
Informatik

Ensemble and Constrained Clustering with

Applications

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich

Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Daniel Duarte Abdala

aus São Paulo, Brazilien

- 2010 -

ii

Dekanin/Dekan: Prof. Dr. Matthias Löwe

Erster Gutachter: Prof. Dr. Xiaoyi Jiang

Zweiter Gutachter: Prof. Dr. Horst Bunke

Tag der mündlichen Prüfung(en):

Tag der Promotion:

asueh_01
Schreibmaschinentext
16.12.2010

Abstract

The main focus of this thesis concerns the further developments in the areas of en-

semble and constrained clustering. The goal of the proposed methods is to address

clustering problems, in which the optimal clustering method is unknown. Addi-

tionally, by means of pairwise linkage constraints, it is possible to aggregate extra

information to the clustering framework.

Part I investigates the concept of ensemble clustering. It presents a comprehen-

sive review of the state of the art in ensemble clustering. It follows by discussing

the impact of the ensemble variability in the final consensual result. Visualization

of ensemble variability based on multidimensional scaling is also a topic addressed

in this part. A software which is able to perform ensemble clustering using vari-

ous existing consensus functions is also introduced. A consensus function based on

random walker originally developed for image segmentation combination is adapted

to the ensemble clustering problem. A lower bound is proposed to explore how

well cluster ensemble methods perform in an absolute sense, without the usage of

ground-truth. Finally, a study evaluating how well the general ensemble clustering

techniques perform in the context of image segmentation combination closes this

part.

Part II introduces an ensemble clustering method based on a new formulation

for the median partition problem. The performance of this method is assessed in

relation to other well known ensemble clustering methods.

Part III addresses the potential of ensemble techniques in the framework of con-

strained clustering. It presents a comprehensive review of the state of the art in

constrained clustering and discusses the impact of considering constraints locally

or globally. An experiment is presented comparing both approaches. A new clus-

tering method is introduced combining both ensemble and constrained clustering.

Constraints are introduced into three consensus functions. This part closes with an

experimental evaluation, in which constraints are considered in different steps of the

clustering ensemble framework.

iii

iv

In Part IV a review of the imaging protocol known as diffusion tensor imaging

is presented, and a new fiber segmentation methodology based on the definition of

pairwise linkage constraints is proposed to drive the semi-supervised segmentation

process.

Acknowledgements

First and foremost, I would like to thank my adviser, Prof. Dr. Xiaoyi Jiang, for his

continuous support and wonderful advisements regarding my work. I could never

be more blessed, and it was truly an honor and a life experience to work with him.

Professor Jiang, as I usually call him, was also very supportive in other aspects of

my life here in Germany, being very understandable when I had to take a short leave

for family reasons, and for that, I will always be thankful to him.

I remember well when I first read one of his papers and have thought: ”wow,

this is a clear work presentation. I also would like to be able to do my research this

way!”. In fact, Prof. Jiang thought me many things regarding the academic life,

ranging from how to clearly address an idea to scientific events organization. I also

would like to thank him for the opportunity of working in the IJPRAI. This two

years experience gave me a clear insight of how a scientific journal works.

I would like to express my sincere thanks to the CNPq - Conselho Nacional

de Pesquisa. My research would never be possible without the continuous support

provided by this Institution. I’m honored to be one of the researchers chosen to be

founded (process number 290101-2006-9), and I hope to be able to contribute to the

research Brazilian community in the years to follow.

I am also very grateful to the DAAD (Deustche Akademischer Austausch Dienst)

for proportionating me a 6 month German language course at the Goethe-Institut

(Göttigen). Learning German properly made all the difference in my daily life in

Germany.

I would like to express my sincere thanks to Prof. Cláudia Maria de Oliveira

Souza and Prof. Joel Abdala (my dad) for the grammar correction. I wish I had

eyes like your for finding typos. Thanks for teaching me that ”where” is not a

”wildcard”.

I will never be able to thank enough Mrs. Hildegard Brundestering for all the

times she solved my bureaucratic problems here in Germany. The help she dispensed

v

vi

to me in finding a home, all the advisements regarding the necessary documentation

to settle up in a city, health insurance, were a life saver in my first days here. She also

saved me the trouble of showing up in the lab during holidays, always reminding me

one day before: ”Herr Abdala, morgen haben wir Feiertag.”. The examples of her

helpfulness could fill up this entire thesis, so I will simply say: ”Frau Brunstering,

thank you a lot for everything”.

To all my colleagues in the Computer Vision and Pattern Recognition Group, my

sincere thanks. It was a rich experience to work with you all. In special, I would like

to thank my closest colleagues, namely Pakaket Wattuya, Kai Rothaus and Lucas

Franek. To develop research with you guys was truly an awesome experience.

For my family, you all know I will never be able to thank you enough. Papa,

despite the fact you almost scared me to death in my third year here in Germany

during your stroke, please keep in mind that I truly believe no living being could

ever be more fortunate than me by having you as my dad. Mom, you took my peace

with all the advices about the various medicines I should take for all possible and

imaginable diseases. To keep up with you recommendation, it was almost harder

than to do my research itself, but again, you are truly a mom, I couldn’t wish a

better one. To my siblings Rachel, Déborah and Joel, since we were kids you stole

my chocolate and have hidden countless Lego pieces driving me insane. However,

I know better, the worst of you is the best any brother could ever hope for. You

guys are awesome. Nona, I know you know how much a love you. You are a dream

grandmother. Thank you a lot for the calls, for the money for shoes that I regret to

assume now I spent in chocolate and foremost, for all your love.

I would like to thank Angela, my fiancée and soon to be wife. When I first

came to Germany and you stayed in Brazil to attend to your second college course,

I had feared we would not be able to endure this long separation. Fortunately, the

separation was in fact simply geographic, since we almost daily talked to each other.

The feeling of meeting you again after one year or so, with no awkwardness between

us, was all the answer I needed to truly know you are the woman of my life.

Finally, I would like to thank God. Thank you for the opportunity of living this

fulfilling experience my life has been.

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 5

1.3 Thesis Organization . 6

2 Fundamentals 9

2.1 General Terms and Disambiguation 10

2.2 Mathematical Notation . 11

2.3 Ensemble Generation Schemes . 12

2.4 Measures for Comparing Partitions 14

2.4.1 Pair Counting Based Comparison Methods 15

2.4.2 Set Matching Methods . 17

2.4.3 Information Theoretic Methods 18

2.5 Median of Objects . 19

2.6 Databases . 20

Part I Ensemble Clustering 25

3 Ensemble Clustering 27

3.1 Detailed Ensemble Framework . 29

3.2 Techniques for Ensemble Generation 31

vii

viii Contents

3.2.1 Measuring Ensemble Variability 32

3.2.2 Visualizing Ensemble Variability 34

3.2.3 Impact of Different Ensemble Generation Techniques 37

3.3 Taxonomy of Consensus Functions . 38

3.3.1 Median Partition Based Methods 40

3.3.2 Patterns Co-occurrence Based Methods 43

3.4 Consensus Partition Evaluation . 46

3.4.1 Ensemble Clustering Validity Indexes 47

3.5 Ensemble Clustering Software . 48

4 Random Walker Ensemble Clustering 53

4.1 Summary . 54

4.2 Graph Generation Method . 56

4.3 Experimental Results . 61

4.3.1 Assessing the Neighborhood Size 61

4.3.2 Neighborhood Size vs Accuracy 62

4.3.3 Assessing the Processing Time 64

4.3.4 Assessing the Overall Performance 65

5 Lower Bound for Ensemble Clustering 71

5.1 LP-Based Lower Bound . 72

5.2 Experimental Verification . 73

5.3 Other Ensemble Clustering Lower Bounds 76

5.4 Extension to Weighted Cluster Ensemble Techniques 77

5.5 Conclusions . 80

6 Image Segmentation Combination via Ensemble Clustering 83

6.1 Framework for Image Segmentation Combination 86

6.2 Experimental Results . 90

Contents ix

6.2.1 Datasets . 90

6.2.2 Combination by Ensemble Clustering vs Supervised Learning . 91

6.2.3 Evaluation of Segmentations 91

6.2.4 Ensemble Segmentation Results 92

Part II A New Consensus Function for Ensemble Clus-
tering 97

7 Sum of Pairwise Distances 99

7.1 Definition . 100

7.2 Computational Method . 102

7.2.1 Initial Candidate Solution . 103

7.2.2 Weight Computation . 104

7.2.3 Finding the Pairs . 105

7.2.4 Optimization Techniques . 106

7.3 SoPD Applied to Ensemble Clustering 107

7.4 SoPD Validity Index . 110

7.5 Experimental Results . 111

7.6 Discussion . 114

Part III Constrained Ensemble Clustering 117

8 Constrained Clustering 119

8.1 Types of Constraints . 120

8.1.1 Ground Truth Based Constraints Generation 122

8.1.2 Constraints Relevance . 124

8.1.3 Transitive Closure . 125

8.2 Constraining Methods . 127

8.3 Experiments . 130

x Contents

9 Constrained Ensemble Clustering 135

9.1 Constrained Ensemble Clustering Framework 138

9.2 Proposed Consensus Functions . 140

9.2.1 Median Partition . 141

9.2.2 Evidence Accumulation . 143

9.2.3 Sum of Pairwise Distances . 145

9.3 Experimental Results . 147

Part IV Fiber Segmentation 155

10 DTI Fundamentals 157

10.1 Diffusion Tensors . 158

10.2 Visualization Schemes . 163

10.3 Fiber Tracking . 166

11 Fiber Segmentation 173

11.1 Fiber Segmentation Methods . 175

11.1.1 Interactive Segmentation . 176

11.1.2 Clustering Segmentation . 176

11.1.3 Atlas Based Segmentation . 177

11.2 Fiber Segmentation Using Constrained Clustering 178

11.2.1 Computing Similarity Between Fibers 180

11.2.2 Constraints Assignment . 180

11.2.3 Constrained Fiber Clustering 182

11.2.4 Threshold Definition and Outlier Detection 182

11.3 Experimental Results . 184

12 Conclusion 189

List of Figures

1.1 Example of fiber segmentation . 4

2.1 Representation of the 2D synthetic datasets 20

2.2 Examples of color images from the Berkeley image database 23

2.3 Example of one section of a DTI series 24

2.4 Two views of the same fiber tracking 24

3.1 General ensemble clustering model 27

3.2 Detailed ensemble clustering framework 30

3.3 Schematics for the generation step . 31

3.4 Evaluation of ensemble variability based on Cvar index 33

3.5 Plot of the UCI-Irvine iris ensemble using classical multidimensional

scale . 36

3.6 Plot of the UCI-Iris ensemble augmented by the ground-truth and

consensus partition . 37

3.7 Simplified taxonomy of ensemble clustering methods 40

3.8 Plotting of three co-association matrices 44

3.9 Main interface of the ensemble clustering program 49

3.10 Opening ensemble interface . 50

3.11 Simple interface showing results for distance measures and lower bounds 50

4.1 Example of well defined topology in image datasets 55

4.2 Example of neighboring patterns sharing the same edge 57

xi

xii List of Figures

4.3 Example of a disconnected graph G composed of three subgraphs . . 59

4.4 Grown of edges quantity vs neighborhood size 62

4.5 Relationship between error rate and neighborhood size 63

6.1 Image results for different segmentation algorithms 83

6.2 Processing pipeline for image segmentation combination using ensem-

ble clustering methods . 86

6.3 Example of super-pixel computation for synthetic image 88

6.4 Segmentation results for free K (c-e), and for fixed K (h-j) 93

7.1 Optimal example to compute the median partition 100

7.2 More realistic example of real object’s distributions found in real-life

problems . 101

7.3 Triangle inequality applied to the pairwise distance between partitions 101

7.4 Fluxogram for the computation of SoPD 103

7.5 Different initial candidate partitions 104

7.6 Fluxogram for the simulated annealing based SoPD consensus function109

7.7 SoPDvi computed using VI and Mirkin distances 110

8.1 Examples of relevant and irrelevant constraints 124

8.2 Example of invalid constraint . 125

8.3 Inference of new constraints . 126

8.4 Comprehensive taxonomy of constrained clustering methods 127

8.5 Constrained clustering architecture 128

8.6 Results of the COPGB-KM for the eleven test datasets 130

8.7 Comparison of COP-KM, COPGB-KM and DMLM constrained clus-

tering methods . 133

8.8 Comparison of COP-KM, COPGB-KM and DMLM constrained clus-

tering methods (cont...) . 134

List of Figures xiii

9.1 Misclassification due to non-consideration of constraints in the com-

bination step . 137

9.2 General framework for constrained ensemble clustering 138

9.3 Constrained BOEM simulated annealing based algorithm 142

9.4 Schematics for the combination step of the constrained combination

clustering . 143

9.5 Fluxogram for the simulated annealing SoPD consensus function . . 146

9.6 Number violations due to non-consideration of constraints in the com-

bination step . 148

10.1 Control and DWI images . 159

10.2 Examples of isotropic and anisotropic diffusion 161

10.3 Sample ellipse to be described as a matrix 161

10.4 Visualization schemes based on computed indexes for DTI 163

10.5 High resolution fiber tracking rendering 166

10.6 Example of line propagation method for one seed point 167

10.7 Example of fibers kissing and crossing 170

11.1 Examples of DWI, T1 and T2 MRI images 173

11.2 Fiber tracking produced with the MedINRIA software 174

11.3 General framework for fiber segmentation based on the original DWI

images . 175

11.4 An example of commonly used software for manual fiber segmentation 177

11.5 General steps of the proposed fiber segmentation method 179

11.6 Example showing the computation of the MCP distance between

fibers fi and fj . 181

11.7 Example of fiber constraint specification over toy datasets 181

11.8 Threshold values ranging from 5 to 50 vs number of clusters 184

11.9 Complete plot of initial unconstrained clustering 185

11.10Constraints definition for the spinal cord segmentation 186

xiv List of Figures

11.11Iterative segmentation of colossal fibers 187

List of Tables

2.1 List of ensembles generated using K-Means and subsets of attributes . 12

2.2 List of ensembles generated using K-Means with random K and sub-

sets of attributes . 13

2.3 List of distance/similarity measures 14

2.4 List of synthetic datasets used in the experiments 21

2.5 Setected UCI datasets . 22

3.1 Example of matrix ∆ computed over an UCI-Irvine iris ensemble . . . 36

3.2 Consensus results for different ensemble generation techniques over

the same dataset (UCI-balance) . 39

4.1 Impact of neighborhood size in the number of edges processed 62

4.2 Processing time for different ensemble clustering methods 64

4.3 VI index for the toy datasets . 66

4.4 Error rates (in %) for the toy datasets 66

4.5 VI index for the UCI-Irvine datasets 67

4.6 Error rates (in %) for the UCI-Irvine datasets 68

5.1 Deviation ∆′ for the RW method . 74

5.2 Deviation ∆′ for the EAC SL method 75

5.3 Deviation ∆′ for the EAC AL method 75

5.4 Comparison of lower bounds Γ and Γm 76

5.5 Deviation ∆′ for the weighted version of RW method 78

xv

xvi List of Tables

5.6 Deviation ∆′ for the weighted version of (EAC SL) method 79

5.7 Deviation ∆′ for the weighted version of (EAC AL) method 79

6.1 Ensemble clustering results for free parameter K 94

6.2 Performance evaluation of supervised learning and average perfor-

mance of ensembles . 94

6.3 Ensemble clustering results for fixed parameter K 95

7.1 VI index for the toy datasets . 111

7.2 Error rates (in %) for the toy datasets 111

7.3 VI index for the UCI-Irvine datasets 112

7.4 Error rates (in %) for the UCI-Irvine datasets 113

8.1 Rules for computing the hard transitive closure 126

8.2 Rules for computing the soft transitive closure 127

9.1 Results for constrained generation, unconstrained consensus on toy

datasets . 149

9.2 Results for unconstrained generation, constrained consensus on toy

datasets . 150

9.3 Results for constrained generation, constrained consensus on toy datasets150

9.4 Results for constrained generation, unconstrained consensus on UCI-

Irvine datasets . 151

9.5 Results for unconstrained generation, constrained consensus on UCI-

Irvine datasets . 152

9.6 Results for constrained generation, constrained consensus on UCI-

Irvine datasets . 154

List of Algorithms

4.1 δ-Neighborhood graph construction algorithm 60

6.2 Algorithm for computation of the super-pixels 89

7.3 BOEM based SoPD ensemble clustering algorithm 107

8.4 Must-link constraints generation algorithm 123

9.5 Constrained K-Means algorithm (cop-KM) 141

9.6 Constrained agglomerative algorithm (cop-SL) 144

10.7 Fiber tracking algorithm . 168

10.8 Line propagate algorithm . 169

11.9 Constrained fiber clustering algorithm 183

xvii

xviii List of Algorithms

Chapter 1

Introduction

Since some time, unsupervised clustering [77, 116, 170] methods have found their

way from pure academic research to real life applications. Examples can be found

in virtually any field relying on data analysis. In fact, it is one of the most com-

mon tools in this area. In the field of search results grouping [109, 139, 142, 175]

clustering may be used to create a more relevant set of search results compared to

keyword based search. An interesting example of such application is the Clusty [150]

search engine. In social network analysis [98, 102, 117], clustering is also useful to

identify informal communities not explicitly defined by its participants. It also can

be used in epidemiological modeling of the spread of contagious diseases [46, 93].

In market research, clustering techniques are widely used by market planners. A

common application is the partition of surveyed populations of consumers into mar-

ket segments [75]. It can also be used to uncover relationships between different

groups of customers and potential customers [95]. In image segmentation, cluster-

ing techniques are extensively used to partition image pixels in subsets representing

objects or patterns. Medical [123], biological [5], and histological [113] are examples

of images commonly analyzed using cluster based image segmentation techniques.

Most of the examples listed above use clustering algorithms specifically tuned

to deal with the nuances inherent of the data. In fact, the clustering problem can

be defined as stated by Kleinberg [91]: ”given an underlying set of points, partition

them into a collection of clusters so that points in the same cluster are close together,

while points in different clusters are far apart”. There are few works about clustering

independently of any particular algorithm. Kleinberg proved via an impossibility

theorem that it is not possible for a clustering algorithm to satisfy at the same time

the following three properties:

1

2 Chapter 1. Introduction

• Scale-Invariance: this property introduces the requirement that the cluster

algorithm must not be sensitive to changes in the units of distance measure-

ment;

• Richness: this property requires that all possible partitions in the data space

should be reached provided a suitable distance function;

• Consistency: the third property states that a given partition is obtained

using a distance function d. If distances between objects inside the clusters are

reduced and the distances between clusters are enlarged, it should be possible

to come up with a new distance function d′ able to produce the same partition

achieved by d.

Therefore, it is equally hard to design a clustering algorithm that could be applied

to any kind of underlying data structure. A classical example of this difficulty can

be found regarding the well known K-Means algorithm [110]. It is known to perform

remarkably well over datasets showing clusters with hyper-spherical shapes, but it

presents poorer results otherwise. Another example refers to hierarchical clustering.

This family of cluster algorithms is known to work well on continuous clusters, not

mattering the shape, but it is sensitive to noise and clusters proximity.

During the last years, two new promising clustering techniques emerged. Con-

strained clustering [15] takes advantage of known information about the dataset to

aid the clustering process. Partially labeled data, expected maximum and minimum

cluster size, and pairwise linkage pattern relationships are examples of information

used by a constrained clustering algorithm. By means of extra information about

the data, better and more reliable clustering results can be obtained. Ensemble

clustering [7, 57, 145], on the other hand, combines multiple partitions into a single

solution, aiming to produce a smoother result, and possibly, even improving the final

result compared to any individual partition in the ensemble. By means of those new

clustering methods, a broad new range of applications can be addressed.

The main focus of this thesis concerns further developments in the areas of en-

semble and constrained clustering. The goal of the proposed methods is to address

clustering problems, in which the optimal clustering method is unknown. Addi-

tionally, by means of pairwise linkage constraints, it is possible to aggregate extra

information to the clustering framework.

1.1. Motivation 3

1.1 Motivation

Recently, two new clustering techniques were introduced. They are called ensem-

ble and constrained clustering. Although very promising, both techniques are rea-

sonably new, presenting room for further investigations. For one side, ensemble

clustering is a viable option to address the problem of selecting a fitting cluster-

ing algorithm in cases where the dataset distribution is unknown. It also provides

a way to deal with noisy data and outliers. At the time, a myriad of consensus

functions exists with new ones being proposed regularly. The foundation in which

this method is based, namely the ensemble of partitions, is commonly neglected. A

considerable number of related papers rarely address the ensemble generation step,

crucial for the obtainment of a good consensus partition at the end of the process.

Aspects as ensemble variability and its impact on the final consensual partition are

seldom cited. Constrained clustering is an extension of general clustering able to

incorporate extra information to the clustering process. The most investigated type

of constraints refers to pairwise linkage constraints, in which pairs of patterns are

deemed to be in the same or in different clusters. The performance increase in

comparison to unconstrained clustering methods tends to be proportional to the

quantity of side information provided. Furthermore, most works in the field of con-

strained clustering present mainly synthetic evaluation data, in which constraints

are automatically generated based on a known ground-truth.

The main motivation of this thesis is to propose a unification approach con-

sidering both ensemble and constrained clustering into a single framework. Addi-

tionally, a constrained clustering algorithm is proposed to address the problem of

fiber segmentation. The remainder of this section gives a brief overview of the fiber

segmentation problem.

Recently, a new magnetic resonance imaging protocol called diffusion tensor

imaging (MR-DTI) [18] was introduced. By series of post-processing steps, it allows

the creation of a three-dimensional representation of living fibrous tissues, e.g. the

human brain. The task of processing a MR-DTI series into a collection of brain

fibers is called fiber tracking. In fact, the advent of fiber tracking alone, from a

simple visualization point of view is a considerable contribution. Progressively, new

neuro-anatomical material in the form of 3D atlases is being made available, in

general for educational purposes. A good example was introduced in [159]. No

longer specialists are required to rely on projections over 2D images, or artistically

created representations.

Fiber tracking shows a very detailed representation of the white matter, allowing

4 Chapter 1. Introduction

Figure 1.1. Example of fiber segmentation

differentiation on its inner structures (hard to be isolated in anatomical imaging

such as MR-T1/T2 or CAT-scans). It also allows the identification of connections

between different functional brain regions. This can be done by isolating subsets of

fibers also called fiber bundles, connecting two or more functional regions.

Fiber tracking maps can be tricky to visualize and to interpret (see Figure 1.1).

Given its three-dimensional nature and the huge amount of fibers (potentially tens

of thousands of fibers) it becomes hard to extract only by visual inspection useful

information in order to aid medical diagnosis. A new task called fiber segmentation

was introduced [11]. Its objective is to assign meaning to the potentially incompre-

hensive set of fibers. Although named fiber segmentation, the process has little to do

with segmentation in the sense it is given within the context of image segmentation.

In fact, the process can be better seen as the partition of the set of fibers (objects)

into meaningful subsets, what can be seen as a clustering task.

Usually, medical institutions with access to fiber tracking technology using it

in a daily clinical basis rely heavily on manual segmentation. The reasons for this

choice of tool can be summarized as follows:

• The user has complete control of the segmenting process;

• It is easier to account to anatomical changes induced by the disease being

studied, resulting from chronic diseases, natural malformations, or anatomical

abnormalities;

• The user tends to feel more confident in relying on a result of which he has

complete control over the process of obtaining it.

1.2. Objectives 5

The second motivational objective of this thesis is to propose a more reliable

way to perform semi-supervised fiber segmentation. Additionally, the proposed

method should satisfy the list of reasons for choosing manual segmentation given

above. A fiber segmentation procedure is devised that takes advantage of the new

methodologies in clustering analysis cited earlier in this section, namely constrained

clustering. In order to achieve this objective, a new constrained clustering algorithm

had to be proposed. It requires as input the user to identify pairwise relationships

between fibers or set of fibers as belonging to the same group or fibers close to each

other belong to different groups. The segmentation can be refined interactively until

an acceptable result is reached.

1.2 Objectives

The main objectives of this thesis are summarized as follows:

• To introduce a new consensus function for ensemble clustering entitled sum of

pairwise distances. It is based on a new formulation of the median partition

problem;

• To consider the concepts of ensemble and constrained clustering altogether

and to propose a suitable algorithm able to take advantage of both methods;

• To propose an algorithm to segment fiber tracking of the human brain into

meaningful substructures demanding less effort from the specialized user.

Along with the main objectives, there are also relevant topics investigated in this

thesis. They are related to the main objects above described.

• To investigate the problem of ensemble variability and its impact in the con-

sensus partition obtained via consensus functions;

• To propose a viable way to measure ensemble variability by means of a vari-

ability index;

• To propose a visualization scheme able to detect variability issues within an

clustering ensemble;

• To investigate the applicability of the random walker image segmentation al-

gorithm to the context of ensemble clustering;

6 Chapter 1. Introduction

• To evaluate the usefulness of a lower bound designed for the generalized median

problem to ensemble clustering;

• To investigate the viability of applying existing ensemble clustering methods

to address the problem of image segmentation combination.

1.3 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 presents an overview of some fundamental concepts and algorithms

that are required for understanding the work presented in this thesis. These topics

are used throughout the thesis, such as the disambiguation of general terms widely

used in the text, the mathematical notations adopted by the equations and algo-

rithms, the ensemble generation schemes, twelve commonly used evaluation mea-

sures, a mathematical formulation for the median partition problem, and the de-

scription of the four used databases.

Part I - Ensemble Clustering comprehends Chapters 3, 4, 5, and 6.

Chapter 3 presents a comprehensive review of ensemble clustering. The two

steps of ensemble clustering, namely, ensemble generation and consensus functions

are discussed in detail. The variability of ensembles achieved by different ensemble

generation schemes is discussed and means to measure and visualize variability are

proposed. A taxonomy of the existing consensus functions is presented. The existing

ways to evaluate the accuracy of results produced by ensemble clustering methods

are discussed in detail. This chapter ends with the presentation of a software devel-

oped to simplify the usage of ensemble clustering consensus functions.

Chapter 4 presents the adaptation of a random walker consensus function to

work with ensemble clustering problems. The original method is reviewed and the

need of an alternative graph-based representation to deal with datasets other than

images is identified and proposed. This chapter ends with an experiment comparing

the results obtained by the random walker consensus function to other well known

ensemble clustering methods.

Chapter 5 presents a lower bound to explore how well cluster ensemble methods

perform in an absolute sense without the usage of ground-truth. The chapter follows

by presenting other two lower bounds that can also be used for ensemble clustering.

The lower bound proposed is evaluated for the cases of weighted and unweighted

ensemble clustering.

1.3. Thesis Organization 7

Chapter 6 explores the idea of consensus clustering to address the problem of

image segmentation combination. The framework proposed for image segmentation

combination based on general consensus functions is presented, followed by experi-

mental results obtained using the Berkeley image database as evaluation basis.

Part II - A New Consensus Function for Ensemble Clustering comprehends

Chapter 7

Chapter 7 introduces a new formulation to address the problem of finding the

median of objects. The problem is motivated and the proposed formulation is math-

ematically defined. The implementation details for this new method to compute the

median of objects in the context of ensemble clustering is given, followed by the

introduction of a cluster validity index based on it. This chapter ends with an ex-

periment comparing the results obtained by this new ensemble clustering method

to other well known ensemble clustering consensus functions.

Part III - Constrained Ensemble Clustering comprehends Chapters 8 and 9.

Chapter 8 reviews the constrained clustering topic. The existing types of con-

straints are described, followed by a discussion about the relevance of constraints

with respect to possible gain in accuracy they can bring to the clustering process.

The existing constraining methods are reviewed and used in conjunction with the

existing types of constraints to create a constrained clustering taxonomy. This

chapter ends with a quantitative evaluation comparing global and local constraining

methods.

Chapter 9 addresses the potential of ensemble techniques in the framework of

constrained clustering. The constrained ensemble clustering framework is presented

and three constrained consensus functions are proposed. This chapter ends by pre-

senting a quantitative study comparing the results of the constrained consensus

functions proposed to standard ensemble and constrained clustering methods.

Part IV - Fiber Segmentation comprehends Chapters 10 and 11.

Chapter 10 reviews the fundamental concepts of diffusion tensor imaging. The

mathematical foundation underlying the computation of diffusion tensors, the visu-

alization schemes commonly applied on DTI, and the fiber tracking process are the

topics reviewed in this chapter.

Chapter 11 addresses the problem of fiber segmentation. This chapter starts by

reviewing the existing fiber segmentation methods. A new semi-supervised method

to perform fiber segmentation using constrained clustering is proposed and exper-

imental results are presented, in which a number of fiber structures is successfully

8 Chapter 1. Introduction

segmented by means of the algorithm proposed.

The contributions of this thesis in summary and final conclusions are given in

Chapter 12.

Chapter 2

Fundamentals

This chapter gathers fundamental concepts, algorithms and information about the

databases that are used throughout the thesis. Section 1 provides a comprehensive

disambiguation of the general terms used. Some of the terms belong to relatively

new areas and therefore, little consensus among different authors exists. Choices are

made to maintain the text’s cohesion. The variants of such terms are hereby named

in order to ease the reading. Section 2 gathers the mathematical notation used in

order to serve as a reference point that can be revisited in cases of doubt during the

inspection of specific sections of the text. However, any additional nomenclature

needed is properly defined in locus. Section 3 describes the ensemble generation

schemes as well as the algorithms used to create the partitions. This topic is located

here since it plays a central role for the ensemble clustering methods reviewed or

proposed in this thesis. Additionally, the ensemble generation schemes require a

number of details to be specified. Section 4 gives a brief review of the existing

evaluation measures, commonly used to assess the quality of clustering algorithms.

Some of those measures are used during the evaluation step by different algorithms

all around the thesis. Section 5 reviews the concept of computing median of objects.

Median concept plays an important role in the consensus clustering methods. It is

also used by the constrained ensemble clustering methods introduced in this thesis.

Additionally it works as a basis for the sum of pairwise distance method proposed

in Chapter 7. Finally, Section 6 presents a detailed description of the four databases

used by the various experiments in this thesis.

9

10 Chapter 2. Fundamentals

2.1 General Terms and Disambiguation

Throughout this work, some terms and concepts are used extensively. In order

to make easy the access of such terms in times when a reminder is needed, they

are summarized in this section. The terms are organized in two main classes: a)

clustering, and b) fiber segmentation. Some terms belong to recent theoretical pro-

posals. Thus, during the time this thesis was written, little consensus regarding

the nomenclature existed. For the sake of clarity, the interchangeably terms are

here listed. In other cases, the terms can come from different areas using under-

standably different nomenclatures, but ultimately representing the same concept.

bla

Clustering Related Terms

• Dataset - data source, or set of patterns provided to the algorithms;

• Pattern, Object, Instance - one single observation over a phenomena;

• Partition - subdivision of the patterns of a given dataset into meaningful

groups;

• Partitioning, Clustering - the process by which partitions are created;

• Ground Truth - it is a human made/inspected partition of the dataset assumed

to be the ”correct” answer. It is commonly used to assess the performance of

clustering algorithms by means of direct comparison;

• Similarity, Distance Measure - it is a function that computes the similarity

between two partitions;

• Consensus Clustering, Clustering Combination, Ensemble Clustering - it is

two-step process that generates an ensemble of partitions over the same dataset

and combines them into a single consensual result;

• Cluster Ensemble (CE) - it is defined as a collection of partitions of the same

dataset;

• Consensus Function (CF) - it is a process that combines a cluster ensemble

into a final consensual partition;

• Consensus Partition (CP) - it is defined as the output of a consensus function;

• Constrained Clustering (CC) - it is a method that incorporates side informa-

tion into general clustering methods;

2.2. Mathematical Notation 11

• Constraint - it is defined as a limitation about how the data can be clustered.

Fiber Segmentation Related Terms

• Fiber, Curve, Polyline - it is a single object composed by a number of points,

in this context a representation of a white matter’s neural fiber;

• Fiber Tracking (FT) - it is the result of processing a diffusion tensor magnetic

resonance imaging series into a set of space-curves. It can be understood as

a collection of polylines representing the connectivity of functional regions of

the brain;

• Fiber Bundle (FB) - it is defined as a subset of fibers from a fiber tracking;

• Fiber Segmentation (FS) - it is the process of partitioning the fiber tracking

into various meaningful fiber bundles;

• DWI and DTI - DWI stands for Diffusion Weighted Imaging and DTI to

Diffusion Tensor Imaging. DWI is the actually MRI protocol but DTI is

popular, since the computation of the diffusion tensor’s volume is the most

common post-processing, used by virtually any practical DWI application.

2.2 Mathematical Notation

X dataset

N stands for the number of patterns or objects in a set

x, y, p, q pattern

C a subset of patterns of X grouped together and sharing the same label

K number of clusters

P,Q, F, Pi partition of a dataset into K clusters

d(·, ·) similarity measure

P ensemble of partitions

M number of partitions in P
CM co-association matrix

mi,j number of times patterns i and j share the same label in P
Γ lower bound

∼ binary relation ”similar”, it is used to represent a must-link

� binary relation ”dissimilar”, it is used to represent a cannot-link

ML it is the set of must-link constraints

CL it is the set of cannot-link constraints

12 Chapter 2. Fundamentals

The various algorithms and equations presented in this thesis use a regular nota-

tion throughout the entire text. Therefore, in cases of doubts regarding the notation

used when inspecting a given algorithm or equation, the reader should refer to this

section. Any additional notation required is defined in locus, and properly explained.

2.3 Ensemble Generation Schemes

One of the most important aspects of the dataset’s pre-processing on this thesis

refers to the generation of ensemble of partitions. In order to systematically eval-

uate the ensemble clustering, and the consensus functions proposed, a series of

ensemble generation schemes are proposed. This section describes each one of them,

correlating them with a fix nomenclature. The generation schemes are detailed later

on in Chapter 3. For each ensemble scheme, ten ensembles using the same strategy

are generated in order to improve the noise resistance.

The first generation scheme refers to the selection subsets of attributes. Four

ensembles for each dataset are generated using this scheme. The nomenclature

adopted is the following, KMclicksXX-YY. ”KM” stands to K-Means algorithm.

The number of clusters is extracted from the ground-truth. ”clicks” means that a

subset of the attributes is used, ”XX” is the number of partitions in the ensemble

and ”YY” is the percentage of attributes used. Sixteen ensembles are generated this

way, as listed on Table 2.1.

Table 2.1. List of ensembles generated using K-Means and subsets of attributes

KMclicks10-03 KMclicks10-05 KMclicks10-07 KMclicks10-09

KMclicks20-03 KMclicks20-05 KMclicks20-07 KMclicks20-09

KMclicks30-03 KMclicks30-05 KMclicks30-07 KMclicks30-09

KMclicks40-03 KMclicks40-05 KMclicks40-07 KMclicks40-09

The second generation scheme uses both K-Means with a random number of

target clusters and subsets of attributes. It follows the same system described for

the previous case. The number of target clusters is picked at random for each

partition within the range [K, 2K]. The nomenclature adopted is the following,

KMclicksrandKXX-YY. Sixteen ensembles are generated this way. Their names

are listed in Table 2.2.

The third generation scheme uses K-Means as clustering algorithm and a random

number of target clusters. Four ensembles are generated with numbers of partitions

10, 20, 30 and 40, respectively. The nomenclature adopted is KMrandXX.

2.3. Ensemble Generation Schemes 13

Table 2.2. List of ensembles generated using K-Means with random K and subsets of

attributes

KMclicksrandK10-03 KMclicksrandK10-05 KMclicksrandK10-07 KMclicksrandK10-09

KMclicksrandK20-03 KMclicksrandK20-05 KMclicksrandK20-07 KMclicksrandK20-09

KMclicksrandK30-03 KMclicksrandK30-05 KMclicksrandK30-07 KMclicksrandK30-09

KMclicksrandK40-03 KMclicksrandK40-05 KMclicksrandK40-07 KMclicksrandK40-09

The fourth generation scheme also uses K-Means as clustering algorithm. It

simply runs the algorithm with the number of target clusters extracted from the

ground-truth. The nomenclature adopted is KMXX.

The fifth generation scheme is produced using K-Means with number of tar-

get clusters is picked at random for each partition within the range [K, 2K]. The

nomenclature adopted is KMrandXX.

The final generation scheme uses a number of different algorithms to produce the

ensemble. The nomenclature adopted is diffAlgs. The ensembles of partitions are

generated using different ensemble generation strategies as described earlier. Among

one of the generation strategies, it is required different clustering algorithms to be

used. The list bellow refers to the collection of algorithms used in order to generate

the ensembles.

• Mean shift algorithm [61] - The idea behind mean shift is to consider the

points in the feature space as an empirical probability density function. Dense

regions in the feature space correspond to the local maxima. For each data

point, it performs a gradient ascendent procedure on the local estimated den-

sity until convergence is reached. The stationary points of this procedure

represent the modes of the distribution.

• Kernel K-Means [31] - Before clustering, points are mapped to a higher-

dimensional feature space using a nonlinear function. Subsequently, kernel

K-Means partitions the points by linear separators in the new space.

• Adaptive Affinity Propagation [59] - It takes as input measures of similar-

ity between pairs of data points. Real-valued messages are exchanged between

data points until a high-quality set of exemplars and corresponding clusters

gradually emerges.

• Mixture Model [53] - Clustering methods based on mixture models repre-

sents mathematically each cluster by a parametric distribution. The Gaussian

and Poisson’s distributions are commonly used. The entire data is modeled

14 Chapter 2. Fundamentals

by a mixture of these distributions. An expectation maximization algorithm

is used to systematically stabilize the distributions. The one with highest

probability is selected as the clustering result.

• K-Means [110] - This is perhaps the most popular clustering algorithm. It

seeks an optimal partition of the data by minimizing the sum of square error

criterion which is an iterative optimization procedure.

• Hierarchical [170] - Hierarchical clustering is also a popular algorithm. It

seeks to systematically agglomerate patterns based on its pairwise distance.

• Spectral Clustering [32] - The basic idea is to construct a weighted graph

from the initial data set where each node represents a pattern. Each weighted

edge takes into account the similarity between two patterns. This method

models clustering as a graph cut problem, which can be tackled by means of the

spectral graph theory. The core of this theory is the eigenvalue decomposition

of the Laplacian matrix of the weighted graph obtained from the data.

2.4 Measures for Comparing Partitions

The objective of a similarity function is to provide a measure of how similar/dissimilar

two given partitions are. They are among the fundamental concepts in this work,

similarity measures figure among the most widely used.

Table 2.3. List of distance/similarity measures

Distance Metric

Rand No

Adjusted Rand No

Jacard No

Mirkin Yes

F-measure No

Folks&Mallows No

Dongen Yes

Bipartite Graph Matching No

Mutual Information No

Variation of Information Yes

Error Rate No

2.4. Measures for Comparing Partitions 15

This subsection reviews some details of those measures. There are many different

ways to measure the similarity or distance between two partitions. However they

can be organized in the following classes:

a) Counting Pairs;

b) Set matching;

c) Information-Theoretically.

Table 2.3 lists the similarity measures. Additionally, it also indicates if they are

metrics. Metric distances are valuable since they make the criterion more under-

standable and match the human intuition better than an arbitrary distance function.

In order for a distance function to be a metric they must obey the four given con-

ditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 if and only if x = y (identity of indiscernible)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (sub-additive / triangle inequality)

2.4.1 Pair Counting Based Comparison Methods

There is a number of indexes possible of being computed using four simple counting

variables. They are defined as follows. Given two partitions P and P ′ of a set X of

N patterns, all pairs of patterns (xi, xj), i 6= j from X × X are considered. There

are four possible situations where those pairs could be accommodated:

• N11 - number of pairs of patterns in the same cluster in both P and P ′;

• N00 - number of pairs of patterns in different clusters in P and P ′;

• N10 - number of pairs of patterns in the same cluster in P but not in P ′;

• N01 - number of pairs of patterns in the same cluster in P ′ but not in P .

16 Chapter 2. Fundamentals

The four counts always satisfy the equality:

N11 +N00 +N01 +N10 =
N(N − 1)

2
(2.1)

Several distance measures are based on these four counts. The definition of the

most relevant is presented in the paragraphs that follow.

Rand Index: The rand index [128] is a similarity measure that allows the evaluation

of clustering algorithms. It is done by comparing two partitions being one a known

ground-truth. It is defined as:

Rand(P1, P2) =
N11 +N00

(N(N − 1))/2
(2.2)

It gives a measure of similarity within the range [0, 1] The value 0 is produced

in cases that the two partitions being compared are completely different. It is

important to notice that the rand index is not corrected by chance as shown by

Hubert and Arabie [76]. In this same work, Hubert proposed a new version of this

index called, adjusted rand index, accounting to this limitation. It is defined as

follow:

ARand(P1, P2) =
Rand(P1, P2)− E[Rand]

1− E[Rand]
(2.3)

The adjusted rand index has also a wider range [−1, 1], where 1 is obtained when

the two partitions are identical.

Jacard Index: The Jacard Index [16] gives a similarity measure within the range

[0, 1]. It is defined as follows:

J (P1, P2) =
N11

N11 +N10 +N01

(2.4)

Mirkin Distance: The Mirkin distance [116] is still another adjusted version of

rand index. It is important to notice that the Mirkin distance is in fact a metric. It

gives 0 if the two partitions are identical and a positive value otherwise. It is defined

as follows:

M(P1, P2) = 2(N10 +N01) (2.5)

2.4. Measures for Comparing Partitions 17

F-Measure: Finally, the F-measure [14], based on the precision and recall measures,

can also be computed using the four counting variables described earlier. It is defined

as follows:

Precision(P1, P2) =
N11

N10

Recall(P1, P2) =
N11

N01

(2.6)

FMeasure(P1, P2) =
Precision×Recall
Precision+Recall

(2.7)

Fowlkes & Mallows: Folks and Mallows [52] introduce the following index:

F(P1, P2) = −1
√
W1(P1, P2)×W2(P1, P2) (2.8)

The W1 and W2 values are computed as showed bellow. This index also returns

a value within the range [0, 1].

W1(P1, P2) =
N11∑k

i=1Ni × (Ni − 1)/2
W2(P1, P2) =

N11∑l
j=1Nj × (Nj − 1)/2

(2.9)

where Ni stands for the size of the ith element in C1 and Nj the jth element in C2.

The terms W1 and W2 represent the probability that a pair of patterns, which are

in the same cluster under C1 are also in the same cluster under C2, and vice versa.

2.4.2 Set Matching Methods

Error Ratio: The error ratio is a direct measure that gives the percentage of

patterns wrongly classified compared to a known ground-truth. It is computed by

matching the ground-truth information available with the partition to be compared.

The correspondence between the two sets is established by computing all possible

label permutations and then retaining the maximum. An efficient way to compute

the label permutations is achieved by means of the Hungarian algorithm [55].

Dongen Index: The Dongen Index [43] is a distance based on the matching of sets.

It takes the maximum value only if the two partitions are exactly the same. The

term a(P1, P2) is defined as follows:

a(P1, P2) =
∑
Ci∈P1

max
Cj∈P2

|Pi ∩ Pj| (Nj − 1)/2 (2.10)

18 Chapter 2. Fundamentals

The Dongen index is defined in Equation (2.11). It was also proven that this

distance is a metric.

