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Abstract. Let K be a Hilbertian presented field with elimination theory of characteristic
6= 2, let Ksymm be the compositum of all symmetric extensions of K, and let Ksymm,ins be
the maximal purely inseparable extension of Ksymm. Then, Th(Ksymm,ins) is a primitive
recursive theory. Moreover, the set of finite groups that can be realized as Galois groups
over K in Ksymm as well as the set of finite groups that occur as Galois groups over Ksymm

are primitive recursive subsets of the set of all finite groups. Finally, if K is countable, then
Gal(Ksymm/K) ∼= Gal(Qsymm/Q).

Introduction

Let Qcycl be the field obtained from Q by adjoining all roots of unity. By
the Kronecker–Weber theorem, Qcycl coincides with the compositum Qab of
all finite abelian extensions of Q. In particular, the set Im(Gal(Qcycl/Q)) of
all finite quotients of Gal(Qcycl/Q) consists of all finite abelian groups. By a
conjecture of Shafarevich, the absolute Galois group Gal(Qcycl) of Qcycl is iso-
morphic to the free profinite group F̂ω on ℵ0 generators. Under this conjecture,
Im(Gal(Qcycl)) is the set of all finite groups. Thus, if the Shafarevich conjec-
ture holds, then both Im(Gal(Qcycl/Q)) and Im(Gal(Qcycl)) are explicit sets
of finite groups. In technical terms, both sets are primitive recursive subsets
of the set FiniteGroups of all finite groups, up to isomorphism.

Replacing Q by the rational function field Fp(t) for a prime number p, we
find that Fp(t)cycl = F̃p(t), where F̃p is the algebraic closure of Fp. In this case,

Im(Gal(Fp(t)cycl/Fp(t))) = Im(Gal(Fp))

is the set of all finite cyclic groups. Moreover, the analog of the Shafarevich
conjecture holds, that is, Gal(F̃p(t)) ∼= F̂ω . See [12, Cor. 4.2], [15, Thm. 1], [11,

Cor. 4.7], and [13, p. 186, Cor. 9.4.9]. In particular, we have Im(Gal(F̃p(t))) =
FiniteGroups.

Going back to Q, Example 9.4, due to Fried and Völklein, presents Galois
extensions N of Q, with Gal(N/Q) ∼=

∏∞
n=2 Sn and Gal(N) ∼= F̂ω, and with a

simple procedure to find the finite quotients of these groups.
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All of these fields are contained in the distinguished Galois extension Qsymm

of Q. Here, Qsymm is the compositum of all symmetric extensions of Q, where
a Galois extension L/K of fields is symmetric if Gal(L/K) ∼= Sn for some
positive integer n.

One goal of this work is to prove that Qsymm itself has those properties.

Theorem A. Both Im(Gal(Qsymm/Q)) and Im(Gal(Qsymm)) are primitive

recursive subsets of FiniteGroups.

On the other hand, the list of explicitly known Galois extensions of Q with
a decidable elementary theory is quite restrictive. It contains the fields Qtot,S ,
where S is a finite set of primes and Qtot,S is the maximal Galois extension of
Q in which each p ∈ S totally splits [6, Thm. 1.1]. Moreover, if S and S′ are
finite sets of prime numbers such that S ∩ S′ 6= ∅, then also Qtot,SQtot,S′ is
decidable [5, theorem below Proposition 5].

In addition, every finite extension of the above mentioned fields is decidable
[4, Sec. 3, Cor.].

Taking S = ∅, we observe that the above list contains the field Q̃ of all
algebraic numbers. If S consists of the infinite prime of Q, then Qtot,S is the
field of all totally real algebraic numbers. In both cases, the elementary theory,
Th(Qtot,S), of Qtot,S is even primitive recursive (see [9, p. 168, Thm. 9.3.1 (c)]
and [7, Thm. 10.1]).

In this work we prove that every Galois extension of Q in Qsymm is a com-
positum of symmetric extensions of Q (Lemma 7.1). This gives an explicit
procedure to examine whether a polynomial f ∈ Q[X ] has a root in Qsymm

(Lemma 8.1). Using that Qsymm is PAC with F̂ω as an absolute Galois group,
we conclude the following result from [14, Lemma 3.3].

Theorem B. Th(Qsymm) is primitive recursive.

It turns out that the method we use to prove Theorems A and B actually
gives a much more general result (Theorem 8.5):

Theorem C. Let K be a finitely generated presented extension of Q in the

sense of [9, Chap. 19]. In particular, K is Hilbertian and the following state-

ments hold:

(a) Both families Im(Gal(Ksymm)) and Im(Gal(Ksymm/K)) are primitive

recursive in FiniteGroups. Indeed, Im(Gal(Ksymm)) = FiniteGroups.
(b) Th(Ksymm) is primitive recursive.

We note that Part (a) of Theorem C also holds for each infinite finitely
generated extension of each of the fields Fp with p 6= 2. Moreover, Part (b)
of Theorem C holds for every infinite finitely generated extension of Fp, albeit
with the maximal purely inseparable extension Ksymm,ins of Ksymm replacing
Ksymm.

More surprising is the fact that for both Gal(Ksymm/K) and Gal(Ksymm)
there exists a “formation” C of finite groups such that the respective group is
the free pro-C-group of rank ℵ0.
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To be more explicit, we say that a finite group G is symmetrically pre-

sentable if there are a finite set I and an embedding ι : G →
∏

i∈I Sni
such

that pri(ι(G)) = Sni
for each i ∈ I. It turns out that the family SP of all sym-

metrically presentable groups is a formation in the sense of [9, Section 17.3].

Hence, there exists a unique (up to isomorphism) free pro-C-group F̂ω(SP) of
rank ℵ0 [9, Prop. 17.4.2]. We also mention that the free pro-FiniteGroups-

group of rank ℵ0 is usually denoted by F̂ω.

Theorem D (Theorem 7.5 and Theorem 8.5). The following statements hold

for each countable Hilbertian field K of char(K) 6= 2:

(a) Gal(Ksymm/K) ∼= F̂ω(SP).

(b) Gal(Ksymm) ∼= F̂ω.
(c) Gal(Ksymm/K) ∼= Gal(Qsymm/Q).

Note that Part (b) of the theorem is a consequence of well-known results of
Field Arithmetic (see the proof of Theorem 8.5).

Finally, we realize that Ksymm is the largest field in a descending sequence of
Galois extensions of K that satisfy the consequences of Theorem C. Indeed, for
each positive integer m, we let K

(m)
symm be the compositum of all Sn-extensions

of K with n ≥ m. Then, Theorem C and the remark that follows Theorem C
hold for K(m)

symm replacing Ksymm. Moreover, K
(m+1)
symm ⊆ K

(m)
symm for each m

(Example 9.1). In addition, Example 9.1 and Remark 9.2 contain an analog of
Theorem D.

1. Symmetric groups

As usual, for each positive integer n we denote the group of all permutations
of the set {1, . . . , n} by Sn. One refers to Sn also as the symmetric group of

degree n. We call a group G symmetric if G is isomorphic to Sn for some
positive integer n. For m ≤ n, we consider Sm as the subgroup of Sn that fixes
each m + 1 ≤ i ≤ n. In particular, S2 is the subgroup {(1), (1 2)} of Sn. As
usual, we denote the multiplicative cyclic group of order n by Cn.

We start by listing some well known facts about symmetric groups. To this
end, we use the standard notation An for the alternating group of degree n and
recall that An consists of all even permutations of the set {1, . . . , n}. We also
mention the Klein four-group

V4 =
{

(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)
}

.

Fact 1.1. Let n be a positive integer.

(a) For n 6= 4, the only normal subgroups of Sn are 1, An, and Sn with

respective quotients Sn, S2, and S1.

(b) The only normal subgroups of S4 are 1, V4, A4, and S4 with respective

quotients S4, S3, S2, and S1. Moreover, V4 ≤ A4 and V4
∼= C2 × C2.

(c) For n = 3, we have A3
∼= C3. If n ≥ 5, then An is nonabelian. In both

cases, An is a simple group.

Fact 1.1 (a), (b) imply the following observation.
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Lemma 1.2. Every quotient group of a symmetric group is a symmetric group.

