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ABSTRACT 

 

Atherosclerosis is a multifactorial and polygenic disease. Origin and progression of 

atherosclerosis involve multiple biological systems. The extracellular matrix protein biglycan 

(BGN) is involved in the pathogenesis of atherosclerosis at different stages. BGN affects the 

constitution and stability of the fibrous cap of the atherosclerotic plaque, mediates binding of 

low-density lipoproteins to the artery wall and exerts proinflammatory actions. We analyzed 

the transcriptional regulation of the human BGN gene, also with respect to individual 

promoter allelic constellations. In transient transfection experiments of the BGN 5'-flanking 

region and 5'-UTR, we identified an 1025 bp portion with sufficient transcriptional activity in 

endothelial (EA.hy926) and monocytic (THP-1) cell lines. Screening of 1198 bp of the 

promoter region in 57 individuals with cardiovascular disease (CVD) led to the validation of 

three genetic variants: G-578A (rs11796997), G-151A (Brand, unpublished data) and G+94T 

(rs5945197). Subcloning and resequencing revealed three common MolHaps:  

BGN-MolHap1 [G-578-G-151-G+94], BGN-MolHap2 [G-578-A-151-T+94] and  

BGN-MolHap3 [A-578-G-151-G+94]. Introduction of either MolHap2 or MolHap3 in a 1025 bp 

construct resulted in a significant decrease (all P-values <0.05) of transcriptional activity in 

both EA.hy926 and THP-1 cell lines. To identify the positions of cis-regulatory elements in 

the 5'-flanking region, we generated serial deletion constructs. Stimulation of THP-1 cells 

with transforming growth factor-beta1 (TGF-β1) increased transcriptional activity of wild 

type BGN promoter fragments up to 3-fold (all P-values <0.01). To identify trans-acting 

transcription factors, we performed co-expression, chromatin immunoprecipitation (ChIP), 

and EMSA experiments. Transcription factor SP1 was shown to activate transcriptional 

activity of promoter fragments up to 4-fold compared to mock control (all P-values <0.001) 

and physical SP1 interaction was confirmed in ChIP experiments for alleles G-151 and G+94 

in EA.hy926 cells. EMSA experiments revealed binding of c-FOS to the 5'-UTR position 

G+94T. TGF-β1 stimulation of THP-1 nuclear extracts enhanced SP1 interaction with 

position G-578A. In THP-1 cells, ETS family member PU.1 bound the major allele G-578 

with higher affinity (4-fold) compared to the minor allele  

-578A. We conclude that BGN gene expression is under the control of activating transcription 

factor SP1. TGF-β1 reinforces SP1 binding and enhances transcriptional activity of the BGN 

promoter. The polymorphic position G+94T reside within a cis-active promoter element 

where AP-1 complex formation was observed. Monocyte-specific regulation of BGN 

expression is also controlled by ETS TF PU.1. 
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1 INTRODUCTION 

 

1.1 Cardiovascular Disease (CVD) 

 

CVD include hypertension, coronary heart disease (CHD), cerebrovascular disease, peripheral 

artery disease, rheumatic heart disease, congenital heart disease, and heart failure. Globally, 

CVD is the leading cause of death for women and men. In 2005 an estimated 17.5 million 

people died from CVD, representing 30% of all global events (WHO). Sixty-one percent of 

cardiovascular deaths occur due to specified risk factors, which include high blood pressure 

(~54% of deaths in European countries), high body mass index, high cholesterol, high blood 

glucose, unhealthy diet and physical inactivity. Above all, family history of CVD strongly and 

independently determines future CVD risk in individuals (Myers et al., 1990), underlining a 

major impact of genetic predisposition. 

 

1.2 Arteriosclerosis 

 

Arteriosclerosis represents the pathophysiological basis of CVD. The term literally refers to 

‘hardening of the arteries’, which resembles early reports on its observed pathophysiology. 

Terminology and classification of arteriopathic subcategories are still part of ongoing debates 

(Fishbein & Fishbein, 2009). Commonly accepted, arteriosclerosis is a systemic disease with 

particularly noticeable manifestations in the medium and large arteries and a strong 

inflammatory background. Atherosclerosis represents the most important form of 

arteriosclerosis, describing loss of elasticity of affected arteries due to atheromatous plaque 

formation (fig. 1). 
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Figure 1: Development of atherosclerotic lesions.  

The development of an atherosclerotic lesion is shown from left to right, from a normal blood vessel to 

a vessel with an atherosclerotic plaque and superimposed thrombus. Stages I to VI (below) are 

depicted according to the American Heart Association. The process representing specific stages of the 

lesion is shown at the top of the figure. (I) Lipoprotein particles, especially LDL, enter the arterial wall 

and undergo modification, including oxidation. The endothelial cells dysfunction is marked by 

inhibition of nitric oxide production. Oxidised LDL particles lead to endothelial cell activation with 

subsequent expression of adhesion molecules (ICAM-1, VCAM-1 and selectines) and inflammatory 

cytokines. (II) Monocytes are recruited into the subendothelial space, guided by chemokines. 

Differentiated into macrophages, they take up oxLDL and transform into lipid-laden foam cells. 

Infiltrating T-cells produce adhesion molecules, cytokines and chemokines leading to an ongoing 

immune activation. (III-IV) Apoptosis of foam cells leads to necrotic core formation. VSMC migrate 

into the developing plaque, forming a fibrous cap. (V-VI) Formation of stable or unstable plaques with 

potential rupture and thrombus formation. Figure adapted with permission from Z. Fayad (Sanz & 

Fayad, 2008). 
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1.2.1 Pathophysiology of atherosclerosis 

Atherosclerosis is a progressive, multifactorial, and proinflammatory disease characterized by 

the accumulation of lipids in distinct regions of the arterial wall designated as atherosclerotic 

plaques. Changes of the arterial wall due to atherosclerotic processes begin in early childhood 

and is a slow and silent process.  

Clinical manifestation with noticeable symptoms is not commonly detectable before 30 years 

of age, depending on individual predisposing factors. Despite other potential inducers of 

atherosclerosis pathophysiology, infiltration and retention of lipids from blood into the intima 

of the arterial wall is a pivotal process in disease development and progression (fig. 1). 

Elevated low-density lipoprotein (LDL) plasma levels result in binding of LDL to 

proteoglycans in the subendothelial matrix, where modification through oxidative and 

enzymatic (i.e. myeloperoxidase, lipoxygenases and others) processes takes place yielding 

oxLDL (Skålén et al., 2002). LDL thereby passively diffuses through endothelial cell 

junctions, with preference to regions of arterial branching or curvature, were no particular 

orientation of the cells in blood flow direction is observed. Activation of endothelial cells by 

phospholipids released from LDL may result in expression of several adhesion molecules 

such as VCAM-1, ICAM-1 and selectins on the endothelial surface (Steinberg, 2009). Upon 

interaction of adhesion molecules with carbohydrate ligands on the surface of blood 

monocytes, rolling, adhesion, and subsequently transmigrate of the monocyte into the 

subendothelial space takes place in response to different chemokines. Macrophage colony-

stimulating factor (M-CSF) induces proliferation and differentiation into macrophages (Yan 

& Hansson, 2007). This process is associated with upregulation of pattern-recognition 

receptors including scavenger receptors (Hofnagel et al., 2007) which mediate the uptake of 

oxLDL leading to foam cell formation and Toll-like receptors initiating inflammatory 

activation (Hansson, 2009). Native LDL is not taken up by macrophages very rapidly and 

LDL modification is crucial for early lesion formation. Anti-atherogenic processes are thereby 

interfered by oxLDL since it inhibits the production of nitric oxide, a strong mediator of 

vasorelaxation. This early stage in atherosclerosis pathophysiology, characterized by the 

subendothelial accumulation of lipid-laden macrophages, is termed the fatty streak. During 

the formation of the atherosclerotic plaque, the shoulder regions determine its future stability 

to a great extend. Here, T-cells of the lesion, with domination of CD4+ cells over CD8+ cells, 

are concentrated in clusters (Robertson & Hansson, 2006). On ongoing immune activation in 

these regions is marked by MHC class II-expressing macrophages and dendritic cells 
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(Jonasson et al., 1985). Infiltrating T-cells are activated by local antigens such as oxLDL 

components or heat shock protein 60/65 (Robertson & Hansson, 2006), resulting in the 

expression of various cytokines and differentiation into Th1 effector cells. The prototypic Th1 

cytokine interferon-γ (IFN-γ) promotes macrophage and endothelial activation with 

production of adhesion molecules, cytokines and chemokines and secondary increases the 

expression of tumor necrosis factor-α (TNF-α) and IL-1 (Hansson, 2001). Targeted deletion 

of IFN-γ or its receptor reduces disease progression, while recombinant IFN-γ accelerates 

lesion formation. The resulting local concentration of synergistic cytokines induce the 

proliferation and migration of VSMC, which in turn concentrate ECM components within the 

advanced atherosclerotic lesion. The advanced lesion is mainly composed of a necrotic core 

with accumulation of lipid-laden macrophages and extracellular lipid droplets derived from 

dispersed foam cells. A cap of VSMC and a collagen rich matrix is formed, characterizing the 

composition of the fibrous cap and its mechanical strength.  

Acute coronary events depend principally on the composition and vulnerability of the plaque 

and the status of a plaque from stable to unstable can change within a very short period of 

time under certain pathophysiological conditions. Underlying mechanisms are still under 

investigation, with a focus on endothelial (Hirschi et al., 2008) and smooth muscle (Sata et al., 

2002) progenitor cells trafficking in the vascular wall (for a review see Hristov & Weber, 

2008). Increasing numbers of inflammatory cells may contribute to unstable plaque formation 

by weakening of the plaque shoulder regions, making the cap more vulnerable to shear stress, 

leading incidentally to plaque rupture with subsequent thrombus formation by adhering 

platelets and fibrin crosslinks. Plaque erosion is another cause of acute coronary thrombosis. 

Eroded plaques are rich in SMC and proteoglycans, with relatively few inflammatory cells. 

The main cap proteoglycans, versican, BGN, and decorin (DCN), in combination with 

hyaluronan accumulate in topographically distinct patterns. Not only do these molecules 

contribute to plaque burden, but influence the biomechanical properties of vascular lesions 

and the ability of plaques to resist rupture. Stable plaques are thereby marked by increased 

accumulation of versican and BGN whereas plaque erosion is characterized by aggregation of 

hyaluronan and absence of BGN (Kolodgi et al., 2002) 
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1.3 BGN as a candidate for CVD pathophysiology 

 

BGN, or proteoglycan-I (PG-I), has been first described in 1983 by Fisher et al. (Fisher et al., 

1983). The human BGN represents a single copy gene and was mapped to the long arm of the 

X-chromosome (Xq28). BGN consists of eight exons, including exon one encoding the  

5’-untranslated region of the mRNA, seven introns and spans over 9.5 kbp of DNA. It is 

transcribed into nine transcripts by the alternative use of TSS and multiple splicing events. 

BGN is broadly expressed in the human body with high mRNA levels in lung, placenta, liver, 

retina and the heart. Altered BGN expression has been reported under several pathological 

conditions including cancer (Wong et al., 2009; Valladares et al., 2006), hypertension (Sardo 

et al., 2009) and atherosclerotic plaque formation (Riessen et al., 1994; Kolodgie et al., 2002; 

Adiguzel et al., 2009). BGN expression is influenced by a number of cytokines. TGF-β1 has 

been identified as a positive regulator of BGN expression (Lijnen et al. 2000; Ungefroren et 

al., 2003; Burch et al., 2010) and a negative feedback loop for BGN regulating TGF-β1 

activity has been suggested (Ruoslahti & Yamaguchi, 1991). TNF-α decreased BGN  

steady-state mRNA levels (-62%) and the BGN core protein gene transcription rate (-18%) in 

human chondrocytes (Dodge et al., 1998). The combination of IFN-γ and TNF-α resulted in a 

potentiation of the observed inhibitory effect. The important role of BGN in circulating 

monocytes has been emphasized repeatedly and a decrease in BGN expression has been 

reported after incubation with glucocorticoids (Kimoto et al., 1994). Treatment with 

angiotensin II has been shown to increase BGN mRNA expression in patients’ blood 

monocytes (Sardo et al., 2009). 

BGN is one of at least nine small leucine-rich proteoglycans (SLRP) which are secreted 

extracellular matrix components with different localization, expression and function. Grouped 

into three different classes (Iozzo, 1999), all of them can be described as either glycoproteins 

containing N-linked oligosaccharides or as proteoglycans containing chondroitin/dermatan 

sulfate or keratin sulfate chains (fig. 2). Class I comprises DCN and BGN which show a high 

homology (57%) and have been proposed to have evolved from an ancestral gene by gene 

duplication (Krusius et al., 1986). BGN and DCN are the only SLRP members that contain a 

highly conserved pro-peptide which might serve as a recognition signal for the 

xylosyltransferase. Both contain ten leucine-rich repeats (LRR) flanked by cystein-rich 

regions (Krishnan et al., 1999) and either one (DCN) or two (BGN) chondroitin/dermatan 
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sulfate chains at their N-terminal domain. Other members of the SLRP family are 

fibromodulin (FMOD), lumican (LUM), keratocan (KERA), PRELP and osteomodulin 

(OMD) in class II as well as epiphycan (DSPG3) and osteoglycin (OGN). 

 

 

 

 

 

Figure 2: Schematic representation of the BGN protein, indicating major domains.  

N-terminal: two glycosaminoglycan (GAG) chains (yellow), C: cystein residues, 10 leucine-rich 

repeats (LRR, blue). BGN self-aggregates into dimers and hexamers under physiological conditions. 

With modifications from Krishnan et al., 1999. 

 

 

The versatile role of BGN in pathophysiological processes has been extensively studied in 

animal models. Heegaard et al. (Heegaard et al., 2007) reported a vascular phenotype in  

BGN-knock out (ko) mice. BGN-deficiency caused aortic rapture across intima and media and 

dissection of the aortic wall. This observation was predominantly male-specific, since 50% of 

male ko mice died within three month of age but female mice showed similar phenotypes as 

wt. Corsi and colleagues (Corsi et al., 2002) highlighted the impact of BGN-deficiency on 

collagen fibrillogenesis. The group observed structural abnormalities in collagen fibril 

deposition in bone, dermis, and tendon of male BGN-ko mice. A very comprehensive study 

was presented by Westermann et al. (Westermann et al., 2008), investigating the role of BGN 

during cardiac ECM remodeling and cardiac hemodynamics after MI. They observed 

increased mortality, high frequency of cardiac ruptures, and aggravated cardiac failure in male 

ko animals after experimental MI due to perturbed collagen remodeling in the infarct scar 

tissue. In wt mice, BGN expression was strongly upregulated after MI, peaking in parallel to 

collagen content and was found in the infarct scar and border zones using 

c
c

c
c cc

NH2 OOH
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immunohistochemistry. The dual nature of BGN as a signalling molecule and a crucial 

proinflammatory factor was highlighted by Schaefer and colleagues (Schaefer et al., 2005). 

BGN-ko mice had a survival benefit compared with wt animals in induced sepsis due to 

decreased inflammatory response resulting in less organ damage. In addition, they provide 

evidence that macrophages are capable of producing BGN upon stimulation by 

lipopolysaccharide-induced proinflammatory factors. In a previous report the group observed 

concurrence of BGN overexpression and increased numbers of infiltrating cells in a model of 

renal inflammation (Schaefer et al., 2002). 

 

1.4 Polymorphic structure of the BGN gene 

 

In initial studies (Brand, unpublished data), the 5'-flanking region, exons, introns, and the 3'-

flanking region of the BGN gene were scanned for alterations in genomic DNA from 95 

patients of the ECTIM study. ECTIM (Etude Cas-Témoins de l'Infarctus du Myocarde) is a 

study of patients with MI (Cambien et al., 1992) from regions covered by the World Health 

Organization’s Monitoring Trends and Determinants in Cardiovascular Disease (MONICA) 

registers and of control subjects (cases [n=988, mean±SD age 55.8±8.1 years, 26.2% women], 

controls [n=949, mean±SD age 56.6±8.3, 27.0% women]). 

 

 

Figure 3: Schematic representation of the BGN gene. 

The BGN gene consists of eight exons, shown in blank bars and seven introns. The single copy gene is 

located on the long arm of the X-chromosome at the proximal region Xq28. The untranslated exonic 

regions (5' and 3') are indicated by shaded bars. Identified SNPs with relative position are depicted 

below. Promoter SNPs are indicated in red. The major TSS is marked by an arrow (adopted from 

Brand, unpublished and Rüssmann, MD thesis).  
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Twelve SNPs were identified using SSCP analysis (fig. 3), five of which were located in 

intronic regions (G51A, G134A, G315T, G57T and G91T; designation according to end of 

upstream exon), two synonymous polymorphisms were found in exons two (Ser47Ser) and 

four (Ser206Ser). In the 5'-region, five SNPs were detected, one residing in the 5'-UTR of the 

gene. SNPs G-849A (rs56134709), G-578A (rs11796997) and G+94T (rs5945197) were 

already listed at NCBI (National Center for Biotechnology Information), SNP G-151A and  

C-501A had not been reported before. SNPs G-849A was detected one and C-501A twice 

within the 95 ECTIM DNA samples. 

In a further analysis (Rüssmann, MD thesis), three MolHaps have been suggested to be 

formed by variants G-578A, G-151A and G+94T, based on SSCP results only (sensitivity of 

variant detection by SSCP <80%; fig. 4).   
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Figure 4: Postulated MolHaps of the human BGN 5'-flanking region. 

Estimated frequencies among ~72% of analysed and evaluable DNA samples: BGN-MolHap1: ~19%, 

BGN-MolHap2: ~46% and BGN-MolHap3: ~36% (adopted from Rüssmann, MD thesis). 
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1.5 TGF-β1 cytokine signalling pathway 

 

TGF-β1 is a multifunctional peptide that controls proliferation, differentiation, and other 

functions in different cell types. TGF-β1 binds to membrane receptor serine/threonine kinases 

which form a bi-dimeric receptor complex (fig. 5), consisting of two pairs of subunits known 

as receptor type I (TGFBR1) and type II (TGFBR2). A membrane-anchored proteoglycan, 

designated type III receptor (TGFBR3), contributes to this process by capturing and 

presentation of TGF-β1 to the signalling receptors I and II. Upon TGF-β1 binding, TGFBR1 

phosphorylates receptor-bound SMAD2/3 TF, releasing them into the cytoplasm with 

subsequent translocation into the nucleus. As a common partner, SMAD4 serves as a 

mediator of transcriptional activation (for a comprehensive review see Massagué & Gomis, 

2006). Animal models provided evidence that TGF-β1 signalling pathway plays a pivotal role 

for ECM formation. In rats, administration of TGF-β1 neutralizing antibodies suppressed the 

expression of genes ECM components (Sharma et al., 1996). Transgenic mice overexpressing 

TGF-β1 predominantly in odontoblasts showed increase in dentin ECM components and 

abnormal deposition in the dental pulp (Thyagarajan et al., 2001). SMAD2, SMAD3, and 

SMAD4 are highly expressed in macrophage-derived foam cells of fatty streaks (Kalinina et 

al., 2004). SMC in these lesions do not express SMAD and TGF-β1 signalling is impaired 

with subsequent suppression of ECM components. In contrast, SMC in stable fibrous plaques 

express high levels of SMAD and ECM proteins. TGF-β1 is therefore a potential therapeutic 

target and it has recently been suggested to block TGF-β signal transduction and downstream 

proteoglycan synthesis in vascular SMC (VSMC) for the prevention of CVD using p38 MAP 

kinase inhibitors (Osman et al., 2008). This approach is problematic to some extend since 

plaque formation is an ongoing process with early onset in the development of atherosclerosis 

and TGF-β signal inhibition could support formation of unstable plaques. Selective local 

restoration of TGF-β responsiveness, leading to stabilization of atherosclerotic lesions is 

suggested to be a promising concept. On the other hand, findings of Suthanthiran et al. 

(Suthanthiran et al., 2000) indicate that TGF-β1 overexpression is a risk factor for 

hypertension and hypertensive complications. 
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Figure 5: The TGF-β1 signalling pathway.  

TGF-β1 binds to the receptor TGFBR2 upon capturing and presentation by TGFBR3 (dotted lines). 

TGFBR2 recruits and phosphorylates TGFBR1 with subsequent phosphorylation (P) of SMAD2 and 

SMAD3. This process is inhibited by SMAD7. Activated SMAD2/3 form heterodimers with SMAD4 

and translocate to the nucleus. Regulation of gene expression is coordinated by co-activators,  

co-repressors and other transcription factors. With modifications from Pinzani & Marra, 2001. 

 

1.6 Gene expression control 

 

As the Human Genome Project has been almost completed, the complexity of gene expression 

control has become exposed. Only 2–3% of the human genome encode for proteins, far less 

than originally apparent. The observed phenotype plasticity distinguishing the various types 

of cells throughout the human body are rather the result of differences in gene expression than 

a great variety of different coding genes. Orchestrated cellular proliferation and differentiation 

processes are controlled by a diversity of programs, regulating gene expression. These 

processes are crucial steps in maintenance of cellular homeostasis as well as in specific 

responses after signal transduction stimulation under pathophysiological conditions. Gene 
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expression can be regulated at different control levels. The most important being chromatin 

packaging, transcription, transcript processing, nuclear export, transcript stability, translation 

and protein stability/activity. Despite the diversity of potential levels of regulation, the 

majority of regulatory events are under transcriptional control (Villard, 2004). 

