
!

Biologie 

Generation and molecular analysis of in vitro germ cells 

from mouse and human pluripotent stem cells  

 Inaugural-Dissertation 

zur Erlangung des Doktorgrades 

der Naturwissenschaften im Fachbereich Biologie 

der Westfälischen Wilhelms-Universität Münster 

vorgelegt von 

Fumihiro Sugawa 

aus Tokyo, Japan 

2014 



!

Dekan:  

Erster Gutachter:  

Zweiter Gutachter:  

Prof. Dr. Dirk Prüfer

Prof. Dr. Hans R. Schöler 

Prof. Dr. Erez Raz 

Tag der mündlichen Prüfung: 

Tag der Promotion: 
23.05.2014



!

List of Publications 

Human PGC commitment shares gene expression dynamics to mouse, but owns 

a unique PRDM14 expression pattern 

Fumihiro Sugawa, Marcos J Araúzo-Bravo, Kee-Pyo Kim, Guangming Wu, Martin 

Stehling, Karin Hübner, Hans R. Schöler (under revision) 

 

Ultrastructural characterization of mouse embryonic stem cell-derived oocytes 

and granulosa cells. 

Psathaki OE, Hübner K, Sabour D, Sebastiano V, Wu G, Sugawa F, Wieacker P, 

Pennekamp P, Schöler HR. Stem Cells Dev. 2011 Dec; 20(12):2205-15. 

 

Book Chapter 

In vitro differentiation of germ cells from stem cells 

Fumihiro Sugawa, Karin Hübner, Hans R. Schöler. Biology and Pathology of the 

Oocyte 2nd Edition, 2013 Dec; Chapter 20: 236-49. 

  



!

Table of contents 

Acknowledgement ......................................................................................................... i 

Table of figures and tables  ......................................................................................... ii 

Abbreviations  .............................................................................................................. v 

Zusammenfassung  .................................................................................................... vii 

Abstract  ....................................................................................................................... ix 

1. Introduction ............................................................................................................ 1

1.1. Germ cells ......................................................................................................... 1 

1.1.1. Primordial gem cell specification .......................................................... 2 

1.1.2. Germ cell migration ............................................................................... 4 

1.1.3. Epigenetic reprogramming ..................................................................... 5 

1.1.4. Sex differentiation and meiosis .............................................................. 7 

1.1.5. Folliculogenesis and oocyte maturation ................................................. 8 

1.2. Germ cell differentiation from mouse and human embryonic stem cells ......... 9 

1.2.1. In vitro differentiation of mouse germ cells ........................................ 10 

1.2.1.1. In vitro differentiation of post-migratory PGCs ...................... 10 

1.2.1.2. Differentiation by co-culture with animal-origin somatic cells

 ......................................................................................................... 12 

1.2.1.3. In vitro differentiation of pre-migratory PGCs ........................ 14 

1.2.2. In vitro differentiation of human germ cells ........................................ 15 

1.2.2.1. The generation of post-migratory PGC-like cells .................... 16 

1.2.2.2. The generation of putative gametes ......................................... 17 

1.2.2.3. Differentiation by co-culture with animal-origin somatic cells

 ......................................................................................................... 18 



!

2. Materials and methods ........................................................................................ 22 

2.1. Materials ......................................................................................................... 22 

2.1.1. Reagents ............................................................................................... 22 

2.1.2. Equipment ............................................................................................ 24 

2.2. Methods .......................................................................................................... 24 

2.2.1. Animals ................................................................................................ 24 

2.2.2. Cell culture medium ............................................................................. 25 

2.2.3. Cell culture ........................................................................................... 28 

2.2.3.1. Derivation of mouse embryo fibroblasts (MEF) ...................... 28 

2.2.3.2. Mouse Embryonic Fibroblast  (MEF) culture .......................... 28 

2.2.3.3. Preparation of MEF-conditioned medium (CM) ..................... 28 

2.2.3.4. Preparation of coated-plates ..................................................... 29 

2.2.3.5. Mouse ESC culture .................................................................. 29 

2.2.3.6. Mouse PGC differentiation ...................................................... 30 

2.2.3.7. Human ESC and iPSC culture ................................................. 30 

2.2.3.8. Human PGC precursor and PGC differentiation ..................... 31 

2.2.4. Amplification of STELLA promoter sequence  ................................... 31 

2.2.5. Ligation of the STELLA promoter sequence into pEGFP-1 vector  ... 32 

2.2.6. Transformation of competent bacterial cells ........................................ 32 

2.2.7. Plasmid DNA preparation  ................................................................... 32 

2.2.8. Generation of STELLA-GFP human ESCs and iPSC ......................... 32 

2.2.9. Lentivirus Production  .......................................................................... 33 

2.2.10. Knock-down of BLIMP1 and PRDM14 .............................................. 33 

2.2.11. Fluorescence-Activated Cell Sorting Analysis  ................................... 34 

2.2.12. Immunocytochemistry  ........................................................................ 34 



!

2.2.13. Real-Time PCR (qPCR) ....................................................................... 34 

2.2.14. Microarray analysis  ............................................................................. 36 

2.2.15. Microarray data processing .................................................................. 36 

2.2.16. Bisulfite Sequencing  ........................................................................... 37 

2.2.17. Transplantation of reconstituted ovaries under the ovarian bursa  ...... 38 

2.2.18. Electron microscopy  ........................................................................... 39 

 
3. Results ................................................................................................................... 40 

3.1. PGC differentiation from human ESCs and iPSCs  ........................................ 40 

3.1.1. Examination of in-house protocol and published protocol for PGC 

differentiation from human ESCs  ........................................................... 40 

3.1.2. Search for a candidate gene for PGC identification  ............................ 43 

3.1.3. Establishment of GFP reporter human pluripotent stem cells  ............ 46 

3.1.4. Differentiation of STELLA-GFP human pluripotent stem cells  ......... 46 

3.1.5. Differentiation toward mesoderm-committed germ cell precursors  ... 49 

3.1.6. Differentiation of PGC precursors towards PGC-like cells  ................ 54 

3.1.7. Characterization of PCG-like cells  ..................................................... 56 

3.1.8. The molecular mechanism of PGC induction in vitro  ........................ 59 

3.1.9. Global gene expression analysis of PGC precursors and PGC-like cells 

 ................................................................................................................. 63 

3.2. PGC differentiation from mouse EpiSCs and ΔPE-Oct4-GFP+ EpiSCs  ..... 80 

3.2.1. PGC differentiation from mouse EpiSCs  ............................................ 80 

3.2.2. PGC differentiation from mouse EpiSCs and ΔPE-Oct4-G ............... 82 

 
3.3. Ultrastructural characterization of mouse ESC-derived oocytes and granulosa 

cells ................................................................................................................. 84 



!

3.3.1. Granulosa cells and the GC–oocyte interface of ESC-derived follicles 

 ................................................................................................................. 84 

3.3.2. ESC-derived oocytes  ........................................................................... 90 

4. Discussion ............................................................................................................. 94 

4.1. PGC differentiation from human ESCs and iPSCs  ........................................ 94 

4.2. PGC differentiation from mouse EpiSCs and ΔPE-GFP-Oct4+ EpiSCs .... 101 

4.3. Ultrastructural characterization of mouse ESC-derived oocytes and granulosa 

cell ................................................................................................................. 102 

 
5. References ........................................................................................................... 106 

 



! "!

Acknowledgement 

I would like to give many thanks to Prof. Dr. Hans Schöler for giving me the 

opportunity to work on these exciting projects and for his supervision, research 

guidance and support. Furthermore, I would like to give a special thanks to Karin 

Hübner for her help, guidance and mentoring in the lab as well as outside. 

 

Furthermore, I would like to thank all the members of the Schöler department for the 

pleasant and fruitful working environment. In particular, I would like to give a special 

thanks to all the lab members who contributed to the experiments and the writing of 

the manuscripts I prepared during the PhD program. 

. 

Last but not least, I would like to thank my family and friends for all their supports, 

especially my girlfriend Miori. Without their patience and support, I could not have 

completed my PhD thesis. 

  



!""!

Table of figures and tables 

Figure 1 Scheme of gene expression dynamics during mouse PGC specification. 

Figure 2 Chronology of mouse germ cell development and correlation of cited 

in vitro germ cell protocols. (modified from (Sugawa et al, 2013)) 

Figure 3 Differentiation of human pluripotent stem cells by a published protocol 

Figure 4 Differentiation of human pluripotent stem cells using a  mouse PGC 

induction protocol.  

Figure 5 Immunofluorescent analysis of undifferentiated human ESCs. 

Figure 6 Expression of germ cell-relate genes in differentiated human ESCs. 

Figure 7 Construction of STELLA and TEX13B reporter plasmids. 

Figure 8 Morphology and GFP signal expression of undifferentiated STELLA-

GFP ESCs and differentiated EBs. 

Figure 9 PGC differentiation from single-cell dissociated human ESCs. 

Figure 10 Two-step differentiation of human PSCs toward the germ cell lineage. 

Figure 11 Effects of Activin A and BMP4 on the expression of selected 

pluripotency-, PGC-, and mesodermal genes during PGC-precursor 

induction. 

Figure 12 Time course analysis of PGC precursor induction 

Figure 13 Immunofluorescence analysis of PGC precursor cultures 

Figure 14 Induction of PGC-like cells from human iPSCs. 

Figure 15 GFP expression of each cell fraction sorted by TRA-1-81 and c-KIT of 

cells from aggregate cultures. 

Figure 16 Induction of TRA-1-81+/c-KIT+ PGC-like cells from human iPSCs. 

Figure 17 Effect of SCF on induction of TRA-1-81+/c-KIT+ PGC-like cells. 

Figure 18 Characterization of PGC-like cells. 

Figure 19 Epigenetic state of PGC-like cells. 

Figure 20 Teratoma formation assay of iPSCs and PGC-like cells  

Figure 21 Effects of KSR and WNT3A during PGC-precursor induction on the 

expression of selected pluripotency-, PGC-, and mesodermal genes of 

d2 cultures. 

Figure 22 Effects of KSR and WNT3A during PGC-precursor induction on the 

expression of selected trophecto-, ecto-, endo-, and mesodermal genes 

of d2 cultures. 



! """!

Figure 23 Effects of KSR and WNT3A on PGC-precursor and PGC-like cell 

induction. 

Figure 24 Global transcription profiles during PGC-precursor and PGC-like cell 

induction. 

Figure 25 Heat map of somatic mesodermal gene expression patterns of HuES6 

ESCs, 383.2iPSCs, d2 PGC-precursor cultures, and FACS-sorted 

PGC-like cells. 

Figure 26 Heat map of core PGC mesodermal gene expression patterns of HuES6 

ESCs, 383.2iPSCs, d2 PGC-precursor cultures, and FACS-sorted 

PGC-like cells. 

Figure 27 Array expression data for selected epigenetic modifier genes in 383.2 

iPSCs, d2 PGC-precursor cultures, and FACS-sorted PGC-like cells. 

Figure 28 Heat map of mouse Prdm14-regulated genes in HuES6 ESCs, 383.2 

iPSCs, d2 PGC-precursor cultures, and d4 and d6 FACS- sorted PGC-

like cells. 

Figure 29 Venn diagrams of intersection between mouse in vitro PGCLCs, 

human in vivo PGCs, and human in vitro PGC-like cells. 

Figure 30 Heat map of genes commonly downregulated in human PGC-like cells 

and mouse PGC-like cells. 

Figure 31 Heat map of genes commonly upregulated in human PGC-like cell and 

mouse PGC-like. 

Figure 32 Heat map of genes commonly downregulated in human PGC-like cells 

and 16-16.5 gestation week PGCs. 

Figure 33 Heat map of genes commonly upregulated in human PGC-like cells 

and 16-16.5 gestation week PGCs. 

Figure 34 Knock-down of BLIMP1 and PRDM14 

Figure 35 Differentiation of mouse EpiSCs toward PGCs 

Figure 36 Characterization of Oct4-GFP+/c-KIT+ PGC-like cells 

Figure 37 Differentiation of mouse ΔPE-Oct4-GFP+ EpiSCs toward PGCs 

Figure 38 ESC-derived follicle-like structures. (From from Psathaki et al. 2011.) 

Figure 39 Granulosa cell–oocyte interface of ESC-derived follicles. (from from 

Psathaki et al. 2011.) 



!"#!

Figure 40 TEM analyses of ESC-derived dark- and light-colored granulosa cells. 

(from from Psathaki et al. 2011.) 

Figure 41 Gene expression of oocyte markers in a pool of 3 in vitro-derived 

oocytes. (from from Psathaki et al. 2011.) 

Figure 42 Ultrastructural analysis of in vitro-derived oocytes. (from from 

Psathaki et al. 2011.) 

 

Table 1 Comparison of gene expression profiles of PGCs between different 

mammals. (modified from Sugawa et al. 2013) 

Table 2 Overview of germ cell differentiation procedures cited in the 

introduction. (modified from Sugawa et al. 2013) 

Table 3 List of additives used for cell differentiation  

Table 4 List of significant enriched gene sets between iPSCs and d6 FACS-

sorted PGC-like cells from GSEA. 

  



! #!

Abbreviations 

APC allophycocyanin 

bFGF basic fibroblast growth factor 

BMP bone morphogenetic protein 

BSA bovine serum albumin 

DMEM Dulbecco's Modified Eagle Medium 

DMR differentially methylated regions 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

dpc days post coitum 

dpp days post partum 

EB embryoid body 

ECM extracellular matrix 

EDTA ethylenediaminetetraacetic acid 

EM electron microscopy 

EpiLC epiblast-like cell 

EpiSC epiblast stem cell 

ESC embryonic stem cell 

ExE extra-embryonic ectoderm 

FACS fluorescence-activated cell sorting 

FBS fetal bovine serum 

FSH follicle-stimulating hormone 

GFP green fluorescent protein 

GLC germ-like cell line 

GMEM Glasgow Minimum Essential Medium 

GSEA gene set enrichment analysis 

HCl hydrogen chloride 

hFGSC human fetal gonadal stromal cell 

ICM inner cell mass 

ICSI intracytoplasmic sperm injection 

iPSC induced pluripotent stem cell 

LB Lennox Broth 

LH luteinizing hormone 



!#"!

LIF Leukemia inhibitory factor 

MEF mouse embryonic fibroblasts 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PE phycoerythrin 

PGC primordial germ cell  

RA retinoic acid 

RAR retinoic acid receptors 

RNA ribonucleic acid 

SCF stem cell factor 

SCID severe combined immunodeficiency 

SEM scanning electron microscope 

SSC spermatogonial stem cell 

TEM transmission electron microscopy 

TF transcription factor 

TZPs transzonal projections 

VE visceral endoderm 

  



! #""!

Zusammenfassung 

Nur Keimzellen können die genetische Information von einer Generation zur nächsten 

übertragen. Trotz großen Interesses sind aber die grundsätzlichen Abläufe, die der 

Keimzellentwicklung unterliegen, bis heute kaum verstanden. Ein Grund dafür ist 

sicherlich, dass uns nur ungenügende Mengen an Zellmaterial für experimentelle 

Untersuchungen zur Verfügung stehen. Eine Lösung dafür könnte die Etablierung von 

in vitro Differenzierungsmethoden zur Gewinnung Primordialer Keimzellen (PGC) 

aus pluripotenten Stammzellen der Maus und des Menschen sein. Wenn die 

Differenzierungen in der Kulturschale die Keimzellentwicklung in vivo 

rekapitulierten, hätte man eines wichtigen Verfahren, um die Keimzellentwicklung 

besser zu verstehen.  

 

Ziel der hier vorgelegten Dissertation war es, ein effizientes und reproduzierbares 

Differenzierungsprotokoll zur Generierung Primordialer Keimzellen aus pluripotenten, 

humanen Stammzellen zu etablieren und molekulare Mechanismen, die den Ablauf 

bestimmen, aufzuklären. Da ein Großteil unseres Wissens über die 

Keimzellentwicklung mit Mäusen entwickelt wurde, enthält diese Dissertation auch 

Studien zweier Keimzellprojekte die modellhaft mit Mäusen durchgeführt wurden: 

"Differenzierung von primordialen Keimzellen aus normalen Epiblast Stammzellen 

(EpiSC) und stabilisierten Epiblast Stammzellen ( Δ PE-Oct4-GFP+)" und 

"Ultrastrukturelle Charakterisierung von Oozyten und Granulosazellen aus 

embryonalen Stammzellen". 

 

In meiner Arbeit habe ich ein definiertes und effizientes Differenzierungssystem zur 

Induktion prämigratorischer PGC aus humanen ESC und iPSC entwickelt. Durch eine 

stufenweise Differenzierung konnte ich eine OCT4+/T+/BLIMP1+ PGC-

Vorläuferpopulation ableiten. Diese Vorläuferpopulation wurden dann in STELLA-

positive (auch bekannt als DPPA3) Zellen differenziert, die wesentliche Merkmale 

von PGCs der Maus besaßen, u.a. die Expression von Schlüsselgenen und eine 

globale epigenetische Reprogrammierung. Obwohl in diesen Zellen PRDM14 nur 

schwach exprimiert wird, werden ähnlich wie in der Maus Pluripotenz/PGC Gene 

aktiviert und die neurale Induktion sowie die de novo DNA Methylierung unterdrückt. 

Diese Studie zeigt, dass die PGC Spezifizierung im Menschen und in der Maus recht 
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ähnlich aber nicht identisch ist, , was auf bislang unbekannte Regulationsabläufe 

hinweist. 

 

Mittels Zellen der Maus haben wir PGCs aus EpiSCs und ΔPE-Oct4-GFP+ EpiSCs 

induziert. Wir konnten PGC-ähnliche Zellen aus EpiSC generieren, die 

charakteristische, prä-meiotische Gene wie Stella, Dazl und Vasa stark induzierten 

und zudem SYCP3 Protein im Kern aufwiesen. Allerdings war die Induktion von 

PGC-ähnlichen Zellen ausgesprochen variabel, was meines Erachtens an 

Unterschieden der verwendeten konditionierten Medienchargen liegt. Um PGCs 

reproduzierbar von EpiSC abzuleiten, müssen aus meiner Sicht chemisch definierte 

Differenzierungsbedingungen entwickelt werden.  

 

Im zweiten Mausprojekt wurden ESC-abgeleitete Oozyten und Granulosazellen via 

Elektronenmikroskopie charakterisiert. Wir konnten außergewöhnliche 

ultrastrukturelle Ähnlichkeiten zwischen den in vitro-generierten Oozyten und 

Granulosazellen und den entsprechenden Komponenten natürlicher Keimbahnfollikel 

der Maus aufzeigen, wie z.B. die charakteristische Struktur der Organellen in 

Granulosa Zellen, die Formation von Transzonalen Projektionen (TZPs) und die 

Bildung von kortikalem Granulat im Kortex der Eizelle. Unsere Studie belegt, dass in 

vitro Differenzierungssysteme die essentiellen Komponenten, welche für die 

Oozytenentwicklung erforderlich sind, generieren können: Oozyten, eine ECM-

basierte Interphase und Granulosazellen. 

 

Zusammengefasst zeigen unsere Daten, dass ESC-abgeleitete humane PGCs und in 

vitro generierte Oozyten der Maus ihren natürlichen Gegenstücken stark ähneln. 

Zusätzlich weisen unsere Studien auf bisher unbekannte Mechanismen während der 

humanen Keimzellspezifikation hin. Weitere Untersuchungen werden zeigen wie 

vorteilhaft solche in vitro Differenzierungsmodelle als alternative Ansätze für 

Untersuchungen in der reproduktiven Entwicklung tatsächlich sind. 
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Abstract 

Germ cells are the only cell type that can transmit genetic information from one 

generation to the next. The key mechanisms underlying germ cell development 

remain poorly understood due to the insufficient availability of cell materials for 

experimental investigations. The establishment of in vitro PGC differentiation models 

from mouse and human pluripotent stem cells that recapitulate the development of in 

vivo germ cells provides an alternative approach for studying reproductive 

development. 

 

The aim of this dissertation was to establish an efficient and reproducible 

differentiation protocol of PGCs from human pluripotent stem cells, and the 

investigation of molecular mechanisms involved in their development. Since most of 

our common knowledge of germ cell development is based on the mouse system, this 

dissertation also contains work performed on two mouse germ cell differentiation 

projects, namely "Differentiations of PGC-like cells from normal EpiSCs and so 

called stabilized EpiSCs” and "Ultrastructural characterization of mouse ESC-derived 

oocytes and granulosa cells". 

 

I developed a defined and efficient differentiation system for the induction of pre-

migratory PGC-like cells from human ESCs and iPSCs. By step-wise differentiation, 

we generated an OCT4+/T+/BLIMP1+ PGC-precursor-like cell population that 

transitioned into STELLA (also known as DPPA3) expressing PGC-like cells that 

exhibited a similar key gene expression as mouse PGCs as well as global epigenetic 

reprogramming. Interestingly, even though these PGC-like cells expressed PRDM14 

only at very low levels, they underwent activation of pluripotency/PGC genes, 

suppression of neural induction and suppression of de novo DNA methylation, events 

that are regulated by Prdm14 during mouse PGC specification. This study 

demonstrates that human PGC commitment shares many key features with mouse 

PGC specification, but harbors unique and so far unknown mechanisms that point to a 

novel human transcriptional regulation.  

 

In another project, we attempted to induce PGCs from mouse EpiSCs and from mouse 

stabilized EpiSCs (!PE-Oct4-GFP+). We generated PGC-like cells from normal 
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EpiSCs that exhibited upregulation of PGC genes, such as Stella, Dazl and Vasa, and 

nuclear expression of SYCP3, which are characteristics of pre-meiotic PGCs. 

Unfortunately, we could not achieve reproducible induction of PGCs from these cells, 

nor from !PE-Oct4-GFP+ EpiSCs, most probably due to batch-dependent differences 

in the condition medium we used during the course of the experiments. Our results 

strongly suggest the requirement of chemically defined media compositions for the 

reproducible induction of PGCs from EpiSCs in vitro.  

 

In the second mouse project, characteristics of mouse ESC-derived oocytes and 

granulosa cells were determined at the electron microscopy level. We found a striking 

ultrastructural similarity of in vitro-generated oocytes and granulosa cells to cells 

comprising the natural follicle, such as the characteristic appearance of organelles in 

granulosa cells, the formation of transzonal projections (TZPs) and the formation of 

cortical granules in the oocyte cortex. This study demonstrated that in vitro 

differentiation systems can generate the essential components required for oocyte 

development: oocytes, an ECM-based interface, and granulosa-like cells. 

 

In summary, our data demonstrate that ESC-derived human PGC and in vitro 

generated mouse oocytes exhibit similar characteristics to their natural counterparts. 

In addition, our study proposes novel molecular mechanisms during human PGC 

specification. Those results clearly demonstrate the benefit of in vitro germ cell 

differentiation models as alternative approach for studying reproductive development.  
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1. Introduction 

The aim of this dissertation was to investigate the molecular mechanisms of mouse 

and human germ cell development. In order to achieve this, we aimed at the 

establishment and utilization of in vitro differentiation of mouse or human PGCs from 

PSCs. Prior to presenting the obtained results, it is important to provide an overview 

of our current understanding of germ cell development per se and the development of 

in vitro differentiation systems in both mouse and human. The introduction will lay a 

solid foundation and place the presented data in the relevant context of the current 

knowledge. 

 

1.1. Germ cells 

Germ cells are the only cell type in the body that can carry genetic information onto 

the next generation, whereas the somatic cell lineages give rise to the soma, or body 

(Weismann, 1893). The development of germ cells from PGCs to mature gametes 

(sperm and oocyte) involves a series of complicated biological processes that occur 

over a given period of time, which can be subdivided into several steps: specification, 

migration, epigenetic reprogramming, sex differentiation and meiosis, and oogenesis 

or spermatogenesis. A complex temporal and spatial activation of genetic programs 

rigorously regulates the sequence of developmental events. Despite recognizing the 

importance of germ cells, the scientific community has not yet elucidated the 

molecular mechanisms underlying the individual steps of germ cell development—

these remain poorly understood, owing in part to the lack of sufficient cell materials 

for conclusive studies.  

 

Current understanding of the mechanisms underlying germ cell determination and 

differentiation is based largely on studies performed in mice. As the series of 

sequential events during germ cell development is conserved among mammalian 

species, this section mainly provides an overview of germ cell development in the 

mouse, followed by a fragmentary but essential knowledge of human germ cell 

development. Despite large numbers of essential sets of genes involved in 

gametogenesis, only a small subset of genes that are known to play pivotal roles 

during germ cell development will be outlined in this introduction.  
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1.1.1. Primordial gem cell specification 

MOUSE The germ cell lineage is not allocated in the embryo proper of mammals 

before implantation—unlike the case of lower-order eukaryotes, as early epiblast cells 

injected into blastocysts have an equipotent ability to enter the mouse germline 

(Gardner & Rossant, 1979; Rossant et al, 1978). Cells within the proximal epiblast 

begin their commitment to become PGCs at the onset of gastrulation, between 5.5 to 6 

dpc (Yoshimizu et al, 2001), with the entire epiblast retaining this germline plasticity 

as late as 7 dpc (Tam & Zhou, 1996) in response to paracrine signaling from the 

extra-embryonic ectoderm (ExE) and visceral endoderm (VE) (Ginsburg et al, 1990). 

