ην+m′∑

n=τ̃(x0)

τn∑

k=τn−1

Tk




α

,

all assertions follows in the same manner as in the proof of Theorem 3.3.

(ii) All assertions follow in the same manner as in the proof of Theorem 3.11. QED

From the inequality

IB
1 =

σ1∑

k=1

Uk−1 ≤
τ1∑

k=1

Uk−1 +

τ̃(x0)∑
n=2

τn∑

k=τn−1

Uk−1 +

ην+m′∑

n=τ̃(x0)

τn∑

k=τn−1

Uk−1,

one can also obtain the corresponding assertions for IB
1 .

Remark 4.8 Denote by ξ̄ the stationary distribution of Mσ. Using the strong
Markov property, it can be easily seen that

IEξ̄ I1 = IEξ T1 IEξ̄ σ1, IEξ̄ IB
1 = IEξ U0 IEξ̄ σ1 and IEξ̄ IL

1 = −IEξ̄ Sσ1 = −µIEξ̄ σ1.
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4.1.3 Continuous-time processes

The workload Vt at time t is the total time the server has to work to clear the system
at time t. Under FIFO discipline, it is the same as the waiting time a customer would
have if he arrived at time t. Thus the workload in a single server queue with FIFO
discipline is also called the virtual waiting time. It can be easily seen that

Vt =
∑
n≥0

(T n + Wn + Un − t)+ · 1([T n, T n+1))(t), t ≥ 0.

Obviously

lim
t↑T n

Vt = lim
t↑T n

(T n−1 + Wn−1 + Un−1 − t)+ = (Wn−1 + Un−1 − Tn)+ = Wn, n ≥ 0.

The queue length Qt at time t is the number in system at time t and can be written as

Qt =
∑
n≥0

1(T n ≤ t, T n + Wn + Un > t), t ≥ 0.

By definitions it is clear that

lim
t↑T σn

Vt = lim
t↑T σn

Qt = 0, n ≥ 0.

Proposition 4.9 Let (τ̂n)n≥0 be a sequence of regeneration epochs for (Mn,Wn)n≥0

with Wτ̂n = 0 for n ≥ 0. Then the process (Vt, Qt)t≥0 is one-dependent, positive
recurrent regenerative under each IPλ, i.e., the cycles Z̃n defined as

Z̃n =
(
T τ̂n+1 − T τ̂n , (Vt, Qt)T τ̂n≤t<T τ̂n+1

, (Mk)τ̂n≤k<τ̂n+1

)
, n ≥ 0,

are one-dependent for n ≥ 0 and identically distributed for n ≥ 1 with common distri-
bution IPλ (Z̃n ∈ · ) under each IPλ, where ζ(·) = IPλ (Mτ̂1 ∈ · ).
If E is countable, then the process (Vt, Qt)t≥0 is classical-sense regenerative.

Proof. Note first that the cycles Zn defined as

Zn :=
(
τ̂n+1 − τ̂n, (Mk,Wk, Tk+1, Uk)τ̂n≤k<τ̂n+1

)
, n ≥ 0

are one-dependent for n ≥ 0 and identically distributed for n ≥ 1 with common

distribution IP
(Zn)n≥0

ζ = IP
(Zn)n≥1

λ , where ζ(·) = IPλ(Mτ̂1 ∈ · ) for any initial distribution
λ. From the definition of the workload process,

VT τ̂n+t
=

∞∑

k=0

(Tk + Wk + Uk − T τ̂n − t)+ · 1[T k, T k+1)(T τ̂n + t)

=
∞∑

k=τ̂n

(Tk + Wk + Uk − T τ̂n − t)+ · 1[T k, T k+1)(T τ̂n + t)

=
∞∑

k=0

1[T τ̂n+k − T τ̂n , T τ̂n+k+1 − T τ̂n)(t) · F(
(Tm+1, Um)m≥τ̂n

)
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for any n ≥ 0, t ≥ 0, and some measurable function F . Similarly we get

QT τ̂n+t =
∞∑

k=0

1(T k ≤ T τ̂n + t, T k + Wk + Uk > T τ̂n + t)

=
∞∑

k=0

1(T τ̂n+k ≤ T τ̂n + t, T τ̂n+k + Wτ̂n+k + Uτ̂n+k > T τ̂n + t)

=
∞∑

k=0

1(
k∑

m=0

Tτ̂n+m ≤ t,

k∑
m=0

Tτ̂n+m + Wτ̂n+k + Uτ̂n+k > t).

Thus the cycles Z̃n, n ≥ 0, can be written as images of Zn under some measurable
function. In particular, the cycles Z̃n are one-dependent for n > 0 and identically
distributed for n ≥ 1 with common distribution IPζ (Z̃0 ∈ · ).
If E is countable, then the cycles Z̃n, n ≥ 0, are independent, since the cycles
Zn, n ≥ 0, are independent. QED

Let us point out that the process (Vt, Qt)t≥0 forms a semi-regenerative process,
which means that we can find a Markov renewal process (Mσ

n , T σn)n≥0 such that

IP
[
(Vt+T σn−1

, Qt+T σn−1
)t≥0 ∈ · |T σ0 , · · · , T σn−1 ,M0, · · · ,Mn−1,Mn = s

]

= IPs ((Vt, Qt)t≥0 ∈ · )
for any n ≥ 1, s ∈ E. Consequently, a steady state distribution πV Q of (Vt, Qt)t≥0 is
given as

πV Q(·) =
1

IEζT τ̂1

IEζ

(∫ T τ̂1

0

1((Vt, Qt) ∈ · )dt

)

=
1

IEξ̄ I1

IEξ̄

(∫ I1

0

1((Vt, Qt) ∈ · )dt

)

=
1

IEξ T1

∫

E

IEs

(∫ I1

0

1((Vt, Qt) ∈ · )dt

)
πW (ds× {0}),

where ξ̄ is the stationary distribution for Mσ = (Mσn)n≥0.

