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Abstract. We investigate base change and automorphic induction C/R at the level of K-
theory for the general linear group GLn(R). In the course of this study, we compute in
detail the C∗-algebra K-theory of this disconnected group. This article is the archimedean
companion of our previous article [12].

1. Introduction

In the general theory of automorphic forms, an important role is played
by base change and automorphic induction, two examples of the principle of
functoriality in the Langlands program [5]. Base change and automorphic
induction have a global aspect and a local aspect [1]. In this article, we focus
on the archimedean case of base change and automorphic induction for the
general linear group GLn(R), and we investigate these aspects of functoriality
at the level of K-theory.

For GLn(R) and GLn(C) we have the Langlands classification and the as-
sociated L-parameters [10]. We recall that the domain of an L-parameter of
GLn(F ) over an archimedean field F is the Weil group WF . The Weil groups
are given by

WC = C
× and WR = 〈j〉C×

where j2 = −1 ∈ C×, jc = cj for all c ∈ C×. Base change is defined by
restriction of L-parameter from WR to WC.

An L-parameter φ is tempered if φ(WF ) is bounded. Base change therefore
determines a map of tempered duals.

Let X,Y be locally compact Hausdorff spaces, let X+, Y + be their one-
point compactifications. A map f : X → Y is continuous at infinity if it is
the restriction of a continuous map from X+ to Y +. The K-theory groups K0

and K1 are contravariant functors from the category of locally compact Haus-
dorff spaces whose morphisms are maps continuous at infinity to the category
of abelian groups, see [13, Prop. 2.6.10]. Now the tempered dual of GLn(F )
with F = R or C is a locally compact Hausdorff space. It seems natural to fuse
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together the Langlands functoriality which occurs in base change and automor-
phic induction with the K-theory functoriality. In this article, we accordingly
study base change and automorphic induction at the level of K-theory.

We outline here the connection with the Baum–Connes correspondence.
Let F denote R or C and let G = G(F ) = GLn(F ). Let C∗

r (G) denote the
reduced C∗-algebra of G. The Baum–Connes correspondence is a canonical
isomorphism [2, 6, 11]

µF : K
G(F )
∗ (EG(F )) → K∗C

∗
r (G(F )),

where EG(F ) is a universal example for proper actions of G(F ).
The noncommutative space C∗

r (G(F )) is strongly Morita equivalent to the
commutative C∗-algebra C0(A

t
n(F )) where At

n(F ) denotes the tempered dual
of G(F ), see [14] and [15, §1.2]. As a consequence of this, we have

K∗C
∗
r (G(F )) ∼= K∗At

n(F ).

This leads to the following formulation of the Baum–Connes correspondence:

K
G(F )
∗ (EG(F )) ∼= K∗At

n(F ).

Base change and automorphic induction C/R determine maps

BCC/R : At
n(R) → At

n(C)

and

AIC/R : At
n(C) → At

2n(R).

This leads to the following diagrams:

K
G(C)
∗ (EG(C))

µC
//

��

K∗At
n(C)

BC∗
C/R

��

K
G(R)
∗ (EG(R))

µR
// K∗At

n(R)

and

K
G(R)
∗ (EG(R))

µR
//

��

K∗At
2n(R)

AI∗
C/R

��

K
G(C)
∗ (EG(C))

µC
// K∗At

n(C),

where the left-hand vertical maps are the unique maps which make the dia-
grams commutative.

In Section 2 we describe the tempered dual At
n(F ) as a locally compact

Hausdorff space.
In Section 3 we compute theK-theory for the reduced C∗-algebra of GLn(R).

The real reductive Lie group GLn(R) is not connected. If n is even, our for-
mulas show that we always have nontrivial K0 and K1. We also recall the
K-theory for the reduced C∗-algebra of the complex reductive group GLn(C),
see [14].
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In Section 4 we recall the Langlands parameters for GLn over archimedean
local fields, see [10].

In Section 5 we compute the base change map BC : At
n(R) → At

n(C) and
prove that BC is a continuous proper map. At the level of K-theory, base
change is the zero map for n > 1 (Theorem 5.5) and is nontrivial for n = 1
(Theorem 5.7).

In Section 6, we compute the automorphic induction map AI : At
n(C) →

At
2n(R). Contrary to base change, at the level of K-theory, automorphic in-

duction is nontrivial for every n (Theorem 6.3).
In Section 7, where we study the case n = 1, base change for K1 creates a

map

R(U(1)) → R(Z/2Z),

where R(U(1)) is the representation ring of the circle group U(1) and R(Z/2Z)
is the representation ring of the group Z/2Z. This map sends the trivial char-
acter of U(1) to 1⊕ε, where ε is the nontrivial character of Z/2Z, and sends all
the other characters of U(1) to zero. Moreover, this map has an interpretation
in terms of K-cycles. The K-cycle

(C0(R), L
2(R), i d/dx)

is equivariant with respect to C× and R×, and therefore determines a class

/∂C ∈ KC
×

1 (EC×) and a class /∂R ∈ KR
×

1 (ER×). On the left-hand side of
the Baum–Connes correspondence, base change in dimension 1 admits the
following description in terms of Dirac operators:

/∂C 7→ (/∂R, /∂R).

This extends the results of [12] to archimedean fields.
We have, according to the Connes–Kasparov correspondence, the following

isomorphism:

K∗C
∗
r (GLn(R)) ≃ K∗

O(n)(R
n),

the equivariant K-theory of Rn with respect to the standard action of the
orthogonal group O(n). This isomorphism opens the way to computing the
K-theory of C∗

r (GLn(R)) via equivariant K-theory: this program is carried
out in the paper by Echterhoff and Pfante [8]. Our method of computing the
K-theory of C∗

r (GLn(R)) is quite different, as we have to keep track of the
Langlands parameters.

