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Abstract

The isomorphism problem for a given class of groups C asks to determine whether
two groups GG, G’ € C are isomorphic or not. In this thesis, we consider the class C
of almost split Kac—-Moody groups. These groups have been constructed by Rémy
via Galois descent from split Kac—-Moody groups as defined by Tits. We show that
under certain technical assumptions, any isomorphism between groups in this class
must preserve the canonical subgroup structure, i.e. the twin root datum associated
to these groups, which generalizes results of Caprace in the split case.

This is achieved via the construction of maximal split subgroups inside almost split
Kac—Moody groups and a detailed study of bounded subgroups, which generalizes
results of Borel-Tits and Caprace.

Zusammenfassung

Das Isomorphie-Problem fiir eine gegebene Klasse von Gruppen C besteht darin zu
entscheiden, ob zwei Gruppen G, G’ € C isomorph oder nicht isomorph sind. In der
vorliegenden Arbeit betrachten wir die Klasse C der fast zerfallenden Kac-Moody-
Gruppen. Diese Gruppen wurden von Rémy mittels Galois-Abstieg von zerfallenden
Kac—Moody-Gruppen im Sinne von Tits konstruiert. Wir zeigen, dass unter gewis-
sen technischen Voraussetzungen ein Isomorphismus zwischen zwei Gruppen dieser
Klasse die kanonische Untergruppenstruktur, d.h. das zugehorige Zwillingswurzelda-
tum, erhéalt. Dieses verallgemeinert Resultate von Caprace im Fall von zerfallenden
Kac—Moody-Gruppen.

Zu diesem Zweck konstruieren wir maximal zerfallende Untergruppen von fast zerfal-
lenden Kac—-Moody-Gruppen und untersuchen im Detail beschrankte Untergruppen.
Dies verallgemeinert Resultate von Borel-Tits und von Caprace.






Introduction

There is a machine mathematicians call PSL which has two levers: with the first,
one selects a natural number n > 2, and with the second a field k. For each choice
of n and k, PSL produces a group PSL, (k), and two different positions of the levers
will usually give rise to two non-isomorphic groups. To be precise, for two natural
numbers n,n' > 2 and two fields k, &', PSL,,(k) is isomorphic to PSL,/ (k) if and only
if n =n' and k = k', except the two “accidental” isomorphims PSLy(F,) = PSLy(F5)
and PSLy(F;) = PSL3(FFy), cf. [Wil09, Chapter 3.3.5].

For a prime number p, the group PSL,,(F,) was constructed by Galois in 1830, while
Jordan in 1870 constructed the groups PSL,(F,), where ¢ is a prime power. In
modern language, these are finite groups of Lie type.

The following century witnessed spectacular developments in the emerging theories
of Lie groups, their Lie algebras, and algebraic groups. An important theorem in
this area is the classification of complex semisimple Lie algebras via their associ-
ated Cartan matrices. In 1968, Kac and Moody independently from one another
generalized the notion of a complex semisimple Lie algebra to arrive at certain
infinite-dimensional complex Lie algebras, which came to be known as Kac-Moody
algebras.

These algebras can be integrated over fields of characteristic 0 to Kac-Moody groups.
In 1987, Tits solved the difficult problem of defining Kac—-Moody groups in arbitrary
characteristic. In the seminal paper [Tit87] he associates to each Kac-Moody root
datum D = (I, A, A, (¢;)ier, (hi)ier) a functor Gp from the category of commutative
rings with 1 to the category of groups. When A is a classical Cartan matrix and &
is a field, Gp(k) coincides with the k-rational points of the split reductive k-group
which has A as the character group of a maximal torus and the ¢; resp. h; as the
associated roots resp. coroots. When A is no longer classical, Gp(k) can be thought
of as an “infinite-dimensional split reductive group”.

The following classical fact led Rémy [Rém02] to the construction of almost split
Kac-Moody groups: An arbitrary reductive algebraic group G defined over a field
k splits over a finite Galois extension E of k, and G can be recovered from the split
form via Galois descent.

Very roughly, in Rémy’s theory the k-rational points of an almost split Kac-Moody
group G/(k) are obtained by taking the fixed points of a suitable action p of Gal(F|k)
on a split Kac-Moody group Gp(E), where E is a separable extension of k.

In analogy with PSL the following natural question arises:

Let G,G’ be two almost split Kac-Moody groups which arise from pa-
rameter sets P = (D, E|k, p) and P’ = (D', E'|K', p’) and suppose that



(G, G’ are isomorphic as abstract groups. Do the parameter sets P and
P’ necessarily coincide?

The corresponding question for split Kac-Moody groups over arbitrary fields was
settled by Caprace in 2005 ([Cap09]) after previous work by Kac-Peterson ([KP85])
and Caprace-Mihlherr (J[CMO05], [CMO06]).

In the setting of almost split Kac-Moody groups, we develop some new tools which
together with methods used in the split case lead to the answer of the question, i.e.
the solution of the isomorphism problem for 2-spherical almost split Kac—Moody
groups over fields of characteristic 0.

Main results

The key for all developments in this work is to compare (almost) split Kac—-Moody
groups with isotropic reductive algebraic groups. A first example in this direction
is the following observation.

Proposition 1 (Restriction of scalars for Kac-Moody groups). Let k be a field and
let E be a finite Galois extension of k. Let Gp be a constructive Tits functor. Then
there is a quasi-split Kac—Moody group G' such that Gp(F) = G'(k).

This already shows that a group isomorphism in general will not preserve the full
parameter set used to define an almost split Kac—Moody group.

Let k be a field and let E be a separable extension of k of degree 2. Let h: E? — E
be a Hermitian form of Witt index 1 with associated unitary group SUjs, which can
be thought of as an algebraic group defined over k. An important observation is
that there is an inclusion of groups

SLo(K[t,t™']) < SUs(k[t,t™']) < SLs(k[t,t7'])

where the groups on the left and on the right are split Kac-Moody groups, while the
group in the middle is an almost split Kac-Moody group. In the setting of reductive
algebraic groups, it is a classical theorem of Borel-Tits [BT65] that for a connected
reductive algebraic k-group G with maximal k-split torus S, there is a connected
reductive algebraic k-group F' < G which is split over k, contains S as a maximal
torus and has the same Weyl group as G.

We can generalize this to groups endowed with a 2-spherical twin root datum (see
Theorem 4.5 for a precise statement). As a corollary, we get the following general-
ization of the Borel-Tits theorem for almost split Kac-Moody groups.

Theorem 1. Let k be an infinite field and let G(k) be a 2-spherical almost split Kac—
Moody group with maximal k-split torus Ty(k). Then there is a subgroup F' < G(k)
endowed with a locally split twin root datum which contains Ty(k) and intersects
each root group V, non-trivially.

Actually, a more precise statement holds (see Theorem 4.13) which shows the abun-
dance of locally split subgroups sharing T,(k) as a maximal torus. It is this refined
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version that is needed in the solution of the isomorphism problem for almost split
Kac—Moody groups.

An almost split Kac-Moody group G(k) is generated by its anisotropic kernel Z (k)
and root subgroups V,, relative to a maximal split torus Ty(k). For each u € V,,, there
is a homomorphism 1, : SLa(k) — G(k) such that u € im,,. If ¢: G(k) — G'(K') is
an isomorphism of two almost split Kac—Moody groups, this gives a representation

p o, Slo(k) — G'(K).

A subgroup H < G'(k') is called bounded if its action on both halves of the twin
building associated to G'(k’) has bounded orbits. The importance of the notion of
bounded subgroups comes from the fact that these are (central extensions of) ratio-
nal points of algebraic groups.

An essential step in Caprace’s solution of the isomorphism problem for split Kac—
Moody groups was that for £ = Q, every homomorphism ¢: SLo(k) — G'(k’) has
bounded image. A natural and important question is to determine for which other
fields k any representation ¢: SLy(k) — G'(k’) has bounded image, since by the
above remarks an isomorphism ¢: G(k) — G'(k’) induces lots of these representa-
tions, and whenever im ¢ is bounded, the well-developed theory of algebraic groups
can be used to study the isomorphism problem.

In this direction, we have the following theorem.

Theorem 2. Let k, k" be two fields of characteristic 0, let G'(k") be an almost split
Kac-Moody group and let ¢: SLo(k) — G'(K') be an abstract homomorphism.

(i) If k is a (possibly infinite) algebraic extension of Q, i.e. tr.deg(k|Q) = 0, then
im1 is bounded.

(ii) If k is arbitrary and there is a twin apartment A" stabilized by (T, where
T denotes the diagonal matrices, and such that ¥(SLy(Q)) fizes two opposite
points of A’, then im1 is bounded.

The second assertion can be used to give a different proof of Caprace’s results for
split Kac—Moody groups over fields of characteristic 0.

On the other hand we construct representations of algebraic groups with unbounded
image, see Theorem 5.11:

Theorem 3. Let k be a field with infinite transcendence degree over its prime field.
Let K be a k-isotropic reductive k-group and let n := dim K. Let G be a split Kac—
Moody group which has a Levi factor isomorphic to SL,1(k[t,t™']). Then there is a
homomorphism ¢: K(k) — G(k) with unbounded image.

The knowledge about maximal split subgroups and the study of bounded subgroups
is used to prove the main theorem:
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Theorem 4 (Main theorem). Let k, k' be two fields of characteristic 0 and let
G(k),G'(K") be two 2-spherical almost split Kac—Moody groups obtained by Galois de-
scent. Let (Z(k), (Ua(k))acomw,s)) and (Z'(K'), (Va(k'))geow,s1y) denote the canon-
ical twin root data associated to G(k) and G'(K').

Then any isomorphism ¢: G(k) — G'(k') is standard, i.e. there is some x € G'(k')
and a bijection i: (W, S) — &(W',S") such that ¢’ := intx o ¢ satisfies

(1) ¢'(Z(k)) = Z'(K)
(i) ¢'(Ua(k)) = Vi (K').

We discuss how this theorem can be used to describe the automorphism group of an
almost split Kac-Moody group G(k).

We end with indications how the methods used here can be used to tackle the iso-
morphism problem in positive characteristic. In particular, we expect the same
conclusion to hold whenever char k = char &/ > 5.

Organisation of the text

In the first two chapters which are strictly of expository nature, we review the the-
ory of split Kac-Moody groups in the sense of Tits and Rémy’s construction of
almost split Kac-Moody groups. Chapter three contains some observations about
split and almost split Kac-Moody groups. Chapter four studies maximal split sub-
groups of almost split Kac—-Moody groups. In chapter five we discuss conditions
under which an abstract representation of an algebraic group into a Kac—-Moody
group has bounded image. In chapter six, we give the solution of the isomorphism
problem for 2-spherical almost split Kac-Moody groups in characteristic 0.
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1 Review of split Kac—Moody groups

In this chapter, we recall the fundamental notions associated to Tits’s construction
of Kac—Moody groups.

References. A good introduction to the subject are the two surveys by Rémy
[Rém04] and Caprace-Rémy [CR09a]. Tits’s original papers [Tit85], [Tit87], [Tit89]
and [Tit92] remain the reference.

Nice expositions of the basic material covered here can be found in Abramenko’s
book [Abr96], Caprace’s thesis [Cap09] and Chosson’s thesis [Cho00]. For general
building theory, we refer to [AB08]|. Finally, Rémy’s thesis [Rém02] gives a very
detailed account of the theory.

1.1 Kac—Moody algebras

Let I be a finite index set, n := |I| and let A = (a;;);jer € Z™™ be a generalized
Cartan matrix, i.e. a; =2 foralli € I, a;; <0 fori # j and a;; =0 & aj = 0.
Let A be a free Z-module of finite rank and denote by AY := Hom(A,Z) its
dual. For i € I, let ¢; € A and h; € AY be such that h;(c;) = a;;. Then
D= (I,A, A, (¢)icr, (h)ier) is called a Kac-Moody root datum.

The set IT := {¢; : i € I} is called the base and the set IIY := {h; : i € I} the
cobase of the root datum D.

Let A be a generalized Cartan matrix. Two Kac-Moody root data involving A are
given by the following two examples.
The simply connected root datum D4 associated to A is given by A := @, Ze;,
i = Yjerajiej and h; := e}, where (e));es is the dual basis of (e;)ier.

A is given by A := @, Ze;, ¢; = e; and

The minimal adjoint root datum D;,;,
hz‘ = Zje[ aije;/.

In general, though, neither will the family (¢;);c; be free nor generate A. Since for
a root datum D = ([, A, A, (ci)i617 (h'l)lef) its dual Dt = (I, At, A/\\/7 (hi)iela (ci)iEI)

is again a root datum, a similar statement holds for the family (h;);e;s.

Let K be a field of characteristic 0 and let D be a Kac-Moody root datum. The
Kac—Moody algebra g = gp of type D over K is the Lie algebra generated by
go := AV ®z K and the symbols e;, f; (i = 1,...,n) subject to the following relations:

[h,ei] = h(ci)ei, [h, fi] = —h(ci)fi for h € go, [g0,80] =0,
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[ei> fl] = _hz X 17 [ei> f]] = O fOI' Z 7é j>
(ad €i)_aij+l€j = (ad fi)_aij—i_lfj = 0

The universal enveloping algebra. Let U, denote the universal enveloping
algebra of gp. Let Q := Z"™ with standard basis vectors v;. Then there is a well-
defined Q-grading of U, by setting degh := 0 for all h € g¢, dege; := —deg f; :==v;
and extending this. This means that there is a family of subspaces (V;)scq of Uy,
such that Uy, = @P,cq Vs and for v, € V,, vy € Vi, [va, 0] € Vogs. As gp can be
identified with a subalgebra of U, , there is an induced grading gp = @uecq 8- If @
is such that g, # 0, a is called a root and g, a nontrivial root space.
For u € Uy, let ul" := Ly and (Z) = du(u—1)-(u—n+1).
Let Uy denote the subring of U, generated by all elements (Z), where h € AV and
n € N.Fori € {1,...,n}let U resp. U_; be the subring 3,,cx Ze!™ resp. S, en Zf™.
Let Up be the subring generated by Uy and U, U_; (i = 1,...,n).
It can be shown that Up is a Z-form of U,,,, i.e. the canonical map

Up 7 K — UB’D
is bijective.
For a subring A of Uy, and a ring R, we set Ap := A ®z R. Then Ap inherits a

grading. For M C (Up)g, the support of M is the set of degrees which appear
when decomposing elements of M into their homogeneous components.

The Weyl group. From the last two sets of defining relations of gp it follows
that ade;,ad f; are locally nilpotent derivations of g. Then expade;,expad f; are
well-defined automorphisms of g. Let

s; :=expade; -expad f; - expade;

and let W* := (s7 1 i € I) < Aut(g).
The Weyl group of the generalized Cartan matrix A is defined as

W= Wy = ((si)ier : (si5;)™ = 1)

where m;; := 1 and for i # j, my;; = 2,3,4,6 or oo according to whether a;;a;; =
0,1,2,3 or > 4. The group Wy acts on ) = Z" via s;(v;) 1= vj; — a;;;.

The connection between W* and W is as follows: It can be shown that the assign-
ment s — s; extends to a well-defined surjective homomorphism 7 : W* — W. The
action of W* permutes the root spaces of gp, more precisely, we have w*g, = gr(w*)a-

A root a such that g, = w*gy,, is called a real root. The set of all real roots is
denoted by A”.

The roots of a Coxeter group. The real roots can be identified with the set
of roots ®(W, S) of the Coxeter group W. Recall that for a Coxeter system (W, S)
with associated length function [, the set of roots ®(W,.S) is defined as

O(W,S) :={was:weW,s e S}



1.2 The constructive Tits functor

where o, == {w € W : [(sw) > l(w)} is a simple root. For a root a = wa; set
—a = wsay, then a U —a = W.

With these definitions, ®(W,.S) is the disjoint union of positive and negative roots,
O(W,S) =d"UdP~, where P+ ={a e ®(W,S):1€a}and &~ ={-a:ac o'}
Write aw > 0 (resp. a < 0) if « is a positive (resp. negative) root.

Let ¥ C ®(W,S) be a set of roots. V¥ is called prenilpotent if there are elements
w,w’" € W such that w-¥ C & and w'- ¥ C $~. For a prenilpotent pair of roots
{a, 5} the closed root interval [«, ] is defined as

la, ] ={yed:yDanpPfand —v D (—a)N(—=pF)}.

One sets [a, ) == [a, B\{S}, (o, 5] := [, B]\{a} and (o, B) := [a, B]\{«, 5}.

The set W is called closed if for each prenilpotent pair of roots {a, } C VU, the
closed interval [a, 8] is contained in W. A prenilpotent set of roots W is called nilpo-
tent if it is prenilpotent and closed.

Note that the terminology stems from the following fact: If ¥ is closed, the subspace
gv = P.cv 9o actually is a Lie subalgebra, which is furthermore nilpotent if U is
nilpotent.

1.2 The constructive Tits functor

To each Kac—Moody root datum D, Tits associates a functor Gp from the category
of commutative rings with 1 to the category of groups. The value Gp(K) of Gp on a
field K is called a split Kac—-Moody group. We recall here the definition of this
so-called constructive Tits functor.

The commutator formula. For K = C and ¥ C A™ = ®(IV, S) a nilpotent set
of roots, let Uy (C) denote the complex unipotent algebraic group with Lie Uy = gy.
It can be shown that inside this group there is a generalization of the classical
Chevalley commutator formula. In particular, let {a,b} be a prenilpotent pair of
roots and let [a, b] be the associated closed root interval. Then any root ¢ € [a, b],
viewed as a real root, is a linear combination of a and b. For a single root ¢, Uy is
isomorphic to (C,+). Let z. : C — U, be a fixed isomorphism. There are certain
rave € Z such that for all r, s € C there is a commutator formula

(Rap) [q(1), 2p(8)] = _H | Te(Taper's?).

In [Tit87] this is proved by appealing to the Z-form of the universal enveloping al-
gebra. By the work of Morita [Mor88], these constants can be computed in a more
down-to-earth manner.

In the following, let D be a Kac—Moody root datum and let gp be the associated
Kac-Moody algebra. Let R be a commutative ring with 1.
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The Steinberg functor. Let Stp(R) be the quotient of the free group gener-
ated by the symbols z,(r) (where a is a real root and r € R) by the relations
2o (1)x4(s) = x4(r+s) and for each prenilpotent pair of roots {a, b} the commutator
relation (Rgp).

The split torus scheme. Let T'(R) := Hom(A, R*) where R* is the group of units
of R. Clearly, T(R) = (R*)* as an abstract group, where k is the rank of A.

Let r € R* and h € AV. Then r": X\ — 7" is a well-defined element of T'(R). (This
is why h is called a coroot: to each r € R*, h associates the element r"* € T(R).)

Construction 1.1. The constructive Tits functor Gp associated to D is the
functor which assigns to each commutative ring R with 1 the group Gp(R) which is
the quotient of Stp(R) * T'(R) by the following sets of relations (R;) to (Ry):

For each simple root a; € ®, for each r € R and for each t € T = T(R),
(B1) tq, ()t = o, (t(ci) - 7)

This says that the torus normalizes each simple root group and acts on it via the
character c;.

For r € R* let §;(r) := 24,(r)x_q,(r 1)z, (r) and let §; := 5;(1). The action of the
Weyl group W on A given by s;(t) := A — h;(\)¢; gives rise to a W-action on T via
si(t)(A) :==t(s; - N).

For each i € I, each r € R* and each t € T,

(R2) Si(r)tsi(r) ™" = sit)

This implies that reflections normalize the torus and act on it as elements of the
Weyl group would.
For each 7 € I and each r € R*,

(R3) Si(r7t) = girh

This means that two lifts of the same reflection differ by a value of the coroot h;.
For each i € I, each a € ® and each r € R,

(Ry) §ia(1)8i = 24,.0(7)

This says that the standard reflections will permute the root groups just as the
corresponding lifts in the Weyl group W would permute the roots. O

The whole point of defining this group functor is that G(C) := Gp(C) can be thought
of (via the adjoint representation) as (a central extension of) a group of automor-
phisms of the Kac—-Moody algebra gp over C.

In particular, there is a presentation of G(C) in terms of generators and relations.



1.3 The adjoint representation

Moreover, this definition is functorial and defined over 7Z, which e.g. allows to eval-
uate Gp on fields of positive characteristic.

A submatrix A; of a generalized Cartan matrix A gives rise to a subfunctor of a
constructive Tits functor.

Definition 1.2. Let A = (a;;); jer be a generalized Cartan matriz and let DY denote
the simply connected Kac-Moody root datum. For J C I let Ay := (ai;)ijes and let
D, denote the corresponding simply connected root datum. The corresponding Tits
functor QD;cJ is called a subfunctor of gpzc.

It can be checked that Gp,.. actually is a subfunctor in the sense of category theory,
J
i.e. for each ring there is an inclusion gDifJ (R) = Gpse(R), cf. [CEROS, Section 5].
Sometimes Gpse (k) is called a standard Kac—Moody subgroup of Gp: (k).
J

1.3 The adjoint representation

From the definition it is not obvious that Gp(k) is not trivial. However, for each
ring R there is an adjoint representation of Gp(R) which generalizes the adjoint
representation of G(C), from which the non-triviality follows.

