
Xu Feng

Investigating scattering phenomena from Lattice

QCD using twisted mass fermions

2010



Theoretische Physik

Investigating scattering phenomena from Lattice

QCD using twisted mass fermions

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich Physik
der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Xu Feng
aus Zhejiang, P.R.China

- 2010 -

i



Dekan: Prof. Dr. Johannes P. Wessels

Erster Gutachter: Prof. Dr. Gernot Münster

Zweiter Gutachter: Priv.-Doz. Dr. Karl Jansen

Tag der mündlichen Prüfungen: 15.07.2010
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ABSTRACT

We present results from first principle and non-perturbative Lattice QCD calculations

which are directly relevant to scattering experiments of high energy physics. In particular,

we study pion-pion scattering, where we analyze the ρ resonance parameters in the isospin

I = 1 channel and the pion-pion scattering length in the I = 2 channel. In addition, we

consider the e+e− scattering for which we provide a calcualtion of the leading order hadronic

contribution ahad
µ to the anomalous magnetic moment of the muon. All the calculations are

carried out using two dynamical flavors of maximally twisted mass fermions, which show a

quadratic continuum limit scaling in the lattice spacing.

Concerning the S-wave pion-pion scattering length aI=2
ππ in the isospin I = 2 channel

we have used pion masses ranging from 520 MeV to 290 MeV and two lattice spacings

of 0.079 fm and 0.063 fm. We use chiral perturbation theory at next-to-leading order to

extrapolate our results to the physical point where we find mπa
I=2
ππ = −0.0439 (5). This

can be compared to the recent experimental determination of mπa
I=2
ππ = −0.0444 (9) from

NA48/2 at CERN.

For the P-wave pion-pion scattering phase in the rho decay channel we use very similar

pion masses and lattice spacings as above and ensure that the physical kinematics for the

ρ–meson decay, mπ/mρ < 0.5, is satisfied. Making use of finite size methods, we evaluate

the pion-pion scattering phase in the center-of-mass frame and two moving frames, which

allowes us to map out the scattering phase as a function of the energy in the resonance region.

From this we extract the ρ mass and decay width and study their quark mass dependence.

The results obtained here demonstrate that resonances can indeed be analyzed on finite

size lattices with numerical calculations, opening the prospect to tackle also other hadronic

resonances.

Finally, we have calculated ahad
µ from the vacuum polarization tensor for pion masses

from 640 MeV to 290 MeV. We have examined both finite size effects and lattice artifacts

in our calculations, addressing therefore for the first time the systematic effects in the

determination of ahad
µ .
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CHAPTER I

INTRODUCTION

Within the framework of the field of high energy physics, the main research focus is to

understand the nature of the elementary constituents of matter and the fundamental inter-

actions between them. Our present knowledge about elementary particles is encoded in the

Standard Model of high energy physics which has been developed over many years by mu-

tual efforts in theory and experiment. A major role in these developments has been played

by collider experiments such as BEPC at IHEP China, LEP and LHC at CERN, Hera at

DESY and Tevatron at Fermilab. The high energy scattering experiments are essential in

the discovery of the by now known spectrum of elementary particles.

To illustrate the importance of scattering experiments, let us have a look at an e+e−

collider. Here, beams of electrons and positrons, once having reached their design energy

with a squared center-of-mass energy s, are brought to collisions leading to the creation of

hadrons, leptons and gauge bosons in the e+e−–annihilation process. These particles are

identified in large and very complex detectors which record the number of the corresponding

scattering events, Nevents. Nevents is proportional to the scattering cross section σ(s) which in

turn can be computed theoretically from the Standard Model Lagrangian. Although Nevents

depends on the machine characteristics, such as the luminosity, the cross section itself is

solely determined by the properties of the fundamental interactions and is hence the relevant

physical quantity. Thus measuring the energy, momentum, and angular dependence of the

reaction cross section from experiments and comparing it to theoretical calculations will

probe the nature of fundamental interactions.

As a result, we have identified four types of fundamental interactions among particles,

the strong, weak, electromagnetic and gravitational forces. The focus of this thesis is the

strong force. Quantum Chromodynamics (QCD) as the underlying theory of the strong

interaction [5–7] asserts the existence of quarks and gluons which are supposed to bind

1



together to form the experimentally observed hadrons (e.g. the proton, neutron, pion and

rho) with a phenomenon called quark confinement. The strong force also binds the protons

and neutrons together to form the nucleus of the atoms or gives rise to the creation of

neutron stars.

In order to give a particular example of an e+e− collision experiment to reveal properties

of the strong interaction, we will now look at e+e− → hadrons. To eliminate the effects

from e+e− initial states, it is advantageous to measure the hadronic to leptonic cross section

ratio

R(s) ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1.1)

with σ(e+e− → µ+µ−) = 4πα2/3s and α = e2/4π being the Quantum electrodynamic

(QED) fine structure constant. Experimental results for R(s) in the range 1 GeV <
√
s <

13 GeV are shown in Fig. 1.1 [8]. As can be seen, R(s) provides a very rich spectrum of

physical states which has revealed important information on the strong interactions.

A quantity which is closely related to R(s), given in Minkowski space-time, is the Adler

function [9–11]. It is defined through the following dispersive relation

D(Q2) = Q2

∫ ∞

4m2
π

R(s)

(s+Q2)2
ds , (1.2)

where Q2 = −q2 is now the squared Euclidean momentum transfer. The Adler function can

be studied both experimentally by transforming the e+e−–data to a Euclidean momentum

transfer and theoretically by evaluating the Lagrangian of QCD.

We remark that the change from a Minkowskian to an Euclidean metric will become

particularly important when we discuss later lattice field theory techniques as employed in

this thesis.

To make the bridge between experiments and theory more clear, we give another form

of the Adler function

D(Q2) = −(12π2)Q2 dΠ(Q2)

dQ2
. (1.3)

Here, the vacuum polarization function Π(Q2) appears and it is this quantity which can

be computed directly from Lattice QCD. Through the momentum transfer Q2, a scale
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Figure 1.1: Experimental results for R(s) in the range 1 GeV < E =
√
s < 13 GeV obtained

at the various e+e− storage rings.

dependence is introduced with very large momenta corresponding to small physical distances

while small momenta probe large distances. This momentum dependence can be used in

the theoretical calculations by exploiting an important feature of QCD, namely asymptotic

freedom [5, 12–14]. It means that the strong coupling becomes weaker and weaker with

increasing energy scales. Thus from a certain high energy scale on, QCD is amenable to

perturbation theory with a small coupling constant and the Feynman rules and diagrams

of perturbative QCD (pQCD) can be used to compute Π(Q2).

This, of course, leaves open the question of how to treat the problem at small energy

scales where the coupling constant is large and where we observe the spectrum of bound

states, i.e. the experimentally determined hadrons. At these low energy scales, the confine-

ment phenomenon sets in, pQCD fails to be applicable and the calculation of Π(Q2) requires

a non-perturbative treatment. Such a non-perturbative method is provided by Lattice QCD

and it is one of the subjects of this thesis to explain this method and to detail how it can

be used to compute quantities related to scattering experiments.
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To illustrate the importance of non-perturbative contributions, let us point out the

computation of the muon anomalous magnetic moment, aµ = (gµ − 2)/2, a quantity that

can be directly computed from Π(Q2). It is one of the most precisely measured quantities

in high energy physics. Latest experiments at the Brookhaven National Laboratory [15]

have reached an amazing accuracy of

aEX
µ = 11659 208.9(6.3) × 10−10 . (1.4)

The theoretical calculations of aµ based on the Standard Model have also reached a precision

that matches the experimental one, giving [16,17]

aSM
µ = 11659 183.4(4.9) × 10−10 , e+e−-based ,

aSM
µ = 11659 193.2(5.2) × 10−10 , τ -based . (1.5)

The discrepancy between experiments and the Standard Model value is 3.2σ (e+e−-based)

or 1.9σ (τ -based). If this discrepancy remains or even gets larger with more precise exper-

imental results and refined theoretical analysis, this would be a sign of a breakdown of the

Standard Model and a hint for some unknown physics. However, it needs to be realized

that among all the sources of the theoretical errors, the lowest order hadronic contribution,

ahad
µ , is the dominant piece. This piece is of inherently non-perturbative nature and cannot

be computed within pQCD. Thus, it is important to calculate ahad
µ accurately from first

principles using only the QCD Lagrangian. It is here, where a lattice determination of

Π(Q2) is essential to disentangle non-perturbative effects from those of new physics. The

tool, how this can be achieved, is through the expression for ahad
µ ,

ahad
µ = α2

∫ ∞

0

dQ2

Q2
F

(

Q2

m2
µ

)

(Π(Q2) − Π(0)) , (1.6)

where mµ is the muon mass and F (Q
2

m2
µ
) is a known kernel [18]. Hence, once Π(Q2) has

been determined non-perturbatively, also ahad
µ can be computed. The actual value of ahad

µ

as computed from Lattice QCD will be one of the main results of this thesis. In the above

discussion, we have shown some results of the e+e− scattering experiments. The ratio R(s),

given in Eq. (1.1), is then used as an example for a quantity that can be determined by
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Figure 1.2: In the I = 1 channel the e+e− → π+π− cross section is shown. The ρ–resonance
is formed in this channel.

such data and confronted with theoretical calculations and in particular to Lattice QCD

computations to address non-perturbative effects.

Let us give a second example of such a bridge between experiment and Lattice QCD.

To this end, we consider e+e− collisions at low energies. In this case, the final state consists

necessarily of two pions. Focusing on the isospin I = 1 channel, the corresponding e+e− →

π+π− cross section is shown in Fig. 1.2 [19]. The clearly visible peak in the cross section

corresponds to the neutral and unstable ρ(770)–meson. The peak position of the cross

section can be identified with the mass of the ρ(770)–meson, mρ, while the position where

the cross section drops to half of its peak value can be related to the decay width, Γρ.

Fig. 1.2 demonstrates that experimentally the mass of a hadron and its decay width,

in case it is unstable as many hadrons are, can be determined rather accurately. The lat-

est PDG [20] values of mρ = 775.49(34) MeV and Γρ = 149.1(8) MeV show that such

a determination can reach a precision of the 1 MeV level. Naturally, the question arises,

whether we can compute hadron masses and decay widths, which are important quantities

to understand the dynamics of the strong interaction, from QCD. Since hadrons are bound
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states of quarks and gluons, their properties are of an inherently non-perturbative nature

and cannot be computed within pQCD. One way to yield results for the masses and decay

widths is to use again Lattice QCD. However, while a stable hadron mass can be straight-

forwardly computed in Lattice QCD, as shown below, the calculation of the decay width of

a resonance encounters conceptual problems. Resonances are defined in Minkowski space

and infinite volume, while Lattice QCD is formulated in Euclidean space. Furthermore, if

we think of numerical simulations, necessarily a finite physical volume is to be used.

It is one subject of this thesis to show how these two conceptual difficulties can be

circumvented and that the resonance properties of the ρ–meson can be analyzed utilizing

lattice techniques, resulting in a determination of the ρ–meson mass and width from first

principles.

The way to treat the ρ–meson on the lattice is to determine the pion-pion scattering

phase from Lattice QCD using Lüscher’s finite size methods [21–25], which establish re-

lations between the discrete energy spectrum in a finite volume and the elastic scattering

phase in the infinite volume. According to a partial wave analysis, the total cross section,

σ, is related to l–th partial wave scattering phase, δl, through

σ ∝
∑

l

(2l + 1) sin2 δl . (1.7)

Thus, a way to determine the resonance mass and width is to seek the position where the

scattering phase, which dominates the contributions to the cross section, passes π/2 and

π/4. Our ultimate goal is to determine the ρ–resonance mass and decay width from the

P-wave π+π− scattering phase in the I = 1 channel and compare the lattice results with

experiments.

The case of the ρ–meson is used here as an ideal laboratory for lattice studies of res-

onances for two reasons. First, in the lattice calculations, the noise to signal ratio for a

meson is proportional to emM−mπ , where mM is the meson mass. Since the ρ is one of the

lightest mesons, the statistical error can be well controlled. Second, the principal decay

channel of the ρ–meson is to a pair of pions with a branching rate of 99.9%. As a result, a

two-pion scattering system provides an ideal laboratory for the study of ρ–resonance.
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Besides the I = 1 channel, we perform a calculation of the S-wave pion-pion scattering

phase in the I = 2 channel. Since no resonances are formed in this channel, the interest

here is to calculate the corresponding scattering length which is important because it de-

termines the leading low-energy behavior of the scattering phase. Furthermore, the pion

mass dependence of the scattering length allows to determine a low energy constant (LEC)

of chiral perturbation theory (χPT) [26, 27] that enters the quark mass dependence of the

scattering length.

Above we have provided three examples, the vacuum polarization function and pion-pion

scattering in the I = 1 and I = 2 channels, which are related to scattering experiments.

We argued that quantities related to these experiments can be computed theoretically in

a non-perturbative way using lattice field theory. In the following, we will demonstrate in

detail how such a calculation can be carried through and provide a study of the systematic

effects of the computation.

We remark that all calculations are performed using the two flavor maximally twisted

mass fermion [28] ensembles from the European Twisted Mass Collaboration (ETMC) [29–

32]. These ensembles, obtained at a number of lattice spacings, quark masses and volumes

provide the necessary input for not only computing values for the quantities of interest, but

also to allow a controlled estimate of the systematic effects appearing in the calculation.

The thesis is organized as follows. In Chapter 2, the lattice formalism of gauge and

fermion fields are given. Here we also explain the formulation of maximally twisted mass

fermions and how it reduces lattice artifacts to appear only at O(a2). In Chapter 3, the

basic idea of Lüscher’s finite size method is described and its extension to the moving frame

is given. In Chapter 4, a calculation of the S-wave pion-pion scattering length in the I = 2

channel is presented, together with the determination of relevant LEC. In Chapter 5, the

P-wave pion-pion scattering phase in the isospin I = 1 channel is calculated, from which

the ρ–meson resonance mass, its decay width and the effective ρ → ππ coupling constant,

gρππ, are extracted. Finally, a chiral extrapolation is performed to extract the values of

the ρ–meson mass and decay width at the physical point. In Chapter 6, a calculation of

the vacuum polarization function is presented, which is finally used to determine the lowest
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order hadronic contribution to the muon anomalous magnetic moment, ahad
µ .
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CHAPTER II

LATTICE QCD FUNDAMENTALS

By now, Lattice QCD is a well established non-perturbative approach to study QCD. It

allows to address questions which are relevant not only at large energies where, thanks

to asymptotic freedom, perturbation theory works but also at low energies where non-

perturbative phenomena take place. Indeed, Lattice QCD has been originally developed by

K. G. Wilson in 1974 to understand quark confinement [33]. Soon after the formulation of

Lattice QCD, numerical simulation techniques have been developed [34] which have turned

out to be a particularly useful tool for Lattice QCD computations. However, due to the

immense cost of such numerical simulations, the calculations were restricted to approxima-

tions such as infinitely heavy sea quark masses (quenched approximation). Fortunately, the

last years have seen substantial improvements of the numerical algorithms employed and

complemented by a tremendous increase of computing power with BG/P systems reach-

ing Petaflops today. In addition, conceptual developments such as an acceleration of the

continuum limit or non-perturbative renormalization have helped significantly to obtain

phenomenologically relevant results. In fact, simulations are performed nowadays at small

values of the lattice spacing, large volumes and almost realistic values of the quark masses.

In this way, a real connection to experimental results can be established and in this thesis,

we will discuss three particular applications as already outlined in the introduction.

In this chapter, I introduce first the basic theoretical scope of Lattice QCD before I

turn to the the specific computations performed in this thesis. For more details, I refer the

readers to the textbooks [35–38] and the review articles [39–41].

2.1 Euclidean correlation functions

Many quantities in Lattice QCD can be computed from the evaluation of suitable correlation

functions. We therefore begin by discussing the construction of lattice correlation functions

9



as the basic objects from which physical quantities of interest can be computed.

Let us start from a standard correlation function in Minkowski space, i.e. time ordered

two point function

CM (t,~k) =

∫

d3~xe−i
~k·~x
〈

Ω
∣

∣

∣T
[

O1(~x, t)O†
2(
~0, 0)

]∣

∣

∣Ω
〉

(2.1)

where the operator O†
2 represents the Heisenberg creation operator of a state with quantum

numbers of O2 at space-time point (~0, 0) and the Heisenberg operator O1 represents the

annihilation operator of a state at space-time point (~x, t). The integration over space-like

coordinates constraints the state momentum to a certain momentum ~k. The Heisenberg

operator O1(~x, t) can be written as

O1(~x, t) = eiĤt−ip̂·~xO1(~0, 0)e
−iĤt+ip̂·~x , (2.2)

so that

CM (t,~k) =

∫

d3~xe−i
~k·~x
〈

Ω
∣

∣

∣eiĤt−ip̂·~xO1(~0, 0)e
−iĤt+ip̂·~xO†

2(
~0, 0)

∣

∣

∣Ω
〉

. (2.3)

In Eq. (2.3), it is assumed that t > 0 and the time ordered product is dropped. The Hamilton

operator Ĥ remains unspecified at this point with its particular form being dictated by the

physical problem under consideration. Since the vacuum is time-space translation invariant,

the correlation function can be simplified as

CM (t,~k) =

∫

d3~xe−i
~k·~x
〈

Ω
∣

∣

∣
O1(~0, 0)e

−iĤt+ip̂·~xO†
2(
~0, 0)

∣

∣

∣
Ω
〉

. (2.4)

In order to adopt the above Minkowski correlation function for Lattice QCD, a Wick

rotation t → −it needs to be done, which corresponds to an analytical continuation from

Minkowski to Euclidean space, where the two-point function is now given by

CE(t,~k) =

∫

d3~xe−i
~k·~x
〈

Ω
∣

∣

∣O1(~0, 0)e
−Ĥt+ip̂·~xO†

2(
~0, 0)

∣

∣

∣Ω
〉

. (2.5)

Under the condition of Osterwalder-Schrader reflection positivity [42] which amounts ba-

sically to demand the positivity of the Hamilton operator Ĥ, it is guaranteed that the

Euclidean correlation function contains the same physical information as its Minkowskian
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counterpart. By inserting a complete set of energy eigenstates

1 =
∑

n

1

(2π)3

∫

d3~p
∣

∣

∣
E~p
n, ~p 〉〈E~p

n, ~p
∣

∣

∣
, (2.6)

one obtains

CE(t,~k) =
∑

n

∫

d3~p δ(~k − ~p)
〈

Ω
∣

∣

∣
O1(~0, 0)e

−E~p
nt
∣

∣

∣
E~p
n, ~p 〉〈E~p

n, ~p
∣

∣

∣
O†

2(~0, 0)
∣

∣

∣
Ω
〉

=
∑

n

〈

Ω
∣

∣

∣
O1(~0, 0)

∣

∣

∣
E
~k
n,
~k 〉〈E~kn, ~k

∣

∣

∣
O†

2(~0, 0)
∣

∣

∣
Ω
〉

e−E
~k
nt . (2.7)

The eigenstates |E~kn, ~k〉 are selected by the quantum numbers associated with the interpo-

lating operators O1 and O2. If |n〉 is a stable single-particle state with mass Mn, then its

energy E
~k
n is equal to

√

M2
n + ~k2.

In particular, in the zero momentum case, ~k = 0, one can directly extract the mass of

a particle with the quantum number of the state |n〉. In this way, it is possible in Lattice

QCD to directly extract hadron masses from the computation of the Euclidean correlation

functions. For example, consider the two-point function

Cπ(t) =

∫

d3~x
〈

Ω
∣

∣

∣
π+(~x, t)π−(~0, 0)

∣

∣

∣
Ω
〉

(2.8)

of the field

π± = ψ̄γ5
τ±

2
ψ , ψ =







u

d






(2.9)

where u and d represent the up- and down-quark fields, and τ± the isospin Pauli matrices.

The large-time behavior of correlation function Cπ(t) is given by

Cπ(t) = e−mπt
∣

∣

〈

Ω
∣

∣π+
∣

∣ π−
〉∣

∣

2
+O(e−3mπt) . (2.10)

Asymptotically, for large enough Euclidean time separation t, Cπ(t) is dominated by the

single-pion state and the pion mass mπ can be extracted from the exponential fall-off of the

correlation function,

mπ = − lim
t→∞

∂

∂t
lnCπ(t) . (2.11)

It is important to stress that the so-obtained pion mass is identical to the corresponding

one in Minkowski space. However, these arguments only hold for stable particles. Some
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resonances, such as ρ and σ mesons or the ∆ baryon have masses greater than the many-

particle threshold. Thus they can no longer be extracted by simply measuring the ground

state energy. How to calculate the resonance parameters such as the resonance mass and

decay width is one of the major topics of this thesis which will be discussed in detail in

Chapter 5. There, the ρ–resonance will be treated as an example, on one hand being

interesting on its own and on the other hand serving as a laboratory case for eventual

studies of other hadron resonances.

2.2 Lattice regularization

To actually compute the Euclidean correlation functions, one makes use of the path integral

formulation of quantum field theories. Let us take QCD as an example. The expectation

value of a two-point correlation function is then given by

〈O(x1)O†(x2)〉 =
1

Z

∫

DψDψ̄DAO(x1)O†(x2) exp
(

−S
[

ψ̄, ψ,Aµ
])

, (2.12)

where normalization factor Z is a path integral, named partition function

Z =

∫

Dψ̄Dψ̄DA exp
(

−S
[

ψ̄, ψ,Aµ
])

. (2.13)

S is the QCD action, and ψ and Aµ denote the quark and gluon fields. In order to evaluate

the correlation function, the functional integral appearing in Eq. (2.12) needs to be com-

puted. A conceptually clean way to perform this calculation is to consider it as a limit of a

well-defined integral over a discretized Euclidean space-time lattice with lattice spacing a.

One hence introduces a hypercubic lattice

Λ = aZ4 = {x|xµ/a ∈ Z} . (2.14)

In addition, we will consider the system in a finite volume with size La. Thus the allowed

momenta are given by

p = ±2πn

La
, n = 1, · · · , L/2 . (2.15)

For a non-zero value of a, the maximal momentum that exists on the lattice is of the order

∼ π
a , which serves as an ultraviolet cutoff. For a finite size L, the minimal momentum is
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given by 2π/(La), which provides an infrared regulator of the theory. Thus, the functional

integral is completely well-defined. The original functional integral can then be understood

as a limit of sending the volume to infinity and the lattice spacing to zero. It is worth

mentioning that this finite lattice regularization of the functional path integral has served

as a mathematical basis to study fundamental properties of quantum field theories, see

e.g. [43].

