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Abstract

Background: Lordosis is the bending of the lumbar spine that gives the vertebral
column of humans its characteristic ventrally convex curvature. Infants develop
lordosis around the time when they acquire bipedal locomotion. Even macaques
develop a lordosis when they are trained to walk bipedally. The aim of this study
was to investigate why humans and some animals develop a lumbar lordosis while
learning to walk bipedally.

Results: We developed a musculoskeletal model of the lumbar spine, that includes
an asymmetric, dorsally shifted location of the spinal column in the body, realistic
moment arms, and physiological cross-sectional areas (PCSA) of the muscles as well
as realistic force-length and force-velocity relationships. The model was used to
analyze the stability of an upright body posture. According to our results, lordosis
reduces the local joint torques necessary for an equilibrium of the vertebral column
during an erect posture. At the same time lordosis increases the demands on the
global muscles to provide stability.

Conclusions: We conclude that the development of a spinal lordosis is a
compromise between the stability requirements of an erect posture and the
necessity of torque equilibria at each spinal segment.

Keywords: muscle physiology, lordosis, evolution, spine, stability, biomechanics,
motor control Submitted to: Theoretical Biology and Medical Modelling

Background
Lordosis is the typical convex bending of the human lumbar spine, and is thought to

be an adaptation to bipedalism [1-3]. The upright body posture distinguishes humans

from most mammals. Despite lordosis and the substantial evolutionary modifications

of the human lower spine and hip, the topography of back muscles in humans is

remarkably similar to that found in other primates [3]. The development of a lumbar

lordosis in humans is apparently not genetically determined. Children develop a lordo-

sis as they adopt bipedal standing and walking. Even Japanese macaques gradually

acquire a pronounced lordosis of the lumbar spine when they are trained to walk

bipedally [1]. In women, lordosis proliferates substantially during pregnancy [4]. Thus,

why do humans and some animals develop a lumbar lordosis while learning to walk

bipedally? Why is this apparently a solution that is spontaneously arrived at by the

motor system? When regarding the coronal plane, the spine is medial in the body, so

the spinal-muscular system is symmetric (Figure 1A,B). Normally the spine does not
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develop a curvature in the coronal plane (known as scoliosis). On the other hand, the

spine does have an eccentric, dorsal position in the body, in the sagittal plane (Figure

1C,D). In this plane, the lumbar spine normally develops a lordosis (Figure 1E,F).

The lumbar region of the back is supported by short deep muscles, that connect the

vertebrae, and long superficial muscles, that connect the thoracic cage and the pelvis.

The first are usually referred to as local muscles. According to one view, the local mus-

cles provide the stability of the vertebral column, whereas the superficial ones, the glo-

bal muscles, would be the mobilizers [5-8]. This view has been challenged because it

has been shown that global muscles also contribute to spinal stability [9-11]. Moreover,

the local muscles are, in contrast to the global muscles, characterized by small lever

arms and small cross-sectional areas, so that these muscles cannot generate large tor-

ques. This would be an undesirable property if the stability of the spine would depend

only on the local muscles.

It has been shown that the spinal column of a standing human stores elastic energy

[12,13], but this elasticity cannot explain the efficiency of walking [14]. Also, it has
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Figure 1 Generalized schema of the musculoskeletal arrangement. Different geometric arrangements
of the spinal column (blue dots) and global muscles (red). First row (A, B): symmetrical arrangement of the
spinal segments (as for example in the coronal plane). Second row (C, D): asymmetrical arrangement with
an eccentric spinal column (e.g. the mid-sagittal plane). Third row (E, F): asymmetrical arrangement with an
eccentric spinal column and a spinal curvature (e.g. a lumbar lordosis). Left column (A, C, E): global muscles
acting in parallel to the spine (e.g. m. rectus abdominis, m. erector spinae). Right column (B, D, F): global
oblique muscles (e.g. m. obliquus externus abdominis, m. obliquus internus abdominis, m. multifidus). A, B,
C: A muscular activity pattern exists in which all segments are in equilibrium. D, E, F: Local counter torques
are necessary which may be minimized by a spinal curvature (E, F).
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been suggested that lordosis in the lower back region might minimize the external

moment of the centre of mass of the upper body, while retaining a stable hip joint

position [12].