For each ring R, let Aut s (Up)r denote the group of R-automorphisms of the R-
algebra Up @z R which preserve the filtration (or grading) of (Up)g inherited from
Up and the ideal U} ®7 R. Here Uz is the ideal of Up generated by gply, NUD.

Theorem 1.3. Let R be a ring. Then there is a homomorphism
Ad: QD(R) — AUtfilt(uD>R

characterised by the conditions

(ad e, )"
n!

n
Y

Ad(ug(r)) = explade, @) = >

n>0
Ad(T(R)) fizes (Up)r and Ad(h)(e, @ 1) = h(c,) - € @ T
forallh € T(R), a € ® andr € R.

Proof. This is Theorem 9.5.3 in [Rém02]. (More precisely, there is a natural trans-
formation Ad: Gp — Aut ;. (Up) between these two group functors.) d

The homomorphism Ad is called the adjoint representation.

Let K be a field and let G := Gp(K) be a split Kac-Moody group. A subgroup
H < G is called Ad-locally finite if each v € (Up)k is contained in a finite-
dimensional Ad H-invariant subspace.

A subgroup H < G is called Ad-diagonalizable if there is a basis of (Up)k in
which the H-action is diagonal.

From the explicit description of Ad it follows that T'(K) is Ad-diagonalizable.
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1.4 Group combinatorics

Here we define the standard subgroups of a Kac—-Moody group. Let K be a field
and let Gp be a Tits functor. Let G(K) := Gp(K).

Characters and cocharacters. Let X*(T').,s := Hom(7T, K*) denote the group
of (abstract) characters of T" and X,(T)aps := Hom(K*,T). Then A injects into
X*(T)aps, while AY injects into X, (T")aps-

The group A is called the group of algebraic characters of 7', while the group
AV is called the group of algebraic cocharacters of T.

Cartan subgroups. Let 7' = T(K) < G(K). Then T is called the standard
Cartan subgroup, while any conjugate g7'g~! is called a Cartan subgroup.

Root groups. For a real root a € ®, let U, := {z,(t) : t € K}. Then U, is called
a root group (relative to T).

It can be shown that the torus 7'(K) and the root groups U, embed in G(K), i.e.
T(K) is isomorphic to (K*)*, where k is the rank of A, while U, is isomorphic to
the additive group of K.

Note that G(K) is generated by T" and the root groups U,,« € ®. More precisely,
G(K) is already generated by T" and the root groups U,, where « runs through the
positive simple roots.

Borel groups. Let U, := (U, : @« > 0) and U_ := (U, : a« < 0). Let By :=TU,,
B_:=TU_. Then B, (resp. B_) is called the standard positive (resp. negative)
Borel subgroup, while any conjugate of B, resp. B_ is called a positive resp.
negative Borel group. For € € {£1}, the group U, is called the unipotent radical
of B..

A positive Borel group B; and a negative Borel subgroup B, are called opposite if
their intersection is a Cartan subgroup.

In contrast to the theory of algebraic groups, a (positive or negative) Borel subgroup
B of a Kac—Moody group in general is not solvable. Indeed, B is solvable if and
only if W is finite.

We recall the definition of a group G endowed with a twin root datum. Such a group
is sometimes called a group of Kac—Moody type.

Definition 1.4. Let (W, S) be a Cozeter system and let & = O(W,S) be the set
of its roots. Let G be a group and let (Uy)aca be a family of non-trivial subgroups.
Let H < NaeaNg(Us) and set Uy == (U, : a > 0), U_ := (U, : o < 0). Then
(H, (Uys)aco) is said to be a twin root datum for G (of type (W, S) ) if the following
conditions are satisfied:

(TRD 1) G=H(U, : o € D).
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(TRD 2) For each prenilpotent pair of roots {c, B}, the commutator subgroup [Uy, Us]
is contained in Uwpy = (Uy 1 v € (a, B)).

(TRD 3) For each s € S and each u € U, \{1}, there exist v',u" € U_,, such that
m(u) = v'uu” conjugates Uz onto Usg for all 5 € .
Moreover, for all u,v € Uy \{1}, m(u)H = m(v)H.

(TRD 4) Forallse S, U,, ZU_ and U_,, € U,.

The definition of a twin root datum was made to capture the subgroup struc-
ture of a split Kac-Moody group G(K). For H = T(K), the defining relations
(Rap), (R1)—(Ry) are made such as to satisfy (TRD 1)-(TRD 3). The non-degeneracy
conditions U, # 1 and (TRD 4) can be checked with the help of the adjoint repre-
sentation.

Let G be a group endowed with a twin root datum (H, (Ua)acaw,s)) of type (W, S).
The group GT := (U, : a € ®) is called the little projective group; it is endowed
with the twin root datum (H NG, (Uy)aca).
For By := HUy and N := H(m(u) : u € U,,) and S a set of representatives for the
reflections with respect to the simple roots, (By, B_, N, S) is a twin BN-pair (see
[ABO8, Definition 6.78]) for G.
In particular, let Ay := G/Bs and A := (A, A_). Then A is a twin building of
type (W, S) (see [ABO8, Definition 5.133]) and there is a Bruhat decomposition
of G

G=J BiWB, = |J B_WB-

weWw weW

and a Birkhoff decomposition

G=|J ByWB_= |J B.WB,.

weW weW

A twin apartment A = (A, A_) is a subset of A which is isometric to the thin
twin building of type (W, S) (see e.g. [AB08, Definition 5.171]).

If (W, .S) is the Coxeter system with || =2 and G is a group endowed with a twin
root datum (H, (Us)acaw,s)) (i-e. there are only two root groups altogether), then
the associated twin building A(G) is called a Moufang set.

Recall that a subgroup P containing a conjugate of B, is called a parabolic sub-
group of sign e. If P contains B,, there is a set J C S such that P = B.W, B,
where W; = (s; :i € J)y < W. If W is finite, W (or J) is called spherical.

Let J C S. Then LY := H(U, : « € ®(W;,J)) is called a Levi factor.

1.5 Geometric realizations

One of the equivalent ways to define a building is to view it as a simplicial complex
covered by subcomplexes (the apartments) which are isomorphic to the standard
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Coxeter complex. We briefly recall two important geometric realizations of this sim-
plicial complex. A very good exposition of the interplay of these two constructions
can be found in [Kra09, Appendix B.4].

The standard linear representation. Let W = ((s;)icr : (s;5;)™% = 1) be a

Coxeter group. Let A := (—cos(;-))i;. Let V := @;c; Re; and let B; denote the
ij

bilinear form induced by A, i.e. B;(e;, e;) := a;;. Then the representation

p: W — GL(V), p(si)(ej) == e; — 2B(e;, €j)e;

is called the standard linear representation of W, which can be shown to be
faithful.
For a subset J C I, let V; := @,c; Re; and write B for the restriction of B; to V.

The CAT(0) realization. With the notation from above, for each J C S such that
W is spherical let S; :={z € V;:x; > 0,By(x,x) = 1}. Let C be the intersection
of the cone generated by these spherical cells with the half spaces B;(e;,—) < 1.
Then C' serves as the model of a chamber.

For a building A of type (W,.S), this gives a geometric realization of A via the
mirror construction (see e.g. [Rém02, Section 4.2.1]). Moussong proved that the
realization of an apartment in this realization has a natural metric which makes it a
CAT(0) space. More precisely, the realization is a CAT(0) polyhedral complex with
finitely many shapes of cells. By using retractions, Davis proved that the geometric
realization of the entire building is CAT(0).

A point in the CAT(0) realization corresponds to a spherical residue of A. If A =
A(G) is the building associated to a group G endowed with a BN-pair, then G acts
on the CAT(0) realization of A via isometries.

[e]
[ ]

Example 1.5. Let (W, S) be a Coxeter system of type e ° °.
Then W is a so-called right-angled Coxeter group.
Part of the CAT(0) realization X of (W, S) is drawn below, with a chamber singled

out. A point of X is contained in either 1,2,4 or 8 chambers.

Figure 1.1: The CAT(0) realization of (W, S)
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The cone realization. Again let (W, .S) be a Coxeter group and let p: W — GL(V)
denote the standard linear representation. A root is a vector of the form a = we;
for some w € W and some standard basis vector e;; let & = &, UP_ denote the set
of all roots. A root a is often identified with the half-space

D,={feV*: fla) >0} CV*

it determines.

Let C:={f € V*: f(e;) >0 for all i € I} be the so-called fundamental chamber
and let F, ;= {f € V*: f(e;) = 0} denote the wall associated to the simple root
€;.

For an arbitrary root a let da := {f € V* : f(a) = 0} denote the wall of a.

Let W act on V* in the contragredient way, i.e. (w - f)(v) := f(w™'v). Then

C=W-.-C

is called the Tits cone of W. It serves as a geometric realization of the Coxeter
complex of W.

Let A be a building of type (W, S), viewed as a discrete set with a WW-valued metric .
Consider the topological space Agpne := A x C/ ~, where two points (¢, z), (d,y) are
identified if and only if © = y and d(c,d) € W (y,. Here J(z) :={s; € S:z € F,,}
is the type of z.

For a twin building A = (A, A_) the cone realization of A is defined as the link

of A, and A_ with the origin of both realizations identified:

Aeone = Ay x A ~ .

If A is a twin apartment of A, it turns out that its geometric realization in Ay, i8
homeomorphic to the realization A’ of the thin twin building of type (W, .S), which
can be viewed as two copies of the Tits cone: A’=CU—-C C V*.

Note that if W is spherical, C = V*, while if W is infinite the Tits cone C is con-
tained in a half-space. In both cases A = C U —C makes good sense.

Let A be a twin apartment of A and let Q@ C A be a set which is contained in
A. Tdentifying A with C U —C, the convex hull of 2, conv4(Q) is defined as the
convex hull of  in A, and its vectorial extension, vect 4(€2) as the vector subspace
spanned by €2. The set € is said to be generic if it is, viewed as a subset of C U—C,
the intersection of C U —C with a subspace L of V* which meets the interior of C:
Q=LnNn(({CU-=C).

A subset Q C A, which is contained in a twin apartment A = (A, A_) is called
balanced if QNA, # 0 # QNA_ and Q is contained in the union of a finite number
of spherical facets. Here a spherical facet F is defined as

qur(ﬂ@eiﬂ ﬂ Dei)

ieJ €I\J
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for some w € W and some spherical subset J C I.

Two points x,y of the cone realization of a twin building are (geometrically) op-
posite if there is a twin apartment A = CU —C C V* containing = and y such that
in this identification, x = —y.

Example 1.6. In the cone realization of the thin twin building of type D, the
generic subspaces are precisely those different from {y = 0}. © = {0} is not a bal-
anced subset. The spherical facets are the open half-rays (corresponding to panels)
and the interior of the cones bounded by two consecutive open half-rays (correspond-
ing to chambers).

The set of positive simple roots {«, 5} which bound the positive fundamental cham-
ber C is not prenilpotent.

Ql

Figure 1.2: The cone realization of the thin twin building of type D.

1.6 Bounded subgroups

In this section we recall the close connection between Ad-locally finite groups and
fixators of balanced subsets.

Let G be a group endowed with a twin root datum (7', (Us)acaow,s)). A subgroup
H < G is called bounded if there exists n € N and wy, ..., w, € W such that

H C B {wy,...,w,}By N B_{wy,...,w,}B_,
i.e. for e € {4+, —}, H is contained in a finite number of double B.-cosets.

The following is Theorem 10.2.2 in [Rém02].

Theorem 1.7. Let G = Gp(K) be a split Kac—Moody group. For a subgroup H < G,
the following conditions are equivalent.

10
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(i) H is bounded.
(i) H fizes a point in the CAT(0) realization of both Ay and A_.
(tii) H is Ad-locally finite.

Sketch of proof. (i) = (ii) is clear, as the orbits of the standard chambers C, C_
corresponding to B, and B_ under H are bounded, which allows to apply the
Bruhat-Tits fixed point theorem [AB08, Theorem 11.23].

(1) = (4i1) H is contained in the full stabilizer of two points x € A,y € A_, so
without loss of generality suppose that H = Fixg({x,y}). Up to conjugation, we
can assume that z,y are contained in the standard twin apartment. Then H has
the form H = L7 x U, where L’ is a Levi factor of finite type, and U = U, g for
a prenilpotent pair of roots «, 5, see [Rém02, Theorem 6.3.4] For each v € (Up)j,
AdU - v spans a finite-dimensional subspace since Ad u is locally nilpotent for each
u € U, and U is boundedly generated by U,,v € [a,[]. Since the Levi factor is
of finite type, the Bruhat decomposition for L7, L7 = U, B'w; B’ where B’ is a
Borel subgroup of L7, shows similarly that L is locally finite. As H is boundedly
generated by L7 and U, the claim follows.

(7ii) = (i): Assume H is not bounded. Then there is a sequence (g;)ien € H such
that {B;g¢;B} is infinite (replace '+’ by -’ if necessary). Write g; = bw;b}. Let
v € V, be a non-trivial weight vector. Then ¥} - v has cv as a homogeneous compo-
nent for some ¢ # 0, from which it follows that Ad g; - v has a non-trivial component
in the root space w;-a, proving that the support of Ad H-v is infinite-dimensional. [

Now let Q C A e be a balanced subset which is contained in the standard apart-
ment A. By the previous theorem, H := Fix () is Ad-locally finite. Rémy attaches
to H a certain finite-dimensional Ad H-invariant subspace whose construction we
recall.

Let K be an algebraic closure of K. Let Lp := gp NUp, where Up is the Z-form of
the universal enveloping algebra. Then £ has a grading: Lp = Lo ® Pyecp La-

Let A(Q) :={a € ®:Q C a}, A*Q) :={a € & : Q C a,Q C Oa} and let
A™(Q) :={a € & : Q C Jda}. Here the roots are viewed as half-spaces in the cone
realization. Write L :=T(U, : a € A™(Q)) and U := (U, : a € A*(Q)).

Proposition 1.8. Let W = Wq be the smallest Q-graded subspace of (Lp)i with
the following properties:

(i) W contains (Lo)g and (L,) g for all a € A(Q).
(ii) The Q-support of W contains —A"(S2).

(iii) W is stable under H := Fix Q.

Then the following properties hold:

(i) W is finite-dimensional and the kernel of Ad: H — Ad H|w is precisely the
center of H.

11
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(ii) Let H (resp. T,L,U) denote the Zariski-closure of Ad Hl|w (resp. AdT|w,
Ad Llw, AdUlw). Then L is a connected reductive K-group, T is a mazrimal
torus of L, U is unipotent and H = L x U is a Levi decomposition.

Proof. This is [Rém02, Lemma 10.3.1, Proposition 10.3.6]. O

12



2 Review of almost split Kac-Moody
groups

In this chapter, we recall Rémy’s construction of almost split Kac—-Moody groups, cf.
[Rém02], [Rém04]. These groups can be obtained via Galois descent, i.e. by taking
the fixed points of a certain Galois group action on a split Kac-Moody group. One
of the main features of an almost split Kac-Moody group is that it is again endowed
with a twin root datum.

A result of Borel-Tits states (in modern language) that a connected K-isotropic
algebraic K-group G has the property that G(K) is endowed with a twin root da-
tum. This justifies regarding almost split Kac—-Moody groups as infinite-dimensional
isotropic reductive groups.

2.1 The definition of almost split groups

Let K be a field, K an algebraic closure of K and K, the separable closure of K in
K. Let D be a Kac—Moody root datum and let Gp be a constructive Tits functor.
A prealgebraic K-form of Gp is a couple (G, Uk ), where G is a group functor on
the category of field extensions of K which coincides with Gp over extensions of K,
and Ui a K-form of the filtered algebra (Up) satisfying

(PA 1) The adjoint representation Ad is Galois-equivariant, i.e. for each K-algebra
R and each 0 € T' := Gal(K,|K), the following diagram commutes, where
R = K ®k R:
G(Rg) == Autu (Up)(Rz)
G(Rg) == Aut i (Up)(Rz)
(PA 2) If t: K — L is an injection of fields, then G(:): G(K) — G(L) is injective, too.
Let E be a field satisfying K € E C K. Then a prealgebraic form (G,U) is said to

split over E if it is E-isomorphic to the split form (Gp, (Up)g) over E (see [Rém02,
11.1.5] for a precise definition).

Convention. In this section, let (G,Uf) always be a prealgebraic K-form of Gp which
is assumed to split over an infinite field F such that E|K is a normal field extension.

13
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Let ' := Gal(K*°?| K) be the absolute Galois group. Then for each field L C K and
cach v € T, there is an action of I' on G given by (v - G)(L) := G(y - L). Since E|K
is assumed to be normal, I' acts on G(F), and since G is assumed to split over FE,
each element of Gal(K®P|E) acts trivially on G(F), i.e. the ['-action factors through
Gal(E|K).

Fix an isomorphism V: G(E) — Gp(F). By abuse of notation, let T(E) < G(F)
again denote the subgroup of G(FE) which is mapped to the group T(E) < Gp(FE).
Then I' preserves the conjugacy class of T'(E) ([Rém02, 11.2.2]). For ¢ € I', choose
g € G(F) such that the so-called rectification ¢ := int g~' o o stabilizes T(E).
Then ¢ induces an automorphism of W = N(T'(E))/T(E).

Let (G,Uk) be a prealgebraic K-form of G which splits over E. Then G is said to
satisfy (SGR) if for each o € I, each rectified automorphism ¢ of G(FE) induces a
permutation of the root groups relative to T'(E).

Remark 2.1. By the explicit description of Aut(Gp(E)) by Caprace ([Cap09, The-
orem A]) this condition is empty: ¢ automatically preserves root groups. Indeed,
by the quoted result any automorphism ¢ can be written as a product ¢ = 5 0
of an inner automorphism ¢; (which can be chosen to be trivial if ¢(T') = T") and
an automorphism ¢, which permutes the root groups: @a(2a(r)) = Zua)(caoa(r)),
where ¢: ® — ® is a bijection, ¢, € E* and o, € Aut(E).

It follows that ¢ induces a permutation of the roots ® of W. Moreover, ¢ induces
an action on the groups X*(T(E))aps resp. X« (T(E))aps of abstract characters resp.
cocharacters.

In this situation, G = (G,U) is called a Kac—-Moody K-group if for each &,

(ALG 1) & respects the Q-grading of (Up)g and the induced permutation of @) satisfies
o(na) = n(o(a)) for all n € N.

o stabilizes the algebraic characters < abs resp. the algebraic
ALG 2 bili he algebraic ch A X (T(E he algebrai
cocharacters AY < X, (T(E))abs-

Let G = (G,U) be a Kac-Moody K-group. Then G is called almost split if the
action of I on G(F) stabilizes the conjugacy classes of the standard Borel subgroups
B, (F) and B_(FE). The group G is called quasi-split if there are two opposite Borel
groups Bi, By which are stable under the I'-action.

Note that a quasi-split Kac-Moody group is automatically almost split.

Remark 2.2. The terminology “almost split” stems from the following fact: although
an almost split Kac-Moody group has an anisotropic kernel Z(k), this group is finite-
dimensional.

Galois descent. Let G = (G,U) be a Kac-Moody K-group. Then G is said to be
obtained via Galois descent if G splits over the separable closure K, of K in K
and for each separable field sub-extension E|K, the group G(F) is precisely the fixed
point set of Gal(K®P|E) in G(K*P). In this case, G is said to satisfy the condition
(DCS).

14
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2.2 An explicit construction

In this section we recall the explicit construction of quasi-split Kac—-Moody groups
due to Rémy [Rém02, Ch. 13.2.3].

Construction 2.3. Let D = (I, A, A, (¢i)icr, (hi)ier) be a Kac-Moody root datum.
Then the Dynkin diagram D = D, of the generalized Cartan matrix A is a graph
with vertices I and edges defined as follows. If a;;a;; < 4 and |a;j| > |aj;| the ver-
tices 4, j are connected by |a;;| lines, with an arrow pointing toward 4 if |a;;| > 1. If
a;jaj; > 4, the vertices are connected by a line labelled (|a;;|, |a;i).

A diagram automorphism of A is a permutation of the index set I which induces
an automorphism of the Dynkin diagram D 4.

A diagram automorphism ¢ of D is a Z-linear automorphism of A which sta-
bilizes the base {¢; : ¢ € I} and such that the induced automorphism ¢" of AY
stabilizes the cobase {h; : i € I'}. Moreover, let 7 € Sym(/) denote the permutation
such that ¢(¢;) = cx(;). Then 7 is required to satisfy ¢"(h;) = hr;) and to induce
an automorphism of the Dynkin diagram of A.

Let Diag(D) denote the group of diagram automorphisms of D.

Let K be a field and let E be a finite Galois extension of K. Let I' := Gal(F|K) be
the corresponding Galois group. Let D be a Kac-Moody root datum and suppose
that there is a homomorphism

x: I — Diag(D).

We denote o* := x(0). Let Gp be the constructive Tits functor associated to D. For
a field F, let G(F') := Gp(F') denote the F-rational points of G.