2.2.1 Lattice quark fields

In order to introduce the quark fields on the lattice, let us first consider the Euclidean

free-quark field two-point function in the continuum,

〈ψ(x)ψ̄(0)〉 =

∫

d4p

(2π)4
eipx

iγp+m
, (2.16)

where the 4-vector inner products px and γp are given as

px = p0t+ ~p · ~x , γp = γ0p0 +
∑

i

γipi . (2.17)

The Euclidean Dirac matrices γµ are hermitian and satisfy the anti-commutation relation

γ†µ = γµ , {γµ, γν} = δµν . (2.18)

Using Eqs. (2.17) and (2.18) and integrating Eq. (2.16) in the p0 direction we obtain

〈ψ(x)ψ̄(0)〉 =

∫

d3~p

(2π)3
−iγp+m

2E
e−Et+ipx , E =

√

m2 + ~p2 . (2.19)

Besides, we find that the two-point correlation function fulfills the Dirac equation

(γ∂ +m) 〈ψ(x)ψ̄(0)〉 = δ(x) . (2.20)

Let us now step to the anticipated discretized space-time and replace continuum space-

time by a 4-dimensional hypercubic lattice Λ. The the quark fields ψ(x) and ψ̄(x) are

now defined only at discrete points x ∈ Λ. Furthermore, the continuum partial derivative

operator is replaced by forward and backward lattice derivatives

∂µψ(x) = {ψ (x+ aµ̂) − ψ(x)} /a

∂∗µψ(x) = {ψ(x) − ψ (x− aµ̂)} /a . (2.21)
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Performing the Fourier transform, in momentum space we have

∂µ → 1

a

{

eiapµ − 1
}

= ipµ {1 +O(ap)} (2.22)

Although the so-defined lattice derivatives reproduce the continuum derivative operator

in the limit of vanishing lattice spacing, it is not sufficient to use them as the kinetic operator

for lattice fermions as they stand. As realized by Wilson in Ref. [33], this would lead to a

proliferation of fermion modes in the continuum limit. The solution found by Wilson is to

modify the kinetic term for fermions on a lattice and he proposed a lattice Dirac operator

DW which reads

DW =
3
∑

µ=0

1

2

{

γµ
(

∂∗µ + ∂µ
)

− ar∂∗µ∂µ
}

(2.23)

where ar∂∗µ∂µ is the so-called Wilson term, which is added to decouple the unwanted addi-

tional fermion modes, named doublers. One can then show that this so-called Wilson-Dirac

operator indeed describes only one fermion flavor in the continuum limit. We mention that

this doubling problem is deeply connected to other fundamental properties of the theory

such as locality and chiral symmetry as summarized in the Nielsen-Ninomiya theorem [44].

Let us set the Wilson parameter to be r = 1 and perform the Fourier transform

1

2

(

∂∗µ + ∂µ
)

→ i

a
sin (apµ) ≡ ip̊µ

∂∗µ∂µ → −p̂µp̂µ , p̂µ ≡ 2

a
sin
(apµ

2

)

. (2.24)

In momentum space, the Wilson-Dirac operator is simply given by

DW → iγp̊+
1

2
ap̂2 . (2.25)

Solving the Dirac equation

(DW +m) 〈ψ(x)ψ̄(0)〉 = a−4δx0 , (2.26)

one obtains the free-quark two-point function on the lattice

〈ψ(x)ψ̄(0)〉 =

∫ π/a

−π/a

d4p

(2π)4
eipx

iγp̊ + 1
2ap̂

2 +m

=

∫ π/a

−π/a

d3~p

(2π)3
e−Et+i~p·~xρ(~p) (2.27)
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where E is the energy of a lattice quark with 3-momentum ~p and ρ(~p) is the associated

spectral density. By expanding in powers of the lattice spacing a, E and ρ(~p) are given by

E =
√

m2 + ~p2 +O(am, a~p) , ρ(~p) =
−iγp+m

2E
+O(am, a~p) . (2.28)

Comparing to Eq. (2.19) we find that the lattice two-point function agrees with the contin-

uum two-point function as a→ 0, i.e. taking the continuum limit.

2.2.2 Lattice gauge fields

In the above section, we provid the construction of free quark fields on the lattice. However,

in reality the gauge fields Aµ(x) have to be considered as they mediate the interactions

between quarks. More specifically, a quark moving from site x to y in presence of a gauge

fields Aµ(x) picks up a phase factor given by the path ordered product

ψ(y) = P exp

{∫ y

x
Aµ(x)dxµ

}

ψ(x) . (2.29)

The quantity

U(x, y) = P exp

{∫ y

x
Aµ(x)dxµ

}

, (2.30)

is called the parallel transporter. It has been Wilson’s fundamental observation that the

parallel transporter can be used to define the gauge degrees of freedom on the lattice. To

illustrate this, we consider for the QCD relevant SU(3) gauge transformations Λ(x), which

acts on the quark and gauge fields as follows

ψ(x) → Λ(x)ψ(x) , Λ(x) ∈ SU(3)

U(x, y) → Λ(x)U(x, y)Λ(y)−1 . (2.31)

In particular, for any closed curve C starting from x and ending at y = x, the gauge

transformation is

U(x, x; C) → Λ(x)U(x, x; C)Λ(x)† . (2.32)

This means that a Wilson loop W (C) ≡ tr {U(x, x; C)} is in fact gauge-invariant under such

transformations, given the cyclicity of the trace operation.
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On the lattice, one makes use of the concept of the parallel transporter and defines the

link variable Uµ(x) ≡ U(x, x+aµ̂), pointing from x to its nearest neighbor in the µ direction

Uµ(x) ∈ SU(3) , Uµ(x) → Λ(x)Uµ(x)Λ(x+ aµ̂)−1 . (2.33)

For a→ 0, Uµ(x) can be represented as

Uµ(x) = 1 + aAµ(x) +O(a2) . (2.34)

A Wilson loop W (C) constructed from such link variables is still gauge invariant. The two

simplest Wilson loops on the lattice are the plaquette (�1×1) and the rectangle (�1×2),

from which one builds the so-called plaquette fields

Pµν(x) = Re Tr {1 − U(x, x;�1×1)} (2.35)

and rectangle fields

Rµν(x) = Re Tr {1 − U(x, x;�1×2)} . (2.36)

The introduction of the link fields allows in particular to define a gauge covariant forward

and backward difference lattice operator

∇µψ(x) =
1

a
{Uµ(x)ψ(x + aµ̂) − ψ(x)}

∇∗
µψ(x) =

1

a

{

ψ(x) − U †
µ(x− aµ̂)ψ(x− aµ̂)

}

∇µψ(x) → Λ(x)∇µψ(x) , ∇∗
µψ(x) → Λ(x)∇∗

µψ(x) . (2.37)

As a consequence, based on the definition (2.37), a gauge-covariant Wilson operator can be

constructed which reads

DW +m0 =

3
∑

µ=0

1

2

{

γµ
(

∇∗
µ + ∇µ

)

− ar∇∗
µ∇µ

}

+m0 , (2.38)

where m0 is the bare quark mass parameter.

2.3 Lattice QCD action – Wilson action

The fundamental degrees of freedom of QCD are quark and gauge fields. Using the quark

and gauge fields introduced in Sect. 2.2.1 and 2.2.2, one can construct the Lattice QCD
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action. Early in 1974, the so-called Wilson action, for both quark and gauge fields, was

developed [33]

S = SG + SF

SG =
β

3

∑

x

∑

µν

Pµν(x) , β ≡ 6/g2
0

SF = a4
∑

x

ψ̄(x) (DW +m0)ψ(x) . (2.39)

This action is gauge-invariant for any lattice spacing. In other words, it is unaffected

by a local gauge transformation in which the fermion and gauge fields are rotated by SU(3)

group elements Λ(x) defined at each point.

A more general form of gauge action is given by

SG =
β

3

∑

x

∑

µν

(b0Pµν(x) + b1Rµν(x)) (2.40)

with normalization condition b0 = 1 − 8b1. Note that at b1 = 0 this action becomes the

usual Wilson plaquette gauge action. For b1 = −1.4088, the action is so-called DBW2 gauge

action [45] and for b1 = −1/12 it is the tree-level Symanzik improved gauge action [46].

Tuning the coefficient b1, one expects to accelerate the convergence to the continuum limit.

We give this generalized form of the gauge action here, since this will be used later on

in the numerical simulations for the generation of the gauge field configurations on which

our physical quantities are evaluated.

In Wilson’s fermionic action SF , the Wilson term protects from the existence of doublers

in the continuum limit but it breaks chiral symmetry at O(a). Besides, the quark mass m0

renormalizes both additively and multiplicatively. Hence, an O(1/a) counter term needs

to be introduced to compensate the additive quark mass renormalization. It is useful and

common to define a subtracted bare mass mq by

mq = m0 −mcrit , (2.41)

where mcrit is called the critical mass parameter. This leads to a fine tuning problem in

Wilson Lattice QCD as the value of the Lagrangian parameter m0 has to be adjusted very

carefully to reach the chiral limit.
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2.3.1 Computation of correlation functions

The partition function of the Wilson action can be expressed as

Z =

∫

DUDψDψ̄e−SG[U ]e−ψ̄Mψ , (2.42)

where M = DW +m is the so-called fermion matrix. The integral over the fermion fields

can be solved by using the usual integration rules of Grassmann variables [47]

∫

DψDψ̄e−ψ̄Mψ ∝ detM . (2.43)

The partition function is then given by

Z =

∫

DU detM [U ] e−SG[U ] =

∫

DUe−SG[U ]+log detM [U ] =

∫

DUe−Seff [U ] , (2.44)

where we have introduced the effective gauge action as

Seff [U ] ≡ SG [U ] − log detM [U ] = SG [U ] − Tr logM [U ] . (2.45)

Any expectation value of a physical observable 〈O〉, e.g. the correlation functions, can be

computed in the path integral formalism as

〈O〉 =
1

Z

∫

DUDψDψ̄O
[

U, ψ̄, ψ
]

e−SG[U ]e−ψ̄Mψ . (2.46)

After performing the Grassmann integral, it becomes a function depending only on gauge

variables

〈O〉 =
1

Z

∫

DUO [U ] detM [U ] e−SG[U ] =
1

Z

∫

DUO [U ] e−Seff [U ] (2.47)

In practise, the above expectation value is evaluated as an ensemble average over gauge

fields that are chosen according to the probability distribution given by

ρ[U ] = e−Seff [U ] . (2.48)

The details of the numerical simulation aspects to generate the above probability distribu-

tion can be found in [35–38]. For this thesis, we just assume that the gauge fields have been

generated with a suitable numerical method and we will only employ them to compute the

correlation functions of interest.
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2.3.2 Continuum limit and Symanzik’s improvement program

A very important aspect of lattice simulations is the approach to the continuum limit, i.e.

the process of removing the initial lattice discretization and sending the lattice spacing a

to zero. The continuum QCD Lagrangian can be obtained by an expansion of the Wilson

action in the lattice spacing a,

SG → 1

4

∫

d4x (Fµν)
2 +O(a2) , Fµν = ∂µAν − ∂νAµ + ig0 [Aµ, Aν ]

SF → ψ̄ (γµDµ +m)ψ +O(a) , Dµ = ∂µ + igAµ . (2.49)

The expression in eq. (2.49) shows that the leading order correction to the Wilson gauge

action is O(a2), while the fermion action suffers from larger lattice artifacts which appear

at O(a). We note in passing that the appearance of the lattice artifacts at O(a) is related

to the explicit breaking of chiral symmetry when using Wilson fermions. To reduce the

lattice artifacts, we could, of course, perform calculations using small values of the lattice

spacing, such that one is close enough to the continuum limit. However, the computational

costs increase dramatically when decreasing a.

A better solution is to make use of the fact that the lattice formulation of the QCD action

is not unique. Alternative versions of lattice actions leading to the same continuum action

as the lattice spacing a→ 0 are equally valid. Improved lattice actions with smaller lattice

spacing artifacts can be systematically developed by means of Symanzik’s improvement

program [48–50]. In this concept the lattice theory at finite values of a is mapped to an

effective continuum theory,

SL = SC + aS1 + a2S2 + · · · . (2.50)

where SL and SC denote the lattice and continuum action. The correction terms Si cor-

respond to continuum operators. Similarly, the operators used to probe physics can be

expanded as

OL = OC + aO1 + a2O2 + · · · . (2.51)

Lattice expectation values are then given by the corresponding continuum expectation value
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plus correction terms which are proportional to powers of the lattice spacing

〈OL〉latt = 〈OC〉cont − a〈OCS1〉cont + a〈O1〉cont +O(a2) . (2.52)

The advantage of the Symanzik’s imporvement programme is that the correction terms Si

and Oi carry coefficients which can be computed in such a way that, e.g. the O(a) effects

can be canceled. Such a computation has to be performed non-perturbatively and involves

a large set of simulations. Nevertheless for the action itself and a number of operators

this has indeed be performed [51]. One point to notice here is that in order to improve a

physical expectation value to any given order in a, one has to improve both the action and

the operators to the same order, unless the physical quantity is derived from the action it

self, e.g. in the case of hadron masses. Thus, to establish a complete O(a)–improvement

for many physical quantities of interest is a very demanding task.

2.4 Lattice QCD action – Wilson twisted mass action

Another way to achieve an O(a)–improvement of the lattice theory is to discretize the

theory with Wilson twisted mass fermions taken at so-called maximal twist, as explained

in this section. Indeed, all calculations reported in this thesis are based on two dynamical

flavors maximally twisted mass QCD action. The gauge action used in our calculations is

given in Eq. (2.40) and will not be discussed further. In the following, we will concentrate

on the properties of the twisted mass fermion action and, in particular, how the wanted

O(a)–improvement can be achieved.

2.4.1 Twisted mass fermion action

The twisted mass fermion action for two flavor mass degenerate quarks is introduced by

adding a twisted mass term iµγ5τ3 to the standard Wilson fermion action

Stm = a4
∑

x

χ̄(x) [DW +m0 + iµγ5τ3]χ(x) = a4
∑

x

χ̄(x)Dtmχ(x) . (2.53)

The twisted mass parameter µ serves as an infrared cutoff for the eigenvalues of the operator

Dtm

det [Dtm] = det
[

D2
W + µ2

]

. (2.54)
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Thus the formulation avoids un-physically, so-called exceptional, small eigenvalues of the

Wilson lattice Dirac operator which may lead to severe problems in the numerical simula-

tions [52,53].

In the continuum limit, the twisted mass fermion action reads as

Stm =

∫

d4xχ̄(x) [γµDµ +mq + iµγ5τ3]χ(x) (2.55)

where the mass term can be rewritten as

mq + iµγ5τ3 ≡Meiαγ5τ3 , M =
√

m2
q + µ2 , α = arctan

(

µ

mq

)

. (2.56)

The form (2.55) can be obtained from the standard continuum fermion action

S = ψ̄ [γµDµ +M ]ψ (2.57)

by an axial transformation

ψ → eiωγ5τ3/2χ , ψ̄ → χ̄eiωγ5τ3/2 . (2.58)

for a particular choice of the twist angle, namely ω = α. Since the transition from the

standard to the twisted form of the action corresponds only to a change of fermionic variables

leaving also the measure invariant, the physics remains completely un-altered when using

the generalized form of the action with the twisted mass term included. In the following we

call the basis {χ̄, χ} the twisted and {ψ̄, ψ} the physical basis.

A particularly interesting choice of the twisted mass fermion action, in particular when

using twisted mass fermions on the lattice as we will see later, is the case with mq = 0

Stm =

∫

d4xχ̄(x) [γµDµ + iµγ5τ3]χ(x) , (2.59)

which can be achieved from the standard continuum action by using the twisting angle

ω = α = π/2. This is referred to as the action at maximal twist.

2.4.2 O(a) improvement

The lattice Wilson twisted mass action (2.53) in the twisted mass basis can be translated

into the physical basis by an axial transformation (2.58)

Sphtm = a4
∑

x

ψ̄(x)e−iωγ5τ3/2 [DW +m0 + iµγ5τ3] e
−iωγ5τ3/2ψ(x) . (2.60)
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By replacing bare quark mass with critical mass and subtracted mass: m0 = mcrit + mq,

the action reads

Sphtm = a4
∑

x

ψ̄(x)

[

1

2

∑

µ

γµ
(

∇∗
µ + ∇µ

)

+

(

−ra
2

∑

µ

∇∗
µ∇µ +mcrit

)

e−iwγ5τ3 +M

]

ψ(x) .

(2.61)

In order to proceed, we first remark that the critical mass is an odd function of the

Wilson parameter r [28]

mcrit(−r) = −mcrit(r) . (2.62)

Using this fact, it can be shown that the action (2.61) is invariant under the combined

transformation R̃5

R̃5 = R5 × (r → −r) × (M → −M) , (2.63)

where R5 is defined as

R5 :











ψ → ψ′ = γ5ψ

ψ̄ → ψ̄′ = −ψ̄γ5

. (2.64)

In this situation, it is proved that any multiplicatively renormalizable (m.r.) operator O will

be either even or odd under the parity transformation R̃5 which we express as (−1)PR5
[O].

The argument implies that the expectation value of O must satisfy the relation

〈O〉|(r,M) = (−1)PR5
[O] 〈O〉|(−r,−M) . (2.65)

Making use of the Symanzik expansion and relation (2.65), it is proved in Ref. [28] that the

Wilson average of an expectation value 〈O〉 is O(a) improved

1

2

[

〈O〉|(r,M) + 〈O〉|(−r,M)

]

= ζ(r) 〈O〉|cont
M +O(a2) . (2.66)

In Eq. (2.66), the change of the Wilson parameter r → −r is equivalent to the change of

ω → ω + π. A particular choice is the maximal twist of ω = −π/2, which is achieved by

tuning m0 to be mcrit since

mq = m0 −mcrit = 0 → ω = arctan

(

µ

mq

)

= ±π/2 . (2.67)
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Thus it is proved that, at maximal twist, any quantity invariant under ω = ±π/2 is auto-

matic O(a)–improved. In this thesis, we could give only the basic arguments to demonstrate

that twisted mass lattice fermions when taken at maximal twist are O(a)–improved. For a

detailed proof of this fact, we refer the readers to Ref. [28].

2.4.3 Isospin symmetry breaking

As mentioned above, the twisted mass fermion matrix protects against small eigenvalues,

achieves automatic O(a) improvement at maximal twist. It is also expected to simplify

mixing problems in the renormalization process needed for a number of physical observ-

ables [28]. At the same time, its computational cost is comparable to standard Wilson

fermions. The expense of having these good properties is that at non-zero lattice spacing,

the twisted mass term explicitly breaks the full SU(2) flavor symmetry down to U(1), the

conserved I3, but not I2, symmetry. A direct result of isospin symmetry breaking is that the

neutral pion mass becomes smaller than the charged ones, and unphysical parity-breaking

interactions among pions become possible.

This observation is especially relevant for this thesis since such isospin symmetry break-

ing effects could in principle contaminate pion-pion scattering as investigated here. Let us

sketch here the mechanism of how this can appear. On the lattice, one determines the scat-

tering phase for two-pion systems with Lüscher’s method, by determining the interaction

energy

△Eππ = Eππ − 2mπ . (2.68)

In the isospin zero limit, the |I, I3〉 = |2, 0〉 and |0, 0〉 states are given by

|2, 0〉 =
1√
6

(

|π+π−〉 + |π−π+〉 − 2|π0π0〉
)

,

|0, 0〉 =
1√
3

(

|π+π−〉 + |π−π+〉 + |π0π0〉
)

, (2.69)

including both neutral and charged pions. As said above, the isospin breaking leads to a

particular lattice artifact in that the charged and neutral pion masses have different masses,

in contrast to e.g. standard Wilson fermions where they are mass-degenerate. It turns out
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in practical simulations [29] that this mass splitting is sizable. As a consequence, there is

also a splitting in the energy shift △Eππ which can be either Eππ − 2m0
π or Eππ − 2m+

π .

Furthermore, since I2 is no longer a good quantum number, the two states in Eq. (2.69)

do not carry definite isospin I anymore and they mix. A very important point is that the

unphysical states that mix have lattice artifacts that appear at O(a). Hence, for these quan-

tities the lattice artifacts can easily become sizable and need to be studied very carefully.

To deal with this problem, one needs to treat the combined states

|I, 0〉 =







|2, 0〉

|1, 0〉






, (2.70)

which turns the pion-pion scattering to be a two-channel scattering process and a very

complex analysis for the determination of the scattering matrix is required.

To avoid this complexity, we study the π+π+ scattering system with definite quantum

number I3 = +2 only. Since I3 = +2 is already the maximal value, there is only one possible

state |2,+2〉 allowed. Thus the mixing problem is avoided. Moreover, the scattering state

can only consist of two charged pions leading to a unique value of the energy shift △Eππ.

In the process of the I = 1 pion-pion scattering channel, in which the rho resonance

appears, the possible mixing between different isospin states can also happen. We will

therefore perform the calculations at different lattice spacings to explicitly check for any

strong lattice artifacts for I = 1.
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CHAPTER III

FINITE SIZE METHODS

As discussed in Sect. 2.1, LQCD allows us to directly extract the energy spectrum of a two-

particle scattering system from the computation of the corresponding Euclidean correlation

functions. However, when working in a finite box, it is not obvious how then the discrete

energy spectrum can be related to experimentally interesting physical quantities such as a

cross section or a scattering phase. To fill this gap, M. Lüscher developed a particular finite

size method (FSM) which connects the scattering phase in infinite volume to the discrete

energy spectrum in a finite box.

In this thesis, we will concentrate on calculations of the discrete energy spectrum re-

lated to pion-pion scattering in different isospin channels. In the I = 2 channel, the large

Euclidean time limit yields a pion-pion ground state with energy

EI=2
ππ = 2mπ + δE =

√

m2
π + ~p2 +

√

m2
π + (−~p)2 . (3.1)

As indicated in the following section, the energy shift δE appears at O(1/L3) in the lattice

size, L. Therefore, it is allowed to extract the S-wave scattering length from the low

relative momentum p ∼ L−3/2 expansion of the corresponding scattering phase δ0(p) for a

large lattice size L. In the I = 1 channel, due to the parity conservation, the wave function

of a pion-pion state here is an odd function of the relative momentum. Consequently, the

S-wave scattering amplitude vanishes and the ρ–meson appears in the dominant P-wave.

Our target is to determine the ρ resonance parameters. i.e. the resonance mass and the

decay width. Employing the FSM, we will calculate the scattering phase at different discrete

energies with the aim to scan the resonance region. Clearly, the more scattering phases are

calculated, the better the resonant behavior of the scattering phase can be mapped out. One

method is to study I = 1 pion-pion scattering using different lattice sizes, which, however,

requires substantial simulation efforts especially at large lattice sizes. An alternative way
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is to use the moving frame (MF) technique provided by Rummukainen and Gottlieb [54],

which generalizes Lüscher’s original FSM from the center-of-mass frame (CMF) to the MF.

The important point is that the energy spectrum calculated in the MF is different from the

one obtained in the CMF. Thus combining the CMF and the MF allows to compute many

scattering phases using the same lattice size and hence will increase the accuracy of the

calculation of the desired resonance parameters.

In Ref. [54], the exact formulae to calculate the I = 1 pion-pion scattering phase for

the MF with total momentum ~P = (2π/L)~e3 (MF1) are given. In our work, in addition to

the CMF and the MF1, we further employ a second MF with ~P = (2π/L)(~e1 + ~e2) (MF2).

