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Abstract

Let » > 0 be real number let K be a complete non-Archimedeanly non-trivially valued field.
In the first chapter, we give the definition of a function f : X — E on a domain X C K¢
with values in a K-Banach space E to be r-times differentiable or C" at a point a € X. Then
we endow the K-vector space of all such C"-functions with a locally convex topology and
examine properties of theirs such as completeness, density of (locally) polynomial functions,
closure under composition and, for the dual, under convolution.

For functions on open domains in one variable, we show this definition to equal a handier de-
scription through the convergence speed o(1/|h|") of the rest term of the Taylor-polynomial at
x + h expanded around z up to degree |r|. Moreover on the special domain X = ZZ we show
the C"-functions f : ZZ — K to be characterized by its Mahler coefficients (ay,),cne Obeying
lan||n|” — 0as |n| — oo, where we put |n| := ny+- - -+ngy. Then as a corollary, a characteri-
zation of C"-functions f : X — Konopen X C Qz by partial Taylor-polynomials is obtained.

We turn to the second chapter: Let G be a connected reductive group over a local field F and P
a minimal parabolic subgroup. Let K be a complete non-Archimedeanly non-trivally valued
field of characteristic 0 with valuation ring o. Let  : P — K* be an unramified character and
denote by 1(0) = Indg 0 the smooth principal series. Let U be an algebraic representation of
G (and if U is nontrivial, also assume K O F and G to split). Then V' = I(0) ®k U is a locally
algebraic G-representation, and we let V be the universal K-Banach space representation with
a G-invariant norm whereinto V' maps continuously with respect to its finest locally convex
topology. We will then show that the universal unitary lattice £ C V, given by the preimage
of the unit ball in V/, is of the form £ = > wew L With W denoting the Weyl group of G and
each £, being a cyclic o[ P]-module which is free as an o-module.
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Fractional non-Archimedean calculus

Introduction

Start with two normed finite dimensional vector spaces V' and W over a valued field K. Let
f : U — W some map defined on an open subset U C V. Then f is called differentiable or
C! in the point a € U if there exists a linear map D, : V — W such that for every € > 0 there
is a neighborhood U, 3 a in U with

| f(z+h)— f(x) — D, - h|| <e|h| forallz+ h,z e U..

To iterate this differentiability notion, we need a choice of coordinates on the function’s do-
main. We therefore assume V' = K% and let e, . .., e, be its canonical basis vectors. Then
given any two points z + h,z € U with h € K*?, we can define A := flll(z + h,h) €
Homg vesp. (V, W) by the partial difference quotients

A(hy-ey) = f(x+hi-e;+---+hg-e)— f(r+hi-eg+--+hp_1-e,1) fork=1,... d.

Then this map f1l: Ul — Homg e (V, W) extends to a continuous function fIt: Ut —
Homg yesp. (V, W) with U 1] = U x U if and only if f is C' at every point of a. (See Remark
1.35.) This function’s domain lies again in the K-vector space V' X V inheriting a natural
choice of coordinates, its range is in a natural way again a K-vector space, and so we can
define f to be twice continuously differentiable if

f}Q[ = (fm)]l[ : (X[l])]l[ — HomK-vctsp.(HomK-vctsp.(Kd> W)a W)

extends to a continuous function % on all of X2 = X[ x X and so on. This construction
can also be carried out to yield a notion of pointwise differentiability.

As our goal is a definition of r-fold differentiability for r € Ry, we introduce the notion
of a C?-point for p € [0, 1] as follows: The mapping f is C” in the point a € U if for every
€ > ( there is a neighborhood U, > a in U with

I f(x+h)— f(x)]| <ellh||” forall z+ h,z € U..

Now write r = v + p € Rso with v € N and p € [0, 1[. Then for f to be a C"-function, we
demand its v-th iterated difference quotient not merely to extend continuously, but C”-wise at
all critical limit points.

Then to arrive at our Definition 3.1 of a C"-point, we notice that a mapping symmetric in



two coordinates is partially differentiable in both coordinates if and if only if it is so in
one of them. E.g. if V = K is one-dimensional, we can alternatively write fI!(x,7) =
[f(z) — f(y)]/(xz — y) for its first difference quotient. This is a symmetric mapping in both
coordinates. If we define a mapping to be twice differentiable if firstly f[!) exists on U x U and
then is again differentiable, we are hence brought down to checking partial differentiability in
fs first coordinate, reducing an exponential growth of parameters to a linear one. This ob-
servation underlies the definition of iterated differentiability in the sense of [Schikhof, 1984],
which we also employ here for our iterated partial difference quotients.

We first show this definition to satisfy a number of properties naively to be expected:

- Given a locally cartesian subset X C K (see Section 3.1) and a K-Banach space E, the
K-vector space of all such C"-functions C" (X, E) can naturally be endowed with a locally
convex topology, which is then complete and also a locally convex K-algebra if the range E
is so.

- As alarge class of explicit examples, we also find all locally analytic functions to be r-times
differentiable for any » > 0. Then we show all locally polynomial functions of total degree
at most v and consequently all polynomial functions to constitute dense subspaces on a
compact domain X. By this density, we can view D(X,K) = lim D7 (X, K) as the filtered
K-vector space of all K-linear forms defined on all arbitrarily often differentiable functions
C*(X,E) extending continuously onto C" (X, E) for some » > 0. When X is moreover
a group with C*°-multiplication, we can endow D(X, K) with a convolution product and
prove it to be filtered K-algebra.

- Informed by the above interpretation of the v-th difference quotient as a map with values in
K-linear homomorphisms, we will also see that C"-functions are closed under composition
if » > 1. We note that thereby and since a C"-function is defined pointwise, it is a local
notion, so that put together we arrive at a reasonable notion of a C"-manifold.

In its most naive way presented above, the notion of a C"-function is hardly handy, and the
first reduction by the symmetry of these difference quotients can be taken further. We want to
give a guideline on the order in which we obtain these simplification results:

- Ondomains X C K in one variable with locally sufficiently many points - such as open ones
- the symmetry properties of these iterated difference quotients are strong enough to reduce
the question of iterated differentiability to a more convenient Taylor polynomial criterion in
which r-fold differentiability can be checked by only one additional variable.

- Let K O Q, as a valued field with valuation ring o. There is a distinguished (see Subsec-
tion 2.3) orthogonal basis of the continuous K-valued functions C* (Zg, K) relating to the
domain’s topological group structure, the so called Mahler polynomials {(;‘) 4 € N4},
Denoting by ¢y(N, K) all zero sequences in K, this means that we have an isomorphism of
K-Banach spaces ¢o(N, K) = C°(Z,,K) with f € C°(Z{, K) corresponding to its Mahler
coefficients (an)nena. We want to describe the topological K-vector subspace C"(Z%, K) —



C%(Z¢, K) under this isomorphism:

We will firstly prove a function f : Z, — K to be C” if and only if |a,|n” — 0asn — oo
and infer a mapping f : Z¢ — K to be a C*-function if and only if |a,||n|” — 0 as [n| — oo
with |n| := ny + - -+ + ng. Applying this to the v-th difference quotient of f, we see f to
be a C"-function if and only if |a,|n" — 0 as n — oo. Then we will describe C"-functions
f ZZ — K in several variables as intersection of C"-function spaces for r € R‘éo, resem-
bling tensor products of C"-functions in one variable. This shows the orthogonality of the
multivariate Mahler polynomials. By the density of the subspace of all polynomial functions
inside C"(X,K) on a compact domain X C K¢, we see that the K-linear span of the mul-
tivariate Mahler polynomials in many variables is dense in C’"(Zg, K). Put together these
form an orthogonal base, and so we can describe C"-functions f : Zg — K by its Mahler
coefficients obeying |a,||n|" — 0as |n| — .

- This last condition is equivalent to |a,|n}, as [n| — oo for k = 1,...,d, each condition
describing the topological tensor product of C"-functions in the k-th variable with continu-
ous functions in the other ones. Then by the Taylor polynomial description in one variable
above, we infer an equivalent description of C"-functions f : X — K on open X C @g
through partial Taylor polynomials.

In the context of the existing literature, the notion of a C”-function in many variables for

an integer v > 0 was also defined exemplarily in [Schikhof, 1984, Section 84] and studied
more generally by Dr Stany de Smedt in his thesis. Also more recently another notion of C”-
function by Bertram, Glockner and Neeb was given, which was shown to coincide with the
one by Schikhof and de Smedt in [Glockner, 2007]. Our notion of a C"-function therefore dif-
fers from the one so far discussed in the literature in being defined pointwise and by allowing
for a real number r > 0.
To give an idea of the cited work’s already achieved results, we remark that the results on
the characterization by Mahler coefficients and Taylor polynomials presented here generalize
those already obtained in in the classic book [Schikhof, 1984] for one variable and an integral
order of differentiability » > 0. We also note that it was already shown in [Bertram et al.,
2004] that, using their equivalent notion of C”-function, these functions are directly seen to be
closed under composition, and moreover these to contain all locally analytic functions.

We finally remark that this work was inspired by the aim of generalizing the definition of
a C"-function on the domain Z, as given in [Berger and Breuil, 2010, Section 4] by its Mahler
coefficients (see also Example 3.67) to the one of an r-times differentiable function living on
a finite dimensional manifold over a complete non-Archimedeanly non-trivially valued field
K.



0 Prerequisites

Throughout this paper K will denote a complete non-Archimedeanly valued field whose valu-
ation v is nontrivial. If we fix a positive real constant ¢, < 1, we obtain a norm |z| := ¢,
Define o, = {z € K : |z| < A} respectively o<, = {z € K : |z] < A} for A € R>; put
0 = o<; and k = o/o.;. If the residue field k of K has positive characteristic p, we will
always put ¢, = p~'. Then v(p) > 0 and if this value is finite, we will assume v(p) = 1.

Cartesian products

Let X = X; x ---x X, be a finite cartesian product of sets. Then we will call a subset A C X
cartesianif A = A; x --- x Ay with A; C X;,..., A3 C X,

Notation. Let I be an index set and let X; for all ¢ € I be a set.
1. Let £ € 1. We denote the projection onto the k-th component by p;, : X — Xj.

2. Let I be finite and assume that X; > 0,1 for all ©« € I. Then for £k € I, we let
er. = (0,...,1,...,0) € ILes X; denote the tuple whose only nonzero entry is a 1 at
the k-th place.

Let A C X! for a set X and an index set /. We will denote by A A the diagonal subset
NA={(z,...,x) e Az e X}
and by V A its subset of tuples with pairwise distinct coordinates
VA ={(x;)icr € A: xy # xp ifi',7" € I distinct }.

Ifd=1,then AA =VA=A.

Metric and normed spaces

We will throughout assume all seminorms to be non-Archimedean. All normed respectively
metric spaces are implicitly assumed to be endowed with a norm ||-|| respectively metric d,
through whose arguments it will be clear whereon it is defined. Every normed space gives rise
to a metric d(z,y) := ||z — y||-

Let the set X = X; X --- X X, be the cartesian product of normed respectively metric spaces
Xi, ..., Xy with correspondingly indexed norms respectively metrics. Then we endow X with
the structure of a normed respectively metric space through the norm

o]l = max{{[zally, .. ., lzall o}

respectively metric
d(r,y) = max{di(z1,%1),...,da(Ta,ya)}-

We will then call X a cartesian normed respectively metric space.



We extend the addition on R>q to R>o U {oo} by defining  + 0o = 0o + 2 = oo for all
x € RsoU{oo}, the multiplication on R by ¢- 0o = 00 - ¢ = oo forall ¢ € Ry U {oo} and
the total ordering on R by setting oo > z for all z € R>o U {o0}.

If X is an arbitrary set and Y a normed space, we define a quasi-norm ||-||,,, (a map with
image in R U {oo} satisfying all axioms of a norm) on the mappings f : X — Y by

T supex || f (@), if this supremum exists,
sup 00, otherwise.

For a subset A C X, we define || f||, := || fiall,p- If moreover X respectively A is a compact
topological space, [|-||,,, respectively ||-[| , define a norm respectively seminorm on all contin-
uous functions f: X — Y.

A K-Banach algebra will be a K-Banach space which is a K-algebra whose multiplication
is continuous.

Notation. Let X be a metric space.

- If S is any non-empty bounded subset of X, then we will denote by 4 S its diameter defined
by § S = sup, ,csd(z,y).

- Fore > 0 and x € X, we denote by B-.(z) = {y € X : d(z,y) < ¢} the "closed" ball
around z of radius ¢ in X.
Notational conventions

Notation. We will adopt the following conventions:

- We denote by N = {0, 1,2,...} the set of nonnegative integers. Then small Latin letters
1,7, k, [, m and n will usually denote nonnegative integers if not explicitly mentioned other-
wise.

- We define the integral part || of a nonnegative real number 7 by |[r| := max{n € N :
n < r} € Nand its fractional one by {r} :=r — |r] € [0, 1].

- We might abbreviate min{a, b} respectively max{a, b} for two real numbers a and b by the
associative logical conjunction respectively disjunction operator a A b respectively a V b.

We will also adopt the principle of any sum respectively product running over an empty
index set being equal to 0 respectively 1.



1 Apparatus

1.1 Locally convex K-vector spaces

Let V be a K-vector space together with a family of seminorms {¢;} with the index i running
through an arbitrary index set /. The locally convex topology on V' is then defined as the
coarsest translationally closed one making all these seminorms ¢; continuous. To make this
family directed with respect to their natural partial order of pointwise comparison, we can
replace this family through all the seminorms ¢ := max;cr ¢; for the finite subsets /' C I.
Since a pointwise greater seminorm induces a finer topology, this family {¢r} induces the
same topology as {¢; } and we will in the following always tacitly assume the defining family
of seminorms of a locally convex topology to be directed. We call a topological K-vector
space whose topology is locally convex a locally convex K-vector space. A locally convex
K-algebra is a locally convex K-vector space which is a K-algebra whose multiplication is
continuous.

A net (fy) will be called a Cauchy net if for every ¢ > 0 and any seminorm ¢; there is
an index Ao such that ¢;(f, — f,,) < e forany p, v > XAo. A net (f)) will be said to converge
to f if for any £ > 0 and seminorm ¢; there is an index )¢ such that ¢;(f\ — f) < ¢ for all
A > Ag. Then V' will be said to be complete if every Cauchy net in V' converges.

If V is a locally convex K-vector space whose topology is defined by a family of seminorms
{¢;}, the induced family of semimetrics d; will be a gauge of the associated uniform space, its
base of entourages given by d; [0, [ fori € I and some £ > 0. We note that any closed subset
of a complete subset is also complete. Furthermore, let V' := [],cy V3, be the product of a
family of locally convex K-vector spaces with seminorms {g;;}. Its locally convex topology
is induced by the family of seminorms {gy, ; o 7, } for the projections 7, : V' — V},. We point
out that V' is complete if and only if all its components V}, are so. For a proof of these facts,
we confer the reader to [Kelley, 1975, Chapter 6].

Let X be a Hausdorff topological space, ¢ a family of subsets in X and Y a complete met-
ric space. Denote by C)(X,Y") the set of all functions f : X — Y which are continuous on
each C' € ¢. We equip Cﬁ(X ,Y) with the uniformity of c-convergence: Its base is given by
the entourages dg'[0, e[ with do(f, g) := max,cc d(f(z), g(x)) for every C' € cand ¢ > 0.
By [Kelley, 1975, Theorem 7.10(d)], the uniform space C|Oc(X ,Y') is complete. Then X will
be called c-generated if a subset A of X is closed as soon as A N C'is closed in C for all

subsets C' € .

Proposition 1.1. Let X be a Hausdorff topological space and Y a complete metric space.
Let ¢ be a family of compact subsets in X. If X is c-generated, then the set C°(X,Y) =
C|0{ X} (X,Y) will be complete with respect to the uniformity of ¢-convergence.

Proof. 1t suffices to prove C°(X,Y) = C|0 (X,Y) as uniform spaces: Note that a topological

space is c-generated if and only if it has the final topology with respect to all inclusions C' —

X of subspaces C' € ¢. Soamapping f : X — Y is continuous if and only if all its restrictions



fic to the subspaces C' € c are so. Hence the space C)(X,Y") coincides with C°(X,Y") as sets.

As their families of semimetrics coincide, they are also equal as uniform spaces and hence
C°(X,Y) is complete. [ |

Let X be a topological space and Y a normed K-vector-space. For any compact subset C' in
X, we define the uniform seminorm of the restriction to C' on the space of continuous func-
tions by ||-|| : C°(X,Y) — Rx¢. The induced locally convex topology is called the topology
of uniform convergence on compact sets, for short the topology of compact convergence.

A function on a metric space is continuous if and only if it is sequentially continuous. In
particular continuity can be tested on all compact subsets, as seen next.

Lemma 1.2. A Hausdorff topological space X will be called compactly generated if X is c-
generated for ¢ = {compacta in X }. We will say that X is sequential if a set A in X is closed
as soon as the limits of all convergent sequences in A remain therein. Then every sequential
space is compactly generated.

Proof. Let X be a sequential space and B C X a subset which is not closed. We have to show
that its intersection with some compact subset C' C X cannot be so, either. Now X being
sequential, there is a convergent sequence (c,) in B such that its limit ¢ does not lie therein.
Then C' := {¢, } U{c} is compact as any open neighborhood of ¢ contains all but finitely many
c,. But its intersection with B lacks c and therefore cannot be closed, g.e.d. |

Corollary 1.3. If X is a metric space and Y a K-Banach space, then the K-vector space
C°(X,Y) will be complete with respect to the topology of compact convergence.

Proof. Since X is metric, it is in particular sequential. By Lemma 1.2 it is compactly gener-
ated. The uniformity of C°(X,Y) is the uniformity of uniform convergence on c-subsets with
¢ being the family of compact subsets. By Proposition 1.1, the uniform space C°(X,Y) is
complete. |

1.2 Cr-functions for p € [0, 1]

Assumption. Throughout this subsection, we will fix a real number p € [0, 1].

Definition of C?-functions

We begin generally. For a point a in a metric space X, we define what it means for a function
f to oscillate negligibly versus the distance’s p-th power at a. This is when a will be called a
CP-point of f.

Definition. Let X be a metric space, Y a complete metric space, f : A — Y a mapping
defined on a subset A C X and a some point in X; we will say that f is C” at a, if for every
€ > ( there exists a neighborhood U > a in X such that

d(f(x), f(y) <e-d(z,y)’ forallz,y € UN A.



Then f will be a C*-function if f is C” at all points a € A, where we note that this notion is
independent of the ambient space X. We will denote the set of all C”-functions f : A — Y by
Cr(A)Y).

We emphasize that we also defined what it means for a point @ € X not in the function’s
domain A to be C”. If there is a neighborhood of a disjoint to A, then this condition will be
void. The interesting case occurs whenever a is a boundary point of A in X.

Remark 1.4. Keeping the notations above, let us assume that ¢ € X is a boundary point in
OA = A — A C X. Then by completeness of Y, a function f is C° at a if and only if there is
a unique limit f(a) € Y such that for every ¢ > 0, there exists a neighborhood U > a in X
such that

d(f(x), f(a)) <e forallz € UnN A.

If even a € A, then a function f : A — Y will be C° at a if and only if it will be continuous at
a.

The next Proposition 1.6 tells us that we can at least assume all functions to be defined on
their set of C”-points in the boundary of A in X. Note that in case p = 0, the above definition
is also meaningful whenever X is merely a topological space.

Lemma 1.5. Let X be a topological space, (Y,d) a complete metric space and f : A —Y a
continuous mapping defined on a subset A C X. Let A C B C A C X denote the C°-points
of f. Then f extends uniquely to a continuous mapping F : B — Y.

Proof. This is a well-known fact in general topology: For every z € B denote by B(z) the
system of neighborhoods of = in X and consider the family { f(ANU) : U € B(x)} of closed
subsets of Y. Because f(ANU) O f(ANU) by continuity and ANU > zasU > xis
open, the latter family’s finite intersections are non-void. If z is a C%-point of f, this family
will contain for every ¢ > 0 a set of diameter 6 < ¢, so that - by [Kelley, 1975, Theorem
6.23] - the intersection Nyep () f (ANVU) is non-empty. Since its diameter equals zero, the
intersection consists of a single point F'(x). Surely F(z) = f(x) whenever z € A, as all
fANU) > f(x).

Extending f by sending = € B to the point F'(z), we define a mapping F' of B to Y'; it remains
to prove that F is continuous. Fix ¢ > 0 and some b € B. Since b is a C’-point, there exists a
U € B(b) such that by continuity of the distance even ¢ f(ANU) < . Forevery 2’ € BNU,
we have U € B(z') and thus F(z') € f(ANU); since F'(b) € f(ANU) as well, we have
d(F(b), F(2")) <0 f(ANU) < e, which proves that I is continuous at b. [ |

Proposition 1.6. Let X be a metric space, Y a complete metric space and [ : A — Y a
CP-function defined on subset A C X. Let A C B C A C X denote the C*-points of f. Then
f extends uniquely to a C*-function ' : B — Y.

Proof. Through the foregoing Lemma 1.5, we know that f extends to a continuous function
F : B — Y. We want to show that F' is even C” there. For this, choose ¢ € B and fix ¢ > 0.
As fis C? at a, we find a neighborhood U > a in X such that

d(F(x),F(y)) <é&-d(x,y)? forallz,y € ANU, (%)



with € := ¢/C? and C' := 1 + 2° > 1. It remains to show that this inequality also holds in
case z or y in (B — A) N U with € replaced by €. We firstly assume that = ¢ A, but y so. Then
x lies in the boundary of A and we can find 2’ € A so close to = that d(F'(x), F'(2')) < &,,
with &, ,, := £ - d(z, y)” by the continuity of F'. Convergency towards = does not harm, so we
may as well assume that 2’ € U and d(2/, z) < d(z, y).

It follows
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By symmetry, this shows that Inequality () likewise holds in case that not both of x and y lie
in(B—A)NU.

If x and y lie in (B — A)NU, we will reduce to the first case by inserting an element z € ANU
in between: Since z is in the boundary of A, we find z such that d(x, z) < 6., = d(z,y).
Thence by the cases already considered,

d(F(z), F(2)) + d(F(z), F(y))
Cé-d(x,2)” + Ce-d(y, 2)”
CéaL@hHE(dx@+wa)
02

a
=
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This completes the proof of the remaining case, so Inequality (x) holds for all z,y € BN U
which was left to show. |

Properties of the space of C’-functions
Assumption. We will from now let E denote a K-Banach space.

Definition. Let X and Y be metric spaces, f : X — Y a mapping on X and a some point in
X; we will say that f is C'P or is locally Lipschitzian at a if there exists a constant C' > 0 and
a neighborhood U > a such that

d(f(x), fy)) < C-d(z,y) forall x,y € U.

Then f will be a CP-function or a locally Lipschitzian function if f is C'"P at all points
a € X. We will denote the set of all CP-functions f : X — Y by C'P(X,Y).

Definition. Let X and Y be metric spaces and let f : X — Y be a mapping on X. We define
the function |f1'l] : VX x X — Rsq by

M, y) = d(f(2), f(y))/d(x, y).



Then for every function f € C"(X, E) the mapping | fI'[] is locally bounded and hence also
bounded on compacta. In addition f is also continuous. We can therefore establish:

Definition. For every compact subset C' C X, we define the seminorm ||-|
by

cinc on C®(X, E)

1 lewe = ficllup v 1) -

We equip CHP(X , ) with the locally convex topology given by the family of seminorms
{IIllio.c : € € X compact}.

Proposition 1.7. (i) Let X, Y and Z be metric spaces. Then the C’-functions are closed
under composition with locally Lipschitzian functions, i.e. ifg: X — Y and f: Y — Z,
then if one of these functions will be C* and the other one C'°, then f o g € C*(X, 7).

(ii) If X is a metric space and E a K-Banach algebra, then C*(X, E) will be a K-algebra.

(iii) The space of CP-functions is closed under direct sums and tensor products: Let XY be
metric spaces and E a normed K-algebra. If f € C?(X,E) and g € C*(Y,E), then
feglzy) = f(z)+9(y) and [ © g(z,y) = f(z) - g(y) will lie in C*(X x Y — E).

Proof. Ad (i): Fix apointa € X ande > 0. Letg : X — Y and f : Y — Z be functions
such that one is C? and the other C"P for a constant C' > 0 in a neighborhood of a respectively
g(a). We see that

d(fog(z), fog(y))

is at most either
C-d(g(x),9(y)) < Ce-d(z,y)” or e-d(g(x),9(y)) <eC-d(z,y)’

for z, y in an appropriate neighborhood U of a. In other words f o g is C” at a.

Ad (ii): Only the fact that C* (X, E) is closed under products requires attention: So let f, g €
C?(X,E). Fix ¢ > 0. Because the multiplication in E is continuous, there is a uniform
constant M > 1 such that ||zy| < M||z||||y||. We compute

Ifg(z) = Fa@)ll <[[fg(z) = f@)gW)] vV I[f(@)g(y) = F9 ()
<M -[[f(@)llllg(z) = gl vV M - [lg)lIl f(x) = F)ll
C-(lg(z) =gV If (=) = Fw)l)

SS : d(l’, y)

for x, y in a sufficiently small neighborhood U > a, as f and g are in particular continuous by
Lemma 1.5 and therefore bounded in a neighborhood of the point a.
Ad (iii): This follows from the foregoing statements (i) and (ii) as

f®g=(fop,)*(g0oDp,),

where p, respectively p, denotes the projection of X x Y onto X respectively Y and "+’
denotes either ’+’ or ’-’. [ |
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More generally we can prove f o g to be a C”"-function if f is C” and g is C", but nothing
more: The following example shows that the above Proposition 1.7(i) fails in case that f, g €
CP(X,Y), but neither one is locally Lipschitzian:

Example. Denote by Q, the algebraic closure of Q, with normalized valuation v, i.e. v(p) =
1. Let 0 < p < 1 and choose 7 > 0 such that p < 7, but n?> < p. Let o, € @p such
that v(a) = n and v(3) = n?. Let xo : p? — o respectively x5 : a” — % be the group
homomorphisms defined by sending p to « respectively « to 5.

We endow X := p»*U{0},Y := a® U {0} and Z := % U {0} with the subspace metric of Q,,.
We extend x,, to a mapping f : X — Y by putting f(0) = 0 and x4 to amapping g : ¥ — Z
by putting ¢(0) = 0. Then we show f and g to be C*-functions, but g o f not so.

nv(x —y) for any z,y € Q,. We quickly check that f € C*(X,Y"): As f,z is locally constant,
it suffices to check this at 0. Let 0 :=n—p > 0. Fix C > Oandlet U := {z € X : v(z) >
d} 2 0 openin X with 6 > C/6. For x,y € U, we have

v(f(x) = f(y) Zno(z —y) = plo(z —y)) + 0(v(z —y)) = plo(z —y)) + C.

The proof of g € C?(Y, Z) is analogous.

Proof. Firstly, observe that f(z) = f(y) if v(z — y) > v(z) implies v(f(z) — f(y)) >

To show that g o f is not a C”-function, note that v(f(x)) = nv(z) on X and v(g(x)) = nv(z
on Y. If therefore z,y € X with v(x) < v(y), then v(g o f(x)) = n*v(z) < P*u(y) =

v(go f(y))). Thus
v(go f(z) —go f(y)) = n*v(z).

Now let C' := 0 and U be a neighborhood of 0. Let § := n?> — p < 0. Then there exists a point
x € U such that fv(x) < C and another one, y say, such that v(z) < v(y). Then

v(go f(z) —go f(y) =n*v(x) = (p+0)v(z) = pv(z —y) + bv(z) < pv(z —y) + C.

Le. go fisnotC” at 0. [ |

The locally convex topology on C’-functions

Definition. Let X be a metric space and f : X — E a mapping thereon. We define | f*l| :
VX x X — RZO by
_ lf (@) = )l

d(z,y)*

Then the mapping f : X — E is C if and only if the function | f*l| extends to a continuous
function |fl”)| : X x X — Rs vanishing on AX x X. Therefore the following definition is
meaningful.

(@, y)

Definition. For every compact C' C X, we define the seminorm ||-[|, , on C*(X, E) by

1Fllerc = Ificllwp V(i) lup.

11



We equip the K-vector space C*(X, E) with the locally convex topology given by the set of
seminorms {||-||¢y » : €' € X compact}.

If X itself is compact, then we will turn C?( X, E) into a normed K-vector space by endowing
it with the norm ||-||c, == ||“[l¢o x-

Remark 1.8. The locally convex K-vector space C*(X,E) is the initial locally convex K-
vector space with respect to all restriction mappings

C*(X,E) — C*(C,E),
I = Jic

with C' running through the family of all compact C' C X.
Proof. Define |fIPl| : X x X — Rsq by

|l (2, y), ifx#y,
0, otherwise.

PN, y) = {
By (the comment before) Lemma 1.2, the function | f [p]| : X x X — R 1s continuous as soon
as its restrictions to all compacta C C X x X are so. Given such compact C C X x X, we find
compact C' C X with C' C C' x C, namely C' := p, CUp, C. Therefore | 1" : X x X — Rx,
is continuous as soon as its restrictions to all C' x C' C X for compact C' C X are continuous.
That is, if and only if for all compact C' C X the mapping fic : C — E is a C’-function.
Thence C?(X,E) is the initial K-vector space and by definition then moreover the initial
locally convex K-vector space with respect to the restriction mappings

C’(X,E) — C(C,E),
= fic

for C' C X compact. L

Proposition 1.9. Let X be a metric space. Then the locally convex K-vector space C*( X, E)
endowed with the family of seminorms {||-||¢, -} running through all compact subsets C' C X
is complete.

Proof. By Remark 1.8, we find C*(X, E) to be canonically isomorphic to the locally convex
K-vector space A, defined as the subspace

{(fe) € Il c¢*(CE): feipne = fojcnp forall C; D € X compact}

C'CX compact

c I c/(CE)=P

C'CX compact

Then A is closed in P, as convergence in C?(C, E) implies in particular pointwise convergence.
In more detail: If f ¢ A, then || fo\pne — fpicapllsy, = € > 0 for two compacta C, D C
X. Therefore U := HK;AC,Dcompactianp(K7 E) X B<€(fC) X B<E<fD) > f is an open

12



neighborhood in the complement of A. As P is complete if and only if each factor is complete,
we are reduced to the case X a compact metric space.

Let (f,)nen be a Cauchy sequence in C?(X, E). By completeness of C°( X, E) with respect to
[l gup> We find f,, — f with respect to ||-[|,,, for the pointwise limit f € C°(X, E). It remains
to prove f € C?(X,E) and f, — f with respect to ||-||.,. Let x,y € X be distinct. For
n,m € N, we have

[(F = S, y) < (F = £ (2, 9) V| (fin = F)? (2 9)

(f =
[(F = fu) (@, 9) V(o = S 1l
[(f = )Wz, 9) V | fin = Fallen o

Fixing such n € N, put ¢, = limsup,,>¢ || fn. — full¢o o+ Since f,, — f pointwise, fixing such
z,y € X, we find limsup,,o|(f — fin)"!|(z,y) = 0. Hence |(f — f,)"!|(z,y) < ¢, and thus
I1(f = fu)"?!]| x> < cn as this bound does not depend on the chosen points 7,y € X. As (f,,)
is a Cauchy-sequence with respect to ||||.,, we find ¢, — 0 and thus [||(f — fo)"l|||o x> — 0.
If we can prove f € C?(X,E), this will show f,, — f with respect to ||-||., and we are done.
For this, define | f¥)] : X2 — R by

IANIA A

|l (2,y),  ifx#y,
0, otherwise.

(2, ) = {

Then | f)7l] is continuous on VX? and f € C*(X, E) if and only if | f’!| is continuous on the
diagonal A X2,

Fix ¢ > 0 and a € X. We find ny € N such that [[|(f — f.)/*{|||; x> < € for all n > ng. Since
fny € CP(X,E), there exists a neighborhood V' > a such that | fl|(z,y) < e for all distinct
x,y € V. Hence for distinct z,y € W := VV2 C X? open, we find

7, 9) < 1@ y) VI = Fuo) ok < e
Le. | fI!] is continuous on A X2 [ ]

Lemma 1.10. Let X be a compact metric space. If E is a K-Banach algebra, then C*( X, E)
will be a K-Banach algebra.

Proof. We assume ||zy|| < M||z||||y|| for all z,y € E for a constant M > 1. We want to

prove [[fgllc, < M - | flleollglle, for f,g € CP(X,E). Surely [|fgllo, < M - || fllsupll9llup-
For distinct z,y € X, we compute

I fg(x) — fa)ll <l fg(x) — f(x)g)ll V[ f(x)g(y) — faw)ll
=M - ([[f(@)lg(z) — gl V lg)II f (@) = F@))-

It follows |Hfg’[p]||sup S M - (HstupH’g[p]‘Hsup v HgHsupH|f[p]|Hsup> S M - ||f||CPHgHCP u

Definition. Let X be a metric spaces and Y a set; a mapping g : X — Y will be called
d-constant if d(z,y) < ¢ implies g(z) = g(y).

13



Lemma 1.11. Let X be a metric space and | : X — B a mapping such that for fixed £ > 0,
there exists 0 < 6 < 1 such that d(z,y) < 0 implies || f(z) — f(y)|| < e -d(x,y)” for all
z,y € X. Then there exists a d-constant function g : X — E with || — gll¢o o < € for all
C C X compact.

Proof. Because E is non-Archimedean, we can partition X into finitely many equivalence
classes U; by declaring

zevy df f(x) = fy)ll < €07

By assumption on f, two points = and y will be equivalent if d(z,y) < 0. In particular every
U, is open.

We now choose an element a; from each U; and define J-constant g : X — E by
g(x) == f(a;) if z € Uj.

Then || f — g|l,,, < €0” < eand

|||(f - g)[p]|||sup
:|||(f - 9)[p]|||{(x,y)ex2:d(x,y)§5} N |||(f - 9)[p]|||{(x,y)eX2:d(x,y)>5}

< MY wpexzawns Y 1197 @ pexzaen<s
v e (W@ @l 1£6) - sl
zy€X:d(z,y)>0 d(x,y)r d(zx,y)r

<eVOVedl/sf =e.
[ ]

Corollary 1.12. Let X be a compact metric space. Then the locally constant functions g :
X — Earedense in C*(X, E).

Proof. Fix e > 0 and let f € C?(X,E). Then |f)] : X2 — R is by compactness of X? a
uniformly continuous function vanishing on A X2, Hence we find a 0 < § < 1 such that in
particular for all (a,a) € X?, it holds

119N, y) = /P, a)] = [fP](,y) < e foralle,y € X withd((x,y), (a,a)) < 0.

By the triangle inequality, we will have §({(x,y) JUAX?) < §ifd(x,y) < dforany z,y € X.
Thus

If(x) = f(y)]| <e-d(z,y)” forall z,y € X withd(z,y) < 0.

By Lemma 1.11, we find d-constant g with || f — ¢||., < e. In particular the locally constant
functions are dense in C* (X, E). |
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Componentwise criteria for being C”

Definition 1.13. We will call a subset A C X of a cartesian metric space X = X; X --- X X
telescopic, if there exists a subset B C A x A such that:

(i) Forall (z,y) € B, also (z1,..., Tk Yps1,---,Ya) € Afork=1,...,d—1;
(ii) For all distinct z,y € A, there exists z € A with (z, z), (z,y) € Bandd(z, z) < d(z, y).

Remark 1.14. If A C X is telescopic with cartesian ultrametric X, then every ball U =
B<s(a) C A of A will be telescopic: Assume that B proves A to be telescopic. We claim that
B :=BNU x U proves U to be telescopic.

Ad (i): Let (z,y) € B. Then (21, ..., %k, Yks1,-- -, yq) € Afork =1,...,d. Since

d((xla s Tl Yk41, - - - 7yd)7a) S d(ZE,CL) \% d<y’a) S 67

we find (21, ..., %k, Yrs1,- -, Yq) € U.

Ad (ii): Let x,y € U be distinct. Then there exists z € A with (z,2),(z,y) € B and
d(x,z) < d(z,y). Since U is an ultrametric ball with z € U as its center, y € U and
d(z,2) < d(z,v) implies z € U. Hence (z, 2), (z,y) €U x UN B = B.

Example 1.15. (0) Cartesian subsets A C X without isolated points are surely telescopic
for B := A x A.

(i) Let X be a metric space without isolated points and A := VX" C X" =: X. Then the
subset
B:=vX"CAxA

shows A C X to be telescopic: By definition, we find that (i) is satisfied. To see (ii),
let x,y € A be distinct and § := d(x,y) > 0. Since X has no isolated points, we
can find z; € B_s(x;) C X distinct from xy,...,2,,41,...,Y,. Then we can find
29 € Bos(x9) C X distinct from 21, ..., %, Y1, - . ., Y, and z;. In this way, we construct
z € Awithd(z, z) < d(z,y) such that in particular (x, 2), (z,y) € VX?" = B.

(i) More generally, let X1, ..., X; be metric spaces without isolated points and A := A; x
o x Ay € Xy X x Xg = X with Ay, .= VX* C X'* = X}, for natural numbers
ni,...,nq. Then the subset

B:={(z,y) € Ax A: (xp,yp) E VX" fork=1,...,d} C Ax A,

shows A to be telescopic: By definition, we find that (i) is satisfied. To see (ii), let
z,y € A be distinct and 0 := d(z,y) > 0. For k = 1,...,d, we can find by the
above Example 1.15(i) elements z, € X with d(xy, z;) < d such that in particular
(21, 21), (2, y) € VX", Therefore z = (21,...,24) € A satisfies d(z,2) < d(z,y)
and proves (, z), (z,y) € B.
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Lemma 1.16. We assume o € [0,1]. Let f : U — E be a mapping defined on a telescopic
subset U C K% Fixe > 0. Then

1f(x) = fWll < elle —yl|* forallz,y €U
if and only if for k =1, ..., d holds
| f(z+t-ex)— f(x)] <e-|t|® forallx +t-ep,z €U witht € K.

Proof. Foremost, note that the second statement is the special case y = x + t - e, of the first
one. We prove that the second statement also implies the first one.
Let B C U x U prove U to be telescopic. Lety =z + t1e; + - - - +tgeq, v € U. Then

fly) — f(x)
=f(tie; + - +tgeq +x) — f(x)
=(f(tiex +---+teeg+x) — f(tiex + -+ tireg1+ )+ -+ (f(ties + z) — f(2)).

Thus, if (z,y) € BN U x U, it will follow

1/ (y) = f(2)]

<e - max(|ti]% ..., |t

=c-[[tier + -+ +tqeal|* = - [ly — 2%
here the second inequality by Property (i) of B in Definition 1.13.

We claim that this suffices, i.e. if
1f(z) = f)ll <elle—yl|® forall (z,y) € BNU x U,

then
1f(x) = fy)ll <ellz —yl|* forallz,y e U

To see this, let z,y € U, which we may assume to be distinct. By Definition 1.13(ii), we find
z € U with (z,2),(z,y) € Band ||x — z|| < ||z — y||. As by the non-Archimedean triangle
inequality ||z — y|| = |z — y||, we find

1f (@) = FI < f (@) = @IV I (2) = fWll <ellz = 2)* Velz =yl = ellz —yll*

Symmetry properties

Definition 1.17. Let A;,..., A;besetsand put A = A; x --- x A;. Denoteby o : A — A
the mapping swapping the k-th and [-th coordinate. Then we will call:
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(i) A point a € A symmetric in its k-th and [-th coordinate if ca = a.
(ii) A subset U C A symmetric in its k-th and /-th coordinate if cU = U.

(iii) A function f : U — E on a subset U C A symmetric in its £-th and [-th coordinate if
U is symmetric in its k-th and [-th coordinate and f oo = f.

Lemma 1.18. We assume ¢ € [0,1]. Let U C K< be a subset and f : U — E a mapping
symmetric in its k-th and [-th coordinate. Fix € > 0. Then

If(x+t-ex)— flx)]| <e-|t|® forallx+t-ex,z €U
if and only if

|f(x+t-e)— flx)] <e-|t|]® forallz+t-e,xeU.
Proof. By symmetry it suffices to prove one direction, e.g. if

If(z+t-e)—fx)| <e-|t|* forallz+t e,z €U,

then
| f(x+t-ex)— fx)|| <elt|® forallz+t-ex,xeU.

Denote by o : K¢ — K the map swapping the k-th and [-th coordinate. By assumption, U/
is left stable under o, i.e. if y,x € U, then y?,2° € U. Now lety = x +t- e, x € U. By
symmetry of f in its k-th and [-th coordinate, we find

If(z+t-ex) = @) = 1f ()= f@)l = 1F@7) = f@)I = 1f (@7 +t-e) = f(7)]] < elt]?,

the last inequality as y7, 2% € U.
[

Definition (1.17°). Let A;,..., Agbesetsandput A = A; x --- x Ay. Let I C{1,...,d} be
a subset of indices. Then we will call:

(i) A point a € A symmetric in its coordinates indexed by [ if a is symmetric in its k-th
and [-th coordinates for all k£, € 1.

(i) A subset U C A symmetric in its coordinates indexed by [ if U is symmetric in its
k-th and [-th coordinate for all &k, € 1.

(iii) A function f : U — E on a subset U C A symmetric in its coordinates indexed by /
if f is symmetric in its k-th and [-th coordinate for all £,[ € I.

Lemma 1.19. We assume ¢ € [0,1]. Let U C K be a telescopic subset. Let {1,... d} =
LU. ..Ul with representatives i1, . . . ,i. and [ : U — E a mapping symmetric in its coordi-
nates indexed by I, . .., I.. Fix € > 0. Then it holds

1f (@) = fWll < elle —yl|* forallz,y €U
ifand only if for j = 1,..., e holds
|f(z+t-e,)— flz)]| <e-|t|® forallz+t-e;,zeU.
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Proof. Let j € {1,...,e} and put [ := I,. By Lemma 1.18, we find by symmetry of f in its
coordinates i, 4" € I that

|f(x+t-e)— flx)|] <e-|t|]® forallz+t-e;,xelU
if and only if
I f(x+t-er)— flx)]| <e-|t|]® forallz+t-ey,xeU.

In particular we can choose i = i;. Since {1,...,d} = LU...UI., we find that for j =
1,...,eholds

|f(x+t-e,)— flz)]| <e-|t|® forallz+t-e,,z2€U
if and only if for £ = 1,...,d holds

If(x+t-ex)— flx)] <e-|t|® forallx +t-eg,x € U.
By Lemma 1.16, this is equivalent to

1 () = fW)ll <elle =yl forallz,y € U.
|

Corollary 1.20. Let X = X; x --- x Xy € K?and A C X a telescopic subset. Let
{1,...,d} = LU...UI, with representatives i1, . .. ,iq. Let f : A — E be a mapping and a
some point in X, both symmetric in its coordinates indexed by I, . .., 14. Then for f to be C*
at a, the following convergence condition suffices: For every € > 0, there exists a ball U > a

in X such that for j =1, ..., e holds
[fx+t-e,)— flx)] <e-|t|” forallz+t-e;,,z€UnNA

Proof. Fix € > 0. Since a is symmetric in the coordinates indexed by I3, ..., I4, so is every
ball U > ain X. Since A is symmetric in the coordinates indexed by I, . . ., Iy, so is the ball
UnNAin A. With A, so is by Remark 1.14 the ball U N A again telescopic. By Lemma 1.19
applied to fiyna, we find for j = 1,.. ., e that

|f(x+t-e,)— flz)]| <e-|t|” forallz+t-e,z€UNA

if and only if
1f () = W) < elle —yl” forallz,y € UNA.

Since the balls U > a in X constitute a basis of neighborhoods of a, this is equivalent to f
being C” at a. |

1.3 CP-functions for p € [0, 1[¢

Assumption. Throughout this subsection, we will fix a tuple of real numbers p € [0, 1[%.
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Definition of C?-functions

Definition 1.21. Let f : X — Y be a mapping on the metric spaces X = X; X --- x X and
Y. We put d(z,y)? := dy(z1,51)” V ...V dg(xg,y4)"? with the convention 0° = 0 (See the
following Remark).

(i) Let a be some point in X. We will say that f is C? at a if for every £ > 0, there exists a
neighborhood U > a such that

d(f(x), f(y)) <e-d(z,y)” forallz,y € U.

We will say that f is a C”-function if f is C” at all points a € X. The set of all C*-
functions f : X — Y will be denoted by C*(X,Y").

(ii) We define |fI°l| : VX x X — R5q by

Jol _ @) = 1)l
710, 9) 2= B
Remark. (i) In case p, = 0 for some k € {1,...,d}, the scurrilous convention 0° = 0

ensures that in a neighborhood of the point @ € X, the condition d(f(x), f(y)) < € -
d(z,y)P is still stronger than the mere continuity condition d(f(z), f(y)) < e, which
were in place if we had adopted the common convention 0" = 1.

(i) Keeping the above notations, we see that if f : X — Y is C” at a € X, then it will be
CP thereat for any p < p componentwise. In particular if f is C* at a € X, then it will
be C? thereat with p := p; A ... A pg € [0, 1].

Then the mapping f : X — E is C? if and only if the function | f/°| extends to a continuous
function |fP!| : X x X — R vanishing on AX x X. We moreover saw above that every
CP-function is in particular continuous. We can therefore establish:

Definition. For every compact C' C X, we define the seminorm ||-[|, . on C?(X, E) by

1 leoc = 1ficllsup V ICfic) 1l

We equip the K-vector space C?(X, E) with the locally convex topology given by the family
of seminorms {||-||¢, o : €' € X compact}.

If X itself is compact, then we will turn C?( X, E) into a normed K-vector space by endowing
it with the norm ||-||c, := [|[lco x-

Remark 1.22. We have an equality of locally convex K-vector space C?(X,K) = C*(X,K)
with p'= (p, ..., p). Itholds ||-[|o7 ¢ = ||*||¢s ¢ for any C' C X compact.

Remark 1.23. The locally convex K-vector space of C?-functions C?(X, E) is the initial lo-
cally convex K-vector space with respect to all restriction mappings

CP(X,E) — C°(C, E),
[ fic

with C' running through the family of all compact subsets C' C X.
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Proof. Define |flP]| : VX x X — Ry by

(), ifx#y,
0, otherwise.

PN, y) = {
By (the comment before) Lemma 1.2, the function |f [”}| : VX x X — Ry( is continuous
as soon as its restrictions to all compacta C' C VX x X are so. Given such compact C' C
X x X, we find compact C' C X with C C C x C, namely C' := p, C' U p, C. Therefore
|f1P!] © X x X — R is continuous as soon as its restrictions to all C' x C' C X x X for
compact C' C X are continuous. That is, if and only if for all compact C' C X the mapping
Jic : € — Eis a C”-function.
Thence C?(X, E) is the initial K-vector space and by definition then moreover the initial
locally convex K-vector space with respect to the restriction mappings

CP(X,E) — C°(C,E),
[ = fic

for C C X compact. L

Properties of the space of C?-functions

Proposition 1.24. Let X = X X --- X X, be a cartesian metric space and E a K-Banach
algebra.

(i) The space CP(X,E) is a locally convex K-algebra.

(ii) The tensor product of a C” -function with a CP"-function is a CP-function for p =
(p,p"): Let X' = X{ x -+ x X, and X" = X{ x --- x X! be cartesian metric
spaces. If f € CP(X',E) and g € C?'(X",E), then [ ® g(x,y) := f(x)g(y) will
lie in CP(X' x X", E) and for every compact subset C C X holds ||f © gll¢p o <
||f||c,,/7c||g||cpu7c with equality if p has at most one nonzero entry. ’

Proof. Ad (i): Firstly, to see that that C*( X, E) is a K-algebra, only its closure under products
requires attention. Let M > 1 be the operator norm of the multiplication on E. Let f,g €
C?(X,E),a € X and fix ¢ > 0. We compute

1f9(y) = o)l <[[f9(y) = FW)g@)I| VI f(y)g(x) = Fe(z)|
=M -l FW)llg(y) = g(@)II vV M - [lg() [ f(y) = f(@)]
<C-(llgly) = g@)IV I f(y) = f(@)]]) < e-dly, 2)”

for x, y in a sufficiently small neighborhood U > a; the second inequality as f and ¢ are in
particular continuous and therefore bounded in a neighborhood of the point a.
Secondly, the above computation shows || fgllco o < M - || fllc,llgllc, forall f,g € C* and

C' C X compact, i.e. the continuity of multiplication of C?(X, E) with operator norm ).
Ad (ii): Firstly, f © g € C°(X’ x X", E) by Proposition 1.7(iii). Fixe > 0 and a = (d¢/,d") €
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X' x X". Since fis C* ata/, we find a &' > 0 such that || f(3/) — f(2")| < e-d(y,2")? for
all ', 2" € B<y(a’) and since ¢ is continuous at a”, it is bounded in a neighborhood V' > a”
by a constant C” > (. We compute

Ifog(y) = fog@) < IF)—f@)llgl=")] < e-dy,2')”-C fory,x € Bey(a')x V.

Similarly we find some §” > 0, a neighborhood U > «’ and a constant C’ > 0 such that
1fOg(y)— fOg)| <e-C-d(y",2")?" fory,x € U x B<ss(a”). Hence foraball B<s 3 a
in the intersection of these two product neighborhoods, we find

If®@g(y) — fOg@)| <e-(dy,2")" vdy",2")"") =e-d(y,z)? fory,z € B<s(a).

Secondly, we have foremost || f © gl|s,, = [[flsup/|9/lsup- Now for all (y,2) € X x X with
X = X’ x X” compact and 3/ # 2’ and y” # 2" holds

d(z,y)° - d(x,y)P d(z,y)°
1f W) = f@ 1 19’ = 9@l
< R gV AILf @) Ay )"

S|||f[p]|||supHgHsup \% ||f‘|sup|||g[p ]|Hsup S ||fHCP’ ’ ||g||CP"'

We saw f ® g € CP(X,E) and therefore |f © gl?)|(y,2) = 0if 2’ = ¢/ or 2" = y". We

conclude || f © gllco < |[fllco 9o
In case p has at most one nonzero entry, e.g. among those of p/, then we find d(z,y)? = 1 as
soon as x” # " for any x,y € X and therefore

HngHCP = Hng”sup v H’f@g[p]|H{x,y€X><X:x”:y”}‘
If " = 4", we obtain
1f©g(y)—fog(@)|/d@,v) = £ () f@)/d, o) [lg=") = 1Py «)llg(=")]]
We conclude
||f®g||CP = ||f®gHsup \/ |||f@g[p]|||{g;7y€X><X:a;”:y”}
= M laupll9llsup V I Maup 19l = 1 o 1 9llgorr-
|

Proposition 1.25. Let X = X, X --- X Xy be a cartesian metric space. Then the locally
convex K-vector space CP(X,E) endowed with the family of seminorms {||-||., o} running
through all compact subsets C' C X is complete.