Let x; ;. (resp. x; —) be the one-parameter group corresponding to the positive (resp.
negative) simple root s;. For o € I" and r € E set

0 (2:(r)) := Zo (i) (0 (7))

for e € {4+, —} and for a torus element ¢ € T(E) set o*(t) := {z — o~ (t(c*(z))}.
By inspecting the defining relations of G(F), it can be checked that o* extends to a
well-defined automorphism of G(E). Moreover, *: I' = Aut(G(F)), 0 — o* defines
a [-action on G(F).
Let

G'(K) := Fixr(G(F))

denote the group of fixed points under this action. Then G'(K) is a quasi-split
Kac—-Moody K-group. O

Remark 2.4. In the above situation, the I'-action on the diagram is not required to
be faithful. Indeed, if the x-action is trivial, G'(K) coincides with the split Kac—
Moody group Gp(K).

Moreover it is possible that the associated rank 1 groups are defined over different
fields.

15
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Example 2.5. The following example is given in [Rém04, 3.5.B]. Let E|K be a
separable quadratic field extension, Gal(E|K) = (o) and let Gp be the affine Kac—
Moody group Gp(K) = SL3(Kt,t7']). Let SU3(K) < SL3(E) denote the group of
matrices which preserve a fixed three-dimensional o-Hermitian form of Witt index
1. Then the group SU3(K[t, t71]) is a quasi-split Kac-Moody group obtained by the
x-action where o* switches two nodes of the diagram associated to Gp.

More generally, there is the following class of examples of affine quasi-split Kac—
Moody groups.

Proposition 2.6. Let G be a connected simply connected almost simple algebraic
group defined over F, which is F,-isotropic. Then for any field K containing I, the
group G(K[t,t™1]) is an almost split Kac—Moody F,-group.

Proof. This follows from [Rém02, Chapter 11]. A detailed proof is given in [BGW09,
Proposition 10.2]. O

2.3 The Galois action on the building

Let K be a field, let E|K be a normal field extension, where F is infinite, and let
I' := Gal(E|K). Let G denote an almost split Kac-Moody K-group obtained by
Galois descent which splits over E.

Let A = (G(F)/B4+(FE),G(F)/B_(F)) denote the twin building associated to the
group G(E) = Gp(FE). The I'action on G(E) then gives rise to an action on A since
it preserves the respective conjugacy classes of By, B_, cf. [Rém02, 11.3.2].
Moreover, there is a better rectification of automorphisms available, that is, for
cach o € G there is a g, € G(E) (well-defined up to an element in 7'(E)) such that
o* :=int g;! o o stabilizes both B, (F) and B_(F).

This gives a well-defined action of I' on W, called the x-action. This action sta-
bilizes the generating set S, i.e. the action is by diagram automorphisms ([Rém02,
11.3.2]).

It follows that I" acts on the CAT(0) realization of the buildings A, A_. Although
[ might be infinite (there is no assumption that E|K is finite, i.e. that G splits
over a finite extension of K), it can be shown that each orbit is bounded [Rém02,
11.3.4], so by the Bruhat-Tits fixed point theorem, there are fixed points in both
halves of the twin building. By the dictionary relating the building to its CAT(0)
realization, this is equivalent to saying that there are spherical residues R,, R_ in
both buildings which are stable under the Galois group. The residues R, R_ in
general will not be chambers, though. Indeed, I will fix two opposite chambers if
and only if G is quasi-split.

The action on the cone realization. Similarly, I' acts on the cone realization
Acone of A, Let AL denote the set of fixed points, then it is clear that G(K) acts

cone
on AL In what follows, certain subsets of AL will be singled out, the stabilizers
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of which then will form the ingredients of a twin root datum for G(K).

To start with, a maximal generic subspace (i.e. a sub-vectorspace of an apart-
ment which meets the interior of the Tits cone) which is fixed by I' is called a
K-apartment. These can be shown to exist if G splits over the separable closure
of K.

In the cone realization of the standard twin apartment, such a generic subspace L
is given by

L={zeV":e(x)=0Vi:s; €Spand e;(x)=e;(zx) for [''s; =I"s,},

cf. [Rém02, Lemma 12.6.1]. Here Sy is the type of the facet containing a maximal
K-chamber F, see below. Note that the type of a chamber is ().

Remark 2.7. Sy, in Tits indices, denotes the type of the anisotropic kernel, so this
makes good sense.

A K-facet is the set of I'-fixed points of a I'-stable facet. A maximal K-facet is a
K-chamber. A K-root (resp. K-half-apartment, resp. K-wall, resp. K-panel)
is an apartment (resp. half-apartment, resp. wall, resp. panel) relative to a K-
apartment Ay, i.e. the trace of the corresponding object on Ag, which is assumed
to be non-empty.

Two K-chambers of the same sign are called adjacent if they contain a common
K-panel in their closure.

Two K-chambers of opposite sign are called (geometrically) opposite if there is a
twin apartment which contains them and in which they are opposite.

For a given K-apartment Ay, A%(Ak) is defined as the set of all real K-roots, i.e.
those whose relative wall is again a generic subspace, and @ (Ag) as the set of all
K-half-apartments relative to A.

For a real K-root a, let a® denote its restriction to Ax. Then let

Ag:={bec A™:3IN>1:b = \d"}.
Note that A, is a prenilpotent set of roots which is I'-stable.

Finally, a standardisation of the cone realization A, of G(E) is a triple (A, C, —C)
where A is a twin apartment which contains the two opposite chambers C' and —C
(this corresponds to fixing a maximal torus 7" and two opposite Borel groups By, By
such that B;NBy = T'). A rational standardisation is a triple (Ag, F, —F') where
Ay is a K-apartment and F, —F are two opposite K-chambers which are contained
in Ag. Two of these triples are called compatible if A contains Ax and C,—C
contain F, —F' respectively.
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2 Review of almost split Kac-Moody groups

2.4 The twin root datum of an almost split group

Let K C E C K*P be an inclusion of fields and let G be an almost split Kac—-Moody
K-group which is obtained by Galois descent and splits over E. For a subgroup
U < G(K*%), let U(F) := G(E)NU denote the group of E-rational points of
U.

A T-invariant parabolic subgroup P of G is called a K-parabolic subgroup. Such
a K-parabolic group is precisely the stabiliser of a K-facet.

The anisotropic kernel. Let (Ag, F,—F') be a rational standardisation. Then
7 = Z(Agk) = Fixgkser)(Ak) is called the anisotropic kernel (with respect to
Akg). Let Z(K) denote the set of its K-rational points.

Let Q := FU—F. Then Adg(Z(Ak)) is isomorphic to a semisimple algebraic K-
group which is K-anisotropic. It follows that Z contains a maximal K-split torus
T4(K), which can be identified with the connected component of the identity of its
center ([Rémo02, 12.5.2]). The set of all G(K)-conjugates of T,(K) is in bijection
with the K-apartments.

Rational root groups. For a real K-root a, let V, := (U, : b € A,)(K).
By (DCS), V, is just the fixed point group of I' acting on the I'-invariant group
Uy :=(Up:be A,).

(This process sometimes is called “lumping together root groups”, cf. [AB08, Section
7.9.3].)

Rank 1 groups. Let E be a K-panel, 2 := F'U —FE and denote by M (2)(K5P)
its fixator in G(K®%P). Then M (Q2) = Z(V,, V_,) for the K-root a with E C Oa.

The group M () is a reductive algebraic group defined over K of split semisimple
rank 1, which can be seen by considering Adg(Mg). It follows that a rational root
group V,, is isomorphic to a root group of a semisimple K-group (cf. [Rém02, 12.5.4]).

Let N(K) denote the stabilizer of Ag in G(K). Then W% := N(K)/Z(K) is called
the relative Weyl group.

It can be shown that W% is in fact a Coxeter group with generating set S* whose set
of roots is in bijection with the half-apartments of Ay, see below.

With these notions, Rémy proved the following important and difficult theorem
([Rém02, Theorem 12.4.3]).

Theorem 2.8. Let G be an almost split Kac—Moody K -group which is obtained by
Galois descent. Let (A, F,—F) be a rational standardisation. Then the group of
rational points G(K) is endowed with a twin root datum (Z(K), (Va)acomws,s2))-

Sketch of proof. The key fact is that the rational root groups V,, enjoy the Moufang
property. For a simple root « defined by F and a K-panel E of I, this means that
V., acts transitively on the set of K-chambers C” which have F as a panel and are
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2.5 Review of non-split reductive algebraic groups

distinct from C'. This follows from the Moufang property of the groups U, and then
passing to fixed points.
The non-triviality of V,, follows from the fact that I' acts semi-linearly on the center
of U,:, which is a vector space over K*%  from which the existence of fixed points
follows by a classical theorem.
Proving that (W?# S%) is a Coxeter system is not obvious and is accomplished via
the detour of showing first that the system of subgroups (Z(K), (Va)acomws, sz)) gives
rise to a refined symmetric BN-pair, see [Rém02, Definition 1.2.1].
One can then identify the relative roots of Ax with roots of W¥. The existence of ji-
maps, i.e. the verification of (TRD 3), is then a direct consequence of the Moufang
property. The fact that G = Z(k)(V, : a € ®(WH9) is proved by looking at the
action of G on the set of K-apartments: the little projective group acts transitively
on this set, while N(K), the stabilizer of Ak, acts transitively on the chambers
of Ag. The commutation formula follows from the existence and uniqueness of the
product decomposition

Usn.= ][ U,

QISAW

and taking fixed points. The non-degeneracy conditions are again an easy conse-
quence of the action on the building. O

Geometric realization of the associated twin building. It can be checked
[Rém02, 12.4.4] that the set of I'-fixed points in A(G(F)) gives a geometric real-
ization of the twin building associated to G(K) in the sense that adjacency and
opposition can be checked by looking at the fixed points in Agpne(G(E)).

Just like in the finite-dimensional case (cf. [TWO02, Chapter 42]), we have the fol-
lowing fact:

Proposition 2.9. Let G(K) be a quasi-split Kac—Moody group obtained via Galois
descent. Then the derived group of the anisotropic kernel Z is trivial, i.e. Z(K) is
abelian.

Proof. By definition, the Galois group I' stabilizes two opposite Borel groups of
G(FE), where E is a splitting field of G. Without loss of generality, these can be
assumed to be the standard Borel groups By, B_. By the explicit description of the
generic subspace Ay it follows that A is entirely contained in the cone of C'; and
C_. So any element g € G(F) which fixes Ax will stabilize both B, and B_, from
which it follows that g € T(E). Thus Z(K) < T(E), which is abelian. O

2.5 Review of non-split reductive algebraic groups

Let G = G(k) be an almost split Kac-Moody group obtained via Galois descent.
Let © a balanced subset of Acoye and let M := Fixgy(€©2). Then Adg(M) can be
identified with the k-points of an algebraic group defined over k, and M itself is a
central extension of this group.
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2 Review of almost split Kac-Moody groups

(The fact that Ad M is defined over k is implied by the axioms that the adjoint
representation be Galois equivariant and that G(k) is obtained by Galois descent;
this is one of the main motivations of introducing these two axioms.)

This is why we recall here some facts about k-rational points of algebraic groups.
Most of these results can be found in the classical reference [BT65]. A convenient
summary of the results of this paper we need can also be found in [Deo78, Section

1.2].

Let k be a field, k an algebraic closure of k& and G a connected reductive linear
algebraic group defined over k. For our purposes, we can assume that G comes with
a fixed embedding, i.e. G is a Zariski-closed subgroup of some GL,, (k).

Let S < G be a maximal k-split torus and X*(S) its character group. Suppose that
G is isotropic over k, i.e. S is non-trivial.

Let & C X*(S) be the corresponding k-root system of G with respect to S, i.e. the
set of weights of S acting on g := Lie G via the adjoint representation.

For a € @, let g, C g denote the corresponding root space, i.e.
go={X €g:Ads(X)=a(s)- X Vse S}

Let uy := > po00ka and let U, be the connected unipotent subgroup of G with
Lie U, = u,. In fact, the only positive multiples of o which could possibly belong to
® are o and 2. These cases actually do occur, cf. the examples below.

The group U, then is split over k, cf. [BT65, Cor. 3.18] and normalized by the
centralizer Z := Cg(S) of S in G.

If & € ® is such that 2a € @, then U, := U, is k-isomorphic to a vectorspace G,".
If « € & is such that 2a € @, then U; := U, /Us, again is isomorphic over k to a
vectorspace.

In both cases, under this identification the action of S on Uj resp. Us is given via the
homothety induced by «. This means that for s € S(k) and u € U, (k) or u € Us(k),
we have

s-u-st=a(s) - u.

We recall the following two classes of examples of algebraic groups of relative rank
1 taken from [Bor91, 23.4] and [BT84, 4.1.9].

Example 2.10. Let K be a field of characteristic # 2 and n € N. Let V be an
n-dimensional K-vectorspace and ¢: V' — K a quadratic form of Witt index 1. An
important case is when K = R and ¢(z) := 27! 2? — 22.

The bilinear form F' associated to ¢ may be assumed to have the form

lel 0n—2x1 11><1

F = 0n—2><1 D 0n—2><1

11><1 0n—2x1 lel

where D € K"=2x("=2) i5 diagonal. Here 1,y, denotes the a x a-identity matrix,
while 0,y denotes the a x b-zero matrix.
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2.5 Review of non-split reductive algebraic groups

Let
G :=50(q) = {g € SLa(K) : Q(gv) = Q(v) Vv eV}

denote the special orthogonal group associated to q. Then
T(K) = {h(t) := diag(t,1,...,1,t ") : t € K*}

is the set of K-rational points of a maximal K-split torus 7', i.e. GG is an algebraic
K-group of K-rank 1. The centralizer of T is given by Zg(T) = T - SO(qp), where
gp is the quadratic form induced by D. Let A : h(t) — t. Then X is a root with

weight space
O1x1 —vt O1x1
gy = Op—ax1 On_axn—_a v RS Kn—2 .
O1><1 0n—2><l 01><1

g, is abelian of dimension n — 2; and since the exponential function exp induces a
group isomorphism, so is Uy := exp g,. The group U, is explicitly given as

1 it —vty
v 2
U+(K): {( 1n—2><n—2 v ) Z’UEK”2}.
1

T acts on U, via h(t) exp(v)h(t)™' = exp(tv). O

Example 2.11. Let & be a field and let E|k be a separable field extension of degree
2 with Gal(E|k) = (o), and write T := o(z). Let ¢ denote the Hermitian form on
V = E3 given by q(z,v,2) := 2z + yj + 27 and let

SU(q) := {g € SLs(E) : q(gv) = q(v) Vv € V}.

Then SU(q) can be viewed as an algebraic group defined over k. More precisely,
there is an algebraic group G which is defined over & such that G(k) = SU(q). The
k-points of a maximal k-split torus of G are given by

T(k) == {h(t) == diag(t, 1,t 1) : t € k*}.

The k-points of the centraliser of T'(k) are given by

Z(k) = {diag(t, @,a(t)-l) te BX)

(note that these are actually the k-points under the identification of SU(q) with a
k-group).

For a,b € L, let u(a,b) := <1 7 _leb> The corresponding groups are given by

Un(k) = {u(a,b) : a,b € L,b+b = aa} and Usy (k) = {u(0,b) : b € L,b+b =0},

Then U, := Us, (k) is a 1-dimensional k-vectorspace, while Uy := U, (k)/Usq (k) is a
2-dimensional k-vectorspace. A torus element h(t) acts on Us via multiplication by
t? and on U, via multiplication by t. O
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3 Further properties of Kac—Moody
K-groups

Convention. For the rest of this thesis, any almost split Kac—-Moody group is un-
derstood to be obtained via Galois descent.

After the review of the material needed for the definition of almost split Kac—Moody
groups and their basic properties in the previous two chapters, we begin here to work
in earnest with almost split Kac-Moody groups.

In the first part, we collect relevant facts about the interplay of the maximal split
torus Ty < Z with the root groups of an almost split Kac-Moody group G. This
information is essential, as it allows to construct a subgroup F' < GG which is locally
split and of Kac-Moody type (cf. Chapter 4), which in turn allows for an adaption
of the methods of [Cap09] to the isomorphism problem for these groups.

In the second part, we collect some observations on the concepts developed before.
While this material is not needed for later chapters, it nevertheless responds to
some natural questions which arise when viewing Kac-Moody groups as infinite-
dimensional reductive groups. Besides some technical remarks, we develop the con-
cept of restriction of scalars for Kac-Moody groups.

3.1 Properties of an almost split Kac—Moody
K-group

We briefly recall the discussion of reductive k-subgroups of G as given in [Rém02,
12.5.2] to make the interplay of the maximal split torus and the relative root groups
of an almost split Kac—-Moody group explicit.

Let k be a field and let G = G(k) be an almost split Kac-Moody k-group which
splits over a separable extension E C k*P. Let (A, F, —F) denote a rational stan-
dardisation.

By definition, F' and —F are two minimal Galois-stable opposite spherical facets of
the twin building associated to G(E). The stabilizer of Q := FF'U —F in G(E) can
then be identified with a Levi factor LY(E) := T(U, : a € ®(W})) where J C S
is spherical. From the defining relations of the constructive Tits functor, it follows
that L/(F) is abstractly isomorphic to the E-points of a connected reductive group
split over E. Since L’ is invariant under the I'-action, it follows that L’ is defined
over k. Write Z for the algebraic group L7 endowed with this k-structure. So
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3.1 Properties of an almost split Kac—-Moody K-group

Z(E) = L7/(E), while Z(k) of course is in general very different from L’ (k).

For Q as above, Adg(Z) is a connected semisimple algebraic group defined over k
which is anisotropic over k. It follows that there exists a unique maximal k-split
torus 1y contained in Z. The torus T} is central in Z and can be identified with a
maximal k-split subtorus of T

More generally, let © € Ay be a k-facet. Then for €2 := x U —z, the fixator of {2 in
G(k) can be identified with the k-rational points of some Levi factor L7 of G(E),
where the k-structure on L7" again is given by the T'-action. (We dealt above with
the case when x is a k-chamber.)

The point here is that fixators of opposite points of a twin apartment carry an in-
trinsic structure of (the k-points of) an algebraic group. For bounded subgroups in
general, though, one has to pass to the adjoint representation.

We combine this discussion with the review of rational points of algebraic groups in
Chapter 2.5 to sum up the interplay between the maximal split torus Ty(k) and the
root groups V, (k).

Let G, denote the algebraic group with G, (k) = (k,+). For a group G, let Z(G)
denote the center of G (which should not be confused with the anisotropic kernel Z
of an almost split Kac-Moody group).

Proposition 3.1. Let k be an infinite field and let G be an almost split Kac—Moody
group obtained by Galois descent. Let Z be the anisotropic kernel of G, Ty < Z a
maximal k-split torus and Wy the Weyl group of G(k) with Sy its set of canonical
generators. Let ) = ®(Wy, S) denote the set of k-roots and (Vo(k))acao, the set of
root groups of G(k) relative to Ty(k).

Let Ay, denote the set of simple roots of ®y.

(i) Z is a connected reductive algebraic group defined over k. The torus Ty is a
maximal k-split torus of Z which is central in Z; the derived group of Z is
anisotropic over k.

(ii) Let J C Sy be such that (Wy) s is finite. Then L7 = Z(V, : a € ®((W4)J))
is a connected reductive algebraic K-group, in which Ty is a mazximal k-split
torus. L7 has split-semisimple rank |J|.

(iii) Let v € Ay. Then X, := Z(V,,V_,) is a connected reductive algebraic k-group
of split-semisimple rank 1. V,, is a root group in X, normalized by Z. There
are two possibilities:

a) Vi, is abelian and is k-isomorphic to G for n := dimV,. In this case,
V, is normalized by Z, and T, acts on V, via a character a. This means
there is some a € X*(Ty) defined over k such that tut™' = «a(t) - u for
teT; andu e V,.

b) Vo is metabelian. Then % (V,) is k-isomorphic to G, where n =
dim 2(V,,), and V) Z (V) is k-isomorphic to G, where n := dim V,, —

a ’
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3 Further properties of Kac—Moody K-groups

dim Z(V,,).

The anisotropic kernel Z normalizes both V,, and % (V,,). There is a char-
acter a € X*(Ty) defined over k such that Ty acts on % (V,,) via 2a and
on Vo /| Z (V) via a.

(iv) Let u € Z(Vo(k))\{1} and s, := m(u) = v'uu” the associated p-map. Then
So normalizes Ty(k).

(v) Let a € ®. If t € Ty centralizes some u € V,\{1}, then t* already centralizes
Vi

(vi) If a, B € @, # £F are such that o(s,sp) < 0o, then there is an element
t € Ty(k) such that t centralizes V,, but not Vj.

Proof. Part (i) is clear by the above discussion; similarly, as L’ is the fixator of
two opposite points x, —x, for (i) it is sufficient to check the statement about the
semisimple rank of L/, which follows from the fact that Ad,_,(L”7) is a semisimple
group in which the (Vs : g € ®(Wy),) form a system of root groups in the algebraic
sense.

Part (iii) follows from (ii) and the discussion of rational points of semisimple alge-
braic groups in Chapter 2.5.