Note that the corresponding finite size formulae are not available in the literature and their

derivation is part of this thesis.

The aim of this chapter is to explain how the connection between the scattering phase

in the infinite volume and the energy spectrum in a finite box is established. In addition,

we will provide the detailed expressions of the finite size formulae associated with the CMF,

MF1 and MF2, which are used to calculate the pion-pion scattering phase. To introduce the

FSM, our starting point is a Quantum Mechanical scattering system where we introduce

the relevant finite size formulae. It is amazing that the same finite size formulae hold also

in Quantum field theories. The prove of this statement, as established in Ref. [24], can be

considered as a main theoretical breakthrough since it opens the path to compute scattering

phenomena in lattice field theory in principle.

3.1 Scattering in the infinite volume

Following Ref. [24], let us consider two spinless bosons with mass m in the CMF and assume

that the effective potential V (r) describes the interaction between the two particles. The

Hamiltonian operator Ĥ is then taken to be

Ĥ = −∇2

2µ
+ V (r) , r = |~r| = |~x1 − ~x2| . (3.2)

where µ = m/2 is the reduced mass of the two-particle system, the vector ~r indicates the

relative position, and ~x1 and ~x2 are the spatial positions of the particles. If the interaction
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is short-ranged, then the potential V (r) becomes trivial for large distance r,

V (r) = 0 , for r > R , (3.3)

where R denotes the interaction range between two particles.

The wave function φ(~r), which describes the eigenstate of the scattering system, is the

solution of the Schrödinger Equation

Ĥφ(~r) = Eφ(~r) . (3.4)

The large distance behavior of the wave function reads as

φ(~r)
r→∞−→ (2π)−3/2

{

exp(i~p · ~r) +A(p,Ω)
exp(ipr)

r

}

, (3.5)

where the momentum ~p is related to the energy E through the non-relativistic dispersion

relation ~p2 = 2µE. Eq. (3.5) shows that, at large ~r, the wave function of the scattering state

can be expanded into two parts: the plain and the spherical wave function. In the case of a

non-interacting two particle system, φ(~r) is solely a plain wave function. This means in turn

that all information on the interaction itself is contained in the spherical wave part and,

more specifically, in the coefficient, A(p,Ω), which is referred to as the scattering amplitude,

where Ω denotes the solid angle of ~r.

The quantity of interest for experiments is the differential cross section, dσ/dΩ, which

is related to the scattering amplitude through

dσ

dΩ
= |A(p,Ω)|2 . (3.6)

According to a partial wave analysis, the wave function φ(~r) can be expanded in terms

of spherical harmonics Ylm(θ, ϕ). In Eq. (3.5), the plane wave function then reads

exp(i~p · ~r) =
∑

l,m

4πiljl(pr)Y
∗
lm(θp, ϕp)Ylm(θ, ϕ) (3.7)

where l indicates the angular momentum and jl(pr) denotes the spherical Bessel function.

The coefficient of the spherical wave function is expanded as

A(p,Ω) =
∑

l,m

4πAl(p)Y
∗
lm(θp, ϕp)Ylm(θ, ϕ) (3.8)
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where Al(p) is the partial-wave amplitude, related to the scattering phase δl(p) as

Al(p) =
exp(2iδl(p)) − 1

2ip
=

exp(iδl(p)) sin δl(p)

p
. (3.9)

Hence, we have established a link between the scattering phase δl(p), the scattering ampli-

tude A(p,Ω) and the differential cross section dσ/dΩ. Thus, computing the scattering phase,

as it is possible on the lattice using the FSM, enables us to directly obtain information on

the interaction details of the system under consideration.

For r > R, the potential vanishes and φ(~r) is the solution of Helmholtz equation

−∇2

2µ
φ(~r) = Eφ(~r) , (3.10)

and thus can be expressed in terms of spherical harmonics and spherical Bessel functions

φ(r) =
∑

l,m

blm (αl(p)jl(pr) + βl(p)nl(pr))Ylm(θ, ϕ) (3.11)

for some known constants blm. Note that the spherical Bessel functions jl(pr) and nl(pr)

have asymptotical forms for r → ∞ as

jl(pr) →
sin
(

pr − lπ
2

)

pr
, nl(pr) → −cos

(

pr − lπ
2

)

pr
,

jl(pr) + inl(pr)
r→∞−→ il−1 exp(ipr)

pr
. (3.12)

We therefore make a comparison between Eq. (3.11) and (3.5), from which we find that the

amplitudes αl(p) and βl(p) are related to the scattering phase δl(p) through

exp(2iδl(p)) =
αl(p) + iβl(p)

αl(p) − iβl(p)
, or tan δl(p) =

βl(p)

αl(p)
. (3.13)

As p→ 0 the scattering phase δl(p) can be expanded as

δl(p) = νlπ + alp
2l+1 +O(p2l+3) (3.14)

for some integer νl, which denotes the modulo π ambiguity in δl(p) [55]. In the case of

S-wave scattering, a0 is the so-called scattering length, which determines the leading low-

energy behavior of the scattering phase δ0(p)

p tan−1 δ0(p) = a−1
0 +

1

2
reffp

2 +O(p4) , (3.15)
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where the coefficient reff is the effective range parameter which determines the next leading

order behavior of δ0(p). In Eq. (3.15), the ambiguity ν0 is removed by the tan function.

In our work, we will use Eq. (3.15) to relate the scattering phase at sufficiently small

momentum p to the scattering length which is the target of our calculation in the I = 2

channel of pion-pion scattering.

3.2 Scattering in a finite box

In Lattice QCD calculations, we consider the pion-pion scattering system in a finite box

with box size L. As a consequence, we have to introduce some boundary condition. If we

choose periodic boundary conditions, the finite box potential VL(~r), describing the particle

interaction, satisfies in the CMF

VL(~r) =
∑

~n∈Z3

V (|~r + ~nL|) . (3.16)

The finite box Hamiltonian operator ĤL is constructed as

ĤL = −∇2

2µ
+ VL(r) (3.17)

with µ = m/2 the reduced mass of the system. The wave function φL(~r) is the solution of

the Schrödinger equation, satisfying

ĤLφL(~r) = E(L)φL(~r) , (3.18)

and

φL(~r + ~nL) = φL(~r) , for all ~n ∈ Z3 . (3.19)

Due to the periodic boundary condition, the energy spectrum E(L) of the scattering system

is now discrete and related to the lattice size L.

Assume that the box is large enough compared to the interaction range R, say L/2 > R,

to avoid significantly altering the two pion interaction. We can define the exterior region

Ω =
{

~r ∈ R3
∣

∣ |~r + ~nL| > R for all ~n ∈ Z3
}

(3.20)
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where the potential VL(~r) vanishes and the wave function φL(r) satisfies the Helmholtz

equation

(

∇2 + p2
)

φL(r) = 0 . (3.21)

In Eq. (3.21), the momentum p is given by the non-relativistic dispersion relation p2 =

2µE(L) within the framework of Quantum Mechanics.

To solve the solution of the Helmholtz equation, one introduces the Green function

G(~r; p2) = L−3
∑

~k∈Γ

exp(i~k · ~r)
k2 − p2

, (3.22)

where the sum runs over the lattice momenta

Γ =

{

~k ∈ R3

∣

∣

∣

∣

~k =
2π

L
~n for some ~n ∈ Z3

}

. (3.23)

The Green function is a singular periodic solution of the Helmholtz equation

(

∇2 + p2
)

G(~r, p2) = −
∑

~n∈Z3

δ(~r + ~nL) . (3.24)

Any further singular periodic solutions Glm(~r; p2) can be generated from this Green function

by introducing the harmonic polynomials

Ylm(~r) = rlYlm(θ, ϕ) , (3.25)

and defining

Glm(~r, p2) = Ylm(~▽)G(~r, p2) . (3.26)

Thus, the general solution of the Helmholtz equation, φL(~r), can be formed by a linear

combination of Glm(~r; p2)

φL(~r) =
∑

l,m

νlmGlm(~r, p2) . (3.27)

To perform a comparison with the wave function in the infinite volume case, we expand

the function Glm in terms of spherical harmonics and spherical Bessel functions

Glm(~r, p2) =
(−1)l

4π
pl+1







Ylm(θ, ϕ)nl(pr) +
∑

l′,m′

Mlm,l′m′(p)Yl′m′(θ, ϕ)jl′(pr)







, (3.28)
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where Mlm,l′m′(p) is given by

Mlm,l′m′(p) =
(−1)l

π3/2

l+l′
∑

j=|l−l′|

j
∑

s=−j

ij

qj+1
Clm,js,l′m′Zjs(1, q2) , q =

pL

2π
. (3.29)

The coefficient Clm,js,l′m′ is related to the Wigner 3j-symbols through

Clm,js,l′m′ = (−1)m
′

il−j+l
′
√

(2l + 1)(2j + 1)(2l′ + 1)

×







l j l′

0 0 0













l j l′

m s −m′






(3.30)

and the zeta function Zlm(1, q2) is given by

Zlm(1, q2) =

∫ 1

0
dtetq

2
∑

~u∈Z3,~u6=0

ilYlm(−π~u
t

)(
π

t
)3/2 exp(−(π~u)2

t
)

+

∫ 1

0
dt(etq

2 − 1)
1√
4π
δl0δm0(

π

t
)3/2 − πδl0δm0

+
∑

2π
L
~n∈Γ

Ylm(~n)

n2 − q2
exp(−(n2 − q2)) (3.31)

For the step by step deduction of Eq. (3.28), we refer the reader to Ref. [24].

3.3 Finite size formulae in the center-of-mass frame

Let us pause for a moment and summarize. In infinite volume, at any energy level E, the

potential V (~r) determines the wave function φ(~r) of the scattering state. From the large r

behavior of φ(~r), the scattering phase can then be extracted,

V (~r) ⇒ φ(~r)
r→∞−→ δl(p) . (3.32)

In a finite box, both the potential VL(~r) and the wave function φL(~r) are chosen to be

periodic. The boundary condition results in a discrete energy spectrum of E(L)

VL(~r) ⇒ φL(~r) ⇒ E(L) . (3.33)

As we have discussed above, at the exterior region, both of the wave function φ(~r) and

φL(~r) can be formed by a linear combination of spherical wave functions, see Eq. (3.11) and
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(3.27),


















































φ(~r) =
∑

l,m blmYlm(θ, ϕ) (αl(p)jl(pr) + βl(p)nl(pr)) ,

r > R , infinite L ,

φL(~r) =
∑

l,m νlmp
l+1(−1)l/(4π)

×
{

Ylm(θ, ϕ)nl(pr) +
∑

l′,m′ Mlm,l′m′Yl′m′(θ, ϕ)jl′(pr)
}

,

R < r < L/2 , finite L .

(3.34)

In the region of r ≤ R, the wave functions are denoted as φ̃(~r) and φ̃L(~r) in the infinite and

finite volume, respectively. If we know the interaction details, say the expression of V (~r)

and VL(~r), we can calculate φ̃(~r) and φ̃L(~r) directly, at least in principle. At the boundary,

i.e. at r = R, one obtains










φ̃(~r) |r=R = φ(~r)|r=R ⇒ δl(p)

φ̃L(~r) |r=R = φL(~r)|r=R ⇒ E(L)
. (3.35)

From Eq. (3.35), both the scattering phase δl(p) and the discrete energy spectrum E(L) can

be computed. However, such an approach relies on the detailed knowledge of the interaction.

An alternative way is to make use of the following observation. If the lattice size is large

enough to avoid the distortions of the interactions, the potential V (~r) and VL(~r) are the

same for r ≤ R. Then it is clear that

φ̃(~r) = φ̃L(~r) , r ≤ R . (3.36)

Using Eq. (3.36) and eliminating φ̃(~r) and φ̃L(~r) from Eq. (3.35), we can relate φ(~r) to

φL(~r) through the relation

φ(~r) |r=R = φL(~r)|r=R . (3.37)

Taking Eq. (3.34) into account, this condition is equivalent to










blmαl(p) =
∑

l′,m′ ν̃l′m′M~d
l′m′,lm

blmβl(p) = ν̃lm

⇒











bA = ν̃M

bB = ν̃1
(3.38)

where ν̃lm = νlmp
l+1(−1)l/(4π). In Eq. (3.38), one simplifies the equations by defining the

vectors b and ν̃ and matrices A, B and M , whose matrix elements are given

Alm,l′m′ = αl(p)δll′δmm′ , Blm,l′m′ = βl(p)δll′δmm′ , Mlm,l′m′ = Mlm,l′m′(p) . (3.39)
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Only when the determinant of the coefficient matrix equals zero, this homogenous sys-

tem (3.38) has a non-trivial solution,

det







A M

B 1






= 0 ⇒ det

(

AB−1 −M
)

= 0 , (3.40)

where the matrix element of AB−1 is given by

(

AB−1
)

lm,l′m′ =
αl(p)

βl(p)
δll′δmm′ =

(

tan−1 δl(p)
)

δll′δmm′ . (3.41)

In Eq. (3.40), we note that the AB−1 −M is an infinitely large matrix. To reduce it to a

finite matrix, one introduces the angular momentum cutoff Λ, which can be interpreted as

a parameter. By varying the value of Λ, we are able to monitor the influence of the higher

scattering phases δl(p). Considering the fact that the higher scattering phases are more

suppressed in the low momentum region δl(p) ∼ p2l+1, one can treat them as perturbations.

Particularly, if we only focus the on lowest scattering phase δ0(p), we can set Λ = 0 and

then Eq. (3.40) is simplified as

tan−1 δ0(p) =
α0(p)

β0(p)
= M00,00(p) = (π3/2q)−1Z00(1; q

2) , q =
pL

2π
. (3.42)

It is important to stress that in the above finite size formulae the detailed expression

of the potential is not needed. Therefore, here the derived formulae are universal and

independent from the particular form of the interaction considered.

Putting low momentum expansion (3.15) of the scattering phase δ0(p) into Eq. (3.42),

we have

√
π

2

(a0

L

)−1
= Z00(1; q

2) ⇒ q2 = Z−1
00

[√
π

2

(a0

L

)−1
]

. (3.43)

Assuming that the lattice size is much larger than the scattering length a0, the above

equation can be expanded as

q2 = − 1

π

a0

L

[

1 + c1
a0

L
+ c2

(a0

L

)2
]

+O(L−4) (3.44)

where c1 = −2.837297 and c2 = 6.375183 are numerical constants [22]. Using q = pL/(2π),
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the energy shift δE is then related to the scattering length a0 through

δE = 2
√

m2 + p2 − 2m =
p2

m
+O(p4)

= −4πa0

mL3

[

1 + c1
a0

L
+ c2

(a0

L

)2
]

+O(L−6) (3.45)

Using Eq. (3.45) we can convert a lattice determination of the energy shift, δE, into a

calculation of a0. The contribution from the effective range reff in expansion (3.15) appears

at O(L−6) in Eq. (3.45) and is then neglected from the determination of a0.

In Eq. (3.42), the S-wave scattering phase δ0 appears on the left hand side and the

momentum p, or equivalently the discrete energy spectrum E(L), shows up on the right

hand side. Hence, we have indeed established a finite size formula (3.42), or more generally

(3.40), which serves as a bridge between the physical scattering phase and the discrete

energy spectrum on a periodic lattice.

3.4 Generalization to the moving frame

As we have seen, having a finite volume in lattice simulations is not a disadvantage. On the

contrary, Lüscher’s method makes actually use of the finite box size. Calculations performed

on several different volumes can help to determine the scattering phase shift δl(p) at different

energies. Particularly, in the determination of the ρ resonance parameters in the process of

pion-pion scattering, we need the information of the P-wave scattering phase δ1(p) at an

energy E close to the resonance peak

E = 2
√

m2
π + p2 ≃ mρ . (3.46)

In the non-interacting case, a small momentum p and correspondingly a large lattice size L

is needed,

2π

L
= p ≃

√

m2
ρ/4 −m2

π . (3.47)

Since simulating with a large physical volume requires very large computer resources, Rum-

mukainen and Gottlieb generalized Lüscher’s formulism to the MF [54], where the total

momentum of the two particles is non-zero. A simple example of the MF is that one pion
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carries the momentum ~p1 = (2π/L)~e3 while the other stays at rest with ~p2 = 0. We denote

this setup as MF1 in this thesis. The total momentum is ~P = ~p1 + ~p2 = (2π/L)~e3.

In the MF, the center of mass is moving with velocity ~v = ~P/(E1 +E2). The 4-momenta

in the CMF, (E∗
i , ~p

∗
i ), are related to the 4-momenta (Ei, ~pi) in the MF through the standard

Lorentz transformation

E∗
i = γ(Ei − ~v · ~pi) , ~p∗i = ~γ(~pi − ~vEi) , (3.48)

where γ is the Lorentz boost factor

γ =
1√

1 − ~v2
(3.49)

and here we use the notation of the operators ~γ and ~γ−1 as

~γ~p = γ~p‖ + ~p⊥ , ~γ−1~p = γ−1~p‖ + ~p⊥ , ~p‖ =
~p · ~v
v2

~v , ~p⊥ = ~p− ~p‖ . (3.50)

It can then be derived that

E∗
1 = E∗

2 =
1

2
γ−1(E1 + E2) , ~p∗1 = −~p∗2 =

1

2
~γ−1(~p1 − ~p2) . (3.51)

Thus, one proves that, after a Lorentz transformation from the MF1 to the CMF, the

two pions are moving in the opposite direction with momentum p∗ = (2π/L)/2γ. The

requirement (3.47) is now replaced by

1

2γ

2π

L
= p∗ ≃

√

m2
ρ/4 −m2

π . (3.52)

In the existence of an interaction, the momentum p∗ is not simply given by (2π/L)/(2γ).

Nevertheless, the conclusion still holds that, in the process of ρ → ππ, the avoided level

crossing occurs for a smaller lattice size in the MF which helps to reduce the simulation

costs.

In the MF with total momentum ~P , the energy E we calculate from Euclidean correlation

function is the energy eigenvalue of Hamiltonian operator ĤL

ĤL|E, ~P 〉 = E|E, ~P 〉 . (3.53)
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where |E, ~P 〉 is a two-particle scattering state with total 4-momentum (E, ~P ) and its wave

function is defined as

ΨL(~x1, t; ~x2, t) = 〈Ω|O(~x1, t; ~x2, t)|E, ~P 〉 . (3.54)

Here O(~x1, t; ~x2, t) is a two-particle interpolating operator defined on Euclidean space-time.

Restricted by the finite size of the box with periodic boundary condition, ΨL(~x1, t; ~x2, t)

satisfies

ΨL(~x1 + ~n1L, t; ~x2 + ~n2L, t) = ΨL(~x1, t; ~x2, t) , for all ~n1 , ~n2 ∈ Z3 . (3.55)

By changing the variables

~X =
~x1 + ~x2

2
, ~r = ~x1 − ~x2 , (3.56)

we sperate the wave function ΨL into two parts

ΨL(~x1, t; ~x2, t) = e−Et+i
~P · ~XφL(~r) . (3.57)

Eq. (3.55) and (3.57) together yield the so-called ~d-periodic boundary condition [54]

φL(~r) = (−1)
~d·~nφL(~r + ~nL) , (3.58)

with the vector ~d = ~PL/(2π). To establish the formula for the scattering phase, which is

only defined in the CMF, we need to transform the scattering system in the MF to the one

in the CMF using the Lorentz boost

(E, ~P ) → (ECM ,~0)

φL(~r) → φL,CM(~r) (3.59)

where ECM is the total energy in the CMF with ECM = γ−1E =
√

E2 − ~P 2 and the wave

function φL,CM (~r) satisfies the boundary condition

φL,CM(~r) = (−1)
~d·~nφL,CM(~r + ~γ~nL) , for all ~n ∈ Z3 . (3.60)

Any wave function with momentum p, given by dispersion relation ECM = 2
√

m2 + p2

and boundary condition (3.60) can be generated from the following Green function

G
~d(~r, p2) = γ−1L−3

∑

~k∈Γ~d

ei
~k·~r

k2 − p2
, (3.61)
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where the momentum space Γ
~d is defined as

Γ
~d =

{

~k ∈ R3

∣

∣

∣

∣

~k =
2π

L
~γ−1(~m+

1

2
~d) for ~m ∈ Z3

}

. (3.62)

By following the procedures in Sect. 3.2, we can expand the wave function φL,CM(~r) in

terms of spherical harmonics and spherical Bessel functions

φL,CM(~r) =
∑

l,m

νlm
(−1)l

4π
pl+1







Ylm(θ, ϕ)nl(pr) +
∑

l′,m′

M~d
lm,l′m′(p)Yl′m′(θ, ϕ)jl′(pr)







,(3.63)

where M~d
lm,l′m′(p) is given by

M~d
lm,l′m′(p) =

(−1)l

π3/2

l+l′
∑

j=|l−l′|

j
∑

s=−j
γ−1 ij

qj+1
Clm,js,l′m′Z ~d

js(1, q
2) , q =

pL

2π
. (3.64)

The detailed expression for the modified zeta function Z ~d
lm(1, q2) is given by

Z ~d
lm(1, q2) = γ

∫ 1

0
dtetq

2
∑

~u∈Z3,~u6=0

(−1)~u·
~dilY∗

lm(−π~γ~u
t

)(
π

t
)3/2 exp(−(π~γ~u)2

t
)

+γ

∫ 1

0
dt(etq

2 − 1)
1√
4π
δl0δm0(

π

t
)3/2 − γπδl0δm0

+
∑

2π
L
~n∈Γ~d

Y∗
lm(~n)

n2 − q2
exp(−(n2 − q2)) (3.65)

Performing a comparison between φL,CM(~r) and φ(~r), which is the wave function in the

infinite volume case and given by Eq. (3.11), we find

φ(~r) |r=R = φL,CM (~r)|r=R ⇒ blmαl(p) =
∑

l′,m′

bl′m′βl′(p)M
~d
lm,l′m′(p) . (3.66)

Requiring the nontrivial solution of {blm} in Eq. (3.66), we finally have

det
(

AB−1 −M
~d
)

= 0 , (3.67)

with the matrix M
~d
lm,l′m′ = M~d

lm,l′m′(p). Thus, we establish the finite size formula for the

MF with total momentum ~P , which connects the discrete energy ECM =
√

E2 − ~P 2 on the

lattice with the scattering phase δl(p) in the finite volume.

In the case of ~P = ~0, with the properties

~d = ~0 , γ = 1 ,

Z ~d
lm,l′m′(1; q2) = Zlm,l′m′(1; q2) ,

M~d
lm,l′m′(p) = Mlm,l′m′(p) , (3.68)
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the Eq. (3.67) become the standard finite size formula established in the CMF.

3.5 Interpolating operators

In this section, we are going to discuss how to construct the interpolating operators for

the pion-pion scattering system which project out the eigenstates associated with isospin

number I and approximately angular momentum l.