BMP2, BMP4, and BMP8, members of the bone morphogenetic protein family, 

induce Smad1, Smad5, and Smad8 signaling in the Oct4, TNAP, fragilis triple-

positive founding cell population of the proximal epiblast, which subsequently 

comprises approximately 45 committed PGCs by 7.25 dpc (Fujiwara et al, 2001; 

Lawson et al, 1999; Ying et al, 2000; Ying & Zhao, 2001). Studies on this process at 

a single cell level have revealed that PGCs initially share similar properties with their 

somatic mesodermal neighbors, as indicated by the expression of T and Hoxb1. 

Subsequent repression of the somatic program and activation of the PGC program 

enable the emergence of PGCs with TNAP activity and Stella expression (Figure 1) 

(Kurimoto et al, 2008; Saitou et al, 2002; Yabuta et al, 2006). Importantly, Sox2 

appeared to be repressed at the initiation of specification and re-acquired upon 

establishment of committed PGCs, while Nanog is constantly expressed. Blimp1 (also 

known as Prdm1) and Prdm14 are key factors for mouse PGC specification. They 

play an essential role in the repression of the somatic mesodermal program, activation 

of the PGC program, and global epigenetic reprogramming (Saitou et al, 2002; Seki et 

al, 2007; Yabuta et al, 2006). Interestingly, a recent study has demonstrated that 

ectopic expression of Blimp1 and Prdm14 together with Tfap2c is sufficient to induce 

mouse PGC-like cells from Epiblast-like cells in vitro, supporting the idea that these 

two factors play a dominant role in mouse PGC specification (Nakaki et al, 2013). 



 

Figure 1 Scheme of gene expression dynamics during mouse PGC specification. 

HUMAN The founders of germ cells are recognized in the embryo at the wall of the 

yolk sac at the angle with the allantois at around the end of the third week (Felix, 

1911; Fuss, 1911; Fuss, 1912). These cells are distinguishable by their large size, 

spherical shape, the presence of abundant glycogen granules in the cytoplasm and 

their TNAP activity (Mc et al, 1953). BMP4 signaling seems to play a role in human 

PGC specification, as in vitro differentiation of PGCs from human ESCs has been 

shown to be enhanced by BMP4 (Kee et al, 2006). Those observations indicated that 

human germ cells have similar properties to mouse germ cells. However, there are 

only a few reports in the literature that detail gene expression dynamics during human 

PGC specification, which occurs before the 4th week of embryonic development. 

Nevertheless, immunochemical studies of carcinomas, germ cell tumors, and early-

mid stage germ cells have revealed that human germ cells exhibit a similar expression 

pattern of a number of key genes. BLIMP1 was observed to be expressed in germ 

cells within 12 week gonads and 19 week testis (Eckert et al, 2008). TFAP2C was 

also found in germ cells from both testis and ovary from the 10th to the 22nd week. 

The expression of these genes at late stage implies their conserved roles during human 

PGC specification. In contrast, the expression pattern of PRDM14 and STELLA in 

human germ cells has not been investigated so far. Among the genes associated with 

pluripotency, OCT4 and NANOG are expressed in human germ cells (Kerr et al, 

2008a; Kerr et al, 2008b). OCT4 expression was observed in 5.5 week and 7 week 

gonads in female and male, respectively. These OCT4+ PGCs co-expressed NANOG. 

On the other hand, SOX2 has been shown to be absent in human germ cells (de Jong 
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et al, 2008; Perrett et al, 2008), but cooperates with OCT4 and NANOG to regulate 

pluriotency in both mouse and human ESCs (Boyer et al, 2005; Fong et al, 2008; 

Wang et al, 2006). It is expressed in cells of the inner cell mass (ICM) and PGCs in 

mouse (Avilion et al, 2003), as well as in the human ICM (Cauffman et al, 2009). 

Those studies support the notion that the pluripotency network in human germ cells is 

differentially regulated compared to other cell types. Interestingly, a study in sheep 

revealed that Sox2 was apparently downregulated during PGC development, despite 

the maintenance of Oct4 and Nanog (Ledda et al, 2010), which further implies the 

difference of Sox2/SOX2 expression in different species. 

 

1.1.2. Germ cell migration  

MOUSE After their commitment, PGCs migrate through amoeboid-like movements 

toward the dorsal region of the fetus and reach the genital ridges at around 10.5 dpc. 

Genes that are expressed in the germ cells and in the soma ensure not only PGC 

survival, but also proper gonad formation. Signaling cascades emanating from 

gonadal somatic cells as well as cell-to-cell interactions ensure PGC proliferation, 

survival, and colonization of the gonads. For example, expression of !1 integrin and 

E-cadherin (Anderson et al, 1999; Bendel-Stenzel et al, 2000) in PGCs facilitates 

their interaction with the extracellular matrix (ECM) and cell-to-cell adhesion via 

cellular processes. Receptor-ligand interactions, such as c-Kit signaling by KITL (also 

known as SCF) or chemokine responsiveness of PGCs to SDF1 signaling from the 

genital ridge, are crucial (Hutt et al, 2006; Molyneaux et al, 2003) for germ cell 

development and subsequent maturation of PGCs into gametes. Upon reaching the 

genital ridges, PGCs upregulate Dazl (Cooke et al, 1996) and Vasa (also known as 

Ddx4) (Noce et al, 2001; Toyooka et al, 2000). Interestingly, these genes are 

primarily regulated by promoter DNA methylation (Maatouk et al, 2006), suggesting 

that their expression possibly reflects the global epigenetic reprogramming during 

migration (described later). Indeed, recent studies suggest that many genes implicated 

in later stages of germ-cell development, such as gametogenesis and meiosis, are 

regulated by promoter DNA methylation (Borgel et al, 2010; Guibert et al, 2012). 

 

HUMAN During the fourth week, when the embryonic disc undergoes a process of 

folding, PGCs are passively incorporated into the embryo together with the yolk sac 
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wall. The gonadal ridges are visible as a distinct structure at the beginning of the fifth 

week. At this time, PGCs start migrating and reach the gonadal ridges at week 6 

(Falin, 1969; Fujimoto et al, 1977; Mc et al, 1953; Mollgard et al, 2010). Human 

PGCs show several features of motile cells and are able to move actively both on 

cellular and ECM substrates (Freeman, 2003; Kuwana & Fujimoto, 1983). Similar to 

mice, KITLG (human homolog of mouse KITL) and SDF1 are also implicated in 

directing the migration of human PGCs, as the KITLG receptor c-KIT is expressed in 

human PGCs (Hoyer et al, 2005) and putative PGCs derived from human ESCs 

express the SDF1 receptor CXCR4 (Bucay et al, 2009). DAZL and VASA are also 

expressed in human gonadal germ cells from week 6 on (Anderson et al, 2007; 

Castrillon et al, 2000; Gkountela et al, 2013). Interestingly, the CpG islands of Dazl 

and Vasa in the mouse appear to be conserved in humans, and they remain 

hypomethylated in sperm but not other somatic tissues (Chai et al, 1997; Sugimoto et 

al, 2009). Whether regulation of germline-specific genes by promoter methylation is a 

general feature in humans is still unclear.  

 

1.1.3. Epigenetic reprogramming 

MOUSE The full commitment of cells toward the germ cell lineage is contingent 

upon the fine-tuned molecular mechanisms regulating the maintenance of genomic 

imprinting. DNA methylation, a key mechanism of this stage of development, 

regulates the imprinted allele-specific gene expression. Once established, the 

methylation status of the DNA is typically stable through generations. However, the 

dynamic changes in the DNA methylation of germ cells take place at specific time 

points in germ cell development—namely in fertilized embryos and in PGCs. There 

are two phases of DNA demethylation during PGC development. The first phase 

occurs immediately during migration at around 8.0–8.5 dpc and involves global 

depletion of cytosine methylation and histone modification. There is a marked 

reduction in H3K9me2, starting at around 7.5 dpc until and continuing until 8.75 dpc, 

followed by an increase in H3K27me3 between 8.25 and 9.5 dpc (Seki et al, 2007). 

There is also a decrease in Dnmt3a and 3b transcripts and protein at 7.25 and 8 dpc, 

respectively (Seki et al, 2005; Yabuta et al, 2006). This is accompanied by a reported 

decrease in 5-methylcytosine (5mC) at 8 dpc (Seki et al, 2005). Prmt5, an arginine-

specific histone methyltransferase that mediates H2AR3me2s and/or H4R3me2s, is 
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enriched in PGCs from 8.5 dpc on, and the H2A/H4R3me2s shows higher 

accumulation in PGCs than somatic cells at 10.5 dpc (Ancelin et al, 2006). The 

second phase takes place at 11 dpc and involves locus-specific demethylation at 

DMRs in a Tet-dependent manner (Hajkova et al, 2008; Hajkova et al, 2002; Hajkova 

et al, 2010; Vincent et al, 2013). This reprogramming results in demethylation of 

many repetitive elements but critically includes the erasure of imprints, allowing the 

establishment of sex-specific imprints during gametogenesis.  

 

HUMAN The early stage of reprogramming has not been well studied in humans at 

this early stage of development. Nevertheless, some studies have revealed similarities 

to mice after colonization of the gonad (Gkountela et al, 2013; Wermann et al, 2010). 

The level of 5mC in human PGCs seemed to be reduced during development, as 5mC 

was undetectable in PGCs from the 7th-17th week in testes and the 6th-19th week in 

ovaries, while it was detected in surrounding somatic cells. H3K27me3 was enriched 

in the nuclei of PGCs in testes between the 7th to 10.5th week. However, at 11 weeks, 

H3K27me3 was undetectable in most of the OCT4+ PGCs. Interestingly, at 17 weeks 

in testes, H3K27me3 was again observed in the nuclei of 38% OCT4A+ PGCs. In 

ovaries, H3K27me3 was absent in 50–60% of PGCs at 6–8.5 weeks, after which all 

PGCs were negative for H3K27me3. Furthermore, H2A.Z was enriched in the nuclei 

of PGCs at 7–9 weeks in the testis and 7.5 weeks in the ovary. The high level of 

H2A.Z, a variant of histone H2A, was observed at 16–20 weeks in testis. Another 

study also reported the low levels of H3K9me2, H3K27me3, and H3K9me3, but  high 

levels of H3K9ac and H2A.Z in male germ cells at around week 16–20 (Almstrup et 

al, 2010). PRMT5 was expressed in BLIMP1+ germ cells (Eckert et al, 2008). These 

data demonstrate the change of histone modification in human PGCs. Demethylation 

of imprinted genes seems to start between week 9 and 16. The paternally methylated 

H19 and MEG3 DMRs were methylated between the 9th-20th week in male c-KIT+ 

PGCs, whereas maternally methylated DMRs in the testis exhibited a sharp reduction 

of methylation between the 16th and 17th week. In the ovary, a significant reduction 

of CpG methylation was observed by 16.5 weeks at all loci (H19, MEG3, PEG3 and 

KCNQ1) (Gkountela et al, 2013).  
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1.1.4. Sex differentiation and Meiosis 

MOUSE After colonizing the genital ridges, the PGCs (now called gonia) are 

exposed to retinoic acid (RA) and interact with sex-specific somatic Sertoli or 

granulosa cells. The signals from these gonadal somatic cells precipitate the onset of 

sexual differentiation of the gonia at around 13.5 dpc (Koubova et al, 2006). 

Consequently, in the male genital ridge, PGCs undergo mitotic arrest and become 

irreversibly committed to a spermatogenic cell fate by 14.5 dpc (Ohta et al, 2004). 

These spermatogonia resume cell proliferation at around 10 dpp to continue 

spermatogenesis. In the female gonads, gonia reside in clusters, the so-called germ 

cell cysts, enter meiosis at around 13.5 dpc, and transiently arrest at the diplotene 

stage of meiosis 1 as oocytes by 18.5 dpc. Meiosis is a unique type of cell division 

that generates gametes with a haploid parental chromosome set. Specialized 

interactions between chromosomes and modification of the cell cycle machinery 

facilitate chromosome segregation—a precisely timed process involving complex 

pathways. Errors in meiosis are the leading cause of birth defects and infertility, and 

unraveling the mechanisms involved in the meiotic process represents one of the 

biggest challenges in developmental biology. In female mice, RA induces the 

expression of pre-meiosis gene Stra8 and oocytes initiate meiosis in the fetal ovary 

between 13.5 and 16.5 dpc and arrest in the diplotene stage of the meiotic prophase 1 

by 18.5 dpc. At the onset of meiosis, germ cells express meiosis-specific proteins, 

such as SYCP1, SYCP2, and SYCP3, and form "H2AX, which play a role in axial 

core compaction, synapsis, and recombination. Downregulation of Sycp1 in occytes 

coincides with the arrest of oocytes in the diplotene stage of prophase 1 and is thought 

to signal somatic cells to begin organizing the primordial follicles (Paredes et al, 

2005). Oocytes resume meiosis 1 by entering into metaphase 1 during folliculogenesis 

a few weeks after birth to arrest again in the second meiotic division prior to ovulation.  

 

HUMAN Whether in human during sex differentiation is also induced by RA has not 

yet been determined. However, the expression of RA synthesizing enzymes 

(RALDH1, 2 and 3), along with retinoic acid receptor (RAR) expression was detected 

in human fetal ovaries (Childs et al, 2011; Le Bouffant et al, 2010), indicating that the 

induction of meiosis by RA is not limited to mice. In a human fetal organ culture 

system, RALDH1 was expressed at highest levels during meiosis initiation (11th–12th 
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week) and its inhibition by citral reduced numbers of meiotic germ cells. Conversely, 

addition of exogenous RA to this system increased the numbers of meiotic germ cells 

compared to controls (Childs et al, 2011). Importantly, STRA8 expression is reported 

to start from the 12th week on in the gonad (Houmard et al, 2009) and SYCP3 

expression was observed in human gonadal germ cells at least in the ovary at week 16 

(Liu et al, 2007), indicative of meiotic progression.  

 

1.1.5. Folliculogenesis and oocyte maturation 

MOUSE Shortly after birth, germ cell cysts degenerate and about one third of the 

oocytes become enclosed by granulosa cells and form primordial follicles, while the 

remaining oocytes undergo programmed cell death (Pepling & Spradling, 2001). 

Upon activation of the primordial follicle, the complex process of folliculogenesis 

ensues, with a bidirectional communication between the oocyte and the companion 

granulosa cells directing follicle development (Eppig, 2001; Eppig et al, 2002). The 

oocyte and surrounding granulosa cells are structurally and functionally associated via 

specialized cytoplasmic processes called transzonal projections (TZPs) and zona 

pellucida (ZP), representing a highly dynamic interaction regulating folliculogenesis 

in vivo and thereby ensuring appropriate oocyte maturation and ovulation (Albertini 

et al, 2001). Primordial follicles transition to become primary follicles when the 

granulosa cells surrounding the oocyte turn into cuboidal granulosa cells. SCF, LIF 

and bFGF secreted by the somatic compartment, and c-kit, Figla, Sohlh1, Sohlh2, 

Nobox and Lhx8 expressed by the oocyte promote this transition and rapid growth of 

the oocyte. During the secondary follicle stage, proliferation of granulosa and theca 

cells is mediated by expression of Gdf9 and Bmp15 in the oocyte (Jagarlamudi et al, 

2010). Subsequently, in response to follicle-stimulating hormone (FSH) and 

luteinizing hormone (LH), follicles form an antrum, initiating the process of 

steroidogenesis. Once the oocyte reaches maturity within the antral follicle, ovulation 

proceeds and meiosis resumes.  

 

HUMAN A detailed expression pattern of genes during development has not been 

reported yet. Nevertheless, the expression of a variety of genes expressed in mouse 

oocytes has also been observed in human oocytes. FIGLA expression was observed in 

ovaries between week 14 to at least week 19 (Bayne et al, 2004) and in all follicle 
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stages of the adult ovary (Huntriss et al, 2006). NOBOX is expressed in all follicle 

stages of the adult ovary (Huntriss et al, 2006) and LHX8, GDF9, ZP1, ZP2 and ZP3 

are expressed in oocytes (Moriguchi et al, 2012). These studies support the notion that 

oocyte-related genes are well conserved between humans and mice. Importantly, 

mutations of LHX8, FIGLA and BMP15 have been detected in premature ovarian 

failure patients, suggesting that these genes are likely key mediators of fertility in 

humans (Suzumori et al, 2007).  

 

 
Table 1 Comparison of gene expression profiles of PGCs between different mammals. 
 
  Mouse Human 

Early PGC genes Blimp1 + + 
Prdm14 + ND 
Tfap2c + + 
Stella + ND 

Pluripotency genes Oct4 + + 

Nanog + + 
Sox2 + - 
SSEA-1 + + 
c-KIT + + 

Late PGC genes Dazl + + 

Vasa + + 
Meiosis genes Stra8 + + 

Sycp1-3 + + 
Oocyte genes Figla + + 

Nobox + + 
Lhx8 + + 
Gdf9 + + 
Zp1-3 + + 

 

 

1.2. Germ cell differentiation from mouse and human embryonic stem cells  

ESCs are cells derived from the ICM of preimplantation blastocysts (Evans & 

Kaufman, 1981; Martin, 1981; Thomson et al, 1998). These cells have the ability to 

self-renew indefinitely while maintaining the feature of pluripotency, defined as the 

potential to differentiate into cell types of all three germ layers (ectoderm, endoderm, 

and mesoderm) and germ cells. The establishment of mouse and human ESCs brought 

great excitement not only to the scientific community, but also to the clinical setting, 

raising high expectations on the potential use of these cells to broaden our 

understanding of the mechanisms involved in development and disease. However, the 
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controversy surrounding the derivation of ESCs from “human embryos” has limited 

the number of cell lines that were derived.  

 

A breakthrough from 2006 in the field of stem cell research has the potential to 

overcome this limitation. Mouse somatic cells were reprogrammed into so-called 

iPSCs by the ectopic co-expression of the four transcription factors Oct4, Sox2, Klf4, 

and c-Myc (Takahashi & Yamanaka, 2006). Mouse iPSCs are able to generate 

functional germ cells (Okita et al, 2007; Wernig et al, 2007) and, most importantly, 

are competent to form a full embryo by tetraploid embryo complementation (Kang et 

al, 2009; Zhao et al, 2009). Only one year after the first mouse iPSCs report, 

reprogramming of human cells was achieved by the same combination of 

transcription factors (OCT4, SOX2, KLF4 and C-MYC) and by a different 

combination of factors (OCT4, SOX2, LIN28 and NANOG) (Takahashi et al, 2007; Yu 

et al, 2007). Although further investigations are required to unravel how the 

reprogramming machinery works, this new technique enables the derivation of 

patient-specific iPSCs for disease modeling, drug screening, and investigations into 

the causative mechanisms underlying disease. 

 

Over the past few years, several studies reported the differentiation of PGCs in vitro 

from pluripotent stem cells, including iPSCs, from a variety of organisms. Amazingly, 

some reports even demonstrated further maturation of these germ cells into 

presumptive gametes, suggesting that in vitro differentiation models are powerful 

tools for the studying gametogenesis. Prior to examining in vitro germ cell 

development and gametogenesis, a brief review of mouse germline development will 

be provided. This will be followed by an overview of the advances in germ cell 

differentiation using mouse and human stem cells to date, with a focus on the 

generation of oocytes. The chapter will end with a presentation of the challenges 

encountered in the successful generation of mature gametes. 

 

1.2.1. In vitro differentiation of mouse germ cells 

1.2.1.1. In vitro differentiation of post-migratory PGCs 

Between 2003 and 2004, three independent groups showed that mouse ESCs are 

capable of spontaneously differentiating into both male and female germ cells 
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(Geijsen et al, 2004; Hubner et al, 2003; Toyooka et al, 2003). During the following 

10 years, this research field experienced a steady increase of attention, and gradually 

shifted from spontaneous differentiation strategies to inductive strategies.  

 

In 2003, Hübner et al. reported the generation of PGCs in vitro from XY-mouse ESCs 

that followed the oogenesis pathway upon extended culture (Hubner et al, 2003). The 

authors differentiated ESCs as a feeder-free monolayer in the absence of LIF and 

observed Oct4+/Vasa+ post-migratory PGC-like cells after about 8 days of culture. 

Aggregates of Oct4-/Vasa+ cells were subsequently found to detach from the cell 

layer and produce large SYCP3 positive oocyte-like cells. After 30 days of culture, 

rare blastocyst-like structures were detected, indicative of parthenogenetic activation. 

However, the functionality of the presumptive oocytes was not shown. Shortly 

afterwards, Toyooka et al. published a study describing the differentiation of ESCs 

into male germ cells in vitro (Toyooka et al, 2003). In this study, mouse ESCs were 

co-aggregated with BMP4-producing transgenic cells to form EBs and, interestingly, 

Vasa+ post-migratory PGC-like cells were detected within 1 day. These Vasa+ cells 

developed into sperm-like cells upon transplantation into mouse testis; however, 

fertilization was not reported. Similarly, Geijsen et al. described the in vitro 

generation of male haploid cells from spontaneously differentiating EBs under serum-

containing condition (Geijsen et al, 2004). Upon injection into oocytes by 

intracytoplasmic sperm injection (ICSI), the haploid cells developed into blastocysts, 

but offspring were not produced. Taken together, these initial reports clearly 

demonstrated the differentiation capacity of mouse ESCs into both male and female 

germ cells in culture, and spurred further efforts in the development of robust in vitro 

differentiation systems. 

 

It is worthwhile to mention that none of the early studies provided proof of 

competence and functionality of the ESC-derived germ cells. In this context, Novak et 

al. reported that ESC-derived germ cells exhibit abnormal progression through 

meiosis (Novak et al, 2006). Even though the PGC-like cells generated by those 

researchers exhibited SYCP3 protein expression, additional meiotic markers or 

homologous chromosome synapses specific for meiotic progression could not be 

detected, such as SYCP1 and SYCP2. This data imply that the majority of in vitro–

generated germ cells fail to undergo normal meiosis, which may explain their failure 
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to further differentiate into functional gametes. Nevertheless, a recent ultrastructural 

comparison between natural and ESC-derived oocytes and follicles by Psathaki et al. 

revealed that oocytes exhibited remarkable similarities, as did, interestingly, the in 

vitro produced granulosa-like cells. The aggregates analyzed in this study exhibited 

characteristics typical of natural follicles, i.e. one or multiple oocyte-like cells, an 

ECM-based interphase, and granulose-like cells exhibiting TZPs. This data suggest 

the presence of ongoing folliculogenesis with active interactions between germ cells 

and granulosa cells generated in vitro (Psathaki et al, 2011).  

 

In 2006, one report described the in vitro differentiation of fully-grown sperm, as 

ascertained by morphology and immunocytochemical staining for known sperm 

markers (Nayernia et al, 2006). According to this report, stable PGC-like cell lines 

were derived from mouse ESCs carrying a Stra8 reporter construct. Upon 

differentiation on inactivated MEFs and induction with RA, about 60% of the cells 

expressed Stra8, a RA-responsive gene involved in meiosis in the male mouse. The 

Stra8+ cell population was further cultivated under non-inducing conditions, giving 

rise to stabile cell lines with conserved Stra8 and PGC marker expression, including 

Oct4, Stella, and Vasa, indicative of spermatogonial stem cells (SSCs). After another 

course of RA treatment, Acrosin+ and haploid cells were detected in the culture, 

indicative of post-meiotic spermatids. However, analysis of these differentiated cells 

revealed incomplete epigenetic resetting. ESC-derived SSC-like cells gave rise to 

sperm after implantation into testis. After ICSI of the sperm into oocytes, live 

offspring were produced, but the progeny had obvious growth abnormalities and died 

within 5 months. This report has provided evidence for the potential derivation of 

male gametes in vitro, but the generation of healthy offspring still has to be 

demonstrated.  

 

1.2.1.2. Differentiation by co-culture with animal-origin somatic cells 

Other approaches for the in vitro generation of germ cells from ESCs utilize co-

cultures with gonadal somatic cells or cultures in conditioned medium. Lacham-

Kaplan et al. reported the formation of ovary-like structures containing oocyte-like 

cells from differentiating EBs in testis-conditioned medium that were collected from 

testicular cell cultures of male newborn mice (Lacham-Kaplan et al, 2006). After 2–5 
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days of differentiation, Oct4+/c-Kit+/Vasa+ PGC-like cells were observed, which 

further developed to 15–30 "m large oocyte-like cells within follicle-like structures. 

