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Abstract

In this thesis we present different techniques for motion estimation from image se-

quences and combine them with image reconstruction.

The main body of this work is divided in two modeling and one application part.
The first model is a variational approach for motion estimation from image sequences.
Mathematical background as well as different models for motion estimation are pre-
sented. We illustrate the numerical realization based on a primal-dual framework and
evaluate our model towards different types of motion.

In the second main part we connect the field of motion estimation to the task of image
reconstruction. Here, we deduce variational models for joint motion estimation and
image reconstruction, prove existence of minimizers and present primal-dual schemes
for the numerical implementation. The later numerical evaluation illustrates benefits
of the joint framework and contains promising results for temporal inpainting.

The application part divides into chapters about image segmentation, where Geodesic
Active Contour and Chan-Vese models are applied to images of vertebra and intracellu-
lar flows. In the context of intracellular flow, we later apply our joint models to denoise

image sequences and estimate their underlying motion simultaneously.



Keywords: Image Processing, Image Reconstruction, Motion Estimation, Joint Image
Reconstruction and Motion Estimation, Total Variation, Optical Flow, Microscopy
Imaging, Biomedical Imaging, Temporal Inpainting, Variational Methods, Primal-Dual
Methods
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INTRODUCTION

1.1. Motivation

The central point of interest in this thesis is the estimation of motion in image sequences.
From a mathematical point of view, motion is defined as the change of spatial location
of an object with respect to time. There exist different ways to quantify motion be-
tween two subsequent images. The most common parameter is the so-called welocity,
which is defined as the difference between the starting point of a moving object in the
first image and its terminal point in the following image. The velocity couples speed
and direction of motion at the same time. Estimating motion is a current challenge
in many fields of research. Consequently, let us start with four completely different
examples that have the aspect of motion in common.

Self-driving cars, what many people have dreamed of for decades, are about to become
reality. Google’s self-driving car [40] is already being tested on US streets. While
driving, the internal software has to estimate the motion of other moving cars as well
as pedestrians, animals or even soccer balls being kicked out onto the street. The mo-
tion has to be estimated in real time, which is crucial for the safety of passengers and
environment.

In modern medicine, biology, chemistry, etc. even the smallest objects are observed by
high resolution microscopy. Betzig [16], Moerner [62] and Hell [42] were awarded with
the Nobel Price in Chemistry for "bringing optical microscopy into the nanodimension”.
However, in every aspect of these subjects, the scientists were mainly interested in the
dynamics of the observed object. For example, in biology, intracellular flows are a

current field of science. In medicine, understanding the pattern formation of cancer
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cells might help to develop new drugs. For both applications, estimating motion from
recorded image data is the key task.

For weather forecasting, thousands of small stations around the Earth and dozens of
satellites are continuously recording the current meteorological situation. The current
weather state is always the initial value for the forward model that aims to predict
our weather tomorrow or in one week. Analyzing the movement of clouds plays an
important role here. Moreover, extreme weather situations, such as tornados or even
hurricanes, are not entirely understood to this day. Estimating their flows using satel-

lite data is the current challenge for scientists and researchers as yet.

Most of the imaging problems discussed in this thesis, such as motion estimation or im-
age reconstruction, are so-called inverse problems. We seek to find an unknown cause
u such as a velocity field or a denoised image, but only measure data f. For motion
estimation, we measure two images containing some kind of object displacement. We
are interested in the motion field generating this dynamic process. In the context of
image denoising, we are generally interested in a clean image u, but often only able to
measure a noisy or blurred variant f. From a mathematical point of view, u and f are

connected by the equation

Au=f+o=], (1.1)

where A : X — )Y denotes a linear and compact operator, X denotes the space of
solutions, ) the space of measurements and o random noise. Solving (1.1) for u, given
f, constitutes the solution to an inverse problem. The solution to this inverse problem
is often ill-posed in the sense of Hadamard (1902):

Definition 1.1.1. Ill-posed Problem

Hadamard defines a problem as well-posed if and only if

e There exists a solution to the problem. (Existence)

e The solution is unique. (Uniqueness)

e The solution continuously depends on the given data. (Stability)
If one of the conditions is violated, then the problem is called ill-posed

Due to the compactness, we cannot invert the operator continuously (cf. [32]) and

consequently, the third condition is violated. In fact, the problem is more complex. If
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we could invert the operator, Equation (1.1) would read
u=A"'f+ Ao

This looks good at a first glance, but the part A~'o is random, usually unpredictably
large and completely disturbs the recovery of u. In the course of this thesis, we will see
that for motion estimation, the measurements are usually in R", but the unknown is

in R?". Also, the system is massively underdetermined and condition two is violated.

A way out is given by so-called variational approaches. Here, we define a functional

such that the minimum of the functional coincides with the expected solution:

@ = argmin {D(Au, f) + aR(u)} (1.2)
uedom(A)

The first part is generally known as data term and measures the distance between
measured data f and Au. Hence, for the solution 4, we ensure that D(Au, f) is small
so that we are not too far from solving Equation (1.1). The energy in Equation (1.2)
contains a second term, the so-called regularizer. This additional energy term allows
us to promote certain solutions and model additional a-priori information. The most
common regularizers penalize u or derivatives of w in a suitable norm.
In this thesis, we even go one step further. Consider the unknown u from Equation (1.2)
as an image and let us denote v as an unknown velocity field. For the velocity field v,
we are able to use a variational approach similar to Equation (1.1), where the velocity
field should fit to given image data u and certain a-priori information is modeled by a

regularizer. A joint variational model for © and v can now be written as:

(@, %) = arg min {D(Au, £+ aR(u) + BS(v) + C(u, v)} .

u,v
Similar to the previous model, we consider measured data f, a data term D(Au, f) and
an image regularizer a/R(u). Now, C(u,v) acts as a data term for the unknown veloc-
ity field v together with a regularizer SS(v) carrying additional a-priori information.
Moreover, C(u,v) draws a connection between the image and underlying dynamics. As

we will see in later chapters, this connection is beneficial for image reconstruction as

well as motion estimation.
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1.2. Contribution

Estimating the flow from image sequences has been discussed in literature for decades.
Already in 1981, Horn and Schunck proposed a variational model for flow estimation
|43]. This basic model used the L? norm for the optical flow term as well as for the
regularizer and became very popular. Aubert et al. analyzed the L' norm for the op-
tical flow constraint [7] in 1999 and demonstrated its advantages towards a quadratic
L? norm. In 2006, Papenberg, Weickert et al. [56] introduced the total variation reg-
ularization, resp. the differentiable approximation, to the field of flow estimation. An
efficient duality-based L' — TV algorithm for flow estimation was proposed by Zach,
Pock and Bischof in 2007 [77].

The topic of joint models for motion estimation and image reconstruction was already
introduced by Tomasi and Kanade [70] in 1992. Instead of a variational approach, they
use a matrix-based discrete formulation with constraints to the matrix rank to find
a proper solution. In 2002, Gilland, Mair, Bowsher and Jaszczak published a joint
variational model for gated cardiac CT [38]. For two images, they formulated a data
term, based on the Kullback-Leibler divergence (cf. [20] for details) and incorporated
the motion field via quadratic deformation term and regularizer. Bar, Berkels, Rumpf
and Sapiro proposed a variational framework for joint motion estimation and image
deblurring in 2007 [11]. The underlying flow was assumed to be a simple translation
and coupled into a blurring model for the foreground and background. This resulted in
a Mumford-Shah-type functional. Also in 2007, Shen, Zhang, Huang and Li proposed
a statistical approach for joint motion estimation, segmentation and superresolution
[65]. The model assumed an affine linear transformation of segmentation labels to
incorporate the dynamics and was solved calculating the MAP solution. Another pos-
sible approach was given by Brune in 2010 [20]. The 4d (3d -+ time) variational model
consists of an L? data term for image reconstruction and incorporates the underlying
dynamics using a variational term, introduced by Benamou and Brenier [14, 13]. This

variational term solves Monge’s classical transport problem.

1.3. Organization of this Work

The previous section served as motivation for this thesis and illuminated the topics in
which we are interested.
Chapter two is going to provide the necessary mathematical framework for the upcom-

ing chapters. Starting with fundamental definitions of function spaces with a special
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focus on functions with bounded variation, we also introduce Bochner spaces, required
for the analyses in Chapter 5. In the context of variational calculus, we introduce the
concept of Fenchel duality. We devote significant attention to duality in image process-
ing and its application for operator decoupling. We end this chapter with algorithms
for the minimization of variational models.

In chapter three, the focus lies on applied problems, and focuses on models for image
segmentation. We introduce the Geodesic Active Contours model and the Chan-Vese
model, discuss their benefits, their drawbacks and deduce numerical realizations. We
end this chapter with interesting applications for feature extraction from vertebrae and
analysis of intracellular flows of microscopy data.

In Chapter four, we introduce into the field of motion estimation from images based
on variational models. We begin deriving the optical flow and mass preservation con-
straint, which act as data fidelity for our variational model. These data terms are
penalized with ||-||, and |-||3 norm and coupled with different regularizers. This leads
to a total of six variational models. Efficient numerical schemes based on the popular
primal-dual framework of Chambolle and Pock [26] are deduced. The proposed models
are evaluated in terms of flow-adapted error measures and runtime. The spectrum
of observed datasets contains basic flow types, influence of noise and scenes from the
IPOL optical flow database [44].

Based on the results in Chapter four, we introduce novel variational models for joint
motion estimation and image reconstruction in Chapter five. Besides proofs for the
existence of minimizers, we give a detailed derivation of numerical schemes. In the end,
our models are evaluated for different data situations, from joint denoising and motion
estimation up to temporal inpainting based on estimated motion. In the final Chapter
six, we couple the introduced techniques for image segmentation, denoising and motion
estimation and apply all of them to a microscopy dataset. The aim here is to enhance
image quality, track the cell and quantify intracellular motion.

In the Appendix, we derive an alternative approach for image discretization for flow
estimation purposes. Moreover a O(n) fast marching algorithm, widely used for levelset

recalculation used in Chapter three and six, is presented.
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MATHEMATICAL PRELIMINARIES

In this chapter we provide the mathematical background for this thesis. We start with
some fundamental definitions about function spaces. Beginning with Lebesgue and
Sobolev spaces, we introduce the space of functions with bounded variation. Moreover,
the so-called Bochner spaces, required for the analysis in Section 5, are defined. In
this context, we need a set of embeddings for the introduced spaces. We also discuss
some aspects of variational calculus in a subsequent section. Starting with definitions
required for the existence of minimizers we also discuss the concept of Fenchel duality.
We end this chapter with a section about efficient minimization of variational models,
concentrating on a summary of the primal-dual framework of Chambolle and Pock [26].
Let, if not explicitly defined differently, for this thesis {2 C R™ be an open and bounded

domain with Lipschitz boundary.

2.1. Function Spaces

Definition 2.1.1. Dual Space
Let X be a metric space. The dual space X* is the space of all continuous linear

functionals [ : X — R. The norm on X’* is given by

_ ()]
y+ = Sup

1]
zex\{0} [|]]

Definition 2.1.2. Reflexive Space

Let X be a metric space and X* the corresponding dual space. Similar to the dual
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space of X', we can define the dual space X** of A'*, the so-called bidual of X. If X

coincides with its bidual A**, X is called reflezive.

Examples for reflexive Banach spaces are LP(2) for 1 < p < oc.

Lemma 2.1.3. Dual Inclusion
Let X', )Y be Banach spaces and A", * be their corresponding dual spaces. If X C Y
we have V* C X*.

Proof. Let [(-) be an element of }*, e.g. a continuous linear functional on ). Now it is
easy to see that [ must also be a continuous linear functional on X, because X forms

a subspace of ). ]

For the advanced analysis the general definition of (strong) norm-convergence is insuf-

ficient. We need a weaker definition, namely the weak and the weak-* topology.

Definition 2.1.4. Weak and Weak* Topology
Let X be a Banach space and X* its corresponding dual space. We call the sequence
ux € X weakly convergent to u € X if the evaluations by bounded linear functionals v

converge for every v € X',
up = u < (v,up) — (v,u) Vo € X*.
For the dual space X* the weak-* convergence can be defined as
v =" v S (v, u) = (v,u)Vu € X.

By this definition we can easily see that for reflexive spaces (X = X) the weak and

the weak-* convergence coincide.

2.1.1. Lebesgue Spaces

Definition 2.1.5. Lebesgue Space
Let u be a measurable function and 1 < p < co. The Lebesgue space LP(£2) contains

all functions whose absolute value raised to the p-th power has a finite integral

Lp(Q):{u:Q%R:/Q|u|pda?<oo}.
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The norm in LP(2) is given by the p-th root of the integral:

el = ([ r")‘l’
U7 proy (= U .
Lp(Q) 0

We usually write [[ul|, instead of [|ul[, q)-

The dual space of LP(2) can be identified with L9(2), where ¢ is chosen such that
]% + é =1l p=_%4. For LY(2) we obtain the corresponding dual space L>°()) from

the formula above, which is defined as
L®(Q) = {u: Q — R : umeasurable, ess sup [u| < co},
where the essential supremum of u is the supremum except for a set A/ of measure zero

esssup |u| = inf sup |u(x)].
N €N

Remark 1.

Let 1 < p < +00. Then the space LP(f2) is a Banach space with norm |[Ju||,. Moreover,
L>(€) is a Banach space with norm ||u||_ = ess sup |u].

In the special case p = 2 the Lebesgue space L?(Q2) is a Hilbert space equipped with

the scalar product

(U, 0) 20 :—/ﬂu(m)v(m) dz.

Lemma 2.1.6. Coarea Formula

Let u: Q — R be a Lipschitz continuous function. Then, for g € L'(Q) we have

/Q g9(z) |[Vu(z)|dz = /_ Z ( /u i g(z) dHn_l(q;)) dt,

where H,,_; represents the (n — 1) dimensional Hausdorff measure and
ut(t) = {z € Q:u(x) =t}

This implies

/Q | Vu(z)|dz = / Z Hy o (u™ (1)) dt.
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Proof. The proof can be found in [48]. O

2.1.2. Sobolev Spaces

Definition 2.1.7. Sobolev Space
Let u be a measurable function and 1 < k,p < co. The Sobolev space W#?(€) contains

all functions whose weak derivatives up to order k lie in LP(2).
WHP(Q) = {u: LP(Q) : 9% € LP(Q),V || < k}

The norm in W*? is given by the p-th root of the sum of the derivative norms

B =

[ullwrogy = Z ||aau‘|1£p(ﬂ) ;

o<k

with short notation [[ull, ,. The most common space in the subsequent analysis is
Wl,p(Q)’

W (Q) = {u: LP(Q): O,u € LP(Q),i=1,...,n}

1
P

’ p
p

d
lally, = | ety + > [|0su
i=1

Remark 2.
For k = 1 and p = 2 we obtain the Hilbert space H'(Q) := W2(Q), whose norm is
induced by the scalar product

d
(u,v), := / uv + Z Oy, udy,v | du.
Q =

The Hilbert space H'! is very common in the analysis of linear equations. In an analogue
way, Hilbert spaces of higher order H*(Q) := W*2(Q) are defined.

2.1.3. BV Space

In this section the space of functions with bounded variation is introduced. These

functions are used in many results of this thesis. In the context of image analysis,
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this space has certain desirable properties on the one hand, and on the other hand
naturally contains what an observer would call an image. Starting with the space
L*(€), it can be shown that this space contains images but also the noise, which is
unwanted. Considering the smaller space W11(Q) instead, we see that the space no
longer contains noise, but unfortunately W'1(Q) does not allow discontinuities in its
elements. But these discontinuities are required for image analysis, because objects
are usually formed by an intensity jump against the background, which coincides with
a discontinuity in the image function u. The proper space for such w is the space of
functions with bounded variation, which is somewhere between L'(Q) and W!(Q).
We will only give a short summary of these functions and refer the reader to [21] for
further details.

For this section we assume € RY to be open and sufficiently regular and begin with

the definition of the total variation:

Definition 2.1.8. Total Variation
Let 2 be a domain and u € L'(Q). The total variation of u is defined as

TV (u) = |ulg, = sup /UV - ¢pdx.
PECT (URN),[|9]] o<1 /O

Definition 2.1.9. BV Space
Let Q2 be a domain. We define the space of functions with bounded total variation as

follows:
BV(Q) = {u € LY(Q) : |ul g, < o0}

The total variation defines a semi-norm on BV (§2). By setting u = ¢ # 0 we can easily
prove that |u|g,, is only a semi-norm.

Finally the norm on BV () is given by the sum of L' and BV-semi-norm
[ull gy = lulgy + [lull 2

Remark 3. If the considered function w is sufficiently smooth, u € W(Q), then the

total variation simplifies to

TV () = /Q V| de
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As we will later see in Theorem 2.1.22, the space W11(Q) is a subspace of BV ().
This is why, in an informal setting, we often write [, [Vu|dz, neglecting that BV (Q)

contains a broader set of functions.
For the following theorem of Banach-Alaoglu (see 2.2.16), required for the variational

analysis, we need a space of which BV (Q2) is the dual space.

Lemma 2.1.10. BV is a Dual Space
The space BV (£2) can be identified with the dual space of ), where

Y= {(c,V-sO)icERwGC(Q;Rd)wIa@-n:O}

Proof. A proof for BVy(Q2) (space of functions with bounded variation and mean value
0) can be found in [21]. This proof can be modified to functions with mean value
different from 0. O

For the later analysis we need a few essential properties

Lemma 2.1.11. Properties of the Total Variation:
o |-| 5 is convex.
e |-|5y is lower semicontinuous with respect to the weak topology of L'.
e Any uniformly bounded sequence in BV is relatively compact in L.

Proof. Can be found in [2]. O

2.1.4. Bochner Spaces

Definition 2.1.12. Measurable space
A set X with a distinguished o-algebra of measurable subsets is called measurable space.

One example is the R™ with the Lebesgue o-algebra.

Definition 2.1.13. Bochner space
Let X denote a measurable Banach space with norm ||-|,. The space L?(0,7, X) is
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called Bochner space and consists of all X-measurable functions u : [0,7] — X with

norm

RS

T
||UHLP(07T;X) = (/0 HU(t)Hidt) <oo forl<p< o

and

||“||Loo(o,T;X) = eSS Supo<i<T Hu(t)” < 00

In Chapter 5 we need the concept of Bochner spaces. Those spaces can be defined in
a more general context, but for our applications we restrict to LP(0,7, X’). This space
consists of all functions u such that u(-,t) € X for every t € [0,7]. In addition to this

property, the time integral of the p-th power of u must exist.

Theorem 2.1.14. Dual of a Bochner Space
Let X be a Banach space and X* be a separable measurable space. Then for 1 < p <

oo,%—l—ézlwehave
LP(0,T; X)* = LY0,T; X*).

For p = 1 the dual space can be identified with L>(0,T; X'*), hence
LY0,T; X)* = L>(0,T; X*)

Proof. Can be found in [24]. O

Corollary 2.1.15.
Let X be a reflexive Banach space, then LP(0,T; X)) is a reflexive space.

In the context of Bochner spaces and variational analysis we face a huge problem.
Consider the spaces LP(0,7; X) and L?(0,T; Y) with p < q. As we will see later (Section
2.1.5), there exists the natural compact embedding L” CC L. Let us moreover assume
that X CC ). Unfortunately, we are not able to deduce the compact embedding
LP(0,T;X) CcC L0, T;Y). A way out yields the following lemma:

Lemma 2.1.16. Aubin-Lions
Let X,), Z be Banach spaces with X CC Y and Y — Z. Let u, be a sequence of
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bounded functions in LP(0,7; X) and dyu, be bounded in L9(0,7; Z) (for ¢ = 1 and
l1<p<oocorg>1land1l<p<o0).
Then w, is relatively compact in LP(0,7; ).

Proof. See [9, 46, 66] O

In other words: If we are able to prove time regularity for functions v € LP(0,T; X),

we do get a compact embedding.

2.1.5. Embeddings

Definition 2.1.17. Embedding

Let X C Y be Banach spaces with respective norms |||, and |||, We say & is
continuously embedded in ), written X — ), if the inclusion map X — Y 1z — x is
continuous, i.e. [|z[;, < C|z|,,Vx € & for some constant C' > 0.

We furthermore speak of a compact embedding, written X CC ), if the inclusion is a
compact operator, i.e. any bounded sequence has a subsequence that is Cauchy in the

norm ||-[|;,.

There is a natural embedding L? — L? if p > ¢, which is proven by the next Lemma.

Lemma 2.1.18. Lebesgue Embedding
Let 1 <p < ¢ < oo then LP(Q2) — LI(£2).

Proof. Let u € LP(Q) and % = é + £, then using Hélders inequality (Lemma A.1.9)

LAl = 1L Fll, < I LA = 1201 -

Theorem 2.1.19. Sobolev Embedding Theorem

Let © be a domain in R™ and, for 1 < k < n, let €, be the intersection of €2 with a
plane of dimension k in R”. (If & = n, then ; = Q). Let j > 0 and m > 1 be integers
and let 1 < p < o0.

Case 1: If either mp >norm=mn,p=1and 1 <k <n, then

WIHP(Q) s WH(Qy)  for p < ¢ < oo,
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and, in particular,
WmP(Q) — LY(Q) forp<qg<oo

Case 2: If 1 <k <n and mp = n, then

WAItmP(Q) s Wa4(Q,)  for p < q < oo,

and, in particular,
WmP(Q) — L1(Q) forp<g< oo

Case 3: If mp < n, and either n —mp <k <norp=1and n—m <k <n, then

. : k
WITmP(Q) s WH(Qy) for p < q < p" = — b
n—mp
In particular,
WmP(Q) s LI(Q) forp<q<p = —b .
n—mp
Proof. A proof can be found in [3]. O

Theorem 2.1.20. Rellich-Kondrachov Compactness Theorem
Consider a bounded open subset 2 C R" with 9Q C*. Suppose 1 < p < n. Then

WhP(Q) cc LYQ)

for each 1 < ¢ < p*, where p* is the Sobolev conjugate.
Proof. The proof can be found in [34]. O

This theorem can be applied as follows. Consider for example a set Q C R?® and
W2(Q). Then we get for the Sobolev conjugate p* = 6. Now the theorem yields a
compact embedding of W2(Q) into L(Q) for ¢ = 1,...,5.

The former result can be generalized to arbitrary W*? by the following result:

Theorem 2.1.21. General Compact Sobolev Embeddings
Suppose a bounded open subset 2 C R™ with 9Q € C',p € [1,00),k,1 € N with [ > 1

and ¢ < nnTI;l' Then we obtain a compact embedding

WkP(Q) cc Wka(Q)
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Proof. The proof can be found in [3]. O

Theorem 2.1.22. Embedding for BV

Suppose a bounded open subset 2 C R" and 1 < p < -%5. Then there exists a

continuous embedding BV () < LP(€2). For p < -2+ the embedding is compact, thus
BV (Q) CcC LP(Q).

Proof. Can be found in [6]. O

Lemma 2.1.23. Embedding for Bochner Spaces

1. Consider the Bochner spaces LP(0,T;X) and LP(0,T;)) with X < ). Then

LP(0,T;X) — L*(0,T;Y)

2. Let 1 < s <t < oo and consider the Bochner spaces L*(0,T; X) and L*(0,T; X).

Then we have the continuous embedding

LY0,T;X) — L*(0,T; X).

Proof. We start with 1: Let uw € LP(0,7; X). Due to the continuous embedding X — )
we have

Hu(t)Hy < Cy||u®)], Vtel0,T7].

The constant C; might be different for every ¢ € [0, 77, but it is not a function of ¢ and
we define

C,, := max C,.
te[0,T

Hence,
lut®)lly < Con [u®)],, V¢ € 0,71

This leads to the estimate

T T
oy = [ @t < [ (Colfuto] rae

T
_ Cﬁp‘/o ||u(t)||i, dt = CF, lullZo o1
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Taking the p-th root on both sides we end up with the required

HuHLp (0,T3)) < CHUHLP 0,T;X)

Part two follows from the embedding theory for Lebesgue spaces (see Lemma 2.1.18).
O

2.1.6. Convergence Results

Lemma 2.1.24. Strong and Weak Convergence
Let X be a Banach space and u, — u in LP(X), then u, — w in LP(X).

Proof. Let v € X* be an arbitrary element from the dual space, then we write down

for the weak convergence

(o) = to.0] = (v =] = | [ ol = w)da] <ol Ju il
Holder —0

Note that weak convergence does not imply strong convergence in general!

Lemma 2.1.25. W'? Convergence Implies LP Convergence
Let X be a Banach space and u; — u in W1?(Q), then uy — u in LP(Q) and 0,,u — v;

in LP(2) where v; is the i-th distributional derivative of w.

Proof. The proof follows directly from the definition of the W1?-Norm, which is the
sum of the L” norm of u; and 0,,u;. Convergence of the sum implies convergence of

all elements, since they have positive value. O

Corollary 2.1.26. Weak Compactness for L?
Let 1 < p < 0o and uy a bounded sequence in L”; then there exists a subsequence wuy,

such that ug, — u in LP weakly.

Proof. The proof is a corollary of Theorem 2.2.16. [
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Remark 4. Weak-* Convergence in L>((2)

Due to the fact that L>(Q) is the dual space to L*(Q2) (L'(Q) is not the dual space of
L>(Q2)) we can define weak-* convergence in L>(Q2). Let therefore be 2 C R™ an open
set and u,, € L>(Q2). We say that u,, € L>(2) converges weak-* to u € L>() if

/unv—>/uv Vv e LY(Q).
Q Q

Thus for bounded subsequences in L*°(2) we have weak-* convergence.

2.2. Variational Calculus

In this section we will give a coarse introduction to the calculus of variations. We
begin with basic definitions of operators and functionals and continue with the concept
of variational derivatives for energies. Afterwards we introduce convexity and lower
semi-continuity, which then lead to the fundamental theorem of optimization. Then
we recall the concept of Fenchel duality, which the connects primal and dual variational
problem. Finally, we present examples for a set of concrete variational problems and

deduce solutions.

Definition 2.2.1. Operator and Functional
Let X,) denote two Banach spaces with topology 71,7. A mapping J : X — )
between these spaces is called an operator. In case ) is a scalar field, J is called a

functional.

In our observations we usually consider )) = R and define a proper functional:

Definition 2.2.2. Proper Functional

Let X' denote a Banach space. A functional J : X — R is called proper if J(u) # —oc
for all w € X and if there exists at least one u € X with J(u) # oco. We furthermore
define the effective domain of J as {u eX:J(u) < oo}

2.2.1. Derivatives

We start by defining, in analogy to the classical difference quotient, a difference quo-

tient for functionals, the so-called directional derivative.
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Definition 2.2.3. Directional Derivative
Let X denote a Banach space, and J : X — R be a proper functional. For v € X we
define the directional derivative in u in the direction v as

dyJ(u) == lim J(uttv) - J(u)

t—0 t

Definition 2.2.4. Gateaux Derivative
Let X be a Banach space, and J : X — R be a proper functional. The set of directional

derivatives
dJ(u) = {d,J(u) : d,J(u) < oo for v € X}

is called the Gateaux derivative in u € X. If dJ(u) # {@}, then J is called Gateauz

differentiable in wu.

Definition 2.2.5. Fréchet Derivative

Let X be a Banach space, and J : X — R be a proper functional. Let furthermore
dJ(u) exist for all v € X. If there exists a continuous linear functional F' : X — R
such that

Fv=d,J(u) YvedX,

and

| J(u+v) = J(u) — Fvl

[o]| =0 V]|

=0 WYvedoa,

then J is called Fréchet differentiable in v € X and F' is called the Fréchet derivative.

Since we are often interested in the optimality condition of convex functionals, which are
not Frechét differentiable, we want to further generalize this definition. Therefore we
extend the concept of differentiation to include the points where no Frechét derivative

exists.

Definition 2.2.6. Subdifferential
Let X be a Banach space, and J : X — R be a proper and convex functional. For
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u € X we call J subdifferentiable if there exists p € X* such that
Jw)—=Jw) —{p,v—u} >0 YvedX.
Then p is called a subgradient of J in v and
OJ(u) :={peX*:J(v)—J(u) —{p,v—u} >0 VYveX}

is called the subdifferential of J in w.

2.2.2. Convexity

The concept of convexity in variational calculus is very useful. Finding a minimizer of a
strictly convex model always implies its uniqueness. This is also important when numer-
ically minimizing an energy since convexity prevents getting trapped in local minima.

For further details about convex optimization we refer the reader to [57, 58, 18, 31]

Definition 2.2.7. Convex Set
Let X be a Banach space. A subset () € X is called convez if for all u,v € X

au+ (1—a)v e, VYael01l]

Definition 2.2.8. Convex Functional
Let X be a Banach space, 0 C X a convex subset and J : Q — R U {oo} a functional.

J is said to be convez if the inequality
J(au+ (1 —a)v) < aJ(u) + (1 —a)J(v)

is satisfied for all u,v € Q and a € [0,1]. We furthermore call J strictly convex if the
equality above is satisfied with < strict and a € (0, 1).

Lemma 2.2.9. Examples for Convex Functionals
1. Any norm J(u) = |Ju|| is a convex function.

2. Any affine norm J(u) = ||[Ku — f]| is a convex function for an arbitrary operator

K.
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3. Let p > 1, then J(u) = |Jul” is convex.
Proof. Can be found in [57]. O

It follows in particular that the later discussed data-fidelity terms |[Ku — f||3 are con-

vex.

Lemma 2.2.10. Convexity of the Total Variation

The Total Variation (see Definition 2.1.8) is convex.

Proof.

TV(ou+ (1 —av)) = sup /Q(ozu + (1 —a)v)V - -pdx

IPll oo (<1
= sup /(auV-p—i—(l—a)vV-p) dz
[Pl Loo (<1 /O
<a sup /uV~pdx—|—(1—a) sup /vV~pdx
[Pl Loc (<1 /O [Pl Loo (R)<T /0

=aTV(u) + (1 —aTV(v)))

2.2.3. Lower Semi-Continuity

Definition 2.2.11. Lower Semi-Continuity
Let (X, 7) be a measurable topological space and .J : (X, 7) — R a functional on X. .J

. . . . . . . T
is said to be lower semi-continuous with respect to 7 in u if for every sequence ux — u

J(u) < limkinf J(uy)

Corollary 2.2.12. Lower Semi-Continuity for Sums
Let (X,7) be a topological space and J, J: (X, 7) > RU{oco} lower semi-continuous
functionals on X with respect to 7. Then J + J is also lower semi-continuous with

respect to 7.

The following Lemma will give us an easy criterion for weak lower semi-continuity on

reflexive Banach spaces (for example LP spaces).
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Lemma 2.2.13.
Let J : X — R be a convex functional on a reflexive Banach space X', then J is weakly

lower semicontinuous.

Proof. The proof is done by contradiction and we assume that J is not weakly lower
semi-continuous, which implies that there exists a sequence u; — u with J(u) >
limy, J(ug). From convexity of J follows directly the convexity of the epigraph, i.e. the

set
epi(J) == {(u,a) € ¥ x R:a > J(u)}

is convex. Therefore with J(u) > limg J(uy) there exists b € R with J(u) > b >
limy, J(ug) and consequently (u,b) ¢ epi(J). With Hahn-Banach’s theorem (see [61])
the convex set epi(J) can be split by a linear function, i.e. there exist ¢,d € R and
p € X* with

cb+ (p,u) +d <0
and
ca+ (p,v)y+d=>0

for all (v,a), (u,b) € epi(J). Choosing a = J(u) and combining both inequalities gives

us
chb < cJ(u),

it follows that ¢ > 0 and we divide by c. It follows that for a = J(uy),v =

1 1

Due to the weak convergence we have (p,u) = lim (p, uy), thus b < limy, J(uy) which is

a contradiction. []
Lemma 2.2.14. The total variation is weak—* lower semicontinuous on BV ().

Proof. Let u, —* u and let ¢, € C5°(Q2, R?) with ||, <1 such that

lul gy = lim/ uV - ¢ da.
koJa
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Then we have due to the weak—* convergence

/uv-wkdx:lim/unv-wkdx
Q nJa

= lim inf/ u,V - g do
Q

n

< liminf sup / u,V - pde
" PeCE® (AR, [lpll o, <1 /0

= liin inf |, 5y -

No taking the limit over £ yields

[u| gy < lHminf |u,| g, -
n

2.2.4. Existence of Minimizers

Definition 2.2.15. Coercivity

Let (X, 7) be a topological space and J : X — RU{oo} a functional on X. We call J
coercive if it has compact sub-level sets. This means there exists an a € R such that
the set

S(a):={ueX| Ju)<a}

is not empty and compact in 7.

Theorem 2.2.16. Theorem of Banach-Alaoglu
Let X be the dual of a Banach space and C' > 0. Then the set

{ue X ful, <C}
is compact in the weak-* topology.

Proof. A proof can be found in [61] p. 66-68, Chapter 3, Theorem 3.15. O

Let us mention here that this theorem is fundamental in the later analysis. Due to the
L? and Sobolev theory the spaces in our analysis are usually dual spaces and proving

boundedness of a set is a property that can be shown relatively easy.
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The definitions of lower semi-continuity and coercivity lead us directly to a fundamental

result from the optimization theory. We refer to [8] for further details.

Theorem 2.2.17. Fundamental Theorem of Optimization
Let (X, 7) be a metric space and J : X — RU {oo} a functional on X'. Moreover let
J be lower semi-continuous (2.2.11) and coercive (2.2.15).
Then there exists a global minimum « € X, i.e.

J(@) = nf J(u)
Proof. Let uy be a minimizing sequence such that limg o, J(ug) = inf,cx J(u). Let ko
be large enough such that ug, € S(«) (2.2.15). Then the set {ug : k > ko} is contained

in a compact set and it has a convergent subsequence vy, with limy_,. J(ax) = J().

Then we have

ueX ueX

i < Ju) < 2.2 i ) = 1
inf J(u) < J(u) < 2.2 11]}1_{{)10 J(ty) = inf J(u),

and it follows that 4 is a global minimum of J. [

2.2.5. Legendre-Fenchel Duality

For the analysis and later implementation of variational problems the concept of duality
is essential. For the scope of this thesis we are only able to give a short overview of
some basic definitions and properties. For a complete discussion of this subject we refer
the reader to [57, 58, 18].

Definition 2.2.18.
Let X be a Banach space with dual space X*. The convex conjugate J* : X* — R of a
proper functional J : X — R is defined by

J(p) = 31612 {{p,u)r — J(u)} forpe X"

The biconjugate J** : X** — R (in case of reflexive spaces we have X = X**) of J is
defined as

J*(u) := sup {(u,p) . —J*(p)} forueX.

peEX*
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The convex conjugate is also known as Legendre-Fenchel transform, named after Adrien-

Marie Legendre and Werner Fenchel.