The single pion states with 3-momentum ~p form an isospin triplet |I, I3〉 through

|1,+1〉 = |π+〉 = π+(~p, t)|Ω〉

|1, 0〉 = |π0〉 = π0(~p, t)|Ω〉

|1,−1〉 = |π−〉 = π−(~p, t)|Ω〉 , (3.69)

with the interpolating operator πa(~p, t) defined as

πa(~p, t) =
1

L3/2

∑

~x

e−i~p·~x
(

ψ̄γ5
τa

2
ψ

)

(~x, t) , a = +, 0,− (3.70)

For a two pion system, there are three possible isospin channels with I = 0, 1, 2

|ππ〉 = |π〉 ⊗ |π〉 = |I = 1〉 ⊗ |I = 1〉 = |I = 2〉 ⊕ |I = 1〉 ⊕ |I = 0〉 . (3.71)

We construct the two-pion interpolating operators OI,I3
ππ (~p1, ~p2, t) to create the pion-pion

scattering state with definite isospin number (I, I3)

|ππ; I, I3〉 = OI,I3
ππ (~p1, ~p2, t)|Ω〉 . (3.72)

and list the detailed expressions for operators OI,I3
ππ (~p1, ~p2, t) in Table. 3.1.

The next step to construct the operator with angular momentum l using OI,I3
ππ (~p1, ~p2, t)

is however nontrivial, since the rotation symmetry denoted by the group O(3) is broken

by finite size effects and the angular momentum l is then not a good quantum number

anymore. The symmetry conserved on the lattice is the so-called hypercubic symmetry. It

is associated with the good quantum number Γ, which specifies the different irreducible

representation (irrep) of the hyper-cubic group, G. Therefore, we construct the operator

with definite quantum number Γ through

(ππ)Γ(t) =
1

NG

∑

R̂∈G

χΓ(R̂)OI,I3
ππ

(

~P + R̂~p,−R̂~p, t
)

(3.73)
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I3 I = 2

+2 π+(~p1, t)π
+(~p2, t)

+1 1√
2
(π0(~p1, t)π

+(~p2, t) + π+(~p1, t)π
0(~p2, t))

0 1√
6
(2π0(~p1, t)π

0(~p2, t) + π−(~p1, t)π
+(~p2, t) + π+(~p1, t)π

−(~p2, t))

−1 1√
2
(π0(~p1, t)π

−(~p2, t) + π−(~p1, t)π
0(~p2, t))

−2 π−(~p1, t)π
−(~p2, t)

I3 I = 1

+1 π+(~p1, t)π
0(~p2, t) − π0(~p1, t)π

+(~p2, t)

0 π+(~p1, t)π
−(~p2, t) − π−(~p1, t)π

+(~p2, t)

−1 π0(~p1, t)π
−(~p2, t) − π−(~p1, t)π

0(~p2, t)

I3 I = 0

0 1√
3
(−π0(~p1, t)π

0(~p2, t) + π−(~p1, t)π
+(~p2, t) + π+(~p1, t)π

−(~p2, t))

Table 3.1: List of the pion-pion interpolating operators, OI,I3
ππ , classified by Isospin number

I and I3.

where ~P is the total momentum of the two-pion system and R̂ denotes the rotational

operation acting momentum space. ~P + R̂~p and −R̂~p are the momenta on the lattice and

take the discrete values

L

2π

(

~P + R̂~p
)

∈ Z3 ,
L

2π

(

−R̂~p
)

∈ Z3 . (3.74)

The hyper-cubic group G is the sum of all rotational operations R̂, which leave the total

4-momentum of the scattering system, (E, ~P ) , invariant

G =

{

R̂

∣

∣

∣

∣

√

(~P + R̂~p)2 +m2
π +

√

(R̂~p)2 +m2
π = E , R̂ ~P = ~P

}

. (3.75)

The normalization factor NG denotes group element number of G. The constraints (3.74)

and (3.75) together determine the rotational property of the group G. In the CMF, G is

given by the cubic group Oh, while in the MF1 and MF2, G is given by the tetragonal group

D4h and the orthorhombic group D2h, respectively.

The average over all the operations R̂ in the group G with the coefficient χΓ(R̂), which

is the character of the irrep of Γ, projects out the scattering state with quantum number Γ

on the lattice

|ππ,Γ〉 = (ππ)Γ(0)|Ω〉 . (3.76)
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The state |ππ,Γ〉 can be formed by the linear combination of the scattering state in the

infinite volume with exact quantum number l through

|ππ,Γ〉 =
∑

l

CΓ,l|ππ, l〉 , CΓ,l = 〈ππ, l|ππ,Γ〉 , (3.77)

where the coefficient CΓ,l determines how the scattering states in a finite box, |ππ,Γ〉, couple

to the states in the infinite volume, |ππ, l〉, from which the l-th wave scattering phase δl(p)

can be extracted. For example, in the CMF, the state |ππ,A+
1 〉 consists of by

|ππ,A+
1 〉 = CΓ,0|ππ, l = 0〉 + CΓ,4|ππ, l = 4〉 + · · · (3.78)

As we discussed in Sect. 3.3, we can treat the states with angular momenta l ≥ 4 as

perturbations and then have the approximation

|ππ,A+
1 〉 ≈ CΓ,0|ππ, l = 0〉 . (3.79)

It yields that the S-wave scattering phase can be determined by constructing the operator

in the A+
1 sector on the lattice.

In the I = 2, I3 = +2 channel, our interest is to calculate the S-wave scattering length

at vanishingly small relative momentum. Therefore, we construct the operator (ππ)A+
1
(t)

in the CMF using coefficients χA+
1
, which is simply given by

(ππ)A+
1
(t) = π+(~0, t)π+(~0, t) . (3.80)

The corresponding finite size formula to calculate the scattering length is given by Eq. (3.45).

In the I = 1, I3 = 0 channel, to obtain the maximal information on the scattering phase,

we choose the irrep Γ = T−
1 for the CMF, Γ = A−

2 for the MF1 and Γ = B−
1 for the MF2,

so that in each frame, the energy eigenstate |ππ,Γ〉 approximates to the P-wave state if one

ignores the states with higher angular momentum.

The construction of the operator is performed using Eq. (3.73). Here we list the the

expressions for the operators (ππ)(t) which will be used in our calculation of pion-pion

scattering in the I = 1 channel. In the CMF, the operator is given by

(ππ)T−

1
(t) = π+

(

2π

L
~e3, t

)

π−
(

−2π

L
~e3, t

)

− π+

(

−2π

L
~e3, t

)

π−
(

2π

L
~e3, t

)

. (3.81)
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In the MF1, it is

(ππ)A−

2
(t) = π+

(

2π

L
~e3, t

)

π−
(

~0, t
)

− π+
(

~0, t
)

π−
(

2π

L
~e3, t

)

. (3.82)

In the MF2, it is

(ππ)B−

1
(t) = π+

(

2π

L
(~e1 + ~e2), t

)

π−
(

~0, t
)

− π+
(

~0, t
)

π−
(

2π

L
(~e1 + ~e2), t

)

. (3.83)

From these interpolating operators, one can calculate the discrete energy spectrum from the

corresponding Euclidean correlation functions. And, making use of the finite size formulae,

it becomes finally possible to compute the P-wave scattering phase.

In the CMF, the finite size formula is given by Lüscher [25]

tan−1 δ1(p) = (γπ3/2q)−1Z ~d
00(1; q

2) , for ~d = ~0 and Γ = T−
1 , (3.84)

in the MF1, it is provided by Rummukainen and Gottlieb [54]

tan−1 δ1(p) = (γπ3/2q)−1(Z ~d
00 +

2q−2

√
5
Z ~d

20) , for ~d = ~e3 and Γ = A−
2 , (3.85)

while in the MF2, we have derived a similar relation by ourselves

tan−1 δ1(p) = (γπ3/2q)−1(Z ~d
00 −

q−2

√
5
Z ~d

20 + i

√
3q−2

√
10

(Z ~d
22 −Z ~d

22̄)) ,

for ~d = (~e1 + ~e2) and Γ = B−
1 . (3.86)
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CHAPTER IV

I=2 CHANNEL: π+π+ SCATTERING LENGTH

4.1 Physical background

In the limit of massless up and down quarks a spontaneous breaking of chiral symmetry

takes place in QCD,

SU(Nf )R × SU(Nf )L ⇒ SU(Nf )V , Nf = 2 . (4.1)

Due to Goldstone’s theorem [56] the meson spectrum contains three massless pseudo scalar

Goldstone bosons, identified as the pion triplet: π± and π0. Introducing an explicit mass

term in the QCD Lagrangian lifts the masses of the pions, but they still remain much lighter

than any other meson in QCD. Since the pions have an only small mass, their interactions

are strongly determined by the underlying chiral symmetry and the the scattering lengths

are sensitive to the chiral dynamics of the strong interactions. For example, the S-wave

pion-pion scattering lengths even vanish in the chiral limit when the quark masses are

sent to zero. Non-perturbative calculations of the scattering lengths to probe the chiral

dynamics, one of the subjects of this thesis, is an integral part of understanding the low

energy properties of QCD.

As said above, in the real world, the masses of the quarks are not zero but small and

induce an explicit but weak breaking of chiral symmetry. This breaking of chiral symmetry

is systematically treated in χPT [26,27] by considering the quark masses as perturbations.

Furthermore, the pion-pion scattering lengths no longer vanish at non-zero quark masses

and at leading order (LO) in χPT are predicted by Weinberg [57] solely in terms of the pion

mass, mπ, and the pion decay constant, fπ, as

mπa
I=0
ππ ≈ 7m2

π

16πf2
π

= 0.160 (1) and mπa
I=2
ππ ≈ − m2

π

8πf2
π

= −0.0456 (1) , (4.2)

where aI=0
ππ and aI=2

ππ denote the isospin I = 0 and I = 2 S-wave scattering lengths, re-

spectively. The next-to-leading order (NLO) corrections depend on unknown so-called low
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energy constants (LECs), which can be determined from experimental measurements or

lattice calculations.

The experimental measurement of K± → π+π−e±ν (Ke4) decays by E865 at BNL [58]

gives

mπa
I=0
ππ = 0.203 (33) and mπa

I=2
ππ = −0.055 (23) . (4.3)

When combined with constraints from χPT, these measurements yield

mπa
I=0
ππ = 0.216 (14) and mπa

I=2
ππ = −0.0454 (34) . (4.4)

A combination of several experimental and theoretical inputs from Colangelo, Gasser and

Leutwyler (CGL) [59,60] produces a consistent but more precise result of

mπa
I=0
ππ = 0.220 (5) and mπa

I=2
ππ = −0.0444 (10) . (4.5)

Additionally, the recent measurements of Ke4 decays [61] and K± → π±π0π0 decays [62]

by NA48/2 at CERN [4] give, without making any use of χPT constraints,

mπa
I=0
ππ = 0.221 (5) and mπa

I=2
ππ = −0.0429 (47). (4.6)

Including χPT in their analysis, NA48/2 finds [63]

mπa
I=0
ππ = 0.220 (3) and mπa

I=2
ππ = −0.0444 (9). (4.7)

The results are all consistent with each other and the most precise results from NA48/2 are

in agreement with the lattice results given shortly.

One obstacle to the non-perturbative determination of the pion-pion scattering length

from Lattice QCD is the presence of disconnected diagrams that render the calculation of

the I = 0 channel computationally demanding. On the other hand, the simpler I = 2

channel does not require such diagrams and consequently many lattice groups have focused

their efforts on this case. Furthermore, most calculations of the scattering lengths to date

have been carried out within the quenched approximation [64–85]. There have been only

two previous calculations of aI=2
ππ with dynamical fermions. The first such calculation was

performed by CP-PACS with Nf = 2 tadpole-improved clover fermions at rather heavy
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pion masses in the range mπ = 0.5 GeV to 1.1 GeV [3]. However, it is doubtful that χPT

at NLO, or any order, can be applied to such heavy pion masses. The other full QCD

calculation was performed by NPLQCD with domain-wall valence quarks on the Nf = 2+1

asqtad-improved coarse MILC ensembles with mπ = 290 MeV to 590 MeV [1, 2]. Mixed-

action χPT at NLO was used to perform the chiral and continuum extrapolations. At the

physical pion mass, NPLQCD finds

mπa
I=2
ππ = −0.04330 (42) and lI=2

ππ (µ = fπ,phy) = 6.2 (1.2) , (4.8)

where lI=2
ππ (µ) is a LEC appearing in the χPT description of the quark mass dependence of

the scattering length. As discussed later, lI=2
ππ (µ) is evaluated at µ = fπ,phy, where fπ,phy is

the physical value of the pion decay constant.

In this thesis we determine the S-wave I = 2 pion-pion scattering length and the cor-

responding lI=2
ππ . Compared to the previous calculations, we have more information in the

low pion mass region (∼ 300 MeV), which allows us to further probe the chiral properties

of aI=2
ππ .

4.2 Method

4.2.1 Euclidean correlation function

As mentioned in Chapter 3, in the CMF, the finite size formula (3.45) establishes a rela-

tionship between the ground state energy shift δE = E(L)−2m in a finite box of size L and

the corresponding S-wave scattering length a0. In the I = 2 pion-pion scattering channel,

by inserting the variable changes

E(L) = EI=2
ππ , m = mπ , δE = δEI=2

ππ , a0 = aI=2
ππ (4.9)

into Eq. (3.45), we can convert a lattice determination of the energy shift, δEI=2
ππ , into a

calculation of aI=2
ππ .

To extract δEI=2
ππ , we construct the π+ and π+π+ two-point correlation functions from

the operators proposed in Ref. [74],

Cπ(t) = 〈(π+)†(t+ ts)π
+(ts)〉 (4.10)
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and

Cππ(t) = 〈(π+π+)†(t+ ts)(π
+π+)(ts)〉 . (4.11)

Here ts is an arbitrary time slice, π+(t) is an interpolating operator given by Eq. (3.70)

with zero 3-momentum and (π+π+)(t) is an interpolating operator for the two pion state

given by

(π+π+)(t) = π+(t+ a)π+(t) . (4.12)

In order to avoid complications due to Fierz rearrangement of quark lines as discussed in

Ref. [74], we use the π+ interpolating fields at time slices separated by one lattice spacing.

As we have discussed in Sect. 3.5, the operator (π+π+)(t) projects out the scattering state

|ππ,A+
1 〉, which equals to the S-wave state in the infinite volume, ignoring the states with

higher angular momentum.

As seen in Sect. 2.1, from the large time behavior of Cπ(t) and Cππ(t), it is possible to

extract the corresponding ground state energies as follows,

Cπ(t) → Aπ exp(−mπ t) and Cππ(t) → Aππ exp(−EI=2
ππ t) , (4.13)

where we assume that t is large enough to neglect excited states but still far enough from

the boundaries to ignore boundary effects. Furthermore, constructing the following ratio of

correlation functions we can determine δEI=2
ππ directly as

Cππ(t)

C2
π(t)

→ Aππ
A2
π

exp(−δEI=2
ππ t) (4.14)

where t satisfies the same requirements as before. However, we use anti-periodic boundary

conditions for the quarks in the time direction in order to match the sea quarks used in our

calculation, and this leads to a more complicated time dependence for Cπ and Cππ.

4.2.2 Anti-periodic boundary conditions

As mentioned above, in our calculation we employ anti-periodic boundary conditions in the

time direction for the fermions. Using the transfer matrix formalism, the time dependence

of our correlation functions is given by

〈O†(t)O(0)〉 = Tr
(

e−Ĥ(T−t)O†(0)e−ĤtO(0)
)

/Z , Z = Tr
(

e−ĤT
)

. (4.15)
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Here Ĥ is the Hamiltonian operator, T is the total time extent of our lattice and O(t)

represents either π+(t) or (π+π+)(t). Inserting a complete set of eigenstates of Ĥ into the

above equation yields

〈O†(t)O(0)〉 =
∑

m,n

|〈n|O|m〉|2e−Em(T−t)e−Ent/Z

=
∑

m,n

|〈n|O|m〉|2e−(Em+En)T/2 cosh((Em − En)(t− T/2))/Z .

The terms in the above series are thermally suppressed by factors of e−EmT or e−EnT .

Only those terms with Em = 0 or En = 0 remain in the zero temperature, T → ∞,

limit. However, the effects of the suppressed contributions can still distort the behavior of

correlation functions for finite values of T , particularly in the large t region.

This phenomenon does indeed occur here for the two pion operator. Intermediate states

〈n| = 〈π+| and 〈m| = 〈π−| give a constant, in t, contribution to Cππ,

|〈π+|π+π+|π−〉|2e−mπT /Z . (4.16)

This is comparable to the standard contribution,

|〈π+π+|π+π+|Ω〉|2e−EI=2
ππ T/2 cosh(EI=2

ππ (t− T/2))/Z , (4.17)

when t approaches T/2. To be precise, for large enough volumes EI=2
ππ = 2mπ + δEI=2

ππ ≈

2mπ, and hence these two contributions to Cππ, e
−mπT and e−E

I=2
ππ T/2 cosh(Eππ(t − T/2))

are in fact nearly equal for t = T/2. Additionally, the factor Cπ(t)
2 has similar problems.

The correlator Cπ(t) itself has a simple spectral representation. However, the square is

more complicated and also contains a constant, in t, contribution as well.

To eliminate these contaminations, we use the derivative method [86] and define a mod-

ified ratio, R(t), in the following way

R(t+ a/2) =
Cππ(t) − Cππ(t+ a)

C2
π(t) − C2

π(t+ a)
. (4.18)

The asymptotic form for R(t), ignoring terms suppressed relative to the leading contribution,

is

R(t+ a/2) = AR
(

cosh(δEI=2
ππ t′) + sinh(δEI=2

ππ t′) coth(2mπt
′)
)

(4.19)
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β aµ L/a mπ mπ/fπ N aδEI=2
ππ · 103 mπa

I=2
ππ

3.90 0.0100 24 520 2.77(2) 479 7.23(59)(41) -0.297(20)(16)

3.90 0.0085 24 480 2.61(1) 487 7.66(65)(33) -0.269(17)(10)

3.90 0.0064 24 420 2.40(1) 553 9.6(1.3)(.6) -0.252(22)(13)

3.90 0.0040 32 330 2.02(1) 490 3.96(36)(22) -0.165(14)(08)

3.90 0.0030 32 290 1.85(1) 562 4.05(42)(21) -0.130(12)(06)

4.05 0.0030 32 320 2.08(2) 375 7.1(1.2)(.9) -0.171(18)(22)

Table 4.1: Ensembles used in the I = 2 pion-pion scattering. Only dimensionless quantities
are needed in this calculation, but for guidance we give the value of mπ rounded to the
nearest MeV for each ensemble indicated by β, aµ and L/a. We also list the ratio mπ/fπ,
the number, N , of configurations used, the energy shift aδEI=2

ππ and the scattering length
mπa

I=2
ππ . The first uncertainty is statistical and, when present, the second one is systematic.

where AR is a combination of amplitudes in Cπ and Cππ and t′ = t + a/2 − T/2. Since

mπ is the most accurately calculated component of our calculation, R(t) provides a nearly

direct determination of δEI=2
ππ and cleanly eliminates the unwanted thermal contributions

that spoil the simple ratio given earlier.

4.3 Lattice calculation

4.3.1 Ensemble information

Most of the results presented here are from a sequence of ensembles with a lattice spacing

of a = 0.079 fm and a box size of L = 1.9 fm. The pion masses range from mπ = 290 MeV

to 520 MeV. For the lower pion masses the volume is increased to L = 2.5 fm, and there

is one calculation using a finer lattice spacing of a = 0.063 fm. The parameters relevant to

this calculation are given in Table 4.1, and further details can be found in Refs. [29–32].

4.3.2 Stochastic sources

For the calculation of pion correlation functions, it is known that the stochastic source

method is more efficient than the point source method. Therefore, in the present work,

we employ Z4 stochastic noise with two noise sources generated on each source time slice.

Since we place the source on two time slices for the π+π+ correlation function, ts and ts+a,

we therefore perform four inversions for each configuration. We remark that we also use

the one-end trick in this work for the evaluation of correlation functions [87–89] leading to
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Figure 4.1: The ratio R(t) as a function of t. The solid lines are correlated fits to Eq. (4.19),
from which the energy shifts aδEI=2

ππ are extracted. The ensembles have been shifted verti-
cally to facilitate easier comparison.

a further improvement in the signal-to-noise ratio. Additionally, the source time slices, ts,

are chosen randomly to reduce the autocorrelation between consecutive trajectories.

4.4 Results

4.4.1 Calculation of mπa
I=2
ππ

In Fig. 4.1 we show our lattice results for R(t), defined in Eq. (4.18), as a function of the

time t together with a correlated fit1 to the asymptotic form given in Eq. (4.19). All the

ensembles shown in Fig. 4.1 visibly agree with the corresponding fit and lead to reasonable

values of χ2 per degree of freedom (dof), where χ2 is the correlated figure-of-merit function.

To further verify these fits, we examined several possible sources of systematic error. First,

the ratio could suffer from bias at large t, so we examined the jackknife estimate of bias

1The lattice results for R(t) at time slice t = t1 and t = t2 are correlated. The correlated fit takes full
consideration of such effects into account.
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but found it to be significantly smaller than the errors for all the ensembles. Second,

we considered the possibility that we underestimated the errors due to autocorrelations.

However, both the gamma method [90] and standard binning showed no significant signs

of autocorrelation for R(t) in any of the ensembles. The possibility of π0 mixing, due to

the breaking of parity at non-zero lattice spacing for twisted mass fermions, is considered

in Sect. 4.4.2. But as described there in more detail, we find no statistically significant

indications of the π0 contributions.

There is one further possible systematic error due to the contributions from excited

states in the small t region or from unphysical π0 states in the large t region. To ensure

that the fits for these ensembles are safe from such effects, we study the systematic errors

caused by choosing a fitting window in which to match to the asymptotic form for R(t).

First we ensure that the results exhibit clear plateaus when we increase the minimum t or

decrease the maximum t used in the fits. However, to provide a quantitative estimate of

the systematic error, we perform the following distribution method. We collect the results

for aδEI=2
ππ from all fitting intervals with χ2/dof < 2. This includes varying both the

minimum and maximum time extent for the fitting range and results in 30 to 60 values

of aδEI=2
ππ for each ensemble. We then make the distribution of these selected results and

choose the median of this distribution for the central value. Then we take the central,

and symmetric about the median, 68% region of the distribution to define the systematic

error. Finally, we use the jackknife method to determine the statistical error on the central

values. This method is also applied to mπa
I=2
ππ , and the results for aδEI=2

ππ and mπa
I=2
ππ are

given in Table 4.1. As shown in this table, the resulting estimates of the systematic errors

are typically smaller than the corresponding statistical errors, and are at worst of the same

order as the statistical errors. Since the distribution method used to estimate the systematic

errors is itself subject to statistical errors, this is precisely what is expected if there are no

substantial systematic effects. However, since the final statistical precision for the value

of mπa
I=2
ππ at the physical limit turns out to be quite small, we decided, in order to avoid

underestimating our final error, to carefully propagate these systematic errors through to

the final result as described later in Sect. 4.4.5.
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4.4.2 π0 contamination

Twisted mass fermions violate parity and isospin at non-zero values of the lattice spacing.