 

1.6.1 Transcriptional control 

Coding genes are under the control of at least one but more likely several, alternative 

promoters. High-resolution maps of active promoters in the human genome have suggested an 

average of about 3.1 promoters per gene (Kim et al., 2005; Cheong et al., 2006), underlining 

the complexity of transcriptional control. In general, one promoter is located within the  

5'-flanking region of a gene and alternative promoters can reside within intronic or exonic 

regions of the same or an adjacent gene. To date, the exact localization of promoter regions 

for most human genes is still unknown (Barrera & Ren, 2006). In eukaryotes transcription is 

controlled at different levels. Chromatin condensed by nucleosomal packaging is inaccessible 

for RNA Polymerase II (Pol II) and genes residing in packed regions are transcriptionally 

silent (Segal & Widom, 2009). Histone acetylation and gene methylation are the two main 

mechanisms involved in reactivation of silenced genes. Eukaryotic Pol II requires the 

assembly of the general transcription machinery at the promoter for initiation of gene 

transcription. In a next step, binding of regulatory trans-acting factors at cis-active elements 

occurs, which interact with the general transcription machinery. Co-regulatory factors 

(bridging-proteins such as p300), which do not bind DNA but interact with proteins of the 

general machinery and TF are involved in mediation of distal regulatory regions with the core 

promoter. After initiation of RNA synthesis, the transition to productive elongation is 

controlled as well. Pol II has been observed to stop after elongation of 20–50 nucleotides into 

the gene, designated as Pol II stalling within the proximal promoter regions (Muse et al., 

2007). This concept has been suggested for transcripts involved in rapid signal cascades, 

where Poly II is pre-engaged at the promoter without active transcription awaiting signals for 

transcript elongation (Buratowski, 2008). Activated genes display another characteristic 

feature, which is the ability to switch their conformation. Interaction of promoter elements 

and 3'-associated factors may initiate a loop structure, retaining Pol II once a full transcription 

cycle has completed with no need for reassembly of the transcription machinery (Moore & 

Proudfoot, 2009). In addition, a connection between promoter usage and alternative splicing 
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has been discussed, involving the recruitment of factors with dual functions in transcription 

and splicing, linking the two processes (Kornblihtt, 2005). Generated and stable mRNA 

transcripts are targets of naturally occurring knock-down events by RNA interference (RNAi) 

(Fire et al., 1998).  

 

1.6.2 The general transcription machinery 

The core promoter in eukaryotes serves as a platform for the assembly of the transcription 

preinitiation complex (PIC). Formation of the PIC is necessary since Pol II itself lacks 

sequence-specific recognition ability. For promoter function, proper assembly and formation 

of the PIC at characteristic DNA sequences is required. Seven eukaryotic core promoter 

elements have been identified so far (fig. 6; Thomas & Chiang, 2006), the most prominent 

being the TATA box, represented by an A/T-rich sequence located 25 to 30 nucleotides 

upstream of the TSS. PIC formation at this motive depends on recognition by the  

TATA-binding protein (TBP) or the TBP subunit of the TFIID complex. A TATA box (Smale 

& Kadonaga, 2003) is present in only <20% of human promoters (Kim et al., 2005) and other 

core promoter elements, either alone or in combinations are used. Data from functional 

studies suggest that human housekeeping genes, growth factors and transcription factors often 

lack a TATA element (Zhou & Chiang, 2001). In close vicinity of the TSS (-2 to +5 bp), the 

initiator (Inr) is located, which is recognized by the TAF1/TAF2 components of TFIID. It is 

capable of directing transcription initiation alone or in conjunction with the TATA box or 

other core promoter elements. The downstream promoter element (DPE) is often found in 

human TATA-less promoters and recognized by TAF6 and TAF9 dimeric complex (Shao et 

al., 2005). In addition to the DPE, two other downstream core promoter elements have been 

identified. The motif ten element (MTE) usually interacts with the Inr to enhance Pol II 

transcription but is capable of substituting the loss of a TATA box or DPE and can act 

synergistically with both elements in an Inr-dependent manner (Lim et al., 2004). In contrast 

to all other core promoter elements, the downstream core element (DCE) contains three 

discontinuous subelements (CTTC, CTGT, AGC), spanning +6 to +34 adjacent to the TSS 

(Lee et al., 2005b). Although originally identified in TATA box promoters, the two  

TFIIB-recognition elements (BRE) are found in many TATA-less promoters. The upstream 

BRE (BREu) is also capable of binding TFIIB independently of TBP, while downstream BRE 

(BREd) appears to be TBP-dependent (Deng & Roberts, 2005). The variability of these seven 
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core promoter elements with their diverse consensus sequences and potential of multivalent 

combination underline the complexity of eukaryotic promoters. This complexity as well 

accounts for so far still inaccurate in silico prediction of core promoter elements, despite new 

approaches with improved accuracy (Zhang, 2007; Zeng et al., 2009).  

 

 

 

 

Core Promoter Element Position Consensus Sequence (5'-3') Bound Protein 

BRE
u
 -38 to -32 (G/C)(G/C)(G/A)CGCC TFIIB 

TATA -31 to -24 TATA(A/T)A(A/T)(A/G) TBP 

BRE
d
 -23 to -17 (G/A)T(T/G/A)(T/G)(G/T)(T/G)(T/G) TFIIB 

Inr -2 to +5 PyPyAN(T/A)PyPy TAF1/TAF2 

MTE +18 to +29 C(G/C)A(A/G)C(G/C)(G/C)AACG(G/C) n.a. 

DPE +28 to +34 (A/G)G(A/T)CGTG TAF6/TAF9 

DCE 

3 subelements 

+6 to +11 

+16 to +21 

+30 to +34 

core sequence: 

CTTC 

CTGT 

AGC 

TAF1 

 

Figure 6: Core promoter elements recognized by TFIIB or TFIID. 

TFIIB (green) and TFIID (yellow) recognize different core promoter elements. The TATA box is 

recognized by the TBP subunit of the TFIID complex. The table below lists the consensus sequences 

and respective positions for each core promoter element. n.a.: not available. With modifications from 

Thomas & Chiang, 2006. 
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1.6.2.1 Different pathways for PIC assembly 

Understanding the assembly pathways of transcription complexes at distinct core promoter 

regions is crucial for the understanding of the gene transcription mechanisms. Two pathways 

have so far been identified to lead to functional PIC assembly at the site of core promoter 

elements. Transcription factors required for Pol II-mediated transcription and identified 

accessory factors had been designated earlier by their presence in different isolated fractions 

of nuclear extracts TFIIA to TFIIH (Thomas & Chiang, 2006). 

 

1.6.2.2 The sequential assembly pathway 

This pathway has been identified after intensive study of in vitro transcription experiments, 

describing multiple essential steps and a hierarchical nature for the assembly of an initiation-

competent PIC. Buratowski et al. (Buratowski et al., 1989) specified the order of entry and 

relative position of each general transcription factor, which was refined in later experiments. 

Initially, TFIID recognizes the TATA box, followed by separate addition of TFIIA and TFIIB 

stabilizing promoter-bound TFIID, followed by recruitment of Pol II/TFIIF. This stable 

complex is completed by addition of accessory factors TFIIE and TFIIH.  

 

1.6.2.3 The Pol II holoenzyme pathway 

This alternative pathway of PIC assembly was first described after the purification of a 

preassembled complex of Pol II with or without a subset of general TF (Ossipow et al., 1995) 

and proteins involved in chromatin remodeling (Cairns et al., 1996), DNA repair (Maldonado 

et al., 1996) and mRNA processing (McCracken et al., 1997). Specifically, PolII and TFIIB, 

TFIIE, TFIIF and TFIIH have been identified in Pol II holoenzyme formation in the absence 

of TFIID. In this pathway, the core promoter-binding factor TFIID is suggested to facilitate 

the entry of Pol II holoenzyme to the promoter region in a process parallel to prokaryotic 

RNA polymerase recruited by the dissociable σ factor.  

Both, the sequential assembly pathway and the Pol II holoenzyme pathway may exist in vivo, 

depending on specific needs for individual gene transcription or transcription efficiency 

(Lemon & Tjian, 2000), as in the suggested process of loop structure formation (cf. 1.5.1). 
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1.6.2.4 The TFIID complex 

In either pathway, the multiprotein complex TFIID is one of the first general TF that binds the 

core promoter and facilitates PIC assembly. Historically, TFIID has been described as a 

TATA-binding factor through in vitro binding assays, but human TFIID seems to act 

primarily through TATA-less promoters in vivo as shown by ChIP-on-chip experiments (Kim 

et al., 2005). Together with the TBP, 13 TBP-associated factors (TAF) have been identified. 

The TBP subunit of TFIID thereby is specified in contacting TATA boxes, allowing TFIID to 

recognize TATA-containing promoters. TATA-less promoters displaying either one of the 

core promoter elements (fig. 6) are thereby recognized by the diversity of TAF subunits of 

TFIID (Pugh & Tjian, 1991). In depths characterization of TAF revealed that TFIID exerts 

potential as a co-activator in transcription, modulating activator function through multiple 

domain interactions. This has been explicitly demonstrated for the transcriptional activator 

SP1. The DNA-binding domain of SP1 specifically interacts with TAF7 of the TFIID 

complex (Chiang & Roeder, 1995), while the SP1 activation domain contacts TAF7 (Hoey et 

al., 1993). Human TAF7 is able to interact with different activators of transcription in 

addition to SP1, such as YY1 and USF, through its N-terminal domain and TAF1 in its central 

region, documenting its co-activator potential by bridging the bound activator to the general 

transcription machinery with simultaneous bending of interlaced DNA regions. These  

TAF-TAF interactions suggest transcriptional activators to function by recruiting TFIID to the 

promoter with subsequent PIC formation (Albright & Tjian, 2000), leading to the concept of 

TAF-dependent activation (fig. 7a). However, some genes do not rely on TAF, and TBP 

serves as a TATA-binding factor without mediation of TFIID in a TAF-independent 

activation (fig. 7b). In the absence of TAF, TBP can function with general cofactors such as 

TFIIA and TFIIH, replacing TAF by submitting signals between activators and the general 

transcription machinery.  
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Figure 7: TAF-dependent and TAF-independent transcriptional activation. 

The schematic representation shows promoter recognition in case of (A) TATA-less promoters and 

(B) TATA promoters. (A) TFIID-mediated promoter recognition is the rate-limiting step (wide arrow) 

facilitated by transcriptional activators. (B) When TBP is used as TATA-recognition factor, Pol II 

recruitment becomes the rate-limiting process. With modifications from Thomas & Chiang, 2006. 
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1.6.3 CpG islands promoters 

The CpG dinucleotide, which resembles a substrate of the DNA methyltransferase, is 

underrepresented in the human genome because of ongoing deamination and thymine 

formation without correction by DNA repair enzymes. Although these mutations seem to take 

place accidentally and at random, extended stretches of DNA (0.5 – 2 kbp) exist that possess a 

relatively high density of CpG dinucleotides, contradicting this principle (Smale & Kadonaga, 

2003). CpG islands remain mostly unmethylated in different tissues and stages of 

development compared to other DNA sequences and are associated with an accessible 

chromatin structure (Antequera & Bird, 1993). This characteristic feature has been suggested 

to be the cause of common CpG promoter bidirectionality after parasitic DNA insertion in 

close proximity (Kalitsis & Safferi, 2009). In humans, the percentage of CpG-associated 

promoters has been reported to be 88% (Kim et al. 2005), suggesting that CpG islands may 

play a more general role in gene expression than previously anticipated. Despite the high 

prevalence of CpG islands promoters, the elements that are essential for their core promoter 

function remain poorly defined. They are often characterized by the presence of multiple TSS 

that span a region of 100 bp or more. The TSS can co-localize with sequences exhibiting 

homology to the Inr consensus sequence but have also been reported to function 

independently of this core promoter element. One common feature of CpG islands is the 

presence of multiple binding sites for SP1. TSS are often located 40–80 bp downstream of the 

SP1 consensus sites and SP1 is suggested to direct the basal machinery to form a PIC within a 

loosely defined sequence portion (cf. 5.3). As discussed above, TFIID subunits are capable of 

core promoter recognition interact with the sequences most compatible with their DNA 

recognition motifs within that region. Binding of basal factors is strongly dependent on 

recruitment by activator proteins (fig. 6) bound to distal promoter elements. Activators such 

as SP1, may recruit TFIID to the core promoter, via a mechanism that is less dependent on the 

affinity of TFIID for the core promoter. Furthermore, active binding of SP1 in addition to 

promoter activation plays a key role in protecting CpG islands from de novo methylation 

(Brandeis, 1994). 
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1.7 Linkage and association studies 

 

1.7.1 Family-based linkage analyses 

The prevalence of complex genetic diseases results from interactions between various 

environmental factors and genetic variations. Identification of alleles affecting disease risk 

will help to better understand disease aetiology and pathophysiology. Genome-wide linkage 

analysis using polymorphic loci or markers such as SNPs spread across the genome is one 

common approach to map disease-associated genes. It is the simplest form of genetic 

mapping, measuring correlated segregation of Mendelian inherited markers for a trait of 

interest in families. Given meiotic recombination, linked markers are supposed to be located 

in close proximity to a disease-influencing gene. In this setting, disease-associated genomic 

regions for a continuous phenotype are identified that more likely harbour a causal genetic 

variant contributing to the trait. While linkage analysis has been proven to be successful in 

mapping genes underlying mono- or oligogenic diseases, the approach has its limitations in 

detecting genes underlying multifactorial complex traits. Another limitation of linkage 

mapping in humans is the recruitment of a sufficient number of affected families. 

 

1.7.2 Population-based association analyses 

One widely used method for identification of genes involved in complex disease 

pathophysiology is to compare allele or genotype frequencies of a given variant, mainly 

SNPs, between two groups (Couzin-Frankel, 2010). If a particular allele in either group is 

observed with higher frequency than expected by chance, it suggests an association with the 

disease or trait of interest. Most often, the candidate allele serves as a marker rather than 

representing the functional (causal) variant influencing the disease phenotype. The correlation 

between genetic variants and trait differences is most often assessed in case/control samples 

on a population scale. Until now, candidate gene association studies were performed to 

dissect common variants within genes of previously identified linkage regions or putative 

diseased pathways. However, association studies based on one or few candidate genes 

examine only a small fraction, disregarding the multifactorial nature of complex traits. 

Moreover, the hypothesis-driven approach leads to potential bias in selecting candidate genes. 

The completion of the human genome project and the development of cost-efficient high-

throughput SNP genotyping platforms have set the stage for GWA studies. They represent an 
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important step beyond candidate gene studies, allowing SNP marker queries of the entire 

genome at levels of high resolution, unaffected by prior hypotheses. GWAs are based on the 

common disease/common variant hypotheses suggesting that a distinct number of variants 

with allele frequencies of more than 1% in the observed population contribute to the more 

common forms of human diseases. The number of GWAs is exponentially growing, 

addressing several disease categories including cancer, cardiovascular, autoimmune, 

metabolic, and neurodegenerative diseases, etc. Due to insufficient sample size or random 

errors, associated SNP markers found in GWAs often exhibit a lack of reproducibility and 

suffer from high false positive rates (Manolio et al., 2009). However, newer studies rely on 

very large sample sizes and appropriate statistical features (P-values corrected for multiple 

testing in GWAs) that allow reproducibility of allelic associations (Ehret, 2010). 

 

1.8 Aim and design of the study 

 

BGN was chosen as a candidate gene for CVD with regard to its emerging role in 

atherosclerosis pathophysiology, which has already been proven in appropriate animal 

models. As a multifunctional and proinflammatory component of the ECM in the heart but 

also in the arterial system, BGN is involved in the different steps of atherosclerosis, heart 

disease progression and outcome, etc.  

Individual functional genetic variants and molecular haplotype patterns may account for the 

genetic predisposition to disease traits. Genetic variants that possibly affect the transcriptional 

regulation of BGN may thereby influence local BGN expression and stoichiometric 

availability in a given regulatory context, altering downstream cellular processes.  

To identify genetic variants of the BGN 5’-flanking region within 57 CVD patients of the 

MolProMD study, we performed a systematic screening of patients’ genomic DNA. Rare 

variants with a distribution of ~1% were calculated to be detected with ~80% likelihood, 

analysing 120 chromosomes. Molecular haplotype constellations were identified by individual 

subcloning and resequencing of patients’ DNA. For subsequent in vitro functional analyses of 

variants altering BGN gene regulation, a sufficiently active promoter portion had to be 

determined, in a cell system endogenously expressing BGN, by the use of reporter gene 

assays. Reporter gene assays allow the determination and quantification of transcriptional 

activity of a defined promoter portion cloned into a promoter-less reporter gene vector. 
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Observed reporter gene expression is thereby explicitly driven from the inserted promoter 

fragment. In addition, the selected cell system required the transposition of in situ cellular 

processes such as ECM generation and processes of inflammation. Alternative TSS in the 

employed cell lines were assessed by 5'RACE. Using serial 5'-deletion of a sufficiently active 

promoter portion, cell specific cis-regulatory elements were identified. Possible alterations in 

DNA/protein interactions of trans-acting factors at cis-regulatory positions by introduction of 

detected genetic variants were analysed on a first level using computational models for in 

silico TFBS prediction. Co-expression experiments were used to control in vivo potential of 

predicted interacting transcriptional regulators in cell lines. In vitro binding of promoter 

elements by TF, with special respect to allele-specific differences, were assessed by gel shift 

experiments. EMSA competition assays were scheduled to identify interacting proteins. 

Where applicable novel approaches for promoter analyses and identification of TF were 

implemented in the work. 
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2 MATERIAL 

 

2.1 Chemicals 

 

Laboratory chemicals (highest quality) were generally purchased from Merck (Darmstadt), 

Sigma (Steinheim) or Roth (Karlsruhe). Chemicals from different suppliers are listed as 

follows.  