After our article was posted on the arXiv, Chao and Wang sent us their
article [7]. Their work and ours were done independently. There is some
overlap, but we would like to describe the main differences. Their account
of base change is different, as they place an emphasis on Galois-fixed points.
In the context of the Connes–Kasparov isomorphism, they succeed in securing
base change on maximal compact subgroups [7, §7.2]. On the other hand, their
work does not include automorphic induction.
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2. On the tempered dual of GLn

Let F = R. In order to compute the K-theory of the reduced C∗-algebra
of GLn(F ) we need to parametrize the tempered dual At

n(F ) of GLn(F ). Our
key reference for the representation theory of GLn(R) is Knapp [10].

Let M be a standard Levi subgroup of GLn(F ), i.e. a block-diagonal sub-
group. Let 0M be the subgroup of M such that the determinant of each
block-diagonal is ±1. Denote by

X(M) = ̂M/ 0M

the group of unramified characters of M , consisting of those characters which
are trivial on 0M .

Let W (M) = N(M)/M denote the Weyl group of M . It acts on the discrete
series E2(

0M) of 0M by permutations.
Now, choose one element σ ∈ E2(

0M) for each W (M)-orbit. The isotropy

subgroup of σ is defined to be

Wσ(M) = {ω ∈ W (M) | ω.σ = σ}.

Take one standard Levi subgroup M from each conjugacy class of Levi sub-
groups and one discrete series σ from each W (M)-orbit and form the disjoint
union ⊔

[M,σ]

X(M)/Wσ(M) =
⊔

[M ]

⊔

[σ]∈E2(0M)

X(M)/Wσ(M).

The disjoint union has the structure of a locally compact Hausdorff space and
is called the Harish-Chandra parameter space.

Proposition 2.1. There exists a bijection
⊔

[M,σ]

X(M)/Wσ(M) → At
n(R),

χσ 7→ iGLn(R),MN (χσ ⊗ 1),

where χσ(x) := χ(x)σ(x) for all x ∈ M .

In view of the above bijection [15, §1.2], we will denote the Harish-Chandra
parameter space by At

n(R).
We will see now the particular features of the archimedean case, starting

with GLn(R). Since the discrete series of GLn(R) is empty for n ≥ 3, we only
need to consider partitions of n into 1’s and 2’s.

This allows us to decompose n as n = 2q + r, where q is the number of 2’s
and r is the number of 1’s in the partition. To this decomposition we associate
the partition

n = (2, . . . , 2︸ ︷︷ ︸
q

, 1, . . . , 1︸ ︷︷ ︸
r

),

which corresponds to the Levi subgroup

M ∼= GL2(R)× · · · ×GL2(R)︸ ︷︷ ︸
q

×GL1(R)× · · · ×GL1(R)︸ ︷︷ ︸
r

.
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Varying q and r, we determine a representative in each equivalence class of
Levi subgroups. The subgroup 0M of M is given by

0M ∼= SL±
2 (R)× · · · × SL±

2 (R)︸ ︷︷ ︸
q

× SL±
1 (R)× · · · × SL±

1 (R)︸ ︷︷ ︸
r

,

where

SL±
m(R) = {g ∈ GLm(R) | |det(g)| = 1}.

In particular, SL±
1 (R) = {±1} ∼= Z/2Z.

The representations in the discrete series of SL±
2 (R), denoted by Dℓ for

ℓ ∈ N (ℓ ≥ 1) are induced from SL2(R) (see [10, p. 399]):

Dℓ = iSL±

2
(R),SL2(R)

(D+
ℓ ),

where D+
ℓ acts in the space
{
f : H → C | f analytic, ‖f‖2 =

∫ ∫
|f(z)|2yℓ−1dxdy < ∞

}
.

Here, H denotes the Poincaré upper half plane. The action of g =
(
a b
c d

)
is

given by

D+
ℓ (g)(f(z)) = (bz + d)−(ℓ+1)f

(az + c

bz + d

)
.

More generally, an element σ from the discrete series E2(
0M) is given by

σ = Dℓ1 ⊗ · · · ⊗ Dℓq ⊗ τ1 ⊗ · · · ⊗ τr,

where Dℓi (ℓi ≥ 1) are discrete series representations of SL±
2 (R) and τj is a

representation of SL±
1 (R)

∼= Z/2Z, i.e. id = (x 7→ x) or sgn = (x 7→ x/|x|).
Finally, we will compute the unramified characters X(M), where M is the

Levi subgroup associated to the partition n = 2q + r.
Let x ∈ GL2(R). Any character of GL2(R) is given by

χ(det(x)) = (sgn(det(x)))ε|det(x)|it, ε = 0, 1, t ∈ R

and it is unramified provided that

χ(det(g)) = χ(±1) = (±1)ε = 1 for all g ∈ SL±
2 (R).

This implies ε = 0 and any unramified character of GL2(R) has the form

(1) χ(x) = |det(x)|it for some t ∈ R.

Similarly, any unramified character of GL1(R) = R× has the form

(2) ξ(x) = |x|it for some t ∈ R.

Given a block diagonal matrix diag(g1, . . . , gq, ω1, . . . , ωr) ∈ M , where gi ∈
GL2(R) and ωj ∈ GL1(R), we conclude from (1) and (2) that any unramified
character χ ∈ X(M) is given by

χ(diag(g1, . . . , gq, ω1, . . . , ωr))

= |det(g1)|
it1 · · · |det(gq)|

itq · |ω1|
itq+1 · · · |ωr|

itq+r ,
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for some (t1, . . . , tq+r) ∈ Rq+r. We can denote such element χ ∈ X(M) by
χ(t1,...,tq+r). We have the following result.

Proposition 2.2. Let M be a Levi subgroup of GLn(R), associated to the

partition n = 2q + r. Then, there is a bijection

X(M) → R
q+r , χ(t1,...,tq+r) 7→ (t1, . . . , tq+r).

