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I Abstract 
Abstract 

Many parts of the life sciences, including phylogenetics, phylogenomics or ecology, have become data-

intensive due to increasingly cheaper high-throughput sequencing technologies, the digitization of 

large biological collections or data contributions from citizen science. An increasing number of availa-

ble and computationally accessible methods for downstream analysis that produce derived data (e.g., 

phylogenetic trees or character data automatically extracted from images) further contributes to the 

production of large quantities of potentially reusable data. This opens up new opportunities for big 

data studies, but also creates new challenges for infrastructure and method development. To fully use 

the potential of available data, cyberinfrastructure for sharing and maintenance of scientific data and 

policies of journals and funding agencies that encourage its publication are necessary. In part, this has 

already been addressed by databases like Dryad and recommendations of an increasing number of 

journals and funding agencies, although additional measures still need to be taken. Equally important 

as the availability of scientific data is its reusability. This includes the use of open and well-defined 

formats, as well as the semantic annotation of data with metadata of different kinds, for an unambig-

uous description and links to related information and resources. These annotations should ideally be 

machine-interpretable to allow reliable automated data collection for large-scale studies. In addition 

to its value for data reuse, proper annotation can also increase the reproducibility of studies, if meth-

ods used and steps of workflows are directly documented using attached metadata. Ideally, this would 

be done by the researchers that produce the data, who, however, often are unfamiliar with the nec-

essary annotation technologies like the Resource Description Framework (RDF), advanced file formats 

like NeXML or biological ontologies. Therefore, software that makes this process more convenient is a 

key requirement in the age of big data and the semantic web. 

To address these needs regarding phylogenetic data types, two approaches are followed in this thesis, 

which cater to both developers of bioinformatical software and researchers from any discipline deal-

ing, e.g., with multiple sequence alignments or phylogenetic trees at any step of their workflows. First, 

programming libraries are introduced that provide required reusable software components. JPhyloIO 

allows reading and writing phylogenetic data from and to various file formats through a single memory-

efficient interface, while making full use of the metadata model of each format. LibrAlign provides 

flexible and easily extendible GUI components for displaying and editing biological sequences and mul-

tiple sequence alignments (MSAs) closely together with any type of attached metadata. Second, these 

libraries form the basis of applications newly developed here that address the described needs of re-

searchers. At the same time, new functionality exposed through these libraries is available to all de-

velopers and enables creation or extension of software for diverse biological applications that simplify 

data reuse through efficient annotation. 

Among the developed applications, the Taxonomic Editor of the EDIT Platform for Cybertaxonomy 

models taxonomic workflows and persistently links all data elements to the specimen they were de-

rived from. This a major advantage over the traditional approach of linking all information to a taxon, 

because data remains reusable and interpretable if the assignment of specimens to taxa changes in 

taxonomic revisions. In this thesis, the Taxonomic Editor is extended to support molecular sequence 

data with help of the functionality provided by LibrAlign and JPhyloIO. The two main phylogenetic data 

types are addressed by PhyDE 2 and TreeGraph 2, editors for multiple sequence alignments and phy-

logenetic trees, respectively. PhyDE 2 is a reimplementation of the currently used version of PhyDE 

based on LibrAlign and JPhyloIO. Although it currently is in a proof-of-concept state and does not yet 

offer the full feature set of the previous version, its new codebase is much easier to maintain and 

extend and significantly simplifies the future development towards advanced metadata modeling and 

using the potential of the new libraries. TreeGraph 2 offers versatile formatting and editing options in 

a user-friendly way and models any type of metadata associated with tree nodes and branches, while 
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offering a variety of options to visualize these annotations. It makes use of JPhyloIO to read and write 

phylogenetic trees and their metadata.  

In addition to fostering data reuse, allowing to compare and combine results from alternative methods 

is another major goal of this thesis and is also closely linked to metadata modelling and increased 

reproducibility of studies. Many alternative methods to construct MSAs or phylogenetic trees are avail-

able and is choosing among them is usually non-trivial. As a result, researchers often need to carefully 

check for agreements and conflicts between results from alternative approaches and possibly also pre-

sent a synthesis across alternatives. AlignmentComparator implements different algorithms to visually 

compare alternative MSAs of the same dataset in detail and allows to identify and annotate differently 

and identically aligned regions. It can also be used to track subsequent automatic or manual alignment 

changes in workflows. TreeGraph 2 completes the required functionality by providing an interactive 

comparison feature for phylogenetic trees and allows to map statistical support values derived from 

alternative methods onto a single reference topology, thereby highlighting topological conflicts. 

Together, the developed applications support visualizing, editing and comparing all major data types 

of phylogenetics and related fields and have the potential to allow convenient and complete modeling 

of necessary metadata across complete phylogenetic workflows that produce optimally reusable data 

in an easily reproducibly way. Easy reuse of the developed functionality is ensured by providing key 

functionality in separate libraries that simplify the development and extension of more tools to provide 

features for easier data reuse and increased reproducibility. All developed products are freely available 

at http://bioinfweb.info/Software. 

  

http://bioinfweb.info/Software
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J Zusammenfassung 
Zusammenfassung  

Viele Bereiche der Lebenswissenschaften, darunter auch Phylogenetik, Phylogenomik und Ökologie, 

haben sich zu Daten-intensiven Disziplinen entwickelt. Gründe sind u.a. zunehmend günstigere Se-

quenzierungsverfahren mit immer höherem Durchsatz, die zunehmende Digitalisierung von großen 

biologischen Sammlungen und umfangreiche Datenerhebungen durch wissenschaftlichen Laien (citi-

zen science). Die stetige Entwicklung neuer Analysemethoden, die durch steigende Rechenleistung be-

günstigt wird, trägt zusätzlich zur Menge von wissenschaftlichen Daten bei, die für eine Wiederver-

wendung interessant sind. Dies eröffnet neue Möglichkeiten für Studien auf der Basis von sehr großen 

Datenmengen (big data), bringt aber ebenfalls neue Herausforderungen an die Entwicklung von not-

wendiger Infrastruktur und Werkzeugen mit sich. Um das Potential der großen vorhandenen Daten-

menge optimal nutzen zu können, braucht es digitale Infrastruktur um wissenschaftliche Daten zu tei-

len und langfristig verfügbar zu halten, aber auch Bestimmungen von Verlagen und Drittmittelgebern, 

die zu deren öffentlicher Zugänglichmachung motivieren. Datenbanken wie Dryad und entsprechende 

Empfehlungen von einer zunehmenden Zahl wissenschaftlicher Zeitschriften und Drittmittelgeben sind 

erste Schritte in diese Richtung, aber weitere sind notwendig. Genauso wichtig wie die Verfügbarkeit 

von wissenschaftlichen Daten ist auch ihre Wiederverwendbarkeit. Dies umfasst v.a. die Verwendung 

von offenen und eindeutig definierten Formaten und die semantische Annotation mit unterschiedli-

chen Arten von Metadaten um diese eindeutig zu beschreiben und relevante Informationen und Res-

sourcen zu verknüpfen. Solche Annotationen sollten idealer Weise automatisiert interpretierbar sein, 

um eine zuverlässige Datensammlung durch automatisierte Systeme für Arbeiten mit einer breiten 

Datengrundlage zu ermöglichen. Darüber hinaus kann die Reproduzierbarkeit von Studien erhöht wer-

den, indem Ergebnisse unmittelbar mit Metadaten verknüpft werden, die Informationen über die ver-

wendeten Methoden und Arbeitsabläufe zur Datengenerierung enthalten. Diese Annotation kann am 

besten von den Wissenschaftlern, die diese Daten produzieren, durchgeführt werden. Allerdings sind 

diese oft nicht vertraut mit notwendigen Annotationstechnologien, wie dem Resource Description 

Framework (RDF), leistungsfähigen Dateiformaten wie NeXML oder biologischen Ontologien. Deshalb 

ist wissenschaftliche Software die einen solchen Prozess vereinfacht und dabei trotzdem sicherstellt, 

dass Annotationen, die eine optimale Wiederverwendbarkeit ermöglichen, eine dringende Notwen-

digkeit im Zeitalter von Big Data und dem semantischen Web. 

Um diese Anforderungen in Bezug auf phylogenetische Datentypen zu erfüllen, werden in dieser Arbeit 

zwei Ansätze verfolgt, die sowohl bioinformatischen Softwareentwicklern, als auch Wissenschaftlern 

aus allen Bereichen, die z.B. mit Multisequenzalignierungen oder phylogenetischen Bäumen arbeiten, 

zugutekommen. In einem ersten Schritt wurden Programmbibliotheken entwickelt, die notwendige 

wiederverwendbare Komponenten bereitstellen. Eine davon ist JPhyloIO und erlaubt das Lesen und 

Schreiben unterschiedlicher phylogenetischer Dateiformate über eine einheitliche Speicher-effiziente 

Schnittstelle. Es wurde dabei besonderer Wert auf die vollständige Unterstützung der Metadatenmo-

delle aller Formate gelegt. LibrAlign ist eine weitere Bibliothek, die flexible und leicht erweiterbare 

Komponenten für grafische Oberflächen zur Verfügung stellt, die das Anzeigen und Bearbeiten biolo-

gischer Sequenzen und Multisequenzalignierungen in direkter Kombination mit entsprechenden Me-

tadaten erlauben. Diese Bibliotheken bilden in einem zweiten Schritt die Basis für neue Anwendungen, 

die die beschriebenen Bedürfnisse von Forschern erfüllen. Gleichzeitig steht durch sie die neue Funk-

tionalität auch anderen Entwicklern zur Verfügung und erlaubt diesen, Software für viele weitere bio-

logische Anwendungen zu schreiben oder zu erweitern, die ebenfalls Datenwiederverwendung durch 

Annotation mit Metadaten erleichtert. 

Der Taxonomic Editor der EDIT Plattform für Cybertaxonomie modelliert taxonomische Arbeitsabläufe, 

wobei alle Datenelemente darin dauerhaft mit dem Beleg verknüpft werden, aus dem sie ursprünglich 

erzeugt wurden. Dies ist ein entscheidender Vorteil gegenüber der klassischen Herangehensweise, bei 
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der Informationen lediglich einem Taxon zugeordnet werden. Denn nur so bleiben Datenelemente 

weiterhin verwendbar und interpretierbar, wenn sich Zuordnungen zwischen Belegen und Taxa durch 

taxonomische Revisionen später ändern. Der Taxonomic Editor wurde in dieser Arbeit um Komponen-

ten zur Verarbeitung molekularer Sequenzdaten, auf der Basis von LibrAlign und JPhyloIO, erweitert. 

Die beiden wichtigsten Datentypen der Phylogenetik werden von PhyDE 2 und TreeGraph 2 modelliert, 

bei denen es sich jeweils um einen Editor für Multisequenzalignierungen (MSAs), bzw. phylogenetische 

Bäume handelt, die beide in dieser Arbeit entwickelt wurden. PhyDE 2 ist eine Neuimplementierung 

des bislang verwendeten PhyDE auf der Basis von LibrAlign und JPhyloIO. Obwohl erst eine basale Ver-

sion von PhyDE 2 zur Verfügung steht, die noch nicht den vollen Funktionsumfang ihres Vorgängers 

erreicht hat, ist die neue Implementierung deutlich besser wartbar und erweiterbar. Sie erleichtert die 

zukünftige Weiterentwicklung von PhyDE hin zu einer umfangreichen Metadatenmodellierung und er-

laubt die neuen Bibliotheken optimal zu nutzen. TreeGraph 2 bietet umfangreiche und nutzerfreund-

liche Funktionen zur Bearbeitung und Formatierung von phylogenetischen Bäumen und modelliert be-

liebige Arten von Metadaten, die an Äste oder Knoten eines Baums gebunden sein können. Es ermög-

licht weiterhin die Visualisierung solcher Daten auf vielfältige Weise und verwendet die Funktionen 

von JPhyloIO zum Lesen und Schreiben phylogenetischer Bäume zusammen mit ihren Metadaten. 

Neben der Erhöhung der Wiederverwendbarkeit von wissenschaftlichen Daten, stellt die Entwicklung 

von Software zum Vergleich und zur Integration von Ergebnissen aus alternativen Analysemethoden 

ein weiteres wesentliches Ziel dieser Arbeit dar. Dieses ist ebenfalls eng mit der Modellierung von Me-

tadaten verbunden und trägt zur Erhöhung der Reproduzierbarkeit wissenschaftlicher Studien bei. Es 

existieren zahlreiche verschiedene Methoden zum Generieren einer Multisequenzalignierung oder zur 

Rekonstruktion eines phylogenetischen Baums und es ist meist nicht direkt zu entscheiden, welche 

Methode die besten Ergebnisse für welchen Anwendungsfall liefert. Folglich müssen Wissenschaftler 

oft unterschiedliche Ergebnisse detailliert vergleichen und auf Übereinstimmungen und Konflikte un-

tersuchen und möglicherweise auch die Ergebnisse mehrerer Verfahren kombiniert darstellen. Dazu 

wurde u.a. AlignmentComparator im Rahmen dieser Arbeit unter Verwendung der Komponenten von 

LibrAlign entwickelt. Dieser implementiert unterschiedliche Algorithmen, die einen detaillierten visu-

ellen Vergleich von alternativen Multisequenzalignierungen ermöglichen, wobei unterschiedlich und 

identisch alignierte Bereiche schnell identifiziert und annotiert werden können. AlignmentComparator 

kann ebenfalls verwendet werden, um schrittweise automatische oder manuelle Modifikationen einer 

Alignierung über einen Arbeitsablauf nachzuverfolgen. TreeGraph 2 komplettiert die entwickelte Funk-

tionalität durch eine interaktive Vergleichsfunktion für phylogenetische Bäume und erlaubt außerdem 

Stützwerte aus unterschiedlichen Verfahren an einem Baum darzustellen und mögliche topologische 

Konflikte hervorzuheben. 

Gemeinsam erlauben die entwickelten Anwendungen die Visualisierung, Bearbeitung und den Ver-

gleich der wichtigsten Datentypen der Phylogenetik und verwandter Disziplinen und bieten das Poten-

tial für eine vollständige Modellierung notwendiger Metadaten über komplette phylogenetische Ar-

beitsabläufe hinweg, die einfach wiederverwendbare Daten erzeugen und leicht reproduzierbar sind. 

Die Verfügbarmachung weiter Teile der entwickelten Funktionalität in separaten Bibliotheken wird 

darüber hinaus die Entwicklung und Erweiterung weitere Software fördern, die Funktionen zur erleich-

terten Datenwiederverwendung und erhöhter Reproduzierbarkeit bietet. Alle entwickelten Produkte 

sind unter http://bioinfweb.info/Software frei verfügbar.  

http://bioinfweb.info/Software
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1 General Introduction 
  

1  General Introducti on  

This thesis presents the development and implementation of related pieces of software that allow 

researchers to store, visualize, edit and compare the major types of phylogenetic and taxonomic data 

and model meaningful metadata annotations. The following major goals guided the development: 

1. Foster the annotation of phylogenetic data with meaningful and unambiguous metadata, 

which is a key requirement to increase its reusability and the reproducibility of studies. 

2. Allow researchers to consider results from alternative analysis methods by providing applica-

tions to efficiently compare, combine and present them. 

3. Ensure maximal reusability of the developed functionality by making the components of gen-

eral use flexible and accessible to the bioinformatical community as independent libraries. 

To ensure that the developed software can be of maximal use for the scientific community, easy access 

and log-term availability (via the bioinfweb portal, chapter 10, page 165) as well as extensive docu-

mentation were other important criteria. All developed software is provided under open-source li-

censes to allow efficient reuse, while ensuring that possible derived products remain freely available. 

The following sections (1.1 and 1.2) elaborate on the motivation for this thesis and how the developed 

software contributes to achieve the described goals, while section 1.3 provides an overview on how 

the different chapters and the applications and libraries described there are related and built-up on 

each other. Figure 1.1 further illustrates this relation and provides a condensed overview. 

1.1 Fostering data reuse and reproducibility by providing software that simpli-

fies annotating phylogenetic data with necessary metadata 

1.1.1 Metadata annotation is important to make data accessible and reusable 
Similar to fields like high energy and nuclear physics or geosciences, many parts of the life sciences 

have become data-intensive fields [1]. This includes organismic and biodiversity-related disciplines, 

such as phylogenetics, taxonomy or ecology [2,3] as well as related fields of molecular biology, espe-

cially genomics or genome evolution. Making phylogenetic data more reusable is important for these 

fields and every discipline where data is analyzed in a phylogenetic context, evolutionary aspects are 

part of studies, and alignments by homology or phylogenetic trees are needed at some point during 

analysis. Understanding biodiversity and the relationships between organisms is data-intensive due to 

the number of species [4] and the complexity of their interactions in combination with the increasing 

amount of available data due to increasingly cheaper high-throughput sequencing technologies [5], 

data contributions of barcoding initiatives [6–8], the ongoing digitization of biological collections 

[9,10], and large-scale data acquisition (e.g., related to monitoring biodiversity) in citizen-science [11–

14]. The availability of faster processing units to perform more advanced downstream analyses and to 

try multiple alternative methods and parameter sets leads to even more (derived) data based on the 

increasing amount of primary data, potentially multiplying the amount with value for reuse in subse-

quent studies. The increasing success of deep learning approaches, e.g. combined with computer vi-

sion methods, also for biological purposes [15–17] is made possible by the availability of large amounts 

of data and such methods could be even better utilized in more types of studies if more structured 

metadata would be provided with the available data. The derived data produced by such automated 

approaches increases the amount of data available for potential reuse even further. Mass-extraction 

of, e.g., morphological character states from the increasing variety of digitalized specimens or organ-

ism photos generated by citizen-science is a possible example, that could also bring morphology to the 

big data age and make it accessible to some computational methods, previously only applicable to 

molecular data. 
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All these developments open up new perspectives for studies making use of big data, but only if the 

produced data is both accessible and reusable. Cyberinfrastructure for long-term storage and public 

access together with policies of journals and funding agencies enforcing the publication of data to-

gether with each study are necessary [18,19], but equally important is the proper annotation of pub-

lished data with meaningful and unambiguously formulated metadata [20–22] to make it searchable 

and efficiently reusable. Ideally, annotations should be machine readable and interpretable, while de-

scribing the data with respect to a variety of different aspects. This would enable automated collection 

of large amounts of data that exactly fit the purpose and requirements of a new study, to avoid time-

consuming large-scale manual data selection that would significantly hamper such data-intensive stud-

ies or even make them impossible. Therefore, data that is not published in appropriate formats and 

properly annotated is inaccessible for a growing fraction of future studies and will be less useful to 

contribute to scientific progress. 

1.1.2 Metadata annotation is important to increase reproducibility 
Beyond its importance for increasing reusability, proper metadata attachment can also help in increas-

ing the reproducibility of studies. This is true both for primary and derived data. Examples of relevant 

information to be attached includes links from sequences to raw data, e.g., from different sequencing 

technologies, unambiguous taxonomic IDs (e.g. NCBI Taxonomy [23]), or information on the specimen 

the data was gained from. Linking back to an individual specimen instead of, e.g., a taxon is beneficial 

if taxonomic revisions happen that change the assignment of that specimen to a taxon. Keeping such 

links is possible using the EDIT Platform for Cybertaxonomy described in chapter 4 (page 59, [24]). 

For more derived data, like multiple sequence alignments (MSAs) or phylogenetic trees, annotations 

can, e.g., be used to document the workflow required to produce it. That may include the algorithm 

that was used and the software it was implemented in, together with its version number and specified 

parameter values. Possible subsequent alignment modifications can also be indicated by metadata. 

(See also section 1.2 and chapter 7.) A detailed list on how to make computational studies more re-

producible can also be found in [25]. Available technologies that are useful for the documentation of 

workflows include platforms like MyExperiment [26] or different workflow managers [27–30]. 

Using these tools or completely documenting workflows using, e.g., batch files, is advisable and in-

creases reproducibility. Additionally, providing respective metadata directly within a created MSA or 

phylogenetic tree is even more helpful, since the necessary information is then directly linked to the 

data and easily accessible for both humans and automated data collection systems, even if the data 

file has been copied somewhere else and the respective workflow description was not. (Workflow 

documentation or batch files can additionally be linked using metadata annotations directly in the data 

document.) 

1.1.3 Phylogenetic data formats 
The Nexus format [31] was traditionally, and still often is used to store phylogenetic datasets that con-

sists of taxon/OTU lists, character matrices/multiple sequence alignments, phylogenetic trees and dif-

ferent sets of, e.g., alignment columns or tree nodes. The combination of these types of data is some-

times also referred to as the Nexus data model. Nexus is supported by a variety of phylogenetic soft-

ware and allows to include custom blocks to store, e.g., application-specific data. Other available soft-

ware though only accepts simpler formats as input, such as FASTA or Phylip [32,33] for MSAs and 

Newick [34] for phylogenetic trees. (See also chapter 2.2.3 on page 38 for further details on the differ-

ent formats.) 

Today, XML-based formats like NeXML [35] and phyloXML [36] with more advanced metadata models 

are increasingly used, although their support in different software is still limited compared to the men-

tioned classic formats. XML documents are text files that are structured using markups (which are 
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called XML tags) delimited by the characters “<” and “>”. (See Figure 5.3 on page 82 and Figure 7.7 on 

page 118 for example XML documents.) Using a technology called XML Schema, the structure of each 

type of XML document, i.e., the way tags may be nested and used, can be formally defined, which 

allows easy automated validation also of NeXML of phyloXML files. Functionality to process and ma-

nipulate XML is available in all major programming languages, which makes such formats easily acces-

sible. 

phyloXML models phylogenetic trees and a predefined set of metadata annotations to nodes, 

branches, and the tree as a whole. Additionally, custom XML elements (XML tags) can be inserted to 

model custom metadata. The other two parts of the Nexus data model, i.e., separate taxon lists or 

MSAs, are not directly supported, but sequences and taxonomic information can be attached to the 

nodes of a tree. 

NeXML is more closely modeled along the Nexus format and supports the same set of data types. It 

additionally offers structures to attach any type of metadata to all its data elements, including OTUs, 

MSAs, trees, sequences, nodes, branches and others. RDF [37] (see below) is used to link data and 

metadata. This is a major advantage over the Nexus format that only allows limited textual annotations 

in its NOTES block and annotations to certain data elements were usually done using informal exten-

sions of the format, such as different kinds of hot comments. (See chapter 2.2.4 on page 41 for further 

details.) 

Although starting to use NeXML may be more complex than phyloXML, since new users need to be or 

become familiar with the concepts of RDF and externally defined ontologies (see next section), it pro-

vides more powerful ways of annotating more elements of phylogenetic data in a formally defined and 

unambiguous way. 

1.1.4 Linking metadata using ontologies 
As mentioned, NeXML allows to attach metadata to phylogenetic data elements using RDF. (Figure 5.3 

on page 82 and Figure 7.7 on page 118 contain examples of NeXML documents, including metadata 

annotations.) RDF stands for Resource Description Framework and is a family of specifications of the 

World Wide Web Consortium (W3C). It allows to formulate logical statements of the form subject-

predicate-object. The subject of a statement can, e.g., be the node of a tree in a NeXML or other doc-

ument or any other data element, while the object may be any metadata annotation like a support 

value or a taxonomic identifier. The predicate must be a globally unique URI (e.g., a web address) and 

describes the relation between the subject and the object. A predicate with the meaning “carries boot-

strap value” could, e.g., link a tree node and the numeric value “98”. In contrast to a hot comment 

with the content “98” attached to a tree node in Newick or Nexus, it is unambiguously defined what 

the meaning of “98” is. (In Newick or Nexus the age of the node or any other numeric annotation might 

also be indicated by the same hot comment. While human users may or may not be able to guess the 

meaning from the context, requiring such guessing makes interpreting the data unnecessarily difficult, 

especially for automated systems trying to make use of the information.) 

Technically predicates are just URIs. To unambiguously define the meaning for a set of URIs, an ontol-

ogy is necessary. Ontologies, in this case, are sets of controlled vocabularies that allow to formulate 

RDF statements, usually regarding a certain field. Since predicates are identified by globally unique 

URIs, ontologies (predicates and their meaning) can be defined outside of the document that uses 

them, which is referred to as “externally defined ontologies”.  

Numerous ontologies, including many for use in different parts of the life sciences, exist to date. The 

National Center for Biomedical Ontology (NCBO) host a database containing descriptions of a large part 

of existing bioontologies and an ontology recommender that proposes useful ontologies related to a 
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paragraph of text or a list of keyword provided by the user [38]. It is also involved in developing and 

extending some of the ontologies [39]. The development of new and the extension of existing ontolo-

gies is and must be a community process that sometimes starts with the definition of minimal infor-

mation standards (e.g. [40]) and then leads to the development of ontologies for certain purposes that 

fulfill the needs of the community. A list with examples of phylogenetically relevant ontologies is pro-

vided in Table 9.1 (page 153). It should though be noted that the community process of defining on-

tologies to describe phylogenetic data sufficiently under different aspects to enable effective reuse for 

specific questions is still ongoing and further work remains to be done to further improve the current 

information and to keep track with future developments. 

Since RDF allows to formulate statements about distributed data using distributed (externally defined) 

ontologies, it is very well suited to be used in rapidly evolving, diverse and data-intensive disciplines 

[41]. It allows rapid and discipline-specific development without the need of a single (potentially slow) 

authority that defines one central standard, while still allowing to keep all produced data easily reusa-

ble, accessible and semantically interpretable. NeXML allows to make efficient use of RDF for describ-

ing phylogenetic data. Together, these two technologies can play a central role in letting phylogenetics 

benefit from the advances of the semantic web. 

1.1.5 Public databases 
Different public databases have been established in the past, contributing to the necessary cyberinfra-

structure for data reuse. The sequence databases in the International Nucleotide Sequence Database 

Collaboration (DNA Data Bank of Japan (DDBJ), European Nucleotide Archive (ENA), and GenBank at 

NCBI) were among the pioneers in the field. They are commonly used and the publication of data in 

them is enforced by many journals and funding agencies. The Dryad data repository [42] was more 

recently established and allows to submit sets of any type of data files linked to a scientific publication. 

These files are recommended to be in open formats (as, e.g., listed in the FairSharing database [43]). 

TreeBASE [44] is more specific for phylogenetics and allows to upload character matrices or multiple 

sequence alignments together with phylogenetic trees inferred from them in Nexus format [31]. Data 

also must be linked to a scientific publication.  

The publication of data that is more complex and derived than simple sequences (e.g., in databases 

like Dryad and TreeBASE) is less frequently enforced by journals but some start recommending it, e.g., 

[45,46]. As a result, the fraction of published data regarding, e.g., phylogenetic trees is still smaller 

than for sequence data [19,22,47] and most phylogenetic trees are still published only as images in 

publications. Although software exists that tries to extract such trees [48,49], this way of providing 

phylogenies is far from optimal and allows no reliable metadata interpretation at all. Data that is not 

uploaded to public databases but is stated to be available upon request by the authors of a publication 

is frequently not accessible [50] after authors cannot be contacted anymore since they have left aca-

demia or simply do not reply to requests. 

Since Dryad does not impose many constraints on the format of the uploaded data, annotating it (e.g., 

in NeXML format) with any kind of relevant metadata to increase its reusability is possible, although 

having such data in a database does not automatically mean that it is searchable, but it is a necessary 

step. Databases that model the uploaded data more closely, as TreeBASE does by explicitly focusing 

on MSAs, phylogenetic trees and a set of attached metadata like taxonomic IDs and publication DOIs 

are more easily searchable for the modeled data but at the same time less flexible with regard to new 

types of data and metadata. In TreeBASE it is currently not intended to upload NeXML files that provide 

additional metadata not modeled in the database (e.g., on the workflow used to infer a phylogenetic 

tree), although it can output Nexus uploads in NeXML format that contain a set of modeled and partly 

automatically obtained metadata. Both these and other database are very helpful contributions to 
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making phylogenetic data more reusable and Dryad in principle already allows to annotate uploaded 

data with any type of metadata. In the future development, a greater focus on metadata annotation 

to allow more efficient identification of relevant datasets could further improve the cyberinfrastruc-

ture. Providing a triple store [51] for RDF annotations (e.g., contained in uploaded NeXML files) that 

allows semantic queries within repositories such as Dryad could be an important step further in that 

direction. 

Phylotastic! is a web service that returns a tree containing a set of queried taxa that is based on known 

phylogenies. This allows efficient data reuse in studies that require a phylogenetic context in principle, 

but the project is currently in a proof-of-concept state [52]. The Open Tree of Life project tries to pro-

vide a comprehensive phylogeny of all organisms on earth, based on all available phylogenies in data-

bases and additionally allows to upload published phylogenies directly to the project’s own database 

[53]. It suffers from the fact that a large part of published phylogenies are not easily reusable, e.g., 

since they are only available as images [53]. Both services provide access to the trees available in other 

databases and Open Tree of Life also provides some metadata, such as links to studies with supporting 

or conflicting trees. They also significantly contribute to a better reusability of phylogenetic trees but 

currently do not focus on a general flexible metadata annotation for reuses beyond the phylogenetic 

tree topology (and probably cannot do this due to the too limited amount of available properly anno-

tated data). 

1.1.6 Software components developed in this thesis provide missing functionality to 

fostering data reuse and increasing reproducibility 
Besides improvements and extensions in the other necessary parts of the cyberinfrastructure and pol-

icies to allow efficient data reuse as described above, providing software to process phylogenetic data 

while making the necessary metadata annotation as easy as possible, is a key step. The less effort is 

required for researchers to provide data in suitable formats annotated with necessary metadata, the 

more would be willing to follow this practice and the easier respective policies of journals and funding 

agencies could be implemented. Despite the great usefulness to tackle the challenges of the big data 

age, only few applications for use in phylogenetic workflows are available to date that provide neces-

sary features by supporting the flexible metadata model of the NeXML format or comparable features. 

Instead of only developing or extending one or more software products that support a flexible 

metadata model independently, this thesis focuses on implementing necessary functionality in general 

software libraries (cf. aim 3 above). This way, the new functionality can be used in different applica-

tions developed in this thesis and at the same time by all other bioinformaticians to extend their soft-

ware and address the described needs. Implementing general libraries requires more effort than di-

rectly extending single applications, since flexible strategies covering a maximal number of use cases 

are required, but that is justified by the number of applications that are made possible or can be im-

proved. (Reusability is not only important for scientific data, it also is for scientific software compo-

nents.) 

The libraries JPhyloIO and LibrAlign have been developed to provide the metadata-related functional-

ity that is necessary to enable easier data reuse. Based on them, three applications have additionally 

been created or extended that cover all three parts of the Nexus data model. The Taxonomic Editor of 

the EDIT platform for Cybertaxonomy models taxonomic workflows with their data derived from spec-

imens and therefore covers the taxa/OTU part, while PhyDE 2 and TreeGraph 2 are editors for multiple 

sequence alignments and phylogenetic trees, respectively. Section 1.3 below describes in detail how 

these libraries and applications are related and contribute to the aim of simplifying data reuse. 
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1.2 Providing tools to compare, combine and present results from alternative 

analyses 
Multiple sequence alignments and phylogenetic trees are two core data types of phylogenetics and 

their creation is at the center of most respective workflows. Beyond that, both play a significant role 

in nearly all other disciplines of the life sciences. Numerous downstream analyses and (phylo-) statis-

tical tests are based on them (e.g., [54–58], or see Box 1 in [59] for a more complete list of examples). 

A large variety of alternative methods for both multiple sequence alignment [60–68] and phylogenetic 

inference [69–74] exist and have different advantages for different purposes, but it is often not trivial 

to decide which method to use for which problem. The single methods can furthermore produce dif-

ferent results depending on numerous parameters the user can adjust. (Examples include generally 

used parameters like gap penalties in MSA algorithms or substitution models used by phylogenetic 

inference software as well as more method-specific parameters like the F-option of the MSA algorithm 

PRANK that allows to avoid penalizing gaps resulting from insertions and not from deletions multiple 

times along the guide tree.) 

As a result, researchers often need to compare the results from different alternative methods or pa-

rameter sets to inspect how these influence their analyses. Since there is no general agreement on 

which method produces the best results for which purpose, comparing the results and possibly simul-

taneously presenting them, indicating where they agree and where they are in conflict, is an advisable 

practice. Software for conveniently and efficiently comparing MSAs and phylogenetic trees is therefore 

of great use when dealing with all types of biological problems that involve these datatypes. In addi-

tion, software to compare MSAs and trees can be used to track and identify subsequent manual or 

automatic modifications made during a workflow when comparing the outputs of different steps. 

Therefore, comparison software can also increase reproducibility of studies when used in this context. 

In this thesis, two applications are developed to address these needs. AlignmentComparator offers 

several ways to visualize and annotate differences between alternative MSAs and TreeGraph 2 pro-

vides features to interactively compare alternative phylogenetic trees and map support values from 

different analyses onto one topology. A more detailed introduction to the comparison functionality of 

these two applications and how they are related to the other software of this thesis is provided in 

section 1.3.3 below. 

1.3 How the developed software components combine 
The chapters of this thesis (i.e., the publications and manuscripts) are grouped into three parts. Part I 

(page 31) describes the bioinformatical libraries, while Part II (page 57) deals with the applications 

based in these. As shown in Figure 1.1, the audience of the chapters in Part I are bioinformaticians who 

develop scientific software, while Part II addresses researchers working in phylogenetics or many other 

fields, who need such tools. Part III (page 163) contains three additional chapters that describe a web 

portal and two general-purpose (not mainly bioinformatical) libraries that provide the basis for all 

other projects. It is located at the end of the thesis, since it has a supplementary character regarding 

its biological and bioinformatical aims but is still relevant for the thesis as a whole. 

1.3.1 Basic general-purpose components 
The basic general-purpose components, described in Part III, are shown in the first green part of Figure 

1.1. The bioinfweb web portal (chapter 10, page 165) on the top of the figure provides the platform 

for all developed software. It offers download pages, documentation and source code repositories, 

making the development and the use of the software possible in the first place. Much of the function-

ality has been added within this thesis. 
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Figure 1.1 General concept of the thesis and relation between the chapters and projects 

To reach the goals of this thesis different libraries and applications are developed. All of them, except for the 
Taxonomic Editor, are hosted in the bioinfweb portal. The green components are general-purpose libraries that 
are not specific for bioinformatics. This includes bioinfweb.commons with its general tool classes for various dif-
ferent purposes that are shared between all projects and Toolkit Independent Components that provides tech-
nical GUI solutions for LibrAlign, which could also be used by other software. The yellow part contains software 
libraries that provide functionality specific for bioinformatics and includes JPhyloIO to read and write phylogenetic 
data and metadata as well as LibrAlign that provides GUI components to display and edit MSAs and attached raw 
and metadata. The applications developed in this thesis are shown in red and the arrows indicate how all com-
ponents are based on each other. Due to its general functionality, all products are based on bioinfweb.commons, 
while all bioinformatical components that read and write data are based in JPhyloIO. On the horizontal axis, the 
main datatypes of phylogenetics are listed and each software is positioned depending on which of these datatypes 
it deals with. 

*Note that only the molecular parts of the Taxonomic Editor were developed in this thesis and the software as a 
whole is developed and hosted at the Berlin Botanical Garden and Botanical Museum. 
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bioinfweb.commons (chapter 11, page 168) is a general-purpose programming library that has been 

developed together with the other software. It contains functionality that was necessary for one of the 

other libraries or applications and was potentially of general use beyond the current project. Perform-

ing such implementations in a separate project allows to easily reuse them and all software in this 

thesis depends on some of the provided features, which is why Figure 1.1 shows links from bio-

infweb.commons to all other projects. 

TIC is described in the third chapter of Part III (chapter 12, page 171) and stands for Toolkit Independent 

Components. This library provides abstractions over the two major Java GUI toolkits, Swing and SWT. 

It has been developed together with LibrAlign and allows to provide all of LibrAlign’s GUI components 

for both Swing and SWT, which is a requirement, since the Taxonomic Editor uses SWT and the other 

applications that make use of it are Swing-based. TIC is maintained separate from LibrAlign because its 

functionality is potentially useful elsewhere. Since the library is available on the bioinfweb portal under 

an open-source license, it can be used by other developers and possibly also for exposing some com-

ponents of TreeGraph 2 in a separate library in the future. 

1.3.2 Bioinformatical libraries 
The middle part of Figure 1.1 (yellow) shows the two bioinformatical libraries JPhyloIO and LibrAlign 

that are described in Part I of this thesis. JPhyloIO (chapter 2, page 33) provides a generalized and 

memory-efficient access to a variety of different phylogenetic file formats (cf. sections 1.1.3 above and 

2.2.3 on page 38) with a special emphasis on supporting the full metadata model of each, while still 

providing one single interface that is independent of the specific formats (chapter 2.2.4, page 41). This 

fulfills a basic requirement to address goal 1 of this thesis (page 20) for all developed software and 

ensures maximal interoperability by supporting still widely-used traditional formats together with re-

cent advanced one in one step. As indicated by the arrows in Figure 1.1, JPhyloIO is used to read and 

write data by LibrAlign and all applications. 

LibrAlign (chapter 3, page 46) provides flexible GUI components and model implementations to display 

and edit single sequences and complete multiple sequence alignments. It allows to attach so-called 

data areas to these sequences and MSAs, which can be considered the GUI counterparts of metadata 

elements attached, e.g., in NeXML files, using predicates from externally defined ontologies. For se-

quence and alignment data, LibrAlign provides components that are as flexible with respect to attach-

ing metadata as the RDF-based model of NeXML is. Applications dealing with such data are therefore 

easily enabled to model any kind of metadata directly in their GUI by simply implementing new or 

reusing third party data areas and combining them with LibrAlign’s existing components. The GUI ele-

ments are used by the Taxonomic Editor to handle contig alignments of marker sequences, provide the 

basis of the MSA editor PhyDE 2 and are integrated into AlignmentComparator to display comparisons 

between alternative MSAs. 

The yellow and the red sections of Figure 1.1 are horizontally divided into three parts and the position 

of the rectangles representing each software indicate which part of the Nexus data model a product 

deals with. JPhyloIO spans all three areas, since it can read and write data related to taxa or OTUs, 

character matrices or MSAs and phylogenetic trees or networks. LibrAlign only deals with sequences, 

MSAs and their metadata is therefore positioned in the center part. 

1.3.3 Applications for researchers 
The chapters in Part II describe different aspects of the applications that have been developed or ex-

tended in this thesis as shown at the bottom red part of Figure 1.1. These cover all three areas of the 

Nexus data model and therefore major parts of many phylogenetic, taxonomic and many related work-

flows. 
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The Taxonomic Editor of the EDIT Platform for Cybertaxonomy (also called EDITor) is mainly developed 

at the Botanical Garden and Botanical Museum (BMGM) at the FU Berlin and existed before this thesis 

started. Chapter 4 (page 59, also published as [24]) describes the general concept of the application 

and its platform, including the way it models alpha-taxonomic workflows. Its major advantage is linking 

all modeled elements back to the specimen they were initially derived from. This way, all data can still 

be easily used and interpreted while performing taxonomic revisions, which contributes to goal 1 (page 

20). During this thesis, the EDITor was extended to model molecular sequence data that is generated 

from probes of specimens. Sanger sequencing trace files with their base call sequences and contig 

alignments of them to create complete marker sequences are now supported and persistently linked 

back to their source specimen(s). LibrAlign is used to display the contig alignments and its editing func-

tionality allows to create and modify them. The pherogram raw data is displayed using special data 

area instances attached to the single read sequences. Exporting contig alignments to various formats 

is achieved using JPhyloIO, while the NeXML export contains metadata further describing the relation 

between the sequences to allow optimal reuse. (Details in Figure 5.3, page 82.) Chapter 5 (page 79) 

describes the new molecular components of the EDITor in detail. Since it deals with data derived from 

specimens that is used, e.g., for taxon diagnosis, the EDITor is positioned in the taxa/OTU part of the 

Nexus data model in Figure 1.1. 

PhyDE [75] is an alignment editor for phylogenetic purposes, which was already in use before the start 

of this thesis. It was developed between 2005 and 2010 and offered, amongst other things, versatile 

features to manually edit MSAs. With the development of LibrAlign that provides components with 

similar functionality, the decision was made to reimplemented the application based on the library in 

this thesis, also because the old code base was difficult to maintain and extend. The new implementa-

tion is called PhyDE 2 and described in chapter 5 (page 79). Since the development of PhyDE 2 is not 

the primary focus of this thesis, the initial version does not yet have the full feature set of the previous 

version, but already offers new ones, like supporting more formats with the help of JPhyloIO. The new 

application of made as a proof-of-concept for creating a fully functional MSA editor using the compo-

nents of LibrAlign and JPhyloIO and to lay the basis for the future development of PhyDE that will also 

offer a flexible and advanced metadata model necessary to fulfill the needs of goal 1, described above. 

AlignmentComparator (chapter 7, page 90) provides functionality to visually compare alternative MSAs 

of the same dataset and allows a detailed inspection and annotation of regions with conflict or agree-

ment between different methods. It therefore contributes to goal 2 of this thesis (allowing researchers 

to take the results of alternative methods into account, page 20). AlignmentComparator uses GUI com-

ponents provided by LibrAlign that allow to display multiple MSAs underneath of each other to output 

MSA comparisons including related metadata. JPhyloIO contributes functionality to import MSAs from 

different formats and to store the comparison results in NeXML using the flexible metadata model of 

that format. Resulting NeXML files can be provided with a study to document alignment modifications 

and to increase its reproducibility and AlignmentComparator therefore also contributes to goal 1 of 

this thesis. 

Both PhyDE 2 and AlignmentComparator are tools that cover the sequence/MSA part of the Nexus 

data model as indicated in Figure 1.1. 

Phylogenetic trees that are inferred, e.g., from MSAs processed with PhyDE 2 and AlignmentCompar-

ator, can then be visualized, compared and further annotated with the phylogenetic tree editor Tree-

Graph 2. It therefore covers the third part of the Nexus data model, as shown in Figure 1.1. A first 

version of the editor is described in chapter 8 (page 128) which has been published as [76]. By the time 

of submission of this thesis, it is already widely used inside and outside the phylogenetic community 

and highly cited (see chapter 9.1 on page 137 for concrete numbers), which indicates a demand for its 
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functionality and its contribution to scientific progress. This is one of the reasons for its further exten-

sion described in chapter 9 (page 137). TreeGraph 2 features various editing and selection options. The 

metadata model allows to attach an unlimited number of annotations to tree nodes and branches and 

the editor can visualize these in many ways, including automatic coloring or resizing of different tree 

elements and using different types of branch labels. Since the development of TreeGraph 2 started 

before the development of JPhyloIO, its initial metadata model used string keys used in Nexus hot 

comments to attach metadata, instead of RDF predicates. With the completion of JPhyloIO, the 

metadata model of TreeGraph 2 was refactored to additionally support nested annotations linked by 

RDF predicates to address the needs of goal 1 even better. (See chapter 9.3.6 on page 151 for further 

details.) 

With respect to goal 2 of this thesis, the application additionally provides functionality to compare 

phylogenetic trees. The published version described in chapter 8 allows to combine support values 

from different analyses (e.g., maximum likelihood and Bayesian approaches) and to show them to-

gether on a single tree. If the topologies resulting from multiple approaches differ, the algorithm can 

identify corresponding branches and map support values accordingly. If topological conflicts exist, sup-

port values from an alternative analysis are mapped onto the branch to which they are in conflict and 

are highlighted. (See chapter 8.3.1.1 on page 130 for details.) The comparison feature is extended in 

chapter 9 to support the comparison of trees with different overlapping sets of terminal nodes and an 

interactive tree comparison feature is introduced. The user can open a set of alternative trees and 

select nodes in one of them. Both corresponding nodes and support of conflicting branches is then 

highlighted in all other trees. This allows an inspection of topological differences in greater detail than 

a single figure with one selected or consensus topology that carries all mapped support values. 

More details on how the developed libraries and applications lay the foundations for increased data 

reuse and reproducibility can be found in the following chapters. 
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2 JPhyloIO: A Java library for event-based reading and writing of dif-

ferent phylogenetic file formats through a common interface 
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Abstract 

Today a variety of phylogenetic file formats exist, some of which are well-established but limited in 

their data model, while other more recently proposed ones offer advanced features for metadata rep-

resentation. Most phylogenetic software currently only supports one or few different formats, while 

supporting more would be desirable to achieve optimal interoperability and prevent data loss by for-

mat conversions. 

We developed the Java library JPhyloIO, which allows event-based reading and writing of the most 

common alignment and tree/network formats using the strategy pattern. It generalizes between their 

different data and metadata concepts, while still allowing full access to all features of the nine currently 

supported formats. 

By implementing a single JPhyloIO-based reader and writer, application developers can support all for-

mats. Due to an event-based architecture, JPhyloIO can be combined with any application data struc-

ture, and is memory efficient for large datasets. JPhyloIO is distributed under LGPL. Detailed documen-

tation and example applications (available on http://bioinfweb.info/JPhyloIO/) significantly lower the 

entry barrier for bioinformaticians who wish to benefit from JPhyloIO’s features in their own software. 

JPhyloIO enables simplified development of new and extension of existing applications that support 

various standards simultaneously. This has the potential to improve interoperability between phylo-

genetic software tools and to motivate usage of more recent powerful formats such as NeXML or phy-

loXML. 

2.1 Introduction 
Phylogenetic file formats are an integral part of phylogenetic workflows and the basis for interopera-

bility between the software tools and databases involved. To date a variety of different file formats 

exist in this domain [31,32,35,36], but many of the more widely-used tools for multiple sequence align-

ment [60,68,77–79], phylogenetic inference [69–71,74,80,81], tree editing or databases and web ser-

vices [44,52,82,83] support only one or few of these. More often than not, this enforces conversion 

(with possible data loss) between such formats, e.g., when chaining several such tools. For simpler 

interoperability, supporting more established formats simultaneously would be desirable, but cur-

rently would force developers to invest significant additional resources. Since the same resources 

would have to be subtracted from working on the core functionality of the application, this is usually 

not done. 

Here we present JPhyloIO, a new Java library that allows reading and writing a variety of phylogenetic 

file formats through a common event-based interface that fully models the data and metadata con-

cepts of the all formats. This enables Java application developers to support all these formats by only 

implementing a single JPhyloIO-based reader and writer. Consequently, classic formats supported by 

mailto:stoever@bioinfweb.info
http://bioinfweb.info/JPhyloIO/
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many traditional tools (e.g. FASTA, Phylip or Nexus) as well as new formats with advanced metadata 

concepts (e.g. NeXML or phyloXML) can be supported in one step, without investing additional devel-

opment resources or acquiring detailed knowledge on each format. At the same time, the event-based 

architecture of our library gives developers maximum flexibility in the design of the application data 

model, instead of enforcing its own, as many I/O libraries do. 

Our library is mainly intended for developers of (complex) end user applications requiring a custom 

data structure. Although similar libraries for other programming languages would also be beneficial 

for the community, we decided to develop JPhyloIO in Java. The reasons are Java’s modular technology 

that allows to easily integrate and extend JPhyloIO, its built-in platform-independence, and it still being 

one of the most common languages in software development and widely used in the bioinformatics 

community, as testified by the numerous Java applications available [24,74,76,78,84–87]. 

2.2 Design and implementation 
Phylogenetic data files usually consist of a set of taxon- or OTU lists, character matrices or multiple 

sequence alignments, phylogenetic trees or networks and sets of elements (e.g. character sets), in-

cluding associated metadata. Not all formats can hold all of these data types (see chapter 2.2.3 on 

page 38 and Table 2.1 on page 40), but a general concept for data management should model them 

all. The aim of JPhyloIO is to provide a way for reading and writing that generalizes over different file 

formats, without imposing constraints on the data model of applications using the library. (See Figure 

2.1 and Figure 2.2.) An event-based architecture (similar to iterator-based StAX for XML parsing) was 

chosen over a model-based approach, because representing phylogenetic data as a sequence of event 

objects allows compatibility to all application data structures and memory efficient processing, with 

only one or very few events required to be in memory at the same time. 

All JPhyloIO readers and writers are provided by a factory that creates instances and can guess the 

format from a file or input stream. 
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Figure 2.1 Data flow diagram showing how data is read into and written from an application data model. 

JPhyloIO contains a reader for each format that translates the contents of a file to a sequence of events that are 
then processed by the custom reader of an application. This reader has knowledge of the specific application data 
model and stores relevant information there. The writers available in JPhyloIO access the contents of that model 
using data adapters provided by the application that allow random access to the application’s data model. (For 
supported formats specific for a single application, only readers are provided.) 

2.2.1 Event streams for reading documents 
JPhyloIO‘s reader classes use the strategy pattern [88] to make them easily exchangeable. They trans-

late the hierarchical data structure of a document with phylogenetic data into a linear sequence of 

event objects, which is formally described by the grammar in Figure 2.3. Events representing data ele-

ments that consist of smaller parts (e.g. an alignment that consists of sequences) are modelled as a 

pair of a start and an end event. The subsequence between these two consists of events that model 

the content of the data element at hand. By applying this recursively, the hierarchical structure of a 

document can be serialized to a linear event stream, as shown in the example in Figure 2.4. Applica-

tions using JPhyloIO need to implement a reader for processing the encountered events and storing 

relevant information in their data structure (Figure 2.1, Figure 2.2). This can be done by iterating over 

the event stream using (StaX-like) pull parsing, which allows the application to actively request events 

one by one and therefore keep the control flow. Classes for (SAX-like) push parsing are additionally 

available, if an inversion of control is beneficial, e.g. if multiple event listeners need to be present on 
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the application side. (Push parsing means that JPhyloIO has the control flow and calls event handlers 

of the application for each element of the stream. In this approach the application code cannot control 

when to read how far.) One such application reader implementation allows access to all supported 

formats, even when additional formats are added in future releases of JPhyloIO. 

 

Figure 2.2 UML class diagram showing the relation between JPhyloIO and an application based on it. 

All readers and writers implement a common interface to be easily exchangeable in the application. Event readers 
produce a sequence of events (see Figure 2.1) processed by an application reader class that acts as an adapter 
between JPhyloIO and the application data model. Conversely, a set of data adapter implementations of the ap-
plication allows the JPhyloIO writers to access the data. Writing needs a slightly more complex architecture than 
reading, because writers need to access that data in different orders depending on the target format. To achieve 
this, a set of data adapters (see Figure 2.5 for details) is necessary, each providing a subsequence of the whole 
event stream modelling a document. 
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All created event objects have a string ID, which is unique inside a document’s event stream and allows 

to link events to one another (e.g. a tree node to an OTU). References will only be made to previous 

events to ensure that they are already known to the application. To reduce the amount of work for 

application developers, the minimum information is always directly contained in an event object, so 

that only more complex application models will need to resolve such ID dependencies. 