 

Agarose        Biozym, Hess. Oldendorf 

Bacto Agar        Becton Dickinson, Heidelberg 

Bacto Tryptone       Becton Dickinson, Heidelberg 

Bacto Yeast Extract       Becton Dickinson, Heidelberg 

Blocking reagent      Roche Diagnostics, Mannheim 

Biotin dd-UTP      Roche Diagnostics, Mannheim 

Chloroform        Fluka Riedel-de Haën, Seelze 

dNTPs (dATP, dCTP, dGTP, dTTP)    Fermentas, St. Leon-Rot 

Ficoll         Fluka Riedel-de Haën, Seelze 

Glutamin       Gibco, Karlsruhe 

Nonidet P-40 (IGEPAL)      Sigma Aldrich, Schnelldorf 

Poly(dI•dC)       USB, Staufen 

Protease Inhibitor cocktail with EDTA (Complete)   Roche Diagnostics, Mannheim 

Spermidine        Fluka Riedel-deHaën, Seelze 

TGF-β1, human, recombinant    Calbiochem, San Diego, USA 

IL-1β, human, recombinant     Calbiochem, San Diego, USA 

PDGF, human, from platelets     Calbiochem, San Diego, USA 
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2.2 Other solutions and reagents 

 

2.2.1 Sera and media 

Dulbecco’s modified eagle’s medium (DMEM)   Sigma, Steinheim 

Dulbecco’s phosphate buffered saline (PBS)   Sigma, Steinheim 

Fetal bovine serum (conditioned)     PAA, Pasching 

Fetal bovine serum, iron supplemented    Cell Concepts, Umkirch 

Roswell Park Memorial Institute 1640 medium (RPMI) Sigma, Steinheim 

 

2.2.2 DNA ladder and protein marker 

Precision Plus Protein Dual Color Standard Plus   BioRad, Munich 

Precision Plus Protein Western C    BioRad, Munich 

GeneRuler 100 bp DNA ladder     Fermentas, St. Leon-Rot 

GeneRuler 1 kb DNA ladder      Fermentas, St. Leon-Rot 

 

2.2.3 Enzymes and antibiotics 

Trypsine-EDTA (0.05%)      Gibco, Karlsruhe 

Ampicillin        Roth, Karlsruhe 

Penicillin/Streptomycine solution     Sigma Chemie, Steinheim 

Spectinomycine       Sigma, Steinheim 

 

2.2.4 Consumables and kits 

BCA Protein Assay Kit      Thermo Fischer, Bonn 

CL-XPosure Film       Thermo Fischer, Bonn 

High Pure PCR Product Purification Kit    Roche Diagnostics, Mannheim 

Immobilon-P Transfer Membrane (PVDF)    Millipore, Bedford, USA 

LightShift Chemiluminescent EMSA Kit    Thermo Fischer, Bonn 
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Lipofectamine 2000       Invitrogen, Karlsruhe 

Luciferase Assay System      Promega, Mannheim 

Magnetic Protein-G beads      Invitrogen, Karlsruhe 

Nanofectin       PAA, Pasching 

Passive Lysis Buffer (5 x)      Promega, Mannheim 

PureLink HiPure Plasmid DNA Purification Kit   Invitrogen, Karlsruhe 

QIAamp DNA Blood Mini Kit     Qiagen, Hilden 

NucleoSpin Plasmid      Macherey-Nagel, Düren  

NucleoSpin RNA II      Macherey-Nagel, Düren 

QIAquick Gel Extraction Kit     Qiagen, Hilden 

QuikChange Multi Site-directed Mutagenesis Kit   Stratagene, Amsterdam, 

The Netherlands 

SuperSignal West Pico Chemiluminescent Substrate Thermo Fischer, Bonn 

Whatman Paper 3MM Chr.      Biometra, Göttingen 

Pipette tips 0.1 µl - 1000 µl      Sarstedt, Nürnbrecht 

Reaction tubes 0.2 ml - 2 ml      Eppendorf, Hamburg 

Biozym, Hess. Oldendorf 

15 ml/50 ml tubes       Greiner, Kremsmünster 

Nunc, Wiesbaden 

Petri dishes        Sarstedt, Nürnbrecht 

Plastics for cell culture      Greiner, Kremsmünster 

PCR plates, microtiter plates      Abgene, Hamburg 

 

2.2.5 DNA-modifying enzymes 

BigDye3.1       Applied Biosystems, 

Foster City, USA 

DNase I       Fermentas, St. Leon-Rot 

Exonuclease I        Fermentas, St. Leon-Rot 

GoTaq DNA Polymerase      Promega, Mannheim 
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Herculase II DNA Polymerase     Stratagene, Amsterdam, 

The Netherlands 

High Fidelity PCR Enzyme Mix     Fermentas, St. Leon-Rot 

Restriction endonucleases      Fermentas, St. Leon-Rot 

RNase H       Fermentas, St. Leon-Rot 

RNase A       Applichem, Darmstadt 

Shrimp Alkaline Phosphatase     Fermentas, St. Leon-Rot 

Superscript III       Invitrogen, Karlsruhe  

RNaseOUT RNase Inhibitor      Invitrogen, Karlsruhe 

T4 DNA Ligase       Fermentas, St. Leon-Rot 

TdT terminal transferase     Roche, Mannheim 
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2.2.6 Antibodies 

 

Table 1: Antibodies 

Antibody Host Dilution Manufacturer 

c-FOS rabbit 1:1000 Santa Cruz, Heidelberg 

CREB/ATF1 rabbit 1:1000 Nanotools, Teningen 

GATA1 rat 1:1000 Santa Cruz, Heidelberg 

PU.1 rabbit 1:1000 Santa Cruz, Heidelberg 

SP1 rabbit 1:1000 Upstate, Schwalbach 

SRF mouse 1:1000 Millipore, Schwalbach 

 

 

 

2.2.7 Plasmids and vectors 

pCRII TOPO cloning vector     Invitrogen, Karlsruhe 

pCR8/GW/TOPO cloning vector    Invitrogen, Karlsruhe 

pGL3-Basic reporter gene vector     Promega, Mannheim 

pGL3-Control reporter gene vector     Promega, Mannheim 

pGL3-Promoter reporter gene vector    Promega, Mannheim 

pGFP reporter gene vector      Amaxa, Cologne 

pRc/CMV expression vector      Dr. Dimitris Kardassis, Heraklion, 

        Greece 

pSP1/CMV expression vector     Dr. Dimitris Kardassis, Heraklion, 

        Greece 
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2.2.8 Bacteria (E. coli) 

 

Strain    Genotype     Manufacturer 

 

DH5α (K12)   F- φ80lacZ∆M15 ∆(lacZYA-argF)   Invitrogen, Karlsruhe 

U169 recA1 endA1 hsdR17(rk-, mk+) 

phoA supE44 thi-1 gyrA96 relA1 λ- 

Mach1   derivatives of E. coli W strains   Invitrogen, Karlsruhe 

∆recA1398 endA1 tonA Φ80∆lacM15 

∆lacX74 hsdR(rK- mK+) 

 

 

2.2.9 Eukaryotic cells 

 

Line   Origin      Reference 

 

COS-7   African green monkey    ATCC no.: CRL-1651 

kidney, fibroblast-like  

EA.hy926  Human vascular endothelium   Edgell et al., 1983 

HEK293T   Human embryonic kidney    ATCC no.: CRL-11268 

THP-1   Human monocytes    ATCC no.: TIB-202 
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2.2.10 Laboratory equipment 

 

Instrument     Specification    Manufacturer 

 

Cell counter     Casy Model TT   Innovatis, Bielefeld 

Centrifuge     Multifuge 3SR  Heraeus, Hanau 

Centrifuge    5415C     Eppendorf, Hamburg 

Centrifuge    5417R     Eppendorf, Hamburg 

Centrifuge     5810R     Eppendorf, Hamburg 

Centrifuge    J2-21M/E   Beckman Coulter, Krefeld 

CO2-Incubator (eukaryotic cells)  MCO-18AIC    Sanyo, Munich 

Coffee maker    TKA1410V   Bosch, Munich 

Developing machine    Optimax    Protec, Oberstenfeld 

Gel electrophoresis chamber   Mini PROTEAN   BioRad, Munich 

Gel electrophoresis chamber   StarPhoresis    Starlab, Ahrensburg 

Gel imaging     AlphaImagerEC   Alpha Innotech Corp, 

San Leandro, USA 

Incubator shaker    Series 25   New Brunswick Scientific, 

Nürtingen 

Luminometer     Sirius V12    Berthold Detection  

Systems, Pforzheim 

Microbiological incubator   B 6120    Heraeus, Hanau 

Microscope     Axiovert 40 CFL   Zeiss, Jena 

pH-Meter     Calimatic 766    Knick, Dülmen 

Spectrophotometer   NanoPhotometer   Implen, Munich 

Power supply     PowerPackBasic   BioRad, Munich 

Sequence detection system   7500 ABIprism   Applied Biosystems, 

Foster City, USA 
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Sonicator    Bioruptor UCD-200  Diagenode, Liège, 

         Belgium 

Sterile hood (bacteria)   Class II type EF  Clean air Techniek B.V., 

Woerden,  

The Netherlands 

Sterile hood (eukaryotic cells)  HS 12     Heraeus, Hanau 

Tank Blot chamber    Mini Trans-Blot Cell   BioRad, Munich 

Thermocycler     PTC-225, PTC-240   MJ Research, Miami, 

DNA Engine Tetrad (2)  USA 

UV-table     Transilluminator   Intas, Göttingen 
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3 METHODS 

 

3.1 Molecular biological methods 

 

General molecular methods were performed as described in “Molecular Cloning” (Sambrook 

& Russel, 2001). Variations in protocols are indicated where appropriate. 

 

3.1.1 Preparation of genomic DNA 

Genomic DNA was extracted from mononuclear cells or cell lines using the QIAamp DNA 

Blood kit (Qiagen) according to manufacturers’ instructions. Briefly, 200 µl of human whole 

blood (EDTA-treated) or 5 x 106 cultured cells were mixed with 20 µl Proteinase K and 200 

µl binding buffer, incubated at 56°C for 10 min and loaded to the spin column. After two 

washing steps, DNA was eluted with dH2O (pH 7 – 8.5) or TE. Genomic DNA was held at 

4°C and stored at -20°C. 

 

3.1.2 Preparation of total RNA 

RNA was extracted from cultured cells using the NucleoSpin RNA II kit (Macherey-Nagel) 

following the manufacturers’ instructions. Cells (5 x 106) were lysed by adding 350 µl lysis 

buffer/1% β-mercaptoethanol. The lysate was cleared by filtration through filter columns and 

350 µl ethanol was added to adjust binding conditions. The lysate was loaded onto RNA 

binding column followed by desalting of the membrane. DNA was removed from the column 

by incubation with DNase for 15 min. Washed thrice, total RNA was eluted in RNase-free 

water and stored at -80°C. 

 

3.1.3 Preparation of plasmid DNA 

Plasmid DNA from E. coli cultures (1.5 ml) for cloning was obtained by use of the 

NucleoSpin Plasmid kit (Macherey-Nagel) following manufacturers’ instructions. Pelleted 

cells were resuspended and lysed for 5 min at RT. After addition of neutralization buffer, 

lysate was cleared by centrifugation. DNA was bound to silica membrane and washed twice. 

Ethanol was qualitatively removed by centrifugation before elution of plasmid DNA. 
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Alternatively and in case of bacterial artificial chromosome (BAC) preparation was performed 

by alkaline lysis with SDS (Birnboim & Doly, 1979).  

Transfection grade plasmid DNA of highest quality without endotoxins was preparated from 

100 ml E. coli cultures using the PureLink HiPure Plasmid DNA Purification kit (Invitrogen) 

according manufacturers’ instructions. Cells were spun down, resuspended and lysed with 

simultaneous RNase A treatment (5 min). Lysate was cleared by precipitation and 

centrifugation (12000 x g, 10 min, RT). Supernatant was routinely cleared from bacterial 

endotoxins using a separate endotoxin removal protocol (Buffer A and B). The cleared lysate 

was loaded onto an anion exchange column, washed and eluted by gravity flow. Eluate was 

precipitated by addition of isopropanol (70% v/v) and centrifugation (15000 x g, 30 min, 

4°C). DNA was washed in 70% ethanol, centrifuged, air-dried and resuspended in TE buffer. 

Plasmid DNA for transfection was held at 4°C and stored at -20°C. 

 

Endotoxin Removal Buffer A   Endotoxin Removal Buffer B 

50 mM  MOPS, pH 7.0   100 mM  sodium acetate, pH 5.0 

750 mM  sodium chloride   750 mM  sodium chloride 

10% (w/v)  Triton X-100    1% (w/v)  Triton X-100 

10% (v/v)  isopropyl alcohol 

 

3.1.3.1 Quality and quantity control of nucleic acids 

Concentration and purity of nucleic acids was measured photometrically using a 

nanophotometer (Implen). Identity and potential contamination of plasmid DNA was 

routinely tested by hydrolysation with selected restriction enzymes and automated 

sequencing.  

 

3.1.4 Polymerase Chain Reaction (PCR) 

PCR was performed with variations according to Mullis et al. (Mullis et al., 1990). For 

standard applications, GoTaq DNA polymerase (Promega) was used. To guaranty amplicon 

sequence identity with template DNA for cloning of transfection vectors, a Taq/Pfu 

proofreading enzyme mix was used (High Fidelity Mix, Fermentas; Herculase II, Stratagene). 
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Standard PCR reaction contained: 

5 ng   of genomic DNA 

10 µM   of each primer 

200 µM  of each dNTP 

1 x   polymerase buffer 

2 mM  MgCl2 

0.6 U   DNA polymerase 

add nuclease free water to 25 µl 

 

Enhancing additives were used where appropriate to reduce the formation of secondary 

structures (1 M Betain, 2 – 10% DMSO, 1/3 deazaGTP/dGTP) or to stabilize DNA 

polymerase (0.1 - 1% Triton X-100, Tween 20, NP - 40). 

 

 

Standard PCR program: 

A: Initial denaturation  95°C, 5 min 

B1: Denaturation   95°C, 1 min 

B2: Annealing   x°C, 45 sec 

B3: Elongation   72°C, 1 min/kb 

C: Final elongation  72°C, 10 min 

 

Modifications of the program were applied where appropriate. 

 

Calculation of oligo Tm was performed using the algorithm of Chester & Marshak (Chester & 

Marshak, 1993): 

 

 

 

 

otideoligonucle oflenght 
650 -0.41)x content ~%GC  (69.3 +

25 – 35 

cycles 
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Touch down PCR:  

To enrich specific PCR products, annealing temperatures was gradually decreased for 

maximum annealing stringency. The annealing temperature was set 5 - 10°C over primer 

annealing temperature and reduced by 2°C every second cycle until calculated annealing 

temperature was reached, followed by 25 cycles at final annealing temperature. 

 

Nested PCR:  

To amplify weak PCR signals and to generate specific fragments from a mixture of unspecific 

amplicons, a second set of inner or nested primers was used. Amplified PCR product was 

either used directly as template (1 µl) or after extraction from agarose gels (3.1.11). 

 

3.1.5 cDNA synthesis 

Generation of cDNA was performed using Superscript III (Invitrogen) according to the 

manufacturer. Total RNA (500 ng – 5 µg, extracted as described in 3.1.2) were reversely 

transcribed using either 1 µl of oligo(dT) or 2 pmol of gene-specific primer in presence of a 

RNase inhibitor (RNaseOUT, Invitrogen) for 60 min at 50°C. Reaction temperature was 

increased to 55°C for gene-specific primers. Reaction was inactivated by heating at 70°C for 

15 min. Prior to amplification of longer PCR targets (>1 kb) and in case of 5'RACE 

experiments, complementary RNA was removed by incubation with RNase H (2 units, 20 

min, 37°C). Integrity of cDNA was routinely controlled by diagnostic PCR for hRP27. 

 

3.1.6 5'RACE 

RACE PCR was performed as described previously (Frohman, 1993). All experimental steps 

were performed within the same day, without freezing of the generated cDNA to achieve 

maximum accuracy at TSS identification. Briefly, total RNA was extracted (3.1.2) and first 

strand cDNA was generated (3.1.5) using a BGN specific antisense primer, followed by 

poly(A)tailing of the 3'-end using terminal desoxynucleotidyl transferase (TdT). A 

homopolymeric d(T)-anchor primer, complementary to the 3'-poly(A) tail, and an antisense 

primer located within the gene were used to amplify the first PCR product. Nested primer 

were used to increase the amount of PCR product for subsequent sequencing (tab.2).  
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Table 2: Oligonucleotide sequences for 5'RACE 

Description Sequence 5' to 3' Position Ref. Accession # 

BGN RT AGCTTCCTGGCTCTGCCTCC Exon 2 NT_011726.13 

dT-anchor primer 
GACACGCGTATCGATGTCGACTTTTTTTTTTT
TTTTT 

 -  - 

Adaptor primer GACCACGCGTATCGATGTCGAC -   - 

 

First strand cDNA synthesis reaction using SuperScript III (Invitrogen) 

2 µg   total RNA 

2 pmol  gene-specific primer 

500 µM  of each dNTP 

ddH2O to 13 µl 

Mixture was heated to 65°C for 5 min and incubated on ice for at least 1 min. 

4 µl   synthesis buffer 

5 mM  DTT 

1 µl  RNaseOUT RNase inhibitor (Invitrogen) 

1 µl   SuperScript III reverse transcriptase 

Mixture was incubated for 60 min at 55°C. 

RNA complementary to the cDNA was removed by addition of RNaseH (2 U) and incubation 

at 37°C for 20 min. 

 

Poly(A) tailing  

16.5 µl  purified cDNA  

5 µl   reaction buffer   

2.5 µl  dATP (2 mM)    

Mixture was incubated at 94°C for 3 min and chilled on ice.  

1 µl   TdT (80 U/µl)    

Incubation at 37°C for 30 min followed by heat inactivation for 10 min at 70°C. 

PCR reaction was performed as described (3.1.4) using gene-specific primer and  

d(T)-anchor primer at 55°C for 35 cycles. 
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3.1.7 DNA/RNA-modifying reactions 

3.1.7.1 Hydrolysation with bacterial endonucleases 

Hydrolysation with endonucleases was conducted using 100 - 500 ng DNA and 1 U 

restriction enzyme. H2O and 10 x reaction buffer were added to a total volume of 20 µl, 

incubated for 1 hr at 37°C and heat-inactivated at 70°C for 10 min. 

 

3.1.7.2 Dephosphorylation of DNA 

Shrimp Alkaline Phosphatase (SAP) was used for dephosphorylation of 5'-ends of linearized 

plasmid DNA to disable re-ligation. One unit of SAP, dH2O and 10 x reaction buffer were 

added to the digestion reaction (cf. 3.1.7.1) to a total volume of 25 µl. Reaction mixtures were 

incubated at 37°C for 30 min and heat-inactivated for 10 min at 65°C.  

 

3.1.7.3 Biotinylation of oligonucleotides for EMSA experiments 

Single-stranded oligonucleotides (~30 bp; IBA, Göttingen) for EMSA experiments were 

synthesized at a minimum coupling efficiency of > 98.5% and purified twice by high pressure 

liquid chromatography. Oligonucleotides were 3'-biotinylated with biotin-16-ddUTP (Roche) 

using TdT. 5 pmol of each oligo were labelled in a reaction mix containing 2 mM CoCl2, 500 

pmol biotin-16-ddUTP, and 60 U TdT at 37°C for 30 min. Labelled probes were chloroform 

extracted and centrifuged twice (2 min, 14000 x g, RT). Specific annealing of 

oligonucleotides (20 fmol) was achieved by denaturation at 95°C for 10 min in 100 mM 

NaCl, followed by slow over night cool down to RT. Double-stranded competitors were 

generated using a concentration of 2 pmol of each unlabeled primer. Annealing quality and 

signal intensity of identical probes holding single base pair mutations were controlled 

routinely by gel electrophoresis. 
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3.1.8 Agarose gel electrophoresis 

Agarose concentrations of 0.5% to 3% were applied in 1x TAE buffer, depending on fragment 

sizes. 

 

50 x TAE      6 x Loading buffer 

2 M   Tris base    0.02% (w/v)   bromphenol blue 

50 mM  EDTA     0.02%  (w/v)   xylene cyanol 

adjusted to pH 8.0 with acetic acid  30% (v/v)   glycerol 

      20 mM   Tris-HCl, pH 7.6 

2 mM    EDTA 

 

For visualizing DNA double-strands, 0.05 µg/ml ethidium bromide (EtBr) was added to the 

gel solution. Longer fragments (>5 kbp) generated for cloning after gel extraction were 

stained using a Crystal Violet (Sigma) solution (0.01% w/v in 1 x TAE) and were cut from 

gels without the use of UV light to prevent DNA strand breaking. 

 

3.1.9 Site-directed mutagenesis 

Site-directed mutagenesis was used for selective introduction of genetic variants into the 

respective reporter gene vectors using a highly efficient commercial system (QuikChange 

Multi Site-directed Mutagenesis Kit, Stratagene). Allelic variants -578A, -151A, +94T were 

introduced into BGN promoter fragments as follows: denaturation of input vector wt DNA 

was followed by annealing and extension of the mutagenic primers (tab. 3), and ligation of 

nicks. Methylated and hemimethylated DNA was digested with endonuclease DpnI (60 min, 

37°C) followed by bacterial transformation. When indicated, up to three mutations at different 

sites were performed in a single reaction. 

 

 

 

 



3 Methods 

 

page | 36  

 

 

Standard reaction       Standard mutagenesis PCR 

2.5 µl   QuikChange Multi reaction buffer   Initial denaturation  95°C, 5 min 

0.5 µl   Quik Solution      Denaturation   95°C, 1 min 

100 ng  template DNA     Annealing   55°C, 1 min 

100 ng  of each mutagenic primer    Elongation   65°C,  

1 µl   dNTP mix         (2 min/1 kb) 

1 µl   QuikChange Multi enzyme blend   30 cycles 

 

Table 3: Oligonucleotide sequences for site-directed mutagenesis 

Description Sequence 5' to 3' Position Ref. Accession # 

BGN MUT -578A AAGGGAAGAAAGTCTAGAGTGGAAGGGAGGG -593 NT_011726.13 

BGN MUT -151A GAAGCTGCCAGGGGGACCGGGAAGCCTGCCC -136 NT_011726.13 

BGN MUT +94T CACCACCCCAGCCCTCCAACTAGTCAGCCT +79 NT_011726.13 

 

 

3.1.10 Construction of reporter gene plasmids 

Promoter wt fragments were generated using MolProMD (not ECTIM) patients genomic 

DNA. For the analysis of the three BGN MolHaps, a 1025 bp fragment was generated using 

primer at position -893 (upstream TSS1) and +132. Genetic variants were introduced by  

site-directed mutagenesis (cf. 3.1.9) yielding constructs pBGN-MoLHap1/luc, pBGN-

MolHap2/luc, pBGN-MolHap3/luc. Deletion constructs of the BGN 5'-flanking region were 

amplified using one antisense primer at position +162 bp and sense primers generating 

constructs shown in fig. 8. For all deletion constructs, genomic DNA representing the wt 

sequence was used as template. 

For transient transfection assays, the generated PCR fragments were introduced in  

5'-3'-orientation into the promoter-less luciferase reporter gene vector pGL3-Basic (Promega) 

using the Gateway cloning system (Invitrogen). This highly efficient cloning technique is 

based on site-specific recombination properties of bacteriophage λ (Landy et al., 1989). 

Recombination events occur at specific attachment sequences on phage DNA (attP) and 

bacteria DNA (attB). Gel extracted PCR fragments were primarily cloned into entry vector 
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pCR8/GW/TOPO where the fragment is flanked by attL sequences, and transformed into 

competent Mach1 bacterial cells (cf. 3.3.1.2). After plasmid preparation and purification (cf. 

3.1.3), the entry clone was incubated with the modified pGL3-Basic destination vector 

carrying artificial attR sites. Addition of the LR Clonase enzyme results in the exchange of 

the Gateway cassette in combination with the insert of interest. Generated plasmids were 

double digested with selected, sequence-specific restriction endonucleases (3.1.7.1) followed 

by agarose gel electrophoresis to verify 5'-3'-orientation and correct insert size. All generated 

vectors were directly sequenced (cf. 3.1.12) to ensure sequence accuracy and identity. 
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Figure 8: Schematic representation of deletion constructs of the human BGN promoter.  