Therefore the spectral representation of the π+ and π+π+ correlators can admit states that

would not be present in the continuum limit. In particular, unphysical contributions from

the π0, which has a mass mπ0 different, and smaller, than the mass mπ of the π±, may enter

the Cπ and Cππ correlators in several ways [89]. Furthermore, these effects are believed to

be more noticeable in pion-pion scattering, so the successful calculation of all three isospin

channels, I = 0, 1 and 2, would test the twisted mass formulation of lattice QCD.

The π0 can enter the Cπ correlator through intermediate states of the form 〈π+|π+|π0〉

and 〈π+π0|π+|Ω〉. The former contribution is thermally suppressed by a factor of e−mπ0T ,

however it leads to a time dependence with an energy of mπ −mπ0 that is lighter than the

usually expected mπ ground state. The second contribution is not thermally suppressed but

corresponds to the first excited state with energy Eπ+π0 ≈ mπ +mπ0 . This is lighter than

the first physical excited state with energy near 3mπ. Similarly, Cππ contains unphysical

contributions from 〈π+π+|π+π+|π0〉 and 〈π+π+π0|π+π+|Ω〉. Again there is an additional

light state that is thermally suppressed by e−mπ0T but has an energy of Eπ+π+ − mπ0 ≈

2mπ − mπ0 that is lower than the physical ground state near 2mπ, and the first excited

state is lowered to Eπ+π+π0 ≈ 2mπ+mπ0 rather than the expected energy of approximately

2
√

m2
π + (2π/L)2.

The parity violating matrix elements responsible for these effects are O(a) in the lattice

spacing, even at maximal twist, however the matrix elements appear squared in the correla-

tors. Therefore these unphysical states make an O(a2) contribution. The question, however,

is not about the scaling in the lattice spacing, but about the size of this contribution at

the lattice spacings used in this work. A detailed discussion of this issue can be found in

Ref. [91]. Here, our focus is more practical. We want to ensure that the scattering lengths

calculated in this work are not significantly distorted due to these effects.

First, the naive estimate for the suppression factor for the additional light contributions,

mπ−mπ0 in Cπ and Eπ+π+ −mπ0 in Cππ, is (aΛQCD)2e−mπ0T . The value of mπ0 is difficult

to calculate precisely, but it is clear from Ref. [91] that mπ0 is never more than 20% lighter
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than mπ for the ensembles in this work. Therefore we will simply use mπ and a value of

ΛQCD = 250 MeV to set the order of magnitude for these suppression factors. We find that

for the ensembles used here, the largest value of (aΛQCD)2e−mπ0T is 9·10−6 for the β = 4.05,

aµ = 0.0030 ensemble in Table 4.1. Using the actual value of mπ0 from [91] raises this to

2 · 10−5. This value is small, but it is not too far beyond the statistical precision of the

correlators used to calculate aδEI=2
ππ , hence we must carefully check for these contributions.

Second, there are the additional states that are only suppressed by (aΛQCD)2. However,

these states are heavier than the physical state and hence would occur in the correlators as

excited states. The naive suppression factors are 1 · 10−2 and 7 · 10−3 for a = 0.079 fm and

0.063 fm respectively. These simple estimates are larger than for the other states, however

these contributions are also more strongly suppressed by their own energies.

In the light of these arguments, we made a significant effort to attempt to find such effects

anyway. We tried fitting the individual Cπ(t) and Cππ(t) correlators as well as the ratio

R(t) to various functional forms including the physical state and both the additional heavier

and lighter states, just the lighter state or just the heavier state. We fit the most general

forms, keeping all energies as free parameters, and additionally constrained forms, in which

we constrained mπ0 based on known values. And we also explored several minimization

methods. The net result was that one could indeed lower the χ2 value for each fit, but the

χ2 per degree of freedom still increased, indicating no statistically significant contribution

from the unwanted π0 states.

However, we must offer a few words of caution. While we could not find any compelling

evidence for these contributions, we of course can not rule out their presence at a level

beneath our statistical resolution. We should further note that there are visible excited

states in the correlators. However, the accuracy of the correlators for the ensembles studied

here does not allow us to distinguish the physical excited states, near 3mπ for Cπ and

2
√

m2
π + (2π/L)2 for Cππ, from the unphysical excited states, near mπ + mπ0 ≈ 2mπ for

Cπ and 2mπ + mπ0 ≈ 3mπ for Cππ. The extensive study of systematic errors due to the

fitting range discussed in the previous section was partially motivated by these issues. It

provides the quantitative statement that these effects do not rise to the level of our statistical

51



precision and gives an estimate of the systematic error.

Additionally, there are two reasons that these contributions may be smaller than an-

ticipated. First, the unphysical contributions correspond to scattering states that may be

suppressed by a power of the volume. Second, the construction of R(t) in Eq. (4.18) forms a

discrete approximation to the ratio of derivatives of Cππ and C2
π and may further suppress

the nearly constant light state contributions.

4.4.3 Finite volume effects

The dominant finite size effect in this calculation is, of course, the shift in δEI=2
ππ due to

the interactions of two pions in a finite volume. Additionally, there are the exponentially

small, as opposed to the merely power suppressed, finite volume corrections to I = 2 pion-

pion scattering that have been determined for scattering near threshold in Ref. [92]. The

resulting finite size corrections for the scattering length are given there as,

(mπa
I=2
ππ )L = (mπa

I=2
ππ )∞ + ∆FV (4.20)

where

∆FV = − m2
π

8πf2
π

{

m2
π

f2
π

∂

∂m2
π

i∆I(mπ) +
2m2

π

f2
π

i∆Jexp(4m2
π)

}

=
1

213/2π5/2

(

mπ

fπ

)4
∑

|n|6=0

e−|n|mπL

√

|n|mπL

{

1 − 17

8

1

|n|mπL
+O

(

L−2
)

}

.

Using the above result, we calculate the corrections to mπa
I=2
ππ . Compared to the statistical

errors, the finite volume corrections are negligible. To be precise, they are never more than

6% of the corresponding statistical error and are hence ignored in the following analysis.

There is a second finite size effect originating from Eq. (3.15), which is used to relate

the scattering phase δ(p) at vanishingly small momentum p to the scattering length. As

argued in Sect. 3.3, the dependence on the effective range reff is very small and gives rise to

the corrections at O(L−6) in Eq. (3.45). Assuming that the effective range is at most twice

the scattering length, this correction can be estimated using the measured values of mπ and

δEI=2
ππ . We find that this correction is never more than 9% of the corresponding statistical

error of mπa
I=2
ππ . Hence, this finite size effect is also sufficiently small to be ignored as well.
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4.4.4 Lattice artifacts

Most of the calculations presented here use a single lattice spacing of 0.079 fm, but we have

also performed an additional calculation of δEI=2
ππ and mπa

I=2
ππ at a second lattice spacing

of 0.063 fm and at a pion mass of 320 MeV. This pion mass lies very close to that of the one

obtained at a = 0.079 fm and mπ = 330 MeV. The physical volumes of these two ensembles

differ, so the values of δEI=2
ππ cannot be directly compared. However, assuming that FSM

correctly accounts for the finite volume dependence of δEI=2
ππ for these two ensembles, we can

compare mπa
I=2
ππ for the two lattice spacings, and indeed we do find statistical agreement

between the two ensembles as indicated in Table 4.1. Furthermore, as described in the

next section, we note that the expected O(a2) corrections from maximally twisted mass

Lattice QCD are actually weakened to O(m2
πa

2) for the I = 2, I3 = ±2 channel as shown

using twisted mass χPT [93], thus suggesting further that the lattice spacing dependence

of mπa
I=2
ππ is mild for the calculations in this work.

4.4.5 Chiral extrapolation

The pion-pion scattering lengths have recently been calculated in twisted mass χPT [93].

This is an expansion of twisted mass lattice QCD in both the quark masses and the lattice

spacing. There it is shown that at NLO the lattice spacing corrections to the I = 2, I3 = ±2

scattering lengths are proportional to cos(ω), where ω is the twist angle. Thus at maximal

twist, ω = π/2, the explicit discretization errors vanish exactly, and the scattering length

can be simply represented by the continuum NLO χPT formula [26,94].

As suggested in Refs. [1, 2], we perform the chiral extrapolation of mπa
I=2
ππ in terms of

mπ/fπ instead of mπ. Additionally, the χPT renormalization scale is fixed as µ = fπ,phy.

The resulting NLO expression is then

mπa
I=2
ππ = − m2

π

8πf2
π

{

1 +
m2
π

16π2f2
π

[

3 ln
m2
π

f2
π

− 1 − lI=2
ππ (µ = fπ,phy)

]}

, (4.21)

where lI=2
ππ (µ) is related to the Gasser-Leutwyler coefficients l̄i as [95]

lI=2
ππ (µ) =

8

3
l̄1 +

16

3
l̄2 − l̄3 − 4l̄4 + 3 ln

m2
π,phy

µ2
. (4.22)
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It is important to note that extrapolating in mπ/fπ instead of simply mπ does indeed

change the expression for mπa
I=2
ππ but only at the next-to-next-to-leading order (NNLO).

The advantage of this form is that mπ/fπ is calculated directly on the lattice with small

errors and the chiral extrapolation does not require fixing a physical value for the lattice

spacing.

We now fit our lattice results for mπa
I=2
ππ from Table 4.1 to the functional form in

Eq. (4.21) in order to extrapolate mπa
I=2
ππ to the physical point and also extract the low

energy constant lI=2
ππ (µ = fπ,phy). The calculated values for the scattering length and

the resulting χPT fit curve are shown in Fig. 4.2. In the same figure, we also provide

1 1.5 2 2.5 3 3.5
mπ/fπ

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
πa π

πI=
2

LO χ-PT
NLO χ-PT
L=1.9 fm a=0.079 fm
L=2.5 fm a=0.079 fm
L=2.0 fm a=0.063 fm
NPLQCD (2007)
CP-PACS (2004)
NA48/2 (2009)

Figure 4.2: Chiral extrapolation for the I=2 pion-pion scattering length. The results in this
work are shown together with the lattice calculations of NPLQCD [1, 2] and CP-PACS [3]
and the direct measurement from NA48/2 at CERN [4].

a comparison to the lattice results of NPLQCD [1, 2] and CP-PACS [3] and the direct

measurement from NA48/2 at CERN [4]. We find general agreement between our calculation

and the results of NPLQCD at similar pion masses. In particular, the agreement between

our results and NPLQCD suggests that the effect of the missing strange quark in our current
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calculation is small.

To highlight the impact of the NLO terms in the χPT description of the pion mass

dependence of mπa
I=2
ππ and to understand the role of yet higher order terms, we show

the difference between the lattice calculations of the scattering length and the LO χPT

prediction in Fig. 4.3. We find that the scattering lengths statistically agree with the LO

1 1.5 2 2.5 3 3.5
mπ/fπ

-0.09

-0.06

-0.03

0

0.03

m
πa π

πI=
2 -L

O

LO χ-PT
NLO χ-PT
L=1.9 fm a=0.079 fm
L=2.5 fm a=0.079 fm
L=2.0 fm a=0.063 fm
NPLQCD (2007)
CP-PACS (2004)
NA48/2 (2009)

Figure 4.3: Difference between the lattice calculation of the scattering lengths and the LO
χPT prediction. The scattering lengths agree statistically with the LO χPT prediction for
mπ = 290 MeV to 520 MeV.

χPT result for all lattice calculations with mπ < 520 MeV. Accordingly, the NLO χPT

functional form provides a reasonable description of the lattice results in the same region

of mπ. As a further check, we fit our calculations to the NNLO form for mπa
I=2
ππ [60, 95]

and found mπa
I=2
ππ = −0.041 (12) at the physical point. The statistical error is large, as one

would expect given that our results already agree statistically with the LO χPT form, but

the resulting NNLO extrapolation of mπa
I=2
ππ does agree with the NLO fit. Given the size of

the statistical errors, we are unable to make any meaningful estimate of the NNLO LECs,

however, the effects from truncating the χPT series to NLO is included in our estimate of
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systematic errors.

The systematic error on the extrapolated value of mπa
I=2
ππ and lI=2

ππ has several com-

ponents. First, the systematic errors of the mπa
I=2
ππ that we obtain for each ensemble are

propagated through the chiral extrapolation. This is accomplished by again collecting all fit

ranges for each ensemble with χ2/dof < 2 as earlier. This gives approximately 1010 χPT fits

from which we randomly choose 2000 to sample the distribution of the extrapolated values

of mπa
I=2
ππ . As for the individual mπa

I=2
ππ , we use the distribution method to determine

an estimate of the systematic error due to the fit ranges from each ensemble. The second

systematic uncertainty arises from the chiral fit itself. This is estimated by taking the dif-

ference in the extrapolated values from the NLO χPT fit to all six and just the lightest five

ensembles. Finally, the extrapolation to the physical point requires the experimental value

for mπ/fπ. The experimental error on this quantity introduces an error that is nearly 50%

of the corresponding statistical error and hence is also included. All three effects are added

in quadrature to form the total estimated systematic error. Using the latest PDG [20] values

of mπ+ = 139.5702(4) MeV and fπ+ = 130.4(2) MeV to determine the physical limit, we

obtain the final result

mπa
I=2
ππ = −0.04385 (28)(38) and lI=2

ππ (µ = fπ,phy) = 4.65 (0.85)(1.07) . (4.23)

This agrees with the previously mentioned results: the lattice calculation from NPLQCD [1,

2], the so-called CGL analysis [59,60] and the E865 [58] and NA48/2 [4] measurements and

represents agreement among the experimental and theoretical determinations of mπa
I=2
ππ at

the 1% level.
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CHAPTER V

I=1 CHANNEL: ρ RESONANCE PARAMETERS

5.1 Physical background

The calculation of the hadron spectrum from first principles is of particular interest not only

because it would provide a test of the underlying theory, QCD, but also because it would lead

to a deeper understanding of the physics of the strong interaction. An important observation

is that many of these hadrons exist only as resonances. Although studied theoretically for

many years, the determination of the corresponding resonance parameters is afflicted with

many difficulties since the computation of resonance masses and decay widths is essentially

a non-perturbative problem. The only known way to extract the resonance parameters

non-perturbatively from first principles is the use of Lattice QCD.

On a fundamental level, the appearance of a resonance is primarily a dynamical phe-

nomenon, which is reflected in the observed scattering processes. Hence, to extract the

resonance parameters, one needs to study particle scattering. Experimentally, one can get

the information on the nature of the considered resonance from the experimental measure-

ment of the scattering cross section or equivalently the scattering phase. Theoretically, the

procedure used in Lattice QCD is similar. Using the FSMs proposed in Refs. [21–25, 54],

the scattering phase can be computed numerically and then used to determine the values

of the resonance mass and the decay width.

The experimental measurements of the decay width for some resonances have reached a

precision of a few MeVs1, while the masses are typically several hundred MeVs. However,

the lattice study of the decay width is still far away from such accuracy. Therefore, at

the current stage, our study is more of a conceptual and basic nature to understand how

resonances can be treated and understood within lattice field theory. We believe that in

1For example, the latest PDG [20] value of the ρ–meson decay width is Γρ = 149.1(8) MeV
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the future, with the increase of computing power and the acceleration of algorithms, the

Lattice QCD technique can provide a competitive result to experiment.

As we have discussed in Chapter 1, the case of the ρ–meson decaying into two pions

in the P-wave serves as an ideal laboratory for lattice studies of resonances and is of fun-

damental importance in understanding the underlying dynamics of hadronic interactions.

Moreover, the results for the ρ–resonance mass and decay width can directly be used in

applications such as the calculation of the vacuum polarization tensor that is part of the

QCD corrections to gµ − 2 [96, 97] and the comparison of the electromagnetic form factor

of the pion with the vector exchange model [98]. Pioneering attempts were made to study

ρ–meson decay in quenched QCD [99,100] where no actual decay takes place. The first full

QCD calculation [101] evaluated the decay width from the ρ → ππ transition amplitude

〈ρ|ππ〉, which, however, was carried out with large quark masses that do not allow for a

physical decay since the requirement for ρ decay, mπ/mρ < 0.5, had not been fulfilled. So

far, only a few lattice calculations [102–104] had quark masses light enough to address the

ρ–meson decay directly. All these studies concentrated on only one or two scattering phases

for each ensemble thus generating too few data points to map out the resonance region.

In this thesis we calculate the P-wave pion-pion scattering phase in the isospin I = 1

channel fulfilling the physical kinematics of mπ/mρ < 0.5. As discussed in Chapter 3, we

perform the calculation in the CMF, the MF1 and the MF2, respectively. In each frame, we

evaluate the scattering phase from the energy eigenvalues of the ground state and the first

excited state. Using three frames allows us to obtain six points for the scattering phase for

each ensemble.

We think that therefore our calculations have several advantages compared to the earlier

works. First, using the FSMs in different frames provides a check of the accuracy of the

FSMs themselves. Second, extracting the resonance parameters from six data points allows

us to obtain more accurate results. Third, some of the scattering phases are measured

at energies which lie directly in the resonance region [mρ − Γρ/2,mρ + Γρ/2], allowing

us to directly map out the resonance region. Additionally, we compute the ρ resonance

parameters at several values of the quark mass thus obtaining the quark mass dependence
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of the resonance mass and decay width.

5.2 Method

5.2.1 Correlation matrix

In determining the resonance parameters, we will concentrate on the I = 1, I3 = 0 channel.

The reason is simply that in this channel, by neglecting the isospin symmetry breaking

effects, we do not have to consider the computationally demanding disconnected diagrams

that would appear in the I = 1, I3 = ±1 channel. In the I = 1, I3 = 0 channel, the ρ0

meson decays into a π+ and π− in the P-wave. In each of the frames we will be using,

the energy eigenstate |ππ,Γ〉 approximates the P-wave state if one ignores the states with

higher angular momentum. This is feasible if we construct the states |ππ,Γ〉 using the

irreducible representation Γ = T−
1 for the CMF, Γ = A−

2 for the MF1 and Γ = B−
1 for the

MF2, respectively.

The finite size formulae, which relate the center-of-mass energy ECM on the lattice to

the P-wave scattering phase δ1(p) in the infinite volume, are given by Eq. (3.84–3.86) in

Sect. 3.5. In the CMF, the value of ECM is directly given by the discrete energy eigenvalue

E extracted from the large time behavior of the corresponding correlation function. In the

MF, ECM is related to E through the Lorentz transformation

E2
CM = E2 − ~P 2 , (5.1)

where ~P is the total momentum of the MF.

In order to calculate the energy eigenvalue E, we construct a 2 × 2 correlation matrix

through

C2×2(t) =







〈

(ππ) (t) (ππ)† (0)
〉

〈

(ππ) (t)ρ†(0)
〉

〈

ρ(t)(ππ)†(0)
〉 〈

ρ(t)ρ†(0)
〉






, (5.2)

where the ππ two-point correlation function is constructed from the interpolating operators

detailed in Sect. 3.5. In the CMF, the interpolating operator for two pions is given by

(ππ)(t) = π+

(

2π

L
~e3, t

)

π−
(

−2π

L
~e3, t

)

− π+

(

−2π

L
~e3, t

)

π−
(

2π

L
~e3, t

)

. (5.3)
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This operator belongs to the T−
1 representation of the cubic group Oh on the lattice. In the

two MFs, the ππ operator can be given in a unified form through

ππ(t) = π+
(

~P , t
)

π−
(

~0, t
)

− π+
(

~0, t
)

π−
(

~P , t
)

, (5.4)

where ~P is the total momentum of the MF system. In the MF1, ~P = (2π/L)~e3 and

the operator belongs to the A−
2 representation of the tetragonal group D4h. In the MF2,

~P = (2π/L)(~e1 +~e2) and the operator belongs to the B−
1 representation of the orthorhombic

group D2h. All these operators belong to the isospin representation (I, I3) = (1, 0) as

desired.

The interpolating operator for the neutral ρ–meson is constructed through a local vector

current,

ρ(t) = ρ0(~P , t) =
1

L3/2

∑

~x

e−i
~P ·~x
(

ψ̄(~a · ~γ)τ
0

2
ψ

)

(~x, t) , ~a · ~γ =
∑

i

aiγi , (5.5)

where ~a indicates the polarization of the vector current. To guarantee total momentum

conservation, the summation is taken over spatial position ~x with a factor ei
~P ·~x, which

constrains the considered states to those with momentum ~P .

With the available operators (ππ)(t) and ρ(t), one can construct the off-diagonal cor-

relator 〈(ππ)(t)ρ†(0)〉. Ignoring boundary condition effects for a moment, this off-diagonal

correlation function can be written as

〈Ω|(ππ)(t)ρ†(0)|Ω〉 = 〈Ω|(ππ)(0)e−Ĥtρ†(0)|Ω〉 =
∑

n

an〈ππ,En|ρ†(0)|Ω〉e−Ent . (5.6)

Here the energy eigenstates of the Hamilton operator Ĥ, |ππ,En〉, are created by acting

with the operator (ππ)†(0) on the vacuum |Ω〉. an is a coefficient which depends on the

way the operator ππ is constructed. The eigenstates |ππ,En〉 of the operator (ππ)†(0) can

be represented as

|ππ,En〉 =
1√
2

(

|π+(~p1n)π
−(~p2n)〉 − |π+(~p2n)π

−(~p1n)〉
)

(5.7)

where ~p1n and ~p2n are the momenta of the interacting two pions.

The Ward identity in the continuum

∂µ〈π+(~p1n)π
−(~p2n)|ψ̄γµψ|Ω〉 = 0 (5.8)
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together with the equation

〈π+(~p1n)π
−(~p2n)|ψ̄γ0ψ|Ω〉 = 0 (5.9)

yields

(~p1n + ~p2n) · 〈π+(~p1n)π
−(~p2n)|ψ̄~γψ|Ω〉 = 0 . (5.10)

This equation can be equivalently written as

〈π+(~p1n)π
−(~p2n)|ψ̄~γψ|Ω〉 = F (~p1n, ~p2n)(~p1n − ~p2n) , (5.11)

where F (~p1n, ~p2n) is a form factor. Eq. (5.5) and (5.11) together yield

〈π+(~p1n)π
−(~p2n)|ρ†(0)|Ω〉 = F (~p1n, ~p2n) (~a · (~p1n − ~p2n)) . (5.12)

Using Eq. (5.12), one can rewrite the off-diagonal correlator as

〈Ω|(ππ)(t)ρ†(0)|Ω〉 =
∑

n

1√
2
an (~a · (~p1n − ~p2n))

× (F (~p1n, ~p2n) − F (~p2n, ~p1n)) e
−Ent . (5.13)

Eq. (5.13) shows that, to get the best signal, one should choose the vector ~a parallel to the

relative momentum ~p1n − ~p2n, n = 1, 2 in order to have an optimal overlap with the state

to be extracted. However, in the case of interacting particles, we do not know ~p1n − ~p2n in

advance. Considering the fact that the momentum shift δp is proportional to L−3/2, which

is a small correction to free lattice momentum ∼ 2π/L for large lattice size L, we use the

relative momentum of free particles instead. Therefore, the polarization vector ~a is taken

to be parallel to ~e3 in the CMF, ~e3 in the MF1 and ~e1 + ~e2 in the MF2, respectively.

