
Dirk Feldmann

Real-Time Rendering and Synthesis of
Digital Surface Models Using Textures

of Time-Varying Extension

Münster F 2013





Informatik

Real-Time Rendering and Synthesis of Digital Surface
Models Using Textures of Time-Varying Extension

Inauguraldissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften durch den Fachbereich Mathematik und

Informatik der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Dirk Feldmann
aus Hamm

2013



Dekan: Prof. Dr. Martin Stein
Erster Gutachter: Prof. Dr. Klaus H. Hinrichs
Zweiter Gutachter: Prof. Dr. Achim Clausing
Tag der mündlichen Prüfung: 25. Juni 2013
Tag der Promotion: 25. Juni 2013



Abstract

Digital surface models represent surfaces by finite sets of sampling points based in some
plane of reference together with associated sampled values such as elevation and color.
These models can be stored as texture data and are used in many applications to create
three-dimensional renderings of the underlying surface. Due to advances in data
processing and data transmission, it has become possible to already render these surface
models while the data acquisition is still in progress. However, the texture data required for
rendering will not only vary in content, but also in extension in the course of time during
data acquisition, and thus pose a challenge to real-time rendering. This dissertation
addresses the problem of creating digital surface models by means of aerial photographs,
as well as managing and rendering such data by using textures of time-varying extension,
while the acquisition of the data about the underlying surface is still proceeding.

III



IV



Table of Contents

Table of Contents V

Preface IX

1 Introduction 1

2 Background 5
2.1 Digital Surface Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Representing DSMs . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Images, Photographs and Texture Maps . . . . . . . . . . . . . . . . . . . 9

2.2.1 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Texture Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Representing Images and Textures . . . . . . . . . . . . . . . . . . 10

2.3 Aerial Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Classification of Aerial Images . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Aerial Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 The AVIGLE Project . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Basic Principles of Photogrammetry . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Perspective Projection . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Image Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 The Flexible Clipmap 25
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The Flexible Clipmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Requirements for Handling Spatially Time-Variant Textures . . . . 28
3.2.2 The Clipmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Managing Aerial Images by Spatial Indexes . . . . . . . . . . . . . 30
3.2.4 Layout Scheme for Tiles . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Adding and Updating Tiles . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Architecture and Implementation Details . . . . . . . . . . . . . . . . . . . 39
3.3.1 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Tile Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Scheduling Tile Updates . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Tile Map and LOD Calculation . . . . . . . . . . . . . . . . . . . 43
3.3.5 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

V



Table of Contents

3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Digital Surface Model Rendering 51
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 GPU based Single-pass Ray Casting Using Clipmaps . . . . . . . . . . . . 53

4.2.1 Clipmaps for DSM Storage . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Rendering and Accelerated Ray Traversal . . . . . . . . . . . . . . 55
4.2.3 LOD-determined Ray Termination . . . . . . . . . . . . . . . . . . 58
4.2.4 Refinement of Block-sampled Heightfield Reconstruction . . . . . 61
4.2.5 Sampling Color Textures . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Evaluation Setup and Results . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Performance with Surface Refinement . . . . . . . . . . . . . . . . 68

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 GPU-based DSM Synthesis 71
5.1 Methods for Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Matching Cost Functions . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Cost Aggregation and Support Window Size . . . . . . . . . . . . 75

5.2 DEM Generation Using Space Sweep . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Input Image Selection . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 GPU-based Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 Program Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Color Texture Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Improvements of DEM Quality and Results . . . . . . . . . . . . . . . . . 84

5.5.1 Stereo Matching Errors . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.2 Smoothening DEM Data . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.3 Cost Aggregation Over Support Windows . . . . . . . . . . . . . . 86
5.5.4 Better Half Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Performance Evaluation and Discussion . . . . . . . . . . . . . . . . . . . 88
5.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Texturing Lateral Surfaces 93
6.1 Complete Color Textures for DSMs . . . . . . . . . . . . . . . . . . . . . 93
6.2 Aspects of Projective Texturing . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Aerial Image Selection . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Occlusions Between Lateral Surfaces . . . . . . . . . . . . . . . . 96
6.2.3 Multiple Projections . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

VI



Table of Contents

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Framework Design 103
7.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Flexible Clipmap Implementation . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.2 Communication in Response to the Insertion of Aerial Images . . . 113

7.3 R∗-tree Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4 GPU Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.1 DSM Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4.2 DSM Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.5 Further Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 126

8 Conclusions 127

Appendix A GPU Programs 129
A.1 Flexible Clipmap Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2 DSM Synthesis Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendix B Additional UML Diagrams 153

Bibliography 157

List of Acronyms 165

VII



VIII



Preface

This dissertation is the result of the work and research which was conducted from February
2010 to December 2012 at the Department of Computer Science at the University of Mün-
ster. Many thanks go to Prof. Dr. Klaus Hinrichs for giving me the opportunity to conduct
my research and for his kind support and guidance. I also thank Prof. Dr. Frank Steinicke
for introducing me to the “AVIGLE” project and his support at the beginning of my work,
as well as my colleagues at the Visualization and Computer Graphics Research Group for
our pleasant on- and off-topic conversations. Furthermore, I would like to give thanks to
Aerowest GmbH in Dortmund, Germany, for their kind provision of elevation data and or-
thophoto images of the city of Münster, and the numerous people who were involved in the
acquisition and provision of the original data of the data sets “Blue Marble”, “ETOPO1”
and “Mars” which are used throughout this dissertation.

This work was developed in the context of the project “AVIGLE” which is funded by the
state of North Rhine-Westphalia, Germany, and the European Union, European Regional
Development Fund, “Europe – Investing in your future”.

Münster, December 2012 Dirk Feldmann

IX



X



1 Introduction

In many application scenarios it is often required to render surfaces which are given as a
finite set of point-sampled data. The sampling points, which are assumed to be based in
some plane of reference, together with the sampled values form a digital surface model
(DSM) of the surface. An important property of a surface is the elevation which denotes
the deviation from the plane of reference (ground plane). The sampling positions and the
corresponding elevations form a digital elevation model (DEM) of the surface which can be
considered as a part of the DSM. If the DSM contains no other information about the surface
than elevation, the DEM and the DSM of a surface are identical. However, a DSM may
contain any kind of information about a surface and does not necessarily have to provide
surface elevation data. In the context of this thesis, we assume that a DSM contains at least
elevation data and consider a DSM as a DEM which may provide in addition to elevation
data further information about the surface. In other words, we consider a DEM as a minimal
DSM so that we can use the term DSM in situations in which the term DEM is used, but not
vice versa.

Digital surface models allow to produce three-dimensional (3D) renderings of the sur-
faces for many different purposes. For instance, 3D terrain models of rural and urban areas
are useful for landscape planing, surveying, field mapping and navigation. Further applica-
tions can be found, for instance, in the field of bathymetry where the elevation of the ocean
floor is used to create maps and depth profiles, or in material science, where surfaces of
materials and components are examined at microscopic scales to find structures or defects.

The creation of a DSM requires to sample the surface and to register the resulting values
with their corresponding sampling positions in the ground plane. Since it is convenient for
many applications to organize point samples on rectangular regular grids, DSM values are
often represented as 2D arrays. Such arrays can be visualized as shown in figure 1.1 and
may be used directly as texture maps (textures) for rendering.

Depending on the underlying application, different technologies for surface scanning are
available, e. g., radar based techniques, echo sounding, laser scanning devices or scanning
tunnel microscopes. Another possibility to obtain surface elevation information is to employ
photogrammetric methods which under certain conditions allow to recover 3D information
from two-dimensional images. These methods are used very often in conjunction with
orthographic aerial photographs acquired from airplanes or satellites. In particular, aerial
photographs captured from airplanes can be used to create high resolution DSMs of large
areas like entire cities. The data shown in figure 1.1 are an example of a DSM generated by
means of photogrammetric methods from aerial photographs. The field of photogrammetry
has benefited from developments in digital photography and from the increased performance

1



1 Introduction

(a) elevation data (b) color data

Figure 1.1: A visualization of two kinds of DSM data which are represented as two 2D arrays. The elevation
data (left) are also called height map in which brighter areas are more elevated than darker ones.

of computers, and it has become possible to extract accurate elevation data automatically
from aerial images.

A widely used method for surface rendering is to derive a polygonal mesh from the eleva-
tion data contained in a DSM and to use traditional rendering techniques based on triangle
rasterization. A triangular mesh is an alternative representation of a surface and can be cre-
ated by triangulating the original point-sampled data. If the DSM contains additional data
about the surface, it is common practice to represent this information in textures and to map
them onto the mesh. As the generation of high quality meshes and matching textures can be
a time-consuming task, this is preferably done when the data acquisition has finished and no
further data are added to the DSM. Otherwise the shape and the size of the corresponding
mesh and additional textures may have to be modified each time the underlying data change.
Furthermore, a DSM may become very large and may have sizes of several hundred giga-
bytes, which makes it necessary to partition the data in order to make the model manageable
by graphics hardware with its limited physical memory. The task of finding an appropriate
partitioning can be dealt best with after the final extensions of the domain covered by the
DSM are known. Therefore the creation of meshes and textures is usually postponed until
after the data acquisition has finished.

Rendering digital surface models during their creation and while the acquisition of the
underlying surface data is still proceeding has the advantage that the creation process can
be monitored and instant feedback can be given about the acquired data and the underlying
surface. This requires that the source data are directly available for further processing. In
the case of traditional aerial photography, the airplane usually has to land before the stor-
age devices with the acquired images can be accessed for further processing. By exploiting
advances in wireless communication, which enable the transfer of even large amounts of
data over greater distances, the creation of digital surfaces models with matching textures
and their rendering can already be started while the image acquisition is still in progress.
The creation of DSMs which contain elevation data and matching color textures by means

2



of photogrammetric methods is not restricted to a certain image acquisition technique. It is
sufficient if the images look like aerial images and have similar properties. For instance, ap-
propriate photographs can be captured by suitable unmanned aerial vehicles (UAVs) instead
of airplanes. Small UAVs offer an attractive alternative for this task, because they are less
expensive and can capture images from a wider range of perspectives and at even higher
resolutions due to their potentially lower operational altitudes. A drawback of such UAVs
is their sensitivity to drift and that they may be less capable of following strict routes above
the ground, which is important in traditional aerial photography. A rendering of a DSM
which is directly derived from the acquired images can provide an operator with additional
information for controlling the flight or for directing a UAV to an area of interest.

Another problem specific to the rendering of digital surface models in a virtual 3D envi-
ronment arises when using orthophoto textures only. Orthographic images depict surfaces
from an orthographic point of view and intentionally do not provide any information about
(lateral) surfaces which are perpendicular or near-perpendicular to the plane against which
the elevation is measured, e. g., frontages of buildings in urban areas or canyon walls. Fig-
ure 1.1(b) contains an example of such an orthophoto texture. Such images are amongst
others very useful for creating schematic maps or for enhancing traditional maps with pho-
tographic details. In virtual 3D environments, however, a digital surface model is frequently
not shown from an orthographic point of view, and the lack of color information on lateral
surfaces becomes clearly visible to the viewer. The problem is mitigated, for example, in
case of rendering certain kinds of digital terrain models, in which any elevation information
resulting from vegetation, buildings or structures other than terrain has been removed. How-
ever, in virtual 3D views of cliffs or canyons, the missing color information is still apparent.
In order to provide color information for lateral surfaces, oblique aerial photographs can
be captured from airplanes by means of specially arranged camera systems or from suitable
UAVs, and the images can be incorporated into 3D renderings.

This thesis addresses the problem of creating digital surface models and matching color
texture maps from images similar to aerial photographs and managing and rendering such
DSMs. But instead of waiting with the processing of a static set of images until after their
acquisition has been completed, our goal is to process a dynamically changing set of images
in order to enable the rendering of the corresponding surface already during the acquisition.
The rendering poses a challenge since not only the sampled elevation and color data may
change during acquisition, but also the domain covered by the digital surface model and thus
the extension of the textures may vary over time. We assume vertical and oblique aerial pho-
tographs as source images which are captured by UAVs at low altitudes and immediately
transferred by wireless networks to a ground station for processing. However, our methods
are not confined to a certain image acquisition technique. The requirements for the source
data and detailed background information about the underlying concepts of our work as well
as definitions of important terms are given in chapter 2. Chapter 3 describes our work on
managing growing texture data by means of a Flexible Clipmap (FCM). This data structure
was developed in order to provide partitioning and level-of-detail concepts for very large

3



1 Introduction

texture data sets that can vary in size during the course of time. By design, the FCM is also
capable of accelerating our DSM rendering process which is based on ray casting and is
explained in chapter 4. The method we use to obtain elevation data from appropriate source
images by means of photogrammetric techniques is presented in chapter 5 and relies on a
3D space sweep. In chapter 6 we present a solution to the problem of missing color in-
formation on lateral surfaces in DSMs which utilizes projective textures and some features
specific to ray casting. The framework of implemented data structures and algorithms with
its main components and properties is described in chapter 7. Our work concludes with a
discussion and summary in chapter 8.

The following papers which have been published previously contain parts of the contri-
butions of this thesis: The FCM as described in chapter 3 has been presented at the Inter-
national Conference on Computer Graphics Theory and Applications (GRAPP) [28]. The
work on managing and rendering texture maps of time-varying sizes by means of the FCM
is part of papers presented at the Joint Virtual Reality Conference (JVRC) [75] and at the
International Symposium on VR innovation (ISVRI) [74]. Chapter 4 is a detailed presenta-
tion of the DSM rendering method that has been published in the digital proceedings of the
Computer Graphics International (GGI) conference [27].

4



2 Background

This chapter serves as an introduction into various topics that are essential for the remainder
of this dissertation. The terms digital surface model, image and texture are important and
used throughout this work, but their meaning in the field of computer graphics is to a certain
degree context-sensitive. Hence in sections 2.1 and 2.2 we discuss these terms and specify
how we understand them. Since aerial images form the basic input to the methods presented
within this thesis their most important properties and aspects of their acquisition are covered
in section 2.3. In section 2.4, we present the different coordinate systems that are used
throughout this thesis and how they are related to each other. Section 2.5 introduces the
basic principles of photogrammetry and the underlying mathematical formulations.

2.1 Digital Surface Models

The term digital surface model (DSM) is not clearly defined, because it depends on the
context of its usage within the different sciences and applications, as well as the underlying
data. In geoscience and photogrammetry, several closely related terms are used, which are
sometimes considered to be synonyms, but may also refer to distinct types of models in
different disciplines. According to Li et al. [46, pp. 6–9], common terms are

ä digital terrain model (DTM)

ä digital elevation model (DEM)

ä digital terrain elevation model (DTEM)

ä digital height model (DHM)

ä digital ground model (DGM)

The authors consider DTMs as more complex models that may have additional information
about the terrain, such as land-use plans, road networks and natural features, and they view
a DEM as a special case of a DTM where the only available information is the elevation.
DTEM, DHM and DGM are taken as synonyms for DEM, but interestingly, Li et al. do not
use the term digital surface model at all.

In contrast, Kraus [42, p. 354], who discusses the earth surface from a photogrammetric
point of view, distinguishes DTMs, which contain only elevation information about the ter-
rain, but not about other structures like vegetation or buildings, from DSMs, which contain
elevation data for these additional structures.

For the mere purpose of rendering and managing, the actual semantics of the underlying
surface data is less important and our methods are not limited to terrains or applications in

5



2 Background

geoscience. Most of the methods presented in this work can be applied to data acquired
from surfaces at microscopic scales, e. g., by means of a scanning tunnel microscope, or to
other complex surfaces such as reliefs and friezes on buildings or works of art. Therefore
we prefer the general term surface and formally define a DSM within the context of this
thesis as follows:

Definition: Digital Surface Model (DSM)

A digital surface model (DSM) is a finite set of n-tuples

DSM = {(t1, t2, t3, . . . , tn) ∈ Rn}

for which t1 = x and t2 = y denote the position of a point p = (x, y) in a section
D ⊂ R2 of the zero plane, and t3 = h denotes a deviation at p from the zero plane, i. e.,
an elevation or depression. Any two distinct n-tuples in the DSM have to correspond
to different points in D, i. e.

∀s = (s1, . . . , sn), t = (t1, . . . , tn) ∈ DSM : s1 = t1 ∧ s2 = t2 ⇒ s = t

This definition allows the tuples of a DSM to contain further scalar values besides the spatial
position information (x, y, h). In case of n = 3 the DSM is identical to a DEM, but if
n > 3, other information about the surface may be part of the DSM. A DEM is formed
by projecting the n-tuples of the DSM to their first three components. When indicated, we
will use attributes like color textured or simply textured DSM, if the additional information
is color, for example, in order to emphasize the presence of additional surface information
and its meaning. Otherwise the terms DSM and DEM are used interchangeably and the
respective distinction can be inferred from the context or is not relevant at that point. In
addition, the zero plane of a DSM will also be called ground plane within this thesis.

Though our comprehension of a DSM is very similar to the one of a DTM by Li et al.
in [46], the difference is that our definition does not force the kind of surface to be ter-
rain. Furthermore, it requires at least one scalar value to be present in every DSM that has
the semantics of elevation or depression at point p relative to the ground plane in which
p is located (height value). The latter aspect is more important for the interpretation of
the renderings generated by our methods than for the techniques themselves. It is also
intended to make our definition somewhat distinct from the concept of fields as used in
physics, although the difference may be rather subtle. For example, a finite set T of triples
(x, y, h) ∈ R3 may be interpreted as a DSM and treated in the same way. But if h denoted,
e. g., air pressure or some kind of density instead of a height value at location (x, y), the
interpretation of T as a DSM and the resulting renderings might be less reasonable.

2.1.1 Representing DSMs

From a mathematical point of view, there is no reason to confine a DSM to be a finite set
of n-tuples as in the definition given above. But most surfaces in real-world applications,
especially in geoscience, are too complex for creating analytical models by means of math-
ematical methods, and therefore surfaces are usually sampled at discrete locations, which

6



2.1 Digital Surface Models

(a) triangular regular network (TRN) (b) triangular irregular network (TIN)

Figure 2.1: Illustration of two different types of triangular networks for representing DEMs having 16 sam-
ples on a regular grid (left) and with an irregular distribution (right).

results in a representation as finite sets of sampling points (cf. Li et al. [46]). The size of
these sets is limited by the spatial resolution of the employed sampling technique and the
time spent on sampling, and furthermore by the amount of available physical memory when
the data are stored for processing by computers. Depending on the sampling method, the
sampled values are distributed either irregularly, or arranged on a regular orthogonal grid.

According to our definition, the first three components of each sample correspond to a
point in 3D Euclidean space. Sets of such points can be represented as triangular regu-
lar networks (TRNs) or triangular irregular networks (TINs). Depending on the sampled
data and the application, one may prefer to create either TRNs or TINs, but both types
of networks can be converted into each other by means of re-sampling and sample selec-
tion. An illustration of DEMs represented as triangular networks is given in figure 2.1.
The generation of TRNs from DSM samples given on a regular grid is straightforward, but
not necessarily unique, whereas TINs are frequently generated by a process called trian-
gulation, like Delaunay triangulation, for example. The Delaunay triangulation for a set of
points in Euclidean space is the dual graph of its Voronoi diagram, which is also known as
Dirichlet tessellation or Thiessen polygons [46, pp. 75–85], and it is unique, if and only if
all points are in general position [17, pp. 189–190]. More details on triangulation can be
found in [17], for instance.

Triangular networks are the most basic polygonal meshes that can be used for rasteri-
zation based rendering, and many algorithms for their creation are available. Due to the
requirements of graphics hardware, triangular meshes are very common in computer graph-
ics and used exclusively in numerous applications. However, if these meshes are used for
rasterization-based rendering in a virtual 3D environment, triangles which are small, e. g.,
because they are distant from the viewer, may become projected to less than one screen
pixel and therefore will cause aliasing. This effect is usually avoided by using level-of-
detail techniques in order to generate meshes in which the size of triangles increases with
the distance from the viewer. Since the creation of appropriate triangular meshes requires
extra processing of the DSM samples, this representation is less appropriate for our appli-
cation in which the DSM may frequently change. We prefer to directly employ the DSM

7



2 Background

samples and refer to [46] for further details on the representation of DSMs respectively
DTMs as triangular networks.

If the sampled DSM values are given on a regular rectangular grid, they are prevalently
stored as arrays for processing by computers. The whole DSM may be stored as one in-
terleaved array where each element of the array corresponds to one complete n-tuple. As
an alternative, the DSM can be stored in multiple arrays all having the same number of
elements where each element corresponds to one or more components of the DSM n-tuple.
The individual arrays may be stored in sequence in a contiguous block of memory and can
be interpreted as a two-dimensional (2D) array where the second index is limited by the
number k of arrays which store the data. The two different possibilities for splitting one
array of 4-tuples are depicted in figure 2.2. The array in figure 2.2(a) is split into k = 4
arrays of single values. In figure 2.2(b), the same array is divided into k = 2 arrays, where
the first array contains single values and the second one contains triples. By splitting the
DSM data with respect to their semantics into k different arrays, we can consider each of
these arrays as a layer of the DSM, and each layer depicts a certain feature of the surface,
e. g., the DEM layer which contains elevation data and is present in all of our DSMs.

(a) k = 4 arrays (b) k = 2 arrays

Figure 2.2: Interleaved arrays which store n-tuples may be split up into 1 < k ≤ n arrays that can be treated
as 2D arrays. Each of the arrays has the same number of elements, but the elements themselves may have
different sizes.

If a DSM given on a regular rectangular grid in Cartesian coordinates is stored in an
array, random access to individual DSM values for a given location in Euclidean space or
a certain grid position (i, j) ∈ N2 is very efficient1. On a regular rectangular grid, which
will be called grid for simplicity for the remainder of this dissertation, the spacings between
each two samples are uniform and fixed, and each sample position p = (x, y) ∈ R2 can be
represented as

p = (x, y) = (i · gx, j · gy) + p0

where g = (gx, gy) ∈ R2 denotes the grid spacings in x- respectively y-direction and
p0 = (x0, y0) is the offset of the grid in the reference coordinate system of the DSM at
grid position (i = 0, j = 0). (i, j) is the grid position within the grid of size W ×H , and

1Throughout this thesis, N will be considered to include zero, i. e., N = N0.

8



2.2 Images, Photographs and Texture Maps

W,H ∈ N denote the grid size2 in x-direction respectively in y-direction in terms of sample
points so that 0 ≤ i < W and 0 ≤ j < H .

Usually p0, W , H and g are constant for DSMs and hence can be stored separately.
This allows to drop the original sample positions p = (x, y) from the DSM representation
and to reduce the amount of memory that is required for storage, because at grid position
(i, j), p can be restored by means of the grid spacings g and a reference position p0. Note
that this reduction of data cannot be achieved for irregularly sampled data and the TIN
representation, and p is therefore made a part of a DSM in our definition. As the arrays
in both layouts described above are contiguous sections of linear computer memory, grid
samples are conceptually stored either row- or column-wise.

Within this thesis, we use the layered and reduced representation of DSMs as 2D arrays.
The employed DSMs either consist of only a single DEM layer or have a second color
texture layer which contains color information about the surface. We use row-wise storage
and index the nth element of a DSM array by n = j ·W+iwhere i and j denote the column
and the row of the grid, respectively. The rows and columns of a grid are indexed starting
with zero and grid position (i = 0, j = 0) is conceptually located at the left lower corner.

2.2 Images, Photographs and Texture Maps

The terms image and texture map, or texture in short, have already been used several times
and are important in the context of our work3. In the area of computer graphics, these two
terms can be well differentiated, but their synonymous usage is acceptable if a distinction
is not required or only of minor importance. This is justified by the fact that a large number
of textures which are used in computer generated renderings are images. Since we make
use of textures that are not images in the proper sense in order to handle DSMs, we want to
distinguish images from textures and assign different meanings to the two words.

2.2.1 Images

A digital 2D raster image can be defined as a mapping I of spatial locations (x, y) given on
a raster D ⊂ R2 to a finite set Q of values:

I : D ⊂ R2 → Q, (x, y) 7→ I(x, y)

Q may be either a finite set of discrete scalar values or a finite set of tuples of discrete
scalar values. In the former case, the images are frequently called monochrome, and in
the latter case they are called color images (see section 2.2.3). The elements of a digital
image are called pixels and the values from the co-domain Q of I are often referred to as
intensities [34, pp. 1]. This definition allows to interpret any such function I as an image.

2In this dissertation, we use the notation x× y with scalar quantities x and y to emphasize the 2D character
of sizes of 2D structures such as grids, textures, matrices and 2D arrays. The notation x · y is used in situations
where the actual result obtained by the multiplication of the two values x and y is meant.

3Within this dissertation, the terms image and texture always refer to digital data in the field of computer
graphics and not to any analog photographic images or physical objects.

9



2 Background

But within this thesis, we use the term image to imply that the pixels are associated with real-
world objects or scenes in the sense of a photographic image. In addition, we assume that
the domainD of I is always a Cartesian grid. The actual image acquisition is less important
than the content of an image and its property that the pixels are related to real-world objects.
According to our interpretation, the term image therefore comprises photographs acquired
by still image cameras, as well as, for instance, computer generated renderings of real-world
objects.

2.2.2 Texture Maps

According to Shreiner [71, p. 390], we consider a texture map, or simply texture, as a rect-
angular array of texels. For a long time, these arrays have been used in computer graphics
prevalently for adding properties such as color, surface normals, reflectance or roughness
to surfaces in order to reproduce a certain texture in the proper sense (cf. [83, pp. 223]).
Because of the evolution of graphics processing units (GPUs), and in particular due to their
increasing employment for general purpose computing (GPGPU computing), the interpre-
tation of these arrays as textures according to their original meaning has become imprecise
in many cases, but the term texture is still prevailing [59].

By the term texture within the scope of this thesis, we only imply that these arrays can
be handled by graphics hardware in the same way like traditional texture maps. The texels
are not limited to a certain kind of semantics, in contrast to our interpretation of pixels in
images. Texels normally need to have a certain format (see section 2.2.3) in order to be
suited for processing by graphics hardware. In addition, the maximal extension of a texture
which can be employed by graphics hardware, i. e., its lateral sizes in terms of texels along
each direction, is confined by some manufacturer specific limits. Typically, textures are
conceptually two-dimensional arrays (2D textures), but one-dimensional (1D textures) or
three-dimensional (3D textures) arrays are also common. If nothing else is stated, we use
the term texture as an abbreviation for 2D texture.

2.2.3 Representing Images and Textures

Depending on the co-domain Q of the mapping I which defines an image, a single pixel
may be a single scalar value or a tuple of scalar values. A single texel from a texture may
likewise be either a single scalar value or a tuple of scalar values. The number of bits
required to store one pixel or one texel is called depth. The pixel format respectively texel
format is defined by the depth and, if there is more than a single value, by the order of
values, i. e., the order of the elements of the tuple. Pixel and texel values are in most cases
related to (discretized) intensities from the visual electromagnetic spectrum [34, pp. 1], and
we call them grayscales if there is only one value per pixel respectively texel. If there are
multiple values for different wavelengths, e. g., red, green and blue in the RGB color model,
the values are called colors. The different pixel and texel formats, which are frequently used
in the context of our work, and their respective labels, properties and short descriptions are
given in table 2.1.

10



2.3 Aerial Images

label
depth
[bits]

no.
values data type description

I8 8 1 BYTE
unsigned 8-bit intensity values, primarily used for
grayscale images and textures

F32 32 1 float
32-bit IEEE 754 floating point values, mainly used for
storing elevation data of a DSM

R8G8B8 24 3 BYTE
triple of unsigned 8-bit values, one each for the red,
green and blue components in the RGB color model

R8G8B8A8 32 4 BYTE
quadruple of unsigned 8-bit values, same as R8G8B8
but with an additional alpha channel for controlling the
opacity

Table 2.1: Description of pixel and texel formats that are used within this thesis. The column data type de-
notes the interpretation of the bit pattern of a single value.

Conceptually textures and images are 2D arrays of size Tu×Tv where Tu, Tv ∈ N denote
the number of elements in each row respectively column and Tu, Tv > 0. Their elements
are stored in linear computer memory and are accessed in the same way as the elements
of DSM layers (see section 2.1.1). In contrast to the prevalent convention in the field of
image processing, we assume the first row of an image (resp. texture) to be located at the
bottom of the image (resp. texture) rectangle instead of at its top, so that the first pixel (resp.
texel) is located at the bottom left. In this way, we can interpret the data from any DSM
which is given in the reduced layered array representation as described in section 2.1.1 as
a set of textures and the DSM samples of each layer can be identified with texels. Layers
which hold DEM data are interpreted as F32 textures (DEM textures), and layers with color
information as R8G8B8 or R8G8B8A8 color textures. If necessary, the data types of DSM
layers are converted in order to match the required texel format.

We can summarize the differences between images and textures according to our defini-
tions as follows: if a pixel format is compatible with a texel format, or if it can be converted
accordingly, we can take any image for a texture. A texture, however, cannot be taken for
an image in general, because even if a texel format is a valid pixel format, texels may not be
associated with real-world objects, in contrast to the pixels of an image. This is a common
case in GPGPU computing, for instance, but it already appears somewhat odd to us if we
interpret a DEM texture as a grayscale image, because the content of the image may not be
comprehensible without any further explanation.

2.3 Aerial Images

In this thesis we focus on DSMs which are derived from aerial images by means of pho-
togrammetric methods. The most common source of aerial images are digital photographs
which are traditionally captured from airplanes. Miniature UAVs (mUAVs) have become a
less expensive alternative to conventional airplanes [25] and are increasingly used for civil
purposes, e. g., for surveying archaeological sites [8, 21, 22, 68]. The actual image acquisi-

11



2 Background

tion is less important for our methods than the fact that the images look like aerial images,
but we intend to employ primarily aerial images captured by mUAVs.

This section gives a classification of aerial images and outlines the differences in image
acquisition by means of mUAVs and airplanes. According to our interpretation of images,
the terms photograph and image are used interchangeably in this section (cf. section 2.2).

2.3.1 Classification of Aerial Images

According to Paine and Kiser [60, pp. 28], we use the attribute aerial in contrast to ter-
restrial to refer to all kinds of images that are captured from an arbitrary platform in the
air, including scaffolds or cranes, for example, and classify them likewise into vertical and
oblique images.

The ground plane is the virtual plane which is oriented in such a way that the normal ~ng of
this plane has the opposite direction as the vector of gravity which points towards the Earth’s
center. Let ~nI denote the normal of the image plane of an aerial image I in world space as
illustrated in figure 2.3. ϕ = ] (~nI ,−~ng) ∈

[
−π

2 ,
π
2

]
denotes the angle enclosed between

~ni and −~ng. According to [60], an aerial photograph is called vertical if 0 ≤ |ϕ| < ϕmax,
and oblique if ϕmax ≤ |ϕ| ≤ π

2 where ϕmax = π
60 = 3◦. Paine and Kiser call a vertical

aerial photograph true vertical if |ϕ| = 0, and tilted otherwise. Oblique photos are called
low oblique if they do not depict the horizon, and high oblique if the horizon is visible.

(a) vertical aerial photograph (b) oblique aerial photograph

Figure 2.3: Aerial images are classified according to [60] as vertical aerial images (left) and oblique aerial
images (right) by the angle ϕ enclosed between the normal of the image plane ~nI and the inverse normal of
the ground plane −~ng .

The two kinds of aerial images have different advantages over each other. It is easier, for
instance, to measure horizontal distances and areas in vertical photographs, and they can
be used as substitutes or enhancement for conventional schematic maps. Oblique images,
on the other hand, provide a more natural perspective and depict structures perpendicular
to the ground [60, pp. 29–30]. Because of their different properties, we use vertical aerial

12



2.3 Aerial Images

images as input data for generating DEM data and orthophoto textures, whereas oblique
aerial images are exclusively used for texturing lateral surfaces in DSM renderings. These
two aspects are the subjects of chapter 5 and chapter 6 respectively.

2.3.2 Aerial Image Acquisition

Aerial images are traditionally acquired as vertical photographs from airplanes. Airplanes
are capable of keeping approximately constant heights above ground and following fixed
paths. This way, a certain overlap between the vertical photographs can be guaranteed,
which is important for reconstructing 3D information as described in section 2.5. The cam-
era systems which are employed in traditional aerial photography are usually equipped with
sophisticated optical lens systems and mountings in order to capture high resolution im-
ages. These systems weigh several tens of kilograms (e. g., [89]), but can be easily carried
by airplanes. The acquired photographs are preferably stored in uncompressed data formats
on hard disk drives or solid state disks and cannot be accessed until the plane has landed.

Vertical and oblique aerial photographs can also be captured by UAVs [39]. While the
flight characteristics and capabilities of acquiring aerial photographs of larger UAVs are
similar to those of conventional airplanes, mUAVs are more maneuverable, but may not
be able to carry heavy camera systems as payload [82, 84]. Hence, the cameras mounted
to mUAVs may provide images at lower resolutions, but this can be compensated by their
potentially lower operational altitudes. With mUAVs it is as also possible to capture several
images from different perspectives, so that the same points of a surface are depicted in
multiple images and stereo matching methods can produce better results, as explained in
chapter 5. As smaller UAVs are more prone to drift and may additionally not be capable
of following fixed paths at constant altitudes, the images will likely be captured in a less
organized manner than in case of traditional aerial photography.

For the purpose of recovering 3D information from photographs, it is essential to have
the camera’s accurate position and orientation in space. Position and orientation data of
airplanes and UAVs are usually available by Global Positioning System (GPS) and inertial
measurement units (IMUs) and can be linked to the images. Mapping camera systems
borne by airplanes are in fact designed for using data from IMU and GPS devices [89], [42,
pp. 150–161].

2.3.3 The AVIGLE Project

The Avionic Digital Service Platform (AVIGLE) project [64] is a cooperation of seven part-
ners from the high tech industry and three universities and is funded by the ministry of In-
novation, Science and Research of the State of North Rhine-Westphalia, Germany, and the
European Union. The goal of the project is amongst others to develop a multi-functional
mUAV for civil purposes with a total weight of approximately 10 kg. By design, the air-
craft is capable of horizontal and vertical flight, as well as hovering in place, and should
operate in heights of up to 300 meters above ground and for about 60 minutes. The payload
of ≈ 1 kg weight is intended to be either equipment for providing cellular network com-
munications, or a calibrated digital still image camera for capturing high-resolution digital

13



2 Background

photographs. Aerial images together with orientation data from the GPS and IMU devices
of the mUAV can be transmitted directly to the operators via wireless network technology.
This allows to create DSMs for rendering in a virtual 3D environment while the image ac-
quisition is still in progress. Thus, the operators can be immediately provided with a recent
overview of the surveyed area in order to direct the aircraft to locations of special interest.

As the development of the aircraft is conducted in parallel to our methods for creating
and rendering DSMs during an ongoing image acquisition, and has not finished at the time
of writing this dissertation, efforts have been made to simulate the acquisition of aerial im-
ages by mUAVs [75]. The simulation of aerial image acquisition basically comprises the
preferably photorealistic rendering of 3D models of cities or landscapes, and the provision
of individual frames together with their metadata. These metadata are the position, orienta-
tion and some additional parameters of the virtual camera at the time of image acquisition.
In case of the AVIGLE project, aerial images are accessed by means of a database manage-
ment system which allows to separate the image acquisition process from our methods for
rendering and generating DSMs.

2.4 Coordinate Systems

Within this thesis we only employ Cartesian coordinate systems in 2D and 3D, but with
different orientations and labels for the axes.

Coordinates from real world space, e. g., locations where images were captured, are as-
sumed to be precise and referenced to a 2D geographic coordinate system. The coordinates
are assumed to be provided, for instance, by GPS with eventually applied corrections and
accuracy enhancements. We prefer such coordinates in UTM format over WGS84 or sim-
ilar, because UTM values are already given in a Cartesian coordinate system [60, p. 181].
Height values and altitudes are both assumed to be given relative to a plane of reference
based in the xy-plane respectively east-north-plane at z = 0 of a 3D coordinate system as
depicted in figure 2.4(a). The unit of measurement and scale of the three axes has to be
the same, e. g., meter. For convenience, we express all real world coordinates in the virtual
world coordinate system Σ, which is shown in figure 2.4(b). The scale and the unit of mea-
surement of Σ are the same as the ones of the real world coordinate system, and Σ is simply
referred to as world coordinate system throughout this work.

For cameras which are used to capture real world images, as well as virtual cameras, we
use the local 3D Cartesian coordinate system Σ′. Σ′ is shown in figure 2.4(c), the center
of projection (CoP) of an image is located at its origin. The basis of Σ′ is expressed in Σ
by ~r = (rx, ry, rz) (right-vector), ~u = (ux, uy, uz) (up-vector) and ~v = (vx, vy, vz) (view-
vector). In contrast to Σ, Σ′ has a negative orientation (left-handed coordinate system), i. e.,
the determinant ∣∣∣∣∣∣

rx ux vx
ry uy vy
rz uz vz

∣∣∣∣∣∣ = (~r × ~u) · ~v < 0

14



2.5 Basic Principles of Photogrammetry

is negative [1, p. 901]. Due to its positive orientation, Σ is called a right handed coordinate
system.

(a) real world coordinate
system

(b) (virutal) world coor-
diante system

(c) camera coordinate sys-
tem

Figure 2.4: Illustrations of the different coordinate systems that are used throughout this dissertation. Height
values and elevation in the real world coordinate system in (a) are stored at the z-component of coordinates
and the ground plane is based in the xy-plane. In the (virtual) world coordinate system in (b), height values
and elevation are stored at the y-component and the ground plane is based in the xz-plane. Except for Σ′ in
(c), theses coordinate systems are right-handed, i. e., their orientation is positive.

2.5 Basic Principles of Photogrammetry

Photogrammetry is the science of determining the shape, position and orientation of objects
in 3D space from 2D images [42, p. 1]. In an image, the objects in 3D space are mapped
onto a 2D image plane by geometric planar perspective projections (projections in short).
There are other kinds of projections, e. g., orthographic projections, but they are of less
interest in the context of this thesis. The mathematical foundations and detailed information
about these different types of projections can be found, for instance, in [29, pp. 229–283]
and [1, pp. 89–97].

The depth information of an object is lost during projection and hence a single image is
usually not sufficient to reconstruct the 3D positions of the depicted points of an object. But
if the same points of an object are present in at least two different images, and if the param-
eters of the projections for each image are known, the depth information can be recovered.
The principle works similar to human stereoscopic vision [60, pp. 44–67].

Under the assumption that optical effects related to lenses, e. g., fraction and distortions,
are negligible in calibrated, high quality mapping cameras, these camera systems can be
approximately modeled as pinhole cameras. The model of a pinhole camera may also be
applied to consumer cameras, but the results are usually less accurate. Recent advances in
image processing, however, allow to mitigate this problem by incorporating multiple images
of the same objects and statistical methods. An example can be found, for instance, in [72]
where images from many different types of cameras are employed for 3D reconstruction.

In section 2.5.1 a mathematical introduction into planar central perspective projections
is presented and it is explained, how 3D information can be extracted from 2D images by

15



2 Background

effectively reversing projections. The camera parameters which are required for this task
are described in section 2.5.2, and section 2.5.3 summarizes the most important properties
of images which are appropriate for recovering 3D information.

2.5.1 Perspective Projection

Central perspective projection emulates the effect of foreshortening so that objects that are
more distant to the viewer appear smaller than those that are closer. The projection of a
3D object in a 2D image is obtained at the intersections of projection rays with the image
plane. In the case of central perspective projection, the projection rays emerge from a single
center of projection (CoP) and pass through each point of the depicted object as illustrated
in figure 2.5 [29, p. 230].

CoP

image plane

Figure 2.5: Projection rays intersect at the center of projection (CoP) in case of planar central perspective
projections.

Let the image plane be located at a distance f > 0 in front of the CoP. The CoP is located
at the origin O′ of the local coordinate system of (virtual) camera Σ′ = (~r, ~u,~v). Σ′ is
usually translated by ~t = (tx, ty, tz) and rotated relative to the world coordinate system
Σ = (~x, ~y, ~z) as shown in figure 2.6(a). The orthonormal basis of Σ is given by

~x = (1, 0, 0) ~y = (0, 1, 0) ~z = (0, 0, 1)

and the orthonormal basis of Σ′ is expressed in Σ by

~r = (vx, vy, vz) ~u = (ux, uy, uz) ~v = (vx, vy, vz)

In neutral position, i. e., ~t = (0, 0, 0) and with all three rotation angles equal to zero, Σ′ is
oriented in such a way, that ~r = ~x, ~u = ~y and ~v = −~z as illustrated in figure 2.6(b).

In order to transform locations from Σ to Σ′ and to project them onto image planes, 4D
homogeneous coordinates can be used. Homogeneous coordinates allow to conveniently
represent a sequence of geometric transformations, including translations and projections,
as a single matrix [1, pp. 54, 905–906], [29, pp. 213–217]. The transformation of a point
p = (x, y, z) ∈ R3 to p̂ in 4D homogeneous coordinates is achieved by

(x, y, z) 7→ (w · x,w · y, w · z, w)

where w 6= 0. The additional fourth component is usually set to 1. A point p̂ = (x̂, ŷ, ẑ, ŵ),
ŵ 6= 0 in 4D homogeneous coordinates is transformed to 3D Cartesian coordinates by

16



2.5 Basic Principles of Photogrammetry

(a) general position (b) neutral position

Figure 2.6: Illustration of the orientation of the local camera coordinate system Σ′ within the world coordi-
nate system Σ in general position (left) and in neutral position (right).

dividing each component of p̂ by ŵ and by dropping the fourth component:

(x̂, ŷ, ẑ, ŵ) 7→
(
x̂

ŵ
,
ŷ

ŵ
,
ẑ

ŵ

)
The division of p̂ by ŵ is called homogenization.

A point p = (x, y, z) can thus be transformed from Σ to q = (qr, qu, qv) in Σ′ by
multiplying its representation p̂ in homogeneous coordinates with a regular 4 × 4 matrix
V , followed by homogenization in order to obtain Cartesian coordinates, as expressed in
equation (2.1).

q̂ =


q̂r
q̂u
q̂v
q̂w

 = V · p̂ = V ·


x
y
z
1

 ⇒ q =

(
q̂r
q̂w
,
q̂u
q̂w
,
q̂v
q̂w

)
(2.1)

Matrix V , which is given in equation (2.2), is composed of a translation T , a rotation R
which performs a rigid body transformation of the coordinate axes, and a mirroring opera-
tion −Z along the z-axis in Σ.

V =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


︸ ︷︷ ︸

=−Z

·


rx ry rz 0
ux uy uz 0
vx vy vz 0
0 0 0 1


︸ ︷︷ ︸

=R

·


1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1


︸ ︷︷ ︸

=T

=


rx ry rz −~t · ~r
ux uy uz −~t · ~u
−vx −vy −vz ~t · ~v

0 0 0 1


(2.2)

17



2 Background

Figure 2.7: Applying the intercept theorem to the two pairs of similar triangles4O′,q,qr and4O′,p′,p′r re-
spectively4O′,q,qu and4O′,p′,p′u results in equation (2.4).

