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Abstract. Given an elliptic curve E over Q with complex multiplication having good re-
duction at 2, we investigate the 2-adic valuation of the algebraic part of the L-value at 1 for a
family of quadratic twists. In particular, we prove a lower bound for this valuation in terms of
the Tamagawa number in a form predicted by the conjecture of Birch and Swinnerton-Dyer.

1. Introduction

Let E be an elliptic curve defined over Q, with complex multiplication by
the ring of integers of an imaginary quadratic field K. Thus, by the theory of
complex multiplication, K must be either Q(

√
−1),Q(

√
−2),Q(

√
−3), or one

of the fields

(1) Q(
√−q) (q = 7, 11, 19, 43, 67, 163).

Recently, Y. Tian [7], [8] made the remarkable discovery that one could prove
deep results about the arithmetic of certain quadratic twists of E with root
number −1, by combining formulae of Gross–Zagier type for these twists, with
a weak form of the 2-part of the conjecture of Birch and Swinnerton-Dyer for
certain other quadratic twists of E, where the root number is +1. We recall
that, when the complex L-series of an elliptic curve with complex multiplication
does not vanish at s = 1, the p-part of the conjecture of Birch and Swinnerton-
Dyer has been established, by the methods of Iwasawa theory, for all primes
p which do not divide the order of the group of roots of unity of K (see [5]).
However, at present we do not know how to extend such methods to cover the
case of the prime p = 2. Nevertheless, when K = Q(

√
−1), one of us [10], [11],

[12], [13] did establish a weaker result in this direction for the prime p = 2, by
combining the classical expression for the value of the complex L-series as a
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sum of Eisenstein series (see Corollary 2.2), with an averaging argument over
quadratic twists, and happily this weaker result has sufficed for Tian’s work
in [7], [8]. The aim of the present note is to show that the rather elementary
method developed in the papers [10], [11], [12], [13] works even more simply
for quadratic twists of those elliptic curves E having good reduction at the
prime 2, and with complex multiplication by the ring of integers of the fields
K given by (1). We hope that the results established here will be a first step
towards extending the deep results of [7], [8], [9], to certain infinite families of
quadratic twists of our curves E, having root number equal to −1. For the
curve E = X0(49), this has now been done in [1] . It is also interesting to note
that, in [9], Tian and his collaborators introduce a new and completely different
method for establishing weak forms of the 2-part part of the conjecture of Birch
and Swinnerton-Dyer for curves with K = Q(

√
−1), by using a celebrated

formula of Waldspurger, and they believe that this new method can eventually
be applied to a much wider class of elliptic curves, including those without
complex multiplication. Needless to say, the rather elementary methods used
here seem to be special to elliptic curves with complex multiplication. Finally,
we wish to thank Y. Tian for his ever helpful comments on our work.

2. The averaging argument

Let K be an imaginary quadratic field of class number 1, which we assume
is embedded in C, and let OK its ring of integers. Let E be any elliptic curve
defined over K, whose endomorphism ring is isomorphic to OK . Fix once and
for all a global minimal generalized Weierstrass equation for E over OK

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (ai ∈ OK).

Let L be the period lattice of the Neron differential dx/(2y+ a1x+ a3). Then
L is a free OK-module of rank 1, and we fix Ω∞ ∈ C× such that L = Ω∞OK .
Denote by ψE the Grossencharacter of E/K in the sense of Deuring–Weil, and
write f for the conductor of ψE (thus the prime divisors of f are precisely the
primes of K where E has bad reduction). Now let g be any integral multiple
of f, and fix g ∈ OK such that g = gOK . Let S be the set of primes ideals of
K dividing g, and denote by

LS(ψ̄E , s) =
∑

(a,g)=1

ψ̄E(a)

(Na)s

the imprimitive Hecke L-function of the complex conjugate Grossencharacter
of ψE . Our subsequent induction argument is based on the following expression
for LS(ψ̄E , s), which goes back to the 19th century. Let z and s be complex
variables. For any lattice L in the complex plane C, define the Kronecker–
Eisenstein series by

H1(z, s, L) :=
∑

w∈L

z̄ + w̄

|z + w|2s ,
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where the sum is taken over all w ∈ L, except −z if z ∈ L. This series converges
to define a holomorphic function of s in the half plane Re(s) > 3/2, and it has
an analytic continuation to the whole s-plane. Let R denote the ray class field
of K modulo g, and let B be any set of integral ideals of K, prime to g, whose
Artin symbols give precisely the Galois group of R over K (in other words, B
is a set of integral ideals of K representing the ray class group of K modulo
g). Since the conductor of ψE divides g, it is well-known that R is equal to
the field K(Eg), which is obtained by adjoining to K the coordinates of the
g-division points on E.

Proposition 2.1. We have

LS(ψ̄E , s) =
|Ω∞/g|2s

(Ω∞/g)

∑

b∈B

H1(ψE(b)Ω∞/g, s,L).

Proof. As mentioned above B is a set of integral representatives of the ray
class group of K modulo g, and so it follows that, fixing any generator of each
b in B, we obtain a set of representatives of (O/g)∗/µ̃K , where µ̃K denotes
the image under reduction modulo g of the group µK of roots of unity of K.
Moreover, the very existence of ψE shows that the reduction map from µK

to µ̃K must be an isomorphism of groups. For each b in B, we choose the
generator of b given by ψE(b). It follows that, as b runs over B and c runs
over g, the principal ideals (ψE(b) + c) run over all integral ideals of K, prime
to g, precisely once. Thus

LS(ψ̄E , s) =
∑

b∈B

∑

c∈g

ψ̄E((ψE(b) + c))

|ψE(b) + c|2s .

Note that, since c ∈ g, we have

(ψE(b) + c) = (ψE(b))(1 + c/ψE(b)) = b(1 + c/ψE(b)),

so that

ψE((ψE(b) + c)) = ψE(b)(1 + c/ψE(b)) = ψE(b) + c.

Hence

LS(ψ̄E , s) =
∑

b∈B

∑

c∈g

ψE(b) + c

|ψE(b) + c|2s ,

which can easily be rewritten as

|Ω∞/g|2s

(Ω∞/g)

∑

b∈B

∑

w∈L

ψEb)Ω∞/g + w

|ψE(b)Ω∞/g + w|2s ,

completing the proof of the proposition. �

We recall that, for any lattice L, the nonholomorphic Eisenstein series
E∗
1 (z, L) is defined by

E∗
1 (z, L) = H1(z, 1, L).

