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The result of Honda-Tate theory for abelian varieties is a bijective correspon-
dence between simple abelian varieties over finite fields and certain algebraic
integers, so-called Weil-numbers, induced by relating an abelian variety to its
Frobenius endomorphism. Working on the function field side of algebraic number
theory, we construct the analogue of Honda-Tate theory in this setting, general-
izing an earlier result of Yu for Drinfeld-modules to the higher-dimensional case
of A-motives and global shtukas.
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Notations

We will use the following notational conventions throughout, unless explicitly
stated otherwise:

C : a projective, geometrically irreducible, normal curve over Fq.

∞ : a fixed Fq-valued point of C.

A : the ring O(C \ {∞}) of rational functions of C outside ∞.

C ′ : the curve C \ {∞} = Spec (A)

Q : the field of fractions of A, also the function field of C.

C̃ : the curve corresponding to some CM-algebra E/Q (see below)

Ck, C̃k : the curves C × Spec (k) and C̃ × Spec (k), respectively

AR, Ak : the rings A⊗Fq R and A⊗Fq k.

k : a finite field extension of Fq of degree e = [k : Fq]

γ : a fixed Fq-homomorphism A→ k, making (k, γ) an A-field.

ε : the kernel of γ, the so-called A-characteristic of (k, γ).

Fε : residue field of ε, i. e. Fε ∼= A/ε

M : an A-motiv (M, τM) over some A-field k

N : a global shtuka (N , τN , c) over a base scheme S

QEndk(M) : the Q-algebra of quasi-endomorphisms Endk(M)⊗Q
E : a sub-Q-algebra in QEnd(M) of maximal rank rkQ(M), called CM-algebra.

π : Frobenius endomorphism of an A-motive/global shtuka

α : an abstract (Drinfeld-)Weil-number in Qalg

σ : AR → AR : the map a⊗ r 7→ a⊗ rq.
σ∗M : the Ak-module M ⊗σ,k Ak
k{τ} : the skew-polynomial ring over k in the variable τ with τ.x = xq.τ .



u | v | w : places of the CM-algebra E, of F = Q(π) ⊂ E or Q(α) ⊂ W , and of
Q, respectively

zu, zv, zw : uniformizing parameters at places u, v, w, often simply written as z

Fu,Fv,Fw : residue fields at u, v, w

OC,v : the local ring of C at v.

Av : the completion of OC,v w. r. t. v.

Qv : the field of fractions of Av.

Av,L : A ⊗̂Fq L

Qv,L : Av,L inverted at zv.
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Introduction

A simple abelian variety A over a finite field Fq may be associated with a specific
set of complex numbers via its Frobenius endomorphism. More precisely, consider
the minimal polynomial of the Frobenius, which will be a polynomial with integer
coefficients, and form the set of its roots. We call the elements of this set the Weil
numbers associated with A. It was shown by John Tate that two isogenous abelian
varieties have the same Frobenius minimal polynomial and therefore the same set of
associated Weil numbers. Moreover, we can describe Weil numbers in an abstract, but
very elementary way; they are complex algebraic numbers α which have absolute value√
q under every embedding Q(α) ↪→C. One can therefore define an abstract Weil-q-

number to be such an algebraic number, and having obtained this abstract definition of
Weil numbers, it makes sense to ask if it is possible, given an abstract Weil number α,
to associate an abelian variety A(α) to the class of abstract Weil numbers represented
by α, that is, to a conjugacy class of Weil-q-numbers under Galois operation, such that
the Frobenius of A(α) is conjugate to α. It was shown by Honda that this is indeed
possible, and hence there is a one-to-one correspondence between the set of isogeny
classes of abelian varieties over finite fields and certain finite subsets of the complex
numbers. More precisely, if one denotes the set of isogeny classes of simple abelian
varieties over Fq by sabVar∼Fq and the set of conjugagy classes of Weil-q-numbers by
W∼

q , one has a bijective map

sabVar∼Fq W∼
q .1:1

The existence and description of this correspondence is usually referred to as Honda-
Tate-Theory for abelian varieties. It is a part of number theory in characteristic zero,
that is, the theory of finite field extensions of Q and its growth into arithmetic geometry.

Modern number theory exists in two parts, the first being the theory in characteristic
zero, dealing with number fields, the aforementioned finite extensions of Q, and the
second the theory for characteristic p > 0, dealing with function fields – finite extensions
of the fields Fp(t). The two sides are rich in analogues and similarities that have been
researched and understood over the years. Elliptic curves and abelian varieties belong
to the number field side; the endomorphism ring of elliptic curves includes the ring Z
of rational integers. On the function field side, the ring Z is replaced by an (admissible,
see Section. 1.1 for details) ring A of characteristic p > 0, the most simple example
being Fq[t], and its field of fractions Q, in our example Fq(t), takes the place of the
rational integers Q. The uniquely determined, natural characteristic morphism Z→ k
for any field k has to be replaced by a chosen morphism γ : A → k, and the kernel
ε = ker γ of this morphism is called the A-characteristic of k. In particular, it allows
us to consider k as field extension of Fε := A/ ker γ. The notion of Drinfeld modules

i



plays the role that elliptic curves play for number fields, a Drinfeld module being some
non-trivial ring homomorphism φ : A 3 a 7→ φa ∈ k{τ}, with k{τ} meaning the skew-
polynomial ring over k in the variable τ , with action given by τ · b = bq · τ for b ∈ k. A
Drinfeld-A-module φ has a rank, which is in the case of A = Fq[t] simply the τ -degree
of the highest τ -power in φt with non-vanishing coefficient.

Every Drinfeld module φ defined over a finite field k ∼= Fqe possesses a Frobenius
endomorphism πφ, given by the qe-th power map τ e. Furthermore, it was proven by
Yu ([Yu95], see also [Gos96, Thm. 4.12.15]) that the roots of its minimal polynomial
minπ,Q ∈ Q[X] in Qalg classify its isogeny class in a similar fashion as Weil-numbers
do for elliptic curves and abelian varieties . In other words, if we write A − DM∼k,r
for the set of isogeny classes of Drinfeld-A-modules of rank r over a field k of size (qe)
and DW∼(A, q, e, r) for the (suitably defined, see Chapter 3) set of conjugacy classes of
Drinfeld-Weil-numbers of rank r, there is a bijection

A−DM∼(k, r) DW∼(A, q, e, r)1:1

given by mapping a Drinfeld-A-module φ of rank r with Frobenius endomorphism πφ
to the conjugacy class of roots of minπ,Q. Thus, there is a Honda-Tate-Theory for
Drinfeld modules.

Now, similar to how elliptic curves are just the 1-dimensional case of abelian varieties,
Drinfeld modules can be understood as the 1-dimensional case of higher-dimensional ob-
jects, originally introduced in 1986 by Anderson in [And86] under the name t-modules,
which can be defined as ring morphisms φ : A → k{τ}d×d for any dimension d > 0
satisfying some additional technical properties. The interested reader may find a quick
overview in the Appendix, under the modern name Anderson-A-modules. In loc. cit.
Anderson also introduced a category of t-motives, which is anti-equivalent to t-modules,
and nowadays referred to in the literature as the category of A-motives. (Older works
still use the terminology Anderson-A-motive.)

It is also possible to go one step further and construct a category of Global Shtukas
which is even larger than the category of A-motives. Every A-motive lives over two
places, the A-characteristic ε = ker γ and a point ∞, which is the place on the curve
C corresponding to the field of fractions Q of A not in Spec (A). A global shtuka
N = (N , τN , c) over a base scheme S is essentially an A-motive with more than two
characteristic places given by a tuple of morphisms c = (ci : S → C : 1 ≤ i ≤ n). (A
precise definition is included in later chapters.) The term global strongly implies the
existence of something called local shtuka, which is indeed accurate; local shtukas are
objects attached to A-motives and global shtukas at the places of C, which play are
crucial role as the equivalents of p-divisible groups.

The theory of Drinfeld modules, Anderson-A-modules, A-motives and global/local
shtukas was developed further by G. Anderson, V. Drinfeld, W. D. Brownawell, E.-
U. Gekeler, D. Goss, G. Böckle, U. Hartl, M. Papanikolas, R. Pink, Y. Taguchi, D.
Thakur, J.-K. Yu, amongst many others.

Our aim in these notes is to give a generalization of Honda-Tate correspondence to
higher dimension, first and foremost to A-motives.

Let us briefly note some important similarities and differences between the theory of
abelian varieties and the theory of A-motives.
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Abelian varieties are always semisimple, that is, they may up to isogeny be written as
product of simple subvarieties. In general, A-motives do not behave quite as well, in that
one can construct non-semisimple A-motives. Over finite fields, however, A-motives are
always semisimple after a suitably large field extension. Semisimple A-Motives show
quite similar behaviour as abelian varieties.

An abelian variety A of dimension n over C can always be realized as a quotient V/Λ,
where V is a n-dimensional C-vector space and Λ a real lattice of R-rank 2n. Moreover,
there is an explicit realization via its exponential function, i. e. T0(A) ∼= V ∼= Cn and
Λ ∼= ker ExpA. Anderson-Motives on the other hand do not always allow a lattice
realization; if they do, they are called uniformizable.

We already mentioned that the ring of rational integers Z can be found inside the
endomorphism ring of an elliptic curve. More generally, this is true for abelian varieties
of higher dimension as well, and if one considers the Q-algebra of quasi-endomorphisms
of an abelian variety A, formed by tensoring the endomorphism ring with Q, one can
ask if this algebra includes a commutative semisimple Q-sub-algebra of maximal rank
2 · dim(A). If this is the case, the variety A is said to have Complex Multiplication,
and one can describe abelian varieties with Complex Multiplication in a very abstract
manner simply by defining the correct notion of CM-type. In this way, it is possible
to construct abelian varieties with Complex Multiplication based only on information
about their endomorphism ring. This is also a fundamental ingredient in the proof of
Honda-Tate theory for abelian varieties, since knowledge of a Weil-number α associated
to A can be translated into knowledge of the endomorphism algebra of A.

Switching sides again, one can define the notion of Complex Multiplication and CM-
types for A-motives (and global shtukas) in a manner quite similar to the above, and
this will be a crucial step for us to develop Honda-Tate theory for A-motives (and global
shtukas).

Finally, let us summarize our results. We give the definition of Weil-numbers and
our main result for A-motives:

Definition 0.1 (see Chapter 3). Let A be an admissible ring, and let Q be its field
of fractions. Let p ⊂ A be a maximal ideal, and let a > 0 be a positive integer. A
pa-Weil-number is an element of Qalg satisfying the following conditions:

1. The minimal polynomial minα,Q of α over Q has coefficients in A.
2. The element α does not lie over any place w outside p and ∞, i. e.

ordw(α) = 0 (∀w - p · ∞).

Two Weil-numbers α, α′ are called conjugated, written as α ∼ α′, if they have the
same minimal polynomial minα,Q = minα′,Q over Q. We denote the set of conjugacy
classes of pa-Weil-numbers by

W∼(A, p, a) ,

and the set of isogeny classes of simple A-motives over k ∼= Fqa of characteristic p by

A-Mot∼(p, a) .

Theorem 0.2. Then there is a bijection between the set of isogeny classes of simple
A-motives over a fixed finite A-field (k, γ) of size

(
#Fp

)a
and the set of conjugacy
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classes of Weil-numbers α in the sense of Definition 0.1 induced by M 7→ minπ,Q, that
is:

A-Mot∼s (p, a) W∼(A, p, a)1:1

Φ

We also explain how to extract dimension and rank of the corresponding A-motive
from a Weil-number, show that this correspondence can be restricted in a suitable
manner to pure A-motives and give a definition of pure Weil-numbers. Furthermore,
we prove an analogous result for Global Shtukas.

Our approach mirrors the works of Honda and Tate. Historically, injectivity and
surjectivity were separate results by J. Tate and T. Honda [Hon68], respectively, with
Hondas original proof having been written in 1967. Soon afterwards, in late 1968, a
paper written by Tate alone appeared in Seminaire Bourbaki, crediting Honda, in which
Tate gave a complete account of the bijection theorem, using the essence of Hondas
approach, but avoiding some of Hondas elementary, but unwieldy ideal constructions
and using instead an argument involving p-divisible groups. We will essentially follow
this latter approach, employing the technique of local shtukas as analogue to Tates
p-divisible group argument. The core steps of the proof are as follows:

• Choose a maximal ideal p, an order a > 0 and a p-Weil number α of order a.

• Deduce the correct endomorphism algebra from α.

• Obtain from it a CM-type and thereby an A-motive with (CM) over C∞

• Move from a motive over C∞ to a motive over some finite field k̃/Fq.

• Show that some power αm of α represents a Frobenius endomorpism.

• Finally, conclude that α is defined by a Frobenius endomorphism as well.

Some words about the organization of the work. The first chapter is primarily an
overview of the theory of A-motives and global shtukas. The second chapter deals with
the theory Complex Multiplication of A-motives, and includes a prove of the analogue
to the formula of Shimura and Taniyama. The third chapter defines Weil-numbers
for function field objects and states the Honda-Tate correspondence. The fourth, very
short, chapter proves the injectivity of the correspondence. The fifth chapter deals
with the surjectivity proof. The appendix includes short explanations of Anderson-
A-modules, Complex Multiplication for abelian varieties, descent theory and Brauer
groups. Each chapter starts with a more detailed overview of its contents.

During the work, we use boldface to indicate formal definitions, and italics for
general emphasis. The numeration of Remarks, Propositions, Theorems and so on is
continuous, and includes the chapter number first. Sections and subsections are labeled
independently.
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1. A-Motives and Global Shtukas

In this chapter we introduce all the fundamental objects of interest for our work, in par-
ticular A-rings, A-motives, global shtukas, (associated) local shtukas and the Frobenius
endomorphism. We explain the notions of pure and (semi)simple A-motives, and we
explain the structure of the endomorphism algebra of A-motives and global shtukas in
terms of their Hasse invariants. The primary source are the two papers [BH11, BH09],
as well as [Har16] and [HS16]. Note that the first two papers are older and written in
the of so-called abelian τ -sheaves, which has not been adopted for general use, and we
will therefore avoid entirely. Abelian τ -sheaves and A-motives are closely related (see
[BH11, Thm. 3.1]), and results obtained for τ -sheaves are generally true for A-motives
as well. A certain care, however, has to be taken when an argument including τ -sheaves
touches the point ∞, which has to do with the definition of purity. More generally,
the statements in [BH11, BH09] will usually also remain true if one replaces A-motives
with global shtukas. This is true in particular whenever proofs work locally, i. e. with
local shtukas.

1.1. The ring A and A-fields

As mentioned in the introduction, the theory of Drinfeld-modules and A-motives is
situated above a ring A replacing the ring Z on the number-field side. Not every ring A
may be used; instead, a ring A is called admissible if it arises in the following manner:
Let C be a projective, geometrically irreducible and normal curve over Fq and ∞ be a
fixed Fq-rational point of C. Let C ′ := C \ {∞} be the curve outside this given point.
Form the ring A = Γ(C ′,OC) of functions of C regular outside ∞.

Let us now fix such a curve C, a point ∞ and a ring A as above. Let us write
Q := Frac(A) for the ring of fractions of A.

Definition 1.1. Let k be a field extension of Fq. Let γ : A→ k be an Fq-homomorphism.
The pair (k, γ) is then called an A-field. The A-characteristic ε of (k, γ) is defined
as the kernel of γ. More generally, any (commutative, unitary) ring R together with a
ring homomorphism γ : A→ R is called an A-ring.

Remark 1.2. We are mostly interested in working with A-motives (and shtukas) over
fields, but the theory can also be developed over A-rings, see for instance [Har16]. Since
it will on occasion become necessary for us to consider objects over rings, we include
the more general definition.

Let R be a ring. Write AR := A⊗Fq R. We can define an endomorphism σ of AR via

σ : AR 3 a⊗ b 7→ a⊗ bq ∈ AR.

1



1. A-Motives and Global Shtukas

We write σ∗M := M⊗AR,σAR (i. e. an element a ∈ AR acts as a.m⊗1 = m⊗σ(a)) and
σ∗(m) := m ⊗ 1 for all m ∈ M . Since AR acts canonically on the second component,
σ∗M is an AR-module.

1.2. Drinfeld-Modules

Definition 1.3. Let k/Fq be a field extension. Let k{τ} denote the ring of skew-
polynomials

b0 + b1 · τ + · · ·+ bn · τn

in the variable τ with action given via the q-Frobenius of k. In concrete terms, this
means τn · b = bq

n · τn for all b ∈ k and n ∈ N.

We have already developed all the necessary language to define one of the most
important concepts in the arithmetic of finite fields, that plays a similar role as elliptic
curves do for number fields.

Definition 1.4. A Drinfeld-A-Module with coefficients in an A-field (k, γ) is a ring
homomorphism φ : A→ k{τ}, such that the following two conditions are satisfied:

(i) The image of φ is not contained in k, i. e.

Im(φ) 6⊂ k.

(ii) The constant term of φ(a) is given by γ(a), i. e. for all a ∈ A we have

φ(a) = γ(a) · τ0 + a1 · τ + · · ·+ an · τn.

1.3. The Category of A-Motives

In this section we will define the objects of primary interest to us. They were also
invented by Anderson [And86] under the name of t-motives.

1.3.1. τ -Modules

Let now M be an AR-module and τ : M →M be a σ-linear endomorphism of M , i. e.
τ(a ·m) = σ(a) · τ(m) for all a ∈ AR and m ∈M . Composition of τ with

ι : M 3 m 7→ m⊗ 1 ∈ σ∗M

yields τ := τM ◦ ι : σ∗M →M , which is now a linear map of AR-modules.

Definition 1.5. A pair M := (M, τM ) is called a τ-module over Spec (AR) of rank r,
if M is a locally free AR-module of finite rank r and τM : σ∗M →M is a monomorphism
of AR-modules.

A τ -module may also be given via the σ-linar map τ instead of τM .
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1.3. The Category of A-Motives

1.3.2. A-Motives

Definition 1.6. A τ -module M = (M, τM ) over AR of rank r is called effective A-
motive over an A-ring (R, γ : A → R) of rank r and dimension d, if the following
conditions hold:

(i) the cokernel coker τM of τM forms a d-dimensional R-module

(ii) which is annihilated by the d-th power of the ideal J := (a⊗1−1⊗γ(a))AR ⊂ AR.

If in addition R = k is a field and the following condition

(iii) M is finitely generated as k{τ}-module

holds, the A-motive M is called abelian.

Remark 1.7. Abelian A-motives are closely related to Drinfeld-modules and abelian
Anderson-A-modules, as will be seen later. Under certain conditions (in particular
purity - cf. Def. 1.35) Anderson A-motives are automatically abelian.

Remark 1.8. The ideal J is the kernel of γ ⊗ idk : AR → AR and defines a locally
free AR-module of rank 1, or in other terminology, an invertible sheaf on Spec (AR).

The term effective refers to the fact that under the monomorphism τM the AR-
module σ∗M is a subset of M . Dropping this condition, one is led to the more general
notion of A-motive:

Definition 1.9. An A-motive of rank r over an A-ring (R, γ) is a pair M = (M, τM ),
where M is a locally free AR-module of finite rank r, and τM is an isomorphism away
from J , that is,

τM : σ∗M|Spec (AR)\V (J )

∼−→M|Spec (AR)\V (J )

As the following proposition shows, the two concepts are indeed closely related.

Proposition 1.10.

1. Every effective A-motive M induces an A-motive in the natural way by restricting
τM to Spec (AR) \ V (J ).

2. For an A-motive (M, τM ) to be effective it is sufficient and necessary to have

τM (σ∗M) ⊂M.

In this case, the dimension dim(M) is given by dimR(coker τM ).

Proof. See [Har16, Prop. 2.3]. y

Definition 1.11.

1. A morphism f : M → N of A-motives is an AR-module homomorphism f , such
that τM ◦ f = σ∗f ◦ τN where σ∗f := f ⊗ id : σ∗M → σ∗N . As usual, we write
HomR(M,N) for the set of such morphisms, and we will leave out the index k
when no confusion is possible.
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1. A-Motives and Global Shtukas

2. If f : M → N is a surjective morphism of A-motives, then N is called a quotient-
motive (also factor-motive) of M .

3. A quasi-morphism f : M → N is an element of

QHomR(M,N) := HomR(M,N)⊗A Q.

We also write
QEndR(M) := QHomR(M,M).

So far, we have given the modern definition of A-motives over A-rings instead of
A-fields, since it allows for a certain ease of notation in the context of reduction theory.
However, we are for the most part interested in working with A-motives over fields k,
and we will develop the rest of the theory of A-motives mostly for fields.

Remark 1.12. There is a functor associating to a Drinfeld-module φ : A→ k{τ} the
pair

M(φ) := (M(φ) := k{τ}, τM : σ∗M(φ)→M(φ),m 7→ τ ·m).

Then M(φ) forms an abelian A-motive, and it can be shown that just as for Anderson-
A-modules the effective, abelian A-motives of dimension 1 correspond exactly to the
Drinfeld-A-modules.

A finite, surjective morphism of abelian varieties is called an isogeny of abelian
varieties. The theory of Honda and Tate classifies abelian varieties over finite fields
up to isogeny. We will now give the corresponding dual notion for A-motives.

Definition 1.13.

1. An isogeny f : M → N of A-motives is a monomorphism f ∈ Hom(M,N)
with torsion cokernel. We denote the set of isogenies M → N by Isog(M,N). If
the set Isog(M,N) is not empty, M and N are said to be isogenous, and we
write M ∼ N . If M and N are effective, there exists an induced map τcoker f :
σ∗ coker f → coker f , and if this map is (not) bijective, the isogeny f is said to
be (in)separable.

2. A quasi-isogeny f : M → N of A-Motives is a quasi-morphism f : M → N ,
which is invertible in QHom(M,N). We denote the set of quasi-isogenies M → N
as QIsog(M,N).

Proposition 1.14. For any isogeny f : M → N between A-motives there exists an
element a ∈ A which annihilates the cokernel of f . Furthermore, there exists an isogeny
f∨a : N →M such that

f ◦ f∨a = a. idN and f∨a ◦ f = idM .

Proof. See [BH11, Cor. 5.4] for the pure case, and [Har16, Cor. 5.15] for the general
statement. y

As an immediate consequence, we obtain the following Corollary:
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1.3. The Category of A-Motives

Corollary 1.15. A morphism f : M → N between A-motives is an isogeny if and only
if it is a quasi-isogeny.

Definition 1.16. The isogeny f∨a is called the dual isogeny corresponding to (f, a).

Corollary 1.17. Let M and M ′ be A-motives and let f ∈ QEnd(M,M ′) be a quasi-
isogeny M →M ′. Then

QEnd(M) ∼= QEnd(M ′).