Even though expression of the oocyte markers Figla and Zp3 was shown, neither 

meiotic progression nor functionality had been confirmed. A similar report came from 

Qing et al., demonstrating that co-culturing EBs with granulosa cells from female 

newborn mice enhances female germ cell marker expression and oocyte-like cell 

formation (Qing et al, 2007). Different from other publications is the reported 

expression of Sycp1, Sycp2, and Sycp3 at the mRNA level in oocyte-like cells. 

However, SYCP3 proteins were detected in the cytoplasm in these cells, while SYCP 

proteins co-localize with DNA during meiosis in natural germ cells. Taken together, 

these data suggested that factors secreted by the somatic component of the gonads and 

the direct interaction of gonadal somatic cells with in vitro–generated germ cells 

appear to have a positive effect on the outcome of in vitro germ cell differentiation. 

However, these effects could not give rise to mature and functional gametes. 

Nevertheless, the identification of factors that enhance germ cell differentiation in 

these culture systems would greatly enhance our understanding of germ cell 

development both in vivo and in vitro.  

 

The lack of markers that can distinguish germ cells from ESCs likely constitutes the 

biggest limitation in the field of in vitro germ cell differentiation. PGCs and ESCs 

share most of the known markers of the germ cell lineage, hampering the ability to 

efficiently separate PGCs from ESCs or pluripotent cell populations. For example, 

SSEA-1 is not only commonly used for the identification of undifferentiated mouse 

ESCs, but it also serves as surface marker for the isolation of early PGCs from 

somatic cell populations. Nicholas et al. utilized #PE-Oct4-GFP ESCs and reported a 

combination of common markers can be used to distinguish early PGCs and late 

female germ cells, respectively, from differentiating ESCs, by considering the signal 

intensity during purification (Nicholas et al, 2009). An isolated Oct4+/SSEA1+ (high 

signal) population was enriched within differentiation cultures with early PGC 

markers, such as Oct4, Stella, Nanos3, and Vasa, while the corresponding 

Oct4+/SSEA1- population expressed the meiotic marker Stra8 and the oocyte-specific 

gene Gdf9, suggesting an oocyte identity. In addition, the expression of the meiotic 

markers was enhanced by addition of BMP4, RA, and CYP26 inhibitor—factors 
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known to stimulate meiosis. However, these in vitro ESC-derived oocyte-like cells 

showed blockage of meiotic progression, as indicated by only a partial SYCP3 

chromosomal alignment and the absence of SYCP1 elongation. To further assess the 

developmental capacity of the generated meiotic oocytes, co-aggregates with 

dissociated wild-type newborn ovarian tissues were transplanted into recipient female 

mice. The ESC-derived GFP+ oocytes were found to recruit somatic granulosa cells 

and develop up to the primary follicle stage. However, whether these follicles can 

progress further in development remains to be elucidated.  

 

1.2.1.3. In vitro differentiation of pre-migratory PGCs 

While the difficulty of meiotic progression in vitro impedes the robust establishment 

of post-migratory PGCs, one group successfully recapitulated PGC specification in 

vitro and generated pre-migratory PGCs. In 2009, Ohinata et al. established an ex vivo 

system for the generation of early PGCs from embryonic day (E)6.0 epiblast under 

serum-free defined culture conditions in the presence of BMP4, BMP8B, LIF, and 

SCF. After 6 days of culture, a small cell population expressing exclusively early 

PGC markers (including Blimp1, Stella, Oct4, and Vasa) had formed, representative 

of migratory PGCs. Furthermore, upon injection of PGC-like cells into neonatal 

mouse testis, they were found to develop into sperm, which subsequently produced 

live offspring after ICSI into oocytes (Ohinata et al, 2009). This study suggested that 

if epiblast-like cells can be obtained from other pluripotent cell types in vitro, the 

same protocol could be used to facilitate further differentiation into PGCs. Based on 

this report, Hayashi et al. introduced a 2-step differentiation protocol for ESCs—an 

approach that closely recapitulates germ cell commitment in vivo. ESCs were first 

converted into epiblast-like cell (EpiLCs) by induction with Activin A and bFGF, 

followed by differentiation into PGCs according to Ohinata et al. Global gene 

expression profiling of EpiLCs and PGC-like cells revealed a high similarity to their 

in vivo counterparts. Interestingly, EpiLCs were similar to E5.75 epiblast, but 

different from EpiSCs. Consistent with this observation, EpiSCs did not give rise to 

PGCs under the same differentiation regime. In vitro–derived PGCs also exhibited 

epigenetic properties and cellular dynamics similar those of in vivo PGCs. ESC-

derived PGCs were injected into neonatal mouse testis to produce sperm, which 

subsequently produced live offspring after ICSI into oocytes (Hayashi et al, 2011). 
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The authors later reported that these PGC-like cells are able to differentiate into 

oocyte upon transplantation into ovary (Hayashi et al, 2012). The authors reported 

that BLIMP1+/STELLA- PGCs were able to generate oocytes, demonstrating that 

PGC precursors have already acquired distinct PGC properties. The same group 

reported the induction of PGC-like cells by overexpression of three germ cell-related 

transcription factors (TFs), Blimp1, Prdm14 and Tfap2c (Nakaki et al, 2013). 

Overexpression of these TFs in EpiLCs successfully induced PGC-like cells under the 

same culture conditioned as described before but in the absence of cytokines. These 

TF-induced PGC-like cells exhibited similar global gene profiles and epigenetic 

profiles as wild type PGCs, and gave rise to functional sperm. Interestingly, even 

though the combination of the three factors induced PGC-like cells most efficiently, 

Prdm14 alone also induced the cells, indicating that Prdm14 plays a core function in 

PGC specification. This study revealed the core gene regulation of PGC specification 

in mouse. 

 

1.2.2. In vitro germ cell derivation from human pluripotent stem cells 

A great deal of our knowledge on PGC specification and development has been borne 

out of studies in the mouse embryo and over the last decade in particular in mouse 

ESC differentiation models. Due to the limited accessibility of cell materials, 

investigations into human gem cell development have only recently gained headway 

with the increasing use of human ESCs and iPSCs as an experimental model. Human 

pluripotent stem cells differ significantly from mouse pluripotent stem cells, and the 

same is thought true for germ cells. Direct extrapolation of data obtained from animal 

models to the human system is obviously not possible and several studies have 

already identified a variety of fundamental differences.  

 

1.2.2.1. The generation of post-migratory PGC-like cells 

One year after the first report of mouse in vitro germ cells, Clark et al. demonstrated 

that human ESCs are also capable of differentiating into PGCs (Clark et al, 2004). 

The authors compared the gene expression of human homologs of known mouse PGC 

markers in several human ESC lines, the ICM from human blastocysts, and human 

testis and observed that ESCs expressed early PGC markers such as STELLA and 

DAZL but not the late PGC markers such as VASA, SYCP1, SYCP3, BOULE, and 
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TEKT1. After the spontaneous differentiation of ESCs in EBs, the down-regulation of 

early PGC markers and up-regulation of later PGC markers confirmed the 

commitment of cells within the cultures to the germ cell lineage. In addition, a small 

number of VASA+ cells, representative of post-migratory PGCs, were detected at the 

border of the EBs. These encouraging findings spurred fervent interest toward the 

discovery of more efficient differentiation protocols. 

 

The same group later reported the inductive effect of BMP proteins on PGC marker 

expression during the differentiation of human ESCs into PGCs in vitro and addressed 

the conserved role of BMP proteins on PGC induction between human and mouse 

(Kee et al, 2006). BMP4 was found to induce VASA expression, whereas BMP7 and 

BMP8B did not show any individual effect, but rather enhanced the action of BMP4. 

Based on these data, the authors concluded that the combination of BMP4, BMP7, 

and BMP8B most strongly induces germ cell formation in vitro. This data indicated 

conserved molecular mechanisms on PGC specification between two species. 

 

Another report described the generation of human transgenic VASA-GFP ESC 

lines based on the observation that VASA is not expressed in ESCs (Kee et al, 2009). 

Those authors differentiated trangenic ESCs in medium supplemented with BMP4, 

BMP7, and BMP8b, based on their previous study (Kee et al, 2006). After 2 weeks, 

GFP+ cells were observed within cultures, which expressed also BLIMP1, STELLA, 

and DAZL and showed initiation of imprinting erasure of the H19 locus. However, the 

potential of meiotic progression and sexual bipotentiality of VASA+ cells remained 

unclear, as most of the analyzed cells did not express SYCP3 protein nor "H2AX, 

which are required for meiotic recombination and binding to double-stranded DNA 

breaks. The authors then investigated the role of DAZ, DAZL, and BOULE during 

the differentiation of human PGCs by utilizing the same differentiation protocol but 

omitting BMPs. Knockdown of the genes by short hairpin RNA (shRNA) led to a 

decrease in GFP+ cells, whereas overexpression of the genes led to progression of 

meiosis, indicated by a punctuate or elongated SYCP3 signal at higher frequency than 

that observed in wild type cells. These cells differentiated further into ACROSIN+, 

male haploid cells., The same group reported later that iPSCs could be differentiated 

into PGCs similarly to hESCs, suggesting that iPSCs might depict a promising 
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alternative to ESCs (Panula et al, 2011). Surprisingly, iPSC cultures contained more 

SYCP3-expressing cells than ESC lines under non-differentiating culture conditions, 

and one of the iPSC lines even contained a subpopulation of cells with elongated 

SYCP3 distribution. The authors suggested that iPSCs preferentially differentiate into 

the germ line, which might be linked to the enhanced expression of pluripotency 

markers during the reprogramming process. Medrano et al. utilized overexpression of 

VASA to enhance meiotic progression, and reported that even though VASA is not as 

effective as DAZL overexpression, VASA exhibits a synergistic effect with DAZL in 

ESCs and iPSCs (Medrano et al, 2011). These studies together suggest that DAZL 

and VASA play an important role in human germ cell development like in the mouse. 

 

In the context of meiotic competence of in vitro human germ cells, Chuang et al. 

reported the generation of SYCP3+ PGC-like cells without genetic modification. The 

authors differentiated OCT4-GFP transgenic ESCs in a serum-based medium 

containing BMP4 and WNT3A for up to 30 days and purified OCT4+ putative germ 

cells. Some of these OCT4+ cells expressed STELLA, DAZL and VASA at the 

protein level and importantly, 30% of the OCT4+ cells expressed SYCP3 in the nuclei. 

These PGC-like cells were then co-aggregated with dissociated newborn mouse 

ovaries and transplanted into the kidney capsule of NOD/SCID mice for 2 months. 

Even though some VASA+ or GDF9+ cells were detected in the reconstituted ovaries, 

further development into mature oocytes had not been shown. 

 

1.2.2.2. The generation of putative gametes 

There are some reports describing the generation of putative sperm-like cells without 

genetic manipulation. Bucay et al. reported the co-differentiation of in vitro PGCs and 

Sertoli cells from ESCs (Bucay et al, 2009). ESCs were first differentiated into VASA 

and AP double-positive PGC-like cells that revealed morphological characteristics of 

natural PGCs at the electron microscopy (EM) level. Upon further differentiation, 

these cultures showed increased expression of the late male GC markers VASA and 

ACROSIN and of the Sertoli cell markers MIS, FSHR, and SOX9, indicating the 

induction of late PGCs and Sertoli cell in the culture. In fact, these Sertoli-like cells 

exhibited morphological features characteristic of their in vivo counterparts, as 

analyzed by EM. However, although 45% of cells within the differentiation cultures 

expressed VASA and 35% expressed FSHR at the protein level, haploid cells were 
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not detected. Interestingly, this report mirrors the main findings of Psathaki et al., who 

performed an ultrastructural analysis of co-differentiated presumptive oocytes and 

granulosa cells generated from mouse ESCs.  

 

Eguizabal et al. reported the spontaneous generation of haploid cells from iPSCs 

(Eguizabal et al, 2011). iPSCs were cultured on MEF feeder cells without bFGF for 3 

weeks, followed by treatment with RA for additional 3 weeks. Early spermatogonia 

and spermatid marker-expressing cells were isolated and further cultivated in the 

presence of bFGF, LIF, Forskolin, and CYP26 inhibitor for another 3–4 weeks. By 

this time, VASA-expressing cells surrounded by somatic cells with marker expression 

typical of Sertoli and Leydig cells (VIMENTIN, NESTIN and 3!-HSD) were 

observed. Upon differentiation for an additional 4 weeks in the presence of factors 

supporting meiosis, a subpopulation of cells showed expression of the meiotic 

markers SYCP3 and "H2AX and the post-meiotic marker ACROSIN, indicating the 

formation of meiotic, i.e., haploid, cells. Analysis of the methylation status revealed a 

male-specific hypermethylation pattern of the H19 locus. Of importance is that the 

differentiation protocol did not work the same way for ESCs—as ESCs produced only 

VASA and SYCP3 double-positive and "H2AX-negative cells, similar to the report 

by Kee et al. (Kee et al, 2009). These findings and the report by Panula et al. (Panula 

et al, 2011) suggest that certain iPSC lines differentiated preferentially toward the 

germ line.  

 

1.2.2.3. Differentiation by co-culture with animal-origin somatic cells 

There are few studies employing co-cultures with animal-origin somatic cells that 

obtained putative matured gametes. West et al. reported the emergence of VASA+ 

PGC-like cells when ESCs were differentiated on MEF cells in the presence of bFGF 

without being passaged for 10 days (West et al, 2008). Amazingly, about 60% of the 

cells expressed OCT4 and VASA proteins. However, VASA localized to the 

nucleus—a phenomenon that needs to be explained and clarified, as it is typically 

expressed in the cytoplasm. The same group subsequently reported the establishment 

of a stable germ-like cell line (GLC) from those ESC-derived VASA+ cells (West et 

al, 2011). Extended culture of GLCs without passaging purportedly produced more 

than 70% of cells positive for the meiotic marker SYCP3 and the meiotic 
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recombination protein MLH1. Upon further differentiation, cells showed increased 

expression of the male germ cell marker ACROSIN, with more than 6% of cells being 

haploid. Interestingly, this group and Nayernia et al., who also generated haploid cells, 

reported similar data (Nayernia et al, 2006). For instance, both groups established 

ESC-derived stable germ-like cell lines that expressed late PGC markers (VASA and 

Stra8) and upon further differentiation produced SYCP3-expressing meiotic 

subpopulations. As the cell lines established by Nayernia et al. showed imprinting 

abnormality, it would be interesting to know the imprinting status of these GLCs.  

 

Park et al. reported that co-culturing of ESCs and iPSCs with human fetal gonadal 

stromal cells (hFGSCs) enhances the generation of PGCs (Park et al, 2009). When 

differentiated on hFGSCs in the absence of bFGF, both ESCs and iPSCs produced c-

KIT, SSEA-1, and VASA triple-positive cells that additionally co-expressed BLIMP1, 

STELLA, and DAZL by day 7. PGCs generated from ESCs initiated imprinting erasure, 

whereas iPSC-derived PGCs did not, indicating that iPSC-derived PGCs may have a 

compromised ability to undergo erasure of CpG methylation at imprinted genes. Of 

importance is that the induced differentiation of hFGSCs into PGCs was more 

efficient than that of placenta or liver stromal cells, suggesting that PGC induction is 

affected by not only the topology of the feeder cells, but also the specific cell type of 

the starting cell population. 
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Table 2. Overview of germ cell differentiation procedures cited in the introduction (modified Sugawa 
et al. 2013). mESC: mouse embryonic stem cell, miPSC: mouse induced pluripotent stem cell, hESC: 
human embryonic stem cell, hiPSC: human induced pluripotent stem cell, MN: monolayer, EB: 
embryoid body, MEF: mosue embryonic fibroblast, hFGSC: human fetal gonad stromal cell, R115866: 
CYP26 inhibitor, postPGC: post-migratory PGC, prePGC: pre-migratory PGC, PGC: primordial germ 
cell, 1: Upon transplantation into mouse, 2:Upon overexpression of germ cell-related genes(s) 
 
Reference Origin Approach / Factors 

supplemented 
Cells observed / 
Offspring 

Hübner et al. 2003 mESC ML / - postPGC, oocyte, 
blastcyst 

Toyooka et al. 2003 mESC EB / co-aggregate with TM4 
secreting BMP4 

postPGC, sperm 

Geijsen et al. 2004 mESC ML / - sperm, blastcyst (by 
ICSI)  

Lacham-Kaplan et al. 
2006 

mESC EB / mouse testis-conditioned 
medium 

oocyte 

Nayernia et al.2006 mESC ML / RA postPGC, sperm, 
offspring1 (abnormal) 

Novak et al. 2006 mESC ML / - oocyte 
Qing et al. 2007 mESC EB / co-culture with mouse 

granulosa cells 
oocyte 

Nicholas et al. 2009 mESC EB / BMP4, CYP26 inhibitor, 
SDF1, SCF, bFGF, n-acetyl-
cysteine, forskolin 

postPGC, oocyte 

Hayashi et al. 2011, 
2013 

mESC, 
miPSC 

ML+EB / Activin A, bFGF, 
BMP4, BMP8b, LIF, SCF, EGF 

prePGC, offspring1 

Vincent et al. 2011 mESC EB / - prePGC 
Psathaki et al. 2011 mESC ML+EB / ITS, EGF, SCF, BMP4, 

LIF, FSH 
oocyte 

Nakaki e al. 2013 mESC ML+EB / Activin A, bFGF postPGC2 (Blimp1, 
Prdm14, Tfap2c), 
offspring1 

Clark et al. 2004 hESC EB / - postPGC 
Kee et al.2006 hESC EB / BMP4, BMP7, BMP8b  
West et al.2008 hESC ML / co-culture with MEF, bFGF postPGC 
Tilgner et al. 2008 hESC ML / - postPGC 
Bucay et al. 2009 hESC ML / co-culture with MEF postPGC 
Park et al. 2009 hESC, 

hiPSC 
ML / co-culte with hFGSCs postPGC 

Kee et al. 2009 hESC ML / BMP4, BMP7, BMP8b postPGC, sperm2 (DAZ 
family) 

Panula et al. 2011 hESC, 
hiPSC 

ML / BMP4, BMP7, BMP8b postPGC, sperm2 (DAZ 
family) 

West et al. 2011 hESC ML / co-culture with MEF, bFGF postPGC, sperm 
Eguizabal et al. 2011 hESC, 

hiPSC 
ML / co-culture with MEF, RA, 
bFGF, LIF, Forskolin, R115866 

sperm 

Medrano et al. 2011 hESC, 
hiPSC 

ML / - postPGC, sperm2 
(VASA) 

Chuang et al.2012 hESC EB / BMP4, WNT3A postPGC 
 

 

 

 



Figure 2 Chronology of mouse germ cell development and correlation of cited in vitro germ cell 
protocols (modified Sugawa et al. 2013). 
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2. Materials and methods 

2.1. Materials 

2.1.1. Reagents 

Name Manufacturer Catalogue number 

Accutase PAA L11-007 

Activin A, recombinant human/mouse/rat R&D systems 338-AC-010 

Anti-BLIMP1 antibody Cell Signaling 9115 

Anti-BRACHYURY (T) antibody Santa Cruz sc-17745 

Anti-OCT4A antibody  Santa Cruz sc-8628 

Anti-SSEA-1 (CD15) MicroBeads, human and mouse Miltenyi Biotec 130-094-530 

Anti-STELLA Antibody Millipore MAB4388 

Anti-5-Methylcytosine (Methyl-CpG) Antibody Aviva Amm99021 

α -MEM Sigma-Aldrich M4526 

BLIMP1 shRNA lentiviral knockdown constructs Thermo Fisher RHS4533-EG639 

BMP4, CF, recombinant Human R&D systems 314-BP-050/CF 

B27 supplement minus vitamin A Invitrogen 12587-010 

Chicken serum Invitrogen 16110-082 

CHIR99021 Biovision 1667-5 

DMEM/F-12 Invitrogen 21041-025 

DMEM high glucose PAA E15-009 

DMEM low glucose PAA E15-005 

DMSO Sigma-Aldrich D2650 

DNase I Sigma-Aldrich DN25 

Epidermal growth factor, recombinant human Invitrogen PHG0315 

EpiTect Bisulfite Kit QIAGEN 59104 

FastDigest Green Buffer Fermentas B72 

Fetal bovine serum Hyclone SH30070.03 

Fetal bovine serum gold PAA A15-151 

FGF-basic, recombinant human Peprotech 100-18B 

Fibronectin Sigma-Aldrich F2006 

Follicle stimulating hormone, recombinant human Sigma-Aldrich F4021 

Gelatin solution, 2% Sigma-Aldrich G1393 

GMEM Invitrogen 11710-035 

G418 sulfate Invitrogen 10131-035 

HindIII Fermentas FD0504 

HumanHT-12 v4 expression BeadChip kit Illumina BD-103-0204 
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Human Stem Cell Nucleofector Kit Lonza VPH-5012 

Illumina TotalPrep RNA Amplification Kit Ambion AMIL1791 

Insulin-Transferrin-Selenium-Sodium Invitrogen 51300-044 

Insulin-Transferrin-Selenium-Sodium Sigma-Aldrich  

iTaq Universal SYBR Green Supermix BioRad 172-5125 

Knockout DMEM Invitrogen 10829-018 

Knockout serum replacement Invitrogen 10828-028 

Leukemia inhibitory factor, mouse Millipore ESG1107 

Leukemia inhibitory factor, recombinant human Millipore LIF1010 

L-glutamine Invitrogen 25030-081 

Lipofectamine 2000 Invitrogen 11668-019 

MACS MS column Miltenyi Biotec 130-042-201 

MACS MultiStand  Miltenyi Biotec 130-042-303 

Matrigel Matrix High Concentration, Growth Factor 

Reduced *LDEV-Free 

BD Biosciences 354263 

MiniMACS Separator Miltenyi Biotec 130-042-102 

M-MLV Reverse Transcriptase Affymetrix 78306 

Neurobasal medium Invitrogen 12348-017 

Nonessential amino acids PAA M11-003 

NucleoBond Xtra Maxi MACHEREY-

NAGEL 

740416.5 

Nucleofector II device Lonza  

N2 supplement Invitrogen 17502-048 

Opti-MEM Invitrogen 31985062 

Penicillin /streptomycin PAA P11-010 

Penicillin /streptomycin /glutamine PAA P11-013 

PD0325901 Stemgent 04-0006 

pCRII TOPO vector Invitrogen K4650-40 

pEGFP-1 vector Clontech 6086-1 

pMD2.G Addgene 12259 

psPAX2 Addgene 12260 

Phusion High-Fidelity DNA Polymerase Thermo Fisher F530 

QIAquick PCR Purification Kit QIAGEN 28106 

QIAquick Gel Extraction Kit QIAGEN 28704 

PRDM14 shRNA lentiviral knockdown constructs Thermo Fisher RHS4533-EG63978 

RPMI 1640 PAA E15-039 

RNeasy Micro Kit QIAGEN 74004 

Sodium pyruvate PAA S11-003 

Stem cell factor, recombinant mouse Millipore GF141 
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Stem cell factor, recombinant human Invitrogen PHC2116 

Streptavidin-Cy3 GE Healthcare PA43001 

TOP10 Chemically Competent E. coli Invitrogen C4040-10 

TrypLE express enzyme, no phenol red Invitrogen 12604-021 

Trypsin-EDTA 0.25%, phenol red Invitrogen 25200-056 

T4 ligase Roche 10799009001 

WNT3A, recombinant human R&D systems 5036-WN-010 

XhoI Fermentas FD0694 

Y-27632 dihydrochloride Abcam 

Biochemicals 

ab120129 

ZR Plasmid Miniprep ZYMO research D4015 

2-mercaptoethanol Invitrogen 31350-010 

 

2.1.2. Equipment 

Name Manufacture Catalogue number 

Conical tube, 15 ml SARSTEDT 62.554.002 

Conical tube, 50 ml SARSTEDT 62.547.004 

Culture plate, 10 cm SARSTEDT 83.1802 

Culture plate, 12 well Nunc 150628 

Culture plate, 15 cm SARSTEDT 83.1803 

Culture plate, 6 cm SARSTEDT 83.1801 

Culture plate, 6 cm suspension Corning 430589 

Culture plate, 6 well SARSTEDT 83.§839 

Culture plate, 96 well U-Bottom Ultra Low Attachment  Corning 7007 

CryoTube vial Nunc 377244 

Cell strainer, 40 μm BD Biosciences 352340 

Cell strainer, 70 μm BD Biosciences 351350 

Vacuum Filter, 0.22 "m Corning 431153 

 

2.2. Methods 

2.2.1. Animals 

The SCID mice used in this study were raised in a temperature and humidity 

controlled animal facility with a 12 hr light- dark cycle controlled environment at a 
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temperature of 22 ± 1 °C and 35 ± 5 % humidity. All the animal experiments were 

performed under the ethical guidelines of the Max Planck Institute. 