Münster Journal of Mathematics Vol. 7 (2014), 83–103



86 John Coates, Minhyong Kim, Zhibin Liang, and Chunlai Zhao

Then the above proposition immediately implies that

LS(ψ̄E , 1)/Ω∞ = g−1
∑

b∈B

E∗
1 (ψE(b)Ω∞/g,L).

Also, it is well-known (see, for example, [3]) that E∗
1 (ψE(b)Ω∞/g,L) belongs

to the field R, and satisfies

E∗
1 (ψE(b)Ω∞/g,L) = E∗

1 (Ω∞/g,L)
σb ,

where σb denotes the Artin symbol of b in the Galois group of R over K. Thus
the above proposition has the following immediate corollary, where TrR/K

denotes the trace map from R to K.

Corollary 2.2. We have

LS(ψ̄E , 1)/Ω∞ = TrR/K(g−1E∗
1 (Ω∞/g,L)).

We next consider the twisting of E by certain quadratic extensions of K. A
nonzero element M of OK is said to be squarefree if it is not divisible by the
square of any nonunit element of this ring.

Lemma 2.3. Let M be any nonzero and nonunit element of OK , which
satisfies (i) M is squarefree, (ii) M is prime to the discriminant of K, and

(iii) M ≡ 1 mod 4. Then the extension K(
√
M)/K has conductor equal to

MOK .

Proof. Since M is squarefree and M ≡ 1 mod 4, the extension K(
√
M)/K

is totally and tamely ramified at all primes dividing M . Thus the assertion
of the lemma will follow once we have shown that the primes of K above 2
are not ramified in this extension. Let v be any place of K above 2. Let
w be such that w2 = M , and put z = (w − 1)/2. Then z is a root of the
polynomial f(X) = X2 − X − (M − 1)/4, so that z is an algebraic integer.
But f ′(z) = 2z − 1 is then clearly a unit at v, and so v is unramified in our

extension K(
√
M)/K, completing the proof. �

Let M be as in the above lemma, and assume in addition that (M, f) = 1.
We write χM for the abelian character of K defining the quadratic extension
K(

√
M)/K, and let E(M) denote the twist of E by χM . Thus E(M) is the

unique elliptic curve defined over K, which is isomorphic to E over K(
√
M),

and which is such that

E(M)(K) = {P ∈ E(K(
√
M)) | σ(P ) = χM (σ)(P ), σ ∈ Gal(K(

√
M)/K)}.

The curve E(M) also has endomorphism ring isomorphic to OK , and its Gros-
sencharacter, which we denote by ψE(M) , is equal to the product ψEχM . We
write fM for the conductor of ψE(M) . In view of the above lemma, we have
fM =M f, because (f,M) = 1 and χM has conductor MOK . Finally, putting

p(z,L) = x+ (a21 + 4a2)/12, p
′(z,L) = 2y + a1x+ a3,

we obtain a classical Weierstrass equation for E over C of the form

Y 2 = 4X3 − g2(L)X − g3(L),
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with X = p(z,L), Y = p′(z,L). The corresponding classical Weierstrass
equation for E(M) over C is then given by

Y 2 = 4X3 −M2g2(L)X −M3g3(L).

Hence the period lattice for the curve E(M) over C is given by

(3) LM =
Ω∞√
M

OK .

We now suppose that we are given a sequence

π1, π2, . . . , πn

of n ≥ 0 distinct prime elements of OK (if n = 0, we take the empty sequence).
We shall say that this sequence is admissible for E/K if, for all 1 ≤ j ≤ n, we
have that πj is prime to the discriminant of K, and

(4) πj ≡ 1 mod 4, (πj , f) = 1.

For each integer n ≥ 0, define

(5) M0 = 1, Mn = π1 · · ·πn, gn = Mnf.

We now take Rn to be the ray class field of K modulo gn. Since πj ≡ 1 mod 4,
the above lemma shows that the extension K(

√
πj)/K has conductor πjOK ,

and so is contained in Rn, for all j with 1 ≤ j ≤ n. Hence the field Jn defined
by

(6) J0 = K, Jn = K(
√
π1, ...,

√
πn)

is always a subfield of Rn. Let Sn be the set of prime ideals of K dividing gn.
Also, writing f for any OK generator of the ideal f, we put gn = fMn, so that
gn = gnOK . Finally, we define Dn to be the set of all divisors of Mn which
are given by the product of any subset of {π1, ..., πn}. The averaging theorem
which follows is essentially contained in the earlier paper of one of us [10], and
is the basis of all of our subsequent arguments. For simplicity, we write just
ψM for the Grossencharacter of the curve E(M) for any M ∈ Dn.

Theorem 2.4. Let {π1, ..., πn} be any admissible sequence of n ≥ 0 elements
for E/K. Then we have

(7)
∑

M∈Dn

LSn
(ψ̄M , 1)/Ω∞ = 2n TrRn/Jn

(gn
−1E∗

1 (Ω∞/gn,L)),

where TrRn/Jn
denotes the trace map from Rn to Jn.

Proof. When n = 0, this is just the formula of Corollary 2.2 with g = f. Thus,
assuming n ≥ 1, let M be any element of Dn. Applying Corollary 2.2 to the
curve E(M) with g = gn, and using (3), we conclude that

LSn
(ψ̄M , 1)

√
M/Ω∞ = TrRn/K

(

gn
−1E∗

1

( Ω∞√
Mgn

,LM

)

)

.

Now, for any nonzero complex number λ, we have

E∗
1 (z,LM ) = λE∗

1 (λz, λLM ).
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Hence, taking λ =
√
M , and writing Gn for the Galois group of Rn/K, we

conclude that

(8) LSn
(ψ̄M , 1)/Ω∞ =

∑

σ∈Gn

(
√
M)σ−1gn

−1(E∗
1 (Ω∞/gn,L))

σ.