In particular, denoting by πV a steady state distribution of (Vt)t≥0,

IPπV
(V0 = 0) =

1

IEξ̄ I1

IEξ̄

(∫ I1

0

1(Vt = 0) dt

)

=
IEξ̄ σ1 (IEξ T1 − IEξ U0)

IEξ̄ σ1 IEξ T1

= 1− IEξ U0

IEξ T1

.

Remark 4.10 A steady state distribution of the workload process can be written
by more general relations. Let (τn(a))n≥0 ba a sequence of random variables defined as

τ0(a) := inf{k ≥ 0 : Wk ≤ a} and τn(a) := inf{k > τn−1(a) : Wk ≤ a}, n ≥ 1



80 CHAPTER 4. SEMI-MARKOV QUEUES

and denote by π
(a)
W the stationary distribution of the positive Harris chain

(Mτn(a),Wτn(a))n≥0. Then, for any fixed a ≥ 0, a steady state distribution πV of (Vt)t≥0

given as

πV (·) =
1

IE
π

(a)
W

T τ1(a)

IE
π

(a)
W

(∫ T τ1(a)

0

1(Vt ∈ · )dt

)

=
1

IEξ T1

∫

E×[0,a]

IEs,w

(∫ I(a)

0

1(Vt ∈ ·)dt

)
πW (ds× dw),

where I(a) =
∑τ(a)

n=1 Tn.

As in the actual waiting time process we get moments of regeneration epochs:

Proposition 4.11 (i) Suppose that <× {0} is a recurrent set of (Mn,Wn)n≥0.

(a) Let α > 1. Suppose that

sup
s∈<

IEs

(
τ1∑

n=1

Un−1

)α

< ∞ and sup
s∈<

IEs

(
τ1∑

n=1

Tn

)α

< ∞.

If for an initial distribution λ on E

IEλ

(
τ1∑

n=1

Un−1

)α

< ∞ and IEλ

(
τ1∑

n=1

Tn

)α

< ∞,

then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEζ T

α

τ̂1
< ∞ and IEλ T

α

τ̂1
< ∞, where ζ(·) = IPλ′(Mτ̂1 ∈ · ) for each initial distribution

λ′ on E.

(b) Let γ > 0. Suppose that

sup
s∈<

IEs exp

(
γ

τ1∑
n=1

Un−1

)
< ∞ and sup

s∈<
IEs exp

(
γ

τ1∑
n=1

Tn

)
< ∞.

Then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEζ exp(γ′T τ̂1) < ∞ for some γ′ > 0.

(ii) Suppose that there exists q > 0 such that

IPs(M1 ∈ · , U0 − T1 < 0) > qϕ(·).

(a) Let α > 1. Suppose that

IEϕ

(
τ1∑

n=1

Un−1

)α

< ∞ and IEϕ

(
τ1∑

n=1

Tn

)α

< ∞.
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If for an initial distribution λ on E

IEλ

(
τ1∑

n=1

Un−1

)α

< ∞ and IEλ

(
τ1∑

n=1

Tn

)α

< ∞,

then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEϕ T

α

τ̂1
< ∞ and IEλ T

α

τ̂1
< ∞.

(b) Let γ > 0. Suppose that

IEϕ exp
(
γ

τ1∑
n=1

Un−1

)
< ∞ and IEϕ exp

(
γ

τ1∑
n=1

Tn

)
< ∞.

Then there exists a sequence of regeneration epochs (τ̂n)n≥0 of (Mn,Wn)n≥0 such that
IEϕ exp(γ′T τ̂1) < ∞ for some γ′ > 0.

Proof. All assertions are obvious from Theorem 4.1 and Proposition 4.9. QED

One should note that the process (Vt, Qt)t≥0 is not wide-sense regenerative in gen-
eral, but one-dependent regenerative, and thus from the theory of point processes (see
Sigman [59]) we get

lim
t→∞

‖1

t

∫ t

0

IPλ((Vu, Qu) ∈ ·) du− πV Q‖ = 0

for any initial distribution λ on E.

However, if E is countable, then (Vt, Qt)t≥0 is classical-sense regenerative and we
get rates of convergence, which are obtained in Sharma [55].

Corollary 4.12 Suppose that E is countable and that for a recurrent state i0 of M

IPi0(M1 = i0, U0 − T1 < 0) > 0.

Suppose further that the distribution IPi0(T τ1 ∈ ·) is spread out, where τ1 is the first
return time to i0 of M .

(i) Let α > 1. Suppose that

IEi0

(
τ1∑

n=1

Un−1

)α

< ∞ and IEi0

(
τ1∑

n=1

Tn

)α

< ∞.

If for an initial state i ∈ E

IEi

(
τ1∑

n=1

Un−1

)α

< ∞ and IEi

(
τ1∑

n=1

Tn

)α

< ∞,
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then for some constant c

‖IPi ((Vt, Qt) ∈ · )− πV Q‖ ≤ ct1−α.

(ii) Let γ > 0. Suppose that

IEi0 exp
(
γ

τ1∑
n=1

Un−1

)
< ∞ and IEi0 exp

(
γ

τ1∑
n=1

Tn

)
< ∞.

Then for some constants c and γ′′ ∈ (0, γ′]

‖IPi0 ((Vt, Qt) ∈ · )− πV Q‖ ≤ c exp(−γ′′t).