Let us consider now GLn(C). The tempered dual of GLn(C) comprises the
unitary principal series in accordance with Harish-Chandra [9]. The corre-
sponding Levi subgroup is a maximal torus T ∼= (C×)n. Denote by U the
standard unipotent subgroup of GLn(C). The principal series representations
are given by

πℓ,it = iG,TU (σ ⊗ 1),

where σ = σ1 ⊗ · · · ⊗ σn and σj(z) = (z/|z|)ℓj |z|
itj
C

(ℓj ∈ Z and tj ∈ R), with
|z|C = zz = |z|2, see [10, p. 405].

An unramified character is given by

χ



z1

. . .

zn


 = |z1|

it1
C

× · · · × |zn|
itn
C

,

and we can represent χ as χ(t1,...,tn). Therefore, we have the following result.

Proposition 2.3. Denote by T the standard maximal torus in GLn(C). There

is a bijection

X(T ) → R
n, χ(t1,...,tn) 7→ (t1, . . . , tn).

The Weyl group W is the symmetric group Sn and acts on Rn by permuting
the components.

3. K-theory for GLn

Using the Harish-Chandra parametrization of the tempered dual of GLn(R)
and GLn(C) (recall that the Harish-Chandra parameter space is a locally com-
pact Hausdorff topological space), we can compute the K-theory of the reduced
C∗-algebras C∗

rGLn(R) and C∗
rGLn(C).

3.1. K-theory for GLn(R). We exploit the strong Morita equivalence de-
scribed in [15, §1.2]. We note in passing that, in the proof of this strong Morita
equivalence, the following ingredient is crucial: each tempered representation
of GLn(R), i.e. each unitary representation of GLn(R) which is unitarily in-
duced via parabolic induction from a discrete series representation of a Levi
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subgroup is irreducible, see [10, p. 401]. We infer that

Kj(C
∗
rGLn(R)) = Kj

( ⊔

(M,σ)

X(M)/Wσ(M)
)

(3)

=
⊕

(M,σ)

Kj(X(M)/Wσ(M))

=
⊕

(M,σ)

Kj(RnM /Wσ(M)),

where nM = q + r if M is a representative of the equivalence class of the Levi
subgroup associated to the partition n = 2q+ r. Hence the K-theory depends
on n and on each Levi subgroup.

For a given Levi subgroup M and a discrete series σ of 0M , the isotropy
subgroup Wσ is a subgroup of the Weyl group W (M), which is in turn a
subgroup of the symmetric group Sn. The isotropy subgroup has the form
Sn1

× · · · × Snk
and acts on Rn by permuting the components. Write

R
n ∼= R

n1 × R
n2 × · · · × R

nk × R
n−n1−···−nk .

If n = n1 + · · ·+ nk then we simply have Rn ∼= Rn1 × · · · × Rnk .
The group Sn1

× · · · × Snk
acts on Rn as follows:

• Sn1
permutes the components of Rn1 leaving the remaining fixed;

• Sn2
permutes the components of Rn2 leaving the remaining fixed;

and so on. If n > n1 + · · ·+ nk the components of Rn−n1−···−nk remain fixed.
This can be interpreted, of course, as the action of the trivial subgroup. As a
consequence, one identifies the orbit spaces

R
n/(Sn1

× · · · × Snk
) ∼= R

n1/Sn1
× · · · × R

nk/Snk
× R

n−n1−···−nk .

To compute the K-theory (3) we have to consider the following orbit spaces:

• Rn, in which caseWσ(M) is the trivial subgroup of the Weyl groupW (M);
• Rn/(Sn1

× · · · × Snk
), where Wσ(M) = Sn1

× · · · × Snk
⊂ W (M) (see the

examples below).

The K-theory for Rn may be summarized as follows:

Kj(Rn) =

{
Z if n ≡ j (mod 2),

0 otherwise.

Lemma 3.2. For n > 1, one has Kj(Rn/Sn) = 0, j = 0, 1.

Proof. We consider the action of the symmetric group W = Sn on Rn. The
subspace

{t(1, . . . , 1) | t ∈ R}

is fixed by W , and the orthogonal subspace

t := {(x1, . . . , xn) | x1 + · · ·+ xn = 0}

is W -invariant. It follows that Rn/Sn ≃ R × t/W . The action of W on t

is precisely the action of W on the Lie algebra t of the standard maximal
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torus T of the Lie group SLn(R). The closure C of a chamber C ⊂ t is a
fundamental domain for the action of W , see [4, Chap. 5, §3]. The quotient
t/W is homeomorphic to C. Then we have

R
n/W ≃ R× C.

Now C is a closed simplicial cone with vertex at the origin of Rn. It has the
topological type of a half-space in Euclidean space. Hence the K-theory of C
is trivial. The lemma follows immediately from the Künneth theorem applied
to R× C. �

Lemma 3.3. One has Kj(Rn/(Sn1
× · · · × Snk

)) = 0, j = 0, 1, where Sn1
×

· · · × Snk
⊂ Sn, unless n1 = · · · = nk = 1.

Proof. It suffices to prove the lemma for Rn/(Sn1
× Sn2

). The general case
follows by induction on k.

Now, Rn/(Sn1
× Sn2

) ∼= Rn1/Sn1
× Rn−n1/Sn2

. Applying the Künneth
formula and Lemma 3.2, the result follows. �

We give now some examples by computing KjC
∗
rGLn(R) for small n.

Example 3.4. We start with the case of GL1(R). We have

M = R
×, 0M = Z/2Z, W (M) = 1 and X(M) = R.

Hence,

At
1(R)

∼=
⊔

σ∈(̂Z/2Z)

R/1 = R ⊔ R,

and the K-theory is given by

KjC
∗
rGL1(R) ∼= Kj(At

1(R)) = Kj(R ⊔ R)

= Kj(R)⊕Kj(R) =

{
Z⊕ Z if j = 1,

0 if j = 0.

