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higher dimensional noncommutative tori

Zhuofeng He

(Communicated by Siegfried Echterhoff)

Abstract. We study matrix type actions of finite abelian groups on simple higher dimen-
sional noncommutative tori. For a given dimension d and a finite abelian group G, we apply
a certain function to detect whether there is a simple noncommutative d-torus which admits
such an action of G. For possible cases, we construct all such actions of G, and compute the
K-theory of the resulting crossed products. We also give a necessary and sufficient condition
of G under which the resulting crossed product is an AF algebra.

1. Introduction

The ordinary torus T2 ∼= R2/Z2 admits an action of SL2(Z) through matrix
multiplication. This action can be generalized to one on an arbitrary rotation
algebra [1, 13]. For a given real number θ, let Aθ denote the rotation algebra
associated with θ and u and v the unitaries that generate Aθ. Then the action
α : SL2(Z) → Aut(Aθ) is defined by requiring

αA(u) = eπiacθuavc, αA(v) = eπibdθubvd,

where we assume

A =

(
a b
c d

)
.

The restriction of the action α to finite subgroups of SL2(Z) that act on irra-
tional rotation algebras have been systematically studied in [2]. It is known
that a finite subgroup F of SL2(Z) is necessarily isomorphic to Zk, with
k = 2, 3, 4 or 6, see [8]. The main theorems of [2] show that each resulting
crossed product Aθ ⋊ Zk is an AF algebra for k = 2, 3, 4 and 6 and an irra-
tional angle θ. Also, for each k, the K0-groupK0(Aθ⋊Zk) and its image under
the induced map of the unique tracial state of Aθ ⋊ Zk has been calculated,
which indicates that Aθ ⋊ Zk is isomorphic to Aθ′ ⋊ Zk′ if and only if k = k′

and θ ≡ ±θ′ mod Z [2, Theorem 0.1]. Then they show that higher dimensional
noncommutative tori admit flip actions of Z2, and for simple ones the crossed
products are all AF algebras [2, Theorem 6.6].
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As stated in the paper, the proof of the above results breaks into the fol-
lowing three steps.

(1) Computation of the K-theory of the crossed product.
(2) Proof that the crossed product satisfies the Universal Coefficient The-

orem.
(3) Proof that the action has the tracial Rokhlin property.

The proof of step (2) and (3) is general enough so that it is also effective for
higher dimensional cases. Hence, it is possible to generalize the above results
to higher dimensional noncommutative tori if one obtains a proper realization
of some finite groups, a proper generalization of the action α and a way to
compute the K-theory of the crossed products. Jeong and Lee [3] manage to
obtain new results in this way. For a given real d× d skew symmetric matrix
Θ = (θij), a higher dimensional noncommutative torus associated with Θ is
the C∗-algebra generated by unitaries u1, u2, . . . , ud such that

uiuj = exp(2πiθji)ujui.

Jeong and Lee [3] realize the higher dimensional noncommutative tori as twisted
group C∗-algebras and consider a proper definition generalizing the action α,
for which they use the terminology “canonical actions”. Throughout this paper
we are interested in actions of this type and call it “matrix type actions”. They
realize a given cyclic group as a subgroup of GLd(Z) generated by the com-
panion matrix of a properly chosen cyclotomic polynomial, and study matrix
type actions of the cyclic group on simple higher dimensional noncommutative
tori for certain dimensions. To compute the K-groups of the crossed product,
Jeong and Lee [3] firstly apply [2, Lemma 2.1] and [9, Theorem 4.1] to write
the crossed product in terms of another twisted group C∗-algebra. Then to
compute its K-theory, it is the same to compute the K-theory of untwisted
group C∗-algebra according to [2, Theorem 0.3]. Finally, by [6, Theorem 0.1]
they manage to obtain the desired K-groups. They also show that if the di-
mension d and the order n satisfies some extra condition, there is a simple
noncommutative d-torus on which Zn acts but the K1-group of the crossed
product is not trivial [3, Theorem 3.6].

Based on these results, we study matrix type actions of finite abelian groups
on simple higher dimensional noncommutative tori. By combining the tensor
structure of higher dimensional noncommutative tori and the realization in
[3] for cyclic groups and actions, we realize a class of matrix type actions of
nontrivial finite cyclic groups. For a given dimension d, by known results
on finite cyclic subgroups of GLd(Z), we apply a certain function to detect
whether we can realize the action of the cyclic group of order n on a simple
noncommutative d-torus. This function, denoted by W , is defined by

W (n) :=

{∑t
i=1(pi − 1)pei−1

i − 1, pe11 = 2,∑t

i=1(pi − 1)pei−1
i , otherwise,
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where primes pi and powers ei come from the prime factorization of n. More-
over, we describe the condition under which the crossed product is an AF
algebra. The precise statement is as the following.

Theorem 1.1 (Theorems 3.1 and 3.3). For a given dimension d and an order

n > 2, there is a matrix type action of Zn on a simple noncommutative d-torus
AΘ if either d − W (n) > 1 or d − W (n) = 0. Considering the actions we

realized, the resulting crossed product AΘ ⋊ Zn is an AT algebra. It is an AF

algebra if and only if d−W (n) = 0, and n admits either of the following prime

factorization forms:

(1) 2k3j5i with k 6= 1, 0 ≤ j ≤ 2 and 0 ≤ i ≤ 1,
(2) 23j5ipell with 0 ≤ j ≤ 2 and 0 ≤ i ≤ 1 and pl > 5 a prime,

(3) 23j5i with 0 ≤ j ≤ 2,
(4) 23j5i with 0 ≤ i ≤ 1.

Throughout this paper we usually assume the dimension of a noncommuta-
tive torus is greater than 1, since there is no 1-dimensional noncommutative
torus. Also, we usually suppose the order of the finite cyclic group is greater
than 2, since the flip action, namely, the matrix type action of Z2 on a higher
dimensional noncommutative torus has already been studied and is special in
a sense we explain later in Section 3.

We subsequently generalize the function W for finite abelian groups by
defining for a finite cyclic group Zn,

W (Zn) :=

{
W (n), n 6= 2,

2, n = 2,

and for a finite abelian group G,

W (G) := min

{ l∑

m=1

W (Znm
)

∣∣∣∣ G ∼=

l∏

m=1

Znm
for some l

}
.

With the generalized function W , we detect and realize actions of finite abelian
groups in a similar fashion as in Theorem 1.1.

Theorem 1.2 (Theorem 3.9). For a given dimension d and a finite abelian

subgroup G ≤ GLd(Z), with d−W (G) > 1 or d−W (G) = 0, there is a matrix

type action of G on a simple noncommutative d-torus AΘ. Considering the

action we realized, the resulting crossed product AΘ⋊G is an AT algebra. It is

an AF algebra if and only if d−W (G) = 0 and, if we write G as G ∼=
∏t

m=1 Znm

so that

W (G) =

t∑

m=1

W (Znm
),

each nm admits either of the following prime factorization forms:

(1) 2k3j5i with k 6= 1, 0 ≤ j ≤ 2 and 0 ≤ i ≤ 1,
(2) 23j5ipell with 0 ≤ j ≤ 2 and 0 ≤ i ≤ 1 and pl > 5 a prime,
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(3) 23j5i with 0 ≤ j ≤ 2,
(4) 23j5i with 0 ≤ i ≤ 1.