In order to obtain the projection p′ of q in the image plane at v = f > 0 in Σ′, the
projection matrix P from equation (2.3) is applied to q̂.

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

f 0

 (2.3)

p′ and q must satisfy the relations in equations (2.4) which result from applying the intercept
theorem to the two pairs of similar triangles4O′,q,qr and4O′,p′,p′r respectively4O′,q,qu and
4O′,p′,p′u as illustrated in figure 2.7.

p′v = f

qv
qr

=
p′v
p′r

=
f

p′r
⇔ p′r = f · qr

qv
qv
qu

=
p′v
p′u

=
f

p′u
⇔ p′u = f · qu

qv

(2.4)

Equation (2.5) confirms that applying P to q in homogeneous coordinates and transforming
back to Cartesian coordinates yields p′ = (p′r, p

′
u, p
′
v) as desired:

p̂′ =


p̂′r
p̂′u
p̂′v
p̂′w

 = P ·


qr
qu
qv
1

 =


qr
qu
qv
qv
f


⇒ p′ =

(
p̂′r
p̂′w
,
p̂′u
p̂′w
,
p̂′v
p̂′w

)
=

(
f
qr
qv
, f
qu
qv
, f

) (2.5)

The transformation matrix V and the projection matrix P are usually combined into a single
Matrix M , so that the projection of p in Σ to p′ in the image plane at v = f in Σ′ can be

18



2.5 Basic Principles of Photogrammetry

expressed as in equations (2.6).

p̂′ = M ·


px
py
pz
1

 =


rxpx + rypy + rzpz − ~t · ~r
uxpx + uypy + uzpz − ~t · ~u
− (vxpx + vypy + vzpz) + ~t · ~v

−(vxpx+vypy+vzpz)+~t·~v
f



⇒ p′ =

p′xp′y
p′z

 =


−f rxpx+rypy+rzpz−~t·~r

vxpx+vypy+vzpz−~t·~v

−f uxpx+uypy+uzpz−~t·~u
vxpx+vypy+vzpz−~t·~v

f


= f

−
rx(px−tx)+ry(py−ty)+rz(pz−tz)
vx(px−tx)+vy(py−ty)+vz(pz−tz)

−ux(px−tx)+uy(py−ty)+uz(pz−tz)
vx(px−tx)+vy(py−ty)+vz(pz−tz)

1



(2.6)

where

M = P · V =


rx ry rz −~t · ~r
ux uy uz −~t · ~u
−vx −vy −vz ~t · ~v
−vx

f −vy
f −vz

f
~t·~v
f


Since projection is not injective, P and hence M are both non-invertible. However, the x-
and y-coordinates of p can be expressed in dependency on z as shown in equations (2.7).

p̂ = V −1 ·


qr
qu
qv
1

 =︸︷︷︸
equation (2.4)


rx ux −vx tx
ry uy −vy ty
rz uz −vz tz
0 0 0 1


︸ ︷︷ ︸

=V −1

·


qv
p′r
f

qv
p′u
f

qv
1



=


rxqv

p′r
f + uxqv

p′u
f − vxqv + tx

ryqv
p′r
f + uyqv

p′u
f − vyqv + ty

rzqv
p′r
f + uzqv

p′u
f − vzqv + tz

1

 =


x
y
z
1


(2.7)

Equations (2.7) can be written as

x− tx = qv

(
rx
p′r
f

+ ux
p′u
f
− vx

)
y − ty = qv

(
ry
p′r
f

+ uy
p′u
f
− vy

)
z − tz = qv

(
rz
p′r
f

+ uz
p′u
f
− vz

)
19



2 Background

and dividing the first two equations by the third one results in

x− tx
z − tz

=
rxp
′
r + uxp

′
u − vxf

rzp′r + uzp′u − vzf
y − ty
z − tz

=
ryp
′
r + uyp

′
u − vyf

rzp′r + uzp′u − vzf

Therefore

x = tx + (z − tz)
rxp
′
r + uxp

′
u − vxf

rzp′r + uzp′u − vzf

y = ty + (z − tz)
ryp
′
r + uyp

′
u − vyf

rzp′r + uzp′u − vzf

(2.8)

From equations (2.8) follows that at least two images are needed in order to reconstruct the
3D position of p from its projections p′, since the equations depend on the unknown coor-
dinate z. Another possibility to determine z is to incorporate ground control points with
known positions, but their registration is an elaborate task (cf. [42, p. 19]).

An image which contains the projection p′ of p is usually a rectangular section in a plane.
By knowing its size, i. e., the width w and the height h of the image in Σ′, the perspective
transform matrix Pimage from equation (2.9) can be used instead of P from equation (2.3).

Pimage =


2f
w 0 0 0

0 2f
h 0 0

0 0 1 −f
0 0 1 0

 (2.9)

This matrix is frequently used in computer graphics for transformations of a symmetric,
perspective view frustum into a cube with minimum corner (−1,−1, 0) and maximum cor-
ner (1, 1, 1), where the far plane ffar of the frustum is set to infinity [1, pp. 92–97, 345]. By
using the identities from equations (2.10), which are illustrated in figure 2.8, Pimage can be
written as

Pimage =


1

a·tan(ϕvert
2 )

0 0 0

0 1
tan(ϕvert

2 )
0 0

0 0 1 −f
0 0 1 0

 =


1

tan(ϕhor
2 )

0 0 0

0 a
tan(ϕhor

2 )
0 0

0 0 1 −f
0 0 1 0


a =

w

h
, h = 2f tan

(ϕvert

2

)
, w = 2f tan

(ϕhor

2

)
(2.10)

a denotes the aspect ratio of the image, f > 0 is the distance from the CoP to the center of
the image located at

(
w
2 ,

h
2

)
> 0 and ϕhor and ϕvert are the horizontal respectively vertical

angles of view.

20



2.5 Basic Principles of Photogrammetry

Figure 2.8: Illustration of the geometry of a view frustum for deriving the horizontal and vertical angles of
view ϕhor respectively ϕvert.

The advantage of Pimage over P is that Pimage is invertible, and its inverse P−1image is given
in equation (2.11).

P−1image =


w
2f 0 0 0

0 h
2f 0 0

0 0 0 1
0 0 − 1

f
1
f

 =


a · tan

(ϕvert
2

)
0 0 0

0 tan
(ϕvert

2

)
0 0

0 0 0 1
0 0 − 1

f
1
f



=


tan

(ϕhor
2

)
0 0 0

0
tan(ϕhor

2 )
a 0 0

0 0 0 1
0 0 − 1

f
1
f


(2.11)

We can therefore model the imaging process by using Mimage = Pimage · V and directly
obtain the x- and y-coordinates of a pixel in world space from p′ = (p′r, p

′
u, p
′
v) by equa-

tion (2.12) in a more convenient way.

M−1image · p̂
′ = V −1 · P−1image ·


p′r
p′u
p′v
1

 (2.12)

Note that p′v is in general unknown and not present in a single image, so that x and y will
still depend on z as shown in equations (2.13), which are obtained analog to equations (2.8).

equation (2.12) ⇒


x = tx + (z − tz)

wrxp
′
r + huxp

′
u − 2vxf

wrzp′r + huzp′u − 2vzf

y = ty + (z − tz)
wryp

′
r + huyp

′
u − 2vyf

wrzp′r + huzp′u − 2vzf

(2.13)

21



2 Background

2.5.2 Camera Parameters

In section 2.5.1, the CoP was assumed to be located at the origin O′ of the camera’s local
coordinate system Σ′. Usually the CoP has an offset (o′r, o

′
u) relative to O′ and hence

equations (2.8) have to be modified as shown in equations (2.14).

x = tx + (z − tz)
rx(p′r − o′r) + ux(p′u − o′u)− vxf
rz(p′r − o′r) + uz(p′u − o′u)− vzf

y = ty + (z − tz)
ry(p

′
r − o′r) + uy(p

′
u − o′u)− vyf

rz(p′r − o′r) + uz(p′u − o′u)− vzf

(2.14)

The modification of equations (2.13) for incorporating O′ is analog. Manufacturers of high
quality camera systems strive for the coincidence of (o′r, o

′
u) with O′, i. e., o′r = o′u =

0 [42, p. 9]. In total, nine image-independent parameters are required for recovering 3D
information from 2D images. The three intrinsic parameters f , o′r and o′u are usually known
in advance from the calibration of the camera system or can be determined, e. g., if ground
control points with known positions in world space are depicted in the images.

The remaining six parameters are the extrinsic parameters and comprise the position and
orientation of the camera’s local coordinate system Σ′ relative to Σ, i. e., ~t = (tx, ty, tz) and
the three rotation angles. These parameters are frequently determined by GPS and IMU de-
vices, but other methods can also be used, if the provided data are accurate. The precision of
GPS, however, may be insufficient for obtaining precise positions, but in this case, methods
like bundle adjustment, for instance, can be used to improve the results [42, pp. 306–307].

Additional parameters of interest for photography-like images are the focal length %, the
horizontal and vertical angle of view, which is also called field of view, and the resolution
of the image in terms of pixels per unit in world coordinates. These parameters determine
the size of an image and assist in locating positions in world space (see section 2.5.1). The
focal length % is frequently stored in the image file created by a digital still image camera,
e. g., if the image is stored in the Exif file format [11]. In case of calibrated cameras, the
focal length is fixed and is hence known in advance.

Provided that the distance of the depicted objects is large compared to the focal length,
the distance from the CoP to the image plane equals %, if the image is sharp. Given the
effective sensor size, i. e., the width wsensor and height hsensor of the CCD-sensor4, ϕhor and
ϕvert can then be determined by means of equations (2.15).

ϕhor = 2 arctan

(
wsensor

2%

)
ϕvert = 2 arctan

(
hsensor

2%

) (2.15)

The underlying geometry is the same as in figure 2.8 where f = %, w = wsensor and
h = hsensor, and these quantities are usually given in millimeters.

4With analog images, the sensor size corresponds to the size of the film.

22



2.5 Basic Principles of Photogrammetry

In the context of this work, it is assumed that the employed images are sharp and that
the sensor sizes are known. o′r and o′u are assumed to be negligible, i. e, (o′r, o

′
u) ≈ O′ =

(0, 0), so that the projection onto the image plane can be considered symmetric around its
geometric center. Furthermore, the distances to the depicted objects are assumed to be much
larger than % and hence f = % in the corresponding equations in section 2.5.1.

2.5.3 Image Properties

The images which are used within this thesis for generating DSMs are vertical aerial im-
ages. These images are captured in traditional aerial photography on a fixed flight path such
that they are placed on parallel stripes as sketched in figure 2.9. In order to recover 3D
information, the images need to overlap each other along the stripes in direction of flight by
at least 50%. Since deviations from the flight path may occur and need to be compensated,
overlaps of at least 60% along the direction of flight and 25% – 30% between two adjacent
stripes are recommended [42, pp. 145–148]. According to [44], overlaps of aerial images
in cities and woodland areas should even be 80% – 90% along the direction of flight and
60% – 70% between the stripes in order to reduce occlusions which would complicate the
recovery of 3D information. However, such fixed flight paths may be difficult to follow for
small UAVs and the images are likely to have a less organized layout.

Figure 2.9: In traditional aerial photography, the images must overlap and their centers are located on
stripes along the direction of flight.

In contrast to real photographs, computer generated images do not suffer from the prob-
lem of inaccuracies like lens effects or imprecise position or orientation data. These data
are well-suited for developing and testing algorithms, because many sources of potential
errors, e. g., image noise or color defects, are eliminated. On the other hand, the data are
less realistic and thus can influence the algorithms as well, e. g., like with finding matching
feature points in images, if the underlying 3D models of cities or buildings employ repeti-
tive textures. Frequently, only a relatively small amount of artificial textures is used many
times on different 3D models in order to reduce the required amount of memory. While
these repetitions may not be noticed by the viewer, they can cause algorithms to detect false
positive matches of points in different images, although they belong to different objects.

For the remainder of this thesis the additional metadata in table 2.2 of any aerial image
are assumed to be available. As the accurate measuring of position and orientation of real

23



2 Background

photographs is beyond the scope of this dissertation, it is furthermore assumed that these
data have already been corrected by appropriate methods, like bundle adjustment, known
ground control points or other existing information, if necessary, and that they are precise.

metadata semantics
id a unique identifier for each image

position
position of center of projection given in world coordinates at the moment the image was
captured

orientation
three rotation angles (yaw, pitch and roll) of the local camera coordinate system relative to
the world coordinate system at the moment the image was captured

focal length focal length of the camera in millimeters
sensor size effective width and height of the camera’s CCD sensor in millimeters
resolution width and height of the image in terms of pixels
timestamp timestamp of the moment when the image was captured

Table 2.2: The methods presented in this thesis assume that these metadata are available for each (aerial)
image, and that the values are precise.

24



3 The Flexible Clipmap

In many applications that involve DSM rendering, texture data may have sizes in the gi-
gabyte range and thus often exceed the available physical video memory. For this reason,
different techniques for handling very large textures have been developed. However, in
many of these applications textures are frequently treated as resources of fixed extension
and static or rarely changing content.

Our application relies on texture data of frequently varying content and of time-varying
extension, i. e., the size of the textures may change in the course of time. New aerial im-
ages are directly processed for generating a single virtually contiguous DEM and matching
color textures which can be rendered in a virtual 3D environment. Although the covered
areas may be vast and the images may have high resolution, it is desirable to update the
content of such a very large virtual texture in real time. Furthermore, any newly acquired
image may not only update existing content, but also extend the area covered so far as illus-
trated in figure 3.1. Related techniques for handling large textures, like common clipmap

Figure 3.1: Not only the content, but also the extension is altered in the course of time with textures of time-
varying extension.

implementations, are not able to handle such growing textures.
Another issue that arises with textures during rendering is the problem of aliasing. By

using perspective projection, a single screen pixel may cover more than one texel of a tex-
ture if it is applied to objects distant from the viewer, especially when the object is viewed
from an oblique angle (see figure 3.2). The prevalent method for mitigating aliasing is to
use pre-filtered versions of the textures, like mipmaps [85]. Special texture sampling and in-
terpolation techniques like trilinear or anisotropic filtering are available in order to conceal
transitions between the different levels of detail (LODs). Usually these anti-aliasing tech-
niques are supported by graphics hardware and should be utilized by methods for handling
large virtual textures for efficiency reasons.

25



3 The Flexible Clipmap

(a) no anti-aliasing (b) isotropically filtered mipmap (c) 16× anisotropically filtered
mipmap

Figure 3.2: Aliasing becomes apparent on distant textured objects when one screen pixel covers more than
one texel. Different anti-aliasing techniques (center and right) are available for reducing this effect.

In this chapter we present the Flexible Clipmap (FCM) to incrementally generate large,
virtual textures of time-varying extension and dynamically changing content from multiple
input aerial images on-the-fly. Parts of the work on this topic have been previously published
in [28]. The resulting virtual textures may contain arbitrary data, but for our purposes we
confine their contents to DEM and color texture data. The FCM makes use of a tile-based
clipmap approach, a spatial indexing data structure and commodity graphics hardware. Its
application does not depend on the underlying geometry or a certain kind of polygonal
meshes.

3.1 Related Work

If the size of textures to be displayed exceeds the hardware limits, a common and obvious
solution is to divide them into smaller, manageable texture tiles. For instance, Cline and
Egbert proposed a simple division of the texture data, but their approach was limited by a
strict dependency on texture coordinates and underlying geometry [13].

A clipmap, as introduced in [79], is based on mipmaps [85] and keeps only portions of
the entire texture mipmap in video memory. Like mipmaps, the clipmap provides a level
of detail (LOD) concept and thus avoids texture aliasing. The lowest level l = 0 denotes
the level of highest resolution and largest extension of the texture. The clipmap uses a
roaming window in video memory to copy only those texels which are visible to the viewer
by centering the window around the current view point (clip center). As the view point
moves, the window is updated by copying new texels using toroidal addressing [79]. This
is done for each clipmap level corresponding to a texture of a size greater than a certain clip
size. Since the extensions of textures of mipmaps and clipmaps become smaller towards
higher levels, these parts of a clipmap are small enough to fit entirely into video memory
and hence do not need to be clipped. Therefore, the texture data at higher clipmap levels
are treated as an ordinary mipmap. However, the original clipmap implementation in [79]

26



3.2 The Flexible Clipmap

relies on special graphics hardware for loading the texels into video memory. Details about
the clipmap are explained in section 3.2.2.

Modern GPU features have eliminated the need for special hardware, and the clipmap
concept has been implemented on the GPU in vertex and fragment programs (shaders) on
commodity hardware making it even more attractive for handling large textures. The virtual
texture in [23] makes use of texture tiles and can employ shaders for texture mapping. It
supports multi-texturing, but does not use toroidal addressing for loading tiles, the texture
coordinates are still coupled to the geometry and it requires multiple texturing units, even if
only a single texture is mapped.

In [70] a roaming tile cache for each level is used, which is updated using toroidal ad-
dressing and texture stacks. Geometry and texture data are kept independent from each other
by computing the texture coordinates within a shader. The approaches in [23] and [70], as
well as the solution presented in [45] generate complete mipmaps for each tile at each LOD.

Crawfis et al. [16] also employ roaming tile caches for each level, toroidal addressing,
texture compression and fragment programs, but they do not generate mipmaps for the tiles.
They investigate different methods for clipping and level determination by utilizing frag-
ment programs and arrays of textures to hold the relevant portions of the logical mipmap.
Furthermore, they make use of a tile map to indicate to the shader the highest available
texture resolution, i. e., the lowest LOD, for selecting the optimal clip level. The tile map
is implemented by a separate texture and requires additional resources. In addition, the au-
thors propose the usage of more efficient texture arrays, which became available in DirectX
10 hardware [49].

More related work on using large virtual textures on modern GPUs can be found in [5]
and [50].

Although the previously mentioned research on texture clipmaps deals with large tex-
tures of fixed extension, the proposed approaches do not seem to be capable to update the
texture content at a frequent rate. In [78] a method for handling large fixed-size textures of
frequently changing content is presented. However, to our knowledge none of the current
techniques is able to handle textures of time-varying extension.

3.2 The Flexible Clipmap

The FCM allows to derive from a growing set of images captured at different locations a
single virtual texture which can be rendered immediately on any geometric model. It has
been developed primarily for being used with aerial images that become directly available
after their acquisition, e. g., by transmission over wireless networks as described in chap-
ter 1. For this kind of images, the metadata as listed in table 2.2 must be provided. Though
the FCM is not limited to a certain type of input images or to a certain kind of surface
onto which the resulting virtual texture can be applied, we will assume for the remainder
of this chapter that images are aerial images and that the accompanying metadata are ex-
act. Precise position data for input images can be obtained in a preprocessing step which
comprises the adjustment of positions, georeferencing and registration, as well as coordi-

27



3 The Flexible Clipmap

nate transformations from GPS to UTM coordinates for the reasons given in section 2.4.
The resulting virtual texture can be viewed as a rectangular section located in a plane like
a common texture. Its texels are addressed via normalized texture coordinates in the range
[0, 1]× [0, 1] ⊂ R2, independent of the current extension of the FCM.

In addition, corrections of perspective distortion have to be performed, e. g., in order to
obtain true orthographic images. Such images depict surfaces from an orthographic point of
view and intentionally do not provide any information about (lateral) surfaces which are per-
pendicular or near-perpendicular to the plane against which the elevation is measured, e. g.,
frontages of buildings in urban areas or canyon walls. Orthographic images, or orthoimages
in short, can only be generated if information about the elevation of the underlying surface
is available, i. e., if a DEM is given. The latter is generated from the images themselves
and hence DEM and orthoimage generation are combined into one logical step which is
subject of chapter 5. As a result of the image transformation and warping, the area covered
by an input image on the ground plane does not need to be rectangular anymore, but is an
arbitrary convex quadrilateral. A 2D minimal enclosing axis-aligned bounding box (AABB)
of the covered area can be computed efficiently.

3.2.1 Requirements for Handling Spatially Time-Variant Textures

In order to handle textures of time-varying extension, the FCM cannot be confined in ad-
vance to a fixed area. Also it may easily become too large to fit entirely into video memory
or even main memory, and therefore it has to be partitioned, stored in secondary memory
and provided with a LOD concept to avoid texture aliasing. Furthermore, for a frequently
changing set of images overlapping the same area, there are different possibilities to decide
which of the images (or parts of the images) are the “best” to contribute to the resulting
virtual texture. A rating can be based, for instance, on image properties such as timestamp,
contrast, brightness, signal-to-noise ratio, degree of perspective distortion, or even content.
In any case, whenever “better” images are available, the affected regions within the virtual
texture have to be updated. To summarize, the FCM must satisfy the following requirements
to address the challenges stated above:

1. Partitioning must be supported, since the virtual texture may have a physical exten-
sion which exceeds hardware limits.

2. An LOD concept is required in order to avoid texture aliasing.

3. Efficient updates of the virtual texture must be possible, because updates of the un-
derlying set of images will occur frequently.

4. The virtual texture must have time-varying extension, i. e., it cannot be limited to a
fixed extension.

As the FCM may have to be updated during rendering, special attention has to be paid to
ensure that the processes for rendering and updating do not excessively interfere with each
other as explained in section 7.2.1.

28



3.2 The Flexible Clipmap

3.2.2 The Clipmap

The first two requirements given in section 3.2.1 can be achieved with texture clipmaps,
since they allow to control memory consumption and provide LOD concepts. The structure
of a clipmap as presented by Tanner et al. [79] is similar to the one of a mipmap and is
illustrated in figure 3.3. At the lowest clip level l = 0 the clipmap contains texture data at
the highest available resolution (cf. [79]). Like with mipmaps, going from clip level l to clip
level l + 1 the resolution of the texture decreases by a factor of two along each dimension
so that each 2×2 neighboring texels are aggregated into one texel. The aggregation scheme
depends on the texture data, but a frequently used method for color textures is to calculate
the averaged intensities per color component for the resulting texel. At the highest clip level
L − 1, the clipmap contains a down-sampled version of the entire texture. During texture
mapping the minification of a texel in screen space determines the clip level to be used.
But in contrast to a mipmap, for each level l < L − 1 of a clipmap only a section of the
same size of the entire logical texture is kept in video memory. This section is called active
area, and it is centered around the clip center. The clip area is a somewhat larger section
centered around the clip center which contains the active area and is kept in main memory
for updating the active area in video memory as the clip center is moved. Any remaining
texture data are stored in secondary memory, e. g., on hard disk, and are loaded when the
clip area needs to be updated. Texture data at levels l ≥ L− 1 can be treated as a standard
mipmap, because they are small enough to fit entirely into video memory.

Figure 3.3: Structure of a clipmap with L = 4 clip levels and additional three mipmap levels. The active area
(dark gray) and the clip area (light gray) are centered around the clip center (yellow) and are updated as the
view point moves.

The position of the clip center has to be chosen carefully and may be set to the intersection
of a ray cast from the position of the virtual camera with the textured surface. This method
works well in situations where the angle enclosed between the opposite viewing direction
and the normal vector of the textured surface is small. But if this angle is large, the clip
center is too far away from the viewer and other heuristics may be more appropriate.

The original clipmap by Tanner et al. relies on special graphics hardware for copying
individual texels from the clip area to the border region of the active area [79]. Our FCM
implementation is based on a variation of the clipmap similar to the one by Crawfis et al. [16]

29



3 The Flexible Clipmap

which makes use of fragment programs and texture tiles without requiring any special hard-

ware. With this approach, entire texture tiles, or tiles in short, are swapped between the

active areas and the clip areas instead of replacing individual texels on the border of the

roaming window. The principle of a tile-based clipmap is illustrated in figure 3.4. We also

adopted the idea by Crawfis et al. of employing a tile map and making use of explicit index-
based clipping [16], but in contrast, we use a special scheme for indexing and generating

the required texture tiles. Due to the tiling approach, updates of the virtual texture may

be confined to few tiles only, which is helpful for achieving the third requirement stated in

section 3.2.1.

Figure 3.4: Illustration of tile-based clipmap. The active area consists of at most 3 × 3 texture tiles (dark
gray) and the clip area of 5× 5 tiles of the same size.

3.2.3 Managing Aerial Images by Spatial Indexes

To satisfy the third requirement from section 3.2.1, we need to be able to efficiently retrieve

the aerial images and associated metadata contributing to a certain tile, i. e., the images

whose projections cover the area in world space which corresponds to the tile. This can be

accomplished by using a spatial indexing data structure. If all aerial images project onto the

plane in which the FCM tiles are based, e. g., if only vertical aerial images are employed

for creating a virtual texture based in the ground plane, the images can be organized in a 2D

spatial index based on their projections. Since our application makes use of aerial images

of all kinds of orientations, e. g., in order to use them as projective textures as described in

chapter 6, we store the images and their associated metadata in a 3D spatial index. Different

types of aerial images can thus be handled in the same way. For an image we use the world

coordinates of the 3D axis-aligned bounding box (AABB)5 of its view pyramid as key. To

simplify matters, assume that the FCM is used to create a virtual texture of the ground plane,

so that all vertical images project onto that plane.

The view pyramids of the images are determined by the parameters of the associated

cameras as follows: In case of vertical aerial images, the top of the pyramid is located

at the CoP and the base is formed by the projection of the image onto the ground plane

(see figure 3.5a). Oblique aerial images, and in particular high oblique aerial images, do

5Throughout this dissertation the term axis-aligned bounding box, or AABB in short, refers to the 3D

minimal enclosing AABB of an object.

30



3.2 The Flexible Clipmap

not project onto the ground plane if at least one of the four rays emanating from the CoP
of the associated camera through one of the corners of the image does not intersect the
ground plane. Even if all four rays intersect the ground plane, the resulting projection for
this kind of aerial images can be rather distorted. To obtain an appropriate view pyramid
for such images, we place a plane oriented perpendicular to the camera’s view direction at
a predefined distance. The base of the pyramid is then formed by the intersections of the
four rays emanating from the CoP with this plane. Figure 3.5 illustrates the view pyramids
and AABBs as described above. The AABBs of view pyramids are represented by their
minimum corner cmin = (xmin, ymin, zmin) and maximum corner cmax = (xmax, ymax, zmax),
having coordinates given relative to an arbitrary but fixed origin O = (Ox, Oy, Oz). Oz
is usually set to Hmin = 0, and we assume that the height above ground of the center of
projection for each image is part of the provided metadata.

(a) (b)

Figure 3.5: In order to manage the source images that are used to generate the tiles of the FCM, the axis-
aligned bounding boxes (gray) of the view pyramids of the associated cameras of the images (red) are stored
in a spatial index.

Since the boxes serve as keys for storing aerial images, and since we have to determine the
overlap with a 3D query box as described in section 3.2.5, the spatial index has to support in-
tersection queries. Given a 3D box (query window), an intersection query on a spatial index
returns all items whose keys (i. e., boxes) intersect the query window or are entirely con-
tained inside. When using boxes as keys for associated data, this kind of key can be stored
in a spatial index designed for point data, such as the kd-tree by Bentley [9], if the boxes
are represented as points in a higher dimensional space. Because multiple representations
for boxes in 3D exist, the choice depends on the data, and whether the embedding space is
organized (trie-based methods [67, pp. 2–3]) or the data points are organized [37, pp. 24–
26]. For example, a 3D AABB can be represented as a point in 6-dimensional space by
the six coordinates of its minimum and maximum corner cmin and cmax. Another possi-
bility is to represent the box by its minimum corner and its extension in each direction
(xmin, ymin, zmin, sx, sy, sz). In order to perform intersection queries with a given box Q, Q
has to be transformed according to the chosen representation, and the affected objects are
located within a certain subspace of the higher dimensional space.

31



3 The Flexible Clipmap

Other types of spatial indexes can directly employ spatially extended objects, like boxes,
e. g., the R-tree by Guttman [35] and its variations. R-trees are height-balanced trees related
to B-trees, and the data are stored only at the leave nodes (leaves). Except for the root node,
each node has at least m, but at most M > m entries where 1 < m < M , m,M ∈ N.
The root may contain less than m, but also at most M entries. An AABB which encloses
all children of the assigned subtree is stored at each node. In particular, the root holds an
AABB of the entire domain which is covered by the data of the tree. This feature is used by
the FCM for handling expansions of the virtual texture and for generating tiles as described
in section 3.2.5. The structure of a two-dimensional R-tree is illustrated in figure 3.6. The
entries of intermediate nodes are either pointers to other intermediate nodes at the next level
or to leaf nodes. At leaf nodes, the entries point to the actual data and their AABBs. Like
the leaves of B-trees, the leaf nodes of an R-Tree are split by certain criteria into two nodes
if they have to store more than M entries (overflow). An entry for the resulting second node
is inserted into the same parent node and may result in an overflow of the parent node as
well which is handled in the same way. This process ends if either no further split of a node
is necessary, or if the root has to be split. In the latter case, the root is replaced by a new
one, and the former root together with its new sibling become the only children. Likewise,
if nodes contain less than m children due to deletion of data, they are merged and deleted
accordingly. After insert or delete operations, the bounding rectangles of the affected node
and its ancestors usually need to be adjusted [35].

A

C

D

G

R1

B

E

F

R2

R4 IR3H

A C D G

R1

B E F

R2

H I

R3

R4

Figure 3.6: Structure of an R-Tree in 2D: A – I denote data rectangles while R1 – R3 are rectangles of leaf
nodes at level 1, and R4 is the rectangle at the root. Note that rectangles may overlap and R4 is the minimal
bounding rectangle that encloses all data rectangles.

Compared to other spatial indexing structures, R-trees are appropriate for incremental
construction by successive insertions [67, pp. 282–286] and some variations of the R-tree,
e. g., the R∗-tree by Beckmann et. al., do not require periodic global reorganization [6]. The
latter aspect is especially desirable, because that data structure does not need to be com-
pletely rebuilt after successive insertion of a large number of items, which can degrade the
performance of subsequent find operations. This can happen with a standard point kd-tree,
for instance, where successive insertions may degenerate the tree structure and decrease its
performance [67, p. 58].

32



3.2 The Flexible Clipmap

For our purposes, we store 3D AABBs in an R∗-tree by Beckmann et al. [6] which is a
variation of the R-tree. The R∗-tree differs from the R-tree in the method for determining
node splits, and it utilizes forced reinsertions of existing nodes. Reinserting existing nodes
can avoid unnecessary node splits and improves the weight balance of the tree, i. e., it can
increase the capacity utilization of the nodes [6]. Further information on the R-tree and
the R∗-tree can be found in [35] and [6], respectively, and a revised version of the R∗-tree
is presented in [7]. The wide-ranging topic of spatial indexes is covered in detail in the
comprehensive book by Samet [67].

3.2.4 Layout Scheme for Tiles

Since the R∗-tree stores at each node an AABB of all elements assigned to the correspond-
ing subtree, the 3D AABB containing the view pyramids of all aerial images is located and
maintained at the root node. If only vertical aerial images were inserted into the spatial
index, the 2D projection of this AABB onto the ground plane coincides with the rectangular
areaA currently covered by the FCM. Due to the possible presence of oblique aerial images
in the spatial index, which do not contribute to the content of FCM tiles, we keep track
of the 2D area covered only by vertical or near-vertical aerial images. Therefore, we store
and update an additional 2D bounding rectangle at each R∗-tree node. Whenever a vertical
aerial image is inserted into the 3D spatial index, we use the 2D projection of its view pyra-
mid’s AABB onto the xy-plane to update 2D AABBs at the R∗-tree nodes. Hence, the 2D
AABB at the root node with minimum and maximum corners Rmin = (Rxmin , Rymin) and
Rmax = (Rxmax , Rymax) coincides with the area A covered by the FCM. The total number of
clip levels L depends on the extension of A, a previously chosen tile size of Tx × Ty texels,
and the desired resolution (resx, resy) in terms of texels per unit of the virtual texture. The
tile resolution preferably matches the resolution of the aerial images so that the quality of
the resulting virtual texture is not diminished by further re-sampling. In order to satisfy
the fourth requirement from section 3.2.1, the key is to provide the FCM with additional
tiles whenever the underlying virtual texture becomes larger. This is accomplished by the
following layout scheme for the tiles.

Like with a common mipmap, the L clip levels of the FCM are numbered starting with
the most detailed level l = 0 to the least detailed level l = L− 1. The top-most level L− 1
contains a downsampled version of the entire texture and is the first level of the remaining
mipmap section (see figure 3.3). Conceptually, we consider the virtual texture as the entire
R2, and the region R2\A is considered as empty, i. e., no texture data are available in this
area.

Let Oxy = (Ox, Oy) denote the projection of the origin of the world coordinate system
onto the xy-plane at Hmin. Oxy is used by the spatial index to reference the coordinates
of the AABBs in world coordinates (see section 3.2.3). We span a Cartesian grid centered
around Oxy with spacing (gx, gy) = (Tx/ resx, Ty/ resy), where Td denotes the size of a
tile in texels, and resd its resolution in texels per unit along direction d ∈ {x, y}. Starting
at the origin, in each quadrant, a cell of size 2l+1 · gx × 2l+1 · gy at level l + 1 is formed

33



3 The Flexible Clipmap

by the underlying 2 × 2 neighboring grid cells from level l. We then proceed with the
next level l + 1 in the same way in order to build a grid hierarchy, similar to the bottom-
up construction of a quadtree. But in contrast to a quadtree, the grid hierarchy does not
possess a root, because its domain is unbounded. Therefore, this process is repeated only
until A is covered in x- and y-direction by at most two grid cells each, but by at least one
in one of the directions, i. e., until A is covered by 1 × 2, 2 × 1 or 2 × 2 grid cells. Each
grid cell at level l is identified with exactly one tile at clip level l and indexed as shown in
figure 3.7. The at most four remaining cells covering A are also grouped to a single cell at
the top-most level l = L− 1, but this cell differs from the other ones in that it may contain
the origin Oxy and provides some sort of root for the grid hierarchy. In this way, the grid
hierarchy limited to the area A of the FCM is bounded, which allows to directly address
grid cells respectively tiles at a given clip level l via their indices. Direct addressing of
tiles is essential for efficiently caching them and updating the active areas and clip areas of
the FCM for the purpose of rendering. Furthermore, the FCM fragment program accesses
individual tiles by their indices for sampling texture data.

Figure 3.7: The tiles are indexed at each level starting from the origin (Ox, Oy). Each 2× 2 tiles from level l
are grouped into one tile at level l + 1. At the top-most level (green), only one tile is left that covers the entire
domain A.

The top-most grid cell respectively tile at level L − 1 requires some special attention,
because as a constraint for the FCM, this level must cover A entirely while consisting of
exactly 2 × 2 tiles at the next lower level (children). In cases of having only 1 × 2 or
2 × 1 children, the missing ones are replaced by the nearest, possibly empty, neighbors
in the corresponding direction, i. e., grid cells not covering A may be used. Besides, the
top-level tile is indexed (0, 0), because it may be formed of tiles which are not considered
as neighboring according to the scheme described above, e. g., if it was formed by the four
tiles (1,−1), (2,−1), (1, 0) and (2, 0) at level L − 2. In this example, the corresponding
parent tiles would be assigned the indices (0,−1), (1,−1), (0, 0) and (1, 0).

34



3.2 The Flexible Clipmap

Given a certain level 0 ≤ l < L, we can determine the index n(l, r) = (nx, ny) of the tile
(tile index) containing a location r = (rx, ry) given in world coordinates by equation (3.1).

n(l, r)d =

{⌊
rd

2l·gd

⌋
0 ≤ l < (L− 1)

0 l = (L− 1)
, d ∈ {x, y} (3.1)

Since L depends on the position of Rmin and Rmax and hence indirectly on the choice
of the origin Oxy, the total number of clip levels L cannot be determined directly by the
quantity L̂ from equation (3.2).

L̂ = max
d∈{x,y}

(⌈
log2(Rdmax −Rdmin)

⌉
− dlog2(gd)e

)
+ 1 (3.2)

If A would be covered by a common mipmap, L̂− 1 would indicate the number of mipmap
levels at which the corresponding textures would be too small to entirely cover A. Mipmap
level L̂ − 1 would then be the first level that could completely cover A by a texture of size
gx · resx×gy · resy. But according to the description above, L − 2 is the level l′ where
the maximum of the differences of the two components of the tile indices n(l′, Rmax) and
n(l′, Rmin) equals one as expressed in equation (3.3).

max
d∈{x,y}

(
n(l′, Rmax)d − n(l′, Rmin)d

)
= max

d∈{x,y}

(⌊
Rdmax

2l′ · gd

⌋
−
⌊
Rdmin

2l′ · gd

⌋)
!

= 1 (3.3)

Therefore the required number of clip levels L is actually determined by checking if l′ = L̂
from equation (3.2) satisfies equation (3.3). If it does not, l′ is incremented and checked
again, until a suitable l′ is found.

Most important about this indexing scheme is that the tile index n(l, r) does not directly
depend on the area A, i. e., the current area of the FCM. This facilitates adding new tiles to
the FCM, because each tile at each level has a unique index and conceptually already exists,
though it may not contain image information.

3.2.5 Adding and Updating Tiles

Assume that the FCM is used to create a virtual texture for the ground plane. In this case,
only vertical or near-vertical aerial images affect the area A covered by the FCM according
to the 2D bounding boxes of their projections onto the ground plane, and we only consider
this type of aerial images in the following.

Before any aerial images are inserted, A is empty. The insertion of aerial images into
the spatial index whose projections onto the ground plane are not completely covered by A
triggers an expansion of A and thus of the FCM. This leads to the addition of at least one
new clip level if A exceeds the boundaries of the current top-most tile at L−1 as illustrated
in figure 3.8. The total number of new clip levels depends on the extension of A. After
an expansion of A, the former tile at level L − 1 may no longer satisfy the constraint of
covering at most 2 × 2 tiles from the next lower level, and the maximum clip level has to

35



3 The Flexible Clipmap

Figure 3.8: The insertion of a new vertical aerial image (purple) into the spatial index outside the area cov-
ered by A (dashed orange) triggers an expansion of the FCM and causes the addition of a new clip level and
tiles. Empty tiles (shaded) are not physically created, because no images are contained yet.

be increased by the number k of new levels, so we denote the former number of clip levels
by L′ and set L = L′ + k. However, it is actually not necessary to determine k since L
can be recalculated from the new positions of Rmin and Rmax which are obtained from the
expanded 2D AABB of all (near-)vertical aerial images at the root node of the R∗-tree as
described in section 3.2.4. Except for the former top-level tile T at L′− 1, the indices of all
other tiles remain unchanged. Since T is no longer the top-level tile, but a child of another
tile, its former index (0, 0) is according to equation (3.1) not necessarily correct any longer,
and T is therefore discarded. The former 2 × 2 children of T may furthermore become
assigned to different parent tiles at level L′ − 1 during the addition of one or more clip
levels as illustrated in figure 3.9.

(-1,-1)

(-1,0) (0,0)

(0,-1)

(Ox,Oy)

(0,0)

A

(a) before expansion

A

(-1, 0) (0, 0)

(0,-1)(-1,-1)

(Ox,Oy)

(b) after expansion

Figure 3.9: The children of the top-most tile (0, 0) at level l = 1 (left) are assigned to different tiles at level 1
after the expansion of A (orange) and the addition of a new top-level tile (red) at l = 2 (right, red). Note that
tile (0, 0) at l = 1 (right, dashed blue) is now relocated and its content must hence be re-created.

Based on the clip level, two cases for the update and creation process of the content a tile
have be to distinguished:

36



3.2 The Flexible Clipmap

1. creating and updating tiles at the base clip level l = 0 directly from the aerial images

2. creating and updating tiles at clip levels l > 0 from their 2× 2 children

In the first case, a 3D intersection query on the spatial index is used to determine all aerial
images whose projections overlap the area of a tile. We create a 3D query box, because
3D boxes are easier to handle by our 3D R∗-tree implementation. The intersection query
is triggered each time a certain number of aerial images has been inserted into the spatial
index. The affected tiles are determined by computing the indices n1, n2, n3 and n4 at
the four corners of the projection of an aerial image onto the ground plane in world space
according to equation (3.1). Let

nmind = min
i∈{1,2,3,4}

(nid) , nmaxd = max
i∈{1,2,3,4}

(nid) , d ∈ {x, y}

Since an aerial image may project onto multiple tiles, all tiles whose indices are in the range
[nminx , nminy ]× [nmaxx , nmaxx ] can potentially contain parts of the projected image and must
be considered for updating. This is illustrated in figure 3.10. For each considered tile t, the
query box Q is constructed from the 2D bounding rectangle of t in the xy-plane, and the
z-values of the box are set to Hmin and Hmax. Hmin denotes the minimum and Hmax the
maximum z-value of all bounding boxes of the aerial images currently stored in the R∗-tree.
Given the index n = (nx, ny) of t and the grid spacing g = (gx, gy) of the tile grid, the 2D
bounding rectangle of t is computed by using equations (3.4).

qdmin = nd · gd, qdmax = (nd + 1) · gd, d ∈ {x, y} (3.4)

By using the query box Q = (qxmin , qymin , Hmin, qxmax , qymax , Hmax), the result set can also
contain non-vertical aerial images. These images can be identified during further processing
by the viewing direction of the associated camera, for instance.

Figure 3.10: An aerial image may project onto multiple tiles. The indices n1, n2, n3 and n4 of the tiles con-
taining the four corners of the image’s projection (red) determine the range of tiles that potentially contain
image data (gray shaded). For each of these tiles, a 3D query box (blue) is created in order to determine all
images having projections that overlap the area of the tile.

A very simple way to generate texture data for each tile t is to project the returned aerial
images according to their orientation and camera parameters onto t and to replace existing

37



3 The Flexible Clipmap

texels with values from the images. The problem with this method is that the pixels become
projected onto the same plane in world space, although they probably originate from non-
planar objects and from images captured from different perspectives. Therefore, the borders
of overlapping images will not match each other and the results look similar as depicted in
figure 3.11. The solution to this problem is to incorporate information about the surface
elevation and to project the images according to the depicted objects in world space as
described in section 5.4.

Figure 3.11: If the aerial images are all projected onto the same plane, their borders may not match each
other as can be seen in the regions highlighted by red rectangles.

As the number of contributing images and hence the costs for updating one tile may
increase over time, different selection criteria can be applied to discard images which are
not supposed to contribute to the final texture, e. g., if the contrast of the image is below
a certain threshold or if it is outdated. Depending on the desired quality of the resulting
virtual texture and the application, it may be sufficient to update existing tiles incrementally
by processing only the latest images and blending them with the previously generated tiles.
The tiles need to be updated in principle as soon as they are covered by a new aerial image,
but it may be sufficient to start updating affected tiles only if a certain threshold for the
number of new images has been reached or after a certain period of time.