5.2.2 Extraction of energies

The construction of the correlation matrix (5.2) provides us an effective approach to calcu-

late both the ground state energy E1 and the first excited state energy E2. Here we describe

how this is achieved.

Inserting a complete set of eigenstates of Ĥ into the correlation matrix C2×2(t) yields

Cij(t) = 〈Ω|Oi(t)O†
j(0)|Ω〉 =

2
∑

n=1

Vine
−EntV †

jn +O(e−En>2t) , (5.14)
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where Oi(t) (i = 1, 2) represents ππ(t) and ρ(t), respectively. The 2×2 matrix Vin is defined

as

Vin = 〈Ω|Oi(t)|n〉 , (5.15)

where |n〉 (n = 1, 2) denotes the n–th eigenstate, which are normalized such that 〈m|n〉 =

δmn.

A variational principle [23] is formulated by (t > tR)

R(t, tR) = C2×2(t)C
−1
2×2(tR) = V R̄(t, tR)V −1 +O(e−En>2tR) (5.16)

where tR is a reference time slice. It is assumed to be large enough such that the contribu-

tions to the matrix R(t, tR) from the excited states with En>2 can be ignored. R̄(t, tR) is a

diagonal matrix

R̄(t, tR) =







R1(t, tR)

R2(t, tR)






=







e−E1(t−tR)

e−E2(t−tR)






. (5.17)

Therefore, by diagonalizing the matrix R(t, tR), one can extract the energy eigenvalues of

En (n = 1, 2) from the Euclidean time dependence of the matrix elements Rn(t, tR)

V −1R(t, tR)V ⇒ R̄(t, tR) ⇒ Rn(t, tR) = exp (−En(t− tR)) , n = 1, 2 , (5.18)

where we assume that t is far enough from the boundaries to ignore boundary effects.

Using the variational method we are able to isolate the ground state and first excited

state in a clean way. This is of particular importance in the resonance region, where the

avoided level crossing occurrs and the first excited state is possibly close to the ground

state. Such a situation renders the extraction of the ground state energy unsuccessful when

only a single exponential fit ansatz is used.

5.2.3 Anti-periodic boundary conditions

In the present work we use anti-periodic boundary conditions for quarks in the time di-

rection, which results in a more complicated time dependence for the correlation matrix

C2×2(t).
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Here, we follow the analysis made in Sect. 4.2.2. Due to the boundary condition effects,

the matrix elements Cij(t) are then given by

Cij(t) = Tr
(

e−Ĥ(T−t)Oi(0)e
−ĤtO†

j(0)
)

/Z

=
∑

m,n

VimnV
†
jmne

−(Em+En)T/2 cosh((Em − En)(t− T/2))/Z , (5.19)

where the elements Vimn are defined by

Vimn = 〈m|Oi(t)|n〉 . (5.20)

Among the two states |m〉 and |n〉, if one is the vacuum state and the other is a physical state,

e.g. Em = 0 and En > 0, then from the t dependence of the correlator, cosh(En(t− T/2)),

we extract the energy of the physical state, En. If neither of them is the vacuum state

(Em > 0, En > 0), then from the correlator, we extract the energy of Em−En, which is not

the energy of any physical state. In the case with a finite time extent T , those terms with

Em > 0 and En > 0 (although thermally suppressed) do not varnish and they can distort

the behavior of the correlation functions Cij(t), particularly in the large t region.

This phenomenon does indeed occur here for the operator Oi (i = 1, 2). In the CMF,

intermediate states 〈n| = 〈π+, (2π/L)~e3| and 〈m| = 〈π+, (2π/L)~e3| give a constant, in t,

contribution to the correlation matrix because the energies of |m〉 and |n〉 are equal,

〈m|Oi|n〉〈n|O†
j |m〉e−E0

ππT/2/Z , E0
ππ = 2Eπ (~p) , ~p = (2π/L)~e3 , (5.21)

where Eπ(~p) denotes the energy of a pion with momentum ~p

Eπ(~p) =
√

m2
π + ~p2 . (5.22)

In the MFs, intermediate states 〈n| = 〈π+, ~P | and 〈m| = 〈π+,~0| give a contribution to the

correlation matrix through

〈m|Oi|n〉〈n|O†
j |m〉e−E0

ππT/2 cosh((Eπ(~P ) −mπ)(t− T/2))/Z , E0
ππ = mπ + Eπ(~P ) .

(5.23)

On the other hand, the standard contributions are given by

〈Ω|Oi|En〉〈En|O†
j |Ω〉e−EnT/2 cosh(En(t− T/2))/Z . (5.24)
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The lowest two energy eigenvalues are approximately the ρ–resonance energy and the energy

of a pion-pion scattering state

E1 = Eρ(~P ) , E2 = Eππ or E1 = Eππ , E2 = Eρ(~P ) . (5.25)

For large enough volumes Eππ = E0
ππ+δE ≈ E0

ππ, and hence the thermally suppressed con-

tributions to the correlation matrix are comparable to the standard ones when t approaches

T/2.

Since in the MFs, the t dependence of the thermally suppressed contributions is not

a constant but a cosh function, the derivative method used in Sect. 4.2.2 fails here. To

eliminate unwanted contributions, we remove the data points at very large t–values from

our analysis. In this case, the variational method is not spoiled and it yields

Rn(t, tR) → An cosh(−En(t− T/2)) , n = 1, 2 , for 0 ≪ t≪ T/2 . (5.26)

5.3 Lattice calculation

5.3.1 Ensemble information

Most of the results presented here are from a sequence of ensembles with a lattice spacing of

a = 0.079 fm. The pion masses range from mπ = 480 MeV to 290 MeV. At all pion masses

the physical kinematics of mπ/mρ < 0.5 is satisfied, which indicates that it is physically

possible for the ρ to decay into two pions. We will analyze the higher two pion masses at a

box size of L = 1.9 fm and the lower two pion masses for a larger volume with L = 2.5 fm.

In addition, we will also perform one calculation at a finer lattice spacing of a = 0.063 fm

to check for possible lattice spacing artifacts. The parameters relevant for this calculation

are given in Table 5.1, and further details concerning the ensembles used can be found in

Refs. [29–32].

5.3.2 Various source methods

For the calculation of pion correlation functions, it is known that the stochastic source

method is more efficient than the point source method. Therefore, we employ a Z4 stochastic

noise with one noise source (Ns = 1) generated on all the time slices ts = 0, · · · , T − 1. We
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Ensemble β aµ L/a mπ mπ/mρ N

A1 3.90 0.0085 24 480 0.43(1) 176

A2 3.90 0.0064 24 420 0.40(1) 278

A3 3.90 0.0040 32 330 0.32(1) 124

A4 3.90 0.0030 32 290 0.30(1) 129

B1 4.05 0.0030 32 320 0.32(2) 138

Table 5.1: Ensembles used in the I = 1 pion-pion scattering. We give the ensemble name
i.e. Ai, B1, the inverse bare coupling β = 6/g2

0 , the bare quark mass aµ, the lattice size L/a
and the value of mπ in units of MeV. We also list the ratio mπ/mρ and the number N of
configurations used.

perform T inversions for each configuration and each momentum mode. With the available

propagators, the correlator C11(t) can be calculated as

C11(t) =
〈

(ππ) (t) (ππ)† (0)
〉

=
1

T

∑

ts

〈

(ππ) (t+ ts) (ππ)† (ts)
〉

. (5.27)

The rather large effort to generate propagators on all the time slices pays off because with

these propagators we obtain the correlators with high precision.

In the calculation of the off-diagonal correlator, C21(t), the contraction of the quark

fields leads to a three-point diagram. Since the two pion interpolating operators are located

at the same source time slice ts, we use the sequential propagator method to construct the

correlator. We calculate C21(t) as

C21(t) =
〈

ρ(t)(ππ)†(0)
〉

=
1

T

∑

ts

〈

ρ(t+ ts)(ππ)†(ts)
〉

, (5.28)

and average the correlator over all time slices ts. For the other off-diagonal correlator

C12(t), the two pion interpolating operators are placed at the sink time slice t + ts which

would require T sequential propagators for each source time slice, leading to another large

computational effort. However, using the relation C12(t) = C†
21(t), we can substitute C12(t)

by C†
21(t) in our calculations thus saving a lot of computer time.

For the rho-rho correlator, C22(t), we performed a comparison between the Z4 stochastic

source method and the point source method and found that the results look similar in terms

of the required computational effort for a given signal to noise ratio. Historically, we started

our work with the calculation of the hadronic vacuum polarization, see Chapter 6. In that
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work, we have generated point source propagators at the parameters listed in Table 5.1.

Since we did not observe any advantage of stochastic Z4 sources, we used these available

propagators to construct the rho-rho correlator

C22(t) =
〈

ρ†(t+ ts)ρ(ts)
〉

, (5.29)

where the source time slices, ts, are chosen randomly to reduce the autocorrelation between

consecutive trajectories.

Due to the isospin symmetry breaking effects at non-zero lattice spacing, the discon-

nected diagram does not vanish. To address its contribution to the neutral ρ–meson, we

need to generate additional all-to-all propagators. However, the disconnected diagram cor-

rection has been studied in Ref. [105], and found to be negligible. Therefore, we neglect it

also here in the rho-rho correlator. In the calculation of correlator 〈(ππ)(ππ)†〉, we are able

to address the disconnected diagram since we put stochastic sources on each time slice. We

find that the disconnected diagram makes only a small contribution to the correlator but

brings in a significant noise. Since from all existing investigations it appears that the discon-

nected contributions are negligibly small, we leave them out in the whole 2 × 2 correlation

matrix.

5.4 Results

5.4.1 Energy eigenvalues

In Fig. 5.1–5.5 we show our lattice results for Rn(t, tR) (n = 1, 2) defined in Eq. (5.18)

in the CMF, MF1 and MF2, as a function of the time t together with a correlated fit

to the asymptotic form given in Eq. (5.26). There are two main sources of systematic

errors. One originates from the higher excited states and affects the correlator in the low-

t region. The other arises from the unwanted thermal contributions, which distorts the

correlator in the large-t region. By tuning the beginning tmin and the end tmax of the fitting

window, we can control the systematic errors effectively and ensure the fitting results are

safe from these systematic effects. In our calculations, we set tmin to be tR + 1, where tR

is the reference time slice given in Eq. (5.16), and increase tR to reduce the higher excited

state contaminations. Besides this, we set tmax to be sufficiently far away from the time
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Figure 5.1: For ensemble A1, the correlator
Rn(t, tR) (n = 1, 2) as a function of t. From
top to bottom, the three plots present the
lattice calculations in the CMF, MF1 and
MF2, respectively. The solid lines are corre-
lated fits to Eq. (5.26), from which the en-
ergy eigenvalues En are extracted.
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Figure 5.2: For ensemble A2, the correlator
Rn(t, tR) (n = 1, 2) as a function of t. From
top to bottom, the three plots present the
lattice calculations in the CMF, MF1 and
MF2, respectively. The solid lines are corre-
lated fits to Eq. (5.26), from which the en-
ergy eigenvalues En are extracted.
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Figure 5.3: For ensemble A3, the correlator
Rn(t, tR) (n = 1, 2) as a function of t. From
top to bottom, the three plots present the
lattice calculations in the CMF, MF1 and
MF2, respectively. The solid lines are corre-
lated fits to Eq. (5.26), from which the en-
ergy eigenvalues En are extracted.
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Figure 5.4: For ensemble A4, the correlator
Rn(t, tR) (n = 1, 2) as a function of t. From
top to bottom, the three plots present the
lattice calculations in the CMF, MF1 and
MF2, respectively. The solid lines are corre-
lated fits to Eq. (5.26), from which the en-
ergy eigenvalues En are extracted.
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Figure 5.5: For ensemble B1, the correlator
Rn(t, tR) (n = 1, 2) as a function of t. From
top to bottom, the three plots present the
lattice calculations in the CMF, MF1 and
MF2, respectively. The solid lines are corre-
lated fits to Eq. (5.26), from which the en-
ergy eigenvalues En are extracted.
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Figure 5.6: For ensemble A1, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the effective range for-
mula fit. At the positions where the scatter-
ing phase passes π/2 and π/4, the resonance
mass mρ and the decay width Γρ can be de-
termined.

slice t = T/2 in order that the fitting results are protected from the unwanted thermal

contributions. The corresponding parameters tR, tmin and tmax used in this work are listed

in Table. 5.4. All the ensembles shown in Fig. 5.1–5.5 visibly agree with the corresponding

fit and lead to reasonable values of χ2/dof. The fit quality χ2/dof together with the fit

results for En (n = 1, 2) are also given in Table 5.4.

5.4.2 Lattice discretization effects

In the continuum limit, the center-of-mass energy ECM is simply related to the energy

spectrum En (n = 1, 2) through the Lorentz transformation (5.1). On the lattice, the

discretization effects explicitly break the Lorentz symmetry and the determination of ECM

suffers from such discretization errors. Another source of discretization errors arises from

the FSM. It uses the continuum dispersion relation

ECM = 2
√

m2
π + p2 (5.30)

to relate energy ECM to the relative momentum p between the two interacting particles.

On the lattice, such relation should be modified.

These two sources of systematic errors have been studied in Ref. [54], where the authors
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suggest to use the lattice modified relations

cosh(ECM ) = cosh(En) − 2
∑

i

sin2(Pi/2) , n = 1, 2 ,

cosh(ECM/2) = 2 sin2(p/2) + cosh(mπ) , (5.31)

instead of the continuum ones to reduce the systematic errors. Following this suggestion,

we calculate the energy ECM and the momentum p from the energy eigenvalues En using

Eq. (5.31) and then estimate the P-wave scattering phase δ1(p) by putting p into Eq. (3.84–

3.86). The results for ECM , p, δ1(p) and sin2 δ1 are given in Table 5.5.

Here, we want to add a word of caution. The FSMs are valid for elastic scattering

processes. In a situation with too high energy, i.e. when ECM > 4mπ, the inelastic

scattering channel will open and an unknown systematic error will affect the determination

of the scattering phase. In our calculations, we exclude the results with energy ECM & 4mπ

and thus make use of the finite size formula in a safe way.

5.4.3 Extraction of resonance parameters

So far, we collected the P-wave scattering phases at six different energy levels, two from

each of the three Lorentz frames employed. In order to interpret these results, we still

need an analytic expression that describes the dependence of the scattering phase on the

center-of-mass energy ECM . Usually, one employs the effective range formula [106] to meet

this demand

tan δ1(p) =
g2
ρππ

6π

p3

ECM (m2
ρ − E2

CM )
, p =

√

E2
CM/4 −m2

π , (5.32)

where gρππ is the effective ρ → ππ coupling constant, which largely determines the size of

the ρ–meson decay width through

Γρ =
g2
ρππ

6π

p3
ρ

m2
ρ

, pρ =
√

m2
ρ/4 −m2

π . (5.33)

In Eq. (5.32), the center-of-mass energy ECM and the momentum p satisfy the dispersion

relation in the continuum. Since we are working on the lattice, this relation does not hold

due to discretization effects and we therefore employ the lattice dispersion relation (5.31),

as described earlier.
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Figure 5.7: For ensemble A2, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the effective range for-
mula fit. At the positions where the scatter-
ing phase passes π/2 and π/4, the resonance
mass mρ and the decay width Γρ can be de-
termined.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
aE

CM

0

0.5

1

si
n2 (δ

)

CMF
MF1
MF2
sin

2
(δ)=1=>aM

R

Figure 5.8: For ensemble A3, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the effective range for-
mula fit. At the positions where the scatter-
ing phase passes π/2 and π/4, the resonance
mass mρ and the decay width Γρ can be de-
termined.
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Figure 5.9: For ensemble A4, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the effective range for-
mula fit. At the positions where the scatter-
ing phase passes π/2 and π/4, the resonance
mass mρ and the decay width Γρ can be de-
termined.
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Figure 5.10: For ensemble B1, the scatter-
ing phases calculated in the CMF, MF1 and
MF2 together with the effective range for-
mula fit. At the positions where the scatter-
ing phase passes π/2 and π/4, the resonance
mass mρ and the decay width Γρ can be de-
termined.
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mπ (MeV) mρ (MeV) Γρ (MeV) gρππ
A1 480 1118(14) 39.5(8.2) 6.46(40)

A2 420 1047(15) 55(11) 6.19(42)

A3 330 1033(31) 123(43) 6.31(87)

A4 290 980(31) 156(41) 6.77(67)

B1 320 997(52) 158(68) 7.3(1.1)

Table 5.2: The results for the ρ–resonance mass mρ, the decay width Γρ and the effective
ρ→ ππ coupling gρππ at pion masses ranging from 480 MeV to 290 MeV.

We fit the results for the scattering phase with the effective range formula and show the

corresponding fits in Figs. 5.6–5.10. At the position where the scattering phase passes π/2,

the resonance mass mρ is determined. Additionally, the values of gρππ and hence Γρ are

also evaluated from the fit. The corresponding results are given in Table 5.2.

5.4.4 Isospin symmetry breaking

As we have mentioned in the previous chapters, twisted mass Lattice QCD violates the

isospin and parity symmetries at any non-vanishing value of the lattice spacing. As a

result, for any value of a 6= 0 it is possible for the ρ–meson to decay into three pions, which

means that at non-zero lattice spacing the upper bound of the elastic scattering region

is lowered to 3mπ. Additionally, the isospin symmetry breaking causes a mixing between

states in the I = 1 channel and those in I = 0 and I = 2 channels. If this effect would

be large in our calculation, it would be necessary to adapt Lüscher’s method to the isospin

mixing case.

In order to test for possible isospin symmetry breaking effects, we therefore performed

our calculations of the ρ resonance parameters at two different lattice spacings. To this

end, we have –besides the so far used value of a = 0.079 fm– performed an additional

calculation of mρ and Γρ at a second lattice spacing of a = 0.063 fm at a pion mass of

320 MeV. This pion mass lies very close to that of the one obtained at a = 0.079 fm

and mπ = 330 MeV. The physical volumes of these two ensembles differ, so the results

cannot be directly compared. However, assuming that the FSM correctly accounts for

the finite volume dependence of the energy eigenvalues for these two ensembles, we can
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compare the results for the two lattice spacings. We find statistical agreement between the

two ensembles as indicated in Table 5.2. So far, this is only a single check and we need

to eventually examine the effects of isospin symmetry breaking more carefully, but in this

thesis, due to the large statistical errors of our results in Table 5.2, we assume that such

systematic errors are small compared to the statistical ones.

5.4.5 Quark mass dependence

We now discuss the quark mass dependence of the ρ resonance parameters. There are

several references from effective field theory (EFT) for the quark mass dependence of the

ρ–meson [107–110], that can guide the extrapolation of mρ and Γρ in quark mass through

mρ = M0
ρ + Cm1M

2
π + Cm2M

3
π + Cm3M

4
π ln(M2

π) +O(M4
π) ,

Γρ = Γ0
ρ + CΓ1M

2
π + CΓ2M

3
π + CΓ3M

4
π ln(M2

π) +O(M4
π) . (5.34)

Note that mρ and Γρ are not only statistically correlated, but also inherently related to

each other, suggesting that the coefficients Cmi and CΓi (i=1,2,3) might not be completely

independent (see the following EFT descripiton as an example). In this work we will follow

the EFT [111] description where mρ and Γρ are considered as the real and imaginary part

of the complex pole of the ρ–meson propagator. We therefore introduce the complex pole

parameter Z defined through

Z = (mρ − iΓρ/2)
2 . (5.35)

The power counting in the EFT is addressed by using the complex-mass renormalization

scheme, under which Z is written perturbatively as a loop expansion

Z = Z(0) + Z(1) + Z(2) + · · · . (5.36)

Each of these terms has its own chiral expansion. Up to third order in the chiral expansion,

they read [111]

Z(0) = Zχ + CχM
2
π , Zχ = (Mχ − iΓχ)

2 , Cχ = C1 + iC2

Z(1) =
g2M4

π

16π2Zχ

(

3 − 2 ln
M2
π

M2
χ

− 2iπ

)

−
g2
ωρπM

3
π(Mχ − iΓχ/2)

24π
−
g2
ωρπM

4
π

(

ln M2
π

M2
χ
− 1
)

32π2

(5.37)
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with the real parameters Mχ, Γχ, C1, C2, g
2
ωρπ and g2. Using the pion mass dependence

of Z, we can determine Zphy at the physical point, which can be converted to the physical

resonance mass mρ,phy and decay width Γρ,phy.

In our calculation, the statistical errors of our lattice determination of the ρ resonance

parameters are still large. In addition, the lightest pion mass used in our calculations is

about 300 MeV where it is unclear whether the formulae derived in the EFTs are applicable.

Thus, as a starting point, we consider only the leading term Z(0) in expansion (5.36) and

study the quark mass dependence of the ρ–meson using the simplest linear polynomial in

M2
π

Z = Zχ + CχM
2
π . (5.38)

The fitting results are listed in Table 5.3.

Fit mρ,phy Γρ,phy Mχ Γχ C1 C2 gωρπ
Eq. (5.38) 0.91(3) 0.18(3) 0.89(04) 0.19(4) 2.0(0.3) 0.6(2) —
Eq. (5.39) 0.90(8) 0.18(3) 0.88(11) 0.19(4) 2.3(3.9) 0.5(4) 7(39)

Table 5.3: The ρ mass and decay width from the chiral extrapolations of different models.
The values of mρ,phy, Γρ,phy, Mχ, Γχ are given in units of GeV and gωρπ in units of GeV−1.

In the left panel of Fig. 5.11 we plot the mass of the ρ–meson as a function of the square

of the pion mass together with the linear fit (5.38). Using this simple linear extrapolation,

our lattice result turns out to lie high relative to the PDG value of the ρ–meson. We try

a more sophisticated fit, in which we include the term Z(1) in Eq. (5.36). Note that in the

chiral expansion (5.37) of Z(1), the dominant term is M3
π and the terms M4

π ln(M2
π/M

2
χ)

and M4
π are more suppressed in the chiral limit. We therefore fit our lattice results to the

asymptotic form

Z = Zχ + CχM
2
π − 1

24π
g2
ωρπZ

1/2
χ M3

π . (5.39)

The fit results are also listed in Table 5.3. We find that the signal-to-noise ratio of gωρπ

is terribly poor. Therefore it is impossible to include even higher order terms in the fit.