Example 3.5. For GL2(R) we have two partitions of n = 2 and the following
data

Partition M 0M W (M) X(M) σ ∈ E2(
0M)

2+0 GL2(R) SL±
2 (R) 1 R σ = D+

ℓ , ℓ ∈ N

1+1 (R×)2 (Z/2Z)2 Z/2Z R2 σ = τ1 ⊗ τ2

with τi ∈ Ẑ/2Z ≃ {id, sgn}. Then the tempered dual is parametrized as

At
2(R)

∼=
⊔

(M,σ)

X(M)/Wσ(M) =
( ⊔

ℓ∈N

R

)
⊔ (R2/S2) ⊔ (R2/S2) ⊔ R

2,

and the K-theory groups are given by

KjC
∗
rGL2(R) ∼= Kj(At

2(R))

∼=
(⊕

ℓ∈N

Kj(R)
)
⊕Kj(R2) =

{⊕
ℓ∈N

Z if j = 1,

Z if j = 0.
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The general case of GLn(R) will now be considered. It can be split into two
cases: n even and n odd.

Case 1: n = 2m even.

Suppose n is even. For every partition n = 2q + r, either Wσ(M) = 1 or
Wσ(M) 6= 1. If Wσ(M) 6= 1 then RnM /Wσ(M) is an orbit space for which
the K-groups K0 and K1 both vanish. This happens precisely when r > 2
because there are exactly two distinct discrete series representations of Z/2Z
and therefore we have only two partitions, corresponding to the choices of r = 0
and r = 2, which contribute to the K-theory with nonzero K-groups:

Partition M 0M W (M)

2m GL2(R)
m SL±

2 (R)
m Sm

2(m− 1) + 2 GL2(R)
m−1× (R×)2 SL±

2 (R)
m−1× (Z/2Z)2 Sm−1× (Z/2Z)

We also have

X(M) ∼= R
m for n = 2m,

X(M) ∼= R
m+1 for n = 2(m− 1) + 2.

For the partition n = 2m (r = 0), an element σ ∈ E2(
0M) is given by

σ = Dℓ1 ⊗ · · · ⊗ Dℓm , ℓ1 > · · · > ℓm, ℓi ∈ N
m.

For the partition n = 2(m− 1)+2 (r = 2), an element σ ∈ E2(
0M) is given by

σ = Dℓ1 ⊗ · · · ⊗ Dℓm−1
⊗ id⊗ sgn, ℓ1 > · · · > ℓm−1, ℓi ∈ N

m−1.

Therefore, the tempered dual has the form

At
n(R) = At

2m(R) =
( ⊔

ℓ1>···>ℓm

R
m
)
⊔
( ⊔

ℓ′
1
>···>ℓ′m−1

R
m+1

)
⊔ C,

with ℓi, ℓ
′
j ∈ N and where C is a disjoint union of orbit spaces as in Section 3.

Note that the strictly decreasing condition is required in order to pick only one
discrete series from each Weyl group orbit.

Theorem 3.6. Suppose n = 2m is even. Then the K-groups are

KjC
∗
rGLn(R) ∼=

{⊕
ℓ1>···>ℓm

Z if j ≡ m (mod 2),⊕
ℓ1>···>ℓm−1

Z otherwise

with ℓi ∈ N. If m = 1 then KjC
∗
rGL2(R) ∼= Z.

Case 2: n = 2q + 1 odd

If n is odd, only one partition contributes to the K-theory of GLn(R) with
nonzero K-groups:

Partition M 0M W (M) X(M)

2q + 1 GL2(R)
q+1 × R× SL±

2 (R)
q × (Z/2Z) Sq Rq+1

An element σ ∈ E2(
0M) is given by

σ = Dℓ1 ⊗ · · · ⊗ Dℓq ⊗ τ, ℓ1 > · · · > ℓq, ℓi ∈ N, τ ∈ Ẑ/2Z.
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And the tempered dual is

At
n(R) = At

2q+1(R) =
( ⊔

ℓ1>···>ℓq,ε

R
q+1

)
⊔ C

with ℓi ∈ N and ε ∈ Z/2Z. The space C is a disjoint union of orbit spaces as
in Section 3.

Theorem 3.7. Suppose n = 2q + 1 is odd. Then the K-groups are

KjC
∗
rGLn(R) ∼=

{⊕
ℓ1>···>ℓq,ε

Z if j ≡ q + 1 (mod 2),

0 otherwise

with ℓi ∈ N and ε ∈ Z/2Z. Here, we use the following convention: if q = 0
then the direct sum is

⊕
Z/2Z Z

∼= Z⊕ Z.

We conclude that the K-theory of C∗
rGLn(R) depends on essentially one

parameter q = ⌊n
2 ⌋ which gives the maximum number of 2’s in the partitions

of n into 1’s and 2’s.

3.8. K-theory for GLn(C). Let ◦T be the maximal compact subgroup of
the maximal torus T of GLn(C). Let σ be a unitary character of ◦T . We note
that W = W (T ) and Wσ = Wσ(T ). If Wσ = 1 then we say that the orbit
W · σ is generic.

Theorem 3.9. The K-theory of C∗
rGLn(C) admits the following description.

If n ≡ j (mod 2) then Kj is free abelian on countably many generators, one

for each generic W -orbit in the unitary dual of ◦T , and Kj+1 = 0.

Proof. We exploit the strong Morita equivalence described in [14, Prop. 4.1].
We have a homeomorphism of locally compact Hausdorff spaces:

At
n(C)

∼=
⊔

[σ]

X(T )/Wσ(T )

by Harish-Chandra’s Plancherel theorem for complex reductive groups [9], and
the identification of the Jacobson topology on the left-hand side with the nat-
ural topology on the right-hand side, as in [14]. The result now follows from
Lemma 3.2. �

Remark 3.10. Note that [σ] = [T, σ] is labeled by ℓ1 ≥ · · · ≥ ℓn, with ℓi ∈ Z.
Moreover, Wσ(T ) is trivial if and only if ℓ1 > · · · > ℓn.