We have special interest in the biconjugate J**. Graphically speaking, the biconjugate
is the largest convex functional below J. The following theorem makes this statement

more precise.

Theorem 2.2.19. Fenchel-Morau-Rockafellar
Let X be a Banach space and J : X — R. Then we have

1. J* < J,
2. J*™ = Jiff Jis convex and lower-semicontinuous.
Proof. Can be found in [57]. O

The following rules are helpful when calculating the convex conjugate:

Remark 5. Duality Correspondence
Let J : R® — R be proper, lower-semicontinuous and convex. Then we have the

following correspondence:

(A ())* = AT (5

), A
7)o A>0

Proof. Follows from the definition of the convex conjugate. O]

The following theorem is very important in the context of variational minimization.
The application of Fenchel’s duality theorem connects the primal variational problem
to the corresponding dual problem, which is in many cases easier to solve. Moreover,
the Legendre-Fenchel transform is the basis for many efficient numerical methods for

variational problems (see Section 2.3.1).

Theorem 2.2.20. Fenchel’s Duality Theorem
Let J; : X - R and J, : ) — R be proper, lower semi-continuous and convex

functionals on Banach spaces X and Y, such that dom.J; N dom.Jy # (). Furthermore,
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let K : X — Y be a bounded linear operator.
Then we have the following equality:

inf {1(Ku) + Jo(u)} = sup {J;(p) + J5(K*p)}. (2.1)

pEX™

Proof. A proof can be found in [31]. O

2.2.6. Duality in Image Processing

The aim of this section is to connect the concept of duality from the previous section
with the variational models for image processing used in this thesis. As we will see later
(cf. Section 2.3.1), duality offers an efficient way of minimizing variational models. This
section has been inspired by the work of Chambolle and Pock [26], but we want to give
a more detailed overview here. As a start, let us consider two finite dimensional vector
spaces X and ) equipped with a scalar product (-,-) and a norm ||-||,. We furthermore
consider a continuous linear operator K : X — ). Now, the general class of problems

in this thesis can be written as

min G(z) + F(Kx), (2.2)

TeX

with F,G : X — R are proper, convex and lower semi-continuous functionals. In the

following, we denote Equation (2.2) as the primal problem.

Example 2.2.21. Rudin-Osher-Fatemi Model

Setting G'(u) := 1 |u — f||; and F(Ku) := a||Vul|, we obtain

1
J(u) =5 lu— flls + o Vul,

In this context, the operator K is simply the gradient K := V. This variational model
is known as Rudin-Osher-Fatemi (ROF) model for image denoising (cf. [60]).

The primal problem is often hard to minimize or yields very slow algorithms. Instead

of the primal problem, we can equivalently solve the so-called primal-dual problem.

Lemma 2.2.22. Equivalence of Primal and Primal-Dual Problem
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Let 2, be a minimizer of the primal problem

min G(z) + F(Kz),

rzeX
where G and F fulfill the assumptions above. Let furthermore the tuple (Z,4, Jpa) be a

minimizer of the saddle-point problem

minmax (Kz,y) + G(z) — F*(y).

zeX yey

Then we have &, = Zq.

Proof. Let us start with the primal problem. Since F was assumed to be a convex,
semi-continuous functional we can replace F'(Kx) by its biconjugate F**(Kx), and get

for the primal problem

min G(z) + F**(Kx). (2.3)

reX

Now, using the definition of the convex conjugate, we have
F*(K) = max (K, y) — F*(y) = max (z, K*y) — F* ().
yeY yey
Inserting this into Equation (2.3) we get

inG K*y) — F* . 2.4
min G(z) + {r;leag (z, Ky) (y)} (2.4)
Since G(z) is simply a scalar addition, we can move the max outwards and arrive at

the required

min max G(z) + (z, Ky) — F*(y). (2.5)

Example 2.2.23. Convex Conjugate of Squared L? Norm

Let be X = L*(Q) and J(x) = ¢ ||z for a > 0. Then we have J*(z*) =

2
D) ’95*”2

36 |
2c

Proof. We begin with the case o = 1. Since X is a Hilbert space, it can be identified
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with its dual space X*. Using the definition, we get for the convex conjugate:

x (% * 1 2

Tt = swp (w,2%) = 5 lall.
z€L2(Q)

We can directly see that J* is Frechet-differentiable and get for the optimal point & = z*.

Consequently, we have

* (K x|k 1 * (2 1 * (|2
) = a0y = Sl = 2l
The case for general a can be directly deduced from Lemma 5, since (AJ(-))* = AJ*(5).

]

Example 2.2.24. Convex Conjugate of General Norm

Let X be a measurable space and let B(X) denote the unit ball in X. Consider
J(x) = ||z||y, then we have J*(2*) = dp(a=)(2*). Here, dpx~) denotes the indicator
function of the unit ball in X* defined as

0 ifz* e B(XY)

5B(X*)($*) =
oo else

Proof. We distinguish between two cases for the input argument z*:

1. Let be [|z*|
pairing holds:

v+ < 1. Let us observe first that the following estimate for the dual

(a7, x) < |7

X xHX

Consequently, we have (z*,z) — ||z]|, < 0. With (z*,0) =0 = ||0]| ,, we get

J*(x%) = sup (2", x) — [|z[|, =0.
T*EX*

2. For the case ||z*||,. > 1 we remind ourselves of the definition of the norm in X™*:

*
o+ = Sup (2", 7)

=¥ :
TEX ||5E||X
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Consequently there exists xyp € X such that

(2", z0)

o]l

> 1 (2%, m0) > [[zollx & {27, 20) — |[zollx > 0.

Now, multiplying with some constant ¢ > 0 we observe that

0 < c((z*,z0) — ||woll ) = (x*, cxo) — |cmol| < J* ().

>0

Going to the limit ¢ — oo yields the required J*(z*) = oo

Example 2.2.25. Convex Conjugate of Affine Linear L' Norm
Consider J(z) = ||z + al|;, for some a € R. Then we have J*(2*) = dp(r~)(z*) —

(x*,a).

Proof. We simply combine the result from the previous example with Lemma 5 where
(J(-+a) =)= (a) O

Example 2.2.26. From [51, 2012, Section 2.1, Example 2.1.6|
Consider X =R", Y = R™ and K € R™*". In the following table we wrote down some

primal problems and their corresponding dual problems.

Primal Problem Dual Problem
YWku=fll; + alul, | Llp—fl3 + dpe=(2)
UKu=fl; = alul, | Sllp=fl  + dpan(5)
Ku—fl + dpany(® | Llp—fl3  + o K7,
LiKu—=fl3 + 6épaey(2) | Llp—fls + o K|,
Vu—fl5  + olKul, [FIET2 =]} +  dsa=(®)

2.2.7. Examples for Concrete Problems

In this section we provide a set of concrete examples of variational problems. Problems
of this structure will arise especially in Chapters 4 and 5 and we are able to directly

apply the presented solutions to these models.
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Lemma 2.2.27. L? Optimization

Let  := (x1,...,2,),b:= (b,...,b,) and consider the discrete variational problem
1 2, A 2
argmin _ ||z — b, + 5 [[Kz|);,
z 2 2
which consists of an L? data term and an additional L? regularization term with a

linear operator K (e.g. the gradient).

Then the solution can be restricted to solving a system of linear equations Ax = b.

Proof. We simply write down the optimality condition
T-b+ 'Kz =0 x+ \K'Ke=bs (I+ KKz =b

now, defining A := [ + K*K, we obtain the required result. O

Lemma 2.2.28. L! Optimization

Let © := (v1,...,7,),a := (ai,...,a,) and consider the L' optimization problem
1 2
argmin L & — all} + Aa],
xr
Depending on the context we denote |||, := >, |z;| as the anisotropic, and ||z, =

\/2?:1 x? as the isotropic L' optimization problem.
The solution @ is given by

8>

= sgn(a) - max(|a|] — A\, 0) =: Syniso(@, A)
in the anisotropic case and by

T = L . max(||a,||2 — )\,0) =: Siso(a'a >‘)
lall,

in the isotropic case. Inspired by the fact that the input argument a shrinks towards

zero, the solution is often called shrinkage.

Proof. Anisotropic case:

We basically follow the arguments from [58] and start with the anisotropic case. The
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problem now reads

1 ) -
argmin — || — al|; + A il .
gming & —alf +33_ s

Due to the fact that the x; are independent we can restrict to the 1-dimensional case.

Using the definition of the dual norm we can rewrite the problem to

1 2
arg min — ||z — a||; + arg max (z, y) .
T 2\ yey

Since the 1-norm is the dual of the infinity norm we have Y := {y yl < 1}. Both,

arg min and arg max exist and we can interchange them:

1
arg max arg min — ||z — al|5 + (z,v) . (2.6)
yey x 2\

With this structure we can now solve the inner problem directly and get as optimality

condition

1
X(x—a)—l—y;OHx:a—/\y

Inserting this in Equation (2.6) reads
1 2
arg max — [la — Xy — all2 + a — Ay, )
vey 2\

A
& arg max o lylls + (@, y) — Xy, y)
yey

A
& arg max — Iyl + (a, )

yey
o ang )\H all?
argmax —— ||y — —
yey 2 A 2

The solution can be found by case analysis and using the definition of Y as

4 if [4/<1 (&a <A lal—A<0)

sgn(%) if |4]>1 (& ]a] > A& |a| — A >0)
Going back to the primal problem we have

~

1
arg;nin o) |z —all; + (=, 3)
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with the optimality condition

R o R R 0 1f|a|—)\§0
(T—a)+y=0t=a—\y=

S

a—Asgn(a) if |a] =X >0

This is equivalent to the proposed formula

&>

= sgn(a) - max(|a| — A, 0).

Isotropic case:
The previous proof needs only small adjustments to cover the isotropic case. The

minimization problem here reads

1 2 -
argmin 5 |l —all; + A me

i=1

We can no longer restrict to the 1-dimensional case, because the components are now
connected through the squareroot. The first change in the proof appears within the
set Y. Since the 2-norm is dual to itself, the set changes to Y := {y Hylly < 1}. This

requires a change in the solution for the minimization problem

2

A

argmax ——
yeYy 2

)\H a

2

The solution consists of the same structure as before. If % lies within the L? unit ball

we choose § = $ otherwise we choose the element in the L? ball closest (in the L?

a

sense) to ¢, which is the projection of § onto the ball, hence y = Tall;

. Together we

have

© it faf,~A<0

g=3"
it laf, — A >0

_a
||a\|2
This transfers to the solution & as follows

0 it lal, — A <0
a— A if [la],—A>0

Ha,||2

el
Il
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which is equivalent to the short formula

=2 max(||al, — A,0).

el

Lemma 2.2.29. Affine Linear Soft Thresholding

Consider the affine linear L' optimization problem for given @ and ¢
1 2
argmin Ju— ]+ A5u - gl A5 >0,
Let us denote the affine linear function as follows:

f(u) = pu—g.

Then the L' minimization problem can be solved directly via the soft thresholding

formula:

B if f(u) < —\3?
=B if f(a) > \p?
- @< a8

I
=4
+

Umin

Proof. The proof is quite similar to the classical shrinkage formula. Let us observe that,
for calculating the optimality condition, the critical point is given by u = %, because
the L' norm is not differentiable here. That is why we distinguish between the three

g 9 — 9
cases u < 3,U > 5 and u 5

1. u< %: The optimality condition can be directly calculated as

!

u—u+AN—=1)=0.
Consequently, we obtain the solution as

u=1u+ \j.
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From u < % we deduce the equivalent condition

a+)\ﬂ<%@ﬁa—g<—)\ﬁ2@f@)<—)\52’

which completes the first case.

: The second case can be done in analogy to the first one.

S

: For the critical case, the optimality condition reads

SIS

u—ﬂ—i—)\p;()(:)u:ﬂ—)\p,

where p is an element of the subdifferential of ||fu — g||,. Now, the subdifferential

of a standard L' term ||ul|, is given by {p € [-1,1]}. In our case we have Su

which lifts the subdifferential to {p €[5, B]} The affine term ¢ is a constant

shift of all function values and has no influence to the subdifferential.

To find the right p, we use the optimality condition above and insert the known
g

U:EI

Finally, to obtain the correct condition, we already know that p € [—f, 5] and
consequently |p| < . Inserting this yields

< B |Bu—g| <A & |f(@)] < A5

>

g
‘ M

Lemma 2.2.30. Vectorial Affine Linear Soft Thresholding

Consider for w := (uy,...,u,)", B := (Bi1,...,3,)" the affine linear function

flu):=B-u—yg
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Then for some @ the L' minimization problem
! 2
argmin & u = a3+ [ fw)
u

can be solved directly via the soft thresholding formula

AB i f(a) < =B

Umin =T+ =N if f(@) > A8
_f@a
ol else
Proof. Can be done with slight modifications to the one-dimensional case. O]

2.3. Variational Minimization

The aim of this section is to introduce a framework for the minimization of variational
models in image processing. The previously introduced concept of duality can be used
to derive efficient schemes for the minimization of variational models. In the following,
we introduce so-called primal-dual methods. They offer a way to express the (often
numerically expensive) inversion of an operator by application of the operator and the
respective adjoint operator. Similar primal-dual frameworks have been introduced by
Esser, Zhang and Chan in 2010 [33|, Chambolle and Pock in 2011 [26] and Zhang,
Burger and Osher in 2011 [78|. Our choice is a primal-dual algorithm proposed by
Chambolle and Pock. We will give a coarse introduction to the general framework and

will explain how to apply this to our class of problems.

2.3.1. Primal-Dual Framework

As a start consider two finite dimensional vector spaces X and ) equipped with a scalar
1
product (-,-) and a norm ||-||3. We furthermore consider a continuous linear operator

K : X — ). Now, the general class of problems in this thesis can be written as

min G(z) + F(Kx), (2.7)

zeX

with F,G : X — R are proper, convex and lower semi-continuous functionals. In the

following we denote Equation (2.2) as the primal problem. Consider for example the
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well-known Rudin-Osher-Fatemi (ROF) functional
1 2
Jw) =5 llu—flly + e[Vl

here we simply set G(u) := 1 |[u — f||3 and F(Ku) := «||Vul|, with K := V and the
requirements are met.
Now, it can be shown that solving the minimization problem in Equation 2.2 is equiv-

alent to solving the saddle-point problem

mip max(Kw,y) + G(z) - F"(y), (2.8)

where F™* is the convex conjugate of F' (see Section 2.2.6 for details). The minimization
problem in Equation 2.8 is called the primal-dual problem.

Let us now return to the general problem in Equation (2.7) with K = [
min F(x) + G(x).
It can be shown (see [30]) that the solution is given by the fixed point equation
xr = prox,p(r — TVG(x)), (2.9)

with some problem-dependent parameter 7. The expression prorp stands for the so-

called prozimity or resolvent operator, defined as follows:

Definition 2.3.1. Resolvent Operator
Let F' be a proper functional and X a Banach space. For some input argument y and

constant 7 > 0 we define the resolvent operator as

2
z = (I+70F)" (y) := argmin {w + TF(x)} = proz,p(y)

x

The proximity operator can be interpreted as a compromise between minimizing F' and
being close to the input argument y. We are looking for a fixed point in Equation (2.9).
A simple numerical scheme for doing so is the following iteration with some initial value

xV:

2" = prox.p(af — TV G (2F)).
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Now, the Chambolle-Pock algorithm aims at solving the saddle-point Problem (2.8) by
performing alternating fixed point iterations for z and y and adding an intermediate

overrelaxation-step to x. This leads to the following 3-step scheme

Definition 2.3.2. Chambolle-Pock Algorithm
Choose 7,0 > 0,0 € [0,1], (2°,4°) € X x Y and set 2° = 0. Then the Chambolle-Pock

iterations for Problem (2.8) are defined as

k+1 k ~k
= ProX,p= — O'V ](:L' , —

= proz,p-(y* + O’Ki’k)

" = proz,g(r* — TV (Kx, —y")) (2.11)
= proz,q(z® — TK*yF) ‘
FRHL = R (gl gk (2.12)

For some applications the dual functional F* in Equation (2.10) is unknown, hard
to evaluate or can only be calculated at very high computational costs. A way out
yields the Moreau identity, which gives an easy correspondence between primal and

dual functional.

Theorem 2.3.3. Moreau’s Identity
Let F' be a proper functional, X a Banach space and F™* the corresponding dual

functional. Then primal and dual resolvent are related through the following identity:

xr = prox,p(r) + Tprox%F*(g)

x
& prox.p(r) = — Tproxi g (—).
T

This is very useful, because this identity enables a modified Chambolle-Pock variant

where we can restrict ourselves to the purely primal functionals F and G.

Corollary 2.3.4. Modified Chambolle-Pock Algorithm
Using Moreau’s identity (Theorem 2.3.3) the dual update in Definition 2.3.2 simplifies
to an evaluation of the primal functional F'. Then the scheme reads
y*
Yy = yF Lo KiY — oprovi o (&= + KiF)
g

k+

2" = prox.q (o — T K*yM)
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ink—i—l — xk—i—l + 9(:Ek+1 o {Ek)
Going back to our initial ROF example we obtain the following scheme

,gk;—‘rl — yk + O'Vf%k

2
~k+1

Yy «

k+1 ~k+1 4= ’y|1
o

Yy =9y —oargmin
Yy

y_

DN | —

(1~3k+1 — $l~c _ T(—V . yk:-i-l)

1 2 T
k1l _ N R | O T 2
i = argmln{2 H:c T ’2 + 5 I sz}

xT

Zi’k+1 — $k+1 + 0([Ek+1 . xk>‘

The subproblem in ¥ is a simple L' — L? problem, which can be directly solved by soft
thresholding S(-,-) (see Lemma 2.2.28). We obtain

~k+1

<
I
=
9
<

For the linear subproblem in x we calculate the optimality condition as

x—:ik+1+7(x—f)é0<:>x:

1+T(;i+7f).

We end up with the following fairly simple iterative scheme

gk:-i—l — yk + Uv'%k

Y=gt —oS(=, 5

P = ok 4 vy

2t = (Z+7f)

FRHL = gkt (gL gy,
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IMAGE SEGMENTATION

This chapter is dedicated to image segmentation models. We begin by introducing
the mathematical context of image segmentation and proceed with two concrete mod-
els, namely the Geodesic Active Contours model in Section 3.2.1 and the Chan-Vese
model in Section 3.2.2. The chapter ends with two applications for image segmentation,
one concerning feature extraction from vertebra and another concerning intracellular
flow. The latter application will be discussed again in Chapter 6 in the context of

mathematical models for motion estimation and joint image reconstruction.

3.1. Background

3.1.1. Introduction

If we should describe the word segmentation to a non-mathematician, we would most
likely speak of dividing an image into different regions or objects. Usually, we seek for
a simplified version of the underlying image, which consists of homogeneous regions
that are separated by sharp edges. In this context, depending on their position in the
image, some contours may be more important than others in the classification process.
However, the important image-feature in the segmentation process is usually an edge.
From a general point of view, there exist two very different strategies in the field of
segmentation. The first strategy uses the variational Mumford and Shah image model

for decoupling the image into sharp edges and smooth parts [52]. The functional is
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defined by
2 2 d—1
J(u,T) = / lu— FI2 + / IVull2 + 7O (D). (3.1)
Q O\r

Here wu is the reconstructed image we are interested in. The variable f denotes the
given data, and H 1(T") denotes the (d — 1)-dimensional Hausdorff-measure of the set
of discontinuities I'. The first part keeps the approximation u close to the data f in a
least squares sense, the second term ensures that u consists of smooth regions and the
third term minimizes the length of the boundary set I'. Having constructed the pair
(u,T'), the segmentation can directly be extracted as the connected components in wu.
Unfortunately, from a numerical point of view, the classical Mumford-Shah model is
hard to minimize due to the geometrical variable I'. In Section 3.2.2 we present the
Chan-Vese model [27], that is a simplification of the Mumford-Shah energy, and that
can be computed at low computational costs.

The second segmentation strategy aims at finding certain objects in images, where the
structure inside the object is usually neglected. The basic idea is to place a curve around
an image, which contracts as the algorithm runs. The curve then stops at boundaries
(however they may be defined) and the image can be divided into two regions - i.e.
inside and outside of the curve. This strategy was proposed by Kass, Witkin and
Terzopoulos [45] and named as active contours. We want to underline here that in
classical context of active contours the algorithms needs the set of boundaries as an
external input.

Since this thesis is dedicated to biological applications, we want to give a short example
for the classes of images to be segmented. Figure 3.1 gives an example of the data we
are interested in - moving cells. Since we are unable to record a moving cell directly,
certain components of the cell are labeled with fluorophores, which emit light at a
certain frequency. To create the left image in Figure 3.1, proteins concentrating in the
membrane (hull) of the cell have been labeled to represent the cell as a whole. Because
we are not only interested in the movement of the whole cell, but also in the dynamics
within the cell, the right image in Figure 3.1 shows the labeled mitochondria, which
are organelles inside of a cell. This is a dynamic process and we visualize the state
at only one time step. The point of interest for biologists is the correlation between

cell-movement and behavior of the organelles inside.
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Figure 3.1.: Image data from microscopy. Left: Image of the whole cell with coloured
actin filaments. Right: Coloured mitrochondia. Images are property of Raz group from
ZMBE [79].

3.1.2. Mathematical Framework

Segmentation

In the following section, we give a short definition of segmentation in image processing

and explain how an image and its segmentation correlate.

General Definition:
From a mathematical point of view a segmentation is a decomposition of an image
into different regions or categories, which correspond to different objects or parts of
objects. For a continuous image u on the domain 2 C R”, we would like to find subsets
S1,...,S, C €, such that:

Q=5U...US,

with S; N S; =0 for i # j.
The criteria used to identify a region S; are strongly algorithm-dependent. We can
formulate two general rules:

e The image varies smoothly inside the region.
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e The boundary represents a discontinuity or has at least a high intensity gradient.

For the following work, let
S=A{Riy,...,Rn}

be a segmentation of an image u in m different regions.

Representation:
In general there are two ways to represent a segmentation. The first and intuitive one

uses a region association function. For m regions Ry,..., R, C {1 we define a function
RF :Q—{1,...,m},

which holds
r € R <= RF(x) =1,

or in other words a segmentation of a discrete image u is just another matrix (same

size), which contains the region number on each grid point.

If the segmentation consists of only two regions R; and R, we can use a so-called

level-set representation. To divide the image, we use a distance function:
¢:Qx[-T,T] — R,

which moves in normal direction of the level lines with speed v. ® is obtained as the

solution of the Hamilton-Jacobi equation

% — o||VD||, D(z,t)=0forz e, (3.2)
where I' denotes the boundary between R; and R,. We would like to interpret & as
a distance function and set |V®| = 1,v = 1. In this context, I' is often mentioned as
the zero level-set. We can imagine ® as a curve I' that moves with constant speed 1 in
time. It blows up in time respectively shrinks in negative timesteps. We simply denote
for every point x € ) the time until the curve hits the point. It is clear that this is the

shortest distance to I'.
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Now we can divide the image in two regions by the following rules:

T € Ry < ®(x) >0

T € Ry <= ¥(x) <0

The great advantage of the level-set representation is a sub-pixel contour precision.
This is achieved due to the fact that in every pixel we just denote the distance to the
boundary. In that way, the boundary is defined implicitly. Thus, in contrary to a

region function, the boundary does not have to lie in the middle between two pixels.

Both representations can be converted to each other (with some loss of precision).

This is a non-trivial problem, which is discussed in Appendix A.4.

3.2. Algorithms

In this section we introduce two well-known frameworks for image segmentation. On
the one hand, the geodesic active contour model performs an image segmentation by
evolution of a parabolic PDE. On the other hand, the Chan-Vese model is a simplifi-
cation of the Mumford Shah model that can be explicitly formulated by a variational
energy. We focus at the formulation of the respective models and their numerical im-

plementation. The interested reader is refered to the original papers by Mumford and

Shah [52] resp. Chan and Vese [28].

3.2.1. Geodesic Active Contours

Edge Detection:

As mentioned before, a segmentation consists of different regions R;. Let moreover I';
denote the boundary set of R;. Active contour algorithms, often called snakes, represent
a certain class of segmentation algorithms that evolve a curve across the image domain
which stops at high intensity gradients. In this context edge detectors come into play.
We inherit the definition from [8] where

g:[0,00) = [0,00)], s+ g(s)

is a valid edge detector function if g satisfies the following properties:

e g(s) is a monotonically decreasing function for s — oo,
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e g(0) =c,ce R,
e lim, . g(s) =0.
Consequently, we expect g to be 0 at edges and ¢ in homogeneous regions, with a

continuous transition between both values. A well-known example for ¢ is given by

1

9(5) =12

Until now, the input argument for g was kept general, but there are several choices

possible. Here, as a first-order method, the magnitude of the gradient directly occurs

V| = /u2 +u2,

as a possible choice for s. To be less sensitive towards noise, a convolution with a

Gaussian kernel G, is often performed as a preprocessing step, hence

(Vaul, 1= /(s Go)2 + (ux G2,

where G, = %exp(—%).

Besides continuous functions for edge detection, there exist several methods that pro-
duce a binary feedback, where the output is true for edge and false for background.
One of these advanced and more robust first-order methods is given by the Canny de-
tector, introduced by John F. Canny in 1986 [22]. Here, also a smoothed image is used
to calculate the magnitude of the gradient in w. Additionally, several postprocessing
steps are applied to enhance |Vu|_, such as local filtering of maximum edges, thresh-
olding of noise-caused edges and removal of edges not belonging to a larger connected
component. Finally, the edge-enhanced image is binarized.

Nowadays, often replaced by the Canny detector, the Marr-Hildreth detector, intro-
duced by David Marr and Ellen Catherine Hildreth in 1980 [49], is a second order

edge-detector. The idea here is to calculate the Laplacian

0? 0?
“o oy

of a Gaussian itself. The resulting filter is used in a convolution with the image wu to
create an edge-map. Usually, the result of Marr-Hildreth is thresholded to create a
binary output, but can be used as an input for ¢ in its absolute valued version. The

main drawback towards the Canny detector are the missing postprocessing steps. An
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example can be found in Figure 3.2.

Model:
A well-known active contour model based on an edge function g is given by the geodesic
active contours, introduced by Caselles, Kimmel and Sapiro in 1997 [23]. Here, the

evolution of a level-set function @ is given by the parabolic partial differential equation

Vo
P, =[VO|V- (9@) : (3.3)

with some initial boundary condition ®(-,0) = ®j. The geometrical interpretation of

Equation (3.3) relies on the classical Eikonal equation,
¢t - |V¢| v

where the zero level-set evolves in normal direction to the level lines with speed v. In

the context of geodesic active contours the speed v is given by

Vo
“‘V'(grw)'

For g = 1 this boils down to the definition of the local curvature. Consequently, the

equation

Vo
P, =|VP| V- | = 3.4
=191V (o) (3.4)

describes an evolution of ® towards the normal direction with speed equal to the local
curvature. This is generally known as mean curvature motion. Now, adding a g to
the inner term acts as a stopping criterion, because g tends to zero near the edges and

hence the speed v becomes zero as well.

Numerical Realization:
Following the suggestion in [28], the numerical realization for Equation (3.3) can be
done in a standard explicit finite difference scheme. Let therefore DT, D~ and D¢

denote forward, backward and central difference operators. Then we obtain:

Vv or
v (g |W|)

(Dnﬂ \/ (Ded? )2 + (Dedr. )2

xT Z] Yy Zj

)
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Figure 3.2.: Overview of different edge detection algorithms under the influence of
noise. Top-left: Image from [44], Top-right: Image with noise (Gaussian with o =
0.005), Middle-left: |Vu|, Middle-right: |Vu|_ , Bottom-left: Marr-Hildreth, Bottom-
right: Canny edge detector applied to the image.
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Vvor
v <9|V<I>”|)] a

G O = Ol b /(D012 + (Dyor,)?

T 4,] Yy i,
[2¥}
with
vor _ D} on B D"
: QW =L 19 +D, |y
\/(DFem)? 4 (Dsn)? \/(Dg@")? + (Df )2

Due to the fact that our weighting function g is non-negative, the zero level-set ®~1(0)
is only able to evolve inwards. Consequently, the initial condition ®(-,0) is usually cho-
sen such that the zero level-set lies outside of the object of interest. Now, the evolution

in time will let the contour shrink and stop at edges of the object.

The convergence speed can be improved by an iterative multiscale method. Let
O<s1<...<8,=1

define scale levels and let further u* represent an in every dimension by a factor of s;
downscaled version of the underlying image u. The idea is now to run the algorithm on
the coarsest scale u®! first, and use the result as an initialization for the next finer scale.

To avoid discretization issues, the result of the ith scale is pushed slightly outwards by
®(-,0) := rescale(®'(-,c)), cecRY.

Speaking figural, we set the initial zero level-set for scale 7 4+ 1 to the isocontour level
c for a small ¢ € Rt. We recall in this context that the inner part is characterized by
{® < 0} and the outside part by {® > 0}.

We end up with the following pseudocode:
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Algorithm 1 Geodesic Active Contours

GeodesicActiveContoursg

¢ < initializeLevelset()

iteration < 0 iteration < maxlteration
divTerm < calculateDivergence(®,g)
gradTerm < calculateNormgradient(®)
b — O+ 0, - gradTerm - divTerm
iteration < iteration + 1

o

3.2.2. Chan-Vese

Model:

A well known simplified version of the Mumford-Shah functional (Equation (3.1), resp.
[52]) was given by Chan and Vese in 2001 [28]. Assuming that the observed image
consists of only two regions R; and R, each of them with a constant brightness c; resp.

r9, they split up the first data term in the Mumford-Shah functional into

/Q=Rlu32(u_f)2 - /Rl(u_cl)%“/%(“—@)?-

We mention here that R; and Ry do not necessarily consist of only one connected
component, which means that each of the regions may split up into various components.
Since the image intensity is assumed to be constant in both regions R; and Rs, we have
Vu = 0 Besides the data fidelity terms above, the Chan-Vese model consists of a penalty
term for the length of the contour I', which separates Ry and Ry, and an area term for
R;. The whole model then reads:

J(U,ChCQ) = )\1/

R1

(u—cl)2+/\2/ (=) + 1) +v R, (35)
Ry

where H(T") is the Hausdorff measure of I' (i.e. if " is smooth this is the d-dimensional
length of I'). Of course, the Chan-Vese models fits for more general images. The values
c1 and ¢y can then be seen as the mean intensity values for R; resp. Rs. The length
term H(I') acts as a regularizer to be more robust towards noise. For the area term
|R1|, in most applications v is set to zero, but it can theoretically be used to emphasize
R, representing the smaller or larger region in the image.

We underline here that the Chan-Vese model is intensity based, hence it does not rely

on a boundary detector.
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Numerical Realization:

The direct minimization of Energy J(u,c1,c2) in Equation (3.5) is challenging due to
the dependence on the geometric variable I". But since the model consists of only
two regions, it can be rewritten in equivalent form using the Heaviside function (see
Definition A.1).

Lemma 3.2.1. Equivalent Chan-Vese Energy
Using a level-set function ®, the Chan-Vese energy (Equation (3.5)) can be rewritten
as the equivalent minimization problem

(u—c1)2H(®) + Ay / (u — c3)*(1 — H(®)) + ”/Q |VH(®)| + v /Q H(®)

Q

J(<D7cla02) = /\1/

Q

Proof. 1t is directly clear that instead of integrating over R; we can equivalently inte-
grate over the whole domain 2 = R; U Ry using the characteristic function H(®) inside

the integrator. Hence we get:

/Q(u —c)2H(®) = /Rl(u —c1)?

The same argument holds for the integral over Ry and the area term |R|.
The length |I'| needs slightly more theory. We start writing down the length using the
zero level-set ®~1(0), which is the boundary 9 {® > 0}

|F|:/ ldsz/ lds:/(S(m)/ ldsdz
-1(0) 2{®>0} R o{d>a)

(3.6)
:/5(@)yvq>\d5:/|VH(q>)\d5

In the third step, the co-area formula (see Lemma 2.1.6) was used to transform the

double integral to one integral over ). Furthermore, dé denotes the Dirac measure. [

The following Euler-Lagrange system can be deduced for the equivalent Chan-Vese

energy from Lemma 3.2.1
0=\ /(u —c1)H(®), for ¢y,
Q
0= )\2/(u — 0)(1 — H(®)), for e,
Q

Vo
0 ; 56(@) (—ILLC@V : (W) + )\1(11, - 61)2 — )\Q(U — 62)2> y for (I),
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with Cp = fQ }VHe(CID)} dz and 0., H, smoothed Dirac delta respectively Heaviside
functions. We refer to [28] for details of the derivation. The equations for ¢; and ¢,

can be solved directly and we get

. Jo uH (D)
L H@)
L Jputi = (@)

 Jo(=H (@)

The minimization for @ is done using a gradient descent scheme, and we get

Vo

O, = —6.(P) (—,uC'@V : (W) + A (u—c1)?* = Mo(u — 02)2) .

We want to have a closer look at the gradient flow here, which consists basically of two
parts. First, we have the mean curvature flow V - <‘§—;>, which pushes the contour
inwards and acts as a penalizer for the length of I" (or equivalently 0 {® > 0}). Secondly,
the flow is controlled by the two data parts A\j(u — ¢;)? — Xo(u — ¢2)?, which aim to
push the contour between both regions R; and Ry and move the contour towards the
required direction.

A further point of interest lies in the factor 6.(®), which causes the problem to be
strongly dependent on the initial data, because the gradient flow only acts around the
zero level-set ®~1(0) and the energy will often get stuck in local minima. A way out
was directly proposed in the original paper [28] and consists on replacing J.(®) by |V |

to transform the gradient flow into the Eikonal-type partial differential equation

o, = — |VO| (—Moq,v - (E) + A (u—c1)? = Xo(u — 02)2> .

V|

From a segmentation point of view, the difference between both models lies in the
detection of local structures. Let us consider for now the cell example from Figure
3.1. The Dirac version is usually initialized around an object and then evolves inwards,
until the whole cell is enclosed. Unfortunately, the inner part of the cell is not assigned
to the outer region, although the intensities fit better to the background, because the
zero level-set stops at the contour and is not able to evolve inwards. On the other hand,
in the Eikonal-like model, the evolution is not restricted to the zero level-set and the
inner part is assigned correctly.