Proof. As in the proof of Corollary 3.15, one can easily see that there exists a
sequence of a.s. finite random times (νn)n≥0 such that (τ̂n)n≥0 = (τνn)n≥0 forms a
sequence of regeneration epochs of (Mn,Wn)n≥0. Furthermore, one can easily see that
IPi0(T τ̂1 ∈ · ) is spread out if and only if IPi0(T τ1 ∈ · ) is so (cf. Proposition X.3.2
in Asmussen [12]). Thus all assertions follow from Corollary of Theorem 3.4.2 in
Kalashnikov [32] and Theorem 10.7.5 in Thorisson [63]. QED

Denote by V a random variable having the steady state distribution of (Vt)t≥0, i.e.,

IP(V ≤ x) =
1

IEξ̄ I1

IEξ̄

(∫ I1

0

1(Vt ≤ x) dt

)
.

Theorem 4.13 (i) Let α ≥ 1. If IEξ̄ Iα+1
1 < ∞, then IE V α < ∞.

(ii) Let γ > 0. If IEξ̄ exp(γI1) < ∞, then IE exp(γ′V ) < ∞ for some γ′ > 0.

Proof. (i) Since Vt ≤
∑σ1

n=1 Un−1 ≤ I1 for all k ≤ σ1, it holds that

IE V α =
1

IEξ̄ I1

IEξ̄

(∫ I1

0

V α
t dt

)
≤ 1

IEξ̄ σ1

IEξ̄ Iα+1
1 < ∞,

which proves (i). (ii) can be proved in the same manner. QED

If M is uniformly Harris ergodic, then from Corollary 4.3

sup
s∈E

IEs T α+1
1 < ∞ and sup

s∈E
IEs Uα+1

0 < ∞ for some α > 0 ⇒ IE V α < ∞.

Moreover,

sup
s∈E

IEs exp(γT1) < ∞ and sup
s∈E

IEs exp(γU0) < ∞ for some γ > 0

⇒ IE exp(γ′V ) < ∞ for some γ′ > 0.
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Remark 4.14 Suppose that <×{0} is a recurrent set of (Mn,Wn)n≥0. Then as in
Remark 4.4

sup
s∈<

IEs

(
τ1∑

n=1

Tn

)α+1

< ∞ and sup
s∈<

IEs

(
τ1∑

n=1

Un−1

)α+1

< ∞

⇒ sup
s∈<

IEs T
α+1

τ̂1
< ∞ and sup

s∈<
IEs

(
τ̂1∑

n=1

Un−1

)α+1

< ∞

⇒ IEζ T
α+1

τ̂1
< ∞ and IEζ

(
τ̂1∑

n=1

Un−1

)α+1

< ∞

⇒ IE V α =
1

IEζ T τ̂1

IEζ

(∫ T τ̂1

0

V α
t

)
< ∞.

Similarly,

sup
s∈<

IEs exp
(
γ

τ1∑
n=1

Tn

)
< ∞ and sup

s∈<
IEs exp

(
γ

τ1∑
n=1

Un−1

)
< ∞ for some γ > 0

⇒ IE exp(γ′V ) < ∞ for some γ′ > 0.

The same results are obtained in Sharma [55] for the countable modulation case.

Sometimes it is of interest to look at the queue length at certain random times.
Denote by QA

n and QD
n the queue length just prior to the nth arrival and just after the

nth departure, respectively.

Proposition 4.15 Let (τ̂n)n≥0 be a sequence of regeneration epochs for (Mn, Wn)n≥0

with Wτ̂n = 0 for n ≥ 0. Consider the cycles Ẑn defined as

Ẑn =
(
τ̂n+1 − τ̂n, (Q

A
k , QD

k )τ̂n≤k<τ̂n+1

)
, n ≥ 0.

Then Ẑn are one-dependent for n ≥ 0 and identically distributed for n ≥ 1 with common

distribution IP
(Ẑn)n≥1

λ = IP
(Ẑn)n≥0

ζ , where ζ = IPλ (Mτ̂1 ∈ · ) for any initial distribution

λ. Furthermore, (Ẑn)n≥k is independent of (τ̂0, · · · , τ̂k).
If the state space is countable, then the cycles are independent.

Proof. Note first that for any k, n ≥ 0

QA
τ̂n+k = lim

t↑T τ̂n+k

Qt = lim
t↑T τ̂n+k

∞∑
r=0

1(T r ≤ t, T r + Wr + Ur > t)

= lim
t↑T τ̂n+k

∞∑
r=0

1(T τ̂n+r ≤ t, T τ̂n+r + Wτn+r + Uτ̂n+r > t)

= lim
t↑T (k)

τn

∞∑
r=0

1(T
(r)
τ̂n
≤ t, T

(r)
τ̂n

+ Wτ̂n+r + Uτ̂n+r > t)

= fk

(
(Mr,Wr, Ar+1, Ur)r≥τ̂n

)
,
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where fk is a measurable function. Similarly one can show that for any k, n ≥ 0

QD
τ̂n+k = lim

t↓T τ̂n+k+Uτ̂n+k

Qt = gk

(
(Mr, Wr, Tr+1, Ur)r≥τ̂n

)

for some measurable function gk. QED

In view of the previous result there exists a steady state distribution π′ of
(QA

n , QD
n )n≥0, which is given as

π′(·) =
1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1
(
(QA

n , QD
n ) ∈ · )

)

=

∫

E

IEs

(
σ1−1∑
n=0

1((QA
n , QD

n ) ∈ · )
)

πW (ds× {(0, 0)}).

The rates of convergence of the sequence (QA
n , QD

n )n≥0 to the stationary distribution π′

are available from Theorem 4.1.

If the service times Un are exponentially distributed with intensity β and in-
dependent of (Tn)n≥0, then the sequence (Mn, Q

A
n )n≥0 forms a Markov chain. Let

Φ = (Φij)i,j≥0, where

Φij(s, A) = IP[Mn+1 ∈ A,QA
n = j|Mn = s,QA

n = i].