Proof. Follows immediately from the existence of a dual isogeny. y

Remark 1.18.

1. Note that in general there is no canonical choice of a dualizing element a, and
therefore no canonical choice of f∨a . However, certain additional conditions guar-
antee a canonical choice; in particular, this is true for semisimple pure A-motives
over finite fields.

2. The existence of dual isogenies implies that equality up to isogeny defines an
equivalenve relation ∼ for A-motives. In particular, we can define the sets

A-Mot∼(k) := {A-motives M over k}/ ∼

and

A-Mot∼(k, d, r) := {A-motives M of dimension d and rank r over k}/ ∼ .

1.3.3. Global Shtukas

An A-motive, defined over some A-field (k, γ), lives over two special places, the char-
acteristic ideal ε = ker γ and the fixed point ∞, with only the characteristic being
allowed to vary from motive to motive. It is therefore natural to consider A-motives
with ”more characteristic places”. We will call such a structure a global shtuka:

Definition 1.19. A global shtuka of rank r with n paws over an Fq-scheme S is a
tuple

N = (N , c, τN ),

where N is a locally free sheaf of rank r over CS = C×S and c is a tuple c = (c1, . . . , cn)
of Fq-morphisms Spec (S)→ C such that τN is an isomorphism on σ∗N|CS\Γ → N|CS\Γ
outside the graphs of the ci, i. e. outside Γ := Γc1 ∪ · · · ∪ Γcn. We call the elements of
c the paws of N .

Remark 1.20. The definition of a global shtuka (N , c, τN ) does not put any restriction
on the paws and their graphs of a global shtuka. In particular, the graphs don’t have to
be disjoint, which may cause problems when working locally. We are only interested in
working with global shtukas over finite fields, in which case graphs are disjoint if any
paw ci given by a place on the curve C only appears once in c.
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1. A-Motives and Global Shtukas

Definition 1.21. Let N and N ′ be global shtukas over S = Spec (k) with the same set
of paws c1, . . . , cn. Let η be the generic point of the curve Ck = C ×Spec (k). Then we
define the set of quasi-homomorphisms from N to N ′ as the set of morphisms between
the generic fibres of N and N ′ compatible with τN = and τN ′, that is,

QHom(N ,N ′) := {f : Nη → N ′η | f ◦
(
τN
)
η

=
(
τN ′
)
η
◦ f} .

From the definition it is quite immediately concluded that an A-motive is nothing
but a global shtuka with two paws given by the characteristic point ε and the infinite
point ∞.

Lemma 1.22. Let N = (N , c1, c2, τN ) be a global shtuka of rank r over Spec (k). The
graph of c2 consists of a single point, which we call ∞. Then the induced pair

M(N ) :=
(
Γ(Spec (Ak),N ), τN

)

forms a (not necessarily effective) A-motive of rank r over k. Vice versa, a (not nec-
essarily effective) A-motive (M, τM ) induces a global shtuka N(M) by extending the

associated sheaf M̃ on Spec (Ak) to CS.

Proof. This follows immediately from the definitions; see also [HS16, Ex. 6.3]. y

Remark 1.23. For the special case of n = 2, Drinfeld [Dri87] introduced the concept of
an F -sheaf, which in our terminology can be described as a global shtuka (N , c1, c2, τN )
such that c1 and c2 have disjoint graphs, τN (σ∗N ) ⊂ N outside Γc2 and τ−1

N (N ) ⊂ σ∗N
outside Γc1, with the respective cokernel being locally free of rank 1 as OS-module. Global
shtukas of this type are nowadays referred to as Drinfeld shtukas.

Definition 1.24. Let N and N ′ be two global shtukas over S with the same set of paws
(ci : S → C)1≤i≤n. A quasi-isogeny between N and N ′ is an isomorphism

f : N |CS\DS→ N ′ |CS\DS
such that τN ′ ◦ σ∗f = f ◦ τN , where D is some effective divisor on C.

Remark 1.25. The definition of homomorphisms between global shtukas given above is
consistent with the definition of homomorphism between A-motives, as can be seen from
[BH11, Prop. 6.9]. Similarly, the definition of quasi-isogeny between global shtukas is
consistent with the definition of quasi-isogenies between A-motives, see [BH11, Def. 6.1].

1.3.4. The Frobenius endomorphism

Let us assume, that (k, γ) has characteristic ε 6= 0. In this case, Fε := A/ε is a field.
Let e > 0 be a positive multiple of [Fε : Fq]. We call the morphism

π := Frobqe,M := τM ◦ σ∗τM ◦ · · · ◦ (σ∗)e−1τM ∈ Hom(σ∗eM,M)

the qe-Frobenius homomorphism of M . In particular, for the field k = Fqe , we get
(σ∗)[Fε:F] = (σ∗)e = id, and therefore π is an endomorphism of M , i. e. π ∈ Endk(M),
simply called the Frobenius endomorphism of M . Since τM is injective by definition
and the rank of M is equal to the rank of (σ∗)eM , the q-Frobenius π is an isogeny of
M .
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1.3. The Category of A-Motives

Remark 1.26. If one uses the non-linearized represention of M = (M, τM,σ), where

τM,σ is a σ-linear injection M ↪→M , then the Frobenius is simply τ
[k:Fq ]
M,σ .

Remark 1.27. Write Fs = Fqe and with S := Spec (Fqe) let N be a global shtuka over
S with paws c1, . . . , cn and underlying morphism τN : σ∗N |CS\∪iΓci→ N |CS\∪iΓci . We
call the quasi-morphism

πN := τN ◦ σ∗τN ◦ · · · ◦ (σ∗)e−1τN : N |CS\∪iΓci→ N |CS\∪iΓci
the Frobenius of the global shtuka N . It is well-defined, since just like before
σ∗e = idS, and an isogeny of global shtukas in the sense of Def. 1.24.

Definition 1.28. By Cor. 1.42, we have minπ,Q ∈ A[X], where π is the Frobenius
endomorphism of an A-motive M . We call minπ,Q the Frobenius polynomial of M .

Lemma 1.29. Let M be an effective A-motive over the finite field k with q = pe ele-
ments with Frobenius endomorphism π, and let k′/k be a finite field extension. Let M ′

denote the A-motive M ⊗k k′ obtained by scalar extension. Let π′ denote the Frobenius
of M ′. Then

π′ = (π ⊗ 1)[k′:k] .

Proof. The statement is most obvious when one uses the non-linearized representation
(M, τM,σ) of M and M ′, since then the Frobenius π is nothing but τ eM,σ and π′ is given
by (

τM ′,σ
)e·[k′:k]

=
(
τM,σ ⊗ 1

)e·[k′:k]
=
(
τ eM,σ ⊗ 1

)[k′:k]
= (πM ⊗ 1)[k′:k] .

y

1.3.5. Simple and Semisimple A-Motives

An abelian variety A is always semisimple up to isogeny, that is, one can always find a
finite number of simple abelian varieties Ai such that their product

∏
Ai is isogenous

to A. Unfortunately, A-Motives (even pure ones, see next section) do not have this
property.

Definition 1.30. An A-Motive M 6= 0 is called simple, if it has no non-trivial factor-
motives. It is called semisimple, if, up to isogeny, M admits a decomposition into a
finite direct sum of simple A-Motives.

We use the notations

A-Mot∼ss(k) := {semisimple A-motives M over k}/ ∼

and

A-Mot∼s (k) := {simple A-motives M over k}/ ∼ ,

as well as A-Mot∼ss(k, d, r) and A-Mot∼s (k, d, r) of obvious meaning.
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1. A-Motives and Global Shtukas

Remark 1.31. In contrast to abelian varieties, A-motives do no need to be semisimple.
For example, consider the motive M = (M, τM ) defined over k ∼= Fq via M := k[t]2

and τM =
( 1−t/θ t

0 1−t/θ
)

for some non-zero θ ∈ k×. This motive has a canonical factor

motive pr2 : M�M ′ = (k[t], 1 − t/θ), but it isn’t semisimple, since then M ′ would
have to be a direct summand of M ,i. e. there exists an ι : M ′ ↪→M , and we obtain
pr2 ◦ι = idM ′. Writing ι as matrix

( x
y

)
∈ k(t)2, one immediately deduces y = 1 and then

compatibility of ι with τM and τM ′ yields the contradiction 0 = x − σ(x) = t
1−t/θ 6= 0,

hence M cannot actually be semisimple. Since M is defined over a finite field, there
exists a base-change to a suitable large finite field extension k′/k such that M ⊗ k′ will
be semisimple, see Prop. 1.32.

Proposition 1.32. Let M be an A-motive of rank r and dimension d. If M is defined
over a finite field Fs, then there exists a finite field extension Fs′ /Fs such that M ⊗Fs′
is semisimple.

Proof. This follows from [BH09, Thm. 6.15]. y

Proposition 1.33. If an A-motive M is semisimple over a finite field Fs, then every
scalar extension M ⊗ Fs′ is semisimple.

Proof. See [BH09, Cor. 6.16]. y

Proposition 1.34. Let M be a A-motive.

1. If M is simple, then QEnd(M) is a division algebra over Q.

2. If M is semisimple, then QEnd(M) is semisimple. More precisely, the finite
decomposition M = ⊕iM i of M into simple quotient-motives yields a decomposi-
tion of QEnd(M) into a finite direct sum of full matrix algebras over the division
algebras QEnd(M i).

3. If M is defined over a finite field Fs, then both statements above are equivalences.

Proof. This is proven in [BH11, Thm. 7.8] and [BH09, Thm. 6.11] for abelian τ -sheaves
and thereby for pure A-motives. The proof works just as well for not necessarily pure
motives, since the behaviour at the place ∞ is not relevant to the argument. y

1.3.6. Purity of A-Motives

We use the notation A∞,k and Q∞,k to indicate the tensor products of A∞ and Q∞
with k. Note that A∞,k is a product of discrete valuation rings, while Q∞,k if a product
of fields.

Definition 1.35. An A-Motive M of rank r and dimension d is called pure, if there
exists a free A∞,k-submodule WM ⊂M ⊗Ak Q∞,k of rank r such that

τn·rM ((σ∗)n·r(WM )) = z−n·d∞ WM

for some n ∈ N. In this case, the ratio

wt(M) :=
d

r
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is called the weight of M . We use the notation

A-Mot∼p (k, µ)

to denote the set of isogeny classes of pure A-motives over k of weight µ.

There are obvious meanings attached to A-Mot∼p (k, d, r),A-Mot∼p,s(k, µ), . . . , which
we will not all list explicitly.

Remark 1.36. By our definition, if an (effective) A-motive M is also finitely generated
as k{τ}-module, it is called abelian. However, if M satisfies the above definiton of
purity and has dimension d > 0, it is automatically abelian according to [And86, §1.9].

Remark 1.37. Note that the purity condition is a local condition at ∞. Therefore,
arguments for pure A-motives not depending on the behaviour at ∞ will generally work
just fine for general (effective) A-motives. In order to work at the place ∞ more ef-
fectively, Hartl-Bornhofen [BH11, BH09] developed the notion of abelian τ -sheaves.
This construction only works for pure motives; therefore, results from these two papers
are only obtained for pure A-motives. However, keeping in mind that purity is only
concerned with the point ∞, most of the results can be copied for non-pure A-motives.

The name purity is justified by the following

Proposition 1.38. Let M,M ′ be two pure A-motives of different weights, i. e.

wt(M) 6= (M ′).

Then
Hom(M,M ′) = {0}.

Proof. This is an immediate consequence of the isoshtuka decomposition of Thm. 1.59.
It can also be argued directly, see [BH11, Cor. 3.5]. y

Definition 1.39. An A-motive is called primitive, if its rank r and dimension d are
relatively prime, i. e. (r, d) = 1.

In general, primitive motives do not need to be simple, since a direct sum of pure
motives is never simple, but can be primitive; for instance,

M :=
(
Ak, τ1 = (t− θ)

)
⊕
(
A2
k, τ2 =

(
0 t−θ
1 1

))

provides a specific counterexample, as M has rank 3 and dimension 2. However, for
pure motives, we can conclude simplicity from primitivity:

Proposition 1.40. A primitive pure A-motive M is automatically simple.

Proof. (See [BH11, Prop. 7.4].) Let M be primitive pure, and let M ′ be a non-zero
factor-A-motive with non-zero surjection morphism p : M →M ′. Then

d

r
= wt(M) = wt(M ′) =

d′

r′

by the last Proposition, and therefore dr′ = d′r. Hence by the primitivity assumption
we must have d = d′ and r = r′, and then p is an isomorphism. y
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1. A-Motives and Global Shtukas

Theorem 1.41. Let M,N be A-motives over some field k. Then the set of homomor-
phisms Hom(M,N) is a projective A-module of rank ≤ rk(M) · rk(N).

Proof. See [And86, Cor. 1.7.2] and [BH11, Thm. 9.5] for the original statement about
effective (pure) A-motives and [Har16, Cor. 2.6] for the most general formulation. y

As usual, we define the minimal polynomial of some homorphism f : M → N between
A-motives to be the unique normalized generating element of the ideal

(minf,Q) = ker(Q[X]→ QEndk(M), X 7→ f) .

Corollary 1.42. Let M be a pure A-motive over some field L and f ∈ End(M) be
some endomorphism of M . Then the minimal polynomial minf,Q of f has coefficients
in A.

Proof. This is an immediate corollary of the preceding statement and can also be found
as [BH11, Cor. 9.6]. y

1.4. Reduction Theory

Let R be a Dedekind domain with field of fractions Frac(R) = k.

Definition 1.43. Let M = (M, τ) be a τ -module over Spec (AR), and let p ∈ Spec (R)
with residue field κ(p). Let ιp : Spec (κ(p)) ↪→Spec (AR) be the canonical inclusion
induced by AR�Aκ(p). The reduction Mp of M at p is then defined as the pair
consisting of the locally free Aκ(p)-module

Mp := ι∗pM = M ⊗AR Aκ(p) = M ⊗R κ(p)

together with the induced homomorphism

τp : σ∗Mp →Mp.

Remark 1.44. Note that the reduction defined above does not, in general, define a
τ -module, since the induced morphism τp may not be injective, leading to the notion of
good reduction defined in the next section.

1.4.1. Good Reduction of τ -modules

We are ultimately interested in reduction theory of A-motives, which live over a field
k, so we need to talk about reduction of τ -modules defined over k, where k is the field
of fractions of a Dedekind domain R = Ok. In order to reduce these to τ -modules over
R/p = κ(p), we need to introduce the notion of a model M of M , i. e. a τ -module over
R extending to M after base-change to k.

Definition 1.45. Let M be a τ -module over k. A model of M over R is a τ -module
M over AR with

M =Mk =M⊗R k.
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We can now talk about a reduction of M at p ∈ Spec (Ok).

Definition 1.46. A τ -module M over Ak has good reduction at p ∈ Spec (R), if
there exists a modelM = (M, τ) over AR such that the induced map τp is an injection,
i. e. the reduction of M at p is again a τ -module. Such a model is then called a good
model of M at p.

1.4.2. Potentially Good Reduction of τ -modules

As in the theory of abelian varieties, the property of having good reduction at a prime
does depend on the base field. We are therefore led to introduce the notion of potentially
good reduction:

Definition 1.47. A τ -module M over k has potentially good reduction at p ∈
Spec (R), if there exists a finite field extension k′/k such that Mk′ = M ⊗k k′ has good
reduction at one place of k′ above p.

1.4.3. Reduction of A-motives

So far, we have only talked about τ -modules. However, as it turns out, the technique
of reduction works well with the additional structural properties valid for A-motives.

Lemma 1.48. Let M be an A-motive over k of rank r and dimension d. Let k′/k
be a finite field extension. Then Mk′ = M ⊗k k′ is again an A-motive of rank r and
dimension d.

Let now R be a Dedekind domain such that γ : A→ k factorizes through R.

Theorem 1.49. Let M be a (pure) A-motive over k with good reduction at p ∈
Spec (R). Let M be a good model of M at p. Then the reduction Mp is a (pure)
A-motive over κ(p).

Proof. This was proven in [Pel09, Thm. 2.3.9] for pure motives, and in [HH16, Thm. 4.7]
for general A-motives. y

1.5. Local Constructions

There are two important local objects attached to abelian varieties, namely their Tate-
Modules and their p-divisible groups. For both classes of objects, analogies exist on the
function field side. The former can be constructed quite easily; the latter, however, are
obtained by a somewhat more involved process. As a reminder, a p-divisible group of
height r over a ring R is given by a diagram

G0
i0−→ G1

i1−→ . . .
in−1−−−→ Gn

in−→ Gn+1
in+1−−−→ . . .

of finite commutative group schemes Gn of order pn·r such that each sequence

0→ Gn
in−→ Gn+1

pn−→ Gn+1
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1. A-Motives and Global Shtukas

is exact. (Some authors prefer to call the direct limit lim−→Gn the p-divisible group de-
fined by such a diagram above, while others refer to the diagram itself as a p-divisible
group.) A direct analogy might therefore be expected to look similar in nature, involv-
ing a direct limit of sheafs of some kind. This can, in fact, be done, and one ends up
with so-called z-divisible local Anderson modules.

Definition 1.50 ([HS17, HK18]). Let A be a ring of the usual form, let ε ⊂ A be some
maximal ideal, and let z ∈ Q be a local uniformizer at ε. Let S be some base scheme.
A z-divisible local Anderson module over S is a Fε[[z]]-module-sheaf G on the big
fppf-site of S such that

(i) G = lim−→G[zn] with G[zn] := ker(zn : G→ G),

(ii) z : G�G is an epimorphism,

(iii) All G[zn] are representable by finite, locally free, strict Fε-module schemes over S
(see [Fal02, Abr06]), and

(iv) locally on S there exists d ∈ N0 such that (z − ζ)d = 0 on ωG, where

ωG := lim←−ωG[zn] with ωG[zn] = (S
0−→ G[zn])∗Ω1

G[zn]/S .

This definition is, unfortunately, somewhat unwieldy. Luckily, it can generally be
avoided entirely, since the category of z-divisible local Anderson modules turns out to
be anti-equivalent (see [HS16, Thm. 8.3]) to the much simpler category of (effective)
local shtukas, which we will develop next.

1.5.1. Local Shtukas

There are two versions of local shtukas, depending on what power of Frobenius one is
working with. We will give both, and explain their relationship.

Local σ̂-shtukas

Let v be some place of Q away from ∞, let kv be the completion of k at v and let
Ov be the valuation ring of kv. Let z = zv be a local uniformizer at v. In particular,
Av = FvJzK and Qv = Fv((z)). The image of z under the canonical extension of γ to
Av is labeled ζ := ζv := γ(z). Write qv := #Fv and let σ̂ be the endomorphism of
OvJzK that is the identity on z and the qv-th power map on elements of Ov, so that
σ̂ : b · z 7→ bqv · z.

Definition 1.51. Let M̂ be a free OvJzK-module of rank r and τ̂M̂ be an isomorphism

τ̂M̂ : σ̂∗M̂
[

1

z − ζ

]
→ M̂

[
1

z − ζ

]
.

The pair M̂ := (M̂, τ̂M̂ ) is then called a local σ̂-shtuka of rank r over Ov. If

additionally τ̂M̂ (σ̂∗M̂) ⊂ M̂ holds, then M̂ is called effective, and if we even have

12



1.5. Local Constructions

equality, M̂ is called étale. If the cokernel of τ̂M̂ is locally free of finite rank as Ov-

module, we call the Ov-rank of coker τ̂M̂ the dimension of M̂ and write

dim M̂ := rkOv coker τ̂M̂ .

Definition 1.52. Let M̂ and N̂ be local σ̂-shtukas over Ov. A morphism of local
σ̂-shtukas M̂ → N̂ over Ov is a morphism of the underlying free OvJzK-modules that
is compatible with the underlying isomorphisms τ̂M̂ and τ̂N̂ . A quasi-morphism of
local σ̂-shtukas is a morphism of OvJzK[1

z ]-modules M [1
z ] → N [1

z ] compatible with the

underlying isomorphisms, and we write QHomOv(M̂, N̂) for the set of quasi-morphims

as well as QEndOv(M̂) := QHomOv(M̂, M̂). A quasi-morphism is called a quasi-
isogeny if it is an isomorphism of OV JzK[1

z ]-modules.

Let M be an A-motive over k of characteristic ε and v ∈ Spec (A) a closed point. We
want to construct a local shtuka of M at v. Assume that M has good reduction, and
let M be a good model of M . Note that M is an A-motive over κ(v) of characteristic
v. First, we discuss the case that Fv is not larger than Fq, i. e., [Fv : Fq] = 1. In this
situation,

M̂v(M) := (M⊗Ak Av,k, τM ⊗ id)

forms a local σ̂-shtuka at v.
If, however, Fv contains Fq only as a smaller subfield, more care has to be taken,

since then Av,OV and Fv ⊗FqOv are not integral domains. Write fv := [Fv : Fq]. We
now consider the sequence of ideals

ai := (a⊗ 1− 1⊗ γ(a)q
i

: a ∈ Fv) ⊂ Av,k

for 0 ≤ i ≤ fv − 1. It is useful to write this interval as Z /(fv) and consider the index i
as an residue class mod fv. We now observe that the ideals ai have zero intersection∏
i ai and are pairwise coprime. This can be seen from the fact that for each a ∈ Fv

the equation

mina,Fq | (X − aq
0
) · (X − aq1) · · · (X − aqfv−1

) ∈ Fq[X]

holds, since the right hand side has a as a root. The tensor product Fv ⊗FqOv then
splits as

Fv ⊗FqOv ∼=
∏

AutFq (Fv /Fq)

Fv ⊗FvOv ∼=
∏

i∈Z /(fv)

Fv ⊗FqOv/ai ,

and we obtain as an immediate consequence the following decomposition:

Lemma 1.53. The ring Av,k splits into a finite product

Av,k ∼=
∏

i∈Z /(fv)

Av,k/ai.

The factors are all canonically isomorphic to OvJzK and are cyclically permutated by
σ and left invariate under σ̂. The ideals ai are in one-to-one-correspondence with the
points vi of CFv above v.

13



1. A-Motives and Global Shtukas

We can now amend our definition of associated shtukas to be

M̂v(M) := (M⊗Ak Av,k/a0, (τM ⊗ id)fv) .

Note that this agrees with the definiton above whenever fv = 1, that is, whenever
Fv = Fq.

Definition 1.54. The local shtuka M̂v(M) is called the local σ̂-shtuka at v asso-
ciated to M , and the local isoshtuka V̂ v(M) is called the local σ̂-isoshtuka at v
associated to M .

