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Abstract. In this article, we propose a p-adic analog of complex Hilbert space and consider
generalizations of some well-known theorems from functional analysis and the basic study
of operators on Hilbert spaces. We compute the K-theory of the analog of the algebra of
compact operators and the algebra of all bounded operators. This article contains a survey
on results from the thesis of the first author.

1. Introduction

While there exists a rich literature on p-adic functional analysis in general
(cp. Schneider’s book [14] as a comprehensive source), it seems that only few
publications treat p-adic operator algebras, their K-theory and their applica-
tion to group rings. In this article, the authors want to give their contribution
to the subject with focus on an p-adic analog of the classical Hilbert space
featuring phenomena such as self-duality etc. This p-adic Hilbert space Qp(X)
(sometimes called the restricted product of Qp indexed by X) is defined as the
set of all maps ξ : X → Qp such that |ξ(x)|p > 1 holds for only finitely many
elements x ∈ X . The space Qp(X) is not a Qp-vector space, but, equipped
with the canonical addition, scalar multiplication with scalars in Zp and an
appropriate topology τ , a locally compact topological Zp-module. We will in-
troduce a scalar product 〈 , 〉 : Qp(X)× Qp(X) → S1 on Qp(X). It turns out
that the Pontryagin dual of Qp(X) is isomorphic to Qp(X) as a topological
group and all characters can be uniquely represented by a scalar product with
an element of Qp(X), this correspondence yielding the isomorphism of Qp(X)
with its dual. As in the usual Archimedean case, one can define the algebra
B(Qp(X)) of continuous Zp-linear operators on Qp(X). Using the notion of ad-
joint operators (cp. Section 2.10) and of the operator norm (cp. Section 2.14),
B(Qp(X)) can be given the structure of a complete normed ∗-algebra over Zp,
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i.e., a Banach-∗-algebra over Zp. In analogy with the Archimedean case, it
is possible to define a continuous functional calculus for certain operators in
B(Qp(X)), the so-called normal contractions (cp. Section 2.21). The defini-
tion is based on Mahler’s representation theorem of the continuous functions
Zp → Zp as infinite Zp-linear combinations of binomial coefficients.

It is possible to define an analogK(Qp(X)) for the ideal of compact operators
in a Hilbert space (cp. Section 3.1). Furthermore, we will introduce and study
a matrix representation of operators in B(Qp(X)) (Section 2.28).

In Section 3.4, we will be interested in idempotents of the ring B(Qp(X)) and
its K-theory, namely, its K0-group. Compared to the usual case of projections
in the complex Hilbert space, idempotents and projections in B(Qp(X)) are
much harder to study. For example, there is, in general, no projection onto the
intersection of images of two given projections etc. But at least, we will show
that, as in the Archimedean case, we have the isomorphisms K0(K(Qp(X))) ∼=
Z andK0(B(Qp(X))) = 0 (cp. Section 3.8 and Section 3.14). Interestingly, also
the fact that each idempotent in the quotient algebra B(Qp(X))/K(Qp(X)) can
be lifted to an idempotent in B(Qp(X)) remains true, but the proof is different
from the analog Archimedean theorem (cp. Section 3.21).

This article is a short version of the first three chapters in the thesis of
one of the authors (cp. [4]), and most parts are taken from there. In the
last two chapters of [4], the reader can find additional considerations, e.g., on
the definition of the tensor product of operator algebras acting on Qp(X), the
application of our approach to the case that X = Γ is a countable group, the
p-adic analog of the group von Neumann algebra etc.

2. The p-adic analog of a Hilbert space

2.1. The space Qp(X) and the topology τ . Let X be a countable set.
Consider the set

Qp(X) := {ξ : X → Qp; |ξ(i)|p ≤ 1 for all but finitely many i ∈ X}.

On this set, we define a topology τ by saying that a set A ⊆ Qp(X) is open if
for all P ⊆ X with |P | < ∞, the set

(∏

i∈P

Qp ×
∏

j∈X\P

Zp

)
∩A

is open in
∏

i∈P Qp ×
∏

j∈X\P Zp with respect to the product topology. Note

that τ is the largest topology on Qp(X) such that all the inclusions of the form
∏

i∈P

Qp ×
∏

j∈X\P

Zp →֒ Qp(X)

with finite P ⊆ X are continuous.
Using the terminology of [11, Def. I.1.1.12], the space Qp(X) is called the

restricted product of countably many copies of Qp with respect to the open
subgroups Zp ⊆ Qp.
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Furthermore, notice the similarity of this construction with the construction
of the adele-rings in [9, Section 4.3.7].

For x ∈ X , we define the element δx ∈ Qp(X) by δx(x) = 1 and δx(y) = 0
for y ∈ X \ {x}.

The following lemma is easy to prove.

Lemma 2.2. With respect to τ , a sequence (ξn)n∈N in Qp(X) converges to

ξ ∈ Qp(X) if and only if it converges entrywise to ξ and if the set {x ∈ X ;
there exists n ∈ N : |ξn(x)|p > 1} is finite.

Equipped with the natural coordinate-wise addition and the topology τ , the
set Qp(X) becomes a locally compact and σ-compact Hausdorff topological
abelian group, where the subset

Zp(X) :=
∏

i∈X

Zp

is (according to Tychonoff’s theorem) a compact open subgroup. The group
Qp(X) additionally carries a natural structure of a Zp-module, but it is not a
Qp-vector space if X is infinite.

The topological groups Qp(X) have already been considered in [13], where
the authors show that all self-dual (in Pontryagin’s sense) metrizable locally
compact torsion-free abelian groups are either of this form or of the form Rn,

of the form D⊕D̂, where D is a countable torsion-free divisible discrete group,
or a (local) direct sum of groups of these types.

Also the following lemma is easy to verify.

Lemma 2.3. The abelian group Qp(X) is a Polish group.

Definition 2.4. The set of all Zp-linear τ -continuous operators on Qp(X) is
denoted by B(Qp(X)).

Note that a τ -continuous group homomorphism A : Qp(X) → Qp(X) is
already in B(Qp(X)). The set B(Qp(X)) forms a Zp-module with the canonical
operations.

The following two lemmas are special cases of well-known versions of the
open mapping and closed graph theorems for certain topological groups (cp.
[7, Thm. 1.5] and [8, p. 213]). For these useful lemmas, the assumption on X
to be countable becomes relevant.

Lemma 2.5. Let A : Qp(X) → Qp(X) be a group homomorphism. The fol-

lowing statements are equivalent:

(a) A is τ-continuous,
(b) the graph G(A) := {(ξ, Aξ) ∈ Qp(X) × Qp(X); ξ ∈ Qp(X)} of the map A

is closed in Qp(X)×Qp(X),
(c) for every sequence (ξn)n∈N with τ- limn→∞ ξn = 0, τ- limn→∞ Aξn = η, we

have η = 0.