It is now clear that the assertion of the theorem is an immediate consequence
of the following lemma. �

Lemma 2.5. Let Hn = Gal(Rn/Jn). If σ is any element of Gn, then
∑

M∈Dn
(
√
M)σ−1 is equal to 2n if σ belongs to Hn, and is equal to 0 oth-

erwise.

Proof. The first assertion of the lemma is clear. To prove the second assertion,
suppose that σ maps k ≥ 1 elements of the set {√π1, . . . ,

√
πn} to minus

themselves, and write V (σ) for the subset consisting of all such elements. If

M be any element of Dn, it is clear that σ will fix
√
M if and only if M is

a product of an even number of elements of V (σ), with an arbitrary number
of elements of the complement of V (σ) in {√π1, . . . ,

√
πn}. Hence the total

number of M in Dn such that σ fixes
√
M is equal to

2n−k((k, 0) + (k, 2) + (k, 4) + . . .) = 2n−1,

where (n, r) denotes the number of ways of choosing r objects from a set of

n objects. Similarly, the total number of M in Dn such that σ maps
√
M to

−
√
M is equal to

2n−k((k, 1) + (k, 3) + (k, 5) + . . . ) = 2n−1.

Since these last two expressions are equal, the second assertion of the lemma
is now clear. �

3. Integrality at 2

We use the notation and hypotheses introduced in the last section. Our aim
in this section is to prove the following result.

Theorem 3.1. Assume that E has good reduction at the primes of K above 2,
and that n ≥ 0. Let {π1, ..., πn} be any admissible sequence for E/K. Define

Ψn = TrRn/Jn

(

gn
−1E∗

1

(Ω∞

gn
,L

)

)

.

Then 2Ψn is always integral at all places of Jn above 2. Moreover, if the
coefficient a1 in (2) is divisible by 2 in OK , then Ψn is integral at all places of
Jn above 2.

We remark that it is shown in [1] by an additional argument that, provided
n ≥ 1, we always have that Ψn is integral at all places of Jn above 2, irrespective
of whether the coefficient a1 in (2) is divisible by 2 in OK or not.

Before giving the proof of the theorem, we recall some classical identities
involving elliptic functions (see for example, [2]). Let L be any lattice in the
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complex plane, and write p(z, L) for the Weierstrass p-function attached to L.
For each integer m ≥ 2, we define the elliptic function Bm(z, L) by

2Bm(z, L) =
p′′(z, L)

p′(z, L)
+

k=m−1
∑

k=2

p′(kz, L)− p′(z, L)

p(kz, L)− p(z, L)
.

Lemma 3.2. For all integers m ≥ 2, we have

Bm(z, L) = E∗
1 (mz,L)−mE∗

1 (z, L).

Proof. Let ζ(z, L) denote the Weierstrass zeta function of L. The following
identity is classical

E∗
1 (z, L) = ζ(z, L)− zs2(L)− z̄A(L)−1,

(see, for example, Prop. 1.5 of [3], where the definitions of the constants s2(L)
and A(L) are also given). It follows immediately that

E∗
1 (mz,L)−mE∗

1 (z, L) = ζ(mz,L)−mζ(z, L).

But now we have the addition formula

ζ(z1 + z2, L) = ζ(z1, L) + ζ(z2, L) +
1

2

p′(z1, L)− p′(z2, L)

p(z1, L)− p(z2, L)
.

Taking the limit as z1 tends to z2, we obtain the statement of the lemma for
m = 2. For any m ≥ 2, the above addition formula also shows that

ζ((m + 1)z, L)− (m+ 1)ζ(z, L)

= ζ(mz,L)−mζ(z, L) +
1

2

p′(mz,L)− p′(z, L)

p(mz,L)− p(z, L)
,

whence the assertion of the lemma follows by induction on m. �

The next lemma is attributed in [2] to unpublished notes of Swinnerton-
Dyer.

Lemma 3.3. Let w be any complex number such that w + L has exact finite
order m ≥ 3 in C/L. Then E∗

1 (w,L) = −Bm−1(w,L)/m.

Proof. By the previous lemma, we have

Bm−1(w,L) = E∗
1 ((m− 1)w,L)− (m− 1)E∗

1 (w,L).

But, as a function of z, E∗
1 (z, L) is periodic with respect to L and odd, whence

it follows that E∗
1 ((m− 1)w,L) = −E∗

1 (w,L). This completes the proof. �

Now we have the addition formula

p(z1 + z2, L) + p(z1, L) + p(z2, L)

=
1

4
((p′(z1, L)− p′(z2, L))/(p(z1, L)− p(z2, L)))

2,

whence we immediately obtain the following corollary.
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Corollary 3.4. Let w be any complex number such that w+L has exact finite
order m ≥ 3 in C/L. Then we have

mE∗
1 (w,L) =

k=m−2
∑

k=1

(p((k + 1)w,L) + p(kw,L) + p(w,L))1/2,

for an appropriate choice of the square root in each case.

We can now give the proof of Theorem 3.1. Recall that the period lattice
of the Neron differential of our fixed global minimal Weierstrass equation (2)
is L = Ω∞OK . Take w = ψ(b)Ω∞/gn, where b is any fixed integral ideal of
K prime to gn. Thus E∗

1 (w,L) is any one of the conjugates of E∗
1 (Ω∞/gn,L)

over K. Let m be the smallest positive rational integer lying in the ideal gn,
so that m is also the smallest positive rational integer with the property that
mw lies in L. Moreover, since E has good reduction at the primes of K above
2, the ideal f is not divisible by any prime of K above 2. This means that the
smallest positive rational integer in the ideal gn must be odd. It follows that
m is odd, and it must then be > 2. Let P be the point on E defined by w.
Then we have

(9) p(rw,L) = x(rP ) + (a21 + 4a2)/12, (r = 1, ...,m− 1).

But, as E has good reduction at all primes of K above 2 and the point rP has
odd order, it follows that x(rP ) is integral at each prime of Rn above 2. Thus
we can immediately conclude from Corollary 3.4 and (9) that the following two
assertions. Firstly, if a1/2 lies in OK , then every conjugate of E∗

1 (Ω∞/gn,L)
over K is integral at all places of Rn above 2. In general, if we drop the
assumption that a1/2 lies in OK , all we can say with the above argument is
that every conjugate of 2E∗

1 (Ω∞/gn,L) over K is integral at every place of Rn

above 2. Taken together, these two assertions clearly imply Theorem 3.1. �.
If v denotes any place of the algebraic closure of Q above 2, we denote

the associated order valuation by ordv, and we always normalize it so that
ordv(2) = 1. Applying the above theorem in the special case n = 0, we
immediately obtain:

Corollary 3.5. Assume that E has good reduction at the primes of K above
2. Then, for all places v of K above 2, we have

ordv(L(ψ̄E , 1)/Ω∞) ≥ −1.