Note that forming the local σ̂-shtuka M̂ even in the case of fv > 1 does not amount
to forgetting the structure of M̂ ⊗Av,Ov , since the morphism τM⊗ id can be recovered

from M̂v(M). This leads to the discussion of σ-shtukas in the next section.

Local σ-shtukas and their connection to σ̂-shtukas

Definition 1.55. Let k be an A-field.

1. A local σ-shtuka at v 6=∞ over k of rank r is a pair M̂ = (M̂, τ̂), where M̂ is a
free Av,k-module of rank r and τ̂ : σ∗M̂ → M̂ is an injective Av,k-homomorphism.

The shtuka M̂ is called étale, if its underlying Av,k-monomorphism is an isomor-
phism.

2. A local σ-isoshtuka at v 6= ∞ over k of rank r is a pair V̂ = (V̂ , τ̂), where V̂
is a free Qv,k-module of rank r and τ̂ is a Qv,k-isomorphism σ∗V̂ → V̂ .

3. A morphism of local σ-shtukas f̂ : M̂ → N̂ is an Av,k-homomorphism sat-

isfying τ̂N̂ ◦ σ∗f̂ = f̂ ◦ τ̂M̂ , and similarly for σ-isoshtukas. We denote the set of

such homomorphisms by HomAv,k[τ ](M̂, N̂) and HomQv,k[τ ](V̂ , Ŵ ), respectively.

Remark 1.56. Local σ-isoshtukas are sometimes in the literature referred to as z-
isocrystals or Dieudonné-Fq ((z))-modules.

Let M be an A-motive over k, and v be some place of Q away from ∞. We define
the associated local σ-shtuka of M at v as

M̂v(M) := (M ⊗Ak Av,k, τM ⊗ id)

and the associated local σ-isoshtuka as

V̂ v(M) := (M ⊗AK Qv,K , τM ⊗ id) .

Proposition 1.57. Let i be some positive integer, and let ai be the ideal

(a⊗ 1− 1⊗ γ(a)q
i

: a ∈ Fv) ⊂ Av,k

for all 0 ≤ i < [Fv : Fq]

14
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(a) There is an equivalence of categories between local σ-isoshtukas at v over k and
local σ̂-isoshtukas at vi over k of the same rank, induced via reduction at ai. More
precisely, the functor is given by

(V̂ , τ) 7→ (V̂ /ai · V̂ , τ̂ = τ f : σ∗f V̂ /ai · Vi → V̂ /ai · Vi) .

(b) There is an equivalence of categories between étale local σ-shtukas at v over k and
étale local σ̂-shtukas at vi over k of the same rank, induced via reduction at ai as
above.

(c) At the characteristic place ε of M , there exists an equivalence of categories be-
tween local σ-shtukas at ε and the category of σ̂-shtukas at the point v0 on CFv
corresponding to the ideal a0, induced by reduction at a0.

Proof. This is [BH11, Prop. 8.5] and [BH11, Prop. 8.8]. y

Definition 1.58. Let v ∈ C be a closed point and let zv ∈ Q be a local uniformizer at
v. Let l,m be integers without common divisors, i. e. (m, l) = 1, and let l ≥ 1. The
standard-σ̂-isoshtuka at v of slope m

l is defined as

V̂ m,l :=

(
kalg ((zv))

⊕l , τ̂ =




0 0 . . . 0 zmv
1 0 . . . 0 0
...

. . .
. . .

...
...

0 . . . 1 0 0
0 . . . 0 1 0




)
.

Theorem 1.59. Every local isoshtuka V̂ at ∞ defined over an algebraically closed field
k = kalg may be written as direct sum of standard-isoshtukas in the following way:
There exists a unique set of pairs of coprime integers (mi, li) ∈ Z×N>0 such that

V̂ ∼=
⊕

i

V̂ mi,li .

Proof. This is the analogous statement to the classification of F -isocrystals by Dieudonné
and Manin [Man63], and in our setting it was proven by Laumon [Lau96, Thm. 2.4.5].
See also [HJ16, §3.2]. y

Local and Global Shtukas

Remark 1.60. (See [HS16, Ex. 6.4] and [ARH14, Lemma 5.3].)
(a) As the name suggests, there is a close relationship between local and global shtuka.

Let N = (N , c1, . . . , cn, τN ) be a global shtuka of rank r over k in the sense of
(1.19). Pick a closed point v on the curve C with associated ideal sheaf pc ⊂ OC
and let z ∈ Q be a uniformizing parameter at v. Put ζi := c∗i (z) ∈ k. Then the
formal completion M of N along the graph of ci together with the morphism

τ̂M := τ
[Fv :Fq ]
N : σ∗fq M

[
1

z − ζi

]
∼−→M

[
1

z − ζi

]

forms a local shtuka over k of rank r.

15
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(b) Note that the argument above may not always work if instead of working over a
field k we allow the global shtuka N to live over a general ring R. In this situation,
the element ξ = c∗i (z) ∈ R needs to be nilpotent. For R = k, this is automatic,
since c∗i (z) will always be zero.

(c) Any A-motive M over k can be viewed as a global shtuka N = (N , c, τN ) over
Spec (k) according to Lemma 1.22, to which we just attached a local shtuka, leaving
us with two apparently different notions of attached local shtukas for the same es-
sential structure. However, the two of them coincide, since the completion of OCk
at the graph of c1 is naturally isomorphic to Av,k/a0 by [ARH14, Lemma 5.3].

Purity and local shtukas

The notion of local shtuka allows us to give a characterization of purity by looking at
the decomposition of the local isoshtuka at ∞.

Proposition 1.61. Let M be an A-Motive of rank r and dimension d over an A-field
k. Then the following conditions are equivalent:

1. M is pure.

2. There exists an A∞,k-lattice WM in V̂∞(M), such that zdτ r : (σ∗)WM → WM

gives an isomorphism of WM .

3. We have
V̂∞(M)⊗Q∞,k Q∞,kalg =

(
V̂ m,l

)⊕r/l
,

where V̂ m,l is the standard-σ-isoshtuka of slope m
l = −dim(M)

rk(M) .

Proof. What we have to show is the equivalence between the second and third condition.
Assume the second condition holds for M . Consider the unique decomposition

V̂∞(M) ∼=
⊕

i

V̂ mi,li

from Thm. 1.59. We define

Wi := WM ⊗A∞,k A∞,kalg ∩ V̂ mi,li .

In particular, each Wi is finitely generated over A∞,kalg and Wi ·Q∞,kalg = V̂ mi,li . But

now we can conclude that l = li and m = mi, since τ liM = zmi on V̂ mi,li .
Vice versa, assume that the unique decomposition into standard-isoshtukas looks like

V̂∞(M)⊗Q∞,k Q∞,kalg ∼= V̂
⊕r/l
d,r .

Then a suitable lattice WM can be defined as preimage of the canonical lattice A⊕r∞,k
found in the right hand side. y

The last proposition deals with the relationship describes the local shtuka decompo-
sition at ∞ for pure A-motives. Since we are interested in the more general case of not
necessarily pure A-motives, we will have to discuss the situation in this more general
case as well.
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Proposition 1.62. Let M be a semisimple A-motive over the finite field k ∼= Fs ∼= Fqe

with Frobenius endomorphism π. Write F := Q(π). Pick some algebraic closure kalg

of k. Let w be some place of Q, and let

V̂ w(M)kalg
∼=

s⊕

i=1

V̂ mi,li

be the decomposition of the local isoshtuka associated to M at w over kalg with the slopes
ordered by mi/li ≤ mi+1/li+1. Then for every place v of F above w, we have

m1

l1
≤ ordv(πv)

[k : Fq]
· [Fw : Fq]

e(v | w)
≤ ms

ls

In particular, for pure A-motives all the slopes mi/li at w = ∞ are equal to negative
of the weight of M and we get

−[k : Fq] · wt(M) =
ordv(π)

e(v | w)
.

Proof. Pick an Aw,k-lattice Λ ∼= Arw,k ⊂ V̂ w(M)kalg such that for some common multiple
r of e, l1, . . . , ls

τ̂ rM = τ
[Fw:Fq ]·r
M : σ̂r∗Λ ↪→ z

m1·r
l1

w Λ

and

(τ̂ rM )−1 : Λ ↪→ z
−ms·r

ls
w σ̂r∗Λ .

This is possible due to the form of the standard σ̂-isoshtukas V̂ mi,li given in Def. 1.58;
compare the proof of [HJ16, Prop. 3.10]. Writing

f := z−r·m1/l1
w · τ̂ rM and g := zr·ms/lsw · (τ̂ rM )−1,

we obtain
minf,Qw ∈ Aw,k[X] and ming,Qw ∈ Aw,k[X] .

We now claim that z
r·m1/l1
w · π[Fw:Fq ]·r/e is a zero of minf,Qw . Let F0 denote the matrix

representing the f -induced map f0 : Λ/a0
∼−→ Λ/a0, and let χ0 be its characteristic

polynomial with constant term ±detF0. Since f0 is an isomorphism, F0 has to be
invertible, i. e. detF0 has to be invertible in Aw,k/a0, i. e. |detF0|w = 1. In particular,
all roots of χ0 must be units as well. If now ρ is a root of minf,Qw , it is an eigenvalue of π

on V̂ w(M)kalg , and therefore z
r·m1/l1
w ·π[Fw:Fq ]·r/e is an an eigenvalue of f on V̂ w(M)/a0.

Hence as a zero of minf,Qw the element z
r·m1/l1
w · π[Fw:Fq ]·r/e must be integral, i. e.

ordv
(
zr·m1/l1
w · π[Fw:Fq ]·r/e) ≥ 0 ,

and thus
ordv(π) ≥ ordv(zw)︸ ︷︷ ︸

=e(v|w)

·m1

l1
· e

[Fw : Fq]
,
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1. A-Motives and Global Shtukas

thereby proving the first inequality. An analogous argument using ming,Qw yields the
second inequality

− ordv(π) · [Fw : Fq]
e · e(v | w)

≥ ms

ls
.

y

Corollary 1.63. Under the assumptions of the last Proposition, we have

q−[k:Fq ]·msls ≤ |π|v ≤ q−[k:Fq ]·m1
l1

and in particular
|π|v = qwt(M)·e

for all v | ∞ if M is pure, where | · |v extends the absolute value on Qw.

Proof. This follows immediately, since the valuation | · |v = q
− ordv(·)

e(v|w)
w satisfies the equa-

tion

|π|v = q
− ordw(·)

e(v|w)
w = q

− [Fw :Fq ]·ordv(π)
e(v|w)

from general valuation theory. y

Corollary 1.64. Let M be a pure A-motive over a finite field k ∼= Fs ∼= Fqe of rank r
and dimension d, and let π be its Frobenius endomorphism, and let minπ ∈ A[X] be its

Frobenius polynomial. Then every root ρ ∈ Qalg
∞ of minπ has absolute value

|ρ|∞ = swt(M) = sd/r.

Proof. This is (rather briefly) proven in [BH09, Thm. 7.8], but it also follows directly

from the preceeding corollary, since the Qalg
∞ -roots of minπ,Q∞ are correspond bijectively

to the set of Q-embeddings F ↪→Qalg
∞ . In particular, a valuations v∞ extending ∞ to

Qalg
∞ pulls back to some valuation v on F = Q(π) above ∞, and we conclude

|ρ|∞ = |π|v = swt(M) ,

using the corollary above. y

Corollary 1.65. Let M be a semisimple A-motive over some finite field k ∼= Fqe ∼= Fs
with Frobenius endomorphism π. Let w be a place of Q and let v be some place of
F = Q(π) above w. Assume that the local σ[Fu:Fq ]-isoshtuka of M at v with coefficients
in an algebraic closure kalg of k has the form

V̂ v(M)kalg
∼= V̂

⊕n
dv ,rv

with V̂
⊕n
dv ,rv defined as

(
F⊕rvv,k , τ̂ =




0 0 . . . 0 zdvv
1 0 . . . 0 0
...

. . .
. . .

...
...

0 . . . 1 0 0
0 . . . 0 1 0




)
.
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Then

q− ordv(π)·[Fw:Fq ]/ e(v|w) = |π|v = q
dv
rv
· [k:Fq ]
[Fv :Qw ] = (#k)

wtv(M)
[Fv :Qw ]

for wtv(M) := dv
rv

.

Proof. Same as for Prop. 1.62, but with dimQv,k V̂ v(M)kalg = rv. y

Remark 1.66. Let E ⊂ QEndk(M) be a commutative, semisimple Q-subalgebra, and
assume that Fu embeds into k. Then M⊗AkWw,k is a module over the ring E⊗QQw =∏
u|w Eu. Let

b0 := (a⊗ 1− 1⊗ a : a ∈ Fu ⊂ k) ⊂ Eu, k.
Then we define the local isoshtuka of M at u as

V̂ u(M) := (M ⊗Ak Qw,k ⊗Qw,k Eu,k/b0, τ
[Fu:Fq ]
M ) .

Corollary 1.67. Let M be a semisimple A-motive over some finite field k ∼= Fqe ∼= Fs
with Frobenius endomorphism π and (CM) via E ⊂ QEnd(M). Let u be some place of
E. Assume that the local σ[Fu:Fq ]-isoshtuka of M at u with coefficients in an algebraic
closure kalg of k has the form

V̂ u(M)kalg
∼= V̂ du,1

∼= (Eu,k/b0, τ̂ = zduu ) .

Then

ordu(π) = du ·
[k : Fq]
[Fu : Fq]

.

Proof. Same as for Prop. 1.62 and Cor. 1.65, but with dim V̂ u(M) = 1. y

1.5.2. Tate Modules

Definition 1.68. Let M̂ be a local σ̂-shtuka at v. The Tate-module of M̂ at v is
defined as the Gal(ksep/k)-module of τM̂ -invariants

TvM̂ := (M̂ ⊗Av,k Av,ksep)τM̂ .

The rational Tate-module of M̂ at v is defined as

VvM̂ := Tv(M̂)⊗Av Qv.

We can associate a (rational) Tate module TvM (respectively VvM) to an A-motive
M at a place v ∈ Spec (A) via the associated local σ̂-shtuka, i. e.

TvM := Tv(M̂v(M)) and VvM := Vv(M̂v(M)).
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1.5.3. The Tate Conjecture for A-motives

The following two important theorems are generally referred to as the Tate Conjectures
for A-motives and go back to Taguchi and Tamagawa (c. f. [Tag95, Tam94, Tam95]) in
the following formulation:

Theorem 1.69. Let M and M ′ be two τ -modules over Spec (AL) for a finitely generated
field L and let G be the Galois group of the separable closure Lsep over L. Let v ∈
Spec (A) be a place outside of supp(coker τ ′). Then

Hom(M,M ′)⊗A Av ∼= HomAv [G](TvM,TvM
′).

Replacing Tate modules with shtukas, one ends up with the following statement for
A-motives:

Theorem 1.70. Let M,N be A-motives over a finite field Fs. Let v be a place of Q.
Then there is a canonical isomorphism of Qv-vector spaces

QHom(M,N)⊗Q Qv ∼−→ HomQv,k[τ̂ ](V̂ v(M), V̂ v(N)) .

In particular,
QEnd(M)⊗Q Qv ∼−→ EndQv,k[τ̂ ](V̂ v(M))

for all A-motives M over a finite field.

Proof. See [BH11, Thm. 8.6]. y

Theorem 1.71. Let M,N be A-motives over a finite field Fs. Let v be a maximal ideal
of A. Then

Hom(M,N)⊗A Av ∼−→ HomAv,k[τ̂ ](M̂v(M)) .

In particular,
End(M)⊗A Av ∼−→ EndAv,k[τ̂ ](M̂v(M), M̂v(N))

for all A-motives M over a finite field.

Proof. See [BH11, Thm. 8.7]. y

Remark 1.72. 1. Although [BH11, BH09] work only in the context of purity, both
versions of the Tate-conjecture do not need purity assumptions. See [Sta10] for a
complete argument; here the Tate conjectures are obtained as consequence of the
semisimplicity conjecture.

2. Away from ε·∞, the assumption on L being finite can be relaxed to L being merely
finitely generated, see [BH11, Thm. 9.9, Cor. 9.10].
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1.5.4. The Tate Conjecture for Global Shtukas

Theorem 1.73. Let k ∼= Fs ∼= Fqe be some finite field and let N ,N ′ be global shtukas
over S = Spec (k) with the same set of paws c1, . . . , cn. Let v be a place of Q. Then
there is a canonical isomorphism of Qv-vector spaces

QHom(N ,N ′)⊗Q Qv ∼−→ HomQv,k[τ̂ ](V̂ v(N ), V̂ v(N ′)) .

In particular,
QEnd(N )⊗Q Qv ∼−→ EndQv,k[τ̂ ](V̂ v(N ))

for any global shtuka N over a finite field.

Proof. We defined homomorphisms between global shtukas in Definition 1.21 as τ -
compatible homomorphisms between their generic fibres

QHom(N ,N ′) := {f : Nη → N ′η | f ◦
(
τN ′
)
η

=
(
τN
)
η
◦ f} .

With this definition, the argument goes through in the same way as for A-motives in
[BH11, Thm. 8.6]. y

1.6. The Structure of the Endomorphism Algebra

Lemma 1.74. Let M be an A-motive over some finite field k ∼= Fqe of characteristic
ε. Assume that there exists some v ∈ Spec (A) away from ε such that πv is semisimple.
Let χv be the characteristic polynomial of πv, and write

χv =
∏

i

fnii

for the prime factorization of χv. Then we have following isomorphism

EndQv [τ ](V̂ vM) ∼=
∏

i

(
Qv[X]/(fi)

)ni×ni ∼= QEndk(M)⊗Q Qv

of Qv-algebras.

Proof. See [BH09, Lemma 6.4]. y

Proposition 1.75. Let M be an A-motive over some A-field of characteristic ε k with
Frobenius endomorphism π, and let v ∈ Spec (A) \ {ε}. Write F = Q(π). Denote by
Ev the endomorphism ring of the local isoshtuka of M at v and by πv the image of π
Ev. Write Fv := Qv[πv]. Then the following statements are equivalent:

1. π is semisimple.

2. F = Q(π) is semisimple.

3. F ⊗Q Qv ∼= Fv is semisimple.

4. πv is semisimple.
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5. QEndk(M)⊗Q Qv ∼= QEndk(M)v is semisimple.

6. QEndk(M) is semisimple.

Proof. See [BH09, Prop. 6.8]. y

Lemma 1.76. Let M be an A-motive over a finite A-field k ∼= Fqe. Then the following
implications hold:

1. If QEndk(M) is simple, then M is simple.

2. If QEndk(M) is semisimple, then M is semisimple.

Proof. See c[BH09, Theorem 6.11]. y

In this section we collect some important structural information about the endo-
morphism algebra of A-motives. Since the results are important to us, and the proof
is rather involved, but only exists in the literature (see [BH09, Thm. 9.1]) for pure A-
motives in terms of τ -sheaves, we will give the argument for the relevant parts in detail,
making certain no purity assumptions are needed at any step.

Theorem 1.77. Let M be an effective, semi-simple A-motive of rank r defined over
a finite field k ∼= Fs = Fqe with Frobenius endomorphism π. Let w ∈ Spec (A) \ {ε}
be a place away from ε (and ∞), and let µw and χw be the minimal, respectively
characteristic, polynomial of πw. Then the following statements hold:

1. The Q-algebra QEnd(M) is semi-simple with center F = Q(π).

2. The endomorphism algebra QEnd(M) is commutative if and only if it is equal to
F = Q(π), which is equivalent to QEnd(M) or F having rank r over Q.

3. The Q-rank of QEnd(M) is bounded by r from below and r2 from above,

rk(M) ≤ [QEnd(M) : Q] ≤ rk(M)2 .

4. The center F of QEnd(M) is equal to Q if and only if QEnd(M) is already a
central simple algebra over Q, which is equivalent to QEnd(M) having rank r2

over Q.

5. The Hasse invariants of QEnd(M) at all places w of F are completely determined
by

invw(QEnd(M)) = − [Fw : Fq]
[Fs : Fq]

· ordw(π).

In particular, at all places w - ε ·∞ the Hasse invariant invw QEnd(M) vanishes.

6. If M is also pure, the local Hasse invariant at all places w | ∞ is given by

invw(QEnd(M)) = wt(M) · [Fw : Q∞] .

In the special case of F = Q, the only non-vanishing Hasse invariants are

invε(QEnd(M)) = −wt(M) = − inv∞(QEnd(M)) .
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1.6. The Structure of the Endomorphism Algebra

Remark 1.78. 1. Note that by the last point of the structure theorem, the structure
of the quaso-endomorphism algebra of an A-motive M over some finite field Fs is
determined entirely by its Frobenius endomorphism πM , since all factors on the
right hand side depend only on information encoded within the knowledge about
Q(πM ) and Fs. We will make use of this information at a crucial point in our
argument, allowing us to parse from a simple element α in some extension field
of Q to an algebra Eα and further to an A-motive with endomorphism Q-algebra
Eα.

2. The statement as proven in [BH09, Thm. 9.1] includes some additional informa-
tion concerning the characteristic polynomials χw, that have been left out of the
formulation presented here, since they are not relevant to our purposes.

Proof. We prove the statement about the Hasse invariants, being the most crucial to
our task ahead. Let w be some place of Q with resiue field Fw and let V w be the
associated σ-isoshtuka V w(M) of M at w. Fix a Fq-homomorphism Fl → Fs, and write
l := qf for the size of the intersection Fl = {x ∈ Fw : xs = x}. Write

a0 := (x⊗ 1− 1⊗ x : x ∈ Fl) ⊂ Qw ⊗Fq Fs
and let

R := (Qw ⊗Fq Fs /a0)[X] = Qw ⊗Fl Fs[X]

be the skew-polynomial ring with X-action given by l-Frobenius via

X · (a⊗ b) = (a⊗ bl) ·X .

Structually, R forms a non-commutative principal ideal domain with center Qw[Xe/f ],
since Qw⊗FlFs is a field. From Thm. 1.70, the Tate conjecture for isoshtukas, we obtain
isomorphisms

QEnd(M)⊗Q Qw ∼= EndQw⊗Fs[τ̂ ](V w) ∼= EndR(V w/a0 · V w),

with X-action on V w/a0 · V w given by τ̂ f . It follows from [Jac43, Thm. 3.19] that the
R-module V w/a0 · V w may be written as direct sum

V w/a0 · V w
∼=
⊕

v∈I
V ⊕nvv ,

where V v are indecomposable. Without loss of generality, the V v may be assumed
pairwise non-isomorphic, i. e. the nv are maximal. The annihilator of each V v may
then be written as (µv) for some central monic element µv ∈ Qw[Xg] with g = e/f .
In particular, the decomposition of V w/a0 is compatible with the Qw[Xg]-structure,
and µv is the minimal polynomial of Xg acting on V v. Denote by µ the least common
multiple of the µv, which is then the minimal polynomial of Xg on V w/a0. Since the
Xg-operation on V w/a0 is given by Frobenius, the polynomial µ will be the minimal
polynomial minπ,Q∞,k and therefore1

Q[Xg]/(µ) ∼= Q(π) = F.