In the second case, tiles at levels l > 0 are recursively updated in increasing level order
from their children as follows. For each tile t at level l with a given index (n(l)x, n(l)y),
equation (3.5) denotes the index n(l + 1) of the tile’s parent at level l + 1.

n(l + 1) =

{(⌊
n(l)x
2

⌋
,
⌊
n(l)y
2

⌋)
l < L− 2

(0, 0) l = L− 2
(3.5)

Whenever t is updated, the respective quadrant in its parent tile is replaced by a version of
t which is downscaled by a factor of two. Afterwards, the updated parent takes the role of
its children, and the process is repeated until the top-most tile has been updated. Note that
only quadrants corresponding to updated children are replaced.

The number of updates required at level l = 0 depends on the area and locations of new
images, the chosen tile size and the resolution of tiles in terms of texels per unit. At levels

38



3.3 Architecture and Implementation Details

> 0, the number of updates depends on the number and locations of updated tiles at the next
lower level and is limited in the best case to a single tile update per level. In the worst case,
all tiles have to be updated, e. g., if every or every second tile at l = 0 is updated.

3.3 Architecture and Implementation Details

In this section we discuss the architecture and some technical details of the FCM. The FCM
is implemented in C++ and GLSL 1.50 and is an important part of our framework for DSM
rendering which is covered in chapter 7.

3.3.1 Caching

One characteristic of clipmaps is the employment of caching and secondary storage. In
the FCM, we keep the cx(l) × cy(l) texture tiles from all L clip areas in a cache in main
memory. As described in section 3.2.2, the set is chosen based on the current clip center
with the cx(l)× cy(l) neighboring tiles centered around it. This set corresponds to the clip
stack in [79]. Its content is updated as the virtual view point and thus the clip center moves
by a distance greater than some threshold. The quantities cd, d ∈ {x, y}, depend on the clip
level l and are limited by user-defined constants Cd, i. e., cd(l) ≤ Cd. At the top-most clip
level l = L− 1, only a single tile exists and hence cd(L− 1) = 1. Likewise, at l = L− 2,
there are at most 2× 2 tiles and hence cd(L− 2) = 2, etc.

The smaller subset of kx(l) × ky(l) tiles with kd(l) ≤ cd(l), which are also centered
around the clip center and visible to the viewer, i. e., the active area, is copied to the tile
texture array in video memory, which is realized as a 1D texture array, accessible by GPU
fragment programs. Similar to cd(l), the quantities kd(l) also depend on the clip level l and
are limited by user-defined constants Kd ≤ Cd. Kd and hence Cd should be chosen with
respect to the tile size Tx × Ty in texels so that Td · Kd are at least as large as the width
respectively height of the application’s viewport in pixels. Otherwise, the borders between
different clip levels may become visible to the viewer during rendering, if the scene is shown
from a perpendicular point of view.

The cache of an FCM of L clip levels consists of a tile level cache and a tile buffer. These
two data structures identify individual tiles by means of their clip level l and tile index
(nx, ny). The tile level cache consists of an array of L 2D tile arrays where the 2D tile
array at index l corresponds to the clip area at clip level l. Each of the 2D tile arrays can
store at most Cx×Cy tiles. The tile arrays for the two top-most levels hence need to contain
only one respectively four tiles. If clip levels are added to the FCM, the tile level cache must
be adjusted as well in order to keep it consistent with the clip areas. This requires not only
to update the number of 2D tile arrays contained in the tile level cache, but also the sizes of
the tile arrays representing the top-most clip areas, because after resizing, they need to store
more tiles than they did before. For instance, if the FCM is resized from L′ = 5 to L = 6
levels, the tile array representing the clip area at level l = L′ − 1 = 4 must be resized from
a 1× 1 array to a 2× 2 array, since l = L− 1 = 5 becomes the new top-most clip level and
may only need to store a single tile. The transfer of tiles between the cache of the FCM and

39



3 The Flexible Clipmap

secondary memory is performed asynchronously in a separate thread in order not to stall

the rendering process as explained in section 7.2.1.

To reduce the transfer of tiles from secondary memory, we additionally keep a certain

amount of tiles that have already been loaded during updating, but which are not yet cached,

in the tile buffer which resides in main memory. The tile buffer is an unsorted, associative

array and is accessed via a textual string which is constructed from the requested clip level l
and the tile index (nx, ny) according to the pattern llxnxyny. For instance, the tile having

the index n = (−7, 4) at clip level l = 3 is accessed via the textual string l3x-7y4. This

pattern was designed to be short, but human readable, e. g., in order to facilitate debugging

during development. Besides, the string is used as the name of the file storing the tile

in secondary memory. If the tile buffer overflows, tiles that are currently not marked as

being about to be updated and which are not in use otherwise are written back to secondary

memory. Figure 3.12 contains a sketch of the components and entities of the FCM.

Figure 3.12: An overview of the architecture of the FCM.

3.3.2 Tile Arrays

The 2D tile arrays of the tile level cache of the FCM for storing the clip areas are imple-

mented by 1D arrays. In order to access a tile at a certain clip level l within the correspond-

ing 1D array by means of its 2D tile index n = (nx, ny), we need to transform n into a 1D

array index. Each tile array holds cx(l) × cy(l) tiles from a contiguous rectangular section

of the tile grid (cf. section 3.3.1), so that the indices of the tiles in the clip area are in the

range [nx, nx+1, . . . , nx+ cx(l)−1]× [ny, ny+1, . . . , ny+ cy(l)−1]. The tile indices in

this range can be mapped to [0, 1, . . . , cx(l)−1]× [0, 1, . . . , cy(l)−1] by using the function

j(n) = (jx(nx), jy(ny)) with jd(k), d ∈ {x, y}, as given in equation (3.6).

jd(k) = k mod cd(l) (3.6)

In this way, we can map the range of tile indices in a 2D tile array to a 1D range of size

cx(l) · cy(l) by using equation (3.7).

f(n) = f(nx, ny) = jy(ny) · cx(l) + jx(nx) (3.7)

40



3.3 Architecture and Implementation Details

In some programming languages, like C/C++, or specific implementations, the result of
the modulo operator depends on the signs of the operands and may become negative. We
therefore ensure that the components of a tile index nd are always mapped to positive values
by adding an integral multiple µ of the (positive) divisor cd(l) to nd, where µ > nd. The
modified versions of equation (3.6) and equation (3.7) as used in our FCM implementation
are given in equations (3.8).

jd(k) =

(
k +

(⌊
|k|
cd(l)

⌋
+ 1

)
· cd(l)

)
mod cd(l)

f(n) = f(nx, ny) = jy(ny) · cx(l) + jx(nx)

(3.8)

The elements of a 2D array can thus be stored in a 1D array as illustrated in figure 3.13.
If the virtual view point and hence the clip center moves, this kind of toroidal addressing
allows to directly access and update the entries in the 1D array which correspond to elements
from the rows or columns at the border of the 2D array, without relocating the remaining
ones.

(a) situation before movement of clip center (b) situation after movement of clip center

Figure 3.13: Equation 3.7 is used to calculate linear array addresses from the tile indices in order to store
them in a 1D array (blue). If the clip center (yellow dot) is moved, only tiles at the border of the 2D tile array
are replaced.

We use the same technique to linearize the subset of tiles from the active areas in the tile
arrays of the FCM’s tile level cache in order to pack the texture data from all clip levels into a
single 1D tile texture array in video memory for rendering. Texture arrays consist of textures
of the same size and texel format as opposed to arrays of textures which are not restricted
in this way. Arrays of textures are furthermore bound to one texture unit per contained
texture, whereas one texture array is bound to only one texture unit. Since this eliminates

41



3 The Flexible Clipmap

the need for switching textures and multiple draw calls during rendering, if there are more
textures than texture units, texture arrays can yield better rendering performance [54]. At
each clip level l, the active area consists of ν(l) = kx(l) · ky(l) tiles. The total number
of elements for storing the tiles in the active areas from all clip levels in a 1D tile texture

array thus equals
L−1∑
l=0

ν(l). The 2D tile indices are linearized by means of the formulas in

equations (3.6) and 3.7 where cd(l) is replaced by kd(l). The first of the ν(l) tiles at level

l is stored in the tile texture array at offset Ω(l) =
l−1∑
i=0

ν(i). Like the clip areas, the active

areas at the top-most clip levels are smaller than those at lower levels, because at level L−1
there is only one tile, at L−2 are at most four tiles, etc., so that the ranges and offsets within
the tile texture array are not constant. As explained in section 3.3.5, the FCM’s fragment
program for rendering uses the clip level and a 2D tile index n = (nx, ny) to access texture
data of a tile within the tile texture array. In order to compute the tile’s index within the
tile texture array in the fragment program, the offsets Ω(l) are required. Therefore, the
offsets are stored in a separate array indexed by l and provided to the fragment program via
a uniform variable. Figure 3.14 illustrates the tile texture array as stored in video memory
and the array containing the offsets Ω(l).

Figure 3.14: Illustration of the 1D tile texture array and the array for storing the offsets Ω(l) of the first tile
from each clip level l. In this example, the FCM has L = 5 clip levels, the clip areas (light gray) have sizes of
at most 5× 5 tiles and the active areas (dark gray) consist of at most 3× 3 tiles. At levels 3 and 4, the sizes of
both types of areas are only 2× 2 and 1× 1, respectively. The two 1D arrays are located in video memory for
being accessed by the fragment program for rendering.

3.3.3 Scheduling Tile Updates

Updating and creating tiles as described in section 3.2.5 is also performed in a separate
thread. Tiles at level l = 0 are created by a GPU program for DSM synthesis which is
subject of chapter 5.

When images are inserted into the spatial index, the tile update process calculates the
indices for the tiles at l = 0 that are covered by the new images. For each tile that is
about to be updated, all images whose projections overlap the tile’s area are retrieved from
the spatial index as described above. The texture data are then generated by projecting
the returned aerial images onto the tile and assigning texel values according to one of the

42



3.3 Architecture and Implementation Details

methods presented in section 5.4. After updating a tile at level l = 0, equation (3.5) is used
to determine its parent tile and a tile update job at level l = 1 is inserted into a schedule.
A tile update job consists of a sequential number (ID), the clip level of the parent and the
indices of the parent and its child. The schedule is implemented as a priority queue, and
the jobs are assigned priorities according to the parent level and the ID of a job. Given two
distinct tile update jobs j1 and j2, the priority of j1 is considered to be higher than the one
of j2, if

(l1 < l2) ∨ ((l1 = l2) ∧ (ID1 < ID2))

where li and IDi, i = 1, 2 are the level and ID of tile update job ji, respectively.
As soon as no tiles at level l = 0 are left for being updated from images, the thread

responsible for updating tiles continues to process the jobs from its schedule. A parent
tile and its respective child are retrieved from the cache of the FCM and are both locked
during updating, i. e., they cannot be accessed by any other process. If a tile is requested
for updating, but already locked for other reasons, e. g., because it is about to be copied into
video memory by the rendering process, the job is re-scheduled with a greater ID. Updated
tiles are unlocked again, marked as updated and stored in the tile buffer of the cache of the
FCM, since they are likely to be used for updating their own parents or for being copied to
video memory by the rendering process. Updating tiles at l > 0 will cause further jobs to be
scheduled in the same way, until the top-most tile has been updated and the schedule runs
empty.

3.3.4 Tile Map and LOD Calculation

In order to avoid aliasing during rendering, the texture data that determine the final color of
a screen pixel have to be selected from tiles at clip level lopt. A single texel of a tile at lopt
aggregates a number of texels from levels < lopt and thus provides a pre-filtered version of
the texture data. Therefore we have to calculate the level of detail (LOD) lopt which best
avoids texture aliasing, and we have to locate the corresponding tile that contains the texture
data within the tile texture array.

Following the idea by Crawfis et al. [16], we use an extra texture, the tile map. Each texel
in the tile map corresponds to the area of a tile at level 0 in world space. The value of the
texel indicates the lowest clip level llow for which a tile is present in the tile texture array in
video memory. A value of zero, for instance, means that a tile is available at level 0. Only a
rectangular region of kx × ky texels, i. e., the size of the active area, around the location of
the clip center in the tile map can have a value of zero. A tile at level l > 0 corresponds to
2l × 2l texels within the tile map. Note that the example of a tile map shown in figure 3.15
only contains the lowest clip levels available in video memory, but the corresponding FCM
has two more clip levels, so that L = 5 due to the total size of the area A covered by the
FCM. Tiles at higher levels are implicitly present in video memory as well, because they
partially contain the more detailed areas, and the top-most tile must always be available.
The tile map is recomputed and uploaded into video memory each time the clip center is
relocated due to movements of the virtual camera, and its lateral extension (tmx, tmy) in

43



3 The Flexible Clipmap

texels must satisfy equation (3.9).

log2 (min (tmx, tmy)) ≥ (L− 1) (3.9)

Figure 3.15: Illustration of a tile map: each grid cell represents a texel and corresponds to a tile at level 0.
The color indicates the value of the minimum clip level of a tile that covers the corresponding area of the
FCM and which is present in the tile texture array in video memory.

Aliasing caused by texture sampling is best avoided by the texture data from a tile at
clip level lopt. This particular level is computed in the same way as a corresponding mip-
map level. The computation is based on the amount of texels that are covered by a single
screen space pixel (minification) where pixels and texels are assumed to be representable as
squares, although they are actually point samples [26]. The minification j corresponds to
the number of texels at the base clip level 0 that need to be aggregated into one screen pixel.
In this way, the texture is spatially filtered and aliasing is avoided.

If the partial derivatives of the texture coordinates (u, v) with respect to the screen coor-
dinates x and y are assumed to be constant across the area of a single pixel in screen space,
its shape in texture space can be approximated by a parallelogram [26]. j can then be deter-
mined, for instance, by hypotenuse comparison as presented in [26], i. e., by the length of the
greater of the two sides sa and sb of the pixel’s parallelogram in texture space. As illustrated

in figure 3.16, sa and sb are given by s2a =
(
∂u
∂x

)2
+
(
∂v
∂x

)2
and s2b =

(
∂u
∂y

)2
+
(
∂v
∂y

)2
where ∂u

∂d ,
∂v
∂d , d ∈ {x, y} denote the changes of the texture coordinates (u, v) along the

screen space directions x and y. At clip level l, 2l texels from the base level 0 are ag-
gregated along each dimension, and we compute l = lopt according to [26] by means of
equations (3.10).

j = max (sa, sb) = 2l

⇒ l = log2

(√
max

(
s2a, s

2
b

))
=

1

2
log2

(
max

((
∂u

∂x

)2

+

(
∂v

∂x

)2

,

(
∂u

∂y

)2

+

(
∂v

∂y

)2
)) (3.10)

44



3.3 Architecture and Implementation Details

Figure 3.16: The projected shape of a screen pixel onto a texture (blue) is approximated by a parallelogram
in texture space. Its sides are related to the partial derivatives of the texture coordinates (u, v) with respect to
the directions x and y in screen space. Illustration following [26].

The four partial derivatives can be calculated in GLSL fragment programs by applying the
built-in functions dFdx and dFdy to the normalized texture coordinates scaled by the size
of the virtual texture in texels.

Though it is computationally more expensive, anisotropic texture filtering, which is sup-
ported by current graphics hardware [1, p. 168], yields better visual results, since the result-
ing images look less blurry as shown in figure 3.2(b) and figure 3.2(c). To take into account
the maximum number of samples Naniso along the line of anisotropy [1, pp. 168–170] in
order to select an appropriate clip level for texture sampling, equation (3.10) needs to be
modified. The modified formula is given in equation (3.11).

σmin = min (sa, sb) , σmax = max (sa, sb) = j,

raspect = min

(
σmax

σmin
, Naniso

)

l = log2

(
σmax

raspect

)
= log2(j)− log2(raspect) (3.11)

The same formula is also used in [16] and [53] for selecting appropriate levels of detail with
respect to anisotropic texture filtering.

3.3.5 Rendering

Before a frame is rendered, the FCM checks if the point of view of the virtual camera has
changed, and updates its cache if necessary. All tiles from the active area must be uploaded
into video memory, i. e., they must be copied into the tile texture array. Since the active
areas are subsets of the clip areas, the tiles within the active areas are contained in the tile
arrays of the tile level cache. These tiles are retrieved from the cache of the FCM and sent to
video memory in descending clip level order. In this way, if some tiles cannot be uploaded
on time, at least the tile at top-most level L− 1 is likely to be present in video memory.

45



3 The Flexible Clipmap

Furthermore, the FCM checks whether tiles are marked as updated or whether previously
any tile could not be transferred to video memory because it was locked for updating or not
yet loaded into main memory. Tiles that are not available for the aforementioned reasons
are marked as delayed, and a counter for the number of unsuccessful accesses of the corre-
sponding tile will be increased. Subsequent attempts to access a delayed tile for rendering
in a later frame are made, if the counter is below some threshold, but not until a predefined
timeout has expired. If the threshold for the maximum number of delays is exceeded, the
tile is marked as absent and will not be used for rendering again, because it is then consid-
ered missing. This avoids further unsuccessful and hence unnecessary attempts to retrieve
an absent tile from the cache. Absent tiles are usually tiles which have a valid tile index
according to the area A covered by the FCM, but which do not contain any texture data.
In this case, the rendering must rely on texture data from the parent tile at the next coarser
LOD, if such a level exists.

Texture mapping using the FCM is implemented by a GLSL fragment program. The tile
texture array and the tile map have to be bound to one texturing unit each and are accessed
by the shader. The texture coordinates (u, v) of the surface to be textured are assumed to be
in [0, 1] × [0, 1] and correspond to the area A covered by the FCM. In this way, whenever
the FCM is resized, the texture coordinates can remain unchanged, although the underlying
geometry of the textured surface, e. g., a planar quadrilateral mesh, is preferably also scaled
in order to reflect the extension of the depicted area.

The actual texture mapping of a surface performed by the fragment program of our FCM
implementation comprises the steps listed below.

1. determine the clip level lf for sampling texture data

2. determine world coordinates p at current fragment

3. compute the 2D tile index n = (nx, ny) from p and l

4. transform n into a 1D index to access the tile texture array by using the clip level’s
offset Ω(l)

5. compute the sampling position (su, sv) sampling the tile’s texture data

In the following, we describe each of these steps in detail.

1. At each fragment, the fragment program performs a look-up in the tile map to deter-
mine the tile with the lowest clip level llow, i. e., the highest LOD, that is available in the
tile texture array, and it furthermore calculates lopt as described in section 3.3.4. The final
clip level and LOD lf , at which the corresponding tile has to be accessed, is computed by
lf = max

(
llow, lopt

)
. Since lf is usually not an integral level, trilinear interpolation between

blfc and dlfe by means of the fractional part of lf can be used to obtain smooth transitions
of texture data between each two LODs.

46



3.4 Performance Analysis

2. The corners Rmin and Rmax in world coordinates of A are passed to the fragment pro-
gram via uniform variables. Let (u, v) denote the texture coordinate at the current fragment.
The corresponding location r = (rx, ry) in world coordinates is computed by

rx = u · (Rxmax −Rxmin) +Rxmin

ry = v · (Rymax −Rymin) +Rymin

3. The grid spacing of the tile grid (gx, gy) is passed as a uniform variable to the frag-
ment program as well. The 2D tile index n = n(l, r) of the tile containing the previously
computed position r at clip level l = lf is then computed by equation (3.1).

4. Using the tile index n, the number of tiles k(l) = (kx(l), ky(l)) in the 2D tile array
from the active area and the array of offsets Ω(l) where the first tile from the active area is
located within the tile texture array, the tile’s index within the tile texture array ξ is com-
puted by means of equations 3.6 and 3.7 where cd(l) is replaced by kd(l), d ∈ {x, y}. The
arrays holding k(l) and Ω(l) are indexed by l and passed via uniform variables to the shader.

5. The position (su, sv) where the tile at index ξ in the tile texture array has to be sam-
pled is calculated by the shader by means of the texture coordinates (u, v) of a fragment
according to equations (3.12).

(Gu, Gv) = (Rxmin · resx, Rymin · resy)

(Nu, Nv) = ((Rxmax −Rxmin) · resx, (Rymax −Rymin) · resy)

(Fu, Fv) =


(⌊

Gu

2l

⌋
,
⌊
Gv

2l

⌋)
, l < L− 1(⌊

Gu

2l

⌋
− Tx

2 ,
⌊
Gv

2l

⌋
− Ty

2

)
, l ≥ L− 1

(tu, tv) =

(
u ·Nu

2l
+ Fu,

v ·Nv

2l
+ Fv

)
(su, sv) =

(
tu mod Tx

Tx
,
tv mod Ty

Ty

)
(3.12)

(resx, resy) denotes the tile resolution in terms of texels per unit in world coordinates and
(Tx, Ty) is the size of the tile’s texture in texels. Both quantities are also available in the
fragment program. This formula is implemented by the GLSL functions getTileCoor-
dUniform() and getTileCoord() which can be found at the beginning of the com-
plete source code of our FCM fragment program in listing A.2 in appendix A. The latter
function is used for texel-precise texture sampling and hence computes sampling positions
(s′u, s

′
v) in the range [0, Tx−1]×[0, Ty−1] instead of [0, 1]×[0, 1] by omitting the divisions

by Tx and Ty.

3.4 Performance Analysis

We analyzed the performance of the FCM in terms of the number of updated tiles per second
during continuous addition of aerial images. Aerial images data were created using the

47



3 The Flexible Clipmap

simulation framework in [75] which allows to generate virtual vertical aerial images at
locations, orientations, resolutions and frequencies specified by the user from renderings
of digital 3D models. The images with added metadata were sent by the simulator over
network via TCP to a client application where they were processed by the employed FCM.

3.4.1 Evaluation Setup

The run-time performance of the rendering and the visual quality of the resulting texture
map in the FCM depend on the following quantities: the resolution of the incoming aerial
images in texels, the number of aerial images per second (image rate), the number of
tile updates per second (update rate), the resolution of the final texture in texels per unit
(resx, resy), the tile size in texels (Tx, Ty), the sizes of the clip areas (cx(l), cy(l)) and the
active areas (kx(l), ky(l)) in number of tiles at each level l, and capacity of the tile bufferB.

In our evaluation setup, we always used a viewport/screen size of (Vx, Vy) = (1024, 768)
pixels, resd = 20, Kd = dVd/Tde, Cd = 2 · Kd with d ∈ {x, y} and B = Cx · Cy. For
each tested configuration of tile sizes, image sizes and average images rates, we simulated
a single camera with a vertical field of view of 60◦ and following exactly the same path
at a constant altitude of 50 m above ground, and we performed 10 runs each to obtain
means. Means are necessary, because the images received by the client are located at ran-
dom positions along the path of image acquisition during different runs, as there was no
synchronization between the client application and the simulator. In addition, the simulator
cannot guarantee to provide a certain update rate, which also strongly depends on the reso-
lution of the aerial images and the network. Tile updates were executed before every frame
whenever at least one new aerial image had been received. The simulator and the client
application were executed in parallel on a desktop computer with an Intel i7 860 CPU at 2.8
GHz, a NVidia GeForce 470 GTX with 1280 MB dedicated video memory, 6 GB RAM and
64-bit Windows 7 operating system.

3.4.2 Results

The performance of the FCM in terms of updated tiles per second from the setup described
in section 3.4.1 for tile sizes of Tx = Ty = 256 and Tx = Ty = 512 texels and for different
image sizes at different averaged image rates is shown in figure 3.17. Error bars indicate
the standard deviations. During the evaluation the FCM had at most L = 8 clip levels in
case of Tx = Ty = 256 and L = 7 in case of Tx = Ty = 512 after the area of A reached
its maximum extension. The amount of texture data managed by the FCM thus corresponds
to a single 32-bit R8G8B8A8 texture of 215 × 215 texels with a memory size of 4 GB. The
most demanding configuration (4000× 3000 texels@0.26) corresponds to an average data
rate of 11.9 MB per second but still achieved tile update rates of 427.59 tiles per second for
tile size 256 × 256 and 150.57 tiles per second for tile size 512 × 512. The total number
of tiles in the tile texture array was only 85 respectively 25. This implies that the average
update rates are sufficient to update the entire tile texture array multiple times per second
and still permit interactive rendering frame rates.

48



3.5 Discussion

(a) tile size 256× 256 texels

(b) tile size 512× 512 texels

Figure 3.17: FCM performance in terms of tile updates/second in our evaluation setup.

3.5 Discussion

Our evaluation has shown that the most important limiting factors in our setup were the
simulation of image sources providing high resolution images at high frequency, and the
transmission over the network. Therefore the simulator and client were executed in parallel
on the same machine using the network loopback device in order to eliminate transmission
errors. This prevented us from performing further measurements and determining the limits
of the FCM in the given scenario.

A problem arises if the projections of the aerial images cover the entire area of the FCM
or even more, e. g., when the images are taken from high altitudes: the updates then would
not be confined to few tiles and would affect the entire FCM. However, this issue can be
avoided by limiting the number of tiles updated in each frame, which is advisable anyway,
because performing many tile updates between two frames would stall the rendering and
reduce interactivity.

49



3 The Flexible Clipmap

Another severe issue is caused by the 32-bit floating point precision of the texture coor-
dinates (u, v), because they need to cover the entire R2 (see section 3.3.5). This also arises
in other GPU based clipmap implementations (cf. [23], [78]). By deriving the geometry
from the FCM as well, we could drop that constraint and map the texture coordinate range
of [0, 1]× [0, 1] only to the visible portion of the geometry.

Furthermore, the size of the tile map can exceed the hardware limits as the number of
clip levels increases (cf. section 3.3). This can be countered by virtualizing the clip stack,
as already introduced in [79], by processing only a subset [Lmin, Lmax] ⊂ [0, L − 1] of
clip levels which are relevant for the viewer at the current view point. Though the tile
map requires an additional texture unit, it provides a very easy LOD selection and avoids
invalidating entire detail levels, if a single tile is missing (cf. [16]).

50



4 Digital Surface Model Rendering

Since textured polygonal meshes can be processed and rendered by GPUs at high speed,
a widely used rendering technique stores a digital elevation model (DEM) in (grayscale)
texture maps (so called heightmaps or heightfields) and uses them to displace the vertices
of a sufficiently tessellated planar polygonal mesh. This technique is known as displace-
ment mapping [1, p. 198] and is considered an extension of bump mapping [15]. Bump
mapping employs textures to perturb the surface normals to modify the perceived smooth-
ness of a surface during lighting computations, without modifying the underlying geome-
try [1, pp. 183–190].

However, most renderers accept only triangle meshes which can become rather complex
and may easily consist of millions of triangles. During mesh generation, particular attention
has to be paid to different issues, e. g., to not produce any cracks, to choose appropriate
tessellations and to avoid aliasing caused by small or distant triangles.

Furthermore, when a large mesh becomes rasterized, many triangles result in at most
a few pixels whose corresponding fragments succeed in passing all of the numerous tests
encountered on their way through the rendering pipeline. Therefore it appears to be attrac-
tive to bypass the entire process of converting a heightfield into a mesh. Techniques like
relief mapping [63] or parallax occlusion mapping [80] can make use of pixel shaders on
modern GPUs to perform real-time ray casting on heightfields. This allows to conveniently
calculate the displaced sample positions in corresponding color textures for determining the
final fragment color. During this ray casting fine-structured details can be added to surfaces
without further tessellating the underlying polygonal mesh. In many cases this even allows
to reduce the polygonal mesh to a planar quadrilateral which may be tessellated into only
two triangles.

In order to speed up the ray casting and to achieve real-time frame rates, many GPU-
based heightfield rendering techniques employ maximum mipmaps to access the DEM. At
each level, a maximum mipmap aggregates 2×2 texels into one texel at the next higher mip-
map level by using the maximum of the four texel values instead of their averaged value. As
the size of texture maps that can be handled by GPUs is currently limited by manufacturer
specific restrictions and ultimately by the amount of available video memory, large DEMs
cannot be stored in a single heightfield texture for direct access during GPU-based ray cast-
ing.

In this chapter, we present a GPU-based heightfield ray casting technique for single-pass
rendering of heightfields of almost arbitrary sizes in real time. The technique employs the
Flexible Clipmap (FCM) discussed in chapter 3 and current graphics hardware to speed up
the ray casting while alleviating the aforementioned video memory limitations. The speedup

51



4 Digital Surface Model Rendering

is achieved by taking into account the desired image quality on a per-pixel basis and early
ray termination based on level of detail selection: At each intersection of a ray with the
surface to be rendered, we check if the corresponding element of the surface becomes pro-
jected to less than one screen pixel. In this case, we can stop ray casting, because it would be
unnecessary to depict more details about the surface at the current pixel. Additionally, two
different refinement methods for improving the appearance of the reconstructed surfaces in
our renderings can be employed.

4.1 Related Work

Much research has been done on CPU-based ray casting of heightfields as well as on terrain
rendering based on polygonal meshes. Since summarizing these two areas would exceed the
scope of this thesis, we confine ourselves to an overview of recent GPU-based heightfield
ray casting methods related to our work.

Qu et al. [65] presented one of the first GPU-based ray casting schemes for heightfields
which primarily aims at accurate surface reconstruction of heightfields but does not use any
sophisticated structures for acceleration.

Relief mapping [57] and parallax (occlusion) mapping [40] are techniques for adding
structural details to polygonal surfaces, which have their origin in CPU-based rendering
and improve upon the disadvantages of bump mapping [10]. Both techniques have been
implemented for GPUs (e. g., [63, 80]) and benefit from programmable graphics pipelines.
But as most of these implementations resemble the strategies used in CPU-based ray casting,
like iterative and/or binary search to detect heightfield intersections, they are prone to the
same kind of rendering artifacts caused by missed intersections in highly spatially variant
data sets. An introduction to these closely related techniques can be found for instance
in [1, pp. 183–199], and more details are given in the comprehensive state-of-the-art report
by Szirmay-Kalos and Umenhoffer [77] which focuses on GPU-based implementations.

Oh et al. [55] accelerate ray casting and achieve real-time frame rates by creating a bound-
ing volume hierarchy (BVH) of the heightfield, which is stored in a maximum mipmap and
allows to safely advance along the ray over long distances (see section 4.2.2). They also
present a method based on bilinear interpolation of heightfield values to improve the quality
of the reconstructed surface obtained from point-sampled data.

The method presented by Tevs et al. [81] also relies on BVHs stored in maximum mip-
maps, but uses a different sampling strategy. Their method advances along the ray from one
intersection of the projected ray with a texel boundary to the next such intersection, whereas
Oh et al. use a constant step size to advance along the ray. In addition, Tevs et al. store in
each heightfield texel the height values at the four corners of a quadrilateral encoded as an
RGBA value instead of point samples, which allows surface reconstruction on parametric
descriptions.

Compared to other techniques which also rely on preprocessed information about the
heightfield and acceleration data structures, like for instance relaxed cone step mapping [20,
48, 62], maximum mipmap creation is much faster and can be performed on the GPU [81].

52



4.2 GPU based Single-pass Ray Casting Using Clipmaps

All these methods have in common that they operate on single heightfields of relatively
small extents which are intended to add details to surfaces at meso- or microscales instead
of representing vast surfaces themselves. Recently Dick et al. [18] have presented a method
for ray casting terrains of several square kilometers extent at real-time frame rates. Their
method also employs maximum mipmaps to accelerate the ray casting process and a tiling
approach to render data sets of several hundred GB size. They also presented a faster hybrid
method which uses ray casting or rasterization-based rendering, but requires knowledge of
the employed GPU respectively a training phase to decide whether to use rasterization or
ray casting [19]. Another hybrid technique is presented in [3].

Our method aims at rendering very large heightfields only by means of GPU ray casting.
It has been inspired in large parts by the works of Dick et al. [18] and Tevs et al. [81] as
we also employ a tile-based approach and their cell-precise ray traversal scheme. But in
contrast to the technique by Dick et al., which creates a complete mipmap for each tile and
requires additional rendering passes to determine the visibility of the tiles, our method fur-
ther accelerates the ray casting process and requires only a single rendering pass by using
our tile-based FCM implementation (see chapter 3).

Another concept worth mentioning in the context of DSM rendering and clipmaps is the
geometry clipmap as introduced by Losasso et al. [47]. Geometry clipmaps and derived
GPU-based variations [4, 12] store DEM data in vertex buffers at different resolutions, but
according to our knowledge they are only used in the context of mesh-based rendering and
not for accelerating ray casting.

4.2 GPU based Single-pass Ray Casting Using Clipmaps

Our FCM implementation can be used to store different DSM data, and in particular eleva-
tion information, i. e., a DEM, in order to produce 3D renderings of the underlying surface
by means of ray casting. In this section we explain our storage scheme for DSM data and
describe the employed ray traversal method, which is basically the same as the one pre-
sented in [18]. We discuss how to accelerate ray casting and how to avoid aliasing by using
the FCM. Furthermore, we present two refinement methods that can be used to improve the
appearance of the reconstructed surfaces.

4.2.1 Clipmaps for DSM Storage

In order to store DSM data, the tiles in our FCM implementation are extended to consist of
several textures (tile layers) of the same extension for the different types of data of a DSM.
For our purposes, two layers are required, one for storing elevation data (DEM layer) and
one for color information (color layer). The layers correspond to textures, and their texel
formats are based on the underlying data according to table 2.1 in section 2.2.3. For each
layer, the GPU uses one separate texture tile array as described in chapter 3.3.2 to access
the texture data of the tiles in the active area.

53



4 Digital Surface Model Rendering

To use a digital elevation model (DEM) for rendering, in our approach the height values
are stored in the DEM layer of FCM tiles at the highest resolution (lowest) level l = 0. A
texel at level l > 0 obtains as value the maximum height value of the corresponding 2 × 2
subordinate texels at level l − 1. This is the same construction scheme as used with max-
imum mipmaps [18, 55, 81]. If we identify each texel with a bounding box defined by its
height value and its grid cell, i. e., the boundaries of the associated square texel in the tex-
ture, we obtain a bounding volume hierarchy (BVH) of the underlying DEM as illustrated
in figure 4.1. In the method presented by Dick et al. [18], the heightfield is split into tiles as

level 1 level 2 level 3

z

y

x
world space

height

v

u
grid space

Figure 4.1: The BVH is derived from the DEM data on a regular grid. Gray boxes correspond to elevation
samples at level 0. Bounding boxes on higher levels and their maximum value are highlighted by the same
color.

well, but a separate maximum mipmap is created for each tile. To render vast DSMs, this
approach may require either lots of tiles and thus mipmaps to be present in video memory or
additional rendering passes, especially if the heightfield is shallow and there is little occlu-
sion between tiles. Furthermore, the tiles located far away from the viewer may contain fine
spatial details, e. g., steep summits of distant mountains, which are not only not perceivable
from far away but may also expose spatial aliasing artifacts due to minification caused by
perspective projection. The latter aspect is the same which motivated the development of
mipmaps for texture mapping and also applies to mesh-based rendering techniques which
therefore strive to determine an appropriate level of detail (LOD) in order to avoid rasteriz-
ing triangles that would become projected to less than one pixel in screen space.

The important difference between the usage of a clipmap and multiple mipmaps is that in
case of a clipmap the BVH spans the entire domain at the topmost level. A proper placement
of the clip center results in the selection of only those tiles of highest resolution at level l = 0
which are closest to the virtual camera and thus potentially have to be rendered in full detail.
Compared to level l, at level l + 1 the area of the heightfield covered by a tile is four times
larger, and the spatial resolution is divided in half along each direction of the grid. Thus
the entire domain is spatially pre-filtered and the level of detail of the heightfield decreases
with increasing distance towards the viewer. Because higher clipmap levels also correspond
to larger bounding boxes, we can exploit this fact to accelerate GPU ray casting in distant
parts of the scene as described in section 4.2.2.

54



4.2 GPU based Single-pass Ray Casting Using Clipmaps

4.2.2 Rendering and Accelerated Ray Traversal

The ray casting of DSMs respectively DEMs using the FCM is done on the GPU by means
of a vertex and a fragment program. For the mere purpose of ray casting, only the DEM
layer of the tiles in the active area is required. The textures containing elevation data are
accessed by the GPU via a separate texture tile array in the same way as the texture tile array
of an FCM, that is used for texturing a (planar) surface (see section 3.3.5). Given a DSM
stored in an FCM of L clip levels, we set the clip center simply by projecting the center of
the viewport into the scene. Using this method, the location of the clip center depends on
the angle ϕview enclosed between the viewer’s viewing direction and the opposite surface
normal of the plane containing the rendered elevation data. If ϕview = 0, i. e., the viewer
is looking perpendicularly onto the ground plane, the clip center is located in the center of
the viewport as desired. If ϕview increases, the clip center becomes located in more distant
parts of the scene near the horizon. This is undesirable, since the viewer probably wants to
see elevated surfaces in parts of the scene closer to her. We therefore control the maximum
distance of the clip center from the viewer by confining the maximum angle for computing
the distance to the clip center to 70◦, which is an empirical value. In this way, the clip
center will remain located within the viewport between its lower border and the horizon of
the scene, even if the viewing direction is parallel to the ground plane or directed upwards.
This method for placing the clip center is illustrated in figure 4.2. We also ensure that all

(a) (b) (c)

Figure 4.2: The location of the clip center (yellow dot) in the scene is computed by projecting the geometric
center of the viewport into the scene. It depends on the angle enclosed between the opposite surface normal ~n
of the ground plane containing the elevation data of the rendered surface and the viewing direction ~v. If ~v is
(near-)parallel to the ground plane (right image), we ensure that the clip center remains located between the
horizon of the scene (dashed line) and the bottom of the viewport.

tiles in the active areas of all clip levels or at least the highest ones can be stored in video
memory by choosing appropriate sizes for the tiles and the active area.

The axis-aligned bounding box (AABB) of the entire DEM, which is associated with the
topmost tile, is based in the xy-plane of the world coordinate system. While the extension
of this AABB in x- and y-direction can be obtained directly from the box stored at the root
node of the FCM’s R∗-tree, the size in z-direction is determined by the maximum elevation
value of that tile. The AABB is used to construct a polygonal box mesh consisting of only

55



4 Digital Surface Model Rendering

12 triangles which serves as proxy geometry for the ray casting process. A vertex program
obtains the dimensions of the box in world space and calculates normalized 3D texture co-
ordinates from the vertex coordinates of the box corners. The clipmap is positioned at the
bottom of the box corresponding to the minimum height value z = Hmin of the DSM.Hmin

and the maximum height value Hmax are both determined during loading of the topmost
clipmap tile into main memory. The texture coordinates on the box range from (0, 0, 0)
on its minimum corner to (1, 1, 1) on its maximum corner and are used to setup the rays
as described in [43]. By rendering the back faces of the proxy geometry we obtain each
ray’s exit point e, and we pass the camera position and the geometry of the bounding box in
world coordinates to the fragment shader which calculates each ray’s normalized direction
~d = (dx, dy, dz) and entry point s to the proxy geometry in normalized 3D texture space6.
If the camera is located inside the bounding box the entry point s becomes the position of
the virtual camera [48]. In order to avoid that faces of a possibly very large proxy geometry
are clipped against the far plane of the view frustum of the virtual camera and hence exit
points are missing, the box is clipped in advance to fit into the view volume when the virtual
camera is moved.

The actual ray traversal is performed by projecting the ray onto a clip level dependent
2D grid with each grid cell corresponding to a texel. For a given clip level 0 ≤ l < L the
extensions of this grid (Gu, Gv) are determined by equation (4.1) with (W,H) being the
extensions of the entire DSM in sample points, i. e., texels.

(Gu(l), Gv(l)) =

(
W

2l
,
H

2l

)
(4.1)

Hence, the grid at level l has the same size a single texture containing the entire DSM at
mipmap level l would have. The current height pz of a location p = (px, py, pz) = s+k · ~d is
given in grid coordinates. In order to test for intersections with the heightfield, the sampled
height values have to be converted from world coordinates to grid coordinates via the height
resolution resz of the DEM. As an alternative, pz can be transformed into world space
for comparing height values and finding intersections of the ray with the surface. During
ray traversal we move from one intersection of the projection of the ray onto the xy-plane
~dp = (dx, dy) with a texel boundary to the next such intersection, i. e., from the projected
ray’s entry point enp into a grid cell directly to its exit point exp as shown in figure 4.3. The
only exception is at the first entry point which is the projection of the starting point of a ray
sp.

Ray casting is started at the highest clip level L − 1 with the coarsest resolution of the
BVH at which the entire DEM is given in a single tile and each pixel corresponds to the
maximum value and thus to the bounding box of 2L−1 × 2L−1 texels at the base level 0.
To determine whether a ray hits a bounding box at level l, the clipmap tile containing the
grid cell which belongs to the current enp and exp has to be sampled for the associated
height value h. The tile is determined by the uniform texture coordinate (u, v) as described

6The direction ~d of a ray is noted with an arrow to emphasize its vectorial character and to distinguish it
from the previously used variable d.

56



4.2 GPU based Single-pass Ray Casting Using Clipmaps

(a) situation in world space (b) projection onto grid

Figure 4.3: Rays are traversed from one intersection of the projected ray with a texel boundary to the next
such intersection. In the depicted situation the projection of the ray enters the yellow box at enp, exits at exp

and finally hits the orange box at i.

in section 3.3.5. Since the direction of the ray is needed to determine this grid cell and the

borders where the projected ray enters respectively exits, the sign bits of the components of
�d are stored in the lower three bits of an integer. This bit mask is created once for each ray

using bit-wise operations in the fragment shader, and it is evaluated as needed by switch-

statements to determine the direction of a ray. Details on the implementation are given in

section 7.4.1.

When moving along the ray from point en to point ex we hit the box surface in the

following two situations:

1. the ray is directed downwards and ex lies below the top of the box at height h

2. the ray is directed upwards and en lies below the top of the box at height h

If a ray hits a bounding box B at the current level l, it may also hit a bounding box contained

in B at a lower level of the BVH. Therefore the ray casting process is repeated at the next

lower level l′ = l − 1 from the current position en of the ray, but only if it is possible and

reasonable to proceed as described in section 4.2.3. Otherwise the lowest possible level

l = lmin has been reached, and the exact intersection i on the bounding box surface is

calculated according to equation (4.2).

i =

{
en+ �d ·max

(
h−enz

dz
, 0
)

dz < 0, exz < h

en dz ≥ 0, enz ≤ h
(4.2)

If a ray does not intersect a bounding box B at level l, it cannot intersect any of the bounding

boxes contained in B at any lower level either, and we therefore advance along the ray to ex
which becomes the entry point en of the next cell. Compared to a ray traversal performed

just on level 0, only one instead of 2l × 2l samples have to be tested for intersection, which

results in a significant speed up of the process [18, 81].

Three different cases for the intersection of a ray with a bounding box are illustrated in

figure 4.4. If a ray hits a bounding box B at some level l > 0 it does not necessarily have

57



4 Digital Surface Model Rendering

Figure 4.4: Different situations of intersection of a ray with the height field. The green ray hits the left red
box, but none of the black boxes contained.

to hit any bounding boxes contained in B at level l− 1, but this cannot be determined with-
out descending to the lower level. In order to avoid using the smaller step size over longer
distances, we move up again to level l if we detect that the ray does not hit any bounding
box at level l − 1 (cf. [18, 81]). The level is increased after four steps without intersecting
another box, because after four steps the containing box that caused the decrease of the level
is safely passed and the ray traversal cannot get stuck by switching alternately between two
levels.