Moreover, if 2 divides a1 in OK , then

ordv(L(ψ̄E , 1)/Ω∞) ≥ 0.

4. The induction argument

Let E be an elliptic curve defined over K, with complex multiplication by
the ring of integers of K, and global minimal Weierstrass equation given by
(2). We always assume that E has good reduction at the primes of K above 2.
We fix once and for all any place v of the algebraic closure of Q above 2, and
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write ordv for the order valuation at this place, normalized so that ordv(2) = 1.
Define φE to be 0 or 1, according as 2 does or does not divide a1 in OK , where
we recall that a1 is the coefficient of xy in the equation (2). We assume now
that n ≥ 1, and let any admissible sequence {π1, ..., πn} for E/K. As before,
we define Mn = π1 . . . πn, and write

(10) L(alg)(ψ̄Mn
, 1) = L(ψ̄Mn

, 1)
√

Mn/Ω∞,

which is an element of K. Our goal in this section is to prove the following
theorem.

Theorem 4.1. Assume that K 6= Q(
√
−1), Q(

√
−3), and that E has good

reduction at all places of K above 2. Then, for all n ≥ 1, and all admissible
sequences {π1, ..., πn} for E/K, we have

(11) ordv(L
(alg)(ψ̄Mn

, 1)) ≥ n− φE .

Proof. We shall prove the theorem by induction on n, and we begin with an
obvious remark. Let r be any integer ≥ 0, and recall that ψMr

denotes the
Grossencharacter of the twisted curve E(Mr). For each n > r, write pn =
πnOK . Then pn is prime to the conductor of ψMr

, and we have

(12) ordv(1− ψ̄Mr
(pn)/Npn) ≥ 1.

Indeed, we have ψMr
(pn) = ζπn, where ζ = 1 or −1 because K 6= Q(

√
−1),

Q(
√
−3). Thus ζ ≡ 1 mod 2, and (12) then follows easily because πn ≡

1 mod 4 and Npn = ψMr
(pn)ψ̄Mr

(pn). Note also that, on combining Theo-
rems 3.1 and 2.4, we conclude that, for all integers n ≥ 1, we have

(13) ordv

(

∑

M∈Dn

LSn
(ψ̄M , 1)/Ω∞

)

≥ n− φE .

It is clear that, on combining (12) for r = 0 and (13) for n = 1, we immediately
obtain (11) for n = 1. Suppose now that n > 1, and that (11) has been proven
for all integers strictly less than n. Combining this inductive hypothesis with
assertion (12), we conclude that for all proper divisors M of Mn, we have

ordv(LSn
(ψ̄M , 1)/Ω∞) ≥ n− φE ,

whence (13) again shows that (11) holds for the integer n. This completes the
proof of the theorem. �

We next investigate which rational primes p split in K, and have the addi-
tional property that they can be written as p = ππ∗, with π in OK satisfying
π ≡ 1 mod 4 (and thus automatically also satisfying π∗ ≡ 1 mod 4). We call
primes p with this property special split primes for K. Obviously, a necessary
condition for p to be a special split prime for K is that p ≡ 1 mod 4. We
remark that it is clear from the Chebotarev density theorem that there are
always infinitely many special split primes for K.
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Lemma 4.2. Assume that K 6= Q(
√
−1), Q(

√
−2), Q(

√
−3). Let p be any

rational prime which splits in K, and which satisfies p ≡ 1 mod 4. If K =
Q(

√
−7), then p is always a special split prime for K. If K = Q(

√−q), where
q = 11, 19, 43, 67, 163, then such a p is a special split prime for K if and only
if we can write p = ππ∗ in OK with π + π∗ ≡ 0 mod 2.

Proof. Let K = Q(
√−q), and put τ = (1 +

√−q)/2, so that 1, τ form an
integral basis of OK . Assume first that K = Q(

√
−7). Then p = a2+ab+2b2,

with a an odd integer, whose sign can be chosen so that a ≡ 1 mod 4, and with
b an even integer, which has necessarily to be divisible by 4 since p ≡ 1 mod 4.
We then clearly have that π = a + bτ satisfies π ≡ 1 mod 4. Finally, assume
thatK = Q(

√−q), where q is any of 11, 19, 43, 67, 163. Then p = a2+ab+mb2,
where a and b are integers, and m = (q + 1)/4 is now an odd integer. Since
p ≡ 1 mod 4, we see that π = a + bτ satisfies π ≡ 1 mod 4 if and only if
a ≡ 1 mod 4 and b is even. But π + π∗ = 2a+ b, and so π + π∗ will be even if
and only if b is even. By if b is even, then a is odd, and then we can always
choose the sign of a so that a ≡ 1 mod 4. This completes the proof. �

Now assume that our elliptic curve E is in fact defined over Q, and take (2)
to be a global minimal Weierstrass equation for E over Q. Then the conductor
N(E) of E is given by

N(E) = dKN f,

where dK denotes the absolute value of the discriminant of K. Moreover,
the complex L-series L(E, s) of E over Q coincides with the Hecke L-series
L(ψ̄E , s). If R is a nonzero squarefree integer, E(R) will now denote the twist

of E by the extension Q(
√
R)/Q. Write

(14) L(alg)(E(R), 1) = L(E(R), 1)
√
R/Ω∞.

Finally, φE has the same definition as earlier.

Lemma 4.3. Assume that E is defined over Q, and has complex multipli-
cation by the ring of integers of any of the fields K = Q(

√−q), where q =
7, 11, 19, 43, 67, 163. Suppose further that E has good reduction at 2. Then the
conductor N(E) of E is a square.

