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Abstract. For a local field F we consider tamely ramified principal series representations V
of G = GLd+1(F ) with coefficients in a finite extension K of Qp. Let I0 be a pro-p-Iwahori
subgroup in G, let H(G, I0) denote the corresponding pro-p-Iwahori Hecke algebra. If V is
locally unitary, i.e. if the H(G, I0)-module V I0 admits an integral structure, then such an
integral structure can be chosen in a particularly well organized manner, in particular its
modular reduction can be made completely explicit.
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1. Introduction

Let F be a local nonarchimedean field with finite residue field kF of char-
acteristic p > 0, let G = GLd+1(F ) for some d ∈ N. Let K be another local
field which is a finite extension of Qp, let o denote its ring of integers, π ∈ o a
nonzero element in its maximal ideal and k its residue field.

The general problem of deciding whether a given smooth (or, more generally,
locally algebraic) G-representation V over K admits a G-invariant norm—or
equivalently: a G-stable free o-sub module containing a K-basis of V—is of
great importance for the p-adic local Langlands program. It is not difficult to
formulate a certain necessary condition for the existence of a G-invariant norm
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on V . This has been emphasized first by Vignéras, see also [2], [3], [6], [7]. If
V is a tamely ramified smooth principal series representation and if d = 1 then
this condition turns out to also be sufficient, see [8]. Unfortunately, if d > 1
it is unknown if this condition is sufficient. See however [4] for some recent
progress.

In this note we consider tamely ramified smooth principal series represen-
tations V of G over K for general d ∈ N. More precisely, we fix a maximal
split torus T , a Borel subgroup P and a pro-p-Iwahori subgroup I0 in G fixing
a chamber in the apartment corresponding to T . We then consider a smooth
K-valued character Θ of T which is trivial on T ∩ I0, view it as a character of
P and form the smooth induction V = IndG

PΘ.
Let H(G, I0) denote the pro-p-Iwahori Hecke algebra with coefficients in o

corresponding to I0. The K-subspace V I0 of I0-invariants in V is naturally
a module over H(G, I0)⊗o K. The said necessary condition for the existence
of a G-invariant norm on V is now equivalent with the condition that the
H(G, I0)⊗oK-module V I0 admits an integral structure, i.e. an o-freeH(G, I0)-
sub module L containing a K-basis of V I0 . One might phrase this as the
condition that V be locally integral, or locally unitary.

It is not difficult to directly read off from Θ whether V is locally unitary.
(Besides [2, Prop. 3.2] we mention the formulation in terms of Jacquet modules
as propagated by Emerton ([3]), see also Section 4 below.) We rederive this
relationship here. However, the proper purpose of this paper is to provide
explicit and particularly well structured o-lattices L∇ in V I0 as above whenever
V is locally unitary.

Our approach is completely elementary; for example, it does not make use
of the integral Bernstein basis for H(G, I0) (e.g. [7]). It is merely based on
the investigation of certain Z-valued functions ∇ on the finite Weyl group
W = N(T )/T , and thus on combinatorics of W . We consider the canonical
K-basis {fw}w∈W of V I0 where fw ∈ V I0 has support PwI0 and satisfies
fw(w) = 1 (we realize W as a subgroup in G). We then ask for functions
∇ : W → Z such that L∇ = ⊕w∈W (π)∇(w)fw is an o-lattice as desired. We
show (Theorem 4.2) that whenever V is locally unitary, then V I0 admits an
H(G, I0)-stable o-lattice of this particular shape.

The structure of the H(G, I0)k = H(G, I0)⊗ok-modules L∇⊗ok so obtained
is then encoded in combinatorics of the (finite) Coxeter groupW . Approaching
them abstractly we suggest the notion of an H(G, I0)k-module of W -type (or:
a reduced standard H(G, I0)k-module): This is an H(G, I0)k-module M [θ, σ, ǫ•]
with k-basis parametrized by W and whose H(G, I0)k-structure is character-
ized, by means of some explicit formulae, through a set of data (θ, σ, ǫ•) as fol-
lows: θ is a character of I/I0 = (T ∩I)/(T ∩I0) where I ⊃ I0 is the correspond-
ing Iwahori subgroup; σ is a function {w ∈ W | ℓ(wsd) > ℓ(w)} → {−1, 0, 1}
where sd is the simple reflection corresponding to an end in the Dynkin dia-
gram, and ℓ is the length function on W ; finally, ǫ• = {ǫw | w ∈ W} is a set of
units in k. (But not any such set of data (θ, σ, ǫ•) defines an H(G, I0)k-module
M [θ, σ, ǫ•].)
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The explicit nature of L∇⊗o k, and more generally of an H(G, I0)k-module
of W -type, is particularly well suited for computing its value under a certain
functor from finite dimensional H(G, I0)k-modules to (ϕ,Γ)-modules (if F =
Qp), see [5].

We intend to generalize the results of the present paper to other reductive
groups in the future. Moreover, the relationship between H(G, I0)k-modules
of W -type (reduced standard H(G, I0)k-modules) and standard H(G, I0)k-
modules should be clarified.

The outline is as follows. In Section 2 we first introduce the notion of a
balanced weight of length d + 1: a (d + 1)-tuple of integers satisfying certain
boundedness conditions which later on will turn out to precisely encode the
condition (on Θ) for V to be locally unitary. Given such a balanced weight, we
show the existence of certain functions ∇ : W → Z “integrating” it. In Section
3 we introduce V = IndGPΘ and show that if a function ∇ “integrates” the
“weight” associated with Θ, then L∇ is an H(G, I0)-stable o-lattice as desired.
In Section 4 we put the results of Sections 2 and 3 together. In Section 5 we
introduce H(G, I0)k-modules of W -type.

2. Functions on symmetric groups

For a finite subset I of Z≥0 we put

∆(I) =
∑

i∈I

i −
|I| · (|I| − 1)

2
.

Definition. Let d, r ∈ N. We say that a sequence of integers (ni)0≤i≤d =

(n0, . . . , nd) is a balanced weight of length d+1 and amplitude r if
∑d

i=0 ni = 0
and if for each subset I ⊂ {0, . . . , d} we have

r∆(I) ≥
∑

i∈I

ni ≥ −r∆({0, . . . , d} − I).(1)

Lemma 2.1. If (ni)0≤i≤d is a balanced weight of length d + 1 and amplitude
r, then so is (−nd−i)0≤i≤d.