Deletion constructs were cloned into the pGL3-Basic vector system (Promega). This vector does not 

possess promoter activity of its own but features a luciferase cassette adjacent to the multiple cloning 

site. Transcriptionally active promoter fragments result in the expression of the luciferase protein, 

permitting measurement of promoter activity in relative light units. Sequence positions are shown 

according to TSS1. Luc: luciferase. 
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Figure 9: pGL3-System vector circle maps.  

The pGL3-Basic vector lacks eukaryotic promoter and enhancer sequences, pGL3-Control vector 

contains SV40 promoter and enhancer sequences, the pGL3-Promoter vector contains an SV40 

promoter upstream of the luciferase gene. Ampr: gene conferring ampicillin resistance in E. coli; luc
+: 

cDNA encoding the modified firefly luciferase; f1 ori: origin of replication derived from filamentous 

phage; ori: origin of replication in E. coli. Arrows within luc
+ and the Ampr gene indicate the direction 

of transcription; the arrow in the f1 ori indicates the direction of ssDNA strand synthesis. 

© Promega, 

technical manual
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Standard pCR8/GW/TOPO cloning reaction   LR Clonase reaction 

1 µl salt solution (1.2 M NaCl, 0.06 M MgCl2)   100 ng entry vector 

1 µl pCR8/GW/TOPO cloning vector (10 ng/µl)   150 ng destination vector 

4 µl purified insert       2 µl LR Clonase 

incubation for 5 min at RT,      add 8 µl TE-buffer 

transformation in competent      incubation for 1 hr at 25°C 

Mach1 bacterial cells       add 1 µl Proteinase K 

incubation for 10 min at 37°C 

 

Table 4: Oligonucleotide sequences for promoter constructs 

Description Sequence 5' to 3' Position Ref. Accession # 

BGN MolHap SS GCTAGCCAGTGTCGTACTAAGGACCT -893 NT_011726.13 

BGN MolHap AS CCCGGGTGGAGAGGGGAGGCGCCA +132 NT_011726.13 

BGN -1318/+162 SS ACAGTTTGGTCAAGGTGCCA -1318 NT_011726.13 

BGN -1231/+162 SS CATGCCCCCAGGTAGAGC -1231 NT_011726.13 

BGN -1098/+162 SS GATGCCGCCTCTCTCTAGC -1098 NT_011726.13 

BGN -935/+162 SS GCTCTTGCTGAGGGAAGAAG -935 NT_011726.13 

BGN -701/+162 SS GAAGACTGACTCGCTGGAT -701 NT_011726.13 

BGN -386/+162 SS GTTTGAGTGAGTGCGAGTGT -386 NT_011726.13 

BGN -39/+162 SS TGCCCAGCCTTTAGCCTC -39 NT_011726.13 

BGN +162 AS CTGAGGAGGCAGCTTGAAG +162 NT_011726.13 

 

 

 

3.1.11 Purification of PCR products 

Purification of PCR products for sequencing, cloning or generation of probes was performed 

by extraction from agarose gels or directly from PCR reactions. 

Gel extraction was performed using QIAquick Gel Extraction Kit (Qiagen). DNA fragments 

(between 70 bp and 10 kbp) were excised from low agarose gels, mixed with solubilization 

buffer QG (pH 7.5) and heated for 10 min at 50°C. If changes in colour of buffer QG 

occurred, 10 µl of 3 M sodium acetate, pH 5.0 were added to restore optimal binding pH. 

Samples were mixed with one gel volume of isopropanol (100%) loaded onto column silica 

membranes (≤400 mg agarose) and washed twice. DNA was eluted in buffer EB (10 mM 
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Tris-HCl, pH 8.5). PCR product purification was performed using the High Pure PCR Product 

Purification Kit (exclusion limit 100 bp; Roche). Reactions (up to 100 µl) were mixed with 

binding buffer and loaded onto a silica membrane column. After two washing steps, the DNA 

was eluted in 10 mM Tris-HCl, pH 8.5. 

For sequencing reactions, a rapid one-step PCR clean-up was performed using the ExoSAP 

protocol. A mixture of Exonuclease I and Shrimp Alkaline Phosphatase (SAP) (both 

Fermentas) was used to digest small single-stranded fragments (e.g. primers) and to remove 

dNTPs. 

 

ExoSAP mixture 

20 U    Exonuclease I (E. coli) 

10 U    Shrimp Alkaline Phosphatase (SAP) 

add dH2O to 100 µl 

PCR products (5 µl) were prepared with 1 µl of ExoSAP mix and incubated at 37°C for 30 

min followed by heat-inactivation for 15 min at 80°C.  

 

3.1.12 Sequencing 

Samples were sequenced for detection and localization of genetic variants in the MolProMD 

study (not ECTIM), and to control for sequence identity of DNA fragments and plasmid 

constructs using an automated ABI 3730 fluorescence sequencer with BigDye terminator 

chemistry (PE Applied Biosystems). 

 

Standard sequencing reaction 

5 - 50 ng   purified PCR fragment or 120 ng plasmid DNA 

1.6 µM   sequencing primer 

2 µl   5 x BigDye buffer 

1 µl    BigDye3.1 (Applied Biosystems) 

add dH2O to 10 µl 
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3.1.13 EMSA 

To reveal in vitro DNA/protein interactions, EMSA experiments were performed. 

Oligonucleotides (tab. 4) representing the DNA sequence of interest were purchased from 

IBA (Göttingen) with a maximum coupling efficiency of 98.5%. Oligonucleotides were  

3'-biotinylated with biotin-16-ddUTP (Roche) using TdT (cf. 3.1.7.3) for detection with anti-

biotin antibodies. Protein binding to the applied probe is visualized by a shifted band in lanes 

containing protein extract in comparison to the control lane representing the unbound DNA 

probe. Per standard reaction, 5 µg nuclear protein extract was incubated with 500 ng 

presheared poly (dI●dC) as non-specific competitor, 250 mM Betaine, and a 200-fold molar 

excess of unlabeled oligonucleotide as specific competitor for 5 min at RT. After addition of 

the labelled probe, reactions were incubated for 15 min at RT. Probes and bound complexes 

were separated on a 6% native PAGE (0.5x TBE; 100 V), and blotted afterwards onto PVDF 

membranes (cf. 3.2.6) (0.5x TBE; 100 V; 60 min). DNA probes were cross-linked to the 

membrane by UV-light (312 nm) for 10 min. 

 

4 x binding buffer      6% PAGE 

20 mM  MgCl2      2 ml   Acrylamid-Bis 30% 

240 mM  KCl      1 ml   5 x TBE 

40 mM  HEPES/KOH, pH 7.9   83.7 µl  APS, 10% 

5 mM   spermidine     3.7 µl   TEMED 

16% (w/v)  Ficoll  

 

5 x TBE 

45 mM  Tris base 

45 mM  boridic acid 

10 mM  EDTA 

 

Visualization of probes was achieved using the Chemiluminescent Nucleic Acid Detection 

Module (Thermo Fischer). Membranes were blocked in blocking buffer containing 

streptavidin-horseradish peroxidase conjugate. After washing and equilibration, membranes 
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were incubated in substrate working solution (luminol/enhancer and peroxidase solution). 

Membranes were than exposed to CL-X Posure Film (Thermo Fischer).  

 

 

Table 5: Oligonucleotide sequences of EMSA probes 

Description Sequence 5' to 3' Position Ref. Accession # 

BGN-578A SS AGGGAAGAAAGTCTGAAGTGGAAGGGAGGGCACAGG -593 NT_011726.13 

BGN-578A AS TCCCTTCTTTCAGACTTCACCTTCCCTCCCGTGTCC -593 NT_011726.13 

BGN-578G SS AGGGAAGAAAGTCTGGAGTGGAAGGGAGGGCACAGG -593 NT_011726.13 

BGN-578G AS TCCCTTCTTTCAGACCTCACCTTCCCTCCCGTGTCC -593 NT_011726.13 

BGN-151G SS GCTGCCAGGGGGGCCGGGAAGCCTGCCCCCT -163 NT_011726.13 

BGN-151G AS CGACGGTCCCCCCGGCCCTTCGGACGGGGGA -163 NT_011726.13 

BGN-151A SS GCTGCCAGGGGGACCGGGAAGCCTGCCCCCT -163 NT_011726.13 

BGN-151A AS CGACGGTCCCCCTGGCCCTTCGGACGGGGGA -163 NT_011726.13 

BGN+94G SS GCCCACCACCCCAGCCCGCCAACTAGTCAGCCT +77 NT_011726.13 

BGN+94G AS CGGGTGGTGGGGTCGGGCGGTTGATCAGTCGGA +77 NT_011726.13 

BGN+94T SS GCCCACCACCCCAGCCCTCCAACTAGTCAGCCT +77 NT_011726.13 

BGN+94T AS CGGGTGGTGGGGTCGGGAGGTTGATCAGTCGGA +77 NT_011726.13 

BGN-151MUT 
SS 

GCTGCCATGGTGGCCGGGAAGCCAGCACCCT -163 NT_011726.13 

BGN-151MUT 
AS 

CGACGGTACCACCGGCCCTTCGGTCGTGGGA -163 NT_011726.13 

AP-1 SS 
consensus 

CGCTTGATGACTCAGCCGGAA - Lee et al., 1987a 

AP-1 AS 
consensus 

GCG AACTACTGAGTCGGCCTT - Lee et al., 1987a 

SP1 SS 
consensus 

ATTCGATCGGGGCGGGGCGAGC - 
Kodonaga et al., 
1987 

SP1 AS 
consensus 

TAAGCTAGCCCCGCCCCGCTCG - 
Kodonaga et al., 
1987 

 

 

 

 

 



3 Methods 

 

page | 43  

 

3.1.14 ChIP 

To access the binding of transcription factors to DNA sequences of interest in vivo, ChIP 

assays were performed using a modified protocol (Boyd et al., 1998; Liu et al., 2000). 

Proteins interacting with the DNA were crosslinked and bound chromatin was precipitated 

using selected specific antibodies. PCR amplification was used to identify the segment of the 

genome associated with the protein. A total of about 107 cells were fixed by adding 

formaldehyde to a final concentration of 1% (v/v) and incubated for 30 min at RT. Cells were 

washed twice with cold PBS (Sigma) and lysed. Cellular debris was removed by 

centrifugation. Isolated nuclei were lysed followed by sonication using a Bioruptor 

(Diagenode; intensity: high, interval: 0.5, 30 min) with resulting chromatin length of ~300 bp. 

Fragment size was routinely controlled on agarose gels. After centrifugation the supernatant 

was incubated for 30 min (4°C) with rabbit pre-immune serum followed by incubation (30 

min, 4°C) with freshly prepared (blocked with BSA and tRNA, 1 hr, 4°C) magnetic Protein-G 

beads (Invitrogen). After centrifugation, supernatant was transferred to low-binding tubes and 

3 µg of specific antibody was added, followed by overnight incubation. Magnetic Protein-G 

beads were added the next day (10 µl, 4°C, for 3 hrs). After extensive washing the 

antibody/protein/DNA complex was eluted from the beads, followed by removal of 

formaldehyde crosslinks and protein digestion with proteinase K (67°C over night). DNA was 

prepared by phenol/chloroform/isoamyl alcohol extraction and used for PCR analysis. 

 

Cellular lysis buffer  Nuclear lysis buffer  Dilution buffer 

10 mM Tris pH 8.0  50 mM Tris pH 8.0  20 mM Tris pH 8.0  

10 mM NaCl   10 mM EDTA   2 mM EDTA  

0.2% (v/v)NP-40  1% (w/v) SDS   150 mM NaCl  

Roche Complete  Roche Complete  1% (w/v) Triton X-100 

proteinase inhibitor  proteinase inhibitor  Roche Complete 

        proteinase inhibitor  
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Wash buffer I   Wash buffer II   Wash buffer III 

20 mM Tris pH 8.0  10 mM Tris pH 8.0  20 mM Tris pH 7.6  

2 mM EDTA   1 mM EDTA   50 mM NaCl  

50 mM NaCl   0.25 M LiCl 

1% (w/v) Triton X-100 1% (v/v) NP-40  Elution buffer 

0.1% (w/v) SDS  1% (w/v) Ceoxycholic  100 mM NaHCO3 

Roche Complete  acid    1% (w/v) SDS 

proteinase inhibitor 

 

Table 6: Oligonucleotide sequences for ChIP 

   

Description Sequence 5' to 3' Position Ref. Accession # 

BGN ChIP -28_+78 SS AGCCTCCCGCCCGCCGCCT -28 NT_011726.13 

BGN ChIP -28_+78 AS CGCACGTCTATCTGTCCGGTG +78 NT_011726.13 

BGN ChIP -918_-806 SS AGGGGACACTACGGGACAG -918 NT_011726.13 

BGN ChIP -918_-806 AS TTACCCCACCAAGACTC GC -806 NT_011726.13 

BGN ChIP -1164_-1066 SS CGGTTGAGTGATGGCACTG -1164 NT_011726.13 

BGN ChIP -1164_-1066 AS GGAGAGAGGGGTGGCTAGAG -1066 NT_011726.13 

BGN ChIP G-578A SS GATCGGGGCCTCTTTTTAAG -610 NT_011726.13 

BGN ChIP G-578A AS TAGCTGTTGTGGATTTCTGG -511 NT_011726.13 

BGN ChIP G-151A SS CGTCTACAAGAAAATTGCTC -191 NT_011726.13 

BGN ChIP G-151A AS GGGGAGGGAGGAAAGGAG -77 NT_011726.13 

BGN ChIP G+94T SS TGCCCAGGAGTGAGTAGCTG +14 NT_011726.13 

BGN ChIP G+94T AS AGGCGCAGGCTGACTAGTTG +115 NT_011726.13 
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3.2 Protein biochemical methods 

 

3.2.1 Preparation of proteins 

Crude protein extracts were prepared from cell culture by scraping cells in presence of lysis 

buffer. Cellular debris was removed by centrifugation (12000 x g, 5 min, 4°C). Pre-heated 

SDS-PAGE sample buffer was added to supernatants and heated to 95°C for 5 min. Samples 

were chilled on ice and loaded directly onto a gel or kept frozen at -20°C until used. 

 

Lysis buffer       4 x SDS sample buffer 

20 mM  imidazole, pH 6.8    200 mM  Tris-HCl, pH 6.8 

100 mM  KCl      8% (w/v)  SDS 

1 mM   MgCl2      0.4% (w/v)  bromphenol blue 

10 mM  EGTA      40% (v/v)  Glycerol 

0.2% (v/v)  Triton X-100 

10 mM  NaF 

1 mM   sodium vanadate 

1 mM   sodium molybdate 

10 mM  sodium pyrophosphate 

25 mM  β-glycerophosphate 

 

3.2.2 Isolation of nuclear proteins 

Nuclear protein extracts were obtained using a modified protocol by Schreiber et al. 

(Schreiber et al., 1989). Briefly, 107 cells were washed twice and harvested by scraping in ice 

cold PBS. Cells were spun down (5000 x g, 2 min, 4°C) and pellets were resuspended in an 

appropriate volume of “low salt” buffer (400–800 µl) and allowed to swell on ice for 15 min. 

After addition of detergent NP-40 (25–75 µl of a 10% solution, depending on cell line), cells 

were vortexed and incubated at room temperature for up to 5 min until cells were lysed. 

Efficiency of this step was controlled by microscopy and optimized for each cell line. The 
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supernatant containing the cytosolic protein fraction was removed by centrifugation (5000 x 

g, 5 min, 4°C). The pellet was resuspended in an appropriate volume of “high salt” buffer 

(50–150 µl, adjusted to pellet size). After 2 hrs of rotation on a wheel at 4°C, cellular debris 

was spun down (24000 x g, 1 hr, 4°C) twice. Supernatant was moved to a fresh tube after the 

first centrifugation step. The nuclear protein fraction was aliquoted on ice, snap frozen in 

liquid nitrogen and kept at –70°C. Nuclear protein fractions were routinely tested for protein 

concentration using BCA assay. Amount of DNA contamination was tested using 

spectroscopy. Integrity of proteins was tested using Coomassie SDS gel staining. 

 

 “low salt” buffer      “high salt” buffer 

10 mM  HEPES, pH 7.9    20 mM  HEPES, pH 7.9 

10 mM  KCl      0.2 mM  EDTA 

1 mM   DTT      1 mM   DTT 

1.5 mM  MgCl2      420 mM  NaCl 

Roche Complete      1.5 mM  MgCl2 

proteinase inhibitor     0.5 mM  PMSF 

25% (v/v)  Glycerol 

       Roche Complete 

       proteinase inhibitor 
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3.2.3 Protein quantification 

Nuclear extracts were analysed spectrometrically using a sensitive BCA Protein Assay Kit 

(Thermo Fischer) with a high tolerance rate for detergents and salts. Standard curve was 

prepared from bovine serum albumin (BSA).  

 

3.2.4 SDS-Polyacrylamide Gel Electrophoresis (PAGE) 

Protein samples were separated on a 10% SDS gel as described by Rittenhouse & Marcus 

(1984). Proteins were denatured in SDS sample buffer (95°C, 5 min), spun down and chilled 

on ice (5 min). Samples ran on stacking gel (4% polyacrylamide) at 80 V and were separated 

afterwards at 140 V. Running time depended on protein size. A pre-stained marker was used 

to control running of the gel. 

 

Stacking gel (4%)      Running gel (10%) 

560 µl   Acrylamide-bis 30%   2.5 ml   Acrylamide-bis 30% 

675 µl   0.5 M Tris-HCl, pH 6.8   1.9 ml   1.5 M Tris-HCl, pH 8.8 

675 µl   0.5 M imidazole, pH 6.8   75 µl   SDS, 10% 

75 µl   SDS, 10%     5 µl   TEMED 

5 µl   TEMED     25 µl   APS, 10% 

40 µl   APS, 10%    add dH2O to 7.5 ml 

add dH2O to 4.2 ml 

 

1 x SDS running buffer 

25 mM  Tris base 

192 mM  glycine 

1% (w/v)  SDS 
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3.2.5 Coomassie blue staining 

Protein bands were visualized by incubation of the gel in Coomassie blue staining solution  

(1 hr), followed by destaining until background was minimized. Gels were kept in storage 

solution and dried when required. 

 

Coomassie staining solution 

0.25% (w/v)   Coomassie Brilliant Blue R-250 

45% (v/v)   methanol 

10% (v/v)   acetic acid 

add dH2O 

 

Destaining solution      Storage solution 

45% (v/v)   methanol     5% (v/v)  methanol 

10% (v/v)   acetic acid     5% (v/v)  acetic acid 

add dH2O       add dH2O 

 

3.2.6 Western Blot (tank blot) 

After separation on SDS gels, proteins were blotted onto PVDF membranes (Immobilon-P, 

0.45 µm, Millipore) following the Towbin tank blot protocol (Towbin et al., 1979). PVDF 

membranes were activated in methanol and equilibrated in blotting buffer. Gel and membrane 

were placed with two layers of Whatman paper and fibre pads inside a gel holder cassette, 

avoiding any air bubbles and placed into the pre-cooled blotting buffer tank. Blots were run 

for 1 hr at 100 V using cooling units.  

 

1 x Blotting buffer 

25 mM  Tris base 

192 mM  glycine 

10% (v/v)  methanol 

adjusted to pH 7.6 
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Membranes were saturated in blocking solution over night (4°C). Proteins of interest were 

detected by immunodetection using specific primary antibodies (cf. 2.2.6). Membranes were 

incubated with primary antibodies in blocking solution for 1 hr and with HRP-coupled 

secondary antibodies for 45 min at RT with gentle agitation. After extensive washing, 

membranes were incubated for 5 min in SuperSignal West chemiluminescent substrate (Pico 

or Femto, Thermo Scientific) and exposed to CL-X Posure Film (Thermo Fischer). 

 

Blocking solution     Wash solution (1 x TBS-T) 

0.5% (w/v)  casein     100 mM  Tris base 

in 1 x TBS-T, pH 7.6    1.5 mM  NaCl 

filtered through 320 mm filter  0.03% (v/v)  Tween-20 

(Schleicher & Schuell, Dassel)  adjusted to pH 7.6 

 

 

3.3 Cell biological and microbiological methods 

 

3.3.1 Prokaryotic cells 

Bacteria were used to generate and amplify plasmid DNA and cultured at 37°C either in LB 

Medium or on LB Agar plates. Antibiotics were added for specific selection of transformed 

bacteria. Glycerol cultures (15% (v/v) glycerol) were snap frozen in liquid nitrogen and stored 

at –80°C without antibiotics. 

 

LB Medium      LB Agar 

10 g  Bactotryptone    15 g Bacto agar in 1000 ml LB Medium 

10 g  Sodium chloride    add appropriate antibiotics after cool down to  

5 g  Yeast extract     56°C 

add dH2O to 1000 ml, pH 7.0     

autoclave at 121°C for 20 min    
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3.3.1.1 Generation of chemically competent cells 

Competent bacterial cells were generated using a modified protocol by Hanahan for 

preparation and transformation of E. coli cells (Hanahan, 1983). 