Document = "DOCUMENT.START", {DocumentContent,} "DOCUMENT.END"; 
DocumentContent = OTUSet | Matrix | TreeNetworkGroup | CharacterSetPart | TreeNetworkSet | MetaInfor-

mation; 
  

OTUList = "OTUS.START", {OTUListContent,} {OTUSet,} "OTUS.END"; 
OTUListContent = OTU | MetaInformation; 
OTU = "OTU.START", {MetaInformation,} "OTU.END"; 
OTUSet = "OTU_SET.START", {SetContent,} "OTU_SET.END"; 
  

Matrix = "ALIGNMENT.START", {MatrixContent,} "ALIGNMENT.END"; 
MatrixContent = CharacterDefinition | TokenSetDefinition | SequencePart | CharacterSetPart | SequenceSet | 

MetaInformation; 
 

CharacterDefinition = "CHARACTER_DEFINITION.START" {MetaInformation,} "CHARACTER_DEFINITION.END"; 
SequenceSet = "SEQUENCE_SET.START" {SetContent,} "SEQUENCE_SET.END"; 
  

TokenSetDefinition = "TOKEN_SET_DEFINITION.START", {TokenSetDefinitionContent,} "TOKEN_SET_DEFINI-
TION.END"; 

TokenSetDefinitionContent = SingleTokenDefinition | MetaInformation; 
SingleTokenDefinition = "SINGLE_TOKEN_DEFINITION.START", {MetaInformation,} "SINGLE_TOKEN_DEFINI-

TION.END"; 
  

SequencePart = "SEQUENCE.START", {SequencePartContent,} "SEQUENCE.END"; 
SequencePartContent = "SEQUENCE_TOKENS.SOLE" | SingleSequenceToken | MetaInformation; 
SingleSequenceToken = "SINGLE_SEQUENCE_TOKEN.START", {MetaInformation,} "SINGLE_SEQUENCE_TO-

KEN.END"; 
  

CharacterSetPart = "CHARACTER_SET.START", {CharacterSetPartContent,} "CHARACTER_SET.END"; 
CharacterSetPartContent = "CHARACTER_SET_PART.SOLE" | SetContent; (* In character sets only references to 

other character sets (and not single character definitions) are using "SET_ELEMENT.SOLE". *) 
  

TreeNetworkGroup = "TREE_NETWORK_GROUP.START", {TreeNetworkGroupContent,} "TREE_NET-
WORK_GROUP.END"; 

TreeNetworkGroupContent = Tree | Network | TreeNetworkSet; 
Tree = "TREE.START", {TreeOrNetworkContent,} ["ROOT_EDGE.START",] {TreeOrNetworkContent,} {NodeEdge-

Set,} "TREE.END"; 
Network = "NETWORK.START", {TreeOrNetworkContent,} {NodeEdgeSet,} "NETWORK.END"; 
TreeOrNetworkContent = Node | Edge | MetaInformation; 
Node = "NODE.START", {MetaInformation,} "NODE.END"; 
Edge = "EDGE.START", {MetaInformation,} "EDGE.END"; 
  

TreeNetworkSet = "TREE_NETWORK_SET.START" {SetContent,} "TREE_NETWORK_SET.END"; 
NodeEdgeSet = "NODE_EDGE_SET.START" {SetContent,} "NODE_EDGE_SET.END"; 
 

SetContent = "SET_ELEMENT.SOLE" | MetaInformation; (* Single elements and other sets of the same type can 
be linked using "SET_ELEMENT.SOLE". *) 

 

MetaInformation = ResourceMeta | LiteralMeta; 
ResourceMeta = "RESOURCE_META.START", {MetaInformation,} "RESOURCE_META.END"; 
LiteralMeta = "LITERAL_META.START", {"LITERAL_META_CONTENT.SOLE",} "LITERAL_META.END"; 
 

Figure 2.3 Grammar describing the event sequence generated by JPhyloIO readers. 

These readers translate the hierarchical data structure of a phylogenetic file (e.g. a NeXML file consisting of an 
alignment and a tree, which again consist of sequences or nodes and edges etc.) into a sequence of events as 
defined by this grammar in extended Backus-Naur form. The terminal symbols (in green) represent the types of 
events, each of which either has a single SOLE or a START and END version, depending on whether additional data 
can be nested or not. 
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2.2.2 Data adapters for writing documents 
Format-independent writing of phylogenetic data cannot be im-

plemented as straightforward as, e.g., StAX writing for XML, since 

the required order of the data elements varies between the dif-

ferent target formats, and direct writing of an event stream (as 

defined by the grammar in Figure 2.3) is not possible without hav-

ing to buffer large amounts of data in some cases. Therefore, we 

provide adapter interfaces between the application data model 

and JPhyloIO writers (Figure 2.2, Figure 2.5) that request certain 

subsequences of the event stream (which correspond to a gram-

mar node in Figure 2.3) in the required order of their target for-

mat. 

Implementing such data adapters may be slightly more effort for 

application developers than just writing a method that creates an 

event stream from their data model, but it has the advantage of 

allowing direct access in the required order for all formats and 

writing therefore becomes memory efficient. 

2.2.3 Supported formats 
As shown in Table 2.1, JPhyloIO supports reading and writing the 

majority of phylogenetic file formats, including common exten-

sions of these. Additionally, reading of some application-specific 

alignment and tree formats is possible. The library imposes no re-

strictions on alphabets used in molecular, morphological and 

other character matrices, but guarantees that no invalid output 

for any of the target formats can be written. 

Sequence data, including optional comments, can be read from 

and written to the FASTA format, with optional column indices at 

the beginning of each line being processed correctly. (Figure 2.6 

shows an example of these special FASTA elements.) Writing of 

sequences and optional comments is supported, but generated 

files will never contain column indices, since these may be prob-

lematic for readers in some other software. 

The Phylip format exists in a standard [32] and a relaxed [33] var-

iant (the latter allows longer sequence names). Both variants can 

be read in interleaved and non-interleaved forms (the non-inter-

leaved form is written for both) variants. The Phylip format allows 

sequence names only up to a certain length, resulting in the need 

to shorten them by JPhyloIO writers. In contrast to many other 

Figure 2.4 Example document with the respective event sequence. → 

The document contains an OTU list and an alignment, which references 
this list. The event sequence is generated by a JPhyloIO reader (see also 
Figure 2.2), where each box represents one event. Each has an ID in or-
der to be referenced by subsequent events, as exemplarily shown by the 
OTU list and OTU start events, which are referenced by the related align-
ment and sequence start events. 
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available software tools, this implementation ensures that all 

written names are unique, even if the full names only differ in 

characters behind the cut-off position. If sequence names 

were edited, the application will be informed by a translation 

object, mapping old to new names. 

The Nexus format [31] is a text format consisting of blocks that 

contain different  types of data. Each block consists of a set of 

Nexus commands. JPhyloIO offers readers and writers that 

support commands of the TAXA block containing taxon lists, 

the DATA, CHARACTERS and UNALIGNED blocks containing se-

quence and alignment data, the TREES block containing phy-

logenetic trees and the SETS block, containing sets of other 

items. One type of custom NETWORKS blocks containing phy-

logenetic networks in eNewick format is also supported (see 

below.) Sequence data can be in standard or interleaved for-

Figure 2.5 UML diagram showing the data adapter interfaces providing access to the application model for 
JPhyloIO writers. 

From top to bottom the object relation (indicated by aggregations) is shown, while the class hierarchy can be read 
from bottom to top. Note that not all but only exemplary methods are shown in each interface. 

The DocumentDataAdapter is the main adapter that provides access to other adapters modelling OTU lists, 
matrices and phylogenetic trees or networks. Not all application models will provide all these datatypes and there-
fore not need to implement all types of adapters. The format specific writer classes in JPhyloIO can access the 
data either by event getter methods (e.g. MatrixDataAdapter.getSequenceStartEvent()) with an event 
ID as parameter or by writeXXX() methods (e.g. MatrixDataAdapter.writeSequencePart-Content-
Data()), which write a whole subsequence of the event stream to a special receiver object provided by the appli-
cation. To simplify the adapter implementation for application developers only frequently used events are pro-
vided by getter methods, while the others can directly be written in a sequence by implementing an appropriate 
writer method. (Getter methods were introduced for cases where random access to events with known IDs is 
frequently necessary for writers, to avoid requesting a whole sequence, if only one event is needed. Providing 
some events by getter and some by writer methods in the data adapter model is a compromise between ease of 
implementation and runtime performance.) 

Some adapters share common functionality, which is modelled by common superinterfaces, such as Annotated-
DataAdapter or ElementDataAdapter. 

 
>Sequence 1 

;Some comment 

;Another comment 

 0 ACGT 

 5 TAGC 

10 TTAGT 

>Sequence 2   

ACGT-ACC-TAGT 

 Figure 2.6 Example of optional FASTA el-
ements. 

The FASTA file shown here contains op-
tional sequence comments and column 
numbers in “Sequence 1”, while “Sequence 
2” contains no optional elements. JPhyloIO 
allows to read and write such comments 
(which may appear only directly after the 
sequence name) and to read files contain-
ing the current column index at the begin-
ning of each line correctly. 
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mat with both single character and longer tokens and ambiguous character definitions being sup-

ported. Tree nodes can be referenced by the taxon label, the taxon index, or by using a separate trans-

lation table. For the SETS block, character, taxon and tree sets are currently supported. The DIS-

TANCES, ASSUMPTIONS and NOTES blocks are currently not supported. As Nexus files identify all ele-

ments by a unique label (instead of distinguishing between labels and IDs as e.g. in NeXML), the re-

spective JPhyloIO writer edits labels to be unique if necessary, and reports such changes using the same 

translation object as the Phylip writer described above. 

Table 2.1 Formats supported by JPhyloIO. 

A variety of file formats used in phylogenetics are supported. These can either be text-file-based or XML formats, 
which is indicated in the second column. The columns in the middle show whether a format supports taxon/OTU 
lists, multiple sequence alignments, phylogenetic trees or networks. As shown in the two columns on the right, 
JPhyloIO can read and write many common formats, while application specific formats can only be read. 

1Hot comments containing numeric or textual node and branch annotations as used e.g. by BEAST or MrBayes. 
2Hot comments in the “New Hampshire eXtended” format, a precursor of phyloXML that allows to use a limited 
set of its predefined annotations. 

Format Type OTUs MSAs Trees Networks Read Write 

FASTA Text  X   X X 

Phylip Text  X   X X 

Relaxed Phylip Text  X   X X 

Nexus Text X X X  X X 

Newick Text   X  X X 

Hot comments (Newick, Nexus)1 Text   X  X X 

NHX (Newick, Nexus)2 Text   X  X X 

eNewick (Newick, Nexus) Text   X X X  

NeXML XML X X X X X X 

phyloXML XML   X X X X 

MEGA Text  X   X  

PDE XML  X   X  

XTG XML   X  X  

 
In addition to the initial Nexus standard, the TITLE and LINK commands from Mesquite [84] that 

allow linking between blocks (e.g. TAXA blocks can be referenced by CHARACTERS or TREES blocks) 

and the MIXED sequence datatype extension [89] from MrBayes [73] are recognized. 

Phylogenetic trees are represented as Newick strings [34] in the TREES block of a Nexus document or 

in separate text files containing a set of Newick strings separated by semicolons, which are sometimes 

referred to as Newick files and are e.g. used by MEGA [69]. Such Newick files are modelled as a separate 

format in JPhyloIO that can be read and written. Newick tree definitions (in Newick and Nexus files) 

may contain metadata in hot comments, which can also be read and written. (See chapter 2.2.4 below.) 

The readers for both Nexus and Newick can also read definitions of phylogenetic networks in the Ex-

tended Newick or eNewick format [90] and model the crosslink type (if specified) as metadata. 

NeXML [35] is a more recent XML format that is inspired by Nexus but allows a more advanced way of 

linking different phylogenetic data elements (e.g. a tree node to an OTU). Additionally, it offers an 

RDFa-like way of attaching metadata to all elements (trees, alignments, nodes, sequences, …), which 

provides the basis for the general metadata model used in JPhyloIO. (See below.) Readers and writers 

supporting all features of the format, including its full metadata concept and automated handling of 

custom sequence tokens, are provided by our library. 
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phyloXML [36] also models complex metadata using a different concept than NeXML. It stores phylo-

genetic trees and is fully supported by JPhyloIO. Although phyloXML uses a hierarchical tree represen-

tation, it allows to specify additional clade relation tags to define phylogenetic networks that are used 

by JPhyloIO’s reader and writer. 

In addition, readers for some application specific formats are available. For the MEGA format [69], a 

reader provides access to its alignment data and character sets (attached by the LABEL, GENE or DO-

MAIN commands of the MEGA format). Multiple sequence alignments and attached metadata from 

PDE files produced by the alignment editor PhyDE [75] and trees, including their metadata, from XTG 

files used by the phylogenetic tree editor TreeGraph 2 [76] can be read as well. 

2.2.4 Generalization over different metadata concepts 
A major feature of JPhyloIO is to provide a general way for attaching metadata to any element in a 

phylogenetic data set, thereby abstracting away the different metadata concepts found in the individ-

ual supported formats. In our opinion, the RDF-based metadata tags used by NeXML [35] are the most 

powerful way of modelling metadata and therefore became the foundation of our general concept. 

This RDF-based concept allows to link external resources and to represent trees of hierarchical 

metadata annotations by distinguishing between resource and literal metadata, and both may be (re-

cursively) nested inside a resource metadata element.  

Following this structure, JPhyloIO provides a resource and a literal metadata event class. As shown in 

Figure 2.3, the event grammar allows nesting sequences of metadata events (represented by the gram-

mar node MetaInformation) in all data elements. Metadata can either be a resource or a literal 

metadata event. The literal metadata objects may be simple values (e.g. numbers or strings) or com-

plex XML data, modelled by a sequence of respective events. For such data, our library provides 

adapter classes between JPhyloIO and both iterator- and cursor-based StAX readers and writers to 

empower application developers to possibly reuse existing code for StAX-based reading and writing of 

respective data. 

While the metadata representation in NeXML is by definition identical to JPhyloIO‘s metadata model, 

reading and writing of other formats requires a translation to the respective format-specific model. 

FASTA and Phylip do not support metadata, so the respective writers ignore provided attachments and 

log warnings. 

phyloXML does not use an RDF-like concept, but offers a fixed set of metadata, stored in special XML 

tags. To access such data in JPhyloIO, we defined RDF predicates for each predefined metadata ele-

ment for internal use in JPhyloIO, to allow identifying the phyloXML tags in our RDF-based model. In 

addition, phyloXML offers ways to freely attach metadata by (i) property tags to attach simple anno-

tations (e.g. strings, numeric values or URIs) to trees, clades or sequences and (ii) custom XML struc-

tures added to a whole document, a tree, a clade or some of the predefined annotation tags. JPhyloIO 

makes use of all these features to attach metadata not linked by phyloXML-specific predicates. In com-

bination, this allows to read and write all modelled metadata. Since representing custom hierarchical 

RDF metadata (different from the predefined phyloXML annotation types) is not possible in this for-

mat, parts of it will be ignored during writing and respective warnings (similar to FASTA and Phylip) will 

be logged. Different strategies on how to translate a full RDFa annotation tree into phyloXML are of-

fered by JPhyloIO and can be selected using a writer parameter. 

For attaching metadata to nodes and branches in Newick strings [34], two extensions that make use of 

hot comments (comments which contain actual data) are supported by JPhyloIO. One is “New Hamp-

shire eXtended” or NHX [85,91], a precursor of phyloXML that allows to use a limited set of its prede-

fined annotations, identified by the respective phyloXML predicates in JPhyloIO. 
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The other extension, used by e.g. TreeAnnotator from the BEAST package [74] and recent versions of 

MrBayes [73], allows to attach numeric or string values (or arrays of these) to nodes and branches 

using a free string identifier. These identifiers differ from the RDF predicates (used in NeXML), since 

they can have any form and do not need to be URIs. To solve this, all meta-events in JPhyloIO can carry 

a string identifier and an RDF predicate as alternative descriptions of their relation to their subject. If 

a string representation is needed for writing and was not provided, the local part of the predicate 

CURIE will be used. 

By supporting these two annotation concepts, JPhyloIO allows to read and write metadata from and 

to Newick and Nexus files. As in phyloXML, hierarchical metadata cannot be written and warnings will 

be logged. 

JPhyloIO also reads metadata from the application-specific XTG and PDE formats. Both formats may 

contain a fixed set of metadata for some of their elements and according predicates in namespaces 

for internal use are defined to identify these (the same way as for phyloXML). The XTG format and 

TreeGraph 2 [76] additionally provide the functionality to attach numeric or string annotations to each 

node or branch of a tree using a string identifier, which are also supported. Basic annotations present 

in the MEGA format (e.g. a description text for a matrix) are read as well. 

2.2.5 Ways to extend JPhyloIO 
All readers and writers in JPhyloIO implement common interfaces and several abstract implementa-

tions of these are available that provide shared functionality, e.g. specific for processing text or XML 

formats. It is therefore easy for third party or application developers to add new readers and writers 

for additional (custom) formats that integrate seamlessly with the architecture of the library and can 

directly be used with all JPhyloIO-dependent code. 

For creating complex Java objects from metadata event sequences or to write them back, an interface 

with a set of default implementations for common types is provided, which can be used for additional 

custom implementations. 

Nexus-related classes are designed to use individual handlers for all Nexus blocks and commands, al-

lowing to easily add support for new or custom Nexus elements in third party modules. 

2.3 Discussion 

2.3.1 Comparison with other libraries 
Other libraries exist for the Java programming language that support reading or writing of alignment 

or tree formats. Forester [92] allows to read and write alignments in FASTA, Phylip and Nexus and 

phylogenetic trees in phyloXML, Nexus, and NHX. Phylogenies in the Tree Of Life Response Format [83] 

can be read. The NeXML format with its powerful metadata model is not supported and no generali-

zation over the different metadata models exists. The tree readers implement a common interface, 

but there is no such interface for reading or writing trees and alignments together. As a consequence, 

Nexus files containing sequence and tree data need to be processed multiple times independently. 

Unlike JPhyloIO, Forester enforces its own predefined data model, which can have disadvantages for 

certain use cases as discussed below. The Nexus TAXA block is only supported when writing trees but 

not considered for reading trees or for reading and writing alignments, while Nexus sets are not mod-

elled at all. The documentation is currently limited. 

In its current version 4.2.7, BioJava [93] includes only readers and writers for sequence data from the 

FASTA and the GenBank format. The BioJava legacy version 1.9.2 [94] provides an event/call-back 

based API through a common interface for some sequence formats, among them the alignment for-

mats FASTA and MSF, but none of the other formats supported by JPhyloIO. Independent readers and 
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writers for Phylip and Nexus (including support for trees but not for sets) are available, which cannot 

be accessed through the event-based API. There is no support for NeXML, phyloXML or complex 

metadata. 

In other languages, multiple format-specific APIs are available (e.g. [95,96] and many unpublished 

ones), some of which also generalize over different formats (e.g. [97–99]).  

BIO::Phylo [100] is a Perl library that supports a number of alignment and tree formats, among which 

are also 6 of the 9 formats supported by JPhyloIO. Reading and writing is possible through a common 

interface but a predefined data structure is enforced. Metadata connected using RDF predicates is 

modelled. phyloXML-specific predicates are used in a similar way as in JPhyloIO, while the set of sup-

ported elements is less complete, as e.g., property and clade_relation tags are not, and legal 

custom tags are only partly supported. BIO::Phylo is able to read (but not write) some types of hot 

comment tree annotations from Nexus, but JPhyloIO supports to read and write a larger set of these.  

NCL for C++ [98] supports FASTA, Newick, Nexus and Phylip. Plans to support NeXML and phyloXML 

were announced in 2010, but have not been implemented as of this writing, and therefore complex 

metadata is not modeled. Hooks for the application to directly process a whole alignment or a whole 

tree are provided, but these data elements are much larger than in JPhyloIO (where event objects only 

model e.g. a short sequence part or a single tree node) and processing of large alignments or trees is 

less efficient in NCL. 

Compared to the existing Java libraries and even libraries in other languages, JPhyloIO is unique in 

supporting a large number of formats through one common interface, while allowing memory efficient 

event-based processing independent of the application’s data structure. In particular the generaliza-

tion over different metadata models, which allows full access to such data from all formats, is currently 

not offered by any other Java library. (As mentioned above, BIO::Phylo allows access to a comparable 

range of formats in Perl but is not event-based.) Advanced metadata modelling is a key strength, as 

annotating phylogenetic data is and becomes increasingly important for reproducibility and reusability 

(e.g. [22,40,101]). 

2.3.2 Event-based processing versus predefined library data structures 
With an event-based architecture as implemented in JPhyloIO, application developers can decide for 

each event whether it should be kept in memory or not. Libraries with predefined data structures load 

all data from a file into memory at the same time, regardless of the applications having a need for it or 

not. This is especially inefficient for use cases that do not need random access to all data (e.g. deter-

mining the GC-content of large sequence data sets, searching for certain repeat motives in them or 

counting the occurrences of a certain node in a large set of trees, e.g. taken as samples from Bayesian 

phylogenetic inference). Event-based processing reduces the amount of memory needed in such cases 

from O(n) (linear to the dataset size, e.g. the number of nucleotides) to O(1) (constant, independent 

of the dataset size), since only the current or a few recent events need to be in memory at once. 

For applications that need random access (e.g. alignment or tree editors), the event-based architecture 

is still beneficial, because these are often not interested in the total content of a file (only in, e.g., 

sequence data, but not trees) and therefore can directly discard unused events, which they could not 

when using library-specific data structures. Even more relevant for complex applications may be the 

flexibility regarding the data structure. Providing concrete data storage classes with a library, forces 

applications that need a more advanced or specific model to load the data into instances of library 

classes first and then copy it into their own specific data structure. This way, the data of at least one 

file will be in memory twice, which may become a problem for large data sets. Such a problem does 
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not occur with JPhyloIO, since event data can directly be stored into any application-specific data struc-

ture. 

With this in mind, we acknowledge that predefined model implementations may be beneficial for sim-

pler scripts and tools, because developers will not have to deal with implementing their own data 

structure. Not needing a specific data structure is rather rare when developing more complex applica-

tions, which are the main target for JPhyloIO. 

It is also easy to combine JPhyloIO with established model standards like the sequence model of Bi-

oJava while it still allows to access data not modelled by such libraries. As an alternative to directly 

implementing to fill e.g. BioJava model classes from JPhyloIO event data, our library can be combined 

with LibrAlign (see chapters 2.3.3 and 3). 

2.3.3 Current usage 
JPhyloIO was developed closely together with LibrAlign (chapter 3), a Java library providing powerful 

and reusable GUI components for displaying and editing multiple sequence alignments and attached 

raw- and metadata and is used in there for I/O. 

The Taxonomic Editor of the EDIT platform for Cybertaxonomy ([102], chapter 5) manages taxonomic 

workflows and their data, while persistently linking character data to preserved individual specimens 

[24]. AlignmentComparator (chapter 9.6.2) compares alternative multiple sequence alignments of the 

same dataset. Both make use of JPhyloIO and LibrAlign for reading and writing alignments and attached 

metadata. LibrAlign and JPhyloIO also provide the basis for new versions of the alignment editor PhyDE 

([75], chapter 6) and they are currently used by our group in the development of tools for the evalua-

tion of automated multiple sequence alignments for phylogenetic purposes (chapter 13.2.2, page 186). 

The tree-related functionality of JPhyloIO is the basis in extending the metadata support (chapter 9.3.6) 

of the phylogenetic tree editor TreeGraph 2 [76] to import from and export to all supported tree for-

mats making use of the generalized metadata model of the library and allowing to apply externally 

defined ontologies in TreeGraph. Versions 2.11.0 and later already use JPhyloIO for importing phylo-

genetic trees and their metadata from NeXML (chapter 9.3.3). 

2.3.4 Future development 
JPhyloIO will remain under active development in the future. According to the needs of depending 

software, the library will be adjusted to future changes of the supported formats and be extended to 

support additional formats. API stability is a key aspect and releases follow the established standard 

of semantic versioning [103]. 

In addition to the current abstraction over different formats, the abstraction over (future) metadata 

ontologies relevant for phylogenetics (e.g. possible in NeXML) can become a focus. If a critical number 

of established ontologies will be present, it may be interesting to extend JPhyloIO to model equivalent 

or similar predicates in different ontologies to allow translating between them and to access 

knowledge in a general way. 

2.4 Conclusion 
The field of phylogenetics as well as biological sciences as a whole would strongly benefit from a more 

widespread use of data annotation and respective formats. Unambiguously describing and processing 

morphological characters and states, documenting voucher information in collections or providing 

links to raw data would be some of many examples where metadata annotation (e.g. using RDF) and 

externally defined ontologies can lead to increased reproducibility of workflows and reusability of data. 

We developed JPhyloIO with the intention to simplify writing new and extending existing software that 

is aimed at achieving this goal by fully supporting metadata-rich formats. Maximal interoperability and 
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downwards compatibility is ensured by the combined support for advanced and more traditional for-

mats by using the format-independent data model in JPhyloIO. Its event-based architecture makes 

integration with any existing application data structure easy and memory-efficient. 

2.5 Data Accessibility 
Source codes and binary distributions are available under the terms of the GNU Lesser General Public 

License 3 from http://bioinfweb.info/JPhyloIO/. This website also provides an extensive documenta-

tion, including a detailed JavaDoc and a set of example applications (see 

http://r.bioinfweb.info/JPIODemo). 
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Abstract 

Background: Applications from all parts of the life sciences often require the processing of DNA se-

quence or alignment data, which entails a need for components to visualize and edit such data, ideally 

in intuitive, user-friendly graphical user interfaces. In many cases, this includes handling application- 

or domain-specific raw- or metadata that should be displayed and edited together with the se-

quence(s). A programming library that provides reusable implementations of such functionality and 

remains easily customizable and extensible would significantly simplify the development of such ap-

plications. 

Results: Here we present LibrAlign, a Java library with feature-rich and flexible GUI components to 

display and edit multiple sequence alignments together with related raw- and metadata. Specialized 

data areas can be attached to any sequence or an alignment as a whole to model raw- and metadata. 

While a set of such data areas is already included in the library, application developers can easily create 

custom implementations and use them within the provided alignment GUI components. Exchangeable 

token painters and a strict separation between GUI components and model classes additionally allow 

LibrAlign to be very flexible with respect to different application architectures and data structures. 

Access to various alignment file formats including modeled metadata is made possible using I/O com-

ponents based on JPhyloIO. LibrAlign is written in Java, provides all its components for the two major 

GUI toolkits Swing and SWT, and therefore can be combined with Eclipse RCP. 

Conclusion: LibrAlign enables Java application developers to easily integrate visualization and editing 

of all kinds of sequence or alignment data together with attached raw- and metadata into their appli-

cations with a minimum amount of work. The exchangeable data areas, token painters and data model 

implementations permit the use of LibrAlign in maximum number of sequence- or alignment-related 

use cases in all domains of the life sciences. Binaries and source codes under LGPL 3 as well as an 

extensive documentation are available from http://bioinfweb.info/LibrAlign/. 

3.1 Background 
Sequence alignment plays a key role in numerous bioinformatical tasks in nearly all parts of the life 

sciences. Its applications include phylogenetic tree inference, database searching, genome assembly, 

identifying similar structure or predicting the function of genes, RNAs or proteins, and DNA barcoding, 

to name only a few. The different applications of MSA have in common that at some stage they require 

or benefit from user-friendly visualization or editing capabilities in different bioinformatical software. 

Graphical user interface (GUI) components allowing to display and edit sequence and alignment data 

can therefore be of great use in a large portion of the world of bioinformatical software and such 

functionality should ideally be available in a general open-source programming library, to make devel-

oping of such applications easy and avoid redundant work. Due to the numerous different applications 

mailto:stoever@bioinfweb.info
http://bioinfweb.info/LibrAlign/
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of MSA in biology and bioinformatics mentioned above, the use cases for such a library are manifold 

and its components and data structures should be designed to be flexible and extensible.  

Extensibility is especially important when it comes to raw- and metadata associated with alignments 

and sequences. The types of attached raw- or metadata used in applications from different parts of 

the life sciences are highly diverse (e.g. pherograms, gene function annotations, information on repeat 

or indel-patterns, alignment column statistics, and many more). Therefore, it is not feasible to explicitly 

model all possible types of raw- and metadata in a single general library. Instead, custom or third-party 

GUI elements for displaying sequence and alignment metadata could be enabled via plug-ins. This way, 

developers using such a library could design GUIs that closely model their specific tasks without having 

to invest resources into implementations of general sequence and alignment visualization or editing 

functionality. 

3.2 Implementation 
We developed LibrAlign, a Java library containing feature-rich and flexible GUI components providing 

the visualization and editing functionality envisioned above. 

3.2.1 GUI component architecture 
The key part of LibrAlign is a GUI component 

called AlignmentArea that allows to display 

and edit a multiple sequence alignment, includ-

ing associated raw- and metadata. The output of 

single tokens (e.g. nucleotides, amino acids or 

other sequence elements) is the responsibility of 

separate token painters. (Differently behaving in-

stances can be exchanged using the strategy de-

sign pattern [88]. See “Results and Discussion” 

for more details.)  

One or more DataAreas can be attached to any 

sequence or an alignment as a whole. These are 

GUI components nested within an Alignmen-

tArea and represent different types of raw- and 

metadata. LibrAlign provides a set of default im-

plementations for some types of data and devel-

opers are free to implement their own. 

Several alignment areas (including their nested 

data areas) can be combined within a Multi-

pleAlignmentsContainer. Each alignment 

area is independently scrollable on the vertical 

axis and all are scrolled together in the horizontal 

axis. This way LibrAlign allows to efficiently visu-

ally combine and compare information from dif-

ferent related alignments or data sets. The UML 

diagram in Figure 3.1 provides an overview of the 

relation between the different components. 

Figure 3.1 UML diagram showing the relation between 
the main GUI components and model interfaces 

AlignmentArea is the main GUI component of 
LibrAlign. It displays multiple sequence alignment data 
provided by an implementation of AlignmentModel 
and allows to edit it. An alignment area may contain 
multiple nested data areas (inherited from the abstract 
class DataArea) which display raw- or metadata at-
tached to a sequence or a whole alignment. Alignmen-
tArea and its nested data area implementations act as 
the views and implementations of AlignmentModel 

and DataModel act as the models in the model-view-
controller paradigm. Several alignment areas can be 
combined within the GUI component MultipleAlign-
mentsContainer to provide a combined representa-
tion of related alignment data, but single instances of 
AlignmentArea can also be used directly. (Figure 3.2 
shows a concrete example of an application window us-
ing a MultipleAlignmentsContainer.) 
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3.2.2 TIC and the abstraction over Swing and SWT 
LibrAlign is not limited to one specific Java GUI toolkit, but supports both Swing and the Standard 

Widget Toolkit (SWT) [104]. Swing is the GUI component library shipped with every Java virtual ma-

chine, while SWT is an alternative used, e.g., in applications build on the Eclipse Rich Client Platform 

(RCP) [105]. To achieve this, we developed TIC (Toolkit independent components, chapter 12), a sepa-

rate Java library that allows to create GUI components independent of the target toolkit. TIC provides 

a generalization over painting and user interaction of both toolkits, so that a respective Swing or SWT 

component can automatically be created from a single implementation of the interface TICCompo-

nent. All LibrAlign GUI classes make use of this functionality. 

Together with TIC, LibrAlign also provides functionality to overcome the maximum component size 

limitation SWT has under some operating systems and therefore allows to display and edit large align-

ments with native components for all environments. 

Beyond the use in LibrAlign, TIC can also be used independently of LibrAlign, to develop GUI compo-

nents that should be usable in Swing and SWT applications alike. We released TIC including documen-

tation and an example application as a separate project as a service to the (scientific) community at 

http://bioinfweb.info/TIC/. Further details can be found in chapter 12. 

3.2.3 Data model 
LibrAlign realizes the model-view-controller paradigm [106], which means that classes implementing 

the model (storage of alignment- and attached raw- and metadata) are kept separate from the GUI 

components’ view and controller functionality. As shown in Figure 3.1, an instance of AlignmentArea 

uses the interface AlignmentModel to access the alignment data (sequence names and sequence 

content) and the respective set of allowed tokens (e.g. nucleotides). Data areas use implementations 

of DataModel to access their data respectively. By defining these model interfaces instead of a con-

crete data structure, LibrAlign can be combined with any (custom) model implementation. Tokens (el-

ements of a sequence) can be any set of Java objects, which may model discrete (e.g. amino acids) or 

continuous (e.g. a continuous morphological character states) data types. There is no need for token 

classes to be inherited from a certain class or to implement a certain interface, making it possible to 

use any preexisting class to model tokens. Registering event listeners is possible in order to track con-

tent changes within a model. 

Special interfaces are provided that define modified views of alignment models using the decorator 

design pattern [88] and adapters from and to other (sequence-like) data structures defined outside of 

LibrAlign. (See “Results and discussion” for further details.) Factories (see “Factory method pattern” in 

[88]) automatically selecting model instances appropriate for certain sequence types (e.g. DNA, RNA, 

continuous characters, ...) can be used to easily instantiate the available model implementations. 

3.2.4 I/O and interaction with JPhyloIO 
To read and write data, LibrAlign makes use of JPhyloIO (chapter 2), a Java library that allows access 

to  different alignment formats through a common event-based interface, including the full support of 

the metadata models of all formats (e.g. for NeXML [35]).  The readers of JPhyloIO convert the contents 

of a file into a sequence of events, which can then be processed by the I/O classes of LibrAlign. For 

writing documents, the process is executed backwards. This way LibrAlign’s I/O classes act as an 

adapter between any LibrAlign model implementation and JPhyloIO’s readers and writers and LibrAlign 

has automatically access to all formats supported by JPhyloIO. 

http://bioinfweb.info/TIC/
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3.3 Results and discussion 
Binaries and source codes of LibrAlign, as well as the documentation, including a detailed JavaDoc, 

code examples and a fully functional alignment editor example application, are available from 

http://bioinfweb.info/LibrAlign/. 

3.3.1 Alignment GUI components and editing capabilities 
As described above, LibrAlign provides GUI components displaying one or more multiple sequence 

alignments, which use exchangeable token painters. A set of standard token painters (e.g. displaying 

token names as text) is included and custom implementations can alternatively be used. DNA, RNA, 

protein or even protein domain alignments, or matrices with any type of (e.g., morphological) charac-

ter states, can be displayed this way. 

Alignment areas displaying an MSA can be set to be either fully editable (sequences and gaps can be 

edited), alignable (only gaps may be added or removed) or immutable. Manual editing is possible with 

an alignment cursor that can span any number of rows to edit these simultaneously. Different selection 

modes allow to select rows, columns, or any rectangular set of cells, depending on the needs of the 

application. Such editing operations are especially relevant for applications that allow manual align-

ment corrections, a common practice in creating alignments for phylogenetic inference (see [107] and 

references therein), or in tasks like tabulating morphological character states. (Figure 3.2 shows a min-

imal code example on how to use an alignment area.) 

Since several alignment areas can be combined within a container component (see chapter 3.2.1), 

LibrAlign enables applications that deal with more than one MSA at a time to display related alignment 

data together or to compare alternative alignments, like AlignmentComparator (chapter 9.6.2) does 

(Figure 3.3). In simpler cases, multiple combined alignment areas may just be used, because each de-

fines an independently vertically scrollable region. This way, some data areas (e.g. the sequence index 

or the consensus sequence area) can always stay visible while scrolling vertically through the actual 

alignment that is displayed by another alignment area. 

Data areas are a key feature of LibrAlign and can be attached to any sequence or an alignment as a 

whole to display related raw- and metadata. The library already provides a set of data area implemen-

tations displaying the alignment column index, column sets, token frequencies, or pherograms from 

Sanger sequencing that were the source of aligned sequences. Beyond that, a common use case will 

be that application developers implement their own specialized data area(s) to model the specific 

type(s) of data their application deals with. Displaying gene function annotations, structural infor-

mation on protein or RNA folding, or repeat patterns are some of many examples where custom data 

areas would be useful. 

By supporting Swing and SWT (using TIC as described above and in chapter 12), our library can also be 

combined with the Eclipse Rich Client Platform and Bioclipse [108], ensuring that the maximum number 

of Java developers can benefit from it. 

 
 

http://bioinfweb.info/LibrAlign/
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// Basic Swing example 
 

frame = new JFrame(); 

frame.setLayout(new BorderLayout()); 
  

// Read an alignment file: 

List<AlignmentModel<?>> models =  

    IOTools.readAlignments(new File("Example.nexml")); 
  

// Create an alignment area displaying the first alignment from the file: 

AlignmentArea area = new AlignmentArea(); 

area.setAlignmentModel(models.get(0), false); 
  

// Add the Swing version of alignment area to the GUI: 

frame.getContentPane().add(SwingComponentFactory.getInstance().getSwingCompo-

nent(area), BorderLayout.CENTER); 
 

// Basic SWT example 
 

shell = new Shell(); 

shell.setLayout(new FillLayout(SWT.HORIZONTAL)); 
  

// Read an alignment file: 

List<AlignmentModel<?>> models =  

    IOTools.readAlignments(new File("Example.nexml")); 
  

// Create an alignment area displaying the first alignment from the file: 

AlignmentArea area = new AlignmentArea(); 

area.setAlignmentModel(models.get(0), false); 
  

// Add the SWT version of alignment area to the GUI: 

SWTComponentFactory.getInstance().getSWTComponent(area, shell, SWT.NONE); 

Figure 3.2 Basic usage examples of LibrAlign for Swing and SWT. 

The first code block shows a minimal example to create a Swing window containing an alignment area component 
and the resulting screenshot next to it. The displayed alignment is loaded from a file using the I/O functionality 
of LibrAlign. The example shows that LibrAlign allows application developers to include alignment editor compo-
nents into their GUIs as easy as, e.g., editable text fields.  

The second code block is the same minimal code example for an SWT application. As one can see, the only differ-
ence between the code for both toolkits is that SWTComponentFactory is used instead of SwingCompo-
nentFactory to create the toolkit specific component from an instance of AlignmentArea. LibrAlign provides 
true toolkit independence, as the rest of the code is (or any other code would be) identical for both toolkits, 
resulting in similar looking components in both types of applications.  

At the bottom a screenshot of the resulting Swing window is shown. The respective SWT output would look iden-
tical. The complete example class files can be found at http://r.bioinfweb.info/LibrAlignMinCode. A more com-
prehensive demo application, showing how to build a simple alignment editor using LibrAlign that allows editing 
and reading and writing multiple formats is available at http://r.bioinfweb.info/LibrAlignSwingDemo. 

 

http://r.bioinfweb.info/LibrAlignMinCode
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Figure 3.3 Screenshots demonstrating the possibilities and usage of LibrAlign in different applications. 

(Caption on the next page.) 
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3.3.2 Data model 
As mentioned in chapter 3.2.3, the alignment data displayed by LibrAlign‘s GUI components is provided 

by model classes implementing specific model interfaces. The library contains a set of default imple-

mentations of that interface that allow (i) storing big sequence data sets in compressed token lists, (ii) 

modified views of other alignment models using the decorator design pattern [88] (e.g. converting 

DNA to RNA), or (iii) adapters to other established Java data structures like simple character sequences 

and strings, the Java Collections Framework [109] or the BioJava sequence model [93]. The compressed 

alignment models and decorators to provide modified views without copying data allow to efficiently 

handle big (genomic) sequence and alignment data sets. 

Of course, application or third-party developers can also use their own custom data model implemen-

tations, e.g. to allow efficient direct access to databases or application-specific data structures. To sim-

plify this, a set of abstract classes offering basic functionality for both model and decorator implemen-

tations is available. 

Since tokens may be modeled by any Java object, and there is no need to implement a specific interface 

or to inherit from a specific class, LibrAlign can directly be combined with all custom or third-party 

classes modeling sequence tokens. 

3.3.3 I/O and metadata access 
Since LibrAlign provides I/O classes that rely on JPhyloIO, all of JPhyloIO’s alignment formats are sup-

ported, which currently include NeXML [35], Nexus [31], FASTA, Phylip [32] and relaxed Phylip [33] for 

reading and writing, as well as the application-specific formats MEGA [69] and PDE (used by the align-

ment editor PhyDE [75]) for reading. 

Support for additional (custom) file formats can easily be added either by creating new readers and 

writers for JPhyloIO (which allows to plug in custom implementations at runtime) or by implementing 

I/O classes that directly work together with the alignment model interface of LibrAlign. The architec-

ture of both libraries is designed to be easily extensible.  

Although an alignment can be read or written using a single method call (see Figure 3.3), LibrAlign 

alternatively allows application developers full access to the JPhyloIO event stream and therefore also 

to any type of (custom) metadata to be used with (custom) data areas. 

This architecture provides the connection between metadata attached in files using e.g. externally de-

fined ontologies and (externally implemented) data areas of LibrAlign, which can be considered as 

counterparts. The combination of LibrAlign and JPhyloIO makes handling of alignment raw- and 

metadata easy and flexible to be used in different (domain-specific) applications and fully compatible 

with common metadata models, as used e.g. by NeXML [35]. 

Figure 3.3 (continued) Screenshots demonstrating the possibilities and usage of LibrAlign in different applica-
tions. 

The Taxonomic Editor of the EDIT platform for Cybertaxonomy in the top screenshot is based on Eclipse RCP/ SWT 
and models marker contig alignments including attached raw data. LibrAlign is used to display and edit the contig 
alignment and to show the pherograms as sequence-attached data areas and in a stand-alone component (bot-
tom). PhyDE is an alignment editor for phylogenetic purposes now based on LibrAlign. The screenshot in the mid-
dle shows an opened protein alignment. AlignmentComparator is a Swing application that allows to visually com-
pare alternative MSAs of the same data set. The screenshot at the bottom shows how such a comparison can be 
visualized and edited using the multiple alignments container component of LibrAlign. (The latest development 
versions of all applications are shown.) 
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Beyond alignments and their attached metadata, even data not handled by any LibrAlign component 

but by other parts of a dependent application (e.g. phylogenetic trees), can directly be accessed via 

the JPhyloIO event stream in the same read or write operation. 

3.3.4 Comparison to other software 
Although open-source alignment editors exist in Java [78,110–113] and other languages [114–116], 

and their code could potentially be reused in other software, their editor components are custom-

tailored towards the individual applications and not designed to be flexible and compatible with the 

architecture of other applications or to ensure API stability in future releases. Alignment editors usually 

neither provide components specifically designed to be customized by other developers, such as the 

data areas, token painters or model interfaces of LibrAlign, nor is the reuse of their code well docu-

mented, since that is usually not the intention of their developers. 

BioJava legacy 1.9 [94] is a library also providing a set of sequence and alignment renderer classes that 

can display sequences and render pherograms. Additional custom renderers can be added, which 

would allow to display custom metadata and this way offer some of the functionality provided by the 

data areas of LibrAlign. Although, alignments and attached data can only be displayed and not edited. 

I/O functionality from BioJava 1.9 for FASTA, Phylip or Nexus can be used to read and write alignment 

data. In contrast to that, LibrAlign offers editing functionality for sequences, alignments and its data 

areas (such as the pherogram area) adjust the representation of their data to edits of the sequence 

they are attached to. LibrAlign supports I/O of more alignment formats via JPhyloIO and access to the 

nested metadata model of NeXML and to annotations of other formats, which is necessary to process 

metadata handled by (custom) data areas. The alignment renderers in BioJava 1.9 make use of their 

own specific sequence model, while LibrAlign has a flexible data model architecture that allows any 

set of Java objects (including those from any version of BioJava) to be used as sequence tokens. This 

makes combining LibrAlign’s GUI components with any (custom) data structure (that fulfills applica-

tions-specific needs) much easier than it would be in BioJava. Furthermore, BioJava provides no direct 

SWT support, since only Swing-based GUI components are available. (Although using Swing compo-

nents in SWT applications is theoretically possible, in practice in can become complex to handle the 

interaction between the different GUI threads of both toolkits and avoid unexpected behavior or ex-

ceptions. Producing stable code using this workaround is much more complex and time consuming 

than the alternative use of native SWT components as provided by LibrAlign using TIC.) 

Alignment renderers have not been ported to the later versions 3 or 4 of BioJava [93], while LibrAlign‘s 

flexible data model is interoperable with the sequence model of BioJava 3 and 4. The sequence token 

model classes of BioJava 3 or 4 (implementations of its interface Compound) can be combined with an 

implementation of LibrAlign’s AlignmentModel and whole sequences and alignments can be im-

ported from the respective BioJava data structures. (BioJava sequence instances can though not be 

efficiently used as the direct storage for editable alignments, since they are immutable and being 

atomic is a major characteristic of the sequence model of BioJava 3 and 4. This is a principle problem 

that cannot be addressed within LibrAlign or any other library providing editable alignment function-

ality.) 

Different web-based applications for viewing MSA data in a web browser [117–120] exist and some 

provide the option to extend them with custom JavaScript components, possibly allowing to display 

custom metadata. None of these support alignment editing or provide flexible I/O components with 

full metadata access, the aim of such projects is different from that of LibrAlign. These products are 

used to display MSAs on websites or in web apps, while LibrAlign is used by desktop (or Java Webstart 

[121]) applications to display and also to edit MSA data and its attachments. 
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The ETE toolkit [122] is a Python library for analysis and visualization of phylogenetic trees, which also 

allows to display aligned sequences associated with terminal tree nodes. This is a very different focus 

than in LibrAlign and the overlap between both libraries is only very small, since components for align-

ment editing are not present and displaying alignment metadata is not the focus of ETE. 

Although BioJava 1.9 and few libraries in other languages provide functionality to display MSAs and 

sometimes also custom metadata, LibrAlign is the only available library that combines this with many 

editing functionalities, a flexible data model architecture and I/O components with full metadata ac-

cess. Furthermore, the documentation of other libraries is sometimes limited, while LibrAlign offers a 

detailed documentation including a complete JavaDoc and code examples. 

3.3.5 Current usage 
The development of LibrAlign was initiated due to a demand for its functionality in several Java appli-

cations. The Taxonomic Editor of the European Distributed Institute of Taxonomy (EDIT) Platform man-

ages taxonomic workflows, while persistently linking character data to preserved individual specimens 

[24]. It contains an editor to combine single reads from Sanger sequencing to a contig alignment linked 

to a specimen (chapter 5). It uses the alignment editing functionality of LibrAlign and its components 

to display pherograms.  

AlignmentComparator (chapter 9.6.2) visually compares alternative MSAs of the same dataset in a 

superalignment and uses LibrAlign to display and manually edit such a comparison. LibrAlign also pro-

vides the basis for recent versions of the alignment editor PhyDE 2 (chapter 6) and is currently used by 

our group in the development of tools for the evaluation of automated multiple sequence alignments 

for phylogenetic purposes. (See chapter 13.2.2, page 186.) 

Figure 3.3 shows screenshots of the latest development versions of all applications demonstrating dif-

ferent ways of using LibrAlign. 

3.3.6 Future perspectives 
In the future, LibrAlign will be maintained and extended according to the needs of the applications 

that rely on it. This may especially include new data areas of general use, more token painters or ad-

ditional data model or adapter implementations. Contributions by third-party developers are always 

welcome. Therefore, we e.g. provide a repository mirror on GitHub (https://github.com/bio-

infweb/LibrAlign). 

Externally implemented data areas combined with respective metadata attached using externally de-

fined ontologies (e.g. in NeXML [35]) could enable LibrAlign-based applications to handle any type of 

raw- or metadata without explicit knowledge on the respective data types. Future versions of the align-

ment editor PhyDE (chapter 6, page 84), AlignmentComparator (chapter 7, page 90) or other software 

could display any unknown type of raw- or metadata by downloading data area implementations that 

fit the metadata type from an online-database or directly from an URL specified by an annotation in 

the input alignment file (e.g. in NeXML). 

3.4 Conclusion 
The GUI components provided by LibrAlign enable Java application developers to easily integrate vis-

ualization and editing of all kinds of sequence or alignment data together with attached raw- and 

metadata into their applications with a minimum amount of work using any of the major Java GUI 

toolkits. The extensibility of the library achieved by allowing custom data areas or token painters and 

specific model or adapter implementations makes it useful for software developers working in all fields 

of the life sciences that deal with any type of sequence or alignment data and related metadata. 

https://github.com/bioinfweb/LibrAlign
https://github.com/bioinfweb/LibrAlign
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We hope that LibrAlign will help to improve usability of bioinformatical software by easily allowing 

developers to provide intuitive and user-friendly interfaces. In combination with JPhyloIO it should also 

foster the use machine-readable metadata annotations and externally defined ontologies to model 

and stored metadata, resulting in an increase of interoperability and reproducibility in respective work-

flows. 

3.5 Availability and requirements 
Project name: LibrAlign 

Project web page: http://bioinfweb.info/LibrAlign/ 

GitHub Repository: https://github.com/bioinfweb/LibrAlign 

ResearchGate project page: http://r.bioinfweb.info/RGLibrAlign 

Operating system: Platform independent 

Programming language: Java 

Other requirements: Java Runtime Environment 8 (or higher)  

License: GNU Lesser General Public License Version 3 (LGPL) 

Any restrictions on use by non-academics: The restrictions specified in the LGPL apply. (See 

http://bioinfweb.info/LibrAlign/License/LGPL.) 
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Own contribution 

My responsibility in this project was the development of the molecular components of the Taxonomic 

Editor (module eu.etaxonomy.taxeditor.molecular), while Patrick Plitzner helped with their in-

tegration into the application and coordinated the work between Münster and Berlin. Andreas Müller 

added required implementations for the CDM API to provide interoperability with the new molecular 

functionality. I implemented the new molecular module, developed the concept for the required li-

braries LibrAlign (chapter 3, page 46) and JPhyloIO (chapter 2, page 33) and implemented them, de-

signed the export feature for molecular data of the Taxonomic Editor with a draft for a required ontol-

ogy (see also chapter 5, page 79) and wrote section 4.4.4.3 (page 74) of the manuscript. (The develop-

ment of the concept for the general project and workflow modeling, the development and implemen-

tation of all other modules of the Taxonomic Editor and writing all other sections of the manuscript 

was done by other authors.) 

Abstract 

We present the model and implementation of a workflow that blazes a trail in systematic biology for 

the re-usability of character data (data on any kind of characters of pheno- and genotypes of organ-

isms) and their additivity from specimen to taxon level. We take into account that any taxon charac-

terization is based on a limited set of sampled individuals and characters, and that consequently any 

new individual and any new character may affect the recognition of biological entities and/or the sub-

sequent delimitation and characterization of a taxon. Taxon concepts thus frequently change during 

the knowledge generation process in systematic biology. Structured character data are therefore not 

only needed for the knowledge generation process but also for easily adapting characterizations of 

taxa. We aim to facilitate the construction and reproducibility of taxon characterizations from struc-

tured character data of changing sample sets by establishing a stable and unambiguous association 

between each sampled individual and the data processed from it. Our workflow implementation uses 

the European Distributed Institute of Taxonomy Platform, a comprehensive taxonomic data manage-

ment and publication environment to: (i) establish a reproducible connection between sampled indi-

viduals and all samples derived from them; (ii) stably link sample-based character data with the 

metadata of the respective samples; (iii) record and store structured specimen-based character data 

in formats allowing data exchange; (iv) reversibly assign sample metadata and character datasets to 

taxa in an editable classification and display them and (v) organize data exchange via standard ex-

change formats and enable the link between the character datasets and samples in research collec-
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tions, ensuring high visibility and instant re-usability of the data. The workflow implemented will con-

tribute to organizing the interface between phylogenetic analysis and revisionary taxonomic or mono-

graphic work. Database URL: http://campanula.e-taxonomy.net/ 

4.1 Introduction 
Biological systematics, referred to as systematics in this study, aims to assess organismic diversity by 

attempting to identify natural biological entities above the individual level (taxa), to uncover their re-

lationships and to characterize, classify and name them [123]. All analyses in systematics (Figure 4.1) 

are based on ‘samples’, a term used in this study in the unspecified sense of a probe or examination 

object taken from an individual organism. Examination of these samples produces ‘character data’ – 

often named ‘descriptive data’ [124,125] and sometimes ‘comparative data’ [123] – a class of data 

referring to ‘taxonomic characters’ [126], which each have two or more states and can cover all data 

suitable to characterize a taxon in comparison with related or similar taxa. Character data that are 

suitable for use in evolutionary analyses are processed in order to group sampled individuals into nat-

ural biological entities. Evolutionary analyses may include to study tokogenetic relationships within a 

species, or to study sampled individuals as representatives of species in a phylogenetic context. The 

character data may be analyzed also using a phenetic or other approach. The results in each case are 

initially unclassified entities, which in subsequent steps can be assigned to taxa and then be named 

(Figure 4.1) [127,128]. The taxon assignment of unclassified entities revealed from evolutionary anal-

yses translates evolutionary relationships into a classification. This translation essentially employs de-

cisions on appropriate circumscriptions and ranks of taxa, guided by certain sets of criteria, which may 

be subject to debate. Additional individuals that match these taxa can also be assigned to them. Taxon 

assignment of individuals, i.e. the process of matching sampled individuals with taxa, thus of their 

identification, uses a subset of character data as indicators that are considered diagnostic for a taxon 

and for its distinction from similar or related taxa. The available character data obtained from all sam-

pled individuals of a taxon are finally ‘aggregated’, thus summed up, into a comprehensive ‘taxon char-

acterization’ [129] (frequently but less appropriately referred to as ‘description’, see section two of 

this study). Taxon characterizations are thus the product of the taxon delimitation [127] and may vary 

in so far as different taxon delimitations are applied (‘taxon concepts’) [127,130–132] or different ge-

ographic scopes may be considered. The characterizations of higher taxa (taxa that include subordinate 

taxa) are in the same way the product of taxon delimitation and are the sum of their included subor-

dinate taxa. The taxon characterizations of all subordinate taxa making up a higher taxon are thus to 

be aggregated into the characterization of the corresponding higher taxon. 