Proof. For any I ⊂ {0, . . . , d} we compute

∆(I) =
∑

i∈I

i−
|I| · (|I| − 1)

2

=

d
∑

i=0

i−
∑

i/∈I

i− d|I| −
|I|2

2
+

(d+ 1)|I|+ d|I|

2

=
d(d+ 1)

2
−
∑

i/∈I

i− d|I| −
|I|2

2
+

(d+ 1)|I|+ d|I|

2

= d(d+ 1− |I|)−
∑

i/∈I

i−
(d+ 1− |I|)(d− |I|)

2
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=
∑

i/∈I

(d− i)−
(d+ 1− |I|)(d− |I|)

2

= ∆({d− i | i ∈ {0, . . . , d} − I}).

Together with the assumption
∑d

i=0 ni = 0 this shows that the set of in-
equalities (1) for (ni)0≤i≤d is equivalent with the same set of inequalities
for (−nd−i)0≤i≤d. Namely, given I ⊂ {0, . . . , d}, the inequalities (1) for
(ni)0≤i≤d and I are equivalent with the inequalities (1) for (−nd−i)0≤i≤d and
{d− i | i ∈ {0, . . . , d} − I}. �

Lemma 2.2. Let (ni)0≤i≤d be a balanced weight of length d+1 and amplitude r.

(a) There is a balanced weight (ñi)0≤i≤d of length d+ 1 and amplitude r such
that ñ0 = 0 and 0 ≤ ni − ñi ≤ r for all 1 ≤ i ≤ d.

(b) There is a balanced weight (mi)0≤i≤d−1 of length d and amplitude r such
that 0 ≤ ni −mi−1 ≤ r for each i = 1, . . . , d.

Proof. We first show that (b) follows from (a). Indeed, suppose we are given
(ñi)0≤i≤d as in (a). Then put mi−1 = ñi for i = 1, . . . , d. We clearly have
∑d−1

i=0 mi = 0. Next, let I ⊂ {0, . . . , d− 1}. Putting I+ = {i+ 1 | i ∈ I} and

I+0 = I+ ∪ {0} we then find

r∆(I) = r
(

∑

i∈I

i−
|I|(|I| − 1)

2

)

= r
(

∑

i∈I+

0

i− |I| −
|I|(|I| − 1)

2

)

= r
(

∑

i∈I+

0

i−
|I+0 |(|I+0 | − 1)

2

)

= r∆(I+0 )

(i)

≥
∑

i∈I+

0

ñi =
∑

i∈I

mi

where (i) holds true by assumption. Similarly, we find

−r∆
(

{0, . . . , d− 1} − I
)

(2)

= −r
(

∑

i∈{0,...,d−1}−I

i−
(d− |I|)(d− |I| − 1)

2

)

= −r
(

∑

i∈{0,...,d}−I+

i− (d− |I|)−
(d− |I|)(d − |I| − 1)

2

)

= −r
(

∑

i∈{0,...,d}−I+

i−
(d+ 1− |I+|)(d− |I+|)

2

)
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= −r∆({0, . . . , d} − I+)

(ii)

≤
∑

i∈I+

ñi =
∑

i∈I

mi

where (ii) holds true by assumption.
Now we prove statement (a) in three steps.

Step 1: For any sequence of integers t1, . . . , td satisfying

r|I|(d −
1

2
(|I| − 1)) ≥

∑

i∈I

ti ≥
1

2
r|I|(|I| − 1)(3)

for each subset I ⊂ {1, . . . , d}, there exists another sequence of integers t̃1, . . . ,

t̃d, again satisfying formula (3) for each I ⊂ {1, . . . , d} and such that
∑d

i=1 t̃i =
1
2rd(d − 1) and 0 ≤ ti − t̃i ≤ r for all 1 ≤ i ≤ d.

For a subset I ⊂ {1, . . . , d} we write Ic = {1, . . . , d} − I. Put

δ =

d
∑

i=1

ti −
1

2
rd(d − 1).

To construct t̃1, . . . , t̃d as desired, we put s
(0)
i = ti and define inductively

sequences s
(m)
1 , . . . , s

(m)
d for 1 ≤ m ≤ δ such that 0 ≤ ti − s

(m)
i ≤ r, such that

0 ≤ s
(m−1)
i − s

(m)
i ≤ 1, such that δ−m =

∑d
i=1 s

(m)
i − 1

2d(d− 1) and such that

for any fixed m the sequence (s
(m)
i )i satisfies (3) for each subset I ⊂ {1, . . . , d}.

Once all the (s
(m)
i )i are constructed we may put t̃i = s

(δ)
i .

Suppose (s
(m)
i )i have been constructed for some m < δ. Let I0 ⊂ {1, . . . , d}

be maximal such that
∑

i∈I0
s
(m)
i = 1

2r|I0|(|I0| − 1). We have

s
(m)
i0

< s
(m)
k for each i0 ∈ I0 and each k ∈ Ic0 .(4)

This follows from combining the three formulae
∑

i∈I0∪{k}

s
(m)
i ≥

1

2
r|I0 ∪ {k}|(|I0 ∪ {k}| − 1) =

1

2
r|I0|(|I0| − 1) + r|I0|,

∑

i∈I0

s
(m)
i =

1

2
r|I0|(|I0| − 1),

∑

i∈I0−{i0}

s
(m)
i ≥

1

2
r|I0 − {i0}|(|I0 − {i0}| − 1) =

1

2
r|I0|(|I0| − 1)− r(|I0| − 1)

(the first one and the last one holding by hypothesis).

Claim: There is some k ∈ Ic0 such that s
(m)
k + r > tk.

Suppose that, on the contrary, s
(m)
k + r = tk for all k ∈ Ic0 . As (ti)i satisfies

(3) we then have

r|Ic0 |(d−
1

2
(|Ic0 | − 1)) ≥

∑

k∈Ic
0

s
(m)
k + r
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or equivalently

r|Ic0 |(d− 1−
1

2
(|Ic0 | − 1)) ≥

∑

k∈Ic
0

s
(m)
k .

On the other hand, as m < δ we find
∑

k∈Ic
0

s
(m)
k =

(

∑

k∈I0

s
(m)
k

)

−
∑

k∈I0

s
(m)
k

>
1

2
rd(d − 1)−

1

2
r|I0|(|I0| − 1)

= r

d−1
∑

n=|I0|

n

= r|Ic0 |(d− 1−
1

2
(|Ic0 | − 1)).

Taken together this is a contradiction. The claim is proven.

We choose some k ∈ Ic0 such that s
(m)
k + r > tk and put s

(m+1)
k = s

(m)
k − 1

and s
(m+1)
i = s

(m)
i for i ∈ {1, . . . , d} − {k}.