Recall that a nontrivial normal subgroup N of a group S is said to be
minimal if S has no normal subgroup N0 with 1 < N0 < N . In this case, if
π : S → S′ is an epimorphism and π(N) 6= 1, then π(N) is a minimal normal
subgroup of S′.

Notation 1.3. For every integer n ≥ 2, we introduce the group

A(n) =











S2 if n = 2,

V4 if n = 4,

An otherwise,

and note, by Fact 1.1 (a), (b), that A(n) is the unique minimal normal subgroup
of Sn. Moreover, A(n) is abelian if n ∈ {2, 3, 4}.

Also, if n ≥ 5, then A(n) = An is a nonabelian simple group (Fact 1.1 (c)).
In particular, the center of A(n) is in this case trivial. Note that A(n)

∼= A(n′),
with n, n′ ≥ 2, implies that n = n′.

Finally, note, for n ≥ 2, that

Sn/A(n)
∼=











1 if n = 2,

S3 if n = 4,

S2 otherwise.

Notation 1.4. A direct product of symmetric groups has the form

S = Sn1 × · · · × Snr
=

∏

i∈I

Sni

with an index set I = {1, 2, . . . , r} and a family (ni)i∈I of positive integers. For
each subset J of I, we identify SJ =

∏

j∈J Snj
with the subgroup

∏

j∈J Snj
×

∏

i∈IrJ 1 of S.
We set pri : S → Sni

to be the projection of S on the ith coordinate. Thus,
for σ = (σ1, . . . , σr), we have pri(σ) = σi. The kernel of pri is S

(i) =
∏

j 6=i Snj
.

We also consider the normal subgroup

A =
∏

i∈I

A(ni)

of S with the quotient

S̄ = S/A ∼=
∏

ni 6=2,4

S2 ×
∏

ni=4

S3.

Remark 1.5 (Signs of permutations). Recall that sgn: Sn → {±1} is the
homomorphism of Sn that maps the even permutations onto 1 and the odd
permutations onto −1. In particular, Ker(sgn) = An.

Since A3
∼= C3 (Fact 1.1 (c)), Aut(A3) ∼= C2 consists of raising the elements

of A3 to the powers 1 or −1. Thus, for each a ∈ A3 and σ ∈ S3, we have aσ =
asgn(σ). Considering σ as an automorphism of S3 that acts by conjugation, we
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find that each automorphism of A3 can be lifted to an inner automorphism
of S3. This yields a short exact sequence

1 → A3 → S3
sgn
−−→ Aut(A3) → 1.

Since sgn(1 2) = −1, we also have that sgn maps S2 bijectively onto Aut(A3).
For n = 4 and for σ ∈ S4, we define Sgn(σ) to be the automorphism of V4

defined by conjugation with σ. Since V4 is abelian, V4 ≤ Ker(Sgn). Embedding
S3 into S4 as the subgroup of all permutations of {1, 2, 3, 4} that fix 4, we find
that Sgn is injective on S3. Since V4

∼= F2
2, we have |Aut(V4)| = 6 = |S3|.

Hence, Sgn maps S3 bijectively onto Aut(V4). Finally, since (S4 : V4) = 6
(Fact 1.1 (b)), we find that V4 = Ker(Sgn). This leads to the following short
exact sequence:

1 → V4 → S4
Sgn
−−→ Aut(V4) → 1.

2. Semi-direct products

We fix our notation for two basic notions of group theory, “the automor-
phism group” and “semi-direct product” of groups.

Notation 2.1 (Automorphisms). For each a in a group A and α ∈ Aut(A)
we write aα for the image of a under α. Thus, (ab)α = aαbα for a, b ∈ A and
aαβ = (aα)β .

Remark 2.2 (Semi-direct Products). (a) If a group G contains a normal
subgroup N and a subgroup H such that H ∩N = 1 and HN = G, then G is
an (inner) semi-direct product of H and N , and we write G = H ⋉N . In this
case, we say that H is a complement of N in G. In the special case where also
H is normal in G, we have that G = H ×N is the direct product of H and N .

(b) Let A,B,C be subgroups of a group G such that A normalizes B and C,
and B normalizes C. In addition, assume that B ∩ C = 1 and A ∩BC = 1.
Then, under the above identifications, ABC = A ⋉ (B ⋉ C). Moreover,
A ∩B = 1 and AB ∩ C = 1. Hence, ABC = AB ⋉ C = (A ⋉ B) ⋉ C.
Similarly, if A∩B = 1 and AB ∩C = 1, then ABC = AB⋉C = (A⋉B)⋉C.
In both cases,

A⋉ (B ⋉ C) = (A⋉B)⋉ C.

A special case of this rule is A⋉ (B×C) = (A⋉B)⋉C, where B acts trivially
on C.

(c) Let N ≤ G ≤ S and T ≤ S be groups such that N ⊳ S, T ∩ N = 1,
and TN = S, so that S = T ⋉N . Then, H = T ∩G satisfies H ∩N = 1 and
HN = G. Hence, G = H ⋉N .

Similarly, let H ≤ Q ≤ G and A ≤ G be groups with G = H ⋉ A. Then,
A′ = A ∩Q satisfies Q = H ⋉A′.

(d) Let φ : G → Ḡ be an epimorphism of groups and let N be a normal
subgroup of G on which φ is injective. Set N̄ = φ(N) and suppose that
Ḡ = M̄ ⋉ N̄ is a semi-direct decomposition of Ḡ. Then, G = M ⋉ N , with
M = φ−1(M̄).
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Indeed, each n ∈ M ∩N satisfies φ(n) ∈ M̄ ∩ N̄ , hence φ(n) = 1, so n = 1.
Thus, M ∩N = 1.

Further, for each g ∈ G, there exist m̄ ∈ M̄ and n ∈ N such that φ(g) =
m̄φ(n). Thus, φ(gn−1) = m̄ ∈ M̄ , so gn−1 ∈ M , by the definition of M .
Therefore, g = (gn−1)n ∈ MN .

Combining the latter two paragraphs, we conclude that G = M ⋉ N , as
claimed.

Remark 2.3 (Examples of automorphism groups and semi-direct products).
(a) As mentioned in Remark 1.5, the group A3 is isomorphic to the cyclic

group C3 of order 3, so Aut(A3) = C2 is generated by the automorphism
σ 7→ σ−1.

(b) Also, Aut(V4) = S3, where S3 is acting on V4 by conjugation in S4.
Moreover, since S3 ∩ V4 = 1 and S3V4 = S4, we have S4 = S3 ⋉ V4.

(c) By Notation 1.3, we have

S2 = 1× S2 = S1 ×A(2),

S3 = S2 ⋉A3 = S2 ⋉A(3),

S4 = S3 ⋉ V4 = S3 ⋉A(4) and S4 = S2 ⋉A4,

Sn = S2 ⋉An = S2 ⋉A(n) if n ≥ 5.

It follows from Fact 1.1 (a), (b) that, for every n ≥ 2, every normal subgroup
N of Sn has a complement M in Sn and M ∼= Sn/N is again a symmetric
group.

3. Symmetrically presentable groups

Garrett Birkhoff refers to an algebra B as a “sub-direct product of algebras
B1, . . . , Br” if there is an embedding ι : B →

∏r
i=1 Bi such that pri(ι(B)) = Bi

for i = 1, . . . , r [2, p. 175]. We introduce a similar notion for finite groups and
finitely many symmetric groups.

Set-up 3.1. Let I = {1, . . . , r} and set S =
∏

i∈I Sni
with positive integers

ni for i ∈ I. For each i ∈ I, let pri : S → Sni
be the projection on the ith

component. Then, S(i) = Ker(pri) =
∏

j 6=i Snj
and S = S(i) × Sni

. We let
pr(i) : S → S(i) be the projection of S on the first factor.

We say that a group G is symmetrically presentable if there exists a direct
product S of finitely many symmetric groups as in the preceding paragraph
and an embedding

(3.1) ι : G → S

such that pri(ι(G)) = Sni
for each i ∈ I. In this case we say that ι is a

symmetric presentation of G. Thus, in the language of Birkhoff, G is a sub-
direct product of symmetric groups and ι is a presentation of G as a sub-direct
product of symmetric groups.