The generalized scheme in Figure 4.1 of steps from the investigation of organism individuals to the 

characterization of taxa also illustrates the interface between evolutionary analysis and taxonomy: 

both share step 1 (sampling and examination of samples), while step 2 (analysis of relationships) is the 

core domain of evolutionary analysis, and steps 3 and 4 are the core domains of taxonomy. If the evo-

lutionary analysis in step 2 is replaced by an evaluation of morphological similarities and discontinui-

ties, the result is a so-called ‘alpha-taxonomic’ classification. This article addresses the taxonomic part 

of that work process, thus step 1, and, taking up the results of evolutionary or other analyses from step 

2, it also addresses steps 3 and 4. We are conscious of the fact that taxon characterizations of micro-

organisms and fungi may set different accents for the taxonomic work process [133]. 

Usually, a taxon characterization is based on the examination of a very limited set of individual repre-

sentatives of the taxon and on a set of character data limited by the selection of examination methods 

applied. Consequently, any new, sampled individual as well as any new character data may affect the 

taxon characterization and/or the taxon delimitation. Moreover, in the vast majority of cases the eval-

uation of the sampled and examined individuals is still based just on morphological similarities and 

http://campanula.e-taxonomy.net/
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discontinuities (alpha-taxonomy) and remains to be confirmed by phylogenetic reconstructions. Actu-

ally, our understanding of the evolutionary history as well as the classification and naming of taxa nec-

essarily is an iterative process, with an approximation to reality, often triggered by methodological 

innovations. The need for minor or major revisions or adjustments of established classifications and 

taxon characterizations, also affecting their names, is thus both pervasive and continuous [134–136]. 

 

Figure 4.1 Generalized scheme of the steps in systematics from the investigation of organism individuals to the 
characterization of taxa 

The first column lists the processes (lower case letters + italics) and products (upper case letters + normal style), 
the diagram illustrates the data flow and the last column numbers the steps as explained in the following: (1) 
samples of individuals are examined, providing different types of character data (green, blue, yellow), not all of 
them necessarily available for all samples. (2) Analysis of relationships (e.g. phylogenetic or tokogenetic), using 
e.g. available molecular character data (blue), reveals evolutionary relationships among the sampled individuals, 
grouping them into unclassified entities such as clades. In a phenetic approach, the evolutionary analysis in this 
step is replaced by an evaluation of morphological similarities and discontinuities. (3) In order to translate inferred 
(from whatever analysis) relationships into classification, the unclassified entities with the included samples and 
character data are assigned to taxa, also employing further character data types (yellow, green). (4) Naming of 
taxa and aggregating (summing up) of the character data from the individuals included results in named and 
characterized taxa. Further sampled individuals not included in the evolutionary analysis but matching the taxon 
characterization can be included, their data adding to the characterization. 

The process of synthesizing our growing knowledge of biodiversity is challenging. Integrative taxo-

nomic treatments in general, and monographs as a final product of systematics [137,138] in particular, 

consequently represent the approximate knowledge at a given point of time. Societal demands for 
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reliable, up-to-date, and authoritative products, such as biodiversity inventories, identification aids 

and encyclopaedic works on groups of organisms [139], call for name stability, while progress in sys-

tematics may affect established classifications and names. 

One of the major problems involved is that print publications are too static to function as knowledge 

bases of organismic diversity. For this, biodiversity informatics has developed solutions to design syn-

thesizing works in biodiversity research as dynamic ventures [102,140–143] and to facilitate data ex-

change by providing unified and convenient query mechanisms for distributed and often highly heter-

ogeneous data repositories. 

However, in order to organize dynamic approaches to such syntheses, they need to be generated from 

data that are structured in a standardized form and stored in an underlying database. Character data 

structured in character and state matrices [125,126,144] and data aggregation procedures for taxon-

based character data are well established, although still applied by a limited number of workers. Sev-

eral applications are available for storing structured taxon-based character data in order to generate 

identification keys and natural language descriptions, and to aggregate them from lower to higher 

taxa. Starting with the DELTA (DEscription Language for Taxonomy) [145] system [125] as the pioneer, 

others followed such as Lucid [146], Delta Access [147] and Xper2 [148]. With the development of the 

XML-based SDD (Structure of Descriptive Data) standard [149], data in the DELTA and Nexus [31] stand-

ards [150] are becoming fully exchangeable, SDD compliance provided. With the NeXML exchange 

standard [35], recently an XML-based Nexus successor for representing taxa, phylogenetic trees, char-

acter matrices and associated metadata has been developed. 

The implicit conclusions for the association between character data from sampled individuals and 

taxon characterization have, however, hitherto hardly been drawn with the necessary rigor. The Pro-

metheus Model [125,127,151], an approach based on taxonomic working practices rather than on tax-

onomic outputs, is a remarkable exception. In order to make an investigation both transparent and 

reproducible, vouchers (commonly termed specimens) allowing an assured identification of the sam-

pled individuals are permanently preserved. Consequently, the Prometheus Model emphasizes that 

the research process in systematic biology at the species level and below is specimen based, and the 

taxon characterization is the product of the included specimens, and the taxa above the species level 

are circumscribed by the subordinate taxa. The taxon characterization can thus only be determined 

and reproduced in an objective way by the included specimens. The Prometheus Model takes a speci-

men-oriented rather than a taxon-oriented approach. With the Prometheus Description Model, Pullan 

et al. [125] moreover perspicaciously addressed the need for the re-use and exchange of character 

data between different research projects, and modelled pioneering solutions for the main problems 

involved. This includes a solution for compatibility issues of character datasets from different sources 

and also the possibility of recording character data at various levels of concreteness, ranging from a 

single instance of a structure on a specimen to the individual specimen as such. Yet, the Prometheus 

Model was never developed to a tool available for taxonomic work. 

Therefore, until today common taxonomic working practice is that the characterization of a taxon re-

fers only collectively to a set of included specimens so that the character data are not associated with 

the individual specimens they were taken from. In this way, the only accurate way of achieving adjust-

ments with respect to taxon delimitation and consequently to taxon characterization is the most labo-

rious: re-examining the characters and specimens. 

For a sound foundation of the character data aggregation procedure and in order to streamline taxon 

characterization, a reversible generation of a taxon characterization from the character data of the 

sampled individuals is necessary. The prerequisite for this foundation is to establish a persistent and 

unambiguous connection between each sampled individual and the data processed from it. Specimens 



4  Taxonomic workflows with character data persistently linked to preserved individual specimens 63 

 

remain the representatives of the sampled individuals after the conclusion of the systematic research 

process and are preserved and curated in corresponding research collections. The obvious conclusion 

should therefore be the establishment of an unambiguous association between the character states 

and ranges recorded for each specimen, or for each sample substantiated by a specimen, and their 

persistent connection with the specimen metadata. Any newly examined individual assigned to a cer-

tain taxon may then confirm or modify the taxon characterization upon re-aggregation of the character 

data. Once evolutionary analysis of character data reveals changes in taxon delimitations, its charac-

terization can then be regenerated upon aggregation of the character data from the altered sample 

sets. The necessity to document the character data for the individual specimens rather than for taxa 

similarly applies to phylogenetic analyses, in particular for such based on morphological characters, 

where the corresponding problems have been clearly addressed [152]. 

This article presents the concept of a workflow and dataflow that blazes a trail in systematic biology 

for the re-usability of character data and their additivity from specimen to taxon level, and its imple-

mentation, using the EDIT (European Distributed Institute of Taxonomy) Platform [102]. We first (part 

2) explain our concept for the implementation of a persistent and unambiguous connection between 

character data and samples in the systematic research process. Subsequently (parts 3 and 4), we de-

scribe the implementation of the single steps of the workflow using the EDIT Platform. 

Our solution aims to (i) establish a reproducible connection between sampled individuals and all types 

of samples derived from them during the research process; (ii) persistently link the metadata of all 

types of samples with the respective character data; (iii) record and store specimen-based phenotypic, 

geographic and environmental as well as molecular character data in formats suitable for data ex-

change; (iv) reversibly assign sample metadata and character datasets to taxa in an editable classifica-

tion and display them and (v) organize the exchange of sample data sets via standard exchange for-

mats. Finally, we discuss the opportunities that our solution opens up for the preservation of raw data 

and for the deposition of character datasets along with samples in research collections, and we identify 

fields where further developmental work is needed. 

4.2 Conceptual foundations of integrated sample data processing 

4.2.1 Organismic samples, their associations and data 
In systematics, the analyzed samples each directly or indirectly originate from a population of organ-

isms in the field. Collecting samples of such a population creates a ‘gathering’ [the term is here used 

in the sense of the ‘International Code of Nomenclature for algae, fungi and plants’ (ICN)] ([153], p. 

156) for ‘a collection of one or more specimens made by the same collector(s) at one place and time’. 

The ‘gathering event’ [154] is thus connected to a specific time and location. The single gathering, to 

which usually a unique ‘field number’ or ‘collecting number’ is assigned, is a data object termed ‘field 

unit’ [154]. We here use this term to refer to a single (named or unnamed) taxon, and either to a single 

individual, of which it may include one or more samples (depending on the size of the individual), or 

to a population, of which it consequently includes a number of individuals or parts of them. Therefore, 

the field unit can consist of one ‘specimen’ or a number of ‘specimens’ and in the latter case they are 

commonly considered duplicates of one another and are thus principally exchangeable with respect to 

their essential information content. This depends, of course, on the research context: population ge-

netic analyses, e.g. require that duplicates must stem from the same individual. However, the concept 

of the ‘field unit’ also allows the handling of multitaxa gatherings; as taxon-ambiguous field units are 

permitted, it is, therefore, also applicable to the study of microorganisms. 
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Figure 4.2 Exemplar scheme of samples with metadata and character data in a derivative hierarchy 
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All further samples taken from a specimen of a field unit are termed ‘derivatives’, more precisely ‘spec-

imen derivatives’ (‘derived units’) [154]. Based on the field unit, derivation events can create a series 

of derivatives. Being products of derivation events, derivatives are usually hierarchically structured 

(e.g. specimen → pollen sample → scanning electron microscope (SEM) micrographs). Both the deriv-

ative hierarchy and any single derivative are rooted to the field unit, ensuring that each derivative is 

rooted even if an intermediate derivative is lost, of ephemeral nature or has never been recorded. A 

first derivation step from a taxon-specific field unit is the individualization of specimens, the specimen 

thus constitutes a first derivative of the field unit (Figure 4.2). 

The taxon assignment of a taxon-specific field unit is normally inherited (in terms of data processing) 

to and valid for all the field unit’s derivatives. Similarly, a taxon assignment to a derivative is inherited 

to all its other elements and the field unit. Erroneous assignments of samples to a taxon-specific field 

unit may result from misidentification in the field or in light of novel insights following later analyses 

leading to the re-circumscription of a taxon. Another possibility is the consideration of a taxon which 

was outside the scope of the original gathering (e.g. epiphytic lichens, parasites) [155]. Consequently, 

such samples need to be separated (at least in their virtual representation) and assigned to the correct 

newly developed taxon-specific field units. 

Once a derivative becomes part of a collection (e.g. a herbarium), and thus a collection object, a 

metadata type termed ‘collection unit’ can be assigned to the derivative. 

Any sample that is examined, regardless of whether it is newly collected in the course of the research 

process or taken from a research collection, which, in the latter case, may be from a living collection 

(e.g. botanical or zoological garden) or museum collection, is assigned to a specimen derivative hierar-

chical level. Two types of data are principally associated with each sample: 

i. ‘Sample metadata’ predominantly include the event-related information, including sample 

origin, collecting locality, observations in the field, gathering method, preparation process, 

derivation events in the examination, position in the derivative hierarchy, accession and stor-

age place in a collection and more. The main functions of the sample metadata are to give the 

sample a unit identity and to make it reproducible or at least traceable. The core of the sample 

metadata is found on labels attached to a collection object, which may be supplemented, in 

the case of poorly labelled ‘historical’ specimens, by data from related sources, such as pub-

lished reports on expeditions and laboratory protocols. The ‘taxon assignment data’ are a par-

ticular type of sample metadata, which indicate the taxonomic identification of a (taxon-spe-

cific) field unit and all its derivatives, including the taxon name, typification, name of identify-

ing scientist, date of determination, synonymizations and determination history. The taxon 

name connects the sample and its data to a certain taxon in the classification. One type of 

sample metadata has a double nature: data related to the gathering event in the field, such as 

locality data, gathering date and observations on the gathered organism, will also contribute 

to the characterization of that taxon (described in detail below), by information such as distri-

bution, ecology or phenology. 

ii. ‘Character data’ include all primary (raw) and secondary (edited or derived) data gained 

through the examination of a sample. They can theoretically comprise the entire phenome 

(the entirety of a taxon’s ‘traits’ or ‘features’), genome information plus all related geograph-

ical and environmental data. If character data have an unambiguous connection to a single 

documented sample, they are referred to as specimen-based as opposed to merely taxon-

based character data. ‘Structured character data’ are organized in a matrix distinguishing char-

acters and two or more states, in contrast to ‘textual character data’ (e.g. in a natural language 

description). 
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The term ‘trait’ is conceptually narrower than ‘character data’. Trait refers to phenotypic variation 

relative to genetic and environmental factors for particular phenotypes. However, it has been used 

ambiguously either corresponding with a character or, more commonly, with a state. The definition of 

the term trait has been widened in ecology to functional and physiological traits. The term character 

data is inclusive of these as well. The terms ‘descriptive data’ [125,148] and ‘comparative data’ [123] 

are largely synonymous to character data. However, the former in particular has often been used in 

the narrow sense, referring to the data of the ‘taxon description’, which historically ranges from a brief 

morphological differential diagnosis to a more or less comprehensive morphological description of a 

taxon. The term ‘factual data’ [156], coined in the context of modelling data relations of taxon concepts 

and names, is wider than the above mentioned terms. It refers to any factual information that is con-

nected to a taxon and thus also includes information about human uses or the conservation status of 

a taxon, which is too extensive to be included with the character data. 

Derivation events frequently lead to samples that are either not preserved as physical objects, or they 

lose their physical concreteness and then are merely present as digital objects. Examples include the 

SEM analysis of pollen samples, where only the digital SEM micrographs remain, or the amplification 

and sequencing of markers from a DNA isolate, where after an isolate has been used only the trace 

files remain. Where derivation events transform physical into digital objects, the digital objects can, 

with similar justification, be treated as sample derivatives or as data gained from samples. Generalizing 

this, one could consider the generation of character data from a sample as a derivation event, and the 

obtained character dataset as a further derivative instead of a sample-based characterization item. We 

have decided, however, to treat in the data model only derivatives in the narrower sense, i.e. not 

character data as derivatives, but in the interest of user convenience, a joint visualization of derivatives 

and character datasets in the user interface independent of the model decision is possible (Figure 4.2, 

and see below). 

4.2.2 Processing sample metadata 
Usually, samples in a research project in systematic biology are to some part newly collected, while to 

some other part obtained from research collections, either as physical objects or as digital represen-

tations. A required functionality is therefore the communication with research collection databases or 

corresponding aggregators to search for and to import digital sample representations and sample 

metadatasets. The standard exchange formats ABCD (Access to Biological Collection Data) [157] and 

Darwin Core [158] should be supported. 

Imported metadatasets may need, at some stage, to be edited. Editing may include the following: (i) 

completion of label data; (ii) addition of relevant metadata from other sources, such as duplicate sam-

ples and itineraries, for insufficiently labelled historical collection items; (iii) standardizations, such as 

making collector names unambiguous and conversion of data into standard units; (iv) completion or 

correction of the parsing of the metadata into the relevant data fields; (v) clarification of toponyms 

and georeferencing localities and (vi) fixed associations of taxon names with specimens following no-

menclatural typification. Editing with respect to (iii), (iv) and (v) is essential for the processing of 

metadata elements in the context of taxon characterization, such as georeferenced localities for dis-

tribution mapping or collecting dates for phenology. Type information (vi) is to be processed in order 

to fix the application of a name to the taxon containing this specimen. 

In the case of collection items or their derivatives for which no digital metadatasets are available, these 

need to be newly entered into the data store. In the case of newly collected material for an investiga-

tion, it depends on institutional workflows; the material may be first accessioned by the research col-

lection and its metadata can then be imported from the institutional collection database, or vice versa. 

Exporting the newly entered and the edited sample metadatasets to institutional research collections 
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is possible using standard exchange formats ABCD [157] and Darwin Core [158]. Furthermore, this can 

be done in a way that clearly distinguishes original and edited data. 

4.2.3 Linking specimen-based character data to sample metadatasets 
Sample examination produces specimen-based character datasets of various types and formats. These 

datasets are characterization items to be persistently linked to the analysed samples (represented by 

their metadataset) and via the derivative hierarchy also to the individual specimens documenting the 

individual organismic source of these data. For all stages of the research process the corresponding 

character datasets should be available, visible and easily accessible. An export of the sample metada-

tasets to the respective research collection should contain a stable link to the existing character da-

tasets, or even be directly associated with the available character datasets. 

4.2.4 Taxon assignment of samples and their data 
Through assignment to a taxon, the field unit as the root of the specimen derivative hierarchy becomes 

connected to the taxonomic classification of a group of organisms. As a consequence, all connected 

derivatives, the sample metadata corresponding to the gathering and the character data resulting from 

the examination of a sample also become assigned to that taxon. The taxon assignment is thus effec-

tive for all levels in the derivative hierarchy and is reversible. Samples and character datasets assigned 

to taxa should be easily visible and accessible. 

Simple moving of a taxon within a classification or renaming does not affect the connection between 

samples and taxa. In contrast, re-delimitation of a taxon, which involves a re-evaluation of the included 

samples and/or character data, will also demand to adjust the taxon assignment of the samples. 

4.2.5 Aggregating specimen-based character data at the taxon level 
The essential procedure for any taxon characterization is the aggregation of the specimen-based char-

acter data to taxon character data according to the delimitation of the taxon. The extent and type of 

the aggregation depends on the data type and structure, and the means and purposes of their use at 

the taxon level. This may include an ‘appending aggregation’ (leaving the appended data unchanged), 

such as DNA sequence data, or a ‘merging aggregation’ (statistical values), such as the measurement 

of floral features or altitudinal distribution ranges. 

It is necessary for data aggregation to be designed as an iterative and automated procedure, permitting 

changes in the sample basis of the data, due to changing taxon delimitation or data availability. This 

would trigger a new round of aggregation, which replaces the results of the preceding one. The pre-

requisites are that the data are structured and compatible. Taking the domain of morphological data 

as an example, it becomes evident that the main obstacle is to ensure that sets of characters and states 

are compatible during specimen investigation across a larger group of organisms. Aggregation for dis-

tant taxa of the same larger group of specimen-based data at the lowest taxon rank applied must not 

use incompatible matrices in order for subsequent aggregations at higher ranks to be successful. 

A number of applications exist to create taxon-based character and state matrices and to further pro-

cess them for the generation of identification keys and natural language descriptions, and to aggregate 

them from lower to higher taxa [125,146–148]. As long as compliance with the XML-based SDD stand-

ard [149] is provided, the data are exchangeable between the applications. Problems regarding ex-

changeability of structured data matrices, term ontologies including addressing homology issues and 

the character data model [125] remain to be addressed in future work. 
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Fortunately, the aggregation of character data from lower to higher taxa is principally the same as the 

primary aggregation of specimen-based character data at the taxon level, with respect to data struc-

ture and aggregation algorithms. The same applications can thus be employed in order to record and 

aggregate specimen-based character data. 

4.3 Workflow implementation using the EDIT Platform 

4.3.1 Extending the EDIT Platform to handle the variety of sample data 
Our concept for an integrated workflow for sample data spans from the selection of sampled individ-

uals to the aggregation of character data for named taxa (Figure 4.1), but intentionally it excludes the 

capacity to conduct evolutionary analysis of sampled individuals. However, it aims to include the entire 

data recording for the examined samples (metadata and character data) and to hold and provide the 

specimen-based structured character data (morphological and molecular) of the sampled individuals 

for any evolutionary analysis, such as phylogenetic reconstruction. The datasets for the sampled indi-

viduals can be assigned to taxa according to the results of the analysis and the character data can be 

aggregated to add to the taxon characterization. 

The implementation of this workflow requires a web-enabled working platform, readily allowing net-

working of distributed team workers, capable of the pertinent data exchange standards for collection 

data, with suitable interfaces to handle character data, and capable to handle taxonomic classifica-

tions. Therefore, the EDIT Platform for Cybertaxonomy [102,159,160], or shorter, EDIT Platform has 

been selected for development of our workflow model. The EDIT Platform provides the necessary basic 

functionalities which require minimal extensions, especially in the specimen module. The EDIT Plat-

form is based on the Common Data Model (CDM) [161], which is a comprehensive object-oriented 

taxonomic information model covering the flow of taxonomic information from fieldwork to data pub-

lication. The pivot of this model is the ‘taxonomic concept’ (or ‘potential taxon’) being strictly sepa-

rated from scientific names. This approach was originally developed by Berendsohn [162] and later 

refined and implemented in the Berlin Model e-Platform [163,164]. Added to this was a rule-based 

‘transmission engine’ for the transfer of character and other taxon-related ‘factual data’ between con-

cepts in a network of taxonomic concepts [165,166]. The CDM complies to the relevant data standards 

of biodiversity informatics (Biodiversity Information Standards [TDWG], also known as Taxonomic Da-

tabases Working Group) [167], including ABCD [157], Taxon Concept Schema [168], SDD [149] and Dar-

win Core [158]. Besides the EDIT Platform it is also the basis for Creating a Taxonomic E-Science [141]. 

An outstanding feature of the EDIT Platform is its connectivity and interoperability among the emerg-

ing international biodiversity informatics infrastructures through standardized web service layers. Data 

exchange interfaces to various biodiversity e-infrastructures have been implemented including the 

GBIF (Global Biodiversity Information Facility) Checklist Bank [169], Biowikifarm [170], Scratchpads 

[171], Plazi [172], BioVeL [173] and Biodiversity Heritage Library [174]. 

The EDIT Platform is open source and applicable to all groups of organism, in particular those covered 

by the ICN [153]and the International Code of Zoological Nomenclature [175]. Current applications are 

monographic in approach (Cichorieae Portal; CLD-CoW Portal; Palmweb) [176–178], regional checklists 

[179] or floras [180]. 

4.3.2 Basic functionalities of the EDIT Platform, scalability and use cases 
The EDIT Platform can be employed to handle and connect the different data types associated with 

the samples right from the start of a research process in systematic biology. It provides three main 

components: 



4  Taxonomic workflows with character data persistently linked to preserved individual specimens 69 

 

i. Data repository and server: The CDM store hosts the taxonomic classification, the metadata 

and character data for samples, and also links to external web resources. All data objects are 

accessible through Java and web service interfaces. 

ii. Taxonomic Editor: The core application of the working platform functionality is the Taxonomic 

Editor. Among others, it allows the searching for, importing, entering and editing of all taxon- 

and specimen-related information stored in the CDM. 

iii. Data Portal: The portal provides a dynamic visual user interface for online publication. It gives 

access to all publication-relevant data objects stored in the CDM. Classifications are repre-

sented by a taxon tree, which allows users to navigate through multiple hierarchies. The portal 

links out to biodiversity e-infrastructures such as BHL (Biodiversity Heritage Library) [174] and 

GBIF [169] and has advanced functions for visualizing species distributions and multimedia 

files. 

Although the EDIT Platform is being designed to support the distributed research process in systematic 

biology from sample acquirement to the publication of a monograph, more frequent use cases are 

taxonomic revisions or phylogenetic analysis of smaller groups of organisms, and in some cases a com-

bination of both. Such work is frequently conducted by an individual scientist or a working group and 

usually without a long-term dedication to a particular group of organisms. Cases like these often lack 

the active institutional support, in particular IT infrastructure. Instead of the fully operational ‘commu-

nity installation’, they may use the easy to install ‘individual installation’, which allows a single worker 

to edit and maintain an individual dataset on a personal desktop, and a ‘group installation’ for a work-

ing group with a shared data repository within an institutional intranet. In contrast to the individual 

installation scheme, the group installation comes with a data portal to publish the data electronically 

(http://cybertaxonomy.eu/cdm-setups/). An installation with the full implementation of the workflow 

described in this article is expected to be available for download by the end of the project in December 

2015. 

4.4 Steps of the integrated sample data workflow 

4.4.1 Scope of the workflow 
Here we outline the steps of the integrative processing of sample metadata, sample character data 

and their taxon assignment, as it has been developed and is being implemented in the EDIT Platform. 

Its aim is to create the prerequisites for a consistently specimen-based research process in systematic 

biology. This includes the following: (i) establishing a reproducible connection between sampled indi-

viduals and all types of samples derived from them, which allows instant sample metadata processing, 

including de novo input, retrieval, import, documented (for potential synchronization with external 

sources) editing, display and export, within the research process; (ii) stably linking the metadata of all 

sample types with the respective character data gathered from them, by providing means for handling 

specimen-based character data (morphological and molecular) and for firmly linking them to the sam-

pled individual; (iii) recording structured specimen-based character data in formats allowing data ex-

change and easy retrieval; (iv) reversibly assign sample metadata and character datasets to taxa in an 

editable classification, allowing optional publication of the investigated samples in the context of 

taxon-based information portals and (v) organizing data exchange via standard exchange formats and 

enabling persistent, specimen-linked storage effectively accessible for humans and machines in re-

search collections, ensuring high visibility and instant re-usability of the data. 

The workflow described is still a work-in-progress. Although the foundations were laid for the imple-

mentation of the entire workflow in the EDIT Platform, its single steps have been elaborated so far to 

different depths. It will be workable throughout by the end of 2015 but in particular the handling of 

structured (morphological) character data will have to be considerably improved to meet all essential 

needs by a corresponding follow-up project proposal submitted to the German Research Foundation. 

http://cybertaxonomy.eu/cdm-setups/
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4.4.2 Establishing a reproducible connection between sampled individuals and all 

types of samples derived from them 

4.4.2.1 Searching, retrieving and importing of sample metadata 
The ‘specimen search’ in the Taxonomic Editor is defined by the search parameters and the query in-

terface supported by a specimen data provider. The implemented system supports a list of specimen 

data providers and allows users to decide which provider to query. It converts the query to the required 

format for the provider’s interface. One option currently implemented is GBIF [169], which is queried 

via web services; the other option is BioCASe [181], the providers of which are queried with a specific 

XML-based query protocol [155] (Figure 4.3). Common search parameters are taxon name, collector, 

collector’s number and country. Specifying two or three of these is usually sufficient to reduce the 

search results. 

 

Figure 4.3 Taxonomic Editor of the EDIT Platform, derivatives perspective: screenshot of the specimen query 
and import interface 

The black arrows indicate the single menu steps that specify the import. After the import form has been sent out, 
the search results are listed in a separate tab. The specimen can then be chosen (A) and the import of the datasets 
can be completed (B). 
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Figure 4.4 Taxonomic Editor of the EDIT Platform, derivatives perspective 

Screenshot of the derivative view displaying the derivative search (A), the derivative hierarchy (B) and a details 
view for the corresponding metadata (C). Screenshots illustrate the stepwise establishment of a derivative hier-
archy by successive creation of derivatives and insertion of their data: (a) addition (1) of a tissue sample and (2) 
of a DNA sample; (b) addition (3) of a consensus sequence with links to one of the INSDC (International Nucleotide 
Sequence Database Collaboration) databases, (4) of single reads (Sanger sequencing trace files) and/or a contig 
file. 
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The Taxonomic Editor provides an import routine that can both convert the different formats returned 

(ABCD and Darwin Core) to display the results in a CDM-unique, standardized format and provide the 

functionality to store the specimen data in the CDM, merging it with existing data. The imported data 

are stored with the provider’s original unique identifiers to enable data synchronization. 

4.4.2.2 Editing metadatasets 
The specimen module of the Taxonomic Editor has been extended to provide full user interface func-

tionality for displaying and editing all levels of the derivative hierarchy. The tissue and molecular sam-

ple modules of the CDM have been extended to enable full data coverage. Fields with pre-defined or 

user-defined elements have been selected to avoid redundancy and ensure coherent use of terms and 

names, e.g. for primers and DNA markers. 

4.4.2.3 Building and editing specimen derivative hierarchies 
The derivative hierarchy is displayed as a tree in a separate interface, the ‘derivative search view’ (Fig-

ure 4.4 A). ‘Derivative view’ (Figure 4.4 B) and ‘details view’ (Figure 4.4 C) form a functional unit that 

allows the convenient access to, and the creation and processing of, derivatives and their data. The 

field unit element is obligatory because it is the root of the derivative hierarchy and appears, if not 

manually created, automatically once a specimen or any other sample is entered or imported. All sub-

sequent derivation steps and derivative types are prearranged in a hierarchical order according to the 

typical research workflow. 

According to our concept of the derivative hierarchy, the derivative view holds a central position in the 

specimen module of the Taxonomic Editor. It is used to build the derivative hierarchy, thus to select 

derivatives, to visualize associated character datasets of the respective samples, to add and edit sam-

ple metadata and to display the hierarchy with all its data types in the Taxonomic Editor as they may 

also appear in the Data Portal. An example of such a prearranged derivative hierarchy (Figure 4.2) in 

the Taxonomic Editor is as follows: field unit → specimen collected → tissue sample taken → DNA 

isolated → DNA trace file created by the sequencer → consensus sequence generated from the contigs 

(Figure 4.4). In all such cases, the full sequence of the derivatives is not mandatory and can be applied 

as appropriate. For example, if no tissue sample and DNA isolate are stored, the trace file or consensus 

sequence can directly be attached to the specimen. 

By selecting the details view, input options are provided for the essential metadata of each derivative. 

In the case of molecular data, the necessary terms and input options are matched with those compiled 

for the GGBN (Global Genome Biodiversity Network) network [182]. The full extent of data covered by 

other repositories can be accessed via links in the details views (Figure 4.4 B). 

4.4.2.4 Versioning, synchronizing and exchanging metadatasets 
The editing process (adding, deleting or changing data) will enrich and refine the original metadataset. 

These changes are separated from the original dataset, resulting in two semantic parts of sample 

metadata: (i) the ‘core copy’, the original dataset from an external provider and (ii) ‘enrichment and 

refinement’, the edited data which can be subject to a manual versioning by employing the auditing 

functionality of the EDIT Platform (Figure 4.5). On this basis, a special ‘Diff-Viewer’ can be implemented 

in the future to visualize the differences between versions and additionally allow the user to revert 

changes to an older version (Figure 4.5). Edited and newly entered specimen metadatasets can be 

provided to the corresponding research collections using AnnoSys [183] as a back-end service for stor-

ing and communicating the annotations. AnnoSys provides the functionality to annotate publicly dis-

played specimen records by users, to keep track of, and to inform data providers about annotations. 

AnnoSys exposes the annotations in the ABCD standard exchange format. The exposed dataset will 

include the documentation of the editing of the core copy to give the providers the opportunity to 
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update their data. Conversely, the researchers can ask providers for a possible update of an earlier 

imported core copy and manually update their local copy. 

 

Figure 4.5 Scheme of the envisaged versioning functionality for sample metadata 

The core copy is a copy of an imported dataset of an external provider, which is edited (green data). The versioning 
support of the CDM database, reporting every single change in the data, is used at certain intervals to create 
versions of the data, which can be compared using a diff viewer. The result of a subsequent query at the provider 
is stored as a new core copy, which can be compared with the latest version based on the first core copy and 
subsequently be edited. 

4.4.3 Stably linking character datasets to the sample derivative hierarchy 
The central interface for linking specimen-based character datasets to the sample derivative hierarchy 

is the ‘factual data view’ of the Taxonomic Editor. The addition of such character data is displayed in 

the derivative hierarchy, where the derivative symbol is then replaced by a ‘derivative + character data’ 

symbol (Figure 4.2). Storage of the sample derivative hierarchy data in the CDM is configured to include 

the information about and, optionally, a stable link to external character datasets, or the stored char-

acter datasets themselves. 

4.4.4 Recording and storing specimen-based morphological and molecular character 

data 

4.4.4.1 Storage 
Specimen-based character data can be stored and curated in the EDIT Platform using the Taxonomic 

Editor, independent of their format. Data available in files from external applications can be stored and 

linked via the Web. For storing data files of various types in a working environment, we are using a 

server with Apache Subversion (svn, https://subversion.apache.org/), which combines convenient ac-

cessing of the file repository (e.g. using TortoiseSVN) with the advantages of a versioning and revision 

control system. The files are publicly available via a URI (uniform resource identifier). Mere textual 

data can be stored in free text fields of the CDM data store, some types of structured data can be 

directly mapped to the corresponding CDM classes for structured factual data. A fully functional data 

management, however, requires structured data in the supported exchange formats (see below). 

For recording and editing character datasets, the Taxonomic Editor provides the ‘Factual Data View’ 

and specialized views for different data types, in which seamless integrations of otherwise independ-

ent applications are operational. 

https://subversion.apache.org/
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4.4.4.2 Structured morphological character data 
For the recording and processing of structured morphological and related types of character data, the 

Xper2 software [148] is used. This software enables free creation of matrices of characters and charac-

ter states and the recording of qualitative and quantitative character data of specimens and deriva-

tives. In a recent paper ([130], p. 295–296) we have outlined an approach, employing a terminology 

server and semantic web technology to ensure the compatibility of characters and states taken across 

a larger group of organisms, which we identified as a main challenge in part 3, above. There, we have 

also proposed a strategy as to how the wealth of unstructured textual descriptions in the literature 

can, in a controlled way, be employed in the frame of an otherwise specimen-based approach relying 

on structured data for taxon characterizations at lower taxonomic rank. Implementation of these ap-

proaches is subject to a corresponding follow-up project proposed. 

4.4.4.3 Molecular character data 
For recording and processing molecular (DNA) data, the Taxonomic Editor has been extended using 

several GUI (graphical user interface) components that display pherograms (trace files from Sanger 

sequencing) imported from AB1 or SCF files with their base call sequences and allows the combination 

of these in contig alignments and the creation of consensus sequences. The user can easily manually 

correct the base calls or edit the contig alignment and the consensus sequences. To achieve this, a new 

open source Java library called LibrAlign (chapter 3, page46) has been developed. It provides powerful 

and flexible GUI components for displaying and editing raw data and metadata for sequences and 

alignments. Although LibrAlign was mainly developed for use in the Taxonomic Editor, its components 

have been designed to be of general use for other developers in the scientific community and it may 

be integrated into any Java GUI application, based on Swing, SWT, Eclipse RCP and Bioclipse [108], and 

it is interoperable with the CDM Library [161] and BioJava API (application programming interface) 

[93]. Furthermore, support for importing and exporting whole contig alignments in various formats, 

such as FASTA, Nexus [31], MEGA [184] or NeXML [35], is currently implemented using JPhyloIO (chap-

ter 2, page 33) in combination with LibrAlign.a JPhyloIO is another general purpose Java Library devel-

oped for the Taxonomic Editor that provides event-based format-independent access to different se-

quence and alignment file formats. It is closely integrated with LibrAlign, but can also be used in the 

development of any application that does not use LibrAlign. 

4.4.5 Taxon assignment of sample metadata and character datasets 

4.4.5.1 Adding sample data to a classification 
The classification used for an investigated group of organisms can be displayed and edited in the ‘tax-

onomic perspective’ of the Taxonomic Editor, a pre-defined and pre-ordered set of graphical inter-

faces. This enables taxonomic hierarchies with synonymies to be imported, created and edited, includ-

ing complex re-classification operations. The taxon assignment of a specimen or derivative hierarchy 

is effected in the details views of the derivative view or in the factual data view, where a taxon of the 

stored classification can be selected (and deselected). In this way, the derivative hierarchy with all 

linked character data becomes assigned to a certain taxon. If the status or position of a taxon is 

changed during the revision of a taxonomic classification in the taxonomic perspective of the Editor, 

all appended sample metadata and character data remain with the taxon. If one taxon is united with 

another one, the appended sample metadata and character data are synchronously moved with the 

taxon and their former placement is recorded. If a changed circumscription of a taxon requires the 

moving of specimens to another taxon, their former placement also is recorded. 

                                                           
a The full functionality reached in this thesis after the publication of this chapter in 2015 is described in chapter 
5 (page 55). 
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4.4.5.2 Aggregating specimen-based character data at the taxon level 
Iterative character data aggregation procedures are being implemented in the EDIT Platform for two 

different data types. 

i. Occurrence data: primary aggregation of geographical coordinates will result in dot distribu-

tion maps in the Data Portal. Aggregation of combined area unit distribution and occurrence 

status data at the same or from lower to higher taxon ranks is currently operated using a cor-

responding transmission engine. This rule-based engine aggregates distribution information 

(including occurrence status data) for a given taxon and region, recursively using its subtaxa 

and subregions. In the case of conflicting status values, decisions are made on the basis of 

defined priority rules. 

ii. Character data stored in SDD-compliant character-state-matrices: the Xper2 software for char-

acter data management and interactive identification [148], which is integrated into the EDIT 

Platform, provides algorithms for data aggregation, merging numerical data while appending 

categorical data. The primary aggregation of the specimen-based character data at taxon rank 

currently only tentatively allows the automated generation of a natural language taxon de-

scription from the matrix. However, a workaround is the manual editing of the data using a 

description template. The storage of structured character data also enables the use of the data 

matrix for interactive taxon identification with the aid of multi access keys accessible through 

the data portal’s Keys Tab which we describe below. 

4.4.5.3 Publishing sample metadata and character data with the CDM Data Portal 
The EDIT Platform, unless in the individual installation of the software, allows the visualization of the 

data through its online Data Portal, which is customizable in its basic structure according to one of the 

principal aims: (i) a systematic revision or monograph providing maximum data, (ii) a flora or (iii) a 

checklist with the most restricted array provided. Classifications and taxon-related data are visualized 

in the portal and are accessible through a navigable taxon tree or via taxon name, area and subject 

searches. A data portal with the function of a systematic revision or monograph presents the infor-

mation for each taxon, independent of its rank, in five basic tabs: (i) the ‘general tab’ displays the 

summarized taxon-based character data organized in feature chapters; (ii) the ‘synonymy tab’ displays 

the detailed synonymy and typification data organized in blocks of homotypic synonyms; (iii) the ‘im-

age tab’ displays stored images; (iv) the ‘key tab’ offers identification keys (interactive or single access) 

optionally for taxa including subordinate taxa and (v) the ‘specimen tab’ finally displays the investi-

gated or determined specimens with their derivative hierarchies and available character datasets, as 

well as a dot distribution map for the taxon based on the georeferenced specimens (Figure 4.6). Setting 

the ‘publis’ flag in the Taxonomic Editor for a specimen derivative hierarchy and the appended charac-

ter datasets displays these data in the Data Portal. A search function, still in preparation, will allow 

users to filter certain derivative types and their data in the specimen tab of the Data Portal. For each 

specimen and its derivatives besides the expanded table view, a separate page with metadata, char-

acter datasets and links to other available character datasets can be opened (Figure 4.6). The Campan-

ula Portal [185] (see, under ‘Preview’ on the ‘Welcome’ page, the exemplar taxa listed) is being used 

to visualize exemplars of taxa with various types of specimen-based datasets. 

Using the publication services of the EDIT Platform, more specific outputs can be designed for publica-

tion of subsets of data in print or electronic publication media. 
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Figure 4.6 Data Portal of the EDIT Platform: screenshot of the Campanula data portal displaying the specimen 
tab visualizing the specimens and their derivatives available for a taxon 

The Derivatives column indicates availability of additional datasets by displaying the respective icons. Clicking on 
a row (A) folds out the table cell and the listed items (here, specimen scan, DNA sequence contig and trace files) 
can be accessed by following the links given. The specimen ID functions as a link (B) to a separate specimen page 
where all derivatives of this specimen are clearly arranged, character datasets are provided and respective files 
are linked; clicking on the specimen scan thumbnail (C) opens the specimen scan in a separate browser window. 

4.4.6 Data exchange via standard exchange formats and enabling persistent, speci-

men-linked storage in research collections 
Exchange of sample metadata between the EDIT Platform, research collections, biodiversity networks 

and collaborators is managed using ABCD [157] and Darwin Core [158] as the standard exchange for-

mats. Both formats allow the import and export of the combined sample metadatasets of entire de-

rivative hierarchies, such as represented, e.g. by the specimen with its scan and tissue sample collec-

tion for DNA extraction. Moreover, data import of such a derivative hierarchy further extended for 

isolated DNA sources plus marker consensus sequences with their contig files and corresponding pher-

ograms has successfully been tested from the GGBN network [182] to the CDM Platform. Even our still 

further reaching concept of persistently and stably linking morphological and other types of character 

data with sample metadata and combined sample metadatasets of entire derivative hierarchies is al-

ready possible. ABCD currently offers a container element (<MeasurementsOrFacts>), which can be 

used as a workaround to store atomized data, a complete character data matrix or a link to such a 

matrix. In this way, the exchange of the sample metadata with the respective research collection can 

include the information about and, optionally, a stable link to existing character datasets, or even the 

stored character datasets themselves. In the proposed follow up project and in connection with the 

development of ABCD 3.0, we envisage a more straightforward implementation for the exchange of 

associated structured character datasets. This will lay the foundation to popularize the association of 

(structured) character data with sample metadata, as well as their display and effective accessibility 

for humans and machines in research collections, ensuring high visibility and instant re-usability of 

character data through research collections. 
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4.5 Perspectives 
Our solution emphasizes the editing and enrichment of specimen metadata (e.g. taxon identifications, 

nomenclatural type status designations, georeferencing) by the researchers in the course of their ex-

amination of the material, as well as on the synchronization of edited data with the existing datasets. 

Doing so, it takes into account that the rapid advancements in the digitization of research collections 

have conducted the work and data flows related to collections in an analogous and a digital branch. 

Consequently, solutions have to be designed for the various use cases to ensure that revised and en-

riched metadatasets can conveniently be connected to the collections [183,186]. 

Moreover, our solution, which streamlines the taxon characterization through establishing a persistent 

unambiguous relation between each sampled individual and the corresponding data, also opens new 

opportunities for the old problem of securing raw data associated with the research process in system-

atic biology. Primary research data do not only include pure data but also digital representations of 

preparations from specimens, ranging from light or scanning electron micrographs to sequencing trace 

files. Currently, if specimen-based character data are recorded, these are frequently treated as raw 

data, not usually included in publications, or, e.g. micrographs, published in a very limited selection 

only. At best they have, in more recent times, been deposited in repositories [42,187,188], otherwise 

they are still frequently considered only worth short-term preservation and disposed after the com-

pulsory periods of record keeping, if not earlier [189]. The deeper reason for not preserving raw data 

is often the lack of appropriate means to document, persistently link and visibly store them. Addition-

ally, individual research databases are often not integrated in institutional data management strate-

gies [190]. National research funding bodies increasingly recognize the need for permanent storage 

facilities for primary research data [188,191]. However, the investment of extra work for long-term 

storage of specimen-based character data in a meaningful way is not economic as long as their re-use 

is not well organized. Primary research data therefore must appear effectively visible in a potential use 

context, must be technically compatible and so on. Evidently, the mere presence of data in some sort 

of public repository does not ensure their actual availability in a relevant research context. To become 

effectively visible, a firm, persistent link from the metadata of the deposited specimen to the respec-

tive character data in a repository would be a solution. Such links can be stored and conveniently ex-

changed in the standard metadata exchange formats for specimens (ABCD or Darwin Core). When ac-

cessing such a specimen, e.g. via online specimen catalogues, the link to existing character data sets 

becomes readily available. Alternatively, the array of specimen-associated data can be extended to 

also include character datasets themselves. Recently, a system of persistent http-URI identifiers for 

collection items associated with the digital representation of a specimen was suggested by Hyam et al. 

[192], which immediately gained wide acceptance and has been further elaborated since [193]. Using 

this system, the inclusion of character data into the array of specimen-associated data would make an 

attractive functional solution, facilitating brief, precise and convenient reference in scientific publica-

tions to a specimen with its digital image (if available), its metadata and existing character datasets. 

Such a solution would certainly help to increase significantly the visibility and re-usability of character 

datasets. Research collections are currently in a far-reaching process of transformation from curating 

pure analogous to sizable and complex collections of analogous and digital objects with the related 

datasets. Extending curation to specimen-based character data may secure research collections to play 

an appropriate key role in current and future research in systematic biology and thus in biodiversity 

assessment and analysis. 

Our solution blazes a trail in systematic biology research for a streamlined process of taxon character-

ization and the additivity and re-usability of character data. The implementation is expected to be op-

erational and available for download by the end of the project in December 2015. We have started to 

use this implementation in the integrative and dynamic approach for monographing the angiosperm 
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order Caryophyllales [128]. The current implementation has focused on various aspects of sample and 

data associations, while has relied on available software for the handling of morphological character 

data and for their aggregation from specimens to taxon characterization as well as from lower to higher 

taxon levels. The entire field of morphological character data aggregation, however, is waiting to be-

come a subject of further developmental work. This concerns in particular three complexes: the mod-

elling of character data [125]; semantic web solutions for ontologies of descriptive terms [125,194]; 

the exchangeability of data and the interoperability of different character data matrices (e.g. merging 

procedures for data matrices). 
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b The molecular components of the Taxonomic Editor were using BioJava at the time of publication of this chapter 
in 2015. This dependency has been removed since then. 
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Own contribution 

I implemented the molecular module (module eu.etaxonomy.taxeditor.molecular) of the Tax-

onomic Editor that is described in this chapter in greater detail than the previous chapter that dealt 

with the general concepts of the Taxonomic Editor and the way it models taxonomic workflows. Patrick 

Plitzner helped with the integration of the new components into the application and coordinated the 

work between Münster and Berlin. Andreas Müller added required implementations for the CDM API 

to provide interoperability with the new molecular functionality. I developed the concept for the re-

quired libraries LibrAlign (chapter 3, page 46) and JPhyloIO (chapter 2, page 33) and implemented 

them, designed the export feature for molecular data of the Taxonomic Editor with the required draft 

for a respective ontology (see Figure 5.3) and wrote the manuscript. 

Abstract 

The functionality of the Taxonomic Editor of the EDIT Platform for Cybertaxonomy has been extended 

to model molecular sequence data within taxonomic workflows. Single read sequences are generated 

from samples of specimens and these are combined to a consensus marker sequence using a contig 

alignment. To model this, while still linking all data to the initial source specimen, an editor component 

for such contig alignments has been developed for the Taxonomic Editor based on the GUI components 

provided by LibrAlign. It allows to align a set of single reads sequences to create a consensus sequence 

and displays the pherogram raw data directly attached to the corresponding single read. Complete 

contig alignments can be exported using a new feature based on JPhyloIO. That allows to write to 

different alignment formats and exports links between sequences and their pherograms, if the 

metadata model of the target format allows it. Exports to NeXML contain all available annotations 

using a newly defined ontology that provides RDF predicates to formulate necessary statements de-

scribing a contig alignment.  

5.1 Introduction 
As described in the previous chapter the Taxonomic Editor of the EDIT Platform for Cybertaxonomy 

[102] manages taxonomic workflows with different types of character data while persistently linking 

them to individual source specimens [24]. This includes molecular data, i.e., DNA marker sequences 

obtained from isolations of probes of specimens and their source pherograms. 

To fully model the workflow and to preserve the links between molecular data and the specimens it 

was derived from, the Taxonomic Editor requires components that allow to display, assemble and edit 

DNA sequences within the derivative hierarchy. The multiple sequence alignment editor PhyDE [195] 

was chosen as a possible provider for required features, since it has a phylogenetic focus, is developed 

in Java (like the Taxonomic Editor) and became open-source before the start of the project. PhyDE was 

undergoing major revisions (described in chapter 6, page 84) and future versions of PhyDE were to be 

based on LibrAlign (chapter 3), which now provides all necessary GUI components for visualizing and 

editing MSAs, including functionality for pherograms from Sanger sequencing. LibrAlign therefore also 

mailto:stoever@bioinfweb.info
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became the basis for the new molecular 

components of the Taxonomic Editor and 

was designed to provide all its components 

not only for Swing GUIs (as required for 

PhyDE and other software), but also in a 

version for SWT, which is the GUI toolkit 

used by the Editor. 

Since the data model of the EDIT platform 

models source data, like pherograms, per-

sistently liked to derived sequences and 

contigs, the new components should ide-

ally be able to display pherograms closely 

together with their base call sequences 

and allow to export contig alignments of 

these to formats that can model the links 

between the sequences and their source 

data. The data areas of LibrAlign that allow 

displaying any type of raw- and metadata 

directly within the GUI components used 

to edit sequences and MSAs, provide the 

necessary functionality to fulfill these 

needs. Their close integration with JPhy-

loIO (chapter 2) that provides access to a 

variety of file formats with full metadata 

access allows to easily create the required 

I/O functionality. 

5.2 Implementation 
The Taxonomic Editor of the EDIT Platform (also called EDITor) is a Java application based on the Eclipse 

Rich Client Platform (RCP) [105]. RCP allows to specify so-called editors and views to display and edit 

different types of data, which can be freely combined and arranged by the user. The molecular com-

ponents of the Taxonomic Editor that have been developed within this thesis are contained in the 

Eclipse RCP plugin eu.etaxonomy.taxeditor.molecular, while the necessary dependencies are 

provided by eu.etaxonomy.taxeditor.molecular.lib. 

All data to be displayed and edited using the EDITor is provided by a data service following the standard 

of the common data model (CDM) of the EDIT platform [161,196]. Technically, the EDITor uses the Java 

API cdm-lib to access data from a respective database. Figure 5.1 shows how an alignment of single 

reads is modeled in cdm-lib. 

To display and edit alignments of single reads and their consensus sequences, a special alignment ed-

itor RCP component has been developed that makes use of the GUI components provided by LibrAlign. 

As Figure 5.2 shows, the single reads and their source pherograms are displayed in an Alignmen-

tArea, while another AlignmentArea allows to edit the consensus sequence of all reads. Both are 

grouped together by a MultipleAlignmentsContainer. (See chapter 3.2.1 on page 47 for details 

on LibrAlign components.) In addition to the alignment editor, a view component to display phero-

grams separately is also based on LibrAlign. The user therefore has the options to view pherograms 

directly attached to the respective single read sequence and to display a larger visualization of the 

trace curves in a separate view component. 

Figure 5.1 The cmd-lib modelling of an alignment of single 
reads 

This UML class diagram shows how the data of an alignment of 
overlapping single reads and the resulting consensus sequence 
is modeled by the Java API of the common data model of the 
EDIT platform. (A class diagram containing all CDM compo-
nents that model molecular data is available at  
http://r.bioinfweb.info/CDMMolData.) 

http://r.bioinfweb.info/CDMMolData
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Exporting the alignments of single reads and their consensus sequence to different multiple sequence 

alignment formats is achieved using JPhyloIO (cf. chapter 2.2.2, page 38) and the I/O module of 

LibrAlign (cf. chapter 3.2.4, page 48). 

5.3 Results and discussion 

 

Figure 5.2 Screenshot of the Taxonomic Editor with an opened alignment editor and pherogram view 

This screenshot shows an alignment of single reads that is opened using the alignment editor component from 
the eu.etaxonomy.taxeditor.molecular module that was developed within this thesis. An alignment area 
contains the editable single read sequences with their attached source pherograms and another alignment area 
below contains the consensus sequence of all reads together with a bar-sum chart showing the nucleotide fre-
quencies in all reads for each position. 

The pherograms displayed below the single read sequences are displayed in a way that their peaks match the 
position of the corresponding nucleotides. By double-clicking a pherogram, the pherogram view (at the bottom 
of the window) is opened providing an undistorted representation of the trace curves together with their base 
call sequence. 