Proceeding to the discrete scheme, the constants c; and ¢y can be updated as the mean
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intensities inside both regions and we get for the (n + 1)th iteration

nt+l Zi€{¢">0} U/(/L) Cn+1 o Zie{‘l’"<0} U(Z)

o= , y = .
Zie{¢n>0} 1 Zz’e{<1>"<0} 1

The gradient flow is discretized, similar to the geodesic active contour flow, in an
explicit scheme. Let therefore again D, D™, D¢ denote forward, backward and central

difference operators. Then we have

ol — @y vor 2 2
% = 0:(®7;) | Con |V - <—\Vc1>n\) - M (Ui —c)? 4+ Xa(ui; —c2)? |
n+l n n Vor ) )
<:>(I)i’j N CI)i’j * 5t56(¢i’j) pCan |V - |V(I)n| — A (Ui,j - Cl) + /\2(Ui,j - 02) ,

1,J
with
n +PHn D+(I)n
(VO . D d s .
[Vor| v

| (DF @2 + (Dyam)? /(D522 + (D an)?

For the Eikonal-type model we simply replace 6.(®7;) with \/(DCCIW )2+ (Dedr )2,

T g Y=g
Finally, we need to calculate Cg, where the previous equivalence is used

C’q>n:/]VH€(<P”)|dx:/6€(<I>”)|V<I>”|dx.
Q Q

For the smoothed Heaviside and Dirac functions, we inherit the approximation from
[28], which reads

’

1 €

T €+ a2

H.(z) = % (1 42 arctan(f)> 6(2) = H(x) =

s €
For the sake of implementation, we have to recalculate ® in order to keep a correct dis-
tance function. For our implementation, we perform a recalculation every ten iterations.

Finally, we end up with the following algorithm:
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Figure 3.3.: Slices of spines from genetically altered mice, property of University
Hospital Miinster [71].

Algorithm 2 Chan Vese
ChanVesep, A1, Ao
¢ < initializeLevelset()

iteration < 0 iteration < maxlteration

meanl < mean(P < 0)

meanO < mean(P > 0)

divTerm <« calculateDivergence(®,g)

deltaTerm < calculateDiracDelta(®)

areaT'erm <« calculateArea(P)

O < O+ 6§, - deltaTerm(p - areaTerm - divTerm + Ay - meanl + Ag - meanO)
iteration < iteration + 1 mod(iteration,10) —— 1

® < recorrectDistanceFunction(®)

o

3.3. Application

3.3.1. Histomorphometry

Introduction:

Histomorphometry is defined as the analysis of bone material in terms of shape, form
or other parameters. In a joint project with the University Hospital Miinster (UKM)
we combined different image processing tools to create a semi-automatic framework for

histomorphometric analysis of vertebral bodies from genetically altered mice. Figure 3.3
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Figure 3.4.: Preprocessed vertebra image. Left: Whole vertebra, middle: Erased
endplates, Right: Additionally erased transverse processes. Images are property of
University Hospital Miinster [71].

gives an example of typical images to be analyzed. The central point in this framework
was an automated segmentation of the vertebral body in given images, which was done
by hand so far.

In the following section, we will coarsely describe the developed framework and will

explain how to automatically calculate a set of features from the given data.

Preprocessing:

The preprocessing is the part, which is not done automatically. First, the user has
to cut out the targeted vertebral body from the image given in Figure 3.3. Next, the
user has to specify endplates (bony structure at top and bottom of the vertebral body)
and transverse processes (arm-like outgrowth on the left and right side). In our frame-
work, this is done by simply adding two more images of the vertebral body to the
framework, one with erased endplates, u¢, and another with additionally erased trans-
verse processes, u!, compare Figure 3.4. This is the starting point for our automated

algorithm.

Segmentation:

The most important part in an automated histomorphometric analysis is an appropriate
segmentation of the complete vertebral body. Since this body is outlined by clear and
sharp edges, a Geodesic Active Contour algorithm, introduced in Section 3.2.1, is

used. The edgemap is chosen as

RET
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Figure 3.5.: Segmentation of the vertebral body using the geodesic active contour
algorithm. Left: Edgemap, middle: Segmentation of the complete vertebral body,
Right: Segmentation of the inner part. Images are property of University Hospital
Miinster [71]

To improve convergence speed, we use the multiscale version of the active contour al-
gorithm, presented in Section 3.2.1. Since we are only interested in the central object,
all disconnected components of {® < 0} are deleted as a postprocessing step. There-
fore, a list of connected components (in terms of 4-neighborhood) for the binary image
{® < 0} was created and only the largest is kept.

Figure 3.5 shows edgemap, segmentation shape and overlay segmentation for the pre-

viously introduced vertebra image.

Besides a segmentation of the whole vertebral body, also a segmentation of the inner
part is required. Here, the thick layer of bone material is useful, because it creates
fronts of high gradients at the outer and inner side. Consequently, we can use the
slightly shifted former segmentation as an initial value for this second step.

Let ®°“¢" be the level-set representation of the complete vertebral body. Then we set
(I)gnner _ q)inner('70) - q)outer('7d), d c R_, (37)

for a small value d. By this choice, the zero level-set of the outer segmentation is
shifted inwards by a distance of d and is then used as an initial value for the second

segmentation. An example for the result can be found in Figure 3.5.

Feature Extraction:

In this section we want to shortly summarize how different features can be extracted

from the images resp. segmentation.
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Figure 3.6.: Feature extraction from vertebral body. Left: Width and height, middle:
Calcified area and width, Right: Corticalis area. Images are property of University
Hospital Miinster |71].

Area:

The area can be calculated as
area = / I{p<oy d.
Q

Perimeter:
Since the perimeter is the length of the zero level-set I' = ®~1(0), we inherit the

previous results (see Equation (3.6)) and have

per = || :/ V| di(P).
Q

For the discrete setting, the Dirac delta is approximated by

1 €

xe? 4 x2’

de(z) =

where € = 3 led to good results in our experiments. Central differences were used to

approximate the gradient. This leads to the discrete formula

per = [T & 37 6:(®i)/(D5®:)2 + (D)%
(4.5)

Height and Width:
The calculation of the height of the vertebral body is complicated by the fact that the
object does not lie straight in the image, but is tilted by some degrees. Let us assume

that we approximately know the angle o € [0y, 65].
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We want to underline here that the definition of height is not directly clear from the
images. Hence, we need to construct a robust and repeatable method to calculate this
feature. For this sake, we took the center of mass of the segmentation and defined the
height as the length of the line, going through the center of mass and following the
orientation of the vertebral body.

As a start, we have to calculate the center of mass m = (my, ms) of the binary image
{® < 0}. The center of mass can be calculated in each dimension independently. For

the first dimension we have

1
1= Ty - 11<I>(:c1)<0 dz;.
area Jq

One way to calculate the objects height is to take the Radon transform (with zero

m

attenuation) of the binary image {® < 0}, restricted to the interval [0y, 6], denoted by
R({® < 0})g,,0,)- This Radon transform now consists of all line integrals (or equiva-
lently diameters) and we extract those, which go through the center of mass m and
choose the minimal value of these integrals. The result can be found in Figure 3.6.

The width of a vertebral body at top and bottom is of interest. Therefore the length
of orthogonal lines ten percent above the starting point and below the endpoint of the

height is measured.

Calcified Area:
The calcified area is characterized by the dark color (i.e. lower intensity) in the observed
image. The calcified area can then be extracted as an integral over all intensities inside

the vertebral body that are below some threshold t., hence

calci fiedArea = / Ta@)<o * L)<t dz.
Q

Cortical Area and Thickness:

The cortical area is defined as the part of the calcified area that represents the outer
hull of the vertebral body. At this point, we have to treat the endplates separately
because they are not part of the cortical area.

For the calculation, we need the outer hull first, which can be calculated as the inter-
section of the complete vertebral segmentation {®° < 0} and the outside of the inner
segmentation {<I>i > 0}. As already mentioned in the beginning, the user should make

a second image available that contains no endplates, u®. This image is used in the
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thresholding step, hence

cortical Area = / Ti(2)>0 * Loo@)<o * L11.(2)<t. d.
Q

Besides the cortical area, the average cortical thickness was a feature requested by our
collaborators from the university hospital. Here, the level-set representation of the
outer segmentation is useful again. First, we extract the zero level-set of the outer

segmentation (see Equation (3.7)), which is part of the cortical area
Loort = {x cx € ®7H0), L(z) < tc} :

On this part of the contour, we are now able to calculate the negative normal —7 (the
normal on a level-set is usually given by V®(z)). Both, point  and —7 form a linear
function, whose intersection with the Cortical Area measures the thickness at this

point. Averaging over all those lines gives the requested information.

Trabeculae:

Trabeculae are the small bone-structures inside the vertebral body. Different informa-
tion concerning them is of interest, starting with the total number of trabeculae. Since
trabeculae are structures inside, we use the inner segmentation ®° and identify the

calcified structure using the previous threshold ¢.. This yields the set
trabeculae Area = {x : di(x) <0, (7) < tc} .

This set is automatically divided into connected components ¢4, ... t,, using a 8-neighborhood
(the 8 adjacent pixels in the 3d space). For the n trabeculae, we can now calculate their
average size. Of further interest is the neighborhood of each trabecula. For a distance
d,, we calculated the average number of neighbors, which have a distance less than d,,
and are in the line sight, for each trabecula. This information gives insight into the

distribution of trabeculae within the vertebral body.

HistoGUI

The HistoGUI semi-automatic framework for Matlab® can be downloaded for free
at http://wwwmath.uni-muenster.de/u/hendrik.dirks/downloads/HistoGUI.zip. Fig-
ure 3.7 gives an insight about the general structure of the HistoGUI. The program
consists of four steps, beginning with a loading option for the image to be analyzed.

Afterwards, the user has to create segmentations of the vertebral body with and with-
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out calcified hull. For this purpose, all parameters of the algorithm can be adjusted
to fit a broad set of images. In a third step, different characteristics of the underly-
ing vertebra can be calculated. To create accurate results, all measurements can be
adjusted. To finally analyze the trabecular structure, a respective tool constitutes the
last step. The trabeculae are semi-automatically detected. Afterwards, the user can

remove and/or combine the them and calculate different characteristics.

3.3.2. Intracellular Flow

Nowadays, cell-tracking has become very popular in molecular biology and medicine.
Here, image sequences of moving cells are captured with microscopes and afterwards,
ideally automatically, analyzed. The goal is to gather information about the behavior
of cell systems or individual cells. But the focus goes already one level deeper. Using
high resolution microscopy in combination with staining techniques, we can look inside
a cell during its movement. A special type of movement is the so-called blebbing, where
intracellular pressure causes the membrane to bulge outwards [17, 29, 35]. Afterwards,
cytoplasma flows through the membrane forming the bleb. The process of blebbing
is not very well understood, especially how different cell-components interact during
the bleb. There also exists the hypothesis that certain cell-components generate pres-
sure to force the bleb. Aiming to answer these questions, biologists generate series of
high resolution images, where usually the cytoplasma and one other cell-component
are colored In the analysis of these sequences, image processing tools come into play.
We created an automatic framework for series of images, starting with preprocessing,
segmentation, motion estimation and ending with the analysis of the resulting data

(evaluation of motion field, cell-shape etc.).

Preprocessing

The recorded raw data comes as one .lsm file, which can be imported into Matlab
using an improved tiffread function (developed by Francois Nedelec, see [69]). The file
contains images, usually in two channels, recorded at timesteps ¢;...,%,. One of the
channel contains images of the colored cytoplasma, whereas the other carries informa-
tion about a certain cell-component. Due to the dynamic character of the experiments,
there is only a short illumination time for each image, which causes the recorded images
to be noisy. Consequently, the images have to be preprocessed to reduce background
noise, enhance the contours and make them suitable for segmentation and motion es-

timation. In this application, the images have been smoothed by convolution with
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Figure 3.7.: Overview of the basic HistoGUI features. Top-Left: Load images, Top-
Right: Segmentation window, Bottom-left: Feature extraction, Bottom-right: Trabec-
ulae analysis. Images are property of University Hospital Miinster [71].
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a Gaussian filter. An example for images from both channels, before and after the

preprocessing step, can be found in Figure 3.8.

Segmentation

To obtain a reliable segmentation of the cell and the cell-component inside, we combine
a set of different segmentation algorithms and postprocessing steps. To generate a
coarse segmentation, we use a thresholding algorithm on the green channel:

tr o
Cellinner — ]]_[n (af,’)<t7

with ¢ = 0.1 in our framework. The boundary set I'(celll’ ..) is then used as initial

contour for a Chan-Vese algorithm (see Section 3.2.2 for details)

cells’ = chanVese(T'(celll!

inner inner

), A = 400, A; = 200, 2 = 0.1, v = 0).

Since the Chan-Vese algorithm does not incorporate any local information, the result
might contain additional unwanted objects or regions. Moreover, the inside of the cell
is often assigned to the background region. To improve the segmentation, we apply a
size-filter that removes all inner connected components, except for the largest (which
should be the cell in our case), followed by a closing tool which removes all holes inside
the cell. Afterwards, a Gaussian filter is applied to smooth the segmentation and
achieve a nicer looking shape. Figure 3.9 shows an example of an image of each step in
the framework. Now that the complete cell (green channel) has been segmented, the
segmentation of the cell-component (red channel) is still remaining. Therefore, we use
the result of the green channel segmentation as an initialization for the red channel.
We start directly with an application of the Chan-Vese algorithm in combination with
the postprocessing steps from before. The result can be found in Figure 3.9.

For what follows, let us denote ®°“!¢" as the level-set representation of the green-channel

(I)inner

segmentation and as the level-set representation of the red-channel segmentation.

Motion Estimation

The next step in the framework, characterizing intracellular flow, is the estimation of
underlying motion. Our goal is to estimate motion of the entire cell on the one hand,
and of the intracellular component on the other hand. For both estimation processes,

we use a standard L?— L? optical flow model, which consists of minimizing the following
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Figure 3.8.: Preprocessing using a Gaussian filter. Top-Left: Green channel raw, Top-
Right: Green channel smoothed, Bottom-left: Red channel raw, Bottom-right: Red
channel smoothed. Images are property of Raz group from ZMBE [79].
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Figure 3.9.: Step-by-step segmentation. Top-Left: After thresholding, Top-Right:
After Chan-Vese, Middle-left: Holes closed, Middle-right: Smoothed contour, Bottom-
left: Red channel after Chan-Vese, Bottom-right: Red channel after smoothing. Images
are property of Raz group from ZMBE [79].
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Figure 3.10.: Consecutive images and estimated motion between them. Top-Left:
Green channel in image 1, Top-Middle: Green channel in image 2, Top-Right: Es-
timated motion field, Bottom-Left: Red channel in image 1, Bottom-Middle: Red
channel in image 2, Bottom-Right: Estimated motion field. Images are property of
Raz group from ZMBE [79].

variational model
1 « d
. 2 2
arg min o |lue + Vu - vl + 5 ;1 Vi3,

where u represents the underlying image sequence and v the, yet unknown, velocity
field. We refer to Section 4.5.2 for a detailed explanation of the model, data term and
regularizer. Since noise strongly influences motion estimation, the smoothed images
(of both channels) from before are used. The result can be found in Figure 3.10. Un-
fortunately, the algorithm still detects motion in the background and, moreover, it is
unclear whether the preprocessing step destroys useful motion information. This is why
we propose a joint model for motion estimation and image reconstruction in Chapter

D.
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Bleb Detection

Having calculated reliable segmentations and motion fields, we are able to extract at
which timesteps blebs occur and of which size they are. We begin with an algorithm
for automated bleb detection. A bleb can coarsely be characterized by two phases.
Blebbing begins when the membrane bulges outwards, which creates a gap between
membrane and the inside of the cell. A fully formed bleb is then characterized by a
hump on the, usually roundish, cell shape. These criteria can be used to automatically
detect blebs.

Phase 1:

To detect the gap between membrane and inner part, we can use the segmentation of

cell and inner component. The region between both segmentations can be specified as:
anp = {ZL’ . q)outer($) < 0’ q)inner($) > O}

We can measure the distance by solving the Eikonal equation (speed 1) with initial

value equal to the zero level-set of both segmentations
d, = ||VP||, ®(x,t)=0forz el UL,

where I' and I'° represent the zero level-set of the segmentation of the green resp. the
red channel. The solution ®9? measures the distance between the membrane and the
inner part of the cell. To detect a bleb, we have to specify a critical threshold value
d?'? and define the set of possible blebs as

Qprepr == {x Cx € anm quap(x) > dgap} .

By this choice, we will detect each point which has a distance above the critical dis-
tance d%?. Let us now divide pep1 into connected components (4-neighborhood)
Qlepts -+ Q1. Due to errors in the segmentation and discontinuities in the distribu-
tion of the colored medium, we can justify the deletion of components below a certain
size and end up with the set of blebs. The result can be found in Figure 3.11.

Phase 2:

Due to the fact that the evolution of blebs happens in a very short timescale, the mi-
croscope sometimes records an image when the bleb has fully formed. To detect these
blebs of a more evolved state, we can use the roundness of the cell which is violated due
to the hump on the surface of the cell. To detect those humps, we start with the binary

segmentation of the green channel {CID"“te’" < O} and calculate the maximum inscribed
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Figure 3.11.: Detected bleb in phase 1, overlay of the zero level set of the complete
cell (green), the inner part (red) and the bleb (cyan). Left: Green channel, Right: Red
channel. Tmages are property of Raz group from ZMBE [79].

circle. This is the circle with the maximal diameter inside an object, characterized by
position (¢, ¢,) and diameter 7. An efficient nlog(n) algorithm can be found in [5].
We found that extending the diameter r by a factor of 1.2 (r* := r - 1.2) usually covers
the whole cell. Hence, detecting a larger part of the cell outside the circle, we might

have found a further formed bleb and define:

Oy = {:1: = (21, x9) : \/(rl — )%+ (22 — )% > T*} .

In some cases, the cell is not perfectly round or the segmentation is not perfectly aligned
with the cells outer hull. For these cases, even the extended maximum inscribed circle
might not cover a normal cell and QF_,, contains a thin slice of the outer hull. To
overcome this problem we start shrinking leebQ by a diameter dg,, i € RT, which

removes everything with a diameter below dgp,.ink. We start by first solving
O, = ||[VO||, ®(x,t) =0 for x € T(Q),

and then extracting from the solution o
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Figure 3.12.: Detected bleb in phase 2, overlay of the complete cell (green), the inner
part (red) and the bleb (cyan). Top-Left: Blebbs found with maximum inscribed circle
criterion, Top-Right: Blebbs after shrinking by diameter dgp.ine = 5, Bottom-Left:
Result with green channel in background, Bottom-Right: Result with red channel in
background. Images are property of Raz group from ZMBE [79].
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This region is afterwards blown up by first solving
= VO], (t) =0 for € D( %),
and then extracting from the solution ®
Qepr = {95 1 P(x) < dshrink:} :

Similar to phase one we now remove all components below a certain size and end up
with the set of blebs. A step-by-step application of the phase 2 detection can be found
in Figure 3.12.

Conclusion

Together with the automatically detected blebs, the calculated data, consisting of cell-
segmentation (which can be used for tracking), and local motion information of both
channels can now be analyzed by biologists to better understand the process of blebbing.
Again, we want to point the readers attention towards an alternative approach for
joint image denoising and motion estimation introduced in Chapter 5 and applied to a

concrete dataset in Chapter 6.
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MOTION ESTIMATION

In this chapter we will introduce different models for motion estimation in image pro-
cessing. Having in mind image sequences in general and biological data recorded by a
microscope in particular, we will discuss drawbacks and advantages of different varia-
tional models.

In the beginning of this chapter we give a short introduction to the topic of motion es-
timation from image data. From different assumptions for the underlying flow field we
derive the optical flow constraint and the mass preservation constraint which are then
used to define variational motion estimation models. Different a-priori information is
integrated in the model via a weighted regularization term. We present efficient strate-
gies for the minimization of the underlying energy, based on the popular primal-dual
framework of Chambolle and Pock (see Section 2.3.1 resp. [26]).

The proposed models are evaluated in terms of flow-adapted error measures, runtime
and number of iterations. The spectrum of observed datasets contains basic flow types,

influence of noise and scenes from the IPOL optical flow database [44].

4.1. Introduction

Motion estimation generally arises in the context of image sequences u(z,t), depending
on a spatial position € R? and a time t € [0,T]. For real applications there exists
only the discrete counterpart of w, which is a set of images recorded at time steps
to, to + ¢, to + 20y, . .. (see Figure 4.1). There also exist a variety of characteristics we

have to consider when estimating motion:

e A digital image can suffer from low resolution, low contrast, different gray levels
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and noise.

e The temporal resolution d; is strongly connected to the underlying motion. For
too large time steps we might loose correspondence between consecutive images

(e.g. a very fast car might only be visible in one image).

e A natural image often contains a set of moving objects with different speeds. A
sufficient model should simultaneously be able to detect small and large move-
ments in the same sequence. On the other hand, for the static background no

motion should be detected.

e For many biological applications, we have to consider the fact that the illumina-
tion is constant, but fluorescence of the observed object can be inhomogeneous

in space, or might even underlie changes over time.

e Finally, we have to consider that a camera only detects 2-dimensional images of a
3-dimensional world. Reconstructing the missing depth information from images

is also a current task in image processing [64].

4.1.1. Optical Flow and Real Motion

When looking at image sequences and moving objects we directly speak of motion. This
is a false implication since only projections of the real 3-dimensional motion fields are
recorded by an image recording device (and in particular the human eye).

To emphasize this fact, we have a closer look at Figure 4.2. From the optical center O
we are only able to follow a 2-dimensional path v, = (v',v?) on the image domain 2,
which is the projection of the real 3-dimensional path v, = (v!,v? v3). Thus, already
one degree of information gets lost here. This problem is even worse since we are not
able to measure the 2-dimensional motion field directly. On images only the apparent
motion (or optical flow) is visible, that is displacements of intensities. Unfortunately
the apparent motion and the 2-dimensional motion field are two fundamentally differ-
ent properties (a detailed discussion of this problem can be found in [72]). Barberts
pole example (Figure 4.3) is often used to underline this difference. The pole simply
rotates counterclockwise and the real motion field basically points to the right side (a).
Unfortunately optical devices (e.g. camera, eye) can only detect gray values tending

upwards and consequently the optical flow points upwards (b).
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(C) to + 2525 (d) to + 35t

Figure 4.1.: The image sequence "Mini Cooper" from the Middlebury optical flow
database [10] shows a sequence of digital images. The main characteristics are different
ranges of motion, noise and a static background.

3-D motion field

2-D motion field § ..~ ',

u(t:x) = image brightness

0

optical center Xy

image domain

Figure 4.2.: A simplified illustration of a 2D and 3D motion field to emphasize the
difference between real motion and recorded motion by a camera (from [8]).
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Figure 4.3.: Barberts pole example to underline the difference between apparent mo-
tion and real motion (from [8]).

4.1.2. Mathematical Context

In this Section let Q bet the image domain and [0, 7] the observed time interval. Let
furthermore u(z,t) : Q x [0,7] — [0, 1] be a measurable image function depending on
spatial position and time. For most applications we have 2 C R?. Then the resulting
velocity field is v = (v!,v?) : R? — R?. The velocity field v has two components and
therefore assigns a vector to every point (x,t) in the space/time domain.

The minimization process of the models introduced in the following is always performed
in the finite dimensional setting. This is a natural assumption because our goal is to
extract motion from image sequences which are defined on regular Cartesian grids.
We furthermore introduce three basic types of motion — translation, rotation and
scaling (see Figure 4.4). Most of the resulting velocity fields are combinations of these

three basic types.

4.2. Optical Flow Constraint

One of the most common techniques to formally link intensity variations and motion
is the optical flow constraint. We consider images at time steps ¢ and ¢ + d; (J; small)
and follow the common assumption that constant intensities follow a displacement field

v(x,t) (brightness constancy assumption) from the first image to the second. This can
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Figure 4.4.: The three basic types of motion.

be formalized as

w(z,t) = u(z + dv(x,t), t + &)
= u(z,t) + v (w,t) - Vu(z, t) + Saug(x, t) + O(67).

Taylor

Now subtracting u(z,t) on both sides and dividing by §; we get
0=wv(z,t) - Vu(z,t) + w(z,t) + O(5).

For small time steps d; we can ignore the remainder and conclude with the so-called
optical flow constraint

v-Vu+u =0. (4.1)

Unfortunately this scalar equation is insufficient to find both unknown components
vt, v? of the velocity field. Hence, an infinite number of solutions exist and the problem
is ill-posed [36]. This problem is called the aperture problem.

However, there is still some information hidden in (4.1). All possible solutions are
components of the direction of Vu (see Figure 4.5) and are normal to the isophotes
(levels of constant brightness) of the image. Calculating the absolute value of the
normal velocity |lv|, is well defined for ||Vu|| # 0 and we get

e |
vl = . 4.2
v, [ Vul] (4.2)

Concluding this Section we want to mention that the aperture problem mainly arises
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'/\\
u,
Uy

-

Figure 4.5.: When looking at a crate through a circular aperture, all velocities along
a line in the velocity space are consistent with the optical flow (from [4]).

due to the locality of the optical flow equation. In the variational motion estimation in
Section 4.5 we aim to solve the underdetermined system by adding additional a-priori

information.

4.3. Mass Preservation Constraint

Our aim in this part is to link the physical idea of a preserving quantity to images
and underlying motion. The resulting continuity equation represents, in contrast to
the optical flow equation, an alternative approach to derive flow information from local
intensity variations.

We start with the observation that mass, energy and momentum are preserved physical
quantities. Carried to the field of image processing we assume that total brightness in

the image is constant for every time step, thus
/u(m,t)da: =C VYtel0,T].
Q

For real applications this assumption makes absolutely sense. For example in photon
emission tomography, a certain amount of tracer liquid is injected into the patient at
time to = 0. This tracer distributes through the body in time, but the total amount is
constant in each time step.

Besides this global conservation law, we furthermore enforce a local form of conservation.
Mass cannot be created, destroyed or teleported from one place to another. Mass can

only be moved by a continuous flow v. Transfered to formula, consider a subset S C €.
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The variation of mass is given by the integral of the time derivative and we have

—/ xtdx—/—uxt (4.3)

Going back to transport by a continuous flow v we already know that for every x € ()
the total flow in this point is given by wwv. It follows that the flow of mass towards the
boundary 0§ is given by wv - n (with normal vector n to dS). Hence integrating over

0S8 yields the total mass flow towards the boundary:

/ uv - ndS. (4.4)
as

Since we already argued that mass can only be moved by a continuous flow and the

time-variation of mass in S (4.3) must equal the total mass flow 0S (4.4), we get

/—udx——/ uv‘ndSGcgss—/'vVu—/uV~vdx:—/V-(uv)dx. (4.5)
o8 S S S

Now combining both sides yields

0
va (wv) dz = 0. (4.6)

Since (4.6) holds for arbitrary S € €2 we obtain the mass preservation constraint

9,
au%—v (uv) = 0. (4.7)

This equation is generally known as continuity equation in the literature.

4.4. Comparison Between Optical Flow and Mass
Preservation
We would like to emphasize the difference between the optical flow constraint O,u +

Vu-v =0 and the mass preservation constraint d,u + V - (uv) = 0. Writing out

the latter one

0=0u+ V- (uww) =0+ Vu-v+uV - v,
—_——

Optical Flow
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we see that the mass preservation equation is basically an extension of the optical flow

equation. We no longer claim
ou+ Vu-v =0,
but now allow
ou+Vu-v=-uV-v.

We are furthermore able to directly see that divergence-free flow fields (i.e. V -v = 0)
that fulfill the mass preservation constraint also fulfill the optical flow constraint and

vice versa. This means that the divergence-free mass preservation set
Syp={(wv): Qu+V-(uw)=0,V-v=0}.
is included in the set fulfilling the optical flow constraint
Sor = {(u,v) : du+ Vu-v =0}

It follows that, in terms of extracting apparent motion from image sequences, the
mass preservation constraint fits to a set of data situations with intersections to the
set of optical flow datasets. Especially for situations where the brightness constancy
assumption is violated, the mass preservation constraint offers a new way to estimate
the underlying motion field.

Figure (4.6) shows examples of an image sequence fulfilling both equations, namely
optical flow (Section 4.2) and mass preservation (Section 4.3), and an image sequence
fulfilling only the later one. The result Section (4.6) compares both constraints applied
to a translation example, which coincides with the first sequence. Moreover, an example

for scaling is evaluated, which coincides with the melting block.

4.5. Variational Motion Estimation

4.5.1. Mathematical Context

In the previous Section we deduced the optical flow constraint assuming a constancy

of brightness

ou+Vu-v=0
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(a) to (b) t1
(d) to

Figure 4.6.: Images (a) - (c) show a block of constant brightness moving from left to
right. This image sequence fulfills the optical flow- and mass preservation constraint.
Images (d) - (f) show a melting block. The sum of brightness is the same in all images,
but spreads over a larger area. The optical flow constraint is no longer fulfilled.
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and assuming a constant mass, which is being transported by a continuous flow, the

mass preservation constraint
Ou+ V- (uv) = 0.

One or the other has to be satisfied by the unknown velocity field v for the underlying
image data u. As a matter of fact there is only one equation for two unknowns (or three
in case of 3-dimensional images), and we have an underdetermined equation in every

point x € ). A possible way out is to consider a variational problem of the following

type

arg min = C'(u,v) + aR(v),

v

where C'(u,v) is a placeholder for the underlying flow equation mentioned above. With
the second term R(v) we are able to model additional a-priori information about the

solution v that renders the problem well-posed. We usually set
C(u,v) = ||Ou+ Vu-v|},, rs>1

for the optical flow constraint or

S
Lr

C(u,v) = [|Ou+ V - (uwv)|

r,s > 1

for the mass preservation constraint. We want to emphasize that v is the objective
variable and u, u; and Vu are given. The choice of the norm and the exponent of C(u, v)
are dependent on the problem at hand. The quadratic L?*-norm minimizes deviations
from the constraint in a least squares sense. The L' norm matches the constraint in a
linear way. In Section 4.5.6 a more detailed motivation for the L' norm is deduced.

Besides the data term C(u,wv) we can incorporate additional a-priori information in
form of a regularization term R(v). In many situations a reasonable assumption is
that the velocity field is smooth. From a mathematical point of view we want to

penalize high gradients and therefore choose

d
R(v) =) |Vuils.
i=1
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with spatial dimension d. Another possible regularizer that aims for regions of constant

movement split by jumps is the total variation (see Section 2.1.3 for details) and we set

d
R(v) = |vilpy
i=1

We want to mention here that for the minimization part always discrete images u and

velocity fields v are assumed.

4.5.2. 1> — L? Optical Flow Model

Model

Assuming that the underlying image data satisfies the assumptions discussed in Section
4.2 we use the quadratic L? optical flow constraint as data fidelity and also the quadratic

L? norm of the gradient as a regularization. This leads to the following model:

Model 4.5.1. L? — L? Optical Flow Model
1 a &
. 2 2
arg min 5 |lue + Vu - vl + 5 ,El Vi3,

which is the optical flow model by Horn and Schunck [43]. Tt has been published
in 1981 and can be seen as the grandfather of variational motion estimation. We
expect from a minimizer to fulfill the optical flow constraint in a least squares sense,
which is reasonable because this counteracts against the influence of noise. Due to the
quadratic L? regularization of the gradient possible discontinuities of the flow field are

not preserved and we expect a smooth flow field.

Computational Minimization

We consider the finite dimensional setting for the minimization process . The mini-
mization of this model could be done in a straight forward way because we have a
simple linear L? problem and are able to apply Lemma 2.2.27 (solving L? optimization
problems using a system of linear equations). Here we want to go a different way and
use the well known primal-dual Chambolle-Pock algorithm [26]. This is due to the

fact that we will consider more difficult problems later on and want to use a consistent
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framework and notation for all our models. In Section 2.3.1 we gave a brief introduc-
tion to the primal-dual minimization theory.
For transferring our model to the notation of [26] we decouple the regularization term

in terms of the dual functional and define

2

«
F(v) =3 S |Vl

i=1

. (Z g) () K*y=—<vo' v0> (3)

where y = (y1,y2)" represents the newly introduced dual variables. Due to the fact

with

that we are in a finite dimensional setting, K is a bounded linear operator. According

to Example 2.2.23, we have for the squared L? norm
21
F* = — i 2 .
W)= 3 5, il
The optical flow part is linear in v and is incorporated in the primal functional as
follows:

1
G(v) == 3 [y + V- vlf3.

Consequently, the corresponding primal-dual problem to Model 4.5.1 reads
v y

2
1 1
arg min arg max 5 e + Vu - vl + (v, K*y) — o 221 il -

Now, using the Chambolle-Pock algorithm (Section 2.3.1) we end up with the following

iterative scheme:

Y1 = Yy + 0Ky (4.8)
1 . 9 O

Ypi1 Zargyrmn{§ 1y = Gl + 5 ||y||§} (4.9)

’l~)k+1 = vk+TK*yk+1 (410)

1 ~ T
Vg4l = argmin {5 v — Dpsa|ls + 3 |lue + Vu - ng} (4.11)
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'Ek—i-l = Vg1 + 9(vk+1 — ’Uk). (412)

The subproblem in y (in Equation (4.9)) is a linear L? problem. Exemplarily for this
section we will derive optimality conditions. We start with the written-out energy for
A= 2
1 ~ 12 )\ 2
Jy) = Iy we) = 5 lly =9l + 5yl
1 . . A
= —/(zn —y1)2+(yz—y2)2dy+—/yf+y§dy
2 Ja 2 Jo

Let us now calculate the Gateaux-derivative for y; (see Definition 2.2.4 for details). Let

therefore i) be an arbitrary direction

e Sy T ) = Iy ye) - d
dyJ (Y1, Y2) —llg(l) — = EJ(?A + T, ya) .
_dl 02 (s — o)+ 2 2 1 y2)d
= (1 +7¢0 = 51)° + (g2 — 92)° + 5 (11 +7¢)° +3) dy
1 D i
—5 [ 2o -+ 52ty = [ o)+ Mo dy
7=0

z/Qw((yl—ﬂl)JrAyl) dy

Due to the fact that for an optimal solution all derivatives should be zero we end up

with the optimality condition
~ !
Y1 — g1+ Ay = 0.
This can be done in an analogue way for y, and we obtain the optimality system

. !
yi1 — 91 +Ay1 =0,

. !
Yo — Yo + Ay = 0,

or alternatively in a shorter vectorial notation (with 2 := X)

- o !
y_yk+1+ay20~



94 4 Motion Estimation

Because there is no operator involved we can simply solve the equation for y and see

that the solution is given by

a
Y1 = a—ﬂyk“’
vl
The problem for the primal variables v = ) is a quadratic optimization problem
v

and we can directly calculate the optimality conditions as

0= (v' = Bppy) + Tug(ug + v'u, + vuy)

0= (vh = Bpy) + Tuy (ug + v'u, +0%uy).
A few simple calculations yield the rearrangement

(1 4 Tuguy vt + Tuxuyv2 = @,ﬁH — TULUy
(4.13)
1 2 _ 2
TU Uy U + (1 + Tuyuy )v* = 0, — Tuyu,.