 

2.2.2. Cell culture medium 

MEF medium 

• DMEM Low Glucose  

• 15% Fetal bovine serum Gold  

• 1x Penicillin /streptomycin /glutamine  

 

Mouse ESC medium 

• Knockout DMEM  

• 15% Knockout serum replacement  

• 1x Penicillin /streptomycin /glutamine  

• 1x Nonessential amino acids  

• 0.1 mM #-Mercaptoethanol 

• 1,000 units/ml Leukemia inhibitory factor, mouse  

 

Mouse PGC medium (serum-containing) 

• DMEM high Glucose  

• 15% Fetal bovine serum  

• 1x Penicillin /streptomycin /glutamine  

• 1x Nonessential amino acids  

• 0.1 mM #-Mercaptoethanol 

 

 
Mouse PGC medium (serum-free) 

• modified $MEM 

• 3 mg/mL Bovine serum albumin  

• 1x Penicillin /streptomycin  

• 2 mM L-glutamine  

• 0.23 mM Sodium pyruvate (Invitrogen) 

• 1x Insulin-Transferrin-Selenium-Sodium (Invitrogen) 

• 1 ng/ml Epidermal growth factor, recombinant human 
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• 50 ng/ml Stem cell factor, recombinant mouse 

 

Mouse oocyte growth media 

• modified$MEM 

• 3 mg/mL Bovine serum albumin  

• 1x Penicillin /streptomycin  

• 0.23 mM Sodium pyruvate (Invitrogen) 

• 5mg/mL Insulin, 5mg/mL Transferrin, 5ng/mL Selenium (Sigma-Aldrich) 

• 1 ng/ml Epidermal growth factor, recombinant human  

• 5 ng/mL Follicle stimulating hormone, recombinant human 

 

Mouse oocyte maturation medium 

• modified $MEM 

• 3 mg/mL Bovine serum albumin  

• 1x Penicillin /streptomycin  

• 0.23 mM Sodium pyruvate (Invitrogen) 

• 5mg/mL Insulin, 5mg/mL Transferrin, 5ng/mL Selenium (Sigma-Aldrich) 

• 1 ng/ml Epidermal growth factor, recombinant human  

• 100 ng/mL Follicle stimulating hormone, recombinant human 

 

Human ESC medium 

• Knockout DMEM  

• 20% Knockout serum replacement  

• 1x Penicillin /streptomycin /glutamine  

• 1x Nonessential amino acids  

• 0.1 mM #-Mercaptoethanol 

• 5 ng/ml FGF-basic, recombinant human  

 

Human PGC precursor medium (unless stated otherwise) 

• DMEM/F-12  

• 1x N2 supplement   

• 1x B27 supplement minus vitamin A  

• 1x Penicillin /streptomycin /glutamine  
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• 1x Nonessential amino acids  

• 0.1 mM #-Mercaptoethanol 

• 0.5% (wt/vol) bovine serum albumin  

• 50 ng/ml Activin A, recombinant human/mouse/rat  

• 5 ng/ml BMP4, career-free, recombinant human  

• 20 ng/ml FGF-basic, recombinant human  

• 10 ng/ml FGF-basic, recombinan 

 

In some experiments, the following cytokine was added to the medium 

• 100 ng/ml WNT3A, recombinant human 

 

GK20 medium (Human PGC medium) (unless stated otherwise) 

• GMEM  

• 20% Knockout serum replacement  

• 10 mM Sodium pyruvate (PAA) 

• 1x Penicillin /streptomycin /glutamine  

• 1x Nonessential amino acids  

• 0.1 mM #-Mercaptoethanol 

• 20 "M Y-27632 dihydrochloride  

 

For the PGC differentiation, the following cytokines were added to the medium 

• 100 ng/ml BMP4, career-free, recombinant human  

• 20 ng/ml Leukemia inhibitory factor, recombinant human  

 

In some experiments, the following cytokine was added to the medium 

• 0.5-100 ng/ml Stem cell factor, recombinant human 

 

RPMI medium 

• RPMI 1640  

• 15% Fetal bovine serum Gold  

• 1x Penicillin /streptomycin /glutamine  
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Cell freezing medium 

• The corresponding medium for cell lines without cytokines or chemicals 

• 20% DMSO 

• 10  "M Y-27632 dihydrochloride (only for human ESCs and iPSCs) 

 

2.2.3. Cell culture  

2.2.3.1. Derivation of MEF 

MEFs were generated from E12.5 dpc embryos of C57BL/6, C3H, or CF1 mice. The 

pregnant female mice were sacrificed by cervical dislocation and extraembryonic 

membranes and placentas were removed and placed in PBS. The uteri were isolated 

and the embryos were removed and immersed in PBS. After decapitation of the 

embryos, heart and liver as well as the extremities were removed and the remaining 

embryos were placed in MEF medium. The embryos were cut into small pieces with 

scissors and digested with 0.05% Trypsin/EDTA for 4 min at 37 °C. The tissue was 

further digested with a 4 to 1 dilution of 0.05% Trypsin/EDTA with MEF medium. 

Subsequently, the digests were filtered through a 100 "m cell strainer and the cell 

suspension was centrifuged at 1,000 rpm for 5 min and then plated onto gelatinized 

plates at a density of 2-3 embryos per 15 cm tissue culture dish and cultivated at 

37 °C with 5% CO2 in a humidified incubator. 

 

2.2.3.2. MEF culture 

MEFs were cultured in MEF medium on 0.1 % gelatin-coated 15-cm plates (2.0 x 106 

cell/dish) at 37 °C with 8.5 % CO2. The cells were passaged every other day by 

0.25% Trypsin/EDTA dissociation of the culture into single cells until passage 

number 3. The cells were then mitotically inactivated by irradiation at 1 gy/min for 45 

min and stored in freezing medium in liquid nitrogen. 

 

2.2.3.3. Preparation of MEF-conditioned medium (MEF-CM) 

Irradiated MEFs (CF1) were plated at 56,000 cells/cm2 in MEF medium. To condition 

medium, MEF medium was replaced with human ESC medium (0.5 ml/cm2). MEF-

CM was collected and replaced with fresh human ES medium every day for 1 week. 
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The collected MEF-CM was then filtered (0.22 number 3), aliquoted and frozen at -

20oC. 

 

2.2.3.4. Preparation of coated-plates 

Gelatin-coated plates 

Tissue culture dishes of the required size were coated with a layer of 0.1% gelatin in 

sterile PBS and incubated at 37 °C for 1 hr in a humidified incubator.  

 

FBS-coated plates 

Tissue culture dishes of the required size were coated with a layer of FBS and 

incubated at room temperature for 1 hr.  

 

Matrigel-coated plates 

Matrigel was thawed on ice overnight and then diluted 1:3 with ice-cold knockout 

DMEM. 1-ml aliquotes were then frozen at -20oC as stocks. For coating of plates, 

each 1-ml stock was diluted with 24 ml of knockout DMEM on ice (1:75 total 

dilution). Precooled 6- or 12-well plates were covered with 1ml or 0.4ml of diluted 

matrigel, respectively. Plates were then wrapped in parafilm and kept at room 

temperature overnight. The next day, plates were transferred to 4 °C for at least 1 day. 

 

2.2.3.5. Mouse ESC culture 

Mouse ESCs were cultured either in mouse ESC medium on irradiated MEF 

(C57BL/6 or C3H)-coated plates or in mouse N2B27+2i medium on poly-L-

ornithine/laminin-coated plates. The cells were passaged every other day by accutase 

dissociation of the culture into single cells. 

 

2.2.3.6. Mouse EpiScs and Δouse EpiScs+ EpiSCs culture 

Mouse EpiSCs and Δ and EpiSCs+ EpiSCs were cultured in MEF-CM supplemented 

with 5 ng/ml human bFGF at 37 °C with 5% CO2 on FBS-coated plates. The medium 

was changed every day and the cells were passaged every 4–6 days by accutase 

dissociation of the culture into single cells. 
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2.2.3.7. Mouse PGC differentiation 

Mouse ESC lines (gcOct4-GFP (XY) and OG2 (ΔPE-Oct4-GFP, XY; XX)) were 

differentiated into oocytes according to 3 protocols: a serum-containing protocol, a 

serum-containing/serum-free differentiation combination protocol, and a serum-free 

differentiation protocol. Briefly, for the serum-containing differentiation procedure, 

cells were grown in tissue culture plates in mouse PGC medium (serum-containing) in 

the absence of MEF feeder cells and LIF for up to 30 days. The medium was changed 

every 3 days for 9 days and every other day thereafter. Floating cell aggregates after 

day 12 of differentiation were collected and processed as published (Hubner et al, 

2003). 

 

For the serum-containing/serum-free differentiation combination technique, ESCs 

were differentiated under serum-containing conditions for 7–12 days. The adherent 

cell layer was digested with accutase and the single-cell suspension was then plated as 

a suspension culture at a 1:1 ratio in serum-free PGC medium in a humidified 

incubator at 37 °C in 5% O2 and 5% CO2. Cells were cultured for 7–15 days, and 

putative oocytes were then individually picked with a drawn-out glass capillary. 

 

For the serum-free differentiation protocol, feeder-free ESCs were plated on gelatin-

coated tissue culture plates in mouse N2B27 medium supplemented with 10 ng/ml 

Bmp4 and 1,000 units/ml LIF and cultured for 48 h. The adherent cell layer was then 

digested with accutase and the single-cell suspension was replated at a 1:2 ratio in 

IVG media supplemented with SCF (100 ng/ml) and LIF (1,000 units/ml) in 

suspension plates. After 3 days of culture, cell aggregates were transferred to 

gelatinized 24-well tissue culture plates at a density of 5–6 aggregates per well and 

further cultivated for 5 days in medium lacking LIF. Cultures were then partially 

digested in 0.05% trypsin/ EDTA supplemented with 0.02% DNase I, replated in 

oocyte growth media and cultured in a humidified incubator at 37°C in 5% O2 and 

5% CO2 for additional 12–15 days. Putative oocytes were cultivated in maturation 

medium. 

 

2.2.3.8. Human ESC and iPSC culture 
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Human ESCs and iPSCs were cultured in MEF-CM supplemented with 5 ng/ml 

human bFGF at 37 °C and 5% CO2 on Matrigel-coated plates and used at a passage 

number below 50. The medium was changed every day and the cells were passaged 

every 4–6 days by collagenase IV (1 mg/ml) dissociation of the culture into cell 

clumps. 

 

2.2.3.9. Human PGC precursor and PGC differentiation 

To induce differentiation, human ESCs and iPSCs were dissociated into single cells 

by TrypLE and plated on a matrigel-coated well of a 12-well plate (2.0 x 105 

cells/well) in PGC precursor medium. After 48 hours, cells were dissociated by 

TrypLE and plated in a well of an ultra-low-attachment U-bottom 96-well plate in 

human PGC medium (9,000 cells/well). 

 

2.2.4. Amplification of STELLA promoter sequence 

5 kbps of human STELLA promoter was amplified by PCR from genomic DNA of 

human ESCs (H9 human ESCs) using Phusion High-Fidelity DNA Polymerase. The 

condition and primers used for amplification are described below. The PCR products 

were analyzed by electrophoresis. Bands with expected product size were cut out of 

the gel and purified using the QIAquick Gel Extraction Kit according to the 

manufacture’s protocol. 

 

98 °C 30 sec  

98 °C 10 sec 

40 cycles 60 °C 30 sec 

72 °C 2 min 

72 °C 10 min  

4 °C ∞  

 
 Primer sequence (5'-3') Product size (bp) 

STELLA 

promoter 

Fw: TAGTTAGAGCTCATTCTCGAGAACAGCAGGTGCTGAAGG 
4739 

Rv: TATTGAATTCAATTAAGCTTGATCGCCTAGGGGCTTAAC 

TEX13B 

promoter 

Fw: TAGTTAGAGCTCATTCTCGAGGCTGCATGTTGGTAGGGTTT 
4659 

Rv: TATTGAATTCAATTAAGCTTCGGCGTCTTGACACAACACT 
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2.2.5. Ligation of the STELLA promoter sequence into pEGFP-1 vector 

The PCR fragments and the pEGFP-1 plasmid were digested with  HindIII and XhoI 

in FastDigest Green Buffer at 37 °C for 4 hr. The digested samples were purified 

using the QIAquick PCR Purification Kit according to the manufacture’s protocol. 

The STELLA promoter fragment was then ligated into the pEGFP-1 vector using T4 

ligase overnight at 16 °C.  

 

2.2.6. Transformation of competent bacterial cells 

50 µl of TOP10 Chemically Competent E. coli cells were thawed on ice for 10 min, 

mixed with 6-25 µl of the ligation reaction mix and placed on ice for 30 min and 

occasionally mixed. The transformation reaction mixture was heat shocked at 42 °C 

for 30 sec and immediately placed on ice for 5 min. 180 e tranLB medium was added 

to the reaction mixture and incubated at 37 °C with shaking for 1 hr. Cells were then 

plated on LB-agar plates containing kanamycin and incubated overnight at 37 °C in 

an upside-down position. 

 

2.2.7. Plasmid DNA preparation 

Individual transformed E. coli colonies were picked up and cultivated in 2 ml LB 

medium containing kanamycin at 37 °C for 16 hr. Plasmid DNA was isolated from 1 

ml bacterial cultures using the ZR Plasmid Miniprep kit according to the 

manufacturer’s protocol. For selection of clones containing the appropriate plasmid, 

the purified plasmids were digested with HindIII and analyzed by agarose gel 

electrophoresis. Samples that showed expected band size were further cultivated in 

200 ml LB medium containing kanamycin at 37°C for 16 hr and purified using 

NucleoBond Xtra Maxi kit according to the manufacturer’s protocol. Purified 

plasmids were stored at -20 °C until use. 

 

2.2.8.  Generation of STELLA-GFP human ESCs and iPSCs 

For the generation of stable GFP reporter lines, the STELLA-GFP transgene was 

transfected using the Human Stem Cell Nucleofector Kit and Nucleofector II device 

according to the manufacturer’s protocol. Briefly, human ESCs or iPSCs were 

pretreated with 10 "M Y-27632 dihydrochloride for 1 hour and dissociated into single 
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cells by TrypLE. 2 x 106 cells were resuspended in 100 "l nucleofection solution and 

incubated at 37 °C for 5 min. Then, 4 "g plasmid DNA were added to the cell 

suspension and transferred to the provided cuvette avoiding air bubbles. 

Nucleofection was performed with the A-23 program. After nucleofection, 500 "l 

pre-warmed RPMI medium was added to the cuvette, transferred to Eppendorf tubes 

and incubated at 37 °C for 5 min. The cell suspension was plated onto 1 well of a 6-

well plate in hESC medium with 10 "M Y-27632 dihydrochloride. Transgene 

selection was done under standard human ESC/iPSC condition supplemented with 

G418 (200 "g/ml) from day 3 for 2 weeks. After the selection, individual colonies 

were clonally expanded for further experiments. 

 

2.2.9. Lentivirus Production 

Lentivirus were produced by transfecting the lentivirus constructs psPAX2 and 

pMD2.G using Lipofectamine 2000. Briefly, 12 mg of the lentivirus construct, 9 mg 

psPAX2 and 3 mg pMD2.G were mixed into 1.5 ml Opti-MEM. In parallel, 45 "l 

Lipofectamine 2000 was gently mixed with 1.5 ml fresh Opti-MEM and incubated at 

room temperature for 5 min. DNAs and Lipofectamine were then gently mixed and 

incubated at room temperature for 20 min to allow DNA and lipid to form complexes. 

The DNA-Lipofectamine complexes (3 ml) were dropped onto a 10 cm dish of 2.2 x 

106 293T HEK cells in 6 ml Opti-MEM (total 9 ml) and incubated at 37 °C for 5 hr. 

The medium was replaced with MEF medium lacking antibiotics and incubated at 

37 °C and 5 % CO2. The supernatant was collected every day for 2 days and the virus 

was concentrated by ultracentrifugation at 26,000 rpm for 2 hours at 4 °C. Viral 

pellets were resuspended in 1ml knockout DMEM and stored at -80 °C. 

 

2.2.10. Knock-down of BLIMP1 and PRDM14 

BLIMP1 and PRDM14 shRNA lentiviral knockdown constructs were purchased from 

Thermo Fisher. The Lentivirus were produced as described in section 3.2.3.15. For 

infection of cells, iPSCs pretreated with 10 μM Y-27632 dihydrochloride for 1hr 

were dissociated into single cells by TrypLE. 1 x105 cells in 1 ml of human ESC 

medium were infected with 60 "l of concentrated virus in 15 ml tubes and incubated 

at 37°C and 5% CO2 for 5 hr with occasional mixing. Thereafter, cells were washed 

with PBS three times and used for experiments. 
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2.2.11. Fluorescence-Activated Cell Sorting Analysis 

Aggregates were dissociated with 0.25% Trypsin/EDTA supplemented with 2% 

chicken serum (37°C, 30 min). Dissociated cells were incubated with anti-TRA-1-81 

antibody (eBioscience, cat. no. 14-8883) and anti-c-KIT antibody (eBioscience, cat. 

no. 550412) conjugated with PE and APC, respectively, on ice for 30 min. The cells 

were then washed three times with PBS supplemented with 5% FBS and analyzed on 

a flow cytometer. 

 

2.2.12. Immunocytochemistry  

Cells were fixed with 4% paraformaldehyde for 15 min, permeabilized with 0.2–1% 

Triton X-100 for 10 min, and blocked with a solution comprising 2% BSA, 5% FBS, 

and 0.1% Tween 20 in PBS for 45 min. For 5mC, cells were treated with 4N HCl for 

30 min at room temperature before blocking. Primary and secondary antibodies were 

applied overnight at 4°C and for 1 h at room temperature, respectively, in 0.5% BSA 

in PBS-T. Hoechst stain was applied to the second-to-last washing step at 1 "g/ml. 

The primary antibodies used in this study were as follows: OCT4 (1:100), BLIMP1 

(1:100), T (1:100), STELLA (1:100), and 5mC (1:100).  

 

2.2.13. Real-Time PCR (qPCR) 

Total RNA from cells was extracted and purified using the RNeasy Micro Kit. For 

qPCR, total RNA was reverse transcribed by M-MLV Reverse Transcriptase and the 

resultant cDNA was used for qPCR analysis. qPCR was performed with iTaq 

Universal SYBR Green Supermix and 0.375 "g total RNA.  

 

 
Primer sequence (5'-3') Product size (bps) 

OCT4 
F: GGAAGGAATTGGGAACACAAAGG 

71 
R: AACTTCACCTTCCCTCCAACCA 

NANOG 
F: CCTGTGATTTGTGGGCCTG 

78 
R: GACAGTCTCCGTGTGAGGCAT 

SOX2 
F: TGGCGAACCATCTCTGTGGT 

111 
R: CCAACGGTGTCAACCTGCAT 

T 
F: CCTTGCTCACACCTGCAGTAGC 

79 
R: GGCCAACTGCATCATCTCCA 

BLIMP1 F: AGGAAAGGACCTCTACCGTTC 118 
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R: GATGGGGTAAACGACCCGAG 

STELLA 
F: CATGTTACTCGGCGGAGT 

63 
R: ACTCCCTTAGGCTCCTTG 

c-KIT 
F: ACTTGAGGTTTATTCCTGACCCC 

78 
R: GCAGACAGAGCCGATGGTAG 

HAND1 
F: TCCCTTTTCCGCTTGCTCTC 

114 
R: CATCGCCTACCTGATGGACG 

CDX2 
F: TCACTACAGTCGCTACATCACCATC 

78 
R: TTAACCTGCCTCTCAGAGAGCC 

PAX6 
F: CCAGGGCAATCGGTGGTAGT 

84 
R: ACGGGCACTCCCGCTTATAC 

MIXL1 
F: CAGAACAGGCGTGCCAAGTC 

94 
R: TTCCAGGAGCACAGTGGTTGA 

MESP1 
F: CAACTGACGCCGTCTCTGTGA 

71 
R: GTCTGCCAAGGAACCACTTCG 

GSC 
F: ACCTCCGCGAGGAGAAAGTG 

101 
R: CTTCTCCGCGTTCTCCGACT 

EOMES 
F: CGGCCTCTGTGGCTCAAA 

76 
R: AAGGAAACATGCGCCTGC 

GATA4 
F: AATGACTCCAGAACAACAACTGGG 

111 
R: CTCCCTCCAGTCCCATCAGC 

GATA6 
F: TGTGCGTTCATGGAGAAGATCA 

83 
R: TTTGATAAGAGACCTCATGAACCGACT 

NPNT 
F: GTAAGCACAGGTGCATGAACA 

79 
R: GAACCATCCGGCATGAGCATA 

SOX17 
F: TTCGTGTGCAAGCCTGAGATG 

99 
R: GTCGGACACCACCGAGGAA 

GAPDH 
F: CTGGTAAAGTGGATATTGTTGCCAT 

81 
R: TGGAATCATATTGGAACATGTAAACC 

ACTB 
F: TCAAGATCATTGCTCCTCCTGAG 

87 
R: ACATCTGCTGGAAGGTGGACA 
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2.2.14. Microarray analysis 

For microarray, total RNA was used as input into a linear amplification protocol 

(Illumina TotalPrep RNA Amplification Kit), which involved synthesis of T7-linked 

double-stranded cDNA and 12 h of in vitro transcription incorporating biotin-labeled 

nucleotides. Purified and labeled cRNA was then hybridized for 18 h onto HumanHT-

12 v4 expression BeadChips (Illumina) following the manufacturer’s instructions. 

After washing as recommended, chips were stained with streptavidin-Cy3 (GE 

Healthcare) and scanned using the iScan reader (Illumina) and accompanying 

software. Samples were exclusively hybridized as biological replicates. 

 

2.2.15. Microarray data processing (performed by Araúzo-Bravo, Marcos J) 

The bead intensities were mapped to gene information using BeadStudio 3.2 

(Illumina). Background correction was performed using the Affymetrix Robust Multi-

array Analysis (RMA) background correction model (Irizarry et al, 2003). Variance 

stabilization was performed using the log2 scaling and gene expression normalization 

was calculated with the method implemented in the lumi package of R-Bioconductor. 

Data post-processing and graphics was performed with in-house developed functions 

in Matlab. Hierarchical clustering of genes and samples was performed with one 

minus correlation metric and the unweighted average distance (UPGMA) (also known 

as group average) linkage method.  

 

The gene ontology terms were taken from the AMIGO gene ontology database 

(Ashburner et al, 2000). The significance of the gene ontology terms of the different 

expressed genes was analyzed using an enrichment approach based on the 

hypergeometric distribution. All the sets of gene ontology terms were back 

propagated from the final term appearing in the gene annotation to the root term of 

each ontology. The significance (p-value) of the gene ontology terms enrichment was 

calculated using the hypergeometric distribution. The multitest effect influence was 

corrected through controlling the false discovery rate using the Benjamini-Hochberg 

correction at a significance level. 
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The data discussed in this publication have been deposited in NCBI’s Gene 

Expression Omnibus and are accessible through GEO Series accession number 

GSE53498.  

 

2.2.16. Bisulfite Sequencing 

PCR products were purified using either QIAquick gel extraction kit or PCR 

purification kit (Qiagen), cloned into TOPO vector (Invitrogen), and then 

subsequently transformed into TOP10 E. Coli . Individual colonies were inoculated 

into LB medium containing Kanamycin (50 μg/ml) and cultured overnight in a 37°C 

shaking incubator. Plasmids were extracted using the ZR Plasmid Miniprep kit. Ten 

insert-containing colonies (determined by the EcoRI digestion) were sequenced with 

the M13 forward primer. 

  

To determine the DNA methylation status at regulatory regions of imprinted genes, 

bisulfite conversion was carried out on 2 "g of isolated genomic DNA with the 

EpiTect Bisulfite Kit according to the manufacturer’s protocol. The bisulfite-

converted DNA was amplified by PCR using the condition and primers according to a 

previous study (Kim et al, 2007). Briefly, PCR was performed in a 25 "l reaction 

volume, with 0.625 units of Hotstar Taq polymerase (Qiagen), 1% supplied reaction 

buffer, 0.5 "M of each primer, 1.5–2.5 mM of MgCl2, 0.25 mM of dNTP (Invitrogen), 

and 50 ng of each DNA template. The PCR cycling conditions were as described 

below. 