DNA sequences are generated from specimens and are modeled as their derivatives in the data model 

of the EDIT platform (see [24] for details). Consensus sequences are derived from a set of single reads 

(e.g. from Sanger sequencing) that are overlapped and aligned to form a contig. As mentioned above, 

the RCP components “alignment editor” and “pherogram view” (visible in Figure 5.2) have been added 

to the Taxonomic Editor to display and edit such contig alignments. Each single read can be imported 

from a pherogram file in AB1 or SCF format. The alignment editor component distinguishes between 

the immutable base call sequence read from the pherogram file (displayed directly above the trace 

curves with white background) and an editable copy of it (displayed above the immutable base call 

sequence with colored background, Figure 5.2). This way, manual corrections and edits of the base call 

sequence are directly visible in comparison to the original sequence. Information on how to align the 

original sequence with its editable copy is collected during editing and stored in the data model. When 

editing a single read the user can select whether to insert additional nucleotides on the right or the 

left side of the cursor (Figure 5.2), which differs in whether the trace curve is distorted to the left or to 

the right to match the additional nucleotide. 
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The consensus sequence that is constructed by overlapping and aligning the single reads is displayed 

below and can be created automatically and edited manually. The bar-sum diagram below the consen-

sus sequence allows to directly inspect differences (e.g. due to manual edits or conflicts) between the 

single reads and the consensus sequence. If additional single reads are added later, a special operation 

to update the consensus sequence is available that will optionally preserve previous manual edits. 

<?xml version="1.0" ?> 
<nexml xmlns="http://www.nexml.org/2009" version="0.9" 
    generator="JPhyloIO 0.2.0-1355 alpha" 
    xmlns:nex="http://www.nexml.org/2009" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns:ra="http://bioinfweb.info/xmlns/PhyDE/ReadAlignment/Predicates/" 
    xmlns:radt="http://bioinfweb.info/xmlns/PhyDE/ReadAlignment/DataTypes/" 
    xmlns:pha= 
        "http://bioinfweb.info/xmlns/PhyDE/ReadAlignment/PherogramAlignment/"> 
  ... 
  <characters> 
    ... 
    <matrix> 
      <row id="seqSingleRead0" about="#seqSingleRead1" label="Single read 0" 
          otu="undefinedOTU0"> 
        <meta id="seqSingleRead0METAisSingleRead" xsi:type="nex:LiteralMeta" 
            property="ra:isSingleRead" datatype="xsd:boolean">true</meta> 
        <meta id="seqSingleRead0METAisRCed" xsi:type="nex:LiteralMeta" 
            property="ra:isRCed" datatype="xsd:boolean">false</meta> 
        <meta id="seqSingleRead0METAhasLeftCutPosition" xsi:type="nex:LiteralMeta" 
            property="ra:hasLeftCutPosition" datatype="xsd:int">4</meta> 
        <meta id="seqSingleRead0METAhasRightCutPosition" xsi:type="nex:LiteralMeta" 
            property="ra:hasRightCutPosition" datatype="xsd:int">834</meta> 
        <meta id="seqSingleRead0METAhasPherogram" xsi:type="nex:ResourceMeta" 
            rel="ra:hasPherogram" href="http://example.org/Pherogram.scf"></meta> 
        <meta id="seqSingleRead0METAhasPherogramAlignment" 
            xsi:type="nex:LiteralMeta" property="ra:hasPherogramAlignment" 
            datatype="radt:pherogramAlignment"> 
          <pha:shifts> 
            <pha:shift pha:pos="27" pha:shift="-1"></pha:shift> 
            <pha:shift pha:pos="295" pha:shift="1"></pha:shift> 
            ... 
          </pha:shifts> 
        </meta> 
        <seq>ACTTTCCGAAA...</seq> 
      </row> 
      ... 
      <row id="seqConsensus" about="#seqConsensus" label="Consensus sequence" 
          otu="undefinedOTU1"> 
        <meta id="seqConsensusMETAisConsensus" xsi:type="nex:LiteralMeta" 
            property="ra:isConsensus" datatype="xsd:boolean">true</meta> 
        <seq>TCCGAAA...</seq> 
      </row> 
    </matrix> 
  </characters> 
</nexml> 

Figure 5.3 Example output of a single read alignment from the Taxonomic Editor using the PhyDE ontology 

The NeXML file shown here contains a single read alignment that has been exported from the Taxonomic Editor 
of the EDIT platform using its new molecular components. In addition to an example single read and a consensus 
sequence, multiple meta tags nested within the row tags are shown, which contain metadata modeled by the 
EDITor. 
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A wizard based on JPhyloIO was added to export contig alignments of single reads and the resulting 

consensus sequence from the Taxonomic Editor to all alignment formats supported by JPhyloIO. This 

currently includes FASTA, Phylip, Nexus and NeXML. (See 2.2.3 on page 38 for details). The user can 

choose whether to include only the consensus sequence, the single reads or both into an export. For 

simple alignment formats like FASTA, the two separate types of sequences are treated as sequences 

of one alignment, while metadata is exported to NeXML that identifies each sequence as a single read 

or a consensus sequence. Additionally, a link to the pherogram file and all information to align the 

original base call sequence with the exported single read sequence is written to NeXML. Figure 5.3 

shows an example NeXML file exported by the Taxonomic Editor. An ontology with necessary predi-

cates was defined to link this information to the sequences. It will also be used and possibly extended 

in future versions of PhyDE 2 (chapter 6). 

The molecular plugins providing the functionality described here are incorporated into current ver-

sions of the Taxonomic Editor, which is available for download at 

https://cybertaxonomy.eu/taxeditor/. The latest source codes of the plugins can be found at 

http://r.bioinfweb.info/EDITorMolSrc. 

5.4 Conclusion 
The new components developed in this thesis extend the functionality of the Taxonomic Editor to 

model molecular data as a derivative of specimens. Having this functionality directly integrated into 

the EDITor allows to persistently link DNA data to the specimen it was extracted from and not only to 

a taxon as done by almost all established databases. Additionally, the source pherograms of all single 

reads of each sequence and all changes made to them are modeled and documented, resulting in 

greater reproducibility and reusability of data. The export functionality to various alignment formats 

ensures interoperability to a large number of other software and databases. 

5.5 Availability and requirements 
Project name: Molecular components of the Taxonomic Editor of the EDIT platform for Cybertaxonomy 

Project web page: https://cybertaxonomy.eu/taxeditor/ (Project page for the Taxonomic Editor as a 

whole. Downloads include the molecular components.) 

Source codes: http://r.bioinfweb.info/EDITorMolSrc 

Operating system: Platform independent 

Programming language: Java (Eclipse RCP) 

Other requirements: Java Runtime Environment 8 or higher (Versions with a bundled JRE with reduced 

functionality are also available.) 

License: Mozilla Public License Version 1.1 

Any restrictions on use by non-academics: None 

5.6 Acknowledgements 
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Abstract 

PhyDE is a multiple sequence alignment (MSA) editor for phylogenetic purposes that is used in the 

scientific community since 2005. Recently the Java library LibrAlign was developed, which provides 

flexible reusable GUI components to display and edit MSAs and a new version of PhyDE was created 

based on the components. 

Compared to the previous version, PhyDE 2 now has a much easier extendable and maintainable code 

base that simplifies its future development and adjustment to the needs of the phylogenetic commu-

nity. The project is currently in a proof-of-concept state and does not yet provide all features of the 

previous version, but the currently available release already supports editing and displaying MSAs to-

gether with their character sets and reading and writing of more alignment formats than the initial 

version. Its I/O functionality is based on JPhyloIO, another recently developed Java library that provides 

access to a variety of phylogenetic file formats, including their full metadata model. PhyDE 2 uses 

NeXML as its main format, replacing the PDE format of the previous version to achieve greater interop-

erability. LibrAlign contains modules that directly integrate its components with JPhyloIO and both 

libraries put a special emphasis on modeling any type of metadata closely together with the phyloge-

netic data they are attached to.  

The future development of PhyDE 2 will first focus on reaching feature equivalence with the previous 

version and then extended modelling of sequence and alignment metadata will be a key aim. As cur-

rently implemented in TreeGraph 2, future versions of PhyDE 2 are also planned to enable its users to 

make full use of the RDF-based metadata model of NeXML in a convenient way and therefore increase 

reusability of their data and reproducibility of their studies by providing necessary annotations. Creat-

ing a workbench application that combines the functionality of PhyDE 2 and TreeGraph 2, including 

their extended metadata models, covering the major types of phylogenetic data, is another future 

perspective that is opened-up by the codebase of the new version. 

6.1 Introduction 
The first version of the alignment editor PhyDE [195] was initially released in 2005 and focuses on 

sequence alignment for phylogenetic purposes. Key features are various options for efficient manual 

alignment and linking sequences to raw data in Sanger sequencing pherograms. 

Recently the Java library LibrAlign was developed, which provides flexible GUI components for display-

ing and editing multiple sequence alignments, including functionality to display raw- and metadata, 

like pherograms or character sets (chapter 3). It is already used in the molecular components of the 
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Taxonomic Editor to add functionality for creating alignments of single reads to combine them to a 

consensus sequence (chapter 5). 

Since the old code base of PhyDE was difficult to extend and LibrAlign now provides most of the nec-

essary functionality, it makes sense to base future versions on the library, so that they can directly 

benefit from improvements and extension made in LibrAlign. JPhyloIO (chapter 2) is another recently 

developed library that provides access to a variety of multiple sequence alignment file formats that 

are relevant in phylogenetics and is integrated into LibrAlign. This way new PhyDE versions based on 

LibrAlign can automatically make use of the functionality provided by JPhyloIO and support more for-

mats for greater interoperability without additional effort. A new version of the alignment editor based 

on LibrAlign and JPhyloIO has been developed in this thesis and this chapter describes the currently 

available functionality of PhyDE 2 and perspectives for its future development. 

6.2 Implementation 
PhyDE 2 is a Swing application that makes use of the GUI components provided by LibrAlign. The main 

window contains a MultipleAlignmentsContainer in which multiple AlignmentAreas are 

nested. (See chapter 3.2.1 for details on LibrAlign components.) As shown in the screenshot in Figure 

6.2, the first alignment area contains a ruler with the column indices and the second one displays char-

acter sets. The third one contains the actual alignment and allows to edit it. The relation between the 

three alignment areas, their container and the other components of the application are shown in Fig-

ure 6.1. 

The model of the application consists of a multiple sequence alignment that is stored in an instance of 

PackedAlignmentModel and a list of character sets that are stored in an instance of CharSet-

DataModel. Both of these model classes are implementations available in LibrAlign and are grouped 

together by the PhyDE 2-specific class Document. All model classes are shown in yellow in Figure 6.1. 

What is not shown in the figure (for clarity) is that a LibrAlign decorator instance is wrapped around 

PackedAlignmentModel, which creates respective undo objects for each change of the document 

contents. With this decorator, LibrAlign already provides functionality to undo and redo alignment 

edits in a flexible way that allows the application to define the actual type of undo class to be used. To 

provide undo functionality also for character set-related modifications of the model, respective undo 

objects for modifications of the character sets have been implemented in PhyDE 2. LibrAlign provides 

hooks to wrap its own alignment undo objects into application-specific objects, which allows to man-

age all undo objects together in a single undo manager. 

All operations available in PhyDE 2 are implemented as separate action objects, which allow easily to 

offer the same operation at multiple positions in the GUI, e.g., in the main menu and the toolbar. Those 

actions that trigger modifications of the model, create the undo objects mentioned above that perform 

the actual modification. 

Reading and writing of alignment files is done using the I/O module of LibrAlign, which is based on 

JPhyloIO. Therefore, all formats supported by JPhyloIO are also supported by PhyDE 2, while NeXML 

[35] is the main format. PhyDE 2 distinguishes between general NeXML files created by other applica-

tions and files created by PhyDE 2. The latter contain a metadata element on the document level that 

identifies them as PhyDE 2 files. While such files can be directly opened and are overwritten when the 

user saves, other NeXML files (without the metadata marking) are treated as imports (like files in other 

formats) and the user needs to select a new location before saving them. This is done because the 

current version of PhyDE 2 only supports to write a single alignment to a file, while NeXML in general 

supports to have multiple alignments together with phylogenetic trees, OTU lists and various metadata 

within the same file. If a NeXML file is identified as a native PhyDE 2 file using the respective metadata 

element, the application can be sure that it models all contained data so that it will not lose information 
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when writing back to the file. Files from other applications are never overwritten, to make sure that 

no additional information is lost. 

 

Figure 6.1 UML diagram showing the internal architecture of PhyDE 2 

View instances (according to the model-view-controller paradigm [106]) are shown in green, while model in-
stances are in yellow. The MainFrame is the top-most view of the application containing multiple views from 
LibrAlign. Two alignment areas only contain a single data area and the third one displays the actual alignment. 
Both the third AlignmentArea and the CharSetArea have an associated model implementation from LibrAlign. 
The Document class from PhyDE 2 represents the main model class and groups the two different LibrAlign models 
together. (Note that the used alignment model is actually nested within another decorator instance that creates 
undo objects, which is not shown here.) 

6.3 Results and discussion 

6.3.1 User interface 
The PhyDE 2 main window (Figure 6.2) contains LibrAlign components to edit a multiple sequence 

alignment and a set of attached character (column) sets, as mentioned above. The user can navigate 

through the alignment and the character set area using the mouse or the keyboard and select a rec-

tangular set of cells or a character set. Operations like editing, adding or removing sequences or char-

acter sets are available from the main menu and from the tool bar or via keyboard shortcuts. Sequence 

editing can additionally directly be done via keyboard inputs, which is a feature from LibrAlign. The 

height of the alignment cursor of LibrAlign can be changed allowing users to edit multiple sequence at 

a time. (See chapter 3.3.1 on page 49 for details.) All editing operations can be undone and redone at 

any time using the toolbar, the keyboard shortcut or the edit list from the main menu. 
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Figure 6.2 Screenshot of the PhyDE 2 main window with an opened dialog 

This screenshot shows an opened alignment with two character sets. Both the character set and the alignment 
area allow user selections by mouse or keyboard, which are visible as blue shaded areas. The currently opened 
dialog allows to create a new character set by entering a name and a color. All currently available features are 
accessible from the main menu and selected ones additionally from the tool bar. 

6.3.2 Supported formats 
Since PhyDE 2 uses JPhyloIO to read and write multiple sequence alignment files, it supports all formats 

that are supported by this library. It can therefore read and write NeXML [35], FASTA, Nexus [31], Phylip 

[32] and Relaxed Phylip [33] and additionally read files produced by MEGA [69] and the PDE format 

used by the previous version of PhyDE. Chapter 2.2.3 contains details on the formats and the different 

supported elements. If an input file contains more than one alignment, the user can select the one to 

be imported into PhyDE 2. Besides alignment data, PhyDE 2 is also able to read and write character 

sets from all formats that model them, i.e. NeXML and Nexus. Character set definitions from MEGA 

and PDE files can also be imported. 

As explained in chapter 6.2, NeXML has replaced PDE as the main format of PhyDE. This and the in-

creased number of supported formats, significantly increases the interoperability of PhyDE 2. It now 

allows to import and export the majority of alignment formats relevant in phylogenetics, which is the 

domain current versions are mostly used in. 

6.3.3 Comparison to other software 
Other editors for multiple sequence alignments exist and numerous additional ones have been devel-

oped since the first release of PhyDE in 2005. JalView [78,197], Mesquite [111], MEGA [69], AliView 

[110], STRAP [112], PFAAT [113], SeaView [114], DNAAlignEditor [115] or ALINE [116] are examples of 

alternative alignment editors that focus on different aspects, like supporting very large alignments, 

additionally visualizing three dimensional protein structures, producing publication-quality alignment 

images or providing an integrated phylogenetic workspace. While it does not make much sense to 

compare these alternative applications in detail with the current version of PhyDE 2, since it is still in 

an early development stage and not yet feature-complete and comparing the first version of PhyDE 
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would be beyond the scope of this chapter, PhyDE 2 is now already the only application besides Mes-

quite that supports the same number of phylogenetically relevant alignment formats. This is also due 

to other established alignment formats in other subdisciplines of biology, which are more the focus of 

the many of the other alignment editors. An important reason why the first version of PhyDE was de-

veloped and is used until today by many phylogeneticists, are the versatile manual alignment options 

that are not offered by most other editors. These will continue to be a focus in the future development 

of both PhyDE 2 and LibrAlign and to some degree they are already available in their current versions. 

6.3.4 Future development 
The current version of PhyDE 2 is an initial draft and a proof-of-concept for using LibrAlign together 

with JPhyloIO as the basis for a fully operational alignment editor. While PhyDE 2 already offers func-

tionality not available in the initial PhyDE (e.g. the support for more formats), there are other features 

of the first version that are currently not available. Future development will first focus on integrating 

the existing functionality of LibrAlign to display pherograms as a replacement for the pherogram view 

of the first PhyDE version. In addition to a component that displays a pherograms in a separate com-

ponent, LibrAlign offers a data area that can display a pherogram directly below its corresponding ed-

itable sequence in an alignment and distorts its trace curves to match the equal widths of the displayed 

nucleotides. This functionality is already in use in the Taxonomic Editor (chapter 5) and goes beyond 

the capabilities of the old PhyDE version. PhyDE 2 will then also be interoperable with the single read 

alignment editor of the Taxonomic Editor, by exchanging respectively annotated data via NeXML. An 

additional functionality to accomplish feature parity with the first version is translation between nu-

cleotide and amino acid sequences, including the ability to define the reading frame on the borders of 

spacers or intron. 

After all features necessary to fully replace the initial version of PhyDE have been completed, the fur-

ther development could focus on making full use of the metadata support of JPhyloIO and LibrAlign. 

Similar to the extended metadata model of the phylogenetic tree editor TreeGraph 2 (described in 

chapter 9.3.6), PhyDE 2 could also allow to attach any combination of RDF-based metadata to se-

quences and whole alignments and store them in NeXML. This would bring significant advantages for 

conveniently creating alignment files that make phylogenetic studies more reproducible and their data 

more reusable. See chapter 1.1 (page 20) and chapter 9 (page 137) for more information on the rele-

vance of data annotation and the usage of externally defined ontologies and RDF. Supporting the use 

of externally implemented data areas in PhyDE 2 as a counterpart to externally defined ontologies, 

could also be a future perspective. Further details on that can be found in chapter 3.3.6 (page 54) and 

13.1.3 (page 182). 

As the data model of NeXML and Nexus files allows the combination of matrices and phylogenetic 

trees, it would be beneficial to have an editor capable of visualizing and modifying the whole contents 

of such files. Distinguishing between general NeXML files and PhyDE NeXML files, as described in chap-

ter 6.2 would not be necessary anymore in such an application. In parallel to the individual applications 

PhyDE 2 to process alignments and TreeGraph 2 to process phylogenetic trees, a combined editor of-

fering the features of both applications would be desirable. Further details on that can be found in 

chapter 9.3.8.3. 

6.4 Conclusion 
The currently available basic version of PhyDE 2 is not yet a complete replacement for the initial PhyDE 

(although it even in this early stage offers some features the old version did not have), but represents 

an important step in restarting its development, which was inactive before. By making use of the func-

tionality of LibrAlign and JPhyloIO that was implemented in this thesis, it creates a foundation for the 
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sustainable future development of PhyDE and makes the new achievements of the two libraries avail-

able to the PhyDE user community. 

Although many other feature rich alignment editors exist today, an application that strongly focuses 

of phylogenetic purposes, e.g., by supporting respective formats and providing versatile editing op-

tions is still highly valuable for the scientific community. Furthermore, the ongoing and future exten-

sions of the metadata models of PhyDE 2 and TreeGraph 2 can be an important step in providing users 

with tools to increase reproducibility and data reusability. 

6.5 Availability and requirements 
Project name: PhyDE 2 

Project web page: http://bioinfweb.info/PhyDE2 

GitHub Repository: https://github.com/bioinfweb/PhyDE2 

ResearchGate project page: http://r.bioinfweb.info/RGPhyDE2 

Operating system: Platform independent 

Programming language: Java 

Other requirements: Java Runtime Environment 8 (or higher) 

License: GNU General Public License Version 3 (GPL) 

Any restrictions on use by non-academics: The restrictions specified in the GPL apply. (See 

http://bioinfweb.info/PhyDE2/License.) 
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Abstract 

Multiple sequence alignment (MSA) is an important step in phylogenetic workflows, but also in many 

other parts of the life sciences. Numerous different methods have been developed to date, while there 

is currently no agreement on which ones produce optimal MSAs, especially not under the criterion of 

homology for which no benchmark datasets exist, as they are available, e.g., for alignment by structure. 

Therefore, researchers are well advised to compare the results of different methods and identify re-

gions of agreement and conflict, also because of the possible large influence of down-stream analyses. 

We developed AlignmentComparator, a platform-independent application that allows to visually com-

pare several alternative MSAs of a dataset and to annotate the differences. A fine-grained comparison 

is made possible by inserting gaps into all columns of some compared alignments to position equiva-

lent regions closely together, even if the compared MSAs considerably differ in length. A set of devel-

oped algorithms produce different arrangements to address different user needs. AlignmentCompar-

ator is based on JPhyloIO and therefore allows importing MSAs from several different formats and uses 

NeXML (and its flexible RDF-based metadata model) to store comparison results, therefore ensuring 

high interoperability. 

Beyond its use in examining differences between the results of alternative MSA algorithms, Align-

mentComparator is also helpful to inspect subsequent changes made to MSAs during a workflow, ei-

ther manually or using postprocessing software, and therefore makes such workflows more reproduc-

ible. It can also be used as a visualization tool in the development of new MSA algorithms and teaching. 

Since it uses extensible GUI components from LibrAlign to display its comparison results, it would easily 

possible to display any type of sequence-related metadata directly within the comparison. Allowing 

users to consider the influence of any type of metadata on the results of MSA methods, using exter-

nally implement data areas of LibrAlign for externally defined annotations and therefore making full 

use of the potential of NeXML for AlignmentComparator is a perspective for its future development. 

7.1 Introduction 
Multiple sequence alignment (MSA) plays a key role in various parts of biology and bioinformatics and 

in many cases comparing alternative MSAs of the same dataset can be necessary. Bioinformaticians 

who work on improving alignment algorithms may want to compare differences between resulting 

MSAs from different versions of their implementations depending on the changes they made. If algo-

rithms using iterative approaches (like [198–200]) are developed, a comparison tool could be used to 

inspect the differences between single iterations. Researchers can compare the outputs of various 

available software for automated multiple sequence alignment (e.g. [60–68]) to get information on 

which algorithm to use best for their specific problem (e.g. phylogeny reconstruction or many other 

applications of MSA) or compare automated MSAs with alternative manual alignments. In other cases 

existing MSAs are later modified, either manually or by software that performs post-processing (e.g. 
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[201,202]) for quality improvement or other modifications and the different versions may need to be 

compared to see what changed. Besides the application in research, programs for MSA comparison 

can also be of great use in teaching. 

A detailed inspection of alignment differences is valuable in all the mentioned cases to asses, e.g., 

which parts of an alignment differ most, and which uncertainties exist that may also influence down-

stream analyses. The problem of creating optimal MSAs under the criterion of homology, structure or 

common function remains to be the subject of ongoing research, especially with regard to sequence 

alignment for phylogenetic purposes [203]. Therefore, comparing results from alternative approaches 

remains to be a relevant task for phylogeneticists and other researchers. Doing such a comparison 

manually, e.g., with two documents opened in a typical alignment editor, can be very time-consuming 

or sometimes even impossible, especially when length differences between the compared MSAs are 

large, due to different gap patterns or shifts between the single sequences. This problem is exacer-

bated for longer alignments, frequently found nowadays. To simplify such tasks, software would be 

helpful that visually compares alternative MSAs, e.g., by performing a superalignment of multiple al-

ternative MSAs that displays similar regions close to each other, even if significant length-differences 

exist between the alternatives. Only few tools to visually compare MSAs are currently available, each 

with a different focus, and in particular performing a fine-grained comparison down to the nucleotide 

or amino acid level with a convenient and performant graphical tool remains an unsolved issue. (See 

chapter 7.4.4 for details on related software.) 

Here we present AlignmentComparator, a tool for visual alignment comparison to address the de-

scribed needs, which is based on the recently developed library LibrAlign (chapter 3) using its custom-

izable GUI components to display multiple sequence alignments. 

7.2 Algorithms 
AlignmentComparator offers a set of alternative comparison algorithms that perform a superalign-

ment, each of which has its strength in different applications. (See section 7.4.3.) We call a superalign-

ment an alignment of alternative MSAs (usually of the same data set) that is used to visualize differ-

ences and agreements between them. Superalignment is done so that regions of agreement are dis-

played as closely together horizontally as possible. Gaps inserted to align the MSAs will be called su-

pergaps. The following definitions describe this more formally: 

 

Definition 7.1: A supergap in a multiple sequence alignment A is a gap that is present in all sequences 

in one or a set of subsequent columns of A. (It is inserted to create a superalignment of A with one or 

more other multiple sequence alignments.) 

 

Definition 7.2: Be A1..An a set of n ≥ 1 alternative multiple sequence alignments. A superalignment of 

A1..An is an alignment of A1..An that is achieved by inserting zero or more supergaps at any position(s) 

into A1..An so that they have the same length and their columns are aligned underneath each other by 

an optimality criterion. If n = 1 the superalignment is identical with A1 and does not contain any super-

gaps. (Different optimality criterions may be used in different approaches.) 
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Figure 7.1 The principle of combining MSAs into a superalignment 

The pink and the yellow MSAs align 8 sequences differently. The gaps are shown in the darker colors purple and 
orange. Some of them in the middle of both MSAs are identically placed while the gap patterns in the left and 
right regions differ between the alternatives. On the left, sequence 8 without gaps is longer compared to the other 
sequences. The pink alignment inserted multiple gaps into the shorter sequences to closely align them to sequence 
8, while the yellow alignment is staggered and has larger gaps in both groups of sequences. On the right sequence 
4 is longer than the other sequences and both alignments inserted one large gap into all other sequences to align 
them. The difference is that the pink alignment moves the gap further to the left than the yellow one, which could 
be due to a repetitive pattern in sequence 4. 

To visualize these differences more clearly, supergaps (shown in gray) are inserted at positions where the MSAs 
differ to superalign them. As a result, regions with agreement are now arranged on top of each other and regions 
of disagreement are indicated by the presence of supergaps. 
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Definition 7.3: A superalignment index list is a list of integers that has the length of its corresponding 

superalignment. There is one superalignment index list for each MSAs that is aligned within the super-

alignment. Each entry is either a column index of the corresponding MSA (not the superalignment) or 

-1 indicating that this position of the superalignment contains a supergap inserted into the correspond-

ing MSA. (By using superalignment index lists, only one list of integers needs to be stored per super-

aligned MSA, no matter how many sequences it contains.) 

 

The way how supergaps are inserted into each MSA to achieve the best arrangement of similarly 

aligned regions depends on the superalignment algorithm that is used. AlignmentComparator cur-

rently implements three different algorithms that are described in the following sections. Figure 7.1 

further illustrates the principle how supergaps are inserted to create a superalignment. 

7.2.1 Profile alignment approach 
Maybe the most straightforward approach to create a superalignment of two alternative MSAs is to 

combine them by performing a profile-profile-alignment. This operation is used in many implementa-

tions of MSA algorithms applying the progressive pairwise approach [204–206] to combine subalign-

ments along the nodes of a guide tree. Among others, MUSCLE [68] offers command line options to 

create a profile-profile-alignment from two input files and is used by AlignmentComparator in the im-

plementation of this algorithm. The positions of supergaps are then reconstructed from the combined 

output MSA. Algorithm 7.1 formally describes how superalignments are created using the profile align-

ment approach. 

The space and time complexity are mainly determined by the profile alignment, which can be done in 

𝑂(𝑛2 + 𝑚2) time and 𝑂(𝑛2 + 𝑛 ∙ 𝑚) space [207], where n is the average number of columns and m 

the number of sequences in each MSA. Algorithm 7.1 iterates over all sequences for each column and 

therefore has a time complexity of 𝑂(𝑛 ∙ 𝑚), which is lower than the complexity of creating the profile 

alignment. The space complexity to store the resulting superalignment is also 𝑂(𝑛 ∙ 𝑚). If this ap-

proach would be extended to superalign more than two MSAs along a guide tree (see chapter 7.4.5.1, 

page 122), the complexity of the additional steps would be as described in chapter 7.2.3.3 (page 110). 

 
1 
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Algorithm 7.1 Creating a superalignment using the profile-profile-alignment approach 

See http://r.bioinfweb.info/ACProfileImpl for the implementation of this algorithm.  

An alternative way to design the function createIndexList(), would be to just check if all sequences with one 
prefix contain a gap at a certain position and insert a supergap there. The advantage of the chosen design is that 
it can successfully distinguish between supergaps from the profile-profile-alignment and columns in the initial 
alignment that contain only gaps (which is the case in some datasets). 

Input: 

• Two alternative MSAs to be compared: A, B 
Output: 

• Two superalignment index lists: LA, LB (See Definition 7.3.) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Add the prefix “A_” to all sequence names in A;    // Make sure all sequences from both MSAs  
Add the prefix “B_” to all sequence names in B;    // have different names. 
Create a profile-profile-alignment of A and B with MUSCLE and store the result in S. 
LA := createIndexList(S, A, “A_”); 
LB := createIndexList(S, B, “B_”); 
 
function L := createIndexList(combinedAlignment, singleAlignment, prefix); 
    unalignedIndex := 0;    // The current column index in superAlignment 
    for superIndex := 0..length(combinedAlignment) - 1 do    // length() returns the # of columns 
        gap := false; 
        for all sequences ci in combinedAlignment do 
            if sequence name of ci starts with prefix then 
                Set si to the sequence in singleAlignment that corresponds to ci. 
                if ci[superIndex] != si[unalignedIndex] then 
                    gap := true; 
                end if 
            end if 
        end for 
        if gap then 
            Add -1 to the end of L;    // Indicate a supergap here. 
        else 
            Add unalignedIndex to the end of L;    // Reference a column in the MSA here. 
            unalignedIndex := unalignedIndex + 1; 
        end if 
    end for 
end function 

 

7.2.2 Average position approach 
The “average position” approach assumes that a good superalignment positions the corresponding 

tokens from corresponding sequences closely together. Since positioning tokens from different sets of 

sequences may be in conflict, the average distance between corresponding tokens from all sequences 

is minimized here to achieve an optimal superalignment. In contrast to the previous approach, this 

algorithm does not rely on the actual sequence tokens (e.g. nucleotides or amino acids) to calculate 

matching positions, but it considers the unaligned index of each non-gap token. If all alternative MSAs 

are derived from the same dataset (the same set of unaligned sequences), the corresponding token in 

one alignment can be found by calculating its index in the unaligned sequence (i.e., the sequence with-

out gaps) and locate the token in the corresponding sequence of another MSA with the same unaligned 

index. (Note that this assumption does not hold, if the unaligned sequences of which the compared 

MSAs are made differ, e.g., due to different hot spot deletions. See also chapter 7.4.5.1 for a possible 

solution of this problem.) 

http://r.bioinfweb.info/ACProfileImpl
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Based on these ideas, this approach calculates the average position for every column of each MSA by 

summing up all unaligned positions from the tokens in a column and divides their sum by the number 

of sequences. (Note that taking all sequences into account for each column necessitates to calculate 

unaligned positions also for gap tokens, which is by definition not possible. A solution for this is de-

scribed below.) Now that an average position is assigned to each column of each MSA, a superalign-

ment can be created by inserting supergaps in a way that aligns columns with the closest average 

position together. 

Unlike the other algorithms described here, this approach can be directly applied to an unlimited num-

ber of MSAs to be compared. The following sections describe this approach in detail. 

7.2.2.1 Calculating the unaligned positions 
In order to use average column positions for superalignment, they should be monotonically increasing. 

This way, the superalignment can be optimized with respect to preferably superalign columns with 

minimal distances while only having to compare distances of direct neighbors. (Otherwise a column 

might have its minimal distance to another non-neighboring column.) If average column positions 

would only be calculated from sequences that have non-gap tokens, average column positions would 

not necessarily be always monotonically increasing. Sequences may be heavily shifted between each 

other (with respect to their unaligned position in one column) and the average position might there-

fore even decrease from left to right, if different sets of sequences (without a gap in that column) are 

taken into account each time. 

To solve this problem, this algorithm also assigns position values to gap tokens. These positions can be 

considered as equivalent to unaligned positions of non-gap tokens. Within a gap the position is calcu-

lated as the weighted average between the unaligned positions of the non-gap token before and after 

the gap, while the weighting depends on the relative position within the gap. To take into account that 

leading gaps have no token before them and trailing gaps have none after them, the start and the end 

of the alignment are considered as separate unaligned positions. Equation 7.1 and Equation 7.2 de-

scribe the calculation of unaligned positions in detail and Figure 7.3 (page 107) illustrates this on an 

example. The implementation of calculating the average position for a token can be found in the 

method calculateUnalignedPosition() at http://r.bioinfweb.info/ACAverageTokenImpl. 
  

http://r.bioinfweb.info/ACAverageTokenImpl
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𝑝𝑗 = {
𝑖𝑗 , if 𝑡𝑗 ∈ 𝑇𝑛𝑜𝑛−𝑔𝑎𝑝

𝑖𝑏𝑒𝑓𝑜𝑟𝑒,𝑗 ∙ (1 − 𝑟𝑔𝑎𝑝,𝑗) + 𝑖𝑎𝑓𝑡𝑒𝑟,𝑗 ∙ 𝑟𝑔𝑎𝑝,𝑗 , if 𝑡𝑗 = ′ − ′
 

Equation 7.1 The unaligned position of a sequence token tj within and outside of gaps 

tj: The token with the aligned index j in the aligned sequence 
Tnon-gap: The set of non-gap tokens used in the sequence 
pj: The unaligned position of the tj (may be a non-integer values within gaps) 
ij: The absolute unaligned index of the tj (starting with 1) 
ibefore,j: The absolute unaligned index of the first token before the gap (starting with 1) or 0 for leading gaps 
iafter,j: The absolute unaligned index of the first token after the gap (starting with 1) or lS + 1 for trailing gaps 
rgap,j: The relative position of tj within a gap (between 0 and 1) as calculated using Equation 7.2 
lgap: The length of the gap that contains the tj 

The upper part of the equation is used to calculate the position of a non-gap token and is directly defined by its 
unaligned index. 

The lower part is used to calculate the unaligned position of gap tokens. Since gap tokens by definition do not 
have unaligned indices but sequences with gaps should still contribute to the average position of an alignment 
column (see text), their position is calculated from the indices of the neighboring non-gap tokens (ibefore,j and iafter,j). 
The gap border positions are weighted by the distances to tj relative to the length of the gap, which is calculated 
using Equation 7.2. 

(All indices in this equation are assumed to start with one, which keeps it simpler in this case. In the implementa-
tion, all indices start with 0 for technical reasons and due to conventions. The resulting position pj lies between 0 
and lS + 1 both here and in the implementation, since one is added to all indices in the implementation before 
calculating pj.) 

𝑟𝑔𝑎𝑝,𝑗 =
𝑖𝑗 − 𝑖𝑏𝑒𝑓𝑜𝑟𝑒,𝑗 −

1

2

𝑙𝑔𝑎𝑝
 

Equation 7.2 The relative position within a gap used to weight the unaligned positions on its borders 

rgap,j: The relative position of tj within a gap (between 0 and 1) 
ij: The absolute unaligned index of the tj (starting with 1) 
ibefore,j: The absolute unaligned index of the first token before the gap (starting with 1) or 0 for leading gaps 
lgap: The length of the gap that contains the tj 

The position of a token tj within a gap of the length lgap could be calculated by simply dividing its absolute index 
counted from the start of the gap by the length of that gap. If indices within a gap start with 1, rgap would be 1 
for the last position of the gap, which would mean that pj calculated using Equation 7.1 for this position would be 
identical to pj for the first token after the gap. To avoid that, one half is subtracted from all absolute positions in 
gap, making sure that all unaligned positions calculated for tokens within a gap lie between the positions of the 
tokens at the gap borders. (Note that in the implementation of the algorithm one half is added and not subtracted, 
since all absolute indices there start with 0 and not with 1.)  
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7.2.2.2 Performing the initial superalignment 
Now that average unaligned positions can be calculated for each column of each MSA to be compared 

as described in the last chapter, a superalignment can be performed based on this information. The 

simplest approach may be to align columns from the different MSAs in a way that each superalignment 

column contains only MSA columns with one average position that is strictly increasing over the col-

umns from left to right. The result would be a superalignment where each column contains one or 

sometimes more MSA columns with the exact same average position and supergaps in all other MSAs. 

Although this way a very wide superalignment is produced that would only be of limited use as a visu-

alization of alignment differences, it can be used as a starting point for further improvement steps. 

Algorithm 7.2 shows how this initial superalignment is created. The following definitions will be used 

in the further description of this superalignment approach. Superalignment average position lists ac-

cording to Definition 7.4 differ from superalignment index lists according to Definition 7.3 by their 

elements, which are real numbers describing average unaligned positions instead of integers describ-

ing column indices. 

 

Definition 7.4: A superalignment average position list L is a list of floating point values that has the 

length of its corresponding superalignment. There is one superalignment average position list for each 

MSAs that is aligned within a superalignment. Each entry is either an unaligned average position of a 

column in the corresponding MSA (not the superalignment) or NaN, indicating that this position of the 

superalignment contains a supergap inserted into the corresponding MSA. 

 

Definition 7.5: An average position superalignment S is a matrix that combines a set of superalignment 

average position list L1..Ln with the length m (one for each compared MSAs of a superalignment), so 

that 𝑆 = (
𝐿1[1] ⋯ 𝐿1[𝑚]

⋮ ⋱ ⋮
𝐿𝑛[1] ⋯ 𝐿𝑛[𝑚]

). 
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Algorithm 7.2 Creating the initial superalignment using the average unaligned position approach 

In every step, this algorithm searches for the next minimal average position in all input lists. The identified mini-
mum is then removed from the start of all lists that contain it (usually only one or few) and then added to the end 
of the respective superalignment average position lists. (Note that minimal values will always be at the start of 
the input lists, since average positions are monotonically increasing. See text above.) In the same step, a supergap 
(indicated by “NaN”) is added to all other output lists, so that the resulting initial superalignment will only contain 
one value (possibly the same multiple times) in one column that is aligned with supergaps and all superalignment 
average positions lists have the same length after each iteration. 

See method superalignPositions() at http://r.bioinfweb.info/ACAverageTokenImpl for the implementation 
of this algorithm. 

Input: 

• Two or more lists of average unaligned positions (one for each MSA to be compared): P1..Pn 
Output: 

• One superalignment average position list (Definition 7.4) for each compared MSA: L1..Ln 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

nextPos = nextMin(P1..Pn); 
while nextPos != NaN do    // while not all lists are empty 
    for i := 1..count(P1..Pn) do 
        if length(Pi) > 0 and Pi[0] = nextPos then 
            Add nextPos to the end of Li; 
            Remove first element of Pi; 
        else 
            Add NaN to the end of Li;    // NaN indicates a supergap at this position. 
        end if 
    end for 
    nextPos := nextMin(P1..Pn); 
end while 
 
function min := nextMin(P1..Pn); 
    min := ∞; 
    for P := P1..Pn do 
        if length(P) > 0 and P[0] < min then 
            min := P[0]; 
        end if 
    end for 
    if min = ∞ then    // All lists are empty. 
        min := NaN; 
    end if 
end function 

 

7.2.2.3 Improving the superalignment 
Improving a superalignment created as described in the previous chapter means to shorten it by re-

moving supergaps, since only columns with the exact same average position are aligned together in 

such an initial superalignment. To achieve this, more MSA columns should be superaligned with each 

other by removing supergaps. Columns of the average position superalignment (Definition 7.5) pro-

duced from the output of by Algorithm 7.2 that have smaller differences between their average posi-

tions should be superaligned before those with larger differences. This way, subsequent merges of 

neighboring columns with more distant average indices may be blocked by previous merges but merg-

ing the columns with the lowest distance between their average positions is preferable. Blocked 

merges lead to supergaps that remain in the resulting improved superalignment. 

http://r.bioinfweb.info/ACAverageTokenImpl
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To merge neighboring column pairs of the initial superalignment in the optimal order, the distances 

between the average positions of all neighboring column pairs are calculated. A multimap (a map that 

can hold more than one value per key) is created that uses these distances as its keys and the indices 

of the first columns of the neighboring column pair in the average position superalignment as the 

value. For each key (each encountered distance) the mapped set of values is kept sorted by the column 

index. Iterating over the key set of this map allows to traverse all pairs of neighboring superalignment 

columns in the order of their distance, starting with the closest pair. Algorithm 7.3 shows how short-

ening a superalignment can be achieved this way. 

To avoid having to update the indices stored in the multimap during the execution of Algorithm 7.3, 

supergaps are not actually removed (in line 4 of the algorithm) but are marked for later removal. This 

way, no shifts in the superalignment average position lists happen. The way supergaps are marked for 

removal can be described with a text substitution system consisting of the rules listed in Table 7.1. 

When two neighboring columns of the initial average position superalignment are merged, one of 

these rules is applied to each row of the two columns. While the order in which column pairs are 

merged is defined by the multimap, the rule to be used is defined by the two tokens on the left side of 

each rule. For each row, exactly one rule will be applicable. (Note that one rule will always be applicable 

in each line of column pairs selected for merging, since rules exists for all cases, except for combina-

tions of only “F” and “R”. Such combinations cannot occur in column pairs to be merged, since that is 

checked by the condition in line 3 of Algorithm 7.3.) 

Rules 1 and 2 handle the simple case that one column contains an average position (indicated by F, 

which stands for “floating point value”) and the other a supergap marking (-). (Note that “-“ is used as 

the symbol for supergaps here, although this usually denotes a gap present in an input MSA and su-

pergaps are indicated by “.”. Since gaps from initial alignments cannot occur here, as this step is dealing 

with average column positions, the two cases do not need to be differentiated.) In that case, marking 

the supergap for removal is the only option to shorten the superalignment, which is why the gap token 

is replaced by a removal marking (R). Rules 3 and 4 are similar, only that one column contains a removal 

marking from a previous neighboring merge instead of an average position. 

Rule 5 applies if the cells of both columns to be merged contain a supergap marking in the same row. 

In this case, one cell could just arbitrarily chosen to be marked for removal, but this would not lead to 

an optimal superalignment. Putting a removal into the left column could possibly block a future merge 

between this column and its further left neighbor if that neighbor also has a position entry or a removal 

marking in the respective row. Putting it into the right column could hinder future merging with its 

further right neighbor for the same reason. If such conflicts exist with both neighbors, the algorithm 

should prefer to allow the merging of the neighboring column pairs with the lower average position 

difference. To postpone the decision, which supergap token to delete, two removal option markings 

(O) replace the two supergap tokens that indicate that a deletion may be performed at either position. 

(Comparing the distances of both possible future merges now to directly make a decision on which 

supergap to remove is not efficient, since possible blockings in all rows, even the ones not processed 

yet, need to be taken into account as well to make this decision. Additionally pairs of removal option 

markings may occur is distant columns due to the subsequent application of other rules described 

below, which would not be possible if a decision would be made directly.) 

If two optional removal markings are found in the same row of two neighboring columns to be merged, 

these markings cannot be a pair (i.e., cannot result from a single application of one of rules 1-4). In-

stead the left token must be the right part of a pair located left of the current merge, while the right 

token is the left part of a pair located right of the current merge. Both token pairs must have been the 
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result of previous merges of neighboring column pairs. In such a 

case, rule 6 defines that both encountered optional removal mark-

ings should be replaced by non-optional removal markings. By doing 

this, the decision is also made for the left removal option pair to de-

lete its right cell and for the right pair to delete its left cell. Besides 

these two removals, a third removal is necessary in order to merge 

the current column pair. Anyway, no further editing of cells is neces-

sary, since the remaining two outer removal option tokens are still 

present left and right of the current columns. These now form a new 

token pair, since their former counterparts have been deleted. Due 

to this rule, removal option token pairs are not necessarily direct 

neighbors, but an unlimited number of non-optional removal mark-

ings may be present between them. (More than two removal mark-

ings may occur in between, if more than two directly neighboring 

removal option token pairs occur and rule 6 is applied between all of 

them. Rules 7 and 8 also insert tokens between a pair of optional 

removal markings as described below. Figure 7.2 illustrates such a 

situation.) 

Rules 7 and 8 deal with the situation that a supergap token is located 

next to an optional removal marking. The behavior here is similar to 

rule 6. In rule 7 the right removal option token of a pair located left 

of the current merge is moved one position to the right and a non-

removal option token is inserted into the pair (in the left column of 

the current merge). This replacement of the initial removal option 

token by a non-optional one (and therefore the decision to definitely 

remove the supergap in the left column) is done since both possible 

column pairs containing this position now have been merged and 

there is no need to leave an option not to remove this column. Leav-

ing the option on the right side instead makes sense, since it is not 

clear yet, whether another merge involving the right column of the 

current merge is still to come. Rule 8 does the same for the inverted 

situation. 

Rules 9 and 10 define what to do when a combination of an optional 

and a non-optional removal token is encountered. There formula-

tion is a bit more complex, since such a situation requires to edit a 

cell outside of the two columns that are currently merged. Rule 9 is 

applied to any situation where “OR” is encountered and rule 10 for 

“RO”. The provided context describes the only environment of these 

token sequences that could have been previously produced by the application of any rule. As described 

above and shown in Figure 7.2, an unlimited number of non-optional removal tokens could be located 

in between a pair of removal option tokens, which is indicated by the expression R*. (Although a con-

text is given in these rules, their application is not context-dependent. Rule 9 could, e.g., also be for-

mulated as “OR → RR and replace the next O on the left by R” and the formulation of rule 10 could be 

made accordingly.) Concretely, rule 9 makes the decision on the neighboring removal option token 

pair to delete its gap in the left, since another (the current) merge on the right is taking place after-

wards. Due to the current merge, the other removal option token is replaced by non-optional removal 

token as well, since this is the only position left, where another position could be deleted. Rule 10 does 

the same inversely. 

Figure 7.2 Example applications of 
rules 5 and 6 from Table 7.1 

In this hypothetical situation 
shown for only one row, the column 
pairs (1, 2), (3, 4) and (5, 6) are 
merged in the first three steps (due 
to their low average position differ-
ences, not shown). Since all cells 
contain gaps, rule 5 is used and cre-
ates three pairs of optional re-
moval markings (shown in red, blue 
and green). In a forth step columns 
2 and 3 are merged and rule 6 ap-
plies. Therefore the outer optional 
removal markings of the red and 
blue pairs are transformed to a 
new pair (shown in orange) with 
two non-optional removal mark-
ings in between. The fifths step 
merges columns 4 and 5, which 
leads to another application of rule 
6 and the transformation of the or-
ange and green pairs into a new 
purple pair with 4 non-optional re-
moval options in between. 
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Algorithm 7.3 Shortening an initial superalignment using the average unaligned position approach 

This algorithm removes supergaps from an initial superalignment created by Algorithm 7.2 to superalign more 
columns from different alignments together. The superalignment of columns with less distant average indices is 
preferred over superaligning columns with more distant average indices. See method shortenAlignment() at 
http://r.bioinfweb.info/ACAverageTokenImpl for the implementation of this algorithm.  

Input: 

• One average position superalignment (according to Definition 7.5) produced from the output of 
Algorithm 7.2: S 

• A multimap with all differences between the average indices of two neighboring columns of S as 
keys and a sorted set of indices of the first column of each pair as values: M (Note that S will 
never have different average index entries in one column according to Algorithm 7.2.) 

Output: 

• The edited input average position superalignment: S 

1 
2 
3 

 
4 
5 
6 
7 
8 

for all keys di in M do    // Iterate over all column distances. 
    for all column indices ij mapped by di in M do    // Iterate over column indices for this distance. 
        if no row in the combined columns (S[ij], S[ij + 1]) contains a position or remove marking in 
                both cells then 
            Apply the rules defined in Table 7.1 to all lines in the combined columns (S[ij], S[ij + 1]); 
                    // Mark current column pair to be merged. 
        end if 
    end for 
end for 

 

Rules 11 and 12 are equivalent to rules 9 and 10 with the only difference that here a pair of removal 

option tokens is located next to a numeric value (an average index indicated by F) instead of a non-

optional removal token. The way these rules work is identical, since both average indices and non-

removal tokens cannot be replaced by other tokens. 

After Algorithm 7.3 terminated, possibly remaining pairs of optional removal markings are processed 

by replacing the left token of each pair with a removal marking and the right token with a supergap 

token. (See Algorithm 7.4.) This is the only time supergap tokens that have been marked for optional 

removal are restored. (All rules in Table 7.1 replace removal option tokens by non-optional ones, since 

they need to mark an additional position for deletion.) 

In a further step all removal markings are removed from the lists, which results in a shortened super-

alignment with as many MSA columns superaligned as possible, while preferring to align columns with 

lower distances between their average positions, if topological conflicts occur. The formulation of the 

text substitution rules and the condition in line 3 of Algorithm 7.3 ensure that exactly one superalign-

ment gap is removed from each row of the superalignment when two columns are merged. Therefore, 

the shortened average position lists still have equal lengths to form a valid superalignment. 
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Table 7.1 Rules of a text substitution system to merge two columns of an average position superalignment 

The following rules can be used to process all lines in two neighboring columns to be merged. Supergaps are 
replaced by different removal markings, while average index values are never replaced. In every rule one addi-
tional supergap is marked for deletion, either by adding a removal mark or two removal options or by replacing 
two options by two removal marks. 

Note that the order of token pairs (lines in column pairs) to which these rules are applied is determined by sorting 
of the keys and values of the multimap M used in Algorithm 7.3 and is not necessarily starting with the first 
possible pair on the left as, e.g., in a text substitution system using a Markov strategy. 

If the two tokens on the left side of a production are encountered the respective rule can be applied. Some rules 
require a wider context, since additional neighboring columns need to be edited. In such cases the values in the 
columns to be merged are underlined. Anyway, the two tokens encountered in the columns to be merged are 
always sufficient to unambiguously determine which rule to be used. A wider context that is possibly given is not 
required for this decision and is only used to show that remove option tokens always occur in pairs and both need 
to be replaced, although only one is contained in the columns to be merged. The following alphabet is used: 

“-“: Supergap 
“F”: General representation of any average position floating point value in a cell (This is formally not a token 

of an alphabet but a placeholder for all possible average indices. It is used here like a token to allow better 
readable rules.) 

“R”: Marking to remove this cell later 
“O”: Marking to optionally remove this cell later (This marking is always used in pairs.) 

The implementation of this substitution system can be found in the method markTwoColumns() at 
http://r.bioinfweb.info/ACAverageTokenImpl. 

 Rule Description 

1 -F → RF Mark a gap next to a position for deletion. 
2 F- → FR See rule 1. 
3 -R → RR Mark a gap next to a deletion mark for deletion. 
4 R- → RR See rule 3. 
5 -- → OO If both columns contain a gap, either one of them could be removed. 
6 OO → RR Both neighboring regions already carry remove options. Together with 

the current merge this necessitates three merges. Two are marked by the 
newly inserted removal marks and the third is marked by the outer re-
moval option marks present left and right if the current columns. 

7 O- → RO The left element of an optional remove token pair is moved further left. 
8 -O → OR The right element of an optional remove token pair is moved further 

right. 
9 O(R*)OR → R$1RR The left side of an optional remove token pair is selected and an addi-

tional supergap is deleted on the right for the current merge. (“$1” means 
leaving the unchanged capturing group from the left at this position.) 

10 RO(R*)O → RR$1R The right side of an optional remove token pair is selected and an addi-
tional supergap is deleted on the left for the current merge. 