We identify G with its image in S under ι and assume that ι is the inclusion
map. In particular, we have pri(G) = Sni

for each i ∈ I. Then, we consider a
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subgroup N of G which is normal in S and let

(3.2)



























G(i) = pr(i)(G),

G[i] = S(i) ∩G = Ker(pri|G), Gi = Sni
∩G = Ker(pr(i)|G),

N [i] = S(i) ∩N = Ker(pri|N ), Ni = Sni
∩N = Ker(pr(i)|N ),

N(i) = pri(N), N (i) = pr(i)(N).

This leads to the following commutative diagrams whose rows are short exact
sequences and where the vertical edges are inclusions:

(3.3) 1 // S(i) // S
pri

// Sni
// 1

1 // G[i] // G // Sni
// 1

1 // N [i] // N
πi

// N(i)
// 1

1 // Sni
// S

pr(i)
// S(i) // 1

1 // Gi // G // G(i) // 1

1 // Ni
// N // N (i) // 1.

Here, πi = pri|N , so N(i) = πi(N) for each i ∈ I. One observes that for each
i ∈ I, the embedding of G(i) in S(i) is a symmetric presentation of G(i).

Lemma 3.2. In the notation of Set-up 3.1, Ni ⊳ G, N(i) ⊳ Sni
, N [i] ⊳ G, and

N (i) ⊳ G(i). Moreover, if N is a minimal normal subgroup of G and N(i) 6= 1,

then N [i] = 1 and πi : N → N(i) is an isomorphism.

Proof. Since N ⊳ G and Gi = Ker(pr(i)|G) ⊳ G, we have Ni = Gi ∩N ⊳ G. In
addition, since N ⊳ G, pri(N) = N(i), and pri(G) = Sni

, we have N(i) ⊳ Sni
.

Now, G[i] = Ker(pri|G) ⊳ G. By assumption, N ⊳G, so N [i] = G[i] ∩N ⊳ G.
Finally, since pr(i)(G) = G(i) and pr(i)(N) = N (i), we have N (i) ⊳ G(i).

It follows that if N is a minimal normal subgroup of G and N(i) 6= 1, then
1 ≤ N [i] < N , so N [i] = 1, hence πi : N → N(i) is an isomorphism. �

Definition 3.3. The symmetric presentation (3.1) of G is said to be minimal if
the lexicographically ordered pair (r, |S|) is minimal for all possible symmetric
presentations of G. In particular, if G = 1, then r = 0 and I = ∅.

If (3.1) is a minimal symmetric presentation of G and s ∈ S, then the
conjugate presentation ιs : G → S, defined by ιs(g) = s−1ι(g)s, is again a
minimal symmetric presentation of G.

Lemma 3.4. Let ι : G → S be a minimal symmetric presentation of a finite

nontrivial group G, as in (3.1). Then, |I| ≥ 1, and for each i ∈ I, we have

ni ≥ 2 and the group Gi is nontrivial and normal in Sni
.

Proof. Since G is nontrivial, S is nontrivial, hence |I| ≥ 1. If ni = 1 for some
i ∈ I, then we can delete i from I and obtain a smaller symmetric presentation
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for G than ι. This contradicts the minimality of ι. Hence, ni ≥ 2 for each
i ∈ I.

Since Gi is the kernel of the epimorphism pr(i)|G : G → G(i), we have Gi⊳G.
Since pri(G) = Sni

(by (3.3)) and pri maps Gi as a subgroup of Sni
onto itself,

we have Gi ⊳ Sni
.

Finally, if Gi = 1, then pr(i)|G : G → S(i) is a symmetric presentation of
G which is smaller than ι : G → S, contradicting the minimality assumption
on ι. It follows that Gi 6= 1. �

Lemma 3.5. Suppose that the symmetric presentation ι : G → S in (3.1) is

minimal and assume that ι is the inclusion map. Let A =
∏

i∈I A(ni) be the

normal subgroup of S introduced in Notation 1.4.

Then,
∏

j∈J A(j) ⊳ G for every subset J of I, in particular, A ⊳ G.

Proof. We consider an i ∈ I. By Lemma 3.4, the nontrivial normal subgroup
Gi of G is also normal in Sni

. Hence, Gi contains the unique minimal normal
subgroup A(ni) of Sni

(Notation 1.3), so we also have A(ni) ⊳ G. Therefore,
∏

j∈J A(nj) ⊳ G for every subset J of I. �

Remark 3.6. Here is an effective procedure to decide whether a given finite
group G has a symmetric presentation.

We make a list N1, . . . , Nr of all normal subgroups of G such that G/Ni
∼=

Sni
for some positive integer ni, with ni! ≤ |G|, i = 1, . . . , r. Then, G has

a symmetric presentation if and only if
⋂r
i=1 Ni = 1. If the latter condition

holds, then the quotient maps G → G/Ni yield a symmetric presentation of G,

G →

r
∏

i=1

G/Ni
∼=

r
∏

i=1

Sni
.

4. Quotients of symmetrically presentable groups

We prove that every quotient of a symmetrically presentable group is sym-
metrically presentable. Throughout, we use Notation 1.3 and the notation
introduced in Set-up 3.1, in particular, the notation of diagrams (3.3) in the
latter set-up.

Lemma 4.1. Let G be a finite nontrivial group and ι : G → S a minimal

symmetric presentation that we assume to be the inclusion map. Let N be a

minimal normal subgroup of G and let J = {i ∈ I | N(i) 6= 1}. Then, the

following statements hold:

(a) If |J | = 1, say J = {j}, then N = A(nj).

(b) If |J | > 1, then there exist an integer 2 ≤ m ≤ 4 and elements γj ∈
Aut(A(m)) for j ∈ J such that nj = m for all j ∈ J and

N =
{

(aγj )j∈J ∈
∏

j∈J

Snj
| a ∈ A(m)

}

.

In particular, N ∼= A(m) is abelian.
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Proof. If j ∈ J , then N(j) 6= 1, so N [j] < N . By Lemma 3.2, N [j] ⊳ G. It
follows from the minimality of N that N [j] = 1. Thus,

(4.1) πj : N → N(j) is an isomorphism for each j ∈ J .

Since prj(G) = Snj
and N(j) = prj(N) 6= 1, we have that N(j) is a minimal

normal subgroup of Snj
for each j ∈ J . Hence,

(4.2) N(j) = A(nj) for each j ∈ J .

Since pri(N) = N(i) = 1 for each i ∈ I r J , we have N ≤ SJ =
∏

j∈J Snj
.

Therefore, (a) is a consequence of (4.1) and (4.2).
In order to prove (b), we assume that

(4.3) |J | > 1.

For each j ∈ J the map γj = π−1
1 ◦πj (acting from the right) is an isomorphism

from A(n1) onto A(nj). Hence, setting m = n1, we find that nj = m, so
γj ∈ Aut(A(m)).

For a ∈ N , we set a = aπ1 and get prj(a) = aπj = (aπ1)γj = aγj for
each j ∈ J . Here, aπj denotes the image of a under πj . Therefore, we have
N = {(aγj)j∈J ∈

∏

j∈J Snj
| a ∈ A(m)}, hence

(4.4) |N | = |A(m)|.

We claim that m ≤ 4. Otherwise m ≥ 5, so by Fact 1.1 (c), A(m) =
Am is a nonabelian simple group. By Lemma 3.5, A|J|

m =
∏

j∈J A(nj) ⊳ G.
Since N ≤ A|J|

m and N ⊳ G, we have that N ⊳ A|J|
m . By (4.2) and [9, p. 374,

Lemma 18.3.9], N ∼= A
|J|
m . Hence, by (4.4), |J | = 1. This contradiction to

(4.3) proves that indeed m ≤ 4, as claimed.
By Notation 1.3, A(m) is abelian. This concludes the proof of (b). �

Lemma 4.2. Let r ≥ 2 be an integer, consider m ∈ {2, 3, 4}, and let G be

a subgroup of S = Srm such that the inclusion map ι : G → S is a minimal

symmetric presentation of G. Suppose that

(4.5) N = {(a, . . . , a) ∈ S | a ∈ A(m)}

is a normal subgroup of G. Then, N has a complement M in G and M ∼= G/N
is symmetrically presentable.