Claim: (s
(m+1)
i )i satisfies the inequality on the right hand side of (3) for

each I ⊂ {1, . . . , d}.
If k /∈ I this follows from the inequality on the right hand side of (3) for I

and (s
(m)
i )i. Similarly, if

∑

i∈I s
(m)
i > 1

2r|I|(|I| − 1) the claim is obvious. Now

assume that k ∈ I and
∑

i∈I s
(m)
i = 1

2r|I|(|I| − 1). We then find some i0 ∈ I0
with i0 /∈ I, because otherwise I0 ⊂ I and hence (since k ∈ I but k /∈ I0) even
I0 ( I, which would contradict the maximality of I0 as chosen above. Formula

(4) gives s
(m+1)
k ≥ s

(m)
i0

, hence the inequality on the right hand side of (3) for

(I −{k})∪{i0} and (s
(m)
i )i implies the inequality on the right hand side of (3)

for I and (s
(m+1)
i )i.

The claim is proven. All the other properties required of (s
(m+1)
i )i are

obvious from its construction.

Step 2: The sequence t1, . . . , td defined by ti = ni+ r(d− i) satisfies formula
(3) for each subset I ⊂ {1, . . . , d}.

Indeed, for each I ⊂ {1, . . . , d} the formula (3) for (ti)1≤i≤d is equivalently
converted into the formula (1) for (ni)1≤i≤d by means of the following equa-
tions:

r|I|(d−
1

2
(|I| − 1)) = r∆(I) +

∑

i∈I

r(d − i),

1

2
r|I|(|I| − 1) = −r∆({0, . . . , d} − I) +

∑

i∈I

r(d− i).

Step 3: If for the ti as in Step 2 we choose t̃i as in Step 1, then the sequence
(ñi)0≤i≤d defined by ñ0 = 0 and ñi = t̃i − r(d − i) for 1 ≤ i ≤ d satisfies the
requirements of statement (a).
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It is clear that ñ0 = 0 and 0 ≤ ni − ñi ≤ r for all 1 ≤ i ≤ d, as well as
∑d

i=0 ñi = 0. It remains to see that (ñi)0≤i≤d satisfies the inequalities (1) for
any I ⊂ {0, . . . , d}. If 0 /∈ I then, using the same conversion formulae as in the
proof of Step 2, this follows from the fact that (t̃i)1≤i≤d satisfies formula (1) for

each I ⊂ {1, . . . , d}. If however 0 ∈ I then we use the property
∑d

i=0 ñi = 0:
it implies that, for (ñi)0≤i≤d, the left hand (resp. right hand) side inequality
of formula (1) for I is equivalent with the right hand (resp. left hand) side
inequality of formula (1) for {0, . . . , d} − I, thus holds true because the latter
holds true—as we just saw. �

Let W denote the finite Coxeter group of type Ad. Thus, W contains a
set S0 = {s1, . . . , sd} of Coxeter generators satisfying ord(sisi+1) = 3 for
1 ≤ i ≤ d− 1 and ord(sisj+1) = 2 for 1 ≤ i < j ≤ d− 1. Put u = sd · · · s1. Let
ℓ : W → Z≥0 denote the length function.

It is convenient to realize W as the symmetric group of the set {0, . . . , d}
such that si = (i−1, i) (transposition) for 1 ≤ i ≤ d. For w ∈ W and 1 ≤ i ≤ d
we then have

ℓ(wsi) > ℓ(w) if and only if w(i − 1) < w(i),(5)

see [1, Prop. 1.5.3].
Let W ′ denote the subgroup ofW generated by s1, . . . , sd−1. Any element w

in W can be uniquely written as w = uiw′ for some w′ ∈ W ′, some 0 ≤ i ≤ d.
We may thus define µ(w) = i; equivalently, µ(w) ∈ {0, . . . , d} is defined by

asking u−µ(w)w ∈ W ′.

Theorem 2.3. Let (ni)0≤i≤d be a balanced weight of length d + 1 and am-
plitude r. There exists a function ∇ : W → Z such that for all w ∈ W we
have

∇(w) −∇(wu) = −nµ(w)(6)

and such that for all s ∈ S0 and w ∈ W with ℓ(ws) > ℓ(w) we have

∇(w) − r ≤ ∇(ws) ≤ ∇(w).(7)

Proof. We argue by induction on d. The case d = 1 is trivial. Now assume that
d ≥ 2 and that we know the result for d−1. By Lemma 2.2 we find a balanced
weight (mi)0≤i≤d−1 of length d and amplitude r such that 0 ≤ ni −mi−1 ≤ r
for each i = 1, . . . , d. Put u′ = sd−1 · · · s1. Define

µ′ : W ′ → {0, . . . , d− 1}

by asking that for any w ∈ W ′ the element (u′)−µ′(w)w of W ′ belongs to
the subgroup generated by s1, . . . , sd−2. By induction hypothesis there is a
function ∇′ : W ′ → Z with

∇′(w)−∇′(wu′) = −mµ′(w)

for all w ∈ W ′ and

∇′(w) − r ≤ ∇′(ws) ≤ ∇′(w)
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for all w ∈ W ′, s ∈ {s1, . . . , sd−1} with ℓ(ws) > ℓ(w). Writing w ∈ W uniquely
as w = w′uj with w′ ∈ W ′ and 0 ≤ j ≤ d we define

∇(w) = ∇′(w′) +

j−1
∑

t=0

nµ(w′ut).

That this function ∇ satisfies condition (6) for all w ∈ W is obvious. We now
show that it satisfies condition (7) for s = sd and all w ∈ W with ℓ(wsd) >
ℓ(w). Write w = w′uj with w′ ∈ W ′ and 0 ≤ j ≤ d.

If j = d then w = w′ud = w′s1 · · · sd so that ℓ(wsd) < ℓ(w) (since w′ ∈ W ′).
Thus, for j = d there is nothing to prove.

Now assume 1 ≤ j ≤ d− 1. We then have

wsd = wu−jsd−ju
j = w′sd−ju

j

with w′sd−j ∈ W ′, and we claim that ℓ(wsd) > ℓ(w) implies ℓ(w′sd−j) > ℓ(w′).
Indeed, ℓ(wsd) > ℓ(w) means w(d−1) < w(d), by formula (5). As uj(d) = d−j
and (u′)j(d − 1) = d − 1 − j this implies w′(d − 1 − j) < w′(d − j), hence
ℓ(w′sd−j) > ℓ(w′), again by formula (5). The claim is proven.