It is easy to see that we have a system of two equations with two unknowns. This can

be solved directly. For this sake we define

cr =14+ Tuzu,, o= Tuzuy, c3:=1+ Tuyu,

b, = ﬁ,iﬂ — TUyUs by = 17,%“ — TUyUs.
We see that system (4.13) simplifies to

011]1 + CQU2 = b1

vt + c30% = by,

and we can directly calculate the solution as

1 b103 — C2b2 2 bQCl — Cgbl

Vg1 = y o Uy =

cie3 — 3 cie3 — ¢35

We end this Section with the final iteration scheme for L? — L? optical flow estimation:

(0
- — 7 4.15
Yi11 o gyk:-i-l ( )

'INJk_H = VU — TK*yk—i—l (416)
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bics — Coby bacy — caby \©
vk+1:(103 C202 02C1 — C2 1) (4‘17)

cie3— 3 ciez3 — 3

Vir1l = Vgg1 + Q(Uk_H - vk) (4.18)

Discretization and Algorithm

Operator Discretization:
To finally implement the given iterative scheme we have to specify the discretization

for the involved operators. We recall the given data term:
u; + Vu - v.

From the viewpoint of u this is a transport equation. Since we are only minimizing
with respect to v and the partial derivatives of u not necessarily need to be a stable
scheme for the transport equation.

Nevertheless we will introduce a scheme that is stable in terms of transport because in
the subsequent Chapter 5, joint models for motion estimation and image reconstruction
are derived. Here the minimization is done with respect to u as well, which requires
the scheme to be stable.

We already mentioned that
u+Vyu-v=0

has the form of a transport equation. Discretizing the derivatives with forward dif-
ferences is impractical, because this requires a very small timestep d;. For most ap-
plications the underlying timestep between recorded images is far beyond the allowed
value. For transport equations, we usually use an upwind scheme (see for example [41]
Chapter XVIII) where depending on the sign of v a forward or backward difference
approximation is used. It can be shown that this yields a stable discretization.

Taking now the perspective of v we are solving the optical flow equation. Unfortunately
we observed that an upwind scheme for u generates artifacts in the resulting velocity
field and therefore should not be used for motion estimation. A way out is given by a
mix of forward and central differences. Using forward differences for the time derivative
u; and central differences for the spatial derivatives V,u yields a stable discretization,
if implicitly solved, of the transport equation and produces reasonable velocity fields.
The adjoint operator then consists of a backward difference for the time derivative and
a central difference for the spatial part. We mention here that the central difference is

self-adjoint.
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We denote the discrete version of u with U which is given at
{(i,7,t):i=0,...,n,,j=0,...,n,,t=0,1}

For the flow estimation the image derivatives have to be evaluated in every pixel at one

timestep (which is omitted in the notation)

Ut<l7j) - 5
t
o UL UELED i § > 0 and i < n,
CU(Zv.]) - . )
0 ifi=0ori=n,
UG j+1,)—U(ij—114) g - .
if7>0and j<n
Uy(i,5) = ’ S

0 ifj=0o0rj=nmn,
In terms of the velocity field v, we consider the discrete version V on
{(G,7):1=0,...,n5,7=0,...,ny}.

A gradient operator is involved in the regularization part, hence partial derivatives
Oy, 0, are needed. Here we use forward differences for the forward operator applied
to v and backward differences for the adjoint operator applied to the dual variables y

with Neumann boundary conditions. The resulting scheme reads

v(ii+1,5) —v(i,j) ifi<n,

vz(1,7) =
0 if i = n,
- v(i,j+1) —w(i,j) ifj<n,
vy(1,7) =
0 if j =n,
.
y1(i,7) —p(t—1,7) ifi>0
Vey(i,j) = Qi j) if i =0

.

+ 9 v2(4, 7) ifj=0
\—yg(i,j - 1) if j =n,.
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In appendix A.2 an alternative image discretization is explained. The original paper of
Horn and Schunck contains so-called cell-centered differences to discretize the gradient
operator. They form consistent derivatives for u (proof can be found in Appendix A.2,
Lemma A.2.1), but are not a stable scheme for the transport equation (proof can be
found in Appendix A.2, Lemma A.2.2).

Stopping criterion:

Besides the operator discretization a stopping criterion is needed for the iterative
scheme. For our algorithms a combination of the so-called primal and dual residual is
used. This criterion has been introduced by Goldstein, Esser and Baraniuk [39] and

offers an easy to adapt and numerically cheap convergence criterion.

Definition 4.5.2. Primal and dual residual
Let 2%, 281 % 4**1 be subsequent primal resp. dual iterations and K :  — R? the

forward operator from the primal-dual algorithm (see Section 2.3.1). Then we define

k_ okt
i ¥ —

Poi= | — KTy =)

ko ok+l
k. |Y Y k k+1
d” = s — K(a" — 2"

)

with |-| being the sum of absolute values. We call p* the primal residual and d* the

dual residual.

It has been shown in [39] that, as the algorithm converges to a minimizer, we have
p¥ — 0 and d¥ — 0. Consequently we can use the residuals as a stopping criterion and

define an error

b ¥+ dr
12

The error is normalized through division by |€2[, to be invariant of the underlying prob-

lem size. The algorithm is terminated once €* is below some error threshold 7.

Initial values and parameters:
We initialize the variables (v,?,y) with zero. It has been proven in [26] that conver-
gence of the algorithm is guaranteed for 7o |K|* < 1 (and # = 1). For the chosen

forward discretization of the gradient it has been shown in [25] that 0 =7 = \/Lg satis-
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fies the required bound. As stopping criterion for the algorithm we set 1 to 1.07%.

Algorithm:

From a computational point of view the algorithm requires very few basic operations
per iteration. Application of K and K* requires the relatively highest effort as we
have to evaluate forward and backward differences. Furthermore the algorithm can be

directly parallelized where both lines 7-9 and lines 10-12 form independent blocks.

Algorithm 3 L? — L? Optical Flow

L21.20pticalFlowUy, Uy, o, m
U, Uy, U, < calculatelmageDerivatives(U;,Us)
K < buildOperator()

o, T %g

v,0,y < 0e<n

vOld <+ v

Y+ y+oKv

Y < 55V

v v—oK*y

+ solveMatriz (v, Uy, Uy, Uy,)
+— 2-v—v0ld

4

—_
e
(SRS { I

4.5.3. L> — L?> Mass Preservation Model

Model

In contrast to an optical flow model we assume a mass preservation in time and addi-
tionally the local continuity, which means that mass can only be moved by a continuous
flow (see (4.3) for details). The resulting mass preservation constraint is used as data
fidelity besides a quadratic L? norm of the gradient as regularization for the velocity

field. Then we have the following model:

Model 4.5.3. L? — [? Mass Preservation Model

1 o
arggmn§ Hut—i—V(uv)”;qLE;HVUZHg (4.19)
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Choosing this model for motion estimation assumes the underlying flow field to fulfill
the continuity equation in a least squares sense. Moreover smooth components v; are

supposed and consequently a L? regularization of the gradient is used.

Computational Minimization
For the sake of minimization the primal-dual algorithm from Section 2.3.1 is used again.
Due to the fact that the target variable v now occurs in combination with an operator

in the data term and the regularization term we represent the whole functional in terms

of the dual F'. Consequently we have
d
F(Kv) = = Hut +V - () s+ Z | Vuill2,
i=1

with the linear operator K given by

v 0 L
v
Kv=| 0 V < ) .
02
Ou Oyu
For the sake of clarity we want to emphasize here that d,u-v' := 9,(u-v'). The adjoint
operator for the dual y = (y1,92,93)" is given by

P AT AN b
v= 0 V- ud, v
Y3

The corresponding dual functional F*(y) to F' can be calculated using Examples 2.2.23
and 2.2.25 as:

. 1
F*(y) = 5 llyalls — (ur,y )+, Hyz||2
2

Consequently, the corresponding primal-dual problem to Model 4.5.3 reads

) . 1 1
arg min arg ma (v, 1°y) — 5= > il = 5 lsll3 + Gu i)
v v T
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Incorporating this into our algorithm, we have the iterative scheme

P =y +0Kv (4.20)
g

oty = angmin {3 o = 2+ 2 i) (@21

yst = arg mm{ ~’““H +5 ||y||2 i <ut,y>} (4.22)
2

vt = arg min 'v — (v* — TK*y) (4.23)
2

oF Tt = Pt +0(’uk+1 (4.24)

The update step given in Equation (4.21) does not differ from the optical flow case.
The solution can be found in Section 4.5.2 and is given by
k+1 O k1

Y12 _a+ay12 .

For the subproblem in Equation (4.22) we calculate the optimality condition as

~k+1

O—y Ys ' oy — ouy.

Now, we solve the equation for y and get the update formula

1
K+l _ Skl
+ +

u
Ys o+ 1y3 t)

o
o+1
where the latter part is just a constant. The solution for the primal update can be

derived directly as
vt = oF — T Ky

Hence we get the following iterative scheme for L? — L? mass preservation:

,ykJrl — ,yk + O'K’l_)k
1 Y g
Y12 ato T 0y1,2
1 o
k+1 _ ~k+1
s 0+1y3 +0+1ut
P = of — T Ky

f)k+1 _ ,vk—H + Q(vk—l-l o ’Uk)
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Discretization and Algorithm

The discretization can be done similar to the L? — L? optical flow model (see Section
4.5.2) with minor changes for the transport part u; + V, - (uv). We still use forward
differences for the discrete time-derivative u; and central differences for the spatial part
V.. But in contrary to the optical flow discretization we can no longer precalculate the
spatial part because this operator is now applied to the objective variable v. Moreover,
the gradient has to be applied to a product of v and v. The adjusted discretization

scheme reads

L (' u)(i+1,5) — (' -u)(i—1,5)) ifi>0andi<n,

0 ife=0o0re=n,

s (V- u)(i,j+1) — (v?-u)(i,j— 1)) ifj>0andj<n,
0 ifj=0orj=mn,

No changes are needed in the discretization of the regularization operator.

Stopping criterion, initial values and parameters:

As a stopping criterion we inherit the sum of the primal and dual residual €* (see
Definition 4.5.2) and initialize the variables (v, ®,vy) with zero. For the choice of 7
and o we have to be careful because the operator K cannot be estimated directly. We
now have image information involved within K. The numerical realization shows that

T=0= ‘ yields a stable scheme.

1
VB max]u
Algorithm:

We denote the following pseudocode for the L? — L? mass preservation model. Similar
to the previous L? — L? optical flow section the algorithm can be evaluated easily from a
numerical point of view. We have to apply a forward- resp. backward difference in line

8. resp. line 11. The remaining operations only consist of addition and multiplication.

4.5.4. L? — TV Optical Flow Model

Model

The common characteristic of the the previous models was the regularization term. Pe-
nalizing the squared gradients of the v;’s results in a smooth velocity field. However,

in many applications this is not what we expect to see. In certain applications we
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Algorithm 4 L? — L? Mass Preservation

L2L2MassPreservationUy, Uy, i, m
U; < calculatelmageDerivatives(Uy,Us)
K < buildOperator(Uy, Us)

o, T /8 max|ul
v,0,y < 0e<n
vOld < v
y+—y+oKv

«

Y2 <= 55U,

ys i + 227Uk
v v—oK"y

v+ 2-v—00ld

)

—
— O

are interested in recovering the movement of objects (e.g. cells, cars, people), which
are separated from the background by sharp edges. In these cases we also expect the
velocity field to have sharp edges against the background. Furthermore we expect a
constant magnitude inside the subdomain that represents the object.

One possible solution to tackle these properties is the use of the total variation of v;
instead of the squared L?-norm of the gradient. The total variation allows discontinu-
ities and tends to recover cartoon-like motion components. The resulting model then

reads

Model 4.5.4. L? — TV Optical Flow Model

d
1 2
arggnméHut—i—Vu-vHQ—i—azmle. (4.25)

i=1

Computational Minimization

We proceed here in the finite dimensional setting where Model 4.5.4 simplifies to

d
1
arg;nin§ g + Vu - vlf5 + Ozizl [ Vvil]; -

Similar to the L? — L? optical flow model we use the primal-dual algorithm proposed by

Chambolle and Pock. We write the regularization terms in form of the dual functional
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and define therefore

d
F(Kv):=a)_ ||Vul,,
i=1

o (T 0)(1),

for the forward operator. By introducing dual variables y = (y1, y2)" we get the adjoint

(T (1)

According to Example 2.2.25, we have for the L! norm

with

operator

2
F*(y) =« Z dp Loy (yi/ ).
i=1
The optical flow part is again inserted in the primal functional as follows
1 2
G(v) == 5 |lue + Vu - vl[5.

The primal-dual formulation of the L? — TV optical flow model reads:

2
. 1 .
Arg min arg max o g + Vu -5 + (v, K*y) — aZ(SB(Loo)(yi/a).
v ¥ i=1
For the total variation regularization, only the underlying norm in the dual part has
changed and we are able to use results from the L?— L? optical flow Section 4.5.2. This

leads to the iterative scheme

,gk‘-‘rl — yk + O'K’l_)k

1
y**1 = arg min {_ Hy _ gt
=" w?) 2

2
, T ao0sw=)(y/ a)}

’Z)k+1 — ’Uk + TK*yk—H

.1 N
v = arg min {5 Hv S TR

v

2 T 9
T YV -
2—|— i |ur + Vu vHZ}
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,l—)k-i-l _ ,Uk+1 + Q(Uk—i—l . ’Uk).

k+1

Except for the dual subproblem in y**! this scheme coincides with the L? — L? optical

flow scheme (see Section 4.5.2).

Let us begin by writing down the convex set corresponding to (SB(Loo)(yl/oz):

{0y /el <1} e {v': o' <}

Here, ||y HOO denotes the discrete maximum over all elements (i, 7) in the image domain:

1|| _ 1
9]« = max |y,

(4,5)

We only consider the anisotropic total variation which corresponds to the vectorial L*

norm for each element (i, j)

1 1
020 5| + 19yv; 5| -

’Vvil’ j

Since the convex conjugate corresponds to a projection into the unit ball of the associ-

ated dual norm, we obtain the maximum norm for the dual variable:

o { b

Now, the solution to the minimization problem is directly given as the point-wise

projection of §** onto [—a, a]:

1 1,1 1,2
Yij Yij i

)

yk+1 = min(a, max(—a, ’ngrl)) = Wa(ngrl)

Together with the preliminary results from the L? — L? optical flow part this leads to

the following scheme:

Ypo1 = Yy + 0Ky
Y1 = Wa(gk-&-l)

~ *
Vpp1 = v — TK Y,

(b103 — Cgbg b201 — Cgbl>T
Vi1 =

C1C3 — C% ’ C1C3 — C%

Vjr1 = Upp1 + 0(Vp1 — V).



4.5 Variational Motion Estimation 105

Discretization and Algorithm

The discretization does not differ from the L? — L? optical flow model because the
only difference of the two models lies in the norm of the regularization term. The
discretization of the involved operators can be found in Section 4.5.2. Moreover, we
are able to use a similar stopping criteria and variable initializations as in Section 4.5.2.

This leads to the following algorithm. From the numerical point of view lines 8 and 10

Algorithm 5 L? — TV Optical Flow

L2TVOpticalFlowU;, Us, o, n
U, Uy, Uy, < calculatelmageDerivatives(Uy,Us)
K < buildOperator()

R

v,0,y < 0e<n

vOld + v

Yy y+oKv

Y < g - US(% %)

—v—oK*y

— solveMatriz (v, Uy, Uy, Uy,)
— 2-v—20ld

[S31

—
e
S S

are the most expensive operations. The solution for solving the matrix in line 11 can be
deduced directly as shown in the L? — L? optical flow section. Concerning to the newly
introduced thresholding operator, also this operation requires only a few additions and
multiplications besides a maximum evaluation of two elements and consequently is

numerically cheap.

4.5.5. > — TV Mass Preservation Model

Model

In analogy to the L? — T'V optical flow model from the previous Section 4.5.4 we want
to transfer the same ideas to the mass preservation case. We begin writing down the

model.

Model 4.5.5. L? — TV Mass Preservation Model

1 d
argmin§ |ue + V- (uv)Hg + O‘Z Vil gy -
v i=1
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Here, we do not assume the displacement of constant intensities in the image data,
but moreover expect the flow to fulfill the continuity equation u; + V - (uv) in a least
squares sense. In contrast to the linear L? — L? mass preservation model, we choose
total variation regularization for motion fields that are expected to consist of constant

magnitude and are separated by sharp edges.

Computational Minimization

The total variation regularizer in the finite dimensional setting again becomes ||Vuv;|,

and we minimize
1 2 =
arg;nini Hut +V- (UU)||2 + a; Vol -

Similar to the L? — TV optical flow energy we have a non-differentiability of the regular-
ization part |[Vv;||;. We therefore return to the Chambolle Pock method and mainly
combine the results from the L? — L? mass preservation Section 4.5.3 and the previous

Section. Starting with the notation we inherit the definition of F as follows:

1 2
F(Kv) =5 u+ V- ()5 + a Y [V,

i=1

with the linear operator K given by

\V4 0 )
v
Kv = 0 \Y% < 2) .
v
O v Oyu

The adjoint operator for the dual y = (y1,¥2,y3)" is now given by

P AR b
v= 0 V- uo, v

Ys
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The corresponding dual functional F*(y) to F' can be calculated using Examples 2.2.23
and 2.2.25 as:

. 1
F*(y) :=§|Iy3||§ (ue,y +OéZ5B ooy (yi/ ).

Consequently the primal part G(v) is zero and we get for the primal-dual formulation:
2

argmmargmax(v K*y) —04253 Lo y,/oz)——||y3||2 + (ug, y3) -
Y i=1

Incorporating this into the Chambolle-Pock framework leads to the scheme

g =y +oKo (4.26)
iy’ = o n{ o9t + avdmamtwson | (.27
= argmm{Q o=+ 5 Il - ot} (4.29
vF —argmm{ 3 H'v— vt — TK*y H } (4.29)
ot = pF T L g(vP T — (4.30)

The subproblem for ylfgl in Equation (4.27) has been solved for the TV — L? optical
flow model 4.5.4. The solution is given by point-wise projection onto [—«,«a]. The
other problems do not differ from the L? — L? mass preservation scheme. Hence we

obtain the following iterations which converge to a solution of Model 4.5.5:

,gk-‘rl _ yk + O'K’I_Jk

Y1 = (@131)
1 o
k41 k41
- — gty
BT To
v = of — 7Ky

@k-&-l — vk+1 + 9(’0k+1 _ vk)

Discretization and Algorithm

The discretization does not differ from the L? — L? mass preservation and we inherit all

proposed strategies from Section 4.5.3. Hence we obtain the following algorithm: The
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Algorithm 6 L? — T'V Mass Preservation

L2TVMassPreservationUy, Uy, a,
U; < calculatelmageDerivatives(Uy,Us)
K < buildOperator(Uy, Us)

O, T < m

v,0,y < 0e<n

vOld < v

Yy y+oKv i

Y12 < Y12 — US(yﬁTQ, %)

ys ¢ =103+ s 55U,

v v—oK*y

U4+ 2-v—v0ld

T U

—_
—_— O

algorithm runs efficiently, because the dual updates can be calculated directly and the
matrix K is sparse and can be preassembled. The update in line 9 requires point-wise
multiplication, addition and a maximum evaluation of two numbers, thus is fast to

evaluate.

4.5.6. L' — T'V Optical Flow Model

Model

The quadratic L? norm for incorporating the optical flow equation in the variational
model in general has the major drawback that outliners of the optical flow constraint
are not handled robustly. To overcome this limitation Aubert, Deriche and Kornprobst
analyzed different variational models and finally proved the advantages of an L' data
fidelity term using rigorous theory of BV-functions [7]. Transfered to the concept of
sparsity, the L! data term allows the optical flow constraint to be violated on a least
sparse set. To overcome the other limitations of the classical L? — L? optical flow
approach we adopt the ideas of the previous sections and propose a total variation

regularization, which leads to the following model

Model 4.5.6. L' — TV Optical Flow Model

d
arg min |lu; + Vu - v, + O‘Z |vil gy -
v i=1
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Here, we expect a result that may violate the optical flow constraint in a sparse set
which is admitted by the L' norm. Moreover we expect a piecewise constant motion
field due to the total variation regularization.
Computational Minimization
For the finite dimensional setting the L' — T'V optical flow model reads
2
arg min |lu, + Vu - v, + az |Vl -
v i=1

In order to minimize this energy we again propose a direct application of the previously
introduced Chambolle-Pock method. As a first step the definitions are adjusted as

follows:

d
F(Kv) = a Y[ Vo,
i=1

oo (5o () (0 e) ()

Similar to the TV — L? optical flow model we get the dual as:

with

F(y) = azéB(L“‘)(yi/O‘)'

Here, the norm for the data model has changed to L', but still no operator is applied

to v. Consequently, the optical flow part is put into the primal functional as follows:
G(v) = |lug + Vyu - v, .

We receive the following primal-dual formulation:
v y

2
arg min arg max ||u; + V,u - vl + (v, K'y) — « ZéB(Loo)(yi/Oé).
i=1

Incorporating this in the algorithm yields the modified iterations

,ngrl — yk 4 O'K’I_Jk
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1 k]|
y**! = argmin {5 ly—o| + 0405B<L°°>(y/04)}

y=(y*y2)
FEH = b 4 TK*ka

.1 N
v = arg min {5 Hv — k!

v

2
|7l + Vs v||1}

,l—)k—',-l — ,Uk:+1 + 9(’0k+1 o ’Uk).
Only the subproblem for v**! differs from the L? — TV optical flow model and has to
be handled differently. Here, we have an L' — L? optimization problem with an affine
linear transformation of v. The L' part u; + Vu - v contains for v only a pointwise

multiplication with u, resp. u,, which is then shifted pointwise by u;. Thus we can

apply Lemma 2.2.29 (direct solution for affine linear L' problems). We set
p(v) =u +Vu-v, B:=(u,uy).

Then the solution is given by

3 if p(o"+1) < —7 1813
v=o"1+{ 73 if p(o*h) > 7 ||:3||§ ;
_ p@*th
B O else

and we are able to solve all subproblems directly and we obtain the following scheme:

,gk-l—l —_ yk 4 O'Kﬁk

Y11 = Ta (@k+1)

,bk-i—l — ’Uk o TK*yk+1

B if p(a*) < =7 |18)2
Rl = Rl e if p(0"t!) > 71 ||5||§
_p(f)k'H)
B P else

@k+1 _ ,vk—I—l + 0(,014:4-1 - ,vk)

Implementation and Algorithm

Due to the fact that the resulting minimization differs only in minor aspects from the

L? — TV optical flow model, we inherit the same discretization techniques. This leads
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to the following algorithm. The computational complexity for solving the L' — TV

Algorithm 7 L' — TV Optical Flow

L1TVOpticalFlowUy, Us, o, n
U, Uy, Uy + calculatelmageDerivatives(U;,Us)
K < buildOperator()

O, T \/Lg

v,0,y < 0e<n

vOld < v

y<+—y+oKv

Yy = g o US<§7 %)

v v—oK*y

— af fineShrink(v, T)

— 2-v—v0ld

<

—_
il
S

optical flow problem only lies slightly above the L? — L? optical flow resp. L? — TV
optical flow model. Still evaluations of the forward operator K and backwards operator
K* are numerically expensive. The shrinkage formula can be evaluated by only a few
operations. For the affine shrinkage the quadratic L?-norm is used, so no square root
has to be calculated. The rest consists of case analysis and a few multiplications resp.
additions. The algorithm can furthermore be parallelized to gain additional speed.
Here, lines 7-9 and 10-12 form independent blocks.

4.5.7. L' — TV Mass Preservation Model

Model

The final model introduced in this section is the 7V — L' mass preservation model.
We use the mass preservation constraint u; + V - (uv) as a data fidelity part for the
unknown velocity field v = (v!, v?), now penalized in the L' norm (instead of the former
L? norm) to better handle outliners in the equation. The total variation is again used

as a regularizer and we obtain the following model.

Model 4.5.7. L' — TV Mass Preservation Model

d
arg min ||u; + V - (u’u)Hl + az Vi gy -
v

i=1
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This L' —T'V mass preservation model starts with the L' mass preservation data term,
which allows the constraint to be vulnerated in a sparse set. Moreover total variation
is used as a regularizer to emphasize velocity fields consisting of constant areas with a

sparse set of jumps between them.

Computational Minimization

We minimize the finite dimensional counterpart of the previous model, which reads
d
argmin ||u; + V - (uv) ||, + az Vil -
v i=1
The complete energy is now put into the dual operator as follows:
d
F(Kv) = [ju, + V- (w)]|, + az NI

=1

with the linear operator K given by

vV 0 )
v
Kv = 0 \V4 ( 2) .
v
O u Oyu

The adjoint operator for the dual y = (y1,y2,y3)" is now given by

PN A TR b
v= 0 V- o, v

Y3

The corresponding dual functional F*(y) to F' can be calculated using Examples 2.2.23
and 2.2.25 as:

F*(y) := dp(r=)(ys) — (ue, y3) + a Z OB (L) (Yi/ ).

i=1
Incorporating this into the Chambolle-Pock framework leads to the scheme

@k-i-l — yk +O’K’l_)

.1 .
y’fEl = arg min {§ Hy — ylffgl
y=(y'.y?)

2
‘2 + 0405B(L°°)(y/04)}
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.1 1 ||?
=i 8 60t}
Yy
2
2

Except for the subproblem in y5 all results from the L? — TV mass preservation section

can be inherited. Let us first rewrite the problem for y5™:

v

T
1
v = arg min {/ 5 Hv — (V" —TK*y)
0

'f)k+1 _ ,vk+1 + 6’(’0’““ o ,vk)'

2
) + U5B(L°°)(Z/3) -0 <Ut73/>}

1
arg min {— Hy — g’;“
y 2

Sargmin§ ~(y — 75y — G5 + 00p() (ys) — (ow, y>}
Yy
& arg min

. 1, .
(o y) — (u, T+ S G5 4 001y (3) — (o, y>}
Y

2

) . 1, . N

Sargming = (y,y) — (y, 75 + ow) + §<y§“ + ouy, G5+ owg) + 05B<Loo)(y3)}
Y

& arg min
Y

— — = =

N N~ N~ N~ N

= (5 + o)y — (G + ow)) + oaB(Loo><y3>}

2
& arg min Hy — (géf“ + Uut)H2 + U5B(L°°)(y3)}

Y

—N

Now, the solution is simply given by the projection of g5 + ou, onto [—1,1]:
s = m(gst o+ ow)

This leads to the following scheme:

gk—l—l — yk + O'K’l_)k

k+1 _ ~k+1
Y12 — Wa(yl,Q )

k+1 _ ~f41
Ys = 7Tl(ya’, + Uut)
v = oF — 7Ky

,l—JkJrl — ,karl 4 e(karl o ,vk)

and we are able to solve this problem directly.
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Implementation and Algorithm

The discretization is done similar to the L' — T'V mass preservation model, because
only slight changes to the norms were made. We end up with the following algorithm:

We inherit the runtime argumentation from the 7'V — L' optical flow part. The only

Algorithm 8 L' — TV Mass Preservation
L1TVMassPreservationUy, Us, o, n

1. U; < calculatelmageDerivatives(U;,Us)
2: K < buildOperator(Uy, Us)
3: 0, T < \/gmlaxw

4: v,0,y 4+ 0e<n

5. vOld < v

6: y < y+oKv

7 Y1,2 < ng — O'S(yiT’z, %)

8: y3 « af fineShrink(ys, <)
9: v+ v—0oK*y

10: U+ 2-v—v0ld

11: v

difference lies in the extended affine shrinkage which has more variables involved now.
The numerical effort increases linear with the number of variables involved in the

shrinkage, thus is still very efficient.

4.6. Numerical Evaluation

The following section is dedicated to the evaluation of the previously introduced motion
estimation models. In the first part, we want to elucidate that quantifying results from
motion estimation is a non-trivial problem. Afterwards, we introduce several error
measures for motion fields and apply our models to different types of image sequences.

Finally, our models are evaluated in terms of influence of noise and runtime.

4.6.1. Error Measures for Velocity Fields

Finding error measures for velocity fields is a delicate problem which can be motivated

by the following simple example. Consider two images, each consisting of only 3 x 3
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pixels of the following form:

1 10 000
upy =10 0 0], u=1]11 0 (4-31)
000 000

From our point of view we seek for a velocity field v = (v!,v?) that transforms u; into

uy. Unfortunately it is unclear which velocity field underlies this motion. Examples of

possible solutions are

1. Just move the pixels at position (1,1) and (1,2) by 1 to the bottom, hence

110 00 0
v'=10 0 0], ¥*=10 0 0
00 0 00 0

2. Move the pixels at position (1,1) and (1,2) by 1 to the bottom and change their

position:
110 1 -1 0
=100 0], =10 0 0
000 0 0 0

3. Move the whole image by 1 to the bottom which gives

111 00 0
vt=111 1], =10 0 0
111 00 0

4. Move the pixels at position (1,1) and (1,2) by 1 to the bottom and exchange

some pixels in the third column

11 1 00 0
=100 1], »*=[000
00 —2 00 0

All these velocity fields produce the same result, that is they all fulfill the optical flow

constraint u; + Vu - v = 0 resp. the mass preservation constraint u; + V - (uv) = 0.
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This results from the fact that for given images the optical flow constraint (similar to
the mass preservation constraint) states for every point x € Q only one equation for a
2-dimensional velocity field v. The solution is unique iff there exists a unique bijection
between 1y and us. This requires both images to consist of the same intensity values,
which furthermore have to be unique. Unfortunately this assumption is far from reality,
since regions of constant intensity are characteristic for background or objects. Hence,
for practical problems we have a highly underdetermined system and consequently a
huge variety of possible underlying velocity fields v.

As we will see later an error measure always explicitly or implicitly favors one of these
possible results over the others. Those error measures, which explicitly prefer one result,
expect a given ground truth field vgr = (vhp, vé7) and measure a distance d(vgr,v)
from the calculated velocity field to the given ground truth field. This strategy is
questionable because in real world examples we usually do not have a ground truth
velocity field, and artificial examples can usually be generated by several different
ground truth fields. Hence, setting the ground truth vgy directly favors a subjective

result. This is at least from the mathematical viewpoint questionable.

Absolute Endpoint Error

Despite the fact that explicit error measures might be problematic they are often used
in the literature and we will also use them to evaluate our algorithms. In [10] two
explicit error measures have been presented. The most intuitive one is the average
endpoint error (aee), proposed in [55], which is the vector-wise Euclidean norm of the

difference vector v — vgr. The difference is divided by || and we have

oce = 1o [ 0 @) = vk @) + (020) = @)

or in a discrete formulation

ABE = — S\ J01) — vk 0 + (020) — ()

i=1

Here, nPz denotes the number of pixels.

Angular Error

A second measure states the angular error (ae) which goes back to the work of Fleet

and Jepson [37] and a survey of Barron et al. [12]. Here v and vgr are projected into
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the 3-D space (to avoid division by zero) and normalized by

(/Ué‘Ta Ué‘Ta 1) ]
Vlverl® +1

The error is then calculated measuring the angle between v and vgr in the continuous

b= 00 G i=

setting as

ae ‘= — / arccos(v(z) - vgr(x)) dz,
€[ Jo

nPx
1 N
AE = — ;:1 arccos(v(i) - var(1))

Besides the fact that the ae is very popular, we want to emphasize a serious drawback.
To illustrate this drawback we took a vector vgr = (v',v?) and denote the Euclidean
norm on the x-axis in Figure 4.7. This vector has been disturbed by an absolute and

relative error of 0.01 to create v, and v,

Vaps = var — (0.99,0.99)7

YeT .99,

Vrel =

lvarll
Afterwards we calculated the angular error between v and vy resp. v and v, and
denoted this error on the y — axis of Figure 4.7. The first obvious property is that
the error shrinks for larger velocities. This is critical since larger velocities are usually
coupled with the object we are interested in. In the contrary absolute errors in small
velocities (e.g. background) are over-penalized. To make this clear, let us consider
a simple example: Take an algorithm producing a all-zero velocity field. This result
perfectly recovers the background, but causes errors in the region of a moving object.
Consider on the other hand an algorithm that perfectly recovers the movement in the
background, but introduces slight errors in parts of the object. Due to the fact that
errors in the background are over-penalized, the first result might be preferred although

it yields a worse result.
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1072
1.5] 8

| | |
0 0 1 2 3 4

Figure 4.7.: Plot of the angular error ae on the y-axis with increasing ||v| on the
X-axis.

Blue: Absolute error ||[v — vgrl|, of 0.01

Red: Relative error ||v —ver|ly / ||lver|| of 0.01

SSD Interpolation Error

We already mentioned that it is questionable to predetermine a certain velocity field as
ground truth. For given images u; and ug it is reasonable using the calculated motion
field to v interpolate u; and compare the difference to u,. Therefore we define the

morphed image sy as
Ug = uy(x + v),

which requires an interpolation scheme for which we use a bicubic one. Then we can
measure the distance between the morphed image 4y and the ground truth us in a

continuous setting by

or discrete as
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This root-mean-squared difference is a simplified version of the interpolation error pro-
posed by Baker et al. in their flow evaluation survey [10]. Szeliski proposed a weighted
interpolation error, to compensate numerical effects [67]. He claims gradient approxi-
mation of images in the optical flow context to be noisy itself and introduces a weight
corresponding to the norm of the image gradient. The resulting error measure is called

the normalized interpolation error

. —Ug Z‘))2 "
nie: \/mr/ V@l

resp.

1 X (g (i) — ua(i))?
NIE = .
nPx ; Vs (i) + 1

By this choice the error is weighted less close to edges, because HVUQ([L‘)HQ increases
and the difference is divided by a larger value then. As the distance from the edge
increases, HVU/Q(Z)”Q + 1 tends to 1 and no weight is applied to the distance. But
evaluating our algorithms with this measure might be problematic too because it makes
no assumptions on the velocity field, except for the fact that it should transform wu,
into us. If for example a white dot on a black ground changes its position from u; to
uo, we would expect one block of constant movement, but this is not considered by the
e resp. the nie. The motion is allowed to be absolutely chaotic and might still have

an error of zero, as long as it transforms u; into wus.

Interpolated Level Line Error

In this thesis we propose a slightly advanced error measure based on interpolated
images. Let therefore I'y,I'y be the set of boundaries of u; and us. Based on this we

want to calculate level set functions ¢, and @9 as the solution of the parabolic Eikonal

equation:
0
L= Vel gie,t) =0fora €Ty,
0
2= Vel ealat) =0fora €Ty,

Intuitively speaking, the curve I'; moves with speed 1 towards normal direction and

@i(x) is the arrival time of I'; at point 2. Consequently, the level set function ¢; : Q@ — R
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denotes the distance of the closest boundary point. This concept has been introduced
by Sethian and Osher [54]. Having calculated the level set representations of u; and usy
we proceed with the idea of interpolation, but apply this to the level set function ¢;.