Recall that a map A ∈ B(Qp(X)) is called open if it maps open sets onto
open sets. As a consequence of Lemma 2.5, one easily sees that any surjective
A ∈ B(Qp(X)) is open.
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2.6. The pairing on Qp(X) and duality aspects. We want to introduce a
natural pairing on our space Qp(X) that can be compared to a scalar product
on a usual Hilbert space. Define

〈 , 〉 : Qp(X)×Qp(X) → S1

by

〈ξ, η〉 := ι
(∑

i∈X

(ξ(i)η(i) + Zp)
)
,

where ι : Qp/Zp = Z[1/p]/Z →֒ R/Z ∼= S1 is the canonical map (here, the
identification R/Z ∼= S1 is given as usual by t 7→ e2πit, t ∈ R/Z, and the
identification Z[1/p]/Z with Qp/Zp is given by the composited map Z[1/p] →֒
Qp ։ Qp/Zp that factors through Z[1/p]/Z).

The pairing is symmetric and jointly continuous because it is the compo-
sition of two continuous maps (where Qp/Zp is equipped with the discrete
topology). Furthermore, it induces a Zp-linear identification of Qp(X) with
its Pontryagin dual (cp. [13] or [11, Prop. I.1.1.13]). As a topological group,
Qp(X) is isomorphic to its Pontryagin dual. This is an analogy to Riesz’
theorem on the self-duality for Hilbert spaces.1

Remark. In the definition of the pairing 〈 , 〉, it would have been possible to
take other embeddings j of Qp/Zp

∼= Z[1/p]/Z into S1 instead of ι. Each such
embedding differs from ι by a unique αj ∈ Z×

p , the unit group of Zp, in the
way that j = ι◦Mαj

, where Mαj
: Qp/Zp → Qp/Zp denotes the multiplication

by αj .

Let us pursue the analogy between Qp(X) and Hilbert spaces:

Definition 2.7. Let K be a subset of Qp(X). Define

K⊥ := {ξ ∈ Qp(X); 〈ξ, η〉 = 0 for all η ∈ K}.

For subsets K,L ⊆ Qp(X), we write K ⊥ L if 〈ξ, η〉 = 0 for all ξ ∈ K and
η ∈ L.

The set K⊥ is a closed sub-Zp-module of Qp(X). It may happen that
K ∩K⊥ 6= {0}. For example, we have Zp(X)⊥ = Zp(X).

Lemma 2.8. Let H ⊆ Qp(X) be a closed subgroup. The Pontryagin dual Ĥ
of H is topologically isomorphic to Qp(X)/H⊥.

Proof. According to [6, Cor. 3.6.2], each character ϕ on H extends to Qp(X).
Because of the self-duality of Qp(X), it can be represented by some vector
ξ ∈ Qp(X), i.e.,

ϕ(η) = 〈η, ξ〉 for all η ∈ H,

1Notice, however, that τ is not equal to the weak topology with respect to this pairing,
i.e., the initial topology with respect to the maps of the form Qp(X) → S1, ξ 7→ 〈ξ, η〉 (where
η ∈ Qp(X)), cp. the remark following Theorem 1.8.2 in W. Rudin’s book “Fourier analysis

on groups”, p. 30.
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where ξ is determined uniquely up to elements in H⊥. We obtain a bijec-

tive group homomorphism Φ from Ĥ to Qp(X)/H⊥. Note that both groups
are Polish: the second as a quotient of the Polish group Qp(X), the first as
a quotient of the Polish group Q̂p(X) ∼= Qp(X) (as H is a closed subgroup
of Qp(X), use [6, Prop. 3.6.1]). As Φ is a bijective continuous group homo-
morphism between Polish groups, the map Φ−1 must be an isomorphism of
topological groups (use again [7, Thm. 1.5]). �

Lemma 2.9. Let K,L ⊆ Qp(X) be closed sub-Zp-modules. Then, the following

properties hold:

(a) K = K⊥⊥,

(b) K ⊆ L ⇒ L⊥ ⊆ K⊥,

(c) (K + L)⊥ = K⊥ ∩ L⊥,

(d) (K ∩ L)⊥ = cl(K⊥ + L⊥), where the closure is taken in the τ-topology.

Proof. First, we prove the property (a). Lemma 2.8 yields the following exact
sequence:

0 → K⊥ → Qp(X) → K̂ → 0.

Now, Pontryagin duality shows (cp. [6, Cor. 3.6.2]) that the dual sequence

0 → K → Qp(X) → K̂⊥ → 0

is also exact. Replacing K by K⊥ in the first sequence, we obtain the exact
sequence

0 → K⊥⊥ → Qp(X) → K̂⊥ → 0.

The maps Qp(X) → K̂⊥ in the second and the third sequence coincide, i.e.,
their kernels K and K⊥⊥ coincide as well. The statements (b) and (c) are
obvious. The statement (d) follows from statement (c) using statement (a). �

2.10. The adjoint of an operator. We obtain a further analogy of Qp(X)
and ordinary Hilbert spaces:

Lemma 2.11. For every A ∈ B(Qp(X)), there is a unique operator A∗ ∈
B(Qp(X)) satisfying 〈Aξ, η〉 = 〈ξ,Mη〉 for all ξ, η ∈ Qp(X). We will call it

the adjoint operator of A. For A,B ∈ B(Qp(X)), λ ∈ Zp, we have

A∗∗ = A, (A+ λB)∗ = A∗ + λB∗, (AB)∗ = B∗A∗.

Proof. The uniqueness and existence of a group homomorphism A∗ with the
above property can be proved as in the usual Hilbert space case, and to prove
the continuity of the homomorphism M , one then applies the third characteri-
zation of τ -continuity in Lemma 2.5 (or one simply uses the fact that Pontrya-
gin duality is a functor together with the self-duality of Qp(X)). The formulas
for the adjoint operator are clear. �

Lemma 2.12. For every A ∈ B(Qp(X)), we have ker(A) = im(A∗)⊥.
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Proof. The direction ker(A) ⊆ im(A∗)⊥ is clear. For the other direction, sup-
pose η ∈ im(A∗)⊥. For all ξ ∈ Qp(X), we see that

〈Aη, ξ〉 = 〈η,A∗ξ〉 = 0.

Hence, since our natural pairing is non-degenerate, we obtain that Aη = 0 or
η ∈ ker(A). �

For reasons of completeness, we finally want to state a more general version
of Lemma 2.11.

Theorem 2.13. Let σ : Qp(X) × Qp(X) → S1 be a biadditive form that is

separately continuous. Then, there exists a unique A ∈ B(Qp(X)) such that2

〈Aξ, η〉 = σ(ξ, η) for all ξ, η ∈ Qp(X).