In the present work we start from the premise that stability control is central to the

lumbar spine [9]. Since the human lumbar spine is a loaded chain of joints (the inter-

vertebral discs between the vertebrae), controlling its stability is inherently complex.

Whereas the global muscles with their large moment arms are powerful enough, they

can only control the chain, but not the individual joints. The local muscles might

potentially stabilize each joint if they had the strength.

We thus hypothesize that the motor system selects a configuration in which the

required local stabilizing torques on each of the lumbar joints is minimal.

We chose the concept of self-stability [15] to test this hypothesis. Self-stability is the

stable performance of a musculoskeletal system without neuronal feedback. The rea-

soning underlying this approach is that neuronal control is time-delayed, and thus, if

the musculoskeletal system is mechanically stable already, this enormously reduces the

problem of stable control. The concept of self-stability relies fundamentally on the

non-linear mechanical properties of muscles, as explained in the methods. For the

model, we assume that every degree of freedom of each of the joints must be self-

stable at any time, in order to maintain reliable physiological functioning of the spine.

Methods
The musculoskeletal model

The model consisted of five lumbar vertebrae in a plane (Figure 2), and between the

vertebrae it included five centers of rotation (CoR), representing the joints of the inter-

vertebral discs, each with one degree of freedom respectively. Since torsional degrees

of freedom are irrelevant in the light of spinal curvatures (lordosis and scoliosis), the

model only described a single plane (i.e., either coronal or sagittal). The position of the

pelvis was fixed during simulations, and a point mass m [kg] represented the upper

part of the body (Figure 2). Since we regarded upright standing, the point mass was at

horizontal position 0. The vertical position of m was at 326 mm. The vertical positions

of the CoRs were taken from [16] as: L1 L2 = 145 mm, L2 L 3 = 106 mm, L3 L4 = 72

mm, L4 L5 = 35 mm, L5 S1 = 5 mm.

The spinal column had a horizontal eccentricity E [m] (Figure 2). The eccentricity E

is defined as the distance of the spinal column to the symmetrical axis. For example,

in the sagittal plane, the eccentricity is equivalent to the dorsal location of the spine in

the body. The spinal curvature was implemented as a cubic spline through P1, P3, and

P2. P3 was located halfway between P1 and P2, whereas P1 was located 176 mm above

P2 [16]. As displayed in Figure 2, the spinal curvature parameter Λ [m] was defined as

the horizontal position of P3, with respect to the midline between P1 and P2. Both

parameters were varied from 0 to 8 cm in 100 equidistant steps.

Three antagonistic pairs of global muscles were included, i.e. straight muscles acting

in parallel to the spine and two oblique arrangements (Figure 2). Each global muscle

consisted of five parallel muscle fibers, to simulate physiologically realistic surfaces of

attachment of the muscles.

Muscular forces depend on the length of the muscles l and the contraction velocity

v. The force-length relationship was modeled as [17,18]:
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fl = exp

⎡
⎣−

(
(l / lopt)

k1 − 1

k2

)2
⎤
⎦ ,

with optimal muscle length lopt = 1.2l0 and l0 muscle length at equilibrium. The spe-

cific constants k1 = 0.96, k2 = 0.35 were chosen such that the muscles were acting on

the ascending limb of the force-length relationship [9,19], which improves the self-sta-

bility [20].