Proof. If m = 2, then S = Sr2 is a vector space of dimension r over F2, G is
a subspace of S, and N is a subspace of G. Hence, N has a complement M
in G. Moreover, M is a subspace of S. As such, M ∼=

∏r′

i=1S2 for some r′ ≤ r.
Hence, M is symmetrically presentable and we are reduced to the case where
m = 3 or m = 4.

We set sg = sgn in the first case and sg = Sgn in the second case. In both
cases, Remark 1.5 yields a short exact sequence

(4.6) 1 → A(m) → Sm
sg
−→ Aut(A(m)) → 1

such that

(4.7) sg(Sm−1) = Aut(A(m)).
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Claim A. The normalizer of N in S is

G̃ =
{

(σ1, . . . , σr) ∈ Srm | sg(σ1) = · · · = sg(σr)
}

.

Indeed, consider σ = (σ1, . . . , σr) ∈ Srm. For each j ∈ {1, . . . , r}, we set
τj = sg(σj) and let τ = (τ1, . . . , τr). Then, for each a = (a, . . . , a) ∈ N , we
have aσ = aτ . Thus, aσ ∈ N if and only if aτj = aτ1 for j = 1, . . . , r. Since
τ1, . . . , τr are automorphisms of A(m), this is true for all a ∈ N if and only if
τj = τ1 for j = 1, . . . , r. Thus, sg(σ1) = · · · = sg(σr), so σ ∈ G̃. Therefore, G̃
is the normalizer of N in S, as claimed.

Claim B. G̃ = G.
Indeed, since N is normal in G, we have by Claim A that G ≤ G̃. By

Lemma 3.5, A = Ar(m) ≤ G. Moreover, (4.6) yields a short exact sequence

(4.8) 1 → A → G̃
sg1−−→ Aut(A(m)) → 1,

where sg1(σ) = sg(σ1). Hence, (G̃ : A) = |Aut(A(m))| = (Sm : A(m)). On the
other hand, pr1(G) = Sm and pr1(A) = A(m), so (G : A) ≥ (Sm : A(m)) =

(G̃ : A). It follows from A ≤ G ≤ G̃ that G̃ = G, as claimed.

Claim C. The group M = {(σ1, . . . , σr) ∈ G | σ1 ∈ Sm−1} is a complement of

N in G.

Indeed, by Remark 2.3 (c), Sm−1 is a complement of A(m) in Sm. If a =
(a1, . . . , ar) ∈ M ∩ N , then a1 ∈ Sm−1 and aj = a1 ∈ A(m), so aj = 1 for
j = 1, . . . , r. Thus, M ∩N = 1.

On the other hand, consider σ = (σ1, . . . , σr) ∈ G. By Claim B, sg(σj) =
sg(σ1) for j = 1, . . . , r. By Remark 2.3 (c), S2A(3) = S2A3 = S3 and S3A(4) =
S3V4 = S4. Hence, σ1 = τa, with τ ∈ Sm−1 and a ∈ A(m). By (4.6),

sg(a) = 1, so sg(σja
−1) = sg(σ1) = sg(τ) for j = 1, . . . , r. Hence, by Claim B,

τ = (τ, σ2a
−1, . . . , σra

−1) ∈ G̃ = G. Moreover, by (4.5), a = (a, a, . . . , a) ∈ N
and σ = τa ∈ MN . Thus, G = M ⋉N , so M is a complement of N in G.

Claim D. M is symmetrically presentable.

By definition, M ≤ Sm−1×Sr−1
m . If σ1 ∈ Sm−1, then there exist σ2, . . . , σr ∈

Sm such that σ = (σ1, σ2, . . . , σr) ∈ G, because by assumption, pr1(G) = Sm.
Hence, σ ∈ M , so pr1(M) = Sm−1.

If 2 ≤ i ≤ r and σi ∈ Sm, we may assume that i = 2. By (4.6) and
(4.7), there exists σ1 ∈ Sm−1 such that sg(σ1) = sg(σ2). Hence, with σj = σ1

for j = 3, . . . , r, we have by Claim B that σ = (σ1, σ2, . . . , σr) ∈ G and
pr2(σ) = σ2. Therefore, σ ∈ M , so pr2(M) = Sm. It follows that M is
symmetrically presentable, as claimed. �

Lemma 4.3. Let N be a minimal normal subgroup of a symmetrically pre-

sentable group G. Then, N has a complement M in G and G/N ∼= M is

symmetrically presentable.
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Proof. We assume without loss that G 6= 1 and that ι : G → S is a minimal
symmetric presentation of G. We also assume that ι is the inclusion map.
Then, in the notation of Set-up 3.1, let J = {i ∈ I | N(i) 6= 1}.

Case A. J = I and |I| = 1.
Then, G = S = Sni

, where i is the unique element of I and N = A(ni).
Hence, by Remark 2.3 (c), N has a complement M in G which is a symmetric
group. In particular, G/N is symmetrically presentable.

Case B. J = I and |I| > 1.
In view of Lemma 4.1 (b), there exist an integer 2 ≤ m ≤ 4 and elements

γi ∈ Aut(A(m)), for i ∈ I, such that ni = m for all i ∈ I and

N =
{

(aγi)i∈I ∈ S | a ∈ A(m)

}

.

Then, in the notation of the second paragraph of the proof of Lemma 4.2 and
by (4.6), there exists, for each i ∈ I, an element δi ∈ Sm such that sg(δi) = γi.
Hence, δ = (δi)i∈I ∈ S, N ′ = Nδ

−1

= {(a)i∈I | a ∈ A(m)} is a minimal normal
subgroup of G′ = Gδ

−1

. By Lemma 4.2, N ′ has a complement M ′ in G′ and
M ′ is symmetrically presentable. It follows that M = (M ′)δ is a complement
of N in G and M is symmetrically presentable.

Case C. J is a proper subset of I.
Let J ′ = IrJ , SJ =

∏

j∈J Snj
, and SJ′ =

∏

j′∈J′ Snj′
. Then, S = SJ×SJ′ ,

and we set prJ : S → SJ and prJ′ : S → SJ′ to be the projection on the factors.
Note that Ker(prJ) = SJ′ and Ker(prJ′) = SJ .

Now let GJ = prJ(G). By Set-up 3.1, in particular, by the left diagram of
(3.3) in that set-up, prj′ (N) = 1 for each j′ ∈ J ′, so N ≤ SJ . Since prJ is the
identity map on SJ , we have prJ(n) = n for each n ∈ N , so N = prJ(N) is a
minimal normal subgroup of GJ .

By induction on |I|, there is a symmetric presentation κ :GJ/N →
∏

k∈KSnk
,

where K is a finite set disjoint from I. Using κ, we define a map λ : G/N →
∏

k∈K Snk
×
∏

j′∈J′ Snj′
by λ(gN) = (κ(prJ(g)N), prJ′(g)) for each g ∈ G. We

prove that λ is a symmetric presentation.
Indeed, if g1N = g2N for g1, g2 ∈ G, then prJ(g

−1
2 g1) = g−1

2 g1 ∈ N , so
prJ(g1)N = prJ(g2)N , hence λ is well defined, therefore λ is a homomorphism.

If g ∈ G and λ(gN) = 1, then κ(prJ(g)N) = 1 and prJ′(g) = 1. The
latter equality implies that g ∈ SJ , so prJ (g) = g. Since κ is injective, gN =
prJ(g)N = 1. Therefore, λ is injective.

Since κ is a symmetric presentation, there exists, for all k ∈ K and s ∈ Snk
,

an element g ∈ G such that prk(λ(gN)) = prk(κ(prJ (g)N)) = s. Also, if
j′ ∈ J ′ and s′ ∈ Snj′

, then there exists g ∈ G with prj′ (g) = s′. Hence,

prj′(λ(gN)) = prj′ (prJ′(g)) = s′. We conclude that λ is a symmetric presen-
tation of G/N .