The ray casting process is terminated if either a valid intersection point i on a bounding
box has been found or if the ray leaves the domain of the DSM. In the latter case, the
fragment from which the ray originates is discarded by the shader.

The complete GLSL source code of the vertex and fragment programs is given in ap-
pendix A.1.

4.2.3 LOD-determined Ray Termination

Ray casting can be terminated at the current level l, if l = max
(
llow, lopt

)
. The termination

criterion is designed to speed up ray casting and to avoid aliasing that may be caused if
projections of distant or small boxes are smaller than one screen pixel.

At each intersection of the ray with a bounding box we determine the highest resolution
available, i. e., the lowest clip level llow of a tile which covers the corresponding area of the
DSM and is present in video memory. This is done by transforming the hit point i on the
bounding box surface to normalized texture coordinates, followed by a single texel-precise
texture lookup in the tile map of the FCM as described in section 3.3.4 and section 3.3.5.

The clip level lopt at the current hit point i is chosen in such a way that aliasing resulting
from boxes which cover less than one pixel in screen space is avoided. But instead of using
the projection of a single screen pixel into texture space like in section 3.3.4, the size of the
corresponding heightfield box in screen space is considered, because a single texel from the
DEM layer represents only the top of the box on which i is located. Furthermore, the top
may not be visible, e. g., if the viewing direction is nearly parallel to the ground plane of the
rendered surface and thus to the top of the box. In this situation, the height of the box has

58



4.2 GPU based Single-pass Ray Casting Using Clipmaps

to be considered as well in order to determine an appropriate LOD based on the number of
covered screen pixels.

For this purpose, i is transformed from grid coordinates into world space to obtain iworld =
(ix, iy, h). Let (∆x,∆y) denote the spacing of the DEM grid in terms of units per sample
in world coordinates and let M denote the combined model, view and projection matrix of
the virtual camera. The four corners

κ = (bixc , biyc , h)

λ = (bixc+ ∆x, biyc , h)

µ = (bixc , biyc+ ∆y, h)

ν = (bixc , biyc , 0)

of the box on which i is located are transformed from world space into normalized screen
space by means of M . The resulting 2D positions κ′, λ′, µ′ and ν ′ are used to compute the
three sides ~a,~b and ~c of the box in window coordinates as shown in equations (4.3) where
Vx, Vy denote the size of the view port in pixels.

~a = (a1, a2) =
(
(λ′x − κ′x) · Vx, (λ′y − κ′y) · Vy

)
~b = (b1, b2) =

(
(µ′x − κ′x) · Vx, (µ′y − κ′y) · Vy

)
~c = (c1, c2) =

(
(ν ′x − κ′x) · Vx, (ν ′y − κ′y) · Vy

) (4.3)

~a,~b and ~c correspond to three of the sides of the bounding box of the DEM texel in window
coordinates and can be used to form the matrix Ttex in equation (4.4).

Ttex =

a1 a2
b1 b2
c1 c2

 (4.4)

Ttex allows to transform coordinates from 2D screen space onto a plane in 3D texture space
Σtex. If h was zero, the box would be degenerate and identical to its corresponding texel,
since ~c would be 0. In this case, the last row in equation (4.4) can be dropped, and the
texture coordinate system would be two-dimensional.

Assuming that the screen pixels are unit squares, they can be transformed to Σtex using
equations (4.5).

~r = Ttex ·
(

1
0

)
=

a1b1
c1

 , ~s = Ttex ·
(

0
1

)
=

a2b2
c2

 (4.5)

By means of ~r and ~s, we can compute the fraction of one screen pixel that is covered by
the box defining Σtex. This quantity corresponds to the reciprocal of the amount of texels
that are covered by one screen pixel in texture space, i. e., the minification j as described
in section 3.3.4. The relation becomes directly apparent, if h = 0 and the box can be
identified with its corresponding texel. In contrast to the texture space in section 3.3.4, Σtex

59



4 Digital Surface Model Rendering

corresponds to the projection of a single box instead of an entire texture. Hence, if |~r| < 1
or |~s| < 1, the projection of the box covers less than one pixel and would cause aliasing.
The larger of the reciprocals of |~r| and |~s| therefore indicates the minification j, which is
calculated according to equations (4.6).

|~r| =
√
a21 + b21 + c21, |~s| =

√
a22 + b22 + c22

j = max

(
1

|~r|
,

1

|~s|

)
=

1

min (|~r| , |~s|)

(4.6)

Analog to the LOD computation given in equations (3.10), j = 2lopt , and we compute lopt
according to equation (4.7).

2lopt = j =
1

min (|~r| , |~s|)

⇒ lopt = − log2 (min (|~r| , |~s|)) (4.7)

Clip level lopt is calculated in screen space at each intersection i of a ray with the heightfield.
The different spaces for computing lopt are illustrated in figure 4.5.

(a) world space (b) screen space (c) texture space

Figure 4.5: Illustration of the three different spaces used for computing lopt by means of a bounding box
which corresponds to a DEM texel.

Instead of descending to the full resolution clip level which may cause aliasing, we can
terminate ray casting at level lmin = max

(
llow, lopt

)
. The two different LODs llow and lopt

are visualized in figure 4.6 where each level is encoded by a different color.
Note that this calculation of lopt is different from the one we presented in [27] which is

based on the projection of the box surface area containing i into screen space. Both meth-
ods are suitable for LOD determination since there are several ways [1, pp. 687–691], but
we prefer the approach in equation (4.7), because it is more similar to the LOD selection
presented in equation (3.10).

A problem that was left open in [27] is the transition between two LODs which becomes
apparent as the virtual camera moves during user interaction or animations. We solved this
issue by linearly interpolating between the height values as follows:

Let h denote the height of the grid cell’s bounding box for which an intersection i at the
clip level lmin has been detected. The height value hp of the parent box is sampled and used

60



4.2 GPU based Single-pass Ray Casting Using Clipmaps

(a) llow (b) lopt

Figure 4.6: The two different LODs llow and lopt are used to terminate the ray traversal and to avoid aliasing.
Different colors encode different levels. Their order becomes visible in the right image in the almost planar
region on the left. Note that regions of higher elevation are assigned lower levels of detail (right) since they
cover more screen pixels.

together with h and the fractional part τ of lmin to compute h̄ according to equation (4.8).

h̄ = h+ τ · (hp − h), τ = lmin − blminc (4.8)

The final intersection i is then calculated in equation (4.2) with h being replaced by h̄.
As desired, the interpolation has no visual effect, if the box has the same height as its
parent. Transitions between different LODs are only perceivable during animations and
user interaction, especially in areas where the difference hp − h is large. The interpolation
scheme described above makes these transitions less abrupt and is illustrated in figure 4.7.

Figure 4.7: The heights of the cell’s bounding box and its parent are linearly interpolated by using the frac-
tional part τ of lmin to determine the height value of the final intersection. Actually, the value τ = 1 does not
occur, but is included for illustration.

4.2.4 Refinement of Block-sampled Heightfield Reconstruction

As pointed out by Oh et al. in [55], the point sampled DSMs and their treatment as boxes
results in blocky images which from a closeup view remind of models built of bricks (see
figure 4.8(a)). Because this effect may be unwanted in most applications, we also imple-
mented two refinement methods to obtain smooth surfaces. Both refinement methods are
applied after the intersection i on the bounding box surface has been determined as de-
scribed in section 4.2.2.

The first method is the one presented by Oh et al. [55] and relies on linear interpolation
of two samples obtained from the linearly interpolated heightfield, which are taken at a

61



4 Digital Surface Model Rendering

(a) none (b) linear (c) bicubic

Figure 4.8: Demonstration of the improvement in surface quality achieved by different refinement methods.

distance of one half cell from i in forward respectively backward direction along the ray.
This method works quite well and has hardly any effect on the overall performance on
modern GPUs, but in our implementation, some defects – presumably caused by numerical
inaccuracies – on surfaces with steep slopes remain, as shown in figure 4.8(b). Despite
these small defects, which are barely noticeable during animations or from farther viewing
distances, the surfaces look much smoother.

Our second method uses Hermite bicubic surfaces to improve the reconstruction of the
heightfield. Let (iu, iv) denote the projection of the point i onto the grid of the heightfield
at which ray casting has been terminated. Furthermore let C denote the height value of
the cell containing (iu, iv) and SW,S, SE,E,NE,N,NW,W the height values of the
neighboring cells, starting at the left lower cell and enumerating them in counterclockwise
order (see figure 4.9). We interpret the four points given in equations (4.9) as the corners of

(a) corners α, β, γ and δ (b) resulting Hermit bicubic patch

Figure 4.9: Construction scheme for a Hermite bicubic patch from 3 × 3 heightfield samples surrounding the
projection of intersection point i on the bounding box (left) and the resulting patch (right).

62



4.2 GPU based Single-pass Ray Casting Using Clipmaps

a Hermite bicubic surface patch.

α = (αs, αt, αh) = (biuc , bivc ,min (SW,S,C,W ))

β = (βs, βt, βh) = (biuc+ 1, bivc ,min (S, SE,E,C))

γ = (γs, γt, γh) = (biuc , bivc+ 1,min (W,C,N,NW ))

δ = (δs, δt, δh) = (biuc+ 1, bivc+ 1,min (C,E,NE,N))

(4.9)

Each patch is parametrized along the grid axes by s, t ∈ [0, 1] ⊂ R, and the height h(s, t)
on the surface patch is given in equation (4.10).

h(s, t) =
(
s3 s2 s 1

)
·H ·G ·HT ·

(
t3 t2 t 1

)T (4.10)

H =


2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

 , G =


αh γh

∂αh
∂v

∂γh
∂v

βh δh
∂βh
∂v

∂δh
∂v

∂αh
∂u

∂γh
∂u

∂2αh
∂u∂v

∂2γh
∂u∂v

∂βh
∂u

∂δh
∂u

∂2βh
∂u∂v

∂2δh
∂u∂v


Superscript T denotes transposed matrices and vectors, and H and G are the Hermite ba-
sis matrix and Hermite geometry matrix respectively. Their derivations can be found, for
instance, in [29, pp. 483–488, 516–520]. In [27], we approximated the partial derivatives
which define the tangential planes on the patch by using forward respectively backward dif-
ferences and by making the simplifications in equations (4.11) for the first order derivatives.

∂αh
∂u

=
∂γh
∂u
≈ C −W, ∂βh

∂u
=
∂δh
∂u
≈ E − C,

∂αh
∂v

=
∂βh
∂v
≈ C − S, ∂γh

∂v
=
∂δh
∂v
≈ N − C

(4.11)

This causes discontinuities at the patch boundaries, although they are hardly perceivable
during rendering. However, these discontinuities become apparent in closeup views and for
certain viewing angles. To achieve true C1 continuity between the patches, we compute the
first order partial derivatives ∂

∂u as given in equations (4.12).

∂αh
∂u
≈ C + S − (W + SW )

2
,

∂βh
∂u
≈ E + SE − (C + S)

2
∂γh
∂u
≈ N + C − (NW +W )

2
,

∂δh
∂u
≈ NE + E − (N + C)

2

(4.12)

The computations of the derivatives ∂
∂v are given in equation (4.13).

∂αh
∂v
≈ C + w − (S + SW )

2
,

∂βh
∂v
≈ E + C − (SE + S)

2
∂γh
∂v
≈ N +NW − (C +W )

2
,

∂δh
∂v
≈ NE +N − (E + C)

2

(4.13)

63



4 Digital Surface Model Rendering

(a) discontinuities (b) C1 continuity

Figure 4.10: The simplification made for the first order partial derivatives ∂
∂u

and ∂
∂v

in equation (4.11) does
not lead to desired C1 continuity between patch boundaries. The discontinuities become visible in closeup
views and for certain viewing angles (left). By using equations (4.12) and (4.13) to compute the derivatives,
the patches possess C1 continuity (right).

The mixed second order partial derivatives are approximated by equations (4.14).

∂2αh
∂u∂v

≈ C −W − S + SW,
∂2βh
∂u∂v

≈ E − C − SE + S,

∂2γh
∂u∂v

≈ N −NW − C +W,
∂2δh
∂u∂v

≈ NE −N − E + C

(4.14)

The visual difference between the simplified method for computing the first order partial
derivatives in equation (4.11) and the method given above is shown in figure 4.10. Although
the matrix G at each grid cell respectively texel of the clipmap storing the heightfield is
constant, we calculate it directly in the fragment shader as needed.

The pair of parameters (s, t), which corresponds to an intersection of the ray with the
bicubic patch instead of the bounding box, is determined by a second ray casting. Starting
at i on the bounding box surface, the ray p = i + k · ~d is advanced to its exit point on the
box at a fixed step width until it either hits the bicubic patch, i. e., pz ≤ h(s, t), or it leaves
the domain of the box without intersection. In the latter case, we treat i as an entry point
on the proxy geometry and proceed with the accelerated ray casting process described in
section 4.2.2 from the current level. We found a subdivision into 16 steps for traversing the
bounding box of a cell to be completely sufficient, independent of the clip level l. Fewer
subdivision steps expose defects by missed intersections, whereas increasing the number of
subdivision steps only reduces frame rates without further improving the reconstruction of
the surface.

Besides their simplicity and the possibility to calculate all the relevant information in
the fragment shader, we decided to use Hermite bicubic patches because we wanted to en-
sure that the surface remains inside the bounding boxes of the BVH. By constructing the
patches as described above, we can ensure that they stay completely inside the bounding
boxes as we control the defining tangential planes. The direct usage of forward and back-
ward differences according to equations (4.12) and (4.13) avoids any scaling of the tangents
and therefore leads to desired C1 continuity between neighboring patches, because their

64



4.3 Performance Results

tangents have the same direction and magnitude (cf. [29, pp. 517–520]). The most severe
drawback of this method is its high computational cost, although we still may achieve inter-
active frame rates (see section 4.3.2). Furthermore, as this method ensures that the height
of each patch is less or equal than the height of its bounding box, and the tangents are
not scaled, isolated peaks in the heightfield become clearly flattened as can be seen in fig-
ure 4.8(c).

However, both refinement methods presented in this section rely on interpolation of point
sampled data on a regular grid, and only serve in making the resulting renderings visually
more appealing. Besides, even if it might appear to be sufficient to apply refinement only in
cases when the viewer is close to a highly detailed area where the block sampled nature of
the data becomes apparent, we refine the surface at all discrete LODs, because the transition
between large distant boxes and smooth surfaces is rather disturbing during animations. In
addition, the lighting conditions on smooth surfaces and blocks are different due to distinct
surface normals.

4.2.5 Sampling Color Textures

The mapping of color information onto the surface obtained by ray casting as described
above works on the assumption that the DSM provides a color layer with an orthophoto
texture or a similar texture, e. g., a schematic map. As long as the color layer and DEM
layer cover the same area in world space and have the same resolution, one heightfield
sample corresponds to one color sample. In this case, only texture data on the tops of grid
cell bounding boxes of corresponding DEM layer texels are available, but the color value is
also used for the lateral faces and hence for the entire box. Therefore the final clip level lmin
where ray casting has terminated can also be used to perform a texel precise texture lookup
in the color layer of the tile that contains the intersection with the DEM.

If the color and DEM layers are of different resolutions, the determination of color values
by the FCM can be the same as described in section 3.3.4. Calculating the clip level lopt
which best avoids texture aliasing can be integrated into the ray casting procedure or can be
performed separately at the final hit point i in the heightfield.

The most severe drawback of using the color from a single texel for the entire box of
a heightfield sample is that the lateral faces of elevations do not depict information as ex-
pected. By viewing surfaces from oblique angles, a viewer might expect to see details on
these faces, e. g., frontages of buildings in urban areas or different layers of rock on canyon
walls, which are not available due to the nature of the employed color textures. This prob-
lem is illustrated in figure 4.11 and addressed in chapter 6.

4.3 Performance Results

The performance of our technique is demonstrated for renderings of four different data sets
of fixed size listed in table 4.1. The data set City 2 was acquired by means of photogram-

65



4 Digital Surface Model Rendering

(a) near-perpendicular view (b) oblique viewing angle

Figure 4.11: Orthophoto textures do not contain color information about lateral surfaces. This becomes
apparent, for instance, in urban areas if the virtual camera is lowered towards street level (right).

name extent [km] W ×H L scale size DEM size color
texture

time [min]

City 1 1.4× 1.0 5600× 4000 5 1.0 133 MB 99 MB 0:54
City 2 20.9× 26.3 83600× 105200 9 1.0 31.6 GB – 3:34
ETOPO1 ≈ 40075.0× 19970.0 21600× 10800 7 10.0 1.3 GB – 9:53
Blue Marble ≈ 40075.0× 19970.0 86400× 43200 9 10.0 19.2 GB 14.4 GB 13:10

Table 4.1: Properties of the different data sets used to evaluate performance. L denotes the total number of
clip levels which have been created, W × H is the grid size at level 0 respectively the size a single texture
would have. Column time contains the durations of the virtual camera flights for our evaluation in minutes.

metric methods from aerial images. City 1 depicts a small area in City 2 in which we have a
color texture available that has been derived from orthographic aerial images. The data sets
ETOPO1 [2] and Blue Marble [51] depict the entire Earth and are both derived in large parts
from SRTM data [52], but ETOPO1 also contains bathymetric data, whereas Blue Marble
possesses a color texture derived from satellite images. In addition, we created a fifth data
set which contains elevation data of almost the entire surface of Mars and has an extent of
46080 × 22528 samples. The data from Mars were acquired from the Mars Orbiter Laser
Altimeter experiment in the context of the Mars Global Surveyor Mission by NASA [61].
We did not use the Mars data set in our evaluation, because its properties are very similar to
those of the ETOPO1 data set. Example renderings of the data sets are shown in figure 4.12.

When being sampled in the fragment shader, the height values are scaled by factors given
in column scale in order to avoid flattened surfaces. Shallow surfaces do not challenge our
ray caster because less mutual occlusions lead to fewer level changes in the BVH during
ray traversal.

4.3.1 Evaluation Setup and Results

We used tile sizes of 512× 512 texels, active area sizes of 5× 5 tiles and clip area sizes of
7×7 for all data sets in our tests. The near and far plane of the virtual camera were set to 1.0
and 2000.0 units, respectively. Heightfield layers consist of single channel 32-bit floating
point textures, and color texture layers consist of 24-bit RGB textures. The results were

66



4.3 Performance Results

(a) City 1 (b) City 2

(c) ETOPO1 (d) Blue Marble

(e) Mars

Figure 4.12: Example renderings of the four data sets which we used in our performance evaluations and the
Mars data set. Color textures are only available for City 1 and Blue Marble, ETOPO1 was rendered using a
pseudo topographic color map and the rendering of City 2 depicts shadows which were computed by means
of secondary ray casting. The colors in the rendering of Olympus Mons on Mars were chosen according to
artistic considerations.

67



4 Digital Surface Model Rendering

recorded during virtual camera flights along fixed paths over the heightfields on a desktop
computer with an Intel i7 860 CPU at 2.8 GHz, 6 GB RAM, NVIDIA GeForce GTX 470
graphics adapter with 1280 MB dedicated video memory and Windows 7 OS (system A).
To make our results comparable to the results reported in [18], we additionally ran the same
tests on a second desktop computer (system B) with a hardware configuration more similar
to theirs (Intel Q6600 CPU at 2.4 GHz, 4 GB RAM, NVIDIA GeForce GTX 285 with 1024
MB dedicated video memory and Windows 7 OS). Table 4.2 shows the results for different
screen resolutions on system A and system B in terms of frames per second (fps). The
frame rates take into account the delays caused by updating the tile caches in main memory
and video memory as described in section 3.3. The times for rendering the given number of
frames are the same on both systems and are denoted by column time in table 4.1.

data set resolution
[pixel]

frames min.
[fps]

avg.
[fps]

1024× 768 5450 6.2 100.9
1280×1024 3464 5.8 64.1City 1
1920×1080 2217 5.1 41.0
1024× 768 25624 5.6 119.7
1280×1024 16700 5.6 78.0City 2
1920×1080 11189 5.1 52.3
1024× 768 105747 6.3 178.5
1280×1024 66869 5.9 112.9ETOPO1
1920×1080 42907 4.9 72.4
1024× 768 121844 3.3 154.2
1280×1024 75721 4.0 95.8

Blue
Marble

1920×1080 50028 1.8 63.3

(a) System A

data set resolution
[pixel]

frames min.
[fps]

avg.
[fps]

1024× 768 3848 5.1 71.2
1280×1024 2450 4.5 45.3City 1
1920×1080 1574 5.1 29.1
1024× 768 18174 3.6 84.9
1280×1024 12327 3.6 57.6City 2
1920×1080 8290 3.3 38.7
1024× 768 75790 5.2 127.9
1280×1024 48027 5.2 81.1ETOPO1
1920×1080 31134 4.7 52.5
1024× 768 95285 2.8 120.6
1280×1024 63409 2.5 80.3

Blue
Marble

1920×1080 43314 1.0 54.8

(b) System B

Table 4.2: Performance results of our rendering technique on two computers with different hardware configu-
ration.

4.3.2 Performance with Surface Refinement

All values given in table 4.2 were obtained without any of the surface refinement methods
described in section 4.2.4. The impact on the rendering speed and the relative loss in perfor-
mance when using surface refinement in our implementation is shown in table 4.3. These
data were acquired from another evaluation of the same camera flight through the City 2
data set on system A and system B, because this data set has high spatial frequencies in the
rendered regions and is the most challenging for our ray caster.

4.4 Discussion

The results in table 4.2 show that – in accordance with the results of Dick et al. [18] – very
large DSMs can be rendered in real time by using only ray casting and acceleration data
structures. Due to its close relation to mipmaps, the FCM proved to be well suited for this

68



4.4 Discussion

method 1024× 768 1280× 1024 1920× 1080

linear 96.2 (-19.6%) 62.8 (-19.5%) 42.0 (-19.7%)
bicubic 36.8 (-69.3%) 24.3 (-68.8%) 16.6 (-68.3%)

(a) System A

method 1024× 768 1280× 1024 1920× 1080

linear 75.4 (-12.4%) 49.8 (-13.5%) 33.7 (-12.9%)
bicubic 36.4 (-57.1%) 17.4 (-69.8%) 11.9 (-69.3%)

(b) System B

Table 4.3: Impact of surface refinement methods on the performance in terms of average frames per second
for City 2 data set and the loss compared to unrefined rendering.

task, because DEM data and color textures can be handled in the same way and the imple-
mentation of DEM layers as maximum mipmaps is straightforward. Although the hybrid
approach of Dick et al. [19] performs faster rendering, it appears to be less flexible, because
it requires to select representative tiles from the data set and views of the scene during its
training phase.

As expected, table 4.3 shows that when using bicubic surface refinement the loss in per-
formance is much larger than with the linear method, but even at the highest resolution we
still achieve interactive frame rates. The linear method may expose some defects, but offers
a good compromise between quality and speed at higher screen resolutions. As expected,
when using bicubic surface refinement, the loss in performance is much larger than with
the linear method, but even at the highest resolution we still achieve interactive frame rates.
Besides, the refinement of the reconstructed surface only pays for coarse resolution DSMs
respectively low grid densities where the block structure becomes apparent. The differences
in the frame rates between the two city data sets and the two earth data sets result from dif-
ferent grid densities.

As the performance of GPU programs can still be significantly degraded by many con-
ditional code executions, e. g., caused by if-statements [36], it is advisable to eliminate
branching in dependency on the direction of a ray within the main ray casting loop. An alter-
native to using switch-statements within the ray casting loop as described in section 4.2.2
would be to duplicate the shader code for each of the overall eight possible branches that
result from the direction of the ray. This is done, for instance, in [18], and we implemented
this technique for test purposes, but we found that the two implementations yield the same
performance on the employed graphics hardware.

69



70



5 GPU-based DSM Synthesis

In the previous chapter, methods for managing and rendering large DSMs have been pre-
sented, but the employed data were previously acquired and static. Our approach is designed
to handle DEM and texture data of time-varying extension in order to allow instant updates
and rendering, and we can generate these data automatically from aerial photographs by
using photogrammetric methods. For this purpose, the source images should be available
for processing directly after their acquisition and the DSM creation needs to be as fast as
possible.

In this chapter we present a simple GPU-based method for generating DEM data and
matching orthophoto textures from multiple vertical aerial photographs. The employed
method yields credential results within few seconds and is similar to the approaches pre-
sented in [86] and [87]. It relies on a space sweep as presented in [14], and performs the
essential steps in the DSM tile generation process in our FCM implementation (see sec-
tion 3.2.5).

5.1 Methods for Stereo Matching

A dense DEM on a regular grid can be created from a set of aerial images by applying stereo
matching techniques known from the field of computer vision. According to [76, p. 535],
aerial image photogrammetry is the origin of this field of research, and stereo matching
is subject of numerous books and publications. A comprehensive summary of the differ-
ent methods would exceed the scope of this thesis. Hence we confine ourselves to a brief
overview of the methods presented in [69] and [76] and describe their basic principles.

Stereo matching usually comprises the processing steps illustrated in figure 5.1 and re-
quires to find regions in the input images, i. e., individual pixels or groups of adjacent pixels,
which depict the same points of an object (features). In conjunction with the intrinsic and
extrinsic camera parameters, the locations within the images allow to calculate the location
of the corresponding features in world space (see section 2.5). The distances of these fea-
tures from the center of projection (CoP) of the containing image are called depth values
and may be stored in a depth map. The depth values of the objects depicted in the input
images can be considered as elevations above a plane of reference, and a corresponding
depth map can be identified with a digital elevation model (DEM).

As an alternative, the inverse depth of a feature can be computed, because this is fre-
quently a more well-conditioned parameter for cameras [76, p. 49]. The inverse depth of a
point in world space is related to its disparity, which is the distance between two positions

71



5 GPU-based DSM Synthesis

of that point in a pair of images [76, pp. 539–540]. Analog to depth maps, disparities can
be stored in a disparity map and are frequently measured in pixels. Depending on the appli-
cation, depth values and disparities may be referenced to one of the input images used for
stereo matching or to an intermediate image of a virtual camera.

cost
aggregation

disparity
computation

disparity
refinement

matching cost
computation

Figure 5.1: Illustration of the stereo matching process according to [69].

One method for matching images employs epipolar geometry. Given two images which
depict the same object, this method exploits the fact that the same feature depicted in one
of the two images is located on the epipolar line in the other image (see figure 5.2). This
limits the search space where correspondences can be found and thus allows to efficiently
find matching features, especially if the images are warped in such a way that epipolar
lines coincide with image scan lines (rectification). To determine the correspondence for a
certain pixel P from image I1 in image I2, a matching cost function or error function C is
evaluated at each pixel along the corresponding epipolar line in I2. C gives a measure of
the similarity of pixels, and thus indicates whether the pixels may be related to the same
feature. Hence, the pixel with the lowest associated matching costs corresponds best to P
in I1, and the pixels are therefore likely to be related to the same feature. By means of
the two locations in the two different images, the feature’s position in world space can then
be computed by using equation (2.13) given in section 2.5.1. More details about epipolar
geometry and rectification can be found in [76, pp. 537–540], for instance.

Figure 5.2: The projection p2 of point p is located in image 2 on the epipolar line (blue, dashed), which starts
at e2 and contains all points on the ray emanating from the center of projection of image 1 (CoP1) through p,
and its projection p1 in image 1. e1 and e2 are the so called epipoles, and are given by the intersections of the
ray from CoP1 to CoP2 with the image planes of image 1 and image 2, respectively.

Another approach to obtain depth values from a set of two or more images is to choose
a plane of reference in world space for measuring elevation, e. g., a plane parallel to one
of the image planes or a ground plane, and to sweep the space over a predefined distance
by a sweeping plane, which is oriented parallel to that plane of reference. Assume that the
plane of reference is the xy-plane, and that the sweeping plane is moving along the z-axis.

72



5.1 Methods for Stereo Matching

Each location r = (rx, ry, rz) from a section of interest in the sweeping plane is projected
back into the input images by using their associated camera matrices (see section 2.5.1).
The similarity between the resulting pixel values for the projections of r into the images
is determined by evaluating a matching cost function C as described above. The obtained
matching costs at r are stored for the plane’s current sweep position. At location (rx, ry)
in the plane of reference, the z-position z′ of the sweeping plane with lowest matching
costs then indicates a location in world space for which the related pixels from input images
have similar values. Hence, (rx, ry, z

′) is likely the location of the same feature, which is
depicted in most of, or even all of the input images. The space sweep7 approach requires no
previous rectification of the input images, and allows to match more than two images [14],
[76, p. 559] (see section 5.2).

Finding the minimal matching costs can be achieved in both cases by means of local
or global optimization methods. Local optimization methods usually rely on the aggrega-
tion of the matching costs over sections (support windows) in the disparity image and on
choosing the disparity with lowest associated costs. Global optimizations try to optimize an
energy function with respect to the costs and some smoothness constraints between the dis-
parities [76, pp. 548–558]. While the latter methods usually yield better results [76, p. 554],
the former ones appear to be more appropriate for real-time applications [87]. In image
regions with low densities of features, e. g., monochrome or structureless surfaces, and in
areas of disparity discontinuities caused by occlusions of the depicted objects, matches are
more difficult to find by local methods based on support windows of fixed size and constant
shape [41].

Furthermore, if only two images are used for matching, correspondences cannot be de-
tected if a feature is missing or invisible in one of the images. By using n > 2 images which
depict the same object from slightly different perspectives, better results can be achieved,
because more information is available (cf. [76, pp. 558–562]). The results of the match-
ing process may additionally be refined by using robust statistics in order to remove out-
liers from the resulting set of reconstructed world positions [44]. Another possibility is
to cross-check the results of one matching with the results from another matching of the
same images, which uses a different image as reference for computing depths respectively
disparities [69, 87], [76, p. 550].

5.1.1 Matching Cost Functions

Matching cost functions are a measure of the similarity of two or more values and indicate
a likelihood of correspondence [76, p. 546]. The costs can be calculated based on grayscale
intensities, intensities for each color component of a pixel, or other photometric quantities,
e. g., luminance [76, p. 384]. In order to yield reasonable results from matching cost func-
tions, corresponding pixels in different images must have the same or at least very similar

7The space sweep is called plane sweep in some works from the domain of computer vision, e. g., [76,86,87].
This may not be confused with the term plane sweep as used for 2D space sweeps which employ lines in order
to sweep planes. This latter kind of plane sweep is used, e. g., in the algorithm for computing intersections of
2D line segments as presented in [17, pp. 19–29].

73



5 GPU-based DSM Synthesis

values (photo consistency). Usually this requires the depicted object surfaces to be approx-
imately Lambertian, i. e., they need to be ideally diffuse surfaces on which the reflected
radiance, and hence the apparent brightness, depends only on the cosine of the angle of
irradiance of light. This criterion is not met, for instance, by surfaces showing specular
reflections since the reflected radiance depends on the angle of view [1, pp. 110–111].

Let Ik(u, v) denote the pixel value at a discrete location (u, v) in image Ik with u, v, k ∈
N and let (u, v) furthermore be valid, i. e., the coordinates are not located outside the im-
age. Given two different images I0 and I1, a widespread method is to calculate the sum of
squared differences (SSD) given in equation (5.1) as a measure of similarity.

SSD =
∑
j

∑
i

(I1(i, j)− I0(i, j))2 (5.1)

The range of the sums for adding up costs depends on the application, but is usually a
rectangular region of interest in the images (support region or support window), or even the
entire image. If the two images I0, I1 do not have the same size, or if the support windows
are located at different positions within the two images, an offset (ou, ov) needs to be added
to one of the sample positions.

The sum of absolute differences (SAD) in equation (5.2) is another popular measure,
because of its low computational costs and as it is more robust against outliers [76, p. 384].

SAD =
∑
j

∑
i

|I1(i, j)− I0(i, j)| (5.2)

Normalized cross-correlation (NCC) as given in equation (5.3) is frequently employed for
template matching [34, pp. 869–872] and in the area of signal processing [56, pp. 115–131]
for finding similarities between two signals.

NCC =

∑
j

∑
i

(
I1(i, j)− Ī1

) (
I0(i, j)− Ī0

)
√∑

j

∑
i

(
I1(i, j)− Ī1

)√∑
j

∑
i

(
I0(i, j)− Ī0

)
Īk =

1

Wk ·Hk

∑
j

∑
i

Ik(i, j), k ∈ {0, 1}

(5.3)

Wk and Hk denote the width and height of image Ik in pixels, respectively. The values
are in [−1, 1] ⊂ R where 1 indicates maximal correlation, i. e., highest similarity, and −1
corresponds to total dissimilarity between the two input signals or images. As this measure
involves convolution, it is computationally expensive but can be used as well for stereo
matching.

More information about matching cost functions can be found, for instance, in [76,
pp. 546–548, 384–387].

74



5.2 DEM Generation Using Space Sweep

5.1.2 Cost Aggregation and Support Window Size

Local optimization methods usually aggregate the matching costs over a support window
of size Wx × Wy where Wx,Wy ∈ N and Wx,Wy ≥ 1 [76, p. 548]. A small window
size is more likely to produce matching errors, whereas the usage of a large window is less
precise, especially if it is placed over areas in an image which contain occluding object
boundaries [86]. However, larger windows are accompanied by higher computational costs.
As shown in [86], square support windows of power of two sizes for cost aggregation can
be efficiently realized by using graphics hardware. By automatically generating mipmaps
for each input image, each texel at mipmap level λ ≥ 0 corresponds to a window of size
2λ × 2λ. The matching costs can be calculated at different levels and summed up to take
advantage of the precision obtained by smaller support windows, and the robustness of
larger ones. According to [86–88], large support windows are mainly useful in two-image
stereo matching approaches and may not be necessary if multiple images are used. In [33]
a comparison of different aggregation schemes is presented, and further methods can be
found in [76, pp. 548–551].

5.2 DEM Generation Using Space Sweep

In our application, we obtain DEM values on a regular grid for individual FCM tiles at the
base clip level 0 and store them in the DEM layer (see section 4.2.1). For this purpose, we
employ a space sweep approach, because it was originally developed in the context of DEM
creation from aerial images and appears to be well-suited for this task [14]. The technique
is neither restricted to a certain type of input images nor to a particular application of stereo
matching, like DEM data generation from aerial images, for instance. Multiple images can
be matched without previous rectification and efficient GPU-based implementations can be
realized on commodity graphics hardware [87]. It is furthermore possible to sweep the
space in multiple directions and to combine the results [30]. A space sweep is also used,
for instance, in [32] to obtain an initial depth map in a more complex system for two-image
stereo matching.

The space sweep as used in our application is performed as follows: Given a finite set
{I0, . . . , In−1} , n ≥ 2 of vertical aerial images which depict the same scene from different
points of view, each point of the scene is located at different locations in images Ik, 0 ≤
k < n. Let Mk = Pk · Vk denote the 4× 4 matrix composed of the view matrix Vk and the
projection matrix Pk of the camera which captured image Ik (see section 2.5.1).

A plane parallel to the xy-plane is moved along the z-axis, where l ∈ N and 0 ≤ l ≤ L.
L is determined for some predefined height resolution ∆z by equation (5.4). zmin and zmax
with zmin ≤ z ≤ zmax may be chosen according to the underlying surface, e. g., if the
minimum and maximum elevations are known.

L =

⌈
zmax − zmin

∆z

⌉
∈ N (5.4)

75



5 GPU-based DSM Synthesis

In this way, we yield a series of L + 1 planes Πl at discrete locations sz = l · ∆z + zmin
along the z-axis. Let (sx, sy) denote a position on a rectangular regular grid with spacing
(gx, gy) based in the xy-plane. Each discrete sample position s = (sx, sy, sz) is projected
into the image plane of each image Ik according to equation (2.6) in section 2.5.1 by using
Mk in order to obtain its 2D image coordinates (uk, vk). The corresponding pixel value is
denoted by pk = Ik(uk, vk) and is probably the result of some sort of interpolation, e. g.,
bilinear interpolation or nearest neighbor sampling, because s will normally not be mapped
to integral pixel positions.

For simplicity, assume that s is not projected outside the boundaries of any image Ik, i. e.,
all pk are valid, and that pk is furthermore a single scalar value like grayscale intensity or
luminance. The matching costs Ck(s) for each pk are calculated according to equation (5.5)
as the SAD of pk and all other values pi.

Ck(s) =
n−1∑
i=0

|pi − pk| (5.5)

Since in case of i = k the difference (pi−pk) is zero, it does not contribute to the costs and
hence does not require any special treatment. The aggregated costs AC(s) in equation (5.6)
at sample position s on the current plane Πl are obtained as the sum of the matching costs
Ck(s) for all n images, i. e., the sum of sum of absolute differences (SSAD) for all pk.

AC(s) =

n−1∑
j=0

Cj(s) =

n−1∑
j=0

n−1∑
i=0

|pi − pj |

=
n−1∑
j=0

n−1∑
i=0

|Ii(ui, vi)− Ij(uj , vj)|

(5.6)

In equation (5.6), the costs for matching two pixel values pk and pi are summed twice,
because |pi − pk| ≡ |pk − pi|. But since we only need to compare the relative costs between
image pixels, and since the costs are duplicated for all of them, this duplication does not
have any negative effect on the matching process itself8.

If the corresponding surface is approximately Lambertian, the projection of the same
feature from world space into the different images Ik should result in very similar pixel
values pk and the residual error (pi− pj) should be almost zero. The plane Πlbest containing
the best correspondence between the pixels from all images at position (sx, sy) in the xy-
plane is then given by

lbest = arg min
0≤l≤L

AC(sx, sy, l ·∆z + zmin)

and the resulting DEM height value is zDEM = lbest ·∆z + zmin.

8Equation 5.6 is in fact convenient for our GLSL implementation, because the corresponding for-loops are
of fixed lengths and may hence be unrolled by a GLSL compiler, if n is constant.

76



5.2 DEM Generation Using Space Sweep

5.2.1 Input Image Selection

The images employed for DSM creation by stereo matching are returned by the 3D spatial
index of the FCM by means of an intersection query (see chapter 3.2.5). If the images are
all vertical images, their projections according to the associated camera matricesMk will be
located on the sweeping plane. But oblique aerial images may also be stored in the spatial
index and will be returned by a intersection query as well. These images can be easily
removed from the set of input images by means of the viewing direction of their associated
cameras, so that they are not taken into account for DEM layer generation. However, further
changes to the set of input images may be necessary in the following situations:

1. the projection of an image onto the sweeping plane does not overlap the projection of
any of the remaining images

2. there are more input images than texture units or video memory available

We call an image which suffers from the first problem a non-overlapping image in contrast
to an overlapping image whose projection onto the sweeping plane has non-empty inter-
section with at least one other image. As the outlines of these projections are all convex
quadrilateral polygons, an image can be identified as non-overlapping if its corresponding
polygon does not intersect the polygon of any other image from the set. The intersection
test is best performed with image projections on the sweeping plane at zmin, i. e., near the
ground plane, because the projected areas become smaller as the sweeping plane moves
towards the CoPs of the images. Non-overlapping images are removed from a set of input
images since they are not suited for stereo matching.

The second situation arises if n images are available, but only N < n textures can be
processed at a time by the fragment program. This problem can be solved by splitting the
set of input images into multiple sets of ≤ N images and by performing the space sweep
multiple times per FCM tile at clip level 0, each time with a different subset of images, but
without clearing the render targets between the passes.

However, the images need to be redistributed with respect to the mutual overlap of their
projections onto the sweeping plane. Otherwise, the resulting subsets might suffer from
large numbers of non-overlapping images. These subsets do not need to be disjoint, since
an image may be suited for stereo matching with other images that are non-overlapping.
This situation is illustrated in figure 5.3 where n = 3 images are given, but only N = 2
images may be matched at a time. Such layouts of images are the normal case in traditional
aerial photography [42, pp. 144–145] and these situations should hence be manageable in
our approach. Therefore, we unfortunately cannot simply create a partition of a set of
n > N images into

⌈
n
N

⌉
disjoint sets.

In order to distribute n images among a number of sets of N < n images, we propose
the following proceeding:

For each image Ik, the area of intersection Ak,i of its projection with that of another
image Ii is computed and stored in a look-up table. The intersection can be obtained by

77



5 GPU-based DSM Synthesis

Figure 5.3: The projection of image B overlaps the ones of images A and C, but A and C are non-overlapping.
If only N = 2 images can be processed at a time, the two image sets {A,B} and {B,C} with the common
element B must be created.

clipping the respective bounding polygons against each other, for instance, by using the
Sutherland-Hodgman algorithm [29, pp. 124–126]. If Ak,i is not empty, the polygon which
results from clipping is convex and in particular simple, because it is the intersection of two
convex polygons (cf. [17, p. 46, pp. 66–70]). The area Apoly of a simple polygon can be
calculated according to equation (5.7) where χ ≥ 3 is the number of vertices, (si, ti) the
respective Cartesian vertex coordinate and sχ = s0, tχ = t0.

Apoly =
1

2

χ−1∑
i=0

|siti+1 − si+1ti| (5.7)

A derivation of the formula in equation (5.7) and a proof of its correctness can be found
in [58, pp. 20–22], for instance. A series of not necessarily disjoint sets Sj of images is
created where each Sj may contain at most N elements. First, all images Ik are marked
as UNUSED, e. g., by using an array of boolean values indexed by k. Starting with j = 0,
each Sj is then constructed as follows: An arbitrary image Ik′ , which has not been marked
as USED, because it has not yet been inserted into any previously created set Si, i < j,
is added to the empty set Sj and becomes marked as USED afterwards. From the look-up
table, successively those images with the largest area of intersection with image Ik′ are
determined in decreasing order and are added to Sj until either |Sj | = N , or no more
images overlapping Ik′ which are marked as UNUSED are left. The overlapping images are
added to Sj regardless of their markers, but are marked as USED afterwards. This process
is repeated until all images are marked as USED. Sets with |Sj | ≤ 1 are discarded and will
not be used as input for DEM generation, since they only contain a single image and thus
cannot be used for stereo matching. As the area of intersection of an image Ik with another
image can be determined from the look-up table, it is also possible to ignore images whose
amount of overlap with Ik′ is below a certain threshold.

The process described above is guaranteed to terminate after at most n iterations, because
during each iteration at least one image becomes marked as USED. If we set N = n, the
algorithm can be used furthermore to remove not sufficiently overlapping images from a set
of input images for stereo matching. Although this redistribution of images does no longer
allow to compute the matching costs between all n input images, it will create sets of images
in which the images have large overlaps and are thus likely to depict the same objects.