The force-velocity relationship was described by a Hill-type model [15,21,22]:

fH =
c

υ + b
− a ∀υ ≤ 0 ∧

fH =
C

υ − B
+ A ∀υ > 0

The Hill-type muscle properties a [N], b [m/s] and c [W] can be derived from the

physiological cross-sectional area PCS A [cm2], the proportion of fast-twitch-fibers FT ,

and the optimum muscle length lopt [23]. The isometric force was estimated as fiso = 25

N/cm2 ... PCS A cm2 and the maximum contraction velocity as vmax = (6 + 10 ... FT) ...

lopt , with FT = 0.5. From this the Hill-type muscle properties were calculated as: a =

fiso/4, b = vmax /4, c = b(fiso + a), A = fecc ... fiso, B = (A − fiso)b
2/c, C = (A − fiso)b,

where the eccentric force enhancement fecc = 1.5 [24]. Finally, the torque generated by
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Figure 2 A. The spine model. Blue dots indicate the joints between the lumbar vertebrae (L1 - L5)
and the sacrum (S1). Blue and red lines indicate the locations of the straight and oblique global muscle
fibers between the thoracic cage and pelvis (horizontal grey bars). The midline between the global
muscles (dashed line) crosses the origin (horizontal position 0) and the point-mass m for the upper body. E
is the eccentricity of thoracic and pelvis joints with respect to the origin; is the spinal curvature. B. Schema
of spinal segment L2 L3. r is the distance between the CoR and m, a is the angle between r and the
vertical. Mi is the sum of the torques generated by the global muscles on this segment. Mext is the external
moment, and CT is the local counter torque.
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the i ’th muscle fibre was calculated as Mi = hi ... fli ... fHi . Where hi [m] is the lever

arm of muscle i, with respect to the CoR.

The net torque with respect to each of the five CoR is the sum of all antagonistic

muscles and the external torque due to the point mass m [kg]. To analyze the stability

of the CoR of a spinal segment, we assumed all other CoR to be fixed. In this case, the

equation of motion for the antagonistic model for one spinal segment can be derived

as follows:

α̇ = ω

ω̇ =
1
θ

(
∑n

i =1
Mi + Mext + CTlocal)

with a the angle of the position vector from the CoR and the point mass m with

respect to the vertical axis (Figure 2B), ω angular-velocity, and θ the moment of inertia

of the upper body with respect to a CoR. The temporal derivative is depicted by a dot

over the variable. The external moment is given by:

Mext = −mg sin(α)r

with g gravitational acceleration and the point mass m with respect to the vertical

axis, r the distance between the CoR and the point mass m (Figure 2B).

To guarantee an equilibrium at the CoR the counter torques CTlocal were calculated,

representing the effect of local muscles, to counteract the sum of the torques generated

by global muscles and the external torque due to the point mass m. The dynamic

properties of the local muscles were neglected, because the torques are small compared

with those of the global muscles.

Stability analysis and calculation of counter torques

To quantify the stability of the equation of motion at the equilibrium condition (α̇ = 0
and ω̇ = 0) the Jacobian was calculated as

J =

(
0 1

∂ ω̇

∂ α

∂ ω̇

∂ ω

)
,

whose elements are the partial derivates of the equation of motion, according to the

independent variables a and ω. Note that the constant term CTlocal does not occur in

the Jacobian, because the local muscles were approximated without force-velocity and

force-length properties. According to the theory of Lyapunov [25], the system is stable

for negative real parts of both eigenvalues l1,2:

λ1, 2 =
1
2

∂ ω̇

∂ ω
±
√

1
4

(
∂ ω̇

∂ ω

)2

+
∂ ω̇

∂ α
. (1)

The term
∂ ω̇

∂ ω
. is always negative due to the negative slope of the force-velocity rela-

tionship [15]. Hence, for a stable situation it is necessary that
∂ ω̇

∂ α
is negative, too.

This was done for every CoR, resulting in five Jacobian matrices, each with two eigen-

values. The minimum PCS A needed to sustain stability was calculated numerically as
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the sum of the PCS As of the muscle fibers. In order to find this minimum PCS A, the

PCS As of the three antagonistic muscles were varied iteratively.