D(P1, P2) = 2×N − a(P1, P2)− a(P2, P1) (2.11)

Bipartite Graph Matching: The BGM index [80] computes a one-to-one corre-

lation between image element clusters, trying to maximize their relationship. There

are two partitions: C1, representing the segmentation, and C2, representing the

ground-truth. It considers each cluster of the C1 and C2 as vertices of a bipar-

tite graph. Edges are added between each vertex of the two partitions and they

are valued as |c1i ∩ c2j|, a value that can be directly extracted from the match-

ing matrix. The maximum-weight bipartite graph is then defined as the subgraph

{(c1i1, c2j1), ···, (c1ir, c2jr)} where only the edges from c1i to c2j with maximum weight

are present. The BGM index is defined as follows:

BGM(C1, C2) = 1−
∑I

i=1

∑J
j=1 max(vi,j))

n
(2.12)

where vi,j are the edge weights, i is the number of clusters in C1 and j is the number

of clusters in C2. The total number of elements is given by n. The max(vi,j) term

guarantees that only the maximum weight value for each partite connection should

be computed in the final weight summation.

2.4.3 Information Theoretic Methods

This last class of comparison methods is based on the mutual information. This is

a well known concept in information theory that measures how much information a

random variable X is obtained by observing the random variable Y .

Mutual Information: MI [141] is a widely used index. It measures how much

information is shared between the two inspected variables. It is defined as follows:

MI(P1, P2) =
∑

(CP1
,CP2

)

p(CP1 , CP2) log
p(CP1 , CP2)

p(CP1)p(CP2)
(2.13)

where p(CP1 , CP2) is the joint distribution and p(CP1) and p(CP2) the marginal prob-

ability functions.

A normalized version of the mutual information can be computed as follows:

2.5. Median of Objects 19

NMI(P1, P2) = 1− 1

log(k.l)

∑
CP1
∈P1

∑
CP2
∈P2

p(CP1 , CP2) log
p(CP1 , CP2)

p(CP1)p(CP2)
(2.14)

Variation of information: VI [114] is still another information theoretic compar-

ison method. It measures how much information is gained or lost in changing the

random variable P1 into P2.

V I(P1, P2) = H(P1) +H(P2)− 2MI(P1, P2) (2.15)

where H(P) represents the entropy of the set P and can be computed as follows:

H(P) = −
∑

Cp ∈ Pp(Cp) log(Cp) (2.16)

2.5 Median of Objects

The concept of averaging a set of objects to produce a single representative of the

whole set was already extensively investigated given its usefulness in various areas

of science, such as engineering and economy. Averaging provides clear advantages as

such the possibility of having a single representative of a collection to be considered.

It is easy to compute median of numbers by means of statistical methods. How-

ever, the concept of averaging complex objects such as graphs or images requires

a more expert definition. One powerful tool for this purpose is provided by the

generalized median concept. It is defined as follows.

Given a set S of objects existing in a feature space U and a distance function

d(p, q) defined between any given objects p, q ∈ U , find the object p̄ which minimizes

the sum of distances between all objects in U . Equation (2.17) given the formula or

generalized median.

p̄ = arg min
p∈U

∑
q∈S

d(p, q) (2.17)

Intuitively, the concept is very simple. All possible objects in U are considered

as possible solutions to the problem. The object presenting the minimum distance

to all objects in S is the optimal median. Unfortunately, it is easy to see that this

problem is computationally intractable. In fact it was proven [10] that the median

partition problem is NP-complete for many reasonable distance functions.

20 Chapter 2. Fundamentals

A related concept to the generalized median known as set median, It only consid-

ers the elements existing in S as possible solutions. The set median is mathematically

defined as follows:

p∗ = arg min
p∈S

∑
q∈S

d(p, q) (2.18)

The set median may serve as an approximate solution for the generalized median.

Note that neither the generalized median nor the set median is unique. In practice,

suboptimal approaches [105, 140] are applied to solve the optimization problem.

In this thesis, the concept of median of objects is extensively used in the various

algorithms presented regarding the problem of ensemble clustering.

2.6 Databases

Throughout this work, different databases are used. This section summarizes all of

them, giving some in-depth information.

Synthetic Datasets

In the experiments some synthetic datasets are used in order to evaluate the

algorithm’s behavior in well known situations. The synthetic datasets are presented

in Table 2.4.

Figure 2.1. Representation of the 2D synthetic datasets

2.6. Databases 21

Half-rings is a classical problem. This dataset is composed of 269 patterns dis-

tributed in 2 classes (160-class 1; 109-class 2). The two-rings dataset is known to

be a hard problem for hyperspherical algorithms such as K-Means. The dataset has

326 patterns (165- class 1; 161-class 2). C-ellipse is a dataset in which a C-shaped

cluster embraces another elliptic cluster. It contains 225 patterns (85-class 1; 140-

class 2). The scattered dataset contains 132 patterns (38-class 1; 94-class 2). The

last two artificial data sets from [140] are included into the experiments. The first

dataset (2D2K) contains 500 2-D points from two Gaussian clusters and the second

dataset (8D5K) contains 1000 points from five multivariate Gaussian distributions

(200 points each) in 8D space.

Table 2.4. List of synthetic datasets used in the experiments

Dataset N. patt. N. attr. N. clust. distribution

C-Ellipsoid 225 2 2 85 - class 1; 140 - class 2

Half-rings 269 2 2 160 - class 1; 109 - class 2

Scatered 132 2 2 38 - class 1; 94 - class 2

Two-rings 326 2 2 165 - class 1; 161 - class 2

2D2K 1000 2 2 500 - class1; 500 - class 2

8D5K 1000 8 5 200 patterns on each class

Figure 2.1 is a graphic representation of the five 2-D datasets. (A) refers to two-

rings, (B) C-Ellipse, (C) Half-rings, (D) 2D2K, (E) scattered datasets.The sixth

datasets cannot be graphically represented due the excessive number of dimensions.

UCI Irvine Datasets

The UCI Irvine Machine Learning Repository [56] is a collection of datasets

extensively used by the machine learning community for empirical experimentation

in machine learning algorithms. Its usage ensures cross-evaluation among similar

algorithms. This fact alone ensures its validity. It is comprised of circa 190 datasets

organized by different criteria, such as types of analysis (categorical, regression,

clustering and others), types of attributes and data type, among others. For all

datasets, a single ground-truth is provided. In this work 25 datasets are selected

given the fact many of the available datasets are not suitable for the algorithms

here proposed. In some cases, the datasets have to be edited in order to correct

for missing or non-numerical values. Table 2.5 summarizes the selected datasets as

well as the number of patterns, the number of attributes, the number of clusters,

and a marker indicating if the dataset had to be edited in order to account to

non-numerical or missing attributes.

22 Chapter 2. Fundamentals

Table 2.5. Setected UCI datasets

Dataset N. patters N. attributes N. clusters edited

balance 625 4 3 No

breast 683 9 2 No

control 600 60 6 No

ecoli 336 7 8 No

glass 214 9 7 No

haberman 306 3 2 No

heart 270 13 2 No

ionosphere 351 34 2 No

iris 150 4 3 No

lung 27 56 2 Yes

mammo 830 5 2 Yes

optic 1000 64 10 Yes

parkinsons 195 22 2 No

post-op 87 8 3 Yes

protein 116 20 6 Yes

satellite 6435 36 7 No

sonar 208 60 2 No

soybean 47 36 2 No

spect 267 22 2 No

spectf 267 44 2 No

taeval 151 5 3 No

tic-tac-toe 958 9 2 No

transfusion 748 4 2 No

wine 178 13 3 No

yeast 1484 8 10 No

2.6. Databases 23

Berkeley Image Datasets

The Berkeley segmentation database [112] is a large collection of color images.

It provides a series of human made segmentations from different sources, working

as ground-truth. Each image is segmented by more than one expert, allowing a

trustworthy source for empirical evaluation. It is comprised by three hundred images

divided in two parts, a training set of 200 images, and a test set of 100 images. All

images have the same size 481× 321 pixels or its landscape version 321× 481 pixels.

This is one of the most popular image databases, being largely used in scientific

publications. The main reason for this preference is regarding the fact that for each

image a number of ground-truths produced by different human experts is available.

Figure 2.2. Examples of color images from the Berkeley image database

Figure 2.2 shows two examples of images and ground-truth extracted from the

Berkeley image database. The original images are displayed in the left column

followed three sample ground-truths for each image with different degree of details.

Image 241004 (upper row), has ground-truths with 17, 6, and 18 segments. Image

86016 (lower row) has ground-truths with 24, 4, and 41 segments, respectively.

DTI Datasets

DWI datasets are generated by a Siemens Magneton Sonata 1.5T , TR = 9.75,

TE = 4s with field of view set to 220 mm. The series comprise of 7 volumes (one

un-weighted anatomical reference series, and 6 weighted ones encoding 6 principal

diffusion directions) of 19 images each. The size of the acquired images is 128× 128

pixels with voxel size 1, 79× 1, 79× 6, 5 mm. FT is generated using the MedINRIA

software [148].

Figure 2.3 shows a section of DTI series produced by the equipment cited above.

Note that the unweighted image is in fact a T1 image. However, the resolution

is much smaller compared to standard T1 series (usually 512 × 512 pixels with

24 Chapter 2. Fundamentals

Figure 2.3. Example of one section of a DTI series

1× 1× 1 mm voxel volume and an average of 100 images per series). The weighted

images showed in the right side of the picture, present a very poor visual resolution.

This is due to the fact they encode the diffusion direction of water molecules with

no regard to anatomical details.

For the purposes of this work, the scanned DTI series are not directly used.

Instead, a post-processing called fiber tracking takes place. An example of fiber

tracking produced over a DTI series is shown in Figure 2.4. This is a considerably

complex processing step that is properly reviewed later on this thesis. Nevertheless,

it is important to highlight that, for the purposes of this work, the object of interest

are the fiber trackings and not the DTI itself.

Figure 2.4. Two views of the same fiber tracking

Part I

Ensemble Clustering

25

Chapter 3

Ensemble Clustering

Clustering combination, also known as ensemble clustering, has emerged as a valid

option in data clustering. It is an elegant way to deal with the problem of choosing

the fittest clustering result in cases which little or nothing is known about the

dataset. It also works as a way to smooth the final result when different partitions

can potentially present dissimilar distributions. Finally, it is also a valid way to

improve the final result. This is due to the fact it seeks to gather correct evidence

among all the partitions merging it in a final consensual result. The fundamental

ideas of ensemble clustering can be found in supervised learning [99]. It wasn’t until

the last decade the idea of combining the results of various clustering algorithms

started to be considered in the context of unsupervised clustering. Thus, a variety

of consensus functions were proposed to solve the ensemble clustering problem. More

recently, three surveys were published [63, 100, 153] trying to summarize the field.

The general idea of ensemble clustering is very simple. Consider the schematics

presented in Figure 3.1. It is divided in two main processes: a) Generation step

takes the original dataset and outputs an ensemble of partitions; and b) Consensus

step takes the ensemble as input and outputs the final consensual partition.

Figure 3.1. General ensemble clustering model

27

28 Chapter 3. Ensemble Clustering

Later in this chapter, a more detailed version of the ensemble clustering frame-

work is presented differentiating the two main types of consensus functions and

addressing the consensus partition evaluation step.

Many authors present different reasons to use ensemble clustering techniques. It

is though well accepted to take as granted that the consensual opinion of a group

is more reliable than the opinion of a single individual. In this sense, ensemble

clustering methods are suitable to use in situations where:

• The distribution of the dataset is unknown;

• To smooth the clustering result in cases which a suitable clustering algorithm

cannot be identified;

• To improve the final clustering result, by gathering information among differ-

ent partitions;

In the end, the real affirmation that can be made about ensemble clustering is

that the consensus result takes into account information about all partitions in the

ensemble.

Some works [57, 144] tried to define a set of properties that endorses the use of

ensemble clustering methods. However, there is no agreement among them, since

this is still an unanswered question. The difficulty encountered in defining the set of

properties ensemble clustering methods must complain is due to the fact that most

of the proposed properties are very hard to be proved. Four properties are selected

given its relevance. It refers to the authors cited above for further discussion about

the ensemble clustering properties.

• Robustness - the ensemble clustering method should present better overall

performance than any of the individual clustering algorithms used to generate

the partitions in the ensemble;

• Consistency - the consensual result must be somehow very similar to all the

combined single partitions in the ensemble;

• Novelty - the ensemble clustering methods must be able to reach results

unattainable by any traditional clustering algorithm;

• Stability - the consensual results must present lower sensibility to noise and

outliers.

3.1. Detailed Ensemble Framework 29

Regarding robustness, it is possible that in an ensemble only a subset of the

partitions present good accuracy. Since the consensual result is an agreement of all

partitions as stated by the consistency property, the robustness property in this

case will most likely be violated.

This chapter reviews systematically the field of ensemble clustering. Section 1

presents a detailed model for the ensemble clustering framework. Section 2 presents

a taxonomy based on the proposed classification made by Vega-Pons et al. [154]

differentiating the various consensus functions into two different groups, namely co-

occurrence and median based methods. Section 3 presents methods for consensus

partition evaluation. It also addresses how to measure variability into an ensemble.

Finally, a new method is introduced to visualize the variability within an ensemble

based on multidimensional scaling. This section, more specifically the part regarding

the visualization of the ensemble variability, presents a new contribution to the field

of clustering ensemble. Consensus partition evaluation is the topic of Section 4.

Section 5 presents an useful software developed to ease the process of clustering

ensemble.

3.1 Detailed Ensemble Framework

Similarly to the detailed clustering frameworks proposed by Xu et al. [170] and Jain

et al. [77], it is possible to devise a detailed framework for ensemble clustering. Most

of the proposed ensemble clustering methods focus solely in the consensus function

that will ultimately produce the consensus partition. However, some methods re-

quire that a very specific generation scheme to be followed such as the one proposed

by Topchy et al. [145]. Another interesting remark refers to the impact the ensemble

generation step has in the final consensus result. Consequently, this thesis prefer to

address the problem of ensemble clustering not only by its consensus functions, but

also covering the generation step and subsequently assessment of the quality of the

consensus partition. The result is the detailed framework presented in Figure 3.2.

The framework receives as input a given dataset X to be clustered. No as-

sumptions are required about the dataset distribution. Additionally to the dataset

some ensemble clustering methods could require the number K of target clusters to

be specified. However, there is a number of methods available not imposing such

requirement.

The generation step is responsible for creating M partitions using the provided

dataset as input. Different clustering algorithms, initialization parameters, or views

30 Chapter 3. Ensemble Clustering

Figure 3.2. Detailed ensemble clustering framework

of the data are used in order to create an ensemble of partitions. The methods

regarding the ensemble generation are presented in details in the Section 2.3.

Once the clustering ensemble is available, the consensus step takes place. Its ob-

jective is to combine all partitions in the clustering ensemble into a final consensual

result also called consensus partition (CP). A detailed review of existing consensus

functions is presented in Section 3.3. Alternatively, some methods require an in-

termediary representation of the clustering ensemble prior to the execution of the

consensus function (CF). Those methods are regarded as voting methods, such as

the one proposed in [57]. This particular method relies on the computation of a co-

association matrix as an intermediary step. A detailed review of the voting systems

can be found in in Section 3.3.

The final step regarding the ensemble clustering framework refers to the eval-

uation of the consensus partition. A myriad of methods exists to perform such

evaluation. There are also other evaluation methods specifically designed to take

advantage of the information provided by the ensemble. Section 3.4 reviews those

evaluation methods.

The process of ensemble clustering is easy enough to be quickly understood.

However, a number of considerations need to be made about the two main steps,

namely, the generation and combination steps. Nonetheless, they are further detailed

in this chapter.

3.2. Techniques for Ensemble Generation 31

3.2 Techniques for Ensemble Generation

The initial and still critical step in any ensemble clustering method refers to the

ensemble generation. As the name suggests, it is the process of clustering a dataset

M times to compose the ensemble of partitions. This step is critical since the result

reached by any consensus function will be conditional to the information available

in the ensemble.

Most consensus functions do not require any specific type of ensemble to be

provided. However, there are few methods such as voting K-Means [58] that do

require a well established generation mechanism. There are still methods as in [145]

specifically designed to work over weak partitions. Generally, any such ensemble

should suffice to the existing consensus functions.

Figure 3.3 depicts the existing ensemble generation methods, as well as how they

are connected. It is also possible to combine any of the five generation ways in any

desired order to create the target ensemble.

Figure 3.3. Schematics for the generation step

Ensemble generation using different algorithms are the first possibility. The

process requires the original dataset to be provided as well as a pool of clustering

algorithms. One or more partitions in the ensemble are generated using each al-

gorithm composing this way the ensemble. The second option is to use subsets

of objects. Instead of using all available patterns, only subsets of them are used

to generate each partition. Object’s representation is the third option. In this

case, the form of each parameter is changed during the generation of each partition.

A possible way to do so is to collect different information in creating each object.

Projection to subspaces is the fourth generation method in which patterns are

represented using different subsets of the available attributes. The final way to

32 Chapter 3. Ensemble Clustering

create ensembles refers to parameter initialization. Many clustering methods

require parameter to be set in order to produce a clustering result. By varying such

parameter, different partitions can be generated.

Still, the question remains: which generation method to use? The answer to that

question cannot be easily obtained. In cases which additional information about the

dataset is available, the generation method most likely to produce a good result is the

one which produce reliable individual partitions for the specific dataset. However,

when no additional information is available, the ensemble with highest probability

of culminates in a good source for the consensus functions are probably the ones

presenting the highest variability among partitions. However, the variability cannot

be taken lightly. Each partition should also be validated using CVIs in order to

assess its accuracy.

The experiments presented in this thesis utilizing clustering ensembles rely on

various generation strategies as described in Chapter 2. However, in order to ensure

no such two partitions very similar to appear in the ensemble, a series of tests are

performed. Firstly, any new candidate partition is checked against all others already

in the ensemble in order to ensure it is not much similar. This is done by means of

computing the distance between the current partition and all others. A parameter

Γ is specified and any partition presenting similarity lower than Γ will be discarded.

This is necessary due the random nature of the generative methods described earlier.

The ensemble variability visualization strategy described later in this chapter also

provides an additional way to ensure the variability in any generated ensemble. After

an ensemble is generated, a plotting of its variability using the MDS is performed

and visually inspected. Any ensemble presenting concentration of partitions into a

single region is refused.

3.2.1 Measuring Ensemble Variability

There is a direct consequence derived from the novelty property presented earlier.

Consider the situation in which all partitions in the ensemble are exactly the same,

which possibly only a disagreement in labels assigned to each cluster. In such case,

there would be no variability in the ensemble. Therefore, it is expected by any

consensus clustering algorithm to produce exactly the same partition with possibly

only different labels assigned.

In the case described above, there would be no need of applying a consensus

clustering method, since all results are equal. Therefore, it is reasonable to conclude

that consensus methods only apply in cases which there are disagreements, or vari-

3.2. Techniques for Ensemble Generation 33

ability in the partitions composing the ensemble. In cases presenting low variability,

it should be considered if the additional computational cost imposed by ensemble

clustering methods pay off the potential improvement in accuracy or the smoothing

factor provided by ensemble clustering methods.

Given these observations, it can be concluded that a reliable way to measure

ensemble variability would play a fundamental role in the general ensemble clustering

framework.

A possible way to measure ensemble variability is to compute the Cvar index pro-

posed in Equation (3.1) over a given ensemble P. It is based on the SoD formulation

reviewed in Chapter 2.

Cvar(P) =

∑M
i=1

∑M
j=i+1 d(Pi, Pj)

M × (M − 1)/2
(3.1)

Provided a dissimilarity measure d(·, ·) returning values in the range [0, 1], Cvar
will also provide an index in the range [0, 1] indicating the degree of variability of

the ensemble.

Figure 3.4. Evaluation of ensemble variability based on Cvar index

Figure 3.4 shows the computation of Cvar for eight datasets extracted from the

UCI-Irvine database. The behavior observed on these examples is also observed

in the remainder of selected datasets listed on Chapter 2. It is clear, that simple

subsets of attributes (KMclicksXX-YY) as well as the reliance on random initializa-

tion (KMXX) ensembles present low variability. The low variability for the case of

KMclicksXX-YY can be due to the fact the datasets in questions are composed by

just a few attributes limiting the possible subsets chosen in order to create different

34 Chapter 3. Ensemble Clustering

partitions. The low variability for the case of KMXX is due to the fact K-Means

induces almost always the same cluster, not mattering the random initialization of

the cluster centers.

In most cases, the highest ensemble variability is found on ensembles generated

using different clustering algorithms. The subsets of attributes with a random num-

ber of target clusters, such as simply random number of target clusters present also

good variability.

However, such index is incapable on indicating if the subsets of partitions in the

ensemble present low variability or even if they are exactly the same. It is a situation

that can usually occur in using automatic ensemble generation processes. To identify

such cases, it is necessary to inspect the similarity/dissimilarity between each pair

of patterns individually, a process that can be extremely costly if not impossible,

depending the size of the ensembles. To deal with the cases of low variability in

only a subset of partitions, a visual representation of variability seems to be more

suitable.

3.2.2 Visualizing Ensemble Variability

The ensemble variability plays a fundamental role in the successful generation of a

reliable consensus partition. It is possible to collect evidence of such variability using

a comparison between the partitions of an ensemble. However, a form of visualizing

such variability can provide a simple way to inspect such variability, especially in

cases which subsets of partitions present low variability when they are considered in

subgroups.

Any successful visualization method should be able to encode into a single plot-

ting the differences between all partitions in the ensemble. The major problem

regarding the visualization of differences between partitions is the high dimension-

ality of the partitions themselves. Any two- or three-dimensional plotting of such

similarities would necessary require a kind of dimensionality reduction. A plausi-

ble way to achieve dissimilarity plotting such as the ones described above can be

achieved by some form of multidimensional scaling.

Multidimensional scaling (MDS) [21, 146] seems to fit perfectly to handle this

task. MDS is a data analysis technique that displays the structure of distance-like

data as a geometrical picture. Furthermore, it allows the embedding of a seemly

higher data-space into a lower e.g. two- or three-dimensional space. The embedding

reduces the problem of variability representation/inspection to a level manageable

3.2. Techniques for Ensemble Generation 35

for human evaluators. MDS has its origins in psychometrics. It was proposed to

help understand people’s judgments of the similarity of members of a set of objects.

Torgerson [146] proposed the first MDS method and coined the term.

The goal of MDS is to find an embedding of the given objects into a new lower

multidimensional space in such a way that distances are preserved. It requires as

input a set of objects to be embedded and a distance function suitable between the

objects. The method follows by computing a matrix of size M ×M (M been the

number of objects in P) containing the distances ∆i,j between any two given objects.

Given ∆, the objective is to find M vectors x1, · · ·, xM ∈ RD such that:

‖xi − xj‖ ≈ ∆i,j ∀i, j ∈ P (3.2)

Usually, MDS is formulated as an optimization problem. A well known cost

function is given in Equation 3.3.

min
x1,···,xM

∑
i<j

(‖xi − xj‖ −∆i,j)
2 (3.3)

The nomenclature commonly applied in clustering ensemble is purposely used

here in order to ease the application of MDS for the visualization of ensemble vari-

ability.

An example of matrix ∆ is presented in Table 3.1. It is computed using the VI

distance metric presented in Chapter 2. Note that in this case the classical MDS is

used. Therefore, it is indicated to use a distance metric. The ensemble P used is

comprised of 10 partitions generated over the UCI-Irvine iris dataset by means of

random selection of subsets of attributes. The matrix ∆ has a 10 × 10 size. Each

column and row indexing one of the partitions in P.

Once the matrix ∆ is available, MDS can be computed to produce a dimension

reduction of the data. There is a number of efficient implementations of MDS

methods. In special, the Statistics Toolbox for Malab R© provided functions for

both classical and non-classical multidimensional scaling. The plot presented in

Figure 3.5 is generated using classical MDS (the Matlab R© function used to generate

such plot is called ”cmdscale”). It requires as input the matrix of dissimilarities ∆

and the target number of dimensions to which the dimensionality reduction must

be done. As output, a set of points in the new dimension is generated. Afterwards,

a standard plotting function is used.

Points close to each other represent similar partitions and points farther away,

36 Chapter 3. Ensemble Clustering

Table 3.1. Example of matrix ∆ computed over an UCI-Irvine iris ensemble

0.00 0.65 0.16 2.43 0.41 0.27 1.91 0.82 1.12 0.71

0.65 0.00 0.57 2.49 0.83 0.67 1.85 0.71 0.93 0.56

0.16 0.57 0.00 2.42 0.42 0.16 1.88 0.72 1.08 0.59

2.43 2.49 2.42 0.00 2.23 2.33 2.70 2.42 2.44 2.33

0.41 0.83 0.42 2.23 0.00 0.26 1.93 0.94 1.24 0.86

0.27 0.67 0.16 2.33 0.26 0.00 1.88 0.78 1.13 0.65

1.91 1.85 1.88 2.70 1.93 1.88 0.00 1.67 1.62 1.73

0.82 0.71 0.72 2.42 0.94 0.78 1.67 0.00 0.75 0.26

1.12 0.93 1.08 2.44 1.24 1.13 1.62 0.75 0.00 0.71

0.71 0.56 0.59 2.33 0.86 0.65 1.73 0.26 0.71 0.00

Figure 3.5. Plot of the UCI-Irvine iris ensemble using classical multidimensional scale

dissimilar partitions. The scale in both axis also plays an important role and must

be analyzed in relation to the distance function used to generate the matrix ∆. In

this particular case, it is possible to identify a concentration of partitions in the

lower-left corner and two considerably dissimilar partitions farther away. Ideally,

it is preferred that the partitions distribute themselves around a central point, fact

that would ultimately provide the most information in order to a consensus partition

to produce a good result.

Eventually, it could also be useful to be able to represent the ground-truth (when

available) and any number of consensus partitions. Fortunately, this can be easily

achieved by accounting such partitions of interest during the computation of ∆.

Figure 3.6 shows the ensemble generate for the UCI-Irvine iris dataset accounting

3.2. Techniques for Ensemble Generation 37

Figure 3.6. Plot of the UCI-Iris ensemble augmented by the ground-truth and consensus

partition

to the available ground-truth as well as to a consensus partition. The partitions of

the ensemble are represented using blue ”x” marks, the ground-truth by a red circle

and the consensus partition produced using the ensemble as input by a green ”+”

mark. It is possible to see that many of the partitions in the ensemble are located

closer to the ground-truth. However, some partitions that can be regarded as outliers

are located farther away. The consensus partition is located in the vicinities of

the ground-truth, separated by approximated the same distance than some of the

partitions. However, its location in the graph is shifted. This is due to the consensus

function used to produce this result not only picked the best solution among the

ones available in the ensemble. It also extrapolates information available in the other

partitions. The final result produced is, therefore, more similar to the ground-truth.

This is an interesting fact, since it is allowed graphically to inspect how the

consensus function is able to infer a novel and additionally more accurate result.

3.2.3 Impact of Different Ensemble Generation Techniques

As described before, the technique chosen for ensemble generation plays a funda-

mental role in the ensemble clustering framework. As stated in Chapter 2, a number

of different generation schemes are proposed. Ten ensembles are created for each

ensemble generation scheme and the average results are presented. This is done

in order to minimize the effects of the random choices made during the ensemble’s

38 Chapter 3. Ensemble Clustering

generation.

Table 3.2 presents the compared results for six ensemble clustering methods de-

scribed in the next section. The values presented are given in error ratio representing

the percentage of patterns wrongly classified in comparison to the known ground-

truth. Those methods are selected since they represent the classes of consensus

functions proposed by the taxonomy. Another reason for this choice is the fact that

those specific consensus functions are commonly used throughout the literature to

compare the results obtained by new consensus functions proposed.

The first remark regarding the results is the fact that the increase of the num-

ber of partitions in the ensemble does not necessarily imply an improvement in

the result obtained by the consensus functions. For instance, KM clicks20 05 and

KM clicks40 05 lead to the same result, despite the fact the second generation

scheme has two times more partitions.

Since the generation schemes presented rely into random choices, there is no

guarantee an ensemble can be reproduced. For instance, the subsets of attributes

require that only a portion given in percentage of the attributes to be used by the

clustering algorithm. Similarly, for random number of target clusters, a number is

selected at random within a given range. It does not come as a surprise that the

evaluation presented does not reflect the best achieved result but the average of

ten ensembles generated using the same parameters. As an example, consider the

case of UCI-Irvine balance dataset presented in Table 3.2. There is in fact a case

for KM clicks40 5 in which BoK reaches 21.17% but the average value presented is

only 39.68%.

It is also interesting that very simple methods such as BoK and BOEM can

sometimes achieve results as good or even better when compared to more sophisti-

cated ones such as graph based or evidence accumulation methods.

The same general remarks presented for the UCI-Irvine balance dataset are also

observed in the other datasets evaluated in this thesis.

3.3 Taxonomy of Consensus Functions

It is very difficult to create a precise taxonomy of the existing consensus functions.

The major problem resides in the fact that a multitude of methods can be potentially

used to create consensus functions. However, Vega-Pons et al. [154] made a fairly

good job in summarizing the existing methods. This work bases the review of the

3.3. Taxonomy of Consensus Functions 39

Table 3.2. Consensus results for different ensemble generation techniques over the same

dataset (UCI-balance)

Ensemble BoK BOEM EAC SL EAC AL HGPA CSPA

KM clicks10 03 48.96 48.96 48.96 48.96 54.72 52.96

KM clicks10 05 58.08 58.08 58.08 58.08 60.32 64.48

KM clicks10 07 50.08 50.08 50.08 50.08 61.12 60.48

KM clicks10 09 53.44 53.44 53.44 53.44 51.04 53.12

KM clicks20 03 48.8 48.8 48.8 48.8 59.36 54.24

KM clicks20 05 39.68 39.68 39.68 39.68 58.88 50.24

KM clicks20 07 49.6 49.6 49.6 49.6 59.84 60.32

KM clicks20 09 53.44 53.44 53.44 53.44 51.36 53.12

KM clicks30 03 48.96 48.96 48.96 48.96 53.6 52.96

KM clicks30 05 57.92 57.92 57.92 57.92 60.48 65.92

KM clicks30 07 49.6 49.6 49.6 49.6 59.52 60.32

KM clicks30 09 53.44 53.44 53.44 53.44 51.2 53.12

KM clicks40 03 48.8 48.8 48.8 48.8 58.88 54.24

KM clicks40 05 39.68 39.68 39.68 39.68 52.8 50.24

KM clicks40 07 50.08 50.08 50.08 50.08 59.68 62.08

KM clicks40 09 53.44 53.44 53.44 53.44 50.4 53.12

KM clicksrandomK10 03 37.76 37.76 48.48 48.48 58.88 51.52

KM clicksrandomK10 05 57.92 57.92 57.92 57.92 64.16 61.12

KM clicksrandomK10 07 65.92 65.92 54.56 52.16 57.6 58.88

KM clicksrandomK10 09 65.92 65.92 54.56 52.16 56.32 58.88

KM clicksrandomK20 03 63.52 65.28 53.6 53.76 60.32 59.84

KM clicksrandomK20 05 49.12 49.12 49.12 49.12 61.6 51.68

KM clicksrandomK20 07 39.68 39.68 33.28 39.68 57.28 46.08

KM clicksrandomK20 09 45.12 45.12 48.48 52.0 60.0 54.08

KM clicksrandomK30 03 53.44 53.92 56.16 54.56 60.16 52.96

KM clicksrandomK30 05 38.24 38.24 48.96 48.96 62.56 52.64

KM clicksrandomK30 07 58.88 58.88 54.56 58.08 60 65.6

KM clicksrandomK30 09 45.6 45.6 50.4 55.04 59.68 49.92

KM clicksrandomK40 03 53.6 53.6 53.6 56.16 58.56 54.56

KM clicksrandomK40 05 38.24 38.24 48.96 45.12 64 52.64

KM clicksrandomK40 07 40.32 40.32 33.76 40.16 60.32 45.12

KM clicksrandomK40 09 49.6 49.6 48.32 49.28 60.64 58.56

KM randomK10 53.44 53.44 53.44 53.44 50.72 53.12

KM randomK20 63.52 64.8 46.4 54.56 57.28 52.16

KM randomK30 53.6 53.6 53.6 55.36 58.4 53.6

KM randomK40 53.6 53.6 54.72 53.76 60.16 58.24

40 Chapter 3. Ensemble Clustering

existing consensus functions on such work.

Figure 3.7. Simplified taxonomy of ensemble clustering methods

As Figure 3.7 shows, there are two main strains of consensus functions, namely

methods based on the patterns co-occurrence and based on the median partition

formulation.

3.3.1 Median Partition Based Methods

One of the most popular formulations for the consensus clustering problem is based

on the median partition (MP) problem [50]. The median partition is defined as the

one that minimizes the sum of distances between it and all the partitions in the

ensemble. It can be formally stated as follows:

Given M partitions P1, · · ·, PM and a distance d(·, ·), which is a symmetric, find

P ∗ such that:

P ∗ = arg min
Pi

M∑
i=1

d(Pi, P) (3.4)

This problem is known to be NP-complete [50], for many reasonable distance

functions, directing the research to the development of heuristics to approximate it.

(A) Genetic Algorithms: As the name suggests, the GA formulation is used to,

throughout the evolution of consecutive generations, infer the consensual partition.

Most methods, in this class, uses the information available in the ensemble to cre-

ate initial populations of potential consensual partitions. After each population is

created, the ”chromosomes” are evaluated by a fitness function and the fittest ones

are used to feed the mutation, crossover, and any other genetic operators.

3.3. Taxonomy of Consensus Functions 41

A plausible fitness function is presented in Equation (3.5). It evaluates if chromo-

some P̃ (candidate consensus partition) has a SoD value in relation to the partitions

in P, smaller or equal than an acceptance threshold parameter Γ. If this is the case,

this particular chromosome will be selected to reproduction. The population size

Npop is a free parameter.

SoD(P) =

Npop∑
i=1

d(Pi, P) ≤ Γ (3.5)

Regarding the generation of the initial population, a number of different gen-

eration methods [106, 173] can be applied. A common method refers to perform

mutations over the initial partitions in P, or simply consider the clustering ensemble

as initial population.

(B) Nonnegative Matrix Factorization Based Methods: NMF-methods refer

to the method of factorizing a nonnegative matrix R into two matrix factors, i.e.

R ≈ AB. A and B must also be nonnegative. An example of such method can be

found in [101].

(C) Kernel methods: Vega-Pons et al. [154] introduced a Kernel based method

throughout the Weighted Partition Consensus via Kernels (WPCK) algorithm. In

this method, the consensus partition is defined as follows:

SoD(P) = arg max
P∈P

M∑
i=1

ωi · k̂(P, Pi) (3.6)

where ωi is a weight associated to partition Pi and k̂ is a similarity measure between

partitions, which is a kernel function [134].

The weight values ωi are usually computed in a step previous the combination,

which the relevance of each partition is estimated by the application of several

internal validity indexes. However, in this paper, the authors do not consider the

weights values because their computation needs the use of the original data. Then,

the values are set to ωi = 1; ∀ i = 1, · · ·,M .

The kernel property of k̂ allows mapping this problem into a Hilbert space H,

that an exact solution can be easily obtained. Given the solution in H the pre-

image problem could be solved, i.e., finding the partition in P which corresponds

with the solution in H. This is usually a hard optimization problem that could

not have an exact solution. The simulated annealing meta-heuristic was used to

obtain an approximated solution avoiding the convergence to local minima. In this

42 Chapter 3. Ensemble Clustering

algorithm, the specification of the number of clusters in the final partition is not

necessary. Partitions with different number of clusters are generated and analyzed

in the simulated annealing process. After a stopping criterion is reached, the best

partition obtained by the process is returned as the final result. However, this

algorithm can be modified to work with a specified number of clusters K in the final

partition. In the case of a fixed K, from the best partition in the cluster ensemble,

we generate a partition with K clusters making the minimum number of movements

of objects from one cluster to another. After that, the simulated annealing is applied

but only considering as new states in the process, partitions with K clusters.

(D) Heuristic Based Methods: Among the relevant works in proposing heuris-

tics to solve ensemble clustering via the median partition formulation, Golder and

Filkov [67] present a collection of six heuristics. The simplest heuristic proposed

is essentially a selection process, known as BoK. The idea behind Best of K is to

select the best or, most representative partition among all partitions in the ensem-

ble. This is achieved by selecting iteratively each partition in P and computing the

sum of distances (SoD) between the selected partition and the remaining ones in

the ensemble. The partition in the ensemble with smaller SoD value is selected as

consensus partition. As it can be seen by inspecting Equation (3.7), it is essentially

the set median.

P ∗ = BoK(P) = arg min
P∈P

M∑
i=1

d(Pi, P̄) (3.7)

A second heuristic proposed is known as BOEM (The Best One Element Moves)

It starts with an initial consensus clustering partition. Any partition P ∈ P can be

selected as initial result. The algorithm follows by interactively testing each possible

label for each pattern, retaining the label that decreases the SoD.

(E) Clustering Based on Semi Definite Programming: SDP [136] is motivated

by the observation, that pairwise similarity values between patterns as used in [140]

do not provide sufficient information for ensemble clustering algorithms. Therefore,

the authors propose to encode the solutions obtained by individual clustering results

by a multidimensional string. In the first step for every data element a so called

A-string is computed, which encodes the information from the individual clustering

results. The ensemble clustering problem reduces to a form of string clustering

problem which the objective is to cluster similar strings to the same cluster. For this

reason the authors first formulate a non-linear objective function, that is transformed

into a [0− 1] semi definite program (SDP) using a convexification technique. Thus,

this program is relaxed to a polynomial time solvable SDP.

3.3. Taxonomy of Consensus Functions 43

Finally, random walker method [1] creates a graph representation of the data

set, specifies weights for each edge, defines start seed vertices and then, it applies

na heuristic based on random walker to infer the consensual partition. This method

will be further explained in details later on Chapter 8.

3.3.2 Patterns Co-occurrence Based Methods

In [57], the authors explored the idea of evidence accumulation by combining the

partitions generated by of M tries of K-Means into a co-association matrix. This

matrix is later used as a new similarity measure for a standard agglomerative hier-

archical clustering algorithm. The method can be divided in two steps.

(A) Relabeling and Voting: Methods based on relabeling and voting rely on

the idea of firstly solve the label correspondence problem. Once the label corre-

spondence of all partitions in the ensemble is solved a voting process decides the

consensus partition. Various clustering ensemble methods [51, 149, 163] try to solve

the label correspondence problem using different heuristics, such as the cumulative

voting or bipartite graph matching. Another valid approach is to use the Hungarian

algorithm [55].

Ayad and Kamel [7] proposes three new cumulative voting methods. The prob-

lem is formulated as finding a compressed summary of the estimated distribution

that preserves the maximum relevance. It starts selecting a reference clustering

based on the maximization of the intra-cluster Shannon entropy. A mapping is

computed between the elected reference partition and the remainder partitions. Due

to a probabilistic mapping, the problem of label assignment is elegantly addressed.

Then, a re-mapping is computed generating a new divergence matrix and the con-

sensus clustering is obtained via an adapted version of the AIB algorithm. Finally,

in [162] it is presented a combination approach based on a random walker algorithm

to perform fusion of multiple image segmentations.

(B) Evidence Accumulation, Co-occurrence Matrix: The underlying assump-

tion is based on the fact that objects belonging to the same ”natural” cluster are

very likely to be collocated in the same cluster among different partitions. A co-

occurrence matrix CM of size N × N with values ranging from 0 (meaning no

association) to 1 (maximum association) is computed using Equation (3.8).

CM(i, j) =
mi,j

M
(3.8)

where mi,j refers to how many times the pair (i, j) of objects occurs in the same

44 Chapter 3. Ensemble Clustering

cluster among the M partitions.

After computing the co-association matrix the general clusters are most-likely

to be found orbiting the principal diagonal. The job of consensus function based

on this method is to solve the minor disagreements occurring in other regions of

the co-association matrix. Figure 3.8 presents the plotting of three co-association

matrices ((A) - Wine, (B) Iris, and (C) Optic datasets).

Figure 3.8. Plotting of three co-association matrices

For the combination step, this method uses yet another clustering algorithm,

more specifically, a hierarchical clustering algorithm such as single-link or average-

link. The co-association matrix CM is regarded as a new data space and used as

input for the hierarchical algorithm. The result produced is the consensus partition.

(C) Graph and Hypergraph: Strehl et al. [140] presents one of the first works

in the area of unsupervised ensemble clustering. In this work, three graph based on

heuristics are proposed, namely CSPA, HGPA and MCLA. Those heuristics repre-

sent the clustering ensemble as a hypergraph in which each partition is encoded as

a hyperedge.

Cluster-based Similarity Partitioning Algorithm (CSPA). In this method,

an N ×N similarity matrix is defined from the hypergraph. This can be viewed as

the adjacency matrix of a fully connected graph, which the nodes are the elements

of the set X (original dataset) and an edge between two objects has an associated

weight equal to the number of times the objects are in the same cluster. Then, the

graph partitioning algorithm METIS [85] is used to obtain the consensus partition.

3.3. Taxonomy of Consensus Functions 45

HyperGraphs Partitioning Algorithm (HGPA). This method partitions the

hypergraph directly by eliminating the minimal number of hyperedges. It is con-

sidered that all hyperedges have the same weight, and it is searched by cutting the

minimum possible number of hyperedges that partitions the hypergraph K con-

nected components of approximately the same dimension. For the implementation

of the method, the hypergraphs partitioning package HMETIS [86] is used.

Meta-CLustering Algorithm (MCLA). In this method, the similarity between

two clusters is defined first in terms of the amount of objects grouped in both,

using the Jaccard index. Then, a similarity matrix between clusters is formed which

represents the adjacency matrix of the graph. It is built by considering the clusters

as nodes and assigning a weight to the edge between two nodes, whereas the weight

represents the similarity between the clusters. This graph is partitioned using the

METIS [85] algorithm and the obtained clusters are called meta-clusters.

(D) Locally Adaptive Clustering Algorithms: As the name suggests, this

class of consensus function works over partitions produced using locally adaptive

clustering algorithms proposed by Domeniconi et al. [42]. The same main author

proposes three consensus functions [41], Weighty Similarity Partition Algorithm

(WSPA), Weighty Bipartite Partition Algorithm (WBPA) and Weighted Subspace

Bipartite Partitioning Algorithm (WSBPA).

(E) Fuzzy Methods: This class of ensemble clustering methods differently from

the others reviewed in this chapter, works with ensembles composed by fuzzy parti-

tions. It is obviously possible to harden the fuzzy partitions and therefore, it applies

any other ensemble clustering method. However, valuable fuzzy information would

be lost. To deal with fuzzy partitions directly, Punera and Ghosh [127] propose

fuzzy versions of the methods presented in [140].