 

95 °C 15 min  

95 °C 1 min 

40 cycle 58 °C 30 sec 

72 °C 1 min 

72 °C 9 min 

4 °C ∞  

 

Thereafter, the PCR products were cloned into the pCRII TOPO vector according to 

the manufacturer’s protocol. Individual clones were sequenced with the M13 forward 

primer by GATC-biotech (http://www.gatc-biotech.com/en/index.html). Sequences 
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were analyzed using the Quantification Tool for Methylation Analysis (QUMA, 

http://quma.cdb.riken.jp). 

 

 
Primer sequence (5'-3') Product size (bps) 

PEG1 DMR 
F: TYGTTGTTGGTTAGTTTTGTAYGGTT 

290 

R: AAAAATAACACCCCCTCCTCAAAT 

KvDMR1 
F: TGATGTGTTTATTATTTYGGGG 

304 

R: CCCTAAAATCCCAAATCCTC 

PEG10 DMR 
F: GGTGTAATTTATATAAGGTTTATAGTTTG 

234 

R: AACAAAAAAAATAAAATCCCACAC 

NESP55 DMR 
F: TTTTTGTAGAGTTAGAGGGTAGGT 

344 

R: AAAAAAAACAACTCAAAATCTACC 

M13 F: GTAAAACGACGGCCAGT 
 

 

2.2.17. Transplantation of reconstituted ovaries under the ovarian bursa 

Generation of reconstituted ovaries and transplantation under the ovarian bursa of 

mice was carried out according to a published protocol with slight modifications 

(Hayashi & Saitou, 2013). Briefly, fluorescence-activated cell sorting (FACS)-sorted 

d4 TRA-1-81+/c-KIT+ cells were re-aggregated with embryonic day (E) 12.5 gonadal 

somatic cells at a ratio of 5,000:50,000. For this, female gonads were collected from 

embryos at E12.5. The mesonephri were surgically separated from the gonads using 

tungsten needles. The gonads were dissociated with 0.05% Trypsin/EDTA 

supplemented with 0.02% DNase I (10–15 min, 37°C) and endogenous PGCs were 

removed by magnetic cell sorting using anti-SSEA1 antibody conjugated with 

magnetic beads and MACS MS column according to the manufacturer’s protocol. The 

resulting gonadal somatic cells and FACS-sorted PGCLCs were plated in the wells of 

a low-cell–binding U-bottom 96-well lipid-coated plate in GK20. After 2 days of 

culture in GK20, the reconstituted ovaries were transplanted under the ovarian bursa. 

Briefly, two reconstituted ovaries were inserted with a glass capillary through a slit 

under the ovarian bursa of 4-week-old SCID female mice that had been anesthetized. 
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Transplanted ovaries were then collected from the recipient female mice 3 months 

after transplantation. 

 

2.2.18. Electron microscopy (performed by Psathaki, O. E.) 

For transmission electron microscopy (TEM), cells were fixed with 2.5% 

glutaraldehyde (Merck) in 0.1 M sodium cacodylate buffer (pH 7.4), postfixed in 1% 

aqueous osmium tetroxide, dehydrated stepwise in a graded ethanol series, and 

embedded in Epon 812 (Fluka, Buchs, Switzerland). Ultrathin (50 nm) sections were 

prepared with an ultramicrotome (EM UC6; Leica), stained first with 1% uranyl 

acetate and then with 3% lead citrate, and subsequently examined using a Zeiss EM 

109 electron microscope (Zeiss). Images were taken on 70 mm films (Maco ORT 25c 

orthochromatic; Hans O. Mahn & Co., Photo Division). 

 

For scanning electron microscopy (SEM), cells were fixed with 2.5% glutaraldehyde 

in 0.1 M phosphate buffered saline (pH 7.4) and dehydrated stepwise in a graded 

ethanol series. Samples were dried with 100% ethanol via CO2 in a critical- point 

apparatus (Balzers). Dried samples were mounted onto aluminum stubs with leit-tabs 

and coated with gold film to a thickness of 40–50 nm in a sputter coater (Leitz). Cells 

were viewed under a Hitachi S-530 scanning electron microscope operated in a 

secondary mode at 20 kV. 
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3. Results 

3.1. PGC differentiation from human ESCs and iPSCs 

3.1.1. Examination of in-house protocol and published protocol for PGC 

differentiation from human ESCs 

A study on human PGC differentiation was reported demonstrating that serum-based 

medium supplemented with BMP4 sufficiently induces VASA-GFP+ putative PGCs 

(up to 5%) (Kee et al, 2009). I therefore assessed if the protocol works similarly in 

our laboratory. To this end, I differentiated human ESCs according to the study and 

analyzed expression levels of OCT4, BLIMP1, PRDM14, STELLA, SYCP3, LHX8 and 

NOBOX on day 2, 5, 10 and 15. As shown in Figure 3A, the serum-based 

differentiation procedure generated very similar expression changes as the mouse 

protocol, with the exception that STELLA expression was significantly downregulated. 

To further substantiate PGC identity, I analyzed SSEA1 and c-KIT expression in my 

cultures, since a previous study had demonstrated that post-migratory human PGCs 

could be distinguished from other cell types by those two surface antigens (Park et al, 

2009). Although the publication reported induction of up to 5% PGC-like cells after 

14 days of differentiation, I barely found SSEA-1+/c-KIT+ cells, independent of cell 

lines used (Figure 3B). This outcome is most probably due to common serum lot 

differences indicate that serum-based conditions are uncontrollable and therefore 

difficult to reproduce between different laboratories. 

 

I then assessed the protocol, which we had developed to differentiate PGCs from 

mouse ESCs (Psathaki et al, 2011). I differentiated human ESCs following the mouse 

protocol and again analyzed expression levels of OCT4, BLIMP1, PRDM14, STELLA, 

SYCP3, LHX8 and NOBOX on day 2, 5, 10 and 15. As shown in Figure 4A, OCT4 

and PRDM14 were strongly downregulated upon differentiation, indicating the loss of 

pluripotency in the culture, as these genes are known to be involved in pluripotency. 

The early PGC genes BLIMP1 got upregulated on day 2 (4-fold) and then 

downregulatd on later days. STELLA was slightly upregulated on day 2 (1.5-fold), but 

downregulated on later days (0.7-fold). NOBOX did not show significant expression 

change. On the other hand, the meiotic gene SYCP3 was upregulated on day 2, 

however, became undetectable on day 10 and 15. Interestingly, the late PGC gene 



LHX8 was upregulated on day2 (25-fold) and its expression level further increased 

until day 15 (81-fold).  I interpreted this observation as an indication for the presence 

of putative PGCs. I then assessed if this condition could induce SSEA-1+/c-KIT+ 

putative PGCs. However, this condition proved insufficient to induce putative PGCs, 

as I did not observe a significant induction of SSEA-1+/c-KIT+ cell population from 

three independent human ESCs and iPSC lines (Figure 4B). These data demonstrated 

that the mouse protocol works insufficiently to induce putative PGCs from human 

ESCs. 

 

 

 

Figure 3 Differentiation of human pluripotent stem cells by a published protocol. (A) Gene expression 
dynamics in bulk cultures during differentiation. The value for ESCs is set as 1, and values are on log2 
scale. N.D.: not detectable (B) FACS analysis of SSEA-1+/c-KIT+ cells from three independent ESC 
and iPSC lines.  



Figure 4 Differentiation of human pluripotent stem cells by the mouse PGC induction protocol. (A) 
Gene expression dynamics in bulk cultures during differentiation. The value for ESCs is set as 1, and 
values are on log2 scale. N.D.: not detectable (B) FACS analysis of SSEA-1+/c-KIT+ cells from three 
independent ESC and iPSC lines. 

Next, I asked whether human ESCs contain a subpopulation of BLIMP+ PGC 

precursor, similar to mouse ESCs. In mouse, it is known that mouse EpiSCs contain a 

subpopulation of Bimp1+ (10-50 %) cells and Stella+ cells (0-1.5 %) (Hayashi & 

Surani, 2009). I performed immunofluorescent analysis for OCT4 and BLIMP1 in 

undifferentiated human ESCs. As shown in Figure 5, I could not detect any BLIMP1+ 

cells in OCT4+ human ESCs. I therefore concluded that human ESCs do not contain a 

sub-population of PGC and, thus, demonstrate a different character from mouse 

EpiSCs. 

 



 

Figure 5 Immunofluorescence analysis of undifferentiated human ESCs. Scale bar: 75 dif 

3.1.2.Search for a candidate gene for PGC identification 

Based on the results of the initial experiments, I set out to develop a new serum-free, 

directed differentiation protocol for the reproducible and efficient induction of germ 

cells from human pluripotent stem cells. To monitor early PGC induction in the 

complex cell mixture within differentiation cultures, I decided to engineer a GFP 

reporter construct and generate stably transfected ESC and iPSC cell lines. One of the 

known earliest human PGC genes is BLIMP1 (see introduction). However, BLIMP1 is 

known to be expressed in other somatic cell types, such as B cells (Turner et al, 1994), 

differentiating macrophages (Chang et al, 2000) and a subset of T-cells (Kallies et al, 

2006; Martins et al, 2006). Therefore, I sought genes that exhibit a similar expression 

pattern as BLIMP1 but would not be expressed in other cell types. To this end, I 

differentiated human ESCs in directed conditions by promoting or inhibiting BMP, 

TGF  and FGF signaling (table 3), and assessed the expression pattern and level of 

the pluripotency genes OCT4, NANOG and SOX2, and the PGC genes BLIMP1 and 

STELLA, on day 7. In addition, I included 9 genes that were previously found to be 

specifically upregulated in 11.5-16.5 dpc mouse germ cells as compared to ESCs, 

namely PLCL2, TDRKH, FKBP6, MOV10L1, C4ORF48, PIK3R3, AKT3, TEX13B 

and C19ORF57 (Sabour et al, 2011). As shown figure 6A, OCT4 and NANOG were 

strongly downregulated in all conditioned. In contrast, SOX2 was slightly upregulated 

when BMP signaling was inhibited. Interestingly, BLIMP1 and STELLA were 

upregulated coincidently when BMP signaling was inhibited and WNT signaling was 

activated. Furthermore, among the genes that had been identified in the mouse study, 

FKBP6 and TEX13B were upregulated in the condition that upregulated BLIMP1 and 

STELLA. Interestingly, I did not observe any STELLA+ cells in our cultures, 

indicating that those cultures activate genes associated with germ cells, but not 

sufficient enough to induce bona fide PGCs. Nevertheless, STELLA, FKBP6 and 
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TEX13B exhibited a similar expression pattern to BLIMP1 and thus could potentially 

be used as germ cell specific reporters. In fact, qPCR analysis revealed that STELLA 

and TEX13B were distinctly expressed in the in vitro generated SSEA1+/c-KIT+ cells, 

together with OCT4 and NANOG, again suggesting that these genes could be used as 

specific maker for identifying putative germ cells in humans (Figure 6B).  

 

 
Table 3 List of additives used for differentiation. Concentration of each additive; BMP4: 10 ng/ml, 
Dorsomorphin: 1 eachCHIR99021: 3 μM, SB431542: 10 μM, PD325901: 1 μM. 
 

Additive Function Condition 
1 2 3 4 5 6 7 8 9 10 11 

BMP4 BMP 
activator + + + - + - - - + + - 

Dorsomorphin BMP 
inhibitor - - - + - + + + - - + 

CHIR99021 WNT 
activator - - + - + - + + + + + 

SB431542 Activin 
inhibitor - + - - + + - + - + - 

PD325901 FGF 
inhibitor - - - - - - - - + + + 



 

Figure 6 Expression of germ cell-relate genes in differentiated human ESCs (A) Gene expression 
analysis of human ESCs differentiated by modulating TGFen BMP and FGF signaling pathway. The 
value for ESCs is set as 1, and values are on log2 scale. (B) Gene expression analysis of SSEA-1+/c-
KIT+ putative PGCs. The value for ESCs is set as 1, and values are on log2 scale. 



3.1.3.Establishment of GFP reporter human pluripotent stem cells 

Next I constructed a GFP-conjugated STELLA and a TEX13B reporter. The promoter 

of these genes was amplified from genomic DNA extracted from human ESCs (H9) 

by PCR. I tested several conditions, for example the presence or absence of DMSO, 

which is known to bind to the DNA at the cytosine residue and thus changes its 

conformation. This makes the DNA more labile for heat denaturation and thus 

enhances amplification. As shown Figure 7A, an enhanced amplification in the 

presence of DMSO is observed, although both approaches efficiently amplified the 

target fragment from gDNA (4739 bps and 4659 bps). Those PCR products were 

ligated into the pEGFP-1 vector (Fig. 7B). The sequence of the obtained construct 

was confirmed by enzymatic digestion and those showing appropriate band size were 

introduced in undifferentiated hESCs and human induced pluripotent stem cells 

(hiPSCs) (Fig. 7C, left two lanes) via transfection.  

 

 

 

Figure 7 Construction of the STELLA and TEX13B reporters. (A) Amplified promoter region of 
STELLA and TEX13B by PCR (B) Schematic map of the pEGFP-1 vector (C) Enzymatic digestion of 
the STELLA-GFP plasmid. 

3.1.4.Differentiation of STELLA-GFP human pluripotent stem cells 

STELLA is known as definitive marker for PGCs in mouse, I therefore utilized 

STELLA-GFP cell lines for further experiments. I first differentiated these cells in 

serum-containing GMEM medium conditions. I did not observe GFP expression in 
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undifferentiated ESCs nor iPSCs, but detected it in some cells within embryoid bodies 

(EBs) (Fig. 8). However, only small numbers of GFP-positive cells were generated. I 

therefore switched to a defined serum-free differentiation conditions containing 

knockout serum replacement (KSR) (GMEM + 20% KSR, hereafter referred to as 

GK20), in which the amount and effect of cytokines can be strictly controlled. GK20 

alone failed to produce any GFP+ cells (Fig. 8). Previous studies have demonstrated 

that BMP4 plays an important role in germ cell induction in both mice and humans 

(Kee et al, 2006; Ohinata et al, 2009). The addition of BMP4 to GK20 led to the 

induction of GFP+ cells, albeit still inefficiently (Fig. 8), demonstrating that the 

culture conditions still needed to be optimized.  

 

 

 

Figure 8 Morphology and GFP signal of undifferentiated STELLA-GFP ESCs and differentiated EBs. 
Scale bar: 100 FP signal of undifferentiated STELLA-GFP ESCs and different 
 

 

Therefore, I attempted to improve the differentiation efficiency using two different 

approaches: 1) the formation of homogeneous EBs from dissociated single cells, and 

2) the pre-differentiation of hPSCs toward early mesoderm–committed PGC 

precursors with the help of known cytokines (Activin A, BMP4, and bFGF).  

 

Spontaneous EB formation of a defined number of single cells resulted in the more 

homogeneous size of EBs compared to the previous approach (Fig. 9A). On the other 

hand, EBs generated by this approach often uncontrollably stuck to each other and 

formed large sized aggregates. In addition, although GFP+ cells were observed in a 

higher number of EBs, a still considerable number of EBs lacked GFP+ cells, 

indicating that formed EBs were still inhomogeneous. To solve this problem, I used 



ultra-low attachment U-bottom 96-well plates. The ultra-low attachment surface is a 

covalently bound hydrogel layer that is hydrophilic and neutrally charged. Since 

proteins and other biomolecules passively adsorb to polystyrene surfaces through 

either hydrophobic or ionic interactions, this hydrogel surface naturally inhibits 

nonspecific immobilization via these forces, thus inhibiting subsequent cell 

attachment (Fig. 9B). As shown figure 9C, this approach successfully generated 

homogeneous sized EBs from single cells and more importantly, also resulted in a 

homogeneous GFP signal with all EBs containing GFP+ cells. While this approach 

successfully resolved two problems, the formation of equally sized EBs and the 

homogenous distribution of GFP+ cells within each EB, the yield of GFP+ cells in 

each EB was still unsatisfactory and needed to be improved. 

 

 

 

Figure 9 PGC differentiation from single-cell dissociated human ESCs. (A) Spontaneous EB formation 
of single-cell human ESCs (B) The scheme of EB formation by ultra-low attachment U-bottom 96-well 
plates (C) Forced EB formation of single-cell human ESCs by ultra-low attachment U-bottom 96-well 
plates 



Next, I used a second approach. In mice, PGC specification involves activation of the 

mesodermal program, indicated by the expression of T followed by activation of the 

PGC program (Saitou et al, 2002). Thus, the efficient generation of mesoderm-

committed PGC precursors should support the differentiation of lineage-restricted 

PGCs at a higher efficiency. To proof this idea, I treated the cells with various 

concentrations of Activin A and BMP4 in the presence of bFGF for two days to 

induce mesoderm differentiation, followed by germ cell induction with BMP4 for 

additional 6 days, followed by evaluation of GFP expression (Fig. 10A). As shown in 

Figure 10B, this approach efficiently induced STELLA-GFP+ cells. In addition, 

based on STELLA-GFP expression on day 8, the addition of BMP4 played a crucial 

role in the GFP+ cell induction. This experiment clearly demonstrated that pre-

differentiation of human iPSCs enables the induction of STELLA-GFP signal at high 

efficiency. 

 

 

 
Figure 10 Two-step differentiation of human PSCs towards the germ cell lineage. (A) Schematic 
presentation of the differentiation strategy. (B) STELLA-GFP expression on day 8 of differentiation. 

3.1.5.Differentiation toward mesoderm-committed germ cell precursors 

To dissect the effect of Activin A and BMP4 during the pre-differentiation, I again 

treated the cells with various concentrations of Activin A (ActA) and BMP4 in the 

presence of bFGF for two days to induce differentiation and then analyzed the gene 



expression profiles of representative pluripotency-associated genes (OCT4, NANOG, 

and SOX2), PGC genes (BLIMP1 and STELLA), and mesodermal genes (T) (Fig. 11). 

The expression level of T was rapidly upregulated by ActA and BMP4, whereas the 

expression levels of OCT4, NANOG, and SOX2 did not change significantly. Based 

on this gene expression dynamics, I observed that at least 50 ng/ml of ActA and 5 

ng/ml of BMP4 were required for activating the T expression level, while maintaining 

similar OCT4 and NANOG expression levels as PSCs. Notably, the expression level 

of BLIMP1 (expressed from 6.5-dpc on in mouse PGCs) was concomitantly 

upregulated, whereas that of STELLA (expressed from 7.5-dpc on in mouse PGCs) 

was not altered. These findings suggested the presence of an intermediate cell state 

between the mesoderm and the germ cell lineage, characterised by mesodermal and 

early PGC gene activation. Taken together, these results indicate that the 

combinational activity of ActA, BMP4, and bFGF is essential for promoting the 

differentiation of human PSCs toward mesoderm-committed germ cell precursors 

mediated by the simultaneous activation of the mesodermal and PGC programs. 

 

 

Figure 11 Effects of Activin A and BMP4 on the expression of selected pluripotency, PGC, and 
mesodermal genes during PGC-precursor induction. All conditions contained bFGF (20 ng/ml). DM: 
dorsomorphin, SB: SB431542. Samples were calibrated with iPSC values, and iPSC values depict 1. 
Y-axes are in log2 scale. 
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Next, I sought to determine whether differentiation for 2 days would maximize the 

induction of mesoderm-committed PGC precursors. To this end, I extended the 

differentiation period to day 7 and analyzed the gene expression dynamics (Figure 

12A). During the entire culture period, expression levels of OCT4, NANOG, SOX2 

and STELLA remained similar to iPSCs levels (we observed 0.5-, 0.5-, 2- and 2-fold 

changes, respectively). In contrast, T and BLIMP1 expression levels were rapidly 

upregulated within the first 2 days (512- and 32-fold changes, respectively) and 

gradually downregulated thereafter. Interestingly, the induction of T expression 

occurred one day earlier than that of BLIMP1. T expression started on day 1 and 

BLIMP1 expression on day 2, results that were confirmed by immunostaining (Fig. 

12B). Furthermore, BLIMP1 co-localized with OCT4. These results are consistent 

with observations in mouse studies, suggesting that gene expression dynamics during 

the induction of PGC precursors are developmentally conserved between the human 

and mouse species. 

 



 

Figure 12 Time course analysis of PGC precursor induction. (A) Gene expression dynamics of 
selected pluripotency, PGC, and mesodermal genes during prolonged PGC-precursor induction up to 
day 7. Samples were calibrated with iPSC values, and iPSC values depict 1. Y-axes are in log2 scale. 
(B) Immunofluorescence analysis of OCT4, BLIMP1 and T on days 0, 1, and 2. The culture contained 
BMP4 (5 ng/ml), ActA (50 ng/ml), and bFGF (20 ng/ml) (also in E and F). Scale bar: 100 µm. 

Surprisingly, OCT4 and BLIMP1 were still expressed at intermediate levels on day 7, 

implying that mesoderm-committed PGC precursors were still present at later time 

points of the differentiation. However, immunofluorescence analysis revealed that 

OCT4 and BLIPM1 no longer co-localized, indicating the loss of mesoderm-

committed PGC precursors during prolonged culture in vitro (Fig. 13A). Overall, 

differentiation under defined conditions (N2B27 +ActA +BMP4 +bFGF) for 2 days is 

sufficient for the generation of mesoderm-committed PGC precursors. However, upon 

longer culture, the precursors lose their identity, become unstable and undergo further 



differentiation into other cell lineages. Of special note is that, I did not detect c-KIT 

protein levels in OCT4+ cells, although the c-KIT transcript level was significantly 

upregulated until day 7 (Fig. 13B), This result indicates that the PGC precursors do 

not develop into lineage-restricted PGCs under the given culture conditions, but 

require another appropriate environment to become PGC-like cells.  

 

 

 

Figure 13 Immunofluorescence analysis of PGC precursor cultures. (A) Immunofluorescence analysis 
of OCT4 and BLIMP1 on day 5 of germ cell precursor induction. Scale bar: 20 µm. (B) 
Immunofluorescence analysis of OCT4 and c-KIT on the day of germ cell precursor induction. Scale 
bar: 20 µm. 



3.1.6.Differentiation of PGC precursors towards PGC-like cells  

To obtain PGC-like cells, I cultured the precursors in GK20 containing BMP4 for 

another 7 days to induce further differentiation (Fig. 14A). I observed an initial 

population of GFP+ cells on day 6 and found a continuous increase in the number of 

GFP+ cells until day 9 (14B).  

 

Figure 14 Induction of PGC-like cells from human iPSCs. (A) Schematic presentation of PGC-

precursor and PGC-like cell induction. (B) Time-course images of PGC-like cell induction from days 6 

to 9 of differentiation. Phase contrast and GFP fluorescent images are shown. Scale bar: 100 µm. 

Then I attempted to isolate theses cells by FACS, but failed to do so due to unknown 

technical problems. For thi I chose an alternative approach. A previous study 

demonstrated that TRA-1-81+/c-KIT+ populations represent post-migratory putative 

germ cells in humans (Gkountela et al, 2013). I utilized this approach and sorted germ 

cell populations by FACS. Indeed, GFP was highly enriched in both TRA-1-81+/c-

KIT+ and TRA-1-81-/c-KIT+ cells, whereas c-KIT- cells, regardless of TRA-1-81 

expression, did not express GFP (Fig. 15). Thus, TRA-1-81 and c-KIT are reliable 

markers for isolating STELLA+ cells and can be used in support of the reporter 

system.  

 

 



 

Figure 15 GFP expression of each cell fraction sorted by TRA-1-81 and c-KIT of cells from the 
aggregate cultures. 

Next I titrated for the optimal concentration of BMP4 required for the transition of the 

precursors toward PGC-like cells. I observed that the number of TRA-1-81+/c-KIT+ 

cells increased in a dose-dependent manner (from 15.6% to 24%) (Fig. 16A) with an 

optimal BMP4 concentration of 100 ng/ml. Notably, in the absence of BMP4, we 

observed that approximately 7% of the cells were TRA-1-81+/c-KIT+, which most 

probably represented PGC-committed cells, as there was 5 ng/ml of BMP4 in the 

precursor induction medium. Interestingly, the maximum number of TRA-1-81+/c-

KIT+ cells (>20%) was observed on day 4 (Fig. 16B). Thereafter the number of TRA-

1-81+/c-KIT+ cells started to decrease, with a significant decrease observed on day 6 

and only 2.2% of such cells observed on day 8. 

 

Figure 16 Induction of TRA-1-81+/c-KIT+ PGC-like cells from human iPSCs. (A) FACS analysis of 
the concentration-dependent effect of BMP4 on TRA-1-81+/c-KIT+ PGC-like cells on day 4. B25: 25 
ng/ml BMP4; B50: 50 ng/ml BMP4; B100: 100 ng/ml BMP4. All conditions contained human LIF (20 
ng/ml). (B) FACS analysis of TRA-1-81 and c-KIT during PGC induction up to day 8. 