Proof. By Remark 1.23, we find C?(.X, E) to be canonically isomorphic to the locally convex
K-vector space A, defined as the subspace

{(feye 11 CP(C.E): foipne = fpjonp forall C, D C X compact}

C'CX compact

c [ crCE)=P

C'CX compact
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Then A is closed in P, as convergence in C?(C', E) implies in particular pointwise convergence.
In more detail: Let f be in the boundary of A and fix two compacta C', D C X. Consider for
any ¢ > 0 the open neighborhood U := B<.(fc) X B<:(fp) X ITkcx compact C° (I, E) > 5
here the prime indicating the exclusion of C'; D C X in the index set. Since f € 0A, we find
UNA# Dandthus || fopre — fojcnplla,, < € foreverye > 0,ie. f € A. As P is complete
if and only if each factor is complete, we are reduced to the case X a compact metric space.
Let (f)nen be a Cauchy sequence in C?(X, E). By completeness of C°(X, E) with respect
to |||lyyp> We find f,, — f with respect to ||, for the pointwise limit f € C°(X,E). It
remains to prove f € C?(X,E) and f, — f with respectto |-||.,. Let (z,y) € VX x X. For
n,m € N, we have

|(f - fn)]p[|(x>y) S |(f - fm)]p[|(x7y) \4 |<fm - fn)]p[|(xay)
< = £ @) V= F) o
<I|(f-

( fm)]p[Kx?y)vHfm_ancp'

Fixing such n € N, put ¢, = limsup,,>l|fm — fullce- Since f, — f pointwise, fixing
such 7,y € X, we find lim sup,,,»,|(f — )Pl (z,y) = 0. Hence |(f — fu)?!(x,y) < cn
and thus [||(f — fu)?!||loxxx < cn as this bound does not depend on the chosen points
z,y € X. As (f,) is a Cauchy-sequence with respect to ||-||.,, we find ¢, — 0 and thus
I(f = £l x« x — O. If we can prove f € CP(X, E), this will show f,, — f with respect
to |||l o and we are done. For this, define | f1?)] : X x X — R by

|l (2, y), ifa#y,
0, otherwise.

P2, y) = {

Then | f17l] is continuous on VX x X = VX x X and f € C?(X,E) if and only if |f[!] is
continuous on the diagonal AX x X.

Fixe > 0 and a € X. We find ng € N such that ||[(f — fu)?!|||oxxx < € forall n > ny.
Since f,, € C?(X,E), there exists a neighborhood U > a such that | f)?!|(z,y) < e for all
(x,y) € U xUNVX x X. Hence for distinct z,y € V:=U xUNX x X C X x X open,
we find

A1 9) < ol ) VN = Fa o <&
Le. |fIP!| : X x X — Ry is continuous on AX x X. [ |

Notation. Let X = X; X --- X X4 be a cartesian metric spaces and put
d(z,y) := (di(z1,11), - - -, da(xa,yq)) forz,y e X.
Let § € R%,. Then we write
d(z,y) <6 if di(z1,y1) <01y, dal2d, ya) < da-

Given a € X, we denote B<s(a) := {z € X : d(z,a) < 8}.
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Definition 1.26. Let X = X; x --- x X and Y be metric spaces. A mapping g : X — Y
will be called locally d-constant for § € R, if it is locally constant and d(z,y) < & implies

g(r) = g(y).

Incase d € Rio, we find a locally §-constant function to be d-constant with § = d; A ... A
04 > 0. But we will also be interested in the case where there is only one positive J;, > 0 and
where we do not know particular positive lower bounds for the other entries of § - even though
they might exist, e.g. by compactness of X.

Lemma 1.27. Let f € CP(X,E) with X = X X --- X X4 a compact metric space. Then
1Flleo = 1F lsup V171 0

with X1Pl .= {(z,y) € X x X : 2, = ypif p =0} C X x X.

Proof. This reduces by definition of [|-||., to the assertion that ||| f1#!||| i, > ||| f17] up- We
have by definition | f1)](x, y) > | fllsup only if d(z,y) < 1. Butif p, = 0 and z, # yp, then
d?(x,y) > di(zy, yx)° = 1. The assertion follows. [ |

Lemma 1.28. Let p € [0, 1[% Let § € [0,1]% such that:
1. Foranyk =1,...,d, we have §;, = 0 only if pr, = 0.

2. Put D = {68 : k = 1,...,dand 6, > 0}. Then we have max D = min D and
v:=max D > 0.

Let X = X X -+ x X, be a compact cartesian metric space and f € C?(X, E) such that for
fixed e > 0, we findd(z,y) < 8 toimply ||f(x) — f(y)|| <e-d(z,y)? forall x,y € X. Then
there exists locally 6-constant g : X — Ewith || f — g||,,, < evand || f — gl < e

sup —

Proof. Fixsuch f : X — E and ¢ > 0. Because f € C?(X, E), there exists a tuple d €]o, 1)¢
- and for which we may by premiss on f assume 0, = 0 for all k = 1,...,d with §, > 0 -
such that d(,y) < & implies ||f(z) — f(y)|| < € - d”(z,y). Because E is non-Archimedean,
we can partition X into equivalence classes U; C X by declaring

vy i f[f(e) = Fy)ll < ev.

Since f is in particular continuous, every U; is open. We now choose an element a; from each
U, and define locally constant g : X — E by

g(x) = f(a;) if z €U,

We note that two points 2 and y will be equivalent if d(z,y) < §. Because § < &, we find
thus ¢ to be in particular locally §-constant.
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By construction || f — g||.., < ey < e and

sup

115 = 9Pl = 115 = 9P 0
= |||(f - g)[p]|||{(x,y)eX[P]:d(x,y)§S} v |||(f - g)[p]|||{($7y)eX[P]:d(g;7y)$s}

S || |f[p] ’ ||{(,7;7y)6X[P]:d(aj7y)§g} \/ || |g[p} | ||{(1‘7y)6X[P]:d(a;7y)§S}

1/ () = g@) |, 1F(y) = 9()]

V max V
(w)eXlﬂ]:d(m,y)zS( d(z,y)? d(z,y)P )

<eVOVey/y=c¢;

the first equality by the preceding Lemma 1.27. Regarding the last inequality, we note that for
(z,y) € X'Pl, we have d(, y) £ 0 if and only if there is k € {1,...,d} with p, > 0 such that
AP (zg, yr) > 0F =, and so d(x, y)? > 7. |

Corollary 1.29. Let X = X x - - - X X, be a compact cartesian metric space. For p € [0, 1[¢,
the locally constant functions g : X — E are dense in C?( X, E).

Proof. Fixe > 0and f € C?(X,E). Then |f?] : X x X — R is by compactness of X x X
a uniformly continuous function vanishing on A(X x X ). Hence we find § €]0, 1] such that
in particular for all @ = (a,a) € X x X, it holds

1171z, y) = |F@)] = |f¥](2,y) < e forall (z,y) € X x X N Bes)/(a)-

By possibly shrinking § €]0,1]¢ coordinatewise, we can moreover assume 8% = ~ for all
keL:={le{l,...,d} : pp >0} with v := min{6/" : l € L} > 0. Then 9§ fulfills the
conditions of the preceding Lemma 1.28.

By the triangle inequality, if we have d(x,y) < é for (z,y) € X x X, thend((x,y), (a,a)) <
(8,0) for some a € X. Thus for all (x,y) € X x X holds

1f(x) = FWll < e-d(z,y)? if d(z,y) < 6.

By Lemma 1.28 we find therefore locally d-constant g : X — E with ||f — g[/;, < €. In
particular the locally constant functions are dense in C*( X, E). |

Another characterization

Lemma 1.30. Ler X = X x - - - x X4 be a compact cartesian metric space and f € CP(X, E).
Then

H’f[p]msup = H’f[pl.EIHHsup V..oV |Hf[pd.ed]’HSUP'

Proof. Firstly, we find by definition ||| /|||, > [|[fl+esI[||,, for & = 1,..., d. Contrari-

sup —
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wise, let z,y € X be distinct. We compute

7| (2, )
i) - S
d(z,y)°
NG s ya1,ya) = Sy Yar, %) -+ (Fyn, 22, 2a) — ()]
d(z,y)°
maXg=1q,.., dHf(ylv o Yk—1 Yk T—1, - - - 7xd) - f(yh ey Yk—1, Tk Tht1y - - - 7xd)H
- maxg=1, 4 d(Yk, Tx)P*
S max ||f(y17"'ayk’—layk’axk’—la"')xd)_f(yla"'7yk—17'rk7$k+17--'7$d)||
k=1,....d with x1, Zys d(yk7 g;k)Pk
= max |f[ﬂk'ek}|((y1,.__,yk,l,yk,xkﬂ,...,xd),(yl,...,yk,l,xk,xkﬂ,...,xd))

k=1,..., d with 2 #yg

sup”

.....

Corollary 1.31. Let X = X, X --- X Xy be a cartesian metric space. The locally convex K-
vector space CP(X, E) is the initial locally convex K-vector space with respect to the inclusion

mappings

crrel(X,E)
Cr(X, E)\
incl.
Craed( X E).
It holds |||l cp o = [I"llcoreac V - - - V ||l gpaea o fOr any compact C C X.

Proof. We assume firstly X to be compact. By definition, the function f : X — E is C” at
a if and only if it is C**** at a for k = 1,...,d and by Lemma 1.30, we have Hf[p}Hsup =
[ flered]l VooV | fleaedl || for any compact C' C X

By the first step, we find C*(C, E) to be initial locally convex K-vector space with respect
to the inclusions of C**¢* (C, E), ..., Cr¢<(C, E). We conclude by applying Remark 1.23 to
CP(C,E)aswellas CPv¢1 (C E), ... ,Cr*%(C E). [ |

Symmetry properties

Lemma 1.32. Let X = X, X --- X X4 be a compact cartesian metric space and f : X — E
be a mapping symmetric in its k-th and [-th coordinate. Then [ € CP¢:(C, E) if and only if
feCre(C,E) and it holds || f|coer = || flcoe-

Proof. Since X is compact, we find f € C”* (X, E) for some k£ € {1,...,d} if and only if
for every € > 0 exists 0 > 0 such that || f(z) — f(y)| < e-d(z,y)”e forall x,y € X with
d(x,y) < 4. Since f is symmetric in its k-th and [-th coordinate, we see by Lemma 1.18 that
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f € Crer(X,E)if and only if f € CP< (X, E).

Moreover, denote by ¢ the permutation map on X swapping the k-th and [-th coordinate.
Then (o, 0) acts on X x X D X¥el and

L2 e = 112 0 (0, 0) et = NFE N oy xtmens = NF | ter1-
[ |
Corollary 1.33. Let X = X x- - -x X be a compact cartesian metric space. Let {1,. .., d} =
LU...UI, with representatives i, . . . ,iqg and  : X — E a mapping symmetric in its coordi-

nates indexed by I, . . ., I.. Then
fe€C/(X,E) ifandonlyif feC® (X,E)n...NC"% (X, E)
and it holds
||f||cp = ||f||c"'ei1 V.V ||f||cp‘6ie-
Proof. We have
C’(X,E) =C/(X,E) =C’*(X,E)N...NC (X, E)

and
[ llce = lIlles = [I*llgoes Voo V[l goeas

the first equality by Remark 1.22 for g = (p, .. ., p) and the second one by Corollary 1.31. We
can then conclude by applying Lemma 1.32. |

1.4 C'*’-functions
Assumption. Throughout this subsection, we will make the following assumptions:
- We will fix a real number p € [0, 1[.

- Welet X = X x --- x X; C K?be anonempty cartesian subset whose factors contain no
isolated point.

A quick remark on this assumption’s origin: Define the - e.g. first - partial difference
quotient of a function f : X — E by
flx+t-e)— f(r)

fIL0-0l(g ) = . forr e X,te K"withz +t-e; € X.

Then f is defined to be once partially differentiable in its first coordinate at a € X if and only
if this function is C° at (a,0). But this function f1:%l has a unique extension onto (a, 0)
with value Dy of(a) := lim;_,q f11%%(a, ) if and only if a; is an accumulation point of
Xi.

Definition. Let f : X — E be a mapping.
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@)

(ii)

(111)

Put Xl = X} x - x Xjg X VX? X Xpy1 X -+ X X
We define flexl : Xletl — E by

flx+t-ey) — f(z)
. ;

el =y, op; —) =

here x := (z1,...,x4) and t := y —xx # O - the hyphenations to the left and right of the
semicolons representing the omitted coordinate entries x1, ..., T and Tgyq, ..., 4.

Put X[ = X x - x Xp g X X? X Xpy1 X -+ x Xg.

Then f will be a C(!*7)¢x-function if f is continuous and flexl . Xlex[ — B extends
(uniquely) to a C*-function flel : Xlex] 5 E. We denote the set of all C'+*) ¢k _functions
f: X — EbyCU*e (X E). For compact cartesian C C X we define the seminorm
||'||C(1+p)-ek70 on C(HPre (X’ E) by

1 lleasorenc = I flle V17 o cten-

We define C'*7(X, E) as the initial locally convex K-vector space with respect to the
inclusion mappings C('*°)¢x(X E) — C°(X,E) for k = 1,...,d, that is we put
CHP(X,E) = CUPe (X, E)n...NCUFAe(X E) C C°(X,E) and for compact
cartesian C' C X, we define the seminorm |-|;14,  on C'**(X,E) by

||f||cl+p,c = ||f||c<1+p>-e1,c V..oV ||f||C(1+/’)‘Ed,C"

Proposition 1.34. Let f : X — E be a mapping. Consider the following

Definition. (i) Forally,z € X withy = x4+ t1e; +--- +tgeqand tq, ..., t; € K*, there

(ii)

is a unique K-linear map A =: fI'[(y, 2) : K¢ — E defined through

Actrer = fz+ti-ert - +toep)— flattie+ - +tep) fork=1,...d.

Define X'l := {(y,2) € X x X 1y =x+tie; +--- +teegwitht,,... t; € K*}
and XMW :=X x X.

We will say that f : X — E is a C'**-function if f1'l : X'l — Homg s (K% E)
extends (uniquely) to a C*-function fI!l : X[t — Homg ey (K9, E) with respect to the
operator norm on its range. We will denote the set of all C'*-functions f : X — E by
C'*?(X,E). For every compact cartesian C' C X we define the seminorm ||'||él+p,c on
C'**(X,E) by

Hf”élw,c = Hf”c v ||(fm||cp,c[1]-

Then C'**(X,E) = C""(X,E) and |||l g1 ¢ = ||llo14s o for C C X compact cartesian.
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PVOOf: We have A - e = f]el[(yl,.iﬁl;.’EQ; Ce ;.’Ed), e ,A ceq = f]ed[(yl; ey Ya—1; yd,.iljd) for
y,r € Xwithy=x+1t-e,+---+1t;5-eqandty,...,t; € K*. Hence under the isometric
isomorphism of K-Banach spaces

Homg veisp. (K%, E) — E4
A= (A-eq,..., A ey),

we obtain fI'l(y, z) = (fl9l(y1, 21320, .. s 24), ..., F%l(y1; ... 3 ya-1;ya, 24)). Hence fIUL
X — E4 extends to a C*-function on all z,y € X if and only if fles[ : Xlexl — E extends
to a CP-function flexl . Xlexl 5 Efork =1,...,d. Thatis,

ctre (X E)yn...ncl*Pe (X E) = C"**(X,E).
Fory,x € X withy =2 +tie; +---+tgegand ty, ..., t; € K, we find

1My, 2)|| =[| A = |A e V...V [|A e
=l ey, 252zl Ve VP Y Yas s Yas 2a) -

If we let x, y run through C' C X compact cartesian, we find

||f[1]||cp,c[1] = ||f[el]||cp7c[e1] V...V ||f[ed}||cpvc[ed]-
Therefore | flleis ¢ = || fllerss - u

Remark 1.35. Let f € CY(X,E) and a € X. Consider the K-linear mapping D,f :=
fW(a,a) € Homg ,sp(K% E). Then for every ¢ > 0, there exists a neighborhood U > a
in X such that || f(x + h,2) — D,f|| < eforall x + h,x € U. In particular

If(z+h) — f(x) — Dof - b|| =|| f" Uz + h,z) - h — Dof - b
g”f“](:c + h,x) — D fl|R|| < e||h|| forall z+ h,x € U.

This is usually called strict differentiability. Therefore if a function is C' at a point a € X,
then it is strictly differentiable at a. In the other direction, given £ > 0 we find a neighborhood
U > a in X such that in particular forally = x +t - ex,x € U with k = 1,...,d holds

1A (= 2 +t, 205 =) = Daf - el = 11/t (f(x+t-ex) = f(x) = Daf)|| < - [t|tex] = e.
Therefore flerlis CO at @ = (—;ax,ar;—) € Xl for k = 1,...,d or, by the preceding
Proposition 1.34, equivalently the function fI'lis C at (a, a).

Remark 1.36 (About (in)equalities of continuous functions on dense subsets). Let X be a
topological space, Y a normed space and f,¢g : X — Y two continuous functions thereon.
Let A C X be a dense subset. Then f(a) = g(a) respectively || f(a)|| < ||g(a)|| foralla € A
implies f(z) = g(z) respectively || f(z)]| < ||g(x)|| forall z € X.
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Proof. Leth == f—¢g: X x X — Y. We know that F'(Z) C F(Z) for any continuous
function F' and any subset Z in the domain of F'. Putting Z = A x A and F' = h, we have
Ax A=AxA=X x X and therefore i, = 0 respectively |2l < 0 pointwise implies
h = 0 respectively ||| < 0 pointwise; the former since {0} C Y is closed, the latter since
||l : Y — Ry is continuous (and R>; C R closed). This means f(z) = g(x) respectively
|F@)| < llg(x)] forall = € X. .

Assumption. Let X be a topological space, Y a normed space and F' : X — Y a continuous
function. Whenever we will in the following refer to the continuous extension of a proposition
claiming a certain property only for the continuous function f := F|4 defined on a dense
subset A C X, we mean to invoke the proposition together with the above Remark’s 1.36
observation to infer the claimed property for F' itself.

The following two observations will mainly be used later on, but due to their basic character
it seemed appropriate to state them here.

Lemma 1.37. Let X C K? be a nonempty cartesian subset whose factors contain no isolated
point. Then we have norm-nonincreasing inclusions C'(X, E) C C'""(X,E) C C*(X,E).

Proof. Firstly, let f € CY(X,E). Fixe > 0 and a € X. By definition f(y) — f(z) =
fM(y, x) - (y — ) and hence || f(z) — f(y)|| < ||}z, y)|l[l —y]| forall (y, ) € X' Since
f € C}(X,E), the function f1l : X'l — Homg e (K9, E) extends to a continuous function
U XU — Homg yesp (K, E). As moreover X C XU = X x X densely, it follows by
Remark 1.36 that || f(2) — f(y)|| < [|fM(z,y)||||z — y]| for all (x,y) € X1 = X x X. By
continuity, there exists a neighborhood U > a such that || fI!)(z, y)|| < M for all x, € U and
a constant M > 0. Le. f € C""(X, E).

Secondly, let f € C'"(X, E). Then

1 () = F@I < [z, 9)lle = yll < M|z — yll < ella —y]|”

for all (distinct) z, i in a neighborhood V' C U of a with ||z —y||'™” < /M, ie. f € C°(X,E).
This proves C*(X,E) 2D C""(X, E) 2 C!(X, E).

Regarding the norms, we first off remark that these inclusions to be norm-nonincreasing means
that [l - < [l on C(X, B) for € € X compact and [|-| sy < |1, on C'(X, E)
for C' C X compact cartesian.

Let C' C X be compact. We firstly show H|f\[p]HSup < A MM gup V 11f 1l for f € CP(C, E).
Letz,y € C. If v = y, then surely |fIl|(z,y) = 0 < H]f]l[msup. Let them be distinct. We
distinguish two cases.

Case 1: ||z — y|| < 1. By the above estimate, we find

-1 1lf (@) = FWl

[P, y) = [lz —yl
Iz =yl

<l =yl M y) < 1y < -
Case 2: ||z — y|| > 1. Then
(@, y) = lle =yl 1f @) = FI < 1 (@) = FOI < IF @IV 1T 1 F -
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Secondly, let C' C X be compact cartesian and f € C'(C, E). By the proof of Proposition
1.34 for p = 1, we find || fl1|| o v v LA o = (1F B, Because f1(z,y) - (z—y) =
f(@) — f(y) for (z,y) € X, we have indeed ||| f*!||| ;i < || M| 1, and so by continuity
Hf”clip,c = Hchl,C' u

Lemma 1.38. Let X and Y be compact metric spaces, g € C°(Y,E) and f € C"™(X,Y).
Then ||g o fllco < (LV I - gl < LV £ 1E) - gl

Proof. We find g o f € C?(X, E) by Proposition 1.7(i). For z,y € X with f(x), f(y) € Y
distinct holds

lg 0 @, y) =llg(f (@) = g(FII/ llz = yl?
=llg(f (=) = g(LDI/NF @) = FOI” - 1 (@) = fF@I" /Nl = yll”

=[g"”|(f (), F(v)) - 1/ (2, ).

This equality extends by zero to all other distinct z,y € X. Therefore

”g o fHCP = Hg o f”sup \ H’g © f]p[|Hsup S ”gHsup \ HgHCPH|f]1[|||§up S (1 V ||f|

) —9(f
)—9(f

Zlip) : ||9||cp~

Symmetry properties

Lemma 1.39. Let f : X — E be a mapping symmetric in its coordinates k,l € {1,...,d}.
Then
fecttPe(X E) ifandonlyif fe Ut (X E)

and for every compact cartesian C' C X symmetric in its k-th and [-th coordinate holds
[flleasorer o = [ fllca+ore ¢

Proof. By symmetry, it will suffice to prove one direction, e.g. if f € C(1+P)¢ (X E), then
f e citrrer(X E). Since f is symmetric, we find

Flel(=; s = 2, 905 —)
f(...,:z:k,...,xl,...)—f(...,:z:k,...,yl,...)

T =Y
k-th place [-th place k-th place [-th place
=~ =~ =~ =~
:f(, ry ..., I 7)—f(, y ..., Tk 7)
L — U
=flel (= @y = @5 -)
~—~— ~~

k-th post [-th post
Denote by o € C'"P(X!el| Xlel) the permutation map defined by

(= ok — w0,y =) = (= Ly —5 Tk ).
—— —~—

k-th post I-th post
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Then we just saw flexl = flelo 0 yler(- Hence flexl . Xlexl 5 E extends to the C*-function
flesl o Xl — K if and only if fll 0 0y : X1l — E extends to the CP-function
fled oo : Xlexl 5 E. Here we used flex = flel o g, as these are two continuous functions
coinciding on the dense subset X!el C X¢tl. Since we assume flel € ¢?(Xel E), by Propo-
sition 1.7(i) holds flexl = fled o o € CP(Xex] E). Therefore flesl . Xlerl — E extends to the
CP-function fltl : X — E.

Moreover, for every compact cartesian C' C X symmetric in its k-th and [-th coordinate
holds oClexl = Cled, Thus

|’f[6k]||cp7c[ek] = ||f[el] © O-||CP7C[EI€] = Hf[el}HcP,C[El]?

ﬁ:l)]l

here we used |||(aIC = 1 and Lemma 1.38 for the latter equality. We conclude

Mgp
||f||c(1+P)~ek7C = ||f||c(1+p)-6170'

Corollary 1.40. Let {1,...,d} = [U...UI, with representatives iy, ... ,iqand f : X — E
a mapping symmetric in its coordinates indexed by I, . .., I.. Then

feC™(X,E) ifandonlyif feClen(X E)n...nCct+Pee(X E)

and for every compact cartesian C' C X symmetric in its coordinates indexed by I, ..., 1,
holds
[fllereoc = I llgosmres, o Voo VI lleasmer, o

Proof. By Lemma 1.39. |
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2 Fractional differentiability in one variable

Assumption. Throughout this section, we will fix a real number r = v 4+ p € R, with
v=|r] €Nandp={r}el01]

2.1 C"-functions for r € R
Definition of C"-functions

We now specialize to the case that the function’s domain X is a nonempty subset of K without
isolated points and takes values in K; our aim is a general definition of fractional differen-
tiability under these circumstances. A good hint of the strong dependence of the common
differentiability notion over the real numbers on the intermediate value theorem is given by
the proof of the completeness of the continuously differentiable real-valued functions C* (I, R)
defined on an open interval /, which already uses the fundamental theorem of calculus. This
shows that over general base fields we have to put stronger assumptions on our class of contin-
uously differentiable functions to yield e.g. their completeness.

Definition. Let X C K and f : X — K a mapping thereon. For v € N put
XV = x 0t and - XW= X = {(x,...,2,) : 2, = x; only if i = j}.

The v-th difference quotient ¥l : X"l — K of a function f : X — K is inductively given
by fI°:= f and forn € Nand (z,...,7,) € X* by

B (2o, 29, ... 2) — Wy, 20, ... 1)

To — 1

f}”[(xo, Cey )

Having already defined C*-functions for p € [0, 1[, we add up our definitions to obtain our
notion of fractional differentiability over (non-Archmideanly valued) complete fields:

Definition. Fix r = v + p € R5(. Let X C K and f : X — K a mapping thereon.

(i) We will say that f is C" (or r times continuously differentiable) at a point ¢ € X if
vl XM s Kiscrata = (a,...,a) € XM,

(i) Then f will be a C"-function (or an r-times continuously differentiable function) if f
is C" at all points @ € X. The set of all C"-functions f : X — K will be denoted by
C"(X,K).

Lemma 2.1. Let X C K. Then a function f : X — K is C" at a point a € X if and only if
for every € > 0, there exists a neighborhood U > a in X such that

|f]”[(x0,x1, ce ,ZL‘V) —f]y[(i’o, L1y .- ,fL’V)| < €|1'0 —f0|p for distinct ZL’Q,fo,l‘l, R~ U.
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Proof. By Example 1.15(3i), the set A := X C KM is telescopic. We find f : A — K
and @ € X to be both symmetric in all their coordinates. By Corollary 1.20 applied to the
telescopic subset A C X I € K, the function f}”[ is C? at @ if and only if, given ¢ > 0,
there exists a neighborhood U > @ in X" such that

| (x) — U y)| <elt)” forallz,y e UN X" withy =2 +t-e; andt € K.
Excluding the trivial case ¢ = 0 above, this translates to the proposition. |

Remark. (1) We observe that the differentiability at some point ¢ may vanish if the func-
tion’s domain expands in K - as long as there is no neighborhood U of @ in K lying in
the domain.

(ii) Let a be some accumulation point in X. Then @ is an accumulation point of X ¥, As K
is complete, we find by Remark 1.4 that f*[ : X"l — K is C° at @ € X if and only if
their exists a limit D, f(a) € K such that for every ¢ > 0, there is a § > 0 such that

|f"(z) — D, f(a)] <e forallz € X" with |zg —al,..., |z, —a| <6.

(ii1) The previous point shows that our notion coincides with the common notion of v-fold
differentiability of f at an accumulation point a in the domain of f, as considered e.g. in
[Schikhof, 1984, Section 29] in case r = v € N.

Lemma 2.2. Let X C K be a nonempty subset.
(i) The mapping K* — KX given by f — fIlis K-linear.

(ii) Let f : X — K be a mapping on X. Then the function f*!is symmetric in its v + 1
arguments.

Proof. Ad (1): This is quickly checked to hold.
Ad (i1): Conferring [Schikhof, 1984, Lemma 29.2(i1)], an induction shows that the difference
quotients are symmetric in their arguments. [

Properties of C"-functions

Lemma 2.3. Let X C K be a subset, a some point in X and f : X — K a mapping thereon.
If fis C" at a, then f will be C® at a for every s < r.

Proof. 1If f is C" at a, then clearly f will be C* at a for every v < s < r. By transitivity, it
therefore suffices to prove that f is C* at r with s = v — 1 4+ 7 for n € [0,1]. We use the
characterization by Lemma 2.1: On X*~!l holds for distinct z(, , € X by definition

|f]”_1[(x0, TiyeeoyXy) — f]”_l[(fg, Tiyeey Ty
:|$0 — j0||f}y[($0, ZZ’(), L1y ,ZL‘,,)|
=|zg — Zo|"|xo — i’ofl_n’f]'/[(xo,foalﬂh co )l
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If now fisC" ata € X, then f*l will be C° at @ and in particular locally bounded by a constant
C' > 0 there. Fix ¢ > 0. Then there exists a neighborhood V' 3 a in X with |z — z|'™" < ¢/C
for all z, & € U. Hence on the neighborhood U N X~ with U := V=1 5 @ in X holds

|f}y_1[(l’0, L1y ,ZL’V) — f]y_l[(f(),l’l, Ce ,[L‘,/)| S |l’0 - i’o|n€.
By Lemma 2.1, this proves f to be C* at a. |

Lemma 2.4. Let X C K be a nonempty subset without isolated points and f : X — K a
mapping thereon. Assume that forr = v+ p € Rxy, the map f*='1: XIV=1l — K is C* on all
of XW=U. Then . Xl — K can be extended to a C*-function f<> : X — AXWV — K.

Proof. Fori,j € {0,...,v} withi # j set
Uy = {(z0,...,2,) € X s a; # 2,

Then each U;; is open in X I'and their union is X" — A X, Because of our assumption on
fI»=11, we find by Proposition 1.6 that f*~!l extends to a C*-function f*~1 : X1 - K.
We can hence define h;; : U;; — K by

hij(l’o, . ,Il,)

f[y_l](‘an"'ai‘ja---?mV)_f[y_l](x()?'"’%i7""xV).

[Ei—ZCj ’

here the arguments beneath the breves being omitted. By the symmetry of f1*l and !, we
find for z € Xl that

i-th place j-th place
~ =~ ~ =~
() :f}”[(a:i,xj,xg,..., T ey T e, Ty) 2.1
i-th place j-th place
_ ~=~ =~
= M Wayae,..., To ..., T ,...,1)
—f]yil[(l‘j,QIQ,..., o ,..., I1 7...,$y>]/[$i—$j]
~~ ~~
i-th place j-th place
j-th place i-th place
_ = _ =~
_ fr Wy, 2,0, 20 L2 — @, e, ., T2 1)
€T; — l’j
B =, ... (L, Ty) — (g, ..o 2.2 B _
= = hij(x);
€r; — ZEj

hence each h;; extends f’I. As (z; — z;)~! is a C*-function on U;; and also f~! on X[~

the same holds for our map h;; by Proposition 1.7(ii). We glue these functions together by
putting
f<y>(l’) = hm(ZL’) ifx € UZ]

Then f<> : XM — AXIM — K is a well-defined function as all the continuous functions
h;; coincide on the common dense subset X "l of their domains. For C” being a local property,
f<r~ is also a C*-function. [ |
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Proposition 2.5. Let X C K be a nonempty subset without isolated points and f : X — K a
mapping thereon. Then f € C"(X,K) if and only if f*! : XVl — K extends to a C*-function
. X 5 K.

Proof. Firstly we note that if ¥l extends to a C*-function f* : X — K, then it will be in
particular C” at all @ € X, so that we only have to show the "only if"-part. This is proved
by induction on v. For v = 0, this holds by definition, so let us assume that » > 1 and that
the statement is true for n — 1. By Lemma 2.3, we find f € C" (X, K). By our induction
hypothesis, we know that f1*~!l extends to a C*-function f*~1 : X" - K. By Lemma 2.4,
the function f*! extends to a C’-function f<*> on all of X/ — AX[. We can now extend
" 'to X by setting

la, . ay) = f<”>(a0, Ceay), ?f an, cooay) € XM AXTL

lim, .z f"(v), ifad=(a,...,a) € AXW]
with y running through X Thusifwelet A := Xland A C B := XY C A, then in
particular f*l : A — K will be a function which is C” on the whole of B and hence its unique
continuous extension ! : X"l — K is a C*-function by Proposition 1.6. [ |

Corollary 2.6. Let X C K be a nonempty subset without isolated points and f € C"(X, K).
Then the functions '

D;f(a) := @) fora e X
areinC" (X, K) fori =0,...,v.

Proof. By [Schikhof, 1984, Lemma 78.1], it holds for all z = (zo,...,x;) € X that
(Dyifl(x) = > My),

yesi,u

where S, () is the set of all tuples (2, - ., Tm,) € X for which mg < ... < m, and
{mq,...,m,} = {0,...,i}. Because each tuple y(z) € S,(z) as a function X"l — X[ is
just repetition of coordinates, it is locally Lipschitzian, and Proposition 1.7(i),(ii) tells us that
the equation’s right hand side defines a C*-function on XL, yielding D,_; f € C*"*(X,K). In
other words D, f € C" /(X ,K) fori =0, ..., v. [ |

Remark 2.7. (cf. [Schikhof, 1984, Theorem 29.5]) Let X C K be a nonempty subset without
isolated points. If f € CY(X,K) then f will be v-times continuously differentiable in the
Archimedean sense and we have v!D, f = f*), where f*) denotes the Archimedean v-fold
derivative of f.

There are some subtleties in characteristic p > 0, though: The function f(z) = z? is a C*-
mapping on K = Fy((¢)) which satisfies D; f = 0, but Do f = 1.

The locally convex K-algebra of C"-functions

In the following, we want to endow the K-vector space of r-times continuously differentiable
functions with a complete locally convex topology.
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Definition. Let f € C"(X,K). Then fI° ... fl*~!land f! extend to continuous functions
f ., fl*=" and a C*-function f). For a compact subset C' C X, we can thence define the
seminorm |-+, - on C"(X, K) by

Hchnc = Hf[O}Hc ViV Hf[yfuuc[v—ﬂ Vv Hf[y]ch,Clvl'

We provide C"(X, K) with the locally convex topology induced through this family of semi-
norms {||-[|¢- .} with C running through all compact subsets C' C X..

Lemma 2.8. We have for s < r a norm-nonincreasing inclusion of locally convex K-vector
spaces C" (X, K) C C*(X, K).

Proof. The inclusion holds by Lemma 2.3. It remains to show that ||-
C"(X, K) for every compact subset C' C X.

Let f € C"(X,K) C C°(X,K). Then clearly || f|.. o < ||fllor o forevery v < s < r. By
transitivity, it therefore suffices to prove || f < I/l cr.c With s=v—1+4nforne [0, 1].
For this, it suffices to prove

e P [ e P T

Let C = C""Wand F := f!. For the last equality, we observe that we have a natural
identification of z = (29, 1, 2, ...,2,) € C¥ with (xq, 21;29;... ;2,) € Cl¢, and so, if
o # x1, we have

o S ||'||cr,c on

Cs,C

F(zg,xq,...,2,) — F(x1,29,...,2,)

= Fled(zg, 529, .. 5 2,).

i) =

o — I
In particular we see that if f ] exists, so does F¢+), and we deduce
”FHcmé < HﬁHcl,é

= 1Fllcer &

= |Flle VI F®)) e
= 1A M cwn VLAY s

here the first inequality holding true by Lemma 1.37. For the following equality, that by
Corollary 1.40, it holds || F||c1 ¢ = || F||¢e, ¢ by symmetry of fI~1: X1 — K. [ ]

Lemma 2.9. Let v € X"lwith X C K. Then there is a constant C(x) > 1 such that for every
function f : X — K, it holds

(@) < Cla) max |f(x)].

1=0,...,v

Proof. We know by [Schikhof, 1984, Exercise 29.A] a direct expression for f ]”[(x) as follows:
f]y[(ﬂfo, . ,ZE,/) = Z f(flﬁ'l) H (ZL'Z — [Ej)_l forz € X}V[

Hence we can put C(7) := max;—o,..., Ci(x) V 1 with Cj(z) := []; 4|7 — x| |

.....
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Proposition 2.10. Let X be a non-empty subset of K without isolated points. The space
C"(X, K) is a complete locally convex K-algebra.

Proof. Itis clear that C" (X, K) is a locally convex K-vector space. To convince ourselves that
it is also a locally convex K-algebra, we show firstly its closure under products and secondly
that || fgller o < [ fller cllgller o for all f,g € C"(X, K). By [Schikhof, 1984, Lemma 29.2
(v)], forn =0,...,v, we find

(fo)l(xg, ... z0) = > Pl ) gy, .. 2,) forallz € vXIL

Firstly, let f, g € C"(X, K). By Lemma 2.3 and then Proposition 2.5, the functions f%[ and ¢!
extend both to C”-functions for j = 0, ..., v. By Proposition 1.7(ii), this sum again extends to
a C’-function. Hence (fg)!"! extends to a C’-function, i.e. fg € C"(X,K).

Regarding the claimed continuity, Lemma 1.10 shows that

(£ llee < M _max [ eollg" Mo < M| fllgnsallgliense < 1 fllerllgller

77777

forp =0if n = 0,...,v — 1 respectively o = p if n = v. Here for the last inequality, we
used Lemma 2.8. Consequently || fgll.. < || fllc-llg]ler-

We prove completeness. Firstly note that the locally convex topology on C" (X, K) given
by the family of seminorms {||-||;. . : C' C X compact} is equivalent to the one given by

{I : ¢ € X" compactand n € {0,...,v —1}} U {H~[”]HcpC . C' C X" compact};
namely given C' C X[ compact, let C' := p,C'U ... U p, C compact. Then C C C" and
hence ||| < [ller 5 if 2 €{0,...,v — 1} and ||-[”]||C,,7(J <||llgr & in case n = v.

Hence as a locally convex K-vector space, the space C"(X, K) is canonically isomorphic
to the subspace
A= {(.907 s agu—lagu) € CO(X[O]7K) X X CO<X[V_1]7K) X Cp(X[V]aK) :
Jo = fv s 7gu—1\X]V*1[ = f]l/—l[’ gV|X]V[ = f}V[}
CCOUXUK)x - xC(XMU K) x cr(X¥ K) = P.

By Corollary 1.3, each factor C°(X K), ..., ¢~ (X1 K) is complete, and the factor
C?(X™ K) is complete by Proposition 1.9. Hence it remains to prove that A is closed in P.
For this, let f = (fo,..., f,—1, f,) be in the boundary of A in P, i.e. in any neighborhood
U > f of X lies another element g € A. We have to prove that f € A; in other words
necessarily fy i = f* for k =0,..., v, putting f := fo.

Now fix € > 0, an order n € {0,...,v} and x € XI"l. We must show | f, (z) — fI"l(z)| < e.
Let C O {xo,...,r,} be compact. We can find another g € A such that

1F =gl = max_ [1fu—gullow V1o = golle i < £/C(2)
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with C'(z) is as in Lemma 2.9. So in particular |(f — g)(z;)| < ¢/C(x) fori = 0,...,n with
g = go. Since G| xInl = f}"[, we find

[fala) = [l (@) < [ fa(@) = ga(@)] V |gn() — f ()]
= | fu(@) = ga(@)| V | /"(z) — ¢"\(2)|
= | fu(@) = ga(@)| V (g = f)"(2)] < &;
the last inequality by Lemma 2.9. ]

Description through iterated difference quotients

Lemma. Let X C K be a nonempty subset without isolated points. Then the function f*! :
X — K extends to a C*-function f¥1 : XV — K if and only if f*! on X" extends to a
Creifunction f") on XV! and moreover || ! lerc = [ lgper ¢ for compact C C X.

Proof. By continuous extension of Lemma 2.2(ii) the function f! is symmetric. By Corollary
1.33 holds f) € 71 (XM, K) if and only if 1 € C*(X"], K) and moreover || /)], cu1 =
/| ¢p-er 1 for compact C' C X. [ ]
Corollary 2.11. Let f : X — K be a mapping defined on a nonempty subset X C K without
isolated points. Define a function |f"l| : X"+l — R-q by

|f]r[‘<xo To, T1 € ) — |f]y[(IO,IL‘1,...,IV) — f]’/[(i’o’xl,_,,,myﬂ
Y ) Y Y |x0 —i‘0|p

Then f € C"(X,K) if and only if |fI"l| : X+ — Ry, extends to a continuous function
|f1] 2 XU — Reg which will vanish if xo = Zo. In this case, || " oo cor = [/ g V
1" s for compact C C X.

Proof. Let F = flland F = f¥ . X — K with )_(_: X[f}. By Proposition 2.5, if
f € C"(X,K), then | F'*l| extends to a continuous function | F¥!| : X x X — R vanishing on

AX x X. In particular | fI"[| extends to a continuous function | f|(%y, 1, ..., x,) vanishing
if Ty = .i'o.
In the other direction, we assume | f"{| to extend to a continuous function | fI"|(Z¢, 21, ..., z,)

vanishing if 2y = Zo. Then in particular for every a € X" and ¢ > 0, there exists aball U > a
in X such that

|f]y[<$0,fl,’1, o ,.I'l,) — f]y[(f(),l’l, .. ,;UV)| <e- |ZL’0 — j;0|p

for all (zg, 21, ...,2,), (To, 21,...,2,) € UN XM,
Because f!’lis by Lemma 2.2(ii) symmetric, we find f1*! by Corollary 1.20 to be C* on all of
X, In particular f*[: X"l — Kis C? onall of AXM, ie. f € C"(X,K).

Regarding the asserted equality of norms, let C' C X be a compact subset. We put as be-
fore F = f¥ . X — K with X = X and let C = C"!. Then

1 et = 15 ser e = 1Pl IE* s ()
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here the first equality by the preceding Lemma and the second equality by Lemma 1.27. Let
(zo, Zo, T1, . .., 1,) € XU Then ((zo, z1,...,1,), (Zo,21,...,1,)) € X7 and

’f[T”(xO?'%O’xla s 7‘7;IJ> - ‘F[P'€1]|((xo7x17 s 7x11)7 (*%073717 s 7xl/))~

We can thereby together with Equality () infer the asserted equality of norms || f1*] ler o =
1 N cer VA e u

Lemma 2.12. For any permutation o of mutually distinct xg, x4, ..., 2,41 € X, we find
g _ o I—P
‘fh“[‘(;cﬁ) _|[fo TN ]f]r[](m) for z := (2¢,...,7,11) € peazll
Lo — L1

Proof. Let o swap the indices 0, 1 with 4, j € {0,...,v + 1}. We notice

() = 17 @) oo — 2]

By symmetry of the latter function therefore holds

‘ 1=p

771y =LAl — = ) g —

|70 — @[

s — |7 xg —af |'r
=| () 22— = | ) (
)y = 1
|
Corollary 2.13. Let (zq, 1, ..., 2,41) € X?T Let o be the mapping on X" swapping
the entries with coordinate indices 0, 1 with those with coordinate indices i, j € {0,...,v+1}.
Then we find | f7l|(z) < |f"(2°) if |zo — 21| < |2 — 25| In particular if |vg — 1| =
§{xo, 1, ..., 241}, then | fI(z)| > | fI'l|(27) for any permutation o of (xo, 1, ..., 7,41) €
X,

2.2 Characterization through Taylor polynomials

Assumption. Throughout this subsection X C K will denote a nonempty subset without iso-
lated points, if not explicitly mentioned otherwise.

The Taylor polynomial of C"-functions

We turn to the Taylor expansion of a C"-function. By a straightforward induction over v > 0,
we find that all C"-functions have a unique Taylor-polynomial expansion:

Corollary 2.14 (Taylor-polynomial). Let f € C"(X,K). Then

f(x):;z D,»f(y)(x—y)i—i-f[”](x,y,...,y)(x—y)” forall z,y € X

with C"-functions D;f : X — K fori = 0,...,v — 1 given in Corollary 2.6 and a C*-
function f¥): X" - K,
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Proof. This is proven by induction on |r| > 0, the case || = 0 being trivial. So let |r| =
v+1>1land f € C"(X,K) C C" (X, K), the inclusion by Lemma 2.3. By the induction
hypothesis, we have a unique Taylor-polynomial expansion

f(z) = Z D,»f(y)(x—y)i—i-f[”](x,y,...,y)(x—y)” forall z,y € X
1=0,...,v—1

with C"~*~functions D;f : X — K fori =0,...,v — 1 and f : XV — K a C*-function.
Now by the definition of f*+!(x,y, ..., ) for distinct 2,y € X holds

@y y) = Duf(y) + (@ —y) P (g, ).

This furnishes the existence of our Taylor-polynomial expansion up to degree v.

Let f € C"(X, K). We define the Taylor-polynomial’s scaled rest-function by

A, f(z,y) = f[”](m,y,...,y) —D,f(y) forz,ye X.

Then A, f : X x X — K is a C”-function vanishing on the diagonal. In particular we find by
definition that for every ¢ > 0 and a € X, there exists a neighborhood U > (a, a) such that

AL f(z,y) = A f(y, )| < el(z,y) — (y,y)|° forall (z,y), (y,y) € U

This yields to |A, f(x,y)| < e|z — y|” forall z,y € U. Thus in particular Corollary 2.14
entails:

Corollary (2.14°). Let f € C"(X,K). Then there is a polynomial of degree v whose coeffi-
cients are functions Dyf,..., D, f : X — K such that

flz+y) = Z Dif(z)y' + R, f(x +y,z) forallz +y,x € X,
0,...,v

and for every a € X and € > 0 exists a neighborhood U > a such that
R, f(x+y,x)| <ely|” forallz+y,x € U.

In the following we will study the relation of the functions admitting a Taylor-polynomial
expansion and the continuously differentiable ones. We will see that the property of Corollary
2.14’ is equivalent to being C" on a large class of subsets X C K.

Characterizing C"-functions through Taylor polynomials on general domains

Definition 2.15. A function f : X — K willbe in C1, (X, K) if there are continuous functions
D;f : X - Kfori=0,...,vsuch thatif one defines R, f : X x X — K by

Rof(ey) = f@) = Y D)=,

0,...,v

then for every point ¢ € X and any € > 0, there will exist a neighborhood U > a with

R, f(z,y)| < elz—y|" forallz,yecU.
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Since R, f : X x X — K vanishes on the diagonal A X x X, we see that f = D, f. Keeping
y = 1o fixed, the convergence condition shows that D, f is in any case continuous (and by a
more elaborate argument D f, too). Moreover the continuity of Dyf,..., D, f : X — K
implies the continuity of R, f : X x X — K.

Lemma 2.16. The functions Dyf,...,D,f : X — K in Definition 2.15 are unique.
Proof. This is proven by induction on v > (. The case ¥ = 0 holds as Dy f = f. Letv > 1.
Let f € C7. (X, K), so that
flz) = Z Dif(y)(x —y) + A, f(z,y)(x —y)” forallz,y € X
1=0,...,v

with continuous functions Dy f,..., D, f : X — Kand A,f : X x X — K, the last one
vanishing on the diagonal. We moreover assume that this equality is likewise fulfilled for
continuous functions Dy f,..., D, f : X - Kandd,f : X x X — K instead. Then

flz) = ;Z Dif (W) (x —y)' + 0, f(z,y)(x — y)”

0,...,v
= Z Dif(y)(x—y) +0, 1 f(z,y)(x —y)” forallz,y € X
i=0,...,v—1

withd, 1 f(z,y) := D, f(y)+0,f(z,y)(x—y). Since ®, f and 0, f are continuous maps, so is
0,_1f. Likewise for D, f, A, f and the mapping A, _; f(z,y) := D, f(y) + A, f(x,y)(x —y).
By the assumed uniqueness up to degree v — 1, we obtain Do f = Dy f,.... D, 1f =D, 1 f
and (x — )0, 1 f(z,y) = (r —y)A,_1 f(z,y) for all z,y € X. Hence

0, 1f(z,y) =A,_1f(x,y) foralldistinct z,y € X.

As X has no isolated points, we know that VX x X is dense in X x X. Now both sides are
continuous functions on V.X x X and we find by Remark 1.36 that this equality holds for all
x,y € X. By definition of both sides in the equation above, we find ©,f = D, f as 0, f and
A, f vanish on the diagonal. |

Definition 2.17. (i) Let f € Cy. (X, K). We define functions A, f : VX x X — K and

A f|]: VX x X — R by putting

R, f(z,y R, f(z,y

BI@w) g |a,fl(a,y) = B E@0
(z —y) |z —y|
Since f € Cr(X,K), we can by definition extend these functions onto X x X such
that they continuously vanish on the diagonal AX x X and denote these prolongations
likewise. By the comment following Definition 2.15, they are also continuous on X X
X — AX x X and thus on all of X x X.

A, f(z,y) =

(i) By Lemma 2.16, the functions Dy f,...,D,f : X — K of Definition 2.15 are uniquely
determined continuous functions. So it makes sense to endow the space Cy, (X, K) with
the locally convex topology induced from the family of seminorms {||-| cq,c} running

through all compact subsets C' C X defined by
Hf”c;r,c = DofllcV---VIDuSflle VAl oxe
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Under our hitherto imposed assumptions, the inverse of Corollary 2.14” turns out to be true
for r < 2, see [Schikhof, 1984, Proposition 28.4]. But a counterexample for » = 3 is given in
loc.cit., which we will quote here:

Example. (cf. [Schikhof, 1984, Example 83.2]) Let X := {3,y a,p” € Ly : a, €
{0,1}} € Z, and define the map f : X — Z, by

FO-ap™) =" ap™.

veN veN
Then f € C3. (X, Q,) — C3(X,Q,).

Proof. Note first that X is a closed subset of Z, without isolated points. We prove that

IR I0),

(@)= (z0.z0)  (x —y)3

forevery xp € X. If weset Dyf = f, D1f = Dyof =0, D3f = 1, then for any zp € X and
e > 0 will hold |Rsf(z,y)| = |f(x) — f(y) — (z —y)?| < €|z — y|” for 2,y in a suitable
neighborhood of x. Thus these functions testify f € C2,(X,Q,). But f ¢ C*(X,Q,), as
Dsf =1 # 0 = £ /3], which it should equal in case that f is a C>-function by Corollary
2.14 and Remark 2.7.

=1 withdistinctx,y € X

So let k € N. We shall prove that z,y € X and v(z — y) = k! implies v((f(z) — f(y))/(x —
y)3—1) > k-kl. Writez = 3, ey a,p™, ¥ = S en byp™. Then a; = b; for j < k and ay, # by.
We see that

flx) = fly) = (ar — bk)pgk! +u, and (z— y)3 = (a — bk)?’p?”f! +

with v(ug) > 3(k + 1)! and v(vg) > 3k!(k + 1) so that min(v(uy), v(vk)) > (k + 3)k!. Since
ar, b, € {0,1} we have
(ar — br)* = ar — by

and we get
o((f(z) = f(y) — (x —y)*) = v(ug —v) > (k+ 3)k! =3v(z —y) + k- k.