(F) Information Theory: Topchy et al. [145] introduced the idea of informa-

tion theory via the algorithm called Quadratic Mutual Information (QMI). In this

method, the category utility function [66] U is used as a similarity measure between

two partitions. In this case, the category utility function U(Pi, Pj) can be inter-

preted as the difference between the prediction of the clusters of a partition Pi both

with the knowledge of the partition Pj and without it. The better the agreement

between the two partitions, higher values of the category utility function are ob-

tained. Hence, the consensus partition could be defined by using U as a similarity

measure between partitions:

46 Chapter 3. Ensemble Clustering

P ∗ = arg min
P∈P

M∑
i=1

U(P, Pi) (3.9)

It has been proven [115] that maximization of utility function is equivalent to

minimization of the square-error clustering criterion if the number of clusters K is

known for the consensus partition. This way the solution of the problem (Equa-

tion (3.9)) is approached as following. First, for each object the values of new

features are computed using the information in the cluster ensemble. After that,

the final partition is obtained by applying the K-Means algorithm on the new data.

(G) Finite Mixture Models: The concept of using the finite mixture models

was explored by Topchy et al. [144]. This work proposes a new consensus function

which the consensus partition is estimated as a solution of the maximum likelihood

estimation problem.

This section presented a short review of the most relevant consensus functions.

In order to assess the quality of the results achieved by such methods, a number

of evaluation schemes were already proposed and are commonly used. In the next

section, such evaluation methodologies are briefly reviewed.

3.4 Consensus Partition Evaluation

The common procedure concerning the evaluation of clustering results relies in the

usage of CVIs (Cluster Validity Indexes). In cases where different clustering al-

gorithms over the same dataset are used, there is a chance considerably dissimilar

results will emerge. In such case, there is the need to validate the accuracy of the

results. CVI indexes perform a direct comparison between the clustering result, and

a partition assumed to be the ”correct answer” or ground-truth. However, in many

real life applications, such ground-truth is rarely available. Therefore, an evaluation

scheme considering only the data available is needed. Furthermore, with the intro-

duction of ensemble clustering, although possible to still use the evaluation methods

developed for classical clustering, extra information encoded in the ensemble of par-

titions is available, therefore, it seems logical to take into account such information,

in order to perform a better, more accurate evaluation. This section reviews such

evaluation schemes. Afterwards, Chapter 7 presents the concept of sum of pairwise

distances, and further develops a new evaluation measure based on this formulation.

The related literature lists three main types of cluster validity indexes: a) exter-

nal; b) relative; and c) internal indexes [23].

3.4. Consensus Partition Evaluation 47

External Indexes: This type of index uses external information about the data

to validate the partition in question. The external information is usually translated

as a ground-truth. The criterion of quality for this kind of index is related to

the degree of similarity to the external comparison source. Typically, any valid

similarity measure suitable for partitions comparison can be used as an external

CVI. All indexes/similarity measures revised in Chapter 2 are valid options to be

used as external CVIs.

Relative Indexes: This type of index relies on the idea of comparing the parti-

tions obtained using the same clustering algorithm under different conditions. The

assumption of this method is that by comparing such partitions, the most accurate

one can be inferred. Among the most relevant CVIs in this class are Figure of

Merit [171] and Stability Index [131].

Internal Indexes: This type of index [70] does not require an external source

of information, neither different partitions produced by the same algorithm under

different circumstances as the previous two described types. Instead, it relies simply

on the information available into the clusters. It measures characteristics such as

inter and intra and inter-cluster distances, separation, connectivity, mean size of

clusters, and difference between the cluster sizes.

Any cluster validity index provides only a relative measure of quality of the

partition in question. For this reason any clustering analysis will be faced almost

always with some degree of uncertainty. It is believed that this is one of the most

important reasons to apply clustering ensemble techniques. It provides a compromise

between the selection of a single partition which presents the most suitable CVI and

the consensus of all partitions available.

3.4.1 Ensemble Clustering Validity Indexes

Much was done on validating partitions produced by traditional clustering algo-

rithms [69]. However, the area still lacks of extensive considerations regarding the

specific evaluation of consensus partitions. Classical cluster validity indexes can be

used to assess the accuracy of partitions produced by clustering ensemble methods.

However they do not consider the extra information encoded in the clustering en-

semble. Recently, new cluster validity indexes accounting for the information in the

clustering ensemble were introduced.

Average Cluster Consistency: ACC [44] is a criterion based on the likelihood

estimative. It is in fact an adaptation of ”classical” cluster validity indexes to

48 Chapter 3. Ensemble Clustering

pairwise similarity representations. It is defined as follows:

sim(P ∗,P) =
1

N

kl∑
i=1

max
1≤k≤K

∣∣C∗k ∩ C l
i

∣∣ (1− |C
∗
k |
N

)
(3.10)

where kl ≥ k∗

ACC(P ∗,P) =
1

N

N∑
i=1

sim(P ∗, Pi) (3.11)

Average Normalized Mutual Information: ANMI [140] is an adaptation of the

well known mutual information to measure the degree of agreement of an obtained

consensus partition P ∗ against the clustering ensemble P. This measure simply

computes the average of MI between the consensus partition and all the partitions

in the ensemble. Therefore, any such dissimilarity function reviewed in Chapter 2

could potentially be used in such way.

ANMI(P ∗,P) =
1

N

N∑
i=1

MI(P ∗, P l)

H(P ∗)H(P l)
(3.12)

H(P) = p(k) log p(l) (3.13)

Recently, a new CVI named pairwise similarity [45] was specifically designed

to work with evidence accumulation methods. This validity index is based on the

likelihood of the data set given a co-association matrix computed using the partitions

of an ensemble.

3.5 Ensemble Clustering Software

This section describes a simple user interface with some build-in consensus func-

tions able to execute ensemble clustering as well to perform some minor evaluation

over the obtained result. The program here introduced can be easily extended to

accommodate new developed consensus functions. The software is developed using

Malab R© v.7.1 SP(13) and all the data structures used are compatible with this

software.

The main interface (Figure 3.9) can be opened by typing the program’s name

� ECEval � in the command window. After starting, it shows a popup menu

3.5. Ensemble Clustering Software 49

listing the consensus functions known to the program and defined in a file called

� consensusFunctions.txt�. This file should be located in the same directory as

the program.

Figure 3.9. Main interface of the ensemble clustering program

Additionally, since most consensus functions simply require a clustering ensemble

to be provided as input, the program was built to execute the selected consensus

function with this single value. However, some consensus functions such as the one

based on random walker require extra parameters to be defined. In such cases,

an additional control file must be created and put in the same directory of the

program. The name assigned to the fine must be precisely the same specified in the

� consensusFunctions.txt � file. As an example, the file � rw.txt � controls

the execution of this particular consensus function. The contents of the file must be

the name of the variables to be passed as parameter to the consensus function.

The next step refers to open an ensemble clustering dataset in order to the

program be able to execute any known consensus function. This can be done by

selecting the menu item � Dataset − load ensemble �. This will bring up the

interface shown in Figure 3.10. The program expects a Matlab R© ”.mat” to be

provided as input. It must contain a variable called EM referring to the clustering

ensemble (N ×M size where N is the number of patterns and M is the number of

partitions). Additionally, any values needed for the execution of a specific algorithm

must be located here as well, with names matching the one specified in the file

� CF name.txt�.

Once the program is provided with an input data file, the right box in the main

50 Chapter 3. Ensemble Clustering

Figure 3.10. Opening ensemble interface

window will display the information contained inside it. Afterwards, a consensus

function can be executed. This is done by selecting the desired consensus function

in the left popup menu and clicking the button � Cluster it�.

The final option regards the evaluation of the produced consensus partition.

This can be done by clicking the button � Show results �. The window shown

in Figure 3.11 will be opened listing the values for various CVIs such as the lower

bounds for the given ensemble.

Figure 3.11. Simple interface showing results for distance measures and lower bounds

This chapter reviewed the ensemble clustering method. It also presented a de-

tailed discussion about ensemble variability and introduced a way to inspect ensem-

ble variability intra-ensemble by means of a visualization scheme. The visualization

scheme proposed based on multidimensional scaling allows the representation of each

3.5. Ensemble Clustering Software 51

partition as a point in a 2D space, in which similar partitions are represented by

points close to each other and dissimilar partitions as points far apart. As discussed

in [161], the ensemble variability plays an important role in the possible improve-

ments in accuracy achieved by an ensemble clustering method. However, few works

have been done in respect to the proper assessment of such variability. Scalar in-

dexes such as the one proposed in Section 3.2.1, although allowing the measurement

of such variability in a macro scale (at ensemble level) does not allow the assessment

the fact that a subset of partitions in the ensemble can present low variability. It

is believed that the visualization scheme proposed poses as an interesting alterna-

tive to address such fundamental question. As a future work regarding this issue,

it is possible to use the MDS formulation to identify such similar partitions and

incorporate a subroutine into the generation framework to automatically regenerate

partitions presenting low variability when compared with the remainder of the en-

semble. This is in fact similar to what has being done in this thesis, except for the

identification of similar partitions is done by visual inspection.

Another interesting topic presented by this chapter refers to the extensive eval-

uation of different ensemble generation strategies. The assessment of 40 different

ensemble generation methods allows high confidence in the average results presented.

Finally, the ensemble clustering user interface proposed allows simple usage of

the most common consensus functions available with the possibility of easy extension

to work with new consensus functions still yet to be proposed. By means of this

software, further benchmarks comparing the advantages and drawbacks of different

consensus functions can be conceivably made. It also provides a simple coding,

suitable for an introduction to the field of ensemble clustering.

52 Chapter 3. Ensemble Clustering

Chapter 4

Random Walker Ensemble

Clustering

This chapter presents the adaptation of a consensus function based on random walker

to work with general clustering problems [1]. It was originally developed for com-

bination of image segmentations [162]. This consensus function has proven to be

very effective in solving the problem of combining multiple segmentations into a

single consensual result. However, the work proposed in [162] tunes the algorithm

to deal specifically with image datasets which is in fact a subset of the more general

problem. In order to adjust the random walker consensus function, a number of

issues need to be addressed. More specifically, the ensemble of partitions needs to

be pre-processed to generate a graph representation. A straightforward approach

such as considering a complete graph could lead to a computationally intense im-

plementation. A new problem arises, namely what is considered to be a sufficient

and/or necessary neighborhood size. It is shown experimentally that a very small

neighborhood produces similar results compared to larger choices. This fact alone

improves the computational time needed to produce the final consensual partition.

This chapter also presents an experimental comparison between the random walker

consensus function to other graph based methods in order to assess the accuracy of

this approach.

The remainder of this chapter is organized as follows. Section 1 discusses the

need of an adaptation of the random walker consensus function, to work with ensem-

ble clustering problems. In order to achieve it, the ensemble of partitions needs to be

pre-processed to generate its graph representation. Section 2 presents the method

devised for generation of the graph representation. Afterwards, an experiment com-

pares the results of the random walker consensus function to graph based and other

53

54 Chapter 4. Random Walker Ensemble Clustering

well known combination clustering methods. The impact of the neighborhood’s size

is investigated as well as the quality of the consensus results achieved. It also shows

experimentally that, a very small neighborhood produces similar results compared

to larger choices. This fact has a direct impact in the processing time required by

the algorithm.

4.1 Summary

To better explain the changes needed to adapt the random walker based image

segmentation combination method to address general clustering problems, a short

review of the original work is in order. The first step is the creation of an ensem-

ble. During this step, different segmentation algorithms and/or different parameter

settings are used to create an ensemble of segmentations.

Once the ensemble of segmentations is available, a consensus step combines them

all into a final consensual segmentation. The consensus step can be divided into 3

parts: a) graph generation; b) seed region generation; and c) ensemble combination.

The original method performs a rescale of the images in order to reduce the num-

ber of pixels to be processed. Afterwards a 4-neighborhood is computed creating the

graph representation needed. This graph representation is the input data expected

by the next step. For more information about the graph generation in the original

method, Wattuya et al. [162] will be referred.

The seed region generation is divided in two steps: a) candidate seed region

extraction; and b) grouping of candidate seed regions. By means of these two steps

automatically generated seed points, the random walker consensus function is able

to automatically decide the final number of target clusters.

Seed Region Generation

A new graph G∗ is built by preserving those edges with weight wi,j = 1 (only

pi and pj share the same label) and removing all other edges. This step basically

retains those edges between two neighboring nodes which are most likely to belong

to the same region. Then, all connected subgraphs in G* are removed and they are

regard as a set of initial seeds which are further reduced in the next step.

4.1. Summary 55

Grouping candidate seed region

The number of candidate seed regions from the last step is typically higher than

the true number of regions in an input image. Thus, a further reduction is performed

by iteratively selecting the two candidate seed regions with the highest similarity

value and merging them to build one single (possibly spatially disconnected) candi-

date seed region. Subsequently, the similarity values between a new merged region

and all remaining candidate seed regions are recomputed. The similarity s(Ci, Cj)

between candidate seed regions Ci and Cj is defined in Equation (4.1).

s(Ci, Cj) =
{ni,j
N
|(pi, pj) ∈ Ci × Cj

}
(4.1)

where Ā denotes the average of the set A.

Ensemble Combination

Given the graph G constructed from the initial segmentations and K seed regions,

the random walker consensus function [68] is applied to compute the final segmen-

tation. The computation of random walker probabilities can be exactly performed

without the simulation of random walks. It can be achieved by solving a sparse,

symmetric, positive-definite system of equations. Each unseeded pattern is then

assigned a K-tuple vector, specifying the probability that a random walker starting

from that pattern will first reach each of the K seed regions. A final segmentation

is derived by assigning each pixel the label with largest probability.

Figure 4.1. Example of well defined topology in image datasets

56 Chapter 4. Random Walker Ensemble Clustering

Random Walker based algorithms requires that a graph representation of the

dataset to allow the simulation of the random walks. A simple way to create

this graph representation is to use a complete graph. For this case, the distances

(weights) between all possible pairs of patterns should be included. However, such

representation is not efficient, especially in dealing with mid- to large-size datasets.

A possible example is image datasets or general datasets with more than thousands

patterns. As discussed in [54], the dimensionality problem can be minimized by

combining objects (pixels) belonging to the same segmented region into a single

representative. Another option [162] is to resize the image to a more manageable

size. Taking advantage of the well behaved topology of images (see Figure 4.1) it is

possible to define neighborhoods in a simple way. For those cases, there is no need to

include in the graph representation edges linking non-neighbor regions, since they

are most likely not to belong to the same structure. Figure 4.1 shows an exam-

ple from the Berkeley image database which a small region is enlarged. It is clear

how well the neighborhood is organized. This is a property of 2D image datasets.

General clustering problems often presents patterns with a considerably higher di-

mensionality. Due to the high dimensionality of general data, the specification of

neighborhoods is problematic.

This chapter main motivation is to propose and evaluate a feasible way to create

compact neighborhood representations. Subsequently, the graph created is supplied

as input to the random walker consensus function. A feasible option to the graph

generation problem is to consider only a given number of closest nearest neighbors.

4.2 Graph Generation Method

High dimension datasets do not have a simple neighborhood lattice. A possible way

to create its graph representation is to compute the distance between all possible

pairs of points leading to a complete graph. The disadvantage of this option is

twofold. Due to the fact that medium to large datasets lead to large numbers of

edges (n(n − 1)/2 edges), the use of the set of complete neighborhoods can be

prejudicial to the random walker algorithm. All possible paths would have to be

considered, leading to a longer processing time. Since two patterns very far apart are

most likely not to be into the same cluster, it is clear that reasonable neighborhood

size in which the closest neighbors to each given pattern are represented could benefit

greatly the outcome of the algorithm.

4.2. Graph Generation Method 57

Therefore, to avoid the complete graph solution, the neighborhood of each indi-

vidual pattern need to be identified. Furthermore, a suitable neighborhood size, or

the number of patterns to be considered as neighbors, needs to be specified.

The random walker consensus function requires as input an undirected graph

G = (V , E , w) where V is a list of vertices, one for each pattern existing in the

dataset X, E is a set of edges where e ∈ E/e = (p, q) ∧ p, q ∈ V , and w is a set of

weights associated to each edge in E .

The generation of the set of vertices is straightforward: It simply defines a vertex

corresponding to each pattern p ∈ X.

Edges’s Computation

To generate the set of edges, firstly it needs to be decided the neighborhood

size. A previous step is required in order to find the δ-nearest neighbors of a given

pattern p. A distance function d(·, ·) also needs to be specified. In the experiments

presented in this chapter, the Euclidean distance is used.

Figure 4.2. Example of neighboring patterns sharing the same edge

First, a matrix containing the pairwise distance between all possible pairs of

patterns is created (naive implementation). Subsequently, the distance matrix is

inspected for each pattern in order to retrieve its δ-nearest neighbors. The pairs

composed by {p, δ(nni)} are inserted in the set of edges E . Special attention needs

to be paid at this step. It is possible that two patterns e.g. p and q share one or

more edges. This case usually happens between two neighboring patterns. For that

reason, before adding any edge to the set E , a test is required to ensure the edges do

not exist already in E . Consider the example given in Figure 4.2. In this case, the

δ-neighborhood was set to 4, meaning that for each pattern, the 4 closest patterns

58 Chapter 4. Random Walker Ensemble Clustering

are selected to be added to the set of edges E . Patterns p and q share a common

edge, since q is among the δ-NN of p and vice versa. Therefore, there is no need to

include the same edge twice in E .

The random walker consensus function requires a connected graph to work prop-

erly. Therefore, the connectedness of the set of edges needs to be tested. This is

not an issue in dealing with 2D image datasets. However, for the general case, there

is a chance disconnected graphs will be generated. As defined in graph theory, an

undirected graph G is said to be connected if all pairs of vertices in the graph are

connected, and two vertices are said to be connected if there is a path between them.

The part of the algorithm responsible for making G connected is divided in three

parts.

• Test for Connectedness - This initial test identify the need for connecting

possible subgraphs. To check for connectedness is very simple. The pseudo-

algorithm for this step is given by the three simple steps as follows:

1. Start by selecting a vertex at random;

2. Proceed from that vertex using depth-first or breadth-first search, count-

ing the visited nodes;

3. After traversing the entire graph, it is necessary to check if the number

of counted nodes equals the total number of nodes. If it is affirmative,

the graph is connected, otherwise it has two or more subgraphs.

• Identify Subgraphs - If the graph G is not connected, the list of subgraphs

can be retrieved by the following pseudo-algorithm:

1. While there are unvisited vertices, selected an unvisited vertex at random;

2. Proceed from that vertex by using depth-first or breadth-first search,

registering all visited vertices;

3. Once the algorithm reaches a state in which there are no more reach-

able vertices, but all vertices were not still visited, it creates a subgraph

containing all vertices visited and all edges connecting in those vertices;

4. GOTO (1).

• Connect Subgraphs - As stated before, RW requires a connected graph.

This can be achieved in a number of ways. The introduction of an edge be-

tween the two closest vertices of different subgraphs is chosen as the way to

ensure connectedness. Note that the number of required additional edges to

4.2. Graph Generation Method 59

ensure connectedness is given by the number of subgraphs minus 1. It was

chosen however, to select each possible pair of subgraphs G1 and G2 and to

insert an edge between pi ∈ G1 and pj ∈ G2 with the smallest distance among

all such edges. The newly inserted edges receive weights in the same way as

described in the next subsection. Given the constructed connected graph the

RW consensus function previously described, it is applied for the ensemble

clustering problems with no further modifications. Figure 4.3 shows an exam-

ple in which a graph is generated with 3 disconnected subgraphs. The gray

squares represent subgraphs, black lines edges between vertices (black circles),

and red lines the edges to be added in order to make the graph connected.

Figure 4.3. Example of a disconnected graph G composed of three subgraphs

By the end of this step, the graph G has the sets of vertices and edges fully

defined. In order to finish the creation of the whole graph, the computation of the

weights associated to each edge is in order.

Weight’s Computation

The information contained in the clustering ensemble must be added to the

graph. This is done by computing the weights assigned to each edge using as basis

the information encoded in the ensemble of partitions.

The algorithm hereby proposed iterates over all vertices computing the edges

weights. A weight wi,j indicates how probable two patterns pi and pj belong to the

same cluster. The weighting method of choice is to count the number mi,j of initial

60 Chapter 4. Random Walker Ensemble Clustering

partitions, in which pi and pj share the same region label. Thus, weight function is

defined as a Gaussian weighting. The underlying assumption is based on the fact

that objects belonging to the same ”natural” region are very likely to be collocated

in the same region among different partitions. The weighting function is defined as

follows:

wi,j = e−β
mi,j
M (4.2)

where mi,j refers to how many times the pair (i, j) of patterns occurs in the same

cluster among the M partitions in the ensemble. The parameter β is a normalization

parameter. For the purpose of the experiments presented later on this chapter it is

set to 30.

Algorithm 4.1 implements the process of graph creation described above. The

neighborhood size δ is specified as a parameter. The algorithm starts by computing

the δ-nearest neighbors for each pattern.

Algorithm 4.1 δ-Neighborhood graph construction algorithm

Input: the original dataset D,

the ensemble P of partitions to be combined,

the neighborhood size δ to be considered

Output:a graph G = (V, E , w) representing the ensemble

1. For all d ∈ D
2. find the δ-Nearest Neighbors of d

3. for all nn ∈ δ-Nearest Neighbors(d)

4. compute the weight w = weight(d, nn,P)

5. E = E ∩ e(d, nn,w)

6. end

7. end

8. if G is not connected

9. find subgraphs

10. connect subgraphs

11. end

An edge is created between each pattern and its δ-nearest neighbors. Sometimes

two edges may be generated between two vertices pi and pj, one from considering pi
and the other one considering pj. In this case, only one of them is added to E . The

next step deals with the weight computation. It computes a weight for each edge

using Equation (4.2).

4.3. Experimental Results 61

A naive implementation of the graph construction has O(N(NδM)) computa-

tional complexity. Note that M and δ << N . However, the overall complexity can

be improved by smarter ways to compute the δ nearest neighbors. For instance, the

method proposed in [172] leads to a O(N logN) computational complexity imple-

mentation.

Once G is available, the computation of the consensual partition by means of

the RW consensus function is in order. The original function can be used as stated

before. The next section presents experimental results for a number of Synthetic

and UCI-Irwine datasets.

4.3 Experimental Results

To assess the accuracy of the proposed method, four evaluation schemes are devised.

First, the total number of nodes in the graph representation is investigated in respect

to the size of the neighborhood considered. Afterwards, the impact of different

neighborhood sizes in the overall performance of the method is evaluated. With a

suitable neighborhood size defined, the results of RW are compared to other well

stated ensemble clustering methods. Finally, the computational time required to

execute the same methods evaluated in the last section is compared.

4.3.1 Assessing the Neighborhood Size

For this first experiment, the graph representation of the evaluated datasets is cre-

ated using different neighborhood sizes.

The results are displayed in Table 4.2. It lists the number of patterns in each

dataset, the number of produced edges using 4- and 8-neighborhoods and finally

the number of edges for a complete graph representation. As it can be seen, the

number of edges grows rapidly in relation to the neighborhood size considered. The

progressive grown of the number of edges in relation to the neighborhood size can

be observed in

Figure 4.4. It is clear that, the number of edges obeys a quadratic progressive

increase. A small diminishment in the rate of increase of number of edges is observed

once the neighborhood size increases. This is due to, more neighbors enter into play

and the chance increases from two given patterns to share neighbors. However, the

quadratic relation still holds.

62 Chapter 4. Random Walker Ensemble Clustering

Table 4.1. Impact of neighborhood size in the number of edges processed

Dataset N.patterns 4-N 8-N complete-N

iris 150 405 796 11175

wine 178 513 996 15753

breast 683 2234 4193 232903

optic 1003 2797 5469 499500

soyBeanS 47 118 221 1081

glass 218 612 1210 22791

haberman 306 816 1590 46665

mammo 830 2618 4527 344035

yeast 1484 4301 8431 1100386

halfRings 269 591 1197 36046

celipsoid 225 503 1001 25200

twoRings 362 851 1645 65341

scattered 132 342 656 8646

Figure 4.4. Grown of edges quantity vs neighborhood size

4.3.2 Neighborhood Size vs Accuracy

This test investigates the relationship between the neighborhood size used to create

the graph and the error rate. If a small neighborhood can be chosen, a direct positive

impact on the overall algorithm performance is observed, as discussed earlier.

Figure 4.5 shows the error rate obtained by the random walker algorithm with

a known number of target clusters, for different neighborhood sizes. It is clear that

the error rate archived by RW consensus function presents almost no fluctuation

with increasing neighborhood sizes. In cases which very small neighborhoods are

4.3. Experimental Results 63

Figure 4.5. Relationship between error rate and neighborhood size

considered (e.g. up to 5 nearest neighbors) it is possible to observe a clear degrada-

tion in the algorithm’s performance (refer e.g. to yeast dataset). This is due to the

fact such neighborhood sizes do not incorporate enough information for the proper

simulation of the random walkers. However, once the neighborhood size increases,

little to non fluctuation is observed for the majority of the datasets. Exceptions

are the yeast and wine datasets in which a slight decrease or increase in accuracy

is observed with the increasing number of neighbors. This can occur due to the

fact that parts of the clusters in those datasets overlap each other, causing different

subsets of shared neighbors to change constantly.

For the majority of the inspected datasets a small neighborhood, like 6 closest

64 Chapter 4. Random Walker Ensemble Clustering

neighbors lead to a result as good as larger counterparts such as e.g. 30 neighbors.

This fact comes as a surprise since it is intuitively expected datasets with high

attribute’s dimensionality would require a larger neighborhood in order to create a

representative graph. The general conclusion is that, a small neighborhood leading

to similar results compared to a larger one, has a direct impact in the processing

time required by the algorithm to achieve a consensual partition. However, the

impact in performance should be more accentuated for larger datasets. This is the

topic of the next envisioned experiment.

4.3.3 Assessing the Processing Time

Another interesting improvement is regarding the computational time required by

the algorithm proposed. Table 4.2 shows that, for smaller data sets, RW consen-

sus function has a matching performance compared to other ensemble clustering

algorithms. Once the number of patterns in the dataset increases, a considerable

improvement is observed. For the smallest dataset (soyBreanS - 47 patterns) RW

processing time is actually worst than any other method compared. This is due

to the fact that the graph creation step starts to pay off only once the number of

patterns is relatively big. In some cases (e.g. yeast 1484 patterns) dataset, the time

required by RW is much lower compared to the evidence accumulation methods.

On the other hand, graph based methods tend to present a smaller computational

time. This fact is balanced by the improvement in accuracy achieved by RW .

Table 4.2. Processing time for different ensemble clustering methods

Dataset] patt. RW EAC SL EAC AL HGPA CSPA

iris 150 0.06 0.03 0.05 0.09 0.14

wine 178 0.07 0.06 0.15 0.09 0.14

breast 683 1.75 12.12 44.88 0.10 1.20

optic 1000 4.18 16.02 20.93 0.14 1.27

soyBeanS 47 0.10 0.03 0.04 0.09 0.10

glass 214 0.13 0.08 0.16 0.11 0.21

haberman 306 0.54 0.28 0.76 0.09 0.41

mammo 830 0.54 0.28 0.76 0.09 0.41

yeast 1484 2.59 16.70 58.25 0.10 1.79

It is important to notice that the results given in Table 4.2 are produced us-

ing interpreted Matlab implementations of the compared algorithms. Those times

can be greatly improved by using compiled versions algorithms. Additionally, one

4.3. Experimental Results 65

of the key impositions regarding the RW algorithm’s computational complexity is

regarding the computation of the nearest neighbors. Although seemly small neigh-

borhoods are used, as discussed earlier, the computation of the nearest neighbors

requires that the distance between all pairs or patterns to be computed and sorted.

The times given in Table 4.2 are reported using a naive approach for this problem.

More sophisticated approaches such as the one proposed in [172] can lead to even

greater performance improvements.

4.3.4 Assessing the Overall Performance

To evaluate the accuracy of the consensus partitions obtained by the RW consensus

function a comparison to well known consensus functions widely used throughout the

pertinent literature is envisioned. The methods of choice cover the main consensus

function classes presented in Chapter 3. BoK and BOEM [67] are selected to

represent the median partition formulation. BoK is essentially the set median as

stated before, and BOEM does not require the number of clusters to be specified

a priori. The result obtained by BoK is provided to BOEM as initial consensus

partition. Similarly, EAC SL and EAC SL [57] are selected to represent voting

methods. HGPA and CSPA [140] represent the graph based methods in which

both require the number of desired clusters to be known. The results for the random

walker algorithm are presented in two versions. RW stands for the original version

able to decide the optimal number of clusters and RWfix which the number of

clusters is known. For all results presented, those algorithms requiring a known K

used the number of target clusters extracted from the available ground-truths.

The ensembles used in order to produce the results follow the ensemble generation

schemes described in Chapter 2. For each of the 40 generation schemes, 10 ensembles

are computed with number of partitions varying from 10 to 40. The results presented

in the remainder of this chapter are the average of all 400 ensembles computed for

each dataset.

Table 4.3 shows the results computed using the variation of information index for

the six toy datasets described in Chapter 2. For these datasets, no remarkable im-

provement can be noticed except for the celipsiod dataset. However it is interesting

to see that neither RW nor RWfix performed worst in any case. The importance

of this observation is that, despite of the fact RW can use a priori knowledge about

the number of desired clusters this is not, by any means a requirement, defining it

as a single consensus solution. The same does not apply to neither of the graph

based methods nor the voting methods.

66 Chapter 4. Random Walker Ensemble Clustering

Table 4.3. VI index for the toy datasets

Dataset BoK BOEM EAC SL EAC AL HGPA CSPA RW RWfix

8D5K 0.04 0.02 0.00 0.00 4.55 0.00 0.02 0.02

2D2K 0.27 0.27 0.27 0.27 2.00 0.32 0.27 0.27

celipsoid 1.68 1.68 1.68 1.68 1.99 1.67 1.69 1.52

twoRings 1.97 1.97 1.97 1.97 1.99 1.99 1.97 1.97

scattered 1.84 1.84 1.84 1.84 1.86 1.86 1.84 1.84

halfrings 1.14 1.14 1.14 1.14 1.97 1.29 1.14 1.14

Table 4.4 shows the error ratio or, the number of wrongly classified patterns for

the same toy datasets. Here, the results do not change much, compared to Table 4.3.

However, for celipsoid, it becomes clearer when the results for HGPA and CSPA

are compared that the lack of a single solution can introduce doubts about which

consensus function to use when a single solution such as RW is not available.

Table 4.4. Error rates (in %) for the toy datasets

Dataset BoK BOEM EAC SL EAC AL HGPA CSPA RW RWfix

8D5K 0.20 0.10 0.00 0.00 77.10 0.00 0.10 0.10

2D2K 1.90 1.90 1.90 1.90 49.40 2.30 1.90 1.90

celipsoid 27.56 27.56 27.56 27.56 49.78 27.11 28.00 26.02

twoRings 47.51 47.51 47.51 47.51 48.62 48.90 47.51 47.51

scattered 43.18 43.18 43.18 43.18 48.48 46.97 43.18 43.18

halfrings 13.75 13.75 13.75 13.75 49.81 17.84 13.75 13.75

Table 4.5 presents the results using VI index for the selected 25 UCI-Irvine

datasets. For this evaluation, it can be seen tangible improvements introduced by

the RW consensus function. In 21 of the 25 datasets, RW perform better or at least

similar to the best result of any other algorithm. For the datasets balance, breast,

glass, haberman, optic, post-op, protein, soybean, transfusion, wine and yeast, RW

is clearly superior to any compared algorithm showing remarkable improvements.

Exceptions are the ecoli dataset, in which case the EAC SL achieves a better result.

But, it is remarkable to notice that EAC SL is one of the possible evidence accu-

mulation methods. For the same dataset, the RW consensus function is capable of

deciding automatically the optimal number of clusters achieving good results well

in between the two evidence accumulation methods proving the reliance of the ran-

dom walker formulation. For spect and transfusion datasets EAC SL also achieves

better results, but the difference when compared to RW is negligible. The segmen-

tation dataset is the only case in which a graph based method (CSPA) succeeds

in achieving a better score than any other method. For the remainder datasets,

4.3. Experimental Results 67

RW achieves at least as well as any other method with a slightly variation in either

direction.

Table 4.5. VI index for the UCI-Irvine datasets

Dataset BoK BOEM EAC SL EAC AL HGPA CSPA RW RWfix

balance 2.25 2.25 2.63 2.52 2.77 2.70 1.66 2.52

Breast 0.47 0.47 0.95 0.46 1.93 1.13 0.40 0.40

control 1.51 1.50 1.36 1.48 2.41 1.31 1.30 1.60

ecoli 2.33 2.34 1.82 2.23 3.28 2.91 2.10 2.36

glass 2.31 2.34 1.90 1.99 3.08 3.38 1.33 1.27

haberman 1.28 1.28 1.28 1.28 1.83 1.83 0.83 0.91

heart 1.86 1.86 1.86 1.86 1.99 1.91 1.86 1.86

ionosphere 1.73 1.73 1.73 1.73 1.90 1.77 1.74 1.74

iris 0.43 0.43 0.73 0.49 2.15 0.54 0.13 0.17

lung 1.47 1.47 1.42 1.42 1.55 1.54 1.41 1.44

mammo 1.42 1.42 1.42 1.42 2.00 1.51 1.44 1.44

optic 1.56 1.58 2.09 1.70 3.73 1.66 0.77 0.56

parkinsons 1.25 1.25 1.25 1.25 1.80 1.74 1.25 1.25

post-op 2.01 2.01 1.96 1.98 2.45 2.47 1.72 1.94

protein 1.54 1.54 1.56 1.57 3.24 2.89 1.64 1.43

segmentation 1.82 1.82 1.82 1.82 2.34 1.74 1.97 2.05

sonar 1.99 1.99 1.94 1.95 1.99 1.97 1.96 1.94

soyBeanS 1.28 1.28 1.28 1.28 1.28 1.67 0.51 1.07

spect 1.58 1.58 1.46 1.55 1.73 1.57 1.55 1.54

spectf 1.25 1.25 1.24 1.24 1.73 1.60 1.23 1.23

taeval 2.91 2.91 2.91 2.91 3.04 2.97 2.87 2.87

tic-tac-toe 2.08 2.08 1.47 1.87 1.93 1.91 1.47 1.87

transfusion 1.41 1.41 1.38 1.40 1.79 1.76 1.40 1.40

wine 0.38 0.38 0.34 0.34 1.58 0.56 0.19 0.19

yeast 3.63 3.72 2.53 3.53 5.29 4.63 1.88 1.45

Table 4.6 shows the error ratio or, the number of wrongly classified patterns for

the same UCI-Irvine datasets. For this index again, RW presents better results for

most datasets (balance, breast, glass, haberman, optic, post-op, protein, soybean,

spectf, wine and yeast). Exceptions are the control, segmentation, and spect. For

these datasets, CSPA shows a better performance. However, RW again shows a

mid value performance between CSPA and HGPA, the two graph based methods

proving once more the reliance of the random walker formulation. The same applies

to ecoli dataset in which case EAC SL shows a better result, however EAC AL, the

other evidence accumulation method evaluated is clearly inferior. For the remainder

68 Chapter 4. Random Walker Ensemble Clustering

datasets, RW achieves at least as well as any other method with a slightly variation

in either direction.

Table 4.6. Error rates (in %) for the UCI-Irvine datasets

Dataset BoK BOEM EAC SL EAC AL HGPA CSPA RW RWfix

balance 39.68 39.68 33.28 39.68 57.28 46.08 29.60 39.68

breast 3.95 3.95 34.85 3.81 49.63 17.28 3.22 3.22

control 39.58 39.68 39.34 37.70 44.16 21.71 47.40 38.76

ecoli 51.61 51.58 34.17 44.60 64.78 58.12 40.34 46.58

glass 46.26 46.26 48.13 48.60 58.88 64.49 44.86 42.52

haberman 25.16 25.16 25.16 25.16 49.67 48.04 26.47 22.88

heart 38.28 38.28 38.28 38.28 47.65 39.16 38.30 38.30

ionosphere 30.68 30.67 30.68 30.68 42.81 33.95 31.11 31.11

iris 5.25 5.12 32.00 4.67 35.00 5.33 4.00 4.67

lung 29.07 29.07 26.94 26.30 30.46 29.54 26.76 27.13

mammo 20.72 20.72 20.72 20.72 48.19 21.69 21.08 21.08

optic 20.70 20.90 54.00 27.20 57.40 17.50 21.50 11.90

parkinsons 27.88 27.88 27.88 27.88 47.76 41.44 27.76 27.76

post-op 46.41 46.41 43.53 43.76 61.38 63.28 40.26 43.33

protein 50.82 50.82 50.69 50.75 56.40 51.81 55.00 48.06

segmentation 43.81 43.81 43.81 43.81 39.05 28.57 44.29 42.38

sonar 45.43 45.44 43.98 44.10 48.34 44.17 44.59 44.33

soyBeanS 29.79 29.79 29.79 29.79 29.79 34.04 19.15 27.66

spect 43.71 43.62 39.63 43.38 49.42 37.55 43.95 44.09

spectf 36.63 36.63 36.13 35.98 49.41 39.40 35.51 35.51

taeval 52.98 52.98 52.98 52.98 60.26 50.33 53.64 53.64

tic-tac-toe 51.35 51.21 39.62 46.54 50.00 45.59 39.60 46.54

transfusion 32.77 32.77 30.87 31.09 48.36 45.01 31.03 31.01

wine 3.37 3.37 2.81 2.81 47.75 6.18 1.69 1.69

yeast 60.31 60.78 68.40 53.30 79.18 72.37 42.25 34.64

The random walker consensus function adapted to work with general datasets

has proven to be a suitable choice to address the problem of ensemble clustering.

Due to the fact that most general datasets are comprised of patterns with a high

number of dimensions (usually much higher than 2 or 3) they do not present a

well behaved lattice. The datasets high dimensionality complicate the definition of

a rigid neighborhood structure. A neighborhood generation method is therefore,

required. The computation of the δ-closest neighbors presents itself as a plausible

option. Nevertheless, the definition of a suitable values for δ is an open issue. As

demonstrated in Section 4.3.1 a conceivably small neighborhood size can be chosen

4.3. Experimental Results 69

with no considerable loss in performance, since the achieved results fluctuate very

little for increasing δ values. This fact alone enables the possibility of applying

the proposed consensus functions to medium to large datasets. Several other ad-

vantages are observed in comparing RW to other state of art consensus functions.

Although, using an evidence accumulation scheme similar to the one adopted by

EAC AL/EAC SL, differently from those methods, there is no need to compute

a complete co-association matrix, but only the weights associated to the edges in

the graph. This fact improves even further the computational time. The final com-

bination step uses a random walker consensus function that can be solved exactly,

without the simulation of random walks, by solving a sparse symmetric positive-

definite system of equations. This method is remarkably quicker compared to the

hierarchical clustering algorithms used in the consensus step of EAC AL/EAC SL

algorithms.

Regarding computational time, RW does not present a representative gain if

compared to the graph-based methods. However, by comparing the accuracy of

both methods, RW clearly outperforms the other graph based methods.

70 Chapter 4. Random Walker Ensemble Clustering

Chapter 5

Lower Bound for Ensemble

Clustering

Cluster ensemble techniques are means for boosting the clustering performance.

However, many cluster ensemble methods are faced with high computational com-

plexity. Indeed, the median partition methods are NP-complete for many reason-

able distance functions. One essential aspect in this context is the assessment of

the quality of the computed approximate solutions. While a variety of approximate

approaches for suboptimal solutions has been proposed in the literature as shown in

Chapter 3, the performance evaluation is typically done by means of ground-truth

(see Chapter 2). In contrast, this chapter explores the question how well the cluster

ensemble methods perform in an absolute sense without ground-truth, i.e. how they

compare to the (unknown) optimal solution.

A study is presented of applying and extending a lower bound Γ as an attempt

to investigate this question. In particular, it demonstrates the tightness of the lower

bound, which indicates that there exists no more room for further improvement (for

the particular data set at hand). Thus, the lower bound can be considered as means

of exploring the performance limit of cluster ensemble techniques.

The remainder of this chapter is organized as follows. Section 5.1 describes

the lower bound based on linear programming applied to clustering ensemble. Sec-

tion 5.2 presents a study of the lower bound Γ using three clustering ensemble

methods and eleven data sets. Among others it will be demonstrated that this lower

bound can (almost) be reached by the computed solution. This tightness indicates

the limited room for further improvement. Therefore, the lower bound Γ represents a

means of exploring the performance limit of cluster ensemble techniques. Section 5.3

71

72 Chapter 5. Lower Bound for Ensemble Clustering

presents other related lower bounds. Section 5.4 extends the lower bound to deal

with weighted cluster ensemble techniques. Finally, the chapter ends in Section 5.5

with conclusions and final remarks.

5.1 LP-Based Lower Bound

Order theory defines the lower bound Γ [33] of a subset S of an ordered set (P,≤)

is an element of P which is smaller than or equal to every element of S. A set with

a lower bound is said to be bounded from below by Γ.

Given the data set X = {x1, x2, . . . , xn} of n patterns xi, a cluster ensemble is

a set P = {P1, P2, . . . , PM} of M partitions Pi. Pi ∈ P is a clustering of X. The

set of all possible clusterings of X is denoted by PX (P ⊂ PX). The goal of cluster

ensemble techniques is to find a consensus clustering P ∗ ∈ PX , which optimally

represents the ensemble P.

In median partition methods this optimality is formulated as:

P ∗ = arg min
P∈PX

M∑
i=1

d(P, Pi) (5.1)

where d(·, ·) is a distance (dissimilarity) function between two clusterings. Note

that this definition is a special instance of the so-called generalized median problem,

which has been intensively investigated in structural pattern recognition, see [78,

103] for the case of strings and graphs.

The median partition problem has been proven to be NP-complete [10] for

many reasonable distance functions. An exhaustive search in PX is computationally

intractable. In practice suboptimal approaches [105, 140] are thus developed to solve

the optimization problem.

Given a suboptimal solution P̃ ∈ PX , the question of its accuracy arises. In [79]

a lower bound is proposed to answer this question (for the general case of generalized

median problems). For an approximate solution P̃ the following relationship holds:

SoD(P̃) =
M∑
i=1

d(P̃ , Pi) ≥
M∑
i=1

d(P ∗, Pi) = SoD(P ∗) (5.2)

where SoD stands for sum of distances. The quality of P̃ can be absolutely measured

by the difference SoD(P̃) − SoD(P ∗). Since P ∗ and SoD(P ∗) are unknown in

general, one can resort to a lower bound Γ:

5.2. Experimental Verification 73

0 ≤ Γ ≤ SoD(P ∗) ≤ SoD(P̃) (5.3)

to measure the quality of P̃ by SoD(P̃) − Γ instead. Obviously, the trivial lower

bound Γ = 0 is useless. The lower bound Γ is required to be as close to SoD(P ∗)

as possible.

In [79] a lower bound based on linear programming is proposed for metric spaces.