To overcome this loss of PGC-like cells I added SCF to the medium, but this 

approach was not successful (Fig. 17A). Nonetheless, differentiation of the precursors 

led to the reproducible induction of a sufficient number of PGC-like cells from 

independent cell lines (Fig. 17B).  

 

 

 

Figure 17 Effect of SCF on the induction of TRA-1-81+/c-KIT+ PGC-like cells. (A) Effect of SCF 
during PGC-like cell induction on PGC- like cell survival of d6 cultures. (B) Induction of PGC-like 
cells from the HuES6 ESCs and SA8 iPSCs on day 4. 

3.1.7.Characterization of PCG-like cells 

Next, I characterized the isolated PGC-like cells (TRA-1-81+/c-KIT+ cells) in more 

detail. First, I evaluated the gene expression profiles of key markers (OCT4, NANOG, 

SOX2, BLIMP1, and STELLA) (Fig. 18A). In contrast to the c-KIT- populations, 

BLIMP1 and STELLA expression levels were dramatically upregulated in PGC-like 

cells, whereas OCT4 and NANOG levels remained similar to iPSC levels. 

Upregulation of BLIMP1 expression began on day 4 of differentiation, but that of 

STELLA expression only on day 6. Immunofluorescence analysis confirmed that 

endogenous OCT4, BLIMP1, and STELLA proteins were enriched in PGC-like cells 

(Fig. 18B). Interestingly, SOX2 was downregulated in PGC-like cells, consistent with 



the known low SOX2 expression level in human PGCs. This finding strongly 

suggested that these cells represent in vitro counterparts of natural human PGCs.  

 

 

 

Figure 18 Characterization of PGC-like cells. (A) Gene expression dynamics of selected pluripotency 
and PGC genes in FACS-sorted, specified cells during PGC induction. The value for iPSCs is set as 1, 
and values are on log2 scale. (B) Immunofluorescence staining of TRA-1-81+/c-KIT+ PGC-like cells. 
Scale bar: 20 µm. 

During PGC development, epigenetic reprogramming occurs globally and in a locus-

specific manner (Gkountela et al, 2013; Kagiwada et al, 2013; Seki et al, 2007). 

Therefore, I next assessed the erasure of DNA methylation at regulatory regions of 

imprinted loci and globally in PGC-like cells. PEG1, KvDMR1, PEG10, and NESP55 

were differentially methylated in both maternal and paternal alleles of iPSCs, but 

most became demethylated in PGC-like cells (Fig. 19A). Furthermore, examination of 

global DNA methylation levels by immunofluorescence against 5mC provided strong 

evidence that DNA methylation was globally erased in PGC-like cells (Fig. 19B). 

Taken together, the reduced level of methylation at imprinted loci and the loss of 

methyl-cytosines in the genome indicate the progress of global epigenetic 

reprogramming in PGC-like cells similarly to that in PGCs in vivo. 

 



 

Figure 19 Epigenetic state of PGC-like cells. (A) Bisulfite sequence analysis of DMRs of the 
imprinted genes (PEG1, KvDMR1, PEG10, and NESP55) in iPSCs (top) and TRA-1-81+/c-KIT+ 
PGC-like cells (bottom). White and black circles represent unmethylated and methylated CpG 
sequences, respectively. (B) Immunofluorescence analysis of 5mC in iPSCs and TRA-1-81+/c-KIT+ 
PGC-like cells. Scale bar: 20 µm 

I then evaluated the developmental potential of the PGC-like cells. PGCs are known 

to be bipotent, as they develop only into sperm and oocytes in vivo. To assess the cells’ 

potential, I performed reconstituted ovary transplantation. PGC-like cells or iPSCs 

were aggregated with 12.5-dpc mouse embryonic gonadal somatic cells to form 

reconstituted ovaries in vitro, which were then transplanted under the ovarian bursa of 

female mice. After 3 months teratomas had formed from the reconstituted ovaries 

generated from iPSCs (n=2) (Fig. 20(i)). Importantly, I did not observe any teratomas 

from reconstituted ovaries with PGC-like cells, indicating that those cells are not 

pluripotent (n=10) (Fig. 20(ii)). However, I also did not observe mature PGC-like 

cells, which can be attributed to a likely non-permissive environmental niche.  
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Figure 20 Teratoma formed from iPSCs and PGC-like cells 3 months after transplantation. (i) left 
ovary: control ovary without transplantation; right ovary: transplanted with iPSC-reconstituted ovary; 
(ii) ovaries transplanted with PGC-like cell-reconstituted ovaries. 
 

 

3.1.8. The molecular mechanism of PGC induction in vitro 

Knockout serum replacement (KSR) is known to enhance differentiation of cells into 

PGC-like cells in mice by suppressing cell death during the transition of ESCs into 

epiblast-like cells, which then further differentiate to generate PGCLCs (Hayashi et al, 

2011). WNT3A is expressed in the mouse posterior epiblast, plays a crucial role in 

PGC specification (Aramaki et al, 2013; Ohinata et al, 2009) and enhances the 

differentiation of human ESCs into human PGCs in the presence of serum (Chuang et 

al, 2012). I therefore investigated whether KSR and WNT3A would also similarly 

affect PGC-like cell induction in our system. To assess the influence of KSR, I added 

KSR to the PGC precursor medium at a concentration of 0–20% and assessed the 

expression of OCT4, NANOG, SOX2, T, BLIMP1, and STELLA on day 2 (Fig. 21A). 

OCT4 and NANOG expression levels were similar independent of the KSR 

concentration, whereas the SOX2 expression level was strongly upregulated to iPSC 

level in a concentration-dependent manner. T expression levels were similar in KSR 

concentration between 0% and 4%, but decreased dramatically in 10–20%. BLIMP1 

expression gradually decreased in a concentration-dependent manner. Importantly, 

STELLA expression was not affected by the KSR concentration, indicating that KSR 

does not enhance the induction of the PGC-like cell state. Taken together, the study 

showed that KSR suppressed the differentiation of ESCs into mesodermal cells by 

maintaining their ESC-specific gene expression profile. To assess the PGC induction 

ability of the cells that had been differentiated with different KSR concentrations, I 

allowed them to further differentiate in PGC medium. TRA-1-81+/c-KIT+ PGC-like 

cells were induced under 0–2% KSR conditions, but not under 4%KSR condition (Fig. 

21B). Of note, TRA-1-81+/c-KIT+ cells induced under 10 and 20% KSR conditions 
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lack BLIMP1 expression, which is major PGC determinant, indicating these cells are 

not PGC-like cells. Based on these data, it seems clear that a high concentration of 

KSR inhibits the induction of PGC precursors by suppressing mesodermal gene 

activation. 

 

To address the effect of WNT3A, I added 100 ng/ml of WNT3A to the PGC-

precursor medium together with 0–20% KSR and assessed gene expression on day 2 

(Fig. 21A). WNT3A did not drastically alter the gene expression patterns, as all genes 

investigated exhibited relatively similar levels and changes in expression in the 

presence or absence of WNT3A. Nevertheless, T and BLIMP1 expression seemed 

slightly enhanced by WNT3A. T expression levels were lower in the presence of 

WNT3A under low KSR conditions (0–4%). However, T expression was not sharply 

downregulated, and levels thus remained intermediate under high KSR conditions 

(10–20%). BLIMP1 expression levels were slightly enhanced in the presence of 

WNT3A and, interestingly, were more slowly reduced by increasing KSR 

concentrations. Thus, WNT3A does not enhance differentiation toward the 

mesodermal cell state in our system, but exhibits an antagonistic effect on the 

repression of mesodermal genes by KSR. I then looked at the efficiency of PGC-like 

cell induction from each culture. Similarly to the cultures lacking WNT3A, PGC-like 

cells could be induced from cells grown under low KSR conditions, but not from the 

cells grown under high KSR conditions (Fig. 21B). These data indicate that WNT3A 

does not significantly enhance the induction of PGC precursors. I therefore concluded 

that KSR and WNT3A do not enhance the induction of PGC precursors or PGC-like 

cells in our system. KSR actually had an inhibitory effect. 

 



 

Figure 21 Effects of KSR and WNT3A during PGC-precursor induction. (A) Gene expression analysis 
of selected pluripotency, PGC, and mesodermal genes of d2 cultures. The value for iPSCs is set as 1, 
and values are on log2 scale. (B) The induction of PGC- like cells as analyzed by FACS gated for 
TRA-1-81 and c-KIT. 

Nevertheless, PGC-like cells were still induced in medium containing 4% KSR with 

WNT3A, which was not seen in medium containing 4% KSR without WNT3A (Fig. 

21B). This finding indicated that the two culture conditions possess distinct abilities 

to induce PGC-like cells. Of all the genes investigated, including ecto-/meso-

/endoderm markers, the expression of only BLIMP1 was significantly different in 

those cultures (Fig. 21A and 22). Specifically, BLIMP1 mRNA levels increased in 

medium containing 0%, 1%, and 2% KSR in the absence or presence of WNT3A, but 

increased in medium containing 4% KSR only in the presence of WNT3A. We 

therefore hypothesized that the expression of BLIMP1 during PGC-precursor 

induction might be crucial for further PGC induction, similarly to the role of Blimp1 

in mouse PGC specification.  

 



 

Figure 22 Effects of KSR and WNT3A during PGC-precursor induction on the expression of selected 
trophecto-, ecto-, endo-, and mesodermal genes of d2 cultures. 

To evaluate our hypothesis, I performed immunofluorescence analysis for BLIMP1, 

together with OCT4 and T (Fig. 23A). In accordance with the qPCR results, I 

observed that the majority of cells were OCT4+ under all culture conditions, whereas 

T+ cells were strongly induced only under low KSR conditions. BLIMP1+ cells were 

significantly induced under both low and high KSR conditions. However, the 

BLIMP1+ cells under high KSR conditions did not co-express OCT4 and apparently 

committed to other cell lineages. Statistical cell counts demonstrated that the 

percentage of OCT4+ cells was the same under all conditions, while that of BLIMP1+ 

cells modestly decreased in a KSR concentration–dependent manner. Importantly, the 

number of OCT4+/BLIMP1+ cells within the total BLIMP1+ cell population 

decreased significantly in a KSR concentration–dependent manner, reaching zero 

under high KSR conditions (Fig. 23B). These data clearly demonstrate that 

OCT4+/T+/BLIMP1+ cells indeed represent PGC precursors that subsequently 

commit to become PGCs, paralleling previously published data on mouse PGC 

specification (Saitou et al, 2002).  



 

Figure 23 Effects of KSR and WNT3A on PGC-precursor and PGC-like cell induction. (A) 
Immunofluorescence analysis of OCT4, BLIMP1, and T on day 2 and STELLA- GFP on day 8. (B) 
Statistical cell counting of d2 cultures. Pictures were captured at different locations on the cell culture 
plates and analyzed. 

3.1.9.Global gene expression analysis of PGC precursors and PGC-like cells 

To further characterize day-2 (d2) PGC-precursor cultures and day-4 (d4) and day-6 

(d6) PGC-like cells, I assessed their global transcription profiles (Fig. 24A). 

Unsupervised hierarchical clustering (UHC) revealed that d2 PGC-precursor cultures 

clustered together with iPSCs, whereas d4 and d6 PGC-like cells clustered together, 

but separately from d2 precursors and iPSCs (Fig. 24B). Principal component analysis 

(PCA) also showed a distinct difference between iPSCs or d2 PGC-precursor cells 

and d4 or d6 PGC-like cells (Fig. 24C). These data indicate that PGC-like cells 

acquired a distinct global transcription profile and therefore a different cell identity 

compared with iPSCs. Scatter plot analysis comparing either d2 PGC-precursor 

culture, or d4 or d6 PGC-like cells with iPSCs revealed that OCT4 and NANOG 



expression levels were similar to those of iPSCs in all differentiated samples and that 

SOX2 levels were strongly downregulated in PGC-like cells. These results were 

validated by qPCR analysis (Fig. 18A). Expression levels of mesodermal genes (such 

as CYP26A1, GSC, MESP, and MIXL1) were upregulated in d2 PGC precursors and 

thereafter progressively downregulated in d4 and d6 PGC-like cells. Expression levels 

of PGC genes (such as STELLA, NANOS3, and TFAP2C) did not change in d2 PGC 

precursors and d4 PGC-like cells, but significantly increased in d6 PGC-like cells, 

indicating the formation of lineage-restricted PGCs on day 6. The subsequent 

expression of mesodermal genes and PGC genes in our differentiation system is 

overall similar to the transcription dynamics observed during mouse PGC 

specification, with the exception of SOX2 expression, which is drastically different.  

 

 

 

Figure 24 Global transcription profiles during PGC-precursor and PGC-like cell induction. (A) Heat 
map of global gene expression patterns of HuES6 ESCs, 383.2iPSCs, d2 PGC-precursor cultures, and 
FACS-sorted PGC-like cells. The color bar at top codifies the gene expression in log2 scale. Red and 
blue colors indicate high and low gene expression, respectively. (B) Unsupervised hierarchical 
clustering (UHC) of HuES6 ESCs, 383.2iPSCs, d2 PGC-precursor cultures, and FACS-sorted PGC-
like cells. (C) Principal component analysis of HuES6 ESCs, 393.2 iPSCs, d2 PGC-precursor cultures, 
and FACS-sorted PGC-like cells. (D) Scatter plots of global gene expression microarrays comparing d2 
PGC-precursor cultures, or d4 or d6 FACS-sorted PGC-like cells with iPSCs. 
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In addition to the expression of representative key markers, I analyzed the extent of 

shared gene dynamics between human PGC-like cell induction and mouse PGC 

specification. A recent mouse study identified two categories of genes that are 

activated during PGC specification. One category is the “somatic mesodermal genes,” 

which are activated by BMP4 and eventually suppressed upon formation of lineage-

restricted PGCs, and the other is the “core PGC genes,” which are specifically 

activated by Blimp1, Prdm14, and Tfap2c (Nakaki et al, 2013). I therefore examined 

the expression profiles of the genes from each category to assess whether similar 

transcriptional changes occur during human PGC-like cell induction (Figure 25). Of 

the 159 somatic mesodermal genes examined, 30 were upregulated (>2 fold) in d2 

precursor cells, including CDX1, CDX2, HAND1, MESP1, ID1, MSX1, MSX2, ISL1, 

MIXL1, WNT5A, FGF8, and BMP4. The number of genes that were upregulated 

increased to 50 on day 4 and 65 on day 6. 

 

 



>9;+:';!

!22!

 

Figure 25 (Continued) 
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Figure 25 (continued)  
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Figure 25 Heat map of somatic mesodermal gene expression patterns of HuES6 ESCs, 383.2iPSCs, d2 
PGC-precursor cultures, and FACS-sorted PGC-like cells. The color bar at top codifies the gene 
expression in log2 scale. Red and blue colors indicate high and low gene expression, respectively. 
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Of the core PGC genes, I found that 22 of 45 genes were upregulated (>2fold) in d6 

PGC-like cells, including TFAP2C, STELLA, KLF2, ELF3, KIT, and LIFR (Figure 26). 

Thus, the expression of somatic mesodermal genes and core PGC genes during human 

PGC-like cell induction was similar to that during mouse PGC specification. Taken 

together, these data reveal that human and mouse PGC-like cell induction share 

expression patterns of not only a few key markers, but also larger sets of genes within 

different functional categories. 

 

 

Figure 26 Heat map of core PGC mesodermal gene expression patterns of HuES6 ESCs, 383.2iPSCs, 
d2 PGC-precursor cultures, and FACS-sorted PGC-like cells. The color bar at top codifies the gene 
expression in log2 scale. Red and blue colors indicate high and low gene expression, respectively. 



Interestingly, I identified some epigenetic modifiers, such as the TET family genes, 

with similar expression levels in PGC-like cells as in ESCs, but downregulated 

DNMT1 and DNMT3B levels (Fig. 27). This indicated that the reduction of 5mC 

levels might involve passive mechanisms by replication-coupled dilution, similarly to 

mouse PGCs, thus confirming the notion that key epigenetic features are indeed 

shared between human PGC-like cell induction and mouse PGC specification.  

 

 

 

Figure 27 Array expression data for selected epigenetic modifier genes in 383.2 iPSCs, d2 PGC-
precursor cultures, and FACS-sorted PGC-like cells.  

Surprisingly, I observed that PRDM14 expression was strongly downregulated in 

PGC-like cells (Fig. 24D). In mice, Prdm14 is known to function as a key regulator of 

PGC specification and the lack of Prdm14 leads to loss of PGCs (Yamaji et al, 2008). 

I therefore assessed whether the lack of PRDM14 in our PGC-like cells influences the 

expression of particular genes activated during mouse PGC specification.  

 

A recent mouse study reported sets of genes that are regulated through the action of 

Prdm14 (genes upregulated are Epas1, Tcl1, Esrrb, Klk5, Nr5a2, ZFfp42, Klf4, Lifr, 

Dppa2, Dppa5a, and Nanog; genes downregulated are Zfp521 [human homolog: 

ZNF521], Sox3, Nrcam, and Hs6st2) (Nakaki et al, 2013). I first looked at the 

expression profile of these genes in human PGC-like cells (Figure 28). EPAS1, KLF5, 
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KLF4, and LIFR expression levels were upregulated (>2 fold) in PGC-like cells, 

whereas ZFP42 and NANOG levels did not change and were as high as iPSC levels. 

On the other hand, TCL1A, ESRRB, NR5A2, DPPA2, and DPPA5 levels were low. 

ZNF521, SOX3, and NRCAM expression levels were downregulated (>2 fold), while 

the HS6ST2 level was upregulated in human PGC-like cells. These data clearly 

demonstrate that a subset of mouse Prdm14-regulated genes exhibits a similar 

expression pattern in human PGC-like cells, even though PRDM14 is expressed at 

only very low levels.  

 

 

 

Figure 28 Heat map of mouse Prdm14-regulated genes in HuES6 ESCs, 383.2 iPSCs, d2 PGC-
precursor cultures, and d4 and d6 FACS- sorted PGC-like cells. The color bar at top codifies the gene 
expression in log2 scale. Red and blue colors indicate high and low gene expression, respectively. 
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In addition, gene set enrichment analysis (GSEA) revealed that genes associated with 

neural development were significantly downregulated in PGC-like cells (Table 4). 

The repression of neural differentiation genes is a key characteristic of mouse PGC 

specification that is mediated by Prdm14. This finding confirms that human PGC-like 

cell induction exhibits similar transcriptional dynamics to mouse PGC specification, 

and suggests that mouse Prdm14-regulated genes are actually regulated by other 

mechanisms in human PGCs. 

 

 
Table 4 List of significant enriched gene sets between iPSCs and d6 FACS-sorted PGC-like cells from 
GSEA. 
 
Downregulated gene sets in d6 PGC-like cells 

Gene set P value 

Central nervous system development 1,11E-04 

Nervous system development 1,45E-04 

Multicellular organismal development 2,76E-04 

Neurological system process 1,70E-03 

Transforming growth factor beta receptor signaling pathway 2,30E-03 

Enzyme linked receptor protein signaling pathway 3,14E-03 

Anatomical structure development 4,22E-03 

Transcription factor activity 6,53E-03 

Synaptic transmission 1,85E-02 

Sensory reception 2,29E-02 

Anatomical structure morphogenesis 3,98E-02 

  
Upregulated gene sets in d6 PGC-like cells 

Gene set P value 

Extracellular region 1,15E-08 

Extracellular region part 3,34E-08 

Extracellular region space 4,55E-08 

Lipid transport 1,40E-05 

Digestion 1,77E-05 

Hormone metabolic process 1,97E-04 

Lipid metabolic process 2,24E-04 

Steroid metabolic process 2,26E-04 

Enzyme activator activity 4,43E-04 

Lipid homeostasis 4,86E-04 

Steroid binding 6,29E-04 
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Table 4 (continued) 
 

 

Negative regulation of secretion 8,56E-04 

Chemical homeostasis 1,12E-03 

Cell surface receptor linked signal transduction GO 0007166 2,02E-03 

Lipid transporter activity 2,06E-03 

Cofactor transport 3,02E-03 

Receptor activity 3,11E-03 

Female pregnancy 3,25E-03 

Collagen binding 4,06E-03 

Transition metal ion transmembrane transporter activity 4,32E-03 

Phospholipase activity 4,26E-03 

G protein coupled receptor protein signaling pathway 4,32E-03 

Lyase activity 4,88E-03 

Metal ion transport 5,29E-03 

CDC42 protein signal transduction 5,35E-03 

Transmembrane receptor activity 6,41E-03 

Reproductive process 6,64E-03 

Hormone binding 6,76E-03 

Cellular lipid metabolic process 7,00E-03 

Ras protein signal transduction 7,82E-03 

Myosin complex 8,35E-03 

Lipid binding 9,64E-03 

Myoblast differentiation 1,01E-02 

 

 

With the unavailability of human in vivo pre-migratory PGC samples and global 

transcription data of those cells, we compared data from our PGC-like cells and iPSCs 

with published data sets from Gkountela et al and Nakaki et al (Gkountela et al, 2013; 

Nakaki et al, 2013). We performed comparative gene expression analysis and 

identified 6 and 10 genes that were commonly down- or upregulated, respectively, in 

PGC-like cells, in vivo post-migratory PGCs, and mouse in vitro–generated PGCs 

compared with the corresponding human ESC lines and mouse EpiLCs (Fig. 29-33). 

Of these, DNMT3B was downregulated, indicating suppression of de novo DNA 

methylation, which is a common event at the early stage of PGC development in 

humans and mice. BLIMP1, STELLA, and KLF2 expression was upregulated; 

however, SOX2 and PRDM14 expression was downregulated in human PGCs and 

PGC-like cells, but not in mouse in vitro–generated PGCs. Of note, human PGC-like 



cells exhibited similar LIFR expression levels as mouse PGCs, indicating that our 

cells shifted from a FGF-dependent state to an LIF-dependent state to activate 

pluripotency genes. These observations suggested that the lack of PRDM14 is a 

characteristic unique to human PGCs, and that human PGCs lack the expression of 

PRDM14 from their early commitment to the germ lineage until at least the post-

migratory stage.  

 

Figure 29 Venn diagrams of intersection between mouse in vitro PGCLCs, human in vivo PGCs, and 
human in vitro PGC-like cells. 
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Figure 30 Heat map of genes commonly downregulated in human PGC-like cells and mouse PGC-like 
cells. The color bar at top codifies the gene expression in log2 scale. Red and blue colors indicate high 
and low gene expression, respectively. 
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Figure 31 Heat map of genes commonly upregulated in human PGC-like cell and mouse PGC-like. 
The color bar at top codifies the gene expression in log2 scale. Red and blue colors indicate high and 
low gene expression, respectively. 
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Figure 32 Heat map of genes commonly downregulated in human PGC-like cells and 16-16.5 week 
PGCs. The color bar at top codifies the gene expression in log2 scale. Red and blue colors indicate high 
and low gene expression, respectively. 
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Figure 33 Heat map of genes commonly upregulated in human PGC-like cells and 16-16.5 week PGCs. 
The color bar at top codifies the gene expression in log2 scale. Red and blue colors indicate high and 
low gene expression, respectively. 

  



Our data indicated that the expression of BLIMP1 is associated with PGC 

commitment from human iPSCs, whereas PRDM14 is not. To determine this thought, 

I transduced iPSCs with lentiviral vectors producing small hairpin RNA (shRNA) 

against BLIMP1 and PRDM14. The expression level of BLIMP1 or PRDM14 was 

impaired in BLIMP1- or PRDM14-shRNA-transduced cells, respectively (Fig. 34A). 

As shown in Figure 34B, the knock-down of BLIMP1 lead to impaired induction of 

TRA-1-81+/c-KIT+ PGC-like cells on day 4 (ca. 50%). In contrast, the knock-down 

of PRDM14 did not affect the induction efficiency (ca. 100%). This data clearly 

indicated that BLIMP1 plays an important role in human PGC commitment, whereas 

PRDM14 has less or no impact on it. 

 

 

 

Figure 34 Knock-down of BLIMP1 and PRDM14 (A) Knock-down efficiency of shRNAs in human 
ESCs after 2 days of infection. (B) The induction efficiency of TRA-1-81+/c-KIT+ PGC-like cells on 
day4. 
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3.2. PGC differentiation from mouse EpiSCs and ΔPE-Oct4-GFP+ EpiSCs 

3.2.1. PGC differentiation from mouse EpiSCs 

I could demonstrate that our in vitro system successfully generated PGC- and oocyte-

like cells from mouse ESCs by molecular and ultrastructure analyses (section 4.2). I 

hypothesized that this differentiation system would also be able to induce PGCs from 

mouse epiblast stem cells (EpiSCs). EpiSCs are pluripotent stem cells derived from 

post-implantation embryo (Brons et al, 2007; Tesar et al, 2007). Although EpiSCs 

share some common properties with ESCs, such as expression of key pluripotency-

associated genes including Oct4, Nanog and Sox2, they are significantly different in 

their epigenetic state and gene transcription profile (Brons et al, 2007; Guo et al, 

2009; Hayashi et al, 2008; Tesar et al, 2007). In particular, EpiSCs are derived from 

epiblast cells from which PGCs originate in vivo. Therefore, the differentiation of 

PGCs from EpiSCs could provide a better platform for an investigation on PGC 

specification. Furthermore, EpiSCs share some properties with human ESCs, such as 

flattened colony morphology and the culture conditions for maintainance, giving rise 

to the idea that establishment of a PGC induction protocol from mouse EpiSCs could 

be instrumental toward the establishment of differentiation systems with human 

pluripotent stem cells. 