The proof can be found in [4, Thm. 4.4].

2.14. The norm topology on Qp(X) and B(Qp(X)). For an element ξ ∈
Qp(X), we define ‖ξ‖ := maxi∈X |ξ(i)|p. It is clear that we have defined an
ultra-norm on the Zp-module Qp(X) in this way: ‖ξ+ η‖ ≤ max{‖ξ‖, ‖η‖} for
all ξ, η ∈ Qp(X). Note that all norm-convergent sequences also converge with
respect to τ , but not the other way around. The norm topology is therefore
stronger than the τ -topology (strictly stronger if X is infinite). The following
lemma is easy to verify.

Lemma 2.15. A subset K ⊆ Qp(X) is τ-compact if and only if it is norm-

bounded, τ-closed and there is a finite subset S ⊆ X such that

K ⊆
∏

x∈S

Qp ×
∏

x∈X\S

Zp.

We want to investigate some further properties of the norm and of norm-
continuous operators. The following two lemmas are easy to verify.

Lemma 2.16. The space Qp(X) is complete with respect to the norm.

Lemma 2.17. Let A : Qp(X) → Qp(X) be a Zp-linear map. Then A is norm-

continuous if and only if A is bounded, i.e., there is C > 0 such that

‖Aξ‖ ≤ C‖ξ‖ for all ξ ∈ Qp(X).

Lemma 2.18. A τ-continuous Zp-linear map on Qp(X) is also norm-

continuous.

Proof. Suppose that A is a τ -continuous Zp-linear map, i.e., A ∈ B(Qp(X)).
As Zp(X) is τ -compact, also its image under A is τ -compact, and therefore
norm-bounded by Lemma 2.15. This fact implies the boundedness and hence
the continuity of A. �

Unfortunately, the converse does not hold (this is a consequence, for exam-
ple, of [4, Thm. 2.4.1]).

2Note that the seemingly nontrivial part lies in showing that already separate continuity
of σ is sufficient.
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Definition 2.19. For each A ∈ B(Qp(X)), we define its operator norm in the
usual way by

‖A‖ := sup
ξ∈Qp(X),‖ξ‖≤1

‖Aξ‖.

By Lemma 2.18, this is a real number and it is clear that it makes B(Qp(X))
an ultra-normed Zp-module. For A,B ∈ B(Qp(X)) and ξ ∈ Qp(X), we have

‖A+B‖ ≤ max{‖A‖, ‖B‖}, ‖AB‖ ≤ ‖A‖‖B‖, ‖Aξ‖ ≤ ‖A‖‖ξ‖.

Lemma 2.20. The Zp-module B(Qp(X)) is norm-complete.

Once we will have established the matrix representation of the operators in
B(Qp(X)) (Theorem 2.30), this lemma will be easy to show, and therefore we
skip the proof for the moment.

2.21. Mahler’s algebra and continuous functional calculus. For x ∈ Zp

and n ∈ N, we will need the binomial coefficient
(
x

k

)
:=

x(x − 1) . . . (x− (n− 1))

n!
∈ Zp.

The next lemma has a nice combinatorial proof.

Lemma 2.22. (a) For x ∈ Zp and m,n ∈ N, the following identity holds:

(
x

m

)(
x

n

)
=

m+n∑

l=m∨n

l!

(m+ n− l)!(l−m)!(l − n)!

(
x

l

)
.

(b) For x ∈ Zp and n ∈ N, the following identity holds:

x

(
x

n

)
= n

(
x

n

)
+ (n+ 1)

(
x

n+ 1

)
.

Proof. (a) It is sufficient to show the formula for the case x ∈ N, x > m+ n.
We assume this.

Then consider a finite set X with cardinality |X | = x. The left side of the
above equation is exactly the number of pairs (M,N) of subsets M,N ⊆ X
such that |M | = m and |N | = n. Each such pair is uniquely characterized by
the set M ∪N and the subdivision of M ∪N into the subsets M \N , N \M
and M ∩N , and this is precisely what the right side corresponds to. Indeed,
the number l corresponds to |M ∪ N |, the binomial coefficient on the right
corresponds to the choices of the set M ∪N and the fraction to the number of
subdivisions. Hence, the two sides of the equation coincide.

(b) This is just a consequence of the first part of the lemma (set m = 1). �

The following theorem is due to Mahler, see [2] for an elementary proof.

Theorem 2.23 (Mahler’s theorem). Every element f ∈ C(Zp,Zp) has a

unique representation of the form

f(x) =
∞∑

n=0

Tn(f)

(
x

n

)
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such that Tn(f) ∈ Zp and limn→∞ Tn(f) = 0. The convergence of this series is

uniform and the equality

‖f‖sup = max
n∈N

|Tn(f)|p

holds. In other words, there is an isometric isomorphism σ : C(Zp,Zp) →
c0(N,Zp) of Zp-modules given by f 7→ (Tn(f))n∈N.

Definition 2.24. An operator A ∈ B(Qp(X)) is called a normal contraction

if the quotient
(
A

n

)
:=

A(A − 1) · · · (A− (n− 1))

n!
∈ B(Qp(X))

is defined and is a contraction, i.e., its norm is not greater than one.

It is not difficult to show that |n!|p = p−
n−sp(n)

p−1 for n ∈ N, where sp(n)
denotes the digit sum in the p-adic decomposition

n =

∞∑

k=0

nkp
k

of n (with nk ∈ {0, . . . , p− 1}), i.e.,

sp(n) =

∞∑

k=0

nk.

Therefore, we obtain that A is a normal contraction if and only if

‖A(A− 1) . . . (A− (n− 1))‖ ≤ p−
n−sp(n)

p−1 for all n ∈ N.

For example, a contractive diagonal operator on Qp(X) is always a normal
contraction. Note that the formulas in Lemma 2.22 remain true if one replaces
x by a normal contraction A. If A is a normal contraction, we obtain a natural
functional calculus using Mahler’s theorem:

Theorem 2.25. If A ∈ B(Qp(X)) is a normal contraction, then there is a

natural contractive homomorphism of Zp-algebras

πA : C(Zp,Zp) → B(Qp(X)),

with πA(idZp
) = A.

As usual, we write f(A) instead of πA(f). Note that for a normal con-
traction A and f ∈ C(Zp,Zp), also the operator f(A) is a normal contraction
because as f(A) can be represented by a function in C(Zp,Zp), also the bino-

mial coefficients
(
f(A)
n

)
can and are therefore well-defined contractions.