We plot the mass of the ρ–meson as a function of the square of the pion mass together
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with the fit to Eq. (5.39) in the right panel of Fig 5.11. Although the result for the ρ mass

is still high relative to the PDG value, the error band becomes much larger compared to

the linear fit, especially in the low pion mass region. It suggests that the study of the ρ–

resonance at yet lighter quark masses is very important to understand the chiral dynamics

of the ρ–resonance. Besides this, it also indicates that a more precise comparison with

experiment will require reducing the statistical errors and fitting the lattice results to more

sophisticated chiral extrapolation formulae.
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Figure 5.11: The ρ–meson mass as a function of the square of the pion mass. In the left
panel, we fit the lattice results to Eq. (5.38). On the right panel, we fit them to Eq. (5.39).

In Fig. 5.12, we plot the coupling gρππ as a function of the square of the pion mass

and find that gρππ is almost independent of the pion mass. Moreover, the value of gρππ

is consistent with the PDG value. Since the decay width is largely determined by the

coupling gρππ, the consistency of gρππ with the experimental value also implies that the

lattice determination of the decay width Γρ,phy should agree with the PDG value. This can

indeed be inferred from Fig. 5.13, where we show the lattice results for Γρ as a function of
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the square of the pion mass together with the linear fit (5.38) in the left panel and with the

fit to Eq. (5.39) in the right panel. We find that including the M3
π term has only a slight

effect on the determination of Γρ. At the physical point, the decay width Γρ turns out to

be the same for the two fits and is given as

Γρ,phy = 178(32) MeV , (5.40)

which is consistent with the PDG value within 1σ

Γρ,PDG = 149.1(0.8) MeV . (5.41)

Note, however, that the value determined from our lattice calculation is much less accu-

rate than the one extracted from experimental measurements. Therefore, we consider the

present work more as an initial study of whether and how resonance parameters can be

extracted from non-perturbative lattice calculations and not as a precise determination of

these parameters. The results we have obtained here demonstrate, however, that reso-

nances can indeed be analyzed on finite size lattices with numerical calculations. This is

very promising, given the number of hadrons that appear in the physical spectrum in QCD

as resonances.
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Figure 5.12: The effective coupling gρππ as a function of the square of the pion mass.
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Figure 5.13: The ρ decay width as a function of the square of the pion mass. In the left
panel, we fit the lattice results to Eq. (5.38). On the right panel, we fit them to Eq. (5.39).
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Frame tR/a tmin/a tmax/a n χ2/dof aEn

1 2.21 0.4559(52)
CMF 7 8 18

2 1.26 0.6584(90)

1 0.76 0.4869(35)
A1 MF1 9 10 18

2 1.40 0.5563(98)

1 0.65 0.5660(42)
MF2 8 9 18

2 0.80 0.642(11)

1 0.66 0.4301(52)
CMF 8 9 17

2 1.17 0.637(16)

1 0.48 0.4537(25)
A2 MF1 9 10 17

2 0.49 0.527(12)

1 0.37 0.5343(57)
MF2 9 10 17

2 0.40 0.612(16)

1 1.03 0.4037(68)
CMF 8 9 17

2 1.02 0.4931(80)

1 1.16 0.3638(13)
A3 MF1 10 11 17

2 0.92 0.474(23)

1 0.07 0.4330(25)
MF2 9 10 17

2 0.67 0.518(18)

1 1.36 0.3844(79)
CMF 8 9 20

2 1.90 0.4591(86)

1 1.03 0.3363(14)
A4 MF1 9 10 20

2 1.12 0.440(19)

1 0.72 0.4035(36)
MF2 9 10 20

2 1.21 0.490(22)

1 0.70 0.327(14)
CMF 13 14 20

2 0.91 0.66(14)

1 0.99 0.3081(34)
B1 MF1 13 14 20

2 0.36 0.393(33)

1 0.08 0.378(11)
MF2 13 14 20

2 1.07 0.454(33)

Table 5.4: Extraction of energy eigenvalues for the ground state and the first excited state
in the CMF, MF1 and MF2. In the table we list the ensemble number, the reference time
tR, the beginning and end of the fitting window, tmin and tmax, the fit quality χ2/dof and
the fit results for energy eigenvalues En (n = 1, 2).
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Frame n aEn aECM ap δ1(
◦) sin2 δ1

1 0.4559(52) 0.1207(50) 136.7(3.5) 0.470(61)
CMF

2 0.6584(90) 0.2686(57) 169.9(8.7) 0.031(52)

1 0.4869(35) 0.4137(41) 0.0729(61) 4.66(29) 0.00661(83)
A1 MF1

2 0.5563(98) 0.494(11) 0.1543(91) 162.0(5.2) 0.095(53)

1 0.5660(42) 0.4356(56) 0.1000(62) 15.28(40) 0.0694(36)
MF2

2 0.642(11) 0.533(13) 0.1838(97) 159.6(6.4) 0.121(72)

1 0.4301(52) 0.1331(42) 127.9(3.1) 0.623(52)
CMF

2 0.637(16) 0.2719(96) 165(15) 0.07(13)

1 0.4537(25) 0.3737(31) 0.0794(36) 4.425(41) 0.00595(11)
A2 MF1

2 0.527(12) 0.461(14) 0.157(11) 159.2(6.3) 0.126(73)

1 0.5343(57) 0.3925(80) 0.0997(79) 12.89(65) 0.0497(49)
MF2

2 0.612(16) 0.495(20) 0.182(14) 158.6(8.7) 0.13(10)

1 0.4037(68) 0.1516(46) 69.6(5.9) 0.878(68)
CMF

2 0.4931(80) 0.2081(48) 156(10) 0.17(14)

1 0.3638(13) 0.3076(15) 0.0761(16) 2.40(42) 0.00176(61)
A3 MF1

2 0.474(23) 0.433(25) 0.171(16) 103(22) 0.95(18)

1 0.4330(25) 0.3354(33) 0.1013(27) 4.3(1.5) 0.0057(40)
MF2

2 0.518(18) 0.441(21) 0.176(13) 120(15) 0.75(23)

1 0.3844(79) 0.1534(50) 67.4(6.6) 0.852(81)
CMF

2 0.4591(86)∗

1 0.3363(14) 0.2743(17) 0.0726(15) 2.43(33) 0.00180(49)
A4 MF1

2 0.440(19) 0.396(22) 0.161(13) 116(16) 0.80(22)

1 0.4035(36) 0.2959(50) 0.0915(40) 6.5(1.7) 0.0128(66)
MF2

2 0.490(22) 0.407(27) 0.167(17) 128(17) 0.63(29)

1 0.327(14) 0.1272(93) 99(11) 0.975(57)
CMF

2 0.66(14)∗

1 0.3081(34) 0.2387(44) 0.0607(43) 3.55(30) 0.00384(64)
B1 MF1

2 0.393(33) 0.342(38) 0.137(24) 141(22) 0.40(38)

1 0.378(11) 0.260(16) 0.080(13) 8.2(3.2) 0.021(16)
MF2

2 0.454(33) 0.362(42) 0.149(26) 144(24) 0.35(39)

Table 5.5: P-wave scattering phase δ1(p) at the energies of the ground state and the
first excited state in the CMF, MF1 and MF2. We list the ensemble number, the energy
eigenvalue En, the center-of-mass energy ECM , the momentum p, the scattering phase
δ1(p) in units of degree and sin2 δ1(p). The results marked by a star denotes that the
corresponding energy ECM is above the 4mπ threshold. We therefore exclude them from
our calculations.
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CHAPTER VI

VACUUM POLARIZATION AND HADRONIC MUON

ANOMALOUS MAGNETIC MOMENT

6.1 Physical background

In Chapter 1, we discussed the basic motivations for the lattice calculation of the hadronic

vacuum polarization function, Π(Q2). First, it can be used to determine the Adler func-

tion [9–11], which provides a direct comparison to experimental data of hadronic cross

sections. Second, it can be used to compute the hadronic contribution to the muon anoma-

lous magnetic moment, aµ [18,96,97,112]. Third, combined with a perturbative calculation,

it can be used to extract the strong coupling constant, αs [113,114]. In this thesis, we will

calculate Π(Q2) for pion masses from 640 MeV to 290 MeV using Nf = 2 maximally twisted

mass fermions [29–32] at two lattice spacings and two physical lattice volumes to address

lattice artifacts and finite size effects. Using the lattice determination of Π(Q2), we will

then present results for the leading order hadronic contribution to the muon anomalous

magnetic moment aµ.

Similar to the electron, the muon is a Dirac fermion with intrinsic spin 1/2. Its magnetic

dipole moment is related to its spin through

~µ = gµ
e~

2mµc
~S , (6.1)

where ~µ is the magnetic dipole moment, ~S the spin vector andmµ the mass of the muon. The

Dirac theory predicts the value of the Landé g factor for the muon as gµ = 2 [115,116]. If one

takes relativistic quantum fluctuations (also called radiative corrections) into consideration,

then gµ deviates from 2. The difference is the muon anomalous magnetic moment. It is

defined as

aµ = (gµ − 2)/2 . (6.2)
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Theoretically, the muon anomalous magnetic moment is extracted from the vertex func-

tion that describes the electromagnetic interaction of the muon with the photon,

γ(q)
µ(p′)

µ(p)

= (−ie) ū(p′)Γµ(q)u(p)

= (−ie) ū(p′)
[

γµF1(q
2) + i

σµνqν
2mµ

F2(q
2)

]

u(p) , (6.3)

where q = p′ − p is the photon momentum, and p and p′ are the incoming and outgoing

momenta of the muon. The Dirac spinor u(p) denotes the relativistic wave function of a

free muon, and the matrix σµν is given by σµν = i
2 [γµ, γν ]. F1(q

2) is the electric charge

or Dirac form factor and F2(q
2) is the magnetic or Pauli form factor. These form factors

describe how the muon interacts with the electromagnetic field. In the static limit, q2 → 0,

we have

gµ = 2F1(0) + 2F2(0) = 2 + 2F2(0) , (6.4)

where we have used the charge normalization condition F1(0) = 1. Eq. (6.2) and Eq. (6.4)

together yield the relation for the anomalous magnetic moment

aµ = F2(0) . (6.5)

At tree level, F2(0) is zero. The one-loop correction to F2(0) originates from quantum

fluctuations via the virtual photon-lepton interaction in QED [117]

µ µγ
⇒ a

QED(1)
µ = α

2π ,

where α is the QED fine structure constant. The higher order corrections, in the pertur-

bative expansion, involve effects from all sectors of the Standard Model (SM) as well as

unknown new physics (NP) contributions

aµ = aSM
µ + aNP

µ = aQED
µ + aWeak

µ + aQCD
µ + aNP

µ . (6.6)
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γ

had

µ

Figure 6.1: Leading hadronic contribution to g − 2.

In Eq. (6.6) the NP contributions to aµ are proportional to

aNP
µ

aµ
∝

m2
µ

M2
NP

, (6.7)

where MNP is the mass of a hypothetical heavy state for some new physics. Eq. (6.7) shows

that aµ is much more sensitive to contributions from new physics than the anomalous

magnetic moment of the electron, ae, since aNP grows quadratically with the considered

lepton mass and is hence magnified in aµ relative to ae by a factor (mµ/me)
2 ∼ 4 × 104.

This is what drives aµ to be a very important quantity for probing new physics.

Today, the anomalous magnetic moment of the muon, aµ, has been both measured

and calculated to high precision. The measurement of the Muon (g − 2) Collaboration

is aEX
µ = 11659 208.9(6.3) × 10−10 [15] and has a fractional accuracy of 0.54 × 10−6. The

Standard Model value aSM
µ has been estimated by many authors. Recent calculations present

a discrepancy between aSM
µ and aEX

µ of 3.2σ (e+e−-based) [16] or 1.9σ (τ -based) [17]. The

dominant source of this variation is the leading order hadronic contribution ahad
µ represented

in diagram 6.1. This quantity is a pure QCD observable and has been shown to be calculable

in Lattice QCD calculations even in Euclidean space-time [18].

The hadronic contribution ahad
µ has previously been calculated on the lattice using

quenched domain wall fermions [18], quenched improved Wilson fermions [112] and dy-

namical rooted asqtad improved staggered fermions [96]. In this thesis we present our

calculation of ahad
µ using two-flavor maximally twisted mass fermions. Since in this calcula-

tion we use a different discretization as in Ref. [96], it provides a very important cross-check

of the earlier obtained results. In addition, our work is the first to examine finite size effects

and lattice artifacts. This allows for a control of most sources of systematic error, which is
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necessary for a reliable calculation of ahad
µ .

6.2 Determination of ahad
µ

6.2.1 Traditional method in Minkowski space

As can be seen in Fig. 6.1, the leading order hadronic contribution ahad
µ originates from the

hadronic vacuum polarization tensor, which is given by

γ(q) γ
⇒ Πµν(q) = (qµqν − q2gµν)Π(q2) ,

where qµ is the 4-momentum in Minkowski space. Traditionally Π(q2) is calculated for

time-like momenta q2 > 0 by using the dispersion relation and the optical theorem. The

dispersion relation allows for an analytic continuation from the real part of Π(q2) to its

imaginary part

Π(q2) − Π(0) =
q2

π

∫ ∞

0
ds

ImΠ(s)

s(s− q2 − iε)
, (6.8)

and the optical theorem relates the imaginary part of Π(s) to the experimental data of the

total cross section of e+e− annihilation

ImΠ(s) =
α

3
R(s) , (6.9)

where R(s) is the cross section ratio defined in Eq. (1.1). Using Eq. (6.8) together with

Eq. (6.9), the leading order hadronic correction ahad
µ can be directly calculated in terms of

R(s) via the following relation (see Ref. [118] for a review)

ahad
µ =

α2

3π2

∫ ∞

4m2
π

ds

s
K

(

s

m2
µ

)

R(s) , (6.10)

where

K

(

s

m2
µ

)

=

∫ 1

0
dx

x2(1 − x)

x2 + (1 − x)s/m2
µ

. (6.11)

Using recent high-precision e+e− → π+π− cross section data from the BABAR experi-

ment [119], Ref. [16] obtains for the e+e−-based evaluation of

ahad
µ = (695.5 ± 4.1) × 10−10 , e+e−-based . (6.12)

82



Besides the e+e−-data, the experimental data of hadronic τ -decays can also be used to

calculate ahad
µ . Including the recent τ− → π−π0ντ data from the Belle experiment [120],

Ref. [17] reports the following result for ahad
µ

ahad
µ = (705.3 ± 4.5) × 10−10 , τ -based . (6.13)

Hence, a 1.6σ discrepancy between the e+e−- and the τ -based determinations of ahad
µ is

found. In both cases, the error of ahad
µ alone represents 60% of the theoretical error. It is

exactly here where lattice calculations are desirable to provide a theoretical determination

of ahad
µ from first principles.

6.2.2 Lattice determination in Euclidean space

On the lattice, the vacuum polarization function Π(Q2) is calculated in Euclidean space

with Q2 = −q2 > 0 (space-like momentum) via the relation

Πµν(Q) = (QµQν −Q2δµν)Π(Q2) . (6.14)

It is proved in Ref. [18] that Π(Q2), calculated on the lattice and in Euclidean space, can be

directly inserted into the one-loop diagram for ahad
µ without analytically continuing Π(Q2)

back to Minkowski space, or requiring its value in the region Q2 < 0 which would not be

accessible to lattice calculations. The hadronic contribution ahad
µ can then be calculated

from the vacuum polarization function at space-like momenta through the relation [18]

ahad
µ = α2

∫ ∞

0

dQ2

Q2
F

(

Q2

m2
µ

)

(Π(Q2) − Π(0)) , (6.15)

where the kernel F is given by

F

(

Q2

m2
µ

)

=
64

(Q2/m2
µ)

2
(

1 +
√

1 + 4m2
µ/Q

2
)4√

1 + 4m2
µ/Q

2

. (6.16)

Here we remark that the integrand in Eq. (6.15) is peaked at small momenta and the kernel,

F (Q
2

m2
µ
), attains a maximal value at Q2 = (

√
5 − 2)m2

µ ≈ 0.003 GeV2 with a muon mass of

mµ = 105.7 MeV. (The inverse power of Q2 in Eq. (6.15) is canceled by the subtraction

Π(Q2) − Π(0), which is proportional to Q2.)
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The smallest momentum accessible in our finite volume calculation is Q2 = (2π/T )2 ≈

0.06 GeV2. Therefore a reliable low Q2 extrapolation is essential to calculate Π(Q2). In

particular the ultra-violet subtraction at Q2 = 0, required to renormalize Π(Q2), induces

larger uncertainties than naively expected.

6.3 Determination of Π(Q2)

6.3.1 Conserved current in the continuum

In the above section, the relation between the leading order hadronic contribution to the

muon anomalous magnetic moment ahad
µ and the hadronic vacuum polarization function

Π(Q2) in Euclidean space is established via Eq. (6.15). We will now discuss how to compute

Π(Q2) itself. In the continuum limit, the vacuum polarization tensor Πµν(Q) is defined as

Πµν(Q) = i

∫

d4xeiQ·(x−y)〈0|TJµ(x)Jν(y)|0〉 (6.17)

where Jµ is the hadronic electromagnetic current

Jµ(x) =
∑

f

ef ψ̄f (x)γµψf (x)

=
2

3
ū(x)γµu(x) −

1

3
d̄(x)γµd(x) −

1

3
s̄(x)γµs(x) + · · ·

= ψ̄(x)γµτψ(x) − 1

3
s̄(x)γµs(x) + · · · . (6.18)

Here, τ is a matrix in the Nf = 2 flavor space

τ =







2/3 0

0 −1/3






=

1

6
1 +

1

2
τ3 . (6.19)

In the continuum, the local vector current given in Eq. (6.18) is conserved, satisfying the

Ward identity

∂µJµ(x) = 0 ⇒ QµΠ(Q)µν = 0 . (6.20)

Eq. (6.20) together with Lorentz symmetry indicates that Πµν(Q) is proportional to the

projector QµQν −Q2δµν . By eliminating the factor QµQν −Q2δµν , one can hence extract

the vacuum polarization function Π(Q2).
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6.3.2 Conserved current on the lattice

On the lattice, due to discretization effects, the local vector current is not conserved any

more. In this work, we will use twisted mass fermions. Its fermionic action Stm is given by

Stm =
∑

x

χ̄(x) [DW +m0 + iµγ5τ3]χ(x) . (6.21)

The Noether theorem tells us that there is a one-to-one correspondence between a given

continuous transformation symmetry and a corresponding conservation law. Let us look at

a vector flavor transformation under which the fermion fields behave according to

δV χ(x) = iǫV (x)τχ(x) , δV χ̄(x) = −iχ̄(x)τǫV (x) . (6.22)

We call such a transformation a symmetry if it leaves the action invariant

δV Stm = 0 ⇒
∑

x

iǫV (x)
(

−∂∗µJ tmµ (x) + χ̄(x)[m0, τ ]χ(x) + χ̄(x)iµγ5[τ
3, τ ]χ(x)

)

= 0 ,

(6.23)

where ∂∗µ is the backward lattice derivative given in Eq. (2.21) and the vector current J tmµ (x)

is defined as

J tmµ (x) =
1

2

(

χ̄(x)τ(γµ − r)Uµ(x)χ(x+ µ̂) + χ̄(x+ µ̂)τ(γµ + r)U †
µ(x)χ(x)

)

. (6.24)

Since the flavor matrix τ defined in Eq. (6.19) commutes with both m0 and τ3, the action

invariance condition δV Stm = 0 directly yields the Ward identity

∂∗µJ
tm
µ (x) = 0 . (6.25)

In this way, we construct the conserved current (6.24) in the twisted basis for twisted mass

fermions. Performing the axial transformation of Eq. (2.58), we can translate the conserved

current to the physical basis. From the simple property

τγµ = exp(−iωγ5τ3/2)τγµ exp(−iωγ5τ3/2) , (6.26)

we find that the conserved vector current in the physical basis retains the same form as for

standard Wilson fermions.

In our calculations, we will use the conserved Noether current in the twisted basis (6.24)

instead of the local current. This has the advantage that no renormalization factor is

required and ensures that the Ward identity holds even for non-zero lattice spacing.
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6.3.3 Ward identities

Eq. (6.25) is only one example of the Ward identities. A more general form of such Ward

identities involving flavor currents and general local operators O(x1, · · · , xn) is derived

as [121]

〈δVO(x1, · · · , xn)〉 − 〈O(x1, · · · , xn)δV Stm〉 = 0 . (6.27)

When O = 1, Eq. (6.27) takes the form of Eq. (6.25). In the case of O = J tmν (y), Eq. (6.27)

yields

∑

x

−iǫV (x)
〈

∂∗µJ
tm
µ (x)J tmν (y)

〉

= 〈δV J tmν (y)〉 = i (ǫV (y) − ǫV (y + ν̂)) 〈J (2)
ν (y)〉 , (6.28)

or equivalently

〈∂∗µJ tmµ (x)J tmν (y)〉 = (δ(x − y − ν̂) − δ(x− y)) 〈J (2)
ν (y)〉 (6.29)

where the contact term J
(2)
ν (y) is defined by

J (2)
ν (y) =

1

2

(

−χ̄(y)τ(γν − r)Uµ(y)χ(y + ν̂) + χ̄(y + ν̂)τ(γν + r)U †
ν(y)χ(y)

)

. (6.30)

Eq. (6.29) is the Ward identity for the vector-vector (actually conserved vector-conserved

vector) two-point function.

Performing a Fourier transformation, the conserved vector current in momentum space

can be expressed through

J tmµ (Q̂) =
∑

x

eiQ·(x+µ̂/2)J tmµ (x) , Q̂µ = 2 sin

(

Qµ
2

)

. (6.31)

Correspondingly, we construct the vacuum polarization tensor Π
(1)
µν (Q̂) as

Π(1)
µν (Q̂) =

1

V

∑

x,y

eiQ·(x+µ̂/2−y−ν̂/2)〈J tmµ (x)J tmν (y)〉 (6.32)

with V = 1/(L3T ). The Ward identity (6.29) translates into momentum space as

−iQ̂µΠ(1)
µν (Q̂) =

1

V

∑

y

iQ̂ν〈J (2)
ν (y)〉 . (6.33)
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a (fm) V/a4 L (fm) mπ (MeV) (mπL)min

0.079 243 × 48 1.9 420 480 520 640 4.1

0.079 323 × 64 2.5 290 330 3.7

0.063 243 × 48 1.5 450 3.5

0.063 323 × 64 2.0 320 450 520 3.3

Table 6.1: Parameters used in the calculation of the hadronic vacuum polarization function.

We are therefore led to define

Πµν(Q̂) = Π(1)
µν (Q̂) + Π(2)

µν (Q̂) , Π(2)
µν (Q̂) =

1

V

∑

y

δµν〈J (2)
ν (y)〉 . (6.34)

Πµν(Q̂) as given in Eq. (6.34) fulfills the relation Q̂µΠµν(Q̂) = 0 and allows us to extract

the vacuum polarization function Π(Q̂2) through the relation1

Πµν(Q̂) = (Q̂µQ̂ν − Q̂2δµν)Π(Q̂2) . (6.35)

6.4 Lattice setup

The details of the ensembles used in this work are given in Table 6.1. We perform the

calculation at two lattice spacings a = 0.079 fm and a = 0.063 fm with the pion mass

ranging from 640 MeV to 290 MeV. At the lattice spacing a = 0.063 fm and a pion mass

mπ = 450 MeV, there are two ensembles with different lattice sizes L, which allows us to

perform a study of finite volume effects. At mπ = 520 MeV and L ≈ 2.0 fm, there are

two ensembles with different lattice spacings, which allows us to perform a study of lattice

artifacts. Thus, we are in a position to estimate the systematic uncertainties stemming

from these two effects.