Therefore v((f(z) — f(y))/(z —y)* = 1) = v((f(z) = f(y)) — (2 —y)®) = Bv(z—y) = k- k!,
which finishes the proof. |

Definition. For a subset C C K, we define
Clli={r=(21,...,24) € C?: 6{a1,... ,zq} < 1}.
Lemma 2.18. Let f € C"(X,K). Then for all (xq, ... ,x,), (Yo, ..,%,) € X, we have

M @0,y w0) = o, -0

S ii%aXin - yz|p|f[r]|(yza Tiy Yoy ooy Yi—1, Lit1y - - - 7xu)‘

,,,,,
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Proof. We write as a telescope sum

F o, w) — o, -0
= f[V](aso,...,x,,) — f[”](yo,xl,...,:v,,)

+ o, 1, 1) — F o, v1, 20, 1)
_|_ “ ..

+f[y](y07-..’yv7xV) _f[y}(y())"'vyu)‘

By the symmetry of f*! : X - K, we have

f[y](yoa ey Yim1, Tiy ity - - - 7%) - f[y}(yo, e Yie1, Yis Tigds - - ,fEu)

:f[y]<xi7y07 e Yie1, Tigy - - axV) - f[y}(yiay()a e Yie1, Tigdy - - 7xl/)'

The result follows from the definition of | fI"l], as we plug the above exposed equality into the
telescope sum on top. |

Lemma 2.19. Let f € C" (X, K). For any compact subset C C X holds
[fllerc = 1Doflle V- VIDuflleV |||f[””]|||c[<yl+1].

Proof. We only have to prove that || f|| .  is not greater than the right hand side. By Corollary

211, we have | fller e = /e VooV 1 g VPl Firstly, we prove by
downward induction on n = v, ..., 0 that

17 ey < 1Ny V1D SNl V-V [ Daflle-
<1 <1

In case n = v there is nothing to show. Let n < v. Then for any (zo,...,x,) € CI"l with
|z; — ;| < 1foralli,j we have

|f["}(:p0,...,xn)| §|f[”](x0, cey Ty — f["}(:vo,...,xoﬂ V |f[”](x0, e, @)
:" Z (ﬂfj - xo)f[nﬂ](ifoa e Loy gy e ,fl?n)| \ ’an(iﬁo)‘

<A gonen V1Dl

the middle equality by [Schikhof, 1984, Lemma 29.2(iii)]. Thus || fI"!|| i < || f7" ] sy V
<1 <1
| Dy f ||~ and the induction hypothesis for n + 1 yields the desired inequality.

Now for any (z, ...,z,) € C¥ with |z; — ;| < 1 for all 7, j, we have
\f[”](xo, cey Ty §|f[”](x0, R f[”}(xo, o xo)| Vv |f[l’](x0, ]
Sjg%z?(ymj — m0|’)|fm(x0,xj,m0, ey L0y Tty -5 Ty)| V| Dy f ()]

< g V1D,
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the middle inequality by the preceding Lemma 2.18. We see || || o < If [T]|HC[V+1] v
<1 <1
| Dy fl| - Plugging both results together, we saw for n = 0, ..., v that

1o <HDoflle V-V 1Dyt Flo VLl
<IDoflle V-V 1Dut flle VI AV ILE o

----------

.....

It solely remains to show ||| /Ul oy < /¥y V 11/l jwsa. To this end, let z =
<1

(zo, To, T1, ..., m,) € CPU with §{xg, o, 21,...,2,} > 1. By continuous extension of
Corollary 2.13, we find

() = (pormdX of }|f[r}|($0) if and only if |zo — Zo| = 6{zo, Zo, 1,. .., 7, }.
o cqpermutations of x

We may therefore assume |y — Zo| > 1. By the definition and continuous extension, we find

|f[r]|($) = |f[y]($0,l‘1, cee ,ZL’,/) - f[y}(‘%mxh ce ,ZL‘V)|/|ZE0 - i‘0| < ||f[y}||C[V]'

Lemma 2.20. Let f € C"(X,K). Then for compact C C X holds

I1f

cro = max (HDnJCHC N H’Arannf‘”C?)‘

..... v

Proof. Foremost for this statement to be meaningful, we note that by Corollary 2.6 and Corol-
lary 2.14, we find D, f € C""(X,K) C C;i"(X,K) forn = 0,...,v. So the above right
hand side is well defined.

By the preceding Lemma 2.19, it suffices to prove |||f"|||swy < ||Ar—nDuf|llce for n =

0,...,v. Conferring the reader to Lemma 2.4 for the definition of f<"~, we let

onf(z,y) = f(x,...,2,y,...,y) foralldistinct z,y € X.
———

n—times

By [Schikhof, 1984, Lemma 78.3], we have for distinct z,y € X

) 8 E;
(Dyr )< (2, y) D@ ()| (et

. =

(DOf)<V>(.$7 Yy 7?/) | (Z:;) EZ;; Splf(xv y)
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Denote the upper v x v-square matrix by M. We note that inductively
1 1+ 1 v v v v+1
]+ e+ = +{.)=1{. .
() () =) 0= ()
N Q) ()
1 v v
) \ ()

Because M has determinant 1, it is invertible in Z, and thus

Therefore

ouf(z,y) — Dy f(y) (Dy-1f)<'> (2, y) Dy f(y)
: =M : -
o1f(z,y) — Dy f(y) (Dof)<" (2, y, -, y) D, f(y)
(Dy1f)<7 (2,y) — (Vil)Duf(y)
=M1 :
(Dof)<> (2,9, y) = (§) Duf(y)
(Duflf)<1>(x: y) - D1Du71f(y)
M1 :
(DOf)<V>(x7 Y,... 7y) - DuDOf(y>
AlDuflf(xu Z/)
=M : :
AVDOf(m7 y)

the penultimate equality by [Schikhof, 1984, Theorem 78.2]. So for short, we see that we

may express , f(z,y) — D, f(y) forn = 1,...,v as a Z-linear combination of the values
AD, 1 f(z,y),...,ADof(x,y).

By [Schikhof, 1978, Lemma 8.18], we may express f/*l = fi55+1 at some x € VXVt

vXvtl
as a convex combination of the o1 f,... ¢, f : VX x X — K. More exactly

for some elements /\E’nj) (x) € Kfordistincti,j =0,...,vandn = 1,..., v such that

Z )‘1('3‘) (r) =1 and |)\£Y;)(x)] <1 for all these 7, j and n.

For notational convenience, let (zg, 1, ..., ,) and (Zg,z1,...,,) in X*{ be denoted by
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and z’. We obtain )\gf}) (x) resp. )\5,” ;2 (2') in K such that

f]y[(m(),xh s axu) - f]y[<j0a L1y 7xy)
= Y N@ed@er)— Y ND@ewf @) @)
n=1,...,v, n'=1,...,v,
(4,5)€{0;...,v}? (i' 5')EVA0,...,v}2

As Y, s )\(” (z) = 1 and likewise 3,/ s i )\ ( ') = 1, this equals

> M @A) o f (@i, 25)

n,n'=1,...v,

(1.9),(i",3")€V{0,...v}?

- > A @A (@) f (2, 22,

n' ,n=1,...,v,
@#,3"), (z 7)ev{0,...,v}?

= X (X ANJ@NE) eaf (@) — pwf ().
n,n'=1,...,v (i,5),(,5)ev{0,...,v}?
Let n € {0,...,v} and denote the Z-coefficients of A1D, 1f,...,A,Dyf summing to
uf(@,y) — Dy f(y) by pi™, ..., ™. We find

onf(x,y) — en f(2',y)
=(nf(z, y) — D, f(y) + (Duf(y) — Duf(y) — (en f(@, ') — Do f(Y))
=3 m 'AD, i f(wy) + (Duf(y) = Duf (W) — > u AvDy v f('y).

I=1,.., V=1,..v
Plugging this into Equation (x) and noting |/\(”)| | Ml" | <1, we find

|f}l/[(x07m1"”7$y) _f]y[(‘%mxla'- xl/)|
< max  (|D,f(z) = Dy f(y)| vV max |A, Dy, f(x,y)])-
z,y€{zo,%0,21,....xv} 7 7 n=l..,
Let x = (xg, %0, 1,...,2,) € X" By Corollary 2.13, we find for any coordinate per-
mutation map o : X" — X with |2) — 3| = §{w0, T, 71,...,7,}, where we put

A~

27 = (x), T, 2, ..., 2.), that | f"l|(x) < |fI"l|(z7). Hence for such a mapping o, we find

LA (@) <[] ()
< max max |[AnDynf (2, y)l Vi D, f(z) = Dy f(y)]

z,y€{x0,Z0,21,....x } P=1,...,V |I — y|p ‘J} — y‘p

= max max |Ar nDn f|(2,y).

x,y€{20,20,21,...,xv } n=0,...,

This extends continuously to

‘f[r]‘('r) < max max ’Ar nan‘(iC y) forall z € x 1]

z,y€{r0,Z0,21,...,0v } n=0,...,

In particular for all compact C' C X holds ||| f"||| sp+ < maxn—o. o] Ar—nDnflllce- W

.....
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Definition. We will define a map f : X — K to lie in C7,. (X, K) if there are functions
Dof,....Duf :+ X — K such that (7)Duf, (") Dusaf, .., () Duf prove D, f to be in

n

Cii"(X,K) forn = 0,...,v. We endow the space C7; (X, K) with the locally convex
topology induced by the family of seminorms {||-|| e, o} on each compact subset C' C X
T b

defined by

-----

forany f € Cri1 (X, K).

Remark 2.21. In this case the functions f = Dyf, D1 f,...,D,f : X — K are automatically
continuous.

Proof. This is proven by downward induction onn = v,...,0. Fixa € X and ¢ > 0. Let
n = v. We find a neighborhood U > a such that

D f(z) = Do f(y)| = |RoDy f(z,y)| < elw —y|” forallz,y € U.
Hence D, f : X — K is C” and a fortiori continuous at the point a. Let n < v. We compute
Dnf(x) = Duf(y)l
APt + ()Pt )= ) oot ()DL = 0
<Ry Dnf (@, )|V [Drr f@)llz —yl V... VD f(y)l|lz —y[ "
We find a neighborhood U > a such that
|Ry_nDpf(z,y)| <ele—y/"™" forallz,y € U.

Since D41 f,...,D,f : X — K are by induction hypothesis continuous, they are in partic-
ular locally bounded by M := [D,,11f(a)| V...V |D,f(a)| V1 > 0. Hence we can find a
neighborhood U C U of a with diameter § U < £/M A 1 such that

D f(x) = Dpf(y)| <edU™VM-6U <e forallz,y €U,

Definition. Let X C K be a subset.
1. Leti € N. Then we will denote by ** : X — K the monomial function z — z°.

2. We will call a function p : X — K of the form p = >, . a;** with scalars
aop, . - ., ay € K apolynomial function.

3. We will call a function f : X — K locally polynomial of degree at most g if X can
be covered by open sets {U} such that f;;; = p for a polynomial function p.
We will write C%";(X ,K) for the K-vector space of all locally polynomial functions
f X — K of degree at most g.
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Lemma 2.22. For i € 7, extend the above definition * : X — K Dy letting ¥ =0ifi < 0.
Then ' € C*(X, K) for any nonnegative integer v with D, *" = (;) g

Proof. By induction on 7. For ¢ = 0, the statement surely holds, so let us assume that ¢ > 1.
With g(z) = 27, so is the product f(z) = 2'~! -z in C*(X,K) as the identity mapping
h(x) = x is a C"-function and these are closed under multiplication. Also note that Dyh =
h,Dih = 1 and D,,h = 0 for m > 1. Then by continuous extension of [Schikhof, 1984,
Lemma 29.2 (v)], we find

D,f= ‘ > D;jgD,_jh =D, 19gDih+ D,gDoh = D,_1g+ * - D,g.

7=0,...,v

By the induction hypothesis, the last term equals
1 —1 , 1 —1\ . 1 —1 1 — 1Y\, ., AN
(i—-1)—(v—1) . (i-)-v _ i—v i—v
R P 1 R P i Vi

Remark. For the following, we note that every monomial function ** : X — K is arbitrarily
often continuously differentiable with D, *’ = (;) *=" if n < i € N - and zero otherwise - by
Lemma 2.22. As being C" is a K-linear local property, this extends to all locally polynomial
functions.

Then by Corollary 2.14 and [Schikhof, 1984, Theorem 78.2], there is an inclusion of locally
convex K-vector spaces C" (X, K) C Cr.,, (X, K). Therefore C* (X, K) C Cr.. (X, K).

Corollary 2.23. Let p : X — K be a polynomial function of degree at most i. If j > i, then
Rjp=0.

Proof. By linearity, it will suffice to prove R;x* = 0 if i < j. By the preceding Lemma
2.22, we have D, x' = (;) x=" forn = 0,...,j. Therefore by binomial expansion of ! =
(y + (x — y))’, we obtain

R ' (z,y) = 2’ — Z(;)ﬁ"(x—y)lzo forall z,y € X.

Lemma 2.24. The locally polynomial functions of degree at most v lie dense in the Ci, -
functions.

Proof. Fix f € C{1.(X,K) and ¢ > 0. We find a covering {U,} of X with 0 U, < 1 such
that
|A7"—0D0f(x7 y)|7 MR |AT—VDVf(‘/E’ y)| S € for all 'T’ y G UOC‘

Since X is totally disconnected, we can refine this covering to one whose sets are pairwise
disjoint, again denoted by {U,}. We choose a, € U, and define the locally polynomial
function g : X — K by putting

g(x) = f(aa) + (. —an)Dif(aa) + -+ (2 —ay)" Dy f(an) ifx € U,.
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By Lemma 2.22, we have

+1 -
Dog(z) = an(aa)+<” i )Dn+1f(aa)(x—aa)+- : -+<Z>Dyf(aa)(x—aa)”_" if v € U,.
Therefore D,, f(x) — Dyg(z) = Ry—nDyf(x,00) = (x — a)" " A,_nDy f(x,a,). Hence
1Dnf = Duglly, < I1Ar—nDnf (2, a0)[lly2 (0 Ua)™™ < e(6Ua) ™ (%)
As the U, cover X with 0 U, < 1,wessee |D,,f — D,g||x <ecforn=0,...,v.

By Corollary 2.23, we find R,_,(Dygv,) = 0 and consequently

Since X = U, gU, x Ug, it remains to show that |||AT—nDn(f_g)|||Ua><Uﬁ < eincase a # f3.
Solet x € U,,y € Ugs. By disjointness, we have |z —y| > 06U, V d Uz =: § > 0. It follows

|Ar—nDn(f - g)(ZL’, y)|
:|Ru—nan(Ia y) - RV—TL‘DTLg('r7y)|/|x - y|1”*n

(Duf(z) — Dugla) = 3 (;?yumﬂw—DwaMx—wwu—M“"

<(IDaf = Duglly, vV _max_[[Dicaf — Dicagly, (6 Us))/5"

..... v—m

(U™ Vv max e(dUg) ) (s Ug) fo" ™ (by Inequality (x))

1=0,...,v—n

IN

IA

E.
|

Corollary 2.25. The canonical inclusion C"(X,K) — Cr..(X,K) is an isomorphism of
locally convex K-vector spaces with ||-||¢- o = ||ll¢r, ¢ for all compact C C X.
bl T K

Proof. Foremost, the inclusion map ¢ : C"(X,K) — Ci,. (X, K) is an injective homomor-
phism of K-vector spaces. By Lemma 2.20, it satisfies ||L(-)||CTJr+ c = Iller o on C"(X, K)
T k) k)

for all compact C' C X and is therefore an isomorphism of locally convex K-vector spaces
onto its image. It therefore suffices to prove its surjectivity. By Lemma 2.24, we have a dense
inclusion C%‘;(X ,K) C Cr4+(X,K) and we are hence reduced to showing that the image
C"(X,K) C Cri+ (X, K) is closed with respect to the locally convex topology of C.., (X, K).
By Proposition 2.10, it is complete with respect to the locally convex topology of C"(X, K).
Because ¢ is an isomorphism of topological K-vector spaces onto its image, C"(X, K) is
also complete with respect to the subspace topology in Cr.. (X, K). Therefore C"(X,K) C
Cr+t (X, K) is closed as Cri+ (X, K) is Hausdorff. [ |
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Sufficiency of the Taylor polynomial expansion on B, -sets for C"-functions

Definition 2.26. We will say that, for a natural number v > 1, a subset X C K has the B, -
property if there is a positive constant ¢ < 1 such that fixing any o € X and another point
x1 around xg, a ""c-regular'’ v-gon snuggles into the circle spanned by x; around z; i.e.
there are xo, ..., z, € B<s(xg) C X with § := |zg — 21| such that

- ; i >e-

Claosan) - i,j:O,r..rE/Iilistinct‘xl xj| =€ 6.
By convention, every subset X C K has the property By and B;. We will say that a subset
X C K has the local B, -property if it can be covered by open B, -sets.

Remark. The definition of a B, -set in [Schikhof, 1984, Section 83] implies our notion of a
B,-set: Let ¢, x; be distinct points in X and 0 = |xy — x1]. Then there is a constant C' > 1
and points s, . . ., z, such that |z; — z;| < Clx, — x| for all (¢, j), (k,{) € V{L,...,v}. This
means |z, — x| > ¢ 0{xy,...,x,} > c-dwithc:=C"1 < 1.

Lemma 2.27. All balls in K have the B, -property and consequently all open subsets of K
have the local B, -property for every v € N.

Proof. We firstly prove that for any complete non-trivially non-Archimedeanly valued field
K and natural number v > 1 exists a positive constant ¢ < 1 such that some c-regular v-
gon snuggles into o, the circle of the closed unit disc: Fix distinct zy and z; therein and
put 0 := |xg — z1|. Up to scaling, we may assume |zo| = 1. Because |-| is nontrivial,
we find positive ¢ < 1 so small that #0/0o<. > v. Then we find ¢ < ¢ such that also
x9 #Z w1 mod o<z We then choose x,...,z, € o in different residue classes of 0/0<;.
Then zy, ..., x, constitute a c-regular v-gon. This proves the first proposition.

Let v > 1 and assume B C K to be a ball. Fix a point 2y € B and distinct z; € B. Let
D := B<s(z9) C B be a closed disc around zy with § = |2y — x1|. Since B a ball, we have
D = B<s(z9) € K. Now there is the homothety (x; — ) - _ plus the translation xy + _
which transform the closed unit disc B<;(0) into B<s(z). We apply their composed affine

linear map to the v-gon {yo, ...,y,} with yo := 0 and y; := 1 in the unit disc found above,
yielding the v-gon {xo, ..., z,} C B. Then c(y, . 4,) = 0 - C(x,...,) = € - 0. This proves the
proposition. |

Definition 2.28. Let X C K be a local B,-subset without isolated points. A function f :
X — K will be in C(X, K) if there are functions D, f : X — K fori =0, ..., such that if
one defines R, f : X x X — K by

Rof(z,y):=f(z) = > Dif)z—y),

then for every point ¢ € X and any € > 0, there will exist a neighborhood U > a with

R, f(z,y)| < elw—yl" forallz,yecU.
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Notice that - in comparison to Cr, (X, K) of Definition 2.15 - together with the plus, we
have dropped the continuity assumption on Dyf,...,D,f : X — K. In the following we
want to show that this is automatically implied by the B, -property of X. For this, we will
investigate these functions more closely.

Remember that any polynomial of degree v is determined by v + 1 values of it. The next
Lemma 2.29 makes this somewhat more explicit.

Lemma 2.29. Let xq, ..., x, € K be pairwise distinct points. Let R =< xg,...,x, >C K
be the subring in K generated by x, . . ., x,. Then we can find coefficients cy,, . .., c,; in the
principal fractional ideal 1/ T1 . (wvx — 2;) - R for i = 0,. .., v such that for any polynomial
P(X) =Y., a: X" € K[X] of degree v, it holds

CLiXi = COJ‘P(JZOX) —I— CLZ‘P(Zle) —f- R + CVJ‘P(ZL‘VX).
Proof. Let W and D denote the (v + 1) x (v + 1)-square matrices

1 LE(]X cee (LU()X)V 1
1 (L’lX cee (l’lX)V X_l
W .=|. . and D :=
1 z,X - (z,X) X)

Uy

1,j€{0,...,v}
with i>75
Because ( )
1 l‘oX tee .CE()X v
%o 1 l’lX cee (.fL'lX)V %o P($0X)
Wil:l=]|. . = :
Ay 1 z,X - (2,X) v P(z,X)
we find by right-multiplication with V! that
P(.I‘()X) P(LU(]X) ap Qo
1 P(ZEIX) _ D_IW_l P((L’lX) _ pt ai _ CLle
P(x,X) P(z,X) a, a, X"
By the Cramer rule and the shape of V/, this spelled out is the proposition. |
Corollary 2.30. Let P(X) = >, , a;X" € K[X] be a polynomial of degree v. Then for
pairwise distinct points xy, . . . ,x, € K of maximal norm § € |K| we find

lai| < M(xq,...,2,)0 " (|P(zo)| V... V|P(x,)|)

with an upper bound M (xo, ..., x,) = [1;2; 6 /|z; — 2] > 1.
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Proof. Given these pairwise distinct z, ..., z, € K of maximal norm J, let w.l.o.g. |zo| = 6.
Then apply the preceding Lemma 2.29 for the v + 1 points xy/xy, . . ., z,, /2o of norm at most
land X = xq. |

Lemma 2.31. Let X C K be a B,-subset. Then there is a constant C' > 1 such that for all
[ € Ci(X,K) and distinct x,y € X there is a set P of v + 1 points in U := B<s(x) C X
with § = |x — y| such that

|BynDnf(,y)] < C- 07" max(|R, f(z,2)| V [R.f(2,9)])  forn=0,....v;
here R,_,, D, f is given through the functions ( )D fs (”H) a1 Sy (7';) D,f.
Proof. Letx,z+yand x +y + 2z € X. We have

R.f(x+y+z,2)—R,flx+y+z,2+y)
=flx+y+z) - Z Dkf Jy+2)"—(fla+y+2)— Y Dif(z+y)h)

By the binomial identity and then altering the order of summation we calculate

S Dif(@x)y+2) = > > Dif( ()yzj

k=0,...,v k=0,...,vi+j=k

-2 A E (o

Together this yields
Ryf(x+y+za)—Rflx+y+z2+y)
, 1+ ] i
= > YDif(x+y) - Y ( ; j>Dz'+jf($)y ). ()
7=0,...v 1=0,...,v—3

This is a polynomial function ()(z) of degree v in z. By Corollary 2.30, we obtain for its
coefficients the inequality

L S L L O e L

zeP

for any collection of v + 1 points P := {z,...,2,} in K of maximal norm ¢. If we can find
these points such that x + y + P C X, then Equality (x) will yield

LR R S ) LWEN

1

<M(z0,...,2,)077 mag(\Ryf(x +y+2,2)| VIR fle+y+z,2+y)|).
zE
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Now since X satisfies the B, -property, we can indeed extend the two distinct points 2y := x
and z; := x + y to a collection of v + 1 points P := {2y, ..., 2,} C U := B<s(x) C X with
C(20,...,,) = €+ 0 as in Definition 2.26. Then
M(zo,...,2,) =[]0/]z — 2] < () = C,
i#]

which will be our sought positive constant. If we let

P=P—(z+y)={20—(z+y)....2 — (x+y)},

we find therefore

Pt - ¥ (T )puisom
<C -6 mag;(|Ryf($ +y+z,2)| VIR flx+y+z,2+y)|).

This proves the proposition. |

Definition. Cf. Definition 2.28, we will prove below that Dyf,....D,f : X — K and
accordingly R, f : X x X — K are continuous functions. Keeping the notations of Definition
2.17(i), we endow the space C(.X, K) with the locally convex topology induced by the family
of seminorms {||-| c;,c} on C;(X, K) running through all compact subsets C' C X defined by

[Fllez.c = IPoflle V- VDLl VITAfll g2

In other words: In case X C K is a B,-subset, we find C7(X,K) = Ci. (X, K) and we
give C}(X, K) the same locally convex topology.

Corollary 2.32. Let X C K be a nonempty local B,-subset without isolated points. Then
the canonical inclusion Ci, (X, K) — Ci(X,K) is an isomorphism of locally convex K-
algebras. It will be an isomorphism of locally convex K-algebras if K is locally compact.
Proof. Let f € C{(X,K). Firstly, we have to show that (Z) D.f,..., (Z) D, f prove D, f to
be in C77"(X,K) forn = 0,...,v. Fixe > 0 and a € X. Find a B,-neighborhood U > a
such that |R, f(z,y)| < elz—y| forallz,y € U. If z # y, we find by Lemma 2.31 a constant
C' = C(U) > 1 solely depending on U, a finite subset P C B<s(z) C U with § := |z — y
such that
|RV—nan(x>y)| §C|‘T - y|7n _ max |Ruf(za ZU)|
zo=x,y and z€P

< P ) T
<Clo =yl ™ e peléo =2

<Celz —y["™

the last inequality since |zop — z| < 4, the points zo = x,y both being centers of B<s(x).
If x = y, the above inequality will trivially hold. By Remark 2.21, the functions D,, f for
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n =0, ..., v are in particular automatically continuous.

Secondly, we prove that [||A,_, D, f||l 2 < C - [||A; f]]| = for all compact B,-subsets K C
X. By Lemma 2.31, we find for distinct x,y € K a finite subset P C B<s5(z) C K with
d := |x — y| such that

_|RyeDuf ()]

1A Dy f(z,y)]

jz—y™"
<c. Ry f(2, 20)| ——
- zozzr,lj;l?n)é z€P| f(Z ZO)l ‘gj‘ — y‘
20— 2|"
—C. A
O mmax Atz )l
<C- max |A,f(z 20)l. (%)

zo=z,y and ze P

If x = y, then the left hand side will vanish as D,, f was seen to be in C1 " (X, K). As P C K,
we find [[|A,_. Dy flll g2 < C - |||Ar fl]] 2 for all compact subsets K C X.

Let now K be locally compact. The continuity of this inclusion holds true by definition.
Regarding its openness, we observe that any compact subset X C X is contained in a closed,
hence compact, ball B which has by Lemma 2.27 the B, -property. Therefore the locally
convex topology on C"(.X, K) is induced by all seminorms ||-||., 5 for closed balls B and we
have

[fller 5 = max ([[Dufllp V [[|Ar—nDnflll 52)

.....

here the first inequality by B having the B, -property and the above Estimate (x). |

Another characterization of C"-functions on compact sets and an application

We show another equivalence of differentiability notions: In [Colmez, 2008], the author gave
a definition of r-times differentiable functions on Z, (into a closed subfield of C, = @p). We
canonically generalize this to functions on nonempty subsets X C K (into K) and show that
these two notions coincide on compact 5, -subsets X C K without isolated points.

Definition 2.33 (Colmez). If » € R>(, we will say that f : X — K is of class C~{, if there
exist functions D; f : X — K fori = 0,...,|r] such that if we define R|,|f : X x X = K
by

Ry f(ry) = flx) = Y Dif(y)x—vy),

then

C’rf(é) .= Sup sup M

57"
ro€X yEBS(g(CIZo)

is a well-defined function C, f : R.o — R>o which converges to 0 as ¢ does. We denote the
set of functions f : X — K which are of class C} by C7(X, K).
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Proposition. Let r be a nonnegative real number. Then Definition 2.28 and Definition 2.33
coincide on compact B,-subsets X C K without isolated points, i.e.

CH(X, K) = Ci(X, K).

Proof. Given a function f : X — K, it will suffice to show that the conditions on the functions
D; f in Definition 2.28 respectively Definition 2.33 fori = 0, ..., v := |r] are equivalent.

Recall by Definition 2.33 that f € Ci(X,K) if C.f(6) — 0 for § — 0, i.e. for any € > 0

there exists a dy > 0 such that C" f(8;) := SUPgs<5, Crf(0) < €.

On the other hand assume that f € Ci(X,K). Since X C K is a B,-subset, we find
[ € Ci(X,K) C C1 (X, K), which holds if and only if |A, f| : VX x X — R, extends to
a continuous function on X x X vanishing on the diagonal. As X is a compact metric space,
|A, f| is continuous on X x X if and only if it is uniformly so. In particular on AX x X, for
any € > 0, there exists 0 > 0 such that

Crf(8) :=sup sup |A f(z,y)| <e.

a€X r,y€B<s(a),
TFy

It suffices to show that C” f(5) = C".f(6). Plugging in the Definitions of C".f () resp. C".f(4)
we thus have to show that

7 f (2, 9) Buf (2, )]

sup sup ————>— = Sup sup sup ST
aeX z,ycB<s(a), |‘T - y| 0<d’'<bzeX yeB_ 5 ()
TFY

(%)

We note that for any z,y € X and 6 > 0 holds |z — y| < ¢ if and only if there exists an
xo € X such that max{|z — x¢|, |y — xo|} < J by the strong triangle inequality. Thus the left
hand side of (x) equals

R, f(x,
sup sup 7‘ fl %{H (k)
z€X yeB<; (), ‘x_y‘

T#y

Furthermore we note that for any =,y € X we have x # y and |z — y| < ¢ if and only if
|z — y| = ¢’ for some 0 < ¢’ < 4. Thus

R, f(x,y)| |Ry f(2,y)]
sup sup —————=— =sup sup sup —
r€X yeB<s(z), |ZE - y| 2€X 0<0'<d y st |z—y|=0' d
T#yY
Now keeping x fixed,
By f(z,y)| _ By f(x,y)|
sup sup ——; = Ssup sup —
0<d’'<0 yeX s.t. |z—y|=6’ 0 0<0'<o yeX s.t|lz—y|<d’ 0
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as R, f(x,y) = 0 for any y = z. But then

R f(z,y)| R f(,y)]
sup sup ————3— =sup sup sup ——_——.
z€X yeB<s(a), |5L° - yl z€X 0<6'<6 yeB 5 () d
TFY B
This will be the claimed Equality (x) if we substitute the left hand side by (xx). H

Here is an application of Corollary 2.32:

Example 2.34 (Berger, Breuil). Let F be a closed subfield of K with value group Z and fix
two elements «, § € K*. We will show that the function f extending

o)
B
onto F by putting f(0) = 0, will be in C"(F, K) if &k > v(3), where r := v(«).

X F* 3z (5)@2F c K,

Proof. We note that f is the product of the unramified character x, : F* — K* defined by

Xy 1T 7”(9”)

fory := o/ € K*, extended onto F by x.,(0) = 0, and the monomial function = + 2. Now
X~ 1s locally constant on F* and thus arbitrarily often differentiable there; the same holds for
the monomial function z* by Lemma 2.22.

We are just left to show that f is r-times differentiable at 0, too. We note that the domain
X = F has the B, -property by Lemma 2.27 (and has no isolated points). By Corollary 2.25
and Corollary 2.32, it therefore suffices to check that f is C7 at 0. First let us assume that

r > k. Weset Dof = fand D;f(z) = X,Y(x)(f)xk_i fori = 1,...,k and D;f = 0 for
i=k+1,...,|r]. We thus have

Rif(e+y,0) =fe+y) = X Dif(@)y’

=(xy(z +y) — xy(2)) (= + y)~.

As x(z +y) — x4(x) = 0if v(y) > v(z), we may assume that v(y) < v(z) checking the
convergence condition on R, f. We calculate

[Riryf(z+y.2)| =|(x+(z + ) — X+ () (z + )"
<Ixy(z +y) — xy(@)|ly"

k
<Ixy W)yl
=|y[" 7y

:‘y’k*v(ﬁ) ’y|v(a)

<ely|” for z + y, = in a neighborhood U 3 0 with § U < £/ *=v(3),
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If » < k, then
k k k—i, 1
Rusflo+30) = (oo 9) = ool 4o X (F)ey

We already showed above that for the first summand holds |(x~(z + y) — x+(z))(z + v)*| <
ely|” for x + y, x in a neighborhood of 0. The same holds for the second summand as i > r.
Thus f € C}(F, K) in this case, too. [ |

2.3 Orthogonal bases on Z,
Assumption. We will throughout this subsection assume that K O Q,, as a normed field.

Definition. We define | : R~y — N by 1(0) = 0 and otherwise 1(4) as the largest n € N such
that p™ < 1.
So 1(i) = {logp ZJ with log,, := log /logp for 7 > 1. Recall that in Definition 2.1, we gave
anorm on C*(Z,, K) by
||f||CP - ||f||sup v |||f[p]|Hsup

Here |fI¥l| : Z, x Z, — Ry is the continuous function extending the mapping |f(z) —
fW)|/|z — y|”, defined for all distinct x,y € Z,, by 0 on the diagonal AZ. Thus

1/ = max D= TWI

x,y€%Zyp distinct ‘:[; — y‘p
Definition. We will denote the normed K-linear subspace of locally constant functions f :

Z, — K in C?(Z,,K) by C*(Z,,K)?. Then C*(Z,,K)’ = U,>:C:(Z,,K)", where
C:Y(Z,, K)* is the K-Banach subspace of functions f : Z, — K constant on the p"Z,-cosets.

Definition. We will call a countable subset {eg, ey, . .. } of a K-Banach space E orthogonal
if || Y50 Aieil| = max;>o|As|||e;|| for all scalars \; such that this series converges. It will be
called orthonormal if it is orthogonal and ||e;|| = 1 for all 7. It will be an orthogonal base if
every x € E can be written © = ), \;e; for some scalars );.

Lemma 2.35. A countable subset {e1, ey, ...} of a K-Banach space E is orthogonal if and

only if
| > Neill = [Anlllem]|  forall scalars Ay, ..., Ay

1=m,...,n

Proof. Firstly note that {e, s, ... } is orthogonal if and only if
| > well > |amlllenl| V...V an||len]|  forall ap, ..., a, € K.
We fix some n and proceed by downward induction on m < n. If m = n there will be nothing

to prove, so assume m < n. By assumption ||a;,e,, + - - - + anén|| > ||amen]|. Therefore the
triangle inequality yields

lamem + - -+ + anenl| = |am|llen]| V [[amiremir + - + anen]-
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The induction hypothesis renders

lamremsr + -+ anenl 2 famplllemnl V..V fan][[en]l

Hence ||amem + - - -+ anenl| > |amllleml|| V...V |an||len

Corollary 2.36. Let {eg,e1,...} C C?(Z,,K) be such that ¢;(i) = 1 and e;(m) = 0 for any
nonnegative integer m < i and ||¢;||, = p"V?. Then {eg, €1,. ..} is an orthogonal system of

C*(Z,, K).

, completing the induction step. W

.....

forany m <n € Nand a,,,...,a, € K. Firstly, for m = 0, we find

I Z aieillco > H' Z aiez’Hsup = Z a;e;(0)] = |ao| = laol[eo|cp-

1=0,...,n 1=0,...,n 1=0,...,n

o ai(ei(m) — e;(m — plm))|
|pl(m) |P

.....

= ’@m‘pl(m)p = ’ammem”cp'

The van der Put base of C*(Z,,K)

This brief interlude is motivated by the remark following [Schikhof, 1984, Theorem 63.2]
about the similarity between the description of the C''P-functions by its coefficients with respect
to the Mahler- and van der Put-base.

Definition. We define the van der Put characteristic function P, : Z, — K for i € N by
Fy =1 and for 7 > 1 through

Py(x) 1, ifag+ap+---+ a,p™ =ifor some n, where x = "5 a;p’,
) = i 2
0, otherwise.

Lemma 2.37. (i) | P, = p'V? foralli € N.
(ii) The family { Py, Py, ...} is orthogonal.

Proof. Ad (i): Obviously || P,
therefore find |||Pi[p}||]Sup < p'®¢. Firstly, if i = 0, we thus find 1 = || R|,,, < [|[Poller <

sup —

@7 =1,ie. || Pz = 1. If instead i > 0, we achieve the postulated equality by

PG = PG =) _ 10| _ ),
=GP [POP

= 1forall i € N. Since P, is constant on p')Z,-cosets, we

Ad (ii): Since P;(i) = 1, as well as P;(m) = 0 if m < i and we just saw ||, = p'©”,
Corollary 2.36 applies. |
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Proposition. The family {P,} C C*(Z,,K) is an orthogonal base of C*(Z,, K).

Proof. Itis a general fact that an orthogonal system of a K-Banach space E over a non-trivially
non-Archimedeanly valued field K, whose K-linear span is dense therein is an orthonormal
base (cf. [Schikhof, 1984, Exercise 50.F]). We must therefore show that the K-linear span of
{Py, P, ...} is dense in C?(Z,, K). By definition, we find {Fy, ..., Pn_1} C CS(Z,, K)".
By the orthogonality of {Fy, P, ...} through Lemma 2.37, the coefficients a; of each lin-
ear combination ) ; a; P; are unique. That is, Fy, P, ... are all linearly independent. Since
dimg C$Y(Z,, K)? = p" = #{F,...,Ppm_1}, the family {Fy,..., P,n_;} is a maximal
linearly independent subset and in particular spans C:*(Z,, K)?. Because C*(Z,, K)* =
U,CS(Z,, K)P, and this space is by Corollary 1.12 dense in C?(Z,, K), we are done. [

The Mabhler base of C*(Z,,K)

Remark. We want to show in which respect the yet to be introduced orthogonal basis of
C°(Z,,K) of Mahler polynomials relates to the domain’s topological group structure: Let
o[[X]] be the topological ring of formal power series endowed with its weak topology, de-
scribed by a sequence f,, — f converging in o[[X]] if at any fixed index i, the i-th coefficient
of f, for n > 0 converges to the i-th coefficient of f. Let o[[Z,]] = lgno[Z/ p"7Z) be the
completed group algebra. Then we have the Iwasawa isomorphism o[[X]] = o[[Z,]] of topo-
logical o-algebras given by X > 1+ 1; here 1 € Z, denoting the canonical generator of
the topological abelian group Z,. Let D(Z,, 0) be the continuous o-linear dual of C°(Z,, K)
equipped with the topology of pointwise convergence. Then we have a natural identification
o[[Zy]] = D(Zy,0).

We conclude that the Iwasawa isomorphism yields by Schikhof duality (see [Schikhof, 1995,
Theorem 4.6]) the isomorphism of K-Banach spaces ¢y(N,K) = C%(Z,, K) with ¢;(N, K)
denoting all zero sequences in K. We will then subsequently define the images of the canoni-
cal orthogonal basis in ¢y (N, K) as the Mahler polynomials and let f € C°(Z,, K) correspond
to its Mahler coefficients (ay,)nen-

Definition 2.38. We define the i-th Mahler polynomial () . Z, — K for i € N by

(a:) Cz(r—1)-(x—i+1)
1 7!

Lemma 2.39. (i) || (’:) e = 'V forall i € N.

(ii) The family {(;), (”{), ...} CC*(Zy,K) is orthogonal.
Proof. Ad (1): By [Schikhof, 1984, Lemma 47.4], we find

(m) — (y)‘ < |z —y[p'® forallz,y € Z,.

] ]
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Since the left hand side is bounded by 1, this implies ](f) — (i”)| < |z —y|’p'@r for0 < p < 1.

Hence
|(z) B (i/)| < Pl

5 for all distinct z,y € Z,.
[z =y

We note that by continuity ||(>;)||Sup < 1 since (i) € Zso forall j € Z. If © = 0, then
1= ||(3)||sup < ||<;>||Cp < pOr =1, ie. H(S)Hcp = 1. It therefore remains to prove that
|| £ (2, y)||| = p'D* for distinct 2,y € Z, fori > 1. Since (:) — (,-_,;lm) = 1, we achieve
the craved equality by

i i—pl(®
|(z) _( i )| 10)p

’pl(i) ‘p =P

Ad (ii): Since (2) = 1, as well as (T) = 0 if m < 7 and since we just saw H(’:)Hcp = p'®r,
Corollary 2.36 applies. |

Our aim is to prove that {(1‘)} is an orthogonal basis of C*(Z,, K). At this point, by the
general criterion [Schikhof, 1984, Exercise 50.F] already mentioned, it remains to show that
the K-linear span of {(j)} is dense in C*(Z,,K). This will be initially only proven in the
special case of a complete non-Archimedeanly non-trivially valued field K such that v(K) > p
and v(K*) is a discrete subgroup of R. Afterwards this case will be reduced to.

Definition. Let (£, ||-||) be a normed K-vector space over a discretely non-Archimedeanly
non-trivially valued field K such that || F|| C |K|. We define the o-module F<, := {f € E :
|f]l <1} and its submodule E_; := {f € E: || f|| < 1}. Weset E := F<;/FE_;.

Note that £ is naturally a k-vector space for the residue field k of K. The importance of E
stems from the following Lemma.

Lemma 2.40. Let E be a K-Banach space over a discretely non-Archimedeanly non-trivially
valued field K such that |E|| C |K|. Then a K-linear subspace D C E is dense in E if and
only if D = E.

Proof. If D is dense in E, then a fortiori there will exist for any = € E with ||| = 1 some
y € D such that ||z — y|| < 1. Then ||y|| = 1 and therefore D = E.

In the other direction, fix ¢ > 0 and some x € E. We have to find y € D such that ||z —y|| < e.
If C':= ||z|| = 0, we will be done. Otherwise, because ||E|| C |K]|, we find some nonzero
scalar a; with ||ayz|| = 1. As K is discretely valued we find the largest absolute value 6 :=
|7| € |K] less than 1. By assumption, there exists y; € D such that ||a;z — ;|| < 6 and
therefore ||z — y1/a1]] < 0C. Putxy := x — y1/ay € E. If C} := ||| = 0, we will be done.
Otherwise, there again exists some ay € K* such that ||ayz|| = 1. Once more, there exists
some yo € D such that ||agzy — ys|| < 6. Therefore

laszr = sl = [las(z = y1/a1) = woll = las|llz = y1 /a1 — ya/as| < 6.

Thence ||z —y; /a1 —y2/as|| < 0C, < 0C. Inductively, we find y = yy/ay +- - - +yn/an € D
such that ||z — y|| < 6"C < ¢ for n > 0 big enough. [ |
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Lemma. Let K be a discretely non-Archimedeanly non-trivially valued field with p € v(K).
Then ||C*(Zy,K)||c, € [K].

Proof. Let f € C?(Z,,K). Since Z, is compact, the supremum

I Flles = 1 up v IS o = suIF@) v sup 1f(z) = FW)l

x,y€Z,, distinct |z — y‘p

is attained. If || f{|,,, > Il (el lup> there will be nothing to show. So assume that there exists
distinct =,y € Z, such that || f||., = |f(z) — f(y)|/|x — y|”. We must show |z —y|” € |K]| or
equivalently p - v(z — y) € v(K). But p € v(K) and v(z — y) € Z by assumption. [

Corollary 2.41. Let K be a discretely non-Archimedeanly non-trivially valued field with
p € v(K). Let {eg,e1,...} be an orthonormal family of C*(Z,,K). If {€o,...,em_1} C
CeY(Zy, K)P for alln > 0, then {eg, ey, ... } will be an orthonormal basis of C*(Z,, K).

Proof. It is a general fact that an orthonormal system of a K-Banach space E over a complete
non-trivially non-Archimedeanly valued field K, whose K-linear span is dense therein is an
orthonormal base (cf. [Schikhof, 1984, Theorem 50.7]). We must therefore show that the
K-linear span of {eg, €1, ... } is dense in C*(Z,, K). By the preceding Lemma, the conditions
on E = C?(Z,,K) of Lemma 2.40 apply. We are hence reduced to proving that

CP(Zy, K) = ®i20K - €; = Bizok - &,

where the last equality stems from the orthogonality of {e;}. By Corollary 1.12 (and the
obvious implication of Lemma 2.40), we find

CP(Zy, K) = CN(Zy, K)P = Up2oCN(Zy, K)P.

Let n € N. By assumption {e,...,emn_1} C CS(Z,, K)r, and it suffices therefore to show
that {eo,...,€,n_1} is a basis of this subspace. By orthonormality, the €, . ..,€,»_; are lin-
early independent over k. On the other hand, C:*(Z,,, K)? is K-linearly generated by p"-many
functions living on the p"Z,-cosets, so that dimy C&(Z,, K)? < p". Therefore

dimy C&Y(Z,, K)P = p" = #{ep, ..., epm_1}.

Hence {€,...,€,n_1} is a maximal linearly independent subset of C(Z,, K)*, i.e. a basis.
|

Recall that we firstly prove {(j)} to be an orthogonal basis of C?(Z,, K) only in the case

of a discretely valued K with p € v(K). Since p € v(K), the (:) can be rescaled to yield
an orthonormal system {e;} of C*(Z,,K). Also, K will fulfill the assumptions of Corollary
2.41, so that we are reduced to proving that {eg, ...,e;n_1} C C*(Z,, K)r. To this end, the
following criterion will be helpful.

Definition. (i) Let f € C*(Z,,K). Then there exists a smallest n > 0 such that |f(z) —
f(y)] < |z — y|” for all distinct z,y in the same p"Z, coset. We denote this unique
number by o( f), the oscillation index of f.
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(i1)) We have a well defined o-linear reduction map 7, from the o-module of functions
f € C*(Z,,0) of oscillation index o( f) < n to the finite dimensional 0/0,-.-module
of functions f : Z,/p"7Z, — 0/0p-no.

Lemma. Let [ € C?(Z,,0) witho(f) <nforn € N. If 7, f =0, then f = 0.

Proof. Firstly ||f|ly,, < p™" < 1 because m,f = 0. Therefore it remains to show that
1| £1]]],p < 1. We calculate

[f(z) = f(y)]
”|f[p]|Hsup = gaax . o
x,YyEZLy distinct |:E y|
e H@ S0 ) = 1)
T,y €EZyp distinct |1’ — y| T,YELyp s.t. |gj — y|
st |z—y|<p™" [z—y|>p~™

Aso(f) < n,wefind |f(z) — f(y)| < |z — y|” for all distinct =,y € Z, with |z —y| < p™",
so that the first maximum is less than 1. Secondly,

[f(z) = f(y)l [f (@) V1 ()]
max ————"> <  max < < p"? p"f =1,
max TP S e — 1 llsup /P < "/
st [z—y|>p~" st |z—y[>p™"
here we used 1/|z — y|” < p™ and || f|... < p~ ™. [

sup —
Corollary 2.42. Let f € C?(Z,,K)<1. If o( f) < nforn €N, then f € C&(Z,, K)?.
Proof. Consider the mapping

T+ O (Zp,0)" = {f + Zyp/P"Zy — 0f0cp-ns }.

It is well defined and surjective. Therefore m, f = m,g, i.e. m,(f — ¢g) = 0 for some g €
C&Y(Z,,0)". By the preceding Lemma f = g. [ |

n

We will now prove the oscillation index of the normalized (:) to equal 1(2) + 1. This will
allows us to apply the above Corollary 2.42 for: = 0,...,p" — 1.

Lemma 2.43. Assume p € v(K). Then we can define e; = \; <*) for a scalar \; € K such

i

that ||e;|| o, = 1. Moreover o(ey) = 0 and o(e;) =1(i) + 1 ifi > 1.

Proof. Let us find such scalar \;: Let « € K such that v(«) = p. Then || (j) ler = P'V” by
Lemma 2.39, so that we put \; = /(%)

Clearly o(eg) = 0. Leti > 1. We now want to prove that o(e;) = 1(¢) + 1, i.e. n = 1(¢) + 1 is
the smallest n € N such that

le;(x) —e;(y)] < | —y|” forall distinct x, y with |z — y| < p™™.

62



Firstly observe that (Z) — (iﬂ;]m) = 1ifi > 1,s0|e;(i) —e;(i — p'@)| = | \i| = [p'®|”. Hence
necessarily o(e;) > 1(4).

Let us prove o(e;) < 1(i) + 1. By [Schikhof, 1984, Lemma 47.4], we have

<Q?> N <y> ‘ < |z —y[p' = |z — y[’pO?(|z — y|p@) .
7

]

By definition of e; thus |e;(z) — e;(y)| < (Jo — y[p'D) Pz — y|”. Soif |z — y| < p~'@, then
lei(@) —ey)| < |z =yl n

Corollary 2.44. Assume that v(p) € K and let {eg,e1,...} be as in Lemma 2.43. Then
{eo,...,epn_1} CCYZ,, K)P for alln > 0.

Proof. Wehavel(i) < nfori=0,...,p" — 1. By Lemma 2.43 therefore o( f) = 1(i)+1 < n.
Now Corollary 2.42 applies. |

Proposition 2.45. Let K be a complete non-Archimedeanly non-trivially discretely valued

*

field with p € v(K). Let ey, e1, ... be the normalized Mahler polynomials (Z> as in Lemma
2.43. Then {eg, €1, ...} is an orthonormal basis of C*(Z,, K).

Proof. By Corollary 2.44, this is a direct application of Corollary 2.41. |

Finally we show that for general K, we still obtain that {(j)} is an orthogonal basis of

C*(Z,,K) by reducing to the special case of a discretely valued K with v(K) > p. For this,
the following property of theirs is crucial:

Lemma 2.46. Let f : 7, — K be a continuous mapping and assume f = >, a; (’;) with

respect to ||-|| . for coefficients a; € K. Then im f C Q, if and only if {a;} C Q,.

sup
Proof. Define the K-linear endomorphism A of the K-vector space KZ» by g — g(-+1) — g.
Since A((”;) = (0 and A(:) = ( * ), we find Af(z) = 350 aita (”3) Transitively, we obtain

i—1 7

A f(x) = A on_-ti-m-: A f(z) = g @itn (f)

In particular a,, = A°" f(0) and hence the result. |

Lemma 2.47. Let {b;} C C*(Z,,Q,) be such that for any complete non-Archimedeanly non-
trivially valued field K O Q, we have:

(i) {b;} is an orthogonal system of C*(Z,,K),

(ii) for every continuous function f : Z, — K with f = 3,54 a;b; with respect to H~Hsup for
coefficients a; € K, we have im f C Q, if and only if {a;} C Q,.

Then for any complete non-Archimedeanly non-trivially valued field K O Q, we have: {b;} is
an orthogonal base of C*(Z,,Q,) if and only if it is one of C*(Z,, K).
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Proof. Let {b;} C C*(Z,,Q,) be as above and let K O Q, be a complete non-Archimedeanly
non-trivially valued field. By [Schikhof, 1984, Exercise 50.F], an orthogonal system of a K-
Banach space E will be an orthogonal basis if its K-linear span is dense in E. Since {b;}
is assumed to be orthogonal, it remains to prove that the Q,-linear span of {b;} is dense in
C?(Zy, Qp) if and only if its K-linear one is dense in C*(Z,, K). We will denote by < {b;} >q,
the Q,-linear span of the b; and define < {b;} >k likewise.

Firstly, suppose < {b;} >k is dense in C?(Z,,K). Fix a function f € C*(Z,,Q,). As a
convergent sum in C*(Z,, K), we have

f=> ab; for coefficients a; € K.

i>0
By assumption {a;} C Q,. So < {b;} >q, is dense in C*(Z,,Q,).