Proof. By Theorem 2.23, there is a natural isometric isomorphism of Zp-
modules σ : C(Zp,Zp) → c0(N,Zp) satisfying σ(idZp

) = δ1. For f ∈ C(Zp,Zp),
define

πA(f) :=
∞∑

n=0

σ(f)(n)

(
A

n

)
.
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This definition yields a contractive homomorphism of Zp-algebras and the proof
is finished. �

For example, if A ∈ B(Qp(X)) is a normal contraction and z ∈ pZp, the
operator

Fz(A) :=
∞∑

n=0

zn
(
A− 1

n

)

is well defined.

Example. An example of a normal contraction A acting on the space Qp(N)
is given by the operator defined by A(δn) = nδn+(n+1)δn+1. Indeed, one can
show by induction that the n-th row of the matrix representing the operator
A(A− 1) · · · (A− k) (cp. Theorem 2.30) is given by

((
k + 1

n− i

)(
n

k + 1

)
(k + 1)!

)

i∈N

for n, k ∈ N.

Let us recall the following lemma.

Lemma 2.26. The sequence (fn) of functions Zp → Zp that is defined by

fn(x) = xpn

for all x ∈ Zp converges uniformly to a function that is constant on each

equivalence class for the equivalence relation of having distance less than 1.

The result is well known and the limit limn→∞ fn(x) is called the Te-

ichmüller representative of x (cp. [9, Section 4.3.4]). The proof is also repeated
in [4, Lem. 1.6.5].

Now, it is possible to define a polynomial with coefficients in Zp mapping all
the nonzero Teichmüller representatives to 0 and 0 to 1, namely, the polynomial

PQp
(X) :=

(X−λ1)···(X−λp−1)
(−1)p−1λ1···λp−1

.

Corollary 2.27. Suppose that A ∈ B(Qp(X)) is a normal contraction. Then

the sequence PQp
(Apn

) converges to an idempotent in the operator norm.

Remark. It is also possible to formulate the above functional calculus for
finite field extensions K of Qp (cp. [4, Section 1.6]), but we prefer working
with Qp for now.

2.28. The matrix representation of operators. Let A be an operator in
B(Qp(X)). Associate the matrix MA := (Aij)i,j∈X to A whose coefficients are
given by Aij = (A(δj))(i). Note that A ∈ B(Qp(X)) is uniquely determined
by MA. Furthermore, for continuity reasons, we have A(ξ)(i) =

∑
j∈X Aijξ(j)

for all ξ ∈ Qp(X).
First, we will state a lemma and second, we will characterize all matrices

that can be written in the form MA for an operator A ∈ B(Qp(X)).
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Lemma 2.29. Let A be in B(Qp(X)), then we have MA∗ = MT
A , where MT

A =
(Aji)i,j∈X is just the transposed matrix of MA.

Proof. Let λ be a number in Qp and let i, j ∈ X . Observe that

ι(λAij + Zp) = 〈Aδj , λδi〉 = 〈λδj , A
∗δi〉 = ι(λA∗

ji + Zp).

This can only hold for every λ ∈ Qp if A∗
ji = Aij for all i, j ∈ X . Therefore,

MA∗ is exactly the transpose of MA. �

Theorem 2.30. A necessary and sufficient condition for a matrix M =
(aij)i,j∈X to be of the form M = MA for an operator A ∈ B(Qp(X)) is that

(a) M admits only finitely many entries in Qp \ Zp and (b) for k ∈ X, one

always has limi→∞ aik = 0 and limj→∞ akj = 0.

Proof. To see why (a) is necessary, suppose that M has infinitely many entries
in Qp \ Zp. As in each row and in each column, there are clearly only finitely
many entries in Qp \ Zp, it is possible to choose an infinite subset Y ⊆ X
such that for each y ∈ Y , one has {i ∈ X ; aiy ∈ Qp \ Zp} 6= ∅ and {i ∈
X ; aiy ∈ Qp \ Zp} ∩ {j ∈ X ; ajz ∈ Qp \ Zp} = ∅ for y, z ∈ Y , y 6= z.
Consider the element χY ∈ Qp(X), the characteristic function of the set Y .
One has χY = limn→∞ χYn

(convergence with respect to τ), where (Yn)n∈N is
an increasing sequence of finite subsets of Y with the property that Y =

⋃
n Yn.

If there existed A ∈ B(Qp(X)) such that M = MA, the sequence (AχYn
)n

would by continuity converge in Qp(X). The choice of the set Y shows that
this is not the case. Therefore, condition (a) is necessary for the existence of
such an operator A.

On the other hand, suppose that there is an element x ∈ X and ε > 0 such
that {j ∈ X ; |ajx| > ε} is infinite. For λ ∈ Qp with ε|λ| > 1, the element
λχ{x} lies in Qp(X), but as (λaix)i∈X does not lie in Qp(X), the matrix M is
not of the form M = MA for A ∈ B(Qp(X)). The same holds for the case that
{j ∈ X ; |axj| > ε} is infinite (considering the adjoint matrix M∗ and using the
lemma above). Therefore, condition (b) is equally necessary for the existence
of such an A ∈ B(Qp(X)).

In order to prove that (a) and (b) are sufficient for the existence of A, define
A, being given a matrix M such that (a) and (b) hold, by (Aξ)i =

∑
j∈X aijξj ,

where ξ = (ξj)j∈X ∈ Qp(X), i ∈ X . One can easily verify that A lies indeed
in B(Qp(X)) and that M = MA. �

The following lemma is easy to prove:

Lemma 2.31. Let A be in B(Qp(X)), then we have

‖A‖ = max{|Aij |p; i, j ∈ X}.

By using Theorem 2.30 and Lemma 2.31, the completeness of B(Qp(X))
with respect to the norm, i.e., Lemma 2.20, becomes obvious.

To finish the section, we want to give a link of our topic to Willis’ notion
of the scale of an operator. Recall that, for an endomorphism α on a totally
disconnected locally compact group G (i.e., a continuous group homomorphism
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G → G), the scale s(α) is defined as the minimum of all possible values [α(U) :
(U∩α(U))] for compact open subgroups U of G (the group G always has a base
of neighborhoods of the identity that consists only of compact open subgroups,
cp. [15, Thm. 2.1]).

For an arbitrary compact open subgroup U of G, the scale can be calculated
as s(α) = limn→∞[αn(U) : (U ∩ αn(U))]1/n, cp. [15, Prop. 8.3].

Also for operators in B(Qp(X)), we can ask how to calculate their scale. If
X is finite, then we have Qp(X) = Qn

p (for an appropriate n ∈ N) and s(α)
is the norm of the product of all eigenvalues of α with norm greater than 1
(in a finite field extension of Qp, where the characteristic polynomial of α
decomposes in linear factors, use the Frobenius normal form to show this), i.e.,

s(α) = sup
n

∥∥∥
∧n

α
∥∥∥.