4. Langlands parameters for GLn

The Weil group of C is simply

WC
∼= C

×,

and the Weil group of R can be written as disjoint union

WR
∼= C

× ⊔ jC×,

Münster Journal of Mathematics Vol. 10 (2017), 39–58



Functoriality and K-theory for GLn(R) 49

where j2 = −1 and jcj−1 = c (c denotes complex conjugation). We shall use
this disjoint union to describe the representation theory of WR.

An L-parameter is a continuous homomorphism

φ : WF → GLn(C)

such that φ(w) is semisimple for all w ∈ WF .
L-parameters are also called Langlands parameters. Two L-parameters are

equivalent if they are conjugate under GLn(C). The set of equivalence classes of
L-parameters is denoted by Gn. The set of equivalence classes of L-parameters
whose image is bounded is denoted by Gt

n.
Let F be either R or C. Let An(F ) (resp. At

n(F )) denote the smooth dual
(resp. tempered dual) of GLn(F ). The local Langlands correspondence is a
bijection

Gn(F ) → An(F ).

When we restrict to bounded parameters, we obtain a bijection which we will
denote by FLn:

FLn : Gt
n(F ) → At

n(F )

L-parameters for WC. A 1-dimensional L-parameter for WC is a character
of C×:

χℓ,t(z) :=
( z

|z|

)ℓ

⊗ |z|tC,

where |z|2 = |z|C = zz, ℓ ∈ Z and t ∈ C. The unitary characters are therefore
given by

χℓ,it(re
iθ) = r2iteiℓθ

with t ∈ R and ℓ ∈ Z.

L-parameters for WR. The 1-dimensional L-parameters for WR are as
follows:

(+, t)(z) = |z|tR and (+, t)(j) = 1,

(−, t)(z) = |z|tR and (+, t)(j) = −1.

We may now describe the local Langlands correspondence for GL(1,R):

(+, t) 7→ 1⊗ |·|tR, (−, t) 7→ sgn⊗ |·|tR.

The Weil group WR admits 2-dimensional irreducible representations, de-
noted by ϕℓ,t with ℓ ∈ Z, ℓ 6= 0, and t ∈ R. They are defined in [10, (3.3)]:

ϕℓ,t(z) =

(
χℓ,t(z) 0

0 χℓ,t(z)

)
, ϕℓ,t(j) =

(
0 (−1)ℓ

1 0

)
.

We will need one crucial property, namely

ϕℓ,t|WC
= χℓ,t ⊕ χ−ℓ,t(4)

and the single equivalence

ϕℓ,t ≃ ϕ−ℓ,t.
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According to [10, (3.4)], the L-parameter ϕℓ,it corresponds, via the Lang-
lands correspondence, to the discrete series:

ϕℓ,it 7→ Dℓ ⊗ |det(·)|itR , with ℓ ∈ N, t ∈ R.

Lemma 4.1 ([10]). Every finite-dimensional semisimple representation φ of

WR is fully reducible, and each irreducible representation has dimension one

or two.

5. Base change

We may state the base change problem for archimedean fields in the follow-
ing way. Consider the archimedean base change C/R. We have WC ⊂ WR and
there is a natural map

ResWR

WC
: Gn(R) → Gn(C)

called restriction. By the local Langlands correspondence for archimedean
fields (see [5, p. 236, Thm. 3.1] and [10]), there is a base change map

BC : An(R) → An(C)

such that the following diagram commutes:

An(R)
BC

// An(C)

Gn(R)
Res

WR

WC
//

R
Ln

OO

Gn(C).

C
Ln

OO

Arthur and Clozel’s book [1] gives a full treatment of base change for GLn.
The case of archimedean base change can be captured in an elegant formula
[1, p. 71]. We briefly review these results.

Given a partition n = 2q + r let χi (i = 1, . . . , q) be a ramified character
of C× and let ξj (j = 1, . . . , r) be a ramified character of R×. Since the χi’s
are ramified, χi(z) 6= χτ

i (z) = χi(z), where τ is a generator of Gal(C/R). By
Langlands classification [10], each χi defines a discrete series representation
π(χi) of GL2(R), with π(χi) = π(χτ

i ). Denote by π(χ1, . . . , χq, ξ1, . . . , ξr) the
generalized principal series representation of GLn(R):

π(χ1, . . . , χq, ξ1, . . . , ξr)(5)

= iGLn(R),MN (π(χ1)⊗ · · · ⊗ π(χq)⊗ ξ1 ⊗ · · · ⊗ ξr ⊗ 1).

The base change map for the generalized principal series representation is given
by induction from the Borel subgroup B(C) (see [1, p. 71]):

BC(π) = iGLn(C),B(C)(χ1, χ
τ
1 , . . . , χq, χ

τ
q , ξ1 ◦N, . . . , ξr ◦N),

where N = NC/R : C× → R× is the norm map defined by z 7→ zz.
We illustrate the base change map with two simple examples.

Münster Journal of Mathematics Vol. 10 (2017), 39–58



Functoriality and K-theory for GLn(R) 51

Example 5.1. For n = 1, base change is simply composition with the norm
map

BC : At
1(R) → At

1(C), BC(χ) = χ ◦N.

Example 5.2. For n = 2, there are two different kinds of representations, one
for each partition of 2. According to (5), π(χ) corresponds to the partition
2 = 2 + 0 and π(ξ1, ξ2) corresponds to the partition 2 = 1 + 1. Then the base
change map is given, respectively, by

BC(π(χ)) = iGL2(C),B(C)(χ, χ
τ ),

and

BC(π(ξ1, ξ2)) = iGL2(C),B(C)(ξ1 ◦N, ξ2 ◦N).

5.3. The base change map. Now, we define base change as a map of topolog-
ical spaces and study the inducedK-theory map. A continuous map f : X → Y
between topological spaces is proper if f−1(K) is a compact subset of X for
every compact subset K of Y . If f is a proper map between locally com-
pact Hausdorff spaces then f is continuous at infinity, see [13, Prop. 2.6.4].
So proper maps are morphisms in the category of locally compact Hausdorff
spaces, see [13, Prop. 2.6.6].