Proof. Let p be any prime dividingN(E). SinceE has potential good reduction
at p, we must have that p2 exactly divides N(E) whenever p > 3. Also p 6= 2,
because E has good reduction at 2. Thus we only have to check that an even
power of 3 must divide N(E). But, since q > 3, it is well-known (see [4])
that E is the quadratic twist of an elliptic curve of conductor q2, whence it
follows immediately that either 3 does not divide N(E), or 32 exactly divides
N(E), according as 3 does not, or does, divide the discriminant of the twisting
quadratic extension. This completes the proof. �

We now introduce a definition which for the moment is motivated by what
is needed to deduce the next theorem from our earlier induction argument (but
see also the connexion with Tamagawa factors discussed in the next section).
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Write w for the sign in the functional equation of L(E, s). We continue to
assume that E is defined over Q, and satisfies the hypotheses of Lemma 4.3.
If D is any squarefree integer which is prime to N(E), it is well-known that

the root number of the twist E(D) of E by the quadratic extension Q(
√
D)/Q

is given by χD(−N(E))w, where χD denotes the Dirichlet character of this
quadratic extension. Thus, in view of Lemma 4.3, we are led to make the
following definition.

Definition 4.4. Assume that E satisfies the hypotheses of Lemma 4.3. A
squarefree positive integer M is said to be admissible for E if it satisfies (i)
(M,N(E)) = 1, (ii) M ≡ 1 mod 4 or M ≡ 3 mod 4, according as w = +1 or
w = −1, and (iii) every prime factor of M which splits in K is a special split
prime for K.

Theorem 4.5. Assume that E is defined over Q, has complex multiplication
by the ring of integers of K = Q(

√−q), where q = 7, 11, 19, 43, 67, 163, and has
good reduction at 2. Let M be a squarefree positive integer, which is admissible
for E, and let r(M) denote the number of primes of K dividing M . Then we
have

(15) ord2(L
(alg)(E(wM), 1)) ≥ r(M) − φE ,

where w denotes the sign in the functional equation of L(E, s).

Proof. Let M be any squarefree integer which is admissible for E, and let p be
any prime dividing M . If p is inert in K, define π to be p or −p, according as
p is congruent to 1 or 3 mod 4. If p splits in K, then Lemma 4.2 shows that
we can then write p = ππ∗, where π and π∗ are elements of OK , which are
both congruent to 1 mod 4. Since every p with p ≡ 3 mod 4, and p dividing
M , is inert in K, it is now clear that we can write

wM = π1 . . . πr(M),

where the πi are distinct prime elements of OK , which are all congruent to 1
mod 4, and which are also prime to f and the discriminant of K. Hence the
above theorem is an immediate consequence of Theorem 4.1. �

The following is an immediate corollary of the above theorem. Of course,
the hypothesis made in the corollary that L(E, 1) 6= 0 implies that the root
number w = 1, and so the admissible M in this case are ≡ 1 mod 4.

Corollary 4.6. Assume that E is defined over Q, has complex multiplication
by the ring of integers of K, and has good reduction at 2. Suppose further
that we have (i) K 6= Q(

√
−3), and (ii) ord2(L

(alg)(E, 1)) = −1. Let M be
any squarefree positive integer which is admissible for E, and which is divisible
only by rational primes which split in K. Then

ord2

(

L(alg)(E(M), 1)

L(alg)(E, 1)

)

≥ 2k(M),

where k(M) denotes the number of rational primes dividing M .
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We now discuss some numerical examples of this theorem. For basic in-
formation about the curves discussed below, see, for example, [4]. As a first
example, let E be the elliptic curve defined by

(16) y2 + xy = x3 − x2 − 2x− 1.

It has conductor 49, and complex multiplication by the ring of integers of
K = Q(

√
−7). In fact, this curve is isomorphic to the modular curve X0(49).

By the Chowla–Selberg formula, the period lattice L of the Neron differential
on E is given by L = Ω∞OK , where

Ω∞ =
Γ(17 )Γ(

2
7 )Γ(

4
7 )

2πi
√
−7

.

Moreover, φE = 1 because a1 = 1, and L(alg)(E, 1) = 1/2. We remark that this
elliptic curve, and the three other elliptic curves defined overQ of conductor 49,
seem to be the only examples of such curves with complex multiplication, good
reduction at 2, and ord2(L

(alg)(E, 1)) < 0. Note that any positive squarefree
integer M with (M, 7) = 1 and M ≡ 1 mod 4, will be admissible for E,
provided each of its prime factors which splits in K (thus a prime factor which
is congruent to any of 1, 2, or 4 mod 7) is congruent to 1 mod 4. Theorem 4.5
therefore implies that, for such admissible integers M , we have

(17) ord2(L
(alg)(E(M), 1)) ≥ r(M)− 1.

We see from Table I at the end of this paper that this estimate is in general
best possible.

As a second example, take for E the elliptic curve defined by

(18) y2 + y = x3 − x2 − 7x+ 10.

It has conductor 121, and complex multiplication by the ring of integers of
K = Q(

√
−11). Again by the Chowla–Selberg formula, the period lattice L of

the Neron differential on E is given by L = Ω∞OK , where

Ω∞ =
Γ( 1

11 )Γ(
3
11 )Γ(

4
11 )Γ(

5
11 )Γ(

9
11 )

2πi
√
−11

.

Moreover, φE = 0 because a1 = 0, and w = −1. The split primes for K are
those which are congruent to 1, 3, 4, 5, 9 mod 11. The special split primes for
K are much rarer. For example, all special split primes < 1000 for this curve
are:

53, 257, 269, 397, 401, 421, 617, 757, 773, 929.

Let now M be any squarefree positive integer which is admissible for E (in
particular, since we are only interested in twists E(−M) having root number
equal to +1, we assume that M ≡ 3 mod 4 and (M, 11) = 1). Then Theo-
rem 4.5 implies that

(19) ord2(L
(alg)(E(−M), 1)) ≥ r(M).
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However, in this example, Table II at the end of this paper suggests that this
estimate is not, in general, best possible. It seems plausible to speculate from
Table II that the lower bound of (19) could be improved to r(M) + 1.