However, it seems to be a more difficult question how to determine the scale
of an operator in B(Qp(X)) for infinite X . It seems reasonable to expect that
the scale of a general operator is the limit of the scales of the finite minors in
its matrix representation and that a similar formula as above holds – but we
were unable to show this.

For every operator A ∈ B(Qp(X)), we have s(A∗) = s(A). Even a more
general statement can be proved: Let G be a totally disconnected locally com-
pact abelian group and let A be an endomorphism on G; then, the adjoint
endomorphism A∗ acting on the Pontryagin dual G′ of G has the same scale
as A.

3. Various operator algebras and their K-theory

3.1. Compact operators in B(Qp(X)). It is interesting to see that also
the ideal of compact operators of usual Archimedean functional analysis have
a natural analogy in our context.

Definition 3.2. Define K(Qp(X)) to be the set of all operators in B(Qp(X))
that map norm-bounded sets onto relatively τ -compact sets in Qp(X). We
want to call the elements of K(Qp(X)) the compact operators on Qp(X).

In the rest of this section, we will always assume X = N (without any
restriction of generality).

Lemma 3.3. For an operator A ∈ B(Qp(N)), the following three statements

are equivalent:

(a) A is a compact operator,

(b) the matrix-entries of A converge to zero,

(c) it maps norm-bounded sets onto relatively norm-compact sets in Qp(N).

The operators with this property form a selfadjoint ideal in B(Qp(N)), i.e., an
ideal that is closed under the adjoint operation.

Proof. (a)⇒ (b): Consider N ∈ N. If A is compact, then the image of
M := {p−Nδn;n ∈ N} (as a norm-bounded set) must be relatively τ -compact.
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According to Lemma 2.15, the entries of the elements of A(M) have always to
be in Zp for sufficiently high indices. But the entries of A(p−Nδn) are exactly
the matrix entries of the n-th column of A, multiplied by p−N . This shows
that the matrix entries of A must have norm at most p−N for sufficiently high
row-numbers. But in the (only finitely many) rows, where entry-norms greater
than p−N occur, A can only have finitely many entries with norm greater than
p−N because the row entries converge to zero in each row (cp. Theorem 2.30).
Therefore, A has only finitely many matrix entries of norm greater than p−N .
As N ∈ N is arbitrary, the matrix entries of A must converge to zero.

(b)⇒ (c): Suppose that the matrix entries of A converge to zero. To
prove (c), it is sufficient to show that all sets of the form MN := A({ξ ∈ Qp(N);
‖ξ‖ ≤ pN}), N ∈ N, are relatively compact in Qp(N). Suppose N ∈ N. There
exists, for each k ∈ N, a number mk ∈ N such that all matrix entries of A
in a row with number n ≥ mk have norm less than p−Np−k. We now obtain
|(Aξ)(n)| ≤ p−k for ξ ∈ Qp(N) with ‖ξ‖ ≤ pN and n ≥ mk. Therefore, we
can construct a sequence (p−al)l∈N (al ∈ Z for l ∈ N) with p−al

l→∞
−−−→ 0 (in R)

such that |(Aξ)(n)| ≤ p−an for all n ∈ N and ξ ∈ Qp(N), ‖ξ‖ ≤ pN . We see
that

MN ⊆ Q :=
∏

l∈N

Bp−al ,

where Bε := {λ ∈ Qp; |λ| ≤ ε}, ε > 0. To prove (c), it is sufficient to show
the norm-compactness of Q. But this is a consequence of the Tychonoff theo-
rem: Notice that the norm-topology on Q coincides exactly with the product
topology because we assumed p−al

l→∞
−−−→ 0 (in R).

(c)⇒ (a): This is clear since every relatively norm-compact set in Qp(N) is
also relatively τ -compact (note that a norm-convergent sequence in Qp(N) is
also τ -convergent).

The fact that the compact operators form a selfadjoint ideal in B(Qp(N))
follows easily if one uses the matrix representation for compact operators. �

3.4. Some results on idempotents in B(Qp(X)). In the following sections,
we want to analyze properties of idempotents in B(Qp(X)) and calculate the
K0-groups of K(Qp(X)) and B(Qp(X)). As a good introduction into K-theory,
we recommend [12].

The K-theory of nonarchimedean Banach rings (i.e., complete normed rings
whose norm satisfies submultiplicativity and the strong triangle inequality) has
been investigated by Adina Calvo in her thesis [3].

We want to collect first information on the idempotents in B(Qp(X)). If
A ∈ B(Qp(X)) is an idempotent, i.e., it satisfies the equation A2 = A, then
the operators 1 − A, A∗ and 1 − A∗ are idempotents as well. Note that we
have ker(1 − A) = im(A) and that similar equations hold for A∗, 1 − A and
1−A∗ instead of A. A selfadjoint idempotent will be called a projection. The
following lemma is easy to prove.
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Lemma 3.5. For an idempotent A ∈ B(Qp(X)), we have the following iden-

tities:

im(A)⊥ = im(1−A∗) and im(A) = im(1 −A∗)⊥.

Note that imA = ker(1 − A) is closed. Combining the preceding lemma
with Lemma 2.8, we obtain the following.

Lemma 3.6. If A ∈ B(Qp(X)) is an idempotent, then the Pontryagin dual of

im(A) is isomorphic to im(A∗).

It would be interesting to know if one can define the usual operations (like
supremum and infimum) on the set of idempotents (or projections) in our
context.

Our first conjecture in this direction was that for a sequence (en)n∈N of
idempotents in B(Qp(N)), with

en+1Qp(N) ⊆ enQp(N), (1− en)Qp(N) ⊆ (1− en+1)Qp(N), ‖en‖ ≤ 1

for all n ∈ N, there always exists an idempotent e ∈ B(Qp(N)) such that

eQp(N) =
⋂

n∈N

enQp(N),

(1− e)Qp(N) = τ -cl
( ⋃

n∈N

(1− en)Qp(N)
)
.

This conjecture, however, turns out to be false (even in the case where the
en are required to be projections). Counter-examples can be found in [4,
Section 3.1].

Second, we would like to know if for two projections e, f ∈ B(Qp(N)), there is
always a projection (or at least an idempotent) g ∈ B(Qp(N)) such that im g =
im e∩ im f . Unfortunately, also this conjecture is false (cp. [4, Section 3.1] for
a counter-example).

Theorem 3.7. There is a decreasing sequence of contractive projections

(en)n∈N in B(Qp(X)) such that
⋂

n∈N enQp(N) is not the image of an idem-

potent in B(Qp(X)). There are contractive projections e, f ∈ B(Qp(N)) such

that im e ∩ im f is not the image of an idempotent in B(Qp(N)).