Moreover, for 0 ≤ t ≤ j − 1 we have

w′sd−ju
t = w′utsd−j+t

with sd−j+t ∈ W ′. This implies µ(w′sd−ju
t) = µ(w′ut). Therefore the claim

∇(w) − r ≤ ∇(wsd) ≤ ∇(w) is reduced to the assumption ∇′(w′) − r ≤
∇′(w′sd−j) ≤ ∇′(w′).

Finally assume that j = 0, i.e. w = w′ ∈ W ′. Then ∇(w) = ∇′(w) and

∇(wsd) = ∇(wu′ud)

= ∇′(wu′) +

d−1
∑

t=0

nµ(wu′ut).(8)

Here ∇′(wu′) = ∇′(w) +mµ′(w) by the assumption on ∇′. On the other hand
∑d−1

t=0 nµ(wu′ut) = −nµ(wsd) as
∑d

i=0 ni = 0. Now we claim that

µ′(w) + 1 = µ(wsd).

Indeed, we have w(d) = d − µ(w) and hence also wsd(d) = d − µ(wsd) for
w ∈ W . Similarly, we have w(d − 1) = d− 1− µ′(w) and hence also

wsd(d) = w(d − 1) = d− 1− µ′(w)

for w ∈ W ′, and the claim is proven.
Inserting all this transforms the assumption 0 ≤ nµ(wsd) − mµ(wsd)−1 ≤ r

into the condition (7) (for s = sd).
We have proven condition (7) for s = sd and all w ∈ W with ℓ(wsd) > ℓ(w).

Condition (7) for all s ∈ S0 and all w ∈ W with ℓ(ws) > ℓ(w) can be checked
directly as well. However, alternatively one can argue as follows.

In the setting of Section 3 (and in its notations) choose an arbitrary F
with residue field Fq (for an arbitrary q), and choose K/Qp and π ∈ K such
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that our present r satisfies πr = q. We use the elements tui of T (explicitly
given by formula (14)) to define the character Θ : T → K× by asking that
Θ(tui) = π−ni−1 and that Θ|T∩I = θ be the trivial character. (This is well
defined as T is the direct product of T ∩ I and the free abelian group on the
generators tui for 0 ≤ i ≤ d.) The implication (iii)⇒(ii) in Lemma 3.5, applied
to this Θ, shows that what we have proven so far is enough. �

3. Hecke lattices in principal series representations I

Fix a prime number p. Let K/Qp be a finite extension field, o its ring of
integers and k its residue field.

Let F be a nonarchimedean locally compact field, OF its ring of integers,
pF ∈ OF a fixed prime element and kF = Fq its residue field with q = plogpq ∈
pN elements.

Let G = GLd+1(F ) for some d ∈ N. Let T be a maximal split torus in G,
let N(T ) be its normalizer. Let P be a Borel subgroup of G containing T , let
N be its unipotent radical.

Let X be the Bruhat–Tits building of PGLd+1(F ), let A ⊂ X be the apart-
ment corresponding to T . Let I be an Iwahori subgroup of G fixing a chamber
C in A, let I0 denote its maximal pro-p-subgroup. The (affine) reflections in
the codimension-1-faces of C form a set S of Coxeter generators for the affine
Weyl group. We view the latter as a subgroup of the extended affine Weyl
group N(T )/T ∩ I. There is an s0 ∈ S such that the image of S0 = S − {s0}
in the finite Weyl group W = N(T )/T is the set of simple reflections.

We find elements u, sd ∈ N(T ) such that uC = C (equivalently, uI = Iu,
or also uI0 = I0u), such that ud+1 ∈ {pF · id, p−1

F · id} and such that, setting

si = ud−isdu
i−d for 0 ≤ i ≤ d

the set {s1, . . . , sd} maps bijectively to S0, while {s0, s1, . . . , sd} maps bi-
jectively to S; we henceforth regard these bijections as identifications. Let
u = sd · · · s1 ∈ W ⊂ G. Let ℓ : W → Z≥0 be the length function with respect
to S0.

For convenience one may realize all these data explicitly, e.g. according
to the following choice: T consists of the diagonal matrices, P consists of
the upper triangular matrices, N consists of the unipotent upper triangular
matrices (i.e. the elements of P with all diagonal entries equal to 1). Then W
can be identified with the subgroup of permutation matrices in G. Its Coxeter
generators si for i = 1, . . . , d are the block diagonal matrices

si = diag

(

Ii−1,

(

0 1
1 0

)

, Id−i

)

while u is written in block form as

u =

(

Id
pF

)

.
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(Here Im, for m ≥ 1, always denotes the identity matrix in GLm.) The Iwahori
group I consists of the elements of GLd+1(OF ) mapping to upper triangular
matrices in GLd+1(kF ), while I0 consists of the elements of I whose diagonal
entries map to 1 ∈ kF .

For s ∈ S0 let ιs : GL2(F ) → G denote the corresponding embedding. For
a ∈ F×, b ∈ F put

hs(a) = ιs

((

a 0
0 a−1

))

, νs(b) = ιs

((

1 b
0 1

))

, δs = ιs

((

−1 0
0 1

))

.

We realize W as a subgroup of G in such a way that

ιs

((

0 1
1 0

))

= s

for all s ∈ S0. Notice that Im(νs) ⊂ N for all s ∈ S0.

Lemma 3.1. (a) For s ∈ S0 and a ∈ F× we have

sνs(a)s = hs(a
−1)νs(a)δssνs(a

−1).(9)

(b) For w ∈ W and s ∈ S0 with ℓ(ws) > ℓ(w) and for b ∈ F we have

wνs(b)w
−1 ∈ N.(10)

Proof. Statement (a) is a straightforward computation inside GL2(F ). For
statement (b) write s = si for some 1 ≤ i ≤ d. Then the matrix wνs(b)w

−1

has entry b at the (w(i− 1), w(i))-spot (and coincides with the identity matrix
at all other spots). As ℓ(wsi) > ℓ(w) implies w(i − 1) < w(i) by formula (5),
this implies wνs(b)w

−1 ∈ N . �

Let indGI01o denote the o-module of o-valued compactly supported functions
f on G such that f(ig) = f(g) for all g ∈ G, all i ∈ I0. It is a G-representation
by means of the formula (g′f)(g) = f(gg′) for g, g′ ∈ G. Let

H(G, I0) = End
o[G](ind

G
I01o)

op

denote the corresponding pro-p-Iwahori Hecke algebra with coefficients in o.
Then indGI01o is naturally a right H(G, I0)-module. For a subset H of G we
let χH denote the characteristic function of H . For g ∈ G let Tg ∈ H(G, I0)
denote the Hecke operator corresponding to the double coset I0gI0. It sends
f : G → o to

Tg(f) : G −→ o, h 7→
∑

x∈I0\G

χI0gI0 (hx
−1)f(x).