200 ml of LB Medium were inoculated with bacterial cells and grown to an OD600 of about 

0.4 at 37°C. After 20 min of incubation in an iced water bath with gentle agitation, cells were 

harvested at (4000 x g, 15 min, 4°C,). The pellet was resuspended in 10 ml iced  

MnCl2-transformation buffer, and kept on ice for 10 min, followed by another centrifugation 

step (3000 x g, 10 min, 4°C). The pellet was resuspended in 7.4 ml MnCl2-transformation 

buffer and mixed gently, followed by dropwise addition of 560 µl DMSO. Aliquots of 100 µl 

were prepared on ice and snap frozen in liquid nitrogen. Competent cells were stored at  

–80°C. Transformation efficiency of generated competent cells was routinely tested using 

pUC19 as control vector. 

 

MnCl2-transformation buffer 

10 mM  HEPES, pH 6.8 

15 mM  CaCl2 

20 mM  KCl 

55 mM  MnCl2 

 

3.3.1.2 Transformation of competent cells 

An aliquot of competent cells (100 µl) was incubated in an iced water bath for 3 min, mixed 

with 50 ng of transforming DNA (volume ≤5%) and kept on ice for 30 min. Cells were  

heat-shocked at 42°C for 30 sec, and briefly cooled on ice for 2 min. Pre-warmed  

LB-Medium (250 µl) was added and cells were shook for 45 min at 37°C (225 rpm) for 

recovery and expression of the antibiotic resistance marker encoded by the plasmid. Thereof, 

50 and 150 µl were plated onto antibiotic agar plates using a freshly prepared bent glass rod 

and incubated over night at 37°C. 
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3.3.2 Eukaryotic cells 

Eukaryotic cell lines were used to analyse generated reporter gene plasmid containing 

promoter fragments towards their transcriptional activity using transient transfection (cf. 

3.3.2.3). Different stimulatory regimes were tested in cultured cells to detect regulatory 

effects on gene expression. Cells were also used for ChIP experiments (cf. 3.1.14) to identify 

in vivo interactions of proteins with selected chromatin regions. Nuclear proteins extracted 

from eukaryotic cells were used in EMSA experiments (cf. 3.1.13) to analyse DNA/protein 

interactions in vitro. 

 

3.3.2.1 Eukaryotic cell culture 

The human embryonic kidney cell line HEK293T, the vascular endothelial cell line EA.hy926 

and the African green monkey kidney cell line COS-7 were maintained in DMEM containing 

10% (v/v) fetal calf serum (PAA), 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM/ml  

L-Glutamine (all GIBCO). For cultivation of HEK293T iron-supplemented fetal calf serum 

was used (Cell Concepts). The monocytic cell line THP-1 was maintained in RPMI 1640 

medium (Roswell Park Memorial Institute) containing 10% (v/v) fetal calf serum (PAA), 100 

U/ml penicillin, 100 µg/ml streptomycin, 2 mM/ml L-Glutamine and 1 x modified Eagle’s 

medium amino acid solution (Sigma). THP-1 cells were kept at a concentration of 0.5 to 1 x 

106/ml. Differentiation of THP-1 cells was performed by stimulation with 10-8 m PMA for 72 

hrs. For stimulation of cells 0.5 mM 8-bromo-cAMP (Biolog), 10-8 PMA (Sigma) or 5–20 

ng/ml recombinant cytokines TGF-β1, IL-1β and PDGF (Calbiochem) were used. When state 

of confluence was reached, cells were detached from surface by trypsination and splitted at 

appropriate ratios for further cultivation. The number of passages did not exceed 40 in any 

case. 

 

3.3.2.2 Storage 

For long term storage, cells were washed twice with PBS, trypsinated, and transferred to fresh 

medium. After centrifugation, cells were placed on ice and resuspended in fetal calf serum 

containing 10% (v/v) DMSO. Cryo tubes were cooled slowly to –80°C and transferred to 

liquid nitrogen the next day. Thawing of cells was performed in a water bath at 37°C. To 
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remove DMSO from the freezing medium, cells were washed with PBS and transferred into 

pre-warmed medium after centrifugation. 

 

3.3.2.3 Transient transfection 

Cell lines EA.hy926 and THP-1 were transfected using Nanofectin transfection reagent 

(PAA). Nanofectin consists of two components, a positively charged polymer with  

DNA-binding capacity which is embedded into a porous nanoparticle. In case of EA.hy926 

cells, 105 cells/well were plated in a 24-well plate format and transfected the next day after a 

change of medium 2 hrs prior addition of transfection complexes. For both, EA.hy926 and 

THP-1 cells, 1 µg DNA and 3.2 µl Nanofectin solution were diluted in 50 µl NaCl solution 

(150 mM) and incubated for 10 min at RT. Both preparations were mixed and incubated for 

30 min at RT. Transfection complex was added dropwise to cell medium. In case of 

EA.hy926 cells, transfection reagent was removed by change of medium after 4 hrs. Cells 

were harvested 24 hrs post transfection with 100 µl Passive Lysis buffer (Promega). 

Luciferase activity was determined using a Sirius single-tube luminometer (Berthold detection 

systems). The cell lysate/luciferase substrate ratio was routinely 20 µl/75 µl. 

Transfection of the promoter constructs was performed in equimolar amounts of reporter 

vectors using the inert vector p0GH (Nichols Institute) for adjustment of DNA content. The 

pGL3-Control vector in which transcription is driven by the competent SV40 viral promoter 

and additional enhancer served as positive control. Promotorless pGL3-Basic vector served as 

empty vector control. Transfection experiments were repeated at least three times, in 

triplicates for each plasmid. 

 

3.3.2.4 Cotransfection 

Transient overexpression of proteins was used to analyze possible effects on transcription of 

the cotransfected reporter gene vectors containing promoter fragments. Expression vector to 

reporter gene vector ratio was routinely 3:1. In this study, expression vectors for members of 

the C/EBP family, CBP and SP1 were used. 
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3.4 Study populations 

 

The current investigation was based on the Münster Molecular Functional Profiling for 

Mechanism Detection (MolProMD) study. Genomic DNA from patients of this study was 

mainly used for the detection of existing genetic variants by sequencing as well as for 

subcloning, generating gene promoter reporter vectors. The Münster MolProMD Study is a 

prospective study of patients with CVD (MI, essential hypertension) and families, aimed at 

studying molecular genetic mechanism of CVD. The study was approved by the ethics 

committee of the Medical Faculty, Westphalian Wilhelms-University of Münster and written 

informed consent was obtained from all study subjects. 

 

3.5 Computational sequence analyses 

Web based algorithms were used for in silico DNA sequence analyses. For phylogenetic and 

gene family footprinting, sequences were aligned using the ClustalW program at EMBL 

(http://www.ebi.ac.uk/Tools/clustalw/index.html). For prediction of TF binding sites, DNA 

sequences were compared to the TRANSFAC 7.0 database by using AliBaba2.1 

(http://www.gene-regulation.com/pub/programs/alibaba2/index.html) and PROMO 

(http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3). PROMO 

(accessing TRANSFAC 8.3) was also used to analyse regulatory sequences of different genes 

expressed in the same tissue using the MultiSearch site function and for phylogenetic 

footprinting with comparison of TF binding sites. Furthermore, PROMO was used for 

consensus sequence identification and matrix visualization to design oligos with defined TF 

binding qualities serving as controls in EMSA experiments. Settings of the used algorithms 

are available upon request (Chenna et al., 2003; Grabe, 2002; Messeguer et al., 2002). 
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4 RESULTS 

 

4.1 Phylogenetic footprinting 

 

To reveal nucleotides under evolutionary selection in the BGN 5'-flanking region and 5'-UTR, 

phylogenetic footprinting was performed by comparison of human (Acc#: NT_167198.1) and 

mouse (Acc#: NT_039706.7) sequences using ClustalW at http://www.ebi.ac.uk. 

Evolutionary conservation of sequences over longer time periods is assumed to be the result 

of negative selection, implying identical function and expression of the compared orthologous 

genes (Tagle et al., 1988). Differential phylogenetic footprinting will potentially be observed 

if a change in expression patterns occurred during the evolutionary process (Fischer & 

Backendorf, 2007). Results obtained by this method depend considerably on the species used 

for comparison. Sequences from species with small evolutionary distances may well not 

reveal enough mutations outside of cis-elements whereas species which are evolutionary more 

distant will not reveal any residual homology. Phylogenetic footprinting may furthermore not 

be used unrestrictedly to identify regions containing cis-active elements. Since the structure of 

the genome is highly variable between organisms and control regions may well be localized in 

intronic regions, downstream, or in considerable distance of a gene (Trinklein et al., 2007; 

Kleinjan et al., 2005, Lower et al., 2009), control regions are not annotated in databases and 

may be tracked only by their flanking gens. Different arrangements of genes (i.e. copy 

number, orientation) in different organisms introduce considerable uncertainty to this 

procedure. For BGN, sequence homology of ~70% was observed for the 5'-UTR between 

human and mouse, whereas an overall score of ~65% was reported for adjacent upstream 

1150 bp (fig. 10). A notable sequence homology between the two species of ~80% was 

detected between the proximal position -250 and +25 of the human BGN sequence. Sequence 

analyses of the 5'-flanking region using different web-based algorithms (cf. references for 

details) did not reveal a TATA or CAAT box, but multiple GC elements.  
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 mBGN -603 GGGGGTGGGGGGCAAATGCCTCGTTTTAAAGGAGGAAAGGAAGGAGAAGAGGAAAGGCTA  

 hBGN -599 CTTTTTAAGGGAAGAAAGTCTGGAGTGGAAGGGAGGGCACAGGGCGCCAGGAGCCTACAT  

 

 mBGN -543 ACAGAGCCAGTGGGATCCTGGATCAAGCCCTTCCAGAAGCCTACC---ATCCTCTACATC  

 hBGN -539 GAAGTCCTTCCAGAAATCCACAACAGCTACCTCTCTGATCCTGGAGAAACCACCTCCTTG  

 

 mBGN -486 TATAATCCCCAAAGTGCCCCTGGC---TTCAGACTTAAGTTCTGGG--------------  

 hBGN -479 CTTAGGCCCAAGCAGGTTCCTGGCAGGCTCAGGACCAAATTCCAGGGGCCACTCATGGGC  

  

 mBGN -443 -TAGCCATC--AGGTTACCTTTCC-TCATCTTCCTCTCA-----CTTTCTTCTGCCTAGC  

 hBGN -419 CTAGCAGCCCAAGGCCGCCTCCCCCTCGTCTTTCTTCCATCTCTCTTTCCTCTGCCTGGC  

 

 mBGN -392 CCCACAACAGCAAGCACCTCAGTGTCCCCTTTTGGATAGTGGAAAGTTTGACTCTGTGAG  

 hBGN -359 GAGATGCCAGCCAGCACCTCAGTGTCCCCATCTGGGCAGTGGAAAGTTTGACTCTCTGGG  

  

 mBGN -332 ACTGTCTGCCCAAAGACACCAAGGGTCTGTCCCTAAGTAAGTGAATGTGTGTTCTTTCAA  

 hBGN -299 TC---CTTGTTTGAGTGAGTGCGAGTGTGTCC--------GTTCCTTTGCTGTCTGCC--  

 

 mBGN -272 ACTATGCTTGAGGCAGGGGCCAGGGTGGGGGGCGTGAGGGGGAGGGGTGCCACATAGACC  

 hBGN -252 -CCAGGCGGGGGAGGGGGGGGGAGGTGGTGGGGGCGAGGGGGCGGGGGCTCAGCTAGTCC  

 

 mBGN -212 AGCCGTCTACAAGAAAATTGCTTCCTTTGAAGCTGCCAGGGGGGGCAGGAAGCCTGCCCC  

 hBGN -193 AGCCGTCTACAAGAAAATTGCTCCCTTTGAAGCTGCCAGGGGGGCCGGGAAGCCTGCCCC  

 

 mBGN -152 CTCCCTCCCAGCTGCCCTTCCTCCCCCCTTTTCTCCCTCTCTGCTCCACTAGCCCCCTCC  

 hBGN -133 CTCCTGCTCGCCCGCCCTCTCCGCCCCACCAGCCCCCTCCCTCCTTT--------CCTCC  

 

 mBGN -92 CTTCTTGTCTCCCTCTCCGCCCCGTCCCCTCCCTGTCGGCCCGCCCGCCCAGCCTTTAGC  

 hBGN -81 CTCCCCG---CCCTCTCCCCGCTGTCCCCTCCCCGTCGGCCCGCCTGCCCAGCCTTTAGC  

  

 mBGN -32 TTCCCTCCCACCGCCTCTGTCTCCCTCTCTCCACGAACTGCCCAGGAGCGAGCAGCTGCT 

 hBGN -24 CTCCCGCCCGCCGCCTCTGTCTCCCTCTCTCCACAAACTGCCCAGGAGTGAGTAGCTGCT  

 

 mBGN +28 CCCGGTTGGCC--------CTGACGGACAGACAAACCGACAGCCTGACAACCTAGTCCAC  

 hBGN +36 TTCGGTCCGCCGGACACACCGGACAGATAGACGTGCGGACGGCCCACCACCCCAGCCCGC  

 

 mBGN +81 CAACTAAGCAGCCTGCACCTGGCTGCTTGTCCCTCCCCAGGAACATTGACC +131 

 hBGN +96 CAACTAGTCAGCCTGCGCCTGGCGCCTC--CCCTCTCCAGGTCCATCCGCC +144 

 

 

Figure 10: Comparison of the mouse and human BGN 5'-flanking region and 5'-UTR.  

Conserved domains are marked in gray. Main human TSS according to DBTSS are indicated by 

arrows. The distal part of the human sequence, position -599 to -230, is not well conserved 

(conservation score ~20%) but holds a highly conserved region of 50 bp at position -352 to -302. The 

proximal part of the 5'-flanking region and the 5'-UTR have an overall conservation of ~80%. 

Alignment was conducted using ClustalW. 
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4.2 Identification of cell lines for BGN promoter studies 

 

For in vitro functional analyses of gene promoters, a cell system expressing the gene of 

interest is mandatory since a defined set of TF accounts for sequence-specific binding of 

accessible cis-active promoter elements and coordinated gene expression control (cf. 1.5). 

Cell lines differ in their TF constitution and selection of a cell system missing on endogenous 

expression can lead to artificial results. Concerning the biological system or pathophysiology 

the gene product is hypothetically involved in, cell lines known to play pivotal roles in these 

processes should be screened routinely. 

 

4.2.1 Endogenous BGN expression analysis 

BGN is known to be expressed ubiquitously throughout the human body but does posses 

different functional properties. It has been shown to be a major component of the ECM and its 

potential as a proinflammatory factor has been reported recently (for details cf. 1.3). We 

therefore analyzed the endogenous expression of BGN in the embryonic kidney cell line 

HEK293T, an African green monkey kidney cell line COS-7, a differentiated vascular 

endothelial cell line EA.hy926 and the monocytic cell line THP-1. Standard transcript 

detection was performed using a SS primer in exon two  

(5'-TGACACCTCGGGCGTCCTGG-3') and an AS primer in exon four  

(5'-GAGCTGGGTAGGTTGGGCGG-3') at 28 cycles in a touchdown PCR with cDNA 

template (amplicon length 348 bp). All cell lines tested positive for BGN endogenous 

expression (fig. 11), in good consent with its ubiquitous expression in vivo. To address 

existing stimulatory aspects in BGN gene expression, cells were incubated with cAMP and the 

phorbol esther PMA. Both compounds elicit broad inflammatory signal transduction 

pathways. cAMP induces the PKA pathway while PMA leads to activation of the PKC signal 

cascade. Stimulation of THP-1 monocytes with PMA (78 hrs) additionally leads to 

differentiation into macrophages. Both stimulatory regimes did not alter the BGN transcript 

level in our experiments (fig. 11). 
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4.2.2 Identification of TSS 

Current databases such as DBTSS (Wakaguri et al., 2008; Ota et al., 2004) hold precise 

positional information on TSS of eukaryotic mRNA, since evolution of high-throughput 

technologies allowed massive sequence analysis of full-length cDNA in the recent past 

(Yamashita et al., 2010). Lately, a continuative refinement has been integrated to take 

differential usages of the TSS, depending on the cellular circumstances, into account. Tags 

were collected from a total of 33 different cell types or culturing conditions. For BGN (Entrez 

gene ID 633) DBTSS reports three main TSS in normal adult tissue (fig. 10). To identify the 

cell type-specific usage of TSS in the human BGN gene promoter, 5'RACE experiments and 

diacritic PCR were used. We were able to show the alternative usage of two TSS (fig. 11) in 

correlation with DBTSS data and termed the identified proximal position TSS1 and the more 

distal position TSS2. The flexible structure of transcription initiation was as well addressed 

with respect to different stimulatory regimes. TSS1 was shown to be actively involved in 

transcription in all tested cell lines independently of the applied stimulation, while parallel 

usage of TSS1 and TSS2 was exclusively detected in EA.hy926 cells. Stimulation of 

EA.hy926 cells with phorbol ester PMA lead to concentration of transcriptional initiation 

upon TSS1 and abrogation of usage of TSS2 (fig. 10). 

We identified four cell lines expressing the human BGN. One of them, the vascular 

endothelial cell line EA.hy926, featuring an alternative TSS (TSS2, fig. 10). Considering the 

dual nature of BGN as a structural protein as well as an inflammatory factor, we decided to 

focus on the EA.hy926 and THP-1 cell lines for further investigations. 
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Figure 11: Analysis of BGN TSS in different cell lines.  

The schematic illustration shows exon one and the upstream 5'-flanking region. Notation of primers 

below is based on the main identified transcription start site, TSS1. Total RNA was used for cDNA 

synthesis followed by semi-quantitative PCR with the indicated 5'-primers and 3'-primer P+623. 

Integrity of cDNA was tested by amplification of hRP27. RNA from human testis tissue served as 

positive control. For stimulation, cells were grown in medium with either 8-bromo-cAMP (0.5 mM) or 

PMA (10-8 M) for 24 hrs. 
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4.3 Characterization of BGN promoter transcriptional activity 

 

For BGN promoter characterization, its transcriptional potential and the identification of 

regulatory sequence regions within, deletion constructs were generated. Since the 5'-flanking 

region of the human BGN gene does not feature a TATA box or other comparable rather 

focused promoter elements to drive its expression, a CpG island sequence analysis (Takai & 

Jones, 2002) was performed to identify regions with potential promoter properties in silico 

(fig. 12). Since the sequence portion of 336 bp predicted to be a potential CpG island spans 

almost completely the 5'-UTR and adjacent ~200 bp of 5'-flanking region, the untranslated 

region of exon one was included in the generated promoter constructs. Serial truncation of 

deletion constructs was planned taking further in silico predictions for TFBS into 

consideration (for details cf. 3.5). Sequence positions with highly conserved TF binding 

clusters were used as markers for each subsequent shortening step of fragments (for schematic 

representation of all deletion constructs and nomenclature see fig. 8). Finally, a fragment 

representing ~1300 bp of the 5'-flanking region with inclusion of the 5'-UTR was selected to 

be analysed in reporter gene assay analyses. 

 

 

 

 

Figure 12: CpG island analysis of the human BGN 5'-flanking region and 5'-UTR. 

We identified one CpG-rich region spanning position -198 to +138 (336 bp), underlined in blue. 

Vertical lines in red mark cytosine/guanine phosphodiesters. Sequence positions are based on TSS1. 

Position -1318 and +162 mark the longest generated promoter deletion construct. The web based 

application CpG Island Searcher (http://www.cpgislands.com) was used with the following settings: 

selected lower limits: %GC=60, ObsCpG/ExpGpG=0.65, length=100, distance=100. 
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4.3.1 Reporter gene assays 

Transient transfection of generated BGN promoter deletion constructs in EA.hy926 cells 

revealed a region with high transcriptional activity in the 5'-flanking region of the gene (fig. 

13). The region between -1231 and -935, covered by three promoter constructs, holds strong 

transcriptional activity reaching the level of pGL3-Control in our experiments. Truncation of 

a 234 bp fragment resulted in a significant (p<0.001) decrease of transcriptional activity. The 

constructs -701/+162 and -386/+162 covering the predicted CpG region of 336 bp (fig. 12) 

hold only limited potential to drive gene expression. Further truncation to a promoter 

fragment representing 39 bp of the 5'-region (-39/+162) but including the 162 bp of the  

5'-UTR, significantly (p<0.05) regenerated promoter transcriptional activity. Notably, the 

promoter construct -1318/+162 did not display any promoter activity at all (RLU beyond 

baseline level). In part restoration of transcriptional activity was achieved by truncation of the 

162 bp 5'-UTR generating the fragment -1318/+1. 
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Figure 13: Transcriptional activity of selected BGN promoter fragments. 