11 O(R*)OF → R$1RF See rule 9. 
12 FO(R*)O → FR$1R See rule 10. 
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Algorithm 7.4 Processing remaining pairs of removal option tokens 

After all markings to merge columns have been placed as outlined in Algorithm 7.3, some pairs of removal option 
tokens may still be in the lists, as they were not necessarily all replaced by applications of rules 5-12 in Table 7.1. 
This algorithm replaces the left token of each pair by a non-optional removal token and the right one by a super-
gap. The side of which the actual deletion is performed can now be chosen arbitrarily, since no further merges of 
columns neighboring removal option tokens are still to come. As shown here, the assignment of the removal 
option tokens into pairs can easily be done by processing one by one and assuming the add ones as left and the 
even ones as right elements. (It is therefore not necessary to use different token for left and right elements of 
pairs.) 

The implementation of this algorithm can be found in the method processRemoveOptions() at 
http://r.bioinfweb.info/ACAverageTokenImpl. 

Input: 

• One superalignment average position list (Definition 7.4) for each compared MSA: L1..Ln 
Output: 

• The edited input superalignment average position lists: L1..Ln 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

for L := L1..Ln do 
    isLeft := true; 
    for i := 1..length(L) do 
        if L[i] = “O” then 
            if isLeft then 
                L[i] := “R”;    // Definitely remove at left option. 
            else 
                L[i] := NaN;    // Mark right option as supergap again. 
            end if 
            isLeft := !isLeft; 
        end if 
    end for 
end for 

 

7.2.2.4 Space and time complexity 
To describe the size of the input we define the following: 

a: The number of alternative MSAs to be compared 

n: The average number of columns in each MSA 

m: The number of sequences in each MSA (All MSAs will have the same number of sequences, 

since they are all derived from the same dataset.) 

7.2.2.4.1 Time complexity 
First, the unaligned index for every position needs to be calculated, which can be done by iterating 

over all tokens of each sequence, while counting the number of encountered gaps. This needs to be 

done for each alignment, resulting in 𝑂(𝑎 ∙ 𝑛 ∙ 𝑚) steps. 

To calculate the average position of one column, the unaligned positions of each m lines in that column 

need to be summed up. This needs to be done for all columns of all alignments, which will also need 

𝑂(𝑎 ∙ 𝑛 ∙ 𝑚) steps. 

To perform the initial superalignment as described in chapter 7.2.2.2, it is required to search for the 

next minimal average position at the beginning of all position lists. Since there is one list for each com-

pared MSA and the search can be done in 𝑂(𝑎) time. The iteration in Algorithm 7.2 is repeated as long 

as unprocessed positions are available in any input list and, in the worst case, all positions from all 

columns of all MSAs differ, resulting in 𝑎 ∙ 𝑛 iterations. Within each iteration, all lines are also checked 

for the current minimum, which also requires 𝑂(𝑎) iterations. Searching for the next minimum and 

http://r.bioinfweb.info/ACAverageTokenImpl
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processing all lists can both be done together in 𝑂(𝑎) (since both steps happen sequentially) and this 

needs to be repeated for at most 𝑎 ∙ 𝑛 iterations, resulting a time complexity of 𝑂(𝑎2 ∙ 𝑛). 

For shortening the initial superalignment (chapter 7.2.2.3), first all average position differences be-

tween neighboring columns need to be calculated and stored into the multimap described above. For 

each column the first cell with a non-gap value needs to be found, which would take at most 𝑂(𝑎). 

The multimap uses a binary search tree internally to sort and access its key set. Inserting into such a 

tree requires searching for the closest value, which scales linearly to the height of the tree. In the case 

of a height balanced search tree with 𝑂(𝑎 ∙ 𝑛) elements, its height is 𝑂(log(𝑎 ∙ 𝑛)), which is therefore 

also the complexity of inserting into it. (Ensuring the search tree to be balanced can be done, e.g., by 

using a red-black tree [208,209].) Since the previous step created at most 𝑎 ∙ 𝑛 columns, the overall 

time complexity of this step is 𝑂(𝑎2 ∙ 𝑛 ∙ log(𝑎 ∙ 𝑛)).  

The multimap will have one entry for each pair of neighboring columns, at most 𝑎 ∙ 𝑛 − 1. For each of 

these column pairs, the algorithm checks if the current pair can be combined, by checking all 𝑎 lines in 

both columns. The marking of two columns to be merged is done in linear time, resulting in a maximum 

runtime of 𝑂(𝑎2 ∙ 𝑛) for this step of the algorithm. (Random access to the map in 𝑂(log(𝑎 ∙ 𝑛)) time 

is not required in this step, since the whole map is iterated by its order.) 

To process the remaining removal option markings and to de facto remove marked cells, an iteration 

over all columns (at most 𝑎 ∙ 𝑛) and all sequences (𝑎) will be necessary, which again leads to maximal 

complexity of 𝑂(𝑎2 ∙ 𝑛). 

Combining all these sequentially executed steps, the time complexity of this superalignment approach 

is 𝑂(𝑎2 ∙ 𝑛 ∙ log(𝑎 ∙ 𝑛) +  𝑎 ∙ 𝑛 ∙ 𝑚). 

7.2.2.4.2 Space complexity 
When calculating the average positions, one value will be stored for each column of each input MSA, 

which will need 𝑂(𝑎 ∙ 𝑛) space. For each compared MSA, one superalignment average position list (see 

Definition 7.4) will be created when performing the initial superalignment. For the same reason de-

scribed for the time complexity each of these 𝑎 lists will have at most 𝑎 ∙ 𝑛 entries, which leads to a 

space complexity of 𝑂(𝑎2 ∙ 𝑛) for this step. Storing the differences between the average positions of 

all neighboring column pairs in the initial superalignment, will require is list with 𝑂(𝑎 ∙ 𝑛) elements (𝑎 ∙

𝑛 − 1 column pairs, see above). The remaining steps of this approach work on the position lists created 

for the initial superalignment and will only edit and remove but never add cells. Therefore, they do not 

require additional space. 

The highest space complexity of this approach is encountered when creating the initial superalignment 

so that 𝑂(𝑎2 ∙ 𝑛) is also the space complexity for the whole algorithm. The amount of additional 

memory used will be significantly lower than the size of the input (which is 𝑂(𝑎 ∙ 𝑛 ∙ 𝑚)) if there are 

significantly less MSAs to be compared than sequences present in each MSA, which is usually the case. 

If the memory used to store the input data as well is taken into account, the overall space complexity 

would hence be 𝑂(𝑎2 ∙ 𝑛 + 𝑎 ∙ 𝑛 ∙ 𝑚). 

7.2.2.5 Example 
Figure 7.3 shows how three alternative MSAs of the same dataset are superaligned using the average 

position approach. The sequences in the simple example dataset could be considered as an inverted 

repeat of “ACC” followed by a tandem duplication of “TGA”. Alignment 1 is the shortest MSA of the 

five sequences and does not consider the first part to be an inverted repeat but assumes two indels to 

explain the different positions of the “A” in the different sequences. For the tandem repeat it assumes 

two homologue periods with a point mutation between “A” and “C” in one of them. Alignment 2 on 

the other hand is the longest, interprets the first three nucleotides to belong to an inverted repeat, 
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and separates both orientations into different columns. (Note that aligning homologue nucleotides in 

inverted repeats is not directly possible in a column-based multiple sequence alignment and therefore 

both previous alternatives could be considered.) The right half of the sequences is grouped into three 

different tandem repeat periods considered homologue. Alignment 3 in contrast considers the pattern 

“TCA” and “CCA” to be homologue. 

The figure shows all steps described in this chapter to produce a superalignment, which are explained 

in detail in the figure caption. The resulting superalignment arranges corresponding tokens of the al-

ternative MSAs closely together on average but does not necessarily maximize the number of corre-

sponding tokens superaligned in the exact same superalignment column. Columns 10-12 in Alignment 

1 are an example, as they look like shifted by one to the right compared to the other two MSAs. For 

clarification, it should be noted that only sequences B, C and E contain tokens in columns 10-12 of 

Alignment 1 that correspond to those in columns 9-11 in Alignment 2 or 8-11 in Alignment 3. The other 

two sequences have their corresponding tokens further right in Alignments 2 and 3. Therefore, the 

algorithm positioned the tokens in column 10-12 of Alignment 1 in between of their counterparts in 

the other two MSAs, since the average column positions match best this way. Minimizing the distance 

between all corresponding tokens on average is the main characteristic of this approach. 

The next chapter describes an alternative approach offered by AlignmentComparator that focuses on 

correctly superaligning a maximal number of tokens instead of minimizing their distance on average. 
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Figure 7.3 (Continued on the next page.) 
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all substitutions have been performed. The superalignment is shown in two states to illustrate the intermediate 
states before steps 10 and 11 overwrite previously inserted removal option tokens. The rules applied for the dif-
ferent rows in each step are shown on the respective arrow. Arrows without rule numbers ending on a block 
indicate that no rule is applied for this column pair, since previous neighboring merges block a further merge here. 
(This is checked in line 3 of Algorithm 7.3.) 

The second part of the figure shows the shortened superalignment after all marked cells have been removed and 
underneath the actual superalignment that is the result of processing this example dataset using the average 
position approach. 

7.2.3 Maximum sequence pair match approach 
In contrast to the previously described average position algorithm that superaligns multiple MSAs in a 

way that the average shift between corresponding sequences in each alignment is minimized, the max-

imum sequence pair match algorithm superaligns columns with each other that contain a maximum of 

corresponding tokens in corresponding sequences. The average position approach would also consider 

columns of two MSAs A and B as optimal matches that do not share a single corresponding token 

because, e.g., half of the sequences in B is shifted to the right and the other half the same way to the 

left, compared to those in A. In contrast, the algorithm described here will always choose matching 

columns that share the maximum amount of corresponding tokens, even if the average of all sequence 

positions together does not match optimally. 

7.2.3.1 Performing a superalignment between two other superalignments or MSAs 
Superaligning two alternative MSAs of the same dataset by maximizing the number of superaligned 

corresponding tokens in all columns is an optimization problem that is very similar to the pairwise 

global alignment of two sequences [210]. A dynamic programming matrix (DP matrix) can be con-

structed using the number of aligned corresponding tokens between two columns as the score (instead 

of, e.g., the Levenshtein distance [211] or other distances used for pairwise sequence alignment). As 

in the previous chapter, two tokens in different compared MSAs are considered as corresponding if 

they are contained in two sequences with the same name and have the same unaligned index. 

Figure 7.3 Example of a superalignment of three MSAs 
using the average position approach 

Right of the three input MSAs the positions for all cells are 
calculated (using Equation 7.1) and the average positions 
of all columns are shown. Below that, the initial super-
alignment derived from the calculated positions is shown, 
as it would be produced by Algorithm 7.2. 

The table below the initial superalignment contains the 
differences between the average positions of all neighbor-
ing columns in the first row and the order in which col-
umns will be merged in the second row. As mentioned in 
chapter 7.2.2.3, column pairs with lower distances are 
merged first (and pairs with equal distances are merged 
from left to right). The same index in the order row indi-
cates pairs with the exact same distance. (Some pairs with 
identical distance entries in the first row still have differ-
ent order indices. Their values differ in a decimal place not 
shown here due to rounding.) 

The bottom of the first part of the figure shows how the 
substitution rules from Table 7.1 are applied in the defined 
order. (See also Algorithm 7.3.) The first superalignment 
with removal markings shows the state after steps 1-9 
have been applied and the second shows the state after 
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Note that the score definition used here does not include any form of gap penalty. Supergaps are in-

serted by the algorithm described below in order to achieve a higher number of superaligned corre-

sponding tokens but do not contribute to the score directly. In contrast to standard pairwise sequence 

alignment, penalizing gaps is unnecessary in this approach, since corresponding tokens can be identi-

fied unambiguously by their unaligned index and there are no alternative alignments with a match for 

the same token, which could differ in the number of supergaps. 

If two alignments A and B with the columns a1..an and b1..bm should be superaligned, a score matrix M 

can be created, where each cell M[i, j] contains the number of matching tokens between ai and bj. To 

calculate the optimal alignment another matrix M’ can be calculated from M using Equation 7.3. The 

resulting matrix M’ is a DP matrix similar to that used, e.g., in the Needleman Wunsch algorithm (with-

out gap penalties and affine gap costs). As shown in Equation 7.3 the value of a cell in M’ can either be 

calculated from its top, left, or top left neighbor and the optimal superalignment can be reconstructed 

by tracing back this way from the bottom right cell to the top left cell in the same way as in the Needle-

man Wunsch algorithm. Moving diagonally then means to superalign the two respective columns and 

moving vertically or horizontally means inserting a supergap into one of the MSAs. 

𝑀′[𝑖, 𝑗] = 𝑚𝑎𝑥 {

𝑀′[𝑖 − 1, 𝑗 − 1] + 𝑀[𝑖, 𝑗]

𝑀′[𝑖 − 1, 𝑗]

𝑀′[𝑖, 𝑗 − 1]
 

Equation 7.3 Calculating the cells of the DP matrix used in the maximum sequence pair match superalignment 
approach 

M: A matrix containing the score (number of corresponding tokens) for each possible pair of columns of two 
MSAs to be superaligned (See text for details.) 

M’: The DP matrix containing the summed up scores allowing back tracking the path of the optimal superalign-
ment (See text for details.) 

Algorithm 7.5 calculates the two-dimensional matrix M, from which M’ can be calculated in the next 

step as described above. Instead of two MSAs, it takes two superalignments as its input, which are now 

denoted by A and B. (Note that a superalignment may also contain only one MSA as denoted in  

Definition 7.2 on page 91.) These two superalignments are processed in the same way as just described 

for two MSAs with the extension that corresponding tokens are counted between all possible pairs of 

MSAs contained in A and B and supergaps are of course inserted into all MSAs of one superalignment. 

Chapter 7.2.3.4 and Figure 7.4 show the application of Algorithm 7.5 and Equation 7.3 on an example.  
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Algorithm 7.5 Calculating the initial score matrix for a superalignment step in the maximum sequence pair 
match approach 

The algorithm shown here creates a score matrix M, where each cell M[i][j]stores the number of matching tokens, 
if the ith column from the first the jth column from the second input superalignment would be positioned under-
neath each other. 

The implementation of this algorithm is the calculation of scoreMatrix in the method calculateDirection-
Matrix() at http://r.bioinfweb.info/ACMaxSeqPairImpl. 

Input: 

• Two superalignments (according to  

• Definition 7.2): A, B 
Output: 

• A two-dimensional array containing the pairwise scored between all columns of A and B: M 

1 
2 

 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Create M with noOfColumns(A) columns and noOfColumns(B) rows; 
Set all cells of M to 0; 
 
for c := 1.. noOfColumns(A) do    // Iterate over all columns of A. 
    for all MSAs Ai in A do 
        for all Sequences SA,i,j in Ai do 
            if 𝑆𝐴,𝑗[𝑐] ∈ 𝑇𝑛𝑜𝑛−𝑔𝑎𝑝 then    // If the token of Sj in column c is not a gap 

                iunaligned := unalignedIndex(SA,i,j[c]);    // Determine the unaligned index of SA,J[c]. 
                for all MSAs Bi in B do 
                    Determine the sequence SB,i,j in B that corresponds to SA,i,j; 
                    M[c][alignedIndex(SB,i,j, iunaligned)]++;    // Increase the score for the  
                            // match of the two columns containing the current token. 
                end for 
            end if 
        end for 
    end for 
end for 

 

7.2.3.2 Superaligning more than two MSAs 
The approach described in the previous chapter (7.2.3.1) calculates the superalignment between two 

smaller superalignments and cannot directly calculate an alignment between more than two inputs. It 

could theoretically be modified to use an a-dimensional matrix to superalign a MSAs. The space and 

time complexity of such an algorithm to superalign a MSAs with n columns would though have a com-

plexity of 𝑂(𝑛𝑎), just like it is for maximizing the sum of all pairs score for an MSA with a sequences of 

the length n using the same approach [212], which is NP complete [213]. Since that would be imprac-

tical for nearly all datasets, the progressive approach [204,205] was chosen that is widely used in MSA 

algorithms. Applying it to this problem means performing one pairwise superalignment (as described 

above) for each internal node of a guide tree with all MSAs to be compared attached to terminal nodes. 

That guide tree is calculated using the neighbor joining method [214,215], which requires a distance 

matrix that specifies the distances between all possible pairs of input MSAs to be compared. For the 

purpose of this superalignment approach, the distance between two MSAs is defined in Equation 7.4 

as the number of superaligned token pairs in a pairwise superalignment (as described in chapter 

7.2.3.1) subtracted from the overall number of tokens in one MSA. (Note that the number of tokens –

not including gaps – is identical for each MSA to be compared, since it is a requirement that these are 

derived from the same set of unaligned sequences. Therefore, the pairwise distances are comparable.) 
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d = tall - tsuperaligned 

Equation 7.4 The distance between two MSAs 

d: The distance between two MSAs 
tall: The number of tokens in one MSA 
tsuperaligned: The number of superaligned token pairs between both MSAs 

Although other distance measures exist to compare MSAs, the measure defined here uses the same 

algorithm to calculate the distance that is also used to process the data along the guide tree. This 

means that pairs of MSAs that are similar according to this comparison approach will be superaligned 

first before MSAs that are more distant are processed. 

When superaligning along a guide tree, all internal nodes that have at least one non-terminal node as 

a child will require to superalign an existing superalignment with another one or an MSA. For that 

reason, Algorithm 7.5 takes two superalignments instead of two MSAs as its input. (Note that Defini-

tion 7.2 allows a superalignment to consist of only one MSA, as is the case when performing the initial 

superalignments along the guide tree.) 

Consequently, to create a superalignment of a set of more than two alternative MSAs of the same 

dataset using the maximum sequence pair match approach, the following steps are performed: 

1. Calculate all pairwise distances between the MSAs to be compared 

2. Infer a guide tree from these distances, which has a terminal node for each input MSA 

3. Superalign the MSAs along the guide tree 

For the case that only two MSAs are to be compared, it is of course sufficient to directly calculate a 

superalignment between them without the need for a guide tree. 

7.2.3.3 Space and time complexity 
We use again the symbols a, n and m for the number of MSAs, the number of columns per MSA and 

the number of sequences per MSA respectively. In addition, we define aA and aB as the number of 

MSAs contained in the input superalignments A and B respectively in Algorithm 7.5. (Note that aA and 

aB vary between different superalignments along the guide tree, but aA + aB = a will always be true and 

a is constant.) 

7.2.3.3.1 Time complexity 
Algorithm 7.5 iterates over all n columns of the first input superalignment A in its outer loop and over 

all aA MSAs and all m sequences in each MSA in the next two tested loops. If no gap is found at the 

current position, an additional nested loop iterates over all aB MSAs in B. This algorithm therefore has 

a time complexity of at most 𝑂(𝑎𝐴 ∙ 𝑎𝐵 ∙ 𝑛 ∙ 𝑚) for worst case with no gaps in the inputs. Since aA and 

aB are proportional to a, we can equivalently assume 𝑂(𝑎2 ∙ 𝑛 ∙ 𝑚). 

For calculating the pairwise distances to infer a guide tree, superalignments between all possible pairs 

of MSAs need to be performed first. This splits again into calculating the score matrix and constructing 

a DP matrix from it. Algorithm 7.5 calculates the initial score matrix with the complexity described 

above, but in the case of superaligning two single MSAs aA and aB are 1 and the complexity of calculat-

ing a single score matrix is 𝑂(𝑛 ∙ 𝑚). The DP matrix is calculated next which uses a constants amount 

of time per cell resulting in complexity of 𝑂(𝑛2). (Note that reserving the memory for the initial score 

matrix would also have a complexity of 𝑂(𝑛2).) To calculate a distance-based guide tree, all pairwise 

distances need to be calculated and number of possible pairs is given by Equation 7.5. 
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𝑝 = ∑ 𝑖

𝑎−1

𝑖=1

= 𝑎 ∙
𝑎 − 1

2
⇒ 𝑂(𝑎2) 

Equation 7.5 The number of possible different pairs p in a set of an elements and the resulting complexity. 

The overall time complexity for calculating a distance matrix will therefore be 𝑂(𝑎2 ∙ (𝑛2 + 𝑛 ∙ 𝑚)), 

while n2 will be dominant over 𝑛 ∙ 𝑚 if the input MSAs have more columns than sequences, which is 

the expected major use case. The complexity would then be 𝑂(𝑎2 ∙ 𝑛2). The neighbor joining tree can 

be calculated from the matrix in 𝑂(𝑎3) time if the improvement of the original Saitou Nei algorithm 

[214] by Studier and Keppler [215] is used. 

The next step is the combination of superalignments along the internal nodes of the binary guide tree. 

The complexity of a superalignment step on one internal node is that of Algorithm 7.5 denoted above. 

When performing superalignments along the guide tree, the number of supergaps and therefore the 

number of columns will increase when moving closer to the root. While n is the average number of 

columns in the single input MSAs, we define nS as the average number of columns in the input super-

alignments of Algorithm 7.5. If we assume a constants growth of the number of supergaps in a super-

alignment with the number of added MSAs (as similarly observed for progressive pairwise multiple 

sequence alignment, e.g. in [207]), nS would be proportional to n + a. The complexity added to the 

algorithm by additional encountered supergaps is 𝑂(𝑎𝐴 ∙ 𝑎 ∙ 𝑚) = 𝑂(𝑎2 ∙ 𝑚), since the number of su-

pergap columns is proportional to a (replacing the n in the complexity of Algorithm 7.5 as denoted 

above) and the dependency from aB does not apply, since the inner loop of Algorithm 7.5 is not exe-

cuted on gaps. Therefore, the complexity of Algorithm 7.5 remains unchanged even when considering 

supergaps, since it would now be 𝑂(𝑎2 ∙ 𝑛 ∙ 𝑚 + 𝑎2 ∙ 𝑚) = 𝑂(𝑎2 ∙ 𝑛 ∙ 𝑚). (Note that the complexity 

will usually even be slightly lower, since the initial input MSAs also contain gaps (not supergaps) at 

some positions.) 

Gaps though effect the complexity of calculating the DP matrix from the score matrix subsequently, 

which is 𝑂(𝑛𝑆
2) hard. Since 𝑛𝑆

2 = (𝑎 + 𝑛)2 = 𝑎2 + 2𝑎𝑛 + 𝑛2, the complexity of calculating the DP 

matrix is 𝑂(𝑎2 + 𝑛2). 

A superalignment needs to be performed on each internal node of the guide tree, which has a terminal 

nodes and therefore a – 1 internal nodes, as it is a binary tree. Since the number of superalignments 

is then 𝑂(𝑎) , the overall time complexity for superaligning aligning along the guide tree is 

𝑂 (𝑎 ∙ (𝑎2 ∙ 𝑛 ∙ 𝑚 + (𝑎2 + 𝑛2))) = 𝑂(𝑎3 ∙ 𝑛 ∙ 𝑚 + 𝑎3 + 𝑎 ∙ 𝑛2) = 𝑂(𝑎3 ∙ 𝑛 ∙ 𝑚 + 𝑎 ∙ 𝑛2). 

The overall time complexity for this algorithm is the combination of the described complexities for 

creating the distance matrix 𝑂(𝑎2 ∙ (𝑛2 + 𝑛 ∙ 𝑚)), inferring the neighbor joining tree 𝑂(𝑎3) and sup-

eraligning along it 𝑂(𝑎3 ∙ 𝑛 ∙ 𝑚 + 𝑎 ∙ 𝑛2), resulting in 𝑂(𝑎3 ∙ 𝑛 ∙ 𝑚 + 𝑎2 ∙ 𝑛2). 

In practice the complexity of n2 in creating the distance matrix and performing the superalignment is 

most relevant, since the number of columns (n) is much higher than the number of compared MSAs 

(a) for most use cases and the number of sequences per MSA (m) is usually not significantly higher 

than the number of columns (n). A test of the current implementation of AlignmentComparator that 

superaligned ten alternative MSAs of a Bryophyte DNA dataset with 137 sequences and 25,000 result-

ing superalignment columns (3,000 to 10,000 columns in the input MSAs) used a little more than half 

of the time to calculate the distance matrix and nearly all the remaining smaller half for the superalign-

ment along the guide tree. The results for tests with other datasets produced similar results. The time 

to calculate the neighbor joining tree itself did not contribute relevantly to the calculation time. 
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Figure 7.4 (Continued on the next page.) 
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Figure 7.4 Example of a superalign-
ment of three MSAs using the maxi-
mum sequence pair match ap-
proach 

A distance matrix is calculated from 
all pairwise distances between the 
three input alignments according to 
Equation 7.4. The number of match-
ing superaligned token pairs is deter-
mined by calculating the respective 
DP matrix, which is not shown here. 
The distance matrix is used to calcu-
late a neighbor joining tree that is 
used as the guide tree. 

According to the guide tree a super-
alignment between Alignment 2 and 
Alignment 3 is performed first. The 
two alignments are shown with their 
unaligned indices (instead of the nu-
cleotides) along the superalignment 
score matrix. Each column in Align-
ment 3 is highlighted in a different 
color and the corresponding tokens 
in Alignment 2 are highlighted in the 
same color. The calculation of the 
score matrix according to Algorithm 
7.5 is illustrated by the colors. The 
vertically positioned MSA defines 
one color for each row of the score 
matrix and the score for each cell in 
one row can be read directly by the 
number of tokens in the same col-
umn with the same color in the hori-
zontally positioned MSA. Cells with 
no score are left empty for clarity. 

In the next step the DP matrix is cal-
culated from the score matrix ac-
cording to Equation 7.3. The arrows 
indicate the direction in which values 
were calculated from values of 
neighboring cells. Red arrows indi-
cate the optimal path through the 
matrix that is used to perform the 
superalignment, while arrows with 
dotted red lines indicate alternative 
optimal paths. New supergaps in-
serted due to non-diagonal steps in 
the DP matrix are also marked with 
red arrows in the resulting super-
alignments. 

The superalignment resulting from 
Alignment 2 and 3 is then super-
aligned with Alignment 1 according 
to the guide tree, which results in the 
superalignment at the end of this fig-
ure. 
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7.2.3.3.2 Space complexity 
A score or DP matrix used to perform a superalignment has n2 cells for calculating the values of the 

distance matrix or to perform superalignments between two terminal nodes of the guide tree. nS
2 cells 

are needed for performing a superalignment along the other internal nodes of a guide tree. All super-

alignments can be performed subsequently, so only one matrix needs to be stored at a time. The matrix 

at the root of the guide tree will be the biggest, since its two input superalignments contain the most 

supergaps and therefore the most columns. The space complexity for the matrices is therefore 𝑂(𝑛𝑆
2), 

which is equal to 𝑂(𝑎2 + 𝑛2), as described for the time complexity above. Although not yet imple-

mented in the current version of AlignmentComparator, only one columns of a DP matrix needs to be 

in memory at a time when applying the approach of Myers and Miller [216], while keeping the same 

time complexity. Algorithm 7.5 allows the same reduction for calculating the initial score matrix line 

by line and each line can already be converted to a line of the DP matrix prior to continuing the loop. 

This way, the space complexity of performing pairwise superalignments can be reduced to 𝑂(𝑛𝑆) =

𝑂(𝑎 + 𝑛). 

The distance matrix for the neighbor joining tree needs 𝑂(𝑎2) space. The tree nodes require 𝑂(𝑎) 

space. 

Loading the input MSAs into memory will use 𝑂(𝑎 ∙ 𝑛 ∙ 𝑚) space, if no sequence compression, e.g. by 

locating redundancies is performed. The position of supergaps can be stored independently of the 

input MSAs, instead of storing of copy of all data in separate superalignment matrix. (See, e.g., Defini-

tion 7.3 on page 93.) If we again assume the number of inserted supergaps to be proportional to the 

number of compared MSAs, as described above, the complexity for storing the supergaps of inserted 

into each MSAs is 𝑂(𝑎2). 

This leads to a combined space complexity of 𝑂(𝑎2 + 𝑎 ∙ 𝑛 ∙ 𝑚), where 𝑂(𝑎 ∙ 𝑛 ∙ 𝑚) is the dominant 

part for most uses cases, since the number of compared MSAs will usually be significantly lower than 

the number of columns per MSA. Therefore, the needed space for the maximum sequence pair ap-

proach scales nearly linearly with the size of the input data. 

7.2.3.4 Example 
Figure 7.4 shows how the three alternative MSAs described in chapter 7.2.2.5 (page 104) are super-

aligned using the maximum sequence pair match approach. As mentioned there, this hypothetical ex-

ample dataset consists of a left part with a pattern that could be originated from an inversion event, 

while the right part could be the result of one or two tandem duplications. 

To calculate the guide tree necessary for this approach, a distance matrix is calculated from the three 

alignments using Equation 7.4. To determine the number of matching token pairs, a superalignment 

DP matrix is calculated for all three possible MSA pairs in the same way as shown for superaligning 

along the guide tree in Figure 7.4, although the respective score and DP matrices are not shown in the 

figure. (Note that the shown superalignment between Alignment 2 and 3 is the same that would be 

used to calculate the distance between these two alignments. The additionally performed superalign-

ments between Alignment 1 and 2 and between 1 and 3 are not shown in the figure.) 

Due to the guide tree Alignment 2 and 3 are superaligned first, resulting in four alternative optimal 

paths through the DP matrix. For the next superalignment step, the top-most alternative is chosen 

arbitrarily. The alternative paths are explained by the equal scores in the score matrix in columns 4 to 

9. 

The second superalignment is performed between Alignment 1 and the superalignment from the pre-

vious step. Token pairs are matched between Alignment 1 and the superaligned version of Alignment 



7  AlignmentComparator - Comparing alternative multiple sequence alignments of the same dataset 115 

 

2 and between Alignment 1 and the superaligned version of Alignment 3 independently according to 

Algorithm 7.5 and the results are added up. 

The resulting superalignment at the end of the figure shows that supergaps have been inserted into 

Alignment 1 and 3 in the left part to deal with the different alignment of the inverted repeat region 

and another supergap is pre-

sent on the right of Alignment 

1 resulting from the different 

alignment of the inverted re-

peat region. The differences 

in that region could be super-

aligned between Alignment 2 

and 3 without the need to in-

sert supergaps. The result vis-

ualizes the differences be-

tween the alternative input 

MSAs by superaligning a max-

imal number of correspond-

ing tokens underneath each 

other, which is the main char-

acteristic of the maximum se-

quence pair match approach. 

(See chapter 7.4.3 on page 

119 for a comparison be-

tween the superalignment 

approaches offered by Align-

mentComparator.) 

7.3 Implementation 
AlignmentComparator is im-

plemented in Java and pro-

vides a Swing GUI. It makes 

use of the functionality pro-

vided by JPhyloIO (chapter 2, 

page 33) and LibrAlign (chap-

ter 3, page 46) as described in 

the following subchapters. 

7.3.1 Data model and 

user interface 
As shown in Figure 7.5, Doc-

ument and the classes it is 

composed of store the input 

MSAs and the comparison re-

sults, as well as user com-

ments attached to certain 

superalignment columns. 

(See figure description for de-

tails.) The shared interface 
TranslatableAlignment 

Figure 7.5 UML class diagram of the data model of AlignmentComparator 

General model classes are shown in orange. Classes dealing with the original 
input alignment are shown in green, while classes dealing with superalign-
ment information are shown in blue. 

One comparison of multiple MSAs is modeled by one instance of the class 
Document, which is composed of one instance of ComparedAlignment for 
each compared MSA and an instance of CommentList that stores comments 
attached to the comparison by the user. Each instance of ComparedAlign-
ment is composed of an OriginalAlignment that stores one input MSA us-
ing an instance of a LibrAlign model class and an index translator to translate 
between aligned and unaligned indices. Additionally, an instance of Super-
alignedModelDecorator stores the supergaps inserted during the compar-
ison. It does not store a copy of the whole alignment but decorates Origi-
nalAlignment and extends its data by supergap tokens at respective posi-
tions to save memory. The decorator uses SuperalignedModelIndex-
Translator as a special index translator, which relies in the data provided 
by the index translator of OriginalAlignment but additionally takes the 
supergap positions into account and therefore translates between super-
aligned and unaligned indices. Both OriginalAlignment and Super-
alignedModelTranslator are accessible using the shared interface 
TranslatableAlignment, which inherits from AlignmentModel of 
LibrAlign. 
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allows easy access to both the MSAs and their superaligned versions including an IndexTranslator 

to determine unaligned indices that also considers supergaps. During the superalignment along the 

guide tree as done by the maximum sequence pair match approach (see chapter 7.2.3 and Algorithm 

7.5, page 109) both raw input alignments and previously created superaligned versions can accessed 

as an instance of TranslableAlignment without the need for modeling that difference in the sup-

eralignment algorithm implementation. ComparedAlignmentModel decorates (see decorator pat-

tern in [88]) an instance of the LibrAlign class PackedAlignmentModel that allows efficient storage 

of sequence tokens reducing the memory footprint of AlignmentComparator. (See also chapter 3.2.3 

on page 48.) 

The data stored in the described model classes is displayed using the GUI components provided by 

LibrAlign (see chapter 3.2.1 on page 47 and chapter 3.3.1 on page 49), which act as the respective 

views in the model view controller paradigm [106]. A MultipleAlignmentsContainer that allows 

displaying multiple MSAs underneath each other is used and contains an instance of AlignmentArea 

for each compared MSA. AlignmentAreas display the data provided by SuperalignedModelDec-

orator that includes supergaps. 

In addition, AlignmentComparator currently displays two kinds of metadata using custom LibrAlign 

data areas. (See chapter 3.3.1.) One is located in a separate AlignmentArea below all compared 

alignments and allows displaying and editing user comments attached to certain columns of the com-

parison. The other one is attached at the bottom of each compared MSA if the average position sup-

eralignment approach is used and displays the average unaligned position for each column. 

7.3.2 I/O and NeXML metadata 
Reading input MSAs is done using JPhyloIO (chapter 2.2.1, page 35) that provides a module that allows 

to directly create instances of LibrAlign model classes. These are then used with the decorators of the 

of AlignmentComparator‘s data model as described above.  

Reading and writing completed comparisons is also done using JPhyloIO. NeXML [35] was selected as 

the main format of AlignmentComparator to save its results. The format allows storing several MSAs 

within one document including metadata attached using RDF attributes. The current format version of 

AlignmentComparator is also written as document metadata and is used to distinguish between 

NeXML files that store an alignment comparison with all necessary metadata and general NeXML files 

that cannot be interpreted as a comparison document. This technique is similar to how PhyDE 2 differ-

entiates between its own and general NeXML files as described in chapter 9.2 (page 138). (See also 

chapter 7.4.2 and Figure 7.7.) 

To read and write comparison documents, AlignmentComparator makes use of the flexible architec-

ture of JPhyloIO that allows directly reading and writing from LibrAlign MSA model classes without the 

need for any additional implementations in the application, while still providing full access to applica-

tion-specific attached metadata from within the application code. 

7.4 Results and discussion 

7.4.1 Features and user interface 
AlignmentComparator allows to visually compare alternative multiple sequence alignments of the 

same datasets using three different compare algorithms described in chapter 7.2 (page 91). It is open 

source and available under the terms of version 3 of the GNU General Public License. Due to its imple-

mentation in Java, it is executable on all operating systems with a Java runtime environment available 

(e.g. openJDK). The input alignments and the compare algorithm to be applied can be selected in a 

graphical user interface. The resulting superalignment is displayed in the main window of Align-

mentComparator, where each input alignment with the inserted supergaps is displayed underneath 
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each other. The compared MSAs can be scrolled together horizontally and vertically, while Align-

mentComparator ensures the same sequences are visible in all MSAs. (See Figure 7.6.) Furthermore, 

the whole superalignment can be freely zoomed using the mouse wheel. 

Columns of the superalignment can be selected with the mouse or the keyboard in one MSA and cor-

responding tokens in all others are automatically highlighted. In addition to the comparison infor-

mation provided by the positioning of MSA columns in the superalignment itself, this feature addition-

ally simplifies to inspect the horizontal distribution of corresponding tokens among all compared 

MSAs. (See Figure 7.6 and Figure 7.8.) 

After having performed a comparison, the user can attach comments to sets of neighboring columns 

of the superalignment, e.g., to annotate details on the differences between the compared MSAs. All 

operations performed by the user can be undone and redone from options in the edit menu. 

 

Figure 7.6 Screenshot of a comparison of three MSAs opened in AlignmentComparator 

A superalignment of three alternative MSAs of the same DNA dataset was performed using the maximum se-
quence pair match approach and the result is displayed in the main window of AlignmentComparator. Gaps al-
ready present in the input MSA are shown in dark gray, while supergaps are in light gray. A set of columns in the 
third (lowest) MSA is selected (in blue) and the corresponding tokens in the other two MSAs are highlighted (in 
red). Some differences between the MSAs have been annotated by the user with the comments displayed at the 
bottom of the window. 

7.4.2 Supported formats and storage of comparison results 
Since AlignmentComparator is based on JPhyloIO, it can currently read MSAs in FASTA, Phylip, Relaxed 

Phylip, Nexus, NeXML, MEGA and PDE format. (See chapter 2.2.3 on page 38 for further details.) It will 

automatically read all additional formats possibly supported by JPhyloIO in the future. 
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<?xml version="1.0" ?> 
<nexml xmlns="http://www.nexml.org/2009" version="0.9" 
    generator="AlignmentComparator 1.0.0-250 beta using JPhyloIO 0.5.2-1609 alpha" 
    xmlns:nex="http://www.nexml.org/2009" 
    xmlns:ac="http://bioinfweb.info/xmlns/AlignmentComparator/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
  <meta id="meta1" xsi:type="nex:LiteralMeta" property="ac:formatVersion" 
      datatype="xsd:token">1.0</meta> 
  <meta id="meta2" xsi:type="nex:LiteralMeta"  
      property="ac:applicationVersion" datatype="xsd:token">1.0.0-250 beta</meta> 
  <meta id="meta3" xsi:type="nex:LiteralMeta" 
      property="ac:tokenType" datatype="xsd:token">NUCLEOTIDE</meta> 
  <meta id="meta4" xsi:type="nex:ResourceMeta" rel="ac:comments"> 
    <meta id="meta5" xsi:type="nex:ResourceMeta" rel="ac:comment"> 
      <meta id="meta6" xsi:type="nex:LiteralMeta" property="ac:text"  
          datatype="xsd:string">Inversion</meta> 
      <meta id="meta7" xsi:type="nex:LiteralMeta" property="ac:start" 
          datatype="xsd:int">0</meta> 
      <meta id="meta8" xsi:type="nex:LiteralMeta" property="ac:end" 
          datatype="xsd:int">5</meta> 
    </meta> 
    <meta id="meta9" xsi:type="nex:ResourceMeta" rel="ac:comment"> 
      <meta id="meta10" xsi:type="nex:LiteralMeta" property="ac:text" 
          datatype="xsd:string">Tandem repeat</meta> 
         ... 
      </meta> 
    </meta> 
    ... 
  </meta> 
  ... 
  <characters id="c0_" about="#c0_" label="Alignment 1" 
      otus="undefinedOTUs4" xsi:type="nex:StandardSeqs"> 
    <meta id="c0_indices" xsi:type="nex:LiteralMeta"  
        property="ac:unalignedIndices" datatype="xsd:string"> 
        0 1 2 - - 3 4 5 6 7 8 9 - - -</meta> 
    ... 
    <matrix> 
      <row id="c0_id0" about="#c0_id0" label="A" otu="undefinedOTU3"> 
        <seq>0 2 2 1 4 3 1 4 3 1</seq> 
      </row> 
      ... 
    </matrix> 
  </characters> 
  <characters id="c1_" about="#c1_" label="Alignment 2"  
      otus="undefinedOTUs4" xsi:type="nex:StandardSeqs"> 
    ... 
  </characters> 
</nexml> 

Figure 7.7 Example of a NeXML document containing a comparison result of AlignmentComparator 

This basic example NeXML document contains the comparison of two MSAs “Alignment 1” and “Alignment 2” 
with one characters tag for each of them. Especially relevant parts are highlighted in bold. In the root tag the 
namespace ac is declared that contains all necessary RDF predicates to attach AlignmentComparator-specific 
metadata. On the document level, this includes the format and application versions, which are used to determine 
whether a NeXML file can be interpreted as a comparison document and a set of user comments. The latter is 
modeled by a resource metadata element for the whole comment list using the predicate ac:comments. Nested 
within this element are one or more resource metadata element modeling a single comment, which in turn con-
tain three literal metadata elements for the comment text, the start, and the end column. A metadata element is 
attached to each MSAs using the predicate ac:unalignedIndices, which contains a string describing the  
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Figure 7.7 (Continued from previous page.) 

positions of the supergaps, which are not included in the actual alignment data. 

(For technical reasons, the current version of AlignmentComparator stores all compared MSAs using the NeXML 
type StandardSeqs, instead of using the respective DNA, RNA or amino acid types, which is why integers are 
contained in the seq tags. There translation declarations to nucleotides are omitted in this example. Future ver-
sions are planned to use the most appropriate NeXML token type whenever necessary to further increase interop-
erability. See chapter 7.4.5.4 on page 125 for further details.) 

Comparison results, including attached comments can be saved to NeXML and loaded again later. (See 

also chapter 7.3.2.) When a comparison document is saved, each compared MSA is written separately 

into the same NeXML file and the positions of the superalignment gaps are stored as metadata at-

tached to each MSA. In addition, general metadata and the comments attached to certain columns by 

the user are written to the document level, which is also supported by NeXML. An ontology has been 

defined to attach the metadata necessary for a comparison Figure 7.7 shows an example of a compar-

ison stored in NeXML using this ontology. 

7.4.3 Differences between the comparison algorithms 
As described in chapter 7.2, AlignmentComparator currently offers three alternative approaches to 

compare different MSAs of the same or slightly different dataset. The profile alignment approach 

(chapter 7.2.1, page 93) is currently only able to compare two MSAs, while the other two can compare 

any number of alternative MSAs. It could though be extended to compare more than two MSAs at a 

time by using the same guide tree-based algorithm as the maximum sequence pair match approach 

(chapter 7.2.3, page 107) currently does. (See also chapter 7.4.5.1, page 122.) Besides the number of 

currently supported MSAs, the main difference between the profile alignment approach and the other 

two is that the profile alignment uses information from the actual sequence tokens (e.g. nucleotides 

or amino acids) to determine which columns to superalign, while the two alternative approaches use 

the unaligned index of each token instead. As a result, the profile alignment approach is also able to 

compare MSAs that do not contain the exact same unaligned sequences, e.g., due to different hotspot 

deletion. (Note that chapter 7.4.5.1 describes possible extensions of the average position and the max-

imum sequence pair match approaches to also support differences in the unaligned sequence of com-

pared MSAs.) While the profile alignment approach has a benefit on datasets with different unaligned 

sequences, considering actual tokens instead of their unaligned indices has disadvantages when deal-

ing with repetitive sequences that contain simple sequence repeats, more complex repetitive patterns, 

or even poly-A regions. In such cases the profile alignment approach is not necessarily able to distin-

guish between different repeats of the same pattern (e.g. the different periods of the tandem repeat 

in the example dataset used in chapters 7.2.2.5 and 7.2.3.4), while approaches relying in the unaligned 

index to identify corresponding tokens are not affected by sequence repeats at all. 

As already briefly mentioned in the previous chapters, the main difference between the average posi-

tion (chapter 7.2.2, page 94) and the maximum sequence pair match approaches are there optimiza-

tion strategies. The average position approach focuses on superaligning in a way that fits best for all 

tokens on average, which may result in a superalignment that positions corresponding tokens closely 

together but does not necessarily align any of these tokens in the exact same superalignment column. 

In contrast to that, the maximum sequence pair match approach focuses on a selected subgroup of 

tokens that can be optimally aligned and accepts a relatively distant superalignment position for the 

remaining sequences. The subset of tokens to be optimally aligned is selected in a way that its size is 

maximal. 

Figure 7.8 shows an example for different superalignments using these two approaches. Both strate-

gies have their advantage and disadvantage in best visualizing the differences between alternative 

MSAs. On the one hand, the supergaps inserted by the maximum sequence pair match approach may 
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be more meaningful when focusing on the selected (largest) subgroup of sequences with the respec-

tive superaligned tokens (see description of Figure 7.8). On the other hand, the user may more easily 

think that the tokens of the remaining sequences A and D in the superalignment columns 10-12 of 

Alignment 1 in Figure 7.8 are also equivalent, which they are not. The average position superalignment, 

in contrast, does not visualize any direct relation between the tokens in the columns 11-14 of Align-

ment 1 by superaligning them with corresponding tokens from the other alignment in the same col-

umn. Instead, it visualizes the position conflict between the two groups of sequences, by positioning 

the tokens in Alignment 1 between their counterparts in Alignment 2 and 3. (Both visualization strat-

egies are complemented by the highlighting of corresponding tokens selected in one alignment in all 

others, as described in chapter 7.4.1.) 

The average position approach has a time complexity of 𝑂(𝑛 ∙ log(𝑛))regarding the average number 

of columns of the input MSAs (see chapter 7.2.2.4, page 103), while the maximum sequence pair match 

approach has a quadratic complexity , which makes the average position approach significantly faster 

when comparing large MSAs. Although both approaches have advantages in visualizing alignment dif-

ferences, the maximum sequence pair match approach could be considered to produce the more in-

tuitive results, but this comes at the cost of a longer runtime. 

 

Figure 7.8 Comparison between superalignments produced by the average position and maximum sequence 
pair match approaches 

Three alternative MSAs of the same example dataset are superaligned using the two approaches as shown in 
Figure 7.3 (page 107) and Figure 7.4 (page 113). The last three columns of Alignment 1 and their corresponding 
tokens in the other two alignments are highlighted. Alignment 2 and 3 use the same alignment of these nucleo-
tides, which is different from Alignment 1. The corresponding tokens in the sequences B, C and E are positioned 
in other columns then those in the sequences A and D. As indicated by the arrows, the average position approach 
superaligned the highlighted tokens in Alignment 1 in between of their corresponding counterparts in Alignment 
2 and 3 and therefore minimizes their distance on average. In contrast, the maximum sequence pair match ap-
proach selects the sequence set of B, C and E in Alignment 2 and 3 and superaligns them in the same column as 
their counterparts in Alignment 1. As a result, the distance between corresponding tokens of the sequences A and 
D is higher than in the average position superalignment. The maximum sequence pair match approach chose the 
largest subset of sequences (B, C and E) which could be optimally superaligned and accepted a larger distance for 
the tokens in the other sequences. (The same principle applies for all other aligned tokens, which are not high-
lighted in this figure.) 
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Table 7.2 Comparison of the alternative superalignment approaches offered by AlignmentComparator 

The symbols used for the space and time complexity are as described in chapter 7.2.2.4 (page 103). (a is the 
number of compared MSAs, n the number of columns and m the number of sequences per MSA.) There are no 
complexities given for the profile approach, since it currently does not allow comparing the same number of MSAs. 
If it would be extended to support an unlimited number of MSAs (see chapter 7.4.5.1, page 122), its complexity 
would be similar to the maximum sequence pair match approach. 

Algorithm Strategy Space  
complexity 

Time  
complexity 

No. of 
MSAs 

Profile Token-based - - 2 

Average posi-
tion 

Unaligned position-based, minimal 
average distance 

𝑂(𝑎2 ∙ 𝑛
+ 𝑎 ∙ 𝑛 ∙ 𝑚) 

𝑂(𝑎 ∙ 𝑛 ∙ 𝑚
+ 𝑎2 ∙ 𝑛
∙ log(𝑎 ∙ 𝑛)) 

∞ 

Maximum se-
quence pair 
match 

Unaligned position based, best sup-
eralignment for a maximal subset of 
sequences 

𝑂(𝑎3 ∙ 𝑛 ∙ 𝑚
+ 𝑎2 ∙ 𝑛2) 

𝑂(𝑎3 ∙ 𝑛 ∙ 𝑚
+ 𝑎2 ∙ 𝑛2) 

∞ 

 

7.4.4 Comparison to other software 
To compare alternative MSAs, software is available that calculates a score to quantify how different 

two MSAs are. Such software is useful for getting a basic overview on how a set of alternative MSAs 

compare to each, especially for many alternatives. It will not provide any detail on where and how 

compared MSAs differ and is therefore complementary but not an alternative to the functionality pro-

vided by AlignmentComparator. Examples are the implementations of the Sum-of-Pairs (SP) or the To-

tal Column (TC) scores, e.g., in BAliBASE [217], the Cline Shift Score [218] or the different scores calcu-

lated by MetAl [219]. 

AlignStat [220] allows to compare two alternative MSAs of the same dataset and therefore calculates 

a set of similarity and dissimilarity matrices, among which is also one that is very similar to the score 

matrix calculated by Algorithm 7.5 (page 109) as part of the maximum sequence pair match compari-

son approach (chapter 7.2.3.1). In contrast, to AlignmentComparator, no superalignment is recon-

structed based on this matrix but the content is displayed directly as a heat map that provides infor-

mation on how similar which columns of both compared MSAs are. This is a different visualization 

approach then intended with AlignmentComparator and is limited to comparing two MSAs. AlignStat 

is available as an R package (which is of course accessible only for users, who are able to program) and 

a webserver-based version, which is limited to compare two MSAs with at most 1000 columns. Align-

mentComparator does not require any programming skills and is able to compare much larger MSAs. 

The overlap between the functionality provided by AlignStat and AlignmentComparator is minor and 

both could complement each other. Some of the information AlignStat visualizes could even be dis-

played attached to the superalignment of AlignmentComparator in future versions to combine the 

information provided by both pieces of software. (See 7.4.5.3 below for details.) 

MSA Comparator from the SuiteMSA tool collection [221] allows to visually compare alternative mul-

tiple sequence alignments by highlighting the position of corresponding characters in one alignment 

that are selected in another. No superalignment is performed, which can make the comparison less 

clear, depending on the way the MSAs differ. Unlike in AlignmentComparator, the comparison is lim-

ited to two MSAs. Pixel Plot is another tool from the SuiteMSA collection that allows to compare more 

than two MSAs at a time, but each nucleotide or amino acid is displayed only as a single pixel without 

the possibility to zoom in. If an area in one MSA is selected, the respective tokens in the other MSAs 

are colored differently. This way differences between MSAs can be visualized on broad scale, but Pixel 

Plot does not allow to inspect single nucleotide or amino acid patterns in areas that differ that may 

have led to the different alignment of an area, as AlignmentComparator does. Pixel Plot neither does 

perform a superalignment between MSAs. 
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Although mainly aimed at comparisons at a genome scale, SinicView [222] switches to a detail mode 

when setting the visual area to 100 columns of below. This mode displays multiple alternative MSAs 

that are aligned to each other and therefore is (to the best of our knowledge) the only other available 

software that performs some kind of superalignment. The superalignment is though only based on a 

single sequence, which can be selected by the user, and the application does not offer superalignment 

approaches that take all sequences into account to produce a globally optimal superalignment, as 

AlignmentComparator does. Due to the different focus, the GUI of SinicView is also limited to display-

ing 100 columns and 8 sequences from each MSA at the same time and does not provide any zooming, 

sequence coloring or highlighting of corresponding tokens. Furthermore, the program crashes on many 

input MSAs and cannot compare them. 

VerAlign [223] is a web server that allows to compare two MSAs by differently coloring all columns of 

one MSAs and highlighting corresponding tokens in the other in the same color. Unlike AlignmentCom-

parator, the comparison is again limited to two MSAs and no superalignment is performed. The web-

server returns a HTML page containing all data from both compared MSAs as tables, which leads to 

significant performance problems in both loading and displaying time when the compared MSAs have 

more than a few thousand columns, which is not an issue when in AlignmentComparator. 

AltAVisT [224] was a web server able to highlight corresponding nucleotides or amino acids between 

two MSA, similar to MSA Comparator from SuiteMSA, but the service has been suspended and the 

software is therefore no longer usable. 

Many of the available programs for comparing alternative MSAs have a different focus then Align-

mentComparator and can be useful in combination with it, rather than as an alternative. Most of the 

few applications available for detailed MSA comparison on the nucleotide or amino acid level are lim-

ited to two MSAs at a time and visualize differences only by highlighting corresponding tokens and not 

additionally by a superalignment. SinicView is the only other software that also allows to superalign 

alternative MSAs, but only takes a single sequence into account and therefore does not offer function-

ality that is comparable to the superalignment methods offered by AlignmentComparator. None of the 

other available applications support a comparable variety of input formats as AlignmentComparator 

with JPhyloIO or saves its results into generally accepted standard such as NeXML. 