In particular we have

Tg(χI0) = χI0g = g−1χI0 if gI0 = I0g.(11)

Let R be an o-algebra, let V be a representation of G on an R-module. The
submodule of V I0 of I0-invariants in V carries a natural (left) action by the
R-algebra H(G, I0)R = H(G, I0)⊗oR, resulting from the natural isomorphism

V I0 ∼= HomR[G]((ind
G
I01o) ⊗o R, V ). Explicitly, for g ∈ G and v ∈ V I0 the
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action of Tg is given as follows: If the collection {gj}j in G is such that I0gI0 =
∐

j I0gj , then

Tg(v) =
∑

j

g−1
j v.(12)

Let T = (I ∩ T )/(I0 ∩ T ) = I/I0.
Suppose we are given a character Θ : T → K× whose restriction θ = Θ|I∩T

to I ∩ T factors through T . As T is finite, θ takes values in o
×, hence induces

a character (denoted by the same symbol) θ : T → k×. For any w ∈ W it
defines a homomorphism

θ(whs(.)w
−1) : k×F → k×, x 7→ θ(whs(x)w

−1)

and it makes sense to compare it with the constant homomorphism 1 taking
all elements of k×F to 1 ∈ k×. Notice in the following that θ(whs(.)w

−1) = 1 if
and only if θ(wshs(.)sw

−1) = 1. For w ∈ W and s ∈ S0 put

κw,s = κw,s(θ) = θ(wδsw
−1) ∈ {±1}.

Read Θ as a character of P by means of the natural projection P → T and
consider the smooth principal series representation

V = IndGPΘ

= {f : G → K locally constant | f(pg) = Θ(p)f(g) for g ∈ G, p ∈ P}

with G-action (gf)(x) = f(xg). For w ∈ W let fw ∈ V denote the unique
I0-invariant function supported on PwI0 and with fw(w) = 1. It follows from
the decomposition G =

∐

w∈W PwI0 that the set {fw}w∈W is a K-basis of the

H(G, I0)K -module V I0 .

Lemma 3.2. Let w ∈ W and s ∈ S0, let a ∈ OF .

(a) If ℓ(ws) > ℓ(w) and a /∈ (pF ) then wsνs(a)s /∈ PwI0.
(b) If ℓ(ws) > ℓ(w) then vνs(a)s /∈ PwI0 for all v ∈ W − {ws}.
(c) vνs(a)s /∈ PwI0 for all v ∈ W − {w,ws}.

Proof. We have νs(OF ) ⊂ I0. Therefore all statements will follow from stan-
dard properties of the decomposition G =

∐

w∈W PwI0, or rather the restric-
tion of this decomposition to GLd+1(OF ); notice that this restriction projects
to the usual Bruhat decomposition of GLd+1(kF ).

(a) The assumption a /∈ (pF ), i.e. a ∈ O×
F , implies that wsνs(a)s ∈ wIsI,

by formula (9). The assumption ℓ(ws) > ℓ(w) implies wIsI ⊂ PwsI = PwsI0
by standard properties of the Bruhat decomposition, hence wIsI ∩PwI0 = ∅.

(b) Standard properties of the Bruhat decomposition imply vI0s ⊂ PvsI0 ∪
PvI0, as well as vI0s ⊂ PvsI0 if ℓ(vs) > ℓ(v). As ℓ(ws) > ℓ(w) and v 6= ws
statement (b) follows.

(c) The same argument as for (b). �
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Lemma 3.3. Let w ∈ W and s ∈ S0. We have

Ts(fw) =











fws, if ℓ(ws) > ℓ(w),

qfws, if ℓ(ws) < ℓ(w) and θ(whs(.)w
−1) 6= 1,

qfws + κws,s(q − 1)fw, if ℓ(ws) < ℓ(w) and θ(whs(.)w
−1) = 1.

Proof. We have I0sI0 =
∐

a I0sνs(a) where a runs through a set of represen-
tatives for kF in OF . For y ∈ G we therefore compute, using formula (12):

(Ts(fw))(y) =
(

∑

a

νs(a)sfw

)

(y)

=
∑

a

fw(yνs(a)s).(13)

Suppose first that ℓ(ws) > ℓ(w). For a /∈ (pF ) we then have wsνs(a)s /∈
PwI0 by Lemma 3.2, hence fw(wsνs(a)s) = 0. On the other hand fw(wsνs(0)s)
= fw(w) = 1. Together we obtain (Ts(fw))(ws) = 1. For v ∈ W − {ws} and
any a ∈ OF we have vνs(a)s /∈ PwI0 by Lemma 3.2, hence (Ts(fw))(v) = 0.
It follows that Ts(fw) = fws.

Now suppose that ℓ(ws) < ℓ(w). Then wsνs(a)sw
−1 ∈ N for any a, by

formula (10), hence

fw(wsνs(a)s) = θ(wsνs(a)sw
−1)fw(w)=1.

Summing up we get

(Ts(fw))(ws) =
∑

a

fw(wsνs(a)s) = |kF | = q.

To compute (Ts(fw))(w) we first notice that fw(wνs(0)s) = fw(ws) = 0. On
the other hand, for a /∈ (pF ) we find

fw(wνs(a)s) = fw(wssνs(a)s)

(i)
= fw(wshs(a

−1)νs(a)δssνs(a
−1))

= θ(wshs(a
−1)νs(a)δssw

−1)fw(wνs(a
−1))

(ii)
= θ(wshs(a

−1)δssw
−1)

= κws,sθ(wshs(a
−1)sw−1).

Here (i) uses formula (9) while (ii) uses fw(wνs(a
−1)) = fw(w) = 1 as well as

(wshs(a
−1)νs(a)δssw

−1) · (wshs(a
−1)δssw

−1)−1 = wsνs(a
−1)sw−1 ∈ N,

formula (10). Now

∑

a/∈(pF )

θ(wshs(a)sw
−1) =

{

q − 1, θ(whs(.)w
−1) = 1,

0, θ(whs(.)w
−1) 6= 1.

Thus
∑

a/∈(pF )

fw(wνs(a)s) =

{

κws,s(q − 1), θ(whs(.)w
−1) = 1,

0, θ(whs(.)w
−1) 6= 1.
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We have shown that

(Ts(fw))(w) =

{

κws,s(q − 1), θ(whs(.)w
−1) = 1,

0, θ(whs(.)w
−1) 6= 1.