Assuming a metric distance function d(·, ·), the lower bound for the median partition

problem is specified by the solution Γ of the following linear program:

minimize x1 + x2 + · · ·+ xM subject to

∀ i, j ∈ {1, 2, . . . ,M}, i 6= j,


xi + xj ≥ d(Pi, Pj)

xi + d(Pi, Pj) ≥ xj
xj + d(Pi, Pj) ≥ xi

∀ i ∈ {1, 2, . . . ,M}, xi ≥ 0

(5.4)

Given a suboptimal solution P̃ and the computed lower bound, the deviation ∆ =

SoD(P̃) − Γ can give a hint of the absolute accuracy of P̃ . In particular, if ∆ ≈ 0,

then it can be safely claimed that there is hardly room for further improvement (for

the particular data set at hand).

5.2 Experimental Verification

In order to assess the usefulness of the LP-lower bound applied to the cluster-

ing ensemble problem, a comparison study is presented using two cluster ensemble

methods and eleven data sets. Among others it will be demonstrated that this lower

bound can (almost) be reached by the computed solution. This tightness indicates

the limited room for further improvement. Therefore, the lower bound Γ represents

means of exploring the performance limit of cluster ensemble techniques.

The lower bound proposed is tested against three ensemble clustering meth-

ods. Given an ensemble P, a final clustering P̃ is computed using either EAC AL,

EAC SL or RW .

∆
′
=
SoD(P̃)− Γ

SoD(P̃)
(5.5)

74 Chapter 5. Lower Bound for Ensemble Clustering

The following measures are used to characterize the performance: SoD(P̃), the

lower bound Γ (for the ensemble), and the deviation (in percentage). For each

data set, this procedure is repeated ten times (i.e. ten different ensembles) and the

average measures are reported.

The performance measures for the three cluster ensemble methods, RW , EAC AL

and RW , EAC SL are presented in Table 5.1, 5.3 and 5.2, respectively.

Table 5.1. Deviation ∆′ for the RW method

dvi dvd dm

Dataset SoD(P̃) Γ ∆′(%) SoD(P̃) Γ ∆′(%) SoD(P̃) Γ ∆′(%)

iris 8.40 7.24 13.8 2.28 2.16 5.2 28067 25113 10.5

wine 2.09 1.86 10.0 0.35 0.33 4.5 7242 6777 5.8

breast 1.49 1.08 27.7 0.20 0.15 23.9 90032 68392 24.0

optic 11.38 6.37 44.0 3.90 1.85 50.9 749459 315016 57.7

soyBeanS 6.19 3.79 36.9 4.08 1.62 52.0 3433 1591 49.3

glass 7.96 4.66 41.1 2.53 1.24 45.9 69186 33940 49.3

haberman 7.70 7.58 1.5 2.86 2.84 0.7 234484 232995 0.6

mammo 1.77 1.77 0.0 0.38 0.38 0.0 248650 248650 0.0

yeast 18.60 11.40 38.2 10.51 3.34 67.5 6606869 3010185 53.4

2D2K 4.69 4.69 0.0 1.15 1.15 0.0 978050 978050 0.0

8D5K 5.24 4.91 5.9 2.43 1.66 15.0 721412 579262 11.3

The deviation P
′

can be interpreted as the potential of further improvement.

For three data sets (haberman, mammo, and 2D2K) SoD(P̃) almost reaches the

lower bound Γ for all three distance functions, indicating practically no room for

improvement. To some extent the same applies to the data set Soy and 8D5K in

conjunction with EAC AL.

In these cases the lower bound turns out to be extremely tight. On the other

hand, if the deviation is large, care must be taken in making any claims. The large

deviation may be caused by two reasons: The lower bound is not tight enough in

that particular case or the computed solution SoD(P̃) is still far away from the

(unknown) optimal solution P ∗. The second case is certainly more delicate. But it

may be interpret as of some, although uncertain, potential of further improvement.

Given such an ensemble, we could generate more ensembles and compute additional

candidates for consensus clustering. The measure SoD can then be used for selecting

a final solution. This strategy has been suggested in [140] (although in a different

context): ”The objective function has the added advantage that it allows one to add

a stage that selects the best consensus function without any supervisory information,

5.2. Experimental Verification 75

Table 5.2. Deviation ∆′ for the EAC SL method

dvi dvd dm

Dataset SoD(P̃) Γ ∆′(%) SoD(P̃) Γ ∆′(%) SoD(P̃) Γ ∆′(%)

iris 9.33 7.24 0.22 3.23 2.16 0.33 48991 25113 0.49

wine 1.95 1.86 0.05 0.33 0.33 0.00 6881 6776 0.02

breast 9.33 1.08 0.88 3.36 0.15 0.96 2078788 68392 0.97

optic 14.52 6.37 0.56 4.17 1.85 0.56 2343771 315016 0.87

soyBeanS 3.90 3.79 0.03 1.65 1.62 0.02 1616.60 1591 0.02

glass 6.22 4.66 0.25 1.73 1.24 0.28 44219.80 33939 0.23

haberman 7.58 7.58 0.00 2.88 2.84 0.01 233456 232994 0.00

mammo 7.55 1.77 0.77 2.48 0.38 0.85 679674 248649 0.63

yeast 20.60 11.40 0.45 6.02 3.34 0.45 14864622 3010184 0.80

8D5K 5.72 4.91 0.14 2.09 1.66 0.21 754567 579262 0.23

2D2K 4.72 4.69 0.01 1.33 1.15 0.14 1190372 978049 0.18

by simply selecting the one with the highest ANMI ” (ANMI is the particular SoD

used in that work). Thus, a tight lower bound may give a hint to continue or

terminate the procedure without any knowledge of ground-truth.

Table 5.3. Deviation ∆′ for the EAC AL method

dvi dvd dm

Dataset SoD(P̃) Γ ∆′(%) SoD(P̃) Γ ∆′(%) SoD(P̃) Γ ∆′(%)

iris 8.22 7.24 12.0 2.26 2.16 4.3 27621 25113 9.1

wine 2.01 1.86 7.7 0.35 0.33 5.1 7232 6777 6.3

breast 1.16 1.08 7.3 0.16 0.15 3.8 71244 68392 4.0

optic 7.50 6.37 15.0 2.06 1.85 10.0 378439 315016 16.8

soyBeanS 3.90 3.79 2.9 1.65 1.62 1.9 1616 1591 1.6

glass 5.20 4.66 10.4 1.37 1.24 9.4 39909 33939 15.8

haberman 7.60 7.58 0.3 2.84 2.84 0.0 233417 232994 0.2

mammo 1.77 1.77 0.0 0.38 0.38 0.0 248649 248649 0.0

yeast 13.94 11.40 18.3 3.85 3.34 13.4 3512666 3010184 14.3

2D2K 4.86 4.69 3.0 1.18 1.15 3.0 1037580 978050 5.7

8D5K 4.97 4.91 1.8 1.69 1.66 2.0 585462 579262 1.1

There is also the issue of inconsistency among different distance functions. Some-

times it happens that the deviation values for two distance functions vary, partly

substantially. This observation is not really surprising. Different distance functions

may not share the same view of dissimilarity, thus the quality of a consensus clus-

tering. It is up to the user to decide which distance function is more suitable for a

76 Chapter 5. Lower Bound for Ensemble Clustering

particular data clustering task.

Finally, it is relevant to point out that the three cluster ensembles methods used

in this study do not belong to the class of median partition techniques. But even in

this case the lower bound still provides useful information about the optimality of

the computed consensus clustering.

5.3 Other Ensemble Clustering Lower Bounds

The cluster ensemble problem with Merkin distance dm has been intensively inves-

tigated [64, 67]. This is mainly due to the simplicity of dm, which allows to obtain

deep insight into this particular consensus clustering problem. In particular, several

suboptimal algorithms have been proposed with known approximation factor. In

addition, a lower bound specific to dm only can be defined:

Γm =
∑
i<j

min
(M∑
k=1

X
(k)
ij , N −

M∑
k=1

X
(k)
ij

)
(5.6)

where X
(k)
ij is the Bernoulli random variable as 1 if xi and xj are co-clustered in

partition Pk and 0 otherwise. Γm takes the specific properties of dm into account,

whereas Γ is based on the general properties of a metric only. Γm is better informed

and expected to be tighter than Γ. Table 5.4 compares the closeness of the two lower

bounds. It is remarkable that without any knowledge of dm and using the metric

properties alone, the general lower bound Γ almost reaches Γm.

Table 5.4. Comparison of lower bounds Γ and Γm

Dataset Γ Γm (Γm − Γ)/Γ(%)

iris 25113 26377 5.0

wine 6777 6820 0.6

breast 68392 71196 4.1

optic 315016 335678 6.6

soyBeanS 1591 1599 0.5

glass 33940 34513 1.7

haberman 232995 233273 0.1

mammo 248650 248650 0.0

yeast 3010185 3224160 7.1

2D2K 978050 1168728 8.4

8D5K 579262 584848 1.0

5.4. Extension to Weighted Cluster Ensemble Techniques 77

Another interesting lower bound, originally developed in the context of median

graphs, was proposed by Jiang et al. [78]. It is possible to adapt it for general median

problems. It also requires the distance between objects to be a metric. Additionally,

the set of objects P = {P1, P2, · · · , PM} must have an even number of objects. In

this case, the true generalized median P̄ is subject to:

SoD(P̄) = [d(P̄ , P1) + d(P̄ , P2)] + [d(P̄ , P3) + d(P̄ , P4)] + · · ·
+ [d(P̄ , PM−1) + d(P̄ , PM)]

≥ d(P1, P2) + d(P3, P4) + · · · + d(PM−1, PM)

(5.7)

This relationship remains true for any partition of P into M/2 pairs. There are
M !

2
M
2 ·(M

2)!
possible ways to partition the set P into:

(Pl,1, Pl,2), (Pl,3, Pl,4), · · · , (Pl,M−1, Pl,M) (5.8)

where {Pl,1, Pl,2, · · · , Pl,M} = P. Therefore, provided d(·, ·) is a metric, the true

generalized median P̄ satisfies

SoD(P̄) ≥ max{d(Pl,1, Pl,2) + d(Pl,3, Pl,4) + · · ·+ d(Pl,M−1, Pl,M)

|((Pl,1, Pl,2), (Pl,3, Pl,4), · · · , (Pl,M−1, Pl,M)) is a partition of P}
(5.9)

It is observed experimentally that this pairwise lower bound and the one based

on linear programming turned out to consistently have the same value. However,

the mathematical proof of a conjectured equivalence is still under investigation.

5.4 Extension to Weighted Cluster Ensemble Tech-

niques

Cluster ensembles techniques can be extended by assigning a weight wi to each

involved partition Pi, which represents the estimated relative merit of the partitions.

For instance, in [154] four weights are considered: a) inter-cluster distance, b) intra-

cluster distance, c) mean size of clusters, and d) difference between the cluster sizes.

In order to account for the weights associated to each partition, the weighted median

partition problem can be adjusted as:

P ∗ = arg min
P∈PX

∑
Pi∈P

wi · d(P, Pi) (5.10)

78 Chapter 5. Lower Bound for Ensemble Clustering

Table 5.5. Deviation ∆′ for the weighted version of RW method

dm dvd dvi

Dataset SoD(P̃) Γw ∆′(%) SoD(P̃) Γw ∆′(%) SoD(P̃) Γw ∆′(%)

iris 0.81 0.68 16.0 0.22 0.20 9.1 2753 2356 14.4

wine 0.64 0.19 70.8 0.11 0.03 70.8 2303 677 70.6

breast 0.22 0.11 50.6 0.03 0.02 50.5 13819 6834 50.5

optic 1.12 0.64 43.0 0.36 0.19 46.0 55409 31492 42.2

soyBeanS 0.52 0.38 25.5 0.39 0.16 47.6 307 157 42.3

glass 0.85 0.47 44.7 0.30 0.13 51.9 6436 3422 42.5

haberman 0.80 0.76 4.3 0.29 0.29 1.4 24101 23303 3.3

mammo 0.17 0.17 0.0 0.04 0.04 0.0 23794 23794 0.0

yeast 1.85 1.14 38.8 1.02 0.33 66.7 511552 299571 40.8

2D2K 0.52 0.52 0.9 0.13 0.13 0.9 108495 107833 0.5

8D5K 0.52 0.48 5.8 0.24 0.16 15.0 70603 56218 11.3

The extension of the linear program lower bound Γ to deal with the weighted

cluster ensemble problem is straightforward, resulting in a lower bound Γw. It is

formulated as follows.

minimize w1 · x1 + w2 · x2 + · · ·+ wM · xM subject to

∀i, j ∈ {1, 2, . . . ,M}, i 6= j,


xi + xj ≥ d(Pi, Pj)

xi + d(Pi, Pj) ≥ xj
xj + d(Pi, Pj) ≥ xi

∀i ∈ {1, 2, . . . ,M}, xi ≥ 0

(5.11)

Many cluster ensembles methods can be easily extended to integrate such weights.

In co-occurrence based techniques such as EAC AL and RW this can be done when

computing the co-occurrence matrix. For the experiment presented here, the inter-

cluster distance is used.

For these weighted algorithms the performance measures are shown in Table 5.5,

5.7, and 5.6. Compared to the unweighted results the things have not changed much.

For the three data sets haberman, mammo, and 2D2K, SoD(P̃) again almost

reach the lower bound Γw for all three distance functions, indicating practically

no room for further improvement. In conjunction with EAC AL. The same can

be said about the data set 8D5K. In these cases the lower bound turns out to be

extremely tight. On the other hand, if the deviation is larger, one must be careful

5.4. Extension to Weighted Cluster Ensemble Techniques 79

Table 5.6. Deviation ∆′ for the weighted version of (EAC SL) method

dm dvd dvi

dataset SoD(P̃) Γw ∆′(%) SoD(P̃) Γw ∆′(%) SoD(P̃) Γw ∆′(%)

iris 0.82 0.68 0.16 0.26 0.20 0.17 3511 2356 0.24

wine 0.20 0.19 0.07 0.03 0.03 0.03 711 678 0.05

breast 0.12 0.11 0.07 0.02 0.01 0.04 7119 6834 0.04

optic 1.38 0.64 0.51 0.40 0.18 0.52 216109 31492 0.80

soyBeanS 0.39 0.38 0.02 0.16 0.16 0.01 160 158 0.01

glass 0.63 0.47 0.25 0.18 0.12 0.27 4416 3423 0.21

haberman 0.77 0.76 0.01 0.29 0.29 0.01 23754 23303 0.02

mammo 0.17 0.17 0.00 0.04 0.04 0.00 23794 23794 0.00

yeast 2.07 1.14 0.45 0.60 0.33 0.45 1485159 299571 0.80

8D5K 0.53 0.48 0.07 0.19 0.16 0.09 66239 56219 0.10

2D2K 0.51 0.51 0.00 0.13 0.13 0.00 107322 107834 0.00

Table 5.7. Deviation ∆′ for the weighted version of (EAC AL) method

dm dvd dvi

Dataset SoD(P̃) Γw ∆′(%) SoD(P̃) Γw ∆′(%) SoD(P̃) Γw ∆′(%)

iris 0.78 0.68 12.1 0.21 0.12 4.5 2599 2356 9.2

wine 0.20 0.19 7.5 0.04 0.03 5.0 723 678 6.2

breast 0.12 0.11 7.3 0.02 0.02 3.8 7119 6834 4.0

optic 0.75 0.64 14.7 0.21 0.19 9.7 36742 31492 13.9

soyBeanS 0.39 0.38 2.2 0.16 0.16 1.4 160 158 1.2

glass 0.52 0.47 10.5 0.14 0.12 9.6 3996 3423 12.5

haberman 0.77 0.76 1.5 0.29 0.29 0.8 23754 23303 1.9

mammo 0.17 0.17 0.0 0.04 0.04 0.0 23794 23794 0.0

yeast 1.40 1.14 18.4 0.38 0.33 13.2 353189 299571 15.0

2D2K 0.52 0.52 0.0 0.13 0.13 0.0 107322 107834 0.0

8D5K 0.49 0.48 1.3 0.16 0.16 1.6 56825 56218 1.0

in making any claims. Also here, the deviation can be seen as a hint for continuing

optimization.

80 Chapter 5. Lower Bound for Ensemble Clustering

5.5 Conclusions

This chapter presented a study of the lower bound Γ using eleven data sets. It could

be shown:

• In some cases this lower bound can (almost) be reached by the computed

solution. This tightness implies that there exists no more room for further

improvement for this particular data set (with respect to the used distance

function). Larger deviation may indicate some, although uncertain, potential

of improvement and thus serves as a hint for continuing optimization.

• The same observation can be made also for weighted version of cluster ensemble

methods.

• The tightness of Γ can be even demonstrated in case of Merkin distance dm by

comparing with another lower bound, which is derived from the special nature

of dm.

Based on these facts the lower bound Γ (and Γm are considered in case of dm) as

means of exploring the performance limit of cluster ensemble techniques.

The lower bound defined in [79] presumes a metric distance function d(·, ·). The

triangle inequality of a metric excludes cases in which d(P,R) and d(R,Q) are both

small, but d(P,Q) is very large. In practice, however, there may exist distance

functions which do not satisfy the triangle inequality. The work [47] extends the

concept of metrics to a relaxed triangle inequality. Instead of the strict triangle

inequality, the relation:

d(P,R) + d(R,Q) ≥ d(P,Q)

1 + ε
(5.12)

is required, where ε is a small nonnegative constant. This is also called quasi-metric

in mathematics [71]. As long as ε is not very large, the relaxed triangle inequality still

retains the human intuition of similarity. Note that the strict triangle inequality is

a special case with ε = 0. The lower bound Γ can be easily extended to quasi-metric

distance functions by changing the inequalities in the linear program accordingly.

This extended lower bound can be expected to be useful in working with cluster

ensemble methods based on quasi-metrics.

Since the lower bound is computed based on the ensemble available these ques-

tions remains: If the result obtained by a given consensus function succeeds in

5.5. Conclusions 81

approximating the lower bound computed this is indeed a good solution? and sim-

ilarly: If the result obtained by a given consensus function fails in approximating

the lower bound it is correct to assume that the consensus function used is not a

good choice?

In fact, what the comparison against the lower bound proposed tells is that for

a given consensus function and for the provided ensemble those conditions holds.

Different ensemble generation schemes such as the ones proposed in Chapter 3 will

have a direct impact in the lower bound, being in fact different for each ensemble.

Similarly, the consensus partition possible to be obtained will also be dependant of

the ensemble of partitions provided. Considering the case in which no ground-truth

is provided and no knowledge about the data distribution is available, one can only

hope to estimate the accuracy of the consensus partition produced. This is exactly

what the lower bound proposed provides, a means of access the quality of the result

obtained in respect to the ensemble provided and the consensus partition adopted.

82 Chapter 5. Lower Bound for Ensemble Clustering

Chapter 6

Image Segmentation Combination

via Ensemble Clustering

Image segmentation is the first step and also, one of the most critical tasks in image

analysis. In order to deal with the great variability of features encountered in dif-

ferent images, specific segmentation methods have been designed for different types

of images. Examples are, medical [143], range [73], and outdoor images [151, 152]

among many others. Considering a single image type, as e.g., outdoor images pre-

sented in Figure 6.1, a myriad of algorithms is available. In this case, the original

image (A) is segmented using (B) Munford & Shah [121] by its Megawave [60] im-

plementation and (C) Gradient Network [152]. It is easy to see that little agreement

between the two segmentation methods, regarding the number of regions and its

delimitations.

Figure 6.1. Image results for different segmentation algorithms

Many image segmentation methods also require parameters to be selected in

order to achieve a good final segmentation result. Usually, supervised parameter

learning is used to estimate a fixed parameter setting [151].

83

84 Chapter 6. Image Segmentation Combination via Ensemble Clustering

Recently, a new direction in image segmentation was taken. Instead of select-

ing one optimal parameter setting, it is proposed to combine several different seg-

mentations, produced using different parameter settings, or different segmentation

algorithms, into final consensus segmentation. This approach is known as image

segmentation combination1.

Initial efforts in image segmentation combination [3, 25, 51, 82, 87, 108] consider

an image segmentation as a clustering of pixels. They apply standard ensemble clus-

tering algorithms for segmentation combination. Each algorithm proposes the use

of a different consensus function. More specifically, the methods proposed in [140]

regarding graph-based ensemble clustering are used in [25, 87, 108] as consensus

function. The differential factor between the referred methods is the ensemble gen-

eration step, in which K-Means with random cluster centroids, probabilistic sam-

pling to generate fast segmentation and spectral clustering with random selected

kernel values are the methods of choice, respectively. Jiang et al. [82] proposed the

use of self-organizing maps (SOM) based segmentation [81] algorithm for ensemble

generation. The segmentations in the ensemble are generated using a different SOM

with parameters such as, learning rate and distance threshold assuming different

values. However, the combination step is also done via graph-based consensus func-

tions [140]. Another segmentation combination method [25] is given in the context

of video shot detection method. It uses as consensus function the CSPA algo-

rithm [140]. In this method texture information is considered as another constraint

on scale-invariant feature transformation. Voting schemes based consensus function,

Fischer and Buhmann [51] uses bagging [22] technique with path-based clustering

to address the robustness issue. This method requires a direct relabeling in order to

achieve a consensus segmentation. All possible relabeling permutations (K! in which

K is the number of clusters) are produced and the one which maximizes the sum over

the empirical cluster assignment probabilities from the previous mapping is selected

as the new mapping configuration. This method presents a serious drawback since

the computation of it for larger K values is non-practical. Finally, Aljahdali et al. [3]

also proposed a method based on voting schemes. The main difference between it

and the last approach is that, it uses different classifiers to generate the ensemble of

segmentations.

Other methods specifically designed to deal with the image segmentation combi-

nation [174, 177] can be found in the literature. They take into account details such

1In some papers, the terms image fusion and image merging are used. In this text the use

the term image segmentation combination is preferred since the other terms can also appear in

different contexts.

85

the size of the datasets (that can be a constraining factor for many combination

approaches), and well as structured pattern’s lattice. In these works, ensemble clus-

tering methods are mostly used in combination with other heuristics. Quantitative

experimental results are not provided or limited.

Wattuya et al. [162] proposed a new image segmentation combination approach.

It uses a consensus function based on random walker to infer the final consensual

partition. This work presents a remarkably detailed evaluation in which concepts as

ensemble variability and accuracy are addressed in details. The biggest advantage

of this method in relation the others discussed earlier is that it proposes an inter-

esting way to address the problem of dataset dimensionality, the usage of multiple

segmentation algorithms for the generation of the ensemble, and the proposition of

an entirely new consensus function.

This chapter builds on the previously cited works and provides a broad exper-

imental study in order to explore the capabilities of ensemble clustering methods

applied to the context of image segmentation combination. As it was discussed be-

fore, different image segmentation combination methods present as general rule a

different ensemble generation scheme, ranging from very simple as proposed in [25]

to other very complex [162]. The final consensual image is usually achieved by

means of a standard consensus function. The main contribution of the approach

hereby proposed consists of applying and comparing a broad variety of widely used

ensemble clustering methods to the image combination problem. Additionally, a

comparison is presented with the supervised parameter learning approach. It shows

that comparable or even superior results are received without knowing ground-truth.

In order to make image datasets possible to be proceeded by such general cluster-

ing combination methods, some pre- and post-processing steps are required. This

chapter proposes a way of doing so in a standard manner. The framework proposed

allows the usage of virtually any consensus function to address the problem of image

segmentation combination.

86 Chapter 6. Image Segmentation Combination via Ensemble Clustering

6.1 Framework for Image Segmentation Combi-

nation

Figure 6.2. Processing pipeline for image segmentation combination using ensemble clus-

tering methods

In order to use any existing combination method to deal with image segmentation

combination, the processing pipeline in Figure 6.2 is proposed.

• Produce M segmentations I = {S1, · · · , SM} of an image by varying parame-

ters or using different segmentation algorithms;

• Generate super-pixels and eliminate small super-pixels to further reduce the

number of patterns;

• Compute cluster ensemble P by using the super-pixels produced;

• Apply any general clustering combination method to P and receive a consensus

clustering P ∗;

• Post-processing step: P ∗ is transformed into a consensus segmentation S∗.

6.1. Framework for Image Segmentation Combination 87

The M segmentations can be generated using any segmentation algorithm. In

this thesis three segmentation algorithms are used. Different segmentations over the

same image are achieved by varying the required parameters within a specified range.

The remainder of this section reviews in detail the steps composing the framework

above.

Pre-processing of the Image Segmentation Ensemble

Image datasets are known to contain a large number of objects (pixels). For

instance, a common 640480 image contains 307200 pixels. For the purpose of image

segmentation combination, this number is further enlarged by the number of the

segmentation samples in the ensemble, leading to a considerable workload. Any

useful combination method requires some sort of diminishment in the number of

objects to be processed.

This framework proposes a pre-processing step motivated by the fact that neigh-

boring pixels, which are equally labeled in all segmentations, do not have to be

clustered individually by the ensemble clustering algorithm. It suffices to com-

pute a representative object called super-pixel for each such group of pixels (image

segment). This method was originally proposed in the context of image segmenta-

tion [136].

It is important to notice that the pixel-grid is not a natural representation of

visual scenes. It is rather a representative imposition of the digital imaging process.

A more natural and, possibly efficient way to represent images is to work with

perceptually meaningful entities obtained from a low-level grouping process. For

example, normalized cuts [129] can be supplied in order to partition an image into, N

segments. This process is called super-pixel representation. It has many advantages:

• Computationally efficiency: By reducing the image complexity from hun-

dreds of thousands of pixels to potentially only a few hundred super-pixels;

• Representationally efficiency: By using pairwise constraints between units,

while only for adjacent pixels on the pixel-grid, can model much longer-range

interactions between super-pixels;

• Perceptually meaningfulness: Each super-pixel is a perceptually consistent

unit, i.e. all pixels in a super-pixel are most likely uniform in color and texture;

• Near-completeness: Super-pixels are results of an over-segmentation. There-

fore, they tend to conserve most structures in the image. There is very little

loss in moving from the pixel-grid to the super-pixel map.

88 Chapter 6. Image Segmentation Combination via Ensemble Clustering

The aim of super-pixel algorithms is to divide the pixels of the image into non-

overlapping subsets of pixels (super-pixels) such that pixels in each super pixel are

equally labeled. Figure 6.3 exemplify graphically the effect of computing the super-

pixels of a synthetic image. Pictures (A), (B) and (C) represent three different image

segmentations. Pictures (D), (E) and (F) the corresponding super-pixels. Colors are

used to represent the produced super-pixels. Note that there are two large regions

(white and green in the original image segmentation at the first row). Those regions

are the same in all three segmentations. Consequently, they all are mapped to the

same super-pixel (yellow and brown regions in row two). Intuitively, a new pixel can

be represented into an existing super-pixel if and only if it shares the same label of

the super-pixel among the different segmentations.

Figure 6.3. Example of super-pixel computation for synthetic image

Algorithm 6.2 has O(MN) complexity for computing the super-pixels of an en-

semble of segmentations. It receives as input a set I of image segmentations and

returns a set Sp of super-pixels. There is one-to-one correspondence between ele-

ments of I and Sp. Initially, all image pixels are unassigned. The algorithm follows

by picking a pixel at random. This pixel is used to create a new super-pixel, initially

containing only this pixel. In the next step, the next unassigned pixel is selected as

the reference pixel and it is assigned to the current super-pixel. Afterwards, the iden-

tification of the pixel’s neighborhood takes place. Since images have a well behaved

lattice, it is fairly quick to identify such neighborhood. 4- and 8-neighborhoods are

viable options. The algorithm follows iterating over all neighboring pixels. A test

is executed to verify if the reference pixel and the current neighbor pixel share the

same label among all segmentations. If the answer is affirmative, the current neigh-

bor pixel is assigned to the current super-pixel, otherwise, it continues by testing the

6.1. Framework for Image Segmentation Combination 89

Algorithm 6.2 Algorithm for computation of the super-pixels

Input: an ensemble I of image segmentations

Output: a set Sp of super-pixels

1. Proceed until all pixels in I are assigned to a super-pixel

2. select the next pixel pu still unassigned to any super-pixel

3. create a new super-pixel spl containing initially only pu

4. While there are unassigned pixels in spl

5. select next unassigned pixel pi ∈ spl
6. assign pi to the current super-pixel

7. ∀ pj ∈ neighborhood ηp of pi

8. if L(pu) = L(pj), ∀ Si ∈ I
9. spl ← spl ∪ {pj}
10. end

11. end

12. end

13. end

remaining neighbor pixels. Once all pixels in the current super-pixel are processed,

another unassigned pixel is selected and a new super-pixel is created. The process

continues until there are no more unassigned pixels.

Clustering Ensemble via Super-pixels

Once the set of super-pixels Sp is available, the set P can be easily computed

by listing the labels of each super-pixel. A common representation of P is to create

an ensemble matrix CEN×M in which rows index individual patterns and columns

individual partitions. The size of objects in P is at least the maximum number of

segments in the original segmentations Si ∈ I and at most the number of pixels in

the image, which is very unlikely.

Ensemble Combination

The next framework step refers to the actual application of consensus functions

to combine P into a final consensual partition P ∗. The experiments presented in

this chapter, evaluated eleven consensus functions, namely BoK, BOEM , WPCK,

CSPA, HGPA, MCLA, QMI, RW , SDP , EAC AL and EAC SL. These con-

sensus functions are described in Chapter 3.

90 Chapter 6. Image Segmentation Combination via Ensemble Clustering

Post Processing

After applying a general clustering combination method to P a consensus clus-

tering P ∗ is received. Using the same method to compute super-pixels, P ∗ is trans-

formed into a consensus segmentation S∗. Because of the processing that eliminates

small super pixels before computing P, there are some unlabeled pixels. These pixels

are merged to the neighboring region with the smallest color difference.

6.2 Experimental Results

This section describes the datasets used to evaluate the framework proposed. The

experiments and evaluation measures are also detailed.

6.2.1 Datasets

The color images from the Berkeley dataset [112] are used by the experiments. This

database is widely used for image segmentation evaluation and it is composed of 300

natural images of size 481×321. To evaluate each image in the dataset, 3 state-of-art

image segmentation algorithms are used to generate 3 ensembles, TBES, UCM and

TBES&UCM ensembles. Each ensemble is composed of 10 segmentations obtained

by varying the parameter values of the segmentation algorithms used to generate the

ensemble. TBES ensembles are generated with the TBES algorithm [137], which

is based on the MDL-principle and has as parameter the quantization level (ε). This

parameter is varied for the following values: ε = 40, 70, 100, 130, · · · , 310 to obtain

the 10 to obtain the 10 segmentations in the ensemble. Furthermore, UCM en-

sembles are generated with an image segmentation algorithms based on ultra-metric

contour map (UCM) [4]. Its only parameter is the threshold l. The values of choice

are l = 0.03, 0.11, 0.19, 0.27, 0.35, 0.43, 0.50, 0.58, 0.66, 0.74. Finally, TBES&UCM

ensembles are generated by using two different segmentation algorithms: TBES and

UCM . Five segmentations are obtained with TBES (ε = 40, 100, 160, 220, 280) and

the others with UCM (l = 0.03, 0.19, 0.35, 0.50, 0.66).

6.2. Experimental Results 91

6.2.2 Combination by Ensemble Clustering vs Supervised

Learning

Considering the parameter selection problem in image segmentation, it is desirable to

provide a general insight into the capability of general ensemble clustering methods.

It is equally desirable to explore how well general consensus functions perform in

the context of segmentation combination. For this reason, the process proceeds as

follows.

Combination by ensemble clustering: the pre-processing step described in the

last section is applied to each ensemble. Some ensemble clustering algorithms have

a parameter K, which specifies the number of regions in the consensus result. This

is the case for CSPA, HGPA, MCLA, EAC SL, EAC AL and SDP . Thus, for

these algorithms for each ensemble K is set equal to the average number of regions of

the images of the ensemble. The other algorithms BoK, BOEM , RW and WPCK

do not need any parameter specification. In the experiments, it was also used RW

and WPCK with a fixed K value (denoted by RWfixed and WPCKfixed) for

comparison purposes.

Supervised parameter learning: In order to gain further insight into the power

of the framework we decided to apply supervised parameter learning to the same

datasets. Therefore, to each dataset we compute the average performance measure

over all 300 images of Berkeley dataset to each parameter setting. The parameter

setting with the largest value is selected as the optimal fixed parameter setting for

the corresponding dataset. By these means it is provided a quantitative comparison

with the proposed approach.

6.2.3 Evaluation of Segmentations

In the experiments, the obtained results are compared to the human segmentations

(ground-truth) of each image. Four well-known measures are used to evaluate the

algorithm results: Normalized Mutual Information (NMI) [140], Variation of Infor-

mation (VI) [114], Rand Index (RI) [128] and F-measure [112].

NMI, RI and F-measure are similarity measures that take values within the range

[0, 1], which 1 means a perfect correspondence between the segmentation and the

ground-truth. On the other hand, VI is a dissimilarity measure that takes values in

[0,+∞], and 0 means a perfect correspondence between segmentations. In order to

show experimental results in a homogeneous way we present a dissimilarity version of

92 Chapter 6. Image Segmentation Combination via Ensemble Clustering

the measures NMI, RI and F-measure. Therefore, the values 1−SM are computed,

which SM represents NMI, RI and F-measure respectively, whereas lower measure

values mean better correspondence.

6.2.4 Ensemble Segmentation Results

Figure 6.4 shows some ensemble clustering results for free and fixed K. For the

case in which K is fixed, the ensemble clustering algorithms EAC AL, SDP and

WPCK perform similar (Figure 6.4 2 h - j) as it can also be seen by analyzing the

performance values in Table 6.1. However, for free K the results may be very differ-

ent (Figure 6.4 c - e) which is not surprising. In both cases the input segmentations

are nicely combined. Based on the experiments presented, it is possible to conclude

that, satisfying segmentation results may be achieved by using ensemble clustering

methods (e.g. EAC AL). The parameter selection problem can be solved to a cer-

tain degree. In this sense our benchmark pointed out some landmarks concerning

the combination of segmentations and may be the base for future research.

The Berkeley database provides for every image several ground-truth segmenta-

tions. Because pairwise ground-truth segmentations for the same image can differ

for the experiment, it is decided to handle this problem by evaluating the results us-

ing two different strategies in order to get objective results. First, the ground-truth

image which yields the maximum performance value (denoted as ”best GT”) is re-

ported. Secondly, the average (over all) performance values received from different

ground-truths (”all GT”) is presented.

Table 6.3 shows the ensemble clustering results for fixed parameter K.

Table 6.1 shows the results for algorithms with free parameter K. Ensemble

clustering algorithms are applied to each dataset and performance of the consensus

segmentation is evaluated by taking for each segmentation the ground-truth image

which yields the maximum performance value (“best GT = best”) and by averaging

over all ground-truth images (“all GT = all”). Lower values are better. For NMI

WPCK outperforms the other ensemble clustering algorithms on all datasets and for

VI, RW is the best for two datasets. For RI and F-measure WPCK is best, whereas

the less complex algorithm BoK only for VI yields very good results. Considering

the results for fixed K in Table 6.3 it is observed that there is no considerable vari-

ability among NMI, RI and F-measure. If NMI, RI and F-measure are considered

three algorithms outperform the others slightly: EAC AL, SDP and WPCK. In

contrast, for VI EAC SL and MCLA yield slightly better results. It is hard to judge

why VI prefers these algorithms. Apart from its desirable properties the relevance of

6.2. Experimental Results 93

Figure 6.4. Segmentation results for free K (c-e), and for fixed K (h-j)

VI for image segmentation is unclear and has to be further explored. For two meth-

ods (RW and WPCK) the results for fixed and free parameter K can be directly

compared. In both cases the results for fixed K are better than the results for free

K. However, it must be emphasized that in some situations heuristics for fixing K

are insufficient and methods which adaptively select K are preferred. The results for

supervised parameter learning are shown in Table 6.2. Considering the results for

fixed K, for the TBES and TBES&UCM dataset many ensemble clustering meth-

ods yield results close to those received by parameter learning. This is especially

the case for EAC AL, SDP and WPCKfixed. For NMI even better results are

received for EAC AL (TBES&UCM dataset). These results give raise to the as-

sumption that good segmentation results may be received by using general ensemble

clustering methods like EAC AL, SDP or WPCK without knowing ground-truth.

In this context it must be emphasized that in many application scenarios supervised

learning is not applicable because ground-truth is not available. Thus, ensemble

94 Chapter 6. Image Segmentation Combination via Ensemble Clustering

Table 6.1. Ensemble clustering results for free parameter K

NMI VI RI F-meas.

Dataset Method best all best all best all best all

FH BoK 0.41 0.47 1.76 2.05 0.19 0.24 0.51 0.58

ensembles BOEM 0.37 0.43 2.05 2.30 0.15 0.22 0.51 0.58

RW 0.37 0.43 1.70 1.97 0.16 0.22 0.50 0.57

WPCK 0.36 0.42 2.12 2.34 0.15 0.21 0.51 0.58

Learning 0.35 0.41 1.58 1.87 0.15 0.21 0.47 0.54

TBES BoK 0.41 0.48 1.34 1.73 0.21 0.28 0.66 0.63

ensembles BOEM 0.35 0.42 1.52 1.82 0.16 0.22 0.45 0.52

RW 0.49 0.55 1.57 1.97 0.28 0.34 0.58 0.64

WPCK 0.32 0.29 1.58 1.85 0.15 0.22 0.42 0.49

Learning 0.31 0.37 1.34 1.69 0.14 0.20 0.40 0.47

TBES BoK 0.51 0.56 1.34 1.77 0.29 0.37 0.56 0.63

& UCM BOEM 0.38 0.45 1.58 1.86 0.20 0.25 0.45 0.52

ensembles RW 0.42 0.48 1.32 1.68 0.21 0.28 0.50 0.57

WPCK 0.31 0.37 1.66 1.92 0.14 0.20 0.40 0.47

Learning 0.29 0.36 1.29 1.62 0.13 0.18 0.23 0.41

clustering methods are preferred in scenarios where parameters of segmentation al-

gorithms are unknown. To further illustrate the capability of the methods to each

dataset the average ensemble performance AEP is determined which reflects the

average quality of the image segmentation ensembles. The AEP is determined by

computing the average performance value to each ensemble in a dataset and then,

averaging over all these values (Table 6.2) in which lower values are better. Here we

only note that e.g. for the TBES&UCM ensembles nearby all ensemble clustering

algorithms yield better performance values than the average ensemble performance.

Table 6.2. Performance evaluation of supervised learning and average performance of

ensembles

NMI VI RI F-meas.

Dataset Method best all best all best all best all

Supervised TBES 0.31 0.37 1.34 1.69 0.14 0.20 0.40 0.47

learning UCM 0.28 0.35 1.29 1.61 0.11 0.18 0.32 0.41

TBES&UCM 0.29 0.36 1.29 1.62 0.13 0.19 0.33 0.42

Average TBES 0.34 0.41 1.53 1.83 0.16 0.22 0.44 0.51

ensemble UCM 0.36 0.42 1.88 2.25 0.17 0.24 0.42 0.51

performance TBES&UCM 0.35 0.42 1.53 1.87 0.17 0.24 0.43 0.51

6.2. Experimental Results 95

Table 6.3. Ensemble clustering results for fixed parameter K

NMI VI RI F-meas.

Dataset Method best all best all best all best all

FH CSPA 0.36 0.42 2.28 2.51 0.15 0.32 0.52 0.59

ensembles EAC SL 0.45 0.51 1.79 2.08 0.24 0.29 0.51 0.58

EAC AL 0.36 0.42 1.94 2.17 0.15 0.21 0.51 0.58

HGPA 0.40 0.46 2.63 2.85 0.18 0.25 0.55 0.63

MCLA 0.36 0.42 1.88 2.13 0.14 0.21 0.50 0.57

RWfixed 0.35 0.41 1.81 2.06 0.15 0.21 0.49 0.56

SDP 0.36 0.42 2.22 2.45 0.15 0.22 0.51 0.59

WPCKfixed 0.35 0.41 1.93 2.16 0.14 0.21 0.49 0.57

Learning 0.35 0.41 1.58 1.87 0.15 0.21 0.47 0.54

TBES CSPA 0.33 0.39 1.75 1.99 0.14 0.21 0.42 0.49

ensembles EAC SL 0.33 0.39 1.43 1.71 0.16 0.21 0.42 0.49

EAC AL 0.32 0.39 1.51 1.78 0.15 0.21 0.41 0.48

HGPA 0.32 0.38 1.75 1.98 0.14 0.21 0.42 0.49

MCLA 0.34 0.41 1.47 1.77 0.16 0.22 0.44 0.51

RWfixed 0.41 0.47 1.82 2.08 0.22 0.28 0.49 0.55

SDP 0.32 0.38 1.91 2.16 0.14 0.21 0.41 0.48

WPCKfixed 0.32 0.39 1.53 1.80 0.15 0.20 0.41 0.48

Learning 0.31 0.37 1.34 1.69 0.14 0.20 0.40 0.47

TBES CSPA 0.32 0.38 2.14 2.42 0.14 0.22 0.61 0.48

& UCM EAC SL 0.29 0.36 1.46 1.74 0.13 0.19 0.35 0.43

ensembles EAC AL 0.28 0.35 1.59 1.86 0.12 0.19 0.35 0.43

HGPA 0.34 0.40 2.27 2.56 0.15 0.22 0.43 0.51

MCLA 0.34 0.40 1.41 1.71 0.17 0.22 0.57 0.49

RWfixed 0.30 0.36 1.69 1.97 0.13 0.20 0.37 0.45

SDP 0.29 0.36 1.72 2.00 0.13 0.19 0.37 0.45

WPCKfixed 0.30 0.36 1.66 1.93 0.13 0.20 0.38 0.45

Learning 0.29 0.36 1.29 1.62 0.13 0.19 0.33 0.42

96 Chapter 6. Image Segmentation Combination via Ensemble Clustering

Part II

A New Consensus Function for

Ensemble Clustering

97

Chapter 7

Sum of Pairwise Distances

Finding the median representative of a set of objects is a task of great importance.

Its value is mainly given by the fact that a median of a set is usually a good way to

represent the data as a single instance. To compute the median of numbers one can

simply rely on the widely known statistical tools. However, to compute the median

of complex object sets such as graphs [48, 72, 78], strings [103], images [1, 162] and

volumes [2] more sophisticated methods are required.

A widely used method to address the problem of finding the median of objects is

given by the generalized median formulation presented in Chapter 2. It was shown

that the median value possible to be obtained by the generalized median is com-

putationally intractable for many reasonable distance functions. Consequently, any

method based on this formulation uses an heuristic to reach a suboptimal solution.

By investigating different ways to reach the set’s representative with the hope

that better minima could be obtained, the sum of pairwise distances - SoPD was

born. In this context, the idea of minimizing the distance between pairs of objects

is considered. By initially finding a pairing of objects and minimizing specifically

such dissimilarities it is expected to reach a more robust heuristic to solve the

problem of finding a median object, especially in cases where the objects variability

is accentuated.