For part (iv), note that by (iii) X, is a reductive group with 7, a maximal split
torus. Then the Zariski closure of {sus™' : s € T} is a one-dimensional subgroup
of V,, and so is part of a maximal split reductive subgroup F' < X, which contains
Ty, as follows from the Borel-Tits theorem (see Theorem 5.1). As m(u), computed
in F', leaves T, invariant, so must m(u), as computed in X,.

Part (v) follows from part (iii) by noting that if V,, is abelian, then necessarily
a(t) = 1 (and so already ¢ must centralize V). In case V, is metabelian, if
u € Z(Va,), then 2a(t) = a(t?) = 1 (so t* centralizes V), while if u & 2°(V,),
then a(t) = 1, so t already centralizes V.

For part (vi) it follows from the assumption that V,,, V3 are contained in some Levi
factor L7 with |J| = 2. Since the characters associated to a and (3 are not propor-
tional, Cr,(V,) = ker a does not contain Cr,(Vs) = ker 8. As Ty(k) is Zariski dense
in T, the claim follows. O

Remark 3.2. Let X be a (not necessarily finite) set and U < Sym(X) a doubly tran-
sitive permutation group which is not sharply doubly transitive. Then U is called a
Zassenhaus group if the stabilizer of three points is trivial. With this terminology,
Proposition 3.1 (v) can be roughly stated as follows: the split torus of an algebraic
group of relative rank 1 one satisfies a weak Zassenhaus condition for its action on
the associated Moufang set M.

This is to say that if h € T and h fixes three chambers of the panel M, of C' which
is associated to V,, then h? must fix the entire panel. Indeed, that h fixes three
chambers is equivalent to saying that h normalizes V,,V_, and X = vV_,v~! for
some v € V,\{1}. Since V, is sharply transitive on M, \{C}, v is uniquely deter-
mined. This implies that hvV_ v th™t = vV_,v~! if and only if h centralizes v. As
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3.2 Restriction of scalars for Kac-Moody groups

noted before, if h centralizes v, then h? must centralize the entire root group.

Note, however, that this condition is in general not satisfied for arbitrary elements
g € Z(k). Indeed, let k be an infinite field, n € N, n > 5 and let ¢ be an n-dimensional
quadratic form over k of Witt index 1. Then the anisotropic kernel of SO(g) can be
identified with SO(q’), where ¢ is a (n — 2)-dimensional anisotropic quadratic form
over k, and the associated root group U, is isomorphic as a SO(¢')-module to the
standard module of SO(¢’), an (n — 2)-dimensional vectorspace (cf. Example 2.10).
It is clearly possible to choose reflections s, s in SO(q’) such that s;ss has infinite
order and its fixed point set H is a codimension-2-hyperplane. Since n > 5, H is
not reduced to 0, i.e. s15, fixes a proper subspace of U, , but no nontrivial power of
s150 will fix Uy

3.2 Restriction of scalars for Kac—Moody groups

We give a class of examples of quasi-split Kac-Moody groups obtained by the classi-
cal process of restriction of scalars, cf. [PR94, Section 2.1.2]. These examples show
that an abstract isomorphism : G7 — G5 of two almost split Kac—-Moody groups
does not in general preserve the full parameter set (D;, E;| K, p;) attached to these
groups.

Proposition 3.3. Let k be a field and let E|k be a finite Galois extension. Let G
be a split Kac—Moody group. Then there is a quasi-split Kac—Moody group G’ such
that G(E) is isomorphic to G'(k).

Proof. Let ' := Gal(E|k),n := |I'| and let Gy be the direct product of n copies of
G, indexed by the elements of I'. Define an action of I' on Gy(E) by setting

v (901? s 7gUn) = (9’7017 cee 7g’YUn)‘

Let G'(k) denote the fixed point set of I" acting on Go(F). Then G'(k) is precisely
the diagonal subgroup of Gy(F), which is isomorphic to G(E).

It remains to be checked that this I'-action is the x-action induced by a I'-action
on the Dynkin diagram of Gy, which allows to apply Construction 2.3. This is
immediate, though, as the Dynkin diagram of G is the disjoint union of n copies of
the Dynkin diagram of G, and I permutes these copies. O

Remark 3.4. Let E|k be a finite Galois extension and let G be a connected almost
simple k-group which is split over k. Then the group G'(k) = G(FE) provided by
Proposition 3.3 is the group classically obtained by restriction of scalars. The iso-
morphism ¢: G(E) — G'(k) is not covered by Borel-Tits’s theory [BT73] since G’ (k)
is not absolutely almost simple. Indeed, in this theory one restricts to absolutely
almost simple groups for precisely this reason.
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3 Further properties of Kac—Moody K-groups

3.3 Generalized Cartan matrices and the centralizer
of a torus

Remark 3.5. Split Kac-Moody groups (over algebraically closed fields) should be
thought of as connected, as they have no proper (normal) subgroups of finite in-
dex. Indeed, in this case for a finite index subgroup N < G, for all a we have
[Us : (UyNN)] < o0 and thus U, < N since U, is divisible. Similarly T'(K) = (K*)"
is divisible as K is algebraically closed, so T < N and G =T(U, : a € ®) < N.

Let D = (I, A, A, (¢)ier, (hi)ier) be a Kac-Moody root datum. Let W < Aut(A)
denote the group generated by all 5;: A — X — h;(\)¢;, where i € I. The group W
is called the Weyl group of D, cf. [Rém02, 7.1.3]. Let W denote the Weyl group
associated to A. Then there is a canonical homomorphism ¢: W — W given by
o(s;) = 54, cf. [Rém02, 7.1.5].

One of the difficulties when dealing with split Kac-Moody groups is the fact that the
action of the torus on two distinct root groups U, Us can be via the same character.
An easy example is provided by the affine Kac-Moody group G(k) := SLy(k[t,t7]),
where T'(k) = {(* ,-1) : t € k*} acts on all root groups U, ; := {(1 fil’“) T € k;} via
multiplication by #2.

This is related to the fact that the torus is in general not self-centralizing in contrast
to the finite-dimensional situation.

Proposition 3.6. Let D = (I, A, A, (¢;)ier, (hi)icr) be a Kac—Moody root datum and
suppose that AV is generated by the cobase {h; : i € I}. Let K be an infinite field
and let G := Gp(K) be the split Kac—Moody group of type D over K.

(i) The subgroup Zo(T)/T < W coincides with the kernel of the action of W on
A.

(ii) If A is invertible, the W -action on A is faithful.

Proof. The first point follows from [Cap09, Lemma 7.10(iii)], the second one from
[Cap09, Lemma 7.6.2]. O
Until the end of this chapter let A € Z™*" be a generalized Cartan matrix.

Remark 3.7. The matrix A is called hyperbolic if it is of indefinite type and every
principal submatrix is a direct sum of matrices of finite or affine type, cf. [Kac90,
Chapter 4]. In this case A is invertible, from which it follows that the torus is
self-centralizing.

Lemma 3.8. Let D be a Kac—Moody root datum and let k be a field with |k| > 4.
Let G := Gp(k) with mazimal torus T'(k). Then the center of G is given by

Z(G)={t e T(k): t(c;) =1V ie I,
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3.3 Generalized Cartan matrices and the centralizer of a torus

Proof. By [Rém02, Lemma 8.4.3], Z(G) ={t €T :t(\) =1V A& A}. Fort € T to
be central in G it is already sufficient that ¢ centralizes U, for each simple root «;,
since G = T(Uxq, : @ € I) and T is abelian. Since T acts on Uy, via %¢;, the claim
follows. O

2
—2
root datum. Let k be an infinite field. Then the derived group G of G := Gp(k)
contains the root groups U,, so S := (hy + ho)(k*) is contained in G). By the
previous lemma, S is central in G, in particular, the center of the derived group is
infinite.

In contrast, let G be a reductive algebraic group. Then the derived group G is a
semisimple algebraic group, so its center is finite.

Example 3.9. Let A = < _22> and let D = D2 denote the simply connected

Remark 3.10. If A is invertible and indecomposable, then there are vectors v, w € Z"
such that
A w
I
v (4)

again is an indecomposable invertible generalized Cartan matrix. This is because
the system of inequalities w!A=' # 2 and v,w € Z",v,w < 0,v; = 0 & w; = 0
always has a solution, e.g. take v = w, each v; < 0 and replace v by Av if necessary.
If we start with A invertible of indefinite type, it is inductively clear that there exist
invertible indecomposable matrices of indefinite type for any given dimension.
Conversely, it is easy to produce a matrix A of indefinite type which has arbitrarily
large corank. Indeed, let

2 4
4 2 —6
A= 6 2 —4

-4 2

Then ker A = ((2,1,—1,—2)"), so A is of indefinite type and has corank 1. Starting
from A, it is possible to produce generalized Cartan matrices of arbitrary corank.
Indeed, let

2 —6
B=]1-6 2 -4
-4 2

and let By := diag(2, B, ..., B) denote the (3k+1) x (3k+1) block diagonal matrix.
Let Ej denote the symmetric (3k 4 1) x (3k 4+ 1) matrix with only nonzero entries
above the diagonal (Ej)12 = (Ex)15 = ... = (Ex)13k-1 = —4. Let Cy = By + E.
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3 Further properties of Kac—Moody K-groups

This means that C; = A,

2 -4 —4
-4 2 -6
-6 2 —4
—4 2
—4 2 —6
-6 2 -4
-4 2

and so on. It is clear that the kernel of C}, has dimension k.
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4 Maximal split subgroups

4.1 Split subgroups of groups of Kac—Moody type

An almost split Kac-Moody group G(k) obtained via Galois descent is by definition
a subgroup of a split Kac-Moody group Gp(F). On the other hand, we show in this
chapter that G(k) possesses a maximal split subgroup F'(k) of Kac-Moody type, i.e.
a subgroup endowed with a twin root datum which is locally split and intersects
cach root group V, (k) of G(k) non-trivially.

Example 4.1. Let k be a field and let E|k be a separable extension of degree 2. Let
h : E3 — E be a Hermitian form of Witt index 1 with associated unitary group SUs,
which can be thought of as an algebraic group defined over k. Then SUz(k[t, ¢ )
is an almost split Kac—Moody group obtained from the split Kac-Moody group
SL3(k[t,t™1]) via Galois descent, cf. Example 2.5.

On the other hand, there is an inclusion SLy(k[t,t™1]) < SUs(k[t,t™!]), which follows
by Example 2.11, as for the associated root groups (Va(k)acomw,s)) of SUs([k[t, t71])
it follows that (QP(V (k) : o € ®) = SLy(k[t, t71]).

The twin building associated to SU3(F,[¢,¢7']) is a semi-regular twin tree with valen-
cies (14 ¢, 1+ ¢*) in which the twin building associated to SLy(F,[t,¢7!]), a regular
twin tree with valency 1+ ¢, embeds.

Figure 4.1: The twin trees associated to SLy(Fa[t, t71]) < SU3(Fo[t, t7)

Example 4.2. Let k be a field of characteristic # 2, n > 2 and let ¢ = (a1, ..., ay)
be a quadratic form of Witt index 1 over k. We may assume that (a1, as) = (1, —1)
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4 Maximal split subgroups

and that (as,...,a,) is anisotropic. Let G := SO(q) denote the associated special
orthogonal group.

Forr =2,...,n, let ¢, := (a1, ...,a,) denote the truncated quadratic form and let
Gy, = SO(g,) denote the associated special orthogonal group. Note in passing that
T := Gy, (k) = k* and G, (k) = PGLy(k) — this follows from the fact that G, is a
split three-dimensional semisimple group, so it is either isomorphic to SLy or PGLo,
and these groups can be distinguished by the torus action on the root groups.

The point of this example is that there is a chain of reductive k-groups

T=G,<Gu<. . <G, =G

which share the same maximal torus 7' = G, of G. While G, is split and contains
the maximal split torus 7', clearly it is not the only subgroup of G, with this
property — any G := SO((1, —1,a;)) for some i € {4,...,n} has the same property,
and G, G} are not conjugate over k if aza; ' ¢ k%

The following is a classical result by Borel-Tits ([BT65, Theorem 7.2]).

Theorem 4.3. Let G be a connected reductive k-group. Let S be a mazimal k-split
torus, ® = ®(S, G) the system of k-roots of G and " C ® the set of non-multipliable
roots. Let A be a set of simple roots of ' and for each a € A let E, < U, be a
k-subgroup which is normalized by S and is k-isomorphic to G,. Then there is a
unique connected k-split reductive k-subgroup F which contains S - (E, : a € A).

We prove a generalization of this result for a group G endowed with a 2-spherical
root datum, which might be of independent interest as it provides “many” sub-twin
buildings of the twin building associated to G. In our context, it will be used to
construct a regular diagonalizable subgroup H < G which is mapped under any
isomorphism ¢: G — G’ again to a regular diagonalizable subgroup.

In a first step we define the necessary ingredients of a locally split subgroup and
then go on to prove that these ingredients “integrate” to a locally split group of
Kac—Moody type.

Recall that a Coxeter group W = ((s;)ies @ (s;5;)™ = 1) is said to be 2-spherical
it m;; < oo foralli,jel.

For elements x,y € G write Yz := yay~!. For a group G, let G* := G\ {1}.

Definition 4.4. Let W = ((8;)ier : (si5;)™7 = 1) be a 2-spherical Coxeter group
and let G be a group endowed with a twin root datum (H, (Uys)acaw,s))-

Let A = {ay,...,an} denote the set of positive simple roots.

Let Ty be a subgroup of H and for each o € A let E, < U, be a non-trivial subgroup.
For a € A, let s, := m(v) for somev € EF.

Then (Ty, (Ey)acna) s called a basis for a root subdatum if the following condi-
tions are satisfied:

(RSD 1) For alli,j, (5a,54,)™ € Ty.
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4.1 Split subgroups of groups of Kac—-Moody type

(RSD 2) For allr,t € EX, m(r)m(t)~' € Ty.
(RSD 8) For all « € A, E,, is normalized by Ty and each s, normalizes Ty.
(RSD 4) Forv € E? there exist vy, vy € EY such that m(v)(:= v'vv") = **vy-v-%v,.

(RSD 5) If X < Ua,) is a subgroup normalized by Ty and x = wyuy € X with
uy € Ula,p), uz € Ug, then ui,up € X.

As the name suggests, a basis for a root subdatum gives rise to a subgroup which
has a root datum.

Theorem 4.5. Let (W, S) be a 2-spherical Cozeter group, let & = &(W,S) denote
the set of its roots and let A be the set of simple roots.

Let G be a group endowed with a twin root datum (H, (Us)acaw,s))- Let (Ta, (Ea)aca)
be a basis for a root subdatum.

Let M :=Ty(sq : v € A), V:i=(E,: € A) and F := (M,V). Set F, := FNU,
for vy € .

Then (Ty, (Fy)ew) is a twin oot datum for F.

The proof, which will be given after a couple of preparatory lemmas, is very much
inspired by [BT65, Proof of Theorem 7.2].

Lemma 4.6. Let G be a group endowed with a twin root datum. Let o, be two
distinct positive simple roots. Then U_, commutes with Ug.

Proof. The set ¥ := {—q, 3} is a prenilpotent set of roots since sz¥ C &~ and
so¥ C ®*. The open root interval (—c, 3) is empty: Any positive root in [—a, ]
must be mapped to a negative root by sz and hence coincides with 3, while any
negative root in [—a, 8] must be mapped to a positive one by s, and hence coincides
with —a. By the commutator axiom, [U_q,Ug| < Ui—qp) = 1. O

We first analyze the structure of V.

Let E_, = *FE,. Then E_, is independent from the choice of v € E¥ in the
definition of s, = m(v) as for v,v" € EX, m(v) and m(v’) differ by an element of Tj
by (RSD 2), and T, normalizes E, by (RSD 3).

For o, f € Alet E(op) := [Eq, Es] denote the commutator subgroup. Then E, g
is normalized by Ej, since for a € E,,b,c € Eg,

cla,blc™! = caba*b"'c™! = [c, a][a, cb).
Let E(aﬁ} = E(a,g) - Eg.
Lemma 4.7. Let o, f € A be two distinct positive roots.
(i) Eag = (uauguy’ : ug € Eq,ug € Eg,ug # 1).

(it) Ea,pg is normalized by s,.
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4 Maximal split subgroups

(ZZZ) Let E(; = <E(a,5} P E A,B 7'é Oé). ThenV = E, X E(;.

Proof. (i) Let X := (uquguy' : uq € Ey,ug € Eg,uy # 1). Then X < Ef, g
is clear. Conversely, since E, and Ejs are normalized by 7y, so is X. For
U, € EX, ug € Eg, note that uqugu,' = [ua, uglug € U s Us. By (RSD 5) it
follows that ug and [ua, ug] are contained in X, from which the claim follows.

(ii) By (i), it suffices to show that s, (uqusuyt)s,' € E(ag, where u, # 1. Write
So = uyupu ! for some u; € E,,uy € E_, — this is legitimate as u, # 1 and
Sq is defined only up to elements of Tj.
Then

—1y 1 —1, 1 —1
Sa(Uapl, " )S, T = UrlgUgly Uy~ = UjUal;

since uy € E_, commutes with ug by Lemma 4.6, from which the claim follows.

(iii) It is clear that E, and E!, are subgroups of V' which generate V. From (ii) it
is immediate that E, normalizes E!. Let v € E, N E!,. Then

Sfep e B, N*E, =FE_,NE,<U_NU; = 1.

Lemma 4.8. (i) There is a canonical isomorphism 7 : M /Ty — W.
(ii) Let v € A and w € W be such that wa is positive. Then *E, <V

Proof. (i) Note that T, is a normal subgroup of M by (RSD 3); by (RSD 1) it
follows that M /T, = W.

(ii) Since T, normalizes E,, “E, is well-defined. If [(w) = 0, there is nothing to
prove, so suppose [(w) > 1. Since wa > 0, we can write w = sgw’, where [
is a simple root distinct from « and w’ is such that w'a > 0. By induction,
v'p <V = Eg x Ej. Since V'E, < Uya and w'a # (3, it follows that
v Eq < Ejy. Then VE, < *Ej = EJ,.

0

The next step consists of exhibiting a Bruhat decomposition for F'.
Lemma 4.9. The group F' can be written as F = VMV = Uyew VwV.

Proof. The set V - M -V contains V and M, is stable under inversion and closed
under multiplication by elements in V' or T from the right or left. To show that it
coincides with F', it thus suffices to check that it is closed under multiplication from
the right by s,,a € A.

First step. Forae A, E_, CTyE,UTyE, s, E,.

Indeed, 1 € T,E,, while by definition, each v € E*  has the form v = *>vy for some
vo € E,. By (RSD 4), there are vy, vy € E, such that m(vy) = **vjvg®*vy. Then
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4.1 Split subgroups of groups of Kac—-Moody type

Sglsa = 11v0y, i.e. v € E,s,FE,, from which the claim follows.

Second step. Since Ty normalizes V, we can write VMV = Uyew VwV unambigu-
ously. We will show that VwV's, C Vws,VUVwV, from which the claim will follow.

If [(w) =0, i.e. w = 1, then by the first step and Lemma 4.7,
Vsa = Eqsy’*El C E,s84V.

Suppose [(w) > 1 and the claim is proven for all w" with {(w’) < l(w). Two cases
can occur:

(1) l(wsy) > l(w). This is the case if and only if wa > 0. Then wE,w™' <V by
Lemma 4.8 and we calculate

VwVs, = VwEy.soE, = VE,ws, B, C Vws,V.

(2) l(wsy) < l(w), i.e. war < 0. Then we can write w = w's,, with I(w’) = I(w)—1 > 0.
We calculate

VwVsy, =VwsaEysoE, = VW E_E, CVW'V UVWVs,V =Vu'VUVuw's,V.

Here the last equality follows because w'a > 0, which allows us to apply the first
case. 0

We can turn to the proof of Theorem 4.5.

Proof. For v € ®\A and w € W, € A such that wa = 7 choose some lift w € M
of w and set £, := WE, 0. Then for each v € @, E, C F,. Assume for the moment
that equality holds (in particular, £, will then not depend on the choice of o and
w).

Then clearly for each v € ®, F, is nontrivial and normalized by 7, by (RSD 3).
By (RSD 4), s, € (FE_q, E,), from which it follows that F' is generated by Ty
and (E,,E_, : « € A), i.e. (TRD 1) holds. Set V_ := (F, : v < 0). Then
VoNnV <U_-NU; = {1} and therefore (TRD 4) is satisfied. Similarly, (TRD 2)
holds by the definition of F, and the corresponding property for G.

Axiom (TRD 3) holds for F,, v € A by (RSD 4).

It remains to prove that I, = E. for v € ®, in particular F,, = E, for a € A which
is not clear a priori.

First step. If v € A, then FNU, = E,,.
By the Bruhat decomposition F' = VMV it follows that F N U, = V NU,. Since
V = E, x E. it follows that

sy (FNU,)s;' =8, Vs 'NU_,=E_E.NU_,=E_,- (E,NU_,) = E_,,

from which it follows that F N U, = E,.
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4 Maximal split subgroups

Second step. If § € P\A is arbitrary, then F'NUs = Es.
Suppose first that 6 € ®*. Let w =@ € M, € A as in the definition of Es. Then

wFNUs)w ' =w(VNUs)w ' =wVw ' NnU.NU,) CVNU, =E,.