Finally, for v ∈ W − {w,ws} and a ∈ OF we have vνs(a)s /∈ PwI0 by Lemma
3.2, hence (Ts(fw))(v) = 0. Summing up gives the formulae for Ts(fw) in the
case ℓ(ws) < ℓ(w). �

As u is the unique element in W ⊂ G lifting the image of u in W = N(T )/T
we have u−1u ∈ T . For w ∈ W we define

tw = wu−1uw−1 ∈ T.

We record the formulae

u−1u = tu0 = diag(pF , Id),

tui = diag(Id−i+1, pF , Ii−1) for 1 ≤ i ≤ d,(14)

In particular we notice that tw = twsi for 2 ≤ i ≤ d.

Lemma 3.4. For w ∈ W we have

Tu−1(fw) = Θ(tw)fwu−1 and Tu(fw) = Θ(t−1
wu)fwu.(15)

For w ∈ W and t ∈ T ∩ I we have

Tt(fw) = θ(wt−1w−1)fw.(16)

Proof. We use formula (11) in both cases: First,

(Tu−1(fw))(wu
−1) = (ufw)(wu

−1) = fw(wu
−1u) = Θ(tw)fw(w) = Θ(tw)

but

(Tu−1(fw))(v) = (ufw)(v) = fw(vu) = Θ(vuu−1v−1)fw(vu) = 0

for v ∈ W −{wu−1}, hence the first one of the formulae in (15); the other one
is equivalent with it (or alternatively: proven in the same way). Next,

(Tt(fw))(w) = (t−1fw)(w) = fw(wt
−1) = θ(wt−1w−1)fw(w) = θ(wt−1w−1),

but
(Tt(fw))(v) = (t−1fw)(v) = fw(vt

−1) = θ(vt−1v−1)fw(v) = 0

for v ∈ W − {w}, hence formula (16). �

We assume that there is some r ∈ N and some π ∈ o such that πr = q
and such that Θ takes values in the subgroup of K× generated by π and o

×.
Notice that, given an arbitrary Θ, this can always be achieved after passing to
a suitable finite extension of K. Let ordK : K → Q denote the order function
normalized such that ordK(π) = 1.

Suppose we are given a function ∇ : W → Z. For w ∈ W we put gw =
π∇(w)fw and consider the o-submodule

L∇ = L∇(Θ) =
⊕

w∈W

o.gw
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of V I0 which is o-free with basis {gw | w ∈ W}. We ask under which conditions
on ∇ it is stable under the action of H(G, I0) on V I0 . Consider the formulae

∇(w) −∇(wu) = ordK(Θ(twu)),(17)

∇(w) − r ≤ ∇(ws) ≤ ∇(w).(18)

Lemma 3.5. The following conditions (i), (ii), (iii) on ∇ are equivalent:

(i) L∇ is stable under the action of H(G, I0) on V I0 .
(ii) ∇ satisfies formula (17) for any w ∈ W , and it satisfies formula (18) for

any s ∈ S0 and any w ∈ W with ℓ(ws) > ℓ(w).
(iii) ∇ satisfies formula (17) for any w ∈ W , and it satisfies formula (18) for

s = sd and any w ∈ W with ℓ(wsd) > ℓ(w).

Proof. For t ∈ T ∩ I and w ∈ W it follows from Lemma 3.4 that 1

Tt(gw) = θ(wt−1w−1)gw,(19)

Tu−1(gw) = π∇(w)−∇(wu−1)Θ(tw)gwu−1 ,(20)

Tu(gw) = π∇(w)−∇(wu)Θ(t−1
wu)gwu.(21)

For w ∈ W and s ∈ S0 it follows from Lemma 3.3 that
(22)

Ts(gw) =































π∇(w)−∇(ws)gws, if ℓ(ws) > ℓ(w),

πr+∇(w)−∇(ws)gws, if ℓ(ws) < ℓ(w)

and θ(whs(.)w
−1) 6= 1,

πr+∇(w)−∇(ws)gws + κws,s(π
r − 1)gw, if ℓ(ws) < ℓ(w)

and θ(whs(.)w
−1) = 1.

From these formulae we immediately deduce that condition (i) implies both
condition (ii) and condition (iii) on ∇. Now it is known that H(G, I0) is
generated as an o-algebra by the Hecke operators Tt for t ∈ T ∩ I together
with Tu−1 , Tu and Tsd . Thus, to show stability of L∇ under H(G, I0) it is
enough to show stability of L∇ under these operators. The above formulae
imply that this stability is ensured by condition (iii). Thus (i) is implied by
(iii), and a fortiori by (ii). �

4. Hecke lattices in principal series representations II

In Lemma 3.5 we saw that the (particularly nice) H(G, I0) stable o-lattices

L∇ in the H(G, I0)K-module V I0 for V = IndG
PΘ are obtained from functions

∇ : W → Z satisfying the conditions stated there. We now want to explain
that the existence of such a function ∇ can be directly read off from Θ. For
0 ≤ i ≤ d put

ni = −ordK(Θ(tui+1)).
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Corollary 4.1. If (ni)0≤i≤d is a balanced weight of length d+1 and amplitude
r then there exists a function ∇ : W → Z such that L∇ is stable under the
action of H(G, I0) on V I0 .

Proof. By Theorem 2.3 there exists a function ∇ : W → Z satisfying condition
(iii) of Lemma 3.5. Thus we may conclude with that Lemma. �

Thus we need to decide for which Θ the collection (ni)0≤i≤d is a balanced
weight of length d+ 1 and amplitude r.

We now assume that F ⊂ K. We normalize the absolute value |.| : K× →
Q× ⊂ K× on K (and hence its restriction to F ) by requiring |pF | = q−1.
Let δ : T → F× denote the modulus character associated with P , i.e. δ =
∏

α∈Φ+ |α| where Φ+ is the set of positive roots. Let N0 = N ∩ I and

T+ = {t ∈ T | t−1N0t ⊂ N0}.

The group W acts on the group of characters Hom(T,K×) through its action
on T .

Theorem 4.2. Suppose that for all w ∈ W and all t ∈ T+ we have

|((wΘ)(wδ
−1

2 )δ
1
2 )(t)| ≤ 1(23)

and that the restriction of Θ to the center of G is a unitary character. Then
(ni)0≤i≤d is a balanced weight of length d+1 and amplitude r, and L∇ is stable
under the action of H(G, I0) on V I0 .