78



5.3 GPU-based Implementation

5.3 GPU-based Implementation

Our implementation of the space sweep method described in the previous section is similar
to the one presented in [87] and relies on OpenGL and GLSL, but employs more modern
graphics hardware features. In particular, OpenGL pixel buffers (P-buffers) have been su-
perseded by so called frame buffer objects (FBOs) which essentially perform the same task
of redirecting rendering output into textures in video memory (render targets). Since we
use multiple input images for matching, we also adopted the idea of using only a certain
number of images with lowest matching costs for aggregation, as it is presented in [41].
The resulting DEM and color texture data are stored in the corresponding layers of a single
FCM tile at the lowest clip level as described in section 4.2.1 and can be used directly for
rendering.

5.3.1 Program Setup

In order to use the GLSL program as described in the next section, it is necessary to set up
a virtual orthographic camera which is oriented perpendicular to a rectangular quadrilateral
mesh (quad). The quad represents the sweeping plane based in the xy-plane in world space
and its only purpose is to generate input fragments for the fragment shader at known z-
coordinates. Its size is set to (Sx, Sy) =

(
Tx
resx

,
Ty
resy

)
where (Tx, Ty) is the size of a single

FCM tile in texels and (resx, resy) denotes the desired resolution of the resulting DEM layer
in texels per unit along the respective axis.

The range [zmin, zmax] for the space sweep along the z-direction is obtained by setting
zmin = Hmin from the box that is associated with the root node of the R∗-tree of the FCM
(see section 3.2.5). To ensure that zmax is not located above any of the CoPs of the employed
images, it is set to a value which is somewhat smaller than the smallest of all z-coordinates
of the CoPs. If the maximum height Hmax of the underlying surface is known, zmax may
also be set to zmax = Hmax. The number of required rendering passes is equal to the number
L+ 1 of discrete plane positions on the z-axis and is calculated according to equation (5.4)
for a desired height resolution ∆z.

The z-position of the quad varies from zmin to zmax and must be located inside the frustum
of the virtual orthographic camera. This camera is placed at

(
Sx

2 ,
Sy

2 , (zmax − zmin) + 1
)

and looks along the negative z-axis. It is oriented such that its up-vector u and right-vector
r are aligned with the y- respectively x-axis as illustrated in figure 5.4; its orthographic
projection matrix Portho is given in equation (5.8).

Portho =


2
Sx

0 0 −1

0 2
Sy

0 −1

0 0 2
zmax−zmin

−1

0 0 0 1

 (5.8)

The input images Ik that contribute to the DEM layer of the FCM tile with index (nx, ny)
and their associated 4 × 4 camera matrices Mk are retrieved from the spatial index of the

79



5 GPU-based DSM Synthesis

Figure 5.4: In order to perform a GPU-based space sweep, a virtual orthographic camera is oriented as
shown and looks perpendicular onto the center of a quad in order to generate the input fragments for a GLSL
shader which calculates DEM values from multiple images.

FCM as described in section 3.2.5. Images are accessed by the fragment program as textures
and may be stored in a texture array of n elements, if they are of the same lateral sizes. The
matrices Mk are passed to the shader as the elements of a uniform array of n elements of
GLSL data type mat4. Both kinds of input data for the shader remain associated with each
other by their common index k. Since arrays in fragment programs need to be of fixed size,
a #define preprocessor directive with the total number N of input images which can be
processed at the same time is inserted before the GLSL shader source code. In this way, N
is made a constant value within the fragment program, which permits the static allocation of
arrays of size N . The number n ≤ N of actually employed images is provided as uniform
variable.

The camera positions in Mk are referenced to absolute world coordinates. Therefore, the
minimum corner (nx ·gx, ny ·gy, zmin) of the boxQ in equation (3.4), which is used to query
the spatial index of the FCM, is added to the position of the camera and to the vertices of
the quad.

5.3.2 Program Execution

All rendering output is redirected into a frame buffer object (FBO) that matches the pre-
defined FCM tile size in texels. The FBO contains at least one color texture in R8G8B8
or R8G8B8A8 texel format and one depth texture in F32 texel format for storing Z-Buffer
values.

In each of the L+ 1 rendering passes for the different plane positions at z = l ·∆z+ zmin
where 0 ≤ l ≤ L, the fragment program must be provided with the texture coordi-
nates (uk, vk) for sampling image Ik at each fragment that results from the rasterization
of the quad. For efficiency reasons, a vertex program generates homogeneous coordinates
(ûk, v̂k, ẑk, ŵk) directly from the vertex coordinates (x, y, z) of the quad according to equa-
tion (5.9).

80



5.3 GPU-based Implementation


ûk
v̂k
ẑk
ŵk

 =


1
2 0 0 1

2
0 1

2 0 1
2

0 0 1
2

1
2

0 0 0 1

 ·Mk ·


x
y
z
1

 (5.9)

These n values are stored in an array indexed by k and are automatically interpolated across
the surface of the quad as the array is transferred from the vertex to the fragment program.
The normalized texture coordinates (uk, vk) for sampling input image Ik are obtained by
component-wise division of (ûk, v̂k) by ŵk in the fragment program:

(uk, vk) =

(
ûk
ŵk
,
v̂k
ŵk

)
Since the sample positions (uk, vk) have to be accessed multiple times within the fragment
program, they are computed only once at the beginning of the program and stored in a
global array indexed by k. The values sampled from image Ik are usually RGB triples
p′k = (Rk, Gk, Bk) and are converted into grayscale luminance values pk in CIE XYZ color
space9 according to equation (5.10).

pk = 0.212671 ·Rk + 0.715160 ·Gk + 0.072169 ·Bk (5.10)

The numerical constants in equation (5.10) depend to a certain degree on the physical prop-
erties for rendering color spectra of the video output device, i. e., the monitor or projector,
and are given in [1, p. 215]. The corresponding matching costs Ck are computed for each
of the resulting pk according to equation (5.5) and are stored at index k in an array of size
n. Instead of computing the aggregated matching costs according to equation (5.6) by sum-
ming up all n values, we may choose to take only the best ñ =

⌊
n
2

⌋
of the images into

account for matching. This modification has been proposed in [41] in the context of select-
ing images from a temporal sequence as better half sequence and is intended to disregard
images in which a feature is occluded. Therefore, the array of matching costs can be sorted
in the fragment program, e. g., by using selection sort or insertion sort, and only the ñ lowest
matching costs may be summed up.

In order to find the minimum matching costs and to select the corresponding DEM val-
ues, we employ the method presented in [87] which utilizes the Z-Buffer of the graphics
hardware. Since we use FBOs, the Z-Buffer values are redirected into the attached depth
texture. The current position z of the plane along the z-axis in world coordinates is emitted
by the shader as the fragment color, whereas the aggregated matching costs are explicitly
assigned to the Z-Buffer value of the fragment. z is available at the vertex coordinates of
the quad in the vertex program and is passed on to the fragment program for this purpose.
The employed Z-Buffer test is set up to select the fragment with the lowest Z-Buffer value
at the current sweeping plane position. In this way, in each rendering pass, i. e., at each
different location z of the sweeping plane in space, depth and color values in the FBO are
successively replaced by values of new fragments if the new Z-Buffer values emitted by the

9CIE is the abbreviation for “Commission Internationale d’Eclairage”.

81



5 GPU-based DSM Synthesis

shader are smaller than the existing ones, and the matching costs at the current fragment are
thus lower. After L+ 1 rendering pases, the color texture attached to the FBO contains the
elevation values for the area covered by the FCM tile and the data are copied from video
memory into the DEM layer of the tile.

A problem arises in parts of a FCM tile which are covered by only a single image so that
no matching costs can be computed. We therefore determine at each fragment the number
of covering images by checking whether each coordinate pair (uk, vk) is within the valid
range [0, 1] × [0, 1]. If the coverage is below a certain threshold TR ∈ N, TR ≥ 2, the
aggregated matching costs AC for this fragment are set to ∞. Before emitting color and
depth values, the shader checksAC and discards fragments ifAC is∞. In this case, neither
Z-Buffer nor color values will be generated and any existing data in the FBO will remain
unaffected.

5.4 Color Texture Generation

In orthophotos distortions caused by perspective effects are corrected and lateral surfaces,
like frontages of buildings, are intentionally not depicted. Orthophotos can be used, for
instance, to create or enhance a variety of maps for different applications [42, pp. 410–411].
Moreover, they are employed as color textures in our DSM rendering approach as presented
in chapter 4. The generation of an additional orthophoto texture of the same resolution in
texels as the DEM layer of a certain tile can be integrated into the previously described
DEM creation process. The resulting proceeding is essentially the same as the one outlined
in [42, pp. 425–426].

The extension for generating an additional color texture merely requires the fragment
shader to output a second color value at each fragment into an additional color texture. This
texture should have R8G8B8 or R8G8B8A8 texel format and must be attached to the FBO.
Instead of storing only the matching costs Ck in an array, a pair (Ck, k) is stored in order
to keep track of the associated image index k. After the array has been sorted in ascending
order of Ck, the index of the image with the lowest matching costs kmin is stored at the
first pair in the array. The RGB value p′kmin

from the corresponding image Ikmin at sample
position (ukmin , vkmin) is assigned to the additional fragment color output. Afterwards, these
data are copied from video memory to the tile, and the color layer is created in the same
way as the DEM layer. As an alternative, the n′ ≤ n images with lowest matching costs
may be sampled, and the component-wise mean of the obtained RGB values may be used
to determine the color layer value. Figure 5.5 shows a comparison of the results of these
two methods for generating orthophoto textures.

If a region of the tile is covered by only a single aerial image, no elevation data can
be derived, and it is in general impossible to determine objects in the input images that
are affected by perspective, e. g., skyscrapers, tall trees or mountains. In this case, it may
be desirable to rely on using the only available image and to create a color texture layer
which is not orthographic, instead of providing no color information at all. Such a texture
can be created in a single rendering pass by executing the process for orthophoto texture

82



5.4 Color Texture Generation

(a) minimal matching costs (b) averaged color values (c) difference image

Figure 5.5: A comparison of an orthophoto texture generated by using pixels from the input images with low-
est matching costs (left), and by component-wise averaging the color values of the input images (middle).
Locations where no DEM data are available remain black. Due to the input data, the differences of the color
values are very small and are illustrated in the contrast enhanced difference image (right).

generation described above only once and by projecting all images onto the quad located
at z = zmin. In regions where only a single image is available, the sampled color values
determine the final color at the corresponding texel in the color texture. If the projections
of multiple images overlap, it is possible to use the pixels from one or more images with
lowest matching costs. Other possibilities to handle the overlap of multiple pixels at one
texel of the color texture are, for instance, blending, averaging or overwriting. Since the
perspective distortion of objects depicted in an image increases with their distances from
the geometric center of the image, ambiguities at a single texel may also be resolved by
using the pixel with smallest geometric distance from the center of its image. These five
different possibilities are illustrated in figure 5.6 and have different properties.

Averaging multiple pixels results in severe ghosting and creates fuzzy results. Since the
fuzziness tends to increase with the elevation of the underlying surface, this effect might
even be useful for visualizing the uncertainty about the elevation in the DSM in regions
where no height information could be derived from the input images. Blending multiple
pixels tends to blur the results and does not solve the problem of mismatching borders
between different images. Considering the minimal matching costs in the plane at z = zmin
causes the resulting color texture to look speckled and unclean. Allowing different pixels
to overwrite each other is the simplest solution, but also results in mismatching borders and
depends on the order of the images (cf. section 3.2.5). Choosing the pixel with smallest
distance from the respective center of its image does not eliminate this problem, but has
an interesting effect: lateral faces, e. g., like frontages of buildings, tend to vanish in the
resulting color texture, and the resulting texture looks almost orthographic in some regions.
Since the latter method creates clear images and reduces the amount of lateral surfaces
depicted in the resulting texture, we prefer it over the other methods if we have to create
non-orthographic color textures.

It is also possible to initialize a color texture layer by means of one of these non-orthogra-
phic creation processes and to successively replace values with those obtained during DEM
creation. In this way, we can create a color texture layer which provides color information
where available, but which is furthermore truly orthographic in regions where DEM data
are available.

83



5 GPU-based DSM Synthesis

(a) averaging (b) blending (c) minimal matching costs

(d) overwriting (e) minimal distance

Figure 5.6: Different methods for resolving ambiguities caused by projecting multiple pixels from different
images to one texel in order to create a planar color texture, if no elevation information is taken into account.
Properties specific to the methods are highlighted by red and blue rectangles.

5.5 Improvements of DEM Quality and Results

With the methods for creating DEM data and matching color textures as described above,
we can rapidly create all layers of single FCM tiles. Although accuracy is important in
our application, we strive for the generation of credential DSM data at high speed and
therefore do not additionally refine the resulting DEM data by means of statistical analysis
for removing outliers, for instance. In the following, we discuss the influence of different
improvements for enhancing the quality of the resulting DEM data.

5.5.1 Stereo Matching Errors

As shown in figure 5.7(b), some isolated DEM layer texels exhibit faulty dents or spikes
during rendering while their neighboring texels are correct. These outliers may emerge from
errors during stereo matching or from ambiguous matching costs and the cost selection by
using Z-Buffer tests. In principle, there should be no difference if the space sweep described
in section 5.2 starts at zmin and the sweeeping plane is moved up to zmax, or if the sweeping
order is reversed and goes from zmax down to zmin. But due to the Z-Buffer test, there can
be visible differences in the resulting DEM if the matching costs at a fixed image position
(uk, vk) are equal for two or more different sweeping plane positions. As the Z-Buffer
test is set in such a way that only fragments with smaller Z-Buffer values are allowed to
replace texels in the render target, the first of a number of different DEM values with equal
matching costs will determine the final texel value. If the sweeping plane is moved along the

84



5.5 Improvements of DEM Quality and Results

positive z-axis, faults in the DEM caused by ambiguous matches may show up in renderings
as dents respectively spikes, if the sweeping is performed along negative z-direction. An
alteration of the Z-Buffer test to let fragments with less or equal matching costs pass would
correspond to a reversal of the space sweep order, because the final texel value would then
be determined by the last of a number of DEM values with equal matching costs. These
stereo matching related errors can be resolved by taking more different images into account
in order to obtain unique and better matching costs for each plane position at each single
fragment.

(a) DEM layer (b) resulting rendering

Figure 5.7: Incorrect results from stereo matching or ambiguous matching costs result in faulty DEM layer
texels which become apparent as spikes or dents in renderings as highlighted by the red rectangles. Contrast
enhancement was applied to the depicted DEM layer (left) in order to visualize faulty texels. Brighter colors
correspond to higher elevations.

The presence of ambiguous matches may be additionally favored by the kind of employed
aerial images. Since we do not yet have a reliable source for providing aerial images as
required in our application (cf. section 2.3.3), we create synthetic data from 3D renderings
of a virtual city model which has been generated by the software “CityEngine” [24]. The
objects depicted in the images are quite artificial, because the underlying 3D models employ
only a very limited amount of textures, especially on roofs and frontages, so that lots of
repetitive patterns can be found in the renderings. These repetitions can easily lead to equal
matching costs for single DEM texels on the sweeping plane at different z-coordinates.

5.5.2 Smoothening DEM Data

Since stereo matching errors and ambiguities may also arise in real-world data, e. g., in
image regions depicting large, monochrome and structureless surfaces, we experimented
with smoothening the DEM data before they are copied into the corresponding tile layer. For
this purpose we use a rather simple technique which utilizes automatic mipmap generation
capabilities of graphics hardware and bilinear interpolation.

By enabling automatic mipmap generation for the textures attached to the FBO, the tex-
ture data at mipmap level λ correspond to the result of a convolution of the original texture
with a box-shaped filter kernel of size 2λ × 2λ. If the texture at λ > 0 is copied back
from video memory, we obtain a down-scaled version of the required DEM layer. This
smaller version is scaled afterwards by using re-sampling and bilinear filtering in order to
get a texture of the original size. As a result, the texture becomes blurred and this technique

85



5 GPU-based DSM Synthesis

is therefore also used in GPU image processing for creating certain effects [1, p. 471].
In this way, we achieve a replacement of DEM texels by averaged values that incorporate
neighboring texels and dents and spikes are less prominent as shown in figure 5.8. However,
potentially correct edges at steep elevations will be smoothened as well and turn into ramps.
This effect is illustrated in figure 5.9 by means of a DEM of an isolated cube obtained from
synthetic images.

(a) no smoothening at mipmap level λ = 0 (b) smoothening at mipmap level λ = 1

Figure 5.8: Smoothening DEM textures levels incorrect spikes and dents and makes the resulting renderings
visually more appealing. The visual effect of defects in the DEM is enhanced by applied shading and lighting.

With the data employed in our application, we found the usage of smoothening by copy-
ing DEM textures at mipmap level λ = 1 to be a reasonable compromise. Using more
sophisticated and adaptive methods for compensating defects would probably further im-
prove the resulting DEM data.

(a) λ = 0 (b) λ = 1 (c) λ = 2

Figure 5.9: Smoothening DEM textures by means of simple GPU-based blurring results in an unwanted
transformation of edges at steep elevations into ramps.

5.5.3 Cost Aggregation Over Support Windows

We also implemented the possibility of aggregating matching costs over support windows
having power of two size by using mipmaps which are automatically generated by graphics
hardware for each input image [86, 87]. For this purpose we compute the matching costs at
sample position s = (sx, sy, sz) by means of C ′k(s) from equation (5.11) for a given range

86



5.5 Improvements of DEM Quality and Results

of mipmap levels [λmin, λmax] instead of using Ck(s) from equation (5.5).

C ′k(s) =

λmax∑
λ=λmin

n−1∑
i=0

|pi(λ)− pk(λ)| (5.11)

In equation (5.11), pj(λ) = Ij(uj , vj , λ) denotes the luminance value which results from
sampling image Ij at mipmap level λ at position (uj , vj). The aggregated matching costs
AC(s) according to equation (5.6) are then calculated by using C ′k(s) instead of Ck(s) in
equation (5.5).

With the data in our application, we found that matching cost aggregation over support
windows significantly improves the visual quality of renderings of the resulting DEMs, and
comparative results are given in section 5.6. However, if the size of the support windows
becomes too large, features are missing as illustrated in the resulting DEM renderings in
figure 5.10. We found the cost aggregation over support windows up to sizes of 8 × 8
completely sufficient for our kind of input images.

(a) support window size 8× 8 (b) support window size 64× 64

Figure 5.10: Using support windows larger than 8 × 8 for cost aggregation results in DEMs where features
are missing. In the right image, for instance, the sizes of the roofs are reduced.

5.5.4 Better Half Sequence

Our implementation also allows to consider only the
⌊
n
2

⌋
input images with lowest matching

costs for aggregation (better half sequence) [41]. For this purpose, we sort the matching
costs of the input images within the fragment program in increasing order by means of a
simple selection sort implementation. Figure 5.11(a) shows a rendering of a DEM generated
by using the better half sequence method, whereas figure 5.11(b) shows a rendering of
a DEM generated by using all images for matching cost aggregation. Both DEMs were
created from the same eight input images and costs were aggregated over support windows
up to size 8 × 8. The visual differences are small, but with the employed input images,
the results obtained by using all input images for matching cost aggregation depict fewer
defects in some regions, e. g., on the side of the main building which is closest to the viewer.

87



5 GPU-based DSM Synthesis

(a) better half sequence (b) all images

Figure 5.11: A direct comparison of renderings of DEMs of an urban area created from the same set of eight
input images, but by using two different matching cost aggregation schemes. The costs were aggregated over
support windows of sizes up to 8× 8.

5.6 Performance Evaluation and Discussion

The performance and the quality of the output data depend in particular on the number
of employed images and the chosen height resolution ∆z of the space sweep. Table 5.1
contains exemplary performance results for creating the DEM and color layers of 2 × 2
neighboring FCM tiles at clip level 0, which were all covered by the same employed images.
The results were obtained on a desktop computer with an Intel i7 860 CPU at 2.8 GHz, 6
GB RAM, NVIDIA GeForce GTX 470 graphics adapter with 1280 MB dedicated video
memory and Windows 7 OS. The input images had a size of 1920 × 1080 pixels, and
we obtained results for different numbers of images and support window sizes. Column
max. support window size indicates the maximum size of the support window for cost
aggregation according to equation (5.11). The values in table 5.1 are given in seconds and
include the time for transferring the images from main memory to video memory. The tile
size was set to 512 × 512 texels and the sweeping plane was moved from zmin = 0 to
zmax = 25 at a step width of ∆z = 0.125 units. This corresponds to L = 200 and thus
201 different plane positions and rendering passes. We furthermore measured the runtime
using matching cost aggregation of all available images, and the runtime when using better
half sequences, i. e., only the

⌊
n
2

⌋
images with lowest matching costs contribute to cost

aggregation. The tile creation was executed in parallel to a process for directly rendering
the resulting DEMs. Renderings from the run in which all images were taken into account
during cost aggregation are shown in figure 5.12.

5.6.1 Discussion

Table 5.1 shows that the runtime increases with the number of employed images, but the
quality increases as well as can be seen in figure 5.12. The additional costs for the aggre-
gation over several support window sizes are moderate, but in case of these particular input
images, using support windows significantly increases the quality of the resulting DEMs,
even if the number of images increases. As expected, the runtime is higher in case of using

88



5.6 Performance Evaluation and Discussion

n
=

2
n

=
4

n
=

6
n

=
8

1
×

1

2
×

2

4
×

4

8
×

8

Fi
gu

re
5.

12
:R

en
de

ri
ng

s
of

th
e

D
E

M
s

w
hi

ch
w

er
e

cr
ea

te
d

du
ri

ng
a

pe
rf

or
m

an
ce

ev
al

ua
tio

n
fo

r
di

ffe
re

nt
nu

m
be

rs
n

of
in

pu
ti

m
ag

es
an

d
su

pp
or

tw
in

do
w

si
ze

s.
Th

e
de

pi
ct

ed
D

E
M

s
w

er
e

cr
ea

te
d

by
us

in
g

al
li

m
ag

es
fo

r
co

st
ag

gr
eg

at
io

n.
Th

e
re

su
lti

ng
D

E
M

da
ta

w
er

e
no

ts
m

oo
th

en
ed

an
d

sh
ad

in
g

w
as

ap
pl

ie
d

to
en

ha
nc

e
th

e
pe

rc
ep

tio
n

of
de

fe
ct

s,
su

ch
as

sp
ik

es
an

d
de

nt
s.

89



5 GPU-based DSM Synthesis

all images better halfmax. support
window size n = 2 n = 4 n = 6 n = 8 n = 2 n = 4 n = 6 n = 8

1× 1 2.32 3.03 4.01 4.90 2.48 3.39 4.65 5.86
2× 2 2.20 3.14 4.10 5.07 2.45 3.55 4.74 6.06
4× 4 2.38 3.18 4.36 5.23 2.56 3.94 5.09 6.14
8× 8 2.26 3.43 4.34 5.49 2.72 3.78 5.11 6.55

Table 5.1: Performance results of an exemplary DSM synthesis from up to eight different images at different
numbers of input images, maximum support window sizes and matching costs aggregations. The values are
given in seconds.

better half sequences for cost aggregation, because it requires the GPU program to sort the
aggregated matching costs, and we used a non-optimized selection sort implementation for
this task. However, the runtime of the configurations given in table 5.1 was always dom-
inated by the costs for transferring the input images into video memory, which took more
than 50% of the total time. Therefore, much more time was required for creating the first of
the 2×2 tiles than for creating the remaining three tiles, since they were generated from the
same input images. After the input images were transferred to video memory, the creation
of one of the remaining tiles never took more than 0.025 seconds. Figure 5.12 furthermore
shows that using only two input images is insufficient in our approach. Reasonable results
require at least n = 6 images and preferably the cost aggregation over support windows of
sizes up to 8× 8.

The quality of the DEMs which we can generate by means of the method presented in this
chapter also depends strongly on the chosen height resolution ∆z as shown in figure 5.13.
Both DEMs were created from the same eight images and matching costs were aggregated
over support windows up to size 8× 8, but the DEM in figure 5.13(a) exposes less defects.

(a) ∆z = 0.125 (b) ∆z = 0.25

Figure 5.13: The chosen height resolution ∆z of the space sweep strongly influences the quality of DEMs
which can be generated by means of the method presented in this chapter. Both DEMs were created from the
same eight input images and use the same support window size of 8× 8 without smoothening.

The DSM creation was executed in parallel to the DSM rendering process on the same
computer with a single graphics adapter, and the hardware resources were hence shared
between the two processes. We can therefore expect an increase of the performance of
the mere DSM creation, if it is executed standalone with exclusive access to the graphics

90



5.6 Performance Evaluation and Discussion

hardware resources. It is also important to note that all of our results presented in this
section were obtained by employing synthetic aerial images. Real images have different
properties and would suffer from noise, different illumination conditions, lens distortions
and other optical phenomena. The eight input images which were used for creating DEMs
of the urban area as presented in this thesis were captured at altitudes from ≈ 78.0 to 95.32
units and are shown in figure 5.14.

91



5 GPU-based DSM Synthesis

(a) image 1 (b) image 2

(c) image 3 (d) image 4

(e) image 5 (f) image 6

(g) image 7 (h) image 8

Figure 5.14: These eight synthetic aerial images at an original resolution of 1920× 1080 pixels were used to
create all DEMs of the urban area as presented throughout this chapter. The depicted city model was created
by means of the software “CityEngine” [24].

92



6 Texturing Lateral Surfaces

In the previous chapters, we dealt with DSMs that do not contain any color information
about lateral surfaces, i. e., the faces of elevations which are not parallel to the ground
plane. We only employed orthophoto textures derived from vertical aerial photographs, but
these images provide no color information about lateral surfaces. Such surfaces, like walls
of canyons or frontages of buildings may become visible in renderings of DSMs in virtual
3D environments, and the viewer might expect to see structural details, e. g., different rock
layers or windows and doors. Therefore, it is common practice to employ oblique aerial
images to overcome this lack of information.

In this chapter, we extend our rendering technique as presented in chapter 4 in order to
add color information to lateral surfaces of a DSM. This extension directly employs vertical
and oblique aerial images, and benefits from rendering by means of ray casting.

6.1 Complete Color Textures for DSMs

In computer graphics, color information about surfaces is frequently stored in rectangu-
lar 2D color textures. Surfaces and texture space are usually parametrized by normalized
texture coordinates (u, v) ∈ [0, 1] × [0, 1] ⊂ R2. Normalized texture coordinates allow
to conveniently transform locations on the surface into texture space and vice versa, inde-
pendent of their respective physical extensions. Some geometric bodies, like rectangles,
spheres or cylinders, possess parametric representations that can be directly used as texture
coordinates. If a polygonal mesh is used to represent a surface, the texture coordinates are
often given for the vertices of the mesh and interpolated across the associated mesh faces.
This method is frequently used if no parametric representation of the surface is available,
or in conjunction with manually modeled meshes of complex objects. In some situations,
texture coordinates can be computed directly on the GPU from vertex positions, e. g., as
described in section 5.3.2.

A simple way to create a color texture of Tu × Tv texels for a surface with a given
parametrization (u, v) is to create a piece-wise linear approximation of the surface by using
rectangular patches. These patches are aligned to the tangential planes of the surface at
equally spaced distances 1

Tu
and 1

Tv
in u- respectively v-direction. Each patch is assigned

the color value of the underlying part of the surface and is identified with a texel of the
texture. In areas where the piece-wise linear approximation and the sampling rates 1

Tu
and

1
Tv

are insufficient, the texture will expose distortions. Figure 6.1 illustrates the creation
process of a texture on a sphere and the resulting distortion.

93



6 Texturing Lateral Surfaces

Figure 6.1: Mapping the surfaces of geometric bodies onto a planar rectangle in order to create a texture
can result in distorted images, especially in regions where the approximation by rectangular patches is in-
sufficient, e. g., as in the case of a sphere. Towards the poles, the illustrated image of the Earth’s surface is
increasingly distorted.

Orthophoto textures, as employed in our approach, are obtained from a parametrization
of the ground plane of the underlying DEM, which is a planar rectangular surface. In order
to store color information about a complete surface of a DEM in a single texture, the surface
has to be parametrized with respect to its elevation. Depending on the range of the elevation,
such a texture can require substantially more samples than the corresponding DEM, since
the surface area can be much larger than the one of the ground plane. This is illustrated
in figure 6.2. Furthermore, the total surface area must be computed in order to find an
appropriate texture size (Tu, Tv) and to normalize the parametrization.

Figure 6.2: Storing color information about the entire surface of a DEM, including lateral surfaces, may
require the creation of large textures. The depicted elevation of the surface, which is illustrated in profile, is
sampled at six positions (gray numbers), whereas the entire surface is larger and is sampled at 16 positions
(blue numbers).

Since we strive for fast generation of DSMs, which may in addition change frequently,
storing the entire surface in a single texture would be inefficient, and we therefore map
colors onto lateral surfaces by means of projective textures.

6.2 Aspects of Projective Texturing

Projective textures can be thought of as virtual video or slide projectors. They can be used
to assign color values to surfaces based on an object’s position in world space instead of
its surface parametrization as described in the previous section. During rendering, the color

94



6.2 Aspects of Projective Texturing

values of the corresponding screen pixels are determined by the texels which become pro-
jected onto the surface. We already used this approach in chapter 5 in the context of stereo
matching by means of a space sweep where aerial images are projected onto the sweeping
plane. Another application of projective textures is, for instance, the implementation of
complex light effects in virtual environments [1, p. 222]. Shadow mapping uses a similar
concept for determining the visibility of locations on a surface from the position of a light
source [1, pp. 348–353].

In order to use projective texturing on a DEM, we project oblique aerial images onto
lateral surfaces, and vertical aerial images onto surfaces which are parallel to the ground
plane. Only images depicting parts of the DEM surface which are currently visible to the
viewer in a 3D virtual environment need to be employed as textures. Hence, the selection
of aerial images which are appropriate for projective texturing depends on the orientation
and position of the virtual camera representing the viewer. The best rendering results can
be achieved by projecting images which were captured at positions and with orientations
similar to the ones of the virtual camera, because these images are likely to depict the
objects which are about to be rendered.

In the context of projective texturing, we call the associated camera of an aerial image
Ik, k ∈ N projector and the projector matrix is the camera matrix Mk = Pk · Vk, where Vk
denotes the camera’s view matrix and Pk the projection matrix.

6.2.1 Aerial Image Selection

In our approach, we store all aerial images according to the bounding boxes of the view
pyramids of their associated cameras in the spatial index of our FCM implementation
(cf. section 3.2.3).

The spatial index assists in selecting aerial images which are appropriate for texturing
a DEM as follows: An axis-aligned bounding box (AABB) Q is computed for the view
frustum F of the virtual camera in order to perform an intersection query on the spatial
index. Thus, images with projectors which are not entirely contained inside Q, but whose
frustums may intersect Q are also retrieved. Since Q has usually a larger volume than
F , the resulting set of aerial images S = {I0, I1, . . . In−1} may contain many elements
that are not well-suited for projective texturing. These are in particular all images whose
orientations and positions of their associated projectors deviate too much from the ones of
the virtual camera. Figure 6.3 illustrates in 2D the relationships of the virtual camera and
the projectors, as well as their frustums and the bounding boxes.

Let ϕk denote the angle enclosed by the viewing direction of the projector of an aerial
image Ik and the viewing direction of the virtual camera. We remove all images from the
initial set S of aerial images for which |ϕk| > Φmax where 0 < Φmax <

π
2 is a user-defined

threshold. Projectors with |ϕk| ≥ π
2 can only depict back sides of objects from the current

point of view. The projectors of the remaining images in the modified set S′ and the virtual
camera thus have similar orientations.

Like with stereo matching, the total number N of projective textures which can be used
at a time is limited by the amount of available video memory or the number of texture units

95



6 Texturing Lateral Surfaces

Figure 6.3: The bounding box Q (gray, solid) of the virtual camera’s view frustum F (blue) is used to query
the spatial index which stores the aerial images (red) according to the bounding boxes of their view pyramids
(gray, dashed).

(cf. section 5.2.1). Therefore, if the modified set S′ of aerial images contains n′ = |S′| > N
elements after the removal of the aforementioned images, it must be reduced further. Since
we want to use images whose projectors are located close to the virtual camera, we sort
the images according to the distances dk of their CoPs from the CoP of the virtual camera.
Except for those N images with smallest dk, we remove all other images from the set S′.

In summary, our algorithm for finding a set S̃ of aerial images which can be used for
projective texturing, where |S̃| = N , is as follows:

1. Create AABB Q from the frustum F of the virtual camera.

2. Retrieve from the spatial index of the FCM the set S = {I0, I1, . . . , In−1} of all
aerial images having projectors with frustums whose AABBs intersect Q.

3. For each Ik ∈ S, determine the angle ϕk enclosed between the viewing direction of
the projector and the viewing direction of the virtual camera.

4. If |ϕk| > Φmax, remove Ik from S.

5. If the modified set S′ contains > N elements, sort the elements according to the
distances dk from the CoPs of their associated projectors to the CoP of the virtual
camera.

6. Except for those N images with smallest dk, remove all other images from S′ and
obtain S̃.

6.2.2 Occlusions Between Lateral Surfaces

Locations on the DEM surface, which are occluded from the point of view of a projector
by other elevations as illustrated in figure 6.4, are not visible within the corresponding
image. Projecting occluded points on the DEM surface back into images that do not depict
them might yield a valid texture coordinate, but the resulting color values must not be used
for computing the color at the corresponding screen pixel. This is the same problem as
determining the visibility of a point in a scene from the position of a light source in order
to render shadows by means of shadow mapping [1, pp. 348–353]. Hence, a solution to

96



6.2 Aspects of Projective Texturing

Figure 6.4: Locations on a DEM surface can be occluded by elevations and may hence not be visible in all
projected images. In the depicted situation, i is visible in image 2 but not in image 1, because it is occluded by
an elevation. Image 1 depicts the front of that occluding elevation at the corresponding pixel, but not i.

this problem is the following proceeding: The scene is rendered from the perspective of
the projector, and the depth values of locations on the DEM are stored in a depth image,
which is called shadow map in the context of shadow mapping. When the scene is rendered
from the viewer’s perspective, locations on the DEM surface that are visible to the viewer
are projected into the depth map. If the depth value of a certain location is greater than
the value that is stored in the depth map, it is considered invisible from the projector’s
perspective. The scene needs to be rendered only once per projector and the resulting depth
map can be stored and reused.

With our DSM rendering approach, this technique requires one complete ray casting
pass per projector, and the depth maps need to be regenerated each time the underlying
DEM changes, if new elevation data become available. The video memory consumption
is increased by one additional depth map per projected image. In addition, the quality of
depth maps depends on their resolution and the technique may expose inaccuracies due to
aliasing. More details on the subject of shadow mapping can be found in [1, pp. 348–372],
for instance.

Since we use ray casting for DSM rendering, for a projected image Ik the visibility of
intersection i of a ray with the DEM surface can be determined by casting a second ray
from i to the CoP of Ik. This secondary ray casting can be performed by using the same
ray traversal scheme as presented in section 4.2.2. If the second ray intersects the DEM on
its way to the CoP, i is not visible in Ik. This method is potentially costly as it requires to
cast up to n additional rays for each fragment, where n is the number of projected images.
However, the projectors which can definitely not depict i according to their orientations and
distances from i and from the virtual camera, can be ignored, and the number of secondary
rays may be reduced.

6.2.3 Multiple Projections

A point i on a DEM surface can be depicted in multiple projected images as illustrated in
figure 6.5. In this situation, the image whose associated projector is closest to i is probably
the best choice for sampling color values, since it potentially depicts more details of the
object than images which were captured from greater distances. Furthermore, i is more
likely occluded by other elevations in images whose CoP is located at larger distances from
i, than in images having CoPs located closer to i.

97



6 Texturing Lateral Surfaces

Figure 6.5: If a point i on a DEM surface is visible in multiple images, the image closest to i (image 3, red)
is probably the best choice for determining the final color value at i in the virtual scene, because this image is
likely to depict the most details. i may furthermore be occluded in images captured at larger distances (image
1) by an obstacle (gray, dashed), which can be part of the scene that is depicted in those images.

The image Ik′ whose CoP is closest to i, can be determined by a fragment program as
follows: Let dk denote the distance from the CoP of image Ik to i. i is projected from world
space into each of the images Ik by means of its associated projector matrix. If the resulting
2D image coordinates of the projection of i are contained in the plane section of image
Ik, i may be visible in Ik. Image Ik′ is then determined as the image which contains the
projection of i and has the smallest distance dk′ among all images containing the projection
of i. In order to compute the distances dk on the GPU, the positions of the CoPs of the
projected images can be passed to the fragment program.

6.3 Implementation and Results

Projective texture mapping is implemented by the GLSL fragment program for DSM ray
casting as described in chapter 4. The set of aerial images which is used for projective
texturing is determined by the application each time the point of view of the virtual camera
is modified according to the image selection algorithm presented in section 6.2.1. The
images are sorted according to the distances dk of their respective CoPs from the virtual
camera in increasing order, and are provided to the ray casting shader as an array of textures.
In addition, the projector matrices and the CoPs of the projected images are passed to the
fragment program as uniform arrays of data type mat4 and vec3, respectively. This is the
same proceeding which is used to pass vertical aerial images and camera matrices to our
GPU programs for stereo matching as presented in chapter 5.

After the intersection i of a ray with the DEM has been determined by ray casting, the
fragment program computes the texture coordinate at each fragment for each projected im-
age Ik. If the coordinates are not within the range [0, 1] × [0, 1] ⊂ R2, the corresponding
image is not considered for computing the color value of the fragment. Otherwise, the
squared distance dk2 from i to the projector’s CoP is computed. If dk2 is the current min-
imum of all squared distances from i to the CoP of the projected texture Ik, the current

98



6.4 Discussion

minimum is updated and the sampled color value is assigned to the fragment, but only if
the fragment is not occluded in Ik. To determine whether i is not occluded in Ik by any
elevation of the DEM surface, we use secondary ray casting from i towards the CoP of Ik.

The GLSL source code of the complete implementation can be found in appendix A in
listing A.2 in lines 874 to 917.

6.3.1 Results

Figure 6.6 gives an example of a DSM rendering using projective textures. The maximum
enclosing angle between the viewing directions of the associated cameras and the virtual
camera was set to Φmax = π

4 , and the image projections were confined to areas where
elevation data are present.

(a) n = 3 (b) n = 2

Figure 6.6: Examples of renderings of a DEM of an urban area with applied projective textures. The DEM
was synthesized from the eight vertical aerial images in figure 5.14, and n oblique aerial images of sizes
1920× 1080 pixels were used as projective textures in the depicted scene.

The performance of our projective texturing approach depends on the number of projected
images and the accompanying number of secondary rays that need to be casted in order to
test for occlusions. On a computer with the configuration given in section 5.6, we observed
during several runs with different DEMs and up to eight active projectors a decrease of
the rendering frame rate of about 20% to 50%. However, the frame rate did not drop below
interactive rates, even at screen resolutions of 1920×1080 pixels. Furthermore, we observed
that the additional color information on lateral surfaces can help to conceal defects in DEMs
(see section 5.5.1). An illustration of this effect is shown in figure 6.7.

6.4 Discussion

Using the original aerial images as projective textures in order to provide color information
on lateral surfaces of a DEM has several advantages. By employing projective textures,
we neither have to create nor to store additional textures, and the set of employed aerial
images can be altered without having to update the corresponding DSM layer. The latter
aspect is especially important, because our application targets at fast DSM creation from
potentially frequently changing sets of images. If a DSM consists only of a DEM layer,

99



6 Texturing Lateral Surfaces

(a) untextured DEM (shaded) (b) three projected images

Figure 6.7: Applying projective textures to a DEM can conceal defects such as dents or spikes (left), which
result from stereo matching errors.

video memory is not occupied by an additional color texture layer and thus remains available
for projective textures. A comparison of DEM renderings using orthophoto textures and by
using projective textures is shown in figure 6.8. The six oblique aerial images which were
used for projective texturing throughout this chapter are shown in figure 6.9.

(a) orthophoto texture (b) six projective textures

Figure 6.8: A comparison of a rendering o the same DEM rendered only with applied orthophoto textures
(left), and by using six projective textures, but no orthophoto textures (right).

The set of projective textures for rendering a scene depends on the viewer’s current per-
spective and must be updated as the virtual camera moves. Transferring large amounts of
data from main memory to video memory, however, temporarily degrades the performance
of the rendering process. Since the original aerial images may be too large for being di-
rectly used as appropriate projective textures, it can be necessary to downscale the images
in advance.

We can also enable automatic mipmap generation by graphics hardware for the employed
projective textures and compute an appropriate mipmap level for sampling color values.
The mipmap level computation can be integrated into the ray casting process, similar to the
calculation of clip level lopt which is used for ray termination (see section 4.2.3). In this
way, our implementation can provide a simple level-of-detail concept for texturing lateral
DEM surfaces.

100



6.4 Discussion

Although the performance of the technique presented in this chapter appears to be suf-
ficient for our purposes, more detailed investigations might reveal further possibilities for
optimization.

(a) image 1 (b) image 2

(c) image 3 (d) image 4

(e) image 5 (f) image 6

Figure 6.9: The depicted six oblique aerial images of original sizes of 1920 × 1080 pixels were used for pro-
jective texturing on the DEM of an urban area. The DEM was derived from the images shown in figure 5.14
according to the method presented in chapter 5.

101



102



7 Framework Design

In this chapter we present the design and important implementation details about the frame-
work which implements the methods for rendering and generating DSMs as presented in
this thesis. The framework is implemented in C++, rendering relies on OpenGL 3.2 and
GPU programs (shaders) written in GLSL version 1.5. Section 7.1 gives an overview about
the organization of the framework, followed by details about the implementation of our
Flexible Clipmap in section 7.2. Our implementation of the employed R∗-tree is described
in section 7.3. Important aspects of the design and the implementation of the two GPU
programs for rendering and generating DSM data are presented in section 7.4. This chapter
concludes with a brief discussion about further implementation details in section 7.5.

The UML diagrams presented in this chapter are given in UML 2 notation. The names
of classes, methods, functions, variables or other programming language constructs are
highlighted by using a typewriter font. In favor of readability, we usually omit the parameter
lists of methods and functions, but their names are followed by a pair of opening and closing
parentheses, e. g., method() or function().

7.1 Framework Overview

Our framework is structured by packages as shown in the UML package diagram in fig-
ure 7.1. The packages categorize the contained classes and functions according to their
domains, and each package corresponds to a C++ namespace.

Figure 7.1: Our framework is structured according to the depicted packages which contain C++ classes and
functions for different purposes. Arrows indicate dependencies among the packages.

In detail, these domains are as follows:

common
This package contains classes and functions for general tasks, e. g., providing base classes

103



7 Framework Design

for threads or for asynchronously reading and writing of files.

database
The components from this package provide access to the database management system in
order to retrieve and store aerial images and associated metadata.