As a corollary of Theorem 1.2, Corollary 3.10 states that the only possibility
of a finite abelian group F acting on an irrational rotation algebra is when
F = Zk, where k = 2, 3, 4 and 6. In Section 3 we prove the above theorems
and discuss related results.

Then we find out that the function W contains more information as the
following theorem indicates.

Theorem 1.3 (Theorem 4.5). For a given dimension d and an order n > 2
with d−W (n) = 1, there is no matrix type action of Zn on a simple noncom-

mutative torus.

In Section 4 we prove this theorem. A corollary shows that the only matrix
type action on a simple 3-dimensional noncommutative torus is the flip action
of Z2.

In Section 5 we deal with general matrix type actions of Zn on simple
noncommutative d-tori with d = W (n). Under an additional assumption for
the generator matrix of Zn, we show that the classification result of the crossed
products of these matrix type actions is similar to that of the special actions
we realized in Theorem 1.1.

2. Preliminaries

For a second-countable locally compact Hausdorff topological group G with
its modular function ∆G : G → (0,+∞) and a Borel 2-cocycle ω ∈ Z2(G,T),
we define the associated reduced (resp. full) twisted group C∗-algebra, denoted
by C∗

r (G,ω) (resp. C∗(G,ω)), in the following way. Regard L1(G) as a vector
space, and equip it with the twisted convolution given by

f ∗ω g(t) =

∫

G

f(s)g(s−1t)ω(s, s−1t) ds

and the involution given by

f∗(t) = ∆G(t
−1)ω(t, t−1)f(t−1).

Then L1(G,ω) := (L1(G), ∗ω, ∗) becomes a ∗-algebra which is called the twisted
convolution algebra. To consider nondegenerate representations of L1(G,ω), we
turn to a twisted analog of unitary representations of G. An ω-representation
of G on a Hilbert space H is a Borel map V : G → U(H) such that

V (t)V (s) = ω(t, s)V (ts),

where U(H) stands for the unitary group of H endowed with the strong op-
erator topology. For example, we define Lω : G → U(L2(G)), the regular ω-
representation of G, by

Lω(s)ξ(t) = ω(s, s−1t)ξ(s−1t)
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for any ξ ∈ L2(G). Any ω-representation V : G → U(H) induces a representa-
tion π : L1(G,ω) → B(H) given by

π(f) =

∫

G

f(s)V (s) ds

for any f ∈ L1(G,ω). Then π is a contractive ∗-homomorphism. For simplicity
of notation, let V still denote the representation π that V induces. Hence, we
define the reduced twisted group C∗-algebra as

C∗
r (G,ω) = Lω(L1(G,ω)).

Moreover, every nondegenerate representation of L1(G,ω) is induced by an ω-
representation ofG. We can see this by taking a norm one approximate identity
in L1(G,ω). Thus, we obtain the universal representation πu of L1(G,ω), and
define the full twisted group C∗-algebra as

C∗(G,ω) = πu(L1(G,ω)).

Note that C∗(G,ω) has the universal property for ω-representations and the
∗-homomorphism Lω : C

∗(G,ω) → C∗
r (G,ω) is surjective. The reduced and

full twisted group C∗-algebras coincide if G is amenable.
We realize higher dimensional noncommutative tori as twisted group C∗-

algebras. For a given dimension d, take G = Zd. Throughout this paper we
denote by Td(R) the set of all d×d skew symmetric real matrices. For a matrix
Θ = (θij) ∈ Td(R), let the induced 2-cocycle ωΘ : Zd × Zd → T be given by

ωΘ(x, y) = exp(πi〈Θx, y〉)

for x, y ∈ Zd. Then AΘ := C∗(Zd, ωΘ) is called a noncommutative d-torus.
Since Zd is discrete and amenable, there is no difference if we view AΘ as
C∗

r (Z
d, ω) up to isomorphism. Let ei, with i = 1, . . . , d, denote the standard

basis of Zd, and lΘ : Zd → U(ℓ2(Zd)) the regular ωΘ-representation. Then we
have

AΘ := C∗(Zd, ωΘ) = C∗{lΘ(ei) | i = 1, . . . , d},

where each lΘ(ei) is a unitary and they satisfy the commuting relations

lΘ(ei)lΘ(ej) = ωΘ(ei, ej)
2lΘ(ej)lΘ(ei) = exp(2πiθji)lΘ(ej)lΘ(ei).

This is clearly a d-dimensional generalization of the rotation algebras.
By definition, AΘ is isomorphic to C(Td), the ordinary d-torus, if Θ is the

zero d × d matrix. But this is not of our interests since it is not simple. We
list some notions and facts related to simplicity.

Definition 2.1. A matrix Θ ∈ Td(R) is said to be nondegenerate if whenever
x ∈ Zd satisfies exp(2πi〈Θx, y〉) = 1 for all y ∈ Zd, we have x = 0.

Theorem 2.2 ([10, Theorem 1.9]). For a matrix Θ ∈ Td(R), the noncommu-

tative d-torus AΘ is simple if and only if Θ is nondegenerate. Moreover, if AΘ

is simple, then it has a unique tracial state.
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Theorem 2.3 ([10, Theorems 3.5 and 3.8]). Let Θ ∈ Td(R) be nondegenerate

with d ≥ 2. Then AΘ is a simple AT algebra with real rank zero, and has

tracial rank zero.

Proposition 2.4. For matrices Θi ∈ Tdi
(R), i = 1, . . . ,m, set Θ :=

⊕m

i=1 Θi∈
Td(R), where d :=

∑m

i=1 di. Then Θ is nondegenerate if and only if each Θi is

nondegenerate.

Proof. It suffices to show the case when m = 2. Suppose Θ1 and Θ2 are both
nondegenerate. For x = (x1, x2) ∈ Zd with exp(2πi〈Θx, y〉) = 1 for all y ∈ Zd,
by taking y1 ∈ Zd1 ×{0} and y2 ∈ {0}×Zd2, we obtain exp(2πi〈Θjxj , yj〉) = 1
for all yj ∈ Zdj , where j = 1, 2. Then, by nondegeneracy of Θ1 and Θ2, we
obtain x = (x1, x2) = 0, i.e., Θ is nondegenerate.

Conversely, suppose Θ is nondegenerate. Suppose x1 ∈ Zd1 is such that

exp(2πi〈Θ1x1, y1〉) = 1

for all y1 ∈ Zd1 . Consider x = (x1, 0) ∈ Zd and compute that

exp(2πi〈Θx, y〉) = exp(2πi〈Θ1x1, y1〉) = 1

for all y ∈ Zd. Thus, x1 = 0, by definition. Similarly, we also have x2 = 0.
Therefore, Θ1 and Θ2 are both nondegenerate. �

We now discuss a kind of actions on noncommutative tori. Let AΘ denote
a noncommutative d-torus. The definition of these actions does not require
simplicity of AΘ. We view AΘ as a C∗-subalgebra of B(ℓ2(Zd)) through the
regular ωΘ-representation lΘ : ℓ1(Zd, ωΘ) → B(ℓ2(Zd)).