By definition, wE,w~! C Fs, and we have just shown the reverse inclusion, i.e.
Fs = Ej.

Clearly the same reasoning works when 6 € ®~, which finishes the proof of the
theorem. O

Remark 4.10. The statement of Lemma 4.9 that F' = Uy,ew VwV can be thought of
as the fact that F'is a graded subgroup of G. This means that whenever f = bywby
with b1,bo € B and w € W is the Bruhat decomposition of an element f € F', then
b1, by and w can actually be chosen to be elements of F'.

Remark 4.11. Let G be a group endowed with a 2-spherical twin root datum

(H, (Us)acaw,s)). Then (H,(Uy)aca) meets conditions (RSD 1)-(RSD 4), but not
necessarily (RSD 5). Indeed, if (RSD 5) is met, it follows from the proof of the
preceding theorem that U, = (U, : @ € A). This is satisfied for isotropic reductive
k-groups with |k| > 4, but fails e.g. for Go(Fy).

Remark 4.12. A geometric interpretation of the theorem is as follows: Let A be the
twin building associated to G, A the twin apartment determined by H and Ct, O~
the two opposite chambers corresponding to By, B_. On each panel F, of C, fix
chambers according to the action of E, on F,. Condition (RSD 4) ensures that these
form a sub-Moufang set. The remaining conditions are the necessary compatibility
conditions which ensure that these chambers give rise to a sub twin building with
A as a twin apartment.

In particular, the twin building A(F) associated to F' embeds in A(G) as a closed
convex subcomplex. Methods from [Mih99] can be used to give a purely combina-
torial argument of this fact.

4.2 The case of almost split Kac—Moody groups

We apply Theorem 4.5 to almost split Kac-Moody groups.

Let G be a group endowed with a twin root datum (H, (Uy)acaw,s)). Then the twin
root datum is said to be locally split (over a family of fields (k4 )ace) if H is abelian
and for each a € ®, (U,,U_,) is isomorphic to either SLy(k,) or PSLa(ky).

Theorem 4.13. Let k be an infinite field and let G(k) be a 2-spherical almost split
Kac-Moody group obtained by Galois descent. Let (Z(k),(Va)acomw,s)) denote its
canonical twin root datum and let Ty(k) < Z(k) be a mazimal k-split torus.

For each simple root a € A let E, <V, be a subgroup isomorphic to (k,+) which
is normalized by Ty(k).

Then there is a subgroup F'(k) < G(k) which contains Ty(k){E, : a« € A) and which
is endowed with a locally split twin root datum.
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Proof. Since G is assumed to be 2-spherical, for each pair of simple roots {«, 5} C A
the group X,p := Z(k)(Via, Vip) can be identified with the k-points of a reductive
algebraic k-group of relative rank 2. By Theorem 4.3, there is a split subgroup
Yas < Xop which contains Ty(k) and E,, Eg. Now Y, is endowed with a spherical
twin root datum, the properties of which imply that the axioms (RSD 1) to (RSD
4) of a root subdatum are satisfied, since these need to be checked only for rank 2
subgroups.

Since k is infinite, Ty(k) is Zariski dense in Ty. For a subgroup X < V{, 5 normal-
ized by Ty(k) it follows that X is normalized by T,. By [BT65, Proposition 3.11] it
follows that (RSD 5) is satisfied as well.

Theorem 4.13 gives the existence of F', and from the fact that the group Y, 3 is a split
reductive group it is immediate that the twin root datum for F is locally split. [

Definition 4.14. Let k be an infinite field and let G(k) be a 2-spherical almost split
Kac-Moody group obtained by Galois descent. Any group F obtained from G(k) in
this way is called a maximal split subgroup of G.

Remark 4.15. It is always poosible to find subgroups E, as required in Theorem 4.13:
just let E, be a one-dimensional k-subspace of 2°(V,,). Then Proposition 3.1(iii) b)
shows that F, is normalized by T, (k).

In particular, any almost split 2-spherical Kac—-Moody group is ”"sandwiched” be-
tween two split Kac—-Moody groups: For a splitting field F of G, one has

F(k) < G(k) < G(E).

Here the Coxeter type of F(k) is the same as the Coxeter type of G(k), while the
type of G(k) equals the type of G(E) if and only if G is already split split over k.

Remark 4.16. We used Theorem 4.5 to produce a locally split subgroup. The theo-
rem is more general, though, as arbitrary sub-Moufang sets are allowed. In particu-
lar, we recover Example 4.2.

Remark 4.17. Another example of a basis for a root subdatum (7, (Ey)aca) as re-
quired in Theorem 4.5 comes from subfields: If & C K and Gp is a constructive
Tits functor, then take T, := T'(k) and E, := U,(k) inside Gp(K). Of course, the
theorem can be applied more than once, i.e. pass first to a locally split subgroup
and then to k-rational points.

Finally, just as Example 4.2 suggests, there is a chain condition on groups containing
a maximal split subgroup.

Proposition 4.18. Let k be an infinite field, char k # 2 and let G(k) be an almost
split Kac—Moody group over k obtained by Galois descent. Let F' < G be a maximal
split subgroup. Let

F=H <Hy<...
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4 Maximal split subgroups

be a chain of subgroups which are obtained by integrating a root subdatum and such
that H; = HJ, i.e. H; is generated by its root groups. Then the chain eventually
becomes stationary.

More precisely, the length of a strictly increasing chain is bounded by Z dimy, V.
a€A

Proof. For each simple root aw € A with corresponding root group V, (k) < G(k) let
H;,:= H;NV,. Then H; ,N%(V,) is a k-sub-vectorspace since it is invariant under
Tu(k), similarly for (H; o - Z(Va))/Z (Va).

Recall from Proposition 3.1 that V, (k) is an extension of two finite-dimensional k-
vector spaces. This implies that (H;,) eventually becomes stationary. Since the H;
are supposed to be generated by their root groups, the first claim follows.

Since in a strictly increasing chain of subgroups, in each step there is some a € A
such that H, , is strictly contained in H;.; o, the second claim follows. O
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In this chapter we are concerned with the following problem, which appears in
[Cap09, Introduction].

Problem. Let k, k' be two fields. Let Gp be a constructive Tits functor, let K be
a connected reductive k-isotropic k-group and let ¢: K(k) — Gp(k') be a homomor-
phism. Find conditions under which ¢ has bounded image.

It will turn out that the transcendence degree of k over its prime field plays a central
role in this problem.

Motivation. The fundamental rank 1 groups X, (k) associated to an almost split
Kac—Moody group are k-points of a connected reductive k-isotropic k-group. Then
an isomorphism ¢: G(k) — G'(k’) of two almost split Kac-Moody groups will induce
by restriction several representations ¢|x, : X, (k) — G'(K’). If it can be shown that
each ¢|x, has bounded image, it will follow that ¢ maps bounded subgroups to
bounded subgroups. By the results of [CMO06], any isomorphism which preserves
bounded subgroups will be standard:

Definition 5.1. Let G, G" be two groups endowed with twin root data (H, (Us)acaw,s))
and (H', (V)geaw,s)). Then a group isomorphism ¢: G — G’ is called standard
if there is © € G’ and a bijection i: (W, S) — ' (W', S") such that ¢’ :=intx o ¢
satisfies

(i) ¢'(H) = H'
(i) ¢'(Ua) = Vi)

This approach then reduces the isomorphism problem for almost split Kac—Moody
groups to the problem of showing that certain homomorphisms have bounded image,
i.e. to the problem which appears above.

After some preliminary remarks in the first section, we show that a necessary con-
dition for the field k appearing in the problem is that £ have finite transcendence
degree over its prime field ko — if tr. deg(k|ko) = 00, we construct homomorphisms
with unbounded image.

In a next step, we consider the case when tr. deg(k|ky) = 0, i.e. when k is an alge-
braic extension of its prime field. The main result in this direction is that if %k is a
(possibly infinite) algebraic extension of Q, any homomorphism ¢: SLy(k) — G'(k)
has bounded image.
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Finally, for arbitrary transcendence degree we give a geometric criterion which im-
plies boundedness. This criterion can be used to recover Caprace’s results for iso-
morphisms of split Kac—-Moody groups over fields of characteristic 0.

5.1 Preliminaries

Remark 5.2. Let G be a group endowed with a twin root datum. Then the standard
positive Borel group B, fixes the standard positive chamber Cy in A, , while it
does not have a bounded orbit in A_ as soon as W is not spherical. Indeed, suppose
that B, is bounded. Then there are wy,...,w, € W such that By C U} ;B_w;B_.
Then

\J B.wB_=G=B_B,B_C|JB_wB-_
weW =1
from which it follows that W is finite.
More generally, let {«, §} be a pair of positive roots which is not prenilpotent and
let uq € U \{1}, ug € Usg\{1}. Let U’ := (uq,ug). Then U’ fixes the standard
positive chamber C,, while the U’-action on A_ does not have a bounded orbit.
Indeed, since {o, 8} is not prenilpotent, s,sp has infinite order. By induction

B_(uqup)"™'B_ C (B_(uqug)"B_)(B_uoB_)(B_usB_)
— (B_(5035)"B)(B_s4B_)(B_s;B.)
B_(s455)" "' B_

where the last equality follows from the BN-pair axioms and the fact that the length
of the word increases. Then the first inclusion is an equality since B_(u,ug)" ' B_
is a double coset, so U’ is not contained in a finite number of double B_-cosets.
Although the two halves of the twin building are related to each other via the codis-
tance, this example emphasizes the fact that the codistance alone gives a rather
weak connection between the halves of the twin building when studying the action
of subgroups of G.

Let G be a group and (U;);e; a family of subgroups. Then G is boundedly gener-
ated by (U;)es if there exists n € N such each g € G is a product g = gy ... g, of
at most n elements g; € U U;.

Let X be a complete CAT(0) space and let G be a group which acts by isometries
on X. Then G is called bounded if there is a bounded G-orbit, i.e. there is some
x € X such that diam G - ¢ < co. By the Bruhat-Tits fixed point theorem, this is
equivalent to the fact that G fixes a point of X.

In our applications, X will be the CAT(0) realization of one half of the twin building
associated to an almost split Kac—-Moody group G on which a subgroup U < G acts.

We will often use the following lemma.
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Lemma 5.3. Let X be a complete CAT(0) space and let G < Isom(X) be a group
which is boundedly generated by a finite number of subgroups Uy, ..., U,. Then G is
bounded if and only if every U; is bounded.

Proof. This is Corollary 2.5 in [Cap09]. O

Lemma 5.4. Let X be a complete CAT(0) space and N,U < Isom(X). If N
normalizes U and both N and U are bounded, then N and U have a common fized
point.

Proof. As N normalizes U, N -U is a group which is boundedly generated by N and
U, from which the claim follows by the previous lemma. 0

An important fact about Kac-Moody groups is that checking whether a subgroup
is bounded or not can be done by looking at field extensions.

Lemma 5.5. Let E be a field and let k be subfield of E. Let Gp be a Tits functor
and let G := Gp(F). Let H be one of the following subgroups of G:

(i) H = G(k), where G(k) is an almost split Kac—Moody k-group obtained from
Gp(E) by Galois descent.

(i) H = Gp, (k) for some subfunctor Gp, = (if Gp is simply connected).
(iii) H = L(k), where L is a Levi factor of G(k).

Let U < H. Then U is bounded with respect to H, i.e. has a fixed point in both
AL (H),A_(H) if and only if U is bounded with respect to G, i.e. has a fized point
in both A, (G), A_(G).

Proof. Note that for each H as above, H is endowed with a canonical twin root da-
tum, so there is a twin building A(H) = (A4 (H),A_(H)) associated to H. More-
over, A(H) embeds as a closed convex subbuilding into the twin building A(G)
associated to G. If U fixes points in both halves of A(H), the same points serve as
fixed points in A(G). If U < H fixes a point in A(G), it must also fix a point in
A(H) since it leaves this closed convex set invariant, cf. [BH99, Proposition 11.6.2
(1) .

The following lemma is a standard fact in the theory of algebraic groups, which has
a geometric meaning in the context of twin buildings, as we will see shortly.

Lemma 5.6. Let k be a field of characteristic 0 and let G be an algebraic group over
k. Let G, denote the unipotent radical of G. Let P be a linearly reductive subgroup
of G such that G = G, P and let Q be any linearly reductive subgroup of G. Then
there exists t € G, (k) such that tQ(k)t~ C P(k).

Proof. This is Proposition VIII.4.2 in [Hoc81]. O

The following proposition states that abstract representations of SLy(Q) are in fact
rational.
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Proposition 5.7. Let k be a field of characteristic 0 and letn € N. Let p: SLy(Q) —
GL, (k) be a group homomorphism. Then there is a homomorphism of algebraic
groups 1: SLy — GL,, defined over k such that 1|si,q) = ¢.

Proof. This is in [Ste85, p. 343]. Another proof is given in [Cap09, Lemma 5.9]. O
The following proposition is a refinement of an important result by Caprace.

Proposition 5.8. Let k be a field and let G(k) be an almost split Kac—Moody group
obtained by Galois descent. Let ¢: SLy(Q) — G(k) be a homomorphism. Then im ¢
is bounded and fizes two opposite points of A(G).

Proof. Let E be a field over which G splits and let ¢: G(k) — G(E) denote the
canonical inclusion. By [Cap09, Corollary 5.8|, ¢ o ¢ has bounded image and if ¢
is non-trivial (which we may assume), E has characteristic 0. By Lemma 5.5, im ¢
fixes points z,y in both halves of A(G(k)). Then Q := {z,y} is contained in a
twin apartment, i.e. it is balanced. Let ¢ := Adgop: SLy(Q) — GL(Wq). Then 1,
although a priori only an abstract representation, is in fact rational by the previous
proposition. It follows that the Zariski closure C' of ¥(SLy(Q)) is a reductive group.
By Proposition 5.6, C' can be conjugated inside a Levi factor of Adg(Fix(2) by an
element of G(k). This Levi factor is precisely the stabiliser of two opposite points,
from which the claim follows. O

5.2 Unbounded algebraic subgroups

Let k be a field with infinite transcendence degree over its prime field and let K be
a connected k-isotropic algebraic k-group. In this section, we will give a construc-
tion of a homomorphism ¢: K(k) — G(k) with unbounded image, where G(k) is a
certain Kac—Moody group.

In the case of affine Kac—-Moody groups, there is an easy criterion to check whether
a subgroup is bounded or not. Let k be a field and let deg,, deg,-: denote the
valuations of k(t) with ¢t and ¢~! as uniformizing parameter, respectively. For an
element

Ny
f=> ait' € k[t,t]

i=Np
with ay, # 0,ay, # 0 this means that deg,(f) = No. Since deg, 1 (f) = deg, f(3) it
follows that deg,—.(f) = —N.
For a matrix g = (g;;) € SLn(k[t,t7]), let deg,(g) := max deg, g;; and similarly let

]
deg;-1(g) := max deg,—1 gi;.
irj

With this notation, we have the following:

Proposition 5.9. A subgroup U of SL,(k[t,t7']) is bounded if and only if there
exists N € N such that |deg,(g)| < N and | deg,—1(g)| < N for all g € U.
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5.2 Unbounded algebraic subgroups

Proof. The positive (resp. negative) half of the twin building can be identified with
the affine building of SL,,(k(t)) with the discrete valuation deg, (resp. deg,1). By
[ABO8, Ex. 11.40] U is bounded if and only if there is an upper bound on the
absolute values of the matrix entries, which amounts to the claim. O

Let K be a reductive algebraic group defined over a field £ which is isotropic over
k.

Let £ denote the Lie algebra of K. Then K(k) acts on €(k), which is isomorphic
to k" as an abelian group, via the adjoint representation. Let G := SL,.(k[t,t™'])
and consider the following subgroup:

v _ Adg U

g € K(k),v € (k[t,t""])"

1
Note that det Ad g = 1 is automatic since K is reductive. Indeed, it suffices to check
this over an algebraically closed field. Then K is the almost direct product of its

center C' and its derived group [K,K]. Now AdC is trivial, whereas det Adg = 1
for each element ¢ of the derived group.

Lemma 5.10. As an abstract group, V' is isomorphic to

AdK(E) x @ e(k),

i€z
where the action of AAK(k) on each summand of the direct sum is the natural one.

Proof. This is clear since (k[t,t7],+)" = @,z k™ by decomposing an element into
its homogeneous components, and this decomposition is preserved under the action
of Adg. The given matrix representation is just the standard one for a semidirect
product of two linear groups. O

Until the end of this section, assume that the transcendence degree of k over its
prime field kg is infinite. Let T' = (¢;);cz be an infinite set of algebraically inde-
pendent elements. Complete T" by a set T” to a transcendence basis for k over k.
For each ¢ € Z, consider the derivation d;: k — k obtained by extending the zero-
derivation on ko(7"UT\{t;}) to k by setting d;(¢;) = 1, i.e. §; can be thought of as a
partial derivative with respect to t;. By the basic theory of derivations (cf. [Jac89]),
this is clearly possible.

Since for each x € k there is a finite set I, such that = is contained in an algebraic
extension of ko(t; : i € 1), it follows that for each = € k, 6;(x) # 0 for only finitely
many .

The following observation is due to Borel-Tits [BT73, Example 8.18 b)] and is elabo-

rated on in the paper of Lifschitz and Rapinchuk [LRO1]. For a closed subgroup G of
GL, (k) and 0: k — k a derivation, the matrix g~! - 6(g) is an element of g = Lie G,
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5 On bounded subgroups

where §(g) is the matrix obtained by applying § to all entries of g. Furthermore, the
mapping ¢s: G — G x g,9 — (9,97 - dg) is a group homomorphism, where G acts
on g via the adjoint representation.

Following a suggestion by Caprace, we use this construction to describe the desired
homomorphism with unbounded image.

Theorem 5.11. Let k be a field with infinite transcendence degree over its prime
field. Let K be a k-isotropic reductive k-group and let n := dimK. Let G be a
Kac—Moody group whose diagram has a subdiagram of type A, such that the derived
group of the corresponding Levi factor H(k) is isomorphic to SL,,1(k[t,t71]).

Let V = AdK(k) x @z t(k) < H(k) < G(k) be as above and let (0;);cz be deriva-
tions as above.

Then the mapping

p: K(k) = G(k), g~ (Adg, (97" - di(9))iez)
s a group homomorphism with unbounded image.

Proof. Due to the construction of the derivations, for each g € G, (g7'-6;(g)) # 0 for
only finitely many 7 € Z, hence ¢ is well-defined. Since each 5, is a homomorphism,
SO 1s .

Let T(k) < K(k) be a k-split torus. Then for each i there is an element ¢; €
T(k) = (k*)" such that g~ - 6;(g) # 0. This translates via Proposition 5.10 to the
fact that ¢(g;) has a matrix entry which has a homogeneous component of degree
i. In particular, the degrees of the matrix entries of p(K(k)) are unbounded, which
proves via Proposition 5.9 that ¢ has unbounded image in H. By Lemma 5.5, im ¢
is unbounded in G, too. O

Remark 5.12. If a field k£ is uncountable, it is of infinite transcendence degree over
its prime field. In particular, a local field has infinite transcendence degree over its
prime field, as follows from the classification of local fields.

This result is interesting in a different context, too. Following Farb [Far09], a group
G is said to have property FA, if every G-action by cellular isometries on an n-
dimensional CAT(0) complex has a global fixed point.

Note that the geometric realization of SL,, 11 (k[t,t7!]) has dimension n, since the
apartments are tessellations of R™. This implies the following corollary.

Corollary 5.13. Let k be a field with infinite transcendence degree over its prime
field and let K be a reductive k-isotropic k-group of dimension n. Then K(k) does
not have FA,,.

The following discussion, leading up to Corollary 5.16, aims to make precise the
informal statement that the space of quasi-morphisms of a Kac—-Moody group G, al-
though infinite-dimensional, cannot be used to check whether a subgroup is bounded
or not. We quickly recall the relevant definitions and results in this direction.
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5.2 Unbounded algebraic subgroups

For a group G, a map ¢: G — R is called a quasi-morphism if it satisfies

sup |¢(gh) — ¢(g) — (k)] < oc.

g,heG
Let QH(G) denote the real vectorspace of all quasi-morphisms of G. Then [*°(G),
the space of bounded real-valued functions on G, and Hom(G, R) are subspaces of
QH(G). Let QH(G) := QH(G)/(I°(G)®Hom(G, R)) denote the space of non-trivial
quasi-morphisms of G.

Theorem 5.14. Let k be a field and let G := Gp(k) be a split Kac—Moody group
such that the Weyl group (W, S) of G is irreducible and neither spherical nor affine.
Then QH(G) is infinite-dimensional.

Proof. This is [CF10, Theorem 1.1]. O

Let k be a local field and let G be a connected simply connected almost simple
algebraic group defined over k of k-rank > 2. By [BM99, Lemma 6.1], any continuous
quasi-morphism f: G(k) — R is trivial. When one restricts to G = SL,, (k) for n > 3,
it is possible to drop the continuity assumption.