1Here we need minπ,Q∞,k = minπ,Q. This is true, since base extension to Qw is flat, and therefore

the short exact sequence 0→ Q[X]
·minw,Q−−−−−−→ Q[X]

X 7→π−−−→ QEndk(M)→ 0 tensored with Qw yields
minw,Q = minpi,Q∞,k as desired, using again Thm. 1.70.
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1. A-Motives and Global Shtukas

Since π was assumed to be semisimple, µ is squarefree in Qw[Xg]. We obtain the
factorization

µ =
∏

v∈I
µv ∈ Qw[Xg].

Note that all the µv must be irreducible, since they have to be powers of irreducible
polynomials according to [Jac43, Thm. 3.20], and no two of them can be equal, since
the V v are pairwise non-isomorphic (loc. cit.). The product decomposition of µ yields

F ⊗Q Qw ∼= Qw[Xg]/(µ) ∼=
∏

v∈I
Qw[Xg]/(µv) ∼=

∏

v|w
Fv .

Write πv for the image of π in Fv. Then πv has minimal polynomial µv over Qw, and
we obtain

QEnd(M)⊗Q Qw ∼=
⊕

v∈I
EndR(V nv

v )︸ ︷︷ ︸
∼=QEnd(M)⊗FFv

∼=
⊕

v∈I
QEnd(M)⊗F Fv.

Let us now fix some place v | w of F . With h := [Fv ∩Fs : Fqf ] = gcd([Fv : Fqf ], g)
and i := [Fw : Fqf ], we get2

[Fw ·Fs : Fw] = [Fs : Fqf ] = g,

[Fw ·(Fv ∩Fs) : Fw] = [Fv ∩Fs : Fqf ] = h,

[Fw ·Fs : (Fw ·Fs ∩Fv)] = [Fv ·Fs : Fv] = [Fs : Fv ∩Fs] =
g

h
,

Fw ·(Fv ∩Fs) ⊂ Fw ·Fs ∩Fv,
Fw ·Fs ∩Fv = Fw ·(Fv ∩Fs) = Fqfhi .

Let Fv,k be the compositum of Qw ⊗F
qf
⊗Fs and Fv inside an algebraic closure of Qw.

Note that Fv,k is well defined since Fs /Fqf is a Galois extension. Now, let Fv,k[Y ] be
the skew-polynomial ring with Fv inside the center and

Y · (a⊗ b) := (a⊗ bqhif ) · Y

for all a⊗ b ∈ Qw ⊗ Fs. This is well-defined, since (Qw ⊗F
qf

Fs) ∩ Fv has residue field

Fw ·Fs ∩Fv ∼= Fqhfi and Fv,k is unramified over Qw, because Qw ⊗F
qf

Fs is. Let

∆v := Fv,L[Y ]/(Y g/h − πiv).

With Z := Y [Fv :Fq ]/fhi, the algebra ∆v is just the cyclic algebra

∆v
∼= (Fv,L/Fv, Z, π

[Fv :Fq ]/fh
v ).

This is true, because the extension Fv,L/Fv is unramified with degree [Fv Fs : Fv] = g
h

and Z is its Frobenius automorphism and Zg/h = π
[Fv :Fq ]/fh
v in ∆v. Therefore, ∆v has

Hasse invariant

invv(∆v) =
[Fv : Fq]
[Fs : Fq]

· ordv(πv).

2The proof of [BH09, Thm. 9.1] includes a rather large diagram of all the following field extensions,
which we haven’t copied.
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1.6. The Structure of the Endomorphism Algebra

We now claim that
invv(QEnd(M)) = − invv(∆v),

which would prove the assertion of the theorem. Using [Jac43, Thm. 3.20] again, we
choose some m ∈ N such that V ⊕mv ∼= R/(µv(X

g)). Then

Matm
(

QEnd(M)⊗F Fv
) ∼= Matm

(
EndR(V ⊕nvv )

)

∼= EndR(V ⊕m·nvv )
∼= Matnv

(
(R/(µv(X

g)))op
)
.

Now choose integers a, b ∈ Z such that a > 1 and ai + bg = 1. Let ρ denote the
morphism

R/(µv(X
g))→ Math(∆v),

x⊗ y 7→ diag(x⊗ y, x⊗ yqf , · · · , x⊗ yqf ·(h−1)
),

X 7→ πbv ·




0 1
. . .

. . .

. . . 1
Y a 0



.

for all x ∈ Qw and y ∈ Fs. This is compatible with the non-commutative ring structure,
since both X · (x ⊗ y) and (x ⊗ yqf ) · X are mapped to the same element (note that
Y a = Y 1/i insice Gal(Fv,L/Fv)). It is also compatible with the quotient on the left
hand side, since Xg 7→ πngv Y mg/h · id = πv · id. Furthermore, ρ is an isomorphism of
Fv-algebras: Injectivity follows from Rµv(X

g) ⊂ R being a maximal (two-sided) ideal.
For surjectivity, comparing dimensions as Qw-vector spaces yields

dimFv(Math(∆v)) = h2 · (g
h

)2 = g2,

dimQw⊗F
qf

Fs(R/(µv(X
g))) = g · degµv = g · [Fv : Qw],

dimQw(R/(µv(X
g))) = g2 · [Fv : Qw] = dimQw(Math(∆v)).

Hence
Matm(QEnd(M)⊗F Fv) ∼= Math·nv(∆

op
v ),

thereby proving the assertion about the v-invariants. If now v is a place of F not
dividing ε · ∞, consider the local σ-shtuka of M at w := v ∩ Q. Since this is an étale
σ-shtuka, the constant coefficient of minπ is invertible in Aw, and hence ordv(πv) = 0.
It remains to prove the simplification in the pure case. Let v | ∞ and ev be the
ramification index of Fv/Q∞. Since M is assumed to be pure and the residue field of
Q∞ is Fq, we can calculate

(#k)wt(M) = qe·wt(M) = |π|∞ = q− ordv(πv)/ e(v|∞)

and therefore

invv(QEnd(M)) = − ordv(πv) ·
[Fv : Fq]
[k : Fq]

=
[Fv : Fq] · e(v | ∞) · e · wt(M)

e
= wt(M) · [Fv : Q∞] .
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1. A-Motives and Global Shtukas

y

Corollary 1.79. Let N = (N , c1, . . . , cn, τN ) be a global shtuka over some finite field
k ∼= Fs with Frobenius endomorphism π. Then F = Q(π) is the center of QEnd(N ),
and it’s Hasse invariants at all places u of F are completely determined by

invu(QEnd(N )) = − [Fu : Fq]
[Fs : Fq]

· ordu(π) .

In particular, all invariants at places not above c1 · . . . · cn vanish.

Proof. The proof is a calculation at shtuka-level, and therefore works for a global shtuka
as well. y
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2. CM-types and the
Taniyama-Shimura-formula

In this chapter we explain the notion of Complex Multiplication for A-motives and
global shtukas, which closely resembles the analogous ideas in the theory of abelian
varieties. Furthermore, we define CM-types for our objects, and we prove the equivalent
statement to the formula of Taniyama and Shimura in its general form for unramified
prime ideals, which is a central component in the surjectivity proof of Honda-Tate
theory, both for abelian varieties and for function field objects.

2.1. Complex Multiplication

A Q-algebra E is called semisimple, if E is a finite product of fields.

Definition 2.1. Let M be an A-motive of rank r, defined over some field k. Assume
that there exists a commutative Q-algebra E inside the quasi-endomorphism algebra
QEndk(M) of Q-dimension r. Then M is said to have Complex Multiplication (or
simply (CM)) via E.

Obviously, the notion of (CM) is compatible with the isogeny equivalence relation:

Proposition 2.2. Let M and M ′ be isogenous A-motives. Then M has (CM) if and
only if M ′ has (CM).

Proof. By Cor. 1.17, we have QEnd(M) ∼= QEnd(M ′). y

2.1.1. Complex Multiplication via OE
We use the notation OE for the integral closure of A inside E.

Definition 2.3. Let M be an A-motive over k with (CM) via a semisimple commutative
Q-algebra E. We say that M has Complex Multiplication via OE, if the ring of
integers OE of E canonically embeds into the ring of endomorphism End(M) of M , or
equivalently, if

OE = E ∩ End(M).

While not every A-motive with (CM) necessarily has (CM) via OE , it turns out that
its isogeny equivalence class will always include one representative that does:

Proposition 2.4. Let M be an A-motive over an A-field k with (CM) via some
semisimple Q-algebra E. Then there exists an abelian A-motive M ′ and an isogeny
f : M →M ′ such that M ′ has (CM) via OE′, where E′ := f · E · f−1.
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2. CM-types and the Taniyama-Shimura-formula

Proof. This was proven in Corollary 3.3.3 in [Sch09]. We give a sketch. The proof
consists of the following steps:

(i) The endomorphism ring Endk(M) forms an A-order in QEndk(M).

(ii) The integral closure of A is the only maximal order in E.

(iii) To every maximal order a of QEndk(M) there exists an isogeny

f : M ′ →M

such that a has the form

a = f ·QEndk(M
′) · f−1 ⊂ QEndk(M).

(iv) The ring of quasi-endomorphism of M which are integral over A form a maximal
order in QEndk(M).

The first statement is immediately clear; the second one is first proven for fields and
then generalized to semisimple algebras. The third was proven in [BH09][Thm 10.7].
The fourth one is only an application of standard techniques. Finally, the combination
of the last two statements gives us the desired isogenous A-motive M ′. y

Remark 2.5. The result of the last Proposition can be rephrased to into: There exists
an A-motive M ′ isogenous to M such that M ′ has Complex Multiplication via OE under

OE ↪→E ↪→QEnd(M)
∼−−−−−−→

f◦(·)◦f−1
QEnd(M ′) .

The following statement is very important, as it lays the foundation to understanding
A-motives with (CM) as elements of the Picard group over a curve, which will be
essential to constructing A-motives from a Weil-number.

Theorem 2.6. Let M be an A-motive over an A-field k with (CM) via OE with E
semisimple. Then M is a τ -module of rank 1 over OE,k = OE ⊗Fq k, i. e. M is locally
free of rank 1 as OE,k-module and

τM : σ∗M ↪→M

is an injective OE,k-module homomorphism.

Proof. This is Corollary 3.3.6 in [Sch09]. y

2.1.2. Frobenius endomorphism of (CM)-motives

Theorem 2.7. Let K be a finite field extension of Q, and let OK be the integral closure
of A in K. Let M be a pure A-Motive over K with (CM) via E. Let P be a prime ideal
of OK , such that M has good reduction at P. Let π be the Frobenius of the reduction
MP of M at P. Furthermore, assume M has (CM) via OE. Then π is in the image
of EndM ↪→EndMP.
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2.1. Complex Multiplication

Proof. This was proven in Theorem 4.2.6 in [Pel09]. y

Remark 2.8. The preceeding theorem is valid only after making the technical assump-
tion that M has (CM) via OE, i. e. that EndM ∩ E = OE. As we have just seen in
Prop. 2.4, this is not a serious restriction, as one can always choose an A-motive M ′

in the same isogeny class satisfying this condition.

2.1.3. Existence of Extension Sheaves

The underlying locally free Ak-module M of an A-motive M may of course always be
understood as the locally free sheaf M̃ of Spec (Ak)-modules. However, we want to
work with the structure of M as an OE,k-module we just introduced. The argument
we present is based on [Sch09, Section 3.4].

Lemma 2.9. Let M be an A-motive over k with (CM) via OE. Then there exists a
locally free sheaf M ′ on Spec (OE,k) of rank 1 with global sections M .

Proof. We can define M ′ as the associated coherent module sheaf to M . By construc-
tion, M ′ has global sections M . A standard localization argument shows that M ′ is
also locally free of rank 1; see Lemma 3.4.1 in [Sch09] for details. y

If the A-motive M is simple, its algebra QEnd(M) of quasi-endomorphisms forms a
field. Let us denote by C̃ the regular, projective curve over Fq defined by the function
field QEnd(M). This curve has a projection map

p : C̃ → C.

Let us write C̃k for the base change to k, that is

C̃k := C̃ ×Spec (Fq) Spec (k).

If M is only semisimple, the Q-algebra QEnd(M) is in general not a field, but only a
finite direct product

QEnd(M) =
∏

Ei

of function fields. In this case, we can form curves C̃i and C̃k,i for every i; we then

write C̃ and C̃k for the disjoint union of these curves.

Proposition 2.10. Let M be a semisimple A-motive over k with (CM) via OE. Then
there exists a locally free sheaf M of rank 1 on C̃k such that M may be reconstructed
from M by taking sections over Spec (OE,k), i. e.

M = Γ(Spec (OE,k),M).

Sketch of Proof. Use the last lemma to solve the problem locally and then glue these
solutions together. Details can be be found in [Sch09, Lemma 3.4.3] y

Remark 2.11. One can also reverse this process to construct A-motives with (CM).
We will make use of this reverse process when we build an A-motive out of a Weil
number α.
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2. CM-types and the Taniyama-Shimura-formula

2.1.4. Definition over a finite extension

Let us assume an A-motive M of A-characteristic ε = ker γ is defined over an alge-
braically closed A-field L = Lalg. Can we find a finite extension field K of Fε, the field
of fractions of A/ε, such that M is already defined over K? Under the additional as-
sumption of Complex Multiplication, the answer is generally yes, as the next Theorem
shows:

Theorem 2.12. Let M be an A-motive over an algebraically closed field Lalg, and
assume that M has Complex Multiplication via OE, where E is some semisimple com-
mutative Q-algebra. Then there exists a finite extension K/Fε such that M is defined
over K, that is, there exists an A-motive M ′ over K such that

M ∼= M ′ ⊗K L .

Proof. This is [Sch09, Thm. 6.3.6]. y

2.1.5. Reduction of A-Motives with (CM)

It is a natural to ask the question: What kinds of A-motives have potentially good
reduction at what primes? As it turns out, the property of having (CM) is already
enough to guarantee potentially good reduction everywhere, which will be useful to us
later on:

Theorem 2.13. Let M be an A-motive over a finite extension field K/Q with (CM)
via E. Then M has potentially good reduction at every place of the integral closure OK
of A in K.

Proof. This is a corollary to Thm. 2.6 together with [Gar03b, Prop. 2.11 9]. y

2.1.6. CM-types and local CM-divisors

It is not in general enough to know the CM-algebra of an A-motive in order to know its
isogeny class. The same is true for abelian varieties. In the theory of abelian varieties
with Complex Multiplication, the so-called CM-type of an abelian variety is used to
classify isogeny classes; there is a one-to-one correspondence between isogeny classes
of abelian varieties on one side and isomorphism classes of CM-types on the other. In
addition to the CM-algebra E, a CM-type knows about all the algebra homomorphisms
E → C; more precisely, since morphisms E → C exist in pairs under the action of
complex conjugation, picking at random one element of every such pair defines a set
Φ ⊂ Hom(E,C) such that

HE := Hom(E,C) = Φ ∪ Φ.

As it turns out, if one restricts oneself to algebras E with certain properties, so-called
CM-algebras, a pair (E,Φ) uniquely defines an isogeny class of abelian varieties. For
A-motives, we do not possess a complex conjugation. Furthermore, knowledge of HE

is not in general sufficient to fully describe isogeny classes. However, since an A-motive
M lives over two places, namely the kernel ideal ε := ker γ and the fixed infinite place
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2.1. Complex Multiplication

∞, one needs to describe the behaviour of M , that is the behaviour of its underlying
morphism τM , at both places. Therefore, we will introduce the notion of a local CM-
divisor, and define the total CM-divisor DM of M to consist of two local CM-divisors
Dε and D∞, one for each characteristic place.

The CM-type

Pick1 a (not necessarily effective) A-motive M of generic characteristic (that is, γ :
A ↪→ k is injective) defined over a field k with (CM) via a semisimple commutative
algebra E separable over Q. Furthermore, assume that E is separable over Q. Let us
write

HE := HomQ(E,Qalg),

where Qalg denotes a fixed algebraic closure of Q. We may assume ψ(E) ⊂ k for all
ψ ∈ HE , since we can always base-change to a sufficiently large field k′ ⊃ k. Let w be a
place of Q and z = zv a local uniformizer at v. Write ζ = ζv for the image of z under γ
in K. Then Q embeds into KJz− ζK via the canonical map induced by z 7→ ζ+ (z− ζ).
Note that KJz − ζK is isomorphic to the completion of the local ring of CK at V(J ),
which does not depend on v; hence our construction of KJz − ζK is independent of the
choice of place v. Consider the E[z−ζ] := E ⊗Q kJz − ζK-module

H1
dR(M,kJz − ζK) = σ∗M ⊗Ak kJz − ζK

lying inside the k((z − ζ))-vector space

H1
dR(M,kJz − ζK)

[
1

z − ζ

]
,

which contains the Hodge-Pink-lattice qM of M ,

qM := τ−1
M (M ⊗Ak kJz − ζK).

After we choose local uniformizers xψ (at some place of E) for all ψ ∈ HE such that
ψ(xψ) 6= 0, the algebra E[z−ζ] decomposes2 as

E ⊗Q kJz − ζK =
∏

HE

kJxψ − ψ(xψ)K .

We obtain a E ⊗Q kJz − ζK-decomposition of H1
dR(M,kJz − ζK) as

H1
dR(M,kJz − ζK) = H1

dR(M,kJz − ζK)⊗E[z−ζ] E[z−ζ]

=
∏

HE

H1
dR(M,kJz − ζK)⊗E[z−ζ] kJxψ − ψ(xψ)K,

where each individual factor

Hψ(M,kJxψ − ψ(xψ)K) := H1
dR(M,kJz − ζK)⊗E[z−ζ] kJxψ − ψ(xψ)K

1Our discussion is based on [HS17, § 1].
2See [HS17, Lemma A.3].

31



2. CM-types and the Taniyama-Shimura-formula

is free of rank 1 as kJxψ − ψ(xψ)K-module. Hence we can write the Hodge-Pink-lattice
qM of M as

qM =
∏

HE

qM ∩Hψ(M,kJxψ − ψ(xψ)K)

=
∏

ψ∈HE
(xψ − ψ(xψ))−dψ ·Hψ(M,kJxψ − ψ(xψ)K)

for suitable non-negative integers dψ. The tuple

ΨM := (dψ)ψ∈HE

is then called the CM-type of M . Note that qM is a lattice of full rank r = rk(M)
and that E as a semisimple, separable Q-algebra of rank r allows precisely r = [E : Q]
different embeddings E ↪→C∞. Hence we get exactly r many integers dψ.

Remark 2.14. If M is an effective A-motive with (CM) via E of CM-type Ψ, we
obtain a decomposition of coker τM in the following way: Define the tautological lattice
pM as

pM := H1
dR(M,KJz − ζK) = σ∗M ⊗AK KJz − ζK.

Since M is effective, we know that τM (σ∗M) ⊂ M , and therefore pM ⊂ qM , with
quotient being precisely the cokernel of τM , i. e.

qM/pM
∼−−→
τM

coker τM .

Hence the decomposition of the Hodge-Pink lattice qM yields

coker τM ∼=
∏

ψ∈HE
KJxψ − ψ(xψ)K/(xψ − ψ(xψ))dψ

=:
∏

ψ∈HE
(coker τM )ψ ,

where each (coker τM )ψ is a K-module of rank dψ, adding up to the K-vector space
coker τM of dimension

d = dim(M) = dimK(coker τM ) =
∑

ψ∈HE
dψ.

The CM-divisor at the infinite place

We now define the local divisor of an A-motive M with CM at ∞ in a similar manner.
As seen before, we can view M as OE,k-module of rank 1, with underlying morphism

τM : σ∗M →M

such that τM forms an isomorphism away from the two characteristic places ε and ∞.
As discussed before, τM has zeroes above ε, and the degrees of these zeroes determine

the structure of the cokernel coker τM of τM . In particular, the total degree of the divisor
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describing the zeroes above ε is precisely the k-vectorspace dimension of coker τM , i. e.
the dimension d of M . Choose some extension (M, τM̃ ) of (M, τM ) to the whole curve

C̃k. Above ∞, the morphism τM̃ has poles, and their degrees also add up to dimM
(since the total degree of the divisor describing M has to be zero due toM forming an
invertible sheaf on the curve C̃k). More specifically, let P be a point on the curve C̃k
aboce the point∞ ∈ C.The map τM̃ has a pole of some degree dMP,∞ at P . Furthermore,
we define

du,∞ :=
∑

P |u
dMu,P · [κ(P ) : k]

at all places u of E above ∞. Note that the du,∞ do not depend anymore onM, since

du,∞ = ordP
(
τ

[Fu:Fq ]
M

)
. We write

D∞ := {du,∞ ; Spec (E) 3 u | ∞}

for the resulting set of positive integers and call D∞ the local CM-divisor of M at
∞.

Note that if M does not have CM via some algebra E ⊂ QEnd(M), then M cannot
be seen as OE- or OE,k-module, and the discussion above does not make sense.

The CM-divisor at the characteristic place

Let M = (M, τM ) be an A-motive of characteristic ε over an A-field k. Assume that
M has CM via OE for some separable, commutative, Q-algebra E, and let Φε be its
CM-type. We define the local CM-divisor Dε of M at the characteristic place in a
similar manner as the local CM-divisor at the infinite place. The tuple Dε := (du,ε)u
indexed by the places u of OE above ε is then called the local CM-divisor of M at
ε.

Definition 2.15. Let M be an A-motive with (CM) via OE, and let Dε and D∞ be the
local CM-divisors of M as defined above. Then we call

DM := (Dε,D∞)

the total CM-divisor of M .

Remark 2.16. The discussion above strongly suggests that for A-motives M with (CM)
the structure of τM (and therefore M) is determined by the total CM-divisor of M ,
similar to how CM-types determine abelian varieties with complex multiplication. As
we will later see, this is an accurate impression, and we will use this relationship to
construct A-motives with pre-determined properties later on.