Contrariwise, suppose < {b;} >q, is dense in C*(Z,,Q,). By Corollary 1.12, the locally
constant functions f : Z, — K are dense in C?(Z,, K). It will thus suffice to prove that
< {b;} >k is dense in C**'(Z,, K)”. Fix ¢ > 0 and some locally constant f : Z, — K. Then
f is constant on the p"Z, cosets for some n. Hence we may write

= Y ajlymg, for coefficients ay, ..., a;m_1 € K.

Let C' := max;|a;| V 1 and ¢’ = ¢/C. By the density of < {b;} >q, in C*(Z,,Q,), we find
{fo,- - form1} ©< {b;} >q, such that || f; — L, pnz, || < €' fori=0,...,p" — 1. Then

1f =D aifilles = 11> ai(Lisprz, = fi)ller < max|ail|[Lisprz, — fille, < Ce' =e.
i i

Therefore < {b;} >k is dense in C*(Z,, K). |

Lemma (2.47°). Let {b;} C C’(Z,,Q,) satisfy the assumptions of Lemma 2.47. If {b;} C
CP(Zy, F) is an orthogonal base of C*(Z,,F) for one complete non-Archimedeanly valued
field F O Q,, then {b;} C CP(Z,,K) will be one of C*(Z,,K) for every complete non-
Archimedeanly valued field K O Q,,.

Proof. This is a reformulation of the conclusion of Lemma 2.47. |

In particular we could choose in Lemma 2.47” our field F © Q,, to be discretely valued with
p € v(F) if such F existed. The next Lemma constructs such F.

Lemma 2.48. There exists a complete non-Archimedeanly non-trivially discretely valued field
F D Q, with p € v(F).

Proof. Let R = Q,[t] endowed with the valuation vg(3; a;t") := inf; v(a;) + pi. Then its
induced norm, denoted ||, is quickly checked to be multiplicative on R. It extends to the
completed fraction field F of R, denoted likewise. [ |
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Remark. As a set, F consists of all formal Laurent series Y ;.7 a;t* with coefficients in Q,
such that, putting ¢ := p~*, we have |a;|c’ — 0 as i — —oo and {|a;|c’ : i > 0} bounded -
with norm |Y;c7 a;t'|p = max;ez|a;|c’. This is known as the field of bounded Laurent series
over Q.

Theorem 2.49. The family {(8), (”{), ...} € C"(Zy,,K) is an orthogonal basis of C*(Z,, K)
with || ;)| = P,
Proof. The norms of the (’Z‘) were calculated in Lemma 2.39. Then Lemma 2.39(ii) yields the

first and Lemma 2.46 the second assumption of Lemma 2.47 regarding this family. By Lemma
2.47’, it suffices to prove this theorem for some discretely valued field F with p € v(F'), which

exists by the preceding Lemma 2.48. By Proposition 2.45, we can rescale the (j) such that
they form an orthonormal basis of C?(Z,, F). But then {(j)} is still an orthogonal basis of

C*(Zy, F). |
The Mabhler Base of C"(Z,, K)

Definition 2.50. Let f : Z, — K be an arbitrary mapping. Then we define its n-th Mahler
coefficient a, for n € N by
an =A™ f(0);

here we refer to Lemma 2.46 for the definition of the K-linear endomorphism A on K%»,

Lemma 2.51. Let f : Z, — K and ay, a1, . .. its Mahler Coefficients. For x1,...,x, € Z>
and y € Zso, put z = (x1+ -+ 2, +y,..., 11 +y,y) € VZLS'. Then

. -1 x, —1
Wl(2) = jtmi+-+my 1 N y
f ( ) Z my>1 my<m1/+my71)"'(mll+“'+m1) (ml - 1) (ml’_ 1> <*7 .

Proof. This is proven by induction on v > 0. If v = 0, there will be nothing to show. Let
v > 1. By the induction hypothesis, we can compute

U(z)
=1/z, - ( U+ oty st T+ YY)
— e+, Yy m Tty Y)

_ Z Z Aj+mittmy 1
» ] 1

i R et B By L4

_ Z Aj+mittmy_1
§>0mi,...,my_1>1 mz/fl(myfl + mufZ) U (m,/,1 + et ml)

r;—1 Ty oy —1\ " (e, — 1 x, —1 y
() G ), () =) mes =mon ()
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> ¥ (%
] _ v

Sy My (my, 4+ my, ) e (my, +my, g e 4 ma)

r; — 1 Ty_og— 1 m”g”_l Ty1—1\[x,—1 ) y
my — 1 m,o—1) — \m,_;—1)\m), -1 7).
v—1— )

here we putm!,_;, =m,, m/, =m,_;—m, andnotedm, _ =m!,_+m/. Asxzy,...,x,,y €
Z>y, this is a finite sum and we can rearrange the double sum in parentheses to yield the
proposed sum above. |

For the next result we use Corollary 3.45 computing the Mahler coefficients of multivariate
CP-functions and for chronological consistency the reader is advised to read the proof below
and the remainder of this paragraph thereafter.

Lemma 2.52. Let f : 7, — K. Then
(i) f €C(Z,,K) ifandonlyif |by|pltm=DV-Vim=bVIG)r 5 0 g5 |m| — oo,
(i) || f¥ ler = A0 | by 1071~ DV V10m0 = DVIG) 9

here by, € K form = (m; —1,...,m, —1,7) € N* X N, is given by

b L Aj+mi+-+my
( - my(my, +my_1) - (m, + -+ +my)

Proof. Ad (1): On Zg“, consider the bijection ¢ defined by

(@1, x,y) = (e + )+ + (o + 1) +y, - (1 + 1) +3,9).

We denote likewise its restriction onto the preimage of VZZ“. By Lemma 2.51, for z =
(x14+-+x,+y,...,x1+9y,y) € VZ%l,weﬁnd

v Aj4mi+-+my X1 — 1 Xry, — 1 Y
el (2
(2) jz>(:)m1 mUZIm,,(ml,—|—m,,,1)---(m,,+~~+m1) mp — 1 m, —1)\j/)

Therefore the m = (my — 1,...,m, — 1, j)-th coefficient b,, of]m = f"lo ¢ is given by

_ Ajtmi+--+my,
my(my, +my_1) - (my, +---+mq)

By Corollary 3.45, we find that
FWlextends to fI¥ € CP(Z: ™, K) if and only if |byy, |p/'(™)Y-VImIVIGI2 s 0 ag |m| — occ.

For this note that the above expansion determines ﬁ;] on the dense subset ZZ; X Z>o C ZI’;“
and hence everywhere by continuity. By Proposition 2.5, we find

fecC(z,K) ifandonlyif f“ extendsto f € C*(Z" K).
Since ¢ is a locally Lipschitzian automorphism, f*! extends to a C”-function fI" on Z¥* if

and only if ﬁv”[ extends to a C”-function ﬁ;] = fMoypon ZZ“. The proposition follows.
Ad (ii): Since || ]|y, = 1/l we find [ /1]l = maxs by [pltm)V-itmele
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Lemma 2.53. Let f : Z, — K and b, withm = (my,...,m,.1) € N“" as in Lemma 2.52.
Then

max |bm|p[l(m1)v~~V1(mv+1)]-p = s ’pvr(erz/);

[m|=m

here v,.(n) for n > v is given by

Ur(n) = max U(ll)+ : ‘+’U(ZV)—|—p'[1([1—1)\/1(12—11—1)\/. . .\/l(ly—ll,_l—l)\/l(n—l,,)].

0<h <...<ly<n

Proof. Fixm > 0andletm = (m; —1,...,m, —1,j) € N“" withmy,...,m, € Z>1,j €
Z> such that |m| = m. Then b, is given by

b, = Um+v
T my(my A my_y) - (my - Fmy)’

We find

Iax |y |p? 107 =DV V1m, = DVIG)]

[m|=m
_ max |Gy | p-[I(m1—1)V...V1(my, —1)VI(5)]

mi,...,my€L>1,j€L> |mu(my -+ myil) ce (mz/ 4+ -4 ml)‘
with mj+--+my+j=m+v

= Mpp'[l(ll)\ﬂ(h—ll)\/---\/l(ly—lufl)\/l(m—l,j)]'
0<h<.<ly<mtv |Iy -+ -1, ;

the last equality by the bijection [, = m; + --- +m,, forn = 1,..., v and noting that given
1 > 0, there exists 7 > 0 with 7 + 5 = m if and only if 7+ < m and unique j = m — 1. |

Corollary 2.54. Let f : Z,, — K. Then
(i) f €C(Z,,K) ifandonlyif |am|p*"™ — 0asm — oo,
(ii) || fller = laol V |ai /1 V...V |ay—1 /(v — 1)!| V max,,>, |am |[p ™.
Proof. Ad (1): By definition,
| by | (VeI )lP 0 as |m| — oo
if and only if
ﬁiﬁ'bm|p[l(m1)vmvumy“)]ﬁ = |aman|p” ) =0 asm — oo.

Ad (ii): Let f € C"(Z,,K) C C*(Z,,K) forn = 0,...,v — 1, the inclusion by Lemma
2.3. Then Lemma 2.52 for 7 = n + p withn = 0,...,v — 1 and p = 0 yields | f"||_ =

sup
MaX,, > |am|p?" ™ with v,(m) defined by v,(m) = maxo<), <. <iy<mv(l) + -+ + v(l,),
whereas for n = v and p, Lemma 2.52 yields || /|| ., = max,,>,|a,,|[p"" ™. We observe that

if n < n’ < m, then by definition v, (m) < v,/(m). We thus obtain

£ ller = 1F s VLl Vo VALY i V1L e

= maxan| v Inlggg!awqpm(m) V...V %%’amw—l\p”“*(m y ?nlgg<|am+u|p”’“(m)

= |ao| V |ar|p"* @V ..V |ay_y [pr Y v m§%<|am+l,|p”(m).
m=
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We can therefore conclude by

vp(n) = max  v(ly)+---F+v(l,) =v(l)+...+v(n) =uv(n!).

o<1 <..<lp<n

Theorem 2.55. The family {(3), (’{), ...} € C"(Zy,K) is an orthogonal basis of C"(Z,, K)
with || (;) o = p“r™; here

(m) v(m!), ifm <v,
w,(m) =
v.(m), otherwise.

Proof. By Corollary 2.54(ii) applied to the mapping e,, = (;), we find [|e[or = portm.
Moreover by the same token, if f = 3,5 an, (;) € C"(Z,,K), then

wy- (M) _

1£ller = maxlam|p max|am|||emllcr-

In other words, {(;;)} C C"(Z,,K) is an orthogonal family with || (r’;) |er = p*r(™. Since

w,(m) = v,(m) for m > v, we find

|am|p®" ™ — 0 asm — oo if and only if |am|H< ) — 0asm — o0.

*
m

c

By Corollary 2.54(i), we see f € C"(Z,, K) if and only if |a,|]| ()[lc. — 0asm — oc. Le.
{(;)} is an orthogonal basis of C"(Z,, K). |
Lemma 2.56. For m > v withv > 1 holds

v,(m):= max  v(ly)+---+o(l,) =1m)+1(m/2)+ - +1(m/v).

0<h <..<lpy<m

Proof. Let L C {1,...,m} with #L = v and b := 1(m), the maximal exponent e such that
p® < m. Then

vl 4+ ol) = #{l e Liv(l) > 1} +--+ #{l € L:v(l) > b},

Let a = l(m/v) be the maximal exponent e such that p®v < m. Then the subsets L C
{1,...,m} with #L = v for which the right hand side above is maximal are precisely those
with

{z<m:v(z)>a} CLC{z<m:v(z)>a}.

Forsuch L = {l; < ... <,}, we find

v(l)+ - +o(ly) =av+#{l=1,....m:v(l) > a+1}++#{=1,...,m:v(l) > b}.
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We likewise add together
I(m) +1(m/2) +---+1(m/v)
=#{x=mm/2,... . m/v:I(z) > 1} +---+F#{z=m,m/2,...,m/v:1(x) > b}
=v-a+#{x=mm/2,... . m/v:1(z) >a+1}
+--+H#{x=mm/2,... m/v:1(z) > b}
Observe that 1(m/k) > a = 1(m/v) implies in particular k € {1,...,v}. Hence for ¢ € Z-,,

we find #{x = m,m/2,... . m/v :1(z) > c} =#{k=1,...,v: 1(m/k) > c}. To obtain
the proposed equality, we are thus reduced to: For any h € Z-,, it holds

#{=1,....m:v{l)>h}=#{k=1,...,m:1(m/k) > h}.

The left hand side is the number of elements [ < m divisible by p". Since 1(z) > h if and only
if x > p”, the right hand side equals the number of elements £k < m with m > pk. This is
also the number of elements below m divisible by p". |

Lemma 2.57. For m > v, we find

(m/v), ifg(v +1) <m,

vr(m) =1(m) +1(m/2) +--- +1(m/v) + p- {1(m/y) —1, otherwise;

here ¢ = max{x : x = p" for some h € N and 2v < m}.
Proof. For0 <l <...<l, <mwithm >v,letw :=v(ly)+---+ v(l,) and
w = w+p[l(k?1—1)+ . —f—l(kiy—l)—f—l(m—ly)] with k’l = ll, k‘g = lg—ll, ey kfy = ll,—ly_l.

Let L ={0<1[ <...<l, <m} besuchthat w = v,(m) is maximal. Let ¢ = p® be the
maximal p-power such that g < m. Then {x < m :v(z) >a} C L C{z <m:v(x) > a}.
If and only if gv < m — ¢, we can find an index n € {1, ..., v} with k, > ¢. In this case, we
can assume [,, = quv and m — [, > . Therefore

if 1) <
i=1k —1)V.. Vik - 1) Vim—1)=14" ifq(v+1) <m,
a— 1, otherwise.
We prove that if [y, ...,[, are such that w(ly,...,[,) is maximal for all possible {0 < |} <
o<1, <m},sowillbe w(ly,...,l,). Asa = 1(m/v) this will by the above consideration

prove the proposition.

Let0 <[} < ... <1, <m. Asp < 1, it suffices to prove that I(k, — 1) = a + ¢ for
somen € {1,...,v}orl(m—1,) = a+ cforsome ¢ > 0 implies w(ly,...,l,) + ¢ < v,(m).
Let us define k,, 1 :=m—1[,,sothat ky+---+k,.1 = m. Since v-q < m < v-qp, there must
by the pigeonhole principle exist s := p® — p 4+ 1 indices ny,...,ns with k,,, ..., k,, < q.
Hence v(ky,),...,v(k,,) < a. Forn = 1,...,v, if v(k,) < a, either v(l,) < a or
v(lpy1) = v(l, + k,) < a. Hence there must exist [s/2] := min{i € N : i > 5/2} > ¢
elements I, € {ly,...,l,} with v(l,) < a. Butif w(L) = v,(m) is maximal, then {x < m :
v(z) >a} CLC{x<m:v(x)> a}. Therefore w(ly,...,l,) < v,(m)—c. [ |
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Lemma 2.58. There exist positive constants ¢ < 1 < C with ¢ - m" < p*r(™ < C - m".

Proof. By Lemma 2.57, up to a possible deduction of the constant p > 0 holds
vp(m) = 1(m) +1(m/2) + - -+ (m/v) + pl(m/v).
Asl(zy) <1(z) +1(y) + 1 implies 1(x) — 1(y) — 1 < 1(z/y), we find accordingly
r-1m)—c¢<wv.(m)<r-1m) withé:=12)+ - - +1(v) + pl(v) +r.

Since p'™) < m < p™* we find ¢ - m” < p*(™ < m” with ¢ := 1/pé*?)7 > 0. Recall

that v, differs from w, only in the finitely many nonzero values w,(m) form = 0,...,v — 1.
Hence we can decrease ¢ > 0 and increase C' := 1 such that this inequality holds for w, (m)
instead of v,.(m). |

Corollary 2.59. Let f : Z,, — K and ay, a,, . . . its Mahler coefficients.
(i) We have f € C"(Z,,K) ifand onlyif |a,|m"™ — 0 asm — oo,
(ii) The norm |-|| .. is equivalent to the one given by |ag| V max,,>1|am|m” € Rx.

Proof. By Corollary 2.54, it suffices to see that there exist positive constants ¢ < 1 < C' with
c-m” < p(m < C.m” and Lemma 2.58 yields the existence of these. [ |
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3 Fractional differentiability in many variables

Assumption. Throughout this section, we will fix a real number r = v + p € Ro with
v=|r] €Nandp={r}el01]
Notation. For a multi-index n € N¢, we put [n| = n; + ... + ng. We define for v € N finite

sets of multi-indices
Ne ={neN:|n|=v}

and accordingly N%, or N, by replacing = with < or <. For multi-indices 2, j € N, we
define their natural partial ordering by

ZSJ if Zlé]l)vldg.]d
We denote by [z, j] € N the finite block
[4,5] ={k € N?st.i <k <j}

During a chain of (in)equalities, placeholders such as dots or hyphenations for a function’s
arguments will throughout replace the same omitted variables.

3.1 C"-functions for r € R
Definition of C"-functions

Let X C K¢ be a subset. We recall that X is called cartesian it X = X; x --- x Xy with
Xi,...,Xq C K. We also recall that for a subset X C K and n € N, we defined

XM = x{0-mband - Xl = v X = {(2,...,2,) : 2; = z; only if i = 5}.
Assumption. We will from now on let E denote a K-Banach space.

Definition. Let X C K¢ be a cartesian subset and f : X — E a mapping thereon. Let
n € N, Put

xInb= X X and X = x M x

Write elements € X[™ asz = (z; —; %) with 'z € xml o deXx ([i”d]. Through recursion
on n = |n| we define functions 1"l : X"l — E by
Fol =,
andif n® =n + e, fork € {1,...,d}, then
f]n+[(_7 kx07 kﬂjl) ka’ s 7k$nk+1; _)
_f]n[(—; k’fo, kl’za X 7k$nk+1§ —) - f]n[(—§ kﬁl; k9527 R 7k$nk+1§ —),
N kro — Frq ’
here the hyphenations to the left and right of the semicolons representing the same omitted
arguments ‘z; —; ¥~z and *lz; —; 4.
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We remark that this definition does not depend on the order of summation of n = n;e; +
-+ ngeq € N?by K C E being central.

Example. For notational convenience, we consider the case of two variables and a function
f: X xY—=>Efor XY CK.

(i) We have X0l = {(z,2";y) : 2,2' € X,y € Y with x # 2’} and

fh,o[(x’ o y) = f(f,yx) : i/(l"/,y).

In other words the f11:0, 1911 are the first partial difference quotients of f.
(i) We have X" = {(z 4w, z;y +v,y) 2 +u, v € X,y +v,y € Y withu,v # 0} and

Ul 4w, 2y + v, y) = [f(x+u,y+v)—f(x,y;vz)}]—[f(fc+u,y)—f(:c,y)]‘

In other words f1™'lis the first mixed partial difference quotient of f.

Definition. Let V' = 1) x --- x V, be a topological space. Then we will call a subset X C V'
locally cartesian if every point v € X has a cartesian neighborhood with respect to the relative
topology in X.

Definition 3.1. (i) Let X C K be a cartesian subset; we will say that a mapping f : X —
E is C" or r-times continuously differentiable at some point a € X if f»[: X"l - E
isCratd := (d;; —; dy) € X™ forall n € N? withn; +--- +ng = v.

(ii) Let X C K be locally cartesian and f : X — E a map thereon. We will say that f is
C"ataif fy is C" at a for some cartesian neighborhood U C X.

(iii) Let X C K be a locally cartesian subset. Then f will be a C"-function or an 7-times
continuously differentiable function if f is C" at all points a € X. The set of all
C"-functions f : X — E is denoted by C" (X, E).

We will make the following terminological convention: Let Xi,..., X; C K be subsets
and put X = X; X --- x Xj. Then by definition

Let v = (zx4,) € X with k = 1,...,dand i, = 0,...,n,. Then we will call z;; a
coordinate of x valued in X}, or for short an X-coordinate.

We will say that a function f : X"l — E is symmetric in its X;-coordinates if f is symmetric
in its coordinates indexed by {(k,0), ..., (k,ng)}.

Lemma 3.2. Let X C K be cartesian. Then a mapping f : X — E is C" at a point a € X if

and only if for everye > 0,n € N. and k = 1,...,d, there exists a cartesian neighborhood
U > ain X such that
k. ok k ke k k K, ke
||f]n[(_7 Lo, L1y---y Tny; _)_f]n[(_7 Loy L1y---y Lny; _)” S E'| ZTo— x0|p on U]n[a (*)
here the hyphenations to the left and right of the semicolons representing the same omitted
arguments ‘r; —; * v and **'x; —; Y.
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Proof. By Example 1.15(ii), the set A := X[ C X" is telescopic. For k = 1, ..., d, denote
by
I, = {(k,0),..., (k,ny)} = { Xj-coordinate indices of X }.

Let us define "eq := (0;... ;ep;...;0) € KMl x ... x K" = K™ whose only nonzero
vector entry is ey = (1,0, ...) at the k-th place. Then the only nonzero entry of ", is at the
ix-th coordinate for the representative i, = (k, 0) of I;,. We find fI"l : XI"l —» Eanda ¢ X"
to be both symmetric in their Xj-coordinates for k = 1,...,d, i.e. those indexed by I, ..., I;.
By Corollary 1.20 applied to the telescopic subset A C X[, the function fI"lis C* at @ if and
only if, given £ > 0, there exists a neighborhood U > @ in X"l such that

1/ (z) = U y)|| < eft] forall z,y € UN X (%)
withy =2+t -%eyfort c Kandk =1,...,d.

The family
{Um ¢ X . U some cartesian neighborhood of a in X}

forms a basis of neighborhoods around @ € X™. We conclude that f is C” at a, if and only
if Inequality (#*) above holds for all n € N and k = 1,...,d, if and only if Condition ()
holds. |

Remark 3.3. (i) By definition, being C" is a local property. In the following we will there-
fore formulate local results on C”-functions solely for cartesian subsets X C K¢,

(i1)) We observe that the differentiability at some point a may vanish if the function’s domain
expands in K? - as long as there is no neighborhood U > a in K? lying in the domain.

(i) f E = E; x --- x E; with K-Banach spaces E; fork =1,...,d, then f : X — E will
be C” at a € X if and only if fy := p,of : X — E; willbe C” ata fork = 1,...,d.
Hence C"(X,E) =C"(X,E;) x --- x C"(X,Ey).

(iv) Let f : X — K some mapping, n € N? and ay,...,as accumulation points in
X1,..., X, Then @ is an accumulation point of X”l. As E is complete, we find by
Remark 1.4 that fI"l is C° at @ if and only if there exists a limit D,, f(a) € E such that
for every € > 0, there is a & > 0 such that

| /"(x) = Dpf(a)|| <e forall z € X with ||z — & < 6.
Lemma 3.4. Let X C K¢ be a cartesian subset.

(i) The mapping EX — EX™ given by f — fI"lis K-linear.

(ii) Let f : X — E be a mapping on X. Then the mapping '™ : X"l — E is symmetric in
its Xy-coordinates for each k =1, ... d.
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(iii) Let f,g: X — E be two mappings on X. Then for all (‘r; —; %) € X", we find

(f - )" (s = )
d,

_ il/1 L. . .d d n—j[/1 L. . _.d
= Z 1! [(xo,...,le,—, xo,...,mjd)-g] [(%‘1,---,5%17—, Ty Tny)-
J€[on]

Proof. Ad (1): This is quickly checked to hold.

Ad (ii): By [Schikhof, 1984, Lemma 29.2(ii)] applied to fI"l(‘z; —;*~lp; _; F¥lp, — ) -
X,L"’C[ — K for fixed arguments 'z € X, l]"l[ with [ =1, ..., d distinct from k.

Ad (iii): In case d = 1, this is proven in [Schikhof, 1984, Lemma 29.2(v)]. In the general
case d > 1, we restrict for notational convenience to d = 2 and a function f : X XY — E
with X, Y C K. Then for d > 2 the result follows by induction through the argument below.
Fixing y € YI™l, we find by the case d = 1 that

(f - g)]"’m[(x; y) = ( Z f]i[(xo, T y)g]"_i[(:z:i, T y))]m[ forz € XL,

For xz € X]”[, Yy € Y™l let us denote

f}l[(1’0a>$my) = f:):o ,,,,, :cz(y) and g:t?2 ,,,,, :cn<y) :g]nil[(xz7axn7y)

Then
(f-g)]n,m[(l’;y) :( Z fao.., ggl(y)gac1 77777 zn(y))}m[
i=0,...n
- Z (fl“o ..... xl(y)gg;l 7777 In(y))}m[
1=0,...,n

- . Z Z fzo """ ;Bi(yo’ ce ’yj>]j[g$i ..... acn(ij cee 7ym)]m_j[

= Z f}Lj[(an"'7xi;y07"'7yj)g}n7i7mij[($ia"'7$n;yj7"'7yn)'
(4,.9)€[0,(n,m)]

|
Properties of C"-functions
We will make the following terminological conventions:
- Let X = X; x --- x Xy C K%be a cartesian subset. Then we say that its factors contain

no isolated points if each subset X1, ..., X; C K contains no isolated points.

-Let X = X; x --- x X; C K9 be a locally cartesian subset. Then we say that its local
factors contain no isolated points if for every cartesian neighborhood U = U; X --- X U in
X, each subset Uy, ..., U; C K contains no isolated points.

Lemma 3.5. Let X C K be a cartesian subset and f : X — E a mapping thereon. Let
a € X.If fisC" at a, then f will be C* at a for every s < r.
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Proof. If f is C" at a, then clearly f will be C® at a for every v < s < r. By transitivity,
it therefore suffices to prove that f is C* at a with s = v — 1 + n for n € [0, 1[. We use the
characterization of Lemma 3.2: Let m € N% and m = v — 1. Then for € X!™l and ¥, € X,
distinct from *z, ..., *z,,, , we find

Hf]m[(_ k‘rO? kxh o k‘rmk) _) - f]m[(_ k‘i‘O? kxla s 7kxmk; _)”
| o — x0|||fm+ek[( kx()?k‘%mkxla .. xmka )”
:|[E0— ZL‘()| (| ro — k~ |1 77||f]m—i_ek[< mOakl'Oak:ljl?" :Bm}w_)H)

Let m+e;, =: n and observe |n| = v. By assumption fI"lis C?, hence C° at @ and in particular
locally bounded by a constant C' > 0 there. Given ¢ > 0, we find a cartesian neighborhood
U 3 ain X such that || fI*l|| < C on Ul and ||z — Z||'™" < ¢/C for all 2, Z € U. Hence on
U™l holds by the above exposed equality

LA™ (=5 R0, "1, P =) = (=5 M0, P B =) < [P — Mo
By Lemma 3.2, this proves f to be C* at a. ]

Lemma 3.6. Let X C K¢ be a nonempty cartesian subset whose factors contain no isolated
point and f : X — E a mapping thereon. Assume that f™ : X™l — E is C* on all of X™
form € N Then ifn = m + ey, for k € {1,...,d}, the mapping f'"| can be extended to a
CP-function f<™% : X<k — E; here X <""* is defined by

X<k . Xl[m] X[nk 1] (XILHH _ AX,LM]) % X][:flﬂ] X e X Xgld]‘
Proof. Fori,j € {0,...,n,} withi # j put
Uy = {z e X by, £ F 0 € X

Then each U;; is open in X "] and their union is X <">*. By our assumption on fI™[, we find
by Proposition 1.6 that f™! extends to a C*-function ™ on all of X"}, We can hence define
hi]’ : Uij — E by

hij(—; "o, oo P, —)

:f[m](—;kxo,...,’%Ej,...,kxnk;—) fiml(—; xo,...,kwi,...,kxnk;—)'
ke, — Fx;

here the arguments beneath the breves being omitted. By Lemma 3.4(ii), the functions fI"! :
X"l - Eand f™l . XI™l - E are symmetric in its X;-coordinates, and we find by Equality
(2.1) in Lemma 2.4 that fI"l(z) = h;;(z); hence each h;; extending f™l onto Uy;.

Since z — 1/(*z; — *x;) is C* on U;; and fI™ is C? on XI™l, the function h;; is by Proposi-

tion 1.7(ii) C” on U;;. We glue these functions h;; for distinct 4, j € {1,...,n;} together by
defining f<"~* : X<">¢ — E through

f<n>k (LC) = hw(l’) if € U,Lj

75



As all the continuous h;; coincide on the common dense subset X"l of their domains, this
assignment is well-defined. Because each h;; was seen to be C” on its open domain U;; C
X <"k _and since this is a local property, we conclude f<"~* to be C*. |

Lemma 3.7. Let X C K be a cartesian, nonempty subset whose factors contain no isolated
point and f : X — E a mapping thereon. Assume that for all m € N2 | withv > 1, the
mapping {1 . XI™l — B is C* on all of X™\. Then for all n € N, the mapping ™! can

be extended to a C*-function <"~ : X< — E; here X <" is defined by
X< = X AxM o AX

Proof. Fix n € N% . For every coordinate k = 1,...,d with n;, > 1, by Lemma 3.6 applied
to my, = n — ey, the function fl : X"l — E extends to a C*-function f<">* : X<">r — E.
We notice

U X<n>k
k=1,...,d withnp>1
= U Ml Xl xdmel  A ey X,[ﬁffl] X+ X[l

k=1,...,d with ni>1
={x e xM. 3k =1,... dwith*; %kxj forsome i, j € {1,...,nx}}
={ze X" .-Vk=1,... dholds*r; = ... ="z, }
—x _AX o Axd = x>

We can therefore extend fI™l to a function f<"> : X<"> — E by
f<n>(l‘) — f<n>k([)3) if = c X<n>k.

As all the continuous f<""* coincide on the common dense subset X In[ of their domains, this
assignment is well-defined. Since all f<"~* were seen to be C” and X <"~* C X <"~ is open,
we conclude f<" to be C?, as this is a local property. [

Proposition 3.8. Letr X C K¢ be a nonempty cartesian subset whose factors contain no
isolated point and f : X — E a mapping thereon. Then f € C" (X, E) if and only if for all

n € N% | the function f™ . X"l — E extends to a unique C*-function f™ : X"l — E,

Proof. Firstly, let n € N. and a € X. If fIl . XI"l — E extends to a C*-function
f: X"l — B, then its restriction £l onto X!l will be in particular C* at all points @ € X ™.
Therefore fI™lis C? at all points @ fora € X, ie. f € C"(X,E).

Contrariwise, let f € C"(X, E). If v = 0, then by definition f will be a C”-function on all of
X. Let v > 1 and assume by induction on v > 0 that, as soon as f is C"~1, the function f]m[
extends to a C*-function on all of X[™ forallm € N% _,.

By Lemma 3.5, the mapping f is C"~*. Therefore fI™! extends to a C*-function on all of X"
forallm € N? . Letn € N . By Lemma 3.7, the mapping f!"l extends to a C*-function
f<"> on all of X<">. Since f is C", the mapping f!"lis C* at all @ for a € X. We extend fI"
to X[ by

<n> if c X<n>
) = @) CrE
lim, .z fI"l(y), ifrx=a forae X;
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here y running through X7l Thus if we let A := X™land A C B := X[ C A, then in
particular fI”l . A — K will be a function which is C* on the whole of B and hence its unique
continuous extension f[™ : X" — E is a C*-function by Proposition 1.6. |

The locally convex K-algebra of C"-functions

Assumption. In this subsection’s paragraph on the locally convex K-algebra of C"-functions,
we will by X C K¢ denote a nonempty locally cartesian subset whose local factors contain
no isolated point, if not explicitly mentioned otherwise.

Lemma 3.9. Each compact cartesian subset C' C X is contained in some nonempty open
cartesian subset P C X whose factors contain no isolated point.

Proof. We can cover each compact cartesian subset C' C X by finitely many nonempty open
cartesian subsets Uy, ..., U, € X whose factors contain no isolated point. Let W = U; U
...UU,.Letk € {1,...,d} and define P, C K by

P, = N Wy, where Wy :={x, €e K: (21,...,2k,...,24) € W};

here and in the following the breve always denoting the omittance of the element below it.
Then P, D C) as C, C W, for all & € K{l-hrndh gince ) x --- x Cy € W. Moreover
Px---xP;,CWCX as

Wi D P, = ﬂ Wy forallk=1,...,dandeach i e K1,

FecKd-1

We propose that P, C p, W is open and without isolated points: As W = U; U ... U U,, we
find for each & € K{!-#-d} that

Wi= b g U withl={Ue{U,....Us}:p, ;. U7} C{Uy,...,Un};

Ued

hereweletp, ; ;X1 X - xXXg—= X3 X0 X Xj X -+ x Xg4. Each Wj is therefore
open in p, W. Since there are only finitely many families 4l C {Uy, ..., U,}, the intersection
P, is finite and hence open in p;, W. Since p, U for U = Uy, ..., U, has by assumption no

isolated points, neither does the open subset P, C p, W with

pe W = U p, U.

U=Us,....,Un

We conclude that P, C p, W is a nonempty open subset without isolated points. Thus each
compact cartesian C' C X is contained in some nonempty open cartesian subset P := P X
.-+ X P; € X whose factors contain no isolated point. |

Definition. Let f € C"(X,E) and C C U compact cartesian for some nonempty cartesian
neighborhood U in X with factors free of isolated points, supplied by Lemma 3.9. By Lemma
3.5 and Proposition 3.8, for all n € N with |n| < v respectively |n| = v, the mapping f‘]g[
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extends to a continuous respectively C*-function f‘[g]. Hence we can define for each compact
cartesian C' C X the seminorm ||-||.. , by
1fllerc = max (1 lew v max |1 lleo o
’ n with |n|<v n with |n|=v ’
We provide C" (X, E) with the locally convex topology induced through this family of semi-
norms {||-||.- o} with C' C X compact cartesian - the topology of compact (cartesian) con-
vergence.

Remark 3.10. If K is locally compact, then C"(X, E) will be the initial locally convex K-
vector space with respect to all restriction mappings

C"(X,E) — C'(C,E),
= fic;

here C' running through the family of all balls C' C X.

Proof. By definition, a function f : X — E is C" if and only if its restrictions onto a basis
of open subsets U C X are C". This basis is given by all balls in X. Therefore we have an
equality of K-vector spaces.

Since X 1is locally compact, we can cover each compact subset by a finite number of balls.
These are compact, nonempty and as open also free of isolated points. Therefore the locally
convex topology given by these seminorms on balls coincides with the one given by the family
of seminorms on all compact subsets. |

Lemma 3.11. We have for s < r a norm-nonincreasing inclusion of locally convex K-vector
spaces C" (X, E) C C*(X, E).

Proof. The inclusion holds by Lemma 3.5. It remains to show that ||-
C"(X, E) for every compact cartesian C' C X.
Let f € C"(X,E) C C*(X,E). Then clearly || f

oo S ||'||cr,c on

coo < Hf“w,c for every v < s < r. By

transitivity, it therefore suffices to prove || f{|o. o < || fll¢r o With s = v — 1+ forn € [0, 1].
For this, it suffices to prove
d
17 e com < 7 o v o ot forany m € N,

Let C = Cl™ and F := fI™. Recall N® = Nl x ... x Nl with NW = NO-n for

n € N and *e; := (0;... ;ep;... ;0) € N, whose only nonzero vector entry is ey € N[l
at the k-th place. Then we can naturally identify z = (—; "z, %21, %2s,... ;=) € C (m+er] with
(= : %o, heys Frg; .. =) € Cl'®l and so, if *ro — %2y # 0, we have
f[m+6k](_; k$07 kxla ka’ cee _)
_F(—; o, Mg, . s =) — F(—: %y, Frg, ... 5 —)
N kro — K1y
:F[ke‘)](— I TR —-).
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In particular we see that if f [m+er] exists, so does F’[ke(’], and we deduce
||Fch,é < ||FHC1,C

,,,,,

.....

g v max || f gy
here the first inequality holding true by Lemma 1.37. For the following equality, we find by
Corollary 1.40 by symmetry of f™ : X il oo x Xy mal 5 F on its Xj-coordinates for

k=1,...,d moreover ”FHCIC HF||C \/||FHC |

EOC EUC

Lemma 3.12. Let 2 € X" with X C K% a cartesian subset whose factors contain no isolated
point. Then there is a constant C'(x) > 1 such that for every f : X — E it holds

I77@)] < Cw) ma 1 Cri- . )
Proof. By induction and applying [Schikhof, 1984, Exercise 29.A] to the n4-th difference
quotient of the one-variable function f?(%z;... ;4 x: ): X; — Ewithnn =n;-e; +---+

Na—1 - €41, we obtain for z € X'l a closed formula

f} (! :L‘ - :L“ Z f Ligy - 'Tld) H (xil_xj1)_1"'(xid_xjd)_1'

1€[0,n] JEO,n] s.t.

J1#41,.,0a 71
Thus C(z) := max;ejo,n Ci(z) V1with Ci(z) == | ] (2 —xj)7 - (@, — 25,) 7
j€[0,n] s.t.
j1j7£i1 ----- JaFid
fulfills the claim. [ |

Recall that a locally convex K-vector space will be called Fréchet if its topology can be
induced by a countable family of seminorms. A topological space X will be called c-compact
if it is the (ascending) countable union of compact subsets.

Proposition 3.13. The space C" (X, E) is a complete locally convex K-algebra. It is also a
Fréchet space if and only if X is o-compact.

Proof. Tt is clear that C"(X, E) is a locally convex K-vector space. Let E be a K-Banach
algebra whose multiplication has operator norm M > 1. To convince ourselves that it is
also a locally convex K-algebra, we show firstly its closure under products and secondly that
1follerc < M | fller cllgller o for all f,g € C"(X,E) and ¢ C X compact cartesian.
Because these are local properties, we may assume X to be cartesian with factors free of
isolated points. Foremost by Lemma 3.4(iii), we find for all n € N that

(f - )" = %)

L. . _.d d —jl(1 L. ..
Z fJ[ (o, .., x5 —; %o, . . ., xjd)-g]" J[(:cjl,..., Ty = Ty ey Tny). (%)
J€[0,n]
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Firstly, let f, g € C"(X, E). By Proposition 3.8 and Lemma 3.5, the functions f"l, gI"l extend
to C’-functions for n € N . By Proposition 1.7(ii), this sum (f - g)*l again extends to a
Cr-function (f - g)™. Since this holds in particular for all n € N¢ , we find f - g € C"(X, E).
To show || fgller o < M- | gl we must prove [1(£9)™ ., < M - [ flle lglr for
allm € N4 and || fg™||c, oo < M| fllorllgller forall m € N2, . The first inequality follows
directly by Equation (x). l’iegarding the latter inequality, by Lemma 1.10 applied to Equation

(x) we find

1C£9) ™ les oo < M - mac 1P es ciallg™ P len,cin-a:

For the latter inequality, let = € C"(X,E) be arbitrary and j € N%,. If |j| = v, then
1B |y et < NIllgr o by definition of |||, o If || < v, then [|BV|lo, cin < [1hllgsn e <
[Aller ¢ the last inequality by Lemma 3.11. Applying this to h = f, g, we can conclude

H(fg)[n]Hcp,c[n] <M- ”chrcHQHCT,G

We prove completeness. Let {U; : ¢ € I} be the cover of X by all nonempty open carte-
sian subsets whose factors contain no isolated point. As being C" is a local property, the
C"-functions form a sheaf on X: In other words the locally convex K-vector space C" (X, E)
is canonically isomorphic to the subspace

A={(fi) e [IC"(ULE): fi,nu, = fijv,no, foralli, j € I} C [I¢ (U, E) = P.
i€l iel
Then A is closed in P, as convergence in C"(U;, E) implies in particular pointwise conver-

gence. As P is complete if and only if each factor is complete, we are reduced to the case that
X C K%is cartesian.

We note that the locally convex topology on C"(X, K) given by {||-||; o : ¢ € X compact
cartesian} is equivalent to the one given by

{||.["]||C . C' C X compact and n € N‘iy}
U g+ € € X compactand n € N2, }.

Namely, given C' C X® compact, denote the projections of X™ = X 1["1} X e X X, C[l"d] onto

its components by p, : X — X ,L"k] fork =1,...,dand put Cy = p, C compact. Then for
ir = 0,...,n, denote by p ; : X,E"’“] — X}, the projection onto the i,-th copy of Xj;. We let
Cr == ProCrU...Upg,, Cr © Xi - which is compact - and put C'=C; x --- x Cg € X
compact cartesian. Then C' C C™ and hence |||, < ||-|lor ¢ if || < v respectively
ey o < IHler i Il = .

Hence as a locally convex K-vector space, the space C"(X, E) is canonically isomorphic to
the subspace

A:={(ga) € T[] (X", E) x [] C?(X™,E) : gpyxomi = f" forn € N* with n < v/}

n<v n=v

C [Ic°(x™, E) x ] c/(X"™,E) = P.

n<v n=v
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Each factor C°(X ™ E) for n < v is complete by Corollary 1.3. The factors C”( X" E) for
n = v are complete by Proposition 1.9. Hence it remains to prove that A is closed in P.

For this, let f = ( fn)neN‘i be in the boundary of A in P, i.e. in any neighborhood U > f of

P lies another element g € A. We have to prove that f € A; in other words putting f := fo,
necessarily [, yin = flrl form € N‘éy

Fix & > 0, an order n € N¢ withn < v and ¢ € XI"l. We must show || f,,(z) — f")(z)|| <e.

Let C D {'%g,..., "z, } X -+ x {%, ..., r,,} be compact cartesian. With C'(x) > 1 as
in Lemma 3.12, we find another g € A such that || f — g/, ,, < €and || f —gllo - < e/C(x);
here ||-[|,, (., and |[-[[; - denoting the seminorms on P given by ||h|, (,, = [[hn()| and
[hlloc = MhOHC. Hence with g := go, it holds ||(f — ¢)(x)|| < ¢/C(x) for all z € C. By
Lemma 3.12, we find [|(g — f)™{(z)|| < e. Since g, x1nt = g, we find

1 fa(@) = P (@) < (1 fa(@) = ga(@)]| V llgala) — f ()]
= [Ifa(®) = gu(@)I| V g™ (@) — f"!()]
= [Ifa(®) = gu(@)I| V (g — " (@)] <

Ad the Fréchet property: We have to show that C"(X, E)’s locally convex topology can be
induced by a countable family of seminorms. The union of finitely many compact subsets is
again compact and every compact subset is contained in the cartesian compact subset given
through the product of its projections. Because |[|-[|¢. ¢ p pointwise on C" (X, E) for
compact cartesian subsets C' C D, the defining family of seminorms is therefore directed.
Hence we see that the claim holds if and only if X can be exhausted by a countable family of
compact subsets. |

Remark. We recall that complete metric spaces are in particular Baire spaces (see for exam-
ple [Schikhof, 1984, Appendix A.1]). Remember that these can be defined by the property
that whenever the union of countably many closed subsets of X has an interior point, then
one of these closed subsets must have an interior point. So a Hausdorff Baire space which is
o-compact, is at least at one point locally compact. Thus for a closed subset of a complete
normed group, o-compactness implies local compactness. As a compact metric space is sepa-
rable, so are o-compact ones.

On the other hand, a locally compact separable metric space X is o-compact: If S denotes a
countable dense subset of X, we let A := |J,cg Us where U, denotes a compact neighborhood
of s € S. Let C C X be compact. By compactness, finitely many U, cover C' and therefore
ANC = (U, U...UU,,) N C for a finite collection s1,...,s, € S. So AN C is again
compact and therefore closed. For X is as a metric space compactly generated, A is closed
and equals therefore all of X. Hence {U,} is the desired countable cover by compact subsets.
We conclude that a closed subset of a complete normed group is o-compact if and only if it is
separable and locally compact. E.g., C"(X, E) is not Fréchet for a ball X C (Cg.
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Locally analytic functions in C"(X,K) on an open domain

Definition. Let X C K be an open subset. A function f : X — K will be called locally
analytic if for each point @ € X, there exists a closed ball B 3 a in X such that

fl@—a)=> ax—a) forallz e B;

i>0
here a; € K and (x — a)® := (z; — ay)" -+ - (x4 — ag)' for ¢ € N,

Definition. For two sets A, B, a ring R and mappings ¢ : A — R,¢ : B — R, define their
tensor product p ©® ¢ : A x B — R by

¢ © ¢(a,b) := ¢(a)ip(b).

Lemma3.14. (i) Let X C K¢ Y C K¢ be cartesianand f : X — E,g: Y — E two
mappings. If n = (n',n") € N x N¢, then

(fog)l= frlo gL

(ii) Let X1,.... X, CKand fi : X1 — E,..., f;: X4 — E be d mappings. If n € N¢,
then
(fl@...@fd)]"[:f%”l[Q...Qfgl"d[‘

Proof. Ad (i): This is proven by induction on n = |n|. If n = 0 there is nothing to show.

Let n > 0. We may assume w.l.o.g. n’ > 0. Then n’ = 7’ + e for some coordinate
ke{l,...,d}.Puth:= f ®gandlet (z:y) € X[ x XI""[. By induction
W (@ y)
:h]ﬁure’“’"”[(m 1Y)
:h]ﬁ’,n”[(_; kx07 kaa s 7kxﬁ;€+1; - y) - h]ﬁ/ n”[(_, X1, T2, ) xﬁ;ﬂ-l—lv - y)
"o — Fry
_fml[(_§ ka‘Oy L2y« oy T 415 _) O] g]n”[(y) - f]ﬁ [(_’ L1, L2, y Liif +15 _) © g}n”[(y)
ko — krq

="l (@) @ g™ (y) = 7)o g

Ad (ii): Let n = (n/,nq) € N9~1 x N. By (i) and induction on d, we find

(i ® ...@fd)]n[ = (O Qfd—l)]n/[@fc]lnd[ — f}"l[@... @fc]l”d['

Lemma 3.15. Let X C K% be open cartesian, n € N and § > 0. We define

X e (= (=) € XM oY, 6% < 6Y,
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where 0 Fr == 6{*ro, ..., x, Y fork =1,...,d. Let p € X and put P := B<s(p) C X. Then
P = Bos(p) € X" with o= (py; ... ;py) € X!™ and

X8 = P

peX
Likewise for Xg;[ = X[;;] N Xl

Proof. The first assertion holds by definition. We have

X[gna}: J Bzs(p).

peX(n]

Leta,be X [éf;] and ||b — a|| < J. Then by the ultrametric triangle inequality holds B<s(a) =
B<s(b) in X[;;]. Letp € X[g. Then we can find p € X such that ||p — p]| < § where we put

P=(Pr;... ;P € XM B.g p=(py,...,%,) € Xforp = ("p;—;%) € X[;;].) We can
therefore conclude B<s(p) = P™ with P = B<s(). [ |

Definition. Let ¢ € N? and X C K“. Then we will denote by ** : X — K the function
x = al ol

Lemma 3.16. Let f(x) = *' : X — K defined on a subset X C K. Then

0, 1ifi<n.

Proof. Tt will suffice to prove by induction on n that f"l = 1if f = ™. If n = 0, there will be
nothing to show. For n = 1, let h(z) = x. then W'l = 1. Let n > 1. Then f(z) = g(z)h(x)
with g(z) = 2"~'. We note that if ¢ is constant, then

}m+1[(

g Zo, .- - ,l’m+1) = (I’O - xl)_l(g]m[('rov Lo, ... 7Im+1) - g]m[('rlv Lo, ... 7$m+1)) =0

for all xy, ..., x,+1. By [Schikhof, 1984, Lemma 29.2 (v)], we find

lzg, ..z = > g]j[(xo,...,ajj)h]”_j[(a:j,...,a:n)

7=0,...,n
= g]"’l[(:cg, . ,xn,l)h]l[(azn,l, T,) + g}”[(xo, . ,xn)h]o[(xn)
= g]"_l[(xo, R g}”[(xo, R
By induction, ¢/l = 1 and thus ¢/*! = 0. Hence f"l = 1. ]
y

Corollary 3.17. Let X C K< be a cartesian subset and i,n € N°.

1, ifz=mn,

: i nl —
(i) Let f(x) = **: X — K. Then f" = {0’ ifi % n.
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(ii) Let f,g : X — E be two mappings with g being 5-constant. Then (g - )™ (‘z; —; %) =
g(p) - " (Yz; —; %) on P"lwith P = B<;(p) independent of the representative p € P.
g(p), ifi=m,

In particular on P holds (g - x*)I"l =
P (9-+) 0, ifi¥n.

Proof. Ad (1): By Lemma 3.14(ii) and Lemma 3.16, we have

f}n[:*il]nl[@'--@*id}nd[E L, lle = N1y, lg = Ng,

0, ifiy <mnyforsomek € {1,..., d}.
Ad (ii): We have g;p = g(p) for some representative p € P. By linearity of f — fInl we get
(g - HIM(; = %) = g(p) - /™). Now apply (i). u

Proposition 3.18. Let X C K¢ be an open subset. A locally analytic function f : X — K is
a C"-function for any r € R>,.

Proof. By Lemma 3.5, we find C" (X, K) D C"™ (X, K). Hence we may assume r = v € N.
Since being C" is a local property, it suffices to prove this for an analytic function f : X — K
on a closed ball X C K whose radius we may assume to lie in |K*|_,. Let X = B<.(a) with
a € X and £ > 0. For notational convenience, let us assume a = 0. Altogether our function
f is defined as

flx)=> az* forallx € K? with |z| <e.

i>0

Since this power series converges for all  with ||z|| = ¢ € |K*|, we find |a;|el — 0 as
i| — oo. It suffices to prove |«i™(z)| < £l=* for all z € X with n € N : Then
uniformly in all compact cartesian C' C X holds ||ai>l<i”cy70 < |azlell/e” — 0 as 15| — oo,
hence f =350 a;" as a convergent sum in C”(X, K) by completeness.