5. Tamagawa factors

Our goal in this last section is to relate the estimate given by Theorem 4.5 to
the Tamagawa factors which arise in the Birch–Swinnerton-Dyer conjecture for
the twists of our given elliptic curve with complex multiplication. We assume
at first that E is any elliptic curve defined over Q and that p is any prime of bad
reduction for E. Let E(Qp) denote the group of points on E with coordinates
in the field of p-adic numbers Qp, and E0(Qp) the subgroup of points with
nonsingular reduction modulo p. We define

Cp(E) = E(Qp)/E0(Qp),

and recall that the Tamagawa factor cp(E) is defined by

(20) cp(E) = [E(Qp) : E0(Qp)].

If A is any abelian group, A[m] will denote the kernel of multiplication by a
positive integer m on A. The following lemma is very well-known, but we give
it for completeness.

Lemma 5.1. Let E be any elliptic curve over Q, and let p be a prime number
where E has bad additive reduction. Then, for all positive integers m with
(m, p) = 1, we have

Cp(E)[m] = E(Qp)[m].

Proof. Let E1(Qp) denote the group of points on the formal group of E at p.
Since E has additive reduction modulo p, the group of nonsingular points on
the reduction of E modulo p is isomorphic to the additive group of the field
Fp. As E1(Qp) is pro-p, and we have the exact sequence

0 → E1(Qp) → E0(Qp) → Fp → 0,

it follows immediately that multiplication by m is an isomorphism on E0(Qp),
whence the assertion of the lemma follows easily from a simple application of
the snake lemma to the sequence

0 → E0(Qp) → E(Qp) → Cp(E) → 0.

�

Lemma 5.2. Let E be any elliptic curve defined over Q, and let R be an odd
squarefree integer such that (R,N(E)) = 1. Then, for all primes p dividing R,
we have

ord2(cp(E
(R))) = ord2(#(E(Qp)[2])).

In particular, the left hand side of this equation depends only on E and p, and
not on the integer R.
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Proof. Since the j-invariant of E(R) is integral at p, it follows from the usual ta-
ble of reduction types (see [6, p.365]) that the 2-primary subgroup of Cp(E

(R))

is one of the groups three 0, Z/2Z, or Z/2Z× Z/2Z. Moreover, E(R) has bad
additive reduction at p, and p is odd because R is odd. Hence, by the previous
lemma

ord2(cp(E
(R))) = ord2(#(E(R)(Qp)[2])).

But clearly E(R)(Qp)[2] = E(Qp)[2], and the proof of the lemma is complete.
�

Lemma 5.3. Let E be any elliptic curve defined over Q, and let R be an odd
squarefree integer such that (R,N(E)) = 1. Let p be any prime dividing R.
Assume first that E has supersingular reduction at p and that p > 3. Then
ord2(cp(E

(R))) = 1 or 2, and it is equal to 1 when p ≡ 1 mod 4. Assume
next that E has good ordinary reduction at p, and let tp be the trace of the

Frobenius endomorphism at p. Then ord2(cp(E
(R))) = 0 if tp is odd, and

ord2(cp(E
(R))) = 1 or 2 when tp is even.

Proof. As p is odd and is a prime of good reduction for E, reduction modulo
p defines an isomorphism

(21) E(Qp)[2] = Ẽ(Fp)[2],

where Ẽ denotes the reduction of E modulo p. Granted Lemma 5.2, the
assertions of the present lemma then follow immediately from (21) and the

following observations. The group Ẽ(Fp) has cardinality Ap = p+1−tp, where
tp is the trace of the Frobenius endomorphism of Ẽ. If E has supersingular
reduction at p, then tp = 0 because we assume that p > 3 in this case. If E
has ordinary reduction at p, we see that Ap is odd when tp is odd, and Ap is
even when tp is even. �

The next lemma shows that one can strengthen these general results a little
if the curve E has complex multiplication.

Lemma 5.4. Assume that E is an elliptic curve defined over Q, with good
reduction at 2, and having complex multiplication by the maximal order of an
imaginary quadratic field K. Let R be a squarefree integer with (R,N(E)) = 1.
If p is any prime dividing N(E), then ord2(cp(E)) = ord2(cp(E

(R))). If p is

any prime dividing R, and E has ordinary reduction at p, then ord2(cp(E
(R)))

= 2 whenever the trace of the Frobenius endomorphism of E at p is even.

Proof. If p is any prime dividing N(E), then p is odd because E has good
reduction at 2, and the j-invariant of E is integral at p because E has complex
multiplication, and thus E must have additive reduction at p. The same state-
ments are also true when we replace E by E(R) because (R,N(E)) = 1. As
before, the standard reduction types then show that the 2-primary subgroup
of Cp(E) and Cp(E

(R)) are both annihilated by 2. Thus we conclude from

Lemma 5.1 ,and the fact that E(Qp)[2] = E(R)(Qp)[2], that

ord2(cp(E)) = ord2(#(E(Qp)[2])) = ord2(cp(E
(R))).
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This proves the first assertion of the lemma. Suppose next that p is a good
ordinary prime for E which divides R, and which is such that the trace tp
of Frobenius at p is even. Then p splits in K. Let τp be any Frobenius
automorphism at p. Note that the extension K(E[2])/K is unramified at p
because p is odd and E has good reduction at p. Let OK denote the ring of
integers of K. Since p splits in K, we can view τp as an element of the absolute
Galois group of K, and we write φp for its image in the OK-automorphism
group of the module E[2], which is equal to (OK/2OK)∗. Then φp must have
order dividing 2 because, since tp is even, its characteristic polynomial is equal
to X2 − 1. But 2 is not ramified in K because E has good reduction at 2.
Thus the group (OK/2OK)∗ has no element of order 2, whence we must have
φp = 1 and E(Qp)[2] = E[2]. The final assertion of the lemma is now clear
from Lemma 5.1, and the proof is complete. �

Combining Lemmas 5.3 and 5.4, we immediately obtain:

Corollary 5.5. Assume that E is defined over Q, has good reduction at 2,
and complex multiplication by the ring of integers of K 6= Q(

√
−3). Let M

be a positive squarefree integer which is admissible for E in the sense of Def-
inition 4.4, and has the property that every prime factor of M is ≡ 1 mod 4.
Write r(M) for the number of primes divisors of M in K. Then

(22) ord2

(

∏

p|M

cp(E
(M))

)

= r(M).

Finally, we now compare some of our estimates with those predicted by
the conjecture of Birch and Swinnerton-Dyer. The next proposition is an
immediate consequence of Corollaries 4.6 and 5.5.