This chapter introduces a new formulation for the problem of finding the median

of objects. Section 1 discusses the motivational idea behind the SoPD. Afterwards,

the problem is mathematically formulated. The implementation aspects of SoPD

are the subject of Section 2. The steps of initial object selection, weights compu-

tation, computation of most dissimilar pairs or objects and the optimization of the

cost function are presented. Section 3 presents the requirements to apply SoPD in

99

100 Chapter 7. Sum of Pairwise Distances

the context of ensemble clustering. Two consensus functions are presented and the

implementation aspects properly described. Section 4 proposes a cluster validity

index based on SoPD. In Section 5, an experimental comparison between SoPD

and other well known consensus functions is presented. This chapter ends in Section

6 with a discussion and final remarks

7.1 Definition

The diagram presented in Figure 7.1 helps to motivate the SoPD idea. It depicts

a set comprised of eight points (blue dots), a representative point obtained by the

generalized median (green dot) and the true median value (red dot) in a given vector

space P .

Figure 7.1. Optimal example to compute the median partition

Consider the example given in Figure 7.1. From a geometrical point of view

in an Euclidian space, it is easily seen that in this optimal situation, the median

object P ∗ is located in the exact intersection point between the opposite points

{(P1, P5), (P2, P6), (P3, P7), (P4, P8)}.

Unfortunately, one cannot expect to find such perfect conditions in dealing with

real problems. Situations such as the one presented in Figure 7.2 are more likely

to occur. In cases such as this, the set of objects simply do not have enough infor-

mation to allow an extrapolation close to the optimal solution based solely on the

identification of the intersection point.

7.1. Definition 101

Figure 7.2. More realistic example of real object’s distributions found in real-life problems

The idea hereby introduced proposes to find the pairs of objects that are most

likely to be the opposite of each other (most dissimilar). Subsequently, a cost func-

tion based on such pairs is minimized.

SoPD is based on the idea that opposite or most dissimilar objects should be

located opposite to each other. Therefore the mid-distance between the objects

would be most likely the location of the median result. Of course in real applications

these conditions are rarely met. Therefore, provided the list of dissimilar pairs is

known, this condition could be relaxed to meet the triangle inequality.

Figure 7.3. Triangle inequality applied to the pairwise distance between partitions

Figure 7.3 shows how the midpoint situation could be relaxed to satisfy the

triangle inequality. In the optimal case (B) the sum of the two smaller sides of

the triangle would be equal to the size of the larger side (d(P1, P3) = d(P1, P
∗) +

d(P ∗, P2)). However, in the real case (A), a new measure of distance needs to be

defined in order to properly assess this new condition.

The sum of pairwise distances method can be formally defined as follows. Let

P = {P1, P2, . . . , PM} be a set of M objects. The set of all possible objects is denoted

by PX (P ⊂ PX). d(p, q) is a distance function defined between any given objects

ξ, % ∈ PX . Additionally, it is required of d(., .) to be a metric for reasons that will

102 Chapter 7. Sum of Pairwise Distances

become clear later. The input set P can be partitioned into M/2 pairs. And there

are M !

2
M
2 ·(M

2)!
possible such partitions. Let Φ be the set of all such partitions. The

elements ϕ ∈ Φ are given by:

ϕ = {(ξ1, %2), (ξ3, %4), · · · , (ξM−1, %M)} (7.1)

The set ϕ has φ = b|P|/2c pairs and b·c is the floor function representing the

integer part of the number. The number of elements in P is required to be even,

since the method requires P to be partitioned into pairs. Cases where the number

of elements M in P is odd can be handled similarly to the solution proposed in [78].

The goal of the the sum of pairwise distance method is to find an object P ∗ ∈ PX ,

which optimally represents the set of objects P.

(P ∗, ϕ∗) = arg min
P̃∈PX ,ϕ∈Φ

∑
(ξ,%)∈ϕ

∣∣∣d(ξ, %)− d(ξ, P̃)− d(P̃ , %)
∣∣∣ (7.2)

Equation (7.2) presents a very complex problem since there are two variables

to be optimized, namely, the median object and ϕ∗ (set of pairs of objects). The

complexity is straightened by the fact that the search space for these two variables is

considerably large. Expectation maximization (EM) algorithm is suitable for solving

this problem.

The next section presents a detailed definition of the SoPD by addressing in

details all of its steps.

7.2 Computational Method

The computation of SoPD requires various steps. The most intuitive implemen-

tation of it uses the traditional EM algorithm. This is the model followed by the

optimization algorithms presented in this chapter. This section starts with schemat-

ics for the SoPD model and follows by addressing all its computational steps.

Figure 7.4 depicts the general steps for the SoPD method. The set of objects

(P) is used to infer an initial median value P̃ . Both P̃ and P are then used to

find the pairings of most dissimilar objects. Afterwards, the cost function SoPD

is minimized producing a new candidate solution P ′. It is evaluated regarding its

fitness as final solution. If it is deemed acceptable, it will be promoted as the

approximated solution P ∗ and the procedure stops returning P ′ as result. However,

7.2. Computational Method 103

if the stop criterion is not satisfied, the process will be retrofitted and a new pairing

of most dissimilar objects will be produced starting the process all over again.

Figure 7.4. Fluxogram for the computation of SoPD

The following subsections discuss systematically the aspect of each step of the

SoPD method.

7.2.1 Initial Candidate Solution

Similarly to the generalized median, the sum of pairwise distances cost function

originally given by Equation (7.2) is a computationally intense problem, requiring a

suboptimal solution to be considered. Most optimization methods work under the

assumption an initial solution is known. This initial solution is used as a starting

point for the optimization method. SoPD is no different. It requires an initial

partition P̃ in order to compute the set ϕ of most dissimilar pairs of objects.

In the experiments performed later on this chapter, it is observed that an initial

good candidate partition will have a positive impact in the overall process. Addi-

tionally, it induces a quicker convergence compared to the situation in which a bad

initial candidate is provided. A good candidate partition is expected to be one lo-

cated around the middle of the ensemble distribution (see Subsection 3.2.2 to review

104 Chapter 7. Sum of Pairwise Distances

the idea of ensemble variability). Figure 7.5 presents the results given in error rate

for 10 different initial candidate partitions over 8 UCI-Irvine datasets. The data are

organized by initial partitions (x-axis) and error rate obtained (y-axis). For this ex-

periment, the ensemble generation scheme KMclicksrandK40 07 is used. The initial

partitions are selected at random among the 40 available partitions in the ensemble.

Figure 7.5. Different initial candidate partitions

As it can be seen, for most datasets there are little impact in selecting any of the

partitions. The best attainable result will be invariably reached. For the haberman

and soybean datasets, however, this is not the case. A considerable degradation in

the final results can be observed for some initial partitions.

In the experiments presented later on this chapter, the initial partition is set

to be the result of the simple BoK consensus function (or the set median of the

ensemble).

7.2.2 Weight Computation

In order to compute the set of most dissimilar pairs of objects ϕ, a measure of

dissimilarity between objects is required. This is done by computing the pairwise

weight between all possible pairs of objects in P. This step is required in order to

provide enough background information for the maximum graph matching algorithm

described in the next subsection.

The weighting function is derived from the cost function proposed, and defined

as follows:

7.2. Computational Method 105

wξ,% =
∣∣∣d(ξ, %)− d(ξ, P̃)− d(P̃ , %)

∣∣∣ (7.3)

where wξ,% stands for the weight between the objects ξ, % ∈ P.

A matrix Mw of size M ×M is computed using Equation (7.3) for all possible

pairs of objects in P. Mw is the input needed by the next step of the SoPD method.

The distance relationships between all possible pairs of objects can be viewed as an

undirected connected graph. As it can be seen by inspecting Equation (7.3), the

weight between two objects is set to be the absolute value of the distance between

ξ and % minus the distances of ξ and % to P̃ .

The weight between two objects informs how different they are from each other

in relation to the given candidate object. It is important to notice that this has no

direct correspondence to the examples given in the introductory part of this chapter.

It is also heavily dependent on the distance function d(·, ·) used. The weighted

Equation (7.3) is envisioned to work with the Mirkin and VI metric distances (see

Chapter 2). It is also possible to use the Euclidean distance. For that, the objects

need to be remapped to an Euclidean space. This is possible via MDS as reviewed

in Chapter 3. However, a different weight function needs to be established.

7.2.3 Finding the Pairs

Before describing the method for finding the most dissimilar pairs of objects an

explanation of what is considered a ”most dissimilar pair” is in order. The objective

is to find a binary relationship between objects in the set where the sum of all their

pairwise distances/weights is maximum. Additionally, it is also desirable that the

objects in each pair to be as distant/dissimilar to each other as possible.

This can be achieved by computing the maximum graph matching, provided an

appropriate edge’s weight is available representing the relationship between vertices.

Quickly reviewing, the graph matching is defined as follows. Given a graph G =

(V , E), a matching Mt in G is a set of pairwise non-adjacent edges. This means that

no two edges share a common vertex. A vertex is matched (or saturated) if it is

incident to an edge in the matching. Otherwise the vertex is unmatched.

A maximal matching is a matching Mt of a graph G with the property that

if any edge not in Mt is added to Mt, it is no longer a matching, that is, Mt is

maximal if it is not a proper subset of any other matching in graph G. In other

words, a matching Mt of a graph G is maximal if every edge in G has a non-empty

intersection with at least one edge in Mt.

106 Chapter 7. Sum of Pairwise Distances

However, in this case the problem faced is a weighted graph. A maximum

weighted matching is defined as a perfect matching where the sum of the values

of the edges in the matching has a maximum value.

The maximum weighted matching algorithm requires as input a weighted graph.

The matrix Mw introduced in the last section is the intended input. By the end of

the process, the algorithm outputs a matching Mt that can be directly regarded as

the pairing ϕ of most dissimilar objects of P.

7.2.4 Optimization Techniques

During a traditional expectation step, in which P̃ is known (the initial guess), the set

ϕ is computed as presented in the last subsection. The maximization step computes

the SoPD as given in Equation (7.4).

SoPD(P̃ , ϕ) =
∑

(ξ,%)∈ϕ

∣∣∣d(ξ, %)− d(ξ, P̃)− d(P̃ , %)
∣∣∣ (7.4)

Theoretically, any optimization technique available could be used to minimize the

cost function proposed above. However, it must considered that after each iteration

there is the possibility that a new set of pairs of patterns needs to be recalculated,

in order to match the new P̃ . This can impose a considerable workload in the

optimization procedure. For this reason, it is proposed to update the set of pairs

only after a given distance ∆ between the SoPD value of the initial candidate

partition and the current one be surpassed. In such case, instead of always working

with the exact set of pairs matching P̃ , for a number of iterations, the minimization

function will be using a slightly imprecise set of pairs. This is however corrected

once the pairing of objects is updated. A test is made in order to decide if the set of

pairs should be updated based on ∆ and a threshold parameter. Nevertheless, the

gain in computational complexity is considerable.

This thesis implements two optimization techniques using the SoPD definition.

Best one Element Moves: this method is based on the optimization technique

proposed to solve ensemble clustering problems [67] (see Chapter 3 for more details

about this method).

Simulated Annealing: Introduced in the mid of 1970s by Scott Kirkpatrick et

al. [89] it was originally developed to better optimize the design of integrated cir-

cuit (IC) chips by simulating the actual process of annealing. It was inspired by

the process of annealing in metallurgy. This technique involves heating an alloy

7.3. SoPD Applied to Ensemble Clustering 107

and systematically cooling it in a controlled way in order to reduce its defects.

Similarly, the optimization method considers at each step a randomly selected small

neighborhood perturbation and probabilistically decides if moving the system to the

perturbed state would minimize the cost function. The probabilities are selected in

a way that the system will tend to move to states of lower energy.

The next section presents the cited optimization techniques applied to the con-

text of ensemble clustering.

7.3 SoPD Applied to Ensemble Clustering

For the purpose of presenting the SoPD applied to ensemble clustering two opti-

mization methods are selected, namely BOEM and simulated annealing. The code

for the BOEM function is given by Algorithm 7.3.

Algorithm 7.3 BOEM based SoPD ensemble clustering algorithm

Input: the ensemble P of partitions to be combined,

the initial candidate partition P̃

Output: a consensus partition P ∗

01. Repeat while minimum not found

02. Compute Mw given P̃ and P
03. Find the set ϕ via maximum graph matching given Mw

04. bestSoPD ← SoPD(P̃ , ϕ)

05. ∀ p ∈ P
06. check if the assignment of p to any cluster other than C(p) results

in SoPD(P̃ , ϕ) < bestSoPD

07. If YES

08. keep the new cluster assignment for p

09. bestSoPD ← SoPD(P̃ , ϕ)

10. Else

11. try the next possible cluster assignment for p

11. End

12. End

13. P ∗ ← P̃

Line 1 ensures that the procedure will continue until the function is deemed as

optimized. The stop criteria can be maximum number of iterations, no improve-

ment in the minimization function, etc. In Line 2 the matrix of weights Mw is

108 Chapter 7. Sum of Pairwise Distances

computed as described in Subsection 7.2.2, given as input the clustering ensemble,

an initial candidate partition, and the distance function between partitions. Line 3

is responsible for finding the pairing ϕ of most dissimilar partitions as described in

Subsection 7.2.3. The current SoPD value is computed in Line 4, using the initial

candidate partition and the pairing of partition. This is the baseline SoPD value

that will be minimized. Line 5 iterates over all patterns of the current partition.

A test is performed (Line 6) to check if the SoPD value is achieved by assigning

the current pattern to a cluster other than the on it was originally assigned (C(p)

gives the cluster of p). If the change produces a better SoPD value, the pattern

is definitively changed to the new cluster and value of bestSoPD is updated (Lines

7-9). If the change in cluster assignment fails to improve the SoPD, the algorithm

follows by trying the next possible cluster assignment for p (Lines 10 and 11). The

algorithm proceeds until all possible assignments for all possible clusters are tried.

Once the algorithm reaches this point, a test for convergence is made, indicating if

it should continue or stop returning P ∗ as consensus partition (Line 13).

The second consensus function uses the simulated annealing method. The flux-

ogram for the SoPDsa algorithm can be seen in Figure 7.6. There are two major

processes that take place originally belonging to the simulated annealing method

and two additional, introduced by the SoPD formulation. At the beginning, the

pairing based on P̃ and the corresponding SoPD is computed. This value is used

to assess if the progressively proposed candidate partitions P ′ achieve better results

than P̃ . The general simulated annealing method states that for each temperature,

a number of cycles will take place. This number can be defined as a parameter or

specified by the algorithm’s designer. As a cycle runs, the inputs are randomized.

Only randomization steps which produce a better set of inputs are retained. In

the case of ensemble clustering, the randomization can be achieved by changing the

label of a random pattern within a given label’s range.

The process responsible for finding the initial pairing of most dissimilar partitions

takes place as described in Subsection 7.2.3. It receives as input the ensemble of

partitions (P) and an initial candidate partition P̃ . The output of this process is

a pairing ϕ of most dissimilar partitions. The process continues by computing the

SoPD according to the Equation (7.4). Following the fluxogram, a test is performed

to assess if the new candidate partition is more accurate than the current one. This

test is based on the SoPD value returned by Equation (7.4). For the case in which

the value is smaller than the one computed for P̃ , the partition P ′ is attributed to

P̃ . After the specified number of training cycles is completed, the temperature is

lowered. The algorithm continues by determining whether or not the temperature

7.3. SoPD Applied to Ensemble Clustering 109

Figure 7.6. Fluxogram for the simulated annealing based SoPD consensus function

has reached the lowest temperature allowed. If the temperature is not lower than the

lowest temperature allowed, the temperature is decreased and another cycle will take

place. At this point, a new set of most dissimilar pairs of partitions is computed.

If the temperature is lower than the lowest temperature allowed, the simulated

annealing algorithm terminates by attributing P ∗ ← P̃ as consensus partition.

BOEM and SoPDsa display similar performance for all tests executed. The real

difference observed is regarding the computational time required. For experimental

purposes only the results of SoPDsa are presented.

110 Chapter 7. Sum of Pairwise Distances

7.4 SoPD Validity Index

Chapter 2 and later on Chapter 3 present a number of cluster validity indexes.

Some of them operate over the partition and a given ground-truth and others are

specifically designed to evaluate ensemble clustering methods [44, 140]. Similarly to

the last category, it is also possible to define a CVI based on the formulation proposed

in this chapter. It is named sum of pairwise distances validity index (SoPDvi). It

receives as parameter the consensus partition P ∗ to be evaluated and the pairs of

patterns (ξ, %) computed as described in Subsection 7.2.3 using as reference partition

P ∗. The Equation (7.5) shows how to compute the SoPDvi.

SoPDvi(ϕ, P
∗) =

∑
(ξ,%)∈ϕ |d(ξ, %)− d(ξ, P ∗)− d(P ∗, %)|

M/2
(7.5)

The objective of SoPD is to infer a consensus partition P ∗ presenting minimum

distance to the set of pairs of partitions. Therefore, smaller values of SoPDvi

represent better solutions degrading progressively as the value increases. The range

of the values itself will be heavily dependent on the distance function used.

Figure 7.7. SoPDvi computed using VI and Mirkin distances

Figure 7.7 shows the experimental values of SoPDvi computed for 11 UCI-Irvine

datasets. Two similarity measures are used, VI and Mirkin. The data are organized

datasets (x-axis) and SoPDvi values (y-axis). For this experiment, the ensemble

generation scheme KMclicksrandK40 07 is reported. Small values represent little

variability. As it can be seen, for some datasets such as soyBeanS, haberman,

mammoMass, and 2D2K the values are really small what can be directly translated

as poor variability in the ensemble. By inspecting the SoPDvi values for other

ensemble generation methods it was attested that different datasets will achieve

higher variability by means of different generative methods. This is the main reason

why the results regarding ensemble clustering methods presented in this thesis report

the average of the 40 ensemble generation methods described in Chapter 2.

7.5. Experimental Results 111

7.5 Experimental Results

In order to properly evaluate the results obtained with the SoPDsa consensus func-

tion a direct comparison against the random walker consensus function in both

versions with known and unknown number of target clusters is presented. The re-

sults of other well known consensus functions such as evidence accumulation, both

using single-link and average-link and the graph based methods HGPA and CSPA

are also reported. The results presented in Tables 7.1, 7.2, 7.3, and 7.4 are the

average values of 40 different ensembles (see Chapter 2 for a review of the ensemble

generation schemes) each one computed 10 times. The number of partitions in each

ensemble varies from 10 to 40. Results for percentage of errors and for the VI in-

dex are presented for each dataset evaluated. The initial partition provided to the

SoPDsa algorithm is the set median of the ensemble.

Regarding the toy datasets (Tables 7.1 and 7.2) it is possible to see that SoPDsa

scores as good as or slightly better than any other consensus function considered ex-

cept the celipsiod dataset for which the VI index of RWfix is better than SoPDsa.

However, to the error rate they both missed exactly the same (1.9%).

Table 7.1. VI index for the toy datasets

Dataset EAC SL EAC AL HGPA CSPA RW RWfix SoPDsa

8D5K 0.00 0.00 4.55 0.00 0.02 0.02 0.00

2D2K 0.27 0.27 2.00 0.32 0.27 0.27 0.27

celipsoid 1.68 1.68 1.99 1.67 1.69 1.52 1.62

twoRings 1.97 1.97 1.99 1.99 1.97 1.97 1.84

scattered 1.84 1.84 1.86 1.86 1.84 1.84 1.84

halfrings 1.14 1.14 1.97 1.29 1.14 1.14 1.14

Table 7.2. Error rates (in %) for the toy datasets

Dataset EAC SL EAC AL HGPA CSPA RW RWfix SoPDsa

8D5K 0.00 0.00 77.10 0.00 0.10 0.10 0.00

2D2K 1.90 1.90 49.40 2.30 1.90 1.90 1.90

celipsoid 27.56 27.56 49.78 27.11 28.00 26.02 27.56

twoRings 47.51 47.51 48.62 48.90 47.51 47.51 46.11

scattered 43.18 43.18 48.48 46.97 43.18 43.18 43.18

halfrings 13.75 13.75 49.81 17.84 13.75 13.75 13.75

Tables 7.3 and 7.4 present the results for the UCI-Irvine datasets in which the

overall performance of SoPDsa is better. For those datasets, some considerable

112 Chapter 7. Sum of Pairwise Distances

Table 7.3. VI index for the UCI-Irvine datasets

Dataset EAC SL EAC AL HGPA CSPA RW RWfix SoPDsa

balance 2.63 2.52 2.77 2.70 1.66 2.52 1.63

breast 0.95 0.46 1.93 1.13 0.40 0.40 0.40

control 1.36 1.48 2.41 1.31 1.30 1.60 1.23

ecoli 1.82 2.23 3.28 2.91 2.10 2.36 2.26

glass 1.90 1.99 3.08 3.38 1.33 1.27 1.31

haberman 1.28 1.28 1.83 1.83 0.83 0.91 0.87

heart 1.86 1.86 1.99 1.91 1.86 1.86 1.86

ionosphere 1.73 1.73 1.90 1.77 1.74 1.74 1.65

iris 0.73 0.49 2.15 0.54 0.13 0.17 0.13

lung 1.42 1.42 1.55 1.54 1.41 1.44 1.37

mammo 1.42 1.42 2.00 1.51 1.44 1.44 1.42

optic 2.09 1.70 3.73 1.66 0.77 0.56 0.53

parkinsons 1.25 1.25 1.80 1.74 1.25 1.25 1.25

post-op 1.96 1.98 2.45 2.47 1.72 1.94 1.89

protein 1.56 1.57 3.24 2.89 1.64 1.43 1.54

segmentation 1.82 1.82 2.34 1.74 1.97 2.05 1.82

sonar 1.94 1.95 1.99 1.97 1.96 1.94 1.87

soyBeanS 1.28 1.28 1.28 1.67 0.51 1.07 0.75

spect 1.46 1.55 1.73 1.57 1.55 1.54 1.44

spectf 1.24 1.24 1.73 1.60 1.23 1.23 1.21

taeval 2.91 2.91 3.04 2.97 2.87 2.87 2.87

tic-tac-toe 1.47 1.87 1.93 1.91 1.47 1.87 1.47

transfusion 1.38 1.40 1.79 1.76 1.40 1.40 1.40

wine 0.34 0.34 1.58 0.56 0.19 0.19 0.19

yeast 2.53 3.53 5.29 4.63 1.88 1.45 1.42

improvement can be observed in approximately 50% of the datasets, for 40% of the

datasets the results are comparable to the best cases among the other consensus

functions and for a few cases, other consensus functions scored better such as in the

case of ecoli dataset where both VI and error ratio are considerably better for the

EAC SL consensus function. The same happens to the segmentation dataset, in

which CSPA scored better, gain for both VI and error rate.

The cases in which SoPDsa scored worst or similar to other consensus functions

are investigated in details. It is possible to identify by inspecting each of the 40

ensembles that little variability in such ensembles exists. The variability assessment

is made two-fold: a) computing the Cvar index for each ensemble and by plotting the

7.5. Experimental Results 113

Table 7.4. Error rates (in %) for the UCI-Irvine datasets

Dataset EAC SL EAC AL HGPA CSPA RW RWfix SoPDsa

balance 33.28 39.68 57.28 46.08 29.60 39.68 27.48

breast 34.85 3.81 49.63 17.28 3.22 3.22 3.22

control 39.34 37.70 44.16 21.71 47.40 38.76 22.24

ecoli 34.17 44.60 64.78 58.12 40.34 46.58 43.33

glass 48.13 48.60 58.88 64.49 44.86 42.52 43.73

haberman 25.16 25.16 49.67 48.04 26.47 22.88 25.16

heart 38.28 38.28 47.65 39.16 38.30 38.30 38.27

ionosphere 30.68 30.68 42.81 33.95 31.11 31.11 28.41

iris 32.00 4.67 35.00 5.33 4.00 4.67 4.00

lung 26.94 26.30 30.46 29.54 26.76 27.13 22.63

mammo 20.72 20.72 48.19 21.69 21.08 21.08 20.72

optic 54.00 27.20 57.40 17.50 21.50 11.90 11.72

parkinsons 27.88 27.88 47.76 41.44 27.76 27.76 27.13

post-op 43.53 43.76 61.38 63.28 40.26 43.33 42.70

protein 50.69 50.75 56.40 51.81 55.00 48.06 50.69

segmentation 43.81 43.81 39.05 28.57 44.29 42.38 43.78

sonar 43.98 44.10 48.34 44.17 44.59 44.33 42.31

soyBeanS 29.79 29.79 29.79 34.04 19.15 27.66 21.28

spect 39.63 43.38 49.42 37.55 43.95 44.09 38.94

spectf 36.13 35.98 49.41 39.40 35.51 35.51 35.17

taeval 52.98 52.98 60.26 50.33 53.64 53.64 53.11

tic-tac-toe 39.62 46.54 50.00 45.59 39.60 46.54 40.76

transfusion 30.87 31.09 48.36 45.01 31.03 31.01 31.10

wine 2.81 2.81 47.75 6.18 1.69 1.69 1.62

yeast 68.40 53.30 79.18 72.37 42.25 34.64 32.47

ensembles using the technique proposed in Subsection 3.2.2. This indication that

little variability in the ensemble has a negative impact in the usage of the SoPDsa

motivated the inspection of cases such as iris or yeast datasets in which SoPDsa

is clearly superior. It is observed that such ensembles present a high Cvar value

and the partitions in the ensemble when plotted using the MDS technique are well

distributed around a central point. These facts lead to the conclusion that SoPDsa

is a good choice for cases where a good variability in the ensemble exists.

114 Chapter 7. Sum of Pairwise Distances

7.6 Discussion

This chapter presented a new method to compute the median of sets of objects. The

goal of the the sum of pairwise distance method is to find an object which optimally

represents the set of objects provided as input.

For implementation purposes, SoPD requires an initial candidate median value

P̃ . The method follows by computing the weights between all possible pairs of

objects. Different distance functions will require consequently different weighting

functions. Once the weights are computed, the set of most dissimilar pairs of objects

is computed. The method requires that the input set must have an even number of

objects. In cases in which the original number of objects is odd, various actions can

be taken. A suitable method refers to the identification of the pair of most similar

objects and the discard of one of them. Once the pairing of most dissimilar objects

is found, the method can be optimized by virtually any optimization function. The

experimental results presented shows the usefulness of SoPD.

SoPD was mainly presented within the context of ensemble clustering. This is

due to the fact that ensemble clustering is the main subject of this thesis. However,

it is believed that SoPD is a valid approach to address other applications in which

the average value needs to be computed. A possible field of application is the

computation of median graphs [78].

The median graph problem is formulated as follows. Given a set S of graphs

Gi = {V , E , µ, v} in which V is the set of vertices, E the set of edges, v and µ

mapping functions binding labels l from a given finite alphabet L for nodes and

edges. The median graph can be addressed via the median partition formulation

(see Section 2.5). The only required change is that a suitable distance function d(·, ·)
between graphs must be provided. Possible distances are the maximum common

subgraph - MCS [94] and graph edit distance [6]. Feasible implementations of it

can be given by BOEM or set median. More advanced approaches such as genetic

algorithms are given e.g. in [48] which also presents ways of efficient computation

of median graphs based on the median partition formulation. SoPD can be easily

used to replace the standard SoD commonly used in this case.

Another promising development is to operate in continuous space, namely by

means of graph embedding into vector spaces. In the literature, there is a number

of embedding approaches such as in [104, 130] which proposed graph embedding

using spectral features extracted from the graph’s adjacency matrix. In [166] the

embedding of graphs using Reimannian manifolds is investigated (see [48] for more

details about graph embedding).

7.6. Discussion 115

All those methods have in common the fact that any type of graph embedding

will require three steps:

1. Embedding to a vector space;

2. Median vector computation;

3. Re-mapping the median vector to the median graph in the graph space.

Regarding the usage of SoPD with vector space embedding, there are no restric-

tions in substituting the optimization function by one based on SoPD.

Sum of pairwise distances has proven to be a valid approach in addressing the

problem of ensemble clustering. It also seems to be a viable option in the context of

median graph computation, opening a wide range of applications. The possibility of

embedding graphs into vector spaces allows access to mathematical properties not

available in graph spaces. Additionally, the median value computation is greatly

simplified in vector spaces. However, there is the additional cost of embedding the

data to vector space and re-mapping it afterwards to the graph space, justifying

its application in cases where the computation of then median can be too costly.

Additionally, the steps of weights computation and identification of most dissimilar

pairs of objects can be greatly simplified in vector spaces.

116 Chapter 7. Sum of Pairwise Distances

Part III

Constrained Ensemble Clustering

117

Chapter 8

Constrained Clustering

The number of works related to unsupervised constrained clustering has grown dur-

ing the last few years. Recently, Basu et al. [15] compiled a book about the subject.

However, the area still lacks of a comprehensive taxonomy. Constrained clustering

is an extension of general clustering. It accommodates side information translated

as constraints aiming to improve the clustering process. It takes advantage of known

information about the data set to aid the clustering process. Partially labeled data,

expected maximum and minimum cluster size, and pairwise linkage pattern rela-

tionship are examples of information used by a constrained clustering algorithm.

Constrained clustering method can be classified by two possible criteria:

a) Based on the types of constraints used;

b) Based on the way the constraints are used by constrained clustering algorithms.

In order to simplify the understanding of the reviewed methods presented later,

this paragraph formally states the clustering problem. The task of clustering is

to assign a label L(pi) ∈ 1, · · ·, K to each pattern (i.e. data point) pi of a given

dataset S of N patterns. It assumes a known number K of possible labels and a

metrical space (S, d). Patterns with the same label Lj form the cluster Cj, which is

represented by its cluster center µj. Generally, the concept of similarity is realized

by a distance function d on the data space.

Most clustering algorithms operate with only very limited knowledge about the

data they are supposed to cluster. The minimum information available required

refers to a distance/similarity function d(·, ·) between objects in S, and some inner

structure or algorithmic structure that is able to partition the data into K classes.

119

120 Chapter 8. Constrained Clustering

Additional information possibly available regarding the problem to be solved can-

not be used by such algorithms since they are simply not designed to handle such

information. Constrained clustering allows the usage of this extra information. Con-

straints can be inferred from side knowledge by a number of ways. Taking as an

example the pairwise instance level constraints, Any such binary relation known

about the dataset can be encoded as pairwise constraints. Another example of

direct inference of constraints can be found in the field of constrained clustering

applied to image segmentation, as presented by Luo et al. [107].

The next section presents a description of each type of constraint as well as the

methods to incorporate them into clustering algorithms. It follows by addressing

the topic of constraints relevance and closes with a presentation of the concept of

transitive closure.

8.1 Types of Constraints

It is hard to define a comprehensive taxonomy of existing constrained clustering

methods. However, some common features can be identified, allowing the creation

of a systematic classification to help to organize the existing methods. There is a va-

riety of side information passive to be translated as constraints. Furthermore, many

standard clustering algorithms were already adapted in order to work in the pres-

ence of constraints. In this section, a description of the existing types of constraints

is presented.

Instance Level Constraints

In a natural way, the terms ’similarity’ and ’dissimilarity’ lead to two symmet-

rical, binary relations ∼ (similar) and � (dissimilar). Furthermore, the relation ∼
should be reflexive and transitive. Both characteristics are not valid for the relation

�. A pattern is obviously not dissimilar to itself and the transitivity of � is logically

not justified. The similarity (resp. dissimilarity) relation to the patterns p and q

is represented by a must-link (resp. cannot-link) constraint p ∼ q (resp. p � q).

A must-link (resp. cannot-link) constraint postulates the same (resp. different)

labeling for both patterns, that means:

p ∼ q ⇒ L(p) = L(q) and p � q ⇒ L(p) 6= L(q)

Constraints are represented as sets of unsorted pairs ML := {(p, q)|p ∼ q} and

CL := (p, q)|p � q. User knowledge should extend the distance-based definition of

similarity. Therefore must-links are valuable in situations in which the patterns are

8.1. Types of Constraints 121

similar but located far away (see Figure 8.1). On the other hand cannot-links are

useful to separate patterns belonging to different clusters but located close to each

other.

Cardinality Constraints

It is possible to use constraints to control the maximum and minimum number

of patterns in each cluster [17] easing the problem of creation of empty clusters and

clusters with just a few patterns. This usually occurs when the dimensionality or

the number of clusters is large.

Topological Constraints

Topological constraints dictate that the minimum/maximum distance between

patterns must not be violated in order to allow them to be collocated into the same

cluster. In [34] the constrained cop-KM is further generalized to accommodate

two new kinds of constraints, ε and δ. The ε-constraint enforces that each pair of

patterns can be classified into the same cluster if the distance between them is at

most ε. Similarly, the δ constraint enforces that two patterns found in different

clusters must be separated by a distance at least δ. These constraints can be seen

as a generalization of must-links and cannot-links. An interesting part of this work

refers to the algorithms provided to check the feasibility of the clustering problem

in the presence of different types of constraints.

Soft Constraints

It is also possible to soften the instance level constraints in order to represent

”preferences” instead of pairwise relation certainty. This variant is called soft con-

strains. In this new case, hard constraints no longer apply, since they are simply

a small subset of soft constraints. A constraint can be represented by a triple

< p1, p2, s > in which the first two parameters are the constrained patterns and s

is the strength of the constraint. It can be set to have different range of values,

although the most usual is [−1, 1]. A must-link constraint p1 ∼ p2 is equivalent to

< p1, p2, 1 >. Similarly, cannot-link constraints such as p1 � p2 is equivalent to

< p1, p2,−1 >. In [155], a soft version of K-Means is presented. It argues a simple

test of constraint violation as used by the hard constrained version of its algorithm

no longer applies. Instead, a weighted constrained violation function is proposed, in

which the strength of the violated constraints are taken into consideration. Finally,

the objective function is changed to take into consideration the intra-cluster variance

and the new constraint violation function. Soft constraints are also used within a

mixture model framework [96]. A new EM algorithm is proposed, tuned specifically

to deal with the additional soft constraint information. They also present some

122 Chapter 8. Constrained Clustering

experimental results showing that it can be superior in the presence of noise com-

pared to methods based on hard constraint. Finally, Leone et al. [97] extends the

AP - Affinity Propagation algorithm to accommodate soft constraints. The method

addresses the difficulty hard constraints have to be used with the AP algorithm

due to its strongly reliance on cluster shape regularity. The method is tested over

gene-expression data. There are no guarantees about non-violation of constraints

when a final clustering is achieved.

Fully Constrained Dataset

This type of constraints is very similar to pairwise constraints. A binary rela-

tionship indication if pairwise patterns are most likely to be in the same cluster

or in different clusters. It is usually represented by a complete graph that the

edge’s labels can have two possible values: a) + indicating the patterns are similar,

and b) − if the patterns are dissimilar. Algorithms using this kind of constrained

datasets operate strictly in maximizing the number of agreements or complementary,

minimizing the number of disagreements. Its accuracy is usually measured by the

number of constraints’ violations. Most of the works using this type of constraint

such as in [8, 39, 65] require a similarity function over the dataset in order to infer

the binary relationships. The function outputs only two values namely, similar or

dissimilar and it is used to create a complete graph of relationships of the dataset.

8.1.1 Ground Truth Based Constraints Generation

Most of the works proposing constrained clustering algorithms rely on synthetically

generated constraints, in order to evaluate its performance.

Basu et al. [14] have presented an active learning algorithm for exploring the

dataset S by a farthest-first traversal. The idea is to generate good user queries to

define constraints. This method was used to define a quality measure for constraints

in this work. Roughly speaking, the automatic constraint generation takes as input

the ground-truth and the original dataset. Constraints are generated following two

basic rules: (a) must-links with higher distances, and (b) cannot-links with lower

distances. The complete exploration of the whole dataset, in order to find the

farthest and closed distances is, however, computationally intensive. In order to

solve this problem, the algorithm explores only a portion of the dataset selected

at random. The automatic constraint generation algorithm must be fed with three

parameters. L,NML and NCL. The first parameter (L) instructs the algorithm to

pick (L%) of the data at random, the distances are computed and finally the NML
pair with higher distance and same label are picked as must-links. Similarly, the

8.1. Types of Constraints 123

Algorithm 8.4 Must-link constraints generation algorithm

Input: X : Dataset

NML: Number of desired must-link constraints

PGT : a ground-truth associated to X

Output: The set ML containing NML must-link constraints

1. compute the pairwise distance DX×X between all patterns in X

2. sort DX×X in ascending order

3. repeat until |ML| < NML

4. (a, b)← pair of patterns with maximum pairwise distance in DX×X

5. if the pair of patterns (a,b) have the same label in the ground-truth

6. ML←ML
⋃
{(a, b)}

7. end

8. remove (a, b) from DX×X

9. end

NCL with smallest distances are picked as cannot-links. This is the method later

used by this thesis in generating constraints for the constrained ensemble clustering

methods proposed in Chapter 9.

Algorithm 8.4 shows how to compute the set of must-link constraints. An initial

effort in computing the pairwise distance between all possible pairs of patterns needs

to be made. In line two the distances are sorted in ascending order to facilitate the

next steps of the algorithm comprising the identification of the pairs of patterns

farther apart. The algorithm continues by trying to identify possible must-links by

inspecting if the selected pair of patterns shares the same label in the ground-truth.

The process continues until the desired number of must-links is obtained.

The set of cannot-links can be obtained in a similar manner, simply changing

the search for maximum distance to minimum, and the test regarding the sharing of

same labels to different labels. Additionally, the constraints generation program can

be optimized by computing the sets of must and cannot-link constraints together.

Note that the automatic generation of constraints based on known ground-truth

is a valid tool commonly used in many constrained clustering papers in order to

evaluate the proposed algorithms correctness. For a discussion about used defined

constraints, it will be referred to [155] and to Chapter 11 of this thesis, where

constraints are user defined to drive the fiber segmentation process.

124 Chapter 8. Constrained Clustering

8.1.2 Constraints Relevance

Several works in the field of constrained clustering show that constraints can improve

considerably the results of a variety of clustering algorithms. However it was equally

shown that there is a large variation in this improvement, when using the same num-

ber of constraints for the same dataset. Wagstaff et al. [37, 158] have investigated

this phenomenon and introduced two indexes (informativeness and coherence) in

the attempt to provide further insight.

More intuitively speaking, it is easy to understand the problem of constraints

relevance by restricting the discussion to pairwise linkage constraints. Consider the

example given in Figure 8.1.

Figure 8.1. Examples of relevant and irrelevant constraints

Must-link constraints are relevant if they are able to relate patterns that would

not be clustered together by an unconstrained algorithm. Similarly, cannot-link con-

straints would have its usefulness maximized, if they constraint patterns that would

be collocated into the same cluster but that should not be. Simply putting, useful

must-links are expected to occur between farther patterns, and cannot-links closer

patterns. Figure 8.1 shows both examples of relevant and irrelevant constraints. The

constraints ml1, cl1 and cl3 are examples of useful constraints. The constraint ml1
constraint patterns belonging to two distinctly separated sub-clusters. Similarly, cl1
is defined between two patterns with a high probability to be picked as bellowing to

the same cluster. The usefulness of ml2 and cl2 is minimized, since there is a high

chance of the information encoded by those constraints to be irrelevant.

Ideally, a constrained clustering algorithm should be able to perform better com-

pared to its unconstrained version. Moreover, it is also expected that the overall

8.1. Types of Constraints 125

performance of the algorithm should improve with the increasing of the number of

constraints. Both assumptions unfortunately are not necessarily correct. In fact, for

cases that the constraints are considered locally such as in Wagstaff et al. [156] such

violations do occur. However, global methods such as Rothaus et al. [132] tend to

require less constraints and still show performance improvement with the increasing

number of constraints. A quantitative comparison of some constraining methods is

presented in the last section of this chapter.

8.1.3 Transitive Closure

It is very important to account for constraints consistency in generating constraints

or when a set of constraints is provided prior to its usage by any constrained clus-

tering algorithm. In cases where contradictory constraints exists, there is a good

chance of most algorithms will end up in deadlocks, or unable to satisfy the whole

set of constraints, leading to a failed partition. Therefore, there is the need to care-

fully check if any constraint is inconsistent to the whole set and to check if new

constraints can be inferred from the existing ones. In Figure 8.2, an example of

constraint inconsistency is presented. Black dots represent objects; blue lines rep-

resent must-link constraints and the red line, cannot-link constraints. There is no

valid way to accommodate those three constraints since by allocating P1, P2 and P3

into the same cluster the cannot-link constraint between P2 and P3 will be force-

fully violated. A similar situation will arise by any attempt of fulfilling two giving

constraints.

Figure 8.2. Example of invalid constraint

However, the verification of constraints consistency such as the inference of new

constraints based on the existing, it can be achieved by the computation of the

transitive closure over the sets of constraints ML and CL. The purpose of such

computation is to ensure the triangle inequality property is not violated.

In graph theory, transitive closure can be thought as constructing a data struc-

ture that makes it possible to answer reachability questions. It can be better un-

126 Chapter 8. Constrained Clustering

derstood by the examples given in Figure 8.3. Consider the following two must-link

constraints: P1 ∼ P2 and P1 � P3. Consider now that no constraint must be vio-

lated. This fact implies objects P2 and P3 must be collocated into the same cluster

as well, consequently a new constraint is inferred, P2 ∼ P3. Similarly, the P1 ∼ P2

and P1 � P3 constraints are considered. It is easy to see that P2 and P3 cannot

be put into the same cluster otherwise the P1 � P3 constraint would be violated.

Finally, in a case where the constraints P1 � P2 and P1 � P3 are given there is no

possible inference about the relationship between P2 and P3.

Figure 8.3. Inference of new constraints

The computation of the transitive closure is very important to speed up the clus-

tering process as well to ensure no deadlocks occurs, given an invalid classification

done in an early stage of the clustering process. Table 8.1 summarizes the rules for

computation of the transitive closure.

Table 8.1. Rules for computing the hard transitive closure

constraint 1 constraint 2 produce

p1 ∼ p2 p2 ∼ p3 p1 ∼ p3

p1 ∼ p2 p2 � p3 p1 � p3

p1 � p2 p2 ∼ p3 p1 � p3

p1 � p2 p2 � p3 −

The rules applied to infer new constraints based on the existing ones can also

be used to check if the constraints in the set are inconsistent. It is easy to come

up with an algorithm that checks the four rules given in Table 8.1. By finding an

inconsistent constraint, , it can be chosen simply to remove it, making the set of

constraints once again consistent.

The transitive closure computation can also be extended to deal with soft con-

straints. Table 8.2 show the extended rules.

In this case, either the maximum or minimum values can be used. However, by

realizing those binary relationships, it seems to make more sense to use the minimum

values.

8.2. Constraining Methods 127

Table 8.2. Rules for computing the soft transitive closure

constraint 1 constraint 2 produce

< p1, p2, s1 > < p1, p3, s2 > < p1, p3,min(s1, s2) >

< p1, p2,−s1 > < p1, p3, s2 > < p1, p3,−min(s1, s2) >

< p1, p2, s1 > < p1, p3,−s2 > < p1, p3,−min(s1, s2) >

< p1, p2,−s1 > < p1, p3,−s2 > −

8.2 Constraining Methods

Constrained clustering algorithms can be also evaluated based on its mechanics or

inner algorithms structure. Figure 8.4 organizes the methods in three main branches,

namely a) invasive; b) data space transformation; and c) distance transformation

methods. In this section, a short review is presented of some methods related to the

three categories.