BGN promoter fragments expressing luciferase gene were transiently transfected into EA.hy926 cells 

to identify transcriptionally active regions within the 5'-flanking region. Length of the fragments is 

schematically indicated by filled boxes (left), the 5'-UTR is marked by a shaded box. The positive 

control pGL3-Control (white bar) contains a strong viral promoter and enhancer, the negative control 

pGL3-Basic (black bar) lacks any active promoter. The region between -1231 and -935 holds a strong 

transcriptional activity reaching activity of pGL3-Control, whereas the proximal region starting at 

position -701 exhibits declined transcriptional activity. The fragment spanning -1318 to +162 

including the 5'-UTR (top) shows no transcriptional activity. Excision of the 5'-UTR (bottom) leads to 

partly reconstitution of activity. Levels of significance are shown by asterisk on the right (n.s.: not 

significant, *P<0.05, **P<0.01, ***P<0.001). RLU: Relative Light Units. 
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4.4 Verification of BGN gene variants and MolHaps in the MolProMD study 

To reveal the composition of identified promoter polymorphisms on single DNA strands and 

to define MolHaps, genomic DNA from 57 patients of the MolProMD study were screened. 

One-thousand twenty-five bp of the promoter region harbouring G-578A, G-151A, and 

G+94T were amplified, subcloned, and sequenced twice (both DNA strands with sense and 

antisense primers) using an automated sequencing device. Three MolHaps were verified 

according to previous assumptions: BGN-MolHap1 [G-578-G-151-G+94 (wt)]  

BGN-MolHap2 [G-578-A-151-T+94] and BGN-MolHap3 [A-578-G-151-G+94]. BGN-MolHap1 has 

been designated wt since ancestral allele information was only available for position G-578A, 

with G mutated to A. The variants G-849A and C-501A were not detected in our 57 samples 

from the MolProMD study. 

 

4.4.1 BGN MolHap promoter fragments in reporter gene assays 

Molecular promoter haplotypes have been shown to significantly influence transcriptional 

activity of different genes in reporter gene assays (Hagedorn et al., 2009; Dördelmann et al., 

2008; Hasenkamp et al., 2008). For the analyses of BGN MolHaps, a 1025 bp fragment was 

cloned into pGL3-Basic vector, harbouring either of the three indentified SNP combinations 

(cf. 4.4) and transiently transfected into EA.hy926 and THP-1 cells. Previous analyses in 

HEK293T cells pointed to a higher transcriptional activity of MolHap3 compared to MolHap2 

(Rüssmann, MD thesis) but subsequent EMSA experiments were not sufficiently conclusive 

to reveal the underlying nature of protein/DNA interaction. The analysed promoter fragment, 

spanning position -893 to +132, exerted significant transcriptional activity (~250000 RLU in 

Ea.hy926) comparable to identified fragments with highest transcriptional activity in 

EA.hy926 promoter deletion studies (4.3.1), when wt alleles were present. Introduction of 

MolHap2 and MolHap3 led to a significant reduction of transcriptional activity in EA.hy926 

cells (P<0.001), with total abrogation beyond the level of pGL3-Basic for MolHap3 (P<0.001, 

fig. 14). A consistent result was observed upon transfection in the monocytic cell line THP-1. 

Fragments harbouring variants corresponding to MolHap2 and MolHap3 lead to a significant 

reduction of transcriptional activity (P-values<0.01). The same effects observed under basic 

conditions were also confirmed under the stimulatory regime of cAMP and PMA (not shown).  
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Both compounds did not have any effect on the transcriptional activity of the wt fragment in 

neither EA.hy926 nor THP-1 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Transcriptional activity of BGN MolHaps. 

BGN MolHaps expressing luciferase gene were transiently transfected into EA.hy926 (left) and THP-1 

cells (right) to identify the influence of SNP combinations on transcriptional activity. The wt fragment, 

representing BGN-MolHap1 [G-578-G-151-G+94 (wt)],  exhibited significant transcriptional activity in 

both cell lines. Transcriptional activity of BGN-MolHap2 [G-578-A-151-T+94 (H2)] was significantly 

reduced, whereas introduction of BGN-MolHap3 [A-578-G-151-G+94 (H3)] led to total abrogation of 

transcriptional activity in EA.hy926 cells and further reduction in THP-1 cells. The positive control 

pGL3-Control (white bar) contains a strong viral promoter and enhancer, the shuttle control 

pGL3-Basic (black bar) lacks any active promoter. Levels of significance are shown by asterisk 

(*P<0.05, **P<0.01, ***P<0.001). RLU: Relative Light Units. 
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4.4.2 Analysis of BGN promoter SNPs in transfection experiments 

For in-depth characterization of each genetic variant in the context of its narrowed promoter 

region, fragments containing each variant with minimal surrounding sequence portions cloned 

into the pGL3-Promoter vector (kind gift of Christina Rüssmann) were used. This vector of 

the pGL3-System, which contains an SV40 promoter, was initially generated to analyse 

isolated promoter portions towards their potential as individual enhancer elements. The six 

vectors contained either allele at position G-578A in a 187 bp fragment, the alleles at position  

G-151A in a 188 bp fragment and alleles at position G+94T in a 158 bp fragment. The 

generated vectors were transiently transfected into EA.hy926 cells (fig. 15). Position G-578A 

was able to slightly enhance activity of the pGL3-Promoter vector. A mild enhancing effect 

was also observed for -151A, whereas the wt allele -151G reduced transcriptional activity 

below empty pGL3-Promoter vector activity. Neither allele present at position G+94T did 

exert any enhancing activity in the present transfection experiments (all P-values <0.01). 
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Figure 15: Transient transfection of BGN promoter fragments harbouring insulated variants. 

Isolated variants were transiently transfected into EA.hy926 cells. Both alleles at position G+94T 

reduced basic transcriptional activity of the pGL3-Promoter vector. Introduction of the A allele at 

position G-151A and both alleles at position G-578A enhanced transcriptional activity of  

pGL3-Promoter. The positive control pGL3-Control (white bar) contains a strong viral promoter and 

enhancer, the shuttle control pGL3-Promoter (black bar) contains an SV40 promoter without enhancer. 

Levels of significance are shown by asterisk (**P<0.01, ***P<0.001). RLU: Relative Light Units. 
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4.4.3 In silico analysis of BGN promoter regions  

An extensive in silico analysis was performed for the characterized BGN promoter region 

(4.3.1) with special respect to alterations in TFBS prediction upon introduction of alleles 

corresponding to BGN-MolHap1-3. A preliminary analysis performed by Rüssmann (MD 

thesis) using AliBaba2.1/TRANSFAC 7.0 revealed, in addition to a few other TF, SP1 TFBS 

for all polymorphic positions.  With SP1 being the most frequent TF overall predicted for the 

entire GC-rich BGN promoter, its predicted binding to the polymorphic regions seemed 

mandatory. To correct for random prediction of TF due to sequence characteristics, the web 

based tool PROMO accessing TRANSFAC 8.3 was used. The tool allows to measure the 

reliability of predictions by using a random sequence of 1000 nucleotides, considering both, a 

model with equiprobability of the four nucleotides and a model with the same nucleotide 

frequency as the query sequence, represented by Query Expectation Values (QEV). The 

results shown in table 7 were obtained using Matrix Dissimilarity Rates (MDR) ≤6% (i.e. 

94% identity to TF consensus sequence). Position G-578A showed binding for the stress-

related protein p53, the B-cell linage-specific activator PAX-5 and a member of the ETS TF 

family (c-Ets1). TFBS prediction for the proximal position G-151A showed condensed 

binding for SP1/SP3 and the B-/T-cell-specific factor LEF-1, with an additional ETS binding 

site. The variant G+94T positioned in the 5'-UTR was predicted to generate a binding site for 

AP-1 TF complex by detection of c-FOS/c-JUN consensus motifs. With AP-1 being not a 

single protein, it constitutes a group of related dimeric basic region-leucine zipper proteins 

that belong to the JUN, FOS, MAF and ATF subfamilies (Shaulian & Karin, 2002). 

 

Table 7: In silico prediction of TFBS. Analyses were performed with sequence input of 60 bp 

contain the identified genetic variants using PROMO accessing database TRANSFAC 8.3.  

-578G -578A -151G -151A +94G +94T 

Name QEV Name QEV Name QEV Name QEV Name QEV Name QEV 

TFIID 0.011 TFIID 0.015 LEF-1 0.000 LEF-1 0.000 HIF-1 0.003 HIF-1 0.003 

c-Ets1 0.020 P53 0.021 c-Ets1 0.002 c-Ets1 0.002 E2F-1 0.003 c-FOS 0.004 

P53 0.022 c-Ets1 0.021 SP1/SP3 0.002 SP1/SP3 0.002 c-FOS 0.004 c-JUN 0.005 

P53 0.031 P53 0.029 NF-E4 0.002 NF-E4 0.002 c-JUN 0.004 CP2 0.010 

Pax-5 0.040 Pax-5 0.037 Pax-4a 0.005 C/EBP-β 0.006 Yi 0.004 NF-1 0.010 

MDR: 6%  
species: human 

MDR: 6%  
species: human 

MDR: 5%  
species: all 

MDR: 5%  
species: all 

MDR: 5%  
species: all 

MDR: 5%  
species: all 
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4.5 Overexpression of TF SP1 

 

In silico TFBS prediction for the BGN promoter in general revealed a number of consensus 

sequences for TF SP1. The TF SP1 is ubiquitously expressed, possesses three C2H2-type zinc 

fingers as DNA-binding domain (DBD) and has two glutamine-rich transactivation domains 

(TAD; Kadonaga et al., 1987; Kadonaga et al. 1988; Courey et al., 1989). Binding was 

predominantly predicted in conserved regions (fig. 10), spanning the proximal positions -230 

to -200 and the region -25 to +5 flanking the main TSS (all matrix dissimilarity rates =0, QEV 

≤0.2). In addition, SP1 binding was predicted for the three identified genetic variants 

composing BGN MolHaps. Based on these findings, we performed co-expression experiments 

in EA.hy926 cells using an expression vector for SP1 (pSP1/CMV). This mammalian 

expression vector is under the control of a promoter-regulatory region of the human 

cytomegalovirus for optimal performance. Effector (pSP1/CMV) to reporter gene vector 

(BGN promoter constructs) ratio was 1:3 in EA.hy926 transient transfections. The empty 

vector pCMV served as shuttle control. Strong induction of BGN promoter transcriptional 

activity in the presence of overexpressed SP1 was observed for all deletion constructs (fig. 17, 

all FI values ≥2.3). Explicitly high FI values over empty shuttle control were observed in 

promoter regions predicted to harbour conserved SP1 TFBS. Fragment -39/+162, including 

the main TSS flanking region and 5'-UTR, featured a 3.5-fold increase in transcriptional 

activity, while fragment -1318/+1 covering the distal part of the promoter and lacking the  

5'-UTR presented a 4.1-fold increase in transcriptional activity. The section between -1231 

and -935, covered by three promoter constructs with highest absolute transcriptional activity, 

displayed a mean induction of transcriptional activity upon SP1 co-transfection by 2.3-fold. 
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Figure 17: Co-expression of TF SP1 and BGN promoter constructs in EA.hy926 cells. 

Significant induction of BGN promoter deletion constructs transcriptional activity was observed upon overexpression of TF SP1. The empty vector pCMV served as 

shuttle control (gray bars, left), corresponding transcriptional activity in presence of overexpressed SP1 is represented by black bars (right). All results reached high 

levels of significance (P ≤0.01). Each constructs‘ relative activity over the empty shuttle vector pGL3-Basic was calculated and expressed as fold induction (FI) on 

the far right. High levels of transcriptional activity induction were observed for fragments -39/+162 (FI by 3.5) and-386/+162 (FI by 2.8) in correspondence with 

SP1 TFBS predictions in these regions. The promoter portion covering positions -1318/+1 (no 5'-UTR) reached the highest level of FI (by 4.1). Levels of 

significance are shown by asterisk (**P<0.01, ***P<0.001). RLU: Relative Light Units. pGL3-Control is represented by white bars. 
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4.6 ChIP experiments 

 

Since overexpression of TF SP1 resulted in strong induction of BGN promoter transcriptional 

activity, ChIP experiments were performed for in vivo verification of these results. 

Stimulation of BGN transcriptional activity might not originate from direct binding of SP1 to 

the promoter itself, but could exert indirect regulatory effects. Demonstration of SP1 binding 

to the BGN 5'-flanking region in ChIP experiments would verify direct physical interaction of 

SP1 with the BGN promoter. 

Proteins interacting with chromatin were chemically cross-linked using formaldehyde 

followed by sonification of DNA. Precipitation of bound promoter segments was achieved by 

the use of selected specific antibodies against SP1, GATA1 and phosphorylated CREB. Three 

distinct regions of the BGN promoter were amplified in PCR reactions following ChIP, with 

mean amplicon length of 100 bp. Neither binding of GATA1 nor binding of CREB was 

detected at any of the analysed sections, while binding of SP1 was demonstrated for region  

-28 to +71 and -918 to -806 (fig. 18). ChIP results were in correspondence with co-expression 

experiments since the region flanking the main TSS and the more distal parts showed strong 

induction of transcriptional activity upon SP1 overexpression (fig. 17). The promoter portion 

spanning -1164 to -1066 did not show binding of TF SP1 in ChIP experiments. 



4 Results 

 

 

 

 

 

Figure 18: TF SP1 interacts selectively with 
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4.7  TGF-β1 signal transduction effects 

 

The multifunctional TGF-β family 
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this large family with at least 42 members encoded in the human genome, TGF

reported to regulate BGN on transcriptional and posttranscriptional levels 

2006; Tiede et al., 2010) and thereby influence its availability and protein characteristics

(Little et al., 2008). Most of the currently available data has however come from studies

concentrating on the role of proteoglycans in fibrotic processes, using fibroblast cell lines. 
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Figure 20: TGF-β1 stimulates BGN

EA.hy926 cells and THP-1 monocytes
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BGN mRNA expression in THP-1 monocytes.  
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Semi-quantitative PCR analysis of BGN mRNA levels upon TGF-β1 stimulation revealed an 

activating effect in THP-1 monocytes, while EA.hy926 cells did not respond to the cytokine 

(fig. 20). To execute its intracellular signal transduction capacity, TGF-β1 needs to activate 

either one of two transmembrane serine/threonine receptor kinases. The type II receptor 

(TGFBR2) is required for the antiproliferative activity of TGF-β, whereas the type I receptor 

(TGFBR1) mediates the induction of several genes involved in cell-matrix interactions (Ebner 

et al., 1993). Expression of TGFBR1 is therefore essential for downstream regulatory effects 

of TGF-β1 on BGN gene expression. We tested both cell lines, THP-1 and E.hy926, using 

semi-quantitative PCR and verified the presence of TGFBR1 mRNA (not shown). We further 

analysed the downstream effects of TGF-β1 on the level of transcriptional promoter 

activation, since variations in BGN mRNA levels could depend on post-transcriptional RNA 

modification. Transient transfection of BGN promoter deletions constructs under the 

stimulatory regime of TGF-β1 (fig. 21) revealed inducibility of transcriptional activity in 

THP-1 cells in correspondence with diagnostic PCR results (fig. 20). Significant changes in 

transcriptional activity over pGL3-Basic compared to basic conditions were observed in 

fragments representing region -1231 to -935, displaying highest transcriptional activity in 

THP-1 cells. Overall FI observed was 2.6. In analogy to BGN mRNA levels, no stimulatory 

effect of TGF-β1 on transcriptional activity of any promoter fragment was observed in 

EA.hy926 cells (fig. 22).  



4 Results 

 

 

 

 

 

Figure 21: TGF-β1 induces transcriptional activity 

Transcriptional activity of BGN promoter fragments was induced up to 3

fragments spanning the region -1231 to -935. Basic conditions are shown on the left (gray bars), corresponding 

represented by black bars (right). Each constructs‘ relative activity over the empty shuttle vector pGL3

the far right. Levels of significance are shown by asterisk 
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-935/+162 
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pGL3_ctrl 

THP-1 

 of the BGN promoter in THP-1 cells. 

r fragments was induced up to 3-fold upon stimulation with TGF-β1 (10 ng/ml, 24 hrs)

Basic conditions are shown on the left (gray bars), corresponding transcriptional activity

Each constructs‘ relative activity over the empty shuttle vector pGL3-Basic was calculated and expressed as fold induction (FI) on 

the far right. Levels of significance are shown by asterisk (*P<0.05, **P<0.01). RLU: Relative Light Units. pGL3-Control is represented by white bars.
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Figure 22: TGF-β1 does not affect BGN transcriptional activity in EA.hy926 cells.  

Transcriptional activity of BGN promoter fragments was not altered upon stimulation with TGF-β1 

(10 ng/ml, 24 hrs). Basic conditions are shown on top, corresponding transcriptional activity in 

presence of TGF-β1 below. RLU: Relative Light Units. pGL3-Control is represented by white bars. 
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Figure 23: TF SP1 is decreased by TGF

SP1 protein concentrations in nuclear extracts were analysed using western blot. THP

reduced overall concentration of TF SP1 compared to EA.hy926 cells. Stimulation of THP

TGF-β1 for 24 hrs lead to a considerable 

marginal effects. A gradient of total nuclear protein applied to the gel served as loading control. 
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4.8 Band shift experiments 

Gel shift experiments were used to access binding of TF with defined BGN promoter regions 

in vitro. Biotinylated probes generated resembled the flanking regions of the three genetic 

variants which constitute BGN MolHaps. All probes were between 31 and 36 bp in size, 

limiting potential binding partners to the exact polymorphic region. Since BGN MolHaps span 

a region of 672 bp, combined analyses in EMSA experiments were inexecutable. To visualize 

sequence-specific binding, unlabelled probes in a 200-fold excess were used in any gel shift 

for signal competition. For identification of proteins binding at positions of observed gel 

shifts, specific antibodies were used according to in silico TF binding predictions. 

 

4.8.1 EMSA at position G+94T 

Position G+94T has been shown to influence transcriptional activity of the BGN promoter 

significantly in transient transfection experiments (4.4.1). Introduction of the T resulted in 

strong abrogation of reporter gene plasmid transcriptional activity. Using biotinylated probes 

resembling the flanking sequence of position G+94T with EA.hy926 and THP-1 nuclear 

extracts, we observed considerable differences in DNA/protein binding patterns (fig. 24). For 

both cell lines, a prominent and sequence-specific band shift (black arrow) was detected with 

significant higher binding affinity to the probe bearing the +94T allele. Of lower intensity, a 

second specific shift (open arrow) emerged.  

Using in silico methods (tab. 7), AP-1 was predicted to be a potential binding partner for 

position G+94T. AP-1 is known to directly affect gene transcription and is individually 

composed of multimeric TF, often including a heterodimer of the basic leucine zipper proteins 

c-FOS and c-JUN (Shaulian & Karin, 2002). Regulatory properties of AP-1 are versatile. Of 

all components, the most potent transcriptional activator is c-JUN, whose transcriptional 

activity can be antagonized by JUNB. FOS proteins enhance JUN DNA-binding activity upon 

formation of stable heterodimers. Gel shifts with unlabelled probes harbouring the +94 G or T 

allele and EA.hy926 nuclear extracts were detected using a c-FOS specific antibody to 

demonstrate AP-1 complex formation at this position (fig. 25). An AP-1 consensus sequence 

served as positive control (Kodonaga et al., 1987). We detected a strong c-FOS signal when 

the AP-1 oligonucleotide was used, demonstrating potential complex formation under applied 

EMSA conditions. By use of this positive control, binding of c-FOS to both alleles, G and T  



4 Results 

page | 78  

 

- + - +- + - +

 

at position +94 was demonstrated (open arrow). The band shift (fig. 25, open arrow) 

identified to involve c-FOS does not exhibit differences in signal intensity in consent with the 

results obtained using c-FOS antibody. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Allele-specific interaction of nuclear extracts with position G+94T.  

Nuclear extracts from EA.hy926 and THP-1 cells bind explicitly to the +94T allele, while only minor 

interaction with the +94G allele was observed (black arrow). A less prominent but specific shift is 

marked by an open arrow. -: 3'-biotinylated probe; +: 200-fold excess (8 pmol) of sequence-specific 

competitor. Unbound oligonucleotides are visible at the bottom (free probe). 
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Figure 25: TF c-FOS binds to position G+94T in EA.hy926 cells. 

Using a c-FOS-specific antibody, one of the observed shifts (cf. fig. 24, open arrow) was identified to 

involve binding of TF c-FOS. A consensus site for TF complex AP-1 served as positive control.  

Ø: lanes without any oligonucleotide served as control for unbound protein separation in native gels. 

All oligonucleotides were used at a concentration of 8 pmol. 