Letn € N‘éy. By Corollary 3.17(i), we find «M — 0if ¢ 7 n. Otherwise, by Lemma 3.14(ii)
holds . . '
(@) = [ )| e ()| forall @ = (' —; %) € X,

We are hence reduced to proving |*i[n] (z)] < e fori >n € Nand x € X with X :=
B<.(0), as then

|*z[n](m)| < 8i1—n1 . _g’id—nd _ 8\i\—|n\ < 8\i|—u ifi >nc N(iy
Let +* = ¢ - h with g = +*~ and h = *. By the proof of Lemma 3.16, we find
i}n[(xo, cooxy) =g Mg, aey) + ¢, )20

As |z| < g, it follows by induction on i > 0 that

|*i[n](9€)| < ==y gl o — i forall z € X

84



Composition properties of C"-functions

Lemma 3.19. Let X C K< be a nonempty cartesian subset whose factors contain no isolated
point and f : X — E a mapping thereon. Let n < r be a nonnegative integer. Then
f € C'(X,E) if and only if f € C*(X,E) and f™ € C"~(X E) for all n € N% .
Moreover || fl|cr ¢ = || fllon ¢ V MaXpena | g ler—n cinl-

for n € N Write m = ('m; —;%m) € NI"l with #m < NIl for k = 1,...,d. Define
m € N by my = *mg+ -+ + Fm,, for k = 1,...,d. Then we have an identification
(XPhm] = XIn+m] a5 follows: We will consider the left and right hand side to be a product
of subsets of K indexed by
I={((k,d),j):ke{l,....d},i=0,...,n4,5=0,...,"m;}
respectively
J=A{(k,i):ke{l,....d},i=0,...,(n+m)}.
Then we have a bijection ¢ : I — J via
((k,2),7) = (k,fimo + - -+ Fmicy + ).
This yields the equally labeled bijection ¢ : (X])ml =% xn+ml by
(X[n])[m] = HXi S = (Ti)ier = ¢(x) = (z40)) € H Xj = xlmaml,
i€l ieJ
We show that this identification yields an equality of mappings
fintmlo g = (fInl)iml regtricted onto ¢~ (Xm0, (*)

We proceed by induction on |[m™|, the starting case m* = 0 holding true by definition.
Assume [m™| > 1, say mT = m + Fe;. Let & = (—; Mix; —) € ¢~ (X7 C (X[,
Then we have

(f]n[>]m+[(w)
:<f]n[>]m+kei[<_§ Mo, By, By, L -)

(f]n[)]m[(_;k,z‘gm?lc,z':,@7 U (f]”[)]m[(_;k,ixljk,ix% o)

Rigy — kg,
_fImlo (= Mg, Mg, 5 =) = o g Py, P, )
Roipy — Py

_f}"+m[(_; .. 7k$%0+,“+%i71+0, ) — f]ner[(_; e akkao+...+kmi,1+1, ci )
- koo tbims 140 ™ Lot bimg 141
R = R0y By =) = PP = R 1, R, )
- kkao+--~+kmi,1+0 - ]%Ekmo—&-~~-+kmi,1+1
:f}n+m+ek[(_; k$km0+-..+kmi,1+o, k$%0+..-+%i,1+1, B )
L Y T T S O

= lo g(a).
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Here we used the (recursive) definition of the iterated difference quotient for the second and
sixth equality, the symmetry of the iterated difference quotients in all Xj-coordinates for the
fifth and seventh equality and the induction hypothesis for the fourth equality.

Because ¢ : (XM 5 XI"+ml s a topological isomorphism, we find by Equality (*)
thus f"*™[ to extend to a continuous mapping f™*™ if and only if (fI")I™] extends to a
continuous mapping (f™)™L. This shows f € C"(X,E) if and only if f € C*(X,E) and
fI e ¢r— (X" E) for all n € N2, as follows: Firstly, assume that f € C"(X, E).

Let n € N. and m € N with n + m = v; here N® = NIl x ... x Nl with

extend by Proposition 3.8 to C*-functions f™*™ for all m € N[ By Equality (x) therefore
fie (X" E).

Contrariwise, assume that f € C*(X,E) and f™ € ¢'(XI" E) for all n € N¢ . For
v € N write v = n + m withn € N2 and m € N?,_ . Choose m € N with m = 7.
Because f™ € C" (X" E), regarding Equality (x), we find f"*™ = fI*l by Proposition
3.8 to extend to a C’-function f : X"l — E. As this holds for arbitrary v € NZ , we find
fec(X,E).

The equality of norms then follows directly by the bijectivity of ¢, as follows: By Equality
() holds || ™ ller—n gt < || fller o for every compact cartesian subset C' C X and n € NZ,,
thus || fll¢n ¢ V maxyena | £ ler—n ciml < [[fller o by Lemma 3.11. Regarding the inverse in-
equality, for I € N, withn <[ < v writel = n + 1 withn € N¢_and m € N . Choose
m € NI} with m = rin. Then by Equality (x) holds || f¥|, = [|(f™) ™| s < 1F™ lgr-n ¢

respectively [| /2, < |1/

cr—n o in case [l| = v. Therefore

I Fller = maws £ ior v 2 17 o o

neNe
< ) v 1 Y g
_nrgggnﬂf [l lewdﬁffgm@uf e cm lgl@”f lleo o

- n v [n] r—mn .
1 flle C nrggfn“f e ,Clnl

Remark. The Equality (x) in the preceding proof is also shown in [Glockner, 2007, Remark
2.5]. It is informed by the viewpoint of fI" for n € N?  as the n-th column-vector of the
the v-th iterated difference quotient f*) of f : X — K, up to reduction by symmetry in the
coordinates of f*!. Here e.g. fI% = f, then f!! is to be understood in the sense of Proposition
1.34, and if fI: X1 — Homg yeep. (K%, E) = E4 exists, we let

20— (fhnt : X[l] H — Homgyersp. (Hompyersp. Kda E),E)= Ed?'
P P

If existent, the unique continuous extension of f12[: (X1l — E to all of X2 = X1 x X1l
is then denoted f[?. This was also discussed in the introduction.

Notation. We switch notation by writing (x;t) for (xy;... ;Tp_1; Tk + ¢, Tk; Tps1; ... ;T4) €
Xlerd,
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In the following, we will tacitly use that projection functions are C"-functions for any r» > 0,
a convenient criterion for this given by Proposition 3.18. Recall that by Remark 3.3(iii) a
cartesian product of C"-functions is again a C"-function.

Lemma 3.20. Let X C K% andY C K€ be nonempty cartesian subsets whose factors contain
no isolated point. Let f € C1(X,K€) and g € C1(Y, E) be two functions withim f C Y. Then
go f € CH(X,E), seen by the matrix product

go [l (x;t) = gM(fw +t-ex), f(x)) - [ ;) fork=1,... dand (z;1) € X!,

Proof. Letk € {1,...,d}. We have to prove that the above equation’s right hand side com-
posed linear map gl'l(f(z +t - e;), f(z)) - fle¥l(2;t) : K — E sends any ¢t € K* such that
x+t-ep,x e Xtogo f(r+tep) — go f(x). Then by continuity this equality extends to all
of Xlexl,

By definition fl)(x;t) -t = f(x +t-e;) — f() and
qU(fla+t-en) f(2) (flz+1t-er) = fz)) = g(flz+1t-en) — g(f(2)),

where we recall Proposition 1.34 for the definition of ¢/'l : Y[/ — E (and use continuous
extension). Together, we find

(f@+t-en), f@)f N at) -t = gM(flo+t-en), f(2) - (flo+1t-ex) = f(2))
=g(f(z+1-er)) —g(f(x))

Lemma 3.21. Let X C K% andY C K¢ be nonempty cartesian subsets whose factors contain
no isolated point. Forr > 1, let f € C"(X,K°) and g € C"(Y,E) be two functions with
im f C Y. Then g o fl°(x,y) extends to g o fl) € C"(X[es] E) fork =1,...,d.

Proof. We proceed by inductionon v > 1. If v = 1, 1.e. r = 1 4 p, then by Lemma 3.20 will
hold

go [ (;t) = g (f(x +1t-ep), f(2)) [l (ast) fork=1,....d;
here the right hand side meaning the matrix product. By Lemma 1.37, we firstly find f €
C'(X,K°) C C"™(X,K¢) and by Proposition 1.34, it also holds ¢! € C?(Y! E). The
function gl (f(z +t - ex), f(x)) is therefore again a C’-function by Proposition 1.7(i). Also
flerlis a CP-function as f € C'**(X,K®) C C?(X,K®) by Lemma 3.5.
If B=(b;) € Mix.(E)and A = (a;) € M.x1(K) are matrices whose coordinate entries are
CP-functions on X¢! into E D K, then their matrix product C = B-A: X lex] 5 B will be
again a C”-function: For this, note that C' = a1b; + - - - + a.b.. By Proposition 1.7(ii), this sum
of products is again a C’-function. Therefore with g!(f(z +t - e;), f(z)) and fl*)(z;1), so
is their matrix-product g o f1!(x;¢) a C*-function.
If v > 1, then we just saw g o f € C!(X, E) and by Lemma 3.19, we must prove g o flexl to
be a C"~!-function for k = 1, ..., d. By Lemma 3.20 holds

go flel(zt) = gl (f(z +t-ep), f(2)) - o (). (*)
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We have gl'! = (gl¢l o py, ..., glel o p,) with projection functions p;, : Y — Yled for
l=1,...,eand g!*! € C""}(Xel E) by Lemma 3.19. By the induction hypothesis, gllop;, €
C' (Y E) and hence g € ¢~} (YI E®). Moreover f € C"(X,K¢) C C"1(X,K°).
Again by the induction hypothesis, we find gM(f(z + ¢ - e;), f(z)) : X[ — E°tobea
C"~'-function. By Lemma 3.19 holds fl¢(z;¢) € C"~!(X[es]l K¢). By Proposition 3.13, we
find their matrix product (%) to be a C"~!-function. Hence g o f'°*) is a C"~'-function. [ |

Corollary 3.22. Let X C K% and Y C K€ be nonempty cartesian subsets whose factors
contain no isolated point. Forr > 1, let f € C"(X,K°) and g € C"(Y,E) be two functions
withim f CY. Thengo f € C"(X,E).

Proof. By Lemma 3.19, we find that fl*:[ and gl**! extend to flexl € ¢—*(X*) K) and
glesl e ¢cr=Y(yledd E) fork = 1,...,d. By the same token, f o g € C""'(X, E) if and only if
go f}e’“[ : Xlexl 5 B extends to a C"!-function g o f[ek] s Xl 5 Efork=1,...,d We
can conclude by Lemma 3.21. |

Proposition 3.23. Let X C K% and Y C K¢ be nonempty locally cartesian subsets whose
local factors contain no isolated point. Let f : X — K°and g : Y — E be two functions with
im f C Y. Let r be a nonnegative real number. If r > 1 and f and g are both C"-functions,
so will be their composition go f : X — E. If r < 1, then the same will hold true provided
either f or g is locally Lipschitzian.

assumption cover Y by nonempty open cartesian subsets IV C Y whose factors are free of
isolated points. Since ¢ is in particular continuous, their preimages U C X are again open.
By assumption on X, we can find a nonempty open cartesian U C U whose factors contain
no isolated point. Such U covering X and since being C" is a local property, we can restrict to
the case X and Y being nonempty cartesian with factors free of isolated points. In this case,
Corollary 3.22 yields the result. |

Proof. Foremost if r < 1, this will hold by Proposition 1.7(1). In case » > 1, we can by

Proposition 3.24. Let X C K% and Y C K¢ be nonempty locally cartesian subsets whose
local factors contain no isolated point. Let r be a nonnegative real number. Let f : X — Y be
either of class C" if r > 1 or locally Lipschitzian if r < 1. Then the precomposition operator
C"(Y,E)> g~ go f eC(X,E) is continuous.

Proof. The mapping is well defined by Proposition 3.23. Since the norms are defined on
compact cartesian subsets inside nonempty open cartesian subsets whose factors contain no
isolated point, we can reduce to the case that X € K¢ and Y C K¢ are nonempty cartesian
subsets whose factors contain no isolated point. Let C' C X be compact cartesian. Then
f(C) CY is again compact and we let D O f(C') be compact cartesian in Y, which exists as
Y is cartesian. Then in any case ||g o f|, < |||l p-

Foremost if 7 = p < 1, then f € C'"(X,Y’) and by Lemma 1.38 will hold

g o f”cpp < (||fHan,c V1) ||g||CP7D7

proving continuity in case r < 1. If » > 1, we will prove by induction on v > 1 that
lg o fllere < M -|[gllgr p for a constant M = M(f,C,r) > 1 depending solely on r > 0,
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C C X and f € C"(X,Y). First off, we find by Lemma 3.20 that

go (@ t) = gV (fx +t-ep), f() - ¥ (as8) fork=1,....d.

We assume for convenience the operator norm of the multiplication mapping in E to be equal
to 1. Defining Flex] € C7(Xe] Y by (2;t) — (f(z +t - ex), f(2)), it therefore holds by
the proof of the continuity of multiplication in Proposition 3.13 that

x [l[g o [ lers gren < max [lgt o F|lo oy e | ¥ orms e ()

We also have by Lemma 3.19, for a general cartesian subset X C K% with factors free of
isolated points and C' C X compact cartesian

|’h|’CT,C - HhHC \/ kI:].’.}-aXdHh[Ek} ||Cr71,C[ek] fOI‘ any h c CT<X7 E) (**)

.....

lg© fllerc =llgo Flle v max lllgo £, cro

.....

.....

<llgllp v [ max (IFE, ce VD] - g ler pol1f ler o

-----

.....

<M - ”g”CT,D;

where we put M (Flesl Clesl p) .= ||Fled]| yV1>1fork=1,...,dand accordingly

o
CliP,C[ek

-----

Here the first equality by definition, the followiﬂg inequality by Inequality (x) and the next
one by the case 7 = p < 1 just observed (as well as || f!|| ., crep) < || fllor o fork=1,....d
by definition). ’ 7

Finally the last inequality follows through Proposition 1.34 by ||g!" leo,pr = |l gled! ler pleat V
V| gtee] ler prect < [|gller p- This settles the case v = 1.

Let v > 1. Then we compute similarly

90 fllerc =llg o Flle v max lllg o F1¥les s

,,,,, d
7777
-----

.....

SM ’ HgHCT,Da
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.....

defined below. Here the first equality by Equality (), the following inequality by Inequality
(x) and the one thereafter by Equality ().

The penultimate inequality is obtained by the induction hypothesis for v — 1.

The last inequality follows by

.....

77777

for projection functions p; : Y — Ylel fori =1,... eand M (p, Y r —1) > 1 given the
induction hypothesis, and putting M := max;—;__q M (p;, Y1, — 1). The last inequality by

-----

Equality (). [
Density of (locally) polynomial functions in C" (X, K)

Definition. Let X C K¢ be a subset.

1. We will call a function p : X — K of the form p = 3, cna a;%°, whose scalars a; € K
are all zero but for a finite number, a polynomial function.

2. We will call a function f : X — K a locally polynomial function of total degree at
most g if for every point a € X, there exists a neighborhood U > a such that fj; = p
for a polynomial function p = Y;cna ai*".

Remark 3.25. We remark that on open domains locally polynomial functions are in particular
locally analytic. By Proposition 3.18, these are C"-functions for any € R~. Hence a fortiori
locally polynomial functions defined on a general subset X C K lie in C" (X, K) for any
re Rzo.

Assumption. Throughout this subsection’s paragraph on the density of polynomial functions,
we will denote by X C K¢ a nonempty compact cartesian subset whose factors contain no
isolated point.

Lemma 3.26. Let f € C"(X,E). Fix d,e > 0. If for all n € N2 holds
™ (z)|| <e forallz € X[;;],
then for all m € N% | will hold
1 (z) — (@) <e-6 forall z,d € X with ||z — || < 0.

Proof. Fix m € N, andlet k € {1,...,d}. Then forall z € X'} and ¢ € K with

=n—1

1o € Xy and |t| < & holds by assumption

1™ (=P 4+t e =) — fM (=P )|
:Hf[m“k](—; Mro +t, g, By, L ,k:cmk; —) -t <e-Jt| <ed. (*)
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By Lemma 3.15, we have
Xt = A ()

aeX

with A = Bs(a) € X fora € X. The set A™ is symmetric in its A;-coordinates for
k =1,...,d and, as cartesian, also telescopic. By Lemma 1.19 for p = 1, Inequality (x) for
k=1,...,dimplies || fI™(x) — fmMl(y)|| < ¢||z — y|| for all z,y € Al™.

We notice that @ € X L’f;} for any a € X. Moreover, if ||z — d@|| < 6 for 2 € X ™, then by the
non-Archimedean triangle inequality » € A™ with A = B<s(a). By Equality (*x), we thus
find for all @,z € X[™ with ||z — @]|| < 6 that

1/ (@) = @) < ellz —al <e-o.

Lemma 3.27. Let f € C"(X,K) andn € N . Fix §,¢ > 0. If
|fM(z) — fM(@)| <e forallz,a € X™ with ||z — @ <6,
then there will exist -constant g : X — K such that f = f — g*"™ satisfies
Hf["}(%)ngg <e.
Proof. Forall z,d € X", we have by assumption
[ z) = fP@)] <e i |l —a| <o

In particular for all a,b € X, we have |D,, f(a) — D,, f(b)| < ¢if ||a — b|| < 6. By Lemma
1.11, there exists d-constant g : X — K such that | D,,f — ¢||.., < e. By Corollary 3.17(ii)

we find D,,(g%™) = ¢. Hence f := f — g%" satisfies
IDs Fllawp = IDn f = D9l = D f = gllp < €
Letz,@ € X, Then ||z — @|| < § implies
|f () = f@)| =|(f = g+™)" () = (f — gx™)"(a@)]
=|(f"(@) = @) = ((gx™)™ (2) = (g™ (@))]
@)l

<| M) — @) v (g=) () = (g™)™ (@)
<e Vlg(a) — g(a)| = &;

the last equality by Corollary 3.17(ii) as 2 € B<s(a)™. Since ||D,, f|., < &, it follows

sup —

[f )] < 7)) = fr @) v I @) < e.

By Corollary 3.17(ii), we find X[g = Ugex A" with A := B_s(a) C X. Hence |fl"l(z)| < ¢
forall z € X[;;].

sup
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Lemma 3.28. Let f € CY(X,E)and n € N. . Fork = 1,...,d, we define the function
|f[n+p~ek}‘ : X[n-i—ek] — Rzg by

|f[n+P'8k]’(_; ijJ kx(b kxh cee 7kx”k; _)

:”f[n](_a ij) k'rh o 7k‘rnk; _) - f[n](_) kx07 kxla ... )kxnk; _)||/|kj0 - kx0|p

if &g # *xq and zero otherwise; here the hyphenations to the left and right of the semicolons

representing the omitted arguments 'v; ... ;* ¢ and *tz; ... ;%. Then f™ € Cr (X ], E)
implies | f"*7¢%l| to be a continuous function for k = 1, ..., d and it holds

1P ™o = 1™ g V N2l Vo VIS
Proof. Recall X" = xI™1 ... 5 X" and ke := (0;... ;eq;... ;0) € NI"l, whose only

nonzero vector entry is ey = (1, 0,.. ) e NIl with NIl = N{O- "} at the k-th place. We
view X = X C K™, Denote by

I = {(k,0),..., (k,ng)} = { Xy-coordinate indices of X™ }.

Then the only nonzero entry of *e is at the i;-th coordinate for a representative i, € I;,. By
Lemma 3.4(ii), the function f™ : X" — K is symmetric in its coordinates indexed by
I, ..., 1. By Corollary 1.33, we find

17 e = 17 e VooV ™ gy

By Definition 1.21, we have || f[loote ¢ = [z V 172} gprey for X := X and
fi=f": X — E. Now identifying # = (—;*%o, "ro; *z1;—) € X with the element

x = (—; 59, kg, by, -+ —) € X[Prer] it holds
7)) = |7 ).
Therefore || f!||c, = || f™ | V I1F7F7 < lgyp V-V AP |

Lemma 3.29. Given f € C"(X,E), letn € N% and k € {1,...,d}. Ifz € X"+edd with
\e; — 'w;| > & for some coordinate | € {1,...,d} andi,j € {0,...,n; + O}, then for all
f € N, we have

[firteed| (@) < £ /07

Proof. We distinguish three cases in ascending generality.
Case 1: |frg — *r,| > §. Then by definition

| firered)(a)
_|f (— o, s, . . ,kxnk-‘rl; -) = f[n}(—; "y, b, 7k$nk+1§ —)|/|k$0 - k$1|p

</ 8-

Case 2: |'vg — r1| > & for some | € {1,...,d}. If this holds for | = k, we will be in Case
1. If this only holds for [ # k, then we can write n = m + ¢; forn € N% | and we will
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assume WlOg I < k. Let (_7 kxo + S, kx(h kxla SR 7k$nk; _) S X[n—O—eﬂ with s € K, and PU‘[
T = (_1 kx07 kxla s 7kxnk; _> € X[n} Then

| flrreen (ke + s, Mg, By, Ry, )
=| (= Frg + s, Ry, B =) — (=R, R, B, )] 8]
="z + 5 - feg) — [T ()] /5|
with *ey := (0;... ;eg;... ;0) € KM, whose only nonzero vector entry is ey = (1,0,...) €

Kl = K{0--m at the k-th place. Let (—;'ro + ¢, %0, %1, ..., wn; —) € XM with t € K.
Putz = (—; %o, 1, ..., "wm,;; —) € XI™ and f := fI™. Then by definition, we have

FP (=50 + 8,0, o0, oy )

=flmred( g 4+, %0, ey, ey —)

=1 (= + 8, e =) — ST (=, s e )]/
[f(z+t-leq) — fla)]/t.

Let (—; g + ¢, %0, %1, -, Tny; —3 Fwo + 8, %20, Fr1, . By, —) € XIFerl with ¢, s € K,

and put as before © = (—;wo, w1, ..., Ty =3 Fwo, "1, e, —) € X[™] Combining both
obtained equalities, we infer

’f[m+el+p.ek]’(_;lx0+t7lx07lx17"'7lxml;_;kx0+S7kx07kx17"'7kxmk;_)
=@ +t-leo+s-Teo) = fla+s-Yeo)] — [f(w +1-eo) = f(@)]|/It]]sl"
<[|f(x+1t-Yeo+s-"eo) = fla+1t-"e)l/|s)” V|f(x +s-Yeo) = f(@)I/IsI")/1t]. ()

We notice that for = + s - fey, € X" holds

[f(@+ s "ea) = F(2)I/Isl” =[f(x + s - "eq) — f(a))/slls|"™*

:|f[m+ek](—; Fro + s, kxo, kxl, . ,kxmk; —)Hs|1_p. (%)

Letx = (—; o + t, w0, w1, - o, Wy —5 00 + 8, Fwo, ¥y, oo B, —) € Xntedd with [t > 6
forl € {1,...,d}. By Case 1, we may assume |s| < 0. Then under these assumptions
|s] < 3§ < |t|, so Inequalities (*) and (xx) yield

m+e;+p-e N/ l l l . .k k k k .
’f[ e k]’(_7$0+t7 X0, 'Tl?"'ammla_v x0+57 Loy L1y a:mka_)

<]l - 8170 /0 = 11 £ g /67

Case 3: |'t; — 'zj| > 6 forsome [ € {1,...,d} and i,j € {0,...,n;}. We want to reduce to
the second case.

Case 3.1: If [ # k, then by the symmetry of I : X[l — K in its X;-coordinates, we may
assume ¢, j = 0, 1 and the result follows by Case 2.

Case 3.2: If | = k, we may assume that |"rq — Fz;| < § < |*r; — Fz;| as otherwise the result
will follow by Case 2. Let o be the permutation on X" = X ("1} swapping the i-th
and j-th coordinate with the first and second one. We notice that by definition,

‘fi’rri“p-ek} ’(x) — ’f[nJrek}(x)Hkmo _ kl'l‘l_p.
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Then (as in the proof of Lemma 2.12), by symmetry of f™*¢+ in its X -coordinates, we find

| flrteesd| (= ke =) = | fimrerd (= R =) s — Ry

k k. |1—-p
— | flnter](_ By i Ep o Ry lfp‘xi_ xj|
’f ( ) ) )H 0 ’ |k£0_k$1|17p
1-p
_ |y, ) 2= ]
[z — kaq |7
kU_kJO' —p
_ (fIntpenl(_ k.. _yi|fo T 1
[

Because |*rg — 11| < |Fog — *9|, we obtain | flrteerl|(—; by —) < | fInteedd|(— By ) We
can therefore conclude

’f[n+p~ek]|(1x; —; k_lfL’; k:L‘; k—l-la:; —: d.%') < ‘f[n—i-p-ek] ’(1.%; —: k— :L‘ kma k—l—lw _ d.l“)

< 10 /07

sup
the last inequality by Case 1 as |"z — *z9| = |"z; — Fz;| > 0. [ |

Proposition 3.30 (the case d>1). The locally polynomial functions of total degree at most v
are dense in C" (X, K).

Proof. Fixe > 0 and f € C"(X,K). Then fI"l € C?(XI" K). By compactness of X, there
exists by Proposition 3.8 some 0 < § < 1 such that for all » € N and z,y € X™ with
|z — y|| < d holds

(@) = ) < el -yl ()

We will fix this § > 0 for the rest of the proof and recall X[ "= {x = (fr;—; %) €
XM with 6'z,...,6% < 6} form € N%,

Step 1.: By downward induction on n = v,...,0, we will construct d-constant functions
gi - X = Kfori e N* with n < [i| < v such that f, = f — 3, i<, gi** foralln € N2
satisfies

|fIPl(z)| < e6” " forall x € X["] (%)

Letn = v and n € N . By Inequality (%), in particular for all z,@ € X with ||z — a]| < 6,
it holds

| (z) = f(@)] < e- 6.
By Lemma 3.27, we find d-constant g,, such that f,, = f — g, *" satisfies

|fInl(z)| < &6 forall z € Xg.

Then we put f, := [ — > pene, gn*". We will prove Inequality (xx) for fixed ng € NZ . Let
n € NZ  be different from 1, so that in particular n % ng. As g, : X — K is J-constant,
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we find by Corollary 3.17(ii) that (g,*™)™! = 0 and thus f™ = fl* on X [ST}(’]. Therefore
by construction of g, : X — K, we obtain

|flrdl(z)| < 6P forall = € X[;;O].

Let n < v and put m = n + 1. By induction hypothesis we have constructed J-constant
functions g; : X — K forall i € N with m < |¢| < v such that f,, = f — ¥ ,,<ji<, gi*" for
allm € N?_ satisfies

|flml ()| < e6™™ forall z € XU,

Letn € N% . By Lemma 3.26, for all z,d € X" with ||z — @| < d, we have
)~ @] e T g
By Lemma 3.27, there exists d-constant g,, : X — K such that f,, = f,,, — g,*" satisfies
|frl(z)| <e-6"™ forall z e X[S"&].

Then we put f,, == fi — X ,ene, gn*"™. We will prove Inequality (xx) for fixed ng € N d . Let
n € Nd:n be different from n, so that in particular n # ny. As g, : X — K is d-constant,
by Corollary 3.17(ii), we find (g,*™)™ = 0 and thus f™) = flrl on X [<73°]. Therefore by
construction of g, : X — K, we obtain -

flmol(z)] < 26 forall x € X0

This finishes the construction of the g; for i € N,

Step 2.1.: We will prove by induction on |n| =: n = 0,...,v that Hfé"H]sup < &0 for
n c N%V.

Let n = 0. Then 6{'r¢} V ...V 6{%} = 0 < ¢ for all (lzg,...,%) € X. Hence
|0 (g, . dg)| < 67 for all (Yo, ..., %o) € X, ie. || fI%|.. < ed". Letn > 1. Then we
split up

sup

[n] _ || ¢ln] [n]
Hf(]n Hsup - ||f0n ”X[:é] N ”f()n H{xEX["] s.t. |*z; —kx;|>6 for some coordinate k and 7,5}

Ad | fé”}nx[g < g5
Letz € Ni;, so that in particular ¢ 2 n. As g; : X — K is d-constant, by Corollary 3.17(ii),

we find (g;+*)™ = 0 and thus 0" = "l on X Therefore restricted onto X, it holds

B == 3 g =(f = 3 g = £

. d g
ieNg n<|i|<v

By construction of the g; : X — K for i € N¢ withn < || < v, we have || f[?)|| o < e6" .

M
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[n] .
Ad ||f0 ”{.IEX["] s.t. |*z; —Fz;|>4 for some coordinate k and 4,5} <edm™
Let x € X" with [*v; — *;| > § for some coordinate k € {1,...,d} andi,5 € {0,...,n;}.
Assume we have shown that

|f([)"} ()| <ed™™ forall z € X with |k$0 - k$1| > 0.

[ne] _

Let o be the permutation on X, * = X ,EU""’"’“} swapping the i-th and j-th coordinate with the

first and second one. Then by symmetry of f(gn] in its Xj-coordinates, we have

S |fé"]<—; ;)|
’ ( 'Tukx]a“-akxnk;_)’
’ ( ankxlv"'7kxnk;_>’;

here the hyphenations to the left and right of the semicolons representing the omitted argu-

ments ;... ;¥ and ;... ;%. Hence we are reduced to the case |Fzq — ¥z1| > §. Since
n, > 1, we can write n = m + e, form € Nin_l. We compute
[fimred (@)
k ko \— k. k k k. k k
=|( Ty — "T1) 1[ ([)m](—; Los L2y« -y Tny; —-) = f[gm](—; L1y L2y« -y Ty —)H

S 1

the last inequality by the induction hypothesis for |m| = n — 1. This finishes the proof of
1A < edm- "forn € N%,

sup

Step 2.2.: It remains to prove || fo[n] llco < eform € NZ, . We have already proven || fo ||

sup —
£6” < g, s0 by Lemma 3.28, it remains to show || ]f["“ e’“]\Hsup <efork=1,...,d. Wesplit
its domain X["tel up via
+ + +
A8 Mgy = NLFG™ Ml gtwsear VIS e xtosont . s 5 forsome k and iy

AL gt < e

Letz € N‘éy. As g; : X — K is d-constant, we find by Corollary 3.17(ii) that
. if1 =
e e
0, ift#n

on P" for a representative p € P := B<s(p) C X. Therefore |§"+rel| = 0 on P+rexl with
§ = gi¥' fori € N%,. By Lemma 3.15, we find X} = U,ex PI"l with P := Bos(p) C X
for p € X and hence |g["+" )| = 0 on X"+e’“] Therefore | fI" ]| = | flntred| < ¢ on

X[;;r’) “: by Inequality ().
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Ad[|f5 7 o, €

x;—Fz ;| >0 for some coordinate k and 7,5} <
Then it holds

[n+p-ex] [71] .
”f()n pex H{x s.t. [kz;—Fz;|>6 for some coordinate k and 4,5} < HfOn ”sup/(sp < 86P/5P>

the first inequality for 2 € N% by Lemma 3.29 and the second one by Step 2.1. This com-
pletes the proof of || f{"|,, < ¢ forn € N%,.

Step 3.: Finally put g := ZieNi gi**. Then g is a locally polynomial function of total degree

atmost v and fy = f — g. Then ||f = glle = maxpene, |Lfo" [l V maXnere, /" oo < e,

g.e.d. |

During the following proof we will use terminology introduced in the next subsection’s
paragraph about topological tensor products.

Lemma 3.31. The closure of the set of all polynomial functions inside the K-Banach space
C"(X, K) contains all locally constant functions.

Proof. The proof is divided into two steps.

(i) Fix a characteristic function 1z : X — K of a closed ball B C X of positive radius and
€ > 0. Then there exists a polynomial function p : X — K such that |15 — p||.. <e.

(ii) The polynomial functions are dense in the locally constant functions inside C" (X, K).

Ad (1): By Lemma 3.11 and Remark 3.39, it suffices to prove that there exists a polynomial
function p : X — K such that |1 — p|.» < e for v := (v,...,v) € N* with v > r. This is
done by induction on d > 1. If d = 1, then this will be taken care of by [Araujo and Schikhof,
1993, Corollary 1.3]. Letd > 1. Let B = B'xB”" C X with B’ = By x--- x By_; C
X X -+ x X4q_1 = X"and B” := By C X; =: X”. By induction, there exists a polynomial
function p' : X’ — K with ||1g/ — p'||.7 - M" < e with M" = ||1pr||o, > 0. Then by the
case d = 1, there exists a polynomial function p” : X" — K with || 1g» —p"||.. - M’ < € with
M'" = ||p'[|cz = 0. We putp := p’ ©® p” : X — K and compute, using first the bilinearity and
then the norm preservation, both stated Property 1 in Lemma 3.40,

118 = pller =|11p @ 1gr — p' @ p"|| s
<|1p ©1lg —p @ 1prfles V[P © 1y —p" ©p"||cs
=[(1g —p") © Lprles V1P © (1pr — ")l
=g = p'lles - e llew V1P lles - 11B7 — p"llew < €.

Ad (ii): The closed balls B C X constitute a base of the topological space X C K?. Hence
by compactness of X, every locally constant function g is the finite sum f = >, \;1p, with
Ai € K and characteristic functions 1, of closed balls B; C X for¢ € I. By (i), for every
e > 0, there exist polynomial functions p; : X — K such that ||p; — 1g,||.- M; < € with M, :=
|Ai| > 0. Then p := >, \ip; : X — Kosatisfies |p — f||or < max|A\]|[pi — 1g,ller <. W
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Corollary 3.32. The polynomial functions are dense in C" (X, K).

Proof. Fix f € C"(X,K) and € > 0. By Proposition 3.30, there exists a locally polynomial
function g = Y ;ene gi%* : X — K with locally constant g; such that || f — gll- < e. By

Lemma 3.31, there exist polynomial functions p; : X — K with ||p; — g;|| - M; < e with
M; = ||¥*||¢- > 0 for all 4 € NZ,. Then the polynomial function p := 3 ;ena pix’ : X — K
satisfies _

P —gller < g\?{i“pi = Giller - [I**ller <€

and therefore [[p — flle- < o — glle- V g — fller < &. .

3.2 Orthogonal bases of C"-functions on a compact domain
Interlude: Orthogonal bases of K-Banach spaces

Given a topological Hausdorff abelian group X, recall that a series ) ;c; x; over an arbitrary
index set [ is defined as the unique element z € X such that for every neighborhood U > x
in X, there exists a finite subset ' C [ such that > ,cpx; € U.

Definition. (i) For a sequence (w;);c; of weights in R.,, define the K-Banach space of
weighted zero sequences with respect to (w;) by

co((w;)ser) := {all sequences ()\;) in K such that, for any
e > 0, only finitely often |\;|w; > ¢ fori € I}
with the maximum-norm
I = max|Asfws.
(ii) Given a K-Banach space E, we will call the subset {¢;} C E an orthogonal basis if

the following map is an (isometric) isomorphism of K-Banach spaces:

co((wi)ier) — E

()\z) — Z )\iei,

were w; := ||e;|| is the canonical weight associated to the basis vector e;.

For the notion of the completed tensor product V&W of two K-Banach spaces V and W,
we refer the reader to [van Rooij, 1978, Chapter IV, Section "The Tensor Product"].

Lemma 3.33. Let I and J be two index sets. Given weights (w;);e; and (w;) e, consider the
mapping given by K-linear continuous extension of

co((wi)ier) X Co((wj)jeJ) — CO((“’i,j)(i,j)eIxJ)’
(61',(3]‘) — em

with w; ; := w;w;. It induces an (isometric) isomorphism of K-Banach spaces

co((wy)ier)®co((w))jes) = co((wig)agyerxs)-
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Proof. Denote the above mapping by W. By the criterion of [van Rooij, 1978, Comment
following Cor. 4.31], we have to check the following:

1. The mapping V is bilinear and norm-nonincreasing.
2. The K-linear span of im W is dense in co((w; ;)¢ j)erxJ)-

3. Let0 <t < 1.If fy,---, f € co((w;)ier) are t-orthogonal, then for any g, ..., g, €
co((wj)jer) we find W(f1,91), ..., ¥(fn: gn) € co((wi ;)@ j)erxs) to be t-orthogonal.

Ad 1.: The mapping is quickly checked to be bilinear. We have

H\Ij(e“e])HCO( (wij) @, yerxt) Hei’jHCO((wi,j)(i,j)GIx.l) - Hei”CO((wi)ieI) ' ”ejHCO((wj)jeJ)'

If f=23craie; and g = 37,1 bje;, then
IV CFs 9 e w0y e HZazb el
:Hgé;XIaiHbj!HeiHHejl\

:HZ aieiHHijejH = ||f||c0((wi)iej)||9||c0((wj)j€J)-
( J

Ad 2.: By definition of co((w; ;)i jcrxs), we have < {e; ;} >k C co((wi ;)i )erxs) densely.
Ad3.:Letgi = (¢14),---+9n = (gn,;)- We compute

||\Il(f1,g1) 4+ 4 \Ij(frwgn)||co((wi,j)(i,j)el><J) ij . ||f1 “ 01,5 + .o 4 fn . gn’-jHCO((wi)iEI)
>wj -t (lguglILATY -V gasllLFall)

for all 5 € J. Consequently,
I Cfs 90) -+ Yo g leo iy ipernn 2t max(wslgus ANV -V wjlgnlll fall)
=t - (lgallll 2l V-V Al gnll]fnlD
=t - (1 (f gV -V (s gn) -
[

Corollary 3.34. If {e;,} C E\,...,{ei,} C E,are orthogonal bases, then {e;, ®---®e;,} C
E& - - ®E,; will be an orthogonal basis.

Proof. Consider the canonical commuting diagram

E1®-“®Ed

ei—>eq; ®®€Ld
~

CO((wi)i€I1)® T @)Co((wi)ield) —— co((Wi)ier, x---x1,)

with w; := w;, - --w;,. The bottom map is an (isometric) isomorphism of K-Banach spaces
by an induction over d > 1 through Lemma 3.33. The left-hand map is an (isometric) isomor-
phism of K-Banach spaces by functoriality of the completed tensor product. Consequently
the right-hand map is also an (isometric) isomorphism. |
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Lemma 3.35. Let W be the initial K-Banach space with respect to finitely many inclusion
mappings

Vi
:V incl.
W : %4
incl. A
Vi
for K-Banach spaces V1, ..., V,and V. Le. W = ViN...NV, as an abstract K-vector space
and its norm ||-||,, on W is given by the pointwise maximum |||y, = |||, V ...V [|“]y, .

(i) If {e;} C W is an orthogonal family of Vi, ..., V,, then {e;} will be an orthogonal
Sfamily of W.

(ii) If{e;} C W is an orthogonal basis of V1, ..., V, and V, then {e;} will be an orthogonal
basis of W.

Proof. Ad (i): Let {e;} be orthogonal in V3, ..., V,. We prove {¢;} C W to be orthogonal by
the following computation:

||Z Aieilly =||Z Ai€illy, VooV ||Z Aieilly,
(A 1 3

:m?X‘)‘i’HeiHVl V...V mZaXP\i’Heian

:m?X|>\i|||€i||w~

Ad (ii): Let x € W. Then we can write = Y;5 A;e; in Vj for j € {1,...,n}. This implies
r = Y ;50 Aie; in V. By orthogonality of {e;} C V, the coefficients )\; are uniquely deter-
mined, so the same equality holds in Vi, ..., V], and therefore as well in W. The orthogonality
of {e;} C W has been proven in (7). [

The initial K-Banach algebra C"(X, K) of thought topological tensor products
C"(X,K) for r ¢ N?,

Assumption. Throughout this subsection’s paragraph about the initial K-Banach algebra of
thought topological tensor products, we will by X C K% denote a nonempty compact cartesian
subset whose factors contain no isolated point.

Notation. For a d-tuple s € R%,, we put |s| = s; 4 - -+ + s4. For r € R, we define finite
sets of d-tuples

N2, ={s € R, : |s| =rands; € N for all but possibly one coordinate k € {1,...,d}}.

Definition 3.36. Letr = v + p- e, € N withv € NYand k € {1,...,d}. Then we define
a mapping f : X — E to be a C"-function if the following holds:

(i) For all n € [0, v] with n;, < 14, the mapping fI”l : X"l — E extends to a continuous
function f : X" & E,
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(ii) Forallm € [0, ] with ny, = v, the mapping f/" : X"l — E extends to a C*"¢-function
S Xl — E; here we consider X"l = 1X x -+ x X for n € N as the cartesian

]

product of the metric spaces *X := X,[cn’“ ,andsoput’e = e, fork =1,...,d.

The K-vector space of all C"-functions f : X — E will be denoted by C"(.X, E). We equip it
with the norm ||-||.. defined by

- V] (n]
Fler = g My v max 7 e

Proposition 3.37. The space C"(X, E) is a K-Banach space.

Proof. Tt is clear that C"(X, E) is a normed K-vector space. We prove completeness. As a
normed K-vector space, the space C"(X, E) is canonically isomorphic to the subspace

A={(gn) € ]] cO(x™ B) x II Cp'ke(X["],E) D Gnjxinl = fInl forn e [0,v]}

nelo,v] ne(o,v]
with ng <vg with np=vy
c JI M E)x [ crextE)=P
ne(0,v] nel0,v]
with ng <vg with ng=vy

Each factor C°( X, E) for n;, < v, is complete by Corollary 1.3. The factors C*¢(X " E)
for n; = v} are complete by Proposition 1.25. Hence it remains to prove that A is closed in
P.

For this, let f = (fn)nejo.) be in the boundary of A in P, i.e. in any neighborhood U > f of
P lies another element g € A. We have to prove that f € A; in other words putting f := fo,
necessarily f, xin = flnlforn € [0, v].

Fix ¢ > 0, an order m € [0, v] and € X[, We must show || f,,(z) — f"l(z)| < e.

With C'(x) > 1 as in Lemma 3.12, we find another g € A such that ||f — g|| < ¢/C(x).
Hence with g := g, it holds in particular

I(f—g)(x)|| <e/C(x) forxe{z;, i1 =0,....,n}x---x{x;, :iqg=0,...,n4}.

By Lemma 3.12, we find ||(g — f)™l(x)|| < €. Since G| xInl = g™, we find

I fa(@) = F(@)I] < ([ fal@) = gu(@)]| V llgn(®) — " (2)]]
= [Ifa(@) = ga(@)]| V [lg"(z) — F"l()]
= [Ifa(@) = ga(@)|| V [I(g — )" ()] <&

8

Proposition 3.38. The K-Banach space C" (X, E) is the initial K-Banach space with respect

incl.

to the inclusion mappings C"(X,E) = C"(X,E) for r € N4,
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Proof. Firstly by Lemma 3.5, we find f € C"(X,K) if and only if f € C"*?(X,K) for
n = 0,...,v. Hence by Proposition 3.8, the mapping f” : X"l — E extends to a mapping
f e ¢cr(X E) for every n € N%,. By Corollary 1.31, we find ™ ¢ cr(X[" E) if
and only if fI"l € C*"¢(X E)fork = 1,...,d. Thus f € C"(X,E) if and only if for every
n € N. and k = 1,...,d, the mapping fI"l : X"l — E extends to a mapping f™ ¢
CP"e(X, E). Hence by Definition 3.36, we find f € C"(X, E) if and only if f € C"(X, E) for
everyr =n+p-e, € NL withn € N¢ andk=1,...,d.

Moreover for f € C"(X, E) holds

[fller = [1fllee VooV Lf oo

_ [n] in]
nw{gﬁ;ﬁgyllf ||supvnwrigle‘t;<|gyl|f llco

_ ] QI
paax |l V| max | max [LFE| e

=, max (28 [|fllentoe, = max 1 llers
the first equality by Lemma 3.11, the second one by definition, the third one by Corollary 1.31
and the penultimate one by Definition 3.36. |

Remark 3.39. In the other direction, we have by definition a norm-nonincreasing inclusion of
K-Banach spaces C”(X,K) C C*(X,K) with 7 := (v,...,v) forv € N,

Lemma 3.40. Ler X' C K¢ X" C K be nonempty compact cartesian subsets whose
factors contain no isolated point. For r = (v',r") € (N¥ x N%')_,, consider the mapping

C" (X' K) x C"'(X",K) = C"(X' x X" K),
(f,9) =[Oy

1. It is bilinear and norm-preserving.

2. LetO <t <L Iffr,...,f. €C" (X' K) are t-orthogonal, then for any g1, ..., gn €
C™" (X", K) their products fi ® g, ..., fo®gn € C"(X' x X", K) will be t-orthogonal.

Proof. Letr = (r',r") =v+p e, € (NY x N*')_, withv = (v, V") € N¥ x N’ and
ke {l,...,d+e}. We may assume w.l.o.g. k € {1,...,d}. Let us denote the above mapping
by W.

Firstly, we prove im¥ C C"(X’ x X", K). Assume f € C" (X', K),g € C"' (X", K). Let
h = f ® g be the image of (f,g). By Lemma 3.14, if n = (n’,n”) € [0,v] C N¥ x N%',
then A"l = fI"'l © ¢""l. Hence for n € [0,v] with n; < v, by Proposition 1.7(iii) the
functions f1"'l and ¢!™"Iwill extend to continuous functions 1 and ¢! only if A"l extends
to a continuous function A, and for n € [0, v]| with n;, = 1}, by Proposition 1.24(ii) the
function £ will extend to a Cr*e_function ™1 and ¢/l will extend to a C°-function g™
only if h"l extends to a C*"e-function h!™,
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Ad 1.: The map W is quickly checked to be bilinear. We find

If ©9ller

= [n] [n]

neto X N(F 09 oV o max I(f©9) o

= ] & || v ] & |

"'G[O”"IFW%"%%:HJC ©9" n'e[o,u}]][lw%éfn;:u;,”f © 9" igore
n”E[O,l/”] TLNE[O,V"]

= [n/} . [n”} [n/} . [n//}

D P TR U I S I
n“E[O,u”] TL”E[O,I///]

=1l lgllers

here the second equality by Lemma 3.14(ii) and the following one by Proposition 1.24(ii).
Ad 2.: We compute

If1©g+ 4+ fn®gnller
= max I(fiog+ -+ o gn)[n”’sup

n€[0,v] with ng <vg

v max |
ne(0,v] with ng=vy

= max | fT 0" 4o i o gl

(ioa+-+ Lo 9n>[n}||cp~ke

lsup

n/€[0,v'] with n) <vj,
n’€[0,v"]
Vv "o g™l 4 ) o ]
n’€[07v’r]nv%t}l§n;€:1/]’wl|f1 ©gr "+ +fn © gn, ||Cp-ke
n'’ €[0,v"]
— [n'] [n'"] o (] [n"]
"”Ig[%?l(/”}( n’e[O,uﬂnv%i:t)l(l nj <vj Hfl © g1 + + fn © In Hsup
vooomax Mg 44 0 g lg,)
n/€[0,v'] with nj=vy
[n'] ("] [n/] "¢
> . )
> n,e[&;?gg;n;@k!!fl gt @) 4 g @)
Wl W L )
V ol 9@ A BT g e

for any fixed n” € [0,v"] and 2" € X" "] Here the second equality by Lemma 3.14(ii).
Then the last term, fixing n” € [0,v”] and 2" € X equals ||f; - g&nu}(:v”) 4+ 4
fo o g (@")|| . Since fi,..., f, are t-orthogonal with respect to |||, we find for all
n” € [0,v"] and 2" € X"™" that

1™ @) 4 foe g U@ o /> @] il V-V g @] i

In particular for fixed n” € [0,v"], itholds for i = 1,...,n that

1™ @) 4+ e g W@ e /62 sup (g™ @ filler = 19" g - il

IE”GX”["”]
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Consequently,

/i@ g1+ + fu® galler = ¢+ max  max g™, |l filler

i=1,...,n n"€[0,v"]

=t max gl || filler

=t  max 1fi © giller-

..... n
|

Corollary 3.41. Let X1, ..., Xy C K be nonempty compact subsets without isolated points.
Forr € N2 | consider the mapping

=r

C (X, K) X - x C(Xg, K) 5 C"(X) x - x Xg,K),
(froofa) = f = (1, wa) = fi(@) - falza)]-

If {e;;} C C(X1,K),... {e;,} C C"(X4,K) are orthogonal families, so {e;, © --- ®
e} € C"(Xq x -+ x Xg,K) will be an orthogonal family with |e;, © --- © e;,||or =
||6i1 ||C""1 e ||€id||(2’“d~

Proof. First off we revisit the situation of Lemma 3.40: Let X' C K% X" C K and
let {¢/} € C"(X',K) as well as {e/} C C"'(X",K) be orthogonal families. We want
to prove {e;; = e; ® ej} C C"(X' x X", K) to be an orthogonal family. That is, if
[ =0 e; € C"(X' x X" K) is a finite sum of such, then || f||.. = max;;|a;;|||e; ;|-

Firstly [|e; © €7||or = [|€f[|cw[|€]]|or by the norm-preservation in Property 1 of Lemma 3.40.
By the bilinearity in Property 1, we can write

F=2 2 ae0e =3 e00Q aye) =3 €0

with f; == Y a;je; € C™ (X", K). By Property 2, we find by orthogonality of the finitely
many e; € C" (X', K) in this sum that || f||,» = max;||e}||c || fillcrw- Fixing the index i,
it holds by orthogonality of the finitely many e} € C™(X") in the fi-sum that || fi|| o =
max;|a; ;||| €] . Together, we find

I ller = maxlelln | illewr = maxlasllellem €] v = maxtaslieslle-

Le. {e;;} C C"(X' x X", K) is an orthogonal family.

Now letd = d' +d” ford > land X = X' x X" with X' = X; x --- x Xy € K
and r = (r',r") € N. with v’ = (ry,...,74). Then our mapping ¥ coincides with the
mapping C" (X', K) x C"" (X", K) — C"(X’ x X", K) given in Lemma 3.40. By induction
ond > 1, we find {¢}, = ¢, ® - ®e¢;,} C C" (X', K) to be an orthogonal family and
likewise for {e, } C C™" (X", K). Then in this situation, we have shown above that

{ea © - Oey,} ={evjn =€y ©eju} CC(X' x X" K) =C"(X1 x -+ x X4,K)
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is an orthogonal family. Moreover we find by induction on d > 1 the norm to comport with
the tensor product:

lei © - © eiller = M€l © €Guller = llewllem llegrllerr = lleiller - -+ leigllra-
|
Lemma 3.42. Let X1, ..., X, C K be nonempty compact subsets without isolated points. For

r ¢ N¢

C (X, K) X - x C(Xg, K) 5 C"(X) x - x Xyg,K),
(fl, .. .,fd) — f = [(1‘1, ... ,[L’d) — f1(1'1) .. fd(xd)]

Assume the K-linear span of im VU to be dense in C" (X, x - -+ x X4, K). Then V induces an
(isometric) isomorphism of K-Banach spaces

(XL K)B - BCT (X, K) = CT(X) % -+ x Xy, K).

Proof. Let X' = X1 x - x X CKTL X" =X, CKandr' = (ry,...,74.1), 7" =14
so that 7 = (', 7") € N¢ . Then ¥ coincides with the mapping

C"(X' K)x C"(X" K) = C"(X' x X" K)

consider the mapping

given in Lemma 3.40. By our density assumption, the following three premisses are fulfilled:
1. The mapping V is bilinear and norm-nonincreasing.
2. Let0 <t < 1.If f1,---, fn € C" (X', K) are t-orthogonal, then for any g1, ..., g, €
C™" (X", K), their products f; ® g1, ..., fn®gn € C"(X'x X" K) will be t-orthogonal.
3. The K-linear span of im W is dense in C" (X’ x X" K).