Proposition 5.4. The base change map BC : At
n(R) → At

n(C) is a continuous

proper map.

Proof. First, we consider the case n = 1. As we have seen in Example 5.1,
base change for GL(1) is the map given by BC(χ) = χ ◦ N for all characters
χ ∈ At

1(R), where N : C× → R× is the norm map.
Let z ∈ C×. We have

(6) BC(χ)(z) = χ(|z|2) = |z|2it.

A generic element from At
1(C) has the form

(7) µ(z) =
( z

|z|

)ℓ

|z|it,

where ℓ ∈ Z and t ∈ R, as stated before. Viewing the Pontryagin duals
At

1(R) and At
1(C) as topological spaces by forgetting the group structure, and

comparing (6) and (7), the base change map can be defined as the following
continuous map:

ϕ : At
1(R)

∼= R× (Z/2Z) → At
1(C)

∼= R× Z,

χ = (t, ε) 7→ (2t, 0).

A compact subset of R×Z in the connected component {ℓ} of Z has the form
K × {ℓ} ⊂ R× Z, where K ⊂ R is compact. We have

ϕ−1(K × {ℓ}) =

{
∅ if ℓ 6= 0,
1
2K × {ε} if ℓ = 0,

where ε ∈ Z/2Z. Therefore ϕ−1(K × {ℓ}) is compact and ϕ is proper.
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Case n > 1. Base change determines a map BC : At
n(R) → At

n(C) of topo-
logical spaces. Let X = X(M)/Wσ(M) be a connected component of At

n(R).
Then, X is mapped under BC into a connected component Y = Y (T )/Wσ′(T )
of At

n(C). Given a generalized principal series representation

π(χ1, . . . , χq, ξ1, . . . , ξr),

where the χi’s are ramified characters of C× and the ξ’s are ramified characters
of R×, then

BC(π) = iG,B(χ1, χ
τ
1 , . . . , χq, χ

τ
q , ξ1 ◦N, . . . , ξr ◦N).

Here, N = NC/R is the norm map and τ is the generator of Gal(C/R).
We associate to π the usual parameters uniquely defined for each character

χ and ξ. For simplicity, we write the set of parameters as a (q + r)-tuple:

(t, t′) = (t1, . . . , tq, t
′
1, . . . , t

′
r) ∈ R

q+r ∼= X(M).

Now, if π(χ1, . . . , χq, ξ1, . . . , ξr) lies in the connected component defined by
the fixed parameters (ℓ, ε) ∈ Zq × (Z/2Z)r, then

(t, t′) ∈ X(M) 7→ (t, t, 2t′) ∈ Y (T )

is a continuous proper map.
It follows that

BC : X(M)/Wσ(M) → Y (T )/Wσ′(T )

is continuous and proper since the orbit spaces are endowed with the quotient
topology. �

Theorem 5.5. The functorial map induced by base change

Kj(C
∗
rGLn(C))

Kj(BC)
−−−−−→ Kj(C

∗
rGLn(R))

is zero for n > 1.

Proof. We start with the case n > 2. Let n = 2q + r be a partition and M
the associated Levi subgroup of GLn(R). Denote by XR(M) the unramified
characters of M . As we have seen, XR(M) is parametrized by Rq+r . On the
other hand, the only Levi subgroup of GLn(C) for n = 2q + r is the diagonal
subgroup XC(M) = (C×)2q+r.

If q = 0 then r = n and both XR(M) and XC(M) are parametrized by Rn.
But then in the real case an element σ ∈ E2(

0M) is given by

σ = iGLn(R),P (χ1 ⊗ · · · ⊗ χn),

with χi ∈ Ẑ/2Z. Since n ≥ 3, there is always repetition of the χi’s. It follows
that the isotropy subgroups Wσ(M) are all nontrivial and the spaces Rn/Wσ

are orbit spaces for which the K-theory groups vanish, see Lemma 3.3.
If q 6= 0, then XR(M) is parametrized by Rq+r and XC(M) is parametrized

by R2q+r (see Propositions 2.2 and 2.3).
Base change creates a map

R
q+r → R

2q+r.

Münster Journal of Mathematics Vol. 10 (2017), 39–58



Functoriality and K-theory for GLn(R) 53

Composing with the stereographic projections, we obtain a map

Sq+r → S2q+r

between spheres. Any such map is nullhomotopic [3, Prop. 17.9]. Therefore,
the induced K-theory map

Kj(S2q+r) → Kj(Sq+r)

is the zero map.

Case n = 2. For n = 2 there are two Levi subgroups of GL2(R), namely
M1

∼= GL2(R) and the diagonal subgroup M2
∼= (R×)2. By Proposition 2.2,

X(M1) is parametrized by R and X(M2) is parametrized by R2. The maximal
torus T of GL2(C) is the diagonal subgroup (C×)2. From Proposition 2.3 we
have X(T ) ∼= R2.

Since K1(At
2(C)) = 0 by Theorem 3.9, we only have to consider the K0

functor. The only contribution to K0(At
2(R)) comes from M2

∼= (R×)2 and we
have (see Example 3.5)

K0(At
2(R))

∼= Z.

For the Levi subgroup M2
∼= (R×)2, base change is

BC : At
2(R) → At

2(C),

π(ξ1, ξ2) 7→ iGL2(C),B(C)(ξ1 ◦N, ξ2 ◦N).

Therefore, it maps a class [t1, t2], which lies in the connected component
(ε1, ε2), into the class [2t1, 2t2], which lies in the connect component (0, 0).
In other words, base change maps a generalized principal series π(ξ1, ξ2) into
a component of At

2(C) whose discrete factor is a nongeneric orbit. It follows
from Theorem 3.9 that

K0(BC) : K0(At
2(R)) → K0(At

2(C))

is the zero map. �

5.6. Base change in one dimension. In this section we consider base change
for GL1.

Theorem 5.7. The functorial map induced by base change

K1(C
∗
rGL1(C))

K1(BC)
−−−−−→ K1(C

∗
rGL1(R))

is given by K1(BC) = ∆ ◦Pr, where Pr is the projection of the zero component

of K1(At
1(C)) into Z and ∆ is the diagonal Z → Z⊕ Z.