7.4.5 Future development 

7.4.5.1 Extension and improvement of the comparison approaches 
In all three currently available comparison approaches (described in chapter 7.2) each sequence of the 

compared MSAs is considered for creating a superalignment. For some use cases, it can be beneficial 

if a user could select a set of sequences that are especially relevant for the current comparison and 

exclude others. Such a set could be selected prior to a comparison and the algorithms would only take 

these sequences into account. Still, all sequences would be displayed but the comparison would only 

be based on the currently selected subset, which will influence the resulting superalignment in many 

cases. All three algorithm implementations could easily be adjusted to accept a respective set param-

eter. Such a feature would be useful for more fine-grained analyses of alternative MSAs. A user could 

better visualize how different sequences influence the differences between MSAs by creating separate 

superalignments based in different sequences sets than it would be possible with a single superalign-

ment based on all sequences. The question which sequences and therefore which of the contained 

nucleotide or amino acid patterns influence the behavior of different MSA algorithms would be an 

example of a research question that could easier be answered with an extension like this. 

The profile superalignment approach offered by AlignmentComparator (chapter 7.2.1, page 93) cur-

rently only allows to compare two MSAs, in contrast to the other supported superalignment methods. 

To add support for more MSAs, profile alignments could be performed along a previously calculated 



7  AlignmentComparator - Comparing alternative multiple sequence alignments of the same dataset 123 

 

guide tree, similar to how it is already done in the maximum sequence pair match approach. Imple-

menting this would be straightforward but was not a focus of the current development. 

Although compared MSAs are often created from the exact same unaligned sequences, there are other 

use cases where unaligned sequences slightly differ between the MSAs (e.g. due to hot spot deletion). 

As mentioned in chapter 7.4.3, the profile superalignment approach is currently the only one that sup-

ports comparing such MSAs, since it relies on the actual sequence tokens (e.g. nucleotides or amino 

acids) instead of their unaligned position (which also has the disadvantages described in chapter 7.4.3). 

An alternative approach that could be explored to deal with such cases and more than two MSAs at a 

time could create consensus sequences from all MSAs and align these using available MSAs algorithms. 

From the MSA of these consensus sequences, a superalignment can be reconstructed. Such an ap-

proach may suffer from the loss of information when reducing a whole MSA to a consensus sequence 

but would allow to easily take advantage of the optimization strategies available in the many different 

MSA algorithms available. (Providing existing implementations with unaligned consensus sequences is 

straight forward, while providing a set of profiles to perform use for a multiple sequence alignment is 

not always directly supported.) It would have to be explored how such an approach would perform 

compared to sole profile aligning along a guide tree as described above and to the alternatives cur-

rently provided by AlignmentComparator. 

When determining the position of supergaps by calculating the DP matrix in the maximum sequence 

pair match approach, several optimal paths through the matrix may occur and currently the top-most 

path is selected arbitrarily. (See example in Figure 7.4.) As an extension of this approach, the alterna-

tive superalignments resulting from the alternative paths could be saved and tried when performing 

subsequent superalignments along the guide tree to improve the overall superalignment. (Note that 

equally optimal pairwise superalignments are not necessarily equally good for subsequent superalign-

ment steps, since superaligning along a guide tree is a heuristic approach.) 

Estimating the guide tree of the maximum sequence pair match algorithm with alternative methods 

to neighbor joining could also be tried in the future to optimize superalignment results when compar-

ing a larger number of MSAs. UPGMA [225] is, e.g., reported in MUSCLE [207] to provide better guide 

trees then neighbor joining in most cases for multiple sequence alignment. It is however not trivial 

select a guide tree method. Which guide tree is optimal depends on the optimality criterion of the 

algorithm (that is here also used to create the distance matrix) and good guide trees for different MSA 

algorithms are not necessarily good guide trees for superalignment algorithms. Benchmark tests would 

have to be performed to test, which method is optimal for which superalignment approach and which 

datasets. Since the number of compared MSAs is usually small, the influence of the guide tree on the 

result is more limited than in multiple sequence alignment but evaluating the optimal tree inference 

method could be task for the future development. 

If the unaligned sequences of compared input MSAs just differ by a certain amount of deletions, e.g., 

due to different hot spot deletion as mentioned above, it would be possible to detect the sequence 

parts that have been deleted from the unaligned sequences of one MSA by comparing each sequence 

to its counterpart in another MSA without these deletions. Since usually a small number of longer 

deletions and no substitutions would be to expect due to, e.g., hot spot deletion, identifying deleted 

regions would be less complex than usual pairwise sequence alignment. (Ambiguous situations might 

occur when parts of repetitive patterns are removed, but these would only lead to incorrect unaligned 

indices assigned to tokens that are part of the repeat. All subsequent tokens would still have correct 

unaligned indices.) If deletions in the respective input MSAs are identified, it is easily possible to correct 

the unaligned token indices behind such deletions to match those of other compared MSAs by just 

adding the number of previously deleted tokens. If that preprocessing would be done, datasets not 
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originating from the exact same unaligned sequences could also be compared using the average posi-

tion and the maximum sequence pair match approaches. 

On the implementation side, it would be possible to reduce the space complexity of the maximum 

sequence pair match algorithm (as already mentioned in chapter 7.2.3.3.1 on page 110). Similar to the 

Myers and Miller linear space algorithm for global pairwise sequence alignment [216] that is based on 

the ideas of Hirschberg [226] for pairwise sequence alignment, the space complexity of calculating the 

DP matrix of this approach (chapter 7.2.3.1, page 107) can be reduced from quadratic (see chapter 

7.2.3.3, page 110) to linear. This can be achieved by only storing one row of the DP matrix at a time 

and using the divide and conquer approach instead of tracing back through the whole DP matrix to 

obtain a superalignment. (For calculating the distances between two MSAs in order to obtain the guide 

tree as described in chapter 7.2.3.2 on page 109, calculating one row at a time would already be suffi-

cient and the divide and conquer approach of Hirschberg, Myers and Miller would not be necessary, 

since only the score and no supergap positions are needed for this operation. For the subsequent sup-

eralignments along the guide tree, the divide and conquer approach would though be needed to re-

duce the space complex.) Reducing the space complexity was not a focus of the current development, 

since superalignments of MSAs with tens of thousands of columns are not problematic on current 

hardware and calculation time slightly increases when using Hirschberg’s approach (although the time 

complexity is identical). It is though planned to apply the space optimization in the future to also sup-

port comparing super large MSAs. 

7.4.5.2 Additional user interface features 
The current version of AlignmentComparator displays all compared MSAs underneath each other 

within separate scrolling containers, as described in chapter 7.4.1. Future versions could allow the user 

to select some sequences to be hidden from all MSAs in the current view to focus on the remaining 

ones that are especially relevant in the inspected area and to use the available vertical space more 

efficiently. Similarly, the GUI could allow users to hide whole MSAs from the current comparison. If 

this happens, supergaps that are present in all remaining MSAs should be hidden as well, while keeping 

the same column numbering displayed above the comparison. 

When hiding some MSAS, it may even be considered to further optimize the comparison with respect 

to the currently visible MSAs (e.g. by recalculating the current comparison using a different guide tree 

in the case of approaches that use one), but this would also mean that the superalignment may change, 

depending in the currently visible MSAs. Dynamically changing the superalignment based on the cur-

rently visible MSAs may be confusing for users and makes anchoring comments more complex. There-

fore, it should only be considered as an optional feature that can be turned off by the user. 

Comments used, e.g., to describe encountered alignment differences are currently anchored on a start 

and an end column within the superalignment. This may be further improved by allowing users to 

select separate columns for all or only a set of compared MSAs instead. This would have advantages, 

since the MSAs between which the commented differences occurred are then directly modeled and 

comments would even stay at the correct position if dynamic changes to the superalignment as de-

scribed above would be implemented. On the other hand, this would also make creating comments 

more laborious for the user.  

In addition to the comparison functionality currently offered by AlignmentComparator, the application 

may also be used to create new MSAs from a set of existing ones that have been compared. A user 

evaluating an MSA may choose to combine different parts from different MSAs, which can be done 

most efficiently when looking at a superaligned comparison of these. Since sequences may be differ-

ently shifted to each other, combining different MSAs using a usual alignment editor can be cumber-



7  AlignmentComparator - Comparing alternative multiple sequence alignments of the same dataset 125 

 

some, because cutting the different parts at a certain column for all sequences is not sufficient. Align-

mentComparator could offer functionality to automatically combine different parts from different 

MSAs by letting the user select and edit the cutting points directly within the comparison visualization. 

Beyond the functionality of manually selecting parts for an output MSA, AlignmentComparator may 

also aid the user by visualizing the possible alternative combinations, which can be described by a 

directly acyclic graph [227]. 

7.4.5.3 Further metadata visualization 
In addition to the currently used LibrAlign data areas (see chapter 7.3.1 on page 115 and 3.3.1 on page 

49) to visualize average column indices and user comments, additional kinds of comparison metadata 

could be visualized by implementing respective data areas. Information on the number of superaligned 

tokens per column or data provided by AlignStat (see chapter 7.4.4, page 121) would be some of many 

examples. Visualizing additional metadata can be done with a reduced amount of work due to the 

flexible data area architecture of LibrAlign. 

Since AlignmentComparator is based on LibrAlign and uses NeXML as its main format, all types exter-

nally defined metadata could be visualized attached to sequences or whole MSAs within a superalign-

ment. This would allow researchers to take different kinds of metadata into account when investigat-

ing MSA differences. An example would be a data area displaying positions of patterns like tandem 

repeats with different numbers of periods in different sequences, inverted repeats or inversions. Using 

such a data area with AlignmentComparator would allow researchers to directly inspect whether such 

patterns were aligned correctly and how the influenced the alternative MSAs. As described in chapter 

3.3.6 (page 54), externally implemented data areas of LibrAlign allow to display metadata from NeXML 

files attached using externally defined ontologies. Applications like AlignmentComparator could dis-

play such metadata without explicitly modeling it. Providing support for using such externally imple-

mented data areas is a future perspective, when more applications with respective data areas are de-

veloped. (See also chapter 13.1.3 on page 182.) 

7.4.5.4 Further improved interoperability using NeXML 
AlignmentComparator writes its comparison results to NeXML files that contain the compared align-

ments and their comparison as metadata. The current version uses the same token set for all nucleo-

tide alignments. This set contains all nucleotide characters and ambiguity codes including “T” for DNA 

and “U” for RNA to allow the comparison of DNA and RNA alignments or even support alignments that 

contain DNA and RNA sequences. Because of that, JPhyloIO falls back to the DISCRETE sequence type 

of NeXML, since neither the DNA nor the RNA data type allow using both symbols in combination. Alt-

hough AlignmentComparator can read such comparisons again without problems, it may decrease in-

teroperability in some cases, since other applications that may read the comparison output will not be 

aware of the actual nucleotide sequence types in the file. To maximize interoperability and to make 

optimal use of the NeXML standard, future versions of AlignmentComparator should check each align-

ment on writing and select the DISCRETE data type only of both “T” and “U” are present and select 

the respective NeXML sequence type for each alignment separately. Implementing such a behavior 

was not yet given priority, since it does not influence the core functionality of AlignmentComparator, 

but it will be addressed during the future development. 

7.5 Conclusion 
A large number of alternative algorithms for automated multiple sequence alignment and alignment 

postprocessing tools are available and the problem of creating optimal MSAs under the criterion of 

homology, structure or common function remains to be the subject of ongoing research. Therefore, 

researchers often need to evaluate alternative MSAs resulting from different methods in their studies 
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and possibly apply manual changes. AlignmentComparator is an application that helps to do this con-

veniently and efficiently by visualizing differences between alternative MSAs using superalignments 

created by one out of three available methods, which are not available to date in any other tool. If 

manual editing of MSAs is done, the concrete changes should be documented, e.g. by providing the 

initial and the edited versions as separate files with a study. The changes can then easily be compre-

hended by comparing both files using AlignmentComparator. Its functionality is therefore useful in 

increasing the quality and reproducibility of all kinds of biological studies that rely on multiple se-

quence alignment. 

Since it is based on JPhyloIO (chapter 2, page 33), AlignmentComparator is very interoperable. It sup-

ports comparing MSAs in various formats and saves its comparison results in NeXML using externally 

defined ontologies, therefore making them accessibly in a generally accepted format instead of using 

its own custom one. Together with the alignment GUI components from LibrAlign (chapter 3, page 46), 

the architecture of AlignmentComparator easily allows to handle all kinds of (future) metadata associ-

ated with MSAs and their sequences to display it directly in the superalignment, visualizing the relation 

and possible influence of such metadata to MSA differences. As mentioned in chapter 7.4.5.3, future 

versions of AlignmentComparator could be extended to support visualizing metadata attached in 

NeXML using predicates from any externally defined ontology and display it using respective externally 

implemented data areas without the need of explicitly modeling any of such metadata within the ap-

plication. This way, great flexibility is achieved and AlignmentComparator (due to the functionalities of 

the libraries JPhyloIO and LibrAlign developed in this thesis) can additionally become a sequence-re-

lated comparison tool that is useful far beyond the comparison of raw MSAs and address the require-

ments of research in the age of big data and the semantic web. 

7.6 Availability and requirements 
Project name: AlignmentComparator 

Project web page: http://bioinfweb.info/AlignmentComparator/ 

GitHub Repository: https://github.com/bioinfweb/AlignmentComparator 

ResearchGate project page: http://r.bioinfweb.info/RGAlignmentComparator 

Operating system: Platform independent 

Programming language: Java 

Other requirements: Java Runtime Environment 8 (or higher) 

License: GNU General Public License Version 3 (GPL) 

Any restrictions on use by non-academics: The restrictions specified in the GPL apply. (See 

http://bioinfweb.info/AlignmentComparator/License.) 

7.7 Declarations 

7.7.1 Authors contributions 
Ben Stöver developed the concept, implemented the software and wrote the manuscript. Kai Müller 

contributed conceptually and to the manuscript. 
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Abstract 

Background: Today it is common to apply multiple potentially conflicting data sources to a given phy-

logenetic problem. At the same time, several different inference techniques are routinely employed 

instead of relying on just one. In view of both trends it is becoming increasingly important to be able 

to efficiently compare different sets of statistical values supporting (or conflicting with) the nodes of a 

given tree topology and merging this into a meaningful representation. A tree editor supporting this 

should also allow for flexible editing operations and be able to produce ready-to-publish figures. 

Results: We developed TreeGraph 2, a GUI-based graphical editor for phylogenetic trees (available 

from http://treegraph.bioinfweb.info). It allows automatically combining information from different 

phylogenetic analyses of a given dataset (or from different subsets of the dataset), and helps to identify 

and graphically present incongruences. The program features versatile editing and formatting options, 

such as automatically setting line widths or colors according to the value of any of the unlimited num-

ber of variables that can be assigned to each node or branch. These node/branch data can be imported 

from spread sheets or other trees, be calculated from each other by specified mathematical expres-

sions, filtered, copied from and to other internal variables, be kept invisible or set visible and then be 

freely formatted (individually or across the whole tree). Beyond typical editing operations such as tree 

rerooting and ladderizing or moving and collapsing of nodes, whole clades can be copied from other 

files and be inserted (along with all node/branch data and legends), but can also be manually added 

and, thus, whole trees can quickly be manually constructed de novo. TreeGraph 2 outputs various 

graphic formats such as SVG, PDF, or PNG, useful for tree figures in both publications and presenta-

tions. 

Conclusion: TreeGraph 2 is a user-friendly, fully documented application to produce ready-to-publish 

trees. It can display any number of annotations in several ways, and permits easily importing and com-

bining them. Additionally, a great number of editing- and formatting-operations is available. 

8.1 Background 
It has become standard to apply multiple inference techniques to a given phylogenetic problem. The 

recent invasion of phylogenetics by Bayesian techniques (e.g., [59]), the ever improving models and 

algorithms for tree searches under maximum likelihood (e.g., [228,229]), and the continuously growing 

processor speed helped these previously computationally very expensive approaches to become a typ-

ical component of most phylogenetic studies, accompanying the widespread parsimony and distance-

based approaches. At the same time, no single inference technique has consistently proven to be the 

single best choice. Accordingly, the researcher is well-advised to explore potential method-specific dif-

ferential results, leaving him or her with the difficulty of visualizing these differences for him- or herself 

mailto:kaimueller@uni-muenster.de
http://dx.doi.org/10.1186/1471-2105-11-7
http://treegraph.bioinfweb.info/
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and for the reader. Frequently, differences are restricted to the magnitude of various measures of 

statistical support (such as jackknife and bootstrap proportions, Bayesian posterior probabilities), ra-

ther than being apparent from the topology. In addition, the frequently reported results from topolog-

ical tests (e.g., [230]) or tracing of ancestral character states (e.g., [54]) add further importance to being 

able to assign a variety of numbers and graphical labels to tree nodes. 

To address those needs, the first version of TreeGraph [231] had been developed, which strongly sim-

plifies the creation of the final tree figure by the automatic positioning and formatting of multiple 

labels per branch. However, while one support type could directly be imported from the phylogeny 

inference program output, the Newick- and Nexus [31] format used by these programs precluded the 

direct import of more branch labels. For all additional labels (support values), the laborious work of 

mapping them onto the appropriate nodes remained. The cumbersome drawing part of the publication 

process was minimized, but it remained the user's responsibility to collect and position all information 

that was to be displayed at the nodes. 

We figured that automating this process would be very useful, particularly so in studies of extensive 

gene family datasets that may contain several hundred terminals. Gene family studies using phyloge-

netic approaches have become a major focus with the increasing amount of available fully sequenced 

genomes. Typically, gene family trees suffer from weak support [232–234]. The entailed caution re-

quired when interpreting gene family trees increases the need for testing alternative inference meth-

ods, alignment methods, data partitions, and varying treatment of questionable alignment regions. 

Similarly, the differential contribution of and potential conflict among different data partitions is fre-

quently estimated by the differential success of resolution and degree of statistical support in various 

parts of the tree contributed by each partition [235]. This has become particularly important since 

multigene analysis are the rule rather than the exception, a trend further fueled by the growing avail-

ability of complete (organellar) genomes that provide easy access to a large number of genes that can 

be concatenated in large data matrices and then subjected to phylogenetic analyses, e.g. [236]. 

These trends call for a tree editor that is able to compare and ultimately visualize congruent and con-

flicting evidence from different analyses, while guaranteeing flexible editing and production of high-

quality tree figures for publications. 

8.2 Implementation 
TreeGraph 2 is written in Java and uses Swing for its graphical user interface (GUI) as well as the Apache 

Batik SVG Toolkit (http://xmlgraphics.apache.org/batik/), FreeHEP (http://java.freehep.org/), Java 

Math Expression Parser (http://sourceforge.net/projects/jep/) and BrowserLauncher (http://browser-

launch2.sourceforge.net/) libraries. Besides its GUI, which makes editing and formatting very intuitive, 

the current version 2 adds many features previously unavailable in the command line precursor and 

introduces an XML-based native file format (XTG). 

8.3 Results and discussion 

8.3.1 Importing data 
TreeGraph 2 can read trees in Newick or Nexus format (including additional annotations in comments 

specified by BEAST [237]) as well as phyloXML tree descriptions [36] and can furthermore import an-

notations from text files generated e.g. with a spreadsheet application. Besides that, TreeGraph 2 fa-

cilitates combining information from different phylogenetic analyses of a given dataset. This is partic-

ularly useful e.g. in the study of extensive gene family datasets with large sets of terminals. The follow-

ing sections describe this feature in greater detail. 

http://xmlgraphics.apache.org/batik/
http://java.freehep.org/
http://sourceforge.net/projects/jep/
http://browserlaunch2.sourceforge.net/
http://browserlaunch2.sourceforge.net/
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8.3.1.1 Mapping statistical support onto congruent nodes 
For each branch of a tree opened in TreeGraph 2, the corresponding support from other trees can be 

mapped whenever the topology defined by the current branch is present in them. Each of these other 

trees may represent the result from a different analytical approach or different data partition, and 

support values from these trees are assigned their own label ID by which they are grouped and ame-

nable to future formatting or editing operations. Thus, all support values that stem from a particular 

analysis can be individually formatted e.g. by their relative position on the branch and/or their font 

and style. 

8.3.1.2 Finding conflicting nodes and mapping contradictory support 
In some studies not only the support from different analyses has been mapped onto the branches but 

also the strongest support for a contradictory topology was determined by inspection via eye 

[238,239]. 

TreeGraph 2 uses the following algorithm automate this (for a better understanding it should be kept 

in mind that each branch splits a tree into exactly two subtrees). 

Let tree1 specify the topology onto which contradictory support from other trees should be mapped 

(example in Figure 8.1a). For a given branch branch1 in tree1, the maximum support for a conflicting 

branch branch2 from another tree tree2 (example in Figure 8.1b) can be found as follows. 

1. Find the branch2 which defines a subtree subtree2 with the smallest number of terminals that 

contains all leafs of a subtree subtree1 defined by branch1. 

2. Inside subtree2 find all branches that define a subtree which are on the one hand fully enclosed 

by subtree2 and on the other hand contain at least one terminal which is also part of subtree1 

as well as at least one leaf which is not. 

3. The highest support value in the set of these branches is added as a conflicting value onto 

branch1. 

This highest conflicting support value can be distinguished from congruent values by user-specified 

formats, e.g. brackets, asterisks or different colors (see example in Figure 8.1).  

 

Figure 8.1 Merging support values from different analyses - a simple contrived casec 

The tree on the left (a) was first opened in TreeGraph 2 and defines the topology and optionally a first set of 
support values. (Alternatively a consensus tree of all analyses or any user-defined tree could be used here.) After-
wards the annotations from another tree (b) have been added which resulted in a new group of values (c) sup-
porting (green) or contradicting (red) the initially loaded topology (blue). 

                                                           
c Note that this figure shows the tree merging functionality in 2010, which has been extended since then. The 
state that was reached on submission of this thesis is described in Figure 9.1 (page 52) in the next chapter. 
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8.3.2 Editing and formatting capabilities 
The program features versatile editing and formatting options, such as automatically setting branch 

widths or colors according to the value of any of the unlimited number of variables that can be assigned 

to each node or branch. 

8.3.2.1 Editing of node/branch data 
Node/branch data imported from spread sheets or other trees (as described above), can be copied 

from and to other internal variables, be kept invisible or set visible and then be freely formatted (indi-

vidually or across the whole tree), filtered according to their values or calculated from each other using 

an integrated mathematical expression parser which can access all node/branch data columns. Figure 

8.2 shows a screenshot displaying a tree and its corresponding data table. 

 

Figure 8.2 Example view of the TreeGraph 2 GUI showing taxon counts displayed as branch widths 

The taxon counts of all terminal nodes have been imported from a table (text file) to a hidden node data column. 
The imported annotations have then been used as source data to set the terminal branch widths. For each Tree-
Graph 2 document, one can optionally view the node/branch data table in the right part of the document window 
as shown here. 

8.3.2.2 Editing operations 
Beyond typical editing operations such as tree rerooting and ladderizing or moving and collapsing of 

nodes, whole clades can be copied or cut out and placed into new empty files or inserted (along with 

all node/branch data) into other trees. Since nodes can also be manually added, whole trees can 

quickly be manually constructed starting from an empty file. 
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The editing operations are facilitated by versatile additive selection options that allow selecting many 

elements in a tree for subsequent formatting with just a few clicks. Additionally, every operation ap-

plied to an opened tree can be easily undone or redone using the undo-function. 

8.3.2.3 Searching, replacing and translating tree leaf names 
Searching and replacing is possible across all node/branch data columns (including taxon names and 

node labels). 

 

Figure 8.3 Displaying multiple annotations and assigning element formats automatically 

The tree in this contrived example contains several annotations including ancestral divergence times (node 
heights; expressed as branch lengths in an ultrametric tree), DNA substitution rates, posterior clade probabilities 
as they could have been imported by TreeGraph 2 from, e.g., a tree file generated with help of TreeAnnotator 
after a BEAST analysis. As in a typical chronogram view, the age of the nodes (in million years ago) is expressed 
by the scale bar at the bottom. In addition, TreeGraph 2 was asked to automatically assign branch widths and 
line colors to illustrate the mean evolutionary rates for each branch, while the accuracy of each rate estimate was 
illustrated by a filled rectangular label icon above and an unfilled one below each branch (the branch width ex-
tended by the size of the upper icon describes the highest rate in e.g. a 95% confidence interval and the branch 
width reduced by the size of the lower icon describes the lowest rate in the interval). Text labels have been used 
to show the posterior clade probabilities (above the branches, bold) and the absolute substitution rates in substi-
tutions per site per billion years (below the branches). Furthermore, this example tree contains star and cross icon 
labels that could be used, e.g., to highlight specific character state transitions (such as orange stars indicating 
"number to character" shifts (filled) or vice versa (not filled), and blue crosses representing "upper case to lower 
case" shifts). 

More restrictive alignment file formats do not allow lengthy taxon names, so names get truncated. In 

other cases, the often clumsy taxon- or lab IDs used during a study survive up to the final alignment, 

phylogenetic dataset and the trees constructed from it until they need to be adjusted for the final tree 
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to be presented in a paper. TreeGraph 2 can be requested to apply a translation table to use "cleaned" 

taxon names for the final output. This translation table can be constructed easily with help of the data 

export feature and any text editor or spread sheet program. Furthermore, the lab IDs (old terminal 

names) can be saved in a hidden data field to be able to identify the terminals by these lab IDs so that 

additional support values could still be added later on. 

8.3.2.4 Formatting document elements 
Great flexibility is offered by the application as it allows free formatting of line- and text-formats of all 

document elements like nodes, branches or legends (which mark a group of terminals). Additionally 

branches can carry an unlimited number of textual annotations (text labels) or icons (icon labels) the 

color, text style or size of which can also be freely formatted (see Figure 8.3). All distance values in 

TreeGraph 2 (e.g. line width or text height) are specified in millimeters or DTP-points (1/72 inch). This 

feature, along with the image export function (see below), allows the user to design trees in exactly 

the size they should appear in print or in the exported graphic file. In addition, TreeGraph 2 offers a 

feature to proportionally rescale all elements of a subtree or the whole document. 

8.3.2.5 Automatically setting line width, text height, and color 
TreeGraph 2 allows automatically setting all formats (e.g. branch widths, branch colors, text colors, 

text heights, icon sizes) according to the value of a chosen node/branch data column. This provides a 

very intuitive way to graphically present the relative magnitude of, e.g., certain types of support or 

rates assigned to branches (see Figure 8.2 and Figure 8.3 for examples). 

8.3.3 Different view modes 
All editing operations are facilitated by a very convenient way to zoom in and out, fitting the zoom to 

the window size, and a miniature overview (Figure 8.2) for navigating large trees. 

When applicable (i.e., given that branch length information is provided), trees can be displayed as 

phylogram or chronogram (Figure 8.3), with multiple options for adjusting a scale bar (to indicate e.g. 

time spans in chronograms, rates in ratograms, or branch lengths in phylograms). 

8.3.4 Exporting to graphic formats and printing 
TreeGraph 2 outputs various vector and (anti-aliased) pixel graphic formats. Among these are SVG, 

PDF, or PNG, supporting transparent background where this applies. Using the graphic export function 

of TreeGraph 2, the most adequate graphic formats, resolutions, and image sizes for manuscripts, 

presentation slides, or web pages, respectively, can be specified. 

8.3.5 Help 
An extensive, continuously updated online help system is available under http://treegraph.bio-

infweb.info/Help and can also be accessed (in a context-dependent manner) from within the program. 

Additionally, several video tutorials are offered there to get started with TreeGraph 2 (see http://tree-

graph.bioinfweb.info/Help/wiki/Tutorial:Main_page). 

8.3.6 Comparison to previous software 
To date, a variety of tree visualization tools have been released, among which ATV [85], Dendroscope 

[240], FigTree (the tree editor accompanying BEAST), the MEGA tree explorer [241], Mesquite [111], 

PhyloWidget [242], TreeDyn [243] and TreeView [244] may be the most widely distributed. In spite of 

their great usefulness for the purposes they have been developed for, none of these software packages 

allows simultaneously visualizing, freely editing, properly formatting and exporting or printing trees 

with heavily annotated nodes (see Table 8.1). Although TreeDyn is able to display multiple annotations 

on one node it is not able to automatically position them in a ready-to-publish way or to combine them 

from different analyses. FigTree is able to read the special Newick annotations generated by BEAST 

http://treegraph.bioinfweb.info/Help
http://treegraph.bioinfweb.info/Help
http://treegraph.bioinfweb.info/Help/wiki/Tutorial:Main_page
http://treegraph.bioinfweb.info/Help/wiki/Tutorial:Main_page


134   Part II – Applications to model, visualize, edit and compare phylogenetic data and metadata 

 

and therefore can also store several sets of annotations but only offers a limited number of ways to 

display them (like branch lengths or one textual annotation per branch). In contrast, TreeGraph 2 

(which is also able to read BEAST annotations) can show a nearly unlimited number of textual annota-

tions at a time as well as display data in form of branch widths, line colors or many other formats. 

Besides importing additional annotations from tables (which TreeDyn also offers), TreeGraph 2 is the 

only editor which can combine annotations (e.g. statistical support from different analysis methods) 

from different trees (with the same set of terminals). The information gained this way has a topological 

component and can therefore not simply be obtained from data in a table. 

A feature closely related to the ones mentioned above is the ability to calculate numeric or textual 

annotations by mathematical expressions, which can reference other annotations (see above). To date, 

a similar functionality is not offered by any other tree editor. 

TreeGraph 2 features a multitude of format options, which can be combined to every tree element 

(e.g. branches, nodes or labels) independently. As Table 8.1 shows, no other tree editor currently pro-

vides functionalities like element-specific formats for all types of tree elements in combination with 

advanced selection options or collision free positioning of the whole tree. Moreover, none of the edi-

tors that offer at least some of TreeGraph 2's formatting options allow the user to precisely determine 

the print layout. In contrast to most other editors, our program offers context help buttons (which link 

to the online help system) everywhere in the program, making it very easy for new users to get started. 

It should be noted, however, that TreeGraph 2 has been optimized as a tree editor for producing high 

quality tree figures and not as a viewer for trees with many thousands of taxa, which could never be 

depicted completely in a publication or presentation. The latter is a specialty of software specifically 

designed for this purpose such as, e.g., Dendroscope [240] (Table 8.1). 

Since TreeGraph 2 is written in Java and is able to read and write all its supported formats directly from 

and to streams in would be possible to use it in a web application either on the server (e.g. with Apache 

Tomcat) or the client site (e.g. as an Java Applet or a Java Webstart application) to display and manip-

ulate trees. As yet, our application would have to be integrated into such a web application by its 

programmer manually and we do not yet offer a ready-to-use plug-in solution for this. We do, however, 

offer a full documentation of our source code (including its interfaces) to facilitate such a web integra-

tion. 
 

Table 8.1 Comparison to other tree editors (Table on the next page.) d  

I: Import, IE: Im- and export. 1All programs tested with balanced binary trees in Newick format. The value listed 
is the number of terminals of the largest tree that could still be opened in less than two minutes on an average 
desktop computer (2.2 GHz AMD Athlon™ XP processor, 1 GB RAM)e. 2Numerical and textual annotations of nodes 
and branches can be calculated by any user defined mathematical expression from the values of other annota-
tions in the tree. 3Any tree element can be copied to any position in the same or another tree (Programs that can 
only copy whole trees or paste subtrees to a new file are not checked in this column.). 4User defined text replace-
ment in node names and all annotations. 5Numerical values of annotations define formatting of tree elements 
(e.g. color, width, text height). 6Documentation going beyond the original publication and explaining the different 
options. 7Only the last edit can be undone. (In contrast, TreeGraph 2 stores a whole undo history which can be 
undone (and redone) to any point.). 8Positioning options for the labels are not offered. 9Only one direction (not 
up and down). 10TreeDyn allows labeling a group of nodes with a legend (not automatically positioned), but the 
label gets lost during edit operations like ladderizing. 11Specific formats for subtrees are possible. Branches and 
nodes cannot be formatted independently. 12Only very brief descriptions. 

                                                           
d Note that this table is a figure in the original publication, due to formatting limitations of the Journal. All infor-
mation reflects the state in 2010. TreeGraph 2 has been extended since then and other software may have too. 
See chapter 9 (page 52) for the state on submission of this thesis. 
e That was a common hardware configuration at the time of publication. Results on common hardware today 
may differ. 
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Table 8.1 (Description on the previous page.)d 
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Newick IE IE IE I IE I IE I I 
Nexus IE IE IE IE   IE I   IE 
phyloXML I IE               
Nexus (BEAST package data) I     IE           
Mapping support from other topolgies (analyses) ✓                 
Annotation import from table ✓     ✓       ✓   
Read trees from databases   ✓       ✓       
Maximum number of terminals1 213 216 218 214 214 212 214 214 219 

G
ra

p
h

ic
 f

o
rm

at
s SVG ✓   ✓ ✓       ✓   

PDF ✓ ✓ ✓ ✓   ✓ ✓     

PNG ✓ ✓ ✓ ✓       ✓   

Additional vector formats ✓   ✓ ✓ ✓     ✓ ✓ 

Additional pixel formats ✓ ✓ ✓ ✓ ✓   ✓ ✓   

Customizable output resolution ✓                 

Ed
it

in
g 

Undo function ✓         ✓7     ✓7 
Advanced selection options ✓   ✓             
Manual tree construction ✓  ✓         ✓     
Displayable textual annotations per node/branch  8 2 2 1 3 2 8 1 
Calculation of annotations2 ✓                 
Scaling of branch lengths ✓       ✓ ✓ ✓     
Copying, cutting and pasting of all tree elements3 ✓ ✓          ✓     
Ladderizing ✓ ✓ ✓ ✓   ✓ ✓9 ✓ ✓ 

Rerooting ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Collapsing nodes (to polytomy) ✓         ✓ ✓ ✓ ✓ 

Search ✓ ✓ ✓ ✓     ✓ ✓   

Replace4 ✓                 

Fo
rm

at
ti

n
g 

Collision free positioning of all tree elements ✓                 
Line formats by annotations5 ✓     ✓           
Text formats by annotations5 ✓                 
Positioning by annotations5 ✓                 
Legends for node groups ✓       ✓     10   
Advanced legend positioning ✓                 
Text color ✓   ✓ ✓ ✓ ✓   ✓   

Text color (element specific) ✓   ✓         ✓   

Text size ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

Text size (element specific) ✓   ✓         ✓   

Font, text style ✓   ✓   ✓     ✓ ✓ 

Font, text style (element specific) ✓   ✓         ✓   

Line color ✓ ✓ ✓ ✓ ✓ ✓   ✓11   
Line color (element specific) ✓                 
Line width ✓   ✓   ✓ ✓ ✓ ✓11   
Line width (element specific) ✓                 
Independent start and end branch width ✓                 
Proportional rezising of all elements in a subtree ✓                 
Customizable scale bar ✓     ✓ ✓         

V
ie

w
 

Print layout in millimeters or inches ✓                 
Editable annotation table ✓                 
Rectangular cladogram view ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Rectangular phylogram view ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Network view     ✓ ✓ ✓   ✓   ✓ 

Circular view(s)     ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Hiding of subtrees   ✓ ✓ ✓ ✓   ✓ ✓   

H
e

lp
 Documentation6 ✓ ✓12     ✓ ✓ ✓ ✓ ✓ 

Context help ✓       ✓ ✓12       
Video tutorials ✓                 
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8.4 Conclusions 
With its easy-to-use graphical user interface and a number of semi-automatic editing and formatting 

options, TreeGraph 2 is a graphical editor useful in the context of any phylogenetic study. It is particu-

larly useful where multiple, potentially conflicting trees are being produced, because its automatic 

combination of information from different analyses helps to identify and graphically present such in-

congruences. The way in which data can be imported and then assigned to nodes, manipulated or even 

converted to color tones, line diameters or other formats allows for a great flexibility in visualizing any 

kind of data associated with different parts of the tree. Together with the possibility to manually con-

struct new clades or delete clades and the various graphic output formats supported, TreeGraph 2 

greatly reduces the effort during the preparation of tree figures for presentations or publications. 

8.5 Availability and requirements 
Project name: TreeGraph 2 

Project home page: http://treegraph.bioinfweb.info/ (including an extensive documentation and a de-

velopment section with JavaDocs) 

Operating system(s): Platform independent (Java 6 has to be availablef) 

Programming language: Java 

Other requirements: Java Runtime Environment 6.0 (or higher)f 

License: GNU General Public License 

Restrictions to use by non-academics: none 
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8.6.1 Authors' contributions 
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Abstract 

Since its last publication in 2010, TreeGraph 2 has become a widely used editor for phylogenetic trees 

and many extensions of its functionality have been made to increase its usability and to keep up with 

new developments in the scientific community. Sticking to its initial aim, modelling, visualizing and 

processing of different kinds of metadata attached to nodes and branches of phylogenetic trees has 

been the focus of the new features, which has become even more relevant in the age of big data and 

the semantic web to increase reusability of data and reusability of studies. 

The feature of mapping support values from different phylogenetic analyses onto one tree topology 

has been extended to process trees with different (but overlapping) sets of terminal nodes and a new 

visual interactive tree comparison feature has been developed based in that functionality. Pie chart 

labels have been introduced to provide more metadata visualization options. Such metadata includes, 

e.g., ancestral character state probabilities, which can now be easily imported from the analysis soft-

ware BayesTraits using special functionality and from other software using the significantly improved 

table import feature. More flexible and versatile ways to calculate textual and numerical annotations 

from each other further contribute to the set of new metadata-related features. NeXML and its 

metadata can now be imported and support for the other tree formats has been improved. 

In addition to that, an extension of the metadata model is currently ongoing, that will allow to use RDF-

predicates from externally defined ontologies to unambiguously link the different kinds of metadata 

that is modeled and visualized by TreeGraph 2 and allow to use NeXML as the main format of the 

application. We report on the status of this work and discuss the advantages this new model and the 

other new features will have to increase the reusability of phylogenetic trees and the reproducibility 

of workflows. Increasing the scriptability of TreeGraph 2 further than already done with the new fea-

tures to calculate annotations from each other and making its functionality directly accessible from 

popular scripting languages is, among others, a further perspective for its future development. 

9.1 Introduction 
TreeGraph 2 is a feature-rich editor for phylogenetic trees that provides many editing and formatting 

options and focuses on the processing and visualization of metadata attached to nodes and branches 

of a tree. The development started in 2008 and since then 73 versions have been released containing 

contributions of four developers to introduce new features and bug fixes that address user feedback. 

At the time of submission of this thesis (May 2018), the first publication of the software ([76], chapter 

8) was 447 times cited (including 107 times in 2017) according to the Web of Science Core Collection 

database (619 times according to Google Scholar), is downloaded on average 13 times a day and every 

15 minutes an instance started by a user contacts our server to check for updates. This shows that 

TreeGraph 2 has become widely-used in the scientific community. In order to keep it relevant and 

adopt it to the upcoming challenges and user needs, numerous new features have been added. Sticking 

mailto:stoever@bioinfweb.info
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to the traditional aim of TreeGraph 2, most of the new features focus on managing, processing and 

visualizing phylogenetically relevant metadata. 

The long-term availability of data produced in phylogenetic studies is a key requirement for their re-

usability and the reproducibility of studies [18,19]. Although availability itself remains to be an issue 

[19,22,47,50], parts of which databases like TreeBASE [44] or Dryad [42,46] try to address, another 

important issue is the documentation and annotation of data [20,22]. Without proper metadata pro-

vided together with scientific data, reproducing a study or reusing the data is significantly hampered 

or even impossible, because details on, e.g., how the data was edited or computationally processed or 

what sequence or node identifiers actually mean remains unclear. Semantic web technologies like RDF 

(Resource Description Framework, [37,41]) combined with externally defined ontologies allow to an-

notate data in an unambiguous and machine-readable way, which would, e.g., allow to automatically 

collect and process large amounts of specific data for a bioinformatical study without time-consuming 

manual data searching or even redundant generation of new data. Although formats like NeXML [35] 

that supports RDF annotations on all elements of, e.g., phylogenetic trees, minimum information 

standards like MIAPA [40] and phylogenetic ontologies (cf. Table 9.1 and references therein) have been 

developed in the past, current tree editors still lack the ability to attach and process such metadata (cf. 

chapter 9.3.7.3). Software can help to address these needs by supporting established well-defined for-

mats [35,245] and providing functionality that allows users to easily describe their data unambigu-

ously. The new I/O functionality and the extended metadata model of TreeGraph 2 that will be pre-

sented in this chapter improve interoperability and are important steps addressing the needs to in-

crease reproducibility and reusability. 

Another metadata-related focus of TreeGraph 2 has always been the comparison and combination of 

statistical branch support values from different methods. The previously published version offered a 

feature that allows to map support values from input trees (e.g., from maximum likelihood and Bayes-

ian inferences) onto one target topology and to highlight topological conflicts. We will present im-

provements, extensions and additional complementary features that make comparing alternative phy-

logenetic trees even more convenient using TreeGraph 2 and introduce additional functionality that 

has been added since its last publication in 2010 to allow its users to increase reproducibility of their 

studies and reusability of their data. 

9.2 Implementation 
TreeGraph 2 is written in Java and the implementation follow the model-view-controller paradigm. 

Although not developed as a programming library, the structure of the source codes of TreeGraph 2 

allows to reuse its code from other applications. Tool classes like TreeSerializer that creates sets 

of tree elements (nodes, branches, labels, …) to be used with document edits (similar to the options 

the select menu of the GUI) further simplify the programmatic access to the application’s features. 

Design patterns have been applied wherever useful to ensure easy maintainability and reusability. Ex-

amples are the application of the strategy pattern [88] for reading from and writing to different tree 

formats or the adapter pattern [88] when accessing different annotation values through a single 

node/branch data interface or element formats through a format adapter. 

Changes of the internal structure or TreeGraph 2 make it now even easier to maintain and to extend. 

Introduced functionality like the node change type that is now assigned to every edit, allow more effi-

cient change listeners that react only to certain modifications of an opened document. 

Chapter 13.2.2 (page 186) and Figure 13.3 contain an example on how TreeGraph 2 source codes can 

be used within another application. Further information for developers and the complete source codes 

are available at http://treegraph.bioinfweb.info/Development. 

http://treegraph.bioinfweb.info/Development
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9.3 Results and discussion 

9.3.1 Interactively comparing trees 
As described in [76], combining annotations from different analyses of the same dataset (e.g. support 

values from a maximum likelihood and a Bayesian tree inference) into a single tree, while taking pos-

sible topological conflicts into account, is one of the key features of TreeGraph 2. Back then comparison 

was limited to trees containing the exact same set of terminal nodes, while the current version now 

allows to merge annotations from trees that only share a subset of terminal nodes. Figure 9.1 illus-

trates the extended merging algorithm used in recent versions of TreeGraph 2. 

 

 

Figure 9.1 The extended tree merging feature of TreeGraph 2 

The first tree (a) is the initially opened tree onto which support values from another tree (b) should be mapped. 
The merged result is shown in (c). The example shown here is based on that in figure 1 of [76], but each tree 
contains an additional terminal node (X in (a) and Y in (b)) that is not present in the other tree respectively. Both 
additional nodes are grouped together in a subtree with one other node (which is present in both trees). The 
nodes unique to one tree and the parts of the topology and support values that would not exist without them are 
shown in gray. 

When the topologies are compared to map the support values, only terminal nodes present in both trees are 
considered.  For that reason, no support values were mapped onto the branch leading to the subtree of C and X 
in (c). Since X does not exist in (b) there is no annotation in (b) supporting or contradicting this node. The same is 
true for the support value 0.89 in (b) on the branch leading to the subtree containing E and Y. Since E is the only 
node in this subtree that is also present in (a), there is no respective subtree in (a) this support value could be 
mapped to. 

As soon as the effects of all terminal nodes that are not present in all compared trees are filtered out, the tree 
merging still works as described in [76]. As a result, there are three supporting (green) and two conflicting (red in 
brackets) support values mapped in this example. The three supporting values are mapped since the subtrees 
they label are present in both topologies, e.g. (A, B) or (A, B, C, D, E). Note that the subtrees with the terminals A-
E in both trees differ in their internal topology and in containing different additional terminal nodes unique for a 
single tree, but still are identical regarding the shared sets of terminal nodes their root branch separates and 
therefore this split is supported by both compared analyses. 

The mapped conflicting values originate from topological differences between both trees. The value 0.85 in (b) is 
the support for the split between (C, D) and the rest of the terminals, while in tree (a) C is clustered closer together 
with A and B than with D. Therefore, the branch leading to (C, D) in (b) is in conflict with the branch leading to (A, 
B, C, X) in (a) and its support value is shown as a conflicting value there. The situation is similar for the branch 
leading to (D, E) in (a), with the difference that there are even two branches in (b) which define a split between D 
and E (the red branches carrying the support values 0.87 and 0.85). In such cases, TreeGraph 2 chooses the highest 
conflicting support value and maps it onto the conflicting tree.  
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Figure 9.2 The new interactive tree comparison feature in TreeGraph 2 

After having opened a set of trees to be compared, the user activates the “selection synchronization” feature to 
start interactive tree comparison (❶). By selecting one node in any of the trees (❷) corresponding nodes and 
conflicting support values are automatically selected in all other trees. In this example, the top right tree contains 
a matching node that separates the same two sets of terminal nodes from each other (❸). The closest matching 
node in the bottom left tree separates the terminals A-E from the rest, but since that tree also contains a conflict-
ing branch that separates A, B and C from D, its support value is highlighted as a conflicting support value (❹). 
The bottom right tree contains a different set of terminals, but TreeGraph 2 is still able to select the closest match-
ing node (❺) and shows that there are no conflicts, since no support values are highlighted. 

Besides the feature to create trees with merged annotations and its extension to support different sets 

of terminals, TreeGraph 2 now additionally offers an interactive tree comparison feature. A user can 

open a set of trees and select one or more (internal or terminal) nodes in one tree and all topologically 

matching nodes, as well as support values on branches in conflict, will be automatically selected in all 

other trees. Figure 9.2 shows an example of this new interactive comparison feature. While creating a 

❶ 
❷ ❸ 

❹ 

❺ 
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single tree document with combined support val-

ues from different analyses is useful for produc-

ing figures that show e.g. a consensus topology 

and how strongly it is supported by different 

analyses, the new interactive comparison feature 

allows researchers to easily inspect each topolog-

ical difference in all compared trees, while having 

all relevant topological information directly high-

lighted instead of having to focus on a single to-

pology. 

To make this comparison feature most conven-

ient, TreeGraph 2 now also allows to specify de-

fault node/branch data columns for node names 

and support values for each document. 

(Node/branch data column refers to a set of val-

ues (metadata) attached to a set of branches or 

nodes using the same string identifier.) If e.g. lab 

codes are stored as hidden branch data, these 

can be used to identify respective terminal nodes 

instead of the actual node names. Users can also 

choose between multiple sets of support values 

in a tree to be compared, by setting the default 

annotation column accordingly. 

In addition to extensions of the core tree compar-

ison features, further improvements and new 

features were added to make comparing tree to-

pologies easier to use. Figure 9.3 shows a new re-

rooting feature, which allows to select a set of 

terminal nodes and automatically calculates a 

rooting branch that separates the selected nodes 

from as many of the remaining terminals as the 

topology allows. If trees resulting from different 

analyses are compared using the interactive 

comparison feature, differences are easier to in-

spect, when all compared trees have similar root-

ing points. Since the topologies from the result-

ing analyses may differ, similar manual rooting 

may not be trivial in some cases and an automatic 

feature to find the best matching rooting points 

in all trees improves the visualization of topolog-

ical differences and to allows to distinguish them 

from “rerooting artifacts”. 

Besides different rooting points, a different order 

of nodes within subtrees can also hinder the vis-

ual inspection of topological differences. (Note 

that changing the order of nodes under their di-

rect parent node does not change the topology 

Figure 9.3 Rerooting by a set of terminal nodes 

A set of terminals (e.g., an “outgroup” of a phylogenetic 
analysis) can be selected and TreeGraph 2 provides the 
option to automatically reroot the tree in a way that 
would separate the selected taxa from the rest of the 
tree as far as the topology allows it. 

In some cases, multiple equally optimal rooting points 
may occur. TreeGraph 2 will then chose one of these 
points for rerooting and select the alternatives so that 
the user can optionally reroot there using the usual re-
rooting feature at a specific node. 

(Note the example shown here was selected to show a 
situation with alternative rooting points. Real world ex-
amples will often have less difficult topologies, allowing 
a clearer separation between the outgroup and the 
other terminals, as achievable here.) 
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of a tree.) To address this, an additional new feature was added to TreeGraph 2 that automatically 

sorts the terminal nodes of a tree by a defined order as far as topological restrictions allow this. The 

order can either be defined by another tree or a text file. Algorithm 9.1 describes how ordering is 

performed, while Figure 9.4 contains a concrete example, including a topological conflict. Both the 

new rerooting and the sorting leaf nodes features are especially useful for automatically processing 

trees from multiple alternative analyses to prepare them for interactive tree comparison (as described 

above). 

Algorithm 9.1 Sorting terminal tree nodes by a defined order which may be in conflict with the tree topology 

To sort terminal nodes as close as possible to a defined order, an average index is assigned to all internal nodes 
by calculating the arithmetic mean of the indices of their subnodes. (The index of terminal nodes is defined by the 
specified new order and the indices for internal nodes can then be calculated based in these recursively.) Both 
terminal and internal nodes are then sorted by their assigned new index. By calculating average index values for 
internal nodes, possible topological restrictions to the required positions of terminal nodes are balanced. 

Figure 9.4 shows an example. See http://r.bioinfweb.info/TGSortLeafNodesImpl for the implementation of this 
algorithm. 

Input: 

• The root node of the subtree to be sorted: r 

• A list of terminal nodes defining the favored order: O 
Output: 

• The number of nodes in the processed subtree: n 

• The arithmetic mean of the indices the terminal nodes in the processed subtree have in O: 𝑖 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

function [𝑛, 𝑖] := sortSubtree(r, O); 

    if r is a leaf node then 
        if r is contained in O then 
            n := 1; 

            𝑖 := O.indexOf(r); 
        else 
            n := -1;  // Indicate that this node is node is not present in the favored order. 
        end if 
    else 
        for all children c of r do 

            [𝑛𝐶 , 𝑖𝐶] := sortSubtree(c, O);  // Recursive call 

            if 𝑛𝐶 ≠ −1 then 

                Attach the value ( 𝑖𝐶
𝑛𝐶

) to c as the average index;  // Each tree node in TreeGraph 2 

                    // has an attribute map that allows to store feature specific information. 
                𝑛: = 𝑛 + 𝑛𝐶; 

                𝑖: = 𝑖 + 𝑖𝐶 ; 
            else 
                Attach ∞ to c as the average index; 
                      // Position nodes with undefined order at the end. 
            end if 
        end for 
    end if 
    Sort the children of r by their attached average index; 

    return [𝑛𝐶 , 𝑖𝐶]; 

end function 

 

 

http://r.bioinfweb.info/TGSortLeafNodesImpl
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The new tree comparison features are completed by an extended I/O functionality allowing to import 

support values from hot comments in Newick and Nexus [31] files and annotations from TreeGraph’s 

native XTG format or phyloXML [36]. (The version of TreeGraph published in 2010 was only able to 

import Newick and Nexus nodes names or branch lengths within the adding support values feature.)  

 

 

 

 

Figure 9.4 Example of sorting terminal tree nodes by a defined order using Algorithm 9.1 

Trees (a) and (b) are alternatives that could result from different phylogenetic analyses and contain the same set 
of terminal nodes. The nodes of tree (a) were resorted using the new “Sorting leaf nodes” feature of TreeGraph 2 
to match the terminal node order of (b). The resulting tree is shown in (c). The indices as they are calculated by 
Algorithm 9.1 are shown in green. On the terminal nodes the indices just match the position of the respective 
node in (b), while the calculated average indices are shown in the internal nodes. Node that by sorting all subtrees 
by these indices, the closest possible leaf order to match (b) was applied. Only the positions of nodes B and C in 
(c) (shown in red) still differ from the positions in (b) due to topological differences. 