Generalization to Global Shtukas

Let N = (N , c1, . . . , cn, τN ) be some global shtukas of rank r over some finite field k,
as defined in (1.19). In particular, τN is an isomorphism on σ∗N → N outside the
graphs of the ci. The notion of Complex Multiplication carries over to global shtukas
in a natural manner. We say that N has Complex Multiplication (or short (CM)) via
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2. CM-types and the Taniyama-Shimura-formula

some commutative semisimple Q-algebra E of rank rkQE = rkN = r, if there is an
embedding

E ↪→QEnd(N )

of commutative Q-algebras. Furthermore, such a global shtukas is said to have (CM)
via OE if N is invertible as OC̃k -module. (Here C̃ is again the curve defined by E and

C̃k = C̃ × Spec (k).)
We will now define a local CM-divisor Di at each of the paws ci by following the

same approach as we used at the infinite place for A-motives. Namely, let P be some
place on the curve C̃k with ordP (τN ) 6= 0. In particular, P is lying above some some
point vi ∈ C given by a paw ci of N . For all u ∈ C̃ above vi we let

du,i :=
∑

P |u
ordP (τN ) · [κ(P ) : k] = ordP (τ

[Fu:Fq ]
N ) .

Then the tuple Di := (du,i : u | vi) is called the local CM-divisor of N at the paw ci,
and the tuple DN = (Di) is called the total CM-divisor of N .

2.2. The Formula of Shimura and Taniyama

The question underlying the formula of Taniyama and Shimura may be stated as follows:
Assume that we are given an abelian variety A over some number field K such that we
can can reduce A at some prime P in OK to an abelian variety AP over k := OK/P.
Now, since k is a finite field, AP has a Frobenius endomorphism π. What can we say
about the algebraic nature of π? If A has Complex Multiplication via OE with π ∈ OE ,
the formula of Taniyama and Shimura provides a complete and satisfying answer to
this question. More specifically, it gives a full description of the ideal (π)OE generated
by the Frobenius.

2.2.1. Unramified version

The Taniyama-Shimura formula goes back to a 1955 paper by Taniyama [Tan55] and
was first proved by Shimura and Taniyama [Tan55, Shi55, Tan57], reducing to the case
of P having absolute degree 1. (As to the history of the proofs and some corrections,
see also the discussion in [Hon68, §2].) It can also be found as [ST61, Thm. 1],
however in a slightly weakened form; to be precise, it is assumed that p := P ∩ Z
is unramified. In order to prove the Honda-Tate-relationship between Weil numbers
and Abelian Varieties, the stronger form is needed. However, since the proof of the
weakened formula is rather elegant and was first used in [Pel09] to adapt the formula
to the case of A-motives, we will first give and prove the weaker statement. This is, in
essence, the proof given in [ST61], which may also be found in an updated form using
modern language in Milne’s expository article [Mil07] on the fundamental theorem of
complex multiplication.

Theorem 2.17. Let M be a pure A-motive over an A-field (K,A ⊂ K) with (CM)
given by a semisimple, separable Q-algebra E, such that K is finite over Q. Assume
that K contains ψ(E) for all ψ ∈ Hom(E,C∞) = HE. Let P be a prime ideal in the
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2.2. The Formula of Shimura and Taniyama

integral closure OK of A in K, such that M has good reduction MP at P. Assume that
OE = E ∩ End(M) and that p := P ∩ A is unramified in E. Let π be the Frobenius
endomorphism of the reduction MP. Let Ψ = (dψ | ψ ∈ HE) be the CM-type of M .
Then the following equality of ideals in OE holds:

(π) =
∏

ψ∈HE
ψ−1

(
NK/ψE) P

)dψ . (TSF)

Remark 2.18. Note that the reduction MP is an A-motive with characteristic ideal
P∩A. In order to avoid confusion, we will generally denote this characteristic ideal
p = P∩A instead of ε during the course of this subchapter.

Proof. Since M has good reduction at P by assumption, we can choose a good modelM
over the ring OK,P, with MP = (M ′, τ ′M ) denoting the reduction at P. The cokernel
coker τM of the model M naturally relates to the cokernels of M and MP in the
following way: First, we have

coker τM ∼= coker τM ⊗OK,P K

and
coker τM ′ ∼= coker τM/(P · coker τM).

Furthermore, from the decomposition

coker τM ∼=
⊕

ψ∈Ψ

(coker τM )ψ

with
dψ = dimK(coker τM )ψ ,

and using that p is unramified, we first obtain a corresponding decomposition

coker τM ∼=
⊕

ψ∈Ψ

(
(coker τM )ψ ∩ coker τM

)
︸ ︷︷ ︸

:=(coker τM)ψ

and then also
coker τM ′ ∼=

⊕

ψ∈Ψ

(coker τM ′)ψ .

This decomposition argument breaks down for ramified p, which is why this proof
cannot be adapted in the case of ramified characteristic. The ideal (π) ⊂ OE generated
by the Frobenius endomorphism π ∈ OE may be written as a product of prime ideals

(π) =
∏

pv |p
p

ordpv (π)
v .

Let us write nv := ordpv(π). Note that the reduction MP is an A-motive over the
A-field k := OK/P, where γ : A → k is given by A ↪→OK�OK/P, and therefore
ker γ = P ∩A = p. Hence all pv dividing (π) will indeed lie above p.
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2. CM-types and the Taniyama-Shimura-formula

We therefore obtain a decomposition of Ψ in the following way: Write Ψv for the
set of morphism φ : E → C∞ relating P and pv and dv for the dimension of the
corresponding subspace of coker τM ′ , i. e.

Hv := {ψ ∈ HE | ψ−1(P) = pv},
dv :=

∑

ψ∈Ψv

dψ.

Obviously, ∑

v|p
dv =

∑

ψ∈Ψ

dψ = d.

Write q := NK/Q(P) = p[FP:Fp] = pf(P/p). We now claim that

NE/Q

(
pnvv
)

= pdv ·[FP:Fp] = qdv . (∗)

Assuming this to be true, we obtain

NE/Q

(
pnvv
)

= (q)dv

=
(

NK/QP
)dv

=
∏

ψ∈Ψv

(
NK/QP

)dψ

=
∏

ψ∈Ψv

(
NE/Q(ψ−1(NK/ψE(P))

)dψ

= NE/Q

( ∏

ψ∈Ψv

(
ψ−1(NK/ψE P)

)dψ
)
.

Since prime ideal factorization is unique and we know that
∏
ψ∈Ψv

(
ψ−1(NK/ψE P)

)dψ
is a power of pv by construction, we obtain

pnvv =
∏

ψ∈Ψv

(
ψ−1(NK/ψE P)

)dψ

and therefore the statement of the theorem, once we form the product over all Ψv.
It remains to show the claim in (∗). We pick an integer h such that

(pnvv )h = (βv) ⊂ OE .

Such an h exists, since E ∼=
∏
Ei is a finite product of fields with finite class numbers.

We now look at the induced map βv : coker τM ′ → coker τM ′ . We claim that for some
suitable positive integer n, we get a decomposition

ker(βnv : coker τM ′ → coker τM ′) =
⊕

ψ∈Ψv

(coker τM ′)ψ .

To see this, let us consider the action of βv on coker τM ′ . If we write zψ := yψ −ψ(yψ),
the action of βv is given by multiplication with βv , which we write as

ψ(βv) + (βv − ψ(βv))

36



2.2. The Formula of Shimura and Taniyama

on the factor corresponding to ψ. Therefore, βnv for some n > 0 acts as multiplication
with (

ψ(βv) + (βv − ψ(βv))
)n
.

Since we are working in characteristic p > 0, if we pick for n a p-power n = p∗ > d, the
(βv−ψ(βv))-term vanishes into the ideal (yψ−ψ(yψ))dψ , and the action of βnv collapses
into multiplication with ψ(βv)

n. Since

coker τM ′ ∼= coker τM/(P · coker τM),

this action will be zero if and only if ψ ∈ Ψv. Hence the kernel of βnv is indeed given by

⊕

ψ∈Ψv

(coker τM ′)ψ,

as was to be shown.
Therefore

dimk cokerβnv = dimk

⊕

ψ∈Ψv

(coker τM ′)ψ

= rkOK
⊕

ψ∈Ψv

(coker τM)ψ

= dimK

⊕

ψ∈Ψv

(coker τM )ψ

= dv.

Since πhn = (τM ′)
h·[FP:Fp]·n holds, we obtain

dimk cokerβv ≤ h · dv · [FP : Fp].

Using3

deg(βv) = p

dimFP coker βv

[FP:Fq ] ,

we end up with4

NE/Q(ph·nvv ) = NE/Q(βv) = deg βv ⊆ ph·dv ·[FP:p],

and we can remove the h from the exponent. But now we are done, because by forming
the product over all v and using

∑
dv = d we see at once that the inclusion must be

an equality. y

3see [BH09, Cor. 7.5] or [Pel09, Kor. 6.1.4]
4The second equality follows from [BH09, Thm. 7.3]
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2. CM-types and the Taniyama-Shimura-formula

2.2.2. Revised version at the characteristic place

The approach in the last section has two drawbacks. First, it only works for unramified
prime ideals p, i. e. the A-motive M ′ has to have an unramified characteristic ideal ε,
which severely limits scope of the statement’s usefulness with regards to our purposes.
Second, it uses results from [BH11, BH09] obtained in the context of pure motives
only. We will now explain how to avoid both of these problems by giving another proof
totally independent from the arguments in the last section. Our approach will follow
the general outline of Tate’s work in [Tat68] (for a fleshed out version, see [Con04]) for
abelian varieties. His ingenious idea was to reformulate the formula of Taniyama and
Shimura for abelian varieties in terms of their p-divisible groups. For us, p-divisible
groups are replaced by local shtukas.

We begin by restating the Taniyama-Shimura formula in more accessible, concrete
terms.

Proposition 2.19. With notations and assumptions as before, the Taniyama-Shimura-
formula is equivalent to each of the following two statements:

1. For all primes pv ⊂ OE dividing p = P ∩A, we have

ordpv(π) =
∑

ψ∈Ψv

dψ · f(P/ψ(pv))

and zero otherwise.

2. For all primes pv ⊂ OE dividing p, we have

ordpv(π)

ordpv(q)
=

dv
#Hv

and zero otherwise, where Hv := {φ : E → K | φ−1(P) = pv}, q := NK/Q(P) =

pf(P/p) and Ψv as before.

Proof. The first statement is immediately seen to be equivalent to (TSF), since

ordpv(ψ
−1
(

NK/ψE) P
)dψ) = dψ · ordψ(pv)

(
NK/ψE P

)
= dψ · f(P/ψ(pv))

if and only if ψ−1(P) = pv, and zero otherwise. As for the second statement, note that

ordpv(q) = f(P | p) · ordpv(p) = f(P/p) · e(pv | p)

and
#Hv = f(pv/p) · e(pv | p).

Using the first equality we just proved, we obtain

ordpv(π)

ordpv(q)
=
∑

ψ∈Ψv

dψ · f(P/ψ(pv))

f(P/p) · e(pv | p)
=
∑

ψ∈Ψv

dψ
f(pv/p) · e(pv | p)

=
dv

#Hv
,

and vice versa. Hence the second statement is equivalent to the first statement, which
was already seen to being a reformulation of the Taniyama-Shimura formula. y
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2.2. The Formula of Shimura and Taniyama

The reader will notice that the proof of equivalence does not require the prime p to
be unramified. We are therefore left to prove the following revised theorem

Theorem 2.20. Let M be an effective A-motive over an A-field (K,A ⊂ K) with (CM)
given by a semisimple, separable Q-algebra E, such that K is finite over Q. Assume
that K contains ψ(E) for all ψ ∈ Hom(E,C∞) = HE. Let P be a prime ideal in the
integral closure OK of A in K, such that M has good reduction MP at P, and write
p := P∩A. Assume that OE = E ∩End(M). Let π be the Frobenius endomorphism of
the reduction MP. For all places u ∈ Spec (OE) above p, we have

ordu(π)

ordu(q)
=
du,p
hu

, (rTSF)

where (du,p) is defined via du,p =
∑

ψ∈Hu dψ for the CM-type Ψ = (dψ)ψ∈HE of M ,

Hu = {ψ ∈ HE ;ψ−1(P) = u}, hu := #Hu = [Eu : Qp] and q := NK/Q(P) = pf(P/p).

Remark 2.21. The presentation of formula (rTSF) is chosen to show the analogy with
the Shimura-Taniyama formula for abelian varieties. If one simply wants to calculate
the behaviour of the Frobenius endomorphism π at places above p = P∩A, the formula
can be written more explicitly as

ordu(π) = du,p ·
[FP : Fp]

[Fu : Fp]
.

We will not prove this for the moment, as it is an easy calculation, and will in fact be
part of the proof of formula (rTSF).

Remark 2.22. Since we are for the moment only concerned with the structure of the
Frobenius at the characteristic ideal p of the reduction MP, we will remove the subscript
p from the notation, and simply write du for du,p.

Any A-motive with CM has potentially good reduction everywhere, and up to isogeny
we can always assume that OE ⊂ EndK(M). We may therefore without loss of gener-
ality assume that K is large enough to not only contain all images ψ(E), but also to
guarantee good reduction at a prime ideal P above ε = p. We write M to denote the
model of M over OK . As always, we may consider M as a free OE,K := OE ⊗Fq OK-

module of rank one and τM as an isomorphism σ∗M ∼−→ M on Spec (OE,K) outside
the zero locus of the canonical ideal J .

Since E = E1 × · · · × Es is a finite product of fields, the set of homomorphisms
HE = Hom(E,K) decomposes into a disjoint union of HEi = Hom(Ei,K). We also get
a disjoint decomposition

HE =
⋃

u|p
HEu

with HEw := HomQp(Ew,KP), where KP is defined to be the closure of K in Q̂alg
p . We

will also use the notation FP to denote the residue field of KP. The ring of units OKP

of KP is isomorphic to FPJξK for some uniformizer ξ of OP.
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2. CM-types and the Taniyama-Shimura-formula

Let us fix some place u | p of E, and write Ãu := ÔE,u; thus Ãu ∼= FuJyuK for some

uniformizer yu of E at u and Ap ⊂ Ãu. Furthermore, write

Ãu,OKP
:=
(
Ãu ⊗Fq OKP

)∧u ∼=
(
Fu⊗Fq FPJξK

)
JyuK.

Consider now the ring Fu⊗Fq FPJξK. This decomposes into a finite product

∏

ĩ∈Z /f̃ Z

(
Fu⊗Fq FPJξK

)
/ãĩ ,

where f̃ := [Fu : Fq] and

ãĩ := (λ⊗ 1− 1⊗ λqĩ : λ ∈ Fu).

For i ∈ Z /[Fp : Fq]Z, let also

ai := (a⊗ 1− 1⊗ aqi : a ∈ Fp).

Note that the number of ideals ã∗ and the number of ideals a∗ differs by a factor of
[Fu : Fp], that is, for every ai there are exactly [Fu : Fp] ideals ãĩ lying above it.

The local shtuka M̂p(M) can now be obtained as

M̂p(M) =M⊗AOKP
Ap,OKP

/a0 .

The underlying module may be written in the form

M⊗AOKP
Ap,OKP

∼=M⊗OE⊗FqOKP

(
OE ⊗Fq OKP

)
⊗A⊗FqOKP

Ap,OKP
.

Hence, we have to compute

(
OE ⊗Fq OKP

)
⊗A⊗FqOKP

Ap,OKP

∼= OE ⊗A Ap,OKP

∼= (OE ⊗A Ap)⊗Ap Ap,OKP

∼=
∏

u|p
ÔE,u ⊗Ap Ap,OKP

We obtain

M⊗AOKP
Ap,OKP

/a0 =
∏

u|p

(
M⊗OE⊗OKP

Ãu,OKP

)
/a0 .

We summarize our findings as follows:

Lemma 2.23. The module M⊗AOKP
Ap,OKP

/a0 decomposes into a finite product

M⊗AOKP
Ap,OKP

/a0 =
∏

u|p
M̂u(M)

where
M̂u(M) :=

(
M⊗OE⊗OKP

Ãu,OKP

)
/a0
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We now claim in fact this decomposition produces is compatible with the local-
shtuka-structure in the following way:

Lemma 2.24. Each factor M̂u(M) is in a natural way the underlying module of a local
σ̂-shtuka M̂u(M) at p of dimension du and height (or rank) hu.

Proof. With τM being the underlying morphism ofM, the underlying morphism of its
associated local σ̂-shtuka at p is given by τ̂ := (τM)[Fp:Fq ]. (Here σ̂ denotes σ[Fp:Fq ])

As M is a locally free OE,KP
-module of rank one, M̂u(M) is a locally free Ãu,OKP

-

module of rank one. Since Ãu is isomorphic to A⊕#Hu
p as Ap-module and E was assumed

to be separable, M̂u(M) is a locally free Ap,OKP
-module of rank [Ãu : Ap] = #Hu. By

restricting τ̂ to each factor, each M̂u(M) therefore defines a local σ̂-shtuka

M̂u(M) = (M̂u(M), τ̂u)

at p, which is of rank #Hu at p. (Note that σ|E = idE and hence σ deserves each

factor.) It remains to determine the dimension of M̂u(M). In other words, we need
to calculate the dimension of the cokernel coker τ̂u. In the definition of the CM-type
(dψ)ψ∈HE , we picked a uniformizer yu for every u | p and for every ψ ∈ HEu , we
considered the difference zu,ψ := yu − ψ(yu). To each zu,ψ we obtain a point

xu,ψ := V(zu,ψ) = V(yu − ψ(yu))

lying above the generic fibre Spec (KP) of Spec (OE,KP
). We claim that5

coker τ̂u ⊗OKP
KP
∼= Ãu,KP

/
∏

ψ∈HEu

(yu − ψ(yu)q
j(ψ)

)dψ

for a suitable set of integers {j(ψ) : ψ ∈ HEu}. Let us prove this statement. Consider
the map ( ∏

ψ∈Hu
(yu − ψ(yu))−dψ

)
· τM .

Locally on all Spec (Ãu,OKP
⊗OKP

KP) ⊂ Spec (OE⊗FqKP), this defines an isomorphism

M ∼−→M.
Let us take a closer look at the points above Spec (FP). We have a decomposition

Spec (Fu⊗Fq FP) ∼=
⊔

i∈Z /[Fp:Fq ]

Spec (Fu⊗Fq FP)/ai

∼=
⊔

ĩ∈Z /[Fu:Fq ]

Spec (Fu⊗Fq FP)/ãĩ .

Note that every Fu⊗Fq FP/ãĩ is isomorphic to FP and therefore defines a single point
represented by ãi, which is a member of a well-defined set of points represented by the

5The calculation is done only over KP. Note that this suffices, since coker τ̂u is a free OKP -module
by [HK18, Lemma 2.3].
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ideal ai. There is an Frobenius-induced operation on the points ãĩ and therefore on the
sets {ai} given by

ai 3 ãi 7→ σ∗(ãi) ∈ ai+1 .

On the points xu,ψ, this corresponds to

a0 3 xψ = V(yu − ψ(yu)) 7→ V(yu − ψ(yu)q) ∈ a1

In this way, if ψ0 ∈ Hu gives a point xu,ψ ∈ ã0, we get a conjugated set of points

σk∗(xu,ψ) ∈ ãk (0 ≤ k < [Fp : Fq]) .

If ψ is any another element of Hu, we get a similar conjugated set of points, starting in
some set ãĩ(ψ) ∈ ai(ψ). We therefore get maps ĩ(·) and i(·), relating an embedding ψ to

it’s ideals ãĩ(ψ) and ai(ψ). The map ĩ(·) can be calculated in the following manner: Let
ψ be some element of Hu, i. e., some Qp-morphism Eu → KP. The natural diagram

Fu Ãu Eu

Fu OKP
KP

ψ|Fu ψ

yields an induced endomorphism ψ|Fu , which is given by some exponent

Fu 3 λ 7→ λq
s
.

The exponent s is precisely ĩ(ψ), and i(ψ) can be obtained as the residue class of ĩ(ψ)
in Z /[Fp : Fq] · Z. Writing

j(ψ) = [Fu : Fq]− ĩ(ψ)

for 0 < ĩ(ψ) < [Fu : Fu] and
j(ψ) = 0

for ĩ(ψ) = 0, we conclude that
∏

ψ∈Hu
(yu − ψ(yu)j(ψ))−dψ · τ̂u

defines an isomorphism

σ̂∗M̂u(M)⊗OKP
KP

∼−→ M̂u(M)⊗OKP
KP .

In particular, we obtain the desired statement

coker τ̂u ∼= Ãu,OKP
/
∏

ψ∈HEu

(yu − ψ(yu)q
j(ψ)

)dψ ,

and counting dimensions at every ψ ∈ Hu, we end up with

dim M̂u(M) = rk coker τ̂u =
∑

ψ∈Hu
dψ = du ,

as was to be shown.
y
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Lemma 2.25. Under the assumptions of the revised TSF-theorem, the following equal-
ity holds:

ordpu(π)

ordpu(q)
=

dim(M̂u(M)

rk(M̂u(M)
.

Proof. Let us begin with calculating the numerator of the left-hand-side quotient. For

π ∈ OE being defined as the Frobenius τ
[FP:Fq ]
M ofM⊗OKP

FP, we know by construction

that π = τ̂ [FP:Fp]. Furthermore, there exists a unit bu ∈ O×Eu such that

π = yordu(π)
u · bu.

We consider the map given by

∏

l∈Z /[FP:Fp]

σ̂l
( ∏

ψ∈Hu
(yu − ψ(yu))−dψ · τ̂u

)
· π .

This defines an isomorphism

σ̂[FP:Fp]∗M̂u(M)
∼−→ M̂u(M).

By changing the base to FP, we see that
∏

ψ∈Hu
y
−dψ ·[FP:Fp]
u · π

defines an isomorphism

σ̂[FP:Fp]∗(M̂u(M)FP

) ∼−→ M̂u(M)FP

at every unit disk around the points ãĩ. Focusing at the disk containing the point ã0

and using the observation about the number of ideals a∗ and ã∗, we conclude that
( ∏

ψ∈Hu
y
−dψ ·[FP:Fp]
u

︸ ︷︷ ︸
= y
−du·[FP:Fp]
u

)
· π = y

[Fu:Fp]·ordu(π)−du·[FP:Fp]
u · bu

must be a unit, which is equivalent to the vanishing of the exponent of yu, i. e.

ordu(π) = du ·
[FP : Fp]

[Fu : Fp]
. (2.1)

Note that this is precisely the formula asserted in Remark 2.21.
As for the denominator, since q was defined as NOK/A(P), we have the equality

ordu q = ordu p
f(P / p) = e(u | p) · f(P / p) = e(u | p) · [FP : Fp].

Therefore,
ordu(π)

ordu(q)
=

du · [FP : Fp]

e(u | p) · [Fu : Fp] · [FP : Fp]
=
du
hu

,

using
#Hu = hu = e(u | p) · [Fu : Fp].

Together with the results from the last Lemma, we obtain the desired statement. y
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Remark 2.26. Informally, the valuation of π at some place u | p is given by the weight
of the local shtuka at this place, up to a factor from the field extension.