Proof. For GL1, base change

χ ∈ At
1(R) 7→ χ ◦NC/R ∈ At

1(C)

induces a map

K1(BC) : K1(At
1(C)) → K1(At

1(R)).

Any character χ ∈ At
1(R) is uniquely determined by a pair of parameters

(t, ε) ∈ R× Z/2Z. Similarly, any character µ ∈ At
1(C) is uniquely determined
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by a pair of parameters (t, ℓ) ∈ R×Z. The discrete parameter ε (resp. ℓ) labels
each connected component of At

1(R) = R ⊔R (resp. At
1(C) =

⊔
Z
R).

Base change maps each component ε of At
1(R) into the component 0 of

At
1(C), sending t ∈ R to 2t ∈ R. The map t 7→ 2t is homotopic to the identity.

At the level of K1, the base change map is given by K1(BC) = ∆ ◦ Pr, where
Pr is the projection of the zero component of K1(At

1(C)) into Z and ∆ is the
diagonal Z → Z⊕ Z. �

6. Automorphic induction

We begin this section by describing the action of Gal(C/R) on ŴC = Ĉ×.
Take χ = χℓ,t ∈ Ĉ× and let τ denote the nontrivial element of Gal(C/R).
Then, Gal(C/R) acts on Ĉ× as follows:

χτ (z) = χ(z).

Hence,

χτ
ℓ,t(z) =

( z

|z|

)ℓ

|z|itC =
( z

|z|

)−ℓ

|z|itC

and we conclude that

χτ
ℓ,t(z) = χ−ℓ,t(z).

In particular,

χτ = χ ⇔ ℓ = 0 ⇔ χ = |·|itC ,

i.e., χ is unramified.
Note that WC ⊂ WR, with index [WR : WC] = 2. Therefore, there is a

natural induction map

IndC/R : Gt
1(C) → Gt

2(R).

By the local Langlands correspondence for archimedean fields [5, 10], there
exists an automorphic induction map AIC/R such that the following diagram
commutes:

At
1(C)

AIC/R
// At

2(R)

Gt
1(C)

IndC/R
//

C
L1

OO

Gt
2(R).

R
L2

OO

Proposition 6.1. If ℓ 6= 0, then

IndC/R(χℓ,t) ≃ IndC/R(χ−ℓ,t) ≃ ϕℓ,t.

If ℓ = 0, then

IndC/R(χ0,t) = (+, 2t)⊕ (−, 2t).
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Proof. It is enough to use Frobenius reciprocity. We start with ℓ 6= 0, and
apply (4):

〈IndC/R(χℓ,t), ϕℓ,t〉 = 〈χℓ,t,ResC/R(ϕℓ,t)〉

= 〈χℓ,t, χℓ,t ⊕ χ−ℓ,t〉 = 1,

〈IndC/R(χ−ℓ,t), ϕℓ,t〉 = 〈χ−ℓ,t,ResC/R(ϕℓ,t)〉

= 〈χ−ℓ,t, χℓ,t ⊕ χ−ℓ,t〉 = 1,

〈IndC/R(χ0,t), (+, 2t)〉 = 〈χ0,t,ResC/R(+, 2t)〉

= 〈χ0,t, χ0,t〉 = 1,

〈IndC/R(χ0,t), (−, 2t)〉 = 〈χ0,t,ResC/R(−, 2t)〉

= 〈χ0,t, χ0,t〉 = 1. �

6.2. The automorphic induction map. In the case of GL2n(R) we will
have to consider the discrete series representations

D|ℓ1| ⊗ |det(·)|it1 ⊗ · · · ⊗D|ℓn| ⊗ |det(·)|itn

on the Levi subgroup M = GL2(R) × · · · × GL2(R) ⊂ GL2n(R). Let P =
MN be the corresponding parabolic subgroup, and, using a classical notation,
denote by

D|ℓ1| ⊗ |det(·)|it1 × · · · ×D|ℓn| ⊗ |det(·)|itn

the corresponding irreducible tempered representations of GL2n(R) obtained
via parabolic induction.

In the same notation, denote by

χℓ1,it1 × · · · × χℓn,itn

the irreducible tempered representation of GLn(C) coming via parabolic induc-
tion from the unitary character χℓ1,it1 ⊗ · · ·⊗χℓn,itn on the standard maximal
torus of GLn(C).

Define π(|ℓj |, tj) as follows:

π(|ℓj |, tj) =

{
D|ℓj| ⊗ |det|itj if ℓj 6= 0,

1⊗ |det|2it × sgn⊗ |det|2it if ℓj = 0.

Consider now the locally compact Hausdorff space

E(|ℓ1|, . . . , |ℓn|) := {π(|ℓ1|, t1)× · · · × π(|ℓn|, tn) | t1, . . . , tn ∈ R}

which is a subspace of the tempered dual of GL2n(R), and the locally compact
Hausdorff space

F(ℓ1, . . . , ℓn) := {χℓ1,it1 × · · · × χℓn,itn | t1, . . . , tn ∈ R}

which is a subspace of the tempered dual of GLn(C).
Then the automorphic induction map AIn maps the space F(ℓ1, . . . , ℓn)

bijectively onto the space E(|ℓ1|, . . . , |ℓn|) via the natural identification of the
coordinates t1, . . . , tn:

AIn : F(ℓ1, . . . , ℓn) ≃ E(|ℓ1|, . . . , |ℓn|).
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We have the functorial K-theory map

Kj(AIn) : K
j(E(|ℓ1|, . . . , |ℓn|)) ≃ Kj(F(i1, . . . , in))(8)

whenever i1 = ±ℓ1, . . . , in = ±ℓn.
Suppose first that the ℓj are all distinct, with none of them 0. Then

E(|ℓ1|, . . . , |ℓn|) and F(ℓ1, . . . , ℓn) are n-dimensional Euclidean spaces. In the
isomorphism (8), a generator for the left-hand side, denoted by δ(ℓ1, . . . , ℓn),
will correspond to a generator for the right-hand side, denoted by ε(i1, . . . , in).