Then Φ can be written as the matrix form (2.8), where

Al(s, A) =

∫ ∞

0

e−βt (βt)l

l!
dIPs (M1 ∈ A,U0 ∈ dt), l ≥ 0, s ∈ E, A ∈ E ;

Bl(s, A) = IPs (M1 ∈ A)−
l∑

n=0

An(s, A), l ≥ 0, s ∈ E, A ∈ E .

If the arrival times T n form a homogeneous Poisson process of rate β and independent
of (Un−1)n≥0, then the sequence (Mn, Q

D
n−1, Dn−1)n≥0 forms a Markov chain, where Dn

is the time between the nth and (n + 1)st departures. Let Φ = (Φij)i,j≥0 with

Φij(s, A; x) = IP[Mn+1 ∈ A,QD
n = j, Dn ≤ x|Mn = s,QD

n−1 = i].

Then

Φ =




C0(s, A; x) C1(s, A; x) C2(s, A; x) C3(s, A; x) · · ·
D0(s, A; x) D1(s, A; x) D2(s, A; x) D3(s, A; x) · · ·

0 D0(s, A; x) D1(s, A; x) D2(s, A; x) · · ·
0 0 D0(s, A; x) D1(s, A; x) · · ·
· · · ·
· · · ·



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for s ∈ E,A ∈ E , x ≥ 0, where

Dl(s, A; x) =

∫ x

0

e−βt (βt)l

l!
dIPs(M1 ∈ A,U0 ∈ dt);

Cl(s, A; x) =

∫ x

0

βe−βt Dl(s, A; x− t) dt.

Such queueing systems with finite modulation chains are extensively studied by various
authors. For the comprehensive treatment the readers are referred to Neuts [43, 44].

4.1.4 Identities between steady state distributions

Now we find some relations between steady state distributions of the actual waiting
time process, the workload process and the queue length process. For this purpose, we
introduce random variables T ∗

n and U∗
n, n ≥ 0, defined as

IP[T ∗
n ≤ x|Mn−1 = s,Mn = s′] :=

1

IEξ T1

∫ x

0

IP[Tn > y|Mn−1 = s,Mn = s′] dy;

IP[U∗
n−1 ≤ x|Mn−1 = s,Mn = s′] :=

1

IEξ U0

∫ x

0

IP[Un−1 > y|Mn−1 = s, Mn = s′] dy

for any s0, s1 ∈ E and x ≥ 0. Obviously the sequences (Mn, T ∗
n)n≥0 and (Mn, U∗

n−1)n≥0

are Markov modulated chains with driving chain M .

Lemma 4.16 For any x ≥ 0, we have

1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1(T ∗
n+1 ≤ x)

)
=

1

IEξ T1

∫ x

0

IPξ(T1 > y) dy;

1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1(U∗
n ≤ x)

)
=

1

IEξ U0

∫ x

0

IPξ(U0 > y) dy.

Proof. Letting Gn := σ
(
(Mk, Tk, Uk−1)k≤n

)
, n ≥ 1, we have

IP
[
Tn+1|{σ1 > n} ∪ Gn

]
= IP[Tn+1|Gn] = IP[Tn+1|Mn].

Thus the events {Tn+1 > y} and {σ1 > n} are independent given Mn. In a similar
manner one can check that {T ∗

n+1 ≤ y} and {σ1 > n} are independent given Mn. Hence
we have

1

IEξ T1

∫ x

0

IP[Tn+1 > y, σ1 > n|Mn = s0,Mn+1 = s1] dy

=
1

IEξ T1

IP[σ1 > n|Mn = s0, Mn+1 = s1)

∫ x

0

IP[Tn+1 > y|Mn = s0,Mn+1 = s1] dy,

= IP[σ1 > n|Mn = s0,Mn+1 = s1] IP[T ∗
n+1 ≤ x|Mn = s0, Mn+1 = s1]

= IP[T ∗
n+1 ≤ x, σ1 > n|Mn = s0,Mn+1 = s1].
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Consequently, by making use of the Markov property and Fubini Theorem,

1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1(T ∗
n+1 ≤ x)

)
=

1

IEξ̄ σ1

∞∑
n=0

IPξ̄ (T ∗
n+1 ≤ x, σ1 > n)

=
1

IEξT1

∫ x

0

1

IEξ̄ σ1

∞∑
n=0

IPξ̄ (Tn+1 > y, σ1 > n) dy

=
1

IEξ T1

∫ x

0

IPξ(T1 > y) dy.

In the same manner, one can prove the second equality. QED

For any fixed k ≥ 0, we set

T (k)
n := T n+k − T n, k ≥ 0 and T

(k)
−1 := T0.

Then, for any k ≥ 0, the sequence (Mn,Wn, T
∗
n−1, U

∗
n−1, Un−1, T

(k)
n−1)n≥0 forms a Markov

modulated chain with the driving chain (Mn,Wn)n≥0 and thus is positive Harris re-
current. As a consequence, there exists a stationary distribution for the chain given
as

1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1((Mn,Wn, T ∗
n , U∗

n, Un, T (k)
n ) ∈ · )

)

for any k ≥ 0, where ξ̄ is a stationary distribution of Mσ. Let W,T ∗, U∗, U and T (k)

be random variables given by

IP(W,T ∗,U∗,U,T (k))(·) :=
1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

1((Wn, T ∗
n , U∗

n, Un, T
(k)
n ) ∈ · )

)
.

The existence of such variables follows from Kolmogorov’s consistency theorem. Fur-
ther, we introduce a random variable χ with χ ∼ B(1, ρ), which is independent on all
the other random variables and sequences.

Proposition 4.17 It holds that

V ∼ (1− χ) + χ(W + U∗) ∼ (W + U − T ∗)+.