As the center of G is generated by the element
∏d

j=0 tuj = pF Id+1 (cp. for-

mula (14)) together with O×
F · Id+1, the condition that the restriction of Θ to

the center of G be a unitary character is equivalent with the condition

d
∏

j=0

|Θ(tuj )| = 1.(24)

Proof of Theorem 4.2. Recall that, for convenience, we work with the following
realization: T is the group of diagonal matrices, P is the group of upper
triangular matrices, si (for 1 ≤ i ≤ d) is the (i− 1, i)-transposition matrix and
u = u ·diag(pF , 1, . . . , 1). Thus T+ is the subgroup of T generated by all t ∈ T
(viewed as a subgroup of T by means of the Teichmüller character), by the
scalar diagonal matrices (the center of G), and by all the matrices of the form
diag(1, . . . , 1, pF , . . . , pF ). The modulus character is

δ : T −→ F×, diag(α0, . . . , αd) 7→

d
∏

i=0

|αi|
d−2i.

Write Θ = diag(Θ0, . . . ,Θd) with characters Θj : F× → K×. Reading W as
the symmetric group of the set {0, . . . , d}, formula (23) for t = diag(α0, . . . , αd)
reads

∣

∣

∣

∣

d
∏

i=0

Θτ(i)(αi)|αi|
τ(i)−i

∣

∣

∣

∣

≤ 1(25)
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for all permutations τ of {0, . . . , d}. Asking formula (25) for all diag(α0, . . . , αd)
∈ T+ is certainly equivalent with asking it for all diag(p−1

F , . . . , p−1
F , 1 . . . , 1)

and for all diag(1 . . . , 1, pF , . . . , pF ) (and all τ). This is equivalent with asking

|q|∆(I) ≤

∣

∣

∣

∣

∏

j∈I

Θj(pF )

∣

∣

∣

∣

≤ |q|−∆({0,...,d}−I)(26)

for all I ⊂ {0, . . . , d}. Indeed, the inequalities on the left hand side of (26)
are the inequalities (25) for the diag(p−1

F , . . . , p−1
F , 1 . . . , 1) and suitable τ .

The inequalities on the right hand side of (26) are the inequalities (25) for
the diag(1 . . . , 1, pF , . . . , pF ) and suitable τ . Now observe that Θj(pF ) =
Θ(tud+1−j ) and hence

|Θj(pF )| = |πord(Θ(t
ud+1−j ))| = |π−nd−j |

for 0 ≤ j ≤ d. We also have |q| = |πr|. Together with Lemma 2.2 we recover

formula (1). On the other hand, formula (24) is just the property
∑d

i=0 ni = 0.
We thus conclude with Corollary 4.1. �

Remarks. (1) We (formally) put χ = Θδ−
1
2 . Let P ⊂ G denote the Borel

subgroup opposite to P . The same arguments as in [3, p. 10] show that (at
least if χ is regular) for all w ∈ W the action of T on the Jacquet module JP (V )

of V (formed with respect to P ) admits a nonzero eigenspace with character

(wχ)δ
−1

2 , i.e. with character (wΘ)(wδ
−1

2 )δ
−1

2 . From [3] we then deduce that
the conditions in Theorem 4.2 are a necessary criterion for the existence of an
integral structure in V .

(2) This necessary criterion has also been obtained in [2]. Moreover, in
loc.cit. it is shown (in a much more general context) that it implies the ex-
istence of an integral structure in the H(G, I0)-module V I0 . The point of
Theorem 4.2 is that it explicitly describes a particularly nice such integral
structure.

(3) Consider the smooth dual HomK(V,K)sm of V ; it is isomorphic with

IndG
PΘ

−1δ. Our conditions (23) and (24) for Θ are equivalent with the same
conditions for Θ−1δ.

Remark. Suppose we are in the setting of Corollary 4.1 or Theorem 4.2. Let
H denote a maximal compact open subgroup of G containing I. Abstractly, H
is isomorphic with GLd+1(OF ). Let o[H ].L∇ denote the o[H ]-sub module of
V generated by L∇, let (o[H ].L∇)

I0 denote its o-sub module of I0-invariants.
Then one can show (we do not give the proof here) that the inclusion map
L∇ → (o[H ].L∇)

I0 is surjective (and hence bijective). On the one hand this
may be helpful for deciding whether V contains an integral structure, i.e. a
G-stable free o-sub module containing a K-basis of V . On the other hand it
implies (in fact: is equivalent with it) that the induced map

L∇ ⊗o k −→ (o[H ].L∇)⊗o k

is injective. This might be a useful observation about the H(G, I0)k-module
L∇ ⊗o k (which we call an H(G, I0)k-module of W -type in Section 5).
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5. H(G, I0)k-modules of W -type

We return to the setting of Section 3. For w ∈ W we define

ǫw = ǫw(Θ) = π−ordK(Θ(tw))Θ(tw).

Let us write W sd = {w ∈ W | ℓ(wsd) > ℓ(w)}. For a function σ : W sd →
{−1, 0, 1}, for w ∈ W and i ∈ {−1, 0, 1} we understand the condition σ(w) = i
as a shorthand for the condition

w ∈ W sd and σ(w) = i.

For w ∈ W we write κw = κwsd,sd .
Suppose that the function ∇ : W → Z satisfies the equivalent conditions of

Lemma 3.5. Define a function σ : W sd → {−1, 0, 1} by setting

(27) σ(w) =











1, if ∇(wsd) = ∇(w),

0, if ∇(w) − r < ∇(wsd) < ∇(w),

−1, if ∇(w) − r = ∇(wsd).

The action of H(G, I0) on L∇ induces an action of H(G, I0)k = H(G, I0)⊗o k
on L∇ ⊗o k. The o-basis {gw | w ∈ W} of L∇ induces a k-basis {gw | w ∈ W}
of L∇ ⊗o k = L∇(Θ)⊗o k (we use the same symbols gw).

Corollary 5.1. The action of H(G, I0)k on L∇ ⊗o k is characterized through
the following formulae: For t ∈ T ∩ I and w ∈ W we have

Tt(gw) = θ(wt−1w−1)gw,(28)

Tu−1(gw) = ǫwgwu−1 and Tu(gw) = ǫ−1
wugwu,(29)

(30) Tsd(gw) =































gwsd , if [σ(wsd) = −1 and θ(whsd (.)w
−1) 6= 1]

or σ(w) = 1,

−κwgw, if σ(wsd) ∈ {0, 1} and θ(whsd(.)w
−1) = 1,

gwsd − κwgw, if σ(wsd) = −1 and θ(whsd (.)w
−1) = 1,

0, all other cases.

Proof. Formula (28) follows from formula (19). The assumption ∇(wu−1) −
∇(w) = ordK(θ(tw)) implies that the formulae in (29) follow from formulae
(20) and (21). Finally, formula (30) follows from formula (22) by a case by
case checking. �

Forgetting their origin from some Θ and ∇, we formalize the structure of
H(G, I0)k-modules met in Corollary 5.1 in an independent definition.