9.3.2 Handling data for ancestral state reconstruction 
Since the last publication of TreeGraph 2 in 2010, a set of new features was added to process and 

display data from ancestral character state reconstruction. To be able to display multiple support val-

ues from different analyses (see 9.3.1), TreeGraph 2 always allowed to attach an unlimited number of 

labels to each branch, unlike most other tree editors. In addition to the initially supported text labels, 

pie chart labels have been added to display probability distributions among states of a reconstructed 

character. (Of course, pie chart labels can also be used to display any other type of additive data related 

to a tree node or branch.) Any annotations (node/branch data columns) imported into a TreeGraph 

document can be used as the source data of pie chart labels. Usually ancestral character state proba-

bilities would be stored in hidden node data columns. (See [76] for details on node/branch data anno-

tations.) 
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Figure 9.5 New visualization options for ancestral character state data in TreeGraph 2 

This screenshot of TreeGraph 2 shows two opened documents. The upper one contains a tree carrying different 
kinds of labels on each node. Besides simple text labels displaying support values for the topology, there are also 
three pie chart labels attached to each internal branch, which display the probabilities for the states of three 
different morphological characters, which have been reconstructed. If respective ancestral state probabilities are 
loaded (e.g., as hidden node data), TreeGraph 2 allows to easily insert pie chart labels that visualize the probabil-
ity distributions for each character on each internal node. 

The second document is a caption document used to label the tree in the first document that can be created by 
TreeGraph 2 automatically. It contains one branch carrying a description for each type of label. While above the 
branch the two types of support values are labeled, the pie chart labels below carry a title describing the character 
and captions for each section of the chart that label the character state. Different caption types are available as 
shown in Figure 9.6. 

Optionally the pie charts may contain a title and captions for each section, which can be used directly 

on pie charts within a document or in a separate caption document used to label a whole tree, as 

shown in Figure 9.5. A special feature allows to automatically create a caption document for any exist-

ing tree. Three alternative labeling strategies for pie chart sections are offered by TreeGraph 2 (Figure 

9.6). Some of them are more useful for labeling pie charts with only a few different sections, while 
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others are more useful to label pie charts with 

many small sections. Beyond that, TreeGraph 2 

offers an alternative feature to export a table 

with the names of all data columns used as 

source data for the pie charts together with their 

respective section colors to a text file. Such out-

put files allow to conveniently create captions 

with other applications, if more advanced or cus-

tom captions for trees are required.  

While pie chart labels are the basis for displaying 

ancestral state data, other new features allow 

more convenient importing and exporting of an-

cestral state reconstruction related data. Besides an extended table import feature and support for 

additional tree formats and annotations (see 9.3.3), functionality for directly reading and writing data 

of BayesTraits [246] are now available. (See Figure 9.7.) BayesTraits requires all internal nodes for 

which ancestral character states are to be reconstructed to be defined by an input commands enu-

merating all nested terminal nodes. Especially for large trees where all nodes should be reconstructed, 

it can be very time consuming to generate such commands manually. TreeGraph 2 offers a feature to 

generate terminal node definitions for selected or all nodes of a tree, which significantly simplifies 

running a BayesTraits analysis. Node definitions can either be copied to the clipboard to be pasted into 

the command line of BayesTraits or can be written to a file, if BayesTraits is run with a command file. 

If needed, TreeGraph 2 also allows to generate the required tree and terminal state table input files 

for BayesTraits using its features to export trees to different formats and to export tree annotations 

to table text files. Both features now allow more customization options (see also 9.3.3, page 147) to 

create files in the exact syntax BayesTraits requires. 

Another new feature allows to import the reconstructed character state probabilities from a 

BayesTraits output log file into tree annotations that can then be directly visualized in pie chart labels. 

This import feature is able to interpret the definitions of internal nodes in BayesTraits output format 

allowing to automatically map loaded data onto the correct internal node. If necessary, TreeGraph 2 

also automatically averages Bayesian samples of the reconstructed probabilities. Similar to generating 

BayesTraits commands, this feature saves the user a lot of time compared to importing such data by 

hand using manual node mapping and table reformatting. 

Together, the command export and the log import features provide a seamless integration between 

TreeGraph 2 and BayesTraits, as the workflow in the left of Figure 9.7 shows. 

  

Figure 9.6 Different labeling options of pie chart labels 

Pie chart labels in TreeGraph 2 may optionally have a ti-
tle and captions for all their sections. As illustrated here, 
three different labeling strategies are available, which 
have their advantages for different numbers and sizes of 
sections. 
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Figure 9.7 New functionality to import and export ancestral character state data with TreeGraph 2 
(caption on next page) 

 
Export 

BayesTraits 

commands 

 

 

 

 

BayesTraits: 

Other software: 

Table BayesTraits log 

Run BayesTraits analysis 

Run analysis with other re-

construction software 

Create table from output 

Import ta-

ble as anno-

tations 

Import 

BayesTraits 

results 

 

Exp
o

rt 
A

n
alysis 

Im
p

o
rt 



9  New features of the tree editor TreeGraph 2 to handle rich metadata and compare phylogenies 147 

 

Figure 9.7 New functionality to import and export ancestral character state data in TreeGraph 2 (continued) 

This diagram shows two workflows how data from ancestral character state reconstruction can be imported and 
visualized using new functionality of TreeGraph 2. Actions of this workflow performed in TreeGraph 2 are shown 
in blue, while external actions are shown in green. The workflow on the left side of the figure shows how an 
ancestral state reconstruction using BayesTraits can be done. First TreeGraph 2 is used to generate node defini-
tion commands for BayesTraits and after running the reconstruction there the output log file is parsed again by 
TreeGraph 2. 

Although no application-specific functionality is currently present for other ancestral state reconstruction soft-
ware, data can still be imported using the import table feature of TreeGraph 2, as shown on the right side of the 
figure. The table import feature has been extended to allow easier import as described in chapter 9.3.3 on page 
147. 

At the end of both workflows, the reconstructed ancestral character state probabilities are stored as annotations 
in the tree document and visualized using pie chart labels (see screenshot at the bottom of the figure). 

9.3.3 Extended I/O functionality 
TreeGraph 2 initially supported reading and writ-

ing phylogenetic trees and attached metadata in 

Newick [34], Nexus [31] and its native XTG format 

[247], as well as reading from phyloXML [36]. 

Current versions additionally allow to import 

trees and metadata from NeXML [35], using JPhy-

loIO (chapter 2). Unlike other phylogenetic file 

formats, NeXML includes an RDF-based 

metadata model allowing to use predicates from 

externally defined ontologies to link annotations, 

e.g., to tree nodes or branches. Such annotations 

may also be nested. (More details can be found 

in the chapters 2.2.4 or 9.3.6.) Currently, Tree-

Graph 2 generates node/branch data column 

names from these predicates to import the 

linked annotations into its data model. Future 

versions will replace the current node/branch 

data column model by this RDF-based metadata 

model. This way the application will support link-

ing metadata using predicates from externally 

defined ontologies directly within its interface 

and make full use of the functionality for format-

independent reading and writing of trees with 

such metadata provided by JPhyloIO. (See chap-

ter 9.3.6 for more information on the currently ongoing refactoring of TreeGraph 2’s metadata model.) 

To further improve the metadata support of TreeGraph 2, unnamed hot comments (as used in Newick 

and Nexus files by some applications) are now supported in addition to named hot comments (as used 

by TreeAnnotator of BEAST [237] or MrBayes [73]) which were already supported before. (Since Newick 

strings do not support metadata in their general definition but allow comments at any position, so-

called hot comments were introduced, which contain metadata within a comment. See chapter 2.2.4 

for further details.) 

For exporting trees, a new option was introduced that allows to specify how spaces in node names 

should be treated when writing to Newick or Nexus. Some applications expect names with spaces to 

be within quotation marks, while others only support spaces replaced by underscores. For exporting 

Figure 9.8 The export trees dialog of TreeGraph 2 

This dialog is used to export phylogenetic trees to 
Newick and Nexus files. Below the file chooser are the 
new options for the format of node names and optional 
Nexus elements. 
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to Nexus, the user now additionally has the option to select whether a Nexus TAXA block or a transla-

tion table within the TREES block should be included in the exported file. (See [31] or chapter 2.2.3 for 

more details on Nexus blocks.) The new options increase interoperability, since other applications of-

ten support only one specific variant of Newick or Nexus and the user now has a choice and full control 

over which variant is exported by TreeGraph 2. Figure 9.8 shows the new options in the user interface. 

To be able to store date related to new functionality like default node/branch data columns (chapter 

9.3.1) or pie chart labels (chapter 9.3.2) the XTG format was extended multiple times. The current 

version 2.14.0 uses XTG version 1.5. 

Besides reading and writing metadata from and to tree formats and handling ancestral character state 

data (chapter 9.3.2), TreeGraph 2 is also able to import and export annotations from table files. The 

initially published version required each imported table to have a column containing special unique 

node names generated by TreeGraph 2 in order to map rows of the table to nodes of the tree. If such 

a table was not previously created with TreeGraph 2 and then edited, it was very time consuming to 

perform manual node mapping by adding the respective unique node names to a table. To solve this 

problem the import table feature does not require a column of unique node names anymore but allows 

any node/branch data column in the tree (e.g., node names, scientific taxon names or lab codes) to act 

as the key column, which can be selected on import. This way mapping table rows to tree nodes can 

be performed using any column of the table together with any node/branch data column in the tree 

containing the same values, which makes this feature much more flexible and easy to use. 

Exporting annotations to table files now additionally allows including column headings and selecting 

columns to export from a large set of available columns has been made more convenient in the graph-

ical user interface. 

For exporting trees to the vector graphic format SVG, TreeGraph 2 now allows to specify if texts should 

be exported as shapes or texts, allowing more flexibility when, e.g., fonts are used that may not be 

present on other systems. 

9.3.4 New ways to calculate metadata 
Managing metadata attached to nodes and branches in a phylogenetic tree is a key aim of TreeGraph 

2. Besides the new functionality for visualizing, reading and writing metadata described in the previous 

chapters, functionality to calculate annotations from other annotations has also been extended. The 

version of TreeGraph 2 published in 2010 already offered a feature to calculate numeric or textual 

values attached to a node or branch by a user-defined expression that allows references to other an-

notations of the same node or branch. A set of fundamental mathematical functions was available for 

use in such equations. 

Various extensions of this “calculate node/branch data” feature have been made to date. Multiple new 

functions for text manipulation, like extracting or locating subsequences or converting to upper or 

lower case, have been added and allow to create and manipulate textual values depending on other 

attached metadata. Beyond additional fundamental mathematical functions that are now available, a 

new type of numeric functions has been introduced that takes a set of values as parameters. It can 

either be applied to a simple set of values directly expressed in the equation, a set of references to 

other attached values, or to a node/branch data column as a whole (one set of values attached to all 

nodes or branches of a tree). The available functions of this type allow, e.g., to calculate the mean 

value, the sum or the maximum of a set of values. 

Topological functions, like isRoot() or indexInParent() allow to perform calculations that take 

the topological position of each node into account, while the new function getParentValue()allows 
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to make references to metadata attached to parent nodes instead of just allowing references to values 

attached to the node or branch that is currently calculated. 

Another addition to the feature that enables new use cases is the dynamic calculation of the target 

column. The previously published version of TreeGraph 2 allowed to statically specify one existing or 

new node/branch column into which the calculated values for each node or branch were stored. The 

current version alternatively allows to actually calculate the name (ID) of the target column. To achieve 

this, two expressions can be specified when the “calculate node/branch data” operation is executed; 

one is used to calculate the result and the other to calculate the name of the column to store it. The 

calculated name may refer to an existing column (to overwrite the current value) or a new column. 

The type of new columns (text label, hidden node data or hidden branch data) can be specified. The 

screenshots on the left of Figure 9.9 show the two text fields to enter both expressions and the options 

the select the type of new columns in the respective dialog. (Note that the option to calculate the 

target column is not used in the concrete example shown in the figure.) Dynamically calculating the 

target column for each node or branch allows to store values in different columns depending on the 

attached metadata or the topological position of a node or branch. This allows to solve new types of 

problems using this feature that could not be addressed before. (Follow the link given below for a 

concrete example.) 

Figure 9.9 shows a usage example of some of the new functionality using getParentValue() and 

the maximum function applied to a whole node/branch data column to calculate the age of all internal 

nodes of a tree. An operation like this would not have been possible without the extensions made to 

the “calculate node/branch data” feature. The full documentation of all new functionality can be found 

at http://r.bioinfweb.info/TGCalc, including an additional usage example showing how to use the func-

tionality to calculate the target column as described above to generate source data to be displayed 

with pie chart labels (cf. chapter 9.3.2). 

  

http://r.bioinfweb.info/TGCalc
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Figure 9.9 Example usage of the extended calculate node/branch data feature to calculate the age of internal 
tree nodes with TreeGraph 2 

This example shows how the extended feature for calculating node/branch data can be used to calculate and 
display the ages of internal nodes from branch lengths that define the time passed along them in two steps. Key 
elements of the screenshots are highlighted in orange. 

In the first step (screenshots in the upper row) a new hidden node data column with the name “ageFromRoot” is 
calculated using the expression shown in the upper left screenshot (both highlighted in orange). For each node, 
TreeGraph 2 calculates the sum between the value of the column “ageFromRoot” that was previously calculated 
for the parent node and the length of the branch leading to the current node. The function getParentValue() 
takes two parameters. The first is the name of the node/branch data column, while in this example the keyword 
THIS is used to indicate that the column that is currently calculated should be used. The second parameter is a 
default value that should be returned if no parent node is available, which happens when calculating the value 
for the root. getValue() is a similar function that returns the value of another node/branch data column on the 
currently calculated node. Its only parameter is again the name of the column, while the keyword LENGTH used 
here specifies that the respective branch length should be returned.  

In the second step the actual age of each node is calculated (screenshots in the bottom row). This time the target 
column to be created is a text label column with the name “ageLabels”, as shown in the bottom left screenshot. 
The difference to the values calculated in step one is that the time should now be measured from terminal nodes 
and not from the root. (The root should be the oldest node, while the terminal nodes exist in the present, repre-
senting recent taxa.) To achieve this the previously calculated “ageFramRoot” value of each node is subtracted 
from the maximum value of all nodes using the expression shown in the dialog under (b). The maximum value for 
“ageFromRoot” in all nodes is the time that passed when moving from the root to any terminal node and is cal-
culated by the maxOfLines() function, which takes the source column as its only parameter. Since the target 
column was a set of text labels, the node ages are directly displayed above each branch as shown in the bottom 
right screenshot. Note that calculating the age in two steps was necessary, since calculations are always per-
formed from the root to the terminals of a tree. 

The full description of this and other examples, including downloadable example files can be found under 
http://r.bioinfweb.info/TGCalcExamples. 

 

 

 

 

 

http://r.bioinfweb.info/TGCalcExamples
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9.3.5 Additional new features and improvements 
Besides the new and extended features described above, some general improvements compared to 

the initially published version were made. The text output in tree documents on the screen and when 

exporting to pixel graphic files is now anti-aliased and more precise, avoiding artefacts resulting from 

different types of fonts. 

A new feature allows to automatically collapse internal nodes to polytomies depending on their sup-

port value. This feature is useful when only nodes with a minimal support should be shown in a figure 

and saves time especially for large trees. Other topological features like manually collapsing single 

nodes, separating branches and rerooting now preserve branch length information. 

Editing the text or captions of nodes or labels is now possible for multiple elements at the same time, 

which is, e.g., useful of the caption or title for a set of pie chart labels should be changed. 

9.3.6 Ongoing extension of the metadata model 
As already briefly mentioned in 9.3.3, future versions of TreeGraph 2 will use a metadata model based 

on the Resource Description Framework (RDF) (as it is also supported by NeXML [35]) as a replacement 

for its current node/branch data column model (cf. explanation in chapter 9.3.1). 

9.3.6.1 Status 
Implementation of support for the new metadata model is currently ongoing in a separate develop-

ment branch. The data structure of TreeGraph 2 has already been fully adopted and a concept to com-

bine the old column-based metadata attachment with the new nested RDF statements (see Figure 

9.10) has been developed and implemented. The graphical user interface still needs to be extended to 

allow direct editing of RDF metadata attachments. Editing would currently only be possible directly in 

processed NeXML files. After the GUI-extension is completed as well, the new functionality will be 

incorporated into a regular release of TreeGraph 2. Details on that can be found in chapter 9.3.8.1. 

Source codes of the latest version with the new metadata model are available at http://r.bio-

infweb.info/TGMetadataBranch. 

9.3.6.2 Advantages of the new model 
RDF allows formulating statements about resources in a standardized and machine-readable subject-

predicate-object form. Resources modeled by TreeGraph 2 are whole phylogenetic trees, their nodes 

or branches and attached metadata objects. A support value could be attached to a branch using a 

predicate, which unambiguously describes their relation. In this case, the branch would be the subject 

and the support value the object. Figure 9.10 shows a set of examples for such RDF statements. The 

branch leading to the subtree containing “Taxon 1” and “Taxon 2”, e.g., carries the support value “92” 

that is linked using the predicate sup:maxLikelihood. 

So far, this may not seem very different from the previous metadata model of TreeGraph 2 that just 

used any textual key (i.e., the node/branch data column heading) to describe the connection be-

tween a node or branch and a metadata value, but the new model has two important advantages. 

First, an RDF predicate is not a simple string, but a globally unique URI with an externally defined 

meaning. A set of predicates together with their meanings form an ontology. Different ontologies ex-

ist both inside and outside of life science and define terms relevant for a certain field or application. 

Table 9.1 (page 155) contains examples for ontologies useful to link metadata expected to be pro-

cessed with TreeGraph 2. Compared to the current node/branch data column model, RDF-predicates 

from externally defined ontologies allow to unambiguously and machine-interpretable characterize 

the relationship between attached metadata and nodes or branches of the tree. This increases acces-

sibility of data and reproducibility of respective studies, also by allowing automatically searching and 

interpreting files produced with TreeGraph 2. 

http://r.bioinfweb.info/TGMetadataBranch
http://r.bioinfweb.info/TGMetadataBranch
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The second advantage over using simple string keys is that the new RDF-based model allows nesting 

annotations, e.g., to group metadata. Figure 9.10 shows an example where different taxonomic infor-

mation is nested under an anonymous internal resource metadata node. That internal metadata node 

is linked to a node of the phylogenetic tree using a predicate describing taxonomic information, while 

the nested genus and species names are linked to that internal node using specific genus and species 

predicates. (Refer to the figure description for further details.) The option to nest metadata allows to 

describe its relations more precisely and to present larger amounts of metadata in a clear way. (Note 

that we use the term phylogenetic tree here to differentiate the actual tree opened in TreeGraph 2 

from the RDF trees used to attach metadata to single branches or nodes, as shown in Figure 9.10. 

Anyway, everything described here is not limited to be used with phylogenetic trees but can also be 

applied to all other types of trees that may be edited with TreeGraph 2.) 

Although predicates from externally defined ontologies have the advantages described above and 

would allow to sufficiently describe any information on the relation between metadata elements and 

elements of a phylogenetic tree, the new metadata model of TreeGraph 2 will still allow to additionally 

specify free strings as column names. This combination was chosen for the following two reasons. First, 

the new data structure must support loading XTG files created with previous versions of TreeGraph 2 

to ensure backward compatibility to the old node/branch data column model. There is no automatic 

way to interpret the meaning of freely user-defined column titles of the old model to convert them 

into predicates of existing ontologies. Second, users may need to describe relationships that are not 

yet modeled by any existing ontology. In fact, there is still a need for extending existing ontologies to 

offer predicates to attach common phylogenetic data to tree nodes and branches. In such cases, we 

cannot force users to first define a formal ontology in order to import data into our tree editor. That 

being said, it should be noted that data attached using free string keys instead of formally defined 

predicates will not benefit from any of the advantages regarding accessibility and reproducibility as 

described above. As the number of available ontologies in life sciences increases and the existing ones 

are extended, cases where user-defined string keys are the only way to describe a relation should be-

come less frequent in the future. 

This new metadata handling functionality is an important step to address demands of the age of omics, 

big data and the semantic web. Manually inspecting and collecting relevant data, e.g., for metastudies, 

may often be impossible for researchers, due to its sheer volume, which makes meaningful and unam-

biguously annotating biological data a central task for the future to allow automatic data retrieval and 

interpretation. To facilitate reuse of phylogenetic trees and attached data, user-friendly technology 

for annotating is required [22], which in our opinion needs to include tree editors. When the remaining 

GUI extensions are completed, TreeGraph 2 would be the first tree editor to address these needs by 

offering full support for RDF-based annotations from externally defined ontologies and making full use 

of the NeXML format.  
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Table 9.1 Biological ontologies with potential use modeling the attachment of metadata using TreeGraph 2 

This table lists examples for externally defined ontologies that can be relevant for users of future versions of 
TreeGraph 2, since they provide predicates that can link data to nodes and branches or trees as a whole. It is an 
edited and extended version of Table 2 from the Bachelor thesis of Phoebe Brech, which was supervised by the 
author of this thesis [248]. In the area column G refers to “general” and B to “biological”. 

Ontology Purpose Area Citation URL 

Dublin Core Can be used to, e.g., refer-
ence publications. 

G  http://dublincore.org/docu-
ments/dc-rdf/ 

Biological Col-
lections Ontol-
ogy 

Describes biodiversity data in-
cluding museum collections 
and ecological surveys 

B [249] https://github.com/tucotuco/bco 

Comparative 
Data Analysis 
Ontology 
(CDAO) 

Describes concepts and rela-
tions relevant to evolutionary 
comparative analysis 

B [250] https://github.com/evoinfo/cda
o 

EDAM Describes bioinformatics con-
cepts, including types of data 
and file formats 

B [251] http://edamontology.org 

Environment 
Ontology 

Describes biomes, habitats, 
environmental processes for 
genomic and microbiome-re-
lated studies 

B [252] http://environmentontology.org/ 
https://github.com/Environmen-
tOntology/envo 

Gene Ontol-
ogy 

Describes genes and gene 
functions 

B [253,254] http://www.geneontology.org/ 

Genotype On-
tology 

Describes the level of genetic 
variation in genotypes 

B  https://github.com/monarch-initia-
tive/GENO-ontology/ 

MIAPA Ontol-
ogy 

Formalizes annotation of phy-
logenetic data per the MIAPA 
metadata reporting standard 

B [40] http://www.evoio.org/wiki/MIAPA 

Phylogenetic 
Ontology 
(PHYLONT) 

Ontology for phylogenetic 
analysis 

B [255] https://bioportal.bioontol-
ogy.org/ontologies/PHYLONT 

Phylogenetics 
Ontology 
(PHAGE) 

Generally models the steps of 
a phylogenetic analyses 

B  https://bioportal.bioontol-
ogy.org/ontologies/PHAGE 

Plant Ontol-
ogy 

Links plant anatomy, mor-
phology and development to 
genomics data 

B [256] https://github.com/Plante-
ome/plant-ontology 

Protein Ontol-
ogy (PRO) 

Describes proteins and their 
relation to one another  

B  http://proconsortium.org/ 

 

http://dublincore.org/documents/dc-rdf/
http://dublincore.org/documents/dc-rdf/
https://github.com/tucotuco/bco
https://github.com/evoinfo/cdao
https://github.com/evoinfo/cdao
http://edamontology.org/
http://environmentontology.org/
https://github.com/EnvironmentOntology/envo
https://github.com/EnvironmentOntology/envo
http://www.geneontology.org/
https://github.com/monarch-initiative/GENO-ontology/
https://github.com/monarch-initiative/GENO-ontology/
http://www.evoio.org/wiki/MIAPA
https://bioportal.bioontology.org/ontologies/PHYLONT
https://bioportal.bioontology.org/ontologies/PHYLONT
https://bioportal.bioontology.org/ontologies/PHAGE
https://bioportal.bioontology.org/ontologies/PHAGE
https://github.com/Planteome/plant-ontology
https://github.com/Planteome/plant-ontology
http://proconsortium.org/
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Figure 9.10 The RDF-based metadata column model currently implemented for future versions of TreeGraph 2 

The left part of this figure shows an example of a phylogenetic tree and its attached metadata as it is modeled in 
the current development of TreeGraph 2. The right part shows how this data from the single RDF trees is combined 
and displayed in a node/branch data table. 

On the left, a phylogenetic tree is shown in blue, while the green trees attached to its nodes and the orange trees 
attached to its branches are the RDF metadata trees. Attaching metadata to nodes or branches makes a topo-
logical difference if trees are rerooted. (Note that the green and orange trees are used in this figure to illustrate 
how metadata is modeled but it will not be displayed this way in by TreeGraph 2.) Metadata is attached using 
RDF predicates from three fictitious name spaces (tax, sup and ncbi) that are displayed above the branches. 

All predicate URIs in this figure are represented as CURIEs (compact representations of URIs), which consist of a 
namespace part and a local part. The predicate sup:maxLikelihood, e.g., has the local part maxLikeli-

hood and its namespace is defined by sup, which is a local name for a namespace that needs to be declared 

within each document. If it would refer to http://example.com/supportValues/, the CURIE sup:maxLikeli-

hood would be equal to the URL http://example.com/supportValues/maxLikelihood. 

The nesting of metadata is illustrated by the respective tree topologies. Each terminal node has genus and species 
names attached, which together are grouped within an anonymous resource metadata element. This resource 
metadata element is in turn connected to a respective tree node using the predicate tax:taxonomy. In general, 

the nodes and branches of the phylogenetic tree (blue) act as the RDF subjects to which literal or resource 
metadata is linked using predicates. Resource metadata may then itself be the subject of a nested RDF statement 
as in the mentioned example of the taxonomic information. 

The screenshot on the right shows the tree and its metadata table from Figure 9.10 opened in the current devel-
opment branch version of TreeGraph 2. A column in the node/branch data table in uniquely identified by the path 
through a metadata tree. An element of such a path consists of a predicate and its index, if the same predicate is 
used multiple times below the same subject. 

9.3.7 Comparison to other tree editors 
The following subchapters provide an overview on alternative available software that is able to per-

form tasks similar to the different new features of TreeGraph 2 and how it differs. Comparing the gen-

eral functionality of TreeGraph 2 that was already available before the last publication in 2010 is be-

yond the scope of this chapter. Such a comparison can be found in chapter 8 (page 128, [76]) or in 

more recent publications of some other tree editors. 

9.3.7.1 Interactive tree comparison 
Multiple tools for comparing and visualizing differences between alternative phylogenetic trees have 

been developed in the past and focused on different aspects. TreeJuxtaposer [257] was published in 
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2003 and focused in the visual comparison of large phylogenies and displays branches of selected sub-

trees in different colors to illustrate the distribution of nodes in a subtree of a tree A over the topology 

of a tree B. It does not seem to be maintained anymore and requires an old version of the Java library 

JOGL to run, which is not included in the download and not available from the JOGL download page 

anymore. In addition, the recommended Java webstart application has not been adjusted to recent 

Java security requirements and is therefore difficult to start and then still missing the JOGL depend-

ency. 

Compare2Trees [258] was published two years later and can compare the topologies of two different 

trees, while the similarity of two internal branches is visualized by their width. The wider a branch is, 

the more differs its subtree from its most similar branch in the compared tree. Its accessibility suffers 

from the similar issues as described for TreeJuxtaposer. 

ViPhy [259] allows to topologically compare more than two trees simultaneously as TreeGraph 2 also 

does. In addition to highlighting selected corresponding nodes in the different trees, it provides addi-

tional comparison features like a global pairwise tree distance matrix and comparison score distribu-

tion diagrams. Its documentation is though very limited, leaving it unclear whether different sets of 

terminal nodes are supported. 

Phylo.io [260] (not to be confused with the I/O library JPhyloIO described in chapter 2) is a recent tree 

comparison software that was developed in parallel with the interactive comparison feature of Tree-

Graph 2. It is a web application that focusses or comparing large phylogenies similar to TreeJuxtaposer 

but collapses subtrees to triangles and indicates their topological similarity by their color. It offers fea-

tures for rerooting and sorting nodes to simplify visual comparison, similar to the functionality Tree-

Graph 2 provides (see chapter 9.3.1). 

Visual comparison of a very large set of topologically similar trees can be done using DensiTree [261]. 

It draws all compared trees (e.g. samples from a Bayesian phylogenetic inference) half transparent in 

top of each other to provide an overview of the distribution of different topologies in a set. 

TreeVersity [262] was developed to compare changes in all types of hierarchical data visualized as a 

tree over time. Its main applications lie outside of phylogenetics and biology and its focus is to visualize 

the changes of numeric values attached to a tree node (e.g. funding of different departments and their 

substructures). Although comparing topologies of phylogenetic trees and maybe even attached nu-

meric values of biological relevance would be principally possibly, at least with its first version, its ca-

pabilities of comparing topological changes are limited as it does only recognize deletions and inser-

tions of nodes and does not model node movement, which is a key aspect when comparing alternative 

phylogenies and is the focus of the comparison functionality of TreeGraph 2. TreeVersity 2 [263] fo-

cuses even more on comparing changes of attached values, rather than tree topologies and therefore 

has only very limited overlap with TreeGraph 2. 

CompPhy [264] is an online workbench helping researchers to work together on phylogenetic trees. 

Different users can add and modify trees simultaneously and the system displays the differences based 

on a consensus tree. Since the focus is on providing a shared working environment for distributed team 

members and not mainly in the tree comparison, the visualization options are more limited than in the 

other software mentioned here. 

The main goal of the new interactive comparison features of TreeGraph 2 is to incorporate its existing 

algorithm to combine support values from different analyses while showing topological conflicts into 

an interactive feature. None of the other software mentioned here takes support values into account 

when comparing trees. Beyond that, most of the other applications are specialized on tree comparison 

and none of them is a fully functional tree editor. As a result, other data attached to nodes and 
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branches and the different ways of visualizing it, which are available in TreeGraph 2, cannot be dis-

played by the other software together with the comparison. The variety of tree formats supported by 

TreeGraph 2 also makes comparing different trees easier, while none of the other tools supports the 

same number of formats, most of them support only one. Most of the tools are able to compare only 

two trees as the same time, while TreeGraph 2 allows multiple trees to be incorporated in an interac-

tive comparison. 

Software like TreeJuxtaposer and Phylo.io has advantages in comparing large trees, while using it with 

small or medium-sized trees can be inefficient in some cases, since less terminal nodes are shown on 

the screen at the same time than in TreeGraph 2, due to the dynamic collapsing functionality of Phylo.io 

or the focus on displaying the names of few selected taxa in TreeJuxtaposer. As mentioned in its 2010 

publication already, TreeGraph 2 does not focus on displaying very large trees on a small space, but on 

providing advanced functionality for visualizing trees in detail. A similar principle applies to DensiTree, 

which is very useful for getting an overview on topological differences within a large set of trees but is 

less useful to inspect differences between a smaller number of trees in detail. 

9.3.7.2 Handling ancestral state reconstruction data 
To the best of our knowledge, there is currently no other tree editor available that can read the output 

of an ancestral state reconstruction performed with BayesTraits [246] and display an unlimited number 

of character state distributions on every branch. BayesTrees [265] is an application designed to handle 

Bayesian samples of trees and is able to export node definitions for BayesTraits, but cannot read or 

visualize the results of a BayesTraits analysis. It also lacks functionality to export node definitions for a 

whole tree in one step, as TreeGraph 2 offers them, but instead requires the user to double click every 

tree node to be reconstructed. 

Mesquite [111] is able to visualize ancestral character state distributions as pie charts on every node if 

its “Balls and sticks tree form” is selected. Alternative “tree forms” exist only for visualizing discrete 

states for each node. Displayed character state data need to be reconstructed with another module of 

Mesquite before, while importing data from BayesTraits is not supported. Only a single pie chart can 

be displayed on each internal node at a time, while TreeGraph 2 is able to display an unlimited number 

of different character state distributions in combination with other labels on each branch. 

PhyD3 [266] is a recently developed tree viewer that now also supports displaying pie chart labels 

based on data stored in phyloXML[36], but does not support reading or writing BayesTraits data or 

importing general metadata from NeXML [35], which could be displayed using pie chart labels. (Like 

TreeGraph 2, PhyD3 also provides a set of other visualization options for metadata other than ancestral 

character states, but provides, e.g., fewer editing options.) 

WARACS [267] is collection of Python scripts that make use of TreeGraph 2 to visualize ancestral state 

reconstruction data obtained using Mesquite and BayesTraits. It has been developed independently at 

the same time as the BayesTraits import feature of TreeGraph 2. It does not offer import functionality 

for BayesTraits that is not also offered by TreeGraph 2 and is not able to create node definitions, since 

it has no graphical interface. It still is a relevant complement, since it allows to import data recon-

structed using Mesquite into XTG files that can then be further processed using TreeGraph 2. 

9.3.7.3 Extended metadata model 
Although the standard version of Mesquite does not support NeXML [35], a plugin can be downloaded 

that allows to read and export the format. When a NeXML file is opened, it is first converted to Nexus 

by the plugin and then loaded into Mesquite, while literal metadata annotations of nodes and branches 

are converted into hot comments. There seems to be no way to display or edit the metadata within 

the tree viewer of Mesquite and when exporting an opened NeXML file again, the metadata is not 
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contained in the NeXML output anymore. Nested annotations seem to be ignored during the import 

already. 

Dendroscope [87] uses NeXML as its main format, but does not model attached metadata in GUI. When 

writing files, it uses the meta tags of NeXML to store application-specific formats, but its output is not 

fully compliant to the NeXML standard as also stated in the NeXML website, e.g. because different 

format values are combined in a single string literal metadata annotation. 

Other tree editors, like Archaeopteryx [268], TreeViewJ [244] or iTOL [269] support phyloXML [36] and 

are able to display and edit different amounts of its predefined annotations. PhyD3 [266] additionally 

introduces a set of custom tags that it can visualize in addition. 

Although APIs exist that allow to visualize phylogenetic trees and read NeXML (e.g. DendroPy [99], 

jsPhyloSVG [270] or ETE [122]) and can handle metadata with data structures of the respective pro-

gramming languages, these are libraries to develop scripts and applications and are not a replace-

ment for a stand-alone tree editor that directly allows biologists to process phylogenetic trees and 

respective metadata. 

None of the currently available tree editors allows to freely attach metadata to nodes and branches of 

phylogenetic trees, making use of externally defined ontologies and the RDF standard. Applications 

supporting only metadata from phyloXML are limited to the types of data explicitly modeled by the 

format (or some defined extensions in PhyD3) and the few programs that support NeXML do not make 

significant use of available metadata or model it in their GUIs. Even the metadata model of currently 

available versions of TreeGraph 2 goes already beyond the capabilities of most other tree editors as its 

NeXML import functionality is already able to handle metadata ignored by the other available applica-

tions. The extended metadata support, as described in chapter 9.3.6, will be a significant advantage 

for the phylogenetic community, as there is currently no software available that allows user-friendly 

annotation to facilitate reuse of phylogenetic trees and attached data for automatic data retrieval and 

interpretation.  

9.3.8 Future development 
We will continue to develop and maintain the application in the future, while the help of new devel-

opers is welcome, who may now also contribute to the source repository via GitHub. (See chapter 9.5.) 

Besides the completion of implementations related to the new metadata model described in chapter 

9.3.6, the future development may additionally focus on two major aspects: Increasing scriptability 

and integrating the functionality of TreeGraph 2 with that of PhyDE (chapter 6) to create a complete 

phylogenetic workbench. All three aspects will be described in further detail below. 

9.3.8.1 Implementing remaining components to release the new metadata model 
As described in chapter 9.3.6 the metadata model of TreeGraph 2 is currently refactored to support 

meaningful predicates from externally defined ontologies to attach metadata to trees and their nodes 

and branches. In order to integrate the new functionality from the development branch into the main 

branch and release it, respective GUI components to visualize and edit metadata attachments remain 

to be implemented. As it was shown in Figure 9.10, the RDF based metadata model will still allow to 

use the previous node/branch data IDs (metadata column titles) in combination with RDF predicates 

to ensure backwards compatibility and to allow handling of metadata which cannot be described by 

currently available ontologies sufficiently.  

We are of course aware of the risk that users may continue to use these custom column titles instead 

of meaningful predicates from available ontologies because they do not know about them or because 

they do not want to invest additional time into proper annotation, if both options are provided as 
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alternatives. While considering proper annotation (to increase data accessibility and reuse) as im-

portant is a general issue that would have to be addressed by the scientific community as a whole (e.g., 

by databases, journals or funding agencies requesting metadata annotations following certain minimal 

standard), we will try to address these problems by making the access to existing ontologies as easy as 

possible from within the GUI of TreeGraph 2. The key component for this is the node/branch data input 

component that will be extended in order to complete the basic feature set of the metadata model 

development branch. The current public release of our tree editor allows users to specify metadata 

columns in various dialogs (e.g., when importing tables or annotations of other trees) by selecting be-

tween text labels, hidden node or branch data and entering a column title (node/branch data ID). The 

extended GUI component for specifying metadata columns would additionally allow to enter one or 

more RDF predicates formally describing the relation of the metadata to the phylogenetic tree. (The 

set of predicates correspond to the path from the root to an attached value in an RDF tree as shown 

in the examples in Figure 9.10.) The key feature would be content assistance allowing the user to di-

rectly select predicates from available ontologies instead of entering them manually. These proposed 

predicates might already be filtered or ordered, e.g., by how good they fit to the data type of the 

respective value. E.g., predicates related to geographical species distributions could be proposed first 

for values formatted as coordinates. Such a feature can be implemented similar to, e.g., content assis-

tance in programming environments that propose variable and method names that best match the 

current context. This way, users of TreeGraph 2 would automatically be made aware of existing predi-

cates in available ontologies and inhibitions to use them would be decreased. Such a feature will also 

require information on available predicates of relevant ontologies, like the ones listed in Table 9.1. 

TreeGraph 2 will need to be shipped with respective data and functionality to read ontology definitions 

from respective formats and databases. In addition, the user could be offered a search field to query 

the NCBO Ontology Recommender [38] within TreeGraph 2 to search for relevant ontologies, which 

would be very simple to implement but already significantly ease up finding appropriate ontologies for 

the user’s data. 

With the completion of support for the extended metadata model, full support for reading, writing and 

editing of phylogenetic trees in NeXML with all attached metadata will be possible. To maximize in-

teroperability, NeXML will then become the main format of TreeGraph 2 and replace its current XTG 

format. Reading XTG files will still be support for downwards compatibility, the format will not be fur-

ther developed and become deprecated. 

9.3.8.2 Increasing scriptability 
Since TreeGraph 2 is open-source, it is in principle possible to develop custom Java applications using 

its functionality, as it is done in a currently ongoing study (chapter 13.2.2, page 186). Additionally, a 

number of command line parameters to convert between different tree and image formats is available 

that allow TreeGraph 2 to be integrated into automated workflows. What is lacking, is a defined and 

stable API that provides access to the individual features of the application, especially those that make 

it unique, like combining support values from alternative analyses (chapter 9.3.1) or visualizing ances-

tral character states (chapter 9.3.2). Scripting APIs to process phylogenetic trees have become increas-

ingly popular among biologists in recent years, as the publication and usage of, e.g., ggTree [271] for 

R or the ETE API [122] for Python show. Since TreeGraph 2 is written in Java, the obvious first step 

would be to provide access to all key features with a properly versioned (cf. [103]) and documented 

Java API. This could be done by separating the current code base into API classes designed to be easily 

accessed by other developers and to remain stable over time and application classes, which are not of 

much interest for other developers and can therefore be freely changed in the future development. 

The API would then also have a versioning that is independent of the application versioning. This can 

be achieved relatively easy since only slight changes to the existing code would be necessary. 
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To make the features of TreeGraph 2 available for simple use in custom scripts, the second step would 

be to provide wrappers for the TreeGraph Java API in scripting languages like Python or R, which is 

possible using, e.g., Py4J [272] or rJava [273]. Such APIs would make TreeGraph 2’s functionality avail-

able for a larger group of users and addresses the trend that an increasing number of biologists also 

uses custom scripts to process and create phylogenetic trees instead of directly interacting with GUI-

based tree editors, especially when working with large data sets and repeated tasks. Although extend-

ing TreeGraph 2’s scriptability would be an important advance, it should be noted that the further 

development of the GUI-based application remains equally relevant. On the one hand, many users will 

still not be able or willing to develop custom scripts to fulfill their needs in general, and on the other 

hand functionality like the interactive tree comparison (as described in chapter 9.3.1) requires a GUI-

based application and cannot be performed by creating an output of a script. 

9.3.8.3 Integrating TreeGraph 2’s features into a larger phylogenetic workbench or the Tax-

onomic Editor 
Typical phylogenetic data files, e.g. in Nexus [31] or NeXML [35] format, often contain phylogenetic 

trees together with related multiple sequence alignments and taxon lists. Handling such combined 

phylogenetic data sets (as they are submitted to, e.g., TreeBASE [44]) would be a lot easier with a 

unified application that allows to edit all these data types. Together, TreeGraph 2 and PhyDE/PhyDE 2 

(chapter 6)/LibrAlign (chapter 3) provide all necessary functionality and could be combined to a phy-

logenetic workbench. Such a unified application would not necessarily be a replacement for the exist-

ing single applications, since it might be more complex to use for people interested in just one of the 

data types, and require more resources or possibly longer start times, but it could be provided as an 

alternative. It should be implemented in a way that all functionality from PhyDE 2 and TreeGraph 2 

(i.e. the document windows and all actions) is automatically available, ideally without the need of any 

adjustments in the combined application. This way, that workbench would automatically provide the 

same feature set as the single applications after every release and only special functionality, like a 

project explorer component allowing the handle the combination of alignments and trees within a 

document, would have to be developed specifically for the workbench. Since both PhyDE 2 and future 

versions of TreeGraph 2 are based on JPhyloIO (chapter 2) and use NeXML as their main format, the 

integration of both applications would be straightforward. 

Although other combined applications to display and edit trees and alignments, like Mesquite [111] or 

MEGA [69] are already available, having a workbench that combines the functionality of PhyDE and 

TreeGraph 2 would still be beneficial for the scientific community, since both applications offer func-

tionality that is not offered by alternative products and users in need for these features would have 

new possibilities within a combined application. The development of such a combined application is 

not yet scheduled for a concrete data but could start after the first feature-complete of PhyDE 2 was 

release. (See also chapter 6.3.4 on page 88.) 

A further step after such a workbench is available could be the integration of that functionality also 

into the Taxonomic Editor or to provide interfaces that allow the easy combination of both applica-

tions. As described in chapter 5 and [24], LibrAlign and JPhyloIO are already used by the EDITor to 

handle alignments of single reads to combine them into a consensus sequence as part of modeling the 

alpha-taxonomic workflow. In general, the EDITor models the taxonomic workflow from sample col-

lection to generating and processing different types of data derived from these, while consistently 

linking all data back to the individual specimen, instead of a taxon. It currently does not offer any func-

tionality that models the downstream parts of the taxonomic workflow, when data (e.g. sequences) 

from different specimens are combined to, e.g., create multiple sequence alignments and infer phy-

logenies. Closing this gap would allow to model the complete workflow, which is actually circular, since 

inferred phylogenies may influence the taxon diagnosis in the next iteration of the workflow, e.g. if a 
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former taxon turns out not to be monophyletic. In order to combine the functionality of the Taxonomic 

Editor with that of TreeGraph 2 (and also PhyDE 2), links to the source specimens of all processed 

sequences and tree nodes must be modeled, which would be relatively easy to achieve with the ex-

tended metadata model of TreeGraph 2 and NeXML as the exchange format. 

9.4 Conclusion 
The new interactive comparison features of TreeGraph 2 (chapter 9.3.1) and the extended functionality 

for combining statistical support values from different analyses enable researchers to consider alter-

native methods for phylogenetic inference, examine their influence on the results of a study, and pre-

sent a combination of all results in one figure. With a variety of different phylogenetic inference meth-

ods available, this becomes an increasingly important feature that is to date not offered by other soft-

ware. 

The other new features that include processing and visualizing ancestral state reconstruction data 

(chapter 9.3.2), extended I/O functionality (chapter 9.3.3), feature-rich calculation of annotations 

(chapter 9.3.4) and the new metadata model (chapter 9.3.6) all contribute to a better support of han-

dling metadata attached to elements of a phylogenetic tree. This has been a focus of TreeGraph 2 since 

its first versions, which introduced the ability to visualize an unlimited number of annotations on 

branches and a GUI element that displays all metadata in the editable node/branch data table next to 

the tree. The recent extensions do not only allow easier import, export and calculation of more types 

of annotations, but with the introduction of the new metadata model, TreeGraph 2 is enabled to stay 

a relevant and widely-used tool in the age of big data, omics and the semantic web. When the remain-

ing implementations (as described in chapter 9.3.8.1) for the new metadata model are completed, 

TreeGraph 2 will be the first phylogenetic tree editor that fully supports annotating trees with the help 

of meaningful RDF predicates from any externally defined ontology in a user-friendly way, which will 

hopefully help to increase accessibility and reuse of phylogenetic data and metadata. 

9.5 Availability and Requirements 
Project name: TreeGraph 2 

Project web page: http://treegraph.bioinfweb.info/ 

GitHub Repository: https://github.com/bioinfweb/TreeGraph2 

ResearchGate project page: http://r.bioinfweb.info/RGTreeGraph2 

Operating system: Platform independent 

Programming language: Java 

Other requirements: Java Runtime Environment 8 (or higher) 

License: GNU General Public License Version 3 (GPL) 

Any restrictions on use by non-academics: The restrictions specified in the GPL apply. (See 

http://treegraph.bioinfweb.info/License.) 

9.6 Declarations 

9.6.1 Author Contributions 
Ben Stöver developed the concept for the new features, implemented large parts of the new code, 

wrote the manuscript and supervised a master, a bachelor thesis and a research module that focused 

on implementations of some of the new features. Sarah Wiechers implemented the main parts of the 

BayesTraits data import and export features during her research module and master thesis. Phoebe 
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Abstract 

bioinfweb is a central web portal, where all software developed in this thesis is made available to the 

scientific community. It consists of a central portal and different project pages that contain downloads 

of the applications or libraries as well as user and developer documentation and provide access to its 

source codes, including a synchronization with a GitHub repository for each hosted project. Behind the 

visible portal, a technical infrastructure has been developed that automates new release by compiling 

the software, managing its dependencies and packing the different downloads. Creating new projects 

and reusing available components is also significantly simplified by the developed infrastructure. 

The portal allows convenient access for all users to the software and its documentation and therefore 

significantly contributes to the usability of all applications and libraries developed in this thesis. It al-

lows applying best practices for scientific open-source software development. The recent integration 

of social media like ResearchGate, GitHub or Twitter provides a greater visibility of all hosted projects 

and enables users to give direct feedback and to get support. 

10.1 Introduction 
The bioinfweb software web portal provides public and long-term ac-

cess to all software and data developed in one of its projects, which 

includes all projects described in this thesis. Figure 10.1 show its logo. 

It was initially established in 2008 with TreeGraph 2 as the first available 

software. Since then numerous other projects have been hosted here 

and a shared infrastructure has been built around them. Figure 10.2 

shows the start of the list of available projects. This includes providing 

and archiving versioned downloads of all software with appropriate license information, content man-

agement systems for documentations and JavaDocs, issue tracking, and private and public access to 

versioned source codes. While all projects have access to all available features and new ones can easily 

be created, the single project pages are still very flexible and may largely differ from each other and 

still benefit from the available modules. 

Figure 10.1 The bioinfweb logo 

mailto:stoever@bioinfweb.info
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10.2 Release manager 
The bioinfweb ReleaseManager is a server-

based software that has been developed during 

this thesis by Ben Stöver and Sarah Wiechers. It 

allows to easily create new versions of hosted 

software. The release process can be triggered 

from a web interface and first obtains the latest 

source code from the bioinfweb repository. Af-

ter that compiling and JavaDoc generation is 

performed and binary and source downloads are 

packed. The download and documentation sec-

tions of the respective project page are then up-

dated. By automating this whole process, Re-

leaseManager significantly reduces the time 

necessary to make a release, while at the same 

time allowing a more convenient presentation by 

providing different types of downloads for bina-

ries, source codes and documentation of the different modules of different software. It also plays a 

role in quality control, by making sure that all types of downloads and the documentation are always 

up-to-date, and no part can be forgotten to be adjusted. 

 
Figure 10.3 Screenshots of different parts of bioinfweb project pages 

The download section with the available modules for bioinfweb.commons (chapter 11, page 168) is shown in the 
left, while the screenshot in the middle shows the JavaDoc of JPhyloIO (chapter 2, page 33) and on the right the 
online source code view for TreeGraph 2 (chapter 7, page 90) is visible. 

10.3 Social media 
The source codes of all bioinfweb software is mirrored at GitHub (https://github.com/bioinfweb) to 

increase its visibility and allow other developers to easily contribute to the development. In addition, 

news on the software and information on new releases is posted (in addition to the news section of 

the bioinfweb main page) to the bioinfweb Twitter account (https://twitter.com/bioinfweb) and re-

spective ResearchGate project pages. Each software has a separate ResearchGate project page where 

users can ask support questions and follow the project development. (An example would be the pro-

ject page of TreeGraph 2 available at http://r.bioinfweb.info/RGTreeGraph2. Other ResearchGate 

pages are linked in the navigation of the respective bioinfweb project pages.) 

Figure 10.2 Screenshot of the software list at the bio-
infweb portal in 2017 

https://github.com/bioinfweb
https://twitter.com/bioinfweb
http://r.bioinfweb.info/RGTreeGraph2
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Figure 10.4 Screenshots of the bioinfweb social media pages 

On the left, the LibrAlign project page on ResearchGate is shown as an example. Additional pages exist for other 
projects. The Twitter feed on bioinfweb is shown in the middle, while the bioinfweb GitHub organization page is 
shown on the right. 

10.4 Aims of the portal 
The aim of the portal is to allow convenient and long-term access to all project resources for users, 

developers and contributors. By providing this information independent of a specific university or 

working group web page, stable URLs can be guaranteed. The portal is planned to be maintained in 

the future, also if project members leave the WWU. bioinfweb projects are by choice hosted on their 

own portal to have maximal flexibility in the ways different types of contents are provided and to be 

independent of a single open source hosting provider, which might exit the market in the future. Pro-

ject mirrors on GitHub are anyway provided but in parallel to the bioinfweb project pages to have more 

visible in the community and use the repositories there as an additional backup. 

10.5 Conclusion 
The bioinfweb software portal and its social media representations ensures the (log-term) availability 

of the developed software, including its documentation, source codes and additional information and 

allows users to give feedback and ask questions to the projects. It is a central tool to apply best prac-

tices in open-source scientific software development (e.g. rules 8-10 in [274] or rules 6-8 in [275]). 
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Abstract 

The different applications and libraries developed in this thesis often require the development of both 

general and bioinformatical functionality that potentially can be reused by other software. To avoid 

redundant implementations, a shared Java library, called bioinfweb.commons was created that is 

hosted as a separate project at the bioinfweb portal. (Versions for other languages are also in prepa-

ration.) All functionality can be reused under the terms of GNU the Lesser General Public License. 

The library is structured into different modules, which, e.g., include compressed collections that allow 

the efficient handling of, e.g., large sequence and alignment datasets, mathematical and logging func-

tionality, tool classes to interpret sequence strings and ambiguity codes, convenience methods to pro-

cess XML and to perform unit testing, or GUI components and functionality for the Java toolkits Swing 

and SWT. Most of these features are used by the software of this thesis and have been developed 

together with it. It was made sure that only functionality was developed that was not available in other 

general-purpose and bioinformatical libraries in a suitable form. 