Proof. The relations are known for GI/GI/1 queues (see Satz 11.3.2 in Alsmeyer
[1]) and can be proved in the same manner also for SM/SM/1 queues.

Since Wn+1 = Wn + Un − Tn+1 = Wn + Xn+1 for 0 ≤ n < σ1 and {Wn+1 − y > x}
can be exchanged by {Wn − y > x},

P (V > x) =
1

IEξ̄ T σ1

IEξ̄

(
σ1−1∑
n=0

∫ T n+1

T n

1(Wn + Un + T n − y > x) dy

)
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=
1

IEξ̄ T σ1

IEξ̄

(
σ1−1∑
n=0

∫ Tn+1

0

1(Wn + Un − y > x) dy

)

=
1

IEξ̄ T σ1

∞∑
n=0

∫ ∞

0

IPξ̄ (Wn > x− y, Un > y, σ1 > n) dy

= ρ · 1

IEξ̄ σ1IEξ U0

∞∑
n=0

∫ ∞

0

IPξ̄ (Wn > x− y, Un > y, σ1 > n) dy.

However, the events {Wn > x−y, σ1 > n} and {Un > y} are conditionally independent
given Mn and Mn+1, whence

IPξ̄ (Wn > x− y, Un > y, σ1 > n)

=

∫

E2

IP[Wn > x− y, Un > y, σ1 > n|Mn,Mn+1] dIP
Mn,Mn+1

ξ̄

=

∫

E2

IP[Wn − x > −y, σ1 > n|Mn,Mn+1] IP[Un > y|Mn,Mn+1] dIP
Mn,Mn+1

ξ̄
.

Therefore for any x ≥ 0

IP(V > x) = ρ · 1

IEξ̄σ1IEξU0

∞∑
n=0

∫

E2

∫ ∞

0

IP[Wn − x > −y, σ1 > n|Mn,Mn+1]

·IP[Un > y|Mn,Mn+1] dy dIP
Mn,Mn+1

ξ̄

= ρ · 1

IEξ̄ σ1

∞∑
n=0

∫

E2

IP[Wn + U∗
n > x, σ1 > n|Mn,Mn+1] dIP

Mn,Mn+1

ξ̄

= ρ · 1

IEξ̄ σ1

∞∑
n=0

IPξ̄ (Wn + U∗
n > x, σ1 > n)

= ρIP(W + U∗ > x),

from which the first relation follows. Moreover, the events {Wn + Un > x + y, σ1 > n}
and {Tn+1 > y} are conditionally independent given Mn,Mn+1. Thus the second
relation follows from the equality

∫ Tn+1

0

1(Wn + Un − y > x) dy =

∫ ∞

0

1(Wn + Un − y > x, Tn+1 > y) dy.

QED

Next we find relations between steady state distributions of the actual waiting time
and queue length process. Let Q be a random variable with distribution

IP(Q ∈ ·) :=
1

IEξ̄ I1

IEξ̄

(∫ I1

0

1(Qt ∈ · ) dt

)
.

The following assertions are known for GI/GI/1 queues.
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Proposition 4.18 The following equalities hold true:

(i)

IEQ =
1

IET
· IE(W + U) (Little’s Formula);

(ii)
IP(Q > l) = ρ IP(W + U∗ > T (l−1)).

Proof. (i) Note first that each of the customers n = 0, 1, · · · , σ1 − 1, provides a
contribution Wn + Un to

∫
[0,σ1)

Qt dt. Thus we have

IEQ =
1

IEξ̄ T σ1

IEξ̄

∫ T σ1

0

Qt dt

=
1

IEξ T1

· 1

IEξ̄ σ1

IEξ̄

(
σ1−1∑
n=0

(Wn + Un)

)
=

1

IET
· IE(W + U).

(ii) The assertion is known for GI/GI/1 queues (see Satz 11.4.2 in Alsmeyer [1])
and can be proved in the same manner also for SM/SM/1 queues.

For any 0 ≤ n < σ1 and t ∈ [T n, T n+1) let

n∑

k=0

1(U ′
k > t) :=

n∑

k=0

1(T k + Wk + Uk > t) = Qt.

Since U ′
0 < U ′

1 < · · ·, we have

{Qt ≥ n} = {U ′
n−l+1 > t} for all l ≥ 1,

where we set U ′
l := 0 for l ≤ 0. From

U ′
n−l+1 − T n+1 ≤ U ′

n−l+1 − T n ≤ 0 for n ∈ {0, · · · , l − 2, σ1, · · · , σ1 + l − 2}
and

IPξ̄

(
(M0,W0, U0, T

(l)
0 ) ∈ ·

)
= IPξ̄

(
(Mσ1 ,Wσ1 , Uσ1 , T

(l)
σ1

) ∈ · ) ,

we get for any l ≥ 0

IP(Q ≥ l) =
1

IEξ̄ T σ1

IEξ̄

(
σ1−1∑
n=0

∫ T n+1

T n

1(U ′
n−l+1 > t) dt

)

=
1

IEξ̄ T σ1

IEξ̄

(
σ1+l−2∑

n=l−1

∫ ∞

0

(
1(U ′

n−l+1 − T n > t)− 1(U ′
n−l+1 − T n+1 > t)

)
dt

)

=
1

IEξ̄ T σ1

IEξ̄

(
σ1−1∑
n=0

∫ ∞

0

(
1(Wn + Un − T (l−1)

n > t)− 1(Wn − T (l−1)
n > t)

)
dt

)
.
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Since the events {Wn−T
(l−1)
n } and {Un} are conditionally independent given Mn,Mn+1,

by the same computation as for IP(V ∈ ·), we have

IP(Q > l) = ρIP(W + U∗ > T (l−1)).