Furthermore, it was necessary to derive the local counter torques CTk for each CoR

to guarantee for an equilibrium. Finally, the Euclidian norm ||CT|| of the vector CT =

(CT1, CT2, CT3, CT4, CT5) was calculated. The eccentricity E and the spinal curvature

Λ were varied between 0 cm up to 8 cm in equidistant steps of 1 mm, respectively.

From this a contour plot was drawn to analyze the sensitivity of the minimum PCS A,

as well as the minimum counter torque in dependence of the eccentricity and spinal

curvature.

Elastic elements

The human spine is densely packed in an elastic, ligamentous sheath. We assume the

spinal joints as linear elastic springs. In resting position the spring constant has been

measured to be about K = (180π/π) ... 40° ... 10 = 15 N m/rad in the lumbar region of

the spine [26].

In terms of our simple model, this results in

λ1, 2 =
1
2

∂ ω̇

∂ ω
±
√

1
4

(
∂ ω̇

∂ ω

)2

+
∂ ω̇

∂ α
− K (2)

for the eigenvalues l1,2.

Results
For a given arrangement of eccentricity E and spinal curvature Λ , a minimum PCS A

of the global musculature can be computed to obtain self-stability. This minimum PCS

A depends strongly on the geometrical arrangement of both parameters, as shown in

Figure 3. The small panels on each corner show schematically the musculoskeletal

arrangement. A situation of the coronal plane with no eccentricity and no spinal curva-

ture requires a minimum PCS A of about 35 cm2 (position A). Increasing the spinal

curvature slightly reduces the required PCS A (position D). Our results show further,

that increasing the eccentricity, without spinal curvature (Λ = 0), the necessary PCS A

for self-stability is reduced (position B). Around the line Λ = 1.7E, i.e. crossing the

locations marked with A and C, the PCS A saturates at approximately 40 cm2, whereas

it is reduced to less than 15 cm2 for an eccentricity E = 8 cm and Λ = 0 cm.

Note, that this threefold reduction in minimum PCS A with an increasing eccentri-

city is remarkable. The force-velocity Hill properties of the global muscles make one

eigenvalue of the Jacobian always negative. Therefore, the other eigenvalue of the Jaco-

bian causes this reduction in PCS A. Since the derivatives of the muscular torques Mi

with respect to a and ω are highly nonlinear, the decrease of the minimum PCS A is

nonlinear too.

The situation is the opposite when calculating the local counter torques required to

guarantee an equilibrium (Figure 4). Like the minimum PCS A, the local counter tor-

ques depend strongly on the geometrical arrangement of the spine, but the minimum

counter torques were found along the angle bisector. As a comparison, the required

local torques in position D are twice those of position C whereas in position B even

they are even three times as high. Thus, the optimal combinations of eccentricity and
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spinal curvature are found in the range where the required PCS A of the global muscu-

lature is maximal.

The analysis has so far ignored the contribution of elastic elements to the spinal sys-

tem. Since the ligamentous sheath tends to erect the spine, adding elasticity tends to

stabilize the spinal system, as can be seen from the negative sign of K in Equation 2.

As a result, the required minimal PCSA of the global musculature is reduced. Apart

from this quantitative reduction, notice that the addition of elastic components does

not affect the relationship for the required PCSA qualitatively (see Additional file 1).

The same holds true for the local counter torques. The addition of elastic compo-

nents does not change the range of optimal Λ and E.

Discussion
The present study explored the optimality landscape of a spinal curvature by means of

a simple model for mechanical stability. In the landscape where the lumbar spinal sys-

tem is self-stable there is a range where the requirements to the local muscles are

within the physiological constraints. The physiologically feasible spinal curvature
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Figure 3 Minimum PC S A of the global musculature to guarantee self-stability at each of the five
lumbar spinal segments, depending on the geometrical arrangement of the spine, according
Equation 1. Position A - symmetrical arrangement with no eccentricity and no spinal curvature. Position B
- introducing an eccentricity without a spinal curvature. Position C - physiological situation in the sagittal
plane with an eccentricity and a spinal curvature. Position D - introducing a curvature in a symmetrical
arrangement.
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depends on the eccentricity of the spine in the body. The optimal lumbar lordosis cor-

responds with literature findings, as we discuss below.