A matrix A ∈ GLd(Z) defines a unitary uA in B(ℓ2(Zd)) by

uAξ(x) = ξ(A−1x)

for ξ ∈ ℓ2(Zd) and x ∈ Zd. The unitary uA defines an automorphism Ad uA ∈
Aut(B(ℓ2(Zd))). Then we have an action denoted by

Adu• : GLd(Z) → Aut(B(ℓ2(Zd))).

For AΘ = C∗{lΘ(ei) | i = 1, . . . , d} = span{lΘ(x) | x ∈ Zd}, we have the
formula

(1) Ad uA(lΘ(x))ξ(y) = l(A−1)tΘA−1(Ax)ξ(y)

for ξ ∈ ℓ2(Zd) and y ∈ Zd. Thus, for A ∈ GLd(Z) such that Θ = (A−1)tΘA−1,
the restriction of Ad uA is an automorphism of AΘ. Putting

GΘ := {A ∈ GLd(Z) | Θ = AtΘA},

we obtain an action

Adu• : GΘ → Aut(AΘ).

This is a generalization of the action of SL2(Z) on a rotation algebra Aθ.
Particularly, we have GΘ = SL2(Z) when d = 2. We are especially interested
in such actions of some subgroup G of GΘ on AΘ, and in the remainder of this
paper, we name these actions matrix type actions.
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Theorem 2.5 ([2, Theorem 0.1]). Let F be any of the finite subgroups Z2,Z3,
Z4,Z6 ⊆ SL2(Z) with generators as the following:

〈(
−1 0
0 −1

)〉
= Z2,

〈(
−1 −1
1 0

)〉
= Z3,

〈(
0 −1
1 0

)〉
= Z4,

〈(
0 −1
1 1

)〉
= Z6.

Let θ ∈ R\Q. Then the crossed product Aθ ⋊ F is an AF algebra. For all

θ ∈ R, we have

K0(Aθ ⋊ Z2) ∼= Z6, K0(Aθ ⋊ Z3) ∼= Z8,

K0(Aθ ⋊ Z4) ∼= Z9, K0(Aθ ⋊ Z6) ∼= Z10.

For F = Zk, k = 2, 3, 4, 6, the image of K0(Aθ⋊F ) under the unique canonical
tracial state of Aθ ⋊ F is equal to 1

k
(Z + Zθ). As a consequence, Aθ ⋊ Zk is

isomorphic to Aθ′ ⋊ Zk′ if and only if k = k′ and θ ≡ ±θ′ mod Z.

These are results on matrix type actions on irrational rotation algebras.
Moreover, for the flip action of Z2 on higher dimensional noncommutative
tori, the following result is known.

Theorem 2.6 ([2, Theorem 6.6]). Let Θ be a nondegenerate real d × d skew

symmetric matrix. Let ϕ : Z2 → Aut(AΘ) be the flip action. Then AΘ ⋊Z2 is

an AF algebra.

The tracial Rokhlin property for finite group actions on C∗-algebras is intro-
duced by Phillips in [10]. It is an important property of actions on C∗-algebras.

Proposition 2.7. Let Θ ∈ Td(R) be nondegenerate with d ≥ 2. Then for any

finite subgroup G ≤ GΘ, the matrix type action

Adu• : G → Aut(AΘ)

has the tracial Rokhlin property.

Proof. Let τ denote the unique tracial state of AΘ according to Theorem 2.2,
and πτ : AΘ → B(Hτ ) the GNS representation associated with τ . Write
(Ad uA)

′′ for the automorphism of πτ (AΘ)
′′ determined by AduA. Due to

[2, Theorem 5.5], the matrix type action Adu• : G → Aut(AΘ) has the tracial
Rokhlin property if and only if (AduA)

′′is an outer automorphism of πτ (AΘ)
′′

for any A ∈ G\{I}, where I stands for the d× d identity matrix.
For any A = (aij) ∈ G\{I}, by (1), we have

AduA(lΘ(ei)) = lΘ(Aei) = ρlΘ(e1)
ai1 lΘ(e2)

ai2 · · · lΘ(ed)
aid ,

where ρ ∈ T. There exists an integer k such that (ak1, ak2, . . . , akd) 6= ek, since
A 6= I. Thus, by [2, Lemma 5.10], the automorphism (Ad uA)

′′ is outer and
we complete the proof. �

The crossed products associated with actions having the tracial Rokhlin
property preserve many C∗-algebraic properties. For example:

Münster Journal of Mathematics Vol. 12 (2019), 473–495
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Proposition 2.8. Let α : G → Aut(AΘ) be an action of a finite group G on a

simple noncommutative torus AΘ such that α has the tracial Rokhlin property.

Then the crossed product AΘ ⋊α G is also simple, with a unique tracial state

and has tracial rank zero.

Proof. It is straight-forward by Theorem 2.3, [11, Corollary 1.6] and [11, The-
orem 2.6] that AΘ ⋊α G is simple and has tracial rank zero.

The crossed product AΘ ⋊α G has a unique tracial state due to [2, Propo-
sition 5.7]. �

Under the assumption of Proposition 2.7, we can apply Proposition 2.8 to
the resulting crossed product, denoted by AΘ ⋊ G for short. Moreover, it
follows from [3, Proposition 3.1] that AΘ⋊G satisfies the Universal Coefficient
Theorem. Hence, the resulting crossed products are classifiable and we may
apply the following theorems.

Theorem 2.9 ([7, Theorem 5.2]). Let A and B be two unital separable simple

nuclear C∗-algebras with tracial topological rank zero which satisfy the Uni-

versal Coefficient Theorem. Then A ∼= B if and only if they have isomorphic

Elliott invariants, that is,

(K0(A),K0(A)+, [1A],K1(A)) ∼= (K0(B),K0(B)
+, [1B],K1(B)).

Proposition 2.10 ([10, Proposition 3.7]). Let A be a simple infinite-dimen-

sional separable unital nuclear C∗-algebra with tracial rank zero which satisfies

the Universal Coefficient Theorem. Then A is a simple AH algebra with real

rank zero and no dimension growth. If K∗(A) is torsion-free, A is an AT

algebra. If, in addition, K1(A) = 0, then A is an AF algebra.

We now review the results of Jeong and Lee in [3]. They apply companion
matrices and cyclotomic polynomials to realize matrix type actions of finite
cyclic groups on simple higher dimensional noncommutative tori.

To be precise, recall that for a given integer n, the value of Euler’s totient
function φ on n is defined by

φ(n) = |{k ∈ Z | 1 ≤ k ≤ n, gcd(k, n) = 1}|.

Then let d be the dimension of some simple noncommutative torus, and n the
order of some finite cyclic group with d = φ(n). The nth cyclotomic polynomial

Φn(x) is defined by

Φn(x) =
∏

0<k≤n
gcd(k,n)=1

(
x− exp

(
2πi

k

n

))
=

d∑

i=0

aix
i.

Φn(x) is known to be a monic polynomial of degree d = φ(n) with integer
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coefficients. Thus, set

Cn =




0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
. . .

...
...

...