QED

Notice that Little’s formula holds true for more general queues. It is known (see
Glynn and Whitt [29]), if the limits

1

λ
:= lim

n→∞
T n

n
and W := lim

n→∞
1

n
(Wn + Un)

exist and are finite, then the limit L := limt→∞ 1
t

∫ t

0
Qudu exists, and Little’s formula

is written as L = λW.

4.2 Multiserver queues

In this section we consider semi-Markov queues with N servers. As in the case of
single server queues we denote by Tn the interarrival time between customers n − 1
and n, and by Un the service time of customer n. Let T0 and U−1 be arbitrary random
variables with values in IR+

0 . Tn, n ≥ 1, and Un, n ≥ 0, are assumed to be positive.
The input process (Mn, Tn, Un−1)n≥0 is assumed to be a Markov modulated chain with
driving chain M and transition kernel

P : E × (E ⊗ (B|[0,∞))
2) → [0, 1].

Let T n = T0 + T1 + · · · + Tn, n ≥ 0, and Un = U−1 + U0 + · · · + Un, n ≥ −1. If
T0 = U−1 = 0, which means that customer 0 arrives at time 0, then T n is the arrival
time of the customer n in the system and Un the total workload up to the nth customer.

The queue discipline is assumed to be FCFS, which means that the customers join
service in the order they arrive. In the single server case, it is the same as the FIFO
discipline but not in general for N > 1. We say that the system is stable, if there exists
a finite stationary distribution for the discrete-time workload process. If the mean
interarrival time IEξ T1 and the mean service time IEξ U0 are finite, we define the traffic
intensity ρN as

ρN :=
IEξ U0

NIEξ T1

. (4.3)

The condition ρN < 1, or equivalently IEξ U0 < N IEξ T1, is called the stability condition
for multiserver queue with N servers. Throughout this section we assume the stability
condition.
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4.2.1 Existence of a stationary version

We think of each server as having its own waiting line and the arriving customer
joining the line that has the least residual work. We order the residual work in the
various lines at time t and thus obtain a vector Vt = (Vt(1) · · ·Vt(N)) satisfying

Vt(1) ≤ Vt(2) ≤ · · · ≤ Vt(N), t ≥ 0.

It is of particular interest to observe Vt just before the arrival instants T n and we
write Wn = (Wn(1), · · · ,Wn(N)) = VT n−. Thus Wn(1) is the waiting time of the nth
customer, before he is served. The process (Wn)n≥0 of ordered vectors is called the
discrete-time workload process and satisfies the Kiefer-Wolfowitz recurrence relation

Wn+1 = R(Wn + Une− Tn+1I)
+, n ≥ 0,

where e = (1, 0, · · · , 0), I = (1, · · · , 1), (x1, · · · , xN)+ = (x+
1 , · · · , x+

N) andR is the opera-
tor arranging vectors of IRN in the increasing order. Obviously the process (Mn,Wn)n≥0

forms a temporally homogeneous Markov chain. The following proposition says that
under the stability condition the queueing system is stable.

Proposition 4.19 There exists a stationary version (M∗
n,W ∗

n)n≥0.

Proof. Let (M∗
n, T ∗

n , U∗
n−1)n∈ZZ be a stationary doubly infinite version of

(Mn, Tn, Un−1)n≥0 and consider a new queue with the input process (M∗
n, T ∗

n , U∗
n−1)n≥0.

Let W ∗
k,n be the ordered workload vector in the new system found by the customer n

if the customer −k finds an empty system. For fixed n ≥ 0, the sequence (W ∗
k,n)k≥0

increases coordinately. Now define

W ∗
n := lim

k→∞
W ∗

k,n = sup{W ∗
k,n : −∞ < k ≤ n}.

It holds that

W ∗
n+1 = lim

k→∞
W ∗

k,n+1 = lim
k→∞

R(W ∗
k,n + U∗

n−1e− T ∗
nI)+ = R(W ∗

n + U∗
ne− T ∗

n+1I)
+.

For the finiteness of W ∗
n , see Theorem 2.3.1. in Baccelli-Bremaud [17]. Therefore,

(M∗
n,W ∗

n)n≥0 is a stationary version of (Mn,Wn)n≥0. QED

4.2.2 Regeneration of the discrete time workload process

In the rest of this chapter we suppose that E is countable and N = 2. We find some
conditions that the discrete-time workload process (Mn,Wn)n≥0 is Harris ergodic. i0
denotes a recurrent state of M and τ1 the first return time of M to the state i0. Consider
a test function Vβ defined as

Vβ(w(1), w(2)) = vβ(w(1)) + vβ(w(2)),
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where

vβ(x) = x− 1

β

(
1− exp(−βx)

)
, β > 0.

Let T and U be positive random variables satisfying

IE
(
2(u ∧ T )− U

)
> 0 and IE

(
U1(U > u)

)
< ε

for some positive real numbers ε and u. Then it can be shown (see pp.133 of Kalashnikov
[33])that for x ≤ x1 := u + u2

2eε

IE
(
vβ((x + U − T )+)− vβ(x)

) ≤ IE
(
vβ((x + U)+)− vβ(x)

)

≤ (1− exp(−β(x1 + u)))IEU + ε.

and that for x > x1

IE
(
vβ((x + U − T )+)− vβ(x)

) ≤ (1− exp(−βx))IE (U − u ∧ T );

IE
(
vβ((x− T )+)− vβ(x)

) ≤ −(1− exp(−βx))IE (u ∧ T ) + ε.

Proposition 4.20 There exists a compact subset K of [0,∞)2 such that {i0} × K
is a recurrent set of (Mn,Wn)n≥0.