Definition. We say that an H(G, I0)k-module M is of W -type (or: a reduced
standard module) if it is of the following form M = M(θ, σ, ǫ•). First, a k-
vector space basis of M is the set of formal symbols gw for w ∈ W . The
H(G, I0)k-action on M is characterized by a character θ : T → k× (which we
also read as a character of T ∩ I by inflation), a map σ : W sd → {−1, 0, 1}
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and a set ǫ• = {ǫw}w∈W of units ǫw ∈ k×. Namely, for w ∈ W we define
κw = κw(θ) = θ(wsdδsdsdw

−1) ∈ {±1}. Then it is required that for t ∈ T ∩ I
and w ∈ W formulae (28), (29) and (30) hold true.

Conversely we may begin with a character θ : T → k×, a map σ : W sd →
{−1, 0, 1} and a set ǫ• = {ǫw}w∈W of units ǫw ∈ k× and ask:

Question 1: For which set of data θ, σ, ǫ• do formulae (28), (29) and (30)
define an action of H(G, I0)k on ⊕w∈Wk.gw?

Question 2: For which set of data θ, σ, ǫ• does there exist some H(G, I0)-
module L∇(Θ) as in Corollary 5.1 such that L∇(Θ) ⊗o k ∼= M(θ, σ, ǫ•) as an
H(G, I0)k-module ?

In Question 2 we regard θ as taking values in o
× ⊂ K× by means of the

Teichmüller lifting. Clearly those θ, σ, ǫ• asked for in Question 2 belong to
those θ, σ, ǫ• asked for in Question 1.

We do not consider Question 1 in general, but provide a criterion for a
positive answer to Question 2. Suppose we are given a set of data θ, σ, ǫ• as
above.

Proposition 5.2. Suppose that ǫw = ǫwsi for all 2 ≤ i ≤ d and that there
exists a function ∂ : W → [−r, r] ∩ Z with the following properties:

σ(w) =











1, if w ∈ W sd and ∂(w) = 0,

0, if w ∈ W sd and 0 < ∂(w) < r,

−1, if w ∈ W sd and ∂(w) = r,

(31)

∂(wsd) = −∂(w),(32)

∂(wud−i) + ∂(wsiu
d−j) = ∂(wud−j) + ∂(wsju

d−i)(33)

for 1 ≤ i < j − 1 < d,

∂(wud−i) + ∂(wsiu
d−i−1) + ∂(wsisi+1u

d−i)

= ∂(wud−i−1) + ∂(wsi+1u
d−i) + ∂(wsi+1siu

d−i−1)(34)

for 1 ≤ i < d.
Then there exists an extension Θ : T → K× of θ and a function ∇ : W → Z

as before such that we have an isomorphism of H(G, I0)k-modules L∇(Θ)⊗ok ∼=
M(θ, σ, ǫ•).

Proof. Step 1: Let w, v ∈ W . Choose a (not necessarily reduced) expression
v = si1 · · · sir (with im ∈ {1, . . . , d}) and put

∂(w, v) =

r
∑

m=1

∂(wsi1 · · · sim−1
ud−im).

Claim: This definition does not depend on the chosen expression si1 · · · sir for
v.
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Indeed, it follows from hypothesis (33) that for 1 ≤ i < j − 1 < d we
have ∂(w, sisj) = ∂(w, sjsi) where on either side we use the expression of
sisj = sjsi as indicated. Similarly, it follows from hypothesis (34) that for
1 ≤ i < d we have ∂(w, sisi+1si) = ∂(w, si+1sisi+1) where on either side we
use the expression of sisi+1si = si+1sisi+1 as indicated. Finally, for 1 ≤ i ≤ d
we have ∂(w, sisi) = 0 where we use the expression sisi for the element sisi =
s2i = 1 ∈ W : this follows from the definition of ∂ and from siu

d−i = ud−isd.
Thus we see that our definition of ∂(w, v) (viewed as a function in v ∈ W ,
with fixed w ∈ W ) respects the defining relations for the Coxeter group W .
Iterated application implies the stated claim.

Step 2: The definition of ∂(w, v) implies ∂(w, v) + ∂(wv, x) = ∂(w, vx) for
v, w, x ∈ W . Therefore there is a function ∇ : W → Z, uniquely determined
up to addition of a constant function W → Z, such that

∇(w) −∇(wv) = ∂(w, v) for all v, w ∈ W.

It has the following properties. First, it fulfils formula (27). Next, we have

∇(w) −∇(wu) = ∇(wsi)−∇(wsiu) for w ∈ W and 1 ≤ i ≤ d− 1.(35)

∇(wu−1)−∇(w) = ∇(wu−1si)−∇(wsi) for w ∈ W and 2 ≤ i ≤ d.(36)

These formulae are equivalent, as siu = usi+1 for 1 ≤ i ≤ d − 1. To see that
they hold true we compute

∇(w)−∇(wsi) = ∂(w, si)

= ∂(wud−i)

= ∂(wu, si+1)

= ∇(wu)−∇(wusi+1)

= ∇(wu)−∇(wsiu)(37)

and formula (35) follows.

Step 3: For w ∈ W we define

Θ(tw) = π∇(wu−1)−∇(w)ǫw ∈ K×.

Formula (36) together with our assumption on the ǫw implies that this is well
defined, because for w,w′ ∈ W we have tw = tw′ if and only if w−1w′ belongs
to the subgroup ofW generated by s2, . . . , sd. As T/T∩I is freely generated by

the tw this defines a character Θ : T → K× extending T ∩I → T
θ
→ k× ⊂ K×,

as desired. �

Corollary 5.3. Assume that d ≤ 2. If we have ǫw = ǫwsi for all 2 ≤ i ≤ d then
there exists an extension Θ : T → K× of θ and a function ∇ : W → Z such
that we have an isomorphism of H(G, I0)k-modules L∇(Θ)⊗o k ∼= M(θ, σ, ǫ•).

Proof. Choose a function ∂ : W sd → [0, r] ∩ Z such that

∂(w) = 0 if σ(w) = 1,

Münster Journal of Mathematics Vol. 7 (2014), 115–134



134 Elmar Grosse-Klönne

0 < ∂(w) < r if σ(w) = 0,

∂(w) = r if σ(w) = −1.

Extend ∂ to a function ∂ : W → [−r, r] ∩ Z by setting ∂(wsd) = −∂(w) for
w ∈ W sd . Then, as we assume d ≤ 2, properties (33) and (34) are empty
resp. fulfilled for trivial reasons. Therefore we conclude with Proposition 5.2.

�
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