 

Mouse GOF18-EpiSCs that contain a GFP transgene under the control of the entire 

regulatory region of the Oct4 gene (Yeom et al, 1996) were differentiated with a 

modified protocol to PGCs (Fig. 35A). As shown in Figure 35B, strong GFP signal 

was observed in differentiated EBs after 7 days of differentiation. FACS analysis 

revealed that 73.9% of the cells are Oct4-GFP+ and, furthermore, 36.8% of cells 

exhibit both Oct4-GFP and c-KIT expression, characteristic of in vivo PGCs (Fig. 

35C). This result indicated that this differentiation protocol efficiently induces OCT4-

GFP+/c-KIT+ putative PGCs from mouse EpiSCs. I then analyzed the gene 

expression level of key genes, Oct4, Sox2, Nanog, Blimp1, Prdm14, Stella, Dazl and 

Vasa in Oct4-GFP+/c-KIT+ PGC-like population. As shown in Figure 35D, 

pluripotency-associated genes, Oct4, Nanog and Sox2, as well as early PGC gene, 

Blimp1, were expressed in the PGC-like population at a similar level to EpiSCs. In 

contrast, the early PGC genes Prdm14 and Stella were highly upregulated in the PGC-

like population (16-fold and 156-fold, respectively). Furthermore, the late PGC genes 



Dazl and Vasa were also highly upregulated (128-fold and 512-fold, respectively), 

indicating their progress to the post-migratory stage. In fact, SYCP3 staining by 

immunofluorescence analysis exhibited a premeiotic staining pattern, indicating that 

cells prepared to enter meiosis (Fig. 35D). These results suggested that this 

differentiation protocol induces presumptive PGCs and that the employed protocol 

apparently worked for EpiSCs. 

 

 

 

Figure 35 Differentiation of mouse EpiSCs toward PGCs. (A) Scheme of PGC differentiation. (B) 
Oct4-GFP expression on day 7 of differentiation. Phase contrast and GFP fluorescence images are 
shown. (C) FACS analysis of the differentiated cells on day 7. (D) Gene expression analysis of Oct4-
GFP+/c-KIT+ cells. The value for EpiSCs is set as 1, and values are on log2 scale. (E) 
Immunofluorescent analysis of SYCP3 in Oct4-GFP+/c-KIT+ cells. 

However, although I obtained this result from my first attempt, I failed to reproduce it 

later (n=3). Upon differentiation, I regularly obtained similar ratios of Oct4-GFP- and 

Oct4-GFP+ cells, but I did not observe c-KIT expression anymore (ca. 0.4%) (Fig. 

36). This might be attributed to undefined changes of components in MEF-

conditioned medium (MEF-CM), which were used for both maintenance and 

differentiation of EpiSCs. MEF-CM has batch differences depending on the MEF 



preparation (see discussion for details). If culturing EpiSCs in defined culture 

condition resolves this problem has to be elucidated by further investigations. 

 

 

 

Figure 36 FACS analysis of the day7 differentiated EpiSCs by GFP and c-KIT 

3.2.2. PGC differentiation from mouse PE-Oct4-GFP+ EpiSCs

The competence of the epiblast for the germ cell fate is restricted between E5.5 and 

E6.25, as PGC-like cell are induced only from E5.5-6.25 epiblast, but not from the 

epiblast later than E6.5 (Ohinata et al, 2009). Interestingly, one of our recent studies 

demonstrated that EpiSCs have two distinct populations distinguished by PE-Oct4-

GFP expression (Han et al, 2010). Oct4 contains a proximal (PE) and a distal (DE) 

enhancer element, which are preferentially used in EpiSCs or ESCs and PGCs, 

respectively. The study by Han et al. demonstrated that the PE-Oct4-GFP negative 

population in EpiSCs represents cells of the E6.5 postgastrulation embryo, while the 

PE-Oct4-GFP positive population represents cells of the E5.5 pregastrulation 

embryo. Based on this, I hypothesized that the Oct4-GFP+ cells in EpiSCs posess a 

higher competence for the germ cell fate.  

 

Mouse PE-Oct4-GFP+ EpiSCs (named stabilized EpiSCs, Fig 37A) were 

differentiated using the modified differentiation protocol to PGCs. As shown in 

Figure 37B, strong GFP signal was observed in differentiated EBs on day 7 of the 

differentiation. However, FACS analysis revealed that only a small population of 

these GFP+ cells expressed c-KIT (1.2%, Fig. 7C), indicating that our differentiation 

protocol insufficiently induces putative PGCs from stabilized EpiSCs. Interestingly, I 



observed the induction of Oct4-GFP+/SSEA-1+ cells (37.1%), which is another 

marker for PGCs in vivo (Fig. 7D). Gene expression analysis was performed for Oct4, 

Sox2, Nanog, Prdm14, Stella, Dazl and Vasa and to our surprise observed that many 

PGC genes, such as Bimp1, Prdm14, Stella, Dazl and Vasa were significantly 

upregulated, independent from SSEA-1 expression, while Oct4, Nanog and Sox2 

retained similar expression levels to those in EpiSCs (Fig. 7E). Since c-KIT is one of 

the definitive markers for PGCs, these cells cannot be considered PGCs per se. The 

detailed character of these Oct4-GFP+/SSEA-1+ cells and how PGC genes are 

upregulated in these cells at present is unclear. Based on the results, we concluded 

that our mouse PGC system needs to be optimized to induce PGC-like cells from 

stabilized EpiSCs. 

 

 

Figure 37 Differentiation of mouse PE-Oct4-GFP+ EpiSCs toward PGCs. (A) Oct4-GFP expression 
in undifferentiated cells. Phase contrast and GFP fluorescence images are shown. Scale bar: 20 µm. (B) 
Oct4-GFP expression on day 7 of differentiation. Phase contrast and GFP fluorescence images are 
shown. Scale bar: 20 µm. (C) FACS analysis of the day 7 differentiated cells by GFP and c-KIT. (D) 
FACS analysis of the day 7 differentiated cells by GFP and SSEA-1. (E) Gene expression analysis of 
Oct4-GFP+/SSEA-1+ cell. The value for EpiSCs is set as 1, and values are on log2 scale. 
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3.3. Ultrastructural characterization of mouse embryonic stem cell-derived 

oocytes and granulosa cells 

8.3.1. Granulosa cells and the GC–oocyte interface of ESC-derived follicles 

The entry of PGCs into meiosis in vivo and in vitro appears to be a cell autonomous 

process. Subsequent development of PGCs into competent oocytes and ultimate 

meiotic arrest during folliculogenesis is dependent on 2-way signaling interactions 

between the oocyte and surrounding granulosa cells (Adams & McLaren, 2002; 

Gosden et al, 2002). Figure 38A–D shows ESC-derived follicle-like structures. As 

aggregation of PGCs and granulosa-like cells takes place randomly in this system, we 

obtained spherical aggregates with centrally located single as well as multiple putative 

germ cells surrounded by various layers of attached presumptive granulosa cells and 

ECM. Light microscopy revealed germ cell clusters surrounded by loosely attached 

somatic granulosa-like cells (Fig. 38A). Scanning electron microscope (SEM) 

analysis demonstrated follicle-like structures, that is, germ cells surrounded by a 

dense layer of cuboidal cells (Fig. 38B). Figure 1C shows ESC-derived putative 

granulosa cells in direct proximity to a zona pellucida-like matrix. The granulosa-like 

cells exhibit a polygonal shape and a smooth surface with few microvilli (Fig. 38C). 

SEM and transmission electron microscopy (TEM) analysis revealed a structure 

specific for granulosa cells, that is, TZPs (Fig. 38C, 38D, arrow) that extend toward 

the putative oocyte. 

 

Figure 39A shows a light microscopy image of an ESC-derived follicular structure, 

with presumptive granulosa cells surrounding the GFP-positive oocyte-like cell. To 

analyze the granulosa cell–oocyte interface by SEM, in vitro-derived follicles were 

cracked. Figure 39C and D shows both parts of a cracked aggregate, revealing their 

morphological similarity to natural follicles. Even though the presumptive oocyte was 

destroyed during the cracking procedure, a round cavity of 50–60 μm in diameter 

with residual oocyte cell material is evident (Fig. 39C, D). Multiple layers of 

granulosa cells surround the cavity. The most central ones exhibiting the typical 

cuboidal-elongated phenotype of natural polarized cumulus cells, that is, those cells in 

direct contact to the oocyte (Fig. 39C), whose TZPs orientate toward the oocyte (Fig. 

39B). TZPs have been well characterized in many mammals by EM (Anderson & 
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Albertini, 1976; Hertig & Adams, 1967), and their number and form have been 

demonstrated to change dynamically during follicular development (Albertini et al, 

2001).  

 

 

 

Figure 38 ESC-derived follicle-like structures. (from Psathaki et al. 2011) (A) Light microscopy image 

of ESC-derived follicle-like structures with clusters of granulosa cells loosely surrounding the oocyte. 

(B) SEM image of a defined follicle structure. Note the layer of densely attached cuboidal cells 

(asterisk). (C) SEM image of polygonal-shaped granulosa cells around a smooth zona pellucida-like 

surface (asterisk). The pole of a granulosa cell is facing toward the oocyte (arrow). (D) TEM image of 

a granulosa cell with an extension stretching towards the oocyte (arrow).  
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To investigate the granulosa cell–oocyte interface in more detail, TEM analyses was 

performed and compared to granulosa cells of natural follicles to ESC-derived 

presumptive granulosa cells. The ultrastructure of TZPs of in vitro-derived granulosa 

cells appeared to be indistinguishable from the TZPs of their natural counterparts, 

indicating generation of the interface between the oocyte and granulosa cells, the 

major control structure for healthy follicle development (Albertini et al, 2001). ESC-

derived granulosa cells of high electron density exhibited long cellular processes 

containing the same dark fine granulation as the cytoplasm (Fig. 2E). These processes 

penetrated the matrix, with some reaching a diameter of ~1 μm, very similar to the 

branched processes of polarized cumulus cell in natural follicles. The detection of 

organelles, for example, mitochondria (Albertini et al, 2001; Zamboni, 1970), within 

the TZPs of in vitro-derived granulosa cells (Fig. 2F, G) is indicative of recapitulation 

of folliculogenesis in vitro. Further, the ultrastructural texture of the pale amorphous 

matrix in direct proximity to the granulosa cells in vitro (Fig. 2E) resembles the zona 

pellucida of the granulosa cell–oocyte interface in vivo (Fig. 2H). 

 

 

 

 

 

 

 

 

 

 

Figure 39 Granulosa cell–oocyte interface of ESC-derived follicles. (from Psathaki et al. 2011) (A) 
Light microscopy image of an ESC-derived follicle structure. Granulosa cells surround the gcOct4-
GFP oocyte. (B) SEM analysis of an ESC-derived follicle-like structure. A long process originates 
from a somatic granulosa cell toward the oocyte (arrow). (C, D) SEM analysis of both halves of a 
cracked ESC-derived follicle-like structure. The position of the oocyte is clearly apparent by the 50–
60-mm-large, round cavity (asterisk in C) and residual oocyte cell material in D (asterisk). The 
granulosa cells surround the oocyte in multiple layers, with the cell layer in direct contact being 
cuboidal-elongated in shape (C, arrow). (E) TEM analysis of ESC-derived granulosa cells. Cells exert 
long processes (TZPs) toward the oocyte (arrow). Note the texture of the pale amorphous matrix 
(asterisk), which is penetrated by the TZPs. (F) TZPs contain organelles such as mitochondria (arrow) 
and have the same ultrastructural texture as the cell cytoplasm. (G) TZPs of ESC-derived granulosa 
cells partly exhibit extreme branching processes (arrow) and reach diameters of almost 1 mm. (H) 
Cellular processes of cumulus cells with branching ends (arrow) of in vivo follicles closely resemble 
those of in vitro-derived granulosa cells. The ultrastructure of the zona pellucida (asterisk) resembles 
that of in vitro-derived follicles in E. 
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Ultrastructural characterization of in vitro-generated granulosa cell-like cells revealed 

additional analogies to characteristics of natural granulosa cells described in the 

literature, for example, the presence of both dark- and light-appearing granulosa cells. 

Dark granulosa cells possess a dark background nucleoplasm and background 

cytoplasm (Fig. 40A, C). The electron density is due to the fine granulation of the 

cytoplasm, which does not correspond to free ribosomes, as free ribosomes would be 

much larger and stand distinctly out from the granular background (Fig. 40E, F). The 

cytoplasm of the granulosa cells appears to be partly vacuolated and is populated by 

mitochondria, ribosomes, and the most prominent organelle of ESC-derived granulosa 

cells, the rough endoplasmic reticulum. Cisternae of swollen rough endoplasmic 

reticulum containing granular material wind through the cytoplasm of dark and light 

in vitro-derived granulosa cells (Fig. 40A, E) as well as pale in vivo granulosa cells 

(Fig. 40F). The ribosomes of natural dark and light granulosa cells and ESC-derived 

granulosa cells are either free or associated with rough endoplasmic reticulum (Fig. 

40A, B, E, F). The presence of free ribosomes is a characteristic feature of protein-

secreting cells, such as the granulosa cells of growing follicles. The mitochondria of 

both dark in vivo and in vitro-derived granulosa cells appear irregular and elongated, 

containing pale cristae and an electron-dense matrix (Fig. 40A, B). The mitochondria 

of light granulosa cells exhibit an oval shape and have tubular–vesicular cristae (Fig. 

40E, F). Lipid droplets filled with a transparent gray substance and empty vacuoles 

frequently surrounded by a membrane (Fig. 40B, D) are distributed throughout the 

cytoplasm of in vivo GCs. Vacuolization appears to be a prominent feature of ESC-

derived granulosa cells (Fig. 40C), manifested mainly by empty white vacuoles and 

vacuoles containing a residual gray substance (Fig. 40C). Empty vacuoles appear to 

be an artifact of sample manipulation, created when the gray substance of lipid 

droplets is washed out during the dehydration step. The nuclei of both in vitro-derived 

and in vivo granulosa cells are large and have an irregular contour (Fig. 40A–D). The 

nucleoplasm of ESC-derived granulosa cells, enclosed by the inner nuclear membrane, 

contains finely dispersed chromatin and clumps of heterochromatin scattered 

throughout (Fig. 40A, C, E); the nucleoplasm of in vivo granulosa cells is arranged 

similarly (Fig. 40B, D, F). Taking these data together, the ultrastructural features of in 

vitro-derived granulosa cells are indistinguishable from natural granulosa cells. Most 

importantly, to the best of my knowledge, there is no other cell in the body capable of 

forming unique and typical TZPs. The observed activated rough endoplasmatic 
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reticulum, indicative for metabolically active and steroid-producing cells, further 

supports their granulosa cell-like identity. 

 

 

Figure 40 (continued) 
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Figure 40 TEM analyses of ESC-derived dark- and light-colored granulosa cells. (from Psathaki et al. 
2011) (A) Cuboidal-elongated in vitro-derived granulosa cells with electron dense cytoplasm and 
swollen rough endoplasmatic reticulum. Mitochondria (insert) exhibit pale tubular cristae. (B) In vivo-
derived dark granulosa cell. Note lipid droplets (asterisk). (C) Dark ESC-derived granulosa cells with 
numerous vacuoles and droplets containing residual gray translucent substance indicative of lipids 
(asterisk). Note prominent nucleolus. (D) In vivo dark granulosa cell with numerous pseudopodia, 
branching processes and protrusions of cytoplasmic invaginations, vacuoles (arrowhead), and lipid 
droplets (asterisk) as detected in in vitro-derived granulosa cell shown in C. (E) ESC-derived light 
granulosa cell with microvilli at the cell surface. The cell exhibits the typical swollen rough 
endoplasmatic reticulum (asterisk) and oval-shaped tubular mitochondria with dark cristae (insert). (F) 
In vivo-derived light granulosa cell with swollen rough endoplasmatic reticulum (asterisk) and 
vesicular–tubular mitochondria (arrow). 
 

 

3.3.2. ESC-derived oocytes 

We have developed a suspension culture system that supports the generation of ESC-

derived oocytes of different follicular stages. Independent of the differentiation media 

used to initiate differentiation of ESCs, we obtained putative oocytes of various 

developmental stages at different yields. Serum-free conditions appeared best to 

promote germ cell differentiation, and XY-ESCs yielded a higher percentage of 

oocytes than XX-ESCs. Expression of specific oocyte marker genes was assessed by 

qPCR in groups of 3 in vitro-derived oocytes and compared with superovulated 

germinal vesicle-stage oocytes and ESCs. As expected, the generated oocytes (Fig. 

41A) exhibited a gene expression pattern very similar to that of control samples (Fig. 

41B). Morphologically, in vitro-generated oocytes (Figs. 41A and 42A) and in vitro-

matured oocytes generated from 18.5 days postcoitum (dpc) germ cells under the 

same culture conditions (Fig. 42C) exhibited a very similar shape, size, and 

microvillous cell surface (Fig. 42C, D). Interestingly, the surface topography of some 

in vitro-derived oocytes analyzed by SEM resembled exactly that of unfertilized 

oocytes in vivo, with the typical sparse and relatively uniform microvillous area and a 

clear mosaic surface containing a polar microvillous-free region (Fig. 42B–D). TEM 

analyses of generated oocytes revealed large, slightly eccentric nuclei with a 

characteristic pale background nucleoplasm (paler than the ooplasm) (Fig. 42E). Free 

ribosomes appeared individually or arranged in clusters of 5–10 (Fig. 42E, insert).  
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Figure 41 Gene expression of oocyte markers in a pool of 3 in vitro-derived oocytes. (from Psathaki et 
al. 2011) (A) Light microscopy image of one of the analyzed oocytes. (B) Real-time reverse 
transcription polymerase chain reaction of oocyte markers in a pool of 3 ESC-derived oocytes 
compared with XX-ESCs. 
 

 

Elongated staples of fibrils not associated with ribosomes were found throughout the 

cytoplasm (Fig. 42E, insert, F). Oocyte-specific cortical granules containing a 

characteristic electron-dense center and a pale outer ring (Fig. 42F, arrow) were 

mostly distributed throughout the cytoplasm and appeared only sporadically at the cell 

periphery (Fig. 42F and inserts), a distinct feature of immature oocytes. Further, we 

detected round as well as elongated mitochondria with a dense matrix and pale, 

irregularly arranged cristae and intermitochondrial vacuoles, all features of natural 

oocytes. Noteworthy is that the majority of ESC-derived oocytes showed signs of 

apoptosis and autophagy, which might be indicative of atresia (Fig. 42E, H). The 

oocyte shown in Fig. 42E lost its spherical shape. Numerous lysosomes, clear vesicles, 

and autophagosomes as well as dark cytoplasmic structures were detected. The ESC-

derived oocyte shown in Fig. 42H contains numerous apoptotic bodies and secondary 

lysosomes within the dark condensed cytoplasm. Mitochondria and other organelles 

cannot be identified. The zona pellucida and most of the microvilli at the oocyte 

surface appear to have been lost. In comparison, oocytes derived from natural 18.5-

dpc PGCs grown for 13 days in the same culture medium as in vitro-derived oocytes 

(Fig. 42G) also exhibit dark-stained mitochondria without cristae, numerous vacuoles, 

and secondary lysosomes; other organelles cannot be identified. Microvilli either have 
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been lost or have retracted from the zona pellucida. These observations indicate that 

our culture conditions support the maturation of PGCs into oogonia, but further 

optimization of these conditions is required for the generation of functional oocytes. 

 

 

 
Figure 42 (continued) 
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Figure 42 Ultrastructural analysis of in vitro-derived oocytes. (from Psathaki et al. 2011) (A) Light 
microscopy image of an in vitro-derived oocyte. (B) SEM image of an in vitro-derived oocyte with a 
polar microvillous-free surface (asterisk). (C) SEM image of fetal in vivo oocytes cultivated under the 
same culture conditions as the in vitro- derived oocytes. Note the polar microvillous-free region 
(asterisk). (D) SEM image of an in vitro-derived oocyte with a polar microvillous-free surface 
(asterisk). Note the similarity of the shape and surface structure to in vivo oocytes shown in C. (E) 
TEM image showing an overview of an in vitro-derived oocyte. Numerous lysosomes, clear vesicles, 
lipid droplets (arrow), and autophagosomes (arrowhead) are distributed throughout the cytoplasm. n: 
nucleus. Insert: Elongated mitochondria with tubular–vesicular cristae and vacuoles are arranged 
between staples of fibrils. (F) TEM image of oocyte-specific cortical granules (arrow) with the typical 
electron-dense center and pale outer ring of in vitro-derived oocytes. Cortical granules appear only 
sporadically in the cell periphery (inserts). Note vacuolated mitochondria (arrowhead). (G) TEM image 
of oocytes derived from natural 18.5 dpc primordial germ cells grown for 13 days in the same culture 
medium as in vitro-derived oocytes. The dark-stained mitochondria contain only few cristae, numerous 
vacuoles, autophagosomes (arrowhead), and secondary lysosomes. Other organelles are not identifiable. 
Microvilli are lost or retracted from the zona pellucida (arrow). (H) TEM image of in vitro-derived 
oocyte showing numerous apoptotic bodies (arrow) and secondary lysosomes in the dark, condensed 
cytoplasm. Mitochondria or other organelles are not identifiable. The zona pellucida and most of the 
microvilli at the oocyte surface are lost. 
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4. Discussion 

4.1. PGC differentiation from human ESCs and iPSCs 

Our laboratory had developed the serum-free defined PGC differentiation protocol for 

mouse ESCs (Psathaki et al, 2011). I initially utilized this protocol to differentiate 

human ESCs. However, this approach was insufficient to induce a SSEA1+/c-KIT+ 

PGC population. It is known that mouse and human ESCs possess distinct 

characteristics, although both cell types are derived from the ICM of blastocysts. For 

example, mouse ESCs require LIF/STAT3 signaling for self-renewal (Niwa et al, 

2009). Furthermore, activation of WNT/#-catenin signaling and inhibition of 

FGF/ERK signaling stabilize their undifferentiated state (Kunath et al, 2007; Sato et 

al, 2004). In contrast, hESCs do not respond to LIF (Dahéron et al, 2004), but depend 

on FGF and TGF# signaling (Amit et al, 2004; Frank et al, 2012; James et al, 2005). 

In addition, WNT/ #-catenin signaling appeares to induce differentiation under 

chemically defined conditions (Sumi et al, 2008). Those facts strongly indicate a 

significant difference between cells of both species and highlight the requirement of 

different approaches to differentiate these cells into germ cells. Interestingly, EpiSCs, 

which are stem cells derived from mouse post-implantation embryos, share some 

properties with human ESCs, such as the flat morphology and FGF-dependent 

maintenance conditions. However, in contrast to mouse EpiSCs, which contain a 

subpopulation of Blimp1+ and Stella+ cells, our investigations indicate that human 

ESCs do not contain subpopulations of BLIMP1+ nor STELLA+ cells. Thus, human 

ESCs possess a distinct character from mouse EpiSCS with respect to the expression 

of PGC genes. Taken together, these data indicate that human ESCs possess different 

characteristics from both mouse ESCs and EpiSCs. 