There are two different fundamental objectives for building a model. One objective is

to build a model as detailed, complete and realistic as possible. It is evident that such a

model would not only be highly complex and numerically expensive, it also would have

not much explanatory power, for the underlying causality of the phenomena would still

remain inaccessible. The second and more promising objective, therefore, is to build a

model that is maximally simple, i.e. a model that contains as few conceptual elements

as necessary to still explain those phenomena that are in need of explanation [27]. As

matters are, a model requires a particularly delicate balance between physiological

detail and conceptual abstraction, hence, it is hard to draw direct conclusions to a liv-

ing person. We deliberately chose to design the model as simple as possible, in order

to acquire maximal insight into the general principles. The most dramatic simplifica-

tion may be the exclusion of dynamics. We employed a stability analysis of an upright

body posture based on the eigenvalue theory of Lyapunov [25]. This approach treats a

special case from the infinite range of possible dynamical states. The stability analysis
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Figure 4 Norm of the local joint torques ||CT|| necessary for an equilibrium at each of the five
lumbar spinal segments, as a function of the geometrical arrangement of the spine, according
Equation 1. The contours enclose the spinal arrangements where the local joint torques do not exceeding
±30 Nm at any spinal segment. Position A - D: see Figure 3.
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thus estimates a property that is valid for dynamical systems in general. This special

case therefore represents a minimal requirement.

The results indicate that the sagittal and the coronal plane each represent a solution

on a continuous range (i.e., the presence of lumbar lordosis and the absence of scolio-

sis). Therefore, the expansion to a three-dimensional model would not change the gen-

eral conclusion as movements in intermediate planes simply represent the intermediate

results of the planar model.

As mentioned above, the muscular arrangement acting around the lumbar spine has

been classified into global mobilizing muscles, and local stabilizing ones [5,6]. The

approach of our model is different. Instead of assigning different supposed functions to

different muscle groups, we derived the model on the presumption that stability is a

central requirement for a proper functioning of the spinal system. Following this view,

it has been found in earlier studies that self-stability of the spine requires an increased

coactivation of antagonistic muscles [20]. Our simulations strongly suggest that self-

stability is indeed critical in the spinal human system. The self-stable area in Figure 4

is within the physiological domain (Position C), but it is small. Therefore, the mechani-

cal stability of the spine may be an important driving force in the ontogeny and evolu-

tion of humans.

The simulations of the present model require an eccentricity of E ≈ 3 cm and a lum-

bar lordosis of Λ ≈ 4 cm. Both values are within the physiological range (see Figure 4,

position C). For a symmetrical arrangement of the musculoskeletal system, such as the

coronal plane of the lumbar trunk (Figure 4, position A), no local counter torques are

necessary to generate an equilibrium. For the sagittal plane the musculoskeletal

arrangement becomes asymmetrical, i.e., the spinal column is dorsally shifted (Figure 4,

position B). Here, to guarantee an equilibrium, local counter torques are necessary

which exceed ±70 Nm. Therefore, for a dorsally shifted, but straight lumbar spinal col-

umn, extremely strong local muscles would be required.

A realistic estimate of the maximal counter torques of the local muscles is about ±30

Nm. This limit is drawn as a contour in Figure 4. Assuming as a conservative estimate,

a lever arm of 7.0 cm, this limit is equivalent to a PCS A of 17 cm2. For a muscle with

a circular cross section, the corresponding muscular diameter is about 4.5 cm. The

lever arm is the sum of the radius of the local muscles and the radius of the vertebral

bodies, which will certainly not be more than 7 cm. Thus, it is clear that all arrange-

ments outside the defined tolerance area are unrealistic for physiological reasons.