Proposition 5.6. Assume that E is defined over Q and has good reduction
at 2, and that K 6= Q(

√
−3). Assume further that ord2(L

(alg)(E, 1)) = −1.
Then, for all positive integers M , which are admissible for E, and have the
property that all of their prime factors are ≡ 1 mod 4, we have

(23) ord2

(

L(alg)(E(M), 1)

L(alg)(E, 1)

)

≥ ord2

(

∏

p|M

cp(E
(M))

)

.

As we shall now explain, the lower bound given by (23) is exactly what the
conjecture of Birch and Swinnerton-Dyer would predict for elliptic curves with
L(alg)(E(M), 1) 6= 0 satisfying the hypotheses of this proposition, provided we
neglect any contribution coming from the 2-primary subgroup of the Tate–
Shafarevich group of E(M).

Proposition 5.7. Let E be an elliptic curve defined over Q, having good
reduction at 2, and with complex multiplication by the ring of integers of K.
Let R denote any squarefree integer with (R,N(E)) = 1, and R ≡ 1 mod 4.
Then the 2-primary subgroups of E(Q) and E(R)(Q) have the same order, and
this order is equal to 2 or 1, according as the prime 2 splits or is inert in K.
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Proof. Let A denote the elliptic curve E or E(R), so that A also has good
reduction at 2. In order to show that the 2-primary subgroup of A(Q) is
annihilated by 2, it suffices to prove that the 2-primary subgroup of A(K) is
annihilated by 2. Now, as E has good reduction at 2, the prime 2 does not
ramify in K, and thus it either splits or is inert in K. Let v denote any prime
of K above 2. Since A has good reduction at v, the formal group of A at v
is a Lubin–Tate formal group with parameter π = ψA(v), where ψA denotes
the Grossencharacter of A/K. Let n be any integer ≥ 1. As the group A[πn]
of πn-division points on A lies on the formal group of A at v, it follows from
Lubin–Tate theory the extension K(A[πn])/K has Galois group isomorphic to
(OK/π

nOK)∗, which is nontrivial for all n ≥ 1 if 2 is inert in K, and which is
nontrivial for all n ≥ 2 if 2 splits in K. In particular, the 2-primary subgroup
of A(K) must be trivial if 2 is inert in K, and it must be killed by 2 when 2
splits in K. But 2 splits in K happens precisely when K = Q(

√
−7), and then

A must be a quadratic twist of one of the four isogenous elliptic curves, defined
over Q, of conductor 49. Moreover, each of these four curves of conductor 49
has a unique rational point of order 2. It follows that A(Q) must also have a
unique point of order 2, because A is a quadratic twist of (16). This completes
the proof. �

Now assume that E satisfies the hypotheses of Proposition 5.6. Since
L(E, 1) 6= 0, we know that both E(Q) and the Tate–Shafarevich group of
E/Q are finite, and we write w(E) and t(E) for their respective orders. Then
the conjecture of Birch and Swinnerton-Dyer predicts that
(24)

ord2(L
(alg)(E, 1)) = ord2

(

c∞(E)
∏

p|N(E)

cp(E)

)

+ ord2(t(E))− 2 ord2(w(E)).

where c∞(E) denotes the number of connected components of E(R). If we
recall Proposition 5.7, and the fact that the Cassels–Tate theorem implies
that t(E) is the square of an integer, we see that the combination of our
hypothesis that ord2(L

(alg)(E, 1)) = −1 and the conjectural formula (24) imply
that necessarily

(25) ord2(t(E)) = 0.

Suppose now that L(E(M), 1) 6= 0. Again, we then know that both E(M)(Q)
and the Tate–Shafarevich group of E(M)/Q are finite, and we write w(E(M))
and t(E(M)) for their respective orders. Then, in this case, the conjecture of
Birch and Swinnerton-Dyer predicts that

(26) ord2(L
(alg)(E(M), 1)) = ord2

(

c∞(E(M))
∏

p|N(E)M

cp(E
(M))

)

+ ord2(t(E
(M)))− 2 ord2(w(E

(M))).
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where c∞(E(M)) denotes the number of connected components of E(M)(R).

Obviously, c∞(E) = c∞(E(M)) since Q(
√
M) is a real quadratic field. More-

over, Proposition 5.7 shows that ord2(w(E)) = ord2(w(E
(M))), and Lemma 5.4

tells us that, for primes p dividing N(E), we have ord2(cp(E)) =

ord2(cp(E
(M))). Hence, recalling (25), we conclude that the conjecture of

Birch and Swinnerton-Dyer predicts that

(27) ord2

(

L(alg)(E(M), 1)

L(alg)(E, 1)

)

= ord2

(

∏

p|M

cp(E
(M))

)

+ ord2(t(E
(M))).

Thus, under the above hypotheses, the lower bound given by (23) is precisely
what the conjecture of the Birch and Swinnerton-Dyer would predict if we ig-
nore the unknown term ord2(t(E

(M))), arising from the order of the 2-primary
subgroup of the Tate–Shafarevich group of the curve E(M).

We end this section with the following remark. Let E be an elliptic curve
over Q, and satisfying the hypotheses of Proposition 5.6. It is a very intriguing
fact that, in order to generalize the method discovered by Tian in [7] and [8]
to prove the existence of many quadratic twists of E, whose complex L-series
all have a simple zero at s = 1, the lower bound given by (23) is not strong
enough. Instead, Tian’s method requires the use of quadratic twists E(M) of
E , for which, when L(E(M), 1) 6= 0, one has a lower bound as predicted by
(27) when the 2-primary subgroup of the Tate–Shafarevich group of E(M) is
nontrivial. In the case of the curve E = X0(49), this is indeed shown to be the
case in [1] if we assume that every prime factor of M splits completely in the
field Q(E[4]).

6. Tables

In this section, we include some short tables of numerical examples of our
results for two elliptic curves E defined over Q. We use the same notation as
earlier. For the curve of conductor 49 in Table I, the root number of the curve
is +1, and for the curve of conductor 121 in Table II the root number is −1.
As always, M will denote a squarefree positive integer which is admissible for
the elliptic curve E, and r(M) will denote the number of prime divisors of M
in the field of complex multiplication K.