FCM
Components related to our FCM implementation, like classes for handling tiles, tile layers
and caching, are placed in the FCM-package.

image
The image-package contains classes for processing 2D raster images, i. e., bitmaps, and
includes classes and functions for reading and writing different image file formats. In addi-
tion, basic image processing functionality for bitmap images of different pixel formats has
been implemented and placed in this package.

math
Classes and functions representing mathematical objects and operations, e. g., vectors, ma-
trices and quaternions, are placed in the math-package. These classes and functions are
used by numerous other components from other packages. For the remainder of this chap-
ter, we avoid to explicitly reference this package in favor of readability.

rendering
This package contains classes for DSM rendering tasks and GPU computations for the
stereo matching process (see section 5.3).

spatial
We implemented versatile C++ class templates for the R∗-tree and a point kd-tree in order to
use these data structures with arbitrary data types for keys and values in 2D and 3D. These
two kinds of spatial indexes together with common class templates for geometric primitives
like points and boxes are contained in the spatial-package.

Due to requirements in the AVIGLE project, we need to access OpenGL via the open
source rendering engine “Irrlicht” [38]. We had to add several features available in OpenGL
to the engine, e. g., support for 3D textures and GLSL 1.5, because Irrlicht does not support
these features at the time of writing this dissertation. Rendering is therefore performed
by accessing components of the Irrlicht engine instead of directly calling OpenGL API
functions. Classes in our framework which utilize the rendering engine are designed to
isolate code which is specific to this engine, and are placed in the rendering-package.
These classes are prefixed by the letters Irr, and usually inherit from an abstract base class
which may be from a different package, such as FCM or common.

104



7.2 Flexible Clipmap Implementation

7.2 Flexible Clipmap Implementation

The Flexible Clipmap is implemented by several classes and class templates in the FCM-
package. Figure 7.2 shows the relationships between the most important classes. Attributes
and methods, as well as nested classes, some base classes from other packages, enumera-
tions and auxiliary structures, are omitted in favor of clarity.

In our application, an FCM tile is represented by the class LayeredTile and may
contain up to k layers (see section 4.2.1), but different applications may require different
types of FCM tiles. We therefore reduced the dependency of FCM’s components related
to tiles on a specific type of tile by using C++ templates and by providing an unspecific
base class Tile. The layers of a tile are represented by the class TextureTileLayer,
which inherits from the abstract base class TileLayer, and class Image from the im-
age-package. Cacheable provides an interface for any kind of data which need to be
transferred asynchronously from secondary to main memory, and keeps track of the current
location of cached data in main and secondary memory, e. g., FCM tiles and tile layers.
While color texture layers are directly handled by the TextureTileLayer class, DEM
layers are handled by the subclass template DEMTileLayer, which additionally stores the
maximum and minimum elevation value of its contained data. These values are determined
once as the DEM data are loaded or created. The template parameter of DEMTileLayer
must be set according to the data type of the desired texture format, e. g., BYTE for I8 or
float for F32.

Caching of FCM tiles should work in the same way for all kinds of tiles, hence the
template parameter for instantiating the C++ class templates TileCache, TileArray
and TileLevelCache must be a subclass of Tile. A TileCache maintains one
TileLevelCache object, which in turn maintains L TileArray objects, where L de-
notes the current number of clip levels of the FCM. TileArray objects are 2D arrays for
storing cx(l) · cy(l) tiles from the clip area of the FCM at an associated clip level l in main
memory (see section 3.3.2). Class TileLevelCache implements the FCM’s tile level
cache as described in section 3.3.2 and contains one TileArray object per clip level. The
TileLevelCache object and its contained TileArray objects are resized if the num-
ber of clip levels changes. An instance called LayeredTileCache of the TileCache
class template for caching LayeredTile objects in our application is obtained via an
appropriate C++ typedef.

Asynchronous access to secondary memory for loading and writing tile layers is con-
trolled by the class TileCache, but is executed by an internally maintained FileStor-
age object. The class FileStorage inherits from the abstract class Thread class from
the common-package and executes code in its own thread. In this way, potentially slow
accesses to secondary memory do not overly obstruct the execution of other components.
Details about the components which are executed in parallel are presented in section 7.2.1.

The numerous parameters for instantiating a FlexibleClipmap object, e. g., sizes of
the clip area and the active area, tile size and descriptions of the employed tile layers, are
combined in the FCMSettings structure. TileLayerDescriptor objects describe the
different tile layers employed by LayeredTile objects by providing a collection of the

105



7 Framework Design

Figure
7.2:

O
verview

aboutthe
relationships

ofthe
m

ostim
portantclasses

in
the

F
C
M

-package.A
ttributes

and
m

ethods,as
w

ellas
som

e
less

im
portantreferences

to
classes

from
other

packages
are

om
itted

in
favor

ofclarity.

106



7.2 Flexible Clipmap Implementation

properties of the layers, such as texel formats and storage locations in secondary memory,
i. e., file system paths and folder names. TileLayerDescriptor objects are maintained
by instances of FCMSettings structures, and are copied to an instance of the Tile-
LayerConfiguration class which implements the software engineering design pattern
Singleton [31, pp. 157–166]. The C++ enumeration LayerIndex provides symbolic con-
stants for accessing the different layers of FCM tiles.

The class FCMState is responsible for keeping track of the state of the FCM and in par-
ticular of its current number of clip levels L. State changes of the FCM are usually triggered
by a TileCreator object, and are propagated to other components by means of callback
objects, which are not depicted in figure 7.2. A TileCreator object is responsible for
creating new FCM tiles and updating existing ones by means of a LayerCreator object,
as soon as new aerial images and associated metadata become available. The class Layer-
Creator implements the methods for creating DSM data presented in chapter 5. For this
purpose, an instance of this class monitors the AerialImageIndex Singleton. The latter
maintains an appropriate instantiation of the RTree class template, and provides methods
for image retrieval. RTree is an implementation of the R∗-tree by Beckmann et al. [6] by
means of C++ class templates and is explained in detail in section 7.3. Since the creation
of tiles should not obstruct ongoing rendering, the class TileCreator inherits from class
Thread, so that the creation of tiles is executed in its own thread. Furthermore, the cre-
ation of additional tiles directly affects the state of the FCM and its cache. Hence, related
TileCreator and FlexibleClipmap instances need to share the same FCMState
and TileCache objects in order to access the data of FCM tiles in a consistent way.

The classes TileUpdateSchedule and TileUpdateJob both inherit from more
general classes from the common-package and are responsible for organizing the order of
execution of updating and creating tiles as described in section 3.3.3. Aerial images are de-
livered to the AerialImageIndex Singleton concurrently by an AerialImageCol-
lector object. This object also executes code in a separate thread and monitors changes
on the database. The communication between the different classes in response to changes
of the state of the FCM due to the arrival of new aerial images is explained in detail in
section 7.2.2.

Client applications that utilize our FCM implementation need to create one object each
of the classes FCMSettings, FlexibleClipmap and TileCreator. An FCMSet-
tings object can be created conveniently from FCM configuration settings stored in an
XML file. Such an object is the only parameter required by the constructor of class Fle-
xibleClipmap. A TileCreator object is only required if the FCM needs to handle
DSM data of time-varying extension. In order to render a static DSM, the FCMSettings
object can provide a fixed size for the FCM.

7.2.1 Multithreading

Our implementation makes use of multithreading in order to not overly obstruct the main
process which is primarily engaged in rendering at real-time frame rates. The support for

107



7 Framework Design

multithreading depends on the operating system, and specific code is isolated in our imple-
mentation by the abstract base class Thread as shown in figure 7.3.

Figure 7.3: UML class diagram of classes in our FCM implementation which execute code in separate
threads. The class Mutex is used for synchronizing access to shared code and data via mutual exclusion.

A class which inherits from class Thread must implement the method run(). Code
within this method is executed in its own thread, as well as the code of other methods which
are called directly or indirectly by run(). The execution of a thread is initiated by calling
start() and terminates as soon as run() has finished. If a thread needs to run until
its termination is explicitly requested by another thread, calling method stop() sets an
internal state which causes the method isRunning() to return false on subsequent
calls. Hence, loops within the method run() should exit if the termination of the thread is
requested, so that run() can terminate. An example of how to implement such a loop in a
fictional class MyClass which inherits from Thread is given in listing 7.1.

1 void MyClass::run()
2 {
3 while (isRunning())
4 {
5 // ...
6 }
7 }

Listing 7.1: Example of an implementation of a loop within the run() method of the fictional subclass
MyClass of class Thread. The code within this method is executed in its own thread.

The method waitFor() provides a simple synchronization of Thread objects. A
caller of waitFor() passes a timeout period as parameter and is blocked until either the
timeout period expires or the thread terminates. Hence, this method should never be called
from method run() or any other method of the same object in order to avoid deadlocks. A
Thread object can be suspended from execution for a given timeout period by calling the

108



7.2 Flexible Clipmap Implementation

method sleep() from the object’s run()-method or any other method that is directly or
indirectly called by run(), without causing any deadlock.

Multiple threads may need to access the same methods and data of the same objects, and
hence need to be synchronized in order to prevent memory access violations. In our appli-
cation, we control the access to shared data and code by means of simple mutual exclusion,
which is implemented by the Mutex class and depends on the operating system.

In the following, we discuss details about the three subclasses of class Thread which
are shown in figure 7.3, because these classes enable the usage of our FCM implementation
for rendering while image acquisition and DSM generation are executed in parallel.

Class FileStorage

The class FileStorage provides access to secondary memory, because the other threads,
e. g., the main thread for rendering, should not be blocked by potentially slow file access
operations. Instead of accessing files themselves, other threads can delegate this task to a
FileStorage object which maintains a queue of FileStorageOperation objects
as shown in figure 7.4. Classes such as BitmapImage2D from the image-package can

Figure 7.4: The depicted classes are used for asynchronous file transfer between secondary and main mem-
ory.

inherit from the subclasses ReadFileCallback and WriteFileCallback of class
FileStorageCallback and re-implement the callback methods callbackRead-
File() and callbackWriteFile() in order to asynchronously transfer data between
secondary and main memory. These callback methods are invoked by FileStorageOp-
eration objects after the storage operation is completed. New FileStorageOpera-
tion objects are inserted into an internally maintained queue of a FileStorage object
by passing the object which is about to be transferred between main and secondary memory
as parameters to the methods readFileAsync() or writeFileAsync(). The thread
associated with the FileStorage object will be started automatically, if it is not already

109



7 Framework Design

running. The method run() of FileStorage processes the object’s queue and executes
until either the queue is empty or the thread is requested to terminate.

In order to avoid unnecessary storage operations on the same files if they are accessed
multiple times in a row, e. g., by the cache of the FCM, operations are only enqueued in the
follow situations:

ä Read operations are only enqueued if the queue does not already contain a read op-
eration or if an already enqueued read operation is followed by an enqueued write
operation on the same file.

ä Write operations are only enqueued if no write operation is already enqueued or if an
existing write operation is succeeded by a read operation on the same file.

This is expressed in the truth table given in table 7.1. The columns contains read and
contains write indicate the existence of an already enqueued read and write operation on
the same file, respectively, and column read first indicates that a reading operation on the
same file is enqueued before writing to the same file.

contains read contains write read first enqueue reading enqueue writing
true true true true false
true true false false true
true false true false true
false true false true false
false false false true true

Table 7.1: Truth table for situations which require to enqueue a storage operation on the same file at a
FileStorage object.

Note that any objects which inherit from one or more of the FileStorageCallback
subclasses must not be deleted, as long as they are referenced by a FileStorageOp-
eration object which is enqueued at a FileStorage object, because otherwise the
callback would cause a memory access violation.

Class AerialImageCollector

The class AerialImageCollector is responsible for retrieving aerial images from a
database. For this purpose, the images are each identified by a number (ID) and a timestamp.
Code, which is independent of the underlying database management system (DBMS), such
as the method run(), is contained in the base class AerialImageCollectorBase
(see figure 7.5). The method run() of AerialImageCollectorBase given in list-
ing 7.2 calls virtual methods, which are implemented by derived subclasses and specific to
the employed DBMS.

110



7.2 Flexible Clipmap Implementation

Figure 7.5: The base class AerialImageCollectorBase provides an interface for database-specific
implementations which are called by the run() method.

Listing 7.2: C++ code of the run() method of class AerialImageCollectorBase. availableIm-
ages_ is an attribute for storing the state of retrieval for each of the available aerial images.

1 // This typedef is used in the declaration of AerialImageCollectorBase.
2 //
3 typedef std::set<AerialImageCollectorBase::ImageState> StateSet;
4

5 void AerialImageCollectorBase::run()
6 {
7 StateSet::iterator itNext = availableImages_.end();
8 while (isRunning())
9 {

10 // Attempt to connect to database as long as this thread is running
11 // and no connection has been established.
12 //
13 for (unsigned int i = 0; (isRunning() && (! isConnectedToDB())); ++i)
14 {
15 if (i > 0)
16 sleep(500); // wait 500 ms between each two connection attempts
17 connectToDB();
18 }
19

20 // If the thread is terminated while it attempts to connect to the
21 // database, isRunning() will return false and we go back to the
22 // beginning of the outer while-loop in order to check if the thread
23 // needs to continue to execute.
24 //
25 if (! isConnectedToDB())
26 continue;
27

28 // The set of available images has not yet been completely retrieved.
29 //
30 if (itNext != availableImages_.end())
31 {
32 // Only try to retrieve aerial images if they have not yet been

111



7 Framework Design

33 // marked as retrieved.
34 //
35 const ImageState& is = *itNext;
36 if (! is.isRetrieved_)
37 {
38 // Mark the image if it was successfully retrieved.
39 // Otherwise, assume that something is wrong with the image
40 // (maybe it became deleted meanwhile) and remove it from the
41 // set of available images.
42 //
43 if (fetchImage(is.imageID_, is.timestamp_, false))
44 {
45 // possible since isRetrieved_ is declared as mutable
46 is.isRetrieved_ = true;
47 ++itNext;
48 }
49 else
50 availableImages_.erase(itNext++);
51 }
52 else
53 ++itNext;
54 }
55 else
56 {
57 // If the iterator indicates that the set has been processed,
58 // update the set of images and reset the iterator.
59 //
60 if (queryAvailableImages() > 0)
61 itNext = availableImages_.begin();
62 }
63 } // while (isRunning()
64

65 disconnectFromDB();
66 } // run()

Listing 7.2: C++ code of the run() method of class AerialImageCollectorBase.
availableImages_ is an attribute for storing the state of retrieval for each of the available aerial
images.

Class TileCreator

The implementation of the method run() in class TileCreator basically comprises
the processing of its internal schedule for tile creation (cf. section 3.3.3). This class and
its most important relationships to other classes are shown in the UML class diagram in
figure 7.6. Since tile creation is performed on the GPU, the tile creator creates its own
OpenGL rendering context by means of an IrrLayerCreator object which is directly
created at the beginning of method run(). The class IrrLayerCreator implements
the interface of its base class LayerCreator and performs the actual texture creation of
the different DSM layers as described in section 5.3 and section 5.4 by using components of
the “Irrlicht” rendering engine [38]. In this way, the main thread can continue to render, and
both threads can act as if they had exclusive access to the graphics hardware. Before the
method run() of class TileCreator returns, the LayerCreator object and hence
the associated OpenGL rendering context are destroyed.

112



7.2 Flexible Clipmap Implementation

Figure 7.6: The depicted classes implement the creation of DEM and color texture layers of FCM tiles.
Tiles are retrieved by TileCreator via a LayeredTileCache object, which in turn manages Lay-
eredTile objects. The tiles and the schedule are processed in the run() method of class TileCreator.

7.2.2 Communication in Response to the Insertion of Aerial Images

The communication between the affected classes in response to the insertion of an aerial
image is illustrated in the communication diagram10 in figure 7.7. An equivalent sequence
diagram of the same communication is given in figure B.2 in appendix B. The involved
classes and their methods are shown in figure 7.8. This figure contains additional details
about the class hierarchy which are omitted in figure 7.2 in favor of readability.

Figure 7.7: The communication diagram shows the interaction between different objects in response to the
insertion of an aerial image at the AerialImageIndex object by calling addImage(). Images are re-
trieved from a database by an AerialImageCollector object, which executes code in a separate thread.

The insertion of an AerialImage object at AerialImageIndex is triggered by
an AerialImageCollector object. AerialImageCollector is connected to the
database for storing aerial images, and it monitors the arrival of new images. As soon as

10This type of diagram was called collaboration diagram in UML versions prior to 1.5 [73, p. 27].

113



7 Framework Design

Figure
7.8:

The
classes

in
the

depicted
diagram

are
affected

by
the

insertion
ofnew

aerialim
ages

atthe
A
e
r
i
a
l
I
m
a
g
e
I
n
d
e
x

objectafter
a
d
d
I
m
a
g
e
(
)

is
called.

114



7.2 Flexible Clipmap Implementation

new data are available, they are fetched and inserted into the spatial index maintained by the
AerialImageIndex object by calling its method addImage(). In order to notify the
TileCreator object about the presence of new aerial images, AerialImageIndex
and TileCreator are implemented by using the Observer design pattern [31, pp. 287–
300]. Directly after its creation, a TileCreator object registers itself as an observer at
the AerialImageIndex Singleton, which inherits from Oberservable. Each time
new aerial images are added to the AerialImageIndex Singleton, it notifies its reg-
istered observers by calling notifyObservers(), which in turn calls the observers’
specific implementation of the method onNotifyFromObserved(). The method on-
NotifyFromObserved() of class TileCreator sets an internal flag to indicate the
presence of new aerial images. If this flag is present, determineLevel0Tiles() is
called during the next execution of the method run() of TileCreator, and the flag is
reset. The method determineLevel0Tiles() will determine those FCM tiles at the
base clip level l = 0 which need to be created or updated. Whenever the creation of new
tiles causes the addition of additional clip levels as described in section 3.2.5, method re-
size() on the FCMState object is called. The FCMState object is maintained by the
FlexibleClipmap object, which registers the method onFCMStateResize() as a
callback at the FCMState object. The callback is invoked in response to changes of the
state of the FCM which require to resize it. Since the size of the cache of the FCM must be
adjusted as well, the method onFCMStateResize() of class TileCache is called by
FlexibleClipmap.

After the eventual resizing of all involved components, the method run() of TileCre-
ator can proceed with the creation of FCM tiles by calling createLevel0Tiles().
This call will also lead to the scheduling of FCM tile creations at clip levels > 0, and each
time tiles have been created TileCreator calls its method notifyObservers().
In this way, objects like FlexibleClipmap can register themselves as observers and
become notified about the creation of new tiles via calls to their implementations of onNo-
tifyFromObserved(). This is required, for instance, by class FlexibleClipmap
in order to call updateTileArray(), which is responsible for initiating the transfer of
modified tiles into video memory for rendering.

As shown in figure 7.8, TileCache inherits from CallbackOnResize and can
hence register a callback method at an FCMState object as well. This allows to use a
TileCreator object without having to create a FlexibleClipmap object, if no ren-
dering of the created DSM is required. In this case, the required FCMState and Tile-
Cache objects must be directly created by the application, because they are usually man-
aged by the FlexibleClipmap object and are only accessed by FCMState via ref-
erences. The TileCache object can thus directly register its onFCMStateResize()
method as a callback at the FCMState object and becomes notified about changes of the
number of clip levels in order to initiate eventual resizing of its internal tile level cache.

115



7 Framework Design

7.3 R∗-tree Implementation

The R∗-tree by Beckmann et al. [6] is implemented by the C++ class templates shown in
figure 7.9.

Figure 7.9: We implemented the R∗-tree by the depicted C++ class templates. Note that the classes En-
tryType, IntermediateNode and LeafNode are generated by template instantiation in RTree as
indicated by the UML annotation, and that they are available only within instances of that class template.

The four template parameters of the class template RTree representing the R∗-tree itself
must be used as follows: The parameter DIM indicates the dimension of the space and is
DIM = 3 in the context of our work, but DIM may have any value ≥ 1. N defines the
maximal number of entries per node, and the minimal number of entries is set to m =

⌊
N
2

⌋
(cf. section 3.2.3). Specifying the number of entries at compile time allows to use stati-
cally allocated arrays in the node classes for storing entries and hence simplifies memory
management. The data type which is stored in the R∗-tree is indicated by parameter T and
is a pointer to AerialImage objects in our application. Since we want to automatically
deallocate memory for objects which are removed from an instance of the class template
RTree, we pass an appropriate Deallocator class template as the fourth template pa-
rameter DEALLOC. The Deallocator class template must be chosen with respect to
the allocation method for data stored at the R-∗-tree. Therefore, we provide three classes
for this task, each one for the most common memory allocation methods used in C++.
The base class Deallocator does not deallocate any memory and is intended for being
used with parameters T which are no pointers. DeallocatorDelete and Dealloca-
torDeleteArray deallocate memory by using C++ delete and delete[] operators,
respectively. As indicated by the UML annotation in figure 7.9, the four template parame-
ters used by RTree are also used for instantiating the RTreeDataEntry class template,
which represents entries at the leaf nodes of the R∗-tree. The meaning of these parameters
is the same as with the RTree class template, and the instantiated template is made a new

116



7.4 GPU Programs

type EntryType via a C++ typedef, and it is only available within instances of RTree.
The memory allocated by the actual data of type T of an EntryType object is deallocated
within its destructor by a local deallocator object.

The data are stored in an R∗-tree only at its leaf nodes, which are represented by Leaf-
Node objects. IntermediateNode objects are used for handling intermediate nodes,
and both types are instantiations of the RTreeNode class template. The template parame-
ter ENTRY is set to the data type of the node’s entries and is EntryType for leaf nodes. In
case of intermediate nodes, the entries can be either leaf nodes or other intermediate nodes,
and ENTRY is set to RTreeNodeBase, which is the base class template of all types of
nodes. If access to the data is required, the generalized node objects are casted back to
pointers of their respective subclasses, based on a node’s level within the R∗-tree.

Since all nodes and entries must maintain an axis-aligned bounding box (AABB), RTree-
DataEntry and RTreeNodeBase inherit from an instance of the class template RTree-
Child, which provides amongst others a RHyperRect<NUM, DIM> object. The latter
represents the actual AABB and consists of two RPoint<NUM, DIM> objects, each one
for the minimum and the maximum corner. These two class templates provide the basic
operations for determining geometric relationships between each other, like containment,
overlap, coverage and intersection, for instance. The template parameters NUM and DIM of
RHyperRect and RPoint must be set to a numerical data type, e. g., int, float or
double, and the dimension of space, respectively.

Operations for manipulating the content of the R∗-tree, e. g., insert(), find() and
remove() as well as operations related to its structure are implemented by methods of the
RTree class template. The operations described in [35] and [6] for splitting nodes, like
ChooseSplitAxis and SplitNode, are implemented by the class template RTreeNode.

7.4 GPU Programs

In this section we discuss the most important details and functions of the GLSL vertex and
fragment programs for DSM rendering and DSM synthesis. We employ GLSL version 1.5
in order to have access to texture arrays, i. e., sampler2Darray data types. The complete
shader source codes can be found in appendix A.

Like C/C++ programs, GLSL shaders can make use of preprocessor definitions [66,
pp. 93–97]. Some of these definitions are generated as textual strings at runtime by our
FCM components written in C++, e. g., in order to provide constants for allocating arrays of
fixed size (cf. section 5.3.1). The resulting strings are inserted in front of the shader source
code before the shaders are built by the graphics driver. The additional preprocessor direc-
tives are inserted as comments at the beginning of the source code for illustrative purposes.
The values of such #define directives are chosen according to typical values from our
application.

In the GLSL code listings presented in this dissertation, the names of uniform variables
contain a trailing underscore, e. g., worldSize_. The names of variables of fragment
programs qualified as in, and the ones of vertex programs qualified as out, are prefixed

117



7 Framework Design

by an underscore, e. g., _texCoord0. Attributes of structures are also suffixed by an un-
derscore, but can be easily distinguished from uniform variables, since they appear outside
of struct definitions on the right-hand side of an element access operator, i. e., a dot.
Furthermore, the world coordinate system that is used by the Irrlicht rendering engine [38]
differs from the world coordinate system Σ as presented in section 2.4 by swapped labels
of the y- and z-axis. Hence, positions in the ground plane are denoted by p.xz instead of
p.xy and height values are stored at p.y instead of p.z. In addition, the red and blue
color components of RGB color textures are swapped by the rendering engine as well, so
that we have to access the components of an RGB color value texColor from a texture
via texColor.bgr instead of texColor.rgb.

7.4.1 DSM Rendering

The GPU programs for DSM rendering are associated by subclasses of FlexibleClip-
map, which contain code specific to rendering by means of a certain API or graphics engine.
The vertex program is given in listing A.1 in appendix A. Its task is to transform the ver-
tex coordinates of the polygonal box-shaped mesh, which serves as proxy geometry for ray
casting, into screen space, and to compute normalized 3D texture coordinates. The texture
coordinate (0, 0, 0) is located at the minimum corner and (1, 1, 1) at the maximum corner.
In addition, the vertex program computes the ratios of the two shorter sides to the longest
side of the box. If the proxy geometry is not a cube, ray traversal during ray casting would
require a non-uniform step width along the different axes. By component-wise multiplica-
tion of the direction of the ray with the ratio of the bounding box, we can use a uniform step
width for ray traversal.

The function main() of the GLSL fragment shader for surface rendering in our FCM
implementation and the definition of the employed RayPosition structure are given in
listing 7.3 . The information that is stored at the current position of a ray in a RayPo-
sition structure is indicated by the comments in listing 7.3. In line 969, a preprocessor
definition added by the client program determines whether the FCM uses DEM ray casting
or not, and the shader either executes the function rayCasting() or planarFCM(). In
the latter case, the FCM can be used for texturing a planar surface as described in chapter 3.
Both functions return a RayPosition structure which contains the final grid position, and
the required clip levels for sampling the color texture layer. The attribute hit_ indicates
whether the grid position is located on the DEM surface. The check in line 983 is used to
discard fragments at positions outside the domain of the FCM, e. g., if the ray has left the
boundaries of the proxy geometry during ray casting.

If DEM ray casting is employed by using rayCasting() in line 978, the texture co-
ordinate which is passed by the vertex program via _texCoord0 encodes the position
where the corresponding ray exits the proxy geometry. The CoP of the virtual camera is
transformed by the vertex program into the proxy geometry’s normalized texture coordi-
nate system and is passed to the fragment shader via _camPosTextureCoordinates.
The check in line 971 verifies that the coordinates of the camera position are in range

118



7.4 GPU Programs

116 struct RayPosition
117 {
118 vec3 pGrid_; // current grid position
119 float lodBlend_; // parameter for blending LODs, range [0, 1[
120 uint levelCurrent_; // current clip level at ray position
121 uint levelLowest_; // lowest clip level available at ray position
122 uint levelIdeal_; // clip level of least aliasing at ray position
123 uint numSteps_; // current number of ray casting steps
124 bool hit_; // indicates whether the ray has hit the DEM surface
125 }; // struct RayPosition
126

964 void main()
965 {
966 vec3 exit = _texCoord0;
967 RayPosition rp;
968

969 #ifdef FCM_USE_DEM_RAY_CASTING
970 vec3 entry = _camPosTextureCoordinates;
971 if (! isInsideRange(entry, vec3(0.0), vec3(1.0)))
972 {
973 vec3 tmpDir = normalize(entry - exit);
974 entry = getBoxIntersection(exit, tmpDir, vec3(0.0), vec3(1.0));
975 }
976

977 vec3 dir = normalize((exit - entry) * _boxRatio);
978 rp = rayCasting(entry, dir);
979 #else
980 rp = planarFCM(exit);
981 #endif // FCM_USE_DEM_RAY_CASTING
982

983 if (! rp.hit_)
984 discard;
985

986 fragColor = determineFragmentValues(rp, gl_FragDepth);
987 } // main()
988

Listing 7.3: The main() function of the FCM fragment program for DSM rendering and the employed
structure RayPosition.

[0, 1] × [0, 1] ⊂ R2 and that the camera is thus located inside the proxy geometry. In
this case, ray casting starts at the position of the camera. Otherwise, the camera is located
outside the box, and the corresponding entry points of the ray on the proxy geometry are
computed by the function getBoxIntersection() in line 974. The direction of the
ray is then computed in line 977 and is multiplied component-wise by the ratio of the box.

If the FCM is used without DEM ray casting by calling planarFCM() in line 980, the
FCM is located in the ground plane at the bottom of the proxy geometry box. In this case,
positions for sampling its color texture layers can be thought of as the intersections of rays
with a completely flat surface. Hence, planarFCM() merely transforms the normalized
texture coordinate into the grid coordinate system by multiplying it by the grid size as used
for ray casting and determines the optimal clip level that best avoids aliasing as described
in section 3.3.4. This transformation into the grid coordinate system allows to handle the

119



7 Framework Design

subsequent computation of the final fragment color and the Z-Buffer value by the function
determineFragmentValues() in line 986 in the same way as with ray casting.

The computation of the final fragment color is controlled by the preprocessor definition
COLORING_MODE, which causes the function determineFragmentValues() to call
code for either sampling the color texture layer, sampling projective textures, or applying
diffuse shading with optional shadow casting. If no DEM ray casting is employed, sampling
the color texture layer is the only available option. The computation of shadows relies on
the same occlusion test by means of secondary ray casting, which is also used to determine
the visibility of a location on the DEM surface in a projective texture (see section 6.2.2).

The code for initializing ray casting is shown in listing 7.4.

807 uint getDirectionCode(const in vec3 dir)
808 {
809 // prevent loss of sign by truncations to zero for small values
810 ivec3 iDir = ivec3(dir * 1.0e8);
811

812 uint dirCode = uint((iDir.x >> 31) & 1); // sign of x-component (bit 0)
813 dirCode |= uint((iDir.y >> 30) & 2); // sign of y-component (bit 1)
814 dirCode |= uint((iDir.z >> 29) & 4); // sign of z-component (bit 2)
815

816 return dirCode;
817 }
818

819 RayPosition rayCasting(const in vec3 p, const in vec3 dir)
820 {
821 RayPosition rp;
822 rp.pGrid_ = (p * g_gridSize);
823 rp.levelCurrent_ = MAX_CLIPLEVEL;
824 rp.levelLowest_ = 0u;
825 rp.levelIdeal_ = 0u;
826 rp.numSteps_ = 0u;
827 rp.hit_ = false;
828

829 // Determine the target octant in space for the ray.
830 // Since the intersection tests with the DEM surface are different
831 // for rays directed upward and downward, use specialized functions.
832 uint dirCode = getDirectionCode(dir);
833 if ((dirCode & 2u) != 0u)
834 castRayDownward(rp, dir, dirCode);
835 else
836 castRayUpward(rp, dir, dirCode);
837

838 return rp;
839 }
840

Listing 7.4: GLSL source code for initializing DEM ray casting.

After the initialization of a RayPosition structure, the direction of the ray is encoded
by the bit-mask dirCode, which is created by the function getDirectionCode().
This bit-mask is used for efficient branching during ray traversal via switch-statements.
If the x-, y- or z-component of the ray’s direction vector are negative, the lower three bits
of dirCode are set accordingly and thus indicate the octant in 3D space into which the

120



7.4 GPU Programs

ray is casted. Since computing the intersection of a ray with the DEM depends on whether
the ray is directed upwards or downwards (cf. equation (4.2) in section 4.2.2), the function
rayCasting() branches accordingly.

The two functions castRayDownward() and castRayUpward() essentially differ
only in the intersection test. castRayDownward() is given in listing 7.5.

Listing 7.5: GLSL source code from the ray casting branch for downward directed rays.

677 void castRayDownward(inout RayPosition rp, const in vec3 dir, const in uint
dirCode)

678 {
679 uint n = 0u; // counter for ray casting steps at the current clip level
680 while ((! rp.hit_) && (isInsideRange(rp.pGrid_, vec3(0.0), g_gridSize)))
681 {
682 ++rp.numSteps_;
683 vec4 pNext = getNextCell(rp, dir, dirCode);
684

685 // If an intersection is detected, compute the EXACT hit point
686 // on the box of the grid cell.
687 // The w-component contains the DEM value at the next grid cell.
688 // The y-component is the current height of the ray above the ground
689 // plane.
690 if ((pNext.y - pNext.w) <= EPSILON_HIT)
691 {
692 rp.pGrid_ += dir * max(((pNext.w - rp.pGrid_.y) / dir.y), 0.0);
693

694 // Determine the different clip levels.
695 rp.levelLowest_ = getTileMapEntry(rp.pGrid_);
696 float idealLOD = computeIdealLOD(rp.pGrid_);
697 rp.levelIdeal_ = uint(idealLOD);
698 rp.lodBlend_ = fract(idealLOD);
699

700 // If the corresponding box of the grid cell at the current hit
701 // point is from a clip level greater than the clip level which
702 // would expose the least aliasing, descend one level.
703 // Otherwise, ray casting can terminate, and surface can be
704 // refined.
705 uint bestLevel =
706 max(rp.levelLowest_, min(rp.levelIdeal_, MAX_CLIPLEVEL));
707 if (rp.levelCurrent_ > bestLevel)
708 {
709 --rp.levelCurrent_;
710 n = 0u; // reset counter for ray casting steps at current level
711 }
712 #if (defined(SURFACE_REFINEMENT) && (SURFACE_REFINEMENT ==

SURFACE_REFINEMENT_LINEAR))
713 else
714 rp.hit_ = refineSurfaceLinear(rp, dir, dirCode);
715 #elif (defined(SURFACE_REFINEMENT) && (SURFACE_REFINEMENT ==

SURFACE_REFINEMENT_BICUBIC))
716 else
717 rp.hit_ = refineSurfaceBicubic(rp, dir, dirCode);
718 #else
719 else
720 rp.hit_ = true;
721 #endif // SURFACE_REFINEMENT
722 }
723 else
724 {
725 // the DEM was not hit by the ray => proceed at the next grid cell

121



7 Framework Design

726 rp.pGrid_ = pNext.xyz;
727 ++n; // increase the number of ray casting steps at this level
728

729 // After four or more ray casting steps at the current clip
730 // level, increase the level again (if possible) in order to
731 // iterate over larger grid cells. Four is an empirical value.
732 //
733 if ((n >= 4u) && (rp.levelCurrent_ < MAX_CLIPLEVEL))
734 {
735 ++rp.levelCurrent_;
736 n = 0u; // reset step counter
737 }
738 }
739 } // while (
740

741 // fix potential round-off errors which might create "holes" in the ground
742 if (rp.pGrid_.y <= 0.0)
743 {
744 rp.hit_ = true;
745 rp.pGrid_.y = 0.0;
746 }
747 }
748

Listing 7.5: GLSL source code from the ray casting branch for downward directed rays.

The while-loop terminates if the ray has either hit the DEM surface, or if it leaves the
domain of the FCM. Based on the current grid position and the direction of the ray, the next
grid cell for ray traversal as described in section 4.2.2 is determined by the function get-
NextCell(). This function furthermore computes the position for sampling the DEM
layer texture and retrieves the corresponding DEM value, which is stored at the fourth com-
ponent (w-component) of the returned vec4. If the check in line 690 indicates that the
ray intersects the DEM, the exact position on the grid cell’s box surface is computed and
the clip levels are determined according to the description in section 4.2.3. If the current
clip level is greater than the clip level which best avoids aliasing, the level is decreased and
ray casting continues from the current hit point. Otherwise, the final intersection of the ray
with the surface has been found, and ray casting can be terminated. The surface refinement
methods as presented in section 4.2.4 are applied only if the corresponding preprocessor
definition SURFACE_REFINEMENT is present, and if its value is either as in line 712 or as
in line 715. This directive is added to the shader source code by class FlexibleClip-
map, if it is requested by the user of the client application. Since the surface refinement
methods may invalidate the final hit point on the box surface of the grid cell, ray casting is
resumed from that position if refineSurfaceLinear() respectively refineSur-
faceBicubic() return false.

If the DEM is not hit by the ray at the current fragment, the ray is advanced to the next grid
cell in line 726, and the counter for ray casting steps at the current level is increased. After
four steps without any further intersection of the ray with the DEM, the level is increased
again if it is not the top-most level. In this way, the effective size of the grid cell and thus
the step width for ray traversal is increased (cf. section 4.2.2).

122



7.4 GPU Programs

7.4.2 DSM Synthesis

The complete GPU programs for generating the different DSM layers of FCM tiles as de-
scribed in chapter 5 are given in listing A.3 and listing A.4 in appendix A. The shaders create
the DEM and the color texture layer of an FCM tile simultaneously by emitting two color
values. Aerial images which are projected onto the sweeping plane and their associated
projector matrices are passed to the programs via the uniform arrays projectedTex-
tures_ and mProjectors_.

The vertex program computes the texture coordinates for each projected image at the
vertex positions of the rectangular mesh which represents the sweeping plane. These coor-
dinates are passed on to the fragment program via the array _texCoords and are auto-
matically interpolated across the sweeping plane. In the fragment program, the coordinates
are transformed from homogeneous coordinates to Cartesian ones. Listing 7.6 shows the
structure ImageInfo for storing the information about each projected image as indicated
by the source code comments. The fragment shader’s most important function compute-
MatchingCosts() is given in listing 7.7.

Listing 7.6: Structure ImageInfo for storing information about an aerial image at the current fragment
from the fragment program for DSM synthesis.

49 struct ImageInfo
50 {
51 vec4 colorValue_; // color value from corresponding image
52 float costs_; // matching costs for image
53 float luminance_; // luminance value (derived from RGB texel value)
54 uint imageIndex_; // index of the image
55 bool covers_; // true if the image covers this fragment
56 }; // struct ImageInfo
57

Listing 7.7: Function computeMatchingCosts for computing the aggregated matching costs at each
fragment in the fragment program for DSM synthesis.

125 float computeMatchingCosts(out vec4 color)
126 {
127 float summedCosts = 0.0;
128 color = vec4(0.0, 0.0, 0.0, 1.0);
129 ImageInfo info[NUM_PROJECTORS];
130

131 // Determine the coverage by projective images at this fragment and
132 // initialize the ImageInfo structure at the lowest mipmap level for
133 // matching cost aggregation.
134 float mipmapLevel = max(float(minSupportWindowLevel_), 0.0);
135 uint coverage = 0u;
136 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
137 {
138 coverage += initImageInfo(i, mipmapLevel, info);
139 if (info[i].covers_)
140 color = info[i].colorValue_;
141 }
142

143 // Change to (coverage == N) to get visually most appealing results.
144 if (coverage > 1u)
145 {
146 // add costs from previous pass with smallest support window size

123



7 Framework Design

147 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
148 {
149 if (info[i].covers_)
150 {
151 for (uint j = 0u; j < NUM_PROJECTORS; ++j)
152 {
153 if (info[j].covers_)
154 info[i].costs_ += abs(info[i].luminance_ - info[j].luminance_);
155 }
156 }
157 } // for (i
158

159 // add costs from larger support windows
160 for (int l = (minSupportWindowLevel_ + 1);
161 l <= maxSupportWindowLevel_; ++l)
162 {
163 // update luminances
164 float mipmapLevel = float(l);
165 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
166 {
167 if (info[i].covers_)
168 info[i].luminance_ = getLuminanceUnchecked(i, mipmapLevel);
169 }
170

171 // same as above
172 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
173 {
174 if (info[i].covers_)
175 {
176 for (uint j = 0u; j < NUM_PROJECTORS; ++j)
177 {
178 if (info[j].covers_)
179 info[i].costs_ += abs(info[i].luminance_ - info[j].luminance_);
180 } // for (j
181 }
182 } // for (i
183 } // for (l
184

185 #ifdef USE_BETTER_HALF
186 // sort matching costs in increasing order
187 selectionSort(info, N);
188

189 // use color from image with least matching costs
190 color = info[0].colorValue_;
191

192 // sum up costs
193 uint k = 0u;
194 for (uint i = 0u;
195 ((info[i].costs_ < INFINITY) && (i < (coverage / 2u))); ++i, ++k)
196 summedCosts += info[i].costs_;
197

198 // normalize costs to simplify comparison with threshold
199 summedCosts /= float(k);
200 #else
201 color = vec4(0.0);
202 for (uint i = 0u; (i < N); ++i)
203 {
204 // sum up only valid matching costs (there is at least one valid value)
205 if (info[i].costs_ < INFINITY)
206 {
207 summedCosts += info[i].costs_;

124



7.4 GPU Programs

208 color += info[i].colorValue_;
209 }
210 }
211

212 // normalize costs to simplify comparison with threshold
213 summedCosts /= float(coverage);
214 color /= float(coverage); // use averaged color values
215 color.a = 1.0; // fix potential round-off errors
216 #endif
217 } // if (coverage
218 else
219 summedCosts = INFINITY;
220

221 return summedCosts;
222 }
223

Listing 7.7: Function computeMatchingCosts for computing the aggregated matching costs at each
fragment in the fragment program for DSM synthesis.

The function computeMatchingCosts() returns the aggregated matching costs at the
current fragment and additionally assigns a color value to the out variable color. If all
images covering the fragment are taken into account for matching cost computation, the
final color value is computed as the averaged pixel value. Otherwise, only those images
with lowest matching costs are considered, and the color value is obtained from the image
with lowest matching costs. The matching costs can be aggregated over a contiguous range
of mipmap levels, which is passed to the shader via uniform variables and corresponds to
cost aggregation over different support window sizes (cf. section 5.1.2).

The aggregated matching costs are computed in detail as follows. For each projected im-
age, the function initializes one element of an array of ImageInfo structures via initIm-
ageInfo() and simultaneously determines the number of images that cover the current
fragment. The function initImageInfo() already samples the projected images at the
lowest mipmap level given in mipmapLevel for cost aggregation. Furthermore, it con-
verts color values into luminance values, which are stored in the attribute luminance_ of
the passed ImageInfo structure. If the fragment is not covered by at least two images, the
matching costs at the fragment are set to INFINITY in line 219. Otherwise, the SAD of
the intensities obtained for the images covering the fragment at the lowest mipmap level are
computed and are aggregated in the costs_ attribute in line 154. The coverage of image
Ik at the current fragment is indicated by the boolean attribute covers_, and projected
images not covering that fragment are assigned INFINITY as matching costs. If the costs
are aggregated over multiple mipmap levels, i. e., over different sizes of support windows,
for each additional level the luminance values for the images are updated in the for-loop
starting at line 161. In lines 172 to 182, the additional costs are computed and aggregated
in the same way as at the lowest mipmap level.

After the computation of the matching costs for each projected image for the current
fragment, the costs are summed up to obtain the aggregated matching costs. If the GLSL
preprocessor definition USE_BETTER_HALF exists, the array of ImageInfo structures
is sorted by the function selectionSort() in line 187 in increasing order of matching

125



7 Framework Design

costs. Since images whose projections do not cover the current fragment have matching
costs of INFINITY, which is implemented as a very large constant value, these images do
not contribute to the summed costs. In addition, the color value sampled from the image
with least matching costs is assigned to the out variable color and thus determines the
final value of the corresponding texel in the color texture layer of the DSM.

If all images are considered for computing matching costs, images with matching costs
of INFINITY are not taken into account during cost aggregation in line 207, because they
do not cover the current fragment. In this case, the final value of the color texture layer
is computed in line 208 and line 213 as the averaged color value of pixels from images
covering the fragment.

7.5 Further Implementation Details

A detailed class diagram of the most important class FlexibleClipmap is presented in
figure B.1 in appendix B.