The revised Taniyama-Shimura-formula (rTSF) of Thm. 2.17 follows now immedi-
ately by combining the preceeding three results.

Remark 2.27. Note that we did not really need the A-motive structure of M for any
of the preceeding arguments. Therefore, one could just as well start with a global shtuka
N and make the same argument for the induced local shtuka at the characteristic places
of N .

Remark 2.28. Note that the argument for A-motives works entirely with local shtukas,
which take the place that p-divisible groups take in the theory of abelian varieties.

2.2.3. The formula at the infinite place

The TSF allows us to understand the valuation of the Frobenius endomorphism of a
reduction at all primes above the characteristic place ε by relating them to the cokernel
of the underlying morphism τM . However, to understand the A-motive M , we also need
to understand it’s behaviour at the hidden characteristic ∞.

Theorem 2.29. Let M be an effective A-motive over an A-field (K,A ⊂ K) with (CM)
given by a semisimple, separable Q-algebra E, such that K is finite over Q. Assume
that K contains ψ(E) for all ψ ∈ Hom(E,C∞) = HE. Let P be a prime ideal in the
integral closure OK of A in K, such that M has good reduction MP at P. Assume that
OE = E ∩ End(M). Let π be the Frobenius endomorphism of the reduction MP. Let
D∞ = (du,∞) be the local CM-divisor of MP at ∞. For all places u ∈ Spec (OE) above
∞, we have

ordu(π) = du,∞ ·
[FP : Fq]
[Fu : Fq]

. (rTSFi)

Proof. The asserted formula follows from [Fra17, Lemma 2.2.3.4]. Due to its importance
for us, we give a short review of the argument.

On the curve C̃, let u be a point above∞ ∈ C. On the curve C̃FfP , there are precisely
[Fu : Fq] many points P lying aboce each such u, which are cyclically permutated by
σ∗. Let N be an extension of M to C̃FP

, and denote by NP the restriction of N to

C̃FP
\ {P} Hence every P is a fixpoint under the action of σ[Fu:Fq ]∗, and therefore the

order
ordP

(
τ [Fu:Fq ]∗NP → NP

)

does not depend on the choice of N and P . Therefore we can define

du,∞ := ordP
(
τ [Fu:Fq ]∗NP → NP

)
,

and we conclude

ordu(π) = ordu(τ [FP:Fq ])) = [FP : Fu] · du,∞ = du,∞ ·
[FP : Fq]
[Fu : Fq]

.

y
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2.2. The Formula of Shimura and Taniyama

2.2.4. Generalization to Global Shtukas

Finally, we would like to develop a similar understanding for the structure of the CM-
types of global shtukas at their characteristic places.

Theorem 2.30. Let N = (N , c, τN ) be a global shtuka in the sense of Definition 1.19
over a finite field k ∼= Fs ∼= Fqe with Frobenius π and (CM) via some commutative
Q-algebra E. Write F = Q(π). Let DN = (du,i) denote the total CM-divisor of N at
all places of E above c. Let wi be some place of Q in c, and let u be some place of E
above wi. Then

ordu(π)

du,i
=

[k : Fq]
[Fu : Fq]

.

Proof. Works the same as the proof for Theorem 2.29. y
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3. The Honda-Tate Correspondence

In this chapter we will explain the setup of the map associating a field element to an
abelian Anderson-Motive. At first, we will give a short overview of the analogous parts
on the number field side.

3.1. The Correspondence on the Number Field Side

A (complex) abelian variety A ∼= V/Λ of dimension n = dimC V has rank 2n, if one
defines the rank of an abelian variety as the R-rank of its defining lattive Λ. The weight
dim
rk of an abelian variety is therefore always 1/2.

Definition 3.1.

1. Let a > 0 be a positive integer and p a prime number. Write q = pa. A p-Weil-
Number of order a (or simply q-Weil number) is an algebraic integer α such
that

σ(α) · σ(α) = q

for every embedding σ : Q(α) ↪→C.

2. Let α, α′ be two q-Weil-numbers. Then α and α′ are called conjugate to each
other, written α ∼ α′, if there exists a Q-isomorphism

Q[α]→ Q[α′], α 7→ α′.

Equivalently,
α ∼ α′ ⇐⇒ minα,Q = minα′,Q .

3.1.1. Weil Numbers

Theorem 3.2. There is one-to-one correspondence between the set of conjugacy classes
of p-Weil numbers of order a to the set of isogeny classes of simple abelian varieties
over Fpa, induced by the Frobenius.

3.1.2. Injectivity

In order to proof the injectivity of the map, one needs to show that isogeny classes
of abelian varieties may be characterized via their Frobenius polynomials, that is, two
abelian varieties A and A′ are isogenous if and only if their minimal polynomials minA
and minA′ are equal. This was proven 1966 by John Tate [Tat66].
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3.2. The Correspondence on the Function Field Side

3.1.3. Surjectivity

The surjectivity of the map was shown by Honda [Hon68]; other sources are [eisen-
traeger, oort, etc]. The principial strategy is as follows:

1. Choose a Weil-Number α.

2. Determine the (CM)-type associated to α.

3. Find an complex abelian variety A with (CM), that has the ”correct” endomor-
phism ring E.

4. Show that A is already defined over an algebraic number field.

5. Reduce A to a abelian variety defined over a finite field.

6. Find a simple abelian subvariety Ap in A with Frobenius αN .

7. Use descent theory to find an abelian variety with Frobenius α.

3.2. The Correspondence on the Function Field Side

From now on, fix an algebraic closure Qalg of Q = Frac(A).

3.2.1. Drinfeld Modules

Let p ⊂ A be a maximal ideal and let a, r > 0 be positive integers. An element α ∈ Qalg

is called an p-Drinfeld-Weil-number of degree a and rank r, if is satisfies the
following five conditions:

1. The element α is integral over A, i. e. its minimal polynomial minα,Q has coeffi-
cients in A.

2. There is only one finite place of Q(α) lying above (α) ⊂ OQ(α), and this place lies
above the characteristic point p. Here OQ(α) denotes the integral closure of A in
Q(α).

3. There is only one place of Q(α) lying above ∞.

4. The element α has absolute value |α|∞ = (#Fp)
a/r at ∞.

5. The degree [Q(α) : Q] divides r.

As before, two Weil-numbers are called conjugated, if they have the same minimal
polynomial over Q. Then the following analogue of Honda-Tate-Theory was proven by
Jiu-Kang Yu:

Theorem 3.3 ([Yu95, Gos96]). There is a one-to-one correspondence between isogeny-
classes of Drinfeld-modules of rank r over Fpa and conjugacy classes of Weil-numbers
of degree a and rank r, induced from φ 7→ minφ,Q.
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3. The Honda-Tate Correspondence

Remark 3.4. Note that due to the exponent 1/r in the definition of Weil-numbers it is
always possible to immediately tell the rank of a Drinfeld-module from its Weil-number
(and technically also its dimension as an abelian Anderson-motive). This is not the
case for abelian varieties in general, since the quotient of dimension and rank always
equates to 1/2.

3.2.2. A-Motives

While there are many striking analogies between abelian varieties and A-motives, there
is also a number of important differences resulting in certain adjustments one has to
make.

We have the following

Weil Numbers

We will now give our definition of the analogue of Weil-numbers for A-motives M over
a finite field k, which we will call Weil-numbers. In principle, these will be elements
of an appropriate field of absolute value (#k)wtM . Note that there is no immediately
obvious way to tell rank r and dimension d from α, as was the case for Drinfeld-modules
(where always d = 1 holds). Extracting rank and dimension from a Weil-number will
be the subject of the next subsection.

Pure Weil Numbers

We will first look at the pure case, that is, the Weil numbers corresponding to pure
simple A-motives over finite fields.

Definition 3.5. Let µ ∈ Q≥0 be a rational number. Let A be an admissible ring via
the curve C ′/Fq, and let Q be its field of fractions. Let p ⊂ A be a maximal ideal, and
let a > 0 be a positive integer. Let Qalg denote an algebraic closure of Q. A pure p-
Weil-number α of order a and weight wt(α) := µ is an element of Qalg satisfying
the following conditions:

1. The minimal polynomial minα,Q of α over Q has coefficients in A.

2. The element α does not lie over any place w outside p and ∞, i. e.

ordw(α) = 0 (∀w - p · ∞).

3. The element α has absolute value

|α| =
(
Fp

)a·µ

at all extensions of the place ∞ ∈ C = Spec (A) ∪ {∞} to Q(α).

We call two such Weil-numbers α, α′ conjugated, and write α ∼ α′, if they have the
same minimal polynomial minα,Q = minα′,Q over Q. We denote the set of pure p-Weil
numbers of order a and weight µ by

Wµ(A, p, a)
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3.2. The Correspondence on the Function Field Side

and the set of conjugacy classes of Weil numbers of weight µ by

W∼µ (A, p, a) .

Weil Numbers for general A-motives

Let us now consider the more general case of Weil numbers for arbitrary, i. e. simple,
but not necessarily pure, A-motives.

Definition 3.6. Let A be an admissible ring via the curve C ′/Fq, and let Q be its field
of fractions. Fix an Fq-rational point ∞ on C ′. Let p ⊂ A be a maximal ideal, and
let a > 0 be a positive integer. Let Qalg denote an algebraic closure of Q. An p-Weil-
number α of order a is an element of Qalg satisfying the following conditions:

1. The minimal polynomial minα,Q of α over Q has coefficients in A.

2. The element α does not lie over any place w outside p and ∞, i. e.

ordw(α) = 0 (∀w - p · ∞).

We call two such Weil-numbers α, α′ conjugated, and write α ∼ α′, if they have the
same minimal polynomial minα,Q = minα′,Q over Q. We denote the set of p-Weil
numbers of order a by

W(A, p, a)

and the set of conjugacy classes of Weil numbers by

W∼(A, p, a).

Remark 3.7. 1. Please note that the definition above does not, in fact, depend on
the choice of a. However, the bijection between Weil numbers and A-motives will
depend on the ground field k, given by k ∼= Fqa, and the same Weil number α
would therefore correspond to multiple A-motives, depending on the choice of k.
To avoid misunderstandings, we have therefore decided to include the a in the
definition of Weil-number.

2. Also, the reader may have already noticed that our definition of Weil-numbers
for A-motives, pure or otherwise, does not include any provision on the number
of places above ε or ∞, opposed to Def. 3.2.1 of Drinfeld-Weil numbers. It was
proven by E.-U. Gekeler in [Gek91, Th. 2.9] for Drinfeld-modules, there is only
one place of F above ε and∞, respectively. For an A-motive of higher dimension,
no such requirement is needed.

3.2.3. Global Shtukas

Definition 3.8. Let n ≥ 2 be a natural number, k be some finite field, and c :=
(c1, . . . , cn) be a tuple of closed points on C. We then call any element α ∈ Qalg a
Weil number of characteristic c and order a, if the following single condition
holds:
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3. The Honda-Tate Correspondence

• The element α does not lie over any place u outside c, i. e.

ordu(α) = 0 (∀u 6∈ c).

We call two such Weil-numbers α, α′ conjugated, and write α ∼ α′, if they have the
same minimal polynomial minα,Q = minα′,Q over Q. We denote the set of Weil numbers
of characteristic c by

Wc(A, a)

and the set of conjugacy classes of Weil numbers of characteristic c by

W∼
c (A, a).

3.2.4. Questions

Given the correspondence for abelian varieties and Drinfeld-modules, it is natural to
ask the following questions:

1. Let k/Fp be a field extension of degree a. Given an p-Weil-number α of order a,
does there exist an effective A-motive Mα over k of characteristic p such that it’s
Frobenius endomorphism π is conjugated to α?

2. Will any two A-motives M and M ′ with Weil-number α be isogenous?

3. If α is a pure Weil-number of weight µ, can we find a pure A-motive Mα of weight
µ over k of characteristic p with Frobenius π ∼ α?

4. If Mα exists, can we determine its dimension and rank directly from α?

5. Let k be a finite field and let c = (c1, . . . , cn) be a tuple of Fq-homomorphisms
c∗i : Fvi → k. Given a Weil number α of characteristic c, does there exist a global
shtuka over k whose k-Frobenius is conjugated to α?

Most of these questions will be answered in later chapters. However, we can answer
the fourth one, assuming that such an A-motive can indeed be found.

3.2.5. Dimension and Rank

As in the case for Drinfeld-modules, i. e. d = 1, we would like to control the rank
r and dimension d of M as well. Since r and d do not need to be relatively prime,
however, one has to be careful if one wishes to extract (d, r) from the weight of M
alone. Therefore, additional insights are required.

Let M be a simple A-motive of dimension d and rank r over a finite A-field (k, γ).
Write E := QEnd(M) and F := Q(π), where π is the Frobenius of M . Let h denote
the degree of F/Q, i. e. the degree of the Frobenius polynomial of M .

We know from Theorem 1.77 that E is a skew field with center F . We know from
[BH09], that the degree [E : F ] is precisely r2

h2
. If we can find a way to calculate [E : F ]

from Q and F alone, we can calculate r.
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3.2. The Correspondence on the Function Field Side

Furthermore, we know from Theorem 1.77 the local Hasse invariants invv(E) for all
places v of F . More precisely, we have for all places v of F the explicit formula

invv(E) = − [Fv : Fq]
a

· ordv(π).

Note that the expression on the right hand side does depend only on F = Q(π) and k.
Therefore, given an p-Weil-number α of order a, we can calculate all the local invariants
of E from knowledge of F = Q(α) and a. Write h(α) := [Q(α) : Q]. Global class field
theory yields the short exact sequence

0→ Br(F )→
⊕

v

Br(Fv)→ Q /Z→ 0,

where the first non-trivial map is given by scalar extension and the second by summa-
tion. In particular, given all local invariants of the central simple algebra E, we can
calculate the order of [E] ∈ Br(F ) ↪→⊕v Br(Fv) as the least common multiple

l(α) := lcmv(ordBrFv(invv[E])) = lcmv

(
ordQ /Z

(
− [Fv : Fp]

a
· ordv(π)

))

of the local orders in Br(Fv), that is Q /Z. However, the order of [E] in Br(F ) is
precisely

√
[E : F ] via the theorem below; therefore, with

rk(α) := h(α) · l(α)

and for α pure of weight wt(α) = µ

dim(α) := wt(α) · rk(α),

any simple pure A-motive with Frobenius π = α must have rank rk(α) and dimension
dim(α). For for non-pure α, the rank-calculation works just the same as above, but
the dimension needs to be calculated differently; since the dimension of any A-motive
(M, τM ) is just the dimension of the cokernel of τM , which according to the discussion
in Sections 2.1.6 and 2.2.2 can be calculated in the following way:

dim(α) :=
∑

u|ε

hu
a
· ordu(α)

ordu(p)
,

with notation as in Thm. 2.20. We denote the set of Weil numbers of rank r and
dimension d w. r. t. an A-field k of degree [k : Fp] = a by

W(A, p, a, d, r) ⊂W(A, p, a)

and the set of conjugacy classes of Weil numbers of rank r and dimension d by

W∼(A, p, a, d, r) .

The equivalent sets for pure Weil-numbers of dimension d and rank r and weight µ = d/r
are denoted by

Wµ(A, p, a, d, r) and W∼µ (A, p, a, d, r)

Remark 3.9. Note that the equation r(α) := h(α) · l(α) implies (h(α) and l(α) being
integers by definition) in particular, that the degree h(α) of minα,Q of a Weil-number
divides its rank r(α), echoing the last condition for Weil-numbers of Drinfeld-modules.
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3. The Honda-Tate Correspondence

3.2.6. Statement of Honda-Tate Correspondence

Theorem 3.10. There is a bijection between the set of isogeny classes of simple A-
motives over a fixed finite A-field (k, γ) with fixed characteristic points (p = ker γ,∞)
with [k : Fp] = a and the set of conjugacy classes of Weil-numbers α in the sense of
Definition 3.6 induced by M 7→ minπ,Q:

A-Mot∼(p, a) W∼ (A, p, a)1:1

Moreover, this bijection induces bijections

A-Mot∼(p, a, d, r) W∼ (A, p, a, d, r)1:1

for all d ≥ 0, r > 0.

Theorem 3.11. The bijections of the preceeding theorem are compatible with purity
definitions on both sides, that is, for all d ≥ 0, r > 0 there is a bijection

A-Mot∼p,s(p, a, d, r) W∼d/r(p, a),1:1

induced via M 7→ π. In particular, for d ≥ 0, r > 0 we also get bijections

A-Mot∼p,s(p, a, d, r) W∼d/r(A, p, a, d, r) .
1:1

Theorem 3.12. Let us denote the set of isogeny classes of simple global shtukas over
k ∼= Fqa of characteristic c by

N∼s (c, a) .

Let k ∼= Fqa be a finite field of characteristic p. There is a bijection between the set of
isogeny classes of simple global shtukas over S = Spec (k) with fixed paws paws c, and
the set of conjugacy classes of Weil-numbers α in the sense of Definition 3.8 induced
by N 7→ minπ,Q:

N∼s (c, a) W∼
c (a)1:1
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4. Proof of Injectivity

This chapter is rather short, as basically all the work has already been done. In partic-
ular, the injectivity of the Honda-Tate correspondence was proven for pure A-motives
by Hartl and Bornhofen in [BH09]. Specifically, we have the following statement:

Theorem 4.1. Let M and M ′ be two simple A-motives over a finite A-field k with
Frobenius endomorphisms π and π′, respectively. Let minπ,Q and minπ′,Q denote their
respective Frobenius polynomials as elements of A[X]. Let furthermore ν be a place
of A away from the A-characteristic ε, and denote by χν and χ′ν the characteristic
polynomials of πν = V̂ ν(π) ∈ EndQv(V̂ ν(M)) and π′ν = V̂ ν(π′) ∈ EndQv(V̂ ν(M ′)), re-
spectively. Then M and M ′ are isogenous if and only they have the same characteristic
polynomial, or equivalently if and only if they are of the same rank r and have the same
Frobenius polynomial, that is if minπ,Q = minπ′,Q , i. e.

M ∼M ′ ⇐⇒ χν = χ′ν ⇐⇒ r = r′ and minπ,Q = minπ′,Q .

The proof, while not explicitly stated there, is easily derived from [BH09]. For the sake
of completeness, we will give an explicit write-up.

Proof. The statement follows immediately from [BH09, Thm. 8.1, part 1], as long as we
can convince ourselves that πν and πν′ are semisimple and µπ is irreducible, i. e. Q(π) is
a field. Since our A-motives are assumed to be simple, we know from [BH09, Thm. 6.11]
that the quasi-endomorphism algebra E := QEnd(M) forms a division algebra over Q.
In particular, E is semisimple and therefore π and also πν are semisimple according to
[BH09, Prop. 6.8]. Finally, [BH09, Cor. 6.10] informs us that the algebra Q(π) is the
center of QEnd(M) and therefore a field, as was to be shown. Note that none of the
cited arguments in [BH09] need purity assumptions, as all calculations are done away
from ∞. y

Corollary 4.2. Let k ∼= Fs ∼= Fqe be a finite field of characteristic p and let N and N ′
be two simple global shtukas over S = Spec (k) with the same set of paws c. Let π and
π′ denote their Frobenius elements, respectively. Then the same statement holds as for
A-motives, i. e. N and N ′ are isogenous if and only if they have the same rank r and
their Frobenius polynimals minπ,Q and minπ′,Q coincide.

Proof. The proof of the necessary parts of [BH09, Thm. 8.1] is based on local argu-
ments away from ∞, and therefore carries over to global shtukas without problems. In
particular, the Tate conjecture remains true for global shtukas, see Thm. (1.73). y

Hence we obtain as immediate consequence the following

Corollary 4.3. The map associating to a pure abelian A-motive M , respectively to a
global shtuka N over a finite field its Frobenius element is well-defined and injective on
isogeny classes.
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5. Proof of Surjectivity

We now aim to prove the central result of this thesis, that is, all Weil numbers are
representatives stem from A-motives (or global shtukas, respectively). Our strategy1

for A-motives is based on the arguments Tate used in [Tat68] and follows the same
essential pattern - we first construct the correct endomorphism algebra from a pa-Weil-
number α and find in it a CM-algebra, which we use to define an A-motive MC∞ of
generic characteristic above C∞. Using results about CM-motives and reduction theory
from the first chapter, we restrict MC∞ to a finite extension field K of Q and reduce it
to an A-motive Mk′ over some finite field k′/Fp. Using the Taniyama-Shimura formula
proven in Chapter 2, we can choose Mk′ such that its Frobenius endomorphism will be
some power αm of α. Finally, we use descent to obtain an A-motive over the correct
field k of degree [k : Fp] = a such that one of its simple quotient motives has Frobenius
conjugate to α. Finally, we explain how to adjust the arguments used in order to make
them work for the more general case of global shtukas as well.

5.1. The Endomorphism Algebra Eα

From now on, let A be some admissible ring via some curve C, and let p ⊂ A be some
maximal ideal. Fix a positive integer a, and let α be an p-Weil-number of degree a,
that is

α ∈W∼(A, p, a) .

5.1.1. Construction of Eα

We write Fα := Q(α). Consider the set of rational numbers

iv = − [Fv : Fq]
a

· ordv(α)

for all places v of Fα. Note that all the mathematical objects on the right hand side of
this equation are solely dependend on the information given by Fα and the degree of
α. Therefore, the tupel (iv)v is well defined. Let us now choose a semisimple Q-algebra
E′α with center Fα such that

invv(E
′
α) = iv

for all places v of Fα. By construction of the Brauer group (see Appendix, part D.1),
we can always pick E′α to be a skew field. In fact, E′α is even simple, since its center is
by construction a field.

1I also made use of seminar notes on Honda-Tate theory written by Brian Conrad [Con04], Kirsten
Eisentraeger [Eis04] and Frans Oort [Oor08], which have the benefit of being somewhat more detailed
than Tate’s paper, and also of being written in English.
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5.2. Construction of A-motive over a finite extension of Q

5.1.2. Existence of a Commutative Subalgebra of rank rk(α)

Since we need our A-motive to possess (CM), we need to show that its algebra of quasi-
endomorphisms contains a commutative subalgebra of rank rk(α). We will find this
algebra in E′α. Note that Q(α) ⊂ E′α will not in general suffice, since we can only expect
the relation [Q(α) : Q] | rk(α) to hold. However, it is well known (see Prop. D.1 in the
appendix) that the algebra E′α contains a separable splitting field of degree rk(α)/h
over its center Q(α) and therefore a commutative Q-subalgebra of degree rk(α) over
Q. Let us denote this splitting field by Eα (was Kα).