0 0 0
. . . 0 −ad−2

0 0 0 · · · 1 −ad−1




,

which is the companion matrix of Φn(x). Then Cn is in GLd(Z) of order n.

Theorem 2.11 ([3, Theorem 4.2]). Let n ≥ 3 and d := φ(n). Then there exist

simple d-dimensional tori on which the group Zn = 〈Cn〉 acts canonically.

We remark that in this theorem the “canonical action” is what we called the
matrix type action. We use their method of realization as a building block to
obtain more matrix type actions. To compute the K-theory of the associated
crossed product of such action, we need the following theorem.

Theorem 2.12 ([6, Theorem 0.1]). Let n, d ∈ N. Consider the extension of

groups

1 → Zd → Zd ⋊α Zn → Zn → 1

such that the conjugation action α of Zn on Zd is free outside of the origin

0 ∈ Zd. Then K0(C
∗(Zd ⋊α Zn)) ∼= Zs0 for some s0 ∈ Z and

K1(C
∗(Zd ⋊α Zn)) ∼= Zs1 ,

where s1 =
∑

l≥0 rkZ((
∧2l+1

Zd)Zn). If n is even, s1 = 0. If n > 2 is prime

and d = n− 1, then s1 = 2n−1−(n−1)2

2n .

Jeong and Lee [3] apply this method and obtain the following theorem which
indicates that for certain dimension d and order n, the resulting crossed product
is not an AF algebra.

Theorem 2.13 ([3, Theorem 3.6]). Let n ≥ 7 be an odd integer and d := φ(n).
Consider the extension of groups 1 → Zd → Zd ⋊α Zn → Zn → 1 with Zn =
〈Cn〉. If 2d ≥ n+ 5, then

K1(C
∗(Zd ⋊α Zn)) 6= 0.

We denote by N the smallest subcategory of the category of separable C∗-
algebras, which contains separable Type I algebras and is closed under taking
ideals, quotients, extensions, inductive limits, stable isomorphisms and crossed
products by Z and R. Then the following theorem holds.

Theorem 2.14 ([12, Künneth theorem]). Let A and B be C∗-algebras with A
in N. Then there is a natural short exact sequence

0 → K∗(A)⊗K∗(B)
α
−→ K∗(A⊗ B)

β
−→ Tor(K∗(A),K∗(B)) → 0.

The sequence is Z2-graded with degα = 1, deg β = 1, where Kp ⊗ Kq and

Tor(Kp ⊗Kq) are given degree p+ q for p, q ∈ Z2.
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3. Realization of finite abelian groups acting on
noncommutative d-tori

In this section we discuss a special realization of matrix type actions of finite
abelian groups on noncommutative tori.

For given skew symmetric real matrices Θ1 and Θ2, there is an isomorphism
between AΘ1 ⊗AΘ2 and AΘ, where Θ = Θ1⊕Θ2 denotes the direct sum of Θ1

and Θ2. Suppose G1 and G2 are finite subgroups of GΘ1 and GΘ2 respectively,
and consider matrix type actions of G1 on AΘ1 , and of G2 on AΘ2 . Since
the product group G = G1 × G2 is a subgroup of GΘ, the product action
provides us a matrix type action of G on AΘ. The crossed product AΘ ⋊ G
is isomorphic to (AΘ1 ⋊ G1) ⊗ (AΘ2 ⋊ G2) via the isomorphism defined by
mapping (a⊗ b, (g, h)) to (a, g)⊗ (b, h).

We combine this observation with Theorem 2.11 to realize more matrix type
actions on higher dimensional noncommutative tori. To start, it is necessary
to find out the possible finite cyclic subgroups of GLd(Z), since GΘ lives in it.

Let d denote the dimension of AΘ, n the order of the finite cyclic group,
and n =

∏t

i=1 p
ei
i the prime factorization of n, where the prime numbers pi are

subject to the condition p1 < · · · < pt. Then, according to [5, Theorem 2.7],
there is an element in GLd(Z) of order n if and only if W (n) ≤ d, where the
function W is defined by

W (n) :=

{∑t
i=1(pi − 1)pei−1

i − 1, pe11 = 2,∑t

i=1(pi − 1)pei−1
i , otherwise.

Thus, there are finitely many candidates for n as a possible order of a finite
cyclic subgroup of GLd(Z). Let φ denote Euler’s totient function. For n
with φ(n) = d, Theorem 2.11 enables us to find a simple noncommutative
d-torus AΘ, namely, to figure out a nondegenerate Θ, and to realize a matrix
type action of Zn on AΘ. Moreover, it gives a formula for the K-theory
K∗(AΘ⋊Zn), with which we can tell whether AΘ⋊Zn is AF or not. However,
this argument does not work for n with φ(n) 6= d, particularly when d is odd.
We provide a way to realize matrix type actions of cyclic groups for these cases
and study the resulting crossed products.

Theorem 3.1. For a given dimension d and an order n > 2, there is a matrix

type action of Zn on a simple noncommutative d-torus AΘ if either d−W (n) >
1 or d−W (n) = 0. Considering the matrix type action we realized, the resulting

crossed product AΘ ⋊ Zn is an AT algebra.

Proof. Let n =
∏t

i=1 p
ei
i still denote the prime factorization of n with p1 <

· · · < pt. According to [5, Theorem 2.7], we can assume W (n) ≤ d. Then
we split up our proof into two cases: pe11 6= 2 or pe11 = 2, since the definition
of W differs. If pe11 6= 2, using the companion matrix, we construct a di × di
matrix Ai of order peii , where di = (pi − 1)pei−1

i . Note that in this case

φ(peii ) = (pi − 1)pei−1
i holds, which guarantees our construction. Then set

B :=
⊕t

i=1 Ai, which is a W (n)×W (n) matrix with W (n) ≤ d.
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By Theorem 2.11, for each i, we can find nondegenerate Θi in Tdi
(R) such

that 〈Ai〉 = Zp
ei
i

acts on AΘi
.

If d−W (n) > 1, set A := B ⊕ Id−W (n), which is a d× d matrix of order n.
Find a nondegenerate Θ0 and set

Θ :=
( t⊕

i=1

Θi

)
⊕Θ0,

which is nondegenerate as well. Then we have an action of 〈A〉 = Zn on AΘ.
Moreover, by our former discussion, one may check the following isomorphism:

AΘ ⋊ Zn
∼=

( t⊗

i=1

(AΘi
⋊ Zp

ei
i
)
)
⊗AΘ0 .

To compute the K-groups of the crossed product, we apply the Künneth
theorem in [12], as stated in Theorem 2.14.

Firstly, by [3, Proposition 3.4], each AΘi
⋊ Zp

ei
i

is an AT algebra, and so

is AΘ0 . Since C(T) ⊗ F is separable and of Type I, where F stands for a
finite-dimensional C∗-algebra, every AΘi

⋊ Zp
ei
i

and AΘ0 are in N. Secondly,

by [3, Remark 3.2] and [6, Theorem 0.1], we know that for each i,

K∗(AΘi
⋊ Zp

ei
i
) ∼= K∗(C

∗(Zdi ⋊ Zp
ei
i
, ω̃Θi

) ∼= K∗(C
∗(Zdi ⋊ Zp

ei
i
)),

which is torsion-free.
Then, by applying the Künneth theorem, we obtain

K∗(AΘ ⋊ Zn) =
( t⊗

i=1

K∗(AΘi
⋊ Zp

ei
i
)
)
⊗K∗(AΘ0).