The image of the generator δ(ℓ1, . . . , ℓn) underKj(AIn) has 2
n components,

which lie in the K-theory groupsKj(F(i1, . . . , in)) with i1 =±ℓ1, . . . , in =±ℓn.
The component in Kj(F(i1, . . . , in)) is ε(i1, . . . , in). This is automorphic in-
duction at the level of K-theory.

Now we re-consider the space F(ℓ1, . . . , ℓn). If two or more of the ℓj are
equal, then F(ℓ1, . . . , ℓn) is the Cartesian product of locally compact Hausdorff
spaces, each of which is either a symmetric product of real lines, or a Euclidean
space. Then we have Kj(F(ℓ1, . . . , ℓn)) = 0 for j = 0, 1 by Lemma 3.2 and the
Künneth theorem [13, Prop. 3.3.15]. So the map in (8) is the zero map.

This leaves one case to be considered, namely when some of the ℓj are equal
to 0. We start with the case when one of the ℓj is 0, say ℓ1 = 0. Define

X(0, . . . , |ℓn|)

:= {1⊗ |det|2is1 × sgn⊗ |det|2it1 × · · · × π(|ℓn|, tn) | s1, t1, . . . , tn ∈ R}.

We then have an injective map

AIn : F(0, . . . , ℓn) → X(0, . . . , |ℓn|).

The dimensions of these two Euclidean spaces are n and n + 1. The parity
difference implies that the induced K-theory map is the zero map.

If several of the ℓj are equal to 0, say ℓj = 0 for 1 ≤ j ≤ k, then we will
correspondingly have an injective map

AIn : F(0, . . . , 0, . . . , ℓn) → X(0, . . . , 0, . . . , |ℓn|),

where X(0, . . . , 0, . . . , |ℓn|) denotes a space modelled on X(0, . . . , |ℓn|) but in-
cluding the term

1⊗ |det|2is1 × sgn⊗ |det|2it1 × · · · × 1⊗ |det|2isk × sgn⊗ |det|2itk .

The space X(0, . . . , 0, . . . , |ℓn|) will be a Cartesian product of locally compact
Hausdorff spaces, each of which is either a symmetric product of real lines, or
a Euclidean space. Such spaces are trivial in K-theory.

This leads to our final result. Let Kj(AIn) denote the functorial K-theory
map induced by automorphic induction.

Theorem 6.3. Consider the functorial map induced by automorphic induction

Kj(C
∗
rGL2n(R))

Kj(AIn)
−−−−−−→ Kj(C

∗
rGLn(C)).

Suppose that n ≡ j (mod 2), and let 0 < ℓ1 < · · · < ℓn. The Kj-generator

δ(ℓ1, . . . , ℓn) is determined by the discrete series representations Dℓ1 , . . . , Dℓn.
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The image of this generator under Kj(AIn) has 2n components, which lie

in the K-theory groups Kj(F(i1, . . . , in)) with i1 = ±ℓ1, . . . , in = ±ℓn. The

component in Kj(F(i1, . . . , in)) is ε(i1, . . . , in).

7. K-cycle

The standard maximal compact subgroup of GL1(C) is the circle group
U(1), and the maximal compact subgroup of GL1(R) is Z/2Z. Base change
for K1 creates a map

R(U(1)) → R(Z/2Z),

where R(U(1)) is the representation ring of the circle group U(1) and R(Z/2Z)
is the representation ring of the group Z/2Z. This map sends the trivial char-
acter of U(1) to 1 ⊕ ε, where ε is the nontrivial character of Z/2Z, and sends
all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The real line R is a
universal example for the action of C× and R×. The K-cycle

(C0(R), L
2(R), i d/dx)(9)

is equivariant with respect to C× and R×. The actions are

C
× × R → R, (z, y) 7→ log|z|+ y,

R
× × R → R, (x, y) 7→ log|x|+ y.

The K-cycle (9) therefore determines a class /∂C ∈ KC
×

1 (EC×) and a class
/∂R ∈ KR

×

1 (ER×). On the left-hand side of the Baum–Connes correspondence,
base change in dimension 1 admits the following description in terms of Dirac
operators:

/∂C 7→ (/∂R, /∂R).

It would be interesting to interpret the automorphic induction map at the
level of equivariant K-theory:

AI∗ : K∗
O(n)(R

n) → K∗
U(n)(C

n).
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Connes, Invent. Math. 149 (2002), no. 1, 1–95. MR1914617

[12] S. Mendes and R. Plymen, Base change and K-theory for GL(n), J. Noncommut. Geom.
1 (2007), no. 3, 311–331. MR2314099

[13] E. Park, Complex topological K-theory, Cambridge Stud. Adv. Math., 111, Cambridge
Univ. Press, Cambridge, 2008. MR2397276

[14] M. G. Penington and R. J. Plymen, The Dirac operator and the principal series for
complex semisimple Lie groups, J. Funct. Anal. 53 (1983), no. 3, 269–286. MR0724030

[15] R. J. Plymen, The reduced C∗-algebra of the p-adic group GL(n), J. Funct. Anal. 72
(1987), no. 1, 1–12. MR0883498

Received October 19, 2015; accepted June 10, 2016

Sergio Mendes
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL,
Av. das Forças Armadas, Edif́ıcio II, 1649-026, Lisboa, Portugal
E-mail: sergio.mendes@iscte.pt

Roger Plymen
School of Mathematics, Southampton University,
Southampton SO17 1BJ, England

E-mail: r.j.plymen@soton.ac.uk

School of Mathematics, Manchester University,
Manchester M13 9PL, England
E-mail: plymen@manchester.ac.uk

Münster Journal of Mathematics Vol. 10 (2017), 39–58