The model reveals a remarkable phenomenon. The range of E and Λ where the

norm of the local torques is physiological, coincides with the range where the highest

PCS A is required (cf. Figures 3 and 4). This is not a problem, because the required

PCS A is well within the physiological range of the global muscles. The reason why the

PCS A is high with small eccentricities is that the global muscles on both sides of the

spine need to co-contract to obtain self-stability [20]. For eccentric configurations, the

global muscles with the small lever arm are already contracted in order to maintain

the body in an upright position. Therefore, a co-contraction is not necessary for self-

stability and thus, the required PCS A is much reduced.

That the required local torques are minimal in a similar range where the global PCS

A shows the highest values is caused by a different mechanism. The geometrical range

where small local torques are required is where the joints between the spinal segments
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are close to the gravity vector passing from the body mass m (cf. the dashed line in

Figure 2A).

It should be mentioned here that additional stabilizing structures, such as the liga-

mentous sheath, ligaments and the intervertebral discs, will have a positive influence

on the stability. This was confirmed by the simulations where we introduced a stiffness

parameter K (eqn. 2). As a result, the required PCSA is halved (see Additional file 1).

The local muscles in the lumbar region are located only on the dorsal side of the

spinal column. This asymmetric configuration does not contradict with the model

because these muscles are in part antagonized by the elastic elements.

Reflexes may potentially also stabilize the back. However, reflexes are delayed by up

to 100 ms following a perturbation, and due to the electromechanical processes the

force generation of the muscles takes another 50-100 ms. Therefore, maintaining stabi-

lity with time-delayed reflexive control is challenging, especially under loaded condi-

tions [28]. Reflex loops will increase the stability margin and thus reduce the required

co-contraction of the local muscles. If the spinal column is already a self-stable system,

the reflex delays are much less problematic for stable control. On the contrary, the

combination self-stability and the reflex systems should provide stable spinal control in

the limited dynamic range.

An important finding is that the required local torques are almost independent of

the eccentricity parameter, E, as long as an optimal lordosis is adopted. Thus, the med-

ial position of the spine in the coronal plane provides body symmetry. On the other

hand, the eccentric position of the spine in the sagittal plane allows a dynamic adapta-

tion of the lordosis to the current weight distribution. The cost of this configuration is

that the compressive load on the spine is much higher than it would be in a symmetri-

cal configuration.

A low tonus or weakness of the local muscles will move the spinal system away from

the self-stable range. As a result, the lower back will develop a hypo- or hyperlordosis

in the sagittal plane, or a scoliosis in the coronal plane. The latter is shown in Figure 4

Position D. Since the spinal system is no longer self-stable, the model predicts that a

scoliosis will develop rapidly and is difficult to reverse, as is indeed the case.

Bipedalism and lumbar lordosis are often regarded as a cause of low back pain,

through the increased spinal shearing forces and increased risk of spondylolisthesis

[4,8,16,29,30]. In this respect it is of utmost importance to understand the function of

lumbar lordosis. The human anatomy has a dorsally shifted spinal column. This anato-

mical arrangement causes varying local torques at the spinal segments. These local tor-

ques have to be counteracted by local muscles. Because the stability requirement

requires a considerable coactivation of the muscles, the local torques for an equili-

brium increase. The introduction of a lumbar lordosis reduces these local torques dra-

matically (Figure 4).

A convex curvature, analogous to lumbar lordosis can be found in the necks of many

animals, especially long-necked birds and dinosaurs. In the light of the model, these

spinal curvatures might also be optimal adaptations to the eccentric location of the

head on the neck and the eccentric location of the cervical vertebrae in the neck.

As a conclusion it was possible to self-stabilize the spine in every single CoR with a

single activation pattern of global muscles. Our simulations support the hypothesis,

that lumbar lordosis is a mechanical consequence of the dorsally shifted spine in the
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sagittal plane to minimize the local counter torques at the spinal segments while main-

taining self-stability. On the other hand, due to the symmetrical arrangement of the

muscles in the coronal plane, a scoliosis represents a pathological disorder (see Figure

4, position D).

More research is needed to explore the proposed relationship in living subjects.
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