11.1 Introduction 
The numerous bioinfweb software projects that have been introduced to date sometimes require 

shared functionality. To efficiently address these needs, bioinfweb.commons was created, which is a 

Java library that provides general and bioinformatical tool classes and methods. All functionality that 

is developed for a bioinfweb software is checked for being of general use also for other applications 

and libraries. If that is the case, the respective implementation is added to bioinfweb.commons instead 

of having it directly within the actual software. This way, it is directly available not only for all other 

bioinfweb projects but also for all other developers, since bioinfweb.commons is open-source and pub-

licly available under the terms of version 3 of the GNU Lesser General Public License (LGPL). 

11.2 Modules and provided functionality 
bioinfweb.commons is distributed among multiple modules for different purposes. While the core 

module provides functionality of very general use, the other modules provide functionality for a spe-

cific domain, so that depending software only needs to include dependencies it actually needs. Table 

11.1 gives an overview on the currently available modules. 
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Table 11.1 The modules of bioinfweb.commons 
 

Module Description 

core Contains implementations of very general use for all types of applications. There are e.g. 
classes that offer version management of applications, I/O and XML utility classes, effi-
cient collection implementations, mathematical and random number methods, logging 
classes, text manipulation as well as system utilities. 

applet Implementations for writing Java applets. 
bio Bioinformatical tool classes that provide functionality for modeling and manipulating dif-

ferent kinds of biological sequences. 
servlet A set of helpful classes to implement servlets, e.g., using the JSP model 2 architecture. 
sql Shared functionality for working with SQL databases. 
swing Provides additional components and model implementations useful in Swing GUIs. 
swt Small module providing some additional functionality to create SWT GUIs. 
testing Provides functionality useful for unit testing. 
experi-
mental 

Contains implementations for different purposes that are not yet fully tested or might 
undergo significant changes in the future. Classes contained here are not guaranteed to 
be remain API-stable in future releases, even if the major version number does not 
change. 

 

All implemented functionality is checked to have as small overlap as possible with functionality already 

available in other tool libraries like Apache commons [276], Google Guava [277] or BioJava [93,94], 

while related features are usually compatible with these other libraries so that users can easily com-

bine them. 

A significant part of the available tool classes has been developed within this thesis to be used by the 

applications and libraries that are part of it. LibrAlign (chapter 3) makes e.g. use of the compressed list 

implementations that are available in the core module, the sequence utilities of the bio module and 

GUI tool classes of the swing and swt modules. The enumeration model classes of the bio module are 

used in JPhyloIO (chapter 2) to represent sequence information in its events. Since the same model 

classes are also used by LibrAlign, the interaction between both libraries is simplified. TreeGraph 2 

makes use of the available Swing dialog implementations and the molecular components of the use 

the SWT tools. The Taxonomic Editor (chapter 5), PhyDE 2 (chapter 6) or AlignmentComparator (chap-

ter 9.6.2) also make use of bioinfweb.commons. 

11.3 Conclusion 
Externalizing shared functionality needed by different bioinfweb software avoids redundancy and sim-

plifies code maintenance, since all bug fixes and improvements in bioinfweb.commons are automati-

cally available for all depending software. The development of future software in bioinfweb is further-

more simplified, since needed functionality is often already present. By being open-source and com-

patible with other tool libraries, the use of bioinfweb.commons goes beyond bioinfweb and is also 

released as a service to the scientific and open-source community. 
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11.4 Availability and Requirements 
Project name: bioinfweb.commons 

Project web page: http://commons.bioinfweb.info/Java 

GitHub Repository: https://github.com/bioinfweb/commons.java 

Operating system: Platform independent 

Programming language: Java 

Other requirements: Java Runtime Environment 8 (or higher) 

License: GNU Lesser General Public License Version 3 (LGPL) 

Any restrictions on use by non-academics: The restrictions specified in the LGPL apply. (See 

http://commons.bioinfweb.info/Java/License/LGPL.) 
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Ben Stöver developed the concept, implemented the library, and wrote the manuscript. Sarah 

Wiechers contributed some implementations during her master theses that was supervised by Ben 

Stöver. 
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highly appreciated. We thank the contributors to the open-source projects used (Apache Commons, 

Apache Lucene, SWT, BioJava, Google Guava, Hemcrest, JUnit). 
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Abstract 

Toolkit Independent Components (TIC) is a library that allows to create GUI components for the two 

major Java GUI toolkits, Swing and SWT, in one step. Abstractions are provided for painting compo-

nents, resizing and scrolling them and receiving and handling mouse and keyboard events. The goal of 

TIC is not to provide access to the full component libraries of both toolkits and enabling to use, e.g., 

buttons or text fields, in a toolkit-independent way. The focus instead lies on simplifying the develop-

ment of self-painting components for both toolkits, by providing an abstract component class with one 

painting method and one set of event listeners that are interoperable with both toolkits. For scrolling, 

special classes are provided that overcome the size limitations for subcomponents in SWT and allow 

the greater maximal component dimensions from Swing for both toolkits. TIC is especially useful for 

library developers that need to support both toolkits to allow a maximal reusability of their GUI com-

ponents. It has been used by LibrAlign, which is a Java library that provides GUI components to display 

and edit sequences and multiple sequence alignments together with associated raw and metadata. 

12.1 Introduction 
As mentioned in chapter 3.2.2, LibrAlign provides all its GUI components in a Swing and an SWT version 

to be usable in applications based on either toolkit. Swing is the build-in GUI framework shipped with 

the Java virtual machine. It contains implementations for a set of basic and more advanced GUI com-

ponents like buttons, text fields, tree views or tables. These components are so-called lightweight com-

ponents that do not rely on the GUI components provided by each operating system but are imple-

mented in Java from the scratch. Although their appearance can be adjusted to closely match the re-

spective operating system, Swing components may look slightly different then their native counter-

parts. The advantage of Swing is true platform independence, allowing also complex (custom) compo-

nents to work exactly identical on all operating systems. 

SWT [104], on the other hand, provides heavyweight components that make use of the respective 

operating system libraries, including some extensions to these. As a result, platform-specific features, 

like file dialogs that largely differ between operating systems, are accessible using SWT, which cannot 

directly be used in Swing. The downside here is that different binary libraries need to be shipped with 

an SWT-based application for every supported operating system, which to some extend undermines 

the “compile once, run anywhere” philosophy of Java. SWT is also the basis of the Eclipse Rich Client 

Platform (RCP) [105] and therefore all RCP-based applications require SWT. 

If a custom GUI component (e.g., to display and edit multiple sequence alignments) is needed within 

an application, it could easily be developed for the toolkit that the application uses, but for the devel-

opment of GUI libraries it is desirable that their components are useable for creating both Swing and 

SWT applications. Although functionality exists in SWT to embed Swing components into an SWT GUI 

(the SWT-AWT-bridge, [278]), interaction between these components is expensive to implement. The 
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main reason is that both toolkits use their own GUI thread and special thread management code is 

necessary for each interaction between components from the different toolkits. 

For LibrAlign, toolkit-independence is a requirement since the start of the project, because among the 

applications in need of the functionality to be developed were both Swing- and SWT-based ones. In 

order to fulfill this requirement, functionality is needed that simplifies creating GUI components to be 

combined with both toolkits. Using the SWT-AWT-bridge available in SWT was not a suitable option 

due to the reasons described above. Instead of developing the required abstractions over the toolkits 

directly in LibrAlign, all respective implementations were made in a separate library, so that this func-

tionality is available to the public and can easily be reused elsewhere. The new library is called TIC, 

which stands for Toolkit Independent Components. 

12.2 Concept 
The aim of TIC is to provide abstractions between the GUI toolkits Swing and SWT, allowing developers 

to create new components usable in both toolkits without having to make multiple toolkit-specific 

implementations. Although imaginable, TIC does not focus on providing abstractions between con-

crete available components, such as buttons or text fields, to allow to create toolkit-independent com-

ponents that are made up of existing subcomponents. Its aim is instead to allow the creation of com-

ponents that directly paint their contents using component-specific code. (Displaying multiple se-

quence alignments as done by LibrAlign is an example of a use case where content is painted directly, 

and no standard subcomponents are needed.) The library should include a component base class with 

an abstract painting method, which needs to be implemented only once and can then be used in both 

a Swing and an SWT version. Component developers only need to inherit a TIC component and TIC will 

take care of creating respective Swing and SWT versions. 

In addition, the library should provide abstractions for user interaction and scrolling functionality, so 

that developers can implement listeners to user input only once in TIC without having to worry about 

the differences between both toolkits. In the same way, listening to scrolling events and programmat-

ically setting the scroll position of a component should be abstracted. 

12.3 Implementation 
TICComponent is the key class of TIC. (See also Figure 12.1.) All toolkit independent components de-

veloped using TIC are inherited from this class and it contains the abstract toolkit-independent painting 

method, outlined in the concept above. This method needs to be implemented by inherited classes 

and uses an instance of TICPaintEvent as its parameter, which provides an instance of the Swing 

class Graphics2D as the graphics context to be used by method implementations. If the TIC compo-

nent is used in Swing, the graphics context will directly be obtained from there. If used in an SWT GUI, 

TIC will first create a new Graphics2D object that draws into a buffered image and after the execution 

of the painting method is complete, the contents of that buffered image will be copied into the SWT 

graphics context (the GC instance) to paint the SWT component. To keep the memory consumption for 

buffering low, only the rectangular part of a component that is repainted by the current operation will 

be stored in the buffered image. 

Besides allowing toolkit-independent painting of GUI components, their reactions to user inputs need 

to be abstracted over both toolkits as well. In order to further simplify creating toolkit-independent 

components, TIC provides a set of event listener interfaces and event classes in its package info.bi-

oinfweb.tic.input. An implementation of the interface TICKeyListener can be registered at 

every class inherited from TICComponent to receive key events from the toolkit-specific version of a 

TIC component. The events passed to the listener methods of TICKeyListener are also TIC-specific 

objects and make use of Swing/AWT constants to define keys, key masks or keyboard positions. When 

a TIC component is used with SWT, the same events are used, and all information is converted from 
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the SWT representation (that uses different constants and strategies) to the Swing representation used 

as the toolkit-independent representation in TIC. Following the same principle, different types of 

mouse listeners and respective events are also provided and information is converted. Translating be-

tween the different ways of modelling mouse movement and dragging in both toolkits is also handled 

by TIC. 

In addition to painting and reacting to user inputs, a third component characteristic abstracted by TIC 

between both toolkits is scrolling. Scrolling of components that have contents larger than their current 

size is handled in different ways in both toolkits. TIC provides the abstract base class ScrollingTIC-

Component that inherits from TICComponent (Figure 12.1) as a toolkit-independent scroll container. 

It provides methods for programmatically obtaining and changing the current scroll position of the 

nested component, including convenience methods like optionally scrolling to make a rectangle fully 

visible and an architecture for toolkit-independent scroll listeners, similar to the key and mouse listen-

ers described above. As Figure 12.1 shows in blue, a set of interfaces for toolkit-specific scroll container 

to be used with classes inherited from ScrollingTICComponent is provided. These interfaces con-

tain default method implementations that act as adapters from the TIC scrolling methods to the meth-

ods of the scroll containers available in the toolkit GUI libraries. For Swing JScrollPaneToolkit-

Component can be used to easily delegate scrolling functionality to an instance of JScrollPane, 

while JScrollBarsToolkitComponent allows to delegate to two instances of JScrollBar. 

ScrolledCompositeToolkitComponent allows to do the same for ScrolledComposite in SWT. 

The TIC documentation contains a set of example applications that demonstrate the different ways 

toolkit-independent scrolling can be achieved under http://r.bioinfweb.info/TICScrollDemo. 

A special functionality provided by the swt module of TIC, is direct scrolling of nested TIC components. 

SWT has greater limitations than Swing to the maximal component size within a scroll container on 

some operating systems. (This is due to the use of code working with 16 bit integers in the GUI libraries 

of these operating systems.) To overcome this limitation, developers of large scrolled SWT components 

(e.g. to display biological data like alignments or phylogenetic trees) have to create their components 

in a way that they can display their contents with a scroll offset and perform scrolling themselves di-

rectly. This is usually more expensive to do than just placing the content component into a scroll con-

tainer. For TIC components, such direct scrolling functionality for SWT is directly included when using 

DirectPaintingSWTScrollContainer together with ScrollingTICComponent. This way 

scrolling large components becomes significantly easier when working with TIC, compared to imple-

menting such components directly in SWT, because any directly painting TIC component can be 

scrolled this way without having to be adjusted. (Note that by definition, direct scrolling is only possible 

for TIC components painting their contents directly, which are the main focus of TIC and not for custom 

toolkit-specific components consisting of a set of other nested components from the toolkit compo-

nent libraries.) 

http://r.bioinfweb.info/TICScrollDemo
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Figure 12.1 Overview on the toolkit-independent and toolkit-specific component classes in TIC 

This UML class diagram shows the toolkit-independent classes of TIC that model GUI components in orange. 
TICComponent is the parent class if all component classes implemented by users of TIC and will be associated 
with a toolkit-specific class implementing ToolkitComponent as soon as processed with a respective factory. 
(See chapter 12.4 for details.) All general toolkit-specific classes are shown in green here. 

If toolkit-independent scroll container components should be developed, these can be inherited from 
ScrollingTICComponent, which in turn links a toolkit-specific class inherited from ScrollingToolkitCom-
ponent. All classes and interfaces that act as toolkit-specific scroll containers are shown in blue. The different 
interfaces contain default method implementations that delegate scrolling functionality to scroll containers avail-
able in Swing and SWT, while DirectPaintingScrollContainer is a special SWT implementation in TIC that 
allows to scroll larger components than ScrolledComposite of SWT does. (See chapter 12.3 for further details.) 

12.4 Results and discussion 
TIC is available for download from http://bioinfweb.info/TIC/, including a JavaDoc, an example appli-

cation and further documentation. Source codes and binaries are distributed under GNU Lesser Gen-

eral Public License Version 3. 

The library is separated into three modules. The core module contains all TIC interfaces and classes 

that define the abstraction of GUI components – like painting, user interaction and scrolling – over 

both toolkits, while the swing and swt modules provide the toolkit-specific functionality. Depending 

on whether TIC is used in a Swing or an SWT application only one respective module is necessary as a 

dependency. Depending GUI libraries can be developed using the same module architecture to avoid 

dependencies between both toolkits. (LibrAlign would be an example for this.) 

To embed a TIC component into a Swing or SWT GUI, a respective toolkit-specific component instance 

needs to be created from it. This is done by factory classes from the swing or swt modules of TIC. 

SwingComponentFactory creates a Swing component from a TIC component, while SWTCompo-

nentFactory allows to create an SWT component from it. Both resulting components will look and 

function identical as implemented in the toolkit-independent TIC-component. By default, instances of 

DefaultSwingComponent and DefaultSWTComponent (see Figure 12.1) will be created by the fac-

tories. These classes delegate to the implementations made in the toolkit-independent TIC component 

for, e.g., painting or user interaction as described in chapter 12.3. Figure 12.2 further illustrates this 

http://bioinfweb.info/TIC/
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principle and Figure 3.2 (page 50) contains code examples showing how to use the TIC factory classes 

to embed a TIC component in GUIs of both toolkits. 

Alternatively, developers have the option to provide custom toolkit-specific components with different 

or additional functionality, which must implement the interfaces SwingToolkitComponent or 

SWTToolkitComponent respectively and may inherit basic functionality from AbstractSwingCom-

ponent or AbstractSWTComponent. Providing custom toolkit-specific classes is only necessary in 

special cases, while the main use case of TIC – which is providing direct painting components – does 

not require to provide any custom toolkit-specific components. 

By using the conversion between the Swing and SWT graphics contexts described in chapter 12.3, TIC 

allows access to advanced Swing drawing functionality like platform-independent anti-aliasing or the 

Swing shape API also for SWT. This way, the contents of any TIC component implementation look ex-

actly the same on both toolkits. 

 

 

Figure 12.2 UML activity diagram showing the steps to create a toolkit-independent GUI component with TIC 

Developers only need to implement a toolkit-independent TIC component once and then are able to include it in 
both Swing and SWT GUIs by using one of the respective factory classes of TIC to create a toolkit-specific instance 
from it. (See also Figure 3.2 on page 50 for a code example on using the factories.) 

12.5 Conclusion 
Directly painting GUI components developed with TIC can be used as fully functional native compo-

nents both in Swing and SWT GUIs without the need for any toolkit-specific adjustments. In addition 
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to component painting, reacting to user inputs and scrolling larger components is abstracted by the 

library. 

TIC was already successfully used in the development of LibrAlign that provides toolkit-independent 

GUI components for displaying and editing multiple sequence alignments and attached raw and 

metadata (chapter 3, page 46). The TIC components of LibrAlign have been successfully tested and 

used in multiple publicly available biological software, some based on Swing and some on SWT. (See 

chapter 3.3.5 on page 54 for further details.) 

12.6 Availability and requirements 
Project name: Toolkit independent Components (TIC)) 

Project web page: http://commons.bioinfweb.info/Java 

GitHub Repository: http://bioinfweb.info/TIC/ 

Operating system: Platform independent 

Programming language: Java 

Other requirements: Java Runtime Environment 8 (or higher) 

License: GNU Lesser General Public License Version 3 (LGPL) 

Any restrictions on use by non-academics: The restrictions specified in the LGPL apply. (See 

http://bioinfweb.info/TIC/License.) 

12.7 Declarations 
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13 General discussion and outlook 
13  General discussion a nd outlook  

The different software components introduced in this thesis contribute to achieving the goals outlined 

in the general introduction (chapter 1, page 20). They cover all major phylogenetic data types and 

facilitate large parts of phylogenetic and related workflows. Reading and writing as well as processing 

and visualizing different kinds of metadata closely together with the data in flexible and user-friendly 

ways has been a focus in the development of all projects. Large parts of the new functionality are 

available in separate libraries, so that all developers of bioinformatical software can benefit from it. 

Some developed applications are already in wide use in the scientific community and together, the 

applications and libraries open different new perspectives for future research and method develop-

ment, as it will be discussed in this chapter. 
  

13.1 Increasing data reuse and reproducibility 
Increasing the reusability of phylogenetic data and the reproducibility of studies by making meaningful 

annotation and documentation more straightforward was an important goal of this thesis (goal 1 on 

page 20). All developed software contributes to this aim by providing different necessary functionality 

for both researchers and bioinformaticians. 

13.1.1 Developed functionality 
The software libraries JPhyloIO (chapter 2) and LibrAlign (chapter 3) provide the basis for all software 

developed in this thesis and are also available and free to use by other developers of current and future 

scientific software. By generalizing over most phylogenetic file formats, JPhyloIO provides access to a 

large part of the available phylogenetic data, including attached metadata, and allows extensive in-

teroperability to other software in the domain. Providing this functionality in one single interface, al-

lows all applications to support classical and widely used formats together with more recent and ad-

vanced formats in the same step. 

The flexible model classes and GUI components to display and edit sequences and MSAs implemented 

in LibrAlign provided the basis for the development of the molecular components of the Taxonomic 

Editor, PhyDE 2 and AlignmentComparator. The concept of data areas directly attached to sequences 

and whole MSAs is an important contribution to goal 1 (page 20), i.e., to foster meaningful annotations 

in order to improve reusability and increase reproducibility. Any software dealing with raw- and 

metadata associated with sequences or MSAs is now able to provide a user-friendly Java GUI by im-

plementing an application-specific data area or may even be able to use an existing one either provided 

with LibrAlign or potentially from third party developers in the future. Beyond that, LibrAlign opens 

the perspective to handle externally defined types of metadata with externally implemented data ar-

eas, without having to explicitly model them in an application. (See section 13.1.3 for further details.) 

The different applications cover all major types of phylogenetic data and allow to model complete 

workflows. The Taxonomic Editor increases data reusability and the reproducibility of taxonomic work 

by linking all types of modeled data back to a specimen, which is the only model that is invariant re-

garding future taxonomic revisions that change the assignment of specimens to taxa and makes alpha-

taxonomic work significantly easier. Within this thesis, the functionality of the EDITor was extended to 

support molecular sequence data. Reproducibility and reusability of that data is therefore improved 

by associating it with its source specimen and linking all single read sequences to their Sanger sequenc-

ing pherograms and displaying that raw data directly within the contig editor. (See Figure 5.2 on page 

81.) 

An initial version of PhyDE 2 that is now based on LibrAlign and JPhyloIO has been developed as a 

proof-of-concept and to open a perspective for the future development of the alignment editor. PhyDE 

2 has though not been a focus of this thesis and therefore it does not yet have extensive functionality 
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to model and display phylogenetic metadata, but it already uses NeXML as its main format and can 

easily be extended in the future, since necessary I/O functionality is already provided by JPhyloIO and 

extending the GUI to model different kinds of metadata is straightforward by inserting respective 

LibrAlign data areas. The new codebase even provides a perspective for PhyDE to be integrated into a 

larger phylogenetic workbench with a strong focus on flexible metadata modeling (see section 13.1.2) 

and to support any type of metadata attached using externally defined ontologies together with ex-

ternally implemented data areas (see section 13.1.3). 

AlignmentComparator mainly contributes to goal 2 (page 20), i.e. allowing researchers to take alterna-

tive methods into account and to document their workflows respectively (see section 13.2) and makes 

use of the functionality of JPhyloIO by using NeXML as its main format and storing all comparison 

metadata using its RDF-based model. Its development was simplified by LibrAlign‘s extensibility using 

specific data area implementations to display comparison metadata and user annotations directly 

within the comparison of MSAs. Like PhyDE 2, AlignmentComparator can also easily be extended in the 

future to display externally defined metadata, it does not explicitly model and display it using exter-

nally implemented data areas. (See also section 13.1.3 and the its future application in MSA evaluation 

described in section 13.2.2.) 

The phylogenetic tree editor TreeGraph 2 focuses on displaying and combining different types of 

metadata attached to branches and nodes of a tree. It allows to attach an unlimited number of differ-

ent types of labels to each branch and provides a table view to edit metadata annotations for each 

tree. Features to automatically set node colors, font sizes, branch widths any many other tree elements 

by respective numeric annotations, allows to visualize attached data in many ways and a flexible sys-

tem for calculating textual and numeric attachments from each other, including topological features 

(chapter 9.3.4, page 148), further contributes to its capability to handle phylogenetic metadata. Import 

features for different tree formats, data tables (chapter 9.3.3, page 147) and ancestral character state 

reconstructions from BayesTraits (chapter 9.3.2, page 143) ensure easy access to the relevant data. 

The initial versions of TreeGraph 2 (described in chapter 8, page 128) were using string keys to link 

metadata to nodes and branches as they are also used in hot comment annotations extending the 

Nexus standard. While still much of the widely-used phylogenetic analysis software uses the Nexus 

format with such annotations (e.g. [73,74]), which can then be further processed and visualized using 

TreeGraph 2, linking that data using RDF predicates would be more advantageous to unambiguously 

describe the relation between the tree elements and their metadata. The currently distributed ver-

sions of TreeGraph 2 already support to import metadata from NeXML and additionally the metadata 

model is refactored to combine the use of string keys with the use of RDF predicates, allowing back-

wards compatibility and support for powerful forward-looking technologies at the same time. As de-

scribed in chapter 9.3.6 (page 151), the conception and implementation of the new model has been 

performed in a development branch and adjustments of GUI components to the new model remain to 

be done. As soon as that is completed, TreeGraph 2 would be the first phylogenetic tree editor to make 

full use of the flexible RDF-based metadata model of NeXML to increase the reusability of phylogenetic 

trees and to improve reproducibility. 

The functionality developed in the libraries JPhyloIO and LibrAlign provides a strong basis for the de-

velopment of new and the extension of exiting phylogenetic software to address the needs imposed 

by the age of big data and the sematic web allowing researchers to make optimal use the available 

technologies, like RDF or NeXML to increase the reusability of their data and the relevance and repro-

ducibility of their studies. In addition to that, the applications developed in this thesis cover the most 

important datatypes of phylogenetics and therefore most phylogenetic workflows, support NeXML, 

and model a variety of different metadata. To make optimal use of the functionality provided by the 

libraries and to provide researchers with convenient tools that go one step further in the metadata 
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modeling for increasing reproducibility and reuse than most other available software, some further 

implementations that were beyond the scope of this thesis are still necessary, but the developed ap-

plications already provide a lot of useful features for that purpose and their further extensions is made 

easy by their maintainable and extendable architecture, also due to being based on the flexible librar-

ies JPhyloIO and LibrAlign. 

The following sections 13.1.2 and 13.1.3 discuss the future perspectives for the developed components 

in more detail. 

13.1.2 Conserving relevant metadata throughout the whole taxonomic and phyloge-

netic workflow 
Although flexible metadata modeling for unambiguous annotation of phylogenetic data is of key im-

portance for making data reusable and studies reproducible (cf. chapter 1.1, page 20) and JPhyloIO 

and LibrAlign simplify developing software that addresses these needs, it would be unrealistic to ex-

pect that all software used in phylogenetic workflows is going to support the corresponding standards 

within the next years. Since the applications developed in this thesis model major datatypes used in 

phylogenetic workflows, they could be used to conserve any type of metadata during all of its steps, 

even if applications that do not support this are involved. Figure 13.1 illustrates this for the example 

of metadata annotations of sequences that link to the initial specimen the sequences are derived from, 

as implemented in the Taxonomic Editor. The same principle could be applied to all other types of 

metadata. 

The information from the Taxonomic Editor can be exported using NeXML contig files that contain 

information on the single reads, a consensus sequence was constructed from, including links to the 

sequencing raw data of each read. To perform a multiple sequence alignment from a set of such con-

sensus sequences, an input file for an MSA application containing the whole set needs to be created. 

Since none of the frequently used MSA software currently supports NeXML or conserving externally 

defined metadata in any way, the links to the specimens and sequencing raw data would already be 

lost at this step of a workflow and not be available in any subsequent analyses based on the MSA. (The 

metadata provided by the Taxonomic Editor is only used as an example here. Other metadata like da-

tabase IDs or information on genomic regions or protein domains could be processed the same way.) 

This problem of losing annotations could be avoided if the single reads were combined using a 

metadata-aware alignment editor. As mentioned above, PhyDE 2 currently is only available in a basic 

version, but since it is based on LibrAlign and JPhyloIO and uses NeXML as its main format, it can be 

easily extended to model externally defined metadata, which is planned for future releases. As shown 

in Figure 13.1, PhyDE 2 could then combine the imported set of contig files to one NeXML file that 

contains all sequences, including their specimen links and references to the initial contig files as re-

source metadata, preserving references to the raw data for each read. This NeXML file would then be 

the main instance to store the data of the current analyses. To align the sequences with an external 

tool, e.g., MAFFT or PAGAN, or any other MSA algorithm implementation, a file in the required format 

(e.g., FASTA) could be exported by PhyDE 2 from the main sequence file in NeXML. Since it is not pos-

sible to include metadata in this step, all taxon names (or other names associated with the sequences) 

would be replaced by unique IDs by PhyDE 2, which can be unambiguously reassigned later. (This would 

also overcome format-specific limitations in the length or character set of sequence names, e.g., im-

posed by Phylip.) The exported file can then be processed by the aligner and the result (containing the 

aligned sequences labeled with their new IDs) can be opened with PhyDE 2 again afterwards. Since the 

alignment editor is aware of the IDs and still has access to the main NeXML file, it can restore all 

metadata and produce a new NeXML file containing the aligned sequences with their initial names and 
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all associated metadata. This way, all metadata has been conserved over the workflow until now, alt-

hough an application that does not support it was involved. The requirements for this, are that the 

user performs importing and exporting of the data with PhyDE 2, which has access to the main NeXML 

file at all time, e.g., in a user workspace folder, and that PhyDE 2 supports the format required by the 

external application. Due to the variety of formats supported by JPhyloIO, that are automatically sup-

ported by PhyDE 2 as well, nearly all available MSA applications can be integrated into such a workflow. 

 

Figure 13.1 Possible future usage of PhyDE 2 and TreeGraph 2 to model and preserve relevant metadata across 
phylogenetic workflows 

(Caption on next page.) 
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Figure 13.1 (Continued.) 

The schematic workflow shows how metadata could be preserved across a phylogenetic workflow, even if soft-
ware is involved that does not support that metadata. Documents and applications that model metadata are 
shown in green, while blue indicates external applications that are not aware of metadata in their input and 
output documents and would lose such information. The Taxonomic Editor (chapters 4, page 59 and 5, page 79) 
is shown as an example for a producer of annotated data and exports a set of contig alignment documents with 
links to their specimens as metadata. (Note that the ontology ont to attach such data is hypothetical and not 
actually used by the applications. Not all functionality shown here is already implemented in the different appli-
cations. See text for details.) The contig files are imported by PhyDE 2 (chapter 6, page 84) in the next step and 
stored in a combined NeXML file preserving all metadata. A FASTA file is then exported, where all taxon names 
are replaced by unique IDs that can later be used to map the import back to the metadata. Since the external 
MSA software does not model the attached metadata, its resulting MSA is converted back to NeXML and all 
annotations are restored by PhyDE 2. In a subsequent step the same principle is applied for calling a phylogenetic 
inference software and TreeGraph 2 (chapters 8, page 128 and 9, page 137) restores all metadata after the im-
port. The whole process could either be implemented with PhyDE 2 and TreeGraph 2 as separate applications 
that exchange data or by using a combined workbench application containing the functionality of both (as indi-
cated by the light green box surrounding both applications). 

After an MSA has been created, the next step of phylogenetic workflows often is phylogenetic infer-

ence. The available applications for this, frequently expect their input sequences in Phylip or Nexus 

format, which are both supported by JPhyloIO, and therefore an MSA input file could be exported from 

PhyDE 2 in the same way as for the previous step, again using the same IDs for all sequences. The 

phylogenetic inference software will then output one or more phylogenetic trees using, e.g., Newick 

or Nexus formats, which are also supported by JPhyloIO. The resulting tree could then be opened using 

TreeGraph 2, which supports all tree formats of JPhyloIO. Within the currently ongoing extension of 

TreeGraph 2‘s metadata model (see 9.3.6, page 151), a feature could be added that allows combing 

the data from the NeXML MSA source file and the tree file to create a NeXML tree file (combined with 

the MSA or not, depending on the use case) that still contains all initially present metadata linked to 

the nodes of the tree. (In some cases, it may be necessary to select the metadata that is copied onto 

the tree, since not all types are still suitable for a tree node, e.g., detailed position information of mu-

tational patterns. The metadata could either be filtered automatically, e.g., using knowledge about the 

RDF predicates or by prompting the user. What metadata to copy, also depends on whether the tree 

is stored in the same file, together with the MSA and its metadata and if a shared taxon list with anno-

tations is used. Linking tree nodes and sequences would be an alternative in such cases for some types 

of metadata.) The implemented features of TreeGraph 2 to combine support values from alternative 

analyses can be easily integrated into a metadata-preserving workflow modeling, since the same se-

quence/node IDs as for the first phylogenetic inference can be used for all analyses. 

Beyond preserving initially present metadata, the proposed type of data management using PhyDE 2 

and TreeGraph 2 holds the potential to automatically or semiautomatically collect information on the 

workflow itself and store, e.g., the used analysis software and its version and parameters as additional 

metadata. The output of some external applications contains information about their names and ver-

sion numbers, e.g., in comments. PhyDE 2 and TreeGraph 2 could scan for such information when im-

porting output files and automatically create respective metadata in the target NeXML document. In 

other cases, like FASTA output files from MSA software, no such information may be directly available, 

but the user could be prompted for it directly on the import. A convenient input dialog would simplify 

the workflow documentation and possibly motivate and remind more users to perform such a work-

flow documentation directly. 

Calling external software directly from within PhyDE 2 and TreeGraph 2 (or from a combined applica-

tion, see below) or a closer integration of both applications with available workflow managers are op-

tions to be considered in the future development, but providing functionality to document workflows 
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with manually executed external applications (also if documented by, e.g., batch files) will still be an 

important functionality to reach a maximal number of users, also those that are not planning to use 

workflow managers for whatever reasons. 

Preserving metadata this way would be possible with few extensions to the current functionality of 

PhyDE 2 and TreeGraph 2. While TreeGraph 2 already provides a large part of the necessary function-

ality (as described in chapter 9), more implementations will be necessary to extend PhyDE 2, but the 

easily extendable architecture of both programs and the use of JPhyloIO, would make the necessary 

steps relatively straightforward. Combining the data from the NeXML MSA file and the output of the 

external phylogenetic inference software would presumably more convenient and less error-prone for 

the user, if a workbench application combining the functionality of PhyDE 2 and TreeGraph 2 is created 

(cf. chapter 9.3.8.3, page 160). Such an application could be built around a workspace, where the user 

can store the contigs, the MSA, the tree and potentially additional files and would allow to access all 

features implemented in PhyDE 2 and TreeGraph 2. Importing and exporting data from and to other 

applications, as described above would be possible for the user in a convenient way. 

The applications developed in this thesis already form a substantial basis for the full implementation 

of phylogenetic workflow modelling and blaze the trail for complete metadata conservation and linking 

relevant raw data and specimens in all analysis steps. The functionality of JPhyloIO is an important 

contribution to achieve this goal, not only because it allows access to the full metadata model of ad-

vanced formats like NeXML and phyloXML, but also due to its simultaneous support for a variety of 

classical formats that provide the necessary interoperability with the great majority of external tools 

to be integrated into the modeled workflow. 

13.1.3 Externally implemented GUI components for metadata attached by externally 

defined ontologies 
As mentioned previously (e.g., in chapter 1.1.3 and 1.1.4, page 21), one of the advantages of the 

NeXML format is the possibility to link metadata to phylogenetic data elements using RDF predicates 

from ontologies that are externally defined. This provides great flexibility, since ontologies for specific 

purposes can be created without the need to change the format itself, which would affect the whole 

phylogenetic community. The same principle can also be applied to software that models, displays and 

allows to edit phylogenetic data together with different metadata. General-purpose software, like 

PhyDE 2 or TreeGraph 2, could never explicitly model all types of metadata that might be attached to 

MSAs of phylogenetic trees for a variety of purposes. TreeGraph 2 already offers functionality to dis-

play the textual representations of metadata as they are encountered in a NeXML document and 

PhyDE 2 is planned to be extended to do so (cf. section 13.1.2 and chapter 6.3.4, page 88), but a more 

advanced graphical representation and editing functionality of discipline-specific metadata that goes 

beyond that is desirable for many use cases. Implementing specialized applications that model 

metadata of sequences or MSAs is already significantly simplified by LibrAlign that easily allows to 

extend its GUI components with any application-specific or third-party data area (cf. chapter 3.3.1, 

page 49). These data areas can then provide the specialized visualizing and editing functionality. 

Beyond that, the architecture of LibrAlign holds the potential to provide such visualizing and editing 

capabilities even more easily. Applications like PhyDE 2 or also more specialized ones like Align-

mentComparator or the Taxonomic Editor could support the integration of custom third-party data 

areas at runtime. A NeXML document containing domain-specific metadata annotations of sequences 

(e.g., the position information of mutational patterns, as described in section 13.2.2, page 186) could 

additionally contain special annotations to unambiguously define the type(s) of data areas to display 

and edit each type of metadata. Data areas could either be referenced by unique identifiers, e.g., de-

fined in a central data area repository, or directly by a download URL of a data area implementation. 



13  General discussion and outlook 183 

 

If a central repository or database for data areas would be developed, it would also be thinkable, that 

applications like PhyDE 2 query it with the RDF predicates encountered in an opened document and it 

returns a list of matching data area implementations. The user could then be prompted, whether to 

download and integrate one of these. (Possible security issues might, though, have to be addressed to 

prevent abuse of such a system. Certified download sources and restricting the access of data areas 

implementations to resources of the local machine would be options to be considered. Java already 

provides respective functionality and comparable problems have already been addressed in other 

modular frameworks, like Eclipse.) 

Applying the proposed concept, developers could simply implement a data area for specific metadata 

they need to model and either upload or register their implementation in a respective database or 

provide a download URL with NeXML files containing respective data (depending on the implemented 

architecture). After that, no further steps would be necessary and their data area can directly be used 

in combination with PhyDE 2 or any other LibrAlign-based application without the need to develop a 

whole new application. Accessing the relevant metadata required by such a data area implementation 

can easily be achieved using JPhyloIO, which is closely integrated with LibrAlign. It allows an unlimited 

number of data listeners (cf. chapters 2.2.1 on page 35 and 3.2.4 on page 48) so that all data areas can 

acquire necessary information directly when a document is loaded by an application. Similar tech-

niques exist for writing data and metadata. Furthermore, JPhyloIO provides automatic format-inde-

pendence and therefore data areas are enabled to also display and edit metadata provided, e.g., in 

NeXML, phyloXML or in Nexus hot comments. 

As described for an example in section 13.2.2 (page 186 below), integrating externally implemented 

data areas not only makes developing separate LibrAlign-based applications unnecessary in more sim-

ple cases, it also enables software like AlignmentComparator to display metadata in new contexts. 

When alternative MSAs are visually compared, AlignmentComparator could use a technique as herein 

described to display relevant metadata within the visual comparison and a user can directly inspect 

the influence and relation of different types of (externally defined) metadata on the differences be-

tween MSAs. Using externally defined ontologies together with externally implemented data areas 

allows to include any type of metadata in the visual comparison, without the needs of explicitly mod-

elling it in AlignmentComparator. The same principle can be applied for many other thinkable applica-

tions. 

Data areas of LibrAlign cover the visual representation of all metadata attached to sequences, charac-

ter matrices and MSAs, but to support all data modeled by NeXML, a visual representation of metadata 

attached to phylogenetic trees and their nodes and branches would additionally be needed. The dif-

ferent types of branch labels provided by TreeGraph 2 to display various types of metadata directly 

within a phylogenetic tree, can be considered as the equivalents to LibrAlign’s data areas for phyloge-

netic trees. The components of TreeGraph 2 are currently not explicitly exposed in a library comparable 

to LibrAlign, but the application is open source and products like the alignment evaluation software 

(introduced in section 13.2.2 below) already reuse its functionality. Creating a TreeGraph API as a coun-

terpart to LibrAlign for phylogenetic trees is a planned future development. The different kinds of 

branch labels could be externally implemented in the same way as the data areas of LibrAlign already 

are and then be integrated into TreeGraph 2 at runtime as well as into possible additional applications 

based on a TreeGraph API. Externally implemented labels could be referenced by metadata attach-

ments, e.g., directly in NeXML, as described above or be provided using the same database as for data 

areas. 
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Figure 13.2 Externally implemented GUI components to handle metadata attached using externally defined 
ontologies for phylogenetic data 

Externally implemented data areas of LibrAlign and labels of TreeGraph 2 and its API represent the GUI counter-
parts of externally defined ontologies. Metadata available in different formats can be accessed using JPhyloIO 
though one common interface that models the metadata attachment in an RDF-like way. Such annotations can 
then be visualized and edited using matching data areas and labels that can be integrated into PhyDE 2, Tree-
Graph 2, or any other application that is based on LibrAlign or the TreeGraph 2 API. 

Together externally implemented data areas and TreeGraph 2’s labels can represent user interface 

counterparts of externally defined ontologies and would allow GUI-based applications to provide the 

same flexibility regarding the processing of metadata as RDF and NeXML allow for its storage and in-

terchange. Figure 13.2 provides a schematic overview on this concept and the usage of the now avail-

able software components to implement it. The libraries and applications developed in this thesis pro-

vide a substantial basis for such a system. Having such a framework that is applied by bioinformatical 

software developers, could further foster the use of metadata annotations to improve and simplify 
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many workflows and data reuse not only in phylogenetics and its related disciplines and could open 

up new perspectives and opportunities for research and method development. 

13.2 Comparing phylogenetic data 
As mentioned in chapter 1.2 (and chapters 7 and 9), software to compare multiple sequence align-

ments and phylogenetic trees is essential in all studies involving these datatypes, since a variety of 

alternative methods are available both for constructing MSAs and for inferring trees. Downstream 

analyses are influenced by the selection of these methods and it is not always trivial to decide which 

algorithm to use and the results of multiple alternative ones must be compared. Furthermore, changes 

made to MSAs or trees during a workflow can be visualized and documented using comparison soft-

ware. 

13.2.1 Developed functionality 
Applications for detailed comparisons of the results of constructing MSAs and inferring trees, which 

are the two main steps in many phylogenetic studies and deal with the main datatypes of the Nexus 

data model, have been developed in this thesis. Beyond that, MSAs and trees play a major role in 

numerous other fields of the life sciences and the software can be equally useful there. 

AlignmentComparator (chapter 7, page 90) allows to visually compare alternative MSAs of the same 

or slightly different datasets by performing a superalignment between the alternatives and providing 

a visual comparison that takes differences between all sequences into account. With its alternative 

superalignment algorithms and graphical user interface, it allows researchers to identify differences 

and agreements of MSAs in a convenient way that is to date not offered by alternative software. (See 

chapter 7.4.4 on page 121 for details.) 

Among many other features, TreeGraph 2 provides functionality to map conflicting support onto one 

phylogenetic tree topology (chapter 8.3.1) and to interactively compare trees (chapter 9.3.1 and Figure 

9.2, page 140). The comparison algorithm that takes support values into account (Figure 9.1, page 139) 

allows a detailed visual inspection of greater and smaller topological and support differences, which is 

a novelty compared to other software. (See chapter 9.3.7.1 on page 155 for further details.) 

The convenient comparison functionality of both applications allows considering alternative methods 

and selecting the optimal tools in many use cases, instead of just relying on a single method, some-

times chosen somewhat arbitrarily. By significantly simplifying the comparison between different 

alignment and phylogenetic inference methods, the developed software can help to improve the qual-

ity of all kinds of scientific studies involving MSAs or trees. Researchers are also enabled to present 

results of alternative methods by providing the output of AlignmentComparator (both the graphical 

output or the comparison document in NeXML format) or showing different sets of support values on 

a single tree using the “Add support values” feature of TreeGraph 2. This way, variance between dif-

ferent methods can be presented and regions of conflict and agreement can be identified and docu-

mented. Which regions of an MSA or a phylogenetic tree topology are well supported among different 

methods can be more easily considered when applying downstream analyses, instead of having to 

choose one single result and ignoring variation. 

Beyond that, the functionality of both applications can be used to inspect the single steps of a work-

flow. When MSAs are automatically postprocessed or manually edited or phylogenetic trees are 

changed, such changes can be documented by storing intermediate results (cf. rules 1 and 5 in [25]) 

and can be visualized using AlignmentComparator and TreeGraph 2. This way, the developed tools can 

also help to increase the reproducibility of studies, which is another important goal of this thesis. 
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Both applications allow visualizing metadata attached to elements of an MSA or a phylogenetic tree. 

AlignmentComparator can display LibrAlign data areas within the comparison, while TreeGraph 2 of-

fers a set of graphical labels attached to branches. (The integration of custom data areas into Align-

mentComparator currently would require adjustments of the application, while TreeGraph 2 already 

allows to visualize any type of metadata directly. See also chapter 13.1.3 above.) By combining graph-

ical metadata representations with the visual comparisons, the influence of other data or metadata on 

multiple sequence alignment and phylogenetic inference is directly detectable using the developed 

applications. 

13.2.2 Current and future applications in MSA evaluation and improvement for phylo-

genetic purposes 
Beyond the general use in all studies involving MSAs or phylogenetic trees, one motivation for the 

development of functionality for fine-grained comparison of multiple sequence alignments and phylo-

genetic trees was their use in evaluating and improving automated multiple sequence alignment for 

phylogenetic purposes, especially regarding non-coding chloroplast DNA, which is often used for re-

constructing plant phylogenies. 

A study to address this is currently underway by the author of this thesis and Kai Müller, in cooperation 

with Dietmar Quandt, and already makes use of the comparison functionality provided by Align-

mentComparator and TreeGraph 2. An alignment evaluation software is currently being implemented 

that takes a manually aligned dataset as its input and then realigns its sequences using various availa-

ble methods for automated MSA. After that, AlignmentComparator is called from that software to 

compare the alternative MSAs. Subsequently, different phylogenetic inference methods are used to 

reconstruct trees from each alternative MSA and TreeGraph 2 is used to compare the alternative re-

sults and how branches are supported by the different inference methods. Figure 13.3 shows a screen-

shot of the current version of the alignment evaluation software with integrated components from 

TreeGraph 2 to compare alternative phylogenetic trees resulting from the analyses. 

Figure 13.4 shows am overview on the structure of the study together with the components developed 

in this thesis and how they are linked. In blue, at the bottom of the figure, three important aspects on 

the way to improving automated sequence alignment for non-coding DNA are shown. The evaluation 

of existing MSA algorithms on respective datasets and comparing them to manual MSAs, as they are 

still frequently created in phylogenetic studies is one key part of the project. Another is the search for 

mutational patterns that might be relevant to be modeled in automated MSA to improve its results 

and to achieve a better homology assessment. Such patterns may include the addition of periods to 

tandem repeats in one step due to different mechanisms or inversion or relocation of subsequences. 

(Since the future application of the software developed in this thesis is the focus of this section, we 

will not go into further detail on the hypothesis regarding the origins and importance of such patterns 

here.) In the red application part of the figure, MSMFinder and MSMDB are listed as additional soft-

ware components to be developed for the study. “MSM” stands for microstructural mutation. While 

MSMFinder is planned as an application to locate mutational patterns as mentioned above in se-

quences and MSAs (Some can only be identified within the context of an MSA.), MSMDB will be a 

database that stores the results of MSMFinder and allows queries to assess the frequencies of the 

different types of mutational patterns in different genomes, genomic regions and taxa. As depicted in 

Figure 13.4, MSMFinder will be based on LibrAlign and use its sequence and MSA visualization func-

tionality combined with one or more custom data area implementations that display the identified 

mutational patterns. 



13  General discussion and outlook 187 

 

 

Figure 13.3 Screenshot of the alignment evaluation software used in a currently ongoing study that makes use 
of comparison functionality developed in this thesis 

On the left is the analysis tree that contains all datasets from the current repository and the different MSA and 
tree inference steps nested in them. Additionally, each dataset contains a set of metaanalyses that compare the 
results. Highlighted by the red arrows are the steps AlignmentComparatorComparison (which compares 

MSAs using AlignmentComparator) and CompareSupportValues (which compares phylogenetic trees using 

TreeGraph 2.) 

The tab opened on the right contains a GUI component that based on TreeGraph 2. The number of columns and 
rows can be adjusted to determine the number of trees to be compared and the dropdown menus in each tile 
allow to choose a tree from the current dataset to be compared. As explained in chapter 9.3.1 (page 139) and 
Figure 9.2 (page 140), a node selected in one of the trees is automatically selected in all others and support values 
of conflicting branches are also highlighted. In addition, the trees displayed here contain the support values from 
all alternative trees, which have been mapped onto each branch as described in Figure 9.1 (page 139). Conflicting 
values are in brackets and all values are colored depending on how much they differ from the average support of 
that node in all trees. This has been achieved using TreeGraph 2’s features to calculate node annotations (chapter 
9.3.4, page 148) and to automatically set formats by annotations (chapter 8.3.2.5, page 133), which are called 
using the Java API of TreeGraph 2 by the alignment evaluation software. 

In this concrete example the tree topology resulting from the ClustalW MSA (in the middle) differs from the two 
others (left and right) and the support value in the ClustalW tree for the conflicting node is highlighted. This is the 
same support value (0.99) which is displayed in red and in brackets in the other two trees. As there is an additional 
value formatted in brackets, another tree (which is currently not opened in the comparison) conflicts with the 
manual and PRANK tree (left and right) and is in agreement with the ClustalW tree. 
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Figure 13.4 Ongoing and planned applications of the software developed in this thesis to investigate micro-
structural mutational patterns and improve multiple sequence alignment algorithms for phylogenetic purposes 
(Caption on the next page.) 
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Figure 13.4 (Continued.) 

This figure shows the relation between software components developed in this thesis and additional ones that 
are planned or currently implemented. In the blue section, research aims to be addressed using this set of software 
components are shown. Components and relations that are a result of this thesis and were already contained in 
Figure 1.1 are shown in gray, while all additional components and relations that are currently developed or 
planned are shown in black. 

(“MSM” stands for microstructural mutations and MSMDB for microstructural mutations database.) 

To decide which mutational patterns are of potential relevance for modeling in automated MSA algo-

rithms, their frequency in different genomes and taxa (as it will be provided by MSMDB) is important, 

but a more fine-grained examination of their influence on the results of automated MSA and subse-

quent phylogenetic inference is necessary. AlignmentComparator with its LibrAlign-based architecture 

represents a very useful tool to perform such an analysis. The special data area(s) that are planned to 

be implemented in MSMFinder can directly be integrated into AlignmentComparator, as well, to indi-

cate the positions of the identified mutational patterns in the evaluated data sets directly within the 

visual comparison. This allows a detailed and efficient inspection of the possible influence of such pat-

terns on the results of different automated MSA algorithms and their possible correlation with manual 

alignment modifications performed in the investigated phylogenetic studies. Information gathered this 

way could be vital to improve automated MSA and new or extended algorithms could directly be tested 

on the relevant patterns. Therefore, the flexible data area architecture provided by LibrAlign plays a 

key role in enabling the combination of the two approaches (MSA evaluation and search for mutational 

patterns) to improve automated MSA for phylogenetic purposes and makes a study like this feasible.  
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ABCD: Access to Biological Collection Data (exchange format) 

API: Application programming interface 

AWT: Abstract Window Toolkit 

BAliBASE: Benchmark Alignment dataBASE 

BGBM: Botanical Garden and Botanical Museum (FU Berlin) 

BHL: Biodiversity Heritage Library 

BioCASe: Biological Collection Access Service 

CDAO: Comparative Data Analysis Ontology 

CDM: Common Data Model (of the EDIT platform for Cybertaxonomy) 

CLD-CoW: Corvids Literature Database: Corvids of the World 

DDBJ: DNA DataBank of Japan 

DELTA: DEscription Language for Taxonomy 

DFG: Deutsche Forschungsgemeinschaft (German Research Fundation) 

DNA: Deoxyribonucleic acid 

DP: Dynamic Programming 

EDAM: EMBRACE Data And Methods 

EDIT: European Distributed Institute of Taxonomy 

EMBRACE: European Model for Bioinformatics Research and Community Education 

ENA: European Nucleotide Archive 

ETE: Environment for Tree Exploration 

FASTA: Fast Adaptive Shrinkage Thresholding Algorithm (This abbreviation is used here for FASTA align-

ment format.) 

FreeHEP: Free High Energy Physics (Java library) 

GBIF: Global Biodiversity Information Facility 

GFBio: German Federation for Biological Data 

GGBN: Global Genome Biodiversity Network 

GNU: Gnu's Not Unix (Recursive acronym. Uses a wildebeest (Connochaetes) as its icon, which is “Gnu” 

in German.) 

GPL: General Public License 

GUI: Graphical User Interface 

ICN: International Code of Nomenclature for algae, fungi and plants 
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ID: Identifier 

I/O: Input/Output 

LGPL: Lesser General Public License 

MIAPA: Minimum Information for A Phylogenetic Analysis 

MSA: Multiple sequence alignment 

MSM: Microstructural mutation 

MSMDB: Microstructural mutations database 

NaN: Not a Number 

NCBI: National Center for Biotechnology Information 

OTU: Operational Taxonomic Unit 

OWL: Web Ontology Language (The letter reversal is intended by the authors.) 

PDF: Portable Document Format 

PhyDE: Phylogenetic Data Editor (described in chapter 6) 

PNG: Portable Network Graphics 

PRO: Protein Ontology 

RCP: Rich Client Platform (Eclipse) 

RAxML: Randomized Axelerated Maximum Likelihood (computer program) 

RDF: Resource Description Framework 

RNA: Ribonucleic acid 

SDD: Structure of Descriptive Data standard 

SEM: Scanning Electron Microscope 

SP: Sum-of-Pairs score 

SVG: Scalable Vector Graphics 

SVN: Subversion (version control system) 

SWT: Standard Widget Toolkit 

TC: Total Column score 

TDWG: Taxonomic Databases Working Group 

TIC: Toolkit Independent Components (Java library, described in chapter 12) 

UML: Unified Modeling Language 

URI: Uniform Resource Identifier 

URL: Uniform Resource Locator 

W3C: World Wide Web Consortium 
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XML: Extensible Markup Language 

XTG: Extensible TreeGraph format 
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