The crossed product AΘ ⋊ Zn satisfies the Universal Coefficient Theorem [3,
Proposition 3.1]. As we have already stated before, AΘ⋊Zn is then classifiable.
Thus, under this realization, the crossed product AΘ ⋊ Zn is an AT algebra,
since K∗(AΘ ⋊ Zn) is torsion-free.

If d − W (n) = 0, the situation is essentially the same. Instead we set

A := B =
⊕t

i=1 Ai, which is a d× d matrix of order n. Then set

Θ :=
( t⊕

i=1

Θi

)
,

which is nondegenerate. Thus, we have an action of 〈A〉 = Zn on AΘ. We also
obtain

AΘ ⋊ Zn
∼=

t⊗

i=1

(AΘi
⋊ Zp

ei
i
),

and again the Künneth theorem gives

(2) K∗(AΘ ⋊ Zn) =

t⊗

i=1

K∗(AΘi
⋊ Zp

ei
i
).

It follows from Proposition 2.10 that AΘ ⋊ Zn is an AT algebra.
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If pe11 = 2, we apply the argument for proving the first case to the order n
2 .

Thus, we construct a di×di matrix Ai of order p
ei
i , where di = (pi−1)pei−1

i for

i = 2, . . . , t. Since W (n) = W (n2 ), the matrix B :=
⊕t

i=2 Ai is a W (n)×W (n)
matrix with W (n) ≤ d, and of order n

2 .
Again we can find nondegenerate Θi in Tdi

(R) such that 〈Ai〉 acts on AΘi

for i = 2, . . . , t. If d −W (n) = d − W (n2 ) > 1, set A := B ⊕ Id−W (n), which
is a d × d matrix of order n

2 . It is possible to find a nondegenerate Θ0, since
d−W (n) > 1. Then set

Θ :=
( t⊕

i=1

Θi

)
⊕Θ0,

which is nondegenerate. Since

(−A)tΘ(−A) = AtΘA = Θ,

we have an action of 〈−A〉 = Zn on AΘ. However, in this case, we write Zn as

Zn
∼=

( ∏

2≤i≤t
i6=j

Zp
ei
i

)
× Z

2p
ej

j

,

where 2 ≤ j ≤ t. Thus, instead of A, we consider A(j) as a generator of Zn,
where A(j) is defined by

A(j) =




A1 0 · · · 0 0 0 0
0 A2 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · −Aj 0 0 0
...

...
...

...
. . .

...
...

0 0 · · · 0 0 At 0
0 0 · · · 0 0 0 Id−W (n)




,

where 1 ≤ j ≤ t. Then we consider actions of Zn = 〈A(j)〉 on AΘ.
Similarly, we have

AΘ ⋊ Zn
∼=

( ⊗

2≤i≤t
i6=j

(AΘi
⋊ Zp

ei
i
)
)
⊗ (AΘj

⋊ Z
2p

ej

j

)⊗AΘ0 ,

where 2 ≤ j ≤ t. By the Künneth theorem, K∗(AΘ ⋊ Zn) is the tensor of K∗

of each factor.
It is similar when d−W (n) = d−W (n2 ) = 0, and the K-theory becomes

K∗(AΘ ⋊ Zn) ∼=
( ⊗

2≤i≤t
i6=j

K∗(AΘi
⋊ Zp

ei
i
)
)
⊗K∗(AΘj

⋊ Z
2p

ej

j

),

where 2 ≤ j ≤ t. Proposition 2.10 still assures us that the crossed product
AΘ ⋊ Zn is an AT algebra. �
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Note that in the preceding proof, we factor K∗(AΘ ⋊ Zn) into “smaller
blocks”, by the Künneth formula. Thus, combining with known results, we
can obtain more information of K∗(AΘ ⋊Zn) and further classification results
about AΘ ⋊ Zn.

Definition 3.2. A natural number n is said to be of form 3.2 if n admits
either of the following prime factorization forms:

(1) 2k3j5i with k 6= 1, 0 ≤ j ≤ 2 and 0 ≤ i ≤ 1,
(2) 23j5ipell with 0 ≤ j ≤ 2 and 0 ≤ i ≤ 1 and pl > 5 a prime,
(3) 23j5i with 0 ≤ j ≤ 2,
(4) 23j5i with 0 ≤ i ≤ 1.

Theorem 3.3. The crossed product AΘ ⋊Zn in the preceding proof is an AF

algebra if and only if d−W (n) = 0, and n is of form 3.2.

Proof. If d−W (n) > 1, the K1-group K1(AΘ⋊Zn) 6= 0 does not vanish, since
we have

K0(AΘ0)
∼= K1(AΘ0)

∼= Z2d−W (n)−1.

Hence, AΘ ⋊ Zn is not an AF-algebra according to Proposition 2.10.
If d − W (n) = 0, by (2), we deduce that K1(AΘ ⋊ Zn) = 0 if and only if

K1(AΘi
⋊ Zp

ei
i
) = 0 for each i.

We now turn our attention to each AΘi
⋊Zp

ei
i
. The group K1(AΘi

⋊Zp
ei
i
)

is not trivial if pi is an odd prime and subject to the condition

pei−1
i (pi − 2) ≥ 5,

according to [3, Theorem 3.6]. Therefore, if K1(AΘi
⋊ Zp

ei
i
) = 0, then peii is

necessarily 3, 32, 5 or 2k, where k > 1. To compute the K1-groups, we apply
[6, Theorem 0.1], as stated in Theorem 2.12.

It follows from Theorem 2.12 that the K1-group vanishes if peii = 3, 5 or 2k,
where k > 1. In the following we check the case when peii = 32. The theorem
enables us to merely compute s1 given by

s1 = rkZ
((∧1

Z6
)Z9

)
+ rkZ

((∧3
Z6

)Z9
)
+ rkZ

((∧5
Z6

)Z9
)
.

We obtain rkZ((
∧1

Z6)Z9) = 0, since the action is free outside the origin 0 ∈ Z6.
According to our realization, the cyclic group Z9 is realized by A in GL6(Z),
where

A =




0 0 0 0 0 −a0
1 0 0 0 0 −a1
0 1 0 0 0 −a2
0 0 1 0 0 −a3
0 0 0 1 0 −a4
0 0 0 0 1 −a5




and

Φ9(x) =
∏

0<k<9
gcd(k,9)=1

(x− ζk) =

5∑

i=0

aix
i, ζ = exp

(
2πi

1

9

)
.
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Write A = Q−1diag(ζ, ζ2, ζ4, ζ5, ζ7, ζ8)Q, for some Q ∈ GL6(C). Notice that

x is a fixed point of A acting on
∧3

Z if and only if Qx is a fixed point of

diag(ζ, ζ2, ζ4, ζ5, ζ7, ζ8) acting on
∧3

QZ. Then for 1 ≤ i < j < k ≤ 6,
suppose

diag(ζ, ζ2, ζ4, ζ5, ζ7, ζ8)ei ∧ ej ∧ ek = ei ∧ ej ∧ ek.