Proposition 5.15. Let k be a field and let n > 3. Then any quasi-morphism
f: SL,(k) — R is bounded.

Proof. The group SL, (k) is boundedly generated by its root groups U,, so it suffices
to show that f is bounded on each U,. Since n > 3, any two elements a,b € U, \{1}
are conjugate via some diagonal matrix. Indeed, without loss of generality let U, =
I, +Fk-ejp where [, is the identity matrix and e;, is the matrix with the only non-zero
entry (e12)12 = 1. Then diag(t,1,...,1,t71) conjugates I,, + e1o to I,, +tejo. Since f
is bounded on conjugacy classes, the claim follows. O

For a group homomorphism ¢: H — G there is a pull-back ¢*: QH(G) — QH(H)
given by ¢*(f)(x) := f(p()).

Corollary 5.16. Let k be a field with infinite transcendence degree over its prime
field. Let G := Gp(k) be a split Kac-Moody group such that G contains SLy(k[t,t™])
as the derived group of a Levi factor and such that the Weyl group of G is irreducible
and not affine. Then QH(G) is infinite-dimensional.

There is a homomorphism

such that im ¢ is unbounded yet | f(im ¢)| < Ky for each quasi-morphism f € QH(G)
and a constant Ky depending on f.

Proof. Note first that such a Kac-Moody group G exists, as it suffices to extend the
root datum associated to SLy(k[t,t7']) to make the associated Cartan matrix to be
of indefinite type. Then the first statement follows from Theorem 5.14.

Let ¢: SL3(k) — G be the homomorphism with unbounded image constructed in
Theorem 5.11. For f € QH(G), the pull-back ¢*f is bounded by Proposition 5.15,
from which the claim follows. O
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5 On bounded subgroups

5.3 The case of number fields

While in the previous section we considered a field with infinite transcendence degree
over its prime field, this section is concerned with the case where the field k is a
finite algebraic extension of Q.

We start with a variation on the classical primitive element theorem.

Lemma 5.17. Let L|Q be a finite field extension and let x € L be a primitive
element, i.e. L = Q(x). Then for n € N, there exists y € L such that y,y>, ..., y"
all are primitive elements.

Proof. Set k := n! and observe that it is enough to find an element y such that y*
is primitive, since then for any p dividing k we clearly have Q(y?) 2 Q(y*) = L.
Consider the sequence y; := z+414,7 € N and set z; := v,;*. Since there are only finitely
many intermediate fields between L and @Q, by the pigeonhole principle there is a
subsequence (z;,) such that Q(z;, ) = Q(z;,) for all i, .

Note that in the polynomial ring Q[t] for pairwise different aq,...,ar41 € N the
polynomials (¢ —a;)* form a basis of the subspace of polynomials of degree < k, since
the coefficient vectors form a Vandermonde matrix (up to scaling). In particular,
t lies in their Q-span. Applying this analysis to Q(z;,) then shows that this field
contains x and hence equals L. O

Lemma 5.18. Let L be a number field of degree n. Let v € L be such that 2 is a
primitive element. Then for d := diag(x, 2™ "), SLy(L) is boundedly generated by d
and SLy(Q).

Proof. Set u,(r) := (§7) and note that d'u, (r)d~* = u,(ra?). This implies that
U :={uy(l) : L € L} is generated by the subgroups d'Ugd~*,i =0...,n— 1, where
n=[L:Q].

Now SLy(L) is boundedly generated by Uy, and sUps™!, where s := (9 '), i.e. by
2n conjugates of Uy. O

Corollary 5.19. Let K be a field and let Gp be a Tits functor. Then for any number
field L, every homomorphism ¢: SLa(L) — Gp(K) has bounded image.

Proof. Since Ug C SLy(Q) has fixed points in both halves of the twin building by
Proposition 5.8, so does every conjugate of Ug. By the preceding lemma and Lemma
5.3, the claim follows. O

Remark 5.20. (i) Similarly one can show: If L|K is a finite extension, then SLy(L)
is boundedly generated by a finite number of conjugates of SLo(K'). Hence any
homomorphism ¢: SLy(L) — Gp(k') such that im p(SLe(K)) is bounded has
bounded image.

(ii) As already remarked in [Cap09, Corollary 5.8], via bounded generation the
above implies that any homomorphism of a split Chevalley group over a num-
ber field has bounded image.
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5.4 The case of infinite algebraic extensions

The fixed point set of SLy(L) might be smaller than that of its subgroup SLy(Q), as
the next example shows.

Example 5.21. Let L be a number field of degree d > 1 and let 01,09: L — C be
two different embeddings. Let G' = SLy and consider the homomorphism

p: G(L) = G(C) x G(C), g = (a1(9), 02(9))-

Postcomposing with the standard inclusion G(C) x G(C) — SL4(C), G(L) then
acts on the spherical building associated to SLs(C). While G(Q) fixes the residue
R corresponding to the subspace U := ((1,0, 1,0),(0,1,0, 1)), the group G(L) does
not fix it.

In particular, p(G(Q)) is not Zariski dense in the closure of p(G(L)): the closure
of (G(Q)) is the diagonal subgroup of the closure of ¢(G(L)), which is SLy(C) x
SLy(C). In particular, the dimension of the Zariski closure increases.

This observation leads to the proof of Theorem 5.31 in the next section.

5.4 The case of infinite algebraic extensions

In this section we address the question of infinite algebraic extensions. We use Mar-
gulis’s rigidity result that any abstract representation of SLo(L(S)), where L(S) is
a certain subring of a number field, has semisimple Zariski closure.

Recall first that for a locally compact topological group G, a lattice I is a discrete
subgroup of G such that G/I" has a finite invariant measure. For locally compact
topological groups G1,...,G,, alattice ' < Gy x ... x G, is said to be irreducible
if the projection of I' on each factor G; is dense in G;. If for each i, G; = G;(k;),
where k; is a local field and G; is a connected semisimple k;-group without compact
factors, then I' < Gy x ... x G, is irreducible if and only if no subgroup of finite
index of I" can be represented as the direct product of two infinite subgroups (cf.
[Mar91, Introduction]).

The reference for the following paragraph is [Mar91, Introduction].

Let L be a number field and let R be the set of all (inequivalent) valuations of L.
Let R, denote the set of archimedean valuations of L, and for each v € R let L, be
the completion of L with respect to v. Let | |, denote the absolute value associated
with v.

Let S C R be a finite subset containing all archimedean valuations and suppose
|S| > 2. Let L(S) := {x € L : |z|, < 1 for all non-archimedean v € R\S} be the
ring of S-integral elements of L.

Theorem 5.22 (Borel-Harish-Chandra-Behr-Harder reduction theorem). Let G =
SLy. Then I' := G(L(S)) is an irreducible lattice in Gg := [l,es G(Ly).

Proof. This is the special case G = SLy of the result quoted in [Mar91, Page 1]. O
The following lemma combines several standard facts about lattices. For lack of a

reference, we include a proof.
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5 On bounded subgroups

Lemma 5.23. Let I' = G(L(S)) be as above. Then there is a subgroup I'yo < T' of
finite index such that Ty has trivial center and is an irreducible lattice in Gg.

Proof. Selberg’s lemma for finitely generated linear groups implies that I is virtually
torsion-free, i.e. there is a subgroup 'y < I' of finite index which is torsion-free.
Since I'y < T' and vol(G/Ty) = [[' : Tg) vol(G/T"), I'y is a lattice.

By the second criterion for irreducibility given above, it is clear that I'y is irreducible,
as a direct product of finite index in I'y would be of finite index in T.

The Borel density theorem implies that the center of I' is central in Gg. Since Z(Gg)
is finite, any central element in 'y has finite order, hence must be trivial. O

In this setting, Margulis’s Rigidity Theorem takes the following form.

Theorem 5.24. Let Gg = [[,cq SLa(Ly) be as above and letI" < Gg be an irreducible
lattice. Let K be a field of characteristic 0, F an algebraic group defined over K and
¢: ' = F(K) a homomorphism. Then the Zariski closure of o(I') is a semisimple
algebraic group defined over K.

Proof. This is Theorem 3 of [Mar91, Introduction] adapted to the present situation.
U

Remark 5.25. In general, I' will admit non-trivial finite quotients. If ) is such a
quotient, the natural map ¢: I' = Q < GL,(F) for some n € N and a field F
shows that the Zariski closure of ¢(I') need not be connected.

To prove Theorem 5.31, we will apply Theorem 5.24 to the lattice I'y provided by
Lemma 5.23. Before proceeding to the proof of this theorem, we need some lemmas
on bounded subgroups.

Let U < G(k) be a bounded subgroup of a split Kac-Moody group G(k). Let AV
denote the fixed point set of the U-action on the CAT(0) realization of the twin
building. For z € AY and y € AY let Q(z,y) := {x,y}. Then there is a twin apart-
ment A which contains z,y: choose a chamber C', which contains  and a chamber
C_ which contains y, then there is a twin apartment which contains C'; and C"_.

Qz,y) is a balanced subset of A. Let W := Wq(y),4 denote the Fix(Q(x,y))-
subspace of Up provided by Proposition 1.8. Let U, , 4 denote the Zariski closure
of Ad U‘Wﬁ(m,y),A'

Remark 5.26. The group U, , 4 depends in general on the choice of z and y. For
instance, let U = T be the standard torus which fixes the standard twin apartment
A = (A, A). Let C, be the standard positive chamber and C_ the standard
negative chamber.

Choose zg in the interior of C', and yg in the interior of C'_. Then A(z,y) = 0, i.e.
there is no half-apartment containing both = and y. By the calculation of ker Ad
(see Proposition 1.8) it follows that Uy, .4 = 1.

On the other hand, let a be a simple root and let z; € A, be in the interior of d«
but not in the interior of any other d3, where [ is a positive simple root distinct
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5.4 The case of infinite algebraic extensions

from a. Let y € A_ be chosen similarly. Then A(zy,y1) = A" (21,11) = {a, —a}.
By the calculation of ker Ad it follows that Uy, ,, 4 is a 1-dimensional torus.

The point of this remark is that one has to restrict to bounded subgroups which
have trivial center.

Theorem 5.27. Let k be a field and let G := Gp(k) be a split Kac—Moody group.
Let U < G be a bounded subgroup with trivial center and let x,x' € Ay, y,y € A_
be U-fized points. Let A be a twin apartment which contains x,y and A" a twin
apartment which contains x',y'. Let Uy, 4 denote the Zariski closure of AdUlwy,,
and similarly Uy v 4 for 'y, A’

Then Uy y 4 and Uy 4 are isomorphic as algebraic groups.

Proof. Note first that if xq, yo are two points fixed by U and Ay is a twin apartment
containing them, then the restriction of AdU to Wy, 4.4, is injective: the kernel
of this restriction is central in Fixg{xo, 4o}, so in particular its intersection with U
must be central in U, but U has trivial center.

Step 1. If A" is another apartment containing x and y, then Uy y 4 = Uy y ar.

The group Fixg{z,y} acts transitively on the set of apartments containing x and
y by [Rém02, Proposition 10.4.4 (iii)]. Let g € Fix({z,y}) be such that g4 = A".
Then Ad g conjugates W, 4 to Wy, 4» and hence U, 4 onto U, , ar.

Since Uy, 4 is independent from the twin apartment A containing x, y, we can write
Uy = U,y 4 unambiguously.

Step 2. It suffices to prove that U, = Uy, where x,2',y are contained in a com-
mon apartment and x,x" are contained in a common chamber

Let p: [0,7] = Ay, p(0) =z, p(r) = 2’ be a geodesic, where r := d(z,2’). Then im p
is fixed by U.

Let 0 =1ip < iy < ... <1z =r besuch that p([i;,i;41]) is contained in a chamber Cj,
j=0,...,5—1. Let ; := p(i;). Suppose it is already proven that U, , = U, ., -
Since xg = z,x, = 2’ it then follows that U, , = U, ,, and arguing similarly for y it
follows that Uy, = Uy .

Step 3. Conclusion. Let Fy, F;, be facets containing z, 2’ and maximal with this
property. Then H fixes both F; and Fj» and hence Finp. Replace the geodesic from
x to 2’ by the union of a geodesic from z to a point z in Fjn;» and a geodesic from z
to 2. This allows to assume that I C I’ or I’ C I, without loss of generality assume
that I C I'.

With the notations from Proposition 1.8, let

Ay = A"({z,y}) UA ({2, y}) U —A"({z,y})

and

Ay = A"({a",y) U A" ({2’ y}) U —A"({2', y})-
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Then Ay C Agas I C T,

It follows that W, , 4 € Wy, 4. Since U is contained in GL(W,, 4) < GL(W,, 4),
it follows that the Zariski closure of U, when computed in GL(W,,, 4) is the same
as when computed in GL(W, , 4), from which the claim follows. O

The independence of the fixed points z, y allows us to associate a canonical subgroup
to a bounded subgroup with trivial center.

Definition 5.28. Let k be a field and let G := Gp(k) be a split Kac—Moody group.
Let U < G be a bounded subgroup with trivial center. Let x € A,y € A_ be two
points fived by U. Then AdU := U,,, is called the Zariski closure of U.

Let Addim U := dim Ad U denote the Ad-dimension of U.

We apply this to the study of the fixed point set.

Lemma 5.29. Let U, U’ be two bounded subgroups with trivial center such that
U < U If FixU C Fix U’ then either there exists a finite index subgroup U* < U
such that Fix U' C FixU* or Addim U’ < Addim U.

Proof. Suppose without loss of generality that Fixy(AL) € Fixgr(AL). Consider
the CAT(0) realization of A, and let x € Fixy(Ay)\ Fixy(AL) and y € Fixg(Ay).
Consider a geodesic segment p: [0,7] — A, such that p(0) = z,p(r) = y. Let
s € [0,7] be minimal such that p(s) € Fixy(A;). Let z € Fixg(A_) and let
P :=Fixg{p(s), z}. Then U is contained in the bounded subgroup P.

Note that s > 0 and that for some € > 0 the segment [p(s — ¢), p(s)] is contained in
a residue R’, which is a proper residue of the spherical building associated to p(s).
This in turn says that Ad U’ is contained in a proper parabolic P’ of P, while Ad U
is not. If the connected component of the identity of AdU is not contained in P,
we must have Addim U > Addim U’ by [Spr98, 1.8.2] applied to Ad U " and Ad U

Otherwise let U* be the preimage of AdU N AdU ®in U. Then U* is of finite index
in U and Ad U* is connected. By the same reasoningthe fixed point set of the group
U* must necessarily contain the fixed point set of U’. O

Remark 5.30. Clearly, the fixed point set of a finite index subgroup U’ of U can
be much larger. For example, Sym(n) operates on V := k™ via permutation of the
basis vectors and leaves the subspace generated by v = (1,...,1) invariant, and the
induced action on V/{v) = k™! is irreducible. It follows that Sym(n) is a subgroup
of SL,,_1(k) which does not fix a proper residue of the spherical building associated
to SL,,_1(k), while it virtually acts trivially.

Theorem 5.31. Let L be an algebraic extension of Q. Let k' be a field of charac-
teristic 0 and let G := Gp (k') a split Kac—Moody group. Then any homomorphism
@: SLo(L) — G has bounded image.

Proof. 1f L is a finite extension, the result follows from Corollary 5.19. Otherwise let
(L;)ien C L be an ascending sequence of numberfields such that L = |J L;. For each
i, choose a set of valuations S; of L; such that W; := SLy(L;(S;)) is an irreducible
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lattice (cf. Theorem 5.22) and such that S; C S;,1. Let U; < W; be a finite index
subgroup with trivial center, as provided by Lemma 5.23.

For each i, ¢(U;) is bounded by Corollary 5.19 as U; < L;. By Theorem 5.24, the
Zariski closure of ¢(U;) is semisimple, hence by Lemma 5.6 contained in a Levi
factor. In particular, the Ad-dimension of ¢(U;) is bounded above since there are
only finitely many conjugacy classes of Levi factors in G.

Pick ig such that Addim U;, = max{Addim U; : ¢ € N} and let = be a fixed point of
Ui,- Let U} be the finite index subgroup of U; provided by Proposition 5.29 which
fixes x. Then U* := (U} : i € N) fixes x and for each ¢, the index of U* N U; in Uj;
(and hence in W;) is finite.

Let O; denote the ring of integers of L;. Then SLs(Q;) < W; and hence V; :=
U*nN SLQ(OZ> has finite index in SLQ(OZ>

We will show that U* and SLy(Q) boundedly generate SLy(L), which will imply the
claim by Lemma 5.3. Since every g € SLs(L) is contained in some SLy(L;), it suffices
to prove that SLy(Q) and V; boundedly generate SLy(L;) and uniformly so. This is
the content of the following lemma. O

Let Ny denote the maximum number of elementary matrices needed to express a
matrix g € G = SLy(K) as a product of elementary matrices. Note that each torus
element ¢ is the product of at most 6 elementary matrices, e.g. t = m(u)m(1). By
the Bruhat decomposition, G =TU, UU,TsU,, so Ny < 11.

Lemma 5.32. Let L be a number field and O its ring of integers. Let V be a
subgroup of SLa(QO) of finite index. Then every element of SLo(L) can be written as
a product of at most 3Ny matrices from either SLy(Q) or V.

Proof. For x in L there is some ¢ € N such that gr € O. Since O is a ring
containing Z, ¢>z € O. Since V has finite index in SLy(O) there is some a € N such
that uy (a*q*z) € V.

We may write u, (z) = diag((aq)™!, aq)u, (a*¢*z) diag(aq, (ag)~™'), from which the
claim follows. O

1

5.5 The general case

Let k, k" be two fields of characteristic 0, let G(k’) be a split Kac-Moody group
and let ¢: SLy(k) — G(K') be an abstract homomorphism. By Theorem 5.31, if
tr. deg(k|Q) = 0, ¢ has bounded image, while if tr.deg(k|Q) = oo and G has a
Levi factor isomorphic to SL, (k[t, t7']), ¢ might possibly have unbounded image by
Theorem 5.11.

We still need to treat the case when 0 < tr.deg(k|Q) < oo. Here we propose a
criterion that ensures that ¢ will have bounded image. This criterion can be checked
to be satisfied when ¢ is induced by an abstract isomorphism ¢ : G(k) — G(k') of
two split Kac—Moody groups; in particular, 1) will preserve bounded subgroups.
This gives a variation of Caprace’s proof of the isomorphism theorem for simply
connected split Kac-Moody groups over fields of characteristic 0.
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5 On bounded subgroups

Theorem 5.33. Let k, k" be two fields of characteristic 0, let G := Gp(k') be a split
Kac—Moody group with associated twin building A and let p: SLy(k) — G(K') be a
homomorphism.

Suppose that there is a twin apartment A of A such that

T(k) := {diag(z,v7 ") : v € k*} < SLy(k)

stabilizes A and that p(SLy(Q)) fizes two opposite points x,y of A.
Then ¢ has bounded image.

The proof of the theorem is achieved via some lengthy calculations. One has to rule
out the case that a diagonal matrix ¢ will act via a translation on A. Intuitively, this
is not possible since there is a large subgroup X containing SLy(Q) which fixes  and
y and such that X has a large intersection with *X, while the intersection of p(X)
and ©(*X) = o(t)p(X)p(t)~t would be too small if ¢(t) acted as a translation.

We record some lemmas before proving the theorem.

Lemma 5.34. Let (W,S) be a finitely generated Coxeter group and let A < W be
a solvable subgroup. Then A is finitely generated.

Proof. Let X be the CAT(0) realization of W. Since W is finitely generated, X is
finite-dimensional by construction and W acts on X properly and cocompactly. The
conclusion follows now from [BH99, p. 439 Theorem 1.1 (3),(4)]. O

Remark 5.35. Clearly, arbitrary subgroups of finitely generated Coxeter groups need
not be finitely generated: By the strong Tits alternative for Coxeter groups [NV02],
any finitely generated Coxeter group W which is not virtually abelian, i.e. neither
spherical nor affine, contains a non-abelian free group F. Then [F, F] is not finitely
generated.

In the setting of Theorem 5.33, Lemma 5.34 will provide a subgroup S < k* such
that £*/S is finitely generated. This is why we investigate such a group S more
closely.

Let k be a field of characteristic 0 and S a subgroup of k*. Let
Rg = {Zais? :n €N €Q,s; €S}
i=1

Then Rg is a subring of k since S < k* and coincides with Q[s* : s € S].

The importance of Rg for our purposes will become clear later on. Here we record
a first lemma where Rg appears.

For a field k and s € k™, r € k let h(s) := (° 1), us(r) == (17)u_(r):= (L) de-
note the standard parametrization of diagonal resp. upper/lower unipotent matrices
in SLQ(k)
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5.5 The general case

Lemma 5.36. Let k be a field of characteristic 0 and let S < k* be a subgroup
which contains Q*. Let r € k. Then U, := (h(S),us(r)) = h(S) X uy(rRs) and
V.= (h(S),u_(r)) = h(S) x u_(rRs).