 

 

 

4.8.2 EMSA at position G-151A 

Gel shift experiments with biotinylated probes resembling position G-151A and EA.hy926 

nuclear extracts revealed two specific bands for both alleles (fig. 26, A). A different 

separation of band shifts was observed using nuclear extracts from THP-1 cells, while bands 

were also specific but no differences between alleles was observed (fig. 26). ChIP analysis of 

this position (cf. fig. 19) revealed binding of TF SP1 in EA.hy926 cells. Genotype of 

EA.hy926 cells was determined by sequencing to represent BGN MolHap1, harbouring the G 

allele at position -151. EMSA experiments were used to verify these results and to further 

access binding of SP1 to the A allele. Taking in silico predictions (tab. 7) for position  

G-151A and consensus site weight matrix information into account, a mutated probe was 

designed by altering either two nucleotides at both ends of the probe basic for TF SP1  

EA.hy926 

Ø G

 

T

 

AP-1
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binding. Application of the altered oligonucleotide as specific competitor did not resulted in 

competition and signal intensity of both probes representing either G and A allele did not 

changed (fig. 26, B). Use of the mutated sequence as biotinylated probe itself featured a 

completely different binding pattern. The most considerable and strongest signal (black 

arrow) was undetectable in lanes using the mutated probe. To directly identify the presence of 

SP1 in this DNA/protein complex, a SP1-specific antibody was used for signal detection. This 

approach revealed binding of TF SP1 to both alleles at position G-151A with identical signal 

intensity. As designed, the oligonucleotide missing perfect SP1 consensus sites did not bind to 

the TF.  

We further investigated whether SP1 binding was of stoichiometric nature, or binding was 

linear to probe concentration. Application of the unlabeled -151G probe in different 

concentrations (fig. 27) resulted in consequent increase of signal intensity linear to amount of 

available oligonucleotide. Level of saturation was reached at a concentration of 4.0 pmol. 
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Figure 26: Sequence-specific binding of SP1 

A: Nuclear extracts from EA.hy926 

B: The mutated sequence M (depicted

binding of the unaltered sequence. Using the mutated sequence as 

different binding pattern. The band indicated by a black arrow was identified to bind SP1 by 

SP1 antibody (far right). The mutated probe does not show any residual binding of SP1.

 -: 3'-biotinylated probe; +: 200-fold excess

any oligonucleotide served as control for unbound protein separation in native gels. 

oligonucleotides are visible at the bottom (free probe).
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: Nuclear extracts from EA.hy926 cells show explicit binding to the -151 G and T allele (arrows). 

depicted above, mutated positions in bold letters) is not able to compete 

binding of the unaltered sequence. Using the mutated sequence as biotinylated

The band indicated by a black arrow was identified to bind SP1 by 

. The mutated probe does not show any residual binding of SP1.

fold excess (8 pmol) of sequence-specific competitor. 

any oligonucleotide served as control for unbound protein separation in native gels. 
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151 G and T allele (arrows).  

above, mutated positions in bold letters) is not able to compete 

biotinylated probe results in a 

The band indicated by a black arrow was identified to bind SP1 by using a 

. The mutated probe does not show any residual binding of SP1. 

competitor. Ø: lanes without 

any oligonucleotide served as control for unbound protein separation in native gels. Unbound 

Ø Ø + + 
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Figure 27: Binding of SP1 in -151G probe serial dilution. 

TF SP1 binds the unlabelled -151G probe in relation to oligonucleotide quantity. Saturation of binding 

was reached at a probe concentration of 4.0 pmol using EA.hy926 nuclear extracts. Ø: lane without 

any oligonucleotide served as control for unbound protein separation in native gels. 

 

 

 

4.8.2.1 THP-1 band shift experiments 

Gel shift experiments using THP-1 nuclear extracts featured a different binding pattern 

compared to nuclear extracts derived from EA.hy926, missing the most prominent signal (fig. 

26, black arrow) representing SP1 interaction. Two specific interactions were observed (fig. 

28, arrows) but gel shifts did not differ in dependency of the present allele. Using a SP1 

consensus site as sequence-specific competitor did not result in signal intensity decrease and 

application of the mutated probe (cf. fig. 26) showed identical binding compared with 

unaltered probe sequences. 
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Figure 28: Sequence-specific interaction of THP-1 nuclear extract with G-151A is independent 

of TF SP1.  

Left: THP-1 nuclear extracts specifically bound to position G-151A (arrows). Centre: Incomplete 

competition of bands was observed using SP1 consensus sequences. Right: The mutated probe M (fig. 

26) shows identical specific binding pattern. -: 3'-biotinylated probe; +: 200-fold excess (8 pmol) of 

sequence-specific competitor. SP1: A SP1 consensus site served as specific competitor. Unbound 

oligonucleotides are visible at the bottom (free probe). 

G A 

- - SP1 SP1 

G A 

- - + + 
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- + 
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4.8.3 EMSA at position G-578A 

Band shift analysis of position G-578A using EA.hy926 nuclear extracts revealed a prominent 

allele-specific effect for probes harbouring the G allele (fig. 29 left, black arrow), while no 

specific effect was observed for position -578A. Application of nuclear extracts obtained from 

TGF-β1 stimulated cells changed the observed DNA/protein bands, resulting in amplification 

of a second shift (open arrow) with higher signal intensity for the A allele and abrogation of 

the interaction with the G allele (black arrow). Signal detection using SP1-specific antibody 

did not reveal any interaction of unstimulated nuclear extracts with SP1 (fig. 29, right), while 

a positive result was obtained for protein extracts from TGF-β1 treated cells. Binding of TF 

SP1 is observed in parallel to gel shift intensification (open arrow) upon TGF-β1 stimulation. 

Nuclear extracts from THP-1 cells presented a different binding pattern, with one 

considerable specific band (fig. 30, black arrow). Upon application of TGF-β1 stimulated 

nuclear extracts, an additional shift occurred for THP-1 cells (fig. 30, angled arrows). In 

consistence with results observed using stimulated EA.hy926 extracts, the emerging 

DNA/protein interaction was identified to depend on SP1 binding. 
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Figure 29: TGF-β1 stimulation alters interaction of EA.hy926 nuclear extracts with position  

G-578A. 

An allele-specific gel shift (black arrow) was detected for the -578G allele using nuclear extracts from 

cells held under basic conditions (left). TGF-β1 stimulated extracts show differential binding pattern 

with an emerging band at the top of the gel (open arrow). The emerging band was identified to depend 

on SP1 binding to the probes (far right). -: 3'-biotinylated probe; +: 200-fold excess (8 pmol) of 

sequence-specific competitor. Unbound oligonucleotides are visible at the bottom (free probe). Ø: lane 

without any oligonucleotide served as control for unbound protein separation in native gels. 
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Figure 30: TGF-β1 stimulation enhances SP1 binding to position G-578A in THP-1 cells. 

A specific gel shift (black arrow) was detected for the G-578A position allele using nuclear extracts 

from cells held under basic conditions (left). TGF-β1 stimulated extracts show differential binding 

pattern with an emerging band (angled arrows). The emerging band was identified to depend on SP1 

binding to the probes (far right). -: 3'-biotinylated probe; +: 200-fold excess (8 pmol) of  

sequence-specific competitor. Unbound oligonucleotides are visible at the bottom (free probe). Ø: lane 

without any oligonucleotide served as control for unbound protein separation in native gels. 
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We further investigated in silico binding predictions for both alleles with special respect 

towards cell-specific regulatory factors. Computational analysis revealed an altered PU.1  

consensus site upon introduction of the A allele at position -578. The hematopoietic  

ETS-domain transcription factor PU.1 has been identified to regulate human 

monocyte/macrophage differentiation (Rosa et al., 2007) and could account for cell-specific 

BGN gene expression. The sequence-specific gel shifts observed using nuclear extracts from 

untreated and TGF-β1 stimulated THP-1 cells (fig. 30, black arrow) were detected using 

specific PU.1 antibody (fig. 31). Binding of PU.1 was identified to probes harbouring either 

one allele with increased binding of PU.1 when stimulated protein extracts were applied. 

Potential differences in binding affinity were assessed using probe serial dilution (fig. 32). A 

4-fold higher binding affinity of PU.1 towards the probe harbouring the -578G allele 

compared with the probe presenting the A allele was observed in these experiments, in 

agreement with previous in silico analyses. 

 

 

 

 

 

 

 

 

 

Figure 31: TF PU.1 binds position G-578A in THP-1 cells. 

TF PU.1 binds unlabelled -578 probes independent of the present allele. Binding is increased in 

nuclear extracts from TGF-β1 stimulated cells. Ø: lane without any oligonucleotide served as control 

for unbound protein separation in native gels. 
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Figure 32: TF PU.1 binds the G allele with higher affinity. 

TF PU.1 binds unlabelled -578 probes in relation to oligonucleotide quantity. Signal intensity of the 

probe bearing the G allele detected by specific PU.1 antibody was increased 4-fold compared to probe 

-578 harbouring the A allele. Ø: lane without any oligonucleotide served as control for unbound 

protein separation in native gels. 
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5 DISCUSSION 

 

In the present work we analysed the transcriptional regulation of the human BGN gene 

expression. We have put our emphasis on the impact of genetic variants G-578A 

(rs11796997), G-151A (Brand et al., 2002) and G+94T (rs5945197) within potential  

cis-regulatory regions, i.e. potential TF binding sites. To our knowledge only a view 

publications (Ungefroren & Krull, 1996; Heegaard et al. 2004) aimed at characterizing the 

molecular basis of BGN transcriptional regulation and little is known about its polymorphic 

promoter structure and consequences for its regulation. We identified a promoter portion of 

1025 bp exerting sufficient transcriptional activity in EA.hy926 and THP-1 cells. In the 

context of this 1025 bp construct, we observed a prominent effect of SNPs (G-578A, G-151A 

and G+94T) reducing BGN promoter transcriptional activity. By generation of truncated 

promoter constructs, co-expression experiments and detailed band shift analyses, we 

identified c-FOS and SP1 to up-regulate BGN gene expression. Moreover, haematopoietic TF 

PU.1 significantly up-regulated monocyte-specific BGN promoter activity. 

 

5.1 Variable TSS of the BGN gene 

 

Transcription of the BGN gene is documented to initiate from multiple TSS (Ungefroren & 

Krull, 1996; DBTSS) and results in varying lengths of transcripts’ 5'-UTR. In this study, we 

used the 5'RACE approach to analyse the transcriptional organization of the BGN promoter. 

This led to the identification of a TSS (TSS1) three bp upstream of a major TSS (AK092954) 

listed in DBTSS, which was detected by oligo-capped cDNA analysis. In the endothelial cell 

line EA.hy926, we further identified a TSS located 46 bp upstream of TSS1. This second TSS 

is used in parallel to TSS1, resulting in two diverse BGN transcripts, simultaneously 

expressed under basic conditions as well as under protein kinase A pathway stimulation with 

cAMP. Using the phorbol ester PMA, initiation of transcription was preferred from TSS1. In 

contrast to other reports (Ungefroren & Krull, 1996), no further upstream TSS existed in our 

tested cell lines. Detection of varying TSS in close vicinity, as observed in our experiments 

for TSS1, has been discussed with regard to technical inaccuracy of applied methods 

(Hagedorn et al., 2009). This has been particularly proven for primer extension of cDNA 
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products using radiolabelled primers, where excessive radiation may result in degradation of 

5'-ends and mis-determination of TSS. 5'RACE methodology, which includes primer 

extension enhanced by PCR amplification and allows determination of the 5'-end of lower 

abundant transcripts produced from weaker promoters (Scotto-Lavino et al., 2006), has been 

proven to identify TSS more accurately.  

The distribution of the TSS could reflect the dynamic nature of the transcriptional initiation 

events, labelling them as regions with TSS in close proximity rather than static positions. This 

flexible structure of transcript initiation has explicitly been reported for CpG island promoters 

(Smale & Kadonaga, 2003). Although multiple TSS are present, broad-type promoters still 

display a preference for specific initiation sites (Carninci et al., 2006). Our results as well as 

findings from other groups (Wegrowski et al., 1995; Ungefroren & Krull, 1996) suggest a 

broad TSS distribution over the BGN promoter. Using multiple TSS over an extended region 

thereby requires exclusion of ATG start codons from sequences downstream of initiation sites 

since translation generally starts from the first ATG in the nascent mRNA (Lee et al., 2005a). 

Interestingly, general ATG distribution within the human BGN 5'-flanking region is adjourned 

362 bp upstream of TSS1, generating a so called ATG desert. The intention of multiple 

promoter TSS usage, specifically for the major group of CpG island promoters in mammals, 

is still under investigation. Of importance, these findings imply that we cannot consider the  

5'-end of the longest cDNA of a gene as the true full-length transcript. There is evidence that 

TNFIID complex formation actually occurs relatively non-specifically and scans along the 

DNA for a TSS (Sandelin et al., 2007). This will allow for parallel assembly of PIC in 

presence of multiple TSS and could regulate transcript initiation and gene expression. In our 

work, the observed concentration of transcript initiation on TSS1 after stimulation with PMA 

did nevertheless not translate in reduction of total BGN transcript level. Altered mRNA  

5'-regions could also result in modified mRNA half-life but mRNA is stabilized by intron size 

rather than destabilized by the lack of exonic regions (Ross, 1995). Posttranscriptional effects 

of altered mRNA 5'-cap thus may play a role for BGN translational processes. After release 

from the nuclear pore, mRNAs are often directed to particular sites in the cytoplasm, driving 

subcellular protein localization patterns (Lécuyer et al., 2007).  
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5.2 BGN promoter capacity is altered by genetic variants 

 

The impact of genetic variants residing within or near cis-active elements on promoter 

activity has been reported repeatedly by our group and others (Dördelmann et al., 2008; 

Hagedorn et al. 2009; Telgmann et al., 2008; Funke-Kaiser et al., 2003; Frisdahl et al., 2005; 

Schultz et al., 2009). Transient transfection assays in cell lines expressing the gene of interest 

are state of the art for in vitro determination of effects on promoter transcriptional activity, but 

certain conditions are necessary for their quantification. The analysed deletion construct, 

resembling the promoter portion carrying a certain allele, needs to display sufficient 

transcriptional activity. Therefore, assembly of the basic transcription machinery and 

formation of PIC on the analysed fragment is mandatory since specific transcriptional activity 

is defined by differential interplay of cis-active elements with the core promoter (Lemon & 

Tjian, 2000). To translate into measurable reporter gene expression, a downstream TSS is 

necessary. Reliable results also depend on transfection efficiency and technical accuracy 

indicated by low standard deviations across experiments. Genetic variants in a given promoter 

fragment may contribute differentially to overall transcriptional activity of the analysed 

fragment since sequence alterations can influence core promoter motives such as TATA 

boxes (as shown for RhoA by Schröer, Ph.D. thesis) and recognition of consensus sequences 

by TF at cis-elements. Combinations of alleles on the same DNA strand, represented by 

MolHaps are thereby often observed to result in overall differential effects on transcriptional 

activity, acting synergistically or competitively (Dördelmann et al., 2008; Hagedorn et al., 

2009). A preliminary analysis of ~200 bp isolated promoter portions harbouring BGN variants 

in the context of the pGL3-Promoter vector (Rüssmann, MD thesis) suggested limited 

enhancer capacity of the single fragments upon transfection into HEK293T cells. The results 

suggested the necessity to further characterize the ‘entire’ BGN promoter and to analyse the 

genetic variants in their original MolHap composition. Despite the endogenous BGN 

expression of HEK293T cells, the composition of HEK293T nuclear proteins (i.e. DNA 

binding proteins) seemed to interact indifferently with BGN MolHaps, lacking the potential 

do drive BGN transcriptional activity with respect to the individual BGN promoter 

composition. This was also supported by the observations obtained from EMSA experiments 

with HEK293T nuclear extracts for positions G-578A and G-151A. Band shift experiments of 
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multiple compositions repeatedly failed to exhibit specific DNA/protein interactions. 

EA.hy926 and THP-1 cells were therefore chosen for the current BGN promoter analysis, in 

addition to their close connection with atherosclerosis pathophysiology. 

 

In the present characterization of the BGN promoter, we report sufficient transcriptional 

activity of deletion constructs presenting the region between bp -1231 to -935. The promoter 

was sufficiently transcriptionally active under basal conditions in the vascular endothelial cell 

line EA.hy926. The vascular endothelium lines all blood vessels in a luminal monolayer and 

forms, together with the basal membrane, the tunica intima. The basal membrane thereby 

consists of a specialized ECM (Wiradjaja et al., 2010), its composition being influenced by 

the endothelial cell phenotype, connecting the endothelium to vascular smooth muscle cells. 

During development of collagen matrices initial fibrils are cross-linked by SLRP such as 

BGN, binding to different sites of a collagen monomer (for comprehensive review see 

Kalamajski & Oldberg, 2010). Hence, sufficient transcriptional activity of the BGN gene 

under basic conditions seems conceivable since assembly of the ECM is a permanent process. 

Potential effects of the identified MolHaps were analyzed within the context of a 1025 bp 

portion of the BGN promoter (-893/+132) after in-depth analysis of 1300 bp 5'-flanking 

region and 5'-UTR of the BGN gene. We are aware that the analysed portion may not be 

considered as the entire promoter since recent publications have shown the profound effect of 

cis-acting elements located at considerable (up to 1000 kb) distances (Lower et al., 2009, 

Higgs et al., 2008). On the other hand, distal promoter elements acting independently of their 

location have been described to consist of enhancers and insulators influencing the activation 

of high-level transcription rather than basic promoter activity (West & Fraser, 2005). BGN 

MolHap2 and MolHap3 showed a significant decrease of promoter performance in both, 

EA.hy926 and THP-1 cells under basic conditions compared to wt. To verify our hypothesis 

of concerted interaction of TF binding to polymorphic regions in haplotype constellations 

with their core promoter, we tested each variable region with potential enhancer activity in the 

context of the pGL3-Promoter vector. The vector contains a SV40 promoter and introduced 

DNA fragments potentiate luciferase gene activity in case they exert enhancer capacity. BGN 

promoter fragments proximal to TSS1 at positions G-151A and G+94T did not enhance 

promoter activity when the major allele was present. For the minor +94T allele carrying 

construct, we observed total inhibition of promoter activity, while introduction of the minor  

-151A allele in the context of 188 bp flanking region activated transcriptional activity to some 
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extent. The more distal promoter portion harbouring G-578A exerted enhancer capacity in 

interaction with the SV40 promoter. These results implicate an overall compensatory effect of 

the analysed polymorphic positions in their allelic MolHap constellations, demonstrated 

explicitly by positions G-578A (MolHap1 and 3) and G-151A (MolHap1 and 2). Presence of 

the minor alleles in the MolHap situation did not enhance transcriptional activity but resulted 

in strong abrogation of activity. However, single variant analysis in context of the  

pGL3-Promoter revealed differences between the introduced alleles and their effect on 

transcriptional activity, suggesting alterations in consensus motives and TF binding. 

 

 

5.3 Identification of DNA/protein interactions  

 

At the molecular level, gene expression is orchestrated by the recruitment of trans-acting 

proteins (TF) to cis-acting sequences (binding sites), creating a series of cis-regulatory 

modules (CRM) along a given sequence. CRM act as modular units, integrating the input  

from multiple TF to a specific spatio-temporal output of gene expression. Binding of TF 

thereby depends on electrostatic interaction with the DNA molecule at TFBS, as well as the 

stoichiometric availability of the TF participating in module assembly. Overlapping or 

superimposed binding sites for multiple factors may thereby result in binding competition of 

diverse regulatory proteins (Fry & Farnham, 1999), some of them contributing differently to 

overall transcriptional activity. TFBS exhibit specific characteristics with each nucleotide 

accounting differentially to the molecular function of the entire site. The relevance of each 

nucleotide is commonly illustrated by a position weight matrix (Piipari et al., 2010), also used 

for computational prediction of TFBS.  

Modification of TFBS by genetic variants may result in a complete loss of TF binding but 

alteration of binding affinity is more likely to be observed since consensus sequences are 

multivalent. Computational TF binding prediction, although integrating position weight 

matrixes, are limited to DNA sequence recognition but cannot account for interactions of 

heteromeric CRM. Comprehensive prediction of protein binding in MolHap constellations 

therefore has not been achieved yet and is in addition suffering from overall missing 

information on the physiological state of a given cell. To account for the stated limitations of 

in silico TFBS prediction, we started our analyses on possible transcriptional regulators of the 
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BGN promoter with co-expression experiments rather than with single position analyses. 

Thereby, TF SP1 was one of the most likely candidates, proposed by different computational 

predictions and the overall GC-rich promoter sequence (Briggs et al., 1986). Additional 

indication were derived from the report of Verrecchia et al. (Verrecchia et al., 2001), 

demonstrating downregulation of BGN and other ECM components as an effect of antisense 

SP1 expression. Here we present substantial evidence for SP1 activation of the BGN promoter 

upon overexpression, enhancing transcriptional activity up to 4-fold. Co-transfection with 

other predicted binding factors such as CEBP-α and δ or CBP did not result in any alteration 

of promoter activity. ChIP analyses of different promoter regions demonstrated direct and 

parallel physical association of SP1 with proximal and distal regions under basic conditions. 

Both results indicated participation of SP1 in the regulation of basal BGN gene expression as 

well as the enhancing nature of SP1, rather than prompting towards indirect downstream SP1 

effects. It has been shown that transcriptional activation by enhancer-binding factors such as 

SP1 requires TFIID (Hoey et al., 1993). SP1 glutamine-rich activation domains thereby 

interact with the TAFII subunits of TFIID and the essential cofactor complex CRSP (Cofactor 

Required for SP1 transcriptional activation; Ryu et al., 1999). Notably, Geerkens and 

colleagues (Geerkens et al., 1995) found that BGN expression levels are increased in patients 

with additional sex chromosomes and suggested the observed ‘pseudo-pseudoautosomal 

expression’ of BGN to result from a gene that escapes X-inactivation and regulates BGN 

transcriptional activity. The gene encoding one domain of the CRSP cofactor complex, 

CRSP150, has been mapped to the X-chromosome. CRSP150 displays pseudoautosomal 

characteristics, escapes inactivation (Wutz & Gribnau, 2007; Carrel et al., 1999) and could 

contribute to this phenomenon. 