Finally, since |J | < |I|, an induction hypothesis implies that N has a com-
plement MJ in GJ . Hence, by Remark 2.2 (d), M = pr−1

J (MJ) ∩ G is a
complement of N in G. �
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Proposition 4.4. Let N be a normal subgroup of a symmetrically presentable

group G. Then, N has a complement M in G and G/N ∼= M is symmetrically

presentable.

Proof. The case where N is a minimal normal subgroup of G is taken care of by
Lemma 4.3. Hence, we assume without loss that N 6= 1 and N is not a minimal
normal subgroup of G. Then, N has a proper subgroup N0 which is a minimal
normal subgroup of G. By Lemma 4.3, G/N0 is symmetrically presentable.
Since N/N0 is a normal subgroup of G/N0 and the order of G/N0 is smaller
than that of G, an induction hypothesis on the order of the group implies that
(G/N0)/(N/N0) is symmetrically presentable. Since G/N ∼= (G/N0)/(N/N0),
the group G/N is symmetrically presentable.

Again, by Lemma 4.3, N0 has a complement M1 in G. Then, N1 = M1 ∩N
is a normal subgroup of M1 that complements N0 in N , i.e. N = N1 ⋉ N0

(Remark 2.2 (c)). By the preceding paragraph, M1
∼= G/N0 is symmetrically

presentable and M1 < G. An induction on the order of the group yields a
complement M of N1 in M1. Then, by Remark 2.2 (b), G = M1 ⋉ N0 =
(M ⋉N1)⋉N0 = M ⋉ (N1 ⋉N0) = M ⋉N , as claimed. �

5. Embedding problems over a field

We quote two special results about the solvability of finite embedding prob-
lems over Hilbertian fields. Then, we introduce the notions of cartesian squares
and fiber products of finite groups, and prove that the family of symmetrically
presentable groups is closed under fiber products.

Definition 5.1 (Regularly solvable embedding problems, [9, Def. 16.4.1]).
Consider a finite embedding problem α : G → Gal(L/K) over a field K, where
L/K is a Galois extension, G is a finite group, and α is an epimorphism. A
proper solution of the embedding problem is an isomorphism β : Gal(N/K) →
G that satisfies α ◦ β = resN/L, where N is a Galois extension of K that
contains L. We refer to N as a proper solution field of the embedding problem.

Next we consider algebraically independent elements t1, . . . , tr over K and
set t = (t1, . . . , tr). Then, res: Gal(L(t)/K(t)) → Gal(L/K) is an isomor-
phism. Hence, α : G → Gal(L/K) gives rise to an embedding problem αt : G →
Gal(L(t)/K(t)) over K(t) with α = resL(t)/L ◦ αt. We refer to a proper solu-
tion of αt as a proper solution of α over K(t). We refer to a proper solution
field F of αt as a proper regular solution of α if F/L is regular. We say that
α is properly and regularly solvable if there are t1, . . . , tr as above such that αt

has a proper solution field F which is regular over L. In this case we also say
that L/K can be properly and regularly embedded into a G-extension.

Definition 5.2. A finite embedding problem for a profinite group Γ is a pair

(5.1) (ρ : Γ → Ḡ, α : G → Ḡ),

where G is a finite group and both ρ and α are epimorphisms. A proper solution

of (5.1) is an epimorphism γ : Γ → G such that α ◦ γ = ρ.
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Given a field K, we fix a separable algebraic closure Ksep of K and let
Gal(K) = Gal(Ksep/K) be the absolute Galois group of K. Then, we quote
two lemmas from [9, Section 16.4].

Lemma 5.3 ([9, p. 303, Lemma 16.4.2]). Let K be a Hilbertian field, α : G →
Gal(L/K) a finite embedding problem, and M a finite separable extension of L.
If α is properly and regularly solvable, then α has a proper solution field N
which is linearly disjoint from M over L.

Lemma 5.4 ([9, p. 304, Prop. 16.4.4]). Let G ⋉ A be a semi-direct product

of finite groups, where G = Gal(L/K) for a Galois extension L/K and A is

abelian. Let π : G ⋉ A → G be the projection map. Then, π is properly and

regularly solvable.

We also quote a result of David Brink.

Proposition 5.5 ([3, Thm. 9]). Let n ≥ 3 be an integer and K a field of

characteristic different from 2. Then, any quadratic extension L/K can be

properly and regularly embedded into an Sn-extension.

Next, we recall that a commutative diagram

(5.2) D
δ

//

β
��

C
γ
��

B
α

// A

of profinite groups and homomorphisms is said to be cartesian if for each
profinite group G and all homomorphisms φ : G → B and ψ : G → C satisfying
α◦φ = γ◦ψ, there exists a unique homomorphism π : G → D such that β◦π = φ
and δ ◦ π = ψ.

Note that the map ε of D onto the fiber product

(5.3) B ×A C =
{

(b, c) ∈ B × C | α(b) = γ(c)
}

,

defined by ε(d) = (β(d), δ(d)) for each d ∈ D, is an isomorphism that satisfies
prB ◦ ε = β and prC ◦ ε = δ [9, p. 499, Prop. 22.2.1].

We say that the fiber product (5.3) has surjective homomorphisms if both
α and γ are surjective.

Lemma 5.6 ([9, p. 500, Lemma 22.2.4]). Let (5.2) be a commutative diagram

of epimorphisms of profinite groups. Then, (5.2) is cartesian if and only if

Ker(α ◦ β) = Ker(δ)×Ker(β).

Here is the field theoretic counterpart of Lemma 5.6:

Lemma 5.7 ([9, p. 501, Example 22.2.7 (a)]). Let M and M ′ be Galois exten-

sions of a field K. Set L = M ∩M ′ and N = MM ′. Then, the square

Gal(N/K) //

��

Gal(M ′/K)

��

Gal(M/K) // Gal(L/K),

in which all of the arrows are restriction maps is cartesian.

Münster Journal of Mathematics Vol. 12 (2019), 139–161



152 Wulf-Dieter Geyer, Moshe Jarden, and Aharon Razon

Proposition 4.4 ensures that the family of symmetrically presentable groups
is preserved under taking quotients. Here is another preservation rule for that
family.

Lemma 5.8. The family of symmetrically presentable groups is closed under

fiber products with surjective homomorphisms.

Proof. We consider the cartesian diagram (5.2) with the additional assumption
that all homomorphisms are surjective. Suppose that I and J are disjoint finite
sets, {ni | i ∈ I} and {nj | j ∈ J} are sets of positive integers, B is a subgroup
of

∏

i∈I Sni
with pri(B) = Sni

for each i ∈ I, and C is a subgroup of
∏

j∈J Snj
,

with prj(C) = Snj
for each j ∈ J . Let λ : D →

∏

i∈I Sni
×

∏

j∈J Snj
be the

map defined by λ(d) = (pri(β(d)), prj(δ(d)))(i,j)∈I×J for each d ∈ D.
We assume without loss that D = B ×A C, β is the projection of D on B,

and δ is the projection of D on C. If λ(d) = 1, then pri(β(d)) = 1 for each
i ∈ I, so β(d) = 1. Similarly, δ(d) = 1. Hence, (β(d), δ(d)) is the unit of D.
Therefore, d = 1, so λ is injective.

Also, if s ∈ Sni
, with i ∈ I, then there exists b ∈ B with s = pri(b). Let c

be an element of C such that γ(c) = α(b). Then, (b, c) ∈ D and pri(λ(b, c)) =
pri(b) = s. Thus, pri(D) = Sni

for each i ∈ I. Similarly, prj(D) = Snj
for

each j ∈ J . It follows that λ is a symmetric presentation of D. �

6. Embedding problems for the
absolute Galois group of a Hilbertian field

We prove in this section that every finite embedding problem

(6.1) (ρ : Gal(K) → Ḡ, α : G → Ḡ)

over a Hilbertian field K of char(K) 6= 2 in which G is a symmetrically pre-
sentable group has a proper solution.

Lemma 6.1. Let K be a Hilbertian field of char(K) 6= 2. Then, every finite

embedding problem (6.1) in which G is a symmetrically presentable group and

N = Ker(α) is a minimal normal subgroup of G has a proper solution.