Table I. Case X0(49): y
2 + xy = x3 − x2 − 2x− 1.

The Tamagawa factor of twists E(M) at 7 is always 2.

ℓM = L(alg)(E(M), 1) and L(alg)(E, 1) = 1/2.

M L(E(M), 1) ℓM ord2 ℓM r(M) Tamagawa factors
29 0.7180139420 2 1 2 c29 = 4
37 0.6356689731 2 1 2 c37 = 4
109 0.3703553538 2 1 2 c109 = 4
113 1.454965333 8 3 2 c113 = 4

continued on next page
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Continued from previous page

137 0.3303479321 2 1 2 c137 = 4
145 0.6422111932 4 2 3 c5 = 2, c29 = 4
185 2.274238456 16 4 3 c5 = 2, c37 = 4
233 2.279798298 18 1 2 c233 = 4
265 4.275446184 36 2 3 c5 = 2, c53 = 4
277 0.9292915388 8 3 2 c277 = 4
281 0.2306634143 2 1 2 c281 = 4
285 1.832312031 16 4 3 c3 = 2, c5 = 2, c19 = 2
317 0.8686848279 8 3 2 c317 = 4
337 0.2106283985 2 1 2 c337 = 4
377 0.3982824745 4 2 3 c13 = 2, c29 = 4
389 1.764410302 18 1 2 c389 = 4
401 1.737809629 18 1 2 c401 = 4
421 0.7537907774 8 3 2 c421 = 4
449 2.919635854 32 5 2 c449 = 4
457 0.7234920569 8 3 2 c457 = 4
481 1.410422816 16 4 3 c13 = 2, c37 = 4
545 0.3312558988 4 2 3 c5 = 2, c109 = 4
557 0.6553363680 8 3 2 c557 = 4
565 0.3253401390 4 2 3 c5 = 2, c113 = 4
569 0.1620972858 2 1 2 c569 = 4
613 0.1561714487 2 1 2 c613 = 4
617 0.1556643972 2 1 2 c617 = 4
629 1.233378974 16 4 3 c17 = 2, c37 = 4
641 0.1527224426 2 1 2 c641 = 4
653 0.1513126668 2 1 2 c653 = 4
673 1.341426413 18 1 2 c673 = 4
701 0.1460403507 2 1 2 c701 = 4
705 1.165003700 16 4 3 c3 = 2, c5 = 2, c47 = 2
709 0.1452140903 2 1 2 c709 = 4
757 0.1405348183 2 1 2 c757 = 4
809 0.5437729586 8 3 2 c809 = 4
821 0.5397843500 8 3 2 c821 = 4
877 1.175099358 18 1 2 c877 = 4
901 1.030527220 16 4 3 c17 = 2, c53 = 4
953 0.5010088727 8 3 2 c953 = 4
965 0.2489420234 4 2 3 c5 = 2, c193 = 4
969 0.9937107192 16 4 3 c3 = 2, c17 = 2, c19 = 2
977 1.113338183 18 1 2 c977 = 4
985 2.217615590 36 2 3 c5 = 2, c197 = 4
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Table II. Case E: y2 + y = x3 − x2 − 7x+ 10 of conductor 121.

The Tamagawa factor of twists E(−M) at 11 is always 2.

ℓ′M = L(alg)(E(−M), 1).

M |L(E(−M), 1)| |ℓ′M | ord2 |ℓ′M | r(M) Tamagawa factors
7 2.1891468090287 4 2 1 c7 = 2
43 0.88326227057036 4 2 1 c43 = 2
79 0.65164394118303 4 2 1 c79 = 2
83 0.63574779287777 4 2 1 c83 = 2
107 0.55992778456568 4 2 1 c107 = 2
119 1.0618921792481 8 3 2 c7 = 2, c17 = 2
127 2.0558055688072 16 4 1 c127 = 2
131 0.50604397615652 4 2 1 c131 = 2
139 0.49126577270056 4 2 1 c139 = 2
151 0.47134123309515 4 2 1 c151 = 2
203 0.81302871404360 8 3 2 c7 = 2, c29 = 2
211 1.5949338338737 16 4 1 c211 = 2
227 0.38442442965574 4 2 1 c227 = 2
239 0.37464932703022 4 2 1 c239 = 2
247 0.73706438460315 8 3 2 c13 = 2, c19 = 2
263 0.35714619952350 4 2 1 c263 = 2
271 1.4073407182665 16 4 1 c271 = 2
287 0.68377458498490 8 3 2 c7 = 2, c41 = 2
307 5.2890138248933 64 6 1 c307 = 2
323 0.64454410663003 8 3 2 c17 = 2, c19 = 2
347 1.2437101001270 16 4 1 c347 = 2
371 1.2028097610186 16 4 3 c7 = 2, c53 = 4
427 0.56058305428618 8 3 2 c7 = 2, c61 = 2
431 0.27898783855424 4 2 1 c431 = 2
439 1.1057364815655 16 4 1 c439 = 2
491 1.0455460185550 16 4 1 c491 = 2
503 0.25824975297425 4 2 1 c503 = 2
511 0.51244050781894 8 3 2 c7 = 2, c73 = 2
547 3.9623262060061 64 6 1 c547 = 2
551 0.49348971241960 8 3 2 c19 = 2, c29 = 2
559 0.48994575480372 8 3 2 c13 = 2, c43 = 2
563 0.97640434014975 16 4 1 c563 = 2
607 2.1157876178789 36 2 1 c607 = 2
659 0.22562187289831 4 2 1 c659 = 2
707 1.7426259918505 32 5 2 c7 = 2, c101 = 2
731 0.42844513372759 8 3 2 c17 = 2, c43 = 2
739 0.21305988491668 4 2 1 c739 = 2
743 0.84994239387238 16 4 1 c743 = 2
763 1.6774578847166 32 5 2 c7 = 2, c109 = 2

continued on next page
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Continued from previous page

787 3.3033647015624 64 6 1 c787 = 2
811 1.8304420733348 36 2 1 c811 = 2
887 0.19447424646223 4 2 1 c887 = 2
919 0.19105840666028 4 2 1 c919 = 2
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[3] C. Goldstein and N. Schappacher, Séries d’Eisenstein et fonctions L de courbes el-
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