5.1.3. The Case of inseparable E

Our construction so far has not made any assumptions on α that would guarantee sep-
arability of Eα; in particular, α could be inseparable over Q. We did, however, develop
our theory in earlier chapters for separable E only, since the Taniyama-Shimura-formula
in particular makes use of the existence of sufficiently many embeddings Eα ↪→Qalg. As
we will now explain, this is not a fundamental problem, since we can always reduce2 to
the case of separable E. Define F ′ to be the field Q(αp

n
), where pn is the inseparability

degree [Q(α) : Q]insep of Q(α) over Q. In particular, αp
n

will be separable over Q, so
F ′/Q is a separable extension. Now define F ′′ to be field F ′(βp

n
), where β is a root

of Xpn − αpn ∈ F ′[X]. The field F ′ embeds into F ′′ via x 7→ xp
n
. The picture of field

inclusions now looks like this:

F ′ = Q(αp
n
) F ′′ = F ′(βp

n
)

A ⊂ Q Q′′ = Q ⊃ A′′ = A

x7→xpn

x7→xpn

Note that both horizontal extensions are purely inseparable of degree pn, while both
vertical extensions are separable (see [HS17, Lemma A.2]). In particular, we can use
βp

n
instead of α as Weil-number and construct an A′′-motive for the field extension

F ′′/Q′′, which we will consider as A-motive under the natural inclusion A ↪→A′′. In
other words, we may assume without loss of generality, that F/Q is already separable.

5.2. Construction of A-motive over a finite extension of Q

5.2.1. Construction over C∞
Our next step is to find an A-motive M defined over C∞ with (CM) via Eα. We
understand C∞ as an A-field via the canonical embedding

A ↪→Q ↪→C∞ .

There exists a projective and regular curve C̃ defined over Fq with function field

Fq(C̃) = Eα. Let us denote the base-change to C∞ by C̃C∞ := C̃ ×Fq C∞. For some

algebraic closure Falg
q ⊂ C∞ we obtain the following diagrams:

2This trick was pointed out to me by U. Hartl.
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5. Proof of Surjectivity

C̃C∞ C̃Falg
q

C̃

Spec (C∞) Spec (Falg
q ) Spec (Fq)

and

C̃C∞ CC∞

C̃ C

Choose divisors Dp and D∞ on C̃C∞ (lying over the two different points V(J ) and
∞ of C) of the same degree d ≥ 0 and form the divisor D′ := D∞ −Dp of degree zero.
Now, if we consider the corresponding invertible sheaf and use degD′ = 0, we get

O(D′) ∈ Pic0
C̃/Fq

(C∞) ⊂ Pic
C̃/Fq(C∞).

We know that f := Frobq −id is surjective as endomorphism of the algebraic group
Pic0

C̃/Fq
(C∞) and can therefore choose an invertible sheaf MC∞ corresponding to a

divisor D such that

Pic0
C̃/Fq

(C∞) 3MC∞ 7→ O(D′) ∈ Pic0
C̃/Fq

(C∞)

under f . On the level of divisors, this means that

σ∗(D)−D = D′ = D∞ −Dp.

Hence, we get an isomorphism

σ∗MC∞ = O(σ∗D)→ O(D +D′) =M(D∞ −Dp),

which we will label τMC∞ .

By construction, we have Spec (OEα,C∞) ⊂ C̃C∞ . Then

M := (Γ(Spec (OEα,M),M), τMC∞ (Spec (OEα,C∞))

forms a τ -module of rank 1 over OEα,C∞ .

Lemma 5.1.

M := (Γ(Spec (OEα,M),M), τMC∞ (Spec (OEα,C∞))

forms a τ -module of rank 1 over OEα,C∞.

Furthermore, we claim that M , when viewed as AC∞-module, carries the structure
of an A-motive of over C∞, and that

Eα ⊂ QEndC∞(M)

defines a semisimple CM-algebra for M of rank r = rk(α) over Q. More precisely, we
have the following diagram of inclusions:
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5.2. Construction of A-motive over a finite extension of Q

A Q Q(α) Center(E′α)

OEα Eα Eα E′α

EndC∞(M) QEndC∞(M)

rk r

rkh

rk r

=

rk r/h rk r2/h2

=

Here, the first and second rows are true by assumption and construction. The first row
of vertical arrows is immediately derived from the theory of central simple algebras,
see above. The injection

OEα ↪→EndC∞(M)

follows from the fact that M is a OEα ⊗ C∞-module with τ -compatible action. The
second inclusion

Eα ↪→QEndC∞(M)

follows from the first and the fact that

OEα ⊗Q = Eα.

We summarize our findings in the following

Proposition 5.2. The τ -module M defines an A-motive MC∞ over C∞ of rank rk(α).
If Dp is effective of degree d ≥ 0, then M is an A-motive of dimension d. Furthermore,
M has Complex Multiplication via Eα.

Good reduction over a finite Q-extension

Since MC∞ is defined over the algebraically closed field C∞ and has (CM) via OEα by
construction, we can apply section (2.1.4). In our situation, the A-motive MC∞ has
generic characteristic, i. e. the kernel ε of A → C∞ vanishes, and therefore Fε = Q.
Hence there exists a finite extension field K of Q and an A-motive MK defined over K
such that

MK ⊗ C∞ ∼= MC∞ .

Furthemore, by Theorem 2.13 the motive MK has potentially good reduction every-
where, that is, for any given prime ideal P of OK there exists a finite field extension
K ′/K such that MK′ has good reduction at a prime above P, i. e., we can reduce to
an A-motive Mκ(P) with κ(P) = OK′/P. So we can without loss of generality assume
that MK has already good reduction.

5.2.2. Choice of divisors Dp and D∞

The construction works for any divisors Dp and D∞ of the same degree d lying above
two distinct closed points p and ∞ of the curve C. We continue on to make specific
choices for D∞ and Dp in our setting.

Consider the ideal

JC∞ = (a⊗ 1− 1⊗ γ(a) : a ∈ A) ⊂ AC∞
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5. Proof of Surjectivity

and its corresponding point
PJ := V(J ) ∈ CC∞ .

In particular, PJ is lying above the characteristic ideal of MC∞ , which is the generic
point η on C. Let

P̃1, . . . , P̃r ∈ C̃C∞

be the points lying above P . Similarly, let

∞1, . . . ,∞s ∈ CC∞

denote the points of CC∞ lying above ∞ ∈ C, and let {∞i,j} for all 1 ≤ i ≤ s denote

the finite set of points in C̃C∞ lying above each ∞i ∈ CC∞ . Therefore,

∈C̃C∞︷︸︸︷
P̃i →

=V (J)∈CC∞︷︸︸︷
P → η,

∞̃i,j︸︷︷︸
∈C̃C∞

→ ∞i︸︷︷︸
CC∞

→ ∞︸︷︷︸
∈C

.

The Divisor above p

We now have to pick a CM-type (E, (dψ)ψ∈HE ) at p. According to the revised Taniyama-
Shimura formula (rTSF) of Theorem 2.20,

ordu(π)

ordu(q)
=
du
hu

,

where π is the Frobenius of the reduction, hu := #Hu = [Eu : Qp] and q := pa. Write
qα := pa. We define the tuple of integers (du,p)u indexed by the places u of Eα lying
above p to be

du,p =
hu · ordu(α)

ordu(qα)

=
f(u | p) · e(u | p) · ordu(α)

a · e(u | p)

= ordu(α) · [Fu : Fp]

a
.

Then all du,p are integers: Since the CM-algebra Eα is in particular a splitting field for
E′α, all invariants of E′α at the places of Eα vanish. Pick a place u of Eα above a place
v of Fα above the place w = p of Q, that is, u|v|w = p. Then

Q /Z 3 0 = invu(Eα ⊗F E′α) = − [Fv : Fp]

a
· ordv(α) · [Eα,u : Fα,v]

using the general formula

invu(Eα ⊗Fα E′α) = [Eα,u : Fα,v] · invv(E
′
α)
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5.2. Construction of A-motive over a finite extension of Q

from the appendix, section D.2 and

invv(E
′
α) = − [Fv : Fq]

[Fs : Fq]
· ordv(π)

from Thm. 1.77. Now

du,p =
hu · ordu(α)

ordu(qα)

= [Eα,u : Qp] ·
ordu(α)

a · e(u | p)

= [Eα,u : Fα,v] · [Fα,v : Qp] ·
ordv(α) · e(u | v)

a · e(u | v) · e(v | p)

= [Eα,u : Fα,v] ·
[Fα,v : Qp]

e(v | p)
· ordv(α)

a

=
[Fv : Fp]

a
· ordv(α) · [Eα,u : Fv] .

Ergo
du,p = − invu(Eα ⊗F E′α) = 0 ∈ Q /Z ,

and hence all du,p are indeed integers. Note that all the factors on the right hand side
of this equation are known to us from the knowledge of α.

Define Hu to be the elements ψ of EE′α satisfying ψ−1(V(J )) = u. Now pick for all
u | p a set of integers dψ indexed by the elements of Hu such that

du,p =
∑

ψ∈Hu
dψ .

Since the points P̃ | P = V(J ) and the elements ψ of HE correspond to each other
bijectively, we can form the divisor Dp as

Dp :=
∑

P̃ |V(J )

dψ · (P̃ ) .

Remark 5.3. Note that the choice of coefficients dψ is in general not unique. However,
all the choices result in isogenous A-motives, since their endomorphism algebras are by
construction isomorphic.

The Divisor above ∞
We define a CM-type at ∞ in a similar fashion, using Theorem 2.29. Define

du,∞ := ordu(α) · [Fu : Fq]
a · [Fp : Fq]

= ordu(α) · [Fu : Fp]

a
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5. Proof of Surjectivity

at all places u of E laying above ∞. The same argument as above shows that all the
du,∞ are integers, so we can form the divisor

D∞ :=
∑

v|∞
−du,∞ · (v) .

Then the divisor
D := Dp −D∞

has degree zero, since

degD =
∑

P̃ |P
dψ +

∑

u|∞
du,∞

=
∑

u|p
du,p +

∑

u|∞
+du,∞

=
∑

u|p
ordu(α) · [Fu : Fp]

a
+
∑

u|∞
ordu(α) · [Fu : Fp]

a

=
1

a

∑

u|p·∞
ordu(α) · [Fu : Fp]

=
1

a

∑

u place of Eα

ordu(α) · [Fu : Fp]

=
1

a
· deg(div(α))︸ ︷︷ ︸

=0

= 0

5.3. Surjectivity up to a power

Proposition 5.4. There exists a prime ideal P ⊂ OK , such that the reduction of MK

at P, namely the A-motive
MP := MK ⊗OK/P

over k′′ := OK/P satisfies the following condition: There are positive integers n,m ∈
Z>0, such that the Frobenius endomorphism πP of MP is a zero of Xn−αm ∈ Q(α[X].

Proof. We had chosen K such that MK has good reduction everywhere, which allows
us to reduce M at any prime ideal P of OK above p and apply the Taniyama-Shimura
formula. The revised Taniyama-Shimura formula of Theorem 2.20 does not need P∩A
to be unramified, hence any prime ideal P with good reduction lying above the ideal
p, i. e. dividing p · OK may be used. We need to show that our chosen Weil number α,
when taken to the m-th power, is equal to a power of the Frobenius endomorphism πP
of the reduction MP. It suffices to show that for some powers α′ of α and π′P of πP
the fraction π′P/α

′ is a root of unity, since then some power (π′P/α
′)N is equal to 1, or

in other words,
(
π′P
)N

=
(
α′
)N

. Since we are working over a function field with finite
field of coefficients, every unit is a root of unity, according to [Has80, Chapter 22, p.
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5.3. Surjectivity up to a power

356]. It is therefore sufficient find suitable powers π′P and α′ and prove that π′P/α
′ is

a unit, i. e. that
ordu(α′) = ordu(π′P)

for all places u of Eα. By construction of M and the definition of Weil-numbers, π and
α do not have prime divisors outside p or ∞, hence we already know

ordu(α′) = 0 = ordu(π′P) (∀u - p · ∞)

for any two powers α′ and π′P. For pure Weil numbers, at all places u above ∞, the
value of πP is by construction

|πP|u =
(
#FP

)dim(α)/ rk(α)
,

while the value of α is by assumption

|α|u =
(
Fp

)a·µ(α)
=
(
Fp

)a·dim(α)
rk(α) .

both π and α have the same value qd/r. Hence

|α[FP:Fp]|u =
(
|α|u

)[FP:Fp]
= |πP|u

everywhere.
Let us pick some suitable ideal P.
According to (rTSF), the Frobenius πP of the reduction-motive MP then satisfies

ordu(πP) = du,p ·
[FP : Fp]

[Fu : Fp]

at all prime places u of Eα above the characteristic ideal p, and

ordu(πP) = du,∞ ·
[FP : Fq]
[Fu : Fq]

at all places u | ∞.
When we constructed MC∞ from the fixed Weil number α, we picked the dv,p and

dw,∞ precisely to satisfy this formula evaluated for α as Weil-p-number of order a. Hence
using the Taniyama-Shimura formulas for πP at some ideal P, we get the equalities

ordu(πP)

[FP : Fq]
=

du,∞
[Fu : Fq]

=
ordu(α)

a · [Fp : Fq]

for all u | ∞ and
ordu(πP)

[FP : Fq]
=

du,p
[Fu : Fq]

=
ordu(α)

a · [Fp : Fq]

for all u | p and thus
ordu(πP)

[FP : Fq]
=

ordu(α)

a · [Fp : Fq]
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5. Proof of Surjectivity

or
ordu(πP) · a = ordu(α) · [FP : Fp]

for all u | p · ∞. Writing π′ := π
a·[Fp:Fq ]
P and α′ := α[FP:Fq ] we obtain

ordu(π′) = ordu(α′)

at all places u | p · ∞, and 0 otherwise. But then the fraction π′
α′ must be a root of

unity, so we can find some other natural number N such that

(π′)N = (α′)N .

Thus with n := a · [Fp : Fq] · N and m := [FP : Fq] · N , the Frobenius πP is indeed a
zero of

Xn − αm ,
as was to be shown. y

Let k be an extension of Fp of order a.

Corollary 5.5. There exists an extension k′/k of degree m such that the Weil-number
αm is conjugated to the Frobenius πk′ of some semisimple A-motive Mk′ defined over
k′. In other words,

πk′ ∼ α[k′:k] .

Proof. Using the notation from the proof of Theorem 5.4 and writing k′ for the field
FP, we know that πP is a zero of Xn − αm ∈ Q(α)[X] with

m

n
=

[FP : Fq]
a · [Fp : Fq]

=
[FP : Fp]

a
= [k′ : k] .

Choosing k′/k sufficiently large enough such that MP ⊗ k′ is semisimple and [k′ : k] is
a multiple of [FP : Fq] ·N , we can immediately conclude

πk′ = α[k′:k]

as desired. y

5.4. Descent: from αm to α

So far, we have succeeded in proving that some power αm of our chosen Weil number α
may be written as Frobenius endomorphism of some A-motive M ′. It remains to argue
that α itself is a simple Frobenius.

Remark 5.6. Note that the last Proposition is completely obvious when the A-motive
M is pure, since in this case all valuations at v | ∞ are equal to (#k)−wt(Mk′ ), and we
have a direct relation between Weil-numbers of weight µ and degree e and pure simple A-
motives of weight µ over Fqe. This precisely matches the argument for abelian varieties.
Since non-pure A-motives do not allow such a direct relation between the field k and
the Weil-number, more care has to be taken.
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5.4. Descent: from αm to α

We can now proceed to argue that α itself is a Weil number, using the Weil restriction
functor from k′ to k, as explained in the Appendix, part (C.2): Form the module defined
via

M̃ :=

[k′:k]−1⊕

i=0

σi∗k M
′ ,

where σk denotes the k-Frobenius in Autk(k
′/k). There exists a permutation isomor-

phism
σ∗kM̃

∼−→ M̃ ,

i. e. given by the matrix 


0 0 · · · 1
1 0 · · · 0

. . .
. . .

...
1 0




This module has rank [k′ : k] · rk(M ′), and together with

τ
M̃

:
⊕

σi∗k τM : σ∗M̃ → M̃

it forms an A-motive M̃ = (M̃, τ
M̃

).

Proposition 5.7. The A-motive M̃ over k′/k with Frobenius π̃k′ descends to an A-

motive M̃k over k with Frobenius π̃k such that

(π̃k)
[k′:k] = π̃k′ .

.

With
π̃k := τ

[k:Fq ]
M̃

,

we obtain
(π̃k)

[k′:k] = π̃k′ .

As per construction, we have obtained an A-motive M̃ over k such that its Frobenius

endomorphism π̃k satisfies π̃
[k′:k]
K = πk′ = α[k′:k]. Pick some place v 6= p of A and

consider the characteristic polynomials χk′,v and χk,v of π̃k′,v and π̃k′,v, respectively.
Then

χk,v(T
[k′:k]) = χk′,v(T ) .

Now, the gist of the argument is as follows: Since α[k′:k] is a zero of χk′,v, the Weil
number α is a zero of χk,v, and hence of some irreducible polynomial g dividing χv,k,

corresponding to some simple factor motive M of M̃ . Therefore, M must have Frobe-
nius π conjugated to α. There is, however, no direct statement in the literature that
immediately gives the necessary relationship between irredible factors of χv and quo-
tient A-motives, so we have chosen to include a more detailed argument for our specific
situation.
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5. Proof of Surjectivity

Proposition 5.8. There exists a simple quotient A-motive M of M̃ such that the
Frobenius π of M is conjugated to α.

Proof. Since α is a root of χk,v, it has to be a root of minπ̃k,v ,Q and therefore of minπ̃k,Q.
Ergo minα,Q divides minπ̃k,Q. Let us write

minπ̃k,Q = (minα,Q)l · g ,

with (g,minα,Q) = 1, and choose polynomials a, b ∈ Q[X] such that a·(minα,Q)l+b·g =
1. Now put

β := a(π̃k) · (minα,Q)l(π̃k)

and
δ := b(π̃k) · g(π̃k) ,

both of which are elements of QEndk(M̃). Choose some c ∈ A such that δ′ = c · δ ∈
Endk(M̃), and write N for the image of δ′. Then we have a canonical projection-
inclusion sequence

M̃k
p−→→ N

i
↪−→ M̃k

such that i ◦ p = δ′. By construction,

β + δ = id, β ◦ δ = 0, β2 = β, δ2 = δ .

Hence
i ◦ p ◦ i ◦ p = δ2 = δ = i ◦ p, ,

and, by injectivity of i,
p = p ◦ i ◦ p = p ◦ δ′ .

Furthermore,
(p ◦ π̃k ◦ i)2 = p ◦ π̃k ◦ (i ◦ p)︸ ︷︷ ︸

=δ′

◦π̃k ◦ i = p ◦ δ′ ◦ π̃2
k ◦ i

and then

minlα,Q
(
(π̃k)|Im(δ′)

)
= (minα,Q)l(p ◦ π̃k ◦ i) = p ◦ δ′ ◦ (minα,Q)l(π̃k)︸ ︷︷ ︸

=0

◦i = 0 .

In particular, if M is a simple quotient A-motive of Im(δ′) with Frobenius π, then
(minα,Q)l = 0, thus π is a root of minα,Q, and hence

π ∼ α

as desired.
y
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5.5. Extension to Global Shtukas

5.4.1. Purity

We did also claim that pure Weil-numbers correspond exactly to pure A-motives, that
is, the Honda-Tate correspondence induces a bijectipn

A-Mot∼p,s(A, p, a, d, r)
∼−→W∼d/r(A, p, a)

Let us first note that is suffices to show purity for the A-motive MC∞ defined over
C∞ we constructed first, since none of the reduction steps we took afterwards changed
the behaviour at the point ∞. Now, purity for MC∞ means the following: Let z be a

uniformizing parameter at ∞ ∈ C; then Q∞ = F∞JzK[1/z] = ÔC,∞, and F∞ /Fq is a
finite field extension of degree f∞. Write Q∞,C∞ = (C∞⊗Fq F∞) ((z)). Then

Q∞,C∞ =
∏

i∈Z /f∞
(C∞⊗Fq F∞) ((z)) /ai

for ai = (a ⊗ 1 − 1 ⊗ γ(a)q
i

: a ∈ F∞), corresponding to the points ∞i above ∞
(compare the section 1.5.1 on local shtukas). And then the local isoshtuka at ∞ splits
into standard-isoshtukas as follows (also compare the proof of Thm. 2.20):

M⊗OC∞ Q∞,C∞/a0
∼= (C∞ ((z))⊕r , τ f∞M )

∼=
(⊕

i

(C∞ ((z))⊕ri , τ =

(
0 ... zdi
1 0

. . .
. . .
1 0

))

So MC∞ is pure if and only if the fractions di
ri

are identical for all i, that is, if the pole

of τ f∞M at a place ∞0,j on C̃C∞ above ∞0 does not depend on j. But this follows from
our construction of D∞ and the definition of pure Weil-numbers, hence MC∞ is indeed
pure if α was chosen to be pure.

5.5. Extension to Global Shtukas

Let α ∈ Q be a Weil-number of characteristic c global shtukas in the sense of Defi-
nition 3.8 for some finite field k ∼= Fs ∼= Fqe and a set of paws c = (c1, . . . , cn) on the
curve C. As before, write F for the field Q(α). Let E′α be the commutative simple
Q-algebra with center F defined by α via its Hasse invariants

invu(E′α) = − ordv(α) · [Fu : Fq]
[k : Fq]

using the structure theorem (1.77) for Global Shtukas, and pick a splitting field Eα
inside E′α. Write C̃ for the curve above C corresponding to Eα.

Construcion of Global Shtuka over kalg

Pick a place w of Q in c and let u be a place of Eα above w. Write v for the place of
F below u and above w.
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5. Proof of Surjectivity

Define

du := ordu(α) · [Fu : Fq]
[k : Fq]

.

Then du is a rational integer, using the same argument as before. Hence we can find
integers dũ for ũ the points on C̃kalg lying above u ∈ C̃ such that

∑

ũ|u
dũ = du .

Choose any such set of integers dũ to define the divisor

Dc =
∑

ũ|c
dũ · [ũ] .

Let Dc be a divisor of the curve C̃kalg given via a tuple (dũ)ũ of integers, indexed
over the points ũ on the curve C̃kalg , via

Dc =
∑

ũ|c
dũ · [ũ] ,

such that for all places u of Eα we have

∑

ũ|u
dũ = du = ordu(α) · [Fu : Fq]

[k : Fq]
.

Assume that Dc has degree 0. Then similar to before, we define

L′ := OC̃
kalg

(Dc) ∈ Pic0
C̃/Fq

(kalg) .