 

5.4 BGN MolHaps 

 

In contrast to MolHap3 [A-578-G-151-G+94 ], BGN MolHap2 [G-578-A-151-T+94] comprises two 

minor alleles, one at the proximal position G-151A and one at the 5'-UTR position G+94T. 

The observed reduction of promoter transcriptional activity upon introduction of MolHap2 

could thus originate from altered TF binding at either one of the two positions but is more 

likely to be explained by a deranged interplay of factors interacting with both polymorphic 

promoter segments. 
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We identified binding of the TF complex AP-1 at position G+94T in EMSA experiments 

using a specific c-FOS antibody. AP-1 is known to regulate a wide range of cellular 

processes, including cell proliferation, cell death and differentiation. AP-1 is not a single 

factor, but a combination of dimeric basic leucine zipper proteins that belong to the JUN, 

FOS, MAF and ATF sub-families, which recognize with highest affinity  

12-O-tetradecanoylphorbol-13-acetate (TPA) response elements (5'-TGAG/CTCA-3') and 

slightly lower affinity cAMP response elements (5'-TGACGTCA-3'; Chinenov & Kerppola, 

2001). AP-1 binding may thereby be positioned in the 5'-UTR of a promoter, as reported for 

the sodium-dependent bile acid transporter by Duane and colleagues (Duane et al., 2007).  

The first report on AP-1 described its activation potential on the MTIIA promoter (Lee et al. 

1987a), establishing its name and implicit function as activator of transcriptional activity. In 

recent years, further analyses offered increasing evidence that some effects of AP-1 are 

mediated by gene repression (Murphy et al., 1996). These effects may depend on the 

interactions of AP-1 family members with transcriptional corepressors (Pessah et al., 2000)  

and the nature of the AP-1 consensus site (Hsu et al., 1993). Other groups (Kouzarides & Ziff, 

1988; Gentz et al., 1989; Turner & Tjian, 1989) demonstrated that the leucine zipper domain  

of both c-FOS and c-JUN are necessary for heterodimer formation and transcriptional  

transactivation. The mere presence of a leucine zipper is, however, not sufficient for dimer 

formation. c-FOS does not form homodimers, whereas such a formation has been reported for 

c-JUN complexes with weak AP-1 binding capacity (Dwarki et al., 1990). It therefore seems 

conceivable that detected binding of c-FOS at either allele at position G+94T marks a 

differently composed AP-1 complex with activating capacity in case of the G allele and 

repressor properties in presence of the T allele. Shah et al. (Shah et al., 2006) demonstrated 

transcriptional suppression by AP-1 binding to a polymorphic promoter position (-1347C/T) 

of TGFB1. Cellular studies showed that an AP-1 complex containing JUND and c-FOS was 

recruited to the TGFB1 promoter in vivo only when the -1347C allele was present. The  

-1347T allele was associated with increased TGF-β1 levels because of impaired negative 

regulation by AP-1. Schreiber and colleagues (Schreiber et al., 1999) reported that the p53 

promoter contains a motif that differs from the consensus AP-1-binding site in only one single 

position, creating a negative regulatory element which is bound by c-JUN, resulting in a 

transcriptional repression of the p53 promoter. 
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The transactivating potential of AP-1 has been reported frequently to depend on co-activators 

such as SP1 (Wu et al., 2003; Kardassis et al., 1999). In addition, SP1/SP3 and AP-1 are often 

found as components in large multimeric transcription factor complexes. AP-1 has also been 

reported to fail in transcriptional activity activation upon SP1 inhibition on promoters where 

interaction with SP1 has been observed, suggesting the interaction of AP-1 and SP1 to be 

required occasionally to transmit AP-1 effects (Lee et al., 1987b). The interplay of position 

G+94T and G-151A may therefore be of importance for an overall activating potential on 

transcriptional activity. 

The observed effects at position G-151A have two possible explanations. As a common base 

to both of them, we hypothesize competition of TF with the activating factor SP1 at its 

consensus motif. As explained above, DNA/protein interaction is thought to be a rather 

flexible than static process, with TF tendency towards association or dissociation depending 

to a great extent on the physiological state of the cell. Alteration of cognate sites by genetic 

variation can thereby result in reallocation of balanced conditions. In silico analyses for 

position G-151A predicted a superimposed EGR family consensus motif to the identified SP1 

binding sites. Competition of EGR family members with TF SP1 has been reported 

frequently, in particular for EGR1 (Hagedorn et al., 2009; Hsu et al., 2009; Khachigian et al., 

1995). Both TF share very similar consensus motifs, recognized in either case by three  

zinc-finger DNA-binding domains of the protein. In contrast to SP1, which is an activating 

TF, EGR family members are able to generate repressor characteristics. Except for EGR4, all 

EGR family members exhibit a distinct repression domain (R1), through which binding to 

NAB (NGFI-A binding) proteins can be mediated and the activating potential of EGR is 

suppressed (Russo et al., 1995). This has been shown conclusively by Tan et al. (Tan et al., 

2003) for inhibition of the collagen promoter (COL2A1) by IL1β. In case of BGN, EMSA 

experiments at position G-151A using EGR1 and EGR2 antibodies were inconclusive and did 

not support specific interaction of EGR family members with this distinct promoter segment.  

Yet another explanation for altered transcriptional activity upon TF competition at cis-active 

elements can be found in the SP TF family itself. The ubiquitous TF SP1 and SP3 exhibit very 

similar DNA-binding specificities and compete for binding to the same GC-boxes (Kingsley 

& Winoto, 1992). Therefore, the SP1/SP3 ratio plays an important role in gene regulation (Yu 

et al., 2003). On some promoters, SP3 cooperates with SP1 (Gartel et al., 2000) whereas on 

others, SP3 antagonizes the SP1-mediated activation (Kumar & Butler, 1997). This effect is 

explained as follows. In general, SP3 represses the SP1-mediated transactivation of promoters 
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with two or more SP1 sites but does not affect the SP1-mediated transactivation of promoters 

with only one SP1 site (Ritchie et al., 2000). Moreover, SP3 lacks the ability of SP1 to 

transactivate synergistically via two or more SP1 sites (Majello et al, 1997). Consequently, if 

SP3 displaces SP1 from promoters with at least two SP1 sites, a net repression of the initial 

SP1-mediated transactivation is observed. We have shown binding of SP1 to the BGN 

promoter on at least two distinct positions under basic conditions. Binding of SP3 to the 

promoter, triggered by the G-151A site, would most likely result in the loss of SP1-mediated 

transactivation. Introduction of the minor A allele resembling MolHap2 creates a CT-box 

motif of the 5'-GGGGAGGGGC-3' type. Binding of SP1 to CT-boxes has been reported to be 

sixfold weaker compared to GC-boxes (Letovsky & Dynan, 1989), whereas SP3 binds  

CT-boxes with identical affinity (Hagen et al., 1992).  

In transient transfection assays, we have shown the impact of MolHap3 on BGN 

transcriptional activity, created by introduction of the G-578A site. This observation strongly 

supports the concept of potent alteration of promoter activity by single nucleotide variations.  

In contrast to MolHap2, where interaction of SP1 has been detected at position G-151A, no 

binding of SP1 to position G-578A under basic conditions, neither in EMSA experiments nor 

in ChIP analysis, was observed despite in silico TFBS prediction. Taken the identification of  

SP1 at the nearby position bp -918 to -806 using ChIP technology into account, this result is 

not likely to be explained by methodical inaccuracy but rather provides evidence for ChIP 

assay stringency.  

Using nuclear extracts from THP-1 monocytes we identified the ETS TF PU.1 to bind 

position G-578A with significantly higher affinity towards the G allele. Very interestingly, we 

were recently able to demonstrate an association of G-578A with cardiac resynchronisation 

therapy phenotype, in that the G allele was associated with response to cardiac 

resynchronisation therapy in patients with heart failure after MI (Schmitz, for FP7 VPH2). 

Computational analysis of the proximal region of the exact position identified a repeat of PU 

boxes of the 5'-GGA(A/T)-3' type, which is partly corrupted by introduction of the A allele. 

Multiple studies have demonstrated that PU.1 is essential for the development of 

hematopoietic cells of myeloid, B-cell, and T-cell lineages (Scott et al, 1994) and is further 

actively involved in regulation of genes in monocyte-derived macrophages (Nacu et al., 

2008). Despite its predominant expression and pivotal function in hematopoietic lineages, 

PU.1 is in addition expressed in fibroblasts, which are important structural elements of tissue 

integrity synthesizing ECM components, and has the potential to convert fibroblasts into  
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macrophage-like cells (Feng et al., 2007). PU.1 can directly bind to TFIID, mediated by the 

activation domain of PU.1, without the need for an adaptor protein as shown necessary for 

SP1 (Hagemeier et al., 1993). Since PU.1 is not expressed in endothelial cells such as the 

EA.hy926 linage, other members of the ETS family could potentially bind to the presented 

PU boxes.  

In fact, ETS proteins are described to play a major role in endothelial cells and all 

characterized endothelial enhancers contain multiple ETS binding sites (Bernat et al., 2006; 

De Val & Black, 2008). At least 19 different ETS proteins are expressed in human endothelial 

cells (Hollenhorst et al., 2004; Liu & Patient, 2008). ETS factors are critical for ECM 

remodeling (Trojanowska, 2000) and deletion of ETS genes leads to impairment of this 

process (Pham et al., 2007; Oettgen, 2006). Great redundancy is observed among the majority 

of ETS factors, which probably reflects their binding to identical cis-acting elements, the 

consensus motif highly conserved among all members of the family (De Val & Black, 2009). 

Notably, the exact consensus motif (the PU box) was initially identified to substitute for the 

deleted wt enhancer element of the SV40 promoter (Klemsz et al., 1990). In our study, we 

observed a significant enhancer activity of the G-578A region in the pGL3-Promoter context, 

too. Controversially and despite the observation that both alleles were able to enhance SV40 

promoter activity, total abrogation of promoter transcriptional activity was observed upon 

introduction of the A allele in the MolHap context cloned in pGL3-Basic vector. Indeed, it 

has been estimated that ETS proteins contribute to endothelial-specific gene expression, 

despite their overall ubiquitous expression in adult tissues and ETS binding sites being not 

specific to endothelial-expressed gene loci, by functioning in combination with other 

transcription factors. An interesting effect has been described concerning the interplay of ETS 

proteins and SP1. Trojanowska (Trojanowska, 2000) reported that two distinct ETS protein, 

FLI1 and ETS1, contribute to the regulation of the COL2A1 gene in fibroblasts. A functional 

PU box was identified in the COL2A1 promoter in close proximity to the SP1 sites. ETS1 and 

FLI1 had opposite effects on the activity of this promoter. While ETS1 stimulated 

transcriptional activity, FLI1 inhibited the promoter activity and SP1 binding was essential for 

this inhibitory effect of FLI1. It is conceivable that different ETS factors, like ETS1 and FLI1, 

are in active competition at position G-578A in EA.hy926 cells, as we have shown binding of 

the ETS family member PU.1 at this position in THP-1 cells. Binding affinity for PU.1 is 

altered in this cell line upon introduction of the A allele and a similar effect, leading to 
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augmented binding of an excessive TF, could contribute to the observed abrogation of 

transcriptional activity in EA.hy926 cells.  

 

5.5 Effect of TGF-β1 on BGN gene expression and TF binding 

 

The multifunctional cytokine TGF-β1 has been described to be a key regulator of ECM 

assembly and remodeling. TGF-β1 is well known to modify BGN at the posttranslational 

level (Little et al., 2008) by hyperelongation of chondroitin sulfate chains, leading to 

enhanced BGN binding affinity to LDL. However, inconsistent TGF-β1 effects on BGN gene 

expression have been reported. Ungefroren & Krull (Ungefroren & Krull, 1996) did not 

observe any effect on transcriptional activity of BGN promoter fragments, while Heegaard 

and colleagues (Heegaard et al., 2004) reported increased BGN mRNA levels as well as 

increased reporter gene activity. Here we report a significant enhancing effect of TGF-β1 on 

both, mRNA levels and promoter transcriptional activity. This effect was however limited to 

THP-1 monocytes, whereas no such effect was observed in EA.hy926 cells. Controverse 

findings from other groups could thus as well originate from different cell lines analysed. To 

reveal the mechanistic process of TGF-β1 signal transduction towards the BGN promoter, we 

used nuclear extracts derived from TGF-β1 treated cells in EMSA experiments and observed 

an altered DNA binding pattern at positions G-578A. Using SP1-specific antibodies we 

identified selective SP1 binding at this distal position in EA.hy926 and THP-1 cells after  

TGF-β1 stimulation, while no binding of SP1 was detected under basic  

conditions.  

Previously published reports have established a role for SP1 as the primary TF to be essential 

for the response to the TGF-β1 signal (Datto et al., 1995) and consequently, TGF-β1 

induction mediated by SP1 has been shown for several genes (Inagaki et al., 1994; Li et al., 

1998; Botella et al., 2001; Greenwel et al., 1997). Considering a simple linear effect of 

promoter activation by an increase in SP1 protein level, we assessed nuclear SP1 availability 

after TGF-β1 stimulation in comparison to basic conditions. We did not observe alterations in  

SP1 protein levels in neither cell line, but rather a slight tendency towards SP1 reduction in 

THP-1 cells. The observed effect might more likely be explained by enhanced SP1 binding to 

its consensus motifs. Recent reports have proposed a TGF-β1-activated SMAD2/3 

phosphorylation pathway, along with p38MAPkinase signalling, to be responsible for the 
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TGF-β1-mediated elongation of GAG chains on proteoglycans. Subsequently, inhibiting 

SMAD2/3 phosphorylation antagonized the GAG elongation effect (Dadlani et al., 2008). 

Overexpression of both SMAD2 and SMAD3 potentiated the TGF-β1 effect on BGN 

expression, whereas overexpression of SMAD7 impaired the effect, suggesting the 

participation of the entire SMAD signalling cascade in TGF-β1 regulation of BGN gene 

expression (Chen et al., 2002; Ungefroren et al., 2005). This mechanism relies on the physical 

interaction of SMAD with SP1 and results in enhanced binding of the TF to its consensus 

motifs. High expression levels of TF SP1 in EA.hy926 cells under basic conditions could 

provide an explanation for the continuously high BGN promoter activity and the absence of 

any TGF-β1 effect in the endothelial cell line. Selective phosphorylation and 

nucleocytoplasmic shuttling of SMAD in case of THP-1 cells expressing SP1 at low levels 

could account for an orchestrated response to TGF-β1 in monocytes. 

Characterizations of knock-out mice for TGF-β signalling components have furthermore 

demonstrated the critical role of SMAD proteins in vascular development and disease (ten 

Dijke & Arthur, 2007), with an essential function of SMAD3 in angiotensin II‑induced 

vascular fibrosis, characterized by arterial wall thickening through excessive deposition of 

ECM (Wang et al., 2006). The authors explicitly state that activation of SMAD3 but not 

SMAD2 is a key mechanism by which angiotensin II mediates arteriosclerosis. These 

observations might contribute to the positive association of SMAD3 with CAD (Samani et al., 

2007) in the Welcome Trust Case Control Consortium study (which involved 1926 case  

subjects with CAD and 2938 controls) and combined analysis in the German MI Family 

Study (which involved 875 case subjects with MI and 1644 controls). 

 

5.6 Conclusion 

 

The impact of genetic variants on molecular biologic function has been repeatedly 

demonstrated. A pars pro toto example is given by the listed co-authorships including in vitro 

functional analyses on human ICAM-1, VCAM-1 and osteoprotegerin. Genetic variants 

located in regulatory regions do not directly alter amino acid sequences or protein structure, 

but can initiate profound transcriptional (i.e. regulatory) consequences. Individual genetic 

predisposition strongly determines the clinical progression of arteriosclerosis and CV 

outcome alongside with environmental and lifestyle factors as shown originally by twin 
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studies (Marenberg et al., 1994). Most recent whole-genome approaches with large study 

cohorts using DNA micro array technologies have provided new insight into aetiology of 

CVD and related diseases, generating a heterogeneous set of candidate genes and associated 

loci (Vasan et al., 2009; Samani et al., 2007; MIGC, 2009; Ikram et al., 2009; Newton-Cheh 

et al., 2009). To some extend surprising in the first place, common base to most of the 

identified loci was their position in intergenic regions rather than within or near protein 

coding regions. Simultaneously, advances in deciphering of gene regulatory mechanisms have 

underlined the pivotal role of non-coding DNA regions, executing their function despite their 

distal position to the multiple genes they control (Heintzman & Ren, 2009). Additional 

aspects of association with non coding DNA regions may exist in small-RNA mediated 

pathways that have central roles in the silencing of gene expression in eukaryotic cells, with at 

least 30% of human genes thought to be regulated by microRNAs (Jinek & Doudna, 2009). 

With the newly identified genetic variants available, profiling the functional basis of disease 

association and generation of mechanistic insights becomes ever more important (Brand-

Herrmann, 2008). This includes not only analysis of single polymorphic positions towards 

their functionality but investigation of the entire structure of candidate gene promoters and 

interacting molecules with respect to pathophysiological conditions.  

As shown in the current work, the analysis of naturally occurring MolHap constellations 

within a defined cellular and genomic context is needed to identify the effects of single 

genetic variants on TFBS and regulation of gene expression. We provide substantial evidence 

that MolHaps affect the transcriptional regulation of the human BGN gene to a great extent. 

This is caused by alterations in TFBS at cis-regulatory elements and a subsequent change in 

TF binding affinities (as shown explicitly for PU.1 and the -578A allele). We further propose 

the regulation of BGN by TGF-β1 signal transduction and SMAD proteins to act, at least in 

part, through increased binding of TF SP1 to the polymorphic positions. Due to the dual role 

of BGN in arteriosclerosis pathophysiology, estimation of potential effects in patients 

carrying either BGN MolHap seems rather conjectural. However, the following arguments 

will have to be considered. Local BGN availability is essential for collagen deposition and 

formation of stable fibrous caps in aortic plaques as well as for remodeling processes after 

MI. Reduced BGN gene expression due to the presence of MolHap2 and 3 could violate these 

processes, resulting in more severe outcomes. Looking at the other side of the medal, with 

systemic and in situ inflammatory processes influencing arteriosclerosis to a great extend, 

proinflammatory proteins such as BGN may execute their negative effects on disease 
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progression or early onset. BGN MolHap2 and 3 could therefore also account for protective 

effects, reducing BGN gene expression and the inflammatory burden. 
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6 PERSPECTIVE 

 

The genetic predisposition for multifactorial and complex diseases such as CAD has become 

common knowledge. Large twin studies of the past 25 years provided comprehensive data 

numbering the genetic impact on disease susceptibility to at least 50%. Despite a rising 

number of proposed and analysed candidate genes, the multilayer and interlaced 

pathophysiology combined with different stages of the disease has circumvented explicit 

explanations of its development, progression and severity. GWA studies using large 

prospective and retrospective cohorts have provided large amounts of data widening the 

insight into the disease complexity even more, identifying significant associations of genetic 

variants with progression and severity of CAD. However, the molecular mechanisms of the 

identified variants are not well understood, impeding their use for therapeutic target 

identification or even risk prediction. It is obvious that understanding the functionality of 

human gene regulation and the impact of the interpersonal variable genome structure, 

especially in promoter regions, is mandatory. Since we have only started to understand the 

variable structure of the genome and its alterations throughout an individual’s life span by 

epigenetic processes, this task seems unobtainable with currently available resources.  

Molecular functional characterization of genetic variants, as presented exemplarily in this 

work, may contribute to our understanding of gene regulation by cis-active elements and 

trans-acting factors. The concept of individual MolHaps thereby is a next step accounting for 

an individual genome. Future work will have to account for the interaction within relevant 

pathophysiological pathways, considering the impact of genetic variants on cell-specific gene 

regulation. Identified functional variants within candidate genes are meanwhile integrated in 

latest approaches towards disease modelling (e.g. the VPH2 project), using data mining 

modules to identify combinations of genetic variants for risk prediction and identification of 

yet unknown underlying pathways and mechanisms. 

The field of structural biology has so far provided three-dimensional (3D) structures of more 

than 45000 proteins. High-throughput methods for solving protein 3D structures are currently 

under development. Protein sequences can be predicted from their coding DNA and structural 

information can be used to predict the preferred substrate of a protein, identifying potentially 

recognized DNA sequences. Variations in the coding region of a gene can thus be translated  

into altered amino acid sequences and altered DNA binding capacity and kinetics. Most 
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promising technological advances thereby come from the field of NMR spectroscopy, 

decreasing size limitations and providing greater accuracy. As a result, information has 

become available on the way in which proteins interact with other biomolecules such as 

DNA. Coupling these advances with the exponential increase in data processing and storage 

could open the door for life imaging of gene regulation processes. 
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