The calculation of Πµν(Q̂) here proceeds as has been done in the previous work [18,96,

112]. Propagators from point sources at a single lattice site and the four forward neigh-

bors are calculated and used to construct the vector current-vector current correlator in

Eq. (6.32). Here we place the sources randomly in the 4-dimensional Euclidean space to

1Lattice discretizaton effects break the Lorentz symmetry. As a result, besides the terms of Q̂2δµν and
Q̂µQ̂ν , other terms like a2Q̂2

µQ̂2
ν will also appear in Πµν(Q̂) and make its structure more complicated. In our

calculation, we neglect such lattice artifacts which is justified a posteriori when we employ a second value
of the lattice spacing to check our results.

87



reduce the autocorrelation between consecutive trajectories. For each point source, we per-

form twelve inversions due to the spin and color degree of freedom. The one exceptional

aspect of the calculation with twisted mass fermions is that separate u and d quark inver-

sions must be performed due to the modified γ5-hermiticity: γ5D
†
uγ5 = Dd. This can be

seen from the expression

γµD
−1
u (x, y)γνD

−1†
u (y, x) = γµD

−1
u (x, y)γνγ5D

−1
d (x, y)γ5 . (6.36)

Note that we therefore perform 5× 12× 2 = 120 inversions for each configuration, showing

that the calculation of the vacuum polarization tensor is a computationally rather demand-

ing task.

Twisted mass fermions break flavor symmetry. However, the γ5-hermiticity relates u

and d quark loops and results in Πd
µν(x, y) = Πu∗

µν(x, y). This expression is true for each

gauge field configuration. The consequence is that Re[Πd(Q̂2)] = Re[Πu(Q̂2)]. Hence by

simply taking the real part of Π(Q̂2), which is real in the continuum limit, we eliminate any

explicit flavor breaking in the valence sector2. Additionally, we expect the real part of Π(Q̂2)

(which is the physically relevant piece) to be accurate to O(a2), even if the (unphysical)

imaginary part has O(a) corrections.

6.5 Results

6.5.1 Π(Q̂2): analysis of systematic effects

First we examine the finite size effects in Π(Q̂2). We have calculated Π(Q̂2) at two volumes,

L = 2.0 fm and L = 1.5 fm keeping mπ = 450 MeV and a = 0.063 fm fixed. In Fig. 6.2 we

show the results for Π(Q̂2) for these two volumes. Since we are working at a fixed value of

the the lattice spacing, we do not need to subtract Π(Q̂2) at Q̂2 = 0 to cancel the ultra-

violet divergence for the study of finite volume effects. From Fig. 6.2 it can be seen that

within the statistical errors there are no significant finite volume effects for Π(Q̂2) when

we use data with mπL . 3.5 as done here. As can be inferred from Table 6.1, among all

our data sets, there is only one ensemble with mπL slightly smaller than 3.5. We therefore

2In the sea sector, the implicit flavor breaking remains because m±
ρ 6= m0

ρ.

88



0 1 2 3 4
Q

2
(GeV

2
)

-0.21

-0.18

-0.15

Π
(Q

2 )

a=0.063fm mπ=450MeV L=2.0fm mπL=4.6
a=0.063fm mπ=450MeV L=1.5fm mπL=3.5

Figure 6.2: Volume dependence of Π(Q̂2). This quantity requires an ultra-violet subtraction
but is infra-red finite. Within the statistical errors there are no significant finite volume
effects for Π(Q̂2).

expect that most of our data are safe from such systematic effects. Below, by using different

fitting models for the momentum dependence of Π(Q̂2), we will investigate how finite volume

effects may influence the results of ahad
µ where an additional extrapolation and subtraction

procedure has to be applied.

Next we examine the lattice artifacts in Π(Q̂2) which we have calculated at two lattice

spacings, a = 0.079 fm and a = 0.063 fm. In both cases we have taken mπ = 520 MeV. The

lattice sizes are only slightly different: one is L = 1.9 fm and the other 2.0 fm. Fig. 6.3 shows

the unrenormalized results for Π(Q̂2) demonstrating the ultra-violet divergence present

without the subtraction. In Fig. 6.4 we subtract Π(Q̂2
min) with Q̂2

min taken at the lowest

momentum Q̂2 available for the corresponding lattice spacing. This procedure avoids the

extrapolation to Q̂2 = 0. Since the volumes are almost the same for both lattice spacings,

the values of Q̂2
min are very similar which allows for a meaningful comparison. As shown

in Fig. 6.4, in the range 0.1 GeV2 < Q̂2 < 4 GeV2 we see no significant lattice artifacts in

89



0 1 2 3 4
Q

2
(GeV

2
)

-0.21

-0.18

-0.15

Π
(Q

2 )

mπ=520MeV L=2.0fm a=0.063fm
mπ=520MeV L=1.9fm a=0.079fm

Figure 6.3: Lattice spacing dependence of Π(Q̂2) without the subtraction of Π(0̂2) needed
to regulate the vacuum polarization function.

Π(Q̂2) − Π(Q̂2
min).

As a next step, we now consider the mπ dependence. Figs. 6.5 and 6.6 show the pion

mass dependence of Π(Q̂2) with six values of mπ for a = 0.079 fm. Note that at the two

lowest pion masses, the lattice size is larger, thus the Q̂2 values are different. Figs. 6.7 and

6.8 show Π(Q̂2) with three values of mπ for a = 0.063 fm. Figs. 6.5 and 6.7 demonstrate that

there is no significant quark mass dependence for large Q̂2, as expected from perturbation

theory [122,123]. Even when focussing on small values of Q̂2, as shown in Fig. 6.6 and 6.8,

we can only observe a systematic, but not statistically significant, shift with quark mass

from 640 MeV to 270 MeV.

6.5.2 ahad
µ : results from various data modeling

To determine the contribution of the hadronic vacuum polarization function to ahad
µ , which

is our final goal, we must parameterize and fit the Q̂2 dependence of Π(Q̂2) and extrapolate

to Q̂2 = 0 in order to perform the integral in Eq. (6.15). Unfortunately, there is no closed
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Figure 6.4: Lattice spacing dependence of Π(Q̂2)−Π(Q̂2
min). The results have been renor-

malized at the lowest value of Q̂2 ≈ 0.1 GeV2 at each lattice spacing to illustrate the effect
of the subtraction. In the range 0.1 GeV2 < Q̂2 < 4 GeV2, there is no explicit lattice
spacing dependence.

form available to describe the Q̂2 dependence of Π(Q̂2). However, the analyticity property

of Π(Q) allows us to perform a fit using simple polynomials. In Figs. 6.9 and 6.10 we show

fits to polynomials in Q̂2 with 4 terms (cubic) and 5 terms (quartic). The lattice results

and corresponding curves are shifted vertically to illustrate the quality of the fits and the

nature of the extrapolation to Q̂2 = 0. For all ensembles the cubic fit seems fully sufficient

to describe the lattice results and hence from these fit results we are able to calculate ahad
µ

using Eq. (6.15). Fig. 6.11 shows the resulting values for all the ten ensembles using the

cubic fit ansatz. We have also examined the volume and the lattice spacing dependence of

our results and find no explicit finite size effects and lattice artifacts in accordance with

the discussion on Π(Q̂2) above, see Figs. 6.2 and 6.4. Additionally, there is no clear quark

mass dependence visible in Fig. 6.11. We perform a linear fit in the square of the pion mass

to extrapolate our results to the physical point where we find ahad
µ = 383(44) × 10−10. As
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Figure 6.5: Quark mass dependence of
Π(Q̂2) at large Q̂2 using a = 0.079 fm. There
is no noticeable quark mass dependence at
large Q̂2, consistent with pQCD expecta-
tions.
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Figure 6.6: Quark mass dependence of
Π(Q̂2) at low Q̂2 using a = 0.079 fm. There
is a systematic, but not statistically signif-
icant, shift with quark mass from mπ =
640 MeV to 270 MeV.
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Figure 6.7: Quark mass dependence of
Π(Q̂2) at large Q̂2 using a = 0.063 fm. There
is no noticeable quark mass dependence at
large Q̂2, consistent with pQCD expecta-
tions.
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Figure 6.8: Quark mass dependence of
Π(Q̂2) at low Q̂2 using a = 0.063 fm. There
is a systematic, but not statistically signif-
icant, shift with quark mass from mπ =
640 MeV to 270 MeV.
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tions of Q̂2, showing agreement for all data
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Figure 6.11: The results for ahad
µ using a

cubic fit. Within the statistical errors, we
do not find explicit finite size effects and lat-
tice artifacts. Unfortunately, with the large
errors, we do not find a clear quark mass
dependence either.
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Figure 6.12: The results for ahad
µ using a

quartic fit. As we increase the oder of the
polynomial from the cubic fit to the quartic
fit the results become much noiser and a sys-
tematic, but not statistically significant, rise
in ahad

µ is found.

93



0 0.5 1 1.5
Q

2
(GeV

2
)

-0.2

-0.1

Π
(Q

2 )

mπ=290MeV
mπ=330MeV
mπ=420MeV
mπ=480MeV
mπ=520MeV
mπ=580MeV

Figure 6.13: The low Q̂2 extrapolation of
Π(Q̂2) for a = 0.079 fm uisng a dipole fit.
Each Π(Q̂2) has been fit to the dipole func-
tion (6.40) of Q̂2, showing agreement for all
data sets.
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Figure 6.14: The low Q̂2 extrapolation of
Π(Q̂2) for a = 0.063 fm using a dipole fit.
Each Π(Q̂2) has been fit to the dipole func-
tion (6.40) of Q̂2, showing agreement for all
data sets.

can be seen in Fig. 6.11, our result indicated by the star symbol is lying rather low relative

to the e+e−- or τ -based determination of ahad
µ . We will come back to this point later. In

Fig. 6.12 we show the results for all the ten ensembles using the quartic fit ansatz. We note

a systematic, but not statistically significant, rise in ahad
µ as we increase the oder of the

polynomial from the cubic fit to the quartic fit. At the physical point we find the resulting

value of ahad
µ = 492(94) × 10−10.

Phenomenologically, as indicated by Eq. (6.8) and (6.9), the imaginary part of the

vacuum polarization function is related to intermediate hadronic states such as the low lying

vector mesons ρ, ω, φ, · · · , and the hadronic multi-particle scattering states ππ, 3π, 4π, · · · ,

which in the dispersion relation correspond to the states produced in e+e−–annihilation

via a virtual photon. In Eq. (6.10), the kernel K(s/m2
µ) gives very high weight to the low

energy regime, in particular to the lowest vector bosons ρ, ω and φ. The contributions from

the three lightest vector mesons to ahad
µ read [124]

aρµ = 501.37(3.49) × 10−10 , aωµ = 36.96(1.09) × 10−10 , aφµ = 34.42(0.93) × 10−10 ,

(6.37)

present more than 80% of the total hadronic vacuum polarization contributions to ahad
µ .

This vector meson dominance is also expected from χPT [125], indicating that the vacuum
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polarization function at tree level is given by

Πtree
V (Q2) = − fV

12π

[

3

Q2 +m2
ρ

+
1

Q2 +m2
ω

]

(6.38)

where fV is the tree level vector decay constant. Notice that at tree level, the masses of

both the ρ and ω mesons are the same, mρ = mω = mV . Eq. (6.38) then becomes

Πtree
V (Q2) = −fV

3π

1

Q2 +m2
V

. (6.39)

If we were to measure the decay constant fV as well as the vector masses mV from lattice

calculations, then Eq. (6.39) would have no free parameters. Here, however, we set both

fV and mV as free fitting parameters. Considering the ultra-violet divergent property of

Π(Q̂2), we need to employ a third fit parameter c0, leading to the fit function

Π(Q2) = −fV
3π

1

Q2 +m2
V

+ c0 , (6.40)

which we refer to as the dipole fit. In Figs. 6.13 and 6.14 we show the plots of the dipole fit

for the two lattice spacings we have used. The lattice results and the corresponding fit curves

are shifted vertically to illustrate the quality of the fits and the extrapolation to Q̂2 = 0.

For all ensembles the dipole fit seems to describe the lattice results well. Using this fit, we

calculate ahad
µ in the same way as discussed above for the polynomial fits. Fig. 6.15 shows

the resulting values for ahad
µ for all the ten ensembles using the dipole fit. Examining the L

and a dependence of our results we again find that within our large statistical errors there

are still no lattice artifacts and finite size effects visible in our calculation. As in the case of

the cubic fit, no clear quark mass dependence is found here. Using the linear extrapolation

we find for ahad
µ = 430(48) at the physical point. Our result lies low compared to the

e+e−- or τ -based determination of ahad
µ , indicated by the triangle up and down symbols

in Fig. 6.15. Choosing the dipole fit value as the final result and taking the range of ahad
µ

spanned by various fitting models as a systematic error, we find for ahad
µ = 430(73).

The results of our analysis for ahad
µ discussed above show that our data points are lower

than the e+e−- or τ -based value. One element of this discrepancy is due to the fact that

our lattice results for mρ lie high relative to the physical value as shown by Fig. 5.11

(see Chapter 5 for details). There, the extrapolation of the ρ mass using effective field
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Figure 6.15: The results for ahad
µ using a dipole fit. Within the rather large statistical

errors, we do not find explicit lattice artifacts and finite size effects in the determination of
ahad
µ using the dipole fit. Unfortunately, there is no clear quark mass dependence either.

theory [111] shows that even if the ρ mass is determined down to mπ ≈ 300 MeV, its quark

mass dependence may not satisfactorily be described by effective field theory. Since the ρ

meson makes the largest contribution to Π(Q2) and hence to ahad
µ , it is hence important to

explore the behavior of Π(Q2) and ahad
µ at even lower pion masses.

In principle, our calculation could be improved by using larger lattice sizes L or alter-

native techniques such as twisted boundary conditions with twist angle θ. This could help

to explore Π(Q2) in a smaller momentum region ∼ Q2 = (θ/L)2. In addition, alternative

models could be used to fit the data. One choice would be to set one parameter fV free but

keep the other one mV fixed, as it is done in Ref. [96]. By fitting only two free parameters,

it can be expected that the statistical errors of the fitting results are smaller. A second

choice is that we can plug the values of fV and mV calculated from lattice simulations into
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Πtree
V (Q2) and fit our data points with the function

Π(Q2) = Πtree
V (Q2) +

∑

n

cn
(

Q2
)n

. (6.41)

This method fixes the vector meson contribution to Π(Q2) and treats the contributions

from other states such as J/Ψ and hadronic multi-particles scattering states in a simple

phenomenological way as polynomials in Q2.

Besides these possible improvements, in principle also the rho decay effects should be

taken into consideration when modeling the Q2 dependence of Π(Q2) and extracting ahad
µ ,

since such effects become much stronger as the pion mass approaches the physical point.

Another systematic effects, which remain undetermined, are the contributions to Π(Q2)

from the disconnected diagrams. Such contributions, when summed over u, d and s quarks,

cancel in the SU(3) flavor limit, and they are suppressed according to Zweig’s rule [126,127].

Nevertheless, to make a precise determination of Π(Q2), we should estimate the size of

this systematic error. However, all these new approaches which require partly new and

demanding simulations go beyond the scope of this thesis and have to be left for future

investigations.
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CHAPTER VII

CONCLUSION AND OUTLOOK

In this concluding section we summarize the work presented in this thesis and give an outlook

for possible extensions. The general theme of the thesis has been to obtain non-perturbative,

ab-initio results from Lattice QCD computations that are of direct relevance for scattering

experiments in high energy physics. In particular, we have discussed in Chapter 4 the I = 2

pion scattering length, have determined in Chapter 5 the ρ resonance parameters and in

Chapter 6 the leading order hadronic contribution to the anomalous magnetic moment of

the muon ahad
µ .

In more detail, in Chapter 4, we have calculated the S-wave pion-pion scattering length

in the isospin I = 2 channel using the two-flavor maximally twisted mass Lattice QCD

configurations from ETMC. The pion masses ranged from 520 MeV to 290 MeV and the

lattice spacing was a = 0.079 fm. A second lattice spacing of a = 0.063 fm was used to

demonstrate the absence of large lattice artifacts. Although this is only a check at a single

value of a lattice spacing, when combined with the fact that the calculation is accurate to

O(a2) due to the properties of maximally twisted mass fermions, it suggests that the lattice

spacing dependence is mild.

Furthermore, from the χPT side, discretization errors vanish from the I = 2, I3 = ±2

channel at NLO, as shown by twisted mass χPT. This allowed us to extrapolate our results

for the scattering length to the physical limit, where the pion mass takes its experimentally

measured value, using continuum χPT at NLO. We investigated various systematic effects,

such as π0 contamination arising from the explicit isospin breaking of twisted mass fermions

for a 6= 0, finite size effects and lattice artifacts. This led us to our final result for the

scattering length at the physical point mπa
I=2
ππ = −0.04385 (28)(38) and for the low energy

constant lI=2
ππ (µ = fπ,phy) = 4.65 (0.85)(1.07). Here the first error is purely statistical while

the second one is the systematic uncertainty. These results are in good agreement with the
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previous lattice calculation from NPLQCD, the experimental determinations from E865

at BNL and from NA48/2 at CERN and the CGL analysis using various theoretical and

experimental inputs (see Eqs. (4.3–4.8) for details). It is worth to mention that the lattice

results are more accurate than the experimental measurements.

The successful determination of the pion-pion scattering length performed here, lays the

basis for further lattice calculations. For example, we could study the momentum depen-

dence of the pion-pion scattering phase, which is directly related to the energy dependence

of the scattering cross section. In addition, the extraction of the derivative of the scattering

phase with respect to the momentum can help to determine the K to ππ decay amplitude,

using the Lellouch-Lüscher method [128]. Clearly, the techniques employed in this thesis

can also be used to study more general two-particle scattering phenomena such as other

meson-meson or meson-baryon and baryon-baryon scattering processes.

In Chapter 5, we have calculated the P-wave pion-pion scattering phase in the I = 1

channel. We have performed the calculations at pion masses ranging from 480 MeV to

290 MeV and at a lattice spacing of a = 0.079 fm. At all the pion masses, the physical

kinematics for the ρ–meson decay, mπ/mρ < 0.5, is satisfied. A second lattice spacing of

a = 0.067 fm has been used to examine the lattice artifacts. Within the statistical errors,

we do not find any lattice artifacts. Compared to previous calculations by other lattice

collaborations, we used a novel method by employing three Lorentz frames simultaneously.

This allowed us to map out the energy region of the resonance rather precisely. Making use of

Lüscher’s finite size methods, we evaluated the scattering phase at six energy levels. In this

way, we could fit the scattering phase with the effective range formula and find the results

for the ρ–resonance mass mρ, the decay width Γρ and the effective coupling gρππ. Taking

the high correlation between mρ and Γρ into account, we have performed an extrapolation

to the physical point of the combined parameter Z = (mρ − iΓρ/2)
2 using fits guided by

χPT to O(M2
π) and O(M3

π). However, including the higher order terms significantly reduces

the accuracy of the extrapolation, especially in the low pion mass region. We found that

χPT might not be fully adequate to describe the quark mass dependence of the ρ–meson

mass and its decay width, even with pion masses as small as mπ ∼ 300 MeV.

99



As the main result of this investigation, we found for the ρ–meson massmρ = 900(76) MeV

and for the decay width Γρ = 178(32) MeV. When these numbers are compared to the cor-

responding experimentally measured quantities, it is clear that the lattice computations

cannot yet match the experimental accuracy. Nevertheless, our work shows that the finite

size method can in principle be used to determine resonance parameters from Lattice QCD

calculations. Since most of the hadrons observed in nature are in fact resonances, this work

demonstrates the practical possibility to treat these particles in a conceptually clean way on

the lattice. Thus we consider our work concerning the ρ–resonance as a proof of principle

that resonances can be studied in lattice calculations. An obvious extension of this work

is to probe the pion-pion scattering in the I = 0 channel or the pion-nucleon scattering in

the I = 3/2 channel, where the σ and ∆ resonances appear. Since in these channels the

experimental accuracy is not so high, the lattice may provide more precise results.

Moreover, the phenomenon of particle decay is a truly dynamical effect and the fact that

we indeed have observed the ρ–meson as a resonance is a striking example of dynamical

quark effects. Hence, the extraction of resonance parameters from lattice calculations can

significantly contribute to our understanding of the dynamical aspects of hadron interac-

tions.

Finally, let us summarize our lattice investigation of the muon anomalous magnetic

moment, aµ. The current high precision determinations of aµ, both from experiment and

theory, indicate a small discrepancy between nature and the Standard Model. The largest

source of uncertainty in the Standard Model calculation of aµ is the leading order hadronic

contribution ahad
µ . In Chapter 6 we have presented a full QCD calculation of the vacuum

polarization function and, in particular, of precisely this hadronic contribution ahad
µ . We

have performed calculations with dynamical maximally twisted mass fermions with pion

masses ranging from 640 MeV to 290 MeV. We had examined both finite size effects

and lattice artifacts in our calculations. This is a first effort to begin to calculate ahad
µ

while controlling the major sources of systematic error. Using both polynomial and dipole

functions to model Π(Q2) and then determine ahad
µ , we do not find any obvious quark mass

dependence, at least within our large statistical errors. We find that the resulting values of
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ahad
µ obtained from the lattice lie too low relative to the e+e−- or τ -based value. One likely

reason for this is the fact that the calculated ρ masses lie high relative to the physical value.

It would be very useful to have a more accurate determination of ahad
µ from Lattice QCD.

There are several directions one could think of to improve the calculations. One possibility

is to employ more sophisticated models to reduce the statistical error by eliminating some

fit parameters. Also, larger lattice volumes should be used not only for reducing the finite

volume effects, but also for exploring the lower Q2 region. Some techniques like twisted

boundary conditions may also be helpful to reach smaller Q2 values. Most importantly,

however, is the necessity to study both, Π(Q2) and ahad
µ , at lower pion masses than the

ones employed here of mπ ≈ 300 MeV. This would allow for a clean extrapolation to the

physical pion mass. A controlled and accurate numerical calculation of Π(Q2) would not

only lead to a precise value of ahad
µ , but would also help to compute the Adler function and

to determine the strong coupling constant αs.

To summarize, in this thesis we have demonstrated that a combination of lattice calcu-

lations with finite size methods and analytical approaches can provide –in some cases very

accurate– physical quantities that are directly relevant to scattering experiments. While

there are still open issues, such as the accurate extrapolation to the physical point, it is clear

that Lattice QCD has reached a level of accuracy such that a direct interaction with phe-

nomenology and experiment can begin to take place. We believe that the results obtained

in this thesis provide an example of just such a fruitful interaction.
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