By the criterion of [van Rooij, 1978, Comment following Cor. 4.31], the map ¥ induces an
isomorphism of K-Banach spaces C™ (X', K)®C™ (X", K) — C"(X' x X", K). Then an
induction over d > 1 yields the result. |

The following Corollary 3.43 and Lemma 3.44 hold for an arbitrary coordinate index k €
{1,...,d} but will for notational convenience only be stated and proven for k = 1.

Corollary 3.43. Let X, ..., Xy C K be nonempty compact subsets without isolated points.
Consider the mapping
CP(X1,K) x CO(X3,K) x -+ x CO( X4, K) 5 CPO0(X) x - x Xy, K),
(fiofa) = f = (21, wa) = fi(@) -+ falza)]-
Then V induces an (isometric) isomorphism of K-Banach spaces
CP (X1, K)&C( X5, K)&® - - - RC° (X4, K) — CPO-0(X) x -+ x Xy, K).

Proof. By Corollary 1.29, the locally constant functions are dense in C(*%0(X; x --- x
Xy, K). For any characteristic function 15 : X; X --- x X; — Kofaball B=B; x--- x By
holds 15 = 15, ©® - -- ® 1g,. By compactness, these characteristic functions K-linearly span
all locally constant functions. Therefore im ¥ C C(*09(X; x - -- x X, K) densely and the
result follows by Lemma 3.42. |
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The Mahler base of C"(Z¢, K)

Assumption. We will throughout this subsection’s paragraph on the Mahler base of CT(Zg, K)
assume that K O Q, as a normed field.

The argument given in Subsection 2.3 on the distinguished orthogonal basis of C°(Z,, K)
by Mabhler polynomials extends verbatim to the multivariate case, yielding an isomorphism of
K-Banach spaces ¢o(N?, K) = C°(Z%,K). We will in the following adopt the terminology
used there in the multivariate case:

Definition. We define the i-th Mahler polynomial (’;) : 2% — K fori € N* by (j) =
(7) @+ @ ;). cf. Definition 2.38.

11

Lemma 3.44. The family {( )} C Cre (2% K) is an orthogonal basis with ||( )||Cp o =
pﬂl(ll).

Proof. By Theorem 2.49, the family {( )} C C*(Zy,K) is an orthogonal basis for arbitrary

p € [0,1[. Hence we find { (") @---® ()} C CP(ZP,K)@@CO(ZP,K)@ - ®CY(Zy, K) to
be an orthogonal basis by Corollary 3.34. Then by Corollary 3.43 holds

Cre (Zy x -+ x Ly, K) = CP(Z,, K)RC*(Z,, K)® - - - RC"(Z,, K).

This (isometric) isomorphism maps ( ) to ( ) ® - ® (d> Therefore {( )} C Cre (Z],K)
is an orthogonal basis. By [van Rooij, 1978, Theorem 4. 27(1)], we find

e =G TG

the last equality by Theorem 2.49. |

— pp~1(i1).

’

crel ‘ ce ‘ Cco ‘ co

Corollary 3.45. The family {( )} C C/(Zi,K) is an orthogonal basis with ||( )Hcp =
pP IV VIGa)]

Proof. By Lemma 3.44 for ey, ..., ey4, we find {( )} to be an orthogonal basis of the K-
Banach spaces C”' (Z{, K), . C” ¢d(Z¢,K) and for p = 0 one of C°(Z¢, K). Consequently
by Corollary 1.31 and Lemma 3.35(ii), we find {( )} C CP(ZZ,K) to be an orthogonal basis

OLAIGL. )

the last equality by Theorem 2.49. |

_ )V Vi),
cred 7

\/...\/‘

cr ‘ cre1

Lemma 3.46. For r € N _ the subset {( )} C C"(Z%,K) is an orthogonal family with

H( )“cr pr @+ twryGa) - here wp, (i), ..., wy,(iq) as in Theorem 2.55.
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Proof. By Theorem 2.55, the family {(’:)} C C"(Z,, K) is in particular an orthogonal family.
By Corollary 3.41, we find {(:) = (Z) ORRNNO. (;)} C C"(Z},K) to be an orthogonal family

G 1E~1G)

the last equality by Theorem 2.55. |

— pwrl (i1) .. .pw’“d (Zd)’
Crd

cr ’ Ccn ‘

Theorem 3.47. The family {(’;)} C C"(Z{,K) is an orthogonal basis and

I

here w,, (i1), ..., w,,(iq) as in Theorem 2.55.

=p” @  with w, (1) = max wy, (i1) + - - + wy,(ia);
or reNd

Proof. By Lemma 3.46, we find {(j)} C C"(Z%,K) to be an orthogonal family with val-
uations H(’:)HCT = pun)+-twry(a) for all » € N . Consequently by Proposition 3.38
and Lemma 3.35(i), we find {(’:)} C C"(Z¢, K) to be an orthogonal family with || (:) ler =
max,cnd || (:) ||cr- By [Schikhof, 1984, Exercise 50.F], an orthogonal family whose K-linear
span is dense is an orthogonal base. It thus remains to show that the K-linear span of { (;‘)} is
dense in C"(Z¢, K).

In the case of one variable, the family {(’:)} is by orthogonality of {(t)} C C°(zf,K) in
particular linearly independent. As

< {c;) e (Z)} >K-vesp.C { polynomial functions p : Z, — K of degree at most g},

and the right hand side has dimension g + 1, the K-linear span of {(’;)} consists of all poly-
nomial functions p : Z, — K. By multilinearity, the K-linear span of {(:)} C C"(Z{,K)
consists of all polynomial functions p : Zg — K. By Corollary 3.32, these are indeed dense
inside C"(Z¢, K). |

Definition. For sequences (u;) and (w;) with values in R, running over the same index set
1, we introduce the equivalence relation

(u;) ~ (w;) if there exist constants 0 < ¢ <1 < Cwithc-u; <w; < C-wu; foralli € 1.
Lemma 3.48. We have (||(;) ¢ )iene ~ (15 V ...V i) sea.
Proof. By Lemma 2.58, we find for every r € R positive constants ¢(r) < 1 < C(r) with

c(r) -m" < p¥rm < O(r) - m” for every m € N.
For r € N? | define the positive constants

=r>

c(r):=c(r)---clra) <1< C(r) :=C(r1) -+ - C(rg).
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Then by Lemma 3.46, for all 2 € N¢ holds

k
o)
1

Assume that i, = i1 V... Vig. Thenii* - - -d;? < 4;'- -4, = d. Hence i{" - - - i is maximal
among {i{' - - - iy : » € N } if and only if r, = 7. Therefore max,cya 7' -+ iy = if V...V
iy. Defining the positive constants c(r) := min,eye, c(r) < 1 < C(r) := max,ene CO(r), it
follows by the preceding Theorem 3.47 in particular that for all 2 € N¢ holds

Y

Corollary 3.49. We have (||(;)l¢-Jiene ~ ([#]")iene.

<O(r) -,

cr

c(r)-(ilv...\/z’d)rg‘

<C(r)- (i1 V... Vig).
C'r

Proof. By Lemma 3.48, there exist positive constants ¢ < 1 < C' with ¢ (i1 V... Vig)" <
1()ller < C+ (i V... Vig)". Since iy V... Vig < iy 4+ +ig < d- (i1 V... Vig), the
asserted constriction holds for the positive constants ¢ := ¢/d" < 1 < C. [ |

3.3 Description of C"(X,K) for open X C Q¢ through Taylor
polynomials

Assumption. We will throughout this subsection assume K to be a complete non-trivially non-
Archimedeanly valued locally compact field.

Definition 3.50. Let X C K% be an open subset and k € {1,...,d}. We will speak of a C1 -
function f : X — K if there are continuous functions Do f, Di.e, f,- -, Dye, f : X = K
such that if one defines R, f : X!®) — Kon Xe .= {(2;) € X x K with z+t-e;, € X}
by

Ry f(x;t) = f(x +t-ex) — | > Dy f(a)t,

then for every point @ € X and any € > 0, there will exist a neighborhood U > a such that
|Ry.e, f(x;t)| < elt]” forall z+t¢-exelU.
We will denote the set of all Cf “*-function f : X — K by C1“* (X, K).

Since R,.c, f : X®] — K vanishes on X x {0}, we see that f = D,f. Moreover the
continuity of Dy f, D¢, f, - - -, Dye, f : X — K implies the continuity of R,,.., f : X®* — K.
By the above convergence condition, we even have a continuous mapping A, ., f : X ler] 5 K,
defined as the extension of the function A, ., f(7;t) := Ry, f(7;y)/t" with domain Xel :=
{(z;t) € X x K* with x 4+ t - e, € X} and which will vanish if ¢ does.

Lemma 3.51. The functions Do f,Di.e, f- -, Due,f : X — Kin Definition 3.50 are unique.
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Proof. Let f € C™¢(X,K). This is proven by induction on v > 0. If v = 0, we noticed
above that necessarily Do f = f will be uniquely determined. If » > 1, let us assume that f
has another Taylor-polynomial expansion

flatt-e)= > Die @)t + 0 flz;t)t” for (a;t) € Xed

1=0,...,v

with continuous functions Dg.e, f,..., Dy, f : X — Kand 0,.¢, f : Xlesl 5 K. With
Ote, f(m51) = Dpe, f(2) + 0ye, f (3 1)t, we find

flx+t-er) = Y Die (@)t + 0y fx;1)t"

1=0,...,v
= Y Do f@) +0pre fla; ) for (z;t) € Xew,
i=0, w1

Since D,.¢, f and 0,,.¢, f are continuous maps, so is 9,_1., f. Likewise for D, .., f, A,.¢, f and
the mapping A, 1., f(2;t) := Dy, f(x) + Ay, f(x;1)t. By the assumed uniqueness up to
degree v — 1, we obtain Do f = Do f, D1.e,f = Die,fs - Dv—1.e,f = Du_1.¢, f and thus

Oy te, f(xt) = Ayve, fa;t) forall (z;t) € Xlex],

By definition, the above equality for ¢ = 0 yields D,.e, f = Dy, f, as 0y, f and A, ., f
vanish for ¢ = 0. |

Definition. Fix a coordinate index k € {1,...,d}.

(i) Let f € C7** (X, K). We define functions A,., f : Xl — K and |A,., f| : Xeel —
R, by putting

Ry, f(x;t)
tl/

. |Ru-ekf<x3 t)‘

Aye f(x3t) = and  |A., fl(z;1) == T

Since f € Cy®*(X, K), these functions will extend continuously onto X ¢+ if we let
them vanish for ¢ = 0. We denote these extensions likewise.

(i) By Lemma 3.51, the functions Dy.,,..., Dy, f : X — K of Definition 3.51 are
uniquely determined continuous functions. So it makes sense to endow C;“* (X, K)
with the locally convex topology induced by the family of seminorms {||-|,re. .} run-
ning through all compact subsets C' C X defined by '

[ Flleper o= Do fllc VIPrefllo V- VIDoerfllo V N1 Are flloxe:

The next five lemmata hold for a general coordinate index k € {1,...,d}, but will for
notational convenience only be stated and proven for k = 1.

Lemma 3.52. Let [ € C" (X, K) for a ball X C K<. Then for (z;t) € X® holds

flx+t-e)= Z Di.elf(a:)ti—i-f[”'eﬂ(xl—|—t,x1,...,x1;x2;...;xd)t”
i=0,...v—1

with continuous functions D;.., f : X — K and the C”®' -function fVe1l . Xvel 5 K.

109



Proof. This is proven bx induction on ||, the case |r| = 0 being trivial. Solet [r] = v+1 >
land f € C™*(X,K) C C" ' (X, K) (the inclusion holding by Definition 3.36). By the
induction hypothesis, we have a unique Taylor-polynomial expansion

flx+t-e)= Z Do, f(x)t + f[”'eﬂ(xl +t,x, ., Xy T )t
1=0,...,v—1

for all (z;t) € X!e1l with continuous functions D; ., f : X — K and a C”**-function fl"-1l :
X[ell 5 K. The definition of f"+'el(x; +¢,21,... 21, 29;... ;24) for nonzero ¢ yields

f[”‘el](x1+t,x1, C T T X)) = Du.elf(x)+tf[”+1'el](x1 +t, Ty, T X Tg).

This furnishes the existence of our Taylor-polynomial expansion up to degree v. As f €
C (X, K), we see that D, f is continuous since fI"*1l is so and that f+1-el is a Crer-
function. u

Remark. We note that the preceding Lemma 3.52 yields an inclusion of locally convex K-
vector spaces C" (X, K) C C7°*(X, K) for any coordinate index k € {1,...,d}. For this,
note that by uniqueness necessarily D;., f = D, f fori = 0,...,v and A, f(x;t) =
fred(my +tay, . w e xg).

Lemma 3.53. Let X C K be open and f € C7* (X, K). Then (})Djc, f, (") Djives
. (”.)D,,_elfprove Do, ftobeinCy 7 (X, K) forj =0,...,v.

J

Proof. Let f € Cy** (X, K). We show that the continuous functions

<j> DJ'-81 fa (j + 1) Dj+1'€1 fa SRR <V> DV-e1f
J J J

prove D;., f tobe in C; 7 (X, K) for fixed j € {0,...,v}. Fixe >0anda € X. We find a
ballU = U; x --- x U; © a such that

|R,f(z;21 — )| <elxy —uyr|” forall @ = (z1,29,...,2q), (Y1, 22,...,24) € U.
As U, is likewise a ball, it has the B, -property by Lemma 2.27. If t := x; — y; # 0, then
we will fix x9,..., 24 and find by Lemma 2.31 applied to f,, ., = f(_ 22,...,24) €
Ct(Uy, K) a uniform constant C' > 0 (only depending on U}), a finite subset P C B<s(x) C
Uy with ¢ := |¢| > 0 such that

|R,_j.e,Dje, fx;1)| <C|t|™ max  |Ry.e f(z,20,..., 24520 — 2)]

zo=x1,y1 and z€P

<C|t|™ max elzg — 2| < Celt|"™;

zo=x1,y1 and z€P

the middle inequality as (zq, z2, ..., Z4), (2,22, ..., x4) € U and the last one since |zo—z| < 6,
both points zp = x1,y; being the centers of B<s(z1). If ¢ = 0, this inequality will hold
trivially. |
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Definition. Let g € N?. Then we define a locally polynomial function f : X — K to have
degree at most g if for every point a € X, there will exist a neighborhood U > a such that
Jiv = pyv for a polynomial function p = 3 ;c(0 g a;*".

We will denote the set of all locally polynomials functions f : X — K of degree at most g by
C2 (X, K).

Lemma 3.54. For a ball X C K¢ we have a dense inclusion C*, (X,K) C Cy* (X, K) of

<v-ei
the locally polynomial functions of degree g < v - e, into the Ct “* -functions.

Proof. For this statement to be meaningful, recall that by Remark 3.25 and Lemma 3.52 above,
we have a chain of inclusions

Cpol

<v-ep

(X,K) C C"(X,K) C C™(X,K) C C7 (X, K).

Fix f € C7*(X,K) and ¢ > 0. By Lemma 3.53, we find D,..,f € C" " (X,K) for
n =20,...,v. By compactness, we find 0 < d; < 1 such that forn =0, ..., v holds

|Ry—n-eyDnoe, fx; )| < elt| ™™ forall o +t- e,z € X with [¢t] < 6. (%)

We will fix § := §; > 0 and § := (61,0,...,0) € [0,1]¢ until the end of this proof. By
downward induction on n = v,...,0, we will inductively construct locally §-constant (see
Definition 1.26) functions g,.e,, - - ., gne, : X — K such that

v v—n- n + 1 r—n
||Dn~elf B <n> Gv-ex * Yoo ( n )gn+1~el €1 _gn~61||sup < 2 )
Let n = v. By (x) for n = v, it holds

|Dy-elf(x/1’x27 B 7xd) - Dl/~e1f(xlax27 s 7xd>| S €|[E,1 - mllp

for all (2, xo,...,2q), (1, 22,...,24) € X with |2] — 21| < §;. By Lemma 1.28 applied to
4 = (4,0,...,0), we find locally d-constant g,.., : X — K such that

”Dll'elf - gV~el” < ed”.

sup —

Let n < v and assume we have constructed locally d-constant functions g,.e,, - - -, gnil.e; :
X — K such that

v o _
||Dm'61f o <m>gy'el KT — e — gm'31||sup < ed"™ ™ form = Vyoooyn+ 1.
We put fre, := Dpe, f — (Z)g,,.el ®Te L (”Zl)gnﬂ.el*“. Let (2}, z9,...,24) and
(21,22, ...,x4) be two points in X. We will prove
|fre (T], oy oo Ta) — frey (X1, T, -y 2q)] < 677" if |2f — 24| < 0.

111



Then by Lemma 1.28, there exists locally d-constant g,.., : X — K such that f,., :=
fre; — Gn-e, has norm || f,., Hsup < &6"7". This will complete the n-th construction step since

% v v—n-e n+1 e
Jner = fneis — Gnes = Dnoer f — (n> Ju-e; * P—ee = ( n >gn+1~el ' —Oneep

Put X = X' x X” with X' = Xj and X" = X, x --- x Xy and let (' + h',2"), (2, 2") €
X' x X" with ' € K. We compute

[frver (@ + B 2") = fre, (@' 2")]

L R R W (EXU R VIl () T R RS

i=1,...,v—n

< ’Dn-elf(xl + h/, x//) . Dn-e1f(x/7 iL‘”) . Z (n: Z) Di-elf(x/7$”)h/i‘

i=1,...,v—n

v ¥ (”;f Z)Dm.elf(x',x")h”— )3 (”:Z)gmel(x',x")((w'+h'>@‘—x”'>|;

i=1,...,v—n i=1,...,v—n

the first equality by g, 11.¢,,-- -, Gve; : X — K being locally d-constant. To prove the claimed
inequality above, we will assume from now on |h’| < §. We can then estimate by Inequality
() the above maximum’s first absolute value through

Duer (@' Hoa”) — DS 2"y — 3 (”:Z)Dmelf(xcx")h’ﬂ

i=1,....v—n

=Ry _pe,Dne, f((2',2"); h)| <elh|"™" <ed™™".

Regarding the second term, let us fix n € N. We use the binomial identity and rearrange the
summation order to obtain

> <n ’ Z) Gnvices (&' ") (2 + 1) = ")

i=1,...,v—n n

_ Z <’I’L:L- Z) Gntier (l’/, I'H) Z <Z> x/i—jh/j

i=1,...v—n j=1,...i \J
: i+7\(n+i+j ;
= Z h” Z < j ) ( n )gn+i+j-e1 (l’/, l‘”)xl
j=1,...,v—n i=0,...,v—n—j

— Z h/] Z (n + ]) (n + ] + Z) gn+j+i.81 (:Ij'/’ x//)x/i.

Jj=1,...,v— i=0,...,v—(n+j) n n +j
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We obtain

n

AR +7J roon n+j+1 oM 1T
:| Z h']< n j) [Dn+j~e1f(x » L ) - Z < J >9n+j+i~el ('I y L )l’ ]|
' )

|, Z <n + 2) Dovie, f (2, I”)h’i - Z (n + z) i (@ 2 (& + B — $/2)|

j=1,...v—n 1=0,...,v—(n+j n ‘]
1% . —
= m:%lfff,,,,,llpm-elf N (m) R ”SUp‘h/|m !

< max &) "Mt =¢ed"

the last inequality by the induction hypothesis for m = n + 1,...,v (and since |//| < J).

Having found gp.e,,...,0ve : X — K, we claim tha‘E the locally (5—)Eolynomia1 function
G = Guey ¥ + -+ + gr.e; ¥°' +go.e, accomplishes || f crer < € with f := f — g. For this,
we prove firstly ||Dn.elf||Sup <ed""forn=0,...,v.

By a multi-variable version of Lemma 2.22 through Lemma 3.14, we find

v v—n-e n+1 e
Dn-elg = <n> Gu-e; * T—eee — ( n )gn—i-l-el *1 —On-ep-
By construction of gy.e,, ..., go.e, : X — K, it holds
||Dn'€1f~Hsup = ||Dn'81f - Dn'elgHsup S €5T_n fOI' n = 07 s, U (**)

It now remains to prove
|Ave, fl(x;t) <e forallz+t-e,ze X.

First off, assume || < §. Then by construction, the g,.e,,...,g0e, : X — K are locally
d-constant. Hence R, ,g(x;t) = 0 for all x +t - ey, € X with [t| < §. Therefore
Ao, fl(z:t) = |Are, fl(x;t) < € by Inequality () for n = 0. Otherwise |t| > §. Then
we estimate

[Are, fl(w; 1) =|Ryer [ 0)1/ 18]
=|fx+t-e)—glz+t-e)— > (Die,f(x) = Dieyg(@))t'|/t]

-----

<(ed" Ve max 8N )6 = €. (by (%))

.....
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Lemma 3.55. Let X,..., X; C K be compact open subsets. Consider the mapping
Cr(X1,K) x C°(X5,K) x -+ x C*'( Xy, K) — Cr (X1 x - -+ x Xg,K),
(froo i fa) = =21, za) = fi(en) - fa(za)).

It induces an (isometric) isomorphism of K-Banach spaces
Cr( X1, K)®C' (X2, K)® - - RC( X4, K) — Cre (X x -+ x Xy, K).
Proof. Firstly, notice that putting X’ := X; C Kand X" := X, x --- X4 C K%', the above
mapping is given by
Ch(X' K) x CO(X", K) 5 Crer (X' x X" K),
(fi9)= fOg.

We prove im ¥ C Cr® (X, K) with X := X’ x X”. Let us assume f € C{(X',K),g €
Co(X",K). Let h = f ® g be the image of (f,g). We suppose that the continuous functions
Dof,...,D,f : X’ — K prove f to be a Cj-function. We claim that the maps D,,.e, h :=
D.f©g: X - Kforn=0,...,vprove h : X — K to be a C"¢ -function: The maps
Dy.eyh, ..., Dy, h are continuous. It suffices to prove that for every € > 0, there exists some
0 > 0 such that

Ry, f(x;t)] < elt|” forall (z:t) € X with [t| < 6.

Since f € Ci(X,K), there exists such 6 > 0 such that |R, f(2/;t)|||gll,., < elt|” for 2’ +

sup —

t,x" € X' with|t| < . Thenfor x+t-e;,z € X with|t| < dandz = (2/,2") € X = X'x X",
we compute

Ry, f(a: ) = f (2" +8) 0 g(a") = > Dif(a') ©g(a”)]

=Ry f (s t)|lg(«")] < [Rof (2" £)l|gllsup < [l

Secondly, by the criterion of [van Rooij, 1978, Comment following Cor. 4.31], we have to
check the following:

1. The mapping V is bilinear and norm-nonincreasing.
2. The K-linear span of im W is dense in Ct “* (X' x X" K).

3. Let0 <t < 1.If fy,- -+, fn € CR(X’, K) are t-orthogonal and g1, . . . , g, € C°(X", K),
then their products f1 ® g1, ..., fn ® gn € Ct (X' x X", K) will be t-orthogonal.

Ad 1.: The map W is quickly checked to be bilinear. We find
IF © glicper =1 Doerf © gllaup V-V I Poer f © gllup V 11 Ar-er f O gl

:(HDOstup VeV ||DVf||sup v |||A7‘f|”sup) ) ”gHsup
=[1£lle; - llglleo-

sup
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Ad 2.: All locally monomial functions with a ball as support lie in im W. Hence all locally
polynomial functions with a ball as support are in the K-linear span of im W. Since the balls
form a basis of the topological space X and this space is compact, we find all locally polyno-
mial functions to be in the K-linear span of im W. By Lemma 3.54 those of degree § < v - e;
are already dense in C1 ' (X' x X" K).

Ad 3.: We compute

Ifr© g1+ -+ fa © gullgre
:ii%aXVHDi-m(fl ©gr+-+ fn an)Hsup \ H’Ar-m(fl ©Og+-+ fn ng)’Hsup

77777

> Z.i%aXVHDi-el fr-g1(@") + -+ Diey fo - gn(xll)”sup

-----

VI[1Are, (fr-g1(@") 44 fu - gn(@")lllyy,  forany fixed 2" € X"

We see that the last term for fixed 2" € X" equals [ f1 - g1(2") + -+ + fu - gn(2")[|¢;- Since
fi,. .., fn are t-orthogonal with respect to |- cp» We find for all x” € X" that

1y g1(z") + - 4 fo - gn (@) ller /t 2 N1 ()] - W filley V-V g (@) ([ fllep -

In particular it holds for j = 1,...,n that

101"+ 4 f 0@ Veger /2 50D, 10521y = 95 - 15 ey

We conclude

..........

Assumption. We will assume until the end of this subsection that K O Q, as a normed field.

Lemma 3.56. The family {(:)} C Cr®(Z],K) is an orthogonal basis with

* .
(1(; g s ~ s

Proof. Denote X' = Z, and X" = Zz_l. We consider the composition of morphisms
C"(X, K)®C (X" K) — Cr(X, K)®C* (X", K) — Cr (X' x X", K).

The first arrow is the induced map (®id : C"(X’, K)&C*( X", K) — Ci( X', K)®C* (X", K)
of the topological K-vector space morphisms given by inclusion ¢ : C" (X', K) — C}(X', K)
and the identity on C°(X”, K). Since X’ C Q, is a ball, it has the B,-property by Lemma
2.27. By Corollary 2.32, noting Q,, being locally compact, and Corollary 2.25, the canonical
inclusion C"(X’, K) — C}(X’,K) is a topological isomorphism of K-vector spaces. By
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functoriality, the first map is therefore an isomorphism of topological K-vector spaces. The
right hand isomorphism of K-Banach spaces is given by the preceding Lemma 3.55. Therefore
its composition is an isomorphism of topological K-vector spaces.

We conclude

{(Z)} C o (T K) ~ C7(X', K)BC (X", K) ~ C(Z, K)BC'(Z,)8 - C°(Z, K)

by Theorem 2.55 and Corollary 3.34 to be an orthogonal basis with

* * .
(0 g~ (s = 5

Then by Lemma 2.58, it holds (p*()); cxy ~ ()4, en- |

Lemma 3.57. The K-Banach space CT(Zg, K) is the initial topological K-vector space with
respect to the inclusion mappings

Cren (74, K)

Cr(z¢,K)

incl.

Cpe(Z2, K)

That is C" (22, K) = Cr* (24, K) N ... N Cy*(Z4, K) as an abstract K-vector space and its
norm ||-||, on C"(Z%, K) is equivalent to ||-||C;-e1 V.oV

reg.
Cr

Proof. We consider the canonical commutative diagram
co((| () llerYiene) == €o((ll () llerer V- V() llerea)iene)

Cr(Z4, K) I (22, K) N ... N (22, K)

Here the K-Banach space at the bottom right is defined as the initial K-Banach space of
Cr*(Z%,K) fork =1,...,d (inside C°(Z{, K)) and the lower inclusion mapping is given by
Lemma 3.52. By Theorem 3.47, the left-hand map is an isomorphism of K-Banach spaces and
by the preceding Lemma 3.56 for ey, . . . , ¢4 together with Lemma 3.35(i1) the right-hand map
is an isomorphism of K-Banach spaces. By Lemma 3.48 and Lemma 3.56 for k = 1,....d,

g ()

So (| (’:) lor)iena ~ (|| (j) lerer V. V| (j) l7-<a )iena and the upper map is an isomorphism
of topological K-vector spaces. The commutativity of the diagram can by K-linearity and
continuity be checked on all e; € ¢, ((|| (’;) ||cr )iend) whose only nonzero entry is 1 at the ¢-th
position. There it holds by definition of the above maps. All together, the bottom map is also
an isomorphism of topological K-vector spaces. |

C;‘ed)ieNd-

\/...\/’

)’iGNd ~ (2714 V...V ig)iENd ~ (’

(

‘C""

T-e1
CT
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Lemma 3.58. Let C' and D be balls in Q? and k € {1,... ,d}.

(i) Every Qp-scalar mapping s : C = D induces by precomposition a morphism of K-
Banach spaces Ct " (D, K) — Ct“*(C, K).

(ii) Every Qp-translate mapping t : C = D induces by precomposition a morphism of
K-Banach spaces C;* (D, K) — C7*(C, K).

(iii) Every Q,-affine scalar mapping m : C' = D induces by precomposition an isomorphism
of topological K-vector spaces C1** (D, K) — C;**(C, K).

Proof. Ad (i): Let f € Ct**(D, K) and assume D, f : D — K forn = 0,...,v to prove
this. We claim that the maps \"D,,., f o s : D — K prove f o s € C;**(C, K). We compute

Ryefos(zt)=fos(@+t-e)— > N'Dpe,fos(x)th
=f(A-(x+1-e)) Z Die, f(A-x)(AE)"
=f(\-2+ Xt ep) Z Dnekf()\ x) ()"
=Ry.e, f(A- 25 AL).

This shows 05l < [P f oSl V.V IN D] 0l ¥ 11Arey gy N <

M || flore, with M :=1V |[A]" > 0 and therefore continuity of precomposition.
Ad (ii): Let f € Ct*(D,K) and assume Dy, f : D — K forn = 0,...,v to prove this.
Then by a computation as above D,,., f ot : D — K prove f ot € Cy e’“(C, K). Moreover
this mapping is quickly checked to be norm-preserving.
Ad (ii1): Since the inverses of scalar and translation mappings are again such, they are by (i)
and (i1) isomorphisms of topological K-vector spaces. Then claim (iii) follows. |

Lemma 3.59. For any ball C' C Qg, the K-Banach space C"(C, K) is the initial topological
K-vector space with respect to the inclusion mappings

cre (C, K)

cr(cC, K)\
incl.
Cr(C,K)

Proof. We consider the canonical commutative diagram

C(Z4, K) —~~ Cp (24, K) N... N CFe4(Z, K)

3 F

C(C, K)——Cre (C,K) N... N Ci%(C, K).
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The lower and upper right K-Banach spaces are the initial K-Banach spaces of C1 ' (C, K)
and ' (2%, K) for k = 1,...,d (inside C°(Z¢, K)) and the lower and upper arrows are the
inclusion maps provided by Lemma 3.52. The left and right hand map are given by precom-
position with the Q,-affine scalar mapping ¢ : C' = Zg. By definition, the diagram com-
mutes. Regarding the left hand map, the precomposed function ¢ : C' — Zg is an invertible
C"-function for every » > (. Therefore the left hand map is an isomorphism of topological
K-vector spaces C"(C,K) — C"(Z{,K) by Proposition 3.24. The top map is an isomor-
phism of topological K-vector spaces by Lemma 3.57. Concerning the right hand map, by the
preceding Lemma 3.58 applied to D = ZZ for £k = 1,...,d, the above initial topological K-

vector space with respect to Cr“*(C, K) is isomorphic to the one with respect to C"* (Z{, K)
for k = 1,...,d. All together the bottom map is an isomorphism of topological K-vector
spaces. |

Definition. Let X C Qg be an open subset. We define C; (X, K) as the initial locally convex
K-vector space with respect to the inclusion mappings given by

Cre (X, K)
Cr(X, K)
incl.
Cred(X, K).

Corollary 3.60. Let X C Qg be an open subset. Then the canonical inclusion C" (X, K) —
CH(X, K) is an isomorphism of locally convex K-vector spaces.

Proof. First off it is an injective homomorphism of locally convex K-vector spaces by the
Remark following Lemma 3.52. Let f € C7(X,K). Then fc € C3(C,K) = C"(C,K) for
all balls C' C X by Lemma 3.59. As being C" is a local property, we find f € C"(X, K),
proving surjectivity. The defining families of seminorms are given by all ||- cp.c N CH(X,K)
respectively [|-||.. » on C"(X, K) for balls C C X. By Lemma 3.59, these seminorms for
a fixed ball C C X are equivalent. Thence we have an equality of locally convex K-vector
spaces. |

3.4 The space D"(X, K) of distributions on C"(X,E) for a compact
group X

Definition. For a compact locally cartesian subset X C K% with local factors free of isolated
points, we define the K-vector space D" (X, K) of distributions by

D"(X, K) = {all continuous K-linear mappings . : C" (X, E) — K}.

We endow D" (X, K) with the structure of a complete topological K-vector space by the op-
erator norm |-|| ,, defined on D" (X, K) by

lallpr = inf{C € Rog : |u(f)] < C- |Iflor forall f € C"(X, E)}.
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We remark firstly that by [van Rooij, 1978, Chapter III, Section "Linear Operators"], the
operator norm ||-||. is well defined, as a K-linear operator is continuous if and only if it is
bounded - meaning the existence of such a largest lower bound C'. Secondly, by [van Rooij,
1978, Exercise 3.M(i)], this normed K-vector space is complete with respect to ||-|| - as K is.

We want to define a convolution product for C"-distributions on compact groups. For this
a couple of technical preparations are in order.

Definition. Let X = X’ x X" C K% x K be a nonempty compact cartesian subset whose
factors have no isolated points and f : X’ x X” — E a mapping thereon. We consider
K% x K% as direct sum V' @ V" with V! = K¢ and V" = K%'. Then we define f to lie
in CP®7" (X' x X", E) for p/, p" € [0, 1], if for all £ > 0, there exists § > 0 such that for all
xr € Xandh' € V' h" € V" of norm at most ¢ holds, where defined,

ILf (@ + R+ B — fla+ 0] = [fl@+ R = F@)]] < e|w))71h)7"

Lemma 3.61. Letr X = X'x X" C K xK% = V'®V" be a compact cartesian subset whose
factors have no isolated points and f € C*(X,E) for p € [0,2]. Then f € C**""(X'x X", E)
forall p',p" € [0, 1] with p' + p" < p.

Proof. We distinguish two cases.

Case 1: p < 1. By compactness, there exists a § > 0 such that || f(z + h) — f(x)| < ¢]|h|”
for all x + h,z € X with ||h]| < 6. Applying this to h = b’ in V"’ respectively h = h" € V",
the non-Archimedean triangle inequality yields

ILf(z+ B + R — fz+B")] = [f(x+h) — f@)]]| < el|B])° Aen]|f < el[W]7||h")|~

forallz € X and i’ € V', h” € V" of norm at most  such that the above term is defined.
Case 2: p > 1. By Proposition 1.34, we found f € C'*?(X,E) if and only if fI'l : X1l —
Homg vesp. (V! & V", E) extends to a C*-function I} : X — Homg s (V' @ V", E).
By definition, we find by continuous extension f!(z + h,z) - h = f(x + h) — f(x) for all
x + h,x € X. In particular for b’ € V' h” € V" holds, where defined,

[flz+h +1") = f(z+0")] = [f(z+h) = f(z)]
=fW@+n+n z+n0") N —flc+n,z)n
=[fMa+n+n"z+n") — fMa+n 2)] H.

By compactness, there exists § > 0 such that || fIU(z, ) — fU(g,9)|| < ell(Z, ) — (7,9)|
for all (#,2), (7,y) € XM = X x X with ||(Z,2) — (7,)| < 6. In particular

ILf(z+ 1"+ h") = flx+ )] = [f(z+ 1) = f@)]]
<|IfU @+ b+ w0 = 02|
<e - |R"1711K] if "] < 0.
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By symmetry of /' and h”, we even have
ILf(z+h +B") = f(x+ )] = [fz+ 1) = f(=)]]
e |WIPNR"N Ae - IRIIRINE < e IIRP IR e R AT < 6.
[ |

Lemma 3.62. Let X C K be a nonempty cartesian subset whose factors contain no isolated
point and f € C*~Y(X,E). Then f € C"(X,E) if and only if f™ ¢ C'**(X" E) for all
n € N¢

=v—1*

Proof. Letn € N? _|. By continuous extension of Lemma 3.5(i), the mapping f™ : X" —

E is symmetric on X[™), ... X" Recall NW = NmJ x ... x NIl for n. € N with

N[”] = N{0-m} and ke, = (0;...;€e0;...;0) € N[, whose only nonzero vector entry is
= (1,0,...) € NIl at the k-th place. Denote by

I, = {(k,0), ..., (k,ng)} = { Xj-coordinate indices of X }.

Then the only nonzero entry of *eq is at the ij-th coordinate for a representative i, € Ij.
By Corollary 1.40, we find f" € ¢'*7(X[" E) if and only if f e cO+e)%eo (X[ E) for
k=1,...,d. By Lemma3.19, thisholds for k = 1,...,dif and only if flntesl . XInte:l o B
extends to fntesl ¢ cr(Xx[ted E). Since N¢, = {n+e,:n e N andk=1,...,d},
this holds by Proposition 3.8 if and only if f € C"(X, E).

Remark 3.63. Let X C K¢ be a compact locally cartesian subset with local factors free of
isolated points. For a finite covering 4l = {Uy, ..., U,} by balls of X (which are closed and
hence compact), define the norm |[|-[|o o = [|"ler 7, V- V [I*ller g, on CT(X, E). Then the
locally convex topology on C" (X, E) is induced by any such norm.

Proof. Given two such coverings $( and {l by balls of X, we have to prove that ||||., , and
|-||¢r & are equivalent. Then we can jointly refine these coverings. Since equivalence of norms

is transitive, it thus suffices to prove that if g4 = (U, ... m_} refines &, then the norms
Il = Il and [|-ller := [-ll¢r g will be equivalent. We have ||| < || as | leror < Hller v
for U D U. For the inverse estimate, let § := 6 Uy A ... A6 Uy, €]0, 1], w.lo.g.

Let for the time being X C K% be compact cartesian with factors free of isolated points.
Let X[;?] be as in Lemma 3.15. By induction on |n| =: n = 0,...,v, it holds for any
f € C"(X,E) by symmetry of f[™ : X"l — E in its X;-coordinates for k = 1,...,d that
[n] [n] [m] n—|m|
17 s < 17 s £ i /5

<n

Likewise for n € NZ | we find
1™ oo =1 Mg v ILF 2l v wwmwwm
< mas 1]y /67 ”|f["+pel]||| e VoV |||f["+”'ed]|||xg+6d1

[m] m| [n+p-ei] [n+p-ed] :
< mave 177 /87 S VI s

<v
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the first equality by Lemma 3.28, the following inequality by Lemma 3.29 and the last one
we just have shown. By Lemma 3.15, recall X[g} = Uyex P" with P := B<;(p) C X for
neNLIfP,...,P,C X are covering balls of diameter d, thus

I £ller < mace 7™ /87 v max | e [ £757 ] gt

<1/6" - (I fller p, V- VI fller p,)-

Let U € 4 be compact cartesian with factors free of isolated points. Then { Py, ..., P;} refines
4, and we therefore obtain ||-[|o. ;; < 1/0"-([|"[|cr g, V- V[ ller g, ) = 1/07-[[-]]. AsU € U
was arbitrary, thus ||-|| < M||-|| with M :=1/§" > 1. |

Lemma 3.64. Let ', r" and r = r' + 1" be nonnegative real numbers and X C K¢ a compact
locally cartesian group with C"-multiplication (respectively C'"P-multiplication if r < 1) whose
local factors contain no isolated point. Then for i € D" (X, K) and f € C"(X,E), their
convolution ;1 x { : X — K, defined by y +— - f(_-y), isa C"" -function.

Proof. Assume r’ = v/ + p/ and " = V" + p” with v/,v” € N and o/, p” € [0, 1] so that
r=v+pwithv =0 4+ € Nand p = p/ + p” € [0,2[. Let X” C X be an open (and
w.l.o.g. closed, hence compact) cartesian subset whose factors contain no isolated point. For
every ¢ > 0 and n” € Niy,,, we want to find a 6” > 0 such that

i f7 Uy + B7) = o Uy < el forall y 4 A",y € XM Lwith A7) < o,

Then for every n” € N, the function px fI*"'l . X" "l 5 K extends by Proposition 1.6 to a
c” -function puk fI*") : X"} 5 K. Thatis, pix fixn € " (X", K) and so uxf € C" (X, K).

Consider the composed mapping F': X x X — E given by

XxX—- X —E
(z,y) =»z-y— flz-y).

By Proposition 3.23, this is again a C"-function on X x X. Let X’ C X be an open (and
closed, hence compact) cartesian subset whose factors contain no isolated point. By Lemma
3.62, we find F"l ¢ CP((X' x X")" E) for all n = (n/,n") € (N x N%).,. Then
(X' x X"l = X/« x""") and by Lemma 3.61 holds FI"l € ¢//@e" (x'™) x x| E).
We consider X'™1 x X" C V' @ V" with V' := V"l and V" := V"] with V = K Let
e > 0. By compactness, there exists § > 0 such that for all n/, n” € N¢ with |n/| + |n"| = v,
all z € X' 5 X" and 0/ € v/ ,h" € V" of norm at most 0 holds, where defined,

I[FP ™) a4 1) = P @ b)) = [FE ) ) = F )] < e[ R7)
()
In particular this holds for all n’ € NZ , and n” € N¢

e

Fix X” C X compact cartesian with factors free of isolated points, ¢ > 0 and n” € N< ,,.
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We have % f(y) = p- F(_,y) for all y € X. Hence for all y + h",y € X" holds by
K-linearity of 11 : C"' (X, E) — K that

[(x ™y + 87 = (ux ™ )| =l FO Wy + 1) — - FOL(y))
=[u - (FOI(y + ") — FIOml(_ y)))|
<||Hl|w, (%)

where H := FIO""[(_ y+1")— FIO""l(_ y) € C"(X,E) C C" (X, E); and up to multiplying
the distribution y : C(X, K)" — K by a scalar A € K*, we assumed ||| 5 < 1.
We just saw in Remark 3.63 that the topology of C"' (X, E) is up to equivalence given by
some norm ||-|; 1= maxx||-||o ., for a finite covering of compact cartesian open subsets
X' C X whose factors have no isolated points. We may assume their diameters to be at most
J.
We recall the above definition of the function H = H(y + h”,y) € C" (X, E). Then by the
above Inequality (*x), to conclude the proof, it remains in the following to find " > 0 such
that

1H(y+ B )ller < ellB”|7" forall y+ 4",y € X with [0 < o".

Since a fortiori FI"'""l ¢ ¢ (X'™) 5 x"I""] E) forall X' C X compact cartesian without
isolated points and n’ € N% ,, we find for £ = £6” < ¢ by compactness 6 > 0 such that

IR s < NEP(Cy + 1) = FI(C ) | gmn < €187 )
forally + 1",y € X" with A" < 6.

Fix y + h",y € X"™'with |’|| < 6" := § A d. Let moreover X’ C X be a compact
cartesian subset with factors free of isolated points, n’ € N% , and z + b/, z € X’ "] Then

HM (x4 1) — H™ (1)
P g Wy 4 R — FE (o g)] — [F (a1 — FE )]

As ||h"]| < 6, we find by (x) that
IH" (2 + 1) — H™ @) < M - |W|)” forall z+ K,z e X™ with |W| <6 (1)
where we set M := ¢ - ||h”||”". Putting H := H™, we see moreover

"™ s oo
:||ﬁ||xl[nw \4 |||ﬂ[pq|||xl[n'1xx/[nq
- ~t -,
:”HHX/['I'] \4 |||H[p}|||{(I+h/,x)€X/[n/]XX’[n,] IR |I<68} \% H |H[p]|”{(erh’,g:)eX’[",]XX/["/] R[> 6}
- ~ - ,
§||H||X/[n/] \/ |||H[p]|||{(a:+h’,x)eX/["/]XX’["/] . ||h’||§5} \/ HHHX/[N/]/ép
<E WV MV IR 8 = el
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the last inequality as because of ||2”| < 0, we can invoke Inequality (1) for the outer terms,
and as ||| < 1, Inequality () for the one in-between.

We can therefore conclude the proof by

I1H

o =_ max ||H
X'CX cpt. cart.

el X

= [n] [n'] < e e’
X,gg??;gm(np;gé/|!ff HX/[nf]Vn}ggi/HH o o) < & [[R7]]7

Definition. Let r,s € Rs; and X C K¢ a compact locally cartesian group with C™+-
multiplication whose local factors contain no isolated point. We define the convolution prod-
uct 4 *x A € D'¥(X,K) of two distributions p € D"(X,K) and A € D*(X,K) as the
continuous K-linear form on C"**(X, E) given by

(A A) - f =X (uxf).
By Proposition 3.30, we have for any » € R>( a dense inclusion
{ locally polynomial functions f : X — K } C C"(X,K).

Hence the restriction map D*(X,K) — D"(X,K) for s < r is injective. We consider there-
fore D*(X, K) C D"(X, K) to be inclusions for s < r by fixing such a system of injections.

Proposition. Let K O Q, as a normed field and r, s € Rx,.
(i) The mapping

D" (2%, K) = K[ X]]rpaa = {D_ a; X" € K[[X]] with {|a;|/|]"} bounded}

i>0

o ZMC)'Xi

1€Nd
is an isomorphism of topological K-vector spaces.

(ii) By the inclusions of D"(Z}, K) and D*(Z$,K) into D""*(ZZ, K), the convolution prod-
uct jux X of p € D'(Z¢,K) and X € D*(Z%,K) corresponds to the product of their
corresponding power series in K[[X]], 1 s:bdd.-

Proof. Ad (i): By Theorem 3.47 and Corollary 3.49, we have C"(ZZ, K) = co((|#]");ene) as a
topological K-vector space. As the dual K-Banach space to ¢y ((w;);cr) for weights w; € Rx
running through an index set I consists of all K-sequences (a;);c; with {|a;|w;} bounded, we
have the above identification.

Ad (if): Since (*}Y) = 3440 (5) (1) for o,y € Zy, we find - (7)) = X () - A()-
Therefore the mapping in (i) respects products. |
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3.5 Applications
Example of an induced C"-representation

In this paragraph, we want to describe the representation I1(V') constructed in [Berger and
Breuil, 2010, Section 4] as a quotient of principal series representation given by C"-functions.

Assumption. We will throughout this subsection’s paragraph on the example of an induced
C"-representation assume that K O Q, as a finite extension of valued fields.

We let G := GLy(Q,) and B C @ its Borel subgroup of upper triangular matrices, w =
(1 1) € G. Weput N := {(_1 i)|z € Q,} and N’ = Nw. We have canonical identifications
of Q, with N respectively N’ which we denote by ¢ respectively .

We let 7 : B — K* be a one-dimensional K-linear representation of 5. Let us assume
that it will be of class C” if we view B as an open subset of QI?;. We define

I:=Tnd%7={f:G = K|f(bg) = w(b)f(g) forallb € B,g € G}.

If J is any set of functions on a domain X C K¢ into some K-Banach space E, we will denote
by J¢ its subset of elements of class C".

Proposition 3.65. We have an isomorphism of K-vector spaces

I - {f:Q,—-K: fyz, €C(Z,,K)and
7r(( Lz :i))f(l/z)‘zp_{o} extends to a function in C"(Z,, K)},

given by the restriction of a function in I¢" onto N.

Proof. The proof is carried out in four steps.

I Let J := {f: NIIN' = K : f(i(2)) = m((V* ZL))f(¢/(1/2)) for z # 0 € Q,}. Then

the restriction of a function f : G — K onto the two subgroups N and N’ yields a K-
vector space isomorphism ¢ : [ — J.

Proof: First of all we note that

(e (B (L) e

so that the image of ¢ actually lies in J. We find

a b Ld:cbc —a 1
(C d>—< —c><—1 —dc> for ad — bc # 0,c¢ # 0.

As G is the union of all matrices such that ad — bc # 0 and either ¢ # 0 or d # 0, this
shows the injectivity of this map, whereas its surjectivity is clear.
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2. We define a function f : N][ N’ — Ktobe of class C" if forand f o/ are in C"(Q,, K).
With this definition, the restriction of  onto I¢" yields an isomorphism of K-vector spaces
¢ I¢ — J°.

Proof: First of all we note that the image lies in J¢ as the restriction of a C"-function
onto N respectively Nw is again in C" by Proposition 3.23 since ¢ respectively " and their
inclusions into GG are surely C". It is left to show that its inverse map @[]157» has image in

I¢". We have o~ 1(f) = F with

7w(b)f(n) if g=0bnwithbe€ B,n € N,
w(b)f(n) if g=bnw withb € B,n € N'.

We have to show that F'is C" on either open subset of the cover formed by BN = { ( a g) €

G|c # 0} respectively BNw = {(g Z) € G|d # 0} of G. We will do so for BN, the proof
for BNw carries through similarly. Now

a b Lj__cbc —a 1
(c d>_< _c><_1 —dc> for ad — bc # 0,¢ # 0,

so that all matrix-entries on the right hand side are well defined fractional polynomial
functions in the entries of the matrix on the left hand side, in particular the well defined
map Q) 2 BN 3 g — (b,n) € Q) x Q,isinC". As 7 and f|y are by assumption in C",
our map F'is in C" on BN by the multiplicative closure proven in Proposition 3.13.

3. We let

J={f:Q —-K: feC(Q,K)and
7'('((1/2 _1>)f(1/2)|(@p_{0} extends to a function in C"(Q,, K)}.

—z
Then we have an isomorphism of K-vector spaces J¢ — J given by the restriction of a

function f € J¢ onto N = Q,,.

Proof: Let f be in J¢. We show that this map is injective. By the property of f being
in J, we find that f is already determined on //(Q, — {0}) C N'. As fis C" on N', itis in
particular continuous there and thus already determined by its values on this dense subset
of N’. The surjectivity is clear.

4. We have

J= {f:Q,—K: fg, €C(Z,K)and
7r(( z -1 ))f(l/z)mp,{o} extends to a function in C"(Z,, K)}.

—Zz

Proof: We have to show that every function in the right hand side is already in J. Let
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f + Q, — K be such a mapping. As 7 is of class C", the map Q, — {0} > 2z —
w(( 1/z :i)) € K* also is by Proposition 3.23. Therefore f(1/2)z,_{o} is in C" and thus
through Proposition 3.23 the function fiz,_{0})-1, too. Since Q, = Z, U (Z, — {0})~",
the function f is thence in C"(Q,, K). By the same argument 7T(( 1z :i))f(l/z)@p_{o}

extends to a function in C"(Q,, K).
Then running through the equalities held in each step, we obtain the proposition. |

Let P := «(pZ,)U!(Z,) C G. As P is compact and open, we can endow [¢" with the semi-
norm ||-||¢, . Let us denote the range of the isomorphism in Proposition 3.65 by .J and endow
it with the induced seminorm through this bijection. Explicitly || f|| ; := max (|| f|lc-, | f2llcr )

where fi = fiz, and fo(2) = W((l/z :i))f(l/z) for z € Z,. On the other hand, we endow

I¢" with its natural locally convex topology given by the norms ||-
C CaG.

cr ¢ for compact and open

Proposition 3.66. For any compact and open C C G containing P exists M > 0 such that
-l < M||-l|¢r p- Thence the locally convex topology on I is given by the norm ||-|| ¢ p,
so that the isomorphism of Proposition 3.65 is a homeomorphism.