It is equivalent to the following statement: There is a way to pick three num-
bers in 1, 2, 4, 5, 7, 8 such that the sum of them can be divided by 9, which is
impossible. Thus, we obtain

rkZ
((∧3

Z6
)Z9

)
= 0.

Similarly, we also obtain

rkZ
((∧5

Z6
)Z9

)
= 0.

Hence, when peii = 32, we obtain a matrix type action of Z9 on a simple
noncommutative 6-torus AΘ′ and

K1(AΘ′ ⋊ Z9) = 0,

in other words the crossed product AΘ′ ⋊ Z9 is an AF algebra.
Let us leave the case when d−W (n) = 1 to the next section. To complete the

proof, we discuss the case in which the given dimension d and order n are such
that W (n) ≤ d, and with pe11 = 2 in the prime factorization of n =

∏t

i=1 p
ei
i .

Recall that by the proof of Theorem 3.1, we have

AΘ ⋊ Zn
∼=

( ⊗

2≤i≤t
i6=j

(AΘi
⋊ Zp

ei
i
)
)
⊗ (AΘj

⋊ Z
2p

ej

j

)⊗AΘ0 ,

where 2 ≤ j ≤ t. By the Künneth theorem, K∗(AΘ ⋊ Zn) is the tensor of K∗

of each factor. Again the part of K∗(AΘ0) forces K1(AΘ ⋊ Zn) 6= 0, which
indicates that AΘ ⋊ Zn is not an AF algebra.

If d−W (n) = d−W (n2 ) = 0, there is a similar isomorphism for the crossed
product AΘ ⋊ Zn, and its K-theory becomes

K∗(AΘ ⋊ Zn) ∼=
( ⊗

2≤i≤t
i6=j

K∗(AΘi
⋊ Zp

ei
i
)
)
⊗K∗(AΘj

⋊ Z
2p

ej

j

),

where 2 ≤ j ≤ t. Since K1(AΘj
⋊ Z2p

ej

j
) vanishes according to Theorem 2.12,

the crossed product AΘ ⋊ Zn is then an AF algebra exactly when n
2 admits

a form of 3j5ipell , where j, i and el are all nonnegative integers with j ≤ 2,
i ≤ 1. Note that if either j or i is 0, the prime number pl could be 3 or 5,
respectively. Otherwise pl is prime number greater than 5. �

Corollary 3.4. For an even dimension d and an order n, there is a matrix

type action of Zn on a simple noncommutative d-torus if and only if

W (n) ≤ d.

Proof. Since W (n) is always even when n ≥ 3. �
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Let us consider a similar realization of matrix type actions of finite abelian
groups. The following two propositions enable us to deal with products of
finitely many matrix type actions, and obtain classification results by comput-
ing the K∗-groups of the resulting crossed products.

Proposition 3.5. For i = 1, 2, suppose the simple noncommutative torus AΘi

admits a matrix type action αi : Gi → Aut(AΘi
). Then the product action

α1 ⊗ α2 : G1 ×G2 → Aut(AΘ1 ⊗AΘ2)

has the tracial Rokhlin property.

Proof. By [2, Theorem 5.5], it is equivalent to showing (α1(g1) ⊗ α2(g2))
′′ is

outer for any (g1, g2) 6= (1G1 , 1G2).
Let τi denote the unique tracial state of AΘi

. Then τ1 ⊗ τ2 is the unique
tracial state on AΘ1 ⊗AΘ2 . Also we denote by

πτi : AΘi
→ B(Hτi)

the GNS representation associated with τi. Then the GNS representation of
AΘ1 ⊗AΘ2 associated with τ1 ⊗ τ2 is unitarily equivalent to πτi ⊗ πτ2 . Since

(πτ1(AΘ1)⊗ πτ2(AΘ2))
′′ = πτ1(AΘ1)

′′ ⊗ πτ2(AΘ2 )
′′,

to show (α1 ⊗ α2)
′′ is outer, it is then sufficient to show

α1(g1)
′′ ⊗ α2(g2)

′′ : πτ1(AΘ1)
′′ ⊗ πτ2(AΘ2)

′′ → πτ1(AΘ1)
′′ ⊗ πτ2(AΘ2)

′′

is an outer automorphism for any (g1, g2) 6= (1G1 , 1G2).
Assume on the contrary α1(g1)

′′ ⊗ α2(g2)
′′ is inner. Then, by [4, Theo-

rem 13.1.16], it is equivalent to both of α1(g1)
′′ and α2(g2)

′′ are inner. Then,
by Proposition 2.7 and [2, Theorem 5.5], it means g1 = 1G1 and g2 = 1G2 . The
contradiction shows that α1(g1)

′′ ⊗ α2(g2)
′′ is outer. �

Proposition 3.6. Under the assumption of Proposition 3.5, put α = α1⊗α2,

Θ = Θ1 ⊕ Θ2 and G = G1 × G2. Then AΘ ⋊α G satisfies the Universal

Coefficient Theorem.

Proof. Suppose that the dimension of AΘ is d, thus AΘ = C∗(Zd, ωΘ). It is
routine to verify that the following formula holds:

ωΘ(g · x, g · y) = ωΘ(x, y) for all g ∈ G, and all x, y ∈ Zd.

Hence, by [2, Lemma 2.1], there exists a cocycle ω̃Θ ∈ Z2(Zd⋊G,T) such that

AΘ ⋊α G ∼= C∗(Zd ⋊G, ω̃Θ).

Since Zd ⋊G is a closed subgroup of Rd ⋊G and amenable, we complete the
proof by [2, Corollary 6.2]. �

For a finite abelian groupG, we may generalize our method to construct such
actions of G on noncommutative tori. By the structure theorem for finitely
generated abelian groups, we write G as a product group of several finite
cyclic groups. Each one acts on a noncommutative torus via our construction
of matrix type actions. Then the product action of them is an action of G on
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a noncommutative torus. We can also generalize the function W to detect the
dimension cost for realizing the action. However, the definition of W should be
modified for the following reason. Let G be the group Z2. Then G acts on an
irrational rotation algebra though W (2) = 0. In other words, the dimension
cost for realizing a matrix type action of G = Z2 on some noncommutative
torus is 2 though W (2) = 0.

Definition 3.7. For a cyclic group Zn, the function W is given by

W (Zn) :=

{
W (n), n 6= 2,

2, n = 2.

Definition 3.8. Let G be a finite abelian group. By the structure theorem
for finite abelian groups, we have

G ∼=

s∏

i=1

Zp
ei
i
,

where p1 ≤ · · · ≤ ps are primes and ei ≤ ei+1 whenever pi = pi+1.
The function W of G is given by

W (G) := min

{ l∑

m=1

W (Znm
)

∣∣∣∣ G ∼=

l∏

m=1

Znm
for some l

}
.