Proof. Consider the Markov chain (Wτn)n≥0. We will show that there exists a
compact measurable subset K of [0,∞)2 such that IE(i0,w) τ̃(K) < ∞ for any w ∈
[0,∞)2, where

τ̃(K) := inf{k > 0 : Wτk
∈ K},

from which the assertion follows (see Remark 3.4).

For fixed x ≥ 0 denote by τ(x) the random time defined as

τ(x) := sup

{
n :

n∑

k=1

Tk < x

}
.

Then there exist x0 ≥ 0 and ∆ > 0 such that

IEi0




τ1∑
n=1

Un−1 − 2

τ(x0)∧τ1∑
n=1

Tn


 < −∆ and IEi0




τ1∑

n=τ(x0)∧τ1+1

Un−1


 < ε.

Choose ε < min(1, ∆
16

) and let the positive real numbers u, β and x1 be given as

u = 2x0

β = min

{
−1

u
ln

(
1− ∆

7∆ + 6l

)
,

(
2u +

u2

2eε

)−1

ln
4

3

}
,

x1 =
1

β
ln

4

3
− u,
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where

l = IEi0

(
τ1∑

n=1

Un−1

)
< ∞.

Note that

x1 ≥ u +
u2

2eε
, 1− exp(−βu) ≤ ∆

7∆ + 6l
and 1− exp

(− β(x1 + u)
)

=
1

4
.

Let x2 be a positive real number satisfying the equation

1− exp(−βx2) =
1

2

and let
K := {(w(1), w(2)) : w(1) ≤ w(2) ≤ x2}.

Then for any w ≥ 0

IE(i0,w)

(
V (Wτ1)− V (w)

) ≤ IEi0

(
τ1∑

n=1

Un−1

)
+

1

β
< ∞.

Thus it suffices to show that

sup
w/∈K

IE(i0,w)

(
V (Wτ1)− V (w)

)
< 0.

We consider three cases:

(i) w0(1) ≤ x1 :
Since w0(2) > x2 ≥ x1 + u > 2x0,

wτ(x0)∧τ1(2) = w0(2)−
τ(x0)∧τ1∑

n=1

Tn.

Thus

IEi0

(
Vβ(Wτ1)− Vβ(W0)

)

=
2∑

k=1

IEi0

(
vβ(wτ1(k))− vβ(w0(k))

)

≤ IEi0





vβ

(
w0(1) +

τ(x0)∧τ1∑
n=1

Un−1

)
− vβ(w0(1))







+IEi0





vβ

(
w0(2)−

τ(x0)∧τ1∑
n=1

Tn

)
− vβ(w0(2))





 + 2ε

≤ (
1− exp(−β(x1 + u))

)
l − (1− exp(−βu))IEi0




τ(x0)∧τ1∑
n=1

Tn


 + 2ε
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≤ 1

4
IEi0

(
τ1∑

n=1

Un−1

)
− 1

2
IEi0




τ(x0)∧τ1∑
n=1

Tn


 + 2ε

≤ −∆

4
+ 2ε < 0.

(ii) w0(1) > x1 and w0(2)− w0(1) < u:
For 1 ≤ k, l ≤ 2 denote by Ckl the set of events starting at w0(k) and ending at wτ1(l).
Obviously C11 = C22 and C12 = C21. Define measurable functions f τ1

kl : (IR+
0 )∞ ×

(IR+
0 )∞ → IR, k, l = 1, 2, as

f τ1
kl =

(
wτ1(l)− w0(k)

)
1(Ckl).

Note that
2∑

k=1

2∑

l=1

IEi0f
τ(x0)∧τ1
kl = IEi0




τ(x0)∧τ1∑
n=1

(Un−1 − 2Tn)


 < −∆.

For each k, l ≤ 2, denote fkl = f
τ(x0)∧τ1
kl . Then

IEi0

(
Vβ(Wτ1)− Vβ(W0)

)
=

2∑

k=1

2∑

l=1

IEi0

{(
vβ(wτ1(l))− vβ(w0(k))

)
1(Ckl)

}

≤
2∑

k=1

2∑

l=1

{
1− exp(−βw0(k))

}
IEi0

(
fkl1

(
Ckl

))
+ 2ε

≤ −∆−
2∑

k=1

2∑

l=1

exp(−βw0(k))IEi0

(
fkl1

(
Ckl

))
+ 2ε.

For 1 ≤ k, l ≤ 2, let C+
kl := {fkl ≥ 0} ∩ Ckl and C−

kl := {fkl < 0} ∩ Ckl. Then

IEi0

(
Vβ(Wτ1)− Vβ(W0)

)

≤ −∆−
2∑

k=1

2∑

l=1

IEi0

{
exp(−βx1)fkl1

(
C−

kl

)
+ exp

(− β(x1 + u)
)
fkl1

(
C+

kl

)}
+ 2ε

= −∆− exp(−βx1)
2∑

k=1

2∑

l=1

IEi0

{
fkl1(C−

kl) + exp(−βu)fkl1(C+
kl)

}
+ 2ε

= −∆− exp(−βx1)
2∑

k=1

2∑

l=1

{
IEi0

(
fkl1(Ckl)

)− (1− exp(−βu))IEi0

(
fkl1(C+

kl)
)}

+ 2ε

≤ −∆ + exp(−βx1)
{

∆ +
(
1− exp(−βu)

)
l
}

+ 2ε

≤ −∆ +
3∆

4

(
1− ∆

7∆ + 6l

)−1 (
1 +

l

7∆ + 6l

)
+

∆

8
< 0,
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since

exp(−βx1) =
3

4
exp(βu) ≤ 3

4

(
1− ∆

7∆ + 6l

)−1

.