Proof. As in Set-up 3.1, let ι : G → S be a minimal symmetric presentation for
G, with S =

∏

i∈I Sni
, where ι is the inclusion map. By Lemma 4.3, N has a

complement in G. Hence, if N is abelian, then, by Lemma 5.4 and Lemma 5.3,
embedding problem (6.1) has a proper solution.

We may therefore assume thatN is nonabelian. Then, case (a) of Lemma 4.1
holds. Thus, there exists a unique j ∈ I such that N = A(nj). We assume
without loss that j = 1 and set n = n1. Since N is nonabelian, Notation 1.3
implies that n ≥ 5 and N = An. The rest of the proof consists of three parts.

Part A. Commutative square.

The assumptions made so far yield direct decompositions of groups

(6.2) S = Sn × S′, with S′ =
∏

i6=1

Sni
, A = An ×A′, with A′ =

∏

i6=1

A(ni),
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such that the projection φ = pr1|G : G → Sn is surjective. Note that φ maps
the subgroup An = N of G identically onto the subgroup An of Sn. Hence,
for each a ∈ An we have sgn(φ(a)) = sgn(a) = 1. Therefore, there exists a
homomorphism ψ : Ḡ → {±1} that makes the following diagram commutative:

(6.3) G
α

//

φ

��

Ḡ

ψ

��

Sn
sgn

// {±1}.

Claim B. The square (6.3) is cartesian.

Since sgn, φ, and α are surjective, so is ψ. Let β = ψ ◦ α = sgn ◦ φ.
Since Ker(φ) ≤ Ker(pr1) = S′ and Ker(α) = N = An ≤ Sn, we have
Ker(φ) ∩Ker(α) = 1. Thus, by Lemma 5.6, it suffices to prove that Ker(β) =
Ker(φ)Ker(α).

Indeed, each g ∈ Ker(β) can be written as

(6.4) g = as, with a ∈ Sn and s ∈ S′.

Hence, φ(g) = pr1(g) = a, so sgn(a) = sgn(φ(g)) = β(g) = 1. Therefore,
a ∈ An = Ker(α) ≤ G, so, by (6.4), s = a−1g ∈ G. Therefore,

φ(s) = φ(a)−1φ(g) = a−1φ(g) = 1,

so s ∈ Ker(φ), which proves our claim.

Part C. Solving embedding problem (6.1).
Let L be a Galois extension of K with Galois group Ḡ. Let L1 be the fixed

field of Ker(ψ◦ρ). Then, Gal(L1/K) ∼= S2. By Proposition 5.5 and Lemma 5.3,
K has a Galois extension M1 with Galois group Sn such that M1 contains L1

and is linearly disjoint from L over L1. In particular, Gal(M1/L1) ∼= An.
Moreover, since sgn: Sn → {±1} is the only epimorphism from Sn to {±1},
the restriction map resM1/L1

coincides with sgn: Sn → {±1}. Finally, we set
M = M1L and have the following diagram of Galois extensions:

(6.5) M

④④
④④
④④
④④

❅❅
❅❅

❅❅
❅❅

M1

An

❇❇
❇

❇❇
❇

Sn

L

Ḡ[1]
⑦⑦
⑦

⑦⑦
⑦

ḠL1

K.
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Since M1 and L are linearly disjoint over L1, the corresponding commutative
diagram of groups

(6.6) Gal(M/K) //

��

Gal(L/K)

��

Gal(M1/K) // Gal(L1/K),

where all maps are restrictions, is cartesian (Lemma 5.7). Hence, diagram (6.3)
is the Galois theoretic counterpart of diagram (6.6), so M is a proper solution
field of our embedding problem. �

Proposition 6.2. Let K be a Hilbertian field with char(K) 6= 2. Then, every

finite embedding problem

(6.7) (ρ : Gal(K) → Ḡ, α : G → Ḡ),

in which G is a symmetrically presentable group, has a proper solution.

Proof. Let N = Ker(α). If N = 1, then α is an isomorphism, so α−1 ◦ ρ
is a proper solution of (6.7). If N is a minimal normal subgroup of G, then
Lemma 6.1 yields a proper solution of (6.7). Therefore, we may assume that
N is neither 1 nor minimal normal.

Then, G has a nontrivial normal subgroup N0 which is properly contained
in N . Let π : G → G/N0 be the quotient map. Then, the epimorphism
ᾱ : G/N0 → Ḡ, defined by ᾱ(gN0) = α(g), satisfies ᾱ ◦ π = α. Also, N/N0 =
Ker(ᾱ) has a smaller order than N = Ker(α). By Proposition 4.4, G/N0

is also symmetrically presentable. Hence, by an induction hypothesis on the
order of the kernel of the embedding problem, there exists an epimorphism
ρ̄ : Gal(K) → G/N0 such that ᾱ ◦ ρ̄ = ρ. Next note that the order of
N0 = Ker(π) is also smaller than the order of N . Hence, another use of
the induction hypothesis yields an epimorphism γ : Gal(K) → G such that
π ◦ γ = ρ̄:

Gal(K)

ρ

��

γ

zztt
tt
tt
tt
tt

ρ̄

��✞
✞✞
✞
✞✞
✞✞
✞
✞✞
✞✞
✞
✞✞

1 // N //

��

G
α

//

π

��

Ḡ // 1

1 // N/N0
// G/N0

ᾱ
// Ḡ // 1.

Then, α ◦ γ = ᾱ ◦ π ◦ γ = ᾱ ◦ ρ̄ = ρ, so γ is a proper solution of the embedding
problem (6.7). �

7. The maximal symmetric extension of a field

We say that a Galois extension L/K is symmetric if Gal(L/K) ∼= Sn for
some positive integer n. We denote the compositum of all symmetric extensions
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of a field K by Ksymm and prove that if char(K) 6= 2, then Gal(Ksymm/K) is
isomorphic to the free pro-SP-group of rank ℵ0, where SP is the formation of
all symmetrically presentable groups.

Lemma 7.1. The following conditions on a finite Galois extension L/K are

equivalent:

(a) L is a compositum of finitely many symmetric extensions of K.

(b) Gal(L/K) is symmetrically presentable.

(c) L is a finite Galois extension of K in Ksymm.

Proof. (a)⇒ (b). Suppose that L is a compositum of symmetric extensions
L1, . . . , Lr of K. Then, the map σ 7→ (resL/L1

(σ), . . . , resL/Lr
(σ)) is an em-

bedding of Gal(L/K) into
∏r
i=1 Gal(Li/K). Moreover, the restriction map

resL/Li
: Gal(L/K) → Gal(Li/K) is surjective for i = 1, . . . , r. Therefore,

Gal(L/K) is symmetrically presentable.
(b)⇒ (a). Suppose that G = Gal(L/K) has a symmetric presentation

ι : G →
∏r
i=1 Sni

. Without loss we assume that ι is the inclusion map. For
each 1 ≤ i ≤ r, let Li be the fixed field in L of the kernel of the epimorphism
pri|G : G → Sni

. Then, Gal(Li/K) ∼= Sni
and Gal(L/Li) ≤

∏

j 6=i Snj
. Hence,

⋂r
i=1 Gal(L/Li) ≤

⋂r
i=1

∏

j 6=i Snj
= 1. Therefore, L = L1 · · ·Lr. We conclude

that L is a compositum of symmetric extensions.
(a)⇒ (c). If L is a compositum of symmetric extensions L1, . . . , Lr, then

L ⊆ Ksymm.
(c)⇒ (a). Suppose that L is a finite Galois extension of K in Ksymm. Then,

there exist symmetric extensions N1, . . . , Nr of K such that N = N1 · · ·Nr

contains L. By “(a)⇒ (b)”, Gal(N/L) is symmetrically presentable. Hence,
Gal(L/K) is a quotient of a symmetrically presentable group, so, by Propo-
sition 4.4, Gal(L/K) is symmetrically presentable. By “(b)⇒ (a)”, L is a
compositum of finitely many symmetric extensions of K, as claimed. �

Corollary 7.2. Let K be a Hilbertian field with char(K) 6= 2 and let G
be a symmetrically presented group. Then, every finite embedding problem

(ρ̄ : Gal(Ksymm/K) → Ḡ, α : G → Ḡ) is properly solvable. In particular, G
itself is a quotient of Gal(Ksymm/K).