Theorem 3.9. For a given dimension d and a finite abelian subgroup G of

GLd(Z) with d − W (G) > 1 or d −W (G) = 0, there is a matrix type action

of G on a simple noncommutative d-torus AΘ. Considering the matrix type

action we realized, the crossed product AΘ ⋊G is an AT algebra. It is an AF

algebra if and only if d − W (G) = 0 and, if we write G as G ∼=
∏t

m=1 Znm

such that

W (G) =
t∑

m=1

W (Znm
),

each nm is then of form 3.2.

Proof. By definition we can write G as G ∼=
∏t

m=1 Znm
so that

W (G) =

t∑

m=1

W (Znm
).

Since d−W (Znm
) > 1 or d−W (Znm

) = 0 for allm, it follows from Theorem 3.1
that for each m, there is a simple noncommutative torus AΘm

that admits a
matrix type action of Znm

. Note that AΘm
is necessarily chosen to be an

irrational rotation algebra if nm = 2. Then by the tensor product argument,
similar in Section 3, we obtain a simple noncommutative d-torus AΘ and a
matrix type action of G on it.

The rest of the proof is similar to that of Theorem 3.1. �

Corollary 3.10. The only matrix type actions of finite abelian group on irra-

tional rotation algebras are by cyclic groups Zk, where k = 2, 3, 4 and 6.
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Proof. Note that in the current case the dimension d is 2. Let G be a finite
abelian group. Suppose that there is a matrix type action of G on an irrational
rotation algebra. By definition, the value of the function W is always greater
than or equal to 2. Thus, W (G) = 2 holds according to Theorem 3.9. Again, by
the definition of the function, W we have G = Zk where k = 2, 3, 4 and 6. �

4. The case d−W (n) = 1 and actions on odd-dimensional
noncommutative tori

Let us study the remaining problem of the last section, that is, the case
in which the given dimension d and the order n =

∏t
i=1 p

ei
i > 2 with primes

p1 < · · · < pt are such that d−W (n) = 1. We start our discussion again from
a characterization of a matrix A ∈ GLd(Z) that is of order n. Eventually we
will show that there is a matrix Q ∈ GLd(Q) such that

(3) Λ := QAQ−1 =




A1 0 · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · At 0
0 0 · · · 0 ±1




,

for some matrices A1, A2, . . . , At.

Proposition 4.1. Let B be a matrix in GLd(Z). Suppose n = pl with the

prime power pl 6= 2 or n = 2pl with the prime p 6= 2. If the minimal polynomial

of B is Φn(x), then the size of the matrix B cannot be φ(n) + 1.

Proof. Suppose n = pl with p 6= 2. Since Φpl(x) is an irreducible factor of
xpl − 1 (over Q), we have Bpl = I and this is true for no lower power of B.
Hence, the order of B is pl. There exist divisors ni of pl for i = 1, 2, . . . , s,
with lcm(n1, n2, . . . , ns) = pl, such that B is similar over Q to a matrix of the
form 



B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bs


 ,

where the minimal polynomial for Bi is Φni
(x) for i = 1, 2, . . . , s (see the proof

of [5, Theorem 2.7]). Suppose the size of B is φ(pl) + 1. Since pl 6= 2, we have
the inequalities

W (pl) = φ(pl) ≤

s∑

i=1

φ(ni) ≤ φ(pl) + 1,

according to [5, Lemma 2.8]. Because lcm(n1, n2, . . . , ns) = pl, there must exist
some i0 such that pl = ni0 and hence φ(pl) = φ(ni0 ). By definition, φ(pm) > 2
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for any positive integer m, since p 6= 2. The inequalities then compel B to be
similar over Q to a matrix of the form

(
B1 0
0 1

)
.

But this is impossible since the minimal polynomial of the above matrix is not
Φpl(x) but Φpl(x)(x − 1).

The rest of the proof follows by the same argument, considering the fact
that φ(2) = 1, Φ2(x) = x+1 and −1 is not a root of Φn(x), where n = 2l with
l 6= 1 or n = 2pl with the prime p 6= 2. �

Now we are ready to prove the characterization (3) of the matrix A.

Proposition 4.2. Let the positive integers d and n =
∏t

i=1 p
ei
i > 2 with

primes p1 < · · · < pt be such that d−W (n) = 1. Then a matrix A ∈ GLd(Z)
that is of order n is of the form (3) for some Q ∈ GLd(Q).

Proof. Similarly, to the argument in the proof of Proposition 4.1, there exist
divisors ni of n for i = 1, 2, . . . , s, with lcm(n1, n2, . . . , ns) = n, such that A is
similar over Q to a matrix of the form




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As


 ,

where the minimal polynomial for Ai is Φni
(x) for i = 1, 2, . . . , s (see the proof

of [5, Theorem 2.7]). According to [5, Lemma 2.8], we have the inequalities

W (n) ≤

s∑

i=1

φ(ni) ≤ d = W (n) + 1.

For each i, there exists j such that peii appears in the prime factorization of nj

and hence φ(peii ) ≤ φ(nj). Hence, the inequalities force that:

(1) If pi 6= 2, then φ(peii ) = φ(nj) and nj = peii or 2peii .
(2) If pi = 2 and ei 6= 1, then φ(peii ) = φ(nj) and nj = peii = 2ei .

Then the proof is completed by the following case study:

(1) If p1 6= 2, then s = t+ 1. Renumbering if necessary, we have ni = peii
for i = 1, 2, . . . , t and ns = 1.

(2) If p1 = 2 with e1 6= 1, then s = t + 1. Renumbering if necessary, we
have ns = 1 or 2 and As = ±1.

(3) If pe11 = 2, then s = t. There are two possibilities. If there exists
some i such that ni = 2peii , then we have ns = 1 or 2 and As = ±1.
Otherwise ns = 2 and As = −1.

We draw the conclusion with the help of Proposition 4.1. �
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Definition 4.3 ([3, Notation 4.1]). For a matrix A ∈ GLd(Z), define

Td,A(R) = {Θ ∈ Td(R) | Θ = AtΘA}.

Td,A(R) is then the set of all skew symmetric matrices Θ such that the non-
commutative torus AΘ admits the matrix type action of the group 〈A〉.

It is straight-forward to check that Td,A(R) = Td,Q−1ΛQ(R) = QtTd,Λ(R)Q.
The following proposition characterizes the set Td,Λ(R).

Proposition 4.4. The matrix Θ ∈ Td,Λ(R) has the following form:

Θ =

(
Θ′ 0
0 0

)

for some Θ′ ∈ Td−1(R).

Proof. Since Λ is of the form shown in (3), we write Θ as a (t + 1) × (t + 1)
block matrix as follows:

Θ =




Θ11 Θ12 · · · Θ1t θ1
Θ21 Θ22 · · · Θ2t θ2
...

...
. . .

...
...

Θt1 Θt2 · · · Θtt θt
−θ1 −θ2 · · · −θt 0




.

Note that θi is a di-dimensional vector. By ΛtΘΛ = Θ, we obtain

At
iθi = ±θi, i = 1, 2, . . . , t.

The construction of each Ai shows that Ai does not have an eigenvalue ±1,
hence θi = 0. That is to say Θ is of the following form:

Θ =

(
Θ′ 0
0 0

)

for some Θ′ ∈ Td−1(R). �

We are now ready to prove the main theorem of this section.