The classes and functions from the packages common, database, math and ren-
dering shown in figure 7.1 basically support those classes, which have been presented so
far. Classes and functions from the packages database and rendering are furthermore
specific to the underlying database system and rendering engine, respectively, and possess
external dependencies on different code libraries, but their implementations are straight-
forward. The math-package essentially comprises classes and functions for representing
mathematical objects like vectors, matrices and quaternions, but makes extensive use of
C++ templates. These components are thus very versatile, but their implementations are
rather lengthy and a little complex. Most of the classes from the common package have
already been presented, and the remaining ones have straightforward implementations as
well. Hence, we do not enter on further details about the implementation of the elements
from these four packages. But since processing bitmap images is an important aspect in our
application, the relationships of the classes and class templates for image processing from
the image-package are shown in the UML diagram in figure B.3 in appendix B.

126



8 Conclusions

This dissertation presents techniques for managing and rendering digital surface models by
using texture data of time-varying extension. The FCM has proved useful not only for man-
aging and rendering color texture data, but also for accelerated ray casting of DEM data
which are managed in the same way as color textures. Since the FCM allows to handle
textures whose extensions may change in the course of time, it can be used for already ren-
dering while the acquisition of the underlying data is still in progress. The bounding volume
hierarchy provided by the FCM allows to render elevation data by means of ray casting at
real-time frame rates on commodity graphics hardware. Ray casting provides a lot of flex-
ibility, because the data can be rendered without extensive preprocessing and without gen-
erating polygonal meshes, which is especially important in the case of frequently changing
data as in our application. The methods for surface refinement as presented in this work
allow to improve the visual quality of the resulting surface renderings.

Adding color information to renderings of digital elevation models in 3D virtual environ-
ments by using orthophoto textures results in a lack of information on lateral surfaces of the
elevations. In order to overcome this limitation, we presented a solution based on projec-
tive textures. By directly projecting images which depict the lateral faces of surfaces such
as oblique aerial images, we can avoid creating large color textures for the entire surface
area of a DEM. Since such textures would have to be modified each time the underlying
elevation data and images change, projective textures offer more flexibility.

We furthermore presented a simple method for generating DSM data from simulated
aerial images captured at low altitudes in an unsorted manner by means of a GPU-based
space sweep for stereo matching. With the employed input images, this method allows to
obtain credential results within few seconds, while the resulting surface model can be ren-
dered simultaneously. More sophisticated and optimized method can be expected to yield
elevation data of even higher quality, although they may be computationally more expen-
sive. The DSM creation process and projective texturing rely on a 3D spatial index such as
an R∗-tree which supports intersection queries, in order to efficiently retrieve the required
input images. In conjunction with the caching techniques of the FCM, this allows to create,
manage and render DSMs of almost arbitrary sizes.

Our approach mainly targets at the rendering of DSMs and their creation by means of
aerial photographs, which are captured at low altitudes by small unmanned aerial vehicles
and are directly transferred to a ground station by wireless networks in order to provide
instant feedback about the underlying surface. Since we do not yet have a reliable source
of such images available, our results are currently based on simulated aerial images. This
is not a limitation for our methods for managing and rendering DSMs by using textures

127



8 Conclusions

of time-varying extension as presented in chapters 3 and 4, because these techniques are
independent of the employed image acquisition technique. Other applications in which
time-varying data about surfaces are directly available for rendering may benefit from the
managing and rendering capabilities of the FCM as well. The technique for texturing the
rendered surfaces by means of projective textures as presented in chapter 6 is also indepen-
dent of the source of images, but strongly relies on accurate position and orientation infor-
mation about the employed images. In the case of simulated aerial images, these metadata
are perfectly accurate, and the resulting renderings therefore barely expose displacements
of the textures on the surfaces. The position and orientation data of real aerial images are
probably less precise and hence might require preprocessing by means of bundle adjustment
or similar techniques, in order to improve the accuracy of these metadata. The accuracy of
the metadata of real aerial images could probably also influence the quality of the results of
the stereo matching approach as presented in chapter 5, and adjustments of the technique
for such images might be necessary.

The runtime performance of our techniques appears to be completely sufficient for our
intended applications, but might be further improved by careful optimizations. It would also
be interesting to obtain direct comparisons with competitive rendering techniques which are
based on rasterization of polygonal meshes. For instance, our FCM implementation could
be extended in such a way that it can be used like a Geometry Clipmap [47] for handling
triangular meshes of time-varying extension. As tessellation shaders become more avail-
able on commodity graphics hardware, the FCM might also be useful for directly rendering
DSMs that are represented by bicubic patches stored in texture data instead of using ray
casting with applied bicubic surface refinement (see chapter 4.2.4). However, these exten-
sions and further comparisons were not required in the context of our application in the
AVIGLE project and have thus been omitted in favor of the development of the techniques
presented in this work.

The space sweep approach for stereo matching produces a dense set of 3D points as
required for DSM synthesis, but other techniques for stereo matching, like feature-based
methods, would also be worthwhile to investigate. We would also have liked to extensively
evaluate our DSM creation process for a wider range of input data, but unfortunately had no
such data available at the time of writing this thesis.

128



A GPU Programs

The GPU programs listed in this appendix were developed and tested on a desktop computer
with a NVidia GeForce 470 GTX graphics adapter, 64-bit Windows 7 operating system and
NVidia graphics drivers version 306.92.

A.1 Flexible Clipmap Shaders

The following GLSL vertex and fragment programs are employed by our Flexible Clipmap
implementation for rendering DSMs by means of ray casting according to chapter 4.

Listing A.1: The complete GLSL vertex program of our FCM implementation.

1 #version 150
2

3 uniform mat4 modelMatrix_;
4 uniform mat4 viewMatrix_;
5 uniform mat4 projectionMatrix_;
6 uniform vec3 worldOffset_;
7 uniform vec3 worldSize_;
8 uniform vec3 cameraPosition_;
9

10 in vec3 vertexPos;
11 in vec3 vertexNormal;
12 in vec2 vertexTexCoord0;
13 in vec4 vertexColor;
14

15 out vec3 _texCoord0; // exit point of a ray on proxy geometry
16 out mat4 _modelViewProj;
17 out vec3 _camPosTextureCoordinates; // camera position in texture coordinates
18 out vec3 _boxRatio;
19

20 vec3 getBoundingBoxRatio()
21 {
22 vec3 ratio = worldSize_;
23 if ((ratio.x >= ratio.y) && (ratio.x >= ratio.z))
24 {
25 ratio.yz /= ratio.x;
26 ratio.x = 1.0;
27 }
28 else if ((ratio.z >= ratio.x) && (ratio.z >= ratio.y))
29 {
30 ratio.xy /= ratio.z;
31 ratio.z = 1.0;
32 }
33 else
34 {
35 ratio.xz /= ratio.y;
36 ratio.y = 1.0;

129



A GPU Programs

37 }
38 return ratio;
39 }
40

41 void main()
42 {
43 _texCoord0 = (vertexPos - worldOffset_) / worldSize_;
44 _camPosTextureCoordinates = (cameraPosition_ - worldOffset_) / worldSize_;
45 _boxRatio = getBoundingBoxRatio();
46

47 _modelViewProj = projectionMatrix_ * viewMatrix_ * modelMatrix_;
48 gl_Position = _modelViewProj * vec4(vertexPos, 1.0);
49 }

Listing A.1: The complete GLSL vertex program of our FCM implementation.

Listing A.2: The complete GLSL fragment program of our FCM implementation.

1 // The following defines are added by the class <code>FlexibleClipmap</code>
2 // according to program settings after the file containing this code is read.
3 // The given values are only for illustrative purposes.
4 /*
5 #version 150
6

7 #define NUM_CLIPLEVELS
8 #define TILE_SIZE vec2(512.0, 512.0)
9 #define SAMPLES_PER_UNIT vec3(4.0, 4.0, 4.0)

10 #define MAX_FILTERING_ANISOTROPY 16.0
11 #define EPSILON_HIT 0.0
12 #define MAX_NUM_PROJECTORS 8u
13 #define COLORING_MODE COLOR_MODE_SHADED_WITH_SHADOWS
14 #define FCM_USE_DEM_RAY_CASTING
15 #define SURFACE_REFINEMENT SURFACE_REFINEMENT_LINEAR
16

17 // Indicates the scaling factor for different texel formats of textures storing
18 // DEM layers: I8 ~ BYTE = 255.0, F32 ~ float = 1.0
19 //
20 #define SAMPLE_SCALE
21

22 // These two arrays only change as the number of clip levels of the FCM
23 // changes. Hence their content is generated in form of GLSL code by class
24 // <code>FlexibleClipmap</code> and the shader is rebuilt each time the number
25 // of clip levels changes.
26 //
27 uniform vec2 numTilesAtLevel_[NUM_CLIPLEVELS] = vec2[NUM_CLIPLEVELS]();
28 uniform int tileArrayOffsets_[NUM_CLIPLEVELS] = int[NUM_CLIPLEVELS]();
29 */
30 #line 30
31

32 #define COLOR_MODE_TEXTURING 1
33 #define COLOR_MODE_TEXTURING_PROJECTIVE 2
34 #define COLOR_MODE_SHADED 3
35 #define COLOR_MODE_SHADED_WITH_SHADOWS 4
36

37 #define SURFACE_REFINEMENT_LINEAR 1
38 #define SURFACE_REFINEMENT_BICUBIC 2
39

40 #ifndef FCM_USE_DEM_RAY_CASTING
41 #undef MAX_NUM_PROJECTORS
42 #undef SURFACE_REFINEMENT
43 #endif

130



A.1 Flexible Clipmap Shaders

44

45 // ### in/out variables ###
46

47 in vec3 _texCoord0; // uniform texture coordinate on proxy geometry
48 in mat4 _modelViewProj; // combined model, view and projection matrix
49

50 // Position of camera relative to the left lower corner of the proxy geometry
51 // box.
52 //
53 in vec3 _camPosTextureCoordinates;
54

55 // Ratios of the two shorter sides of the proxy geometry box and its longest
56 // side. Required for facilitating ray traversal.
57 //
58 in vec3 _boxRatio;
59

60 out vec4 fragColor; // the final fragment color
61

62

63 // ### uniform variables ###
64

65 // The current size of the rendering window; required for LOD calculations.
66 uniform vec2 windowSize_;
67

68 // Offset and size of the grid/proxy geometry in world coordinates.
69 uniform vec3 worldOffset_;
70 uniform vec3 worldSize_;
71

72 uniform sampler2D tileMap_;
73

74 #ifndef MAX_NUM_PROJECTORS
75 uniform sampler2DArray colorLayerArray_;
76 #endif
77

78 #ifdef FCM_USE_DEM_RAY_CASTING
79 // only relevant if DEM ray casting is used
80 uniform sampler2DArray demLayerArray_;
81 uniform float heightScaling_;
82

83 uniform vec3 dirLight_;
84 uniform vec3 surfaceColorAmbient_;
85 uniform vec3 surfaceColorDiffuse_;
86

87 #ifdef MAX_NUM_PROJECTORS
88 // only relevant if projective texturing is used
89 uniform int numProjectors_;
90 uniform sampler2D projectiveTextures_[MAX_NUM_PROJECTORS];
91 uniform mat4 mProjectors_[MAX_NUM_PROJECTORS];
92 uniform vec3 projectionCenters_[MAX_NUM_PROJECTORS];
93 #endif // MAX_NUM_PROJECTORS
94

95 #endif // FCM_USE_DEM_RAY_CASTING
96

97

98 // ### global variables and constants ###
99

100 vec3 g_gridSize = (worldSize_ * SAMPLES_PER_UNIT);
101 vec3 g_gridOffset = (worldOffset_ * SAMPLES_PER_UNIT);
102 const uint MAX_CLIPLEVEL = ((NUM_CLIPLEVELS > 0u) ? (NUM_CLIPLEVELS - 1u) :

0u);
103

131



A GPU Programs

104 #ifdef MAX_NUM_PROJECTORS
105 const mat4 g_mScaleProjector = mat4(
106 0.5, 0.0, 0.0, 0.0, // 1st row
107 0.0, 0.5, 0.0, 0.0,
108 0.0, 0.0, 0.5, 0.0,
109 0.5, 0.5, 0.5, 1.0);
110

111 uint N = min(uint(numProjectors_), MAX_NUM_PROJECTORS);
112 #endif // MAX_NUM_PROJECTORS
113

114

115 // ### structures ###
116 struct RayPosition
117 {
118 vec3 pGrid_; // current grid position
119 float lodBlend_; // parameter for blending LODs, range [0, 1[
120 uint levelCurrent_; // current clip level at ray position
121 uint levelLowest_; // lowest clip level available at ray position
122 uint levelIdeal_; // clip level of least aliasing at ray position
123 uint numSteps_; // current number of ray casting steps
124 bool hit_; // indicates whether the ray has hit the DEM surface
125 }; // struct RayPosition
126

127

128 // ## functions ##
129

130 /**
131 * Returns the texel coordinate and the index of a tile within the tile array
132 * at the given grid location at the given clip level.
133 *
134 * @param level Clip level where the tile is located.
135 * @param pGrid Grid position of a location.
136 */
137 ivec3 getTileCoord(const in uint level, const in vec2 pGrid)
138 {
139 if (level >= NUM_CLIPLEVELS)
140 return ivec3(-1);
141

142 ivec3 pTile; // xy = uniform texture coordinate, z = tile array index
143 float k = float(1u << level); // 2^level
144

145 // Compute the offset of the area covered by the FCM at the grid position
146 // in texels. The offset is different at top-most clip level, since the
147 // tile at that level covers the entire area of the FCM.
148 vec2 offset = floor(g_gridOffset.xz / k);
149 if ((level + 1u) >= NUM_CLIPLEVELS)
150 offset -= vec2(0.5 * TILE_SIZE);
151

152 // Compute the coordinates of the grid position at the tile in texels.
153 vec2 coord = (pGrid / k) + offset;
154 pTile.xy = ivec2(mod(coord, TILE_SIZE));
155

156 // Compute the index of the tile in the tile array.
157 vec2 tileID = floor(coord / TILE_SIZE);
158 vec2 n = numTilesAtLevel_[level];
159

160 // GLSL appearently uses the mathematical modulus function
161 // mod(a, b) = a - floor(a / m) * m
162 // instead of the symmetrical one which is
163 // mod(a, b) = a - div(a, m) * m
164 // where div(x, y) = sign(x) * sign(y) * floor(abs(x) / abs(y))

132



A.1 Flexible Clipmap Shaders

165 // as used in C/C++. Therefore the expression below can be simplified.
166 //
167 //vec2 i = floor(abs(tileID) / n.xy);
168 //vec2 r = mod(((tileID + (i + vec2(1.0)) * n.xy)), n.xy);
169 vec2 r = mod(tileID, n);
170

171 pTile.z = tileArrayOffsets_[level] + int(r.y * n.x + r.x);
172 return pTile;
173 }
174

175 /**
176 * Returns the uniform texture coordinate and the index of a tile within the
177 * tile array at the given grid location at a given clip level.
178 *
179 * THE COMPUTATIONS OF THIS FUNCTION ARE THE SAME AS IN FUNCTION getTileCoord()
180 * EXCEPT FOR THE MARKED TWO LINES.
181 */
182 vec3 getTileCoordUniform(const in uint level, const in vec2 pGrid)
183 {
184 vec3 pTile;
185 float k = float(1u << level);
186

187 vec2 offset = floor(g_gridOffset.xz / k);
188 if ((level + 1u) >= NUM_CLIPLEVELS)
189 offset -= vec2(0.5 * TILE_SIZE);
190

191 vec2 coord = (pGrid / k) + offset;
192 pTile.xy = (mod(coord, TILE_SIZE) / TILE_SIZE); // division, no casting
193

194 vec2 tileID = floor(coord / TILE_SIZE);
195 vec2 n = numTilesAtLevel_[level];
196 vec2 r = mod(tileID, n);
197

198 // cast to float
199 pTile.z = float(tileArrayOffsets_[level]) + (r.y * n.x + r.x);
200 return pTile;
201 }
202

203 /**
204 * Returns the entry of the tile map at the given grid location. The tile map
205 * contains the lowest clip level at which a tile is available in video memory.
206 */
207 uint getTileMapEntry(const in vec3 pGrid)
208 {
209 vec2 coord = (pGrid + g_gridOffset).xz;
210 ivec2 tileID = ivec2(floor(coord / TILE_SIZE));
211

212 // Multiply value by 255.0 to obtain the original BYTE value.
213 float texValue = texelFetch(tileMap_, tileID + ivec2(256), 0).b * 255.0;
214

215 uint mapEntry = uint(ceil(texValue + 0.5)); // avoid round-off errors
216 if (mapEntry >= 255u)
217 mapEntry = MAX_CLIPLEVEL;
218

219 return mapEntry;
220 }
221

222 /** Returns true if all components of r are within the given range. */
223 bool isInsideRange(const in vec2 r, const in vec2 lower, const in vec2 upper)
224 {
225 return all(greaterThanEqual(r, lower)) && all(lessThanEqual(r, upper));

133



A GPU Programs

226 }
227

228 /** Returns true if all components of r are within the given range. */
229 bool isInsideRange(const in vec3 r, const in vec3 lower, const in vec3 upper)
230 {
231 return all(greaterThanEqual(r, lower)) && all(lessThanEqual(r, upper));
232 }
233

234 /**
235 * Compute the ideal clip level for texture sampling based on the distortion
236 * of one pixel in screen coordinates if no DEM ray casting is used.
237 */
238 float computeIdealLODPlanar(const in vec3 pGrid)
239 {
240 vec2 ddx = dFdx(pGrid.xz);
241 vec2 ddy = dFdy(pGrid.xz);
242 float lddx = dot(ddx, ddx);
243 float lddy = dot(ddy, ddy);
244

245 float level;
246 if (MAX_FILTERING_ANISOTROPY <= 1.0)
247 level = log2(max(lddx, lddy)) * 0.5; // = log2(sqrt(max()))
248 else
249 {
250 float pMax = sqrt(max(lddx, lddy));
251 float pMin = sqrt(min(lddx, lddy));
252 float aspect = min((pMax / pMin), MAX_FILTERING_ANISOTROPY);
253 level = log2(pMax / aspect);
254 }
255

256 return max(level, 0.0);
257 }
258

259 RayPosition planarFCM(const in vec3 p)
260 {
261 RayPosition rp;
262 rp.numSteps_ = 1u;
263 rp.pGrid_ = (p * g_gridSize);
264 rp.hit_ = ((p.y <= 0.0) && isInsideRange(rp.pGrid_, vec3(0.0), g_gridSize));
265 if (rp.hit_)
266 {
267 rp.levelLowest_ = getTileMapEntry(rp.pGrid_);
268 float idealLOD = computeIdealLODPlanar(rp.pGrid_);
269 rp.levelIdeal_ = uint(idealLOD);
270 rp.lodBlend_ = fract(idealLOD);
271 rp.levelCurrent_ =
272 max(rp.levelLowest_, min(rp.levelIdeal_, MAX_CLIPLEVEL));
273 }
274

275 return rp;
276 }
277

278 #ifdef FCM_USE_DEM_RAY_CASTING
279 /**
280 * Determines where a ray given by a point r on the box (specified by boxMin
281 * and boxMax) and a direction vector dir will intersect the box a second time.
282 */
283 vec3 getBoxIntersection(const in vec3 r, const in vec3 dir,
284 const in vec3 boxMin, const in vec3 boxMax)
285 {
286 vec3 hit = r;

134



A.1 Flexible Clipmap Shaders

287 hit.x = (dir.x >= 0.0) ? boxMax.x : boxMin.x;
288 hit.y = (dir.y >= 0.0) ? boxMax.y : boxMin.y;
289 hit.z = (dir.z >= 0.0) ? boxMax.z : boxMin.z;
290

291 vec3 k = (hit - r) / dir;
292 if ((k.x <= k.y) && (k.x <= k.z))
293 hit.yz = r.yz + dir.yz * k.x;
294 else if ((k.y <= k.x) && (k.y <= k.z))
295 hit.xz = r.xz + dir.xz * k.y;
296 else
297 hit.xy = r.xy + dir.xy * k.z;
298

299 return hit;
300 }
301

302 /** Texel-precise sampling of DEM at the given clip level and grid position. */
303 float sampleDEM(const in uint level, const in vec2 pGrid)
304 {
305 ivec3 tileCoord = getTileCoord(level, pGrid);
306

307 // sample height value and scale according to data type & program settings
308 float h = texelFetch(demLayerArray_, tileCoord, 0).r
309 * SAMPLE_SCALE * heightScaling_;
310

311 // transform from world coordinates into grid coordinates
312 return (((h - worldOffset_.y) * g_gridSize.y) / worldSize_.y);
313 }
314

315 /**
316 * Sample the DEM layer at the given clip level and grid position using
317 * bilinear intrepolation.
318 */
319 float sampleDEMFiltered(const in uint level, const in vec2 pGrid)
320 {
321 vec3 pTile = getTileCoordUniform(level, pGrid);
322

323 // sample height value and scale according to data type & program settings
324 float h = texture(demLayerArray_, pTile, 0).r
325 * SAMPLE_SCALE * heightScaling_;
326

327 // transform from world coordinates into grid coordinates
328 return (((h - worldOffset_.y) * g_gridSize.y) / worldSize_.y);
329 }
330

331 /** Compute surface normal by means of simple forward differences. */
332 vec3 getSurfaceNormal(const in vec3 pGrid, const in uint level)
333 {
334 float center = sampleDEMFiltered(level, pGrid.xz);
335 float right = sampleDEMFiltered(level, pGrid.xz + vec2(1.0, 0.0));
336 float upper = sampleDEMFiltered(level, pGrid.xz + vec2(0.0, 1.0));
337

338 return normalize( vec3((center - right), 1.0, (center - upper)) );
339 }
340

341 /** Compute the ideal LOD of the DEM surface at the given grid position. */
342 float computeIdealLOD(const in vec3 pGrid)
343 {
344 const vec3 du = vec3(1.0 / SAMPLES_PER_UNIT.x, 0.0, 0.0);
345 const vec3 dv = vec3(0.0, 0.0, 1.0 / SAMPLES_PER_UNIT.z);
346

347 // transform from grid into world coordinates

135



A GPU Programs

348 vec3 pWorld = (floor(pGrid) / SAMPLES_PER_UNIT) + worldOffset_;
349 pWorld.y *= heightScaling_;
350

351 // transform into screen space
352 vec4 r = _modelViewProj * vec4(pWorld, 1.0);
353 vec4 s = _modelViewProj * vec4(pWorld + du, 1.0);
354 vec4 t = _modelViewProj * vec4(pWorld + dv, 1.0);
355 vec4 u = _modelViewProj * vec4(pWorld.x, 0.0, pWorld.z, 1.0);
356

357 // transform to normalized device coordinates in the range [0, 1]
358 r.xyz = (r.xyz / r.w) * 0.5 + vec3(0.5);
359 s.xyz = (s.xyz / s.w) * 0.5 + vec3(0.5);
360 t.xyz = (t.xyz / t.w) * 0.5 + vec3(0.5);
361 u.xyz = (u.xyz / u.w) * 0.5 + vec3(0.5);
362

363 // three corners of grid cell’s bounding box
364 vec2 a = (s - r).xy * windowSize_;
365 vec2 b = (t - r).xy * windowSize_;
366 vec2 c = (u - r).xy * windowSize_;
367

368 // the two sides of the parallelogram
369 float l1 = a.x * a.x + b.x * b.x + c.x * c.x;
370 float l2 = a.y * a.y + b.y * b.y + c.y * c.y;
371

372 float minification = sqrt(min(l1, l2));
373 float level = -log2(minification);
374

375 return max(level, 0.0);
376 }
377

378

379 // ### functions for ray casting ### //
380

381 vec3 getNextCellRU(const in float k, const in vec3 pGrid, out vec2 samplePos)
382 {
383 samplePos = pGrid.xz;
384 return (floor(pGrid / k) + 1.0) * k;
385 }
386

387 vec3 getNextCellLU(const in float k, const in vec3 pGrid, out vec2 samplePos)
388 {
389 vec3 pNext = vec3((ceil(pGrid.x / k) - 1.0) * k, 0.0,
390 (floor(pGrid.z / k) + 1.0) * k);
391 samplePos = vec2(pNext.x, pGrid.z);
392 return pNext;
393 }
394

395 vec3 getNextCellRL(const in float k, const in vec3 pGrid, out vec2 samplePos)
396 {
397 vec3 pNext = vec3((floor(pGrid.x / k) + 1.0) * k, 0.0,
398 (ceil(pGrid.z / k) - 1.0) * k);
399 samplePos = vec2(pGrid.x, pNext.z);
400 return pNext;
401 }
402

403 vec3 getNextCellLL(const in float k, const in vec3 pGrid, out vec2 samplePos)
404 {
405 vec3 pNext = vec3(ceil(pGrid / k) - 1.0) * k;
406 samplePos = pNext.xz;
407 return pNext;
408 }

136



A.1 Flexible Clipmap Shaders

409

410 /**
411 * Returns the grid position on the boundary of the next cell at the current
412 * grid position stored in the given RayPosition struct in direction dir.
413 * The w-component of the returned vec4 contains the DEM height in grid
414 * coordinates at the next cell.
415 */
416 vec4 getNextCell(const in RayPosition rp, const in vec3 dir, const in uint

dirCode)
417 {
418 float k = float(1u << rp.levelCurrent_); // = 2^level
419

420 vec4 pNext;
421 vec2 samplePos; // position for sampling DEM layer at the next cell
422 switch (dirCode)
423 {
424 case 2u:
425 case 0u: // only bit 1 is set => (dir.x >= 0.0) && (dir.z >= 0.0)
426 pNext.xyz = getNextCellRU(k, rp.pGrid_, samplePos);
427 break;
428

429 case 3u:
430 case 1u: // bit 0 is set => dir.x < 0.0
431 pNext.xyz = getNextCellLU(k, rp.pGrid_, samplePos);
432 break;
433

434 case 6u:
435 case 4u: // bit 2 is set => dir.z < 0.0
436 pNext.xyz = getNextCellRL(k, rp.pGrid_, samplePos);
437 break;
438

439 case 7u:
440 case 5u: // bit 0 and bit 2 are set
441 pNext.xyz = getNextCellLL(k, rp.pGrid_, samplePos);
442 break;
443 } // switch (dirCode
444

445 float h1 = sampleDEM(rp.levelCurrent_, samplePos);
446

447 // Use blending between DEM LODs only if no surface refinement is employed.
448 #ifndef SURFACE_REFINEMENT
449 if (rp.levelCurrent_ == max(rp.levelLowest_, min(rp.levelIdeal_,

MAX_CLIPLEVEL)))
450 {
451 float h2 = sampleDEM(min((rp.levelCurrent_ + 1u), MAX_CLIPLEVEL),

samplePos);
452 pNext.w = mix(h1, h2, rp.lodBlend_);
453 }
454 else
455 #endif
456 pNext.w = h1;
457

458 // Compute the exact position on the boundary of the next grid cell.
459 vec3 t = ((pNext.xyz - rp.pGrid_) / dir);
460 if (abs(t.x) <= abs(t.z))
461 pNext.yz = rp.pGrid_.yz + (dir.yz * t.x);
462 else
463 pNext.xy = rp.pGrid_.xy + (dir.xy * t.z);
464

465 return pNext;
466 }

137



A GPU Programs

467

468

469 // ### functions for surface refinement ###
470

471 #ifdef SURFACE_REFINEMENT
472 #if (SURFACE_REFINEMENT == SURFACE_REFINEMENT_LINEAR)
473 bool refineSurfaceLinear(inout RayPosition sample, const in vec3 dir, const in

uint dirCode)
474 {
475 float k = (1u << sample.levelCurrent_); // = 2^level
476

477 vec2 dir_proj = normalize(dir.xz);
478 float maxComp = max(abs(dir.x), abs(dir.z));
479 if (abs(dir.y) > (2 * maxComp))
480 return true;
481

482 float delta_proj = (k * 0.5) / maxComp;
483 float delta = delta_proj / maxComp;
484

485 vec2 samplePos = sample.pGrid_.xz + dir_proj * delta_proj;
486 vec3 pB = sample.pGrid_ + dir * delta;
487 float hB = sampleDEMFiltered(sample.levelCurrent_, samplePos);
488

489 if (hB < pB.y)
490 {
491 sample.pGrid_ = getNextCell(sample, dir, dirCode).xyz;
492 return (! isInsideRange(sample.pGrid_, vec3(0.0), g_gridSize));
493 }
494

495 samplePos = sample.pGrid_.xz - dir_proj * delta_proj;
496 vec3 pA = sample.pGrid_ - (dir * delta);
497 float hA = sampleDEMFiltered(sample.levelCurrent_, samplePos);
498

499 float a = abs(hA - pA.y);
500 float b = abs(hB - pB.y);
501

502 sample.pGrid_ = mix(pA, pB, a / (a + b));
503 return true;
504 }
505 #elif (SURFACE_REFINEMENT == SURFACE_REFINEMENT_BICUBIC)
506 /**
507 * +----+----+----+ 0: alpha
508 * | NW | N | NE | 1: beta
509 * +----2----3----+ 2: gamma
510 * | W | .p | E | 3: delta
511 * +----0----1----+
512 * | SW | S | SE |
513 * +----+----+----+
514 *
515 * Hermite bicubic geometry matrix (transposed!!!):
516 *
517 * [ alpha gamma ddv(alpha) ddv(gamma) ]
518 * [ beta delta ddv(beta) ddv(delta) ]
519 * [ ddu(alpha) ddu(gamma) ddu(ddv(alpha)) ddu(ddv(gamma)) ]
520 * [ ddu(beta) ddu(delta) ddu(ddv(beta)) ddu(ddv(delta)) ]
521 */
522 mat4 getHermiteBicubicGeometryMatrix(const in vec2 r, const in uint level)
523 {
524 float k = (1u << level); // = 2^level
525

526 float samples[9]; // 0 = SW, 1 = S, 2 = SE, 3 = W, ..., 8 = NE

138



A.1 Flexible Clipmap Shaders

527 for (int i = 0; i < 9; ++i)
528 {
529 vec2 off = vec2(mod(i, 3) - 1, (i / 3) - 1) * k;
530 samples[i] = sampleDEM(level, r + off);
531 }
532

533 float s = min(samples[4], samples[1]);
534 float w = min(samples[4], samples[3]);
535 float n = min(samples[4], samples[7]);
536 float e = min(samples[4], samples[5]);
537

538 mat4 G_y; // first index: column, second index: row
539 G_y[0][0] = min(min(s, w), samples[0]); // alpha
540 G_y[0][1] = min(min(s, e), samples[2]); // beta
541 G_y[1][0] = min(min(w, n), samples[6]); // gamma
542 G_y[1][1] = min(min(e, n), samples[8]); // delta
543

544 s = samples[4] + samples[1]; // C + S
545 e = samples[5] + samples[4]; // E + C
546 n = samples[7] + samples[4]; // N + C
547 w = samples[4] + samples[3]; // C + W
548

549 // ddu(alpha) = 0.5 * (C + S - (W + SW))
550 G_y[0][2] = 0.5 * (s - (samples[3] + samples[0]));
551 // ddv(alpha) = 0.5 * (C + w - (S + SW))
552 G_y[2][0] = 0.5 * (w - (samples[1] + samples[0]));
553 // ddu(ddv(alpha)) = C - W - S + SW
554 G_y[2][2] = (samples[4] - samples[3] - samples[1] + samples[0]);
555

556 // ddu(beta) = (E + SE) - s
557 G_y[0][3] = 0.5 * ((samples[5] + samples[2]) - s);
558 // ddv(beta) = e - (SE + S)
559 G_y[2][1] = 0.5 * (e - (samples[2] + samples[1]));
560 // ddu(ddv(beta)) = E - C - SE + S
561 G_y[2][3] = (samples[5] - samples[4] - samples[2] + samples[1]);
562

563 // ddu(gamma) = n - (NW + W)
564 G_y[1][2] = 0.5 * (n - (samples[6] + samples[3]));
565 // ddv(gamma) = (N + NW) - w
566 G_y[3][0] = 0.5 * ((samples[7] + samples[6]) - w);
567 // ddu(ddv(gamma)) = N - NW - C + W
568 G_y[3][2] = (samples[7] - samples[6] - samples[4] + samples[3]);
569

570 // ddu(delta) = (NE + E) - n
571 G_y[1][3] = 0.5 * ((samples[8] + samples[5]) - n);
572 // ddv(delta) = (NE + N) - e
573 G_y[3][1] = 0.5 * ((samples[8] + samples[7]) - e);
574 // ddu(ddv(delta)) = NE - N - E + C
575 G_y[3][3] = (samples[8] - samples[7] - samples[5] + samples[4]);
576

577 return G_y;
578 }
579

580 bool refineSamplingBicubic(inout RayPosition rp, const in vec3 dir, const in
uint dirCode)

581 {
582 const uint NUM_STEPS = 16u;
583 float k = float(1u << rp.levelCurrent_); // = 2^level
584

585 // Same as getNextCell(), but computes an with additional offset on the
586 // next cell’s boundary.

139



A GPU Programs

587 vec3 pNext;
588 vec2 samplePos;
589 vec2 off; // offset for mapping map (u, v) to [0.0, 1.0] x [0.0, 1.0]
590 switch (dirCode)
591 {
592 case 0u:
593 case 2u: // (dir.x >= 0.0) && (dir.z >= 0.0)
594 pNext = getNextCellRU(k, rp.pGrid_, samplePos);
595 off = floor(rp.pGrid_.xz / k);
596 break;
597

598 case 1u:
599 case 3u: // dir.x < 0.0
600 pNext = getNextCellLU(k, rp.pGrid_, samplePos);
601 off.x = ceil(rp.pGrid_.x / k) - 1.0;
602 off.y = floor(rp.pGrid_.z / k);
603 break;
604

605 case 4u:
606 case 6u: // dir.z < 0.0
607 pNext = getNextCellRL(k, rp.pGrid_, samplePos);
608 off.x = floor(rp.pGrid_.x / k);
609 off.y = ceil(rp.pGrid_.z / k) - 1.0;
610 break;
611

612 case 5u:
613 case 7u: // (dir.x < 0.0) && (dir.z < 0.0)
614 pNext = getNextCellLL(k, rp.pGrid_, samplePos);
615 off = ceil(rp.pGrid_.xz / k) - 1.0;
616 break;
617 } // switch (dirCode
618

619 // Compute the exact position on the boundary of next grid cell.
620 vec2 t = ((pNext.xz - rp.pGrid_.xz) / dir.xz);
621 if (abs(t.x) <= abs(t.y))
622 pNext.yz = rp.pGrid_.yz + (dir.yz * t.x);
623 else
624 pNext.xy = rp.pGrid_.xy + (dir.xy * t.y);
625

626 // Get the Hermite geometry matrix for DEM.
627 mat4 g_y = getHermiteBicubicGeometryMatrix(samplePos, rp.levelCurrent_);
628 float delta = length(pNext - rp.pGrid_) / NUM_STEPS;
629

630 bool hit = false;
631 for (uint n = 0u; n < NUM_STEPS; ++n)
632 {
633 // Map grid position at current level to [0.0, 1.0] x [0.0, 1.0].
634 // Cannot use fract() here, because when looking along negative
635 // directions, the border would contain the fraction of an integral
636 // value which is 0.0, but it must be equal to 1.0.
637 //
638 vec2 uv = (rp.pGrid_.xz / k) - off;
639

640 // Result of Hermite base matrix after multiplication with vectors
641 // [u^3, u^2, u, 1] and [v^3, v^2, v, 1], respectively.
642 //
643 //a = vec4(2.0 * uuu - 3.0 * uu + 1.0, 3.0 * uu - 2.0 * uuu,
644 // uuu - 2.0 * uu + uv.x, uuu - uu);
645 //b = vec4(2.0 * vvv - 3.0 * vv + 1.0, 3.0 * vv - 2.0 * vvv,
646 // vvv - 2.0 * vv + uv.y, vvv - vv);
647 //

140



A.1 Flexible Clipmap Shaders

648 vec2 i1 = uv * uv;
649 vec2 i2 = i1 * uv;
650 vec2 i3 = vec2(2.0) * i2 - vec2(3.0) * i1;
651 vec2 i4 = i2 - i1;
652 vec4 a = vec4(i3.x + 1.0, -i3.x, i4.x - i1.x + uv.x, i4.x);
653 vec4 b = g_y * vec4(i3.y + 1.0, -i3.y, i4.y - i1.y + uv.y, i4.y);
654

655 float h = dot(a, b);
656 if ((rp.pGrid_.y - h) <= EPSILON_HIT)
657 {
658 n = NUM_STEPS;
659 hit = true;
660 rp.pGrid_.y = h;
661 }
662 else
663 rp.pGrid_ += dir * delta;
664 } // for (n
665

666 if (! hit)
667 rp.pGrid_ = pNext;
668

669 if (! isInsideRange(rp.pGrid_, vec3(0.0), g_gridSize))
670 hit = true;
671 return hit;
672 }
673 #endif // (SURFACE_REFINEMENT ==
674 #endif // SURFACE_REFINEMENT
675

676 /** Performs ray casting for rays directed downwards, i.e., dir.y < 0. */
677 void castRayDownward(inout RayPosition rp, const in vec3 dir, const in uint

dirCode)
678 {
679 uint n = 0u; // counter for ray casting steps at the current clip level
680 while ((! rp.hit_) && (isInsideRange(rp.pGrid_, vec3(0.0), g_gridSize)))
681 {
682 ++rp.numSteps_;
683 vec4 pNext = getNextCell(rp, dir, dirCode);
684

685 // If an intersection is detected, compute the EXACT hit point
686 // on the box of the grid cell.
687 // The w-component contains the DEM value at the next grid cell.
688 // The y-component is the current height of the ray above the ground
689 // plane.
690 if ((pNext.y - pNext.w) <= EPSILON_HIT)
691 {
692 rp.pGrid_ += dir * max(((pNext.w - rp.pGrid_.y) / dir.y), 0.0);
693

694 // Determine the different clip levels.
695 rp.levelLowest_ = getTileMapEntry(rp.pGrid_);
696 float idealLOD = computeIdealLOD(rp.pGrid_);
697 rp.levelIdeal_ = uint(idealLOD);
698 rp.lodBlend_ = fract(idealLOD);
699

700 // If the corresponding box of the grid cell at the current hit
701 // point is from a clip level greater than the clip level which
702 // would expose the least aliasing, descend one level.
703 // Otherwise, ray casting can terminate, and surface can be
704 // refined.
705 uint bestLevel =
706 max(rp.levelLowest_, min(rp.levelIdeal_, MAX_CLIPLEVEL));
707 if (rp.levelCurrent_ > bestLevel)

141



A GPU Programs

708 {
709 --rp.levelCurrent_;
710 n = 0u; // reset counter for ray casting steps at current level
711 }
712 #if (defined(SURFACE_REFINEMENT) && (SURFACE_REFINEMENT ==

SURFACE_REFINEMENT_LINEAR))
713 else
714 rp.hit_ = refineSurfaceLinear(rp, dir, dirCode);
715 #elif (defined(SURFACE_REFINEMENT) && (SURFACE_REFINEMENT ==

SURFACE_REFINEMENT_BICUBIC))
716 else
717 rp.hit_ = refineSurfaceBicubic(rp, dir, dirCode);
718 #else
719 else
720 rp.hit_ = true;
721 #endif // SURFACE_REFINEMENT
722 }
723 else
724 {
725 // the DEM was not hit by the ray => proceed at the next grid cell
726 rp.pGrid_ = pNext.xyz;
727 ++n; // increase the number of ray casting steps at this level
728

729 // After four or more ray casting steps at the current clip
730 // level, increase the level again (if possible) in order to
731 // iterate over larger grid cells. Four is an empirical value.
732 //
733 if ((n >= 4u) && (rp.levelCurrent_ < MAX_CLIPLEVEL))
734 {
735 ++rp.levelCurrent_;
736 n = 0u; // reset step counter
737 }
738 }
739 } // while (
740

741 // fix potential round-off errors which might create "holes" in the ground
742 if (rp.pGrid_.y <= 0.0)
743 {
744 rp.hit_ = true;
745 rp.pGrid_.y = 0.0;
746 }
747 }
748

749 /**
750 * Performs ray casting for rays directed upwards, i.e., dir.y >= 0.
751 * Except for the computation of the intersection with the DEM, this function
752 * is essentially the same as castRayDownward().
753 */
754 void castRayUpward(inout RayPosition rp, const in vec3 dir, const in uint

dirCode)
755 {
756 uint n = 0u;
757 while ((! rp.hit_) && (isInsideRange(rp.pGrid_, vec3(0.0), g_gridSize)))
758 {
759 ++rp.numSteps_;
760 vec4 pNext = getNextCell(rp, dir, dirCode);
761

762 if ((rp.pGrid_.y - pNext.w) <= EPSILON_HIT)
763 {
764 rp.levelLowest_ = getTileMapEntry(rp.pGrid_);
765 float idealLOD = computeIdealLOD(rp.pGrid_);

142



A.1 Flexible Clipmap Shaders

766 rp.levelIdeal_ = uint(idealLOD);
767 rp.lodBlend_ = fract(idealLOD);
768 uint bestLevel =
769 max(rp.levelLowest_, min(rp.levelIdeal_, MAX_CLIPLEVEL));
770

771 if (rp.levelCurrent_ > bestLevel)
772 {
773 --rp.levelCurrent_;
774 n = 0u;
775 }
776 #ifdef SURFACE_REFINEMENT
777 #if (SURFACE_REFINEMENT == SURFACE_REFINEMENT_LINEAR)
778 else
779 rp.hit_ = refineSurfaceLinear(rp, dir, dirCode);
780 #elif (SURFACE_REFINEMENT == SURFACE_REFINEMENT_BICUBIC)
781 else
782 rp.hit_ = refineSurfaceBicubic(rp, dir, dirCode);
783 #endif
784 #else
785 else
786 rp.hit_ = true;
787 #endif // SURFACE_REFINEMENT
788 }
789 else
790 {
791 rp.pGrid_ = pNext.xyz;
792 ++n;
793

794 if ((n >= 4u) && (rp.levelCurrent_ < MAX_CLIPLEVEL))
795 {
796 ++rp.levelCurrent_;
797 n = 0u;
798 }
799 }
800 } // while
801 }
802

803 /**
804 * Creates a bit-mask which indicates the negative components of the given
805 * direction vector.
806 */
807 uint getDirectionCode(const in vec3 dir)
808 {
809 // prevent loss of sign by truncations to zero for small values
810 ivec3 iDir = ivec3(dir * 1.0e8);
811

812 uint dirCode = uint((iDir.x >> 31) & 1); // sign of x-component (bit 0)
813 dirCode |= uint((iDir.y >> 30) & 2); // sign of y-component (bit 1)
814 dirCode |= uint((iDir.z >> 29) & 4); // sign of z-component (bit 2)
815