Therefore we define

P2 = p1(7 + v),

which is calculated using spline interpolation. The function ¢ can be interpreted as
an interpolated level set function of ¢; based on the estimated velocity field v. The
level set functions ¢, and ¢ are now compared using a weighted root-mean-squared

difference, as introduced in Section 4.6.1:

: 1 . )
ille := \/ﬁ /Q(cpg(x) — @o(x))?w(x) dz,

or discrete as

TLLE i= \| == 3" (@a(i) - e2(D)2 W (0)

Since the evaluation of the level set function ¢ denotes the distance to the boundary,

we use w(x) : as a weighting function. By this choice we emphasize v

to correctly transport the boundaries of u; onto us, but moreover to transport the
surrounding image information in a reasonable way.

The proposed measure satisfies this requirement because the level lines of ¢; have to be
shifted correctly to achieve a small #lle. The parameter € can be adjusted, to amplify

the measure close to the boundary. In our tests we choose € = 1.

4.6.2. Comparison of Regularizers

We introduced a total of six different models for motion estimation, which differ in
the choice of the constraint in the data term (optical flow and mass preservation), the
norm of the data term and the regularization term (L? resp. L' norm of the gra-
dient). Figure 4.8 shows a motion field generated by the L? — L? optical flow model
(Section 4.5.2), and a field generated by the L' —TV optical flow model (Section 4.5.6).

In the middle image we see the expected smooth result from the L? regularization

of the gradient. The movement has the right scale in the center of the object, but is



4.6 Numerical Evaluation 121

(a) L? — L? Motion Field (b) L? — L? X-Component (¢) L? — L? Y-Component

Figure 4.8.: Typical motion fields generated by different regularizers. Left: Image
to calculate motion on; Middle: typical velocity field generated by L? regularization;
Right: typical velocity field generated by 7'V regularization.

also smoothed out to the sides. No motion is detected for the background. The bottom
row is a typical representative for a total variation regularization. Each component has
a constant block of motion that is separated from the background by a sharp edge.
Besides this we see that the movement reaches also the sides of the images. This is
due to the static background which fulfills any motion equation, and the total varia-
tion (which is equal to the length of the edge multiplied with the jump height) that is

smaller if the edge is drawn directly to the sides.

4.6.3. Test Data

As a start, the six introduced algorithms have been tested on the basic flow types
introduced in Figure 4.4, namely translation, rotation and scaling.

This basic evaluation gives some insight into the general quality of the different types
of algorithms, however the basic flow types do not represent scenes close to the reality.
Therefore we extend the set of evaluation scenes by the IPOL database [44]. An
overview of the evaluation scenes from the IPOL database can be found in Figure
4.13.

4.6.4. Evaluation for Basic Flow Types

As mentioned before we want to begin our evaluation with the three basic types of flow
fields. Figure 4.9 contains MATLABfts Lena image, which was always used as the first
image u; for our algorithm. Then we created the second image us by cubic interpo-

lation of ui(x 4 v), where v represents one of the ground truth flows also shown in
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Algorithm AEE AE IE NIE ILLE

L? — L? optical flow 0.02 | 0.017 | 0.002 9.5e-05 | 0.079

L? — L? mass preservation | 0.025 | 0.021 | 0.0028 | 9.6e-05 | 0.082
L? — TV optical flow 0.004 | 0.003 | 0.0008 | 0.000101 | 0.077

L? — TV mass preservation | 0.004 | 0.003 | 0.0008 0.0001 0.076
L' — TV optical flow 0.02 0.02 | 0.0026 | 7.6e-05 | 0.067

L' — TV mass preservation | 0.086 | 0.076 | 0.0087 | 0.000159 | 0.086

Table 4.1.: Evaluation for translation. Table shows minimal possible errors that could
be found for the example in Figure 4.10.

Figure 4.9. Due to the chosen discretization we are only able to exactly detect motion
with a magnitude of one pixel at most, consequently the ground truth flow fields are
chosen accordingly. We want to underline that for every example each of the available
algorithms was run with a broad set of regularization weights to find the lowest possible

error.

Translation:

For the translation flow the whole Lena image was shifted by one pixel to the right.
Whereby the ground truth flow consists of a block of constant area of magnitude one.
The detailed evaluation results can be found in Table 4.1. Furthermore Figure 4.10
shows the best result (in terms of the AE) each of the algorithms was able to generate.
We see that the L? — T'V models minimize AEE, AE and IE. This was expected, since
the ground truth flow consists of one large block of constant intensity 1 and the AEE
and AE use this ground truth flow for determining the error. The IE is also minimized
because the L? — T'V optical flow model recovers one block of constant magnitude that
shifts the first image by one pixel to the right. This gives a very good interpolation.
The L? — TV mass preservation model produces slightly worse results than the optical
flow model, followed by the L? — L? optical flow and the L' —T'V optical flow model.
Rotation:

As a ground truth flow for the rotation example we chose the rotation angle such that
the magnitude of the flow lies below 1 everywhere. The color-coded ground truth can
again be found on Figure 4.9. We see that the color-intensity decreases towards the cen-
ter, which comes from the fact that an even rotation around one central point requires
less magnitude of the flow field the closer the center is. Table 4.2 gives an overview
of the respectively lowest possible errors each of the algorithms was able to generate.
Figure 4.11 shows, exemplarily for the AE, the best results our algorithms were able to

generate. Here, the L? — L? optical flow model is able to produce the smallest values
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(c) (d)

Figure 4.9.: (a) Lena image from MATLAB, (b) Translation ground truth, (¢) Rota-
tion ground truth, (d) Scaling ground truth
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(a) (b) ()
(d) (e) (f)

Figure 4.10.: Overview of the best results (in terms of the AE) our algorithms were
able to generate for the translation flow. (a) L? — L? optical flow, (b) L? — L? mass
preservation, (c¢) L? — TV optical flow, (d) L? — TV mass preservation, (e) L' — TV
optical flow, (f) L' — T'V mass preservation
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Algorithm AEE AE IE NIE ILLE

L? — L? optical flow 0.059 | 0.038 | 0.0044 | 7.6e-05 | 0.249

L? — L? mass preservation | 0.073 | 0.047 | 0.0046 | 7.8e-05 | 0.252
L? — TV optical flow 0.104 | 0.067 | 0.0053 9e-05 0.251

L? — TV mass preservation | 0.109 | 0.069 | 0.0059 | 0.000102 | 0.255
L' — TV optical flow 0.087 | 0.056 | 0.0051 | 8.3e-05 | 0.249

L' — TV mass preservation 0.1 0.064 | 0.0054 | 8.7e-05 | 0.251

Table 4.2.: Evaluation for rotation. Table shows minimal possible errors that could
be found for the example in Figure 4.11.

Algorithm AEE AE IE NIE ILLE

L? — L? optical flow 0.057 | 0.037 | 0.0041 | 4.9e-05 | 0.257

L? — L? mass preservation | 0.158 | 0.096 | 0.0053 | 6.5e-05 | 0.269
L? — TV optical flow 0.095 | 0.06 | 0.0051 | 6.9e-05 | 0.258

L? — TV mass preservation | 0.212 | 0.127 | 0.0069 | 9.4e-05 | 0.274
L' — TV optical flow 0.086 | 0.054 | 0.0053 | 7.9e-05 | 0.256

L' — TV mass preservation | 0.329 | 0.188 | 0.0088 | 0.000118 | 0.285

Table 4.3.: Evaluation for scaling. Table shows minimal possible errors that could be
found for the example in Figure 4.12.

in terms of all evaluated error measures. The L? — L? mass preservation model follows
the optical flow model, and afterwards an L?-data term coupled with an L? regularizer
fits best to this situation. This is not surprising when looking at the ground truth field

in Figure 4.9, which is completely smooth.

Scaling:

The ground truth flow field for scaling was chosen, similar to the rotation, such that
the overall magnitude is bounded by 1. At first glance rotation and scaling look very
similar but they describe a completely different phenomenon. For scaling the direction
of the flow is always away from the central point towards the boundary. This becomes
clear when looking at Figure 4.9. We see from Table 4.3 that the L? — L? optical
flow model again produces the overall best result. Similar to the previous flow types
we plotted the best results in terms of the AE in Figure 4.12. The reason for the
outstanding result of the L? — L? model is again the completely smooth ground truth

field.
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(a) (b) (c)

(e)

Figure 4.11.: Overview of the best results (in terms of the AE) our algorithms were
able to generate for the rotation flow. (a) L? — L? optical flow, (b) L? — L? mass
preservation, (c¢) L? — TV optical flow, (d) L? — TV mass preservation, (e) L' — TV
optical flow, (f) L' — T'V mass preservation
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(d) (e) ()

Figure 4.12.: Overview of the best results (in terms of the AE) our algorithms were
able to generate for the scaling flow. (a) L? — L? optical flow, (b) L?* — L? mass
preservation, (¢) L? — TV optical flow, (d) L? — TV mass preservation, (e) L' — TV
optical flow, (f) L' — T'V mass preservation
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Algorithm AEE AE 1E NIE ILLE

L2 — L2 optical flow 0.07 | 0.042 | 0.0025 | 2¢-05 | 0.177
L? — L? mass preservation | 0.092 | 0.054 | 0.0028 | 2.3e-05 | 0.179
L? — TV optical flow 0.1 0.062 | 0.0028 | 2.1e-05 | 0.179

L? — TV mass preservation | 0.137 | 0.081 | 0.0034 | 2.9e-05 | 0.182
L' — TV optical flow 0.076 | 0.045 | 0.0025 | 2.1e-05 | 0.177
L' — TV mass preservation | 0.105 | 0.063 | 0.0031 | 2.7e-05 | 0.179

Table 4.4.: Dimetrodon dataset. Table shows minimal possible errors that could be
found.

4.6.5. Evaluation for Real Data

Coming from the basic flow types we want to go over to more challenging evaluation
data. Therefore we used slightly modified image sequences from the IPOL [44] database.
Since our motion estimation algorithms are limited to a discrete length of one pixel we
scaled down the IPOL ground truth fields to a length of 1 and used this new ground
truth field to generate a second image us = I(x — v) by cubic interpolation.

We want to underline that these modified sequences still cover a variety of difficulties
such as several independently moving objects, nonrigid motion, thin structures, move-
ment in regions with little contrast and a variety of photometric effects. Figure 4.13

shows an overview of the image scenes.

Dimetrodon:
Starting with the results from the Dimetrodon scene, we see from Table 4.4 that the
L? — L? optical flow model performs slightly better than the L' —TV model for the AE,
AEE and NIE. Both models perform the same in terms of IE and ILLE. Both models
differ in data term and regularizer from each other, but are able to minimize the errors
in the same way. This can be explained by the ground truth flow in Figure 4.13, which
consists of partly smooth areas and some small discontinuities. Figure 4.14 contains
the calculated flows and we see that the L? — L? optical flow model better reconstructs
the smooth areas whereas the TV — L! model is able to better find the discontinuities

in the flow.

Rubber Whale:
The Rubber Whale dataset highly differs from the Dimetrodon dataset. Here we have
a set of moving objects equipped with some rotation compared to a smooth flow in the

Dimetrodon dataset. Additionally the motion occurs towards different directions and
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Figure 4.13.: Evaluated real data scenes (from [44]); left: image, right: ground truth

flow.
First row: Dimetrodon, second row: Hydrangea, third row: Rubber Whale, fourth row:

Yosemite
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(a) (b) (©
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Figure 4.14.: Overview of the best results (in terms of the AE) our algorithms were
able to generate for the Dimetrodon example. (a) L?— L? optical flow, (b) L?— L? mass
preservation, (¢) L? — TV optical flow, (d) L? — TV mass preservation, (e) L' — TV
optical flow, (f) L' — TV mass preservation

Algorithm AEE AE IE NIE ILLE

L? — L? optical flow 0.075 | 0.04 | 0.0027 | 2.2e-05 | 0.291

L? — L? mass preservation | 0.105 | 0.056 | 0.0034 | 2.8e-05 | 0.293
L? — TV optical flow 0.054 | 0.029 | 0.0028 | 2.1e-05 | 0.292

L? — TV mass preservation | 0.111 | 0.059 | 0.0037 | 3.2e-05 | 0.293
L' — TV optical flow 0.062 | 0.033 | 0.0025 | 2e-05 | 0.292

L' — TV mass preservation | 0.095 | 0.05 | 0.0033 | 3e-05 | 0.293

Table 4.5.: Rubber Whale dataset. Table shows minimal possible errors that could
be found.
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Figure 4.15.: Overview of the best results (in terms of the AE) our algorithms were
able to generate for the Rubber Whale example. (a) L* — L? optical flow, (b) L* — L?
mass preservation, (c¢) L?—TV optical flow, (d) L>—TV mass preservation, (e) L' =TV
optical flow, (f) L' — T'V mass preservation

different magnitudes. The evaluation results can be found in Table 4.5. The TV — L!
optical flow can be seen as optimal because it minimizes AEE, IE, NIE and performs
only slightly worse than the 7'V — L? model in terms of the AE. The color-coded best
results can be found in Figure 4.15. The Total Variation regularization is advantageous
for this class of motion due to many discontinuities in the flow field which cannot be

recovered by the L2-regularized models.

Hydrangea and Yosemite:

At first glance both sequences look different but from the perspective of motion estima-
tion they share many aspects. We find many small structures which move independently
but similar to the neighboring objects. The ground truth contains slight discontinuities
which are not as large as in the Rubber Whale example. We listed the results in Tables
4.6 and 4.7. Again, the TV — L' optical flow model outperforms all other models and
is able to generate the smallest AEE, AE, IE and NIE. From Figure 4.16 we see that
the discontinuities are recovered very well and the static background-movement is also

detected.
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Algorithm AEE AE IE NIE ILLE

L? — L? optical flow 0.092 | 0.054 | 0.0033 | 2.4e-05 | 2.175

L? — L? mass preservation | 0.117 | 0.066 | 0.0039 | 2.9e-05 | 2.173
L? — TV optical flow 0.067 | 0.037 | 0.0036 | 2.5e-05 | 2.174
L? — TV mass preservation | 0.073 | 0.04 | 0.0036 | 3.1e-05 | 2.177
L' — TV optical flow 0.047 | 0.027 | 0.0029 | 2.4e-05 | 2.178
L' — TV mass preservation | 0.083 | 0.046 | 0.0042 | 3.5e-05 | 2.175

Table 4.6.: Hydrangea dataset. Table shows minimal possible errors that could be
found.

(d)

Figure 4.16.: Overview of the best results (in terms of the AE) our algorithms were
able to generate for the Hydrangea example. (a) L?* — L? optical flow, (b) L? — L? mass
preservation, (¢) L? — TV optical flow, (d) L?* — TV mass preservation, (e) L' — TV
optical flow, (f) L' — T'V mass preservation

Algorithm AEE AE IE NIE ILLE

L? — L? optical flow 0.075 | 0.04 | 0.0027 | 2.2e-05 | 0.291

L? — L? mass preservation | 0.105 | 0.056 | 0.0034 | 2.8e-05 | 0.293
L? — TV optical flow 0.054 | 0.029 | 0.0028 | 2.1e-05 | 0.292
L? — TV mass preservation | 0.111 | 0.059 | 0.0037 | 3.2e-05 | 0.293
L' — TV optical flow 0.062 | 0.033 | 0.0025 | 2e-05 | 0.292

L' — TV mass preservation | 0.095 | 0.05 0.0033 | 3e-05 | 0.293

Table 4.7.: Yosemite Clouds dataset. Table shows minimal possible errors that could
be found.
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(d)

Figure 4.17.: Overview of the best results (in terms of the AE) our algorithms were
able to generate for the Yosemite Clouds example. (a) L? — L? optical flow, (b) L? — L?
mass preservation, (c¢) L?—TV optical flow, (d) L?>—TV mass preservation, (e) L' =TV
optical flow, (f) L' — T'V mass preservation
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Figure 4.18.: Plot of the variance o of noise (x-axis) versus ae of the reconstruction
(y-axis).

4.6.6. Influence of Noise

In practical applications (e.g. microscopy) the recorded images often come with a lack
of image quality which is caused by low acquisition times. This leads to another very
interesting aspect in motion estimation - how does the noise-level on the image data
correspond to the quality of the estimated velocity field v. To answer this question
we created a series of noisy Dimetrodon images, where Gaussian noise with different
variance o was added to the images (for u : Q — [0, 1]). Then we estimated the motion
using the L' — TV optical flow algorithm with a static regularization parameter. In
Figure 4.18 we plotted the variance of noise on the x-axis versus the ae of the recon-
struction on the y-axis. We that already small levels of noise have massive influence
to the motion estimation process. In Figure 4.19 we can see a the Dimetrodon image
with a relative noise-level of o = 0.0002 which can be described as slightly noisy but
increases the absolute error in the motion field from ~ 0.045 to &~ 0.1. This high sen-
sitivity towards noise can be explained by the optical flow constraint (see Section 4.2)
which has been deduced from the brightness-constancy assumption. This assumption
is violated by the Gaussian noise because very many local intensity variations are in-
troduced and the constraint is broken.

Consequently, before estimating the motion a preprocessing step has to be applied to
remove the noise. A more advanced technique is presented in Chapter 5 where we
present variational models that are able to simultaneously denoise images and estimate

the underlying motion, while both tasks improve each other.
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Figure 4.19.: Dimetrodon scene (from [44]) used to evaluate the influence of noise
to the discussed motion estimation algorithms. Top row: Image, noisy counterpart,
ground truth field; Middle row: L?— L? optical flow,L? — L? mass preservation, L?—TV
optical flow; Bottom row: L? — TV mass preservation, L' — TV optical flow, L' — TV
mass preservation.

To evaluate the influence of noise to the different algorithms we added a moderate level
of noise (additive Gaussian with variance o = 0.0002) to the Dimetrodon sequence.

Figure 4.19 shows the ground truth image and the noisy counterpart.

4.6.7. Runtime

Finally we want to compare runtimes of the presented algorithms. For this sake we
take the modified Dimetrodon example (see Figure 4.13) and scale it down up to a
factor of one percent of the original size. All proposed algorithms are then applied to
the intermediate images, where the regularization parameter is fixed and the tolerance
chosen as le — 4. Figure 4.20 shows the image size in number of pixels on the x-axis
versus the runtime in seconds on the y-axis.

The first observation we want to mention here is that the mass preservation models

are always slower than the respective optical flow models. This can be explained by
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Figure 4.20.: Plot of the runtime (x-axis) versus the problem size (y-axis). L* — L?
optical flow (red), L? — L? mass preservation (light green), L? —T'V optical flow (blue),
L? — TV mass preservation (light black, L' — T'V optical flow (violet), L' — TV mass
preservation (olive)
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Algorithm AEE AE IE NIE ILLE
L? — L? optical flow 0.107 | 0.064 | 0.0126 | 8e-05 | 1.86
L? — L? mass preservation | 0.097 | 0.058 | 0.0156 | 8.2e-05 | 1.858
L? — TV optical flow 0.122 | 0.072 | 0.0146 | 8.1e-05 | 1.86
L? — TV mass preservation | 0.132 | 0.079 | 0.0158 | 8.3e-05 | 1.861
L' — TV optical flow 0.154 | 0.091 | 0.0149 | 8.3e-05 | 1.857
L' — TV mass preservation | 0.205 | 0.123 | 0.0161 | 8.5e-05 | 1.859

Algorithm AEE AE 1E NIE ILLE

L7 — L2 optical flow 0.07 | 0.042 | 0.0025 | 2¢-05 | 0.177
L? — L? mass preservation | 0.092 | 0.054 | 0.0028 | 2.3e-05 | 0.179
L? — TV optical flow 0.1 0.062 | 0.0028 | 2.1e-05 | 0.179

L? — TV mass preservation | 0.137 | 0.081 | 0.0034 | 2.9e-05 | 0.182
L' — TV optical flow 0.076 | 0.045 | 0.0025 | 2.1e-05 | 0.177
L' — TV mass preservation | 0.105 | 0.063 | 0.0031 | 2.7e-05 | 0.179

Table 4.8.: Dimetrodon dataset with (top) and without (bottom) noise. Table shows
minimal possible errors that could be found

the fact that the mass preservation term contains an additional operator applied to
v, which increases the runtime. Next, the L? — L? models and the L? — TV models
differ only slightly in their execution times, where the L? — TV model has the overall
best runtime. Moreover, both L' — TV models perform significantly slower where the
L' — TV mass preservation model is by far slowest. Finally, between fastest model
(TV — L? optical flow) and slowest model (T'V — L? optical flow) we denote a difference

in runtime of factor 100.
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COMBINED IMAGE RECONSTRUCTION

AND FLOW ESTIMATION

In this chapter we will deduce a total of four models for simultaneous image reconstruc-
tion and motion estimation. The introduced models differ from each other in the choice
of data term (optical flow and mass preservation) and regularization term for the veloc-
ity field (L? and total variation). Starting with a short introduction and derivation of
the model we dedicate some time to a detailed proof of existence of minimizers. Here, an
application of the Aubin-Lions Lemma (see 2.1.16) is required to obtain time-regularity
of the solution. An efficient numerical realization based on the primal-dual framework
from Section 2.3.1 is presented and we explain the discretization of the involved oper-
ators. All models are evaluated in terms of image reconstruction, motion estimation

and inpainting. Finally, we compare runtimes and check for parameter dependencies.

5.1. General Model

Inspired by well-known models for image inpainting, image denoising [60] and optical
flow [43, 77, 74] we present a model that couples the tasks of image reconstruction
and flow estimation.

In the following work we consider noisy, time-dependent image data u on a space-

time domain Q x [0,7] C R? x R*. This data is captured by a recording device (e.g.
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microscope) and we arrive at measured data f, which can be modeled as
f=Ku+9,. (5.1)

Here 0, represents a Gaussian-distributed noise with variance o, which usually occurs
due to bad illumination or low acquisition times. The (usually linear) operator K
represents the forward operator modeling the relation of the image sequence u on the
measured data f. The operator K allows us to model more complex situations. In
our general application K represents an inpainting-operator, that is K = P which
projects the image u onto the known domain €2, to model the problem of undersampled
image data. For example in time-dependent 3-dimensional microscopy data we often
have a good X/Y resolution, but only a few slices in Z direction. Moreover, K can be
used to model a blurring effect, which often occurs in high-resolution microscopy.
Simultaneously to the reconstruction of the image sequence u we seek for the velocity
field v : Q x [0, T] — R? describing the motion in the underlying image data.

Our motivation to recover both unknowns simultaneously is justified by their temporal
coupling through equations that arise directly from a physical context, namely from
the optical flow equation (see Section 4.2) and the continuity equation (see Section 4.3).
On the one hand this additional information improves the image reconstruction, but
on the other hand the improved image quality enhances the motion estimation quality
(see Section 4.6.6). Consequently, in a joint model both processes endorse each other.
The image reconstruction is in general ill-posed. For some applications the inverse
operator K~ ! does not even exist. For others we can apply K~! to both sides of

Equation (5.1) and get
K'f=u+K ', cu=K"'f—K,.

Unfortunately for the noise we have K16, >> K 'f in the norm of the space of
the unknown w and cannot recover u due to the dominating noise. For the motion
estimation task we have to consider problems like the aperture problem (see 4.1.1) and
underdetermination (see 4.1.2). Consequently, we complete our model with regularizers
for both terms and weighting parameters « and (. This leads directly to the following

model for joint motion estimation and image reconstruction

Model 5.1.1. Joint Reconstruction and Motion Estimation

' T 1 ) T . T .
argmln/o §HKu—fH2dt+oz/O R(u(,t))dt+ﬁ/0 S(v(-,t))dt (5.2)

u,v
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s.t. Clu,v)=0 in D'([0,T] x Q).

The first term in this functional acts as a data fidelity between the measured data f and
the objective function u. Here we assume the noise to be additive Gaussian-distributed,
which naturally leads to the squared L?-norm (see for example [15]) for the distance

Ku — f integrated over the time domain:

Tl )
| 5 lu—pl3a
0

We may think of data fidelities for other noise models like the L!-distance for salt and

pepper noise

T
/|mm—ﬂha,
0

or the Kullback-Leibler divergence for Poisson noise

g f
/ /Ku—f+flog—dxdt,
o Ja Ku

but this is beyond the scope of this thesis. The underlying Bayesian modeling for these
data fidelities can be found in [20].

The second term in Equation (5.2) is a regularization term for the underlying image
sequence u(z,t). We mention that R only acts on single frames (-, ¢) and consequently,
we do not have any time-dependence. If we just want to reconstruct smooth images, it

would be obvious to use quadratic L?-regularization on the gradient and to set
2
R(u(-,t)) == ||Vu(-,t)HL2. (5.3)

From the context of image inpainting, this choice leads directly to solving a Poisson
equation inside the unknown region ¥ C Q C R? with boundary conditions coming
from the known areas.

A more natural regularization in the context of images is the total variation, which
preserves edges and favors constant regions. We refer to Section 2.1.3 for more details

about TV. In this case we set

R(u(-,1)) == [u(- )] (5.4)

From the image inpainting perspective, a TV-based regularizer will fill up the unknown
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region X with areas of constant color and might also connect edges.

Regularizers for the velocity field v can be motivated very similar to those for images.
The regularizer in Model 5.2 acts independently on every timestep and we have no time-
correspondence. If we expect smooth velocity fields, then a quadratic L?-regularization
should be the method of choice and we define

S((- 1)) = ||Vl ), . (5.5)

This regularizer has been brought to the field of motion estimation by Horn and Schunck
[43] (see Section 4.5.2).

For the motion field, a TV-based regularizer should in general fit better to the recorded
data. From the perspective of motion estimation a moving object is a region of constant

movement similar to the size of the object. We define analogously

S(v(-,t)) = }v(-,t)‘BV. (5.6)

The final ingredient to define is the constraint C'(u,v). We do not require the constraint
to be fulfilled strongly, but in a weak sense, and consequently choose the space of
distributions D’([0, 7] x §2). The constraint should connect image data u and velocity
field v in a reasonable way. Since motion is always time-dependent, the constraint
will, in contrary to R(u) and R'(u), always incorporate the time ¢. The continuity
equation, which has been deduced in Section 4.3, is a connection that arises from the

natural assumption that mass keeps constant in every time ¢ € [0,7]. In this case we
define

Cu,v) = 0u+V - (uv). (5.7)

A different approach is to assume that the images contain objects of constant bright-
ness, which are only allowed to change their position within the image domain 2. Some
simple calculations lead to the so-called optical flow constraint (see Section 4.2 for

details) and we define

C(u,v) := 0w+ Vu - v. (5.8)
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5.2. Simultaneous 7'V — L? Image Reconstruction and
Motion Estimation

5.2.1. Definition and Motivation

The first concrete realization of model (5.2) to be discussed here is equipped with a
TV-regularizer for the image data u (see Equation 5.4) and a quadratic L*regularizer
on the gradients of the motion field v (see Equation 5.5). Let us begin with the mass

preserving variant:

Model 5.2.1. Mass-preserving TV — L? model

. 1 2 T ﬂ g 2
awgmin [ 5 IKu— fl3dt+a [ Jue 0] paee g [ Vol
0 0 0

u,v

st. Qu+V-(uww)=0 inD'([0,T] x Q),

and secondly proceed with the optical flow variant:

Model 5.2.2. Optical flow TV — L? model

. 1 2 g B ’ 2
argmm/ §|]Ku—f|’2dt+oz/ |u(-,t)‘Bth+§/ HV’U(-,t)Hth
0 0 0

u,v

st. Qu+Vu-v=0 1inD(0,T] x Q).

We mention that the latter model is basically an extension of the classical motion esti-
mation model of Horn and Schunck [43].

Both models reconstruct the image sequence v and an underlying motion field v. Fur-
thermore, an additive Gaussian noise model for the data f is assumed. From the
TV-based image regularizer we expect a cartoon-like image reconstruction in every
timestep. Besides that, the quadratic L?*-regularization should give us smooth veloc-
ity fields. Since in this thesis we concentrate on applications for real data (e.g. cell

movement), we expect only finite speeds. This gives us a useful natural bound

|v]|, < e <oo ae inQx[0,7T]. (5.9)



144 5 Combined Image Reconstruction and Flow Estimation

Besides this we need a bound on the divergence of v in LP for the existence of a
minimizer for the optical flow model. From the physical point of view the divergence
measures the magnitude of the source or sink of v at a given point = € [0, T]. Conse-
quently, having V-v € LP means an overall boundedness of sources and sinks, which is
however not necessarily pointwise. Moreover, for the flow v the divergence is a measure
for compressibility. We speak of an incompressible flow if V - v = 0, so bounding the

divergence means bounding the compressibility of v.

5.2.2. Existence and Uniqueness

For this section we consider a more general energy, which now contains powers of both

regularizers:

Tl T » T q
J(u,v):/o 5yuKu—indtm/o |u(-,t) Bvdt+6/0 (qu}(-,t)ui) dt, (5.10)
for 1 <p,q € R.

Existence

In this context we will apply the fundamental theorem of optimization (see 2.2.17 for

details), which requires:
1. Compactness of sublevel sets (coercivity) in the topology 7 (see 2.2.15)
2. Lower semicontinuity with respect to 7 (see 2.2.11)
3. Convergence of the constraint, D(uy,v) — D(u,v) in a distributional sense

Since compactness of sublevel sets and lower semicontinuity are independent of the

constraint D(u,v), it can be shown for both models at the same time:

Lemma 5.2.3. Compactness of sublevel sets of the general TV-L? model
Let

u e LP(0,T; BV(Q)), v L0, T;W"(Q)), J(u,v)<a
and furthermore

vl < <oo ae inQx[0,7] and K1, #0 Vt e [0,T].
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Now, for (u,v) in the set
S(e) = {(u,v> € LP(0,T; BV(Q)) x LU0, T; WH(Q)) « J(u,v) < C}
we have

”UHLﬁ(o,T;BV(Q)) <c ||U||LQ(O7T;W1,2(Q)) <c¢ with p=min{p,2},

and consequently, S(c) is not empty and compact in the weak-* topology of L?(0,T; BV (£2)) x
L0, T; W12(Q)).

Proof. We start with the bound for w and have to prove that for arbitrary u €

LP(0,T; BV (Q2)) with J(u,-) < a we have

T
HUHLP(O,T;BV(Q)) < ”uH]zp(o,T;BV(Q)) :/o HuHI))BV(Q) dt
T T
< [ Mttt [ luly e <c

To deduce this bound we need to estimate each of the two terms in the last line of
the inequality. Later on we will see that this bound cannot be shown for arbitrary
1l<p<2

Since all three terms in the functional (5.10) are positive, from J(u,v) < o we di-

rectly get a bound on each of the three parts. It follows that
[ Ku— f||L2(o,T;L2(Q)) < q,
which naturally implies
(Ku(-,t) = f(-,t)) € L*(Q) ae. in [0,7].

Consequently, HKU(-, t) — f(-,t)HLQ(Q) is bounded almost everywhere in ¢ € [0,7] and

we define

CK(t) = HKU(7t) - f('vt)HLz(Q) .

We want to emphasize here that cx(t) gives a constant for every time step ¢t € [0, 7],
but the integral fOTc’;(dt is only bounded for 1 < p < 2 due to the L?-regularity in

time.
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Besides this constant, for the TV-part, we directly also obtain

T T
/ 0ffy ot = / TV (u)? dt < a.
0 0

The crucial point in this proof is to find a bound for [[ull ., 7.1y Let t € [0,T] be

an arbitrary time step. First, we deduce a bound for this single time step ||u(, t)HLl(Q)

and start with a decomposition for wu:
_ 1 _ _
u= —/u(a:,t)dx, ug = u(+,t) —u <> u(-,t) = up + u.
€2 Jo
From this definition it follows directly that wug fulfills
/ updr =0 (mean value zero),
Q

and TV (u(-,t)) = TV (up) < a. Using the Poincaré-Wirtinger inequality (see [50] and

Lemma A.1.10) we obtain an L?*bound for uy:
[uoll 120y < e1 [[Vuoll 20y < crea [Vuoll i) = esTV (uo) < csr,
(©) (@) (@)

where ¢;, ¢co and ¢3 are positive constants. Moreover, we need a bound for ||Kﬂ||L2(Q),

which we get by calculating

|Kal2s = 21Kl o (I ol + 1£12) = 1K@l (1K@l 2 = 2 (1K ol 2 + 1£1],2))
< || Kl g2 (1Kl > — 21| Kuo — £ 2)
= ||Kall}. — 2[|Kuo — f | Kall .
< || Kuo — fl32 + | Kall32 — 2[|Kug — £ | Kl
= (1Ko — fll o — 1Kl 2)" < | Kuo + Kt — f[3
= [|Ku(t) = FC. )50 < e ()

Defining @ := || K| 12y, a = [|K|[ [[uoll 2y + [ fll 120y, We get the simple quadratic

inequality
2% — 2za < ci(t)? (5.11)
and furthermore know

0<a<|K|ea+||fllzgq = c
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Plugging this into the quadratic inequality (5.11) yields the solution

0§$§C4+\/O&+Ci§C4+C7(CK(T,)+C4>.

Assuming K1; # 0, this leads to an estimate for the operator

Kl = | [ wde| 1Ky < o fad

& ‘i / ud:r:‘ < e+ er(ex(t) + ) =:c5(1).
€2 Jq 1K1 20

We are now able to bound the L'-norm of a single timestep ¢ € [0, 7] by a constant

cy(t) as follows:

0 < |Ju(-,t < cg ||u(- t) = g

v
ug + — [ u(x,t)de
"l Jo

<ruoum & / (5.1)d )

< cq (CgOé + C5(t)) = Cu

)HLl(Q) HL?(Q)

This leads to the crucial point, since we are integrating over all these constants c¢,(t)

and the integral is only bounded for 1 < p < 2. Consequently, we define p := min {p, 2}

and get

T
/ |u(-,t H dtg/ cu(t)Pdt < ey
0

Combining both estimations we conclude with the required bound for arbitrary u €

LP(0,T; BV (Q)):

T
P 1 / el e

T T
S/ [ull7 g dt+/ ulBy (g dt < enT +
0 0

A bound for v is easier to establish, since we have [[v[|;w) < ¢, < o0 (see Equation

5.9) almost everywhere. Similar to u, from J(u,v) < o we obtain the a-priori bound

T , .
/O (70, 8)[ 2y )t < @
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for v from Equation (5.10). We calculate the bound for v directly:

T
q
[olloioranean < 10l iz = | 1990000

T T
< [ IOl at+ [ V0D

T
< |9 v, O dE+ o < Q)T + a.
; Lo (Q)

In Lemma 2.1.10 we have shown that BV () is the dual space of a Banach space ).
The application of Theorem 2.1.14 yields

1 1
LP(0,T; BV(Q)) = L (0, T; ()",  with —+ — =1,
p P
and with the same argumentation we get
1,2 - —1,2/0\\* o1
L9, T WI(Q)) = L1 (0,T;WI3(@)),  with — + — = 1
q q

Since both spaces are duals, an application of the Banach-Alaoglu Theorem 2.2.16
yields the compactness in the weak-* topology. O

Lemma 5.2.4. Lower semicontinuity of the general TV-L? model

The TV-L? energy (5.10) is weak-* lower semicontinuous.