 

The lack of specific markers for early human PGCs hampers the investigation of 

human PGC commitment processes in vitro. Three studies have reported the 

generation of human GFP reporter ESC and/or iPSCs lines for germ cell 

investigations (Chuang et al, 2012; Kee et al, 2009; Tilgner et al, 2010). Kee et al. and 

Tilgner et al. utilized a VASA-GFP reporter and successfully isolated PGC-like cells 

in vitro (Kee et al.: 5% and Tilgner et al.: 0.8%). However, VASA is expressed in 

PGCs upon colonization of the gonads and is not expressed in PGCs of earlier stages 
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of development. Chuang et al. utilized a OCT4-GFP reporter. OCT4 is known to be 

expressed in early PGCs in mice (Schöler et al, 1990; Yeom et al, 1996) and humans 

(Gaskell et al, 2004; Rajpert-De Meyts et al, 2004), but also in mouse and human 

ESCs (Thomson et al, 1998). Thus, VASA and OCT4 are not really specific markers of 

early PGCs in humans. One of the known earliest genes expressed in human PGCs is 

BLIMP1 (Gkountela et al, 2013; Lin et al, 2014), although BLIMP1 is also known to 

be expressed in other somatic cell types, such as B cells (Turner et al, 1994), 

differentiating macrophages (Chang et al, 2000) and a subset of T-cells (Kallies et al, 

2006; Martins et al, 2006), which do not express OCT4. Therefore, only when OCT4 

and BLIMP1 are co-expressed, the two genes can be considered specific markers of 

early PGCs. Through my analysis, I found that STELLA and TEX13B exhibit 

concomitant upregulation with OCT4 and BLIMP1. TEX13B (mouse homologue: 

Tex13) has been reported to be expressed in testis, but not in ovary, in both mice and 

humans (Wang et al, 2001). However, the expression pattern of TEX13B/Tex13 in 

early PGCs has not yet been investigated. Therefore, it would be of interest, whether 

TEX13B/Tex13 is also expressed in pre-migratory PGCs. Stella is one of the definitive 

markers of early PGCs in mice. Stella knockout mice exhibit no gross PGC defects 

and are fertile (Payer et al, 2003), although Stella seems to play a role in the 

protection of maternal imprints in the zygote (Nakamura et al, 2007; Nakamura et al, 

2012). Nevertheless, several studies have utilized Stella to identify PGCs, due to its 

specific expression in this cell type. In human, the expression pattern of STELLA has 

not been determined. One study reported that undifferentiated human ESCs express 

STELLA (Clark et al, 2004). In contrast, I did not detect significant levels of 

STELLA expression in our human ESC lines. Interestingly, one study reported that 

chromatin around the transcriptional start sites of STELLA is not associated with 

inductive H3K4me3, suggesting that STELLA is not actively transcribed in human 

ESCs (Tesar et al, 2007). The expression level of STELLA in human ESCs has to be 

further investigated to convincingly characterize this particular similarity or 

difference between human ESCs and PGCs. 

 

The establishment of a reproducible and efficient differentiation protocol of human 

PGCs potentially provides the scientific community with an alternative approach to 

investigate germ cell development. All of the published studies on in vitro 

differentiation of human PGCs utilized serum-based medium. Commercial serum 
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bears a huge variation between batches, which are uncontrollable and thus, will result 

in poor reproducibility of available protocols. In fact, my attemps to reproduce the 

protocol by Kee et al. (Kee et al, 2009) resulted in failure to efficiently induce 

SSEA1+/c-KIT+ PGCs from human ESCs, although I used serum from the same 

company. Therefore, in this project, I established a serum-free defined differentiation 

protocol for the induction of PGCs from human ESCs and iPSCs. This protocol 

reproducibly induced OCT4+/T+/BLIMP1+ PGC precursors that transitioned into 

TRA-1-81+/c-KIT+ pre-migratory PGC-like cells. In this system, not all cells were 

similar to PGCs, likely due to some stochastic/physical parameters or intrinsic 

differences. However, considering the fact that PGC induction directly from 

ESCs/iPSCs so far gave rise to only low numbers of PGC-like cells, it becomes 

apparent, that the two-step induction procedure developed in my thesis strongly 

induced PGC precursors and subsequently PGC-like cells. To my knowledge, this is 

the first report of a serum-free defined differentiation protocol for the induction of 

human PGCs in vitro. 

 

My data suggest that Activin A, BMP4, and bFGF are important for the induction of 

OCT4+/T+/BLIMP1+ PGC precursors from human ESCs and iPSCs, and point to two 

different possibilities. The first possibility is that human PGC specification, in 

contrast to mouse PGC specification, requires the activation of TGFβ signaling. 

Mouse ex vivo PGC induction from epiblast has been shown to require BMP4 and 

bFGF, whereas the knock-out of Smad2, a transducer of TGFpiblast has been shown 

to require BMP4 and bFGF, whereas the knock-out of  PGC precursors fr(Ohinata et 

al, 2009). These results indicate that BMP and FGF signaling enhance PGC 

specification, whereas TGFt of  PGC precursors from human ESCs and iPSCs, and 

point to two different poss disc-like shape that is physically closer to the distal 

hypoblast in comparison to the cylinder-like shape of the mouse epiblast (Niakan et al, 

2012). Therefore, it is possible that the human epiblast and PGCs exhibit different 

reactivity to TGFβ signaling than their mouse counterparts. The second possibility is 

that even though human ESCs and mouse EpiSCs share many features, such as 

morphology and gene expression profiles, the state of human ESCs might be closer to 

the naïve cell state than to a primed state with regard to their PGC differentiation 

ability. In mice, BMP4 treatment of EpiSCs in vitro induces Blimp1+ cells, but most 
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of these cells do not progress to become Stella+ PGC-like cells (Hayashi et al, 2011; 

Hayashi & Surani, 2009). Interestingly, when EpiSCs were reverted to ESC-like cells, 

they gained the ability to differentiate into Blimp1+/Stella+ PGC-like cells (Hayashi 

et al, 2011). These data suggest that EpiSCs exhibit restricted PGC differentiation 

ability compared with ESCs. Indeed, a previous study showed the divergence of 

EpiSCs from ESCs as well as epiblast by global transcription analysis (Hayashi et al, 

2011). In this context, my data clearly show that human ESCs and iPSCs generate 

OCT4+/T+/BLIMP1+ PGC precursors that transition under appropriate culture 

conditions into PGC-like cells with key PGC gene expression, i.e., BLIMP1, STELLA, 

TFAP2C, and NANOS3. 

 

BMP4 played a critical role in the induction of PGC-like cells and enhanced induction 

in a concentration-dependent manner in our culture system, similar to serum-based 

differentiation culture systems (Kee et al, 2006). Apart from BMP proteins, SCF, 

EGF, and bFGF have also been reported to enhance PGC induction in mice (Ohinata 

et al, 2009). In particular, SCF (also known as KITLG) is considered to be necessary 

for PGC survival (Pesce et al, 1993). As we observed the rapid disappearance of the 

TRA-1-81+/c-KIT+ PGC-like cell population within 2 days of culture, we attempted 

to extend the proliferation of PGC-like cells by SCF, but this approach proved to be 

insufficient. On the other hand, according to the GSEA analysis, genes related to lipid, 

hormone, and steroid metabolic processes were upregulated in d6 PGC-like cells 

(Supplementary Table 3). Therefore, the addition of hormones to the culture might be 

an alternative approach for extending and rescuing the development of human PGC-

like cells in vitro. For example, retinoic acid (RA) is known to be associated with the 

initiation of meiosis during PGC development and follicle stimulating hormone (FSH) 

and luteinizing hormone (LH) are known to play an important role in oogenesis. 

However, an involvement of hormonesin PGC survival or proliferation has not been 

reported. Whether hormonal treatment of human PGC-like cells enhances 

proliferation warrants further investigations. 

 

The human PGC-like cells exhibited expression of OCT4, NANOG, BLIMP1, and 

STELLA, which is characteristic for mouse pre-migratory PGCs. I also confirmed by 

gene expression array analysis that human in vivo post-migratory female PGCs 

express high levels of BLIMP1 and STELLA, similarly to the human PGC-like cells 



?";,+;;")&!

!54!

and mouse PGCs, suggesting that characteristics of PGCs are conserved between 

these two species. In addition, global transcription analysis revealed that during 

differentiation, mesodermal genes, such as MESP1, CYP26A1, MIXL1, and GSC, 

were initially upregulated and subsequently downregulated. Concomitantly, PGC 

genes, such as BLIMP1, TFAP2C, STELLA, and NANOS3, were upregulated. This is 

similar to the gene expression dynamics observed during mouse PGC specification 

and indicates that the gene expression dynamics of some gene sets during PGC 

specification are conserved between humans and mice. In contrast, these cells showed 

very low expression levels of SOX2 and PRDM14, which seems to be a unique 

characteristics of human PGCs. 

 

In mice Blimp1 is one of the earliest genes expressed in mouse PGCs and its 

expression is first detected in approximately six cells in the posterior epiblast at 6.25 

dpc (Ohinata et al, 2005). Knock-out of Blimp1 leads to the failure of Hoxa1 or 

Hoxb1 expressionm and loss of PGCs by 7.5 dpc (Kurimoto et al, 2008; Ohinata et al, 

2005). Therefore, it is assumed that Blimp1 plays a key role in repression of the 

somatic program during PGC specification. Interestingly, a number of specification-

associated genes are still induced, although relatively weak, in the absence of Blimp1, 

suggesting that there are Blimp1-independent mechanisms during specification 

(Kurimoto et al, 2008). In humans, BLIMP1 is reported to be expressed in human 

PGCs/gonocytes at around 12 to 19 week of pregnancy (Eckert et al, 2008). However, 

the expression pattern of BLIMP1 in earlier stages has not been reported. Interestingly, 

I observed that a subset of mesodermal genes, such as MESP1, CYP26A1, MIXL1, and 

GSC, was initially upregulated in PGC-precursor cultures and subsequently 

downregulated in BLIMP1-expressing PGC-like cells. This gene dynamics might 

depict the indication that BLIMP1 plays an important role during human PGC 

specification by suppressing those mesodermal genes. In fact, I showed that the 

knock-down of BLIMP1 impairs the induction of TRA-1-81+/c-KIT+ PGC-like cells, 

which has also been reported by another study (Lin et al, 2014). Further investigation 

need to clarify how BLIMP1 functions during human PGC specification. 

 

The re-acquisition of Sox2 expression is one of the characteristics of PGC 

specification in mice (Kurimoto et al, 2008; Yabuta et al, 2006). Sox2 is repressed at 

the initiation of specification (6.25 dpc) and re-acquired upon establishment of 
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committed PGCs (7.25-7.5 dpc), while Oct4 and Nanog are constantly expressed. 

Sox3 and Sox17 also are transiently and specifically upregulated in PGCs at around 

7.25 dpc. In contrast, human PGCs appear to lack the expression of SOX2 (de Jong et 

al, 2008; Perrett et al, 2008). The expression of SOX3 and SOX17 in human PGCs has 

not been examined yet, but it has been reported that SOX17 is expressed in carcinoma 

in situ (CIS) and seminoma cells, but not in embryonic carcinoma (EC) cells (de Jong 

et al, 2008). The PGC-like cells exhibited a low SOX2 expression level in accordance 

with the mentioned studies. Interestingly, SOX17 is upregulated in PGC-like cells, 

whereas SOX3 is not upregulated, but rather downregulated (data not shown). How 

those SOX genes are regulated during human PGC commitment and how much the 

expression of SOX genes is conserved between mice will require further investigation. 

 

Surprisingly, only low PRDM14 expression levels could be detected in PGC-like cells. 

In mice, Prdm14 plays a key role in ESCs and PGCs. In ESCs, Prdm14 has been 

reported to repress extraembryonic endoderm (ExEn) differentiation in ESCs (Ma et 

al, 2011). Furthermore, a recent study revealed that Prdm14 antagonizes activation of 

the fibroblast growth factor receptor (FGFR) signaling and represses expression of de 

novo DNA methyltransferases (Dnmts) to ensure naïve pluripotency (Yamaji et al, 

2013). Prdm14 has also been identified as a critical regulator for PGC specification 

from the epiblast (Yamaji et al, 2008). Prdm14 knock- out mice are sterile and show a 

progressive loss of PGCs between 7.5 and 12.5 dpc, although a few AP-positive cells 

do remain even at the latter time point (Yamaji et al., 2008). Somatic genes are 

appropriately repressed, suggesting that Prdm14 does not function to repress the 

somatic program but is required for activation of the PGC program. In fact, a recent 

mouse study showed that ectopic expression of Prdm14 alone can induce PGC-like 

cells from Epiblast-like cell (EpiLCs) without activating the somatic program. The 

authors also suggested that Prdm14 plays a key role in the repression of neural 

induction and de novo methylation, as well as in the activation of the PGC program 

during specification (Nakaki et al, 2013). In humans, PRDM14 plays a crucial role in 

the maintenance of human pluripotency by binding to OCT4 regulatory elements and 

thereby regulating OCT4 expression and by suppressing the differentiation of human 

ESCs (Chia et al, 2010). PRDM14 is also thought to repress the expression of PGC-

associated genes, such as NANOS3 and BMP4, in human ESCs. On the other hand, 

the expression pattern of PRDM14 in human PGCs has not been studied. My data, for 
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the first time, demonstrate low or even absent expression of PRDM14 in PGCs. I 

confirmed that post-migratory in vivo human PGCs also exhibit a very low expression 

level of PRDM14, whereas mouse PGCLCs exhibit a high expression level of this 

gene. These results suggest that human PGCs do not express PRDM14 from their 

early commitment to the germ cell lineage through at least the post-migratory stage. 

In fact, I demonstrated that the knock-down of PRDM14 did not affect the induction 

of TRA-1-81+/c-KIT+ PGC-like cells, whereas that of BLIMP1 significantly impaired 

it. My data revealed that human PGC-like cells show some mouse Prdm14-regulated 

events, such as: 1) the downregulation of genes associated with neural differentiation, 

2) similar expression dynamics of a number of mouse Prdm14-regulated genes (such 

as KLF5, NR5A2, KLF4, LIFR, and NANOG), 3) the progression of global epigenetic 

reprogramming by demethylation of differentially methylated regions (DMRs) of 

selective imprinted genes and a global decrease in 5mC levels, and 4) the expression 

of OCT4, NANOG, and other pluripotency genes. The mechanism underlying the 

regulation of these genes is undetermined at this time. However, my data strongly 

suggest the presence of yet unknown mechanisms underlying a novel type of 

transcriptional regulation in humans. PGCs from Prdm14-deficient mice have been 

reported to exhibit abnormal expression of Sox2, indicating a putative interaction 

between Prdm14 and Sox2 in mice (Yamaji et al, 2008). Considering that Prdm14 

plays a crucial function in the re-acquisition of Sox2 expression in mouse PGCs, it 

might be reasonable to postulate that SOX2 is not expressed in human PGCs due to 

the absence of PRDM14. On the other hand, a recent human study demonstrated that 

BLIMP1 binds to a region around the SOX2 transcriptional start site suppressing 

SOX2 expression (Lin et al, 2014). However, the downregulation of SOX2 is a general 

phenomenon of BMP4-triggered mesoderm commitment, independent from the 

expression of BLIMP1. In fact, we also observed the downregulation of SOX2 in 

FACS-sorted c-KIT- somatic populations from our differentiated EBs. Thus, the 

suppression of SOX2 by BLIMP1 might be a feedback mechanism to maintain the 

cell state. Whether human PGCs utilize another mechanisms to actively or passively 

downregulate SOX2 warrants further investigations. 

 

Taken together, my differentiation protocol facilitates the generation of sufficient 

amounts of PGC-like cells to investigate gene/protein interactions and epigenetic 

alterations. Through this study, I provide insight into a novel human transcriptional 
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regulation during the early stage of human PGC development (3–6 weeks). Continued 

investigations will provide us with a more comprehensive understanding of human 

germ cell development and the opportunity to perform research for reproductive 

medicine, such as drug screening and disease modeling, by utilizing patient-specific 

iPSCs from reproductively compromised patients.  

 

4.2. PGC differentiation from mouse EpiSCs and ΔPE-Oct4-GFP+ EpiSCs 

There have been two reports on the induction of PGCs from mouse EpiSCs (Hayashi 

et al, 2011; Hayashi & Surani, 2009). Interestingly, both studies demonstrated 

inefficient or no induction of PGCs from EpiSCs. The first study (Hayashi & Surani, 

2009) reported that EpiSCs contain a subpopulation of Blimp1+ cells (10-50 %), 

some of which were also OCT4+, indicating a spontaneous generation of the PGC 

precursors and visceral endoderm (VE) cells.. The authors demonstrated that BMP4 

treatment slightly induced Stella+ cells, but they did not achieve a significant 

induction, considering the percentage of Blimp1+ cells within EpiSCs. This indicates 

that Blimp1+ cells retain their PGC precursor-like state, even after induction with 

BMP4. The second study (Hayashi et al, 2011) reported the efficient induction of 

PGC-like cells from ESCs via an epiblast-like state. The differentiation regimen used 

contained BMP4 and induced PGC-like cells (Blimp1+/Stella+) from the epiblast and 

from EpiLCs. However, EpiSCs produced only Blimp1+ cell that did not develop into 

Blimp+/Stella+ PGC-like cells. Interestingly, our differentiation system induced 

Oct4+GFP+/SSEA1+, but not c-KIT+ cells from EpiSCs. SSEA1 is not expressed in 

mouse EpiSCs, but is expressed in mouse ESCs and PGCs. Thus, the expression of 

SSEA1 might indicate the transition of cells from EpiSCs to PGCs, similar to the 

previous studies. Further optimization of the culture conditions might stimulate these 

cells to develop into Oct4+GFP+/c-KIT+ putative PGCs. 

 

In this study, we succeeded to induce putative PGCs from mouse EpiSCs only once 

and failed to reproduce it. Several points can be considered as a potential cause. For 

example, we used MEF-conditioned medium (MEF-CM) for the maintenance and 

differentiation of EpiSCs. MEF preparations greatly vary in terms of quality and 

biological character, such as sensitivity to cytokines. MEF-CM therefore also exhibits 

batch-dependent differences, like varying concentrations of secreted components like 
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for instance Activin A. Interestingly, it has been reported that the knock-out of Smad2, 

a transducer of TGFβ signaling, leads to an increased number of Blimp1+ PGCs in 

the epiblast (Ohinata et al, 2009). In addition, it is known that EpiSCs contain a 

subpopulation of PGC precursors and the number of cells is strongly influenced by 

the medium composition. Thus, the concentration of Activin A in MEF-CM could 

significantly affect the differentiation efficiency of PGCs from EpiSCs. Those facts 

strongly suggest the use of defined medium for PGC differentiation from mouse 

EpiSCs.  

 

We also attempted PGC differentiation from so called stabilized EpiSCs (Δso called 

st). Similar to the induction from normal EpiSCs, we could not induce Oct4-GFP+/c-

KIT+ putative PGCs, but obtained Oct4-GFP+/SSEA1+ cells. Interestingly, SSEA1+ 

as well as SSEA1- cells, i.e. the whole culture upregulated a number of PGC genes, 

such as Blimp1, Prdm14, Stella and Dazl. Contrary to our expectation that s, such as 

Blimp1, Prdm14, Stella and Dazl.  Activin A in MEF-CM coulsimilar gene 

expression profile to E5.5 epiblast, we did not observe any difference between normal 

EpiSCs and ΔPE-Oct4-GFP+ EpiSCs. Again, the utilization of a defined PGC 

differentiation protocol for mouse EpiSCs is required to investigate the differentiation 

potential of the two EpiSC lines. 

 

4.3. Ultrastructural characterization of mouse embryonic stem cell-derived 

oocytes and granulosa cells 

The first systematic study of the culture and growth of mouse oocytes in vitro was 

published by the laboratory of John Eppig (Eppig, 1977). As shown in that study 

mouse oocytes from primordial follicles could be grown and matured in vitro to 

produce live offspring after fertilization (Eppig & Schroeder, 1989; O'Brien et al, 

2003). These data marked a major breakthrough in the field of reproductive biology. 

Based on this success, various in vitro culture systems for female gametes of different 

mammalian species were established, such as rat (Daniel et al, 1989), hamster (Roy & 

Greenwald, 1989), cat (Jewgenow, 1998), pig (Hirao et al, 1994), sheep (Cecconi et 

al, 1999), goat (Huanmin & Yong, 2000), cow (Gutierrez et al, 2000; Harada et al, 

1997), and human (Roy & Treacy, 1993). All these maturation systems, including the 
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mouse model, are still under investigation in an effort to broaden our understanding of 

the complex mechanisms involved in germ cell development and maturation. In our 

study, we performed comparative ultrastructural analyses of follicle-like structures 

and bona fide oocytes from mouse ESCs with their natural counterparts. With our 

data, we supplement the genetic and immunological data obtained by standard 

analyses with a description of the unique ultrastructural properties of oocytes and 

their supporting granulosa cells during gametogenesis in vivo. Specifically, we 

performed SEM analysis on in vitro-derived follicle-like structures and compared 

their morphology with that of natural mammalian follicles described by Makabe et al. 

in 2006 (Makabe et al, 2006). Striking morphological similarities indicate that our 

culture system supports the derivation of germ cells of different developmental 

follicular stages. We utilized TEM analysis to assess differences in the dynamic 

structure of TZPs, which form the morphological basis of the oocyte–granulosa cell 

interface and play a crucial role in the structural integrity of developing follicles and 

maturing oocytes (Albertini et al, 2001). Many of our in vitro-derived granulosa cells 

developed microvilli, cytoplasmic invaginations, pseudopodia, and cytoplasmic 

protrusions (not shown here), which have been associated with cell expansion and are 

considered indirect signs of granulosa cell luteinization both in vitro and in vivo 

(Suzuki et al, 1981). The presence of numerous lipid droplets within the cytoplasm of 

in vitro-derived granulosa cells, an early sign of luteinization (Crisp et al, 1970), 

correlates with active steroidogenesis (Nottola et al, 2006). Taken together, in vitro-

derived granulosa cells exhibit ultrastructural characteristics typical for metabolically 

active and steroid-producing cells. 

 

The ovarian follicle represents a morphological and functional unit wherein both 

somatic and germ cells play a pivotal role in follicle maturation and formation of fully 

competent, fertilizable oocytes (Canipari, 2000). SEM analysis clearly demonstrated 

that ESC-derived cuboidal-shaped granulosa cells closely surround the oocyte and 

extend long TZPs toward the oocyte. In vivo, TZPs are most abundant in preantral 

follicles. By TEM analysis, we demonstrated that ESC-derived cumulus cells extend 

typical TZPs, some of which contain mitochondria, an observation consistent with the 

literature (Albertini et al, 2001; Zamboni, 1970). TZPs are an essential requirement 

for healthy follicle development (Albertini et al, 2001) and the ultrastructure of TZPs 

of our in vitro-derived granulosa cells demonstrates a profound conformity to that of 
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natural granulosa cells. This data demonstrate the establishment of an interface, that is, 

the major control site between the oocyte and granulosa cells in vitro. The 

ultrastructure of the ECM matrix of the in vivo cumulus–oocyte complex closely 

resembles that of the matrix penetrated by the TZPs of the in vitro-derived granulosa 

cells. 

 

Comparative morphological analysis of ESC-derived oocytes and in vivo oocytes 

revealed remarkable similarities. The oocyte surface varies greatly from one stage of 

the cell cycle to the other and even within a given stage, suggesting a close 

association between the surface characteristics and the maturation status of the oocyte 

(Suzuki et al, 2000). A mature, unfertilized mouse oocyte is characterized by small 

blebs and sparse, relatively uniform microvilli (Eager et al, 1976; Suzuki et al, 2000) 

as well as a clear mosaic surface, that is, a microvillous membrane with a smooth, 

microvillous-free polar region. This region is relatively free of organelles (Eager et al, 

1976) and has fewer granules (Ducibella et al, 1988). SEM analysis of in vitro-

derived oocytes from late cultures revealed a mosaic surface topography typical for 

mature unfertilized oocytes. 

 

The formation of cortical granules begins during oocyte maturation (Zamboni, 1970) 

and the distribution of cortical granules in the mouse oocyte cortex changes 

dynamically during meiotic maturation (Ducibella et al, 1988). Cortical granules are 

round or elliptical in shape, measure 0.2–0.5 mm in diameter, and consist of a highly 

dense matrix surrounded by a single smooth membrane (Zamboni, 1970). As 

described by Ducibella et al. (Ducibella et al, 1988), in immature oocytes, cortical 

granules are distributed asymmetrically throughout the cortex, whereas in mature 

oocytes, they are localized mainly to the cortex periphery and are fewer in number. 

TEM analysis of ESC-derived oocytes showed numerous cortical granules distributed 

over the entire cortex, with only a few granules at the oocyte periphery, which is 

indicative for immature oocytes. The distribution of cortical granules and their 

competence to undergo cortical reaction are important indicators of oocyte 

cytoplasmic maturation and provide valuable information about the fertilizable 

lifespan of the oocyte (Ducibella et al, 1988). Overall, these ultrastructural data 

suggest that the analyzed ESC-derived oocytes resembled immature and growing 

wild-type oocytes.  
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Although the derivation and culture of female germ cells from pluripotent stem cells 

in vitro may lead to ultrastructural alterations in oocytes, this study demonstrates that 

an in vitro culture system can create the essential components required for oocyte 

development: oocytes, an ECM-based interface, and granulosa-like cells. Future 

efforts to optimize in vitro differentiation conditions should bring us closer to our 

ultimate goal of generating fully functional oocytes and demonstrate whether all key 

events of germ cell development in vivo can be truthfully recapitulated in vitro. 
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