Proof. Let C C G be open, compact and containing P. As G is totally disconnected, the
projection map P — B\G has a continuous section and so the natural map B x P — G is a
continuous bijection. Let C'z be the image of the continuous map

inclusion projection

C = G5 BxP —

Thus C' C Cpg x P. As Cp is compact,
f e I, we have

Tller o =1 M < oo. Therefore, for any function
cr.Cp

||f||cr,c < ||f||CT,P><CB = M- ||f||CT,P'

Remark. One usually endows 7¢" with the norm |-, ., where K = GLy(Z,) 2 P.

Example 3.67. (Berger, Breuil) As in Example 2.34 we denote by x, : Q; — K* fory € K*
the unramified character defined by

Xy 1T AV @),

Define m : Q x Q) — K* by n(z,y) = Xa-1(x) ® y* 2xps-1(y), where o, f € K* are
algebraic elements over Q,. Let ' = {(“ d) la,d € Qy} be the diagonal torus of G. By
the canonical projection and group homomorphism B — 7' we can view 7 : B — K" as a
character on B. As any character y, is locally constant on QQ; and the monomial x+=2 is by
Lemma 2.22 arbitrarily often differentiable, we find that 7 is a C"-function for any r € R>,.
Remember that we have by Corollary 2.54 an equality C"(Z,, K) = C;(Z,, K) of topological
K-vector spaces, where

Cs(Zy,K) :={f:Z,— K :l|ayn" — 0 as n — oo}
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with the Mahler coefficients (a,, ),en from Definition 2.50 and || f|] op = lag| V max,,>1|a,|n".
Then Proposition 3.65 together with Proposition 3.66 state that we have a topological K-
vector-space-isomorphism

(Ind$ yaor ® d* 2,5 )¢ 5 {f:Q, — K|f € C4(Z,,K) and (O‘ﬂp)v@zk—2
-f(1/2)|z,~{0} extends to a function in Cg(Z,, K)}

given by the restriction of a function f : G — K in the left hand side onto .

We now let 7 = v(a). If v(a) > v(f) and v(a) + v(B) = k — 1 for a natural number k > 2,
we can apply Example 2.34 with @ = a, f = fp ' and k = k — 2 — j(= v(B) +v(a) — j) for
0 < j < v(@) to find that (%)”(z)zk‘2f(1/z)|(@p,{o} with f(z) := 27 for 0 < j < r extends to
a function in C"(Q,, K) by sending 0 to the value 0. Therefore f is an element of the range of
7, which we will refer to as B(«).

We denote for any g € G and F € (Ind$ yo—1 ® d*2x,5-1)°" by p, F the right-translation
py F' = F(-g) of F' by g. As matrix multiplication by a fixed element g € G is for any r €
R a C"-function from G into itself, we find that p, F is again in (Ind% y,1 @ d*~2y,5-1)¢".

Now leta € Q. As (F)"*""(z — )" > = n(pyn~'(f)) for f = 2/ and g = (:(11 _1)’ we
find that the K-vector-space L(«) generated by all functions 27 for 0 < j < r respectively
(%)v(z—a)(z —a)f=?7 fora € Q,and 0 < j < r lies in B(«).

C"-manifolds

Let K as usual denote a complete non-Archimedeanly non-trivially valued field. Let M be
a Hausdorff topological space. In this paragraph we want to introduce the notion of a C"-
manifold. The presentation follows [Schneider, 2007/08, Section 7,8].

Definition. We say that M is a topological manifold of dimension d or a topological d-
manifold if for every point x € M, we can find a chart (U, ¢) consisting of:

1. an open set U C M containing z, and

2. amap ¢ : U — K9 such that ¢(U) is open in K? and ¢ : U — ¢(U) is a homeomor-
phism.

Assume that we have a notion of C*-function on open subsets in K¢, i.e. for all open subsets
X C K?and Y C K¢ we have the subset C*(X,Y) C YX of all C*-functions f : X — Y.

Definition. We will say that two charts (U, ¢) and (V1) are (C*-)compatible if both maps
Ppop~!
KD pUNV)__ " 9(VNnU)C K¢
poyp~1

are C*-functions.
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Definition. An atlas for M is a set A = {(U;, ¢;)} of charts on M such that any two of these
are compatible and which covers M.

Definition. Let M be a topological d-manifold and A = {(U;, ¢;) : @ € I} an atlas of M.
Then we will say that a function f : M — K¢ is a C*-function with respect to A, if

fog;!t €C(¢i(U;),K®) forall i€l
Definition. We will call an atlas maximal if it is not contained in any strictly larger atlas.

Remark. Equivalently an atlas A, is maximal, if each chart on M compatible with every chart
in Ag will be already in A,.

Proposition 3.68. Let M be a topological d-manifold endowed with an atlas. We assume that:

- The class of C*-functions is closed under composition: Le. if U C K%V C K¢ and
W C K/ are open subsets, and f € C*(U,V),g € C*(V,W) then go f € C*(U,W).

- The C*-property is local: lLe. if {U; : i € I} is a cover by open sets of U C K¢ open and
[ U — KCis such that fy, is a C*-function for all © € I, then f is a C*-function.

Then we find that:
1. The manifold M has a maximal atlas Ay.
2. The domains {U} of all charts (U, ¢) in Ay form a topological basis of M.

3. A function f : M — K€ is a C*-function with respect to any atlas A C Ay if and only if
it is a C*-function with respect to the maximal atlas A,.

Proof. Ad 1.: We firstly show the existence of the maximal atlas .Ay. Let .4 be an atlas on M
whose existence we assume. We put

Aq = { all charts (U, ¢) compatible with every chart in A4 }.

We will show that A is an atlas on M. Then by definition, it will be maximal. For this, it
remains to prove that every two charts (U, ¢) and (V1) on M which are compatible with
every chart in A are itself compatible: Let x € U N V. By localness, we have to show that
there exists a neighborhood W C U NV of z such that

Ppog !

K72 ¢(W) (W) S K

-~ —

poyp !

are C*-functions. Let (W, #) be a chart in A with W > z. Put W = W N (U N V). Then
the maps ¢ o 0! and 6 o ¢y~ are by the assumed compatibility C*-functions. Therefore
poyl = (pof 1) o (A o)) is by closure under composition a C*-function on (). By
symmetry, we also have that ¢ o ¢! is a C*-function on ¢(W).
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Ad 2.: We now show that the domains of the charts in Ay form a topological basis of M.
Let U C M be an open subset. We have to show that for any point z € U we find a chart
(Uy, ¢5) in Ag such that z € U, C U. Let (U,, qu) € Ay be a chart with U, > z. Then we put
U, := U, NU and Oy = gz§$|Uz. Then clearly (U,, ¢,) is a chart such that x € U, C U. Be-
cause (U, ¢,) is the restriction of a chart (U,, ¢, ) in the atlas A, and hence being compatible
with every chart in A, we find it to be compatible with any chart in A,. Since Ay is maximal
we just observed above that (U,, ¢,.) € Ap.

Ad 3.: We assume that f : M — K¢ is a C*-function with respect to an atlas A C A,.
We have to show that f o ¢ is a C*-function with respect to any chart (U, ¢) € Ay on M.
By assumption, we find a cover by charts {(U;,;) : i € I} C A of U. We may assume
U; C U. By localness, it suffices to check that f o ¢y, is a C*-function for every 1 € I. We
have ¢, = ;o (™! o ¢yy,). Because (¢;, U;) and (¢, U) in A, are compatible, we find the
right hand map (¢! o ¢,) to be a C*-function. By assumption f o ¢); is a C*-function. By
closure under composition, therefore f o ¢y, is a C*-function. |

Definition. We will call the pair (M, A,) of a topological manifold M and a maximal atlas
Ay on M a C*-manifold.

Remark. The preceding proposition says that the property of a function f : M — K¢ to be C*
does not depend on the particular choice of atlas on the C*-manifold M inside A,. Calling two
atlases A and B equivalent if AU B is again an atlas, we find the maximal atlas A, therefore to
be an maximal element in its (equivalence) class of all coverings of M allowing for the notion
of a C*-function.

Example. Let r € R and let C" be the notion of r-fold differentiability, i.e. for all open
subsets X C K?and Y C K¢, we let C"(X,Y) C Y X be the subset of C"-functions as given
in Definition 3.1. Then in the sense of Proposition 3.68, we find this notion for » > 1 to be
local and closed under composition.

Proof. We check that:
1. By Definition 3.1, the C"-property is defined pointwise, in particular it is local.
2. If r > 1, the C"-functions are by Corollary 3.22 closed under composition.
|

Remark. If r < 1, then we still have a good notion of C"-functions on C'P-manifolds: That is,
let (M, Ay) be a C'P-manifold. Then as in Proposition 3.68, by the same arguments one can
characterize a function f : M — K¢ to be a C"-function if it is a C"-function with respect to
any atlas 4 C A,.
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The intertwined open cells in the
universal unitary lattice of an
unramified algebraic principal series

Introduction

We let G be (the rational points of) a connected reductive group over a local field F. Let K
be a complete non-Archimedeanly non-trivially valued field of characteristic 0 with valuation
ring 0. Let P C G be a minimal parabolic subgroup and let § : P — K* be an unramified
character. We will consider the K-linear G-representation V' = I(¢) ®xk U for an unramified
principal series 1(0) = Indg ' and an algebraic representation U, an example of a locally
algebraic representation as defined in Subsection 0.2. (For this to be meaningful, we assume
here and in the following that K O F in the case that U is a general nontrivial algebraic repre-
sentation.)

Let V' be a locally algebraic G-representation and endow V' with its finest locally convex
topology. Then V' is a locally convex K-vector space with a continuous G-action. We will
call a continuous K-Banach space representation of GG unitary it its topology can be defined
by a G-invariant norm. The universal unitary completion of V' is then defined as the unitary
K-Banach space representation V of G which is universal with respect to the morphism of
locally convex K-vector spaces V' — V.

We want to describe the universal unitary o-lattice £ C V' given as the preimage of the
unit ball in V.

Assumption. We remark that because G is reductive and char F = 0, we may assume U to
be irreducible. If U is trivial or equivalently if V' is a smooth representation, we will assume
G to be a general connected reductive group, and if U is allowed to be a general irreducible
algebraic representation, we will assume G to split (to invoke the theory of algebraic repre-
sentations of split reductive groups). Then U is parameterized by a dominant (cf. Subsection
0.2) algebraic character ¢» : P — K* and we will write I() with y = 61 for V. It is given
by the locally algebraic vectors (cf. Subsection 0.2) in the abstract K-linear principal series
representation IndIG; x with GG acting by right translation.

Let P be the minimal parabolic subgroup opposite to P. In Section 1 we will regard [ (x)
as a P-representation and give a distinguished set of generators of the K[P]-module /() in-
dexed by the Weyl group W of G.

Let I(x)(N) be the P-representation of functions in I(y) with support in N C P\G. Let

133



M be the centralizer of a maximal F-split torus A C P and M its dominant submonoid (cf.
Interlude in Section 2). In Section 2 we will then show that the the seminorm attached to the
universal unitary lattice £(N) C I(x)(/V) is nonzero if and only if |x(MT)| < 1. We will
then describe a norm ||-|| on 7(x)(/V), which can be viewed as a norm of r-fold differentiable
functions for 7 € RZ,,. Its unit ball contains (a nonzero scalar multiple of) £(V) as a subset
and we infer £(N) to be a free o-module.

In the final Section 3, we will then by a general argument observe that £ C () is a uni-
versal unitary lattice of I(x) as a G-representation if and only if it is a universal unitary lattice
of I() as a P-representation. We will then work under the assumption that 6 is regular, so
that we can make use of the theory of intertwining operators between smooth principal series:
Then by the results in Section 1, we can so describe the universal unitary lattice £ C () as
£ = Y ew Lw with cyclic o[P]-modules £,,, and moreover by the results in Section 2 - at
least if I(x) is absolutely irreducible, i.e. 6 fulfills the conditions of Remark 3.13 - we can
show each £, to be free as an o-module.

In the context of the existing literature, in the article [Berger and Breuil, 2010] the authors
showed the universal unitary completion of /(x) for the connected reductive group G =
GL2(Q,) among other results to be nonzero under the necessary assumptions on the char-
acter y given here (which is, as we do here, also assumed to be regular), implying the whole
universal unitary lattice in /() to be free as an o-module. To obtain these results, they make
noteworthy use of the very shape of this connected reductive group.

134



0 Prerequisites

Let E be a complete non-Archimedeanly non-trivially valued field with ring of integers og,
maximal ideal mg and residue field kg = og/mg, additive valuation vg and multiplicative
absolute value |-|g defined by |z|g = "™ for a constant cg < 1 which we chose to be
cg = pg in case of nonzero residue field characteristic pg.

If E is a local field (i.e. a complete non-Archimedeanly non-trivially valued field with discrete
valuation and finite residue field), we assume the additive valuation vg to take values in Z. We
denote by 7g a fixed element such that vg(7g) = 1 and let gg be the cardinality of its residue
field.

We will drop the subscripts whenever confusion is unlikely.

We will fix a local field F of residue field characteristic p and a complete non-Archimedeanly
non-trivially valued field K of characteristic 0.

0.1 The groups

We will call an affine group scheme of finite type over a field an affine (or linear) algebraic
group. Then the field F' will serve as the coefficients of the rational points of our affine alge-
braic groups.

We will assume all affine algebraic groups to be defined over F and denote these by boldface
letters. We will denote the rational points of a linear algebraic group by the corresponding
letter in ordinary type. Then the topology of F turns this into a topological group and we
will denote by an additional subscript naught either, if existent, its maximal compact open
subgroup or, otherwise, a suitably chosen compact open subgroup to be specified: E.g. if A is
a split torus, then A = A(F) and Ay C A will be its maximal compact open subgroup. We
will denote elements of these groups by their corresponding small roman letters in ordinary
type, e.g. a € A. The Lie algebra over F of a linear algebraic group will then be denoted by
the corresponding small gothic letter: E.g. if N is an affine algebraic group, n will be the Lie
algebra over F of N.

If we let G be a connected reductive group defined over F, then we will denote by P a minimal
parabolic subgroup of G, by A a maximal split torus in P and by K a special, good, maximal
compact open subgroup in G, chosen such that its Iwahori subgroup B C K is of the same
type as P.

We let P be the parabolic subgroup opposite to P and N respectively N the unipotent radical of
P respectively P. Similarly we define B as the Iwahori subgroup opposite to B. We denote by
M = Cg(A) the centralizer of A in G. Then M normalizes N respectively N by conjugation
and we have P = NM and P = NM. Denote by Ng(A) the normalizer of A inside G and let
W = Ng(A)/ Cg(A) be the Weyl group of G. We let Z = Zg the center in G. For an affine
algebraic group G, we will denote its maximal connected subgroup by G°; e.g. Z° will be the
connected identity component of the center Z.
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The choice of the maximal F-split torus A determines a (relative) root system ¢ and the
choice of the minimal parabolic subgroup P a basis A of simple roots inside ®. Then & =
(Yaea Zso - aN P)I(Xpen Z<o - « N P) and we will say that & € P is positive/negative
or write o 2 0 if it lies in the left/right hand segment. We will denote the set of nondivisible
roots by ®* and the set of positive/negative nondivisible roots by &+ C drd,

There exists by [Borel, 1991, Proposition 21.9] for each a € ® a unique root subgroup N,,
normalized by M and such that its Lie algebra is the sum of all F-vector spaces inside n where-
upon A acts through the adjoint action by the characters « or 2a.

The reflections Wa := {w, : @ € A} generate W and there is a well defined length function ¢
on W assigning to w the shortest length of any of its expressions through products of elements
in Wa. We denote by wy the unique element of maximal length in V.

0.2 The representations

The field K will serve as the coefficients of the vectors spaces our groups act on. We will call a
K-vector space V' together with a K-linear action of a group GG a (K-linear) G-representation.
We say that representation V' of a topological group G is smooth if the natural map GxV — V
is continuous for the discrete topology on V. This holds if and only if every vector is smooth,
1.e. its stabilizer is open.

We say that a representation of (the rational points of) an affine algebraic group G on a finite
dimensional F-vector space V' is algebraic (or rational), if the natural map G x V' — V' is
given by (the rational points of) a morphism of affine F-schemes G x V — V; here V is the
affine F-scheme defined by V(R) = V ®p R for any F-algebra R. If K O F and V is a
K-vector space, then we call a representation of G upon V' algebraic if there exists a GG-stable
F-vector subspace Vg C V with Vg ®@r K = V such that the induced G-representation on Vg
is algebraic.

Here every vector in V' is algebraic, i.e. the orbit map o, : g — ¢ - v is algebraic in the above
sense. This can be paraphrased by saying that a representation of a linear algebraic group GG on
V' is algebraic if the action of G on V' is given by a rational function in the coordinate entries
of Gand V.

We say that a representation V' of (the rational points of) an affine algebraic group G over a
topological field F is locally algebraic if every vector is locally algebraic: Fixing any vy € V/,
there exists a finite dimensional K-vector subspace V[, 2 vy and a compact open subgroup
Go C G such that the natural map Gy x Vi — V) is the restriction of an algebraic representa-
tion of GG. (See [Emerton, To appear, Comment succeeding Corollary 4.2.9].)

We remark that the tensor product V' ® U of a smooth representation V' with an algebraic
representation U is always locally algebraic.

Let G be a connected reductive group over F and let x : M — K* be a character. By

precomposition with the projection P — M, it induces a character y : P — K*. We can then
construct the K-linear G-representation

md% y = {f: G = K: f(5g) = x(p) - f(g) forall p € P,g € G},
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where G acts upon by right translation denoted by f9 := f(-¢) and inconsistently - by matters
of convention - also by g - f = f9.

We call a character § : M — K* unramified if it is trivial on the maximal compact open
subgroup My C M. Then we can define the unramified principal series as the smooth G-
representation given by all the smooth vectors inside IndIGs #, which we denote by Indg o, It
is nonzero and, as the action of (G is by translation, consists of all the locally constant functions
therein.

We call a character ¢/ : M — K* algebraic if it is an algebraic representation on the K-vector
space V' = K. We say that ¢ is dominant if < ¢, & >> 0 for all « € & (See Section 2 for
the notation used here).

For the following, we assume G to split: In every irreducible algebraic GG-representation U,
there exists a unique one dimensional subspace fixed by P and we call the corresponding al-
gebraic character ¢ : P — F* the highest weight of U. Then for every dominant algebraic
character 1, there exists a unique - up to isomorphism - irreducible algebraic G-representation
U, with highest weight ¢. Because F' C K is of characteristic 0, it is constructed by all
the algebraic vectors inside the GG-representation Indg v, which we denote by Indg e, Tt is
nonzero and, as the action of G is by translation, consists of all the algebraic functions therein.
We call y : M — K* an unramified dominant character, if it is the product x = 6 of an
unramified character # and a dominant algebraic character v). Then we can define the unram-
ified dominant principal series /() for the unramified dominant character y as the locally
algebraic G-representation I(y) = Ind$ 6" @x Uy,. Itis also given by all the locally algebraic
vectors Indg x'P inside Indg X, and we have the following isomorphism of GG-representations:

1(0) = Ind$ 6° ® U, =Ind$ 6 @k Ind$ ¢ 5 Ind$ 0y,
feu = u=[g = f(g)ulg)]-
Assumption. We will throughout tacitly make the following assumption: If y = 6 is unrami-
fied, then we assume G to be a general connected reductive group and /(0) = Ind]Ga 6 is the
unramified principal series as defined above.
If x is assumed to be a general unramified dominant character, we will always assume G to

split and therefore I(x) = 1(0) ®k U,, with Uy, the unique irreducible algebraic representation
of highest weight 1.

0.3 The universal unitary completion of a locally algebraic
representation

We let G be a topological group and V' a K-vector space equipped with a G-action.

Notation. Let R be a ring and X C M a subset of an R-module M. Then we denote by
< X >R.mod. the minimal R-module containing X inside M.

Definition. A lattice £ in V' is an o-submodule such that for any v € V/, there exists A € K*
such that \v € £. It has a corresponding seminorm ||-||, on V' given by

[v]|¢ := inf{|A] : X € K* with Av € £}.
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We firstly recall the definition of the universal unitary completion of a continuous G-re-
presentation on a locally convex topological K-vector space equipped with its finest locally
convex topology. We will restrict to this case as by [Emerton, To appear, Corollary 6.3.7]
any admissible (cf. Subsection 3.2) locally algebraic representation of V' such as I(y) is
necessarily equipped with its finest locally convex topology.

Definition. 1. We call a G-representation on a K-Banach space U unitary if the topology
of U may be defined by a G-invariant norm.

2. Let V be a G-representation. Then the unitary K-Banach space representation V is the
universal unitary completion of V' if any K|G|-linear map V' — W into a unitary
K-Banach space representation W factors uniquely over V.

Lemma 0.1. Let £ be a minimal element in the set of commensurability classes of G-invariant
lattices in V' ordered by inclusion. Then the completion with respect to L is the universal
unitary unitary completion of V.

Proof. By definition, see [Emerton, 2005, Lemma 1.3]. [ |

Remark. (i) Here two lattices £ and £ are defined to be commensurable if there exists
scalars ) and A in K* such that A& C £ C A£. Their induced seminorms are therefore
equivalent and yield thus the same completion so that the above notion of universal uni-
tary unitary completion is indeed well-defined. Because G-invariant lattices are closed
under finite intersections, this minimal commensurability class is unique and we will by
abuse of language denote any lattice therein as the universal unitary lattice.

(i) We will call a lattice £ Hausdorff if its induced topology is Hausdorff. Equivalent
characterizations of this property are as follows:

a) The lattice does not contain any K-line.
b) The induced seminorm is a norm.

c) If V is countably infinite dimensional: The lattice is commensurable to a free o-
module.

Proof. The implications 1. = 2. and 3. = 1. are clear. For 2. = 3., we refer the reader
to the structure theory of non-Archimedean Banach spaces: Let V be the completion
of V' with respect to the norm ||-|| attached to £. Let ¢y(N) be the K-Banach space of
sequences in K converging to 0. Then the proof of [Schneider, 2002, Proposition 10.4]
shows that we can find a topological isomorphism Vs ¢o(N) such that the preimage
{v,} C V of all the zero sequences {(0,...,0,1,0,...) : n € N} C ¢(N) whose sole
nonzero entry is 1 at the n-th place actually lies in V' — V. Then {v,} is basis of V
whose o-linear span is commensurable to £. |

We add that, if ||V|| C |K]|, (this happens e.g. if K is discretely valued), then we can

scale our basis vectors of £ to have norm 1. Therefore £ is already a free o-module (not
only commensurable).
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(i11)) We will call a nonzero lattice £ C V proper if £ C V or equivalently its induced
seminorm is nonzero.

Proposition 0.2. If'V is a finitely generated G-representation, then any finite type lattice of
V' gives rise to the universal unitary unitary completion of V. Here the finiteness conditions
refer to finite generation as a K|G|- respectively o|G|-module.

Proof. Firstly we note that being finitely generated as an o[G]-module, any two such lattices
are commensurable and hence induce the same topology. The proposition follows by the above
characterization in Lemma 0.1. |

We remark that we do not require (universal unitary) lattices by our definition to be proper
or even Hausdorff. Thus the universal unitary completion - being always equipped with a
proper norm through factoring over the quotient space by the kernel of the seminorm - can
vanish. We observe the following, though.

Remark. 1f V is irreducible as a G-representation and the lattice £ C V' is G-stable, then £ is
proper if and only if it is Hausdorff. In particular this applies to any universal unitary lattice.

Proof. We have to show that if £ is proper, then it is Hausdorff. By contraposition, assume
that there is nonzero v € £ with K-v C £. Then also K- gv C £ forall g € G, as
£ is G-stable, i.e. K[G]-v C £. Because V is an irreducible K[G]-module, we conclude
V =K[G] v C L. [ ]
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1 The unramified dominant principal series as a
representation of P

Notation. Let GG be a group.

1. We have a left respectively right action of G on itself through group automorphisms by
left respectively right conjugation which we will denote by ¢ respectively -9 for g € G.

2. Let G act on a K-vector space V. Thenwe put V¢ = {v € V : g-2 = z forall g € G}.

Notation. For a topological space X and a set Y, we denote by C'¢(X,Y") all locally constant
functions f : X — Y.

LetY > 0,1. Then for f : X — Y we define supp f = {z € X : f(z) # 0} and write
Ce(X,Y) € C*(X,Y) for all locally constant functions of compact support. For a subset
W C X welet 1y : X — Y be the indicator function of W defined by supp f = W and

We let G be a connected reductive group over F and # : M — K* an unramified character.
We remark that we have a well-defined notion of support inside § := P\G for functions in
I(0) as P acts on the left through multiplication with invertible scalars on 7(6). Then we can
view N as an open subset in § via the image of the open immersion N C G % P\G and
accordingly every Nw for w € W as an open subset of § via the image of the open immersion
N — P\G % P\G. Thus we can define /()(Nw) to be the functions inside I(f) whose
support lies in the open subset Nw C §. Then the support is automatically compact: Because
supp f = § — f~'{0} is an open subset of F and § is compact, hence bounded, we find by
total disconnectedness of § the support of f to be closed and thus compact.

Lemma 1.1. By restriction onto Nw C G, we have an isomorphism of K-vector spaces

Ind$ 6 (Nw) = Ck

cpt

(Nw, K).

Proof. 1t is clearly injective and it rests to be seen to be surjective: Since 1 € N has a neigh-
borhood basis of compact open subgroups, the K-vector space Ci;t(N w, K) is generated by
all indicator functions 1., for n € N and {N.} some neighborhood basis of compact open
subgroups in N. We want to construct their preimages.

Fix n € N and let I C G be a compact open subgroup with Iwahori factorization I = Iy
with Ip := I N P and Iy := I N N, chosen sufficiently small to ensure @ to be trivial on /.
These form by [Casselman, 1995, Proposition 1.4.4] a neighborhood basis of the identity.

As @ is trivial on I and [ is a group, the function f defined by bearing support PInw and
f(pinw) = 6(p) for p € P,i € I, is quickly checked to be well-defined.

By construction f is constant on all right /-cosets and so in particular smooth. Thus f € I(6)
and supp f = Plplynw = PIynw C PNw,ie. f € I(f)(Nw). Finally fivw = Liynws
where the compact open subgroup Iy C N can be made arbitrarily small by choosing suffi-
ciently small compact open / C G in the neighborhood basis of 1 consisting of all compact
open subgroups with Iwahori factorization. |
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Lemma 1.2. (i) We find M to leave 1(0)(Nw) stable and operate on the K-vector space
Cl(N,K) = CE (Nw,K) = I(6)(Nw) by

cpt cpt

In particular 17} = 0(“m)1lwny  for U C N compact open.

(ii) We find P to leave I1(0)(N) stable and operate on 1(0)(N) = C¥

cpt

(N, K) by
fP=0(m)f(-"n) forp=mne P withm € M,n € N.

In particular 17,}71’" = 0(m)lmy, forU C N compact open.

(iii) The K[P]-module 1(0)(N) = Ck

(N, K) is generated by any f = 1y with U C N
compact open.

(iv) Let 1y, = I(0)(Ny) = C&(N,K) be the shifted restriction morphism given by f
finw(-w). For any w € W, let U, > 1 be a compact open neighborhood in N and

fw=mn5"1y,). Then {f, : w € W} C I(0) generates I1(0) as a K[P]-module.
Proof. Ad (i): For f € 1(0) and m € M, we find for n € N that

w,

f(nw) = f(nwm) = f(n"mw) = 0("m) f((“m)~"n"mw) = 0("m) f(n""w),

where we recall M to normalize N. In particular, again f™ € I(#)(Nw). The formula for
f =1y with U C N compact open follows directly.

Ad (ii): The action by right translation of N C P = MN on [(6)(N) translates trivially.
Then the formula for f = 1;; with U C N compact open follows directly.

Ad (iii): By right translation through suitable n € N, we obtain Un = N, for a com-
pact open neighborhood N. > 1. Let f := 1p,. By [Casselman, 1995, Proposition 1.4.3]
there exists an element a € A with |a(a)|p sufficiently small for all & € A, such that
{'N, : i € N} constitutes a system of neighborhoods of 1 € N. We just saw f™ = 0(m)1my.
for m € M. The group N acts by right translation on these (scaled) indicator functions, there-
fore K- {f? : p € P} D K- {1y} for a topological basis of compact open subsets {U} in N.
Every f € Ci¢,(N, K) is by definition a linear combination of such indicator functions 1y, of
(N, K).

compact open subsets, so K[P] - f D C&,

Ad (iv): Regarding the operation of M on C¥ (N, K) = I(6)(Nw) given in (i), we just
saw in (iii) above that there exists @ € A such that K* {a’} -1y, = K{1y,, : Vi, € V,,}, with
V., a basis of neighborhoods of 1 € N. Let ¢y, = n,,'(1y,,) be their preimages in I(6)(Nw),
determined by carrying support V,,uww C P\G and being equal to 1 on V,,w. (Here and in
the following we will identify a subset in G’ with its canonical image in P\G.) By letting N
act on these through right translation, we obtain all functions ¢y, ,, € I(f) with support in

Vwn C P\G and equal to 1 on V,wn for V,, € V,,,w € Wandn € N.
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Now there is a decomposition P\G = UweWwN as follows: By [Borel, 1991, 1V.14.12],
we have the Bruhat decomposition G = U,cy PwP. By definition W normalizes M, thus
P\G = UyewwN. By conjugation with the longest element w, € W giving N0 = N, we
obtain P\G = UyewN.

Thereof and since V,, forms for all w € W a basis of neighborhoods of 1 in the open subset
N C P\G, we find {V,wn : V,, € V,, forw € W,n € N} to be a topological basis of P\G.

Thus
10)= > Nlov, = > K[P

Vi €V for weWw weWw

This proves the proposition. |

Definition 1.3. Conferring [Casselman, 1980, Section 2], let ¢,, € I(0) for w € W be defined
by having support PwB and being equal to 1 on wB.

Remark 1.4. By the Bruhat-Tits decomposition K = _UweWBwB for K with respect to B,
the ¢,, constitute a basis of the Iwahori invariants 1(#)” of 1(6), the K-vector subspace of all
elements in I(0) fixed by B.

Corollary 1.5. We have 1(0) = X ,cw K[P]¢w.

Proof. We show ¢,, to fulfill the conditions of Lemma 1.2(iv). We put Pz := P N “B and
Nug := N N *“B. Then by the following Lemma 1.6, we find “B = P.zNuj, sO
PwB = P"Bw = PN,gw.

Therefore ¢,, € I(6)(Nw), identifying to 1y, € C& (N, K) = I(f)(Nw), where we recall

N.z = NN“B 3> 1 to be a compact open neighborhood in N, as B is compact openin G. W
Lemma 1.6. Let P.g := PN "B and N.g := N N"“B. Then “B = P.zN.g

Proof. By [Tits, 1979, Section 3.1.1 (with Q = {z(})], we have the Iwahori factorization, a
bijection for every ordering of the following product:

B = NyMyN; with  Ny= [[ N(a)and N; = [ N(a®

acdy acdd

here ®F = ®* are bijections denoted by a — a, and N (a) respectively N (a*) being compact
open subgroups of N,. Thus

“B= [ N() J] N@HM, [] N@*) [[ N(a)

acdy, acdy, ae@ér, ae'bg7
wla=<0 wlax0 wlax0 wla=<0
We find “B = P.;N.; with
Pz= ][I N(a) [[ N )My=Pn"“B
a€ed

a€dy,
w~la=<0 wla>0
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and
Nog= ][] N@@") J] N(a)=Nn"“B.
acdd, acdy,
wla=0 w™la<0

Corollary 1.7. We let x : M — K* be an unramified dominant character. Let U = U, be
an irreducible algebraic G-representation and denote by u its unique - up to a scalar - vector

fixed by N. Then

IX)(N)=K[P]-¢p1®u and I(x)= > K[P] ¢, ®u

weW

Proof. We firstly point out the following fact: Let GG split and assume U to be an irreducible
algebraic G-representation. Denote by # its unique - up to a scalar - vector fixed by N. Let
Ny € N be any open subgroup. By [Borel, 1991, Theorem 21.20(i)] we find N C N to be
Zariski dense, and this equally holds by the same token together with the Taylor expansion for
the inclusion Ny C N. Therefore the proof of [Humphreys, 1975, Proposition 31.2] shows
that the K'[Pp]-module U is generated by u for any open subgroup Py C P.

Now let P5 = P N B. Since P5 C P is open, we find

_ fact

K[P;l-01@u=K- -9 K[Pz]-u =K ¢, 2U.

Therefore

K[P]-¢1 @ u=K[P]- (K[Ps]- ¢ ®u)
=K[P]- (K-¢: ©U)
=1(0)(N) @ U = I(x)(N);

the last equality by Lemma 1.2.(iii), and likewise

K[P]-{¢u @ u} = K[P] - (K[Pp] - {pw ® u})
K[P]- (1(6)" ® U)
(9) ®U = I(x);
the last equality by Corollary 1.5. |
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2 The universal unitary lattice of the P-representation
on an open cell and a norm of differentiable functions

Interlude: The dominant submonoid acting on the affine root
factors

Let G be a connected reductive group over F. We recall both A C M to contain maximal
compact open subgroups Ay C M,. Let Ny C N be a compact open subgroup given as the
product of open root subgroups, and define M ™ := {m € M : ™Ny C Ny}. We will see that
|x(+)|g naturally extends from A/A, to M /M, for any algebraic character y on A. Then we
deduce M* ={m € M : |a(m)|p <1 forall @ € A}, by looking at the action of M on the
root factors N, C N fora € ®™.

The order morphism into the cocharacter group of M

Definition. Let G be any affine algebraic group over F' .
(i) We denote by X*(G) := Homp.grpsehm. (G, G, the abelian group of characters of G.
(ii) We define the order morphism v : G — Homy(X*(G), Z) for any g € G by
v(g) == [A— —vr(A(g))] forall A € X*(G).

Here \(g) denotes evaluation at g of the morphism obtained by application of the functor
of rational points to the morphism A (and vg the normalized valuation of F').

Remark 2.1. 1. If G = S is an F-split torus, then v : S — Homy(X*(S),Z) is readily
seen to be surjective.

2. The kernel of v is the maximal compact open subgroup M, C M. In particular M /M,
is a free Z-module.

Definition. We let G be a connected reductive group over F'.
(i) Define A := v(M/Z) as the image of the group morphism
v:M/Z — Homy(X*(M/Z),Z).
(ii) Let AT C A be the dominant submonoid defined by
AT ={AeAN:<a,A>>0 foralla € A}.

We define M+ C M as the preimage of A* under M =5 M 17 2 A.

Remark 2.2. The submonoid A™ generates the Z-module A.
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Proof. Let \y € AT be such that < o, \y >> C for all & € A for a constant C' > 0. Then
since < a, A—i-\g >=< a, A > —i- <, \g >, wefind —i- \g+ AT ={A e AN :<a,\>>
—iC'}, exhausting A for i € N tending towards infinity. [ |

We let G be a connected reductive group over F'.

Lemma 2.3. Let A; C Z be the maximal F-split central torus of G. Then the embedding
Az C G induces an inclusion of finite free Z-modules X*(G) — X*(Az) of finite index.

Proof. Cf. [Borel, 1966, Section 2.2], the Z-module X*(G) is finitely generated (and if G is
connected also torsion-free, hence free).

By [Borel, 1966, Theorem 5.2(2)], we find G to be reductive if and only if G = Z°|G, G] and
by [Borel, 1991, Proposition 14.2(3)] this is an almost direct product, i.e. Z° N[G, G] is finite.
Therefore each character factors over a finite quotient of Z°. Hence we have an inclusion of
finite index X*(G) — X*(Z°). Cf. [Borel, 1966, Theorem 5.2], the center Z° =: T is a torus
over F. By [Borel, 1966, Theorem 3.3 et pre.], the torus T is the almost direct product of its
maximal F-split torus T, = Az and maximal anisotropic torus T, over F, i.e. T = T, T,
with T, N T, finite; also recall that a torus T is called anisotropic if X*(T) = {0}. Thus we
obtain an inclusion of finite index X*(T) = X*(T; /TsNT,) — X*(T,). We conclude that
we obtain by concatenation an inclusion X*(G) < X*(Az) of finite index. [

Corollary 2.4. The abelian group A is a finite free Z-module of rank #A.

Proof. Because X*(M) C X*(A) is an inclusion of finite index by Lemma 2.3, we have
an inclusion of finite free Z-modules Homy(X*(A /Z),Z) C Homy(X*(M /Z),Z) of finite
index. Thence by the sandwiching

Homy (X*(A /Z),Z) = v(A/Z) C v(M/Z) = A C Homy(X*(M | Z),Z),

and the elementary divisor theorem A is a finite free Z-module of rank #A. |

The normalizer of the maximal split torus acting on the apartment

Definition. For any F-split torus S, we denote by
X*(S) = HomF-grp.schm.(Gma S)

the finitely generated free abelian group of cocharacters of S. It is dual to the abelian group of
characters X*(S) by the natural pairing

X*(S) X X*(S> — EndF-grp.schm.<Gm) =7

through composition (cf. [Borel, 1991, Proposition 8.6]) and we may thus identify X, (S) =
Homgz(X*(S),Z).
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If G is as always connected reductive, by the above Lemma 2.3, we find X*(G) C X*(Z,)
to be an inclusion of finite index. Therefore dually an inclusion of finite index X.(Zx) =
Homgz(X*(Za),Z) C Homyz(X*(G),Z). Thus we can view Homz(X*(G),Z) as a lattice

inside X, (Zy) ®z Q.

Then the above morphism v : G — Homgz(X*(G), Z) identifies to the morphism v : G —
X*(Zs) ®z Q characterized by

<v(g),A >=wvp(A(g)) forallg € G and A € X*(G) C X.(Za).

We want to apply this in the following setting: We observe that M = Cg(A) is a connected
reductive group over F: By [Borel, 1966, Theorem 5.3(1)] we find M to be connected and by
[Borel, 1966, Section 5.4(1)] it is defined over F. It is also nilpotent, in particular reductive.
Hence we may put G = M (and then Z, = A) and obtain v : M — X, (A) ®z Q.

Following [Schneider and Stuhler, 1997, Section I.1], define A := X,(A)/X.(Z°) ®z R,
the apartment corresponding to A in the Bruhat-Tits building of G. Then we have:

1. A translation action of M = C(A) on A as follows: Recall that we have a morphism
of groups

v M % Homz(X*(M),Z) < X,(A) @2 Q < X,(A) @z R — A.

Then m € M acts on A by the translation  — = + v(m) (cf. [Schneider and Stuhler,
1997, Section 1.1], this also explains the minus sign in the definition of v).

2. A linear action of W = Ng(A)/Cs(A) on A through conjugation.

By a general argument given in [Tits, 1979, Section 1.2], these actions combine to an action
by all of Ng(A) of A through affine linear maps.

The valuation functions on the root factors

The Weyl group W is generated by reflections at the hyperplanes H, := ker « for a € ®.
These are hence of the form
=z — o(r)d

for some & € A with (&) =< «a, & >= 2. Because W permutes the finite set of generators ¢
of the R-vector space 4, a general argument shows this reflection w,, and so ¢ to be uniquely
determined.

Fix a € ®* and let n € N,, the root subgroup belonging to a. Then NnN lies in a unique
double coset of the Bruhat-Tits decomposition G = UengayN x {m} x N, parameterized
by m(n) € Ng(A) say. We put m(n) = m(n) if « = 0 and m(n) = “on(n) if « < 0. If
n # 1, then the coset of m(n) in W can be seen to be w,, and more exactly, the affine linear
map through which m(n) acts on A is given by

v

T = wa () = pa(n)d =z = (a(2) + @a(n)) - &,
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for some real number ¢, (n).

We conclude that we have for each o € ®™! a valuation function ¢, : N — R with
N = N, — {1} and we let T',, := im ¢, be its image. It is a discrete and unbounded subset
in R. Then the set of affine linear forms @, := [[,cqes @ + 'y, on A is called the affine root
system and, given a = a + 1 € P, we denote by « its vectorial part.

It will be convenient to extend ¢, to all of N, by sending 1 to oo. Then we define for each
a = a + 1 € P the affine root subgroup

N(a) :=={n € N, : pa(n) > i}.

By [Bruhat and Tits, 1972, 1.6.2.12b] this is a separated filtration of N,. We note that even
though a = a+i for « € &4 is not necessarily an affine root for general i € R, this definition
is still meaningful.

The Cartan subgroup acting on the affine root factors

Notation. For the remainder of this subsection, we will denote by v : M — A the above
constructed morphism of groups

v M % Homz(X*(M),Z) — X,(A) ®,Q = X,(A) @z R — A.

We note that & C X*(A /Z) and therefore can evaluate every o € ® on the appartement
A.

Lemma 2.5. Let m € M. We have "N (a) = N(a + a(v(m))) for all a € @ with vectorial
part o € P4,

Proof. For m € M, we have "N (a) = N(m - a) (with m - a := a(m-)), see [Tits, 1979,
Section 1.4]. Each m € M acts on A by the translation x — x + v(m). By linearity of « thus
m-a = a+ a(v(m)) for any a € ® and the proposition follows. [

Corollary 2.6. Let N(a) for a = o+ i € Py be an affine root group. Then for m € M, it
holds ™N (a) C N(a) if and only if a(v(m)) > 0.

Proof. If a(v(m)) > 0, then by the above Lemma 2.5, we find "N (a) = N(a + a(v(m))) C
N(a).

Conversely, if ¢ := a(v(m)) < 0, then i + a(v(m*)) = i + k(a(v(m)) < j < i with
7 €'y for k >> 0, since I',, is unbounded in both directions by [Schneider and Stuhler, 1997,
Section L.1]. This implies "N (a) = N(a + a(v(m*))) D N(a), as N(a +1i) = ¢}, '[i, o] by
definition. But "N (a) D N(a) only if "N (a) D N(a). |

Recall that we chose our maximal compact open subgroup K to be special: This means that

its corresponding fixed point zy € A satisfies a(z) € —T,, for all & € ®™! (see [Schneider
and Stuhler, 1997, Section 1.3]).
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Definition. We put & := {a — a(zg) : @ € I} C D.4; it can be described as the set of
all affine roots vanishing at z,. Correspondingly we denote the translates of @, ®~ and A in
®,5 vanishing at 2o by ®F, &5 and A,.

We will from now on fix compact open subgroups Ny C N and N; C N already occurring
in the proof of Lemma 1.6.

Definition. We let Ny = [[,co- N(a") and No = [1,cq N(a).
Remark. By [Tits, 1979, Section 3.1.1 with Q = {z(}], we have the Iwahori factorization

B=NiMyN, withn Ny = [[ N(a") and Ny = [[ N(a).

acdy acdy
Lemma 2.7. Let m € M. We have "Ny C N, if and only if a(v(m)) > 0 for all o € A.

Proof. This follows by Corollary 2.6 as m stabilizes Ny if and only if it stabilizes each factor
N(a + i), and noting that a(v(m)) > 0 for all « € A if and only if a(v(m)) > 0 for all
a € Pt [ |

Corollary 2.8. We find M+t = {m € M : "Ny C Ny}.

Proof. Fix m € M. By the above Lemma 2.7, we find "N, C N, if and only if a(v(m)) =<
a,v(m) >> 0 for all &« € A, which holds by definition if and only if m € M. [

2.1 The necessity criterion

We let G be a connected reductive group over F and let x = 0 : M — K* be an unramified
dominant character.

Notation. If f : X — Y is mapping, from a set X into a normed space (Y, |-|). Then we put,
if defined, || f|,,, = sup,ex|f(x)| and || f|l,,, = oo otherwise. For a subset W C X, we will
abbreviate || f[|, = [ fjw|l

sup”

Assumption. We recall that by definition I() = Ind% 0" @k Uy,.

Throughout this subsection, we will by Lemma 1.1 identify

I(x) 2 I(x)(N) = C,

(N, K) ® Uy

as K[P]-modules without further mention. We recall that the action of P on the right hand
side is given by f @ u™ = 0(m) - f(-™) @ u™ forallm € M and by f @ u" = f(-n) ® u" for
alln € N.

We firstly show that the criteria | x(M™)| < 1and |x(Z)| = 1 are necessary for the universal

unitary completion not to vanish, equivalently the inclusion of the universal unitary ok-lattice
£ C I(x)(N) to be proper.

Lemma 2.9. The universal unitary oxk-lattice of I(x)(N) is given by £ = ok |[P] - ¢1 ® u.
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Proof. By Corollary 1.7, we find I(x)(N) to be generated by ¢; ® u as a K[P]-module.
Therefore

£ =ok[P]- ¢ ®@u C I(x)(N)

is an ok -lattice of I(x)(/V) and of course finitely generated as an ok [P]-module. We conclude
that it is by Proposition 0.2 the universal unitary unitary lattice of ()(/V) as a K[P]-module.
|

Lemma 2.10. Let £ C I(x)(N) be the universal unitary lattice and ||| its associated norm.
(D) If-lo # 0, then [x(Z)| = {1}.
(ii) Let |x(Z)| = {1}. If |[x(m)| > 1 for some m € M, then £ = C©

cpt

(N,K) ® U,

Proof. Ad (i): The action of G on I(y) = Indg x'? (as K[G]-modules) is given on the right
hand side by f9 = f(-¢) and therefore f* := f(-z) = f(z-) = x(2)- f forall z € Z. Therefore

A= Ix()]- Il forall z € Z, f e I(x)(N). ()

We can by assumption find f such that || f|| # 0. Then Equality (x) holds if and only if
Ix(z)] =1forall z € Z.

Ad (ii): We firstly assume that x = @ is unramified. Because |#| : M* — |K*| is un-
ramified and trivial on the center Z C G by assumption, we find |9|| v+ to factor over
Mt — M*/MyZ. Let m € M*/MyZ such that |§(m)| > 1. We show that £ O K - 1y,;
since £ = ok [P] - 1, and ¢, (N, K) = K[P] - ¢4, this proves £ = C¥, (N, K).

Because G /Z is semi-simple adjoint, the root basis A spans X*(A /Z). By Lemma 2.3,
there is a canonical inclusion X*(M /Z) C X*(A /Z). Hence we find v(m) € v(M/Z) C
Homyz(X*(M /Z),7Z) to be zero if and only if v(m)(a) = 0 for all &« € A. There is therefore
a € A with a(v(m)) > 0. Thus "N(a) = N(a + a(v(m))) C N(a), if a € Ay is the
affine root with vectorial part « vanishing at z5. As NJ* C Ny and Ny = Ha@g N(a), thus
Ny C Ny. We obtain

Om) - 1yg =0(m) - > loyn= 3. 1h™eg

nENo/mN() nENo/mN()
conferring to Lemma 1.2(ii) for the second equality given by definition of the P-action. As
|0(m)| > 1, weseethat K - 15, C og[P] - 1n, = £.

We let x = 6 with 6 unramified and ¢/ an arbitrary dominant algebraic character. In par-
ticular, we assume G to split. By [Jantzen, 2003, Proposition I1.2.4(b)], we find as an M-
representation

Upy= @ UE) with {w- 9,9} Cwtyp C{E:wo- ¢ <& <}
gewt()

Here M acts on the one dimensional K-vector space U(§) = K - u¢ through the algebraic
character £ : M — K, and for two algebraic characters ( and n on M, we have by definition
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¢ <niftn—( = > et for integers 7, > 0. Because the universal unitary lattice is by
Proposition 0.2 up to commensurability given by any lattice finitely generated as an ok [P]-
module, we may assume

L= Y ok[P] 1n ®ue CCoy(N,K) @ Uy.
gewt(t)

We prove by downward induction on #{¢& € wt(¢)) : £ > n} that for any algebraic character
n: M — K*in wt(¢), we have
Clc

cpt

(N, K) @ Upyyy € £

with
Upy = @ UE) and [n,¢] == {€ € wt(yh) : £ > n}.
§€n, ]

Because Ulyyg.y,4) = Uy, we can then conclude Cl%t

(N,K)® U, C £.

To begin the induction, let  be maximal, i.e. 7 = 9. Then U(¢)) = K - u, and uy is a
highest weight vector of Uy, i.e. N acts trivially on it. So we can reason as above in the
unramified case and obtain

X(m) -1y, @uy =Y 0(m) - Loy, @ h(m) - uy

ne™Ny

= > Iy mew
nEN/mNO

= Z n"tm- [1]\]0 ® Uw] e L.
TLGN/mNQ

As |x(m)| > 1, we see that K - 15, ® uy C og[P] - 1y, ® uy C L.

We now let n < ¢ and may assume by the induction hypothesis

Clc

cpt(NJ K) ® Uv]nﬂﬁ] g S
with

Uy = @ UE) and n,¢]:={§ € wt(y): £ 2 n}.
£€ln.y)

Then we write

977(7”) iy, ® Un
= 2 0(m) bogw @n(m) - uy

TLENo/mNQ
n~lm n~m m n~im
= Z 1No ® [un + (ur] - ur] )}
TLENo/mNo
= Y aTm [y @ul+ Y e Wl —u ™).
nENo/mNo nENQ/""No
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Then for the left hand summand holds
Z nilm'[lN()@Un]EOK[P]'1N0®U7]§£.
TLGNo/mNQ

Regarding the right hand summand, by [Humphreys, 1975, Remark at the beginning of the
proof of Proposition 31.2], we have ugflm — um € Uy, Therefore

S TR "M@ (uy —ur ™) CCl (N K) ® Uy C £,
TLGNo/mNO

the last inclusion by the induction hypothesis.

Hence On(m) - 1y, ® u, € £. We have n = 1) — Y e o - @ With integers i, > 0. By
Lemma 2.7, we have |a(m)| < 1 for any m € M. Therefore
[On(m)| = [x(m)|-|= 3 ia - a(m)] > 1.
aEA
As [On(m)| > 1, we see that K - 1, ® u,, € £. Therefore

Cop (N K) @ (U ® U(n)] = Cepe(N, K) @ Upy) € £,
completing the induction step. |

Corollary 2.11. For the universal unitary completion of the K[P]-module C*,(N,K) to be

cpt
nonzero, necessarily |x(M™)| < 1 and in particular |x(Z)| = 1.

Proof. This is a reformulation of the preceding Lemma 2.10. |

2.2 The smooth case

Assumption. Throughout this subsection, we identify, by Lemma 1.2(ii), through the restric-

tion morphism 7(6)(N) = Ci¢,(N,K) as K[P]-modules. We recall that, on the right hand

side, N acts by right-translation and M by f™ := 6(m) f(-™). Then under this identification,
¢y restricts to 1y,.