3.8. The group K0(K(Qp(X))). In order to calculate K0(K(Qp(X))), we
will first establish some more general lemmas.

Two idempotents e, f ∈ A in a unital Banach-Zp-algebra A are called equiv-

alent with respect to A if there is an invertible element g ∈ A such that
g−1eg = f . The following two lemmas should essentially be well-known and,
in fact, hold for an arbitrary unital Banach-Zp-algebra.

Lemma 3.9. Let A be a closed sub-Zp-algebra of B(Qp(X)) that contains the

identity. Let e, f ∈ A be idempotents such that e 6= 0 and ‖e − f‖ < 1/‖e‖.
Then, e and f are equivalent with respect to A.
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Proof. If e and f are as in the lemma, we obtain

‖f + e− 2fe‖ = ‖f − fe+ e− fe‖

≤ max{‖e‖‖e− f‖, ‖f‖‖e− f‖} < ‖e‖
1

‖e‖
= 1

because ‖e‖ ≥ 1 > ‖e − f‖ and therefore ‖f‖ = ‖e‖. As in the Archimedean
case, one can, since A is closed, use the Neumann series (geometric series) to
show that the element u = 1− f − e+2fe ∈ A is invertible in A. On the other
hand, one has fu = fe = ue and the lemma follows. �

Lemma 3.10. Let A be an ultra-normed Banach algebra. Suppose that a ∈
A\{0} satisfies ‖a2−a‖ < 1/‖a‖2. Then there is an idempotent element e ∈ A
such that ‖a−e‖ < min{1/‖a‖, 1}. The idempotent e is given as the limit of the

sequence Pm(a) as m → ∞ for a certain sequence Pm of polynomials in Z[x].

Proof. The result is clear if ‖a‖ < 1, so suppose ‖a‖ ≥ 1. Then we have, in
particular, ‖a2 − a‖ < 1. First, we will have to establish that for each m ∈ N,
m ≥ 1, there is exactly one polynomial Pm ∈ Z[x] such that

Pm(0) = 0, Pm(1) = 1 and P (i)
m (0) = P (i)

m (1) = 0

for i ∈ {1, . . . ,m− 1} and degPm ≤ 2m− 1. The ansatz Pm(x) =
∑2m−1

i=0 aix
i

yields P
(k)
m (x) =

∑2m−1
i=k ai(i(i− 1) · · · (i−k+1))xi−k, thus f (k)(0) = akk! = 0

and ak = 0 for k ∈ {1, . . . ,m− 1}. Furthermore, one gets

f (k)(1) =

2m−1∑

i=m

ai

(
i

k

)
= δk, k ∈ {0, . . . ,m− 1},

where δk denotes the value 1 for k = 0 and 0 else. The resulting system of linear
equations has m equations and m variables. Using a result from [1], Chapter
“Gitterwege und Determinanten”, one can easily see that the determinant of
the coefficient matrix of this system is 1. Therefore, it admits a unique solution
and the unique existence of the polynomial Pm ∈ Z[x] is proved.3

Consider now the sequence Pm(a). We notice that

‖Pm+1(a)− Pm(a)‖ = ‖(a2 − a)m(αa+ β)‖ ≤ ‖a2 − a‖m‖a‖ → 0

for m → ∞ (where α, β ∈ Z) and

‖Pm(a)2 − Pm(a)‖ = ‖(a2 − a)mgm(a)‖ ≤ ‖a2 − a‖m‖a‖2m−2

for a certain polynomial gm of degree at most 2m − 2 over Z. Choose d > 2
such that ‖a2 − a‖ < 1/‖a‖d and define c := 1 − 2/d > 0, i.e., d(1 − c) = 2.

3It is possible to prove an explicit formula for the polynomials Pm:

Pm(x) =

2m−1
∑

k=m

xk
m
∑

i=k−m+1

(−1)i+1
(m

i

)(m− 1 + k − i

k − i

)

.
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Then we obtain

‖Pm(a)2 − Pm(a)‖ ≤ ‖a2 − a‖m‖a‖2m−2

<
1

‖a‖d(1−c)m
‖a2 − a‖cm‖a‖2m−2

=
‖a2 − a‖cm

‖a‖2
→ 0

for m → ∞. Hence, the sequence (Pm(a)) converges to an idempotent e ∈ A.
The inequality ‖Pm+1(a)−Pm(a)‖ ≤ ‖a2−a‖m‖a‖ < 1/‖a‖ for m ∈ N, m ≥ 1,
and the convergence Pm+1(a)− Pm(a) → 0 imply that ‖e− a‖ < 1/‖a‖. �

Theorem 3.11. Let (An)n∈N be an increasing sequence of closed sub-Zp-

algebras of B(Qp(X)). Moreover, let A be the closed union of the An. Then

K0(A) is isomorphic to the direct limit of the sequence of the K0(An) with the

canonical homomorphisms.

Proof. The proof is (as in the Archimedean case) a straight-forward application
of the two preceding lemmas (cp. [10, pp. 234–240], cp. also [4, p. 46]). �

Again, a more general result is true: Let (An, ϕn) be a sequence of Banach-
Zp-algebras An and contractive homomorphisms ϕn : An → An+1, and let A
be their direct limit as a Zp-Banach algebra. Then K0(A) is the direct limit
of the sequence (K0(An),K0(ϕn)).

Observe that K(Qp(X)) is the closure of the set of all operators whose ma-
trices have only finitely many non-vanishing entries. As the finite-dimensional
matrix algebras Qn×n

p (as well as Zn×n
p ) have K0-group Z, we can therefore

state the following corollary as an application of the preceding theorem (here,
we let K(1)(Qp(X)) denote the set of all operators in K(Qp(X)) with norm not
greater than 1).

Corollary 3.12. We have K0(K(Qp(X))) = Z. The canonical map

K0(K(1)(Qp(X))) → K0(K(Qp(X)))

is an isomorphism.

Theorem 3.13. Let e be an idempotent in K(Qp(X)). Then the image of e
is a finite-dimensional Qp-vector space.

Proof. A compact operator e in B(Qp(X)) has the property that it can be
approximated in norm by an operator F in B(Qp(X)) having only finitely
many non-vanishing matrix-entries such that ‖e − F‖ < 1/‖e‖3. If e is an
idempotent, then we have ‖F 2 −F‖ ≤ max{‖F 2 − e2‖, ‖e−F‖} ≤ max{‖F −
e‖‖F‖, ‖F − e‖‖e‖, ‖e − F‖} < 1/‖e‖2. Therefore, there is an idempotent f
with only finitely many matrix entries such that ‖f − F‖ < 1/‖e‖. We also
obtain ‖f − e‖ < 1/‖e‖ and therefore the equivalence of e and f . As f has
finite-dimensional image, also e must have finite-dimensional image. �
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3.14. The group K0(B(Qp(X))). Let B(1)(Qp(X)) denote the set of all op-
erators in B(Qp(X)) with norm not greater than 1. Next, we want to show
that K0(B(1)(Qp(X))) = 0.