Proof. It has been shown that norms and affine norms are always convex (see 2.2.9).

Convexity holds for arbitrary exponentials larger than one, thus [[Ku — f“i2(g) and

HVUH%‘IQ(Q) are convex for ¢ > 1 (see 2.2.9). Convex functionals on Banach spaces have

been proven to be weakly lower semicontinuous (see Lemma 2.2.13). Due to the reflex-

ivity of L? we directly obtain weak-* lower semicontinuity.

Furthermore, we have shown that TV is weak-* lower semicontinuous (see Lemma

2.2.14). This property holds for exponentials p of TV satisfying p > 1.

The lower semicontinuity also holds for sums of lower semicontinuous functionals (2.2.12),
which finishes the proof. O

Finally, the most challenging point is to show the convergence of the constraint

D(uk, ’Uk) l> D(U, ’U).
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The major problem arises from the product V - (uv) (continuity) resp. Vu - v (optical
flow) in the constraint. Since both factors are bounded (in L resp. BV space) we can

only derive weak convergence
ur — u, UV — 0,

but a product of weakly convergent sequences does not necessarily converge to the

product of their individual limits:
V- (ugvg) - V- (uv), Vug-vg—» Vu-o.

A counterexample can be found in [68]. To achieve convergence we need at least one of
the factors to converge strongly, but this can not be deduced from boundedness directly.

A way out gives the Aubin-Lions Lemma 2.1.16, which yields a compact embedding
LP(0,T;X) CcC LP(0,T;)),

and hence strong convergence in ), if uy is bounded in LP(0,7; X') and Jyuy, is bounded
in L9(0, T; Z) for Banach spaces X CC Y < Z. Applied to our case we set X = BV (Q)
and Y = L"(Q2). The first goal is to derive a bound for O,u in some Lebesgue space
L™(0,T; Z), which is given by the following lemma:

Lemma 5.2.5. Bound for 0,u
Let Q C R* uw e LP(0,T; BV(Q)) and v € LY(0,T; W'?(Q)). Let furthermore be

v < e <oo ae in Qx[0,7].

1. Mass Preservation:

For u, v solving the continuity equation
Ou+V - (uv) =0
we have

O € LP(0,T; W~ H2(Q)).

2. Optical Flow:
Let furthermore V -v € LP'*(0,T;L%*(Q)) with 2 + L = Lk* > 1, L +1 =

vl
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1, }—17 + :z% =1 and let u, v solve the optical flow equation

Ou+Vu-v=0.

Then we have

dpu € L#e1(0, T; L7 (Q)).

Proof.

Mass preservation:

Our goal is to show that d,u, solving the continuity equation, acts as a bounded linear
functional on LP" (0, T; W12(€2)), thus being an element of the dual space LP(0, T; W ~1%(Q))
(see Theorem 2.1.14 for details about duality in Bochner spaces).

We write down the weak form of the continuity equation with some test function

¢ € LY (0,T; WH(Q))

T
/ /@ugpdxdt / / (uv)pdadt = / /uv Vpdzdt.
0o Ja

Here the boundary term vanishes, because we have zero flow towards the boundary of
(2. This leads to:

OQupdrdt| = uv - Vipdrdt

/ /|u’u V| dzdt
< u“dx : /v-Vgdem>2dt 5.12
[ ([ (v 622

r )
< ) (Vo, V) dz ) di
< | ||u||L2(/Q<v v) (V. Vo) )
CS

7 )
< A Ve v de)
< [ s ol (/ (V. V) )

Holder

T
- / lall o 0]l e [Vl

T
<o [ ulla ol
0
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S ( / ()7 dt)

Holder

1
3

( [ el dt)p

< ¢y ||U||Lp(o,T;L2) ||<P||Lp* (0,T;W1.2)

S =

Due to the continuous embedding of BV (Q) into L*(Q2) (for 2 C R?, see Theorem
2.1.22), with Lemma 2.1.23, we get the continuous embedding

LP(0,T; BV () = LP(0,T; L*(R)).
Thus,
T
(Oru, @) == / /Qatu‘ﬂ dzdt < Clel[ 1 (0,T;W12) »
0

and Oyu is a bounded linear functional on LP" (0, T; W1%(Q)). Consequently we get

Oy € (LF" (0, T; WH2(Q)))* = LP(0, T; W12(Q)).
Optical Flow:

For the optical flow equation we proceed in an analogous way and write down the

constraint
o+ Vu-v =0,

resp. its weak form

T T
/ / Oupdrdt = / / uV - (vy) dzdt.
0o Ja 0o Ja
The estimates are quite similar to those for the continuity equation:
T T
/ / Oyup dzx dt / / uV - (vp)dedt
0o Jao 0o Ja
T
S/ / [uV - (vy)| da dt
0o Ja

é,,/OT (/QUde); (/Q(V-(vgo))zdx)%dt

Holder

~ [l ([ o900 Vo2ar) ar
0 Q
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T 3 3
< w0 V-fvzdx) —|—</v-V 2dx) dt
=l | ([ o9 -0 (092
Mink.
T 1 T 1
— [l ( / w-v)?dx) as [l ( / <v-w>2dx) at
\0 Q . \O Q .

' '

(@) (i4)

An estimation for part (ii) has been shown in the former part (see 5.12), so we proceed

with an estimation for part (7):

[ s ([ <w-v>2dx)édt = [ ([ @0 dx)édt

T
< / lall o 11V - 0l o 10l oue

~~
r b A\
(/0 (HUHLz)”dt> (/O UV - vl e llpll 2 )P dt)

older
1

just

{I/\

Holder

<I/\

Holder

< HuHLp(o,T;m) IV - UHLP*S(O,T;L%) ”SDHLp*s*(o,T;L%*)

Combining the estimations for both parts we obtain

T
/ / Oyup dx dt
0o Ja

< HUHLP(O,T;I}) ||V ’ UHLP*S(O,T;L%) ||90||Lp*s*(o,T;L2k*)

+ HUHLP(O,T;LQ) ||v||LP*S(O,T;L2) ||%0||Lp*s*(0,T;W1»2)
< HUHLP(O,T;m) V- UHLp*s(o,T;L%) ||<P||Lp*s*(o,T;L2k*)
+ HUHLP(O,T;L2) HUHLP*S(O,T;LQ) HSOHLp*s*(o,T;L%*)

< (V- ”HLP*S(O,T;L%) + ||”||LP*S(0,T;L2)) “uHLp(O,T;LQ) HSOHLP*S*(O,T;L%*) )
In the first inequality, we used the embedding
Wh2(Q) — L*'(Q), VEk* < co.

The sum of the first terms is bounded because of the assumptions made above. A

T T
*s £ *s* —
HUHLP(O,T;L2)(/ IV - vl p2e)” dt)”(/ (el pars )7 > dt) 7
0 0
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bound for u follows again from the BV (2) embedding (2.1.22) and we conclude

o) = [ [ dupdrdr < Cloler o
Thus, d;u forms a bounded linear functional on LP"¢" (0, T; L**"(2)) and we end up with
€ (L7 (0, T; L% (Q)))" = L¥=1(0, T; L#1(Q)).
[

Having deduced bounds for O,u we are now able to apply the Aubin-Lions Lemma
2.1.16 with the following theorem:

Theorem 5.2.6. Compact embedding for u
Let be Q C R? v € L0, T; W'%(Q)) and furthermore for ¢, € R™

|v]|, < e <oo ae inQx[0,7T].

1. Mass Preservation:
The set

{u:ue LP(0,T; BV(Q),u + V - (uv) = 0}
can be compactly embedded into

LP(0,T; L7(S2)), for 1 <r <2

2. Optical Flow:
Let furthermore V-v € LP"*(0,T; L*(2)) with 1 + % =1 = %4—# and s, k* > 1.
Then the set

{w:ue LP(0,T; BV(Q)),u + Vu-v =0}

can be compactly embedded into

*

<
"o —1 ="

LP(0,T; L7(Q), fo <2.

Proof.
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L7(Q) —— W2(Q)

dualI Tdual

L7 (Q) «—— W(Q)

Figure 5.1.: Dual embedding for L"(2)

Mass Preservation:

We have a natural a-priori estimate for w in LP(0,7; BV (€2)). Using the weak formula-
tion of the continuity equation we previously deduced a bound for d;u in LP(0,T; W ~12(Q))
(see Lemma 5.2.5). Speaking in terms of the Aubin-Lions lemma (see 2.1.16) we set
X = BV(Q) and Z = W=12(Q). The crucial point is to find a proper r such that
Y =1L"(Q) and

BV(Q) cc Y — W 13(Q).

Embeddings of BV (Q2) into L"(€2) are compact for r < —"+ (see Theorem 2.1.22), where
n is the spatial dimension. Applied to our case of dimension 2 we obtain r < 2 as a
first constraint. Now we have to ensure that L"(€) embeds continuously into W~12(Q).
This can be shown by a dual argument. L" is the dual space of L™ (Q), satisfying
I+ L =1, and W %(Q) is the dual space of W"*(Q2). Finding an embedding of
Wh2(Q) into L™ () implies the opposite for the dual spaces (see Figure 5.1). Using
the embedding theory for Sobolev spaces, W2(£2) can be continuously embedded into
L™ () for 2 < r* < oo (see Theorem 2.1.19). Translated to the dual exponent r it

requires 1 < r < 2. Combining both restrictions to r we obtain
BV(Q) cc L"(Q) — W t(Q), forl<r<2.
Applying the Aubin-Lions lemma yields the compact embedding

{u:ue LP(0,T;BV(Q)),u, + V- (uv) =0} cC LP(0,T; L7 (Q)), for1<r <2,

Optical Flow:
We recall the arguments above and directly get an a-priori estimate for « in LP(O T BV(Q))

From the optical flow equation we moreover deduced a bound for dyu in L1 e (0,7 L= (02)).
Using the BV-embedding we obtain ) = L"(2) for r < 2 (see Theorem 2.1.22). For
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the embedding L"(Q2) — L (2) we obviously need r > 52— It follows

2k*
<r<?2

BV(Q) cC L'(Q) — LE=1(Q), for 3o <

Another application of the Aubin-Lions lemma yields the compact embedding

*

<r<o
o —1 ="

{u:ue LP(0,T;BV(Q)),u + Vu-v =0} CC LP(0,T;L"(Q2)), for

O

Let us also mention that limpg«_, . % =1, so choosing a larger k* is favorable

Example:

Let us give a concrete example for all the constants we previously defined. We start
setting p = ¢ = 2. What is a suitable embedding for functions solving the continuity
equation or the optical flow equation? This is fairly simple to answer for the continuity
case. We get i.e. a compact embedding L*(0,7; BV(Q2)) to the fractional Bochner
space L2(0,T;L2(Q)). This means that for every ¢ € [0,7]u lies in the fractional
Lebesgue space L2 (Q).

For the optical flow case we additionally need a bound for the divergence of v. This
bound should be as low as possible, meaning that the exponentials in L?"*(0,T; L?*(9))
should be as low as possible. We directly get p* = 2, because p* is the conjugate of
p = 2. The variable s is connected to the bound for O,u, so we are fairly free here, but
set s = % The last variable states k, which is set to % This implies £* = 3. This

results in the assumption V - v in L3(0,T; L*(Q2)) as a bound. Consequently, we have

2]3571 = g < r < 2. Therefore r = % is a valid choice and we again get a compact

embedding L2(0,T; BV (£2)) to the fractional Bochner space L2(0,T; L2 ().

With this compact embedding result we conclude with strong convergence for wu to
u and are now able to show convergence of the product Vuy - v, resp. V - (ugvy), to

the products of their individual limits Vu - v, resp. V - (uv).

Lemma 5.2.7. Convergence of the constraints
Let be Q C R? wy, € LP(0,T; BV(Q)) and v € L0, T; W'?(Q)). Let furthermore be

|v]|, < e <oo ae inQx[0,7T].
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1. Mass Preservation:
Then

Owu, + V - (Uk'Uk) — Ju+ V- (U’U)

in the sense of distributions.

2. Optical Flow:

Let furthermore
V.v e LP5(0,T; L**(Q)),

with & > 1,5 > 1, >+ L = L.
Then

owup + Vuy - v — Ou+ Vu-v

in the sense of distributions.

Proof. For the following proof let be ¢ € C§°(Q2),ur, € LP(0,7; BV (Q2)) and v, €
L0, T; W'2(Q)). For the time derivative J; in both constraints we simply calculate

T T
/ /(atuk—atu)godxdt:—/ /(uk—u)ﬁtwdxdt%(].
0o Ja 0 Jo

Since test functions are dense in the dual space of u, we directly get convergence from

the weak convergence uy — u.

Mass preservation:

We want to prove the convergence result
V- (uk'vk) -~ V- (U’U),
and start by writing down the weak form of the equation as
T T
—/ / (V- (upvr) = V- (w)) pdadt = / / (upvg —uv) - Ve drdt
0 Jo 0 Jo
T
= / / (upvy, — vy, + v — uw) - Ve da dt
0 Jo

:/OT/Q((uk—u)vk—i—u(vk—v))-V(pdxdt
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T
< / i — ullr lJor - Vepll e
0
—i—/u(vk—v)-V(pdxdt
Q

< lup — “HLp(o,T;Lr) v - VSOHLP* (0,T;L7*)

T
+/ /u(’vk—v)-Vgodxdt
o Jo

< Cluy, — UHLP(O,T;LT)

)
T
+/ /u(vk—v)-Vgodxdt.
()

We have proven the compact embedding
{u:uwe’(0,T;BV(Q)),u + V- (uv) =0} cC LP(0,T;L7(2)), forl<r<2.

Hence, for the bounded sequence w, € LP(0,T; BV (€2), we obtain u, — w strongly in
LP(0,T; L") and (i) tends to zero as k — oo.

For part (i7), the boundedness of v gives us v € L>([0,7] x Q) and a-priori weak-*
convergence (see Remark 4 for details). Consequently, for convergence of (ii) we need
uV € L'([0,T] x ). Due to the compact embedding BV () CC L'(Q) (see (2.1.22))
and p > 1 we get

LP(0,T; BV(Q)) < LP(0,T; L}()) — L'(0,T; L'(Q)).

This gives us u € L'([0,7] x Q) and since test functions are dense in L' we end up
with the required uVy € L'([0,T] x ). We conclude

T
lim ]/ / upv, —uvdrdt| < lim C flug — ull oo ppry +
0 Q k—o00

k—o00
T
\/ /u(vk—v)-Vgodxdﬂ—O.
0o Jo

Optical flow:
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We begin with an analogous argumentation and estimate

T T
—/ /(Vuk~vk—Vu-v)<pdxdt:/ /ukV'(vak)—uV-(wv)dxdt
o Jo o Jo

— /T/ uV - (pvg) — uV - (pvy)

+uV - (pvi) —uV - (pv)dedt

/ / u —u)V - (pog)

+uV - (p(vg —v))dadt

// (up — u)V - (pvy) dodt
//uV o(v, —v))dedt.

(i1)

Part (i) can be estimated as follows:

T
//uk—u govk)dxdt</ luk, — ul|
0

< fJug — UHLP(O,T;LT)

v ' (('pvk) r¥* dt

‘V : (‘pvk)HLp* (0,T;L7™)

= [Juy — UHLP(O,T;LT) [V - v + vk - Voo | e (0,T;L7)

< fJug — UHLp(o,T;Lr(Q)) '
([[V - o] = oL @) T vk - Vool| (0,T;L7* (Q)))

-~ -~

(i.1) (4.2)

To start with (i.1), we have to show a bound for this term and therefore, have to argue

with the boundedness of V - v. From the assumptions above we a-priori get
V-v e LP5(0,T; L**(Q)).
Consequently, we have to prove that
LP5(0,T; L**(Q)) — LP (0,T; L™ (Q)).

Speaking in terms of the embedding theory of Lebesgue spaces we need p*s > p* and
2k > r*. Since s > 1, the first inequality is obvious. At this point it is important
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to keep in mind that r and r* are Holder-conjugated and the embedding theorem for

optical flow allows only 251’“; < r < 2. We can translate the condition 2k > r* as

follows:

2k* <
r
E*+1—

2k
2k27“*<:>2k2Ll<:>2kr—r22k<:>(2k—1)r22k<:>m§7“<:>
7"‘_ J—

* 2% 2k*
Now for £* > 2 we have P < o

2,35—; < r < 2. On the other hand, for £* < 2 we have k?’il > % In this case we set

r = 3/2 and obtain ;LH <raslongas 1 < k* < 2. This yields the required bound for

Vv in LP (0, T; L (2)).

Part (i.2) has been discussed in the mass preservation case. Following the arguments

and r can be chosen arbitrarily as long as

for strong convergence of u from above, we conceive that (i) tends to zero.

Estimating part (ii) again requires Lebesgue embedding theory, since

~~

(i4).2

T T
/ /uV~(g0(vk—v))dxdt:/ /pr~(vk—v)+u(vk—v)-Vg0dxdt,
0 Q 0 QN ~~ ~ N -~
(i9).1

and we see that (i7).2 has already been discussed in the mass preservation part. In

(74).1 we have the bounded sequence
V -y, € LP5(0,T; L*(Q)),
thus, weak, resp. weak-*, convergence for
up € LP97(0,T; L (Q)).
Since k > 1 we estimate
2k

%) = 2 Vk>1
(2k) 51 < Vk > 1,

which gives, using the embedding theory (see Theorem 2.1.22), the continuous embed-
ding

2k

BV(Q) < Lz-1(Q) = LY (Q) Vk > 1.
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We moreover calculate

(O L= (I ..
prs—1  -Bs—1 ps—p+1

and use this result for the inequality

ps

— < peps<ps—ptpes<ps—ptles—1<ps—1)s1<p.
ps—p+1

Since p > 1 is one of our main assumptions we continue with the embedding

LP(0,T; BV(Q)) < LP(0,T; L1 (Q)) = LP(0,T; LEY(Q))
< Lot (0,T; LW (Q)) = L& (0, T; L9 (Q)).

Consequently, we have v € L®")" (0, T; L2 (Q)), which is the dual of L?"*(0, T'; L?*(Q)).

Due to the weak-* convergence of V - vy part (i7).1 tends to 0 as k — oo.

Putting all arguments together we end up with convergence of the constraint

T T
lim / / (Vug - vy — Vu-v) pdedt| < lim / /(uk —u)V - (pug) dz dt
k—o00 0 Q k—o0 0 Q
T
+ lim / / uV - (o(vg —v))dazdt
k—oo | Jo Q

< Oklggo [t = vl oo i)

T
+ lim / /ug@V (v —v)dzdt
o Ja

k—o00

T
+ lim / /u(vk —v)-Vepdzdt
0o Jo

k—o00

=0.

We are finally able to use the fundamental theorem of optimization and prove existence
of a minimizer for Model (5.2.1) and Model (5.2.2).
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Theorem 5.2.8. Existence of a minimizer for the TV — L? model
Let Q CR? p,q > 1,p = min {p,2},T € R" and consider the TV — L? energy

1 2 g p s g 2q
Jwv)= [ SIKu—flydt+a [ |u( 0, dt+ D [ [[Vo( 0] d
0 0 0
Let furthermore be

vl <ew<oo ae inQx[0,7] and K1, #0 Vt € [0,77].

Mass Preservation:

Then there exists a minimizer (@, ?) in the set

{(u,v) cu e LP(0,T; BV(Q)),v € L0, T; W"*(Q)), 0u + V - (uv) = O} :

Optical Flow:
Let furthermore be s,k > 1 and p* such that % + }% = 1. Then there also exists a

minimizer in the set

{(u,v) w € LP(0,T; BV(Q)),v € L0, T; W'*(Q)),
V-wv e LP3(0,T; L*(Q)), 0u + V - (uv) = 0}.

Proof. We haven proven all requirements for the fundamental theorem of optimization
(Theorem 2.2.17). Compactness of the sublevel sets with respect to the weak-* topology
follows from Lemma 5.2.3 and the energy has been proven to be weak-* lower semicon-
tinuous (Lemma 5.2.4).

Finally, for the sequence (ug,vy) both constraints converge in a distributional sense
(Lemma 5.2.7). It follows that Model 5.2.1 and Model 5.2.2, equipped with the gener-

alized energy (Equation (5.10)), have a minimizer. O

Uniqueness

The energy for mass preserving TV-L? model and optical flow TV-L? model is convex.

However, we are not able to prove uniqueness, since the continuity equation

Ou+V - (uv) =0



162 5 Combined Image Reconstruction and Flow Estimation

and the optical flow equation
8t +Vu-v=0

are both non-linear.

5.2.3. Numerical Realization

The numerical realization is divided in three steps: the primal-dual framework, the dis-
cretization and the algorithm. First, the general minimization problem with objective
variables v and v is divided in two separate minimization problems. Starting with the
problem in wu, the primal-dual framework of Chambolle and Pock [26] is applied, which
leads to a short and easy to implement numerical scheme. A similar scheme is then
deduced for v. After that we proceed to the discretized counterparts of u and v and
to explain a discretization strategy for the involved gradient operators. The section
ends with an algorithm that minimizes the proposed variational energies written in

pseudocode.

As a first step we transform the constrained optimization problems in Models 5.2.2
and 5.2.1 into unconstrained ones using an L' penalty term with a weighting parame-

ter . This gives us the unconstrained TV — L? optical flow model

T
) 1
argmln/ 5 15w — fll5 + o | Vaull, + g IVovls + 7w+ Vou - vl dt,  (5.13)
0

u,v

resp. the unconstrained TV — L? mass preservation model

T
: 1 2 s 2
argmm/ 5 [ Ku— fll5+ a||Vaull, + 5 IVevlls + 7 ||ue + Vs - (uv)“l dt.  (5.14)
u,v 0
Since the optical flow model is more easily to handle from a computational point of
view, we start with this model and afterwards present an adjusted strategy for the mass

preservation model afterwards.

The implementation has been done in MATLAB. In our application it turned out that
the motion estimation part is always the bottleneck concerning costs of time. Conse-
quently, this part is ported to a C™* mex file and parallelized using OpenMP, which
turns out to be faster by a factor of approximately 50 compared to the MATLAB

implementation.
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Realization of the 7'V — L? Optical Flow Model

Primal-dual Framework
Due to the dependence of energy (5.13) on u and v we propose an alternating min-
imization technique. First we minimize with respect to u, then with respect to wv.

Consequently, we get the scheme

T
1
uFt = arg min/ 3 | Ku — I3+ || Vaull, +7 ‘ g + Vau - ka1 dt, (5.15)
u 0
T
v = arg min/ ‘ uf ™+ Vot ’UH + £ |V |5 dt. (5.16)
v=(v1,v2) JO 1 27

Problem in u:

For subproblem (5.15) we apply the primal-dual Chambolle Pock algorithm [26] (see
Section 2.3.1 for a detailed explanation) to achieve a fast and robust algorithm that is
able to tackle the involved discontinuities in the L!-terms. We inherit the previously
introduced notation from Section 2.2.6. Due to the fact that an operator is applied to

u in every of the three terms we put the whole energy into the dual part and define

dt,

T
1
F(Cu) = / S I = I3+ o [l + (18, 08) - (s )|

with an underlying operator

and

The adjoint operator of (' is directly given by

C'y=K"y1 — V- y2 — (0(ys1) + 0x(ysz2) + 0y(ys3))-

We mention that for the sake of generality we do not specify the linear operator K

(which can for instance be chosen as convolution or inpainting). Incorporating the
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primal-dual formulation into the Chambolle-Pock scheme we obtain:

gt =yl + o0u (5.17)
I4+1 . 1 ), 2
Yy = argmin 5 Hy — ) + = lyllz + oy, f)dt (5.18)
y 0 2 2
I+1 : 1 - 1a1])?
Yo' = arg min / 5 Hy — 1 , + oadpr=)(y/o) dt (5.19)
y 0
T 1 g I+1 2 ,.y
yitt = 5" — o arg min / 3 |[v— & + = H(l,vf,vg) : yH dt (5.20)
y 0 o o 1
T 1 2
! = arg min / 5 Hu — (ul — 7O y"H|| dt (5.21)
u 0 2
't =t g(u Tt — . (5.22)

The subproblem for y; in Equation (5.18) is equivalent to the following problem (see
Section 4.5.7 for details):

. 1 = 14+1 AT
arg min éHy—(yl —Uf)H + 5 lyllzdt o
y 0 2 2

Since this is a linear L? problem, the solution can be directly found as

~[+1
I+1 _ Y1 g f

h 0—{—1_0+1

The subproblem for ¥, has been extensively discussed in Section 4.5.4 and we get as a
solution the point-wise projection of 9" onto [—a, a:

+1 _

Yo 7Ta<y~2l+1)'

For the problem in y3 we are able to apply the affine linear L' Lemma. Therefore, we
define:

B=(Lokh), 18I° = /1 +vkvt + ke, fly) = (1,0f.08) -y,
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Then the solution to the inner problem is given by

l
B if f(%) < =28
y=2_ 10 it f(B) > 28|
’ sEla
~TeE - else

The solution for u/*! can be calculated directly. The optimality condition reads:
u— (ul _ Tc*yl—l—l) L 0,
and for the solution we get
u=u —7C* YT

Summing up our results we obtain for static v* the following scheme, which for [ — oo

converges to the solution of problem (5.15), namely u**?

,glJrl _ yl 4 O_C,al

l+1 l+1 o O'f
! o+ 1
yé-i-l o 7Ta(y~21+1)
8 it f(E) < -2 |8
gt
Yt =<8 if f(5-)> 28]
141
(e y3
—f(\lﬂ(lrﬁ )8 else

ul—l—l — ul o Tc*yl—H

@t = oy A — o)

Problem in v:
A similar strategy can be used to solve problem (5.16), namely the update v*™!. We
mention that, due to the alternating minimization scheme, u**! from the previous

scheme is available. We decouple the regularization term into the dual functional and
define

F(Cw) /—Hv w2 dt,
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with

C'v _ Vz 0 U1 ’ C*y _ V$ 0 U1 '
0 V./ \v 0 Vu ) \»
k+1

The optical flow part is linear in v (the derivatives of u**" are static) and is put into

the primal functional as follows:

Glv) == /OT\

Calculating the dual functional F™ corresponding to F' yields:

uf ™+ Vit || dt

1

F(y) = % lyll?.

Now, we are able to write down the primal-dual problem as:

T
arg min arg max/ ‘ uf ™+ ottt UH + (v, K"y) — % ||yH; dt.
0 1

v y
We arrive at the following scheme:
g =y + oC' (5.23)
1
¥+ = arg min / L Hy _ g
y 0o 2 2

2 oy 2
— dt 5.24
+ 2 gl } (5.20)
1
v = arg min / 3 Hv — (v — rCry)
0

2
—i—T‘uf—i-quk-v
2

v

dt} (5.25)
1

'Dl+1 — vl+1 _|_ 0(,Ul+1 _ ,Ul) (526)
The subproblem in ¥ is a linear L2-problem. We calculate the optimality condition

~ ay |
y-9"+ Fy =0,

and see that the solution is given by

I+1 B ~1+1

Y T B0

The optimization problem for v is a vectorial affine linear soft shrinkage (see Lemma
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2.2.29). We define
o= vl = 7CYH, f(0) = b 4 Vv, Bim Vb,

the solution is then given by

B i f(8) < -7 |8
v=0+{ -8 if f(®) > 78|

_I®8
[N

else

Combining our efforts, this leads to the following scheme:

g+ =y + oCo!

I+1 _ B i
B+o

DIt — ol — TC’*yl“

Yy

™ it f(®) < 7B’

vV =0+ 18 if f(®) > 7B
g e

P = ot 4 (vt — o)

We are then able to extract the solution of Problem (5.16) as v*™! = lim;_,, v’.

Discretization and Algorithm
We recall the underlying energy:

T
1 2 B 2
| 51— 118 + oIVl + S U903+ e + ool

For the spatial regularization parts ||V, ul, and ||V, v||5 we use forward differences to

discretize the involved operator V,, respectively backward differences for the adjoint

operator.

First, we assume the underlying grid to consist of the following set of discrete points:

{(i,j,t):i=0,....,n5,5=0,...,my,t =0,...,0}
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The resulting discrete derivatives for v' and the corresponding dual variable y are

calculated as follows:

v(i+1,5) —v(i,j) ifi<n,

Ux<ivj =
0 if i =n,
il v(i,j+1)—v(i,j) ifj<n,
,Uy(Z?]):
0 if j =n,
.
y1(i,7) — (i —1,5) ifi>0
Voey(i,g) = yili,j) ifi=0
[ —wn(i—1,)) if i = ny,
ya(i,7) — yali,j — 1) if j >0
+ 9 v2(2,7) if j=0
\_y2<i7j —1) if j =n,.

The discrete derivatives for the regularizer of u have the same structure.

Besides the discretization for the spatial regularizers ||V, ul|, and ||V, |3 we have the
coupling term |[ju; + V,u - v||;, which is the more challenging part. Fixing v as a con-
stant, u; + V,u - v has the form of a 2-dimensional transport equation. It can be shown
that forward differences are impractical, because they require very small timesteps 9.
For transport equations we usually use an upwind scheme (see [41]), where depending
on the sign of v a forward or backward difference is chosen. This yields a stable dis-
cretization for the transport equation.

Taking now the perspective of v with fixed u the coupling term ||u, + V,u - v||; acts
as the data fidelity for flow estimation. Unfortunately, we observed that an upwind
scheme for u generates artifacts in the resulting velocity field and therefore, should not
be used for motion estimation. A common discretization technique are cell-centered
gradients for u, as already proposed by Horn and Schunck in their original paper [43]
(see appendix A.2 for a detailed discretization scheme). On the one hand they produce
nice velocity fields, but on the other hand they do not yield a stable discretization for
transport equations and are consequently not suitable for our problem.

A way out is given by a mix of forward and central differences. Using forward differences
for the time derivative u; and central differences for the spatial derivatives V u yields a

stable discretization of the transport equation and produces reasonable velocity fields.
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The adjoint operator then consists of a backward difference for the time derivative and
a central difference for the spatial part. We mention here that the central difference is
self-adjoint.

For discrete U given on the grid above we get the following discrete derivatives for the

forward operator:

u(i»j7t+1) *’U;(Z‘,j,t)

Ut@.?j? t) = o .
0 if t = n¢

1ft<nt

U(i+1,j,t) 7U(i*1,j,t)
20z

if 2> 0and 7 < ny,
0 ift=0o0r7=n,

(i,j+1,t) 7”(7;»]'71 7t)
20,

,J>t)
{O if j=0o0rj=mn,

(1,
if j >0and j <n,
(7

and for the adjoint operator

(i,j,t)—;l;(i,j,t—l) lf t > O

0 ift=20

u(i+17j7t) 7U(Z‘*1,j,t)
205

(i, 7,1
ifi>0and 7 <n,

Z g5t

0 ifi=0o0ri=n,

w(i,j+1,6)—u(i,j—1,t)

uy(inj? t) = 26y
0 ifj=0o0rj=nmn,

if j > 0and j <n,

As a stopping criterion for both minimization subproblems we use, similar to the motion
estimation algorithms, the primal-dual residual (see Definition 4.5.2) as a stopping
criterion. Since the main algorithm only consists of the alternating minimization with
respect to u and v, we are unable to use the primal-dual residual here. Instead we

measure the difference between two consecutive iterations k and k + 1 by

uk — uk+1| + },Uk _ okt

219

ETTmain *—

and stop the main iteration if this difference falls below a threshold e.

We end up with the following pseudocode:
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Algorithm 9 Joint TV — L? Optical Flow based Motion Estimation and Image Re-
construction
Joint TVL2OpticalFlow f, o, 5, v, K
v,u < 0 € < threshold
UOldM < U
Voldm < U
y,u < 0 €, < threshold
Uold < U
Yy ytoCuu
Y1 (,y—jl —of
Yo < Yo —0S(£,9)
ys < solveAf fine(ys, v)
u+—u—1Cy
U 4 2u — UO1d
Y,V < 0 ¢, < threshold
Void < v
y<+—y+oCo
Y= Bfwy
v+—v—1CY
v < solveAf fine(v)

UV < 20 — Vo
|lu—uoiam |+v—voiam|
€ < 219

v
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Realization of the TV — L? Mass Preservation Model

Primal dual Framework

For the realization of the mass preserving variant we propose a similar strategy as in
the optical flow case. The minimization is done alternatingly with respect to v and wv.
Since constant terms can be neglected in the functional for given u* v* this leads to
the subproblems

up 4+ V- (uwo®)|| dt, (5.27)

T
, 1
W —argmin [ 31 Ku— I3+ |Vl +9 1
0

u

T
v = arg min/ ‘
v 0

Problem in wu:

ALY, (“’“*“’)Hl v % I1V,0|2 dt. (5.28)

We begin with the subproblem in Equation (5.27). Since every term in the subproblem

for u contains an operator, we put the whole functional into F' and arrive at

T
1
Fiw) = [ IKu=fI3+al Vol +9)

u + Vg - (uvk)H1 dt,

with
K
Cu = Ve u
(81‘/7 Vzv [)
and
G(u)=0

The adjoint operator of C'is now given by

C'y =Ky —Vy-y2 — (0(ys1) + 0u(ys2) + Oy(yss) — I(ysa)).

Applying the Chambolle-Pock method gives us a new iteration counter [ and the fol-

lowing scheme:

g =y + oCT (5.29)

Y

T
. 1 Sl? o
Yt = arg min {/ 5 Hy - ?/1l+1H2 + ) lylls + oy, ) dt} (5-30)
0
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+1 _ . 1 _]?
it = asguin{ "Ly -
y 0o 2 2

‘ +UO£(SB(L0<>)(y/Oé) dt} (531)

2
~[+1
Y3

1
yé“ = y:l,fl — g arg min —
0 o

" 2

T 5
u'™' = arg min / = Hu — (ut — 7C*y" )
0 2 2

u

+ g y- (1, 00,02,V -0)||, dE p (5.32)

dt} (5.33)

al—l—l _ ul—H + Q(Ul—H . ul) (5.34)

Let us observe that this yields nearly the same scheme as in the TV — L? optical flow
model from the previous section. Consequently, we inherit all solutions and finally

obtain the following fairly simple iterations:

,lerl — yl 4 O'Ol_bl

o i gt —of
! o+l
ot = ()
—B i) < -2|8
gt =98 i) > 28]
S
% else
Wt =yt — Oyt
AL = L g(ut — ).
The solution for (5.27) can be extracted as v = lim; ., u'.