In this subsection, we want show that the, a priori, seminorm ||-|| induced by the universal
unitary lattice in I(¢)(N) - given by Lemma 2.9 through £ := ok[P] - 1y, € C&, (N, K) - i
Hausdorff.

Since £ is by definition the smallest ok-lattice containing all 1%, for p € P, its associated
norm ||-|| can be characterized as the pointwise greatest seminorm fulfilling

|1 1on, || < 1/]0(p)| forall p € P.

In order to prove ||-|| to be an actual norm and not to vanish, the preceding subsection has
shown that we have to impose on our unramified character further conditions:

Assumption. Throughout this subsection, we assume 6 : M — K* to fulfill the condition of
Corollary 2.11.

1. Ttholds |#(MT)| < 1.
2. In particular |0(Z)| = 1.
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Definition of the valuation on Np
We firstly remind ourselves that by Corollary 2.4 the abelian group A = v(M/Z) is a finite
free Z-module of rank #A.

We recall that the image of the conjugation action of M on the compact open subgroup Ny C
N by m - Ny := "N, only depends on its image A = v(M/Z) under M =% M/Z = A. This
is seen by Lemma 2.5 together with the isomorphism of affine F-varieties [Jocq+ No — N,
given by the multiplication map (cf. [Borel, 1991, Proposition 21.9(i1)]).

Definition. Let U = & — A and put Ny = [[,cq¢ No. Then we define
N := N/Ny.
Remark 2.12. We have an isomorphism of groups Na = [[,ca Na-

Proof. Because [[,cq+ No — N and [N,, Ng] C Ny for all distinct a, 5 € ®T by [Borel,
1991, Remark 21.10(1)], we have an isomorphism of groups Nao = [[,ca Vo, the right hand
side being endowed with componentwise multiplication. |

We want to define a filtration of N indexed by Z*. To prepare this, recall firstly that A is
a finite free Z-module of rank #A. Moreover its submonoid A™ generates A by Remark 2.2.

Definition. We choose a basis {\,} C AT of A and fix an identification

A — 72,
A= (i0);

so that )\, is mapped to e, = (0,...,1,...,0) € Z*, the canonical basis vector whose sole
nonzero coordinate with entry 1 has index o. We let m,, € M be any element mapping to \,.

This amounts to fixing a choice of lexicographic ordering on A. We will use this identifica-
tion in the following without further mention.

Definition. Let Na o := Ny/(Ng N Ny). We then let M act on the subgroup Nay C Na
naturally by "Na o = "Ny/Ng N ™Np.

1. We define the descending filtration (N );cza on N by
NAJ' = mNAp.
for any m € M with v(m) = 3.

2. Let NX = [loea Ni € Na. We define i : Ni — Z* by letting i(n) be the unique
element which is maximal for the lexicographic ordering under all i € Z* with n €
N, A

Remark. We want to show that i : Ni — Z* is indeed well defined, i.e. given any n € N*4,
we want to affirm the existence of a unique maximal 7 € Z* such that n € N, Ai-
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1. We have Na; N Na; = Nay where k = max{%, j} is defined as the componentwise
maximum, i.e. kK = (kqy)aca With k, = max{i,, j,}. This follows by ™N(a) =
N(a+ a(v(m))) forany a € Ag and Nag = [Taen, N(a).

2. Letn € N*a. Then we define ¢ = (iy)aca by
io = max{j, : n € Na; for some j € Z*}.
By separateness, we have

(N 7N®b) =V NOb+i<pB e, >)={1}

i>0 i>0

if and only if < 3, e, >> 0. We deduce that ¢, = oo if and only if ng = 1 for some
B € A with < 3,e, >> 0. Because n € N} therefore ¢, < 00.

3. We want to show that ¢ is the sought for maximal element (and then unique by construc-
tion): We surely have ¢ > j for all 5 such that N; > n. Contrariwise, let n € N; for
some j € Z* with j > 4. Then ¢ > j by construction of 7. Hence % is maximal.

We observe that < 3,5\, >> 0 forall § € A: Indeed, as {\,} C AT, it would otherwise
hold A™ C ker 3 for some 3 € A, and thus dimz A < #A. But we have equality.

Definition. Put r, := vk (6(e,)). We will define a valuation v : No — R U {oc}, dependent
on 6 as follows: Fix n € Na. Then we put

v(n) =" 1o (i(n)a + ba);

acA
here b = (b,) is an element in {b € {0,1}* :< B,b >> 0 forall 3 € A} (which is
nonempty since < 3,1 >> 0 with 1 = (1,..., 1) by the above observation) with >, - b,

minimal. (The shift by b is only for normalization purposes.)

Definition of the norm

We will now define a norm on Ci‘l’jt(N ,K). Recall the isomorphism of K-vector spaces
Daca+Coy(No, K) = Ci

wi(IV, K), induced by the multiplication map [[,eq+ No — N.

Definition 2.13. Let n, € N,. We define the K-linear difference operator A_(-; (n,)) :
Cl (N, K) O forany f = ®f, € Queca+C(N,, K) = CE (N, K) by

cpt cpt

Af(+5(na)) = ® Anfalin6) ® ® Jas

acA acdt—-A

here A, _(:;n4) : C&,(N,, K) O being defined by A, f(:;n4) := f — f(-na)-

cpt

Definition. We put
1= supJAf(n; (ng)I/1(ng)l;

neN,(n)eENX

here |-| is the multiplicative valuation on N attached to the additive valuation v defined above

(ie. |n| := ™ for any n € Ny).
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Lemma. The above defined map |-|| : Cis,

Proof. Firstly, because supp f is compact, we find ||Af||,,, < C to be bounded. Because
supp f is compact and f is locally constant, we find f to be constant on the cosets of a compact
open neighborhood of U 5 1 in N, whose image in N has diameter, say ¢ := sup{|n|: n €
U}. Therefore | Af(n; (n2))]/1(75)] |y < C/0.

It follows readily that ||-|| is a seminorm. Since the support of each f € C& (N, K) is by

definition compact, || f|| = 0 only if f = 0 and so ||-|| is an actual norm. [

(N,K) — Ry is indeed a norm.

Let £ := {f € Ce(N,K) : [|f|| < 1} be the lattice attached to our norm [|-||. In order for
£ C £ to hold, it suffices to prove the following.

Proposition 2.14. The norm ||-|| fulfills the following two conditions:

1. It is invariant under translation by N.

2. We have || 1my,|| < 1/]0(m)| for any m € M.
Proof. Ad 1.: This holds by definition.

Ad 2.: Let v(m) € A correspond to I = (I,) € Z*. Because f := lmy, is constant on
"No-cosets in N, we have Af(n;(nk)) # 0 if and only if n}, & N(ap+ < «,l >) for all
a € A. This holds if and only if < «a,%(n}) ><< a,l > for all « € A. We also have

«

|Af(n; (nf))| # 0if and only if |Af(n; (n}))| = 1. Together we find:

[Af(n; (ng)I/I(ng)| - is maximal
if and only if n = 1 and

< a,i(n)) ><<a,l > forall « € A and wv((n}))is maximal. (%)
This maximum of v((n})) for (n}) asin (x) is attained if ¢(n) = I~ := I — b (see the definition
of b). Then
= Ta (g +ba) = X ra-la
a€A a€A
=Y vk (0(ma)) - lo = vg (O( ] m2)) = vk (0(m)).
acA a€A
We conclude [Af(n; (ng))]/(ng)] < 1/10(m)]. u

Corollary. We have |1} || = 1 forall p € P.

Proof. Let f = 1y,. Because M is a group, we have || f™|| < || f]| for all m € M if and only
if ||f™| = ||f|| for all m € M: Indeed, given any m € M, we have || f|| = ||/ || < ||/,
hence || f|| = || f™]]. Because P = M N, we infer || f?|| = || f|| forall p € P.

It rests to show that || f|| = 1. We have already seen above that || f|| < 1. On the other hand,
choosing (n}) € Na with i((n,)) = —b, we have Af(1;(n%)) = 1 and v((n,)) = 1, and so

= 1A (o))]/(ng)] = 1.

Corollary 2.15. The lattice £ is Hausdorff.
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Example: The smooth case of small order image
Generators of the dominant submonoid

Assumption 2.16. In this paragraph, we will assume that
A =Homyz(X*(A/Z),Z).

This means that the mapping Homy(X*(A /Z),Z) — Homgz(X*(M /Z),Z) induced by the
inclusion A — M has image A. This holds e.g. if G splits over a field extension unramified
over F (see [Tits, 1979, Remark 1.3] for the statement and [Borel, 1979, Section 9.5] for an
argument in the quasi-split case).

Proposition 2.17. There exists a unique basis {)\, : « € A} C A which is orthonormal with
respectto A C X*(A/Z), i.e.

1, ifa =3,

; forall o, € A
0, otherwise,

<)\a75>:{

with < , > denoting the natural pairing by evaluation between the Z-modules X*(A / Z) and
Homy(X*(A /Z),Z).

Proof. We may assume G = G /Z. Then in particular Z° = 1 and, since G is reductive, it
is therefore semi-simple. Moreover, by [Borel, 1991, Section 3.15], we find ker Ad = Z and
thus G = G / Z to be adjoint.

Then by [Borel, 1966, Section 6.5(2)], using the semi-simplicity of G, the root system &
or equivalently its base A spans a finite free Z-lattice Q C X*(A) in V*. Because G is
adjoint, we have ) = X*(A). Le. A is a basis of the free Z-module X*(A). Now for each
a € A C X*(A), we (must) define \, € A = Homy(X*(A),Z) by the Kronecker-Delta
Aa(B) = dz onthe basis {5 : § € A} C X, (A). |

Corollary. We have AT = &N\,

Proof. By orthogonality of {),} with respect to A. [

By its definition, v : M — Homgy(X*(M), Z) has to be trivial on any bounded subgroup of
M and therefore the kernel of v is the maximal compact open subgroup M, of M.

Definition 2.18. We define m, € M as a representative of the coset corresponding to A,
under the isomorphism of groups M /MyZ — A.

Corollary 2.19. We have M+ /MyZ = &Nm,,.

Proof. By the above Corollary and the isomorphism of groups M+ /MyZ = A™. |
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Action on the affine root groups

Corollary 2.20. We have M+ /MyZ = @&Nm,, and these generators act on the root factors by

meN(b) = N(b+1v,), ifb=p+i€ Qpwithf =Y v,-ye P
yEA

Proof. The first statement was already given in Corollary 2.19.
For the second, recall < ,\, >= 0,4 for all 5 € A. Thence 3(v(m,)) = B(As) =<
B, Aa >= 04,3. We conclude by Lemma 2.5. [ |

Definition of the norm

(Ny, K) = CE

Recall the isomorphism of K-vector spaces ®qcq+CLS (N, K) induced by the

cpt
multiplication map [J,cq+ No — N.

The existence of such an orthogonal basis of the submonoid A" allows us to define the fil-
tration and valuation on Na more conveniently:

Definition 2.21. Let o € A. We define a valuation on ¢, : N} — Z by
ia(ng) :=max{i € Z:n, € N(a+1)}.
To define our norm ||-||, we employ as before the isomorphism of K-vector spaces

RacatC( Ny, K) 5 CE

cpt

(N, K).

Then the (K-linear) operator A_(+; (ng,)) : C©

(N, K) O is defined as before in Definition
2.13.

Definition 2.22. Let @ € A and put r, := vk (0(m,)). We define

Il =C- max_[Af(n;(ng)l/ I Inalo:

neN,(n)e[ [N aeA
here || , being the multiplicative valuation on N attached to the additive valuation i, defined
i (n3,)

above (i.e. |n}| := cg'"* for any n’, € N), and C = p#* is a normalization constant.

Example: The smooth split case

Assumption. In this paragraph, we will assume G to split.

Definition of the norm

The assumption that GG splits allows for further simplifications in the definition of the norm

attached to the universal unitary lattice £ C Cl¢,(N, K) ®@ U.

We firstly observe that, since M = A is a torus, we find v : A — X,.(A) and we are in
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the case of small order image, as defined in Assumption 2.16. Secondly, because G splits,
we have by [Tits, 1979, Section 1.1] an isomorphism of groups F = N, which identifies
Yo 1 NI — R with vp : F* — Z. We may assume N (ag) — o under this isomorphism. We
summarize:

Lemma 2.23. We have an isomorphism of abelian groups N = F* and under this identifi-
cation i,(n}) = vp(n) foralln}, € N.

Proof. By Remark 2.12, the multiplication map [],ca No — N yields a group isomorphism
[Toca No = Na, the left hand side endowed with the componentwise multiplication. By
our assumption on the choice of group isomorphism F = N, for all « € A, we have n}, €
N(a+1i) — N(a+ i+ 1) if and only if vg(n}) = ¢, and thus i,(n’) = vr(n}), looking at
Definition 2.21. |

Recall that the multiplication map [J,cq+ No — N induces an isomorphism of K-vector
spaces Qqeat+Coo(No, K) = C (N, K). Then Definition 2.22 reduces as follows:

cpt

Definition. Identify No = F2 and recall the difference operator A_(-; (1)) : C,
given in Definition 2.13. Let o € A and put r,, := vk (6(m,)). Then

Ifl=C- max AL 00)I

neN,(ns)eF2  [laealn

(N,K) &

Ta
F
with the normalization constant C' := p#2.

Remark 2.24. Define the tuple 7 = (74 )aco+ DY

vk (0(my)), ifa€A,
Ta = .
0, otherwise.

Identifying F*" [Taco+r No — N, this norm can hence be seen as the one for r-times
differentiable functions f : F*" — K with vanishing derivative.

Example. Let #A = land N 2 F. Putr := v(6(m,,)) if M+ /Z My = N-m,,. Then we find

f(z) = fy)]
lr—yl”

LA =11

Interlude: Locally polynomial differentiable functions

Notation. For a € F¥and § = (8y,...,04) € R%,, we define the polydisc around a of radius
dby Bes(a) = {z € F¥: vy — 24| < 81,...,|za — aq| < 04} and the pointed polydisc by
BZs(a) = B<s(a) — {a}.
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Definition. We denote by Ci%t(Fd, K) all locally polynomial functions f : F¢ — K of com-
pact support. Here a function f : F¢ — K is called locally polynomial if for any v € F¢,
there exists an open neighborhood U > z in F? such that fiu is given by the restriction of a
polynomial function.

A function f : F? — K is called J-polynomial if each neighborhood U > z such that fiu is
polynomial can be chosen as U = B<;(z).

We say that f € C?I’,t(Fd, K) has degree at most . € N if all fiu are given by the restriction
of a polynomial function pyy = 37, a;** (where we write ¢ < nif i; < nq, ..., 05 < ny).

Lemma 2.25. Fix n € N. There exists a positive constant ¢ < 1 such that for any compact
open U = 7% - op C F and any polynomial function f = 2 im0, a;*' of degree at most n
holds
¢ max laif[«ly < || X0 a'lly < max Jail[ <]
i=0,...,n

Proof. Because the K-vector space of polynomial functions f : ox — K of degree at most
n is finite dimensional and K is complete, we find [-||, to be equivalent to the norm ||-||
given by the orthonormal basis ', i.e. defined by || f|| = max;—o,._»|a;| for f =3 ., a;*".
(See [Schneider, 2002, Proposition 4.13].) In particular ¢ - max;—g__,|a;| < || f HOF for some
positive constant ¢ < 1.

If now more generally U = 7* - o, then we observe

Illy =1 X2 ™,

1=0,...,n

> ¢ max |a;||m|"
1=0,...,n

= ¢+ max |al[|%'|| o = ¢ max Jai][[¥']].
JeeesT )

m-op i=0,...

Remark. By [Chabert and Cahen, 2006, Proposition 1.3], we find more exactly ¢ = ]ﬂ\w(”)
with w(n) = Y51 [n/qx].

Lemma 2.26. There exists a constant C' > 1 such that for every polynomial function p : F —
K of degree at most n holds

H p(z + \];L)\P_ p(z)|

<C-1/6"-|lp| :
B<5(0)xB%4(0) B<s(0)

Proof. Write p = >, ., a;*'. We have
(z+h)—z'= Y <Z> x! '
§=0,..i—1 \J
and therefore

[p(@ +h) —p(e)| < max |a;| - (_max [27][h"7]).

=U,...,
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We obtain

< max |al|5 /5p
B<5(0)><B<6(0) i=1,...,

H lp(z + ’f;)’p— p(z)|

.....

By the preceding Lemma 2.25, there exist a constant C' > 1 such that

max Jag|[[+']|5_, o) < max Jai] |+ HBQs 0)

---------

.....

We conclude

‘ Ip(z +h) — p(z)]
|h|”

<C-1/6- H Z a;* HB<5

BS(S(U)XB.SJ(O) ,,,,,

=C-1/6"- HPHBS(;(O)
|

Corollary 2.27. There exists a constant C' > 1 such that for any 6-polynomial function f :
F — K of degree at most n of compact support holds

’ [f(z+h) — f(2)]
k|

<C-1/67- £

FxF* sup

Proof. We distinguish two cases: Firstly fix |h| > J. Then we find

Rl IS T

Now let h € F* with || < 0. We can write f = =, 1p_;(s,)p: With polynomial functions p;.
Since |h| < §, we thus find

H |f(x+h) H 12 LBy (e [Pi(@ + h) — pi()]|
|h|” s sup
<m XH |1B§5 () [pl<x + h) - pl(x)”
|| sup

We also have
Hf”sup = HZ 1Bg6($i)piHsup = m?leBga(xi)piHsup'

It hence suffices to prove

Hlpz (x +h) — pi()]
|127]

< C-1/6" - |Ipillp_, oy

B§5(1‘i)XB.S§(O)
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Let ¢ = p;(- + x;). By the preceding Lemma 2.26, we obtain

H pi(x +h) = pi(2)|
|7

B<s(2i)xBZ5(0)

H lg(z + |f;)|p— q(z)|

< C-1/6° - lglls_y )
=C-1/6" - Ipillp_, 2y

BS‘S(O) XB.S(S(O)

Definition. Leti > 0 and (hy,...,h;) € F'. Then we define the K-linear iterated difference
quotient A’_(-; hy, ... h;): C&(F,K) O iteratively by A°f = f and

AH_lf('; hl, ey hi, hi—i—l) = Azf( + hi—l—l; hl, Cen ,h7,> — Alf(, hl, ey hz)

Notation. Given a real number » > 0, we split it into » = v + p with an integral part v :=
|7] € N and a fractional part p := r — v € [0, 1].

Definition. Let r € RY.

1. Leth = (*h;... ;%) € F“' x ... x F”, We define a K-linear iterated partial dif-
ference operator AV_(-; h) : C& (F?, K) O as follows: We have an isomorphism of
K-vector spaces

cr

cpt

cpt

(F! K).

Then we define

AY_(h):CR(FK)®---@CE(F,K)O
by
AY_(h)=A"_(v'R)®- @ A% _(-;%h).
2. We put
| AV f (s h)|
fllor = sup ;
7l M T a(F] - P - o)

heF*V1 1. . xF*vat!
here and in the following 1 = (1,...,1) € N¢,

Notation. For a tuple n € N%, we define [n|=n; +--- +ng € N.

Remark 2.28. We give a direct definition of A”_(-;h) : Cio(F?, K) by recursion over |v
suited for the proofs by induction on || to come.

’

1. We set A? = id.p Let v+ € N? with [vF| > 1, say vt = v + e; and let

cpl(Fd?K)'
h* € Tlk=1. 4 F*¢ . Put
i), it =k
h=(h)_ with = { e T, ’
(h)i=1,...a {thr’ otherwise.
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Then
AV (- RY) = AV F(-+ "y, 40 - ex, ) — AVf(- h).

,,,,,

the iterated difference quotient operator *I(-,h) : C (F? K) ¢ defined recursively
over [v| by fI° = f, and for v+ € N? with [vF| = [v| + 1, say vT = v + e, we put

f}V[(. + thkH - ey, h) — f}V[(., h)
kh’l/k—l-l .

f]u+[('7 h+) =

2. Leth € F*"t! x ... x F*¥4*! Then

A% (a; h)| _ AV, (s )
a(Fh| - - - Ry, | - [Rhy, 1]PF) Yo, |- - |9y [P

Hk:l

77777

with F = fl(..h)and b = (Yhy, ..., hyys oo 3%, - %)

Remark. We firstly note that this remark only possibly affects the description of the comple-
tions of the normed spaces constructed here, not to be dealt with at this point.

We opted here for the C"-function norms as defined in Section 2 for convenience to generalize
those considered in [Barsky, 1973] with domain Z, and r = v € N instead of the one given in
[Schikhof, 1984]. These norms induce the same topologies on the locally polynomial function
spaces considered here, and their completions of v-times differentiable functions coincide on
the p-adic integers, as seen by their Mahler expansions through [Barsky, 1973, Section II] and
[Schikhof, 1984, Section 54]. In general however, when we look for additive differentiable
(even in the most naive Archimedean sense) functions on the valuation ring o of a local field F
with vanishing derivative f’ = 0, we observe the following: In characteristic 0, due to the den-
sity of Z C Z,, any such function has by continuity to be Z,-linear and thence by f’ = 0 to be
zero, whereas in characteristic p > 0, an additive map is only F-linear and e.g. automatically
differentiable with vanishing derivative if fulfilling | f ()| < |z|"™* with ¢ > 0. Since by addi-
tivity A?f = 0, such functions will be twice differentiable in the sense of [Barsky, 1973]. But
there are noticeable examples in positive characteristic not allowing for a Taylor polynomial
of second order (see [Glockner, 2007, Theorem 3.7]) and hence not being twice differentiable
in the sense of Schikhof by [Schikhof, 1984, Proposition 28.4]. Thence in general the notion
of C¥-function by Schikhof is stricter than the one given by Barsky.

Notation. For the remainder of this interlude, we fix n € N and denote by C' > 1 the corre-
sponding constant appearing in the formulation of Corollary 2.27.

Lemma 2.29. For any §-polynomial function f : F* — K of compact support of degree at
mostn = (n,...,n) holds

1P gy < CY/87 - 0 f e
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Proof. This is proven by induction on |v|. In case || = 0, there is nothing to prove. Let
lvt| > 1, so that we can write v = v + e, for some coordinate £ € {1,...,d}. For
notational convenience, assume k = 1. Let x € F?and h™* € [],_;

.....

WL, ifl=1
h = (h)._ with = { o), ’
(h)i=1,...d {lh+ otherwise.

Then
F(21) — F(z1 + hy, 1)

khlll —+1

We fix any (-, 29,...,74) € FéLand h € [[,_; ,F*"*. Then the above defined function

-----

F :F — Kis given by F := f¥((-,2,,...,24),h). It is a 6;-polynomial function. By
Corollary 2.27, it thus holds

g, ht) = with  F(z1) := f*l(z, h).

H‘F(x) A < C/op - ||IF gy (%)

_ |IFe)=Fep)
h

Id

FxF* FxF*
Because the above inequality () held for any choice of (-, x2,...,24) and h € [];—; _4F*"*,
we find
+
1A < e 10 < v a
the last inequality by the induction hypothesis. |

Lemma 2.30. Let f : F¢ — K be §-polynomial of compact support of degree at most n =
(n,...,n). Then

_ | A f(a; h)|
”f”cp T xsel;‘% ‘hl‘pl . ‘hd‘pd
heF*x.--xF*

< Cd/(sfl o '55d ’ Hf”sup'

Proof. For p € v(K*), let +* : F — K be given by 2 = a**® for any a € K with v(a) = p.
Then we define (-, h) : C&(F4, K) O for h € F* by

Alf('? h)

Wl py= =2\ ")
PPCR) =

so that )
|AYf(z; h)|
e e~ L

For I C {1,...,d} and h € F*', we define ¥I(;h) : C2(FLK) O on CE(F! K) =
Ccpt(F K) Q- Q& Ccpt(F; K) by

en=Q ™ me & idw e

kel ke{l,...d}—1
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with (- h) : C&(F,K) O defined by

gt my = It +hh;>> =

Then in particular

PPl (@ h) = PPl (e, hy) with Fo= f5 (oo, 2a), (B, ha)).

.....

By induction on #1 - the starting case #/ = 0 holding true by definition - we may assume
[F|lg < C91/857 - 04| fllyp- Then F is a &;-polynomial function in z; and so together
with Corollary 2.27, it holds

|F g < CJ2 [Pl < O 54 [

Because this holds for any choice of (-, za,...,x4) and (hs, ..., hy) in the definition of F', we
conclude

”f}p[(l”, h)HFdXF*d < Cd/é?l ’ "5§d ’ ”f“sup'
|

Proposition 2.31. Let f : F — K be a §-polynomial function of compact support of degree
atmostm = (n,...,n). Then

1 Fller < CPFH/67 - 63 | ]
Proof. By definition, we have

AP f(a: h
fle = sup A" J (@i )|

veF, M, (Ml - - P, |- P |™)
hGF*V1+1 ><~~><F*Vd+1

Let h € F*'*1 x ... x F**™! By Remark 2.28, we have
| AP f (s h)| |AYE (2, (huysns - Bgin))]

all"ha] = [Fh |- Py ea ) Phuga ™ [y

M=,

with Fy = f¥l( h) and b = (hy, .. Yoy o 3%, -, %he,) € B % - x F*¥4, By the
preceding Lemma 2.30, we obtain

|A1F}VL(Z‘, <1hl/1+17 s 7dhl/d+1))|

’1hy1+1|91 T |dh1/d+1‘pd

< CUYof ot Iy

sup”
By Lemma 2.29, we have

1y < 1@, ) s ey < C1/SY - 8501 f g
Because b € F*1 x - .. x F*"d was arbitrary, we can conclude

1Fller < CP /ST 63 | Fll -
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2.3 The locally algebraic case

Assumption 2.32. In this subsection, we will make the following assumptions:
1. We assume that GG splits.

2. We assume the unramified dominant character x : M — K* to fulfill the conditions of
Corollary 2.11.

a) Itholds |x(M™)| < 1.
b) In particular |x(Z)| = 1.

Remark. The assumption for GG to split furnishes us with the classification theory of rational
representations of split reductive groups.

Moreover, we have an identification F = NN, and can therefore conveniently speak of polyno-
mial functions on V,.

Because PN C G is by [Borel, 1991, Corollary 14.14 and Theorem 21.20] Zariski-dense,
we have by restriction onto N an injective homomorphism of K-vector spaces Indg(w)alg —
C¢(N,K). It becomes P-equivariant by letting N act through translation and M by f™ =
(m) f(-") on the right hand side.

We thus obtain a P-equivariant injection

I(0)(N)® Uy, 5 C~

cpt

(N,K) ®k Uy = C©

cpt

(N,K) @k C*(N,K) = CPF

cpt

(N, K).

Here the first isomorphism stems from Lemma 1.2(ii). The injectivity of the last map comes
from the fact that by [Borel, 1991, Theorem 21.20(i)] and the Taylor expansion, any polyno-
mial function on N is in characteristic 0 uniquely determined on an open subset in /N. The
surjectivity holds by compactness of support.

We denote the image of this injection by Cé%flp(N , K). It can be described by

Céi,flp(]\f, K)={f: N — Kofcpt. supp. : Foralln € N exists open U > n
in N such that fi;; = p,y for some p € Indg(@b)alg}.
We conclude that there is an isomorphism of K|P]-modules
I(x)(N) = Ci (N, K),

cpt

where the right hand side is endowed with the P-action by f* = (-n) for n € N and
f™ = x(m) - f(-™) for m € M. Under this isomorphism ¢; ® u is sent to 1y, - uy for
u € U, and which we will denote through abuse of notation by 1y, ® u.

We will from now on use the above identification in this subsection without further mention.
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Definition of the norm

By Corollary 1.7, we can describe the universal unitary lattice of the P-representation /(x)(V)
by £ := ok[P]-1n,®u C Céf,flp(N , K). In this subsection, we want show that it is Hausdorff.

Because £ is in particular P-stable, we find

LI < IGPYP = 1AL < 17N forany f € CoP(N,K) andp € P.

cpt
In particular ||-"|| = ||| for all n € N. We also compute
m - (1y, ® @) = 0(m)Lmy, ® w(-m) = Oh(m) - Ly, @ .

Since £ is by definition the smallest ok-lattice containing all p - (1y, ® u) for p € P, its
associated norm ||-|| can thence be characterized as the pointwise greatest norm fulfilling the
following two conditions:

1. It is invariant under translation by V.
2. We have ||1my, ® || = 1/|0¢(m)| for all m € M.

Denote by ||-|| the norm we want to construct and let £ := {f € Coi(NK) « || f]| <1} be

the lattice attached to it. In order that £ C A - £ for a scalar A € K* - and thus in particular
showing £ to be Hausdorff, it will suffice (see Corollary 2.34) to show that this norm satisfies
the following two conditions:

1. It is invariant under translation by V.
2. There is a constant C' > 1 such that |1y, ® || < C - 1/|0(m)| for all m € M.

Definition. 1. Let m, € M ™ /M,Z be as given in Definition 2.18. We define r € Rg by

To i=

vk (x(Mma)) if o € A,
0 otherwise.

This is well defined by Assumption 2.32.2.

2. Recall that we have an isomorphism of affine algebraic varieties N = [],co+ No —
Fo" giving rise to an injection of K-vector spaces

L CLP(NK) C CP (N, K) S CP (F K);

cpt cpt cpt

here we recall Cigt(N ,K) to denote the locally algebraic functions f : N — K of
compact support. Then we endow Céf,t_lp (N, K) with a norm via

1= 1leC) ller-
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Remark. We want to recall the explicit definition of ||-||... As before, given a real number
r > 0, we split it into r = v + p with an integral part v := |r| € N and a fractional part
p:=r—ve€|0,1] For (n.) € [[oco+ F*=, i.e. n:, € F** for all & € &, let us define

A_(+(ng): @ CP(F,K) O

acdt
by
AY_(5(n8)aca) = @Q A _(- ).
acdt
Then L
_ |AY L f(n; ()]
[fller = sup . - p i
neN,(n EH cot L Frvatl HaeA(|na,1| e |no¢,ya ’ |na,l/a+1| )

here 1= (1,...,1) € N®".
Lemma 2.33. The norm ||| satisfies the following two conditions:

1. It is invariant under translation by N.

2. There is a constant C' > 1 such that ||1my, ® 4| < C - 1/|0¢(m)| for all m € M.
Proof. Ad 1.: This holds by definition.

Ad 2.: For any a € ®*, we may assume the algebraic isomorphism of groups N, — F
to be chosen such that N(a) = op, where we let a € ®J correspond to a € ®T. We have
"Ny = [Taco+ N(a+ < a,v(m) >) and N(a+ < a,v(m) >) = 7<%?0"> . on. There-

~

fore (1, ® @) : F®" 3 N — K is a §-polynomial function with § = (3,) € R®, given

by d, : \W!<a v(m)> " Because Uy is a finite dimensional K-vector space, there exists by
Proposition 2.31 a constant C' such that

1oy ® ll = [lo(toy © @)ller < G/ TT 822 - (Lo, @ W)

a€cA

sup”®

Firstly, within M /M,Z we can write m = Y ca o - Mo With i, € Zso. Then for any a € A,
we have < «, v(m) >= i,. Therefore

5% _ |7T|la To _ | |za vk (X ma)

the last equality by definition of .. We therefore obtain

[ 5 — e

a€A
__‘ ’ X(E:aeAla7naD
F
= e
= & = x(m)-
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Secondly, we have

Ly ® Ullyy = Nl = (™) 1y, = N[ = 2)(m) - iy, = [ — $](m)]

Combined, we compute

Loy @ | < C - Ix(m)lg [ = ¢](m)] - ally,
C- Ix(m)lg 1Y = )(m)] - 11y ® @l

We have x = 6 and therefore x [t/ — )] = 1/6). This gives

[y, @ | < C-1/16%(m)] - |1, © ]

sup”

We conclude ||1my, @ @)|| < C - 1/]0¢(m)| with C' = C - ||1n, @ |

sup*

Corollary 2.34. There exist constants 0 < ¢ < 1 < C such that ¢ < ||p- 1y, @ u|| < C for

allp € P.

Proof. Let f = 1y, ® u. Because M is a group, we have || f™| < C - || f|| for all m € M
if and only if || f™|| = C - ||f]| for all m € M. Indeed, given any m € M, we have ||f|| =
17 < |If™ |, hence || f|| = ||f™|. Put ¢ = 1/C. Because P = MN, we infer from the

preceding Lemma 2.33 that ¢ - || f|| < || f?|| < C - || f| forall p € P.

Corollary 2.35. The lattice £ is Hausdorff.
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3 The universal unitary lattice of an unramified
dominant principal series

3.1 The universal unitary lattice of the underlying P-representation

We let G be a topological group.

Lemma 3.1. Let V be a K-linear G-representation and assume the following conditions to
hold:

1. The group G is locally profinite, i.e. every neighborhood of 1 contains a compact open
subgroup.

2. The group G has a formal Iwasawa decomposition G = PK for a compact subgroup
K of G and a subgroup P C G.

3. The representation V' is locally finite dimensional: For every vector v € V, there is a
compact open subgroup Gy C G such that K[Gy| - v is a finite dimensional K-vector
space.

Then the universal unitary lattice of V' with its finest locally convex topology is given by any
lattice finitely generated as an o[ P]-module.

Proof. By Proposition 0.2, the universal unitary lattice of V' is given by any lattice finitely
generated as an o[G]-module. We hence have to show that the commensurability class of
lattices finitely generated as an o[G]-module equals the one of lattices finitely generated as an
o[P]-module.

Let £ := Y,c; o[G]v; with [ finite be such a lattice. Then Y, ; K[K]-v; is a finite dimensional
K-vector space: By assumption, there exists a compact open subgroup Ky C G such that
Vo = Y, K[Ko] - v; is a finite dimensional K-vector space. By intersecting with K and
possibly shrinking K, we can assume K to be an open normal subgroup of K, so that the
quotient K’/ K is a finite group. Therefore 3=, K[K|v; = Yycr/r, (X; K[k K] - v;) is finite
dimensional.

We thus find the o-module },.; o[K] - v; to be finitely generated as a K-vector space and,
since K is compact, also to be bounded. Therefore it is finitely generated as an o-module and
hence finite free. Denote its basis by {v; : j € J} for a finite index set .J. Therefore

£=> o[G]y;
il
=<g-v;:9€ PK,i €1 > o
=<k-vi:keK,iel > o[ P]-mod.
=< :J € J >6/Pmod.

=Y o[P]v;.

jeJ
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Conversely, assume we are given a lattice £ = Y°,.; o[PJv; C V with [ finite. Then likewise
>ier0[Glv; = X ;c;0[Plv; with J finite. So by finiteness (and because £ is a lattice), we
find {v;} C A- £ for some A € K and hence by P-stability of £, we find G - {v;} C A- L.
Therefore, putting £ = 3,7 0[G]v;, we have

L£CLCA-L
Hence £ and £ are commensurable. [ |

Remark 3.2. We have the following examples of G' and V' fulfilling the hypotheses of Lemma
3.1 in mind:

1. If G is an affine algebraic group over a local field, then Condition 1 is always fulfilled,
see e.g. [Cartier, 1979, Section 1.1].

2. If G is a connected reductive group over a local field with a minimal parabolic subgroup
P as defined in Section 0, then Condition 2 is by definition fulfilled if K C G is a good
maximal compact open subgroup.

3. We find Condition 3 to be satisfied if V' is smooth or more generally locally algebraic.
As remarked in Section O this in particular applies to any unramified dominant principal
series representation.

Corollary 3.3. Let G be a connected reductive group and x : M — K* an unramified dom-
inant character. Then the universal unitary lattice of the locally algebraic G-representation
I(x) is given by any lattice finitely generated as an ox[P]-module.

Proof. By the above Remark 3.2, we can apply Lemma 3.1 to the representation V' = I () of
our topological group G. |

3.2 The Jacquet module
We let G be a connected reductive group over F'.

Definition. 1. Recall that a smooth G-representation V is called admissible, if V¥ is a
finite dimensional K-vector space for every compact open subgroup in G. The Jacquet
module Jp(V') of alocally algebraic representation V' = [ ®U for an admissible smooth
G-representation I and an irreducible algebraic G-representation U is the K[P]-module
defined by

IJp(V) = Iy @k UY;

here Vyy is defined as the largest quotient on which NV acts trivially. So Vyy := V/V(N),
where V' (N) is the N-subrepresentation generated by all nv — v forn € N andv € V.
(See [Emerton, 2006, Proposition 4.3.6].)

2. We fix as before the compact open subgroup Ny := BN N of N and let M+ C M
respectively Z3; C Zy be the dominant submonoid in M respectively Zy; consisting of
all elements stabilizing N, by left conjugation.
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3. We define 0p : P — Q to be the modulus character on P given by precomposition
of the projection P — M with the unramified character 6p : M — p? with dp(m) :=
|det Ad,(m)].

Remark 3.4. 1. By definition, NV acts trivially on Jp(V).

2. If U = U, is the irreducible algebraic representation parameterized by its highest weight
1, then P acts on UY by definition through the dominant algebraic character 1), and we
conclude

Jp(I ®x Uy) = In QK .

Remark. Let m € M and let 6 : M — K* be a character which is either unramified or
algebraic. Then 6(-™) = 0.

Proof. 1. If § is unramified, this holds as M /M, is by Remark 2.1 abelian.

2. If ¢ is algebraic, we find by Lemma 2.3 this character to be determined by its restriction
onto the subgroup A C M, which by definition M centralizes.
[

We can therefore define the Weyl group W to act on the product 6 : M — K* of an
unramified and an algebraic character through 6% = §(-*).

Remark (Interlude on the square root of the modulus character). Let Ap : M — F* be defined
by Ap(m) = det Ad,(m). Because Ap : M — F* is an algebraic character on a connected
reductive group, it is by Lemma 2.3 determined by its restriction onto A C M.

Recall that n = @, cqo+n, With A acting through the adjoint action on n, by multiplication
with the character a.

We observe the following properties:

1. We have v(Ap(a)) = X cq+ v(a(a)) fora € A.
2. We have Ap = AR’

Recall that dp : P — p” C K* was defined by dp(mn) := |Ap(m)|p formn € P = MN.
We deduce:

1. By continuity, the image §p(M,) of any bounded subgroup M, C M has to bounded.
This can by the group properties only hold if 6p(M;) = 1. Therefore dp has to be trivial
on the maximal compact (open) subgroup M, C M, i.e. it is unramified.

2. Letw € W. We recall W to permute ®. Therefore

o(Bp/08@) =2 Y vla(a))

acdtNuwdt

and we see that dp/0%(A) C p*“. Therefore the character (6p/8%)"/? : M — p” is well
defined.
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We conclude that we have a well defined unramified character (5p/6%)Y2 : M — K*.

The following interlude shows that C as an abstract field is determined by being an alge-
braically closed field of characteristic 0 and cardinality 2%°.

Lemma. Let C' and D be two algebraically closed fields of equal characteristic and transcen-
dence degree. Then there is an isomorphism of rings C' = D.

Proof. Let c and d be their isomorphic prime fields. Then we choose transcendence bases 1’
of C'and S of D. Because #1" = #J5, there is an isomorphism of rings ¢(.S) = d(7T'). Because
these are maximal algebraically independent subsets, any extension of these fields is algebraic

and we can extend this isomorphism to their algebraic closures C' = ¢(S) = d(T)=D. R
Notation. Let E be the subfield Q(6(M)) C K.
Lemma 3.5. There exists a ring embedding E = Q(6(M)) — C.

Proof. Let C(A(M)) be the composite field of E and C and C its algebraic closure. By Corol-
lary 2.4, we have an isomorphism of groups A := M /M, = Z* and thence in particular y (M)
is a finitely generated abelian group. We find #C = #C(#(M)) = #C and thence an equality
of transcendence degrees td C = td C(A(M)) = td C. By the preceding lemma we obtain a
ring isomorphism C 22 C. Therefore

E = Q(O(M)) — C(O(M)) — C = C.
n

Remark. Let I(0)g C I(0) be the E[G]-module given by all functions with image in E. Then
we have an equality of K[G]-modules I(6) = I(0)g ®gjq) K[G].

Definition. 1. Put,, := " (55/0%)"/2. We call a character § : P — K* regular if §,, = 0
only if w = 1.

2. Given an unramified dominant character y = 6, we put Y, = 0,%. We call an
unramified dominant character y regular if y,, = x only if w = 1. This holds if and
only if € is regular.

Lemma 3.6. We have an isomorphism of K[P]-modules

10y = €D b,

with 6, := (05" - 6,42,

Proof. 1. We firstly assume K = C as an abstract field. By [Cartier, 1979, Theorem
3.5] and observing 5 = ' - where we note that we have taken the Jacquet module
with respect to the parabolic subgroup opposite to the one we induced from - the semi-
simplified Jacquet module 7(6)% of I(§) = Ind% 6" is given by

105 = @

weW
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with 6, == (0/ 6}—,/ 2w . (5}3/ ®. By the regularity of 6, the 6,, or equivalently the 6, are
all pairwise distinct. Then by the Chinese remainder theorem the cyclic K[P]-module
Jp(1(0)) splits and therefore .

I(O)n = P b

weWw

2. We now let K be arbitrary and set E = Q(6(M)) C K. By the preceding Lemma 3.5,
we have an embedding of rings E — C. Let R = E[P]. By the first step, we have an
equality of R ®g C-modules

(I(0)e)v ®6 C = D bu.
weW
Because C is faithfully flat over E, we find R ®g C to be faithfully flat over R. Thence
the above equality already held over R. By flatness of K[P] over E[P], we conclude
I1(0)y = Bpew O as K[ P]-modules.
[ |

3.3 Gluing the universal unitary lattice from the intertwined open
cells

We let G be a connected reductive group over F and let x = 0¢ : M — K* be an unramified
dominant character.

Assumption. We will from now on assume x : M — K* to be regular.

Lemma 3.7. There exists for each w € W a nonzero morphism of G-representations T,
I1(0) — 1(0,) with 0, = 0V (5p/5%)"/2.

Proof. Let n : P — K* be an unramified character. Because N lies in the commuta-
tor subgroup of P whereas K* is abelian, 7 is necessarily trivial on N. Therefore and by
Frobenius reciprocity thus holds Homg(1(0),I(n)) = Homp(1(0)y,n). Note that 1(6)y =
J5(1(0)). So Lemma 3.6 with P exchanged with P shows that 1(6) 5 = @,ew §w~ . Therefore

Homeg(1(0),1(n)) = ITwew Homp(60,,n), which is nonzero if and only if n = 6,, for some

w € W. In particular Homg(1(0), 1(0,,)) # 0 for all w € W. |

Corollary 3.8. For any unramified dominant character x : M — K, there exist nonzero
morphisms of G-representations T, : I(xw) — I(x) forallw € W.

Proof. Fix w € W. We firstly assume x = 6 to be unramified. Using 6, = p', we see
that 6, was chosen such that 6,, = 0%“(55/ 5%)1/ 2 = (. Therefore we have by the preceding
Lemma 3.7 a K[G]-linear morphism T, : 1(6,,) — 1(6).

Let us now assume y = 6 to be a general unramified dominant character. Then we just define
Ty, : I(xw) = I(x) by

Tw ®idUz/)

I(xw) =1(0,)@Uy, — "1(0)®@ Uy, = I(x)-
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Assumption. We will in the following assume that K = C as an abstract field.

Lemma 3.9. Let o € A. Then the action of Ty, on {¢,, : w € W} - cf. Definition 1.3 - is
described as follows:

(ca(bw,) — 1)¢w + qglqo_c/lﬂswawv if {(waw) > L(w)
(calOws) = 4270012 Pw + by 1 L(waw) < L(w).

Loy, <¢w) = {

Here qq, Qa2 € q% are constants solely dependent on « constructed in [Casselman, 1980,
Equation (12) et seq.] and c,(0,,) € E is a constant solely dependent on o and 0., (cf.
Remark 3.13 below).

Proof. By [Casselman, 1980, First equality of Theorem 3.4], we have the above equality if
l(waw) > £(w). Otherwise {(w,w) < ¢(w), so that w = w,w with W = w,w and w fulfilling
l(wa) > £(w) and then

T (¢w) = Quow T (Ca(e) - qglq;/lQ)gbw
by the second equality of [Casselman, 1980, Theorem 3.4]. |

Remark. Because T, is E[G]-linear, it preserves in particular the subspaces of Iwahori invari-
ants, i.e. T,,(1(0,)5) C I(0)E. We reasoned in Remark 1.4 these to have {¢,} as a basis and
so deduce that T}, (¢, ) is again a E-linear combination of {¢, }.

Now the only content in the above theorem relevant to us is the observation that if w = w,
for some o € A, then the coefficient of ¢,,, in this linear combination will be nonzero. By
induction on the length of w € W, this holds for all T;, if v = 1, as seen next.

Lemma 3.10. Fix w € W. Then Ty(¢1) = Ay®uw + X o(v)y<t(w) Aodv With Ay # 0, X, € E.

Proof. By induction on ¢(w). If /(w) = 0, then w = 1 and there is nothing to prove.

Let [ := {(w) > 1. Then we can write w = w,w with £(w) = | — 1 for suitable & € A. By
[Casselman, 1995, Theorem 6.4.4], we find 1o, = Cy,, 5 - T, © Ty With C,,_ » € p%. The
induction hypothesis for w gives

Tud1 = Xods + Y. Aty

L(v)<l(w)

with suitable scalars \; # 0 and A\, € E. By Lemma 3.9, we obtain in either case ((w,v) =
{(v) that

Twotbo = > Augpu  foru e W with £(u) < l(wav) < 1+ L(0) = L(w)

and suitable scalars )\, € E. By the same token

Tt = AuPw + A With Ay, # 0, Ay € E.

173



Therefore

w¢1 waw TwaT (Qb )
= Cw a0 " w&( w(bw) + Z Cwa,'d; : )\vaa ((bv)

L(v)<L(w)
- [,U/waﬁquw(,lb + /vbuvzgzslb] + Z (Mv¢v + Nwav¢wav)
L(v)<l(w)

= Mw¢w + Z ,uvgbv

L(v)<l(w)
for suitable scalars i, = fiy,o 7 0 and u, € E. |
Lemma 3.11. The E-linear span of {T,,¢1 : w € W} contains {¢,, : w € W}.

Proof. We show by induction on [ that the E-linear span of {T,,¢; : {(w) < [} contains
{bw : l(w) < 1}.Ifl =0, then w = 1 and T}, = 1, so that everything holds.

Let [ > 1. By the induction hypothesis, we find the E-linear span of {T;,¢; : £(v) <[ —1} C
{Tyé1 : £(v) <1} to contain {¢, : {(v) <1 —1}. Butevery T,,¢ with £(w) = [ is by Lemma
3.10 the sum of a linear combination of {¢, : ¢(v) < | — 1} and a nonzero scalar multiple
of ¢,,. Therefore {T,,¢; : ¢(w) < [} contains also all ¢,, with £(w) = [ and the proposition
holds. |

Assumption. For the remainder of this section, we will again assume K to be an arbitrary
complete non-Archimedeanly non-trivially valued field of characteristic 0.

Lemma 3.12. The universal unitary lattice of 1(x) is given by

e= Y oxlP) Ty (¢ @),

weW

Proof. By Corollary 3.3, the universal unitary lattice of /() is given by any ok -lattice finitely
generated as an ok [P]-module. It therefore rests to show that £ is indeed an ok-lattice in ().

By Lemma 3.11, we find
< Tw(¢1) Qu:weW >E-vsp.2 {wa RQu:w € W}

Therefore
LR K=Y K[P]- T\, (pr@u) 2 > K[P] ¢, ®0=1(x);
wEwW weW
here the last equality by Corollary 1.7. |
Remark 3.13. Let a € ®. If GG is split, we define
1- q};le(aa)
o) = e
) = 5400

with a, € A such that v(a,) = &. For general non-split GG, we refer to [Casselman, 1980,
Beginning of Section 3].

Then the following statements are equivalent:
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1. Ttholds ¢, (0), ca(0u,) # 0 foralla € . (x)
2. The G-representation /() is absolutely irreducible.
3. ALl T, : I(xw) — I(x) for w € W are bijective.

Proof. We begin by assuming K = C. Firstly by [Casselman, 1980, Proposition 3.5(b)], we
find (x) to hold if and only if /(#) is irreducible. By [Casselman, 1995, Proposition 2.2.6], we
find () to be irreducible if and only if it is absolutely irreducible.

Secondly, by [Casselman, 1980, Proposition 3.5(b)], we find (x) to hold if and only if all inter-
twining operators T, : 1(6,,) — I(0) are isomorphisms.

If K is a general complete non-Archimedeanly non-trivially valued field of characteristic 0,
we can by Lemma 3.5 embed E — C. We recall that /()¢ = I(0)g ®g C and C[G] to be
faithfully flat over E[G]. Thence we find T, ®g C : 1(0,)c — I(0)c to be an isomorphism
of C[G]-modules if and only if 7, : I(6,)r — I(0)g is an isomorphism of E[G]-modules.
Likewsie because /(6) = I(0)g ®g K and because K|[G] is faithfully flat over E[G], this holds
if and only if T3, : 1(6,,) — I(#) is an isomorphism.

Then these equivalences expand to a general unramified dominant character y as follows:
Firstly by definition U, = Ur ®F K with an irreducible F[G]-module Ug. Invoking the clas-
sification theory of irreducible rational representations of split reductive groups (see [Jantzen,
2003, Section I1.2]) and using the density of rational points G C G by [Borel, 1991, Corollary
18.3], we see that Ug or equivalently Uy, is absolutely irreducible. By [Schneider and Teitel-
baum, 2001, Appendix] a tensor product of an irreducible smooth and irreducible algebraic
representation is again irreducible. Hence we find /() = 1(#) ®k U, to be absolutely irre-
ducible if and only if /(#) is absolutely irreducible. Secondly by definition 7}, = T3, ®k id :
1(0,) ®x Uy — 1(8) ® Uy. Thence T, is bijective if and only if 7, is bijective. [

Corollary. Let I(x) be absolutely irreducible and assume that | x,(M™1)| < 1 forallw € W.
Then the universal unitary lattice of 1(x) is of the form

I(x)= Y £, with £, =ok[P]-T,(¢1 ® u) a free ox-module.
weW

Proof. Because T, is in particular K[P]-linear, we have ok [P] - T),(¢1 ® u) = T\, (ok[P] -
¢1 ® u). By Corollary 2.15 in the smooth respectively Corollary 2.35 in the locally algebraic
case, we find £, = ok[P] - 1 ® @ C I(x,)(N) to be Hausdorff (or free). Therefore its
ok-linear image .

Tw(Ly) = ok[P] - Tw(dr @ u) = £,

under the injection T3, : () — I(x) is again free. [
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