Using the isomorphism id−Frobq on Pic0
C̃/Fq

(kalg), we find an element L of Pic0
C̃/Fq

(kalg)

with
L ∼= σ∗L ⊗ L′ .

Since we are working over the algebraic closure of the finite field k ∼= Fs of characteristic
p, the line bundles L′ and L are defined already over a finite extension field of Fq. Call
this field of definition k′. Write Nk′ for the global shtuka given by

(L, τN := σ∗L → L⊗O(−Dc), c) .

Frobenius and Descent

Lemma 5.9. Let N k′ be the global shtuka over k′ constructed above, and let πk′ be its
Frobenius endomorphism. Then

ordu(πk′) = ordu(α[k′:k′])

at all places u ∈ C̃k′.
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Proof. From Theorem 2.30, we know

ordu(πk′) = du ·
[k′ : Fq]
[Fu : Fq]

above any of the characteristic places, and zero otherwise. We chose the integers du to
satisfy

ordu(α) = du ·
[k : Fq]
[Fu : Fq]

above any of the characteristic places, and zero otherwise. Together, ordu(π/α[k′:k′]) =
0 at all places u on C̃k′ . y

We have now found a global shtuka N over a finite extension k′ of k with

ordu(πk′) = ordu(α[k′:k′])

i. e. we are in the situation of Proposition,5.4. Using the same argument as in Proposi-
tion 5.5, we conclude that the Frobenius π of N k′ is (conjugated to) a power αm of α,
and that m is precisely the degree [k′ : k]. Ergo, using Weil restriction again, we can
descent N k′ to a global shtuka N k over k, and find a simple factor shtuka N of N k

with Frobenius conjugated to α.
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A. Anderson-A-modules

A.1. Definitions

We will now proceed to give the first higher-dimensional generalization of Drinfeld
modules, which was invented by Anderson [And86] under the name of t-modules.

Definition A.1.

1. An abelian Anderson-A-Module G = (G,ϕ) over an A-field (k, γ) is a ge-
ometrically regular, affine group scheme G together with a ring homomorphism
ϕ : A→ Endk(G), a 7→ ϕa, such that the following conditions are met:

(i) G×L Spec (Lalg) ∼= Ga,kalg.

(ii) (T0(ϕa)− γ(a))d = 0 on T0G = kd.

(iii) M := M(G,ϕ) := Hom(G,Ga,k) is a locally free Ak-module of rank r via
(a,m) 7→ m ◦ ϕa and (b,m) 7→ b ◦m for all a ∈ A, b ∈ k and m ∈M . It is
furthermore a k{τ}-module, with τ operating as q-Frobenius on M .

2. A morphism of Anderson-A-modules is a morphism of group schemes compatible
(in the natural way) with the A-action on both sides.

Remark A.2. Every Drinfeld-module φ naturally defines an Anderson-A-module M(φ).
In fact, every Anderson-A-module of dimension 1 arises in this manner, and we have
an equivalence of categories

{ Drinfeld-A-modules of rank r } ∼−→ { Anderson-A-modules of dim. 1 and rank r}

If we avoid the technicalities of scheme-theory in the definition of Anderson-modules,
the similarities between Drinfeld-modules and Anderson-modules are readily apparent.
More precisely, an Anderson-A-module of dimension d may be defined as a ring mor-
phism

φ : A→ k{τ}d×d, a 7→ φa

such that

(B0 − γ(a))d = 0 , where φa =
n∑

i=0

Bi · τ i

and k{τ}1×d is locally free as Ak-module under

A×M 3 (a,m) 7→ m · φa ∈M ,

k ×M 3 (b,m) 7→ b ·m ∈M .
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A. Anderson-A-modules

A.2. Equivalence of Anderson-A-modules and A-motives

Via descent theory (see Appendix C.1), we give a sketch argument for the equivalence
of our two notions of analogues of abelian variety. From [Gos96] we know that both
notions are equivalent over perfect fields. If G = (G,ϕ) is an abelian Anderson-A-
module over k, let

M(G) := (Homk,Fq(G,Ga,k), τM ),

where τM is given by
σ∗M 3 m⊗ 1 7→ τ ◦m ∈M.

.

Theorem A.3. The mapping G 7→M(G) defines a fully faithful, contravariant functor
from the category of abelian Anderson-A-modules over k to the category of abelian A-
motives over k, with essential image consisting of the subcategory of abelian effective
Anderson-A-motives. In addition, the functor respects rank and dimension.

Sketch of Proof. (See [And86, Thm.1] and [Har16, Thm.3.5].) Via descent theory the
category of Anderson-A-modules (resp. -motives) is equivalent to the category of
abelian Anderson-A-modules (resp. -motives) over kalg with descent datum. Since
kalg is perfect, we know from [Gos96, Thm. 5.4.11] that these categories are equivalent.
All that remains is to proof that the resulting square diagram of functors commutes,
which is merely a technical exercise. y

A.3. CM-types for A-modules

There is a different way to define CM-types of A-motives at the point ε = ker γ, which
was originally used by Schindler [Sch09] to classify certain A-motives and by Pelzer
[Pel09] to prove a version of the Taniyama-Shimura formula. We will briefly recap
those definitions and explain how they give the same result.

Definition A.4. Let E be a Q-algebra. Let K/Q be a field extension sufficiently large,
such that ϕ(E) ⊂ K for all ϕ ∈ hom(E,Qalg).

1. A pair (E, q) is called a CM-type, if the following conditions are met:

(i) The Q-algebra E is semisimple and commutative.

(ii) There exists an z ∈ Q such that I = (z − γ(z)) ⊂ AK and

q ⊂ E ⊗KJz − γ(z)K

is a submodule of rank dimQE.

2. Two CM-types (E, q) and (E′, q′) are said to be isomorphic, if there exists a Q-
algebra isomorphism E → E′ mapping q to q′.

70



A.3. CM-types for A-modules

Remark A.5. The connection to the definition of (CM)-types presented in Chapter
2 is as follows: Let (E, (dψ)ψ∈HE ) be a CM-type as defined in section 2.1.6. We’ve
already used that the tensor product E ⊗KJz − γ(z)K splits as

E ⊗KJz − γ(z)K ∼=
∏

ψ∈HE
KJxψ − ψ(xψ)K ,

where the xψ are local uniformizers of E with ψ(xψ) 6= 0. Then form the ideal

q :=
⊕

ψ∈HE
(xψ − ψ(xψ))−dψ ·KJxψ − ψ(xψ)K

Then obviously
q ⊂ E ⊗KJz − γ(z)K ,

and the pair (E, q) forms a CM-type as defined above, and vice versa.

Definition A.6. Let G be a pure Anderson-A-Module with (CM) via a semisimple
Q-algebra E. We define the generalized eigenspace (T0(G))ϕ of ϕ ∈ Hom(E,K) as

(T0(G))ϕ := {x ∈ T0G ; ∀g ∈ OE ∃n ∈ N0 : (T0 g − ϕ(g))n(x) = 0}.

Furthermore, we define the CM-set Φ of G as

Φ := {(ϕ, dϕ) ; ϕ ∈ Hom(E,K), (T0G)ϕ 6= 0, dϕ = dim(T0G)ϕ}.

Lemma A.7. If E is semisimple, the generalized eigenspaces of G span the tangent
space T0G of G at zero, i. e.

T0G =
⊕

ϕ∈Φ

(T0G)ϕ.

Note that the dual HomK(T0G,K) of T0G is canonically isomorphic to the cokernel
of τM , see [Har16, Thm. 3.5].

Remark A.8. 1. The two notions of CM-type are equivalent whenever both are de-
fined. More precisely, for an abelian Anderson A-motive M with associated uni-
formizable Anderson A-module G, the CM-types obtained from the decomposition
of qM and from the decomposition of T0G are equivalent, and both give rise to
equivalent decompositions of the cokernel of τM . In particular, the sets of numbers
Ψ = (dψ)ψ∈HE and Φ = {(ϕ, dϕ) | ϕ ∈ Hom(E,C∞)} are equivalent.

2. In the original definition of CM-types and the proof of the (ramified) Taniyama-
Shimura formula in [Sch09, Pel09], there is an additional assumption of uni-
formizability of Anderson-A-modules. Uniformizability of an A-module G (and
it’s associated A-motive) over C∞ means that, similar to complex abelian vari-
eties, G has a lattice representation G(C∞) ∼= T0(G)/Λ, induced by the expo-
nential function expG : T0(G) → G(C∞). The reader may wonder what hap-
pened to this assumption of uniformizability in the theory we presented. The
answer is that we found the CM-type of an A-motive M in section 2.1.6 in its
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deRham-cohomology H1
dR(M,kJz−ζK), while the calculations [Sch09, Pel09] were

(without explicitly stating that) done in its so-called Betti cohomology realization
H1

Betti(M,A) (see [HS17, after Def. 1.1]). If both defined, i. e. if M is uniformiz-
able, there is a comparison isomorphism ( loc. cit.)

hBetti,dR : H1
Betti(M,A)⊗A C∞

∼−→ H1
dR(M,k)⊗k C∞ ,

which explains why the two notions of CM-type give the same result. Avoiding
Betti cohomology allows us to avoid uniformizability considerations.
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B. Complex Multiplication for Abelian
Varieties

We give a brief overview of the theory Complex Multiplication for abelian varieties.1

B.1. CM-algebras and CM-types

Let K be some number field, i. e. a finite extension of Q. Then K is called totally
real, if the image of every embedding K ↪→C is contained in the real numbers R. If no
such image is contained in R, then K is called totally imaginary. A CM-field K is
a totally imaginary quadratic extension of a totally real number field F . We have the
following classifcation of CM-fields:

Proposition B.1. Let K be a number field. The following conditions on K are equiv-
alent:
(a) K is CM.
(b) There exists an automorphism ιK 6= id in Aut(K) such that for all embeddings

ρ : K ↪→C we have
ρ ◦ ιK = ιC ◦ ρ ,

where ιC is the complex conjugation automorphism on C.
(c) There exists some element x ∈ K such that K = F [x] for some totally real F and

x2 ∈ F and ρ(x2) < 0 for all embeddings ρ : F ↪→C.

A CM-algebra E is a semisimple algebra that is a finite product of CM-fields.
Let E ∼= K1 × · · · ×Kn be such a CM-algebra, and let HE be the set of Q-algebra

homomorphisms E → C. Then HE consists of conjugated pairs (ψ, ιE ◦ ψ), where ιE
is the unique conjugation automorphism on E.

Definition B.2. A CM-type of a CM-algebra E is any subset Ψ ⊂ HE such that
Ψ includes precisely one member of each conjugated pair (ψ, ι ◦ ψ). The pair (E,Ψ)
is then called a CM-pair. An isomorphism f of CM-pairs (E′,Ψ′) → (E,Ψ) is an
isomorphism f : E′ → E such that ψ ◦ f ∈ Ψ′ for all ψ ∈ Ψ.

B.2. Abelian Varieties with Complex Multiplication

Definition B.3. A complete, connected smooth group variety A over some field k is
called an abelian variety. A morphism between abelian varieties is a morphism

1The best modern source known to the author are the (as yet) unpublished notes [Mil06] on CM and
[Mil07] the fundamental theorem of CM by J. S. Milne .
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of algebraic groups. An isogeny between abelian varieties is a morphism of alge-
braic groups that is surjective with finite kernel.

Remark B.4. In particular, elliptic curves are abelian varieties of dimension 1.

Let A be an abelian variety over some field k. Let E be a semisimple Q-algebra of
degree 2 · dimkA. If there exists an embedding

i : E ↪→QEndk(A) = Endk(A)⊗Q ,

we say that A has Complex Multiplication by E over k, and the pair (A, i) is
called an abelian variety with CM via E over k.

Theorem B.5. There exists a bijection from the set of isogeny classes of abelian vari-
eties over C with CM to the set of isomorphism classes of CM-pairs.

The Taniyama-Shimura formula for Abelian Varieties

Theorem B.6. Let A be an abelian variety with CM via E over a number field k,
that is assumed sufficiently large to contain all images ϕ(E) for ϕ ∈ Hom(E,Qalg).
Let P be a prime ideal of Ok at which A has good reduction. Assume furthermore
that End(A) ∩ E = OE. Then there exists an element π ∈ OE inducing the Frobenius
endomorphism on the reduction AP of A at P, and we have the following equality of
OE-ideals:

(π) =
∏

ψ∈Ψ

ψ−1(Nk/ψE P).

Equivalently, for all primes v of E dividing p, the formula

ordv(π)

ordv(q)
=

#Ψv

#Hv

holds, where Hv := {ρ : E → k | ρ−1(P) = pv} and Ψv := Ψ ∩Hv and q := #Ok/P.
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C. Descent Theory

We will give a short description of the well-known descent theory of modules. Our
primary source is [BLR90].

C.1. General Theory

Let kalg denote an algebraic closure of k. Let S := Spec (k) and S′ := Spec (kalg). Let
p denote the induced morphism S′ → S, which is obviously quasi-compact (S and S′

being affine) as well as surjective and flat (k being a field), hence faithfully flat. Now
write S′′ := Spec (kalg⊗k kalg) and denote by pi the projection morphism onto the i-th
factor of S′′.

Let now M′ be a quasi-coherent S′-module.

Definition C.1. A covering datum for a quasi-coherent S′-module M′ is a S′′-
isomorphism

β : p∗1M′ → p∗2M′.
The pairs (M′, β) form a category with morphisms (M′, βM′) → (N ′, βN ′) consisting

of those S′-morphisms M′ f−→ N ′ compatible with the covering data on both sides, i. e.
the following diagram is commutative:

p∗1M′
βM′−−−−→ p∗2M′

p∗1f
y p∗2f

y

p∗1N ′
βN′−−−−→ p∗2N ′

Now write S′′′ := Spec (kalg⊗kkalg⊗kkalg) and denote by pi,j the projection morphism
S′′′ → S′′ onto the i-th and j-th component, respectively:

S′′′ S′′ S′ Sp1,3

p1,2

p2,3

p1
p2

p

A covering datum is not in general compatible with these additional projections; by
compatible, we mean that the following diagram is commutative:

p∗1,2p
∗
1M′ p∗1,2p

∗
2M′ p∗2,3p

∗
1M′ p∗2,3p

∗
2M′

p∗1,3p
∗
1M′ p∗1,3p

∗
2M′

p∗1,2β

=

= p∗2,3β

=
p∗1,3β
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C. Descent Theory

Definition C.2. A descent datum on M′ is a covering datum β on M′, which is
compatible with the projections pi,j as defined above. A descent datum β onM′ is called
effective, if it comes from a quasi-coherent S-module M, i. e. (M′, β) ∼= (p∗M, ι)
where ι is the canonical descent datum on p∗M induced by p ◦ p1 = p ◦ p2.

Remark C.3. We can equip both Anderson-modules and Anderson-motives over kalg

with descent data in a natural way.

The following theoren now states, that faithfully flat descent of quasi-coherent mod-
ules is effective, that is, every descent datum β for M′ on S ′ is effective:

Theorem C.4. Write S = Spec (Ak) and S′ = Spec (Ak′) for some field extension
k′/k. Let p : S′ → S be faithfully flat and quasi-compact. Then the induced functor
F 7→ p∗F from the category of quasi-coherent S-moduls to the category of quasi-coherent
S′-moduls with descent datum is an equivalence of categories.

Theorem C.5. Let p : S′ → S be faithfully flat and quasi-compact. Then the pull-back
functor p∗ : X 7→ p∗X is fully faithful. Moreover, if S and S′ are affine, a descent
datum β on a S′-scheme X ′ is effective if and only if X ′ may be covered by quasi-affine
subschemes stable under β.

C.2. Weil Restriction

Let h : S′ → S denote some morphism of schemes, and define the following contravari-
ant functor associated to some S′-scheme Y as

ResS′/S(Y ) : T 7→ HomS′(T ×S S′, Y ) ,

where T is some connected S-scheme. If this functor is representable, it is called the
Weil Restriction of Y (w. r. t. h). In other words, the Weil restriction is adjoint to
the base change functor, i. e. there is a functorial isomorphism

HomS(T,ResS′/S(Y ))
∼−→ HomS′(T ×S S′, Y ).

The Weil restriction exists for instance under the following conditions:

Theorem C.6. Let h as above be finite and locally free, and let Y be some S′-scheme.
Assume that for each s ∈ S and any finite subset P ⊂ Y ⊗S κ(s), there exists an open
affine subscheme U ⊂ Y containing P . Then the Weil restriction ResS′/S(Y ) exists.

Let us now briefly consider the special case of a separable field extension L/K,
i. e. Spec (K) = S and Spec (L) = S′, with h the canonical map induced by the
inclusion morphism K ↪→L. Assume that Y is some S′-scheme such that ResY exists
(for instance Y affine of finite type over L). In this scenario the Weil restriction can be
made very explicit (going back to Weil) in the following way: Let M/K be some finite
Galois extension with Galois group G containing a Galois closure of L/K. Form the
scheme

Ỹ :=
∏

ι:L ↪→M

Y ⊗LMι ,
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C.2. Weil Restriction

where Mι denotes M as L-algebra via the embedding ι : L ↪→M . Then G acts on the
set of embeddings ι, and we obtain a permutation of factors for each automorphism
σ ∈ G, that is an isomorphism

fσ : σ∗Ỹ → Ỹ .

Proposition C.7. The collection (fσ)σ∈G forms an effective descent datum on Y , with
the resulting scheme isomorphic to the Weil restriction Res(Y ). In particular, if Y is
geometrically connected or smooth over L, then so is Res(Y ) over K.

In particular, for a finite Galois extension L/K and an L-scheme Y for which the
Weil restriction exists, we have

ResL/K(Y )⊗K L ∼=
∏

σ∈AutK(L/K)

Y ⊗L Lσ .

Theorem C.8. Let k be a finite field and k′/k some finite extension with Galois group
G. Let A be some projective variety defined over k′. Assume that for every pair of
Galois automorphisms (α, β) ∈ G×G we have an isomorphism

fα,β : (A)β → (A)α

such that

fα,β ◦ fβ,γ = fα,γ ,

fαγ,βγ = (fα,β)γ ,

fα,α = id .

Then there exists a projective variety Ak defined over k and an k′-isomorphism f : A→
Ak such that

fα,β = (fβ)−1 ◦ fα

for all pairs (α, β) as above. Furthermore, f is unique up to k-isomorphism.

Proof. This is the content of [Wei56, Section I ], in particular Thm. 3. y

Let B be some algebraic variety over k′, which does not necessarily satisfy the con-
ditions of the last theorem. In order to apply it, one forms the variety

A := B × σ∗B × · · · × σ(b−1)∗B ,

where σ ∈ Gal(k′/k) denotes the k-Frobenius automorphism and σ∗(B) denotes the
variety obtained by the natural k-action of σ on B (defined, for instance, as applying σ
to the defining polynomial equations) and b is the degree of the field extension [k′ : k].
In particular there is a natural cyclical permutaion action of σ on the factors of A, giving
us varieties σ∗A, . . . , σ(b−1)∗A, and we see that A satisfies the conditions of Thm. C.8,
and ergo A descends to k, i. e. there exists a variety Ak defined over k that becomes
isomorphic to A after base-change to k′.
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D. The Brauer Group

There are various accounts of Brauer group theory in the literatur; we refer to the
book “Central Simple Algebas and Galois Cohomology” from Gille and Szamuely, see
[GS06].

D.1. Construction of Br(k)

Let B be an algebra over a field k. Then B is called central, if its centre is k, and it is
called simple, if it is semisimple and has no two-sided non-trivial ideals. Let K/k be
a field extension. If B ⊗K is isomorphic to a matrix algebra Mn(K) for some n ∈ N,
we call K a splitting field for B.

Proposition D.1 (Noether, Köthe). Any central simple k-algebra has a splitting field
that is separable over k.

Proof. See [GS06, Prop. 2.2.5]. y

The Brauer group Br(k) of some field k can be defined as the group of Morita equiv-
alence classes of central simple algebras over k as follows: Using the Artin-Wedderburn
classification theorem (or the Noether-Köthe splitting field theorem from above), we
can write any central simple algebra over k as matrix algebra Mn(D) for some n ∈ N
and some division algebra D, and we call two central simple algebras over k equivalent,
if they can be represented as matrix algebras over the same division ring D. The tensor
product functor on k-algebras is compatible with these equivalence classes, since cen-
tral simple algebras over k are precisely those k-algebras that become isomorphic to a
matrix ring after base change to an algebraic closure kalg. Since the equivalence class
of the opposite algebra kop acts as an inverse to the class of k, the set of equivalence
classes of central simple algebras together with the group law induced by tensor prod-
uct forms a group, the Brauer group Br k. The degree of a central simple algebra B
is defined as the square root of its dimension, its period is defined as the order of the
class of B in Br k, and the index of B is defined as the degree of the division algebra
D that is Brauer equivalent to B.

Theorem D.2. Let E be a central division algebra over a global field F . The period
of E, is equal to the index of E, i. e. the order of [E] in Br(F ) is

√
[E : F ].

Proof. cf. [GS06, Prop. 6.3.10, Rem. 6.5.5]. y

D.2. Class Field Theory

Let k be a global field, and let B be a central simple algebra over k. Let v be some
place of k, and denote by kv the completion of k at v. The tensor product B ⊗k kv is
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D.2. Class Field Theory

then a central simple algebra over kv. We obtain a homomorphism Br(k) → Br(kv),
and since any central simple algebra splits at all but finitely many places, we also get a
homomorphism Br(k)→⊕

v Br(kv), where the right hand side is the summation over
all valuations v of k. Furthermore, from local class field theory we have the canonical
isomorphism invv(kv) : Br(kv) → Q /Z, the so-called local Hasse-invariant at v.
These morphisms fit together into the following short exact sequence1):

0→ Br(k)→
⊕

v

Br(kv)→ Q /Z→ 0 .

Here the third map is summation
∑

invv(·) over all the local Hasse-invariants. We
also make note of a useful property of local invariants which we need in Chapter 5.
Namely, for any field k complete under a discrete valuation with perfect residue field
and a finite extension k′/k, the restriction map Br(k) → Br(k′) is compatible with
the ismorphisms Br(k) → Q /Z and Br(k′) → Q /Z in the following way (see [GS06,
Prop. 6.3.9, Rem. 6.3.11]): There is a commutative diagram

Br(k) Q /Z

Br(k′) Q /Z

∼=

Res(·) [k′:k′]

∼=

In particular, the statement is true for local fields. Now let E be some central simple
algebra over a global field K, and let L/K be a finite field extension. Then the local
Hasse invariant of L⊗KE at a place v of K and a place u of E above v can be calculated
as

invu(L⊗K E) = [Lu : Kv] · invv(E) .

1originally proven by Hasse; for a modern discussion, see [GS06, Cor. 6.5.4]
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