Lemma 3.15. If X is countably infinite, the ring B(1)(Qp(X)) is an infinite

sum ring. In particular, K0(B(1)(Qp(X))) = 0.

Proof. First, we show that it is a sum ring:4 Choose a decomposition of X
into a countable number X0, X1, X2, . . . of countably infinite subsets (i.e., their
disjoint union is X). Now, choose four operators α0, β0, α1, β1 ∈ B(1)(Qp(X))
such that the following properties hold: α0 is a bijection of X0 onto X (here,
we identify the elements x ∈ X with the corresponding elements δx ∈ Qp(X))
and maps the elements of X1 ∪X2 ∪ · · · to 0; β0 maps X bijectively onto X0;
β1 maps, for each n ∈ N, the elements of Xn bijectively onto Xn+1; α1 maps,
for each n ∈ N, n ≥ 1, the elements of Xn bijectively onto Xn−1 and those of
X0 to 0. Furthermore, one requires that α0β0|X = idX and α1β1|X = idX .

Operators fulfilling these requirements are easily verified to satisfy the rela-
tions

α0β0 = α1β1 = 1, β0α0 + β1α1 = 1

that imply that B(1)(Qp(X)) is a sum ring.
But B(1)(Qp(X)) is even an infinite sum ring, that is, for each operator

a ∈ B(1)(Qp(X)), define a∞ to be the operator in B(Qp(X)) that acts as a
diagonal operator on each Xn as if it acted as a on X , i.e., more precisely, that
maps x ∈ Xn to βn

1 β0aα0α
n
1x. The operator a∞ lies in B(1)(Qp(X)) because

its matrix admits no entries in Qp\Zp (as does the matrix of a ∈ B(1)(Qp(X))).
As one has a∞ =

∑
n∈N βn

1 β0aα0α
n
1 (pointwise limit), it is easy to see that it

always satisfies the equation

β0aα0 + β1a
∞α1 = a∞.

This fact implies indeed that B(1)(Qp(X)) is an infinite sum ring (because the
map a 7→ a∞ is a unital ring homomorphism) and that K0(B(1)(Qp(X))) = 0.
The proof is complete. �

It remains to prove that K0(B(Qp(X))) = 0 for a countable set X . In
the sequel, we will always (without loss of generality) assume X = N for
simplicity. It is sufficient to show that each idempotent e ∈ B(Qp(N)) is
stably equivalent to zero because Mm(B(Qp(N))) ∼= B(Qp(N× {1, . . . ,m})) ∼=
B(Qp(N)) for all m ∈ N, m ≥ 1. Our strategy will be the following: First,
we construct an idempotent f ∈ B(Qp(N)) with the finite-dimensional image
im f = Qpe1 + · · · + Qpen (where the columns e1, . . . , en of e are chosen in
such a way that they contain all entries of e in Qp \ Zp) and with the further

4A sum ring is a unital ring R with elements a0, b0, a1, b1 ∈ R such that a0b0 = a1b1 = 1
and b0a0+b1a1 = 1, cp. [5, p. 10]. In this case, ⊞ : R×R → R, (x, y) 7→ x⊞y = b0xa0+b1ya1,
is a unital ring homomorphism. An infinite sum ring is a sum ring R with a unital ring
homomorphism R → R, a 7→ a∞, such that a⊞ a∞ = a∞ holds for all a ∈ R. According to
[5, Prop. 2.3.1], infinite sum rings always have vanishing K0-group.
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property that also g = e − f is an idempotent with im g ⊆ im e and ‖g‖ ≤ 1.
Second, we show the stable equivalence of g and e (which proves the result
because of Lemma 3.15).

In the first step, we want to show that finite-dimensional subspaces have a
complement.

Lemma 3.16. Let e ∈ B(Qp(N)) be an idempotent and define U = eQp(N).
Furthermore, let V ⊆ U ∩ c0(N,Qp) be a finite-dimensional Qp-vector space.

Then there exists a τ-continuous ‖ ‖-contractive idempotent endomorphism

f̃ : U → U such that im f̃ = V .

Proof. Choose a basis (ṽ1, . . . , ṽm) for V . Using certain operations (addition
of a multiple of a basis vector to another, multiplication of a basis vector with
a number), it is possible to transform this basis into a basis (v1, . . . , vm) of
V such that ‖v1‖ = · · · = ‖vm‖ = 1 and with the property that for each
k = 1, . . . ,m, there is a number ak ∈ N such that vi(ak) = δik for i = 1, . . . ,m
(where vi(ak) is the ak-th entry of vi).

For an element ξ ∈ U , define now f̃(ξ) = ξ(a1)v1 + · · · + ξ(am)vm. The

function f̃ : U → U satisfies the required properties of the lemma. �

Now, we can proceed to the announced decomposition of the idempotent e.

Lemma 3.17. Let e ∈ B(Qp(N)) be an idempotent and define U = eQp(N).
Let ei, i ∈ N, be the columns of e (considered as a matrix ) and choose n ∈ N

such that ei does not contain entries in Qp \ Zp for i > n. Then there is an

idempotent f ∈ B(Qp(N)) with the properties that fe = ef = f , that im f is

the finite-dimensional Qp-vector space Qpe1 + · · ·+Qpen and that e− f is an

idempotent with ‖e− f‖ ≤ 1.

Proof. Define V to be the space Qpe1+· · ·+Qpen ⊆ U and apply the preceding

lemma on it. Let f̃ : U → U be the ‖ ‖-contractive τ -continuous idempotent

of the preceding lemma with im f = V . Define f = f̃ ◦ e. It is clear that f
is τ -continuous (and therefore in B(Qp(N))) and that it is an idempotent with
im f = V . The equation ef = fe = f follows from V ⊆ U . Furthermore, we
obtain (e − f)2 = e− fe− ef + f = e− f − f + f = e− f , and e − f is thus
an idempotent.

We still have to show that ‖e−f‖ ≤ 1. Let k be in {0, . . . , n}. A calculation
yields

(e− f)δk = eδk − (f̃ ◦ e)δk = ek − f̃ ek = ek − ek = 0.

On the other hand, for k ∈ N, k > n, we obtain

‖(e− f)δk‖ = ‖eδk − fδk‖ = ‖ek − f̃ ek‖ ≤ ‖ek‖ ∨ ‖f̃ek‖ ≤ 1,

because f̃ is ‖ ‖-contractive and ‖ek‖ ≤ 1.
Hence, considered as a matrix, e − f contains no entries in Qp \ Zp and we

have shown ‖e− f‖ ≤ 1. �
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Lemma 3.18. Let A be a closed sub-Zp-algebra of B(Qp(X)) that contains

the identity. Let e ∈ A be an idempotent such that e 6= 0 and let a ∈ A be

such that ‖e − a‖ < 1/‖e‖3. Then the sequence (Pm(a))m∈N converges to an

idempotent ea ∈ A that is equivalent to e.