Proof. Let ρ = ρ̄ ◦ resKsep/Ksymm
. By Proposition 6.2, there exists an epimor-

phism γ : Gal(K) → G such that α ◦ γ = ρ. Let N be the fixed field of Ker(ρ).
Then, Gal(N/K) ∼= G, so, by Lemma 7.1, N ⊆ Ksymm. Hence, there ex-
ists an epimorphism γ̄ : Gal(Ksymm/K) → G that solves the given embedding
problem.

Finally, considering the embedding problem

(Gal(Ksymm/K) → 1, G → 1),

we have, by the preceding paragraph, that G is a quotient of Gal(Ksymm/K),
as claimed. �
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Remark 7.3 (The formation of all symmetrically presentable groups). We de-
note the family of all symmetrically presentable groups (up to isomorphisms)
by SP . By Proposition 4.4, SP is closed under taking quotients. By Lem-
ma 5.8, SP is closed under taking fiber products with surjective homomor-
phisms. Hence, in the terminology of [9, p. 344], SP is a formation of finite

groups. It is the smallest formation of finite groups that contains all symmetric
groups.

Each inverse limit of SP -groups in which the connecting homomorphisms
are epimorphisms is a pro-SP-group [9, p. 344]. In particular, for each set X ,

there exists a free pro-SP-group F̂X(SP) on X . Thus, there exists a map

ι : X → F̂X(SP) that converges to 1 such that ι(X) generates F̂X(SP), and
for each map φ of X into a pro-SP-group G that converges to 1 and satisfies

G = 〈φ(X)〉, there exists a unique epimorphism φ̂ : F̂X(SP) → G with φ̂◦ι = φ.
Since Sn2 ∈ SP for each positive integer n, it follows from [9, p. 346,

Prop. 17.4.2 and p. 348, Lemma 7.4.6 (a)] that there exists a free pro-SP-group

F̂ω(SP) of rank ℵ0.

Remark 7.4 (The embedding property). We denote the set of all finite quo-
tients (up to isomorphisms) of a profinite group G by Im(G). We say that
G has the embedding property if every finite embedding problem (φ : G → A,
α : B → A), with B ∈ Im(G), has a proper solution [9, p. 564, Def. 24.1.2].

Theorem 7.5. Let K be a countable Hilbertian field with char(K) 6= 2. Then,

Gal(Ksymm/K) ∼= F̂ω(SP).

Hence, Gal(Ksymm/K) ∼= Gal(Qsymm/Q) and Im(Gal(Ksymm/K)) = SP.

Proof. By Remark 7.3, SP is a formation of finite groups. By Lemma 7.1, each
finite quotient of Gal(Ksymm/K) belongs to SP . Conversely, by Corollary 7.2,
each G ∈ SP is a quotient of Gal(Ksymm/K). Hence, Im(Gal(Ksymm/K)) =
SP . Therefore, by Corollary 7.2, Gal(Ksymm/K) has the embedding property.
Since K is countable, rank(Gal(Ksymm/K)) ≤ ℵ0.

It follows from a generalization of a theorem of Iwasawa, see [9, p. 581,
Thm. 24.8.1], that

Gal(Ksymm/K) ∼= F̂ω(SP).

In particular, since Q is countable and Hilbertian, Gal(Qsymm/Q) ∼= F̂ω(SP).
Therefore, Gal(Qsymm/Q) ∼= Gal(Ksymm/K). �

Remark 7.6. For a Hilbertian field K, [1, Theorem 3.2] implies that every
field M between K and Ksymm is Hilbertian.

8. Decidability

LetK be a presented field in the sense of [9, p. 404, Def. 19.1.1]. This is a field
which is “explicitly constructed” from the ring Z of integers, one has “effective
recipes” to add and multiply given elements and to “effectively compute” the
inverse of each given nonzero element. An element z of a field extension F ofK
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is presented over K if either z is algebraic over K and irr(z,K) is explicitly
given or it is known that z is transcendental over K.

We say that K has a splitting algorithm if K has an effective algorithm
for factoring each polynomial in K[X ] of positive degree into a product of
irreducible factors. By [9, p. 409, Lemma 19.2.4], every presented finitely gen-
erated separable extension of a field K with a splitting algorithm has a splitting
algorithm. Given a separable polynomial f(X) with coefficients in a presented
field K, we can present the splitting field L of f overK and compute the Galois
group Gal(L/K) as a group of permutations of the roots of f . Moreover, we
can find all of the subgroups of Gal(L/K) and compute their fixed fields in L
[9, p. 412, Lemma 19.3.2].

If every finitely generated presented extension of K has a splitting algo-
rithm, we say that K has elimination theory. By [9, p. 411, Cor. 19.2.10], if
K0 is a presented perfect field with a splitting algorithm, then K0 has elim-
ination theory. In particular, since each of the fields Q and Fp (where p is
a prime number) has a splitting algorithm, every finitely generated presented
field extension K of its prime field has elimination theory.

We denote the maximal purely inseparable extension of a field F by Fins.

Lemma 8.1. Let K be a presented field with elimination theory and let f be

a polynomial of positive degree in K[X ]. Then,

(a) we can effectively check whether f has a root in Ksymm, and

(b) we can effectively check whether f has a root in Ksymm,ins.

Proof. Since K has elimination theory, we can effectively decompose f over K
into a product of irreducible polynomials, f =

∏r
i=1 fi. Then, f has a root in

Ksymm if and only if at least one of the polynomials fi has a root in Ksymm.
Thus, we may assume without loss that f is irreducible in K[X ].

In this case, all roots of f are in Ksep if and only if f ′ 6= 0. By [9, p. 412,
Lemma 19.3.2], we may effectively construct the splitting field N of f over K.
Moreover, we can effectively find all symmetric extensions L1, . . . , Lr ofK in N
and check whether N =

∏r
i=1 Li. By Lemma 7.1, f has a root in Ksymm if

and only if N =
∏r
i=1 Li. This proves (a).

Next assume that p = char(K) > 0 and find a power q of p and a separable
polynomial g ∈ K[X ] such that f(X) = g(Xq). Then, f has a root inKsymm,ins

if and only if g has a root in Ksymm. The latter can be effectively checked
by (a). �

Remark 8.2. Given a presented fieldK, we write L(ring,K) for the first order
language of the theory of rings with a constant symbol for each element of K
[9, p. 135, Example 7.3.1]. If M is an extension of K, we write Th(M) for the
set of all first order sentences in L(ring,K) that are true in M and Root(M/K)
for the set of monic polynomials in K[X ] that have a root in M . Finally, we
write K̃ for a fixed algebraic closure of K containing Ksymm and Kins and note
that it can also be effectively presented [9, p. 413, Lemma 19.4.1]. Every other
algebraic extension of K is considered to be contained in K̃.
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We write FiniteGroups for the set of all finite groups up to isomorphisms.
We also write F̂ω for the free profinite group with countably many generators
and note that, by [9, p. 568, Lemma 24.3.3], F̂ω has the embedding property.

Moreover, Im(F̂ω) = FiniteGroups.

Recall that a field M is PAC if every absolutely integral algebraic variety
over M has an M -rational point.

Lemma 8.3 ([14, Lemma 3.3]). Let K be a presented field with elimination

theory. Let M be an extension of K in K̃. Suppose that M is perfect and PAC,

Gal(M) has the embedding property, and Im(Gal(M)) is a primitive recursive

subset of FiniteGroups. Further, suppose that the set Root(M/K) is primitive

recursive. Then, Th(M) is primitive recursive.

By Remark 8.2, F̂ω has the embedding property. Since the set Im(F̂ω)
consists of all finite groups, it is primitive recursive. Thus, the following result
is a special case of Lemma 8.3.

Lemma 8.4. Let K be a presented field with elimination theory. Let M be

an extension of K in K̃. Suppose that M is perfect, PAC, and Gal(M) ∼= F̂ω.
Further, suppose that the set Root(M/K) is primitive recursive. Then, Th(M)
is primitive recursive.

With this we reach our next main result.

Theorem 8.5. Let K be a Hilbertian presented field with elimination theory.