(iii) w0(1) > x1 and w0(2)− w0(1) ≥ u:
In this case

IEi0

(
Vβ(Wτ1)− Vβ(W0)

)

= IEi0

{
vβ

(
w0(1) +

τ(x0)∧τ1∑
n=1

(Un−1 − Tn)
)
− vβ(w0(1))

+vβ

(
w0(2)−

τ(x0)∧τ1∑
n=1

Tn

)
− vβ(w0(2))

}
+ 2ε

≤ {
1− exp(−βw(1))

}
IEi0




τ(x0)∧τ1∑
n=1

Un−1 − Tn




−{
1− exp(−βw(2))

}
IEi0




τ(x0)∧τ1∑
n=1

Tn


 + 2ε

≤ {
1− exp(−βw(1))

}
IEi0




τ(x0)∧τ1∑
n=1

Un−1 − 2Tn




−{
exp(−βw(1))− exp(−βw(2))

}
IEi0




τ(x0)∧τ1∑
n=1

Tn


 + 2ε

< 0.

QED

Suppose that the system reaches a state in {i0} × K for a compact subset K ⊂
[0,∞) × [0,∞). If the workload can be successively reduced, then in a finite step the
system reaches a state with a positive probability, which is independent of the starting
point. The following theorem gives a condition that (Mn, Wn)n≥0 is Harris recurrent.
The same argument can be found in Asmussen [12] (Lemma XII.2.3) and Morozov [39].

Theorem 4.21 If there exist η, ε, q > 0, such that

IPi0(U0 < 2η − ε, T1 > η, τ1 = 1) > q, (4.4)

then (Mn,Wn)n≥0 is Harris ergodic.
If the more stronger condition

IPi0(U0 < η − ε, T1 > η, τ1 = 1) > q (4.5)

is satisfied, then (Mn,Wn)n≥0 forms a classical-sense regenerative process.
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Proof. By Proposition 4.20, there exists a bounded set K = {(w1, w2) ∈ [0,∞) ×
[0,∞) : wk ≤ x2, k = 1, 2} for some positive real number x2 such that {i0}×K forms a
recurrent set of (Mn,Wn)n≥0. Let Fn := {Un−1 < 2η − ε, Tn > η} and r > 2x2/ε. Note
that each occurrence of Fn decreases residual work. Let (M0, W0) = (i0, w) ∈ {i0}×K.
Then the customer n finds an empty server provided that r − 4 ≤ n ≤ r and that
∩r

n=0Fn occurs. Hence the queue length at r − 2 is at most 1. This means that the
customers r− 2, r− 1 enter service immediately and Wr is independent of initial value
W0. Furthermore, customers r − N, · · · , r − 1 enter service immediately. Thus with
ϕ(A) = IPi0 [W2 ∈ A|F1 ∩ F2], we have

IP(i0,w)(Wr ∈ A) ≥ qrϕ(A), w ∈ K.

To show the positivity, note that {i0}×K is a regeneration set of (Mn,Wn)n≥0. Denoting
by τ̂({i0} × K) the first return time of (Mn,Wn)n≥0 to {i0} × K, we have

IEi0 τ̂({i0} × K) = C · IEi0τK · IEi0τ1 < ∞.

The aperiodicity follows, since (4.5) holds true for all sufficiently large r.
The second assertion is obvious, since then the customer n finds an empty system
provided that r − 2 ≤ n ≤ r and that ∩r

n=0Fn occurs. In this case, we have

IP(i0,w)(Wr ∈ A) ≥ qrδ(i0,0), w ∈ K.

QED

By Theorem 4.21 there exists a unique stationary distribution πW of (Mn,Wn)n≥0.
Moreover, by Proposition 1.20 for any initial state i ∈ E

lim
n→∞

‖IPi((Mn,Wn) ∈ · )− πW‖ = 0.

In the rest of this section, we assume that (4.5) holds true. Thus the random times
σ∗n, n ≥ 0, defined as

σ∗0 := inf{k ≥ 0 : Wk(2) = 0} and σ∗n+1 := inf{k > σ∗n : Wk(2) = 0}, n ≥ 0

are a.s. finite. Obviously the chain (Mσ∗n)n≥0 is positive Harris recurrent. Denote by
ξ∗ a unique stationary distribution of (Mσ∗n)n≥0.

Corollary 4.22 There exists a unique stationary distribution πW for (Mn,Wn)n≥0,
which is given by

πW(·) =
1

IEξ∗ σ∗1
IEξ∗




σ∗1−1∑
n=0

1((Mn,Wn) ∈ · )



=
∑
i∈E

IEi




σ∗1−1∑
n=0

1((Mn,Wn) ∈ · )

 πW ({(i, 0, 0)}).
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Let further α > 1 and suppose that

IEi0 τα
1 < ∞ and IEi0

(
τ1∑

n=1

Un−1

)α

< ∞.

If for an initial state j0 ∈ E

IEj0 τα
1 < ∞ and IEj0

(
τ1∑

n=1

Un−1

)α

< ∞,

then for some constant c

‖IPj0 ((Mn,Wn) ∈ · )− πW‖ ≤ cn1−α.

Proof. By assumption

IE(i0,w)

(
Vβ(Wτ1)− Vβ(w)

)α ≤ IEi0

[
Vβ

( τ1∑
n=1

Un−1 + w
)
− Vβ(w)

]α

< ∞

for any w ≥ 0. Thus, as in Theorem 3.3, one can show that there exists a sequence
of regeneration epochs (τ̂n)n≥0 such that IEi0 τ̂α

1 < ∞ and IEj0 τ̂α
1 < ∞. Thus the

assertion follows from Proposition 1.21. QED

Remark 4.23 Theorem 4.21 is obtained in Morozov [39] for a R/GI/N queue, in
which interarrival times form a regenerative process.

The corresponding assertions for the continuous-time workload process can be ob-
tained in the same manner and are therefore omitted.
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