816 return dirCode;
817 }
818

819 RayPosition rayCasting(const in vec3 p, const in vec3 dir)
820 {
821 RayPosition rp;
822 rp.pGrid_ = (p * g_gridSize);
823 rp.levelCurrent_ = MAX_CLIPLEVEL;
824 rp.levelLowest_ = 0u;
825 rp.levelIdeal_ = 0u;
826 rp.numSteps_ = 0u;

143



A GPU Programs

827 rp.hit_ = false;
828

829 // Determine the target octant in space for the ray.
830 // Since the intersection tests with the DEM surface are different
831 // for rays directed upward and downward, use specialized functions.
832 uint dirCode = getDirectionCode(dir);
833 if ((dirCode & 2u) != 0u)
834 castRayDownward(rp, dir, dirCode);
835 else
836 castRayUpward(rp, dir, dirCode);
837

838 return rp;
839 }
840

841 /**
842 * Determines whether the given grid location is occluded by other elevations
843 * along the given direction. This function is used for casting shadows and
844 * for determining the visibility of fragments in projective textures.
845 */
846 bool isOccluded(const in vec3 pGrid, const in vec3 dir)
847 {
848 RayPosition sample;
849 sample.pGrid_ = pGrid;
850 sample.levelCurrent_ = 0u; // only for getting to next grid cell
851 sample.levelLowest_ = 0u;
852 sample.levelIdeal_ = 0u;
853 sample.numSteps_ = 0u;
854 sample.hit_ = false;
855

856 // Do not directly start at the give location, but advance one cell
857 // before checking for occlusion. Otherwise, the initial location would
858 // be considered as an intersection of the ray with the DEM.
859 uint dirCode = getDirectionCode(dir);
860 sample.pGrid_ = getNextCell(sample, dir, dirCode).xyz;
861 sample.levelCurrent_ = MAX_CLIPLEVEL;
862

863 if ((dirCode & 2u) == 0u)
864 castRayUpward(sample, dir, dirCode);
865 else
866 castRayDownward(sample, dir, dirCode);
867 return sample.hit_;
868 }
869

870

871 // ### functions for computing color values ###
872

873 #ifdef MAX_NUM_PROJECTORS
874 bool projectiveTexturing(const in vec3 pWorld, const in vec3 pGrid, inout vec3

color)
875 {
876 if (pWorld.y <= 0.1)
877 return false;
878

879 bool isValid = false;
880 float minDistSq = 1.0e8;
881 for (uint i = 0u; (i < N); ++i)
882 {
883 // Compute texture coordinate in projected images.
884 vec4 tmp = g_mScaleProjector * mProjectors_[i] * vec4(pWorld, 1.0);
885 tmp.xy /= tmp.w;
886 tmp.y = 1.0 - tmp.y;

144



A.1 Flexible Clipmap Shaders

887 vec2 projTexCoord = tmp.xy;
888

889 // Vector pointing from DEM intersection towards CoP of projetor.
890 vec3 dirProj = (projectionCenters_[i] - pWorld);
891

892 // If the projective texture coordinate is valid...
893 if (isInsideRange(projTexCoord, vec2(0.0), vec2(1.0)))
894 {
895 // ...compute distance from CoP of projector to DEM intersection...
896 float distSq = dot(dirProj, dirProj);
897

898 // ...and check if the distance is smaller than the current minimum.
899 // Only perform the occlusion test, if the distance is smaller,
900 // since the test is computationally expensive.
901 //
902 if ((distSq <= minDistSq) &&
903 (! isOccluded(pGrid, normalize(dirProj))))
904 {
905 // If the tests are passed, update fragment color and current
906 // minimal distance.
907 //
908 minDistSq = distSq;
909 color = texture(projectiveTextures_[i], projTexCoord).bgr;
910 isValid = true;
911 //color = getLevelColor(i + 1u);
912 }
913 } // if (insideRange
914 } // for (i
915

916 return isValid;
917 }
918 #endif // MAX_NUM_PROJECTORS
919 #endif // FCM_USE_DEM_RAY_CASTING
920

921 vec4 determineFragmentValues(const in RayPosition rp, out float zBuffer)
922 {
923 vec4 color = vec4(0.0, 0.0, 0.0, 1.0);
924

925 // transform grid position to world space
926 vec3 pWorld = (floor(rp.pGrid_) / SAMPLES_PER_UNIT) + worldOffset_;
927

928 #ifdef FCM_USE_DEM_RAY_CASTING
929 // compute surface normal + dot-product with directional light source
930 vec3 n = getSurfaceNormal(rp.pGrid_, rp.levelCurrent_);
931 float nDotL = clamp(dot(n, -dirLight_), 0.0, 1.0);
932

933 // use diffuse shading by default
934 color.rgb = clamp(nDotL * surfaceColorDiffuse_ + surfaceColorAmbient_, 0.0,

1.0);
935

936 #if (defined(COLORING_MODE) && (COLORING_MODE == COLOR_MODE_TEXTURING))
937 vec3 pTile = getTileCoordUniform(rp.levelCurrent_, rp.pGrid_.xz);
938 color.rgb = texture(colorLayerArray_, pTile).bgr;
939 #elif (defined(COLORING_MODE) && (COLORING_MODE ==

COLOR_MODE_TEXTURING_PROJECTIVE))
940 projectiveTexturing(pWorld, rp.pGrid_, color.rgb);
941 #elif (defined(COLORING_MODE) && (COLORING_MODE ==

COLOR_MODE_SHADED_WITH_SHADOWS))
942 if (isOccluded(rp.pGrid_, -dirLight_))
943 color.rgb = surfaceColorAmbient_;
944 #endif // (COLORING_MODE && (COLORING_MODE ==

145



A GPU Programs

945 #else
946 vec3 pTile = getTileCoordUniform(rp.levelCurrent_, rp.pGrid_.xz);
947 color.rgb = texture(colorLayerArray_, pTile).bgr;
948 #endif // FCM_USE_DEM_RAY_CASTING
949

950 // Compute the correct depth value at the fragment for correct "interaction"
951 // with polygonal data, i.e., occlusion, depth-values and depth-tests.
952 //
953 // transform world position to normalized device coordinate
954 vec4 pNDC = _modelViewProj * vec4(pWorld, 1.0);
955 pNDC.xyz = (pNDC.xyz / pNDC.w) * 0.5 + vec3(0.5);
956 zBuffer = pNDC.z;
957

958 return color;
959 }
960

961

962 // ### main fucntion ###
963

964 void main()
965 {
966 vec3 exit = _texCoord0;
967 RayPosition rp;
968

969 #ifdef FCM_USE_DEM_RAY_CASTING
970 vec3 entry = _camPosTextureCoordinates;
971 if (! isInsideRange(entry, vec3(0.0), vec3(1.0)))
972 {
973 vec3 tmpDir = normalize(entry - exit);
974 entry = getBoxIntersection(exit, tmpDir, vec3(0.0), vec3(1.0));
975 }
976

977 vec3 dir = normalize((exit - entry) * _boxRatio);
978 rp = rayCasting(entry, dir);
979 #else
980 rp = planarFCM(exit);
981 #endif // FCM_USE_DEM_RAY_CASTING
982

983 if (! rp.hit_)
984 discard;
985

986 fragColor = determineFragmentValues(rp, gl_FragDepth);
987 } // main()
988

Listing A.2: The complete GLSL fragment program of our FCM implementation.

146



A.2 DSM Synthesis Shaders

A.2 DSM Synthesis Shaders

The following GLSL vertex and fragment programs are employed by our implementation
for creating DSM layers as described in chapter 5.

1 //#version 150
2 //
3 //#define NUM_PROJECTORS 8u
4

5 #line 5
6

7 // Required to unroll loops when using NVidia graphics adapters and drivers
8 // up to version 306.92 (or greater?).
9 #pragma optionNV(unroll all)

10

11 const mat4 g_mScaleProjector = mat4(
12 0.5, 0.0, 0.0, 0.0, // 1st row
13 0.0, 0.5, 0.0, 0.0,
14 0.0, 0.0, 0.5, 0.0,
15 0.5, 0.5, 0.5, 1.0);
16

17

18 uniform mat4 modelMatrix_;
19 uniform mat4 viewMatrix_;
20 uniform mat4 projectionMatrix_;
21 uniform mat4 mProjectors_[NUM_PROJECTORS];
22 uniform int numActiveProjectors_;
23

24

25 in vec3 _vertexPos;
26 in vec3 _vertexNormal;
27 in vec2 _vertexTexCoord0;
28 in vec4 _vertexColor;
29

30

31 out vec4 _texCoords[NUM_PROJECTORS];
32 out vec3 _worldPos;
33

34 void main()
35 {
36 mat4 modelViewMatrix = viewMatrix_ * modelMatrix_;
37 mat4 modelViewProjMatrix = projectionMatrix_ * modelViewMatrix;
38

39 uint N = min(uint(numActiveProjectors_), NUM_PROJECTORS);
40 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
41 {
42 if (i < N)
43 _texCoords[i] = g_mScaleProjector * mProjectors_[i] * vec4(_vertexPos,

1.0);
44 else
45 _texCoords[i] = vec4(0.0, 0.0, 0.0, 1.0);
46 }
47

48 gl_Position = modelViewProjMatrix * vec4(_vertexPos, 1.0);
49 _worldPos = _vertexPos;
50 }

Listing A.3: The complete GLSL vertex program for DSM synthesis by means of a space sweep.

147



A GPU Programs

Listing A.4: The complete GLSL fragment program for DSM synthesis by means of a space sweep.

1 // The following defines are generated by the class <code>LayerCreator</code>
2 // according to client program settings.
3 /*#version 150
4

5 #define NUM_PROJECTORS 8
6 #define CREATION_MODE CREATE_DEM_AND_COLOR
7 //#define USE_BETTER_HALF*/
8 #line 8
9

10 // Required to unroll loops when using NVidia graphics adapters and drivers
11 // up to version 306.92 (or greater?).
12 #pragma optionNV(unroll all)
13

14 #define CREATE_DEM_AND_COLOR 0
15 #define CREATE_COLOR_PLANAR 1
16

17 // ### in/out variables ###
18

19 in vec4 _texCoords[NUM_PROJECTORS]; // coordinates in projective textures
20 in vec3 _worldPos; // fragment’s position in world space
21

22 out vec4 _demValue;
23 out vec4 _fragColor;
24

25

26 // ### uniform variables ###
27

28 // must be casted to uint because Irrlicht 1.7.2 cannot handle uniform uint
29 uniform int numActiveProjectors_;
30

31 uniform int minSupportWindowLevel_;
32 uniform int maxSupportWindowLevel_;
33 uniform float costsThreshold_;
34 uniform float minDEMHeight_;
35 uniform sampler2D projectedTextures_[NUM_PROJECTORS];
36

37 // ### global variables and constants ###
38

39 uint N = min(uint(numActiveProjectors_), NUM_PROJECTORS);
40 vec2 g_texCoords[NUM_PROJECTORS];
41

42 // values for transforming RGB values to CIE XYZ luminance
43 const vec3 g_LuminanceFactors = vec3(0.212671, 0.715160, 0.072169);
44

45 const float INFINITY = 1.0e8;
46

47 // ### structures ###
48

49 struct ImageInfo
50 {
51 vec4 colorValue_; // color value from corresponding image
52 float costs_; // matching costs for image
53 float luminance_; // luminance value (derived from RGB texel value)
54 uint imageIndex_; // index of the image
55 bool covers_; // true if the image covers this fragment
56 }; // struct ImageInfo
57

58

59 // ### functions ###
60

148



A.2 DSM Synthesis Shaders

61 /** Returns true if all components of v are within the given range. */
62 bool isInsideRange(const in vec2 v, const in vec2 lower, const in vec2 upper)
63 {
64 return (all(greaterThanEqual(v, lower)) && all(lessThanEqual(v, upper)));
65 }
66

67 /** Selection sort for sorting the first R elements of the given array. */
68 void selectionSort(inout ImageInfo arr[NUM_PROJECTORS], const in uint R)
69 {
70 for (uint i = 0u; i < R; ++i) // (R - 1u) would be sufficient
71 {
72 uint minIndex = i;
73 for (uint j = i + 1u; j < R; ++j)
74 {
75 if (arr[j].costs_ < arr[minIndex].costs_)
76 minIndex = j;
77 } // for (j
78

79 // swap elements
80 ImageInfo tmp = arr[i];
81 arr[i] = arr[minIndex];
82 arr[minIndex] = tmp;
83 } // for (i
84 }
85

86 /**
87 * Returns the luminance of the projective texture at the given index which
88 * projects onto this fragment. For efficiency reasons, no check for is
89 * performed whether the projector’s texture coordinate is valid.
90 */
91 float getLuminanceUnchecked(const in uint index, const float mipmapLevel)
92 {
93 vec3 clr = textureLod(projectedTextures_[index],
94 g_texCoords[index], mipmapLevel).bgr;
95 return dot(clr, g_LuminanceFactors);
96 }
97

98 /**
99 * Initialize the ImageInfo structure for this fragment at the given index

100 * with all information available.
101 */
102 uint initImageInfo(const in uint index, const float mipmapLevel, out ImageInfo

info[NUM_PROJECTORS])
103 {
104 // projective texture covers this fragment, if index is valid and
105 // texture coordinates are within the range [0, 1] x [0, 1]
106 info[index].covers_ = ((index < N) &&
107 isInsideRange(g_texCoords[index], vec2(0.0), vec2(1.0)));
108 if (info[index].covers_)
109 {
110 info[index].imageIndex_ = index;
111 info[index].colorValue_ = textureLod(projectedTextures_[index],
112 g_texCoords[index], mipmapLevel).bgra;
113 info[index].luminance_ = // convert RGB value to luminance
114 dot(info[index].colorValue_.rgb, g_LuminanceFactors);
115 info[index].costs_ = 0.0;
116 return 1u; // for computing the total coverage at the fragment
117 }
118

119 info[index].colorValue_ = vec4(0.0, 1.0, 0.0, 1.0);
120 info[index].luminance_ = 0.0;

149



A GPU Programs

121 info[index].costs_ = INFINITY;
122 return 0u;
123 }
124

125 float computeMatchingCosts(out vec4 color)
126 {
127 float summedCosts = 0.0;
128 color = vec4(0.0, 0.0, 0.0, 1.0);
129 ImageInfo info[NUM_PROJECTORS];
130

131 // Determine the coverage by projective images at this fragment and
132 // initialize the ImageInfo structure at the lowest mipmap level for
133 // matching cost aggregation.
134 float mipmapLevel = max(float(minSupportWindowLevel_), 0.0);
135 uint coverage = 0u;
136 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
137 {
138 coverage += initImageInfo(i, mipmapLevel, info);
139 if (info[i].covers_)
140 color = info[i].colorValue_;
141 }
142

143 // Change to (coverage == N) to get visually most appealing results.
144 if (coverage > 1u)
145 {
146 // add costs from previous pass with smallest support window size
147 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
148 {
149 if (info[i].covers_)
150 {
151 for (uint j = 0u; j < NUM_PROJECTORS; ++j)
152 {
153 if (info[j].covers_)
154 info[i].costs_ += abs(info[i].luminance_ - info[j].luminance_);
155 }
156 }
157 } // for (i
158

159 // add costs from larger support windows
160 for (int l = (minSupportWindowLevel_ + 1);
161 l <= maxSupportWindowLevel_; ++l)
162 {
163 // update luminances
164 float mipmapLevel = float(l);
165 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
166 {
167 if (info[i].covers_)
168 info[i].luminance_ = getLuminanceUnchecked(i, mipmapLevel);
169 }
170

171 // same as above
172 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
173 {
174 if (info[i].covers_)
175 {
176 for (uint j = 0u; j < NUM_PROJECTORS; ++j)
177 {
178 if (info[j].covers_)
179 info[i].costs_ += abs(info[i].luminance_ - info[j].luminance_);
180 } // for (j
181 }

150



A.2 DSM Synthesis Shaders

182 } // for (i
183 } // for (l
184

185 #ifdef USE_BETTER_HALF
186 // sort matching costs in increasing order
187 selectionSort(info, N);
188

189 // use color from image with least matching costs
190 color = info[0].colorValue_;
191

192 // sum up costs
193 uint k = 0u;
194 for (uint i = 0u;
195 ((info[i].costs_ < INFINITY) && (i < (coverage / 2u))); ++i, ++k)
196 summedCosts += info[i].costs_;
197

198 // normalize costs to simplify comparison with threshold
199 summedCosts /= float(k);
200 #else
201 color = vec4(0.0);
202 for (uint i = 0u; (i < N); ++i)
203 {
204 // sum up only valid matching costs (there is at least one valid value)
205 if (info[i].costs_ < INFINITY)
206 {
207 summedCosts += info[i].costs_;
208 color += info[i].colorValue_;
209 }
210 }
211

212 // normalize costs to simplify comparison with threshold
213 summedCosts /= float(coverage);
214 color /= float(coverage); // use averaged color values
215 color.a = 1.0; // fix potential round-off errors
216 #endif
217 } // if (coverage
218 else
219 summedCosts = INFINITY;
220

221 return summedCosts;
222 }
223

224 void createDSM(out float fragDepth, out vec4 dsmValue, out vec4 color)
225 {
226 // Compute the SAD to rate the quality of matching. The smaller the SAD,
227 // the better the matching. The SAD is output as depth value of the
228 // fragment in order to make subsequent Z-Buffer tests consider only
229 // fragments that have better quality, i.e., lower SADs.
230 float matchingCosts = computeMatchingCosts(color);
231 if (matchingCosts >= costsThreshold_)
232 {
233 // must be < 1.0; otherwise the fragment would be discarded
234 fragDepth = 0.999999;
235 dsmValue.rgba = vec4(vec3(minDEMHeight_), 1.0);
236 color = vec4(0.0, 0.0, 0.0, 1.0);
237 return;
238 }
239

240 fragDepth = matchingCosts;
241 dsmValue.rgba = vec4(vec3(_worldPos.y), 1.0);
242 }

151



A GPU Programs

243

244 /**
245 * Create a color texture layer based on the pixels which have the least
246 * geometric distance from the centers of their images. and without using
247 * elevation data
248 */
249 vec4 createPlanarColorLayerLeastDistance()
250 {
251 float minDist = INFINITY;
252 vec4 color = vec4(0.0, 0.0, 0.0, 1.0);
253 for (uint i = 0u; (i < N); ++i)
254 {
255 if (isInsideRange(g_texCoords[i], vec2(0.0), vec2(1.0)))
256 {
257 vec2 delta = (g_texCoords[i] - vec2(0.5));
258 float dSq = dot(delta, delta);
259 if (dSq < minDist)
260 {
261 minDist = dSq;
262 color = texture(projectedTextures_[i], g_texCoords[i]).bgra;
263 }
264 }
265 } // for (i
266

267 return color;
268 }
269

270 /**
271 * Transform all coordinates in projective textures from homogeneous
272 * coordinates to Cartesian coordinates.
273 */
274 void transformTextureCoordinates()
275 {
276 for (uint i = 0u; i < NUM_PROJECTORS; ++i)
277 {
278 vec4 tmp = (_texCoords[i] / _texCoords[i].w);
279 tmp.y = 1.0 - tmp.y; // flip horizontally due to Irrlicht
280 g_texCoords[i] = tmp.xy;
281 } // for (i
282 }
283

284

285 // ### main function ###
286

287 void main()
288 {
289 transformTextureCoordinates();
290

291 #if (defined(CREATION_MODE) && (CREATION_MODE == CREATE_DEM_AND_COLOR))
292 createDSM(gl_FragDepth, _demValue, _fragColor);
293 #elif (defined(CREATION_MODE) && (CREATION_MODE == CREATE_COLOR_PLANAR))
294 _demValue = vec4(vec3(_worldPos.y), 1.0);
295 _fragColor = createPlanarColorLayerLeastDistance();
296 #else
297 _demValue = vec4(0.0, 0.0, 0.0, 1.0);
298 _fragColor = vec4(1.0, 1.0, 0.0, 1.0);
299 #endif
300 }

Listing A.4: The complete GLSL fragment program for DSM synthesis by means of a space sweep.

152



B Additional UML Diagrams

The class diagram in figure B.1 contains details about the interface of class Flexible-
Clipmap. Methods which contain the word upload call virtual methods which are im-
plemented by derived subclasses, like IrrFlexibleClipmap, in order to initiate the
transfer of texture data from main memory to video memory. The two structures Cli-
pLevelInfo and TileArrayInfo are both declared as private in class Flexi-
bleClipmap and store information about a clip level such as the number of tiles, sizes
of active area and clip area, etc., and the state of presence of a tile in the tile array, respec-
tively. The method update() is responsible for initiating updates of the active areas and
clip areas as the virtual camera is moved and must therefore be called before a frame is
rendered. This method takes the current position of the virtual camera and the clip center as
parameters.

Figure B.2 illustrates the communication between the affected objects in our FCM im-
plementation in response to the insertion of an aerial image at the AerialImageIndex
object. The depicted communication is the same as shown in the communication diagram
in figure 7.7 in chapter 7.

Figure B.3 shows the relationships of the classes in the image-package of our FCM
implementation. The components of this package provide basic raster image processing
functionality such as filtering, re-sampling, loading and storing different file formats and
converting between different pixel formats.

153



B Additional UML Diagrams

Figure B.1: Details about the class FlexibleClipmap from our FCM implementation.

154



Fi
gu

re
B

.2
:A

se
qu

en
ce

di
ag

ra
m

sh
ow

in
g

th
e

co
m

m
un

ic
at

io
n

of
af

fe
ct

ed
ob

je
ct

s
in

re
sp

on
se

to
th

e
in

se
rt

io
n

of
an

ae
ri

al
im

ag
e

at
th

e
A
e
r
i
a
l
I
m
a
g
e
C
o
l
l
e
c
-

t
o
r

ob
je

ct
.

155



B Additional UML Diagrams

Figure
B

.3:
R

elationships
betw

een
the

classes
in

the
i
m
a
g
e

-package
for

im
age

processing.

156



Bibliography

[1] Tomas Akenine-Möller, Eric Haines, and Nathaniel Hoffman. Real-Time Rendering.
A K Peters, 3rd edition, 2008.

[2] C. Amante and B. W. Eakins. ETOPO1 1 Arc-Minute Global Relief Model: Proce-
dures, Data Sources and Analysis. In NOAA Technical Memorandum NESDIS NGDC-
24, page 19 et seqq., 2009.

[3] Lucas Ammann, Olivier Génevaux, and Jean-Michel Dischler. Hybrid Rendering of
Dynamic Heightfields Using Ray-Casting and Mesh Rasterization. In Proceedings of
Graphics Interface 2010, GI ’10, pages 161–168. Canadian Information Processing
Society, 2010.

[4] Arul Asirvatham and Hugues Hoppe. GPU Gems 2, chapter Terrain Rendering Using
GPU-Based Geometry Clipmaps. Addison-Wesley Longman, 2005.

[5] Sean Barrett. Sparse Virtual Textures. http://silverspaceship.com/src/svt/, 2008.

[6] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In SIG-
MOD ’90: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, volume 19(2), pages 322–331. ACM, 1990.

[7] Norbert Beckmann and Bernhard Seeger. A Revised R*-tree in Comparison with
Related Index Structures. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, pages 799–812. ACM, 2009.

[8] H. Bendea, F. Chiabrando, F. Giulio Tonolo, and D. Marenchino. Mapping of Ar-
chaeological Areas Using a Low-Cost UAV: The Augusta Bagiennorum Test Site. In
Proceedings of XXI CIPA Symposium, 2007.

[9] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9):509–517, September 1975.

[10] James F. Blinn. Simulation of Wrinkled Surfaces. In SIGGRAPH ’78: Proceedings of
the 5th Annual Conference on Computer Graphics and Interactive Techniques, pages
286–292. ACM, 1978.

[11] Camera & Imaging Products Association (CIPA). CIPA DC-008-Translation-2010,
Exchangeable Image File Format for Digital Still Cameras: Exif Version 2.3. http:
//www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf, April 2010.

157

http://silverspaceship.com/src/svt/
http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf
http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf


Bibliography

[12] Malte Clasen and Hans-Christian Hege. Terrain Rendering using Spherical Clipmaps.
In EuroVis06 Joint Eurographics - IEEE VGTC Symposium on Visualization, pages
91–98. Eurographics Association, 2006.

[13] David Cline and Parris K. Egbert. Interactive Display of Very Large Textures. In
VIS ’98: Proceedings of the Conference on Visualization ’98, pages 343–350. IEEE
Computer Society Press, 1998.

[14] Robert T. Collins. A Space-Sweep Approach to True Multi-Image Matching. In Pro-
ceedings of the 1996 Conference on Computer Vision and Pattern Recognition (CVPR
’96), CVPR ’96. IEEE Computer Society, 1996.

[15] Robert L. Cook. Shade Trees. In SIGGRAPH ’84: Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive Techniques, pages 223–231. ACM,
1984.

[16] Roger Crawfis, Eric Noble, Michael Ford, Frederic Kuck, and Eric Wagner. Clipmap-
ping on the GPU. Technical report, Ohio State University, Columbus, OH, USA, 2007.

[17] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer, 2nd edition, 2000.

[18] Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU Ray-Casting for Scalable
Terrain Rendering. In Proceedings of Eurographics 2009 - Areas Papers, pages 43–50,
2009.

[19] Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU-Aware Hybrid Terrain
Rendering. In Proceedings of IADIS Computer Graphics, Visualization, Computer
Vision and Image Processing 2010, pages 3–10, 2010.

[20] Jonathan Dummer. Cone Step Mapping: An Iterative Ray-Heightfield Intersection
Algorithm. http://www.lonesock.net/files/ConeStepMapping.pdf, 2006.

[21] Henri Eisenbeiss. Applications of Photogrammetric Processing Using an Autonomous
Model Helicopter. Revue Francaise de Photogrammetrie et de Teledetection, Sympo-
sium ISPRS Commission Technique I "Des capteurs a l’Imagerie", 2007.

[22] Henri Eisenbeiss and Li Zhang. Comparison of DSMs Generated from Mini UAV
Imagery and Terrestrial Laser Scanner in a Cultural Heritage Application. In ISPRS
Commission V Symposium ’Image Engineering and Vision Metrology’, pages 90 – 96,
2006.

[23] Anton Ephanov and Chris Coleman. Virtual Texture: A Large Area Raster Resource
for the GPU. In Interservice/Industry Training, Simulation, and Education Conference
(I/ITSEC) 2006, pages 645–656, 2006.

[24] esri. Esri CityEngine. http://www.esri.com/software/cityengine/, 2012.

158

http://www.lonesock.net/files/ConeStepMapping.pdf
http://www.esri.com/software/cityengine/


Bibliography

[25] Jurgen Everaerts. The Use of Unmanned Aerial Vehicles (UAVS) for Remote Sensing
and Mapping. In XXIth ISPRS Congress, volume XXXVII, part 2, pages 1187 – 1192,
2008.

[26] Jon P. Ewins, Marcus D. Waller, Martin White, and Paul F. Lister. MIP-Map Level
Selection for Texture Mapping. IEEE Transactions on Visualization and Computer
Graphics, 4(4):317–329, 1998.

[27] Dirk Feldmann and Klaus Hinrichs. GPU based Single-Pass Ray Casting of Large
Heightfields Using Clipmaps. In Digital Proceedings of Computer Graphics Interna-
tional (CGI), 2012.

[28] Dirk Feldmann, Frank Steinicke, and Klaus Hinrichs. Flexible Clipmaps for Managing
Growing Textures. In Proceedings of International Conference on Computer Graphics
Theory and Applications (GRAPP), 2011.

[29] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, 2nd edition, 1995.

[30] David Gallup, Jan-Michael Frahm, Philippos Mordohai, Qingxiong Yang, and Marc
Pollefeys. Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions. In
Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, CVPR ’07. IEEE Computer Society, 2007.

[31] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Entwurfsmuster
– Elemente wiederverwendbarer objektorientierter Software. Addison-Wesley, Pro-
grammer’s Choice edition, 2004.

[32] Indra Geys, Thomas P. Koninckx, and Luc Van Gool. Fast Interpolated Cameras by
Combining a GPU based Plane Sweep with a Max-Flow Regularisation Algorithm. In
Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd Inter-
national Symposium, 3DPVT ’04, pages 534–541. IEEE Computer Society, 2004.

[33] Minglun Gong, Ruigang Yang, Liang Wang, and Mingwei Gong. A Performance
Study on Different Cost Aggregation Approaches Used in Realtime Stereo Matching.
International Journal of Computer Vision, 2007.

[34] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson Edu-
cation Inc., Pearson International edition, 2008.

[35] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD ’84: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 47–57. ACM, 1984.

[36] Mark Harris and Ian Buck. GPU Gems 2, chapter GPU Flow-Control Idioms.
Addison-Wesley Longman, 2005.

159



Bibliography

[37] Klaus Hinrichs. The Grid File System: Implementation and Case Studies of Applica-
tions. PhD thesis, ETH Zürich, 1985.

[38] Irrlicht. The Irrlicht Engine. http://irrlicht.sourceforge.net/, 2012.

[39] Jürgen Roßmann and Malte Rast. High-Detail Local Aerial Imaging Using Au-
tonomous Drones. In 12th AGILE International Conference on Geographic Infor-
mation Science, 2009.

[40] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki Kawakami, Yasuyuki
Yanagida, Taro Maeda, and Susumu Tachi. Detailed Shape Representation with Par-
allax Mapping. In In Proceedings of the ICAT 2001, pages 205–208, 2001.

[41] Sing Bing Kang, Richard Szeliski, and Jinxiang Chai. Handling Occlusion in Dense
Multi-view Stereo. Technical report, Microsoft Research, September 2001.

[42] Karl Kraus. Photogrammetrie Band 1: Geometrische Informationen aus Photogra-
phien und Laserscanneraufnahmen. de Gruyter, 7th edition, 2004.

[43] Jens Krüger and Rüdiger Westermann. Acceleration Techniques for GPU-based Vol-
ume Rendering. In Proceedings IEEE Visualization 2003, 2003.

[44] Charles Lemaire. Aspects of the DSM Production with High Resolution Images. In
The International Archives of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, volume XXXVII, part B4, Beijing, 2008.

[45] Zeyu Li, Hui Li, Anxiang Zeng, Lian Wang, and Yongwen Wang. Real-Time Visu-
alization of Virtual Huge Texture. In ICDIP ’09: Proceedings of the International
Conference on Digital Image Processing, pages 132–136. IEEE Computer Society,
2009.

[46] Zhilin Li, Qing Zhu, and Christopher Gold. Digital Terrain Modeling: Principles and
Methodology. CRC Press, 2004.

[47] Frank Losasso and Hugues Hoppe. Geometry Clipmaps: Terrain Rendering Using
Nested Regular Grids. ACM Transactions on Graphics (TOG), 2004.

[48] Microsoft. DirectX SDK Documentation: RaycastTerrain Sample. http://www.
microsoft.com/en-us/download/details.aspx?id=6812, 2008.

[49] Mircosoft. Direct3D 10 API Features. http://msdn.microsoft.com/en-us/library/
windows/desktop/bb172268(v=vs.85).aspx, 2007.

[50] Martin Mittring and Crytek GmbH. Advanced Virtual Texture Topics. In SIGGRAPH
’08: ACM SIGGRAPH 2008 Classes, pages 23–51. ACM, 2008.

[51] NASA. Visible Earth: Earth – The Blue Marble. http://visibleearth.nasa.gov/view.
php?id=54388, 1997.

160

http://irrlicht.sourceforge.net/
http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://msdn.microsoft.com/en-us/library/windows/desktop/bb172268(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb172268(v=vs.85).aspx
http://visibleearth.nasa.gov/view.php?id=54388
http://visibleearth.nasa.gov/view.php?id=54388


Bibliography

[52] NASA. Shuttle Radar Topography Mission. http://www2.jpl.nasa.gov/srtm/, 2000.

[53] NVIDIA Corporation. OpenGL Extension No. 187: EXT_texture_filter_anisotropic.
http://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt, 1999.

[54] NVIDIA Corporation. White Paper: Texture Arrays Terrain Rendering. http://
developer.download.nvidia.com/whitepapers/2007/SDK10/TextureArrayTerrain.pdf,
2007.

[55] Kyoungsu Oh, Hyunwoo Ki, and Cheol-Hi Lee. Pyramidal Displacement Mapping: a
GPU based Artifacts-free Ray Tracing through an Image Pyramid. In VRST ’06: Pro-
ceedings of the ACM Symposium on Virtual Reality Software and Technology, pages
75–82. ACM, 2006.

[56] Jens-Rainer Ohm and Hans Dieter Lüke. Signalübertragung. Springer, 10th edition,
2007.

[57] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief Texture Mapping. In
SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques, pages 359–368. ACM Press/Addison-Wesley Publishing
Co., 2000.

[58] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 2nd
edition, 1998.

[59] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,
Aaron E. Lefohn, and Tim Purcell. A Survey of General-Purpose Computation on
Graphics Hardware. Computer Graphics Forum, 26(1):80 – 113, March 2007.

[60] David P. Paine and James D. Kiser. Aerial Photography and Image Interpretation.
John Wiley & Sons, 3rd edition, 2012.

[61] PDS Geoscience Node, NASA. Mars Global Surveyor: MOLA MEGDRs. http:
//pds-geosciences.wustl.edu/missions/mgs/megdr.html, April 2007.

[62] Fábio Policarpo and Manuel M. Oliveira. GPU Gems 3, chapter Relaxed Cone Step-
ping for Relief Mapping. Addison-Wesley Professional, 2007.

[63] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-time Relief Map-
ping on Arbitrary Polygonal Surfaces. In Proceedings of the 2005 Symposium on
Interactive 3D Graphics and Games, I3D ’05, pages 155–162. ACM, 2005.

[64] The AVIGLE Project. AVIGLE – Avionic Digital Service Platform. http://www.avigle.
de, 2012.

[65] Huamin Qu, Feng Qiu, Nan Zhang, Arie Kaufman, and Ming Wan. Ray Tracing
Height Fields. In Procedings of Computer Graphics International, pages 202–207,
2003.

161

http://www2.jpl.nasa.gov/srtm/
http://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt
http://developer.download.nvidia.com/whitepapers/2007/SDK10/TextureArrayTerrain.pdf
http://developer.download.nvidia.com/whitepapers/2007/SDK10/TextureArrayTerrain.pdf
http://pds-geosciences.wustl.edu/missions/mgs/megdr.html
http://pds-geosciences.wustl.edu/missions/mgs/megdr.html
http://www.avigle.de
http://www.avigle.de


Bibliography

[66] Randi J. Rost and Bill Licea-Kane. OpenGL Shading Language. Addison-Wesley,
2010.

[67] Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

[68] M. Sauerbier and Henri Eisenbeiss. UAVs for the Documentation of Archaeological
Excavation. Proceedings of the ISPRS Commission V Mid-Term Symposium ’Close
Range Image Measurement Techniques’, 2010.

[69] Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms. International Journal of Computer Vision,
47(1-3):7–42, April 2002.

[70] Antonio Seoane, Javier Taibo, and Luis Hernández. Hardware-Independent Clipmap-
ping. In Journal of WSCG 2007, pages 177 – 183. Eurographics Association, 2007.

[71] Dave Shreiner. OpenGL Programming Guide. Pearson Education, 7th edition, 2010.

[72] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo Tourism: Exploring Photo
Collections in 3D. ACM Transactions on Graphics (TOG), 25(3):835–846, July 2006.

[73] Harald Sörrle. UML 2 für Studenten. Pearson Studium, 1st edition, 2005.

[74] Sven Strothoff, Dirk Feldmann, Frank Steinicke, Tom Vierjahn, and Sina Mostafawy.
Interactive Generation of Virtual Environments Using MUAVs, 2011.

[75] Sven Strothoff, Frank Steinicke, Dirk Feldmann, Jan Roters, Klaus Hinrichs, Tom
Vierjahn, Markus Dunkel, and Sina Mostafawy. A Virtual Reality-based Simulator for
Avionic Digital Service Platforms. In Proceedings of Joint Virtual Reality Conference
(Additional Material), 2010.

[76] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, http://
szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf, draft edition, September,
3rd 2010.

[77] László Szirmay-Kalos and Tamás Umenhoffer. Displacement Mapping on the GPU -
State of the Art, 2006.

[78] Javier Taibo, Antonio Seoane, and Luis Hernández. Dynamic Virtual Textures. In
Journal of WSCG 2009, pages 25 – 32. Eurographics Association, 2009.

[79] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The Clipmap: a
Virtual Mipmap. In SIGGRAPH ’98: Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, pages 151–158. ACM, 1998.

[80] Natalya Tatarchuk. Dynamic Parallax Occlusion Mapping with Approximate Soft
Shadows. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, pages 63–69. ACM,
2006.

162

http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf
http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf


Bibliography

[81] Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. Maximum Mipmaps for Fast, Accurate,
and Scalable Dynamic Height Field Rendering. In I3D ’08: Proceedings of the 2008
Symposium on Interactive 3D Graphics and Games, pages 183–190. ACM, 2008.

[82] United States Secretary of Defense. Unmanned Aircraft Systems Roadmap 2005 –
2030. www.fas.org/irp/program/collect/uav_roadmap2005.pdf, 2005.

[83] Alan Watt. 3D Computer Graphics. Pearson Education Ltd., 3rd edition, 2000.

[84] Roland E. Weibel and R. John Hansman. Safety Considerations for Operation of
Different Classes of UAVs in the NAS. In AIAA’s 4th Aviation Technology, Integration
and Operations (ATIO) Forum. AIAA, 2004.

[85] Lance Williams. Pyramidal Parametrics. In SIGGRAPH ’83: Proceedings of the 10th
Annual Conference on Computer Graphics and Interactive Techniques, pages 1–11,
1983.

[86] Ruigang Yang and Marc Pollefeys. Multi-Resolution Real-Time Stereo on Commod-
ity Graphics Hardware. In Proceedings of the 2003 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, CVPR ’03, pages 211–217. IEEE
Computer Society, 2003.

[87] Ruigang Yang and Marc Pollefeys. A Versatile Stereo Implementation on Commodity
Graphics Hardware. Real-Time Imaging, 11(1):7–18, February 2005.

[88] Ruigang Yang, Greg Welch, and Gary Bishop. Real-Time Consensus-Based Scene
Reconstruction Using Commodity Graphics Hardware. In Proceedings of the 10th
Pacific Conference on Computer Graphics and Applications, PG ’02. IEEE Computer
Society, 2002.

[89] Z/I Imaging. Z/I DMC II 250 Camera System Datasheet. http://www.ziimaging.com/
media/ZI_DMC250_DS_en.pdf, 2011.

163

www.fas.org/irp/program/collect/uav_roadmap2005.pdf
http://www.ziimaging.com/media/ZI_DMC250_DS_en.pdf
http://www.ziimaging.com/media/ZI_DMC250_DS_en.pdf


164



List of Acronyms

AABB axis-aligned bounding box

API application programming interface

BVH bounding volume hierarchy

CCD charge-coupled device

CoP(s) center(s) or projection

DEM digital elevation model

DSM digital surface model

FCM Flexible Clipmap

FBO frame buffer object

GPS Global Positioning System

GPU graphics processing unit

GLSL OpenGL Shading Language

IMU inertial measurement unit

LOD level of detail

(m)UAV (miniature) unmanned aerial vehicle

SAD sum of absolute differences

UML Unified Modeling Language

UTM Universal Transverse Mercator (coordinate system)

XML Extensible Markup Language

165


	Table of Contents
	Preface
	1 Introduction
	2 Background
	2.1 Digital Surface Models
	2.1.1 Representing DSMs

	2.2 Images, Photographs and Texture Maps
	2.2.1 Images
	2.2.2 Texture Maps
	2.2.3 Representing Images and Textures

	2.3 Aerial Images
	2.3.1 Classification of Aerial Images
	2.3.2 Aerial Image Acquisition
	2.3.3 The AVIGLE Project

	2.4 Coordinate Systems
	2.5 Basic Principles of Photogrammetry
	2.5.1 Perspective Projection
	2.5.2 Camera Parameters
	2.5.3 Image Properties


	3 The Flexible Clipmap
	3.1 Related Work
	3.2 The Flexible Clipmap
	3.2.1 Requirements for Handling Spatially Time-Variant Textures
	3.2.2 The Clipmap
	3.2.3 Managing Aerial Images by Spatial Indexes
	3.2.4 Layout Scheme for Tiles
	3.2.5 Adding and Updating Tiles

	3.3 Architecture and Implementation Details
	3.3.1 Caching
	3.3.2 Tile Arrays
	3.3.3 Scheduling Tile Updates
	3.3.4 Tile Map and LOD Calculation
	3.3.5 Rendering

	3.4 Performance Analysis
	3.4.1 Evaluation Setup
	3.4.2 Results

	3.5 Discussion

	4 Digital Surface Model Rendering
	4.1 Related Work
	4.2 GPU based Single-pass Ray Casting Using Clipmaps
	4.2.1 Clipmaps for DSM Storage
	4.2.2 Rendering and Accelerated Ray Traversal
	4.2.3 LOD-determined Ray Termination
	4.2.4 Refinement of Block-sampled Heightfield Reconstruction
	4.2.5 Sampling Color Textures

	4.3 Performance Results
	4.3.1 Evaluation Setup and Results
	4.3.2 Performance with Surface Refinement

	4.4 Discussion

	5 GPU-based DSM Synthesis
	5.1 Methods for Stereo Matching
	5.1.1 Matching Cost Functions
	5.1.2 Cost Aggregation and Support Window Size

	5.2 DEM Generation Using Space Sweep
	5.2.1 Input Image Selection

	5.3 GPU-based Implementation
	5.3.1 Program Setup
	5.3.2 Program Execution

	5.4 Color Texture Generation
	5.5 Improvements of DEM Quality and Results
	5.5.1 Stereo Matching Errors
	5.5.2 Smoothening DEM Data
	5.5.3 Cost Aggregation Over Support Windows
	5.5.4 Better Half Sequence

	5.6 Performance Evaluation and Discussion
	5.6.1 Discussion


	6 Texturing Lateral Surfaces
	6.1 Complete Color Textures for DSMs
	6.2 Aspects of Projective Texturing
	6.2.1 Aerial Image Selection
	6.2.2 Occlusions Between Lateral Surfaces
	6.2.3 Multiple Projections

	6.3 Implementation and Results
	6.3.1 Results

	6.4 Discussion

	7 Framework Design
	7.1 Framework Overview
	7.2 Flexible Clipmap Implementation
	7.2.1 Multithreading
	7.2.2 Communication in Response to the Insertion of Aerial Images

	7.3 R*-tree Implementation
	7.4 GPU Programs
	7.4.1 DSM Rendering
	7.4.2 DSM Synthesis

	7.5 Further Implementation Details

	8 Conclusions
	Appendix A GPU Programs
	A.1 Flexible Clipmap Shaders
	A.2 DSM Synthesis Shaders

	Appendix B Additional UML Diagrams
	Bibliography
	List of Acronyms