Proof. To show that u,(rRg) < U, it suffices to show that u(ras?) € U, where
a= % € Q- and s € S. This follows from the fact that

ur(ras?) = (h(2)us(r)h(2) )"

Clearly, h(S) and u,(rRg) generate U, and have trivial intersection. Since h(.S)
normalizes u (rRg), the claim follows. The proof for V, is similar. 0

The following theorem is a classical result by Albert Brandis ([Bra65]).

Theorem 5.37. Let ko be an infinite field and let k be a field extension of ko. If
k> /kg is finitely generated, then k = k. O

Lemma 5.38. Let k = Q(t) and let S be a subgroup of k* such that k> /S is finitely
generated. Let ko := Quot(Rs) denote the field of fractions of Rg. Then ko = k.

Proof. By Liuroth’s theorem, [k : ko] < oo since S contains an element x which is
transcendental over Q.

Let S; := SNk{. Note that for each s € S, s> € Rg, i.e. s is contained in a quadratic
extension ko(s) of kg. There are only finitely many of these since ¢ is a primitive
element for the field extension k|kg.

Let s1,...,s. € S besuch that {ko(s1),...,ko(s,)} = {ko(s): s € S}. We claim that
S =Si(s;:i=1,...,r). Indeed, for s € S there is some s; and there are elements
a,b € ko such that s =as; +b. If a =0, s € Sy;if b =0, s € 5;57. Otherwise note
that 2abs; = s* — (as;)* — b* € ko, whence s; € kg, a contradiction.

This shows that £*/S; is finitely generated, so in particular £* /kg is finitely gener-
ated. By the previous theorem, this implies that k = k. O

Remark 5.39. The requirement that & = Q(¢) was used solely to prove the fact
that Quot(Rg) admits only finitely many quadratic extensions inside k. It thus
seems reasonable to suspect that the same conclusion holds whenever k is a field of
characteristic 0. For our purposes, though, the lemma is sufficient.

The following lemma asserts that the intersection of some big subgroup of SLo(Q(t))
with one of its conjugates still is rather big.

Lemma 5.40. Let k := Q(t) and let S < k* be a subgroup which contains Q*
and such that k*/S is finitely generated. Let X := (h(S),SLy(Q)) and set I :=
X Nh(t)Xh(t)™?

Then there is an element r € Rg such that X < (u_(=),I).

Proof. By Lemma 5.38, Quot(R) = k, so in particular there are r,s € R such that
r = t?s. Since X contains u+( ) and h(t)Xh(t)"! contains u, (t?s), it follows that
uy(r) € 1. Let W := (u ( 5), I).
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5 On bounded subgroups

Since [ contains S, it follows from Lemma 5.36 that W contains u_(r%R). In partic-
ular, u_(=t) and u_(Q) are contained in W. Then

is contained in W, and so is s(r)u_ (=2 R)s(r) ' = uy(R). It follows that W contains

u4+(Q), hence SLy(Q) and X. O

Finally, we need a result on the intersection of two fixators of opposite points in A.
We freely use the notation of [Cap09, Section 3.1].

Lemma 5.41. Let L7 = P/ N P’ be a Levi factor of finite type and let w € W.
Then L7 NwL/w™t = [7Mw/w™,

Proof. We calculate

L'nwl’w™ = (P/nP)n(wP/w ' NnwP/w™)
(P{nwPw™)n (P! nwPlw™?)
_ (LJﬂwa_l % U_{,J,w) N (LJﬂwa_l % Ui,],u))
LJﬂwa_l

Here the last equality follows since “2” is obvious, while U’ n U_{’J’w is trivial.
O

With these ingredients, we can turn to the proof of Theorem 5.33.

Proof. Let T := T(k) = {h(t) : t € k*} < SLy(k) denote the torus. From now on,
we identify a diagonal matrix h(t) with the field element ¢.

By assumption ¢(7") acts on A. Let S < k* be such that S is the kernel of this
action. Then ¢(T")/p(S) is a subgroup of the Coxeter group W of G. By Lemma
5.34, k* /S is finitely generated. Let sy, ..., s; be generators for T'/S.

Assume first that each s; has a fixed point in A. Since T is boundedly generated
by the s; and S, T has a fixed point, and then ¢(SLy(k)) is bounded since T and
SL2(Q) boundedly generate SLs(k). To arrive at a contradiction, suppose there is
some s; =: t which acts as a hyperbolic element on A. We may assume that ¢ is
transcendental over Q, as otherwise h(t) would be contained in some SLy(L) for L
a finite extension of Q, which has bounded image by Corollary 5.19.

In this case, we might assume that & = Q(t). Let 7" := Fixg A denote the corre-
sponding torus of G and let (U, )ace denote the root groups relative to 77. Then
e(S) <T'.

By assumption, ¢(SLy(Q)) < L7 = T(U, : a € ®(Wj)) for some spherical subset

J. Assume that J is minimal with respect to this property.
It follows that X := (S, SLy(Q)) satisfies ¢(X) < L’. Note that
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OG0

so t2 is contained in (X, tXt™1). Tt follows that ¢(X) and ¢(tXt!) do not have a
common fixed point, since otherwise this point would be fixed by 2, hence t would
have a bounded orbit which contradicts the assumption that ¢ acts a hyperbolic
element.

As ¢(t) acts via a translation w on A and p(X) < L7, it follows that p(tXt™!)
is contained in wL/w™!. Let I := X NtXt~! denote the intersection of these two
groups. By Lemma 5.41, (1) < L’ NwL/w™' = L/™/*"" and JNwJw™' is a
proper subset of J. By Lemma 5.40, there is an element u = u_(r) € SLy(k) such
that SLy(Q) is contained in (I,u). Then ¢(u) € L7 again is unipotent since u is
conjugate to (1 ).

Now u commutes with the lower diagonal matrices of SLy(Q) and ¢(u) is unipo-
tent. It follows from the representation theory of SLy that ¢(u) and ¢(u_(Q)) are
both contained in the unipotent radical V' of some Borel subgroup. It follows that
©(SLy(Q)) is contained in L7™7» ™ x V. This is a contradiction, as ¢(SLy(Q)) could
then be conjugated into a smaller Levi factor. O

In the proof we used the fact that the element u commutes with the lower triangular
matrices of SLy(Q). This is essential, as the following example shows.

Example 5.42. Let k be a field of cardinality > 4 and let G := SL3(k). Then
L:= {(A 1 ) tAe GLg(k)} < G is a Levi factor. Let u denote the unipotent

det A
element v := (1 ! 1) = x13(1)x32(1). Since L contains the diagonal matrices T of

G and there is an element ¢ € T centralizing z13(1) but not x33(1) it follows that
K := (L,u) contains z13(r) and z32(r) for arbitrary r € k, hence K = G.

This example shows that if L < G is a proper Levi factor and v € G is a unipotent
element, then it is possible that (L,u) = G.

Remark 5.43. The idea for the proof of Theorem 5.33 was inspired by the follow-
ing example. Let (K, v) be a field of characteristic 0 with a discrete valuation and
suppose that the residue field k is finite. Let S = ker v denote the group of units
of the corresponding valuation ring O. Then K*/S = Z, in particular, it is finitely
generated.

For X := (5,SLy(Q)), one calculates that X = SLy(0O). Let t € K*. Then
I = X NtXt ! is precisely the fixator of two points in the Bruhat-Tits tree associ-
ated to SLy(K). Since the residue field is supposed to be finite, it follows that I has
finite index in both X and tXt™ !, i.e. X and tXt~! are commensurable.

This follows from the fact that the sphere D around x with radius d(x,y), where
x,y are the unique points fixed by X and tXt~! respectively, is finite and X Nt Xt !
is a point stabilizer in the permutation action of X on D.

If k is infinite, X and tXt¢~! are no longer commensurable, but their intersection
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5 On bounded subgroups

still is “large” in the sense made precise by Lemma 5.40.

We can combine Theorem 5.33 with the machinery of [Cap09] and the study of
isomorphisms which preserve bounded subgroups [CMO06] to recover as a corollary
Caprace’s result that any isomorphism of simply connected split Kac-Moody groups
over fields of characteristic 0 is standard.

Corollary 5.44. Let k, k" be two fields of characteristic 0 and let G(k),G'(k') be
two split simply connected Kac—Moody groups.

(i) Any isomorphism V: G — G’ preserves bounded subgroups.

(ii) W is standard, i.e. preserves the twin root data associated to G and G'.

Proof. (i) Using the machinery of [Cap09], one gets a particular regular diagonal-

izable subgroup H < G such that ¢(H) again is regular diagonalizable. Since
H is centralized by the diagonal matrices D, of a fundamental rank 1 group
X, which is isomorphic to either SLy(k) or PSLy(k), it follows that ¢(D,)
stabilizes the fixed point set of p(H), which is reduced to a twin apartment A.
Since ¢(X,(Q)) fixes two opposite points in the building and H normalizes
Xo(Q), these fixed points must be contained in A. By Theorem 5.33, p(X,)
is bounded; in particular, every root group U, has bounded image.

If X is bounded, it is by definition contained in a conjugate of a group of the
form L7 x Uy. It is clear that Uy is boundedly generated by root groups, so
it suffices to check that L7 is boundedly generated by root groups. Since G
is simply connected, it follows that L’ is simply connected. By Bruhat de-
composition, it suffices to check that B = TU is boundedly generated by root
groups. This is clear for U, and for T it follows by a calculation in SLq (k).

(ii) Given (i), this follows from the main theorem of [CMO06].
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6 The isomorphism problem

In this chapter we prove that every abstract isomorphism of two 2-spherical almost
split Kac—Moody groups over fields of characteristic 0 is standard in the sense that
it induces an isomorphism of the associated canonical twin root data.

Remark 6.1. To approach the isomorphism problem one has to look for a certain
class of subgroups which is rigid enough to conclude that any isomorphism will
preserve this class.

In the case of split Kac—-Moody groups, for each connected component of the diagram
the Chevalley involution is an automorphism which switches the positive and the
negative Borel group of the corresponding Levi factor. In particular, any such rigid
class of subgroups has to be symmetric with respect to the positive and negative
half of the twin building.

This naturally leads us to look at the images of the torus 7" and the root groups U,.
As abstract groups, these are not rigid at all as they are abelian or 2-step nilpotent.
Another caveat to bear in mind is that the restriction of an isomorphism ¢ to a
fundamental rank 1 group X, := Z(U,,U_,) a priori might have unbounded image.
However, it is the interplay of the maximal split torus Ty and the root groups U,
which accounts for the rigidity.

Remark 6.2. If G1,G5 are two groups endowed with twin root data, their direct
product G X G5 is endowed with at least three different root data corresponding to
the action of Gy X G5 on A(G) via the first factor, on A(G3) via the second factor
and on A(G1) x A(G3). In particular, an automorphism of G; x Go will have no
reason to preserve a twin root datum of this group if the anisotropic kernel H is
large.

The canonical twin root datum associated to an almost split Kac—-Moody group G(k),
however, is in some sense as fine as possible, which allows for a detailed investigation.

6.1 Preparatory lemmas

We need a couple of preparatory lemmas, of which the relevance for our purposes
will become clear later on.

Lemma 6.3. Let k be an infinite field and let T be a k-split torus. Let S < T'(k) be
such that T'(k)/S is finitely generated. Then S is Zariski dense in T.

Proof. Since T is split over k and k is infinite, T'(k) is Zariski dense in 7. Assume
that S £ T. Then S is defined over k and so is §0, which is a k-split subtorus of T'
by [BT65, Corollary 1.9 b)]. It follows that dim S° < dim T". Passing to the rational
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6 The isomorphism problem

points, we find that X := T(k)/(S N S°(k)) contains a copy of k*, which is not
finitely generated. As SN S°(k) has finite index in S, X is finitely generated. This
is a contradiction since any subgroup of a finitely generated abelian group is finitely
generated. O

Proposition 6.4. Let G be a group endowed with a twin root datum (H, (Us)acaw,s))-
Let L be a subgroup of G such that for each | € L\{1} there is a root 5, € ®(W,S)
such that | € Ug,. Then there is some 3 € ®(W,S) such that L < Ug.

Proof. Note first that 5, = 3,-1 as U, is a subgroup and /3, is uniquely determined
as U, N Ug =1 for distinct roots a # f.

Assume for a contradiction that there are z,y € L\{1} such that 8, # 3,, in
particular xy # 1. Let o := 3, 8 := B, and v := 3.

This implies that U,Us N U, # {1}. Moreover, for any permutation = of {a, 5,7}, it
follows that Ur(a)Uxr(s)NUr(y) # {1}: If ugup = u,, then u;lugl = u;l, uBu;I =y !
and the permutations (« ), (ay 8) generate Sym({«, 3,7}). This implies that if two
of the three roots coincide, then all roots coincide. So we can suppose that all three
roots are distinct.

If two of the three roots are positive and the remaining one is negative (or vice
versa), we can assume that a > 0,5 > 0 and v < 0 since the statement to be
proved is invariant under permutations of the roots. But this is a contradiction as
U, NU_ = {1}. If all three roots have the same sign, say a, 8,7 € ®*, then choose
some w € W such that wy = ¢ is a positive simple root. If wa or wf is negative,
this is a contradiction by the case just discussed. If wa, w3, wy are all positive,
then s;wa > 0, ss;wp > 0, s;w., < 0, which is again a contradiction by the case just
discussed. O

We need a version of the classical Jacobson-Morozov lemma on the level of algebraic
groups. The following proposition is a folklore result. For a lack of a reference, we
include a proof kindly pointed out by Brian Conrad.

Proposition 6.5. Let k be a field of characteristic 0 and let G be a connected
reductive algebraic group defined over k. Let g € G(k)\{1} be a nontrivial unipotent
element. Then there exists a morphism ¢ : SLy — G defined over k such that
o(u) = g for some unipotent element u € SLy(k).

Proof. Let U := (u). As k is of characteristic 0, U is a one-dimensional unipotent
group which is defined over k since u € G(k). This implies that U is k-isomorphic to
G,. Let u:= LieU. By the Jacobson-Morozov lemma (usually stated for semisim-
ple Lie algebras over a field of characteristic 0, but holding in fact for arbitrary
completely reducible subalgebras g < gl(V'), see the original paper [Jac51, Theorem
3]), there is a three-dimensional Lie subalgebra = which is k-isomorphic to sl and
contains u. As char k = 0, any perfect Lie subalgebra is the Lie algebra of a closed
subgroup X ([Bor91, Corollary 7.9]). This translates into the fact that there is a
closed subgroup X < G defined over k which is k-isomorphic to either SLy or PGLs.
This implies the claim. O
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Let G be a connected reductive group defined over k& which splits over k. Let T be
a maximal torus and U a unipotent group which is normalized by 7. Then (T, U)
is contained in a Borel group B, so there is an ordering on the set of roots ®(T', G)
of T in G such that U < U,.. It is then a classical fact (cf. [BT73, p.65 1.7]) that U
is generated by the root groups U, relative to T" which are contained in U.

We need an analogue of this theorem in case that GG is not necessarily split over k.

Proposition 6.6. Let k be an infinite field. Let G be a connected reductive k-
group which is k-isotropic and let S be a maximal k-split torus. Let U < G be a
unipotent subgroup defined over k which is normalized by S. Then U is contained
in (Uy : > 0) for some ordering > of the set of roots ®(S,G) of S in G.

Proof. Let P be a minimal parabolic subgroup defined over k which contains U and
S. Then P has a Levi decomposition P = Z(S)P,, where Z(S) is the centralizer of
S and P, is the unipotent radical of P. Since S is maximal k-split, Z(S)(k) does
not contain any unipotent elements. This implies that U (k) < P,(k) and since U(k)
is dense in U, it follows that U < P,, which implies the claim. O

Recall that a subgroup S of an almost split Kac-Moody k-group G(k) is called di-
agonalizable (over k) if there is g € G(k) such that gSg~! < Ty(k), where T} is
the standard maximal k-split torus of G(k).

Furthermore, a diagonalizable subgroup S is called regular if the fixed point set of
the S-action on the associated twin building consists of a single twin apartment.

Among all diagonalizable subgroups of G, regular subgroups can be characterized
purely group-theoretically. The following characterization can be found in [Cap09,
Proposition 5.13] for split Kac-Moody groups. We generalize this to almost split
Kac—Moody groups, where care has to be taken of the anisotropic kernel.

Lemma 6.7. Let k be a field of characteristic 0 and let G be an almost split Kac—
Moody k-group. Let S < G(k) be a diagonalizable subgroup. Then S is reqular if

and only if S does not centralize a subgroup X < G(k) isomorphic to either SLa(Q)
or PSL2(Q).

Proof. Without loss of generality we may assume that S is contained in the standard
maximal k-split torus Ty(k). Suppose first that S is regular and centralizes X. As
X has a fixed point in both A, and A_ and is normalized by S, these points can
be assumed to lie in the standard twin apartment A;. As X normalizes S, it must
stabilize Aj. Hence there is a homomorphism ¥ : X — W = Stabg(Ax)/ Fixg(Ag)-
U(X) then is a finite group as it is a subgroup of a point stabilizer, so a finite
index subgroup X’ < X is contained in the anisotropic kernel Fixg(Ay) = Z(k).
Then X' = X as PSLy(Q) is simple and SLy(Q) does not have a proper finite index
subgroup either. (Indeed, since U, (Q) and U_(Q) are divisible, any finite index
subgroup N < SLy(Q) contains U, (Q) and U_(Q), hence is equal to SLy(Q).)
Postcomposing with the adjoint representation Adg, where (A, F, —F) is a rational
standardisation and € := {F, —F'}, there is a homomorphism

X — Ado(Z(k))
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which induces a representation of SLy(Q). This representation is rational and defined
over k by Proposition 5.7. Since the target group is anisotropic over k and therefore
does not contain k-rational unipotent elements, this homomorphism must be trivial.
Then X < ker Adg, which is a contradiction since the latter group is abelian.
Conversely, suppose that S fixes a point x € A, without loss of generality suppose
that z € A, . Then there is a panel E of A, and a chamber C; € A, which has F
as a panel and is fixed by S. Indeed, let G = (Cy, C1, ..., C,) be a gallery such that
Cy € Ag,C, contains x and G is of minimal length among all such galleries. Then
n > 1 since © & Ay, and C is fixed by S since the S—action is type-preserving.
Let E = Cy N Cy and let a be the corresponding root of A, determined by Cy and
E. The root group V,, < G(k) parametrizes the chambers which have F as a panel
and which are different from Cj. Since S fixes Ay and C} € A;, there are three
chambers of the FE-panel fixed by S. This means that there is some non-trivial
v €V, centralized by S. If v € V,\Z(V,), this implies that S centralizes the entire
group V,, if v € Z(V,,), this implies at least that S centralizes 2 (V,) (recall that
the action of the split torus is via a character on both V,, /2 (V,) and Z(V,)).

In either case, S centralizes Z°(V,,) and also 2 (V_,). Hence S centralizes the group
Ta(k){(Z (Va), Z(V_,)). But this group contains a split semisimple group of rank 1
by Theorem 4.3, i.e. either SLy(k) or PGLy(k). In both cases the claim follows. O

6.2 Isomorphisms of almost split Kac—Moody groups
in characteristic 0

Setting. Let k, k' be two fields of characteristic 0 and let G, G’ be two 2-spherical
almost split Kac-Moody groups over k, k', respectively. Let G(k), G'(k") denote their
rational points and suppose that ¢: G(k) — G'(k') is an abstract isomorphism.
Let

o Z(k) < G(k),Z'(K) < G'(K') denote the respective anisotropic kernels of
G, G

Ta(k) < Z(k), Tj(K') < Z'(K') denote the respective maximal split tori.

(W, S), (W', S") denote the respective Weyl groups, and ®, &’ the sets of roots.

(Ua)ace denote the rational root groups of G, and (V3)seqe: the rational root
groups of G'.

A, A’ denote the twin buildings associated to G and G'.

A and A’ denote the standard twin apartments fixed by Z(k), Z'(k’) respec-
tively.

Strategy of proof. The proof strategy can be outlined as follows:
STEP 1. Since G(k) is assumed to be 2-spherical, G(k) contains a maximal split
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subgroup F(k) containing T,(k). A generalization of arguments from [Cap09] can be
used to exhibit a subgroup S(Q) < T,(k) with the property that S(Q) fixes precisely
A and ¢(S(Q)) fixes precisely a twin apartment 4" of A’. By postcomposing ¢ with
an inner automorphism if necessary, we assume that A" = A’.

STEP 2. From the existence of S(Q), which is in some sense a small subgroup of the
split torus, we deduce the existence of two large subgroups S; < Ty(k), So < T)(K')
such that ¢(S;) < Z'(K'), ¢ 1(S2) < Z(k). In particular, ¢(S;) normalizes all root
groups V3 and ¢'(Ss) normalizes all root groups U,.

STEP 3. We now focus on a root group U,. Assume first that U, is abelian (see
Step 5 for the general case). Then for u € U,, we show that ¢(u) € L7 for some
Levi factor L7 of finite type, which depends a priori on .

Using the groups S; and Sy we show that ¢(u) actually is a unipotent element which
is contained in a group Vs, --- Vs, < LY.