Then:

(a) Gal(Ksymm) ∼= F̂ω, so Im(Gal(Ksymm)) = FiniteGroups.
(b) Th(Ksymm,ins) is primitive recursive.

(c) If char(K) 6= 2, then Im(Gal(Ksymm/K)) is primitive recursive.

Proof. By [9, p. 396, Thm. 18.10.4], Ksymm is PAC and Hilbertian. Since K
is presented, K is countable [9, p. 404], so Ksymm is countable. By [10,
Thm. A] (in case char(K) = 0), or [15, Thm. 1], [11, Cor. 4.7], and [13,

p. 90, Thm. 5.10.3] (in general), Gal(Ksymm) ∼= F̂ω . Since Ksymm,ins/Ksymm is

a purely inseparable extension, we also have Gal(Ksymm,ins) ∼= F̂ω. It follows
from [9, p. 195, Thm. 11.2.3] that Ksymm,ins is also PAC. In addition, Ksymm,ins

is a perfect field.
By Lemma 8.1, the set Root(Ksymm,ins/K) is primitive recursive. It follows

from Lemma 8.4 that Th(Ksymm,ins) is primitive recursive.
Finally, if char(K) 6= 2, then, by Theorem 7.5, Im(Gal(Ksymm/K)) = SP .

It follows from Remark 3.6 that Im(Gal(Ksymm/K)) is primitive recursive. �

Remark 8.6. In a subsequent paper, we prove that the theory of the ring of
integers of Qsymm and the theory of the ring of integers of Fp(t)symm,ins are
primitive recursive.
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9. More examples

It turns out that the same methods that led to Theorems 7.5 and 8.5 lead to
a decreasing sequence of field extensions of K with similar properties to those
of Ksymm.

Example 9.1. Let K be a field and m a positive integer. We define K
(m)
symm as

the compositum of all Galois extensions of K with Galois groups Sn for some
n ≥ m. In particular, Ksymm = K

(2)
symm. Also, K

(m+1)
symm ⊆ K(m)

symm for each m.
Suppose that K is Hilbertian. Then, by [9, p. 396, Thm. 18.10.4], Ksymm is

PAC and Hilbertian. A mild change of the proof of that theorem proves that
for each positive integer m also K(m)

symm is PAC and Hilbertian. Indeed, if C
is an absolutely integral affine plane curve over K with function field F , then
F/K has a separating transcendence element t such that [F : K(t)] = n ≥ m

and the Galois hull F̂ of F/K(t) satisfies Gal(F̂ /K(t)) ∼= Sn, see [9, p. 391,
Thm. 18.9.3]. By the Hilbertianity of K, there exists a ∈ K such that the
specialization t → a extends to a K-place of F into K(m)

symm that leads to a
K(m)

symm-rational point of C [9, p. 231, Lemma 13.1.1]. This implies that K(m)
symm

is PAC.
By applying Haran’s diamond theorem, one proves as in [FrJ08, p. 396,

Thm. 18.10.4] that K(m)
symm is Hilbertian. Alternatively, one may apply Re-

mark 7.6. If in addition, K is countable, then so is K(m)
symm. Hence, by [13, p. 89,

Thm. 5.10.2 (c)], Gal(K(m)
symm)

∼= F̂ω . In particular, Im(Gal(K(m)
symm)) is the set

of all finite groups. As in Remark 3.6, one observes that Im(Gal(K(m)
symm/K))

is a primitive recursive set of finite groups.
If in addition, K is a presented field with elimination theory, then the proof

of Lemma 8.1 can be applied to primitive recursively decide whether a given
separable polynomial f ∈ K[X ] has a root in K(m)

symm,ins.

By Lemma 8.3, Th(K(m)
symm,ins) is primitive recursively decidable.

Remark 9.2. Let K be a countable Hilbertian field with char(K) 6= 2 and let
m ≥ 5 be an integer. By Lemma 5.3 and Proposition 5.5, every S2-extension
of K can be embedded in an Sm-extension of K. Similarly to the notation

SP introduced in Remark 7.3, let SP(m) be the formation of all subdirect
products of the groups S2, Sm, Sm+1, Sm+2, . . . , and let F̂ω(SP

(m)) be the

free pro-SP(m)-group of rank ℵ0. As in Theorem 7.5, we can prove that
Gal(K

(m)
symm/K) ∼= F̂ω(SP

(m)).

We add the following observation:

Proposition 9.3. Let K be a Hilbertian field of characteristic 6= 2. Let K(2) be

the compositum of all quadratic extensions of K. Then,
⋂

m≥5 K
(m)
symm = K(2).

Proof. Let N =
⋂

m≥5K
(m)
symm. By Lemma 5.3 and Proposition 5.5, for each

m ≥ 3, every quadratic extension of K can be embedded into an Sm-extension
of K. Hence, K(2) ⊆ N .

On the other hand, let G be a finite quotient of Gal(N/K). For each m ≥ 5,
we set Qm = {S2, Am, Am+1, Am+2, . . .}. Then, there exist Galois extensions
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L1, . . . , Lr of K such that Gal(Li/K) ∼= Sni
, with ni ≥ m for i = 1, . . . , r,

and G is a quotient of Gal(L/K), where L = L1 · · ·Lr. By Set-up 1.1 (a),
the composition factors of each Sni

are Ani
and S2. Hence, the composition

factors of Gal(L/K) belong to Qm, therefore so are the composition factors
of G. Since

⋂∞
m=5 Qm = {S2}, every composition factor of G is isomorphic

to S2.
By Lemma 7.1, G is symmetrically presentable. Thus, G is contained in a

direct product
∏

j∈J Snj
, where J is a finite set and nj ≥ 2 is an integer for

each j ∈ J . Moreover, each Snj
is a quotient of G. Since A3 is a composition

factor of both S3 and S4, it follows from the preceding paragraph that nj = 2
for each j ∈ J . Therefore, G ∼= Sp2 for some nonnegative integer p. We conclude

that N = K(2), as claimed. �

Example 9.4 (Galois extensions of Q with Galois group S =
∏∞
n=2 Sn). Re-

mark 1 of [10] yields a sequence of irreducible polynomials f2, f3, f4, . . . in
Q[X ] with linearly disjoint splitting fields N2, N3, N4, . . . having Galois groups
S2, S3, S4, . . . . Thus, with N =

∏∞
n=2 Nn, we have Gal(N/Q) ∼=

∏∞
n=2 Sn.

Moreover, N is both PAC and Hilbertian. It follows from [10, Thm. A] that
Gal(N) ∼= F̂ω . Hence, Im(Gal(N)) = FiniteGroups is primitive recursive.

Next note that if φ is an epimorphism of S onto a finite group G, then G is
generated by the subgroups Gn = φ(Sn), n = 2, 3, 4, . . . , of G,

(1) every Gn is normal in G,
(2) for all m < n, the elements of Gm commute with the elements of Gn.

Moreover, by Fact 1.1 (a), (b),

(3a) G2 = 1 or G2 = S2,
(3b) G3 = 1, or G3 = S2, or G3 = S3,
(3c) G4 = 1, or G4 = S2, or G4 = S3, or G4 = S4, and
(3d) for all n ≥ 5, Gn = 1, or Gn = S2, or Gn = Sn.

Conversely, if a finite group G is generated by subgroups G2, G3, G4, . . . , only
finitely of them are nontrivial, and they satisfy conditions (1), (2), and (3),
then G is a quotient of S. It follows that also Im(Gal(N/Q)) is a primitive
recursive subset of FiniteGroups.

It is conceivable that one may construct N such that, in addition to the
above mentioned properties, it will be a primitive recursive extension of Q.
One possible way to do it is, for every effectively given finitely generated regu-
lar extension F ofQ of transcendence degree 1 and for every positive integer n0,
to effectively construct a transcendental element t for F/Q and effectively com-
pute an integer n ≥ n0 such that the Galois closure F̂ of F/Q(t) will be regular
over Q and Gal(F̂ /Q(t)) ∼= Sn. To this end, one may try to effectivize the non-
effective proof of this statement given in [8] combined with [10, Remark 1]. In
addition, one would have at some point to use an effective version of Hilbert
irreducibility theorem (e.g., [16]).

Obviously, this task goes beyond the scope of the present work.
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