Theorem 4.5. For a given dimension d and an order n > 2 with d−W (n) = 1,
there is no matrix type action of Zn on a simple noncommutative torus.

Proof. Let A denote a generator of Zn. Then there is a matrix Q ∈ GLd(Q)
such that (3) holds. For any matrix type action of Zn on a noncommutative
d-torus AΘ, we have Θ ∈ Td,A(R) = Td,Q−1ΛQ(R) = QtTd,Λ(R)Q. Therefore,
according to Proposition 4.4, there exists some Θ′ ∈ Td−1(R) such that

QtΘQ =

(
Θ′ 0
0 0

)
.

The right-hand side is apparently degenerate. It then follows from [10, Lem-
ma 1.8] that Θ is degenerate as well. Thus, the noncommutative torus AΘ is
not simple. �
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Corollary 4.6. For a given dimension d and order n, there is a matrix type

action of Zn on a simple noncommutative d-torus AΘ if and only if either

d−W (n) > 1 or d−W (n) = 0.

Corollary 4.7. For a given dimension d > 3 which is odd and an order n,
there is a matrix type action of Zn on a simple noncommutative d-torus if

and only if there is a matrix type action of Zn on a simple noncommutative

(d− 3)-torus.

Proof. Notice that d − W (n) is an odd integer. Then, by Corollary 4.6 and
Corollary 3.4, we draw the conclusion. �

Note that Theorem 4.5 is a generalization of [3, Theorem 5.2], shown by the
following example.

Example 4.8. Consider a matrix type action of Zn on a simple 3-dimensional
noncommutative torus. It follows from Theorem 4.5 and the fact that W (n)
is always even that d − W (n) = 3. Thus, n = 2 necessarily holds. In other
words, the only matrix type action of a nontrivial finite cyclic group on a simple
3-dimensional torus is the flip action by Z2 as stated in [3, Theorem 5.2].

5. General matrix type actions of cyclic groups on
simple higher dimensional noncommutative tori

In this section we give some partial results on general matrix type actions.
As discussed in Section 3, the function W surely describes our special real-
ization of matrix type actions of finite abelian groups quite well. But for
general ones, it is limited. For instance, suppose n = 2kp with k ≥ 3 and
the prime number p > 5. Let d = φ(n). It follows from the definition that
d = φ(n) = 2k−1(p − 1) > W (n) + 1 = 2k−1 + (p − 1) + 1. According to
Theorem 3.1 and Theorem 3.3, the crossed product of the matrix type action
of Zn on the simple noncommutative d-torus AΘ we realized is not an AF
algebra. However, we can apply the method of Jeong and Lee directly and
obtain another matrix type action of Zn = 〈Cn〉 on some simple noncommuta-
tive d-torus. As a consequence of Theorem 2.12, this time the resulting crossed
product is an AF algebra. This is because the generator matrix of Zn becomes
different.

Although it is limited, the function W still indicates the least dimension to
realize a matrix type action of some finite abelian group. Let us now remove
the conditions for d and n in the last paragraph and suppose that there is a
general matrix type action of Zn on a simple noncommutative d-torus AΘ for
some Θ with d = W (n). Let A denote the matrix in GLd(Z) that generates Zn.
There exist divisors ni of n for i = 1, 2, . . . , s, with lcm(n1, n2, . . . , ns) = n,
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and a matrix Q ∈ GLd(Q) such that

(4) QAQ−1 = Λ =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As


 ,

where the minimal polynomial for Ai is Φni
(x) for i = 1, 2, . . . , s (see the proof

of [5, Theorem 2.7]). If we further assume that the matrix Q is in GLd(Z), then
the following theorem holds. It shows that the characterization of the crossed
product of this general matrix type action is similar to that of the action we
realized in Chapter 3.

Theorem 5.1. Suppose there is a matrix type action of Zn on a simple non-

commutative d-torus AΘ with d−W (n) = 0. Assume that there exists a matrix

Q ∈ GLd(Z) such that (4) holds. Then the crossed product AΘ ⋊Zn is an AT

algebra. It is an AF algebra if and only if each ni in (4) is either even, 3, 5,
or 9.

Proof. According to [5, Lemma 2.8], we have the inequalities

W (n) ≤
s∑

i=1

φ(ni) ≤ d = W (n).

Let n =
∏t

i=1 p
ei
i be the prime factorization of n. The above equality forces

that either of the following is true:

(1) if pe11 6= 2, renumbering if necessary, we have s = t and ni = peii or
2peii for i = 1, 2, . . . , t,

(2) if pe11 = 2, renumbering if necessary, we have s = t− 1 and ni = p
ei+1

i+1

or ni = 2p
ei+1

i+1 .

It also forces the size of Ai to be exactly φ(ni) for each i, which indicates that
the characteristic polynomial of Ai coincides its minimal polynomial Φni

(x).
The eigenvalues of each Ai and hence of A are roots of Φni

(x), none of which
are integers, since ni 6= 1 or 2 for all i. This fact enables us to mimic the proof
of [3, Theorem 4.2] to find for each i a nondegenerate Θi such that there is a
matrix type action of 〈Ai〉 on the simple noncommutative torus AΘi

. Inspired
by the discussion in Section 3, we consider the product action of Zn = 〈Λ〉 on⊗s

i=1 AΘi
. Let (

⊗s
i=1 AΘi

)⋊Λ Zn denote the resulting crossed product. The
Künneth formula gives

K∗

(( s⊗

i=1

AΘi

)
⋊Λ Zn

)
∼=

s⊗

i=1

K∗(AΘi
⋊ Zni

).

As mentioned in [3, Remark 3.2], it follows from [2, Theorem 0.3] that

Ki

(( s⊗

i=1

AΘi

)
⋊Λ Zn

)
∼= Ki(C

∗(Zd ⋊Λ Zn)), i = 0, 1.
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Note that we denote by Zd ⋊Λ Zn the semi-direct product of the conjugation
action of Zn on Zd determined by Λ. Similarly, we also have

Ki(AΘ ⋊ Zn) ∼= Ki(C
∗(Zd ⋊A Zn)), i = 0, 1.

Since there exists a matrix Q ∈ GLd(Z) such that (4) holds, the semi-direct
product Zd ⋊A Zn is isomorphic to Zd ⋊Λ Zn. Therefore, we can apply the
Künneth formula to compute Ki(AΘ ⋊ Zn), that is, we have

K∗(AΘ ⋊ Zn) ∼=

s⊗

i=1

K∗(AΘi
⋊ Zni

).

Note that the conjugation action of Zni
on Zφ(ni) is free outside of origin. This

guarantees us to apply Theorem 2.12. The fact that K1(AΘ ⋊ Zn) = 0 if and
only if K1(AΘi

⋊ Zni
) = 0 for each i then concludes the proof. �
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Künneth formula, Pacific J. Math. 98 (1982), no. 2, 443–458. MR0650021

[13] Y. Watatani, Toral automorphisms on irrational rotation algebras, Math. Japon. 26

(1981), no. 4, 479–484. MR0634924

Received June 18, 2018; accepted March 31, 2019

Zhuofeng He
Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
E-mail: hzf@ms.u-tokyo.ac.jp

Münster Journal of Mathematics Vol. 12 (2019), 473–495