The polynomials Pm ∈ Z[x], m ∈ N, m ≥ 1, have been defined in the proof
of Lemma 3.10.

Proof. First, we obtain ‖e‖ ≥ 1 and ‖e − a‖ < 1/‖e‖3 ≤ 1 ≤ ‖e‖ and hence
‖a‖ = ‖e‖ ≥ 1. Now, notice that ((e − a) + a)2 = (e− a) + a, i.e.,

(e− a)2 + a2 + (e− a)a+ a(e− a) = (e− a) + a

or

‖a2 − a‖ = ‖(e− a)− (e− a)2 − (e − a)a− a(e− a)‖ ≤ ‖e− a‖‖a‖ < 1/‖a‖2.

Recall from the proof of Lemma 3.10 that the sequence Pm(a) converges to
an idempotent element ea ∈ A such that ‖a − ea‖ < 1/‖a‖ = 1/‖e‖. We
therefore obtain that also ‖e − ea‖ < 1/‖e‖ holds. According to Lemma 3.9,
the idempotents e and ea are equivalent with respect to A. �

Lemma 3.19. Let f ∈ B(Qp(N)) be an idempotent whose image is a finite-

dimensional Qp-vector space. Then f is stably equivalent to zero.

Proof. The case f = 0 is obvious; assume therefore f 6= 0. Observe that, as f
has a finite-dimensional image, it must be a compact operator. Therefore, its
entries converge to zero.

Choose an element a ∈ B(Qp(N)) that has (considered as a matrix) only
finitely many non-vanishing entries and satisfies ‖a − f‖ < 1/‖f‖3. Choose
n ∈ N such that the entry aij of a is zero if i > n or j > n, i.e., such that
a ∈ M{0,...,n}(Qp) ⊆ B(Qp(N)). On the one hand, the polynomials Pm(a) will,
according to Lemma 3.18, converge in norm to an idempotent ea ∈ B(Qp(N))
that is equivalent to f . On the other hand, as the polynomials Pm have no
constant term, Pm(a) never leaves the set M{0,...,n}(Qp) ⊆ B(Qp(N)), and
hence also ea has only finitely many non-vanishing entries. It is a well-known
fact from linear algebra that ea is equivalent to a matrix of the form

D =

[
EN 0
0 0

]
,

where EN is the N ×N -unity matrix (N ∈ N) and 0 means vanishing matrices
of appropriate size. In the end, we obtain that D and e are equivalent matrices,
and therefore e is stably equivalent to zero. �

Theorem 3.20. We have K0(B(Qp(N))) = 0.

Proof. Let e be an idempotent in Mm(B(Qp(N))). We want to show that e
is stably equivalent to zero. Because of the isomorphism Mm(B(Qp(N))) ∼=
B(Qp(N × {1, . . . ,m})) ∼= B(Qp(N)) for all m ∈ N, m ≥ 1, it is sufficient to
treat the case e ∈ B(Qp(N)). Consider the decomposition e = f + (e − f)
stemming from Lemma 3.17. As we have f(e − f) = (e − f)f = 0, we obtain
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that the stable equivalence class of e is exactly the sum of the stable equivalence
classes of f and of e−f . But the stable equivalence class of f is zero according
to Lemma 3.19 and the stable equivalence class of e− f is zero as well because
of Lemma 3.15 (since ‖e− f‖ ≤ 1). Hence, the proof is finished. �

3.21. Lifting of idempotents in B(Qp(X))/K(Qp(X)).

Theorem 3.22. Let A ⊆ B(1)(Qp(N)) be a norm-closed subalgebra containing

the set K(1)(Qp(N)) of contractive compact operators. If E is an idempotent

element in the quotient algebra A/K(1)(Qp(N)), then it has an idempotent lift e

in A, i.e., e2 = e ∈ A and e+K(1)(Qp(N)) = E.

Proof. Choose an arbitrary lift a ∈ A of E. Then we get a2 − a ∈ K(1)(Qp(N))

and also an−a = (an−2+ · · ·+a+1)(a2−a) ∈ K(1)(Qp(N)) for n > 2. Observe
that there is a number N ∈ N such that for all n ∈ N, the entries of an − a
(considered as a matrix) at the positions (i, j) ∈ N2\{0, . . . , N}2 have absolute
value smaller than 1 (because the entries of a2 − a converge to zero and one
can write an − a = (a2 − a)bn = bn(a

2 − a) for an operator bn with ‖bn‖ ≤ 1).
Therefore, there must be m,n ∈ N with n < m such that ‖am − an‖ < 1.

For i, j ∈ N such that i > N or j > N , the entries of an − a and am − a
(hence of am − an) at the position (i, j) have absolute value smaller than 1
anyway and for the finitely many positions in {1, . . . , N}2, the entries of am−a
and an − a become arbitrarily close for certain m,n for compactness reasons
(we used am − an = (am − a) − (an − a)). Now, choose k ∈ N such that
k(m − n) > n. Then we also have ‖a(k+1)(m−n) − ak(m−n)‖ < 1 and thus
‖a2k(m−n) − ak(m−n)‖ < 1.

Finally, we apply our usual technique. As b = ak(m−n) and its square have
distance less than 1, the sequence of polynomials Pl(b) (defined in the proof
of Lemma 3.10) converges to an idempotent e for l → ∞ that has distance
less than 1 from b. As all the operators Pl(b)− b are of the form (b2 − b)Q(b)
(where Q is a polynomial with coefficients in Z), they are all compact, as well
as b−a and therefore Pl(b)−a. As the ideal of compact operators K(1)(Qp(N))
is norm-closed in B(1)(Qp(N)), we obtain that also e−a is compact, i.e., e is an
idempotent lift of E. Note that in the whole procedure, we did not leave the
algebra A (even if it is nonunital) because we assumed it to be norm-closed,
i.e., e ∈ A. That finishes the proof. �

As the operators in B(Qp(N)) have (considered as matrices) only finitely
many entries not in Zp and differ therefore only by a compact difference from
operators in B(1)(Qp(N)), we easily get the following corollary.

Corollary 3.23. Let A ⊆ B(Qp(N)) be a norm-closed subalgebra containing

the set K(Qp(N)) of compact operators. If E is an idempotent element in

the quotient algebra A/K(Qp(N)), then it has an idempotent lift e in A, i.e.,
e2 = e ∈ A and e+K(Qp(N)) = E.
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