Figure 8.4. Comprehensive taxonomy of constrained clustering methods

Invasive

Invasive methods explicitly adjust clustering algorithms so that the available

side information can be properly incorporated into the clustering framework. The

algorithms must be adapted in such a way that the problem specific constraints

take precedence over the algorithms’ build-in objective function. Before any label

assignment is made, a validation check is performed in order to access if any existing

constraint is violated. Invasive methods usually work under the assumption that the

set of constraints provided is regarded as correct classification information over the

data. Therefore, they need to be fully satisfied.

Figure 8.5 shows the general architecture of invasive constrained clustering. The

dataset and the set of constraints are provided as input. The constrained clustering

algorithm is usually a version of standard clustering algorithm adapted to validate

constraints before the label assignment step. The algorithm outputs a partition of

128 Chapter 8. Constrained Clustering

the dataset, in cases that the full set of constraints can be fulfilled or an empty set

{} otherwise.

Figure 8.5. Constrained clustering architecture

Examples of such extensions are given by the COP-COBWEB method [156],

and [157] which extends the K-Means algorithm by adding a check during the as-

signment step to test if constraints are violated. Another example is the constrained

version of hierarchical clustering [35, 36, 38]. Similarly to [157], a constraint viola-

tion test is executed before merge two clusters. Another example of invasive method

is the PC-KM [14]. This is yet an extension of the KM algorithm that focusing on

the idea that a good initialization can greatly improves the clustering performance

as shown in [13]. The algorithm starts by computing the transitive closure over the

ML and ML sets. Neighborhood sets are created and for to each set of connected

components inML. An heuristic is proposed to adapt the number of neighborhood

sets to the desired K number of target clusters. PC-KM is essentially an EM algo-

rithm. It alternates between the pattern assignment step and the computation of

the cluster centers. The process continues until a convergence criterion is reached.

In the patterns assignment step, a constraint violation value is computed. The

assignment is made based on the minimal number of constraints violated.

Data-Space Transformation

Data space transformations are characterized by a known transformation T →
X : X̃. In the new space X̃, the constrained clustering can be done with a simple

distance function d̃ (see [90]). Constrained spectral clustering (CSC) perform a

data space transformation. Giving a similarity measure between patterns a weight

matrix is computed. The general idea is to embed pairwise constraints in the spectral

formulation, usually within the weight’s matrix in order to build up a new adjusted

data space that encompasses the given constraints. More information about spectral

clustering can be found in [84]. Examples of constrained spectral clustering methods

are given in [168, 169, 178].

8.2. Constraining Methods 129

Distance Transformation

This type of constraining method relies on the idea of modify a distance mea-

sure d to accommodate a set of instance-level constraints (namely must-links and

cannot-links) in a way that the desired properties of the similarity measure are pre-

served (see [167]). Methods based on this type of constraining strategy rely heavily

on unsupervised algorithms which are able to learn implicitly metrics that take the

input dataset and find an embedding of it in some space. Examples of such algo-

rithms are the Locally Linear Embedding (LLE) [133] and multidimensional scaling

(MDS) [30].

Examples of constrained clustering using distance transformation can be found

in [27] that KL divergence, adapted using gradient descent, and Mahalanobis dis-

tances, trained using convex optimization [9, 167] are applied. Those metric-based

semi-supervised clustering algorithms exclude unlabeled data from the metric train-

ing step, as well as separate metric learning from the clustering process. Also,

existing metric-based methods use a single distance metric for all clusters, forcing

them to have similar shapes. MPCK-Means [19] incorporates both metric learning

and the use of pairwise constraints. It performs distance-metric training utilizing

both unlabeled data and pairwise constraints. Finally, Rothaus et al. [132] is yet

another distance transformation based constrained clustering method. It proposes

an algorithm which is able to converge to an improved clustering result in the pres-

ence of just few constraints. This is achieved by means of spreading the influence

of pairwise constraints throughout the neighborhood of constrained patterns, al-

lowing logical sub-clusters to be merged in more general groups. The method uses

a new distance transformation that interprets constraints as ”shortcuts” between

sub-clusters.

Correlation Clustering

Correlation clustering uses a complete constrained graph encompassing all pat-

terns in the dataset. The edges are labeled + (to patterns that must be placed in

the same cluster) and − (to patterns that cannot be placed into the same cluster).

No information about distances is available, but only the similarity or dissimilarity

between patterns. The focus is to find clusters that maximize the number of agree-

ments as well the complementary minimize the number of disagreements. Examples

of methods based on this formulation can be found in [8, 39, 65].

130 Chapter 8. Constrained Clustering

8.3 Experiments

In order to further evaluate the impact of considering constraints locally and globally

as discussed earlier a quantitative comparison of, COP-KM [157], DMLM - Distance

Metric Learning Method proposed by Xing et al. [167] and COPGB-KM [132] is pre-

sented. COP-KM is a method used extensively as comparison based on many pub-

lications about this topic. It considers constraints locally and ensures no violations.

The second and third methods spread the influence of constraints globally.

Figure 8.6. Results of the COPGB-KM for the eleven test datasets

To each dataset three different experiments are performed: (a) considering only

must-links; (b) considering only cannot-links; and (c) considering both types of

constraints. To (a) and (b) only the results of COPGB-KM and COP-KM are

available, since DMLM requires both types of constraints in order to work properly.

8.3. Experiments 131

Sixteen test constraint settings are generated to each of the three experiments, to-

talizing forty eight constraint settings. The number of must-links NML and cannot-

links NCL is computed based on the total number of patterns to each dataset. The

result is averaged for 100 test runs per setting. For each dataset, COPGB-KM and

COP-KM are clustered 4900 times (an additional test is made to encompass the

case that there are no constraints) and DMLM 1600 times. In total, the experi-

ments created 136800 partitions.

The parameter L described in the last section is set to search randomly 40% of

the total number of patterns of each dataset.

Five different quality measures (accuracy [167], NMI, precision, recall, and F-

measure [14]) are computed to compare the clustering results with the ground-truth.

Since the five measures show similar behavior to all datasets, only the accuracy

is reported giving a direct measure of the goodness of the classification in respect

to the ground-truth1.

The first envisioned experiment evaluates how the COPGB-KM algorithm be-

haves in the presence of different number and kinds of constraints. Figures 8.7

and 8.7 shows a comparison of how the algorithm performed in the presence of

only must-links, only cannot-links and in the case that both types of constraints

are present. Diamond shaped markers represent results considering only must-link

constraints; square shaped the results of only cannot-links; and triangles the results

using both types of constraints. Axis X represents the number of constraints used

and Y axis the accuracy. The scale is adjusted individually to each dataset. The

number of constraints is computed based on the total number of patterns of each

dataset. COPGB-KM performs better in the presence of only must-link constraints

(diamond shape markers) compared to both other cases. For the case that both

types of constraints are present, an average quality between the best case (only

must-links) and the worst case (only cannot-links) is observed.

Exceptions to this general observation are the MammoMass and the 2D2K

datasets. In those cases, for a small number of constraints, the case that only

cannot-links are present performs slightly better if compared to the only cannot-

link case.

The Wine dataset is a complete exception. Only cannot-links perform almost al-

ways better than only must-links and in the situation which both types of constraints

are present shows a worst result.

1Error rate indicates the percentage of patterns wrongly classified. Accuracy gives the percent-

age of patterns classified correctly.

132 Chapter 8. Constrained Clustering

Another interesting remark refers to the general behavior of the accuracy curve

for all possible combination of constraint types. The accuracy tends to increase with

the number of constraints used. However, we observe that the introduction of fewer

constraints induce an accentuated increase in accuracy followed by a less considerable

increase afterwards. This is an important fact, since it can be interpreted as a

minimal requirement of side information.

8.3. Experiments 133

Figure 8.7. Comparison of COP-KM, COPGB-KM and DMLM constrained clustering

methods

134 Chapter 8. Constrained Clustering

Figure 8.8. Comparison of COP-KM, COPGB-KM and DMLM constrained clustering

methods (cont...)

Chapter 9

Constrained Ensemble Clustering

The idea of combining both ensemble and constrained clustering methods is moti-

vated given two main factors. Some datasets present unknown data structure leading

to an uncertainty regarding the clustering algorithm to be used. Such uncertainty

classifies it as a perfect candidate for the usage of ensemble clustering. This method

also works as a way to smooth the final result when different partitions can po-

tentially present dissimilar distributions. Ensemble clustering is also a valid way to

improve the final result by gathering correct evidence among all available partitions.

On the other hand, it is possible that extra information that can be transformed

as constraints to be available. Therefore, constrained clustering presents itself as

an indicated approach. Partially labeled data, expected maximum and minimum

cluster size, and pairwise linkage pattern relationships are examples of information

used by a constrained clustering algorithm. The question arises: ”What to do when

both unknown data structure and extra information are present simultaneously?”.

In some cases, the usage in conjunction of both methodologies can be beneficial.

The next logical question that needs to be answered is: ”How to combine both

approaches?” At first glance, the problem seems to be easily addressed. However,

some details need to be taken care of in order to provide a feasible algorithmic

realization. In special, attention needs to be paid on investigating the need of con-

sidering constraints in both steps of the ensemble clustering process. As presented

in Chapter 3, ensemble clustering is a two step process what leads to the inference

of four possible scenarios, where constraints are considered not necessarily in both

steps. The possibilities are described below.

135

136 Chapter 9. Constrained Ensemble Clustering

• Constraints are considered in both, generation and consensus steps

- In this case, the set of available constraints is used to generate the partitions

of the ensemble. Afterwards, the same constraints are accounted for during

the combination step;

• Constraints are considered only by the generation step - In this case,

the set of available constraints is used to generate the partitions of the ensem-

ble, and disregarded by the consensus function;

• Constraints are considered only by the consensus step - In this case,

the set of available constraints is disregarded during the generation of the

ensemble, and used by the consensus function;

• No constraints are considered in neither, generation nor consensus

steps - This is in fact the general case of ensemble clustering.

The interest arises in the following question: ”If all partitions of an ensemble

satisfy the constraints, there is still a need to consider them in the combination

step?” The answer is definitively positive. However, another side questions can also

be addressed, namely, ”if the available constraints are not used during the generation

step, and later considered only in the consensus step, this would be sufficient? Would

the results be compromised in any way?”. Both questions are later evaluated and

conclusions are drawn about the steps in which constraints must be considered.

In order to understand the reasons why constraints need to be considered in

the combination step, a didactic example is shown that constraints can actually be

violated. It follows the same combination clustering steps described in Chapter 3,

except that a constrained version of K-Means [157] is used to generate the ensemble.

It is shown that even if all partitions of an ensemble satisfy the constraints, there

is still need of carefully considering the constraints in the combination step in order

to avoid violations in the final combined clustering.

Consider the example presented in Figure 9.1. Here, the original data set (A) is

used consisting of six patterns to produce four partitions (number K of clusters = 2).

In (B), columns represent different partitions and patterns are indexed by rows. Each

table cell contains a label assigned to that pattern by the clustering algorithm. All

partitions of this ensemble satisfy the two must-link constraints (between patterns 1

and 2, and 5 and 6, respectively) and the cannot-link constraint (between patterns

1 and 5). In (C), the ensemble is used to compute the co-association matrix. The

dendrogram produced by the standard single-link (SL) algorithm is shown in (D).

Finally, (E) exemplifies an erroneous combination result due to the non-consideration

137

Figure 9.1. Misclassification due to non-consideration of constraints in the combination

step

of constraints in the combination process. By inspecting the dendrogram, it is easy to

see that both must-link constraints are satisfied. When merging the clusters {1, 2, 3}
and {5, 6} in the dendrogram, the resultant cluster clearly violates the cannot-link

constraint between patterns 1 and 5. Naturally, this is an example specially designed

to present a constraint violation. However, later on this chapter an evaluation using

real datasets is presented which the same constraints violation problem happens.

The methods proposed in this chapter assume that given an ensemble of parti-

tions, which satisfies all constraints, the combination algorithm must also consider

the same constraints. Otherwise, the constraints may be violated in the final clus-

tering result during the consensus step.

Based on this consideration, the well known clustering combination methods

based on evidence accumulation [57] and best one element moves [67] as well as

the sum of parwise distances introduced in the last chapter are extended to handle

constraints, thus proposing a complete chain of constraint clustering combination.

138 Chapter 9. Constrained Ensemble Clustering

9.1 Constrained Ensemble Clustering Framework

Constrained ensemble clustering can look very confusing at first glance. It blends

two seemly new approaches that by themselves, build up additional complexity over

the clustering process. Furthermore, the possibility of considering constraints in only

part of the clustering ensemble framework can increase the confusion even further.

Perhaps, a simpler way to understand the proposed framework is to realize that it is

essentially an extension of ensemble clustering in which extra information converted

as constraints is used.

The general model for combination constrained clustering is presented in Fig-

ure 9.2. As argued earlier, the set of constraints can be considered in any combi-

nation step individually or in both steps. Therefore, the proposed model requires

as input, the dataset to be clustered and the set of constraints. For better clarity,

the case in which constraints are considered in both steps is described. To simulate

the cases that the constraints are considered only during generation or combination,

one just disregard the constrained version referring back to the original ensemble

clustering step described in Chapter 3.

Figure 9.2. General framework for constrained ensemble clustering

Ensemble Generation Step

During the generation step, M partitions are produced and gathered in an ensem-

ble. A special remark needs to be made regarding the consideration of constraints.

Instead of applying standard clustering algorithms such as K-Means or spectral clus-

tering, the partitions need to be generated using constrained versions of the desired

algorithms. Chapter 8 presents a comprehensive review of the available methods.

It is also important to use the same set of constraints in order to ensure coherence

among the partitions in the ensemble. Later on, during the combination step, it is

9.1. Constrained Ensemble Clustering Framework 139

expected the same set of constraints to be used as well.

As a pre-processing step, the set of constraints should be evaluated regarding its

correctness in order to avoid invalid constraints as well as to infer new constraints

based on the existing ones. This can be achieved by computing the transitive closure

of the set of constraints, as described in Chapter 3.

The ensemble generation schemes described in Chapter 2 are adopted by the

experiments presented in this chapter. More specifically, the ensembles generated

using random K and subsets of attributes. Constraints are generated based on the

known ground-truth using the method described in [14].

By the end of the generation step, an ensemble of partitions taking into account

the constraints is available. The ensemble, together with the same set of constraints

used in the generation step is the input required by the constrained consensus step.

Consensus Function Step

To constrain a consensus function can be a trick proposition due to the multitude

of combination methods available. However, based on the taxonomy presented in

Chapter 3, it is possible to differentiate two main possibilities: a) based on the

median partition formulation; and b) based on co-occurrence and based on median

partition. Any such consensus function based on those two models can be potentially

used. However, it needs to be adapted to work with constraints. Three constrained

consensus functions are presented in the next section, based on the co-occurrence,

the median partition and the sum of pairwise distances. By the end of the process,

a consensus partition is produced. It is supposed to complain with the constraints

used during the process by presenting no violations whatsoever.

Even though, the general idea is very simple, it states that the consensus func-

tion should work as usual, but before that any label is assignment to a pattern, a

constraint violation test should be executed in order to ensure that no invalid as-

signments occur. The process is able to back-track its original procedure by picking

the next best assignment and the process continues. However each case is specific,

since the check for constraints violation is dependent of the algorithm’s mechanics.

Results Assessment

The results obtained by constrained ensemble clustering algorithms can be as-

sessed by the same criteria described in Chapter 3 regarding general ensemble clus-

tering evaluation. However, special attention needs to be taken regarding the com-

pliance to the original set of constraints. It is expected no constraint to be violated.

Revisiting the four possible scenarios, and based on the motivational example pre-

140 Chapter 9. Constrained Ensemble Clustering

sented in the beginning of this chapter, it is clear that in cases which the consensus

function is not constrained but the generation step is, violations can occur. Further-

more, if the generation is not constrained but the consensus function is, one could

expect no constraints to be violated.

9.2 Proposed Consensus Functions

This section presents three strategies to address the problem of constrained ensemble

clustering. The first one is based on the median partition problem. A simulated

annealing based algorithm is proposed. The second method is based on the idea

of co-occurrence of patterns among the partitions in the ensemble. The original

method was proposed by Fred et al. [57] in the context of ensemble clustering. It

requires an intermediary step in which a co-association matrix needs to be computed.

The final method is based on the sum of pairwise distance introduced by this thesis

(Chapter 7). It requires, as a pre-processing step, that the pairs of most dissimilar

partitions to be determined. The optimization method is also based on simulated

annealing. For the purposes of this section, the fully constrained case, in which

constraints are considered in both generation and consensus steps, is described. To

answer the question regarding the sufficiency of constraints in only one of the two

steps, as explored in Section 9.3 of this chapter, the unconstrained steps described

in Chapter 3 can be used.

The generation step is a process in which the original data set is provided as

input. It outputs an ensemble of M partitions. Additionally, a set of pairwise

linkage constraints is provided. Any constrained clustering algorithm can be used

during this step. Regarding the number of clusters to be produced, it can be fixed, if

the optimal number is known, or decided by the clustering algorithm, if it supports

such feature. It is also possible to use an arbitrary random number of target clusters

within a range, since the partitions in the ensemble are regarded only as evidence

about how the data is structured and not necessarily final results.

For the experiments presented later on this chapter, a constrained version of K-

Means is used [157] to produce the ensemble. The constrained version of K-Means

is shown in Algorithm 9.5. From this point on, this algorithm will be referenced as

cop-KM. The main change to the original version can be found at lines 1 and 3. In

1, the transitive closure over ML and CL is computed (see Subsection 8.1.3). This

step is required in order to avoid deadlocks during the label’s assignment step. Lines

4− 6 implement a conditional statement defining that a pattern can be assigned to

9.2. Proposed Consensus Functions 141

Algorithm 9.5 Constrained K-Means algorithm (cop-KM)

Input: D : Data set

ML: Set of must-link constraints

CL: Set of cannot-link constraints

K : number of clusters

Output: a partition of D presenting no constraint’s violations

01. compute the transitive closure over ML and CL
02. randomly initialize the cluster centers by C1, · · · , CK
03. ∀ di ∈ D
04. if no constraint is violated

05. assign di to the closest cluster center Cj

06. end

07. end

08. ∀ Cj
09. compute the new cluster center by averaging all di ∈ Cj
10. end

11. GOTO 2

the closest cluster if and only if no constraint is violated, see [34, 155] for further

details of the constraint violation test and the transitive closure computation. If

the closest cluster cannot be chosen as target cluster, the algorithm proceeds by

checking all remaining clusters until no one are left. If no allowable cluster is found,

it returns an empty label for that pattern.

9.2.1 Median Partition

The first constrained ensemble clustering method proposed is based on the computa-

tion of the median partition. Since the median partition problem is NP-Complete

for many reasonable distance function, as described in Chapter 3, it is necessary

rely on approximate solutions. There is a number of heuristics proposed in the

literature (see [67] for 6 heuristics) for the computation of approximated solutions.

This section presents an approximated solution based on the simulated annealing

algorithm.

Figure 9.3 shows the fluxogram for the constrained consensus function based on

the simulated annealing. It receives as input the ensemble of partitions P and the

sets of must-linksML and cannot-links CL. The first step refers to the selection of

142 Chapter 9. Constrained Ensemble Clustering

Figure 9.3. Constrained BOEM simulated annealing based algorithm

an initial consensus partition1. In the experiments presented later, the set median

P ∗ is selected to be the initial partition. A starting temperature is defined as an

algorithm’s parameter and, based on that, a randomization of the partition P* is

executed, producing a new candidate partition P̃ . The partition P̃ is then evaluated

by means of the computation of its SoD between P and P̃ . If the current partition

presents a smaller SoD compared to the original candidate partition, the result

is retained otherwise, a new the randomization is generated. The temperature is

lowered and the process continues until the maximum number of tries for the current

temperature is reached. If the lower bound temperature is reached the process stops

and P̃ is returned, otherwise a new randomization of P̃ is produced and the process

starts all over again.

1The set median as described in Chapter 2 is simply the partition belonging to the ensemble P
with presents the smaller SoD in relation to all partitions in the ensemble. It is also known as the

BoK or best of K method.

9.2. Proposed Consensus Functions 143

9.2.2 Evidence Accumulation

The second constrained ensemble clustering method is based on the well known

ensemble clustering algorithm proposed by Fred et al. [57]. Its motivational idea

is that existing evidence, distributed among the partitions of the ensemble can be

used to infer the consensus partition.

Figure 9.4. Schematics for the combination step of the constrained combination cluster-

ing

Given the ensemble of partitions generated using constrained clustering algo-

rithms, the method follows by computing a co-occurrence matrix. This is done

by means of Equation (3.8). Note that for the computation of the co-association

matrix, there is no need to consider again the constraints, since the constrained

clustering algorithms used during the generation step will ensure no violation of the

constraints will be presented in the partitions.

Differently from most of the consensus functions presented in Chapter 3, co-

occurrence based methods do not take the ensemble of partitions as input. Instead,

the co-occurrence matrix is used. It is regarded as a new feature’s space. Since the

input is in the form of a similarity matrix, a consensus function able to work over

this kind of input data is required. As proposed in [57], a hierarchical clustering

algorithm is used in order to produce the final consensual partition. A constrained

version of hierarchical single-link algorithm is used as consensus function. The

algorithm for constrained agglomerative single-link (see Algorithm (9.6)) is adapted

from [38]. A similarity matrix SM and two sets of ML and CL constraints are

the input required. It starts by assigning all patterns to singleton clusters, namely,

C1, · · · , CN . The only change to the original single link algorithm refers to the

144 Chapter 9. Constrained Ensemble Clustering

Algorithm 9.6 Constrained agglomerative algorithm (cop-SL)

Input: SM : Dataset

ML: Set of must-link constraints

CL: Set of cannot-link constraints

Output: a dendrogram

1. compute the transitive closure over ML and CL
2. repeat steps 3-12

3. find the minimum entry (xl, xm) ∈ SM
4. if merging xl and xm violate any constraint in CL
5. find the next minimum entry in SM

6. else

7. Merge(xl, xm) and update SM

8. end

9. if there are no more clusters to be merged

10. return the dendrogram

11. end

12. end

introduction of a constraint violation test before two clusters selected for merging.

The algorithm must stop if no there are no more clusters to be merged without

constraint’s violation. In this case, the final reached state of the dendrogram also

represents the minimum obtainable solution in the presence of constraints. In [38] a

test is presented to verify the minimum number of clusters obtainable in the presence

of CL constraints. The first line finds the minimum entry in SM and merges the

clusters it refers to if no CL constraint is violated. It selects the next minimum on

SM , otherwise.

Since must-link constraints are transitive, it is also possible to compute the

transitive closure for the ML set as a pre-processing step (see [38]). However, this

is not the case. Since the computation of the co-association matrix ensures maximum

similarity (i.e. 1) to any pair of ML constrained patterns these patterns will be

merged during the initial iterations of cop-SL. This is the reason why algorithm

cop-SL has no explicit handling for must-links.

9.2. Proposed Consensus Functions 145

9.2.3 Sum of Pairwise Distances

The final constrained ensemble clustering method is based on the sum of pairwise

distances formulation presented in Chapter 7. For the ensemble generation step,

no special remark needs to be made. The consensus function works like the one

presented by the fluxogram given in Figure 7.4. However, a special attention needs

to be paid regarding the consideration of constraints. Figure 9.5 shows the fluxogram

for the simulated annealing based SoPD constrained consensus function.

There are two major processes that take place originally belonging to the simu-

lated annealing method and two introduced by the SoPD formulation. Additionally,

a check regarding constraint’s violation is executed in order to ensure no violations.

At the beginning, a candidate initial partition is selected. As stated before, any sim-

ple consensus function is suitable for this step. In the experiments presented later

in this chapter, the set median is used to produce the initial candidate partition P̃ .

The general simulated annealing method states that for each temperature, a

number of cycles will take place. This number can be user defined or specified

by the algorithm’s designer. As a cycle runs, the inputs are randomized. Only

randomized partitions which produce a better set of inputs are retained. In the case

of ensemble clustering, the randomization can be achieved by changing the label of

a random pattern within a given label’s range. Just after a new randomization is

generated, the test for constraints violation is executed. If any constraint is violated

by the perturbation induced during the previous step, it is discarded and a new

perturbation is generated.

Following the fluxogram, a test to assess if the newly candidate partition is

more accurate than the current one is executed. This is based on the SoPD value

returned by Equation (7.4). It this value is smaller than the one computed for P̃ ,

the partition P ′ is attributed to P̃ . Once the specified number of training cycles has

been completed, the temperature can be lowered. Once the temperature is lowered,

it is determined whether or not the temperature has reached the lowest temperature

allowed. If the temperature is not lower than the lowest temperature allowed, then

the temperature is decreased and another cycle of randomized partition generation

takes place. At this point, a new set of most dissimilar pairs of partitions will be

computed as described in Section 7.6. It receives as input the ensemble of partitions

(P) and the current candidate partition P ′. The output of this process is a set of

pairs of partitions (Pi, Qi), i = 1 · · ·M/2, where M is the number of partitions in

P and Pi, Qi ∈ P such that the distance between them is maximal. The process

continues by computing the SoPD according to the Equation (7.4). The pairings

146 Chapter 9. Constrained Ensemble Clustering

based on P̃ and the corresponding SoPD is computed. This value will be used to

assess if the progressively proposed candidate partitions P ′ achieve better results

than P̃ .

If the temperature is lower than the lowest temperature allowed, the simulated

annealing algorithm will end by attributing P̃ as consensus partition.

Figure 9.5. Fluxogram for the simulated annealing SoPD consensus function

9.3. Experimental Results 147

9.3 Experimental Results

The combination of constrained and ensemble clustering into a single clustering

solution poses a fundamental question that needs to be addressed. In which steps

of the ensemble clustering framework is necessary/sufficient to consider constraints?

In order to answer this question as well as to evaluate the results accuracy, a series

of experiments are devised.

Firstly, it is investigated if the non-consideration of constraints in the consen-

sus (final) step leads to constraint’s violations. By considering constraints in both

steps, or only during the consensus step, there is no need to worry about constraints

being violated in the consensus partition. This is due the premise that any con-

strained clustering algorithm or constrained functions should comply with all the

constraints in the ML and CL sets. However, for the case in which constraints are

considered only during the generation step violations can occur, since, the consensus

function proceeds as if no prior knowledge about the data existed. In fact, Figure 9.6

shows an experiment in which constraints are considered only during the generation

step. For this experiment, the number of constraints grows incrementally. Half

the constraints is must-links and half cannot-links. The number of violations due to

non-consideration of constraints in the combination step increases for both synthetic

datasets (top-left) and UCI datasets (top-right, bottom-left and bottom-right). The

graphic shows that the number of constraints violated (y-axis) grows with the num-

ber of constraints being considered (x-axis). The accuracy of the consensus result

also diminishes with the increase number of constraints being violated, contrary to

what usually occurs in constrained clustering in which the accuracy tends to increase

with the number of constraints used.

Despite of the fact that the accuracy of each individual partition in the con-

strained ensemble presents improved result due to the introduction of pairwise link-

age constraints, the same does not necessarily happens in which these constraints

are not considered in the consensus function. In fact, for most cases, the results can

be worst. The results decrease in accuracy can be corroborated in the experiment

that follows.

148 Chapter 9. Constrained Ensemble Clustering

Figure 9.6. Number violations due to non-consideration of constraints in the combination

step

The second envisioned experiment is a comparison of the impact of considering

constraints, as stated before, in three different ways:

a) only during the generation step;

b) only during the consensus step;

x) during both steps.

The experiment is divided in two parts. In part one, the 6 toy datasets are

evaluated. The results are listed in Tables 9.1, 9.2, and 9.3. Part two evaluates the

results of the UCI-Irwine datasets, listed in Tables 9.4, 9.5, and 9.6. The initial

column of all tables is the average result of the ensemble clustering methods pre-

sented in Table 3.2 in which no constraints are considered. It works as a control, or

reference to the case in which constraints are not considered in any of the ensemble

clustering steps. The second column is the average result of 20 runs of cop-KM

algorithm. Those 20 partitions are used to compose the constrained clustering en-

semble used in these tests.The number of constraints was set to 10% of the total

number of patterns in each dataset for each type of pairwise constraints, namely

must-links and cannot-links. The impact of different amount of constraints was

studied in Chapter 8. The four remaining columns in the tables list the results of

9.3. Experimental Results 149

different consensus functions namely, two instances of evidence accumulation based

methods (EAC SL and EAC AL), an instance of median partition based meth-

ods (BOEM) and finally, an instance of sum of pairwise distance using simulated

annealing as optimization function (SoPDsa).

Table 9.1 shows the results for the worst case, in which constraints are considered

during the generation but not in the consensus step. Those are results similar to

the case presented in Figure 9.6 in which constraint violations do occur in the final

consensus partition. It is possible to identify that for most cases the results obtained

by EAC SL, EAC AL, BOEM and SoPDsa (columns 4-7) consensus functions are

in general worst or slightly better than the ones obtained by the average of ensem-

ble clustering methods (CE) which do not consider constraints in any step (column

1). The same happens when a comparison is made against the average results of

a simple constrained clustering result (column 1). It is safe to conclude that by

considering the constraints only in the generation step do not pay off the additional

computational time required by the introduction of constraints. This can be justified

by the fact that in the generation step, in which the set of constraints is considered,

the normal way that the clustering algorithm works is constrained, guided to ac-

commodate the extra knowledge encoded as linkage constraints. By disregarding

such knowledge in the subsequent step (consensus step) the algorithm, following its

general structure, produces contradictory results to the extra information available,

having a final impact in the overall result.

Table 9.1. Results for constrained generation, unconstrained consensus on toy datasets

Dataset CE cop-KM EAC SL EAC AL BOEM SoPDsa

8D5K 11.04 10.04 60.00 60.00 26.94 24.11

2D2K 8.74 3.94 48.20 4.70 6.40 54.40

celipsoid 30.51 28.18 31.11 27.11 28.00 62.22

twoRings 47.67 42.54 72.93 67.40 47.24 71.55

scattered 44.48 44.92 44.70 43.94 46.21 48.48

halfrings 19.49 13.75 40.89 11.90 12.27 66.91

The results obtained by the consideration of constraint only during the consensus

step are presented in Table 9.2. A different sort of problem is observed, although no

constraints are violated by the consensus partition. It does not come as a surprise,

since the constraints are considered in the final step, and it was postulated earlier

that either generation or consensus algorithms ensures no constraint violation. For

some cases, such as 8D5K, 2D2K, and halfrings, SoPDsa scored better than CE, and

better or equal to cop-KM. EAC SL and EAC AL scored better for the scattered

dataset. However, there is no guarantee that the constrained ensemble clustering

150 Chapter 9. Constrained Ensemble Clustering

methods will always score better when constraints are considered only during the

consensus step, due to the fact that the extra information is ignored during the

generation step. By doing so, it can lead to erroneous assignments during the

consensus step.

Table 9.2. Results for unconstrained generation, constrained consensus on toy datasets

Dataset CE cop-KM EAC SL EAC AL BOEM SoPDsa

8D5K 11.04 10.04 23.17 23.17 20.32 0.00

2D2K 8.74 3.94 45.10 45.90 6.40 1.90

celipsoid 30.51 28.18 45.33 45.33 27.11 35.11

twoRings 47.67 42.54 46.41 44.75 47.24 69.06

scattered 44.48 44.92 27.27 27.27 46.21 57.58

halfrings 19.49 13.75 86.99 86.99 44.98 13.75

For the case in which constraints are considered in both step (Table 9.3) a consid-

erable improvement can be noticed. Firstly, SoPDsa always scores better than both

CE and cop-KM. BOEM always scores better than CE, but it shows a slightly de-

creasing in performance for the twoRings dataset if compared to the average cop-KM.

The evidence accumulation methods (columns 3 and 4) are however not unanimous.

For 8D5K the results are actually worst than CE and cop-KM. In 2D2K EAC SL

is able to achieve a perfect classification (0% of errors) but EAC AL scored very

badly. For halfrings, the results are worst and the remainder datasets produced

average results in which better or similar scores are achieved. It is possible to con-

clude that the evidence accumulation methods do not share a unified performance.

Although, these methods could be able of performing really well, they are unreliable

for some cases.

Table 9.3. Results for constrained generation, constrained consensus on toy datasets

Dataset CE cop-KM EAC SL EAC AL BOEM SoPDsa

8D5K 11.04 10.04 23.17 23.17 0.00 0.00

2D2K 8.74 3.94 0.00 45.10 1.90 1.70

celipsoid 30.51 28.18 31.11 24.44 28.00 27.11

twoRings 47.67 42.54 45.30 46.96 47.51 42.51

scattered 44.48 44.92 27.27 31.82 43.18 43.18

halfrings 19.49 13.75 44.98 44.98 12.27 11.38

Table 9.4 shows the results for the UCI-Irvine datasets, in which constraints

are considered during the generation but not in the consensus step. Those results

are similar to the case presented in Figure 9.6 in which constraint violations do

9.3. Experimental Results 151

occur in the final consensus partition. EAC SL performs worst in 88% of the

cases in comparison to CE and 84% compared to cop-KM. EAC AL scores 84%

worst compared to CE and 88% worst than cop-KM. BOEM is the best consensus

function in this case. It scores in 58% of the cases worst than CE and 60% worst

than cop-KM. Finally, SoPDsa scores in 88% of the cases worst than CE and in

92% of the cases worst than cop-KM. As it can be concluded, it is better to use

only constrained clustering or ensemble clustering if constraints are considered only

during the generation.

Table 9.4. Results for constrained generation, unconstrained consensus on UCI-Irvine

datasets

Dataset CE cop-KM EAC SL EAC AL BOEM SoPDsa

balance 39.40 38.66 52.96 52.96 41.76 56.53

breast 13.68 5.30 66.18 68.81 34.99 4.69

control 39.29 38.95 66.67 66.67 33.83 41.17

ecoli 48.68 47.29 55.36 55.36 48.51 46.44

glass 49.64 57.20 52.34 62.62 60.75 67.12

haberman 30.32 37.55 50.00 49.67 50.00 60.51

heart 39.42 46.11 44.07 47.41 49.26 65.94

ionosphere 32.26 30.37 35.33 31.05 31.62 70.94

iris 11.12 11.47 33.33 33.33 6.67 40.03

lung 27.55 32.59 33.33 22.22 11.11 74.02

mammo 23.96 18.61 48.31 48.31 17.35 58.29

optic 26.98 24.15 88.80 88.80 15.30 26.18

parkinsons 31.49 25.85 26.67 26.67 26.67 48.72

post op 47.90 55.86 29.89 48.28 58.62 57.44

protein 51.67 43.28 71.55 57.76 34.48 43.82

segmentation 41.48 49.48 84.76 71.43 48.10 56.66

sonar 44.97 43.75 73.08 72.60 48.08 73.08

soyBeanS 27.90 28.09 40.43 40.43 21.28 46.17

spect 43.24 44.31 41.20 44.19 46.44 46.81

spectf 37.93 44.46 89.51 72.66 42.70 69.66

taeval 53.64 62.45 63.58 63.58 64.90 78.29

tic-tac-toe 46.88 44.52 68.06 67.75 45.30 67.95

transfusion 34.89 23.92 24.47 24.47 24.47 77.41

wine 7.92 10.34 33.71 30.90 4.49 37.63

yeast 57.05 66.46 68.13 68.67 69.41 72.99

The results obtained by the consideration of constraint only during the consensus

step presented in Table 9.5. EAC SL performs worst in 52% of the cases compared

152 Chapter 9. Constrained Ensemble Clustering

to both CE and cop-KM. EAC AL scores 56% worst compared to CE and 48% worst

than cop-KM. BOEM is the best consensus function again. It scores in only 44% of

the cases worst than CE and 60% worst than cop-KM. Finally, SoPDsa scores in 72%

of the cases worst than CE and in 72% of the cases worst than cop-KM. As it can

concluded, when constrains are considered only during the consensus step, a better

performance is achieved in comparison to the case in which constraints are used

only during the generation step. However, the computed percentages still do not

validate the usage of constrained ensemble clustering as a viable option to achieve

better results compared to any of the two approaches considered individually.

Table 9.5. Results for unconstrained generation, constrained consensus on UCI-Irvine

datasets

Dataset CE cop-KM EAC SL EAC AL BOEM SoPDsa

balance 39.40 38.66 47.20 40.96 53.44 53.37

breast 13.68 5.30 34.26 4.25 5.27 36.18

control 39.29 38.95 45.83 42.67 33.83 41.67

ecoli 48.68 47.29 45.83 46.73 48.51 44.90

glass 49.64 57.20 45.79 57.48 60.75 66.86

haberman 30.32 37.55 26.80 60.78 49.67 50.00

heart 39.42 46.11 47.41 47.41 48.89 65.92

ionosphere 32.26 30.37 23.08 32.19 31.62 73.38

iris 11.12 11.47 6.67 6.67 6.67 6.67

lung 27.55 32.59 18.52 7.41 11.11 74.06

mammo 23.96 18.61 51.81 51.81 17.35 52.22

optic 26.98 24.15 55.90 40.40 22.70 23.19

parkinsons 31.49 25.85 26.67 26.67 26.67 26.63

post op 47.90 55.86 45.98 51.72 58.62 52.85

protein 51.67 43.28 55.17 55.17 45.69 45.12

segmentation 41.48 49.48 44.29 43.81 48.10 44.86

sonar 44.97 43.75 48.08 48.08 48.08 75.48

soyBeanS 27.90 28.09 31.91 8.51 29.79 29.79

spect 43.24 44.31 21.35 21.35 46.44 59.95

spectf 37.93 44.46 42.32 42.70 42.70 42.11

taeval 53.64 62.45 64.24 56.29 64.90 62.12

tic-tac-toe 46.88 44.52 34.55 34.34 45.72 66.18

transfusion 34.89 23.92 24.47 24.47 24.47 24.60

wine 7.92 10.34 4.49 4.49 4.49 4.49

yeast 57.05 66.46 60.78 60.78 53.30 69.01

Table 9.6 shows the results for the UCI-Irvine datasets in which constraints are

9.3. Experimental Results 153

considered in all the framework steps namely, generation and consensus. EAC SL

performs better in 52% of the cases compared to CE and 60% of the cases compared

to cop-KM. EAC AL scores 56% better compared to CE and 76% better than cop-

KM. BOEM scores in only 88% of the cases better than CE and cop-KM. Finally,

SoPDsa scores in 86% of the cases better than CE and in 86% of the cases better than

cop-KM. As it can concluded, the consideration of constraints in both steps of the

constrained ensemble clustering framework leads to the best possible outcome. It is

important to notice that in some cases such as the breast and haberman datasets the

improvement is impressive, in which a perfect match is achieved by all constrained

consensus functions. It is also noticed the leap in improvement achieved for the

wine dataset, in which almost 100% of improvement compared to CE is observed

and a lower but still considerable improvement experienced by BOEM although

EAC SL and EAC AL fail to achieve better than CE. However, all constrained

ensemble clustering methods succeed in performing better than cop-KM in this case.

As a final remark, it is important to point out that only 10% of the total number

of patterns is constrained. This percentage is selected since it seems reasonable to

inspect 10% of the data, manually. The results, however, can be greatly improved if

more constraints are considered. This is possible in cases of automatic constraints

generation in applications such as image segmentation.

154 Chapter 9. Constrained Ensemble Clustering

Table 9.6. Results for constrained generation, constrained consensus on UCI-Irvine

datasets

Dataset CE cop-KM EAC SL EAC AL BOEM SoPDsa

balance 39.40 38.66 21.92 38.24 42.08 24.02

breast 13.68 5.30 0.00 0.00 0.00 0.00

control 39.29 38.95 44.67 38.83 30.83 31.09

ecoli 48.68 47.29 25.00 45.83 40.77 43.45

glass 49.64 57.20 54.21 54.21 46.73 46.89

haberman 30.32 37.55 0.00 0.00 0.00 0.00

heart 39.42 46.11 45.93 46.67 40.74 40.73

ionosphere 32.26 30.37 35.90 40.66 29.06 29.06

iris 11.12 11.47 36.67 66.67 4.00 4.00

lung 27.55 32.59 11.11 7.41 19.63 19.64

mammo 23.96 18.61 40.84 46.39 20.72 20.68

optic 26.98 24.15 52.00 17.20 15.30 28.37

parkinsons 31.49 25.85 13.33 14.87 24.62 24.58

post op 47.90 55.86 33.33 52.87 36.78 37.11

protein 51.67 43.28 43.97 25.00 33.62 47.40

segmentation 41.48 49.48 44.29 33.33 45.71 45.68

sonar 44.97 43.75 40.38 69.71 43.27 43.19

soyBeanS 27.90 28.09 21.28 21.28 21.28 21.28

spect 43.24 44.31 10.49 24.72 32.21 28.71

spectf 37.93 44.46 20.97 42.32 34.08 34.08

taeval 53.64 62.45 62.91 54.30 52.98 52.98

tic-tac-toe 46.88 44.52 25.37 52.82 39.14 39.14

transfusion 34.89 23.92 38.10 16.58 26.07 26.07

wine 7.92 10.34 23.03 3.37 3.37 3.37

yeast 57.05 66.46 60.34 61.80 44.25 32.08

Part IV

Fiber Segmentation

155

Chapter 10

DTI Fundamentals

The magnetic resonance phenomenon was discovered by Felix Bloch in 1946. It

wasn’t until 1972, the first generated image was produced, and in 1974 the first

MRI of a living creature. Since then, the necessary technology to apply the MRI in

clinical environments has considerably evolved opening a brand new field for human

body exploration. MRI is important from the clinical perspective since it is a non-

invasive imaging method. Additionally, it imposes no exposure to radiation as e.g.

X-Rays. A good theoretical review about MRI can be found in [74].

The first big development after the introduction of the traditional MRI (T1 and

T2) was the development of fMRI - functional MRI - a kind of MR-scan that mea-

sures the burning of ATPs. It allows the visualization of activated regions in the

human brain. The ability to measure the concentration of hydrogen in a given point

of the space provided by MRI allows the creation of detailed static volumetric im-

ages containing anatomical data (e.g. T1, T2, MPRage, Flair) or detailed dynamic

volumetric movies presented the activated regions of a living subject presented with

some external stimulus. With the development of DWI, it became possible to inspect

the organization of fibrous tissues such as the human brain or muscles, otherwise, it

would appear as homogeneous regions in other scanning protocols.

In the past two decades, some physicians [12] come up with the idea to combine

the Bloch resonance magnetization equation with the diffusion equation. By doing

so, a whole new field in imaging was opened. Taking advantage of an(isotropic) be-

havior of water molecules present in living tissues, opens the possibility to study how

fibrous tissues are organized. By measuring the concentration of water molecules

in a given point of a Cartesian 3D space, it is also able to measure the quantity of

Brownian motion, or better describing, the amount of average Brownian motion for

a given voxel of XX×Y Y ×ZZ arbitrary dimensions. The water molecules display

157

158 Chapter 10. DTI Fundamentals

a number of interesting properties that makes it to be the ideal choice as standard

atom to perform MR-scans. In the human body, it is already well known that dif-

ferent tissues present different apparent diffusion coefficients (ADC). An example

can be found by examining tissues like the gray matter, fat, or in the Cerebro-spinal

fluid where the ADC is mainly isotropic and it can be taken as a constant to all

the media. It is possible to represent the ADC by a single scalar. However, in

other tissues, more specifically fibrous tissues, it is also already well known that the

Brownian motion is restricted on more specifically directed or oriented among the

direction of the fibbers.