Problem in v:

For v**! we have to solve

T
arg min / ‘
v 0

Speaking in the context of pimal-dual problems we shift the whole functional into the

uf ™ + v, - (Wt H +—HV v||3dt,.

dual part F', since both terms contain operators applied to v. Consequently,

F(Cv) := /OT’

uf ™t + v, - (Wt H +—\|V v||3 dt,
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with the linear operator C' given by
Vs 0
co=| o v, <U1> .
v
aruk—&-l ayuk-H 2

We want to mention again that (0,u)(vq) := 0,(viu). Calculating the adjoint operator
to C' gives:

Now, we get for the dual F™*:

T
F*(y) 3:/0 %Hyl,ZHz‘i‘éB(Lw)(y?)) (up™, ys) dt.

This yields the primal-dual formulation:

T
. . gl 2
arg min arg max)/ (v,C"y) — 28 ||y1,2H2 — 8oy (y3) + (uf ™, ys) dt.
0

v y=(y1,y2,y3

Incorporating the primal-dual formulation into the Chambolle-Pock methods gives us:

g =y + 00w (5.35)
l 1 ] Y 2
oty = argmind [ 2y =+ Z iz ar (5.36)
2

Yot = arg min { Y- ?]éHHQ + 0p(r=)(y3) — (ul ) dt} (5.37)
2

DREE argmln / v— (vl — 7C*y) (5.38)
0 2

o =o' 4 (v — ) (5.39)

The subproblems for y; » are linear and their solution can directly be calculated as
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For the third proximity problem we refer to Section 4.5.4 and get as a solution the

point-wise projection of 7'"! onto [—1, 1]:

yst = m (gt
We end up with the following scheme:
gt =y + 00w,
1 _ B
Y12 [ 0791,2 )
st = m(m),
vt =l — 7C*y,

’l_)H_l — vl—i—l + 9(,Ul+1 . ’Ul).

kL — 1im, o v

As before, we extract the solution for Equation (5.28) as v
Discretization and Algorithm
For the discretization of the underlying operators, a similar strategy as for the L?—TV

optical flow model can be used for the TV — L? mass preservation energy
T
1 2 p 2
3 1w = fll; + @ [Vaully + 5 [ Vaolly + 5 [Ju + Ve - (o) dt.

The spatial regularization terms ||V, ul|, and ||V,v|3 are discretized with forward dif-
ferences, which have been defined in the previous discretization section. The continuity
equation u; + V,, - (u'v) also represents a transport equation and we use the same com-
bination of forward and central differences to discretize the involved derivatives. We

refer to Section 5.2.3 for details. This leads to the following pseudocode:

5.3. Simultaneous 7'V — T'V Image Reconstruction and
Motion Estimation

5.3.1. Definition and Motivation

A second model for joint motion estimation and image reconstruction is motivated by
the fact that motion usually occurs as movement of whole objects. The underlying

velocity field contains regions of constant movement with jumps between object and
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Algorithm 10 Joint TV — L? Mass Preservation based Motion Estimation and Image
Reconstruction

e e
W 0 N DU R W N RO

Joint TVL2MassPreservation f, o, 8, v, K

v,u < 0 e < threshold
UOldM < U

Voidm < U

y,u < 0 €, < threshold
Uold < U

y < ytoCuu
yl%fﬁ—gf

Y2,3 < Y23 — US(Q%T’S7 %)

u+—u—1CY
U 4 2u — Uod

:y,0 < 0 €, < threshold
P Void < U

Yy +—y+oC,0

D Y12 5%0?/{,2

;Y3 < solveAf fine(ys, u)
v —v—1CkYy

DV 2v— Volud

lu—uoranm|+Hv—voram
€ < 210

)

background. This property favors the use of a total variation regularization for the

motion field wv.

For the image data u, we inherit the TV-regularization from the

previous chapter. Similar to the TV-L? models we discuss a mass preservation and an

optical flow model.

Model 5.3.1. Mass-preserving TV — T'V model

u,v

st. Qu+V-(uw)=0

T T T
argmin/ §|]Ku—f|]§dt+a/ |U(-,t)‘Bth+ﬂ/ ’v(-,t)’Bth (5.40)
0 0 0

in D'([0,7] x Q),

Model 5.3.2. Optical flow TV — TV model

u,v

Tl T T
argmin/ §HKU—fH§dt+Oé/ |u(-,t)\Bth+ﬂ/ jv(-, )|, dt (5.41)
0 0 0
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s.t. du+Vu-v=0 inD(0,T] x Q).

Similar to the previous chapter we assume corrupted image data f with additive Gaus-
sian noise. Furthermore, the image u and the velocity field v are now regularized
with the total variation. Mass preservation (Section 4.3) resp. optical flow constraint

(Section 4.2) act as a connection between image data and velocity field.

5.3.2. Existence and Uniqueness

From the analytical point of view the analysis of the TV-TV model is slightly different
from the TV-L? model. For the sake of universality we will analyze a more general
energy. For the following, let 1 < p,q € R. Then the general TV-TV energy is defined

as
"1 > ! » ’ q
J(u,v) = §HKu—fH2dt+Oz ju(- )%, dt+ 5 [ |l 8|5, dt. (5.42)
0 0 0

Existence

The first property to prove is again compactness of sublevel sets with respect to some

topology 7, which can be shown similar to the previous chapter (see Lemma 5.2.3).

Lemma 5.3.3. Compactness of sub levelsets of the general TV-TV model
Let

we LP0,T; BV(Q), wve L0, T;BV(Q), J(u,v)<a«a
and furthermore
|v]|, < ey <oo inQx[0,T] and K1, #0 Vte€[0,7].
Now, for (u,v) in the set
S(e) = {(u,fv) e LP(0,T; BV(Q)) x LU0, T; BV(Q)) : J(u,v) < c}
we have
||U||Lﬁ(o,T;BV(Q)) < ”U”Lq(o,T;BV(Q)) <c¢ with p = min{p,2}.

Consequently, S(c) is not empty and compact in the weak-* topology.
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Proof. Since the general TV-TV energy does not differ from the TV-L? energy in terms
of u, the compactness can be shown similar to Lemma 5.2.3.

From the general energy (5.42) we can directly deduce an a-priori estimate for v:

T
/ ()| By dt < @
0

Now some simple calculations give an adjusted estimate for v:

T
q
“v”Lq(O,T;BV(Q)) < ||U||qu(o,T;BV(Q)) :/0 H"’<'7t)HBV(Q) d

T T
< [ oy e+ [ 000y

T
§/ A1Qdt+a=c QT+ «
0

Combining the bounds for u and v, an application of the Banach-Alaoglu Lemma 2.2.16

yields the required compactness result in the weak-* topology. O

Lemma 5.3.4. Lower semicontinuity of the general TV-TV model

The general TV-TV energy (5.42) is weak-* lower semicontinuous.

Proof. Semicontinuity of the first two terms directly follows from the lower semiconti-
nuity of the TV — L? model (Lemma 5.2.4). Since the third term is simply another

BV-term, the same argumentation holds. ]

Again, the crucial part in the analysis is to prove convergence of the constraint. We
use the same strategy as in the analysis of the TV-L? model and recall the necessary

steps.

Lemma 5.3.5. Bound for 0,u
Let Q C R?,u € L?(0,T; BV(Q)) and v € L0, T; BV(Q)). Let furthermore

v <c<oo ae inQx[0,7].

1. Mass Preservation:

Then for u, v solving the continuity equation

Ou+V - (uv) =0
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we have

Opu € L#1(0,T; W12(Q)).

2. Optical Flow:
Let furthermore V- v € LP"*(0,T; L*(Q)) with  + = =1,k >1, 1 + 1 =1 and

let u, v solve the optical flow equation
o+ Vu-v=0.
Then we have:

dyu € L0, T; L7 (Q)).

Proof. The proof can be done similar to the proof for the TV — L? model (Lemma
5.2.5), since the argumentation relies on the a-priori bounds for v and V - v. Thus, for
v € L0, T; BV(Q)) we obtain the same boundedness result. O

Having deduced bounds for d;, we are now able to apply the Aubin-Lions Lemma 2.1.16

with the following theorem:

Theorem 5.3.6. Compact embedding for «
Let be Q C R* u € LP(0,T; BV(Q2)) and v € L%(0,T; BV(Q)). Let furthermore be

vl < ey <oo ae in Qx[0,7].

1. Mass Preservation:
The set

{u:we LP(0,T; BV(Q)),u + V - (uv) =0}
can be compactly embedded into

LP(0,T;L"(82)), forl<r<2.

2. Optical Flow:
Let furthermore V-v € LP"*(0, T; L*(Q)) with { + 7z = 1= 1 + - and 5, k" > 1.

k_*: p*
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Then the set
{u:ueL?(0,T; BV(Q),u + Vu-v =0}
can be compactly embedded into
LP(0,T; L"($2 f < 2.
(0,75 L"(Q)), 0r2k*_1_r<
Proof. The proof can be done similar to the proof of Theorem 5.2.6. O]

Lemma 5.3.7. Convergence of the constraint

Let Q C R uy, € LP(0,T; BV(Q)) and vy, € L9(0,T; BV (Q)). Let furthermore

v <c<oo ae inQx[0,7].

1. Mass Preservation:
Then

Opu + V - (upvg) = dyu+ V- (uv)

in sense of distributions.

2. Optical Flow:
Let furthermore V - v € LP"*(0,T; L**(Q)) with k,s > 1. Then

Oyuy, + Vuy, - v, — Ou+ Vu-v

in the sense of distributions.

Proof. We will just follow the proof of Lemma 5.2.7 and will argue in a different way

where necessary.

For the time derivative d,u no changes are needed for the proof and we directly proceed

to the

Mass preservation:

Writing down the weak form and doing some calculations led us in Lemma 5.2.7 to the
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equation

T T
—/ / (V- (uwpvy) = V- (w)) pdadt < C'ljuy — ull ooy +/ / u(v, —v) - Vododt
0o Jo N - > Jo Ja

® (i7)

This estimate can be derived in the same way here. Part (i) has already been discussed.
For part (ii) we can no longer use the W'? embedding, since v is now a BV function.
But for v € L*(2) we have the useful weak-* convergence result (see Remark 4 for
details). Due to the continuous embedding of BV into L' (see (2.1.22)) we have u € L'
and consequently uVy € L. Thus,

T T
/ / vi - (uVep)dedt — / / v (uVy)drdt
o Jo o Jo

and part (i) converges to zero. We conclude

T
/ / upv — uwo da dt
0 Jo

lim
k—o0

= 0.

T
/ /u(vk—v)~V<pdxdt
o Jo

< kh_{go Clug = ull oo ey +

Optical flow: In the proof for the TV — L? model, the weak form of the optical flow
constraint led us to

T T
—/ / (Vug - vy — Vu-v) pdrdt < / /(uk —u)V - (puy) dz dt
o Jo o Jo

v~

i)

+/OT/§2uV~(gp(vk—v))dmdt

g

(i7)

—

The argumentation for part (i) holds, because we only used the boundedness of v resp.
V..
Estimating part (i7) can be done in a similar way. First, we write down the divergence

using the product rule

T T
/ /uV~(<p(vk—v))d:cdt:/ /ung~(vk—v)—l-u(vk—v)-V(pdxdt,

(i4).1 (4.2)

and we see that the arguments from Lemma 5.2.7 still hold. Let us finally summarize



5.3 Simultaneous 7'V — T'V Image Reconstruction and Motion Estimation 181

our estimates:

lim
k—o0

/OT/QW — W)V - (pvy) da dt

+ lim /OT/QUV-(QO(vk—v))dxdt

k—o0

T
/ /(Vuk-vk—Vu'v)cpdxdt
0o Jo

< lim

k—o0

< C lim flug =l oo 7y

T
+ lim / / upV - (v —v)dadt
0o Ja

k—00

T
+ lim / /u(vk—v)-V<pdxdt

=0

]

With only small adjustments to the proof of the TV-L? model, we have proven all
necessary requirements for the existence of a minimizer for the joint TV-TV image

reconstruction and motion estimation model (5.40), (5.41) equipped with general energy
(5.42).

Theorem 5.3.8. Existence of a minimizer for the TV — TV model

Let Q C R% p,q > 1,p = min {p, 2} and consider the TV — TV energy

T , T g (T
J(u, ) :/0 §HKu—fHth+a/0 \u(.,t)|Bth+§/o V()| 5 dt.
Let furthermore be
vl < <oo ae inQx[0,7] and K1, #0 Vte€[0,7].

Mass Preservation:

Then there exists a minimizer (a,®) in the set
{(u,v) tu € LP(0,T; BV(Q)),v € L0, T; BV(Q)),0u + V - (uv) = 0} :

Optical Flow:

Let furthermore s, £ > 1 and p* such that i—i—% = 1. Then there also exists a minimizer
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in the set
{(u,v) cu € LP(0,T; BV(Q)),v € L0, T; BV(Q)),V v € LF*(0, T; L*(Q)), du + V - (uwv) = o} .

Proof. Can be done in analogy to Theorem 5.3.8. O

Uniqueness

The energy for the mass preserving TV-TV model and the optical flow TV-TV model
is convex. However, we are not able to prove uniqueness due to non-linearity of optical

flow and continuity equation.

5.3.3. Numerical Realization

Realization of the 7'V — T'V Optical Flow Model

Primal-dual Framework
For the realization of the T'V — T'V optical flow model, we propose a strategy similar
to the TV — L? optical flow model (see Section 5.2.3). We recall the important steps

and go into detail where changes are necessary.
The objective functional
T ,
gmin [ 5 [Ku = fI3+ |Vl + 51Vaol + Ju+ Tow- ol dt, (5.43
u,v 0
k ook

can be minimized with an alternating scheme. For given u", v" we consider the following

subproblems:

T
1
W —agmin [ 3 1Ku— f3+ @ Vol ot Voot @ (s
0

u

T
it = argmin/ ‘
v 0

Problem in wu:

AR Vo 'vH + 29,0, dt. (5.45)
1y

It is directly clear that, since we only changed the regularization for v, the subproblem

for u (Equation 5.44) is the same as in the TV — L? case. Consequently we can inherit
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the following iteration scheme and extract u**! as lim;_,. u':

~ 141
Yy

+1 __

hn

I+1
Y

I+1
Ys

ul+1

y +oCd

nt—of

oc+1

7Ta(y~21+1)

7T’Y(:J3l+1)7
ul — 7Cry! T

4 O (utt — ).

All necessary notations and definitions can be found within the TV — L? realization in

Section 5.2.3.

Problem in v:

The subproblem in v (Equation 5.45) is exactly an L' —T'V optical flow problem. We

refer to Section 4.5.6 for details and simply denote the final iteration scheme as:

gt =yl + oCo!
yl+1 — ﬂ-g (,glJrl)
,1~Jl+1 — ’Ul o Tc*yl+1

8 if f(&) <78
o =0k B i@ > |8

_feEtHhHs

o else

,l—;lJrl — ,Ul+1 + 9(,vl+1 o ’Ul).

The solution can be extracted as v

Discretization and Algorithm

k+

The difference of the TV — L? and the TV — TV model lies in the regularization for

the velocity field. Consequently, we are able to inherit a similar discretization strategy

for the operators (see Section 5.2.3) and end up with the following algorithm:
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Algorithm 11 Joint TV — TV Optical Flow based Motion Estimation and Image
Reconstruction

Joint TVTVOpticalFlow f, o, 8, v, K

1: v,u < 0 € < threshold
2: Uoidm < U

3: Volam < U

4: y,u < 0 €, < threshold
5 Uold < U

6: Yy + oC,u

7Y — o'zﬁl — O'f

8: Yo < Jo—0S(2,2)

9: y3 < solveAf fine(ysz,v)
10: v+ u—7Cy

11: U 2u — upig

12: y,v < 0 ¢, < threshold
13: voiq < v

14: Yy <~ y+ O'OU:T)

15: y <y —oS(¥, 7%)

16: v <~ v —71CJy

17: v < solveAf fine(D)
18: v + 2v — Void

19: € « lu—uoiam |[+v—voram|

29

DO
o

)
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Realization of the 7V — T'V Mass Preservation Model

Primal-dual Framework

As before, we recall the objective functional

T
. 1
argmm/ 5HKU—ngﬂLOéHVIUHI+5||va||1+7||ut+vx-(uv)Hldt.
0

u,v=(v1,v2)

k

We propose an alternating minimization scheme for given u* v* and get the following

subproblems:

dt

wy + V- (uo) X

T
1
e :argmin/ §||KU—f||§+Oz||qu||1+7’
u 0

T
v = arg min/ ‘
0

’U=(’U1 ,’1)2)

WV, )|+ g 19,0, dt

Problem in u:
A scheme for the subproblem in u has been deduced in the joint TV — L? Section (see
Section 5.2.3).

Problem in v:
For the subproblem in v, we simply have the L' — TV mass preservation scheme and

refer to Section 4.5.7 for details. Final iterations are given as

! = o + 0C%

I+1 _ ~41
Y12 = Wg(ym )
141 ~141 k+1

Yz =m(; tou )
,Ul+1 —_ ’Ul o TC*yl+1

o't =0 4 a0 — o).

Discretization and Algorithm
Again, the difference to the TV — L? joint mass preservation model lies in the regu-
larization term for the velocity field v and we inherit the discretization scheme from

Section 5.2.3. Slight changes to the known algorithm yield



186 5 Combined Image Reconstruction and Flow Estimation

Algorithm 12 Joint TV —TV Mass Preservation based Motion Estimation and Image
Reconstruction

Joint TVL2MassPreservation f, o, 8, v, K

v,u < 0 e < threshold

Uoldm < U

Voidm < U

y,u < 0 €, < threshold

Uold £ U

y <+ y+oCyu

Y1
Yr o+1 O-f

Yo,3 < Y23 — 0S(
u—u—7CY

U 4 2u — uoid
cy,v < 0 €, < threshold
P Voig < v

Yy +—y+oC,v

L Y12 < Y12 — 0S( ;2,7%)
. Y3 < solveAf fine(is, u)
v +—v—71Cy

PV 20— voy

lu—uoianm | +Hv—voram
€ < 209]

<

2,3 g)
oo

e e e
<)

—
ot

—_ =
~ O

—
© ®

v

5.4. Results

5.4.1. Datasets

We created different dynamic datasets to evaluate our models. We took the Dimetrodon,
Hydrangea and Rubber Whale dataset from the TPOL database [44] and used the
given ground truth velocity field from [44] to create series of 4 consecutive images.
We want to mention that our algorithms are limited to a motion with a velocity field
of a maximum magnitude of 1 and, consequently, we scaled down the given ground
truth fields accordingly. To create image u,; from image u, and velocity field v we
evaluated u,(x 4+ v) using cubic interpolation. Afterwards, we added Gaussian noise
with o = 0.0002 to create the noisy counterparts. Figure 5.2 gives an overview of the

datasets and ground truth flows.

5.4.2. Image Reconstruction

The first question that naturally arises in the context of this model is: Does the joint

image reconstruction and motion estimation give a benefit towards a two-step model
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Figure 5.2.: Datasets (from [44]) used for evaluation of the joint models. Left: first
image, middle: noisy counterpart (additive Gaussian noise with ¢ = 0.0002), right:
ground truth velocity field used to create consecutive images.
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of image processing and motion estimation? To answer this question concerning the
benefit for image reconstruction first we took different series of noisy images (see Figure
5.2, Gaussian noise with o = 0.0002) and used a standard ROF model (see [60| for
details)

T
1
. argmin/ S K= £ + o[ Vo], dt
u 0
for noise removal on the one hand. On the other hand, assuming the ground truth
velocity field v is known, we consider the subproblem for u from Section 5.2.3 and

Section 5.3.3 and we minimize

T
) 1
w=argniin | 3 1Ku~ fI3+ [Vl + 7 e + Vo o] .
u 0
Both models have been tested with a broad range of regularization weights «. For the
motion-including model we fixed v = 1.

To measure the quality we evaluated the structural similarity index, SSIM, [73] which
measures the difference in luminance, contrast and structure of ground truth image

and reconstruction:

(2/“L’Ltlj’u'rec + Cl)(QO—U,urec + 02)
(W2 + 12, + O (0F + 02, + Ca)

Urec

SSIM =

where (i, fy, .., Ou, Ou,.. and 0y, are local means, standard deviations and cross-
covariances for ground truth image v and reconstruction u,... The constants are defined
as 7 = 0.012 and Cy = 0.03%2. The index takes values between —1 and 1, whereas 1
stands for perfect similarity. Moreover we calculated the signal-to-noise ratio, SNR,

and peak signal-to-noise ratio, PSNR, between noisy input and reconstruction.

mean (u?)

SNR :=10log,,( )

).

mean((u — Upee)?)
max (u?)

PSNR := 101log;,(

mean((u — Upe)?)

Table 5.1 contains the results for both models. We deduce that our model outperforms
the standard ROF model for each of the evaluated measures and datasets. This justifies
the use of a joint model instead of a two-step algorithm, because we can take advantage
of a significant measurable benefit.

From the perspective of motion estimation we refer to Section 4.6.6. Here we showed
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Dataset Algorithm | SSIM | SNR PSNR
Joint 0.9764 | 33.3996 | 41.8472
ROF 0.97406 | 32.7162 | 41.1637
Joint 0.96496 | 33.2697 | 40.1215
ROF 0.96086 | 32.343 | 39.1948
Joint 0.96957 | 35.1268 | 40.1419
ROF 0.9628 | 34.1481 | 39.1633

Dimetrodon

Hydrangea

Rubber Whale

Table 5.1.: Table comparing the quality of reconstruction for standard ROF and our
joint model. The evaluated images have been corrupted with Gaussian noise of variance
o = 0.0002.

that the quality of the estimated motion field strongly depends on the quality of the
images used. Consequently, the reliability of the estimation motion field increases with

better image quality gained from the joint model.

5.4.3. Joint Image Reconstruction and Motion Estimation

Denoising and Motion Estimation

In the previous section, we measured the quality of the image reconstruction towards
the influence of noise in a reduced model, where the exact velocity field was known.
Proceeding now to the full model, where image sequence u and velocity field v are to
be calculated, we evaluated our four models, namely TV-L? optical flow, TV-L? mass
preservation, TV-TV optical flow and TV-TV mass preservation, with a broad set of
regularization parameters « (weight for the image regularizer) and /5 (weight for the
velocity field regularizer). The weighting parameter ~ for the constraint was set to 1
in all experiments. The alternating minimization is stopped if the difference of two

consecutive iterates u”®, uF*! vk vFT!

, U reaches 1le — 4. For the subproblems in u and v
the tolerance € is set to le — 6.

To measure the quality of the reconstruction we used, similar to the previous section,
the SSIM, SNR and PSNR. The quality of the reconstructed velocity field was measured
in terms of the absolute endpoint error, AEE (see Section 4.6.1), and the angular error,
AE (see Section 4.6.1). Table 5.2 contains the evaluation results. What becomes clear
immediately is that the quality of the image reconstruction outperforms the standard
ROF model for each of the joint algorithms. The overall best algorithm is given by
the T'V —T'V optical flow model, which performes best in terms of measures for image
reconstruction as well as motion estimation. The visualized flows for the respective

best reconstruction of the Dimetrodon sequence (see Figure 5.2) of our four models can
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Dataset Algorithm | SSIM | SNR PSNR | AE AEE

TV-L? 0. f. | 0.97664 | 33.3722 | 41.8198 | 0.11492 | 0.06754

TV-L?> m. p. | 0.97405 | 32.721 | 41.1686 | 0.13659 | 0.080702

Dimetrodon TV-TV o. f. | 09762 | 33.2453 | 41.6928 | 0.11881 | 0.070384

TV-TVm. p. | 0.9751 | 33.0121 | 41.4596 | 0.13208 | 0.078705

ROF 0.97406 | 32.7162 | 41.1637 | - -

TV-L? o. f. | 0.96557 | 33.2038 | 40.0556 | 0.070458 | 0.038887

TV-L2 m. p. | 0.96133 | 32.4387 | 39.2905 | 0.15986 | 0.086332

Hydrangea TV-TV o. f. | 0.96314 | 32.782 | 39.6338 | 0.042464 | 0.023671

TV-TV m. p. | 0.96399 | 32.9219 | 39.7737 | 0.092403 | 0.0505843

ROF 0.96086 | 32.343 | 39.1948 | - -

TV-L? 0. f. | 0.96937 | 34.9829 | 39.998 | 0.1078 0.056923

TV-L? m. p. | 0.96397 | 34.2408 | 39.2559 | 0.1257 0.066107

Rubber Whale | TV-TV o. f. | 0.9655 | 34.4342 | 39.4493 | 0.10154 | 0.054059

TV-TV m. p. | 0.96507 | 34.4428 | 39.4579 | 0.12327 | 0.064973

ROF 0.9628 | 34.1481 | 39.1633

Table 5.2.: Table containing evaluation results for the joint image reconstruction and
motion estimation models. Additionally, we added the denoising results for the ROF
model.

be found in Figure 5.3. Results for the Hydrangea and Rubber Whale examples have
been transferred to Appendix A.3.

The reconstructed images are hard to distinguish from a visual point of view. However,
Table 5.2 shows that SSIM, SNR and PSNR are minimized by the TV — T'V optical

flow model.

Denoising, Inpainting and Motion Estimation

Until now, the operator K was equal to the identity. This corresponds to simple denois-
ing and motion estimation. A more challenging task is given by inpainting of unknown
regions of the image domain €2. In this context we think of two branches of inpainting.
First, considering a spatial image domain (2 for each timestep ¢ € [0, 7T, we think of an
unknown part ¥ of the spatial domain €2, which is to be reconstructed. Moreover, due

to our dynamical models, we are also able to inpaint complete images in the sequence
domain Q x [0, T.

Spatial Inpainting:
To cover the former mentioned spatial inpainting we choose the Dimetrodon sequence,

corrupted with Gaussian noise of variance o = 0.0002, and cut out every second pixel
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Figure 5.3.: Estimated motion field for the Dimetrodon example between timesteps ¢,

and to. Top-left: TV-L? optical flow, top-right: TV-L? mass preservation, bottom-left:
TV-TV optical flow, bottom-right: TV-TV mass preservation
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Figure 5.4.: Reconstructed images generated by the joint models. Top-left: ground
truth image, top-right: noisy image, middle-Left: TV — L? optical flow, middle-right:
TV — L? mass preservation, bottom-left: TV —TV optical flow, bottom-right: TV —TV
mass preservation.
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Algorithm SSIM SNR | PSNR AE AEE
TV-L? optical flow 0.8885 | 21.6742 | 30.1218 | 0.4169 | 0.22869
TV-L? mass preservation | 0.88663 | 21.6323 | 30.0799 | 0.43983 | 0.24101
TV-TV optical flow 0.88812 | 21.6765 | 30.124 | 0.42414 | 0.23239
TV-TV mass preservation | 0.88783 | 21.6515 | 30.099 | 0.41176 | 0.22612

Table 5.3.: Table containing evaluation results for the spatial inpainting applied to
the Dimetrodon sequence. The values for SSIM, SNR and PSNR correspond to recon-
structed image and cut-out original image. The values for AE and AEE correspond
to the velocity field estimated between reconstructed slice and consecutive image, and
the ground truth field used for creating the sequence.

in X and Y direction. The reduced domain is denoted as Q% and for the input sequence

we have

[ x[0,T]cQx[0,T] =R

Consequently, the operator K now acts as a projection / downsampling
K Qx[0,T] = Q1 x[0,T].

The task for each model is to reconstruct the image on the complete domain 2 x [0, 7]
in a meaningful way. For each model we evaluate a set of regularization parameters
a,  and set v = 1. The alternating minimization algorithms are terminated when two
consecutive iterates (u®, v*) and (u**1, v*1) differ less than le — 4. For the subprob-
lems in u and v the tolerance € is set to le — 6.

To measure the quality of the image reconstruction we calculate the SSIM, SNR and
PSNR between reconstructed image sequence and ground truth image sequence. For
the velocity field we calculate AE and AEE between estimated field and ground truth
field. Table 5.3 and Figures 5.5 and 5.6 contain the results. Unfortunately none of the
proposed models performs well here. On the one hand, the estimated velocity fields
massively differ from the given ground truth. On the other hand, we cannot expect to
obtain a perfect image reconstruction with incorrect motion fields. This is reflected in

the low values for SSIM and consequently in an insufficient image reconstruction.

Slice Inpainting:
To evaluate our models in terms of inpainting of complete timesteps / slices, we again
take the Dimetrodon sequence, corrupted with Gaussian noise of variance o = 0.0002,
and cut out one complete slice. Now, the proposed models are used to reconstruct

that missing part. Parameters and stopping criterion are chosen similar to the spatial
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Figure 5.5.: Figure containing reconstruction results for the spatial inpainting applied
to the Dimetrodon sequence. Top-left: ground truth image, top-right: noisy image,
middle-left: TV — L? optical flow , middle-right: TV — L? mass preservation, bottom-
left: TV — TV optical flow, bottom-right: 7'V — T'V mass preservation.
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Figure 5.6.: Figure containing flow field results for the spatial inpainting applied to
the Dimetrodon sequence. Top-left: ground truth field, middle-Left: TV — L? optical
flow, middle-right: TV — L? mass preservation, bottom-left: TV — TV optical flow,
bottom-right: 7'V — T'V mass preservation.
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Algorithm SSIM SNR | PSNR AE AEE
TV-L? optical flow 0.91557 | 25.1015 | 33.549 | 0.1797 0.10552
TV-L? mass preservation | 0.83081 | 20.4868 | 28.9343 | 0.41777 | 0.2369
TV-TV optical flow 0.91167 | 24.8358 | 33.2833 | 0.18833 | 0.11078
TV-TV mass preservation | 0.88901 | 23.3889 | 31.8364 | 0.23722 | 0.13613

Table 5.4.: Table containing evaluation results for the slice inpainting applied to the
Dimetrodon sequence. The values for SSIM, SNR and PSNR correspond to recon-
structed image and cut-out original image. The values for AE and AEE correspond
to the velocity field estimated between reconstructed slice and consecutive image, and
the ground truth field used for creating the sequence.

inpainting case.

Table 5.4 and Figures 5.7 and 5.8 contain the results. From a visual point of view we
observe that all models yield a good result. The optical flow models perform slightly
better. Here, small structures (i.e. eye of the Dimetrodon) are closer to the original.
Taking the numbers we see that the T'V — L? optical flow model yields the best result in
terms of all error measures. The T'V —T'V optical flow model performs slightly worse.
We want to mention that the results for SSIM, SNR and PSNR cannot be compared
with those from Table 5.1 (benefit from joint model), because applying just the ROF

model to an unknown slice is not possible.

Runtime

Finally, we compare runtimes of the presented algorithms. Therefore, the Dimetrodon
sequence is used and scaled down up to a factor of one percent. The four presented
algorithms, namely TV — L? optical flow, TV — L? mass preservation, TV —T'V optical
flow, TV — T'V mass preservation, are applied to the downscaled problems with fixed
parameters «, 8 and . The algorithms are terminated when the difference of two
consecutive iterates (u®, v*) and (uF*1,, v**1) falls below € < 1e — 5. The tolerance for
the subproblems is set to le — 6.

Table 5.9 contains the results with increasing number of pixels in the image sequence
on the x-axis and an increasing runtime on the y-axis. In general, the runtime of all
models increase exponentially with increasing problem size. But we see huge differences
between the TV — TV mass preservation model (black) with a strong exponential
character and the TV — L? optical flow model with a nearly linear increase. A second
interesting fact is that the optical flow models (red and blue) perform much better than
the mass preservation models (green and black). A slight increase would be normal,

because for the mass preservation model there is a further divergence operator involved.
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Figure 5.7.: Figure containing reconstruction results for the slice inpainting applied
to the Dimetrodon sequence. Top-left: ground truth image, top-right: noisy image,
middle-left: TV — L? optical flow, middle-right: TV — L? mass preservation, bottom-
left: TV — TV optical flow, bottom-right: T'V — T'V mass preservation
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Figure 5.8.: Figure containing flow field results for the slice inpainting applied to the

Dimetrodon sequence. Top-Left: TV — L? optical flow, top-right: 7'V — L? mass preser-
vation, bottom-left: T'V — TV optical flow, bottom-right: TV —T'V mass preservation
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Figure 5.9.: Plot of problem size in number of pixels (x-axis) versus the runtime in
seconds (y-axis).The colors specify TV — L? optical flow (red), TV — L? mass preser-
vation (light green), TV — T'V optical flow (blue), TV — TV mass preservation (light
black)

Here, we determine an increase of approximately factor 4 between respective optical
flow and mass preservation models, which only can origin from the mass preservation
data term.

At the end we want to underline the very fast convergence speed of the TV — L? optical
flow model. Not only does it converge fast, but it often generates the best result in the

previous evaluations (see Section 5.4.3 and 5.4.3).

Parameter Dependence

Finally, we want verify the parameter dependence of our algorithms. We take, similar
to the previous sections, the Dimetrodon sequence and run our algorithms, until the
differences between consecutive iterations fall below a critical threshold le — 5. The

results can be found in Figure 5.10.
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For the weighting parameter «, which acts as the weighting parameter for the image
regularizer, we deduce a strong dependence of the image reconstruction. The optimal «
lies at a = 0.008. Already small changes in « strongly reduce the structural similarity
of the reconstructed image. Interestingly, the quality of our resulting velocity field
keeps being relatively good with changes in a. The AEE increases from =~ 0.07 to
~ 0.1 in the worst case, which coincides with a slight change of the quadratic error by
only 0.03 per pixel. Moreover, we want to mention that all proposed algorithms react
in the same way to changes in « i.e. the resulting plots have the same structure.