STEP 4. Now root groups in a spherical Levi factor can be distinguished by the
torus action. Again using the groups S; and S5, it follows that with the above no-
tation, k = 1, i.e. for each u € U, there is some 3, € ¢ such that p(u) € Vj,.
Since U, is a group, it follows that ¢(U,) < Vp(a) for some single f(a) € @'

STEP 5. If U, is not abelian, the analysis of steps 3 and 4 still applies to Z(U,,).
Let uq,...,u, be elements such that the canonical images of the u; are a k-basis
for U,/ % (U,). Arguing as in steps 3 and 4 for the groups k - u;, together with the
knowledge about ¢(Z(U,)) allows to conclude that also in this case ¢(U,) is con-
tained in a single root group Vg().

STEP 6. By symmetry, each root group Vj satisfies ¢! (V) < Uy g), so actually
equality holds. This allows to conclude that ¢ maps root groups to root groups and
preserves the anisotropic kernel.

After these remarks, we now start the discussion which will lead to the proof of the
main theorem.
The following lemma is a key step in comparing the twin root data of G and G'.

Lemma 6.8. There exists a reqular diagonalizable subgroup S(Q) < Ty(k) such that
©(S(Q)) again is reqular diagonalizable.

Proof. Fix a maximal split subgroup F'(k) of G(k) and let (Ty(k), (Fn(k))ace) de-
note the associated twin root datum. Then each rank 2 subgroup F,s(k) =
Ta(k)(Fya(k), FLp(k)) coincides with the k-points of a split reductive group of
semisimple rank 2. Since these groups are defined over Z, it is possible to consider
F(Q), the Q-points of F'. More precisely, for each root a € ® let f,, : (k,+) — Fu(k)
denote the corresponding isomorphism and ¢ : (k*)™ — Ty(k) the canonical isomor-

phism. Then F(Q) :=t((Q*)") - (fo(Q) : @ € D).
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For each simple root « let ¢, : SLy(Q) — (Fi(Q), F_,(Q)) denote the canonical ho-
momorphism. Let D, := (¢, (diag(z,271)) : z € Q%) and let S(Q) := (D, : a € A).

Claim 1. S(Q) is reqular. Note first that S(Q) is invariant under the Weyl group.
Indeed, it suffices to check that s,(Dg) < S(Q) for two simple roots «, 3, and this
can be verified in Fl,z where it follows from the explicit description of the Weyl
group action on the torus in a reductive group. Assume that S(Q) is not regular.
Then from the proof of Lemma 6.7 it follows that there is a root « such that S(Q)
centralizes Z(V,,), i.e. the character 2« vanishes on S(Q). Write a@ = wa; for some
w € W and a simple root «;. Then 2¢; vanishes on S(Q) by the Weyl group invari-
ance of S(Q), but this is a contradiction since S(Q) contains D,,,.

Claim 2. ¢(S(Q)) is diagonalizable over k'. Since S(Q) is boundedly generated by
(Da)aca and @o(D,) < ¢ 0 1,(SLy(Q)), it follows that ¢(S(Q)) is bounded. Let
2 C A’ denote a balanced subset which is fixed by ¢(S(Q)).

Let S(Q) be the Zariski closure of Adq(p(S(Q))). As S(Q) is commutative, so is
S(Q). Note that S(Q) is connected as it is generated by connected subgroups.

By [Spr98, 3.1.1], S := S(Q) is the direct product of its semisimple and its unipotent
elements: S = S x S,. Since the abstract representation p := Adg op o ), actually
is rational, it follows that the image of each S,(Q) consists of semisimple elements
only, i.e. is contained in S.

In particular, S is a torus since it is connected and contains semisimple elements
only. Clearly, S is defined over k’. It remains to be checked that S is split over k.
Let g € S(Q) be of infinite order. Since g is contained in a k-split torus, the Zariski
closure S, of (g) is again a k-split torus by [BT65, Proposition 1.9 b)]. By induction,
S/S, is a k-split torus, from which the result again follows by [BT65, Proposition
1.9 b)]. This implies the claim.

Claim 3. ¢(S(Q)) is reqular diagonalizable. This is a direct consequence of the group
theoretic characterization of regular diagonalizable subgroups, Lemma 6.7. O

Remark 6.9. If K is algebraically closed and G is a split Kac-Moody group over K,
it is even possible to exhibit finite regular diagonalizable groups which are mapped
to regular diagonalizable subgroups, see [CM05]. Still in the split case over arbitrary
fields, 7" := ker(aw — [3) for suitably chosen roots «, § is regular. In particular, the
dimension of a regular diagonalizable subgroup can vary arbitrarily.

Remark 6.10. The assumption that G(k), G'(k") be 2-spherical is essentially only
used to produce a regular subgroup S(Q) < G(k) which is again mapped to a
regular diagonalizable subgroup in G'(k').

Since maximal k’-split tori are conjugate under G'(k') [Rém02, Theorem 12.5.3],
there exists some z € G'(k’) such that (intz o »)(S(Q)) < Tj(k'). Replacing ¢ by
int z o ¢ if necessary, we assume from now on that ¢(S(Q)) < Tj (k).
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Proposition 6.11. There are subgroups S; < Ty(k) and Sy < Ty(k') with the
property that Ty(k)/S1, Ty(k")/Ss both are finitely generated and such that p(Sy) <
Z'(K), 71(5) < Z(k).

Proof. As T,(k) normalizes S(Q), T, (k) acts via ¢ on the fixed point set of ¢(S(Q)),
which is reduced to A’. Let S; denote the kernel of this action, then ¢(S;) < Z'(k)
by definition of the anisotropic kernel as the fixator of A’. As ¢o(Ty(k))/¢(S1) is an
abelian subgroup of W', it is finitely generated by Lemma 5.34.

Similarly, as T}j(k’) normalizes p(S(Q)), T;(k') acts via ¢! on the fixed point set
of S(Q), which is reduced to A. Define S, as the kernel of this action, then Ss is as
required by similar arguments. O

The subgroups S; and Sy should be thought of as “large” as they are Zariski dense
in T, and T}, respectively, by Proposition 6.3. Moreover, S; and ¢~'(S3) both nor-
malize each root group U, < G, while ¢(S;) and Sy both normalize each root group
Vs <G

The next step consists of showing that for certain unipotent elements u € U, \{1},
¢(u) < L7 for a Levi factor of spherical type containing Z'(k').

Definition 6.12. Let U, < G be a root group and let u := LieU, = go P goo. For an
element u € U, (k) let logu € u denote the unique element such that exp(logu) = u.
Then u € U, is called pure if logu € g, orlogu € go,.

Note that if U, is abelian, each element u € U,\{1} is pure.

Lemma 6.13. Let u € U, (k)\{1} be a pure element. Then there exists a homomor-
phism 1, : SLa(Q) — G(k) such that

(1) u((51)) = u
(i7) im 1, is normalized by S(Q).

Proof. This follows from the proof of the Proposition 6.5 or from Theorem 4.3. More
precisely, since u is pure, the subalgebra k log u is invariant under Ad T,(k), i.e. there
is a subgroup Y, < U, which contains u and is isomorphic to G,. This isomorphism
can be chosen to send u to 1. By Theorem 4.3, u is contained in a split group which
contains Ty - Y,. Since Qu is is invariant under S(Q), the claim follows. O

Proposition 6.14. Let u € U,\{1} be a pure element. Then p(u) fizes two opposite
points x,y € A, i.e. p(u) € L7 for a Levi factor of finite type of G' relative to T}.

Proof. Let 1, : SLa(Q) — G(k) be as in the previous lemma. Then
po1h, : SLy(Q) — G'(K)

is a homomorphism whose images fixes two opposite points z,y € A’ by Proposition
5.8. As im ), is normalized by S(Q), both z and y must actually be contained in
A’ by Lemma 5.4 and the fact that ¢(S(Q)) fixes only A'. O
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It remains to prove that not only ¢(u) € L’ but actually ¢(u) € V() for some root
f(u) depending on u.

The following proposition uses the trick that a unipotent element u is an element of
the derived group of a solvable group B,, a property which is clearly preserved by
a group isomorphism. This idea goes back to [BT73].

Proposition 6.15. Let u € U,\{1} be pure and let J C S’ be such that p(u) € L’.
Then

cl(u) := {cp(u)cl:ce Sy) < L7
is a unipotent group defined over k' and normalized by T.

Proof. Let Y, := (¢ ' (c)up~(c!) : ¢ € S3). Then Y, < U, since ¢~ 1(S3) normal-
izes U,. Moreover Y,, is contained in Y, := (sY,s7! : s € S(Q)).

By Proposition 6.15 there is a subset J C S’ such that p(u) € L7. Since ¢(S(Q))
and Sy are subgroups of Tjj(k') it follows that (V) < L7.

Let Qu := exp(Q - logu). Then Qu is a group normalized by S(Q) by Proposition
6.13. The group B, := S(Q) - Qu is solvable and w is contained in every finite index
subgroup of the derived group of B,. Indeed, since S(Q) acts on Q - u via a non-
trivial character, for each n € N there is some s € S(Q) such that = - u € ([s, u]).

As B, < Y! ¢(B,) < L’. Since B, is solvable, so is ¢(B,). By the Lie-Kolchin
theorem, ¢(B,) has a finite index subgroup which is triagonalizable, and since w is
in the derived group, it follows that ¢(u) is unipotent.

Note that S(Q) and ¢~ '(S3) commute, i.e. Y, is normalized by both S(Q) and
¢ 1(Sy). Arguing similarly as for u, it follows that ¢(Y) is unipotent since it is (up
to finite index) contained in the derived group of a solvable group.

Since ¢(Y,)) < G'(k'), the Zariski closure cl(u) is defined over &', and cl(u) again is
unipotent (cf. [Spr98]). By definition, cl(u) is normalized by Sy and hence by the
Zariski closure of Sy, which is 7} by Lemma 6.3. O

The following step is inspired by the proof of [CR09b, Proposition 23], which in turn
is inspired by classical results.
We recall first the definition of a nibbling sequence of roots.

Definition 6.16. Let (W, S) be a Cozeter group and let ay ..., o, € ®(W,S) be
such that {a;, a;} is prenilpotent for alli,j € {1,...,n}. Then (o, ..., o) is called
a nibbling sequence of roots if for all i < j, (oy, ;) C {visr, ..., a1}

Proposition 6.17. Let (W, S) be a spherical Cozeter group and let W C &(W,.S) be
a nilpotent set of roots. Then the elements of ¥ can be arranged to form a nibbling
sequence of roots.

Proof. See [Rém02, Section 9.1.2]. O
Theorem 6.18. Let u € U,\{1} be pure and J C S’ spherical such that o(u) € L.
Then p(u) € Vi for some € ®'.
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Proof. By Proposition 6.15 and Proposition 6.6, it follows that
U(u) € Vi = (Vs : f € ®(W)),8>0)

for a suitable ordering ">’ of the roots of ®(W/). Since ®(W}) is finite it follows
from Proposition 6.17 that there is an ordering on the positive roots 3; such that
(B1, ..., Bk) is a nibbling sequence. Then

p(u) = v, -,

for certain v, € Vgij,vij # 1.

Assume for a contradiction that r > 1.

Claim. In this case, there are indices i # j and elements u;, u; € U,\{1} such that
©(u;) € Vg, and p(u;) € Vg,.

Since W} is spherical, for any two roots §;, 5; € ®(W}) such that 8; # £/;, there
is an element t;; € (V, : a € ®(W))) N S, such t;; centralizes V3, but not Vs . This
follows from the fact that such an element exists in 7)(k’) and the fact that Sy is
Zariski dense in T}).

Consider vy := [t1,, p(u)] and vy 1= [t 1, p(u)]

Then vy, vy € p(U,) since ¢~ *(t;;) normalizes U,. Furthermore, the support of v;
contains ; but not 3,. Likewise, the support of v does not contain 3; but contains

B

By repeating the process for v; and vy inductively if necessary, the claim is proven.

Now take an element s € S, of infinite order such that s centralizes Vj, but not V,
and such that ¢ ~!(s) € Ty(k). The existence of such an element can be proven by
appealing to the Q-points of a split subgroup of G’(k’) and the fact that f;, 5; are
roots in a spherical Coxeter group. Then ¢~!(s) centralizes wu;, since p(u;) € Vj,,
so ¢ 1(s?) centralizes U, since ¢~ 1(s) € Ty(k). But this is a contradiction, since
¢~ !(s?) does not centralize u;, since p(u;) € Vs,. O

Corollary 6.19. Let U, be a root group. Then ¢(Z(Uy,)) < Vi for some 5 € @',

Proof. By the preceding theorem, ¢(Z(U,)) is a group which satisfies the assump-
tions of Lemma 6.4, since each element u € Z°(U,)\{1} is pure, so the conclusion
follows. O

This corollary finishes the case where all root groups are abelian. Some more effort is
required when there are metabelian root groups present. These technical problems
are always present when one deals with metabelian root groups, see e.g. [Deo78] or
[BT73].

The following lemma is inspired by the proof of [CM05, Theorem 2.2].

Lemma 6.20. Let u € U,\{1} be a pure element and let 5 € O be such that p(u) €
V. Then the elements u',u" € U_, such that m(u) = v'uu” satisfy p(u'), p(u”) €
Vg,
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Proof. From Lemma 6.13 it follows that ' = «” and that v’ is pure. Let v € @’
be such that p(u’) € V,. It is clear that ¢(Qu) < Vj and that p(Qu’) < V,. This
induces a homomorphism ¢ : SLy(Q) — Vj, := (Vj3, V). Suppose that 5 # —v.
If {8,~} is a prenilpotent set of roots, V3, is nilpotent since each root group V,, is
nilpotent, which is a contradiction since ¥ is nontrivial. If {3, ~} is not prenilpotent,
the free product Vs * V., embeds in G’(k’), which is a contradiction since a conjugate
of u in SLy(Q) commutes with «’, while this is not the case for ¢(u) € Vz and

o) e V,. O
Proposition 6.21. Suppose that U, is metabelian. Then o(U,) < V3 for some
ged.

Proof. Let uq,...,u, € U, be pure such that loguy,...,logu, form a basis for g,.

Let U; ==k - u; and let Uy := Z(U,). Let 7o, ..., € @' be such that o(U;) < V,,.
These clearly exist, as each U; is a subgroup of U, consisting of pure elements.
Suppose that there are i, j such that v; # ;. If w := s, s,; has finite order, v; and
7, are roots in a Levi factor L7. Then U;; := (U;, U;) is mapped to a unipotent sub-
group of L7 by arguments similar to those in the proof of Proposition 6.15. Arguing
as in the proof of Theorem 6.18, this yields a contradiction as then there would exist
a torus element ¢ € T} (k') such that »~!(t) centralizes U; but not U;.

It follows that w has infinite order. Note that ¢(U,) is contained in the set V' :=
Vi, -V, - Vo, in particular, ¢(U,) is bounded.

Let m;, m; € G'(k") be such that m;, m; stabilize A’, act on it via s,,, s, and such
that ¢~1(m;), p~'(m;) stabilize A. These elements can be shown to exist via e.g.
invoking a split subgroup of G'(k').

From the previous proposition it follows that ¢~ (m;), ¢~ (m;) map U, to U_,.
For t := m;m; it follows that ¢~'(¢) normalizes U,.

Then for each r € Z there exists some u, € U, such that p(u,) € V,r,,. This is the
desired contradiction, as this implies that ¢(U,) is unbounded. O

To sum up: For each a € ® there is a root i(a) € ' such that p(Us) < Vi)
Arguing likewise for ¢! (note that the corresponding twin apartments A, A" are
already aligned in the right fashion) we find that for each 8 € @' there is a j(5) € @
such that (V) < Ujs). From the inclusion

Us = ¢ Ho(Us)) < 0 (Vi) < Ujiga))

and the fact that U, # 1,U, N Ug = 1 for o # (3, it finally follows that ¢ and j are
inverse bijections and that equality holds all along.

This discussion can be succinctly summed up by saying that any isomorphism
¢: G(k) — G'(K') is standard, cf. Definition 5.1. We have shown:

Theorem 6.22. Let G = G(k),G' = G'(K') be two 2-spherical almost split Kac—
Moody groups over fields k,k' of characteristic 0. Let (Z(k),(Ua)acomw,s)) and
(Z'(K"), (Vs)geaw,s) denote the associated canonical twin root data. Suppose that
¢ : G(k) — G'(K') is an abstract isomorphism. Then ¢ is standard.
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Proof. By the previous discussion, there exists x € G'(k’) such that ¢’ :=intz o
induces a bijection of the root groups. Note that int x can be chosen to be trivial if,
with the notation from above, ¢(S(Q)) already fixes A’. Since

Z(k)= () NewUa), Z(K)= () Naw)(Vs)
acd(W,S) Bed(W',S")

(there is actually an equality, not just an inclusion, see [Rém02, Proposition 1.5.3]),
it follows that ¢'(Z(k)) = Z'(K'). O

Remark 6.23. Let ¢ : G — G’ be a standard isomorphism of two groups endowed
with twin root data of type (W, S) resp. (W', S") with associated bijection i. Suppose
that S and S’ are finite.

It can be shown (cf. [CMO05, Section 2.2]) that i(—a) = —i(«) and that ¢ induces an
isomorphism i : (W, S) — (W', S') of Coxeter systems, i.e. an isomorphism i : W —
W' which maps S to S’. In particular, 7 interchanges the connected components of
S and S’, and for each such connected component .J there is €; € {4, —} such that

i(Q(Wy)7) = (Wi ;).
Remark 6.24. Since clearly 2 (U, ) is mapped to 2 (V3), it also follows that ¢ induces

an automorphism of the refined root datum as given by Rémy [Rém02, Theorem
12.6.3].

Remark 6.25. In the setting of Borel-Tits’s classical paper, one can proceed even
further to show that an abstract isomorphism is induced from a field isomorphism
and a rational map. In the case of split Kac—-Moody groups, the knowledge of the
fact that root groups are permuted can be used to describe possible isomorphisms
in terms of the SLy(k)’s which determine the Kac-Moody group.

In the present generality of dealing with almost split Kac—Moody groups, a more
explicit description of the induced isomorphisms of rank 1 groups can only be ob-
tained when making assumptions on the rank 1 groups in question.

Moreover, no statement is made about the anisotropic kernel.

Proposition 6.26. Let k, k" be two fields of characteristic 0 and let G(k),G'(K')
be two 2-spherical almost split Kac—Moody groups. Let ¢ : G(k) — G'(K') be an
isomorphism rectified in such a fashion that ¢ maps root groups with respect to
Ta(k) to root groups with respect to Tj(K').

Let X, (k) := Z(k)(Un,U—q) and Y3(K') := Z'(K')(V, V_g) be two rank 1 groups such
that o(X,) = Y.

Suppose that the derived groups of both X, and Yz are absolutely almost simple
and that either X;, is simply connected or that Yy is adjoint. Then there is a field
isomorphism o : k — k', a rational map v : X — Yy and a map c : X/ (k) —
Z(Ys(K')) such that for v € X, ¢(x) = c(z) - (r o o(x)).

Proof. The assumption are made as to conform to the assumptions of Borel-Tits’s
classical theorem [BT73, Theorem A], from which the claim follows. O
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6.3 Outlook

We end with a discussion of extending these results to positive characteristic.

Let k, k" be two fields of cardinality > 4 and let G(k), G'(k’) be two almost split
Kac-Moody groups. Let ¢: G(k) — G'(K’) be an isomorphism. Reasoning as in
[Cap09, Proposition 4.16], it follows that k& and k&’ have the same characteristic p;
we assume here that p > 0.

In characteristic 0, we exhibited a split Kac-Moody subgroup F(Q) < G(k) to pro-
duce a regular diagonalizable subgroup. A split semisimple k-group of rank 1 is
isomorphic to either SLy(k) or PGLy(k). In particular, in positive characteristic p
a rank 1 group X, contains a split subgroup Y, isomorphic to either SLy(FF,) or
PGLy(F,), the torus of which has cardinality p — 1. If p > 5 it is possible to pro-
duce a regular diagonalizable subgroup by means of the diagonal matrices of the
Y,, o € A: It is automatic that ¢(Y,(F,)) is bounded. By Jordan decomposition
in characteristic p, it follows that the image of a diagonal matrix in Y, (F,) is again
diagonalizable.

Note that if X = SLy(F,) where ¢ = p® with e > 1, there are representations of X
which do not map diagonalizable elements to diagonalizable elements: The easiest
example is provided by the restriction of scalars SLo(Fy) — SL4(FFy).

This allows us to produce a regular diagonalizable subgroup S of G(k) such that
©(S) is again diagonalizable in G'(k’). It remains to check that ¢(.5) is regular.
The remainder of the proof of Theorem 6.22 used the fact that the characteristic is
0 in some arguments involving algebraic groups. It thus seems reasonable to expect
that the main theorem remains correct when the assumption of characteristic 0 is
replaced by the requirement that k, &’ be two infinite perfect fields of characteristic
> 5.

Since in the case of finite ground fields the bounded subgroups are precisely the
finite subgroups, methods from [CMO06] should yield the same result in the case that
k, k" are finite fields of sufficiently large cardinality.
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