The DWI protocol is comprised of an N dimensional object containing the appar-

ent diffusivity of water molecules. The measures are taken usually in 6 independent

diffusion directions in each voxel, although there are newer scanning devices which

are able to sample more directions. The evaluation of such 6th dimensional data

can be difficult, since they are encoded in 6 series of images. It is common to post-

processing the data to generate a tensor volume, where each 6th dimensional voxel

is combined using numerical methods to produce a tensor. This tensor can be in-

terpreted as a probability movement distribution of the water molecules to behave

from its center to the voxel periphery.

The main focus of this chapter is to review the concepts underlying the MR-DWI

protocol and to settle the foundation needed in order to motivate Chapter 11 refers

to fiber segmentation.

10.1 Diffusion Tensors

Diffusion imaging only measures ADCs in a given direction oriented by the scanner,

and in tissues, this orientation is often arbitrary. The solution to this problem is to

acquire more than one scan. Figure 10.1 shows a section of a DWI scan in which the

control image is shown together with the usually six diffusion directions. At least

six diffusion directions are needed, in order to calculate a tensor or diffusion tensor

representing the tendency of diffusion in a given voxel.

MR-DWI1 stands for magnetic resonance diffusion weighted imaging. Weighting

in MRI, is the contrast seen in resulting images. Diffusion weighting, therefore,

shows as contrast water diffusion. Water diffusion is the name given to the random

movement of molecules, also known as Brownian motion. DWI produces images

1DWI is also known as DTI or diffusion tensor images since any practical application based on

DWI requires the computation of the diffusion tensors volume.

10.1. Diffusion Tensors 159

whose contrast indicates the amount of water diffusion in a given voxel. It works by

applying two gradients to the magnetic field conventionally used in MRI. The first

one is called the dephasing gradient and the second is the rephasing gradient. Both

gradients have the same strength and direction, but opposed magnitude.

Figure 10.1. Control and DWI images

The measured effect after the gradient application depends on the movement of

water: if a water molecule moves approximately the same amount in all directions,

the net value measured be 0 (zero), i.e., one gradient nulls the other; but if a water

molecule moves preferentially along a specific direction, then the net value of the

gradients on this particular molecule will not be zero. Thus, the water movement

along the gradient direction can be measured, and the value measured is known as

a signal.

There are many parameters characterizing the magnetic field. The most im-

portant are the gradient directions and the radio frequency (RF) pulses. These

parameters are usually gathered in a constant b defined as:

b = γ2G2δ2(∆− δ

3
) (10.1)

The equation that relates signals measured with gradients and a signal with no

gradient applied is:
S

S0

= e−bD (10.2)

Here, S is the signal with gradients and S0 with no gradients. D is the amount

of water diffusion along the gradient direction, i.e., it is the diffusion coefficient.

The signal S0 is obtained through the same process as S, except that no gradients

are applied. Usually S0 is obtained with b = 0. Indeed, if b = 0, then:

160 Chapter 10. DTI Fundamentals

S

S0

= e0 = 1 (10.3)

therefore S = S0 and the previous equation still holds.

The ratio S
S0

is sometimes called attenuation and its symbol is A. The above

equation may then be written as the signal equation:

A = e−bD (10.4)

It is noteworthy that these equations have been used, up to now, with a single

gradient. It can be understood as the water diffusion measurements alongside a

single direction.

As discussed earlier, water molecules in human tissue hardly diffuses in an

isotropic way. The amount of water diffusion is not the same in all directions.

This type of diffusion is called anisotropic diffusion. Figure 10.1 shows diffusion

weighted images taken from the brain with gradients along the x, y and z axes. It is

clear from these images that water diffusion in brain is anisotropic in many regions,

more specifically, in the regions comprehending the white matter. To understand

what these images really mean, it is required to comprehend entirely the ideas of

diffusion, and gradients measurement.

If a drop of water falls upon a plain absorbing surface, like a soft cloth, the

water will be slowly absorbed by the cloth. After some time, the water will mostly

have drawn a circle or an ellipse on the surface as it was absorbed. It could be said

that water diffused through the cloth, and that the shape drawn by the water is a

function of the way the cloth allows the water to diffuse. On most surfaces water will

probably spread circularly, but on certain clothes it might as well spread drawing an

ellipse. On some surfaces, such as wood, water wouldn’t spread at all. They would

keep their original position for a very long time. Not only surfaces determine the

way water spreads, but also how fast it spreads. This property, namely ”diffusion”

can be described, by an ellipse. Its shape would show how water spreads along each

direction on the surface, and its size would tell how far it spreads. If water spread

equally on all directions, this ellipse would become a circle.

Any ellipse centered at the origin needs exactly three parameters to be fully

specified. These parameters could be, for example, the length of its two axes (along

the x and y-axis) and an angle determining rotation. But a more useful way of

describing ellipses is by using 2×2 symmetric matrices with some special properties.

Such a matrix can be used to describe an ellipse. Its eigenvectors are considered to

10.1. Diffusion Tensors 161

Figure 10.2. Examples of isotropic and anisotropic diffusion

be the direction of the ellipse’s two axes and its eigenvalues to be the length of the

two axes.

A =

[
Axx Ayx
Axy Ayy

]
(10.5)

For example, the ellipse presented in Figure 10.3 can be described by three

values,(2, 1, π/4). The ellipse’s axes’ lengths are 2 and 1, and the ellipse is rotated

45 degrees (π/4). Alternatively, it can be described by the matrix

A =

[
3
2

1
2

1
2

3
2

]
(10.6)

Figure 10.3. Sample ellipse to be described as a matrix

because its eigenvectors are [−
√

2/2,
√

2/2] and [
√

2/2,
√

2/2] and its eigenvalues

are 1 and 2, respectively. We note that the eigenvectors’ directions are the same as

the ellipse’s axes and that the eigenvalues are the length of the axes. Given matrix

A, it is also possible to find the ellipse equation.

162 Chapter 10. DTI Fundamentals

An ellipse can be used to describe how water spreads on a plain surface, but it is

not able to describe how water diffuses inside the brain, because this is a 3D process.

Instead, ellipsoids can be used, which can be seen as a 3D version of ellipses. An

ellipsoid needs six parameters to be fully specified. They can be summarized in a

3× 3 symmetric matrix whose eigenvectors lie along the ellipsoid principal axes and

whose eigenvalues are the length of the axes.

The diffusion coefficient (amount of diffusion) along any direction can be com-

puted using the following formula:

c(d) = dTAd = ddTA (10.7)

where, c is the diffusion coefficient in the direction d and A is the matrix describing

the diffusion properties of the medium.

It has been noticed that water diffusion, in some tissues, is not equal in all

directions, that is, water diffuses mainly in some directions. In this case, a single

constant (D) is not enough to describe diffusion fully. It is better to make use of a

tensor [160].

As described earlier, solving the Equation (10.7) for all DWI images produces 6

apparent coefficient indexes for a given DTI-scan. Then, it can be combined in a

single tensor that describes the preferred diffusion orientation. The reason to use

tensors is that they are basis invariant, and a DWI procedure cannot be ensured the

basis in which the image is taken, even the lab coordinate system is not valid.

ln

(
A(b)

A(b = 0)

)
= −

3∑
i=1

3∑
j=1

bijDij (10.8)

The final formulation to create a tensor volume based on the DWI series can de-

scribed by Equation (10.8) that it can be expanded as described in Equation (10.9):

−(bxxDxx + 2bxyDxy + byyDyy + 2byzDyz + bzzDzz) = −trace(bD) (10.9)

where A(b) is echo magnitude of the diffusion weighted, A(b = 0) the echo magnitude

of the non diffusion weighted and bij is a component of the symmetric b-matrix.

The final result is a tensor as presented in Equation (10.10). A tensor needs to

be computed to all voxels in the series. Note that no realignment of the diffusion

direction series is required since the series are obtained in a very narrow timeframe.

10.2. Visualization Schemes 163

However some researchers [26, 88, 122] point out that even by imaging in a short

period, noise and artifacts can be produced. Recently, MRI scans capable of DWI

protocols are manufactured with embedded procedures to perform such minor cor-

rections.

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (10.10)

Once the tensor volume is available, a number of post-processing tasks is in

order. The simplest one is to compute indices such as Fractional Anisotropy (FA),

Mean Diffusivity (MD) and so on. Those indices can be used to produce computer

generated images showing the anatomy overlaid by the information of those indices.

10.2 Visualization Schemes

The visualization schemes are usually generated using the encoded information for

all diffusion directions of a DWI series. This is due to the fact that differently from

other magnetic resonance protocols DWI produces various sets of images instead

of only one. Figure 10.4 exemplify four different visualization schemes based on

computed indexes for the same section of a DTI volume. In (A) the fractional

anisotropy map; (B) apparent diffusivity coefficient; (C) volume ratio; and (D)

color map based on the principal diffusion direction. For instance, color maps of

fractional anisotropy can be used to aid identification of hippocampus atrophy [119]

and in studies referring to multiple sclerosis [24].

Figure 10.4. Visualization schemes based on computed indexes for DTI

Once the diffusion tensor is available, it is possible to compute a number of

different invariant indexes. Those indexes are scalars with invariant values since

they hold the same value independent of the tensor orientation. Their real utility

164 Chapter 10. DTI Fundamentals

is the ability to inform about each point in the voxel’s volume using simple scalar

values. Basser et al. [11] proposed three simple indexes computed using the tensors

as basis. They are:

I1 = λ1 + λ2 + λ3 (10.11)

I2 = λ1 · λ2 + λ3 · λ1 + λ2 · λ3 (10.12)

I3 = λ1 · λ2 · λ3 (10.13)

in which λ1, λ2, and λ3 are the eigenvalues of the tensor. The invariance property

of those indexes derive from the fact that they are based on the tensor’s eigenvalues

that are themselves invariant.

Based on those three very simple indexes a number of representative concepts

were derived and used directly or indirectly by DTI visualization schemes. Perhaps

the most common of those indexes is called Mean Diffusivity (MD) also commonly

denoted 〈D〉 in the pertinent literature. It is computed by averaging the three

eigenvalues2 as follows:

MD(D) = 〈D〉 =
λ1 + λ2 + λ3

3
(10.14)

Visualization schemes based on MD alone are not necessarily an improvement

compared to the raw plotting of DWI images. The MD index makes no differenti-

ation between the isotropic and anisotropic parts of the tensors. Basser et al. [12]

proposed the decomposition of diffusion tensors in theirs two components (iso and

anisotropic) and based on this decomposition, two new indexes, namely fractional

anisotropy and relative anisotropy were proposed. The tensor decomposition can be

achieved by means of the following equation:

D = 〈D〉I + (D − 〈D〉I) (10.15)

in which I corresponds to the identity tensor, the first parcel (Equation (10.16)) of

the sum to the isotropic and the second (Equation (10.17)) to the anisotropic parts

of the tensor. For sake of clarity they can be rewritten as:

Di = 〈D〉 (10.16)

Da = D − 〈D〉I (10.17)

2The sum of the three eigenvalues is also commonly referred as the trace of the tensor tr(D) =

λ1 + λ2 + λ3 = dxx + dyy + dzz

10.2. Visualization Schemes 165

The final concept necessary to properly define the FA and RA indexes is the

magnitude of a tensor, which is essentially the square product of the tensor. It can

be computed as follows:

|D| =
√
D ·D =

3∑
i=1

3∑
j=1

d2
ij = λ2

1 + λ2
2 + λ2

3 (10.18)

Based on this formulation, FA is define as the proportion of the anisotropic

component by the magnitude of D. FA index assumes values within the range [0, 1]

in which FA ≈ 1 is produced if one of the diffusion directions is conceivably large

than the others (λ1 � λ2 ≈ λ3) and 0 if the median is totally isotropic. It can

defined as described in Equation (10.19).

FA(D) =

√
3√
2
·
√
Da ·Da

√
D ·D

(10.19)

Relative anisotropy is define as the proportion between the anisotropic and

isotropic parts of the tensor. It is defined as follows:

RA(D) =

√
Da ·Da

√
Di ·Di

(10.20)

By computing those indexes for all tensors in the volume, it is possible to plot

sections of presenting such scalars. Fractional anisotropy is especially useful since

it provides a clear view of the anisotropic component of each tensor. There is still

a myriad of indexes based on the tensors proposed in the literature. For example,

the Coherence Index (CI) [92] is yet another one measuring the coherence of axons

between neighboring voxels. It is done by comparing the directions of the primary

eigenvectors. Shimony et al. [135] defined among others an index based on the

tensor’s variance.

Although informative, and in many cases sufficient for diagnostic purposes, vi-

sualization schemes based on scalar indexes limit the visualization procedure to

plotting of 2D sections of the volume. Perhaps the biggest advantage of the DTI

protocol is that it provides the basis for visualization of fibrous tissues such as the

brain white matter in a 3D space. But for that, a more complex post-processing

step is required. It is called fiber tracking. The main idea is to use the anisotropic

diffusion information encoded within the tensors to infer the pathways of fibers. The

next section reviews in more details this post-processing step.

166 Chapter 10. DTI Fundamentals

10.3 Fiber Tracking

Fiber tracking [28] is a post-processing step applicable to DWI scans. It became

very popular since it allows the visualization in three dimensions of pathways of

fibers such as muscles or neural tracts within the scanned region. Examples of fiber

tracking of the human brain are presented by Figure 10.5 in which stream lines (left)

and stream tubes (right) are used to plot the fibers. The significance of this new

imaging method is given by the fact that until the advent of DWI and consequently

fiber tracking, there was no way except dissection studies to inspect such structures.

In fact, e.g. the white matter shows as a homogeneous region in both CT and MR

scans (except for the DWI protocol). The same applies to muscles such as the heart.

Figure 10.5. High resolution fiber tracking rendering

The general idea behind fiber tracking is that, after computing the tensor’s vol-

ume, to use the diffusion direction information encoded in each tensor associated

to the voxels in the original volume to infer the direction the fibers travels. This

is possible because as stated before, in fibrous tissues the water molecules tend to

have their motion constrained by the fibrous structure, moving preferably alongside

them. Instead of directly imaging the fibers themselves, their ”shadow” represented

by the water’s molecules motion is captured. Since the distance between the actual

fiber and the molecules is very small, this method proves to be very effective.

The most common fiber tracking method is based on the idea of line propaga-

tion [11]. It is a very intuitive method. As first step, it stipulates that a set of seed

10.3. Fiber Tracking 167

points should be defined. They can either correspond to the voxel’s centers or to be

generated using any desired resolution. If the seed points do not correspond to the

voxel’s centers, an additional step regarding tensor interpolation is required. The

next step defines that for each seed point si the corresponding tensor should be com-

puted. Given the tensor ti its eigenvectors ei are estimated. The method follows by

assuming that the main diffusion direction is given by the eigenvector corresponding

to the highest eigenvalue that corresponds to the fiber alignment at the point in the

volume’s space. The next point si1 is then computed using as reference the current

point and the eigenvector ε1 by the following equation:

s1+1 = si + hε1 (10.21)

in which ε1 is the principal eigenvector and h is an incremental step value.

Figure 10.6 exemplifies the line propagation method. Starting at the seed point

x0, the main diffusion direction is assumed to be the one specified by the eigenvector

corresponding to the largest eigenvalue3 λ1. Using ε1 as directional component, the

next point of the fiber is computed using Equation (10.21) until the stop criteria

is reached. Note that for the example given, a 2D representation is presented for

sake of simplicity. However, the ellipses represented are in fact ellipsoids. It is also

interesting to note that for a single seed point, there are two possible directions to

be followed, namely posterior and anterior directions.

Figure 10.6. Example of line propagation method for one seed point

3the eigenvalues are commonly sorted in decreasing order being λ1 the largest and λ3 the

smallest.

168 Chapter 10. DTI Fundamentals

Algorithm 10.7 Fiber tracking algorithm

Input: TV tensor volume,

h incremental step

Output:a fiber tractography

1. Create initial seed points S

2. For all seed points in S

3. Identify the tensor ti corresponding to si

4. F ant← line propagate(si, TV, h, anterior)

5. F pos← line propagate(si, TV, h, posterior)

6. End

Line propagation algorithms follow both directions until the stop criterion is

reached. Regarding the stop criteria, it is important to note that, this is the main

difference between the fiber tracking methods based on line propagation concept.

The most common criterion refers to a maximum number of points for each fiber.

This is usually used in conjunction with other criteria such as when the algorithm

reaches a node with low anisotropic diffusion index. Based on this consideration,

Westin et al. [165, 164] classified the measurable diffusion in three cases, based on

the tensor’s engenvalues:

• Linear - λ1 � λ2 ≈ λ3 - the diffusion happens mainly in the direction given

by ε1;

• Planar - λ1 ≈ λ2 � λ3 - the diffusion happens mainly in the plane defined by

ε1 and ε2;

• Spherical - λ1 ≈ λ2 ≈ λ3 - the diffusion is isotropic.

Based on this definition, a plausible stop criterion is given by the line propaga-

tion algorithm reaching a note in which the diffusivity is spherical, in other words,

isotropic (See Figure 10.6). More sophisticated stop criteria rely on indices such as

FA or RA to inform about the confidence of a given node to belong to the fiber

being tracked.

Algorithm 10.7 presents a simple version of line propagation. As stated before,

the seed points are generated. They are the starting point from which each indi-

vidual fiber in the tractography is constructed. By selecting the voxel’s centers as

seed points, the method can be greatly simplified. However, the resolution will be

10.3. Fiber Tracking 169

Algorithm 10.8 Line propagate algorithm

Input: si seed point,

TV tensor volume,

h incremental step,

v direction of the propagation

Output: a fiber tractography

1. Proceed according to the direction specified in v

2. Add si to the current fiber being tracked

3. Proceed while stop criteria not reached

4. Compute the eigenvectors and eigenvalues of the tensor ti

5. Compute the next point si+1 = si + hε1

6. Add si+1 to the current fiber being tracked

7. si ← si+1

8. End

considerably poorer if compared with a grid of seed points generated using smaller

distances. The drawback of additional seed points is computational time required

for the tractography. It is proportional to the number of seed points. Another

consideration is the need of tensor interpolation in order to use seed points other

than the corresponding to voxel’s centers. This is due to the fact the original tensor

volume computed based on the DWI images has no corresponding tensor available

to that specific point in the continuous space, therefore an interpolation is needed.

Additionally, for every point found during the line propagating algorithm, interpo-

lated tensors have to be computed, since they rarely coincide to the original tensor’s

volume.

The line propagate procedure is responsible for performing the line propagation

as well to ensure the stop criteria defined by the heuristic is reached. Once the

fiber is tracked for the two possible directions (anterior and posterior) the resulting

sub-fibers are merged producing the final tracked fiber for a specific seed point.

Algorithm 10.8 shows the line propagation part.

The line propagation procedure starts by deciding to which direction (anterior

or posterior) the fiber should be tracked. This is done by deciding which direction of

the principal eigenvector to follow. The next step assigns the seed point as belonging

to the current fiber. A loop is started in which the next point is computed. This is

done by finding the corresponding tensor to the current point, in order to be able

to access their eigenvectors and eigenvalues. The new point is identified based on

170 Chapter 10. DTI Fundamentals

Equation 10.21 and subsequently added to the current fiber being tracked. The

process continues until the stop criteria are reached.

Fiber tracking algorithms suffer with high signal/noise ratio existing in raw DWI

images. It also experience problems with fiber discontinuity. It occurs when the

fiber tracking algorithm is unable to decide if the fiber actually ended or which di-

rection it should take. Crossing and kissing of fibers is another important situation

any successful fiber tracking algorithm should be able to differentiate. Fiber kiss-

ing (Figure 10.7-A) occurs when two fibers pass through a voxel and they continue

without actually intersecting each other. Fiber crossing (Figure 10.7-B) as the name

suggested and it occurs with the fibers arriving in a voxel crosses. In cases that the

algorithm is unable to decide between the two cases, erroneous fibers are poten-

tially generated, invalidating the fiber tracking as a whole. This can culminates in

incomplete or erroneous FT results, where phantom curves or outliers are prone to

appear. New ways to aid FS methods are continuously proposed to address such

problems. In fact several fiber tracking algorithms [11, 20, 28, 120, 138, 147] do

exist, implementing different heuristics to address the problems described above.

Figure 10.7. Example of fibers kissing and crossing

Although capable of creating a good non-invasive representation of living fibrous

tissues such as the human brain’s white matter, the output of fiber tracking al-

gorithms can be very confusing for visual inspection. Given the potentially large

number of fibers produced as well the 3D geometrical complexity of such maps.

During the last years, ways to classify subsets of fibers, mapping them to known

anatomical regions are the subject of intensive study. The process of subdivide the

whole of fibers into subsets, bundles or tracts is called fiber segmentation.

As stated before, the computational time required by fiber tracking algorithms

is proportional to the resolution of the tracking being processed. This is directly

translated to the number of seed points used. Recently, Imaging equipments capable

of DWI protocol come with embedded software capable of performing fiber tracking.

However, it is still the common practice to archive the raw DWI scans. An interesting

10.3. Fiber Tracking 171

algorithm based on line propagating method capable of track a whole volume with

high resolution was proposed in [118]. The merit of such work relies on the fact

it uses GPUs (Graphic Processing Units), commonly available in modern graphic

cards, to process the huge amount of computations needed during the tracking of

a whole volume. The tractographies presented in Figure 10.5 were produced using

this method.

This chapter presented a short review about the MR-DWI protocol and its most

common post-processing steps. It presented some historical data regarding this

protocol and discussed the merits of it. The underlying mathematics used by the

method was reviewed and the most common visualization schemes based on scalar

values were presented. The chapter concluded by presenting the general idea in

which is based the fiber tracking post-processing procedure. Fiber tracking is the

expected input required for any fiber segmentation method. For the purposes of this

thesis, it is assumed fiber segmentations are provided. They were generated using

the MedINRIA toolset [148] given the fact this tool is well known by the pertinent

scientific community, allowing the replication of the results presented.

172 Chapter 10. DTI Fundamentals

Chapter 11

Fiber Segmentation

With the introduction of the DWI (Diffusion weighted Images) around two decades

ago, a new helm of possibilities concerning the non-invasively investigation of the

human brain started. The advantages provided by this new imaging method cannot

be directly accessed by inspecting DWI [18] images. DWI itself has little to non

clinical value, but the information that can be extrapolated, allows the inspection

of the micro-structural anatomy of living tissues. Figure 11.1 shows from left to

right, three examples of DWI, MRI-T1 and MRI-T2 images respectively. As it can

be seen, it provides poorer anatomical quality if compared to other MRI (Magnetic

Resonance Imaging) protocols such as T1 or T2. In fact, DWI is not designed

to be an anatomical series, but as a mean to inspect the inner structure of the

brain white matter. Any successful usage of DWI series requires some kind of post-

processing. Most post-processing methods are related to visualization issues. In fact,

one of the first visualization methods attempted was the computation of fractional

anisotropy [12]. Color maps [49] based on the principal diffusion directions are also

extensively used to improve DTI visualization.

Figure 11.1. Examples of DWI, T1 and T2 MRI images

173

174 Chapter 11. Fiber Segmentation

The most popular post-processing of DWI resides elsewhere. The tensor volumes

can be further processed in order to generate detailed mappings of the white matter

fiber connectivity of the brain [126], a process called fiber tracking (FT). FT [11]

gives access to a new kind of information. First, they show a very detailed repre-

sentation of the white matter, allowing differentiation on its inner structures (hard

to be seemed in anatomical imaging). The second improvement refers to the fact

that individual fibers or bundles of them, also called FB (Fiber Bundles) represent

the connection between regions of the brain and/or the nerve system. FTs can be

tricky to visualize and interpret.

Figure 11.2. Fiber tracking produced with the MedINRIA software

Although presenting a beautiful aspect, as it can be seen in Figure 11.2, raw

fiber trackings are hard to inspect. In this particular image, colors are assigned

based on the principal diffusion direction. By inspecting a fiber in all its length, it

is possible to see the color changing together with the direction followed. Given its

three dimensional nature, and the huge amount of information translated in form

of fibers (potentially thousands of fibers), it becomes hard to extract only by visual

inspection, useful information in order to aid medical diagnosis. A new task called

FS (Fiber Segmentation) takes place in order to assign meaning to the potentially

incomprehensive set of fibers. There is a number of ways to address the FS problem.

Manual segmentation is the most used method.

11.1. Fiber Segmentation Methods 175

This chapter proposes an interactive method to ease the manual segmentation

process. Two new innovations are introduced. First, the user is presented with

a suggestion of segmentation produced by a clustering algorithm. Subsequently,

this suggestion can be refined interactively by defining pairwise linkage constraints

between fibers. A new clustering is produced, taking into account the newly defined

constraints. The process is repeated until the user is satisfied with the segmentation

result.

11.1 Fiber Segmentation Methods

The task of easing the interpretation of fiber trackings via assigning meaning to

the subsets of fibers is known as fiber segmentation. Figure 11.3 shows the general

framework for fiber segmentation based on the original DWI images. As stated be-

fore, the tensor volume computation and the fiber tracking based on it are necessary

steps. The general pipeline works as follows. Initially a DWI series is captured us-

ing a MRI scanner. It is stored and, subsequently, accessed in order to perform the

tensor computation. This process translates the set of weighted images into a single

tensor volume. Afterward, a fiber tracking algorithm such as the ones proposed

e.g. in [11, 28, 138] is used to create a set of fibers. The fibers represent the inter-

connections of the white matter, usually not visible in common scanning protocols.

The set of fibers is finally processed by means of a fiber segmentation method.

Figure 11.3. General framework for fiber segmentation based on the original DWI images

176 Chapter 11. Fiber Segmentation

This process outputs the subsets of meaningful fibers or fiber bundles. They rep-

resent the known structures connecting functional regions of the brain. The process

is intended to make easier the interpretation of the data, usually hard to inspect due

its three-dimensional complexity. Another factor complicating the interpretation is

the possibly large number of fibers. It is important to keep in mind that the object

of interest in this chapter is the fiber segmentation step.

There are three main research lines dealing with fiber segmentation: a) Interac-

tive; b) Clustering; and c) Atlas-Based. This section describes them in details.

11.1.1 Interactive Segmentation

The main idea of interactive fiber segmentation is to provide visual tools to allow the

manual selection of subsets of fibers. Fiber dissection is successfully used to generate

comprehensive 3D atlases of the white matter’s structure as shown in [159]. The

most basic tool regarding manual segmentation is the definition of ROIs (Regions

of Interest) [28]. In this process, geometrical shapes are defined by the user. These

regions are used to select only the fibers passing through it. Additional ROIs can

be specified allowing the segmentation to proceed. A good example of a tool allow-

ing interactive segmentation is the DTI track of the MedINRIA toolset [148] (see

Figure 11.4). Although the most commonly used method, the interactive fiber seg-

mentation requires extensive knowledge about the white matters three-dimensional

structure. This fact alone motivates the development of quicker and less demanding

fiber segmentation solutions.

11.1.2 Clustering Segmentation

Clustering based segmentation methods use cluster algorithms to group fibers into

clusters. The grouping is generally based on fiber similarity. This approach is

motivated on the idea that fiber sharing similar paths and, with the beginning and

the end points possibly close, should belong to the same structure. In order to

accomplish it, a suitable distance between fibers is required. In fact, a number

of different similarity measures are proposed in the literature. Ding et al. [40]

proposes a descriptor based on the mean Euclidean distance between pair of points

of two curves and the ratio of their lengths. In [29] a fiber descriptor is proposed

based on the re-parametrization of each fiber as a Frénet space curve in order to

compute the normal, curvature and torsion of each curve in different points, allowing

accurate representation of the fibers shape. This method succeeds in describing

11.1. Fiber Segmentation Methods 177

Figure 11.4. An example of commonly used software for manual fiber segmentation

well the shape of the curves, but it fails in addressing its location. The Euclidean

distance is computed between shape descriptors. Finally, in [62] mean closest point

distance - MCPD is proposed. This method is by far the most used in the literature.

In [29, 62, 176] hierarchical clustering is used to produce the segmentation. Spectral

clustering methods are also popular choices as shown in [83] and [124].

Automatic methods, although less demanding from the user point of view, im-

poses additional complexity in defining a suitable similarity measure between curves

able to account to all possible nuances introduced by the complex inner structure

of each subset of fibers.

11.1.3 Atlas Based Segmentation

Atlas based segmentation relies on the idea of mapping a FT to a standard space

(e.g. stereotaxical space) in which it can be properly correlated with structures

or regions. This approach is divided in two parts: a) atlas creation; and b) fiber

segmentation. Maddah et al. [111] created an atlas via manual/interactive methods.

It is also possible to automate at some degree the atlas creation task. O’Donnell [125]

proposed a cluster based method to generate an initial segmentation of various

subjects. Subsequently, a human interaction step is taken in order to assign labels to

each of the clusters, correlating them. Once the atlas is available, the FS is performed

by correlating the raw FT to the atlas space. This method requires an initial effort

178 Chapter 11. Fiber Segmentation

in creating the atlas to which all other FTs are mapped in order to producing a FS.

This initial manual effort is balanced by easing further segmentations.

Given the fact brain diseases can alter the brain anatomy, in some cases, very

drastically, atlas based methods can be rendered ineffective within the context of

real medical applications. This is due to the fact that, if the anatomy of a given

brain is too dissimilar to the template used by the atlas based method, a matching

(registration) can be problematic.

FT algorithms suffer from fiber discontinuity, crossing and kissing of fibers as

well to high noise ratio existing in raw DWI images. Those factors culminate in

incomplete or erroneous FT results, where phantom curves and outliers are prone

to appear. New ways to aid FS methods find room to be proposed to address such

problems. The fiber segmentation method proposed in this chapter can be deemed

as a hybrid approach. It is essentially a cluster segmentation with an interactive

component. The hybrid nature of the method will become clear in the following

sections.

11.2 Fiber Segmentation Using Constrained Clus-

tering

Automatic methods are less demanding from the user point of view, but they im-

pose additional complexity in defining a suitable similarity measure between curves.

It is required that, similarity measures to able to account to all possible nuances

introduced by the complex inner structure of each real subset of fibers. Given the

fact brain diseases can alter the brain anatomy, in some cases, very drastically, at-

las based methods can be rendered ineffective within the context of real medical

applications.

Usually, medical institutions with access to fiber tracking technology, using it in

a daily clinical basis, rely on manual segmentation. The reasons driving this choice

of tool can be summarized as follows:

• The user has the complete control of the segmenting process;

• It is easier to account to anatomical changes induced by the disease being

studied, resulting from chronic diseases, natural malformations, or anatomical

abnormalities;

11.2. Fiber Segmentation Using Constrained Clustering 179

• The user tends to feel more confident in relying on a result of which he has

the complete control over the process of obtaining it.

With these reasons in mind, a new fiber clustering method related to the model

in [29] is therefore proposed. In this approach, incorrect tracts splitting and merg-

ing are addressed via the definition of must-link and cannot-link constraints. The

method is depicted in Figure 11.5. Initially, a FT is produced generating a set F

of N fibers fi = {xi, yi, zi} individually represented by an ordered list of 3D points.

Each fiber can, potentially, contain different number N of points.

The raw fiber segmentation is presented using a 3D visualization tool, allowing

the user to define must-link and cannot-link constraints between key fibers or clus-

ters. A certain degree of knowledge about the white matter’s anatomical structure

is advised. Eventually, it is also possible to use this method without the definition

of any constraints during the first execution. Constraints can also be defined inter-

actively over an initial segmentation. The next step refers to the computation of a

similarity matrix via a pairwise distance between curves. A threshold value T must

be specified. This value controls the sensibility with which the fibers are clustered

together. Algorithm 11.9 is executed producing an initial segmentation. The partial

segmentation result is subsequently, presented to the user. At this point, new con-

straints can be defined or old ones, removed, sensibility value adjusted and a new

clustering is produced. The process continues until the user is satisfied with the FS

achieved.

Figure 11.5. General steps of the proposed fiber segmentation method

180 Chapter 11. Fiber Segmentation

Additionally, in order to deal with outliers, it is possible to define a minimum

acceptance value, in which any produced cluster is regarded as a valid cluster if and

only if it contains at least a certain number of fibers. Any fibers filtered by this

strategy are presented to the user as not clustered.

11.2.1 Computing Similarity Between Fibers

As discussed in Section 11.1, there is a number of ways to define the similarity be-

tween two fibers. In the presented experiments, the mean closest point distance [29]

is the option of choice. This is due to the fact that this measure encompasses infor-

mation about both, shape and location, into a single measurement. It is defined as

follows:

dMCPD(F1, F2) =
1

n1

n1∑
i=1

min
fj∈F2

‖fj − fi‖ (11.1)

where ‖·‖ is the Euclidean norm; and n1 is the number of points in F1.

It is computed by averaging the minimum distance between each point of a

reference fiber to the closest point into a second fiber. It is important to point out

that MCPD is not symmetric as it can be concluded by inspecting the example given

in Figure 11.6. The arrows indicate the direct closest distance from the individual

points of fiber i to the closest point in fiber j. There is no guarantee ensuring

dMCPD(fi, fj) = dMCPD(fj, fi). A way to circumvent such difficulty, is to take the

minimum of the two possible distance values as shown in Equation (11.2).

simMCPD(F1, F2) = min(dMCPD(F1, F2), dMCPD(F2, F1)) (11.2)

Based on Equation (11.2) an N ×N similarity matrix is computed. It is used as

similarity base for the hierarchical constrained clustering algorithm.

11.2.2 Constraints Assignment

The definition of constraints is proposed as a way to perform the merge or sepa-

ration of fiber and/or tracts that otherwise would be clustered erroneously. There

is a number of situations which such cases would occur. Figure 11.7 presents two

examples in that the definition of such constraints is helpful. On the left, a must-link

constraint is specified between fibers of the cortico-spinal tract in order to ensure

11.2. Fiber Segmentation Using Constrained Clustering 181

Figure 11.6. Example showing the computation of the MCP distance between fibers fi

and fj

those two sub-tracts to be merged as a single one. On the right side, a cannot-

link constraint is specified in order to ensure separation between the cortico-spinal

fibers and the colossal fibers. It is possible to specify whole subsets of fibers to be

constrained by manually defining regions. However, this is not necessary, since the

definition of a single ML constraint between two fibers of the sub-clusters suffices

to merge them.

Figure 11.7. Example of fiber constraint specification over toy datasets

Cannot-link constraints ensure that none of the fibers clustered together with

a CL constrained fiber are merged with its counterpart. This kind of constraint is

used to fine tuning in cases which specific fibers are not managed by the outlier

filter. Figure 11.10 shows a real example of the spinal cord is divided in two clusters

and, furthermore, presenting some outliers. In (A) and (B) the sub-clusters present

some outliers. Cannot-link are defined between the main bundles and the outliers

in order to remove them, in a subsequent iteration. In (C) it can be seen the sub-

clusters already without the outliers and finally in (D), they are properly merged to

182 Chapter 11. Fiber Segmentation

represent the spinal cord.

It is also important to check the transitive closure of ML and CL sets of con-

straints to ensure the triangle inequality property is not violated. Consider the

following two must-link constraints, ml(f1, f2) and ml(f2, f3). These constraints are

interpreted as f1 is must-linked to f2 and f2 to f3. Consider now that no constraint

must be violated. This fact implies fibers f1 and f3 must be collocated into the same

cluster as well, consequently a new constraint is inferred, ml(f1, f3). Similarly, con-

sider the ml(f1, f2) and cl(f2, f3). It is easy to see that f1 and f3 cannot be put into

the same cluster otherwise the cl(f2, f3) constraint is violated. The computation of

the transitive closure is very important, in order to speed up the clustering process

such as to ensure no deadlocks are encountered, given an invalid classification done

in an early stage of the clustering process.

11.2.3 Constrained Fiber Clustering

The pseudo-code presented in Algorithm 11.9 details the envisioned constrained clus-

tering method. In fact, it is an adaptation of the agglomerative clustering proposed

in [29]. The algorithm receives as input the set of fibers FT, two sets of constraints,

ML and CL and a minimum similarity threshold value T .

In step 1, the transitive closure of theML and CL sets is computed, inferring new

constraints when needed. This step is important in order to ensure the algorithm

will not come to a deadlock. The next step creates of a list of cluster representatives.

Cluster representatives are fibers that can potentially evolve into clusters. Initially

they are set to be the element appearing in CL since fibers cannot-link constrained

are expected to be in different clusters. Step 2 selects the next cluster representative

among the ones not yet assigned to any cluster. In the next step, all available fibers

are visited, and if no constraint is violated (condition checked by the CONSTR V IO

procedure, see [155] for a detailed discussion) it proceeds by checking if the actual

fiber can be assigned to the cluster representative.

11.2.4 Threshold Definition and Outlier Detection

The proposed algorithm requires a single parameter in order to define the minimum

similarity between fibers. The threshold T ultimately controls the number of final

clusters. However, it does not guarantee that a minimum number of fibers will

be assigned to each cluster. A small T value would produce many clusters, since

only very similar fibers would be clustered together. On the other hand, a large

11.2. Fiber Segmentation Using Constrained Clustering 183

Algorithm 11.9 Constrained fiber clustering algorithm

Input: FT : Fiber tracking

ML: Set of must-link constraints

CL: Set of cannot-link constraints

T : threshold

Output: N subsets C of fibers

1. compute the transitive closure over ML and CL
2. Create list of cluster representatives

3. Select next cluster representatives

4. For all fibers in FT

5. if CONSTR V IO(CC, current fiber, CL,ML)

6. Goto 4

7. end

8. if any fiber in CC has distance < T compared to the current fiber

9. assign current fiber to CC

10. end

11. if any fiber in the last produced cluster occurs in list of cluster representatives

12. remove such fiber from cluster representatives

13. end

14. end

value would potentially lead to clusters comprising of different anatomical struc-

tures. Experimentally, T = 20 seems to be a reliable choice for most FTs inspected.

This value provides a good trend between initial number of clusters and amount of

outliers.

Since the proposed method is interactive, in cases which the user identify that

two structures are erroneously merged by the algorithm, it is simple to control the

value of T and deal with the sub-structures potentially produced by introducing

ML constraints. Additionally, the user can define a minimum size acceptance level.

This value control which clusters are accepted as potentially valid. This is useful

in order to restrict the number of presented clusters once small clusters are most

likely composed by outliers or erroneously clustered fibers. The relationship between

threshold values and the number of identified clusters can be seen in Figure 11.8.

In both graphics, N.Clust represents the number of produced clusters. Accepted

clusters refer to the number of clusters accepted after outlier removal. In (A), the

outlier removal is set to 2% of the initial size of the fibers set and in (B) to 0.5%.

These graphics also show the relationship between clusters found and the number

184 Chapter 11. Fiber Segmentation

of accepted clusters for different acceptance cutoffs. Any fiber not belonging to

the accepted clusters is presented to the user as an un-clustered fiber, allowing the

definition of constraints in order to deal with them in subsequent interactions.

Figure 11.8. Threshold values ranging from 5 to 50 vs number of clusters

11.3 Experimental Results

In order to assess the feasibility of the proposed method, it is demonstrated the

effective segmentation of a set of tracts. An initial clustering such as the ones

presented in Figure 11.9. They are produced without the presence of constraints

and presented to the user. ML and CL constraints are defined manually allowing

further refinement of the FT segmentations. Figure 11.9-(A) shows the results of

T = 30 and cluster minimum size set to 0.5%;(B) is generated with T = 10 and

cluster minimum size 2.0%.

Figure 11.10 shows the refinement process in order to segment the spinal cord

fibers. (A) and (B) shows two clusters produced referring the spinal cord. In (C)

the sub-clusters are already shown without the outliers. Figure 11.10-(D) shows the

final merged tract. Bellow, the segmented fibers are projected in the coronal and

sagital views. Initially the clusters comprising such structure are identified. It can

be seen that some outliers are assigned to both sub-clusters. Cannot-link constraints

are interactive defined between the main bundle and the outliers until all such curves

are removed. Not necessarily all outliers need to be cannot-link constrained since,

there is a chance the algorithm will potentially create another sub-cluster with the

remaining fibers, in a subsequent interaction.

Once only the main sub-bundles remain, a single must-link constraint is sufficient

to merge them. For this example, as pointed before, only 1 must-link constraint and

9 cannot-link constraints are used to perform the segmentation. The final tract is

composed of 713 spinal fibers.

11.3. Experimental Results 185

Figure 11.9. Complete plot of initial unconstrained clustering

Another interesting example refers to the segmentation of the corpus collosum.

In Figure 11.11 (A), (B), (D) and (E) shows axial and coronal views of an identified

cluster. (C) and (F) shows a 3D plot of such fibers. (G) and (H) show the sagital and

axial projections of 7 colossal clusters such as the ones presented above into a single

cluster. (I) is the 3D plot of the whole tract. This particular region is relatively

difficult to segment since it represented the inner core of the brain connecting most of

its functional regions. Such complexity is translated as very dissimilar fiber shapes.

The clustering algorithm produces a series of sub-clusters containing colossal fibers.

They are visually identified by its position in relation to the anatomical reference

images. To each sub-clusters, cannot-link constraints are defined in order to remove

the subsets of fibers that not belong to this structure. Thus, must-link constraints

are defined to finally segment the whole structure in a subsequent iteration.

This chapter proposed to use pairwise linkage constraints to aid the process

of fiber clustering. A constrained hierarchical clustering algorithm was developed

to accommodate such constraints. It uses as agglomerative hierarchical clustering

strategy guided by a threshold parameter to drive the merge of similar fibers into

clusters. This method allows automatically to decide the number of clusters, it is

directly dependent of the degree of threshold similarity set by the user. The MCP

distance was used as similarity measure. The Constraints are defined over the initial

segmentation allowing interactive refining of tracts by merging clusters or removing

sets of fibers. The usage of pairwise constraints to refine the segmentation seems

to be more intuitive than the traditional method comprised by the definition of

ROIs, since it only requires the specification of likewise. It also provides a simple

way to deal with the problem of outliers, which can be removed by simply defining

a cannot-link constraint between them and the main tract. The feasibility of this

method is shown through the segmentation of the spinal and colossal fibers. The last

186 Chapter 11. Fiber Segmentation

Figure 11.10. Constraints definition for the spinal cord segmentation

example is especially interesting since it poses a major difficulty given the complex

special distribution of the fibers belonging to it.

11.3. Experimental Results 187

Figure 11.11. Iterative segmentation of colossal fibers

188 Chapter 11. Fiber Segmentation

Chapter 12

Conclusion

This thesis presented further developments in the areas of ensemble and constrained

clustering. New advances in the field of ensemble clustering were made. The impor-

tance of a consistent ensemble generation method was investigated and the central

role played by ensemble variability was identified. Therefore, new methods for mea-

surement and visualization of ensemble variability were proposed. A new lower

bound for ensemble clustering was an important contribution made by this thesis.