For changes in (3, the weighting parameter for the velocity field, we want to underline
that each algorithm requires a different optimal S. To respect this fact on the one
hand, and to get meaningful results on the other hand we decided to check factors of
the respective optimal 3 starting from 0.1 up to 10 for each algorithm. Starting with
the influence towards the image reconstruction, we deduce that all algorithms are very
robust for parameter changes of 5. The absolute error of the velocity field on the other
hand is vulnerable towards changes in 3, where the parameter should be rather chosen

too high than too low.
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Figure 5.10.: Plots of parameter dependence. The plots on the left side contain SSIM
of the reconstructed image, whereas the plots on the right side display AEE of the
velocity field. The top row has different values of a on the x-axis, the bottom row
has factors of the respective optimal § for each algorithm on the x-axis. The colors in
the plots specify TV — L? optical flow (red), TV — L? mass preservation (light green),
TV — TV optical flow (blue), TV — TV mass preservation (light black).
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APPLICATION OF THE JOINT MODEL

6.1. Cell-Tracking

6.1.1. Introduction

Of our special interest is a locomotion mechanism called blebbing. This mechanism is
used by developing germ cells (e.g. cells that will rise to sexual organs) of all organisms
that reproduce sexually. While the cell is blebbing, it’s cytoskeleton breaks up and
causes the membrane to bulge outwards. First, actin filaments are flowing inside the
blebb, then other components follow. The blebbing process is not very well understood,
especially how fluid mechanics of different interacting cell-components works during
the blebb. This behavior of certain, and interaction of different cell-components is
done by intracellular flow, a special case of intracellular fluid mechanics, the process
we are interested in. Analysis of the underlying data consists of different tasks, for
example segmentation and velocity field calculation (see Figure 1). There also exists
the assumption that a cell builds up pressure to force a blebb into a certain direction.
The experiments are performed with embryos of zebra fishes at the Center for Molecular
Biology of Inflammation (ZMBE, WWU Miinster). Some initial computations have

already been done in Chapter 3, but we want to present more advanced results here.
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6.1.2. Problem Formulation

The experimental pipeline starts with the biological preparation. Here, embryos of
zebra fish are prepared for the later microscopy observations. The fish are genetically
altered such that the actin filaments are already autofluorescent. To make another
intracellular component fluorescent, a retrovirus is manually injected into the growing
embryo. After hours of maturation at an optimal temperature the microscopy data is
recorded. Now, for each timestep, an image at a certain z-direction is taken. The data
is divided in two channels, one coincides with the actin filaments and another with the
other cell component. This data is given to us. From a mathematical point of view
our work divides in three fields of image processing. First, the recorded images are
quite noisy, consequently the biologists are interested in image denoising. Secondly,
the underlying motion is of interest. We want to underline here that motion of the cell
as whole as well as motion information of the internal component is required. Finally
we want to automatically detect the cell inside the image.

Proceeding to our models, we are able to cover two of the three tasks with our joint
image reconstruction and motion estimation model at once. We are able to denoise
and estimate motion of both channels and can expect to gain at better result than
splitting both tasks (see Chapter 5 for details about benefits of the joint model). For
the segmentation tasks we use a Chan-Vese based framework, already introduced in
Chapter 3.3.2.

6.1.3. Image Processing and Motion Estimation

Due to the fact that in each evaluation the joint TV — L? optical flow model performed
best, this model is used here. In this context we want to recall that a total variation
regularizer is used for the image sequence u, but an L? regularization to the gradient
of the velocity field v.

Since we have two data channels, where different key features in the later analysis
will be extracted, both channels are processed independently. The channel containing
colored filaments, in the following called green channel, should be used to detect the
cell shape and the cell movement as a whole. So in context of motion estimation we
are not interested in the movement of small structures and choose a higher regulariza-
tion parameter. For the channel containing image information about the intracellular
component we are interested in image information on a very fine scale. Consequently
a much lower regularization weight [ is chosen.

Figures 6.1 and 6.2 contain raw (given) image data, reconstructed image and color-
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Figure 6.1.: Visualization of the green channel at two timesteps (top and bottom).
Left: input image, middle: denoised image, right: estimated motion field. Images are
property of Raz group from ZMBE |79].

coded flow information of both channels. In the denoised images, the cell separates
from the background very good now, while sharp edges have been preserved. This
makes the later segmentation faster and more accurate. The estimated motion field for
the green channel contains heavy motion at the boundary of the cell, while the motion

field of the red channel seems to have many independently moving parts.

6.1.4. Segmentation

For the segmentation part we are now able to use the denoised images from the previ-
ous part. A framework, similar to the one from Section 3.3.2 is now applied to each
image in the green channel sequence. At this point the advantage coming from the im-
age reconstruction in our joint model is beneficial. Initializing the segmentation with
a simple thresholding algorithm we then apply the Chan-Vese [28] framework to each
image in the sequence independently. The resulting segmentation is then smoothed and
we close potential holes. A step-by-step application can be found in Figure 6.3. Com-

pared to the afore used Gaussian smoothing, a total variation based image denoising
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Figure 6.2.: Visualization of the red channel at two timesteps (top and bottom).
Left: input image, middle: denoised image, right: estimated motion field. Images are
property of Raz group from ZMBE [79].
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enhances the quality of the reconstruction. Now, the enhanced images lead to a better
segmentation result. We see that the cell is very well segmented. This segmentation

can be used for further analysis of the underlying intracellular process.

6.2. Bacterial Pattern Formation

Pattern formation of self-organizing systems like bacteria on limited surfaces are not
very well understood. However, they play an important role in many physical systems.
In collaboration with Hugo Wioland and Raymond E. Goldstein from the University of
Cambridge [53] we applied our joint model for image denoising and motion estimation
to image data of a bacterial suspension on different geometries. The results of these
experiments have already been published (see [75] and [47]), so our evaluation can be
seen as a cross-check of the results.

For both experiments bacteria were placed on a bounded surface. Afterwards,
movies were acquired at 125 fps with a high-speed camera. For our algorithm, we
imported the recorded movies into MATLAB and applied the joint TV — L? optical
flow model for joint motion estimation and image reconstruction algorithm (see 5.2.2).
The operator K was chosen as identity. The weights for the regularizers were set to
a = 0.04, 3 = 0.001 and v = 0.01 for both datasets. Since the motion is not homoge-
neous over time, we averaged the estimated motion field over all timesteps.

Figure 6.4 contains results for a limited roundish surface. We observe very good de-
noising results for the image data and the object structure is well recovered. Besidest
that, we see a strong counterclockwise rotation inside the droplet. Moreover, a thin
boundary layer that rotates clockwise is visible. This observation coincides with the
published results from [75| and [47].

In Figure 6.5 we printed the result for the ellipsoid geometry. Similar to the round
structure the image is well recovered. Due to a bad image resolution the bacteria are
not visible as clear as in the other experiment. The resulting velocity field has a more
complex structure. The inner motion divides into two vortices. On the left side we
observe a round vertex of counterclockwise rotation, whereas the other vertex has an
ellipsoid form but also rotates counterclockwise. Besides the motion inside, we see a

thin boundary layer with clockwise rotation.
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Figure 6.3.: Step-by-step segmentation. Top-Left: After thresholding, Top-Right:
After Chan-Vese, Middle-left: Holes closed, Middle-right: Smoothed contour, Bottom-
left: Red channel after Chan-Vese, Bottom-right: Red channel after smoothing. Images
are property of Raz group from ZMBE [79].
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Figure 6.4.: Joint model applied to images (property of Goldstein group [53|) of
bacterial formation in an round structure. Top: Raw image, Middle-Top: Denoised
image, Middle-Bottom: Zoom into raw and TV denoised image. Bottom: Estimated
mean flow field
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Figure 6.5.: Joint model applied to images (property of Goldstein group [53|) of
bacterial formation in an ellipsoid structure. Top: Raw image, Middle-Top: Denoised
image, Middle-Bottom: Zoom into raw and TV denoised image. Bottom: Estimated
mean flow field
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CONCLUSIONS AND OUTLOOK

This thesis consists of three main topics. In a general motion estimation chapter, we
analyzed different models for motion extraction for image sequences. These motion
estimation models were later coupled with the problem of image reconstruction in a
second chapter. Finally, we presented different applications for image processing in the
context of segmentation, denoising and motion estimation. In order to conclude, let us

shortly summarize those three pillars of this thesis.

7.1. Motion Estimation

In the beginning of this chapter, we gave a short introduction into the problem of motion
estimation from images. Here, we lay special interest onto the aperture problem and
possible problems due to optical illusion. Then, we deduced the optical flow constraint
and the mass preservation constraint from different assumptions to the underlying
motion field. Both constraints were used as data fidelity in variational models where
we added assumptions about smoothness (L?) or sparsity (TV) of the gradient using
a regularizing term. For the resulting variational models, we presented minimization
strategies based on the primal-dual framework of Chambolle and Pock [26]. In an
evaluation section, we began with a critical discussion on existing quality measures for
velocity fields, and validated the proposed models towards different types of artificial
and real flow. Moreover, we showed that already small levels of noise in the image data
massively degrade the quality of the estimated motion field.

In terms of the regularizer, we did not evaluate the isotropic total variation. The
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gradient was measured as
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so both derivatives are not coupled. The isotropic variant reads:

)w‘ = )2+ (i)

is0

Here, both derivatives are coupled, which might lead to an even better motion estima-
tion. Also from an intuitive point of view, the isotropic variant might be advantageous
because jumps in the motion field do not occur in one component independently, but
always in both.

Another possible drawback in our models is the restriction to small magnitudes in the
motion field. This results from the linearization of the optical flow constraint. We
assumed a small time step d; between both images, which is simply not true for dis-
placements of larger magnitude. One way out could be the introduction of additional
timesteps between our known images. From the image perspective, we would introduce
temporal inpainting (see Section 5.4.3), which already gave promising results. From
the perspective of motion estimation, the time step &; would be small between each of
the timesteps such that the optical flow constraint is violated less.

Another approach to this problem is the following: Zack, Pock and Bishof [77] consid-

ered for consecutive images I, I; the nonlinear equation
Iy(x) — I(x +v) =0, (7.1)

for the velocity field v. For a given displacement field vg they linearized the coupled

part in Equation 7.1 near  + wvg, hence:

In(x) — (Li(x + o) + (VI v — v))) =0

(7.2)
sh(x+wv) + (Vv —vg) — I(x) =0

This constraint is now taken as data fidelity in a variational model, together with an
isotropic total variation regularizer. The problem can then be solved using an iterative

warping scheme where the result from a lower resolution is used as vg in the next step.
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7.2. Joint Motion Estimation and Image Reconstruction

The techniques established in the motion estimation chapter have been extended in
Chapter 5. Having in mind sequences of images with certain underlying dynamics,
we took the Rudin-Osher-Fatemi model for image reconstruction and incorporated an
optical flow constraint to combine image data with the dynamics beneath. Moreover,
the joint reconstruction and motion estimation is motivated by the sensitivity towards
noise discussed in Section 4.6.6. Besides the optical flow constraint, we added a reg-
ularizing term for the velocity field to the ROF model and were able to extract the
estimated motion field and reconstructed image sequence as a minimizer of the varia-
tional model simultaneously. Not only the optical flow constraint has been used as a
dynamic constraint, but also the mass preservation constraint. Besides this, different
regularizers for the velocity fields were presented. We proved existence of minimizers
for slightly generalized models using the Aubin-Lions Lemma [66] to obtain a com-
pactness result. Numerical schemes, again based on the primal-dual framework, were
established. Finally, we showed that our model outperforms the classical ROF model,
consequently, incorporating the dynamics is justified. Another interesting feature we
evaluated was temporal inpainting. Therefore, we used our models to inpaint complete
timesteps in a given incomplete image sequence.

Similar to the proposed optical flow models, we restricted to motion fields of small mag-
nitude. To cover larger velocities, we could use the linearization from Equation (7.2)
also in the joint models. Moreover, the models could be equipped with more advanced

regularizers both for the image sequence u and the velocity field v.

7.3. Application

In the application part of this thesis, we covered the problem of image segmentation.
Using level set approaches, we discussed the Geodesic Active Contour model as well as
the Chan-Vese model and derived a scheme for the numerical realization. The Geodesic
Active Contour model was later used for segmentation of vertebrae from images. For
further data processing, we introduced a set of techniques for feature extraction from
these images, most of them based on level set functions.

The Chan-Vese model was used for segmentation of cells from image sequences. Here,
also the motion of the cells and interior components was estimated as well as automatic

detection of membrane deformations, so-called blebbs.
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In a subsequent chapter, we used our models for joint motion estimation and image
reconstruction for the previously introduced image sequences of cells. The images were

simultaneously denoised while underlying motion was estimated.
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APPENDIX

A.1. Additional Mathematical Preliminaries

A.1.1. Basic Definitions

Let, if not explicitly defined differently, for this thesis {2 C R™ be an open and bounded

domain with Lipschitz boundary.

Definition A.1.1. Multi-index Notation
For simplifying the notation of derivatives, we introduce the multi-index notation. A

multi-index of degree n € N is a tuple
a = (ala"wan);&i S NO'

We define the sum and difference of two multi-indices a, as the component-wise

operation
O[j:ﬁ: (aliﬁly"'vaniﬁn)a
and the absolute value as the sum of all components

lal =a1 4+ ...+ .
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Using multi-index notation, we can easily formulate arbitrary partial derivatives

o
80& . 8

. or{ ... Oxon’

Definition A.1.2. Weak Derivative

The weak derivative is a generalization of the classical concept of differentiation, but
only requires the underlying function to be integrable.

Let be a function operating on 2 and « be a multi-index. We denote v as the weak

derivative with respect to « if

/u@“gpdx = (—1)|a|/vgpdx, Vo € C5°(Q).
Q

Q

Example A.1.3. Absolute Value Function
The most common example for weak derivatives is the absolute value function. Let
Q= (-1,1) € R, f(z) = |z],p € C§°. We are now able to easily calculate the weak

derivative

1 0 1 0 1 0
/ gox]x\dx:—/ goxa:dx—i—/ goxxda::/ godx—/ gpdx—xgo‘ + xp
1 —1 0 —1 0 -1
0 1 1
:/ cpdx—/ gpdx:—/ psgn(x) dx
—1 0 -1

1

0

Definition A.1.4. Test Function
Functions ¢ : 2 — R with compact support, which are indefinitely often differentiable

are called test functions. The space of these test functions is given by:

Coo(2) == {p € C®() : supp() C Q is compact }

Definition A.1.5. Distribution
A distribution is a bounded linear functional [ on the space of test functions C§°(£2).
We write (I, ) for the functional [ applied to ¢ € C5°(Q).
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Example A.1.6.
Each function u € LP(2) creates a distribution by

(u, ) :/ngod:z:.

Not only LP functions form distributions, but also more general objects like the Dirac

0-distribution. It is represented by the formal properties

5(2) = 0 ifz#0

00 if:z::()’

and [, d(z)dx = 1. The corresponding linear functional is now defined as

Having generalized the definition of a function, the question of a derivative directly

arises. This can be done analogously to the weak derivative.

Definition A.1.7. Distributional Derivative
Let n be a distribution and « be a multi-index. We call v the distributional derivative

of order |af if

(v, ) = (=1)11(n,0%), Yy e CF(Q)

This definition is consistent with the classical derivative. Consider a distribution cre-

ated by u € LP. Then we calculate the distributional derivative

(v, ) = —(u,¢') = — / up'dr = / ' pdx,
Q 0

and observe that (u,-) coincides with the distribution created by w’.

Example A.1.8. Heaviside Function
Very interesting in this context is the fact that the distributional derivative yields a

derivative for functions which do not have a derivative (neither classical, nor weak).
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For example the Heaviside function

0 ifz<O

©:R—->R, Ox):= ,
1 ifx>0

(A1)

has no derivative in the classical sense. Now, calculating the distributional derivative

(0.0.4) = — (0, 0,) = - / O(a)pla)dr = / " (@)

= ¢(0) = lim p(z) = (0) = (4, ¢) ,

yields the Dirac é—distribution. Here, we used the compact support of test functions
and the definition of the Dirac d—distribution A.1.5.

A.1.2. Inequalities

Lemma A.1.9. Holder’s Inequality
Let  be a measurable set and p, ¢ € N satisfying % +% = 1. For functions f € LP(f2)
and f € LY(Q) we have fg € L'(Q2) and we obtain the inequality

1Fglly < A1, llgll, -

Proof. Let || f|| > 0, |lg]] > 0 (otherwise the left-hand side has measure zero a.e.) and
I f]l < oo,]lg]l < oo (otherwise the right-hand side is infinite). Let us furthermore
assume p,q € (1,00) (otherwise the proof is trivial). Now, dividing f by ||f|| and g by
lgll we can assume [[f[| =1 = [|g]|.

For a,b > 0 Young’s inequality states that

a?  bP
ab < — + —,
p q

applied to our problem we obtain

) < MOL | sl

| f(s)g ; .

,s € Q.
Now, integrating both sides yields the required
=1.

Ifally <~ +

SRR
==
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Lemma A.1.10. Poincaré Inequality
Let 2 € R™ be a measurable bounded set with Lipschitz boundary and let 1 < p < oc.
Then there exists C' = C(£,p) such that for u € W'?(Q)

lv = vall o) < C IVl Logy »

where

il
uqg = — [ u(x)dzx.
° =]

Proof. Can be found in |3, Theorem 6.30]. O

Lemma A.1.11. L' and L? Inequality
Let  be a measurable set. Then we have the following inequality between L' and L?

norm:

[l < V19 ull 2

Proof. We can prove this inequality by simply writing down the norm and using the

Cauchy-Schwartz inequality [1]:

Mmzéwzéwwzwnswmmmz¢mmm
[]

A very useful estimation is given by the Minkowski inequality, which can be seen as

the triangle inequality for LP-spaces.

Lemma A.1.12. Minkowski Inequality
Let Q be a measure space, 1 < p < oo < and f,g € LP(S2). Then f + g fulfills the

triangle inequality for L” spaces, namely

1+ gll, < If1l, + llgll, -
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Proof. Let 1 < p < oo (i): We first show that f 4 ¢ has a finite p—norm, if f and g

both do. We use the fact that the function 2 is convex over R for p > 1, so it follows

p p

1 1 -
<SP+ 5la & 1f + g < 2711 + gl

1 1 1 1
z Z < |Z Z
3+ <[5+l

Concerning || f + g||p, we can now estimate this part using the general triangle inequality

and the Holder inequality with Holder conjugates % and 1 — ]l):

£+ 9l = [1£+ardu= [ 15+ gl17 + gl e
= Janelantr ol an= [1510f +op " dus [lglls+ ol dn

Triangle

= (/Wﬂpm0;4-</h#ﬂ#); (/mf+m@1“%dﬂ>1;

Holder
1f+all;
= (AN, + gl
1f+al,

If+4ll,
1f+glly

Now, multiplying both sides with yields the required

1 +gll, < 171, + gl -

A.2. Horn-Schunck Discretization

In the following section we will address discretization scheme proposed by Horn and
Schunck in 1981 [43]. For the discretization of the image derivatives they use so-called
cell-centered gradients. We will prove that this discretization indeed gives a consistent

scheme, but on the other hand must not be used for a transport equation.
Let us recall the L? — L? optical flow model for two dimensions from Section 4.5.2:
1 oo
: 2 2
argmin i+ Vo + 5 371V
1=

For the numerical implementation we need consistent approximations for w, u, and wu,

which refer to the same point in the discrete time/space domain. Since we usually es-
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J k+1
k
i i+1
Figure A.1l.: Derivatives of U are calculated in the center of a cube, using eight
surrounding measurements (from [43])

timate motion only between two consecutive images, a standard forward- or backward
difference will lead to inconsistencies. That is why we use so-called cell-centered differ-
ences, which were proposed by Horn and Schunck in their original paper [43]. Figure

A.1 shows a cube formed by the eight measurements at points

k , i+1,jk

uz,], U i,j,k+1 z+1,]+1,k+1'

u u u u

1,J+1,k i+1,j+1LE i+l5k+1 i j+1,k+1 U
) s s ’

, U

which are used to approximate the derivatives wu,,u,,u;. Starting with the time-

t+1

derivative wu;, we use linear interpolation for every image u ! and u> ! to the center

of the four points (¢,7),(: + 1,4), (4,5 + 1), (i + 1,7 + 1). To approximate wu;, we use
linear interpolation to get

u””+%7y+%7z ~ l(umyz + &t Lys
+ ux,y—i—l,z + um+1,y+1,2)
uw+%,y+%,z+1 ~ l(um,y,z+1 + u:):+1,y,z+1

+ ua:,y—i—l,z—H + ux—i—l,y—‘rl,z-‘rl)

and use a central difference to calculate the derivative

1 1 1 1 1 1 1
Uf 2 YT3:2T3 %ux+§,y+§,z uw+§,y+§,z+1
1 T,Y,2 z+1,y,z
~ *(u T e

z,y+1,z z+1,y+1,2
+u +u
o ux,y,z+1 . ux—l—l,y,z—l—l

o ux,y—i—l,z—‘rl _ uz+1,y+17z+l)'
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The derivatives U, and U, are being calculated in the same way and we get

etlytlzrt 1
U 2 2 2~ _(ux-‘rl,y,z +u1‘+1,y+1,z

4
+ u:c+l,y,z+l + u:c+1,y+l,z+l

— uxryvz . u%y+172

$7y72+1 —

—u u:v,y+1,z+1)

etdytiard 1
U 2 2 2 g (uaz,y+1,z +ux+1,y+1,z

Y 4
4 ux,erl,erl 4 ux+1,y+1,z+1

— uxfyvz — ufBJrl»yVZ

o uz,y,z+1 o uw—l—l,y,z—l—l)

Since the derivatives u,, u,, u; only act as multipliers for v;, they can be precalculated.

This gives a consistent scheme, as the following lemma proves:

Lemma A.2.1. Consistency of cell-centered gradient
Let w € C?(Q),u : Q@ C R?> — R be an arbitrary function. Then the cell-centered
gradient Vu := (95°u, 05°u)” with

w(@+h,y+h)+u(z+hy) —ulz,y+h) —u(z,y)

0 =

Y 2h

e u(x +h,y+h)+ulz,y+h) —u(z+hy) —u(e,y)
ay U= 57

yields a consistent approximation for the gradient Vu of order 1.

Proof. We will prove in the following that 05w yields a consistent approximation of
the x-derivative of u. The proof for u, and a arbitrary dimension can be done in an
analogue way.

Using Taylor expansion we get

wx+h,y+h)+ulz+hy) —ulz,y+h) —u(z,y)
2h
_u(@ 4 hyy) + huy(z + hy) +u(z, y) + hue(z,y) —ulz,y) — huy(z, y) —uz,y) + O(h?)
2h
:U(I, y) + h’ux(xv y) + huy(x,y) + U(Z',y) + hux(:c,y) — U(l’,y) B huy(:c,y) _ U(I’,y) + O<h'2>
2h
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 2hug(z,y) + O(h?)
B 2h
=uy(z,y) + O(h)

]

Hence, this discretization can be used in the context of flow estimation from images.
But in our joint models the requirement is even higher. The image discretization is not
only used for motion estimation, but also as a transport equation for the image data w.
Unfortunately the cell-centered gradient does not yield a stable discretization for the

transport equation:

Lemma A.2.2. Transport instability of cell-centered approximation

Consider the one-dimensional transport equation
uy + vu, = 0, (A.2)

then the cell-centered gradient does not yield a stable discretization for the numerical

realization of Equation (A.2).

Proof. We start with the discretized version of Equation (A.2) using the cell-centered

derivatives from Lemma A.2.1.

ykt k+1 k k Wkl k+1 k
Ujp + Uy i £ Bl S uji Ul — —% (A.3)
2h, 2h, ’ '

with hy, h, time resp. spatial step sizes and v as the motion field. Defining ¢ := ’;th we
have

fill(l—i-c) k“(l —c)+u§+1(c— 1) —i—u;?(—l —¢)=0. (A.4)
Let now u* consist of some signal 2* with an arbitrary small sinus-like pertubation

uf = ZFehe g = et

j
Then Equation (A.4) reduces to

0=2""a(l+¢c)+ 21 —c) + 2*a(c — 1) + 2"(—=1 —¢)

k+1 _ (a—1)(1—c)+ 2Zk
(a—l)(1+c)+2 )
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Let us recall the definition of ¢ and consider the three possible cases ¢ = 0,¢c > 0,c < 0.

k+1 — 2% and no instability occurs.

We assume furthermore a > 1. For ¢ = 0 we have z
But ¢ = 0 already implies v = 0, thus we are not solving a transport equation anymore.

The case ¢ > 0 implies v > 0 and we have

(a—1)(1—c)+2
(a—1)(1+c)+2

<1,

which is ok because the pertubation does not increase. The problematic case is ¢ < 0,

which implies v < 0. Here we have

(a—1)(1—c)+2
(a—1)(1+c)+2

> 1,

an the pertubation blows up over time. O

A.3. Joint Motion Estimation and Image Reconstruction

Figures A.2 and A.4 contain the motion estimation results for Rubber Whale and

Hydrangea. Besides that, we find in Figures A.3 and A.5 results for the image denoising.

Figure A.2.: Estimated motion field for Rubber Whale example between timesteps ¢,
and ¢, from TV-L? optical flow (top-left), TV-L? mass preservation (top-right), TV-TV
optical flow (bottom-left), TV-TV mass preservation (bottom-right)
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Figure A.3.: Reconstructed images for Rubber Whale example. Top-Left: Ground
truth image, Top-Right: Noisy image, Middle-Left: TV — L? Optical Flow reconstruc-
tion, Middle-Right: TV — L? Mass Preservation reconstruction, Bottom-Left: TV —TV
Optical Flow reconstruction, Bottom-Right: TV — TV Mass Preservation reconstruc-
tion

Figure A.4.: Estimated motion field for Hydrangea example between timesteps t;
and ty from TV-L? optical flow (top-left), TV-L? mass preservation (top-right), TV-
TV optical flow (bottom-left), TV-TV mass preservation (bottom-right)
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Figure A.5.: Reconstructed images for Hydrangea example. Top-Left: Ground truth
image, Top-Right: Noisy image, Middle-Left: TV — L? Optical Flow reconstruction,
Middle-Right: TV — L? Mass Preservation reconstruction, Bottom-Left: TV — TV Op-
tical Flow reconstruction, Bottom-Right: TV — T'V Mass Preservation reconstruction

A.4. Level-Set Converter

In Chapters 3 and 6, the level set formulation of a segmentation is widely used. Not
only do we evolve a level set function in the Active Contour (see Section 3.2.1) and
Chan-Vese (see Section 3.2.2) algorithms directly, we also use level set representations
for later feature extraction of vertebra (see Section 3.3.1). In this context, the level
set function often has to be calculated to a region-based segmentation and reversely.
This section is dedicated to this problem and supplies an easy formula for the former

problem and a fast O(n) algorithm for the later one.

A.4.1. Motivation

As mentioned before, there are two ways to represent a segmentation. The first one
works with a region-function RF'. Its counterpart uses a signed distance function @,
where the boundary is the zero level-set. Segmentation algorithms result in different
representation types, so we would like to convert from region function to level-set or

vice versa (this is only possible if we have a total number of 2 regions).
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A.4.2. Level-Set to Region Function

We start with the trivial problem of converting a level-set segmentation to a region
function. We remember that the signed distance function ® divides the image into two

regions, namely:

r€ R < ®(x) >0

T € Ry <= ¥(x) <0

So we simply define the region function as:

1, ifP(z)>0

RF(x) =
2, ifP(z) <0

So this conversion can be performed by simply moving through the grid and changing

the level-set function to one or two.

A.4.3. Region Function to Level-Set

The more problematic conversion is from region-function to level-set. Starting with
the region function we have to calculate the distance to the initial boundary I' on each
grid-point. To overcome this problem we will make use of an idea introduced by Sethian
in 1988 [63]. In the later part of this chapter we will present a faster O(n) version of

Sethian’s algorithm.

Fast Marching

Introduction:

The fast marching algorithm is used for computing the position of monotonically ad-
vancing fronts. In detail this means that we start with an initial curve I' which prop-
agates with a constant speed F' towards its normal direction. See Figure A.6 for an
example. In our application we interpret I" as a zero level-set of a function ®(x,t = 0).

So let y ¢ T" be an arbitrary point and

O(y,t =0) = +d



228 A Appendix

Y(0) X *
Tit)

Figure A.6.: Curve moving in time (from [63])

where +d is the Euclidean distance to the curve. Applying the chain rule leads to an

equation for the time-dependent propagation of @ [54]
O, + F|IVP| =0

with the given initial curve

Thus for the calculation of ® we have to solve an initial value problem for a partial
differential equation. Further properties of the level set function can be found in [54].
Here we will name just two of them:

Vo

e The normal vector of ® is given by: 7 = o

e Calculation of @ in three dimensions does not change the equations above

Of course in our concrete case, that is the conversion from a region function based on
a level set representation, we set the speed F' = 1 because for every point z € ) we

would like to calculate the shortest distance to I'.

Numerical Approximation:
For the numerical calculation of ®, we can use an upwind scheme [54]. For the 2-

dimensional case this yields

OTH = @ — At(max(D;;*®,0)* + min(D;;*®,0)* + max(D;"®,0)* + min(D;;'®,0)?)
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Figure A.7.: Narrow Band: Black far; Red alive; Blue done

where D;;IQD represents for the forward difference:

Dit1j — iy

D*d =
K Ax

So for the calculation of ® we would have to solve a large system of equations in every

timestep.

Narrow Band:
An alternative idea is to limit the calculation to a small neighborhood of the zero level
set. We call this small neighborhood a narrow band. The central idea is to divide the

grid points into 3 categories:
e ’alive”: Point is part of the current calculation
e ’done’: Distance already calculated
e ’far’: Point not part of the narrow band — no calculation

Using this type of calculation the operation count for a three dimensional matrix with
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n? drops to O(kn?), where k depends on the size of the narrow band. Setting the size

of the narrow band to just one cell leads us to the

Fast Marching Algorithm:

We assume a 2-dimensional curve that moves forward in time with speed F. Let T'(z,y)
be the time until the curve hits the point (z,y). The correlation between T and F is
clear. The faster the curve moves the smaller 7" is. They are inversely proportional to

each other:

IVT|F =1

For a constant speed ' = 1 we obtain:

VT =1 (A.5)

Rouy and Tourin [59] introduced an iterative algorithm for the discretization of Equa-
tion A.5:

max(maz(D;;*T,0), —min(D};"T,0))* + maz(maz(D;;"T, 0), —mz’n(D;;yT, 0)? =1

We remember that 7" has a special property. The front propagates 'one-way’, so the
values of T increase monotonically. The algorithm calculates T in an increasing order.
We initialize the algorithm with the zero-level-set and tag the surrounding points as
alive. From the alive points we extract the point with the smallest T value and tag
this point as frozen. The surrounding far points are added to the narrow band now.
Afterwards we extract one point from the narrow band and so on ...

The detailed algorithm follows. We assume a special case where the front starts at the

y-axis and moves upwards through a N by N grid with speed 1.

1. Initialize

(a) Let A be the set of all grid points {i,j=1}; set T(i,1) = 0.0
for all points in A

(b) Let NARROWBAND be the set of all grid points {i,j=2},

T(i,1) = dy for all points in NARROWBAND

(c) Let FARAWAY bet the set of all grid points {i,j>2},
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set T(i,j) = Inf for all points in FARAWAY

2. MARCHING FORWARD

(a) Begin Loop: Let (iMIN, jMIN) be the point in NARROWBAND
with the smallest value for T

(b) Add the point (iMIN,jMIN) to A; remove it from NARROWBAND
(c) Tag as neighbors any points (iMIN-1,jMIN), (iMIN+1,jMIN),
(iMIN, jMIN-1), (iMIN, jMIN+1) that are either in NARROWBAND
or FARAWAY. If the neighbor is in FARAWAY, remove it from
that list and add it to the set NARROWBAND

(d) Recompute the values of T at all neighbors according to
the equation selecting the largest possible solution

to the quadratic equation

(e) Return to top of Loop:

A proof of work can be found in [54].

Conclusion:

We have found an algorithm that allows us to convert a region-based representation into
a level-set representation. Our main problem is the runtime. A runtime of O(N?) for
N grid points becomes problematic very fast. Especially for 3D-datasets (for example
MRT dataset from human torso) the runtime is unacceptable large. So we dedicate

ourselves to a faster O(N) algorithm now.

O(n) Fast Marching Algorithm:

Motivation:

Yatziv, Bartesaghi and Sapiro introduced an O(N)-implementation of the fast march-
ing algorithm [76]. Central idea is the use of special data structures. The classic fast
marching algorithm computes the distances point by point. All alive-points are kept in
a list and we extract that element from the list that has the overall shortest distance.
The used list type is a so-called Priority Queue. This list type sorts the elements by
their priority (e.g. distance). So in every iteration step we just have to extract the first
element in the list.

So far the algorithm works very well. But now comes the crucial point: Every time we
freeze a point and fix its distance, we have to recalculate the neighboring points. That
means we have to remove the neighbors from the Priority Queue (complexity O(N))
and reinsert them O(log(N)).
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T =T+ — (10)—1)—(12 T,=T,+3A— (02
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Figure A.8.: Circular Array at two different timesteps (from [76])

Untidy Priority Queue:

The improved algorithm now makes use of a special data structure which reduces the
updating complexity to O(1). This is due to the fact that the values of all points in
the queue are equal or greater than the latest extracted point. Furthermore the speed
of our propagating front is 1, so we have a maximal possible increment I, over the
point with the minimal T value currently in the queue. So all the T values in the queue
have a fixed range, so we can use a data structure based on a circular array (See figure
A.8). Each entry of the circular array contains a list of points with ’similar’ T value.
For a constant speed of 1 our possible range I,,,; is limited by 1, so any point in the
narrow band has a distance

d e [Ty, To + 1]

where Tj is the distance of the latest point. We divide our unit interval into K intervals.
Every interval i € {1,..., K} is represented by a FIFO list that contains T values in
range [TO + %, Ty + %] If we like to insert or remove a specific element now, we will
have to calculate the list number first. This can be done by a simple modulo operation.
If we furthermore assume that every list contains an average number of d elements
(can be achieve by dynamically resizing the number K of lists, see [19]), we assure a
constant complexity of O(1) for insert and removal.

We can show that the error, caused by the ’untidiness’, is of the same order as the
original fast marching algorithm, see [76] for further details.

Evaluation:

Table A.1 contains a few runtime tests and Figure A.9 shows a segmentation in region

function and level set representation.



A.4 Level-Set Converter 233

Image ‘ Size ‘ Pixels ‘ Processor ‘ Time

2D Box 100x100 10.000 | 17 920: 8*2.6 ghz | 0.55 sec
2D Box 1000x1000 | 1.000.000 | 17 920: 8*2.6 ghz | 5.41 sec
2D Box 2000x2000 | 4.000.000 | 17 920: 8*2.6 ghz | 25.06 sec
2D Box 3000x3000 | 9.000.000 | I7 920: 8*2.6 ghz | 63.02 sec
2D Walnut 261x326 85.086 | 17 920: 8%2.6 ghz | 1.06 sec
3D Walnut | 131x163x131 | 2.797.243 | 17 920: 8*2.6 ghz | 400.14 sec

Table A.1.: Runtime of Different Examples

(a) Region Function (b) Level set

Figure A.9.: Different Representations of the 2D Box example
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