The application in general clustering problems of a consensus function based on

the random walker formulation was also a topic of interest visited in this thesis. A

study was presented evaluating the feasibility of the application of general ensemble

clustering methods to the problem of image segmentation combination. Motivated

by the ensemble variability study, a new consensus function was introduced based

on the sum of pairwise distances formulation. The methods of constrained and

ensemble clustering were combined in order to create a new clustering method con-

sidering both altogether. Finally, a semi-supervised fiber segmentation framework

was proposed using some of the methods investigated in this thesis.

To summarize, the main contributions of this thesis work, in order of appearance

in the text, are:

• Ensemble variability assessment. A series on contributions were made in this

field. First, various ensemble generation strategies were proposed motivated

by the fact that many works related to ensemble clustering commonly use very

simple generation methods. Subsequently an index called Cvar was introduced.

Based on the median partition formulation, it is capable of giving a measure of

how dissimilar the partitions of an ensemble are. It returns a score within the

[0, 1] range, where 0 indicates that all partitions in the ensemble are exactly

189

190 Chapter 12. Conclusion

the same, and 1 indicating a high degree of variability. However, since it is

simply a measurement of variability, such index is incapable of differentiating

if subsets of partitions present low variability. For that, a visualization scheme

based on multidimensional dimension reduction was proposed. Due to the

dimension reduction, it allows a simple 2D plotting of partition representatives,

in which closer points represent similar partitions. Similarly, points far apart

are expected to have a high dissimilarity. Using such visualization scheme,

that does not require knowledge of a ground-truth, it is possible to assess if

a given ensemble is worth to be processed by an ensemble clustering method.

For our knowledge, this is the first attempt in visualizing the variability of

ensemble of partitions.

• Ensemble clustering software. Due to the multitude of ensemble clustering

consensus functions proposed in the past few years, and the relative difficulty

found in obtaining them for study purposes, a simple software capable of

running various consensus functions was proposed. It has a very compact user

interface programmed in Matlab. It requires as input, the original dataset

and a file containing the ensemble of partitions. A set of consensus functions

were programmed and are already available. Additionally, it is easy to extend

it to accommodate new consensus functions by programming a new Matlab

function and adding a reference to it in the configuration file. Such software,

however, allows simple and quick access to most of the work developed in

ensemble clustering up to date.

• Random walker consensus function for general clustering. The random walker

based consensus function originally proposed within the context of image seg-

mentation combination was adapted to be used in general ensemble cluster-

ing problems. The main challenge was regarding the generation of a feasible

graph representation of the ensemble, necessary for the simulation of the ran-

dom walks. A graph generation scheme based on the neighborhood of closest

patterns was proposed and it was shown experimentally that a very small

neighborhood can be used, since the difference in accuracy compared to larger

neighborhoods is negligible. The method was compared with well known con-

sensus functions and, its performance was attested in both accuracy related

to a known ground-truth and computational complexity.

• Lower bound for ensemble clustering. A lower bound Γ specifically designed

for ensemble clustering was proposed to explore the question of how well the

consensus functions perform in an absolute sense, i.e. how they compare to the

unknown optimal solution or ground-truth. It was shown experimentally that

191

for some cases, in which the results attainable by a given consensus function

are closely compared to the lower bound, it is safe to assume a good result

was obtained. However, in cases which the distance between the result and the

lower bound is larger, any making claims must be carefully considered. It is

possible to interpret such cases as situations that the consensus function was

unable to achieve a good result. This can occur because a number of factors,

such as the ensemble is not representative enough or the consensus function is

not suitable for that specific application.

• Sum of pairwise distances. Motivated by the ensemble variability study, it was

observed that ensembles composed by dissimilar partitions can lead to worst

results when processed by many of the consensus functions available. There-

fore, a new consensus function was introduced. It was shown experimentally

that in most cases it can achieve very good results compared to the state of

art consensus functions.

• Constrained ensemble clustering. A new clustering method combining features

of both constrained and ensemble clustering was proposed. Since any ensemble

clustering method is comprised of two steps, namely generation and consensus,

the question was raised about the necessity/sufficiency of considering the set

of constraints only in the generation, consensus or in both steps. The main

advantage is that this new method can be used to address the situations that

exist in both approaches. It was proven experimentally that in cases where the

constraints are considered only in the generation step, constraint’s violations

are prone to occur. This means that consensus partitions can be generated in

which the set of constraints is not fully satisfied. Furthermore, the accuracy

tends to be considerably lower if compared to other methods. It was also

observed that if the constraints are considered only during the consensus step,

no constraint violations will be observed. However, the performance is in

most cases considerably lower if compared to the case in which the constraints

are considered in both generation and consensus steps. To our knowledge,

this was the first time constrained and ensemble clustering were considered

together into a single clustering framework.

• Fiber segmentation. A novel approach to fiber segmentation by applying con-

strained clustering was proposed. It consists of a baseline constrained clus-

tering algorithm that allows a reliable segmentation in an interactive manner.

The user only is required to formulate high-level knowledge in form of pair-

wise relationships. It uses a threshold based clustering algorithm that priorities

192 Chapter 12. Conclusion

the formation of clusters among neighbor fibers promoting the automatic de-

cision of number of clusters, directly dependant of the threshold value. The

MCPD distance was used as similarity measure between fibers. The feasibility

of this method is shown through the segmentation of the spinal and colos-

sal fibers. The popular segmentation methods based on clustering alone will

hardly produce high-quality segmentations such as the ones presented, espe-

cially in abnormal cases. If compared to ROI-based methods, similar results

are possible to be obtained. However, the time and effort required by the user

is considerably diminished by the proposed approach.

While the preliminary results are very promising, several issues remain. The

envisioned further developments can by summarized as follows:

• Automatic ensemble generation. It was observed that the ensemble generation

step plays a vital role in the ensemble clustering process. The development of

a framework specifically designed to automatically generate ensembles using

different ensemble generation techniques is envisioned. This framework will

be capable of measuring the variability of an ensemble during the generation

process. Based on this measurement, it will decide if a given partition is

deemed acceptable of if it be re-generated before it is incorporated to the

ensemble of partitions. This is essentially what is done in this thesis, except

for the fact the ensembles were inspected by a human evaluator;

• SoPD applied to other problems. An extensive evaluation of SoPD to ad-

dress problems other than ensemble clustering is envisioned. In special, the

computation of median graphs is a problem of interest. The median graph

computation is a very costly task, therefore it is also intended to study the

vector space embedding based approaches for median graph computation.;

• Constrained ensemble clustering using global constraints. The idea of ensemble

constrained clustering introduced in this thesis presents numerous possibilities

for future works. In special, some new methods are envisioned in which con-

straints will have their influence spread around the neighboring patterns. It

is believed that by using constraints in a global way, better results can be

obtained as the experiments presented in Chapter 8 seen to indicate. Ad-

ditionally, constrained clustering methods based on global constraints require

the specification of less constraints if compared to methods based on local con-

straints to achieve similar results. Since constraints can be user defined, any

practical application would require the number of constraints to be limited;

193

• Fiber segmentation using constrained ensemble clustering. The constrained

fiber segmentation algorithm presented in this thesis can also be further re-

fined. It is believed that the application of an ensemble constrained clustering

algorithm such as the ones proposed in this thesis can greatly improve the

performance of the fiber segmentation process. It is expected that by using

constrained ensemble clustering less iteration cycles will be required to seg-

ment individual fibers. However, the methods proposed in Chapter 9 do not

meet the requirements of real-time fiber segmentation. Faster ways to perform

ensemble constrained clustering need to be devised. A promising possibility

is the usage of a constrained version of the random walker consensus function

that is under development.

194 Chapter 12. Conclusion

Bibliography

[1] D. D. Abdala, P. Wattuya, and X. Jiang, “Ensemble clustering via random

walker consensus strategy,” in International Conference on Pattern Recogni-

tion, 2010.

[2] D. D. Abdala, “Uma metodologia para criação de cérebros médios e men-

suração da atrofia relative do córtex,” Master’s thesis, Universidade Federal

de Santa Catarina, 2005.

[3] S. Aljahdali and E. A. Zanaty, “Combining multiple segmentation methods

for improving the segmentation accuracy,” in Proceedings of the 13th IEEE

Symposium on Computers and Communications, 2008, pp. 649–653.

[4] P. Arbelaez, M. Maire, C. C. Fowlkes, and J. Malik, “From contours to regions:

An empirical evaluation,” in CVPR. IEEE, 2009, pp. 2294–2301.

[5] J. C. Atine, A. Doncescu, and J. Aguilar-martin, “A fuzzy clustering approach

for supervision of biological processes by image processing,” EUSFLAT- LFA,

2005.

[6] S. Auwatanamongkol, “Inexact graph matching using a genetic algorithm for

image recognition,” Pattern Recognition Letters, vol. 28, no. 12, pp. 1428–1437,

2007.

[7] H. G. Ayad and M. S. Kamel, “Cumulative voting consensus method for parti-

tions with variable number of clusters,” IEEE Transactions on Pattern Anal-

ysis Machine Intelligence, vol. 30, no. 1, pp. 160–173, 2008.

[8] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” in Proceedings

of the 43rd Symposium on Foundations of Computer Science, 2002.

[9] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning distance

functions using equivalence relations,” in In Proceedings of the Twentieth In-

ternational Conference on Machine Learning, 2003, pp. 11–18.

195

196 Bibliography

[10] J. Barthelemy and B. Leclerc, “The median procedure for partition,” in Par-

titioning Data Sets. AMS DIMACS Series in Discrete Mathematics, 1995,

pp. 3–34.

[11] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo fiber

tractography using DT-MRI data,” Magnetic Resonance in Medicine, vol. 44,

pp. 625–632, 2000.

[12] P. J. Basser and C. Pierpaoli, “Microstructural and physiological features of

tissues elucidated by quantitative-diffusion-tensor MRI,” Journal of Magnetic

Resonance, Series B, vol. 111, no. 3, pp. 209 – 219, 1996.

[13] S. Basu, A. Banerjee, and R. Mooney, “Semi-supervised clustering by seeding,”

in Proceedings International Conference on Machine Learning, 2002.

[14] S. Basu, M. Bilenko, and R. Mooney, “Active semi-supervision for pairwise

constrained clustering,” in 4th SIAM International Conference on Data Min-

ing, no. 4. 4th SIAM International Conference on Data Mining, 2004.

[15] S. Basu, I. Davidson, and K. L. Wagstaff, Constrained Clustering - Advances

in Algorithms, Theory, and Applications, V. Kumar, Ed. Chapman & Hall /

CRC Press, 2009.

[16] A. Ben-Hur, A. Elisseeff, and I. Guyon, “A stability based method for dis-

covering structure in clustered data,” Pacific Symposium on Biocomputing.

Pacific Symposium on Biocomputing, pp. 6–17, 2002.

[17] K. Bennett, P. Bradley, and A. Demiriz, “Constrained k-means clustering,”

Microsoft, Tech. Rep., May 2000.

[18] D. L. Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and

H. Chabriat, “Diffusion tensor imaging: Concepts and applications,” Journal

of Magnetic Resonance Imaging, vol. 13, pp. 534–546, 2001.

[19] M. Bilenko, S. Basu, and R. J. Mooney, “Integrating constraints and met-

ric learning in semi-supervised clustering,” in ICML ’04: Proceedings of the

twenty-first international conference on Machine learning. New York, NY,

USA: ACM, 2004, p. 11.

[20] A. B. M. Bjrnemo, “White matter fiber tracking using diffusion tensor MRI,”

Masters Thesis in Biomedical Engineering, Linkping University, February

2002.

Bibliography 197

[21] I. Borg and P. J. F. Groenen, Modern multidimensional scaling: Theory and

applications (Springer Series in Statistics), 2nd ed. Springer, Berlin, Septem-

ber 2005.

[22] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24(2), pp. 123–140,

1996.

[23] M. Brun, C. Sima, J. Hua, J. Lowey, B. Carroll, E. Suh, and E. R. Dougherty,

“Model-based evaluation of clustering validation measures,” Pattern Recogni-

tion, vol. 40, no. 3, pp. 807 – 824, 2007.

[24] M. Cercignani, M. Bozzali, G. Iannucci, G. Comi, and M. Filippi, “Intra-voxel

and inter-voxel coherence in patients with multiple sclerosis assessed using

diffusion tensor MRI,” Journal of Neurology, vol. 249, no. 7, pp. 875–883,

2002.

[25] Y. Chang, D. J. Lee, Y. Hong, and J. Archibald, “Unsupervised video shot

detection using clustering ensemble with a color global scale-invariant feature

transform descriptor,” EURASIP Journal on Image and Video Processing, vol.

2008, pp. 1–10, 2008.

[26] B. Chen, H. Guo, and A. W. Song, “Correction for direction-dependent dis-

tortions in diffusion tensor imaging using matched magnetic field maps,” Neu-

roImage, vol. 30, p. 121 129, 2006.

[27] D. Cohn, R. Caruana, and A. Mccallum, “Semi-supervised clustering with

user feedback,” Pittsburg, Tech. Rep., 2003.

[28] T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony,

R. C. McKinstry, H. Burton, and M. E. Raichle, “Tracking neuronal fiber

pathways in the living human brain,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 96, no. 18, pp. 10 422–10 427,

August 1999.

[29] I. Corouge, S. Gouttard, and G. Gerig, “Towards a shape model of white

matter fiber bundles using diffusion tensor MRI,” in IEEE International Sym-

posium on Biomedical Imaging: Nano to Macro, vol. 1, 2004, pp. 344– 347.

[30] T. Cox and M. Cox., Multidimensional scaling, 2nd ed. Boca Raton: Chap-

man Hall, 2001.

198 Bibliography

[31] N. Cristianini and J. Shawe-Taylor, An introduction to support vector ma-

chines : and other kernel-based learning methods, 1st ed. Cambridge Univer-

sity Press, March 2000.

[32] N. Cristianini, J. Shawe-Taylor, and J. Kandola, “Spectral kernal methods for

clustering,” in Advances in Neural Information Processing Systems, vol. 14,

2002.

[33] B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd, Ed.

Cambridge University Press, 2002.

[34] I. Davidson and S. S. Ravi, “Clustering with constraints: Feasibility issues

and the k-means algorithm,” in SIAM Data Mining Conference, 2005.

[35] ——, “Towards efficient and improved hierarchical clustering with instance

and cluster level constraints,” University of Albany, Tech. Rep., 2005.

[36] ——, “Hierarchical clustering with constraints: Theory and practice,” in Pro-

ceedings of the ninth European principles and practice of KDD, 5970.

[37] I. Davidson, K. Wagstaft, and S. Basu, “Measuring constraint-set utility for

partitional clustering algorithms,” in ECML/PKDD 2006, 2006.

[38] I. Davidson and S. S. Ravi, “Agglomerative hierarchical clustering with con-

straints: Theoretical and empirical results,” Lecture Notes in Computer Sci-

ence, vol. 3721, pp. 59–70, 2005.

[39] E. D. Demaine and N. Immorlica, “Correlation clustering with partial infor-

mation,” in Proceedings of the 6th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems. new Jersey: Princeton,

August 2003, pp. 1–13, clustering.

[40] Z. Ding, J. C. Gore, and A. W. Anderson, “Classification and quantification

of neuronal fiber pathways using diffusion tensor MRI,” Magnetic Resonance

in Medicine, vol. 49, p. 716721, 2003.

[41] C. Domeniconi and M. Al-Razgan, “Weighted cluster ensembles: Methods

and analysis,” ACM Transaction on Knowledge Discovering Data, vol. 2, pp.

17:1–17:40, January 2009.

[42] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D. Pa-

padopoulos, “Locally adaptive metrics for clustering high dimensional data,”

Data Min. Knowl. Discov., vol. 14, pp. 63–97, February 2007.

Bibliography 199

[43] S. Dongen, “Performance criteria for graph clustering and markov cluster ex-

periments,” Centre for Mathematics and Computer Science, Amsterdam, The

Netherlands, The Netherlands, Tech. Rep., 2000.

[44] J. Duarte, A. Fred, A. Loureno, and F. Duarte, “Cluster ensemble selection

using average cluster consistency,” in KDIR 2009: Proceeding of International

Conference on Knowledge Discovery and Information Retrieval, 2009.

[45] ——, “On consensus clustering validation,” in Structural, Syntactic, and Sta-

tistical Pattern Recognition, ser. Lecture Notes in Computer Science, E. Han-

cock, R. Wilson, T. Windeatt, I. Ulusoy, and F. Escolano, Eds., vol. 6218.

Springer Berlin / Heidelberg, 2010, pp. 385–394.

[46] S. Eubank, H. Guclu, V. S. Anil Kumar, M. V. Marathe, A. Srinivasan,

Z. Toroczkai, and N. Wang, “Modelling disease outbreaks in realistic urban

social networks,” Nature, vol. 429, no. 6988, pp. 180–184, May 2004.

[47] R. Fagin and L. Stockmeyer, “Relaxing the triangle inequality in pattern

matching,” International Journal on Computer Vision, vol. 28, no. 3, pp.

219–231, 1998.

[48] M. Ferrer Sumsi, “Theory and algorithms on the median graph. application

to graph-based classification and clustering,” Ph.D. dissertation, Universitat

Autònoma de Barcelona, 2008.

[49] A. Field, Y.-C. Wu, and A. Alexander, “Principal diffusion direction in peri-

tumoral fiber tracts: Color map patterns and directional statistics,” in Annals

of the New York Academy of Sciences, vol. 1064, 2005, pp. 193–201.

[50] V. Filkov and S. Skiena, “Integrating microarray data by consensus cluster-

ing,” International Journal on Artificial Intelligence Tools, vol. 13, pp. 863–

880, 2004.

[51] B. Fischer and J. M. Buhmann, “Bagging for path-based clustering,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 25, pp. 1411–1415, November 2003.

[52] E. B. Fowlkes and C. L. Mallows, “A method for comparing two hierarchical

clusterings,” Journal of the American Statistical Association, vol. 78, no. 383,

pp. 553–569, 1983.

[53] C. Fraley and A. Raftery, “Model-based clustering, discriminant analysis, and

density estimation,” Journal of American Statistical Association, vol. 97, pp.

611–631, June 2002.

200 Bibliography

[54] L. Franek, D. D. Abdala, S. Vega-Pons, and X. Jiang, “Image segmentation

fusion using general ensemble clustering methods,” in Tenth Asian Conference

on Computer Vision, 2010.

[55] A. Frank, “On kuhns hungarian method a tribute from hungary,” Research

Group on Combinatorial Optimization., Tech. Rep., 2004.

[56] A. Frank and A. Asuncion. (2010) UCI machine learning repository.

[57] A. L. Fred and A. K. Jain, “Combining multiple clusterings using evidence

accumulation,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 27, no. 6, pp. 835–850, June 2005.

[58] A. Fred, “Finding consistent clusters in data partitions,” in In Proceedings 3rd

International Workshop on Multiple Classifier. Springer, 2001, pp. 309–318.

[59] B. J. Frey and D. Dueck, “Clustering by passing messages between data

points,” Science, vol. 315, no. 5814, pp. 1 136 800–976, January 2007.

[60] J. Froment. (2010) Megawave. [Online]. Available: http://megawave.cmla.ens-

cachan.fr/index.php

[61] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density

function, with applications in pattern recognition,” IEEE Transactions on

Information Theory, vol. 21, no. 1, pp. 32–40, January 2003.

[62] S. G. G. Gerig and I. Corouge, “Analysis of brain white matter via fiber tract

modeling,” in Proceedings of the 26th Annual International Conference of the

IEEE EMBS, 2004.

[63] R. Ghaemi, M. N. Sulaiman, H. Ibrahim, and N. Mustapha, “A survey: cluster

ensemble techniques,” in Proc. of World Academy of Science, Engineering and

Technology, vol. 38, 2009, pp. 644–657.

[64] A. Gionis, H. Mannila, and P. Tsapara, “Clustering aggregation,” ACM Trans.

on Knowledge Discovery from Data, vol. 1, 2007.

[65] I. Giotis and V.Guruswami, “Correlation clustering with a fixed number of

clusters,” Theory of Computing, vol. 2, pp. 249–266, 2006.

[66] M. Gluck and J. Corter, “Information, uncertainty, and the utility of cate-

gories,” in Proc. of the Seventh Annual Conference of the Cognitive Science

Society. Hillsdale, NJ: Lawrence Erlbaum, 1985, pp. 283–287.

Bibliography 201

[67] A. Goder and V. Filkov, “Consensus clustering algorithms: Comparison and

refinement,” Proceedings of ALENEX, pp. 109–117, 2008.

[68] L. Grady, “Random walks for image segmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768–1783,

2006.

[69] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Cluster validity methods:

Part I,” ACM SIGMOD Record, vol. 31, p. 2002, 2002.

[70] ——, “On clustering validation techniques,” Journal of Intelligent Information

Systems, vol. 17, no. 2-3, pp. 107–145, 2001.

[71] J. Heinonen, Lectures on Analysis on Metric Spaces. New York: Springer-

Verlag, 2001.

[72] A. Hiaoui and S. Wang, “Median graph computation for graph clustering,”

Soft Computing - A Fusion of Foundations, Methodologies and Applications,

vol. 10, pp. 47–53, 2006.

[73] A. Hoover, G. Jean-baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. Goldgof,

K. Bowyer, D. Eggert, A. Fitzgibbon, and R. Fisher, “An experimental com-

parison of range image segmentation algorithms,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 18, pp. 673–689, 1996.

[74] J. P. Hornak. (2010) The basics of MRI. [Online]. Available:

http://www.cis.rit.edu/htbooks/mri/

[75] H. Hruschka, “Market definition and segmentation using fuzzy clustering

methods,” International Journal of Research in Marketing, vol. 3, no. 2, pp.

117 – 134, 1986.

[76] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification,

vol. 2, pp. 193 – 218, 1985.

[77] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM

Computing Surveys, vol. 31, pp. 264–323, 1999.

[78] X. Jiang, A. Münger, and H. Bunke, “On median graphs: Properties, algo-

rithms, and applications,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 23, pp. 1144–1151, 2001.

202 Bibliography

[79] X. Jiang and H. Bunke, “Optimal lower bound for generalized median prob-

lems in metric space,” in Proceedings of the Joint IAPR International Work-

shop on Structural, Syntactic, and Statistical Pattern Recognition. London,

UK: Springer-Verlag, 2002, pp. 143–152.

[80] X. Jiang, C. Marti, C. Irniger, and H. Bunke, “Distance measures for image

segmentation evaluation,” EURASIP Jornal of Applied Signal Processing, pp.

209–209, 2006.

[81] Y. Jiang, K.-J. Chen, and Z.-H. Zhou, “SOM based image segmentation,” in

Lecture Notes in Artificial Intelligence, Y. Y. G. Wang, Q. Liu and A. Skowron,

Eds. Springer, Berlin, 2003, vol. 2639, pp. 640–643.

[82] Y. Jiang and Z.-H. Zhou, “SOM ensemble-based image segmentation,” Neural

Processing Letters, vol. 20, no. 3, pp. 171–178, 2004.

[83] L. Jonasson, P. Hagmann, J. Thiran, and V. Wedeen, “Fiber tracts of high

angular resolution diffusion MRI are easily segmented with spectral cluster-

ing,” in Proceedings of 13th Annual Meeting ISMRM, ser. ISCAS. Miami:

SPIE, 2005, p. 1310.

[84] S. Kamvar, D. Klein, and C. Manning, “Spectral learning,” 2003.

[85] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for

partitioning irregular graphs,” SIAM Journal of Scientific Computing, vol. 20,

pp. 359–392, 1998.

[86] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph

partitioning: application in VLSI domain,” in DAC ’97: Proceedings of the

34th Annual Conference on Design Automation. New York, NY, USA: ACM,

1997, pp. 526–529.

[87] L. Keuchel and D. Kttel, “Efficient combination of probabilistic sampling ap-

proximations for robust image segmentation,” in Pattern Recognition, ser. Lec-

ture Notes in Computer Science, K. Franke, K.-R. Mller, B. Nickolay, and

R. Schfer, Eds., vol. 4174. Springer Berlin / Heidelberg, 2006, pp. 41–50.

[88] D.-J. Kim, H.-J. Park, K.-W. Kang, Y.-W. Shin, J.-J. Kim, W.-J. Moon, E.-C.

Chung, I. Y. Kim, J. S. Kwon, and S. I. Kim, “How does distortion correction

correlate with anisotropic indices? a diffusion tensor imaging study,” Magnetic

Resonance Imaging, vol. 24, p. 13691376, 2006.

Bibliography 203

[89] S. Kirkpatrick, J. Gelatt, C. D., and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[90] D. Klein, S. D. Kamvar, and C. D. Manning, “From instance-level constraints

to space-level constraints: Make the most of prior knowledge in data cluster-

ing,” in Proc. 19th Intl. Conf. on Machine Learning (ICML 2002), 2002.

[91] J. Kleinberg, “An impossibility theorem for clustering,” in Advances in Neural

Information Processing Systems, S. Becker, S. Thrun, and K. Obermayer, Eds.

MIT Press, 2002, pp. 446–453.

[92] T. Klingberg, “Myelination and organization of the frontal white matter in

children: a diffusion tensor MRI study,” Neuroreport, vol. 10, pp. 2817–2821,

1999.

[93] M. Kretzschmar and M. Morris, “Measures of concurrency in networks and

the spread of infectious disease,” Mathematical Biosciences, vol. 133, no. 2,

pp. 165 – 195, 1996.

[94] E. B. Krissinel and K. Henrick, “Common subgraph isomorphism detection

by backtracking search,” Software-Practice Experience, vol. 34, no. 6, pp. 591–

607, 2004.

[95] R. Kumar, M. Rawat, and A. Vashistha, “Automatic cluster detection for

mobile customer relationship management using GA-KNN conjunction ap-

proach,” International Journal of Engineering Studies, vol. 1, p. 1523, 2009.

[96] H. C. M. Law, A. Topchy, and A. K. Jain, “Clustering with soft and group

constraints,” in International Workshop on Syntactical and Structural Pattern

Recognition and Statistical Pattern Recognition, 2004.

[97] M. Leone, Sumedha, and M. Weigt, “Clustering by soft-constraint affinity

propagation: applications to gene-expression data,” Bioinformatics, vol. 20,

pp. 2708–2715, 2007.

[98] S. S. Levine and R. Kurzban, “Explaining clustering in social networks: to-

wards an evolutionary theory of cascading benefits,” Managerial and Decision

Economics, vol. 27, no. 2-3, pp. 173–187, 2006.

[99] L.Hansen and P. Salamon, “Neural network ensembles,” in IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 12, 1990, pp. 993–1001.

204 Bibliography

[100] T. Li and T. M. O. S. Ma, “On combining multiple clusterings: an overview

and a new perspective,” Applied Intelligence, pp. 1–13, 2009, 10.1007/s10489-

009-0160-4.

[101] T. Li, C. Ding, and M. I. Jordan, “Solving consensus and semi-supervised

clustering problems using nonnegative matrix factorization,” in Proceedings of

the Seventh IEEE International Conference on Data Mining. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 577–582.

[102] M. Lipczak and E. Milios, “Agglomerative genetic algorithm for clustering

in social networks,” in Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, ser. GECCO ’09. New York, NY, USA: ACM,

2009, pp. 1243–1250.

[103] D. Lopresti and J. Zhou, “Using consensus sequence voting to correct OCR

errors,” Computer Vision and Image Understanding, vol. 67, pp. 39–47, 1997.

[104] B. Luo, R. C. Wilson, and E. R. Hancock, “Spectral embedding of graphs,”

Pattern Recognition, vol. 36, no. 10, pp. 2213 – 2230, 2003.

[105] H. Luo, F. Jing, and X. Xie, “Combining multiple clusterings using information

theory based genetic algorithm,” in Proceedings of International Conference

on Computational Intelligence and Security, 2006, pp. 84–89.

[106] H. luo, F. Jing, and X. Xie, “Solving cluster ensemble problems by correla-

tion’s matrix,” in IEEE Conference on Computational Intelligence and Secu-

rity, vol. 1, 2006, pp. 84–89.

[107] M. Luo, Y.-F. Ma, and H.-J. Zhang, “A spatial constrained k-means approach

to image segmentation,” in Fourth Pacific Rim Conference on Multimedia,

2003.

[108] X. Ma, W. Wan, and L. Jiao, “Spectral clustering ensemble for image segmen-

tation,” in Proceedings of the Genetic and Evolutionary Computation Confer-

ence, L. X. et al., Ed., 2009, pp. 415–420.

[109] Y. S. Maarek, R. Fagin, I. Z. Ben-Shaul, and D. Pelleg, “Ephemeral document

clustering for web applications,” IBM, Tech. Rep., 2000.

[110] J. B. MacQueen, “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the fifth Berkeley Symposium on Mathemat-

ical Statistics and Probability, L. M. L. Cam and J. Neyman, Eds., vol. 1.

University of California Press, 1967, pp. 281–297.

Bibliography 205

[111] M. Maddah, A. Mewes, S. Haker, W. Grimson, and S. Warfield, “Automated

atlas-based clustering of white matter fiber tracts from DT-MRI,” in Med Im-

age Computing and Computing Assisted Intervention. MICCAI 2005. Cam-

bridge, MA 02139, USA: Med Image Comput Comput Assist Interv. MICCAI

2005, 2005.

[112] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics,” in Proceedings of the International Conference

on Computer Vision, vol. 2, 2001, pp. 416–423.

[113] V. Meas-Yedid, S. Tilie, and J.-C. Olivo-Marin, “Color image segmentation

based on markov random field clustering for histological image analysis,” Pat-

tern Recognition, International Conference on, vol. 1, p. 10796, 2002.

[114] M. Meila, “Comparing clusterings by the variation of information,” Learning

Theory and Kernel Machines, pp. 173–187, 2003.

[115] B. Mirkin, “Reinterpreting the category utility function,” Machine Learning,

vol. 45, no. 2, pp. 219–228, 2001.

[116] B. G. Mirkin, Mathematical Classification and Clustering. Kluwer Academic

Press, Dordrecht, 1996.

[117] N. Mishra, R. Schreiber, I. Stanton, and R. Tarjan, “Clustering social net-

works,” in Algorithms and Models for the Web-Graph, ser. Lecture Notes in

Computer Science, A. Bonato and F. Chung, Eds., vol. 4863. Springer, 2007,

pp. 56–67.

[118] A. Mittmann, T. H. C. Nobrega, E. Comunello, J. P. O. Pinto, P. R. Dellani,

P. STOETER, and A. v. Wangenheim, “Performing real-time interactive fiber

tracking,” Journal of Digital Imaging, pp. 1–13, 2010.

[119] M. Mller, D. Greverus, C. Weibrich, P. Dellani, A. Scheurich, P. Stoeter, and

A. Fellgiebel, “Diagnostic utility of hippocampal size and mean diffusivity in

amnestic MCI,” Neurobiology of Aging, vol. 28, pp. 398–403, 2006.

[120] S. Mori and P. C. M. van Zijl, “Fiber tracking: principles and strategies - a

technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 468–480, 2002.

[121] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth func-

tions and associated variational problems,” Communicantions on Pure and

Applied Mathematics, vol. 42, pp. 577 – 685, 1989.

206 Bibliography

[122] T. Netsch and A. van Muiswinkel, “Quantitative evaluation of image-based

distortion correction in diffusion tensor imaging,” in IEEE Transactions on

Medical Imaging, vol. 23, no. 7, July 2004, pp. 789–798.

[123] H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski, “Medical

image segmentation using k-means clustering and improved watershed algo-

rithm,” in Proceedings of the IEEE Southwest Symposium on Image Analysis

and Interpretation. Washington, DC, USA: IEEE Computer Society, 2006,

pp. 61–65.

[124] L. O’Donnell and C.-F. Westin, “White matter tract clustering and corre-

spondence in populations,” Eighth International Conference on Medical Image

Computing and Computer-Assisted Intervention, pp. 140–147, 2005.

[125] ——, “Automatic tractography segmentation using a high-dimensional white

matter atlas,” IEEE Transactions on Medical Imaging, vol. 26, pp. 1562 –

1575, 2007.

[126] C. Poupon, J.-F. Mangin, C. Clark, V. Frouin, J. Rgis, D. L. Bihan, and

I. Bloch, “Towards inference of human brain connectivity from MR diffusion

tensor data,” Medical Image Analysis, vol. 5, p. 115, 2001.

[127] K. Punera and J. Ghosh, “consensus-based ensembles of soft clusterings,”

Applied Artificial Intelligence, vol. 22, pp. 780–810, August 2008.

[128] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”

Journal of American Statistical Association, vol. 66, no. 846-850, 1971.

[129] X. Ren and J. Malik, “Learning a classification model for segmentation,” in

Proceedings of the Ninth IEEE International Conference on Computer Vision,

vol. 1, no. 10 - 17, 2003.

[130] A. Robles-Kelly and E. R. Hancock, “A riemannian approach to graph em-

bedding,” Pattern Recognition, vol. 40, no. 3, pp. 1042–1056, 2007.

[131] V. Roth, M. L. Braun, T. Lange, and J. M. Buhmann, “Stability-based model

order selection in clustering with applications to gene expression data,” in

Proceedings of the International Conference on Artificial Neural Networks,

ser. ICANN ’02. London, UK: Springer-Verlag, 2002, pp. 607–612.

[132] K. Rothaus and X. Jiang, “Constrained clustering by a novel graph-based

distance transformation,” in 19th International Conference on Pattern Recog-

nition, Tampa, 2008.

Bibliography 207

[133] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally

linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, December 2000.

[134] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond. Cambridge, MA, USA:

MIT Press, 2002.

[135] J. S. Shimony, R. C. McKinstry, E. Akbudak, J. A. Aronovitz, A. Z. Sny-

der, N. F. Lori, T. S. Cull, and T. E. Conturo, “Quantitative diffusion-tensor

anisotropy brain mr imaging: Normative human data and anatomic analysis,”

Radiology, vol. 112, pp. 770–784, 1999.

[136] V. Singh, L. Mukherjee, J. Peng, and J. Xu, “Ensemble clustering using

semidefinite programming with applications,” Machine Learning, vol. 79, no.

1-2, pp. 177–200, 2010.

[137] S.Rao, H. Mobahi, A. Y. Yang, S. S., and Y. Ma, “Natural image segmentation

with adaptive texture and boundary encoding,” in ACCV, 2009, pp. 135–146.

[138] P. Staempfli, T. Jaermann, G. Crelier, S. Kollias, A. Valavanis, and P. Boe-

sigera, “Resolving fiber crossing using advanced fast marching tractography

based on diffusion tensor imaging,” NeuroImage, vol. 30, p. 110 120, 2006.

[139] J. Stefanowski and D. Weiss, “Carrot 2 and language properties in web search

results clustering,” in In Proceedings of the First International Atlantic Web

Intelligence Conference. Springer, 2003, pp. 240–249.

[140] A. Strehl, J. Ghosh, and C. Cardie, “Cluster ensembles - a knowledge reuse

framework for combining multiple partitions,” Journal of Machine Learning

Research, vol. 3, pp. 583–617, 2002.

[141] A. Strehl, J. Ghosh, and R. Mooney, “Impact of similarity measures on web-

page clustering,” in Proceedings of the 17th National Conference on Artificial

Intelligence: Workshop of Artificial Intelligence for Web Search. Austin,

Texas, USA: AAAI, July 2000, pp. 58–64.

[142] Z. Su, Q. Yang, and H. Zhang, “Correlation-based document clustering using

web logs,” in In Proceedings of the 34th Hawaii International Conference On

System Sciences. IEEE Computer Society, 2001, pp. 3–6.

[143] J. Suri, S. Setarehdan, and S. Singh, Advanced algorithmic approaches to med-

ical image segmentation: State-of-the-art applications in cardiology, neurology,

208 Bibliography

mammography and pathology. Spring-Verlag, London/Berlin/Heidelberg.,

2002.

[144] A. Topchy, A. K. Jain, and W. Punch, “A mixture model for clustering en-

sembles,” in SIAM Int. Conference on Data Mining, 2004, pp. 644–318.

[145] A. P. Topchy, A. K. Jain, and W. F. Punch, “Clustering ensembles: Models

of consensus and weak partitions,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 27, no. 12, pp. 1866–1881, 2005.

[146] W. S. Torgerson, “The first major MDS breakthrough,” Psychometrika,

vol. 17, pp. 401–419, 1952.

[147] J.-D. Tournier, F. Calamante, D. G. Gadian, and A. Connelly, “Diffusion-

weighted magnetic resonance imaging fibre tracking using a front evolution

algorithm,” NeuroImage, vol. 20, p. 276288, 2003.

[148] N. Toussaint, J.-C. Souplet, and P. Fillard, “Medinria: DT-MRI processing

and visualization software,” in Proc. of MICCAI’07 Workshop on Interaction

in medical image analysis and visualization, 2007.

[149] K. Tumer and A. K. Agogino, “Ensemble clustering with voting active clus-

ters,” Pattern Recognition Letters, vol. 29, pp. 1947–1953, October 2008.

[150] C. M. University. (2010) Yippy, Inc. [Online]. Available: http://clusty.com

[151] R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward objective evaluation

of image segmentation algorithms,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 29, no. 6, pp. 929–944, June 2007.

[152] A. v. Wangenheim, R. F. Bertoldi, D. D. Abdala, and M. M. Richter, “Color

image segmentation guided by a color gradient network,” Pattern Recognition

Letters, vol. 28, pp. 1795–1803, 2007.

[153] S. Vega-Pons and J. Ruiz-Schulcloper, “A survey of clustering ensemble al-

gorithms,” International Journal of Pattern Recognition and Artificial Intelli-

gence, 2010.

[154] S. Vega-Pons, J. Correa-Morris, and J. Ruiz-Shulcloper, “Weighted partition

consensus via kernels,” Pattern Recognition, vol. 43(8), pp. 2712–2724, 2010.

[155] K. Wagstaff, “Intelligent clustering with instance-level constraints,” Ph.D. dis-

sertation, Cornell University, 2002.

Bibliography 209

[156] K. Wagstaff and C. Cardie, “Clustering with instance-level constraints,” in

17th International Conference on Artificial Intelligence for Machine Learning

(ICML), June-July 2000, pp. 1103–1110, clustering.

[157] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained k-means

clustering with background knowledge,” Proceedings of the Eighteenth Con-

ference on Machine Learning, pp. 577–584, 2001.

[158] K. L. Wagstaff, “When is constrained clustering beneficial, and why,” in As-

sociation for the Advancement of Artificial Intelligence, 2006.

[159] S. Wakana, H. Jiang, L. M. Nagae-Poetscher, P. C. M. van Zijl, and S. Mori,

“Fiber tractbased atlas of human white matter anatomy,” Radiology, vol. 230,

no. 1, pp. 77–87, 2004.

[160] R. H. Wasserman, Tensors and manifolds: With applications to physics. Ox-

ford University Press, USA, 2004.

[161] P. Wattuya, “Combination of multiple image segmentations,” Ph.D. disserta-

tion, Westfälischen Wilhelms-Universität Münster, 2010.

[162] P. Wattuya, K. Rothaus, J.-S. Praßni, and X. Jiang, “A randomwalker based

approach to combining multiple segmentations,” in Proceedings of the 19th

International Conference on Pattern Recognition, 2008.

[163] A. Weingessel, E. Dimitriadou, and K. Hornik, “Voting-merging: An ensemble

method for clustering,” in In Proceedings of the International Conference on

Artificial Neural Networks. Springer Verlag, 2001, pp. 217–224.

[164] C.-F. Westin and S. E. Maier, “A dual tensor basis solution to the stejskal-

tanner equations for DT-MRI,” International Society for Magnetic Resonance

in Medicine, vol. 10, 2002.

[165] C.-F. Westin, S. E. Maier, B. Khidhir, P. Everett, F. A. Jolesz, and R. Kikinis,

“Image processing for diffusion tensor magnetic resonance imaging,” in Medical

Image Computing and Computer-Assisted Intervetion - MICCAI 1999. Second

International Conference., 09 1999, pp. 441–452.

[166] R. C. Wilson, I. C. Society, E. R. Hancock, and B. Luo, “Pattern vectors from

algebraic graph theory,” IEEE PAMI, vol. 27, pp. 1112–1124, 2005.

[167] E. Xing, A. Ng, M. Jordan, and S. Russel, “Distance metric learning, with

application to clustering with side-information,” NIPS, 2003.

210 Bibliography

[168] Q. Xu and M. Desjardins, “Constrained spectral clustering under a local prox-

imity structure assumption,” in In Proceedings of the 18th International Con-

ference of the Florida Artificial Intelligence Research Society. AAAI Press,

2005.

[169] Q. Xu, M. Desjardins, and K. L. Wagstaff, “K.l.: Active constrained clus-

tering by examining spectral eigenvectors,” in In: Proceedings of the Eighth

International Conference on Discovery Science, 2005, pp. 294–307.

[170] R. Xu and D. W. II, “Survey on clustering algorithms,” IEEE Transactions

on Neural Networks, vol. 16, pp. 645–678, 2005.

[171] K. Y. Yeung, K. Y. Yeung, D. R. Haynor, D. R. Haynor, W. L. Ruzzo, and

W. L. Ruzzo, “Validating clustering for gene expression data,” Bioinformatics,

vol. 17, pp. 309–318, 2000.

[172] P. N. Yianilos, “Data structures and algorithms for nearest neighbor search

in general metric spaces,” in Proc. of the 4th annual Symp. on Discrete Algo-

rithms, 1993, pp. 311–321.

[173] H.-S. Yoon, S.-H. Lee, S.-B. Cho, and J. Kim, “A novel framework for dis-

covering robust cluster results,” in Discovery Science, ser. Lecture Notes in

Computer Science, L. Todorovski, N. Lavrac, and K. Jantke, Eds., vol. 4265.

Springer Berlin / Heidelberg, 2006, pp. 373–377.

[174] Z. Yu, S. Zhang, H.-S. Wong, and J. Zhang, “Image segmentation based on

cluster ensemble,” in Advances in Neural Networks, ser. LNCS, vol. 4493.

Springer Berlin / Heidelberg, 2007, pp. 894–903.

[175] O. Zamir and O. Etzioni, “Grouper: a dynamic clustering interface to web

search results,” Computer Networks, vol. 31, no. 11-16, pp. 1361–1374, May

1999.

[176] S. Zhang and D. H. Laidlaw, “DTI fiber clustering and cross-subject cluster

analysis,” in International Society of Magnetic Resonance in Medicine, 2005.

[177] X. Zhang, L. Jiao, F. Liu, L. Bo, and M. Gong, “Spectral clustering ensemble

applied to texture features for sar image segmentation,” in IEEE Transactions

on Geoscience and Remote Sensing, vol. 46, 2008, pp. 2126–2135.

[178] L. Zhengdong and M. A. Carreira-Perpinan, “Constrained spectral clustering

through affinity propagation,” in IEEE Conference on Computer Vision and

Pattern Recognition. IEEE, June 2008, pp. 1–8.

